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Chapter 1

Introduction and Motivation

In high energy physics and gravitation, String Theory is a quite useful theoretical framework to
study fundamental physics. In its many properties, the prediction of a 10 dimensional spacetime
stands out, it is a shocking fact as we are used to assume that our spacetime is a four dimensional
one. So, where are the extra six dimensions? Most importantly, what kind of geometrical and topo-
logical properties does they have? Can, in some sense, the physics of our beloved four dimensions
depend on the geometry and the topology of the extra six dimensions?

It turns out that the physics that we can observe in our four dimensions is sensitive to the
geometry and the topology of the extra dimensions [CHSW85]. Let us briefly list some of them
[IU12]. Firstly, the extra dimensions should constitute a compact manifold X of dimension 6 with a
“tiny” radius. Secondly, the holonomy group for the metric in the extra dimensions in most cases is
the group SU(3). In third place, the index of the Dirac operator associated to the matter fields has
to be equal to three. Finally, in several cases, the fundamental group Π1(X) of our six dimensional
manifold is non trivial so X can be non-simply connected.

The manifolds that satisfy those conditions, especially the holonomy condition, are called
Calabi-Yau (C-Y) manifolds, in particular C-Y threefolds. Even though the classification of C-
Y manifolds is an open research field, the first thing to address is the existence of such manifolds.
The first steps in this direction were given by Eugenio Calabi in the 50’s, with his celebrated conjec-
ture [Cal57]. Working in the context of complex geometry he noted that given a compact complex
manifold M and a Kähler metric g it has associated a closed (1, 1)−form ρ called the Ricci form of
g. So he asked what happens to the reciprocal proposition, i.e. given a closed (1, 1)−form ρ′, are
there conditions under which ρ′ is the Ricci form of a Kähler metric g′?

It was known that the existence (and the uniqueness) of such a metric g′ can be reformulated
in terms of the Monge-Ampère equation for a real function φ, given by

(ω + ddcφ)m = Aefωm,

and show that a solution exists and it is unique[Joy00]. Calabi himself proved the uniqueness but
the existence remained unproved, despite the hard work done by T. Aubin [Aub70], until Shing-
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2 CHAPTER 1. INTRODUCTION AND MOTIVATION

Tung Yau prove it in 1977 [Yau77, Yau78]. In this process the regularity properties of elliptic
operators in compact manifolds become crucial, since they provide certain bounds needed to get a
proof.

With the Calabi conjecture proved, it became quite clear that one can use Yau’s solution of
the Calabi conjecture to prove the existence of Kähler metrics with holonomy SU(n) on certain
compact complex manifolds M [Joy00]. This fact gave rise to the Calabi-Yau manifolds mentioned
before.

In this work we address the proof to the Calabi conjecture given by S.T. Yau as presented in
a modern way by D. Joyce [Joy00]. For this purpose, we rely on the continuity method, usual on
differential equations theory. From the Monge-Ampère equation we build a uniparametric family
of equations

(ω + ddcφt)
m = Ate

tfωm, t ∈ [0, 1],

such that we know the solution for t = 0 and we recover our original equation at t = 1.
To prove the existence of the solution for t = 1, we prove that the set S of t ∈ [0, 1] that have

an associated solution φt is both open and closed in [0, 1], so by connectedness, such a set is the
complete interval [0, 1]. Therefore, there is a solution φt=1 to the Monge- Ampère equation and the
existence is proved. Putting this together with a usual uniqueness proof, the Calabi conjecture is
proved.

To accomplish the idea of this naive sketch, four theorems are needed. These theorems are:

Theorem 1.1 (1st Theorem). Let (M,J) be a compact complex manifold, g a Kähler metric on
M with Kähler form ω. Let f ∈ C3(M), φ ∈ C5(M), 0 < A and 0 ≤ Q1, such that

||f ||C3 ≤ Q1,

∫
M
φdVg = 0, and (ω + ddcφ)m = Aefωm.

Then there exists 0 ≤ Q2, Q3, Q4 depending only on M , J , g and Q1, such that

||φ|| ≤ Q2, ||ddcφ|| ≤ Q3, and ||∇ddcφ|| ≤ Q4.

Theorem 1.2 (2nd Theorem). Let (M,J) be a compact complex manifold, g a Kähler metric on
M with Kähler form ω. Let f ∈ C3,α(M), φ ∈ C5(M), 0 < A and 0 ≤ Q1, Q2, Q3, Q4, such that

(ω + ddcφ)m = Aefωm, ||f ||C3,α ≤ Q1, ||φ|| ≤ Q2, ||ddcφ|| ≤ Q3, and ||∇ddcφ|| ≤ Q4.

Then φ ∈ C5,α(M) and there exists 0 ≤ Q5, such that ||φ||C5,α ≤ Q5. Even more, if f ∈ Ck,α(M)
with 3 ≤ k, then φ ∈ Ck+2,α(M), and if f ∈ C∞(M) then φ ∈ C∞(M).

Theorem 1.3 (3rd Theorem). Let (M,J) be a compact complex manifold, g a Kähler metric on
M with Kähler form ω. Fix α ∈ (0, 1), let f ′ ∈ C3,α(M), φ′ ∈ C5,α(M) and 0 < A′, such that∫

M
φ′ dVg = 0, and

(
ω + ddcφ′

)m
= A′ef

′
ωm.
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Then, for every f ∈ C3,α(M), such that ||f − f ′||C3,α < ε, ∀ ε > 0, there exists φ ∈ C5,α(M), and
0 < A, such that ∫

M
φdVg = 0, and (ω + ddcφ)m = Aefωm.

Theorem 1.4 (4th Theorem). Let (M,J) be a compact complex manifold, g a Kähler metric on
M with Kähler form ω. Let f ∈ C1(M), then there exists an unique function φ ∈ C3(M), such
that ∫

M
φdVg = 0, and (ω + ddcφ)m = Aefωm.

Theorems 1.1 and 1.2 provide us a priori bounds for φ and its derivatives, needed to prove that
S is closed. Theorem 1.3 proves that S is open. With these two statements and the facts that [0, 1]
is connected and S is non-empty we have that S = [0, 1]. Hence, φ exists. Finally, theorem 1.4
gives us the uniqueness of φ and the conjeture is proved.

Thesis organization

This work is organized as follows:
On chapter 2 the main concepts from complex geometry are reviewed as well as the proofs

for certain results that are going to be useful in the reformulation of the Calabi conjecture. This
concepts include, but are not restricted to, the definition of complex manifolds, complex structures,
Kähler metrics, Kähler manifolds, curvature on Kähler manifolds and characteristic classes with an
emphasis on the second Chern class of a manifold. Next, on chapter 3 elliptic operators on compact
manifolds are presented with emphasis on their regularity properties, the ones that were crucial
in Yau’s work. We discuss Hölder spaces, embedding theorems, regularity existence theorems for
solutions to elliptic equations.

Now that our framework has been established, in chapter 4 we reformulate the Calabi conjecture
in terms of the Monge-Ampère equation. We present the four key theorems that are going to greatly
illuminate our way and a sketch of the proof is discussed. After the intuitive setup, in chapter 5
the four theorems previously written are proved, this is the main part of this work.

With the four theorems proved, in chapter 6 we present the so long wanted proof to the Calabi
conjecture as a merely application of the four theorems. Finally, we present our conclusions.
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Chapter 2

Results on Kähler geometry

The main frame of this work is the field of complex differential geometry. In particular Kähler
geometry, which consists in the study of Kähler manifolds and their properties. In this section we
are going to review the essential ideas and state the main theorems that we are going to use in this
work.

This section is based on [MK06, FG12, Mor07, KN63].

2.1 Complex manifolds

A complex manifold of dimension m is a topological manifold (M,U) whose atlas {φU}U∈U satisfies,
as usual, the compatibility condition: for every U , V ∈ U , such that U ∩ V 6= ∅, the composition
φU ◦ φ−1

V , is holomorphic. As always, we will say that (U, φU ) is a chart.
Our first example, and a really important complex manifold, is the complex projective space CPm,
defined as follows.

Consider Cm+1 − {0}, with the following equivalence relation

(z0, . . . , zm) ∼ (αz0, . . . , αzm) , ∀α ∈ C.

Then we define CPm :=
(
Cm+1 − {0}

)
/ ∼ .

To show that it is a complex manifold we need to prove that given a open cover Un, take two
intersecting Ui, Uj , and prove that φi ◦ φj is holomorphic on its domain. Thus, given a point
(αz0, . . . , αzm) in Cm+1 consider its equivalence class, denoted as [αz0 : . . . : αzm], and define the
open cover Un as

Ui := {[αz0 : . . . : αzm] |zi 6= 0} .

And define each φi : Ui → Cm, as

φi (αz0, . . . , αzm) =

(
z0

zi
, . . .

zi−1

zi
,
zi+1

zi
, . . . ,

zm
zi
,

)
.

5



6 CHAPTER 2. RESULTS ON KÄHLER GEOMETRY

Hence, for the composition, we have

φi ◦ φ−1
j (w1, . . . , wm) =

(
w1

wi
, . . . ,

wi−1

wi
,
wi+1

wi
, . . . ,

wj−1

wi
,

1

wi
,
wj+1

wi
, . . . ,

wm
wi

)
,

and we can conclude that it is holomorphic in its domain.
Now, for a better understanding on complex manifolds we need to define almost complex manifolds
and work with their tangent spaces. Thus, we start by defining almost complex structures.

Definition 2.1.1 (Almost complex structure and almost complex manifolds.). An almost complex
structure on a real differential manifold M is a tensor field J which is, at every point x on M ,
an endomorphism of the tangent space Tx(M) such that J2 = −I. A manifold with a fixed almost
complex structure is called an almost complex manifold, i.e the pair (M,J) is referred to as an
almost complex manifold.

Let (M,J) be an almost complex manifold. Define TMC := TM ⊗ C.
Due to C linearity we can extend all real endomorphisms from TM to TMC. Let T 1,0M and T 0,1M
be the eigenbundles of TMC associated with the eigenvalues i and −i of J . Then the following
lemma is true:

Lemma 2.1.1.

T 1,0M = {X − iJX |X ∈ TM} , T 0,1M = {X + iJX|X ∈ TM} ,

and
TMC = T 1,0M ⊕ T 0,1M.

With this result, we can prove the next theorem:

Theorem 2.1.2 (Newlander-Nirenberg theorem). Let (M,J) be an almost complex manifold. Then
J comes from a holomorphic structure if and only if T 0,1M is integrable.

This result is really helpful, since every almost complex structure arising from a holomorphic
structure is called a complex structure. And of course, in that case the pair (M,J) is called a
complex manifold.

2.1.1 Exterior forms on complex manifolds

Now it is time to turn our attention to exterior forms and introduce the complexified exterior bundle
ΛCM , which is defined in the very same way as the complexified tangent space, i.e ΛCM := ΛM⊗C.
The sections of ΛCM can be viewed as complex valued forms ω + iρ, where ω and ρ are real forms
on M.
In the same spirit as before, we define the following subbundles of Λ1

CM :

Λ1,0
C M =

{
ω ∈ Λ1

CM |ω(X) = 0, ∀X ∈ T 0,1M
}
,



2.1. COMPLEX MANIFOLDS 7

and

Λ0,1
C M =

{
ω ∈ Λ1

CM |ω(X) = 0, ∀X ∈ T 1,0M
}
.

From these definitions we can propose an analogous result to lemma 2.1.1.

Lemma 2.1.3.

Λ1,0M =
{
ω − iω |ω ∈ Λ1M

}
, Λ0,1M =

{
ω + iω|ω ∈ Λ1M

}
,

and

Λ1
CM

C = T 1,0M ⊕ T 0,1M.

Now we want to build ΛkCM for 1 ≤ k. Let us denote the kth power of Λ1,0 by Λk,0, analogously
for Λ0,1 we have Λ0,k, define Λp,q as Λp,q = Λp,0 ⊗ Λ0,q, then from lemma 2.1.3 we conclude that

ΛkC ' ⊕p+q=kΛp,q.

Analogous to the case of Riemannian manifolds, the sections of ΛkC are called (p, q)- forms, and the
space of (p, q)-forms is denoted by Ωp,q(M).

One important feature of having a complex structure J is that we can describe the previous
spaces in terms of a local holomophic coordinate system by the following procedure: Let zα = xα+
iyα be the αth coordinate of some φUi , so we can extend the exterior derivative on complex valued
functions, by C linearity, and define complex valued 1-forms dzα = dxα+idyα, and dz̄α = dxα−idyα.
So we have local bases for Λ0,1

C M and Λ1,0
C M given by {dz1, . . . , dzm}, and {dz̄1, . . . , dz̄m}. From

them we can give a basis for Λp,qM as
{
dzi1 ∧ · · · ∧ dzip , i1l

}
.

Let us define the following differential operators for every (fixed) (p, q).

∂ : Ωp,q(M)→ Ωp+1,q(M),

and

∂̄ : Ωp,q(M)→ Ωp,q+1(M),

by

d = ∂ + ∂̄.

Now we propose the next lemma.

Lemma 2.1.4. The following identities hold:

• ∂2 = 0.

• ∂̄2 = 0.

• ∂∂̄ + ∂̄∂ = 0.
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Proof. We already know that d2 = 0, and by definition of ∂, ∂̄, then

d2 =
(
∂ + ∂̄

)2
= ∂2 + ∂̄2 + ∂∂̄ + ∂̄∂.

Since all of them take values in different sub-bundles then each one is zero.

Now, we may define the Dolbeault cohomology groups Hp,q

∂̄
of a complex manifold by

Hp,q

∂̄
=

ker(∂̄)

Im(∂̄)
.

We also define the operator dc = i
(
∂̄ − ∂

)
. An important identity is that ddc = 2i∂∂̄.

To end this subsection we will prove an important way to characterize closed forms. Before
proving that we need the following lemma.

Lemma 2.1.5. A ∂̄ closed (1, 0)-form is locally ∂̄ exact.

With this in hand we can prove the following theorem

Theorem 2.1.6. Let ω ∈ Ω1,1M ∩Ω2M , be a real 2-form and a complex (1, 1)-form on a complex
manifold M . Then ω is closed if and only if every point x ∈ M has an open neighbourhood U such
that the restriction of ω to U equals 2i∂∂̄f = ddcf for some real function f on U .

Proof. (→)
Let ω be a closed (1, 1)-form, in particular it is a closed 2-form, so from the Poincarè Lemma, there
exist a real 1-form ρ such that

dρ = ω.

Let ρ = ρ1,0 +ρ0,1, be the decomposition of ρ in terms of elements of Λ1,0M and Λ0,1M respectively.
So, ρ1,0 = ¯ρ0,1. Hence

ω = dρ = ∂ρ1,0 + ∂ρ1,0 + ∂̄ρ1,0 + ∂̄ρ0,1.

Since ω is a (1, 1)-form, then ∂ρ1,0 = 0 = ∂̄ρ0,1, and ω = ∂ρ1,0 + ∂̄ρ1,0. Now, by the lemma 2.1.5
there exists g such that ρ0,1 = ∂̄g. Taking the complex conjugate, we have that ρ1,0 = ∂ḡ, so we
conclude that

ω = ∂∂̄g + ∂̄ḡ = i∂∂̄ (2 Im g) = ddc(Im g).

So the theorem follows with f = Im g.
(←)
If ω = 2i∂∂̄f = ddcf for some real function f , then

d
(
2i∂∂̄f

)
= i
(
∂ + ∂̄

)
∂∂̄f = 0.

Last equality follows from lemma 2.1.4.
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2.2 Kähler manifolds

Now that we have already introduce the basic concepts, we shall focus our efforts on a particular
class of Complex Manifolds: the Kähler manifolds.

2.2.1 Hermitian metrics

We start by defining an hermitian metric

Definition 2.2.1 (Hermitian metric). An hermitian metric over a complex/almost complex man-
ifold is a metric such that it is invariant by the complex/almost-complex structure J , i.e for any
vector fields X, Y ,

h (JX, JY ) = h (X,Y ) .

It is worth to mention that the fundamental 2-form of a hermitian metric is defined by ω(X,Y ) =
h(JX, Y ).
A very simple fact for almost complex manifolds is that they always admit hermitian metrics. Pick a
Riemannian metric g on M and define h(X,Y ) = g(X,Y )+g(JX, gY ), since M is complex/almost-
complex h is hermitian.

Let (M,h, J) a complex hermitian manifold, zα holomorphic coordinates on M and denote hα,β̄
the coefficients of h in these coordinates, given by

hα,β̄ = h

(
∂

∂zα
,
∂

∂zβ̄

)
.

From this fact we can write the fundamental form ω in local coordinates as

ω = i
m∑

α,β=1

hαβ̄dzα ∧ dzβ̄.

2.2.2 Kähler metrics

Suppose that the fundamental form ω of a complex hermitian manifold is closed. Then by theorem
2.1.6, locally exists a functionf such that ω = ddcf. In coordinates we have that the hermitian
metric h is

∂2f

∂zα∂z̄β
,

from this we get the inspiration to define Kähler metrics.

Definition 2.2.2. An hermitian metric h on an almost complex manifold (M,J) is called a Kähler
metric if J is a complex structure and ω is closed.
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It follows that a local real function f satisfying ω = ddcf, is called a local Kähler potential of
the metric h.

In the following proposition we state some Kähler metrics properties.

Proposition 2.2.1. Let M be a complex manifold with dimension 2m, J an almost complex struc-
ture on M , g a hermitian metric on M , with hermitian (fundamental) form ω and ∇ the Levi-Civita
connection of g. Then the following are equivalent

• J is a complex structure and g is Kähler,

• ∇J = 0,

• ∇ω = 0.

In this case the (1, 1)−form ω is called the Kähler form of the Kähler metric g.

We now state a lemma that is going to be really useful.

Lemma 2.2.2. Let M be a compact, complex manifold. Let g, g′ be Kähler metrics with Kähler
forms ω, ω′ respectively. Suppose that [ω] = [ω′] in H2(M,R). Then there exists a smooth, real
function φ on M , such that

ω′ = ω + ddcφ.

Also, φ is unique up to a constant.

Proof. We have that [ω] = [ω′], then ω′−ω is an exact real (1, 1)−form. So, there exists a function
φ, such that

ω′ − ω = ddcφ,

hence,

ω′ = ω + ddcφ.

Now, suppose we have another function ϕ, such that

ω′ = ω + ddcϕ.

Thus

ddc(φ− ϕ) = 0.

As M is compact, this implies that φ − ϕ is a constant on M . Therefore φ is unique up to a
constant.
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2.2.3 Examples of Kähler manifolds

As a first example we can consider the flat metric on Cn. Lets write its coefficients in the canonical
holomorphic coordinates

hα,β̄ = h

(
∂

∂zα
,
∂

∂zβ̄

)
=

1

4
h

(
∂

∂xα
− i ∂

∂yα
,
∂

∂xβ
− i ∂

∂yβ

)
=

1

2
δα.

De modo que su forma de Kähler será

Ω = i
1

2

m∑
α=1

dzα ∧ dz̄α =
i

2
∂∂̄|z|2.

So, the Kähler potential for the canonical hermitian metric on Cn is

u(z) =
1

2
|z|2.

Another relevant example will be a metric on our basic example for complex manifolds, the complex
projective space CPn.

Consider the canonical holomorphic atlas (Uj , φj), as defined in sec.2.1, and take the canonical
projection π : Cn+1 − {0} → CPn, as every projection it is surjective. Now consider the functions
u : C→ R, and v : Cm+1 − {0} → R defined as

u(w) = log
(
1 + |w|2

)
, and v(z) = log

(
|z|2
)
.

Now, for every j we define fj : Cn+1−{0} → Cn, as fj = φj ◦ π. Since fj is the composition of two
holomorphic functions it is holomorphic. We proceed to calculate the composition u ◦ fj(z) and we
find that

u ◦ fj(z) = v(z)− (| z|)2 .

Since ∂∂̄ (| z|)2 = 0, then (fj)
∗(∂∂̄u) = ∂∂̄v, ∀j. So we can define

Ω|Uj = i (φj)
∗ (∂∂̄u) ,

from which we have

π∗(Ω) = i∂∂̄v.

From this, we arrive to the tensor h, naturally defined as

h(X,Y ) = Ω(X,JY ).

This tensor is symmetric and hermitian, we need to prove that h is positive definite on CPn to be
sure that h defines a Kähler metric on CPn.
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2.2.4 Curvature of Kähler manifolds

Consider a Kähler manifold (M,J) with Kähler metric h and Levi-Civita covariant derivative ∇.
As usual in Riemannian geometry, we denote by Rabcd its curvature tensor, in local coordinates we
have that

Rabcd = Rαβγδ̄ +Rαβγ̄δ +Rᾱβ̄γδ̄ +Rᾱβ̄γ̄δ.

Using Riemannian symmetries for Rabcd and complex conjugation we can note that the only com-
ponent that codifies the Kähler curvature is

Rαβγδ̄.

Now, the Ricci tensor is Rbd = Rabad. In coordinates

Rbd = Rαβγδ̄ +Rᾱβ̄γ̄δ.

Thus, Rαβ̄ = Rᾱβ, Rαβ = Rβα and, from symmetries of curvature Rab = Rba. These last properties
tell us that the Ricci tensor satisfies the same conditions as a hermitian metric, remember that
from a hermitian metric we can construct a hermitian form, so it has to be possible to construct a
Ricci form from the Ricci tensor.

Define ρ the Ricci form as

ρab = iRαβ̄ − iRᾱβ.

We have that ρ is a real (1, 1)−form, and we can recover the Ricci tensor from it. It is a closed
2−form and its cohomology class [ρ] ∈ H2(M,R) is related to the first Chern class of M as we will
see later.

Taking a Kähler metric gαβ̄, an important local expression for the Ricci tensor is:

Rαβ̄ = −∂α∂̄β̄
(
log det gγδ̄

)
,

so, the Ricci form is

ρ = −i∂∂̄
(
log det gγδ̄

)
= −1

2
ddc

(
log det gγδ̄

)
.

2.3 Characteristic classes

In this work we are not interested on a comprehensive description of the theory of Chern classes,
we will outline here the definition and properties of the first Chern class, as is the only one that we
require for our purposes.
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2.3.1 Chern-Weil theory

The following is our main definition in this section

Definition 2.3.1 (First Chern class). To every complex vector bundle E over a smooth manifold M
one can associate a cohomology class c1(E) ∈ H2(M,Z) called the first Chern class of E satisfying
the following axioms:

1. For every smooth map f : M → N and a complex vector bundle E over N , one has
f∗ (c1(E)) = c1 (f∗E) .

2. For any bundles E and F over M one has c1 (E ⊕ F ) = c1(E) + c1(F ), where E ⊕ F is the
Whitney sum.

3. The first Chern class of the tautological bundle of CP 1 is equal to −1 in H2
(
CP 1,Z

)
.

In a very simple way, Chern-Weil theory allows us to express the images in real cohomology of
the Chern classes of E using the curvature of an arbitrary connection ∇ on E. In the following we
will elaborate on this. We know that the curvature of an arbitrary ∇ is given by

R (σi) =

k∑
j=1

Rijσj =

k∑
j=1

(
dωij −

k∑
l=1

ωil ∧ ωljσj ,

)
(2.1)

where {σi}i∈{1...,k} are local sections of E which form a basis of each fibre over some open set U

and the connection forms ωij are defined by ∇σi =
∑k

j=1 ωij⊗σj . Since the coefficients Rij depend
on the basis {σi}i∈{1...,k}, its trace is a well defined 2-form independent of the chosen basis, even
more, the following lemma is true.

Lemma 2.3.1. The cohomology class [Tr(R)] ∈ H2(M,C) of the closed 2-form Tr(R) does not
depend on the connection.

Proof. Take two different connections on E, say ∇ and ∇′. Define A = ∇ − ∇′. Then, by the
Leibniz rule, A is a smooth section of Λ1(M)⊗End(E), hence Tr(A) is well defined so we conclude
that

Tr(R) = Tr(R′) + d (Tr(A)) .

Now we calculate [Tr(R)].Take h an hermitian structure on E, and ∇ such that h is parallel
under ∇, and {σi}i∈{1...,k} a basis adapted to h. Then

0 = ∇ (δij) = ∇ (h (σi, σj)) = h (∇σi, σj) + h (σi,∇σj) = ωij + ω̄ji.

From ec (2.1) we have that
R̄ij = −Rji,

then Tr(R) is a purely imaginary 2-form.
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Theorem 2.3.2. Let ∇ be a connection on a complex bundle E over M . The real cohomology class
c1(∇) given by

c1(∇) =

[
i

2π
Tr (R)

]
,

is equal to the image of c1(M) in H2(M,R.

Proof. To prove this theorem, we need to prove that c1(∇) satisfies the definition 2.3.1.

Firstly, we know that if f : M → N is smooth, and π : E → N is a rank k vector bundle, then
we have that the pull-back f∗(E) is

f∗(E) = {(x, v)|x ∈ M, v ∈ E, f(x) = π(v)} .

Take {σi} a basis of local sections of E, then a basis of local sections of the pull-back f∗(E) is given
by

f∗σi : M → f∗(E), x→ (x, σi(f(x))) .

Now, to define a connection on f∗(E), take

f∗∇ (f∗σ) = f∗(∇σ).

From this we write R′ij as the Ricci tensor associated to the connection f∗∇, and we get that

R′ij = f∗ (Rij) ,

and this part of the proof is done.

Then, in order to verify the Whitney sum formula let us take two complex bundles over M , say
E and E′ with connections ∇ and ∇′. So we can define a connection on E ⊕ E′ acting on local
basis of sections {σ}i and {σ′}j as(

∇⊕∇′
)
X

(
σ ⊕ σ′

)
= ∇Xσ ⊕∇′Xσ′.

Note that since {σ}i and {σ′}j are basis of sections of E and E′ respectively, then {σi ⊕ 0, 0⊕ σ′}
is a local basis for E ⊕ E′. Hence, the curvature of ∇ ⊕ ∇′ is a matrix having R and R′ on the
diagonal, so its trace is the sum of the traces of R and R′.

Finally, for the normalization property we take the tautological bundle L → CP 1. For any
section σ of L we denote by σ0 and σ1 the expressions of σ in the standard local trivializations of
L, given by ψj = π−1(Uj)→ Uj × C, defined as ψj(w) = (π(w), wj) .

Now, the hermitian product on C2 induces a hermitian structure h on L. Take ∇ the Chern
connection on L associated to h, then choose a local holomorphic section σ. If ω is the connection
form of ∇ with respect to σ, then ∀X ∈ TCP 1 we have

∂X
(
|σ|2

)
= ∂X (h(σ, σ)) = h (∇Xσ, σ) + h (σ,∇Xσ) = ω(X)|σ|2 + ω̄|σ|2.
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So we have ω+ ω̄ = d log
(
|σ|2

)
. And, since σ is holomorphic and ∇0,1 = ∂̄, then ω is a (1, 0)−form,

ω = ∂ log
(
|σ|2

)
. So,

R = dω = ∂̄∂ log
(
|σ|2

)
.

After this procedure, we find that in order to prove that the normalization axiom is satisfied, we
have to prove that

i

2π

∫
CP 1

R =
i

2π

∫
CP 1

∂̄∂ log
(
|σ|2

)
= −1.

For this calculation see [Mor07]

2.3.2 1st Chern class properties

In order to close this section, and this chapter, we state the basic properties of the first Chern class
of a given complex vector bundle over M in a single proposition.

Proposition 2.3.3. Let M be a smooth manifold and let E, F be two complex vector bundles over
M . Then the following are true

• c1(E) = c1

(
ΛkE

)
, where k denotes the rank of E.

• c1 (E ⊗ F ) = rk(F )c1(E) + rk(E)c1(F ).

• c1 (E∗) = −c1(E), where E∗ denotes the dual of E.
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Chapter 3

Results on elliptic operators theory

In this section we will study Hölder spaces and the main results on regularity of elliptic operators
in these spaces. It is based on [MJ09, GT15, Joy00].

3.1 Four special vector spaces

As we want to make progress in the study of elliptic operators it is useful to work with some
infinite-dimensional vector spaces of functions on our manifold M with certain norms that give
those vector spaces a richer structure, say making them Banach spaces. We are going to deal with
four vector spaces, the space of functions with k-th continuous derivatives, Lebesgue spaces, Hölder
spaces and Sobolev spaces

3.1.1 Lebesgue spaces

We start from the simplest, non-trivial spaces: the Lebesgue spaces. We will define them as follows

Definition 3.1.1 (Lebesgue Spaces). Let M be a Riemannian compact manifold with metric g,
and let 1 ≤ p. Then we say that the p-th Lebesgue space Lp(M) is the space of the locally integrable
functions on M for which the norm ||f ||Lp is finite.

The norm ||f ||Lp is given by

||f ||Lp :=

(∫
M
|f |pdVg

)1/p

.

Let us make a brief observation.

Proposition 3.1.1. Define ||f ||∞ as follows

||f ||∞ = sup {|f(x)| |x ∈M} .

17
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Then
lim
p→∞

||f ||Lp = ||f ||∞ .

Proof. Take ε > 0. For ε we define the subset

Mε = {x ∈M | |f(x)| ≥ ||f ||∞ − ε} ,

so
(||f ||∞ − ε) Vol (Mε)

1/p ≤ ||f ||Lp ≤ ||f ||∞Vol (M)1/p ,

taking limp→∞ we have
(||f ||∞ − ε) ≤ lim

p→∞
||f ||Lp ≤ ||f ||∞ .

Since this is true for every ε, then

||f ||∞ ≤ ||f ||Lp ≤ ||f ||∞ .

An important result, known as the Hölder inequality for Lebesgue spaces states the following

Theorem 3.1.2 (Hölder inequality for Lebesgue spaces). Suppose r, s, t ∈ R, such that r, s, t ≥ 1
and 1/r = 1/s+ 1/t. If f ∈ Ls, and g ∈ Lt, then fg ∈ Lr, and ||fg||Lr ≤ ||f ||Ls ||g||Lt.

For a proof refer to [GT15].
Now, let us briefly discuss the need to study more complex spaces. From real calculus we have

the following notion of regularity

If f ′′ = g ∈ Ck ⇒ f ∈ Ck+2,

and a naive intuition of existence

If g ∈ Ck, then ∃f ∈ Ck+2 such that f ′′ = g.

So, with this in mind in seems natural that the following are true

If ∆f = g ∈ Ck ⇒ f ∈ Ck+2, (3.1)

and
∀ g ∈ Ck ∃ f ∈ Ck+2 such that ∆f = g. (3.2)

Sadly, this is false whenever the dimension of our space is greater than one because of the
structure of the Ck spaces[MJ09]. In order to achieve regularity we need to work in spaces with
richer structure, like the Hölder spaces Ck,α, where α ∈ (0, 1) and the Sobolev spaces Lpk, 1 < p <∞.
If we replace Ck and Ck+2 with Ck,α and Ck+2,α or by Hk,p and Hk+2,p, then our assertions (3.1),
(3.2) become true as we shall prove in the following sections.
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3.1.2 Hölder spaces

In order to define Hölder spaces first we need to define Hölder continuity

Definition 3.1.2 (Hölder Continuity). Let α ∈ (0, 1), A ⊂ R be a connected, bounded open set
and Ā its closure. Then f : A→ R is Hölder continuous with exponent α if the following quantity
exists

[f ]α,Ā = sup
x,y ∈Ā, x 6=y

||f(x)− f(y)||
|x− y|α

, (3.3)

where || · || is the usual norm in Ck(Ā).

With the concept of Hölder continuity, given a connected bounded set A and α ∈ (0, 1) we
define the Hölder space Ck,α

(
Ā
)

in the following way

Definition 3.1.3 (Hölder space). The Hölder space Ck,α
(
Ā
)

is the space of real valued functions
defined on A all of whose k-th order partial derivatives are Hölder continuous with exponent α.

This space is a Banach space with the norm

||f ||k,α := ||f ||+ max
|j|=k

[
∂jf

]
α,Ā

.

3.1.3 Sobolev spaces

Let f ∈ C∞(M), p ∈ R | 1 ≤ p, and an integer k ≥ 0. Then we define the following norm

||f ||k,p :=

∫
M

∑
|j|≤k

∣∣∣∣Djf
∣∣∣∣p dxg

1/p

, (3.4)

where Djf is the j-th covariant derivative of f and of course
∣∣∣∣Djf

∣∣∣∣ is the pointwise norm of Djf .
With this norm in hand we can define Sobolev spaces.

Definition 3.1.4 (Sobolev space). The Sobolev space Lpk is the completion of C∞(M) under the
norm (3.4).

3.1.4 Sobolev embedding theorem

Now that we defined Lebesgue, Hölder and Sobolev spaces is natural to ask ourselves if there is
some way to relate them. For being specific, the question is how do the metrics from the previeous
subsections are related to each other.

The answer is given by the Sobolev inequalities. These inequalities are kind of generalizations of
the mean theorem value, since they give us estimates for the functions in terms of their derivatives.
We could state some inequalities in one dimension to illustrate the previous statement, but instead
we are going to present the most general result in this sense: the Sobolev embedding theorem.
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Theorem 3.1.3 (Sobolev embedding theorem). Let l, k ∈ Z such that 0 ≤ l ≤ k, and assume
f ∈ Lpk(M). Recall that n = dim(M). Then we have the following two results

1. If k − n/p < l, and q satisfies

k − n

q
≤ k − n

p
,

then there exists a positive constant c independent of f such that

||f ||l,q ≤ c ||f ||k,p .

Thus, there is a continuous inclusion Lpk(M) ↪−→ Hq,l(M).

2. If l < k − n/p < l + 1, take α = k − n/p − l. Then, there is a constant c independent of f
such that

||f ||k−n/p ≤ ||f ||l+α + ||f ||k,p .

Thus, there is a continuous inclusion Lpk(M) ↪−→ Ck−n/p(M) = C l+α(M), and a compact
inclusion Lpk(M) ↪−→ Cγ(M) for 0 < γ < k − n/p.

There is a particular case in the Sobolev embedding theorem, when the embeddings are compact
linear maps. These particular case goes by the name of Kondrakov theorem.

Theorem 3.1.4 (Kondrakov theorem). Suppose M is a compact Riemannian manifold of dimen-
sion m. Let k, l ∈ Z, such that 0 ≤ l ≤ k. And take q, r ∈ R, such that q, r ≥ 1, and take
α ∈ (0, 1). If

1

q
<

1

r
+
k − l
m

,

then the embedding Lkq (M) ↪−→ Lrl (M) is compact.
If

1

q
<
k − l − α

m
,

then Lkq (M) ↪−→ C l,α is compact. Also, Ck,α(M) ↪−→ Ck is compact.

For proofs of theorems 3.1.3 and 3.1.4, refer to [Aub70].
As the last result from this section we will write the inverse mapping theorem for Banach spaces.

Theorem 3.1.5 (Inverse mapping theorem). Let X, Y be Banach spaces, and U an open neigh-
bourhood for x ∈ X. Suppose that the function F : U → Y is Ck, with F (x) = y, and that the
first derivative of F at x, dFx : X → Y , is an isomorphism of X, Y both as vector spaces and
as topological spaces. Then there are open neighbourhoods U ′ ⊂ U of x and V ′ of y, such that
F : U ′ → V ′ is a Ck−isomorphism.

For a proof of this theorem see [Lan12].
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3.2 Differential operators

We will start by defining differential operators of order k.

Definition 3.2.1 (Differential operator of order k). Let M be a manifold, and ∇ a connection on
the tangent bundle of M . Let u be a smooth function on M . Then a differential operator (DO) of
order k is an operator P : C∞(M)→ C∞(M), such that it depends on u and its first k derivatives.
Explicitly,

(Pu)(x) = Q(x, u(x),∇u(x), . . . ,∇ku(x)),

where Q ∈ C∞(M).

Note that Pu can be linear or nonlinear, naturally depending on this the DO can be linear or
nonlinear.

In the case of a nonlinear DO, we can define its linearization as follows.

Definition 3.2.2. Let P be a nonlinear DO of order k. Let u ∈ Ck(M). We define the linearization
LuP of P at u as the derivative of P (v) with respect to v evaluated at u, this is

LuPv = lim
h→0

P (u+ hv)− P (u)

h
.

As always with polynomials many features are codified on the highest order terms, in this case
the higher order derivatives, with the following definition we can isolate those terms. In particular,
this is needed to address the “ellipticity” of an operator.

Definition 3.2.3 (Principal symbol of P ). Let P be a linear DO of order k. In index notation P
has the following form

Pu = Aa1,...,ak∇a1,...,aku+Ba1,...,ak−1∇a1,...,ak−1
u+ · · ·Ka1∇a1u+ Lu,

where A, B, . . . ,K are symmetric tensors and L is a real function.

Let σ(P ) : T ∗M → R be a function defined as σξ(P : x) = Aa1,...,ak∇a1,...,akξa1 , . . . , ξak at every
ξ ∈ T ∗M . This function σ(P ) is called the principal symbol of P .

3.3 Elliptic differential operators

With the concept of principal symbol of a DO in hand we can define an elliptic DO as follows.

Definition 3.3.1 (Elliptic differential operators). Let P be a linear DO of degree k on M . We say
that P is an elliptic differential operator (EDO) of degree k if for every x ∈ M and each nonzero
ξ ∈ T ∗(M), we have that

σξ(P : x) 6= 0.
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As a consequence from this definition we have that in dimensions greater than one, every EDO
must have even order.

Note that our last definition only takes into account linear DO’s. In the case of nonlinear DO’s
we have the following definition.

Definition 3.3.2. Let P be a nonlinear DO. We say that it is elliptic at u if its linearization Lup
is elliptic.

We must keep in mind that since the “ellipticity” of non linear DO’s depends on u it can be
elliptic on certain u’s and not at others.

Note that until now we are considering DO’s from functions on M to functions on M , but in
the context of manifolds it is important to consider the case when the DO’s acts on vector bundles
over M . We define precisely the action of DO’s on vector bundles on the following definition.

Definition 3.3.3. Let M be a manifold, V, W vector bundles over M , ∇ a connection on TM ,
and ∇V a connection on V . Take v a section of V .

A differential operator P of order k taking sections v of V to sections w of W is a DO that
depends on v and on its first k derivatives. Explicitly it is given by

(Pv)(x) = Q
(
x, v(x),∇Va1

v(x), . . . ,∇Va1,...,ak
v(x)

)
∈Wx.

The linearity and non linearity are defined in the same way as before. The same goes for the
linearization LvP , simply change the function u for a section v.

Another important difference between DO’s acting on sections is their form on index notation,
we write them as

Pv = Aa1,...,ak∇a1,...,akv +Ba1,...,ak−1∇a1,...,ak−1
v + · · ·Ka1∇a1v + Lv.

At first glance it seems identical to the expression for DO’s acting over functions, this is not the
case. In the previous expression the tensors Aa1,...,ak , Ba1,...,ak−1 , . . . ,Ka1 are tensors taking values
in V ∗ ⊗W . So when we contract them with a 1−form at x ∈ M we do not obtain a real number,
but a function from V ∗x to Wx.

The last major difference is found in the principal symbol of an DO on vector bundles. Let us
define it.

Definition 3.3.4. Let P be a linear DO of order k, mapping sections of V to sections on W in its
index notation. For every x ∈ M and each ξ ∈ T ∗xM , define the following linear map form Vx to
Wx

σξ(P : x) = Aa1,...,akξa1 , . . . , ξak .

Now, define σ(P ) : T ∗M × V →W as

σ(P )(ξ, v) = σξ(P : x)v, ∀x ∈M, ξ ∈ T ∗M.

σ(P ) is the principal symbol of P .
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Same as before, with the principal symbol defined we can define eliiptic DO’s on vector bundles.

Definition 3.3.5. Let V, W vector bundles over M . Let P be a linear DO of degree k from V to
W . We say that P is an elliptic DO if for every x ∈M and each nonzero ξ ∈ T ∗xM, the linear map
σξ(P : x) : Vx →Wx is invertible.

While in the case of nonlinear DO’s we have the next definition.

Definition 3.3.6. In the same setting as before, if P is a nonlinear DO of degree k from V to W
and v is a section of V with k derivatives, we say that P is elliptic at v if its linearization LvP is
elliptic.

An immediate consequence of P : V →W being elliptic is that dim(V ) = dim(W ).

3.4 Regularity of solutions of elliptic operators

In this section we will briefly discuss regularity of solutions u for the equation Pu = f , with P an
elliptic DO. Naively, we want to know how smooth is u. It should be as smooth as the problem
allows, say if f is k times differentiable, then u should be k + 2 times differentiable. However, as
we commented on 3.1 this is not true in general but it holds in Hölder spaces.

We will state two results that are going to be key for our work.

Theorem 3.4.1. Suppose M is a compact Riemannian manifold, V, W are vector bundles over
M such that dim(V ) = dim(W ), and P is a smooth linear elliptic DO of order k from V to W .
Let α ∈ (0, 1), p > 1 and l ≥ 0 be an integer. Suppose that P (v) = w holds, with v ∈ L1(V ) and
w ∈ L1(W ). We have the following relevant cases:

• If w ∈ C∞(W ), then v ∈ C∞(V ). If w ∈ Lpl (W ) then v ∈ Lpk+l(V ),

||v||Lpk+l
≤ C

(
||w||Lpl + ||v||L1

)
,

for some C > 0 independent of v and w.

• If w ∈ C l,α(W ), then v ∈ Ck+l,α(V ), and

||v||Ck+l,α ≤ C (||w||Cl,α + ||v||) ,

for some C > 0 independent of v and w.

These bounds for ||v||Lpk+l
and ||v||Ck+l,α are called the Lp estimates and Schrauder estimates

for P , respectively.
Note that in the previous theorem we require that P is smooth. It is possible to weaken

this hypothesis, demanding only continuity on its coefficients. The following theorem gives the
Schrauder estimates for P under such a condition.
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Theorem 3.4.2. Suppose M is a compact Riemannian manifold, V, W are vector bundles over M
such that dim(V ) = dim(W ), and P is a linear elliptic DO of order k from V to W . Let α ∈ (0, 1)
and l ≥ 0 be an integer. Suppose that the coefficients of P are in C l,α, and that P (v) = w for some
v ∈ Ck,α(V ) and w ∈ C l,α(W ). Then v ∈ Ck+l,α(V ), and

||v||Ck+l,α ≤ C (||w||Cl,α + ||v||) ,

for some C > 0 independent of v and w.

For a proof to both theorems we encourage the reader to review [MJ09].

3.5 Existence of solutions of elliptic equations

Even though there are many results on this subject we are going to restrict ourselves to state a
theorem that will be needed in the main part of this work. With this goal in mind we need to
define the adjoint of an DO first.

Definition 3.5.1. Let M be a compact manifold without boundary. Take V, W vector bundles
over M equipped with metrics on the fibres, and let P be a linear DO of order k from V to W with
coefficients at least k times differentiable. It turns out that there is a unique operator P ∗ of order
k from W to V with continuous coefficients, such that

〈Pv,w〉W = 〈v, P ∗w〉V , ∀ v ∈ L2
k(V ), w ∈ L2

k(W ).

This operator P ∗ is called the adjoint of P .

As an example, consider the operator d
dx on R with the L2 inner product. Its adjoint is found

by integration by parts, take φ and ψ with compact support on C∞(R) and calculate〈
ψ,

d

dx
φ

〉
=

∫
ψφ̄′ dx = −

∫
ψ′φ̄ dx =

〈
− d

dx
ψ, φ

〉
,

so we conclude that the adjoint of d
dx is − d

dx . Note that there are no boundary terms, we usually
will deal only with functions with compact support in order to avoid issues regarding boundary
terms and smoothness.

With this concept in hand we can state our desired theorem.

Theorem 3.5.1. Let α ∈ (0, 1) and k, l ∈ Z, such that k > 0 and l ≥ 0. Let V, W be vector
bundles over M , a compact Riemannian manifold, both equipped with metrics in their fibres. Take
a linear elliptic DO P of order k from V to W with coefficients in Ck,α. Then P ∗ is elliptic with
Ck,α coefficients, and both ker(P ) and ker(P ∗) are finite dimensional subspaces of Ck+l,α(V ) and
C l,α(W ) respectively.

Also, if w ∈ C l,α then there exists v ∈ Ck+l,α with Pv = w if and only if w ⊥ ker(P ∗). Even
more, if we demand that v ⊥ ker(P ), v is unique.

This theorem is going to play a fundamental role on the proof to 1.3. We must keep it in mind.
A proof for this theorem can be found in [GT15].



Chapter 4

Reformulating the Calabi conjecture

4.1 The Calabi conjecture

Up to now, we have studied complex manifolds and Kähler manifolds, which are an important class
of complex manifolds. We already defined Kähler metrics with their respective Ricci form. Let us
consider here a compact complex manifold (M,J), Kähler metric g with Ricci form ρ, which is a
closed (1, 1)−form and [ρ] = 2πc1(M). Let ρ′ be a closed (1, 1)−form, so we can ask the following
question: under which conditions can ρ′ be the Ricci form of a certain Kähler metric on M?

Eugenio Calabi gave us the answer for this question, formulated in his famous conjecture [Cal57]
that we shall enunciate now following the formulation given by D. Joyce [Joy00]:

Conjecture 4.1.1 (The Calabi conjecture). Let (M,J) be a compact, complex manifold, and g a
Kähler metric on M with Kähler form ω. Suppose that ρ′ is a real, closed (1, 1)−form on M with
[ρ′] = 2πc1(M). Then there exists a unique Kähler metric g′ on M with Kähler form ω′, such that
[ω′] = [ω] ∈ H2 (M,R), and the Ricci form of g′ is ρ′.

This conjecture remained unproved until Yau gave a proof [Yau77]. In this chapter we are going
to study a proof based on the progress given by Aubin [Aub70] and the proof provided by D. Joyce
[Joy00].

4.2 The road to reformulate the Calabi conjecture

The proof of Calabi’s conjecture will have the following structure:
First, we will reformulate the conjecture as a problem of finding the solution for a nonlinear,

elliptic partial differential equation in a real function. For this we need to state and prove four
theorems mainly proposed by Aubin and Yau himself [Yau77, Aub70], and then use those theorems
to prove Calabi’s conjecture.

We start thus by stating the Calabi conjecture in terms of a partial differential equation. Let
(M,J) be a compact, complex manifold, g a Kähler form ω, g the Kähler metric and ρ its Ricci

25
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form. Take ρ′ a real, closed (1, 1)−form on M with [ρ′] = 2πc1(M), then we need to find another
Kähler metric g′ such that it has Ricci form ρ′ and Kähler form ω′ that satisfies [ω′] = [ω].

Since [ρ] = [ρ′] = 2πc1(M), we have that [ρ − ρ′] = 0 in H2(M,R), so by 2.2.2 there exists a
unique smooth, real function f on M such that,

ρ′ = ρ− 1

2
ddcf.

Now, if we define a smooth, positive function F on M by ω′a = F · ωa, from which we can prove
that f − logF is constant on M , say − logA, with A > 0. Then F = Aef , and

ω′a = Aefωa. (4.1)

As [ω′] = [ω], and M is compact, then ∫
M
ω′a =

∫
M
ωa.

With this result, the constant A is determined, since

A

∫
M
efdVg =

∫
M
dFg = volg (M) . (4.2)

These arguments give us the tools to reformulate the Calabi conjecture in terms of the existence
of metrics with certain volume forms. We know that every volume form on M can be written as
FdVg, for F a smooth real function. And we impose two conditions: that it is positive (0 < F ) and
that it has the same total volume as the volume form dVg. Then the Calabi conjecture says that
there is a unique Kähler metric g′ with the same Kähler class, such that dVg′ = FdVg, the chosen
volume form.

Finally the Calabi Conjecture can be formulated as follows:

Conjecture 4.2.1 (The Calabi conjecture 2nd version). Let (M,J) be a compact, complex man-
ifold, g a Kähler metric on M , with Kähler form ω and define A > 0 by A

∫
M efdVg = volg (M) .

Then, there exists a unique Kähler metric g′ on M with Kähler form ω′, such that [ω′] = [ω], in
H2 (M,R), and ω′a = Aefωa.

Looking more carefully, note that this second version of the conjecture depends only on g′, not
on its derivatives, as the first version does since it deals with the Ricci curvature. Also this new
version gives us a single equation for g′, which greatly simplifies the problem.

One more observation, as [ω] = [ω′], by 2.2.2 there exists a smooth real function, such that

ω′ = ω + ddcφ.

As a last observation, we state the following lemma.



4.2. THE ROAD TO REFORMULATE THE CALABI CONJECTURE 27

Lemma 4.2.2. Let (M,J) be a compact, complex manifold, and g a Kähler metric on M , with
Kähler form ω. Let f be a continuous function on M , and define A by

A

∫
M
ef dVg = volg(M).

Suppose that φ ∈ C2(M) satisfies the equation given by

(ω + ddcφ)a = Aefωa,

on M . Then ω′ = ω + ddcφ is a positive (1, 1)−form.

Proof. Take some holomorphic coordinates {zi}i=1,...,m on a connected open set U in M . Then in
U , the metric g′ is

g′α,β̄ = gα,β̄ +
∂2φ

∂zα∂z̄β̄
.

So, g′ is a real, hermitian matrix. We know that any hermitian matrix has real eigenvalues, and
we know that ω′ = ω + ddcφ is a positive (1, 1)−form if and only if g′ is a hermitian metric.
Thus, in order to proof that ω′ is a positive (1, 1)−form, we have to show that g′ has only positive
eigenvalues.

The following observation will convince us that it is enough to show that g′ has only positive
eigenvalues at some point p ∈M . As we will state later, the equation

(ω + ddcφ)a = Aefωa,

in coordinates, is equivalent to

det

(
gαβ̄ +

∂2φ

∂zα∂z̄β̄

)
= Aef det

(
gαβ̄
)
.

Hence, det(g′) is positive on U , i.e. g′ has no zero eigenvalues. Then, by continuity if g′ has only
positive eigenvalues at some point p ∈ U they are positive everywhere in U .

Since M is compact and φ is continuous, φ has a minimum on M . Let p0 ∈ M be a minimum
point of φ in M , and U a coordinate patch that contains p0. At p0 g

′ has positive eigenvalues,

g is a hermitian metric and since p0 is a minimum ∂2φ
∂zα∂z̄β̄

is positive. Thus, g′ has only positive

eigenvalues at p0. Hence, ω′ is positive at p0.
Note that, by the connectedness of M , if we cover M with such open sets U it follows that if

ω′ is positive at some p ∈ M it is positive everywhere. Therefore, ω′ is a positive (1, 1)−form on
M .

Suppose that φ satisfies
∫
M φdVg = 0, which characterizes φ uniquely. So the second version of

the Calabi conjecture is equivalent to the following statement:
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Conjecture 4.2.3 (The Calabi conjecture 3rd version). Let (M,J) be a compact, complex manifold,
g a Kähler metric on M , with Kähler form ω. Let f be a smooth real function on M , and define
A > 0 by A

∫
M efdVg = volg (M) . Then there exists a unique smooth real function φ, such that:

1.
∫
M φdVg = 0,

2. (ω + ddcφ)a = Aefωa on M . Which is equivalent to the following: given some holomorphic
coordinates z1, . . . , zm, the condition on φ is

det

(
gαβ̄ +

∂2φ

∂zα∂z̄β̄

)
= Aef det

(
gαβ̄
)
. (4.3)

This last equation has crucial importance in our reformulation, it is a non-linear, elliptic, second
order partial differential equation on φ. It is known as the Monge-Ampère equation for compact
manifolds. From this version of the conjecture, we can finally conclude that the original Calabi
conjecture has been reduced to showing the existence and uniqueness of the solution for a particular
partial differential equation. This is precisely the reformulation of the conjecture that we wanted
to achieve.

4.3 The Four Theorems

In the following section we will enunciate the four theorems needed to provide a proof to the Calabi
conjecture.

Theorem 1.1 (1st Theorem). Let (M,J) be a compact complex manifold, g a Kähler metric on
M with Kähler form ω. Let f ∈ C3(M), φ ∈ C5(M), 0 < A and 0 ≤ Q1, such that

||f ||C3 ≤ Q1,

∫
M
φdVg = 0, and (ω + ddcφ)m = Aefωm.

Then there exists 0 ≤ Q2, Q3, Q4 depending only on M , J , g and Q1, such that

||φ|| ≤ Q2, ||ddcφ|| ≤ Q3, and ||∇ddcφ|| ≤ Q4.

Theorem 1.2 (2nd Theorem). Let (M,J) be a compact complex manifold, g a Kähler metric on
M with Kähler form ω. Let f ∈ C3,α(M), φ ∈ C5(M), 0 < A and 0 ≤ Q1, Q2, Q3, Q4, such that

(ω + ddcφ)m = Aefωm, ||f ||C3,α ≤ Q1, ||φ|| ≤ Q2, ||ddcφ|| ≤ Q3, and ||∇ddcφ|| ≤ Q4.

Then φ ∈ C5,α(M) and there exists 0 ≤ Q5, such that ||φ||C5,α ≤ Q5. Even more, if f ∈ Ck,α(M)
with 3 ≤ k, then φ ∈ Ck+2,α(M), and if f ∈ C∞(M) then φ ∈ C∞(M).
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Theorem 1.3 (3rd Theorem). Let (M,J) be a compact complex manifold, g a Kähler metric on
M with Kähler form ω. Fix α ∈ (0, 1), let f ′ ∈ C3,α(M), φ′ ∈ C5,α(M) and 0 < A′, such that∫

M
φ′ dVg = 0, and

(
ω + ddcφ′

)m
= A′ef

′
ωm.

Then, for every f ∈ C3,α(M), such that ||f − f ′||C3,α < ε, ∀ ε > 0, there exists φ ∈ C5,α(M), and
0 < A, such that ∫

M
φdVg = 0, and (ω + ddcφ)m = Aefωm.

Theorem 1.4 (4th Theorem). Let (M,J) be a compact complex manifold, g a Kähler metric on
M with Kähler form ω. Let f ∈ C1(M), then there exists an unique function φ ∈ C3(M), such
that ∫

M
φdVg = 0, and (ω + ddcφ)m = Aefωm.

4.3.1 A sketch of the proof

Reached this point is natural to ask how these theorems are going to help us to achieve our goal.
Everything is going to relay on the continuity method.

Such a method consists on building a uniparametric family of equations depending continuously
on a parameter t ∈ [0, 1] such that we know the solution for t = 0 and that we recover our original
equation for t = 1. If we find that the space of solutions φt is closed and open (clopen), then by
connectedness of the [0, 1] and the continuous dependence of our uniparametric equations on t then
the existence for the solution at t = 1 is warranted.

In our case, the equation that we want to solve is

(ω + ddcφ)m = Aefωm. (4.4)

It is easy to propose a solution for
(ω + ddcφ)m = ωm, (4.5)

such a solution trivially is φ0 = 0. Thus, we want to build a family of uniparametric equations such
that on t = 0 we have (4.5) and (4.4) on t = 1. Such a family is given by the following expression

(ω + ddcφt)
m = Ate

ftωm. (4.6)

Now, consider the set S defined as

S = {t ∈ [0, 1] |φt is a solution for (4.6)}. (4.7)

In order to prove that the solution for (4.4) exists, we shall prove that S is closed and open in [0, 1].
Since [0, 1] is a connected set and S is nonempty, because 0 ∈ S, we can conclude that S = [0, 1].
Therefore, the existence for φ in (4.4) is proved.
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Now, to prove that S is closed, we have to take a sequence in S, say {tj}∞j=0 suppose that it
converges to t′ and prove that such t′ ∈ S. Theorems 1.1 and 1.2 are the ones that warrant such a
property.

Next, we have to prove that S is open. For this, we shall take t′ ∈ S hence ∃φt′ solution for
(4.6). We have to show that if we take another t ∈ S “close enough” to t′ then φt is also “close
enough” to φt′ . Theorem 1.3 will give us this result.

With these two arguments and the continuity method the existence of the solution φ is obtained.
For the uniqueness, theorem 1.4 will be enough. Therefore, a proof to the Calabi conjecture will
be achieved.



Chapter 5

Proving the four theorems

In the past chapter we successfully reformulated the Calabi conjecture into showing the existence
and the uniqueness for the solution to the Monge-Amperé equation (4.3). In the following chapter
we are going to provide detailed proofs for each theorem. This chapter is the core of this work.
It is strongly based on [Joy00], we followed his ideas but we did every single calculation in detail
unless it is stated otherwise.

5.1 Some local calculations

Before proving the theorems, we need to state and prove previous results that take into account
results on local calculations.

Lemma 5.1.1. Let (M,J) be a compact Kähler manifold, with Kähler metric g and Kähler form
ω. Let f ∈ C0(M), φ ∈ C2(M) and 0 < A. Set ω′ = ω + ddcφ, suppose ωm = Aefω′m and let
g′ be the Kähler metric determined by ω′. Then ∀p ∈M , then there exist holomorphic coordinates
{z1, . . . zm} in an open neighborhood U of p, such that g, g′, ω and ω′ have the following local
expressions

gp = 2 |z1|2 + · · ·+ 2 |zm|2 , (5.1a)

g′p = 2a1 |z1|2 + · · ·+ 2am |zm|2 , (5.1b)

ωp = i (dz1 ∧ dz̄1 + · · ·+ dzm ∧ dz̄m) , (5.1c)

ω′p = i (a1dz1 ∧ dz̄1 + · · ·+ amdzm ∧ dz̄m) . (5.1d)

Now we ask how the aj ’s are related to Aef and to ∆φ.

Lemma 5.1.2. Let (M,J) be a compact Kähler manifold, with Kähler metric g and Kähler form
ω. Let f ∈ C0(M), φ ∈ C2(M) and 0 < A. Set ω′ = ω+ ddcφ, suppose ω′m = Aefωm and let g′ be
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the Kähler metric determined by ω′. Let p ∈M and consider the local expression for g and g′ at p
given by lemma 5.1.1. Then

m∏
j=1

aj = Aef(p), (5.2a)

∂2φ

∂zj∂z̄j
(p) = aj − 1, (5.2b)

(∆φ) (p) = m−
m∑
j=1

aj . (5.2c)

Proof. From equations (5.1c),(5.1d) in lemma 5.1.1 it follows that

ωmp = imm!
(
dz1 ∧ dz̄1 ∧ · · · ∧ dzm ∧ dz̄1

)
, (5.3)

and

ω′mp = imm!

m∏
j=1

aj (dz1 ∧ dz̄1 ∧ · · · ∧ dzm ∧ dz̄m) . (5.4)

Remember that ω′m = Aefωm, at p we have that

ω′mp = Aef(p)ωmp ,

so, plugging in equations (5.3),(5.4) it follows that

imm!

m∏
j=1

= imm!Aef(p),

hence
m∏
j=1

= Aef(p).

Recall that ω′ = ω + ddcφ, hence in coordinates

(
g′p
)
αβ

= (gp)αβ +
∂2φ

∂zα∂z̄β
,

if α = β = j (
g′p
)
jj

= (gp)jj +
∂2φ

∂zj∂z̄j
,

from lemma 5.1.1 we have

aj = 1 +
∂2φ

∂zj∂z̄j
,
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and we get the result
∂2φ

∂zj∂z̄j
= aj − 1.

For the last part of the lemma, we take into account the inverse of gp that trivially is (gp)
αβ = δαβ,

so the laplacian of φ is

∆φ = −gαβ∂α∂̄β̄φ

= −1

 m∑
j=1

(aj − 1)


= m−

m∑
j=1

aj .

Now, we define the squared norm of a tensor T = T a1...ak
b1...bl

as

|T |2g = T a1···ak
b1...bl

T c1...ckd1···dl ga1c1 · · · gakckg
b1d1 · · · gbldl .

With this definition we can calculate the values of |ddcφ|2g, |g′ab|
2
g and

∣∣g′ab∣∣2
g

in terms of the aj ,

j ∈ {1, . . . ,m} as in the following lemma.

Lemma 5.1.3. Let (M,J) be a compact Kähler manifold, with Kähler metric g and Kähler form
ω. Let f ∈ C0(M), φ ∈ C2(M) and 0 < A. Set ω′ = ω + ddcφ, suppose ω′m = Aefωm and let g′

be the Kähler metric determined by ω′. Let p ∈M , and take aj, j ∈ {1, . . . ,m} as in lemma 5.1.1.
Then

|ddcφ|2g = 2
m∑
j=1

(aj − 1)2 , (5.5a)

∣∣g′ab∣∣2g = 2

m∑
j=1

aj , (5.5b)

∣∣∣g′ab∣∣∣2
g

= 2
m∑
j=1

a−1
j . (5.5c)

Proof. This lemma follows from direct calculations,

|ddcφ|2g = ∂j∂j̄φ∂k∂k̄φ g
jkgj̄k̄

= ∂j∂j̄φ∂k∂k̄φ δ
jkδj̄k̄

= ∂j∂j̄φ∂j∂j̄φ
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∣∣g′ab∣∣2g =
m∑

a,b,c,d=1

g′abg
′
cdg

acgbd =
m∑

a,b,c,d=1

g′abg
′
cdδ

acδbd =
m∑

a,b=1

g′abg
′
ab

=

m∑
a=1

g′aag
′
aa =

m∑
j=1

g′jjg
′
jj =

m∑
j=1

a2
j .

∣∣∣g′ab∣∣∣2
g

=
m∑

a,b,c,d=1

g′abg′cdgacgbd =
m∑

a,b,c,d=1

g′abg′cdδacδbd =
m∑

a,b=1

g′abg′ab

=

m∑
a=1

g′aag′aa =

m∑
j=1

g′jjg′jj =

m∑
j=1

a−2
j .

With these results we can prove the following proposition that will provide bounds for the usual
norm of g′ab, g

′ab and ddcφ.

Proposition 5.1.4. Let (M,J) be a compact Kähler manifold, with Kähler metric g and Kähler
form ω. Let f ∈ C0(M), φ ∈ C2(M) and 0 < A. Set ω′ = ω+ ddcφ, suppose ω′m = Aefωm and let
g′ be the Kähler metric determined by ω′. Then

∆φ ≤ mA1/mef/m < m, (5.6)

and there exists c1, c2, c3 ∈ R depending only on m and upper bounds for ||f || and for ||∆φ||, such
that ∣∣∣∣g′ab∣∣∣∣ ≤ c1, (5.7a)∣∣∣∣∣∣g′ab∣∣∣∣∣∣ ≤ c2, (5.7b)

||ddcφ|| ≤ c3. (5.7c)

Proof. From lemma 5.1.2 we have ∆φ(p) = m−
∑
j = 1maj and

∏m
j=1 aj = Aef(p) so,

∆φ(p) = m− m

m

m∑
j=1

aj = m−m

 1

m

m∑
j=1

aj


≤ m−m

 m∏
j=1

aj

1/m

= m−m
(
Aef(p)

)1/m
= m−mA1/mef/m

< m,
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thus

∆φ ≤ mA1/mef/m < m.

Now, from lemma 5.1.3 we know that |ddcφ|2g = 2
∑m

j=1 (aj − 1)2 and |g′ab|
2
g = 2

∑m
j=1 aj so

|ddcφ|2g = 2
m∑
j=1

(aj − 1)2 =
m∑
j=1

(
a2
j − 2aj − 1

)
= 2

m∑
j=1

a2
j + 2

m∑
j=1

1− 2
m∑
j=1

aj ≤ 2
m∑
j=1

a2
j + 2

m∑
j=1

1

≤ 2

 m∑
j=1

aj

2

+ 2
m∑
j=1

1 = 2 (m−∆φ)2 + 2m.

Hence

|ddcφ|2g ≤ 2m+ 2 (m−∆φ)2 ,

so c3 = 2m+ 2 (m−∆φ)2 . On the other hand

∣∣g′ab∣∣2g = 2
m∑
j=1

aj ≤ 2

 m∑
j=1

aj

2

= 2 (m−∆φ)2 ,

therefore ∣∣g′ab∣∣2g ≤ 2 (m−∆φ)2 ,

so c1 = 2 (m−∆φ)2 .

And last but not least we have a result for some wedge products to be used later.

Lemma 5.1.5. Let (M,J) be a compact Kähler manifold, with Kähler metric g and Kähler form
ω. Let f ∈ C0(M), φ ∈ C2(M) and 0 < A. Set ω′ = ω+ ddcφ, suppose ω′m = Aefωm and let g′ be
the Kähler metric determined by ω′. Then

dφ ∧ dcφ ∧ ωm−1 =
1

m
|∇φ|2g ω

m, (5.8a)

dφ ∧ dcφ ∧ ωm−j−1 ∧
(
ω′
)j

= Fjω
m, (5.8b)

where j ∈ {1, 2, . . . ,m− 1}, and Fj are non-negative functions on M .

For a proof refer to [Joy00].
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5.2 The first theorem

Theorem 1.1 (1st Theorem). Let (M,J) be a compact complex manifold, g a Kähler metric on
M with Kähler form ω. Let f ∈ C3(M), φ ∈ C5(M), 0 < A and 0 ≤ Q1, such that

||f ||C3 ≤ Q1,

∫
M
φdVg = 0, and (ω + ddcφ)m = Aefωm.

Then there exists 0 ≤ Q2, Q3, Q4 depending only on M , J , g and Q1, such that

||φ|| ≤ Q2, ||ddcφ|| ≤ Q3, and ||∇ddcφ|| ≤ Q4.

Proof. We are going to enunciate and prove some results that will lead to the bounds that we are
looking for. They are divided in order zero bounds,second and third order bounds. They will give
us the bounds for ||φ||, ||ddcφ|| and ||∇ddcφ|| respectively. In every case we will assume the same
hypothesis as in 1.1.

Let us begin with the zero order bounds.

Lemma 5.2.1. Let 1 < p, p ∈ R. Then∫
M

∣∣∣∇ |φ|p/2∣∣∣2
g
dVg ≤

mp2

4(p− 1)

∫
M

(
1− ef

)
φ |φ|p−2 dVg. (5.9)

Proof. Remember that ω′m = efωm, so ω − ω′ = −ddcφ. Let us calculate ωm − ω′m.

ωm − ω′m = ωm − efωm =
(

1− ef
)
ωm (5.10)

= −ddcφ ∧
(
ωm−1 + ωm−2 ∧ ω′ + · · ·+ ωm−n−1ω′n + · · ·ω′m−1

)
(5.11)

=
(
ω − ω′

)
∧
(
ωm−1 + ωm−2 ∧ ω′ + · · ·+ ωm−n−1ω′n + · · ·ω′m−1

)
. (5.12)

Now, the Stokes theorem in compact manifolds without boundary says that the integral of the
exterior derivative of any (n− 1)-form is zero, so if we consider the next n− 1 form

φ|φ|p−2dcφ ∧
(
ωm−1 + ωm−2 ∧ ω′ + · · ·+ ωm−n−1ω′n + · · ·+ ω′m−1

)
,

then, from the Stokes theorem we have that∫
M
d
(
φ|φ|p−2dcφ ∧

(
ωm−1 + ωm−2 ∧ ω′ + · · ·+ ωm−n−1ω′n + · · ·+ ω′m−1

))
= 0.

Making the proper calculations we have that∫
M
d
(
φ|φ|p−2dcφ ∧

(
ωm−1 + ωm−2 ∧ ω′ + · · ·+ ωm−n−1ω′n + · · ·+ ω′m−1

))
=∫

M

(
d
(
φ|φ|p−2

)
∧ dcφ+ φ|φ|p−2ddcφ

)
∧
(
ωm−1 + ωm−2 ∧ ω′ + · · ·+ ωm−n−1ω′n + · · ·+ ω′m−1

)
=

(p− 1)

∫
M
|φ|p−2dφ∧ dcφ∧

(
ωm−1 + · · ·+ ω′m−1

)
+

∫
M
φ|φ|p−2ddcφ∧

(
ωm−1 + · · ·+ ω′m−1

)
= 0.

(5.13)
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So we have that∫
M
φ|φ|p−2

(
−ddcφ ∧

(
ωm−1 + · · ·+ ω′m−1

))
= (p− 1)

∫
M
|φ|p−2dφ ∧ dcφ ∧

(
ωm−1 + · · ·+ ω′m−1

)
,

replacing (5.10) we get∫
M
φ|φ|p−2

(
1− ef

)
ωm = (p− 1)

∫
M
|φ|p−2dφ ∧ dcφ ∧

(
ωm−1 + · · ·+ ω′m−1

)
.

Reached this point we look back at lemma 5.1.5, and making use of its results

dφ ∧ dcφ ∧ ωm−1 =
1

m
|∇φ|2g ω

m,

dφ ∧ dcφ ∧ ωm−j−1 ∧
(
ω′
)j

= Fjω
m,

we get ∫
M
φ|φ|p−2

(
1− ef

)
ωm =

p− 1

m

∫
M
|φ|p−2

(
|∇φ|2g +mF1 + · · ·+mFm−1

)
ωm,

here we make use of the fact that ωm = m! dVg, so we obtain∫
M
φ|φ|p−2

(
1− ef

)
ωm =

p− 1

m

∫
M
|φ|p−2

(
|∇φ|2g + F1 + · · ·+ Fm−1

)
dVg,

hence ∫
M
|φ|p−2

(
|∇φ|2g + F1 + · · ·+ Fm−1

)
dVg =

m

p− 1

∫
M
φ|φ|p−2

(
1− ef

)
dVg.

Note that every Fj is nonnegative, and |φ|p−2 |∇φ|2g = 4 1
p2

∣∣∇|φ|p/2∣∣2
g
. From this we have our desired

result because ∫
M
|φ|p−2 |∇φ|2g dVg ≤

∫
M
|φ|p−2

(
|∇φ|2g + F1 + · · ·+ Fm−1

)
dVg,

and ∫
M
|φ|p−2 |∇φ|2g dVg =

4

p2

∫
M

∣∣∣∇|φ|p/2∣∣∣2
g
,

therefore ∫
M

∣∣∣∇|φ|p/2∣∣∣2
g

=
p2m

4(p− 1)

∫
M
φ|φ|p−2

(
1− ef

)
dVg.

From now on, take ε = m
m−1 .
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Lemma 5.2.2. There exists C1, C2 ∈ R depending on M and g, such that if ψ ∈ L2
1(M) then

||ψ||2L2ε ≤ C1

(
||∇ψ||2L2 + ||ψ||2L2

)
.

Even more, if
∫
M ψ dVg = 0 then

||ψ||L2 ≤ C2 ||∇ψ||L2 .

Proof. Here we employ the Sobolev embedding theorem 3.1.3. We have for free the first part of the
lemma, i.e. there exists C1, C2 ∈ R depending on M and g, such that if ψ ∈ L2

1(M) then

||ψ||2L2ε ≤ C1

(
||∇ψ||2L2 + ||ψ||2L2

)
.

Now, for the second statement we take the operator d∗d : C∞(M) → C∞(M), and its kernel
ker(d∗d) that consists of the constant functions. Hence, since

∫
M ψ dVg = 0 it follows that, for

every constant function c

c

∫
M
ψ dVg = 0⇒

∫
M
cψ dVg = 0,

i.e. ψ is orhogonal to ker(d∗d).
Now, we know that d∗d has nonnegative eigenvalues. So, if we take λ1 as the smallest positive

eigenvalue of d∗d , ψ =
∑

j ϕj , where ϕj are eigenvectors of d∗d with eigenvalues λj ≥ λ1. Then

(d∗d)ψ = (d∗d)
∑
j

ϕj =
∑

(d∗d)ϕj =
∑

λjϕj .

So we can calculate

〈ψ, (d∗d)ψ〉 =
∑
j

λj 〈ψ,ϕj〉 ≥ λ1

∑
j

〈ψ,ϕj〉

= λ1

〈
ψ,
∑
j

ϕj

〉
= λ1 〈ψ,ψ〉 .

But, 〈ψ, (d∗d)ψ〉 = 〈dψ, dψ〉, so we obtain that

〈dψ, dψ〉 ≥ λ1 〈ψ,ψ〉 ⇒ ||dψ||L2 ≥ λ1||ψ||2. (5.15)

Recall that C∞(M) is dense in L2
1(M), the inequality in the norm L2 extends to L2

1. Therefore
equation (5.15) applies to ψ ∈ L2

1. And we have proved the result with C2 = 1
λ1

.

In order to obtain bounds for ||φ||Lp we need the following results.

Lemma 5.2.3. There exists C3 ∈ R, depending on M , g and Q1 such that if p ∈ [2, 2ε] then

||φ||Lp ≤ C3.
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Proof. We make use of lemma 5.2.1 putting p = 2, so we have∫
M
|∇ |φ||2g dVg ≤ m

∫
M

(
1− ef

)
φ|φ| dVg.

And, as ||f || ≤ Q1 then ef ≤ eQ1 and e−Q1 ≤ e−f ≤ eQ1 . Here we note that, if Q1 ≥ 1/2 then∣∣∣1− ef ∣∣∣ ≤ Q1,

if not, we simply define Q∗1 = Q1 + 1. For simplicity, lets assume Q1 ≥ 1/2.

With this in hand we get

||∇φ||2L2 =

∫
M
|∇ |φ||2g dVg ≤ m

∫
M

(
1− ef

)
φ|φ| dVg

≤ eQ1

m

∫
M

(
1− ef

)
|φ|2 dVg =

eQ1

m
||φ||L1 .

Now, in one hand since
∫
M φdVg = 0, then from lemma 5.2.2 there exists C2 such that ||φ||L2 ≤

Q2 ||∇φ||L2 . In the other hand, from Hölder inequality 3.1.2 we get

||φ||L1 ≤ volg(M)1/2||φ||L2 ≤ C2 volg(M)1/2 ||∇φ||L2 .

From where we have

||∇φ||2L2 ≤ mC2 volg(M)1/2 ||∇φ||L2 ,

i.e.

||∇φ||L2 ||∇φ||L2 ≤ mC2 volg(M)1/2 ||∇φ||L2 ⇒ ||∇φ||L2 ≤ mC2 volg(M)1/2.

Defining k = mC2 volg(M)1/2, it follows that

||φ||L2 ≤ C2k,

and from the first inequality from lemma 5.2.2

||φ||L2ε ≤ C1

(
(k)2 + (kC2)2

)
.

To summarize

||φ||L2 ≤ kC2, and ||φ||L2ε ≤ C1

(
(k)2 + (kC2)2

)
.

To obtain a single bound, we take into account the maximum of both bounds, say

C3 = max

[
kC2,

(
C1

(
(k)2 + (kC2)2

))1/2
]
.
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It follows that

||φ||L2 ≤ C3, and ||φ||L2ε ≤ C3.

Therefore, by Hölder inequality if p ∈ [2, 2ε]

||φ||Lp ≤ C3.

So, we successfully provided a bound for ||φ||Lp for certain p′s. Now we want to prove that
||φ||Lp is bounded for every p, in order to take the limit p→∞ and from this get the desired bound
for ||φ||. In this spirit, the next proposition is key.

Proposition 5.2.4. There exists Q2, C4 ∈ R depending on M , g and Q1 such that for each 2 ≤ p,
we have

||φ||Lp ≤ Q2 (C4p)
−m/p .

Proof. As we already proved, we know that ||φ||Lp ≤ C3 for p ∈ [2, 2ε]. Let us rely on this fact to
define a new positive constant Q2 as follows

Q2 ≥ C3(C4p)
m/p if p ∈ [2, 2ε],

Q2 ≥ (C4p)
m/p if 2 ≤ p,

where, C4 = C1ε
m−1

(
meQ1 + 1/2

)
. It is worth to note that Q2 is well defined, particularly on

[2,∞) as limp→∞(C4p)
m/p = 1.

We want to prove that ||φ||Lp ≤ Q2(C4p)
−m/p, ∀p. Let us proceed by induction, the base case

will be when p ∈ [2, 2ε].

If p ∈ [2, 2ε], then by lemma 5.2.3 ||φ||Lp ≤ C3. As C3 ≤ Q2(C4p)
−m/p, by definition of Q2, then

||φ||Lp ≤ Q2(C4p)
−m/p.

Hence, the inductive basis is true.

Now, take k ≥ 2ε and suppose that ||φ||Lp ≤ Q2(C4p)
−m/p holds for every p ∈ [2, k]. We have

to show that this is true for 2 ≥ q ≤ kε.
Let p ∈ [2, k]. In particular 2 ≤ p, then

4p2 = 2p2 + p2 > p2 + 2(2)p⇒ 4p2 − 4p > p2 ⇒ 4p(p− 1) > p2 ⇒ p >
p2

4(p− 1)
,

and, using the very same argument as in lemma 5.2.3, we have that
∣∣1− ef ∣∣ ≤ Q1. So we can use

lemma 5.2.1 and get

||∇φ||2L2 ≤ mpeQ1 ||φ||pLp . (5.16)
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Then we can apply lemma 5.2.2 to ψ = |φ|p/2. From this we have

||φ||pLεp ≤ C1

(∣∣∣∣∣∣∇|φ|p/2∣∣∣∣∣∣2
L2

+ |φ|pLp
)
. (5.17)

From (5.16) and (5.17) we have that

||φ||pLεp ≤ mpC1e
Q1 ||φ||pLp + C1|φ|pLp .

Take q = εp. Since p ∈ [2, k] by the inductive hypothesis we have that ||φ||Lp ≤ Q2(C4p)
−m/p,

and by the definition of Q2 for p ∈ [2,∞) we know that Q2(C4p)
−m/p ≥ 1, hence

||φ||pLq ≤ mpC1e
Q1

(
Q2(C4p)

−m/p
)p−1

+ C1

(
Qp2(C4p)

−m/p
)p

≤ mpC1e
Q1

(
Q2(C4p)

−m/p
)p

+ C1

(
Qp2(C4p)

−m/p
)p

= Q2(C4p)
−mC1

(
mpeQ1 + 1

)
.

Keep in mind that 2 ≤ p, so 1 ≤ p/2. This fact allows us to write the following inequality

C1

(
mpeQ1 + 1

)
≤ C1p

(
meQ1 +

1

2

)
= pC4ε

1−m.

Hence

||φ||pLq ≤ Q
p
2(C4pε)

1−m.

Lastly, Qp2(C4pε)
1−m =

(
Qp2(C4q)

−m/p)p , thus

||φ||pLq ≤
(
Qp2(C4q)

−m/p
)p
,

therefore

||φ||Lq ≤
(
Qp2(C4q)

−m/p
)
,

for every q ∈ [2ε, kε].

We will obtain the bound for ||φ|| through the next corollary.

Corollary 5.2.4.1. The function φ satisfies

||φ|| ≤ C2.

Proof. We have that φ is continuous on a compact manifold, then

||φ|| = lim
p→∞

||φ||Lp .
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And, by proposition 5.2.4 we get
||φ||pLq ≤ Q2(C4q)

−m/p.

Also,
lim
p→∞

(C4p)
−m/p = 1,

therefore
||φ|| ≤ C2.

Now, for the second order bounds we need to fix some useful notation. Given a metric g and
its Levi-Civita connection ∇ we write the k − th derivative of a tensor T using ∇ as ∇a1...akT . As
always, Rabcd will be the Riemann curvature of g. Finally, consider another metric g′ on M . Given
ψ ∈ C2(M), let ∆ψ be the laplacian of ψ with respect to g and ∆′ψ the laplacian associated to g′.
In coordinates these laplacians take the form

∆ψ = −gαβ̄∇αβ̄ψ, and ∆′ψ = −g′αβ̄∇αβ̄ψ.

With this notation in mind we shall perform the following calculations.

Lemma 5.2.5. We have that

∆′ (∆φ) = −∆f + gαλ̄g′µβ̄g′γν̄∇αβ̄γφ∇λ̄µν̄φ+ g′αβ̄gγδ̄
(
Rε̄δ̄γβ̄∇αε̄φ−R

ε̄
β̄αδ̄∇γε̄φ

)
. (5.18)

Proof. In order to calculate the laplacian ∆f , we need an expression for ∇α,γ̄ .
We start with the Monge-Ampère equation and take its logarithm, so we have

log det

(
gαβ̄ +

∂2φ

∂zα∂zβ̄

)
= f log det gαβ̄,

applying ∇ at both sides, and taking into account that det
(
gαβ̄
)

= 1, we get

∇γ̄ log det

(
gαβ̄ +

∂2φ

∂zα∂zβ̄

)
= ∇γ̄(f).

Using that gαβ̄ + ∂2φ
∂zα∂zβ̄

= g′
αβ̄

, and the fact that log(detA) = tr logA we

∇γ̄f = ∇γ tr log g′αβ̄ = tr∇γ̄ log g′αβ̄.

We calculate the last derivative and we found that

∇γ̄ log g′αβ̄ =
1

g′
αβ̄

∇γ̄g′αβ̄,
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but we know that 1
g′
αβ̄

are the components of g′αβ̄, and that ∇γ̄g′αβ̄ = ∇γ̄αβ̄φ. Hence

∇γ̄f = g′αβ̄∇γ̄αβ̄φ.

Now, we proceed with the calculations for the laplacian

∆f = −gαγ̄∇αγ̄f = −gαγ̄∇α
(
g′µν̄∇γ̄µν̄φ

)
= −gαγ̄

(
∇αg′µν̄

)
− gαγ̄g′µν̄∇αγ̄µν̄φ.

We stop here to calculate ∇αg′µν̄ . Remember that g′µβ̄g′
β̄λ

= δµλ and, of course, ∇αδµλ = 0. From

which ∇αg′µβ̄g′β̄λ = 0. And recall that ∇αg′βλ̄ = ∇αβλ̄φ.

So we calculate

0 = ∇αg′µβ̄g′β̄λ =
(
∇αg′µβ̄

)
g′β̄λ + g′µβ̄∇αg′µβ̄ =

(
∇αg′µβ̄

)
g′β̄λ + g′µβ̄∇αβ̄λφ,

from where (
∇αg′µβ̄

)
g′β̄λ = −g′µβ̄∇αβ̄λφ,

contracting with the inverse of g′
β̄λ

∇αg′µβ̄ = −g′λν̄g′µβ̄∇αβ̄λφ.

Replacing this in equation we have

∆f = gαγ̄g′λν̄g′µβ̄∇αβ̄γφ∇γ̄µν̄φ− gαγ̄g′µν̄∇αγ̄µν̄φ,

so, we get
gαγ̄g′µν̄∇αγ̄µν̄φ = −∆f + gαγ̄g′λν̄g′µβ̄∇αβ̄γφ∇γ̄µν̄φ.

Now, remember that our goal is to calculate ∆′(∆φ). This quantity is

∆′(∆φ) = g′αβ̄∇αβ̄
(
gγδ̄∇γδ̄

)
= g′αβ̄gγδ̄∇αβ̄γδ̄,

which clearly differs from our last result. Thankfully, there is an identity that will help us[Joy00]

g′µν̄gαγ̄∇µν̄αγ̄φ− g′µν̄gαγ̄∇αγ̄µν̄φ = g′µν̄gαγ̄
(
Rβ̄γ̄αν̄∇µβ̄φ−R

β̄
ν̄µγ̄∇αβ̄φ

)
.

From where

g′µν̄gαγ̄∇µν̄αγ̄φ = g′µν̄gαγ̄∇αγ̄µν̄φ+ g′µν̄gαγ̄
(
Rβ̄γ̄αν̄∇µβ̄φ−R

β̄
ν̄µγ̄∇αβ̄φ

)
,

therefore

∆′(∆φ) = −∆f + gαγ̄g′λν̄g′µβ̄∇αβ̄λφ∇γ̄µν̄φ+ g′µν̄gαγ̄
(
Rβ̄γ̄αν̄∇µβ̄φ−R

β̄
ν̄µγ̄∇αβ̄φ

)
.
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Our second wanted bound, the one for ||ddcφ|| will come from the next proposition.

Proposition 5.2.6. There exists constants c1, c2Q3 ∈ R depending on M , g, and Q1 such that∣∣∣∣g′ab∣∣∣∣ ≤ c1, (5.19a)∣∣∣∣∣∣g′ab∣∣∣∣∣∣ ≤ c2, (5.19b)

||ddcφ|| ≤ Q3. (5.19c)

Proof. We want to use prop. 5.1.4 to prove this proposition, so we need to find an a priori bound
for ||∆φ||. For this purpose we define the following function on M

F = log(m−∆φ)− kφ,

where k is a constant.

Note that F is well defined, from proposition 5.1.4 it follows that m −∆φ > 0. Now we want
to calculate ∆′F , let us proceed.

∆′F = ∆′ (log(m−∆φ)− kφ) = ∆′ log(m−∆φ)− k∆′φ

=
−1

m−∆φ
∆′(∆φ) +

1

(m−∆φ)2 (∇(∆φ))2 − k∆′φ.

Now

(∇(∆φ))2 = g′αβ̄∇α
(
−gµν̄∇µν̄φ

)
∇β
(
−gγδ̄∇γδ̄φ

)
= g′αβ̄gµν̄gγδ̄∇αµν̄φ∇β̄γδ̄φ.

While on the other hand

∆′φ = −gαβ̄∇αβ̄φ,

but

g′αβ̄ = gαβ̄ +∇αβ̄φ⇒ ∇αβ̄ = g′αβ̄ − gαβ̄,

hence

∆′φ = −gαβ̄
(
g′αβ̄ − gαβ̄

)
= g′αβ̄gαβ̄ − δαα = g′αβ̄gαβ̄ −m.

Putting everything together

∆′F =
−1

m−∆φ

(
−∆f + gαβ̄g′µν̄g′γδ̄∇αν̄γφ∇β̄µδ̄φ+ g′αβ̄gγδ̄

(
Rε̄δ̄γβ̄∇αε̄φ−R

ε̄
β̄αδ̄∇γε̄φ

))
+

1

(m−∆φ)2 g
′αβ̄gµν̄gγδ̄∇αν̄γφ∇β̄µδ̄φ+ k

(
g′αβ̄gαβ̄ −m

)
. (5.20)
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It is useful to define the following functions

G = gαβ̄g′µν̄g′γδ̄∇αν̄γφ∇β̄µδ̄φ−
1

m−∆φ
g′αβ̄gµν̄gγδ̄∇αν̄γφ∇β̄µδ̄φ,

H = g′αβ̄gγδ̄
(
Rε̄δ̄γβ̄∇αε̄φ−R

ε̄
β̄αδ̄∇γε̄φ

)
.

With these functions, ∆′F can be written as

∆′F = (m−∆φ)−1 ∆F + k
(
m− g′αβ̄gαβ̄

)
+ (m−∆φ)−1 (G+H),

so, in order to obtain bounds for ∆′F we have to find bounds for G and H.

First thing to note is that 0 ≤ G. For that, we consider (m−∆φ)∇αβ̄γφ− g′αβ̄∇γ∆φ and take

its square. This is given by

0 ≤ gαλ̄g′µβ̄g′γν̄
[
(m−∆φ)∇αβ̄γφ− g′αβ̄∇γ∆φ

] [
(m−∆φ)∇λ̄µν̄φ− g′λ̄µ∇ν̄∆φ

]
.

Let us expand this quantity

0 ≤ gαλ̄g′µβ̄g′γν̄
[
(m−∆φ)∇αβ̄γφ− g′αβ̄∇γ∆φ

] [
(m−∆φ)∇λ̄µν̄φ− g′λ̄µ∇ν̄∆φ

]
= (m−∆φ)2gαλ̄g′µβ̄g′γν̄∇αβ̄γφ∇λ̄µν̄φ− (m−∆φ)gαλ̄g′µβ̄g′γν̄

(
g′αβ̄∇γ∆φ∇λ̄µν̄φ+ g′λ̄µ∇ν̄∆φ∇αβ̄γφ

)
+ gαλ̄g′µβ̄g′γν̄g′αβ̄g

′
λ̄µ∇γ∆φ∇ν̄∆φ = (m−∆φ)2G.

Since (m−∆φ)2 is positive, it follows that G ≥ 0.

On the other hand, let us study |H|. We already know that
∣∣∣∣∇αβ̄φ∣∣∣∣ ≤ (m−∆φ) and

∣∣g′ab∣∣ ≤
g′αβ̄gαβ̄. Since the components of the Riemann tensor R involve partial derivatives of g it should
be bounded to, by say C5 > 0. So, we obtain

|H| ≤ C5(m−∆φ)g′αβ̄gαβ̄.

Hence,

∆′F ≤ (m−∆φ)−1Q1 + k
(
m− g′αβ̄gαβ̄

)
+ C5g

′αβ̄gαβ̄.

From now on we will consider ∆′F at a point p where F reaches its maximum, so ∆′F ≤ 0. This
implies that

(k −Q5)g′αβ̄gαβ̄ ≤ mk +Q1(m−∆φ)−1.

Now, from proposition 5.1.4, we have that

mef/m ≤ m−∆φ,
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but, Q1 is an upper bound for ||f ||, so taking this into account and taking the reciprocal of the
previous inequality we get

(m−∆φ)−1 ≤ 1

m
eQ1/m.

Recall that k was any real number, we want that k−C5 = 1, so we choose it as k = C5−1. Putting
all together, we have that

g′αβ̄gαβ̄ ≤ mk +
Q1

m
eQ1/m,

from which it follows that (
g′αβ̄gαβ̄

)m−1
≤
(
mk +

Q1

m
eQ1/m

)m−1

,

so, (
g′αβ̄gαβ̄

)m−1
ef ≤ ef

(
mk +

Q1

m
eQ1/m

)m−1

.

Considering that ||f || ≤ Q1 and defining C6 = mk + Q1

m eQ1/m, we have that(
g′αβ̄gαβ̄

)m−1
ef ≤ eQ1Cm−1

6 . (5.21)

Note that, lemma 5.1.1 gives us local expressions for gab and g′ab at any point in terms of positive
constants aj , and using lemma 5.1.2 we have that, at p

m∏
j=1

aj = ef , g′αβ̄gαβ̄ =
m∑
j=1

a−1
j , ∆φ = m−

m∑
j=1

aj .

From this and inequality (5.21), we have that

m−∆φ ≤
(
g′αβ̄gαβ̄

)m−1
ef ≤ eQ1Cm−1

6 .

Remember that F is defined as F = log(m−∆φ)− kφ, so at the point p, a global maximum of F ,
we have that

F (p) ≤ log
(
eQ1Cm−1

6

)
− kφ(p) ≤ log

(
eQ1Cm−1

6

)
− k inf φ ≤ Q1 + (m− 1) logC6 − k inf φ,

since ||φ|| ≤ Q2, it follows that the following inequality holds for every p ∈M

F ≤ Q1 + (m− 1) logC6 + kQ2.

So, writing the explicit expression for F

log(m−∆φ)− kφ ≤ Q1 + (m− 1) logC6 + kQ2 ⇒ (m−∆φ)e−kφ ≤ Cm−1
6 eQ1+kQ2 ,



5.2. THE FIRST THEOREM 47

hence,

m−∆φ ≤ Cm−1
6 eQ1+kQ2+kφ ⇒ m−∆φ ≤ Cm−1

6 eQ1+2kQ2 .

Using lemma 5.1.1, we have that 0 < m−∆φ. Thus,

||∆φ|| ≤
∣∣∣Cm−1

6 eQ1+2kQ2 −m
∣∣∣+m.

So, we have found an a priori bound for ||∆φ||. With this, we can appeal to proposition 5.1.4 and
get appropriate bounds c1, c2 and Q3 for ||g′ab||, ||g′ab|| and ||ddcφ|| as we want.

Finally for the third order bounds we define an auxiliary non negative function S on M as
S2 = 1

4 |∇dd
cφ|2g, or in coordinates

S2 = g′αλ̄g′µβ̄g′γν̄∇αβ̄γφ∇λ̄µν̄φ.

We want to determinate a bound for S through a formula for ∆′
(
S2
)
. Such a formula is given in

the following proposition.

Proposition 5.2.7. We have that

−∆
(
S2
)

=
∣∣∣∇ᾱβγ̄δφ− g′λµ̄∇ᾱλγ̄φ∇βµ̄δφ∣∣∣2

g′
+
∣∣∣∇αβγ̄δφ− g′λµ̄∇αγ̄λφ∇βµ̄δφ− g′λµ̄∇αµ̄δφ∇λγ̄βφ∣∣∣2

g′

+ P4,2,1
(
g′αβ̄, ∇αβ̄γφ, ∇αβ̄f

)
+ P4,2,1

(
g′αβ̄, ∇αβ̄γφ, Rabcd

)
+ P3,1,1

(
g′αβ̄, ∇αβ̄γφ, ∇ᾱβγ̄f

)
+ P3,1,1

(
g′αβ̄, ∇αβ̄γφ, ∇eRabcd

)
, (5.22)

where Pa,b,c(A, B, C) is a homogeneous polynomial of degree a on the tensor A and so on.

A detailed proof to this proposition can be founded on [Yau78].
From this equation we have the following corollary, which is crucial to give us the last bound

we are looking for.

Corollary 5.2.7.1. There is a constant C7 depending only on Q1, c1, c2 and
∣∣∣∣∣∣Rab,c,d∣∣∣∣∣∣

C1
, such that

∆′
(
S2
)
≤ C7

(
S2 + S

)
.

Proof. We begin by noticing that the first terms for ∆′
(
S2
)

in (5.22) are nonnegative, so we will
drop them. Now, we turn our attention to the polynomials.

The first two of them P4,2,1
(
g′αβ̄, ∇αβ̄γφ, ∇αβ̄f

)
and P4,2,1

(
g′αβ̄, ∇αβ̄γφ, Rabcd

)
are quadratic

on ∇αβ̄γφ. Hence, they can be bounded by a multiple of S2, while the other two are lineal on
∇αβ̄γφ, so, they can be bounded by a multiple of S. So at least the structure of the inequality that
we need to prove is clear.
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Now we need to determine the factors for S and S2. Note that the polynomials involve g′ab,
∇αβ̄f , objects that we have under control due to the previously founded bounds c2 and Q1. On
the other hand, we know that there is a C5, such that ||Rabcd||C1 ≤ C5, and since ||∇eRabcd|| ≤
||Rabcd||C1 ≤ C5 and trivially ||Rabcd|| ≤ ||Rabcd||C1 ≤ C5. With all of this, we have that

∆′(S2) ≤
(
c4

2 + 1 +Q1

)
S2 +

(
c4

2 + 1 + C5

)
S2 +

(
c3

2 + 1 +Q1

)
S +

(
c3

2 + 1 + C5

)
S

≤
(
c4

2 + 2 +Q1 + c4
2 + C5

) (
S2 + S

)
.

Define C7 > 0 as

C7 = 2 + c4
2 +Q1 + c4

2 + C5,

and the proof is done.

With the following proposition we are going to be able to find our desired bound.

Proposition 5.2.8. There exists a constant Q4 ∈ R depending only on M, g, J , and Q1 such that

||∇ddcφ|| ≤ Q4.

Proof. We want to use a similar argument as in 5.2.5 to obtain the last bound. So, we want to
work out the expression that we have for S2 and relate it to the one that we have for ∆′(∆φ).

Recall that S2 = g′αλ̄g′µβ̄g′γν∇αβ̄γφ∇λ̄. Also, we have that ||g′ab|| ≤ c2, so it follows that

gαλ̄g′µβ̄g′γν∇αβ̄γφ∇λ̄ ≥
1

c2
g′αλ̄g′µβ̄g′γν∇αβ̄γφ∇λ̄ =

1

c2
S2. (5.23)

Now, from proposition 5.2.5 we have that

∆′ (∆φ) = −∆f + gαλ̄g′µβ̄g′γν̄∇αβ̄γφ∇λ̄µν̄φ+ g′αβ̄gγδ̄
(
Rε̄δ̄γβ̄∇αε̄φ−R

ε̄
β̄αδ̄∇γε̄φ

)
,

together with the inequality (5.23), we get

∆′ (∆φ) ≥ 1

c2
S2 −

(
−∆f + g′αβ̄gγδ̄

(
Rε̄δ̄γβ̄∇αε̄φ−R

ε̄
β̄αδ̄∇γε̄φ

))
,

as we saw before, there are bounds for every element on the second term on the right side since
∆f ≤ Q1, and

g′αβ̄gγδ̄
(
Rε̄δ̄γβ̄∇αε̄φ−R

ε̄
β̄αδ̄∇γε̄φ

)
≤ C5(m−∆φ)g′αβ̄gαβ̄ ≤ C5C

m
6 e

Q1+kQ2 .

Thus,

∆′ (∆φ) ≥ 1

c2
S2 −

(
−Q1 + C5C

m
6 e

Q1+kQ2

)
. (5.24)
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For simplicity, define C8 = −Q1 + C5C
m
6 e

Q1+kQ2 , so we have

∆′ (∆φ) ≥ 1

c2
S2 − C8.

Now, consider the function S2 − 2c2C7∆φ, and take its laplacian ∆′

∆′(S2 − 2c2C7∆φ) = ∆′S2 − 2c2C7∆′(∆φ).

Using corollary 5.2.7.1 and eq. (5.24), we obtain

∆′(S2)− 2c2C7∆′(∆φ) ≤ C7(S2 + S)2c2C7

(
1

c2
S2 − C8

)
= −C7

(
S − 1

2

)2

+
1

4
C7 + 2c2C7C8.

As in 5.2.6, consider that the function S2 − 2c2C7∆φ has its maximum at a certain p ∈M . Thus,
in p we have

∆′(S2 − 2c2C7∆φ) ≥ 0,

so, (
S − 1

2

)2

≤ 1

4
+ 2c2C8.

As in Proposition 5.2.6, we can find a positive constant C9 that depends only on c2, C8 and in the
a priori bound for |∆φ|, such that

S2 − 2c2C7∆φ ≤ C9,

from which
S2 ≤ C9 + 2c2C7∆φ ≤ C9 + 2c2C7

(∣∣∣Cm−1
6 eQ1+2kQ2 −m

∣∣∣+m
)
.

This last expression gives us an a priori bound for ||S||, say C10.
Now,

S =
1

2
|∇ddcφ|g′ ,

and we want a bound not for |∇ddcφ|g′ but for |∇ddcφ|g. Fortunately, there is a simple relation
between them. It is given by

|∇ddcφ|g ≤ c3/2
1 |∇dd

cφ|g′ .
So, we define Q4 in terms of the a priori bound C10 we already have as

Q4 = 2c
3/2
1 C10,

and we get the desired result
||∇ddcφ|| = |∇ddcφ|g ≤ Q4.

Therefore, the proof of the theorem follows from corollaries 5.2.4.1, 5.2.7.1 and proposition 5.2.8.
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5.3 The second theorem

Theorem 1.2 (2nd Theorem). Let (M,J) be a compact complex manifold, g a Kähler metric on
M with Kähler form ω. Let f ∈ C3,α(M), φ ∈ C5(M), 0 < A and 0 ≤ Q1, Q2, Q3, Q4, such that

(ω + ddcφ)m = Aefωm, ||f ||C3,α ≤ Q1, ||φ|| ≤ Q2, ||ddcφ|| ≤ Q3, and ||∇ddcφ|| ≤ Q4.

Then φ ∈ C5,α(M) and there exists 0 ≤ Q5, such that ||φ||C5,α ≤ Q5. Even more, if f ∈ Ck,α(M)
with 3 ≤ k, then φ ∈ Ck+2,α(M), and if f ∈ C∞(M) then φ ∈ C∞(M).

Proof. In this theorem the concept of elliptic regularity that we introduced in the chapter 3 plays
a crucial part of the proof. We shall start by stating three results on regularity.

Lemma 5.3.1. Let 0 ≤ K and α ∈ (0, 1). Then there exists a positive constant Ek,α depending on
k, α, M and g, such that for every ψ ∈ C2(M) for which it exists ξ ∈ C0(M) that satisfies ∆ψ = ξ,
then ψ ∈ Ck+2,α(M) and

||ψ||Ck+2,α(M) ≤ Ek,α (||ξ||Ck,α + ||ψ||) .

Lemma 5.3.2. Let α ∈ (0, 1). Then there exists a positive constant Dα depending on α, M, g and
the usual norms of g′ab and g′ab, such that for every ψ ∈ C2(M) for which it exists ξ ∈ C0(M) that
satisfies ∆′ψ = ξ, then ψ ∈ C1,α(M) and

||ψ||C1,α(M) ≤ Dα (||ξ||+ ||ψ||) .

Lemma 5.3.3. Let 0 ≤ k be an integer, and α ∈ (0, 1). Then there is a positive constant Fk,α
depending of k, α, M, g and the usual norms of g′ab and g′ab, such that for every ψ ∈ C2(M) for
which it exists ξ ∈ Ck,α(M) that satisfies ∆′ψ = ξ, then ψ ∈ Ck+2,α(M) and

||ψ||Ck+2,α(M) ≤ Ek,α (||ξ||Ck,α + ||ψ||) .

For a proof of these lemmas, consult [Bes07, MJ09]. From the last three lemmas we can prove
the next proposition.

Proposition 5.3.4. Let α ∈ (0, 1). Then there exists a constant D1 ∈ R depending on M, g, J, Qi,
and α with i = 1, 2, 3, 4 such that

||φ||C3,α .

Proof. We want to make use of 5.3.2, so we we have to show that the conditions there hold true.
So, from 5.2.6 and 5.2.8 there exists c1, c2, and C3, such that∣∣∣∣g′ab∣∣∣∣ ≤ c1,

∣∣∣∣∣∣g′ab∣∣∣∣∣∣ ≤ c2, ||ddcφ|| ≤ C3, ||∇ddcφ|| ≤ C4.

On the other hand, as
∇g′αβ̄ = −gµβ̄g′γν̄∇αβ̄γφ,
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then ∣∣∣∣∣∣∇g′ab∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣g′ab∣∣∣∣∣∣ ||∇ddcφ|| ≤ c2Q4.

So we have bounds for
∣∣∣∣g′ab∣∣∣∣ and

∣∣∣∣∇g′ab∣∣∣∣, thus∣∣∣∣∣∣g′ab∣∣∣∣∣∣
C0,α
≤
∣∣∣∣∣∣g′ab∣∣∣∣∣∣+

∣∣∣∣∣∣∇g′ab∣∣∣∣∣∣ ≤ c2 + c2Q4.

Therefore, taking ψ = ∆φ and ξ = −∆f+gαλ̄g′µβ̄g′γν̄∇αβ̄γφ∇λ̄µν̄φ+g′αβ̄gγδ̄
(
Rε̄

δ̄γβ̄
∇αε̄φ−Rε̄β̄αδ̄∇γε̄φ

)
,

by lemma 5.3.2 there is a constant E′α such that ψ ∈ C1,α and ||ψ||C1,α ≤ E′α (||ξ||+ ||ψ||) .
Note that, as we saw in 5.2.6 there is a constant C5 such that∣∣∣∣∣∣g′αβ̄gγδ̄ (Rε̄δ̄γβ̄∇αε̄φ−Rε̄β̄αδ̄∇γε̄φ)∣∣∣∣∣∣ ≤ C5 ||∇ddcφ|| g′αβ̄gαβ̄ ≤ C5Q4c2.

Also, we have that ∆f ≤ Q1 and gαλ̄g′µβ̄g′γν̄∇αβ̄γφ∇λ̄µν̄φ ≤ c2
2Q

2
4, hence

||ξ|| ≤ Q1 + c2
2Q

2
4 + C5Q4c2,

i.e., there exists D2 = Q1 + c2
2Q

2
4 + C5Q4c2, such that

||ξ|| ≤ D2.

Therefore

||ψ||C1,α ≤ E′α (D2 +Q3) ,

i.e.

||∆φ||C1,α ≤ E′α (D2 +Q3) .

Now, by lemma 5.3.1 taking ψ = φ and ξ = ψ we have that φ ∈ C3,α and there exists E′1,α, such
that

||φ||C3,α ≤ E1,α (||∆φ||C1,α + ||φ||) ≤ E1,α(E′α (D2 +Q3) +Q2).

Define D1 = E1,α(E′α (D2 +Q3) +Q2). Thus there exists D1, such that

||φ||C3,α ≤ D1.

Finally, theorem 1.2 follows from the subsequent proposition. It is worth to mention that in
this proposition we are working under the hypothesis of the theorem 1.2.

Proposition 5.3.5. For every integer k ≥ 2, if f ∈ Ck,α(M) then φ ∈ Ck+2,α(M), and there exists
bounds for ||φ||Ck+2,α and for ||f ||Ck,α depending only on M, g, J, Qi, k and α with i = 1, 2, 3, 4.
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Proof. The proof is by induction. Let us state our inductive hypothesis properly, if f ∈ Ck,α then
φ ∈ Ck+1,α and there is a bound for ||φ||Ck+1,α depending on M, g J Qi, k, α, and on the bounds
for ||f ||Ck,α , and ||f ||C3 . This hypothesis is satisfied for k = 2, as proved in proposition 5.3.4.

Let ψ = ∆φ, and ξ = −∆f + gαλ̄g′µβ̄g′γν̄∇αβ̄γφ∇λ̄µν̄φ+ g′αβ̄gγδ̄
(
Rε̄

δ̄γβ̄
∇αε̄φ−Rε̄β̄αδ̄∇γε̄φ

)
, so

we have
∆′ψ = ξ.

Observe that
|| −∆f ||Ck−2,α ≤ ||f ||Ck,α ,

in Ck−2,α.
Similarly,

||g′ab||Ck−2,α ≤ c2, and ||∇αβ̄γφ||Ck−2,α ≤ ||φ||Ck,α .

Let us look more carefully into Rε̄
β̄αδ̄

; remember that the components of the Riemann tensor are

linear combinations of second derivatives of the metric. Then, as the metric is bounded in Ck−2,α

its derivatives are bounded too. Hence, there is a positive constant C ′5, such that∣∣∣∣∣∣Rε̄β̄αδ̄∣∣∣∣∣∣Ck−2,α
≤ C ′5.

Thus, every single element in the definition of ξ is bounded in Ck−2,α in terms of constants that
depend only on M, g, J, Qi, and k − 1. Hence, by the inductive hypothesis there exists Fk,α, such
that

||ξ||Ck−2,α ≤ Fk,α. (5.25)

In the same way as in prop. 5.3.4 we already have that ||g′ab|| ≤ c2, now we need a bound for
||g′ab||Ck,α . This basically means that we have to bound ∇kg′ab, and g′ab = gab + ∂∂φ. Since ∇ is
compatible with gab, we need to bound derivatives of φ. Using the inductive hypothesis, we can
bound those derivatives in terms of M, g, J, Qi, and k. So, we can apply lemma 5.3.3 to ψ = ∆φ.
This lemma proves that ∆φ ∈ Ck,α, and that there is a positive constant E′k−2,α, such that

||∆φ||Ck,α ≤ E′k−2,α (||ξ||Ck−2,α + ||∆φ) .

Using eq. (5.25) and theorem 1.1, we obtain

||∆φ||Ck,α ≤ E′k−2,α (Fk,α +Q3) .

Thus, by lemma 5.3.1 we conclude that φ ∈ Ck+2,α, and that there exists a positive constant Ek+2,α,
such that

||φ||Ck+2,α ≤ Ek+2,α (||∆φ||Ck,α + ||φ||) ≤ Ek+2,α

(
E′k−2,α (Fk,α +Q3) +Q2

)
,

where we have used theorem 1.1 to bound ||φ||.
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Finally, the proof of the theorem. Take k = 3 on proposition 5.3.5, thus φ ∈ C5,α and there is
a bound for ||φ||C5,α , say C5, that depends only on M, g J, Q1, Q2, Q3, Q4 and α. Also, from the
very same 5.3.5 if k ≥ 2 and f ∈ Ck,α, then φ ∈ Ck+2,α for every k ≥ 3. Therefore, if f ∈ C∞ then
φ ∈ C∞.

5.4 The third theorem

Theorem 1.3 (3rd Theorem). Let (M,J) be a compact complex manifold, g a Kähler metric on
M with Kähler form ω. Fix α ∈ (0, 1), let f ′ ∈ C3,α(M), φ′ ∈ C5,α(M) and 0 < A′, such that∫

M
φ′ dVg = 0, and

(
ω + ddcφ′

)m
= A′ef

′
ωm.

Then, for every f ∈ C3,α(M), such that ||f − f ′||C3,α < ε, ∀ ε > 0, there exists φ ∈ C5,α(M), and
0 < A, such that ∫

M
φdVg = 0, and (ω + ddcφ)m = Aefωm.

Proof. LetX =
{
φ ∈ C5,α(M)|

∫
M φdVg = 0

}
, and U = {φ ∈ X|ω + ddcφ is a positive (1, 1)−form} .

Thus U is an open subset in X.
Now, define a function F : U × R → C3,α by F (φ, a) = f, where (ω + ddcω)m = ea+fωm. F is

a smooth map, let us see that it is well defined.
Take φ ∈ U , and a ∈ R. Then ω+ddcφ is a positive (1, 1)−form, then (ω + ddcφ)m is a positive

multiple of ωm. Hence, there exists a unique positive function f on M , such that

(ω + ddcφ)m = ea+fωm,

note that since φ ∈ C5,α(M) and we have two derivatives, then f ∈ C3,α(M). Due to the uniqueness
of f , F is well defined.

Take f ′, φ′, and A′ as in the hypothesis of the theorem. Define a′ = logA′. By hypothesis,
φ′ ∈ U , and F (φ′, a′) = f ′. We shall evaluate the first derivative of F on (φ′, a′). Taking a Taylor
series, we have that (

ω + ddc(φ′ + ε′ψ)
)m

= ea
′+ε′b+f ′−ε′b−ε′∆′Ψ.

Hence
F
(
φ′ + ε′ψ, a′ + ε′b

)
= f ′ − ε′b+ f ′ − ε′b− ε′∆′Ψ.

Taking into consideration only the first order terms we have that the first derivative of F , dF(φ′,a′) :
X × R→ C3,α(M) is given by

dF(φ′,a′)(ψ, b) = −b−∆′ψ.

We want to show that it is an invertible map.
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For this purpose we are going to rely on our existence theorems for elliptic operators, in partic-
ular the theorem 3.5.1, applying it to ∆′. Let us proceed.

Note that since M is connected, the kernel of ∆′ (an order two differential operator) are the
constant functions on M . So, the functions ψ ∈ X that are orthogonal to ker(∆′) are those that
satisfy

〈ψ,ϕ〉 = 0⇔
∫
M
ψ dVg = 0, ∀ϕ ∈ ker(∆′).

Let us study the dual operator ∆′∗, this is given by ∆′∗(ψ) = e−f
′
∆′
(
ef
′
ψ
)

. Hence, ker(∆′∗) =

ke−f
′
, with k ∈ R. So, the functions χ ∈ X that are orthogonal to ker(∆′∗) are those that satisfies〈

χ, e−f
′
〉

= 0.

Now, by theorem 3.5.1 applied to ∆′, if χ ∈ C3,α(M) then there exists φ ∈ C5,α(M) with ∆′ψ = χ

if and only if
〈
χ, e−f

′
〉

= 0, and ψ is unique if
∫
M ψ dVg = 0.

Take χ ∈ X, there is a unique b ∈ R such that
〈
ψ + b, e−f

′
〉

= 0. Then, there exists a unique

ψ ∈ C5,α, with
∫
M ψ dVg = 0, such that ∆′ψ = −χ− b. Thus, ψ ∈ X, and by the definition of dF

it follows that
dF(φ′,a′)(ψ, b) = χ.

Therefore, for every χ ∈ C3,α there exists uniques ψ ∈ C5,α and b ∈ R, such that dF(φ′,a′)(ψ, b) = χ.
Hence, dF(φ′,a′) : X × R → C3,α(M) is an invertible continuous map, and it has a continuous

inverse. Thus, it is an isomorphism of X × R and C3,α. So, applying the inverse function theorem
3.1.5, there is an open neighbourhood of (φ′, a′), say U ′ ⊂ U×R ∈ X×R and an open neighbourhood
of f ′, say V ′ ⊂ C3,α(M), such that F : U ′ → V ′ is a homeomorphism.

Then, for every f ∈ C3,α, such that

||f − f ′|| ≤ 1

2
min

{
ε, rad(V ′)

}
, ∀ε > 0,

we have that f ∈ V ′. So there exists a unique pair (φ, a) ∈ U ′ with F (φ, a) = f .
To conclude, observe that since (φ, a) ∈ U ′ then φ ∈ U . Thus, we have that∫

M
φdVg = 0,

and φ ∈ C5,α(M), proving the first desired equation.
Finally, take A = ea > 0, and because F (φ, a) = f holds we have that

(ω + ddcφ)m = Aefωm.

Thus, the proof is complete.
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5.5 The fourth theorem

Theorem 1.4 (4th Theorem). Let (M,J) be a compact complex manifold, g a Kähler metric on
M with Kähler form ω. Let f ∈ C1(M), then there exists an unique function φ ∈ C3(M), such
that ∫

M
φdVg = 0, and (ω + ddcφ)m = Aefωm.

Proof. Suppose φ1, φ2 ∈ C3(M) such that∫
M
φjdVg = 0, (ω + ddcφj)

m = Aefωm j = 1, 2.

In order to prove that φ1 = φ2 we will write ωj = ω+ddcφj . Both of them are positive (1, 1)−forms,
by lemma 4.2.2, so we can consider the metric gj associated to ωj for j = 1, 2.

So far we have that
ωm1 = Aefωm = ωm2 ,

and
ω1 − ω2 = ddc (φ1 − φ2) .

Hence, we have that

0 = ωm1 − ωm2 = (ω1 − ω2) ∧
(
ωm−1

1 + ωm−2
1 ∧ ω2 + · · ·+ ωm−2

2 ∧ ω1 + ωm−1
2

)
= ddc (φ1 − φ2) ∧

(
ωm−1

1 + · · ·+ ωm−1
2

)
.

Notice that ωm1 − ωm2 is a m−form and it is the exterior derivative of the following m− 1 form

(φ1 − φ2) dc (φ1 − φ2) ∧
(
ωm−1

1 + · · ·+ +ωm−1
2

)
,

thus, sinceM is a compact manifold with no boundary, and 0 = ddc (φ1 − φ2)∧
(
ωm−1

1 + · · ·+ ωm−1
2

)
,

then by Stokes theorem we have that

0 =

∫
M
d
[
(φ1 − φ2) dc (φ1 − φ2) ∧

(
ωm−1

1 + · · ·+ +ωm−1
2

)]
,

recall that dωj = 0, so

0 =

∫
M
d (φ1 − φ2) dc (φ1 − φ2) ∧

(
ωm−1

1 + · · ·+ +ωm−1
2

)
. (5.26)

From lemma 5.1.5 we have that,

d (φ1 − φ2) ∧ dc (φ1 − φ2) ∧ ωm−1
1 =

1

m
|d (φ1 − φ2)|2g1

ω1, (5.27)

and
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d (φ1 − φ2) ∧ dc (φ1 − φ2) ∧ ωm−1−j
1 ∧ ωj2 = Fjω

m
1 , (5.28)

where Fj are nonnegative functions on M as in lemma 5.1.5.
Using equations (5.27), (5.28) on (5.26), we have

∫
M

 1

m
|d (φ1 − φ2)|2g1

+
m−1∑
j=1

Fj

ωm1 = 0,

this implies that

1

m
|d (φ1 − φ2)|2g1

+

m−1∑
j=1

Fj = 0,

and since both 1
m |d (φ1 − φ2)|2g1

and
∑m−1

j=1 Fj are nonnegative, then each term has to be zero by
their own. In particular

1

m
|d (φ1 − φ2)|2g1

= 0 ⇒ |d (φ1 − φ2)|2g1
= 0,

so
d (φ1 − φ2) = 0,

i.e. φ1 − φ2 is a constant on M , since M is a connected manifold.
On the other hand, we have that both φ1 and φ2 satisfy∫

M
φ1 dVg = 0 =

∫
M
φ2 dVg,

hence ∫
M

(φ1 − φ2) dVg = 0,

but we know that φ1 − φ2 is a constant on M , then

(φ1 − φ2)

∫
M
dVg = 0,

since
∫
M dVg 6= 0, then necessarily φ1 − φ2 = 0, therefore

φ1 = φ2,

from which we conclude that φ is unique.



Chapter 6

Proving the Calabi conjecture

Let us briefly resume our work until now. Following David Joyce ideas [Joy00] we reformulated the
Calabi conjecture 4.1.1 and then reformulated it through geometric arguments as the equivalent
statement 4.2.3 that requires us to prove the existence and the uniqueness of a solution for the
Mongè-Amper equation (4.3). In order to prove the existence and the uniqueness for such a solution
we stated an proved four theorems 1.1, 1.2, 1.3 and 1.4. In the current chapter we will explicitly
show how these theorems help us to prove the conjecture 4.2.3.

6.1 A proof for the Calabi conjecture

In 4.3.1 we already sketched the path that we want to follow to achieve our goal. Now, with the
four theorems proved it is time for us to properly write the proof.

Let us define correctly the set S in 4.3.1.

Definition 6.1.1. Let (M,J) be a compact complex manifold, g a Kähler metric on M with Kähler
form ω. Fix α ∈ (0, 1) and take f ∈ C3,α(M). Then S is the set of t ∈ [0, 1] for which there exists
φt ∈ C5,α(M) with

∫
m φt dVg = 0, and 0 < At, such that

(ω + ddcφt)
m = Ate

tfωm.

We will prove that S is closed and open in [0, 1] in the next theorems.

Theorem 6.1.1. The set S is a closed subset of [0, 1].

Proof. Let {tj}∞j=0 be a sequence in S. Suppose it converges to some t′ ∈ [0, 1], in order to prove

that S is closed we need to show that t′ in fact belongs to S and hence S contains its limit points
so it must be closed.

Since tj ∈ S for every j, by definition there exists φj ∈ C5,α(M) and Aj > 0 such that∫
M φj dVg = 0 and (ω + ddcφj)

m = Aje
jfωm. Let Q1 = ||f ||C3,α , and Q2, Q3, Q4, Q5 as in the

theorems 1.1 and 1.2.
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Note that ||tjf ||C3,α ≤ Q1, because tj ∈ S ⊂ [0, 1]. So we can apply the theorem 1.1 for φj and
tjf . From this procedure we obtain the following bounds

||φj ||C0 ≤ Q2, ||ddcφj ||C0 ≤ Q3, ||∇ddcφj ||C0 ≤ Q4 ∀j.

With these bounds we can apply theorem 1.2, from which we obtain the next bound

||φj ||C5,α ≤ Q5 ∀j.

We should note that since for every j, φj ∈ C5,α is bounded. So, the sequence {φj}∞j=0 is

bounded. Now from the theorem 3.1.4 we know that there is an inclusion from C5,α to C5 and this
inclusion is compact. Then the sequence {φj}∞j=0 lies in a compact subset of C5. So there exists a

convergent subsequence
{
φij
}∞
j=0

. Suppose that φ′ is the limit of such a subsequence.

Next we define A′ by

A′
∫
M
et
′f dVg = volg(M)⇒ A′ =

volg(M)∫
M et′f dVg

.

Observe that since {tj}∞j=0 converges to t′, then∫
M
etjf dVg →

∫
M
et
′f dVg as j →∞,

so we can define the sequence
{
Aij
}∞
j=0

, with each Aij defined by

Aij

∫
M
etjf dVg = volg(M),

and it will converge to A′.

Finally, directly from the hypothesis we have that∫
M
φij dVg = 0→

∫
M
φ′ dVg = 0 as j →∞. (6.1)

On the other hand since
{
φij
}∞
j=0

converges in C5, it converges in C3 to the same φ′. So

(
ω + ddcφij

)m
= Aije

tij fωm →
(
ω + ddcφ′

)m
= A′et

′fωm as j →∞. (6.2)

From (6.1), (6.2) and theorems 1.1, 1.2 we have that t′ ∈ S. Hence S contains its limits points,
therefore S is closed.

Theorem 6.1.2. The set S is an open subset of [0, 1].
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Proof. Take t′ ∈ S. By definition there exists φ′ ∈ C5,α and A′ > 0, such that
∫
M φ′ dVg = 0 and

(ω + ddcφj)
m = Aje

t′fωm.
Note that, ||t′f ||C3,α ≤ ||f ||C3,α and this is true not only for t′ but for every t ∈ [0, 1]. We

want to apply theorem 1.3 to t′f and to tf with t ∈ [0, 1]. The theorem warrants that whenever
||t′f − tf ||C3,α < ε, ∀ε > 0, then there exists φ ∈ C5,α(M) and A > 0 such that∫

M
φdVg = 0, (ω + ddcφ)m = Aetfωm.

Then, by definition of S, t ∈ S. So S contains an open ball centered on t′ with radius r = |t− t′|.
Therefore S is an open subset of [0, 1].

Now we will use theorems 6.1.1 and 6.1.2 to prove the existence of φ through the following
theorem.

Theorem 6.1.3. Let (M,J) be a compact complex manifold, g a Kähler metric on M with Kähler
form ω. Fix α ∈ (0, 1) and take f ∈ C3,α(M). Then there exists φ ∈ C5,α(M), and 0 < A, such
that

1.
∫
m φdVg = 0.

2. (ω + ddcφ)m = Aefωm.

Proof. For this proof we are going to rely on the continuity method.
From theorems 6.1.1, 6.1.2 we have that S is both a closed and an open in [0, 1]. Since [0, 1] is

connected, then either S = ∅ or S = [0, 1]. But we know that S 6= ∅ because t = 0 ∈ S. Remember
that on t = 0 the Monge-Ampére equation becomes

(ω + ddcφ0)m = ωm.

φ0 = 0 is clearly a solution, and it trivially satisfies
∫
M φ0 dVg = 0. So by definition of S, t = 0 ∈ S.

Hence S 6= ∅.
Therefore S = [0, 1]. It follows that t = 1 ∈ S, so there exists φ1 = φ ∈ C5,α(M) and A1 = A > 0

such that ∫
M
φdVg = 0, and (ω + ddcφ)m = Aefωm.

So both properties are satisfied.

With this result in hand we can finally provide the so long waited proof to the Calabi conjecture.

Theorem 6.1.4. The Calabi conjecture 4.2.3 is true.

Proof. With the hypothesis of 4.2.3 and theorem 6.1.3 we assure the existence of the solution φ
that satisfies the conditions required by 4.2.3 and making use of theorem 1.4 we have that such a
solution φ is unique. Hence the Calabi conjecture is proved.
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Chapter 7

Summary and final remarks

7.1 Summary

In this work we successfully proved the Calabi conjecture that arises in the context of complex
geometry.

We show that in order to prove the Calabi conjecture we reformulate the original statement
concerning the existence and uniqueness of a metric g in terms of the existence and uniqueness
of the solution to a second order partial differential equation, the Monge-Ampère equation. The
formal statement goes as follows:

Let (M,J) be a compact, complex manifold, g a Kähler metric on M , with Kähler form ω. Let
f be a smooth real function on M , and define A > 0 by A

∫
M efdVg = volg (M) . Then there exists

a unique smooth real function φ such that:

1.
∫
M φdVg = 0,

2. (ω + ddc)a = Aefωa on M .

Reached this point we wanted to rely on the continuity method to prove the existence of the
solution. As we know, such a method consists on building a uniparametric family of equations
depending continuously on a parameter t ∈ [0, 1] such that we know the solution for t = 0 and
that we recover our original equation for t = 1. If we find that the space of solutions φt is closed
and open, then by connectedness of the [0, 1] and the continuous dependence of our uniparametric
equations on t then the existence for the solution at t = 1 is warranted. Proving that the space of
solutions is closed was the biggest challenge on realizing the continuity method in our escenario.

To be more precise, the uniparametric family of equations was given by

(ω + ddcφt)
m = Ate

ftωm.

And the vaguely called “set of solutions” is the set S defined as
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Let (M,J) be a compact complex manifold, g a Kähler metric on M with Kähler form ω. Fix
α ∈ (0, 1) and take f ∈ C3,α(M). Then S is the set of t ∈ [0, 1] for which there exists φt ∈ C5,α(M)
with

∫
m φt dVg = 0, and 0 < A, such that

∫
M φt dVg = 0 and (ω + ddcφ)m = Aefωm.

Going back to the problem, we were unable to prove that S is closed. This was due to the
incapacity to provide a priori bounds for φ and its derivatives, say ddcφ and ∇φ, as we barely know
something about those functions. At this point is when Yau’s ideas become crucial. He pointed
out that the regularity of the solutions to the Monge-Ampère equation, which turns out to be an
elliptic one, was needed. In order to work with regularity we turn our attention to Hölder spaces.
So, in the domains of “elliptic regularity” we proved the following two theorems:

Theorem 1.1 (1st Theorem). Let (M,J) be a compact complex manifold, g a Kähler metric on
M with Kähler form ω. Let f ∈ C3(M), φ ∈ C5(M), 0 < A and 0 ≤ Q1, such that

||f ||C3 ≤ Q1,

∫
M
φdVg = 0, and (ω + ddcφ)m = Aefωm.

Then there exists 0 ≤ Q2, Q3, Q4 depending only on M , J , g and Q1, such that

||φ|| ≤ Q2, ||ddcφ|| ≤ Q3, and ||∇ddcφ|| ≤ Q4.

Theorem 1.2 (2nd Theorem). Let (M,J) be a compact complex manifold, g a Kähler metric on
M with Kähler form ω. Let f ∈ C3,α(M), φ ∈ C5(M), 0 < A and 0 ≤ Q1, Q2, Q3, Q4, such that

(ω + ddcφ)m = Aefωm, ||f ||C3,α ≤ Q1, ||φ|| ≤ Q2, ||ddcφ|| ≤ Q3, and ||∇ddcφ|| ≤ Q4.

Then φ ∈ C5,α(M) and there exists 0 ≤ Q5, such that ||φ||C5,α ≤ Q5. Even more, if f ∈ Ck,α(M)
with 3 ≤ k, then φ ∈ Ck+2,α(M), and if f ∈ C∞(M) then φ ∈ C∞(M).

For theorem 1.1, we started by making some local calculations that give us bounds for the
metric and its derivatives having previous bounds for φ and its derivatives. These previous bounds
are the a priori bounds that we are looking for. We classified the a priori bounds as order zero,
second and third order bounds. They correspond to bounds for φ, ddcφ, and ∇ddcφ, respectively.
We proceeded as follows. Firstly, order zero bounds were obtained through the local calculations
and Hölder inequality on chapter 3. Secondly, order two bounds were founded using the local
calculations, the zero order bounds and several calculations regarding the laplacians associated
with g and g′. Thirdly, the third order bounds were obtained from the local calculations, the
previous zero and second order bounds and a result from [Yau78].

On the other hand, theorem 1.2 relied strongly on the three lemmas 5.3 that were obtained
from [Joy00], proved in [Bes07, MJ09]. Those lemmas have their roots on the theorems regarding
the regularity of elliptic solutions 3.4. From them, theorem 1.2, follows by induction and from the
local calculations. Hence, from 1.1, 1.2 it follows that S is closed in [0, 1].

Now, for proving that S is an open subset of [0, 1] we make use of the following theorem
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Theorem 1.3 (3rd Theorem). Let (M,J) be a compact complex manifold, g a Kähler metric on
M with Kähler form ω. Fix α ∈ (0, 1), let f ′ ∈ C3,α(M), φ′ ∈ C5,α(M) and 0 < A′, such that∫

M
φ′ dVg = 0, and

(
ω + ddcφ′

)m
= A′ef

′
ωm.

Then, for every f ∈ C3,α(M), such that ||f − f ′||C3,α < ε, ∀ ε > 0, there exists φ ∈ C5,α(M), and
0 < A, such that ∫

M
φdVg = 0, and (ω + ddcφ)m = Aefωm.

The proof of this theorem has its heart on the inverse theorem function and in the clever
construction of a bijective continuous function. With this theorem we proved that S is open in
[0, 1]. Together with the fact that S is closed and the continuity method we proved that φ exists.

For the uniqueness we make use of the last of our four main theorems,

Theorem 1.4 (4th Theorem). Let (M,J) be a compact complex manifold, g a Kähler metric on
M with Kähler form ω. Let f ∈ C1(M), then there exists an unique function φ ∈ C3(M), such
that ∫

M
φdVg = 0, and (ω + ddcφ)m = Aefωm.

Through a classic proof of uniqueness supposing that there is another φ′ with the very same
properties, we found out that φ′ = φ.

7.2 Final remarks

Now that the proof is done, following the discussion by D. Joyce [Joy00], we may ask ourselves is
there any way in which we can relax the many hypothesis we have in the four theorems. There are
two hypothesis that stand out as immediate candidates.

• Are third order bounds in theorem 1.1 really needed?

From the Monge-Ampère equation

(ω + ddc)m = Aefωm,

we have that φ has to be at least twice differentiable, and it is well known that a C2 solution
for an elliptic second order equation is actually C∞[MJ09]. So this might tell us that we can
disregard the third order bounds in our first theorem. Indeed this is possible, but then we will
need to replace the third order bounds with a modulus of continuity for ddcφ [MJ09, Joy00].
Thus, this can not be considered a relaxation of theorem 1.1.
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• Can we take φ ∈ C2,α instead of φ ∈ C5,α?

As the Monge-Ampère is a second order equation, we might naively think that we can work
with φ ∈ C2,α instead of φ ∈ C5,α. Looking more carefully it would be impossible to obtain
the second order and, more obviously troublesome, the third order bound since we have to
take the Laplacian of a function that already involves third derivatives of φ. This of course,
is against the previous point where we see that it is not smart to neglect the third order
estimates. Hence, the condition φ ∈ C5,α can not be relaxed.

From both arguments it is not clear that a generalization can be achieved. Hopefully in the future
it can be addressed.

Now that we discarded an improvement on the hypothesis of our work, we turn our attention
to the future ideas that we want to work out from here. It is well known that the existence of
Calabi-Yau manifolds follows from the Calabi conjecture [Joy00]. So, as future work we want
to address the classification of Calabi-Yau threefolds. For this purpose we will focus on the so-
called complete intersection Calabi-Yau (CICY) threefolds. These objects are Calabi Yau manifolds
constructed as complete intersections of elliptic curves on products of projective spaces [CDLS88].
There has been recent advances on their classification; exploring ways to predict their Hodge
numbers through machine learning [EF20], asking if CICY threefolds can carry non trivial SU(3)
structures [LLR19], and studying which kind of fibrations do they admit? [AGGL17]. In particular,
there are speculations that might lead to a relation between the first and third results. There is
evidence to believe that perhaps all C-Y threefolds with large enough h1,1 admit an elliptic fibration
[AGGL17]. It would be interesting to work in this conjectured relation, since there are results that
show that as h1,1 increases, the topology of the threefold in question takes on more specific forms
[KW13]. Therefore, this can lead us to “bounds” for the topology of a CICY threefold that admits
an elliptic fibration.
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