

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO POSGRADO EN CIENCIAS DE LA TIERRA INSTITUTO DE GEOLOGÍA

RECONSTRUCCIÓN DE LA EVOLUCIÓN TECTONO-SEDIMENTARIA DEL JURÁSICO TEMPRANO-MEDIO DE LA CUENCA DE TLAXIACO, SUR DE MÉXICO: IMPLICACIONES EN LA HISTORIA DE ATENUACIÓN CONTINENTAL DEL MARGEN OCCIDENTAL DE PANGEA

T E S I S Que para optar por el grado de Doctora en Ciencias de la Tierra

PRESENTA MILDRED DEL CARMEN ZEPEDA MARTÍNEZ

TUTOR

Dr. Michelangelo Martini Instituto de Geología, UNAM

MIEMBROS DEL COMITÉ TUTOR

Dra. Claudia Cristina Mendoza Rosales - Facultad de Ingeniería, UNAM Dr. Fernando Ortega Gutiérrez - Instituto de Geología, UNAM

MIEMBROS DEL COMITÉ EXAMINADOR

Dra. Claudia Cristina Mendoza Rosales-Facultad de Ingeniería, UNAM Dr. Timothy F. Lawton-Bureau of Economic Geology, The University of Texas at Austin Dr. Aaron Martin-División de Geociencias Aplicadas, IPICYT Dr. Fanis Abdullin-Centro de Geociencias, UNAM

Ciudad Universitaria, CdMx, agosto de 2021.

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Ciudad Universitaria, CdMx, 2021.

Declaro conocer el Código de Ética de la Universidad Nacional Autónoma de Legislación México, plasmado en la Universitaria. Con base en las definiciones de integridad y honestidad ahí especificadas, aseguro mediante mi firma al calce que el presente trabajo es original y enteramente de mi autoría. Todas las citas de, o referencias a, las obras autores aparecen debida adecuadamente de otros у señaladas, así como acreditadas mediante los recursos editoriales convencionales.

Mildred del Carmen Zepeda Martínez Estudiante del Posgrado en Ciencias de la Tierra, UNAM

A mi madre y a mi hermano, gracias por ser fuerza y amor, por toda la vida y hasta el infinito.

A mi padre,

que está en cada momento de mi vida, en cada paso por ríos y montañas, por más que pasen los años siempre estarás aquí. Quiero agradecer a mi asesor, el Dr. Michelangelo Martini, por su paciencia, compromiso y por creer en mí. Por compartir su conocimiento siempre con emoción, por motivarme a aprender cosas nuevas, por contagiarme el gusto por hacer las cosas con la mejor calidad posible y sin dejar de disfrutar o divertirse. Gracias por todas las oportunidades, sinceridad, confianza, por el respeto a mis ideas y por la dirección de este proyecto tan interesante y que tanto disfruté. Su amistad, apoyo y guía me permitieron aprender muchísimo más de lo que está escrito en este documento. Muchas gracias por todo, Miche.

Gracias a la Dra. Claudia Mendoza que además de apoyarme durante el posgrado siendo parte de mi comité tutor, ha sido parte de mi formación académica desde la licenciatura y ha sido una parte muy importante en mi gusto por el trabajo de campo y las rocas sedimentarias. Gracias al Dr. Fernando Ortega, miembro de mi comité tutor, que desde mi admisión al doctorado he contado con su apoyo y sus valiosos comentarios, los cuales contribuyeron de manera significativa a este proyecto.

Agradezco a la Dra. Laura Balestrieri por todo el tiempo, confianza y apoyo que me brindó para enseñarme la técnica de fechamiento por trazas de fisión en apatitos y por mostrarme la bella ciudad de Florencia.

Agradezco a los miembros del comité sinodal, la Dra. Claudia Mendoza, el Dr. Timothy Lawton, el Dr. Aaron Martin y el Dr. Fanis Abdullin por todos sus comentarios y sugerencias que favorecieron significativamente a pulir la versión final de este documento.

Gracias a mi madre, por ser consejera y amiga de vida. Su apoyo, amor y consejos me han guiado a cumplir mis anhelos día a día y a disfrutar con todo el corazón cada cosa que hago en la vida. Gracias a mi madre por su sonrisa y fortaleza que siempre contagia a todos los que la rodeamos. Gracias a mi padre que, con mi madre, me mostró lo bello de sonreír y compartir con amigos y familia. Agradezco a mi hermano que nunca titubea cuando le solicito apoyo y que siempre está dispuesto a ser fortaleza cuando lo necesito, o a ser cariño y sonrisas cuando estamos juntos. A mi cuñada y sobrino por todo el amor y porque también son parte muy importante de mis logros y motivación. A mi familia le agradezco todo.

Agradezco especialmente a Rodrigo por ser mi compañero, lleno de fortaleza, paciencia y amor. Por acompañarme siempre con lo mejor de él y compartir tanto amor en esta aventura de vivir. Gracias por enseñarme tantas cosas y disfrutar conmigo tantos momentos y paisajes inolvidables.

Quiero agradecer a Magdalena, Rafael y Alonso, por su apoyo incondicional, por dejarme ser parte de su familia, por todo su cariño y por todas las reuniones, viajes, libros y pláticas de sobremesa que disfruto tanto y que siempre recuerdo con cariño.

Gracias a Consuelo Macías por siempre estar dispuesta a ayudar a los demás, gracias por todo su apoyo y por los ánimos en estos tiempos difíciles.

Agradezco a mis amigas y amigos que nunca se rajaron en los caminamientos bajo el sol extremo o la lluvia, que cruzaron conmigo ríos de muerte, que lo dieron todo por cartografiar y sacar los kilos de areniscas de las barrancas más profundas: Elisa Malpica, Ismael Luna, Urenia Navarro, Sandra Guerrero, Berlaine Ortega, Rodrigo Gutiérrez, Jesús Salgado, Fernando Núñez, Mariana Peña y Mónica R. Calderón.

Gracias a mis amigas y amigos que compartieron conmigo tantas experiencias y que afortunadamente seguimos juntos después de este último año tan difícil para el mundo: mis queridas viejas Diana y Mónica, Joshua, Estefanía, César, Rogelio, Juan-Luis, Yuly, Alexia, Ismael, Carlos Luna, Sol, Enrique, Fernando, Carlos Jiménez, Urenia, Jaime, Jonathan, Gaby y Berlaine.

Agradezco también a María Luisa y Gloria Alba por su amistad, amabilidad y por su gran disposición para ayudarnos siempre en el posgrado.

También agradezco a las comunidades de Rosario Nuevo, Tlaxiaco, Tecomatlán y Olinalá, a toda la gente que nos abrió las puertas de sus casas para desarrollar este proyecto. Agradezco la confianza que nos dieron y por compartir con nosotros sus bellos paisajes, su cultura y todo el conocimiento que tienen de su entorno.

Agradezco a la Universidad Nacional Autónoma de México, al Consejo Nacional de Ciencia y Tecnología y al Posgrado en Ciencias de la Tierra por brindarme la oportunidad de realizar un posgrado en una de las áreas del conocimiento más emocionantes.

Esta tesis se desarrolló con el financiamiento otorgado mediante el proyecto IN104018 del Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT), donde el Dr. Michelangelo Martini fungió como responsable, y con el financiamiento que me fue otorgado por la *Geological Society of America* mediante el programa de *GSA Research Grant 2019*, el cual cubrió parte del monto total de las muestras analizadas para termocronología.

CONTENIDO

Página

-

OBJETIVOS	33
3.1 Problemática	33
3.2 Hipótesis de trabajo	34
3.3 Objetivos	36

Capítulo 4.

METOLOGÍA	38
4.1 Análisis bibliográfico	38
4.2 Cartografía geológica	38

4.3 Levantamiento de perfiles de facies y análisis de elementos	
arquitectónicos	39
4.4 Análisis de modas detríticas de areniscas	42
4.5 Análisis petrográfico de minerales pesados	45
4.6 Geocronología U-Pb en circón detrítico	46
4.7 Termocronología de baja temperatura (trazas de fisión en	
cristales de apatitos)	48

Capítulo 5.

RESULTADOS DEL TRABAJO DE CAMPO	53
5.1 Estratigrafía general de las áreas estudiadas	53
5.2 Sedimentología de la formación Cualac	60
5.1.1 Litofacies	60
5.1.2 Elementos arquitectónicos	69
5.3 Sedimentología del grupo Tecocoyunca inferior	73
5.2.1 Litofacies	73
5.2.2 Elementos arquitectónicos	78
5.4 Falla de Axutla	84

Capítulo 6.

Capitulo 6.	
MODAS DETRÍTICAS DE ARENISCAS	88
6.1 Formación Cualac	93
6.2 Grupo Tecocoyunca inferior	98

Capítulo 7.

PETROGRAFÍA DE MINERALES PESADOS	100
7.1 Formación Cualac	103
7.2 Grupo Tecocoyunca inferior	104

Capítulo 8.

Capitalo 8.	
GEOCRONOLOGÍA U-Pb	106
8.1 Formación Cualac	106
8.2 Grupo Tecocoyunca inferior	110

Capítulo 9.

Capitulo 9.	
TERMOCRONOLOGÍA DE BAJA TEMPERATURA Y	
MODELADO TÉRMICO	115

Capítulo 10. DISCUSIÓN

DISCUSION	123
10.1Ambientes de depósito	123
10.1.1 Formación Cualac	123
10.1.2 Grupo Tecocoyunca inferior	127
10.2 Procedencia	130

10.2.1 Formación Cualac	130
10.2.2 Grupo Tecocoyunca inferior	135
10.3 Arquitectura interna y principales bordes de la Cuenca de	
Tlaxiaco	138
10.4 Redefinición de la Cuenca de Tlaxiaco	143
10.5 Implicaciones tectónicas	
Capítulo 11.	
CONCLUSIONES	
Referencias	150
Apéndice A. GEOCRONOLOGÍA DE CIRCONES	173

RESUMEN

Siendo el supercontinente más reciente en la historia de la Tierra, Pangea representa el mejor caso de estudio para entender los procesos tectónicos que produjeron la ruptura de las masas supercontinentales. Sin embargo, la evolución de la fragmentación de este supercontinente es poco conocida en algunas localidades, como es el caso del territorio mexicano. Durante el Mesozoico temprano, el territorio mexicano se ubicaba en el margen ecuatorial de la Pangea occidental, a lo largo del límite divergente entre Norteamérica y Sudamérica. La mayoría de los autores coinciden en que la ruptura continental jurásica en México estuvo influenciada principalmente por un sistema de fallas normales dextrales con orientación NNW asociado al desarrollo de la transformante Tamaulipas-Chiapas, que determinó la rotación del bloque Maya en sentido antihorario y la apertura del Golfo de México. Debido al problema de traslape cortical entre Norteamérica y Sudamérica en la reconstrucción de Pangea, algunos autores han especulado sobre la existencia de fallas laterales izquierdas con orientación WNW que desplazaron parte del centro y sur de México desde una posición más noroccidental a su posición actual durante el Jurásico. Identificar las estructuras involucradas en el adelgazamiento cortical jurásico en México es difícil debido a la sobreposición de eventos tectónicos cretácicos y cenozoicos. Por ende, la evolución estructural de México durante el Jurásico es aún un tema de debate y la existencia de fallas con orientación WNW sigue siendo cuestionada por algunos autores, dejando sin solución el problema de traslape de la Pangea occidental.

Durante la fragmentación de Pangea, se desarrollaron en todo el mundo numerosas cuencas extensionales a transtensionales, cuyos límites correspondieron con estructuras activas que acomodaron la extensión continental jurásica. Considerando que la evolución tectono-sedimentaria de una cuenca está en gran parte controlada por la actividad de fallas maestras generadas durante un evento tectónico, reconstruir la geometría de las cuencas del Jurásico es clave para identificar las fallas principales que produjeron la atenuación continental durante la ruptura de Pangea. Por lo tanto, este trabajo integra técnicas sedimentológicas y de procedencia para reconstruir la evolución de la geometría, arquitectura interna y patrón de dispersión de sedimento de la Cuenca de Tlaxiaco, en el sur de México, con el fin de rastrear las principales fallas activas que actuaron durante el evento de *rift* del Jurásico.

El registro estratigráfico de la Cuenca de Tlaxiaco se encuentra expuesto de manera discontinua en los estados de Puebla, Oaxaca y Guerrero, en las localidades de Tezoatlán, Tlaxiaco,

Tecomatlán y Olinalá. Las rocas clásticas jurásicas de la Cuenca de Tlaxiaco han sido asignadas a la formación Cualac y al grupo Tecocoyunca inferior. La formación Cualac está conformada por conglomerado, arenisca y en menor medida lodolita, y se interpreta como el depósito de un sistema de abanicos aluviales con transporte sedimentario hacia el sur. Las areniscas varían en composición de areniscas cuarzosas a lítico-cuarzosas y muestran una asociación de minerales pesados conformada por turmalina, rutilo, epidota, circón y prehnita. Las rocas de esta unidad presentan cuatro grupos de edades: ~1380-870, ~790-330 Ma, ~1640-1430, y ~2770-1770 Ma. El grupo Tecocoyunca inferior está compuesto por arenisca, lodolita carbonosa y carbón, y se interpreta como el depósito de un rio wandering que fluía de este a oeste. Las areniscas de esta unidad corresponden con areniscas cuarzosas y cuarzo-líticas, y contienen minerales pesados como circón, rutilo, turmalina, epidota, apatito, ortopiroxeno e inclusiones de rutilo en forma de aguja en granos de cuarzo. Las rocas del grupo Tecocoyunca inferior presentan cinco grupos edades: ~1400–880, ~300–240Ma, ~ 1700–1470, $\sim 670-350$, y $\sim 191-173$ Ma. Estos datos permiten documentar que, durante el Jurásico Inferior y Medio, el límite norte de la cuenca estaba representado por un importante relieve de rocas paleozoicas del Complejo Acatlán, el cual era drenado hacia el sur por un conjunto de abanicos aluviales que interactuaban en su parte más distal con un sistema fluvial axial. Los abanicos aluviales de la Cuenca de Tlaxiaco son contiguos a una falla de escala regional con orientación WNW, la cual se nombra en este trabajo como falla Río Salado-Axutla. Esta estructura se interpreta como el límite norte de la cuenca, el cual controló, por lo menos en parte, la arguitectura y la evolución tectono-sedimentaria de la Cuenca de Tlaxiaco, presumiblemente entre ~176 y ~168 Ma. El río axial drenaba las rocas proterozoicas del Complejo Oaxaqueño que limitaban la Cuenca de Tlaxiaco hacia el este, esta interpretación es apoyada por los datos de trazas de fisión en apatito obtenidos en este trabajo, los cuales documentan que la exhumación de las rocas del Complejo Oaxaqueño ocurrió a través de varios pulsos desde ~240 a ~160 Ma.

El reconocimiento de la falla Río Salado-Axutla sugiere que la extensión cortical durante la ruptura de Pangea no se desarrolló únicamente a través de fallas con orientación NNW asociadas con el desarrollo de la falla transformante Tamaulipas-Chiapas, como lo establecen los modelos de reconstrucción del Jurásico para el territorio mexicano, sino que la actividad de fallas con orientación WNW también tuvieron un papel fundamental en el territorio mexicano durante este evento tectónico. Los resultados obtenidos ofrecen una nueva perspectiva para los trabajos futuros que buscan reconstruir el proceso de fragmentación del margen oeste ecuatorial de Pangea donde las estructuras mayores jurásicas con orientación WNW pueden ser objeto de estudio.

ABSTRACT

Pangea is the most recent supercontinent formed on Earth and represents the best case of study to understand the tectonic processes that produced the breakup of supercontinental masses. However, the evolution of Pangea breakup is still not completely understood in some places, as in continental Mexico. By early Mesozoic time, the Mexican territory was located at the westernequatorial margin of Pangea, along the North America-South America divergent plate boundary. Most of the authors suggest that the Jurassic continental breakup in Mexico was dominantly influenced by a NNW-trending, dextral normal fault system related to the development of the Tamaulipas-Chiapas transform, which produced the anticlockwise rotation of the Maya block and the opening of the Gulf of Mexico. Because of the cortical overlap problem between North and South America in the Pangea reconstruction, some authors have speculated about the existence of WNWtrending, left-lateral faults that displaced part of central and southern Mexico from a more northwestern location to its present position during Jurassic time. Identifying the structures involved in the Jurassic cortical attenuation in Mexico is difficult due to the overlapping of Cretaceous and Cenozoic tectonic events. Therefore, the structural evolution of Mexico during the Jurassic time is still a matter of debate, and the existence of WNW-trending faults is still questioned by some authors, leaving the overlapping problem of western Pangea unresolved.

During Pangea breakup, several Jurassic extensional to transtensional basins were developed worldwide, and the boundaries of these basins were active structures that accommodated Jurassic continental extension. The tectono-sedimentary evolution of a basin is primarily controlled by major active faults generated during a tectonic event. Therefore, reconstructing the geometry of Jurassic basins is a key factor in identifying the major faults that produced continental attenuation during Pangea breakup. This work integrates sedimentological and provenance techniques to reconstruct the evolution of the geometry, internal architecture, and sediment dispersion pattern of the Jurassic Tlaxiaco Basin and to trace the main active faults that acted during the Jurassic rift event.

The stratigraphic record of the Tlaxiaco Basin is discontinuously exposed in Puebla, Oaxaca, and Guerrero states, in the vicinities of Tezoatlán, Tlaxiaco, Tecomatlán, and Olinalá. Lower and Middle Jurassic clastic rocks of the Tlaxiaco Basin have been assigned to the Cualac formation and overlying lower Tecocoyunca group. The Cualac formation is composed of conglomerate, sandstone, and minor mudstone, and it is interpreted as the deposit of an alluvial fans system, with main sedimentary transport to the south. The analyzed sandstone samples vary in composition from quartzose to quartzo-lithic sandstone and show a heavy mineral assemblage composed of tourmaline, rutile, epidote, zircon, and prehnite. The rocks of the Cualac formation are characterized by four age groups of ~1380–870, ~790–330 Ma, ~1640–1430, and ~2770–1770 Ma. The lower Tecocoyunca group is made up of sandstone, coaly mudstone, and coal, and it is interpreted as the deposit of a wandering river, which flowed from east to the west. Sandstone samples from lower Tecocoyunca group are quartzose and litho-quartzose sandstones. These rocks contain heavy minerals such as zircon, rutile, tourmaline, epidote, apatite, orthopyroxene, and needle-shaped rutile inclusions in quartz. The rocks of the lower Tecocoyunca group are characterized by five age groups of ~1400– 880, ~300–240Ma, ~ 1700–1470, ~ 670–350, and ~ 191–173 Ma. These data allow document that, during the Lower and Middle Jurassic time, the northern boundary of the basin was represented by a major relief of Paleozoic rocks of the Acatlán Complex, which was drained to the south by a set of alluvial fans that interacted in its most distal part with an axial fluvial system. The alluvial fans of the Tlaxiaco Basin are adjacent to a WNW-trending, regional-scale fault, which is named in this work as the Salado River-Axutla fault. This structure is interpreted as the northern boundary of the basin, which controlled, at least in part, the architecture and tectono-sedimentary evolution of the Tlaxiaco Basin, presumably between ~176 and ~168 Ma. The axial river drained the Proterozoic rocks of the Oaxacan Complex that bounded the Tlaxiaco Basin to the east. This interpretation is supported by apatite fission-track data obtained in this work, which document that the exhumation of the Oaxacan Complex rocks occurred through several pulses during ~240 to ~160 Ma.

Identifying the Salado River-Axutla fault suggests that cortical extension during Pangea breakup was accommodated not only by NNW-trending faults associated with the Tamaulipas-Chiapas transform fault development, as established by the Jurassic reconstruction models, but also WNW-trending major structures played a fundamental role in the Mexican territory during this tectonic event. The obtained results offer a new perspective for future works that aim to reconstruct the breakup evolution of western equatorial Pangea where the major WNW-trending Jurassic structures can be the study object.

El ciclo de los supercontinentes se ha utilizado ampliamente en las últimas décadas para explicar la hipótesis de la evolución de la litosfera continental a lo largo de la historia de la Tierra. Este paradigma establece que la litosfera continental se amalgama en un solo cuerpo y posteriormente se fragmenta en continentes más pequeños antes de volver a conformar el siguiente supercontinente (Rogers, 1996; Merdith et al., 2019). Sin embargo, los mecanismos que controlan cómo y por qué los continentes se amalgaman y se dispersan siguen siendo poco conocidos. Se ha propuesto que Pangea ha sido el supercontinente más reciente en la historia de Tierra y que fue el resultado de la progresiva acreción, durante el Carbonífero y el Pérmico, de bloques continentales que se generaron a partir de la desintegración del supercontinente Rodinia; es decir, el proceso de consolidación de Pangea ocurrió en aproximadamente 120 my hasta que comenzó nuevamente el proceso de fragmentación en el Mesozoico temprano (Frizon de Lamotte et al., 2015; Peace et al., 2020). De acuerdo con el registro geológico y datos geofísicos alrededor del mundo, se ha propuesto que el proceso de fragmentación continental de la Pangea ocurrió en un intervalo de tiempo extenso. En particular, el margen occidental de Pangea comenzó a fragmentarse durante el Triásico y Jurásico Temprano (Frizon De Lamotte et al., 2015; Peace et al., 2020). Para el Jurásico Medio, la fragmentación continental generada por la divergencia entre Norteamérica, Sudamérica y África dio lugar la apertura del Océano Atlántico Central y el proto-Caribe (Peace et al., 2020). Durante la fragmentación de Pangea en el Mesozoico temprano, las rocas paleozoicas y proterozoicas de México se ubicaban a lo largo del límite de placas divergente que se estaba desarrollando entre Norteamérica y Sudamérica (Dickinson y Lawton, 2001; Pindell y Kennan, 2009). Esta posición determinó que la evolución tectónica jurásica de México estuviera influenciada por la actividad de grandes fallas normales a laterales, las cuales determinaron el adelgazamiento continental que llevó a la ruptura de la Pangea (Martini y Ortega-Gutiérrez, 2018). Sin embargo, existen todavía muchas dificultades para reconocer las principales fallas que acomodaron la extensión continental del Jurásico en el territorio mexicano, debido a la sobreimpresión de los episodios de deformación del Cretácico y Cenozoico que, en gran medida, han borrado las evidencias de eventos tectónicos anteriores. No obstante, un enfoque sedimentológico puede ayudar a identificar las principales fallas que acomodaron la extensión continental durante la ruptura de Pangea. La extensión asociada a la ruptura de Pangea produjo el desarrollo de varias cuencas de rift, algunas de las cuales presentan un registro estratigráfico ampliamente expuesto en México (Goldhammer, 1999; Campos-Madrigal et al., 2013; Martini y Ortega-Gutiérrez, 2018). El registro estratigráfico de estas cuencas representa un archivo importante de información sobre la evolución tectónica relacionada con la ruptura de la Pangea. Esto se debe a que la geometría, arquitectura interna y patrón de dispersión de sedimento de una cuenca de rift, así como su evolución tectono-sedimentaria, están en gran parte controlados por la actividad de fallas maestras que son la expresión directa del proceso tectónico en curso (Gawthorpe y Leeder, 2000; Allen y Allen, 2013). Por lo tanto, la reconstrucción de la arquitectura interna de las cuencas de rift del Jurásico en México, integrada con el análisis de procedencia de los diferentes elementos arquitectónicos, pueden ser una gran herramienta para rastrear las principales fallas activas que actúaron como los límites principales de las cuencas. En consecuencia, las cuencas jurásicas de México son elementos claves para reconstruir el desarrollo y la evolución del límite entre Norteamérica y Sudamérica. En este trabajo, se presentan nuevos datos sedimentológicos, petrográficos y geocronológicos que permiten reconstruir la arquitectura interna y la evolución tectono-sedimentaria de la Cuenca de Tlaxiaco, una de las mayores cuencas de rift del Jurásico en el sur de México. La integración de los resultados obtenidos en este trabajo permite poner a prueba y discutir las diferentes reconstrucciones geodinámicas que los autores han propuesto para el proceso de rompimiento de la Pangea en México, y ofrece una nueva perspectiva para los trabajos futuros que buscan reconstruir el proceso de fragmentación del ultimo supercontinente.

Capítulo 2. ANTECEDENTES

La configuración Wegeneriana, también conocida como Pangea 'A', es el escenario paleogeográfico que presenta el mejor ajuste entre Gondwana y Laurasia desde el Paleozoico (desde el Pérmico Medio según Muttoni et al., 2003 y desde el Pérmico Tardío según Bélica et al., 2017) hasta el inicio de la fragmentación de Pangea durante Mesozoico Temprano (Van der Voo, 1993; Boschman et al., 2014; Peace et al., 2020). La configuración de Pangea 'A', resulta del simple cierre geométrico del Océano Atlántico y coloca al continente africano al sur de Europa y al este de la costa occidental de Norteamérica y Sudamérica (Fig. 2.1A). Existen variantes de la configuración Wegeneriana de Pangea 'A-1' de Bullard et al., 1965; Pangea 'A-2' de Van der Voo y French, 1974); sin embargo, el término de Pangea 'A' es usado como una referencia general de estos modelos (Domeier et al., 2012; Correia and Murphy, 2020). A pesar de que la Pangea 'A' es el escenario más aceptado en la literatura para principios del Mesozoico, momento en el que comenzó a fragmentarse Pangea, la configuración Wegeneriana no resuelve completamente la evolución tectónica jurásica de América Central y el Caribe, ya que impone un traslape de 300–400 km de corteza continental entre el noroeste de los Andes y México en latitudes tropicales desde el Pérmico Temprano (Muttoni et al., 2003; Pindell y Kennan, 2009; Boschman et al., 2014; Figs. 2.1 A y B).

Figura 2.1 A) Configuración Wegeneriana o Pangea 'A' para el Pérmico Temprano, donde se observa que el cierre geométrico del Océano Atlántico genera un problema de traslape cortical en latitudes tropicales (Modificado de Muttoni *et al.*, 2003). B) Fallas mayores jurásicas propuestas por algunos autores para solucionar el problema de traslape cortical entre el territorio mexicano y noroeste de los Andes (Modificado de Boschman *et al.*, 2014). TTC: Transformante Tamaulipas-Chiapas; CVT: Falla Cinturón Volcánico Transmexicano.

Durante la atenuación continental de Pangea, las rocas paleozoicas y proterozoicas que actualmente conforman el basamento del sur de México se encontraban en el margen oeste ecuatorial del supercontinente, donde se iniciaría el rift entre Sudamérica y Norteamérica (Dickinson y Lawton, 2001; Pindell y Kennan, 2009). Consecuentemente, algunos autores han sugerido que para solucionar el problema de traslape cortical es necesario el desplazamiento de bloques continentales que actualmente componen el territorio mexicano a lo largo de fallas mayores durante el Mesozoico temprano (Gastil y Jensky, 1973; Anderson y Schmidt, 1983; Dickinson y Lawton, 2001; Pindell y Kennan, 2009; Boschman et al., 2014; Fig. 2.1B). Sin embargo, uno de los problemas mayores para la reconstrucción de la geometría y evolución tectónica de la fragmentación de Pangea en el territorio mexicano es la dificultad en la observación directa de las fallas involucradas en este evento tectónico. Debido a la compleja historia de deformación del territorio mexicano durante el Mesozoico y Cenozoico, las fallas expuestas en superficie presentan historias de deformación más recientes sobreimpuestas. Adicionalmente, el registro estratigráfico del Cretácico y Cenozoico sepulta extensivamente las rocas y estructuras del Jurásico. Por esta razón, el evento de fragmentación de la Pangea sólo se ha reconstruido en México a nivel regional. Las reconstrucciones actualmente propuestas se pueden subdividir en dos grupos: 1) las reconstrucciones donde la evolución del territorio mexicano fue controlada principalmente por la actividad de fallas con orientación NNW y cinemática lateral derecha (Goldhammer, 1999; Padilla and Sánchez, 2007; Pindell and Kennan, 2009; Nova et al., 2019), y 2) las reconstrucciones paleogeográficas que, además de las fallas derechas con orientación NNW, prevén la actividad de fallas con orientación WNW y cinemática normal izquierda como solución geométrica al traslape continental entre Norteamérica y Sudamérica (Gastil y Jensky, 1973; Anderson y Schmidt, 1983; Dickinson y Lawton, 2001; Pindell y Kennan, 2009; Boschman et al., 2014). A diferencia de las fallas jurásicas derechas con orientación NNW, cuya existencia resulta comprobada por datos geofísicos de diferente naturaleza (Pindell et al., 2021 y referencias dentro de este trabajo), la existencia de fallas mayores jurásicas con orientación WNW no ha sido aun documentada de manera contundente, y diversos autores subestiman la actividad de estas estructuras durante la fragmentación de Pangea (Iriondo et al., 2005, Molina-Garza e Iriondo, 2005, Gray et al., 2008). Los autores que proponen que los desplazamientos izquierdos en el territorio mexicano no son necesarios sugieren que el traslape cortical se reduce si las rocas de los Andes Colombianos se localizan en una posición original más meridional que su posición actual durante el Jurásico, resultando un área mínima de traslape donde se localizan las cuencas jurásicas de Colombia (Fig. 2.3D; Bayona et al., 2010; Nova et al., 2019). Estos modelos muestran que la evolución de las cuencas jurásicas colombianas se relaciona primeramente con un ambiente tectónico de trasarco e

intra-arco durante el Triásico Tardío–Jurásico Medio, que favoreció la generación de cuencas extensionales y transtensionales culminando con la apertura del océano Proto-Caribeño y al retroceso hacia el oeste de la zona de subducción durante el Jurásico Superior–Cretácico Inferior (Bayona et al., 2010). Nova et al. (2019) extrapolan este modelo al territorio mexicano únicamente con base en correlaciones estratigráficas tentativas; sin embargo, no existen datos disponibles que soporten esta propuesta. Por consiguiente, el problema de traslape cortical sigue sin tener aparentemente una solución satisfactoria y aceptada de manera conjunta por la comunidad científica. A continuación, se hace una breve recopilación de las fallas mayores en el sur de México para las cuales se ha documentado, de manera directa (observadas en campo) e indirecta (interpretadas con base en datos geofísicos), alguna actividad durante el Jurásico Inferior–Medio.

2.1 Fallas dextrales con orientación NNW activas durante el Jurásico Inferior-Medio

La estructura más documentada y aceptada en las reconstrucciones paleogeográficas del Jurásico para el territorio mexicano es la transformante Tamaulipas-Chiapas (Fig. 2.2A; Pindell, 1985; Ross y Scotese, 1988; Boschman et al., 2014; Nguyen y Mann, 2016; Pindell et al., 2021). Dicha estructura se localiza en el margen oriental del territorio mexicano y corresponde con un lineamiento con orientación NNW que se extiende desde Tamaulipas hasta Chiapas, a lo largo de una longitud de ~1200 km. A pesar de que esta estructura no está expuesta en superficie, se ha documentado con datos geofísicos que este lineamiento define el límite donde el basamento continental se profundiza abruptamente y el espesor de los depósitos sedimentarios adyacentes a su margen oeste exceden los 4500 m (Pindell, 1985). Se ha inferido que la falla Tamaulipas-Chiapas actuó como una falla normal lístrica, posiblemente con una componente de desplazamiento dextral, durante el Jurásico Inferior y Medio, generando la exhumación de las rocas de basamento y formando un alto estructural conocido con el nombre de Arco de Tamaulipas o Archipiélago de Tamaulipas (Tamaulipas arch: Pindell, 1985; Pindell and Kennan, 2009). Durante el Jurásico Superior, esta falla actuó como una falla principalmente transformante dextral que produjo la rotación antihoraria del bloque Maya que, desde el margen de Texas-Lousiana, se desplazó hasta su posición actual (Buffler and Sawyer, 1985; Pindell, 1985; Goldhammer, 1999; Pindell y Kennan, 2009; Boschman et al., 2014).

La rotación del bloque Maya a lo largo de la transformante Tamaulipas-Chiapas, la cual es corroborada por los datos paleomagnéticos disponibles (Molina-Garza et al., 1992; Godínez-Urban et al., 2011; Pindell et al., 2016), jugó un papel fundamental en la evolución jurásica de México

durante la fragmentación del occidente de Pangea, en cuanto determinó la apertura del Golfo de México (Goldhammer, 1999; Pindell y Kennan, 2009; Boschman et al., 2014). En el sur de México, otras fallas mayores para las cuales se ha documentado una actividad durante el Jurásico Inferior-Medio, presentan una orientación NNW y una cinemática dextral a dextral normal. Dichas fallas son el cinturón milónitico de la Sierra de Juárez (Fig. 2.2B; Alaniz-Álvarez et al., 1996), la Falla de Caltepec (Fig. 2.2B; Elías-Herrera et al., 2005), la falla de Petlalcingo-Huajuapan (Fig. 2.2B; Martiny et al., 2012; Campos Madrigal et al., 2013) y el sistema de fallas Texcalapa-El Sabino (Fig. 2.2B; Campos Madrigal et al., 2013). Estas fallas sugieren que el desarrollo de la transformante Tamaulipas-Chiapas fue un evento de extensión regional en el territorio mexicano, en cuanto produjo un patrón de fallas dextrales normales con orientación NNW que influenció la evolución tectónica del oriente de México durante el Jurásico Inferior y Medio (Elías-Herrera et al., 2005; Campos-Madrigal et al., 2013; Martini y Ortega-Gutiérrez, 2018).

Figura 2.2 A) Ubicación actual de las principales estructuras que participaron en la evolución tectónica del territorio mexicano durante la fragmentación de Pangea. B) Estructuras mayores jurásicas documentadas en el sur de México (Modificado de Ortega-Gutiérrez et al., 2018). COMS: Cinturón Ouachita-Maraton-Sonora (Poole et al., 2005); FLB: Falla La Babia (Charleston, 1981); FSM: Falla San Marcos (Charleston, 1981; Chávez-Cabello et al., 2005); MMS: Megacizalla Mojave-Sonora; TGLC: Transformante Tamaulipas-Chiapas (Pindell, 1985); CVT: Falla Cinturón Volcánico Trans-Mexicano (Gastil y Jensky, 1973); FC: Falla de Caltepec (Elías-Herrera et al., 2005); CMSJ: Cinturón Milonítico de la Sierra de Juárez (Alaniz-Álvarez et al., 1996); TS: Sistema de fallas Texcalapa-El Sabino, PH: falla Petlalcingo-Huajuapan (Campos Madrigal et al., 2013); FRS: Falla Río Salado (Martiny et al., 2012); VH: Valle de Huizachal.

La Falla de Caltepec, la cual es una estructura con orientación NNW expuesta a lo largo de 20 km, en los estados de Puebla y Oaxaca, en las cercanías del poblado de Caltepec (Fig. 2.2B). La

Falla de Caltepec es una estructura de larga vida que presenta evidencias de deformación dúctil y frágil. Dicha falla se ha interpretado como el límite tectónico entre los complejos Oaxaqueño y Acatlán (Ortega-Gutiérrez, 1975; Elías-Herrera et al., 2005). La actividad más antigua de esta estructura ha sido relacionada con la colisión oblicua entre los complejos Acatlán y Oaxaqueño durante el Pérmico temprano en el marco tectónico de la consolidación de Pangea, mientras que, para el Jurásico Medio, se ha especulado que esta actuó como una falla normal o transtensiva, y su actividad se asocia al evento de la fragmentación de Pangea (Elías-Herrera et al., 2005).

2.2 Fallas sinistrales con orientación WNW activas durante el Jurásico Inferior-Medio

Las fallas con orientación WNW se han propuesto solo como una solución geométrica en las reconstrucciones paleogeográficas, para resolver el problema de traslape cortical entre Norteamérica y Sudamérica durante el Mesozoico temprano. La solución geométrica implica el desplazamiento del sur y parte del centro de México a lo largo de una o más fallas mayores con orientación WNW y cinemática lateral izquierda (Fig. 2.1B; Gastil y Jensky, 1973; Boschman et al., 2014; Mattews et al., 2016; Bélica et al., 2017; Young et al., 2019). Debido a que estas fallas con orientación WNW aún no han sido documentadas con detalle en México, su existencia sigue siendo subestimada por diversos autores (Iriondo et al., 2005, Molina-Garza e Iriondo, 2005, Gray et al., 2008). En las reconstrucciones del territorio mexicano para el Mesozoico temprano, se ha propuesto la existencia de dos zonas de fallas importantes con orientación WNW, las cuales provocarían cientos de kilómetros de desplazamiento: la Megacizalla Mojave-Sonora (Fig. 2.2A; Silver y Anderson, 1974; Anderson y Schmidt, 1983; Anderson y Silver, 2005) y la Falla Cinturón Volcánico Trans-Mexicano (Fig. 2.2A; Gastil y Jensky, 1973; Boschman et al., 2014), la cual estaría sepultada por debajo del actual arco volcánico. Sin embargo, existen autores que han descrito rasgos estructurales paleozoicos que no muestran ninguna interrupción claramente reconocible a lo largo la traza inferida de estas estructuras (e.g. el cinturón Ouachita-Marathon-Sonora; Poole et al., 2005; Fig. 2.2A). Por lo tanto, la existencia, extensión, edad y cinemática de estas estructuras con orientación WNW sigue siendo un tema central de debate (Iriondo et al., 2005; Gray et al., 2008).

En el caso del sur de México, la Falla Río Salado es la única estructura con orientación WNW documentada con detalle (Martiny et al., 2012; Fig. 2B). Esta falla está expuesta al sur de Huajuapan de León, Oaxaca, y se extiende a lo largo de ~25 kilómetros. La Falla Río Salado pone en contacto a las rocas paleozoicas del Complejo Acatlán con rocas sedimentarias Mesozoicas, y se ha descrito como una falla cortical de larga vida que ha presentado múltiples reactivaciones desde el Mesozoico

(Martiny et al., 2012). Con base en edades Ar^{40} - Ar^{39} de ~190 y ~180 Ma obtenidas en granos de moscovita que cristalizaron a lo largo de la foliación principal de la Falla Río Salado, Martiny et al. (2012) propusieron que esta estructura fue activa durante el Jurásico Inferior. El análisis de indicadores cinemáticos a la meso y microescala permitió determinar que, durante el Jurásico Inferior, la Falla Río Salado tuvo una cinemática lateral izquierda.

2.3 Evolución tectono-sedimentaria de México para el Jurásico

Debido al interés económico que el Golfo de México ha tenido desde hace décadas, la mayor parte de los trabajos sobre la evolución tectono-sedimentaria del territorio mexicano durante el Mesozoico temprano se ha desarrollado con base en los datos obtenidos en los sectores noreste y sureste del país. Por lo tanto, las interpretaciones paleogeográficas que existen actualmente se han propuesto con base en el análisis de datos publicados y no publicados de registro pozos, datos geofísicos y de geología superficial que fueron generados por la industria petrolera (Goldhammer, 1999; Padilla y Sánchez, 2007; Padilla y Sánchez, 2016; Pindell y Kennan, 2009). De manera general, los modelos de evolución tectónica propuestos para el Jurásico asumen que los vectores de divergencia entre Norte y Sudamérica estuvieron orientados aproximadamente con una dirección NNW-SSE (Anderson y Schmidt, 1983; Pindell, 1985; Pindell y Kennan, 2009; Boschman et al., 2014). Los modelos actualmente disponibles en la literatura muestran que esta divergencia produjo una configuración litosférica compleja, con altos de basamento y numerosas cuencas sedimentarias, cuyos límites son representados por fallas laterales y normales. La evolución de estas cuencas jurásicas de México estuvo dominada por la tectónica extensional asociada a la fragmentación de Pangea y, en particular, por el desarrollo de la transformante Tamaulipas-Chiapas, que se manifestó en el desarrollo de un sistema de fallas dextrales normales con orientación NNW (Figs. 2.3A-D; Goldhammer, 1999; Padilla y Sánchez, 2007; Martini y Ortega-Gutiérrez, 2018; Nova et al., 2019). La actividad de estas fallas mayores determinó una orientación dominante NNW para las cuencas sedimentarias desarrolladas durante el Jurásico en el territorio mexicano (Figs. 2.3A-D). Dichas cuencas preservan sucesiones con grandes espesores de rocas clásticas derivadas de los diferentes altos de basamento adyacentes, las cuales fueron depositadas en ambientes continentales a litorales, y en algunos casos, en ambientes marinos someros (Morán-Zenteno et al., 1993; Goldhammer, 1999; Ochoa-Camarillo et al., 1998; Campos-Madrigal et al., 2013; Martini et al., 2016; Zepeda-Martínez et al., 2018).

Figura 2.3 Modelos propuestos para explicar la evolución de las cuencas generadas en el territorio mexicano durante la fragmentación de Pangea y las estructuras mayores involucradas: A) Goldhammer, 1999; B) Salvador, 1991; Padilla y Sánchez, 2007; C) Martini y Ortega-Gutiérrez, 2018; D) Bayona et al., 2010; Nova et al., 2019. BM: Bloque de Mérida; AC: Andes Colombianos; BC: Bloque de Chortis

En algunas localidades de México, las sucesiones clásticas del Jurásico Inferior–Medio se encuentran interestratificadas con rocas volcánicas y volcaniclásticas. Dichas rocas presentan una composición principalmente riolítica a andesítica, y en menor proporción basáltica, con edades isotópicas de 193–163 Ma (Campa-Uranga *et al.*, 2004; Barboza-Gudiño *et al.*, 2008; Godínez-Urban *et al.*, 2011; Rubio-Cisneros y Lawton, 2011; Durán-Aguilar, 2014; Lawton y Molina-Garza, 2014; Barboza-Gudiño et al., 2020). El contexto tectónico del emplazamiento de estas rocas volcánicas se encuentra actualmente en el centro de un debate. De acuerdo con la firma geoquímica de estas rocas

volcánicas, algunos autores han propuesto que estas rocas volcánicas representan el registro del emplazamiento de un arco volcánico continental a lo largo del margen occidental de Pangea durante el Jurásico Inferior-Medio (Arco Nazas: Bartolini et al., 2003; Barboza-Gudiño et al., 2008; Godínez-Urban et al., 2011; Lawton and Molina-Garza, 2014; Barboza-Gudiño et al., 2020). Este arco continental sería el resultado de la subducción de la placa Farallón por debajo de la margen occidental de Pangea en un régimen tectónico extensional. En este contexto, las cuencas jurásicas en México serían cuencas de tras- e intra-arco. Por otra parte, algunos otros autores han propuesto un escenario alternativo en el que las rocas volcánicas expuestas en el noreste y sur de México representan el magmatismo intraplaca asociado a la extensión continental de Pangea (provincia volcano-sedimentaria Nazas: Martini y Ortega-Gutiérrez, 2018; Cavazos-Tovar et al., 2020). Por lo tanto, de acuerdo con este escenario, las rocas volcánicas del Jurásico Inferior y Medio fueron emplazadas contemporáneamente a la generación de las cuencas sedimentarias de *rift* en un dominio transtensivo, desarrollado por la atenuación de la corteza continental (Centeno-García , 2017; Martini y Ortega-Gutiérrez, 2018; Cavazos-Tovar et al., 2021).

Las sucesiones estratigráficas clásticas del Jurásico Inferior–Medio en México muestran claramente una abundancia progresivamente creciente de circones detríticos con edades paleozoicas y proterozoicas hacia los niveles estratigráficos superiores, lo cual sugiere la progresiva exhumación de niveles más profundos de la corteza durante la extensión cortical. Un caso muy claro de este proceso se observa en el registro estratigráfico del Jurásico Inferior–Medio del Valle de Huizachal (Fig. 2.2A), en el noreste de México. Aquí, la sucesión clástica muestra un progresivo incremento en circones detríticos con edades del Paleozoico y Proterozoico derivados de las rocas de basamento (Rubio-Cisneros y Lawton, 2001). Este cambio en poblaciones de circones detríticos indica la progresiva exhumación de las rocas de basamento a lo largo de falla Tamaulipas-Chiapas, cuya actividad controló la exhumación de rocas pre-Mesozoicas del Arco de Tamaulipas (Pindell y Kennan, 2009; Martini y Ortega-Gutiérrez, 2018).

En el sur de México, es complicado documentar la exhumación progresiva de niveles corticales progresivamente más profundos. Esto es debido a que las rocas de basamento se encuentran cubiertas por sucesiones clásticas del Pérmico que fueron alimentadas por los terrenos de basamento. Por lo tanto, las mismas poblaciones de edad de circón se encuentran en todos los niveles corticales, someros y profundos, y consecuentemente, las sucesiones clásticas del Jurásico no muestran cambios evidentes en la firma de edad de circones detríticos con la estratigrafía. Sin embargo, con base en datos geocronológicos, de procedencia y termocronológicos, se ha documentado la actividad de estructuras mayores que bordearon a las cuencas generadas durante el Jurásico Inferior–Medio

(Alaniz-Álvarez et al., 1996; Campos-Madrigal et al., 2013; Martini et al., 2016; Zepeda-Martínez et al., 2018; Abdullin et al., 2020). Los datos de procedencia de las sucesiones clásticas del Jurásico Inferior-Medio de algunas localidades del sur de México documentan que la exhumación de las rocas del basamento fue controlada principalmente por la actividad de fallas normales dextrales con orientación NNW, las cuales han sido relacionadas con el desarrollo de la transformante Tamaulipas-Chiapas (p. ej. falla El Sabino y falla Texcalapa: Campos-Madrigal et al., 2013; Fig. 2.2B). En algunos casos, también se ha documentado la actividad de fallas con orientación WNW (p.ej. Martini et al., 2016; Zepeda-Martínez et al., 2018). Sin embargo, el significado regional de estas fallas y el papel que estas desempeñaron en el marco del proceso de fragmentación de la Pangea es todavía desconocido.

A partir del Oxfordiano en el noreste y centro de México, y del Bajociano-Batoniano en el sur, los ambientes sedimentarios continentales fueron suprimidos por la incursión de aguas marinas en el territorio mexicano, instaurándose progresivamente plataformas con una sedimentación carbonatada y cuencas marinas profundas (Erben, 1956; Morán-Zenteno et al., 1993; Goldhammer, 1999; Campos-Madrigal et al., 2013). A diferencia de las cuencas desarrolladas durante el adelgazamiento cortical, muchas de las cuales tenían una extensión limitada y no presentaban conexiones importantes entre ellas, estas cuencas marinas eran amplias, se encontraban interconectadas y estaban bordeadas por plataformas carbonatadas desarrolladas en los altos de basamento (Suter, 1987; Goldhammer, 1999; Martini y Ortega-Gutiérrez, 2018). Esta evolución es probablemente el resultado combinado de la maduración del patrón de fallas (Gawthorpe y Leeder, 2000) y la progresiva subida del nivel marino absoluto durante el Jurásico Tardío y Cretácico Temprano (Haq et al., 1987). Según algunos autores, la transgresión marina presumiblemente coincidió con la rotación antihoraria del bloque Maya a lo largo de la transformante Tamaulipas-Chiapas (Goldhammer, 1999; Pindell y Kennan, 2009; Pindell et al., 2021). Por ende, algunos autores coinciden en que la transgresión marina en el territorio mexicano probablemente fue promovida por el magmatismo abundante en el Golfo de México y el proto-Atlántico (Goldhammer, 1999; Lehmann et al., 1999). Por lo tanto, se ha propuesto que las aguas marinas invadieron el territorio mexicano desde el Golfo de México, lo cual parece ser documentado por la presencia de amonitas de afinidad tetisiana en las sucesiones marinas jurásicas del noreste y centro de México (Sandoval y Westermann, 1986). Sin embargo, otros autores han sugerido que la incursión de aguas marina proceda de manera progresiva desde el Pacífico, con base en la afinidad de ciertas amonitas encontradas en los depósitos marinos de varias localidades de sur y centro de México (e.g. Tezoatlán y Huayacocotla; Cantú-Chapa, 1998).

2.4 Las cuencas de rift del Jurásico en el Sur de México

En el sur de México, se encuentran expuestas diversas cuencas que preservan el registro estratigráfico asociado al proceso de fragmentación del margen occidental de Pangea y, particularmente, a la evolución tectónica del Golfo de México. Estas rocas se encuentran expuestas de manera discontinua en los estados de Guerrero, Puebla y Oaxaca (Fig. 2.4). Dichas cuencas contienen sucesiones depositadas principalmente en ambientes continentales a litorales y, en algunos casos, en ambientes marinos someros (Morán-Zenteno et al., 1993; Goldhammer, 1999; Campos-Madrigal et al., 2013; Martini y Ortega-Gutiérrez, 2018).

Figura 2.4 Mapa geológico del sur de México donde se muestra la localización y extensión de Cuenca de Tlaxiaco. Se denotan en color azul las áreas donde se expone el registro estratigráfico del Jurásico Inferior–Medio, así como sus límites con las rocas del basamento del sur de México. Modificado de Martini et al., 2020.

El registro estratigráfico del Jurásico Inferior-Medio en el sur de México consiste principalmente en sucesiones clásticas que, localmente, presentan intercalación con rocas volcánicas (Campa-Uranga et al., 2004; Morán-Zenteno et al., 1993). Debido a las similitudes que el registro sedimentario presenta en el sur de México, López-Ticha (1985) propuso que estas sucesiones fueron depositadas en una misma cuenca extensional de aproximadamente 200 km de ancho llamada Cuenca de Tlaxiaco, la cual abarca los estados de Oaxaca, Puebla y Guerrero (Figs. 2.4 y 2.5). Sin embargo, existen muy pocos datos sedimentológicos y geocronológicos de estas sucesiones, y no se ha realizado hasta ahora algún estudio de procedencia para documentar que, efectivamente, existió una conexión física entre estas áreas y, por ende, que todos estos lugares donde se encuentran expuestos los depósitos del Jurásico Inferior y Medio formaban parte de una misma cuenca sedimentaria. En el siguiente subcapítulo se presenta una breve descripción de cada una de las unidades clásticas del Jurásico Inferior-Medio expuestas en las localidades de Otlaltepec, Ayuquila, Tezoatlán, Tlaxiaco, Tecomatlán y Olinalá, que, de acuerdo con la definición de López-Ticha (1985), conformaban la Cuenca de Tlaxiaco (Fig. 2.4).

Figura 2.5 Columnas estratigráficas de las áreas donde se encuentran expuestas las rocas jurásicas del sur de México. Las edades mostradas se establecieron con base en los datos geocronológicos de U-Pb en circones, termocronología por el método de trazas en apatito, fósiles marinos y flora fósil, disponibles en la literatura.

2.4.1 Otlaltepec

La localidad de Otlaltepec se encuentra ubicada en el límite de los estados de Puebla y Oaxaca (Fig. 2.4). En esta área, la sucesión clástica jurásica sobreyace discordantemente a las rocas metamórficas paleozoicas del Complejo Acatlán y al Plutón de Totoltepec de edad Carbonífero-Pérmico (Morán-Zenteno et al., 1993; Kirsch et al., 2012, Verde-Ramírez, 2015; Ramírez-Calderón, 2018). Dicha sucesión está conformada por depósitos fluviales y aluviales (formaciones Tianguistengo, Piedra Hueca y Otlaltepec) de probable edad del Jurásico Inferior y Medio, los cuales están sobreyacidos discordantemente por depósitos litorales y marinos someros (formaciones Santa Lucía y Cipiapa; Morán-Zenteno et al., 1993; Martini et al., 2016; Silva-Romo et al., 2018; Fig. 2.5). Algunos autores no excluyen la posibilidad que los depósitos fluviales puedan extenderse en edad hasta el Triásico Superior (Ramírez-Calderón, 2018).

El análisis de procedencia indica que los depósitos fluviales en Otlaltepec fueron ampliamente derivados de las rocas metamórficas del Complejo Oaxaqueño (Martini et al., 2016), el cual está expuesto ~ 50 km al este de esta localidad (Fig. 2.4) y conformaba durante el Jurásico un alto estructural regional delimitado por las fallas de Caltepec y la zona de cizalla de Sierra de Juárez (Alaniz-Álvarez et al., 1996; Martini et al., 2016) Otras fuentes más locales que contribuyeron al desarrollo de estos depósitos fluviales son el Plutón de Totoltepec y subordinadamente las rocas metamórficas del Complejo Acatlán (Martini et al., 2016).

2.4.2 Ayuquila

La localidad de Ayuquila se ubica en el estado de Oaxaca, ~45 km al sur de Otlaltepec (Fig. 2.4). El borde occidental de la sucesión mesozoica es representado por las fallas Texcalapa y El Sabino, las cuales presentan una orientación NNW y ponen en contacto la sucesión clástica del Jurásico con las rocas paleozoicas del Complejo Acatlán (Campos-Madrigal et al., 2013). El borde oriental está representado por el lineamiento Petlalcingo-Huajuapan, el cual presenta una orientación NNW y ha sido interpretado como una falla mayor que pone en contacto a la sucesión clástica jurásica con las rocas metamórficas del Complejo Ayú (Campos-Madrigal et al., 2013).

El registro estratigráfico expuesto en Ayuquila es muy similar al de Otlaltepec y está compuesto por depósitos aluviales y fluviales del Jurásico Inferior y Medio (formaciones Ayuquila y Tecomazúchil; Silva-Romo et al., 2011; Campos-Madrigal et al., 2013), con algunas unidades extendiéndose posiblemente al Triásico Superior (Formación La Mora; Silva-Romo et al., 2015), y

por calizas marinas del Jurásico Superior y Cretácico Inferior (Formación Chimeco; Alencaster y Buitrón-Sánchez, 1965; Fig. 2.5). Actualmente, no se ha realizado un análisis de procedencia detallado para estas rocas.

2.4.3 Tezoatlán

La localidad de Tezoatlán se encuentra en el estado de Oaxaca, a ~ 40 km al sur de Ayuquila (Fig. 2.4). El límite norte del registro estratigráfico del Jurásico Inferior-Medio corresponde con la falla Río Salado, la cual tiene una orientación WNW y pone en contacto a la sucesión clástica jurásica con las rocas metamórficas paleozoicas del Complejo Acatlán (Fig. 2.4). Los límites oeste, este y sur del registro estratigráfico Jurásico Inferior-Medio se encuentran cubiertos por las rocas volcánicas cenozoicas.

La sucesión del Jurásico Inferior-Medio expuesta en Tezoatlán está compuesta por cuatro unidades nombradas informalmente como: las formaciones Diquiyú, Rosario, Cualac y el grupo Tecocoyunca (Erben, 1956; Morán-Zenteno et al., 1993; Fig. 2.5). La formación Diquiyú está constituida principalmente por derrames andesíticos-dacíticos y depósitos riolíticos. Estas rocas presentan evidencias de un grado de metamorfismo muy bajo e hidrotermalismo (González-Torres, 1989; Morán-Zenteno et al., 1993). La edad de la formación Diquiyú es un tema controversial. Algunos autores han sugerido que, por sus relaciones estratigráficas, la formación Diquiyú puede ser de edad Triásico Tardío–Jurásico Temprano (Ochoterena, 1980; Morán-Zenteno et al., 1993; Rueda-Gaxiola y De Anda, 2011; Jiménez-Rentería, 2004), sin embargo, los únicos datos geocronológicos obtenidos de la formación Diquiyú muestran una edad de cristalización entre ~197 y ~184 Ma (Durán-Aguilar, 2014).

Las rocas clásticas de la formación Rosario sobreyacen de manera concordante y transicional a las rocas volcánicas de la formación Diquiyú (Zepeda-Martínez et al., 2018). Con base en el conjunto de sus elementos arquitectónicos, y por su abundante contenido de troncos fósiles de hasta 8 m de longitud (Ortega-Chávez et al., 2017) en posición de transporte, esta unidad ha sido interpretada como el registro estratigráfico de un sistema de abanicos aluviales alimentados por detritos provenientes de las rocas de la formación Diquiyú (Erben, 1956; Zepeda-Martínez et al., 2018). Alternativamente, algunos autores (Jiménez-Rentería, 2004; De Anda et al., 2008) sugirieron que la formación Rosario se depositó en un ambiente de estuario. Sin embargo, hasta la fecha no se han reportado evidencias con un claro origen marino dentro de la formación Rosario. La formación Cualac cubre de manera concordante a la formación Rosario (Fig. 2.5; Erben, 1956). La formación Cualac se ha interpretado preliminarmente como un conjunto de abanicos aluviales que drenan hacia el sur y suroeste las rocas metamórficas paleozoicas del Complejo Acatlán expuestas directamente al norte de la falla del Río Salado (Zepeda-Martínez et al., 2018). De manera alternativa, algunos otros autores han sugerido tentativamente que la formación Cualac pudiera representar el registro estratigráfico de un ambiente de estuario (De Anda, 2008; Vite-del Ángel, 2014). Sin embargo, tampoco en este caso se ha reportado la presencia de depósitos con un claro origen marino dentro de la formación Cualac.

El grupo Tecocoyunca sobreyace concordantemente a la formación Cualac en el área de Tezoatlán (Erben, 1956; Fig. 2.5). A pesar de que el grupo Tecocoyunca fue definido informalmente por primera vez en el área de Olinalá (Capas Tecocoyunca: Guzmán, 1950), es importante destacar que Erben (1956) asignó la categoría de grupo con base en la identificación de cinco unidades informales en las cercanías de Tezoatlán: las formaciones Zorrillo, Taberna, Simón, Otatera y Yucuñuti. Sin embargo, algunos autores coinciden en que estas formaciones no se pueden diferenciar objetivamente en campo (González-Torres, 1989; Morán-Zenteno, 1993) y proponen una subdivisión informal: el grupo Tecocoyunca inferior, que agrupa a las formaciones Zorrillo, Taberna y Simón, y el grupo Tecocoyunca superior, que comprende las Formaciones Otatera y Yucuñuti. El grupo Tecocoyunca inferior está constituido por una sucesión clástica con abundantes estratos de carbón, flora fósil y escasos estratos de calizas de origen marino somero (Erben, 1956; Morán-Zenteno et al., 1993), mientras que el grupo Tecocoyunca superior está compuesto por rocas clásticas de ambiente marino somero y calizas con pelecípodos y amonites del Bajociano (Sandoval y Westermann, 1986; Cantú-Chapa, 1998; Pieńkowski et al., 2019). Las rocas del grupo Tecocoyunca han sido interpretadas como el depósito de una zona de llanura que fue invadida ocasionalmente por aguas marinas poco profundas (Erben, 1956; Morán-Zenteno et al., 1993). Durán-Aguilar (2014) interpretó al grupo Tecocoyunca inferior como un cambio de facies lateral de los depósitos de abanico aluvial de la formación Cualac. Sin embargo, la evidencia sedimentológica y petrológica indica que algunas de las areniscas y lutitas que fueron interpretadas tentativamente por Durán-Aguilar (2014) como depósitos de llanura de inundación del grupo Tecocoyunca inferior corresponden en realidad con depósitos aluviales de la formación Cualac depositados durante etapas de estiaje (Zepeda-Martínez et al., 2018).

La edad de depósito de las formaciones Rosario, Cualac y Tecocoyunca inferior en Tezoatlán se puede constreñir entre 179 Ma, edad U-Pb del grupo de circones detríticos más jóvenes en la formación Rosario (Zepeda-Martínez et al., 2018) y el Bajociano superior (169 Ma; Gradstein et al., 2012), edad de los amonites identificados en la sucesión marina del grupo Tecocoyunca superior (Sandoval y Westermann, 1986; Cantú-Chapa, 1998; Pieńkowski et al., 2019).

2.4.4 Tlaxiaco

La localidad de Tlaxiaco se localiza en el estado de Oaxaca, 20 km al sur de Tezoatlán (Fig. 2.4). En esta localidad, el registro estratigráfico del Mesozoico sobreyace a las rocas metamórficas del Complejo Acatlán (Fig. 2.4). Con base en las similitudes litológicas, estratigráficas y paleontológicas, las rocas sedimentarias del área de Tlaxiaco han sido asignadas a la formación Cualac y al grupo Tecocoyunca, el cual fue originalmente definido de manera informal en el área de Tezoatlán (Erben, 1956; Carrasco-Ramírez et al., 2016; Fig. 2.5). Alternativamente, algunos autores han propuesto informalmente el nombre de conglomerado Ñumí para la sucesión que se ha correlacionado con la formación Cualac (Corro-Ortiz y Ruíz-González, 2011).

Al igual que en el área de Tezoatlán, la formación Cualac en el área de Tlaxiaco ha sido interpretada tentativamente como el registro estratigráfico de un sistema de abanicos aluviales (Corro-Ortiz y Ruíz-González, 2011), mientras que el grupo Tecocoyunca ha sido considerado preliminarmente como el depósito de un río meándrico y de llanura de inundación adyacentes que evolucionaron a un ambiente marino somero durante un evento transgresivo importante (Erben, 1956; Carrasco et al., 2016). Sin embargo, la falta de un estudio sedimentológico detallado no permite evaluar estas interpretaciones. Casi todos los trabajos previos publicados sobre estas unidades se centran en su contenido paleontológico, que incluye una flora fósil bien conservada (Lozano-Carmona y Velasco-de León, 2016) y huellas de dinosaurio (Rodríguez-de la Rosa et al., 2018) en los depósitos continentales y amonitas de edad Bajociana en los depósitos marinos (Sandoval and Westermann, 1986).

2.4.5 Tecomatlán

La localidad de Tecomatlán se ubica a 45 km al noroeste de Ayuquila, en el estado de Puebla (Fig. 2.4). Los bordes este, oeste y norte del registro estratigráfico mesozoico en esta área se encuentran delimitados por las rocas metamórficas del Complejo Acatlán, mientras que su límite sur está cubierto por rocas volcánicas cenozoicas.

Los depósitos clásticos jurásicos de la zona de Tecomatlán han sido correlacionados tentativamente con la formación Cualac y el grupo Tecocoyunca con base en las similitudes en la litología y el contenido florístico del Jurásico (Silva-Pineda, 1969; Fig. 2.5). Sin embargo, al reconocer que el conglomerado expuesto en esta área presenta localmente diferencias sustanciales en la composición con respecto al conglomerado de la formación Cualac, Hernández-Vulpes y Rodríguez-Calderón (2012) introdujeron una nueva unidad informal denominada conglomerado Peña Colorada. De acuerdo con estos autores, el conglomerado Peña Colorada sería una variación composicional de la formación Cualac. En línea con las interpretaciones de la formación Cualac en las otras áreas, Hernández-Vulpes y Rodríguez-Calderón (2012) han sugerido tentativamente que el registro estratigráfico expuesto en la región de Tecomatlán representaría el depósito de abanicos aluviales (formación Cualac y conglomerado Peña Colorada) y de un río meándrico con su llanura de inundación (grupo Tecocoyunca inferior). Sin embargo, hasta la fecha no se ha realizado ningún estudio sedimentológico en esta área. Por lo tanto, estas interpretaciones no han sido corroboradas. Al igual, la procedencia de estas rocas clásticas no ha sido determinada.

De acuerdo con el estudio de plantas fósiles preservadas en estas unidades, Lozano-Carmona (2017) restringe su edad de depósito al Toarciano–Calloviano.

2.4.6 Olinalá

El área de Olinalá se encuentra a 50 km al suroeste de Tecomatlán, en el estado de Guerrero (Fig. 2.4). El registro estratigráfico del Jurásico expuesto en el área de Olinalá sobreyace a las rocas metamórficas del Complejo Acatlán y sus cubiertas sedimentarias pérmicas representadas por la formación Olinalá (Corona-Esquivel, 1981)

El registro estratigráfico jurásico expuesta en el área de Olinalá consiste en una sucesión volcanosedimentaria similar a la descrita para el área de Tezoatlán, compuesta por la Ignimbrita Las Lluvias (Corona-Esquivel, 1981), la formación Cualac y grupo Tecocoyunca (Erben, 1956; Marshall, 1986; García-Díaz, 2004 Fig. 2.5). Las rocas más antiguas de la sucesión jurásica consisten en depósitos volcánicos agrupados en una unidad denominada Ignimbrita Las Lluvias (Corona-Esquivel, 1981). Los circones de la Ignimbrita Las Luvias arrojan edades U-Pb entre ~179 y ~177 Ma (Campa-Uranga et al., 2004). Estas rocas volcánicas están sobreyacidas por los depósitos clásticos fluviales de la formación Cualac. Cabe mencionar que esta unidad fue definida por primera vez en esta área, en las cercanías del poblado de Olinalá (Cuarcita Cualac: Guzmán 1950). Sin embargo, su definición original ha sufrido cambios importantes y se considera actualmente como una unidad informal debido a que ninguna publicación cumple con los requisitos para la definición de las unidades formales de acuerdo con los artículos 3-16 del Código Estratigráfico Norteamericano (NASC, 2005).

Los depósitos fluviales de la formación Cualac son cubiertos de manera concordante por depósitos fluviales a marinos someros que, basados en similitudes litológicas, estratigráficas y paleontológicas, han sido asignados informalmente al grupo Tecocoyunca (Marshall, 1986; García-Díaz, 2004). Actualmente no se dispone de un análisis sedimentológico y de procedencia detallado de estos depósitos clásticos en el área de Olinalá. Por otro lado, el contenido paleontológico del grupo Tecocoyunca superior ha sido el objeto de estudio de numerosos trabajos. A diferencia de la zona de Tezoatlán, donde los datos paleontológicos disponibles sitúan el inicio de la transgresión marina en el Bajociano superior (Sandoval y Westermann, 1986; Pieńkowski et al., 2019), la edad de los ammonites de la sucesión marina del grupo Tecocoyunca superior en la zona de Olinalá varía entre el Bathoniano y el Calloviano (Westermann et al.,1984; Marshall, 1986).

2.5 Bloques de basamento del sector occidental del sur de México

A continuación, se presenta una breve descripción de las rocas que conforman el basamento del sur de México, las cuales representan las principales fuentes del detrito de las sucesiones jurásicas.

2.5.1 Complejo Oaxaqueño

El Complejo Oaxaqueño se encuentra expuesto en el estado de Oaxaca, y se extiende por aproximadamente 290 km a lo largo de una banda con orientación N-S que presenta un ancho de 20 a 90 km (Ortega-Gutiérrez et al., 2018; Fig 2.4). El Complejo Oaxaqueño conforma el sector sur de Oaxaquia, un microcontinente que está conformado por rocas de edad mesoproterozoica y que se extiende desde el sureste hasta la porción nororiental del territorio mexicano. Las rocas el Complejo Oaxaqueño se encuentran delimitadas por fallas mayores. El límite oriental del Complejo Oaxaqueño está representado por la falla de Oaxaca, una estructura de larga vida que ha sido activa desde el Paleozoico hasta el Cenozoico, y que pone en contacto al Complejo Oaxaqueño con el Complejo Cuicateco (Alaníz-Álvarez et al., 1996; Espejo-Bautista et al., 2016; Fig. 2.4). El límite occidental del Complejo Oaxaqueño es la falla de Caltepec (Elías-Herrera y Ortega-Gutiérrez, 2002; Fig. 2.4), una estructura lateral derecha del Pérmico que yuxtapone las rocas de este complejo a las rocas del Complejo Acatlán (Elías-Herrera y Ortega-Gutiérrez, 2002; Elías-Herrera et al., 2005). El límite sur del Complejo Oaxaqueño está delimitado por la falla de Chacalapa, una estructura con cinemática lateral izquierda del Mioceno que define el límite del Complejo Xolapa (Tolson, 2005). Finalmente, hacia el norte, el Complejo Oaxaqueño está cubierto discordantemente por rocas volcánicas del Cinturón Volcánico Trans-Mexicano.

Las rocas del Complejo Oaxaqueño se han interpretado como los remanentes de un arco intraoceánico del Mesoproterozoico tardío-Neoproterozoico temprano, el cual fue acrecionado entre las placas continentales de Amazonia y Báltica durante el ensamble del paleocontinente Rodinia (Weber and Schulze, 2014; Ortega-Gutiérrez et al., 2018). Este complejo está conformado por ortogneis y paragneis que incluyen una suite Anortosita-Mangerita-Charnockita-Granito (AMCG), pegmatita, mármol y rocas calco-silicatadas (Ortega-Gutiérrez, 1981; Solari et al., 2003; Ortega-Gutiérrez et al., 2018) que experimentaron metamorfismo en facies de granulita (~ 730°C y ~ 8 kbar; Solari et al., 2004) entre ~1004 y 978 Ma (Keppie et al., 2001; Solari et al., 2003). Las fases minerales diagnósticas del ortogneis, la pegmatita y la suite AMCG son el ortopiroxeno, clinopiroxeno, feldespato potásico con estructura mesoperítica, plagioclasa, cuarzo con abundantes inclusiones aciculares de rutilo, hornblenda verde-marrón, granate e ilmenita (Tabla 2.1). Para el paragneis, el mármol y las rocas calco-silicatadas, las fases minerales diagnósticas son la sillimanita, escapolita, wollastonita y olivino (Keppie et al., 2003; Solari et al., 2003; Ortega-Gutiérrez et al., 2018; Martini et al., 2020; Tabla 2.1). Las rocas del Complejo Oaxaqueño están localmente afectadas por el metamorfismo retrogrado asociado a la exhumación tardía del Neoproterozoico-Paleozoico (Solari, 2001; Solari et al., 2003). Las fases minerales retrogradas más representativas son la biotita, anfíboles de la serie actinolita-antofilita, epidota y titanita, las que forman coronas simples, dobles y triples alrededor del piroxeno, hornblenda e ilmenita (Solari et al., 2003; Martini et al., 2020; Tabla 2.1).

Complejo Oaxaqueño		
Tine de more	Paragénesi	S
Tipo de roca	Pico metamórfico	Metamorfismo retrógrado
Ortogneis félsico	Qtz con inclusiones de ru + kfs con estructura mesopertítica+ pl + opx +cpx + hbl + grt \pm ap \pm zrn \pm ru \pm ilm	Act-ath + bt + phl + ep + ttn formando coronas en opx, cpx, hbl e ilm
Ortogneis máfico	$Pl + opx + cpx + hbl + ill + mag + grt \pm kfs \pm ap \pm zrn \pm qtz$ con inclusiones de ru	Act-ath + bt + ep + ttn formando coronas en opx, cpx, hbl e ilm
Paragneis cuarzo- feldespático	Qtz con inclusiones de ru + kfs con estructura mesopertítica+ pl + grt + opx + cpx + sil + gr + ru \pm ap \pm zrn \pm crd	Act-ath + bt + phl + ep formando coronas en opx, cpx y hbl
Mármol	Cal + cpx + ol + gr + wo + qtz	Act-ath + bt + phl + ep
Calcosilicato	$Scp + kfs + cpx + ttn + gr + cal \pm po \pm chu$	Act-ath + bt + phl + ep

Tabla 2.1 Paragénesis que caracterizan a las rocas del Complejo Oaxaqueño. Las abreviaciones de los nombres de minerales corresponden con las establecidas por Siivola y Schmid (2007). Tomado de Martini et al., 2020.

Las rocas del Complejo Oaxaqueño contienen granos de circón que arrojan edades U-Pb entre ~1450 y ~880 Ma, y, subordinadamente, edades hasta ~1780 Ma (Keppie et al. 2003; Solari et al. 2003, Solari et al., 2014; Fig. 2.6).

Figura 2.6 Gráfica de estimación de la densidad de Kernel (Vermeesch, 2018) e histograma, donde se muestra la distribución estadística de las edades de circones de dos muestras de rocas metamórficas en facies de granulita del Complejo Oaxaqueño (muestras OC10-12, OC10-13 y OC10-14, Solari et al., 2014). Los círculos ubicados debajo de la gráfica representan la edad de cada grano de circón analizado.

2.5.2 Complejo Acatlán

El Complejo Acatlán se encuentra expuesto de manera discontinua por aproximadamente 10,000 km² en los estados de Guerrero, Puebla y Oaxaca (Fig. 2.4).

Dicho complejo está bordeado por las fallas de Caltepec y Papalutla, al este y oeste, respectivamente (Fig. 2.4). Como se describió anteriormente, la falla de Caltepec pone en contacto al Complejo Acatlán con el Complejo Oaxaqueño (Elías-Herrera et al., 2005). Por otro lado, la falla de Papalutla define el contacto tectónico occidental del Complejo Acatlán con las rocas sedimentarias de la Plataforma Guerrero-Morelos (Ortega Gutiérrez, 1981). El límite sur del Complejo Acatlán está definido por la falla de Chacalapa, que lo pone en contacto con el Complejo Xolapa (Ortega Gutiérrez, 1981), mientras que su límite norte se encuentra sepultado por las rocas volcánicas del Cinturón Volcánico Trans-Mexicano.

El Complejo Acatlán está conformado de manera general por un ensamble de rocas metasedimentarias, metagranitoides y rocas máficas a ultramáficas polideformadas (Ortega-Gutiérrez, 1978; Ortega-Gutiérrez et al., 1999; Talavera et al., 2005; Fig. 2.4). En los últimos años, las rocas del Complejo Acatlán han sido el objetivo de diversos trabajos estructurales, estratigráficos,

geocronológicos y petrográficos detallados (Nance et al., 2006; Keppie at al., 2008a; Keppie at al., 2008b; Ortega-Gutiérrez et al., 2018). A pesar de que todavía existen diferentes opiniones sobre algunos aspectos claves de la evolución del Complejo Acatlán, varios autores concuerdan en subdividir las rocas de este complejo en tres diferentes ensambles petrotectónicos, las características de los cuales se sintetizan a continuación.

Ensamble de rift-margen pasivo del Cámbrico-Silúrico. Este ensamble metamórfico está compuesto por metapelita, metapsamita, metabasita, metagranitoides y, en menor medida, rocas ultramáficas en facies de sub-esquistos verdes a esquistos verdes, así como en facies de esquistos azules y eclogita (Ortega-Gutiérrez et al., 1999; Malone et al. 2002; Keppie et al. 2008a; Keppie et al., 2008b; Ramos-Arias et al., 2008; Fig. 2.4). Dichas rocas se han interpretado como el registro sedimentario de una cuenca de *rift* y su subsecuente desarrollo de márgenes pasivos asociados a la apertura del Océano Reico (Nance et al. 2006; Keppie et al. 2008a; Keppie et al., 2008b; Ortega-Gutiérrez et al. 2018).

Las rocas metasedimentarias de bajo grado metamórfico están compuestas dominantemente por cuarzo, moscovita, clorita, biotita, feldespato potásico, plagioclasa, circón y turmalina (Morales-Gámez et al., 2008; Malone et al., 2002; Martini et al., 2020; Tabla 2.2). Los metagranitoides de bajo grado metamórfico presentan cuarzo, feldespato potásico, localmente con estructura pertítica, plagioclasa, moscovita, circón, turmalina y, localmente, diminutas agujas de biotita (Tabla 2.2). Las metabasitas de bajo grado metamórfico contienen actinolita, clorita, epidota, plagioclasa, cuarzo, moscovita y hornblenda (Morales-Gámez et al., 2008; Keppie et al., 2008b; Ramos-Arias et al., 2008; Martini et al., 2020; Tabla 2.2). Por otro lado, el conjunto de rocas de alta presión contiene cuarzo, feldespato potásico, plagioclasa, fengita, granate, rutilo, biotita, turmalina, cloritoide, clinozoisita, y, de manera subordinada, glaucofano y onfacita (Meza-Figueroa et al., 2003; Middleton et al., 2007; Vega-Granillo et al., 2007; Ortega-Gutiérrez et al., 2018; Martini et al., 2020; Tabla 2.2). Sin embargo, debido a la retrogresión pervasiva que ha experimentado el Complejo Acatlán durante su exhumación en el Paleozoico final, la mayoría de las rocas de alta presión forman únicamente vestigios lenticulares de escala milimétrica a centimétrica y, localmente, alcanzan dimensiones métricas. Por lo tanto, las rocas de alta presión son volumétricamente poco abundantes y no conforman una importante fuente de detrito (Martini et al., 2020). Las rocas de alto grado que están dominadas por fases retrógradas en facies de esquistos verdes, presentan minerales como la actinolita, la clorita, la epidota y la titanita, esta última en zonas de reacción coronítica alrededor del rutilo (Meza-Figueroa et al., 2003; Martini et al., 2020; Tabla 2.2).
Complejo Acatlán						
Tipo de roca	Paragénesis					
	Pico metamórfico	Metamorfismo retrógrado				
Ensamble de rift-margen pasivo del Cámbrico-Silúrico						
Rocas metasedimentarias de bajo grado	$Qtz + ms + chl \pm bt \pm kfs \pm pl \pm zrn \pm tur$					
Metagranitoides de bajo grado	$Qtz + kfs + pl + mu \pm bt \pm zrn \pm tur$					
Metabasitas de bajo grado	$Ac + chl + ep \pm pl \pm qtz \pm mu \pm hbl$					
Rocas metasedimentarias de alta presión	$\begin{array}{l} Qtz + phg + grt + ru \pm bt \pm tur \pm cld \pm czo \pm pl \pm \\ omp \end{array}$	Chl + ep + ttn formando coronas en ru				
Metagranitoides de alta presión	$Qtz + kfs + pl + phg \pm bt \pm grt \pm zrn \pm tur$	Chl + ep				
Metabasitas de alta	$Grt + gln + ktp + brs + pl + rt + phg + czo \pm omp$	Act + ep + chl + ttn formando coronas en				
presión	± qtz	ru				
En	samble metavolcano-sedimentario del Devónico Si	iperior–Carbonífero				
Rocas metasedimentarias de bajo grado	$Qtz + ms + chl \pm bt \ \pm kfs \pm pl \pm zrn \pm tur$					
Metabasitas de bajo grado	$Ac + chl + ep \pm pl$					
Rocas metasedimentarias en facies de anfibolita	$Qtz + bt + mu + grt \pm zrn \pm ap$	Chl + ep				
Metabasitas en facies de anfibolita	$Hbl + pl + bt + qtz \pm ap \pm ilm$	Chl + ep				
Ensamble metasedimentario del Carbonífero superior-Pérmico medio						
Rocas metasedimentarias de bajo grado	$Qtz + ms + chl \pm kfs \pm pl \pm zrn \pm tur$					

Tabla 2.2 Paragénesis que caracterizan a las rocas del Complejo Acatlán. Las abreviaciones de los nombres de minerales corresponden con las establecidas por Siivola y Schmid (2007). Tomado de Martini et al., 2020.

La mayoría de los circones en los metagranitoides muestran edades U-Pb entre ~510 y ~420 Ma (Talavera-Mendoza et al., 2005; Morales-Gámez et al., 2008; Keppie et al., 2008a) y, subordinadamente, entre ~2000 y ~520 Ma (Fig. 2.7A). Las rocas metasedimentarias contienen predominantemente circones que definen un grupo de edad principal de ~1320–880 Ma (Keppie et al., 2008a; Fig. 2.7 B y C). Además, se ha documentado un segundo grupo de ~740-430 Ma para algunas muestras (Keppie et al., 2008a; Fig. 2.7C).

Figura 2.7 Gráfica de estimación de la densidad de Kernel (Vermeesch, 2018) e histograma, donde se muestra la distribución estadística de las edades de circones de distintas muestras de (A) metagranitoides y (B y C) rocas metasedimentarias, las cuales pertenecen al ensamble de *rift*-margen pasivo con edad del Cámbrico–Silúrico, del Complejo Acatlán (Talavera-Mendoza et al. 2005; Murphy et al. 2006; Keppie et al. 2008b; Galaz et al., 2013; Zepeda-Martínez et al., 2018). Los círculos ubicados debajo de la gráfica representan la edad de cada grano de circón analizado. Tomado de Martini et al., 2020.

2) Ensamble metavolcano-sedimentario del Devónico Superior-Carbonífero. El ensamble metavolcano-sedimentario del Devónico Superior-Carbonífero está conformado por metapelita, metapsamita y, en menor medida, metabasita (Morales-Gámez et al., 2008; Ortega-Obregón et al., 2009; Fig. 2.4). La mayoría de las metapelitas y metapsamitas tienen una composición y un grado metamórfico similares a los de las rocas metasedimentarias de bajo grado del ensamble de *rift*-margen pasivo. La paragénesis típica de estas rocas metasedimentaria es definida por cuarzo, moscovita, clorita, feldespato potásico, plagioclasa, circón, turmalina y, localmente, diminutas agujas de biotita (Morales-Gámez et al., 2008; Ortega-Obregón et al., 2009; Martini et al., 2020; Tabla 2.2). La metabasita está compuesta por actinolita, clorita, epidota y plagioclasa (Ortega-Obregón et al., 2009; Martini et al., 2020; Tabla 2.2). Sólo localmente, la metabasita y las rocas metasedimentarias muestran una paragénesis típica de la facies de anfibolita, presentando una

asociación de minerales como cuarzo, plagioclasa, biotita, moscovita, granate, hornblenda, rutilo con coronas de titanita, circón y apatito (Kirsch et al., 2013; Martini et al., 2020; Tabla 2.2).

Este ensamble muestra edades U-Pb en circones que definen dos grupos principales de ~700– 400 y ~1200–830 Ma (Fig. 2.8), con un número limitado de circones con edades entre ~400 y 330 Ma (Keppie et al., 2008b; Martini et al., 2020).

Se ha propuesto que el conjunto de rocas de este ensamble fue depositado durante la exhumación de las rocas correspondientes al ensamble de *rift*-margen pasivo que fue subducido.

Figura 2.8 Gráfica de estimación de la densidad de Kernel (Vermeesch, 2018) e histograma, donde se muestra la distribución estadística de las edades de circones de distintas muestras de rocas metasedimentarias que pertenecen al ensamble de metavolcano-sedimentario con edad del Devónico Superior–Carbonífero, del Complejo Acatlán. Los círculos ubicados debajo de la gráfica representan la edad de cada grano de circón analizado. Tomado de Martini et al., 2020.

3) Ensamble metasedimentario del Carbonífero superior–Pérmico medio. Este ensamble está compuesto por metapelita, metapsamita y, en menor medida, metaconglomerado, mármol y metatoba con un grado metamórfico que va de sub-esquistos verdes a esquistos verdes (Kirsch et

al., 2012). Estas rocas se caracterizan por la presencia de cuarzo, moscovita, clorita y, en menor medida, plagioclasa y feldespato potásico (Kirsch et al., 2012; Tabla 2.2).

Estas rocas contienen granos de circón detrítico que ha arrojado edades U-Pb definiendo dos grupos principales de ~360–275 y ~1300–1000 Ma (Fig. 2.9), y una cantidad subordinada de circones con edades de ~1300–1100 Ma (Kirsch et al., 2012).

Se ha interpretado que las rocas metasedimentarias de este ensamble fueron depositadas durante un periodo de transtensión dextral desencadenada por la subducción oblicua a lo largo del margen occidental del paleocontinente Pangea (Keppie et al., 2008a; Ortega-Gutiérrez et al., 2018).

Figura 2.9 Gráfica de estimación de la densidad de Kernel (Vermeesch, 2018) e histograma, donde se muestra la distribución estadística de las edades de circones de distintas muestras de rocas metasedimentarias que pertenecen al ensamble de metasedimentario con edad del Carbonífero superior–Pérmico medio, del Complejo Acatlán. Los círculos ubicados debajo de la gráfica representan la edad de cada grano de circón analizado. Tomado de Martini et al., 2020.

2.5.2 Arco del Este de México

El Arco del Este de México está compuesto por un conjunto de cuerpos intrusivos de edad Carbonífero superior–Pérmico que cortan a las rocas de los complejos Acatlán y Oaxaqueño en el este y sur de México (Ortega-Obregón et al., 2014; Fig. 2.4). De este conjunto de cuerpos plutónicos, los más cercanos al área de estudio son los granitos Etla y Carbonera (Solari et al., 2001; Ortega-Obregón et al., 2014; Fig. 2.4). Estos cuerpos intrusivos están conformados por granito y granodiorita, y presentan principalmente cuarzo, plagioclasa, feldespato potásico con estructura pertítica, biotita, hornblenda y, subordinadamente, alanita y titanita (Solari et al., 2001; Ortega-Obregón et al., 2014; Martini et al., 2020; Tabla 2.3).

Arco del Este de México				
Tipo de roca	Paragénesis			
Granito y granodiorita (Carbonera)	$Qtz + pl + kfs + bt + hbl \pm aln \pm ep \pm czo \pm ttn \pm ac \pm chl$			
Granito y granodiorita (Etla)	$Qtz + pl + kfs + mag \pm bt \pm hbl \pm ttn \pm zrn \pm ap$			

Tabla 2.3 Paragénesis que caracterizan a las rocas los granitos Etla y Carbonera, los cuales pertenecen al Arco Este de México. Las abreviaciones de los nombres de minerales corresponden con las establecidas por Siivola y Schmid (2007). Tomado de Martini et al., 2020.

Los granitos Etla y Carbonera contienen circones con edades entre ~285 y ~250 Ma (Ortega-Obregón et al., 2014) y subordinados granos de circón con edades entre ~1100 y ~800 Ma (Fig. 2.10). Estos cuerpos intrusivos han sido interpretados como los remanentes de la raíz de un arco continental desarrollado a lo largo del margen oeste de Pangea durante el final de Paleozoico (Dickinson y Lawton, 2001; Kirsch et al., 2012; Ortega-Obregón et al., 2014).

Figura 2.10 Gráfica de estimación de la densidad de Kernel (Vermeesch, 2018) e histograma, donde se muestra la distribución estadística de las edades de circones de dos muestras del Arco Mexicano del Este (muestras Carbonera y Etla, Ortega-Obregón et al., 2014). Los círculos ubicados debajo de la gráfica representan la edad de cada grano de circón analizado.

3.1 Problemática

El reconocimiento de que la historia de la Tierra ha sido caracterizada por el ensamble y la ruptura cíclica de masas supercontinentales es uno de los avances más destacados de las últimas seis décadas de investigación en Ciencias de la Tierra (Hawkesworth et al., 2013; Spencer et al., 2017; Wang et al., 2020). Aunque el concepto de ciclo de los supercontinentes es ampliamente aceptado (Nance y Murphy, 2013), los procesos geodinámicos que condujeron al ensamble y la ruptura de los supercontinentes siguen siendo poco conocidos, y su comprensión representa una de las fronteras más ambiciosas de las Ciencias de la Tierra.

Pangea es el supercontinente más reciente que se formó en la Tierra a finales del Paleozoico (Rogers y Santosh, 2003) y, presumiblemente, es el mejor caso de estudio para comprender los procesos tectónicos que produjeron la fragmentación y dispersión de las masas supercontinentales. Sin embargo, la evolución de la fragmentación continental de Pangea, uno de los eventos tectónicos extensionales más importantes de la era mesozoica, aún no se comprenden con detalle en algunas localidades. A pesar de ser clave en la reconstrucción de la fragmentación de la Pangea, debido a que se encontraba a lo largo del límite divergente entre Norteamérica y Sudamérica a principios del Jurásico (Pindell, 1985; Boschman et al., 2014; Fig. 2.1B), varios aspectos fundamentales de la evolución tectónica de México durante el Jurásico siguen siendo ampliamente debatidos. La dificultad en reconstruir con detalle la evolución tectónica del rift en México se debe principalmente a que resulta muy complicado identificar las fallas maestras que acomodaron la extensión continental durante el Jurásico. En efecto, los eventos tectónicos que caracterizan la historia geológica Cretácica y Cenozoica de México han reactivado múltiples veces las estructuras jurásicas, borrando parcial o totalmente las etapas de su historia más antigua. En muchas de las reconstrucciones propuestas para explicar la evolución jurásica del territorio mexicano, se contempla el desplazamiento importante de bloques continentales a lo largo de fallas mayores que nunca han sido documentadas tanto en superficie como en el subsuelo (e.g. Falla Cinturón Volcánico Trans-Mexicano; Figura 2.1B y 2.2A). Adicionalmente, hay que remarcar que buena parte de la información paleomagnética, gravimétrica, sísmica y de subsuelo ha sido obtenida principalmente por la industria petrolera y, consecuentemente, es en muchos casos de carácter inédito. Con base en estas consideraciones, es posible afirmar que reconstruir con detalle el patrón de fallas que se generó durante el *rift* jurásico en México sigue siendo un reto actual. Es importante destacar que muchas de las cuencas que se generaron durante el proceso de fragmentación de Pangea hospedan los mayores yacimientos petroleros mexicanos. Con base en estas premisas, reconstruir la evolución de las cuencas del Jurásico Inferior–Medio de México no sólo enriquecería el debate sobre la dinámica de un proceso tectónico de escala global como es la fragmentación de un supercontinente, sino que también podría contribuir a la comprensión del origen y distribución de los reservorios de petróleo que existen en el país.

3.2 Hipótesis de trabajo

Durante la fase de adelgazamiento continental asociada a la ruptura de Pangea, se generaron diversas cuencas sedimentarias que sirvieron como sitio de depósito de sucesiones clásticas, las cuales se desarrollaron a partir de la erosión de los pilares tectónicos de basamento adyacentes que progresivamente se exhumaron a lo largo de estructuras mayores (Goldhammer, 1999; Martini y Ortega-Gutiérrez, 2018). El registro estratigráfico del Jurásico Inferior-Medio de estas cuencas representa sin duda un archivo importante de información sobre la evolución tectónica relacionada con la ruptura de Pangea. Esto se debe a que la arquitectura interna de una cuenca y las rutas de dispersión de sus sedimentos están en gran parte controlados por la exhumación de los altos del basamento a lo largo de las fallas principales, que son una expresión directa del proceso tectónico en curso (Gawthorpe y Leeder, 2000; Miall, 2006; Allen y Allen, 2013). Por ejemplo, varias cuencas de rift modernas muestran una arquitectura interna compleja y caracterizada por dos sistemas de drenaje diferentes que interactúan: 1) un sistema transversal representado por un conjunto de abanicos aluviales, los cuales se desarrollan a lo largo de las principales fallas activas en los límites de la cuenca y que son alimentados por los detritos derivados de los altos estructurales advacentes (Fig. 3.1); 2) un sistema axial representado por un río de estilo fluvial variable que fluye a lo largo de la parte más profunda de la cuenca y que drena un área de extensión más regional, la cual incluye la mayor parte de los altos estructurales que bordean la cuenca (Gawthorpe y Leeder, 2000; Miall, 2006; Fig. 3.1). Considerando que el basamento continental en México está conformado por diferentes ensambles petrotectónicos que muestran una naturaleza, edad y grado metamórfico diferentes (Campa y Coney, 1983; Ortega-Gutiérrez et al., 1995; Keppie, 2004; Ortega-Gutiérrez et al., 2018), la exhumación de los distintos pilares tectónicos por efecto de la extensión cortical tuvo que haber generado sucesiones clásticas conformadas por distintas petrofacies, es decir con diferente composición, contenido de minerales pesados y grupos de edad de circón detrítico. De acuerdo con estas premisas, la reconstrucción de la arquitectura de depósito integrada con el análisis de procedencia de los diferentes elementos arquitectónicos permitirá rastrear las principales fallas activas que actúan como límites de las cuencas jurásicas.

Figura 3.1 Arquitectura interna de una cuenca de *rift*, en la que se muestran dos sistemas de drenaje: un sistema transversal de abanicos aluviales que se alimentan de detritos procedentes de fuentes locales del relieve desarrollado en el bloque de piso y un sistema axial orientado paralelamente a la falla principal activa y alimentado por detritos procedentes del extremo del *rift* y del relieve adyacente.

De acuerdo con López-Ticha (1985), la Cuenca de Tlaxiaco abarca parte de los estados de Puebla, Oaxaca y Guerrero, lo que la define como una de las mayores cuencas jurásicas expuestas en el sur de México. Los datos disponibles en la literatura parecen indicar que la Falla Río Salado, la cual se encuentra dentro de la extensión de la Cuenca de Tlaxiaco definida por López-Ticha (1985), fue una falla mayor, con orientación WNW y con cinemática lateral izquierda, que estuvo activa durante la fragmentación de Pangea (Martiny et al., 2012). Adicionalmente, se ha documentado que la Falla Río Salado controló la sedimentación de por lo menos parte del registro estratigráfico del Jurásico Inferior–Medio expuesto en el área de Tezoatlán (Zepeda-Martínez et al., 2018). En consecuencia, se puede hipotetizar que la evolución tectono-sedimentaria de al menos este sector de la Cuenca de Tlaxiaco tuvo que haber sido controlada por estructuras mayores con orientación WNW, las cuales han sido tentativamente propuestas para resolver el problema de traslape de la Pangea ecuatorial (Gastil y Jensky, 1973; Boschman et al., 2014; Mattews et al., 2016; Bélica et al., 2017; Young et al., 2019) y que han sido ampliamente debatidas por diversos autores (Iriondo et al., 2005, Molina-Garza e Iriondo, 2005, Gray et al., 2008). Por lo tanto, la integración de la reconstrucción de la arquitectura interna y de las variaciones en las rutas de dispersión del sedimento de la Cuenca de Tlaxiaco permitirá reconstruir la historia de exhumación de los pilares tectónicos adyacentes y, por ende, contribuirá a rastrear las estructuras mayores que participaron en la extensión cortical de la Pangea.

3.3 Objetivos

El objetivo principal de este proyecto es reconstruir la evolución tectono-sedimentaria de la Cuenca de Tlaxiaco durante el Jurásico Inferior–Medio, con el fin de documentar si existió un sistema de fallas con orientación WNW activo en el territorio mexicano durante la fase de adelgazamiento cortical del supercontinente Pangea. Adicionalmente, el fin de este trabajo es entender la temporalidad de este sistema de fallas WNW con respecto a las fallas NNW que llevaron a la apertura del Golfo de México. Por lo tanto, este proyecto consiste en realizar un estudio sedimentológico, petrológico, geocronológico y termocronológico del registro estratigráfico del Jurásico Inferior-Medio de la Cuenca de Tlaxiaco expuesto en las áreas de Tezoatlán, Tlaxiaco, Tecomatlán y Olinalá, documentando y caracterizando tanto las variaciones del ambiente de depósito, como los cambios de petrofacies en los depósitos clásticos.

Para cumplir con el objetivo principal de este proyecto, se plantean los siguientes objetivos específicos:

- I. Determinar la variación y distribución de los ambientes de depósito jurásicos en las áreas de Olinalá, Tecomatlán, Tezoatlán y Tlaxiaco, lo cual permitirá reconstruir geometría y arquitectura de la Cuenca de Tlaxiaco.
- II. Determinar y caracterizar cuantitativamente la variación composicional y, por lo tanto, los cambios en la procedencia de las rocas clásticas contenidas en el registro estratigráfico del Jurásico Inferior–Medio de las áreas anteriormente mencionadas, con el fin de identificar la contribución detrítica de diferentes bloques de basamento en exhumación durante la extensión cortical de la Pangea.

- III. Reconstruir la historia térmica de los bloques de basamento que conforman las fuentes de las sucesiones clásticas estudiadas para documentar la historia de exhumación de los pilares tectónicos que conformaron los bordes de la Cuenca de Tlaxiaco y que, por ende, estuvieron involucrados en la extensión cortical de la Pangea.
- IV. Interpretar los resultados obtenidos y elaboración de un modelo que explique la evolución tectono-sedimentaria del Jurásico Inferior–Medio de la Cuenca de Tlaxiaco.
- V. Proponer un modelo de reconstrucción paleogeográfica del margen oeste ecuatorial de Pangea durante el Jurásico Inferior–Medio donde se muestre la evolución tectónica de los bloques continentales de México con base en los resultados obtenidos.

4.1 Análisis bibliográfico

El punto de partida de este trabajo fue el análisis de los trabajos previos de las áreas que López-Ticha (1985) originalmente incluyó en la Cuenca de Tlaxiaco, es decir Olinalá, Tecomatlán, Tezoatlán, Tlaxiaco, Ayuquila, Otlaltepec y zonas aledañas. Se reunieron mapas geológicos, artículos científicos, tesis y bases topográficas que sirvieron para hacer una revisión a detalle de la estratigrafía, sedimentología, petrología, contenido fósil, datos geocronológicos y estructurales, misma que sirvió como referencia para posteriormente iniciar con la cartografía geológica a detalle.

4.2 Cartografía geológica

Se realizó la cartografía geológica de cuatro áreas específicas en las localidades de Tezoatlán, Tlaxiaco, Tecomatlán y Olinalá (Fig. 2.4). Se escogieron las áreas mencionadas porque, de acuerdo con lo reportado en estudios previos y observaciones preliminares de campo, estas contienen las unidades más representativas de la Cuenca de Tlaxiaco, así como las exposiciones mejores. La cartografía de las áreas de estudio se realizó utilizando como base los datos vectoriales de las cartas topográficas Olinalá (clave E14D11), Xochihuehuetlán (clave E14D12), Tlapa de Comonfort (clave E14D22), Ahuacuotzingo (clave E14D21), Acatlán de Osorio (clave E14B83), Tezoatlán de Segura y Luna, (clave E14D24) y Tlaxiaco (clave E14D34), los cuales están publicados en la página web del Instituto Nacional de Estadística y Geografía (INEGI). Durante la cartografía, se identificaron las diferentes unidades litoestratigráficas presentes en el área de estudio, describiéndose detalladamente afloramientos, litologías, estructuras sedimentarias, relaciones de contacto y rasgos estructurales, llevando un estricto control de la ubicación de cada uno de los afloramientos, datos estructurales, perfiles de facies levantados y muestras colectadas con un receptor GPS en el sistema de coordenadas UTM, dátum WGS84. El desarrollo de la cartografía se apoyó en el análisis constante de las imágenes satelitales de las áreas de estudio tomadas del software Google Earth Pro. El análisis conjunto de las imágenes satelitales y los mapas geológicos publicados por autores previos ayudaron a planear itinerarios estratégicos para el mapeo. Para la digitalización de los mapas obtenidos en las campañas de trabajo cartográfico se utilizó el software libre QGIS.

4.3 Levantamiento de perfiles de facies y análisis de elementos arquitectónicos

Con el fin de caracterizar los ambientes sedimentarios expuesto en las áreas estudiadas, se seleccionaron diez localidades en las cuales se realizó el levantamiento de diez perfiles de facies representativos de las áreas estudiadas. Los perfiles se levantaron utilizando el báculo de Jacob. Los perfiles que se levantaron comprenden la formación Cualac y el grupo Tecocoyunca inferior. Los perfiles se muestran y describen en detalle en el capítulo 4. Los perfiles de facies fueron levantados midiendo con detalle los espesores estratigráficos y describiendo con cuidado la geometría de los estratos y las estructuras sedimentarias primarias. Algunas de estas estructuras proporcionaron datos de paleocorriente que fueron corregidos a la horizontal por medio de la red estereográfica de acuerdo con Collinson et al. (2006). Estos datos fueron corregidos además por la rotación tectónica de acuerdo con los datos paleomagnéticos de Böhnel (1999) y, finalmente, fueron graficados en diagramas de roseta.

Los perfiles verticales de facies no son suficientes para reconstruir la complejidad de un ambiente de depósito. Esto debido a que los sistemas sedimentarios, así como los elementos que los componen, se caracterizan por una arquitectura, la cual es posible apreciar solamente realizando un análisis tridimensional de los depósitos (Miall, 1988; Reading, 1996; Miall, 2006). Por lo tanto, en el análisis sedimentológico de este trabajo, el análisis de perfiles de litofacies se integró con el análisis de elementos arquitectónicos. Un elemento arquitectónico se define como un depósito o conjunto de depósitos a gran escala que tienen una organización interna y una geometría característica y representan una parte específica de un sistema sedimentario (Allen, 1983; Miall, 1988; Miall, 2006). Un elemento arquitectónico puede agrupar varios cuerpos sedimentarios caracterizados por conjuntos distintivos de litofacies (asociaciones de facies) organizado según una geometría específica (Miall, 2006). Con el objetivo de elaborar un correcto análisis de elementos arquitectónicos, es necesario, en primer lugar, definir una jerarquía de las superficies que delimitan a los diferentes cuerpos sedimentarios en cada elemento arquitectónico, así como las superficies que definen los límites de cada elemento. Esto con el objetivo de identificar la escala temporal de los procesos sedimentarios principales que dieron origen a los diferentes cuerpos sedimentarios (litodemas) que componen el registro estratigráfico. Para los sistemas fluviales, Miall (2006) ha propuesto una clasificación para las superficies de borde, la cual consta de ocho órdenes jerárquicos que se describen en la siguiente tabla.

Orden de la superficie	Características de la superficie de borde	Interpretación		
1°	Superficie que delimita a diferentes depósitos de una misma litofacies; no presenta evidencias de erosión.	Representa la sedimentación continua bajo las mismas condiciones de flujo.		
2°	Superficie que delimita a litofacies diferentes; no presenta evidencias de erosión significativa.	Indica un cambio en las condiciones del flujo, o un cambio en la dirección del flujo, pero sin una interrupción significativa en la sedimentación.		
3°	Superficie de reactivación dentro de una macroforma; presenta una inclinación con un ángulo bajo ($<15^{\circ}$ comúnmente) en la dirección de la acreción. Los conjuntos de facies por encima y por debajo de la superficie son similares. Los estratos sobreyacientes suelen contener una brecha basal con intraclastos.	Incremento en las dimensiones de una macroforma por acreción lateral o frontal.		
4°	Superficie que delimita a dos elementos arquitectónicos diferentes; presenta una geometría plana a convexa hacia arriba. Trunca a las superficies de borde subyacentes de primer a tercer orden con un ángulo bajo.	Erosión y migración de los canales de los sistemas fluviales. Acreción y sepultamiento de macroformas.		
5°	Superficie que delimita la base de los depósitos de relleno de los canales principales de un sistema fluvial. Es extensa lateralmente (de decenas a cientos de metros) y presenta una geometría plana o ligeramente cóncava hacia arriba. Es claramente erosiva y el depósito que la sobreyace puede presentar brechas con intraclastos.	Erosión generada por la migración de la base de canal.		
6°	Superficie que delimita a dos miembros cartografiables de una unidad fluvial; presenta una geometría plana, se extiende a escala regional.	Define la base de un conjunto de canales o valles.		
7°	Superficie que delimita un sistema fluvial; presenta geometría plana y se extiende a escala regional.	Define la base de un sistema fluvial.		
8°	Superficie que define una discordancia regional.	Define la base de una cuenca sedimentaria		

Tabla 4.1 Síntesis de la jerarquía de las superficies que bordean los elementos arquitectónicos de la formación Cualac y el grupo Tecocoyunca inferior de acuerdo con Miall (2006).

La identificación del orden de las superficies no siempre es posible o fácil, y por ello Miall (2006) propone tres recomendaciones fundamentales para facilitar la clasificación de las superficies límite: 1) una superficie límite de un orden dado puede ser truncada por una superficie de orden igual o mayor, pero no por una de orden menor; 2) las superficies de acreción pueden ser removidas por erosión antes del depósito de la siguiente unidad sedimentaria y, en este caso, el orden de la superficie que define la cima de un elemento puede ser establecido con base en el orden de la superficie basal del elemento que sobreyace; 3) las superficies de orden inferior pueden cambiar de rango lateralmente.

De acuerdo con Miall (2006), el reconocimiento de un elemento arquitectónico requiere afloramientos con continuidad lateral y vertical, donde se pueda llevar a cabo un análisis tridimensional de los depósitos sedimentarios y se puedan identificar las siguientes características fundamentales.

- La naturaleza y geometría de las superficies inferior y superior que delimitan al elemento arquitectónico, las cuales pueden ser erosivas y transicionales y pueden presentar una geometría planar, irregular, cóncava hacia arriba y convexa hacia arriba.
- 2) La geometría externa del elemento arquitectónico, la cual puede ser tabular, lenticular, en cuña o en forma de U.
- La escala, continuidad lateral y orientación del elemento arquitectónico con respecto a la dirección de la corriente fluvial.
- 4) La asociación de litofacies.
- 5) La geometría interna del elemento, es decir la naturaleza, disposición y orden jerárquico de las superficies que delimitan a los cuerpos sedimentarios en el elemento arquitectónico.
- 6) El análisis de paleocorrientes, el cual permite reconstruir la orientación de la dirección de la corriente fluvial con respecto a la geometría interna y externa del elemento arquitectónico.

En este trabajo, la identificación de litofacies y elementos arquitectónicos se hizo de acuerdo con el esquema propuesto por Miall (2006). La descripción detallada de los perfiles de facies levantados permitió la determinación de 11 diferentes litofacies organizadas en 6 elementos arquitectónicos, los cuales se utilizaron como punto de partida para la interpretación de los ambientes de depósito.

4.4 Análisis de modas detríticas de areniscas

Durante el trabajo de cartografía y la medición de los perfiles de facies, se colectaron 92 muestras para un estudio petrográfico en lámina delgada, el cual consiste en observaciones texturales y composicionales detalladas. De estas muestras, se seleccionaron 58 para realizar el análisis de modas detríticas. Se reporta la ubicación de las muestras en los perfiles de facies presentados en el capítulo 5. Las modas detríticas se obtuvieron con la ayuda de un contador de puntos manual, el cual posee dos reglas graduadas que permiten el movimiento de la lámina delgada en un intervalo de distancia determinada, formando en una red de puntos equidistantes en un sistema de coordenadas rectangular (x-y).

Se contaron entre 371 y 493 puntos en la fracción clástica de cada lámina delgada con el método Gazzi-Dickinson (Gazzi, 1966; Dickinson, 1970), con el fin de independizar la composición modal de las areniscas del tamaño grano. De acuerdo con este método, todos los granos poliminerales compuestos por minerales de tamaño <62.5 µm se cuentan como líticos, mientras que los componentes de tamaño mayor a este valor se cuentan como granos monominerales, y se incluyen en las categorías adecuadas dependiendo de su naturaleza. Para eliminar eventuales problemas de reconocimiento del cuarzo y del feldespato potásico, las láminas delgadas fueron teñidas con rodizonato de potasio. Los líticosvolcánicos se clasificaron de acuerdo con Marsaglia e Ingersoll (1992), mientras que para los fragmentos metamórficos se adoptó el esquema de Garzanti y Vezzoli (2003). Este esquema contempla cuatro categorías principales de fragmentos metamórficos de acuerdo con el protolito: metalutita, metaarenisca/metafelsita, metacarbonato y metabasita. La categoría de metaarenisca/metafelista agrupa a las rocas que tienen un protolito volcánico félsico y sedimentario cuarzo-feldespático, debido a que ambos dan el mismo resultado si experimentan metamorfismo y, por ende, no pueden ser diferenciados uno del otro en una roca metamórfica. Cada categoría basada en el tipo de protolito se subdivide en cinco subcategorías con base en el rango metamórfico, el cual puede ser identificado de manera objetiva tomando en cuenta tanto la paragénesis, así como el tamaño de grano de los minerales metamórficos y la naturaleza de las microestructuras (Garzanti y Vezzoli, 2003; Martini et al., 2020; Fig. 4.1).

Figura 4.1 Diagrama propuesto por Garzanti y Vezzoli (2003) y Martini et al. (2020) donde se sobrepone el diagrama de facies metamórficas de Yardley (1989), el diagrama para la clasificación de líticos metamórficos de Garzanti y Vezzoli (2003) y el rango de temperatura para los diferentes mecanismos de deformación cristalplástica en cuarzo (Stipp et al., 2002). Las abreviaciones de los mecanismos de deformación se asignan de acuerdo con sus siglas en inglés: BLG, *bulging recrystallization*; GBM, *grain-boundary-migration recrystallization*; SGR, *subgrain-rotation recrystallization*.

A continuación, se describen los cinco rangos metamórficos propuestos por Garzanti y Vezzoli (2003), así como las micoestructuras características para cada rango propuestas por Martini et al. (2020).

Rango metamórfico 1 (~200-250°C, facies de zeolita y parte de muy baja temperatura de esquistos azules). Los granos preservan rasgos texturales del protolito, por lo que los protolitos ígneos o sedimentarios se pueden aún reconocer. En el caso de clastos metapelíticos y metapsamíticos/metafelsítcos, se observa un clivaje incipientedefinido por la alineación de minerales arcillosos (illita y sericita) con un tamaño que alcanza unas pocas decenas de micras. Los cristales de

cuarzo presentan microestructuras de deformación como extinción ondulada incipiente y estructuras de disolución por presión. En el caso de clastos metabasálticos, el clivaje es expresado por minerales del grupo de la zeolita y cristales de clorita de unas pocas micras de tamaño

Rango metamórfico 2 (~250-300°C, facies de prehnita-pumpelita y parte de baja temperatura de esquistos azules). Estos líticos presentan una fábrica anisotrópica clara. Los clastos metapelíticos y metapsamíticos/metafelsíticos muestran un clivaje bien desarrollado y definido por la alineación de cristales de illita y sericita de tamaño de varias decenas de micras. Los cristales de cuarzo presentan microestructuras de recristalización y deformación cristal-plástica como la extinción ondulada, los dominios de subgrano y las estructuras de recristalización por *bulging* (Stipp et al., 2002). En granos metabasálticos, se observa que el clivaje es expresado por la alineación preferencial de clorita y epidota.

Rango metamórfico 3 (~300-400°C, facies de esquistos verdes de baja temperatura y parte de más alta temperatura de esquistos azules). Los fragmentos metapelíticos y metapsamíticos/metafelsítcos de este rango presentan una esquistosidad incipiente definida por la alineación de cristales de cuarzo y láminas de mica blanca con tamaño de grano hasta unas pocas decenas de micras. Los cristales de cuarzo muestran típicamente microestructuras de recristalización y deformación cristal-plática como la extinción ondulada y estructuras de recristalización por *bulging*. Los granos metabasálticos presentan una esquistosidad expresada por la alineación de cristales de clinozoisita y clorita con tamaño de grano de varias decenas de micras

Rango metamórfico 4 (~400-500°C, facies de esquistos vedes de alta temperatura y transición entre esquistos azules y eclogitas). Los fragmentos metapelíticos y metapsamíticos/metafelsíticos presentan una esquistosidad bien desarrollada y definida por la alineación de mica blanca con tamaño de varias decenas de micras. Los cristales de cuarzo muestran geometría alargada con evidencias de recristalización y deformación cristal plástica como las estructuras de recristalización por rotación de subgranos (Stipp et al., 2002). Los fragmentos metabasálticos típicamente presentan una esquistosidad expresada por el crecimiento de clinozoisita y anfíboles de la serie tremolita-actinolita.

Rango metamórfico 5 (>500°C, facies de anfibolita, granulita y eclogita). Los granos presentan una textura granoblástica ameboidal a poligonal, con contactos entre los granos con ángulos de 120° (juntas triples). Típicamente muestran microestructuras de recristalización por migración del borde de grano y los cristales ya no presentan extinción ondulada. Las fases minerales típicas de este rango metamórfico son la biotita en clastos metapelíticos y metapsamíticos/metafelsítcos y la hornblenda en fragmentos metabasálticos. Los granos de rango 5 son faneríticos, siendo conformados por

cristales de tamaño >62.5 μ m. Por lo tanto, de acuerdo con la metodología de Gazzi-Dickinson, estos granos poliminerales no serán contados como líticos.

En total, en este trabajo se definieron 15 categorías de componentes detríticos con el fin de documentar detalladamente las diferentes petrofacies en las sucesiones objeto de estudio. Finalmente, los resultados obtenidos del conteo de puntos se graficaron en el diagrama ternario de Garzanti (2016) para obtener el nombre petrográfico-descriptivo de las areniscas, así como en otros diagramas ternarios que ayudaron a entender e interpretar la procedencia de las rocas analizadas.

4.5 Análisis petrográfico de minerales pesados

El análisis de minerales pesados se realizó de acuerdo con la técnica establecida por Morton (1985) y Mange y Maurer (1992), la cual consisten en: muestreo, tamizado, separación, conteo y procesamiento estadístico de datos. Durante el trabajo de campo se colectaron 29 muestras para análisis de minerales pesados, cada una con un peso de 10 kg aproximadamente. Para este análisis se seleccionaron rocas sin rastros de alteración con el fin de evitar que los minerales extraídos se pudieran relacionar con procesos de meteorización. Las muestras fueron disgregadas mecánicamente utilizando las prensas de los Talleres de Molienda del Instituto de Geología y del Centro de Geociencias de la Universidad Nacional Autónoma de México (UNAM). Posteriormente, se procedió a tamizar las muestras disgregadas y se seleccionó la fracción con granulometría inferior a 0.165 mm, utilizando un tamiz número 80. Una vez tamizadas las muestras, el material se procesó con la Mesa Wilfley, cuyo principio es el método de concentración gravimétrica con flujo laminar (o vía húmeda) y separa los minerales a partir de las diferencias en su densidad relativa. El concentrado final de minerales pesados de cada muestra se obtuvo por decantación en líquidos pesado utilizando el bromoformo, cuya densidad es de 2.89 g/cm³. Los concentrados se montaron vertiéndose sobre una lámina sin selección alguna para evitar sesgos y, posteriormente, se laminaron para su identificación bajo el microscopio petrográfico.

Para el análisis modal de los minerales pesados de cada lámina delgada se utilizó el método del listón (*ribbon counting method*), el cual consiste en seleccionar aleatoriamente bandas en la lámina delgada y contar los granos minerales que se encuentren dentro de esta banda (Galehouse, 1969; Mange y Maurer, 1992). El ancho de la banda se determina de acuerdo con el promedio de la granulometría observada y se mide con ayuda del contador manual (Mange y Maurer, 1992). En algunas muestras procesadas se obtuvieron concentrados muy pobres. Por esta razón se decidió

utilizar el método de Fleet (1926), que consiste en contar todos los granos montados en la lámina delgada. En cada lámina, se contaron de 130 a 852 minerales pesados detríticos no opacos. Se establecieron 8 categorías con base en la mineralogía y morfología encontradas, con la finalidad de establecer la asociación mineral característica en los diferentes depósitos del registro estratigráfico analizado. Es importante mencionar que, a pesar de que se obtuvieron las láminas delgadas de minerales pesados para todas las áreas estudiadas, no fue posible realizar el conteo de las muestras del área de Tecomatlán, debido a que se suspendieron actividades de laboratorio por la contingencia sanitaria actual.

4.6 Geocronología U-Pb en circón detrítico

Con el objetivo de reforzar el análisis de procedencia, complementamos el análisis de modas detríticas y minerales pesados con datos de geocronología U-Pb en circón. Se seleccionaron doce muestras en total para el fechamiento de granos de circón. La localización y descripción de las muestras se presenta en el capítulo 8. Para la formación Cualac, se seleccionaron cinco muestras: dos colectadas en Tlaxiaco, una en Tecomatlán y dos en Olinalá. Por otro lado, para el grupo Tecocoyunca inferior se colectaron seis muestras: una en Tezoatlán, dos en Tlaxiaco, una en Tecomatlán y dos en Olinalá. Adicionalmente, se decidió tomar una muestra del conglomerado Peña Colorada en el área de Tecomatlán, el cual se había correlacionado anteriormente con la formación Cualac (Hernández-Vulpes y Rodríguez-Calderón, 2012). Esto con el objetivo de corroborar dicha correlación. Los datos obtenidos fueron integrados con datos geocronológicos obtenidos anteriormente por Zepeda-Martínez et al. (2018) para la formación Cualac en el área de Tezoatlán.

Para cada muestra seleccionada, se montaron manualmente más de 200 granos de circón bajo un microscopio binocular estereoscópico. Los circones se montaron en un cristal con cinta adhesiva de doble cara, seleccionándolos al azar para que no haya un sesgo subjetivo que podría resultar en una alteración de los grupos de edad en las muestras. Los circones se montaron en resina epóxica y se dejaron secar por 8 horas aproximadamente. En seguida, los cristales se desgastaron utilizando papel abrasivo (1500-gritt), hasta llegar aproximadamente a la mitad de su grosor, con el objetivo de exponer su interior. Finalmente, los cristales se pulieron con un abrasivo de diamante (6 y 1 µm) para obtener una superficie uniforme.

Las imágenes de catodoluminiscencia (CL) de los cristales fueron obtenidas utilizando un luminoscopio ELM-3R y una camara digital adaptada a un microscopio binocular. Las imágenes de

CL son importantes para revelar la zonación interna de los circones, proporcionando así un mejor control sobre la selección de los puntos de análisis.

Los análisis isotópicos se efectuaron en el Laboratorio de Estudios Isotópicos (LEI) del Centro de Geociencias, UNAM, por ablación láser y espectrometría de masas de multicolección con plasma acoplado por inducción (laser ablation multicollector inductively coupled plasma mass spectrometry, LA-MC-ICP-MS). La ablación de los circones se realizó con un láser excímero de una longitud de onda de 193 nm, modelo Resolution M-50 que utiliza una mezcla de fluoruro de Argón (ArF) y trabaja con un oscilador Lambda Physik, LPX 220, acoplado con un cuadrupolo ICP-MS Thermo Xseriesii. Los detalles de la metodología analítica y especificaciones del sistema utilizado se pueden encontrar en Solari et al. (2018). Para la reducción de datos se utilizó la metodología descrita en Solari y Tanner (2011), utilizando el estándar Plěsovice (±337.13±0.37 Ma, Sláma et al., 2008). La corrección para el plomo común se realizó empleando las ecuaciones de Andersen (2002), asumiendo la composición inicial de plomo reportada por Stacey y Kramers (1975). Esto debido a la imposibilidad de medir de manera detallada el ²⁰⁴Pb. Los errores relacionados con la calibración del estándar, la edad del estándar, la composición del plomo común y la constante de decaimiento de uranio se reportan al nivel 2σ . Una vez realizada la reducción y corrección, se descartaron los datos que presentan pérdida de plomo, errores mayores al 10% y porcentajes de discordancias entre -5% y 12%. En general, las edades que caen afuera del rango de discordancia considerado en este trabajo varían de 1% a 3% del total de los granos analizados de cada muestra. Únicamente para las muestras Tmt-0219-13, OL-0618-T3 y OL-1018-1 se eliminaron 7, 10 y 11 granos, respectivamente (~7%, $\sim 10\%$ y $\sim 11\%$ del total de los granos analizados de cada muestra). Los circones que se han eliminado arrojan edades similares o se traslapan con las edades concordantes de otros circones. Por lo tanto, la eliminación de estos granos por la aplicación de este filtro no genera una alteración en la distribución de las edades de cada muestra.

Los resultados fueron graficados en el diagrama de densidad de Kernel (KDE; Vermeesch, 2013). La edad máxima de depósito (EMD) de las muestras de arenisca se definió por la media ponderada del grupo de edades más jóvenes definido por al menos tres granos de circón que se traslapan en edad en 2σ (Dickinson and Gehrels et al., 2009), añadiendo la incertidumbre en 2σ de la media ponderada y posteriormente se redondeó al incremento de 10 my más cercano (Martin et al., 2011). El redondeo de la EMD evita la precisión falsa que puedan llegar a tener las cifras significativas en el valor posicional de las unidades y aumenta el nivel de confianza para asegurar que la roca no se depositó antes de la EMD. Esta técnica es independiente al número de granos

contemplados en el cálculo de la EMD, sin embargo, incluye una media para múltiples granos que pudieran haber tenido edades diferentes de cristalización (Martin et al., 2011).

Se realizó un diagrama de escalamiento multidimensional no métrico (MDS) basado en el modelo estadístico de Kolmogorov-Smirnov (Vermeesch, 2013) para crear un mapa bidimensional, donde se representa la similitud o disimilitud entre las edades de las muestras analizadas de la formación Cualac y el grupo Tecocoyunca inferior y las edades de las rocas del Complejo Acatlán y Complejo Oaxaqueño, los cuales son sus fuentes potenciales. Los diagramas MDS permiten establecer correlaciones entre las edades de las muestras de una manera más sencilla y proponer interpretaciones de procedencia más objetivas (Spencer et al., 2016). Las muestras que presentan una similitud importante entre sus poblaciones de edades U-Pb de circones estarán graficadas en el diagrama MDS como grupos de datos cercanos entre sí, mientras que las muestras que presentan diferencias se graficarán separadas. Adicionalmente, para ayudar a identificar las similitudes de primer y segundo orden entre las muestras, cada muestra está conectada a su muestra similar más cercana mediante una línea sólida y a su segunda muestra similar más cercana mediante una línea sólida y a su segunda muestra similar más cercana mediante una línea sólida y a su segunda muestra similar más cercana mediante una línea sólida y a su segunda muestra similar más cercana mediante una línea sólida y a su segunda muestra similar más cercana mediante una línea sólida y a su segunda muestra similar más cercana mediante una línea sólida y a su segunda muestra similar más cercana mediante una línea discontinua.

Se ha demostrado ampliamente que la distribución de edades de circones detríticos en una muestra puede variar sensiblemente dependiendo del número de análisis que se realizan (Coutts et al., 2019). En particular, los grupos de edad menos representativos (los definidos por una cantidad subordinada de granos respecto al número total de granos fechados) son los que más pueden presentar ambigüedades, en cuanto su presencia o ausencia es más dependiente del número total de análisis. Tomando en cuenta esta premisa fundamental, en este trabajo, los datos geocronológicos serán interpretados basándose en la presencia de grupos de edad y no en su ausencia, la cual puede ser debida al número limitado de granos analizados.

4.7 Termocronología de baja temperatura (trazas de fisión en cristales de apatitos)

Con base en la reconstrucción tectono-sedimentaria de la cuenca de Tlaxiaco realizada en este trabajo, se colectaron 14 muestras de los altos estructurales que se ha identificado que bordeaban dicha cuenca en el Jurásico Inferior y Medio, con el fin de realizar el fechamiento por trazas de fisión en cristales de apatito y reconstruir así su historia térmica y de exhumación. La metodología para el fechamiento utilizado en este trabajo es la establecida para el Método de Detector Externo (EDM, por sus siglas en inglés). La base teórica y el procedimiento se basan en los trabajos de Fleischer et al.

(1965; 1975), Tagami y O'Sullivan (2005), Donelick (2005) y Reiners y Brandon (2006). Las muestras recolectadas son rocas metamórficas de los complejos Oaxaqueño y Acatlán, cada una con un peso de 5-7 kg aproximadamente. Las muestras fueron disgregadas mecánicamente por medio de una prensa en el Taller de Molienda y Separación del Centro de Geociencias, de la UNAM. Una vez disgregadas las muestras, el detrito obtenido fue tamizado y fue seleccionada la fracción con granulometría inferior a 0.165 mm (utilizando un tamiz número 80). Posteriormente, el material fue procesado con la Mesa Wilfley, cuyo principio es el método de concentración gravimétrica con flujo laminar (o vía húmeda) y permite separar los minerales a partir de sus diferentes densidades relativas. Los minerales magnéticos fueron separados del concentrado de minerales pesados por medio de un separador Frantz. Por último, el concentrado resultante de minerales pesados de cada muestra fue obtenido por decantación en líquidos pesados. En este proyecto se usó bromoformo, el cual tiene una densidad de 2.89 g/cm3 y permite la decantación de los minerales de interés.

El montado de las muestras y el ataque químico se llevó a cabo en el Laboratorio de Trazas de Fisión del Instituto de Geociencias y Recursos de la Tierra del Consejo Nacional de Investigación de Italia, sede Pisa. Los cristales de apatito se colocaron en un molde, distribuyéndolos de manera uniforme y con resina epóxica, con el cuidado de no generar burbujas (Fig. 4.2A). Una vez que la resina secó, la placa endurecida se retiró del molde para desbastarla con papel lija húmedo y posteriormente se pulió con una máquina pulidora y abrasivos (Fig. 4.2A). La operación se repitió hasta que se obtuvieron secciones internas adecuadas de los cristales de apatito, para su posterior observación en el microscopio óptico. Las secciones pulidas fueron sometidas a un ataque químico para facilitar la observación de las trazas de fisión bajo el microscopio óptico, de acuerdo con las especificaciones de Donelick (2005). Las secciones fueron sumergidas en 5.5 moles de ácido nítrico (HNO₃) durante 20 segundos, posteriormente se lavaron con agua durante varios minutos para detener el ataque químico. La temperatura ambiente se mantuvo alrededor de los 21°C. Para la preparación a la irradiación, se colocó una lámina de moscovita (detector externo) del mismo tamaño que la sección pulida. Esta mica puede ser de origen natural o industrial. Una vez acoplada la mica a su respectiva muestra, se envolvió cada par en una película plástica para garantizar la adherencia exacta entre las dos superficies y evitar posibles desplazamientos entre ellas (Fig. 4.2B). Todos los pares fueron acomodados en una columna llevando un estricto registro de su posición. En la cima y base de la columna de muestras se colocaron muestras estándar (e.g. apatito Durango, Fish Canyon Tuff) que ayudaron al cálculo del factor de calibración zeta (ζ), así como vidrios estándar (e.g. CN5), que sirvieron para tener el control de la fluencia de neutrones durante la irradiación (Fig. 4.2C). Es sumamente importante conocer el orden de las muestras para asignar a cada par de mica-muestra el respectivo valor de densidad estándar.

Figura 4.2 A) Fotografía donde se muestra el montado de las muestras: los concentrados se montaron en resina epóxica en un molde (abajo), una vez seca la placa se desmonta y se pulen, hasta tener la sección adecuada de los cristales de apatito (arriba) para su observación bajo el microscopio. B) Fotografía de acoplamiento de mica-muestra envuelta en una película plástica, se etiquetan para llevar el control de su localización en la columna de muestras que se irradiará. C) Esquema del orden de una columna de muestras que se colocará en un contenedor para ser irradiada.

La irradiación de neutrones se llevó a cabo en el Laboratorio de Energía Nuclear Aplicada de la Universidad de Pavía, Italia, utilizando el reactor nuclear Triga Mark II. Después de la irradiación se esperó un tiempo aproximado de 3 meses para poder utilizar las muestras, durante este tiempo la actividad inducida por la radiación se redujo y de esta manera se garantiza la seguridad de los usuarios. Posteriormente, se separaron las láminas de moscovita de las muestras para su ataque químico teniendo control de cada par mica-muestra. Las moscovitas se colocaron en un recipiente de PVC con ácido fluorhídrico (HF) a una temperatura de 40°C por 5 minutos. Posteriormente se detuvo el ataque químico lavando las micas bajo la corriente de agua por algunos minutos.

El conteo y medición de trazas de fisión en los cristales de apatito se llevaron a cabo en el Laboratorio de Trazas de Fisión del Instituto de Geociencias y Recursos de la Tierra del Consejo Nacional de Investigación de Italia, sede Florencia, bajo la dirección de la Dra. Maria Laura Balestrieri. Para el conteo y medición de las trazas de fisión (espontáneas e inducidas) se utilizó un microscopio Zeiss Axioskop equipado con luz transmitida, luz reflejada, una platina automática Kinetek y un cilindro de dibujo adaptado a una tableta digitalizadora de alta resolución (Fig. 4.3A). Este equipo utiliza el software *FT stage 4.0* para facilitar y precisar el conteo y medición de trazas de fisión y Dpar. Para el conteo de trazas de fisión bajo el microscopio óptico cada par mica-muestra se fijó con esmalte transparente en un portaobjetos de 2x5 cm utilizando tres agujeros como referencia para colocarlas de manera simétrica (Fig. 4.3B). Cada portaobjetos se etiquetó con el nombre de la muestra, el número de la irradiación y su posición dentro de la columna de muestras durante la irradiación (Fig. 4.3B).

Figura 4.3 A) Fotografía del equipo utilizado en la observación y conteo de trazas de fisión en los cristales de apatito (trazas espontáneas) y en los detectores externos (trazas inducidas). Fotografía tomada de https://www.igg.cnr.it. B) Esquema de muestra y detector externo fijados en un portaobjetos para su observación bajo el microscopio y marcas de referencia utilizados en el software.

Para el conteo de las TFA, se consideraron dos tipos de trazas.

- El primer tipo de trazas incluye aquellas que intersecan la superficie del cristal, las cuales son contadas para el cálculo de la edad del grano. Se contaron trazas en cada grano de apatito (trazas espontáneas) y en el cristal de moscovita que funge como detector externo (trazas inducidas).
- 2) El segundo tipo de trazas incluye a las trazas confinadas, es decir las trazas que se encuentran completamente dentro del cristal de apatito, pero que son reveladas durante el ataque químico debido a que intersecan a otras trazas (TINT's: Tracks in Tracks) o un clivaje o fractura (TINCLE: Tracks in Cleavage; Bhandari et al., 1971) del cristal. En este trabajo solo fueron medidas las TINT's, siguiendo las consideraciones de Ketcham (2005).

Para el conteo se seleccionó un área definida de cada cristal con la ayuda de una retícula, evitando inclusiones y bordes irregulares que puedan presentar perturbaciones o dificultades en el conteo de las trazas. Se seleccionaron sólo los granos que muestran una superficie paralela al eje-c del cristal. Para identificar los cristales que presentan una superficie con la orientación correcta, se utilizó la luz reflejada del microscopio, la que permite identificar las marcas de corrosión (*etch pits*) alargadas paralelamente al eje-c del cristal. En la medición de la longitud de las trazas confinadas, sólo se seleccionaron aquellas que se encuentran orientadas paralelamente al plano de observación, de manera que se evite introducir una corrección angular que pueda aumentar el margen de error de la medición. En cada grano donde se midieron trazas confinadas, se midieron los ejes mayor y menor de las marcas de corrosión, con el objetivo de calcular el parámetro *Dpar*, el cual es útil para estimar la composición química del apatito (Ketcham et al., 1999; Donelick et al., 2003), así como para realizar correcciones por el ligero ángulo que pudieran presentar con respecto a la superficie de observación. Finalmente, el cálculo de la edad central (Galbraith y Laslett, 1993) de cada muestra se realizó con el software *TRACKEY* (Dunkl, 2002) y la modelización de la historia térmica de la muestra seleccionada se utilizó el programa *HeFTy* (Ketcham, 2005).

Capítulo 5. RESULTADOS DEL TRABAJO DE CAMPO

5.1 Estratigrafía general de las áreas estudiadas

Gran parte del registro estratigráfico Jurásico de los estados de Puebla, Oaxaca y Guerrero se encuentra aflorando de manera discontinua en las localidades de Tezoatlán, Tlaxiaco, Tecomatlán y Olinalá (Figs. 5.1). El registro estratigráfico jurásico en estas localidades se encuentra sobreyacido discordantemente por rocas volcánicas y depósitos sedimentarios más jóvenes, los cuales no fueron diferenciados ni descritos en este trabajo por no ser el objeto de interés en esta investigación.

- 53 -

Figura 5.1 Mapa geológico del sur de México donde se muestra la localización de las áreas de estudio de este proyecto (rectángulos rojos). Se denotan en color azul las áreas donde se expone el registro estratigráfico del Jurásico Inferior–Medio, así como sus límites con las rocas del basamento del sur de México. Modificado de Martini et al., 2020.

El registro estratigráfico del Jurásico Inferior-Medio expuesto en Tezoatlán está compuesto, en orden estratigráfico creciente, por las siguientes unidades informales: formación Diquiyú, formación Rosario, formación Cualac y el grupo Tecocoyunca. El contacto estratigráfico inferior con el basamento de esta sucesión no aflora en el área de estudio. El registro estratigráfico jurásico aflora en el núcleo del Anticlinorio de Diquiyú (Erben, 1956), una estructura anticlinal regional con un eje orientado NNW-SSE y buzamiento hacia el NNW (Fig. 5.2). El flanco oriental del Anticlinorio Diquiyú presenta una inclinación hacia el NE que va de ~20° a ~60°, mientras que el flanco occidental presenta estratos inclinados hacia el SW con un rango de inclinación de ~10-60°. Esta estructura se encuentra disectada por dos sistemas principales de fallas normales a oblicuas, con orientación NW-SE y NE-SW (Fig. 5.2). Una de estas fallas es la Falla Río Salado, la cual presenta una orientación

WNW y define el límite norte de la sucesión mesozoica, poniendola en contacto con las rocas metamórficas del Complejo Acatlán.

- 54 -

En el área de Tlaxiaco, la sucesión del Jurásico Inferior–Medio está compuesta por la formación Cualac y el grupo Tecocoyunca, los cuales afloran sobre el cauce del Río Ñumí (Fig. 5.3) y en las laderas aledañas. Las rocas de la formación Cualac sobreyacen en inconformidad a las rocas metasedimentarias de bajo grado del Complejo Acatlán. Este contacto estratigráfico puede observase claramente al sur del área de estudio, sobre el cauce del Río Ñumí. Fallas normales y laterales con orientación NW-SE y NE-SW son cortan el registro estratigráfico en el área de Tlaxiaco (Fig. 5.3).

Figura 5.3 Mapa geológico del área de Tlaxiaco en el que se muestran los afloramientos de las sucesiones Jurásicas estudiadas en este trabajo.

En Tecomatlán, el registro estratigráfico del Jurásico Inferior-Medio está compuesto, en orden estratigráfico creciente, por las siguientes unidades informales: formación Cualac y grupo Tecocoyunca (Fig. 5.4). La sucesión jurásica sobreyace en inconformidad a las rocas metamórficas del Complejo Acatlán. Dicho contacto se puede observar en las laderas aledañas a la carretera federal

Tecomatlán–Quicayán (Fig. 5.4). En esta área de estudio, la sucesión jurásica no presenta una gran continuidad lateral, debido a que se encuentra intensamente afectada por tres sistemas de fallas principales con cinemática normal, lateral y oblicua y con orientación N-S, NE-SW y NW-SE (Fig. 5.4).

Figura 5.4. Mapa geológico del área de Tecomatlán en el que se muestran los afloramientos de las sucesiones Jurásicas estudiadas en este trabajo.

En Olinalá, la sucesión del Jurásico Inferior–Medio está compuesta por la Ignimbrita Las Lluvias, la formación Cualac y el grupo Tecocoyunca (Fig. 5.5). La sucesión Jurásica sobreyace en inconformidad a las rocas paleozoicas de la Formación Olinalá. En esta área de estudio, el registro estratigráfico jurásico se encuentra expuesto en el núcleo de un sinclinal que presenta un eje con orientación NNE-SSW (Fig. 5.5). El flanco occidental de esta estructura presenta una inclinación hacia el SE que va de ~50° a ~70°, mientras que el flanco oriental presenta inclinaciones hacia el NW

de ~80°. El registro estratigráfico jurásico se encuentra afectado por dos sistemas de fallas principales, con orientación NE-SW y NW-SE y cinemática lateral, normal y oblicua (Fig. 5.5).

Figura 5.5 Mapa geológico del área de Olinalá en el que se muestran los afloramientos de las sucesiones jurásicas estudiadas en este trabajo.

A pesar de que, en todas estas áreas, el registro estratigráfico jurásico está involucrado en pliegues de extensión regional y presenta localmente un intenso fallamiento, quedaron bien preservadas las características sedimentológicas originales, así como los rasgos texturales y composicionales primarios, lo que permitió realizar un estudio sedimentológico de detalle (Fig. 5.6).

Las rocas de la formación Cualac y el grupo Tecocoyunca expuestas en las áreas de Tezoatlán, Tlaxiaco, Tecomatlán y Olinalá presentan características similares y, por tanto, los diferentes afloramientos de cada unidad se describirán de manera conjunta. A continuación, se describen las litofacies y los elementos arquitectónicos que caracterizan las diferentes unidades expuestas en las áreas de estudio. Los perfiles de facies más representativos de cada unidad se presentan en la Figura 5.6.

Figura 5.6 Perfiles de facies A–F medidos en las localidades de Tezoatlán, Tlaxiaco y Tecomatlán. Los perfiles de facies incluyen a la formación Cualac y el grupo Tecocoyunca Inferior.

Figura 5.6 (Continuación) Perfiles de facies G–J medidos en la localidad de Olinalá. Los perfiles de facies incluyen a la formación Cualac y el grupo Tecocoyunca Inferior.

5.1 Sedimentología de la formación Cualac

La base de la formación Cualac está definida por superficies de séptimo y octavo orden, a lo largo de las cuales los depósitos conglomeráticos de la formación Cualac descansan sobre las rocas volcánicas y volcaniclásticas de las formaciones Rosario y la Ignimbrita Las Lluvias en las áreas de Tezoatlán y Olinalá, respectivamente (Fig. 5.7A y B), y de manera discordante sobre las rocas metamórficas del Complejo Acatlán en las áreas de Tlaxiaco y Tecomatlán (Fig. 5.7C). La formación Cualac está conformada principalmente por conglomerado metamorficlástico y, en menor medida, arenisca conglomerática a fina y lodolita. El espesor de la unidad varía de este a oeste desde ~100 m hasta ~1300 m (en Tlaxiaco y Olinalá, respectivamente).

5.1.1 Litofacies

depositados sobre las rocas del Complejo Acatlán.

En la formación Cualac se identificaron once litofacies, las cuales serán descritas a continuación. Una síntesis se presenta en la Tabla 5.1.

Litofacies	Descripción	Interpretación	Referencias
Conglomerado Masivo Soportado por Clastos (Gcm)	Depósitos lenticulares y con espesor centimétrico a decimétrico de conglomerado soportado por clastos y mal clasificado. El tamaño de los clastos varía de algunos centímetros a algunos decímetros. Esta litofacies se caracteriza por la ausencia total de organización interna. La base de la litofacies Gcm es plana y varía localmente de erosiva a no erosiva.	Depósito generado por un flujo de detritos con comportamiento pseudo-plástico (baja resistencia y alta viscosidad).	Miall, 2006
Conglomerado Masivo Soportado por Matriz (Gmm)	Estratos con geometría lenticular y de espesor centimétrico a métrico de conglomerado soportado por matriz y mal clasificado. El tamaño de los clastos varía de algunos centímetros hasta varios decímetros. La matriz está compuesta predominantemente por arenisca y limolita. Los estratos muestran una base plana y no erosiva.	Depósito generado por un flujo de detritos con comportamiento plástico (alta resistencia y viscosidad).	Schultz, 1984; Miall, 2006
Conglomerado Clasto-Soportado con Estratificación Horizontal (Gh)	Depósitos lenticulares de espesor decimétrico a métrico de conglomerado con estratificación burda. Localmente, muestran imbricación de clastos y cuerpos lenticulares de arenisca centimétricos a decimétricos interestratificados. La acreción vertical de los estratos individuales de la litofacies Gh forma paquetes conglomeráticos de varios metros de espesor.	Barras conglomeráticas longitudinales.	Miall, 2006
Conglomerado con Estratificación Cruzada Planar (Gp) y Conglomerado con Estratificación Cruzada Curvada (Gt)	Depósitos con geometría lenticular y espesor decimétrico a métrico de conglomerado moderadamente a bien clasificado, que muestra una estratificación cruzada curvada a planar (Gt y Gp, respectivamente). La imbricación de clastos predomina en las litofacies Gt y Gp. La base erosiva es dominada localmente por un depósito de grano más grueso que el relleno con estratificación cruzada. Estas litofacies muestran una base erosiva cóncava hacia arriba, y están sobreyacidas transicionalmente por las litofacies St y Sp.	Barras fluviales transversales.	Allen, 1984; Miall, 2006
Arenisca con Estratificación Horizontal (Sh)	Estratos tabulares de espesor decimétrico a métrico de arenisca de grano muy fino a grueso con estratificación y laminación plano-paralela de régimen superior. Los depósitos de la litofacies Sh son lateralmente continuos por cientos de metros. En los planos superiores de estratificación se observa lineación de corriente primaria. Localmente, se observan intraclastos cerca de la base de los estratos. La litofacies Sh muestra una base erosiva y está sobreyacida transicionalmente por las litofacies St, Sp y Sr.	Depósito formado durante eventos en los que las condiciones de flujo permanecen en la etapa crítica durante períodos de muchas horas (por ejemplo, eventos de inundación repentina).	Miall, 2006
Arenisca con Estratificación Cruzada Planar (Sp) y Arenisca con Estratificación Cruzada Curvada (St)	Depósitos con geometría lenticular y espesor decímetrico a métrico de arenisca de grano fino a muy gruesa. Presentan estratificación cruzada curvada a planar (St y Sp, respectivamente). La estratificación cruzada tiene una inclinación que varía de 15° a 25° y sus límites superior e inferior son angulares o sigmoidales. Esta litofacies sobreyace transicionalmente a la litofacies Gp y es cubierta por las litofacies Sr y Fl.	Barras fluviales transversales (dunas 2D y 3D).	Saunderson y Locket, 1983; Miall, 2006
Arenisca con Rizaduras (Sr)	Estratos lenticulares de espesor centimétrico a métrico de arenisca de grano muy fino a medio con rizaduras. Localmente, se observa laminación convoluta y estructuras de carga y flama. Comúnmente, esta litofacies sobreyace transicionalmente a la litofacies Sp y está cubierta por depósitos de la litofacies Fl. Localmente, se observa cubriendo a las facies Gp y Gt.	Depósitos formados por trenes de rizaduras bajo la acción de una corriente de baja velocidad. Depósitos de relleno de canal y otros canales menores formados durante la época de estiaje.	Jopling y Walker, 1968; Allen, 1984; Miall, 2006
Arenisca Fina, Limolita y Lodolita con laminación plano- paralela inferior (Fl) y Limolita y Arcillolita (Fsm)	Depósitos tabulares de espesor centimétrico a métrico de arenisca de grano muy fino, limolita y arcillolita interestratificadas. Estas litofacies contienen impresiones de hojas, raíces de plantas orientadas de manera perpendicular a la estratificación, moldes de troncos y láminas de carbón. La litofacies Fsm se diferencia de la litofacies Fl por la ausencia de estratos y láminas de arenisca.	Depósito formado por la decantación de la carga en suspensión bajo corrientes muy débiles, asociadas a eventos de desborde e inundación y canales en procesos de ser abandonados.	McLean y Jerzykiewicz, 1978; Miall, 2006
Carbón (C)	Estratos tabulares de espesor centimétrico a métrico de carbón interestratificados con cuerpos lenticulares o tabulares con espesor centímetro a métrico de lodolita carbonosa. Esta litofacies suele estar interestratificada con la litofacies Fl.	Depósito de pantano con abundante vegetación formado en condiciones climáticas húmedas.	Makaske, 2001; Miall, 2006

 Tabla 5.1 Síntesis de litofacies identificadas en la formación Cualac y en el grupo Tecocoyunca inferior.

Litofacies de Conglomerado Masivo Soportado por Clastos. La litofacies de Conglomerado Masivo Clasto-Soportado (Gcm por sus siglas en inglés) es frecuente en la base de la formación Cualac en las áreas de Tlaxiaco y Olinalá (Fig. 5.6 G–I). La litofacies Gcm está compuesta por estratos con geometría lenticular de espesor centimétrico a métrico de conglomerado (Fig. 5.8A) que presentan continuidad lateral por decenas de metros. El conglomerado es pobremente clasificado, clasto-soportado (Fig. 5.8B) y contiene clastos angulosos a subredondeados, con ejes mayores de algunos centímetros a varios decímetros. Típicamente, la facies Gcm no presenta ningún arreglo interno de los clastos. Localmente, se pueden encontrar troncos silicificados (Fig. 5.8C). Los estratos muestran generalmente una base planar no erosiva, aunque localmente puede observarse alguna estructura canalizada. La litofacies Gcm puede encontrarse comúnmente interestratificada con la litofacies Gmm que será descrita en seguida.

Figura 5.8 A. Fotografía de afloramiento de la formación Cualac donde se muestra el espesor métrico de un depósito de la Litofacies de Conglomerado Masivo Soportado por Clastos (Gcm), el cual presenta una base no erosiva de segundo orden. B. Conglomerado masivo soportado por clastos de la litofacies Gcm. El martillo tiene una longitud de 40 cm. C. Fragmento de tronco silicificado en la facies Gcm de la formación Cualac.

Litofacies de Conglomerado Masivo Soportado por Matriz. La litofacies de Conglomerado Masivo Soportado por Matriz (Gmm por sus siglas en inglés) se presenta principalmente en la base de la formación Cualac en Tlaxiaco, Tecomatlán y Olinalá (Figs. 5.6 B y F, G–I). Esta litofacies está conformada por estratos de conglomerado con geometría lenticular, espesor de algunos centímetros hasta varios metros y continuidad lateral por varias decenas de metros. El conglomerado es muy mal clasificado, soportado por matriz (Fig. 5.9) y contiene clastos angulosos a subredondeados, con dimensiones de algunos centímetros hasta varios decímetros. La matriz del conglomerado está compuesta por arenisca gruesa a limolita. La base de la facies Gmm es planar y no presenta evidencias de erosión. La litofacies Gmm comúnmente se encuentra interestratificada con la litofacies Gcm.

Figura 5.9 Fotografía de la Litofacies de Conglomerado Masivo Soportado por Matriz (Gci). La brújula tiene una longitud de 10 cm.

Litofacies de Conglomerado Soportado por Clastos con Estratificación Horizontal. La litofacies de Conglomerado Clasto-Soportado con Estratificación Horizontal (Gh por sus siglas en inglés) se presenta en la base de la formación Cualac en el área de Olinalá (Fig. 5.6G–I). La litofacies Gh está conformada por depósitos conglomeráticos con estratificación de geometría lenticular, con un espesor de varios decímetros a algunos metros. La estratificación es burda y no es posible definir su continuidad lateral por más de algunos metros. La sobreposición de estos estratos llega a formar paquetes conglomeráticos con espesor de varias decenas de metros. El conglomerado presenta mala
clasificación y es soportado por clastos. Los clastos miden algunos centímetros hasta varios decímetros, son generalmente angulosos a subredondeados y, localmente, llegan a presentar imbricación y se encuentran orientados con su eje mayor paralelo a la estratificación. En algunos afloramientos, la litofacies Gh muestra interestratificados cuerpos lenticulares de arenisca con espesor centimétrico a decimétrico.

Litofacies de Conglomerado con Estratificación Cruzada Curvada. La litofacies de Conglomerado con Estratificación Cruzada Curvada (Gt por sus siglas en inglés) es frecuente en la base y disminuye progresivamente hacia la cima de la formación Cualac (Figs. 5.6A–F, H, I). La litofacies Gt está compuesta por depósitos lenticulares de conglomerado con espesor decimétrico a métrico y una continuidad lateral de algunos metros. El conglomerado de la litofacies Gt presenta un grado de clasificación bajo y, principalmente, es soportado por clastos. Además, se caracteriza por tener estratificación cruzada curvada y, localmente, gradación normal. Estos depósitos conglomeráticos presentan una base erosiva con geometría cóncava hacia arriba y son sobreyacidos de manera transicional por las litofacies Gp, St, Sp y Sr, que serán descritas en los siguientes párrafos.

Litofacies de Conglomerado con Estratificación Cruzada Planar. La litofacies de Conglomerado con Estratificación Cruzada Planar (Gp por sus siglas en inglés) es la litofacies más representativa y abundante en la formación Cualac (Figs. 5.6A–F, H e I). La litofacies Gp consiste en estratos lenticulares de conglomerado con espesor centimétrico a métrico y una continuidad lateral de algunos metros. El conglomerado de la litofacies Gp presenta un grado de clasificación baja a moderada (Fig. 5.10), es soportado por clastos y, típicamente, presenta estratificación cruzada planar, imbricación de clastos y gradación normal. La base de estos lentes de conglomerado es erosiva y presenta una geometría cóncava hacia arriba. La acreción vertical de estos depósitos conglomeráticos genera paquetes de varios metros de espesor; sin embargo, este espesor disminuye progresivamente hacia la cima de la unidad. Localmente, la litofacies Gp presenta lentes arenosos interestratificados con estratificación cruzada planar (Fig. 5.6H e I). La litofacies Gp frecuentemente se encuentra sobreyacida de manera transicional por las facies arenosas St y Sp que se describen más adelante.

Figura 5.10 Fotografía donde se observa la estratificación cruzada planar en un estrato de la facies de Conglomerado con Estratificación Cruzada Planar (Gp) de la formación Cualac.

Litofacies de Arenisca con Estratificación Horizontal. La litofacies de Arenisca con Estratificación Horizontal (Sh por sus siglas en inglés) es poco abundante y sólo se observa en la cima de la formación Cualac (Fig. 5.6I). La litofacies Sh está constituida por estratos tabulares de arenisca de espesor centimétrico a decimétrico que presentan continuidad lateral por decenas a cientos de metros. La arenisca es de grano fino a grueso y muestra una evidente laminación plano-paralela (Fig. 5.11). Hacia su base, los depósitos de la litofacies Sh localmente contienen intraclastos de lodolita. La litofacies Sh presenta una base erosiva y, típicamente, es cubierta de manera transicional por las litofacies St,

Sp y Sr.

Figura 5.11 Facies de Arenisca con Estratificación Horizontal (Sh) donde se puede observar un estrato de arenisca gruesa a muy gruesa con laminación plano-paralela de régimen superior. *Litofacies de Arenisca con Estratificación Cruzada Curvada*. La litofacies de Arenisca con Estratificación Cruzada Curvada (St por sus siglas en inglés) es frecuente en la cima de la formación Cualac (Fig. 5.6 A, F e I). Está conformada por estratos lenticulares de arenisca con espesores de algunos centímetros a decímetros y continuidad lateral por varias decenas de metros. La acreción vertical de estratos individuales de la facies St forma paquetes con espesores de algunos metros. La arenisca varía de grano fino a muy grueso y, típicamente, muestra estratificación cruzada curvada (Fig. 5.12). Los estratos de la litofacies St muestran bases erosivas o sobreyacen de manera transicional a las litofacies Gt y Gp. La litofacies St es sobreyacida transicionalmente por las litofacies Sp y Sr o por las litofacies de grano fino Fl y Fsm, que serán descritas a continuación.

Figura 5.12 Facies de Arenisca con Estratificación Cruzada Curvada (St) en la formación Cualac.

Litofacies de Arenisca con Estratificación Cruzada Planar. La litofacies de Arenisca con Estratificación Cruzada Planar (Sp por sus siglas en inglés) es progresivamente más frecuente hacia la parte superior de la formación Cualac (Fig. 5.6A, F e I). Está compuesta por estratos de arenisca con geometría lenticular y espesor de algunos centímetros a algunos decímetros; sin embargo, la acreción vertical de estos estratos forma paquetes con espesores métricos hacia la cima de la formación Cualac (Fig. 5.6A e I). Los estratos de arenisca de la litofacies Sp son continuos lateralmente por decenas de metros. La arenisca es de grano fino a muy grueso y muestra típicamente estratificación cruzada planar (Fig. 5.13) y gradación normal. Los estratos de la litofacies Sp presentan una base erosiva o sobreyacen de manera transicional a las facies Gt y Gp. La litofacies Sp

es sobreyacida transicionalmente por la facies Sr o por las facies de granulometrías más finas Fl y Fsm.

Figura 5.13 Litofacies de Arenisca con Estratificación Cruzada Planar (Sp) en la formación Cualac.

Litofacies de Arenisca con Rizaduras. La litofacies de Arenisca con Rizaduras (Sr por sus siglas en inglés) es progresivamente más abundante hacia la cima de la formación Cualac (Fig. 5.6A–D e I). Los estratos de la litofacies Sr muestran una geometría lenticular con espesor centimétrico a decimétrico, y la sobreposición de estos estratos genera paquetes de varios metros de espesor. Los estratos individuales son continuos lateralmente por algunos centímetros hasta algunos decímetros. La litofacies Sr está conformada por arenisca fina a media que, típicamente, muestra una gran variedad de estructuras sedimentarias como son las rizaduras (Fig. 5.14), la laminación convoluta y estructuras de flama y carga. Frecuentemente, la litofacies Sr se encuentra interestratificada con las litofacies Fl y Fsm.

Figura 5.14 Facies de Arenisca con Rizaduras (Sr) en la formación Cualac.

Litofacies de Arenisca Fina, Limolita y Lodolita con laminación plano-paralela inferior. La litofacies de Arenisca Fina, Limolita y Lodolita con laminación plano-paralela inferior (Fl por sus siglas en inglés) es poco abundante en la formación Cualac; sin embargo, se puede observar que progresivamente se hace más abundante hacia su parte superior (Fig. 5.61). La litofacies Fl está conformada por estratos tabulares de arenisca fina a muy fina, limolita y lodolita, con espesor centimétrico a decimétrico y con continuidad lateral de decenas a cientos de metros. La alternancia de estas litologías forma una estratificación heterolítica. La litofacies Fl muestra laminación plano-paralela y, frecuentemente, presenta estructuras de fluidificación y deformación de sedimento blando como la laminación convoluta (Fig. 5.15), estructuras de flama y carga, así como discos y pilares. Es común encontrar moldes de hojas y ramas de plantas carbonizadas, raíces de plantas orientadas perpendicularmente a la estratificación y abundante bioturbación tanto en la cima como en el interior de los estratos. Las rocas de la litofacies Fl se encuentran interestratificadas con la litofacies Sr y, generalmente, sobreyacen transicionalmente a las litofacies Sp y Sr, y localmente, a las litofacies Gt y Gp.

Figura 5.15 A. Afloramiento de la formación Cualac donde se muestra a la litofacies de Arenisca Fina, Limolita y Lodolita con laminación plano-paralela inferior (Fl). B. Laminación convoluta en la litofacies Fl de la formación Cualac.

Litofacies de Limolita y Arcillolita. La litofacies de Limolita y Lodolita (Fsm por sus siglas en inglés) muestra las mismas características que la litofacies Fl, con la diferencia de que la litofacies Fsm no contiene estratos de arenisca.

5.1.2 Elementos arquitectónicos

Las litofacies presentadas anteriormente se encuentran organizadas en elementos arquitectónicos, los cuales se caracterizan no solo por una asociación característica de litofacies, sino también por el arreglo tridimensional de estas (e.g. Miall, 2006). Una síntesis de estos elementos se presenta en la Tabla 5.2. A continuación, se describirán los dos elementos arquitectónicos identificados en la formación Cualac.

Elemento arquitectónico	Nombre	Interpretación	Referencias			
GB	Barras de Grava y Formas de Fondo	Gt, Gp Gh, St, Sp, Sr	Sistema de barras de grava desarrollado en una posición interna del canal, separadamente de los bordes.	Leopold and Wolman, 1957; Ashmore, 1991; Miall, 2006		
SG	Depósitos de Flujos por Gravedad	Gmm, Gcm	Depósitos de flujos gravitacionales en masa.	Schultz, 1984; Blair and McPherson, 1992; Miall, 2006		
FF	Depósito de Finos de Llanura de Inundación	Fl Fsm, Sr, C	Depósito de desborde y pantanos.	Willis and Behrensmeyes, 1994; Miall, 2006		
CS	Depósito de Crevasse-Splay	St, Sp Sr	Depósito que se forma cerca de los márgenes del canal principal y que prograda en la llanura de inundación durante los eventos de desborde.	Farrel, 1987; Smith et al., 1989; Miall, 2006		
DA	Macroforma de Acreción Frontal	Gt, Gp, St, Sp Sr	Sistema de barras dominantemente arenosas desarrollado en una posición interna del canal, separadamente de los bordes y que muestra evidencia de crecimiento por acreción en la dirección del flujo principal.	Miall, 2006		
LA	Depósito de Acreción Lateral	St, Sp Gt, Gp, Sr	Barra de meandro (point-bar)	Allen, 1970; Bristow, 1993; Miall, 2006		

Tabla 5.2 Síntesis de elementos arquitectónicos observados en la formación Cualac y el grupo Tecocoyunca inferior. Las litofacies dominantes se denotan con formato grueso, mientras que las litofacies subordinadas se muestran con un formato normal.

Elemento Barras de Grava y Formas de Fondo. El elemento Barras de Grava y Formas de Fondo (GB por sus siglas en inglés) es el elemento arquitectónico más representativo y abundante en la formación Cualac (Fig. 5.6A–D F–I). Está compuesto por depósitos conglomeráticos con geometría lenticular y espesor decimétrico a métrico. Los depósitos lenticulares muestran bases erosivas y cóncavas hacia arriba que corresponden con superficies de acreción de tercer orden, las cuales se cortan unas a otras tanto vertical como horizontalmente (Fig. 5.16A–C). Estos cuerpos lenticulares

están compuestos por una sucesión grano-decreciente conformada a la base por conglomerados de las litofacies Gt y Gp, los cuales pasan de manera transicional hacia arriba a litofacies arenosas como St, Sp, Sr y, finalmente, la parte superior de la sucesión la conforman los depósitos de granulometrías finas de las litofacies Fl y Fsm. Sin embargo, la sucesión antes descrita no siempre se preserva de manera íntegra en todos los cuerpos lenticulares y sólo se presentan las facies conglomeráticas, que son las más abundantes en este elemento arquitectónico. Cada cuerpo lenticular puede estar conformado únicamente por una única litofacies conglomerática o por un conjunto de dos a tres facies diferentes interesatratificadas (Gp, Gt y Gh). Hacia la parte superior de la formación Cualac, se puede observar un incremento progresivo de las litofacies arenosas y finas en el elemento GB. La superficie inferior del elemento GB corresponde con una superficie de cuarto orden, que típicamente es erosiva (Fig. 5.16A–C). La superficie superior del elemento GB es de naturaleza variable dentro de la formación Cualac: en la parte inferior de esta unidad es una superficie erosiva de cuarto orden por encima de la cual sobreyace otro elemento GB, mientras que hacia la parte superior de la unidad es una superficie no erosiva de cuarto orden, la cual muestra una geometría planar a convexa hacia arriba (Fig. 5.16B) que, generalmente, se encuentra cubierta por las litofacies Sr, Fl y Fsm (Fig. 5.16B).

Miall (2006) interpreta al elemento GB como el depósito de barras de grava transversales y longitudinales, las cuales se desarrollan en las partes internas de los canales, separadamente de los bordes.

Las direcciones de paleocorrientes medidas en las litofacies Gt, Gp, St y Sp, indican direcciones de transporte sedimentario principalmente hacia el SW y SE (Fig. 5.6) y, subordinadamente, hacia el W y E.

 $\sum_{n=1}^{N}$

Diagrama de roseta que muestra las direcciones de paleocorrientes obtenidas a partir de clastos imbricados y estratificación cruzada (negro). El círculo mayor (rojo) indica la disposición de las superficies de acreción en los elementos arquitectónicos Jerarquía de superficies Segundo orden Tercer orden Cuarto orden

Figura 5.16 Elementos arquitectónicos representativos de la formación Cualac.

Elemento Depósitos de Flujos por Gravedad. En la parte inferior de la formación Cualac, el elemento Depósitos de Flujos por Gravedad (SG por sus siglas en inglés) se encuentra comúnmente interestratificado con el elemento GB (Fig. 5.6 B, G, H, I). El elemento SG está conformado por depósitos conglomeráticos con geometría lenticular y espesor centimétrico a decimétrico (Fig. 5.16 A y C); sin embargo, la acreción vertical de estos depósitos genera paquetes con espesores de varios metros (Fig. 5.6 B, G, H, I). Estos cuerpos lenticulares están conformados por las litofacies Gcm y Gmm. Las superficies que limitan el elemento SG corresponden con superficies de segundo orden, ya que marcan un cambio significativo en las condiciones del flujo y, por ende, es el único elemento arquitectónico que puede estar compuesto por un solo estrato. La superficie basal del elemento SG es característicamente plana a irregular y sin evidencias de erosión (Fig. 5.16Ay C). De acuerdo con Miall (2006), el elemento SG representa el depósito de flujos de detritos hiperconcentrados con comportamiento plástico (de alta resistencia y viscosidad) y flujos de detritos con un comportamiento pseudo-plástico (de baja resistencia), los cuales se acomodan de manera pasiva sobre la topografía existente sin generar erosión.

5.2 Sedimentología del grupo Tecocoyunca inferior

La base del grupo Tecocoyunca inferior es una superficie de séptimo orden, a lo largo de la cual esta unidad sobreyace a las rocas de la formación Cualac. El grupo Tecocoyunca inferior está compuesto principalmente por arenisca fina a conglomerática, lodolita y, subordinadamente, conglomerado fino. En esta unidad se observaron fallas sin-sedimentarias normales a la escala métrica. Debido a los eventos tectónicos cretácicos y cenozoicos, las rocas del grupo Tecocoyunca inferior se encuentran intensamente deformadas y, por ende, no es posible realizar la estimación de un espesor total para esta unidad. Asimismo, la medición continua de los perfiles de facies sólo se pudo llevar a cabo en ciertas localidades, donde fue posible llevar un estricto control estratigráfico para la colecta de muestras y datos de paleocorrientes.

5.2.1 Litofacies

En el grupo Tecocoyunca inferior se identificaron nueve litofacies, las cuales serán descritas a continuación. Una síntesis se presenta en la Tabla 5.1.

Litofacies de Arenisca Fina, Limolita y Lodolita con laminación plano-paralela inferior. La litofacies Fl es una de las litofacies más representativas y abundantes en las rocas del grupo Tecocoyunca inferior (Fig. 5.6A, E, F, I). Esta litofacies está conformada por estratos tabulares de arenisca muy

- 73 -

fina, limolita y lodolita, cuyos espesores varían desde algunos centímetros hasta varios metros; la alternancia rítmica de estos estratos forma la estratificación heterolítica. Los depósitos de la litofacies Fl son continuos lateralmente por decenas a cientos de metros. Estos depósitos se caracterizan por presentar laminación plano-paralela inferior (Fig. 5.17A), laminación y estratificación convoluta (Fig. 5.17B), así como estructuras de flama y carga (Fig. 5.17C). Estos depósitos contienen abundantes restos de plantas fósiles, fragmentos de troncos carbonizados, láminas de carbón, escasa a muy abundante bioturbación tanto en la cima como en el interior de los estratos (Fig. 5.17D), impresiones de raíces orientadas perpendicularmente a la estratificación (Fig. 5.17E) y, localmente, huellas de dinosaurios (Fig. 5.17F). Las rocas de la litofacies Fl se encuentran interestratificadas con las litofacies C y Sr. Generalmente, la litofacies Fl cubre a las litofacies Gt, Gp y Sr.

Figura 5.17. Litofacies de Arenisca Fina, Limolita y Lodolita con laminación plano-paralela inferior (Fl) en el grupo Tecocoyunca inferior. A. Laminación heterolítica. B. Laminación convoluta. C. Estructuras de flama y carga. D. Bioturbación. E. Impresiones de raíces de plantas orientadas perpendicularmente a la estratificación. F. Huellas de dinosaurios denotadas por flechas amarillas.

Litofacies de Limolita y Arcillolita. La litofacies Fsm es muy abundante en el grupo Tecocoyunca inferior (Fig.5.6A, E, F, I). Presenta características muy similares a la litofacies Fl en cuanto a espesores y estructuras primarias; se distingue por la ausencia de estratos y láminas de arenisca.

Litofacies de Arenisca con Rizaduras. La litofacies de Arenisca con Rizaduras (Sr) es una de las litofacies más frecuentes en los depósitos del grupo Tecocoyunca inferior (Fig. 5.6 A, D, E, I). Está conformada por estratos tabulares de arenisca fina a media con un espesor de pocos centímetros hasta algunos metros. La litofacies Sr se caracteriza por la presenta de rizaduras (Fig. 5.18A y B) y, localmente, laminación convoluta y estructuras de carga y flama. La litofacies Sr se encuentra interestratificada con las litofacies Fl y Fsm, y localmente, cubre transicionalmente a las litofacies St y Sp.

Figura 5.18 A. Litofacies de Arenisca con Rizaduras (Sr) en el grupo Tecocoyunca inferior.

Litofacies de Carbón. La litofacies de Carbón (*C*) se presenta comúnmente en los afloramientos del grupo Tecocoyunca inferior (Fig. 5.6A). Está constituida por estratos de carbón y lodolita carbonosa con espesor centimétrico a métrico (Fig. 5.19), y muestran continuidad lateral de metros a cientos de metros. Generalmente, esta litofacies se encuentra interestratificada con las facies Fl y Fsm.

Figura 5.19 Litofacies de Carbón del grupo Tecocoyunca inferior.

Litofacies de Arenisca con Estratificación Cruzada Curvada. La litofacies St se presenta de manera menos abundante en las rocas del grupo Tecocoyunca inferior (Fig. 5.6 A, E, F, I). La litofacies St está definida por estratos lenticulares de arenisca, con espesores decimétricos a métricos y son continuos lateralmente por algunos metros. La arenisca es de granulometría fina a muy gruesa y presenta típicamente laminación cruzada curvada (Fig. 5.20A) y, localmente, se observan intraclastos de lodolita en la base del estrato. Los depósitos de esta facies poseen una base erosiva y cambian gradualmente hacia la cima a las litofacies Sp y Sr.

Litofacies de Arenisca con Estratificación Cruzada Planar. La litofacies Sp es poco abundante en los afloramientos del grupo Tecocoyunca inferior (Fig. 5.6 A, E, F, I). Esta litofacies está conformada por estratos decimétricos de arenisca con geometría lenticular y con continuidad lateral de metros. El apilamiento vertical de estos estratos genera paquetes de varios metros de espesor. La arenisca es fina a muy gruesa con estratificación cruzada planar (Fig. 5.20B). Los estratos tienen bases erosivas o sobreyacen transicionalmente a los depósitos de la facies St, Gt o Gp, y son cubiertos gradualmente por las litofacies Sr, Fl y Fsm.

Figura 5.20 Litofacies de Arenisca con Estratificación Cruzada Curvada (A) y Litofacies de Arenisca con Estratificación Cruzada Planar (B) en el grupo Tecocoyunca inferior.

Litofacies de Arenisca con Estratificación Horizontal. La litofacies Sh se presenta de manera frecuente en el grupo Tecocoyunca inferior (Fig. 5.6A). Está conformada por estratos tabulares de arenisca con espesor de algunos centímetros a varios decímetros y de continuidad lateral de decenas de metros. Los depósitos de la litofacies Sh están compuestos por arenisca media a gruesa y, típicamente, presentan laminación plano-paralela (Fig. 5.21A) y, localmente, se observan intraclastos de lodolita en su base (Fig. 5.21B). Los depósitos de la litofacies Sh tiene una base erosiva y son cubiertos transicionalmente por las litofacies arenosas St, Sp y Sr.

Figura 5.21 A. Litofacies de Arenisca con Estratificación Horizontal (Sh) en el grupo Tecocoyunca inferior. B. Intraclastos de lodolita en la facies Sh.

Litofacies de Conglomerado con Estratificación Cruzada Curvada. La litofacies Gt es muy poco abundante en las rocas del grupo Tecocoyunca inferior (Fig. 5.6E). Está conformada por estratos lenticulares de conglomerado, los cuales varían en espesores centimétricos a decimétricos y con continuidad lateral de algunos metros. El conglomerado es de grano fino a muy fino, presenta un grado de clasificación muy bueno, es soportado por clastos y contiene clastos bien redondeados (Fig. 5.22A). Esta litofacies se caracteriza por presentar estratificación cruzada curvada. La base de la litofacies Gt es erosiva y el contacto superior es gradual con las litofacies St y Sp.

Litofacies de Conglomerado con Estratificación Cruzada Planar. La litofacies Gp es muy poco abundante en el grupo Tecocoyunca inferior (Fig. 5.6E). Esta litofacies está definida por estratos centimétricos a métricos con geometría lenticular y algunos metros de continuidad lateral. Se caracteriza por presentar un grado de clasificación bueno y estratificación cruzada planar. Los depósitos de la litofacies Gp presentan base erosiva (Fig. 5.22B) y, en algunos casos, cubren de manera transicional a la litofacies Gt; el contacto superior es gradual con las litofacies St y Sp.

Figura 5.22 A. Textura de los conglomerados del grupo Tecocoyunca inferior. B. Fotografía de la litofacies de Conglomerado con Estratificación Cruzada Planar (Gp) donde se puede observar la base erosiva del estrato.

5.2.2 Elementos arquitectónicos

Las litofacies anteriormente descritas se presentan organizadas en cuatro elementos arquitectónicos, los cuales presentan características tridimensionales específicas en los afloramientos del grupo Tecocoyunca inferior. Una síntesis de estos elementos se presenta en la Tabla 5.2.

Elemento Depósito de Finos de Llanura de Inundación. El elemento Depósito de Finos de Llanura de Inundación (FF por sus siglas en inglés) representa el elemento más abundante y representativo del grupo Tecocoyunca inferior. Está conformado por la alternancia rítmica de las litofacies Fl, Fsm,

C y Sr (Fig. 5.23), forman cuerpos tabulares de hasta varias decenas de metros, con una continuidad lateral de cientos de metros (Fig. 5.6A, E, F, I). Localmente, el elemento FF presenta paquetes de espesores métricos de la litofacies C. Generalmente, el elemento FF es limitado en su cima por una superficie de erosión de cuarto orden o superior (Fig. 5.23), que lo pone en contacto con los elementos LA, DA y CS. El contacto inferior es siempre transicional con los elementos LA, DA y CS. De acuerdo con Miall (2006), el elemento FF representa el depósito de eventos de desborde e inundación de las zonas aledañas a los canales fluviales.

Elemento Depósitos de Crevasse-Splay. El elemento Depósito de Crevasse-Splay (CS) llega a ser abundante en algunos afloramientos del grupo Tecocoyunca inferior (Fig. 5.6A, E, I). Está conformado por cuerpos dominantemente arenosos de espesor métrico compuestos por depósitos con geometría clinoforme (Fig. 5.23). Cada clinoforme está delimitado por superficies de acreción de tercer orden con inclinaciones de ~10–15° y está conformado por una sucesión grano-decreciente, la cual muestra, de base a techo, la siguiente sucesión de litofacies: Gt, Gp, St, Sp y Sr. La base del elemento CS es una superficie planar y erosiva de cuarto orden, mientras que el contacto superior es transicional con el elemento FF. El análisis tridimensional del elemento CS muestra que las superficies de acreción que delimitan los clinoformes forman ángulos menores a 60° con respecto a la dirección principal de corriente, la cual es definida por las estructuras sedimentarias de las litofacies Gt, Gp, St y Sp. Esta arquitectura indica que el crecimiento de estos cuerpos sedimentarios es principalmente por acreción frontal. Miall (2006) interpreta al elemento CS como el depósito de cuerpos sedimentarios con geometrías de abanico, los cuales se forman durante eventos de desborde por el rompimiento de los diques naturales que bordean a los canales.

Figura 5.23 Elementos de Depósito de Finos de Llanura de Inundación (FF) y Depósitos de Crevasse-Splay (CS) en el grupo Tecocoyunca inferior.

Elemento Depósitos de Acreción Lateral. El elemento Depósitos de Acreción Lateral (LA) se encuentra sólo en las áreas de Tlaxiaco y Olinalá (Fig. 5.6E, I). Está compuesto por un conjunto de clinoformes dominantemente arenosos, cuyo apilamiento llega a formar cuerpos con un espesor de hasta 11 m. Los clinoformes están delimitados por superficies de acreción de tercer orden que presentan una inclinación de ~20° (Fig. 5.24A y B). Los clinoformes están compuestos por una sucesión grano-decreciente, con las litofacies Gt y Gp en la parte inferior, las St y Sp dominando en la parte intermedia, y la Sr en la parte superior. La base del elemento LA corresponde con una superficie plana y erosiva de cuarto a quinto orden, mientras que su límite superior es transicional con el elemento FF. Las paleocorrientes medidas en las litofacies Gt, Gp, St y Sp del elemento LA muestran direcciones hacia el NE, NW y SE. Dichas direcciones son subortogonales al echado de los clinoformes, lo cual es una característica fundamental de las barras de acreción lateral descritas en la literatura por Allen (1970) y Miall (2006).

Figura 5.24 Elemento de Depósitos de Acreción Lateral (LA) en el grupo Tecocoyunca inferior.

Elemento Macroformas de Acreción Frontal. El elemento Macroformas de Acreción Frontal (DA) se observó en las áreas de Olinalá y Tlaxiaco. Muestra una geometría y una asociación de facies similares a las descritas para el elemento LA (Fig. 5.25A); sin embargo, en el elemento DA, el echado de los clinoformes presenta un ángulo entre 0 y 60° con la dirección de paleocorriente (Fig. 5.25A y B). De acuerdo con la literatura, estas características son típicas de barras de arena formadas en la parte interna de los canales fluviales y cuyo crecimiento ocurre en la dirección de la corriente.

 $\overset{N}{\underset{n=1}{\bigvee}} \quad \begin{array}{l} \text{Diagrama de roseta que muestra las direcciones de paleocorrientes} \\ \text{obtenidas a partir de clastos imbricados y estratificación cruzada} \\ \text{(negro). El círculo mayor (rojo) indica la disposición de las} \\ \text{superficies de acreción en los elementos arquitectónicos} \end{array}$

Jerarquía de superficies

Tercer orden Cuarto orden Quinto orden

Figura 5.25 Elemento de Depósitos de Acreción Frontal (DA) en el grupo Tecocoyunca inferior.

- 83 -

5.3 Falla de Axutla

En el área de Tecomatlán, se puede observar que el contacto entre las rocas jurásicas y el Complejo Acatlán es de carácter tectónico. Dicho contacto corresponde con una zona de falla que se describe por primera vez en este trabajo y que se nombra aquí falla de Axutla. Esta estructura se puede observar en campo y en imágenes satelitales. La falla de Axutla está expuesta de manera discontinua a lo largo de una traza de ~25 km con orientación WNW, desde la localidad de Tecomatlán hasta Axutla, en el estado de Puebla (Fig. 5.26). La zona de falla tiene una orientación general de N290–315° y una inclinación que varía entre 90 y 70° hacia el suroeste (Fig. 5.26).

Figura 5.26 Imagen satelital del área de Tecomatlán a Axutla, estado de Puebla, donde se muestra la falla de Axutla, las localidades donde se realizaron mediciones del plano de falla y la extensión y distribución de los domos riolíticos emplazados a lo largo de la traza de la falla de Axutla.

Se puede observar un cambio en la disposición de los estratos de la sucesión jurásica con respecto a la cercanía que éstos tienen con la falla: los estratos se hacen progresivamente más inclinados conforme se acercan a la traza de la falla (Figs. 5.4 y 5.27), hasta ponerse subverticales en la zona de la falla y con un rumbo paralela a esta. Asimismo, se observa que los planos de foliación y los planos

axiales de los pliegues presentes en las rocas del Complejo Acatlán se verticalizan conforme se acercan a la traza de la falla.

Figura 5.27 Fotografía del contacto transicional entre la formación Cualac y grupo Tecocoyunca en el área de Tecomatlán. Se muestran los estratos verticales en afloramiento cercano a la traza de la falla de Axutla.

El núcleo de la zona de falla está representado por una brecha con un espesor variable de ~100 a ~30 m, la cual está conformada por bloques de escala decimétrica a métrica de rocas metamórficas del Complejo Acatlán, embebidos en una matriz de grano fino rica en mica y fragmentos centimétricos de esquisto (Fig. 5.28 A y B).

Establecer la cinemática de la falla de Axutla es complicado debido a que se pueden observar de dos a tres indicadores cinemáticos sobrepuestos en un mismo afloramiento (Fig. 5.28 C y D), lo cual indica que esta estructura mayor ha tenido una historia compleja de reactivaciones en diferentes tiempos. Los indicadores cinemáticos indican movimientos normales, oblicuos, laterales izquierdos y laterales derechos. Por lo tanto, la cinemática de la falla de Axutla no se pudo resolver en este trabajo, y se recomienda realizar un estudio estructural enfocado en esta estructura en el futuro.

Figura 5.28 A. Brecha de falla en la zona de Axutla donde se muestran los bloques de rocas metamórficas del Complejo Acatlán embebidos en una matriz de grano más fino compuesta por fragmentos centimétricos de rocas metamórficas y micas. B. Fotografía del núcleo de la falla a 5 km al SE de Axutla. C y D. Indicadores cinemáticos en un mismo afloramiento de la zona de falla (localidad 3 del mapa de la Fig. 5.26).

Entre las localidades de Tecomatlán y Axutla, sobresalen de la topografía domos riolíticos que están alineados con la traza de la falla de Axutla (Fig. 5.26 y 5.29). También, se puede observar que en algunos sectores el Río Mixteco, una de las principales corrientes fluviales de la región, se orienta paralelamente a la traza de la falla (Fig. 5.26).

Figura 5.29 Fotografía que muestra los domos riolíticos (flechas negras) alineados con la traza de la falla con orientación WNW. La ubicación de los domos se puede observar en la figura 5.26.

Hacia el este de Tecomatlán, la traza de la falla de Axutla se ve interrumpida por la falla de Tetla, la cual tiene una orientación N–S y ha sido descrita en la literatura como una estructura con cinemática lateral derecha (Ortega-Gutiérrez et al., 2018; Fig. 5.26). Asimismo, en el área donde se documentó y caracterizó, es común observar que los afloramientos de la falla de Axutla comúnmente son truncados por fallas con orientaciones ~N-S, es decir paralelas a subparalelas a la falla de Tetla (Fig. 5.26). Localmente, dichas fallas ~N-S se sobreponen y obliteran completamente el patrón de fallas WNW asociado a la falla de Axutla. Por esta razón, no en todas las localidades es posible observar y caracterizar de manera clara la falla de Axutla.

Capítulo 6. MODAS DETRÍTICAS DE ARENISCAS

El levantamiento de los perfiles de facies permitió obtener un control estratigráfico muy preciso de 58 muestras de areniscas de grano medio a grueso, las que fueron empleadas para realizar el análisis de modas detríticas. Las muestras de arenisca de la formación Cualac y del grupo Tecocoyunca inferior fueron extraídas de diferentes niveles estratigráficos y en las diferentes áreas de estudio, referenciadas en su respectivo perfil de facies y colectadas de estratos con rasgos mínimos de meteorización, con el fin de evitar componentes que hayan modificado su composición original. La ubicación de las muestras se puede consultar en los perfiles de facies de la Figura 5.6. La colecta de muestras se hizo con el objetivo de determinar las modas detríticas y, así, entender la procedencia de estas unidades, lo que permitirá determinar las rutas de dispersión del sedimento en la Cuenca de Tlaxiaco y establecer posibles conexiones sedimentológicas entre las diferentes áreas estudiadas. Adicionalmente, las variaciones composicionales de las rocas clásticas aportarán información importante sobre la arquitectura interna de la cuenca y su evolución en el tiempo.

En este trabajo se reconocieron 15 diferentes categorías de granos detríticos, los cuales se enlistan y describen a continuación en la tabla 6.1. Los datos crudos del conteo de puntos y los valores de los parámetros recalculados pueden consultarse en las tablas 6.2 y 6.3.

Categoría	Descripción
Qs	Cristal individual de cuarzo
QRm	Cuarzo en un grano fanerítico y policristalino que muestra evidencia de deformación
	cristal-plástica
QLvf	Fenocristal de cuarzo (>0.0625 mm) en un lítico volcánico felsítico
Qp	Cuarzo afanítico y policristalino
KLvf	Fenocristal de feldespato potásico (>0.0625 mm) en un lítico volcánico felsítico
Ps	Cristal individual de plagioclasa
PLvf	Fenocristal de plagioclasa (>0.0625 mm) en un lítico volcánico felsítico
Lmf(R2)	Lítico metapsamítico/metafelsítico de Rango 2 (facies de prehnita-pumpelita)
Lmf(R3)	Lítico metapsamítico/metafelsítico de Rango 3 (facies de esquistos verdes de baja
	temperatura)
Lmp(R2)	Lítico metapelítico de Rango 2 (facies de prehnita-pumpelita)
Lmp(R3)	Lítico metapelítico de Rango 3 (facies de esquistos verdes de baja temperatura)
Lmp(R4)	Lítico metapelítico de Rango 4 (facies de esquistos verdes de alta temperatura)
Lvf	Lítico volcánico felsítico
Η	Mineral pesado traslucido
Ind	Grano indiferenciado
Qm	Cuarzo monocristalino total (Qs+QRm+QLvf)
Qt	Cuarzo total (Qm+Qp)
K	Feldespato potásico total (KLvf)
Р	Plagioclasa total (Ps+PLvf+PLvl)
F	Feldespato total (K+P)
Lm	Líticos metamórficos totales (Lmf+Lmp+Lmb)
Lv	Líticos volcánicos totales (Lvf)
L	Líticos totales (Lm+Lv)

Tabla 6.1 Categorías adoptadas para el estudio petrográfico cuantitativo de roca total.

Tlaxiaco																		
Muestra	Unidad	Qs	QRm	QLvf	Qp	Ks	KLvf	Ps	PLvf	Lmf2	Lmf3	Lmp2	Lmp3	Lmp4	Lvf	Н	Ind	TOT
ÑU-0318-1	Formación Cualac	11	278	0	0	0	0	0	0	20	33	15	49	18	0	2	0	426
MI-0318-2	Formación Cualac	10	253	0	0	0	0	0	0	9	33	12	97	4	0	2	0	420
MI-0318-3	Formación Cualac	3	294	0	0	0	0	0	0	5	24	7	73	16	0	1	0	423
ÑU-0318-2	Formación Cualac	29	97	0	0	0	0	0	0	3	6	2	65	197	0	1	0	400
TB-0817-1	Gpo. Tecocoyunca inf.	102	223	15	1	0	0	0	0	2	0	6	3	0	63	0	0	415
TB-0817-2	Gpo. Tecocoyunca inf.	119	218	26	0	0	0	0	0	12	0	35	12	4	66	1	0	493
TB-0817-3	Gpo. Tecocoyunca inf.	48	202	20	0	0	0	0	0	31	4	58	7	2	51	1	0	424
Tla-13	Gpo. Tecocoyunca inf.	190	205	0	1	0	0	0	0	0	0	1	0	1	10	2	1	411
TB-04	Gpo. Tecocoyunca inf.	246	100	2	0	3	0	0	0	7	1	7	0	0	32	3	4	405
TLA-64	Gpo. Tecocoyunca inf.	33	337	1	0	0	0	5	0	0	0	2	4	0	6	6	5	399
TLA-69	Gpo. Tecocoyunca inf.	154	223	7	0	0	0	0	0	0	0	0	0	0	15	1	0	400
TLA-0318-2	Gpo. Tecocoyunca inf.	184	170	5	0	2	0	2	0	4	0	4	0	0	25	6	3	405

<u>Tezoatlán</u>																		
Muestra	Unidad	Qs	QRm	QLvf	Qp	Ks	KLvf	Ps	PLvf	Lmf2	Lmf3	Lmp2	Lmp3	Lmp4	Lvf	Н	Ind	TOT
9RC	Formación Cualac	14	279	0	0	0	0	0	0	2	26	16	51	13	0	0	0	401
10RC	Formación Cualac	10	228	0	2	0	0	0	0	1	50	20	75	20	0	0	0	406
13C	Formación Cualac	11	140	0	0	0	0	0	0	73	40	61	73	15	0	0	0	413
15C	Formación Cualac	5	255	0	0	0	0	0	0	0	37	0	57	17	0	0	0	371
16C	Formación Cualac	8	179	0	1	0	0	0	0	40	39	49	93	8	0	0	0	417
18C	Formación Cualac	7	301	0	0	0	0	0	0	0	9	0	79	20	0	0	0	416
19C	Formación Cualac	7	168	0	0	0	0	0	0	40	15	26	124	24	0	0	0	404
20C	Formación Cualac	1	288	0	0	0	0	0	0	26	16	11	57	15	0	0	0	414
22C	Formación Cualac	2	246	0	0	0	0	0	0	22	30	13	119	14	0	0	0	446
24C	Formación Cualac	0	355	0	0	0	0	0	0	0	9	0	25	22	0	0	0	411
TEC-9-16-1	Gpo. Tecocoyunca inf.	106	202	15	2	0	0	0	0	7	2	4	3	0	61	2	0	404
TEC-9-16-2	Gpo. Tecocoyunca inf.	98	192	40	4	0	0	0	0	11	0	10	25	3	82	3	0	468
TEC-9-16-3	Gpo. Tecocoyunca inf.	165	128	23	2	0	0	0	0	1	2	6	11	2	73	2	0	415
TEC-9-16-4	Gpo. Tecocoyunca inf.	180	204	3	0	0	0	0	0	0	0	3	0	2	8	0	0	400

Tecomatlán																		
Muestra	Unidad	Qs	QRm	QLvf	Qp	Ks	KLvf	Ps	PLvf	Lmf2	Lmf3	Lmp2	Lmp3	Lmp4	Lvf	Н	Ind	TOT
MIX-4	Formación Cualac	12	364	1	1	0	0	0	0	19	1	6	4	1	1	0	0	410
MIX-5	Formación Cualac	235	116	3	3	0	0	0	0	9	0	12	17	11	4	0	0	410
MIX-7	Formación Cualac	52	287	2	0	0	0	0	0	30	3	9	17	1	2	0	0	403
Tmt-0219-1	Formación Cualac	23	281	0	0	0	0	0	0	39	14	13	24	18	0	3	0	415
Tmt-0219-8	Formación Cualac	30	242	0	0	0	0	0	0	43	6	26	49	13	0	1	0	410
Tmt-0219-9	Formación Cualac	13	281	0	0	0	0	0	0	34	36	2	9	24	1	0	0	400
Tmt-0219-14	Formación Cualac	33	339	0	1	0	0	0	0	19	5	9	5	2	0	1	0	414
Tmt-0219-16	Formación Cualac	23	185	0	0	0	0	0	0	26	18	14	90	57	0	2	0	415
MIX-1	Gpo. Tecocoyunca inf.	171	198	1	0	0	0	0	0	17	1	6	0	0	5	0	1	400
MIX-2	Gpo. Tecocoyunca inf.	149	199	4	2	0	0	0	1	16	0	14	5	2	18	0	0	410
MIX-3	Gpo. Tecocoyunca inf.	134	246	1	2	0	0	0	0	6	2	6	0	0	12	0	1	410
MIX-6	Gpo. Tecocoyunca inf.	257	110	1	0	0	0	0	0	5	0	18	9	6	1	2	1	410
Tmt-0219-7	Gpo. Tecocoyunca inf.	279	60	8	0	0	0	0	0	5	1	21	3	1	17	3	2	400
Tmt-0219-10	Gpo. Tecocoyunca inf.	159	207	6	1	0	0	0	0	11	1	5	0	0	8	2	0	400
Tmt-0219-11	Gpo. Tecocoyunca inf.	121	256	0	0	0	0	0	0	6	0	5	1	1	14	3	3	410
Tmt-0219-12	Gpo. Tecocoyunca inf.	112	267	0	0	0	0	0	0	6	3	6	0	1	3	2	0	400
Tmt-0219-13	Gpo. Tecocoyunca inf.	268	71	16	0	0	0	0	0	9	1	11	4	0	17	1	2	400
Tmt-0219-17	Gpo. Tecocoyunca inf.	123	258	0	0	0	0	0	0	0	3	5	0	0	11	0	0	400

<u>Olinalá</u>																		
Muestra	Unidad	Qs	QRm	QLvf	Qp	Ks	KLvf	Ps	PLvf	Lmf2	Lmf3	Lmp2	Lmp3	Lmp4	Lvf	Н	Ind	TOT
CU-02	Formación Cualac	22	365	0	0	0	0	0	0	14	1	6	14	2	0	0	0	424
CU-03	Formación Cualac	12	374	0	0	0	0	0	0	19	2	5	3	1	0	0	0	416
CU-05	Formación Cualac	37	341	0	1	0	0	0	0	19	2	8	15	2	0	2	0	427
CU-06	Formación Cualac	34	368	0	3	0	0	0	0	17	1	2	4	1	0	1	0	431
CU-08	Formación Cualac	54	351	0	1	0	0	0	0	4	0	1	3	0	0	0	0	414
CT-10	Formación Cualac	60	352	0	2	0	0	0	0	3	2	4	4	0	0	0	0	427
CT-11	Formación Cualac	38	349	0	0	0	0	0	0	11	3	8	6	1	0	1	0	417
T-12	Gpo. Tecocoyunca inf.	61	337	1	1	0	0	0	0	8	0	4	7	0	4	2	0	425
T-13	Gpo. Tecocoyunca inf.	82	264	8	3	0	0	0	0	7	0	8	1	0	45	0	0	418
OL-0618-T3	Gpo. Tecocoyunca inf.	141	208	4	0	10	0	17	0	1	0	1	0	0	11	7	0	400
OL-1018-1b	Gpo. Tecocoyunca inf.	246	54	16	0	6	1	9	1	6	1	9	0	0	39	6	6	400
OL-1018-2	Gpo. Tecocoyunca inf.	329	33	1	0	8	0	10	1	1	0	0	0	0	9	4	4	400
OL-1018-3a	Gpo. Tecocoyunca inf.	200	171	3	0	3	0	4	0	0	0	2	0	0	7	6	2	398
OL-1018-4	Gpo. Tecocoyunca inf.	201	149	6	0	1	1	6	0	2	0	5	1	0	15	7	6	400

Tabla 6.2. Resultados del conteo de puntos de las muestras seleccionadas de la formación Cualac y del grupo

 Tecocoyunca inferior.

	<u>Tlaxiaco area</u>													
Muestra	Unidad	QtFL%Qt	QtFL%F	QtFL%L	LmLvLs%Lm	LmLvLs%Lv	LmLvLs%Ls	LmfLmpLvf%Lmf	LmfLmpLvf%Lmp	LmfLmpLvf%Lvf	R1R2-3R4%R1	R1R2-3R4%R2-3	R1R2-3R4%R4	
ÑU-0318-1	Formación Cualac	68.2	0.0	31.8	100.0	0.0	0.0	39.3	60.7	0.0	0.0	86.7	13.3	
MI-0318-2	Formación Cualac	62.9	0.0	37.1	100.0	0.0	0.0	27.1	72.9	0.0	0.0	97.4	2.6	
MI-0318-3	Formación Cualac	70.4	0.0	29.6	100.0	0.0	0.0	23.2	76.8	0.0	0.0	87.2	12.8	
ÑU-0318-2	Formación Cualac	31.6	0.0	68.4	100.0	0.0	0.0	3.3	96.7	0.0	0.0	27.8	72.2	
TB-0817-1	Gpo. Tecocoyunca inf.	82.2	0.0	17.8	14.9	85.1	0.0	2.7	12.2	85.1	0.0	100.0	0.0	
TB-0817-2	Gpo. Tecocoyunca inf.	73.8	0.0	26.2	48.8	51.2	0.0	9.3	39.5	51.2	0.0	93.7	6.3	
TB-0817-3	Gpo. Tecocoyunca inf.	63.8	0.0	36.2	66.7	33.3	0.0	22.9	43.8	33.3	0.0	98.0	2.0	
Tla-13	Gpo. Tecocoyunca inf.	97.1	0.0	2.9	16.7	83.3	0.0	0.0	16.7	83.3	0.0	50.0	50.0	
TB-04	Gpo. Tecocoyunca inf.	87.4	0.8	11.8	31.9	68.1	0.0	17.0	14.9	68.1	0.0	100.0	0.0	
TLA-64	Gpo. Tecocoyunca inf.	95.6	1.3	3.1	50.0	50.0	0.0	0.0	50.0	50.0	0.0	100.0	0.0	
TLA-69	Gpo. Tecocoyunca inf.	96.2	0.0	3.8	0.0	100.0	0.0	0.0	0.0	100.0	0.0	0.0	0.0	
TLA-0318-2	Gpo. Tecocoyunca inf.	90.7	1.0	8.3	24.2	75.8	0.0	12.1	12.1	75.8	0.0	100.0	0.0	

F	<u>Tezoatlán area</u>													
Muestra	Unidad	QtFL%Q	QtFL%F	QtFL%L	LmLvLs%Lm	LmLvLs%Lv	LmLvLs%Ls	LmfLmpLvf%Lmf	LmfLmpLvf%Lmp	LmfLmpLvf%Lvf	R1R2-3R4%R1	R1R2-3R4%R2-3	R1R2-3R4%R4	
9RC	Formación Cualac	73.1	0.0	26.9	100.0	0.0	0.0	25.9	74.1	0.0	0.0	88.0	12.0	
10RC	Formación Cualac	59.1	0.0	40.9	100.0	0.0	0.0	30.7	69.3	0.0	0.0	88.0	12.0	
13C	Formación Cualac	36.6	0.0	63.4	100.0	0.0	0.0	43.1	56.9	0.0	0.0	94.3	5.7	
15C	Formación Cualac	70.1	0.0	29.9	100.0	0.0	0.0	33.3	66.7	0.0	0.0	84.7	15.3	
16C	Formación Cualac	45.1	0.0	54.9	100.0	0.0	0.0	34.5	65.5	0.0	0.0	96.5	3.5	
18C	Formación Cualac	74.0	0.0	26.0	100.0	0.0	0.0	8.3	91.7	0.0	0.0	81.5	18.5	
19C	Formación Cualac	43.3	0.0	56.7	100.0	0.0	0.0	24.0	76.0	0.0	0.0	89.5	10.5	
20C	Formación Cualac	69.8	0.0	30.2	100.0	0.0	0.0	33.6	66.4	0.0	0.0	88.0	12.0	
22C	Formación Cualac	55.6	0.0	44.4	100.0	0.0	0.0	26.3	73.7	0.0	0.0	92.9	7.1	
24C	Formación Cualac	86.4	0.0	13.6	100.0	0.0	0.0	16.1	83.9	0.0	0.0	60.7	39.3	
TEC-9-16-1	Gpo. Tecocoyunca inf.	80.8	0.0	19.2	20.8	79.2	0.0	50.7	5.1	44.2	0.0	100.0	0.0	
TEC-9-16-2	Gpo. Tecocoyunca inf.	71.8	0.0	28.2	37.4	62.6	0.0	43.7	17.8	38.5	0.0	93.9	6.1	
TEC-9-16-3	Gpo. Tecocoyunca inf.	77.0	0.0	23.0	23.2	76.8	0.0	45.2	11.3	43.5	0.0	90.9	9.1	
TEC-9-16-4	Gpo. Tecocoyunca inf.	96.8	0.0	3.3	38.5	61.5	0.0	38.1	23.8	38.1	0.0	60.0	40.0	

Tabla 6.3 Parámetros recalculados para el análisis composicional y la generación de los diagramas ternarios utilizados en este trabajo.

	<u>Tecomatián area</u>													
Muestra	Unidad	QtFL%Q	QtFL%F	QtFL%L	LmLvLs%Lm	LmLvLs%Lv	LmLvLs%Ls	LmfLmpLvf%Lmf	LmfLmpLvf%Lmp	LmfLmpLvf%Lvf	R1R2-3R4%R1	R1R2-3R4%R2-3	R1R2-3R4%R4	
MIX-4	Formación Cualac	92.2	0.0	7.8	96.9	3.1	0.0	62.5	34.4	3.1	0.0	96.8	3.2	
MIX-5	Formación Cualac	87.1	0.0	12.9	92.5	7.5	0.0	17.0	75.5	7.5	0.0	77.6	22.4	
MIX-7	Formación Cualac	84.6	0.0	15.4	96.8	3.2	0.0	53.2	43.5	3.2	0.0	98.3	1.7	
Tmt-0219-1	Formación Cualac	73.8	0.0	26.2	100.0	0.0	0.0	49.1	50.9	0.0	0.0	83.3	16.7	
Tmt-0219-8	Formación Cualac	66.5	0.0	33.5	100.0	0.0	0.0	35.8	64.2	0.0	0.0	90.5	9.5	
Tmt-0219-9	Formación Cualac	73.5	0.0	26.5	99.1	0.9	0.0	66.0	33.0	0.9	0.0	77.1	22.9	
Tmt-0219-14	Formación Cualac	90.3	0.0	9.7	100.0	0.0	0.0	60.0	40.0	0.0	0.0	95.0	5.0	
Tmt-0219-16	Formación Cualac	50.4	0.0	49.6	100.0	0.0	0.0	21.5	78.5	0.0	0.0	72.2	27.8	
MIX-1	Gpo. Tecocoyunca inf.	92.7	0.0	7.3	82.8	17.2	0.0	62.1	20.7	17.2	0.0	100.0	0.0	
MIX-2	Gpo. Tecocoyunca inf.	86.3	0.2	13.4	67.3	32.7	0.0	29.1	38.2	32.7	0.0	94.6	5.4	
MIX-3	Gpo. Tecocoyunca inf.	93.6	0.0	6.4	53.8	46.2	0.0	30.8	23.1	46.2	0.0	100.0	0.0	
MIX-6	Gpo. Tecocoyunca inf.	90.4	0.0	9.6	97.4	2.6	0.0	12.8	84.6	2.6	0.0	84.2	15.8	
Tmt-0219-7	Gpo. Tecocoyunca inf.	87.8	0.0	12.2	64.6	35.4	0.0	12.5	52.1	35.4	0.0	96.8	3.2	
Tmt-0219-10	Gpo. Tecocoyunca inf.	93.7	0.0	6.3	68.0	32.0	0.0	48.0	20.0	32.0	0.0	100.0	0.0	
Tmt-0219-11	Gpo. Tecocoyunca inf.	93.3	0.0	6.7	48.1	51.9	0.0	22.2	25.9	51.9	0.0	92.3	7.7	
Tmt-0219-12	Gpo. Tecocoyunca inf.	95.2	0.0	4.8	84.2	15.8	0.0	47.4	36.8	15.8	0.0	93.8	6.3	
Tmt-0219-13	Gpo. Tecocoyunca inf.	89.4	0.0	10.6	59.5	40.5	0.0	23.8	35.7	40.5	0.0	100.0	0.0	
Tmt-0219-17	Gpo. Tecocovunca inf.	95.3	0.0	4.8	42.1	57.9	0.0	15.8	26.3	57.9	0.0	100.0	0.0	

1	•
92	•
1	•

	<u>Olinalá area</u>													
Muestra	Unidad	QtFL%Q	QtFL%F	QtFL%L	LmLvLs%Lm	LmLvLs%Lv	LmLvLs%Ls	LmfLmpLvf%Lmf	LmfLmpLvf%Lmp	LmfLmpLvf%Lvf	R1R2-3R4%R1	R1R2-3R4%R2-3	R1R2-3R4%R4	
CU-02	Formación Cualac	91.3	0.0	8.7	100.0	0.0	0.0	40.5	59.5	0.0	0.0	94.6	5.4	
CU-03	Formación Cualac	92.8	0.0	7.2	100.0	0.0	0.0	70.0	30.0	0.0	0.0	96.7	3.3	
CU-05	Formación Cualac	89.2	0.0	10.8	100.0	0.0	0.0	45.7	54.3	0.0	0.0	95.7	4.3	
CU-06	Formación Cualac	94.2	0.0	5.8	100.0	0.0	0.0	72.0	28.0	0.0	0.0	96.0	4.0	
CU-08	Formación Cualac	98.1	0.0	1.9	100.0	0.0	0.0	50.0	50.0	0.0	0.0	100.0	0.0	
CT-10	Formación Cualac	97.0	0.0	3.0	100.0	0.0	0.0	38.5	61.5	0.0	0.0	100.0	0.0	
CT-11	Formación Cualac	93.0	0.0	7.0	100.0	0.0	0.0	48.3	51.7	0.0	0.0	96.6	3.4	
T-12	Gpo. Tecocoyunca inf.	94.6	0.0	5.4	82.6	17.4	0.0	34.8	47.8	17.4	0.0	100.0	0.0	
T-13	Gpo. Tecocoyunca inf.	85.4	0.0	14.6	26.2	73.8	0.0	11.5	14.8	73.8	0.0	100.0	0.0	
OL-0618-T3	Gpo. Tecocoyunca inf.	89.8	6.9	3.3	15.4	84.6	0.0	7.7	7.7	84.6	0.0	100.0	0.0	
OL-1018-1b	Gpo. Tecocoyunca inf.	81.4	4.4	14.2	29.1	70.9	0.0	12.7	16.4	70.9	0.0	100.0	0.0	
OL-1018-2	Gpo. Tecocoyunca inf.	92.6	4.8	2.6	10.0	90.0	0.0	10.0	0.0	90.0	0.0	100.0	0.0	
a	· · ·	0F 0		~ ~		0	~ ~		<u> </u>		~ ~	100.0	~ ~	

Tabla 6.3 (Continuación). Parámetros recalculados para el análisis composicional y la generación de los diagramas ternarios utilizados en este trabajo.

6.1 Formación Cualac

Se seleccionaron 19 muestras de la formación Cualac para el análisis de modas detríticas. Los resultados se integraron con los datos de 10 muestras procedentes del área de Tezoatlán estudiadas anteriormente por Zepeda-Martínez et al. (2018). Las muestras seleccionadas se colectaron de las litofacies arenosas asociadas a los conglomerados del elemento GB (Fig. 5.6). Las areniscas analizadas son de grano medio a grueso, moderada a pobremente clasificadas, con clastos angulares a subangulares, los cuales presentan contactos planares a cóncavos-convexos. Generalmente, los clastos se encuentran rodeados por una capa muy delgada de arcillas y minerales opacos que conforman la matriz. Esta presenta una abundancia menor al 15% en todas las muestras analizadas. Localmente se puede observar el desarrollo incipiente de pseudomatriz, la cual es generada por la deformación por compactación de líticos metasedimentarios de bajo grado poco competentes.

De acuerdo con el esquema de clasificación de Garzanti (2016), las muestras de la formación Cualac corresponden principalmente con areniscas lito-cuarzosas, cuarzo-líticas y cuarzosas (Fig. 6.1). En orden de abundancia decreciente, las areniscas analizadas de la formación Cualac están conformadas por: cuarzo mono- y policristalino (98.1–31.6%) y líticos (68.4–1.9%; Fig. 6.1A). El cuarzo presenta claras evidencias de recristalización y deformación cristal-plástica, como la extinción ondulada y la presencia de dominios de subgrano incipientes, lo que sugiere un origen metamórfico de muy bajo grado a bajo grado.

Figura 6.1 Diagramas ternarios que muestran la clasificación y diferenciación entre las unidades clásticas estudiadas. A) Diagrama ternario de Garzanti (2016), donde Qt: cuarzo total (cuarzo monocristalino + cuarzo policristalino), F: feldespatos, L: líticos. B) Líticos: Lm: líticos metamórficos, Lv: líticos volcánicos, Ls: líticos sedimentarios. C) Líticos metamórficos y volcánicos: Lmf: líticos metapsamíticos/metafelsíticos, Lmp: líticos metapelíticos, Lvf: líticos volcánicos felsíticos. D) Rangos metamórficos: R1: líticos metamórficos de Rango 1, R2–3: líticos metamórficos 2 a 3, R4: líticos metamórficos de Rango 5.

Los líticos son principalmente granos metamórficos (100–92.5% de los líticos totales) y, únicamente en las rocas recolectadas en el área de Tecomatlán, se pueden observar escasos fragmentos volcánicos (7.5–0%; Fig. 6.1B). Respecto a los líticos metamórficos, en la mayoría de las muestras dominan los metapelíticos (96.7–28% de los líticos metamórficos totales) sobre los metapsamíticos/metafelsíticos

(72–3.3%; Fig. 6.1C). Los líticos metapelíticos son principalmente fragmentos de pizarra y filita, y están conformados en su totalidad por micas y minerales arcillosos de diferente tamaño, dependiendo del rango metamórfico del lítico. Los líticos metapelíticos de rango metamórfico 2 presentan un clivaje continuo bien definido, el cual es expresado por la alineación de minerales arcillosos y la concentración de minerales insolubles a lo largo de superficies planas y paralelas (Fig. 6.2A). Estas superficies con concentraciones de minerales insolubles indican que la deformación ocurrió por el proceso de disolución por presión. Los fragmentos metapelíticos de rango metamórfico 3 muestran una esquistosidad continua incipiente definida por la cristalización de pequeñas hojuelas de mica blanca de tamaño de unas pocas decenas de micras (Fig. 6.2B). Los líticos metapelíticos de rango metamórfico 4 muestran una textura lepidoblástica definida por una esquistosidad continua bien definida, la cual es expresada por cristales bien desarrollados de mica blanca con un tamaño de varias decenas de micras (Fig. 6.2C).

Figura 6.2 Fotomicrografías de los granos metapelíticos de la formación Cualac. A) Lítico metapelítico de rango metamórfico 2 donde se muestra un clivaje continuo definido por superficies de disolución por presión (flechas amarillas) y por la alineación de minerales arcillosos. B) Lítico metapelítico de rango 3 con foliación continua bien definida por cristales de moscovita menores a 62 μ m. C) Lítico metapelítico metapelítico de rango 4 con foliación continua definida por cristales de moscovita mayores a 62 μ m.

Los líticos metapsamíticos/metafelsíticos están compuestos principalmente por cuarzo y filosilicatos, siendo estos últimos minerales arcillosos o mica blanca en diferente tamaño dependiendo del rango metamórfico de cada grano. Los líticos metapsamíticos/metafelsíticos de rango metamórfico 2 muestran una textura dominantemente granoblástica y presentan un clivaje espaciado definido por la alineación de minerales arcillosos con tamaño de varias decenas de micras (Fig. 6.3A). Presentan cristales de cuarzo que muestran extinción ondulada, sombras de presión y bordes planos adyacentes a superficies de disolución por presión, las cuales son puestas en evidencia por la concentración de minerales opacos (Fig. 6.3B). Los líticos metapsamíticos /metafelsíticos con rango metamórfico 3 típicamente tienen una textura granoblástica a grano-lepidoblástica y muestran una esquistosidad espaciada, la cual es definida por la alineación de pequeñas hojuelas de mica blanca de unas pocas decenas de micras (Fig. 6.3C) y, localmente, por la orientación preferencial de cristales alargados de cuarzo. Los líticos metapsamíticos/metafelsíticos de rango 4 muestran una textura granoblástica a grano-nematoblástica, y presentan una esquistosidad espaciada bien definida, la cual es expresada por la orientación preferencial de cristales bien desarrollados de mica blanca con tamaño de varias decenas de micras (Fig. 6.3D). Localmente, se observan cristales alargados de cuarzo con extinción ondulada y microestructuras de recristalización por rotación de subgrano (Fig. 6.3 E y F).

Los escasos líticos volcánicos en las muestras analizadas son exclusivamente de tipo felsítico. Muestran una textura porfídica con fenocristales de cuarzo en una matriz cuarzo-feldespática micro a criptocristalina, la cual localmente se encuentra sustituida por minerales arcillosos.

Adicionalmente al cuarzo, feldespato y líticos, en las muestras de la formación Cualac se observan algunos granos de minerales pesados como circón, rutilo, turmalina (0.7–0% de los componentes detríticos totales).

Figura 6.3 Fotomicrografías de los granos metapsamíticos/metafelsíticos de la formación Cualac. A) Lítico metapsamítico/metafelsítico de rango metamórfico 2 donde muestra una textura granoblástica y una foliación espaciada definida por la alineación de cristales de minerales arcillosos con tamaño >62.5 μ m. B) Lítico metapsamítico/metafelsítico de rango metamórfico 2 de donde se observan cristales de cuarzo con extinción ondulada y superficies de disolución por presión (flechas amarillas). C) Líticos metapsamítico /metafelsítico de rango metamórfico 2 con tamaño de pequeñas hojuelas >62.5 μ m de mica blanca. D) Lítico metapsamítico/metafelsítico de rango 4 con una foliación espaciada definida por la orientación preferencial de cristales bien desarrollados >62.5 μ m de moscovita. E y F) Líticos metapsamíticos /metafelsíticos 4 conformados por cuarzo con estructuras de recristalización por rotación de subgrano.

6.2 Grupo Tecocoyunca inferior

Para el grupo Tecocoyunca inferior, se seleccionaron 29 muestras de arenisca. Dichas muestras se colectaron de las litofacies arenosas de los elementos LA, DA, CS y FF. Las muestras analizadas son areniscas de grano medio, moderada a muy bien seleccionadas, con clastos subredondeados a muy redondeados y contactos planares y, localmente, cóncavos-convexos. La matriz no supera el 15% del volumen total de la roca y está compuesta por arcillas y minerales opacos.

Las muestras del grupo Tecocoyunca inferior corresponden con areniscas cuarzo-líticas a cuarzosas (Fig. 6.1A). En orden de abundancia decreciente, las muestras del grupo Tecocoyunca inferior están conformadas por: cuarzo mono- y policristalino (97.7–63.8%), líticos (36.2–2.3%) y feldespato (6.9–0%; Fig. 6.1A). El cuarzo muestra una textura granoblástica poligonal con juntas triples (Fig. 6.4A) y estructuras de recristalización por migración de borde grano (Fig. 6.4B), las cuales son típicas de rocas de alto grado metamórfico (>500 °C; Passchier y Trouw, 2005; Stipp et al., 2002). El cuarzo también muestra de manera abundante inclusiones de agujas de rutilo (Fig. 6.4C). El feldespato es subordinado a ausente en todas las muestras, dominando la plagioclasa (61.5–0% del feldespato total) sobre el feldespato potásico (38.5–0%). Algunos granos de feldespato potásico muestran una estructura mesopertítica (Fig. 6.4D).

Los líticos de las areniscas del grupo Tecocoyunca inferior son principalmente volcánicos (100–2.6% de los líticos totales; Figs. 6.1 B y C); sin embargo, algunas muestras presentan concentraciones más abundantes de líticos metamórficos (97.4–0% de los líticos totales; Fig. 6.1B). Los líticos volcánicos son exclusivamente de tipo felsítico y están caracterizados por una textura porfírica, con fenocristales de cuarzo, plagioclasa y feldespato potásico en una matriz microcristalina cuarzo-feldespática (Fig. 6.4E). Respecto a los líticos metamórficos, principalmente se observan líticos metapelíticos (84.6–0%) y, en menor medida, líticos metapsamíticos/metafelsíticos (62.1–0%; Fig. 6.1C). Los líticos metapelíticos y metapsamíticos/metafelsíticos en la formación Cualac, y corresponden principalmente a los rangos metamórficos 2 y 3, mientras que los líticos de rango metamórfico 4 son menos abundantes. Cabe mencionar que los granos de cuarzo de los fragmentos metapsamíticos/metafelsíticos no presentan inclusiones de rutilo.

Adicionalmente al cuarzo, feldespato y líticos, en las muestras del grupo Tecocoyunca inferior se observan algunos granos de minerales pesados como circón, rutilo, turmalina, epidota, apatito y ortopiroxeno (1.8–0% de los componentes detríticos totales; Fig. 6.4F).

Figura 6.4 Micrografías de areniscas de las areniscas del grupo Tecocoyunca inferior. A) Textura granoblástica poligonal en grano fanerítico policristalino. B) Grano fanerítico policristalino con microestructuras de migración de borde de grano. C) Cuarzo con inclusiones de agujas de rutilo (flechas rojas). D) Textura mesopertítica en grano individual de feldespato. E) Lítico volcánico felsítico con fenocristal de cuarzo. F) Grano de ortopiroxeno.
Capítulo 7. PETROGRAFÍA DE MINERALES PESADOS

Para el análisis de minerales pesados, se realizó el conteo de puntos de 29 láminas delgadas elaboradas a partir de los concentrados minerales extraídos de 21 muestras de la formación Cualac y 8 del grupo Tecocoyunca Inferior. En las figuras 5.2–5.6 se puede consultar la ubicación de cada muestra. Las categorías utilizadas para la petrografía de minerales pesados se muestran en la tabla 6.4, mientras que los resultados y parámetros recalculados se pueden consultar en las tablas 6.5 y 6.6.

Nomenclatura	Mineral
PP	Prehnita-Pumpelita
Ep	Epidota
Ap	Apatito
Z	Circón
Т	Turmalina
R	Rutilo
Q+iR	Cuarzo con inclusiones de rutilo
R+cT	Rutilo con corona de titanita

 Tabla 6.4 Categorías establecidas para el análisis cuantitativo de minerales pesados.

Tezoatlán														
Muestra	Unidad	P-P	Еp	Ap	Ζ	Т	R	Q+iR	R+cT	тот				
12C	Formación Cualac	0	272	0	29	83	30	0	0	414				
13C	Formación Cualac	0	92	0	90	126	79	0	0	387				
14C	Formación Cualac	0	24	0	107	246	70	0	0	447				
16C	Formación Cualac	0	118	0	90	95	81	0	0	384				
17C	Formación Cualac	0	94	0	46	153	133	0	0	426				
19C	Formación Cualac	0	222	0	28	86	65	0	0	401				
20C	Formación Cualac	0	79	0	21	289	120	0	0	509				
24C	Formación Cualac	0	112	0	104	130	109	0	0	455				
Tec-9-16-2	Grupo Tecocoyunca inf.	0	14	12	280	17	206	6	0	535				

	<u>Tlaxiaco</u>														
Muestra	Unidad P-P Ep Ap Z T R Q+iR														
MI-0318-1	Formación Cualac	12	52	13	386	17	77	0	0	557					
MI-0318-2	Formación Cualac	6	33	5	236	68	54	0	0	402					
TB-0817-1	Grupo Tecocoyunca inf.	1	11	27	151	9	342	5	0	546					
TB-0817-2	Grupo Tecocoyunca inf.	4	9	32	379	28	397	3	0	852					
TB-0817-3	-3 Grupo Tecocoyunca inf.		4	22	394	13	237	4	1	676					
TLA-013	Grupo Tecocoyunca inf.	0	6	17	390	6	143	0	0	562					

Olinalá													
Muestra	Unidad	P-P	Ep	Ap	Z	Т	R	Q+iR	R+cT	тот			
CU-01	Formación Cualac	5	27	4	287	23	105	0	0	451			
CU-02	Formación Cualac	2	31	4	138	9	204	0	0	388			
CU-03	Formación Cualac	3	21	5	190	24	198	0	0	441			
CU-04	Formación Cualac	1	15	2	203	52	135	0	0	408			
CU-05	Formación Cualac	0	6	10	588	12	73	0	0	689			
CU-06	Formación Cualac	0	8	5	9	10	98	0	0	130			
CU-07	Formación Cualac	0	13	11	432	11	44	1	0	512			
CU-08	Formación Cualac	0	7	14	484	8	61	1	0	575			
CU-09	Formación Cualac	0	11	18	663	14	127	1	0	834			
T-10	Formación Cualac	0	5	14	263	23	217	0	0	522			
T-11	Formación Cualac	0	0	8	388	12	71	1	0	480			
T-12	Grupo Tecocoyunca inf.	0	8	17	623	19	135	4	0	806			
T-13	Grupo Tecocoyunca inf.	0	10	15	136	23	296	11	0	491			
OL-0618-T3	Grupo Tecocoyunca inf.	0	18	41	556	4	92	0	0	711			

Tabla 6.5 Resultados del análisis cuantitativo de minerales pesados de las areniscas de la formación Cualac y grupo Tecocoyunca inferior.

Tezoatlán													
Muestra	Unidad	P-P%	Ep%	Ар%	Z%	Т%	R%	Q+iR%	R+cT%	ТОТ%			
12C	Formación Cualac	0.0	65.7	0.0	7.0	20.0	7.2	0.0	0.0	100.0			
13C	Formación Cualac	0.0	23.8	0.0	23.3	32.6	20.4	0.0	0.0	100.0			
14C	Formación Cualac	0.0	5.4	0.0	23.9	55.0	15.7	0.0	0.0	100.0			
16C	Formación Cualac	0.0	30.7	0.0	23.4	24.7	21.1	0.0	0.0	100.0			
17C	Formación Cualac	0.0	22.1	0.0	10.8	35.9	31.2	0.0	0.0	100.0			
19C	Formación Cualac	0.0	55.4	0.0	7.0	21.4	16.2	0.0	0.0	100.0			
20C	Formación Cualac	0.0	15.5	0.0	4.1	56.8	23.6	0.0	0.0	100.0			
24C	Formación Cualac	0.0	24.6	0.0	22.9	28.6	24.0	0.0	0.0	100.0			
Tec-9-16-2	Grupo Tecocoyunca inf.	0.0	2.6	2.2	52.3	3.2	38.5	1.1	0.0	100.0			

Tlaxiaco													
Muestra	Unidad	P-P%	Ер%	Ар%	Z%	Т%	R%	Q+iR%	R+cT%	ТОТ%			
MI-0318-1	Formación Cualac	2.2	9.3	2.3	69.3	3.1	13.8	0.0	0.0	100.0			
MI-0318-2	Formación Cualac	1.5	8.2	1.2	58.7	16.9	13.4	0.0	0.0	100.0			
TB-0817-1	Grupo Tecocoyunca inf.	0.2	2.0	4.9	27.7	1.6	62.6	0.9	0.0	100.0			
TB-0817-2	Grupo Tecocoyunca inf.	0.5	1.1	3.8	44.5	3.3	46.6	0.4	0.0	100.0			
TB-0817-3	Grupo Tecocoyunca inf.	0.1	0.6	3.3	58.3	1.9	35.1	0.6	0.1	100.0			
TLA-013	Grupo Tecocoyunca inf.	0.0	1.1	3.0	69.4	1.1	25.4	0.0	0.0	100.0			

<u>Olinalá</u>													
Muestra	Unidad	P-P%	Ep%	Ар%	Z%	Т%	R%	Q+iR%	R+cT%	ТОТ%			
CU-01	Formación Cualac	1.1	6.0	0.9	63.6	5.1	23.3	0.0	0.0	100.0			
CU-02	Formación Cualac	0.5	8.0	1.0	35.6	2.3	52.6	0.0	0.0	100.0			
CU-03	Formación Cualac	0.7	4.8	1.1	43.1	5.4	44.9	0.0	0.0	100.0			
CU-04	Formación Cualac	0.2	3.7	0.5	49.8	12.7	33.1	0.0	0.0	100.0			
CU-05	Formación Cualac	0.0	0.9	1.5	85.3	1.7	10.6	0.0	0.0	100.0			
CU-06	Formación Cualac	0.0	6.2	3.8	6.9	7.7	75.4	0.0	0.0	100.0			
CU-07	Formación Cualac	0.0	2.5	2.1	84.4	2.1	8.6	0.2	0.0	100.0			
CU-08	Formación Cualac	0.0	1.2	2.4	84.2	1.4	10.6	0.2	0.0	100.0			
CU-09	Formación Cualac	0.0	1.3	2.2	79.5	1.7	15.2	0.1	0.0	100.0			
T-10	Formación Cualac	0.0	1.0	2.7	50.4	4.4	41.6	0.0	0.0	100.0			
T-11	Formación Cualac	0.0	0.0	1.7	80.8	2.5	14.8	0.2	0.0	100.0			
T-12	Grupo Tecocoyunca inf.	0.0	1.0	2.1	77.3	2.4	16.7	0.5	0.0	100.0			
T-13	Grupo Tecocoyunca inf.	0.0	2.0	3.1	27.7	4.7	60.3	2.2	0.0	100.0			
OL-0618-T3	Grupo Tecocoyunca inf.	0.0	2.5	5.8	78.2	0.6	12.9	0.0	0.0	100.0			

Tabla 6.6. Parámetros recalculados para generar las gráficas de contenido de minerales pesados de la formación Cualac y el grupo Tecocoyunca inferior.

7.1 Formación Cualac

Las muestras de la formación Cualac presentan la siguiente asociación de minerales pesados: circón (85.3–4.1% del total de minerales pesados; Fig. 7.1 y 7.2A), rutilo (75.4–7.2%; Fig. 7.2B), epidota (65.7–0%; Fig. 7.2C), turmalina de color amarillo pálido y azul verdoso (56.8–1.4%; Fig. 7.2D), apatito (3.8–0%), minerales del grupo prehnita-pumpelita (2.2–0%) e inclusiones de rutilo en cristales de cuarzo (0.2–0%). Los cristales de cuarzo con inclusiones de rutilo únicamente se observaron en cantidades subordinadas en la parte estratigráficamente superior de la formación Cualac en el área de Olinalá.

Figura 7.1 Porcentajes de minerales pesados contenidos en la formación Cualac y el grupo Tecocoyunca inferior. La gráfica muestra los resultados de las muestras seleccionadas en cada área. La relación entre áreas es de este a oeste en el área de estudio, y para cada área las muestras están organizadas de acuerdo con los niveles estratigráficos de donde fueron colectadas. La localización de cada muestra se puede consultar en los mapas de las figuras 8, 9 y 11, o en las columnas estratigráficas de la figura 12A–E.

Figura 7.2 Minerales pesados representativos de la formación Cualac. A) Circón. B) Rutilo (Rt). C) Epidota. D) Turmalina (Tur).

7.2 Grupo Tecocoyunca inferior

Las muestras analizadas del grupo Tecocoyunca inferior muestran una asociación de minerales pesados compuesta por: circón (78.2–27.7%; Fig. 7.1 y 7.3A), rutilo (62.6–12.9%; Fig. 7.3B), apatito (5.8–2.1%), turmalina de color azul verdoso y café (4.7–0.6%; Fig. 7.3C), epidota (2.6–0.6%), inclusiones de rutilo en cristales de cuarzo (2.6–0%; Fig. 7.3D), minerales del grupo prehnita-pumpelita (0.5–0%) y rutilo con corona de titanita (0.1–0–%; Fig. 7.3E).

Figura 7.3 Minerales pesados pertenecientes al grupo Tecocoyunca inferior. A) Circón. B) Rutilo. C) Turmalina (Tur) y rutilo (Rt). D) Inclusiones de rutilo (Rt) en cristales de cuarzo (Qtz). E) Titanita (Ttn) formando una corona en un grano de rutilo (Rt).

Se seleccionaron doce muestras de arenisca de la formación Cualac y grupo Tecocoyunca inferior para el fechamiento U-Pb de granos de circón detrítico, con el objetivo de integrar estos datos con los resultados del análisis petrográfico y establecer la procedencia de estas unidades. El fechamiento U-Pb también permitirá determinar la edad máxima de depósito (EMD) de estas unidades, lo que ayudará a reconstruir la evolución tectono-sedimentaria de la Cuenca de Tlaxiaco dentro de un marco temporal absoluto. De las muestras seleccionadas, cinco pertenecen a la formación Cualac, una pertenece al conglomerado Peña Colorada, que ha sido correlacionado con la formación Cualac por Hernández-Vulpes y Rodríguez-Calderón (2012), y seis pertenecen al grupo Tecocoyunca inferior. La ubicación de las muestras se puede consultar en los mapas geológicos y los perfiles de litofacies del capítulo 5 (Figs. 5.2–5.6). Los resultados analíticos de los fechamientos son parte del Apéndice A.

8.1 Formación Cualac

Se seleccionaron cinco muestras de la formación Cualac, las cuales fueron colectadas en las áreas de Tlaxiaco (muestras MI-0318-3 y ÑU-0318-1), Tecomatlán (Tmt-0219-16) y Olinalá (T9 y CU-05b). Los resultados de estas muestras se integraron con los resultados de las muestras 13C y 23C de la formación Cualac reportadas para el área de Tezoatlán por Zepeda-Martínez et al. (2018).

Las muestras analizadas son areniscas cuarzosas a lítico-cuarzosas del elemento GB. Bajo el microscopio binocular estereoscópico se observaron circones con morfología esférica y subredondeada a euhedrales, estos últimos con una relación largo/ancho variable, llegando a ser de hasta 2:1. Los cristales son principalmente incoloros a rosados. En las imágenes de CL, se observa que los cristales presentan textura homogénea y, en algunos casos, bandas de zonación amplias y concéntricas alrededor de núcleos xenocrísticos. En menor medida, se presentan cristales con texturas irregulares o en parches. Los circones analizados muestran una relación de Th/U con valores mayores a 0.1 y texturas internas que confirman un origen magmático para ellos (Fig. 8.1; Rubatto, 2002; Corfu et al., 2003). Los circones que presentan bordes externos delgados con alta luminiscencia se han excluidos de este análisis isotópico, debido a que estos bordes podrían haber crecido durante un evento de recristalización tardía relacionada con un proceso metamórfico o un evento hidrotermal.

Figura 8.1 Gráficas de la relación Th/U contra edad (Ma) del total de circones analizados para las muestras MI-0318-3 y ÑU-0318-1 (Tlaxiaco), Tmt-0219-16 y Tmt-0219-19 (Tecomatlán), T-9 y CU05b (Olinalá).

Para cada muestra, se seleccionaron entre 87 y 97 cristales, los cuales presentan edades concordantes a ligeramente discordantes, con porcentajes de discordia de -4.9 a 11.7 (Apéndice A). Los resultados del fechamiento permiten definir los siguientes cuatro grupos de edad: 1) un grupo con edades del Mesoproterozoico–Neoproterozoico, más en detalle de ~1380 a ~870 Ma (58.9–27.8% de los circones totales analizados por muestra), 2) un grupo con edades del Neoproterozoico–Carbonífero, especificadamente en el rango de ~790–330 Ma (58.8–31.6%), 3) un grupo con edades paleoproterozoicas entre ~2770 y ~1770 Ma (8–0%) y 4) un grupo con edades mesoproterozoicas,

dentro del rango ~1640–1430 (4.1–0%; Fig. 8.2 A–G). La edad máxima de depósito (EDM) para las muestras 13C, 23C, ÑU-0318-1, Tmt-0219-16, T-9, CU-05b y MI-0318-3 y es de 190 (cuatro granos), 410 (tres granos), 460 (tres granos), 460 (cinco granos), 490 (tres granos), 490 (cuatro granos) y 530 Ma (diez granos), respectivamente (Fig. 8.2).

Figura 8.2 Gráfica de abundancia de circones de las muestras seleccionadas para el fechamiento U-Pb de la formación Cualac, EMD: Edad Máxima de Depósito, Media pond.: Media ponderada (2σ). La EMD para las muestras se calculó con base en la media ponderada del grupo de al menos tres circones con edades más jóvenes que se traslapan en 2σ, añadiendo el error de la media y redondeando al incremento de 10 my más próximo. Granos utilizados para el cálculo de la edad media ponderada para lsa muestras: A) 13C: Circón-123, Circón-106, Circón-113 y Circón-036_13c; B) 23C: Circón-194, Circón-207 y Circón-142; C) MI-0318-3: Circón-57, Circón-29, Circón-79, Circón-76, Circón-28, Circón-69, Circón-46, Circón-68, Circón-65 y Circón-62; D) ÑU-0318-1: 2_Zrn_98, 2_Zrn_24 y 2_Zrn_23; E) Tmt-0219-16: m16_Zrn-01, m16_Zrn-91, m16_Zrn-25, m16_Zrn-02 y m16_Zrn-5; F) T-9: Circón_87, Circón_59 y Circón_76; G) CU05b: Circon_14, Circon_29, Circon_57 y Circon_76.

- 109 -

En el área de Tecomatlán, se colectó una muestra en las cercanías de Peña Colorada (Muestra Tmt-0219-19; Fig. 5.4). Esta muestra pertenece al conglomerado Peña Colorada, el cual ha sido correlacionado tentativamente con la formación Cualac por Hernández-Vulpes y Rodríguez-Calderón (2012). Sin embargo, los depósitos conglomeráticos expuestos en Peña Colorada contienen abundantes clastos volcánicos, lo cual contrasta con la composición observada en las rocas de la formación Cualac. Por lo tanto, se colectó una muestra de la matriz arenosa del conglomerado Peña Colorada con el objetivo de verificar su posible correlación con la formación Cualac. A diferencia de las muestras descritas anteriormente, la muestra Tmt-0219-19 muestra tres grupos de edad principales en los rangos de ~1400–880, ~500–450 Ma y ~60–50 Ma (Fig. 8.3). La edad máxima de depósito para esta muestra es de ~460 Ma (cuatro granos; Fig. 8.3).

Figura 8.3 Gráfica de abundancia de circones de la muestra colectada en Peña Colorada para el fechamiento U-Pb, EMD: Edad Máxima de Depósito, Media pond.: Media ponderada (2σ) . La EMD para la muestra se calculó con base en la media ponderada del grupo cuatro circones con edades más jóvenes que se traslapan en 2σ , añadiendo el error de la media y redondeando al incremento de 10 my más próximo. Los granos utilizados para el cálculo de la media ponderada para la muestra son m14_Zrn-100, m14_Zrn-47, m14_Zrn-80 y m14_Zrn-39.

8.2 Grupo Tecocoyunca inferior

Se colectaron seis muestras del grupo Tecocoyunca inferior en las áreas de Tezoatlán (muestra Tec-0916-3), Tlaxiaco (TB-0817-2, TLA-013), Tecomatlán (Tmt-0219-13) y Olinalá (OL-0618-T3 y OL-1018-1). La ubicación de las muestras se puede consultar en las figuras 5.2–5.6, mientras que los resultados analíticos se pueden consultar en el Apéndice A.

Las muestras corresponden con areniscas cuarzosas a cuarzo-líticas de los elementos FF y CS. Bajo el microscopio binocular estereoscópico, se observaron circones incoloros a rosados con morfología muy esférica a euhedral, estos últimos con una relación largo/ancho variables y de hasta 2:1. Las imágenes de CL muestran que los cristales de circón presentan textura homogénea y con

zonaciones concéntricas alrededor de un núcleo xenocrístico, y en algunos casos presentan zonación irregular y en parches. Las texturas homogéneas y con zonación concéntrica son típicas de circones de origen magmático (Corfu et al., 2003), el cual es confirmado por los valores de Th/U superiores a 0.1 para los cristales analizados (Rubatto, 2002; Fig. 8.4).

Figura 8.4 Gráficas de la relación Th/U contra edad (Ma) del total de circones analizados para las muestras Tec-0916-3 (Tezoatlán), TB-0817-2 y TLA-013 (Tlaxiaco), Tmt-0219-13 (Tecomatlán), OL-0618-T3 y OL-1018-1 (Olinalá).

Se seleccionaron entre 83 y 97 cristales para cada muestra, los cuales presentan edades concordantes a ligeramente discordantes, con porcentajes de discordia que varían entre -4.8 a 11.9% (Apéndice A). En todas las muestras, los cristales de circón analizados muestran una distribución de edades muy parecida, la cual está caracterizado por los siguientes cinco grupos de edad: 1) un grupo

con edades del Mesoproterozoico–Neoproterozoico de ~1400–880 Ma (93.8–67.4% de los circones totales analizados por muestra), 2) un grupo con edades del Carbonífero–Triásico de ~300–240 Ma (21.9–6.2%), 3) un grupo con edades del Paleoproterozoico–Mesoproterozoico dentro del rango ~1700–1470 Ma (3.5–0%), 4) un grupo con edades del Neoproterozoico–Carbonífero, específicamente en el rango de ~670–350 Ma (6.5–1%), y 5) un grupo con edades del Jurásico Inferior—Jurásico Medio, específicamente en el rango de ~191–173 Ma (4.8–0%; Fig. 8.5).

La EMD para las muestras Tmt-0219-13, OL-1018-1, Tec-0916-3, TLA-013, TB-0817-2 y OL-0618-T3 son de 250 Ma (tres granos), 250 Ma (tres granos), 260 Ma (catorce granos), 260 Ma (siete granos), 270 Ma (cuatro granos) y 270 Ma (tres granos), respectivamente (Fig. 8.5).

Figura 8.5 Gráfica de abundancia de circones de las muestras seleccionadas para el fechamiento U-Pb del grupo Tecocoyunca inferior, EMD: Edad Máxima de Depósito, Media pond.: Media ponderada (2σ). La EMD para las muestras se calculó con base en la media ponderada del grupo de al menos tres circones con edades más jóvenes que se traslapan en 2σ, añadiendo el error de la media y redondeando al incremento de 10 my más próximo. Los granos utilizados para el cálculo de la media ponderada para las muestras son: A) Tec-0916-3: Circón_78, Circón_10, Circón_56, Circón_97, Circón_59, Circón_96, Circón_16, Circón_03, Circón_66, Circón_77, Circón_20, Circón_14, Circón_76 y Circón_95; B) TB-0817-2: Circón_29, Circón_44, Circón_35 y Circón_61; C) TLA-013: Circón-51, Circón-03, Circón-46, Circón-52, Circón-93, Circón-64 y Circón-25; D) Tmt-0219-13: m13_Zrn-83, m13_Zrn-04 y m13_Zrn-12; E) OL-0618T3: Circón-52, Circón-42 y Circón-36; F) OL-1018-1: 1_Zrn_24, 1_Zrn_34 y 1_Zrn_53.

En el mapa MDS, las muestras analizadas definen dos grupos diferentes, uno definido por las edades de las muestras de la formación Cualac y otro grupo definido por las edades de las muestras del grupo Tecocoyunca inferior (Fig. 8.6). El mapa MDS muestra únicamente distancias de primer orden sólo entre las edades de las areniscas que pertenecen a la misma unidad (Fig. 8.6).

Figura 8.6 Diagrama de escalamiento multidimensional que muestra dos grupos diferentes donde se observan las relaciones y distancias de primer orden entre las edades U-Pb de circones de muestras de la formación Cualac y entre las muestras del grupo Tecocoyunca inferior.

Capítulo 9. TERMOCRONOLOGÍA DE BAJA TEMPERATURA Y MODELADO TÉRMICO

Con el objetivo de reconstruir la historia térmica de los altos estructurales que bordeaban la cuenca de Tlaxiaco en el Jurásico Inferior y Medio, se muestrearon rocas de los terrenos de basamento de las áreas estudiadas, con el fin de realizar su fechamiento por trazas de fisión en cristales de apatito (TFA). El reconocimiento de los eventos térmicos mayores que afectaron a estas rocas y la integración de estos datos con los datos estratigráficos y geocronológicos del área permitirán reconstruir la evolución tectono-sedimentaria de la cuenca de Tlaxiaco e individualizar las fallas mayores que influenciaron dicha evolución. El proyecto inicialmente incluía también el fechamiento de circón por el método (U-Th)/He, con el fin de integrar los datos al modelo térmico de las rocas de basamento del sur de México y constreñir la historia térmica de los bloques de basamento limítrofes a la cuenca. Desafortunadamente, debido a las condiciones de contingencia sanitaria derivada de la pandemia de COVID-19 no fue posible concluir estos análisis.

Se seleccionaron un total de 14 muestras para su fechamiento por TFA. El muestreo se realizó de manera sistemática a lo largo de dos secciones: 1) una sección con orientación NW-SE, al norte del área de estudio, desde el noroeste de Axutla (Puebla) hasta el norte de Tezoatlán (Oaxaca), a lo largo de la cual se colectaron 7 muestras de rocas metamórficas en facies de esquistos verdes del Complejo Acatlán (Fig. Fig. 9.1); 2) una sección con orientación E-W, al este del área de estudio, desde El Cortijo a Huitzo (Oaxaca), a lo largo de la cual se colectaron 7 muestras de rocas metamórficas en facies de rocas metamórficas en facies de estudio, desde El Cortijo a Huitzo (Oaxaca), a lo largo de la cual se colectaron 7 muestras de rocas metamórficas en facies de granulita del Complejo Oaxaqueño (Fig. 9.1). Para el fechamiento por TFA se utilizó el Método de Detector Externo (MDE). La metodología de preparación de muestras y conteo de trazas de fisión es descrita con detalle en el capítulo 4.

	Complejo Oaxaqueño													
Muestra	Coordenadas	Litología	TFA-MDE											
CTJ1	17° 19.805'N; 97° 7.238'O	Charnokita	\checkmark											
CTJ2	17° 19.597'N; 97° 7.128'O	Charnokita	\checkmark											
JY5	17° 16.160'N; 97° 4.205'O	Pegmatita cuarzo-feldespática	\checkmark											
COR9	17° 16.552'N; 96° 58.683'O	Ortogneiss máfico	\checkmark											
COR10	17° 16.542'N; 96° 58.712'O	Ortogneiss máfico	\checkmark											
ANOR14	17° 16.853'N; 96° 56.765'O	Meta-norita	\checkmark											
ETL11	17° 15.777'N; 96° 53.933'O	Granitoide	\checkmark											

	Complejo Acatlán													
Muestra	Coordenadas	Litología	TFA-MDE											
MEX3	18° 15.466'N; 98° 25.763'O	Metapsamita												
PX1	18° 13.613'N; 98° 14.718'O	Ortogneiss félsico	\checkmark											
PX3	18° 13.618'N; 98° 14.763'O	Ortogneiss félsico	\checkmark											
CHI1	18° 11.478'N; 98° 16.143'O	Metapsamita	\checkmark											
COSO1	17° 46.290'N; 98° 1.014'O	Metapsamita	\checkmark											
COSO3	17° 46.984'N; 98° 0.190'O	Metapsamita												
SD YOLO2	17° 48.570'N; 97° 56.253'O	Ortogneiss félsico												

Tabla 9.1 Ubicación y litología de las muestras	colectadas para	su fechamiento	por trazas de	fisión en	apatitos
(TFA) y muestras seleccionadas para TFA con e	l Método de De	tector Externo (MDE).		

El MDE de TFA requiere la determinación del factor ζ (zeta) a través del fechamiento de diversos estándares de apatito y sus dosímetros de vidrio asociados, ambos irradiados en diferentes sesiones. Para este trabajo, la calibración se llevó a cabo mediante el conteo de 8 estándares de apatito (apatito Durango y Fish Canyon Tuff) y sus pares de dosímetros de vidrio correspondientes (CN-5). De esta manera, se tiene un valor medio del factor ζ de 337.37±29.59 para la autora de este trabajo y -116 - de 400.3±7.1 para la Dra. Maria Laura Balestrieri del Instituto de Geociencias y Recursos de la Tierra del Consejo Nacional de Investigación de Italia, sede Florencia, quien supervisó este análisis.

Figura 9.1 Mapa geológico del sur de México donde se muestra la localización de las muestras colectadas para su fechamiento por el método de trazas de fisión en apatito y la muestra fechada por trazas de fisión en titanita por Abdullin et al., 2020. Modificado de Martini et al., 2020.

De las muestras colectadas, 11 pudieron ser fechadas por TFA mediante el MDE (Tabla 9.1) y, debido al poco contenido de cristales de apatito, las muestras MEX3, COSO3 y SD YOLO2 no pudieron fecharse por este método. Las muestras CTJ1, CTJ2, JY5, COR9, COR10, ANOR12 y ETL11 del Complejo Oaxaqueño muestran edades centrales de ~84, ~55, ~170, ~64, ~66, ~76 y ~200 Ma, respectivamente (Tabla 9.2). Para cada muestra se analizaron de 18 a 29 granos de apatito. Las muestras CTJ1, JY5 y COR9 muestran TINT's con longitudes entre 11.6 a 12.7 μ m. El resto de las muestras poseen valores muy bajos de U, por lo que no fue posible medir TINT's y, por lo tanto, no fueron medidos sus respectivos parámetros Dpar. Las muestras JY5, COR10, ANOR14 y ETL11 muestran valores mayores a 5% de P(χ 2), mientras que las muestras COR9, CTJ1 y CTJ2 presentan valores menores a 5%.

Las muestras PX1, PX3, CHI1 y COSO1 del Complejo Acatlán muestran edades centrales de ~74, ~89, ~44 y ~38 Ma, respectivamente (Tabla 9.2). Para cada muestra se analizaron de 20 a 27 granos, se midieron el mayor número posible de TINT's y *etch pits* paralelos al eje-c cada cristal para poder calcular el parámetro Dpar. Las muestras del Complejo Acatlán muestran longitudes de trazas confinadas entre 10.8 a 13.02 µm y Dpar de 2.0 µm. Las muestras CHI1 y COSO1 presentan un bajo contenido de U, por lo tanto, presentan un número muy reducido de trazas confinadas o son totalmente ausentes. Las muestras PX1 muestra valores mayores a 5% de P(χ 2), mientras que las muestras PX3, CHI1 y COSO1 presentan valores menores a 5%.

	Muestra	ρ _d x10 ⁵ (cm ⁻²)	n _d	ρ _s x10 ⁵ (cm ⁻²)	ns	ρ _i x10 ⁵ (cm ⁻²)	n _i	n _g	P(χ ²) %	Edad Central±1σ (Ma)	U (µg/g)	MTL±se (µm)	St.dev.	N TINTs	Dpar (µm) (n)	St.dev
•	CTJ1*	8.4	3309	8.3	895	14.6	1572	27	<1	84.0±5.7	20.4	11.6±0.4	2.2	27		-
leñ	CTJ2*	8.5	3322	12.6	1080	35.3	3014	27	<1	55.5±3.7	47.6	-	-	-	-	-
axaqı	JY5	6.8	2734	13.7	566	8.9	372	19	13.0	$170.3{\pm}19.1$	15.8	12.3 ±0.3	1.4	19	2.1 (155)	0.3
0	COR9*	8.6	3361	11.1	905	29.4	2404	29	3.6	64.4±3.4	45.1	12.7±0.2	1.1	37	-	-
mplejc	COR10*	8.6	3374	1.2	151	3.1	389	29	53.1	66.4±6.9	4.1	-	-	-	-	-
	ANOR14	8.5	3335	1.0	145	1.9	285	21	26.8	76.5±8.9	2.6	-	-	-	-	-
Col	ETL11*	8.5	3348	2.5	205	2.13	175	18	22.6	199.9±23.8	3.0	-	-	-	-	-
atlán	PX1	6.8	2733	23.9	1075	37.1	1671	20	86.0	73.7±7.2	64.1	10.8±0.2	2.3	105	2.0 (492)	0.2
omplejo Acat	PX3	6.8	2732	17.8	1203	23.5	1584	20	<1	$\textbf{88.6}{\pm}~\textbf{10.1}$	39.3	11.9±0.2	1.8	98	2.0 (471)	0.2
	CHI1	6.8	2733	5.8	357	15.9	989	20	<1	43.9±5.6	24.5	13.02 ±0.5	1.2	7	2.0 (107)	0.2
Ŭ	COSO1*	8.9	3476	1.1	144	4.5	569	27	2.1	38.2±6.4	8.1	-	-	-	-	-

Tabla 9.2 Resultados del fechamiento de muestras de los complejos Oaxaqueño y Acatlán por TFA. Las edades fueron determinadas por medio del método de detector externo usando el valor zeta para el dosímetro CN5 $\zeta = 337.36 \pm 29.59$ (Mildred Zepeda) and $\zeta = 400.3\pm7.1$ *(Dra. Maria Laura Balestrieri) referido a los estándares de apatito *Fish Canyon Tuff* y *Durango* (Hurford, 1990a, b). ρ_d , ρ_i : densidades de trazas estándar e inducidas medidas en los detectores externos, ρ_s : densidad de trazas espontáneas en las superficies internas de los minerales, las densidades de las trazas se expresan en 10⁵ trazas cm⁻²; n_d, n_i y n_s: número de trazas en los detectores externos y en las superficies minerales; ng: número de granos minerales contados; P($\chi 2$): ($\chi 2$) prueba estadística (Galbraith, 1981); la edad central se calculó usando el programa TRACKKEY (Dunkl, 2002); MTL: longitud media de la distribución de las trazas confinadas \pm error standard (se): n: número de longitudes medidas, sólo se midieron TINTs (trazas alcanzadas por el ataque químico porque interceptan la superficie de una traza, Bhandari et al., 1971) como lo sugiere Ketcham (2005); Dpar: media del diámetro de los *etch pits* paralelos al eje-c.

La prueba estadística $P(\chi 2)$ es usada para definir la probabilidad de que todos los granos analizados pertenecen a una sola población de edades (Galbraith, 1981). Por lo tanto, las muestras PX3, CHI1, COSO1, COR9, CTJ1 y CTJ2 muestran $P(\chi 2)$ menor a 5% debido a una dispersión asimétrica de sus edades, posiblemente debido a una historia compleja dentro de la zona de retención parcial no permitió un reinicio total del sistema isotópico de algunos cristales de apatito.

A pesar de que la muestra ETL11 muestra una edad central de 199.9±23.8 Ma, la cual podría de ser de gran interés para los objetivos de este trabajo, no fue posible realizar un modelado térmico debido a la ausencia de trazas confinadas en los granos de apatito. Por lo tanto, para el modelado térmico se utilizó la muestra JY5 del Complejo Oaxaqueño, la cual presenta una edad central de 170.3± 19.1 Ma y un número reducido de trazas confinadas medidas (19 trazas TINTs; Fig. 9.2A), posiblemente debido a su bajo contenido de U. De acuerdo con la literatura, las rocas metamórficas del Complejo Oaxaqueño fueron sometidas a condiciones de presión y temperatura correspondientes a facies de granulita a los ~990 Ma (Solari et al., 2014). Esta edad contrasta significativamente con la edad central de la muestra obtenida a partir de TFA (~170 Ma) y con las edades de granos individuales (< 305 Ma; Figura 9.2A), por lo que se puede afirmar con seguridad que los apatitos analizados fueron parcial o totalmente reseteados al menos una vez en su historia térmica. Por lo tanto, a pesar de tener pocos datos de las longitudes de las trazas confinadas en la muestra JY5, es posible realizar un modelo térmico tentativo de la muestra JY5 del Complejo Oaxaqueño con el software HeFTy (Ketcham, 2007).

De acuerdo con la edad de ~235 Ma obtenida por trazas de fisión en cristales de titanitas de una muestra del Complejo Oaxaqueño, Abdullin et al. (2020) proponen un evento de enfriamiento rápido para estas rocas (310-260°C) entre el Ladínico tardío–Cárnico temprano. La muestra analizada por Abdullin et al. (2020) se encuentra localizada a 7 km al noreste de la muestra JY5 y con una diferencia de altitud de ~350 m (Fig. 9.1). Por lo tanto, en el modelo térmico se constriñe que las rocas del Complejo Oaxaqueño tuvieron que rebasar la zona de borrado parcial de TFA (60-120°C; Donelick , 2005) entre ~242 y ~227 Ma. Considerando que la sucesión clástica estudiada en este trabajo se encuentra sobreyaciendo a las rocas volcánicas de edad ~177 Ma, la rocas del grupo Tecocoyunca inferior presentan un grupo de circones con edades entre ~179 y ~173 Ma, y la edad central por TFA de la muestra JY5 es de ~170 Ma, el modelo térmico puede constreñirse con estas edades en un rango de temperatura menor a la zona de retención parcial.

Los resultados del modelado térmico indican una edad modelo de 170 Ma y una distribución de las longitudes de trazas unimodal con una media de ~12.7 μ m (Fig. 9.2B). Esta longitud media y la distribución de trazas indican un evento de enfriamiento rápido. De acuerdo con el modelo

calculado, la edad del evento de enfriamiento se constriñe entre ~240 y ~160 Ma (Fig. 9.2C). Este evento de enfriamiento presumiblemente ocurrió durante diferentes episodios de levantamiento, de acuerdo con las trayectorias con un ajuste bueno agrupadas en el campo rosa del modelo térmico y por el mejor ajuste de trayectoria térmica (Fig. 9.2). Adicionalmente, se pueden identificar dos episodios de enfriamiento de edades más jóvenes: 1) un evento de enfriamiento lento de 160 a 60 Ma, y 2) otro evento de enfriamiento rápido entre 60 a 20 Ma.

Figura 9.2 Modelo térmico de la muestra JY5 del Complejo Oaxaqueño. A) Gráfica de edad (Ma) y longitud de trazas confinadas (μ m) contra el parámetro Dpar (μ m), las barras corresponden con el error de 1 σ . B) Histograma de la longitud de las trazas confinadas, el cual muestra la distribución de la longitud de las trazas medidas, la línea verde representa los datos utilizados para el cálculo de la historia térmica más probable. C) Historia térmica tiempo-temperatura; el área morada agrupa las trayectorias que presenta un ajuste bueno, mientras que el área verde muestra el grupo de trayectorias con ajuste aceptable. La línea azul indica la trayectoria media, el cual describe el promedio de las trayectorias con base el valor GOF (*Goodness of fit*) de todas las trayectorias buenas y aceptables del modelo.

10.1Ambientes de depósito

10.1.1 Formación Cualac

La formación Cualac está conformada principalmente por el elemento arquitectónico GB, que, localmente, están interestratificado con el elemento SG. El elemento GB corresponde con el depósito de barras de grava que se depositan en la parte interna de canales fluviales (Miall, 2006; Fig. 10.1), produciendo la separación y bifurcación de la corriente de agua (Fig. 10.1). Estas barras se forman por acreción en la dirección del flujo principal (Hein y Walker, 1977) y pueden ser transversales o longitudinales, dependiendo de su orientación con respecto a la elongación del canal (Fig. 10.1). Por otro lado, el elemento SG representa el depósito de flujos de detritos. Estos depósitos se forman por inestabilidad gravitacional a lo largo de una pendiente y se acomodan de manera pasiva sobre la topografía existente sin generar erosión (Miall, 2006). Inmediatamente después de su depósito, el elemento SG puede ser surcado por nuevos canales fluviales (Fig. 10.1). Típicamente, el elemento SG se deposita en zonas tectónicamente activas, donde el rejuvenecimiento progresivo del relieve genera una topografía con pendientes abruptas (Miall, 2006; Reading, 1996).

Figura 10.1 Modelo de la sección de un canal fluvial donde se observan los cambios verticales y laterales del depósito de los elementos GB y SG, así como las asociaciones de litofacies para cada uno. Las barras fluviales dibujadas con línea discontinua indican que su cima se encuentra por debajo del nivel del agua, mientras que las barras fluviales dibujadas con línea continua indica que su cima sobresale del nivel del agua. Modificado de Miall, 2006.

Los elementos arquitectónicos GB y SG se presentan típicamente en ambientes fluviales de alta energía, caracterizados por pendientes abruptas y canales inestables, como son los ríos trenzados y los abanicos aluviales (Miall, 2006; Fig. 10.2). La evolución de estos ambientes fluviales está controlada por la alternancia cíclica entre una temporada de alta energía (o de nivel de agua alta) y la sucesiva temporada de estiaje (o nivel de agua baja). Dicha alternancia se ve reflejada en el apilamiento de cuerpos lentiformes del elemento GB, los cuales presentan base erosiva y tendencia grano-decreciente. La variación cíclica en la energía de la corriente produce la erosión de las barras fluviales generadas durante los eventos de depósito previos, lo que ocasiona que los canales migren lateralmente y, por lo tanto, estos ambientes fluviales típicamente presentan un drenaje con canales altamente inestables.

La diferencia entre un abanico aluvial y un río trenzado radica en sus características morfológicas. Un abanico aluvial se caracteriza por presentar una red de canales distributivos con una geometría cónica y radial (Reading, 1996; Miall, 2006). Esta geometría se debe a la pérdida de velocidad del flujo de un río debido a que pasa desde los drenajes montañosos y confinados a un valle amplio y no confinado, provocando así la expansión del mismo flujo y el depósito en forma cónica en el margen de una cuenca (Bull, 1964; Bates y Jackson, 1987; Meek et al., 2020). Por otro lado, un río trenzado corresponde con un sistema contributivo que escurre de manera longitudinal dentro de un valle (Weissmann et al., 2010; Zhang et al., 2020). Consecuentemente, para discriminar entre un abanico aluvial y un río trenzado es necesario llevar a cabo un análisis de paleocorrientes.

La formación Cualac presenta exposiciones discontinuas en el área de estudio, lo cual no permite en todos lados una reconstrucción exhaustiva y detallada del patrón de paleocorrientes a escala regional. Sin embargo, los datos de paleocorrientes medidos en las exposiciones de la formación Cualac muestran un ángulo de dispersión de ~230° en las áreas de Tezoatlán y Olinalá, mientras que, para el área de Tlaxiaco, se puede observar un ángulo de dispersión de ~150°. Consecuentemente, se interpreta que el registro estratigráfico de la formación Cualac representa el depósito de un sistema de abanicos aluviales, así como fue propuesto originalmente de manera tentativa por Morán-Zenteno et al. (1993). No se excluye la posibilidad de que al menos las facies más distales de estos abanicos puedan cambiar transicionalmente a ríos trenzados (Fig. 10.2).

Figura 10.2 Modelo sedimentario donde se muestra la geometría de un abanico aluvial, cuyo drenaje puede cambiar progresivamente a un río trenzado. Estos sistemas fluviales se desarrollan típicamente en ambientes tectónicamente activos.

En la formación Cualac se observa la disminución progresiva del espesor de los estratos (tendencia estrato-decreciente) y el aumento en la abundancia de litofacies arenosas (tendencia granodecreciente) en el elemento GB hacia la parte superior de la unidad. Las tendencias sedimentarias documentadas en la formación Cualac son acompañadas también por una variación importante en el grado de preservación de la superficie superior de depósito del elemento GB. En efecto, en la parte inferior de la formación Cualac, el elemento GB siempre es cortado superiormente por una superficie erosiva de cuarto orden que representa la base del elemento GB sobreyacente, mientras que, hacia la cima de esta unidad, el contacto superior del elemento GB es siempre transicional con las facies finas del elemento FF. Por lo tanto, se observa un decremento de la actividad erosiva hacia la parte superior de la formación Cualac. Estas tendencias sedimentarias sugieren que los depósitos proximales de abanicos de la parte inferior de la formación Cualac fueron sepultados progresivamente por depósitos progresivamente más distales (Fig. 10.3). Esto sugiere el retroceso progresivo en el tiempo de los abanicos de la formación Cualac (Fig. 10.3).

Figura 10.3 Esquema donde se muestra la evolución de un abanico retrogradante. A) Depósito de los elementos GB y SG de facies proximales de un abanico aluvial (rectángulo rojo), la erosión continua de los canales produce un arreglo de canales amalgamados. B) Debido al retroceso del abanico aluvial, las facies proximales son sepultadas progresivamente por facies más distales (rectángulo rojo). Los canales serán desactivados y sepultados por el elemento GB del elemento FF, dando como resultado un arreglo de canales aislados.

10.1.2 Grupo Tecocoyunca inferior

El grupo Tecocoyunca inferior está dominado por los elementos arquitectónicos FF y CS que están localmente interestratificados con los elementos LA y, subordinadamente, con el elemento DA. El elemento LA representa la clásica barra de meandro descrita por Allen (1970), la cual es típica de los ríos meándricos (Miall, 2006). A pesar de que las barras de meandro pueden diferir en algunos detalles, sus características generales se apegan al modelo clásico propuesto por Allen (1970). Este modelo se basa en el supuesto que la corriente en un río meándrico presenta una dinámica helicoidal (Einstein, 1926), la cual permite que los bordes exteriores de los meandros sean predominantemente lugares de erosión y los bordes interiores sean sitios de acumulación de sedimentos (van Bendegom, 1947; Sundborg, 1956 en Reading, 1996; Fig. 10.4B). A medida que el borde externo del meandro se erosiona, el sedimento se deposita en el lado interno, donde se acrecionará formando un depósito clinoforme que, de base a cima, se conforma de sedimentos con un arreglo grano-decreciente y con estructuras primarias que indican una disminución progresiva de energía desde la parte más profunda del canal hasta la más somera. La continua acreción lateral de estos sedimentos dará como resultado el apilamiento de clinoformes, los cuales conforman una barra de meandro (Miall. 2006; Fig. 10.4B). La característica más peculiar de la barra de meandro es que la acreción de sedimento ocurre lateralmente a la dirección principal de la corriente fluvial.

Por otro lado, el elemento DA representa barras arenosas internas al canal, las cuales se forman, en este caso, por acreción frontal de sedimento en la dirección de la corriente fluvial (Miall, 2006; Fig. 10.4A). Debido a que se forman internamente al canal, estas barras producen típicamente bifurcaciones de la corriente fluvial y son típicas de los ríos trenzados con lecho arenoso (Miall, 2006). La coexistencia de los elementos LA y DA es típica de los ríos de tipo *wandering*, los cuales representan una categoría con características intermedias entre los sistemas fluviales trenzados y los meandricos (Church, 1983; Miall, 2006; Fig. 10.4A).

Figura 10.4 A) Modelo de depósito para los elementos arquitectónicos LA, FF, DA y CS. Modificado de Miall, 2006. B) Sección transversal del elemento LA.

Estos tipos de ríos presentan un alto grado de sinuosidad, comparable con la de los ríos meándricos, y muestran localmente bifurcaciones de la corriente alrededor de barras que se han desarrollado internamente en el canal principal, así como en las corrientes trenzadas (Fig. 10.5). Las condiciones bajo las cuales se desarrollan estos tipos de ríos son intermedias entre las que favorecen el desarrollo de un sistema trenzado y uno meándrico, es decir, pendientes no tan acentuadas, una descarga poco variable en el tiempo y una estabilidad moderada de las paredes de los canales (Miall, 2006).

Figura 10.5 Fotografía satelital de un segmento del río Athabasca, en Canadá, donde se observa una alta sinuosidad y también birfurcación de su corriente principal por la presencia de depósitos del elemento arquitectónico DA. También se observa el depósito del elemento LA en el interior de los meandros. Fotografía tomada de Google Earth.

El elemento FF corresponde con el depósito de desborde e inundación de las zonas aledañas a los canales principales de un sistema fluvial o al relleno de canales que se encuentran en proceso de ser abandonados (Miall, 2006). Por otro lado, el elemento CS representa el depósito de cuerpos sedimentarios con geometrías de abanico producidos por la ruptura de los diques naturales que bordean al río durante eventos episódicos de desborde e inundación de las llanuras aledañas (Miall, 2006). Por ende, los elementos FF y CS son típicos de zonas de llanura de inundación (Fig. 10.4A). Dentro de este escenario, la litofacies de carbón representa el depósito en zonas de pantano, en las cuales se verifica una rápida acumulación de material orgánico vegetal bajo condiciones climáticas húmedas (Makaske, 2001; Miall, 2006).

De acuerdo con el conjunto de elementos arquitectónicos reconocidos, se interpreta que el grupo Tecocoyunca inferior represente el registro estratigráfico de un río de tipo *wandering*, al cual le asignamos por primera vez el nombre de río Tlaxiaco, y de las zonas aledañas caracterizadas por el desarrollo de llanuras de inundación. De acuerdo con el espesor de las barras de mayor tamaño, se puede inferir que el río Tlaxiaco tuvo una profundidad de ~11 m. Un ejemplo de un río actual con estas dimensiones es el río Sena, en Francia, el cual tiene una longitud de casi ~360 km, una profundidad media de ~9.5 m y una profundidad máxima de ~11 m. En las partes más distales, el ancho del canal alcanza un ancho de hasta ~200 m y la longitud de onda de los meandros es de ~10

km (Fig. 10.6). Por lo tanto, el río Tlaxiaco se puede plantear como un río con dimensiones comparables con el río Siena.

Figura 10.6 Imagen satelital de un sector del río Siena, en Francia, el cual es un ejemplo actual de las dimensiones que el río Tlaxiaco pudo haber tenido. A) Mapa donde se muestra la ubicación del río Siena y la longitud total de ~360 km. B) Fotografía satelital de un sector del río Siena, donde se observa que los meandros pueden alcanzar hasta los ~10 km. Fotografía tomada de Google Earth.

10.2 Procedencia

Los datos obtenidos en este trabajo indican que la formación Cualac y el grupo Tecocoyunca inferior fueron derivadas de fuentes diferentes. A continuación, se describen las principales fuentes de cada unidad, integrando los datos petrográficos de roca total, el análisis de minerales pesados y los datos geocronológicos U-Pb en circón detrítico.

10.2.1 Formación Cualac

La composición de los líticos indica que la formación Cualac fue derivada principalmente de rocas metapelíticas y metapsamíticas/metafelsíticas (Fig. 6.1). Las microestructuras de disolución por presión, así como las de recristalización por rotación de subgrano, sugieren que el grado metamórfico de las rocas fuente haya variado entre la facies de esquistos verde a la de sub-esquistos verdes (Stipp et al., 2002; Martini et al., 2020). La naturaleza y el tamaño de grano de los filosilicatos de los fragmentos metamórficos soportan dicha interpretación (Garzanti y Vezzoli, 2003).

Las direcciones de las paleocorrientes indican que esta fuente de bajo grado metamórfico estaba localizada al noreste y noroeste de las áreas de estudio (Fig. 5.1). Inmediatamente al norte de las áreas de estudio, se encuentran expuestas metapelitas y metapsamitas en facies de esquistos verdes a sub-esquistos verdes del Complejo Acatlán, las cuales corresponden con el ensamble de *rift*-margen pasivo del Cámbrico-Silúrico (Ortega-Gutiérrez et al., 2018; Fig. 5.1).

El análisis petrográfico permitió determinar que la formación Cualac presenta una asociación de minerales pesados conformada por circón, rutilo, epidota, turmalina de color amarillo pálido y azul verdoso, apatito, minerales del grupo prehnita-pumpelita e inclusiones de rutilo en cristales de cuarzo. Dicha asociación de minerales pesados coincide con la reportada para las metapelitas y metapsamitas del ensamble del Cámbrico-Silúrico del Complejo Acatlán (Ortega-Gutiérrez et al., 2018; Zepeda-Martínez et al., 2018; Martini et al., 2020). Esta clara similitud en la asociación de minerales pesados sugiere una conexión sedimentaria directa entre las rocas el ensamble del Cámbrico-Silúrico del Complejo Acatlán y las de la formación Cualac; por lo tanto, esta similitud confirma la hipótesis de procedencia formulada a partir de los datos de paleocorrientes y composición de roca total. El cuarzo con inclusiones de rutilo es típico de las rocas de alto grado del Complejo Oaxaqueño (Ortega-Gutiérrez et al., 2018). En el Complejo Acatlán, el cuarzo con inclusiones de rutilo se ha documentado solo localmente en algunas rocas metasedimentarias de muy bajo grado en las cercanías del poblado de Patlanoaya (Sánchez-Zavala et al., 2004), el cual está ~30 km al norte de la falla de Axutla. Los muy escasos granos de cuarzo con inclusiones de rutilo (4 granos) que se encontraron únicamente en las muestras CU-07, CU-08, CU-09 y T-11 recolectada en el área de Olinalá podrían proceder de las rocas metasedimentarias del área de Patlanoaya.

Entre los minerales pesados más abundantes de la formación Cualac está la turmalina, la cual presenta colores amarillo pálido, azul verdoso y café. En la literatura se ha documentado que las rocas metasedimentarias y los metagranitoides del Complejo Acatlán expuestos al norte de las áreas de estudio presentan abundantemente turmalina, en específico de la variedad composicional schorl-dravita (Ortega-Gutiérrez, 1999; Reyes-Salas, 2003; Zepeda-Martínez et al., 2018; Martini et al., 2020). Con base en esta consideración, tanto las rocas metasedimentarias como los metagranitoides expuestos al norte del área de estudio son fuentes potenciales para las rocas de la formación Cualac. Considerando que los metagranitoides son rocas faneríticas cuarzo-feldespáticas (Ortega-Gutiérrez, 1999), y que la formación Cualac es compuesta en gran abundancia por líticos, los cuales por definición son fragmentos de rocas afaníticas, se sugiere que los metagranitoides no representan una fuente importante para las rocas de la formación Cualac y que, presumiblemente, la fuente mayor corresponde con las rocas metasedimentarias.

Al norte de las áreas de estudio, además de las rocas metasedimentarias y metagranitoides de bajo grado, el Complejo Acatlán consiste también de rocas metamórficas de alta presión (Ortega-Gutiérez et al., 2018). Sin embargo, en las rocas de la formación Cualac no se presentan asociaciones de minerales que indiquen dichas condiciones metamórficas. Para explicar esta ausencia de minerales típicos de alta presión como glaucofano, onfacita y granate se pueden plantear los siguientes escenarios: 1) de acuerdo con la abundancia de plantas fósiles en la formación Cualac, puede sugerirse un clima húmedo para el momento de su depósito; esta condición de humedad pudo favorecer la disolución de ciertas fases minerales características de alta presión; 2) debido a las condiciones de retrogresión metamórfica en el Complejo Acatlán, las rocas de alta presión forman únicamente relictos volumétricamente poco abundantes y, por lo tanto, no conforman fuentes potenciales de grandes cantidades de detrito, y su firma detrítica es altamente diluida por el detrito generado a partir de las rocas de bajo grado; 3) las rocas sedimentarias que potencialmente podrían contener una asociación mineralógica de alta presión no han sido muestreadas hasta la fecha y, consecuentemente, se requiere un muestreo más exhaustivo.

Los datos de geocronología U-Pb en circón detrítico confirman que la formación Cualac fue ampliamente alimentada por las rocas metasedimentarias del Complejo Acatlán expuestas directamente al norte de las áreas de estudio. En efecto, dichas rocas metasedimentarias contienen circones que definen dos grupos principales de edad: uno de ~1370–870 y otro de ~800–380 Ma (Talavera-Mendoza et al. 2005; Murphy et al. 2006; Keppie et al. 2008b; Galaz et al., 2013; Zepeda-Martínez et al., 2018; Fig. 2.8 A–C). Estos grupos de edad coinciden con los de ~1351–868 y ~794–336 Ma obtenidos para la formación Cualac (Fig. 10.7).

Figura 10.7 Gráfica de estimación de la densidad de Kernel (Vermeesch, 2012) e histograma, donde se muestra la distribución estadística de las edades de circones de muestras de areniscas de la formación Cualac (A-G) y de distintas muestras de rocas metasedimentarias y metagranitoides del Complejo Acatlán (H-J). Los círculos ubicados debajo de la gráfica representan la edad de cada grano de circón analizado.

Esta similitud entre los grupos de edades U-Pb se observa tambiénen el mapa MDS, donde las muestras de la formación Cualac tienen una relación de primer orden con las rocas metasedimentarias del Complejo Acatlán (Fig. 10.8). Por lo tanto, la distribución de edades sugiere que las rocas metasedimentarias del Complejo Acatlán expuestas al norte de las áreas de estudio son la fuente principal más probable de la formación Cualac.

Figura 10.8 Diagrama de escalamiento multidimensional que muestra dos grupos diferentes donde se observan las relaciones y distancias de primer orden entre las edades U-Pb de circones de muestras de la formación Cualac y el Complejo Acatlán, y entre las muestras del grupo Tecocoyunca inferior y las muestras del Complejo Oaxaqueño.

En las muestras de arenisca colectadas de la formación Cualac en el área de Tecomatlán se observaron escasos líticos volcánicos felsíticos (Tabla 6.3 y Fig. 6.1C). Considerando que algunas muestras de la formación Cualac contienen unos pocos circones con edades entre ~188 y ~181 Ma, se considera tentativamente que estos líticos volcánicos felsíticos derivan de las rocas volcánicas félsicas del Jurásico Inferior que se encuentran expuestas en los alrededores de las áreas de estudio, i.e. la Ignimbrita Las Lluvias (Corona-Esquivel, 1981; Campa-Uranga et al., 2004) y la formación Diquiyú (Morán-Zenteno et al., 1993; Durán-Aguilar, 2014; Zepeda-Martínez et al., 2018).

Los depósitos conglomeráticos expuestos en el área de Peña Colorada (Fig. 5.4), los cuales habían sido correlacionados con la formación Cualac por otros autores (Hernández-Vulpes y

Rodríguez-Calderón, 2012), muestran tres grupos de edad U-Pb: ~1400-880, ~500-450 Ma y ~60-50 Ma (Fig. 8.3). El grupo de circones con edades entre ~60-50 Ma no es parte de la firma de edades U-Pb en circones detritícos de la formación Cualac. Por lo tanto, se debe excluir cualquier posible correlación del conglomerado de Peña Colorada con la formación Cualac. Por esta razón, el conglomerado Peña Colorada se asigna en este trabajo a la cubierta cenozoica y no será tomado en cuenta en la reconstrucción paleoambiental y tectono-sedimentaria de la Cuenca de Tlaxiaco.

10.2.2 Grupo Tecocoyunca inferior

Las muestras del grupo Tecocoyunca inferior presentan abundante cuarzo con inclusiones aciculares de rutilo, granos de cuarzo con una textura granoblástica poligonal con uniones triples y, subordinadamente, feldespato potásico con estructura mesoperítica. Todas estas características sugieren una fuente metamórfica de alta temperatura (>700°C por la presencia de mesopertita y cuarzo con inclusiones de rutilo; Passchier y Trouw, 2005; Cherniak et al., 2007; Winter, 2014) para las rocas del grupo Tecocoyunca inferior. En el sur de México, el cuarzo con inclusiones de rutilo y el feldespato potásico con estructura mesopertítica han sido reportados exclusivamente en las rocas metamórficas en facies de granulitas del Complejo Oaxaqueño (Ortega-Gutiérrez et al., 2018; Fig. 5.1). La presencia de ortopiroxeno detrítico en algunas muestras del grupo Tecocoyunca inferior apoya esta interpretación, siendo esta fase mineral un componente principal y muy abundante en las granulitas del Complejo Oaxaqueño (Ortega-Gutiérrez et al., 2018; Martini et al., 2020). La abundancia subordinada del ortopiroxeno en las rocas del grupo Tecocoyunca podría ser debida a su descomposición bajo condiciones climáticas húmedas, las cuales están evidenciadas por la presencia de litofacies de carbón y la gran abundancia de flora fósil en toda esta unidad. La derivación de las rocas del grupo Tecocoyunca inferior del Complejo Oaxaqueño también es soportada por los resultados del fechamiento U-Pb de circón detrítico, los cuales muestran un grupo principal de edad de ~1395-900 Ma en todas las muestras (Fig. 10.9A-F), coincidiendo bien con el rango de edad U-Pb de ~1400-880 Ma de los circones del Complejo Oaxaqueño (Solari et al., 2014; Fig. 10.9G). Esta similitud de edades también se muestra en el mapa MDS (Fig. 10.8), donde las muestras del grupo Tecocoyunca inferior muestran distancias de primer orden con las muestras del Complejo Oaxaqueño. Otro grupo importante de edad que se observa en todas las muestras analizadas es el de ~290-250 (Fig. 10.9 A–F). Esta firma de edades podría derivar de la erosión de los cuerpos plutónicos del Carbonífero-Pérmico (~290-270 Ma) que intrusionan a las rocas proterozoicas del Complejo Oaxaqueño (Ortega-Obregón et al., 2014; Fig. 10.9H).
Las muestras del grupo Tecocoyunca inferior contienen cantidades subordinadas de granos metasedimentarios de bajo grado en facies de esquistos verdes a sub-esquistos verdes (Fig. 6.1D). Debido a la similitud composicional y textural que estos granos presentan con los granos observados en la formación Cualac, se propone que los granos metasedimentarios del grupo Tecocoyunca inferior fueron derivados de la erosión de las rocas metasedimentarias del Complejo Acatlán. Esta interpretación es fundamentada también por la presencia, aunque limitada, de granos de turmalina y rutilo con corona de titanita, ambas siendo fases minerales que se presentan típicamente en las rocas del Complejo Acatlán, y son completamente ausentes para el caso de la turmalina, o muy escasas para el caso del rutilo con coronas de titanita, en las rocas del Complejo Oaxaqueño (Ortega-Gutiérrez et al., 2018; Martini et al., 2020). La presencia de algunas edades entre ~350 y ~670 Ma en las rocas del grupo Tecocoyunca permite confirmar la posible contribución detrítica del Complejo Acatlán (Fig. 10.9 A, D, E, F), siendo estas edades abundantes en las rocas metasedimentarias de este complejo metamórfico.

Otra categoría subordinada de componentes en las muestras del grupo Tecocoyunca inferior son los granos volcánicos felsíticos (Fig. 6.1C). La presencia de algunos circones con edades entre ~191 y ~173 Ma en las rocas del grupo Tecocoyunca inferior (Fig. 10.9A, C, D y F) sugiere tentativamente que estos granos volcánicos se derivaron probablemente de las rocas volcánicas félsicas del Jurásico Inferior y Medio expuestas en los alrededores de las áreas estudiadas, i.e. la Ignimbrita Las Lluvias (Corona-Esquivel, 1981; Campa-Uranga et al., 2004) y la formación Diquiyú (Morán-Zenteno et al., 1993; Durán-Aguilar, 2014; Zepeda-Martínez et al., 2018).

Figura 10.9 Gráfica de estimación de la densidad de Kernel (Vermeesch, 2012) e histograma, donde se muestra distribución la estadística de las edades de circones de muestras de areniscas del grupo Tecocoyunca inferior (A-F), de las rocas metamórficas en facies de granulita del Complejo Oaxaqueño (G) y de cuerpos graníticos pertenecientes al Arco del Este de México (H). Los círculos ubicados debajo de la gráfica representan la edad de cada grano de circón analizado.

10.3 Arquitectura interna y principales bordes de la Cuenca de Tlaxiaco

De acuerdo con el análisis sedimentológico y de procedencia, se propone que la formación Cualac es el depósito de un sistema de abanicos aluviales que drenaron hacia el SE y SW a las rocas metasedimentarias del Complejo Acatlán expuestas al norte de las áreas estudiadas (Fig. 10.10A). Los abanicos aluviales son una parte importante de los sistemas sedimentarios antiguos v modernos (Weissmann et al., 2020) y se forman en áreas caracterizadas por un relieve alto, generalmente estructuras tectónicamente bordeando activas (Reading, 1996; Dade y Verdeyen, 2007; Meek et al. 2020). En una cuenca sedimentaria, los sistemas de abanicos aluviales se desarrollan típicamente a lo largo de las fallas mayores que definen sus límites con los altos de basamento adyacentes (e.g., Gawthorpe and Leeder, 2000; Miall, 2006).

Figura 10.10 Modelo esquemático de la arquitectura interna de la Cuenca de Tlaxiaco, que fue controlada por la actividad de dos fallas principales: la falla del Río Salado-Axutla, de orientación WNW y la falla de Caltepec, de orientación NNW. A) La formación Cualac representa el registro estratigráfico de un sistema de abanico aluvial que drenó las muestras metasedimentarias de facies de esquistos verdes del Complejo Acatlán expuestas al norte de la Cuenca de Tlaxiaco a lo largo de la falla del Río Salado-Axutla. B) El grupo Tecocoyunca inferior representa el registro estratigráfico del río Tlaxiaco, un río wandering con barras locales en el medio del canal, y sus áreas adyacentes de llanura de inundación, que fueron principalmente alimentadas por rocas metamórficas de facies de granulita del Complejo Oaxaqueño, expuestas al este de la Cuenca de Tlaxiaco a lo largo de la falla de Caltepec con orientación NNW. Durante cierto tiempo, el sistema de abanicos y el río Tlaxiaco interactuaron, como lo sugiere el contacto

estratigráfico transicional entre la formación Cualac y el grupo Tecocoyunca inferior. C) Los abanicos aluviales de la formación Cualac fueron progresivamente sepultados por los depósitos de llanura de inundación del río Tlaxiaco debido a la desactivación de la falla Río Salado-Axutla. Las flechas amarillas indican las direcciones principales de las paleocorrientes. OL: Olinalá; TE: Tecomatlán; TZ: Tezoatlán; TL: Tlaxiaco; FRSA: Falla Río Salado-Axutla; FC: Falla de Caltepec.

En las áreas de estudio, el registro estratigráfico de los abanicos aluviales de la formación Cualac está expuesto directamente al sur de la falla de Axutla, la cual se ha documentado por primera vez en este trabajo (Fig. 10.11), y de la falla Río Salado, que ha sido documentada anteriormente por Martiny et. al (2012). Estos depósitos de abanico aluvial se distribuyen a lo largo de una faja principal con orientación WNW y que se extiende paralelamente a estos dos segmentos de falla (Fig. 10.10A).

► Figura 10.11 Mapa geológico del sur de México donde se muestra la localización de la falla de Axutla (FA) definida en este trabajo, la cual corresponde con un segmento de la falla Río Salado-Axutla que conformó el límite norte de la Cuenca de Tlaxiaco durante el Jurásico Inferior–Medio. Al este de las áreas de estudio se ubica la falla de Caltepec, la cual correspondió con el borde este de la Cuenca de Tlaxiaco. Modificado de Martini et al., 2020.

Ningún afloramiento de la formación Cualac ha sido documentado al norte de estas estructuras. Todos estos aspectos sugieren que las fallas del Axutla y Río Salado probablemente representan el límite norte de la Cuenca de Tlaxiaco (Figs. 10.10A). En la actualidad, las fallas de Axutla y Río Salado son dos fallas separadas por la falla de Tetla, la cual presenta un rumbo N-S y una cinemática normal derecha (Ortega-Gutiérrez et al., 2018; Fig. 10.11). Las edades obtenidas por el método de TFA para las muestras PX1, PX3, CHI1, extraídas del Complejo Acatlán en proximidad de la falla de Tetla, sugieren que estas rocas experimentaron uno o más eventos tectono-termales entre ~89 y ~38 Ma. Por lo tanto, se interpreta que la falla de Tetla es una estructura que estuvo activa por lo menos durante el Cretácico Superior y Cenozoico y, por ende, que provocó desplazamientos posteriormente al desarrollo de la Cuenca de Tlaxiaco durante el Jurásico. El desarrollo de abanicos aluviales con las mismas características sedimentológicas, procedencia y edad, depositados directamente al sur de las fallas Río Salado y Axutla sugiere que estas estructuras son probablemente dos segmentos de una sola falla regional que, actualmente, se encuentra desplazada por la falla de Tetla (Figs. 10.11 y 10.12). En este trabajo, se nombra a esta estructura mayor como falla Río Salado-Axutla. La suma de las trazas de las fallas de Río Salado y Axutla indica una longitud mínima de por lo menos ~80 km para esta estructura (Fig. 10.12). Sin embargo, directamente al oeste de Tecomatlán, las principales calderas cenozoicas y otros centros volcánicos, incluyendo los dos domos riolíticos expuestos en los alrededores de Axutla, están claramente alineados definiendo un lineamiento de tendencia WNW (Morán-Zenteno et al., 2005) que probablemente representa la posible continuación de la traza de la falla (Fig. 10.12). De acuerdo con este escenario, la falla del Río Salado-Axutla es una estructura regional con una longitud mínima de ~300 km y presumiblemente pudo haber controlado el emplazamiento de dichos cuerpos volcánicos cenozoicos.

Figura 10.12 Imagen satelital que muestra la falla Río Salado-Axutla y su posible continuación al oeste de Tecomatlán, donde las principales calderas cenozoicas y otros centros volcánicos documentados por Morán-Zenteno et al. (2005) se localizan a lo largo de un lineamiento regional con tendencia al WNW.

Dada la posición muy consistente de la formación Cualac a lo largo de la falla Rio Salado-Axutla, y considerando que el análisis de procedencia indica que dicha formación fue derivada de las rocas metamórficas al norte de dicha falla, se propone que la formación Cualac representa la respuesta sedimentaria a la actividad de esta estructura mayor. Consecuentemente, la edad de la formación Cualac constriñe aproximadamente la actividad de la falla Río Salado-Axutla. En las áreas de Tezoatlán y Tlaxiaco, en el sector este de la Cuenca de Tlaxiaco, la edad de la formación Cualac está constreñida entre ~176 Ma, que es la edad máxima de depósito de las rocas volcaniclásticas subyacente a la formación Cualac (Zepeda-Martínez et al, 2018), y el Bajociano superior (~169 Ma; Gradstein et al., 2012), edad de los depósitos marinos suprayacentes (Erben, 1956; Westerman, 1984, Sandoval y Westerman, 1986). En el área de Olinalá, en el sector oeste de la Cuenca de Tlaxiaco, la edad de la formación Cualac está delimitada entre ~177 Ma, edad de las rocas volcánicas de La Ignimbrita las Lluvias, las cuales subyacen a la formación Cualac (Campa-Uranga et al., 2004), y el Batoniano (~168 Ma; Gradstein et al., 2012), edad de la base de los depósitos marinos suprayacentes (Westerman et al., 1984; Marshall, 1986).

En todas las áreas estudiadas, la formación Cualac está sobreyacida por el grupo Tecocoyunca inferior. Esta relación estratigráfica indica que los abanicos aluviales que se desarrollaron a lo largo del límite norte de la Cuenca de Tlaxiaco fueron abandonados, así como demuestran las tendencias grano-decreciente y estrato-decreciente de la formación Cualac (Fig. 10.10B), y fueron progresivamente sepultados por los depósitos de llanura de inundación del río Tlaxiaco (Fig. 10.10C). La interestratificación entre los depósitos de abanico distal de la formación Cualac y los depósitos de llanura de inundación del grupo Tecocoyunca inferior observada en Tecomatlán indica que, por lo menos durante un periodo de tiempo, los abanicos aluviales y el río Tlaxiaco coexistieron dentro de la Cuenca de Tlaxiaco e interactuaron (Fig. 10.10B). Aunque estos depósitos de llanura de inundación y de abanico aluvial distal muestran características litológicas y sedimentológicas similares y, por ende, podrían confundirse uno con otro, los depósitos de la formación Cualac y del grupo Tecocoyunca inferior muestran una procedencia diferente, lo que hace que estas dos unidades sean fácilmente reconocibles. La desactivación de la falla Río Salado-Axutla y, por lo tanto, el progresivo sepultamiento de los abanicos aluviales de la formación Cualac por los sedimentos del río Tlaxiaco y su llanura de inundación se puede constreñir entre ~179-173 Ma, grupo de circones con edades más jóvenes del grupo Tecocoyunca inferior y que presumiblemente provienen de la erosión de las rocas volcánicas félsicas del Jurásico Inferior y Medio expuestas en los alrededores de las áreas estudiadas, y el Bajociano-Batoniano (~170-168 Ma), edad de los depósitos marinos transgresivos suprayacentes (Westerman, 1984; Marshall, 1986; Sandoval y Westerman, 1986; Fig. 10.10C). Los datos sedimentológicos y de procedencia disponibles sugieren que el río Tlaxiaco fue un importante sistema fluvial de tipo wandering que drenó los detritos procedentes de las rocas metamórficas de alto grado del Complejo Oaxaqueño hacia el oeste en la Cuenca de Tlaxiaco (Fig. 10.10B y C). Esto indica que, al menos durante el desarrollo del Río Tlaxiaco, el Complejo Oaxaqueño era un alto topográfico importante que limitaba la Cuenca de Tlaxiaco al este (Fig. 10.10B y C). Este escenario es apoyado por las edades de ~170 y ~199 Ma obtenida por TFA en este trabajo para las rocas del Complejo Oaxaqueño (muestras JY5 y ETL11) y por el modelo térmico, el cual indica que estas rocas experimentaron un proceso de exhumación entre ~240 y ~160 Ma (Fig. 9.2C). Aunque este modelo térmico es tentativo debido al escaso número de trazas confinadas medidas, las travectorias térmicas buenas y el mejor ajuste de estas sugieren que la exhumación del Complejo Oaxaqueño presumiblemente ocurrió a través de varios pulsos durante este intervalo de tiempo (Fig. 9.2C). Este escenario es soportado por las edades de trazas de fisión en titanita y apatito reportadas por Abdullin et al. (2020), las cuales indican que el Complejo Oaxaqueño fue exhumado episódicamente entre el Triásico Tardío y el Jurásico Medio a lo largo de la falla de Caltepec, como resultado de la extensión de la corteza durante la progresiva disgregación de la Pangea. Con base en estos datos, se propone

que la falla de Caltepec corresponde con el límite oriental de la Cuenca de Tlaxiaco, y que su actividad contribuyó a la formación de un alto topográfico al este de la Cuenca de Tlaxiaco, el cual estaba conformado por las rocas del Complejo Oaxaqueño (Fig. 10.10C y 10.11).

De acuerdo con estas consideraciones, la estratigrafía y la arquitectura interna de la Cuenca de Tlaxiaco, al menos en las áreas exploradas en este trabajo, fue controlada en gran medida por dos fallas principales, la de Río Salado-Axutla y la de Caltepec, que representan los límites norte y este de la cuenca, respectivamente (Fig. 10.10A-C).

10.4 Redefinición de la Cuenca de Tlaxiaco

De acuerdo con López-Ticha (1985), la definición original de la Cuenca de Tlaxiaco incluye las áreas de Otlaltepec y Ayuquila, además de las áreas de Tezoatlán, Tlaxiaco, Tecomatlán y Olinalá, las cuales fueron estudiadas en este trabajo. Sin embargo, la identificación de la falla Río Salado-Axutla y la falla de Caltepec como los bordes septentrional y oriental de la cuenca, así como la reconstrucción de su arquitectura interna permite replantear su extensión y geometría.

La identificación del sistema de abanicos de la formación Cualac al norte de la cuenca y del río Tlaxiaco que fluía de este a oeste, paralelamente a la falla Río Salado-Axutla, permite reconocer un alto estructural importante que funcionaba como una barrera morfo-tectónica que separaba a la región que incluía las áreas de Tezoatlán, Tlaxiaco, Tecomatlán y Olinalá de la región conformada por las áreas de Otlaltepec y Ayuquila. La existencia de esta barrera morfo-tectónica implica que las sucesiones jurásicas expuestas en el área de estudio y la región de Otlaltepec y Ayuquila fueron depositadas en cuencas diferentes. Los datos de procedencia indican que parte del registro estratigráfico jurásico expuesto en las áreas de estudio y en la región de Otlaltepec y Ayuquila provienen de la erosión de las rocas metamórficas del Complejo Oaxaqueño (Ramírez-Calderón, 2015; Martini et al., 2016; este trabajo), lo que demuestra el carácter regional del relieve conformado por este alto de basamento. Sin embargo, las sucesiones clásticas expuestas en las dos regiones presentan una contribución importante de detrito de fuentes locales. La contribución de las fuentes adyacentes a las áreas de Otlaltepec y Ayuquila no están presentes como componentes clásticos en las sucesiones de la región que incluye las áreas de estudio y viceversa. En este trabajo se ha documentado que las sucesiones clásticas del Jurásico Inferior-Medio expuestas en las áreas de Tezoatlán, Tlaxiaco, Tecomatlán y Olinalá presentan la contribución detrítica abundante del Complejo Acatlán. Contrariamente, en el área de Ayuquila, localizada a ~40 km km al norte del área de estudio, el registro estratigráfico jurásico no tiene aporte detrítico del Complejo Acatlán y tiene como fuente principal las rocas de alto grado del Complejo Ayú. Esto sugiere que las dos regiones estaban desconectadas físicamente al momento de su depósito y que presumiblemente existía un alto estructural que las separaba.

La presencia de este alto estructural es sugerida también por la composición de las rocas clásticas jurásicas expuestas en el área de estudio y en la región de Otlaltepec y Ayuquila. A pesar de que parte del registro estratigráfico jurásico expuesto en el área de estudio y en la región de Otlaltepec y Ayuquila provienen de la erosión de las rocas metamórficas del Complejo Oaxaqueño, presentan una diferencia composicional importante. En Oltaltepec, las rocas clásticas derivadas del Complejo Oaxaqueño muestran una composición que varía de cuarzo-feldespática a feldespato-cuarzosa con un contenido de feldespato entre 34.8–19.6% (Martini et al., 2016), mientras que, en las áreas de estudio, las rocas clásticas provenientes del Complejo Oaxaqueño presentan una composición cuarzosa a cuarzo-lítica con un rango de feldespato entre 6.9–0% (Fig. 6.1A). Considerando que la fuente principal de estas unidades es la misma, la diferencia composicional se puede referir a diferencias en las condiciones climáticas. En efecto, Otlaltepec se encuentra a ~80 km al norte de las áreas de estudio, por lo tanto, las dos regiones son muy cercanas entre sí y la diferencia composicional no puede explicarse a una variación en la latitud, por lo que es necesaria la existencia de barreras topográficas que obstaculicen el movimiento horizontal del aire generando contrastes climáticos.

Las diferencias composicionales y de procedencia antes mencionadas indican claramente que las áreas de estudio se encontraban desconectadas físicamente de la región de Ayuquila y Otlaltepec durante el Jurásico Inferior–Medio. Con base en estas consideraciones, en este trabajo se propone excluir a las áreas de Ayuquila y Otlaltepec de la Cuenca de Tlaxiaco, asimismo se presenta una nueva definición de los límites de esta cuenca jurásica que corresponden al norte con la falla Río Salado-Axutla y al este con la falla de Caltepec (Fig. 10.10). Las sucesiones expuestas en Otlaltepec y Ayuquila se depositaron en una o dos cuencas distintas y separadas de la Cuenca de Tlaxiaco por un alto estructural constituido por las rocas del Complejo Acatlán.

10.5 Implicaciones tectónicas

Los datos nuevos presentados en este trabajo indican que las fallas Río Salado-Axutla y Caltepec son estructuras mayores que controlaron la arquitectura interna y la geometría de la Cuenca de Tlaxiaco durante el Jurásico Temprano-Medio. Por lo tanto, los resultados de este trabajo indican que estas fallas participaron en el proceso de adelgazamiento continental relacionado con la fragmentación de la Pangea. La falla Río Salado-Axutla es una estructura mayor con orientación WNW y cuya cinemática durante el Jurásico Temprano-Medio es difícil de establecer debido a la superposición de indicadores cinemáticos que sugieren diferentes movimientos (Martiny et al., 2012; este trabajo), los cuales indican una historia compleja con múltiples episodios de reactivación sobreimpresos. El análisis estructural detallado realizado por Martiny et al. (2012) en algunas localidades a lo largo del segmento de Río Salado indica un desplazamiento normal sinistral durante el Jurásico Inferior. Un estudio estructural a detalle deberá ser realizado a lo largo del segmento Axutla. Por otro lado, la falla de Caltepec tiene una orientación NNW que es similar a la de otras fallas mayores normales a normales dextrales en el sur de México, como por ejemplo el cinturón milónitico de la Sierra de Juárez, las fallas Texcalapa y El Sabino (Alaniz-Alvarez et al., 1996; Campos-Madrigal et al., 2013; Figs. 10.11 y 10.13A). Estas fallas representan la manifestación temprana del desarrollo del límite divergente entre el sur de México y el noroeste de Sur América (Pindel y Kennan, 2009; Pindell et al., 2021; Fig. 10.13 A y B), inclusive, algunos autores las han puesto en relación con el desarrollo de la transformante Tamaulipas-Chiapas (Alaniz-Alvarez et al., 1996). De acuerdo con varios atores, estos procesos serían los que influenciaron principalmente la evolución tectónica de México durante el Jurásico, generando un patrón estructural dominado por fallas normales derechas con rumbo ~N-S (Figs. 2.3; Goldhammer, 1999; Padilla y Sánchez, 2007; Nova et al., 2019). El reconocimiento de la falla Río Salado-Axutla como una estructura mayor del Jurásico Inferior-Medio muestra en realidad que el patrón de fallas que acomodó la extensión continental durante la ruptura de la Pangea es más complejo y consta de un sistema con orientaciones NNW y WNW.

Esto impone una revisión de los modelos tectónicos del Jurásico. La existencia de grandes fallas jurásicas en México con tendencia WNW y un desplazamiento sinistral normal fue sugerida tentativamente por algunos autores (Anderson y Schmidt, 1983; Dickinson y Lawton, 2001; Pindell y Kennan, 2009). De acuerdo con estos autores, estas fallas desplazaron el sur y el centro de México desde una posición más noroccidental a su ubicación actual durante el Jurásico Temprano y Medio, evitando así el traslape entre Norteamérica y Sudamérica en la reconstrucción de Pangea (Fig. 10.13 A). Sin embargo, la existencia de estas fallas jurásicas de tendencia WNW ha sido cuestionada ampliamente durante las últimas dos décadas y, consecuentemente, la idea de movimientos sinistrales de bloques corticales en México durante la ruptura de la Pangea ha sido ampliamente subestimada (p. ej., Iriondo et al., 2005). La identificación de la falla Río Salado-Axutla permite una reconsideración preliminar de este escenario que invoca estos desplazamientos izquierdos. Los datos disponibles actualmente indican con claridad que la falla Río Salado-Axutla tuvo por lo menos un desplazamiento normal importante entre ~176 y ~170–168 Ma, lo cual es requerido para acomodar los depósitos de

abanico aluvial de hasta ~1300 m de espesor de la formación Cualac a lo largo del límite norte de la cuenca. Sin embargo, teniendo en cuenta la geometría y cinemática sinistral al menos en un sector de la falla de Río Salado-Axutla, no se puede excluir una posible componente lateral para esta estructura. Desafortunadamente, hasta el momento resulta imposible definir la magnitud de un posible desplazamiento lateral izquierdo durante el Jurásico. En analogía con algunas regiones en las que actualmente se registran importantes movimientos laterales de bloques (e.g. la Zona de Cizalla del Este de California, el Sistema de Fallas del Mar Muerto, entre otros; Frankel et al., 2008; Heumann et al., 2014; Nuriel et al., 2019), es muy probable que el desplazamiento sinistral jurásico del sur de México no haya ocurrido a lo largo de una sola falla o megacizalla que produjo cientos de kilómetros de movimiento, así como se ha impuesto en algunas reconstrucciones (Anderson y Schmidt, 1983; Pindell y Kennan, 2009; Boschmann et al., 2014; Pindell et al., 2021), sino a través de varias fallas, cada una de las cuales produjo sólo decenas de kilómetros de desplazamiento. El desplazamiento total acumulado a lo largo de todas estas estructuras pudo generar un desplazamiento total del orden de cientos de kilómetros. En este escenario, la falla Río Salado-Axutla podría representar una de estas estructuras que han contribuido durante el Jurásico al emplazamiento del sur de México en su posición actual.

Este trabajo ofrece una nueva perspectiva para futuras investigaciones que pretenden reconstruir la cinemática de la ruptura de la Pangea en México, y propone que esta estructura sea objeto de interés de futuros estudios que pretendan explorar el potencial de los desplazamientos sinistrales en México como solución válida al solapamiento Norteamérica-Sudamérica en la reconstrucción de la Pangea. Además, abre el camino a estudios futuros que podrían centrarse en explorar la existencia de otras fallas jurásicas con orientación WNW, con pequeños desplazamientos sinistrales normales en lugar de megacizallas como se ha postulado anteriormente.

Figura 10.11 A) Reconstrucción paleogeográfica del margen ecuatorial occidental de Pangea durante el Jurásico Temprano-Medio, mostrando la posición paleogeográfica del sur de México en una posición más noroccidental (Pindell, 1985; Anderson y Schmidt, 1983) y la localización de las principales fallas con orientación NNW en el sur de México, que son la manifestación temprana del desarrollo del límite transformante Tamaulipas-Chiapas (FTC). Los datos presentados en este trabajo sugieren que la extensión continental durante la ruptura de Pangea también fue acomodada por fallas con orientación WNW e indican que los desplazamientos sinistrales en México representan una excelente solución al problema de traslape entre Norteamérica y Sudamérica en la reconstrucción de Pangea. B) A finales del Jurásico Medio, la FTC produjo la rotación del Bloque Maya en sentido antihorario y la apertura del Golfo de México (Pindell y Kennan, 2009).

La integración de los datos sedimentológicos y de procedencia del registro estratigráfico del Jurásico Inferior–Medio expuesto en las áreas de Tezoatlán, Tlaxiaco, Tecomatlán y Olinalá, permitió documentar por primera vez que existió una conexión física entre estas áreas durante el Mesozoico temprano, de esta manera se propone una redefinición de la Cuenca de Tlaxiaco donde se excluyen las áreas de Ayuquila y Otlaltepec.

El análisis de elementos arquitectónicos y de procedencia sugieren que la geometría y la evolución tectono-sedimentaria de la Cuenca de Tlaxiaco durante el Jurásico Inferior–Medio estuvieron influenciadas por la actividad de dos fallas principales:

- La falla del Río Salado-Axutla, con orientación WNW: su actividad determinó la exhumación de las rocas paleozoicas del Complejo Acatlán y, por lo tanto, determinó la formación de un alto morfo-tectónico que limitaba el borde norte de la Cuenca de Tlaxiaco. Dicho relieve fue drenado hacia el sureste, sur y suroeste por el sistema de abanicos aluviales de la formación Cualac. La posterior desactivación de la falla Río Salado-Axutla propició la retrogresión de los abanicos aluviales de la formación Cualac.
- 2) La falla de Caltepec, con orientación NNW: su actividad determinó la exhumación de las rocas proterozoicas del Complejo Oaxaqueño, las cuales formaron un alto topográfico al este de la cuenca. Este relieve fue drenado por el río Tlaxiaco, el cual conformaba el drenaje axial de la cuenca y correspondía con un río tipo *wandering* y su llanura de inundación. El registro estratigráfico de este sistema fluvial corresponde con los depósitos del grupo Tecocoyunca inferior, que sepultaron progresivamente el conjunto de abanicos aluviales de la formación Cualac formados anteriormente.

Las edades U-Pb en circón y los datos bioestratigráficos, constriñen la actividad de la falla Río Salado-Axutla entre ~176 y ~168 Ma. Las edades obtenidas por TFA y el modelo térmico sugieren que la exhumación del Complejo Oaxaqueño presumiblemente ocurrió a través de varios pulsos entre ~240 y ~160 Ma. Por lo tanto, este trabajo sugiere que la extensión cortical durante la ruptura de Pangea no se desarrolló únicamente a través de fallas con orientación NNW, como lo establecen los modelos de reconstrucción del Jurásico para el territorio mexicano, sino que la actividad de fallas con orientación WNW también pudo tener un papel fundamental en el territorio mexicano durante la fragmentación de Pangea.

Debido a la dificultad para determinar la cinemática de la falla Río Salado-Axutla, se desconoce el potencial de esta falla mayor, con orientación WNW, para producir desplazamientos de bloques sinistrales que puedan resolver el problema de traslape entre Norteamérica y Sudamérica en la reconstrucción de Pangea, lo cual deberá ser aclarado en futuros trabajos. Sin embargo, los resultados obtenidos en este trabajo abren la perspectiva para futuros proyectos que se centren en la búsqueda de una solución válida al traslape cortical en la reconstrucción de la Pangea, donde los objetos de estudio pueden ser otras fallas jurásicas con orientación WNW y desplazamientos menores, en lugar de megacizallas con desplazamientos mayores como se ha postulado anteriormente.

- Abdullin, F., Solari, L., Solé, J., y Ortega-Obregón, C., 2020, Mesozoic exhumation history of the Grenvillian Oaxacan Complex, southern Mexico: Terra Nova, v. 00, p. 1–9.
- Alaniz-Alvarez, S.A., van der Heyden, P., Nieto-Samaniego, A.F., y Ortega-Gutiérrez, F., 1996, Radiometric and kinematic evidence for Middle Jurassic strike-slip faulting in southern Mexico related to the opening of the Gulf of Mexico: Geology, v. 24, n. 5, p. 443–446.
- Alencaster, G., 1963, Pelecípodos del Jurásico Medio del Noroeste de Oaxaca y Noroeste de Guerrero: Paleontología Mexicana, Instituto de Geología, v. 5, 42 p.
- Alencaster, G., y Buitrón-Sánchez, B.E., 1965, Fauna del Jurásico Superior de la región de Petlalcingo, Estado de Puebla: Paleontología Mexicana, Instituto de Geología, Universidad Nacional Autónoma de México, 21, 53 p.
- Allen, J.R.L., 1970, Studies in fluviatile sedimentation: a comparison of fining-upward cyclothems with special reference to coarse member composition and interpretation: Journal of Sedimentary Petrology, v. 40, p. 298–323.
- Allen, J. R. L., 1983, Studies in fluviatile sedimentation: bars, bar-complexes and sandstone sheets (low-sinuosity braided streams) in the Brownstones (L. Devonian), Welsh Borders. Sedimentary Geology, v. 33, n. 4, p. 237-293.
- Allen, J. R. L., 1984, Sedimentary structures: their character and physical basis: Elsevier, Amsterdam, 663 p.
- Allen, P. A., y Allen, J. R., 2013, Basin analysis: Principles and application to petroleum play assessment: U.K., John Wiley & Sons, 549 p.
- Andersen, T., 2002, Correction of common lead in U–Pb analyses that do not report ²⁰⁴Pb: Chemical geology, v. 192, n. 1-2, p. 59–79.
- Anderson, T.H., y Schmidt, V.A., 1983, A model of the evolution of Middle America and the Gulf of Mexico–Caribbean Sea region during Mesozoic time: Geological Society of America Bulletin, v. 94, p. 941–966.

- Anderson, T.H., y Silver, L.T., 2005, The Mojave-Sonora megashear–Field and analytical studies leading to the conception and evolution of the hypothesis: Geological Society of America Special Paper 393, p. 1–50.
- Ashmore, P. E., 1991, How do gravel-bed rivers braid?: Canadian journal of earth sciences, v. 28, n. 3, p. 326–341.
- Barboza-Gudiño, J.R., Orozco-Esquivel, M.T., Gómez-Anguiano, M., y Zavala-Monsiváis, A., 2008, The Early Mesozoic volcanic arc of western North America in northeastern Mexico: Journal of South American Earth Sciences, v. 25, p. 49–63.
- Barboza-Gudiño, J. R., Zavala-Monsiváis, A., Castellanos-Rodríguez, V., Jaime-Rodríguez, D., y Almaraz-Martínez, C., 2020, Subduction-related Jurassic volcanism in the Mesa Central province and contemporary Gulf of Mexico opening: Journal of South American Earth Sciences, 102961.
- Bartolini, C., Lang, H., y Spell, T., 2003, Geochronology, geochemistry, and tectonic setting of the Mesozoic Nazas arc in north-central Mexico, and its continuation to northern South America.
 In: Bartolini, C., et al. (Eds.), The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon Habitats, Basin Formation and Plate Tectonics: American Association of Petroleum Geologists, vol. 79, pp. 427–461. Memoir.
- Bates, R. L., y Jackson, J. A., 1987, Glossary of Geology 3rd Ed. American Geological Institute, Alexandria, Virginia, p. 788.
- Bayona, G., Jiménez, G., Silva, C., Cardona, A., Montes, C., Roncancio, J., y Cordani, U., 2010, Paleomagnetic data and K-Ar ages from Mesozoic units of the Santa Marta massif: A preliminary interpretation for block rotation and translations. Journal of South American Earth Sciences, v. 29, n. 4, p. 817–831.
- Bélica, M. E., Tohver, E., Pisarevsky, S. A., Jourdan, F., Denyszyn, S., y George, A. D., 2017, Middle Permian paleomagnetism of the Sydney Basin, Eastern Gondwana: Testing Pangea models and the timing of the end of the Kiaman Reverse Superchron: Tectonophysics, n. 699, p. 178-198.
- Bhandari, N., Bhat, S. G., Lal, D., Rajagopalan, G., Tamhane, A. S., y Venkatavaradan, V. S., 1971, Fission fragment tracks in apatite: recordable track lengths: Earth and Planetary Science Letters, v. 13, n. 1, p. 191–199.

- Blair, T. C., y McPherson, J. G., 1992, The Trollheim alluvial fan and facies model revisited: Geological Society of America Bulletin, v. 104, n. 6, p. 762–769.
- Böhnel, H., 1999, Paleomagnetic study of Jurassic and Cretaceous rocks from the Mixteca Terrane (Mexico): Journal of South American Earth Sciences, v.12, p. 545–556.
- Boschman, L. M., van Hinsbergen, D. J., Torsvik, T. H., Spakman, W., y Pindell, J. L., 2014, Kinematic reconstruction of the Caribbean region since the Early Jurassic: Earth-Science Reviews, v.138, p. 102-136.
- Bristow, C. S., 1993, Sedimentary structures exposed in bar tops in the Brahmaputra River, Bangladesh: Geological Society, London, Special Publications, v. 75, n. 1, p. 277–289.
- Buffler, R.T., y Sawyer, D.S., 1985. Distribution of crust and early history, Gulf of Mexico Basin: Gulf Coast Association of Geological Societies Transactions 35, p. 333–344.
- Bull, W. B., 1964, Alluvial fans and near-surface subsidence in western Fresno County, California.
 Paper Presented at United States Geological Survey Professional Paper 437-A. Reston: United States Geological Survey.
- Bullard, E., Everett, J. E., y Gilbert Smith, A., 1965, The fit of the continents around the Atlantic: Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, v. 258, n. 1088, p. 41-51.
- Campa, M. F., y Coney, P. J., 1983, Tectono-stratigraphic terranes and mineral resource distributions in Mexico: Canadian Journal of Earth Sciences, v. 20, n. 6, p. 1040–1051.
- Campa-Uranga, M.F., García-Díaz, J.L., e Iriondo, A., 2004, El arco sedimentario del Jurásico Medio (Grupo Tecocoyunca y Las Lluvias) de Olinalá, Guerrero: GEOS: Unión Geofísica Mexicana, v. 24, p. 174.
- Campos-Madrigal, E., Centeno-García, E., Mendoza-Rosales, C.C., y Silva-Romo, G., 2013, Sedimentología, reconstrucción paleoambiental y significado tectónico de las sucesiones clásticas del Jurásico Medio en el área de Texcalapa, Puebla-Huajuapan de León, Oaxaca: Revisión de las formaciones Ayuquila y Tecomazúchil, Revista Mexicana de Ciencias Geológicas, v. 30, n. 1, p. 34–50.
- Cantú-Chapa, A., 1998, Las trasgresiones jurásicas en México: Revista Mexicana de Ciencias Geológicas, v. 15, no. 1, p. 25–37.

- Carrasco-Ramírez, R. S., Ferrusquía-Villafranca, I., Buitrón-Sánchez, B.E., y Ruiz-González, J.E., 2016, Litoestratigrafía del Grupo Tecocoyunca (Jurásico Medio) en el área del Río Numí (Cercanías de Tlaxiaco), Oaxaca y consideraciones sobre la distribución regional de su Biota: Revista Geológica de América Central, v. 55, p.115-136.
- Cavazos-Tovar, J.G., Gómez-Tuena, A., y Parolari, M., 2020, The origin and evolution of the Mexican Cordillera as registered in modern detrital zircons: Gondwana Research, v. 86, p. 83–103.
- Centeno-García, E., 2017, Mesozoic tectono-magmatic evolution of Mexico: an overview: Ore Geology Reviews, v.81, n. 3, p. 1035–1052.
- Charleston, S., 1981, A summary of the structural geology and tectonics of the state of Coahuila, Mexico, in Schmidt, C.I., and Katz, S.B., eds., Lower Cretaceous stratigraphy and structure, northern Mexico: West Texas Geological Society, Field Trip Guidebook, Publication 81–74, p. 28–36.
- Chávez-Cabello, G., Aranda-Gómez, J. J., Molina-Garza, R. S., Cossío-Torres, T., Arvizu-Gutiérrez, I. R., y González-Naranjo, G. A., 2005, La falla San Marcos: una estructura jurásica de basamento multirreactivada del noreste de México: Boletín de la Sociedad Geológica Mexicana, v. 57, n. 1, p. 27–52.
- Chávez, E. O., Velasco-de León, M. P., & Jiménez, J. R., Agathoxylon sp. del Jurásico Inferior, Rosario Nuevo, Oaxaca, México: Paleontología Mexicana, v. 6, n. 2, p. 73-77.
- Cherniak, D. J., Watson, E. B., y Wark, D. A., 2007, Ti diffusion in quartz. Chemical Geology, v. 236, n. 1-2, p. 65-74.
- Church, M., 1983, Pattern of instability in a wandering gravel bed channel: Modern and ancient fluvial systems, International Association of Sedimentologists Special Publication, v. 6, p. 169–180.
- Collinson, J.D., Mountney, N. y Thompson, D.B., 2006, Sedimentary Structures, 3a. ed: Terra Publishing, London, 207 p.
- Copeland, P., 2020, On the use of geochronology of detrital grains in determining the time of deposition of clastic sedimentary strata: Basin Research, v. 32, n. 6, p. 1532–1546.
- Corfu, F., Hanchar, J.M., Hoskin, P.W.O., y Kinny, P., 2003, Atlas of zircon textures: Reviews in Mineralogy and Geochemistry, v. 53, p. 469–500.

- Corona-Esquivel, R. J.J., 1981, Estratigrafía de la región de Olinalá-Tecocoyunca, Noreste del Estado de Guerrero, Universidad Nacional Autónoma de México, Instituto de Geología, Revista, v. 5, n. 1, p. 17–24.
- Correia, P., y Murphy, J. B., 2020, Iberian-Appalachian connection is the missing link between Gondwana and Laurasia that confirms a Wegenerian Pangaea configuration: Scientific reports, v. 10, n. 1, p. 1–7.
- Corro-Ortiz, M.G., y Ruíz-González, F. J., 2011, Análisis estratigráfico de las secuencias Jurásicas del área de Tlaxiaco, Oaxaca [Tesis de Licenciatura]: Facultad de Ingeniería, Universidad Nacional Autónoma de México, México, 134 p.
- Coutts, D. S., Matthews, W. A., y Hubbard, S. M., 2019, Assessment of widely used methods to derive depositional ages from detrital zircon populations: Geoscience Frontiers, v. 10, n. 4, p. 1421–1435.
- Dade, W. B., y Verdeyen, M. E., 2007, Tectonic and climatic controls of alluvial-fan size and sourcecatchment relief. Journal of the Geological Society, v. 164, n. 2, p. 353–358.
- De Anda-García, M.A., 2008, Estudio petrológico del Grupo Consuelo (sensu Jiménez Rentería, J., 2004) en la localidad de Rosario Nuevo, Municipio de Tezoatlán, Oax. [Tesis de Licenciatura]: Instituto Politécnico Nacional, Escuela Superior de Ingeniería y Arquitectura, Unidad Ticomán, 234 p.
- Dickinson, W.R., 1970, Interpreting detrital modes of greywacke and arkose: Journal of Sedimentary Petrology, v. 40, p. 695–707.
- Dickinson, W.R, y Lawton, T., 2001, Carbonaceous to Cretaceous assembly and fragmentation of Mexico: Geological Society of America Bulletin, v. 113, p. 1142–1160.
- Dickinson, W.R., y Gehrels, G.E., 2009, Use of U-Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database: Earth and Planetary Science Letters, v. 288, p. 115–125.
- Domeier, M., Van der Voo, R., y Torsvik, T. H., 2012, Paleomagnetism and Pangea: the road to reconciliation: Tectonophysics, v. 514, p. 14–43.
- Donelick, R., Farley, K., Asimow, P. D., y O'Sullivan, P., 2003, Pressure dependence of He diffusion and fission-track annealing kinetics in apatite?: Experimental results: Geochimica et Cosmochimica Acta, v. 67, n. 18, A82.

- Donelick, R. A., 2005, Apatite Fission-Track Analysis: Reviews in Mineralogy and Geochemistry, v. 58, n. 1, p. 49–94.
- Dunkl, I., 2002, TRACKKEY: a Windows program for calculation and graphical presentation of fission track data. Computers & Geosciences, v. 28, n. 2, p. 3–12.
- Durán-Aguilar, R.F., 2014, Sedimentología y geocronología de los lechos rojos del Jurásico, Region
 Norte de la Cuenca de Tlaxiaco, Tezoatlán, Oaxaca: Correlaciones y procedencia, [Tesis de Maestría]: Instituto de Geología, Universidad Nacional Autónoma de México, México D.F., 92 p.
- Einstein, A., 1926, The Cause of the Formation of Meanders in the Courses of Rivers and of the So-Called Baer's Law: Die Naturwissenschaften, Vol. 14.
- Elías-Herrera, M., y Ortega-Gutiérrez, F., 2002, Caltepec fault zone: An Early Permian dextral transpressional boundary between the Proterozoic Oaxacan and Paleozoic Acatlán complexes, southern Mexico, and regional tectonic implications: Tectonics, v. 21, n. 3, p. 4–1.
- Elías-Herrera, M., Ortega-Gutiérrez, F., Sánchez-Zavala, J.L., Macías-Romo, C., Ortega-Rivera, A., e Iriondo, A., 2005, La falla de Caltepec: raíces expuestas de una frontera tectónica de larga vida entre dos terrenos continentales del sur de México: Boletín de la Sociedad Geológica Mexicana, Volumen Conmemorativo del Centenario 57, p. 83–109.
- Erben, H.K., 1956. El Jurásico medio y el Calloviano de México: XX Congreso Geológico Internacional, Monografía, México. D.F., México, 140 p.
- Espejo-Bautista, G., Ortega-Gutiérrez, F., y Valencia-Morales, Y. T., 2016, U-Pb zircon ages of the Sierra de Juárez mylonite complex and their geological implications. In 10th South American Symposium on Isotope Geology, Puerto Vallarta, Mexico, Programs and Abstracts, p. 137.
- Farrel, K. M., 1987, Sedimentology and facies architecture of overbank deposits of the Mississippi River, False River region, Louisiana, in: Ethridge, F.G., Flores, R.M., and Harvey, M. D., eds., Recent Developments in Fluvial Sedimentology: Society of Economic Paleontologists and Mineralogists, Special Publication, v. 39, p. 111–120.
- Fleet, W. F., 1926, Petrological notes on the Old Red Sandstone of the West Midlands: Geological Magazine, vol. 63, no. 11, p. 505-516.

- Fleischer, R. L., Price, P. B., y Walker, R. M., 1965, Effects of temperature, pressure, and ionization of the formation and stability of fission tracks in minerals and glasses: Journal of Geophysical Research, v. 70, n. 6, p. 1497–1502.
- Fleischer, R. L., 1975, Advances in fission track dating: World archaeology, v.7, n. 2, p. 136–150.
- Flores de Dios, A., y Buitrón, B.E., 1982, Revisión y aportes a la estratigrafía de la Montaña de Guerrero: Universidad Autónoma de Guerrero, Serie Técnico Científica, v. 12, p. 1-28.
- Frankel, K. L., Glazner, A. F., Kirby, E., Monastero, F. C., Strane, M. D., Oskin, M. E., Unruh, J.R., Walker, J.D., Anandakrishnan, S., Bartley, J.M., Coleman, D.S., Dolan, J.F., Finkel, R.C., Greene, D., Kylander-Clark, A., Marrero, S., Owen, L. A., y Phillips, F., 2008, Active tectonics of the eastern California shear zone. Field guide to plutons, volcanoes, faults, reefs, dinosaurs, and possible glaciation in selected areas of Arizona, California, and Nevada: Geological Society of America Field Guide, 11, 43-81.
- Frizon de Lamotte, D., Fourdan, B., Leleu, S., Leparmentier, F., y de Clarens, P., 2015, Style of rifting and the stages of Pangea breakup: Tectonics, v. 34, n. 5, p. 1009-1029.
- Galaz, G., Keppie, J. D., Lee, J. K., y Ortega-Rivera, A., 2013, A high-pressure folded klippe at Tehuitzingo on the western margin of an extrusion zone, Acatlán Complex, southern México: Gondwana Research, v. 23, n. 2, p. 641–660.
- Galbraith, R., 1981, On statistical models for fission track counts: Mathematical Geology, v. 13, p. 471–488.
- Galbraith, R. F., y Laslett, G. M., 1993, Statistical models for mixed fission track ages: Nuclear tracks and radiation measurements, v. 21, n. 4, p. 459–470.
- Galehouse, J. S., 1969, Counting of grain mounts number percentage vs number frequency: Journal of Sedimentary Petrology, v. 39, p. 812-815.
- García-Díaz, J.L., 2004, Etude Geologique de la Sierra Madre del Sur aux environs de Chilpancingo et D'Olinalá, Gro.: Une contribution à la connaissance de l'évolution géodynamique de la marge pacifique du Mexique depuis le Jurassique. Géologie appliquée. [Tesis de Doctorado]: France, Université de Savoie, 148 p.
- Garcia, J. A., Mahar, M. A., Goodell, P. C., Molina, C., y Ricketts, J. W., 2021, Petrology, geochemistry, stratigraphy, zircon U–Pb geochronology and Hf isotopic compositions of

subsurface lithologies in northwestern Mesa Central, Durango, Mexico: Implications for the tectonomagmatic evolution of northwestern Mexico: Gondwana Research, v. 93, p. 1-25.

- Garzanti, E., 2016, From static to dynamic provenance analysis–Sedimentary petrology upgraded: Sedimentary Geology, v. 336, p. 3–13.
- Garzanti, E., y Vezzoli, G., 2003, A classification of metamorphic grains in sandstones based on their composition and grade: Journal of Sedimentary Research, v. 73, p. 830–837.
- Gastil, R. G., y Jensky, W., 1973, Evidence for strike-slip displacement beneath the Trans-Mexican volcanic belt. In Proceedings of the Conference on Tectonic Problems of the San Andreas Fault System: Stanford, CA, Stanford University Publications, Geological Sciences, v. 13, p. 171–180.
- Gawthorpe, R.L., y Leeder, M.R., 2000, Tectono-sedimentary evolution of active extensional basins: Basin Research, v. 12, p. 195–218.
- Gazzi, P., 1966, Le arenarie del flysch sopracretaceo dell'Appennino modenese; correlazioni con il flysch di Monghidoro: Mineralogica e Petrografica Acta, v. 12, p. 69–97.
- Godínez-Urban, A., Molina Garza, R. S., Geissman, J. W., y Wawrzyniec, T., 2011, Paleomagnetism of the Todos Santos and La Silla Formations, Chiapas: implications for the opening of the Gulf of Mexico: Geosphere, v. 7, n. 1, p. 145–158.
- Goldhammer, R.K., 1999, Mesozoic sequence stratigraphy and paleogeographic evolution of northeast Mexico, in Bartolini, C., Wilson, J.L., Lawton, T.F., eds., Mesozoic Sedimentary and Tectonic History of North-Central Mexico: Geological Society of America, Special Paper, 340, p. 1–58.
- González-Torres, E., 1989. Geología y paleomagnetismo del área de Tezoatlán, Oaxaca, [Tesis de Licenciatura]: Facultad de Ingeniería, Universidad Nacional Autónoma de México, 188 p.
- Gradstein, F. M., Ogg, J. G., Schmitz, M. D., y Ogg, G. M., 2012, The geologic time scale 2012: Elsevier, Boston, 1144 p.
- Gray, G.G., Lawton, T.F., y Murphy, J.J., 2008, Looking for the Mojave-Sonora megashear in northeastern Mexico: The Geological Society of America Field Guide 14, p. 1–25.
- Guzmán, E.J., 1950, Geología del noreste de Guerrero: Boletín de la Asociación Mexicana de Geólogos Petroleros, v. 2, n. 2, p. 95–156.

- Guzmán, M.D.S., y Velasco-de León, M.P., 2014, Morfología foliar y cuticular de Mexiglossa varia del Jurásico Inferior de la Formación Cuarcítica Cualac Localidad Rosario Nuevo: II Simposio de Paleontología en el sureste de México: Puerto Escondido, Universidad del Mar, Abstracts, p. 51.
- Haq, B.U., Hardenbol, J., y Vail, P.R., 1987, Chronology of fluctuating sea levels since the Triassic: Science 235, 1156–1167.
- Hawkesworth, C., Cawood, P., y Dhuime, B., 2013, Continental growth and the crustal record: Tectonophysics, v. 609, p. 651–660.
- Hein, F. J., y Walker, R. G., 1977, Bar evolution and development of stratification in the gravelly, braided, Kicking Horse River, British Columbia: Canadian Journal of Earth Sciences, v. 14, n. 4, p. 562–570.
- Hernández-Vulpes, R.M., y Rodríguez-Calderón, M., 2012, Análisis estratigráfico de las secuencias Jurásicas de la región Tecocoyunca-Tecomatlán en Puebla [Tesis de licenciatura]: Facultad de Ingeniería, Universidad Nacional Autónoma de México, México, 154 p.
- Heumann, M. J., Johnson, C. L., Webb, L. E., Taylor, J. P., Jalbaa, U., y Minjin, C., 2014, Total and incremental left-lateral displacement across the East Gobi Fault Zone, southern Mongolia: Implications for timing and modes of polyphase intracontinental deformation: Earth and Planetary Science Letters, v. 392, p. 1-15.
- Hurford, A. J., 1990a, International Union of Geological Sciences Subcommission on Geochronology recommendation for the standardization of fission track dating calibration and data reporting. Nuclear Tracks and Radiation Measurements, v. 17, n. 3, p. 233–236.
- Hurford, A.J., 1990b, Standardization of fission-track dating calibration: recommendation by the Fission-Track Working Group of the I.U.G.S. Subcommission on Geochronology. Chemical Geology: Isotope Geoscience Section, v. 80, n. 2, p. 171–178
- Instituto Nacional de Estadística y Geografía (INEGI), 2000, Carta topográfica Tezoatlán de Segura y Luna E14D24, escala 1:50 000: México, 1 mapa.
- Instituto Nacional de Estadística y Geografía (INEGI), 2002, Carta topográfica Olinalá E14D11, escala 1:50 000: México, 1 mapa.
- Instituto Nacional de Estadística y Geografía (INEGI), 2010, Carta topográfica Xochihuehuetlán E14D12, escala 1:50 000: México, 1 mapa. - 158 -

- Instituto Nacional de Estadística y Geografía (INEGI), 2014, Carta topográfica Ahuacuotzingo E14D21, escala 1:50 000: México, 1 mapa.
- Instituto Nacional de Estadística y Geografía (INEGI), 2014, Carta topográfica Tlaxiaco E14D34, escala 1:50 000: México, 1 mapa.
- Instituto Nacional de Estadística y Geografía (INEGI), 2015, Carta topográfica Acatlán de Osorio E14B83, escala 1:50 000: México, 1 mapa.
- Instituto Nacional de Estadística y Geografía (INEGI), 2015, Carta topográfica Tlapa de Comonfort E14D22, escala 1:50 000: México, 1 mapa.
- Iriondo, A., Martínez-Torres, L.M., Kunk, M.J., Atkinson Jr., W.W., Premo, W.R., y McIntosh, W.C., 2005, Northward Laramide thrusting in the Quitovac region, northwestern Sonora, Mexico:
 Implications for the juxtaposition of Paleoproterozoic basement blocks and the Mojave-Sonora megashear hypothesis: Geological Society of America Special Paper 393, p. 631–669.
- Jiménez-Rentería, J., 2004, Estudio palinoestratigráfico de las formaciones Conglomerado Prieto (Grupo Consuelo) y Cuarcita Cualac nov. Nom. (Grupo Tecocoyunca), en la barranca Rosario Nuevo, región Tezoatlán, Oaxaca, [Tesis de Licenciatura]: Facultad de Ingeniería, Universidad, Nacional, Autónoma de México, 288 p.
- Jopling, A. V., y Walker, R. G., 1968, Morphology and origin of ripple-drift cross-lamination, with examples from the Pleistocene of Massachusetts: Journal of Sedimentary Research, v. 38, n. 4, p. 971–984.
- Keppie, J. D., 2004, Terranes of Mexico revisited: A 1.3 billion year odyssey: International Geology Review, v. 46, n. 9, p. 765–794.
- Keppie, J. D., Dostal, J., Ortega-Gutiérrez, F., y López, R., 2001, A Grenvillian arc on the margin of Amazonia: evidence from the southern Oaxacan Complex, southern Mexico: Precambrian Research, v. 112, n. 3-4, p. 165–181.
- Keppie, J. D., Dostal, J., Cameron, K. L., Solari, L. A., Ortega-Gutiérrez, F., y López, R., 2003, Geochronology and geochemistry of Grenvillian igneous suites in the northern Oaxacan Complex, southern Mexico: tectonic implications: Precambrian Research, v. 120, n. 3-4, p. 365–389.

- Keppie, J. D., Dostal, J., Murphy, J. B., y Nance, R. D., 2008a, Synthesis and tectonic interpretation of the westernmost Paleozoic Variscan orogen in southern Mexico: From rifted Rheic margin to active Pacific margin: Tectonophysics, v. 461, n. 1-4, p. 277–290.
- Keppie, J. D., Dostal, J., Miller, B. V., Ramos-Arias, M. A., Morales-Gámez, M., Nance, R. D., Murphy, J.B., Ortega-Rivera, A., Lee, J.K.W, Housh, T., y Cooper, P., 2008b, Ordovician– earliest Silurian rift tholeiites in the Acatlán Complex, southern Mexico: Evidence of rifting on the southern margin of the Rheic Ocean: Tectonophysics, v. 461, n. 1-4, p. 130–156.
- Ketcham, R. A., 2005, Forward and inverse modelling of low-temperature thermochronology data. Reviews in Mineralogy and Geochemistry, v. 58, p. 275–314.
- Ketcham, R. A., Donelick, R. A., y Carlson, W. D., 1999, Variability of apatite fission-track annealing kinetics: III. Extrapolation to geological time scales: American mineralogist, v. 84, n. 9, p. 1235–1255.
- Ketcham, R. A., Carter, A., Donelick, R. A., Barbarand, J., y Hurford, A. J., 2007, Improved modeling of fission-track annealing in apatite: American Mineralogist, v. 92, n. 5-6, p. 799–810.
- Kirsch, M., Keppie, D.J., Murphy, J.B., y Solari, L., 2012, Permian–Carboniferous arc magmatism and basin evolution along the western margin of Pangea: Geochemical and geochronological evidence from the eastern Acatlán Complex, southern Mexico: Geological Society of America Bulletin, v. 124, p. 1607–1628.
- Kirsch, M., Keppie, J. D., Murphy, J. B., y Lee, J. K., 2013, Arc plutonism in a transtensional regime: the late Palaeozoic Totoltepec pluton, Acatlán Complex, southern Mexico: International Geology Review, v. 55, n. 3, p. 263–286.
- Lawton, T.F., y Molina-Garza, R.S., 2014, U-Pb geochronology of the type Nazas Formation and superjacent strata, northeastern Durango, Mexico: Implications of a Jurassic age for continental-arc magmatism in north-central Mexico: Geological Society of America Bulletin, v. 126, n. 9–10, p. 1181–1199.
- Lehmann, C., Osleger, D.A., Montañez, D.A., Sliter, I.P., Arnaud-Vanneau, A., y Banner, J., 1999, Evolution of Cupido and Coahuila carbonate platforms, Early Cretaceous, norteastern Mexico: Geological Society of America, Bulletin, v. 111, n. 7, p. 1010–1029.
- Leopold, L. B., y Wolman, M. G., 1957, River channel patterns: braided, meandering, and straight: US Geological Survey professional paper, p. 282-B.

- López-Ticha, D., 1985, Revisión de la Estratigrafía y potencial petrolero de la Cuenca de Tlaxiaco: Bol. Asoc. Mexicana de Geólogos Petroleros, v. 37, p. 49–92.
- Lozano-Carmona, D. E., y Velasco-de León, M. P., 2016, Jurassic flora in Southeast Mexico: importance and prospects of recent findings in the Mixteco Terrane: Paleontología Mexicana, v. 5, n. 2, p. 87–101.
- Lozano-Carmona, D.E., 2017, Distribución y taxonomía de Ginkgoales (Engler, 1987) y grupos afines del Jurásico del Sur de México, [Tesis de Maestría]: Facultad de Estudios Superiores, Zaragoza, Universidad Nacional Autónoma de México, 107 p.
- Makaske, B., 2001, Anastomosing rivers: a review of their classification, origin and sedimentary products: Earth-Science Reviews, v. 53, n. 3-4, p. 149–196.
- Malone, J. R., Nance, R. D., Keppie, J. D., y Dostal, J., 2002, Deformational history of part of the Acatlán Complex: Late Ordovician–Early Silurian and Early Permian orogenesis in southern Mexico: Journal of South American Earth Sciences, v. 15, n. 5, p. 511–524.
- Mange, M. A., y Maurer, H. F. W., 1992, Heavy minerals in colour. Ed. Chapman and Hall, 1a edición, 147 p.
- Marsaglia, K. M., y Ingersoll, R. V., 1992, Compositional trends in arc-related, deep-marine sand and sandstone: A reassessment of magmatic-arc provenance: Geological Society of America Bulletin, v. 104, pp. 1637-1649.
- Marshall, M. C., 1986, The Middle Jurassic Tecocoyunca Group, Mexico, [Tesis de Maestría]: McMaster University, Hamilton, Ontario, 281 p.
- Martin, A. J., Burgy, K. D., Kaufman, A. J., & Gehrels, G. E., 2011, Stratigraphic and tectonic implications of field and isotopic constraints on depositional ages of Proterozoic Lesser Himalayan rocks in central Nepal. Precambrian Research, v. 185, n. 1-2, p. 1-17.
- Martini, M., Ramírez-Calderón, M., Solari, L., Villanueva-Amadoz, U., Zepeda- Martínez, M., Ortega-Gutiérrez, F., y Elías- Herrera, M., 2016, Provenance analysis of Jurassic sandstones from the Otlaltepec Basin, southern Mexico: Implications for the reconstruction of Pangea break-up: Geosphere, v. 12, p. 1–23.
- Martini, M., y Ortega-Gutiérrez, F., 2018, Tectono-stratigraphic evolution of eastern Mexico during the break-up of Pangea: a review: Earth-Science Reviews, v. 183, p. 38–55.

- Martini, M., Luigi, S., Peña-Guerrero, M., Zepeda-Martínez M., y Montomoli, C., 2020, Guidelines for assessing the provenance of Mesozoic and Cenozoic clastic successions sourced by pre-Jurassic basement complexes in southernmost North America: Journal of Sedimentary Research; v. 90, no. 5, p. 513–532.
- Martiny, B.M., Morán-Zenteno, D.J., Tolson, G., Silva-Romo, y G., López-Martínez, M., 2012, The Salado River fault: reactivation of an Early Jurassic fault in a transfer zone during Laramide deformation in southern Mexico: International Geology Review, v. 54, no. 2, p. 144–164.
- Matthews, K.J., Maloney, K.T., Zahirovic, S., Williams, S.E., Seton, M., y Müller, R.D., 2016, Global plate boundary evolution and kinematics since the late Paleozoic: Global and Planetary Change 146, p. 226–250.
- McLean, J. R., y Jerzykiewicz, T., 1978, Cyclicity, tectonics, and coal: some aspects of fluvial sedimentology in the Brazeau-Paskapoo Formations, Coal Valley area, Alberta, Canada, In: Miall, A.D. (ed) Fluvial sedimentology: Canadian Society of Petroleum Geologists Memoir; v. 5, p. 441–468.
- Meek, S. R., Carrapa, B., y DeCelles, P. G., 2020, Recognizing Allogenic Controls on the Stratigraphic Architecture of Ancient Alluvial Fans in the Western US. Sedimentary System Responses to External Forcings: a Process-Based Perspective, v. 8, n. 215
- Merdith, A. S., Williams, S. E., Brune, S., Collins, A. S., y Müller, R. D., 2019, Rift and plate boundary evolution across two supercontinent cycles: Global and planetary change, 173, 1-14.
- Meza-Figueroa, D., Ruiz, J., Talavera-Mendoza, O., y Ortega-Gutierrez, F., 2003, Tectonometamorphic evolution of the Acatlan Complex eclogites (southern Mexico): Canadian Journal of Earth Sciences, v. 40, n. 1, p. 27–44.
- Miall, A. D., 1988, Architectural elements and bounding surfaces in fluvial deposits: anatomy of the Kayenta Formation (Lower Jurassic), southwest Colorado1: Sedimentary Geology, v. 55, n. 3-4, p. 233-262.
- Miall, A.D., 2006, The Geology of Fluvial Deposits. Sedimentary facies, basin analysis, and petroleum geology: Heidelberg, Germany, Springer, 582 p.
- Middleton, M., Keppie, J. D., Murphy, J. B., Miller, B. V., Nance, R. D., Ortega-Rivera, A., y Lee, J. K., 2007, PTt constraints on exhumation following subduction in the Rheic Ocean from

eclogitic rocks in thevAcatlán complex of southern México. The geology of Peri-Gondwana: The Avalonian-Cadomian belt, adjoining cratons and the Rheic Ocean: Geological Society of America, Special Paper, v. 423, p. 489–509.

- Molina-Garza, R. S., Van der Voo, R., y Urrutia-Fucugauchi, J., 1992, Paleomagnetism of the Chiapas Massif, southern Mexico: Evidence for rotation of the Maya Block and implications for the opening of the Gulf of Mexico: Geological Society of America Bulletin, v. 104, n. 9, p. 1156-1168.
- Molina-Garza, R.S., e Iriondo, A., 2005, La Megacizalla Mojave-Sonora: la hipótesis, la controversia y el estado actual de conocimiento: Boletín de la Sociedad Geológica Mexicana, Volumen Conmemorativo del Centenario Grandes Fronteras Tectónicas de México, Tomo LVII, n. 1, p. 1–26.
- Morales-Gámez, M., Keppie, J. D., y Norman, M., 2008, Ordovician–Silurian rift-passive margin on the Mexican margin of the Rheic Ocean overlain by Carboniferous–Permian periarc rocks: Evidence from the eastern Acatlán Complex, southern Mexico: Tectonophysics, v. 461, n. 1-4, p. 291-310.
- Morán-Zenteno, D., Caballero-Miranda, G., Silva-Romo, G., Ortega-Guerrero, y González-Torres, E., 1993, Jurassic-Cretaceous paleogeographic evolution of the northern Mixteca terrane, southern Mexico: Geofísica Internacional, v. 23, p. 453–473.
- Morán-Zenteno, D. J., Cerca, M., y Keppie, J. D., 2005, La evolución tectónica y magmática cenozoica del suroeste de México: avances y problemas de interpretación: Boletín de la Sociedad Geológica Mexicana, v. 57, n. 3, p. 319-341.
- Morton, A. C., 1985. Heavy Minerals in provenance studies en Zuffa (ed.), Provenance of Arenites: D. Reidel Publishing Company, 249-277 p.
- Murphy, J. B., Keppie, J. D., Nance, R. D., Miller, B. V., Dostal, J., Middleton, M., Fernandez-Suárez, J., Jeffries, T.E., y Storey, C. D., 2006, Geochemistry and U–Pb protolith ages of eclogitic rocks of the Asis Lithodeme, Piaxtla Suite, Acatlán Complex, southern Mexico: tectonothermal activity along the southern margin of the Rheic Ocean: Journal of the Geological Society, v. 163, n. 4, p. 683–695.

- Muttoni, G., Kent, D. V., Garzanti, E., Brack, P., Abrahamsen, N., y Gaetani, M., 2003, Early permian pangea 'B'to late permian pangea 'A': Earth and Planetary Science Letters, n. 215, v. 3–4, p. 379-394.
- Nance, R. D., Miller, B. V., Keppie, J. D., Murphy, J. B., y Dostal, J., 2006, Acatlán Complex, southern Mexico: Record spanning the assembly and breakup of Pangea: Geology, n. 34, v. 10, p. 857–860.
- Nance, R. D., y Murphy, J. B., 2013, Origins of the supercontinent cycle. Geoscience Frontiers, v. 4, n. 4, p. 439–448.
- Nova, G., Chaparro, G. A. B., Silva-Tamayo, J. C., Cardona, A., Rapalini, A., Cortes, P. C. M., Eisenhauer, E., Dussan, K. T., Valencia, V. A., Ramírez, V., y Montes, C., 2019, Jurassic break-up of the Peri-Gondwanan margin in northern Colombia: Basin formation and implications for terrane transfer: Journal of South American Earth Sciences, v. 89, p. 92-117.
- Nuriel, P., Miller, D. M., Schmidt, K. M., Coble, M. A., y Maher, K., 2019, Ten-million years of activity within the Eastern California Shear Zone from U–Pb dating of fault-zone opal: Earth and Planetary Science Letters, v. 521, p. 37-45.
- Nguyen, L. C., y Mann, P., 2016, Gravity and magnetic constraints on the Jurassic opening of the oceanic Gulf of Mexico and the location and tectonic history of the Western Main transform fault along the eastern continental margin of Mexico. Interpretation, v. 4, n. 1, p. SC23-SC33.
- Ochoa-Camarillo, H.R., Buitrón, B.E., y Silva-Pineda, A., 1998, Contribución al conocimiento de la bioestratigrafía, paleoecología y tectónica del Jurásico (anticlinorio de Huayacocotla) en la región de Molango, Hidalgo, Mexico: Revista Mexicana de Ciencias Geológicas, v. 15, p. 57–63.
- Ochoterena, F. M., 1980, Evolución de las unidades morfoestructurales de la región de Diquiyú, Oaxaca: Universidad Nacional Autónoma de México, Instituto de Geografía, Boletín 10, p. 285-317.
- Ortega-Chávez, E., Velasco-de León, M. P., y Jiménez, J. R., 2017, Agathoxylon sp. del Jurásico Inferior, Rosario Nuevo, Oaxaca, México. Paleontología Mexicana, 6(2), 73-77.
- Ortega-Gutiérrez, F., 1975, The pre-Mesozoic geology of the Acatlán area, south Mexico, [Tesis de Doctorado]: University of Leeds, Leeds, 166 p.

- Ortega-Gutiérrez, F., 1978, Estratigrafía del Complejo Acatlán en la Mixteca baja, estados de Puebla y Oaxaca: Revista mexicana de ciencias geológicas, v. 2, n. 2, p. 112–131.
- Ortega-Gutiérrez, F., 1981, Metamorphic belts of southern Mexico and their tectonic significance: Geofísica Internacional, v. 20, n. 3., p. 177–202.
- Ortega-Gutierrez, F., Ruiz, J., y Centeno-Garcia, E., 1995, Oaxaquia, a Proterozoic microcontinent accreted to North America during the late Paleozoic: Geology, v. 23, n. 12, p. 1127–1130.
- Ortega-Gutiérrez, F., Elías-Herrera, M., Reyes-Salas, M., Macías-Romo, C., y López, R., 1999, Late Ordovician–Early Silurian continental collisional orogeny in southern Mexico and its bearing on Gondwana-Laurentia connections: Geology, v. 27, n. 8, p. 719–722.
- Ortega-Gutiérrez, F., Elías-Herrera, M., Morán-Zenteno, D. J., Solari, L., Weber, B., y Luna-González, L., 2018, The pre-Mesozoic metamorphic basement of Mexico, 1.5 billion years of crustal evolution: Earth-Science Reviews, v. 183, p. 2–37.
- Ortega-Obregon, C., Keppie, J. D., Murphy, J. B., Lee, J. K. W., y Ortega-Rivera, A., 2009, Geology and geochronology of Paleozoic rocks in western Acatlán Complex, southern Mexico: evidence for contiguity across an extruded high-pressure belt and constraints on Paleozoic reconstructions: Geological Society of America Bulletin, v. 121, n. 11-12, p. 1678–1694.
- Ortega-Obregón, C., Solari, L., Gómez-Tuena, A., Elías-Herrera, M., Ortega-Gutiérrez, F., y Macías-Romo, C., 2014, Permian–Carboniferous arc magmatism in southern Mexico: U–Pb dating, trace element and Hf isotopic evidence on zircons of earliest subduction beneath the western margin of Gondwana: International Journal of Earth Sciences, v. 103, n. 5, p. 1287–1300.
- Padilla y Sánchez, R.J., 2007, Evolución geológica del sureste mexicano desde el Mesozoico al presente en el contexto regional del Golfo de México: Boletín de la Sociedad Geológica Mexicana, v. LIX, n. 1, p. 19–42.
- Padilla y Sánchez, R. J., 2016, Late Triassic-Late Cretaceous Paleogeography of Mexico and the Gulf of México. Mesozoic of the Gulf Rim and Beyond: New Progress in Science and Exploration of the Gulf of Mexico Basin: Gulf Coast Section, Society of Economic Paleontologists and Mineralogists (Society for Sedimentary Geology), Houston, TX, p. 273.
- Passchier, C. W., y Trouw, R. A., 2005, Microtectonics: Springer Science & Business Media, Germany, 366 p.

- Peace, A.L., Phethean J.J.J., Franke D., Foulger G.R., Schiffer C., Welford J.K., McHone G., Rocchi S., Schnabel M., y Doré A.G., 2020, A review of Pangaea dispersal and Large Igneous Provinces In search of a causative mechanism: Earth-Science Reviews, v. 206, 102902.
- Pieńkowski, G., Martini, M., y Zepeda-Martínez, M., 2019, Bajocian transgressive-regressive sequences of the Tecocoyunca Group, southern Mexico, with maximum flooding surfaces marked by Thalassinoides: Geological Quarterly, 63(3), 449-459.
- Pindell, J.L., 1985, Alleghanian reconstruction and subsequent evolution of the Gulf of Mexico, Bahamas, and Proto-Caribbean: Tectonics, n. 4, p. 1–39.
- Pindell, J.L. y Dewey, J.F., 1982, Permo-Triassic reconstruction of western Pangea and the evolution of the Gulf of Mexico/Caribbean region: Tectonics, v. 1, p. 179–211.
- Pindell, J., y Kennan, L., 2009, Tectonic evolution of the Gulf of Mexico, Caribbean, and northern South America in the mantle reference frame: An update: Geological Society of London Special Publication, v. 328, p. 1–55.
- Pindell, J., Miranda, C. E., Cerón, A., y Hernández, L., 2016, Aeromagnetic map constrains Jurassic– Early Cretaceous synrift, break up, and rotational seafloor spreading history in the Gulf of Mexico: 35th Annual Gulf Coast Section SEPM Foundation Perkins-Rosen Research Conference. GCSSEPM Foundation, Houston, TX, USA, 123-153.
- Pindell, J., Villagómez, D., Molina-Garza, R., Graham, R., y Weber, B., 2021, A revised synthesis of the rift and drift history of the Gulf of Mexico and surrounding regions in the light of improved age dating of the Middle Jurassic salt: Geological Society, London, Special Publications, v. 504, n. 1, p. 29–76.
- Poole, F.G., Perry Jr., W.J., Madrid, R.J., y Amaya-Martínez, R., 2005, Tectonic síntesis of the Ouachita-Marathon-Sonora orogenic margino f southern Laurentia: Stratigraphic and structural implications for timing of deformational events and plate-tectonic model: Geological Society of America Special Paper 393, p. 543–596.
- Ramírez-Calderón, M. G., 2015, Análisis composicional de las areniscas continentales del jurásico de la cuenca Otlaltepec (Puebla, Oaxaca): [Tesis de Licenciatura]: Facultad de Ciencias, Universidad Nacional Autónoma de México, 127 p.

- Ramírez-Calderón, M. G., 2018, Formación Tianguistengo: el registro de un ambiente fluvial del triásico en el sur de México (Puebla, Oaxaca), [Tesis de Maestría]: Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México, 211 p.
- Ramos-Arias, M. A., Keppie, J. D., Ortega-Rivera, A., y Lee, J. W. K., 2008, Extensional Late Paleozoic deformation on the western margin of Pangea, Patlanoaya area, Acatlán Complex, southern Mexico: Tectonophysics, v. 448, n. 1–4, p. 60–76.
- Reading, H.G., 2009, Sedimentary Environments: Processes, Facies and Stratigraphy: John Wiley & Sons, 669 p.
- Reiners, P. W., y Brandon, M. T., 2006, Using thermochronology to understand orogenic erosion. Annual Review of Earth and Planetary Sciences, v. 34, p. 419–466.
- Reyes-Salas, A. M., 2003, Mineralogía y Petrología de los Granitoides Esperanza del Complejo Acatlán, Sur de México, [Tesis de Doctorado]: Universidad Autónoma del Estado de Morelos, 165 p.
- Rodríguez-de la Rosa, R. A., Velasco-de León, M. P., Arellano-Gil, J., y Lozano-Carmona, D. E., 2018, Middle Jurassic ankylosaur tracks from Mexico: Boletín de la Sociedad Geológica Mexicana, v. 70, n. 2, p. 379–395.
- Rogers, J. J., 1996, A history of continents in the past three billion years. The journal of geology, v. 104, n. 1, p. 91–107.
- Rogers, J. J., y Santosh, M., 2003, Supercontinents in Earth history: Gondwana Research, v. 6, n. 3, p. 357–368.
- Ross, M.I., and Scotese, C.R., 1988, A hierarchical tectonic model of the Gulf of Mexico and Caribbean region: Tectonophysics, v. 135, p. 139–168.
- Rubatto, D., 2002, Zircon trace element geochemistry: portioning with garnet and the link between U-Pb ages and metamorphism: Chemical Geology, v. 184, p. 123–138.
- Rubio-Cisneros, I.I. y Lawton, T.F., 2011, Detrital zircon U-Pb ages of sandstones in continental red beds at Valle de Huizachal, Tamaulipas, NE Mexico: Record of Early-Middle Jurassic arc volcanism and transition to crustal extension: Geosphere, v. 7, n. 1, p. 159–170.

- Rueda-Gaxiola, J., y De Anda-García, A., 2011, Petrology of the Consuelo Group in the Tlaxiaco Anticlinorium at Rosario Nuevo, Tezoatlán, Oaxaca, México: Simposio Dr. Zoltan de Cserna: Sesenta años geologizando en México: Instituto de Geología, UNAM, p. 177.
- Sanchez-Zavala, J. L., Ortega-Gutierrez, F., Keppie, J. D., Jenner, G. A., Belousova, E., y Macías-Romo, C., 2004, Ordovician and Mesoproterozoic zircons from the Tecomate Formation and Esperanza granitoids, Acatlán Complex, southern Mexico: local provenance in the Acatlán and Oaxacan complexes: International Geology Review, v. 46, n. 11, p. 1005–1021.
- Sandoval, J., Westermann, G.E.G., 1986, The Bajocian (Jurassic) ammonite fauna of Oaxaca, Mexico: Journal of Paleontology, v. 60, n. 6, p. 1220–1271.
- Saunderson, H. C., y Lockett, F. P., 1983, Flume Experiments on Bedforms and Structures at the Dune-Plane Bed Transition, in Collinson JD, Lewin J., eds., Modern and ancient fluvial systems: International Association of Sedimentology Special Publication, v. 6, p. 49–58.
- Schultz, A.W., 1984, Subaerial debris-flow deposition in the upper Paleozoic Cutler Formation, western Colorado: Journal of Sedimentary Research, v. 54, n. 3, p. 759–772.
- Siivola, J., y Schmid, R., 2007, List of mineral abbreviations. Metamorphic rocks: A classification and Glossary of Terms: Recommendations of the International Union of geological Sciences Subcommission on the Systematics of metamorphic rocks, p. 93–110.
- Silva-Pineda, A., 1969, Plantas fósiles del Jurásico Medio de Tecomatlán, Estado de Puebla: Universidad Nacional Autónoma de México, Instituto de Geología. Paleontología Mexicana, v. 27, p. 3–77.
- Silva-Romo, G., Mendoza-Rosales, C.C., Campos-Madrigal, E., Centeno-García, E., 2011, Formación La Mora, Unidad estratigráfica nueva del Triásico en el Terreno Mixteca (Noroeste de Huajuapan de León, Oax., México). Sedimentología y su significado: Simposium en Honor del Dr. Zoltan De Cerna, Distrito Federal, México, Instituto de Geología, Universidad Nacional Autónoma de México, p. 114-115.
- Silva-Romo, G., Mendoza-Rosales, C.C., Campos-Madrigal, E., Centeno-García, E., y Peralta-Salazar, R., 2015, Early Mesozoic Southern Mexico–Amazonian connection based on U–Pb ages from detrital zircons: The La Mora Paleo-River in the Mixteca Terrane and its paleogeographic and tectonic implications: Gondwana Research, v. 28, n. 2, p. 689–701.

- Silva-Romo, G., Mendoza-Rosales, C. C., Campos-Madrigal, E., Morales-Yáñez, A., de la Torre-González, A. I., y Nápoles-Valenzuela, J. I., 2018, Recycling of Amazonian detrital zircons in the Mixteco terrane, southern Mexico: Paleogeographic implications during Jurassic-Early Cretaceous and Paleogene times: Journal of South American Earth Sciences, n. 83, p. 210– 226.
- Silver, L.T., y Anderson, T.H., 1974, Possible left-lateral early to middle Mesozoic disruption of the southwestern North American craton margin: Geological Society of America Abstracts with Programs, v. 6, no. 7, p. 955–956.
- Sláma, J., Košler, J., Condon, D., Crowley, J., Gerdes, A., Hanchar, J., Horstwood, M., Morris, G., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M., y Whitehouse, M.J., 2008, Plešovice zircon—A new natural reference material for U–Pb and Hf isotopic microanalysis: Chemical Geology, v. 249, p. 1–35.
- Smith, N. D., Cross, T. A., Dufficy, J. P., y Clough, S. R., 1989, Anatomy of an avulsion: Sedimentology, v. 36, n. 1, p. 1–23.
- Solari, L. A., Dostal, J., Gutiérrez, F. O., y Keppie, J. D., 2001, The 275 Ma arc-related La Carbonera stock in the northern Oaxacan Complex of southern Mexico: U-Pb geochronology and geochemistry: Revista Mexicana de Ciencias Geológicas, v. 1, n. 1, p. 149–161.
- Solari, L. A., Keppie, J. D., Ortega-Gutiérrez, F., Cameron, K. L., Lopez, R., y Hames, W. E., 2003, 990 and 1100 Ma Grenvillian tectonothermal events in the northern Oaxacan Complex, southern Mexico: roots of an orogen: Tectonophysics, v. 365, n. 1–4, p. 257–282.
- Solari, L. A., Keppie, J. D., Gutiérrez, F. O., Cameron, K. L., y López, R., 2004, ~ 990 Ma peak granulitic metamorphism and amalgamation of Oaxaquia, Mexico: U Pb zircon geochronological and common Pb isotopic data: Revista Mexicana de Ciencias Geológicas, n. 21, v. 2, p. 212–225.
- Solari, L.A., Ortega-Gutiérrez, F., Elías-Herrera, M., Ortega-Obregón, C., Macías-Romo, C., y Reyes-Salas M., 2014, Detrital provenance of the Grenvillian Oaxacan Complex, southern Mexico: a zircon perspective: International Journal of Earth Science, v. 103, p. 1301–1315.
- Solari, L.A., González-León, C. M., Ortega-Obregón, C., Valencia-Moreno, M., y Rascón-Heimpel, M.A., 2018, The Proterozoic of NW Mexico revisited: U–Pb geochronology and Hf isotopes

of Sonoran rocks and their tectonic implications: International Journal of Earth Sciences, v. 107, no. 3, p. 845–861.

- Solari, L. A., y Tanner, M., 2011, UPb. age, a fast data reduction script for LA-ICP-MS U-Pb geochronology: Revista Mexicana de Ciencias Geológicas, v. 28, n. 1, p. 83–91.
- Spencer, C.J., Kirkland, C.L., y Taylor, R.J.M., 2016, Strategies towards statistically robust interpretations of in situ U–Pb zircon geochronology: Geoscience Frontiers, v. 7, no. 4, p. 581–589.
- Spencer, C. J., Roberts, N. M. W., y Santosh, M., 2017, Growth, destruction, and preservation of Earth's continental crust. Earth-Science Reviews, v. 172, p. 87–106.
- Stacey, J. T., y Kramers, J.D., 1975, Approximation of terrestrial lead isotope evolution by a twostage model: Earth and planetary science letters, v. 26, n. 2, p. 207–221.
- Stipp, M., Stünitz, H., Heilbronner, R., y Schmid, S. M., 2002, The eastern Tonale fault zone: a 'natural laboratory'for crystal plastic deformation of quartz over a temperature range from 250 to 700 C: Journal of structural geology, v. 24, n. 12, p. 1861–1884.
- Sundborg A., 1956, The River Klaralven: a study of fluvial processes: Geogr. Ann., v. 38, p. 127–316.
- Suter, M., 1987. Structural traverse across the Sierra Madre Oriental fold-thrust belt in east-central Mexico: America Bulletin, Geological Society of America Bulletin, 98, p. 249–264.
- Tagami, T., y O'Sullivan, P. B., 2005, Fundamentals of fission-track thermochronology: Reviews in Mineralogy and Geochemistry, v. 58, n. 1, p. 19–47.
- Talavera-Mendoza, O., Ruiz, J., Gehrels, G. E., Meza-Figueroa, D. M., Vega-Granillo, R., y Campa-Uranga, M. F., 2005, U–Pb geochronology of the Acatlán Complex and implications for the Paleozoic paleogeography and tectonic evolution of southern Mexico: Earth and Planetary Science Letters, v. 235, n. 3-4, p. 682–699.
- Tolson, G., 2005, La falla Chacalapa en el sur de Oaxaca: Boletín de la Sociedad Geológica Mexicana, v. 57, n. 1, p. 111–122.
- Van Bendegom L., 1947, Eenige beschouwingen over riviermorphologie en rivierbetering. De Ingenieur, v. 59, n. 4, p. 1–11.

- Van der Voo, R., 1993, Paleomagnetism of the Atlantic. Cambridge University Press, Tethys and Iapetus oceans, 412 p.
- Van der Voo, R., French, R., 1974, Apparent polar wandering for the Atlantic-bordering continents: Late Carboniferous to Eocene: Earth-Science Reviews, v.10, n. 2, p. 99–119.
- Vega-Granillo, R., Talavera-Mendoza, O., Meza-Figueroa, D., Ruiz, J., Gehrels, G. E., López-Martínez, M., y de la Cruz-Vargas, J. C., 2007, Pressure-temperature-time evolution of Paleozoic high-pressure rocks of the Acatlán Complex (southern Mexico): implications for the evolution of the Iapetus and Rheic Oceans: Geological Society of America Bulletin, v. 119, n. 9-10, p. 1249–1264.
- Verde-Ramírez, A., 2015, Relación entre la tectónica y la sedimentación del Jurásico, Santo Domingo Tianguistengo, Oaxaca [Tesis de maestría]: Instituto de Geología, Universidad Nacional Autónoma de México, 101 p.
- Vermeesch, P., 2013, Multi-sample comparison of detrital age distributions: Chemical Geology, v. 341, p. 140–146.
- Vermeesch, P., 2018, IsoplotR: a free and open toolbox for geochronology: Geoscience Frontiers, v.9, p.1479–1493
- Vite del Ángel, A. O., 2014, Estudio petrológico de la secuencia basal del Grupo Tecocoyunca (sensu Jiménez Rentería, J., 2004) en la cañada de Rosario Nuevo, Municipio de Tezoatlán, Oax [Tesis de Licenciatura]: Instituto Politécnico Nacional, Escuela Superior de Ingeniería y Arquitectura, Unidad Ticomán, 233 p.
- Wang, C., Mitchell, R. N., Murphy, J. B., Peng, P., y Spencer, C. J., 2020, The role of megacontinents in the supercontinent cycle: Geology, v. 49, n. 4, p. 402–406.
- Weber, B., y Schulze, C. H., 2014, Early Mesoproterozoic (> 1.4 Ga) ages from granulite basement inliers of SE Mexico and their implications on the Oaxaquia concept–Evidence from U-Pb and Lu-Hf isotopes on zircon: Revista Mexicana de Ciencias Geológicas, v. 31, n. 3, p. 377– 394.
- Weissmann, G. S., Hartley, A. J., Nichols, G. J., Scuderi, L. A., Olson, M., Buehler, H., y Banteah, R., 2010, Fluvial form in modern continental sedimentary basins: distributive fluvial systems: Geology, v. 38, n. 1, p. 39–42.
- Westermann, G. E., 1981, The Upper Bajocian and Lower Bathonian (Jurassic) Amonite faunas of Oaxaca, Mexico and West-Tethyan affinities: Paleontología Mexicana, v. 46, 68 p.
- Westermann, G.E.G., Corona, R., y Carrasco, R., 1984, The Andean Mid-Jurassic Neuqueniceras ammonite assemblage of Cualac, México, en Westermann, G.E.G. (ed.), Jurassic–Cretaceous biochronology and palaeogeography of North America: Geological Association of Canada, Special Paper, v. 27, p. 99–112.
- Willis, B. J., y Behrensmeyer, A. K., 1994, Architecture of Miocene overbank deposits in northern Pakistan: Journal of Sedimentary Research, v. 64, n. 1b, p. 60–67.
- Winter, J. D., 2014, Principles of Igneous and Metamorphic Petrology: United States of America, Pearson, 738 p.
- Yardley, B. W. D., 1989, An introduction to metamorphic petrology: Harlow: Longman, New York, John Wiley, 248 p.
- Young, A., Flament, N., Maloney, K., Williams, S., Matthews, K., Zahirovic, S., y Müller, R. D., 2019, Global kinematics of tectonic plates and subduction zones since the late Paleozoic Era: Geoscience Frontiers, v. 10, n. 3, p. 989–1013.
- Zhang, K., Wu, S., Feng, W., Zhang, J., y Wen, S., 2020, Bar dynamics in a sandy braided river: Insights from sediment numerical simulations: Sedimentary Geology, v. 396, 105557.
- Zepeda-Martínez, M., Martini, M., y Solari, L., 2018, A major provenance change in sandstones from the Tezoatlán basin, southern Mexico, controlled by Jurassic, sinistral normal motion along the Salado River fault: implications for the reconstruction of Pangea: Journal of South American Earth Science, v. 86, p. 447–460.

Apéndice A. GEOCRONOLOGÍA DE CIRCONES

h h			RELACIONES ISOTÓPICAS CORREGIDAS													EDAI	DES C	ORREGIDA	S (Ma)		
	Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor edad (Ma)	±2s	Disc %
$ \begin{array}{c} \hline records & 1.44 \\ records & 1.44 \\ records & 1.47 \\ records & 1.4$	Zircon-82	308.8	285.2	0.9236	0.0539	0.0025	0.388	0.021	0.05294	0.0008	0.01673	0.0006	0.12941	332.5	4.9	335.3	15	349	100	332.5	4.9	0.8
Zuron-75 487 242 0.0436 0.0022 0.412 0.0011 0.01823 0.0007 0.4262 358.6 6.5 357.6 15 354 88 88.2 0.5 0.0 Zircon-11 7.70 499 0.8754 0.0056 0.0023 0.582 0.0074 0.0015 0.02271 0.0008 0.1123 7.4 6.5 3.7 7.8 8.8 4.62 1 8.4 4.61 6.5 0.7 Zircon-70 238 0.0179 0.022 0.0078 0.0212 0.0015 0.0124 4.83.2 7.4 4.66 2.0 0.47 0.001 0.011 0.0183 0.0015 0.0124 4.83.2 7.4 4.66 2.0 0.46 0.41 1.8 8.7 1.8 3.8 4.5 1.8 3.0 1.8 3.0 0.0015 0.0124 0.015 0.012 0.015 0.013 0.015 0.013 0.015 0.013 0.011 0.014 0.017 <th< td=""><td>Zircon-54</td><td>348</td><td>240</td><td>0.6897</td><td>0.0534</td><td>0.0023</td><td>0.409</td><td>0.022</td><td>0.05602</td><td>0.00098</td><td>0.01728</td><td>0.00062</td><td>0.29482</td><td>351.4</td><td>6</td><td>347.6</td><td>16</td><td>330</td><td>98</td><td>351.4</td><td>6</td><td>-1.1</td></th<>	Zircon-54	348	240	0.6897	0.0534	0.0023	0.409	0.022	0.05602	0.00098	0.01728	0.00062	0.29482	351.4	6	347.6	16	330	98	351.4	6	-1.1
Ziccon-17 114.3 111.8 0.9781 0.00549 0.00549 0.00849 0.00854 0.00854 0.00854 0.00854 0.00854 0.00854 0.00854 0.00854 0.00854 0.00854 0.00854 0.00854 0.00854 0.00854 0.02271 0.00085 0.22890 443.3 8.8 46.2 1 8.4 42 1 44.8 1 44.8 1 44.8 1 44.8 1 44.8 1 44.8 1 44.8 1 44.8 1 44.8 1 44.8 1 44.8 1 44.8 1 44.8 1 44.8 44.8 44.8 44.8 24.9 24.8 44.8 24.9 24.8 44.8 24.9 24.8 44.8 24.9 24.8 44.8 24.9 24.8 44.8 24.9 24.8 44.8 24.9 24.8 44.8 24.8 44.8 24.8 44.8 24.9 24.8 44.8 24.9 24.8	Zircon-75	487	242	0.4969	0.0536	0.0022	0.422	0.022	0.05715	0.0011	0.01823	0.00072	0.49262	358.2	6.5	358.6	15	354	88	358.2	6.5	0.1
Zircon-17 570 499 0.8754 0.0366 0.0023 0.02273 0.00083 0.20895 461.7 6.5 465.1 18 472 88 461.7 6.5 465.1 18 472 88 461.7 6.5 462.1 18 472 88 461.7 6.5 462.1 18 472 88 461.7 6.5 463.1 88 461.7 6.5 463.1 88 463.7 88 462 11 46.6 Zircon-37 65.9 0.0391 0.0039 0.0032 0.0012 0.0128 0.0101 0.0174 51.67 7.3 52.49 19 57.6 80 51.7 7.3 52.49 19 57.6 80 51.7 7.3 52.49 10 63.3 81.6 43.0 91.0 7.8 51.8 7.3 52.4 81.0 53.7 81.8 81.0 53.7 81.0 81.0 81.0 81.0 81.0 81.0 81.0 <t< td=""><td>Zircon-51</td><td>114.3</td><td>111.8</td><td>0.9781</td><td>0.0549</td><td>0.0032</td><td>0.451</td><td>0.028</td><td>0.05983</td><td>0.001</td><td>0.01849</td><td>0.0008</td><td>-0.16251</td><td>374.6</td><td>6.3</td><td>377</td><td>20</td><td>390</td><td>130</td><td>374.6</td><td>6.3</td><td>0.6</td></t<>	Zircon-51	114.3	111.8	0.9781	0.0549	0.0032	0.451	0.028	0.05983	0.001	0.01849	0.0008	-0.16251	374.6	6.3	377	20	390	130	374.6	6.3	0.6
Zircon-90 251 660 2.6295 0.0567 0.0025 0.0745 0.0015 0.02736 0.04075 0.02368 0.00075 0.4352 4.483.2 7.4 4.486 20 4.78 21 2.2 0.4332 7.4 0.061 0.02368 0.0005 0.71249 499 11 507 23 524 91 51.5 7.3 51.8 7.3 51.8 7.3 7.3 18 23 7.4 0.6307 0.51.5 7.3 51.8 51.5 7.3 51.8 51.5 7.3 18 23 16.4 9.3 22.8 460 10.5 10.8 31.7 13.3 10.3 0.0376 0.031 0.0435 0.0013 0.0227 0.011 0.0137 0.014 0.01877 10.3 12.3 2.4 40.3 2.2 40.3 2.2 40.3 2.2 40.3 2.2 40.3 2.3 40.3 2.3 40.3 2.4 40.3 2.4 40.3 2.	Zircon-17	570	499	0.8754	0.0566	0.0023	0.582	0.029	0.07425	0.0011	0.02271	0.00083	0.20806	461.7	6.5	465.1	18	472	88	461.7	6.5	0.7
Zircon-79 421 282 0.6698 0.0579 0.0052 0.012 0.00784 0.0012 0.00286 0.0118 0.00286 0.0118 0.00286 0.0119 0.01288 0.0015 0.01238 0.0015 0.0120 0.1515 7.3 524 10 515.7 7.3 524 10 515.7 7.3 524 10 515.7 7.3 524.9 10.7 83 825 7.3 1.8 Zircon-75 616 4.93 0.113 0.0673 0.0013 0.0684 0.0013 0.02238 0.0014 0.0122581 0.511 6.6 8.3 2.5 511 2.5 518 2.5 518 2.5 518 2.5 518 2.5 518 2.5 518 2.5 518 2.5 518 2.5 518 2.5 518 2.5 518 2.5 518 2.5 518 2.5 518 2.5 518 2.5 518 2.5 518 2.5	Zircon-93	251	660	2.6295	0.0567	0.0029	0.578	0.032	0.0745	0.0015	0.02273	0.00075	0.26929	463.3	8.8	462	21	478	110	463.3	8.8	-0.3
Zicon-47 285 49 0.1719 0.0582 0.0027 0.649 0.888 0.0015 0.71249 499 11 507 23 529 100 499 11 1.5 Zircon-87 6591 6433 0.8515 0.73 0.051 0.0632 0.0012 0.0188 0.0115 0.1704 516.4 8.9 522 55 18 1.0 515.7 7.3 524.9 0.01 0.02281 521.1 9.6 537 2.6 0.001 0.0227.9 0.01 0.02281 521.1 9.6 537 2.5 570 1.0 52.7 570 1.0 52.7 570 1.0 52.7 570 1.0 52.7 1.0 52.7 1.0 52.7 1.0 52.7 1.0 52.7 1.0 52.7 1.0 52.7 1.0 52.7 1.0 52.7 1.0 52.7 1.0 52.7 1.0 53.7 1.0 1.0 1.0 1.0 1.0	Zircon-39	421	282	0.6698	0.0579	0.0025	0.612	0.031	0.07784	0.0012	0.02368	0.00086	0.45154	483.2	7.4	486	20	512	92	483.2	7.4	0.6
Ziccon-88 957 2.99 0.0312 0.06733 0.0832 0.0012 0.0125 0.03027 515.7 7.3 324.9 19 576 80 515.7 7.3 124 517.7 7.3 524.9 19 576 80 515.7 7.3 124 157.7 13 524.9 19 557 80 515.4 80 2.2 2.2 2.2 124 151.4 80 512.4 8.4 40 633.7 2.6 6001 0.0233 0.0016 0.02231 524.1 8.4 535 2.5 600 0.014 527.5 9.01 2.2 510.1 40 527.5 9.03 10.3 0.22 510.1 40 527.5 9.03 10.3 0.22 510.1 0.03 0.042 0.043 0.042 0.043 0.042 0.0233 0.011 0.033 0.013 0.043 0.0492 0.0233 0.014 0.0433 0.014 0.0238 0.011 0.033 <	Zircon-07	285	49	0.1719	0.0582	0.0027	0.649	0.038	0.0805	0.0019	0.0238	0.0015	0.71249	499	11	507	23	529	100	499	11	1.6
Zircon-7 65.9 64.93 0.9851 0.0056 0.0038 0.0615 0.0238 0.0011 0.1704 516.4 8.9 502 28 400 150 516.4 8.9 502 28 400 150 516.4 8.9 502 28 600 150 516.4 8.9 502 28 600 150 516.4 8.9 502 28 600 150 63.0 27.0 600 150 600 10016 0.02230 0016 0.02230 0016 0.02230 0016 0.02230 0016 0.02230 0016 0.02230 0016 0.02230 0016 0.0230 0.0016 0.0230 0.0016 0.0230 0.0016 0.0230 0.001 0.013 0.641 0.04587 0.017 0.031 0.6491 0.331 8.4 7.0 0.011 0.014 0.0261 0.0031 0.014 0.014 0.016 0.0231 0.011 0.0143 0.010 0.011 0.011	Zircon-88	957	29.9	0.0312	0.05936	0.0022	0.6773	0.031	0.08329	0.0012	0.0188	0.0015	0.63027	515.7	7.3	524.9	19	576	80	515.7	7.3	1.8
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Zircon-57	65.91	64.93	0.9851	0.0566	0.0038	0.632	0.044	0.0834	0.0015	0.02538	0.0011	0.1704	516.4	8.9	502	28	460	150	516.4	8.9	-2.9
Zircon-79 80 121 1.5125 0.00540 0.0024 0.0016 0.02273 0.001 0.022731 52.11 9.6 537 26 600 130 52.11 9.6 337 25 557 150 130 521.1 9.6 130 521.1 9.6 130 521.1 9.6 130 521.1 9.6 130 521.1 9.6 130 522.1 7.8 133 22 501 140 527.5 9.9 531 29 510 140 527.5 9.9 531 29 510 140 527.5 9.9 531 29 510 140 527.5 9.9 531 23 150 100 310 527.1 9.9 157.1 0.8012 0.0011 0.00281 0.0011 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.00	Zircon-29	148.6	47.3	0.3183	0.0578	0.0031	0.668	0.04	0.08395	0.0013	0.0267	0.0014	0.018977	519.6	7.8	518	25	518	120	519.6	7.8	-0.3
Zircon-76 13.8.8 3.4.7 0.250 0.06 0.0013 0.066 0.0013 0.0015 0.0014 0.04251 52.7.7 9.9 53.1 29 570 120 52.4.7 8.4 1.9 Zircon-86 92.5 92.6 0.3166 0.006 0.0025 0.0017 0.0023 0.0014 0.04871 52.7.5 9.9 53.1 29 54.2 6.0 10.0 22.1 9.9 84.2 6.0 10.0 22.1 9.9 84.2 20.0 9.0 9.7 2.0 0.0014 0.0021 0.0034 0.033 0.033 0.001 0.0021 0.0034 0.034 53.1 8.4 53.1 8.4 53.2 2.0 10.0 33.1 8.4 2.4 65.6 11.0 53.1 8.4 2.2 2.0 10.0 33.1 8.4 5.2 2.2 10.0 53.1 8.4 5.2 2.2 10.0 53.1 8.4 5.2 2.2 10.0 <t< td=""><td>Zircon-79</td><td>80</td><td>121</td><td>1.5125</td><td>0.0596</td><td>0.0034</td><td>0.694</td><td>0.041</td><td>0.0842</td><td>0.0016</td><td>0.02573</td><td>0.001</td><td>0.022581</td><td>521.1</td><td>9.6</td><td>537</td><td>26</td><td>600</td><td>130</td><td>521.1</td><td>9.6</td><td>3.0</td></t<>	Zircon-79	80	121	1.5125	0.0596	0.0034	0.694	0.041	0.0842	0.0016	0.02573	0.001	0.022581	521.1	9.6	537	26	600	130	521.1	9.6	3.0
Zircon-28 59.7 44.53 0.7588 0.00573 0.0036 0.0083 0.0014 0.0448871 527.5 9.9 531 22 510 140 527.5 9.9 531 22 510 140 527.5 9.9 531 23 524 511 533 22 514 8.7 531 23 551 153	Zircon-76	138.8	34.7	0.2500	0.06	0.0033	0.696	0.042	0.0846	0.0015	0.0255	0.0016	-0.22301	524.7	8.4	535	25	570	120	524.7	8.4	1.9
$ \begin{array}{c} 2 \mbox{rcon-64} & 292.5 & 92.6 & 0.3166 & 0.06 & 0.0025 & 0.692 & 0.037 & 0.0854 & 0.0019 & 0.0273 & 0.0013 & 0.64927 & 528.3 & 11 & 533 & 22 & 594 & 89 & 528.3 & 11 & 0.92 \\ 2 \mbox{rcon-65} & 17.9 & 18.5 & 0.8012 & 0.0381 & 0.003 & 0.689 & 0.039 & 0.00859 & 0.0016 & 0.02761 & 0.001 & 0.03761 & 531.4 & 8.7 & 531 & 23 & 550 & 110 & 531.4 & 8.7 & -0.1 \\ 2 \mbox{rcon-65} & 191 & 157.1 & 0.8225 & 0.0611 & 0.003 & 0.732 & 0.04 & 0.0869 & 0.001 & 0.02648 & 0.0011 & -0.0849 & 533.1 & 8.4 & 546 & 23 & 558 & 110 & 531 & 8.4 & -24 \\ 2 \mbox{rcon-62} & 191 & 157.1 & 0.8225 & 0.0611 & 0.003 & 0.732 & 0.04 & 0.0869 & 0.0014 & 0.02628 & 0.00091 & 0.45821 & 537 & 13 & 556 & 24 & 656 & 110 & 537 & 13 & 34 \\ 2 \mbox{rcon-54} & 19.9 & 136 & 0.9305 & 0.0577 & 0.0057 & 0.0036 & 0.0870 & 0.0014 & 0.02673 & 0.0011 & 0.094329 & 5401 & 9.4 & 542 & 23 & 558 & 110 & 5401 & 9.7 & -21 \\ 2 \mbox{rcon-74} & 17.3 & 85 & 0.4518 & 0.0657 & 0.0037 & 0.686 & 0.077 & 0.0061 & 0.02673 & 0.001 & -0.14903 & 5404 & 9.2 & 554 & 24 & 613 & 120 & 5404 & 9.7 & -21 \\ 2 \mbox{rcon-74} & 14.3 & 0.2594 & 0.0858 & 0.0022 & 0.774 & 0.041 & 0.0874 & 0.0016 & 0.02673 & 0.001 & -0.14903 & 5404 & 9.2 & 554 & 24 & 613 & 120 & 5404 & 9.7 & -2.5 \\ 2 \mbox{rcon-44} & 37 & 114.3 & 0.2594 & 0.058 & 0.0032 & 0.774 & 0.048 & 0.0027 & 0.0344 & 0.002 & -0.046782 & 544 & 16 & 541 & 47 & 520 & 240 & 544 & 16 & -66 \\ 2 \mbox{rcon-74} & 14.3 & 0.2591 & 0.0668 & 0.067 & 0.088 & 0.0027 & 0.0344 & 0.002 & -0.046782 & 544 & 16 & 541 & 47 & 520 & 240 & 544 & 16 & -66 \\ 2 \mbox{rcon-74} & 14.9 & 0.0512 & 0.057 & 0.0038 & 0.077 & 0.088 & 0.0027 & 0.014 & 0.0163 & 5441 & 9.3 & -252 & 24 & 501 & 110 & 5441 & 9.3 & -252 \\ 2 \mbox{rcon-74} & 14.9 & 0.0619 & 0.0058 & 0.077 & 0.088 & 0.0012 & 0.0248 & 0.0011 & 0.1163 & 5441 & 9.3 & 252 & 24 & 501 & 110 & 5441 & 9.3 & -252 \\ 2 \mbox{rcon-74} & 13.9 & 0.540 & 0.0059 & 0.0053 & 0.077 & 0.088 & 0.0017 & 0.0773 & 0.0013 & 0.0774 & 0.041 & 0.0771 & 0.058 & 0.0071 & 0.0738 & 0.001 & 0.0774 & 0.041 & 0.0771 & 0.048 & 0.0271 & 0.0013 & 0.0$	Zircon-28	59.7	45.3	0.7588	0.0573	0.0036	0.693	0.048	0.0853	0.0017	0.0283	0.0014	0.045871	527.5	9.9	531	29	510	140	527.5	9.9	0.7
Zircon-46 79.37 25.7 0.3238 0.0612 0.0034 0.712 0.044 0.0855 0.0017 0.0308 0.0022 0.1593 529.1 9.9 544 26 630 130 521.4 9.7 Zircon-65 197 123 0.6244 0.0581 0.003 0.039 0.0893 0.0011 0.02616 0.0011 0.0034 531.4 8.7 531.4 8.7 531.4 8.7 531.4 8.7 531.4 8.7 531.4 8.7 531.4 8.7 531.4 8.7 531.4 8.7 531.4 8.7 531.4 8.7 531.4 8.7 531.4 8.7 531.8 8.4 521.4 9.9 7.03 0.015 0.0012 0.0263 0.00091 0.04829 540.1 9.7 541.1 9.7 541.1 9.7 211 Zircon-43 147.3 0.33 0.407 0.0874 0.0016 0.02667 0.0011 -0.0173 541.1 9.7 542.1 14 513 8.4 -1.7 Zircon-43 147 142.2 133 8.9 8.4 <td>Zircon-69</td> <td>292.5</td> <td>92.6</td> <td>0.3166</td> <td>0.06</td> <td>0.0025</td> <td>0.692</td> <td>0.037</td> <td>0.0854</td> <td>0.0019</td> <td>0.0273</td> <td>0.0013</td> <td>0.64927</td> <td>528.3</td> <td>11</td> <td>533</td> <td>22</td> <td>594</td> <td>89</td> <td>528.3</td> <td>11</td> <td>0.9</td>	Zircon-69	292.5	92.6	0.3166	0.06	0.0025	0.692	0.037	0.0854	0.0019	0.0273	0.0013	0.64927	528.3	11	533	22	594	89	528.3	11	0.9
$ \begin{array}{c} Zircon-68 & 1479 & 118.5 & 0.8012 & 0.078 & 0.039 & 0.089 & 0.001 & 0.02616 & 0.001 & 0.037361 & 531.4 & 8.7 & 531 & 23 & 550 & 110 & 531.4 & 8.7 & -0.1 \\ Zircon-62 & 191 & 157.1 & 0.8225 & 0.0611 & 0.003 & 0.732 & 0.04 & 0.0869 & 0.0014 & 0.02618 & 0.0011 & -0.0849 & 533.1 & 84 & 546 & 23 & 589 & 110 & 533.1 & 8.4 \\ Zircon-62 & 191 & 157.1 & 0.8225 & 0.0611 & 0.003 & 0.732 & 0.04 & 0.0869 & 0.0014 & 0.02632 & 0.00991 & 0.45821 & 533 & 13 & 556 & 24 & 656 & 110 & 537 & 13 & 3.4 \\ Zircon-84 & 117.3 & 55 & 0.4518 & 0.0589 & 0.029 & 0.703 & 0.04 & 0.0874 & 0.0016 & 0.02632 & 0.00995 & 0.078765 & 538 & 84 & 529 & 22 & 530 & 110 & 540.1 & 9.4 & -0.4 \\ Zircon-74 & 107.3 & 85.5 & 0.7782 & 0.0567 & 0.0037 & 0.063 & 0.047 & 0.0016 & 0.02673 & 0.0011 & 0.04329 & 540.1 & 9.4 & 542 & 23 & 538 & 110 & 540.1 & 9.4 & -0.4 \\ Zircon-74 & 147.3 & 14.3 & 0.3294 & 0.0588 & 0.0022 & 0.724 & 0.0874 & 0.0016 & 0.02673 & 0.0011 & 0.14903 & 540.4 & 9.2 & 554 & 24 & 6151 & 120 & 540.4 & 9.2 & -2.1 \\ Zircon-04 & 347 & 114.3 & 0.3294 & 0.0588 & 0.0022 & 0.708 & 0.0877 & 0.0344 & 0.004 & 0.02673 & 0.001 & 0.148573 & 542 & 7.6 & 543.1 & 21 & 538 & 92 & 542 & 7.6 & 0.2 \\ Zircon-26 & 126 & 82.3 & 0.6532 & 0.0573 & 0.0032 & 0.687 & 0.04 & 0.0888 & 0.0024 & 0.02481 & 0.0011 & 0.10163 & 544.1 & 9.3 & 529 & 24 & 501 & 110 & 544.1 & 9.3 & -2.9 \\ Zircon-78 & 72.97 & 1.105 & 0.632 & 0.0688 & 0.0023 & 0.078 & 0.088 & 0.0012 & 0.0278 & 0.0011 & 0.0163 & 544.1 & 9.3 & 529 & 24 & 501 & 110 & 544.1 & 9.3 & -2.9 \\ Zircon-78 & 73 & 95.4 & 1.3068 & 0.00668 & 0.0732 & 0.088 & 0.0024 & 0.0278 & 0.0011 & 0.0163 & 549.1 & 9.6 & 549 & 21 & 568 & 92 & 549.1 & 9.6 & 0.0 \\ Zircon-78 & 73 & 95.4 & 1.058 & 0.0269 & 0.0035 & 0.778 & 0.088 & 0.0012 & 0.0278 & 0.0011 & 0.01743 & 557.2 & 10 & 564 & 27 & 560 & 130 & 577.2 & 10 & 2.2 \\ Zircon-78 & 73 & 95.4 & 1.508 & 0.0666 & 0.0441 & 0.771 & 0.054 & 0.0928 & 0.0011 & 0.01743 & 557.2 & 10 & 564 & 27 & 560 & 130 & 577.2 & 10 & 2.2 \\ Zircon-78 & 74.9 & 0.558 & 0.0579 & 0.043 & 0.0797 & 0.0938 & 0.0012 & 0.0278 & 0.00$	Zircon-46	79.37	25.7	0.3238	0.0612	0.0034	0.712	0.044	0.0855	0.0017	0.0308	0.0022	0.15593	529.1	9.9	544	26	630	130	529.1	9.9	2.7
$ \begin{array}{c} Zircon-65 & 197 & 123 & 0.624 & 0.058 & 0.0028 & 0.071 & 0.037 & 0.08621 & 0.0014 & 0.02618 & 0.0011 & -0.0849 & 533.1 & 8.4 & 546 & 23 & 589 & 110 & 533.1 & 8.4 & 2.4 \\ Zircon-59 & 199.9 & 186 & 0.9305 & 0.0577 & 0.0026 & 0.685 & 0.036 & 0.08705 & 0.0021 & 0.02632 & 0.00091 & 0.45821 & 537 & 13 & 556 & 24 & 656 & 110 & 538 & 8.4 & -1.7 \\ Zircon-94 & 107.3 & 83 & 0.4518 & 0.0589 & 0.0029 & 0.703 & 0.04 & 0.0874 & 0.0016 & 0.02673 & 0.0011 & 0.04523 & 540.1 & 9.4 & 542 & 23 & 538 & 110 & 540.1 & 9.4 & 0.4 \\ Zircon-94 & 107.3 & 83.5 & 0.7782 & 0.0567 & 0.0037 & 0.0683 & 0.047 & 0.0874 & 0.0016 & 0.02673 & 0.0011 & 0.04573 & 540.1 & 9.7 & 529 & 29 & 500 & 140 & 540.1 & 9.7 & 2.1 \\ Zircon-04 & 347 & 114.3 & 0.9991 & 0.0668 & 0.0024 & 0.081 & 0.0016 & 0.02673 & 0.001 & 0.14903 & 540.4 & 9.2 & 554 & 24 & 613 & 120 & 540.4 & 9.2 \\ Zircon-04 & 347 & 114.3 & 0.2294 & 0.0885 & 0.0024 & 0.088 & 0.0077 & 0.013 & 0.02643 & 0.001 & 0.18573 & 542 & 7.6 & 543.1 & 21 & 538 & 92 & 42 & 7.6 & 0.2 \\ Zircon-02 & 23.1 & 6.49 & 0.2810 & 0.059 & 0.0068 & 0.075 & 0.088 & 0.0072 & 0.0274 & 0.0011 & 0.01613 & 544.1 & 9.3 & 529 & 24 & 516 & 4.0 \\ Zircon-76 & 92.4 & 19 & 306 & 0.573 & 0.0032 & 0.687 & 0.048 & 0.0024 & 0.021 & -0.1678 & 547 & 14 & 511 & 44 & 650 & 210 & 547 & 14 & -2.9 \\ Zircon-87 & 92.7 & 1.05 & 0.572 & 0.068 & 0.075 & 0.088 & 0.0072 & 0.0274 & 0.0011 & 0.0163 & 544.1 & 9.3 & 529 & 24 & 0.6 & 0.2 \\ Zircon-76 & 92.4 & 49.9 & 0.5400 & 0.058 & 0.0023 & 0.718 & 0.038 & 0.0012 & 0.0271 & 0.0013 & 0.07743 & 557.2 & 10 & 548 & 27 & 560 & 130 & 557.2 & 10 & 1.2 \\ Zircon-77 & 92.4 & 49.9 & 0.5400 & 0.058 & 0.0023 & 0.718 & 0.038 & 0.0022 & 0.0028 & 0.0013 & 0.07743 & 557.2 & 10 & 556 & 25 & 656 & 10.5 & 574.9 & 12 & 500 \\ Zircon-73 & 154.6 & 249.8 & 1.6158 & 0.0023 & 0.718 & 0.038 & 0.0022 & 0.0028 & 0.0013 & 0.07743 & 557.2 & 10 & 556 & 25 & 655 & 100 & 574.9 & 12 & 500 \\ Zircon-74 & 54.6 & 249.8 & 1.6158 & 0.0023 & 0.718 & 0.038 & 0.0024 & 0.0284 & 0.0011 & 0.01248 & 507.1 & 10 & 564 & 27 & 560 & 130 & 557.2 & 10 & 1.2 \\ $	Zircon-68	147.9	118.5	0.8012	0.0581	0.003	0.689	0.039	0.08593	0.0015	0.02616	0.001	0.037361	531.4	8.7	531	23	550	110	531.4	8.7	-0.1
$ \begin{array}{c} Zircon-62 & 191 & 157.1 & 0.8225 & 0.0611 & 0.003 & 0.732 & 0.04 & 0.0869 & 0.0021 & 0.02632 & 0.00091 & 0.45821 & 537 & 13 & 556 & 24 & 656 & 110 & 537 & 13 & 34.7 \\ Zircon-48 & 117.3 & 53 & 0.4518 & 0.0587 & 0.0026 & 0.085 & 0.0016 & 0.02673 & 0.0011 & 0.094329 & 540.1 & 94 & 542 & 23 & 538 & 110 & 540.1 & 9.4 \\ Zircon-74 & 107.3 & 83.5 & 0.7782 & 0.0567 & 0.0037 & 0.683 & 0.047 & 0.0874 & 0.0016 & 0.02673 & 0.0011 & -0.167 & 540.1 & 9.4 & 542 & 23 & 548 & 14 & 9.2 & 2.5 \\ Zircon-04 & 347 & 114.3 & 0.3294 & 0.0568 & 0.0024 & 0.708 & 0.035 & 0.0874 & 0.0016 & 0.02673 & 0.001 & -0.14903 & 540.4 & 9.2 & 554 & 24 & 613 & 120 & 540.4 & 9.2 & 2.5 \\ Zircon-04 & 347 & 114.3 & 0.3294 & 0.0885 & 0.0024 & 0.708 & 0.035 & 0.08772 & 0.0344 & 0.0014 & 0.046782 & 544 & 16 & 541 & 47 & 520 & 24 & 541 & 16 & -0.6 \\ Zircon-26 & 126 & 82.3 & 0.6532 & 0.0573 & 0.0032 & 0.687 & 0.001 & 0.0274 & 0.0014 & 0.0021 & -0.1208 & 547 & 14 & 571 & 44 & 650 & 10 & 547. \\ Zircon-27 & 126 & 0.3721 & 0.063 & 0.0058 & 0.705 & 0.0088 & 0.0021 & -0.1208 & 547 & 14 & 571 & 44 & 650 & 10 & 547. & 10 & 2.2 \\ Zircon-27 & 29.4 & 190 & 0.540 & 0.0059 & 0.0058 & 0.0023 & 0.0016 & 0.02718 & 0.0011 & 0.0163 & 544.1 & 9.3 & 529 & 24 & 501 & 110 & 544.1 & 9.3 \\ Zircon-73 & 73 & 95.4 & 1.3068 & 0.0023 & 0.718 & 0.035 & 0.0889 & 0.0021 & -0.0278 & 0.0011 & 0.01784 & 557.2 & 10 & 564 & 27 & 560 & 130 & 557.2 & 10 & 122 \\ Zircon-73 & 73 & 95.4 & 1.648 & 0.0629 & 0.0035 & 0.718 & 0.035 & 0.0083 & 0.001 & 0.02798 & 0.0011 & -0.11428 & 567.7 & 10 & 581 & 32 & 590 & 140 & 567.7 & 10 & 2.3 \\ Zircon-49 & 2.53 & 1.97 & 0.0779 & 0.0619 & 0.0035 & 0.78 & 0.089 & 0.0023 & 0.0030 & 0.008 & 0.0779 & 578.2 & 11 & 596 & 24 & 567 & 97 & 579. & 11 & 5.6 \\ Zircon-74 & 65 & 65.1 & 0.077 & 0.0618 & 0.032 & 0.093 & 0.002 & 0.0030 & 0.0018 & 0.0156 & 0.0779 & 579.3 & 8.5 & 8.8 \\ Zircon-84 & 168 & 73.2 & 0.457 & 0.0529 & 0.0024 & 0.78 & 0.0093 & 0.001 & 0.02798 & 5.0011 & 0.0156 & 0.579.2 & 579.7 & 11 & 5.6 & 579 & 79.7 & 11 & 5.6 \\ Zircon-75 & 1.077 & 0.0618 & 0.0032 & 0.7$	Zircon-65	197	123	0.6244	0.0598	0.0028	0.711	0.037	0.08621	0.0014	0.02618	0.0011	-0.0849	533.1	8.4	546	23	589	110	533.1	8.4	2.4
$ \begin{array}{c} \hline Zircon-59 & 199.9 & 186 & 0.9305 & 0.0577 & 0.0026 & 0.0685 & 0.036 & 0.0078 & 0.0014 & 0.02682 & 0.00945 & 0.078765 & 538 & 8.4 & 529 & 22 & 520 & 100 & 538 & 8.4 & -1.7 \\ Zircon-94 & 107.3 & 83.5 & 0.7782 & 0.0567 & 0.0037 & 0.683 & 0.047 & 0.0874 & 0.0016 & 0.02673 & 0.001 & -0.094329 & 540.1 & 9.4 & 542 & 23 & 538 & 110 & 540.1 & 9.7 & -2.1 \\ Zircon-71 & 142.2 & 137.8 & 0.9691 & 0.0680 & 0.0022 & 0.724 & 0.041 & 0.0874 & 0.0016 & 0.02673 & 0.001 & -0.14903 & 540.4 & 9.2 & 554 & 24 & 613 & 120 & 540.4 & 9.2 \\ Zircon-02 & 23.1 & 6.49 & 0.2810 & 0.059 & 0.0068 & 0.0624 & 0.79 & 0.08872 & 0.0013 & 0.0244 & 0.004 & 0.0024 & -0.046782 & 544 & 16 & 541. & 47 & 550 & 240 & 544 & 16 & -66 \\ Zircon-02 & 23.1 & 6.49 & 0.2810 & 0.059 & 0.0068 & 0.675 & 0.088 & 0.0027 & 0.0344 & 0.0042 & -0.046782 & 544 & 16 & 541. & 47 & 550 & 240 & 544 & 16 & -66 \\ Zircon-62 & 126 & 82.3 & 0.6532 & 0.073 & 0.0382 & 0.687 & 0.04 & 0.0281 & 0.0021 & -0.11063 & 541.1 & 9.3 & 529 & 24 & 5011 10 & 541.4 & 9.3 & -29 \\ Zircon-98 & 29.7 & 11.05 & 0.3721 & 0.063 & 0.0688 & 0.762 & 0.079 & 0.0886 & 0.0024 & 0.0021 & -0.12098 & 547 & 14 & 550 & 210 & 547 & 14 & 4.2 \\ Zircon-73 & 73 & 95.4 & 1.3068 & 0.0066 & 0.0041 & 0.771 & 0.053 & 0.0889 & 0.0016 & 0.02778 & 0.0013 & 0.077943 & 557.2 & 10 & 542 & 27 & 560 & 130 & 557.7 & 10 & 254 & 27 & 560 & 130 & 557.7 & 10 & 254 & 27 & 560 & 130 & 557.7 & 10 & 254 & 278 & 510 & 178 & 538 & 24 & 569 & 14 & 588 & 22 & 592 & 89 & 593.3 & 28 & 500.44 & 0.78 & 0.0893 & 0.0012 & 0.0286 & 0.001 & 0.077943 & 557.2 & 10 & 544 & 256 & 551 & 25 & 574.9 & 12 & 5.0 \\ Zircon-73 & 73 & 95.4 & 1.3068 & 0.0024 & 0.078 & 0.0938 & 0.0012 & 0.0286 & 0.001 & 0.02779 & 578.2 & 11 & 566 & 30 & 662 & 120 & 574.9 & 12 & 5.0 \\ Zircon-74 & 154.6 & 249.8 & 1.6158 & 0.0629 & 0.0035 & 0.074 & 0.0951 & 0.0018 & 0.02769 & 578.2 & 11 & 566 & 30 & 662 & 120 & 574.9 & 12 & 5.0 \\ Zircon-75 & 255 & 187.2 & 0.6568 & 0.0595 & 0.0024 & 0.778 & 0.088 & 0.0091 & 0.02780 & 0.011 & 0.017794 & 578.2 & 15 & 508 & 25 & 551 & 25 & 574.9 & 12 & $	Zircon-62	191	157.1	0.8225	0.0611	0.003	0.732	0.04	0.0869	0.0021	0.02632	0.00091	0.45821	537	13	556	24	656	110	537	13	3.4
Zircon-48 117.3 53 0.4518 0.0589 0.0027 0.0011 0.0943229 540.1 9.4 542 23 538 110 540.1 9.4 0.4 0.4 0.02673 0.0011 0.0943229 540.1 9.4 542 23 538 110 540.1 9.7 529 29 500 140 9.7 229 29 500 140 9.7 529 29 500 140 9.2 2.5 Zircon-02 231 6.49 0.2810 0.0058 0.0027 0.0014 0.0044 0.04243 0.001 0.18873 542 7.6 543.1 21 538 9.2 542 7.6 0.2 20 544 16 -0.6 Zircon-26 126 82.3 0.6532 0.0073 0.0088 0.0027 0.0014 0.0163 0.441.1 9.3 529 24 501 110 54.1 9.3 2.9 24 501 10.3 54.1 9.4 4.2 2 2541.1 4.0 2.0 2.0 2.0 2.0 0.021	Zircon-59	199.9	186	0.9305	0.0577	0.0026	0.685	0.036	0.08705	0.0014	0.02682	0.00095	0.078765	538	8.4	529	22	520	100	538	8.4	-1.7
$ \begin{array}{c} Zircon-94 & 107,3 & 83.5 & 0.7782 & 0.067 & 0.0037 & 0.683 & 0.047 & 0.0874 & 0.0016 & 0.02266 & 0.0012 & -0.167 & 540.1 & 9.7 & 529 & 29 & 500 & 140 & 540.1 & 9.7 & -2.1 \\ Zircon-04 & 347 & 114.3 & 0.3294 & 0.0585 & 0.0024 & 0.724 & 0.041 & 0.0874 & 0.0016 & 0.0273 & 0.001 & 0.14903 & 540.4 & 9.2 & 554 & 24 & 613 & 120 & 540.4 & 9.2 & 2.5 \\ Zircon-02 & 23.1 & 6.49 & 0.2810 & 0.059 & 0.0068 & 0.685 & 0.075 & 0.088 & 0.0027 & 0.0344 & 0.0042 & -0.046782 & 544 & 16 & 541 & 47 & 520 & 240 & 544 & 16 & -0.2 \\ Zircon-92 & 12.6 & 82.3 & 0.6532 & 0.0573 & 0.0032 & 0.067 & 0.088 & 0.0027 & 0.0344 & 0.0042 & -0.046782 & 544 & 16 & 541 & 47 & 520 & 240 & 544 & 16 & -0.2 \\ Zircon-98 & 29.7 & 11.05 & 0.3721 & 0.063 & 0.0068 & 0.762 & 0.079 & 0.0886 & 0.0024 & 0.0281 & 0.0021 & -0.12098 & 547 & 14 & 571 & 44 & 650 & 210 & 547 & 14 & 4.2 \\ Zircon-67 & 92.4 & 49.9 & 0.5400 & 0.059 & 0.0035 & 0.718 & 0.035 & 0.0889 & 0.0016 & 0.0271 & 0.0011 & 0.0116 & 5441. & 9.6 & 549 & 21 & 568 & 92 & 5491 & 9.6 & 0.2 \\ Zircon-73 & 73 & 95.4 & 1.3068 & 0.0666 & 0.041 & 0.771 & 0.054 & 0.0921 & 0.018 & 0.02798 & 0.0011 & -0.11428 & 567.7 & 10 & 581 & 32 & 590 & 140 & 567.7 & 10 & 2.3 \\ Zircon-49 & 25.3 & 1.97 & 0.079 & 0.0619 & 0.0035 & 0.780 & 0.0921 & 0.012 & 0.0278 & 0.0013 & 0.077943 & 557.2 & 10 & 548 & 21 & 566 & 91 & 558 & 92 & 12 & 574.9 & 12 & 5.0 \\ Zircon-49 & 25.3 & 1.872 & 0.5688 & 0.0052 & 0.0035 & 0.817 & 0.059 & 0.0023 & 0.0028 & 0.0013 & 0.41561 & 574.9 & 12 & 605 & 30 & 692 & 120 & 574.9 & 12 & 5.0 \\ Zircon-49 & 154.6 & 249.8 & 1.6158 & 0.0629 & 0.0035 & 0.817 & 0.059 & 0.0041 & 0.0284 & 0.001 & 0.027709 & 579.3 & 8.5 & 584 & 22 & 592 & 89 & 579.3 & 8.5 & 0.8 \\ Zircon-49 & 106 & 21.68 & 2.1551 & 0.0622 & 0.0027 & 0.765 & 0.0018 & 0.0284 & 0.001 & 0.02769 & 574.2 & 11 & 560 & 24 & 567 & 97 & 579.7 & 1 & -0.6 \\ Zircon-78 & 106 & 2.158.1 & 0.0629 & 0.0027 & 0.755 & 0.041 & 0.0961 & 0.0288 & 0.0002 & 0.0276 & 579.2 & 8.7 & 579 & 25 & 521 & 110 & 590.2 & 8.7 & -1.9 \\ Zircon-78 & 106 & 2.158.1 & 0.0629 & 0.0027 & 0.765 & 0$	Zircon-48	117.3	53	0.4518	0.0589	0.0029	0.703	0.04	0.0874	0.0016	0.02673	0.0011	0.094329	540.1	9.4	542	23	538	110	540.1	9.4	0.4
$ \begin{array}{c} Zircon-71 & 42.2 & 37.8 & 0.9691 & 0.0608 & 0.032 & 0.724 & 0.041 & 0.0874 & 0.0016 & 0.02673 & 0.001 & -0.14903 & 540.4 & 9.2 & 554 & 24 & 613 & 120 & 540.4 & 9.2 & 2.5 \\ Zircon-04 & 347 & 1143 & 0.3294 & 0.0585 & 0.0024 & 0.078 & 0.035 & 0.0877 & 0.0013 & 0.02643 & 0.001 & 0.1873 & 542 & 7.6 & 543.1 & 21 & 558 & 92 & 542 & 7.6 & 0.2 \\ Zircon-26 & 126 & 82.3 & 0.6532 & 0.0573 & 0.0032 & 0.687 & 0.04 & 0.088 & 0.0016 & 0.02745 & 0.0011 & 0.10163 & 544.1 & 9.3 & 529 & 24 & 501 & 110 & 544.1 & 9.3 & -2.9 \\ Zircon-26 & 126 & 82.3 & 0.6532 & 0.0573 & 0.0032 & 0.672 & 0.079 & 0.088 & 0.0024 & 0.0281 & 0.0021 & -0.1208 & 547 & 14 & 571 & 44 & 650 & 0.54 & 12 & 568 & 92 & 549.1 & 9.6 & 0.0 \\ Zircon-24 & 419 & 306 & 0.7303 & 0.0588 & 0.0023 & 0.718 & 0.035 & 0.088 & 0.0016 & 0.02771 & 0.00091 & -0.39116 & 549.1 & 9.6 & 549 & 21 & 568 & 92 & 549.1 & 9.6 & 0.0 \\ Zircon-73 & 7.3 & 95.4 & 1.3068 & 0.0666 & 0.0041 & 0.0771 & 0.093 & 0.0017 & 0.0273 & 0.0013 & 0.07794 & 557.2 & 10 & 564 & 27 & 560 & 130 & 557.2 & 10 & 1.2 \\ Zircon-49 & 25.3 & 1.97 & 0.0779 & 0.0619 & 0.063 & 0.78 & 0.002 & 0.0022 & 0.0230 & 0.0362 & 0.07374 & 569 & 14 & 598 & 44 & 680 & 210 & 567.7 & 10 & 2.3 \\ Zircon-47 & 55 & 65.5 & 1.0077 & 0.0618 & 0.032 & 0.078 & 0.0011 & 0.01128 & 567.7 & 10 & 581 & 32 & 590 & 140 & 567.7 & 10 & 2.3 \\ Zircon-47 & 65 & 65.5 & 1.0077 & 0.0618 & 0.032 & 0.0796 & 0.0012 & 0.0286 & 0.0013 & 0.01754 & 569 & 14 & 598 & 44 & 680 & 210 & 578.2 & 11 & 3.0 \\ Zircon-84 & 106 & 216.8 & 2.1551 & 0.0622 & 0.0036 & 0.0787 & 0.0018 & 0.02986 & 0.0011 & 0.015229 & 578.2 & 11 & 596 & 25 & 655 & 120 & 578.2 & 11 & 3.0 \\ Zircon-78 & 300 & 6.077 & 0.0618 & 0.0297 & 0.0018 & 0.02986 & 0.0011 & 0.013836 & 589.2 & 11 & 596 & 25 & 655 & 120 & 578.2 & 11 & 3.0 \\ Zircon-87 & 1.06 & 2.168 & 2.1551 & 0.0622 & 0.0036 & 0.805 & 0.0015 & 0.02986 & 0.0011 & 0.01282 & 590.2 & 87 & 579.3 & 8.5 & 0.8 \\ Zircon-87 & 1.06 & 2.168 & 2.1551 & 0.0622 & 0.0027 & 0.758 & 0.0018 & 0.02946 & 0.0011 & 0.01732 & 591.6 & 9.2 & 592 & 89 & 579.3 & 8.5 & 0.4 \\ $	Zircon-94	107.3	83.5	0.7782	0.0567	0.0037	0.683	0.047	0.0874	0.0016	0.02696	0.0012	-0.167	540.1	9.7	529	29	500	140	540.1	9.7	-2.1
Zircon-04 347 114.3 0.3294 0.0585 0.0024 0.078 0.0357 0.0014 0.004782 544 16 541 17 520 240 544 16 541 14 47 520 240 544 16 541 14 47 520 240 544 16 541 19 3529 24 501 110 544, 19 3 529 24 501 110 544, 19 3 529 24 501 110 544, 19 3 529 24 501 110 544, 19 3 529 24 501 10 544 14 7.6 543 14 47.6 549 14 42 500 144 42 500 144 42 500 14 44 42 500 14 44 42 500 14 42 500 14 44 42 500 14 44 42 14 42 14 42 14 41 42 14 14 14 42	Zircon-71	142.2	137.8	0.9691	0.0608	0.0032	0.724	0.041	0.0874	0.0016	0.02673	0.001	-0.14903	540.4	9.2	554	24	613	120	540.4	9.2	2.5
Zircon-02 23.1 6.49 0.2810 0.059 0.0068 0.085 0.075 0.088 0.0027 0.0344 0.0042 -0.046782 544 16 541 47 520 544 16 -541 47 520 544 16 -541 47 520 24 544 16 -541 47 520 244 544 16 -2.9 Zircon-76 126 82.3 0.653 0.0068 0.076 0.0088 0.0021 -0.1098 547 14 571 44 650 210 547 14 4.2 Zircon-74 92.4 49 0.5400 0.059 0.0032 0.0141 0.01794 0.39116 541.1 9.6 600 10.0 10.5 557.2 10 10 581 32 590 140 567.7 10 581 32 590 140 567.7 10 581 32 590 140 567.7 10 253 14 680 6003 6073 602 120 574.2 1	Zircon-04	347	114.3	0.3294	0.0585	0.0024	0.708	0.035	0.08772	0.0013	0.02643	0.001	0.18573	542	7.6	543.1	21	538	92	542	7.6	0.2
Zircon-26 126 82.3 0.6532 0.0573 0.0082 0.687 0.001 0.0163 544.1 9.3 529 24 501 110 544.1 9.3 529 24 501 110 544.1 9.3 529 24 501 110 544.1 9.3 529 24 501 110 544.1 9.3 529 24 501 110 544.1 9.3 529 24 501 110 544.1 9.3 529 24 501 110 544.1 9.3 529 24 501 110 544.1 9.3 529 24 501 110 544.1 9.3 529 24 501 110 544.1 9.3 529 24 501 100 541.1 9.3 529 24 501 100 541.1 9.3 541.1 9.3 541.1 9.3 541.1 9.3 541.1 9.3 541.1 9.3 541.1 9.3 541.1 9.3 541.1 9.3 541.1 9.3 541.1 9.3 5	Zircon-02	23.1	6.49	0.2810	0.059	0.0068	0.685	0.075	0.088	0.0027	0.0344	0.0042	-0.046782	544	16	541	47	520	240	544	16	-0.6
Zircon-98 29.7 11.05 0.3721 0.063 0.0068 0.072 0.0886 0.0021 -0.12098 547 14 571 44 650 210 547 14 4.2 Zircon-74 419 306 0.7303 0.0588 0.0023 0.718 0.035 0.0886 0.0017 0.0271 0.00091 0.39116 549.1 9.6 549 21 568 92 549.1 9.6 0.00 Zircon-73 73 95.4 1.3068 0.00606 0.0041 0.711 0.054 0.0921 0.0013 0.077943 557.2 10 581 32 590 140 567.7 10 581 32 590 140 567.7 10 581 249.8 16.158 0.0629 0.0035 0.817 0.055 0.0933 0.0010 0.0138 0.4112.8 567.7 10 581 32 590 140 567.7 10 5.3 Zircon-47 65 65.5 1.0077 0.0618 0.0032 0.796 0.046 0.0938 0.0	Zircon-26	126	82.3	0.6532	0.0573	0.0032	0.687	0.04	0.0881	0.0016	0.02745	0.0011	0.10163	544.1	9.3	529	24	501	110	544.1	9.3	-2.9
Zircon-24 419 306 0.7303 0.0588 0.0023 0.718 0.035 0.0889 0.0016 0.0271 0.00091 0.39116 549.1 9.6 549 21 568 92 549.1 9.6 549 21 568 92 549.1 9.6 0.003 0.077943 557.2 10 564 27 560 130 557.2 10 581 32 590 140 567.7 10 2.3 Zircon-49 25.3 1.97 0.0779 0.0619 0.0063 0.78 0.08 0.0022 0.0023 0.0302 0.0086 0.073784 569 14 598 44 680 210 569 14 4.8 Zircon-43 154.6 249.8 1.6158 0.0629 0.0035 0.817 0.055 0.0933 0.0019 0.02883 0.0011 0.97529 578.2 11 506 25 655 120 578.2 11 3.0 Zircon-75 285 187.2 0.6568 0.0595 0.0024 0.778 0.0014	Zircon-98	29.7	11.05	0.3721	0.063	0.0068	0.762	0.079	0.0886	0.0024	0.0281	0.0021	-0.12098	547	14	571	44	650	210	547	14	4.2
Zircon-67 92.4 49.9 0.5400 0.0059 0.0035 0.747 0.0077 0.0013 0.07/943 557.2 10 564 27 560 130 557.2 10 12 Zircon-73 73 95.4 1.3068 0.0666 0.0041 0.771 0.054 0.0921 0.0018 0.02798 0.0011 -0.11428 567.7 10 581 32 590 140 567.7 10 581 32 590 140 567.7 10 233 Zircon-49 25.3 1.97 0.0779 0.0619 0.0063 0.78 0.08 0.0922 0.02986 0.0013 0.41561 574.9 12 605 30 692 120 574.9 12 5.0 Zircon-47 65 655 1.0077 0.0618 0.0027 0.765 0.041 0.0938 0.0014 0.02844 0.001 0.27709 579.3 8.5 584 22 592 89 579.7 11 -0.6 Zircon-81 100.6 216.8 2.1551 0.	Zircon-24	419	306	0.7303	0.0588	0.0023	0.718	0.035	0.0889	0.0016	0.02771	0.00091	0.39116	549.1	9.6	549	21	568	92	549.1	9.6	0.0
Zircon-73 73 95.4 1.3068 0.0060 0.0041 0.771 0.054 0.0921 0.0018 0.02798 0.0011 -0.11428 567.7 10 581 32 590 140 567.7 10 2.3 Zircon-49 25.3 1.97 0.0779 0.0619 0.0063 0.78 0.08 0.0922 0.0302 0.0086 0.073784 569 14 680 210 574.9 12 605 30 662 120 574.9 12 605 30 662 120 574.9 12 605 30 662 120 574.2 11 506 25 655 120 578.2 11 3.0 Zircon-47 65 65.5 1.0077 0.0618 0.032 0.0940 0.0014 0.02847 0.0012 0.42411 579.7 11 566 24 567 79 579.7 11 -0.6 Zircon-81 100.6 216.8 2.1551 0.0622 0.0027 0.755 0.041 0.09588 0.0015 0.02296 <	Zircon-67	92.4	49.9	0.5400	0.059	0.0035	0.747	0.047	0.0903	0.0017	0.0273	0.0013	0.07/943	557.2	10	564	27	560	130	557.2	10	1.2
$ \begin{array}{c} 2 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0$	Zircon-73	73	95.4	1.3068	0.0606	0.0041	0.771	0.054	0.0921	0.0018	0.02798	0.0011	-0.11428	567.7	10	581	32	590	140	567.7	10	2.3
Zircon-43 154.6 249.8 1.6158 0.0029 0.0035 0.817 0.055 0.0093 0.0019 0.02886 0.0013 0.41561 574.9 12 605 30 692 120 574.9 12 5.0 Zircon-47 65 655 1.0077 0.0618 0.0032 0.796 0.046 0.0938 0.0019 0.02883 0.0011 0.095229 578.2 11 596 25 655 120 574.3 12 6.05 Zircon-45 285 187.2 0.6568 0.0592 0.0024 0.776 0.038 0.09402 0.0014 0.02844 0.0012 0.42411 579.7 11 576 24 567 97 579.7 11 -0.6 Zircon-47 10.6 216.8 2.1551 0.0622 0.0036 0.805 0.049 0.0957 0.0018 0.02882 0.00092 0.12251 590.2 8.7 579 25 521 110 590.2 8.7 -1.9 Zircon-57 187.4 337 1.7983 0.0027	Zircon-49	25.3	1.97	0.0779	0.0619	0.0063	0.78	0.08	0.0922	0.0023	0.0302	0.0086	0.073784	569	14	598	44	680	210	569	14	4.8
Zircon-4/ 65 65 5. 1.00/7 0.018 0.0032 0.046 0.00938 0.0019 0.02883 0.0011 0.09529 578.2 11 596 25 655 120 578.2 11 506 Zircon-05 285 187.2 0.6568 0.0595 0.0024 0.778 0.038 0.09402 0.0014 0.02864 0.001 0.27709 579.3 8.5 584 22 592 89 579.3 8.5 0.062 Zircon-84 168 73.2 0.4357 0.0622 0.0027 0.765 0.044 0.0941 0.018 0.02847 0.0012 0.442411 579.7 11 576 24 567 97 579.7 11 -0.6 Zircon-81 100.6 216.8 2.1551 0.0622 0.0027 0.795 0.041 0.0958 0.0015 0.02882 0.00092 0.12251 590.2 8.7 579 25 521 110 590.2 8.7 -1.9 Zircon-78 300 60.7 0.2023 0.0027 0.	Zircon-43	154.6	249.8	1.6158	0.0629	0.0035	0.817	0.055	0.0933	0.002	0.02986	0.0013	0.41561	574.9	12	605	30	692	120	574.9	12	5.0
Zircon-05 285 187.2 0.5588 0.0955 0.0024 0.078 0.058 0.09402 0.0014 0.02847 0.001 0.2/109 5/9.3 8.5 584 22 592 89 5/9.3 8.5 0.8 Zircon-84 168 73.2 0.4357 0.0592 0.0027 0.765 0.041 0.0941 0.0018 0.02247 0.0012 0.42411 579.7 11 576 24 567 97 579.7 11 -0.6 Zircon-81 100.6 216.8 2.1551 0.0622 0.0036 0.049 0.0957 0.0018 0.02847 0.0012 0.42411 579.7 579.2 521 110 590.2 8.7 -1.9 Zircon-95 187.4 337 1.7983 0.0602 0.0027 0.795 0.041 0.09611 0.0016 0.02882 0.0092 0.10732 591.6 9.2 593 23 615 97 591.6 9.2 0.22 0.22 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.6 2.2 <td>Zircon-47</td> <td>65</td> <td>65.5</td> <td>1.00//</td> <td>0.0618</td> <td>0.0032</td> <td>0.796</td> <td>0.046</td> <td>0.0938</td> <td>0.0019</td> <td>0.02883</td> <td>0.0011</td> <td>0.095229</td> <td>578.2</td> <td>11</td> <td>596</td> <td>25</td> <td>655</td> <td>120</td> <td>578.2</td> <td>11</td> <td>3.0</td>	Zircon-47	65	65.5	1.00//	0.0618	0.0032	0.796	0.046	0.0938	0.0019	0.02883	0.0011	0.095229	578.2	11	596	25	655	120	578.2	11	3.0
Zircon-84 168 7.3.2 0.4557 0.0592 0.0027 0.765 0.041 0.0018 0.02847 0.0012 0.42411 579.7 11 576 24 567 97 579.7 11 -0.6 Zircon-81 100.6 216.8 2.1551 0.0622 0.0036 0.805 0.049 0.0957 0.0018 0.02966 0.001 -0.034836 589.2 11 600 28 703 120 589.2 11 -0.6 Zircon-72 217.9 489 2.2441 0.0584 0.0027 0.795 0.041 0.09657 0.0015 0.02882 0.00092 0.10732 591.6 9.2 593 23 615 97 591.6 9.2 0.2 Zircon-78 300 607 0.2023 0.0591 0.0027 0.785 0.04 0.09657 0.0015 0.0296 0.0015 0.027965 594.2 8.7 588 23 565 95 594.2 8.7 -1.1 Zircon-78 240 260 1.0833 0.0056 0.09714	Zircon-05	285	187.2	0.6568	0.0595	0.0024	0.778	0.038	0.09402	0.0014	0.02864	0.001	0.27709	579.3	8.5	584	22	592	89	579.3	8.5	0.8
Zircon-81 100.6 216.8 2.1551 0.0622 0.0036 0.085 0.049 0.0957 0.0018 0.0296 0.001 -0.034836 589.2 11 600 28 703 120 589.2 11 1.8 Zircon-27 217.9 489 2.2441 0.0584 0.0028 0.771 0.043 0.09588 0.0015 0.02882 0.00092 0.12251 590.2 8.7 579 25 521 110 590.2 8.7 -1.9 Zircon-95 187.4 337 1.7983 0.0602 0.0027 0.795 0.041 0.09611 0.0016 0.0288 0.00092 0.10732 591.4 8.7 51.9 23 515 95 594.2 8.7 -1.1 Zircon-78 300 607 0.0027 0.785 0.04 0.09657 0.0015 0.0296 0.0015 0.02765 594.2 8.7 588 23 565 95 594.2 8.7 -1.1 Zircon-58 240 260 1.0833 0.056 0.025 0.796 <	Zircon-84	168	73.2	0.4357	0.0592	0.0027	0.765	0.041	0.0941	0.0018	0.02847	0.0012	0.42411	579.7	11	576	24	567	9/	579.7	11	-0.6
Zircon-2/ 21/9 489 2.2441 0.0584 0.0028 0.0/015 0.02882 0.00092 0.12251 590.2 8.7 579 25 521 110 590.2 8.7 -1.9 Zircon-95 187.4 337 1.7983 0.0602 0.0027 0.795 0.041 0.09611 0.0016 0.02882 0.00092 0.17032 591.6 9.2 593 23 615 97 591.6 9.2 23 615 97 591.6 9.2 0.027 0.785 0.04 0.09617 0.0296 0.0015 0.027965 594.2 8.7 588 23 565 95 594.2 8.7 -1.1 Zircon-33 151.9 269 1.7709 0.0609 0.003 0.81 0.044 0.09714 0.016 0.02922 0.001 0.040634 597.6 9.2 603 25 614 110 597.6 9.2 603 25 614 8.7 -1.2 Zircon-58 240 260 1.0833 0.056 0.0025 0.796 0.039	Zircon-81	100.6	216.8	2.1551	0.0622	0.0036	0.805	0.049	0.0957	0.0018	0.02996	0.001	-0.034836	589.2	11	600	28	703	120	589.2	11	1.8
Zircon-95 187.4 337 1.7983 0.0002 0.0027 0.785 0.041 0.09611 0.0016 0.0288 0.00092 0.1072 591.6 9.2 593 23 615 97 591.6 9.2 0.2 Zircon-78 300 60.7 0.2023 0.0591 0.0027 0.785 0.04 0.09617 0.015 0.0296 0.0015 0.027965 594.2 8.7 588 23 565 95 594.2 8.7 -1.1 Zircon-33 151.9 269 1.7709 0.0609 0.003 0.81 0.046 0.09714 0.0016 0.02922 0.001 0.04634 597.6 9.2 603 25 614 110 597.6 9.2 603 25 614 10 597.6 9.2 603 25 614 8.7 4.8 7.4 8.8 7.4 8.8 7.4 8.8 7.4 8.8 7.4 8.8 7.4 8.8 7.4 8.8 7.4 8.8 7.4 8.7 8.4 8.4 1.0 4.6 <t< td=""><td>Zircon-27</td><td>217.9</td><td>489</td><td>2.2441</td><td>0.0584</td><td>0.0028</td><td>0.771</td><td>0.043</td><td>0.09588</td><td>0.0015</td><td>0.02882</td><td>0.00092</td><td>0.12251</td><td>590.2</td><td>8.7</td><td>579</td><td>25</td><td>521</td><td>110</td><td>590.2</td><td>8.7</td><td>-1.9</td></t<>	Zircon-27	217.9	489	2.2441	0.0584	0.0028	0.771	0.043	0.09588	0.0015	0.02882	0.00092	0.12251	590.2	8.7	579	25	521	110	590.2	8.7	-1.9
Zircon-78 300 60.7 0.2023 0.091 0.0027 0.785 0.04 0.0965 0.0015 0.02/965 594.2 8.7 588 2.5 565 95 594.2 8.7 -1.1 Zircon-33 151.9 269 1.7709 0.0609 0.003 0.81 0.046 0.09714 0.0016 0.02922 0.001 0.040634 597.6 9.2 603 2.5 614 110 597.6 9.2 603 2.5 614 110 597.6 9.2 0.0121 603 2.5 614 110 597.6 9.2 603 2.5 614 110 597.6 9.2 603 2.5 614 8.8 -1.2 Zircon-83 23.42 31 1.3237 0.0683 0.0044 0.9771 0.0015 0.0299 0.0002 -0.08777 604 16 647 45 810 190 604 16 6.6 Zircon-80 81.8 73.4 0.8973 0.053 0.036 0.077 0.049 0.0983 0.0012 -0.15008	Zircon-95	187.4	337	1.7983	0.0602	0.0027	0.795	0.041	0.09611	0.0016	0.02883	0.00092	0.10732	591.6	9.2	593	23	615	97	591.6	9.2	0.2
Zircon-53 15.19 269 1.7769 0.0009 0.0005 0.81 0.046 0.09714 0.0016 0.0222 0.001 0.04054 597.6 9.2 605 25 614 110 597.6 9.2 0.05 25 614 110 597.6 9.2 0.05 25 614 110 597.6 9.2 0.05 25 614 110 597.6 9.2 0.05 25 614 110 597.6 9.2 0.05 25 614 110 597.6 9.2 0.05 25 614 110 597.6 9.2 0.05 25 614 110 597.6 9.2 0.05 25 614 100 597.6 9.2 0.05 25 614 110 597.6 9.2 0.05 25 614 100 597.6 9.2 0.05 25 614 110 597.6 9.2 0.05 25 614 10 597.6 9.2 10.9 50.2 50 130 604 14 10 597.6 9.2 14	Zircon-/8	300	60.7	0.2023	0.0591	0.0027	0.785	0.04	0.09657	0.0015	0.0296	0.0015	0.02/965	594.2	8.7	588	23	565	95	594.2	8.7	-1.1
Zircon-33 240 260 1.0835 0.096 0.0025 0.196 0.039 0.0019 0.0019 -0.0010219 601 8.8 594 22 586 95 601 8.8 -1.2 Zircon-83 23.42 31 1.3237 0.0683 0.0064 0.911 0.086 0.0979 0.0026 0.0311 0.002 -0.08777 604 16 647 45 810 190 604 16 6.6 Zircon-60 81.8 73.4 0.8973 0.0593 0.0036 0.797 0.049 0.0983 0.0018 0.0267 0.0012 -0.15008 604.1 16 647 45 810 190 604.1 16 6.6 Zircon-87 112.1 93.7 0.8359 0.06 0.0031 0.81 0.047 0.0989 0.0017 0.0307 0.0013 0.29586 608.1 10 603 26 605 10 608.1 10 -1.4 Zircon-87 12.1 93.7 0.0143 0.09889 0.0015 0.0354 0.0056	Zircon-55	151.9	209	1.7709	0.0609	0.003	0.81	0.040	0.09714	0.0016	0.02922	0.001	0.040634	597.0	9.2	603 504	25	014 596	110	597.0	9.2	0.9
Zircon-60 81.8 73.4 0.8973 0.0593 0.0036 0.79 0.049 0.0979 0.0026 0.0011 0.002 -0.08777 0.04 10 647 45 810 190 604 16 6.6 Zircon-60 81.8 73.4 0.8973 0.0593 0.0036 0.797 0.049 0.0983 0.0018 0.02967 0.0012 -0.15008 604.1 10 593 28 550 130 604.1 10 -1.9 Zircon-87 112.1 93.7 0.8359 0.06 0.0031 0.81 0.047 0.0989 0.0017 0.03097 0.0013 0.29586 608.1 10 605 110 608.1 10 -1.9 Zircon-87 112.1 93.7 0.0143 0.09899 0.0015 0.0354 0.0056 604.1 10 605 110 608.1 10 -0.4 Zircon-87 112.1 93.7 0.014 0.09899 0.0015 0.0354 0.0056 604.1 10 605 110 608.1 10 -0.4	Zircon 92	240	200	1.0000	0.0390	0.0025	0.790	0.039	0.09771	0.0015	0.0299	0.00099	-0.0010219	601	0.0	594	22 45	380	100	604	0.0	-1.2
Zircon-87 112.1 93.7 0.8359 0.06 0.0031 0.81 0.047 0.0989 0.0015 0.0250 0.0013 0.29586 608.1 10 595 28 530 130 004.1 10 -1.9 Zircon-87 112.1 93.7 0.8359 0.06 0.0031 0.81 0.047 0.0989 0.0017 0.03097 0.0013 0.29586 608.1 10 603 26 605 110 608.1 10 -0.8	Zircon 60	23.42	31 72 4	1.3237	0.0683	0.0004	0.911	0.086	0.0979	0.0026	0.0311	0.002	-0.08///	604 1	10	04 / 502	43	810	190	604 1	10	0.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Ziroon 97	112.1	027	0.07/3	0.0393	0.0030	0.797	0.049	0.0985	0.0018	0.02907	0.0012	0.15008	609.1	10	595	20 26	530	110	609.1	10	-1.9
	Zircon-37	424	55.7 6.07	0.0559	0.00	0.0031	0.817	0.041	0.0989	0.0017	0.03097	0.0015	0.29360	613.7	0	605	20	571	85	613.7	0	-0.8

Tabla A.1 Datos isotópicos de U-Pb de la muestra MI-0318-3, la cual pertenece a la formación Cualac y fue colectada en el área de Tlaxiaco.

••• - 174 -

			RELACIONES ISOTÓPICAS CORREGIDAS												EDAI	DES C	ORREGIDA	S (Ma))		
Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor edad (Ma)	±2s	Disc %
Zircon-50	99.5	113.6	1.1417	0.0596	0.0034	0.8	0.049	0.1001	0.0018	0.02991	0.0011	0.10071	614.7	10	595	28	560	120	614.7	10	-3.3
Zircon-66	148	96.4	0.6514	0.0605	0.0031	0.826	0.049	0.1001	0.0016	0.03212	0.0012	0.1516	615.1	9.5	612	26	592	110	615.1	9.5	-0.5
Zircon-42	55.9	31.1	0.5564	0.0622	0.0041	0.869	0.06	0.1019	0.0022	0.0319	0.0016	0.13783	625	13	635	34	660	150	625	13	1.6
Zircon-09	81.4	249.5	3.0651	0.0721	0.0057	1.04	0.086	0.1038	0.002	0.02926	0.0012	0.042025	636.4	12	721	42	950	160	636.4	12	11.7
Zircon-86	928.4	127.3	0.1371	0.0676	0.0029	0.964	0.058	0.1038	0.0025	0.0408	0.0035	0.92538	637	15	683	30	851	90	637	15	6.7
Zircon-14	162	51.4	0.3173	0.0614	0.003	0.91	0.052	0.1078	0.002	0.0335	0.0015	0.26779	659.7	11	655	28	640	110	659.7	11	-0.7
Zircon-35	353	300	0.8499	0.0611	0.0025	0.908	0.044	0.1082	0.0019	0.03141	0.001	0.15164	662.2	11	655	23	657	85	662.2	11	-1.1
Zircon-13	261	70.3	0.2693	0.0656	0.0029	0.977	0.05	0.1089	0.0018	0.0394	0.0016	0.23879	666.2	11	691	26	781	92	666.2	11	3.6
Zircon-96	251	91.7	0.3653	0.0628	0.0027	0.981	0.049	0.11358	0.0017	0.03507	0.0012	0.038872	693.5	9.7	693	25	698	90	693.5	9.7	-0.1
Zircon-70	143.2	3.54	0.0247	0.0653	0.0041	1.135	0.074	0.1244	0.0019	0.047	0.0091	-0.075164	755.8	11	776	38	800	140	755.8	11	2.6
Zircon-16	234.3	55.3	0.2360	0.0641	0.0027	1.132	0.057	0.1268	0.0024	0.0369	0.0017	0.38945	769	14	768	27	741	94	769	14	-0.1
Zircon-74	313	59.6	0.1904	0.0676	0.0029	1.158	0.063	0.1268	0.0034	0.047	0.0019	0.64127	769	20	780	29	848	89	769	20	1.4
Zircon-20	163.5	84	0.5138	0.0648	0.0028	1.177	0.061	0.1308	0.0025	0.041	0.0017	0.40674	792	14	789	28	756	90	792	14	-0.4
Zircon-08	238.5	89.9	0.3769	0.069	0.0029	1.251	0.063	0.1328	0.0021	0.0401	0.0016	0.33629	804	12	827	28	894	90	804	12	2.8
Zircon-44	152.4	113.1	0.7421	0.0679	0.0031	1.339	0.071	0.1441	0.0023	0.04279	0.0016	0.059355	867.5	13	864	30	862	96	867.5	13	-0.4
Zircon-11	386.4	168	0.4348	0.0693	0.0028	1.428	0.067	0.14983	0.0021	0.04574	0.0015	-0.024729	900	12	902	29	906	84	900	12	0.2
Zircon-90	283	157	0.5548	0.0743	0.0032	1.572	0.079	0.1533	0.0023	0.0478	0.002	0.12959	919.5	13	958	31	1044	89	919.5	13	4.0
Zircon-34	216.2	483	2.2340	0.0762	0.0032	1.625	0.08	0.1554	0.0023	0.0459	0.0015	0.217	931.2	13	981	30	1107	78	931.2	13	5.1
Zircon-55	88.2	42.9	0.4864	0.0719	0.0033	1.557	0.079	0.1581	0.0025	0.0476	0.0019	-0.20318	946.3	14	952	32	965	94	946.3	14	0.6
Zircon-91	204	133	0.6520	0.072	0.0031	1.571	0.082	0.1585	0.0027	0.0513	0.003	0.34884	948.2	15	958	32	977	88	948.2	15	1.0
Zircon-92	233.7	146.7	0.6277	0.0744	0.0037	1.632	0.09	0.1587	0.0032	0.0534	0.0022	0.17615	949	18	982	35	1063	91	949	18	3.4
Zircon-25	154	117	0.7597	0.0718	0.0031	1.618	0.08	0.1622	0.0025	0.0498	0.0018	-0.16316	969	14	976	31	994	82	969	14	0.7
Zircon-15	328	293	0.8933	0.0736	0.0029	1.668	0.079	0.1645	0.0025	0.04758	0.0016	0.49503	981.5	14	998	29	1024	80	981.5	14	1.7
Zircon-06	194	66.3	0.3418	0.0721	0.0029	1.661	0.085	0.1681	0.003	0.0519	0.0021	0.63761	1001	16	992	32	978	83	1001	16	-0.9
Zircon-22	399	188	0.4712	0.07485	0.0027	1.763	0.081	0.1712	0.0025	0.05133	0.0018	0.44967	1018.9	14	1031.5	30	1061	74	1018.9	14	1.2
Zircon-10	145.5	68.1	0.4680	0.0732	0.003	1.732	0.083	0.1735	0.0028	0.0509	0.0019	-0.012/2	1031.1	15	1021	30	1011	83	1031.1	15	-1.0
Zircon-45	96.6	39.77	0.4117	0.0752	0.0033	1.839	0.094	0.1769	0.003	0.0522	0.0022	0.14702	1050	16	1064	36	1083	93	1050	16	1.3
Zircon-03	83.7	51.5	0.6153	0.0736	0.0035	1.801	0.097	0.1771	0.0026	0.0535	0.0022	0.027355	1051.1	14	1046	36	1032	91	1051.1	14	-0.5
Zircon-12	202.1	80.4	0.3978	0.0733	0.003	1.792	0.087	0.1776	0.0026	0.0529	0.002	-0.077353	1053.7	14	1043	30	1021	80	1053.7	14	-1.0
Zircon-30	262.1	111.7	0.4262	0.0/3/	0.0028	1.786	0.081	0.1777	0.0025	0.05495	0.0019	0.044764	1054.2	13	1041.7	31	1032	79	1054.2	13	-1.2
Zircon-85	146.4	90	0.6148	0.0751	0.003	1.84	0.088	0.1779	0.0028	0.0526	0.0019	0.16397	1055.6	15	1061	32	10//	86	1055.6	15	0.5
Zircon-99	1/6.2	87.4	0.4960	0.0743	0.0031	1.831	0.09	0.1792	0.0026	0.0549	0.0019	0.05473	1062.4	14	1055	33	1047	8/	1062.4	14	-0./
Zircon-63	125.5	34.4	0.33/3	0.0744	0.0032	1.824	0.092	0.1793	0.003	0.0539	0.0022	0.1/4/1	1063	1/	1052	24	1040	8/	1005	1/	-1.0
Zircon-21	135.5	83.5	0.0102	0.0767	0.0032	1.918	0.1	0.1799	0.0032	0.0532	0.0019	0.4033	1000	18	1088	22	1150	8/	1000	18	2.0
Zircon-38	120.5	42	0.5485	0.075	0.0033	1.801	0.093	0.1817	0.003	0.0535	0.0024	0.076318	10/6	10	10/3	32	1004	89	10/0	10	-0.5
Zircon-23	221.5	134.9	0.5955	0.0739	0.003	1.917	0.091	0.1847	0.0027	0.0540	0.0019	0.001828	1092.0	14	1080	32	1085	80	1092.0	14	-0.0
Zircon-32	337	149.0	0.4439	0.07462	0.0027	1.907	0.080	0.1804	0.0026	0.05382	0.0019	0.10/55	1101.7	14	1085	24	1000	/4 01	1101.7	14	-1.7
Zircon-01	145	42.8	0.2952	0.0702	0.0032	1.985	0.098	0.1882	0.0026	0.0576	0.0020	0.034003	1111.3	14	1109	20	1096	100	1111.3	14	-0.2
Zircon-52	157.6	10.47	0.2808	0.0793	0.0039	2.191	0.12	0.2007	0.0031	0.0383	0.0031	0.14293	11/6.9	10	1175	24	11/1	70	11/0.9	10	-0.5
Zircon-64	157.0	20.26	0.0338	0.0824	0.0033	2.304	0.11	0.2035	0.0029	0.0608	0.0021	0.19079	1194.3	10	1212	34 20	1248	100	1194.3	10	1.5
Zincon 20	44.2	20.50	1 7224	0.0789	0.004	2.249	0.12	0.2001	0.0050	0.0604	0.003	0.12941	1208	19	1193	39	1193	100	1208	19	-1.5
Zircon-80	20.3 51.4	45.5	1.7224	0.097	0.0052	2.79	0.18	0.2105	0.0056	0.0649	0.0027	0.45002	1231	25	1357	48	130/	100	1454	3U 01	9.3
Zircon 26	21.0 84.7	00.7	1.0607	0.0912	0.0041	5.191	0.17	0.2350	0.0049	0.0737	0.0031	0.20065	1407	23 28	1452	40	1454	71	1404	91 71	-1.0
Zircon 61	120	20.0	1.009/	0.1105	0.0040	5 8 9 5	0.20	0.551	0.0050	0.1024	0.0033	0.033634	1942	20 26	1910	40	1094	67	1074	67	-1.7
211001-01	129	251	1.03/2	0.1194	0.0044	5.005	0.27	0.5500	0.0054	0.1000	0.0051	0.24427	1900	20	1738	59	1744	07	1744	07	-0.4

Tabla A.1 (Continuación) Datos isotópicos de U-Pb de la muestra MI-0318-3, la cual pertenece a la formación Cualac y fue colectada en el área de Tlaxiaco.

						RELACIO	ONES IS	SOTÓPICA	S CORR	EGIDAS					EDAI	DES C	ORREGIDA	S (Ma))		
Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor edad (Ma)	±2s	Disc %
Zircon-19	126.7	43	0.3394	0.1238	0.0052	5.63	0.29	0.3406	0.0064	0.097	0.0063	0.2522	1889	31	1926	49	2009	74	2009	74	1.9
Zircon-89	86.8	29	0.3341	0.1339	0.0054	5.48	0.26	0.2993	0.008	0.0805	0.0041	0.66911	1687	40	1901	45	2145	72	2145	72	11.3
Zircon-18	59.3	46.2	0.7791	0.1346	0.0051	7.29	0.34	0.3954	0.0068	0.1094	0.004	0.4495	2147	31	2147	42	2156	65	2156	65	0.0
Zircon-53	44.7	15.8	0.3535	0.1392	0.0055	8.05	0.39	0.4217	0.0078	0.1184	0.0055	0.52276	2267	35	2241	47	2212	68	2212	68	-1.2
Zircon-40	102.5	103.6	1.0107	0.1814	0.0065	11.22	0.5	0.4509	0.0069	0.1251	0.0039	0.46089	2399	31	2541	42	2666	61	2666	61	5.6
Zircon-41	109.1	69.4	0.6361	0.1866	0.0068	13.29	0.6	0.5187	0.0076	0.1409	0.0046	0.26779	2693	32	2701	44	2710	60	2710	60	0.3
Zircon-97	119.7	87.8	0.7335	0.1935	0.007	13.13	0.59	0.4949	0.0069	0.1393	0.005	0.33241	2592	30	2688	42	2773	57	2773	57	3.6

Tabla A.1 (Continuación) Datos isotópicos de U-Pb de la muestra MI-0318-3, la cual pertenece a la formación Cualac y fue colectada en el área de Tlaxiaco.

h h							RELACIO	ONES I	SOTÓPICA	EGIDAS				EDAL	DES C	ORREGIDAS	5 (Ma)					
2.2m.38 192.3 57.4 0.4439 0.0042 0.0042 0.0042 0.0042 0.0042 0.0043 0.0043 0.0143 0.0143 0.0143 0.0143 0.0143 0.0143 0.0143 0.0143 0.0143 0.0143 0.0142 0.0143 0.0143 0.0143 0.0142 0.0144 0.0143 0.0142 0.0143 0.0143 0.0142 0.0144 0.0143 0.0143 0.0142 0.0143 0.0143 0.0142 0.0144 0.0143 0.0143 0.0143 0.0144 0.0143 0.0143 0.0144 0.0143 0.0141 0.0170 0.0016 0.0164 <th>Análisis</th> <th>U (ppm)</th> <th>Th (ppm)</th> <th>Th/U</th> <th>²⁰⁷Pb/²⁰⁶Pb</th> <th>±2s abs</th> <th>²⁰⁷Pb/²³⁵U</th> <th>±2s abs</th> <th>²⁰⁶Pb/²³⁸U</th> <th>±2s abs</th> <th>²⁰⁸Pb/²³²Th</th> <th>±2s abs</th> <th>Rho</th> <th>²⁰⁶Pb/²³⁸U</th> <th>±2s</th> <th>²⁰⁷Pb/²³⁵U</th> <th>±2s</th> <th>²⁰⁷Pb/²⁰⁶Pb</th> <th>±2s</th> <th>Mejor edad (Ma)</th> <th>±2s</th> <th>Disc %</th>	Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor edad (Ma)	±2s	Disc %
$ \begin{array}{c} 2 D_{m} (9) \\ 2 D_{m} (9) \\ 4 31 \\ 2 D_{m} (4) \\ 4 1 \\ 2 D_{m} (4) \\ 4 \\ 2 D_{m} (4) \\ 2 D_{m} (4) \\ 4 \\ 2 D_{m} (4) \\ 2 D_{m} (4) \\ 2 D_{m} (4) \\ 2$	2 Zrn 38	129.3	57.4	0.4439	0.0542	0.0054	0.313	0.032	0.0424	0.0012	0.0163	0.0016	0.14188	267.6	7.5	274	25	300	210	267.6	7.5	2.3
$22m_{1}^{2}m_{2}^{2}m_{1}^{2}$ 2.2 m_{1}^{2} 2.2	2 Zrn 09	431	212	0.4919	0.0534	0.0037	0.397	0.03	0.0545	0.0008	0.0167	0.0013	0.15435	342.2	4.8	338	22	337	150	342.2	4.8	-1.2
$2 Zm_7 / 2$ 222 4.5 0.176 0.0645 0.0649 0.959 0.05 0.0689 0.0012 0.0779 0.0049 0.3470 4.3470 4.295 7.2 4.75 32 7.0 1.50 4.295 7.2 9.6 $2.2m_4$ 2.27 7.0 4.568 0.0577 0.0045 0.57 0.047 0.0715 0.0013 0.022 0.0049 0.0709 4.357 7.1 4.49 30 4.51 0.70 4.357 6.1 4.39 2.2 1.00 4.557 0.047 0.0715 0.0013 0.022 0.0040 0.021 0.0693 4.452 7.9 4.44 30 4.51 0.70 4.545 8.4 4.8 4.8 $4.8 - 2.2m_2$ 2.2 10.22 0.651 0.0043 0.057 0.0046 0.056 0.051 0.072 0.0001 0.0215 0.0061 0.3715 4.68 8.5 4.64 2.6 5.2 1.40 4.56 8.5 4.6 1.5 $2.2m_2$ 3.2 10.2 0.451 0.0045 0.0046 0.051 0.015 0.015 0.015 0.0150 0.0150 0.0150 0.0150 0.015 0.005 0.005 0.006 0.006 0.066 0.066 0.066 0.005 0.006 0.005 0.001 0.017 0.013 0.012 0.013 0.012 0.013 0.012 0.015 0.015 0.015 0.015 0.015 0.001 0.017 0.013 0.012 0.013 0.012 0.013 0.010 0.017 0.013 0.012 0.013 0.012 0.012 0.015 0.015 0.015 0.005 0.006 0.006 0.006 0.006 0.005 0.001 0.025 0.001 0.013 0.012 0.013 0.012 0.013 0.012 0.012 0.013 0.012 0.012 0.013 0.012 0.013 0.012 0.013 0.012 0.013 0.012 0.013 0.012 0.013 0.012 0.013 0.014 0.014 0.014 0.014 0.014 0.015 0.001 0.0053 0.002 0.0101 0.013 0.022 0.013 0.014 0.015 0.014 0.015 0.001 0.0010 0.013 0.014 0.013 0.014 0.015 0.014 0.015 0.001 0.0013 0.013 0.013 0.013 0.014 0.015 0.013 0.001 0.013 0.013 0.013 0.014 0.015 0.013 0.013 0.013 0.013 0.013 0.014 0.015 0.013 0.013 0.013 0.013 0.014 0.015 0.013 0.013 0.013 0.013 0.013 0.013 0.014 0.013 0.013 0.013 0.001 0.0013 0.013 0.001 0.0013 0.001 0.0013 0.001 0.0013 0.001	2_Zrn_48	141	201	1.4255	0.0564	0.0048	0.481	0.043	0.0618	0.0009	0.0183	0.0014	0.05492	386.7	5.6	396	29	430	180	386.7	5.6	2.3
2.2m_4 21.5 64.8 0.3055 0.0051 0.0043 0.6099 0.0019 0.07601 435.7 6.1 439 28 460 170 45.7 7.1 439 28 460 170 45.7 7.1 439 28 400 170 45.1 8.8 470 10.4 30.5 10.041 0.0728 0.0019 0.07601 45.1 8.8 446 29 410 170 45.1 8.8 7.1 10.23 10.661 0.0582 0.0040 0.066 0.051 0.0724 0.0016 0.36780 468 8.8 446 29 51.0 140 45.8 8.3 7.7 1.0 0.0525 0.0016 0.0217 40018 2.0 3.5 10.0 43.0 1.0	2_Zrn_77	252	44.5	0.1766	0.0645	0.0049	0.592	0.05	0.0689	0.0012	0.0279	0.0024	0.34970	429.5	7.2	475	32	750	150	429.5	7.2	9.6
2.Zm. 34 19. 2.Zm. 34 3.2 0.55 0.444 0.25 0.0073 0.0025 0.0016 0.0225 0.017 0.0217 0.0217 0.0218 0.027 0.0211 0.0181 0.038 8.4 9.3 1.4 1.6 0.025 0.011 0.0251 0.0121 0.0123 0.0211	2_Zrn_44	213.5	64.8	0.3035	0.0571	0.0042	0.543	0.043	0.0699	0.0010	0.0236	0.0019	0.07601	435.7	6.1	439	28	460	170	435.7	6.1	0.8
$2_{Zm}^{-24} 257$ 72 0.280 0.0651 0.043 0.55 0.044 0.073 0.0074 0.0007 0.023 0.018 0.021 0.08697 454.1 88 446 29 410 70 454.1 88 -1.8 2.2m, 24 102 0.0512 0.055 0.023 0.016 0.3216 0.0276 8.3 164 246 26 29 110 70 454.1 88 -1.6 0.2m, 2m, 91 30 33 0.0077 0.0581 0.042 0.0075 0.023 0.0016 0.36780 468 8.8 466 26 33 530 170 468 8.8 4.8 3 3 530 170 468 8.8 4.8 3 3 5.2 150 4.8 10.5 2.2m, 04 171.4 20.5 1.2048 0.0574 0.0043 0.638 0.011 0.0181 0.001 0.1818 503 8.4 499 31 470 160 503 8.4 0.9 2.2m, 24 17.4 20.5 1.2048 0.0457 0.0056 0.0024 0.0014 0.0248 0.0017 0.01881 503 8.4 499 31 470 160 503 8.4 0.9 2.2m, 25 9.5 9.5 0.050 0.0044 0.021 0.022 0.0014 0.024 0.0014 0.0248 0.0017 0.01881 503 8.4 499 31 470 160 503 8.4 0.9 2.2m, 25 9.5 9.5 0.050 0.0044 0.021 0.022 0.0014 0.024 0.0024 0.1657 519.2 9.1 52.6 35 50 180 512 9.1 1.3 2.2m, 35 75 963 0.050 0.0044 0.056 0.0044 0.007 0.0884 0.0011 0.025 0.0024 0.1023 522 12 5.20 46 490 210 522 12 5.0 1.2 2m, 34 10.5 0.500 0.0014 0.028 0.0011 0.025 0.0019 0.0130 52.5 2.1 2.50 40 409 140 522 28 5.1 2.2m, 31 0.55 0.0076 0.0014 0.0019 0.0130 52.5 0.21 2.50 4.5 59 4.5 0.5 150 0.570 0.0054 0.0014 0.088 0.0011 0.025 0.0019 0.0130 52.5 2.5 12 5.0 4.6 409 140 522 12 5.1 2.2m, 51 0.5 0.0570 0.0054 0.0014 0.0076 0.0014 0.0019 0.0130 52.5 2.1 5.5 50 4.5 56 5.5 3.5 2.5 51 4.5 56 4.5 51 2.2 2.2m, 51 0.5 0.0159 0.0054 0.0011 0.0251 0.0019 0.0130 52.5 5.5 1.5 5.5 1.5 5.5 1.5 5.2 1.8 5.5 4.5 5.5 1.5 5	2_Zrn_98	168.8	77.1	0.4568	0.0577	0.0045	0.567	0.047	0.0715	0.0013	0.0225	0.0019	0.10093	445.2	7.9	454	30	510	170	445.2	7.9	1.9
2.2m.28 242 10.92 0.4512 0.0571 0.0071 0.581 0.0142 0.0752 0.0016 0.2218 0.666 8.8 4.66 3.50 170 456.8 5.6 4.66 8.8 8.8 3.30 170 446 8.8 3.7 2.2m.28 11.1 20.55 0.0661 0.052 0.0161 0.0021 0.0131 404 2.7 552 35 8.01 170 466 8.8 3.7 2.2m.49 11.4 2.55 3.13 0.044 0.058 0.0021 -0.1831 50.0 1.0 52 1.2 2.4 4.0 4.0 0.0225 0.012 0.0121 0.1021 0.1021 0.1021 0.1021 0.1021 0.1021 0.1021 0.1021 0.1021 1.12 2.12 2.5 5.7 1.0 0.557 0.53 0.537 0.537 0.537 0.537 0.537 0.537 0.537 0.537 0.531 3.1 3.1 3.1	2_Zrn_24	257	72	0.2802	0.0551	0.0043	0.55	0.044	0.0728	0.0015	0.0240	0.0021	0.08697	454.1	8.8	446	29	410	170	454.1	8.8	-1.8
$2,2m_2,8$ 171 $ 8.3$ $ 1.0661$ 0.0582 0.0046 0.060 0.051 0.072 0.025 0.0076 0.004 0.0361 0.03780 488 8.8 486 33 33 530 170 468 8.8 3.8 3.7 $2.2m_2,8$ 3.53 10.55 3.20 10.65 0.0043 0.033 0.0041 0.0316 0.0077 0.02137 0.0213 1494 27 552 535 820 150 494 27 10.5 $2,2m_2,4$ 17.4 2055 1.055 1.048 0.057 0.0013 0.038 0.0013 0.038 0.0013 0.038 0.0014 0.0245 0.0017 0.01881 503 8.4 499 31 470 160 503 8.4 -0.8 $2,2m_2,32$ 15.5 10.53 10.50 0.0044 0.072 0.0844 0.0021 0.0127 0.0210 0.1627 $512. 2$ 12 520 46 490 210 522 12 5.0 46 490 210 522 12 5.0 46 490 210 522 12 5.0 46 490 210 522 12 5.0 46 490 210 522 12 5.0 180 5750 0.63 0.0043 0.0844 0.0051 0.0844 0.0071 0.0287 0.0037 0.0137 522.6 6.7 534 32 559 150 525 0.68 535 352 0.58 370 150 520 0.88 0.059 0.0043 0.0844 0.052 0.0848 0.0011 0.0228 0.0037 3.522 6.7 534 32 550 150 525 6.6 528 12 550 40 40 400 140 522 228 51 $2,2m_2,5$ 188 0.572 0.089 0.0043 0.068 0.062 0.0868 0.0610 0.0228 0.0039 0.0120 0.0109 0.3545 9.6 528 337 520 180 5345 45 6 -1.1 $2,2m_2,6$ 184 115 0.062 0.0659 0.0044 0.077 0.0870 0.0869 0.0101 0.0270 0.0209 0.5345 9.6 528 13 32 520 180 5345 45 6 -1.1 $2,2m_2,7$ 15 14.4 0.066 0.0399 0.0044 0.077 0.0877 0.0870 0.0160 0.0120 0.0219 0.0120 0.5345 9.6 533 132 520 180 549 35 550 16 6 311 32 550 16 6 311 32 550 160 350 480 300 300 300000 0.711 0.077 0.0871 0.0077 0.0873 0.027 0.0270 0.0219 0.0210 0.574 0.08 34 355 556 150 154 16 586 48 630 220 554 16 38 48 30 220 554 16 380 48 300 220 554 16 380 48 300 220 554 16 38	2_Zrn_23	242	109.2	0.4512	0.0573	0.0037	0.581	0.042	0.0734	0.0009	0.0235	0.0018	0.32105	456.8	5.6	464	26	532	140	456.8	5.6	1.6
2,Zm,08 340 339 0.0997 0.0063 0.0048 0.072 0.0012 0.0121 0.017 0.0137 494 27 552 35 820 150 494 27 10.5 2,Zm,04 17.14 2065 1.045 0.0718 0.0048 0.0081 0.0011 0.0245 0.0012 0.16279 519.2 9.1 526 35 530 180 519.2 9.1 1.2 0.4 2,Zm,45 519 150.6 0.0464 0.064 0.072 0.0041 0.1802 522 12 520 146 490 140 522 2.8 50 40 690 140 522 2.8 51 1.0 52.2 6.7 534 32 597 150.6 52.8 53 32 597 150.6 534.5 32 597 150.6 534.5 32 597 150.6 534.5 32 597 150.6 534.5 32 597 150.6 54.5 31.2 277 150.7 151.5 144 450.4	2_Zrn_28	171	182.3	1.0661	0.0582	0.0046	0.606	0.051	0.0752	0.0015	0.0225	0.0016	0.36780	468	8.8	486	33	530	170	468	8.8	3.7
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2_Zrn_89	340	33.9	0.0997	0.0653	0.0048	0.725	0.052	0.0796	0.0044	0.0361	0.0027	0.62137	494	27	552	35	820	150	494	27	10.5
$\begin{array}{c} 2zm_{2} \\ 2zm_{4} \\ 519 \\ 319 \\ 319 \\ 319 \\ 319 \\ 319 \\ 319 \\ 319 \\ 319 \\ 319 \\ 319 \\ 310$	2_Zrn_04	171.4	206.5	1.2048	0.0574	0.0043	0.638	0.051	0.0812	0.0014	0.0245	0.0017	0.01881	503	8.4	499	31	470	160	503	8.4	-0.8
2_{Zm} , 4_{5} 51, 9 31, 9 0.6146 0.0065 0.664 0.072 0.0844 0.0027 0.0027 0.0023 0.1802 522 12 50 46 490 210 522 12 5.0 4.09 400 140 522 18 5.1 2.2m, 6_{5} 537 150.6 0.3793 0.0592 0.0043 0.694 0.052 0.0845 0.0011 0.0253 0.0019 0.00573 522.6 6.7 534 52 597 150 52.2 6.8 7.2 1.0 2.2m, 5_{2} 7.20 188 0.5720 0.0591 0.0044 0.688 0.057 0.0061 0.0011 0.0253 0.0019 0.00568 532 6.8 535 32 550 170 552 6.8 6.6 2.2m, 2_{2} m, 5_{2} 7.2m, 6_{1} 6.250 188 0.652 0.0058 0.0059 0.0044 0.780 0.086 0.0011 0.0253 0.0019 0.00050 534.5 9.6 528 37 520 180 534.5 9.6 -1.2 2.2m, 5_{1} 16.4 1.0647 0.0588 0.0054 0.689 0.0052 0.0866 0.0016 0.0253 0.0019 0.0000 534.5 9.6 528 37 520 180 534.5 9.6 -1.2 2.2m, 7_{2} 151 61.4 0.0666 0.0994 0.0044 0.717 0.077 0.0871 0.0036 0.0029 0.0020 0.0020 0.534.5 9.6 58.1 32 533 14 564 150 538.1 21 2.7 15 61.4 0.0666 0.0993 0.0044 0.717 0.077 0.0871 0.0036 0.0023 0.0021 538.1 21 533 41 564 150 538.1 21 2.7 11 6.43 0.0669 0.0059 0.0066 0.718 0.078 0.0072 0.0023 0.0027 0.17461 559 15 544 45 460 2.0 559 161 8.3 540.9 8.3 0.8 2.2m, 14 46.8 37.2 0.7949 0.0067 0.0056 0.788 0.007 0.0026 0.0027 0.0023 0.0021 0.12655 566 116 572 41 550 190 566 12 0.2 2.2m, 6_{1} 539 15.1 1.647 0.0697 0.0056 0.78 0.077 0.0027 0.0026 0.0021 0.12658 566 12 567 40 520 190 566 16 3.8 2.2m, 6_{1} 53.3 14 2.0 6049 0.0036 0.0456 0.075 0.0071 0.0256 0.0021 0.12658 567 10 572 41 550 190 567 10 0.0 2.2m, 4_{2} 2.16 17.3 0.6528 0.0671 0.009 0.821 0.017 0.0236 0.0021 0.12658 567 10 572 41 550 190 567 10 0.0 2.2m, 4_{2} 2.14 2.16 17.3 0.6528 0.0661 0.0073 0.0016 0.0075 0.0013 0.0238 0.0213 0.558 571 19 592 34 640 125 571.1 9 3.4 2.2m, 4_{2} 1.44 450 313 0.0066 0.075 0.001 0.0026 0.0023 0.0023 0.0213 0.558 571 19 592 34 640 150 572.1 9 3.4 2.2m, 4_{2} 2.14 1.78 0.6496 0.00046 0.073 0.0017 0.0236 0.0023 0.0238 0.0233 571.1 9 592 34 640 150 572.1 9 3.4 2.2m, 4_{2} 2.2m, 4_{2} 2.14 2.10 1.73 3.26 0.0046 0.073 0.0041 0.0730 0.0027 0.0230 0.0223 0.0233 572.1 9 593 36 590 170 53.3 16 7.0 2.2 2.2m, 3_{2} 2.2m, 3_{2}	2_Zrn_32	135.4	104.5	0.7718	0.0598	0.0048	0.684	0.058	0.0839	0.0015	0.0260	0.0021	-0.16279	519.2	9.1	526	35	530	180	519.2	9.1	1.3
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	2_Zrn_45	51.9	31.9	0.6146	0.0566	0.0065	0.664	0.072	0.0844	0.0021	0.0272	0.0024	0.18032	522	12	520	46	490	210	522	12	-0.4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2_Zrn_93	275	96.3	0.3502	0.0620	0.0044	0.721	0.063	0.0844	0.0047	0.0287	0.0030	0.11520	522	28	550	40	690	140	522	28	5.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2_Zrn_56	397	150.6	0.3793	0.0592	0.0043	0.694	0.052	0.0845	0.0011	0.0253	0.0019	-0.00573	522.6	6.7	534	32	597	150	522.6	6.7	2.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2_Zrn_60	250	188	0.7520	0.0591	0.0044	0.688	0.057	0.0860	0.0011	0.0261	0.0019	0.13608	532	6.8	535	32	550	170	532	6.8	0.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2_Zrn_27	109.7	116.8	1.0647	0.0588	0.005	0.689	0.062	0.0865	0.0016	0.0253	0.0019	-0.00090	534.5	9.6	528	37	520	180	534.5	9.6	-1.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2_Zrn_55	184	115	0.6250	0.0589	0.0043	0.689	0.052	0.0868	0.0015	0.0260	0.0020	-0.12019	536.6	8.6	531	32	530	160	536.6	8.6	-1.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2_Zrn_67	452	82.7	0.1830	0.0594	0.0044	0.717	0.077	0.0871	0.0036	0.0291	0.0110	0.15329	538.1	21	553	41	564	150	538.1	21	2.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2_Zrn_72	151	61.4	0.4066	0.0593	0.0049	0.716	0.062	0.0875	0.0014	0.0270	0.0023	-0.02427	540.9	8.3	545	37	560	180	540.9	8.3	0.8
$ \begin{array}{c} 2Zm_{16} 8 & 53.4 & 27 & 0.5056 \\ 2Zm_{16} 6 & 53.9 & 152.2 & 28.37 \\ 2Zm_{16} 6 & 53.9 & 152.2 & 28.37 \\ 2Zm_{16} 6 & 53.9 & 152.2 & 28.37 \\ 1.66 & 0.0607 & 0.0056 & 0.742 & 0.069 \\ 0.090 & 0.072 & 0.0027 & 0.027 & 0.0021 & 0.1658 \\ 0.027 & 0.021 & 0.1658 & 567 & 10 \\ 0.028 & 0.0021 & 0.1658 & 567 & 10 \\ 0.028 & 0.0021 & 0.1658 & 567 & 10 \\ 0.028 & 0.0021 & 0.1658 & 567 & 10 \\ 0.028 & 0.0021 & 0.1658 & 567 & 10 \\ 0.028 & 0.0021 & 0.1658 & 567 & 10 \\ 0.028 & 0.0021 & 0.1658 & 567 & 10 \\ 0.028 & 0.0021 & 0.1658 & 567 & 10 \\ 0.028 & 0.0021 & 0.1658 & 567 & 10 \\ 0.028 & 0.0021 & 0.1658 & 567 & 10 \\ 0.028 & 0.0022 & 0.0238 & 572.1 \\ 0.029 & 0.028 & 0.0233 & 583 & 16 \\ 0.027 & 0.029 & 0.0223 & 583 & 16 \\ 0.021 & 0.022 & 0.1233 & 583 & 16 \\ 0.021 & 0.022 & 0.1233 & 583 & 16 \\ 0.021 & 0.022 & 0.1233 & 583 & 16 \\ 0.021 & 0.006 & 0.094 & 0.007 & 0.029 & 0.0022 & 0.1233 \\ 0.001 & 0.0022 & 0.0213 & 588 & 10 \\ 0.002 & 0.0023 & 0.0022 & 0.0213 & 588 & 16 \\ 0.002 & 0.0023 & 0.0022 & 0.0213 & 588 & 16 \\ 0.002 & 0.0023 & 0.0022 & 0.0213 & 588 & 16 \\ 0.002 & 0.001 & 0.0023 & 0.0024 & 0.0486 & 591 & 3 \\ 0.001 & 0.0039 & 0.079 & 0.055 & 0.096 & 0.096 & 0.0012 & 0.020 & 0.0486 & 591 & 3 \\ 0.001 & 0.0023 & 0.0410 & 0.0028 & 0.04662 & 590 & 13 & 638 & 33 & 841 & 130 & 590 & 13 & 75 \\ 0.2m_{1} & 470 & 15.33 & 0.0610 & 0.0039 & 0.799 & 0.055 & 0.096 & 0.0012 & 0.0236 & 0.0022 & 0.1488 & 591 & 3 & 7597 & 30 & 635 & 140 & 591 & 3 & 7 \\ 0.2m_{1} & 479 & 15.7 & 0.0339 & 0.0618 & 0.0048 & 0.821 & 0.11 & 0.096 & 0.0024 & 0.0486 & 591 & 3 & 7597 & 30 & 635 & 140 & 591 & 3 & 7 \\ 0.2m_{1} & 479 & 15.7 & 0.0339 & 0.0618 & 0.0048 & 0.821 & 0.11 & 0.096 & 0.0027 & 0.0236 & 0.0022 & 0.1537 & 592 & 31 & 608 & 53 & 657 & 160 & 592 & 33 & 593 & 140 & 593.6 & 7.6 & 592 \\ 0.2m_{1} & 72 & 35.9 & 1.4246 & 0.0607 & 0.0077 & 0.095 & 0.0013 & 0.0377 & 0.0025 & 0.1280 & 600 & 20 & 604 & 50 & 610 & 250 & 600 & 20 & 67.7 \\ 0.2m_{1} & 3.24 & 0.3180 & 0.0667 & 0.0072 & 0.097 & 0.0072 & 0.0025 & 0.1280 & 600 & 20 & 604 & 500 & 610 & 250 & 600 & 20 & 67.7 $	2_Zrn_14	46.8	37.2	0.7949	0.0569	0.006	0.711	0.078	0.0902	0.0026	0.0273	0.0027	0.17461	559	15	544	45	460	220	559	15	-2.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2_Zrn_81	53.4	27	0.5056	0.0607	0.0065	0.788	0.087	0.0915	0.0027	0.0296	0.0030	0.14655	564	16	586	48	630	220	564	16	3.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2_Zrn_64	53.9	152.2	2.8237	0.0592	0.0055	0.742	0.069	0.0918	0.0020	0.0275	0.0021	0.20664	566	12	567	40	520	190	566	12	0.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2_Zrn_65	96.5	159.1	1.6487	0.0607	0.0056	0.75	0.072	0.0919	0.0017	0.0286	0.0021	0.16558	567	10	572	41	550	190	567	10	0.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2_Zrn_41	27.16	17.73	0.6528	0.0671	0.009	0.821	0.11	0.0923	0.0027	0.0269	0.0028	0.13271	569	16	591	62	640	280	569	16	3.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2_Zrn_73	249	11.66	0.0468	0.0609	0.0046	0.787	0.061	0.0928	0.0015	0.0375	0.0055	0.02238	572.1	9	592	34	640	150	572.1	9	3.4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2_Zrn_91	41.2	90	2.1845	0.0664	0.00/2	0.859	0.096	0.0946	0.0027	0.0291	0.0022	0.12033	583	16	627	52	770	230	583	16	7.0
$ \begin{array}{c} 2_{Zm} \ \ column{2}{c} 522 \ \ las.4 \ \ 0.5313 \ \ 0.0613 \ \ 0.0041 \ \ 0.073 \ \ 0.0041 \ \ 0.0058 \ \ 0.00958 \ \ 0.00022 \ \ 0.0410 \ \ 0.0028 \ \ 0.054062 \ \ \ 590 \ \ 13 \ \ 533 \ \ 841 \ \ 150 \ \ 590 \ \ 13 \ \ 75 \ \ \ 75 \ \ 75 \ \ \ \$	2_Zrn_62	121	78.6	0.6496	0.0605	0.0046	0.793	0.066	0.0953	0.0017	0.0293	0.0022	-0.02135	586.9	10	593	36	590	170	586.9	10	1.0
$ \begin{array}{c} 2_{2} m_{-52} & 464 & 659 & 1.4203 \\ 2_{2} m_{-11} & 439 & 15.75 & 0.0359 & 0.0610 & 0.0039 & 0.799 & 0.055 & 0.0961 & 0.0012 & 0.024886 & 591.3 & 7 & 597 & 30 & 635 & 140 & 591.3 & 7 & 1.0 \\ 2_{2} m_{-11} & 439 & 15.75 & 0.0359 & 0.0618 & 0.0048 & 0.821 & 0.11 & 0.0961 & 0.0064 & 0.0374 & 0.0042 & 0.48885 & 592 & 37 & 608 & 53 & 657 & 160 & 592 & 37 & 2.6 \\ 2_{2} m_{-31} & 72.2 & 110.7 & 1.5332 & 0.0627 & 0.0055 & 0.814 & 0.074 & 0.0962 & 0.0020 & 0.0286 & 0.0022 & 0.15397 & 592 & 11 & 605 & 40 & 700 & 180 & 592 & 11 & 2.1 \\ 2_{2} m_{-8} & 220 & 33.1 & 0.1505 & 0.0617 & 0.0043 & 0.815 & 0.06 & 0.0964 & 0.0017 & 0.0320 & 0.0028 & 0.07900 & 593.2 & 9.8 & 612 & 31 & 670 & 160 & 593.2 & 9.8 \\ 2_{2} m_{-1} & 25.2 & 35.9 & 1.4246 & 0.0607 & 0.0077 & 0.803 & 0.097 & 0.0034 & 0.0277 & 0.0027 & 0.10543 & 593.6 & 7.6 & 592 & 33 & 593 & 140 & 593.6 & 7.6 & -0.3 \\ 2_{2} m_{-1} & 25.2 & 35.9 & 1.4246 & 0.0607 & 0.0077 & 0.083 & 0.097 & 0.0024 & 0.0237 & 0.0022 & 0.12802 & 600 & 20 & 604 & 50 & 610 & 250 & 600 & 20 & 0.7 \\ 2_{2} m_{-2} & 101.9 & 32.4 & 0.3180 & 0.0602 & 0.0049 & 0.828 & 0.071 & 0.0027 & 0.0325 & 0.0028 & 0.23453 & 604 & 12 & 608 & 40 & 600 & 170 & 604 & 12 & 0.7 \\ 2_{2} m_{-10} & 62 & 13.34 & 0.2152 & 0.0634 & 0.0055 & 0.868 & 0.071 & 0.1017 & 0.0027 & 0.0302 & 0.0026 & -0.19713 & 624 & 16 & 641 & 39 & 680 & 170 & 624 & 16 & 2.7 \\ 2_{2} m_{-5} & 223.6 & 27.7 & 0.1239 & 0.0653 & 0.0047 & 0.901 & 0.0072 & 0.0320 & 0.0021 & 0.04206 & 625 & 15 & 620 & 46 & 590 & 200 & 625 & 15 & -0.8 \\ 2_{2} m_{-5} & 223.6 & 27.7 & 0.1239 & 0.0653 & 0.0047 & 0.901 & 0.0017 & 0.0328 & 0.0023 & 0.39823 & 634 & 18 & 648 & 38 & 770 & 150 & 634 & 18 & 2.2 \\ 2_{2} m_{-3} & 182.9 & 122 & 0.6670 & 0.0044 & 1.053 & 0.0077 & 0.1181 & 0.0012 & 0.0328 & 0.0232 & 0.32925 & 561 & 110 & 713 & 410 & 7150 & 651 & 10 & 8.7 \\ 2_{2} m_{-3} & 182.9 & 122 & 0.6661 & 0.0044 & 1.053 & 0.077 & 0.1181 & 0.0015 & 0.0379 & 0.0028 & 0.13982 & 711.7 & 8.6 & 715 & 39 & 709 & 140 & 711.7 & 8.6 & 0.5 \\ 2_{2} m_{-3} & 3.99 & 165.6 & 0.4150 & 0.0658 & 0.$	2_Zrn_66	522	183.4	0.3513	0.06/3	0.0041	0.876	0.06	0.0958	0.0022	0.0410	0.0028	0.64662	590	13	638	33	841	130	590	13	/.5
$ \begin{array}{c} 2_{Zm} 11 & 439 & 15.15 & 0.0359 & 0.0618 & 0.0048 & 0.814 & 0.014 & 0.0961 & 0.0064 & 0.0374 & 0.0042 & 0.45885 & 392 & 37 & 608 & 53 & 657 & 100 & 592 & 57 & 2.6 \\ 2_{Zm} 31 & 72.2 & 110.7 & 1.5332 & 0.0627 & 0.0055 & 0.814 & 0.074 & 0.0962 & 0.0020 & 0.0286 & 0.0022 & 0.15397 & 592 & 11 & 605 & 40 & 700 & 180 & 592 & 11 & 2.1 \\ 2_{Zm} 88 & 220 & 33.1 & 0.1505 & 0.0617 & 0.0043 & 0.815 & 0.06 & 0.0964 & 0.0017 & 0.0320 & 0.0028 & 0.0790 & 593.2 & 9.8 & 612 & 31 & 670 & 160 & 593.2 & 9.8 \\ 2_{Zm} 78 & 470 & 32.8 & 0.0698 & 0.0599 & 0.004 & 0.788 & 0.056 & 0.0965 & 0.0013 & 0.037 & 0.0027 & 0.10543 & 593.6 & 7.6 & 592 & 33 & 593 & 140 & 593.6 & 7.6 & -0.3 \\ 2_{Zm} 19 & 25.2 & 35.9 & 1.4246 & 0.0607 & 0.0077 & 0.803 & 0.097 & 0.0975 & 0.0034 & 0.0277 & 0.0025 & -0.12802 & 600 & 20 & 604 & 50 & 610 & 250 & 600 & 20 & 0.7 \\ 2_{Zm} 20 & 101.9 & 32.4 & 0.3180 & 0.0602 & 0.0049 & 0.828 & 0.072 & 0.0982 & 0.0020 & 0.0325 & 0.0028 & 0.23453 & 604 & 12 & 608 & 40 & 600 & 170 & 604 & 12 & 0.7 \\ 2_{Zm} 100 & 62 & 13.34 & 0.2152 & 0.0654 & 0.0072 & 0.098 & 0.0112 & 0.0023 & 0.0358 & 0.0045 & -0.11874 & 622 & 13 & 648 & 51 & 690 & 210 & 622 & 13 & 4.0 \\ 2_{Zm} 43 & 115.1 & 42.3 & 0.3675 & 0.0634 & 0.0055 & 0.868 & 0.071 & 0.1017 & 0.0027 & 0.0302 & 0.0026 & -0.19713 & 624 & 16 & 641 & 39 & 680 & 170 & 624 & 16 & 2.7 \\ 2_{Zm} 08 & 81.5 & 144.8 & 1.7767 & 0.0614 & 0.0058 & 0.854 & 0.083 & 0.0114 & 0.0027 & 0.0300 & 0.0021 & 0.04206 & 625 & 15 & 620 & 46 & 590 & 200 & 625 & 15 & -0.8 \\ 2_{Zm} 37 & 182.9 & 122 & 0.6670 & 0.0700 & 0.0051 & 1.026 & 0.083 & 0.1063 & 0.0017 & 0.0328 & 0.0328 & 0.13982 & 711.7 & 8.6 & 715 & 39 & 709 & 140 & 711.7 & 8.6 & 0.5 \\ 2_{Zm} 47 & 265.6 & 89.3 & 0.3362 & 0.0661 & 0.0044 & 1.053 & 0.077 & 0.1181 & 0.019 & 0.0354 & 0.0027 & 0.32916 & 719.6 & 11 & 728 & 39 & 788 & 140 & 719.6 & 11 & 1.2 \\ 2_{Zm} 33 & 399 & 165.6 & 0.4150 & 0.0658 & 0.0041 & 1.072 & 0.077 & 0.1188 & 0.0033 & 0.0027 & 0.0228 & 723.6 & 10 & 742 & 37 & 786 & 130 & 723.6 & 10 & 2.7 \\ 2_{Zm} 58 & 33 & 1188 & 0.1361 & 0.00658 $	2_Zm_52	464	15 75	1.4203	0.0610	0.0039	0.799	0.055	0.0961	0.0012	0.0290	0.0020	-0.04886	591.3	27	597	50	635	140	591.3	27	1.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2_Zm_11	439	15./5	0.0359	0.0618	0.0048	0.821	0.11	0.0961	0.0064	0.0374	0.0042	0.48585	592	5/	608	55	657	160	592	3/	2.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2_Zrn_{31}	12.2	110.7	1.5332	0.0627	0.0055	0.814	0.074	0.0962	0.0020	0.0286	0.0022	0.15397	592	11	605	40	/00	180	592	11	2.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2_Zm_88	220	22.9	0.1505	0.0617	0.0043	0.815	0.06	0.0964	0.0017	0.0320	0.0028	0.07900	593.2	9.8	502	22	670 502	140	593.2	9.8	5.1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2_Zm_{10}	4/0	32.8	0.0098	0.0599	0.004	0.788	0.056	0.0965	0.0013	0.0307	0.0027	0.10545	593.0	/.0	592	33 50	593	250	593.0	/.0	-0.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2_Zm_19	25.2	35.9	1.4240	0.0607	0.0077	0.803	0.097	0.0975	0.0034	0.0277	0.0025	-0.12802	600	20	604	50	610	250	600	20	0.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2_Zm_{92}	101.9	32.4	0.3180	0.0602	0.0049	0.828	0.072	0.0982	0.0020	0.0325	0.0028	0.23455	604	12	608	40	600	210	604	12	0.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2_ZIII_100	115 1	13.34	0.2132	0.0634	0.0072	0.907	0.098	0.1012	0.0025	0.0558	0.0045	-0.116/4	624	15	641	20	690	170	624	15	4.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2_ZIII_43 2 Zm 08	115.1 91.5	42.5	0.3073	0.0034	0.0055	0.808	0.071	0.1017	0.0027	0.0302	0.0020	-0.19/15	625	10	620	39	500	200	625	10	2.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$2_Z m_{50}$	222.6	27.7	0.1220	0.0014	0.0038	0.834	0.085	0.1014	0.0027	0.0300	0.0021	0.04200	624	19	648	29	390 770	150	624	19	-0.8
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2_ZIII_30	182.0	122	0.1239	0.0033	0.0047	1.026	0.077	0.1054	0.0052	0.0300	0.0035	0.39623	651	10	712	30 41	000	150	651	10	2.2
2_zm_40 213.4 70 0.3226 0.0057 0.0045 1.020 0.077 0.1107 0.0015 0.0057 0.0028 0.13762 711.7 8.0 715 39 709 140 711.7 8.0 0.5 2_zm_47 265.6 89.3 0.3362 0.0661 0.0044 1.053 0.077 0.1181 0.0019 0.0354 0.0027 0.32916 719.6 11 728 39 788 140 719.6 11 1.2 2_zm_33 399 165.6 0.4150 0.0658 0.0041 1.072 0.077 0.1188 0.0018 0.0393 0.0027 0.32916 719.6 11 728 39 786 140 719.6 11 1.2 2_zm_33 399 165.6 0.4150 0.0658 0.0041 1.072 0.077 0.1188 0.0018 0.0393 0.0027 0.9284 723.6 10 742 37 786 130 723.6 10 22.9 2.5 2 Zm 87 873 11.88 0.1361 0.	$2_ZIII_3/$	215 4	122	0.0070	0.0700	0.0031	1.020	0.085	0.1003	0.0017	0.0328	0.0028	0.23393	7117	10	715	41	900	140	7117	86	0.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$2_Z m_{47}$	215.4	20 2	0.3326	0.0037	0.0045	1.020	0.079	0.110/	0.0015	0.0379	0.0028	0.15962	/11./	0.0	715	39	709	140	710.6	8.0 11	0.5
$\frac{1}{2} \frac{1}{2} \frac{1}$	$2_{2111_4/}$	205.0	165.6	0.3302	0.0001	0.0044	1.035	0.077	0.1181	0.0019	0.0304	0.0027	0.02210	719.0	10	740	37	786	130	773.6	10	2.5
	2_2n_{33}	873	11.88	0.1361	0.0058	0.0058	1 318	0.1	0.1276	0.0039	0.0595	0.0059	0 32103	774	22	856	50	1100	160	774	22	9.6

Tabla A.2 Datos isotópicos de U-Pb de la muestra ÑU-0318-1, la cual pertenece a la formación Cualac y fue colectada en el área de Tlaxiaco.

		RELACIONES ISOTÓPICAS CORREGIDAS													EDAI	DES C	ORREGIDAS	5 (Ma)			
Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor edad (Ma)	$\pm 2s$	Disc %
2 Zrn 90	62.3	71.2	1.1429	0.0672	0.0056	1.229	0.11	0.1316	0.0038	0.0373	0.0029	0.37311	796	21	806	51	780	180	796	21	1.2
2_Zrn_61	317	189	0.5962	0.0689	0.0042	1.271	0.094	0.1329	0.0027	0.0403	0.0029	0.25696	804	15	831	41	883	140	804	15	3.2
2_Zrn_40	344	181.4	0.5273	0.0686	0.0043	1.312	0.091	0.1399	0.0023	0.0468	0.0032	0.51019	843.9	13	850	38	877	130	843.9	13	0.7
2_Zrn_02	11.44	13.89	1.2142	0.0750	0.0099	1.41	0.19	0.1407	0.0056	0.0481	0.0050	-0.01982	854	31	866	80	1000	280	854	31	1.4
2_Zrn_86	145.2	266.8	1.8375	0.0808	0.0052	1.688	0.12	0.1557	0.0055	0.0512	0.0036	0.58062	933	31	1001	50	1202	130	933	31	6.8
2_Zrn_42	492	205	0.4167	0.0728	0.0043	1.589	0.1	0.1600	0.0042	0.0454	0.0031	0.23261	956	24	965	43	1005	120	956	24	0.9
2_Zrn_84	197.1	57.1	0.2897	0.0819	0.0065	1.787	0.13	0.1605	0.0100	0.0637	0.0054	0.40299	960	58	1039	51	1235	130	960	58	7.6
2_Zrn_03	32.6	11.97	0.3672	0.0748	0.007	1.69	0.16	0.1648	0.0038	0.0480	0.0058	-0.14759	983	21	1033	61	1120	200	983	21	4.8
2_Zrn_13	160.2	135.1	0.8433	0.0719	0.0047	1.641	0.12	0.1653	0.0020	0.0487	0.0034	0.14410	986.3	11	983	45	976	140	986.3	11	-0.3
2_Zrn_85	61.3	16.75	0.2732	0.0763	0.0054	1.762	0.14	0.1661	0.0040	0.0522	0.0054	0.43064	990	22	1033	53	1098	150	990	22	4.2
2_Zrn_20	41.7	17.03	0.4084	0.0765	0.0071	1.74	0.16	0.1666	0.0037	0.0520	0.0049	-0.27139	993	20	1030	59	1080	190	993	20	3.6
2_Zrn_79	259	102.9	0.3973	0.0740	0.0047	1.702	0.12	0.1667	0.0027	0.0539	0.0038	0.54100	994	15	1011	46	1038	130	994	15	1.7
2_Zrn_54	105.3	71.5	0.6790	0.0727	0.0054	1.66	0.13	0.1672	0.0032	0.0491	0.0038	0.02731	997	17	993	47	1000	150	997	17	-0.4
2_Zrn_25	157.4	99.5	0.6321	0.0737	0.0049	1.697	0.12	0.1673	0.0022	0.0500	0.0036	0.24463	997.2	12	1004	47	1025	130	997.2	12	0.7
2_Zrn_53	388.9	140.9	0.3623	0.0740	0.0047	1.708	0.12	0.1678	0.0024	0.0531	0.0039	0.42950	1000	13	1010	44	1034	130	1000	13	1.0
2_Zrn_58	51.9	31.9	0.6146	0.0773	0.0057	1.761	0.14	0.1686	0.0032	0.0464	0.0040	0.20155	1004	18	1035	54	1109	150	1004	18	3.0
2_Zrn_29	57.6	9.4	0.1632	0.0746	0.0057	1.71	0.14	0.1689	0.0049	0.0815	0.0075	0.51721	1006	27	1022	58	1020	160	1006	27	1.6
2_Zrn_39	209.5	/1.0	0.3418	0.0751	0.005	1.748	0.12	0.1697	0.0024	0.0548	0.0042	0.23357	1010	14	1023	49	1051	130	1010	14	1.3
2_Zrn_9/	230.6	83.3	0.3612	0.0743	0.0047	1.727	0.12	0.1698	0.0024	0.0531	0.0041	0.46323	1010.9	15	1016	45	1050	130	1010.9	13	0.5
2_Zrn_76	50.82	31.43	0.0185	0.0745	0.0055	1./10	0.13	0.1699	0.0035	0.0555	0.0048	0.058/5	1011	19	1010	50	1054	140	1011	19	-0.1
2_Zrn_75	210	45.1	0.3132	0.0717	0.0046	1.088	0.12	0.1098	0.0033	0.0502	0.0041	0.35989	1018	18	1003	40	972	140	1018	18	-1.5
2_Zm_34	219	208	0.9498	0.0741	0.003	1.709	0.13	0.1725	0.0042	0.0515	0.0038	0.21398	1023	25	1052	47	1050	120	1023	25	0.7
$2_Z m_{12}^{-7}$	242 726	215	0.4709	0.0744	0.0040	1.705	0.12	0.1731	0.0020	0.0557	0.0039	0.04843	1029.2	11	1054	43	1030	120	1029.2	11	0.5
$2_Zm_0/$	70.6	35.8	0.4280	0.0770	0.0044	1.795	0.12	0.1738	0.0023	0.0512	0.0035	0.20076	1032.8	14	1045	50	1100	150	1032.8	14	3.0
$2_Z m_{10}$	758	100.0	0.3071	0.0770	0.0004	1.04	0.13	0.1743	0.0034	0.0500	0.0040	0.20070	1033	21	1007	45	100	130	1033	21	0.3
$2_Z m_{-90}$	331	63.8	0.2518	0.0756	0.0043	1.705	0.13	0.1773	0.0039	0.0520	0.0030	0.29409	1052.2	11	1039	43	1110	130	1052.2	11	-0.5
2_Zm_00	109.6	35.4	0.1927	0.0758	0.0047	1.851	0.13	0.1807	0.0020	0.0508	0.0039	0.34696	1052.2	20	1073	52	1115	140	1071	20	0.2
2_Zrn_30	82.2	39.1	0.3230	0.0739	0.0052	1.867	0.14	0 1859	0.0030	0.0602	0.0047	-0.00666	1099	17	1071	51	1070	150	1099	17	-2.6
2 Zrn 21	168	194	1 1548	0.0866	0.0054	2.26	0.17	0 1900	0.0036	0.0584	0.0041	0 14106	1121	19	1198	50	1357	120	1121	19	6.4
2 Zrn 46	122.2	107	0.8756	0.0812	0.0056	2.236	0.16	0.2016	0.0028	0.0594	0.0043	0.16332	1184	15	1193	49	1214	130	1184	15	0.8
2 Zrn 22	349	4.82	0.0138	0.0818	0.0049	2.342	0.16	0.2069	0.0024	0.0826	0.0098	0.28780	1212.3	13	1227	46	1242	130	1212.3	13	1.2
2 Zrn 36	190.3	66.7	0.3505	0.0844	0.0052	2.581	0.17	0.2239	0.0037	0.0667	0.0049	0.07013	1302	19	1301	47	1315	110	1302	19	-0.1
2 Zrn 26	131.4	96.4	0.7336	0.0860	0.0055	2,763	0.19	0.2343	0.0039	0.0680	0.0049	0.35099	1357	20	1342	52	1334	120	1357	20	-1.1
2 Zrn 17	111.1	83.8	0.7543	0.1135	0.0067	5.168	0.34	0.3304	0.0054	0.0912	0.0062	0.42460	1840	26	1849	58	1852	110	1852	110	0.5
2 Zrn 68	272	438	1.6103	0.1173	0.007	5.33	0.35	0.3310	0.0042	0.0930	0.0061	0.59058	1843	20	1877	57	1919	110	1919	110	1.8
2_Zrn_15	110.9	53.22	0.4799	0.1182	0.0072	5.61	0.38	0.3446	0.0049	0.1003	0.0072	0.57010	1909	23	1915	58	1928	110	1928	110	0.3
2_Zrn_49	147.6	106	0.7182	0.1218	0.0073	5.92	0.4	0.3583	0.0052	0.0963	0.0071	0.49712	1978	24	1972	61	1984	110	1984	110	-0.3
2_Zrn_83	99.6	51.8	0.5201	0.1299	0.008	6.97	0.47	0.3858	0.0060	0.1088	0.0076	0.35323	2107	29	2109	61	2107	110	2107	29	0.1
2_Zrn_51	130.5	128.9	0.9877	0.1364	0.008	7.37	0.48	0.3983	0.0055	0.1090	0.0074	0.23612	2161	25	2161	59	2178	100	2178	100	0.0
2_Zrn_05	108	152.2	1.4093	0.1738	0.01	11.88	0.77	0.4943	0.0059	0.1325	0.0088	0.25186	2589	25	2594	61	2602	99	2602	99	0.2
2_Zrn_16	153.4	16.7	0.1089	0.2670	0.015	21.63	1.6	0.5950	0.0270	0.1710	0.0140	0.77693	3010	120	3166	93	3287	93	3287	93	4.9

Tabla A.2 (Continuación) Datos isotópicos de U-Pb de la muestra ÑU-0318-1, la cual pertenece a la formación Cualac y fue colectada en el área de Tlaxiaco.

						RELACI	ONES IS	SOTÓPICAS	S CORR	EGIDAS					EDA	DES C	ORREGIDA	S (Ma)			
Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor edad (Ma)	±2s	Disc %
m16 Zrn-80	46.2	54	0 1169	0.0551	0.0052	0.5000	0.0460	0.0653	0.0017	0.0186	0.0041	-0.01404	407 5	10.0	408.0	31.0	360.0	200.0	407 5	10.0	0.1
m16 Zrn-45	270	45	0 1667	0.0585	0.0033	0.5870	0.0620	0.0721	0.0046	0.0204	0.0032	0 57609	449.0	27.0	468.0	36.0	546.0	120.0	449.0	27.0	41
m16 Zm-01	166.4	103	0.6190	0.0582	0.0067	0.5770	0.0800	0.0725	0.0018	0.0226	0.0022	0.60629	451.2	11.0	460.0	42.0	550.0	170.0	451.2	11.0	1.9
m16 Zrn-91	234.6	232.6	0 9915	0.0571	0.0030	0 5720	0.0330	0.0726	0.0014	0.0215	0.0016	-0 10924	451.8	85	459.0	21.0	490.0	110.0	451.8	85	1.6
m16 Zm-25	443	40.09	0.0905	0.0571	0.0023	0.5750	0.0270	0.0730	0.0013	0.0224	0.0018	0.32181	454.4	7.6	461.1	18.0	498.0	89.0	454.4	7.6	1.5
m16 Zrn-02	261.9	109.1	0.4166	0.0582	0.0031	0 5740	0.0350	0.0732	0.0013	0.0235	0.0018	0 38330	455.3	75	461.0	21.0	578.0	110.0	455.3	75	1.2
m16 Zm-51	288	31.8	0 1104	0.0597	0.0027	0.6100	0.0300	0.0741	0.0013	0.0227	0.0022	0 11560	460.7	8.0	483.0	19.0	587.0	96.0	460.7	8.0	4.6
m16 Zrn-85	148	64.7	0.4372	0.0578	0.0035	0.5950	0.0360	0.0749	0.0016	0.0221	0.0018	0.13833	465.6	9.6	476.0	22.0	520.0	120.0	465.6	9.6	2.2
m16 Zrn-98	393	89.5	0 2277	0.0569	0.0027	0 5940	0.0310	0.0753	0.0014	0.0234	0.0018	0.07717	467.8	85	473.0	20.0	473.0	100.0	467.8	8.5	11
m16 Zrn-94	289	59.4	0.2055	0.0562	0.0024	0 5910	0.0300	0.0759	0.0014	0.0230	0.0019	0 40914	471.3	87	471.0	19.0	456.0	97.0	471.3	87	-0.1
m16 Zrn-43	516	124.6	0.2415	0.0565	0.0022	0 5990	0.0280	0.0762	0.0013	0.0234	0.0017	0 26854	473.6	77	475.9	18.0	471.0	86.0	473.6	77	0.5
m16 Zm-17	367	193	0.5259	0.0572	0.0023	0.6030	0.0290	0.0763	0.0015	0.0236	0.0019	0.21370	474.1	8.8	479.0	19.0	489.0	91.0	474.1	8.8	1.0
m16 Zrn-99	191	46.6	0 2440	0.0591	0.0029	0.6340	0.0350	0.0776	0.0014	0.0238	0.0020	0 19985	481.5	8.1	497.0	22.0	561.0	100.0	481.5	8.1	3.1
$m16 \ Zm-08$	68 3	47.1	0.6896	0.0595	0.0025	0.6920	0.0440	0.0830	0.0019	0.0255	0.0020	-0.13835	514.0	12.0	532.0	26.0	570.0	130.0	514.0	12.0	3.4
m16 Zrn-39	559	495	0.8855	0.0586	0.0024	0.6800	0.0340	0.0839	0.0015	0.0256	0.0018	0.35827	519.4	8.8	526.0	21.0	539.0	91.0	519.4	8.8	13
m16 Zm-93	510	54 24	0.1064	0.0574	0.0023	0.6780	0.0310	0.0855	0.0014	0.0250	0.0020	0.02268	528.6	8.6	526.5	18.0	513.0	88.0	528.6	8.6	-0.4
m16 Zrn-37	99.8	66.1	0.6623	0.0614	0.0037	0.7320	0.0460	0.0858	0.0017	0.0248	0.0018	-0.06354	531.8	10.0	555.0	27.0	650.0	120.0	531.8	10.0	4.2
m16 Zrn-83	156	115.3	0.7391	0.0590	0.0031	0.7020	0.0400	0.0860	0.0016	0.0240	0.0019	-0.00157	532.0	97	537.0	24.0	533.0	120.0	532.0	97	0.9
$m16 \ Zrn-72$	174.6	60.49	0.3464	0.0579	0.0030	0.7000	0.0400	0.0000	0.0017	0.0275	0.0021	-0.15887	561.0	10.0	555.0	25.0	509.0	120.0	561.0	10.0	-1.1
$m16 \ Zrn-47$	229	11.6	0.0507	0.0593	0.0024	0.7550	0.0410	0.0919	0.0034	0.0383	0.0029	0.34269	567.0	20.0	570.0	25.0	610.0	91.0	567.0	20.0	0.5
m16 Zm-29	90.6	110.8	1 2230	0.0627	0.0041	0 7980	0.0550	0.0937	0.0019	0.0280	0.0020	0.05477	577.1	11.0	592.0	31.0	630.0	150.0	577.1	11.0	2.5
m16 Zrn-40	68.6	82.9	1 2085	0.0609	0.0051	0.8080	0.0690	0.0947	0.0020	0.0294	0.0022	0 10367	582.9	12.0	600.0	37.0	630.0	160.0	582.9	12.0	2.9
m16 Zrn-87	46	15.7	0 3413	0.0689	0.0054	0.8810	0.0990	0.0956	0.0051	0.0369	0.0047	0.32509	588.0	30.0	649.0	48.0	930.0	160.0	588.0	30.0	94
m16 Zrn-89	1021	16.8	0.0165	0.0584	0.0022	0 7890	0.0390	0.0971	0.0023	0.0296	0.0035	0.66686	597.2	13.0	590.0	22.0	546.0	80.0	597.2	13.0	-1.2
m16 Zrn-73	143	42.7	0.2986	0.0591	0.0028	0.7940	0.0420	0.0989	0.0019	0.0312	0.0024	0.08060	608.1	11.0	597.0	24.0	570.0	100.0	608.1	11.0	-1.9
m16 Zm-65	165.8	69.6	0.4198	0.0600	0.0029	0.8200	0.0430	0.0997	0.0019	0.0301	0.0023	0.09025	613.7	11.0	607.0	24.0	602.0	100.0	613.7	11.0	-1.1
m16 Zm-53	55.7	50.2	0.9013	0.0628	0.0044	0.8880	0.0670	0 1009	0.0024	0.0352	0.0026	-0.01799	620.0	14.0	639.0	33.0	680.0	150.0	620.0	14.0	3.0
m16 Zrn-27	94.5	56.9	0.6021	0.0682	0.0046	1 0140	0.0770	0 1075	0.0021	0.0339	0.0032	0.08869	658.3	12.0	714.0	37.0	890.0	140.0	658.3	12.0	7.8
m16 Zrn-69	411	73.5	0.1788	0.0674	0.0030	1.0680	0.0820	0.1176	0.0041	0.0377	0.0048	0.49457	717.0	23.0	737.0	36.0	839.0	88.0	717.0	23.0	2.7
m16 Zrn-97	30.52	23.09	0 7566	0.0701	0.0051	1 2550	0.0980	0.1289	0.0031	0.0361	0.0030	0 30483	782.0	18.0	833.0	45.0	950.0	150.0	782.0	18.0	61
m16 Zrn-23	159	89	0.5597	0.0676	0.0027	1.3160	0.0630	0.1407	0.0027	0.0435	0.0032	0.30204	848.7	15.0	851.0	28.0	845.0	85.0	848.7	15.0	0.3
m16 Zrn-96	67.9	17.2	0.2533	0.0815	0.0087	1.6700	0.2800	0.1474	0.0059	0.0583	0.0170	0.12225	886.0	33.0	991.0	79.0	1200.0	170.0	886.0	33.0	10.6
m16 Zrn-26	129.3	38.63	0.2988	0.0824	0.0035	1.7360	0.0840	0.1513	0.0027	0.0478	0.0037	-0.02653	908.0	15.0	1020.0	31.0	1243.0	84.0	908.0	15.0	11.0
m16 Zrn-64	59.1	13.51	0.2286	0.0701	0.0039	1.4820	0.0830	0.1529	0.0031	0.0453	0.0047	0.00405	917.0	18.0	920.0	34.0	915.0	110.0	917.0	18.0	0.3
m16 Zrn-28	112	43.5	0.3884	0.0698	0.0029	1.4880	0.0810	0.1543	0.0045	0.0473	0.0041	0.66253	925.0	25.0	927.0	31.0	944.0	91.0	925.0	25.0	0.2
m16 Zrn-33	25.28	21.64	0.8560	0.0719	0.0044	1.5340	0.0950	0.1546	0.0044	0.0456	0.0042	0.00975	926.0	25.0	941.0	37.0	940.0	130.0	926.0	25.0	1.6
m16 Zrn-05	222.3	11.6	0.0522	0.0706	0.0028	1.4860	0.0770	0.1546	0.0045	0.0411	0.0040	0.58404	927.0	26.0	923.0	31.0	938.0	82.0	927.0	26.0	-0.4
m16 Zrn-35	130.2	34.4	0.2642	0.0720	0.0033	1.5340	0.0770	0.1547	0.0030	0.0439	0.0035	0.07367	927.0	17.0	942.0	31.0	1000.0	91.0	927.0	17.0	1.6
m16 Zrn-12	37.6	13.72	0.3649	0.0729	0.0042	1.5220	0.0880	0.1549	0.0040	0.0526	0.0048	0.09571	928.0	23.0	936.0	36.0	992.0	120.0	928.0	23.0	0.9
m16 Zrn-50	75.5	28.33	0.3752	0.0721	0.0035	1.5230	0.0890	0.1553	0.0030	0.0480	0.0039	0.37582	930.0	17.0	946.0	35.0	982.0	100.0	930.0	17.0	1.7
m16 Zrn-81	60.6	20.9	0.3449	0.0708	0.0034	1.5980	0.0850	0.1629	0.0033	0.0465	0.0039	0.02512	973.0	18.0	967.0	34.0	942.0	110.0	973.0	18.0	-0.6
m16 Zrn-04	168.8	57.6	0.3412	0.0730	0.0029	1.7070	0.0820	0.1705	0.0030	0.0502	0.0036	0.43266	1014.8	16.0	1010.0	31.0	1013.0	78.0	1014.8	16.0	-0.5
m16 Zrn-11	130.3	28.1	0.2157	0.0749	0.0033	1.7610	0.0850	0.1733	0.0032	0.0550	0.0044	0.15056	1030.4	18.0	1033.0	32.0	1063.0	87.0	1030.4	18.0	0.3
m16 Zrn-86	94.4	49.8	0.5275	0.0727	0.0035	1.7420	0.0920	0.1739	0.0034	0.0511	0.0038	0.03292	1033.0	19.0	1029.0	32.0	1008.0	99.0	1033.0	19.0	-0.4
m16 Zm-13	194.1	10.71	0.0552	0.0753	0.0029	1.7890	0.0810	0.1740	0.0029	0.0558	0.0059	0.15571	1033.8	16.0	1040.0	30.0	1068.0	80.0	1033.8	16.0	0.6
m16 Zrn-90	155.9	37.8	0.2425	0.0735	0.0031	1.7800	0.0990	0.1753	0.0037	0.0570	0.0043	0.69337	1041.0	20.0	1036.0	36.0	1018.0	84.0	1041.0	20.0	-0.5
m16 Zrn-20	70.4	22.9	0 3253	0.0853	0.0037	2.0720	0.1100	0 1758	0.0037	0.0688	0.0052	0 27449	1044.0	20.0	1137.0	34.0	1311.0	85.0	1044.0	20.0	8.2

Tabla A.3 Datos isotópicos de U-Pb de la muestra Tmt-0219-16, la cual pertenece a la formación Cualac y fue colectada en el área de Tecomatlán.

```
- 179 -
```

	RELACIONES ISOTÓPICAS CORREGIDAS														EDA	DES C	ORREGIDA	S (Ma)			
Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor edad (Ma)	±2s	Disc %
m16_Zrn-38	101.4	33.8	0.3333	0.0750	0.0035	1.8990	0.0980	0.1802	0.0039	0.0529	0.0043	0.05120	1068.0	21.0	1078.0	33.0	1063.0	91.0	1068.0	21.0	0.9
m16_Zrn-71	38.3	12.12	0.3164	0.0755	0.0041	1.8840	0.1100	0.1852	0.0062	0.0547	0.0051	0.19554	1095.0	34.0	1071.0	40.0	1070.0	110.0	1095.0	34.0	-2.2
m16_Zrn-68	218	17.47	0.0801	0.0738	0.0029	1.9010	0.0900	0.1880	0.0035	0.0576	0.0050	0.51438	1110.0	19.0	1085.0	30.0	1051.0	80.0	1110.0	19.0	-2.3
m16_Zrn-62	203	91.5	0.4507	0.0780	0.0031	2.0480	0.0940	0.1918	0.0034	0.0562	0.0040	0.24538	1131.2	18.0	1133.0	32.0	1139.0	78.0	1131.2	18.0	0.2
m16_Zrn-49	362	75.65	0.2090	0.0789	0.0029	2.0880	0.0990	0.1919	0.0036	0.0574	0.0042	0.45461	1131.6	19.0	1144.0	32.0	1165.0	74.0	1131.6	19.0	1.1
m16_Zrn-09	404.3	204.8	0.5066	0.0799	0.0028	2.1130	0.0900	0.1926	0.0032	0.0579	0.0042	0.31676	1135.2	18.0	1153.0	30.0	1190.0	69.0	1135.2	18.0	1.5
m16_Zrn-16	149.5	161.3	1.0789	0.0784	0.0030	2.0800	0.0970	0.1929	0.0035	0.0555	0.0039	0.38972	1137.0	19.0	1141.0	32.0	1150.0	75.0	1137.0	19.0	0.4
m16_Zrn-19	153	59.4	0.3882	0.0775	0.0032	2.0430	0.0980	0.1932	0.0032	0.0554	0.0042	0.10589	1138.9	17.0	1128.0	32.0	1133.0	85.0	1138.9	17.0	-1.0
m16_Zrn-63	561	242	0.4314	0.0767	0.0026	2.0630	0.0920	0.1939	0.0039	0.0572	0.0041	0.27478	1143.0	21.0	1138.0	30.0	1110.0	70.0	1143.0	21.0	-0.4
m16_Zrn-70	430	154.3	0.3588	0.0766	0.0028	2.0620	0.0930	0.1946	0.0038	0.0565	0.0042	0.20109	1146.2	21.0	1135.0	30.0	1114.0	70.0	1146.2	21.0	-1.0
m16_Zrn-58	144.4	47.1	0.3262	0.0780	0.0031	2.0980	0.0960	0.1947	0.0035	0.0534	0.0041	0.00603	1146.9	19.0	1147.0	32.0	1144.0	84.0	1146.9	19.0	0.0
m16_Zrn-52	317	94.2	0.2972	0.0784	0.0028	2.0940	0.0900	0.1949	0.0032	0.0571	0.0041	0.23688	1148.0	17.0	1146.0	30.0	1152.0	72.0	1148.0	17.0	-0.2
m16_Zrn-18	61.1	30.6	0.5008	0.0809	0.0046	2.1700	0.1300	0.1956	0.0034	0.0615	0.0048	0.11431	1151.0	19.0	1173.0	41.0	1204.0	110.0	1151.0	19.0	1.9
m16_Zrn-24	303.1	114.8	0.3788	0.0805	0.0030	2.1660	0.1000	0.1962	0.0034	0.0606	0.0044	0.48207	1155.0	19.0	1171.0	32.0	1204.0	74.0	1155.0	19.0	1.4
m16_Zrn-42	107.5	60.06	0.5587	0.0799	0.0036	2.1880	0.1100	0.1967	0.0036	0.0566	0.0040	-0.10005	1157.0	19.0	1179.0	34.0	1180.0	86.0	1157.0	19.0	1.9
m16_Zrn-31	159.8	65.9	0.4124	0.0768	0.0029	2.1200	0.0950	0.1971	0.0035	0.0584	0.0042	0.14783	1159.7	19.0	1154.0	31.0	1111.0	74.0	1159.7	19.0	-0.5
$m16_Zrn-6/$	71.4	20.72	0.2902	0.0780	0.0035	2.1020	0.1000	0.1975	0.0038	0.0558	0.0044	0.17945	1162.0	20.0	1147.0	34.0	1140.0	91.0	1162.0	20.0	-1.3
m16_Zm-21	211	55.6	0.2635	0.0795	0.0031	2.1730	0.0990	0.1978	0.0038	0.0586	0.0044	0.15830	1163.0	20.0	11/1.0	32.0	1198.0	/3.0	1163.0	20.0	0.7
$m16_Zm-22$	695 105 C	185.9	0.26/5	0.0789	0.0027	2.1620	0.1000	0.1985	0.0045	0.0571	0.0043	0.34308	1167.1	24.0	1168.8	31.0	1168.0	69.0	110/.1	24.0	0.1
$m_{10}Zm_{14}$	105.0	89.0	0.8485	0.0807	0.0035	2.2080	0.1100	0.1993	0.0030	0.0585	0.0041	-0.09097	11/1.0	19.0	1182.0	33.0	1223.0	85.0	11/1.0	19.0	0.9
m_{10}^{-2} m 16 T_{rn} 15	212	27.00	0.4372	0.0774	0.0034	2.1540	0.1000	0.2000	0.0043	0.0505	0.0044	0.31903	1173.0	24.0	1254.0	22.0	1288.0	89.0 70.0	1173.0	24.0	-1.0
$m16 \ Zrn \ 88$	122.2	12.1	0.3429	0.0805	0.0032	2.4400	0.1200	0.2003	0.0034	0.0595	0.0046	0.54099	1177.0	10.0	1189.0	34.0	1225.0	80.0	1177.0	20.0	0.1
$m16 \ Zrn \ 82$	67.7	40.1	0.5073	0.0309	0.0033	2.2140	0.1200	0.2011	0.0030	0.0538	0.0040	0.03222	1182.0	22.0	1170.0	40.0	1163.0	08.0	1182.0	22.0	1.0
$m16 \ Zrn \ 06$	181.5	20.0	0.3923	0.0804	0.0040	2.1030	0.1200	0.2012	0.0041	0.0579	0.0045	0.38305	1102.0	18.0	1107.0	32.0	1212.0	72.0	1102.0	18.0	-1.0
$m16 \ Zrn-55$	29.65	14 35	0.1047	0.0304	0.0031	2.2340	0.1000	0.2030	0.0034	0.0010	0.0049	0.24850	1197.0	26.0	1179.0	49.0	1140.0	120.0	1191.0	26.0	-1.5
m16 Zrn-48	47.8	21.2	0.4435	0.0702	0.0040	2.1000	0.1400	0 2045	0.0040	0.0050	0.0046	0.07172	1199.0	24.0	1211.0	37.0	1233.0	99.0	1199.0	20.0	1.0
m16_Zm-41	133.9	55.9	0.4175	0.0811	0.0032	2 3250	0 1000	0 2063	0.0036	0.0604	0.0044	0.06541	1209.0	19.0	1219.0	32.0	1236.0	72.0	1209.0	19.0	0.8
m16 Zrn-46	308	149.1	0.4841	0.0796	0.0028	2.2800	0.0980	0.2069	0.0034	0.0600	0.0042	0.21380	1212.2	18.0	1205.7	30.0	1188.0	68.0	1212.2	18.0	-0.5
m16 Zrn-10	329	148	0.4498	0.0802	0.0029	2.3000	0.0990	0.2098	0.0035	0.0632	0.0045	0.20307	1227.6	19.0	1212.0	31.0	1196.0	72.0	1227.6	19.0	-1.3
m16 Zrn-56	93.4	15.88	0.1700	0.0810	0.0037	2.3650	0.1200	0.2105	0.0039	0.0629	0.0057	0.30314	1231.0	21.0	1229.0	37.0	1205.0	91.0	1231.0	21.0	-0.2
m16 Zrn-74	27.75	18.78	0.6768	0.0792	0.0052	2.2800	0.1500	0.2111	0.0054	0.0603	0.0049	0.10615	1234.0	29.0	1211.0	44.0	1190.0	120.0	1234.0	29.0	-1.9
m16 Zrn-54	82.9	42.9	0.5175	0.0801	0.0033	2.3610	0.1100	0.2112	0.0042	0.0611	0.0046	0.18057	1237.0	22.0	1229.0	33.0	1211.0	80.0	1237.0	22.0	-0.7
m16 [–] Zrn-66	119.1	46.7	0.3921	0.0805	0.0031	2.3520	0.1100	0.2127	0.0038	0.0605	0.0045	0.02016	1243.0	20.0	1227.0	32.0	1202.0	76.0	1243.0	20.0	-1.3
m16_Zrn-95	47.02	19.85	0.4222	0.0842	0.0042	2.4480	0.1500	0.2131	0.0054	0.0596	0.0069	0.03819	1245.0	29.0	1254.0	43.0	1298.0	93.0	1245.0	29.0	0.7
m16_Zrn-07	196.1	45.7	0.2330	0.0852	0.0033	2.5200	0.1200	0.2170	0.0037	0.0652	0.0050	0.12635	1266.0	20.0	1276.0	33.0	1325.0	74.0	1266.0	20.0	0.8
m16_Zrn-30	130.5	91	0.6973	0.0905	0.0034	2.8070	0.1300	0.2251	0.0042	0.0700	0.0050	0.34511	1308.0	22.0	1364.0	36.0	1439.0	73.0	1308.0	22.0	4.1
m16_Zrn-78	302	76.8	0.2543	0.0849	0.0036	2.8800	0.1500	0.2427	0.0057	0.0703	0.0053	0.44299	1400.0	29.0	1373.0	39.0	1317.0	80.0	1317.0	80.0	-2.0
m16_Zrn-75	146.2	52.2	0.3570	0.0860	0.0034	2.7600	0.1300	0.2329	0.0045	0.0751	0.0056	0.12284	1349.0	24.0	1348.0	36.0	1328.0	79.0	1349.0	24.0	-0.1
m16_Zrn-60	377	323.5	0.8581	0.0915	0.0032	3.0050	0.1300	0.2389	0.0045	0.0676	0.0046	0.12248	1380.7	24.0	1408.0	33.0	1455.0	66.0	1380.7	24.0	1.9
m16_Zrn-77	117	41.7	0.3564	0.0959	0.0040	3.5100	0.1700	0.2666	0.0047	0.0808	0.0062	0.26918	1523.0	24.0	1534.0	39.0	1552.0	78.0	1552.0	78.0	0.7
m16_Zrn-59	583	61.5	0.1055	0.0970	0.0034	3.7390	0.1600	0.2806	0.0049	0.0782	0.0064	0.40903	1594.6	24.0	1579.6	35.0	1565.0	64.0	1565.0	64.0	-0.9
m16_Zrn-34	149.8	140.4	0.9372	0.1146	0.0041	5.0390	0.2300	0.3166	0.0053	0.0903	0.0064	0.27840	1773.0	28.0	1825.0	37.0	1869.0	64.0	1869.0	64.0	2.8
m16_Zrn-61	24.66	25.3	1.0260	0.1486	0.0072	7.8800	0.4900	0.3778	0.0088	0.1050	0.0084	0.44319	2072.0	41.0	2212.0	53.0	2345.0	78.0	2345.0	78.0	6.3
m16_Zrn-44	151	56.9	0.3768	0.1790	0.0061	12.4700	0.5300	0.5043	0.0091	0.1355	0.0094	0.51173	2632.0	40.0	2640.0	40.0	2641.0	59.0	2641.0	59.0	0.3
m16_Zrn-57	341	44.5	0.1305	0.1957	0.0065	13.1000	0.5400	0.4846	0.0079	0.1326	0.0095	0.47551	2547.0	35.0	2686.5	39.0	2789.0	55.0	2789.0	55.0	5.2
m16_Zrn-32	90.4	39.36	0.4354	0.2117	0.0073	16.2800	0.6900	0.5488	0.0097	0.1418	0.0100	0.63453	2820.0	41.0	2893.0	41.0	2917.0	56.0	2917.0	56.0	2.5
m16 Zrn-100	56.3	28.5	0.5062	0.2965	0.0100	26.2000	1.1000	0.6351	0.0110	0.1624	0.0120	0.54002	3170.0	44.0	3353.0	42.0	3450.0	53.0	3450.0	53.0	5.5

 Tabla A.3 (Continuación) Datos isotópicos de U-Pb de la muestra Tmt-0219-16, la cual pertenece a la formación Cualac y fue colectada en el área de Tecomatlán.

		RELACIONES ISOTÓPICAS CORREGIDAS													EDAI	DES C	ORREGIDAS	6 (Ma)			
Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor edad (Ma)	±2s	Disc %
Zircon_87	234	23.5	0.1004	0.0554	0.0027	0.596	0.026	0.0771	0.0013	0.0257	0.0022	-0.08334	478.6	7.7	476	17	422	110	478.6	7.7	-0.5
Zircon_59	110.6	64.3	0.5814	0.0537	0.0035	0.582	0.036	0.0769	0.0017	0.0253	0.0014	0.10322	479.2	11	466	24	340	150	479.2	11	-2.8
Zircon_76	301	193.1	0.6415	0.0543	0.0028	0.603	0.027	0.0793	0.0012	0.0255	0.0012	-0.00082	492.1	7.1	478	17	413	110	492.1	7.1	-2.9
Zircon_28	212.9	133.7	0.6280	0.0552	0.0031	0.648	0.033	0.0840	0.0017	0.0256	0.0012	0.00111	519.8	10	506	20	471	120	519.8	10	-2.7
Zircon_19	848	38.1	0.0449	0.0567	0.0024	0.658	0.025	0.0841	0.0012	0.0272	0.0019	0.16025	520.6	7.1	513	15	483	100	520.6	7.1	-1.5
Zircon_04	453	114.7	0.2532	0.0569	0.0025	0.661	0.026	0.0843	0.0012	0.0254	0.0011	0.02305	521.4	7	516	16	502	100	521.4	7	-1.0
Zircon_50	208	131.5	0.6322	0.0565	0.0033	0.691	0.034	0.0866	0.0017	0.0261	0.0013	-0.09350	535.3	9.9	532	21	489	130	535.3	9.9	-0.6
Zircon_96	404	140	0.3465	0.0569	0.0027	0.683	0.029	0.0868	0.0012	0.0271	0.0012	0.21842	536.3	7.4	528	18	493	110	536.3	7.4	-1.6
Zircon_16	50.2	5.52	0.1100	0.0570	0.0054	0.673	0.058	0.0869	0.0024	0.0312	0.0042	-0.03571	537	14	527	36	490	190	537	14	-1.9
Zircon_56	75.9	51.8	0.6825	0.0611	0.0039	0.726	0.035	0.0872	0.0025	0.0265	0.0017	-0.16248	542	14	553	21	630	130	542	14	2.0
Zircon_45	34.4	7.95	0.2311	0.0628	0.0051	0.749	0.055	0.0883	0.0028	0.0314	0.0042	0.14448	548	17	574	35	690	150	548	17	4.5
Zircon_37	99.5	66.3	0.6663	0.0567	0.0035	0.701	0.04	0.0896	0.0019	0.0286	0.0014	0.34456	553.2	11	541	25	520	130	553.2	11	-2.3
Zircon_15	77	30.2	0.3922	0.0594	0.0049	0.72	0.058	0.0897	0.0022	0.0267	0.0020	0.18031	554	13	552	33	550	170	554	13	-0.4
Zircon_79	113	145.2	1.2850	0.0560	0.0041	0.689	0.043	0.0898	0.0021	0.0284	0.0011	0.05417	554	12	530	26	400	160	554	12	-4.5
Zircon_80	93.3	43.3	0.4641	0.0604	0.004	0.742	0.048	0.0899	0.0022	0.0287	0.0017	0.17229	555	13	564	27	590	150	555	13	1.6
Zircon_44	121.4	45.1	0.3715	0.0583	0.0041	0.728	0.047	0.0906	0.0021	0.0291	0.0018	0.05388	559	12	552	28	550	150	559	12	-1.3
Zircon_49	55.5	12.63	0.2276	0.0599	0.0041	0.754	0.049	0.0912	0.0028	0.0317	0.0030	0.23166	562	17	567	29	620	150	562	17	0.9
Zircon_89	93.4	114.6	1.2270	0.0616	0.0054	0.773	0.061	0.0915	0.0022	0.0285	0.0013	-0.07472	564	13	583	34	660	190	564	13	3.3
Zircon_24	153.5	70.9	0.4619	0.0588	0.0035	0.738	0.04	0.0932	0.0018	0.0301	0.0015	0.22803	574.2	10	563	24	540	130	574.2	10	-2.0
Zircon_43	239	43.6	0.1824	0.0583	0.003	0.754	0.034	0.0938	0.0016	0.0289	0.0017	0.15032	577.7	9.3	569	20	518	110	577.7	9.3	-1.5
Zircon_35	237	134.1	0.5658	0.0583	0.0028	0.754	0.035	0.0941	0.0015	0.0290	0.0012	0.06670	579.8	8.9	569	20	533	110	5/9.8	8.9	-1.9
Zircon_42	204	293	0.3525	0.0581	0.003	0.757	0.035	0.0945	0.0015	0.0292	0.0013	0.27997	581.9	8.0 0.2	5/1	20	525	110	581.9	8.0	-1.9
Zircon_60	415	560	0.9201	0.0580	0.0027	0.774	0.031	0.0948	0.0014	0.0290	0.0011	0.05041	584.0	0.2	363 575	21	349	110	594.1	0.2	-0.2
Zircon 75	102.0	162.6	0.1795	0.0571	0.0029	0.764	0.037	0.0930	0.0013	0.0293	0.0019	0.43477	586.1	0.7	575	21	478	120	596.1	0.7	-1./
Zircon 27	211	227	1.0514	0.0588	0.0032	0.707	0.037	0.0932	0.0017	0.0293	0.0011	0.15008	500.1	9.7	614	21	623	110	500.1	9.9 9.7	-1.0
Zircon 48	45.2	327	0.5073	0.0007	0.0029	0.833	0.058	0.0987	0.0013	0.0301	0.0010	0.00310	607	0.7	580	32	490	170	607	0.7	3.1
Zircon 84	287	203 3	0.3973	0.0532	0.0043	0.788	0.033	0.0988	0.0027	0.0293	0.0021	0.08955	608.3	10	589	19	511	110	608.3	10	-3.3
Zircon 46	92.9	108.4	1 1668	0.0594	0.0020	0.700	0.035	0.0992	0.0010	0.0296	0.0012	0.32368	609	13	608	26	580	130	600	13	-0.2
Zircon_05	223.4	228.6	1.0233	0.0578	0.0029	0.795	0.040	0.0998	0.0018	0.0205	0.0013	0.11393	613.2	10	593	21	519	120	613.2	10	-3.4
Zircon 32	125.9	49.9	0 3963	0.0611	0.0022	0.835	0.054	0.1002	0.0023	0.0311	0.0020	0.00095	615	14	618	29	580	160	615	14	0.5
Zircon 12	155.7	96.8	0.6217	0.0602	0.0032	0.836	0.038	0.1002	0.0020	0.0295	0.0014	0.10883	617	12	616	21	611	110	617	12	-0.2
Zircon 08	132.7	65	0.4898	0.0607	0.0031	0.839	0.04	0 1018	0.0030	0.0283	0.0015	0.26095	625	18	626	20	623	110	625	18	0.2
Zircon 31	143.5	50.4	0.3512	0.0612	0.0032	0.881	0.041	0.1059	0.0020	0.0325	0.0019	0.05524	648.8	11	643	23	647	110	648.8	11	-0.9
Zircon 03	416	139	0.3341	0.0628	0.0028	0.922	0.035	0.1073	0.0017	0.0320	0.0016	0.15026	656.9	10	663	19	692	95	656.9	10	0.9
Zircon 54	289	47	0.1626	0.0620	0.0029	0.929	0.036	0.1080	0.0020	0.0332	0.0020	-0.18044	661	12	671	19	684	100	661	12	1.5
Zircon 90	209.6	42.3	0.2018	0.0627	0.0035	0.958	0.044	0.1096	0.0024	0.0377	0.0020	0.01333	670	14	685	21	702	120	670	14	2.2
Zircon 88	160.4	87.7	0.5468	0.0611	0.0031	0.96	0.048	0.1125	0.0018	0.0360	0.0014	0.04991	687	10	683	25	623	110	687	10	-0.6
Zircon 57	63.6	28.7	0.4513	0.0621	0.0041	1.077	0.064	0.1243	0.0031	0.0358	0.0024	0.15242	755	18	747	31	680	140	755	18	-1.1
Zircon 30	116.7	84	0.7198	0.0651	0.0036	1.093	0.059	0.1245	0.0030	0.0375	0.0019	0.27736	756	17	752	30	767	110	756	17	-0.5
Zircon 77	166.9	44.4	0.2660	0.0646	0.0033	1.173	0.051	0.1332	0.0022	0.0419	0.0021	-0.02101	806	13	792	25	764	110	806	13	-1.8
Zircon_92	69.6	49.6	0.7126	0.0686	0.0041	1.325	0.07	0.1386	0.0027	0.0441	0.0021	0.16653	837	15	857	32	887	120	837	15	2.3
Zircon_69	280	13.23	0.0473	0.0685	0.0029	1.437	0.055	0.1510	0.0026	0.0520	0.0044	0.31112	907	15	903	23	874	87	907	15	-0.4
Zircon_20	190	6.55	0.0345	0.0691	0.0032	1.469	0.062	0.1552	0.0029	0.0481	0.0045	0.26238	932	17	919	25	900	99	932	17	-1.4
Zircon_86	252	105.6	0.4190	0.0721	0.003	1.53	0.053	0.1566	0.0027	0.0479	0.0020	0.24279	938	15	942	21	989	87	938	15	0.4

Tabla A.4 Datos isotópicos de U-Pb de la muestra T9, la cual pertenece a la formación Cualac y fue colectada en el área de Olinalá.

••• - 181 -

						RELACIO	ONES I	SOTÓPICA	S CORR	EGIDAS				EDAL	DES C	ORREGIDA	S (Ma)			
Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor edad (Ma)	±2s	Disc %
Zircon_98	71.2	31.9	0.4480	0.0692	0.0041	1.512	0.08	0.1567	0.0035	0.0462	0.0027	0.08564	938	19	932	32	909	110	938	19	-0.6
Zircon_14	11.21	4.16	0.3711	0.0698	0.0079	1.49	0.17	0.1578	0.0080	0.0470	0.0064	0.30487	943	44	907	68	760	230	943	44	-4.0
Zircon_06	16.39	1.323	0.0807	0.0749	0.0078	1.6	0.14	0.1588	0.0071	0.0520	0.0110	-0.13241	949	39	973	57	960	220	949	39	2.5
Zircon_63	135.6	95	0.7006	0.0805	0.0046	1.772	0.086	0.1593	0.0041	0.0441	0.0027	0.12455	953	23	1033	32	1208	110	953	23	7.7
Zircon_21	307	64.2	0.2091	0.0720	0.0032	1.64	0.061	0.1671	0.0033	0.0526	0.0024	0.37105	996	18	985	23	993	81	996	18	-1.1
Zircon_07	66	22.8	0.3455	0.0730	0.0044	1.702	0.092	0.1684	0.0035	0.0466	0.0028	-0.07492	1003	19	1016	33	1040	130	1003	19	1.3
Zircon_41	97.4	17.55	0.1802	0.0706	0.0039	1.674	0.082	0.1695	0.0029	0.0495	0.0032	-0.15510	1009	16	999	30	1009	110	1009	16	-1.0
Zircon_33	435	78	0.1793	0.0728	0.003	1.699	0.07	0.1696	0.0036	0.0528	0.0031	0.66107	1010	20	1009	27	1007	80	1010	20	-0.1
Zircon_74	148.6	88.2	0.5935	0.0721	0.0047	1.678	0.1	0.1699	0.0041	0.0547	0.0025	0.10757	1011	23	997	39	1020	130	1011	23	-1.4
Zircon_26	126.1	34.4	0.2728	0.0739	0.0036	1.751	0.095	0.1717	0.0060	0.0541	0.0028	0.62723	1020	33	1030	35	1045	96	1020	33	1.0
Zircon_25	17.21	13.72	0.7972	0.0757	0.0077	1.76	0.17	0.1730	0.0056	0.0525	0.0037	0.21097	1028	31	1022	65	1020	210	1028	31	-0.6
Zircon_18	81.5	34.2	0.4196	0.0718	0.0037	1.698	0.081	0.1731	0.0032	0.0527	0.0029	0.18277	1029	18	1007	31	965	100	1029	18	-2.2
Zircon_68	138.2	97.2	0.7033	0.0731	0.0036	1.774	0.073	0.1739	0.0029	0.0515	0.0020	0.07443	1033	16	1034	27	1013	97	1033	16	0.1
Zircon_67	81.5	42.1	0.5166	0.0750	0.0039	1.808	0.081	0.1741	0.0028	0.0553	0.0024	-0.22439	1035	15	1053	29	1048	100	1035	15	1.7
Zircon_61	105.9	42.9	0.4051	0.0740	0.0041	1.811	0.089	0.1743	0.0033	0.0526	0.0027	0.18096	1036	18	1050	33	1039	110	1036	18	1.3
Zircon_93	65.6	30.2	0.4604	0.0766	0.0047	1.829	0.096	0.1741	0.0038	0.0501	0.0029	0.04483	1038	20	1052	35	1130	130	1038	20	1.3
Zircon_13	74.8	25.9	0.3463	0.0739	0.0047	1.844	0.099	0.1778	0.0042	0.0488	0.0031	-0.22169	1055	23	1066	35	1090	130	1055	23	1.0
Zircon_72	62.9	36.4	0.5787	0.0723	0.0045	1.761	0.098	0.1778	0.0035	0.0547	0.0032	0.01752	1055	19	1033	37	980	130	1055	19	-2.1
Zircon_52	154.2	56.9	0.3690	0.0739	0.0036	1.854	0.085	0.1789	0.0029	0.0514	0.0023	0.18138	1061	16	1062	30	1033	100	1061	16	0.1
Zircon_29	461	231	0.5011	0.0733	0.003	1.833	0.062	0.1830	0.0033	0.0777	0.0100	0.20517	1083	18	1057	22	1032	87	1083	18	-2.5
Zircon_83	202.6	99.6	0.4916	0.0747	0.0038	1.881	0.08	0.1830	0.0027	0.0595	0.0023	-0.10040	1083	15	1076	29	1066	100	1083	15	-0.7
Zircon_11	141	41.7	0.2957	0.0721	0.0033	1.844	0.08	0.1837	0.0026	0.0538	0.0024	0.17034	1087	14	1066	27	1005	93	1087	14	-2.0
Zircon_91	40	26.7	0.6675	0.0707	0.0054	1.82	0.12	0.1835	0.0048	0.0525	0.0030	-0.01580	1089	26	1056	42	940	160	1089	26	-3.1
Zircon_64	63.3	18.91	0.2987	0.0747	0.0053	1.94	0.13	0.1845	0.0042	0.0629	0.0062	0.24298	1091	23	1086	45	1030	140	1091	23	-0.5
Zircon_40	125.8	63.4	0.5040	0.0757	0.0034	1.949	0.077	0.1883	0.0030	0.0542	0.0026	0.09204	1112	17	1100	25	1084	96	1112	17	-1.1
Zircon_99	107.8	23.6	0.2189	0.0777	0.0041	2.019	0.1	0.1888	0.0039	0.0525	0.0033	0.23806	1115	21	1130	31	1140	100	1115	21	1.3
Zircon_78	71.6	63.2	0.8827	0.0759	0.0046	1.955	0.1	0.1917	0.0041	0.0589	0.0029	0.09949	1130	22	1102	34	1080	130	1130	22	-2.5
Zircon_97	205.2	91	0.4435	0.0760	0.0037	2.116	0.095	0.1954	0.0033	0.0580	0.0022	0.03131	1151	18	1157	29	1083	99	1151	18	0.5
Zircon_81	278	183.2	0.6590	0.0767	0.0033	2.07	0.077	0.1969	0.0027	0.0604	0.0024	0.08843	1158.5	15	1138	26	1115	83	1158.5	15	-1.8
Zircon_95	130.6	42.6	0.3262	0.0772	0.0038	2.118	0.1	0.1980	0.0036	0.0615	0.0029	0.36989	1164	20	1152	33	1124	96	1164	20	-1.0
Zircon_71	66.6	25	0.3754	0.0794	0.0046	2.132	0.11	0.1988	0.0039	0.0643	0.0032	0.00371	1169	21	1159	36	1152	120	1169	21	-0.9
Zircon_10	30.4	9.32	0.3066	0.0764	0.0057	2.09	0.15	0.1993	0.0052	0.0542	0.0048	0.18177	1171	28	1143	48	1110	140	1171	28	-2.4
Zircon_09	456	131.5	0.2884	0.0796	0.0031	2.172	0.073	0.1992	0.0027	0.0581	0.0023	0.13278	1172.5	15	1171	23	1183	78	1172.5	15	-0.1
Zircon_55	178.4	80.9	0.4535	0.0814	0.0036	2.26	0.092	0.1995	0.0030	0.0592	0.0023	0.25205	1173	16	1202	28	1223	86	1173	16	2.4
Zircon_39	151.9	35.8	0.2357	0.0787	0.0034	2.164	0.08	0.1998	0.0032	0.0629	0.0029	0.27973	1174	17	1168	26	1170	86	1174	17	-0.5
Zircon_58	45.4	17.5	0.3855	0.0799	0.006	2.36	0.15	0.2000	0.0061	0.0595	0.0049	-0.04951	1175	32	1235	46	1160	160	1175	32	4.9
Zircon_100_CT-9	51.3	15.3	0.2982	0.0813	0.0059	2.29	0.15	0.2009	0.0051	0.0592	0.0046	-0.03251	1180	28	1218	44	1230	150	1180	28	3.1
Zircon_36	181.8	62.5	0.3438	0.0774	0.0031	2.179	0.08	0.2013	0.0029	0.0580	0.0027	0.27873	1182	16	1173	26	1132	84	1182	16	-0.8
Zircon_94	92.7	50.8	0.5480	0.0796	0.0038	2.203	0.097	0.2026	0.0036	0.0578	0.0027	0.18174	1189	19	1179	31	1185	96	1189	19	-0.8
Zircon_01_CT-9	177	41	0.2316	0.0785	0.0032	2.215	0.078	0.2031	0.0029	0.0627	0.0030	0.23706	1192	16	1185	25	1160	79	1192	16	-0.6
Zircon_85	37.5	21.65	0.5773	0.0763	0.005	2.22	0.13	0.2058	0.0042	0.0636	0.0039	0.00876	1206	22	1179	42	1140	120	1206	22	-2.3
Zircon_82	54.2	57.7	1.0646	0.0777	0.0042	2.254	0.11	0.2092	0.0046	0.0641	0.0026	0.20358	1224	25	1194	34	1141	100	1224	25	-2.5
Zircon_02	164.2	62.3	0.3794	0.0833	0.0034	2.688	0.098	0.2293	0.0034	0.0669	0.0027	0.19444	1331	18	1326	26	1276	83	1331	18	-0.4
Zircon_73	60.3	18.8	0.3118	0.0857	0.0046	2.7	0.13	0.2297	0.0051	0.0659	0.0049	0.24839	1333	27	1324	35	1320	110	1333	27	-0.7
Zircon 17	67.6	57.4	0.8491	0.0856	0.0046	2.74	0.13	0.2332	0.0045	0.0682	0.0031	0.03029	1351	24	1340	33	1308	110	1351	24	-0.8

Tabla A.4 (Continuación) Datos isotópicos de U-Pb de la muestra T9, la cual pertenece a la formación Cualac y fue colectada en el área de Olinalá.

	RELACIONES ISOTÓPICAS CORREGIDAS														EDAI	DES CO	ORREGIDAS	6 (Ma)			
Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor edad (Ma)	±2s	Disc %
Zircon_23	76.1	30.8	0.4047	0.0904	0.0043	3.11	0.14	0.2517	0.0044	0.0725	0.0037	0.06619	1447	23	1437	33	1430	94	1430	23	-0.7
Zircon_47	215	101.8	0.4735	0.0903	0.004	3.018	0.12	0.2456	0.0043	0.0744	0.0036	0.44124	1415	22	1414	28	1447	82	1447	22	-0.1
Zircon_53	52.9	47	0.8885	0.1010	0.005	3.95	0.2	0.2834	0.0065	0.0857	0.0035	0.53733	1608	33	1618	40	1639	95	1639	33	0.6
Zircon_34	48.2	54.3	1.1266	0.1082	0.0047	4.87	0.19	0.3231	0.0061	0.0934	0.0039	0.15567	1804	30	1794	33	1769	84	1769	30	-0.6
Zircon_22	196.5	254.6	1.2957	0.1309	0.005	6.924	0.22	0.3870	0.0055	0.1059	0.0036	0.33917	2109	26	2101	28	2111	69	2111	26	-0.4
Zircon_51	168.2	159.2	0.9465	0.1750	0.0067	11.91	0.4	0.4846	0.0072	0.1254	0.0042	0.64057	2547	31	2596	31	2606	62	2606	31	1.9
Zircon_66	296	289	0.9764	0.1773	0.0066	12.21	0.39	0.4972	0.0068	0.1332	0.0043	0.54660	2602	29	2620	30	2629	65	2629	29	0.7

Tabla A.4 (Continuación) Datos isotópicos de U-Pb de la muestra T9, la cual pertenece a la formación Cualac y fue colectada en el área de Olinalá.

			RELACIONES ISOTÓPICAS CORREGIDAS												EDAD	DES C	ORREGIDA	S (Ma)		
Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor edad (Ma)	±2s	Disc %
Zircon_10	523	221.4	0.4233	0.0553	0.0027	0.561	0.024	0.0745	0.0020	0.0226	0.0013	0.10697	463	12	451	16	421	120	463	12	-2.7
Zircon_14	11.22	26.1	2.3262	0.0660	0.015	0.7	0.15	0.0748	0.0049	0.0243	0.0024	0.00281	464	29	505	95	530	460	464	29	8.1
Zircon_29	186.3	133.7	0.7177	0.0568	0.0035	0.611	0.034	0.0768	0.0022	0.0250	0.0016	0.21164	476.9	13	483	21	450	140	476.9	13	1.3
Zircon_57	94.3	71.7	0.7603	0.0589	0.0047	0.627	0.042	0.0773	0.0027	0.0240	0.0016	0.03200	480	16	495	25	570	160	480	16	3.0
Zircon_76	268	25.2	0.0940	0.0565	0.003	0.602	0.027	0.0785	0.0021	0.0253	0.0019	0.00451	487.1	13	478	17	470	120	487.1	13	-1.9
Zircon_07	60.1	134.8	2.2429	0.0636	0.0054	0.711	0.056	0.0812	0.0026	0.0255	0.0014	0.04200	503	16	540	33	670	190	503	16	6.9
Zircon_74	284	159.9	0.5630	0.0577	0.0031	0.659	0.03	0.0821	0.0023	0.0243	0.0015	0.06039	508.3	13	513	19	513	120	508.3	13	0.9
Zircon_52	185	66.3	0.3584	0.0543	0.0034	0.645	0.036	0.0846	0.0024	0.0258	0.0017	0.02076	523.2	15	503	22	374	130	523.2	15	-4.0
Zircon_45	214.1	63.9	0.2985	0.0575	0.0031	0.687	0.033	0.0863	0.0024	0.0272	0.0017	0.32112	533.8	14	532	21	503	120	533.8	14	-0.3
Zircon_66	116.1	52.1	0.4488	0.0580	0.004	0.685	0.043	0.0872	0.0028	0.0283	0.0017	0.12773	539	17	527	26	500	150	539	17	-2.3
Zircon_91	93	90.5	0.9731	0.0583	0.0047	0.732	0.056	0.0891	0.0027	0.0259	0.0016	0.09210	550	16	568	33	550	180	550	16	3.2
Zircon_33	479	66.5	0.1388	0.0595	0.0027	0.755	0.028	0.0915	0.0024	0.0284	0.0020	0.02173	564.5	14	570.7	16	587	110	564.5	14	1.1
Zircon_46	71.3	49	0.6872	0.0616	0.0046	0.766	0.053	0.0925	0.0030	0.0276	0.0020	0.02271	570	18	583	33	620	170	570	18	2.2
Zircon_42	96.6	42.4	0.4389	0.0583	0.0042	0.739	0.048	0.0926	0.0028	0.0289	0.0023	0.03000	571	16	567	30	560	160	571	16	-0.7
Zircon_69	119.9	153.9	1.2836	0.0570	0.0035	0.736	0.04	0.0932	0.0030	0.0283	0.0016	0.16091	574	18	561	24	510	140	574	18	-2.3
Zircon_31	21.8	11.94	0.5477	0.0669	0.0085	0.889	0.1	0.0941	0.0042	0.0310	0.0034	0.02000	579	25	638	54	750	270	579	25	9.2
Zircon_34	141.1	33.2	0.2353	0.0613	0.0039	0.802	0.045	0.0951	0.0027	0.0314	0.0023	0.00452	585.4	16	599	26	650	130	585.4	16	2.3
Zircon_39	431	79.7	0.1849	0.0602	0.0029	0.78	0.031	0.0955	0.0025	0.0295	0.0017	0.21506	587.7	15	588	17	603	100	587.7	15	0.1
Zircon_08	87.6	99.5	1.1358	0.0624	0.0047	0.822	0.059	0.0955	0.0032	0.0293	0.0019	0.08129	588	19	615	31	730	160	588	19	4.4
Zircon_49	122.1	0.101	0.0008	0.0587	0.0039	0.801	0.049	0.0969	0.0030	0.2600	0.1200	0.12524	596	18	594	28	510	150	596	18	-0.3
Zircon_98	201.4	74.7	0.3709	0.0571	0.0031	0.792	0.036	0.0971	0.0027	0.0289	0.0019	0.02532	597.4	16	591	21	488	120	597.4	16	-1.1
Zircon_13	168.2	53.2	0.3163	0.0597	0.0036	0.813	0.041	0.1018	0.0029	0.0308	0.0020	0.04813	624.8	17	605	24	576	130	624.8	17	-3.3
Zircon_27	261	75.3	0.2885	0.0593	0.0035	0.856	0.041	0.1032	0.0028	0.0322	0.0019	0.07000	633.2	17	626	23	561	130	633.2	17	-1.2
Zircon_83	81.9	30.4	0.3712	0.0590	0.0039	0.852	0.055	0.1042	0.0033	0.0307	0.0024	0.38585	639	19	626	29	590	140	639	19	-2.1
Zircon_16	374	100.6	0.2690	0.0610	0.0029	0.91	0.045	0.1093	0.0040	0.0343	0.0019	0.74510	668	23	655	24	638	100	668	23	-2.0
Zircon_05	91.8	35	0.3813	0.0640	0.0042	1.011	0.061	0.1115	0.0032	0.0341	0.0026	0.22227	681	18	706	30	740	140	681	18	3.5
Zircon_09	408	185.6	0.4549	0.0611	0.0031	0.929	0.039	0.1116	0.0032	0.0334	0.0019	0.26018	682	19	666	21	626	110	682	19	-2.4
Zircon_67	375	88.5	0.2360	0.0622	0.0031	0.961	0.041	0.1135	0.0030	0.0348	0.0019	0.04300	693.2	17	683	21	680	100	693.2	17	-1.5
Zircon_93	314	42.4	0.1350	0.0617	0.0032	1.064	0.061	0.1206	0.0047	0.0341	0.0024	0.68434	734	27	733	30	645	110	734	27	-0.1
Zircon_06	153.7	51.1	0.3325	0.0659	0.0038	1.118	0.061	0.1235	0.0037	0.0351	0.0023	0.26999	750	21	763	28	778	120	750	21	1.7
Zircon_84	152.6	89.4	0.5858	0.0611	0.0032	1.051	0.045	0.1249	0.0036	0.0367	0.0021	0.04893	759	21	731	23	638	110	759	21	-3.8
Zircon_90	109.8	19.4	0.1/6/	0.0687	0.0045	1.259	0.076	0.1312	0.0041	0.0542	0.0052	0.19556	/94	23	833	54	892	120	/94	23	4./
Zircon_86	39.9	9.6	0.2406	0.0709	0.00/1	1.37	0.14	0.1351	0.0089	0.0482	0.0054	0.04032	815	20	8/1	29	950	220	815	51	6.4 2.5
Zircon_38	1240	314.8	0.2539	0.0704	0.003	1.347	0.047	0.1400	0.0036	0.0407	0.0020	0.64280	844.5	20	800	20	939	8/	844.5	20	2.5
Zircon_62	4/5	95.5	0.2006	0.0706	0.0033	1.428	0.055	0.1523	0.0040	0.0452	0.0020	0.22198	913.0	22	900	23	940	100	913.0	22	-1.5
Zircon_99	90.2	31.5	0.3492	0.0669	0.0039	1.473	0.077	0.1565	0.0049	0.0474	0.0032	0.31445	930	27	921	30	822	130	930	27	-1.0
Zircon_56	424	12.4	0.1708	0.0731	0.0033	1.566	0.06	0.1574	0.0041	0.0471	0.0027	0.23/83	942.1	23	960	22	1011	91	942.1	23	1.9
Zircon_85	9/	1.97	0.0203	0.0672	0.0045	1.48/	0.081	0.1604	0.0047	0.0620	0.0120	0.03920	959	20	921	33	820	140	959	20	-4.1
Zircon_51	141	47.5	0.3355	0.0699	0.0030	1.574	0.069	0.1612	0.0043	0.0516	0.0035	0.34280	963	24	965	29	921	100	903	24	0.2
Zircon_01_CU-05	244 57.2	12.82	0.3104	0.0/36	0.0033	1.04/	0.062	0.1646	0.0042	0.04/3	0.0027	0.27078	2.909	23	98/	24	1038	140	2.606	23	1.8
Zircon_11	37.2	12.85	0.2418	0.0697	0.0049	1.303	0.1	0.1662	0.0049	0.0500	0.0045	0.20002	982	21	90/	38 27	930	140	982	21	-1.0
Zircon_00	140.9	13.13	0.0894	0.0729	0.0038	1.030	0.07	0.1670	0.0048	0.0513	0.0045	0.2331/	992	20	983	21	995	120	992	20	-0.9
Zircon 87	145 4	17.9	0.4127	0.0710	0.0041	1.04	0.08/	0.10/0	0.0035	0.0353	0.0042	0.28033	999	29	991	20	904	120	1015	29	-0.8
Zircon 26	143.4	220	0.4127	0.0703	0.0035	1.004	0.074	0.1705	0.0040	0.0493	0.0032	0.23702	1015	25	1022	20 62	925	210	1015	23 26	-2.2
ZIICOII_50	∠0	23.0	0.0500	0.0730	0.0075	1.70	0.10	0.1715	0.0000	0.0492	0.0054	0.0194/	1020	50	1022	02	1050	210	1020	50	0.2

Tabla A.5 Datos isotópicos de U-Pb de la muestra CU05b, la cual pertenece a la formación Cualac y fue colectada en el área de Olinalá.

						RELACIO	ONES IS	SOTÓPICAS	S CORRI	EGIDAS					EDAI	DES C	ORREGIDAS	5 (Ma)			
Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor edad (Ma)	±2s	Disc %
Zircon_50	365	32.6	0.0893	0.0744	0.0034	1.811	0.07	0.1738	0.0044	0.0661	0.0045	0.21812	1032.8	24	1048	25	1045	93	1032.8	24	1.5
Zircon_58	59.3	31.4	0.5295	0.0825	0.0063	1.99	0.15	0.1774	0.0056	0.0598	0.0049	0.38854	1052	30	1101	49	1200	150	1052	30	4.5
Zircon_12	315	156.6	0.4971	0.0724	0.0034	1.749	0.068	0.1782	0.0046	0.0522	0.0030	0.15362	1057	25	1026	25	998	96	1057	25	-3.0
Zircon_17	37.5	30.2	0.8053	0.0720	0.0051	1.74	0.13	0.1792	0.0058	0.0516	0.0033	0.30549	1062	32	1012	49	980	140	1062	32	-4.9
Zircon_77	253	149	0.5889	0.0760	0.0037	1.903	0.075	0.1805	0.0050	0.0680	0.0037	0.07405	1070	27	1083	26	1092	96	1070	27	1.2
Zircon_48	182	37.1	0.2038	0.0737	0.0037	1.894	0.08	0.1829	0.0052	0.0582	0.0043	0.16164	1082	29	1077	28	1028	100	1082	29	-0.5
Zircon_04	287	363	1.2648	0.0790	0.0037	2.02	0.1	0.1853	0.0064	0.0542	0.0027	0.78872	1095	35	1122	35	1163	94	1095	35	2.4
Zircon_65	48	29.2	0.6083	0.0779	0.0059	1.95	0.13	0.1851	0.0058	0.0553	0.0038	0.05000	1095	32	1102	42	1130	140	1095	32	0.6
Zircon_71	150.2	66.5	0.4427	0.0740	0.0038	1.896	0.085	0.1866	0.0052	0.0574	0.0032	0.23722	1103	28	1084	31	1046	110	1103	28	-1.8
Zircon_47	148.6	81.4	0.5478	0.0769	0.0037	2.023	0.08	0.1880	0.0050	0.0543	0.0030	0.24614	1110	27	1125	26	1109	96	1110	27	1.3
Zircon_72	139	50.2	0.3612	0.0741	0.0036	1.97	0.078	0.1881	0.0052	0.0574	0.0032	0.02100	1111	28	1104	27	1043	100	1111	28	-0.6
Zircon_75	55.5	16.36	0.2948	0.0761	0.0047	1.979	0.11	0.1883	0.0062	0.0596	0.0045	0.14077	1115	35	1109	36	1101	120	1115	35	-0.5
Zircon_32	115	67.4	0.5861	0.0802	0.0042	2.098	0.11	0.1911	0.0054	0.0562	0.0032	0.41583	1127	29	1154	32	1222	120	1127	29	2.3
Zircon_81	128.6	79.5	0.6182	0.0734	0.004	1.93	0.09	0.1932	0.0063	0.0563	0.0033	0.03920	1138	34	1092	30	1019	110	1138	34	-4.2
Zircon_21	224	100	0.4464	0.0773	0.0035	2.071	0.082	0.1947	0.0051	0.0611	0.0037	0.46438	1147	28	1138	27	1130	89	1147	28	-0.8
Zircon_82	351	131.4	0.3744	0.0754	0.0034	2.023	0.073	0.1956	0.0050	0.0486	0.0026	0.12617	1151.8	27	1123	25	1086	90	1151.8	27	-2.6
Zircon_24	79.7	29.5	0.3701	0.0757	0.004	2.1	0.095	0.1966	0.0055	0.0595	0.0039	0.22426	1159	31	1146	31	1093	110	1159	31	-1.1
Zircon_55	125.2	33	0.2636	0.0814	0.0042	2.228	0.094	0.1986	0.0055	0.0630	0.0039	0.09945	1168	30	1191	31	1217	100	1168	30	1.9
Zircon_61	83.9	34.8	0.4148	0.0786	0.0046	2.087	0.11	0.1988	0.0057	0.0639	0.0043	0.23146	1169	31	1149	36	1180	100	1169	31	-1.7
Zircon_44	25.7	19.6	0.7626	0.0802	0.0063	2.28	0.16	0.2003	0.0073	0.0568	0.0041	0.03740	1176	39	1204	50	1180	150	1176	39	2.3
Zircon_02	63.6	18.7	0.2940	0.0798	0.0045	2.223	0.11	0.2013	0.0058	0.0578	0.0043	0.09603	1182	31	1184	36	1194	120	1182	31	0.2
Zircon_59	108.5	41	0.3779	0.0789	0.0041	2.173	0.1	0.2020	0.0058	0.0605	0.0034	0.22501	1186	31	1170	32	1164	110	1186	31	-1.4
Zircon_19	107.4	49.5	0.4609	0.0754	0.0041	2.036	0.093	0.2023	0.0057	0.0603	0.0036	0.07614	1188	30	1133	31	1084	110	1188	30	-4.9
Zircon_94	30.8	15.81	0.5133	0.0817	0.0059	2.34	0.15	0.2024	0.0072	0.0577	0.0051	0.08320	1188	39	1217	45	1210	140	1188	39	2.4
Zircon_78	160.9	51.3	0.3188	0.0760	0.0035	2.097	0.081	0.2027	0.0054	0.0608	0.0039	0.23383	1190	29	1147	27	1087	94	1190	29	-3.7
Zircon_89	181.5	53.5	0.2948	0.0744	0.0036	2.121	0.086	0.2041	0.0055	0.0565	0.0034	0.11014	1197	30	1157	27	1043	100	1197	30	-3.5
Zircon_30	95.6	25.4	0.2657	0.0798	0.0038	2.311	0.1	0.2060	0.0061	0.0633	0.0042	0.41806	1207	33	1213	31	1194	100	1207	33	0.5
Zircon_97	145.7	35.8	0.2457	0.0743	0.0037	2.153	0.082	0.2067	0.0059	0.0572	0.0034	0.00998	1211	32	1168	25	1037	100	1211	32	-3.7
Zircon_79	355	240	0.6761	0.0799	0.0035	2.271	0.084	0.2079	0.0054	0.0609	0.0031	0.43890	1217	29	1205	27	1189	86	1217	29	-1.0
Zircon_70	197	105.5	0.5355	0.0779	0.0036	2.23	0.086	0.2082	0.0054	0.0649	0.0035	0.52793	1219	29	1189	27	1145	87	1219	29	-2.5
Zircon_26	302.9	107.9	0.3562	0.0804	0.0036	2.358	0.091	0.2092	0.0053	0.0630	0.0035	0.29012	1224.2	28	1233	26	1207	92	1224.2	28	0.7
Zircon_28	94.7	40.5	0.4277	0.0751	0.0041	2.211	0.11	0.2095	0.0058	0.0657	0.0040	0.36773	1226	31	1186	35	1089	110	1226	31	-3.4
Zircon_54	51.3	17.89	0.3487	0.0793	0.0056	2.31	0.15	0.2096	0.0067	0.0637	0.0050	0.14690	1226	36	1207	47	1190	140	1226	36	-1.6
Zircon_43	59	44.4	0.7525	0.0789	0.0044	2.27	0.11	0.2103	0.0063	0.0576	0.0036	0.27624	1230	33	1203	37	1150	110	1230	33	-2.2
Zircon_92	88.5	26.5	0.2994	0.0770	0.0043	2.336	0.11	0.2102	0.0063	0.0575	0.0040	0.03143	1233	32	1220	35	1158	110	1233	32	-1.1
Zircon_95	175	128	0.7314	0.0825	0.0039	2.495	0.1	0.2116	0.0058	0.0603	0.0032	0.21001	1237	31	1269	31	1257	100	1237	31	2.5
Zircon_3/	152.2	108	0.7096	0.0840	0.0042	2.524	0.11	0.2184	0.0058	0.0626	0.0033	0.34304	1273	31	1280	32	1282	96	1273	31	0.5
Zircon_23	95.9	34.1	0.3556	0.0781	0.0042	2.382	0.11	0.2207	0.0061	0.0743	0.0050	0.14048	1285	32	1238	33	1131	110	1285	32	-3.8
Zircon_/3	30.6	15.36	0.5020	0.0807	0.0072	2.49	0.18	0.2219	0.0091	0.0669	0.0049	0.05030	1296	49	1266	53	11/0	180	1296	49	-2.4
Zircon_15	66.2	40.7	0.6148	0.0870	0.0052	2.72	0.14	0.2328	0.0067	0.0675	0.0041	0.13461	1349	35	1328	38	1363	110	1349	35	-1.6
Zircon_80	/8.5	26.7	0.3401	0.0834	0.0047	2./15	0.13	0.23/5	0.0066	0.0741	0.0048	0.07221	13/3	35	1329	35	1267	110	13/3	33	-3.3
Zircon_03	62.6	25.5	0.4073	0.0875	0.0053	3.02	0.14	0.2516	0.0072	0.0743	0.0045	0.02300	1446	37	1419	36	1375	110	1375	37	-1.9
Zircon_96	103.7	42.4	0.4089	0.0887	0.0048	3.23	0.16	0.2567	0.0074	0.0717	0.0044	0.19595	1472	38	1466	36	1391	110	1391	58	-0.4
Zircon_53	552 70.2	105.1	0.2991	0.0896	0.0041	3.17	0.14	0.2539	0.0078	0.0744	0.0046	0.83033	1458	40	1447	30 25	1416	90	1410	40	-0.8
Zircon_35	70.2	17.39	0.2477	0.0912	0.0047	3.112	0.14	0.2491	0.0009	0.0721	0.0053	0.24420	1436	54	1437		1430	100	1430	34	0.1

Tabla A.5 (Continuación) Datos isotópicos de U-Pb de la muestra CU05b, la cual pertenece a la formación Cualac y fue colectada en el área de Olinalá.

						RELACIO	NES IS	SOTÓPICA	S CORRI	EGIDAS					EDAI	DES CO	ORREGIDAS	5 (Ma)			
Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor edad (Ma)	±2s	Disc %
Zircon_41	69.2	35.4	0.5116	0.0916	0.0049	3.151	0.14	0.2488	0.0073	0.0727	0.0042	0.21645	1432	38	1442	34	1451	110	1451	38	0.7
Zircon_88	60.5	26.3	0.4347	0.0931	0.0049	3.66	0.17	0.2844	0.0078	0.0774	0.0056	0.09040	1613	39	1567	36	1475	100	1475	39	-2.9
Zircon_25	351	197.5	0.5627	0.0928	0.0041	3.362	0.11	0.2589	0.0068	0.0777	0.0038	0.31667	1484	35	1495.2	27	1484	87	1484	35	0.7
Zircon_22	88.1	33.9	0.3848	0.0935	0.0046	3.61	0.16	0.2780	0.0076	0.0803	0.0049	0.22988	1581	38	1548	35	1505	100	1505	38	-2.1
Zircon_40	43.9	18.19	0.4144	0.0990	0.0053	3.93	0.19	0.2926	0.0087	0.0839	0.0058	0.39245	1654	43	1625	34	1614	89	1614	43	-1.8
Zircon_18	189.2	55.8	0.2949	0.1562	0.0067	9.74	0.34	0.4598	0.0120	0.1290	0.0069	0.34656	2438	53	2412	31	2412	73	2412	53	-1.1
Zircon_68	198.4	170	0.8569	0.1746	0.0076	11.68	0.41	0.4887	0.0120	0.1334	0.0065	0.02000	2565	53	2583	35	2603	75	2603	53	0.7

Tabla A.5 (Continuación) Datos isotópicos de U-Pb de la muestra CU05b, la cual pertenece a la formación Cualac y fue colectada en el área de Olinalá.

						RELA	CIONES	S ISOTÓPIC	CAS COR	REGIDAS					EDAD	DES C	ORREGIDA	S (Ma)		
Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor edad (Ma)	±2s	Disc %
Zircon 40	352	264.3	0.7509	0.0493	0.0029	0.1928	0.011	0.02821	0.00047	0.00841	0.0005	0.14318	179.3	3	179.8	9.1	307	67	179.3	3	0.3
Zircon_36	343	239.2	0.6974	0.0498	0.0033	0.192	0.012	0.02841	0.00059	0.00899	0.00053	0.1683	180.6	3.7	178	10	240	44	180.6	3.7	-1.5
Zircon 88	85	37.6	0.4424	0.0564	0.0056	0.232	0.023	0.03	0.0011	0.0098	0.0012	0.26209	190.8	6.7	210	19	622	100	190.8	6.7	9.1
Zircon_62	84.2	78	0.9264	0.0573	0.0059	0.313	0.031	0.0398	0.0014	0.01174	0.0009	-0.054536	251.4	8.6	274	24	515	86	251.4	8.6	8.2
Zircon_78	78.9	17.72	0.2246	0.057	0.0053	0.313	0.025	0.0398	0.0015	0.0175	0.002	-0.068121	251.7	9.5	274	19	700	120	251.7	9.5	8.1
Zircon_10	244	134.4	0.5508	0.0527	0.0027	0.291	0.014	0.03987	0.00076	0.01208	0.00072	0.31026	252	4.7	259	11	351	48	252	4.7	2.7
Zircon_56	98	54.7	0.5582	0.0537	0.0048	0.289	0.023	0.0399	0.0015	0.01225	0.0011	0.30365	252.4	9.4	257	18	412	89	252.4	9.4	1.8
Zircon_97	78	33.9	0.4346	0.054	0.0056	0.299	0.029	0.0401	0.0014	0.0126	0.0012	-0.12668	253.1	8.7	266	24	570	110	253.1	8.7	4.8
Zircon_59	316	168.8	0.5342	0.0522	0.0028	0.292	0.014	0.04013	0.00082	0.0124	0.0008	0.096551	253.6	5.1	259.6	11	324	56	253.6	5.1	2.3
Zircon_96	70.8	25.02	0.3534	0.0551	0.0059	0.306	0.031	0.0402	0.0012	0.0125	0.0016	-0.13616	253.8	7.4	268	24	630	140	253.8	7.4	5.3
Zircon_16	29.2	17.9	0.6130	0.058	0.0094	0.322	0.044	0.0403	0.0019	0.0158	0.0016	-0.26567	254	12	277	34	780	140	254	12	8.3
Zircon_03	105.8	50.4	0.4764	0.0549	0.0042	0.293	0.019	0.0403	0.0012	0.01362	0.0011	0.034439	254.4	7.6	264	15	448	71	254.4	7.6	3.6
Zircon_66	53.2	40.3	0.7575	0.0554	0.0056	0.311	0.029	0.0405	0.0013	0.01253	0.0011	0.018569	256	8.3	272	23	540	110	256	8.3	5.9
Zircon_77	47.8	19.79	0.4140	0.0532	0.007	0.306	0.037	0.0407	0.0013	0.0123	0.0015	-0.19383	257	8	267	28	574	99	257	8	3.7
Zircon_20	62.3	17.9	0.2873	0.051	0.0049	0.282	0.025	0.041	0.0015	0.0145	0.0019	0.24482	259.2	9.3	260	22	426	89	259.2	9.3	0.3
Zircon_14	128.6	54.5	0.4238	0.0543	0.0043	0.298	0.02	0.0414	0.0012	0.01451	0.0011	0.04203	261.2	7.5	264	16	456	89	261.2	7.5	1.1
Zircon_76	82.2	45.28	0.5509	0.0521	0.0049	0.299	0.025	0.0418	0.0012	0.01381	0.001	0.00018866	263.8	7.6	266	19	452	91	263.8	7.6	0.8
Zircon_95	111.8	49.4	0.4419	0.0533	0.0071	0.309	0.042	0.0419	0.0017	0.0119	0.0015	0.056754	265	11	271	32	580	210	265	11	2.2
Zircon_19	131.2	89.7	0.6837	0.0558	0.0042	0.317	0.023	0.04224	0.001	0.01343	0.001	0.011664	266.7	6.2	282	17	515	98	266.7	6.2	5.4
Zircon_44	43.4	11.1	0.2558	0.0525	0.0076	0.317	0.047	0.0422	0.0016	0.0137	0.0024	0.0182	266.7	9.6	274	36	560	120	266.7	9.6	2.7
Zircon_09	89.3	49.8	0.5577	0.0547	0.0046	0.324	0.029	0.0428	0.0015	0.01315	0.0012	0.35222	270.1	9	283	22	454	78	270.1	9	4.6
Zircon_81	150	61.3	0.4087	0.0501	0.0035	0.304	0.019	0.04291	0.0011	0.01435	0.001	-0.090944	270.8	6.8	268	15	368	77	270.8	6.8	-1.0
Zircon_17	72.8	37.2	0.5110	0.0553	0.0046	0.319	0.023	0.0436	0.0013	0.01336	0.0011	0.15124	275.2	8.1	280	18	549	65	275.2	8.1	1.7
Zircon_65	135.9	86.7	0.6380	0.0544	0.0037	0.35	0.022	0.047	0.0012	0.01558	0.001	0.034792	296.3	7.5	303	16	429	62	296.3	7.5	2.2
Zircon_12	213.9	53.5	0.2501	0.0579	0.0029	0.753	0.036	0.0935	0.0019	0.0284	0.0019	0.18359	576.3	11	569	21	558	68	576.3	11	-1.3
Zircon_22	246	70.8	0.2878	0.0709	0.0026	1.485	0.048	0.1528	0.0023	0.0453	0.0027	0.20406	916.7	13	925	19	951	52	916.7	13	0.9
Zircon_94	139.4	25.57	0.1834	0.0721	0.0035	1.526	0.067	0.1555	0.0029	0.0454	0.0036	0.24634	932	16	939	27	984	45	932	16	0.7
Zircon_35	101.7	16.75	0.1647	0.0713	0.003	1.548	0.057	0.1588	0.0029	0.0495	0.0036	-0.020537	950	16	951	22	981	44	950	16	0.1
Zircon_83	301	110	0.3654	0.0/2	0.003	1.59	0.056	0.1604	0.0026	0.0471	0.0029	-0.10749	958.8	15	968	21	1006	43	958.8	15	1.0
Zircon_89	169	41.5	0.2456	0.0739	0.0037	1.639	0.072	0.1613	0.0028	0.0499	0.0032	-0.31809	964	15	984	28	1011	65	964	15	2.0
Zircon_67	46.1	14.03	0.3043	0.0732	0.0049	1.64	0.094	0.1617	0.0043	0.0538	0.0038	-0.16951	966	24	983	37	1023	64	966	24	1.7
Zircon_01	33	1.786	0.0541	0.0752	0.0057	1.69	0.11	0.1623	0.0039	0.072	0.013	-0.13983	969	21	1004	45	1128	96	969	21	3.5
Zircon_63	121.2	77.4	0.6386	0.0719	0.0032	1.621	0.069	0.1629	0.0031	0.0512	0.0029	0.22082	9/3	17	978	27	968	55	9/3	17	0.5
Zircon_26	154.9	85.8	0.5539	0.0718	0.0029	1.638	0.063	0.1643	0.0026	0.04905	0.0027	0.21919	980.3	15	988	24	1014	46	980.3	15	0.8
Zircon_50	124.9	51.7	0.4139	0.0724	0.0031	1.649	0.064	0.165	0.0031	0.0505	0.003	0.20549	984	17	996	22	1012	47	984	17	1.2
Zircon_29	262.5	149.2	0.5684	0.0727	0.0026	1.653	0.052	0.1652	0.0026	0.0494	0.0027	0.13539	985.5	14	990	20	1013	41	985.5	14	0.5
Zircon_41	169.5	43	0.2537	0.0717	0.0028	1.634	0.057	0.1658	0.0028	0.0501	0.0029	0.29957	989	15	982	22	983	51	989	15	-0.7
Zircon_90	304	151.1	0.4970	0.0723	0.0027	1.657	0.054	0.16632	0.0023	0.04895	0.0027	0.1/41/	991.8	12	993	21	989	38	991.8	12	0.1
Zircon_15	180	66.3 50.9	0.3683	0.0714	0.0028	1.654	0.058	0.16/1	0.0026	0.0486	0.0028	-0.066135	995.9	14	990	22	9/4	41	995.9	14	-0.6
Zircon_0/	205.5	50.8	0.24/2	0.0726	0.0028	1.6/1	0.054	0.16/7	0.0026	0.0512	0.003	0.040869	999.2	14	1000	20	998	48	9999.2	14	0.1
Zircon_46	328	121.7	0.3/10	0.0734	0.0026	1.703	0.054	0.1682	0.0024	0.04837	0.0026	0.19155	1002.4	13	1010	21	1038	3/	1002.4	13	0.8
Zircon_/2	247	/0.3	0.2840	0.073	0.0029	1.69	0.05/	0.1683	0.0026	0.05	0.0028	0.012903	1002.6	14	1004	22	1041	40	1002.0	14	0.1
Zircon 12	21/	95.4 20	0.4304	0.0741	0.0029	1./11	0.038	0.1083	0.0020	0.0505	0.0029	0.078721	1002.9	14	1013	21	1037	30 50	1002.9	14	1.0
Zircon 02	103	56 1	0.0909	0.0740	0.0037	1.702	0.079	0.1080	0.0032	0.0494	0.003	-0.1115	1004	16	1013	20	10/2	52 61	1004	1/	0.9
2110011 72	103	50.1	0.044/	0.0//2	0.0007/	1.024	0.077	0.100/	0.0029	0.0511	0.005	0.15055	1005	10	10.01	49	1133	01	1005	10	4.4

Tabla A.6 Datos isotópicos de U-Pb de la muestra Tec-0916-3, la cual pertenece al grupo Tecocoyunca inferior y fue colectada en el área de Tezoatlán.

						RELAC	IONES	ISOTÓPICA	AS CORI	REGIDAS					EDAD	DES C	ORREGIDA	5 (Ma)		
Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor edad (Ma)	±2s	Disc %
Zircon 71	117.1	91	0.7771	0.0711	0.003	1.657	0.067	0.1688	0.0024	0.049	0.0028	0.21925	1005.6	13	993	25	977	53	1005.6	13	-1.3
Zircon 51	123	63.6	0.5171	0.0715	0.0032	1.708	0.075	0.1695	0.0034	0.0498	0.003	0.38505	1009	19	1009	28	1015	52	1009	19	0.0
Zircon_04	42.1	31	0.7363	0.0724	0.0045	1.688	0.11	0.1697	0.004	0.0516	0.0033	0.31439	1010	22	1003	41	1026	87	1010	22	-0.7
Zircon_38	186.1	83.4	0.4481	0.0721	0.0029	1.685	0.056	0.17	0.0028	0.0501	0.0028	-0.0051498	1012	16	1002	21	992	46	1012	16	-1.0
Zircon_75	105.4	34.9	0.3311	0.0731	0.0031	1.708	0.063	0.1701	0.0029	0.0519	0.0033	0.044158	1013	16	1010	24	1001	59	1013	16	-0.3
Zircon_74	165	35.5	0.2152	0.0731	0.0029	1.718	0.061	0.1708	0.0026	0.0533	0.0032	0.042473	1016.3	15	1014	23	1027	41	1016.3	15	-0.2
Zircon_87	153.3	50.3	0.3281	0.0733	0.0032	1.72	0.065	0.171	0.0029	0.0501	0.003	0.019371	1017	16	1017	25	1042	52	1017	16	0.0
Zircon_25	58	41.4	0.7138	0.0716	0.0041	1.69	0.097	0.1711	0.0032	0.0493	0.0033	0.20154	1018	17	1015	35	997	84	1018	17	-0.3
Zircon_53	196	38.2	0.1949	0.0739	0.0029	1.764	0.066	0.1717	0.0031	0.0528	0.0035	0.41619	1021	17	1032	24	1036	43	1021	17	1.1
Zircon_68	109.2	28.5	0.2610	0.0726	0.0033	1.728	0.07	0.1714	0.0029	0.0533	0.0034	0.1512	1022	15	1017	26	1015	40	1022	15	-0.5
Zircon_42	27.62	10.37	0.3755	0.0712	0.005	1.662	0.11	0.1722	0.005	0.0536	0.0047	0.11742	1023	27	998	41	982	95	1023	27	-2.5
Zircon_30	12.94	4.69	0.3624	0.071	0.0073	1.66	0.16	0.1726	0.0053	0.0531	0.0061	-0.095738	1026	29	1008	62	920	140	1026	29	-1.8
Zircon_93	43.2	22.13	0.5123	0.0751	0.0049	1.8	0.11	0.1726	0.004	0.0562	0.0037	0.19739	1026	22	1045	43	1073	72	1026	22	1.8
Zircon_100	112.9	40.5	0.3587	0.0737	0.0034	1.76	0.069	0.1726	0.0032	0.0516	0.0036	0.011302	1026	17	1029	26	1022	44	1026	17	0.3
Zircon_27	120.1	52.1	0.4338	0.0726	0.0029	1.746	0.062	0.1729	0.0029	0.0498	0.0028	0.12729	1028	16	1029	22	1011	48	1028	16	0.1
Zircon_48	27.6	30.4	1.1014	0.0728	0.0053	1.74	0.11	0.1729	0.0046	0.0518	0.003	-0.18237	1028	25	1032	40	986	75	1028	25	0.4
Zircon_28	160.2	48.9	0.3052	0.072	0.0027	1.712	0.056	0.173	0.0027	0.0509	0.003	0.11505	1028.6	15	1012	21	975	52	1028.6	15	-1.6
Zircon_52	133.4	55	0.4123	0.071	0.0029	1.71	0.066	0.173	0.0029	0.0523	0.003	0.17212	1029	16	1010	25	975	44	1029	16	-1.9
Zircon_85	443	216	0.4876	0.0735	0.0027	1.755	0.056	0.1732	0.0027	0.04842	0.0025	0.264	1029.5	15	1030	20	1021	46	1029.5	15	0.0
Zircon_47	107.6	50	0.4647	0.0727	0.0033	1.733	0.065	0.1734	0.0034	0.0501	0.0031	0.051295	1030	19	1019	25	982	56	1030	19	-1.1
Zircon_69	158	50.4	0.3190	0.0716	0.0031	1.715	0.064	0.1739	0.003	0.0529	0.0034	-0.06354	1033	17	1015	25	970	48	1033	17	-1.8
Zircon_84	117.2	48.9	0.4172	0.0739	0.0033	1.768	0.069	0.1742	0.0031	0.0517	0.003	-0.043291	1035	17	1032	26	1021	52	1035	17	-0.3
Zircon_64	58	36.4	0.6276	0.0731	0.004	1.756	0.086	0.1746	0.0038	0.0525	0.0036	0.17562	1037	21	1031	33	1007	67	1037	21	-0.6
Zircon_05	57.2	51.6	0.9021	0.0749	0.0039	1.819	0.09	0.1747	0.0035	0.0545	0.0032	0.14321	1038	19	1048	33	1096	64	1038	19	1.0
Zircon_70	62	30.2	0.4871	0.0742	0.0052	1.82	0.14	0.175	0.0042	0.0512	0.0033	0.20456	1039	23	1042	49	1102	110	1039	23	0.3
Zircon_45	121.7	45.9	0.3772	0.0805	0.0031	1.951	0.072	0.1755	0.003	0.0605	0.0039	0.32375	1042	16	1097	25	1195	58	1042	16	5.0
Zircon_39	75.8	24.1	0.3179	0.0749	0.0035	1.823	0.079	0.1762	0.0034	0.0538	0.0039	0.010548	1046	19	1057	29	1086	55	1046	19	1.0
Zircon_43	160	44.9	0.2806	0.071	0.0028	1.733	0.062	0.1763	0.003	0.0534	0.0031	0.17478	1046	16	1021	22	942	45	1046	16	-2.4
Zircon_23	98	44.1	0.4500	0.0757	0.0034	1.82	0.069	0.1764	0.003	0.0571	0.0035	-0.019809	1047	16	1057	27	1104	52	1047	16	0.9
Zircon_61	90.7	74.9	0.8258	0.0719	0.0032	1.742	0.063	0.1765	0.0035	0.0529	0.003	-0.13598	1047	19	1026	25	990	43	1047	19	-2.0
Zircon_/9	213	66.8	0.3136	0.0725	0.0028	1.784	0.06	0.1765	0.0029	0.0518	0.003	0.22255	1048	16	1038	22	1009	44	1048	16	-1.0
Zircon_99	30.7	31.8	1.0358	0.0768	0.0057	1.87	0.11	0.1766	0.0045	0.0544	0.0033	-0.15382	1048	25	1068	38	1088	77	1048	25	1.9
Zircon_18	/5.1	37.18	0.4951	0.0763	0.0035	1.86	0.077	0.1769	0.0035	0.0531	0.0033	0.16237	1050	19	1065	28	1113	51	1050	19	1.4
Zircon_60	103	35.1	0.3408	0.0727	0.0033	1.786	0.074	0.1769	0.0038	0.0518	0.0032	0.090417	1050	21	1037	27	1005	52	1050	21	-1.3
Zircon_31	191.4	62.7	0.3276	0.0749	0.0028	1.828	0.058	0.1774	0.0026	0.0521	0.003	0.11352	1052.8	14	1057	22	1056	33	1052.8	14	0.4
Zircon_49	141.1	59.4	0.4210	0.0726	0.0031	1.791	0.068	0.178	0.0028	0.0536	0.003	-0.012437	1055.9	15	1040	25	1001	49	1055.9	15	-1.5
Zircon_98	47.85	18.93	0.3930	0.0787	0.0042	1.924	0.089	0.1779	0.0039	0.055	0.0036	-0.1603	1058	22	1085	30	1154	09	1058	22	2.5
Zircon_21	228	98./	0.4329	0.0731	0.0029	1.819	0.063	0.1795	0.0028	0.0545	0.003	0.053101	1064.2	15	1051	23	1013	48	1064.2	15	-1.5
Zircon_91	3/9.5	137.3	0.3018	0.0764	0.0029	1.922	0.063	0.182	0.0028	0.055	0.0031	0.056109	1078	15	1088	22	1117	41	10/8	15	0.9
Zircon_11	349	122	0.3496	0.079	0.0028	2.159	0.064	0.1979	0.0031	0.0583	0.0032	0.23822	1164	1/	1167.4	21	11/5	45	1164	17	0.3
Zircon_86	30.0	32.0	0.890/	0.0801	0.0045	2.2	0.12	0.1982	0.0031	0.05/4	0.0038	0.158/0	1105	17	1180	30	1233	02	1105	27	1.3
Zircon_33	98.8	45.5	0.4005	0.0809	0.0036	2.223	0.092	0.2004	0.0032	0.0582	0.0034	0.15819	11//	10	1185	29	1225	48	11//	1/	0.7
Zircon 22	125.1	01.0	0.4159	0.0783	0.0033	2.188	0.085	0.202	0.0033	0.0594	0.0033	0.099193	1180	10	11/5	20	1154	40 51	1100	18	-0.9
Zircon 55	288	91.9	0.4702	0.0794	0.003	2.233	0.073	0.2037	0.0033	0.0589	0.0035	0.11785	1219	18	1202	24 24	1194	51	12193	18	-0.3

 Tabla A.6 (Continuación) Datos isotópicos de U-Pb de la muestra Tec-0916-3, la cual pertenece al grupo Tecocoyunca inferior y fue colectada en el área de Tezoatlán.

						RELACIO	NES I	SOTÓPICA	S CORR	EGIDAS					EDA	DES	CORREGID	AS (Ma)		
Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor edad (Ma)	±2s	Disc %
Zircon_73	304	131.6	0.4329	0.0836	0.0029	2.528	0.08	0.2196	0.0034	0.064	0.0035	0.42051	1280	18	1281	22	1285	38	1280	18	0.1
Zircon_08	55.9	38.1	0.6816	0.0861	0.0038	2.614	0.11	0.2213	0.0042	0.0638	0.0036	0.208	1289	22	1300	32	1302	59	1289	22	0.8
Zircon_58	120.4	37.1	0.3081	0.0833	0.0034	2.6	0.11	0.2247	0.0042	0.0638	0.0044	0.35658	1307	22	1306	30	1299	50	1307	22	-0.1
Zircon_24	56.3	16.4	0.2913	0.087	0.0038	2.699	0.11	0.2252	0.0038	0.0705	0.0044	0.16365	1312	21	1325	31	1329	58	1312	21	1.0
Zircon_37	27.2	34.5	1.2684	0.0872	0.0047	2.84	0.15	0.2357	0.0058	0.0707	0.0042	0.31237	1364	30	1363	38	1396	64	1364	30	-0.1
Zircon 82	95	24.8	0.2611	0.0883	0.0036	2.909	0.11	0.2399	0.0054	0.0682	0.0045	0.55227	1386	28	1381	29	1407	56	1386	28	-0.4

Tabla A.6 (Continuación) Datos isotópicos de U-Pb de la muestra Tec-0916-3, la cual pertenece al grupo Tecocoyunca inferior y fue colectada en el área de
Tezoatlán.

						RELACI	ONES ISC	DTÓPICAS	GIDAS				EDAI	DES C	ORREGIDA	S (Ma)				
Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor edad (Ma)	±2s	Disc %
Zircon 29	18.93	14.24	0.7522	0.05	0.0096	0.0146	0.0017	0.284	0.055	0.0396	0.002	0.26403	250	12	250	42	160	340	250	12	0.0
Zircon_44	94.4	41.6	0.4407	0.0524	0.0038	0.01289	0.001	0.293	0.021	0.04113	0.001	-0.047859	259.8	6.5	260	16	270	150	259.8	6.5	0.1
Zircon 35	45.9	35	0.7625	0.0509	0.005	0.01274	0.00098	0.293	0.028	0.0412	0.0016	-0.067832	261.2	9.6	257	23	190	210	261.2	9.6	-1.6
Zircon_61	31.3	20.18	0.6447	0.0545	0.0069	0.0119	0.0012	0.312	0.037	0.0423	0.0017	-0.063873	266.9	10	271	29	280	250	266.9	10	1.5
Zircon_53	127	20.55	0.1618	0.049	0.003	0.0152	0.0014	0.31	0.021	0.04431	0.0011	0.25848	279.5	6.5	273	16	130	130	279.5	6.5	-2.4
Zircon_32	90.1	55.7	0.6182	0.054	0.0041	0.01426	0.00079	0.33	0.027	0.0452	0.0013	-0.018739	285	7.7	291	20	330	160	285	7.7	2.1
Zircon_37	1210	146.9	0.1214	0.07043	0.0018	0.0446	0.0018	1.481	0.064	0.1541	0.0036	0.59275	923.6	20	922.3	26	939	49	923.6	20	-0.1
Zircon_09	620	465	0.7500	0.0698	0.0018	0.0465	0.0016	1.524	0.054	0.1574	0.0027	0.2229	942.5	15	940	22	921	54	942.5	15	-0.3
Zircon_06	333	39.5	0.1186	0.07093	0.002	0.0542	0.0026	1.567	0.057	0.16	0.0027	0.13842	957	15	956.7	23	955	59	957	15	0.0
Zircon_15	62.5	14.18	0.2269	0.0708	0.0033	0.0498	0.003	1.582	0.075	0.1627	0.0038	-0.078844	971	21	964	31	933	100	971	21	-0.7
Zircon_78	20.02	2.14	0.1069	0.0701	0.0055	0.0518	0.0076	1.57	0.15	0.1636	0.0062	0.084616	976	34	952	61	840	200	976	34	-2.5
Zircon_43	75	26.2	0.3493	0.0743	0.0032	0.0528	0.0025	1.724	0.08	0.1658	0.0035	-0.17326	989	19	1015	30	1040	79	989	19	2.6
Zircon_85	340	201.1	0.5915	0.0783	0.0042	0.0308	0.0029	1.808	0.092	0.166	0.0075	0.5866	990	43	1048	39	1153	110	990	43	5.5
Zircon_72	42.1	30.3	0.7197	0.0721	0.0034	0.0505	0.0023	1.669	0.086	0.1662	0.0042	0.27654	991	23	993	33	1011	89	991	23	0.2
Zircon_97	52.9	17.6	0.3327	0.0722	0.0035	0.049	0.0032	1.658	0.092	0.1674	0.0042	0.086403	997	23	992	34	1003	100	997	23	-0.5
Zircon_49	139.8	34.1	0.2439	0.0715	0.0023	0.0491	0.0025	1.643	0.065	0.1675	0.0029	0.099255	998.5	16	988	25	971	67	998.5	16	-1.1
Zircon_02	20.14	1.927	0.0957	0.0697	0.0042	0.0617	0.0074	1.63	0.1	0.1689	0.0042	-0.1344	1006	23	965	37	870	130	1006	23	-4.2
Zircon_81	72.8	58.6	0.8049	0.0722	0.0029	0.0516	0.0021	1.686	0.079	0.1698	0.0034	0.25747	1011	19	1000	30	986	82	1011	19	-1.1
Zircon_99	24.58	1.58	0.0643	0.072	0.005	0.07	0.014	1.673	0.11	0.1702	0.0052	0.050525	1013	28	1015	45	960	140	1013	28	0.2
Zircon_55	24.1	7.34	0.3046	0.0737	0.0055	0.0549	0.0047	1.75	0.14	0.1703	0.0052	0.16757	1013	28	1039	50	1080	150	1013	28	2.5
Zircon_96	332	125.2	0.3771	0.07328	0.002	0.0524	0.002	1.721	0.066	0.1704	0.0035	0.59477	1014	19	1015	26	1019	54	1014	19	0.1
Zircon_21	32.3	13.98	0.4328	0.0725	0.0037	0.0524	0.0026	1.72	0.11	0.1704	0.0039	0.3234	1014	22	1016	35	1010	100	1014	22	0.2
Zircon_93	156.1	67.2	0.4305	0.0715	0.0024	0.0511	0.0021	1.701	0.07	0.1707	0.0032	0.11274	1015.7	18	1008	27	983	65	1015.7	18	-0.8
Zircon_10	53.8	42.6	0.7918	0.0724	0.0032	0.053	0.0023	1.739	0.089	0.1708	0.0038	0.22813	1017	21	1020	33	992	90	1017	21	0.3
Zircon_17	25.6	2.277	0.0889	0.0736	0.0048	0.0607	0.0077	1.67	0.11	0.1711	0.0045	0.06932	1018	25	1006	44	990	140	1018	25	-1.2
Zircon_34	141.2	65.6	0.4646	0.074	0.0023	0.0507	0.0019	1.735	0.068	0.1713	0.0033	0.1037	1019	18	1023	25	1041	64	1019	18	0.4
Zircon_36	24.9	14.7	0.5904	0.0749	0.0045	0.0511	0.0034	1.758	0.11	0.1715	0.0041	0.097485	1020	23	1033	44	1050	130	1020	23	1.3
Zircon_48	69.2	75.2	1.0867	0.0747	0.0034	0.051	0.002	1.753	0.091	0.1716	0.0033	0.048391	1021	18	1024	33	1033	95	1021	18	0.3
Zircon_76	17.3	2	0.1156	0.0684	0.0054	0.0516	0.0074	1.69	0.14	0.172	0.0053	0.18889	1022	29	987	52	880	180	1022	29	-3.5
Zircon_25	38.6	21.6	0.5596	0.0711	0.0037	0.0501	0.0026	1.699	0.095	0.1721	0.0041	-0.013114	1023	22	1003	36	940	110	1023	22	-2.0
Zircon_42	882	192.9	0.2187	0.07213	0.0019	0.05217	0.0017	1.724	0.06	0.1721	0.0028	0.50362	1023.8	16	1017.3	23	987	53	1023.8	16	-0.6
Zircon_73	23.2	17.65	0.7608	0.0752	0.0043	0.05	0.003	1.79	0.11	0.1723	0.005	0.10287	1024	27	1041	39	1070	120	1024	27	1.6
Zircon_14	125.1	23.07	0.1844	0.0719	0.0025	0.0533	0.0027	1.71	0.074	0.1726	0.0034	0.074559	1026	18	1014	28	968	76	1026	18	-1.2
Zircon_84	124.7	29.27	0.2347	0.0705	0.0024	0.0525	0.0025	1.741	0.068	0.1726	0.0032	0.094058	1026	18	1022	26	977	68	1026	18	-0.4
Zircon_05	123.1	68.7	0.5581	0.0733	0.0025	0.0515	0.0019	1.752	0.072	0.1731	0.0032	0.092087	1029	18	1026	26	1020	69	1029	18	-0.3
Zircon_28	258	184	0.7132	0.0717	0.0021	0.05145	0.0018	1.721	0.07	0.1733	0.0033	0.42191	1030	18	1015	26	971	60	1030	18	-1.5
Zircon_01	183.3	86.2	0.4703	0.073	0.0023	0.05316	0.0019	1.75	0.07	0.1735	0.0032	0.12042	1031.3	17	1026	26	1005	63	1031.3	17	-0.5
Zircon_20	49.4	3.98	0.0806	0.0745	0.0035	0.0602	0.0053	1.78	0.088	0.1737	0.0035	-0.109	1032	19	1035	32	1038	92	1032	19	0.3
Zircon_33	69.8	27.41	0.3927	0.0718	0.0031	0.0528	0.0025	1.727	0.081	0.1738	0.0035	0.078457	1033	19	1019	31	968	89	1033	19	-1.4
Zircon_57	135.9	103	0.7579	0.0724	0.0024	0.0527	0.0019	1.766	0.072	0.1745	0.0031	0.38593	1036.9	17	1032	27	994	69	1036.9	17	-0.5
Zircon_41	175.6	95.4	0.5433	0.073	0.0025	0.05319	0.0019	1.755	0.071	0.1746	0.0033	0.15362	1037	18	1028	26	1003	70	1037	18	-0.9
Zircon_90	40	9.28	0.2320	0.0706	0.0039	0.0515	0.0036	1.677	0.098	0.1748	0.0041	-0.018585	1038	22	1002	37	990	120	1038	22	-3.6
Zircon_51	105.4	41.5	0.3937	0.0724	0.0025	0.0518	0.0022	1.741	0.073	0.1747	0.0035	0.37265	1038	19	1022	27	990	72	1038	19	-1.6
Zircon_64	63.7	23.8	0.3736	0.0713	0.003	0.0516	0.0027	1.753	0.08	0.1748	0.0038	-0.070725	1038	21	1032	31	959	87	1038	21	-0.6
Zircon_31	108.2	60.5	0.5591	0.0725	0.0023	0.0533	0.002	1.795	0.071	0.1758	0.0031	0.14202	1044	17	1043	27	992	68	1044	17	-0.1

Tabla A.7 Datos isotópicos de U-Pb de la muestra TB-0817-2, la cual pertenece al grupo Tecocoyunca inferior y fue colectada en el área de Tlaxiaco.

						RELACIO	ONES IS	OTÓPICAS	CORRI	EGIDAS					EDAI	DES C	ORREGIDA	S (Ma)		
Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor edad (Ma)	±2s	Disc %
Zircon_40	102	29.85	0.2926	0.0741	0.0025	0.0519	0.0025	1.814	0.073	0.1762	0.0033	0.11843	1046	18	1049	26	1041	69	1046	18	0.3
Zircon_66	120.7	21.7	0.1798	0.0724	0.0028	0.0537	0.0031	1.767	0.078	0.1763	0.0036	-0.13071	1047	20	1034	28	994	81	1047	20	-1.3
Zircon_77	74.8	39.38	0.5265	0.0728	0.0031	0.0533	0.0024	1.766	0.08	0.1765	0.0035	-0.0545	1048	19	1031	29	997	89	1048	19	-1.6
Zircon_75	28.8	11.49	0.3990	0.0723	0.0039	0.0525	0.0035	1.738	0.1	0.1774	0.0049	0.024019	1052	27	1027	39	992	110	1052	27	-2.4
Zircon_56	76	19.87	0.2614	0.0717	0.0031	0.054	0.0029	1.744	0.08	0.1776	0.0037	-0.22231	1053	20	1023	29	973	86	1053	20	-2.9
Zircon_74	136.9	40.9	0.2988	0.0721	0.0024	0.0548	0.0022	1.782	0.074	0.1786	0.0033	0.18196	1059	18	1037	27	1000	68	1059	18	-2.1
Zircon_13	62.9	25.3	0.4022	0.0748	0.004	0.0579	0.0039	1.816	0.13	0.1786	0.0047	0.55516	1059	25	1047	44	1042	98	1059	25	-1.1
Zircon_92	134.2	50.3	0.3748	0.0695	0.0024	0.0504	0.0021	1.73	0.068	0.1787	0.0035	-0.087132	1060	19	1019	25	903	71	1060	19	-4.0
Zircon_70	214	76.6	0.3579	0.0731	0.0024	0.055	0.002	1.782	0.073	0.1788	0.0033	0.28401	1060	18	1038	27	1008	65	1060	18	-2.1
Zircon_67	98	15.4	0.1571	0.0745	0.0027	0.0573	0.004	1.826	0.078	0.1796	0.0033	0.12088	1064.6	18	1053	28	1052	70	1064.6	18	-1.1
Zircon_52	137	21.7	0.1584	0.0734	0.0027	0.0587	0.0033	1.821	0.086	0.181	0.004	0.20971	1072	22	1057	29	1014	67	1072	22	-1.4
Zircon_16	57.9	14.83	0.2561	0.0745	0.0029	0.0564	0.0033	1.876	0.094	0.1828	0.0042	0.19081	1082	23	1070	30	1041	81	1082	23	-1.1
Zircon_58	218	69.9	0.3206	0.0719	0.0022	0.0541	0.0019	1.858	0.072	0.183	0.0034	0.054437	1083	19	1065	25	994	65	1083	19	-1.7
Zircon_23	62.9	39.55	0.6288	0.0739	0.0033	0.0538	0.0022	1.892	0.095	0.1842	0.0035	-0.02701	1090	19	1075	33	1037	92	1090	19	-1.4
Zircon_95	170.7	56.3	0.3298	0.0738	0.0023	0.0565	0.0024	1.9	0.077	0.1857	0.0035	0.096968	1098	19	1080	27	1055	68	1098	19	-1.7
Zircon_89	338	95.6	0.2828	0.0756	0.0021	0.0581	0.0022	1.907	0.081	0.1859	0.0049	0.15549	1099	26	1083	27	1078	60	1099	26	-1.5
Zircon_27	217	86.5	0.3986	0.0752	0.0024	0.0546	0.0022	1.95	0.088	0.1868	0.0055	0.36031	1104	31	1098	29	1078	62	1104	31	-0.5
Zircon_04	180.1	68.35	0.3795	0.0769	0.0024	0.0566	0.0022	2.074	0.079	0.1906	0.0034	0.29134	1125	18	1140	26	1123	59	1125	18	1.3
Zircon_07	93.5	32.7	0.3497	0.0771	0.0027	0.0577	0.0027	2.061	0.086	0.1925	0.004	0.37849	1135	22	1134	29	1112	68	1135	22	-0.1
Zircon_98	134	36	0.2687	0.0768	0.0029	0.0585	0.0026	2.05	0.09	0.194	0.0036	-0.02417	1143	19	1129	31	1117	77	1143	19	-1.2
Zircon_63	66.4	24.7	0.3720	0.0795	0.0043	0.065	0.0052	2.1	0.15	0.194	0.0049	0.46224	1143	26	1142	44	1150	110	1143	26	-0.1
Zircon_18	257.1	70.8	0.2754	0.0775	0.0022	0.0563	0.0021	2.086	0.078	0.1949	0.0036	0.509	1148	19	1143	26	1131	56	1148	19	-0.4
Zircon_24	84.4	47.3	0.5604	0.0788	0.003	0.0582	0.0024	2.127	0.09	0.197	0.004	0.10471	1159	22	1156	30	1159	78	1159	22	-0.3
Zircon_54	51.6	26.5	0.5136	0.0798	0.003	0.0613	0.0029	2.161	0.094	0.1971	0.0043	0.23052	1159	23	1170	31	11/8	74	1159	23	0.9
Zircon_86	68.9	21.2	0.3077	0.0772	0.0027	0.0599	0.0028	2.126	0.095	0.1971	0.0039	0.3978	1160	21	1160	30	1117	71	1160	21	0.0
Zircon_39	43.5	29.8	0.6851	0.0786	0.0039	0.0595	0.0026	2.153	0.12	0.2002	0.0041	0.1368	11/6	22	1160	39	1143	100	11/6	22	-1.4
Zircon_60	139	50.1	0.3604	0.0787	0.0026	0.0594	0.0025	2.156	0.087	0.2018	0.0036	-0.10833	1185	19	1168	28	1164	69	1185	19	-1.5
Zircon_65	37.7	15.81	0.3003	0.0769	0.0035	0.0648	0.0043	2.11	0.1	0.2028	0.0055	0.15572	1190	28	1154	32	1111	90	1190	28	-3.1
Zircon_50	99.3	45.05	0.4595	0.0785	0.0025	0.061	0.0023	2.203	0.09	0.2029	0.0039	0.27811	1191	21	1180	28	1155	02	1191	21	-0.9
Zircon_83	150.1	100.8	0./115	0.0813	0.0027	0.0651	0.0024	2.202	0.1	0.2035	0.0042	0.1374	1194	22	1199	22	1222	04	1194	22	0.4
Zircon_67	112.4	22 44	0.9052	0.0792	0.0034	0.0605	0.0023	2.218	0.1	0.204	0.0041	-0.078421	1197	22	1107	22	1107	63	1197	22	-0.8
Zircon 28	220.2	23.44	0.2085	0.0787	0.0023	0.0041	0.0029	2.207	0.087	0.2042	0.0038	0.2393	1190	40	1210	20	1103	62	1190	40	-1.4
Ziroon 71	112.2	40.0	0.3630	0.0799	0.0028	0.0018	0.0028	2.297	0.14	0.2043	0.0070	0.30330	1190	29	1210	26	1190	70	1190	29	0.2
Zircon 82	22.16	40.9	0.5010	0.0822	0.0028	0.0021	0.0033	2.241	0.12	0.2043	0.0072	0.17803	1203	28	1212	44	1242	110	1203	28	-0.2
Zircon 01	300	35.38	0.1170	0.0795	0.0041	0.0598	0.0042	2.31	0.14	0.2055	0.0032	0.20342	1205	10	1185	26	1142	53	1205	10	1.7
Zircon 80	107	33.38 87	0.1179	0.0770	0.002	0.0044	0.0020	2.213	0.08	0.2055	0.0030	0.20342	1203	22	1105	20	1142	00	1203	22	-1.7
Zircon 100	197	53	0.7840	0.0302	0.0040	0.0633	0.0077	2.552	0.15	0.2003	0.0042	0.52178	1209	21	1104	27	1180	58	1209	21	1.5
Zircon 19	174.7	72.6	0.2849	0.0793	0.0024	0.0607	0.0023	2.245	0.088	0.2007	0.004	0.32178	1211	21	1203	27	1100	58	1211	21	-0.7
Zircon 59	52.9	35.9	0.4150	0.0305	0.0024	0.0608	0.0024	2.274	0.096	0.2007	0.0043	0.35794	1211	23	1191	30	11/0	64	1211	23	-0.7
Zircon 46	204	58.6	0.2873	0.0782	0.0028	0.0615	0.0027	2.230	0.090	0.2076	0.0043	0.55794	1210	23	1203	28	1149	55	1210	23	-2.1
Zircon 69	65.6	22.0	0.3384	0.0791	0.003	0.0623	0.0031	2.275	0.11	0.2079	0.0043	0.30358	1210	23	1209	33	1165	79	1217	23	-0.7
Zircon 22	220.8	47.2	0.2138	0.0794	0.0024	0.0637	0.0025	2.20	0.089	0.2079	0.0043	0.51306	1217	21	1213	27	1105	58	1218	21	-0.7
Zircon 30	36.63	13.19	0.3601	0.0827	0.0046	0.0576	0.0028	2.35	0.13	0.2089	0.005	-0.067521	1223	27	1213	39	1210	110	1223	27	-0.2
Zircon 62	370	172	0 4649	0.0798	0.0022	0.0619	0.0022	2 281	0.089	0.209	0.0037	0.4373	1223	20	1206	25	1197	54	1224	20	-1.5

 Tabla A.7 (Continuación) Datos isotópicos de U-Pb de la muestra TB-0817-2, la cual pertenece al grupo Tecocoyunca inferior y fue colectada en el área de Tlaxiaco.

						RELACIO	ONES IS	OTÓPICAS	CORRI	EGIDAS					EDAD	ES C	ORREGIDA	S (Ma)		
Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor edad (Ma)	±2s	Disc %
Zircon_08	92	40.1	0.4359	0.0785	0.0028	0.0623	0.0026	2.3	0.096	0.2093	0.004	0.12162	1225	21	1217	31	1160	68	1225	21	-0.7
Zircon_26	81.3	40	0.4920	0.0782	0.0029	0.0641	0.0026	2.225	0.1	0.2102	0.0043	0.38942	1230	23	1186	31	1139	78	1230	23	-3.7
Zircon_68	47.8	23.55	0.4927	0.0776	0.0035	0.0625	0.0035	2.28	0.12	0.2117	0.0045	-0.044464	1238	24	1202	38	1119	91	1238	24	-3.0
Zircon_45	30.2	4.17	0.1381	0.0778	0.004	0.0672	0.0064	2.26	0.12	0.2123	0.0046	-0.016411	1241	24	1200	37	1110	100	1241	24	-3.4
Zircon_12	95.5	66.4	0.6953	0.0804	0.0029	0.0635	0.0025	2.46	0.12	0.2171	0.0051	0.4355	1270	27	1260	35	1202	71	1270	27	-0.8
Zircon_79	113.5	57.4	0.5057	0.0868	0.0026	0.0668	0.0024	2.562	0.11	0.2218	0.0048	0.2939	1291	25	1289	31	1351	58	1291	25	-0.2
Zircon_47	150.8	49.93	0.3311	0.0861	0.0029	0.0684	0.0026	2.724	0.12	0.2316	0.0042	0.34435	1343	22	1333	32	1342	67	1343	22	-0.8

 Tabla A.7 (Continuación) Datos isotópicos de U-Pb de la muestra TB-0817-2, la cual pertenece al grupo Tecocoyunca inferior y fue colectada en el área de Tlaxiaco.

						RELAC	CIONES	5 ISOTÓPIC	CAS COR	REGIDAS					EDAI	DES C	ORREGIDA	S (Ma)		
Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor edad (Ma)	±2s	Disc %
Zircon-90	79	62	0.7848	0.0532	0.0064	0.211	0.027	0.02777	0.00075	0.0103	0.00068	0.21358	176.5	4.7	192	22	300	240	176.5	4.7	8.1
Zircon-89	57.5	59.8	1.0400	0.0547	0.0069	0.212	0.026	0.02908	0.00083	0.00891	0.00075	-0.018631	184.8	5.2	193	21	320	250	184.8	5.2	4.2
Zircon-51	24.41	14.3	0.5858	0.049	0.0083	0.257	0.041	0.0389	0.0017	0.012	0.0011	-0.031364	246	10	237	33	130	310	246	10	-3.8
Zircon-03	48.2	29.5	0.6120	0.0518	0.0083	0.294	0.045	0.03954	0.001	0.01171	0.00094	0.033629	249.9	6.2	270	33	280	290	249.9	6.2	7.4
Zircon-46	33.6	15.76	0.4690	0.0526	0.0081	0.275	0.041	0.04018	0.00095	0.0128	0.0013	-0.12163	253.9	5.9	246	34	220	300	253.9	5.9	-3.2
Zircon-52	75.2	20.5	0.2726	0.054	0.0044	0.31	0.025	0.0406	0.0013	0.0136	0.0014	0.1552	256.5	8.3	273	19	370	170	256.5	8.3	6.0
Zircon-93	29.4	13.67	0.4650	0.052	0.0097	0.297	0.053	0.0407	0.0015	0.0131	0.0016	0.12626	256.9	9.4	260	43	280	330	256.9	9.4	1.2
Zircon-64	28	20.8	0.7429	0.056	0.01	0.301	0.057	0.041	0.0016	0.0133	0.0012	0.038189	258.7	9.7	271	45	380	370	258.7	9.7	4.5
Zircon-25	169.8	22.3	0.1313	0.0526	0.0069	0.309	0.043	0.0415	0.0013	0.0139	0.0028	0.24764	262.4	8.2	271	33	340	250	262.4	8.2	3.2
Zircon-43	68.1	20.35	0.2988	0.0498	0.0042	0.297	0.026	0.04352	0.00082	0.0133	0.0012	0.24142	274.6	5.1	262	20	170	180	274.6	5.1	-4.8
Zircon-61	78	80.9	1.0372	0.0743	0.0035	1.406	0.065	0.137	0.0019	0.03378	0.0014	0.045055	827.8	11	889	28	1030	95	827.8	11	6.9
Zircon-84	34.9	10.2	0.2923	0.0719	0.0066	1.59	0.15	0.1554	0.0052	0.0452	0.0047	0.37052	931	29	969	56	1060	190	931	29	3.9
Zircon-87	146.1	116	0.7940	0.0723	0.0028	1.562	0.06	0.1564	0.002	0.04665	0.0017	0.22897	936.6	11	954	24	990	81	936.6	11	1.8
Zircon-76	61.3	33.05	0.5392	0.0732	0.0034	1.56	0.076	0.1573	0.0026	0.049	0.0026	0.26072	942	15	956	31	1016	100	942	15	1.5
Zircon-100	10.52	0.689	0.0655	0.0825	0.008	1.78	0.16	0.1587	0.0045	0.13	0.028	-0.091594	949	25	1036	62	1200	200	949	25	8.4
Zircon-70	94.6	12.71	0.1344	0.0715	0.003	1.588	0.066	0.1592	0.0021	0.0524	0.0045	0.014115	952.5	11	967	26	976	89	952.5	11	1.5
Zircon-66	155	14.2	0.0916	0.0708	0.0035	1.539	0.071	0.1593	0.0024	0.0418	0.0036	-0.090244	953	13	944	28	934	100	953	13	-1.0
Zircon-06	32	46	1.4375	0.0667	0.0042	1.486	0.094	0.1601	0.0032	0.0494	0.0022	0.073769	957	18	924	39	810	130	957	18	-3.6
Zircon-36	39.2	12.1	0.3087	0.0744	0.0035	1.673	0.075	0.1617	0.0027	0.0478	0.003	0.090931	966	15	995	29	1053	97	966	15	2.9
Zircon-37	12.49	5.72	0.4580	0.0753	0.0061	1.73	0.15	0.1619	0.0036	0.053	0.0044	0.1408	967	20	1002	57	980	170	967	20	3.5
Zircon-82	73.5	12.19	0.1659	0.0706	0.0033	1.588	0.074	0.1618	0.0023	0.0508	0.0033	-0.0079953	967	13	962	29	960	94	967	13	-0.5
Zircon-10	270	104.7	0.3878	0.0707	0.0023	1.593	0.054	0.16225	0.0017	0.0484	0.0017	0.13602	969.3	9.3	967	21	948	69	969.3	9.3	-0.2
Zircon-94	26.3	3.58	0.1361	0.0765	0.0044	1.732	0.1	0.163	0.0029	0.06	0.0081	0.24605	973	16	1014	39	1100	120	973	16	4.0
Zircon-05	66.2	104.3	1.5755	0.0692	0.0031	1.594	0.071	0.1631	0.0024	0.0489	0.0018	0.040271	974	14	968	29	918	97	974	14	-0.6
Zircon-99	98.6	46.6	0.4726	0.0703	0.003	1.604	0.071	0.1637	0.0024	0.0485	0.002	0.31655	977	13	969	28	942	93	977	13	-0.8
Zircon-59	147	43	0.2925	0.073	0.0031	1.618	0.073	0.1639	0.0027	0.0473	0.003	0.30584	978	15	978	29	997	86	978	15	0.0
Zircon-86	73.5	43.7	0.5946	0.0691	0.0034	1.574	0.081	0.1642	0.0023	0.0505	0.0022	0.094017	980	13	960	31	902	100	980	13	-2.1
Zircon-96	220	167	0.7591	0.0727	0.0026	1.657	0.058	0.1643	0.0019	0.05025	0.0018	-0.19163	980.5	11	991	22	1005	14	980.5	11	1.1
Zircon-69	88.3	44.7	0.5062	0.0737	0.0036	1.662	0.08	0.1646	0.0024	0.0525	0.0023	0.16/36	982	13	991	31	1031	100	982	13	0.9
Zircon-54	12.92	1.92	0.1486	0.0718	0.0065	1.58	0.13	0.1648	0.0048	0.0576	0.0085	0.01268	983	26	953	54	940	190	983	26	-3.1
Zircon-92	37.6	1.772	0.0471	0.0/18	0.0046	1.623	0.099	0.1647	0.0028	0.056	0.011	0.031141	983	15	977	39	960	130	983	15	-0.6
Zircon-2/	43	6.65	0.1547	0.0684	0.0039	1.57	0.085	0.165	0.0028	0.0517	0.0043	-0.092944	984	16	958	34	902	110	984	16	-2.7
Zircon-32	40.9	22.7	0.5550	0.0739	0.0035	1.669	0.078	0.1649	0.0025	0.0511	0.0023	0.11541	984	14	998	28	1045	120	984	14	1.4
Zircon-//	51.5	21.0	0.4194	0.0712	0.004	1.62	0.091	0.165	0.0023	0.0497	0.0024	0.13140	984.5	13	973	30	941	120	984.5	13	-1.2
Zircon-33	46.1	24.5	0.2386	0.0729	0.0035	1.65/	0.076	0.165	0.0022	0.0515	0.0034	-0.122/1	984.6	12	993	28	999	100	984.6	12	0.8
Zircon-04	1//	34.5	0.1949	0.0739	0.0026	1.698	0.061	0.1652	0.0023	0.0462	0.0024	0.34016	980	13	1007	23	1037	0/	980	13	2.1
Zircon-18	1/1.5	65.5	0.3819	0.0719	0.0027	1.644	0.065	0.1655	0.0022	0.0487	0.0019	0.17961	987.1	12	986	25	9/1	/8	987.1	12	-0.1
Zircon-/9	333	34.3	0.0900	0.0728	0.0025	1.074	0.058	0.1665	0.0018	0.0502	0.0024	0.18496	992.8	10	998	22	1014	100	992.8	10	0.5
Zircon-14	64.6	24.08	0.3728	0.0727	0.0036	1.678	0.081	0.1669	0.0023	0.0535	0.0032	0.10942	994.8	13	997	31	977	100	994.8	13	0.2
Zircon-28	90.2	17.14	0.1900	0.0718	0.003	1.669	0.07	0.1669	0.0022	0.0509	0.0032	0.13522	995	12	995	27	972	120	995	12	0.0
Zircon-42	34.02	14.99	0.4330	0.0723	0.004	1.000	0.096	0.16/	0.0029	0.0506	0.0026	0.15957	995	10	989	3/	950	120	995	10	-0.0
Zircon-49	162.5	21.40	0.34/1	0.072	0.0025	1.659	0.061	0.1669	0.0019	0.04949	0.0018	0.243/1	995	11	992	23	986	110	995	11	-0.3
Zircon-83	104 6	51.49	0.4098	0.0774	0.0048	1.79	0.12	0.1001	0.0038	0.0447	0.0026	0.4/009	995	12	103/	45	1162	110	008 2	12	4.1
Zircon-11	104.6	22.1	0.5803	0.0718	0.003	1.67	0.071	0.10/5	0.0021	0.0483	0.0021	0.05/528	998.2	12	995	27	982	85 70	998.2	12	-0.3
ZIICOII-34	113	34.1	0.2791	0.0733	0.0028	1.0/5	0.005	0.10/0	0.0023	0.0488	0.0022	0.10121	999	13	997	23	1011	19	779	13	-0.2

Tabla A.8 Datos isotópicos de U-Pb de la muestra TLA-013, la cual pertenece al grupo Tecocoyunca inferior y fue colectada en el área de Tlaxiaco.

••• - 193 -

					RELACI				EDAI	DES C	ORREGIDA	S (Ma)								
Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor edad (Ma)	±2s	Disc %
Zircon-35	135.9	70.67	0.5200	0.0727	0.0026	1.677	0.06	0.1677	0.002	0.0497	0.0019	-0.001987	999.5	11	1007	23	1011	72	999.5	11	0.7
Zircon-15	64.9	8.4	0.1294	0.0749	0.0037	1.721	0.083	0.1676	0.0023	0.0552	0.0053	0.085575	1000	13	1025	30	1066	95	1000	13	2.4
Zircon-57	103.5	6.93	0.0670	0.0741	0.003	1.704	0.07	0.1682	0.0023	0.0496	0.0046	-0.013232	1002	13	1011	26	1029	84	1002	13	0.9
Zircon-47	54	13.07	0.2420	0.0727	0.0032	1.674	0.073	0.1684	0.0025	0.0488	0.0031	-0.16084	1003	14	1004	25	1014	90	1003	14	0.1
Zircon-62	206.5	69.7	0.3375	0.0701	0.0025	1.625	0.058	0.1683	0.002	0.051	0.002	-0.086913	1004.1	11	979	22	938	79	1004.1	11	-2.6
Zircon-97	71.5	23.9	0.3343	0.0722	0.003	1.708	0.075	0.1688	0.0029	0.05	0.0026	0.21468	1005	16	1012	27	1026	83	1005	16	0.7
Zircon-19	110.5	44.2	0.4000	0.071	0.0031	1.668	0.071	0.1703	0.0023	0.0494	0.002	-0.11016	1013.7	12	997	26	937	91	1013.7	12	-1.7
Zircon-41	25.3	13.3	0.5257	0.0762	0.0045	1.778	0.11	0.1707	0.003	0.0516	0.004	0.054396	1016	16	1030	40	1060	120	1016	16	1.4
Zircon-21	39.9	23.93	0.5997	0.0699	0.0033	1.642	0.073	0.171	0.0029	0.0516	0.0028	-0.047418	1020	16	987	27	911	97	1020	16	-3.3
Zircon-55	51.3	6.93	0.1351	0.0711	0.0034	1.69	0.079	0.1712	0.0023	0.0513	0.004	-0.013026	1020	13	1001	30	972	110	1020	13	-1.9
Zircon-58	41.1	2.8	0.0681	0.0752	0.0035	1.78	0.083	0.1718	0.0029	0.0503	0.0066	0.17803	1022	16	1035	31	1077	100	1022	16	1.3
Zircon-78	48.9	16.5	0.3374	0.0788	0.0034	1.844	0.11	0.1718	0.0044	0.0557	0.0038	0.64746	1025	25	1055	38	1160	91	1025	25	2.8
Zircon-48	104.3	20.03	0.1920	0.0762	0.0029	1.813	0.076	0.1738	0.003	0.051	0.0028	0.49731	1033	16	1054	27	1108	72	1033	16	2.0
Zircon-88	325	85.1	0.2618	0.0735	0.0024	1.766	0.059	0.175	0.0021	0.048	0.002	0.44874	1039.6	12	1032	22	1027	67	1039.6	12	-0.7
Zircon-53	51.2	25.25	0.4932	0.0753	0.0035	1.831	0.084	0.1772	0.0026	0.0511	0.0026	0.049726	1051	14	1061	30	1054	94	1051	14	0.9
Zircon-95	788	172	0.2183	0.07885	0.0024	1.939	0.063	0.1779	0.0022	0.0486	0.0021	0.68896	1055.5	12	1094.1	22	1169	62	1055.5	12	3.5
Zircon-75	69.2	24.9	0.3598	0.0759	0.0034	1.877	0.083	0.1801	0.0024	0.0528	0.003	-0.030949	1067	13	1070	29	1081	95	1067	13	0.3
Zircon-30	36	24.33	0.6758	0.0773	0.0041	1.971	0.11	0.1825	0.0027	0.0534	0.0024	0.21418	1080	15	1104	36	1139	110	1080	15	2.2
Zircon-01	35.14	20.93	0.5956	0.0764	0.0035	1.905	0.087	0.1834	0.0034	0.0568	0.0027	-0.015027	1085	18	1084	31	1099	86	1085	18	-0.1
Zircon-71	34.68	15.14	0.4366	0.0764	0.0042	1.98	0.13	0.1834	0.0047	0.0539	0.0038	0.46311	1085	25	1105	43	1119	110	1085	25	1.8
Zircon-74	355	172.7	0.4865	0.0782	0.0028	1.968	0.075	0.1833	0.0024	0.0509	0.002	0.50391	1085	13	1104	25	1146	70	1085	13	1.7
Zircon-17	28.84	8.68	0.3010	0.0806	0.0047	2.064	0.12	0.1847	0.0029	0.0649	0.0059	-0.16692	1092	16	1145	37	1221	100	1092	16	4.6
Zircon-80	79.9	44.2	0.5532	0.0828	0.0035	2.085	0.089	0.185	0.0027	0.057	0.0026	0.19353	1094	15	1145	28	1258	82	1094	15	4.5
Zircon-23	42.6	16	0.3756	0.0755	0.0035	1.946	0.095	0.1875	0.0034	0.055	0.0034	0.40151	1107	19	1093	33	1068	96	1107	19	-1.3
Zircon-50	148.6	38.7	0.2604	0.0779	0.0028	2.04	0.071	0.1906	0.0022	0.0567	0.0022	0.10/35	1124.5	12	1128	24	1143	72	1124.5	12	0.3
Zircon-/3	138.6	54.8	0.3954	0.0806	0.0029	2.15	0.079	0.1937	0.0021	0.0579	0.0024	0.28743	1141.2	11	1164	26	1211	73	1141.2	11	2.0
Zircon-91	162	/6./	0.4/35	0.0789	0.0029	2.126	0.078	0.1949	0.0024	0.0594	0.0024	0.08046	1147.8	15	1156	26	116/	/6	1147.8	13	0.7
Zircon-31	4/.1	36.6	0.///1	0.0782	0.0037	2.114	0.1	0.1954	0.0029	0.0575	0.0025	0.081935	1150	10	1150	33	1129	95	1150	10	0.0
Zircon-24	232	96.2	0.4147	0.0775	0.0025	2.109	0.072	0.1959	0.0023	0.0573	0.0022	0.43511	1153.4	12	1151	23	1131	170	1155.4	12	-0.2
Zircon-45	12.20	3.408	0.2829	0.0788	0.0000	2.08	0.17	0.1963	0.0052	0.0593	0.0001	0.05201	1155	28	1148	20	1130	170	1155	28	-0.6
Zircon-6/	135.9	03.3	0.4058	0.0792	0.0027	2.151	0.076	0.1972	0.0025	0.059	0.0025	0.28423	1160	14	1100	24	1170	69 70	1160	14	0.5
Zircon 26	100 2	57.9	0.3790	0.0784	0.003	2.150	0.087	0.1977	0.0028	0.0001	0.0020	0.4/4/2	1105	13	1138	20	11/4	70	1170 6	13	-0.4
Zircon 63	199.5	01.7	0.3090	0.0784	0.0028	2.139	0.08	0.1991	0.0024	0.0379	0.0021	0.24131	11/0.0	15	1109	20	1137	20	1170.0	15	-0.1
Ziroon 65	74.0	25.25	0.7092	0.0790	0.0032	2.2	0.094	0.1990	0.0031	0.0505	0.0022	0.2719	1173	17	1179	25	1170	04	1173	17	1.0
Ziroon 07	120.9	78.23	0.4700	0.0781	0.0038	2.133	0.11	0.2004	0.0032	0.0011	0.0027	0.41405	1180.1	12	1155	26	1139	74	1120 1	17	-1.9
Ziroon 68	139.0	76.2 56.2	0.5594	0.0774	0.0028	2.144	0.079	0.2009	0.0022	0.058	0.0022	0.13040	1100.1	14	1102	20	1130	74	1100.1	14	-1.0
Zircon 02	147.3	104.2	0.3804	0.0811	0.0031	2.202	0.089	0.2021	0.0020	0.0014	0.0023	0.080807	1107	14	1190	20	1221	73	1107	14	0.9
Ziroon 20	02.4	16.0	0.1074	0.079	0.0028	2.231	0.001	0.2032	0.0020	0.03943	0.0021	0.22702	1192	14	1190	25	11/1	92	1201	14	-0.2
Zircon 13	92.4 18 0	26.2	0.1629	0.0805	0.0034	2.233	0.092	0.2049	0.0027	0.0017	0.0029	0.057292	1201	15	1202	20	1203	02	1201	15	-0.2
Ziroon 40	101.0	20.2	0.3530	0.0790	0.0037	2.279	0.1	0.2002	0.0028	0.0013	0.0032	0.037292	1209	12	1202	25	1155	70	1209	12	-0.0
Zircon-08	376	20.1 46	0.3739	0.0824	0.0031	2.391	0.09	0.2102	0.0025	0.0007	0.0024	0.55905	1230	12	1244	23	1233	62	1230	12	-1.2
Zircon-91	60	39.3	0.1223	0.0793	0.0023	2.334	0.11	0.2113	0.003	0.0013	0.0024	0.52583	1237	25	1222	24	1215	80	1237	25	-0.7
Zircon-22	123.6	986	7 9773	0.0815	0.0033	2.534	0.11	0.2117	0.0029	0.003	0.0028	0.52585	1230	15	1229	20	1322	69	1238	15	24
Zircon-29	157	38.2	0.2433	0.0837	0.0029	2.525	0.094	0.2120	0.0029	0.0623	0.0024	0.38291	1277	15	1273	27	1285	70	1277	15	0.1

 Tabla A.8 (Continuación) Datos isotópicos de U-Pb de la muestra TLA-013, la cual pertenece al grupo Tecocoyunca inferior y fue colectada en el área de Tlaxiaco.

						RELACIO	NES I	SOTÓPICA	S CORR	EGIDAS					EDA	DES C	ORREGIDAS	5 (Ma)			
Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor edad (Ma)	±2s	Disc %
Zircon-85	63.9	24.2	0.3787	0.0844	0.0038	2.6	0.13	0.2237	0.0035	0.0648	0.0035	0.40022	1301	19	1301	37	1293	91	1301	19	0.0
Zircon-98	88.4	24.2	0.2738	0.085	0.0037	2.657	0.11	0.2258	0.0033	0.0643	0.0034	0.26418	1312	18	1318	30	1311	87	1312	18	0.5
Zircon-44	72.4	23.4	0.3232	0.0867	0.0035	2.758	0.11	0.2324	0.0039	0.0665	0.0029	0.16058	1347	21	1348	27	1374	76	1347	21	0.1
Zircon-72	112	35.4	0.3161	0.0867	0.0032	2.796	0.11	0.233	0.0031	0.0711	0.003	0.24198	1350	16	1355	27	1364	69	1350	16	0.4

 Tabla A.8 (Continuación) Datos isotópicos de U-Pb de la muestra TLA-013, la cual pertenece al grupo Tecocoyunca inferior y fue colectada en el área de Tlaxiaco.

	RELACIONES ISOTÓPICAS CORREGIDAS														EDAL	DES C	ORREGIDA	S (Ma)		
Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor edad (Ma)	±2s	Disc %
m13_Zrn-49	82.4	32.3	0.3920	0.0548	0.0058	0.225	0.024	0.02987	0.00089	0.0101	0.0014	-0.12916	189.7	5.5	205	20	310	220	189.7	5.5	7.5
m13_Zrn-96	124.1	66.7	0.5375	0.053	0.0041	0.214	0.015	0.03019	0.00066	0.00927	0.00066	0.16077	191.7	4.2	196	12	290	170	191.7	4.2	2.2
m13_Zrn-05	59.2	81.4	1.3750	0.0534	0.006	0.259	0.029	0.03562	0.00088	0.01063	0.00072	0.46412	225.6	5.5	236	23	290	220	225.6	5.5	4.4
m13_Zrn-84	292	461	1.5788	0.0547	0.003	0.279	0.013	0.03718	0.00068	0.01207	0.00061	-0.038507	235.3	4.2	249	10	369	120	235.3	4.2	5.5
m13_Zrn-83	148	105	0.7095	0.0529	0.0039	0.286	0.018	0.03882	0.00079	0.01203	0.00076	-0.094015	245.5	4.9	254	14	300	150	245.5	4.9	3.3
m13_Zrn-04	84.3	29.6	0.3511	0.0511	0.0042	0.268	0.021	0.03918	0.00096	0.0131	0.0013	0.01498	247.7	6	243	17	250	170	247.7	6	-1.9
m13_Zrn-12	91.5	63.5	0.6940	0.0523	0.0048	0.289	0.023	0.03954	0.00084	0.01269	0.00083	-0.050969	250	5.2	256	17	260	180	250	5.2	2.3
m13_Zrn-91	154.3	84.9	0.5502	0.054	0.019	0.29	0.14	0.03994	0.0013	0.01248	0.0039	-0.031486	252.4	8.2	258	68	360	240	252.4	8.2	2.2
m13_Zrn-40	285	228	0.8000	0.0545	0.0031	0.293	0.021	0.03995	0.0016	0.01308	0.00085	0.20905	252.5	9.6	266	16	360	120	252.5	9.6	5.1
m13_Zrn-37	439	285	0.6492	0.0524	0.0027	0.287	0.013	0.04001	0.00062	0.01236	0.00066	-0.21517	252.9	3.8	255.7	10	277	110	252.9	3.8	1.1
m13_Zrn-51	84.7	65.2	0.7698	0.0515	0.0045	0.284	0.023	0.04017	0.00087	0.01385	0.00093	0.1308	253.9	5.4	252	18	220	190	253.9	5.4	-0.8
m13_Zrn-60	148.4	84.2	0.5674	0.0534	0.0034	0.296	0.018	0.04074	0.00079	0.01241	0.00078	0.0011043	257.4	4.9	266	13	330	140	257.4	4.9	3.2
m13_Zrn-90	197	113	0.5736	0.0538	0.0036	0.301	0.019	0.04084	0.00077	0.01343	0.00086	-0.070004	258.1	4.8	266	14	320	140	258.1	4.8	3.0
m13_Zrn-98	141.6	31.6	0.2232	0.0524	0.0037	0.309	0.019	0.04157	0.00068	0.014	0.0014	0.13528	262.5	4.2	272	15	330	150	262.5	4.2	3.5
m13_Zrn-58	75.9	19.23	0.2534	0.0589	0.0055	0.35	0.032	0.0433	0.0011	0.0143	0.0017	-0.099687	273.2	6.5	302	24	530	200	273.2	6.5	9.5
m13_Zrn-92	264	160	0.6061	0.0514	0.0027	0.304	0.015	0.04349	0.001	0.01388	0.00088	0.56208	274.4	6.3	269	12	237	120	274.4	6.3	-2.0
m13_Zrn-100	73.77	41.68	0.5650	0.0584	0.005	0.339	0.028	0.0436	0.00096	0.0146	0.0011	0.07955	275	5.9	300	21	430	180	275	5.9	8.3
m13_Zrn-48	66.7	23.7	0.3553	0.0555	0.0053	0.339	0.031	0.0447	0.0012	0.0151	0.0013	0.082558	282.2	7.7	297	24	410	190	282.2	7.7	5.0
m13_Zrn-52	96.8	45.1	0.4659	0.062	0.0049	0.383	0.027	0.04571	0.00085	0.017	0.0012	-0.038981	288.1	5.2	327	20	590	150	288.1	5.2	11.9
m13_Zrn-64	118.1	91.2	0.7722	0.0602	0.0036	0.69	0.035	0.08327	0.0013	0.02547	0.0014	0.059868	515.6	7.9	531	21	610	130	515.6	7.9	2.9
m13_Zrn-02	46.8	22.35	0.4776	0.0648	0.0051	0.801	0.055	0.0884	0.0018	0.0273	0.0019	-0.016478	546	11	591	32	740	160	546	11	7.6
m13_Zrn-74	294.9	107.6	0.3649	0.0592	0.0023	0.737	0.022	0.09016	0.0013	0.02786	0.0015	0.16796	556.4	7.5	561.5	13	573	87	556.4	7.5	0.9
m13_Zrn-36	44.8	53.3	1.1897	0.0625	0.0045	0.885	0.054	0.1023	0.0022	0.0315	0.0019	-0.32032	628	13	644	28	640	150	628	13	2.5
m13_Zrn-95	68.8	69.2	1.0058	0.0627	0.0034	0.96	0.045	0.1091	0.0023	0.0328	0.0018	0.034181	667	14	680	23	700	120	667	14	1.9
m13_Zrn-26	45.4	47.7	1.0507	0.061	0.0042	0.93	0.061	0.1092	0.0022	0.0325	0.0018	0.14981	668	13	662	32	600	160	668	13	-0.9
m13_Zrn-29	458	44.7	0.0976	0.0682	0.0025	1.318	0.047	0.1418	0.003	0.0391	0.0024	0.23699	855	17	853	20	869	77	855	17	-0.2
m13_Zrn-28	194.4	21.73	0.1118	0.07	0.0028	1.42	0.045	0.147	0.0024	0.0297	0.0024	0.30175	884	13	896	19	919	80	884	13	1.3
m13_Zrn-62	743	96.4	0.1297	0.0715	0.0025	1.471	0.099	0.14887	0.0097	0.0311	0.0029	0.075182	894.6	56	918	49	970	71	894.6	56	2.5
m13_Zrn-82	137.9	40.7	0.2951	0.0743	0.003	1.57	0.049	0.1536	0.0024	0.0408	0.0024	0.28838	921	13	957	20	1051	85	921	13	3.8
m13_Zrn-13	132.7	31.8	0.2396	0.0717	0.003	1.523	0.048	0.1558	0.0025	0.0439	0.0029	0.1856/	933	14	942	19	990	84	933	14	1.0
m13_Zrn-43	52.6	18.1	0.3441	0.0741	0.0044	1.65	0.095	0.1602	0.0049	0.0491	0.0036	0.1302	958	27	986	55	1070	110	958	27	2.8
m13_Zm-01	41	18.55	0.4471	0.072	0.005	1.03	0.11	0.1611	0.0075	0.0488	0.0033	0.13900	963	43	976	44	970	140	903	43	1.5
$m_{13}Zm_{20}$	80.2	39.2	0.4888	0.0779	0.0039	1.75	0.075	0.1657	0.0027	0.0417	0.0026	-0.064625	977	15	1025	29	1130	100	9//	15	4.7
m13_Zrn-80	15.5	2.11	0.1301	0.0758	0.0005	1./1	0.12	0.1648	0.0045	0.0779	0.0094	-0.24884	983	25	1018	44	1120	100	985	25	3.4
m13_Zrn-07	24.6	30.0	0.2704	0.075	0.0032	1.008	0.001	0.165	0.0020	0.0494	0.0028	0.018207	984.4	14	994	23	1007	94	984.4	14	1.0
m13_Zm-30	34.0	24.0	0.7110	0.0098	0.0045	1.595	0.080	0.1651	0.0029	0.0475	0.005	-0.18550	963	10	903	24	1027	140	965	10	-2.5
m12 Zm 80	207	225	0.4422	0.07251	0.0029	1.070	0.038	0.1651	0.0029	0.0499	0.005	0.15929	963	10	999	21	1037	79	965	10	1.4
m12 Zm 86	10 00	223	0.3814	0.07551	0.0020	1.074	0.044	0.1651	0.0024	0.04903	0.0024	0.13917	963	15	1000	52	1055	160	965	15	1.5
m12 Zm 70	162.2	27.2	0.1803	0.088	0.0072	1 6 4 9	0.14	0.1655	0.0045	0.0875	0.01	0.22732	90/	12	1099	17	1550	75	907 5	12	10.2
m13_Zm-70	112.1	14.06	0.2279	0.072	0.0028	1.046	0.045	0.1050	0.0024	0.0489	0.003	0.14024	907.3	15	1011	21	1022	97	907.5	15	1.9
$m_{13} Z_{rn} 66$	103.0	14.70	0.1323	0.0734	0.0033	1.7	0.055	0.1003	0.0027	0.0504	0.0033	0.022143	995	12	1000	10	1022	07 81	0037	13	1.0
$m_{13} Z_{rn} 5^2$	195.9	40.4	0.2393	0.0734	0.0028	1.081	0.05	0.100/	0.0024	0.0514	0.0028	0.23098	993./	21	1000	19	1025	150	995./	21	0.0
$m_{12} Zm_{95}$	25.10	22.13	0.4210	0.0744	0.0033	1.709	0.1	0.107	0.0038	0.0529	0.0045	0.151221	993	21 15	1004	29	10/0	07	773 007	15	26
$m_{13} Zm_{72}$	17.2	22.04	0.5118	0.0703	0.0039	1./00	0.077	0.1072	0.0027	0.0524	0.0034	0.13100	997	28	1054	20 59	040	100	997	13	5.0 1.4
$m_{13} Z_{rn} 25$	037	30.7	0.0790	0.0735	0.0071	1.00	0.13	0.1070	0.003	0.05	0.0030	0.050092	1001.2	20 14	704 1005	24	240 1017	0/	1001 2	20 14	-1.4
	93.1	39.1	0.4237	0.073	0.0052	1.098	0.004	0.108	0.0020	0.0505	0.0028	0.1730	1001.2	14	1005	24	101/	74	1001.2	14	0.4

Tabla A.9 Datos isotópicos de U-Pb de la muestra Tmt-0219-13, la cual pertenece al grupo Tecocoyunca inferior y fue colectada en el área de Tecomatlán.

						RELACI	ONES I	ISOTÓPICA	S CORR	REGIDAS					EDAI	DES C	ORREGIDAS	S (Ma)		
Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor edad (Ma)	±2s	Disc %
m13 Zrn-50	73.7	37.3	0.5061	0.0747	0.0039	1.737	0.077	0.1681	0.0028	0.0538	0.0029	0.034241	1002	16	1023	28	1051	110	1002	16	2.1
m13 Zrn-75	228.9	76.2	0.3329	0.0742	0.0029	1.725	0.052	0.169	0.0026	0.0527	0.0027	0.028014	1006	14	1017	19	1051	82	1006	14	1.1
m13 Zrn-06	110.36	83.1	0.7530	0.0731	0.0031	1.691	0.062	0.1689	0.0024	0.0515	0.0026	0.097826	1006.2	13	1006	22	1014	88	1006.2	13	0.0
m13 Zrn-31	62.2	20.83	0.3349	0.0805	0.004	1.868	0.081	0.1697	0.0028	0.0595	0.0042	0.086073	1010	15	1075	27	1232	93	1010	15	6.0
m13 Zrn-65	81.5	28.2	0.3460	0.0751	0.0032	1.743	0.062	0.1699	0.0027	0.0514	0.0032	0.13531	1011	15	1023	22	1082	81	1011	15	1.2
m13 Zrn-99	38.94	12.7	0.3261	0.0773	0.0048	1.804	0.099	0.1701	0.0032	0.0542	0.0037	0.054125	1013	18	1048	35	1110	130	1013	18	3.3
m13 Zrn-41	70.3	13.86	0.1972	0.0753	0.0037	1.752	0.073	0.1706	0.0028	0.054	0.0038	0.058858	1015	15	1028	27	1052	100	1015	15	1.3
m13 Zrn-57	168.7	62.9	0.3729	0.075	0.0028	1.765	0.054	0.1706	0.0026	0.0524	0.0027	0.1581	1015.4	14	1032	20	1080	79	1015.4	14	1.6
m13 Zrn-18	129.9	53.8	0.4142	0.0743	0.003	1.761	0.055	0.1711	0.0027	0.0518	0.0027	0.22646	1018	15	1033	21	1041	81	1018	15	1.5
m13 Zrn-97	114.1	75.3	0.6599	0.0751	0.0034	1.767	0.061	0.1713	0.0026	0.0499	0.0026	-0.21044	1019	14	1032	22	1067	92	1019	14	1.3
m13 Zrn-32	23	5.8	0.2522	0.0741	0.0055	1.77	0.13	0.1708	0.0037	0.0564	0.0066	0.29284	1020	21	1024	46	1020	150	1020	21	0.4
m13 Zrn-11	125.3	102.5	0.8180	0.0734	0.0032	1.738	0.062	0.1717	0.0028	0.0461	0.0025	0.077085	1021	16	1021	23	1011	87	1021	16	0.0
m13 Zrn-56	296	93.8	0.3169	0.0745	0.0027	1.77	0.049	0.1723	0.0024	0.0511	0.0025	0.29509	1024.6	13	1034	18	1049	74	1024.6	13	0.9
m13 Zrn-10	135.3	73.1	0.5403	0.0765	0.0031	1.828	0.056	0.1724	0.0029	0.0534	0.0028	-0.018674	1025	16	1054	21	1097	80	1025	16	2.8
m13 Zrn-61	174.9	17	0.0972	0.074	0.0029	1.76	0.054	0.1734	0.0027	0.0555	0.004	0.15083	1030.8	15	1030	20	1042	75	1030.8	15	-0.1
m13 Zrn-45	47	28.1	0.5979	0.0733	0.0036	1.774	0.075	0.1746	0.003	0.0514	0.0031	-0.049049	1037	17	1033	27	1031	110	1037	17	-0.4
m13 Zrn-35	152.7	113.8	0 7453	0.0742	0.0031	1 786	0.058	0 1746	0.0027	0.0509	0.0026	0 25804	1037.5	15	1039	21	1043	81	1037.5	15	0.1
m13 Zrn-27	69.4	52.3	0.7536	0.0725	0.0036	1.789	0.074	0.1758	0.003	0.0519	0.0027	-0.048996	1044	16	1046	26	1026	110	1044	16	0.2
m13 Zrn-17	282	157	0 5567	0.0752	0.0027	1 805	0.061	0 1763	0.0055	0.0366	0.0021	0.67693	1046	30	1046	23	1068	73	1046	30	0.0
m13 Zrn-08	626	127.8	0 2042	0.0781	0.0026	1 907	0.06	0 1783	0.0046	0.0346	0.0018	0 10989	1057.8	25	1083	22	1145	75	1057.8	25	2.3
m13 Zrn-79	53.4	36.6	0.6854	0.0739	0.0039	1.832	0.079	0 1787	0.0043	0.0521	0.003	-0.054088	1059	23	1062	28	1038	100	1059	23	0.3
m13 Zrn-69	434	40.7	0.0938	0.0746	0.0026	1.85	0.049	0 1792	0.0028	0.0481	0.0032	0 54166	1062.6	15	1063	17	1061	69	1062.6	15	0.0
m13 Zrn-14	271	240.9	0.8889	0.0746	0.0028	1 851	0.054	0 1804	0.0027	0.05152	0.0025	0 21462	1069	15	1063	18	1049	77	1069	15	-0.6
m13_Zm-24	232	23.81	0.0005	0.0746	0.0020	1 774	0.061	0.1812	0.0033	0.05152	0.0025	0.5382	1073	17	1035	22	942	79	1073	17	-37
m13 Zrn-77	487 5	193	0 3959	0.07506	0.0026	1.88	0.046	0 1817	0.0025	0.05433	0.0026	0 33608	1076.2	14	1073 5	16	1071	69	1076.2	14	-0.3
m13_Zm-76	81.5	44 54	0.5465	0.079	0.0020	2.023	0.078	0.1853	0.0032	0.053	0.0020	-0 12921	1096	17	1121	26	1159	94	1096	17	2.2
m13 Zrn-94	96.7	38.8	0.4012	0.0761	0.0035	1 963	0.069	0.1856	0.0034	0.0518	0.0029	0.042388	1098	18	1101	24	1079	98	1098	18	0.3
m13 Zrn-54	106	68.4	0.6453	0.0754	0.0033	1 993	0.073	0 1906	0.0036	0.0548	0.0028	0 31526	1124	19	1111	25	1075	89	1124	19	-1.2
m13 Zrn-47	31 78	28 78	0.9056	0.079	0.0042	2 116	0.075	0 195	0.0037	0.0559	0.0032	0 19922	1148	20	1149	33	1159	100	1148	20	0.1
m13_Zrn-20	378	6 32	0.0167	0.0776	0.0027	2 077	0.057	0 1952	0.0033	0.0676	0.0056	0.65674	1151	18	1140	19	1132	67	1151	18	-1.0
m13_Zm-15	77 3	6.41	0.0829	0.079	0.0035	2.171	0.087	0 1994	0.0039	0.084	0.0050	0 29188	1172	21	1172	27	1166	91	1172	21	0.0
m13 Zrn-68	82.1	17.1	0.2083	0.0835	0.0036	2 315	0.071	0.2008	0.0032	0.0583	0.0035	0.008206	1180	17	1216	22	1269	76	1180	17	3.0
m13 Zrn-67	120.6	49.9	0.4138	0.0808	0.0034	2,257	0.077	0.2017	0.0032	0.0599	0.0032	0 11356	1184	17	1197	24	1230	85	1184	17	11
m13 Zrn-22	240	70.7	0 2946	0.0829	0.0033	2 315	0.12	0.2022	0.0055	0.0616	0.0036	0.68012	1187	29	1220	34	1261	73	1187	29	2.7
m13_Zm-78	332.4	180.6	0.5433	0.0812	0.0029	2.28	0.057	0.2022	0.0029	0.0617	0.0031	0.25071	1194	16	1206	17	1223	69	1194	16	1.0
m13_Zm-63	78	33.4	0.4282	0.0812	0.0035	2 294	0.076	0.2034	0.0034	0.0617	0.0036	0.031528	1198	18	1200	23	1220	86	1198	18	0.9
m13_Zrn-03	77 7	38.7	0.4282	0.0828	0.0038	2.224	0.092	0.2078	0.0034	0.063	0.0037	0.040395	1217	18	1236	23	1250	88	1217	18	1.5
m13_Zm-21	323.8	215	0.6640	0.0809	0.0028	2.37	0.068	0.2094	0.0044	0.059	0.0031	0.93454	1225 7	23	1224 1	20	1202	65	1225 7	23	-0.1
m13_Zm-39	77.3	19 72	0.2551	0.0836	0.0020	2.34	0.000	0.2004	0.0044	0.0654	0.0031	0.31019	1223.7	50	1224.1	46	1210	85	1223.7	50	-0.1
$m13_Zm-37$ m13_Zm 42	247.0	00.8	0.2001	0.0050	0.0031	2.572	0.085	0.2100	0.00/1	0.0632	0.004	0.46622	1233	22	1200	25	1400	74	1233	22	33
$m13_Zm-34$	247.9	102.4	0.4020	0.084	0.0031	2.500	0.067	0.2133	0.0041	0.0683	0.0034	0.33856	1331	18	1327.7	18	1301	71	1331	18	-0.2
$m_{13} Zm_{34}$	275.5	74.3	0.3607	0.004	0.0029	2.099	0.085	0.2295	0.0033	0.0003	0.0033	0.55050	1391	21	1327.7	22	1350	70	1380	21	-0.2
m13 Zrn. 88	158 1	149.3	0.9443	0.0805	0.0031	2.200	0.005	0.2403	0.004	0.0003	0.0049	0.085323	1470	10	1470	21	1407	67	1/07	67	-0.5
$m_{13} \ 7rn_{22}$	152.0	83.6	0.5468	0.0937	0.0034	3 486	0.09	0.2501	0.0038	0.0787	0.0037	0.003323	1470	20	14/9	21	1512	70	1512	70	_0.0
$m_{13} \ Zrn_{23}$	44.6	53.8	1 2063	0.0942	0.0043	3 56	0.14	0.2000	0.004	0.0701	0.004	0.31888	1545	25	1525	31	1512	85	1512	85	-0.1
m13 Zrn-19	288	214.6	0.7451	0.1052	0.0036	4.44	0.12	0.3059	0.0048	0.0899	0.0043	0.78556	1720	24	1722	22	1715	64	1715	64	0.1

 Tabla A.9 (Continuación) Datos isotópicos de U-Pb de la muestra Tmt-0219-13, la cual pertenece al grupo Tecocoyunca inferior y fue colectada en el área de Tecomatlán.

but U Pho Pho as Pho Pho		RELACIONES ISOTÓPICAS CORREGIDAS														EDAD	DES C	ORREGIDA	S (Ma)		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor edad (Ma)	±2s	Disc %
Ziroca-2 959 950 0.5214 0.0331 0.0044 0.209 0.01265 0.00080 0.073814 2558 5.3 270 19 380 180 2558 5.3 <t< td=""><td>Zircon-52</td><td>45.3</td><td>28.4</td><td>0.6269</td><td>0.0544</td><td>0.006</td><td>0.301</td><td>0.034</td><td>0.0397</td><td>0.0012</td><td>0.0137</td><td>0.0011</td><td>0.13002</td><td>251</td><td>7.5</td><td>264</td><td>26</td><td>280</td><td>220</td><td>251</td><td>7.5</td><td>4.9</td></t<>	Zircon-52	45.3	28.4	0.6269	0.0544	0.006	0.301	0.034	0.0397	0.0012	0.0137	0.0011	0.13002	251	7.5	264	26	280	220	251	7.5	4.9
Zicco-36 233 11.28 0.4441 0.0017 0.0024 0.1307 0.00064 0.0579 28.27 5 276 14 220 5 2.24 Zircon-16 398 13.47 0.0324 0.0022 0.13 0.00444 0.00044 0.00145 0.00064 0.00157 28.29 5 2.37.2 11 0.01 0.01 0.01 0.0013 0.00159 0.013 0.00044 0.0013 0.01 0.013 0.00045 0.013 0.0013 0.013 0.00045 0.013 0.013 0.0013 0.013 0.0013 0.013 0.0013 0.013 0.0013 0.013 0.0013 0.013 0.0013 0.013 0.013 0.0013 0.013 0.0013 0.013 0.0013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.0013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013 0.013	Zircon-42	95.9	50	0.5214	0.0533	0.0046	0.299	0.026	0.04048	0.00085	0.01265	0.00085	0.078381	255.8	5.3	270	19	380	180	255.8	5.3	5.3
Zircon-49 1993 120.3 0.0154 0.0054 0.0044-5 0.00454 0.00152 0.017 1.03 0.017 0.014 0.0015 0.00174 0.0155 0.0017 0.0015 0.017 0.014 0.012 0.017 0.014 0.0164 0.0028 0.0127 0.0164 0.018 0.025 0.027 0.024 0.0154 0.0027 0.0127 0.0164 0.0127 0.0127	Zircon-36	233	112.8	0.4841	0.0517	0.0024	0.292	0.012	0.04149	0.00081	0.01307	0.00062	0.37644	262	5	259.9	9.8	278	100	262	5	-0.8
Zircen-16 398 154.7 0.03240 0.004240 0.004240 0.001450 0.001590 0.00055 0.34929 282.9 5 287.2 11 301 110 282.9 5 287.2 11 301 110 282.9 5 1.5 Zircen-34 38.4 551 0.0544 0.00644 0.0012 0.01590 0.00090 0.17337 290 74 20.3 Zircen-47 0.84 51.0 0.0454 0.00124 0.00123 0.00129 0.0073 0.031919 901 24 913 48 901 80 91 1.4 Zircen-76 0.013 0.0146 0.0033 0.0448 0.0020 0.11578 935 17 932.2 89 10 943 15 Zircen-76 10.3 10.44 0.0042 0.0123 0.0148 0.0053 0.0041 0.0533 0.0042 0.0124 0.0174 0.004 1.43 Zircen-47 1.43 0.0069	Zircon-49	199.3	120.3	0.6036	0.0514	0.0032	0.313	0.018	0.04464	0.00082	0.01415	0.00064	-0.094579	282.7	5	276	14	220	130	282.7	5	-2.4
Zircon-37 66.7 44.1 0.6612 0.0314 0.042 0.012 0.01093 0.1737 290 7.4 26 21 310 170 297 4.3 Zircon-39 84.4 55.1 0.0435 0.0073 0.0083 0.718 0.0452 0.0012 0.01276 562 14 550 27 490 140 562 1.4 222 120 0.012 0.0121 0.013191 901 24 550 17 282 120 56 3.57 0.003 0.013191 0.013191 901 14 562 1.7 2.1 10.01 1.01 1.01 1.01 1.01 1.1 <	Zircon-16	398	134.7	0.3384	0.0528	0.0025	0.328	0.014	0.04487	0.00081	0.01346	0.00055	0.34929	282.9	5	287.2	11	301	110	282.9	5	1.5
Zicon-39 96.3 7.27 0.7549 0.0344 0.0037 0.04452 0.0016 0.01459 0.02076 0.0217 0.021 0.0217 0.021 0.0217 0.021 0.0217 0.0217 0.021 0.0217 0.0217 0.021 0.0217 0.0217 0.021 0.0217 0.0217 0.021 0.0217 0.0217 0.0217 0.021 0.0217 0.0217 0.021 0.021 0.0217 0.0217 0.021 0.021 0.0217 0.0217 0.0217 0.021 0.021 0.0217 0.021 0.021 0.0217 0.021 0.0217 <th< td=""><td>Zircon-57</td><td>66.7</td><td>44.1</td><td>0.6612</td><td>0.0514</td><td>0.0042</td><td>0.342</td><td>0.028</td><td>0.046</td><td>0.0012</td><td>0.01509</td><td>0.00093</td><td>0.17537</td><td>290</td><td>7.4</td><td>296</td><td>21</td><td>310</td><td>170</td><td>290</td><td>7.4</td><td>2.0</td></th<>	Zircon-57	66.7	44.1	0.6612	0.0514	0.0042	0.342	0.028	0.046	0.0012	0.01509	0.00093	0.17537	290	7.4	296	21	310	170	290	7.4	2.0
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Zircon-39	96.3	72.7	0.7549	0.0544	0.0037	0.345	0.022	0.04682	0.001	0.01455	0.00069	0.16309	295	6.3	300	17	380	150	295	6.3	1.7
$ \begin{array}{c} 2x (con-4) & [8.68] & 3.41 & [0.1825 \\ 2x (con-47 & [0.02] & [1.41 & [0.44] & [0.074 & [0.035 & [0.156 & [0.007] & [0.0173 & [0.018] \\ 2x (con-97 & [4.0] & 138 & [0.374 & [0.070 & [0.004] & [1.54 & [0.078 & [0.166] & [0.003] & [0.0478 & [0.016] & [0.1157 & [962 & [2.0] & [96 & [95 & [1.7 & [2.7 & [2.7 & [2.7 & [960] \\ 2x (con-95 & [4.6 & 2.47 & [0.169 & [0.0073 & [0.003] & [1.54 & [0.055 & [0.169 & [0.003] & [0.053 & [0.003 & [0.054 & [0.0073 & [0.069] \\ 2x (con-95 & [9.1 & [4.38 & [0.169 & [0.0073 & [0.063 & [0.169 & [0.003] & [0.053 & [0.007 & [0.09984 & [964.4 & [1.5 & [9.6 & [2.2 & [9.4 & [8.4 & [9.6 & [9$	Zircon-81	58.4	55.1	0.9435	0.0573	0.0038	0.718	0.045	0.0911	0.0023	0.02871	0.0012	0.20736	562	14	550	27	490	140	562	14	-2.2
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Zircon-40	18.68	3.41	0.1825	0.0722	0.0064	1.47	0.12	0.1494	0.0044	0.0526	0.0073	0.031919	901	24	913	48	930	180	901	24	1.3
Zircon-76 40.9 13.8 0.3374 0.0076 0.0074 1.554 0.0073 0.0086 0.0026 -0.12574 960 18 947 31 920 120 960 18 947 31 920 120 960 18 941 17 24.8 Zircon-85 91.7 1.43 0.055 0.0164 0.0028 0.01688 0.00088 0.01699 0.0068 0.01101 985 22 954 84 964.4 15 956 22 934 84 964.4 15 956 22 934 84 964.4 15 0.02 1.0583 0.0026 0.0584 0.0026 0.0584 0.0026 0.0584 0.0021 0.0584 0.002 0.0534 0.022 0.0541 0.002 0.02814 0.049 0.023 0.2311 0.028 1.661 0.033 0.493 0.038 0.7470 935 16 0.25 16 0.21 16.01 0.21 16.02 0.21 16.02 16.01 0.016 0.0033 0.022 0.0138 1.42	Zircon-47	109.2	114.1	1.0449	0.074	0.0035	1.628	0.072	0.1596	0.003	0.04785	0.0016	0.11578	955	17	982	28	1020	96	955	17	2.7
Zircon-90 146 24.7 0.1692 0.0072 0.163 0.0031 0.0033 0.0033 0.0033 0.00434 961 17 985 20 1009 78 961 17 24.8 Zircon-85 0.13 1.058 0.007 0.00949 0.0644 10 985 20 967 28 889 110 985 20 -1.0 Zircon-86 0.0444 0.0052 0.0031 0.002 0.001410 986 18 988 26 978 97 976 986 18 985 20 967 28 889 10 985 20 41.0 31.0 20.0022 0.0024 0.011801 985 20 961 17 9118 94 18 941 1 910 21 900 14 93.0 16 0.023 0.0024 0.0324 0.94 18 991 16 0.03 1003 100 100 14 9	Zircon-76	40.9	13.8	0.3374	0.0705	0.0041	1.554	0.078	0.1606	0.0033	0.0486	0.0026	-0.12574	960	18	947	31	920	120	960	18	-1.4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Zircon-90	146	24.7	0.1692	0.0729	0.0027	1.63	0.056	0.1609	0.0031	0.0503	0.003	0.43549	961	17	985	20	1009	78	961	17	2.4
Zircon-86 40.3 4.43 0.1099 0.00944 0.0038 0.011801 985 20 967 28 889 110 985 20 -19 Zircon-85 184.3 49.2 0.2670 0.0727 0.0025 1.653 0.064 0.0033 0.0504 0.0019 -0.21 990.9 14 994 17 1013 76 990.9 14 0.33 Zircon-04 10.55 2.34 0.0025 0.019 -0.21 990.9 14 994 28 986 98 91 16 0.23 Zircon-02 10.74 0.0745 0.0072 0.0028 1.666 0.0033 0.0544 0.0042 955 16 0.2 Zircon-70 16.68 2.90 0.1673 0.0033 0.0544 0.0042 0.953 0.016 994 18 991 26 995 99 19 9.2 Zircon-80 0.51 7.6 0.0023 1.0044	Zircon-55	91.7	14.38	0.1568	0.0703	0.003	1.554	0.055	0.1614	0.0028	0.0488	0.0027	0.069984	964.4	15	956	22	934	84	964.4	15	-0.9
$ \begin{array}{c} Zircon-87 & 1.3 & 48.8 & 0.6424 \\ Zircon-87 & 1.3 & 48.8 & 0.6424 \\ Zircon-48 & 18.4 & 49.2 & 0.2750 & 0.0727 & 0.0027 & 0.0027 & 0.1654 & 0.002 & 0.0028 & 0.009 & 0.012 & 99.09 & 14 & 994 & 18 & 994 & 28 & 986 & 98 & 991 & 18 & 0.3 \\ Zircon-74 & 55.5 & 22.4 & 0.0070 & 0.0072 & 0.0027 & 0.0028 & 0.049 & 0.0033 & 0.0270 & 0.22511 & 991 & 18 & 994 & 28 & 986 & 98 & 991 & 18 & 0.3 \\ Zircon-70 & 10.5 & 7.4 & 0.0740 & 0.0727 & 0.0024 & 1.660 & 0.055 & 0.1666 & 0.0028 & 0.049 & 0.0038 & 0.2740 & 293.2 & 16 & 995 & 21 & 1001 & 78 & 93.2 & 16 & 0.2 \\ Zircon-7 & 10.5 & 7.4 & 0.0745 & 0.0722 & 0.0034 & 1.652 & 0.067 & 0.1668 & 0.0033 & 0.054 & 0.004 & 0.23844 & 994 & 18 & 991 & 26 & 995 & 90 & 994 & 18 & -0.3 \\ Zircon-7 & 10.5 & 7.4 & 0.073 & 0.0073 & 0.0033 & 1.692 & 0.065 & 0.1674 & 0.003 & 0.0492 & 0.002 & 0.1618 & 998 & 17 & 1006 & 24 & 1010 & 91 & 998 & 17 & 0.8 \\ Zircon-7 & 8.9 & 2.24 & 0.2521 & 0.0775 & 0.003 & 1.733 & 0.062 & 0.1674 & 0.003 & 0.0492 & 0.0018 & 0.1834 & 1001 & 17 & 1018 & 23 & 1059 & 82 & 1001 & 17 & 1.7 \\ Zircon-5 & 84.4 & 63.6 & 0.7361 & 0.0748 & 0.0031 & 1.732 & 0.062 & 0.1686 & 0.0017 & 0.0033 & 0.019 & 0.00252 & 1001 & 14 & 944 & 950 & 140 & 1001 & 14 & -1.7 \\ Zircon-5 & 192.2 & 63.4 & 0.329 & 0.0772 & 0.0027 & 1.701 & 0.05 & 0.1686 & 0.0027 & 0.0530 & 0.0019 & 0.01366 & 10046 & 15 & 1008 & 19 & 1008 & 71 & 1004.6 & 15 & .3 \\ Zircon-6 & 130.8 & 39.5 & 0.3020 & 0.0774 & 0.003 & 1.736 & 0.0186 & 0.0024 & 0.021552 & 1007 & 26 & 1041 & 39 & 1008 & 10 & 0.3 \\ Zircon-6 & 130.8 & 39.5 & 0.3020 & 0.0774 & 0.003 & 1.776 & 0.0186 & 0.0024 & 0.0524 & 1010 & 19 & 103 & 20 & 1025 & 75 & 1013. & 15 & 0.02 \\ Zircon-7 & 29 & 82.2 & 0.3174 & 0.0723 & 0.0027 & 1.716 & 0.053 & 0.0170 & 0.0024 & 0.062541 & 1010 & 19 & 1090 & 70 & 68 & 18 & 0.004 \\ Zircon-37 & 29 & 82.2 & 0.3174 & 0.0723 & 0.0027 & 1.716 & 0.053 & 0.0170 & 0.0024 & 0.062541 & 1010 & 19 & 1030 & 20 & 1025 & 75 & 1013. & 15 & 0.02 \\ Zircon-7 & 49 & 12.2 & 0.3174 & 0.0723 & 0.0027 & 1.716 & 0.053 & 0.0170 & 0.0024 & 0.065241 & 1010 & 19 & 10$	Zircon-86	40.3	4.43	0.1099	0.0694	0.0038	1.602	0.072	0.1652	0.0037	0.0494	0.0058	0.011801	985	20	967	28	889	110	985	20	-1.9
$ \begin{array}{c} 2 \mbox{rcon-8} & 184.3 & 49.2 & 0.2670 & 0.0727 & 0.0025 & 1.654 & 0.045 & 0.0616 & 0.0019 & -0.21 & 990.9 & 14 & 994 & 17 & 1013 & 76 & 990.9 & 14 & 0.33 \\ 2 \mbox{rcon-7} & 125.5 & 10.74 & 0.0720 & 0.0721 & 0.0034 & 1.661 & 0.074 & 0.166 & 0.0033 & 0.07402 & 993.2 & 16 & 995 & 21 & 1001 & 78 & 993.2 & 16 \\ 2 \mbox{rcon-0} & 100.5 & 7.49 & 0.0745 & 0.0772 & 0.0034 & 1.652 & 0.067 & 0.1666 & 0.0033 & 0.0541 & 0.004 & 0.23844 & 994 & 18 & 991 & 26 & 995 & 99 & 994 & 18 \\ 2 \mbox{rcon-0} & 100.5 & 7.49 & 0.0735 & 0.0033 & 1.692 & 0.066 & 0.1674 & 0.003 & 0.0522 & 0.002 & 0.56316 & 997 & 19 & 992 & 21 & 999 & 75 & 997 & 19 & 955 \\ 2 \mbox{rcon-0} & 75 & 951 & 27.6 & 0.2900 & 0.0736 & 0.0033 & 1.692 & 0.066 & 0.1676 & 0.0028 & 0.022 & 0.018 & 998.9 & 15 & 1030 & 22 & 1084 & 79 & 998.9 & 15 & 3.0 \\ 2 \mbox{rcon-0} & 71.8 & 0.723 & 0.0461 & 0.0722 & 0.062 & 0.168 & 0.0013 & 0.0184 & 0.0018 & 0.1834 & 1001 & 17 & 1018 & 23 & 1059 & 82 & 1001 & 12 & 17 & 17.7 \\ 2 \mbox{rcon-0} & 17.8 & 0.723 & 0.0461 & 0.0722 & 0.052 & 1.66 & 0.11 & 0.168 & 0.0013 & 0.015 & 0.00282 & 1001 & 24 & 984 & 42 & 950 & 140 & 1001 & 24 & 1.7 & 17.7 \\ 2 \mbox{rcon-8} & 19.2 & 6.34 & 0.239 & 0.0733 & 0.0027 & 1.70 & 0.05 & 0.1686 & 0.0023 & 0.0019 & 0.13366 & 1004.6 & 15 & 1008 & 19 & 1028 & 71 & 1004.6 & 15 & 1.3 & 1050 & 127 & 1001 & 12 & 1.1 & 1.7 & 1.7 & 1.7 & 1.7 & 1.7 & 1.7 & 1.7 & 0.73 & 0.0027 & 1.710 & 0.05 & 0.1686 & 0.0021 & 0.0151 & 0.00265 & 1.10 & 1.10 & 1.9 & 1002 & 71 & 1001 & 26 & 3.3 & 2 & 1001 & 12 & 4.28 & 4.2 & 950 & 140 & 1001 & 12 & 4.28 & 1001 & 12 & 4.28 & 1001 & 12 & 4.28 & 1001 & 12 & 4.28 & 1001 & 12 & 4.28 & 1001 & 12 & 1.0 & 100 & 100 & 126 & 3.3 & 2 & 100.6 & 1.5 & 1.02 & 12 & 100 & 100 & 100 & 26 & 3.3 & 2 & 100.6 & 1.5 & 1.002 & 1.00 & 100 & 100 & 26 & 0.33 & 2 & 100.6 & 0.0524 & 1010.3 & 100 & 101 & 100 & 10 & 100 & 10 & 10$	Zircon-87	71.3	45.8	0.6424	0.0725	0.0034	1.653	0.067	0.1654	0.0032	0.0501	0.002	-0.034167	986	18	988	26	978	97	986	18	0.2
$ \begin{array}{c} Zircon-04 & 55.5 \\ Zircon-73 & 12.5 \\ 10.74 & 0.0870 \\ 0.0072 & 0.0028 \\ 1.668 & 0.072 & 0.0028 \\ 0.0028 & 1.668 & 0.0028 \\ 0.0028 & 0.0033 \\ 0.0740 \\ 0.0028 & 0.0038 \\ 0.0740 \\ 0.0038 \\ 0.0740 \\ 0.0028 \\ 0.0028 \\ 0.0028 \\ 0.0038 \\ 0.0740 \\ 0.0028 \\ 0.0021 \\ 0.0038 \\ 0.0740 \\ 0.0028 \\ 0.0021 \\ 0.0038 \\ 0.0740 \\ 0.0028 \\ 0.0021 \\ 0.0038 \\ 0.0740 \\ 0.0028 \\ 0.0021 \\ 0.0038 \\ 0.0740 \\ 0.0022 \\ 0.0038 \\ 0.0740 \\ 0.0022 \\ 0.0021 \\ 0.0038 \\ 0.0740 \\ 0.0022 \\ 0.0021 \\ 0.0038 \\ 0.0720 \\ 0.0022 \\ 0.0018 \\ 0.0028 \\ 0.0022 \\ 0.0018 \\ 0.0024 \\ 0.02846 \\ 9989 \\ 17 \\ 1006 \\ 24 \\ 1010 \\ 17 \\ 1018 \\ 23 \\ 100 \\ 17 \\ 1018 \\ 23 \\ 100 \\ 17 \\ 1018 \\ 21 \\ 100 \\ 17 \\ 1018 \\ 21 \\ 100 \\ 17 \\ 1018 \\ 21 \\ 100 \\ 17 \\ 1018 \\ 21 \\ 100 \\ 17 \\ 1018 \\ 21 \\ 100 \\ 17 \\ 1018 \\ 21 \\ 100 \\ 17 \\ 1014 \\ 21 \\ 100 \\ 17 \\ 1014 \\ 21 \\ 101 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\ 1$	Zircon-58	184.3	49.2	0.2670	0.0727	0.0025	1.654	0.045	0.1662	0.0025	0.0504	0.0019	-0.21	990.9	14	994	17	1013	76	990.9	14	0.3
Zircon-73 123.5 10.74 0.0870 0.0722 0.0028 0.0480 0.0038 0.27402 993.2 16 995 21 1001 78 993.2 16 995 90 994 18 991 26 995 90 994 18 991 26 995 997 19 90.5 276 0.072 0.0033 1.662 0.063 0.0644 0.0044 0.0222 0.0118 998 17 1006 24 1010 91 998 17 0.8 Zircon-75 88.9 22.41 0.2521 0.0778 0.0031 1.763 0.066 0.1676 0.0032 0.022 0.1018 1184 1001 17 1018 23 1000 1.7 7.7 21001 1.7 7.7 21001 1.7 7.7 21001 0.0735 0.0027 1.076 0.0438 0.0433 0.0438 0.018 0.13846 1004 10 100 1.075 0.062 1.0666 0.0033 0.0019 0.13366 1004.6 10 10.07 2.02 </td <td>Zircon-04</td> <td>55.5</td> <td>22.34</td> <td>0.4025</td> <td>0.0721</td> <td>0.0034</td> <td>1.661</td> <td>0.074</td> <td>0.1663</td> <td>0.0033</td> <td>0.0509</td> <td>0.0027</td> <td>0.23511</td> <td>991</td> <td>18</td> <td>994</td> <td>28</td> <td>986</td> <td>98</td> <td>991</td> <td>18</td> <td>0.3</td>	Zircon-04	55.5	22.34	0.4025	0.0721	0.0034	1.661	0.074	0.1663	0.0033	0.0509	0.0027	0.23511	991	18	994	28	986	98	991	18	0.3
$ \begin{array}{c} Zircon-92 [00.5 \\ 7.49 0.0745 0.0745 0.0722 0.0034 1.652 0.067 0.1668 0.0033 0.0031 0.004 0.23844 994 18 991 26 995 90 994 18 -0.3 \\ Zircon-70 95.1 27.6 0.2902 0.0736 0.0028 1.661 0.055 0.003 0.0492 0.002 0.5316 997 19 992 21 999 75 997 19 -0.5 \\ Zircon-70 86.4 63.6 0.7561 0.0731 0.003 1.763 0.066 0.1674 0.003 0.0492 0.0024 0.23846 998 15 1030 22 1084 79 988 15 0.00 \\ Zircon-70 86.4 63.6 0.7561 0.0748 0.0051 1.732 0.062 0.168 0.0031 0.0496 0.018 0.0184 1001 17 1018 23 1059 82 1001 17 1.7 \\ Zircon-82 17.8 0.723 0.0406 0.0722 0.0052 1.66 0.0166 0.0023 0.003 0.019 0.01366 1004.6 15 1008 19 1028 71 1004.6 15 0.02 \\ Zircon-70 19.2 63.4 0.329 0.0773 0.0071 0.1061 0.168 0.0024 0.0339 0.0019 0.13366 1004.6 15 1008 19 1028 1010 13 1001 24 984 42 950 140 1001 24 17 \\ Zircon-83 10.3 3.95 0.3020 0.0774 0.003 1.776 0.18 0.1695 0.0022 0.01128 1009.6 15 1020 22 1046 81 1009. 65 1.0 \\ Zircon-75 0.32 0.3070 0.0774 0.003 1.736 0.058 0.0024 0.0518 0.0024 -0.05241 1010 19 1013 29 1022 110 1010 19 0.3 \\ Zircon-74 20.4 170 0.8358 0.0723 0.0027 1.716 0.053 0.01696 0.0015 0.00224 0.11028 1009.6 15 1020 22 1046 81 1096 15 1.0 \\ Zircon-75 20.4 170 0.8358 0.0723 0.0027 1.716 0.053 0.0174 0.0015 0.065241 1011 11 4 1011 19 999 75 1011.1 4 -1.0 \\ Zircon-74 123 2.034 170 0.0723 0.0027 1.716 0.053 0.0174 0.0015 0.05274 1011 114 1011 101 1$	Zircon-73	123.5	10.74	0.0870	0.0727	0.0028	1.668	0.055	0.1666	0.0028	0.0493	0.0038	0.27402	993.2	16	995	21	1001	78	993.2	16	0.2
Zircon-97 166.8 52.9 0.3171 0.0723 0.0023 1.661 0.055 0.064 0.062 0.062 0.0563 997 19 992 21 999 75 997 19 0.05 217 0.06 0.0736 0.0033 1.673 0.06 0.1674 0.0002 0.0012 0.0184 998 17 1006 24 1010 91 998 17 0.83 Zircon-75 88.9 22.41 0.2521 0.0074 0.0031 1.732 0.062 0.168 0.0031 0.015 0.00202523 1001 24 984 42 950 140 1001 24 -1.7 Zircon-80 192.2 63.4 0.329 0.0735 0.0027 1.701 0.053 0.019 0.012652 10011 10 10 1.6 0.033 1.66 0.0014 0.0154 0.0026524 10011 19 1002 21 10 10.0 5 0.32 Zircon-50 192.2 63.4 0.329 0.0073 0.0073 0.0033 1.736	Zircon-02	100.5	7.49	0.0745	0.0722	0.0034	1.652	0.067	0.1668	0.0033	0.0541	0.004	0.23844	994	18	991	26	995	90	994	18	-0.3
$ \begin{array}{c} 2 \mbox{rcon-30} & 95.1 & 27.6 & 0.2902 & 0.0736 & 0.0033 & 1.692 & 0.066 & 0.1674 & 0.003 & 0.0492 & 0.0022 & 0.1018 & 998 & 17 & 1006 & 24 & 1010 & 91 & 998 & 17 & 0.8 \\ 2 \mbox{rcon-60} & 86.4 & 63.6 & 0.7361 & 0.0748 & 0.0031 & 1.732 & 0.062 & 0.168 & 0.0031 & 0.0496 & 0.018 & 0.1834 & 1001 & 17 & 1018 & 23 & 1059 & 82 & 1001 & 17 & 1.7 \\ 2 \mbox{rcon-82} & 17.8 & 0.723 & 0.0406 & 0.0722 & 0.0052 & 1.66 & 0.11 & 0.168 & 0.0021 & 0.0053 & 0.0015 & 0.0020523 & 1001 & 24 & 984 & 42 & 950 & 140 & 1001 & 24 & -1.7 \\ 2 \mbox{rcon-83} & 20.9 & 7.12 & 0.3407 & 0.0772 & 0.005 & 1.796 & 0.1 & 0.1686 & 0.0027 & 0.053 & 0.0019 & 0.01552 & 1007 & 26 & 1041 & 39 & 1100 & 130 & 1007 & 26 & 3.3 \\ 2 \mbox{rcon-61} & 1308 & 395 & 0.320 & 0.0744 & 0.003 & 1.736 & 0.058 & 0.1695 & 0.0028 & 0.051 & 0.0022 & -1.1028 & 1009.6 & 15 & 10.0 \\ 2 \mbox{rcon-64} & 203.4 & 170 & 0.838 & 0.0723 & 0.0027 & 1.683 & 0.051 & 0.0034 & 0.0518 & 0.0024 & -0.065241 & 1010 & 19 & 1013 & 29 & 1022 & 110 & 1010 & 19 & 0.3 \\ 2 \mbox{rcon-73} & 327 & 88.9 & 0.2719 & 0.0732 & 0.0027 & 1.683 & 0.1702 & 0.0026 & 0.0512 & 0.0015 & 0.065474 & 1011.1 & 14 & 1001 & 19 & 999 & 76 & 1011.1 & 14 & -1.0 \\ 2 \mbox{rcon-73} & 327 & 88.9 & 0.2719 & 0.0732 & 0.0027 & 1.766 & 0.051 & 0.0512 & 0.0017 & 0.22449 & 1018.1 & 15 & 1008 & 17 & 1014 & 69 & 1018.1 & 15 & -1.0 \\ 2 \mbox{rcon-74} & 491 & 298 & 0.0669 & 0.0730 & 0.027 & 1.776 & 0.057 & 0.1714 & 0.0031 & 0.0522 & 0.0027 & 0.0518 & 0.0212 & 1.0101 & 17 & 1017 & 64 & 1021 & 17 & -1.2 \\ 2 \mbox{rcon-77} & 491 & 298 & 0.0669 & 0.0730 & 0.027 & 1.776 & 0.051 & 0.1712 & 0.0031 & 0.0522 & 0.0017 & 0.2249 & 1018.1 & 15 & 1008 & 17 & 1014 & 69 & 1018.1 & 15 & -1.0 \\ 2 \mbox{rcon-77} & 491 & 298 & 0.0669 & 0.0730 & 0.027 & 1.776 & 0.051 & 0.0712 & 0.0032 & 0.05278 & 0.017 & 0.05508 & 1021 & 17 & 1014 & 69 & 1018.1 & 15 & -1.0 \\ 2 \\mbox{rcon-73} & 1.294 & 0.0044 & 0.0754 & 0.0027 & 1.786 & 0.057 & 0.0014 & 0.05508 & 1021 & 17 & 1016 & 17 & 1014 & 69 & 1018.1 & 15 & -1.0 \\ 2 \\mbox{rcon-76} & 1.3 & 5.4 & 0.0734 & 0$	Zircon-97	166.8	52.9	0.3171	0.0723	0.0028	1.661	0.055	0.1673	0.0034	0.052	0.002	0.56316	997	19	992	21	999	75	997	19	-0.5
Zircen-75 88.9 22.41 0.2521 0.0757 0.003 1.763 0.002 0.0283 0.0024 0.28346 998.9 15 1030 22 1084 79 998.9 15 3.0 Zircen-60 86.4 63.6 0.7361 0.0072 0.0052 1.66 0.11 0.168 0.0031 0.0496 0.0018 0.1834 1001 17 108 23 1099 82 1001 24 984 42 950 140 1001 24 -1.7 Zircen-83 192.2 63.4 0.329 0.0735 0.0027 1.701 0.05 0.1666 0.0027 0.053 0.0014 0.021552 1007 26 1041 39 1100 130 1007 22 1046 81 1009.6 15 1.02 22 1046 81 1009.6 15 1.02 22 1046 81 100.9 1.0 1.0 10.9 1.0 10.0 10.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0<	Zircon-30	95.1	27.6	0.2902	0.0736	0.0033	1.692	0.066	0.1674	0.003	0.0492	0.0022	0.1018	998	17	1006	24	1010	91	998	17	0.8
$ \begin{array}{c} 2 \mbox{arcon-60} & 86.4 & 63.6 & 0.7361 & 0.0748 & 0.0031 & 1.732 & 0.062 & 0.088 & 0.0031 & 0.0496 & 0.0018 & 0.1834 & 1001 & 17 & 1018 & 23 & 1059 & 82 & 1001 & 17 & 1.77 & 27 & 27 & 27 & 27 & 27 & 27 & 27 &$	Zircon-75	88.9	22.41	0.2521	0.0757	0.003	1.763	0.06	0.1676	0.0028	0.0523	0.0024	0.28346	998.9	15	1030	22	1084	79	998.9	15	3.0
Zircon-S2 17.8 0.723 0.04046 0.0722 0.0052 1.06 0.011 0.168 0.0043 0.0053 0.015 0.0019 0.13366 1001 24 984 42 950 140 1001 24 144 1001 124 1.1 0.015 0.053 0.0019 0.13366 1001 24 984 42 950 140 100 12 1 1004.6 15 1008 100 130 1007 26 3.3 Zircon-9 130.8 39.5 0.3020 0.0746 0.003 1.736 0.058 0.0024 0.06524 1010 19 1013 100 10 100 19 0.33 2 10.01 19 0.034 0.0524 1011.1 14 1001 19 999 76 1011.1 14 -1.0 Zircon-37 259 82.2 0.3174 0.0027 1.716 0.053 0.1712 0.0017 0.22449 1018.1 15 1013 20 1025 75 101.33 5 0.05	Zircon-60	86.4	63.6	0.7361	0.0748	0.0031	1.732	0.062	0.168	0.0031	0.0496	0.0018	0.1834	1001	17	1018	23	1059	82	1001	17	1.7
Zurcon-50 192.2 63.4 0.3299 0.0735 0.0027 1.701 0.0505 0.0019 0.13566 1004.6 15 1008 19 102 71 1004.6 15 0.03 Zircon-83 2.09 7.12 0.3407 0.0772 0.003 1.736 0.058 0.1695 0.0024 0.0018 1.0021552 1007 26 104 39 102 122 1046 81 1009.6 15 102 22 1046 81 1009.6 15 1.0 100 130 1007 203 1007 20 102 122 1046 81 1009.6 15 1.0 100 19 0.03 1.0 1.0 10 19 103 29 102.5 75 101.1 14 -1.0 Zircon-37 259 82.2 0.3174 0.0027 1.683 0.0170 0.0027 0.0519 0.0017 0.22449 1018.1 15 1008 17 1014 101 19 1.1 1.0 1.0 1.0 1.0 1.0	Zircon-82	17.8	0.723	0.0406	0.0722	0.0052	1.66	0.11	0.168	0.0043	0.053	0.015	-0.0020523	1001	24	984	42	950	140	1001	24	-1.7
Zircon-85 20.9 7.12 0.3407 0.07/2 0.005 1.796 0.1691 0.0047 0.0539 0.0041 0.021552 1007 26 1041 39 1100 130 130 139 50.3020 0.0746 0.003 1.736 0.058 0.1695 0.0028 0.0518 0.0024 -0.065241 1010 19 1013 29 1022 110 1010 19 0.3 Zircon-46 203.4 170 0.8358 0.0072 1.683 0.015 0.1696 0.0015 0.065241 1011.1 14 1011 19 99 76 1011.1 14 -1.0 Zircon-37 259 82.2 0.3174 0.0724 0.0025 1.697 0.047 0.1711 0.0027 0.0519 0.0017 0.22449 1018.1 15 1008 17 1014 69 1018.1 15 1008 17 1014 69 1018.1 15 1008 17 1014 102 17 1007 22 992 86 1019 17 1.2	Zircon-50	192.2	63.4	0.3299	0.0735	0.0027	1.701	0.05	0.1686	0.0027	0.0503	0.0019	0.13366	1004.6	15	1008	19	1028	71	1004.6	15	0.3
Zircon-61 1508 39.5 0.3020 0.0746 0.003 1.736 0.0038 0.01695 0.0022 -0.11028 1009.6 15 1020 22 1046 81 1009.6 15 1.0 Zircon-64 203.4 170 0.8358 0.0723 0.0027 1.683 0.051 0.0024 0.06518 0.0024 -0.065241 1010 19 103 29 1022 10 101.1 14 -1.0 Zircon-37 259 82.2 0.3174 0.0729 0.0027 1.667 0.0470 0.1712 0.0028 0.0473 0.0018 0.052821 1013.3 15 1008 17 1014 69 1018.1 15 -1.0 Zircon-80 102.5 32.3 0.3151 0.074 0.0027 1.756 0.057 0.1712 0.0031 0.0522 0.0022 0.22837 1019 17 1028 21 1041 72 1020 17 0.8 Zircon-77 491 298 0.6069 0.07309 0.0024 1.722 0.004 <	Zircon-83	20.9	7.12	0.3407	0.0772	0.005	1.796	0.1	0.1691	0.0047	0.0539	0.0041	0.021552	1007	26	1041	39	1100	130	1007	26	3.3
$ \begin{array}{c} 2 1 1 0 1 0 1 3 \\ 2 1 1 0 1 0 1 3 \\ 2 1 0 1 0 1 3 \\ 2 1 0 1 0 1 3 \\ 2 1 0 1 0 1 3 \\ 2 1 0 1 0 1 1 0 1 1 0 1 1 0 1 0 1 0 1 0$	Zircon-61	130.8	39.5	0.3020	0.0746	0.003	1.736	0.058	0.1695	0.0028	0.051	0.0022	-0.11028	1009.6	15	1020	22	1046	81	1009.6	15	1.0
Zircon-46 203.4 170 0.8358 0.0723 0.0027 1.683 0.01698 0.0026 0.00151 0.0015126 0.00151 0.0015126 0.0015126 0.0015126 0.00151 0.0015126 0.00151 0.0015126 0.00171 0.00151 0.00151 0.00151 0.00151 0.005126 0.0017 0.02249 10181 15 10111 14 6 10111 14 6 10111 14 10111 14 10111 14 10111 14 10111 14 10111 1111 1111 1111 1111 1111 1111 1111 1111 1111 11111 11111 111	Zircon-95	42.7	30.2	0.7073	0.0734	0.0039	1./1	0.075	0.1696	0.0034	0.0518	0.0024	-0.065241	1010	19	1013	29	1022	110	1010	19	0.3
Zircon-37 Z59 82.2 0.51/4 0.0729 0.0027 1.716 0.053 0.1702 0.0018 0.0018 0.052821 1013.3 15 1013 20 1025 75 1013.3 15 0.0 Zircon-53 327 88.9 0.2719 0.0732 0.0025 1.697 0.047 0.1711 0.0027 0.0519 0.0017 0.22449 1018.1 15 1008 17 1014 69 1018.1 15 -1.0 Zircon-80 102.5 32.3 0.3151 0.0724 0.0027 1.756 0.57 0.1714 0.0031 0.0524 0.0025 0.64447 1020 17 1016 17 1017 64 1021 17 -0.5 Zircon-46 51.3 5.54 0.1080 0.074 0.004 1.784 0.083 0.1722 0.0034 0.0537 0.0017 0.65508 1021 17 1016 17 1017 102 17 0.017 1027.8 16 1009 19 977 76 1027.8 16 -1.9 <	Zircon-46	203.4	170	0.8358	0.0723	0.0027	1.683	0.051	0.1698	0.0026	0.05126	0.0015	0.065474	1011.1	14	1001	19	999	76	1011.1	14	-1.0
Zircon-53 327 88.9 0.2719 0.0732 0.0025 1.07 0.0017 0.02449 1018.1 15 1008 17 1014 69 1018.1 15 -1.0 Zircon-80 102.5 32.3 0.3151 0.0724 0.0029 1.7 0.059 0.1712 0.0031 0.0522 0.0022 0.22837 1019 17 1007 22 992 86 1019 17 -1.0 Zircon-32 234 37.3 0.1594 0.0730 0.0027 1.756 0.057 0.1714 0.0031 0.0524 0.0025 0.64447 1020 17 1016 17 1017 64 1021 17 -0.5 Zircon-66 51.3 5.54 0.1080 0.0734 0.004 1.784 0.83 0.1729 0.003 0.0518 0.0022 0.01763 1024 19 1035 31 1070 110 1024 19 1.1 Zircon-44 141 32.17 0.2282 0.0717 0.0027 1.730 0.051 0.1730 0.0512	Zircon-3/	259	82.2	0.31/4	0.0729	0.0027	1./16	0.053	0.1702	0.0028	0.0473	0.0018	0.052821	1013.3	15	1013	20	1025	/5	1013.3	15	0.0
Zhreon-80 102.5 52.5 0.3151 0.0724 0.0029 1.7 0.059 0.1712 0.0031 0.0522 0.022 0.22857 1019 17 1007 22 992 86 1019 17 -1.2 Zircon-32 234 37.3 0.1594 0.0743 0.0027 1.756 0.057 0.1714 0.0031 0.0524 0.0025 0.64447 1020 17 1016 17 1016 17 1016 17 1016 17 1016 17 1017 64 1021 17 0.05 31 1070 110 1024 19 1.1 Zircon-77 491 298 0.6069 0.0739 0.0027 1.703 0.051 0.1729 0.003 0.0518 0.0022 0.017263 1027.8 16 1009 19 977 76 1027.8 16 1009 19 977 76 1027.8 16 -1.9 Zircon-22 195.2 102.7 0.5261 0.0722 0.0025 1.776 0.0028 0.0514 0.0017	Zircon-53	327	88.9	0.2/19	0.0732	0.0025	1.697	0.047	0.1711	0.0027	0.0519	0.0017	0.22449	1018.1	15	1008	1/	1014	69	1018.1	15	-1.0
Zhron-52 254 57.3 0.1794 0.0745 0.0027 1.750 0.057 0.1714 0.0025 0.05447 1020 17 1028 21 1041 72 1020 17 0.08 Zircon-77 491 298 0.6069 0.07309 0.0024 1.722 0.046 0.1717 0.003 0.05278 0.0017 0.65508 1021 17 1016 17 1017 64 1021 17 -0.5 Zircon-66 51.3 5.54 0.1080 0.07754 0.004 1.784 0.083 0.1722 0.0034 0.0518 0.0022 0.017263 1024 19 1035 31 1070 10 1024 19 1.1 Zircon-44 141 32.17 0.2282 0.0711 0.0026 1.706 0.049 0.1733 0.0029 0.512 0.0019 0.25468 1030 16 1010 18 983 72 1030 16 -2.0 2.0 2.0 2.0 2.1 2.1 1043.6 15 -1.2 1043.6 15 <td>Zircon-80</td> <td>102.5</td> <td>32.3</td> <td>0.3151</td> <td>0.0724</td> <td>0.0029</td> <td>1.7</td> <td>0.059</td> <td>0.1712</td> <td>0.0031</td> <td>0.0522</td> <td>0.0022</td> <td>0.22837</td> <td>1019</td> <td>17</td> <td>1007</td> <td>22</td> <td>992</td> <td>80</td> <td>1019</td> <td>17</td> <td>-1.2</td>	Zircon-80	102.5	32.3	0.3151	0.0724	0.0029	1.7	0.059	0.1712	0.0031	0.0522	0.0022	0.22837	1019	17	1007	22	992	80	1019	17	-1.2
Zhron-1/ 491 298 0.00309 0.0024 1.72 0.046 0.171/ 0.003 0.05378 0.001/ 0.05306 1021 17 1016 17 1016 17 1017 64 1021 17 -0.5 Zircon-66 51.3 5.54 0.1080 0.0754 0.004 1.784 0.083 0.1722 0.0034 0.0537 0.0046 0.052596 1024 19 1035 31 1070 110 1024 17 1017 64 121 17 -0.5 Zircon-44 141 32.17 0.2282 0.0721 0.0027 1.703 0.051 0.1729 0.003 0.0518 0.0022 0.017.8 16 1009 19 977 76 1027.8 16 -1.9 Zircon-41 145.9 75.3 0.5161 0.0717 0.0026 1.706 0.049 0.1757 0.0028 0.0514 0.0017 0.39785 1043.6 15 1025 18 993 71 1043.6 15 -1.8 Zircon-23 129.4	Zircon-32	234	37.3	0.1594	0.07200	0.0027	1.750	0.057	0.1714	0.0031	0.0544	0.0025	0.64447	1020	17	1028	21	1041	12	1020	17	0.8
Zircon-64 31.3 3.3.4 0.1080 0.0734 0.004 1.1744 0.0835 0.01720 0.0046 0.0537 0.0046 0.052596 1024 19 1053 31 1070 1102 1024 19 1.17 Zircon-44 141 32.17 0.2282 0.0721 0.0027 1.703 0.051 0.1729 0.002 0.017263 1027.8 16 1009 19 977 76 1027.8 16 -1.9 Zircon-31 145.9 75.3 0.5161 0.0717 0.0026 1.706 0.049 0.1733 0.0029 0.05112 0.0017 0.39785 1043.6 15 1025 18 993 71 1043.6 15 -1.8 Zircon-32 129.4 44.4 0.3431 0.0734 0.0029 1.777 0.0032 0.0522 0.0017 0.39785 1043.6 15 1025 18 993 71 1043.6 15 -1.8 Zircon-35 129.4 44.4 0.3431 0.0774 0.028 0.1777 0.0032 0.0522 <td>Zircon-//</td> <td>491</td> <td>298</td> <td>0.0009</td> <td>0.07309</td> <td>0.0024</td> <td>1.722</td> <td>0.046</td> <td>0.1717</td> <td>0.003</td> <td>0.05278</td> <td>0.0017</td> <td>0.05508</td> <td>1021</td> <td>1/</td> <td>1016</td> <td>21</td> <td>1017</td> <td>110</td> <td>1021</td> <td>1/</td> <td>-0.5</td>	Zircon-//	491	298	0.0009	0.07309	0.0024	1.722	0.046	0.1717	0.003	0.05278	0.0017	0.05508	1021	1/	1016	21	1017	110	1021	1/	-0.5
Zhroon-31 141 52.17 0.222 0.0721 0.0027 1.705 0.031 0.1729 0.003 0.0518 0.0022 0.017265 1027.8 16 1009 19 977 76 1027.8 16 -1.9 Zircon-31 145.9 75.3 0.5161 0.0717 0.0026 1.706 0.049 0.1737 0.0029 0.0512 0.0017 0.39785 1043.6 15 1025 18 993 71 1043.6 15 -1.8 Zircon-32 129.4 44.4 0.3431 0.0734 0.0029 1.789 0.059 0.1777 0.0032 0.0522 0.0017 0.0364 18 1043.6 15 1025 18 993 71 1043.6 15 -1.8 Zircon-32 129.4 44.4 0.3431 0.0734 0.0029 1.789 0.059 0.1777 0.0032 0.0522 0.0012 0.27497 1054 18 1042 22 1037 76 1054 18 -1.2 2 1037 6.024 1.8 -1.2 2	Zircon-66	51.5	22.17	0.1080	0.0754	0.004	1.784	0.085	0.1722	0.0034	0.0537	0.0046	0.052596	1024	19	1035	31	1070	76	1024	19	1.1
Zircon-31 143.9 75.3 0.5161 0.0717 0.0026 1.766 0.049 0.1753 0.0029 0.0512 0.0019 0.25468 1050 16 1010 18 985 72 1050 16 -2.0 Zircon-22 195.2 102.7 0.5261 0.0722 0.0025 1.746 0.049 0.1757 0.0028 0.0512 0.0017 0.39785 1043.6 15 1005 18 993 71 1043.6 15 -1.8 Zircon-23 129.4 44.4 0.3431 0.0734 0.0029 1.789 0.059 0.1777 0.0032 0.0522 0.002 0.27497 1054 18 1042 22 1037 76 1054 18 -1.2 Zircon-35 51 20.9 0.4098 0.0766 0.0037 1.899 0.096 0.179 0.0048 0.0507 0.003 0.45772 1061 26 1075 34 115 91 1061 26 1.3 Zircon-45 131.8 97.8 0.7420 0.0736 0.0027	Zircon-44	141	32.17	0.2262	0.0721	0.0027	1.705	0.031	0.1729	0.005	0.0518	0.0022	0.017205	1027.8	10	1009	19	977	70	1027.8	10	-1.9
Zircon-22 193.2 102.7 0.3261 0.0722 0.0023 1.740 0.049 0.1737 0.0028 0.05141 0.0017 0.39783 1043.6 15 1023 18 993 71 1043.6 15 1023 18 993 71 1043.6 15 1023 18 993 71 1043.6 15 1023 18 993 71 1043.6 15 1023 18 993 71 1043.6 15 1023 18 993 71 1043.6 15 1023 18 993 71 1043.6 15 1023 18 993 71 1043.6 15 1023 18 993 71 1043.6 15 1023 18 993 71 1043.6 15 1023 18 993 71 1043.6 15 1023 18 1037 18 16 16 1075 16 16 16 17 1061 26 1075 34 115 91 1061 26 1.3 1053 18 1023	Zircon-31	145.9	102.7	0.5101	0.0717	0.0026	1.700	0.049	0.1753	0.0029	0.0512	0.0019	0.25468	1030	10	1010	18	983	71	1030	10	-2.0
Zircon-05 51 20.9 0.4098 0.0754 0.0029 1.789 0.0032 0.0022 0.002 0.7497 1034 18 1042 22 1057 76 1054 16 112 22 1057 76 1054 16 112 22 1057 76 1054 16 112 22 1057 76 1054 16 122 1057 76 1054 16 115 91 1061 26 1075 34 1115 91 1061 26 1075 34 1115 91 1061 26 1075 34 1115 91 1061 26 1075 34 1112 97.3 1072 18 1.6 129 73 1072 18 1.6 129 73 1072 18 1.6 129 73 1072 18 1.6 129 73 1072 18 1.6 129 71 1085 19 -1.2 12 126 73 1072 18 1.6 124 127 1083 <td< td=""><td>Zircon-22</td><td>195.2</td><td>102.7</td><td>0.3201</td><td>0.0722</td><td>0.0023</td><td>1.740</td><td>0.049</td><td>0.1737</td><td>0.0028</td><td>0.05141</td><td>0.0017</td><td>0.39783</td><td>1045.0</td><td>10</td><td>1023</td><td>10</td><td>995</td><td>76</td><td>1045.0</td><td>10</td><td>-1.0</td></td<>	Zircon-22	195.2	102.7	0.3201	0.0722	0.0023	1.740	0.049	0.1737	0.0028	0.05141	0.0017	0.39783	1045.0	10	1023	10	995	76	1045.0	10	-1.0
Zircon-38 169.2 49.8 0.2943 0.0736 0.0027 1.879 0.058 0.0033 0.0517 0.0035 0.45772 1001 20 1073 34 1113 91 1001 20 133 Zircon-38 169.2 49.8 0.2943 0.0776 0.0028 1.919 0.0032 0.0537 0.0033 0.0547 1001 20 1073 34 1119 91 1001 20 133 Zircon-38 169.2 49.8 0.2943 0.0776 0.0028 1.919 0.0032 0.0537 0.0023 0.0545 0.0018 0.25669 1072 18 1129 73 1072 18 129 73 1072 18 129 73 1072 18 129 73 1072 108 19 -1.2 Zircon-62 35.7 6.59 0.1846 0.0731 0.004 1.867 0.088 0.188 0.0044 0.0529 0.0049 0.83955 1110 24 1070 30 1031 110 1110 24 -3.7	Zircon 05	129.4	20.0	0.3431	0.0754	0.0029	1.769	0.039	0.177	0.0032	0.0522	0.002	0.27497	1054	10	1042	24	1037	01	1054	10	-1.2
Zircon-50 107.2 47.6 0.22+5 0.0776 0.0026 1.512 0.0032 0.0032 0.0022 0.15471 1072 18 1089 24 1129 75 1072 16 1072 16 1089 24 1129 75 1072 16 1089 24 1129 75 1072 16 1089 24 1129 75 1072 16 1089 24 1129 75 1072 16 1089 24 1129 75 1072 16 1089 24 1129 75 1072 16 1089 24 1129 75 1072 16 1072 16 1072 20 1028 77 1085 19 -1.2 20 1031 110 21 -1.3 21 21 16 1072 20 1028 77 1085 19 -1.2 21 1072 1031 110 21 -1.3 21 21 21 21 21 21 21 21 21 21 21 21 <th< td=""><td>Zircon 29</td><td>160.2</td><td>20.9 70.9</td><td>0.4098</td><td>0.0706</td><td>0.0037</td><td>1.099</td><td>0.090</td><td>0.179</td><td>0.0048</td><td>0.0507</td><td>0.003</td><td>0.43772</td><td>1001</td><td>20</td><td>10/5</td><td>24 24</td><td>1115</td><td>72</td><td>1072</td><td>20 18</td><td>1.5</td></th<>	Zircon 29	160.2	20.9 70.9	0.4098	0.0706	0.0037	1.099	0.090	0.179	0.0048	0.0507	0.003	0.43772	1001	20	10/5	24 24	1115	72	1072	20 18	1.5
Zircon-62 35.7 6.59 0.184 0.001 1.87 0.005 0.185 0.004 0.055 0.004 0.055 0.004 0.055 0.004 0.055 0.004 0.055 0.004 0.055 0.004 0.0055 0.004 0.055 <	Zircon 45	131.9	47.0	0.2943	0.0776	0.0028	1.919	0.008	0.181	0.0032	0.0537	0.0022	0.75471	10/2	10	1089	24	1029	73	1072	10	1.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Zircon 62	151.8	97.8	0.7420	0.0730	0.0027	1.0/9	0.038	0.185	0.0033	0.0545	0.0018	0.23009	1085	24	1072	20	1028	110	1065	24	-1.2
Zircon-100 11.5 J.3 0.496 0.071 0.003 1.93 0.63 0.1896 0.03 0.052 0.0021 0.15572 111/ 16 1124 22 1150 /0 111/ 16 0.0	Zircon 100	117.6	57 4	0.1040	0.0751	0.004	2 021	0.062	0.1802	0.0044	0.0529	0.0049	0.063933	1110	18	1124	22	1031	76	1110	24 18	-5.7
	Zircon-01	115.1	483	0.4196	0.0771	0.003	1 993	0.063	0.1892	0.0033	0.0572	0.0021	0.070036	1110 1	16	1124	22	1121	79	11191	16	-0.2

Tabla A.10 Datos isotópicos de U-Pb de la muestra OL-0618-T3, la cual pertenece al grupo Tecocoyunca inferior y fue colectada en el área de Olinalá.

		RELACIONES ISOTÓPICAS CORREGIDAS													EDAI	DES C	ORREGIDA	S (Ma))		
Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor edad (Ma)	±2s	Disc %
Zircon-88	140.2	123.6	0.8816	0.077	0.0029	2.03	0.068	0.1917	0.0032	0.05813	0.0018	0.19501	1130.6	17	1124	23	1110	78	1130.6	17	-0.6
Zircon-09	78.8	22.41	0.2844	0.0784	0.0033	2.07	0.079	0.193	0.0033	0.0593	0.0029	0.32371	1138	18	1143	28	1163	84	1138	18	0.4
Zircon-84	75.1	40.7	0.5419	0.0764	0.003	2.059	0.068	0.1943	0.0035	0.0585	0.002	-0.072962	1144	19	1136	22	1112	78	1144	19	-0.7
Zircon-89	246	115.8	0.4707	0.0777	0.0028	2.09	0.065	0.1944	0.0036	0.0578	0.0021	0.3369	1145	20	1144	22	1145	75	1145	20	-0.1
Zircon-35	246	121.2	0.4927	0.0789	0.0028	2.106	0.058	0.195	0.003	0.0582	0.0019	0.014444	1148.2	16	1150	19	1164	70	1148.2	16	0.2
Zircon-17	101.1	82.3	0.8140	0.0794	0.0029	2.126	0.065	0.195	0.0033	0.0563	0.002	0.21355	1149	18	1156	21	1180	70	1149	18	0.6
Zircon-96	95.8	62.9	0.6566	0.0789	0.0032	2.128	0.078	0.1956	0.0035	0.0588	0.0021	0.32827	1152	19	1159	24	1155	82	1152	19	0.6
Zircon-93	247	88.8	0.3595	0.0765	0.0026	2.056	0.058	0.196	0.0033	0.0388	0.002	0.54266	1153.5	18	1133	19	1103	69	1153.5	18	-1.8
Zircon-72	167.3	39.61	0.2368	0.079	0.0028	2.149	0.062	0.1981	0.0033	0.0593	0.0022	0.19895	1165	18	1164	20	1170	72	1165	18	-0.1
Zircon-63	45.2	18.9	0.4181	0.0773	0.0033	2.133	0.085	0.1984	0.0035	0.0646	0.0029	0.17312	1166	19	1160	26	1134	91	1166	19	-0.5
Zircon-13	18.37	8.37	0.4556	0.0802	0.0063	2.14	0.17	0.1987	0.006	0.0581	0.004	0.069119	1167	32	1170	56	1150	170	1167	32	0.3
Zircon-19	167.6	89.7	0.5352	0.079	0.0029	2.153	0.068	0.1986	0.0031	0.0582	0.0019	0.25769	1167.7	16	1167	22	1172	70	1167.7	16	-0.1
Zircon-85	521	57	0.1094	0.07868	0.0024	2.148	0.053	0.1992	0.0031	0.0699	0.0044	0.55772	1170.7	16	1165.4	18	1162	61	1170.7	16	-0.5
Zircon-41	64.6	39.9	0.6176	0.0776	0.0035	2.126	0.085	0.1995	0.0036	0.0598	0.0024	0.1102	1172	19	1158	27	1130	85	1172	19	-1.2
Zircon-71	194	90.4	0.4660	0.0788	0.0028	2.166	0.063	0.1995	0.0032	0.05544	0.0018	0.19698	1172.7	17	1171	20	1184	64	1172.7	17	-0.1
Zircon-18	118.8	79.1	0.6658	0.0793	0.0031	2.18	0.075	0.2003	0.0033	0.0585	0.0022	0.32192	1177.1	18	1172	24	1169	79	1177.1	18	-0.4
Zircon-43	146	61.2	0.4192	0.0793	0.0029	2.193	0.067	0.2008	0.0033	0.0607	0.0025	0.14057	1179.4	18	1177	21	1176	72	1179.4	18	-0.2
Zircon-29	81.1	27.2	0.3354	0.0765	0.0031	2.1	0.077	0.2013	0.0033	0.0599	0.003	0.23962	1182.2	18	1146	25	1096	83	1182.2	18	-3.2
Zircon-26	94.6	47.2	0.4989	0.0791	0.0032	2.197	0.071	0.2018	0.0034	0.059	0.0022	0.12735	1185	18	1179	22	1171	76	1185	18	-0.5
Zircon-11	150.9	73.8	0.4891	0.0787	0.0031	2.187	0.1	0.2021	0.0064	0.0589	0.0022	0.75058	1186	34	1176	32	1161	77	1186	34	-0.9
Zircon-99	218	64.9	0.2977	0.0785	0.0029	2.186	0.068	0.2027	0.0041	0.0602	0.0024	0.50288	1190	22	1175	21	1158	71	1190	22	-1.3
Zircon-27	56.4	35	0.6206	0.0826	0.0038	2.289	0.094	0.2031	0.0042	0.0616	0.0026	0.036282	1191	22	1209	30	1262	98	1191	22	1.5
Zircon-07	260	46.97	0.1807	0.0786	0.0026	2.177	0.065	0.2028	0.0037	0.0626	0.0024	0.6333	1192	20	1172	21	1157	65	1192	20	-1.7
Zircon-69	169.5	68.9	0.4065	0.0788	0.0027	2.187	0.06	0.2035	0.0031	0.0622	0.0022	0.072618	1194.3	17	1181	20	1167	67	1194.3	17	-1.1
Zircon-34	54.9	58.5	1.0656	0.0807	0.0031	2.269	0.08	0.205	0.0038	0.0587	0.0021	0.3405	1202	21	1203	24	1211	73	1202	21	0.1
Zircon-33	49	25	0.5102	0.079	0.0034	2.236	0.079	0.2087	0.0042	0.0608	0.0026	0.26345	1222	23	1190	25	1157	84	1222	23	-2.7
Zircon-91	146	32	0.2192	0.0829	0.0028	2.432	0.097	0.2116	0.0065	0.0638	0.0027	0.8666	1236	34	1248	29	1263	66	1236	34	1.0
Zircon-10	61.2	20.03	0.3273	0.0795	0.0034	2.342	0.092	0.2169	0.0047	0.062	0.0029	0.44103	1265	25	1226	27	1168	88	1265	25	-3.2
Zircon-25	110.5	24.9	0.2253	0.0839	0.0032	2.522	0.081	0.2186	0.0035	0.0608	0.0031	0.23566	1274.2	18	1277	23	1282	74	1274.2	18	0.2
Zircon-12	163	51.1	0.3135	0.0783	0.0027	2.381	0.065	0.221	0.0036	0.0666	0.0023	0.3642	1287	19	1238	21	1149	70	1287	19	-4.0
Zircon-15	160	80	0.5000	0.0861	0.0031	2.694	0.077	0.228	0.0036	0.0636	0.0029	0.14794	1324.1	19	1326	21	1333	68	1324.1	19	0.1
Zircon-70	152.4	56.6	0.3714	0.0863	0.003	2.712	0.072	0.2293	0.0036	0.0687	0.0025	0.19519	1330.7	19	1331	20	1345	65	1330.7	19	0.0
Zircon-92	37	13.9	0.3757	0.0866	0.0039	2.82	0.12	0.2337	0.0047	0.0689	0.004	0.33461	1353	24	1364	32	1334	87	1353	24	0.8
Zircon-08	144	46.9	0.3257	0.086	0.0029	2,798	0.075	0.2354	0.0038	0.0726	0.0028	0.21135	1363	20	1354	20	1345	70	1363	20	-0.7
Zircon-06	220	73.2	0.3327	0.0852	0.0028	2.766	0.074	0.2362	0.0037	0.0712	0.0024	0.44856	1366.8	19	1348	19	1320	63	1366.8	19	-1.4
Zircon-24	254	67.6	0.2661	0.0855	0.0027	2.771	0.089	0.2371	0.005	0.0691	0.0026	0.78222	1371	26	1349	25	1323	62	1371	26	-1.6
Zircon-14	58.1	25.09	0.4318	0.0883	0.0037	2.993	0.12	0.2466	0.0043	0.0697	0.0032	0.13418	1421	22	1417	29	1397	74	1397	74	-0.3
Zircon-56	199	72.8	0.3658	0.0922	0.0031	3.173	0.1	0.2493	0.005	0.072	0.0025	0.76877	1435	26	1448	25	1468	63	1468	63	0.9
Zircon-20	266	119.2	0.4481	0.0922	0.0029	3.335	0.083	0.2614	0.004	0.0766	0.0025	0.51033	1496.9	21	1488.6	19	1469	60	1469	60	-0.6
Zircon-94	294	107.9	0.3670	0.0952	0.0032	3.45	0.16	0.2606	0.0076	0.0749	0.0026	0.93736	1492	39	1510	35	1537	67	1537	67	1.2
Zircon-74	156.4	126.3	0.8075	0.0977	0.0032	3.641	0.099	0.2699	0.0045	0.0793	0.0026	0.53162	1540	23	1557	22	1585	62	1585	62	1.1

 Tabla A.10 (Continuación) Datos isotópicos de U-Pb de la muestra OL-0618-T3, la cual pertenece al grupo Tecocoyunca inferior y fue colectada en el área de Olinalá.

		RELACIONES ISOTÓPICAS CORREGIDAS													EDAI	DES C	ORREGIDA	S (Ma)		
Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor edad (Ma)	±2s	Disc %
1_Zrn_58	213.9	129.4	0.6050	0.0529	0.005	0.195	0.017	0.02724	0.00069	0.00892	0.00064	0.0005667	173.2	4.3	179	14	250	190	173.2	4.3	3.2
1_Zm_50	306	223	0.7288	0.0504	0.0037	0.194	0.015	0.02843	0.00074	0.00853	0.00065	0.036022	180.7	4.7	179	13	170	150	180.7	4.7	-0.9
1_Zrn_52	54.6	56.4	1.0330	0.0477	0.0094	0.2	0.041	0.0292	0.0012	0.00999	0.00089	0.10196	185.8	7.3	178	35	140	370	185.8	7.3	-4.4
1_Zrn_79	41	36.1	0.8805	0.054	0.013	0.236	0.055	0.0296	0.0015	0.0089	0.0012	0.074036	188	9.2	203	45	170	400	188	9.2	7.4
1_Zrn_24	178.1	146.5	0.8226	0.0514	0.0046	0.269	0.023	0.03779	0.00091	0.01293	0.0008	-0.12244	239.1	5.6	243	19	230	190	239.1	5.6	1.6
1_Zrn_34	97	58.1	0.5990	0.052	0.006	0.274	0.031	0.0382	0.0013	0.01382	0.0011	-0.045016	241.4	7.9	247	25	310	220	241.4	7.9	2.3
1_Zrn_53	65.3	28.1	0.4303	0.0525	0.0066	0.281	0.038	0.0396	0.0012	0.0143	0.0015	0.37279	251.3	7.8	251	31	290	230	251.3	7.8	-0.1
1_Zrn_93	96	61.8	0.6438	0.0566	0.006	0.315	0.032	0.0403	0.0012	0.014	0.0012	0.19587	254.5	7.2	275	25	380	210	254.5	7.2	7.5
1_Zrn_61	95.3	5.41	0.0568	0.0546	0.0073	0.293	0.037	0.04108	0.0011	0.032	0.017	-0.079139	259.5	7	261	28	310	260	259.5	7	0.6
1_Zrn_63	25.5	15.86	0.6220	0.058	0.01	0.306	0.053	0.0422	0.0019	0.014	0.0026	0.13795	266	12	261	41	260	360	266	12	-1.9
1_Zrn_74	68.5	16	0.2336	0.0576	0.0076	0.332	0.039	0.043	0.0015	0.0179	0.0026	-0.08159	271.4	9	287	30	360	270	271.4	9	5.4
1_Zrn_13	87.8	34.05	0.3878	0.0557	0.0064	0.33	0.037	0.0435	0.0014	0.0134	0.0018	-0.23145	274.7	8.9	299	29	390	240	274.7	8.9	8.1
1_Zm_18	50.6	17.9	0.3538	0.049	0.011	0.297	0.067	0.0441	0.0015	0.0114	0.0028	0.030819	2/8.4	10	274	44	280	340	278.4	10	-1.6
1_Zrn_88	87.9	24.8	0.2821	0.0553	0.0063	0.357	0.041	0.046	0.0015	0.0209	0.0022	0.19821	289.9	9	310	31	440	240	289.9	9	6.5
1_Zm_22	162	140	0.8642	0.0528	0.0039	0.407	0.028	0.056	0.0015	0.01862	0.0012	-0.0/0267	352.2	9.1	351	19	310	160	352.2	9.1	-0.3
1_Zrn_39	126.6	86.2	0.6809	0.058	0.004	0.603	0.039	0.0759	0.0016	0.0237	0.0014	0.068407	4/1.6	9.8	476	25	470	150	4/1.6	9.8	0.9
1_Zm_32	151	119	0.7881	0.0584	0.0037	0.718	0.044	0.0889	0.002	0.0283	0.0017	-0.1/3/9	549	12	553	26	550	140	549	12	0.7
1_Zm_12	16/.4	121	0.7228	0.064	0.003	0.889	0.04	0.1018	0.0021	0.0344	0.0018	0.38292	624.9	12	647	21	/15	100	624.9	12	3.4
1_Zm_35	89.6	52.4	0.5848	0.0803	0.0047	1.54	0.085	0.141	0.003	0.0501	0.003	0.21563	850	1/	955	33	1190	110	850	17	11.0
1_Zm_02	62.2	12.19	0.7158	0.0778	0.0004	1.52	0.12	0.1467	0.004	0.0447	0.0042	0.010728	882	10	920	24	1070	120	882	23	4.8
1_Zm_55	03.3	15.8	0.2180	0.0733	0.0045	1.528	0.081	0.1494	0.0033	0.0300	0.0047	0.20765	898	18	938	34	1030	120	898	18	4.5
1_Zm_84	240.8	40./	0.1892	0.0080	0.0023	1.449	0.041	0.151	0.0029	0.0474	0.0029	0.23303	906.6	10	909	24	8/9	09	900.0	10	0.5
1_Zm_10	1/4	27.4	0.1014	0.0719	0.005	1.550	0.039	0.1571	0.0034	0.0518	0.0035	-0.06/422	941	20	949	24	900	110	941	19	0.8
1_Zm_{20}	1076	27.4	0.5554	0.0701	0.0037	1.509	0.074	0.1564	0.0037	0.040	0.0051	0.1130	940	17	955	15	910	62	940	20	-1.4
1_Zm_07	1070	205.8	0.1694	0.0704	0.0021	1.374	0.04	0.1607	0.0031	0.0498	0.0024	0.29369	900.0	21	939.3	22	930	110	900.0	21	-0.1
$1_Zm_{9/}$	160.6	21.0	0.2907	0.0099	0.0038	1.554	0.077	0.1629	0.0038	0.0469	0.0030	-0.050980	975	17	933	52 25	1026	86	975	17	-2.1
1_ZIII_{-30}	162.8	20.7	0.1574	0.0720	0.0031	1.032	0.007	0.1632	0.003	0.0321	0.0038	0.11741	974.3	19	991	25	1020	83	974.5	18	0.5
1_{2m}^{-41}	73.3	34.7	0.3471	0.0742	0.0035	1.627	0.005	0.1634	0.0033	0.0469	0.0027	-0.12381	975	22	988	29	970	98	975	22	13
1_Zm_{19}	55.8	66.3	1 1882	0.0703	0.0055	1.057	0.075	0.1638	0.0038	0.0409	0.0027	0.011815	975	22	985	43	970	150	975	22	0.7
$1_{\rm Zm} 87$	75.8	67.3	0.8879	0.0731	0.0038	1.60	0.072	0.1641	0.004	0.0508	0.003	-0.095759	980	22	990	28	1013	110	980	22	1.0
$1_{\rm Zm}_{00}$	83.5	22 55	0.0079	0.0739	0.0030	1.616	0.072	0.1644	0.004	0.0488	0.0022	0.010785	981	20	977	31	1015	100	981	20	-0.4
1 Zm 33	76.7	31.1	0.2701	0.0736	0.0042	1.610	0.091	0 1645	0.0037	0.0525	0.0034	0.089054	981	21	1001	33	1010	110	981	21	2.0
1 Zm 71	15 38	5 71	0.3713	0.0746	0.0082	1.62	0.071	0.1635	0.0061	0.0329	0.0079	0 31698	981	33	981	64	1000	220	981	33	0.0
1 Zm 99	258	167	0.6473	0.0721	0.0025	1 613	0.051	0 1644	0.0032	0.0483	0.0024	0 20946	981.2	18	974	20	981	72	981.2	18	-0.7
1 Zm 40	10.36	6.63	0.6400	0.0721	0.0023	1.013	0.031	0 1648	0.0081	0.0443	0.0075	0.056525	982	45	987	99	930	320	982	45	0.5
1 Zm 48	166.2	109.9	0.6613	0.0723	0.0032	1.649	0.067	0.1651	0.0032	0.0481	0.0026	0.17201	985.2	18	990	26	983	94	985.2	18	0.5
1 Zm 15	345.9	184	0.5319	0.0719	0.0024	1.634	0.069	0.1653	0.0043	0.0502	0.0029	0.59193	986	24	982	26	975	66	986	24	-0.4
1 Zm 26	222.8	41.35	0.1856	0.0702	0.0028	1.606	0.058	0.1653	0.0032	0.0534	0.0034	0.024154	986	18	975	23	919	85	986	18	-1.1
1 Zrn 96	85.4	36.13	0.4231	0.0712	0.0035	1.6	0.068	0.1653	0.0033	0.0492	0.0032	-0.032589	986	19	979	25	951	98	986	19	-0.7
1_Zrn_01	21.85	12.97	0.5936	0.084	0.0097	1.83	0.2	0.1657	0.0051	0.0544	0.0053	0.059825	988	28	1035	74	1090	250	988	28	4.5
1 Zrn 62	160	45.7	0.2856	0.0745	0.0035	1.682	0.069	0.1657	0.0034	0.0534	0.0032	-0.059718	988	19	999	25	1050	90	988	19	1.1
1_Zrn_05	118.1	27.2	0.2303	0.0763	0.0034	1.688	0.064	0.1659	0.0033	0.052	0.0039	-0.047342	990	18	1006	24	1115	81	990	18	1.6
1_Zrn_43	97	18.4	0.1897	0.0749	0.0036	1.696	0.078	0.1664	0.0036	0.0526	0.004	0.32229	992	20	1007	29	1076	93	992	20	1.5
1 Zm 92	105.6	47.4	0.4489	0.0724	0.0038	1.675	0.084	0.1666	0.0035	0.0487	0.0031	0.032156	993	19	994	32	1012	110	993	19	0.1

Tabla A.11 Datos isotópicos de U-Pb de la muestra OL-1018-1, la cual pertenece al grupo Tecocoyunca inferior y fue colectada en el área de Olinalá.

						RELACI	ONES 1	ISOTÓPICA	S CORF	REGIDAS					EDAI	DES C	ORREGIDA	S (Ma)		
Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor edad (Ma)	±2s	Disc %
1_Zrn_08	138.5	42.7	0.3083	0.0762	0.0027	1.7	0.057	0.1673	0.0034	0.0521	0.0033	0.27119	997	19	1007	22	1112	74	997	19	1.0
1_Zrn_89	219	101.1	0.4616	0.0741	0.003	1.705	0.067	0.1673	0.0032	0.0537	0.0029	0.34219	997	18	1013	25	1056	82	997	18	1.6
1_Zrn_47	86.2	42.3	0.4907	0.0712	0.0037	1.64	0.073	0.1681	0.0037	0.0492	0.0028	0.046435	1001	20	983	28	957	100	1001	20	-1.8
1_Zrn_68	353	146	0.4136	0.075	0.0031	1.709	0.061	0.168	0.0035	0.0467	0.0031	0.13648	1001	19	1014	23	1059	85	1001	19	1.3
1_Zrn_72	95.2	46.7	0.4905	0.0716	0.0037	1.647	0.08	0.168	0.0034	0.0495	0.0029	0.077954	1001	19	984	31	956	110	1001	19	-1.7
1_Zrn_91	131	44	0.3359	0.074	0.0034	1.707	0.076	0.1683	0.0035	0.0502	0.0034	0.29475	1002	19	1007	29	1020	90	1002	19	0.5
1_Zrn_37	197	124.8	0.6335	0.0735	0.0027	1.676	0.054	0.168	0.0033	0.0514	0.0027	-0.044549	1002.4	18	998	21	1015	77	1002.4	18	-0.4
1_Zrn_100	202.9	66.3	0.3268	0.0715	0.0025	1.661	0.049	0.1684	0.0032	0.0492	0.003	0.18511	1004.9	18	993	19	970	75	1004.9	18	-1.2
1_Zrn_78	420	119.4	0.2843	0.0713	0.0023	1.681	0.046	0.1693	0.0032	0.036	0.0027	0.07596	1010.1	18	1004	18	957	68	1010.1	18	-0.6
1_Zrn_85	119	22.6	0.1899	0.0736	0.0029	1.714	0.066	0.1696	0.0039	0.058	0.0044	0.31812	1012	21	1015	24	1017	80	1012	21	0.3
1_Zrn_69	341	132.2	0.3877	0.0747	0.0024	1.737	0.048	0.1708	0.0033	0.0497	0.0025	0.18571	1016.4	18	1022	18	1055	65	1016.4	18	0.5
1_Zrn_86	290.6	87.5	0.3011	0.0707	0.0028	1.676	0.082	0.1709	0.0047	0.031	0.0035	0.40417	1017	25	998	28	938	79	1017	25	-1.9
1_Zrn_31	72.6	23.1	0.3182	0.0712	0.0034	1.691	0.076	0.171	0.0039	0.0496	0.0036	0.20202	1018	22	1005	28	961	100	1018	22	-1.3
1_Zrn_49	79.2	31.73	0.4006	0.0733	0.004	1.75	0.09	0.1715	0.0041	0.0503	0.0032	0.4219	1020	22	1022	31	1040	98	1020	22	0.2
1_Zrn_45	158.5	110.2	0.6953	0.0741	0.0033	1.725	0.072	0.1718	0.0034	0.0517	0.0026	0.32543	1022.1	18	1022	27	1035	87	1022.1	18	0.0
1_Zrn_77	29.6	20.6	0.6959	0.0785	0.0066	1.86	0.16	0.1722	0.0054	0.0538	0.0038	0.12727	1024	29	1060	53	1120	160	1024	29	3.4
1_Zrn_44	173	42.1	0.2434	0.0753	0.0033	1.78	0.071	0.1723	0.0035	0.0506	0.0034	0.012402	1025	19	1036	26	1073	87	1025	19	1.1
1_Zrn_65	30.3	29.9	0.9868	0.0716	0.0055	1.72	0.14	0.1728	0.0046	0.0512	0.0036	-0.050737	1027	25	1012	51	1020	160	1027	25	-1.5
1_Zrn_04	76.6	55.96	0.7305	0.079	0.0046	1.87	0.099	0.1726	0.004	0.0538	0.0028	0.18793	1030	22	1073	35	1210	110	1030	22	4.0
1_Zrn_17	120.2	22.96	0.1910	0.0723	0.0029	1.701	0.061	0.1734	0.0042	0.059	0.004	-0.24865	1031	23	1007	23	970	84	1031	23	-2.4
1_Zrn_38	161	26.9	0.1671	0.0715	0.0028	1.712	0.063	0.1736	0.0036	0.0556	0.0038	0.29655	1032	20	1011	24	978	82	1032	20	-2.1
1_Zrn_67	733	262	0.3574	0.0719	0.0029	1.7	0.068	0.1737	0.0053	0.024	0.0026	-0.094099	1033	29	1008	24	978	82	1033	29	-2.5
1_Zrn_46	384	118.2	0.3078	0.0741	0.0026	1.765	0.051	0.1751	0.0033	0.052	0.0026	-0.15311	1040	18	1032	19	1043	72	1040	18	-0.8
1_Zrn_28	94.8	41	0.4325	0.0764	0.0033	1.909	0.074	0.1817	0.0041	0.0542	0.0034	0.23524	1076	22	1082	26	1096	89	1076	22	0.6
1_Zrn_95	81.1	43.1	0.5314	0.0775	0.0042	1.898	0.092	0.1822	0.0048	0.0525	0.0033	0.054976	1079	26	1084	33	1112	110	1079	26	0.5
1_Zrn_80	66	11.8	0.1788	0.0767	0.0035	2.006	0.094	0.1862	0.0047	0.068	0.0058	0.070723	1101	25	1112	32	1120	91	1101	25	1.0
1_Zrn_29	19.07	9.92	0.5202	0.0762	0.0062	2	0.16	0.1894	0.0061	0.0555	0.0064	0.2518	1117	33	1120	54	1080	160	1117	33	0.3
1_Zrn_23	80.4	36.8	0.4577	0.0773	0.0036	2.072	0.083	0.1923	0.0039	0.0625	0.0036	0.13537	1134	21	1136	27	1103	95	1134	21	0.2
1_Zrn_81	65.9	14.51	0.2202	0.0768	0.0039	2.084	0.096	0.1929	0.0045	0.0555	0.0047	-0.095215	1139	25	1139	32	1101	98	1139	25	0.0
1_Zrn_09	191.4	198.8	1.0387	0.0805	0.0031	2.077	0.07	0.1938	0.0035	0.05555	0.0025	0.093992	1142.1	19	1139	23	1197	75	1142.1	19	-0.3
1_Zrn_59	242	78.3	0.3236	0.0814	0.0049	2.23	0.14	0.2019	0.004	0.0607	0.0053	0.35922	1185	22	1186	45	1220	120	1185	22	0.1
1_Zrn_54	48.7	32.9	0.6756	0.0779	0.0045	2.21	0.12	0.2048	0.0056	0.0579	0.0031	0.12344	1201	30	1194	38	1159	110	1201	30	-0.6
1_Zrn_64	88.6	21.4	0.2415	0.0863	0.0041	2.47	0.11	0.2109	0.0048	0.0656	0.0041	0.32697	1233	26	1257	34	1362	93	1233	26	1.9
1_Zrn_98	119.3	53.9	0.4518	0.0835	0.0031	2.536	0.079	0.2183	0.0046	0.066	0.0036	0.055761	1273	24	1286	23	1277	71	1273	24	1.0
1_Zrn_07	125.2	33.54	0.2679	0.0925	0.0036	2.73	0.11	0.2218	0.0056	0.0677	0.0039	0.45801	1291	30	1334	30	1465	76	1291	30	3.2
1_Zrn_94	91	63.5	0.6978	0.0851	0.0036	2.62	0.11	0.2261	0.0051	0.0685	0.0037	0.35577	1314	27	1308	30	1312	81	1314	27	-0.5
1_Zrn_75	231.9	93.5	0.4032	0.0842	0.0028	2.662	0.073	0.227	0.0042	0.0652	0.0034	0.048819	1319	22	1322	18	1303	68	1319	22	0.2
1_Zrn_70	77.1	30.82	0.3997	0.0862	0.0034	2.73	0.095	0.2335	0.0049	0.0709	0.0045	0.11879	1353	25	1335	28	1327	75	1353	25	-1.3

 Tabla A.11 (Continuación) Datos isotópicos de U-Pb de la muestra OL-1018-1, la cual pertenece al grupo Tecocoyunca inferior y fue colectada en el área de Olinalá.

	RELACIONES ISOTÓPICAS CORREGIDAS														EDAD	DES C	ORREGIDA	S (Ma)		
Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor edad (Ma)	±2s	Disc %
m14 Zrn-0	129.5	67.8	0.5236	0.0527	0.008	0.057	0.0092	0.00773	0.00023	0.00242	0.00038	0.3929	49.6	1.5	56	8.8	160	290	49.6	1.5	11.4
m14_Zrn-4	511	220.6	0.4317	0.0493	0.0038	0.0564	0.0042	0.00796	0.00017	0.0026	0.00021	-0.042464	51.1	1.1	55.6	4	160	150	51.1	1.1	8.1
m14_Zrn-17	1023	891	0.8710	0.048	0.0028	0.0587	0.0034	0.00881	0.00015	0.002731	0.00012	-0.019707	56.56	0.97	57.9	3.3	90	120	56.56	0.97	2.3
m14_Zrn-0.	456	115	0.2522	0.0462	0.0063	0.0623	0.0099	0.00949	0.00024	0.00329	0.00042	0.3449	60.9	1.6	61.2	9.2	160	210	60.9	1.6	0.5
m14_Zrn-74	172	99.2	0.5767	0.0528	0.003	0.34	0.02	0.04568	0.00075	0.01465	0.00071	-0.15493	287.9	4.6	297	15	290	110	287.9	4.6	3.1
m14_Zrn-10	0 284	116	0.4085	0.0573	0.0025	0.591	0.027	0.0726	0.0011	0.0228	0.00079	0.36718	451.7	6.7	474	17	487	91	451.7	6.7	4.7
m14_Zrn-47	406	250	0.6158	0.055	0.0023	0.573	0.027	0.07295	0.001	0.0234	0.0011	0.28087	453.9	6.2	459	17	412	91	453.9	6.2	1.1
m14_Zrn-80	226.9	127.5	0.5619	0.0563	0.0029	0.582	0.031	0.0733	0.0012	0.0237	0.00099	-0.042685	455.8	7.2	467	20	467	120	455.8	7.2	2.4
m14_Zrn-39	468	141.2	0.3017	0.0573	0.0024	0.576	0.027	0.07342	0.00097	0.01854	0.001	0.14896	456.7	5.8	461.8	17	500	92	456.7	5.8	1.1
m14_Zrn-16	5 270.5	93.1	0.3442	0.0581	0.0034	0.598	0.083	0.0739	0.0056	0.0257	0.003	-0.023532	459.8	33	476	42	570	110	459.8	33	3.4
m14_Zrn-07	172.1	16.99	0.0987	0.0547	0.003	0.565	0.031	0.0741	0.0011	0.0229	0.0017	-0.24907	460.5	6.3	463	20	400	110	460.5	6.3	0.5
m14_Zrn-09	165	79.6	0.4824	0.0557	0.0029	0.576	0.033	0.07412	0.0012	0.02312	0.00099	0.37414	460.9	7	460	21	427	120	460.9	7	-0.2
m14_Zrn-64	314	252	0.8025	0.0563	0.0027	0.579	0.029	0.0742	0.001	0.02138	0.00077	0.14974	461.4	6.1	465	18	477	110	461.4	6.1	0.8
m14_Zrn-98	303.1	24.9	0.0822	0.0589	0.0042	0.618	0.18	0.0742	0.013	0.0223	0.0044	-0.099862	461.5	75	488	82	550	120	461.5	75	5.4
m14_Zrn-42	2 138	107	0.7754	0.0577	0.0034	0.593	0.036	0.0743	0.0016	0.02363	0.0012	0.037908	461.8	9.4	471	23	480	130	461.8	9.4	2.0
m14_Zrn-62	356.2	168.3	0.4725	0.0564	0.0025	0.592	0.028	0.07487	0.00085	0.02286	0.00084	-0.005924	465.4	5.1	472	18	461	100	465.4	5.1	1.4
m14_Zrn-63	3 105.4	100.9	0.9573	0.0559	0.0035	0.596	0.038	0.0749	0.0016	0.02373	0.0011	0.1126	465.6	9.6	480	24	440	140	465.6	9.6	3.0
m14_Zrn-93	3 103.4	76.8	0.7427	0.0565	0.0034	0.585	0.035	0.0751	0.0013	0.02418	0.00098	-0.11605	466.9	7.7	467	23	440	130	466.9	7.7	0.0
m14_Zrn-84	231.6	22.2	0.0959	0.059	0.0027	0.608	0.052	0.0755	0.0038	0.0258	0.004	0.23879	469.3	22	481	31	572	84	469.3	22	2.4
m14_Zrn-78	3 118.1	50.2	0.4251	0.0573	0.0032	0.621	0.033	0.0764	0.0011	0.0249	0.0013	-0.11971	474.3	6.8	489	22	520	120	474.3	6.8	3.0
m14_Zrn-90) 572	292	0.5105	0.0575	0.0023	0.602	0.027	0.07645	0.0012	0.02325	0.0008	0.19008	474.8	7.1	477.8	17	511	92	474.8	7.1	0.6
m14_Zrn-29	76.7	79.8	1.0404	0.0599	0.0038	0.624	0.038	0.0771	0.0014	0.0225	0.0009	-0.17739	478.5	8.5	494	24	590	140	478.5	8.5	3.1
m14_Zrn-55	5 158	29.1	0.1842	0.0587	0.0033	0.61	0.036	0.0772	0.0012	0.0223	0.0014	0.092622	479.5	7.3	484	23	520	130	479.5	7.3	0.9
m14_Zrn-58	3 246	42.8	0.1740	0.0564	0.0036	0.603	0.054	0.0781	0.0033	0.0229	0.0017	-0.13921	484.7	19	478	31	440	130	484.7	19	-1.4
m14_Zrn-52	113.5	62.7	0.5524	0.0593	0.0034	0.626	0.039	0.07828	0.0011	0.02412	0.0012	0.34255	485.8	6.7	495	24	587	120	485.8	6.7	1.9
m14_Zrn-27	328	70.4	0.2146	0.0568	0.0025	0.611	0.029	0.07851	0.001	0.0237	0.0013	-0.063211	487.2	6.2	483	18	485	100	487.2	6.2	-0.9
m14_Zrn-25	231	99.7	0.4316	0.0589	0.0028	0.632	0.031	0.07889	0.0011	0.02422	0.00093	0.11729	489.4	6.3	499	20	554	96	489.4	6.3	1.9
m14_Zrn-30) 212	70.7	0.3335	0.0572	0.0026	0.633	0.033	0.07938	0.0011	0.02471	0.0012	0.35294	492.4	6.8	497	20	519	100	492.4	6.8	0.9
m14_Zrn-26	5 129.2	97.7	0.7562	0.0566	0.0028	0.611	0.034	0.0805	0.0011	0.0237	0.0011	-0.22829	499.2	6.8	483	21	510	120	499.2	6.8	-3.4
m14_Zrn-46	128	62	0.4844	0.0677	0.0053	0.907	0.077	0.0942	0.0016	0.0306	0.0015	0.018591	580.1	9.7	657	36	850	130	580.1	9.7	11.7
m14_Zrn-32	53.9	18.36	0.3406	0.0631	0.0038	0.986	0.073	0.1155	0.0055	0.045	0.003	0.54866	704	31	691	37	680	130	704	31	-1.9
m14_Zrn-06	9 19.7	9.82	0.4985	0.0714	0.0063	1.46	0.13	0.1461	0.0035	0.0513	0.0038	0.24677	8/9	20	925	53	930	180	879	20	5.0
m14_Zrn-50	67.9	14.61	0.2152	0.0793	0.0043	1.67	0.11	0.1502	0.0044	0.0632	0.0034	0.17863	902	24	995	39	1160	110	902	24	9.3
m14_Zrn-0.	5 223	72.9	0.3269	0.0705	0.0029	1.493	0.068	0.1509	0.0018	0.0453	0.0017	0.050184	906	10	927	27	934	83	906	10	2.3
m14_Zrn-99	38.2	9.9	0.2592	0.0679	0.0048	1.428	0.1	0.1509	0.0031	0.0473	0.004	-0.066379	906	17	905	44	860	150	906	17	-0.1
m14_Zrn-1	163.5	43.7	0.2673	0.0702	0.0028	1.464	0.1	0.1512	0.0074	0.043	0.002	0.35781	908	42	919	47	944	90	908	42	1.2
m14_Zrn-20	81	35.6	0.4395	0.0693	0.0035	1.472	0.079	0.1532	0.0021	0.0464	0.002	0.03814	918.6	12	916	32	884	100	918.6	12	-0.3
m14_Zrn-28	5 42.7	17.89	0.4190	0.0709	0.0043	1.492	0.088	0.1555	0.0029	0.0467	0.003	0.01/36/	931	16	928	35	940	120	931	16	-0.3
m14_Zrn-10	59.7	39.8	0.6667	0.0713	0.0037	1.52	0.078	0.1553	0.0026	0.0486	0.0022	0.12905	932	14	936	31	953	100	932	14	0.4
m14_Zrn-8;	52.4	22.3	0.4256	0.074	0.0046	1.55	0.094	0.1555	0.0033	0.0483	0.0028	0.015189	932	18	953	39	1020	140	932	18	2.2
m14_Zrn-3:) /4.5	16.69	0.2240	0.0717	0.0036	1.552	0.084	0.1567	0.0023	0.0487	0.0032	0.044069	938	13	949	33	954	110	938	15	1.2
m14_Zrn-2.	259	339	1.3089	0.0/15	0.0028	1.524	0.066	0.1573	0.002	0.04647	0.0015	0.17984	942	11	939	26	969	82	942	11	-0.3
m14_Zrn-5:	546	1/6.3	0.5229	0.0706	0.0026	1.498	0.064	0.15/4	0.0022	0.0488	0.0016	-0.27879	942.2	12	929	26	942	13	942.2	12	-1.4
m14_Zrn-82 m14_Zrn-3	41.1 1307	53 4	0.5555	0.0696	0.0046	1.522	0.1	0.15/5	0.0029	0.0479	0.0025	0.20255	943	10	939 957	40 29	930 957	140 86	943	10	-0.4

Tabla A.12 Datos isotópicos de U-Pb de la muestra Tmt-0219-19, la cual pertenece a depósitos de edad Cenozoica y fue colectada en el área de Tecomatlán.

	RELACIONES ISOTÓPICAS CORREGIDAS														EDAI	DES C	ORREGIDA	S (Ma)		
Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor edad (Ma)	±2s	Disc %
m14 Zrn-40	61	24.7	0.4049	0.0717	0.0038	1.565	0.082	0.1603	0.0022	0.0467	0.0029	-0.18085	959	12	964	32	990	110	959	12	0.5
m14 Zrn-51	182	61.6	0.3385	0.0708	0.0029	1.57	0.07	0.1634	0.0022	0.0489	0.0021	0.085104	975.7	12	957	28	942	86	975.7	12	-2.0
m14 Zrn-37	242.7	45	0.1854	0.0726	0.0028	1.682	0.074	0.1674	0.0022	0.0506	0.0019	0.49826	997.7	12	1001	30	1004	78	997.7	12	0.3
m14 Zrn-86	53.6	20.8	0 3881	0.0734	0.0034	1 678	0.082	0 1687	0.0033	0.0512	0.0025	-0.060647	1005	18	996	32	990	100	1005	18	-0.9
m14 Zrn-38	190	91.2	0.4800	0.0731	0.0029	1.713	0.073	0.1689	0.0021	0.0496	0.0017	0.10538	1006	12	1013	26	1019	79	1006	12	0.7
m14 Zrn-96	180.9	161.9	0.8950	0.0782	0.0031	1 891	0.081	0 1695	0.0022	0.0495	0.0018	0.45896	1009	12	1077	29	1146	76	1009	12	63
m14 Zrn-36	112.3	41.6	0 3704	0.072	0.0031	1 717	0.078	0 1702	0.0026	0.0495	0.0022	0 16146	1013	14	1016	30	984	83	1013	14	0.3
m14 Zrn-67	97.7	55.2	0.5650	0.0718	0.0035	1.68	0.086	0.1702	0.0027	0.051	0.0019	0.023215	1013	15	1006	32	974	100	1013	15	-0.7
m14 Zrn - 70	71.3	36.9	0.5175	0.0723	0.0036	1 679	0.000	0.1702	0.0023	0.0532	0.0023	-0.02634	1014.4	13	997	34	986	100	1014.4	13	-17
m14 Zrn-69	211.1	113.2	0.5362	0.0729	0.003	1.079	0.076	0.1709	0.0025	0.0502	0.0018	0.15794	1017	14	1018	29	1039	80	1017	14	0.1
m14 Zrn-66	175	14 73	0.0842	0.072	0.003	1.702	0.076	0.1715	0.0022	0.056	0.0031	-0.20277	1020.5	12	1008	28	983	88	1020.5	12	-1.2
$m14 Zrn_{-}02$	10.1	4.01	0.3970	0.072	0.0081	1.88	0.22	0.1733	0.0047	0.0607	0.0064	0.37874	1020.0	27	1000	73	1120	210	1020.5	27	6.1
$m14_2m-02$ m14_7m-73	117.1	52.1	0.3770	0.0701	0.0031	1 829	0.085	0.1751	0.0047	0.0523	0.0004	0.04264	1040	15	1057	31	1054	03	1040	15	1.6
$m14_2m-73$ m14_7m-19	145.4	282	1 9395	0.0747	0.0034	1.822	0.088	0 1804	0.0027	0.05359	0.0017	-0.036155	1068.9	13	1073	31	1054	93	1068.9	13	0.4
$m14 \ Zrn 13$	132.5	30.18	0 2278	0.0794	0.0032	1.002	0.000	0.1845	0.0021	0.0564	0.0027	0.080682	1000.9	34	1115	41	1191	81	1000.9	34	2.2
m14_Zm-13	165.9	67.14	0.4047	0.0759	0.0032	1.903	0.11	0.1852	0.0054	0.0549	0.0027	0.45007	1091	30	1104	32	1110	83	1091	30	0.8
$m14$ Zrn_45	202.7	138	0.6808	0.0783	0.0032	2.086	0.091	0.1879	0.0023	0.0572	0.0019	0.12633	1110	13	1146	30	1155	76	1110	13	3.1
m14 Zrn-76	154.7	58.9	0.3807	0.0703	0.0033	2.000	0.097	0.1889	0.0023	0.0572	0.0013	0.12055	1115	13	1137	31	1132	84	1115	13	1.9
$m14_Zm-70$ m14_Zm-68	255.8	03	0.3636	0.0818	0.0033	2.07	0.077	0.1005	0.0024	0.0561	0.0020	0.60803	1125	68	1157	60	1237	00	1125	68	28
$m14_Zm-44$	235.8	62.3	0.2806	0.0318	0.0033	2.128	0.10	0.1900	0.012	0.0559	0.0029	0.081247	1123	44	1157	46	1133	83	1123	44	1.0
m14 Zm 92	176.7	60.6	0.2000	0.0774	0.0031	2.109	0.12	0.1922	0.0072	0.059	0.0021	0.13503	1133.6	12	1133	20	1125	77	1133.6	12	0.0
$m14_Zm-92$ m14_Zm-43	142.4	43.5	0.3450	0.0803	0.0034	2.088	0.009	0.1923	0.0022	0.0584	0.0022	-0.022729	1133.0	12	1176	33	1125	89	1143.6	12	2.8
$m14_2m-45$ m14_7m 05	146.2	50.6	0.3461	0.0303	0.0031	2.175	0.001	0.1941	0.0024	0.0504	0.0023	0.15022	1145.0	12	1158	20	11/3	77	1145.0	12	0.0
$m14_Zm-34$	32.3	7.04	0.3401	0.0782	0.0031	2.13	0.091	0.1949	0.0023	0.0003	0.0023	-0.13022	1140	67	1150	29 66	1143	130	1140	67	0.9
$m14_Zm-54$	167.1	56.1	0.2150	0.0702	0.0044	2.00	0.10	0.1958	0.012	0.0054	0.005	0.026778	1155 4	14	1152	20	1150	150	1155 4	14	1.5
$m_{14}Zm_{04}$	51.3	33.6	0.5557	0.0792	0.0031	2.177	0.093	0.1903	0.0023	0.059	0.0020	-0.020778	1155.4	14	11/3	30	1170	00	1155.4	14	1.5
$m14_Zm-04$	102.6	21.7	0.0000	0.0779	0.0038	2.171	0.007	0.1904	0.0034	0.058	0.0023	0.15521	1156	15	1166	21	1124	92	1156	15	0.0
m14 Zm 60	21.2	20.02	0.5000	0.0785	0.0032	2.138	0.097	0.1905	0.0027	0.0014	0.0028	0.17190	1150	19	1201	12	1145	110	1150	19	2.2
$m14_Zm07$	180.4	20.03	0.0420	0.0651	0.0048	2.20	0.14	0.1978	0.0033	0.0593	0.0033	0.32929	1167.2	10	1201	20	1320	75	1167.2	10	0.7
$m14_Zm14$	225	99.4	0.3310	0.0780	0.003	2.165	0.092	0.1985	0.0023	0.0582	0.0022	0.064465	1107.3	12	1175	29	1172	70	1176.2	12	0.7
$m_{14}Zm_{77}$	101	70.5	0.3420	0.0793	0.0032	2.201	0.090	0.2002	0.0022	0.059	0.0021	0.07432	11/0.2	16	1100	20	1104	77	11/0.2	12	0.5
$m14_Zm-21$	191	19.5	0.4102	0.0787	0.003	2.242	0.095	0.2018	0.003	0.0003	0.0022	0.32323	1105	16	1204	21	1139	02	1105	16	0.9
$m_{14}Zm_{51}$	20.8	41.4	0.34/9	0.082	0.0034	2.207	0.1	0.2022	0.005	0.0377	0.0024	-0.088210	110/	10	1204	50	1230	120	110/	10	1.4
$m14_Zm 50$	20.2	12.04	0.3318	0.0793	0.0047	2.24	0.16	0.2029	0.0081	0.0374	0.0030	0.05569	1190	17	1105	15	1200	120	1190	17	-0.1
$m14_Zm09$	30.3 96.6	54.2	0.4271	0.0811	0.0049	2.24	0.14	0.2034	0.0052	0.0603	0.0045	0.14039	1195	17	1105	45	1200	150	1195	17	-0.7
III14_ZIII-08	00.0 110.1	34.5	0.0270	0.0793	0.0039	2.200	0.12	0.204	0.0028	0.0399	0.0025	0.13901	1197	13	1200	21	1100	91	119/	13	0.7
$m_{14}Zm_{56}$	119.1	4/.0	0.3997	0.085	0.0034	2.458	0.11	0.2045	0.0027	0.0586	0.0029	-0.11312	1199	14	1258	24	1300	19	1200	14	4./
m14_Zm-56	99	81.0	0.8242	0.0806	0.0035	2.206	0.11	0.2046	0.0031	0.0596	0.0023	0.31063	1200	1/	1180	20	1199	80	1200	1/	-1./
m14_Zrn-22	258	83.1	0.3221	0.0783	0.003	2.196	0.095	0.2053	0.0026	0.0593	0.0022	0.22174	1203.9	14	1181	30	115/	/4	1203.9	14	-1.9
m14_Zm-12	81.2	45.7	0.3628	0.0811	0.0037	2.320	0.11	0.2055	0.0028	0.0603	0.0027	0.075422	1205	15	1218	35	1218	89	1205	15	1.1
m14_Zrn-85	136.9	43.6	0.3185	0.0785	0.0031	2.198	0.099	0.2068	0.0026	0.0602	0.0024	0.082732	1211.7	14	1181	33	1152	81	1211.7	14	-2.6
m14_Zrn-65	45.78	20.57	0.4493	0.0829	0.0039	2.44	0.14	0.2097	0.0042	0.0657	0.0033	0.03125	1227	22	1257	39	1290	93	1227	22	2.4
m14_Zrn-54	120.4	32.5	0.2699	0.0834	0.0036	2.37	0.11	0.2124	0.0032	0.0583	0.0027	0.24463	1242	17	1234	34	12/4	85	1242	17	-0.6
m14_Zrn-57	97.3	37	0.3803	0.0803	0.0036	2.327	0.11	0.2126	0.003	0.0627	0.0027	0.041292	1242	16	1218	34	1221	83	1242	16	-2.0
m14_Zrn-24	208	/5.3	0.3620	0.0827	0.0032	2.423	0.1	0.2148	0.0024	0.0638	0.0022	0.14557	1254.5	12	1249	30	1263	11	1254.5	12	-0.4
m14_Zrn-81	129.6	85.42	0.6591	0.0857	0.0038	2.616	0.13	0.2232	0.0039	0.0674	0.0024	0.40461	1299	21	1306	- 37	1329	- 82	1299	21	0.5

Tabla A.12 (Continuación) Datos isotópicos de U-Pb de la muestra Tmt-0219-19, la cual pertenece a depósitos de edad Cenozoica y fue colectada en el área de Tecomatlán.

						RELACIO	ONES I	ISOTÓPICA	S CORR	EGIDAS					EDAL	DES C	ORREGIDA	S (Ma)		
Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Mejor edad (Ma)	±2s	Disc %
m14_Zrn-72	60.4	81.8	1.3543	0.0875	0.0039	2.75	0.13	0.2277	0.0039	0.0605	0.0026	0.23505	1322	20	1347	35	1359	81	1322	20	1.9
m14_Zrn-79	312	58.2	0.1865	0.0896	0.0032	2.943	0.12	0.2301	0.003	0.072	0.0028	0.47083	1335	16	1392	32	1424	69	1335	16	4.1
m14_Zrn-89	189	96	0.5079	0.0863	0.0032	2.877	0.13	0.241	0.0043	0.0707	0.0024	0.32343	1392	22	1375	34	1340	73	1392	22	-1.2
m14_Zrn-94	152	53.8	0.3539	0.0921	0.0035	3.171	0.13	0.2441	0.003	0.0731	0.0027	0.26771	1408	16	1449	32	1464	73	1464	73	2.8
m14_Zrn-75	79.3	47.1	0.5939	0.0948	0.0039	3.44	0.16	0.2566	0.0035	0.0778	0.0033	-0.18388	1472	18	1511	36	1513	77	1513	77	2.6
m14_Zrn-21	128.7	26.48	0.2057	0.1038	0.0038	4.317	0.18	0.3046	0.0036	0.0871	0.004	0.45135	1714	18	1695	34	1690	66	1690	66	-1.1

 Tabla A.12 (Continuación) Datos isotópicos de U-Pb de la muestra Tmt-0219-19, la cual pertenece a depósitos de edad Cenozoica y fue colectada en el área de Tecomatlán.