

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE QUÍMICA

ELABORACIÓN DE TEMARIO PARA UN CURSO DE QUÍMICA E INGENIERÍA QUÍMICA VERDE

TESINA

QUE PARA OBTENER EL TÍTULO DE

INGENIERO QUÍMICO

PRESENTA

VÍCTOR NAIM PÉREZ CARREÓN

Ciudad Universitaria, CD.MX.,

2021

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:		
PRESIDENTE:	Profesor:	GEMA LUZ ANDRACA AYALA
VOCAL:	Profesor:	Alejandra Mendoza Campos
SECRETARIO:	Profesor:	YAMILETH YAZMÍN MARTÍNEZ VEGA
1er. SUPLENTE:	Profesor:	David Fragoso Osorio
2° SUPLENTE:	Profesor:	María Rafaela Gutiérrez Lara
SITIO DONDE SE DESAF LABORATORIO COMPARTID ATMÓSFERA — UNIVERSIDA	O DE CROMATOGRA	fía - Centro de Ciencias de la
ASESOR DEL TEMA:		
	Dra. Gema Luz A	ndraca Ayala
SUPERVISOR TÉCNICO:		
	M. en I. María Rafae	la Gutiérrez Lara
SUSTENTANTE:		
	Víctor Naim Pé	rez Carreón

AGRADECIMIENTOS

A la Universidad Nacional Autónoma de México, mi alma mater, y a la Facultad de Química, por todo el conocimiento que me ha permitido adquirir.

Al Centro de Ciencias de la Atmósfera, y al Laboratorio Compartido de Cromatografía de este, por facilitar el uso de sus instalaciones y equipo.

Al Programa de Apoyo a Proyectos para la Innovación y Mejoramiento de la Enseñanza (PAPIME), por el apoyo económico otorgado al proyecto de clave PE201519 y nombre "Desarrollo de herramientas didácticas para química e ingeniería química verde".

A los ponentes del taller (Dr. René Miranda Ruvalcaba, Dr. Antonio Rodríguez Martínez, Dr. Pasiano Rivas García, Dra. María Olivia Noguez Córdova, Dr. Fernando León Cedeño, Dr. Omar Amador Muñoz, Dr. Jorge Ibañez Cornejo, Dr. Arturo Gavilán García, Dr. Gustavo Ávila Zárraga, Ing. Manuel Antonio López Betancourt), por su amable participación.

A la Dra. Gema Luz Andraca Ayala, asesora del tema, por su interminable apoyo y paciencia.

A todas las personas que apoyaron este proyecto.

TABLA DE CONTENIDO

Α	GRADEC	CIMIE	NTOS	iii
T	ABLA DE	CON	VTENIDO	iv
۱N	IDICE DI	E TAE	BLAS	v i
ĺΝ	IDICE DI	E FIG	URAS	vi
RI	ESUMEN	١		1
O	BJETIVC)S		2
	Objetiv	o Ge	neral:	2
	Objetiv	os P	articulares:	2
1	QUÍI	MICA	E INGENIERÍA QUÍMICA VERDE	3
	1.1	Hist	oria de la química e ingeniería química verde	3
	1.2	Quír	nica Verde	5
	1.2.1	L	Principios de la Química Verde	5
	1.3	Inge	niería Química Verde	. 10
	1.3.1	1	Principios de la Ingeniería Química Verde	. 10
	1.4	Met	odologías Experimentales	. 11
	1.4.1	1	Fluidos Supercríticos	. 12
	1.4.2	2	Líquidos lónicos	. 12
	1.4.3	3	Procesos sin solventes	. 14
	1.4.4	1	Fotoquímica y Fotocatálisis	. 14
	1.4.5	5	Sonoquímica	. 15
	1.4.6		Química de Microondas	
2	EDU	CACI	ÓN SOBRE QUÍMICA VERDE EN MÉXICO	. 18
	2.1 Químic		queda de programas de estudio en instituciones de nivel superior relacionados a la rde	
	2.1.1	1	Facultad de Estudios Superiores Cuautitlán	. 19
	2.1.2	2	Universidad Autónoma del Estado de Morelos	. 19
	2.1.3	3	Universidad Autónoma de Nuevo León	. 20
	2.2	Anál	lisis de los programas de estudio en México	. 21
3	ELAE	BORA	CIÓN DE UN TALLER DE EXPERTOS	. 23
	3.1	Prog	grama del Taller	. 23
	3.2	Resu	umen de las Conferencias	. 25
	3.2.1	1	Plenaria	. 25
	3.2.2	2	Mesa 1. Química e Ingeniería Química Verde en la Currícula	. 26

	3.2.	3	Mesa 2. Química e Ingeniería Química Verde en la Investigación	28
	3.2.	4	Mesa 3. Química e Ingeniería Química Verde en la Industria	31
	3.3	Res	umen de las Conferencias	34
4	PRC	PUES	STA DE UN PROGRAMA DE ESTUDIO	36
	4.1	Obj	etivo del curso	36
	4.2	Det	erminación del contenido del curso	36
	4.2.	1	Principios de la Química Verde	36
	4.2.	2	Principios de la Ingeniería Química Verde	36
	4.2.	3	Casos de Estudio	37
	4.3	Pro	grama Propuesto	37
	4.3.	1	Resumen de las actividades	38
	4.3.	2	Bibliografía Recomendada	39
5	COI	NCLU:	SIONES	40
6	ANE	XOS		40
	Anexo	I. Ot	ros Principios de la Química Verde	40
	Ane	xo I.	I. Doce Principios Más de la Química Verde	40
	Ane	xo I.	II. Principios de Ingeniería Verde	41
	Anexo	II. Pr	ogramas de Estudio	42
	Ane	xo II.	I. Programa de Ingeniería y Química Verde, de la FES Cuautitlán	42
	Ane	xo II.	II. Programa de Química Verde, de la FES Cuautitlán	45
	Ane	xo II.	III. Programa de Química Verde y Sustentabilidad, de la UAEM	47
	Ane	xo II.	IV. Programa de Ingeniería de Procesos Verdes, de la UAEM	50
	Ane	xo II.	V. Programa de Ingeniería Verde, de la UANL	54
	Anexo	III. P	onentes del Taller de Expertos de Química Verde	59
	Ane	xo III	. I. Dr. René Miranda Ruvalcaba	59
	Ane	xo III	. II. Dr. Antonio Rodríguez Martínez	59
	Ane	xo III	. III. Dr. Pasiano Rivas García	59
	Ane	xo III	. IV. Dra. María Olivia Noguez Córdova	60
	Ane	xo III	. V. Dr. Fernando León Cedeño	60
	Ane	xo III	. VI. Dr. Omar Amador Muñoz	61
	Ane	xo III	. VII. Dr. Jorge Ibañez Cornejo	61
	Ane	xo III	. VIII. Dr. Arturo Gavilán García	61
	Ane	xo III	. IX. Dr. Gustavo Ávila Zárraga	62
	Ane	xo III	. X. Ing. Manuel Antonio López Betancourt	62
7	REF	EREN	CIAS	63

INDICE DE TABLAS

Tabla 1 Matriz de Comparación de Planes de Estudio de Química Verde a nivel Licenciatura	. 21
Tabla 2 Comparación de los enfoques temáticos de las materias de Química Verde	. 22
Tabla 3 Programa del taller de Expertos en Química Verde	. 24
Tabla 4 Análisis de las conferencias del taller de Química Verde	. 35
Tabla 5 Propuesta de contenido del programa de Química e Ingeniería Química Verde	. 38
Tabla 6 Bibliografía recomendada de Química e Ingeniería Química Verde	. 39
ÍNDICE DE FIGURAS	
Figura 1 Uso de [Bmin][PF6] en la reducción de aldehídos y cetonas	13

RESUMEN

En este trabajo se propone un curso sobre Química e Ingeniería Química Verde. Este curso pretende ser el primer acercamiento a los conceptos de Química Verde para estudiantes de nivel licenciatura.

Para asegurar que el temario incluya los temas de mayor relevancia sobre la Química Verde, se realizó una exhaustiva investigación sobre la educación del tema, y sobre la forma en que se aplica la Química Verde en México.

La investigación consistió en la búsqueda y análisis de los planes de estudio de materias relacionadas a la Química Verde a nivel licenciatura; así como en el acercamiento con docentes e investigadores dedicados a la Química Verde.

La Química Verde es una forma particular de prevenir la contaminación, que se enfoca en modificar la naturaleza intrínseca de un producto químico o proceso, de forma que presente un menor riesgo a la salud humana y al ambiente.

Paul Anastas, considerado el padre de la Química Verde, habla de esta en su libro, "Green Chemistry: Theory and Practice", de la siguiente forma:

"La Química Verde no es complicada, aunque suele ser elegante. Su objetivo no es nada menos que la perfección, mientras reconoce que todos los avances e innovaciones hacia esta meta involucrarán algún riesgo." (Anastas & Warner, 1998).

Esta descripción, a mi parecer, es la mejor forma de ver al concepto central de la Química Verde. Un objetivo al que debe aspirar todo proceso, siendo el deber del químico encontrar la mejor forma de acercarse al mismo. El objetivo es el proceso perfecto, donde ningún material se desperdicia o desecha, y todas las sustancias químicas involucradas son benignas por naturaleza.

OBJETIVOS

Objetivo General:

Establecer la propuesta de un temario para un curso de Química e Ingeniería Química Verde como introducción al tema para estudiantes de nivel licenciatura mediante el desarrollo de un estudio comparativo de programas similares en nivel y objetivo.

Objetivos Particulares:

- Analizar, mediante una revisión curricular, la forma en que se imparten los temas relacionados a la Química e Ingeniería Química Verde en México a nivel licenciatura.
- Apoyar en el desarrollo de un taller donde los personajes de mayor relevancia en el área de la Química Verde hablen sobre su experiencia con la enseñanza y aplicación de esta.
- Realizar un análisis sobre el contenido del taller para extraer los puntos que consideran los expertos necesarios en la enseñanza de la Química Verde.
- Establecer los puntos principales que debe cubrir un programa de estudio introductorio a la Química e Ingeniería Química Verde.

1 QUÍMICA E INGENIERÍA QUÍMICA VERDE

La Química Verde gira en torno a un solo concepto, que se puede describir en una oración: es la minimización de todos los efectos nocivos que se producen debido a un proceso químico. Esto incluye a la contaminación que generan los productos secundarios y los desechos, los efectos secundarios de la sustancia misma, y la contaminación resultante de la energía que necesita la reacción para llevarse a cabo.

1.1 Historia de la química e ingeniería química verde

La Química Verde tiene sus orígenes en la problemática ambiental que adquirió fuerza a mediados del siglo pasado.

En el año 1962, la bióloga marina Rachel Carson publicó un libro titulado "La Primavera Silenciosa". Este libro fue el resultado de su investigación sobre el efecto de algunas de los procesos químicos más usados en el momento, siendo uno de ellos el uso de DDT como insecticida en la agricultura. El libro causó un gran impacto en el gobierno estadounidense, que respondió a las afirmaciones del libro con su propia investigación. Misma que coincidió con el libro, e inició el movimiento ambiental en ese país.

Antes de 1962, las regulaciones a la industria química eran limitadas. El Acta de Insecticida de 1910, junto con el Acta Federal de Insecticida, Fungicida y Rodenticida de 1947; regulaban la efectividad de dichas sustancias, independientemente del efecto en la salud humana o el ambiente. Una enmienda de 1952 establecía límites a los residuos químicos en la comida, sin regular el uso de las sustancias usadas en su preparación. (Environment & Society Portal, 2012)

A fines de la década ocurrieron dos acontecimientos más, que fortalecieron el movimiento. En enero de 1969 ocurrió el primero, cuando un accidente en una plataforma petrolera resultó en 3 millones de galones vertidos en el océano pacífico (The Huffington Post, 2017).

Unos meses después, cuando se prendió en llamas, por treceava vez, el río Cuyahoga de Cleveland, la presión social aumentó en el tema y llevó a la formación de la Agencia de Protección Ambiental (EPA) (National Geographic, 2019), quien recibió la autoridad para regular las sustancias químicas con el Acta de Control de Sustancias Tóxicas de 1976 (United States Environmental Protection Agency, 2018).

En 1990, con el Acta Federal de Prevención de Contaminación, se comienzan a enfocar los esfuerzos para disminuir la contaminación en la reducción de fuente. Dicha ley define reducción de fuente como una práctica que "reduce la cantidad de cualquier sustancia nociva o contaminante, que se libera como residuo al ambiente" y "reduce los peligros a la salud pública y al ambiente asociados a la generación de dichas sustancias, o contaminantes". También establece una jerarquía en la prevención:

- La contaminación debe ser prevenida o reducida en la fuente cuando sea posible.
- La contaminación que no puede ser prevenida debe ser reciclada de forma segura para el ambiente.
- Si no puede ser prevenida o reciclada, debe tratarse de forma ambientalmente amigable.
- El desecho o liberación al ambiente debe ser usado como último recurso y debe realizarse de forma ambientalmente segura. (United States Environmental Protection Agency, 2017)

La reducción de contaminantes desde la fuente es uno de los fundamentos de lo que se convertiría posteriormente en aquello conocido como Química Verde.

El uso de las palabras "Química" y "Verde" para referirse a estos conceptos, se le atribuye a Paul Anastas, el entonces jefe de la rama de Industria Química, en la Oficina de Prevención, Pesticidas y Sustancias Tóxicas de la Agencia de Protección Ambiental. Actualmente es reconocido como el padre de la química verde (Yale Scientific, 2010).

1.2 Química Verde

"La química verde es el uso de principios químicos y metodologías para la reducción de fuente, la forma más deseable de prevención de la contaminación. La química verde incorpora el uso de prácticas de prevención de la contaminación en la producción de químicos para minimizar los efectos negativos que pueda producirle al ambiente." (Anastas & Warner, 1998)

Esta definición, aunque simple, resume perfectamente la intención de la química verde. Busca crear procesos perfectos (sin desperdicios, sustancias tóxicas, redituables, ni daños al ambiente), acercándose cada vez más, desarrollando procesos cada vez más cercanos al ideal.

1.2.1 Principios de la Química Verde

Esta filosofía se concentra en los llamados "12 Principios de la Química Verde", propuestos por Anastas y Warner en la última década del siglo pasado. Estos principios se han mantenido a través de los años, y se asocian invariablemente con la frase "Química Verde".

 Prevención. Es mejor prevenir residuos que tratar o limpiarlos después de ser generados en un proceso.

La prevención es la base de la química verde. En cada aspecto de la sociedad, se ha reconocido que prevenir un problema es mejor a tratar de resolverlo cuando ya existe. Dentro del contexto de la química, el razonamiento no es el mismo, al considerarse más viable el tratamiento del problema (residuos) que las alternativas, que suelen involucrar una inversión adicional en desarrollo y equipo. Este es el principal cambio que propone la química verde, cuya aplicación se guía por los demás principios. (Anastas & Warner, 1998)

2. **Economía Atómica**. Las reacciones deben ser diseñadas para maximizar la incorporación de la materia prima en el producto final, en lugar de generar productos no deseados o de desperdicio.

La forma tradicional de medir la efectividad de un proceso de síntesis es a través del rendimiento, una comparación molar. Este método, sin embargo, no considera el peso total, por lo que se usa la economía atómica como una evaluación más completa del proceso químico. La economía atómica consiste en evaluar la incorporación de los reactivos en el producto final, por lo que es útil para comparar diferentes procesos en su carácter verde. (Anastas & Warner, 1998)

El porcentaje de economía atómica puede calcularse como 100 veces la masa molecular relativa de todos los átomos que constituyen el producto deseado dividido por la masa molecular relativa de los reactivos, como se muestra a continuación.

%
$$Economía\ Atómica = 100\ x \frac{Masa\ molecular\ relativa\ del\ producto\ deseado}{Masa\ molecular\ relativa\ de\ todos\ los\ reactivos}$$

Al considerar la economía atómica de varias rutas de síntesis en las primeras etapas del desarrollo, es probable que la estrategia elegida produzca una mayor cantidad de producto por cantidad de reactivos que otras alternativas, sin embargo, no siempre es el caso, por lo que el cálculo de economía atómica debe considerarse como un complemento a otras mediciones de eficiencia, lo que permitirá una mejor decisión respecto al proceso. (Lancaster, 2016)

3. **Uso de sustancias químicas menos peligrosas**. Los métodos de síntesis deben ser diseñados para usar y generar sustancias cuya toxicidad en el ambiente y al público sea mínima o nula.

El uso de sustancias potencialmente nocivas puede ser inevitable en un proceso dado, o pueden existir formas diferentes de llevarlo a cabo. Este principio simplemente propone considerar los efectos nocivos de las sustancias como un factor a considerar, uno que debe reducirse lo más posible. Existen varias razones para esto, desde el punto de vista ético (al tener el conocimiento y habilidades de

reducir el peligro que enfrenta el público, hacerlo es responsabilidad del químico) hasta un punto de vista pragmático (un mayor uso de sustancias peligrosas conlleva un mayor costo en su control dentro del proceso). (Anastas & Warner, 1998)

4. Los productos químicos deben ser diseñados para **preservar la eficacia en** su función mientras reducen su toxicidad.

Al conocer la estructura molecular, así como el uso de diversas pruebas, es posible estimar las propiedades de los productos químicos, que deben diseñarse buscando mantener o aumentar su desempeño mientras se reduce su toxicidad. (Anastas & Warner, 1998)

5. Solventes y sustancias auxiliares más seguras. El uso de sustancias auxiliares, como solventes y agentes de separación debe ser evitado cuando sea posible. Si no puede ser evitado, deben usarse en la menor cantidad y de la forma más inocua posible.

Se puede definir una sustancia auxiliar como aquella que apoya en la manipulación de una o más sustancias químicas, pero no es parte integral de las moléculas por manipular. Estas sustancias se usan para superar obstáculos específicos en la elaboración de un producto químico. Con frecuencia, las sustancias auxiliares pueden tener propiedades de impacto negativo en la salud humana y el ambiente (Anastas & Warner, 1998). Cuando este es el caso, su importancia debe evaluarse cuidadosamente, así como posibles sustitutos con propiedades más deseables.

6. Eficiencia energética. Los requerimientos energéticos de los procesos químicos deben ser reconocidos por su impacto económico y ambiental, y deben minimizarse. De ser posible, todas las reacciones deben llevarse a cabo a condiciones moderadas de temperatura y presión. Los requerimientos energéticos de un proceso químico suelen estar ligados con los cambios de temperatura necesarios para llevar a cabo una reacción, o separar la mezcla resultante de la misma. El uso de un catalizador (que puede disminuir la temperatura necesaria para la reacción), el diseño de un proceso con menor necesidad de separación, o el uso de métodos de activación alternativos, son algunas de los posibles ajustes que pueden disminuir el consumo energético. (Anastas & Warner, 1998)

7. Uso de **materia prima renovable**, cuando sea técnica y económicamente factible.

La diferencia entre un recurso renovable y uno agotable es el tiempo. Aunque técnicamente renovables, los combustibles fósiles se forman y consumen a velocidades difícilmente comparables. El caso opuesto ocurre con la energía solar, que proviene de una fuente finita de combustible, pero el tiempo necesario para que se consuma es comparable con el tiempo que ha existido la Tierra misma. De forma general, se considera una fuente renovable aquella que se puede regenerar fácilmente con el tiempo, por lo que su aprovechamiento es incentivado (mientras su ritmo de consumo sea comparable con su regeneración). (Anastas & Warner, 1998)

8. Reducción de la derivatización, que debe ser evitada cuando sea posible.

La derivatización (modificación de una sustancia química para facilitar su análisis o tratamiento) suele generar residuos adicionales, por lo que buscar una forma de llevar a cabo el proceso sin este método es ideal. (Anastas & Warner, 1998)

9. Las **reacciones catalizadas** son superiores a las reacciones estequiométricas.

El papel de un catalizador es facilitar una transformación deseada sin consumirse en la misma, ya sea aumentando la selectividad de la reacción o reduciendo su energía de activación. En ambos casos las ventajas son considerables, por lo que su uso es benéfico y debe implementarse cuando sea posible. (Anastas & Warner, 1998)

10. Los productos químicos deben diseñarse para que no persistan en el ambiente y se descompongan en productos inocuos, una vez terminada su función.

Al terminar su vida útil, toda sustancia que se desecha entra en contacto con el ambiente, una situación rara vez considerada en su diseño. Esta situación debe considerarse como parte de la vida de toda sustancia, y los cambios para reducir los efectos en el ambiente minimizados. (Anastas & Warner, 1998)

11. Análisis en tiempo real para prevención de la contaminación.

El desarrollo e implementación de un método de análisis en tiempo real permite identificar cambios en el proceso y ajustar sus parámetros en respuesta. Esto puede reducir considerablemente la generación de desechos y/o evitar gastos innecesarios en procesos no continuos. (Anastas & Warner, 1998)

12. Las sustancias y la forma en que se usan en un proceso químico deben ser elegidas para minimizar la probabilidad de accidentes químicos.

Las metas de la química verde deben incluir todos los peligros que presentan las sustancias que se usan, en vez de enfocarse solamente en la contaminación o ecotoxicidad.

En algunos casos, la minimización de residuos puede aumentar el potencial de accidentes. En estos casos, el proceso debe balancear su deseo de prevenir la contaminación y la prevención de accidentes en el mismo. (Anastas & Warner, 1998) (Doble & Kruthiventi, 2007)

1.3 Ingeniería Química Verde

En un intento por abordar a la comunidad ingenieril, Paul Anastas publicó en 2003 el libro "12 Principles of Green Engineering", que propone una docena de pautas dirigidas específicamente a la aplicación de la química verde en la industria.

1.3.1 Principios de la Ingeniería Química Verde

Los principios de la Ingeniería (Química) Verde no son fundamentalmente diferentes de los anteriores, pero los complementan en ciertas situaciones específicas.

- Los diseñadores deben esforzarse por asegurar que todas las entradas y salidas de materia y energía sean lo más inherentemente inocuas como sea posible.
- 2. Es mejor prevenir desechos que tratarlos o limpiarlos después de formados.
- 3. Las operaciones de separación y purificación deben diseñarse para minimizar el consumo de materia y energía.
- 4. Los productos, procesos y sistemas deben diseñarse para maximizar la eficiencia de masa, energía, espacio y tiempo.
- 5. Los productos, procesos y sistemas deben enfocarse en satisfacer necesidades, en vez de aprovechar la materia prima.

- 6. La entropía y complejidad en las sustancias deben considerarse como una inversión al elegir entre reutilizar, reciclar o rechazar como residuo final.
- 7. La durabilidad, en vez de inmortalidad, debe ser una meta de diseño.
- 8. El diseño para una capacidad innecesaria debe considerarse un error.
- 9. La diversidad de materiales en productos multicomponentes debe minimizarse para promover el desmontaje y mantener su valor.
- 10. El diseño de productos, procesos, y sistemas debe incluir la integración e interconectividad con los flujos de energía y materia disponibles.
- 11.Los productos, procesos, y sistemas deben diseñarse considerando su aprovechamiento al finalizar su vida útil.
- 12.Los insumos de materia y energía deben ser renovables, en vez de agotables. (Jiménez-Gonzáles & Constable, 2011)

1.4 Metodologías Experimentales

La química verde busca eternamente un ideal inalcanzable, donde todos los procesos usan y producen sustancias no tóxicas, no generan desechos, son completamente eficientes y son lucrativos. Si bien, no será posible eliminar las imperfecciones de un proceso real, es posible mejorar considerablemente los procesos para acercarlos al elusivo ideal.

Una reacción dada suele incluir tres componentes: disolvente, reactivos/catalizador, suministro de energía. En mejorar estos tres puntos se enfocan la mayoría de los esfuerzos de la química verde, y suelen denominarse metodologías experimentales. (Doble & Kruthiventi, 2007)

Si la Química Verde plantea el objetivo, las metodologías muestran el camino.

1.4.1 Fluidos Supercríticos

Se le llama supercrítico a un fluido si este se encuentra en condiciones de temperatura y presión mayores al punto crítico del mismo. Un fluido supercrítico suele tener una densidad similar a un líquido, y una viscosidad cercana a la de un gas. Este par de características, en adición a la facilidad con que se pueden alterar las propiedades del fluido, convierten a los fluidos supercríticos en una opción considerable para sustituir ciertos solventes, principalmente orgánicos.

La mayor desventaja es el costo de mantener un proceso a las condiciones necesarias para mantener el fluido en el estado necesario (Lancaster, 2016).

Los fluidos supercríticos de mayor interés como disolventes son CO₂ y agua. El CO₂ puede sustituir ciertos disolventes orgánicos en procesos de extracción.

El agua, que necesita condiciones más dramáticas para alcanzar su punto crítico, se vuelve altamente corrosiva. En condiciones oxidativas es capaz de oxidar completamente a la mayoría de las especies orgánicas en minutos, por lo que se puede usar para tratar residuos orgánicos. La técnica se conoce como ScWO (Supercritical Water Oxidation, o Oxidación de Agua Supercrítica). (Lancaster, 2016).

El agua supercrítica se ha usado para tratar aguas residuales provenientes de la industria textil.

Una aplicación práctica del agua supercrítica yace en el tratamiento de aguas residuales de fábricas textiles, donde se ha probado la eficiencia del proceso a 25 MPa y 550 °C en agua contaminada con un tinte orgánico (CI Disperse Orange 25), que reduce la demanda química de oxígeno en un 98.5% en 6.1 segundos (Söğüt & Akgün, 2007).

1.4.2 Líquidos lónicos

Los líquidos iónicos son sales que se funden a menos de 100°C. Tienen presiones de vapor muy bajas, pueden disolver varios compuestos inorgánicos y orgánicos,

son estables hasta 300°C y poseen una baja inflamabilidad. En ciertos casos pueden actuar como solvente y catalizador.

Los líquidos iónicos, generalmente, están hechos de iones asimétricos, no coordinados, siendo invariablemente uno de ellos orgánico en naturaleza.

Su densidad, viscosidad, solubilidad, miscibilidad, estabilidad, y otras propiedades pueden variarse con la elección del catión y anión.

Varias síntesis se han llevado a cabo usando líquidos iónicos. Estas incluyen reacciones aldol, ciclotrimerización de alquenos, conversión de epóxidos a carbonatos, reacciones de Gringard, esterificaciones, etc. (Doble & Kruthiventi, 2007)

Los principales problemas por resolverse se centran en su toxicidad (que no se ha evaluado en la mayoría de los líquidos iónicos), una preocupación importante en la producción de envases de alimentos. Otra desventaja es la producción de las sales, que, si bien no tiene un costo particularmente elevado, puede requerir de las sustancias orgánicas que se buscaba reemplazar, negando uno de los beneficios de usar estas sustancias (Lancaster, 2016).

Un ejemplo del uso de líquidos iónicos es la reducción de aldehídos y cetonas, como se muestra en la Figura 1.

$$R_{1} \xrightarrow{\text{NaBH}_{4}} R_{2}$$

$$R_{1} = \text{Ph}$$

$$R_{2} = \text{H, Ph, PhCH(OH)}$$

Figura 1 Uso de [Bmin][PF6] en la reducción de aldehídos y cetonas

(Ameta & Ameta, Green Chemistry. Fundamentals and Applications, 2013)

1.4.3 Procesos sin solventes

La mayoría de los químicos producidos en grandes volúmenes usan procesos donde uno de los reactivos funge como solvente. Ejemplos típicos de esto incluyen la producción de benceno, metanol, MTBE, fenol, y polipropileno.

En general, muchas reacciones que involucran sustratos parcial o totalmente miscibles pueden darse en condiciones libres de solvente. Los solventes se llegan a usar innecesariamente debido a la adaptación directa de un proceso de laboratorio (Lancaster, 2016).

Entre estos procesos se encuentra síntesis de metanol, que se genera a partir de gas de síntesis (CO y H2) en un reactor catalítico y la oxidación del metanol a formaldehido se lleva a cabo en la fase gaseosa (con un exceso de metanol para mantener la mezcla de reacción afuera de los límites de explosividad (Jiménez-Gonzáles & Constable, 2011).

1.4.4 Fotoquímica y Fotocatálisis

La fotoquímica estudia las reacciones químicas y otros fenómenos fisicoquímicos inducidos por la absorción de luz, donde se considera que cada reacción fotoquímica o fotofísica comienza con la absorción de un fotón por una molécula.

La molécula que absorbe el fotón puede entrar en un estado excitado (suponiendo que el fotón provee la energía suficiente, en el rango de 10-1000 kJ/mol), donde un electrón de la última capa de valencia es llevado a un orbital superior, lo que puede producir diversas reacciones. En estos casos, la excitación electrónica no se encuentra ligada a un aumento de temperatura, como se llegaría tradicionalmente al mismo estado, lo que permite un ahorro teórico significativo en energía y la posibilidad de trabajar en condiciones menos drásticas (Persico & Granucci, 2018).

Sin embargo, se presentan ciertas desventajas al momento de implementar procesos fotoquímicos a nivel industrial, principalmente el costo de las fuentes de luz de la longitud de onda necesaria, las cuales suelen emitir energía en rangos de luz amplios, por lo que no toda la energía es emitida en la longitud de onda necesaria para ser absorbida por la molécula deseada. (Lancaster, 2016)

A una reacción fotoinducida, que es acelerada por la presencia de un catalizador (semiconductor), se le conoce como fotocatalizada. En estos casos, el fotón crea una separación de cargas al promover el electrón a la capa de conducción desde la banda de valencia, generando una carga positiva en la capa de valencia y una carga negativa en la capa de conducción. El electrón adicional puede reducir una sustancia o reaccionar con un aceptor de electrones, como lo es el O2 (formando O2-). La carga positiva, por su parte, puede oxidar diversas moléculas o formar radicales (-OH -> °OH). (Ameta & Ameta, 2017)

La fotocatálisis tiene diversas aplicaciones, desde celdas solares hasta esterilización en medicina. Una de ellas es el uso de TiO2 como catalizador en la degradación de gases NOx. El uso de TiO2 en combinación con cemento y otros materiales de construcción ha mostrado un efecto positivo en la calidad del aire, por lo que podría ser usado como herramienta para mejorar la calidad del aire en ciudades contaminadas a través de la purificación pasiva del aire. (Maggos, Bartzis, Liakou, & Gobin, 2007)

1.4.5 Sonoquímica

El término Sonoquímica se refiere a los procesos químicos iniciados por ultrasonido (ondas de sonido con frecuencias mayores a 20 kHz) en líquidos. La interacción entre burbujas de gas y energía sónica en líquidos resulta en cavitación acústica. La cavitación acústica es el fenómeno de formación, crecimiento y colapso violento de burbujas inducido por las fluctuaciones de presión generadas por ondas de sonido en un medio líquido. Si la intensidad del ultrasonido es suficiente para superar la fuerza de tensión del medio, se llega al punto donde las fuerzas intermoleculares no son capaces de mantener la estructura molecular, lo que lleva a la formación de una cavidad (burbuja) en el medio. La energía necesaria para dicha formación se ve reducida por la presencia de las impurezas inherentemente presentes en los líquidos, que actúan como núcleos.

El colapso repentino y violento de la burbuja tiene diferentes efectos en el líquido, como generación de ondas de choque, propulsión del fluido (cuando la burbuja no se encuentra en el seno del fluido) ,un aumento en la temperatura drástico (hasta

miles de grados) por un corto periodo de tiempo (en la escala de los nanosegundos), emisión de luz causada por las condiciones térmicas, y la formación de radicales altamente reactivos capaces de iniciar diversas reacciones químicas (Colmenares & Chatel, 2017)

Existen diversas aplicaciones de esto. Las altas temperaturas que se alcanzan, aunque efímeras, se usan para soldar plásticos (Ultrasonic Platic Welding) de forma industrial. El chorro de agua que se produce se usa regularmente para remover la suciedad de diversos sustratos. En sistemas acuosos se forman radicales °OH, por lo que se usa para degradar contaminantes orgánicos en aguas residuales (Ameta, Ameta, & Ameta, Sonochemistry. An Emerging Green Technology, 2018).

1.4.6 Química de Microondas

Las microondas pueden ser usadas como un rápido método de calentamiento, pudiendo calentar a una rapidez de 10°C por segundo. El mecanismo que explica la forma en que absorbe una sustancia energía bajo radiación de microondas es compleja. Uno de los procesos, que explica la diferencia de calentamiento entre diferentes sustancias, se conoce como polarización dipolar.

Cuando una sustancia con momento dipolar es expuesta a radiación electromagnética, intentará alinearse con el campo electromagnético por rotación. En líquidos, dicha rotación causa fricción con las moléculas adyacentes, generando un aumento de temperatura. Esta rotación se verá influenciada por la frecuencia de la radiación. Esto sucede en presencia de cualquier radiación electromagnética, aunque no siempre lleva a un calentamiento práctico. A altas frecuencias, el cambio en la dirección del campo suele ser muy rápido para que se lleve a cabo la rotación, mientras que a frecuencias bajas la velocidad de rotación es muy lenta.

En el rango de las microondas (λ = [1 mm,1 m]), se puede producir un rápido aumento de temperatura en sustancias dipolares. En el caso de líquidos sin momento dipolar, se puede agregar una pequeña cantidad de un líquido dipolar miscible. (Lancaster, 2016).

Las microondas se usan comúnmente en diversas reacciones de síntesis orgánica. Además de acelerar las reacciones que tomarían horas o días a minutos, la baja temperatura necesaria permite usar solventes de bajo punto de ebullición. El agua, que a altas temperaturas se comporta de forma menos polar, también se puede usar como solvente. (Mavandadi & Pilotti, 2006)

2 EDUCACIÓN SOBRE QUÍMICA VERDE EN MÉXICO

La Química Verde se enseña a partir del nivel licenciatura a nivel global, con el grado de profundidad que se estudia dependiendo de la institución. Aún en las instituciones donde se desconoce el nombre "Química Verde", se imparten ciertas materias con objetivos similares a los estudiados en las materias especializadas. A continuación, se presentan las materias con relación a la enseñanza de la Química Verde.

2.1 Búsqueda de programas de estudio en instituciones de nivel superior relacionados a la Química Verde

De forma preliminar, se consideraron las universidades más importantes en México que imparten la licenciatura de Química. Dentro de éstas se buscaron programas de estudio relacionados con la Química Verde. La lista original, aunque extensa, rápidamente se redujo al encontrarse limitada la educación impartida sobre este tema en específico.

Las siguientes universidades cuentan con una o más materias relacionadas estrechamente con la Química Verde, y el programa detallado de las materias se encuentra disponible, por lo que se utilizaron como base para el análisis que se presenta más adelante.

Cabe destacar que se presentan las universidades donde la información sobre las materias de interés fue accesible.

Solo se consideraron las instituciones con un programa de estudio de nivel licenciatura. En ciertos casos, como aquel del Instituto Politécnico Nacional, no se encontraron programas de estudio del nivel licenciatura.

2.1.1 Facultad de Estudios Superiores Cuautitlán

Que imparte las materias "Ingeniería y Química Verde" (Facultad de Estudios Superiores Cuautitlán, 2019) y "Química Verde" (Facultad de Estudios Superiores Cuautitlán, 2019) en las carreras de Ingeniería en Química y Licenciatura en Química Industrial, respectivamente.

La materia "Ingeniería y Química Verde", de 48 horas totales, empieza con la enseñanza de los principios de ingeniería y química verde, y se centra en metodologías experimentales y procesos. Es una materia optativa de campo complementario (Facultad de Estudios Superiores Cuautitlán)

La materia "Química Verde", de 112 horas totales, dedica sus primeras horas a la enseñanza de los 12 principios, dedicando las 100 horas siguientes al estudio de Metodologías Experimentales y el Análisis del Grado de Química Verde en Procesos Químicos. La materia forma parte del paquete terminal de Química Orgánica Aplicada. (Facultad de Estudios Superiores Cuautitlán)

2.1.2 Universidad Autónoma del Estado de Morelos

Que imparte las materias "Ingeniería de Procesos Verdes" (Universidad Autónoma del Estado de Morelos, 2015) y "Química Verde y Sustentabilidad" (Universidad Autónoma del Estado de Morelos, 2015) en las carreras de Ingeniería Química y Químico Industrial, respectivamente.

La materia "Ingeniería de Procesos Verdes", de 64 horas totales, comienza con una introducción a la Química Verde en su primera unidad, y dedica las demás unidades a temas relacionados a los principios: economía atómica, catálisis y disolventes. Es una materia optativa. (Universidad Autónoma del Estado de Morelos, 2015)

La materia "Química Verde y Sustentabilidad", de 64 horas totales, inicia con los fundamentos de la química verde, seguido por los conceptos de sustentabilidad. Las unidades siguientes tratan los temas de Economía Atómica y Catálisis. Es una materia obligatoria de último semestre en la carrera. (Universidad Autónoma del Estado de Morelos, 2015)

2.1.3 <u>Universidad Autónoma de Nuevo León</u>

Que imparte la materia "**Ingeniería Verde**" (Universidad Autónoma de Nuevo León, 2012) en la carrera de Ingeniería Química.

Esta materia, de 90 horas presenciales, se divide en fases, siendo la primera fase aquella que introduce los conceptos de química verde, ingeniería verde y sustentabilidad. La segunda fase profundiza en algunos conceptos de las disciplinas introducidas previamente (disolventes, catalizadores y condiciones de reacción). La tercera fase se centra en el análisis de ciclo de vida. Es una materia optativa profesional.

2.2 Análisis de los programas de estudio en México

En la Tabla 1 y 2, se presenta el análisis de los programas de estudio analizados, en formato de matrices comparativas.

Tabla 1 Matriz de Comparación de Planes de Estudio de Química Verde a nivel Licenciatura

NOMBRE DE LA MATERIA	Química Verde y Sustentabilidad	Ingeniería de Procesos Verdes	Química Verde	Ingeniería y Química Verde	Ingeniería Verde
PROGRAMA RELACIONADO	Químico Industrial	Ingeniería Química	Química Industrial	Ingeniería Química	Ingeniería Química
NIVEL DE ESTUDIO	Licenciatura	Licenciatura	Licenciatura	Licenciatura	Licenciatura
SEMESTRE	Octavo	Séptimo	Octavo	Séptimo	Quinto
TIPO DE UNIDAD	Especialidad	Optativa	Especialidad	Optativa	Optativa
CRÉDITOS	6	8	10	6	5
INSTITUCIÓN	Universidad Autónoma del Estado de Morelos	Universidad Autónoma del Estado de Morelos	Facultad de Estudios Superiores Cuautitlán	Facultad de Estudios Superiores Cuautitlán	Universidad Autónoma de Nuevo León
BLOQUES TEMÁTICOS	Fundamentos de la Química Verde Desarrollo Sustentable Economía de átomos y de energía Catálisis y Química Verde Rediseño de sistemas químicos	Introducción Rediseño de sistemas químicos Economía de átomos y de energía Principios de catálisis Disolventes Procesos catalíticos más limpios	Introducción a la Química Verde Los 12 principios de la Química Verde Metodologías Experimentales de la Química Verde Análisis crítico del grado de química verde. Contenido en procesos químicos	Principios de Ingeniería y Química Verde Metodologías Experimentales de la Química Verde Fuentes Verdes. Bioenergía Funciones y Responsabilidades de Ingenieros Químicos Procesos en Ingeniería Verde Operaciones Unitarias y Prevención de la Contaminación Ingeniería Verde en la Industria Química	Química e ingeniería verde en movimiento hacia la sustentabilidad Diseño verde, seguridad, síntesis química e inventario del ciclo de vida Optimización e integración de masa y energía en procesos químicos y evaluación de los impactos ambientales del ciclo de vida

Tabla 2 Comparación de los enfoques temáticos de las materias de Química Verde

NOMBRE DE LA MATERIA	INSTITUCIÓN	DURACIÓN DEL CURSO [HORAS]	ENFOQUE PRINCIPAL	TEMAS PROFUNDIZADOS	TEMAS COMPLEMENTARIOS
Química Verde y Sustentabilidad	Universidad Autónoma del Estado de Morelos	64	Principios de Química Verde	Economía de Átomos Catálisis Rediseño de sistemas químicos	Desarrollo Sustentable
Ingeniería de Procesos Verdes	Universidad Autónoma del Estado de Morelos	64	Principios de Química Verde, Catálisis	Economía de Átomos Rediseño de sistemas químicos	Disolventes
Química Verde	Facultad de Estudios Superiores Cuautitlán	112	Verde, Metodologías	Medios Alternos para la Activación de Reacciones Medios Alternos de Reacción	Análisis crítico del grado de química verde contenido en procesos químicos
Ingeniería y Química Verde	Facultad de Estudios Superiores Cuautitlán	48	Principios de Ingeniería y Química Verde, Ingeniería Verde	Metodologías Experimentales de la Química Verde Prevención de Contaminación	Funciones y Responsabilidades de Ingenieros Químicos Operaciones Unitarias Procesos en Ingeniería Verde
Ingeniería Verde	Universidad Autónoma de Nuevo León	90	Principios de Química Verde, Análisis de Ciclo de Vida	Selección de Solventes, Catalizadores y Reactivos Mediciones en Química Verde	Bioprocesos Análisis de las Rutas y Selección Química

3 ELABORACIÓN DE UN TALLER DE EXPERTOS

Se llevó a cabo un taller de expertos en química verde el día 31 de mayo de 2019, en el que se invitaron investigadores y docentes dedicados a la química verde, donde hablaron de la manera en que enseñan e implementan los conceptos de la química verde en sus respectivas investigaciones.

El taller se organizó con el fin de conocer el punto de vista de los diversos académicos que se encuentran actualmente aplicando los conceptos de la química verde y desarrollar el curso a partir de los puntos discutidos.

3.1 Programa del Taller

En la Tabla 3 se presenta el programa final del taller que se realizó el 31 de Mayo de 2019 en la UNAM.

Tabla 3 Programa del taller de Expertos en Química Verde

HORA	ACTIVIDAD	EXPOSITOR	TEMA / PAPEL	PROCEDENCIA
08:30	Inscripción			
09:00	Inauguración	Dra. Gema Luz Andraca Ayala	ORADOR(A)	CCA / FQ
09:10	Objetivos	Andraca Ayala		
09:30	Plenaria	Dr. René Miranda Ruvalcaba	La Química Verde	FES C
10:30		Dra. Irma Cruz Gavilán García	MEDIADOR(A)	FQ
	Mesa 1. Q e IQV en la Currícula	Dr. Antonio Rodríguez Martínez	Experiencias de la Unidad de Aprendizaje de Química Verde en el Posgrado de Ingeniería Ambiental y Tecnologías Sustentables de la UAEM	UAEM
		Dr. Pasiano Rivas García	El análisis de ciclo de vida como herramienta de diseño de procesos verdes	UANL
		Dra. María Olivia Noguez Córdova	Mi experiencia en el ámbito de la Química Verde hacia su incorporación en la FES Cuautitlán	FES C
11:30	Receso			
12:15		Dr. José Agustín García Reynoso	MEDIADOR(A)	CCA / FQ
	Mesa 2. Q e IQV en la	Dr. Fernando León Cedeño	Aplicación de algunos de los principios de la Química Verde en Investigación y Docencia	FQ
	Investigación	Dr. Omar Amador Muñoz	Aplicación de la Química Analítica Verde para Determinar Contaminantes Orgánicos sin Generar Otros	CCA
		Dr. Jorge Ibañez Cornejo	Propuestas de Electroquímica Verde	IBERO
13:15		M. en I. Rafaela Gutiérrez Lara	[MEDIADOR(A)]	FQ
	Mesa 3. Q e IQV en el	Dr. Arturo Gavilán García	Química Verde y Ciclo de Vida de productos y residuos	INECC
	Sector Productivo	Dr. Gustavo Ávila Zárraga	Desarrollo e Implementación de Tecnología de Química Verde	FQ
		Ing. Manuel Antonio López Betancourt	Manejo, Destrucción de SAO's (Sustancias Agotadoras de Ozono) y de Alto Potencial de Calentamiento por medio de tecnología arco plasma	CYDSA
14:15	Reflexiones Finales y Clausura	Dr. José Agustín García Reynoso	ORADOR(A)	CCA / FQ

3.2 Resumen de las Conferencias

A continuación, se presenta un resumen de las conferencias que conformaron el taller, siguiendo el orden en que se presentaron. De la misma forma, se subdivide el resumen en temas (Plenaria, presencia en la currícula, presencia en la investigación, y presencia en la industria).

3.2.1 Plenaria

Esta plenaria fue realizada por el **Dr. René Miranda Ruvalcaba**, quien introdujo los conceptos básicos de la química verde. Dedicó tiempo a cada concepto, incluyendo la diferencia ente sostenibilidad [la habilidad de mantener el desarrollo de la calidad de vida sin comprometer la habilidad de la siguiente generación de hacer lo mismo] y sustentabilidad [que proviene de errores de traducción].

Argumentó que el desarrollo sostenible necesita equilibrar los aspectos sociales, económicos y ecológicos. De igual forma comparó la química verde [enfocada en la prevención durante el diseño del proceso] y la química ambiental [enfocada al tratamiento de los residuos de procesos existentes].

Explicó los doce principios de la química verde.

Enfatizó el factor E (ecológico) = Residuos [kg] / Productos [kg]; así como la importancia de la catálisis.

También mencionó las fuentes alternas de energía de activación [diferentes al calor], entre las que se encuentra la sonoquímica.

3.2.2 Mesa 1. Química e Ingeniería Química Verde en la Currícula

"Experiencias de la Unidad de Aprendizaje de Química Verde en el Posgrado de Ingeniería Ambiental y Tecnologías Sustentables de la UAEM", impartida por el Dr. Antonio Rodríguez Martínez.

"La ingeniería verde no tiene que ver con el dinero, no tiene que ver con el manejo de residuos. Tiene que ver con ser consciente de nuestros actos y de las problemáticas que intentamos resolver. Después viene la parte económica y ambiental"

"Sé consciente del problema que quieres resolver impactando lo menor al ambiente y considerando la parte social, la parte económica vendrá por consecuencia"

La presentación se centró en los programas de química verde, principalmente el programa de Maestría en Ingeniería Ambiental y Tecnologías Sustentables, así como el cuerpo académico responsable del tema (SUMAS: Sustentabilidad energética, Medio ambiente y Sociedad)

A nivel licenciatura, las materias Química Verde (obligatoria) e Ingeniería Verde (optativa) se imparten en el mismo centro.

Sobre las materias, el presentador mencionó la alta popularidad de sus cursos y el deseo de los estudiantes de continuar con el tema a niveles superiores (tras cursar la materia optativa de IV). Considera el presentador que la materia genera consciencia al momento de tomar decisiones, por simples o complejas que sean. Durante la clase el alumno desarrolla un proyecto, relacionando los conceptos con situaciones conocidas.

"El análisis del ciclo de vida como herramienta de diseño de procesos verdes", realizada por el Dr. Pasiano Rivas García

El centro de la exposición fue el análisis del ciclo de vida [ACV], y la forma en que se emplea en la enseñanza de química verde.

Empezando con la importancia del ACV, el expositor detalló la forma en que se puede aplicar como una herramienta para la evaluación de los efectos más relevantes en el ambiente relacionados con un producto específico, útil para tomar una decisión sobre el producto (alterándolo o sustituyéndolo de considerarse necesario)

Continuó con la metodología empleada para la enseñanza de la materia [Química Verde]. Se hace a través de proyectos de evaluación ambiental con ACV, desarrollados por grupos de estudiantes. Mostró el ejemplo del análisis de 1kg de tortillas. Comienza delimitando el alcance del estudio (producción del grano a venta en comercios). Acto seguido, se seleccionan los indicadores de impacto ambiental. Después de esto se realiza un inventario de insumos y emisiones, que permite realizar la evaluación de impacto ambiental.

En el ejemplo mencionado, se analiza el impacto ambiental [kg CO2eq/ kg de tortilla] en los diferentes procesos requeridos para convertir la materia prima [semillas] en producto comercial [tortillas]. El resultado indica que se generan 0.7683 kg de CO2eq por cada kg de tortillas producido, siendo generado el 86.54% de esto en el módulo agrícola, que se explora a detalle por consecuencia. Los proyectos son presentados en libros y presentaciones de la UANL.

La presentación se puede concentrar en dos ideas principales a considerar para el taller de química verde

- o El análisis de ciclo de vida es una herramienta útil para identificar las posibles áreas deficientes, mejorables con conceptos de química verde
- o Un proyecto práctico permite a los estudiantes comprender y aplicar los conceptos, generando conocimiento durante el proceso.

"Mi experiencia en el ámbito de la Química Verde hacia su incorporación en la FES Cuautitlán", presentación realizada por la Dra. María Olivia Noguez Córdoba

En la presentación, la Dra. María Oliva Noguez Córdoba se enfocó en los diversos talleres y cursos impartidos desde el año 2010 sobre química verde, llevándose a cabo en diversos países de Latinoamérica.

Detalló uno de los cursos, el cual comienza con pláticas sobre los fundamentos de la química verde durante los primeros días, seguidos de experimentos de química verde.

En seguida, profundizan en la asignatura Química Verde, dividida en cuatro bloques (introducción, 12 principios, metodologías experimentales, análisis crítico del grado de QV en procesos químicos).

Durante la parte experimental de la asignatura, se comparan reacciones en varias condiciones [comparando fuentes de energía de activación, temperatura, catalizadores y solventes], con el fin de mejorar el rendimiento y reducir el uso de solventes. También se busca minimizar el costo y tiempo.

3.2.3 Mesa 2. Química e Ingeniería Química Verde en la Investigación

 "Aplicación de algunos de los principios de la Química Verde en la Investigación y Docencia", realizada por el investigador Fernando León Cedeño

El investigador ocupó los primeros minutos para hablar de la Química Verde de forma general, pasando por los 12 conceptos de química verde. Define Química verde como "el diseño de productos químicos y procesos que reducen o eliminan el uso y/o generación de sustancias peligrosas".

Una vez concluida la introducción, inició con su primer tema: la investigación educativa, donde mencionó los cursos y talleres enfocados en la enseñanza de la química verde.

En los cursos, talleres, y concursos; se realizan experimentos diseñados/optimizados con conceptos de química verde, principalmente la economía atómica.

Durante la presentación comparó diferentes métodos para generar ciertos productos, a través de diferentes mecanismos de reacción y alterando las condiciones de reacción (catalizador, temperatura, y el uso de microondas para aumentar el rendimiento). El proyecto más exhaustivo donde se aplica la química verde es en el desarrollo de un ixodicida (pesticida específico para garrapatas) para evitar su proliferación en el ganado bovino. Como debe ser inofensivo para el ganado, el uso de sustancias peligrosas debe ser mínimo, cumpliendo algunos de los principios de química verde como requisito.

Marcó como conclusiones los siguientes puntos:

- o Se han utilizado procesos de Química verde, tanto a nivel de docencia como de investigación
- o Se han efectuado diferentes reacciones a temperatura ambiente:
 - Con catálisis básica directa
 - Utilizando zeolita
 - En medios acuosos empleando catalizadores de transferencia de fase
 - Utilizando microondas

De la presentación destacan los siguientes puntos: la forma eficiente de enseñar el tema (a través de la comparación de experimentos específicos) y la búsqueda e importancia de la optimización de procesos de síntesis.

"Aplicación de la Química Analítica Verde para Determinar Contaminantes Orgánicos sin generar otros", realizada por el Dr. Omar Amador Muñoz.

Al inicio de la presentación, el ponente habla de los contaminantes que existen en el aire, su clasificación, y sus efectos en la salud (cáncer, asfixia y necrosis aparecen aquí). Hace hincapié el expositor en la amplia gama de contaminantes que existen en contraste con los contaminantes controlados, principalmente las partículas orgánicas suspendidas.

Continuando, el muestreo del aire y la extracción de las partículas comienzan a detallarse, junto con sus dificultades: el tiempo y el volumen de la muestra. Cada uno de los aspectos se optimizó drásticamente con el desarrollo de nuevos métodos de extracción. Dichas optimizaciones redujeron el tiempo a 10 min [desde 18h en el método tradicional], el volumen de la muestra requerido pasó a 10 mL [desde 300 mL]. La principal diferencia entre las técnicas de muestreo es el uso de un baño de ultrasonido con reflujo. Una disminución en el volumen necesario, además de reducir el tiempo necesario para tomar las muestras, reduce drásticamente el volumen de disolvente [considerado el principal contaminante]. El siguiente paso, actualmente en desarrollo, es la eliminación de disolventes orgánicos en su totalidad.

En este caso, los conceptos de Química Verde y Microescala se aplican por necesidad directa, al ser poco viable la técnica original para el caso de estudio.

"Propuestas de Electroquímica Verde", realizada por Jorge Ibáñez
 Cornejo.

La presentación comienza con un repaso de los 12, en este caso mencionando su estrecha relación con electro-síntesis. En este caso, la química verde se convierte en una forma de mejorar el proceso, en lugar de ser el foco. La electro-síntesis, que

hace uso de energía eléctrica para producir pares de sustancias, puede implementar en varios puntos conceptos de QV, la energía eléctrica puede provenir de fuentes renovables, los solventes pueden ser inocuos (o agua, cuando es viable o necesario), la materia prima puede provenir de fuentes renovables, se puede elegir la reacción para hacer uso de todos sus productos [no contaminantes preferentemente], se puede llevar a cabo a condiciones ambientales, y puede controlarse con técnicas de electroanálisis.

Durante la conferencia menciona un sueño, una forma perfecta e ideal de unir estas ramas. Conceptualmente, debería ser posible usar energías renovables para llevar a cabo reducciones de CO2 con agua, para producir compuestos orgánicos y otras sustancias útiles en todas las industrias, desde la energética hasta la agricultura.

El resto del discurso consiste en el tema de "Procesos electroquímicos emparejados" [Elegir un proceso electroquímico donde ambos productos conlleven un beneficio, ya sea por su valor comercial o su interacción en el sistema en que se generan], y de ejemplos específicos donde se aplica el emparejamiento.

La principal lección de esta presentación y, hasta cierto punto, del taller en general, es la siguiente: Se puede aplicar la Química Verde a todo proceso para mejorarlo en algún sentido si se desea y se entiende el proceso, siendo electro-síntesis un ejemplo perfecto de esto. "El objetivo no se decide, surge como una necesidad en el camino"

3.2.4 Mesa 3. Química e Ingeniería Química Verde en la Industria

"Química Verde y Ciclo de Vida de Productos y residuos", realizada por el Dr. Arturo Gavilán García.

La presentación comienza con lo que llama el ponente "Contexto", hablando de la cantidad de sustancias químicas que se conocen actualmente, y cuantas de ellas se encuentran reguladas. Estima que existen 120 millones de sustancias conocidas,

300 000 usadas comercialmente, 3 000 usadas a gran escala, y 300 con alguna regulación. Hace énfasis en la baja frecuencia con que se actualizan las normas donde se especifican dichas regulaciones.

La plática continúa con la respuesta de la industria ante una regulación estricta: si se encuentra en operación una planta con un proceso específico, usando una sustancia prejudicial en algún sentido, buscar una sustancia similar tiene un costo mínimo comparado con la modificación del proceso, inutilizando las regulaciones mismas.

Los siguientes puntos de la conferencia hablaron del análisis de ciclo de vida y de las varias campañas de reciclaje iniciadas cada periodo electivo, que no se han adoptado de forma general como en otros países.

Finaliza hablando sobre las diversas áreas de oportunidad, enfatizando el número de egresados con conocimientos en química, capaces de aplicar algunos de los conceptos de la química verde.

A forma de resumen, la presentación se puede condensar en una idea: oportunidad, principalmente en la relación entre el gobierno (por medio de regulaciones y programas de reciclado) y la industria química, enfatizando la falta de control en la mayoría de los casos y la ineficiencia de las ocasiones donde existe uno.

"Desarrollo e implementación de Tecnología de Química Verde", realizada por el Dr. Gustavo Ávila Zárraga.

El presentador comienza con emoción, que no se reduce hasta pasado su tiempo programado, a hablar de la química verde de forma más ideal comparado con otras presentaciones.

El primer tema que desarrolla es uno histórico, pintando primero una imagen distinta a la actual, común en una época anterior. Aún si se remonta a sólo unas décadas atrás, el cambio es claro: el uso de empaques y plástico en la vida cotidiana no era conocido ni necesario en el escenario que recuerda, unas bolsas de ixtle o tela y

ropa de algodón serían lo único necesario para un día de compras. Sin electrónicos que sería obsoletos en meses, sin envolturas de plástico y aluminio para un antojo que se acaba en 10 minutos. Termina con un comentario popular "el cambio empieza en uno"

El siguiente tema aborda la Química Verde de forma más directa, hablando de la forma en que se entiende "Química Verde", relacionando siempre el conjunto de 12 conceptos con reglas inquebrantables. De acuerdo con el ponente, los conceptos se basan en una sola idea, [CUIDAR LA VIDA DE TODO SER VIVO], y esto es lo que debe enseñarse, más que reglas, un concepto que toda persona debe tener en mente al tomar decisiones, particularmente en el área de la química.

A forma de resumen, lo principal de la plática es lo siguiente: La química verde es un concepto, más que una serie de dogmas; los cambios en el ambiente provienen de cambios en la industria.

"Manejo, destrucción de SAOs (Sustancias Agotadoras de Ozono) y de Alto Potencial de Calentamiento por medio de tecnología arco plasma", presentada por el Ing. Fernando Calvillo Velasco.

La plática comienza con una breve presentación de la compañía, mencionando diversas certificaciones en el área ambiental, seguido de la introducción de su principal producto, Genetron 22 (O R 22), un refrigerante con efectos ampliamente conocidos y negativos en el ambiente. Considerado un kilogramo proporcional a la liberación de 12,000 kg de CO2 a la atmósfera.

Se plantea la pregunta obvia, que busca relacionar química verde (una corriente de la química dedicada a reducir el uso de sustancias nocivas) con una compañía dedicada a producir algunas de las sustancias más nocivas conocidas actualmente. La respuesta es clara, la empresa limita en lo más posible las circunstancias en que la sustancia en cuestión tiene los temidos efectos en el ambiente. La sustancia, por sus propiedades, se encuentra en proceso de ser descontinuada su producción,

programada la eliminación de la sustancia en el año 2030. Las siguientes cuestiones refieren a decidir qué hacer con la sustancia en circulación y cómo eliminar la producción sin una alternativa viable.

La empresa, en respuesta, desarrolló un proceso de tratamiento para la sustancia, haciendo uso de la tecnología de arco plasma. La sustancia que ya se encuentra en circulación se encuentra en proceso de recolección y tratamiento por esta empresa, apoyada por el gobierno para cumplir con la meta del año 2030. De esta forma, a pesar de no alterar las propiedades de la sustancia, hacen lo siguiente, mantener un control durante toda su vida útil, evitando que pueda devastar de la forma que puede. Todo esto mientras se comienza la producción de un refrigerante menos nocivo.

La conferencia cierra con una afirmación, que asegura la posibilidad de aplicar el tratamiento a más sustancias similares, esperando luz verde por parte del gobierno para tratarlas igual que el R 22.

El punto por destacar de esta plática es el siguiente: toda industria, por problemática que sea su naturaleza, puede tomar acciones benéficas para el ambiente a través de los conceptos de la química verde.

3.3 Resumen de las Conferencias

El contenido temático de las conferencias se resume en la Tabla 4.

Tabla 4 Análisis de las conferencias del taller de Química Verde

Mesa	Título	Ponente	Temas Tratados	Punto principal	
Plenaria	Química Verde	Dr. René Miranda Ruvalcaba	 Introducción a la Química Verde Doce Principios Diferencia entre Sostenibilidad, sustentabildad y Química Verde 	El desarrollo sostenible necesita equilibrar los aspectos sociales, económicos y ecológicos.	
	Experiencias de la Unidad de Aprendizaje de Química Verde en el Posgrado de Ingeniería Ambiental y Tecnologías Sustentables de la UAEM	Dr. Antonio Rodríguez Martínez	Programas de química verde Enfoque de la química verde	"Sé consciente del problema que quieres resolver impactando lo menor al ambiente y considerando la parte social, la parte económica vendrá por consecuencia".	
Mesa 1: Química Verde en la Currícula	El análisis del ciclo de vida como herramienta de diseño de procesos verdes	Dr. Pasiano Rivas García	 Análisis del ciclo de vida Enseñanza de química verde 	Un proyecto práctico permite a los estudiantes comprender y aplicar los conceptos aprendidos mientras se genera conocimiento.	
	Mi experiencia en el ámbito de la Química Verde hacia su incorporación en la FES Cuautitlán	María Olivia Noguez Córdoba	Cursos de química verde	Comparar reacciones bajo diferentes condiciones permite reconocer el efecto de sus diferentes componentes, y determinar la mejor forma de efectuarlas.	
	Aplicación de algunos de los principios de la Química Verde en la Investigación y Docencia	Fernando León Cedeño	 Introducción a la química verde Investigación Educativa 	La química verde plantea un objetivo con diferentes posibilidades de alcanzarse, y deben comparase las posibilidades para elegir la que mejor resuelva el problema planteado	
Mesa 2: Química Verde en la Investigación	Aplicación de la Química Analítica Verde para Determinar Contaminantes Orgánicos sin generar otros	Omar Amador Muñoz	 Contaminación del aire Aplicación de los conceptos de Química verde en el muestreo de los contaminantes 	La química verde tiene un lugar importante en la investigación, donde un mejor método puede mejorar el trabajo en el laboratorio y reducir sus desechos.	
Č	Propuestas de electroquímica verde	Jorge Ibáñez Cornejo	 Los doce principios Aplicación de conceptos de Química Verde en procesos de electro-síntesis 	Los conceptos de química verde pueden mejorar todo proceso en algún sentido, mientras se busque su aplicación.	
Mesa 3: Química	Química Verde y Ciclo de Vida de Productos y Residuos Arturo Gavilán		 Uso y regulación de sustancias Químicas Análisis de ciclo de vida, Reciclaje 	Existen muchas áreas de oportunidad en la regulación de sustancias químicas, donde el conocimiento de las sustancias mismas y sus efectos permitiría tomar mejores decisiones sobre su uso.	
Verde en la Industria	Desarrollo e implementación de Tecnología de Química Verde	Gustavo Ávila Zárraga	 Comparación entre estilos de vida Filosofía de la Química Verde 	La química verde parte de la idea fundamental de cuidar toda la vida, y todo principio, toda metodología, provienen de ahí.	
	Manejo, destrucción de SAOs y de Alto potencial de Calentamiento por medio de tecnologías de arco plasma	Fernando Calvillo Velasco	Producción y disposición de un refrigerante con efectos nocivos en el ambiente	La química verde, aun cuando no es capaz de reemplazar una sustancia nociva, puede aplicarse para limitar sus efectos no deseados.	

4 PROPUESTA DE UN PROGRAMA DE ESTUDIO

4.1 Objetivo del curso

El objetivo del curso es introducir a los participantes a los temas de química e ingeniería química verde con base en los principios de la Química Verde y su aplicación en la investigación e industria.

4.2 Determinación del contenido del curso.

El contenido del curso se determinó a partir de los análisis expuestos previamente, y considerando el objetivo del curso.

4.2.1 Principios de la Química Verde

Los doce principios de la Química Verde son un tema fundamental en los programas de estudios analizados, y se mencionó su importancia recurrentemente en el taller de expertos. Esto indica la necesidad de tomar los doce principios como uno de los puntos centrales de un curso introductorio al tema.

Los principios se presentan, en promedio, en 10 horas en los programas analizados. Sin embargo, un curso introductorio no presentará con la misma profundidad el tema.

4.2.2 Principios de la Ingeniería Química Verde

Se busca organizar un curso que introduzca al asistente a los conceptos de Ingeniería Química Verde, un complemento práctico de la química verde.

Al igual que la Química Verde, que se centra en una docena de principios, la Ingeniería Química Verde posee el mismo número de lineamientos, que sirven como introducción al tema.

4.2.3 Casos de Estudio

Los programas de estudio analizados cuentan con un análisis de un proceso real. La forma en que llevan a cabo el análisis varía, pero la inclusión de algún análisis está presente en todos los programas.

El taller de expertos, por su parte, enfatizó la importancia de incluir una parte práctica en la enseñanza de la Química Verde, ya sea analizando un proceso o producto, o trabajando con una alternativa a una sustancia existente.

Los principios de la Química e Ingeniería Química Verde son ideales, y la forma en que se llevan a cabo es muy diversa y específica del caso. Mostrar casos reales y analizarlos permite entender mejor los problemas y soluciones que surgen cuando se busca aplicar la química verde.

4.3 Programa Propuesto

En la Tablas 5 se presenta la propuesta de programa de Introducción a la Química e Ingeniería Química.

Tabla 5 Propuesta de contenido del programa de Química e Ingeniería Química Verde

HORAS POR UNIDAD	CONTENIDO DE LA UNIDAD
3h	Introducción a la Química Verde
011	1.1. Historia de la Química Verde
	1.2. Ideas fundamentales de la Química Verde
6h	2. Química Verde
OII	2.1. Principios de la Química Verde
	2.2. Ejemplos de aplicaciones
4h	3. Ingeniería Química Verde
711	3.1. Principios de la Ingeniería Química Verde
	3.2. Ejemplos de aplicaciones
9h	4. Casos Prácticos
311	4.1. Caso 1
	4.2. Caso 2
	4.3. Caso 3
	4.4. Caso 4
	4.5. Casos complementarios

TOTAL=20 h

4.3.1 Resumen de las actividades

Introducción a la Química Verde

Se realizará una breve introducción al curso, así como el origen de la química verde y su filosofía básica.

Química Verde

Se presentarán los doce principios fundamentales de la química verde, originalmente propuestos por Anastas y Warner, así como ejemplos de estos.

Principios de la Ingeniería Química Verde

Se presentarán los doce principios de la ingeniería química verde, que complementan los principios de la química verde.

Casos de estudio

Se presentarán ciertos casos de estudio donde se apliquen algunos de los principios de la Química Verde. Se usarán publicaciones académicas de los últimos años como base.

Se sugieren los siguientes documentos para representar las aplicaciones de la química verde.

- Excitación de H₂O en la interfaz agua/plasma mediante radiación
 UV para elevar la producción de amoniaco. (Haruyama, 2018)
- Extracción con líquido iónico asistida por microondas de n-Alcanos e Hidrocarburos isoprenoides a partir de piedras madre de petróleo. (Akinlua, 2015)
- Oxidación de aguas residuales aceitosas catalizada con agua supercrítica. (Yu, 2015)
- Oxidación fotocatalítica asistida electroquímicamente de ácido fórmico en películas de TiO₂ bajo radiación UVA y UVB. (McMurray, 2005)

Los casos complementarios se conformarán de otros temas relacionados a la Química Verde, para analizar los logros y limitaciones que se pueden presentar durante su desarrollo.

4.3.2 <u>Bibliografía Recomendada</u>

Se presenta en la tabla 6 el material de referencia bibliográfico recomendado para el tema.

Tabla 6 Bibliografía recomendada de Química e Ingeniería Química Verde

Anastas, P., & Warner, J. C. (1998). *Green Chemistry: Theory and Practice*. New York: Oxford University Press.

Matlack, A (2001) *Introduction to Green Chemistry*. Boca Ratón, Florida: CRC Press

Doble, M., & Kruthiventi, A. K. (2007). Green Chemistry & Engineering. San Diego, California: Academic Press.

Jiménez-Gonzáles, C., & Constable, D. J. (2011). *Green Chemistry and Engineering*. Hoboken, New Jersey: John Wiley & Sons, Inc.

Lancaster, M. (2016). *Green Chemistry: An introductory Text*. Cambridge, UK: Royal Society of Chemistry.

5 CONCLUSIONES

Se puede concluir lo siguiente del trabajo presente

- La química verde, que busca limitar el deterioro ambiental producido por la contaminación de la industria química, se encuentra en constante crecimiento.
- La química verde se enseña de manera limitada en México a nivel licenciatura.
- La base de la química verde está en los doce principios.
- La Ingeniería Química Verde complementa a la Química Verde con una docena diferente de principios.
- La enseñanza de la química verde debe incluir sus fundamentos (los doce principios) y las formas en que se han implementado estos (casos prácticos).

6 ANEXOS

Anexo I. Otros Principios de la Química Verde

A continuación, se presentan otros conjuntos de principios relacionados a la Química Verde, propuestos como complementos o alternativas a los doce principios de Anastas.

Anexo I. I. Doce Principios Más de la Química Verde

En el libro "Twelve More Principles of Green Chemistry", escrito en 2001 por Neil Winterton, se proponen complementos a los principios originales. Algunos consideran que estos nuevos principios son innecesarios, ya que se provienen de los primeros; mientras que otros argumentan que expanden los principios originales de manera más práctica y enfocada a la industria. Son los siguientes:

- 1. Identificar y cuantificar subproductos.
- 2. Reportar conversiones, selectividades, y productividades.

- 3. Establecer un balance de masa completo para un proceso.
- 4. Medir pérdidas de catalizadores y solventes en efluentes.
- 5. Investigar la termoquímica básica.
- 6. Anticipar las limitaciones de transferencia de masa y calor.
- 7. Consultar un ingeniero químico o de proceso.
- 8. Considerar el efecto del proceso general en la elección de química.
- 9. Apoyar en el desarrollo y aplicación de mediciones sustentables.
- 10. Cuantificar y minimizar el uso de servicios auxiliares.
- 11. Reconocer cuando la seguridad y minimización de desechos son incompatibles.
- 12. Monitorear, reportar y minimizar los desechos emitidos en laboratorio (Jiménez-Gonzáles & Constable, 2011)

Anexo I. II. Principios de Ingeniería Verde

Bajo el nombre de "Principios de Ingeniería Verde", existe un conjunto de 9 ideas fundamentales, propuesto por un grupo de ingenieros (solo algunos de ellos químicos), con el objetivo de abarcar disciplinas ajenas a la industria química. Se llevó a cabo la reunión en San Destin, Florida, a principios del año 2003. Los principios se mencionan a continuación:

- 1. Diseñar procesos
- 2. Conservar
- 3. Usar pensamiento de ciclo de vida
- 4. Asegurarse que todo el material
- 5. Minimizar el agotamiento de recursos naturales
- 6. Procurar prevenir el desecho
- 7. Desarrollar y aplicar
- 8. Crear soluciones ingenieriles
- 9. Colaborar con las comunidades y accionistas en el desarrollo de soluciones ingenieriles. (Abraham & Nguyen, 2003)

Anexo II. Programas de Estudio

Anexo II. I. Programa de Ingeniería y Química Verde, de la FES Cuautitlán

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN INGENIERÍA QUÍMICA

455

PROGRAMA DE LA ASIGNATURA DE:							
	INGENIERÍA Y QUÍMICA VERDE						
	IDENTIFICA	CIÓN DE LA ASI	GNATURA				
MODALIDAD:	С	urso					
TIPO DE ASIGNAT	TURA: To	eórica					
SEMESTRE EN Q	UE SE IMPART	E: Séptimo o N	oveno				
CARÁCTER DE LA	A ASIGNATUR	A: Optativa camp	o complementari	0			
NÚMERO DE CRÉ	DITOS:	6					
HORAS DE CLASE A LA 3 SEMANA:	Teóricas: 3	Prácticas: 0	Semanas de clase:	TOTAL DE 48 HORAS:			
SERIACIÓN: Si (X) No () Obligatoria (X) Indicativa ()							
SERIACIÓN ANTECEDENTE: Seriación por bloques. Haber aprobado por lo							
menos el 80 % de las asignaturas de los 6 primeros semestres							
SERIACIÓN SUBSECUENTE: Ninguna							

Objetivo general

Al finalizar el curso el alumno:

Conocerá el concepto actual de la Ingeniería y Química verde a través de sus principios enunciados y herramientas experimentales, aprenderá las funciones y responsabilidades de un Ingeniero Químico en los distintos procesos de ingeniería verde en la industria química.

	ÍNDICE TEMÁTICO					
UNIDAD	TEMAS	Horas Teóricas	Horas prácticas			
1	Principios de Ingeniería y Química Verde	6	0			
2	Metodologías Experimentales de la Química Verde	8	0			
3	Fuentes Verdes. Bioenergía	6	0			
4	Funciones y Responsabilidades de Ingenieros Químicos	6	0			
5	Procesos en Ingeniería Verde	6	0			
6	Operaciones Unitarias y Prevención de la Contaminación	8	0			
7	Ingeniería Verde en la Industria Química	8	0			
	TOTAL DE HORAS TEÓRICAS	48	0			
	TOTAL DE HORAS PRÁCTICAS	0	0			
	TOTAL DE HORAS	4	18			

CONTENIDO TEMÁTICO

1. PRINCIPIOS DE INGENIERÍA Y QUÍMICA VERDE.

- 1.1 Química Verde, Ingeniería verde y sustentabilidad
- 1.2 Los doce principios de la Química verde
- 1.3 Panorama actual de la Química Verde y perspectivas futuras
- 1.4 Los doce principios de la ingeniería verde
- 1.5 La ética de la ingeniería verde
- 1.6 La enseñanza de la ingeniería verde

2. METODOLOGÍAS EXPERIMENTALES DE LA QUÍMICA VERDE

- 2.1.Reacciones multicomponentes
- 2.2.Microescala
- 2.3. Tecnologías verdes y fuentes de energía alternas
- 2.3.1. Reacciones fotoquímicas
- 2.3.2. Microondas
- 2.3.3. Ultrasonido
- 2.3.4. Infrarroio
- 2.3.5. Tecnologías hidrotérmicas
- 2.3.6. Electroquímica
- 2.4. Medios alternos de reacción
 - 2.4.1. Líquidos iónicos
 - 2.4.2. Fluidos supercríticos
 - 2.4.3. Ausencia de disolvente
 - 2.4.4. Soportes sólidos
 - 2.4.5. Reacciones en agua
- 2.4.6. Disolventes orgánicos volátiles
- 2.5.Biotransformaciones 2.6.Catálisis

3. FUENTES VERDES. BIOENERGÍA

- 3.1 Bionergía como una tecnología verde de frontera
- 3.2 Biocombustibles como un reemplazo sustentable a los combustibles fósiles
- 3.3 Biocatálisis, soluciones verdes.
- 3.4 Lignocelulosa como materia prima renovable para la Industria Química.

4 FUNCIONES Y RESPONSABILIDADES DE INGENIEROS QUÍMICOS

- 4.1 Responsabilidades para la seguridad de procesos químicos.
- 4.2 Responsabilidad en materia de protección del medio ambiente.
- 4.3 Conceptos de riesgo
 - 4.3.1 Descripción del riesgo
 - 4.3.2 Panorama general de los conceptos de evaluación de riesgos
 - 4.3.3 Valor de la evaluación de riesgos en la profesión de la ingeniería.
 - 4.3.4 Evaluación de riesgos

456

- 4.3.5 Dosis-respuesta
- 4.3.6 Caracterización del riesgo
- 4.4 El papel de los procesos químicos y productos químicos
 - 4.4.1 Una visión general de los principales problemas ambientales
 - 4.4.2 Cuestiones ambientales mundiales
 - 4.4.3 Problemas de calidad de aire
 - 4.4.4 Problemas de calidad del agua
- 4.5 Residuos y subproductos en la industria química
 - 4.5.1 Fuentes de residuos
 - 4.5.2 Técnicas para su minimización
- 4.5.3 Tratamientos de residuos in situ
- 4.6 Diseños de productos degradables

5 PROCESOS EN INGENIERÍA VERDE

- 5.1 Tipo de procesos
- 5.2 Diagramas de flujo de un proceso
- 5.3 Balances de masa
- 5.4 Balances de energía
- 5.5 Medición verde de un proceso a través de Balances de Masa y Energía

6 OPERACIONES UNITARIAS Y PREVENCIÓN DE LA CONTAMINACIÓN

- 6.1 Prevención de la contaminación en la selección de materiales para operaciones unitarias
- 6.2 Prevención de la contaminación para las reacciones químicas.
- 6.3 Prevención de la contaminación para los dispositivos de separación.
- 6.4 Las solicitudes para la prevención de la contaminación en reactores
- 6.5 Prevención de la contaminación en tanques de almacenamiento y fuentes fugitivas.
- 6.6 Evaluación de prevención de la contaminación
- 6.7 La integración de la evaluación de riesgos con el proceso de diseño

7 INGENIERÍA VERDE EN LA INDUSTRIA QUÍMICA

- 7.1 La utilización de conceptos de ingeniería verde en la síntesis de procesos industriales
- 7.2 Procesos químicos limpios.
- 7.3 El papel de la ingeniería en reacciones químicas en el proceso y desarrollo sustentable
- 7.4 Sistemas verdes y nanotecnología
- 7.5 Industria de los polímeros
- 7.6 Industria de los surfactantes
- 7.7 Industria de los semiconductores
- 7.8 Industria textil
- 7.9 Industria azucarera y destilera
- 7.10 Industria del papel y pulpa
- 7.11 Industria farmacéutica

BIBLIOGRAFÍA

BIBLIOGRAFÍA BÁSICA:

- Abraham, M. Sustainability Science and Engineering. Elsevier. Amsterdam. 2006
- Allen, D.T., Shonnard, D. Green engineering: environmentally conscious design of chemical. Prentice Hall PTR. 2001.
- Anastas, P. T. Warner, J. C. Green Chemistry: Theory & Practice. Oxford University Press. Oxford. 1998.
- Doble, M. Kumar, A. Green Chemistry and Engineering. Academy Press. Oxford. 2007.
- Jiménez-González, C. Constable, D. J. C. Green Chemistry and Engineering: A Practical Design Approach. Wiley and Son. New York. 2012.
- Matlack, A. Introduction to Green Chemistry, 2nd ed. CRC Press, 2010.
- Ryan, M. A., Tinnesand, M. Introduction to Green Chemistry. Instructional Activities for Introductory Chemistry. ACS. Washington. 2002.
- Sanghi, R., Singh, V. Green Chemistry for Environmental Remediation. John Wiley and Son. Oxford. 2012.

BIBLIOGRAFÍA COMPLEMENTARIA

- Allen, D.T. Shonnard, D.R. Sustainable Engineering: Concepts, Design, and Case Studies. Prentice Hall. USA. 2012.
- Arroyo, G., Hernández, E., Martínez, J., Miranda, R., Noguez, O., Penieres, J., Rivero, C., Velasco, B., Vilchis, M., Gómez, C. Prácticas de Laboratorio de Quimica Verde. Editorial Tecnológica de Costa Rica. Costa Rica. 2010.
- Clark , J. H. Macquarrie, D. Handbook of Green Chemistry and Technology. Blackwell Publish. Oxford. 2002.
- Clifford, T. Fundamentals of Supercritical Fluids. Oxford Press. New York. 1999.
- Doxsee, K. M., Hutchison, J. E. Green Organic Chemistry. Strategies, Tools and Laboratory Experiments. Brooks / Cole. 2004.
- Lankey,R. L., Anastas P.T. Advancing Sustainability through Green Chemistry and Engineering. ACS. USA. 2002.
- Miranda, R., Penieres, J. G., Obaya, A., Velasco, B., Palma, A., Frontana, B., Nicolas, M. I., Vargas, Y. M., Martinez, J. O., Hernández, O. M., Reyes, L. B., Llano, M. G., Dosal, M. A., Arroyo, G. A., Noguez, M. O., Ríos, M. Y., Morales, M. L. Quimica Verde Experimental. FES Cuautitlán-UNAM. México. 2011.
- Stevens, E. S. Green Plastics, Princeton University Press, Princeton, 2002.

CIBERGRAFÍA

- http://greenchem.uoregon.edu/Pages/Search.php
- http://academic.scranton.edu/faculty/cannm1/dreyfusmodules.html

- http://portal.acs.org/portal/acs/corg/content?_nfpb=true&_pageLabel=PP_T RANSITIONMAIN&node_id=830&use_sec=false&sec_url_var=region1&__u uid=100cced5-9ff2-424c-89ce-7947c7acaf21
- http://www.epa.gov/greenchemistry/pubs/tools.html
- http://fusion.stolaf.edu/gca/
- http://academic.scranton.edu/faculty/cannm1/greenchemistry.html
- http://www.ni.com/greenengineering/esa/
- http://www.epa.gov/oppt/greenengineering/
- http://www.greencareersguide.com/Green-Engineering.html
- http://www.greeneng.com/
- http://riverpublishers.com/river_publisher/journal_details.php?book_id=67

SUGERENCIAS DIDACTICAS RECOMENDADAS PARA IMPARTIR LA ASIGNATURA

SUGERENCIAS DIDACTICAS	UTILIZACIÓN EN EL CURSO
Exposición oral	X
Exposición audiovisual	X
Actividades prácticas dentro de clase	
Actividad experimental del laboratorio	
Ejercicios fuera del aula	X
Seminarios	X
Lecturas obligatorias	
Trabajo de investigación	
Prácticas de Taller	
Otras:	

MECANISMOS DE EVALUACIÓN.

ELEMENTOS UTILIZADOS PARA EVALUAR EL PROCESO ENSEÑANZA-APRENDIZAJE	UTILIZACIÓN EN EL CURSO
Exámenes parciales	X
Examen final	X
Trabajos y tareas fuera del aula	X
Actividad experimental del laboratorio	
Exposición de seminarios por los alumnos.	X
Participación en clase	X
Asistencia	

PERFIL PROFESIOGRÁFICO REQUERIDO PARA IMPARTIR LA ASIGNATURA						
LICENCIATURA	POSGRADO	ÁREA INDISPENSABLE	ÁREA DESEABLE			
Ingeniería Química ó,			Química e			
Química ó,			Ingeniería Verde			
Química Industrial,						
Con experiencia docente						

459

Anexo II. II. Programa de Química Verde, de la FES Cuautitlán

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN PLAN DE ESTUDIOS DE LA LICENCIATURA EN QUÍMICA INDUSTRIAL

PROGRAMA DE LA ASIGNATURA DE:				
Química Verde				
IDENTIFICACIÓN DE LA ASIGNATURA				
Curso				
Teórico-Práctica				
Octavo				
Obligatoria de elección				
10				

HORAS A LA SEMANA:	7	TEÓRICAS:	3	PRÁCTICAS:	4	DE CLASES:	16	TOTAL DE HORAS:	112
OFFILACIÓN	0: /	\ N.	- / \/	() OF I		.! - / \	Long all and	4! / \	

SERIACIÓN: Si ()	No(X)	Obligatoria ()	Indicativa ()
ASIGNATURA ANTECEDI	ENTE:	Ninguna	
ASIGNATURA SUBSECUI	ENTE:	Ninguna	

OBJETIVOS GENERALES:

Al final del curso, el alumno será capaz de:

a) Conocer el concepto actual de la Química Verde, a través de sus principios enunciados y herramientas experimentales empleadas para su buen ejercicio.

ÍNDICE TEMÁTICO					
UNIDAD	TEMAS	HORAS TEÓRICAS	HORAS PRÁCTICAS		
1	Introducción a la Química Verde	2	0		
2	Los 12 principios de la Química Verde	10	0		
3	Metodologías Experimentales de la Química Verde	22	40		
4	Análisis crítico del grado de química verde contenido en procesos químicos	14	24		
	TOTAL DE HORAS TEÓRICAS	48	0		
	TOTAL DE HORAS PRÁCTICAS	0	64		
	TOTAL DE HORAS	1	12		

CONTENIDO TEMÁTICO

1. Introducción a la Química Verde

- 1.1. Definición de Química Verde.
- 1.2. Panorama actual de la Química Verde.
- 1.3. Diferencias entre Química Verde y Química Ambiental.

2. Los 12 Principios de la Química Verde

- 2.1. Prevención.
- 2.2. Economía atómica.
- 2.3. Uso de metodologías que generen productos con toxicidad reducida.
- 2.4. Generar productos eficaces pero no tóxicos.
- 2.5. Reducir el uso de sustancias auxiliares.
- 2.6. Disminuir el consumo energético.
- 2.7. Utilización de materias primas renovables.
- 2.8. Evitar la derivatización innecesaria.
- 2.9. Potenciación de la catálisis.
- 2.10. Generar productos biodegradables.
- 2.11. Desarrollar metodologías analíticas para la monitorización en tiempo real.
- 2.12. Minimizar el potencial de accidentes químicos.

3. Metodologías Experimentales de la Química Verde

- 3.1. Reacciones multicomponentes.
- 3.2. Microescala.
- 3.3. Electroquímica.
- 3.4. Medios alternos para la activación de reacciones.
 - 3.4.1 Microondas.
 - 3.4.2 Ultrasonido.
 - 3.4.3 Infrarrojo.
- 3.5 Medios alternos de reacción.
 - 3.5.1 Líquidos iónicos.
 - 3.5.2 Fluidos supercríticos.
 - 3.5.3 Ausencia de disolvente
 - 3.5.4 Soportes sólidos.
 - 3.5.5 Reacciones en agua.
- 3.6 Biotransformaciones.
- 3.7 Catálisis.

4 Análisis crítico del grado de química verde contenido en procesos químicos

- 4.1 Escala de colores para Química Verde.
- 4.2 Análisis de procesos químicos industriales. Propuestas dentro del contexto de la Química verde.
- 4.3 Análisis de artículos de divulgación científica. Propuestas dentro del contexto de la Química Verde.

396

4.4 Análisis de prácticas de laboratorio en docencia. Propuestas dentro del contexto de la Química Verde.

BIBLIOGRAFÍA

BIBLIOGRAFÍA BÁSICA

- Doble, M. and Kruthiventi, A.K. (2007). Green Chemistry and Engineering. Amsterdam: Academic Press.
- Lancaster, M. (2002). Green Chemistry. An Introductory text. Cambridge: RSC.
- Matlack, A. (2010). Introduction to Green Chemistry (2nd ed.). USA: CRC Press
- Miranda, R., Rivero, C., Arroyo, G., et al. (2010). Prácticas de Química Orgánica Verde. Cartago: Editorial Tecnológica de Costa Rica.

BIBLIOGRAFÍA COMPLEMENTARIA

- Anastas, P.T. and Warner, J.C. (2001). Green Chemistry. Theory and Practice. New York: Oxford University Press.
- Anastas, P.C. and Williamson, T.C. (2003-). Green Chemistry. Oxford: Oxford University.
- Revista Green Chemistry, RSC Publishing, 1999-2011.
- Revistas del área de Química Orgánica (J. Organic Chemistry, Tetrahedron, Tetrahedron Letters, etc.), que publiquen artículos en el tema de Química Verde.

SITIOS WEB RECOMENDADOS

- www.epa.gov/greenchemistry
- http://portal.acs.org/portal/acs/corg/content?nfpb=true&pageLabel=PPTRANSI TIONMAIN&nodeid=830&usesec=false&securlvar=region1&uui=2e2d33f4-41b2-4fa2-88eb-cc6cfb4f5226
- www.greenchemistrynetwork.org/
- www.greenchemistry.ca/

SUGERENCIAS DIDÁCTICAS RECOMENDADAS PARA IMPARTIR LA ASIGNATURA

SUGERENCIAS DIDÁCTICAS	UTILIZACIÓN EN EL CURSO
Exposición oral	✓
Exposición audiovisual	✓
Actividades prácticas dentro de clase	✓
Ejercicios fuera del aula	✓
Seminarios	✓
Lecturas obligatorias	✓
Trabajo de investigación	✓

MECANISMOS DE EVALUACIÓN

ELEMENTOS UTILIZA PROCESO ENSE			UTILIZACIÓN EN EL CURSO	
Exámenes parciales	Exámenes parciales			
Examen final			✓	
Trabajos y tareas fuera del	aula		✓	
Exposición de seminarios p	or los alumnos	3	✓	
Participación en clase			✓	
Asistencia			✓	
PERFIL PROFESIOGR	ÁFICO REQUE	RIDO PARA IMPARTI	R LA ASIGNATURA	
LICENCIATURA	POSGRADO	ÁREA INDISPENSABLE	ÁREA DESEABLE	
En Química, química Industrial, QFB.	Ciencias Químicas	Química Orgánica		
	Con experi	encia docente	,	

Anexo II. III. Programa de Química Verde y Sustentabilidad, de la UAEM

PROGRAMA DE ESTUDIO

Nombre de la asignatura: QUIMICA VERDE Y SUSTENTABILIDAD							
Clave: QUI22		Ciclo Fo	rmativo:				
			Bás	sico () Pro	fesional () Especializa	ado (x)	
Fecha de elab	oración: n	narzo 201	5				
Horas	Horas	Horas	Horas de	Créditos	Tipo	Modalidad (es)	
Semestre	semana	Teoría	Práctica				
64	4	2	2	6	Teórica ()	Presencial (X)	
					Teórica-práctica (x)	Híbrida ()	
					Práctica ()		
Semestre reco	mendado:	A partir of	de 8º	Requisitos	curriculares: Ninguno		
				-			
Programas ac	adémicos	en los qu	e se imparte	: Químico In	dustrial		
Conocimiento Profesional	s y habi	idades p	revios: Sist	emas de Ge	estión de Calidad, Qu	ímica Ambiental y Ética	

1. DESCRIPCIÓN Y CONTEXTUALIZACION DE LA ASIGNATURA:

La asignatura Química Verde y Sustentabilidad, pertenece al ciclo de formación especializado del PE de Químico Industrial. La finalidad de la asignatura es propiciar la reflexión sobre el impacto de la Química en el entorno, de manera que se concientice sobre el desarrollo de temas emergentes en el diseño de nuevos productos y procesos químicos que reduzcan o eliminen el uso y la generación de las sustancias peligrosas y se utilicen preferentemente los recursos renovables.

El carácter teórico-práctico de la asignatura pretende en primer lugar que el estudiante adquiera los conocimientos necesarios para abordar la temática y por otro aplique los mismos mediante el desarrollo de proyectos que atiendan la problemática ambiental y sustentable.

2. CONTRIBUCIÓN DE LA ASIGNATURA AL PERFIL DE EGRESO

Desarrollar en el egresado las competencias para identificar el desarrollo e implementación de nuevas sustancias o procesos químicos en el marco del desarrollo sustentable, así como el aprovechamiento integral en la optimización de los recursos.

3. CONTROL DE ACTUALIZACIONES

	Fecha	Participantes	Observaciones (cambios y justificación)
-	Marzo 2015	Dra. Viridiana Aydeé León Hernández M en C Maribel Osorio García	Emisión del documento

4. OBJETIVO GENERAL

Evaluar el impacto de los procesos químicos en el medio ambiente e identificar las áreas de oportunidad en la aplicación de los principios de química verde mediante el diseño o desarrollo de nuevas sustancias con valor agregado que minimicen el uso o producción de sustancias peligrosas.

5. COMPETENCIAS GENÉRICAS y/o TRANSVERSALES MODELO UNIVERSITARIO

Generación y aplicación	de conocimiento	Aplicables en contexto	
Capacidad de pensamiento crítico		Capacidad de generar nuevas ideas	
Capacidad para la investigación		Capacidad para formular proyectos	
Sociales	S	Éticas	
Organización del tiempo	Responsabilidad	Compromiso ciudadano y ético.	
social		Compromiso con la preservación del medio ambiente	

6. CONTENIDO TEMÁTICO

6.00	NTENIDO TEMATICO	
UNIDAD	TEMA	SUBTEMA
1	Fundamentos de la Química Verde	1.1 Contexto histórico y estado actual de la Química en relación con el medio ambiente. 1.2 Química Verde y la importancia, limitación y obstáculos de la innovación. 1.3 Los doce principios de la Química Verde. 1.4 Parámetros de evaluación de impacto ambiental
2	Desarrollo sustentable	2.1 Concepto y principios de sustentabilidad 2.2 Dimensiones de la sustentabilidad: tecnología, economía, sociedad y ecología 2.3 Enfoques económico y normativo del desarrollo sustentable
3	Economía de átomos y de energía	3.1 Concepto de economía de átomos y la reducción de residuos. 3.2 Tipos de reacciones químicas con economía atómica. 3.3 Métricas en Química Verde. 3.4 Fuentes alternativas de energía y tecnologías limpias
4	Catálisis y Química Verde	4.1 Introducción a la catálisis. 4.2 Catalizadores homogéneos y heterogéneos. 4.3 Catálisis de transferencia de base 4.4 Bio-catálisis
5	Rediseño de sistemas químicos	5.1 Evaluación de: materiales de partida; reactivos, disolventes y condiciones de reacción 5.2 Tipos de reacción y productos 5.3 Materiales renovables: Reciclabilidad y biodegradabilidad 5.4 Disolventes alternativos con baja toxicidad

Plan de Estudios 2015 Plan de Estudios 2015

7. UNIDADES DE COMPETENCIAS DISCIPLINARES

Unidad	1: Fundamentos	de la Química	a Verde
Competencia de la unidad:			
Identifica el concepto de quí respuesta a los retos ambienta		doce principi	os que la constituyen como
Objetivo de la unidad:	<u> </u>		
Identificar el concepto de quím	ica verde y los do	ce principios q	ue la constituyen.
Elem	entos de Compe	tencia Discipl	inar
Conocimientos	Habilidades		Actitudes y Valores
Química y medio ambiente Los doce principios de la química verde Parámetros de evaluación de impacto ambiental	Capacidad y de la gestión de las investigación en Capacidad critica	fuentes de la Química.	Compromiso con el medio ambiente Proactivo
Estrategias de enseñanza: Clases magistrales, estudio paneles.	os de casos,		dácticos liovisual, lecturas previas, imedia y plataforma Moodle

Unidad 2: Desarrollo sustentable

Omada zi Bosan	one cactoritabl	•
Competencia de la unidad:		
Identifica los elementos básicos de la relación		
los problemas ambientales desde la perspectiv	a del desarrollo	sustentable
Objetivo de la unidad:		
Identificar los elementos básicos de la relaciór	tecnología-eco	nomía-sociedad y ecología en
el desarrollo sustentable.		
Elementos de Comp	etencia Discipl	linar
Conocimientos Habili	dades	Actitudes y Valores
sustentabilidad Dimensiones de la sustentabilidad: información. Capacidad crit Capacidad d	e conocer la egal vigente a temas	Diálogo Compromiso con el medio ambiente
Estrategias de enseñanza: Clases magistrales, estudios de casos paneles.	· • •	dácticos liovisual, lecturas previas, timedia y plataforma Moodle

Plan de Estudios 2015

Unidad	l 3: Economía de	átomos y de	energía
Competencia de la unidad			
			isis de la problemática de la
producción de residuos peligr	osos en las reacc	iones químicas	3.
Objetivo de la unidad			
Aplica la perspectiva de la ec	onomía de átomo	s en las reacci	ones químicas
Elen	nentos de Compe	etencia Discip	linar
Conocimientos	Habilid	ades	Actitudes y Valores
Reacciones químicas con economía atómica Fuentes alternativas de energía y tecnologías limpias	Capacidad y de la gestión de las investigación en Comprende con Toma de perspe	fuentes de la Química. secuencias	Compromiso ético y con el medio ambiente Proactivo
Estrategias de enseñanza: Aprendizaje basado en prob de casos, investigación de ca			dácticos liovisual, lecturas previas, timedia y plataforma Moodle

Competencia de la unidad			
Evalúa la importancia de la	catálisis en la c	lisminución de	residuos y la mejora de la
eficiencia de los procesos quí	micos		
Objetivo de la unidad			
Evalúar la importancia de la c	atálisis en la dism	inución de res	iduos y la mejora de la
eficiencia de los procesos quí	micos		
Elem	nentos de Compo	etencia Discip	linar
Conocimientos	Habilid	ades	Actitudes y Valores
Catalizadores homogéneos	Capacidad y de	estrezas para	 Compromiso ético y
y heterogéneos.	la gestión de las	fuentes de la	con el medio
Catálisis de transferencia de	investigación en	ambiente	
base	Comprende consecuencias • Proactivo		
Bio-catálisis	Toma de perspe	ctiva	Floactivo
Estrategias de enseñanza:	ı	Recursos die	dácticos
Aprendizaje basado en prob	lemas, estudios	Equipo aud	iovisual, lecturas previas,
de casos, investigación de ca	mpo y debates.	recursos mult	imedia y plataforma Moodle

Unidad 4: Catálisis y Química Verde

de casos, investigación de ca	inpo y debates. Trecarsos n	iditimedia y piataionna module
Unidad	d 5: Rediseño de sistemas	químicos
Competencia de la unidad		
Evalúa los tipos de materiale	es renovables y la aplicación	de disolventes alternativos en el
rediseño de sistemas químico	S.	
Objetivo de la unidad		
Evaluar los tipos de materiale	es renovables y la aplicación	de disolventes alternativos.
Elem	nentos de Competencia Dis	ciplinar
Conocimientos	Habilidades	Actitudes y Valores
Tipos de reacción y	Capacidad y destrezas pa	ra • Compromiso ético y

productos Materiales renovables: Reciclabilidad y biodegradabilidad Disolventes alternativos con baja toxicidad	investigación emerge al ámbito de la quím sus aplicaciones	nica. trabajo e entes en	con el ambiente Capacidad aprendizaje autónomo Responsabilidad social	medio de d
Estrategias de enseñanza: Aprendizaje basado en prob de casos, investigación de ca	olemas, estudios Equ			evias,

8. EVALUACIÓN.

Documentos de referencia: Reglamento General de Exámenes de la UAEM, Reglamento de la FCQel

ARTÍCULO 80. - En las asignaturas teóricas y teórico-prácticas, la calificación que se asentará en el acta de examen ordinario será el promedio ponderado de mínimo 3 evaluaciones parciales y un examen de carácter departamental que incluya los contenidos temáticos de la asignatura.

Cada evaluación parcial estará integrada por un examen parcial y las actividades inherentes a cada asignatura.

9. FUENTES DE CONSULTA.

Bibliografía básica:

Acuña A., Aguilera R.C., Aguayo M., García G. y cols. (2003). *Conceptos básicos del medio ambiente y desarrollo sustentable*. Colección: Educar para el ambiente-Manual del docente. ISBN: 987-20598-8-8.

Anastas, P., J. C. Warner (2000). *Green Chemistry: Theory and Practice*, Oxford University Press,

Matlack, A. (2010). Introduction to Green Chemistry, CRC Press

Azqueta, D. (2007). Introducción a la economía ambiental. 2a edición. Madrid, McGraw-Hill.

Bibliografía electrónica complementaria:

Clarke, L.E., Lurz, J.P., Wise, M., Kim, S.H., Placet, M., Smith, S.J., Izaurralde, R.C., Thomson, A.M. (2006). *Climate Change Mitigation: An Analysis of Advanced Technology Scenarios*, Pacific Northwest National Laboratory and The U.S. Department of Energy, Oak Ridge, USA.

Jochem E. (ed.) (2004). Step Towards a Sustainable Development, a White Book for R&D of energy-efficient technologies, Novatlantis, Altstätten, Switzerland

Graedel, T. E., (2003). *Industrial ecology*, 2nd. Edition, Upper Saddle River, N. J.: Prentice Hall, New Jersey]

Fabio Giudice, Guido La Rosa, Antonino Risitano, (2006). *Product Design for the Environment: A Life Cycle Approach*, CRC

Páginas electrónicas:

http://www.profepa.gob.mx

http://www.semarnat.gob.mx

http://www.inese.es/html/files/pdf/amb/iq/458/13ARTICULOABR.pdf

https://www.acs.org/content/acs/en/greenchemistry/what-is-green-

chemistry/principles/12-principles-of-green-chemistry.html

http://www.epa.gov/oppt/greenengineering/

https://www.eng.vt.edu/green

http://www.ismedioambiente.com/programas-formativos/analisis-del-ciclo-de-vida-

conceptos-y-metodologia

http://center.acs.org/applications/greenchem/

http://www.chemsoc.org/networks/gcn

Plan de Estudios 2015 Plan de Estudios 2015

Anexo II. IV. Programa de Ingeniería de Procesos Verdes, de la UAEM

PROGRAMA DE ESTUDIO

Clave:PRC05		Ciclo Formativo: Básico () Profesional () Especializado (X)				
Fecha de elab	oración: MA	RZO DE 201	5			
Horas Semestre	Horas semana	Horas de Teoría	Horas de Práctica	Créditos	Tipo	Modalidad
64	4	4	0	8	Teórica (X) Teórica-práctica () Práctica ()	Presencial (X) Híbrida ()
Semestre rec	omendado: A	A partir de 7°		Re	equisitos curriculares:	Ninguno
Programas ac	adémicos er	los que se	imparte: I.Q.			

1. DESCRIPCIÓN Y CONTEXTUALIZACION DE LA ASIGNATURA:

El curso de Ingeniería verde forma parte de la etapa de énfasis de la carrera de Ingeniería Química, siendo una asignatura de carácter obligatoria, que se recomienda cursarla a partir del séptimo semestre. El curso es de tipo teórico de 8 créditos, por lo que se imparte durante 16 semanas con un tiempo de 4 horas presenciales a la semana. En esta asignatura se analizan los conceptos de química verde, sistemas químicos, reacciones químicas, así como analiza los principios de procesos catalíticos más limpios, lo anterior constituye la base para aplicar la ingeniería al área ambiental.

2. CONTRIBUCIÓN DE LA ASIGNATURA AL PERFIL DE EGRESO

Esta asignatura contribuye con la formación disciplinaria del Ingeniero Químico ya que proporciona la especialidad en el área optativa ambiental que les permitirán aplicar los conocimientos para optimizar los procesos químicos y construir escenarios de solución a problemas inherentes de su formación profesional. Así mismo promueve la investigación y configura actitudes y valores de compromiso humano y social inherentes a su práctica profesional.

3. CONTROL DE ACTUALIZACIONES

Fecha	Participantes	Observaciones (cambios y justificación)
MARZO 2015	M.C. Miguel Aguilar Cortes	Emisión del documento

4. OBJETIVO GENERAL

Analizar sistemas termodinámicos en los que se establecen condiciones de equilibrio químico y físico con la finalidad de predecir los cambios de composición en función del tiempo para sistemas reaccionantes.

5. COMPETENCIAS GENÉRICAS y/o TRANSVERSALES AL MODELO UNIVERSITARIO

Generación y aplicación de conocimiento	Aplicables en contexto				
Capacidad de abstracción, análisis y síntesis	Capacidad para identificar, plantear y resolver problemas				
Habilidad para buscar, procesar y analizar información	Capacidad de generar nuevas ideas				
Sociales	Éticas				
Trabajo en equipo	Compromiso social y ético				
Habilidades interpersonales	Capacidad crítica y autocrítica				

6. CONTENIDO TEMÁTICO

UNIDAD	TEMA	SUBTEMA
1	Introducción	1.1 Contexto histórico y estado actual de la química 1.2 Definición de Química verde, importancia, limitación y obstáculos de la innovación 1.3 Los doce principios de la Química verde
2	Rediseño de sistema químicos	2.1 Sustancias y proceso peligrosos 2.2 Evaluación de materiales de partidas, reactivos, disolventes y condiciones de reacción 2.3 Tipos de reacción y productos 2.4 Alternativas de tecnologías limpias 2.5 Ejemplos
3	Economía de átomos y de energía	3.1 Concepto de economía de átomos y la reducción de residuos 3.2 Tipos de reacciones químicas con economía atómica 3.3 Métricas en Química Verde 3.4 Fuentes alternativas de energía y tecnologías más benignas 3.5 Reacciones asistidas por microondas, fotoquímica, química sónica, electroquímica y fuentes renovables de energía

Plan de Estudios 2015

4	Principios de catálisis	4.1 Descripción y parámetros del catalizador 4.1.1 Eficacia, ciclos, perfil energético, selectividad y durabilidad 4.2 Catálisis homogénea 4.2.1 Etapas catalíticas elementales y ejemplos 4.3 Catálisis heterogénea 4.3.1 Superficies e interacción con el adsorbato 4.3.2 Etapas elementales y ejemplos				
5	Disolventes	5.1 Sistemas sin disolvente 5.2 Fluidos supercríticos 5.3 Líquidos iónicos 5.4 Reacciones en medio acuoso 5.5 Sistemas bifásicos con disolventes fluorados 5.6 Disolventes inmovilizados.				
6	Procesos catalíticos más limpios	 6.1 Catálisis asimétrica 6.2 Catalizadores ácidos no contaminantes 6.3 Catálisis en medio acuoso 6.4 Catálisis bifásica 6.5 Oxidaciones catalíticas empleando oxidantes no tóxicos (H₂O₂, aire) 6.6 Foto catalizadores 				

7. UNIDADES DE COMPETENCIAS DISCIPLINARES

Unidad 1: Introducción						
	Competencia de la unidad: Aplica los diferentes conceptos para conocer la historia y					
estado actual de la químic		me	dio ambient	e y define la	ι quí	ímica verde, su
limitación y los principios e						
Objetivos de la unidad:				inir la quím	ica (con relación al
medio ambiente y los princ	ipios en que se b	asa				
EI	ementos de Con	npe	tencia Disc	iplinar		
Conocimientos	Conocimientos Habilidades Actitudes y Valores					
Historia de la química,	 Capacidad 	de	análisis,	síntesis	/ ·	Tenacidad
estado actual y su definición con relación al	evaluación				•	Respeto
medio ambiente	 Capacidad 	de	identificar	y resolve	r 🛭 🔸	Constancia
problemas • Disciplina						Disciplina
Estrategias de enseñanza: Recursos didácticos						
Presentación del profesor, exposición por Equipo audiovisual, lecturas previas de equipos, análisis de casos artículos científicos						
equipos, arialisis de casos			articulos c	CHIHOUS		

Unidad 2: Rediseño de sistemas químicos

Competencia de la unidad: Analiza las sustancias y procesos peligrosos, reactivos y productos y da a conocer las alternativas de tecnologías limpias.

Objetivos de la unidad: Analizar las sustancias y procesos peligrosos, reactivos y productos para conocer las alternativas de tecnologías limpias.

E	Elementos de Competencia Disciplinar					
Conocimientos	Habilidades				Actitudes y Valores	
Sustancias y procesos peligrosos, evaluación de materiales, tipos de reacción, tipos de productos y alternativas	evaluación	de de	análisis, identificar	síntesis y y resolver	• Tenacidad • Respeto • Constancia • Disciplina	
de tecnologías limpias. Estrategias de enseñanza			Recursos			
	Presentación del profesor, exposición por equipos, análisis de casos			iaiovisuai, iec ientíficos	turas previas de	

Unidad 3: Economía de átomos y de energía

Competencia de la unidad: Analiza la economía de átomos y energía, y da a conocer la reducción de residuos, la métrica en química verde así como las fuentes alternativas de energía.

Objetivos de la unidad: Aplicar la economía de átomos y energía para conocer la reducción de residuos, la métrica en química verde así como las fuentes alternativas de energía.

Elementos de Competencia Disciplinar						
Conocimientos	Actitudes y Valores					
Economía de átomos y	 Capacidad 	de	análisis,	síntesis y	 Tenacidad 	
de energía, reducción de	evaluación				• Respeto	
residuos, métrica en,	 Capacidad 	de	identificar	y resolver	 Constancia 	
química verde y fuentes alternativas de energía.	problemas				Disciplina	
Estrategias de enseñanza	1	Recursos	didácticos			
Presentación del profesor, exposición por equipos, análisis de casos			Equipo au artículos c		turas previas de	

Unidad 4: Principios de catálisis

Competencia de la unidad: Analiza los parámetros del catalizador tales como eficacia, ciclos, perfil energético, selectividad y durabilidad y analiza la catálisis homogénea y catálisis heterogénea.

Objetivos de la unidad: Aplicar los parámetros del catalizador tales como eficacia, ciclos, perfil energético, selectividad y durabilidad para la catálisis homogénea y catálisis heterogénea.

Plan de Estudios 2015

EI	Elementos de Competencia Disciplinar						
Conocimientos	На	bilidades	Actitudes y Valores				
Parámetros del catalizador tales como eficacia, ciclos, perfil energético, selectividad y durabilidad; catálisis homogénea y catálisis heterogénea.	Capacidad evaluación Capacidad problemas	de de	análisis, identificar	síntesis y y resolver	•Tenacidad •Respeto •Constancia •Disciplina		
Estrategias de enseñanza: Presentación del profesor, exposición por equipos, análisis de casos			Recursos Equipo au artículos c	udiovisual, lec	turas previas de		

Unidad 5: Disolventes

Competencia de la unidad: Aplica los diferentes conceptos de disolventes y da a conocer el sistema sin disolvente, fluidos supercríticos, líquidos iónicos, reacciones en medio acuoso, sistemas bifásicos con disolventes fluorados y disolventes inmovilizados.

Objetivos de la unidad: Aplicar los diferentes conceptos de disolventes para conocer los sistemas sin disolvente, fluidos supercríticos, líquidos iónicos, reacciones en medio acuoso sistemas bifásicos con disolventes fluorados y disolventes inmovilizados

Elementos de Competencia Disciplinar						
Conocimientos	На	bilidades		Actitudes y Valores		
Sistemas sin disolvente, fluidos supercríticos, líquidos iónicos, reacciones en medio acuoso sistemas bifásicos con disolventes fluorados y disolventes inmovilizados.	Capacidad evaluación Capacidad problemas	de de	análisis, identificar	síntesis y y resolver	Tenacidad Respeto Constancia Disciplina	
Estrategias de enseñanza: Presentación del profesor, exposición por equipos. análisis de casos			Recursos Equipo au artículos c	udiovisual, led	cturas previas de	

Unidad 6: Procesos catalíticos más limpios

Competencia de la unidad: Analiza la catálisis asimétrica, ácida, no contaminante, en medio acuoso y bifásica y comprende la oxidación catalítica y fotocatálisis.

Objetivos de la unidad: Analizar los conceptos de la catálisis asimétrica, ácida, no contaminante, en medio acuoso y bifásica para comprender la oxidación catalítica y fotocatálisis.

Elementos de Competencia Disciplinar						
Conocimientos		На	bilidades		Actitudes y Valores	
Catálisis asimétricas, ácidas, no	 Capacidad evaluación 	de	análisis,	síntesis y	Tenacidad	
contaminantes, en medio acuosas y bifásicas; oxidaciones catalíticas y foto catalizadores.	Capacidad problemas	de	identificar	y resolver	Respeto Constancia Disciplina	
Estrategias de enseñanza:			Recursos	didácticos		
Presentación del profesor, exposición por equipos, análisis de casos			Equipo au artículos c		turas previas de	

8. EVALUACIÓN.

Documentos de referencia:

Reglamento General de Exámenes de la UAEM

Reglamento de la FCQel:

ARTÍCULO 80. -En las asignaturas teóricas y teórico-prácticas, la calificación que se asentará en el acta de examen ordinario será el promedio ponderado de mínimo 3 evaluaciones parciales y un examen de carácter departamental que incluya los contenidos temáticos de la asignatura.

Cada evaluación parcial estará integrada por un examen parcial y las actividades inherentes a cada asignatura.

Nota: Cómo producto de aprendizaje a través en el ejercicio del trabajo colaborativo se sugiere el desarrollo de un proyecto como propuesta de oportunidad de mercado de un producto o servicio de valor agregado.

9. FUENTES DE CONSULTA.

Bibliografía básica:

Anastas, P. T. Warner, J. C. (2000). Green Chemistry: Theory and Practice, Oxford University Press

Matlack A. S. (2001). Introduction to Green Chemistry, Marcel Dekker

Lancaster, M. (2002). Green Chemistry: An Introductory Text, University of York, RSC.

Plan de Estudios 2015

Anastas, P. T., Bartlett, L., Williamson, T. C. (2000). Green Chemical Syntheses and Processes, ACS-Oxford University Press.

Nelson, W. M. (2003). Green Solvents for Chemistry: Perspectives and Practice, Oxford University Press.

Housecroft, C. E., Sharpe, A. G. (2001). Inorganic Chemistry, Prentice Hall.

Oro, L. A., Sola, E. (2000). Fundamentos y aplicaciones de la catálisis homogénea, 2ª ed., INO Reproducciones, Zaragoza.

Bibliografía electrónica complementaria:

American Chemistry Society: http://center.acs.org/applications/greenchem/

Green Chemistry Network: http://www.chemsoc.org/networks/gcn

Universidad de Scranton: http://academic.scranton.edu/faculty/CANNM1/intro.html

Anexo II. V. Programa de Ingeniería Verde, de la UANL

Universidad Autónoma de Nuevo León

PROGRAMA ANALÍTICO

1. Datos de identificación:

Nombre de la unidad de aprendizaje:	Ingeniería Verde
Total de horas presenciales:	90
Total de horas de trabajo extra aula:	36
Modalidad:	Escolarizada
Periodo académico:	Quinto semestre
Tipo de unidad de aprendizaje:	Optativa
Área curricular:	ACFP
Créditos UANL:	5
Fecha de elaboración:	13/01/15
Fecha de última actualización:	03/07/15
	Dr. José Angel Loredo
Responsable (s) del diseño:	Medrano, Dr. Luis Humberto
nesponsable (s) dei diserio.	Álvarez Valencia, Dr. Pasiano
	Rivas García
Responsable (s) de la actualización:	Dr. Pasiano Rivas García

Universidad Autónoma de Nuevo León

2. Presentación:

En el mundo actual, el ejercicio de la ingeniería química requiere que los profesionistas tengan conocimientos sólidos en el área de la ingeniería verde. La ingeniería verde implica utilizar técnicas de medida y control para crear tecnologías y procesos más eficientes y de esta manera construir sistemas y productos respetuosos con el medio ambiente. Para lograr la implementación de estos procesos los ingenieros químicos encargados de su diseño, puesta en marcha, operación, control y administración, deben considerar que estos procesos deben ser conceptualizados y operados con la filosofía de cero residuos y un uso eficiente de recursos.

Esta unidad de aprendizaje proporciona los principios de la química, ingeniería verde y análisis del ciclo de vida para que los procesos industriales se diseñen y operen a partir de recursos renovables, el mínimo uso de energía, sin toxicidad y con cero riesgo para los operarios y las zonas circunvecinas del proceso.

El aprendizaje de los conceptos y filosofía de ingeniería verde, contribuye al logro de las competencias que tienen que ver con la habilidad para la resolución de problemas, el dominio del lenguajes en tópicos ambientales, de tecnologías de la información, del pensamiento lógico y crítico, así como la oportuna toma de decisiones para la adecuada operación de los procesos productivos que benefician a la sociedad, teniendo cuidado especial del medio ambiente.

3. Propósito (s):

Conocer los principios de ingeniería química para el análisis de equipos de proceso con el fin de prevenir los impactos ambientales en aire, agua y la generación de residuos y así mejorar los procesos del sector productivo. Esta unidad de aprendizaje representa la aplicación de los fundamentos de química, balances de materia y energía, termodinámica, cinética, catálisis y operaciones unitarias. La unidad de aprendizaje desarrolla las habilidades de aprendizaje autónomo, toma de decisiones para la prevención de la contaminación usando no sólo la tecnología de información sino otras herramientas tales como el análisis del ciclo de vida de un producto o de un proceso, modelando el comportamiento en lenguaje matemático. El estudiante será competente en el análisis y la mejora de procesos de transformación física y química, así como evaluar alternativas para la prevención y minimización de la contaminación.

Universidad Autónoma de Nuevo León

4. Enunciar las competencias del perfil de egreso a las que contribuye esta unidad de aprendizaje

- a. Competencias de la Formación General Universitaria:
- 1. Aplicar estrategias de aprendizaje autónomo en los diferentes niveles y campos del conocimiento que le permitan la toma de decisiones oportunas y pertinentes en los ámbitos personal, académico y profesional.
- 2. Utilizar los lenguajes lógico, formal, matemático, icónico, verbal y no verbal de acuerdo a su etapa de vida, para comprender, interpretar y expresar ideas, sentimientos, teorías y corrientes de pensamiento con un enfoque ecuménico.
- interpretar y expresar ideas, sentimientos, teorías y corrientes de pensamiento con un enfoque ecuménico.

 3. Manejar las tecnologías de la información y la comunicación como herramienta para el acceso a la información y su transformación en conocimiento, así como para el aprendizaje y trabajo colaborativo con técnicas de vanguardia que le permitan su participación constructiva en la sociedad.

 5. Emplear pensamiento lógico, crítico, creativo y propositivo para analizar fenómenos naturales y sociales que le permitan
- 5. Emplear pensamiento lógico, crítico, creativo y propositivo para analizar fenómenos naturales y sociales que le permitan tomar decisiones pertinentes en su ámbito de influencia con responsabilidad social.
 11. Practicar los valores promovidos por la UANL: verdad, equidad, honestidad, libertad, solidaridad, respeto a la vida y a los
- 11. Practicar los valores promovidos por la UANL: verdad, equidad, honestidad, libertad, solidaridad, respeto a la vida y a los demás, respeto a la naturaleza, integridad, ética profesional, justicia y responsabilidad, en su ámbito personal y profesional para contribuir a construir una sociedad sostenible.
- 13. Asumir el liderazgo comprometido con las necesidades sociales y profesionales para promover el cambio social pertinente.
- b. Competencias específicas del perfil de egreso:
- 2. Analizar la operación de los procesos industriales para eficientar el uso de los recursos económicos, humanos, tecnológicos y materiales en el sector productivo.
- 3. generar alternativas para el uso eficiente de la energía en el diseño y la operación de los procesos del sector productivo.

Universidad Autónoma de Nuevo León **5. Representación gráfica:**

alcance dentro nálisis del Ciclo Vida (ACV)

Propósito: Conocer los principios de ingeniería química para el análisis de procesos con el fin de prevenir los impactos ambientales en aire, agua y la generación de residuos y así, mejorar los procesos del sector productivo. 1ra fase□ **⇒2ra fase**⊏ ⇒3ra fase ⊏ ⇒ PIA Analizar las diferente Comprender los conceptos de la química e ingeniería verde en el contexto de sustentabilidad. Comprender los onceptos básicos d óptima síntesis de ocesos, desde el punto de vista técnico química, desuc de la ingeniería verde Comprender los role de los solventes, Comprender los principios de la Analizar los concepto de integración de masa energía desde el punto de vista de la síntesis, análisis y optimización reactivos, atalizadores y otro: materiales involucrados en la unica verde y en e ender las base omprender las base de: integración ambiental, salud y medio ambiente. Evaluar el inventario de ciclo de vida de un producto seleccionado Comprender cómo fectan las condicion de reacción y químic verde en los proceso de transformación. Comprender los principios y filosofía de las mediciones en química verde. Evaluar el impacto ibiental del ciclo de vide de un producto seleccionado. omprender cómo ha sido usados los nalizar los concepto de la etapa de efinición de objetiv

> izar los resultados de ACV completo.

nalizar los concept del análisis de ventario del ciclo o vida

Universidad Autónoma de Nuevo León

6. Estructuración en capítulos, etapas o fases de la unidad de aprendizaje

Etapa 1. Química e ingeniería verde en movimiento hacia la sustentabilidad.
Elementos de competencia:

1. Analizar los doce principios de la química e ingeniería verde en relación a los riesgos al medio ambiente, salud y seguridad que representan las sustancias químicas, para evaluar impactos ambientales.

Evidencias de aprendizaje	Criterios de Desempeño	Actividades de aprendizaje	Contenidos	Recursos
Examen escrito individual de 2 horas de duración. Presentación de los avances del ACV en equipo.	1a.Examen escrito individual de dos horas de duración, en donde se demuestre el dominio de los conceptos presentados en la 1ra fase de la representación gráfica. Realizar una presentación en equipo, en donde se especifiquen, el objetivo, las fronteras y la unidad funcional del ACV.	Estudiar con antelación los temas que se abordaran en clase. Resolver las tareas individuales y grupales que se soliciten. Leer, discutir y analizar diversas lecturas, ya sea de tarea o en clase, de forma individual o grupal. Resolver y presentar los ejercicios solicitados durante la clase o de tarea	Conceptos básicos de química e ingeniería verde en el contexto de la sostenibilidad. Principios de química e ingeniería verde Integración de las bases de ambiente, salud y seguridad. Mediciones en Química Verde Analizar los conceptos de la etapa de definición de objetivos y alcance dentro del Análisis del Ciclo de Vida (ACV)	Jiménez-González C and Constable DJC. Green Chemistry and Engineering. Ed Wiley. 2011. Goedkoop, M. J.; et al. ReCiPe 2008, A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level; First edition Report I: Characterisation 2009. Guinée et al.Life cycle assessment an operation guide to the ISO standars.Leiden University. 2001. Sesiones en la Aula con

Universidad Autónoma de Nuevo León							
		apoyo de proyector, pintarrón y plumones.					
		Diversa literatura científica (artículos internacionales)					

Universidad Autónoma de Nuevo León

Etapa 2. Diseño verde, seguridad, síntesis química e inventario del ciclo de vida.

Elementos de competencia:

2. Analizar los procesos de transformación química desde una perspectiva verde y de rutas de síntesis química seguras para diseñar procesos de contra el madio ambiento.

	petuoso al medio ambiente.			
Evidencias de aprendizaje	Criterios de Desempeño	Actividades de aprendizaje	Contenidos	Recursos
2a. Presentación de los avances del ACV; en equipo 2b. Examen escrito individual de dos horas de duración.	2a. Realizar una presentación en equipo, en donde se especifiquen los principales procesos del ACV, y los flujos de entrada y salida que se van a evaluar. La presentación debe contener una introducción, objetivos, metodología, resultados y discusión y conclusiones. Se evaluará el cumplimiento de los temas asignados, el dominio técnico del tema, la calidad literaria y visual y el tiempo. 2b. Examen escrito individual de dos horas de duración. En donde se demuestre el dominio de los conceptos presentados en la 2a fase de la figura anexa.	Estudiar con antelación los temas que se abordaran en clase. Resolver las tareas individuales y grupales que se soliciten. Leer, discutir y analizar diversas lecturas, ya sea de tarea o en clase, de forma individual o grupal. Resolver y presentar los ejercicios solicitados durante la clase o de tarea	Selección de solventes,	Jiménez-González C and Constable DJC. Green Chemistry and Engineering. Ed Wiley. 2011. Guinée et al.Life cycle assessment an operation guide to the ISO standars.Leiden University. 2001. Sesiones en la Aula con apoyo de proyector, pintarrón y plumones. Diversa literatura científica (artículos internacionales) Visita industrial a una planta de gestión de residuos sólidos o de aguas residuales Bases de datos gubernamentales y científicas cantificas científicas científicas científicas científicas con científicas con científicas con control control con control

Universidad Autónoma de Nuevo León

Etapa 3. Optimización e integración de masa y energía en procesos químicos y evaluación de los impactos ambientales del ciclo de vida.

Elementos de competencia:
3. Comprender los conceptos de optimización e integración de masa y energía en procesos químicos para diseñar procesos óptimos en relación al uso de recursos másicos y concreticos.

al uso de recursos más	sicos y energéticos.			
Evidencias de aprendizaje	Criterios de Desempeño	Actividades de aprendizaje	Contenidos	Recursos
3a. Presentación de los avances del ACV; en equipo 3b. Reporte escrito	3a. Realizar una presentación en equipo, en donde se presente el inventario completo del ciclo de vida y la evaluación de los indicadores de categoría de impacto ambiental. La presentación debe contener una introducción, objetivos, metodología, resultados y discusión y conclusiones. Se evaluará el cumplimiento de los temas asignados, el dominio técnico del tema, la calidad literaria y visual y el tiempo. 3b. Reporte escrito en donde se detalle el objetivo, alcance y fronteras del ACV, el inventario, y la evaluación numérica de los indicadores de categoría de impacto ambiental. El escrito debe contener un resumen de máximo 200	Estudiar con antelación los temas que se abordaran en clase. Resolver las tareas individuales y grupales que se soliciten. Leer, discutir y analizar diversas lecturas, ya sea de tarea o en clase, de forma individual o grupal. Resolver y presentar los ejercicios solicitados durante la clase o de tarea	Herramientas de optimización y síntesis de procesos, desde el punto de vista técnico-ambiental. Integración de masa y energía en el contexto de de la síntesis, análisis y optimización de procesos químicos Inventario del ciclo de vida Evaluación de impactos ambientales del ciclo de vida Interpretación de los resultados del ACV completo	Jiménez-González C and Constable DJC. Green Chemistry and Engineering. Ed Wiley. 2011. Jiménez-Gutiérrez A. Diseño de procesos en ingenieria química. Ed Reverté. 2003. Guinée et al. Life cycle assessment an operation guide to the ISO standars. Leiden University. 2001. Goedkoop, M. J.; et al. ReCIPe 2008, A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level; First edition Report I: Characterisation 2009
	palabras, una introducción			

Universidad Autónoma de Nuevo León

que ponga al lector en la contextualización del tema, la metodología, resultados y discusión, conclusiones y bibliografía. Debe utilizar para la explicación, ecuaciones, tablas y figuras en una forma ordenada y formal. Se evaluará el cumplimiento de los temas, el dominio técnico del tema y calidad literaria y visual

Sesiones en la Aula con apoyo de proyector, pintarrón y plumones.

Diversa literatura científica (artículos internacionales)

Bases de datos gubernamentales y científicas

7. Evaluación integral de procesos y productos (ponderación/evaluación sumativa):

Evidencia 1a: 15% Evidencia 1b: 5% Evidencia 2a: 10% Evidencia 2b: 10% Evidencia 3a: 10% Evidencia 3b: 10% PIA: 40%.

8. Producto integrador de aprendizaje de la unidad de aprendizaje:

PIA: 40%: Realizar un Análisis del Ciclo de Vida de un producto, proceso o servicio

9. Fuentes de apoyo y consulta (bibliografía, hemerografía, fuentes electónicas):

Jiménez-González C and Constable DJC. Green Chemistry and Engineering. Ed Wiley. 2011. Capítulos 1-4

Goedkoop, M. J.; et al. ReCiPe 2008, A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level; First edition Report I: Characterisation 2009.

Universidad Autónoma de Nuevo León

Environmental Management: life cycle assessment; requirements and guidelines; ISO 14044-2006. International Organization for Standardization: Geneva, Switzerland 2006.

GREET (The Greenhouse Gases, R. E., and Energy Use in Transportation Model), GREET1 MODEL. Argonne National Laboratory 2014.

IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Preparado por el: National Greenhouse Gas Inventories Programme, Eggleston H.S., Buendia L., Miwa K., Ngara T. and Tanabe K. 2006

Jiménez-Gutiérrez A. Diseño de procesos en ingeniería química. Ed Reverté. 2003.

Diversos artículos científicos

Anexo III. Ponentes del Taller de Expertos de Química Verde

A continuación, se presenta la información general de los ponentes invitados del Taller de Expertos de Química Verde.

Anexo III. I. Dr. René Miranda Ruvalcaba

Profesor Titular C definitivo en la Facultad de Estudios Superiores Cuautitlán-UNAM con 45 años de antigüedad, e Investigador Nacional (SNI) desde 1986. Con estudios de licenciatura en Química, Maestría en Ciencias y Doctorado en Ciencias Químicas por la Facultad de Química de la UNAM. Co-autor de cinco libros en el contexto de la Química Verde, tema central de más de 40 cursos donde ha formado parte. Presidente desde 2006 de la División de Química Verde de la Sociedad Química.

Anexo III. II. Dr. Antonio Rodríguez Martínez

Profesor-Investigador en el Centro de Investigación en Ingeniería y Ciencias Aplicadas en la Universidad Autónoma del Estado de Morelos, donde realizó sus estudios de licenciatura en Ingeniería Química (1993). Su formación académica incluye una Maestría (2002) y un Doctorado (2005), ambos sobre Ingeniería Química y de Procesos, realizados en la Universitat Rovira i Virgili (URV) en España. Su línea de investigación es el Diseño Modelado, Síntesis, Retrofit y Simulación de Procesos Químicos con enfoque medioambiental y desarrollo sustentable.

Anexo III. III. Dr. Pasiano Rivas García

Adscrito al Centro de Investigación de Biotecnología y Nanotecnología (CIBYN) y al Departamento de Ingeniería Química, ambos dentro de la Facultad de Ciencias Químicas, de la Universidad Autónoma de Nuevo León. Sus áreas de investigación consisten en el diseño de estrategias integrales para el aprovechamiento sustentable de los residuos sólidos urbanos, de manejo especial y agroindustriales;

utilizando como herramientas Análisis de Ciclo de Vida, estrategias experimentales, así como modelado y simulación matemática. H a publicado más de 12 artículos en revistas de alcance internacional, es miembro del Sistema Nacional de Investigadores en el Nivel 1 y posee el nombramiento de profesor con perfil deseable PRODEP.

Anexo III. IV. Dra. María Olivia Noguez Córdova

Licenciatura en Química; Maestría en Fisicoquímica y Dra. en Ciencias Químicas - UNAM. Profesor de Carrera Asociado B interino, Jefe de la Sección de Química Orgánica del Departamento de Ciencias Químicas de la FES-Cuautitlán, entre sus publicaciones se encuentran 11 Artículos y 3 libros como coautora; ha participado en 21 congresos nacionales y 5 internacionales, además de 20 conferencias impartidas, tiene participación como ponente en tres Simposios de Química Verde y fue participante en los Talleres de Química Verde dentro de las actividades de los Congresos de la SQM.

Anexo III. V. Dr. Fernando León Cedeño

Estudios de licenciatura y maestría en la UNAM. Doctorado en Química sostenible por la Universidad de Castilla, La Mancha, España, Asesor Antonio de la Hoz Ayuso. Su actividad académica es en docencia (licenciatura y posgrado). Áreas de interés síntesis de compuestos orgánicos. Integrante del Comité Organizador del programa Olimpíadas nacionales de Química, Academia mexicana de ciencias. Una parte de su actividad académica está orientada hacia la investigación educativa, en la que el objetivo principal es que tanto alumnos de bachillerato como de licenciatura utilicen los principios de la química verde.

Anexo III. VI. Dr. Omar Amador Muñoz

Investigador Titular A, miembro del Sistema Nacional de Investigadores Nivel 2, adscrito al Laboratorio de Especiación Química de Aerosoles Orgánicos Atmosféricos en el Centro de Ciencias de la Atmósfera de la UNAM, cuenta con un Doctorado en Ciencias Químicas y un posdoctorado en la Universidad de California en Berkeley (en ESPM-UC Environmental Science, Policy, & Management) sus líneas de investigación abarcan los Aerosoles Orgánicos Atmosféricos y las Tecnologías Verdes (Green Analytical Chemistry). Intereses: Cromatografía de Gases; Espectrometría de Masas; Cromatografía de Líquidos de Alta Resolución.

Anexo III. VII. Dr. Jorge Ibañez Cornejo

Es profesor del Departamento de Ingeniería y Ciencias Químicas de la IBERO desde 1985, fue director de 2011 a 2015 y actualmente es Senador en dicha institución. Ha recibido varias distinciones, entre las que sobresalen premios a la excelencia en la enseñanza (Huston; 1980,1981) y a la investigación (IBERO; 1994, 2008, 2009, 2010). Cofundador del Centro Mexicano de Química Verde y Microescala (2010). Participó en La Haya (Holanda) en la redacción de la guía ética sobre el uso de sustancias químicas con la Organización para la Prohibición de Armas Químicas (OPCW), ganadora del Premio Nobel de la Paz en 2013.

Anexo III. VIII. Dr. Arturo Gavilán García

Director de Investigación de Contaminantes, Sustancias, Residuos y Bioseguridad en el Instituto Nacional de Ecología y Cambio Climático de la Secretaría del Medio Ambiente y Recursos Naturales, donde inició como coordinador en el año 2002. Sus estudios abarcan una licenciatura en Ingeniería Química en la Facultad de Química de la UNAM, una maestría en el Posgrado de Ingeniería de la UNAM (2004) y un doctorado en Medio Ambiente y Desarrollo en el Instituto Politécnico Nacional.

Anexo III. IX. Dr. Gustavo Ávila Zárraga

Profesor de tiempo completo de la Facultad de Química de la UNAM, Miembro del Sistema Nacional de Investigadores y Miembro de la Academia Mexicana de Ciencias. Las áreas donde ha desarrollado sus trabajos son la Síntesis de productos naturales, la Síntesis de compuestos heterocíclicos con actividad biológica y el Estudio de reacciones en Química Verde.

Anexo III. X. Ing. Manuel Antonio López Betancourt

Ingeniero Químico por la Universidad Nacional Autónoma de Nuevo León. Ha trabajado en Grupo CYDSA por 15 años, donde actualmente ocupa el puesto de Superintendente de Seguridad, Medio Ambiente y Capacitación en Quimobásicos. Es también el responsable de la Certificación en Excelencia Ambiental e Industria Limpia (Nivel de Desempeño 2) en planta Quimobásicos. Auditor en el Sistema de Administración de Responsabilidad Integral por la Asociación Nacional de la Industria Química ANIQ y en Sistemas de Gestión de Seguridad y Salud OHSAS 18001 por el instituto para la protección Ambiental IPA de Nuevo León.

7 REFERENCIAS

- Abraham, M. A., & Nguyen, N. (2003). Green Engineering: Defining the Principles Results from the Sandestin Conference. *Environmental Progress*, 233-236.
- Akinlua, A. (2015). Microwave-Assisted Ionic Liquid Extraction of n-Alkanes and Isoprenoid Hydrocarbons from Petroleum Source Rock. *Chromatographia*, 1201-1209.
- Ameta, R., & Ameta, S. C. (2017). *Photocatalysis: Principles and Applications*. Boca Raton, Florida: CRC Press.
- Ameta, S. C., & Ameta, R. (2013). *Green Chemistry. Fundamentals and Applications*. Ontario, Canadá: Apple Academic Press.
- Ameta, S. C., Ameta, R., & Ameta, G. (2018). *Sonochemistry. An Emerging Green Technology.* New York, USA: Apple Academic Press.
- Anastas, P., & Warner, J. C. (1998). *Green Chemistry: Theory and Practice.* New York: Oxford University Press.
- Colmenares, J. C., & Chatel, G. (2017). *Sonochemistry. From Basic Principles to Innovative Applications*. Varsovia, Polonia: Springer.
- Doble, M., & Kruthiventi, A. K. (2007). *Green Chemistry & Engineering*. San Diego, California: Academic Press.
- Environment & Society Portal. (2012). *US Federal government responds | Environment & Society Portal*. Obtenido de http://www.environmentandsociety.org/exhibitions/silent-spring/usfederal-government-responds
- Facultad de Estudios Superiores Cuautitlán. (2019). *Ingeniería en Química | FESC*. Obtenido de http://www.cuautitlan.unam.mx/licenciaturas/ing_quimica/plan_estudios.html
- Facultad de Estudios Superiores Cuautitlán. (2019). *Licenciatura en Química Industrial | FESC*.

 Obtenido de

 http://www.cuautitlan.unam.mx/licenciaturas/quimica_industrial/plan_estudios.html
- Facultad de Estudios Superiores Cuautitlán. (s.f.). *Programa de la asignatura de Ingenería y Química Verde*. Obtenido de http://www.cuautitlan.unam.mx/licenciaturas/ing_quimica/descargas/optativas_campo_c omplementario/ing_quimica_verde.pdf

- Facultad de Estudios Superiores Cuautitlán. (s.f.). *Programa de la asignatura de Química Verde.*Obtenido de

 http://www.cuautitlan.unam.mx/licenciaturas/quimica_industrial/descargas/Quimica_Verde.pdf
- Haruyama, T. (February de 2018). Excitation of H2O at the plasma/water interface by UV irradiation for the elevation of ammonia production. *Green Chemistry*, 20(3), 627-633.
- Jiménez-Gonzáles, C., & Constable, D. J. (2011). *Green Chemistry and Engineering.* Hoboken, New Jersey: John Wiley & Sons, Inc.
- Lancaster, M. (2016). *Green Chemistry: An introductory Text.* Cambridge, UK: Royal Society of Chemistry.
- Maggos, T., Bartzis, J. G., Liakou, M., & Gobin, C. (2007). Photocatalytic degradation of NOx gases using TiO2-containing paint: A real case study. *Journal of Hazardous Materials* 146, 668-673.
- Mavandadi, F., & Pilotti, A. (2006). The importance of microwave-assisted organic synthesis in drug discovery. *DDT*, 165-174.
- McMurray, T. (2005). Photocatalytic and electrochemically assisted photocatalytic oxidation of formic acid on TiO2 films under UVA and UVB irradiation. *Journal of Applied Electrochemistry*, 723-731.
- National Geographic. (21 de junio de 2019). Cleveland's Cuyahoga River caught fire 50 years ago. It inspired a movement. Obtenido de https://www.nationalgeographic.com/environment/2019/06/the-cuyahoga-river-caught-fire-it-inspired-a-movement/
- Persico, M., & Granucci, G. (2018). *Photochemistry. A Modern Theoretical Perspective*. Pisa, Italia: Springer.
- Söğüt, O. Ö., & Akgün, M. (2007). Treatment of textile wastewater by SCWO in a tube reactor. *Journal of Supercritical Fluids 43*, 106-111.
- The Huffington Post. (6 de diciembre de 2017). *The Santa Barbara Oil Spill of 1969: A Lesson In Offshore Drilling (PHOTOS) | HuffPost*. Obtenido de https://www.huffpost.com/entry/the-santa-barbara-oil-spi_n_112605
- United States Environmental Protection Agency. (21 de marzo de 2017). *Basics of Green Chemistry | Green Chemistry | US EPA*. Obtenido de https://www.epa.gov/greenchemistry/basics-green-chemistry#ppa

- United States Environmental Protection Agency. (19 de septiembre de 2018). Summary of the Toxic Substances Control Act | Laws & Regulations | US EPA. Obtenido de https://www.epa.gov/laws-regulations/summary-toxic-substances-control-act
- Universidad Autónoma de Nuevo León. (2012). *Ingeniería Química Plan 2012 | Facultad de Ciencias Químicas*. Obtenido de http://www.fcq.uanl.mx/ingenieria-quimica-plan-2012/
- Universidad Autónoma del Estado de Morelos. (2015). *Ingeniería Química | Universidad Autónoma del Estado de Morelos*. Obtenido de https://www.uaem.mx/admision-y-oferta/nivel-superior/ingenieria-quimica.php
- Universidad Autónoma del Estado de Morelos. (marzo de 2015). *Programa de Estudio de la asignatura Química Verde y Sustentabilidad*. Obtenido de https://www.uaem.mx/admision-y-oferta/nivel-superior/quimico-industrial-materias.zip
- Universidad Autónoma del Estado de Morelos. (marzo de 2015). *Programa de Estudio de la Asignatura: Ingeniería de Procesos Verdes.* Obtenido de https://www.uaem.mx/admision-y-oferta/nivel-superior/ingenieria-quimica-materias.zip
- Universidad Autónoma del Estado de Morelos. (2015). *Químico Industrial | Universidad Autónoma del Estado de Morelos*. Obtenido de https://www.uaem.mx/admision-y-oferta/nivel-superior/quimico-industrial.php
- Universidad Autónoma de Nuevo León (2015) Ingeniería Verde. Programa de la unidad de aprendizaje. Recibido el día 24 de febrero de 2019 por comunicación directa.
- Yale Scientific. (2 de octubre de 2010). *Paul Anastas: A Power Player in the Global Chemical Industry | Yale Scientific Magazine*. Obtenido de http://www.yalescientific.org/2010/10/paul-anastas-a-power-player-in-the-global-chemical-industry/
- Yu, L. (2015). Catalytic Supercritical Water Oxidation of Oily Wastewater. *Chemistry and Technology of Fuels and Oils*, 87-92.