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Chapter 1

Introduction and Motivation

In high energy physics and gravitation, String Theory is a quite useful theoretical framework to
study fundamental physics. In its many properties, the prediction of a 10 dimensional spacetime
stands out, it is a shocking fact as we are used to assume that our spacetime is a four dimensional
one. So, where are the extra six dimensions? Most importantly, what kind of geometrical and topo-
logical properties does they have? Can, in some sense, the physics of our beloved four dimensions
depend on the geometry and the topology of the extra six dimensions?

It turns out that the physics that we can observe in our four dimensions is sensitive to the
geometry and the topology of the extra dimensions [CHSWS85]. Let us briefly list some of them
[[U12]. Firstly, the extra dimensions should constitute a compact manifold X of dimension 6 with a
“tiny” radius. Secondly, the holonomy group for the metric in the extra dimensions in most cases is
the group SU(3). In third place, the index of the Dirac operator associated to the matter fields has
to be equal to three. Finally, in several cases, the fundamental group II; (X)) of our six dimensional
manifold is non trivial so X can be non-simply connected.

The manifolds that satisfy those conditions, especially the holonomy condition, are called
Calabi-Yau (C-Y) manifolds, in particular C-Y threefolds. Even though the classification of C-
Y manifolds is an open research field, the first thing to address is the existence of such manifolds.
The first steps in this direction were given by Eugenio Calabi in the 50’s, with his celebrated conjec-
ture [Cal57]. Working in the context of complex geometry he noted that given a compact complex
manifold M and a Kéhler metric ¢ it has associated a closed (1,1)—form p called the Ricci form of
g. So he asked what happens to the reciprocal proposition, i.e. given a closed (1,1)—form p’, are
there conditions under which p’ is the Ricci form of a Kéhler metric ¢'?

It was known that the existence (and the uniqueness) of such a metric ¢’ can be reformulated
in terms of the Monge-Ampere equation for a real function ¢, given by

(w+ dd°¢)™ = Aefw™,

and show that a solution exists and it is unique|Joy00]. Calabi himself proved the uniqueness but
the existence remained unproved, despite the hard work done by T. Aubin [Aub70], until Shing-
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2 CHAPTER 1. INTRODUCTION AND MOTIVATION

Tung Yau prove it in 1977 [Yau77, [Yau78|. In this process the regularity properties of elliptic
operators in compact manifolds become crucial, since they provide certain bounds needed to get a
proof.

With the Calabi conjecture proved, it became quite clear that one can use Yau’s solution of
the Calabi conjecture to prove the existence of Kéhler metrics with holonomy SU(n) on certain
compact complex manifolds M [Joy00]. This fact gave rise to the Calabi-Yau manifolds mentioned
before.

In this work we address the proof to the Calabi conjecture given by S.T. Yau as presented in
a modern way by D. Joyce [Joy00]. For this purpose, we rely on the continuity method, usual on
differential equations theory. From the Monge-Ampere equation we build a uniparametric family
of equations

(w+ dd¢y)™ = AetTw™,  te0,1],

such that we know the solution for ¢ = 0 and we recover our original equation at t = 1.

To prove the existence of the solution for ¢ = 1, we prove that the set S of ¢t € [0, 1] that have
an associated solution ¢; is both open and closed in [0, 1], so by connectedness, such a set is the
complete interval [0, 1]. Therefore, there is a solution ¢;—; to the Monge- Ampere equation and the
existence is proved. Putting this together with a usual uniqueness proof, the Calabi conjecture is
proved.

To accomplish the idea of this naive sketch, four theorems are needed. These theorems are:

Theorem 1.1 (1st Theorem). Let (M, J) be a compact complex manifold, g a Kdihler metric on
M with Kéhler form w. Let f € C3(M), ¢ € C?(M), 0 < A and 0 < Q1, such that

1flles < O, / 6dV, =0, and (w+ dd°d)™ = Aefw™.
M
Then there exists 0 < Q2, Q3, Q4 depending only on M, J, g and Q1, such that

Il < Qa,  [|dd°0]] < @3, and [|Vdd°¢]| < Qa.

Theorem 1.2 (2nd Theorem). Let (M, J) be a compact complex manifold, g a Kdhler metric on
M with Kéhler form w. Let f € C3*(M), ¢ € C°(M), 0 < A and 0 < Q1, Q2, Q3, Q4, such that

(w+dd°¢)™ = Aefw™,  ||fllgse < Qu, I8l < Q2,  [|dd¢l| < Q3,  and ||Vddd|| < Qu.

Then ¢ € C>*(M) and there exists 0 < Q5, such that ||@||cs.. < Q5. Even more, if f € CF*(M)
with 3 < k, then ¢ € C¥*22(M), and if f € C®(M) then ¢ € C°(M).

Theorem 1.3 (3rd Theorem). Let (M, J) be a compact complex manifold, g a Kdhler metric on
M with Kéhler form w. Fir o € (0,1), let f' € C3*(M), ¢’ € C>*(M) and 0 < A’, such that

/ ¢ dV, =0, and (w+dd°¢)" = Aef'wm.
M



Then, for every f € C3*(M), such that ||f — f'||gs.« <€, Ve >0, there exists ¢ € C>*(M), and
0 < A, such that

/ ¢dV, =0, and (w+dd¢p)™ = Aefw™.
M

Theorem 1.4 (4th Theorem). Let (M, J) be a compact complex manifold, g a Kdhler metric on
M with Kdhler form w. Let f € CY(M), then there exists an unique function ¢ € C3(M), such
that

/ ¢dV, =0, and (w+dd¢p)™ = Aefw™.
M

Theorems and provide us a priori bounds for ¢ and its derivatives, needed to prove that
S is closed. Theorem |1.3| proves that S is open. With these two statements and the facts that [0, 1]
is connected and S is non-empty we have that S = [0,1]. Hence, ¢ exists. Finally, theorem
gives us the uniqueness of ¢ and the conjeture is proved.

Thesis organization

This work is organized as follows:

On chapter [2| the main concepts from complex geometry are reviewed as well as the proofs
for certain results that are going to be useful in the reformulation of the Calabi conjecture. This
concepts include, but are not restricted to, the definition of complex manifolds, complex structures,
Kaéhler metrics, Kahler manifolds, curvature on Kéhler manifolds and characteristic classes with an
emphasis on the second Chern class of a manifold. Next, on chapter [3|elliptic operators on compact
manifolds are presented with emphasis on their regularity properties, the ones that were crucial
in Yau’s work. We discuss Holder spaces, embedding theorems, regularity existence theorems for
solutions to elliptic equations.

Now that our framework has been established, in chapter [4 we reformulate the Calabi conjecture
in terms of the Monge-Ampere equation. We present the four key theorems that are going to greatly
illuminate our way and a sketch of the proof is discussed. After the intuitive setup, in chapter
the four theorems previously written are proved, this is the main part of this work.

With the four theorems proved, in chapter [6] we present the so long wanted proof to the Calabi
conjecture as a merely application of the four theorems. Finally, we present our conclusions.
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Chapter 2

Results on Kahler geometry

The main frame of this work is the field of complex differential geometry. In particular Kéahler
geometry, which consists in the study of Kéhler manifolds and their properties. In this section we
are going to review the essential ideas and state the main theorems that we are going to use in this
work.

This section is based on [MKO06, FGI12, Mor07, [KN63].

2.1 Complex manifolds

A complex manifold of dimension m is a topological manifold (M,U) whose atlas {¢y }rey satisfies,
as usual, the compatibility condition: for every U, V € U, such that U NV # (), the composition
U o gf)‘_/l, is holomorphic. As always, we will say that (U, ¢y) is a chart.
Our first example, and a really important complex manifold, is the complex projective space CP™,
defined as follows.

Consider C™*! — {0}, with the following equivalence relation

(204« 2m) ~ (@z0,...,a2m), VaeC.

Then we define CP™ := (C™*1 — {0}) / ~.

To show that it is a complex manifold we need to prove that given a open cover U,, take two
intersecting U;, Uj, and prove that ¢; o ¢; is holomorphic on its domain. Thus, given a point
(azp,...,azy) in C™*L consider its equivalence class, denoted as [azp : ... : azy], and define the
open cover U, as

Ui =A{lazo: ... azpy]|zi #0}.
And define each ¢; : U; — C™, as

20 Zi—1 Zi+1 z
¢z(a2077a2m):<, 7 7 7 ,_..’m7>.

25 Zi Zi Zi
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Hence, for the composition, we have

.y 3 g ey ge ey

wy Wi—1 Wiyl wi—1 1 wjp Wip
wp” T w T w w; wg w; w; )’

d)iogbj_l(wl"")wm): (

and we can conclude that it is holomorphic in its domain.
Now, for a better understanding on complex manifolds we need to define almost complex manifolds
and work with their tangent spaces. Thus, we start by defining almost complex structures.

Definition 2.1.1 (Almost complex structure and almost complex manifolds.). An almost complex
structure on a real differential manifold M is a tensor field J which is, at every point x on M,
an endomorphism of the tangent space T (M) such that J? = —I. A manifold with a fixed almost
complex structure is called an almost complex manifold, i.e the pair (M, J) is referred to as an
almost complex manifold.

Let (M, J) be an almost complex manifold. Define TM® := TM ® C.
Due to C linearity we can extend all real endomorphisms from TM to TMC. Let TV9M and T%' M
be the eigenbundles of TMC associated with the eigenvalues i and —i of J. Then the following
lemma is true:

Lemma 2.1.1.
TYOM={X —iJX|X cTM}, T'M={X+iJX|X ecTM},

and
TMC =TYM ¢ T% M.

With this result, we can prove the next theorem:

Theorem 2.1.2 (Newlander-Nirenberg theorem). Let (M, J) be an almost complex manifold. Then
J comes from a holomorphic structure if and only if TO' M is integrable.

This result is really helpful, since every almost complex structure arising from a holomorphic
structure is called a complex structure. And of course, in that case the pair (M, J) is called a
complex manifold.

2.1.1 Exterior forms on complex manifolds

Now it is time to turn our attention to exterior forms and introduce the complexified exterior bundle
AcM, which is defined in the very same way as the complexified tangent space, i.e AcM := AMQC.
The sections of AcM can be viewed as complex valued forms w + ip, where w and p are real forms
on M.

In the same spirit as before, we define the following subbundles of A%:M :

APM = {w e AEM |w(X) =0,YX € T™ M},



2.1. COMPLEX MANIFOLDS 7

and
AG'M = {w e ALM |w(X) =0, VX € THOM}.

From these definitions we can propose an analogous result to lemma [2.1.1

Lemma 2.1.3.
AM ={w—iw|we A'M}, A"'M ={w+ivjwe A'M},
and
AEME =TYM & TO M.

Now we want to build AféM for 1 < k. Let us denote the kth power of AM? by A*C analogously
for A%! we have A% define AP? as AP4 = APV © A%4, then from lemma we conclude that

k ~Y K
AE & ©py g AP

Analogous to the case of Riemannian manifolds, the sections of A(’E are called (p, ¢)- forms, and the
space of (p, q)-forms is denoted by QP¢(M).

One important feature of having a complex structure J is that we can describe the previous
spaces in terms of a local holomophic coordinate system by the following procedure: Let z, = z, +
1Yo be the ath coordinate of some ¢y, so we can extend the exterior derivative on complex valued
functions, by C linearity, and define complex valued 1-forms dz, = dx,+idy,, and dZ, = dr,—idy,.
So we have local bases for A%lM and A(lc’OM given by {dz1,...,dzy,}, and {dz,...,dZ,}. From
them we can give a basis for APIM as {dzil Ao Ndzg,, ill} .

Let us define the following differential operators for every (fixed) (p, q).

9 QPA(M) — QPTLA(M),

and
0 : QPIY(M) — Qp’qH(M),

by
d=0+ 0.

Now we propose the next lemma.

Lemma 2.1.4. The following identities hold:
e 0?2 =0.
e 92 =0.

e 90+ 00 =0.
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Proof. We already know that d? = 0, and by definition of 9, J, then
& = (0+0)* = 9%+ 0% + 00 + do.
Since all of them take values in different sub-bundles then each one is zero. ]

Now, we may define the Dolbeault cohomology groups Hz? of a complex manifold by

ker(0)
HPY = .
9 Im(0

~—

We also define the operator d°¢ =1 (5 — 8). An important identity is that dd® = 2i90.
To end this subsection we will prove an important way to characterize closed forms. Before
proving that we need the following lemma.

Lemma 2.1.5. A 0 closed (1,0)-form is locally O exact.
With this in hand we can prove the following theorem

Theorem 2.1.6. Let w € QUM NQ2M, be a real 2-form and a complex (1,1)-form on a complex
manifold M. Then w is closed if and only if every point x € M has an open neighbourhood U such
that the restriction of w to U equals 2i00f = dd°f for some real function f on U.

Proof. (=)
Let w be a closed (1, 1)-form, in particular it is a closed 2-form, so from the Poincaré Lemma, there
exist a real 1-form p such that
dp = w.

Let p = pl’oj— p%!. be the decomposition of p in terms of elements of AMYA and A%! M respectively.
So, pY = p01. Hence

W= dp _ 8p1,0 +3p1’0 +ap1,0 +ap0,1‘
Since w is a (1,1)-form, then 8,0}70 =0=0p", and w = 9p"° + 9p"°. Now, by the lemma
there exists g such that p%! = 9g. Taking the complex conjugate, we have that p'? = 9g, so we

conclude that
w=00g + 0g =100 (2Im g) = dd°(Im g).

So the theorem follows with f = Img.
(<) .
If w=2i00f = dd°f for some real function f, then
d(2i00f) =i (0+9)00f = 0.

Last equality follows from lemma [2.1.4 O
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2.2 Kahler manifolds

Now that we have already introduce the basic concepts, we shall focus our efforts on a particular
class of Complex Manifolds: the Kéhler manifolds.

2.2.1 Hermitian metrics

We start by defining an hermitian metric

Definition 2.2.1 (Hermitian metric). An hermitian metric over a complex/almost complex man-
ifold is a metric such that it is invariant by the complex/almost-complex structure J, i.e for any
vector fields X, Y,

h(JX,JY)=h(X,Y).

It is worth to mention that the fundamental 2-form of a hermitian metric is defined by w(X,Y) =
h(JX,Y).
A very simple fact for almost complex manifolds is that they always admit hermitian metrics. Pick a
Riemannian metric g on M and define h(X,Y) = g(X,Y)+g(J X, gY), since M is complex/almost-
complex h is hermitian.

Let (M, h,J) a complex hermitian manifold, z, holomorphic coordinates on M and denote h,, 5
the coefficients of A in these coordinates, given by

g 0

From this fact we can write the fundamental form w in local coordinates as

m
w=1i >  hygdza Adzg.
a,f=1

2.2.2 Kahler metrics

Suppose that the fundamental form w of a complex hermitian manifold is closed. Then by theorem
locally exists a functionf such that w = dd°f. In coordinates we have that the hermitian
metric h is
0% f
8za6§5 ’

from this we get the inspiration to define Kahler metrics.

Definition 2.2.2. An hermitian metric h on an almost complex manifold (M, J) is called a K&hler
metric if J is a complex structure and w is closed.
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It follows that a local real function f satisfying w = dd¢f, is called a local Kdhler potential of
the metric h.

In the following proposition we state some Ké&hler metrics properties.
Proposition 2.2.1. Let M be a complex manifold with dimension 2m, J an almost complex struc-
ture on M, g a hermitian metric on M, with hermitian (fundamental) form w and V the Levi-Civita
connection of g. Then the following are equivalent

e J is a complex structure and g is Kdhler,

e VJ=0,

e Vw=0.

In this case the (1,1)—form w is called the Kéhler form of the Kahler metric g.
We now state a lemma that is going to be really useful.

Lemma 2.2.2. Let M be a compact, complex manifold. Let g, g be Kahler metrics with Kahler
forms w, w' respectively. Suppose that [w] = [W'] in H?*(M,R). Then there exists a smooth, real
function ¢ on M, such that

W =w+ddo.
Also, ¢ is unique up to a constant.
Proof. We have that [w] = [W'], then w’ —w is an exact real (1,1)—form. So, there exists a function
¢, such that
W —w = ddo,
hence,
W =w+ddo.

Now, suppose we have another function ¢, such that
W =w+ddp.

Thus
dd*(¢ — ) = 0.

As M is compact, this implies that ¢ — ¢ is a constant on M. Therefore ¢ is unique up to a
constant. 0
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2.2.3 Examples of Kahler manifolds

As a first example we can consider the flat metric on C™. Lets write its coefficients in the canonical
holomorphic coordinates

Lo 9\ 10 o o oy 1,
B 8za’8zg 4\ Oz, Oyo Ozg  Oys) 2%

De modo que su forma de Kahler sera

1 IR TN
Q= is Zdza NdZy = 58(9]2\ .

a=1
So, the Kahler potential for the canonical hermitian metric on C" is

u(z) = 5P

Another relevant example will be a metric on our basic example for complex manifolds, the complex
projective space CP™.

Consider the canonical holomorphic atlas (Uj, ¢;), as defined in sec and take the canonical
projection 7 : C*"*! — {0} — CP", as every projection it is surjective. Now consider the functions
u:C — R, and v: C™! — {0} — R defined as

u(w) =log (1 +|w?), and v(z) = log (|2[*) .

Now, for every j we define f; : crtt — {0} — C", as fj = ¢j om. Since f; is the composition of two
holomorphic functions it is holomorphic. We proceed to calculate the composition uo f;(z) and we
find that

uo fi(z) = v(z) = (|2])*.
Since 99 (| z|)? = 0, then (f)*(80u) = 9dv, V5. So we can define
Qlu, =i(¢;)" (00u),

from which we have

() = i00v.
From this, we arrive to the tensor h, naturally defined as
h(X,Y)=Q(X,JY).

This tensor is symmetric and hermitian, we need to prove that h is positive definite on CP™ to be
sure that h defines a Kdhler metric on CP™.
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2.2.4 Curvature of Kahler manifolds

Consider a Kéhler manifold (M, J) with Ké&hler metric h and Levi-Civita covariant derivative V.
As usual in Riemannian geometry, we denote by R, its curvature tensor, in local coordinates we
have that

abcd — RC,YB/yg + RO:B:WS + R%,yg + RaB:/é'

Using Riemannian symmetries for R%_; and complex conjugation we can note that the only com-
ponent that codifies the Kahler curvature is

Q

B8

Now, the Ricci tensor is Rpq = R%,;. In coordinates

Ryg = Raﬁvg + ROCB%.
Thus, RaB = Rap, Rop = R, and, from symmetries of curvature R, = Rp,. These last properties
tell us that the Ricci tensor satisfies the same conditions as a hermitian metric, remember that
from a hermitian metric we can construct a hermitian form, so it has to be possible to construct a
Ricci form from the Ricci tensor.

Define p the Ricci form as

pab = ZRQB - /LRd’ﬁ

We have that p is a real (1,1)—form, and we can recover the Ricci tensor from it. It is a closed
2—form and its cohomology class [p] € H?(M,R) is related to the first Chern class of M as we will
see later.

Taking a Kéhler metric g,3, an important local expression for the Ricci tensor is:

R.5= —(%55 (log det 975) ,

so, the Ricci form is

p = —id0 (log det 975) = —%ddc (log det gvg) .

2.3 Characteristic classes

In this work we are not interested on a comprehensive description of the theory of Chern classes,
we will outline here the definition and properties of the first Chern class, as is the only one that we
require for our purposes.
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2.3.1 Chern-Weil theory

The following is our main definition in this section

Definition 2.3.1 (First Chern class). To every complex vector bundle E over a smooth manifold M
one can associate a cohomology class c1(E) € H?(M,Z) called the first Chern class of E satisfying
the following axioms:

1. For every smooth map f : M — N and a complex vector bundle F over N, one has
[ (a(E) =a (fE).

2. For any bundles E and F over M one has ¢; (E® F) = ¢1(E) 4+ ¢1(F), where E @ F' is the
Whitney sum.

3. The first Chern class of the tautological bundle of CP? is equal to —1 in H? ((CPl, Z) .

In a very simple way, Chern-Weil theory allows us to express the images in real cohomology of
the Chern classes of F using the curvature of an arbitrary connection V on E. In the following we
will elaborate on this. We know that the curvature of an arbitrary V is given by

k

k k

R (Ui) = ZRZ‘jO'j = Z (dwij — Zwil A wle'j,> (2.1)
j=1 j=1 =1

where {0;};c(; sy are local sections of E which form a basis of each fibre over some open set U

and the connection forms w;; are defined by Vo; = 2?21 wij ® oj. Since the coefficients I;; depend
on the basis {0;},c (k) its trace is a well defined 2-form independent of the chosen basis, even
more, the following lemma is true.

Lemma 2.3.1. The cohomology class [Tr(R)] € H?*(M,C) of the closed 2-form Tr(R) does not
depend on the connection.

Proof. Take two different connections on F, say V and V’. Define A = V — V. Then, by the
Leibniz rule, A is a smooth section of A'(M)® End(E), hence Tr(A) is well defined so we conclude
that

Tr(R) = Tr(R') + d (Tr(4)).

O]

Now we calculate [Tr(R)].Take h an hermitian structure on E, and V such that h is parallel
under V, and {0;};c(; ; a basis adapted to h. Then

0=V ((51]) =V (h (UZ‘,O']‘)) = h(VUZ‘,Uj) +h (Ui,vaj) = wij + Wji.
From ec (2.1)) we have that

Rij = —Rj;,
then Tr(R) is a purely imaginary 2-form.
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Theorem 2.3.2. Let V be a connection on a complex bundle E over M. The real cohomology class
c1(V) given by

a(¥) = |5 (m).

is equal to the image of c1(M) in H*(M,R.

Proof. To prove this theorem, we need to prove that ¢;(V) satisfies the definition m
Firstly, we know that if f : M — N is smooth, and 7 : E — N is a rank k vector bundle, then
we have that the pull-back f*(FE) is

fY(E)=A{(z,v)|lx € M, v € E, f(x)=7(v)}.

Take {o;} a basis of local sections of F, then a basis of local sections of the pull-back f*(FE) is given
by
froi: M — fY(E), x—(2,0i(f(x))).

Now, to define a connection on f*(F), take
[V (ffo) = f*(Vo).
From this we write jo as the Ricci tensor associated to the connection f*V, and we get that
Ry = f* (Rij),

and this part of the proof is done.

Then, in order to verify the Whitney sum formula let us take two complex bundles over M, say
E and E’ with connections V and V’. So we can define a connection on E & E’ acting on local
basis of sections {o}; and {o'}; as

(VaV),(c@d')=Vxoa Vo

Note that since {o}; and {¢’}; are basis of sections of E and E’ respectively, then {o; 0,0 & o'}
is a local basis for E @ E’. Hence, the curvature of V @& V' is a matrix having R and R’ on the
diagonal, so its trace is the sum of the traces of R and R’.

Finally, for the normalization property we take the tautological bundle L — CP!. For any
section ¢ of L we denote by oy and o1 the expressions of ¢ in the standard local trivializations of
L, given by ¢; = 7= 1(U;) — U;j x C, defined as ¥;(w) = (7(w),w;) .

Now, the hermitian product on C? induces a hermitian structure h on L. Take V the Chern
connection on L associated to h, then choose a local holomorphic section o. If w is the connection
form of V with respect to o, then VX € TCP! we have

Ox (\U|2) = 0x (h(o,0)) = h(Vxo,0) +h(0,Vxo) =w(X)|o|* + oo
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So we have w+® = dlog (\0\2). And, since ¢ is holomorphic and V%! = 9, then w is a (1,0)—form,
w = dlog (|o]?). So, B
R =dw = 00log (|o]?).

After this procedure, we find that in order to prove that the normalization axiom is satisfied, we
have to prove that

1 1 =
— =— [ 90l )= -1
2m cpt 27 CcP? it (|0" )
For this calculation see [Mor(7] O

2.3.2 1st Chern class properties

In order to close this section, and this chapter, we state the basic properties of the first Chern class
of a given complex vector bundle over M in a single proposition.

Proposition 2.3.3. Let M be a smooth manifold and let E, F' be two complex vector bundles over
M. Then the following are true

e ci(E)=0c1 (AkE) , where k denotes the rank of E.
¢ 1 (EQF)=rk(F)c1(E)+rk(E)ci(F).

e ¢ (E*) = —c1(E), where E* denotes the dual of E.
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Chapter 3

Results on elliptic operators theory

In this section we will study Holder spaces and the main results on regularity of elliptic operators
in these spaces. It is based on [MJ09, [GT15l [Joy00].

3.1 Four special vector spaces

As we want to make progress in the study of elliptic operators it is useful to work with some
infinite-dimensional vector spaces of functions on our manifold M with certain norms that give
those vector spaces a richer structure, say making them Banach spaces. We are going to deal with
four vector spaces, the space of functions with k-th continuous derivatives, Lebesgue spaces, Holder
spaces and Sobolev spaces

3.1.1 Lebesgue spaces

We start from the simplest, non-trivial spaces: the Lebesgue spaces. We will define them as follows

Definition 3.1.1 (Lebesgue Spaces). Let M be a Riemannian compact manifold with metric g,
and let 1 < p. Then we say that the p-th Lebesgue space LP(M) is the space of the locally integrable
functions on M for which the norm || f||z» is finite.

1/p
1fllow = ( / fl”dVg) |

Let us make a brief observation.

The norm || f||z» is given by

Proposition 3.1.1. Define ||f||,, as follows
flloe = sup{|f(@)|[2z € M}.

17
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Then
Tim (11110 = 11/l

Proof. Take € > 0. For € we define the subset
Me=A{z e M|[f(@)] = [|flloc — €}

SO
(1f1lo0 — €) VOL(M)YP < ||l < 1].flloo VoL(M)'7,

taking lim;,_., we have
(11l =€) < Jim 1710 < 11l

Since this is true for every €, then

oo < A llze < 11l -
O

An important result, known as the Holder inequality for Lebesgue spaces states the following

Theorem 3.1.2 (Holder inequality for Lebesgue spaces). Suppose r, s, t € R, such that r, s, t > 1
and 1/r =1/s+1/t. If f € L®, and g € L, then fg € L", and ||fgllr- < ||f||zs||g]|L¢-

For a proof refer to [GT15].
Now, let us briefly discuss the need to study more complex spaces. From real calculus we have
the following notion of regularity

Iff'=geCt= feCk?
and a naive intuition of existence
If g € C*, then 3f € C**2 such that f” = g.
So, with this in mind in seems natural that the following are true
IfAf=geCt= feCk? (3.1)

and
Vge CF3f e 2 such that Af = g. (3.2)

Sadly, this is false whenever the dimension of our space is greater than one because of the
structure of the C* spaces[MJ09]. In order to achieve regularity we need to work in spaces with
richer structure, like the Hélder spaces C*®, where o € (0, 1) and the Sobolev spaces LY, 1 < p < oo.
If we replace C* and C*2? with C** and C¥t2% or by H*P and H**%P, then our assertions (3.1)),
become true as we shall prove in the following sections.
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3.1.2 Holder spaces
In order to define Holder spaces first we need to define Holder continuity

Definition 3.1.2 (Holder Continuity). Let o € (0,1), A C R be a connected, bounded open set
and A its closure. Then f: A — R is Holder continuous with exponent « if the following quantity

exists
A= sup HE=ZJWI

, (3.3)
' x,y €A, x#y |x_y‘a

where || - || is the usual norm in C¥(A).

With the concept of Holder continuity, given a connected bounded set A and a € (0,1) we
define the Holder space CF (/1) in the following way

Definition 3.1.3 (Holder space). The Holder space C*® (A) is the space of real valued functions
defined on A all of whose k-th order partial derivatives are Holder continuous with exponent c.

This space is a Banach space with the norm

151l = 11|+ max [2£] , 5.

3.1.3 Sobolev spaces
Let f € C®(M),pe R|1 < p, and an integer k > 0. Then we define the following norm
1/p

1l = /MZHDﬂ'prd:cg , (3.4)

lil<k

where D7 f is the j-th covariant derivative of f and of course HDj f H is the pointwise norm of D7 f.
With this norm in hand we can define Sobolev spaces.

Definition 3.1.4 (Sobolev space). The Sobolev space L} is the completion of C°°(M) under the
norm (3.4)).

3.1.4 Sobolev embedding theorem

Now that we defined Lebesgue, Holder and Sobolev spaces is natural to ask ourselves if there is
some way to relate them. For being specific, the question is how do the metrics from the previeous
subsections are related to each other.

The answer is given by the Sobolev inequalities. These inequalities are kind of generalizations of
the mean theorem value, since they give us estimates for the functions in terms of their derivatives.
We could state some inequalities in one dimension to illustrate the previous statement, but instead
we are going to present the most general result in this sense: the Sobolev embedding theorem.
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Theorem 3.1.3 (Sobolev embedding theorem). Let I, k € Z such that 0 < | < k, and assume
f € LY(M). Recall that n = dim(M). Then we have the following two results

1. If k—n/p <, and q satisfies

-l
q b

then there exists a positive constant ¢ independent of f such that

1 llig < ellfllkp-
Thus, there is a continuous inclusion L} (M) < HY(M).

2. Ifl<k—n/p<l+1, take « = k —n/p—1. Then, there is a constant c¢ independent of f
such that

||f’|k—n/p < Hf”l—l—a + HfHk,p'

Thus, there is a continuous inclusion LY (M) — C*="P(M) = C™**(M), and a compact
inclusion LY (M) — CV(M) for 0 <~ <k —n/p.

There is a particular case in the Sobolev embedding theorem, when the embeddings are compact
linear maps. These particular case goes by the name of Kondrakov theorem.

Theorem 3.1.4 (Kondrakov theorem). Suppose M is a compact Riemannian manifold of dimen-
sion m. Let k, 1 € 7Z, such that 0 < | < k. And take q, v € R, such that q, v > 1, and take
a€ (0,1). If

1 1 k-l
q ’
then the embedding L’;(M) — Lj(M) is compact.
If
1 k—-l—«
— < e
q m

then L';(M) — Cb* is compact. Also, C**(M) < C* is compact.

For proofs of theorems and refer to [Aub70].

As the last result from this section we will write the inverse mapping theorem for Banach spaces.

Theorem 3.1.5 (Inverse mapping theorem). Let X, Y be Banach spaces, and U an open neigh-
bourhood for x € X. Suppose that the function F : U — Y is C*, with F(x) =y, and that the
first derivative of F' at x, dF, : X — Y, is an isomorphism of X, Y both as vector spaces and
as topological spaces. Then there are open neighbourhoods U' C U of x and V' of y, such that
F:U = V' is a Ck—isomorphism.

For a proof of this theorem see [Lani2].
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3.2 Differential operators

We will start by defining differential operators of order k.

Definition 3.2.1 (Differential operator of order k). Let M be a manifold, and V a connection on
the tangent bundle of M. Let u be a smooth function on M. Then a differential operator (DO) of
order k is an operator P : C*(M) — C*°(M), such that it depends on w and its first k derivatives.
Explicitly,

(Pu)(z) = Q(x,u(z), Vu(z), ..., VFu(z)),

where Q € C*°(M).
Note that Pu can be linear or nonlinear, naturally depending on this the DO can be linear or
nonlinear.

In the case of a nonlinear DO, we can define its linearization as follows.

Definition 3.2.2. Let P be a nonlinear DO of order k. Let u € C¥(M). We define the linearization
L, P of P at u as the derivative of P(v) with respect to v evaluated at u, this is

L,Pv = lim P(u+ hv) — P(u)
h—0 h

As always with polynomials many features are codified on the highest order terms, in this case
the higher order derivatives, with the following definition we can isolate those terms. In particular,
this is needed to address the “ellipticity” of an operator.

Definition 3.2.3 (Principal symbol of P). Let P be a linear DO of order k. In index notation P
has the following form

Pu = A" %V, w4 By, g K9V, w4 Lu,

-----

where A, B, ..., K are symmetric tensors and L is a real function.
Let o(P) : T*M — R be a function defined as o¢(P : x) = A%V, a0, ars---,Ea, at every
¢ € T*M. This function o(P) is called the principal symbol of P.

3.3 Elliptic differential operators

With the concept of principal symbol of a DO in hand we can define an elliptic DO as follows.

Definition 3.3.1 (Elliptic differential operators). Let P be a linear DO of degree k on M. We say
that P is an elliptic differential operator (EDO) of degree k if for every x € M and each nonzero
¢ € T*(M), we have that

oe(P:x) #0.
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As a consequence from this definition we have that in dimensions greater than one, every EDO
must have even order.

Note that our last definition only takes into account linear DO’s. In the case of nonlinear DO’s
we have the following definition.

Definition 3.3.2. Let P be a nonlinear DO. We say that it is elliptic at w if its linearization L,p
is elliptic.

We must keep in mind that since the “ellipticity” of non linear DO’s depends on u it can be
elliptic on certain u’s and not at others.

Note that until now we are considering DO’s from functions on M to functions on M, but in
the context of manifolds it is important to consider the case when the DO’s acts on vector bundles
over M. We define precisely the action of DO’s on vector bundles on the following definition.

Definition 3.3.3. Let M be a manifold, V, W vector bundles over M, V a connection on T'M,
and V" a connection on V. Take v a section of V.

A differential operator P of order k taking sections v of V' to sections w of W is a DO that
depends on v and on its first k derivatives. Explicitly it is given by

(Pv)(z) = Q (z,v(z), V(‘l/lv(ac), . 7V¢‘1/1,...,akv(37)) e W,.

The linearity and non linearity are defined in the same way as before. The same goes for the
linearization L, P, simply change the function u for a section v.

Another important difference between DO’s acting on sections is their form on index notation,
we write them as

Pu= A%, oy B ®y, g KUY 0+ Lo,

k

At first glance it seems identical to the expression for DO’s acting over functions, this is not the
case. In the previous expression the tensors A% B%--%-1 % are tensors taking values
in V*® W. So when we contract them with a 1—form at x € M we do not obtain a real number,
but a function from V' to Wj.

The last major difference is found in the principal symbol of an DO on vector bundles. Let us
define it.

Definition 3.3.4. Let P be a linear DO of order k, mapping sections of V' to sections on W in its
index notation. For every z € M and each £ € T M, define the following linear map form V,, to
Wy

oe(Px) =A%, ay

Now, define o(P) : T*M x V — W as
o(P)(&v) =0¢(P:x)v, VYeeM,{ecT M.

o(P) is the principal symbol of P.
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Same as before, with the principal symbol defined we can define eliiptic DO’s on vector bundles.

Definition 3.3.5. Let V, W vector bundles over M. Let P be a linear DO of degree k from V to
W. We say that P is an elliptic DO if for every x € M and each nonzero ¢ € T M, the linear map
o¢(P:x) : Vo = Wy is invertible.

While in the case of nonlinear DO’s we have the next definition.

Definition 3.3.6. In the same setting as before, if P is a nonlinear DO of degree k from V to W
and v is a section of V' with k derivatives, we say that P is elliptic at v if its linearization L, P is
elliptic.

An immediate consequence of P : V — W being elliptic is that dim(V') = dim(W).

3.4 Regularity of solutions of elliptic operators

In this section we will briefly discuss regularity of solutions w for the equation Pu = f, with P an
elliptic DO. Naively, we want to know how smooth is u. It should be as smooth as the problem
allows, say if f is k times differentiable, then u should be k 4 2 times differentiable. However, as
we commented on this is not true in general but it holds in Holder spaces.

We will state two results that are going to be key for our work.

Theorem 3.4.1. Suppose M is a compact Riemannian manifold, V, W are vector bundles over
M such that dim(V') = dim(W), and P is a smooth linear elliptic DO of order k from V to W.
Let a € (0,1), p > 1 and | > 0 be an integer. Suppose that P(v) = w holds, with v € LY(V) and
w € LY(W). We have the following relevant cases:

o Ifwe C®(W), thenve C¥(V). Ifwe L)(W) thenv € Ly, (V),

ollzz,, < € (lwllgz + vl )

for some C > 0 independent of v and w.

o Ifwe C(W), then v € CF(V), and
[v]lgrsta < C(llwllore +lv]])

for some C' > 0 independent of v and w.

These bounds for ||v]]| rr,, and ||v||ck+i0 are called the LP estimates and Schrauder estimates
for P, respectively.

Note that in the previous theorem we require that P is smooth. It is possible to weaken
this hypothesis, demanding only continuity on its coefficients. The following theorem gives the
Schrauder estimates for P under such a condition.
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Theorem 3.4.2. Suppose M is a compact Riemannian manifold, V, W are vector bundles over M
such that dim(V') = dim(W), and P is a linear elliptic DO of order k from V to W. Let a € (0,1)
and 1 > 0 be an integer. Suppose that the coefficients of P are in C®, and that P(v) = w for some
v e ChV) and w € CH*(W). Then v € C*(V), and

vllorsta < C([lwllcra +[v]]),
for some C' > 0 independent of v and w.

For a proof to both theorems we encourage the reader to review [MJ09).

3.5 Existence of solutions of elliptic equations

Even though there are many results on this subject we are going to restrict ourselves to state a
theorem that will be needed in the main part of this work. With this goal in mind we need to
define the adjoint of an DO first.

Definition 3.5.1. Let M be a compact manifold without boundary. Take V, W vector bundles
over M equipped with metrics on the fibres, and let P be a linear DO of order k£ from V to W with
coefficients at least k times differentiable. It turns out that there is a unique operator P* of order
k from W to V with continuous coefficients, such that

(Pv,w)yy = (v, Prw)y,, Yo e Li(V), w € Li(W).

This operator P* is called the adjoint of P.
d

As an example, consider the operator 7~ on R with the L? inner product. Its adjoint is found
by integration by parts, take ¢ and 1 with compact support on C*°(R) and calculate

d g 'z d
(0 go0) = [vdan =~ [woas= (- Lv.0).

so we conclude that the adjoint of % is —%. Note that there are no boundary terms, we usually
will deal only with functions with compact support in order to avoid issues regarding boundary
terms and smoothness.

With this concept in hand we can state our desired theorem.

Theorem 3.5.1. Let a € (0,1) and k, 1 € Z, such that k > 0 and | > 0. Let V, W be vector
bundles over M, a compact Riemannian manifold, both equipped with metrics in their fibres. Take
a linear elliptic DO P of order k from V to W with coefficients in C**. Then P* is elliptic with
CFe coefficients, and both ker(P) and ker(P*) are finite dimensional subspaces of C*t-*(V') and
Che (W) respectively.

Also, if w € Cb then there exists v € C*th® with Pv = w if and only if w L ker(P*). Even
more, if we demand that v L ker(P), v is unique.

This theorem is going to play a fundamental role on the proof to We must keep it in mind.
A proof for this theorem can be found in [GT15].



Chapter 4

Reformulating the Calabi conjecture

4.1 The Calabi conjecture

Up to now, we have studied complex manifolds and Kéahler manifolds, which are an important class
of complex manifolds. We already defined Kahler metrics with their respective Ricci form. Let us
consider here a compact complex manifold (M, J), Kéhler metric g with Ricci form p, which is a
closed (1,1)—form and [p] = 2we1(M). Let p/ be a closed (1,1)—form, so we can ask the following
question: under which conditions can p’ be the Ricci form of a certain Kahler metric on M?

Eugenio Calabi gave us the answer for this question, formulated in his famous conjecture [Cal57]
that we shall enunciate now following the formulation given by D. Joyce [Joy00]:

Conjecture 4.1.1 (The Calabi conjecture). Let (M,J) be a compact, complex manifold, and g a
Kdhler metric on M with Kdhler form w. Suppose that p' is a real, closed (1,1)—form on M with
[p'] = 2mwc1(M). Then there exists a unique Kdhler metric ¢ on M with Kdhler form ', such that
[w'] = [w] € H? (M, R), and the Ricci form of g’ is p'.

This conjecture remained unproved until Yau gave a proof [Yau77]. In this chapter we are going
to study a proof based on the progress given by Aubin [Aub70] and the proof provided by D. Joyce
[Joy00].

4.2 The road to reformulate the Calabi conjecture

The proof of Calabi’s conjecture will have the following structure:

First, we will reformulate the conjecture as a problem of finding the solution for a nonlinear,
elliptic partial differential equation in a real function. For this we need to state and prove four
theorems mainly proposed by Aubin and Yau himself [Yau77, [Aub70], and then use those theorems
to prove Calabi’s conjecture.

We start thus by stating the Calabi conjecture in terms of a partial differential equation. Let
(M, J) be a compact, complex manifold, g a Kéhler form w, g the Kéhler metric and p its Ricci

25
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form. Take p’ a real, closed (1,1)—form on M with [p/] = 2me¢1(M), then we need to find another
Kaéhler metric ¢’ such that it has Ricci form p’ and Kahler form w’ that satisfies [w'] = [w].

Since [p] = [p'] = 2mc1(M), we have that [p — p/] = 0 in H?(M,R), so by [2.2.2] there exists a
unique smooth, real function f on M such that,

1
= p— =dd°f.
PF=pr—y /

Now, if we define a smooth, positive function F' on M by w'® = F - w®, from which we can prove
that f — log F' is constant on M, say —log A, with A > 0. Then F = Aef, and

W' = Aelw. (4.1)

/w’“:/ w?.
M M

With this result, the constant A is determined, since

As [W'] = [w], and M is compact, then

A / el dv, = / dF, = voly (M) . (4.2)
M M

These arguments give us the tools to reformulate the Calabi conjecture in terms of the existence
of metrics with certain volume forms. We know that every volume form on M can be written as
FdVy, for F' a smooth real function. And we impose two conditions: that it is positive (0 < F') and
that it has the same total volume as the volume form dV;. Then the Calabi conjecture says that
there is a unique Kéhler metric ¢’ with the same Kéhler class, such that dVy = FdV,, the chosen
volume form.

Finally the Calabi Conjecture can be formulated as follows:

Conjecture 4.2.1 (The Calabi conjecture 2nd version). Let (M, J) be a compact, complex man-
ifold, g a Kdhler metric on M, with Kdhler form w and define A > 0 by AfM edeg = voly (M).
Then, there exists a unique Kdhler metric ¢ on M with Kdhler form W', such that [W'] = [w], in
H? (M,R), and w'* = Aefw?.

Looking more carefully, note that this second version of the conjecture depends only on ¢’, not
on its derivatives, as the first version does since it deals with the Ricci curvature. Also this new
version gives us a single equation for ¢’, which greatly simplifies the problem.

One more observation, as [w] = [w'], by there exists a smooth real function, such that

W =w+ dd.

As a last observation, we state the following lemma.
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Lemma 4.2.2. Let (M,J) be a compact, complex manifold, and g a Kdhler metric on M, with
Kahler form w. Let f be a continuous function on M, and define A by

A / el dV, = voly(M).
M
Suppose that ¢ € C?(M) satisfies the equation given by
(w =+ dd°¢)* = Aelw?,
on M. Then w' = w + dd°¢ is a positive (1,1)—form.
Proof. Take some holomorphic coordinates {zi}i:17_n7m on a connected open set U in M. Then in
U, the metric ¢’ is
0%¢

azaaig '

9oj =903+

So, ¢’ is a real, hermitian matrix. We know that any hermitian matrix has real eigenvalues, and
we know that w' = w + dd®¢ is a positive (1,1)—form if and only if ¢’ is a hermitian metric.
Thus, in order to proof that w’ is a positive (1,1)—form, we have to show that ¢’ has only positive
eigenvalues.

The following observation will convince us that it is enough to show that ¢’ has only positive
eigenvalues at some point p € M. As we will state later, the equation

(w+ dd°¢)* = Aelw?,
in coordinates, is equivalent to

82
det (gaﬁ + 8za§zﬁ> = Aef det (g@B) .

Hence, det(g’) is positive on U, i.e. ¢’ has no zero eigenvalues. Then, by continuity if ¢’ has only
positive eigenvalues at some point p € U they are positive everywhere in U.

Since M is compact and ¢ is continuous, ¢ has a minimum on M. Let pg € M be a minimum
point of ¢ in M, and U a coordinate patch that contains pg. At pg ¢’ has positive eigenvalues,

. o . . . . . . 2 . . . . .
g is a hermitian metric and since pg is a minimum azi gzﬁ— is positive. Thus, ¢’ has only positive

eigenvalues at pg. Hence, w’ is positive at pg.

Note that, by the connectedness of M, if we cover M with such open sets U it follows that if
w’ is positive at some p € M it is positive everywhere. Therefore, w’ is a positive (1,1)—form on
M. O

Suppose that ¢ satisfies [ 1 @dVy = 0, which characterizes ¢ uniquely. So the second version of
the Calabi conjecture is equivalent to the following statement:
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Conjecture 4.2.3 (The Calabi conjecture 3rd version). Let (M, J) be a compact, complex manifold,
g a Kdhler metric on M, with Kdhler form w. Let f be a smooth real function on M, and define
A>0 by AfM edeg =voly (M) . Then there ezists a unique smooth real function ¢, such that:

1. [y, 6dV, =0,

2. (w+dd°¢p)* = Aefw® on M. Which is equivalent to the following: given some holomorphic
coordinates z1,...,Zm, the condition on ¢ is

32¢
azaazg

det (gag + ) = Aef det (943) - (4.3)

This last equation has crucial importance in our reformulation, it is a non-linear, elliptic, second
order partial differential equation on ¢. It is known as the Monge-Ampere equation for compact
manifolds. From this version of the conjecture, we can finally conclude that the original Calabi
conjecture has been reduced to showing the existence and uniqueness of the solution for a particular
partial differential equation. This is precisely the reformulation of the conjecture that we wanted
to achieve.

4.3 The Four Theorems

In the following section we will enunciate the four theorems needed to provide a proof to the Calabi
conjecture.

Theorem 1.1 (1st Theorem). Let (M, J) be a compact complex manifold, g a Kdhler metric on
M with Kéhler form w. Let f € C3(M), ¢ € C°(M), 0 < A and 0 < Q1, such that

fllos < @1, / bV, =0, and (w -+ dd°6)™ — Acw™.
M

Then there exists 0 < Q2, Q3, Q4 depending only on M, J, g and Q1, such that

ol < Q2, [|dd°¢l| <Q3, and [|[Vdd“d|| < Qa.

Theorem 1.2 (2nd Theorem). Let (M, J) be a compact complex manifold, g a Kdhler metric on
M with Kéhler form w. Let f € C3*(M), ¢ € CO(M), 0 < A and 0 < Q1, Q2, Q3, Q4, such that

(w+ddg)" = Ael™,  ||fllose < Q1 0] £ Q2,  [|dd°9]| < Q3,  and ||Vdd°¢|| < Qu.

Then ¢ € C>*(M) and there exists 0 < Q5, such that ||¢||os.e < Q5. Even more, if f € CH(M)
with 3 < k, then ¢ € C*¥*22(M), and if f € C®°(M) then ¢ € C°(M).
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Theorem 1.3 (3rd Theorem). Let (M,J) be a compact complex manifold, g a Kdhler metric on
M with Kihler form w. Fiz o € (0,1), let f' € C3%(M), ¢' € C>*(M) and 0 < A’, such that

/ ¢'dVy =0, and (w+dd°¢)" = Alef'wm,
M

Then, for every f € C3*(M), such that ||f — f'||gs.a <€, Ve >0, there exists ¢ € C>*(M), and
0 < A, such that

/ ¢dV, =0, and (w+dd¢p)™ = Aefw™.
M

Theorem 1.4 (4th Theorem). Let (M,J) be a compact complex manifold, g a Kahler metric on
M with Kdihler form w. Let f € C1(M), then there exists an unique function ¢ € C3(M), such
that

/ ¢dV, =0, and (w+dd¢)™ = Aefw™.
M

4.3.1 A sketch of the proof

Reached this point is natural to ask how these theorems are going to help us to achieve our goal.
Everything is going to relay on the continuity method.

Such a method consists on building a uniparametric family of equations depending continuously
on a parameter t € [0, 1] such that we know the solution for t = 0 and that we recover our original
equation for ¢ = 1. If we find that the space of solutions ¢ is closed and open (clopen), then by
connectedness of the [0, 1] and the continuous dependence of our uniparametric equations on ¢ then
the existence for the solution at t = 1 is warranted.

In our case, the equation that we want to solve is

(w+ dd°¢)™ = Aelw™. (4.4)

It is easy to propose a solution for
(w+dd°¢)" = w™, (4.5)

such a solution trivially is ¢g = 0. Thus, we want to build a family of uniparametric equations such
that on t = 0 we have (4.5)) and (4.4]) on ¢ = 1. Such a family is given by the following expression

(w+ dddy)™ = Ageltw™. (4.6)
Now, consider the set S defined as
S = {t €[0,1]] ¢ is a solution for (4.6)}. (4.7)

In order to prove that the solution for (4.4) exists, we shall prove that S is closed and open in [0, 1].
Since [0, 1] is a connected set and S is nonempty, because 0 € S, we can conclude that S = [0, 1].
Therefore, the existence for ¢ in (4.4)) is proved.
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Now, to prove that S is closed, we have to take a sequence in S, say {tj};')io suppose that it
converges to t' and prove that such ¢’ € S. Theorems and are the ones that warrant such a
property.

Next, we have to prove that S is open. For this, we shall take ¢ € S hence 3¢y solution for
. We have to show that if we take another ¢ € S “close enough” to ' then ¢; is also “close
enough” to ¢p. Theorem will give us this result.

With these two arguments and the continuity method the existence of the solution ¢ is obtained.
For the uniqueness, theorem [1.4] will be enough. Therefore, a proof to the Calabi conjecture will
be achieved.



Chapter 5

Proving the four theorems

In the past chapter we successfully reformulated the Calabi conjecture into showing the existence
and the uniqueness for the solution to the Monge-Amperé equation . In the following chapter
we are going to provide detailed proofs for each theorem. This chapter is the core of this work.
It is strongly based on [Joy00], we followed his ideas but we did every single calculation in detail
unless it is stated otherwise.

5.1 Some local calculations

Before proving the theorems, we need to state and prove previous results that take into account
results on local calculations.

Lemma 5.1.1. Let (M, J) be a compact Kdhler manifold, with Kahler metric g and Kdahler form
w. Let f € CO(M), ¢ € C>(M) and 0 < A. Set W' = w + dd°¢p, suppose w™ = AelW'™ and let
g’ be the Kdhler metric determined by w'. Then VYp € M, then there exist holomorphic coordinates
{z1,...2m} in an open neighborhood U of p, such that g, ¢', w and &' have the following local
exTPTessions

g =221+ + 2]z, (5.1a)
gh=2ay 21> + - + 2am |2m|? (5.1b)

wp =1 (dz1 NdZy + -+ - + dzm NdZy) , (5.1c)
wy, =i (ardzy ANdZ + - 4 amdzm A dZy) . (5.1d)

Now we ask how the a;’s are related to Ael and to Aé.

Lemma 5.1.2. Let (M, J) be a compact Kdahler manifold, with Kahler metric g and Kahler form
w. Let f € CO(M), ¢ € C*>(M) and 0 < A. Set w' = w+ dd°¢p, suppose w™ = Aefw™ and let g' be

31
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the Kdihler metric determined by w'. Let p € M and consider the local expression for g and g’ at p

given by lemma|5.1.1L Then

H aj = Aef®)
j=1
0%¢
—a—1
8,2]'82]' (p) 4 ’

(A¢) (p) =m = aj.
j=1

Proof. From equations (5.1c)),(5.1d)) in lemma it follows that
wi' =i"ml (dz' Adz' A NdZ™ A dEY),

and

m
w;)m = i"m) Haj (dzy NdZy N+ Ndzp, N dZy,) .

j=1
Remember that w™ = Aefw™, at p we have that
wy"t = AefP)ym,

P
so, plugging in equations (5.3)),(5.4]) it follows that

m
"™m)! H = i"mlAel P,
j=1

hence m
H — Aef @)
j=1

Recall that w’ = w + dd®¢®, hence in coordinates

0?%¢
/ _
(gp)aﬁ - (gp)aﬁ + 8205626’

fa=p=j
32¢
A
from lemma [5.1.1] we have
0%
8zj82j ’

aj:1—i—

(5.2a)

(5.2b)

(5.2¢)
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For the last part of the lemma, we take into account the inverse of g, that trivially is (gp)o‘ﬁ = §°P,

so the laplacian of ¢ is

Ap = —gP 0,050

Now, we define the squared norm of a tensor T’ = T;! 1.::;;’“ as

2 _ mai-Qgacl...Cr bidy byd,
’T‘g - Tb1...bl le"'dl Gaicr " Yager 9 g )

With this definition we can calculate the values of |ddc¢|§, | ggb|§ and } g

j€{1,...,m} as in the following lemma.

in terms of the a;,

Lemma 5.1.3. Let (M, J) be a compact Kdhler manifold, with Kahler metric g and Kdahler form
w. Let f € CO(M), ¢ € C*(M) and 0 < A. Set ' = w + dd°¢, suppose W™ = Aefw™ and let ¢’
be the Kdhler metric determined by w'. Let p € M, and take a;, j € {1,...,m} as in lemmal5.1.1}

Then .
|ddc¢|§ = QZ (aJ - 1)27

j=1

) m
‘gzlzb‘g = QZaja
=1

m
2
=2 E at.
g J
j=1

Proof. This lemma follows from direct calculations,

g/ab

|dd°p|2 = 0;0;¢ 0046 g** 7"
= 0,050 0 57 57
= 0;0;09;0;¢

(5.5a)

(5.5b)

(5.5¢)
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m
9wl = > Ghglag™d" = Z GupGead 8" = Z o

a,b,c,d=1 a,b,c,d=1 a,b=1

m m m
_ ror ' 2
= E YaaYaa = E 953955 = E a;.
a=1 ]:1 ]:1

/ab

rab red rab red rab lab
Z gagcgacgbd— Z gagc5a05bd—zga “
a,b,c,d=1 a,b,c,d=1 a,b=1

m m

laa laa 199 197 -2

—Zg =D 97g7 =3 a*
=1 =1

O

With these results we can prove the following proposition that will provide bounds for the usual
norm of g, ¢’ and dd¢.

Proposition 5.1.4. Let (M,J) be a compact Kihler manifold, with Kdahler metric g and Kahler
formw. Let f € CO(M), ¢ € C?>(M) and 0 < A. Set w' = w+ dd°¢, suppose '™ = Aefw™ and let
g be the Kahler metric determined by w'. Then

Ap < mAY™eIIm <, (5.6)

and there exists c1, ca, c3 € R depending only on m and upper bounds for ||f|| and for ||A¢||, such
that

|lgt|| < 1, (5.7a)
‘ g ‘ < e, (5.7b)
I|dd°8|| < cs. (5.7¢)

Proof. From lemma we have Ag(p) =m — 37 j = 1"a; and [[[L; a; = Ael ) 5o,

M 1 &
Ag(p)=m— > aj=m—m| -3 q
j=1 j=1
1/m
m 1/m
<m-—-m Haj =m — m(Ae()> = m — mAY/mef/m
j=1

<m,
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thus
Ag < mAY™efIm <,

Now, from lemma we know that ]dd‘%b\?l =231 (a; — 1)% and ]g(’lb\; =231, a;so0
m m
dd°pl2 =2 (a; —1)* = (aF —2a; — 1)
o =1

m m m m m
=2 al+2) 1-2> a;<2) ai+2) 1
j=1 j=1 j=1 j=1 j=1

2
m

<2 ai | +2) 1=2(m—A¢)”+2m.
j=1

J=1

Hence
|dd 2 < 2m + 2 (m — Ag)?,

s0 ¢3 = 2m + 2 (m — Ag¢)? . On the other hand

2
m m
|géb‘§:22aj§2 Zaj :Q(m—A¢)2’
p= =1

therefore

so ¢ =2(m—Ag)?. O
And last but not least we have a result for some wedge products to be used later.

Lemma 5.1.5. Let (M, J) be a compact Kdhler manifold, with Kahler metric g and Kdahler form
w. Let f € CO(M), ¢ € C*(M) and 0 < A. Set w' = w + dd°p, suppose w™ = Aefw™ and let g' be
the Kdhler metric determined by «'. Then

1
dp Nd°p ANw™ ! = — Vg2 w™, (5.8a)
m
dp AN d°p Aw™ TN (W) = Fio™, (5.8b)
where j € {1,2,...,m — 1}, and F; are non-negative functions on M.

For a proof refer to [Joy00].
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5.2 The first theorem

Theorem 1.1 (1st Theorem). Let (M, J) be a compact complex manifold, g a Kdhler metric on
M with Kdhler form w. Let f € C3(M), ¢ € C35(M), 0 < A and 0 < Q1, such that

1 fllcs < @1, / $dVy =0, and (w—l—ddCQS)m:Aefwm.
M
Then there exists 0 < Q2, Q3, Q4 depending only on M, J, g and Q1, such that
ol < Q2,  [ldd°¢|| < Qs, and [|Vdd°¢|| < Qa.

Proof. We are going to enunciate and prove some results that will lead to the bounds that we are
looking for. They are divided in order zero bounds,second and third order bounds. They will give
us the bounds for ||¢||, ||dd°¢|| and ||Vdd“¢p|| respectively. In every case we will assume the same

hypothesis as in
Let us begin with the zero order bounds.

Lemma 5.2.1. Let 1 <p, p € R. Then

2
[ [wtert] avy < 72 [ (=) olor 2 av, (5.9)
Ap-1) Ju
Proof. Remember that '™ = efw , 80 w —w' = —dd°¢p. Let us calculate w™ — w'™.
W™ — WM =w™ —efw™ = <l—ef) w™ (5.10)
_ —ddc¢A (wmfl + wmfZ /\w/ 4. _’_wmfnflwln 4. /mfl) (511)
_ (w _w/) A (wmfl +wmf2 /\w/ +. +wm n— lw/n 4. /m 1)_ (5.12)

Now, the Stokes theorem in compact manifolds without boundary says that the integral of the
exterior derivative of any (n — 1)-form is zero, so if we consider the next n — 1 form

¢‘¢|p72d0¢ A (wmfl _’_wmf2 /\wl 4. _i_wmfnflw/n 4a wlmfl) ,

then, from the Stokes theorem we have that
/M d(p|p|P2d°G A (W™ + W™ AW + W W) = 0.
Making the proper calculations we have that
/M d(PP AN (W + W™ AW 4 W W) =

/ (d(plo[P2) Adp + B|pP2ddd) A (W™ H+ w2 AW 4 W W) =
M

1) [ 1ol 2o ndron (@ v ) 5 | glop i n (W) =0
(5.13)
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So we have that
/ o~ (—dd°d A (W™ 4 +W™T)) = (p— 1) / 6P 2dp A dp A (W 4+ W™
M M
replacing (5.10]) we get
/ Ao (1 a 6f> W =(p - 1)/ (G 2de Adp A (W4 ™)
M M

Reached this point we look back at lemma and making use of its results

1

do Nd° AW = — [V w™
m
do A d6 A& TN A () = Py,

we get

p2 (1] _f\ym=P—1 P2 2 m
[ olor (1=ef)wm =2 [ 1o (16 + Py £+ mF )

here we make use of the fact that w™ = m!dV,, so we obtain

/M Blol2 (1 - el )wm = ]%1 /M 6172 (IV6f2 + B+ + Fua )

hence
p_2 2 e = — p_2 — f
/M [ (\wyg +R++ Fm_l) vy =5 / 9| (1 e ) dv,.

. . 2 . .
Note that every F} is nonnegative, and |¢[P~> \V(b\z = 4]% ‘V!¢\p/2|g. From this we have our desired
result because

[ 162190l v, < [ 10772 (1908 + B+ 4 Fua) v,

and A )
2|y dez/ viol|
[ 12w v, = [ |viopr]
therefore )
2 m
\Y W’ =P / =2 (1—ef) av,.
[ [vier]) = {2 [ op=2 (1= ) av,
OJ
From now on, take € = .
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Lemma 5.2.2. There exists C1, Co € R depending on M and g, such that if 1» € L2(M) then

1912 < O (IIVBIEs + 11 )

Even more, if [, 1 dVy =0 then
de”lﬁ < 02 ”vaLQ .

Proof. Here we employ the Sobolev embedding theorem We have for free the first part of the
lemma, i.e. there exists C1, Co € R depending on M and g, such that if ¢ € L3(M) then

1132 < Cr (VeI + 113z )

Now, for the second statement we take the operator d*d : C*°(M) — C*°(M), and its kernel
ker(d*d) that consists of the constant functions. Hence, since [,,1dVy = 0 it follows that, for

every constant function ¢
c/ deg:O:/ cydVy =0,
M M

i.e. 9 is orhogonal to ker(d*d).
Now, we know that d*d has nonnegative eigenvalues. So, if we take A1 as the smallest positive
eigenvalue of d*d , ¢ = > ;P> where ¢; are eigenvectors of d*d with eigenvalues A\; > A;. Then

(dd)v = (d*d)> ;=) _(d*d)p; =Y Njep;.
J

So we can calculate

(W, (d*d) ) =D XN (050 = A > (1, ;)

J J
=X\ <w,290j> = A1 (¥, ).
J

But, (¢, (d*d) ) = (di, di)), so we obtain that

(di, dp) > X (¥, 9) = ||z > Al[o[]*. (5.15)
Recall that C*°(M) is dense in L?(M), the inequality in the norm L? extends to L?. Therefore
equation (5.15]) applies to ¢ € L?. And we have proved the result with Cy = /\% O

In order to obtain bounds for ||¢||;, we need the following results.

Lemma 5.2.3. There ezists C3 € R, depending on M, g and Q1 such that if p € [2,2¢] then

o[l » < Cs.
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Proof. We make use of lemma [5.2.1| putting p = 2, so we have

[ vz av,<m [ (1) sigldv,.

M M

And, as ||f|| < Q1 then ef <e¥ and e 91 < e~ f < @1, Here we note that, if Q, > 1/2 then
‘1 - ef‘ S Qb

if not, we simply define Q7 = Q1 + 1. For simplicity, lets assume Q1 > 1/2.
With this in hand we get

Vol = [ V16l avy <m [ (1= <) olglav,
M M
te te
N\ 162 dV. — .
< [ (=)o av, = il

Now, in one hand since [, ¢dV, = 0, then from lemma there exists C such that ||¢||z2 <
Q2 ||Vé|| 2. In the other hand, from Hélder inequality we get

1]l < voly(M)'/?||]|2 < Covoly(M)/2[|Ve| 2

From where we have

IV6][32 < mCyvoly(M)V2 ||V,

i.e.

IV8]| 12 [[V@|| 12 < mCsvoly(M)2||V¢|| 12 = ||V|| 2 < mChvoly (M),
Defining k = mCs vol,(M)'/2 it follows that

191l 2 < Cok,
and from the first inequality from lemma [5.2.2
6llz2e < C1 ((R) + (KC2)?)

To summarize
1llz2 < KCa, and|[|@l|a < C1 (k) + (KC2)?)

To obtain a single bound, we take into account the maximum of both bounds, say

O3 = max [kcg, (01 ((k:)2 v (k02)2>>1/2] .
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It follows that
@[l < C5,  and [|¢]|p2c < Cs.

Therefore, by Holder inequality if p € [2, 2¢]
ollr < Cs.
O

So, we successfully provided a bound for ||¢||z» for certain p’s. Now we want to prove that
||¢]|z» is bounded for every p, in order to take the limit p — oo and from this get the desired bound
for ||¢||. In this spirit, the next proposition is key.

Proposition 5.2.4. There exists Q2, Cy € R depending on M, g and Q1 such that for each 2 < p,
we have

16l1» < Q2 (Cap) ™7

Proof. As we already proved, we know that ||¢||r» < C3 for p € [2,2¢]. Let us rely on this fact to
define a new positive constant )2 as follows

Q2 > C3(Cap)™? if p € [2,2€],
Q2> (Cyp)™P  if 2 <p,

where, Cy = C1em! (mte + 1/2). It is worth to note that Q)2 is well defined, particularly on
[2,00) as limy_yoo(Cyp)™P = 1.

We want to prove that ||¢||zr < Q2(Cyp)~"/P, V¥p. Let us proceed by induction, the base case
will be when p € [2, 2¢].

If p € [2,2¢], then by lemma |¢l|zr < C3. As C3 < Qa(Cyp)~"/P, by definition of Qs, then

]| 2r < Qa(Cup)~™/.

Hence, the inductive basis is true.

Now, take k > 2¢ and suppose that ||¢||z» < Q2(Cyp)~™P holds for every p € [2,k]. We have
to show that this is true for 2 > ¢ < ke.

Let p € [2,k]. In particular 2 < p, then

4p2:2p2+p2>p2+2(2)]0=>4p2*4p>p2:>4p(p*1)>p2:>p>m’

and, using the very same argument as in lemma we have that ’1 —ef ‘ < @1. So we can use
lemma [5.2.1] and get

IV |72 < mpe@||g| [}, (5.16)
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Then we can apply lemma to ¥ = |¢[P/2. From this we have

H¢||]£ep < <HV’¢‘p/2’ 2

,+ \¢|’£p> : (5.17)

L
From (5.16]) and (5.17)) we have that
10117 < mpCre®(|gl[7, + Cilo[],.

Take g = ep. Since p € [2, k] by the inductive hypothesis we have that ||¢||r» < Qa(Cup)~ ™7,
and by the definition of Q, for p € [2,00) we know that Qz(Cyp)~"/? > 1, hence

p—1

it < (0o ) )
< mpCye? (Q2(04p)_m/p)P +C1 (Q§(04p)—m/p)z> = Qu(Cap) " Cy (mpe@ +1) .

Keep in mind that 2 < p, so 1 < p/2. This fact allows us to write the following inequality
1
Cq (mpte + 1) <Cip (mte + 2) = pCyet™™.

Hence

161174 < Q5(Cape)' ™.
Lastly, Q5(Cupe)' ™™ = (Q5(Cag)~™/)", thus
p
Ilt;, < (@(Cag) )",

therefore

l|¢]La < (QQ(CM)*’”/I’) ;

for every ¢ € [2¢, ke].

We will obtain the bound for ||¢|| through the next corollary.
Corollary 5.2.4.1. The function ¢ satisfies

ol < Co.
Proof. We have that ¢ is continuous on a compact manifold, then

ll] = lim [|¢][Ls.
P—00
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And, by proposition we get
16117, < Qa(Cag)™™/™.

Also,
lim (Cyp)~™/P =1,

p—00

therefore

ol < Ca.
U

Now, for the second order bounds we need to fix some useful notation. Given a metric g and
its Levi-Civita connection V we write the k — th derivative of a tensor T using V as Vg, 4, T. As
always, R% . will be the Riemann curvature of g. Finally, consider another metric ¢’ on M. Given
Y € C?(M), let Ay be the laplacian of 1 with respect to g and A’y the laplacian associated to ¢'.
In coordinates these laplacians take the form

Ay = —g*PV 50, and A'p = —g°IV sy

With this notation in mind we shall perform the following calculations.

Lemma 5.2.5. We have that
N (D)) = —Af + ™" 67V 5 0V 5,56 + 69 (R 5Vaed — R5,5V0e0) . (5.18)

Proof. In order to calculate the laplacian Af, we need an expression for V, 5.
We start with the Monge-Ampere equation and take its logarithm, so we have

log det -+827¢ = flogdet g,z
g galB azaaZB - g gaﬁ’

applying V at both sides, and taking into account that det (gag) =1, we get

V5 log det ‘Jrﬁ = V5(f)
7108 JaB 0200z A

Using that g,5 + %&5 = 9;5’ and the fact that log(det A) = trlog A we

Vyf =V, trlogglaﬂ— =trVy logg:lé.
We calculate the last derivative and we found that

1
V5 log 9;5 = IV*QQE,

aB
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but we know that @ are the components of g'O‘B, and that VVQ;B = V5,5¢. Hence

Vif =g“V.,50.
Now, we proceed with the calculations for the laplacian
Af ==9g""Vosf =—9""Va (¢ Vauwd) = =97 (Vag™) = ¢*7 9"V a5
We stop here to calculate V,g"”. Remember that g/*? g’B)\ = 6§ and, of course, V04 = 0. From

which Vag’“Bg’B)\ = 0. And recall that Vag/’b,j\ = Vasr -
So we calculate

0= Vag" g5, = (Vag'“ﬂ > 9o+ 9" Vg™ = (Vag'“ﬁ ) I+ 9" Voprds
from where ) )
(Vag’uﬁ) g};)\ — —g/"ﬂvamqﬁ,
contracting with the inverse of g’B/\
Vag"? = g g0V 5.6.
Replacing this in equation we have
Af = g9 9"V 5,0V 5n0 — 979"V asi,
so, we get o o
979"V aqpnd = —Af + g 79N g0V 45,8V 500
Now, remember that our goal is to calculate A’(A¢). This quantity is
N (A9) = 6V (67V.5) = 9767 Vo
which clearly differs from our last result. Thankfully, there is an identity that will help us[Joy00]
gl'u‘ljgoy_yv,uf/ofyQZs - gm’;ga’_yvaﬁuflqs = gl,ul_/ga'_y (Rgaﬁvpﬂgb - Rg;fyva,é ) :
From where
9" 9V ypar® = 9" 9V aquwd + g7 g™ <R§aﬂu@¢ ~ R}V ) :
therefore

N(Ap) = —Af + g*7g"™ g"V 536V 5 w0 + g7 g (ngvm - R%V&g(b) :
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Our second wanted bound, the one for ||dd°¢|| will come from the next proposition.

Proposition 5.2.6. There exists constants c1, co Q3 € R depending on M, g, and Q1 such that

9| | < e, (5.192)
lab

o] < c2. (5.19D)

|ldd“g|| < Qs. (5.19¢)

Proof. We want to use prop. to prove this proposition, so we need to find an a priori bound
for ||A¢||. For this purpose we define the following function on M

F= log(m - A¢) - k¢,

where k is a constant.
Note that F' is well defined, from proposition it follows that m — A¢ > 0. Now we want
to calculate A'F, let us proceed.

A'F = A (log(m — Ap) — k¢) = A'log(m — Ap) — kA ¢

/ 1 2 /
MA (Ag) + 7(m YVE (V(A9))” — kA'¢.

Now
(V(A)* = g7V (<4 V) Vs -9V ,56) = 470" 9 Va6V 3,50
While on the other hand )
A/QS = _gaﬁva5¢a
but

9 = 9" + Vo560 = Vop =g — g,

hence ) ) ) ) )
AQ;S — 7gaﬁ (glaﬁ . gaﬁ> — glaﬁgag . 534 — glaﬁgaB - m.

Putting everything together

I -1 ofB _1uv 1y o 1aB _~6 € €
A'F = — (—Af+g gtq” Vary®V,50 + g g’ <R5%§Va€¢ - Rgangd?))
1 108 pir A5 103
b B O 0V g s+ K (g Pg.5 —m) . (5.20
(m_A¢>29 9"y VOV 5,50 (g 9oj ) (5.20)
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It is useful to define the following functions

_ 1 o
G = gaﬁg/wg/wvawqgvﬁ_usqs - mﬂlaﬁgwngam¢vgus¢,
H = g% (R§, 5V0e6 — RG,5+0) -
With these functions, A’F can be written as

A'F = (m—A¢) " AF 4k (m— g°g,5) + (m— A¢) ' (G + H),

so, in order to obtain bounds for A’F we have to find bounds for G and H.
First thing to note is that 0 < G. For that, we consider (m — A¢) V5.0 — g;BV7A¢ and take
its square. This is given by

0 < god B g [(m — AG) V5,6 — ggﬂ-mmﬁ} [(m — A¢) Vit — gg“vgm} .
Let us expand this quantity

0 < g3 g [(m — D)) Vs — g;BV,YAgZ)] [(m — AG) Vi, — gf\uV,;Aqb}
= (m = AGP2g GGV o5, 6V 5,06 — (m = AG)g™ g g7 (g, 5V, MGV 3,50 + 5, VA6V 15,0
+9° 9" 977 g 595,V A0VEAG = (m — Ad)*G.

Since (m — A¢)? is positive, it follows that G > 0.
On the other hand, let us study |H|. We already know that HvagqﬁH < (m— A¢) and ‘g’ab‘ <

g’aB 9op- Since the components of the Riemann tensor R involve partial derivatives of g it should
be bounded to, by say Cs > 0. So, we obtain

|H| < Cs(m — A)g“Pg,5.

Hence,
ANF < (m—A¢)7'Q1+k (m - g’“69a5> +C59 P go5-

From now on we will consider A’F' at a point p where F reaches its maximum, so A’F < 0. This
implies that

(k—Q5)9"*Pgo5 < mk + Q1(m — Ag) ™"
Now, from proposition we have that

mel /™ < m — Ag,
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but, 1 is an upper bound for ||f||, so taking this into account and taking the reciprocal of the
previous inequality we get

(m — Aqb)_l < ite/m.
m

Recall that k£ was any real number, we want that k —Cs = 1, so we choose it as k = Cs — 1. Putting
all together, we have that

g/aﬂg -<mk+Q1 Ql/m

from which it follows that

(g’“ﬁga/g)m_l < (mk LA Ql/m) mil,

S0,
m—1

m—1
<glaﬁ9 B) e <e (mk—i— @1 Ql/m)

Considering that || f|| < Q1 and defining Cs = mk + %te/m, we have that
-1
(9“”39 6>m el <ehCgh. (5.21)

Note that, lemma gives us local expressions for g, and ¢’*® at any point in terms of positive
constants a;j, and using lemma we have that, at p

m m m
Haj:ef, g'aﬁgaﬁ Zaj_l, A(;S:m—Zaj.
j=1 J=1

j=1

From this and inequality (5.21]), we have that
m—1
m—A¢p < (g/aﬂgaﬁ’) el <ehop

Remember that F' is defined as F' = log(m — A¢) — k¢, so at the point p, a global maximum of F,
we have that

F(p) <log (e9CF" ™) — ké(p) <log (91CF™1) — kinf ¢ < Q1 + (m — 1) log Cs — kinf ¢,
since ||¢|| < Q2, it follows that the following inequality holds for every p € M
F < Q1+ (m—1)logCs + kQ2.
So, writing the explicit expression for F'

log(m — A@) — k¢ < Q1+ (m — 1)log Cs + kQ2 = (m — Ag)e ™ ¢ < O te@r k@2
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hence
’ m— Ap < O le@thQtho Ly NG < O Q42

Using lemma we have that 0 < m — A¢. Thus,
|AG|| < |Cgte@T2hR — | +m.

So, we have found an a priori bound for [|A¢||. With this, we can appeal to proposition and
get appropriate bounds c1, ¢z and Q3 for ||g}, ||, 1g"%|| and ||dd°¢|| as we want. O

Finally for the third order bounds we define an auxiliary non negative function S on M as
52 =1 |Vddcgb\§, or in coordinates

52 — g/akg/uﬁgl’yﬁvag’yqbvxuﬂqb‘

We want to determinate a bound for S through a formula for A’ (52) . Such a formula is given in
the following proposition.

Proposition 5.2.7. We have that

_ 2 _ _ 2

- A (52) = )Vafﬁ&@b - g/)\'uv&)q'/gbvﬁﬁﬁﬁ‘gl + ‘Vaﬂﬁéﬁb - g//\uvo@/\ﬁbvﬁwﬁb - Q/A”Vaﬁzi(ﬁv/\w@b‘gl
4 ph2l (g/aﬁ’ Vi, Van) 4 ph2l (gxaﬂ7 Vo, %cd)

+ PR (g0, Vo560, Vagsf ) + PP (697, Vo, 6, Vi) (5.22)

where P@Y¢(A, B, C) is a homogeneous polynomial of degree a on the tensor A and so on.

A detailed proof to this proposition can be founded on [Yau7§].
From this equation we have the following corollary, which is crucial to give us the last bound
we are looking for.

Corollary 5.2.7.1. There is a constant C7 depending only on Q1, c1, co and HR“b’C’d ‘017 such that

A'(S%) < Cr (S*+8).

Proof. We begin by noticing that the first terms for A’ (5’2) in (5.22)) are nonnegative, so we will
drop them. Now, we turn our attention to the polynomials.

The first two of them P*21 (g/aﬁ, Vg Va/;f) and P21 <g/af8, V iy s R‘})Cd> are quadratic
on V,3,¢. Hence, they can be bounded by a multiple of 5?2, while the other two are lineal on

V o3y ®; S0, they can be bounded by a multiple of S. So at least the structure of the inequality that
we need to prove is clear.
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Now we need to determine the factors for S and S2. Note that the polynomials involve ¢"®°,
V,3/, objects that we have under control due to the previously founded bounds ¢z and Q1. On
the other hand, we know that there is a Cs, such that [|Rf_,||ct < Cs, and since ||V RS || <
[|Reqllor < Cs and trivially ||RS || < |[R$.4llcr < Cs. With all of this, we have that

A(S) < (34+1+4Q1) S+ (c3+1+C5)S*+(3+1+Q1) S+ (3+1+C5) S

<
<(3+2+Q1+c3+C5) (S?+8).

Define C7 > 0 as
Cr=2+c3+Q1+c3+Cs,

and the proof is done. O

With the following proposition we are going to be able to find our desired bound.
Proposition 5.2.8. There exists a constant Q4 € R depending only on M, g, J, and Q1 such that
IVdd®g|| < Qa.

Proof. We want to use a similar argument as in to obtain the last bound. So, we want to

work out the expression that we have for S? and relate it to the one that we have for A’(Ag).
Recall that S% = g’o‘)‘g’“ﬁglwvamgbvj\. Also, we have that [|g’®|| < ca, so it follows that

92 5,07 2 g g 5, 675 = S (5.23)
Now, from proposition we have that
A(AG) = ~Af + 67967V 5. 0V 5,56 + 9097 (R 5Vaed — R05V20)
together with the inequality , we get
N (80) 2 8= (A + g0 (R 5Vart = Riy059:0) )

as we saw before, there are bounds for every element on the second term on the right side since
Af < Ql? and

g7 (R, 5Vaed — R5,5V4e0) < Cslm — Ad)g'g,5 < CiCged T2,

Thus,
1
A (Ag) 2 — 52— (—Q1 + 050$6Q1+k92) . (5.24)
2
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For simplicity, define Cs = —Q1 + C’5Cé"eQ1+kQ2, so we have
/ 1 2
A" (A¢) > —8° - Cs.
C2

Now, consider the function S? — 2¢oC7A¢, and take its laplacian A’
A(S% — 2c5C7AP) = A'S? — 2c5C7 A (Ag).
Using corollary [5.2.7.1] and eq. (5.24)), we obtain

1 1\? 1
A,(SQ) — 26207A/(A¢7) S 07(52 + 5)26207 <052 — Cg) = —07 <S — 2) -+ 107 + 2620708.
2

As in consider that the function S? — 2¢3C7A¢ has its maximum at a certain p € M. Thus,
in p we have
A'(S? — 2¢,C7AP) > 0,

S0,

1\2 1
- < — .
(S 2> 1 + 2¢9Cy

As in Proposition we can find a positive constant Cy that depends only on ¢, Cs and in the
a priori bound for |A¢|, such that

2 — 2c0C7A¢ < Cy,
from which

52 < Cy + 2e0C7AG < Co + 2¢9C (’cheQﬁ%% _ m‘ + m) .

This last expression gives us an a priori bound for ||S||, say Cio.
Now,

1
S = 5|Vdd°gly,

and we want a bound not for |Vdd®¢|, but for |Vdd°¢|,. Fortunately, there is a simple relation
between them. It is given by

IVdd¢|, < *|Vdde),.
So, we define ()4 in terms of the a priori bound Cyy we already have as
Qs = 26%Cyy,
and we get the desired result
IVdd®g|| = |Vdd°d|g < Qa.
O

Therefore, the proof of the theorem follows from corollaries|5.2.4.1} [5.2.7.1]and proposition [5.2.8
O
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5.3 The second theorem

Theorem 1.2 (2nd Theorem). Let (M, J) be a compact complex manifold, g a Kdhler metric on
M with Kéhler form w. Let f € C3*(M), ¢ € C5(M), 0 < A and 0 < Q1, Q2, Q3, Q4, such that

(w+dd°d)™ = Aelw™, || fllcse < Q1 |16l < Qa, ||dd°¢|| < Q3,  and ||Vdd°¢|| < Qu.

Then ¢ € C>*(M) and there exists 0 < Q5, such that ||¢||os.e < Q5. Even more, if f € CH(M)
with 3 < k, then ¢ € C*+2%(M), and if f € C®(M) then ¢ € C®(M).

Proof. In this theorem the concept of elliptic regularity that we introduced in the chapter [3] plays
a crucial part of the proof. We shall start by stating three results on regularity.

Lemma 5.3.1. Let 0 < K and o € (0,1). Then there exists a positive constant Ey, , depending on
k, o, M and g, such that for every v € C*(M) for which it exists ¢ € CO(M) that satisfies A = €,
then ¢ € C**2(M) and

Pl orrzaary < Era ([[Ellore + (1911 -

Lemma 5.3.2. Let o € (0,1). Then there exists a positive constant D, depending on o, M, g and
the usual norms of ¢ and g, such that for every 1 € C?(M) for which it exists ¢ € CO(M) that
satisfies Alp = &, then ¢ € CY¥(M) and

Wlloraqary < Da (€] 4 [[91]) -

Lemma 5.3.3. Let 0 < k be an integer, and o € (0,1). Then there is a positive constant Fy,
depending of k, a, M, g and the usual norms of g’ and g, such that for every ¢ € C*(M) for
which it exists £ € CHY(M) that satisfies Ay = £, then ¢ € C*+29(M) and

llor+zaary < Bra ([Ellcra + 1)) -

For a proof of these lemmas, consult [Bes07, MJ09]. From the last three lemmas we can prove
the next proposition.

Proposition 5.3.4. Let o € (0,1). Then there exists a constant D1 € R depending on M, g, J, Qi,
and o with 1 = 1,2,3,4 such that

19llgs.a -

Proof. We want to make use of so we we have to show that the conditions there hold true.
So, from [5.2.6) and [5.2.§] there exists ¢1, ¢, and Cs, such that

rab
g

giall < 1, ||9"|| < co. llaa*ell < Cs, [IVdd*el| < Cu.

On the other hand, as ) B
Vg’ = —g"4""V o 5,0,
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then

‘ )vglab glab

<)

|1Vdd“6]| < cxQs

So we have bounds for Hg’“bH and HVg’“b‘ ‘, thus

Therefore, taking 1) = A¢ and £ = —Af+g°‘>‘g'“59"y’7vag,y¢V5\M,7¢+g'aﬁgv5 (RESWBVO@¢ - REBaSV“/EQb) )
by lemma there is a constant E!, such that ¢ € C%* and ||¢||c1.e < EL (J1€]] + |[2]]) -
Note that, as we saw in there is a constant C5 such that

Also, we have that Af < @y and go"_\g’“Bg”‘_’VaB,Y¢V;\W¢ < c3Q7, hence

lab

g

lab

g < o + Q4.

<

+ valab

0,

glaﬁgvg (RQ

515V az0 — R3,5920) || < C5 11Vl g5 < CsQucs.

1]l < Q1+ QT + C5Qucy,
i.e., there exists Dy = Q1 + chi + C5Q4c2, such that
€[] < Do.
Therefore
[Ullcre < Ef (D2 + Q3),

i.e.
[[Ad]|c1e < Ep, (D24 Q3) -

Now, by lemma m taking ¢ = ¢ and & = ¢ we have that ¢ € C>® and there exists Ei’a, such
that

éllcse < Fua (18dllcr +116]) < Braly (Ds +@3) + Q2).
Define Dy = E) o(E., (D2 + Q3) + Q2). Thus there exists D, such that
||#]]cs.e < Di.
L]

Finally, theorem follows from the subsequent proposition. It is worth to mention that in
this proposition we are working under the hypothesis of the theorem

Proposition 5.3.5. For every integer k > 2, if f € CH*(M) then ¢ € C*2%(M), and there exists
bounds for ||@||ck+2.a and for ||f||qr.a depending only on M, g, J, Q;, k and o with i =1,2,3,4.
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Proof. The proof is by induction. Let us state our inductive hypothesis properly, if f € C*® then
¢ € CF*12 and there is a bound for ||¢||ck+1.. depending on M, gJ Q;, k, o, and on the bounds
for || f||ck.e, and || f||cs. This hypothesis is satisfied for k = 2, as proved in proposition [5.3.4}

Let ¢ = A¢, and £ = —Af + g* g"Pg""V 5. ¢V 5,0 + §Pg7° (R%7 5Vaed — Régagv,yggb) , SO
we have

Al = €.
Observe that
| = Afllor-2a < |[fllcna;

in k=22,
Similarly,
19|z < c2, and [V llce-ze < [[9lloke.
Let us look more carefully into R¢. .; remember that the components of the Riemann tensor are

Bod’
linear combinations of second derivatives of the metric. Then, as the metric is bounded in C¥~2%
its derivatives are bounded too. Hence, there is a positive constant Cf, such that

<.

1750

Ck—Q,a

Thus, every single element in the definition of ¢ is bounded in C*~2¢ in terms of constants that
depend only on M, g, J, Q;, and k — 1. Hence, by the inductive hypothesis there exists Fy, o, such
that

€]l cr—2.0 < Fra- (5.25)

In the same way as in prop. we already have that ||g’®®|| < c2, now we need a bound for
[[g"®|| k.o This basically means that we have to bound V¥¢"® and ¢’ = ¢g® + 99¢. Since V is
compatible with ¢?°, we need to bound derivatives of ¢. Using the inductive hypothesis, we can
bound those derivatives in terms of M, ¢, J, @;, and k. So, we can apply lemma to Y = Ag.
This lemma proves that A¢ € C*<, and that there is a positive constant El/ﬂ—Q, o such that

1AG]|cha < Ej_g o ([[Ellor-2.0 +[|A8).
Using eq. (5.25) and theorem we obtain
1Al ra < Ej_g o (Fra + Q3).

Thus, by lemma we conclude that ¢ € C*t22 and that there exists a positive constant Epio.a,
such that

19llorsza < Erraa ([[Adllora + 10l]) < Epsza (Biga (Fra + Q3) +Q2)

where we have used theorem [1.1] to bound [|¢||.
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Finally, the proof of the theorem. Take &k = 3 on proposition thus ¢ € C>* and there is
a bound for ||¢||cs.«, say Cs, that depends only on M, g J, @1, Q2, @3, Q4 and «. Also, from the
very same |5.3.5|if k > 2 and f € C¥?, then ¢ € C**t22 for every k > 3. Therefore, if f € C™ then
¢ e C™.

O]

5.4 The third theorem

Theorem 1.3 (3rd Theorem). Let (M, J) be a compact complexr manifold, g a Kdhler metric on
M with Kihler form w. Fiz o € (0,1), let f' € C3%(M), ¢' € C>*(M) and 0 < A’, such that

/ ¢'dVy =0, and (w+ dd°¢')" = Alel' wm.
M

Then, for every f € C3*(M), such that ||f — f'||cs.a < €, Ve > 0, there exists ¢ € C>*(M), and
0 < A, such that

/ ¢dV, =0, and (w+dd¢p)™ = Aefw™.
M

Proof. Let X = {¢ € C>*(M)| [,; ¢dVy =0} ,and U = {¢ € X|w + dd°¢is a positive (1,1)—form} .
Thus U is an open subset in X.

Now, define a function F': U x R — C% by F(¢,a) = f, where (w + dd°w)™ = eT/w™. F is
a smooth map, let us see that it is well defined.

Take ¢ € U, and a € R. Then w + dd°¢ is a positive (1,1)—form, then (w + dd°¢)™ is a positive
multiple of w™. Hence, there exists a unique positive function f on M, such that

(w+ dd°p)™ = T W™,

note that since ¢ € C%*(M) and we have two derivatives, then f € C3*(M). Due to the uniqueness
of f, F'is well defined.

Take f’, ¢/, and A’ as in the hypothesis of the theorem. Define ¢’ = log A’. By hypothesis,
¢’ € U, and F(¢',a’) = f'. We shall evaluate the first derivative of F' on (¢',a’). Taking a Taylor
series, we have that

(w + ddc(¢/ + €,¢))m _ ea’—&—e’b—&-f’—e’b—e'A"l/'
Hence
F (qﬁ’ + v, a + e'b) =f —b+ f —€b— €N,

Taking into consideration only the first order terms we have that the first derivative of F', dF(y/ o)
X xR — C3*(M) is given by
dF(gan (¥, 0) = —b — A,

We want to show that it is an invertible map.
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For this purpose we are going to rely on our existence theorems for elliptic operators, in partic-
ular the theorem applying it to A’. Let us proceed.

Note that since M is connected, the kernel of A’ (an order two differential operator) are the
constant functions on M. So, the functions ¢ € X that are orthogonal to ker(A’) are those that
satisfy

(V,p) =0& /M?l)dVg =0, Vo eker(A).

Let us study the dual operator A, this is given by A™ () = e~ /' A’/ (eflzp) Hence, ker(A”™) =
ke='', with k € R. So, the functions x € X that are orthogonal to ker(A"*) are those that satisfies

<X7 e*fl> = 0.

Now, by theorem applied to A’, if x € C3%(M) then there exists ¢ € C>¥(M) with A’y = x
if and only if <X, e~/") =0, and ¢ is unique if [,, 1 dV, = 0.

Take y € X, there is a unique b € R such that <1p + b, e*f/> = 0. Then, there exists a unique

€ CH, with fM 1 dVy = 0, such that A’Yp = —x —b. Thus, ¢ € X, and by the definition of dF
it follows that
dF(g 0y (1, ) = x.

Therefore, for every xy € C>* there exists uniques 1 € C%>* and b € R, such that dF(qy’a/)(w, b) = x.

Hence, dFy o) : X x R — C**(M) is an invertible continuous map, and it has a continuous
inverse. Thus, it is an isomorphism of X x R and C*®. So, applying the inverse function theorem
there is an open neighbourhood of (¢, a’), say U’ C UxR € X xR and an open neighbourhood
of f/, say V! € C3*(M), such that F': U’ — V' is a homeomorphism.

Then, for every f € C3?, such that

1
I|f—= Il < §min {e,rad(V')}, Ve>0,

we have that f € V. So there exists a unique pair (¢,a) € U’ with F(¢,a) = f.
To conclude, observe that since (¢,a) € U’ then ¢ € U. Thus, we have that

/ $dV, =0,
M

and ¢ € C>*(M), proving the first desired equation.
Finally, take A = e® > 0, and because F'(¢,a) = f holds we have that

(w+ dd°¢)™ = Aefw™.

Thus, the proof is complete.
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5.5 The fourth theorem

Theorem 1.4 (4th Theorem). Let (M, J) be a compact complex manifold, g a Kdihler metric on
M with Kdhler form w. Let f € CY(M), then there exists an unique function ¢ € C3(M), such
that

/ ¢dVy =0, and (w+dd°¢)™ = Aelw™.
M
Proof. Suppose ¢1, ¢2 € C3(M) such that
/ $idV, =0, (w+dd°¢;)™ = Aelw™ j =1,2.
M

In order to prove that ¢1 = ¢o we will write w; = w+dd°¢;. Both of them are positive (1, 1)—forms,
by lemma so we can consider the metric g; associated to w; for j = 1,2.

So far we have that

wit = Aef ™ = wy',

and
w1 —wo = dd® (¢1 — ¢2).

Hence, we have that

0=w—wi = (w1 —w2) A (W T+ w2 Awa 4+ +wh 2 Awy +wh )

= dd (¢1 — dp2) A (W] '+ +wh ).
Notice that w]" — w3 is a m—form and it is the exterior derivative of the following m — 1 form
(f1 — ¢2) d° (¢1 — dp2) A (W] H 4+ +wi 1),

thus, since M is a compact manifold with no boundary, and 0 = dd® (¢ — ¢2)/\(w;n71 + ot wg“l),
then by Stokes theorem we have that

V- / d[(¢1 — ¢2)d° (1 — p2) A (W] H 4+ +wi )],
M

recall that dw; = 0, so
0= / d(¢1 — ¢2) d°¢ (¢1 — (bg) AN (waﬂ_l + -+ +wgz—1) . (5.26)
M
From lemma we have that,

A(61 = 02) A (61— o) Nl = —[d (61— G, e, (5.27)

and
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d (1 — o) Ad° (¢1 — o) Aw] T AWl = Fjuwt, (5.28)
where F; are nonnegative functions on M as in lemma

Using equations (5.27)), (5.28]) on (5.26)), we have

1 m—1
[ |51 - ool + S B wp =0,
M =

this implies that
m—1

[d (g1 —2)l5, + D Fj =0,

J=1

1

m
and since both L |d (¢ — gzﬁg)\zl and Z;:ll F; are nonnegative, then each term has to be zero by
their own. In particular

% |d (¢1— ¢2)2, =0 = |d(¢1 — d2)|5, =0,

SO
d(¢1—¢2) =0,

i.e. ¢1 — ¢ is a constant on M, since M is a connected manifold.
On the other hand, we have that both ¢; and ¢9 satisfy

/ ¢1dvg=0=/ bo dV,
M M

/ (p1 — p2) dVy =0,
M

but we know that ¢; — ¢9 is a constant on M, then

hence

(0= 00) [ av, =0,
M
since [, dVy # 0, then necessarily ¢1 — ¢ = 0, therefore

o1 = 92,

from which we conclude that ¢ is unique. O



Chapter 6

Proving the Calabi conjecture

Let us briefly resume our work until now. Following David Joyce ideas [Joy00] we reformulated the
Calabi conjecture and then reformulated it through geometric arguments as the equivalent
statement that requires us to prove the existence and the uniqueness of a solution for the
Monge-Amper equation . In order to prove the existence and the uniqueness for such a solution
we stated an proved four theorems and [I.4 In the current chapter we will explicitly
show how these theorems help us to prove the conjecture

6.1 A proof for the Calabi conjecture

In we already sketched the path that we want to follow to achieve our goal. Now, with the
four theorems proved it is time for us to properly write the proof.
Let us define correctly the set S in

Definition 6.1.1. Let (M, J) be a compact complex manifold, g a K&hler metric on M with K&hler
form w. Fix a € (0,1) and take f € C3*(M). Then S is the set of ¢ € [0, 1] for which there exists
¢r € C>*(M) with [ ¢;dVy =0, and 0 < Ay, such that

(w+ dd¢y)™ = AgetTw™.
We will prove that S is closed and open in [0, 1] in the next theorems.
Theorem 6.1.1. The set S is a closed subset of [0, 1].

Proof. Let {t; };io be a sequence in S. Suppose it converges to some t' € [0,1], in order to prove
that S is closed we need to show that ¢’ in fact belongs to S and hence S contains its limit points
so it must be closed.

Since t; € S for every j, by definition there exists ¢; € C>*(M) and A; > 0 such that
[iy @ dVy = 0 and (w +dd°¢;)™ = Ajelfw™. Let Q1 = ||f||cs.a, and Qa, Q3, Qu, Q5 as in the
theorems [[.1] and [[.21

o7
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Note that ||t} f||s.. < Q1, because t; € S C [0,1]. So we can apply the theorem for ¢; and
t;f. From this procedure we obtain the following bounds

l|[Dillco < Q2  ||dd°®jl| 0 < Q3, [|Vdd°Pjl|lr0 < Qs Vj.

With these bounds we can apply theorem [I.2] from which we obtain the next bound

185llgs.a < @5 V3.

We should note that since for every j, ¢; € C%“ is bounded. So, the sequence {(;S]} o 18

bounded. Now from the theorem [B.1.4] we know that there is an inclusion from C*® to C° and this
inclusion is compact. Then the sequence {(;SJ} lies in a compact subset of C®. So there exists a

convergent subsequence {¢ZJ }j:() Suppose that d)’ is the limit of such a subsequence.
Next we define A’ by

volg (M)

/ t'f _ /
A/Me dVy =voly(M) = A" = 7fMet/de

Observe that since {tj} ° , converges to ¢/, then

/etfdeg—)/ et/deg asj — 0o,
M M

so we can define the sequence {Aij };’;0, with each A;; defined by
A /M elif v, = voly (M),

and it will converge to A’.
Finally, directly from the hypothesis we have that

/ ¢¢jdVg:O—>/ ¢ dVy=0 asj— oo. (6.1)
M M
On the other hand since {¢ZJ} converges in C°, it converges in C? to the same ¢'. So

(w+ ddc@j)m = Aj; el wm — (w+dd¢)" = AleTu™  asj — oo, (6.2)

From (6.1)), (6.2) and theorems we have that ¢ € S. Hence S contains its limits points,
therefore S is closed. O

Theorem 6.1.2. The set S is an open subset of [0, 1].
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Proof. Take t' € S. By definition there exists ¢/ € C** and A’ > 0, such that [, ¢’ dV, = 0 and
(w4 ddc¢j)m = Ajet/fwm.

Note that, ||t'f||cs.e < [|f]lcs.« and this is true not only for ¢ but for every t € [0,1]. We
want to apply theorem to t'f and to tf with ¢ € [0,1]. The theorem warrants that whenever
[t/ f —tfl|csa <€ Ve >0, then there exists ¢ € C>*(M) and A > 0 such that

/ ¢dV, =0, (w+dd¢p)™ = Aelw™.
M
Then, by definition of S, ¢t € S. So S contains an open ball centered on ¢’ with radius r = [t — t/|.

Therefore S is an open subset of [0, 1].
O

Now we will use theorems [6.1.1] and [6.1.2] to prove the existence of ¢ through the following
theorem.

Theorem 6.1.3. Let (M, J) be a compact complex manifold, g a Kdihler metric on M with Kdhler
form w. Fiz a € (0,1) and take f € C3*(M). Then there exists ¢ € C>*(M), and 0 < A, such
that

1. [ ¢dVy=0.
2. (w4 dd¢)" = Aefw™.
Proof. For this proof we are going to rely on the continuity method.

From theorems we have that S is both a closed and an open in [0, 1]. Since [0, 1] is
connected, then either S =) or S = [0, 1]. But we know that S # () because t = 0 € S. Remember
that on ¢t = 0 the Monge-Ampére equation becomes

(w+dd¢p)™ = w™.

¢o = 0 is clearly a solution, and it trivially satisfies | u @0 dVy = 0. So by definition of S, t =0 ¢€ S.
Hence S # 0.

Therefore S = [0, 1]. It follows that t = 1 € S, so there exists ¢; = ¢ € C>¥(M) and A} = A >0
such that

/ ¢dV, =0, and (w4 dd°¢)™ = Aefw™.
M
So both properties are satisfied. O

With this result in hand we can finally provide the so long waited proof to the Calabi conjecture.
Theorem 6.1.4. The Calabi conjecture[[.2.3 is true.

Proof. With the hypothesis of and theorem [6.1.3| we assure the existence of the solution ¢
that satisfies the conditions required by [£:2.3] and making use of theorem [T.4] we have that such a
solution ¢ is unique. Hence the Calabi conjecture is proved. ]
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Chapter 7

Summary and final remarks

7.1 Summary

In this work we successfully proved the Calabi conjecture that arises in the context of complex
geometry.

We show that in order to prove the Calabi conjecture we reformulate the original statement
concerning the existence and uniqueness of a metric g in terms of the existence and uniqueness
of the solution to a second order partial differential equation, the Monge-Ampere equation. The
formal statement goes as follows:

Let (M, J) be a compact, complex manifold, g a Kihler metric on M, with Kdhler form w. Let
[ be a smooth real function on M, and define A >0 by A [, edeg =voly (M) . Then there exists
a unique smooth real function ¢ such that:

1. [y, 0dVy =0,
2. (w+dd®)* = Aefw® on M.

Reached this point we wanted to rely on the continuity method to prove the existence of the
solution. As we know, such a method consists on building a uniparametric family of equations
depending continuously on a parameter ¢ € [0,1] such that we know the solution for ¢ = 0 and
that we recover our original equation for ¢ = 1. If we find that the space of solutions ¢; is closed
and open, then by connectedness of the [0, 1] and the continuous dependence of our uniparametric
equations on ¢ then the existence for the solution at ¢ = 1 is warranted. Proving that the space of
solutions is closed was the biggest challenge on realizing the continuity method in our escenario.

To be more precise, the uniparametric family of equations was given by

(w + ddc¢t)m = Ateftwm.
And the vaguely called “set of solutions” is the set S defined as

61



62 CHAPTER 7. SUMMARY AND FINAL REMARKS

Let (M, J) be a compact complex manifold, g a Kdhler metric on M with Kdhler form w. Fix
a € (0,1) and take f € C3Y(M). Then S is the set of t € [0, 1] for which there exists ¢; € C>(M)
with [ ¢¢dVy =0, and 0 < A, such that [,; ¢;dVy =0 and (w + dd°¢)™ = Aelw™.

Going back to the problem, we were unable to prove that S is closed. This was due to the
incapacity to provide a priori bounds for ¢ and its derivatives, say dd°¢ and V¢, as we barely know
something about those functions. At this point is when Yau’s ideas become crucial. He pointed
out that the regularity of the solutions to the Monge-Ampere equation, which turns out to be an
elliptic one, was needed. In order to work with regularity we turn our attention to Hélder spaces.
So, in the domains of “elliptic regularity” we proved the following two theorems:

Theorem 1.1 (1st Theorem). Let (M, J) be a compact complex manifold, g a Kdihler metric on
M with Kéhler form w. Let f € C3(M), ¢ € C5(M), 0 < A and 0 < Q1, such that

fllos < @1, / AV, =0, and (w-+ddo)™ = Al
M

Then there exists 0 < Q2, Q3, Q4 depending only on M, J, g and Q1, such that

Il < Qa,  [ldd°0]] < @3, and [|Vdd°¢|| < Qa.

Theorem 1.2 (2nd Theorem). Let (M, J) be a compact complex manifold, g a Kdihler metric on
M with Kéhler form w. Let f € C3*(M), ¢ € CO(M), 0 < A and 0 < Q1, Q2, Q3, Q4, such that

(w+ddg)" = Ael™,  ||fllose < Q1 |0 S Q2 [|dd°0]| < Q3,  and ||Vdd°¢|| < Qu.

Then ¢ € C>*(M) and there exists 0 < Q5, such that ||@||cs.. < Q5. Even more, if f € CH*(M)
with 3 < k, then ¢ € C¥*22(M), and if f € C®(M) then ¢ € C°(M).

For theorem [1.1} we started by making some local calculations that give us bounds for the
metric and its derivatives having previous bounds for ¢ and its derivatives. These previous bounds
are the a priori bounds that we are looking for. We classified the a priori bounds as order zero,
second and third order bounds. They correspond to bounds for ¢, dd¢, and Vdd°p, respectively.
We proceeded as follows. Firstly, order zero bounds were obtained through the local calculations
and Holder inequality on chapter Secondly, order two bounds were founded using the local
calculations, the zero order bounds and several calculations regarding the laplacians associated
with g and ¢’. Thirdly, the third order bounds were obtained from the local calculations, the
previous zero and second order bounds and a result from [Yau7§].

On the other hand, theorem relied strongly on the three lemmas that were obtained
from [Joy00], proved in [Bes07, M.J09]. Those lemmas have their roots on the theorems regarding
the regularity of elliptic solutions From them, theorem follows by induction and from the
local calculations. Hence, from it follows that S is closed in [0, 1].

Now, for proving that S is an open subset of [0, 1] we make use of the following theorem
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Theorem 1.3 (3rd Theorem). Let (M,J) be a compact complex manifold, g a Kdhler metric on
M with Kihler form w. Fiz o € (0,1), let f' € C3%(M), ¢' € C>*(M) and 0 < A’, such that

/ ¢ dVy =0, and (w+ ddc¢’)m = Alel ™.
M

Then, for every f € C3*(M), such that ||f — f'||cs.a < €, Ve >0, there exists ¢ € C>*(M), and
0 < A, such that

/ ¢dV, =0, and (w+dd¢p)™ = Aefw™.
M

The proof of this theorem has its heart on the inverse theorem function and in the clever
construction of a bijective continuous function. With this theorem we proved that S is open in
[0,1]. Together with the fact that S is closed and the continuity method we proved that ¢ exists.

For the uniqueness we make use of the last of our four main theorems,

Theorem 1.4 (4th Theorem). Let (M,J) be a compact complex manifold, g a Kahler metric on
M with Kdihler form w. Let f € C1(M), then there exists an unique function ¢ € C3(M), such
that

/ ¢dV, =0, and (w+dd¢p)™ = Aefw™.
M

Through a classic proof of uniqueness supposing that there is another ¢’ with the very same
properties, we found out that ¢’ = ¢.

7.2 Final remarks

Now that the proof is done, following the discussion by D. Joyce [Joy00], we may ask ourselves is
there any way in which we can relax the many hypothesis we have in the four theorems. There are
two hypothesis that stand out as immediate candidates.

e Are third order bounds in theorem [1.1] really needed?

From the Monge-Ampere equation
(w =+ dd®)™ = Ael W™,

we have that ¢ has to be at least twice differentiable, and it is well known that a C? solution
for an elliptic second order equation is actually C*°[MJ09]. So this might tell us that we can
disregard the third order bounds in our first theorem. Indeed this is possible, but then we will
need to replace the third order bounds with a modulus of continuity for dd“¢ [MJ09, [Joy00].
Thus, this can not be considered a relaxation of theorem
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e Can we take ¢ € C*® instead of ¢ € C>?

As the Monge-Ampere is a second order equation, we might naively think that we can work
with ¢ € C%® instead of ¢ € C>*. Looking more carefully it would be impossible to obtain
the second order and, more obviously troublesome, the third order bound since we have to
take the Laplacian of a function that already involves third derivatives of ¢. This of course,
is against the previous point where we see that it is not smart to neglect the third order
estimates. Hence, the condition ¢ € C>® can not be relaxed.

From both arguments it is not clear that a generalization can be achieved. Hopefully in the future
it can be addressed.

Now that we discarded an improvement on the hypothesis of our work, we turn our attention
to the future ideas that we want to work out from here. It is well known that the existence of
Calabi-Yau manifolds follows from the Calabi conjecture [Joy00]. So, as future work we want
to address the classification of Calabi-Yau threefolds. For this purpose we will focus on the so-
called complete intersection Calabi-Yau (CICY) threefolds. These objects are Calabi Yau manifolds
constructed as complete intersections of elliptic curves on products of projective spaces |[CDLS8S].
There has been recent advances on their classification; exploring ways to predict their Hodge
numbers through machine learning [EF20], asking if CICY threefolds can carry non trivial SU(3)
structures [LLR19], and studying which kind of fibrations do they admit? [AGGLI17]. In particular,
there are speculations that might lead to a relation between the first and third results. There is
evidence to believe that perhaps all C-Y threefolds with large enough h''! admit an elliptic fibration
[AGGLI1T7]. It would be interesting to work in this conjectured relation, since there are results that
show that as h'! increases, the topology of the threefold in question takes on more specific forms
[KW13]. Therefore, this can lead us to “bounds” for the topology of a CICY threefold that admits
an elliptic fibration.
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