
 

UNIVERSIDAD NACIONAL AUTÓNOMA DE MEXICO 
DOCTORADO EN CIENCIAS (FÍSICA)  

INSTITUTO DE CIENCIAS FÍSICAS  
 
 
 
 
 

EFFECT OF UNNECESSARY PROTEIN SYNTHESIS ON THE GROWTH OF E. COLI 
 

 
 

TESIS 
QUE PARA OPTAR POR EL GRADO DE: 

DOCTOR EN CIENCIAS (FÍSICA) 
 
 
 

PRESENTA: 
MAYRA PATRICIA GARCÍA ALCALÁ 

 
 
 

DR. MAXIMINO ALDANA GONZÁLEZ 
INSTITUTO DE CIENCIAS FÍSICAS, UNAM 

 
DR. PHILIPPE CLUZEL 
HARVAD UNIVERSITY 

 
DR. HERNÁN LARRALDE RIDAURA 

INSTITUTO DE CIENCIAS FÍSICAS, UNAM 
 

DR. ALEJANDRO FRANK HOEFLICH 
INSTITUTO DE CIENCIAS NUCLEARES, UNAM 

 
 
 

CUERNAVACA, MOR., JULIO 2021 
  



 

UNAM – Dirección General de Bibliotecas 

Tesis Digitales 

Restricciones de uso 
  

DERECHOS RESERVADOS © 

PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL 
  

Todo el material contenido en esta tesis esta protegido por la Ley Federal 
del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México). 

El uso de imágenes, fragmentos de videos, y demás material que sea 
objeto de protección de los derechos de autor, será exclusivamente para 
fines educativos e informativos y deberá citar la fuente donde la obtuvo 
mencionando el autor o autores. Cualquier uso distinto como el lucro, 
reproducción, edición o modificación, será perseguido y sancionado por el 
respectivo titular de los Derechos de Autor. 

 

  

 



Agradecimientos 

 

Este trabajo debe su existencia y resultados a la intervención de personas que generosamente han 

facilitado el proceso de investigación con su conocimiento, trabajo y apoyo.  

Gracias al Dr. Maximino Aldana por su guía, y porque desde inicios de mi doctorado me animó a 

seguir en investigación y ofreció la oportunidad de trabajar haciendo experimentos. Tuve la fortuna 

también de contar con el apoyo de la comunidad de estudiantes, amigos e investigadores del ICF: 

gracias. 

Al Dr. Philippe Cluzel le agradezco que me haya abierto las puertas para trabajar en su laboratorio, 

y su paciencia en mi comienzo en la práctica experimental. Gracias a los miembros del laboratorio 

del Dr. Cluzel, en especial a Mark Kim. Gracias a los compañeros y amigos que conocí en 

Cambridge, además de su colaboración científica, me ayudaron a vivir en un país extranjero, a 

adaptarme en un área de investigación nueva para mí, y a sobrellevar los retos que esto 

representaba. 

Gracias a toda mi querida familia por el apoyo y confianza a lo largo de toda mi vida académica. 

Finalmente, expreso mi reconocimiento al apoyo institucional que permitió cada fase de este 

trabajo: las becas otorgadas por el CONACyT y el Centro de Ciencias de la Complejidad de la 

UNAM, con las amables gestiones del Dr. Alejandro Frank.  

•»❋«• 

 

  



Contents 
1. Introduction ........................................................................................................................................... 1 

2. Method Development ............................................................................................................................ 9 

2.1 Introduction ..................................................................................................................................... 9 

2.2 Construction of E. coli strains with different levels of unnecessary protein synthesis ................... 9 

2.3 Microfluidic device construction .................................................................................................. 14 

2.4 Fluorescence microscopy .............................................................................................................. 18 

2.5 Image processing .......................................................................................................................... 19 

3. Cost of unnecessary proteins in the growth of E. coli......................................................................... 21 

3.1 Background and Introduction ........................................................................................................ 21 

3.2 Fluorescence distribution of ProVenus series ............................................................................... 25 

3.3 Effect of Venus production on Size .............................................................................................. 26 

3.4 Effect of Venus production on Division Time .............................................................................. 32 

3.5 Effect of Venus production on Elongation Rate ........................................................................... 35 

3.6 Nutritional growth law and unnecessary expression ..................................................................... 39 

3.7 Discussion ..................................................................................................................................... 40 

4. Correlation between cell growth and unnecessary protein synthesis at single-cell level .................... 42 

4.1 Introduction ................................................................................................................................... 42 

4.2 Control of cell size ........................................................................................................................ 45 

4.3 Deviations from “population” behavior ........................................................................................ 48 

4.4 Effect on division time of overexpression of the fluorescent protein Venus ................................ 50 

4.5 Correlation between Cell Size and Expression Levels of Fluorescent Proteins ............................ 54 

4.6 Correlation between growth rate and Expression Levels of Fluorescent Proteins ........................ 57 

4.7 Single-cell deviations from the growth law .................................................................................. 58 

4.8 Using Bertaux’ allocation model to interpret single-cell data ....................................................... 60 

4.9 Discussion ..................................................................................................................................... 64 

5. Growth dependance on protein synthesis with pulse dynamics .......................................................... 68 

5.1 Introduction ................................................................................................................................... 68 

5.2 Pulsating behavior in the synthesis of flagellar proteins ............................................................... 71 

5.3 Correlation between class-2 flagellar protein production and cell size......................................... 74 

5.4 Correlation between class-2 flagellar protein production and elongation rate .............................. 77 

5.5 Correlation between class-2 flagellar protein production and division time................................. 82 

5.6 Discussion ..................................................................................................................................... 85 

Appendix 1. Microfluidic master fabrication .......................................................................................... 88 

References ............................................................................................................................................... 90 



1 

 

 1. Introduction 

E. coli is presumably the simplest and most studied model organism, and yet, for this and all 

microorganisms, it is not fully understood how they regulate their cell size and division time [8,57].   

A bacterial population can present different phenotypes depending on the environmental 

conditions in which they are growing. Changes in the nutrients, temperature, PH, etc., lead to 

changes in cell size, division time, and gene expression [2, 16, 17]. 

Although there is cell-to-cell variability within a population, even on an isogenic population in a 

constant environment, the average values of cell size and growth rate are stable. The average values 

can even be reproduced if a population of the same strain grows in the same condition. 

Since 1950, there has been significant research based on the measurement and characterization of 

bacteria’s physiological parameters, as the growth rate, doubling time, protein content, etc., under 

different growth conditions. The goal being the finding of quantitative relations between cell’s 

physiological parameters in order to infer the restrictions on the growth’s underlying molecular 

mechanism.  

 

Figure 1.1. Relation between the average cell size and the growth rate of a bacterial population 

under different growth limitations. When the growth rate is modulated by nutrient quality 

(green), average cell size follows an exponential function which is known as a “nutritional 

growth law” [2, 11]. In contrast, when cells are forced to overexpress unnecessary proteins (red), 

the average of the cell size increases, but the growth rate decreases [11]. Both curves represent 

the trend across the average values of different populations. The image is a representation of the 

results in [11]. 

 

With this approach, Schaechter et al. identified in Salmonella a relation that is known as a nutrient 

growth law: the macromolecular composition of cells (mass of RNA, DNA, protein, and cell mass) 
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is essentially a function of the doubling rate alone, irrespective of the content of the growth 

medium (Fig.1.1).  

In the same spirit, T. Hwa and coworkers studied the concentration of diverse proteins in E. coli 

across different growth conditions modulating the growth rate by changing the growth medium 

[12, 56]. They observed that the concentration of some proteins across such conditions increases, 

decreases, or is constant, depending on the protein's function in the cell (Fig.1.2a). For instance, 

ribosomal proteins (the proteins involved in the protein synthesis) increase linearly with the 

nutrient-modulated growth rate. These observations demonstrate the critical dependence on gene 

expression and growth rate and are also considered growth laws. . Hwa and coworkers proposed a 

model in which a cell's resources are allocated among different types or sectors of proteins [12].  

 

 

Figure 1.2. T. Hwa and coworkers observed that the fraction of ribosomal proteins increases 

linearly with the growth rate when the growth medium's nutrient quality modulates the latter 

(a, brown line) [12, 666]. The constitutively expressed proteins show the opposite dependence 

on the growth rate (a, blue line), implying a linear constraint between ribosomal and 

constitutive proteins. Then, the minimal proteome division can be considered as (b): a fixed 

sector of housekeeping proteins 𝜙𝑄 (green), if imposed, a sector of unnecessary proteins 𝜙𝑈 

(purple), and the constitutive 𝜙𝑃 (blue) and ribosomal sectors 𝜙𝑅 (brown), which change their 

size depending on the nutrient condition. When cells are forced to synthesize unnecessary 

proteins 𝑈, while maintained in the same nutrient conditions, the growth rate decreases (c). 
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Since the fraction of unnecessary protein increases, it effectively decreases the fraction 

allocable to the P and R sectors (d). 
 

The minimal model contemplates three sectors, the ribosomal proteins 𝜙𝑅, housekeeping 𝜙𝑄, and 

constitutive proteins 𝜙𝑃, plus, if imposed the expression of unnecessary proteins, an extra sector 

𝜙𝑈. These sectors increase, remains unchanged and decrease respectively as a function of the 

nutrient modulated growth rate, as in their experimental results (Fig.1.2a and b). Since the cell has 

finite proteomic resources, any increase in investment in a sector must coincide with a 

corresponding decrease in investment in another. With the model, they also could predict the cost 

in the growth rate of a population due to the cell overproduction of an “extra” unnecessary protein. 

When forced to synthesize unnecessary proteins, the population growth rate decreases 

approximately linearly, while changing the fraction of the protein sectors (Fig.1.2c and d). 

Basan et al. also analyzed the growth of E. coli under unnecessary protein synthesis. Their main 

observation is that when there is an expression of unnecessary proteins, the mean cell size of a 

population increases while the growth rate decreases [11] (Fig.1.1 red). Such relation goes in the 

‘opposite direction’ than the nutrient growth law  (Fig.1.1 red). 

 

The studies mentioned above were done by performing experiments with bacteria growing in 

“bulk”. However, the mean population behavior of bacteria does not give enough information to 

understand the process by which individual cells control their growth. 

In recent years there has been a rapid development in microfluidic designs and techniques that 

allow the measurement of individual bacterial cells growing in a controlled environment. For 

instance, the Mother Machine is a microfluidic device used to monitor single cells trapped in small 

channels where they can grow and divide while fed with a constant flow of growth media [48].  

Several studies have used this technique to analyze the cell size and division time fluctuations in 

a bacterial population driven by intrinsic noise in the molecular composition.  

The correlations between cell size at birth, size at the division, and division time in a steady-state 

help characterize the cell-size control mechanism [8]. One classic model for cell-size control is the 

sizer model, which proposes that a bacterium needs to reach a critical size (or a critical size per 

DNA) for it to divide [1] (Fig.1.3). The timer model proposes a fixed time interval between cell 
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cycle events [1, 18]. And a recent model, named adder, considers that for the cell to maintain its 

cell size, it needs to increment its mass by a fixed value [7]. Some studies have demonstrated that 

the 𝐸. 𝑐𝑜𝑙𝑖 growth agrees with the adder model [6, 9]. Nevertheless, the underlying molecular 

mechanism of the fixed size is not yet understood [23]; therefore it is still a source of investigation 

how single cells respond to different perturbations and if the physiological changes they acquire 

fit with any of the size control models. 

 

 

Figure 1.3. Bacterial size control models. In the ‘sizer’ model (top), cells divide once they 

reached a fixed size 𝑆𝑑𝑖𝑣, independent of the size at birth  𝑆𝑏. In the ‘timer’ model (middle), the 

size depends solely on the age of the cells and divide after a fixed duration since birth, such that 

the division time 𝑇𝑑𝑖𝑣 is constant. In the ‘adder’ model (bottom), there is a constant mass (or 

content) ∆ that cells need to reach to trigger its division. On the right side are the relations between 

the variations in size at division 𝑆𝑑𝑖𝑣 and of the division time 𝑇𝑑𝑖𝑣 as a function of size at birth 𝑆𝑏 

for a population of bacteria that follows each model. Those relations help determine which model 

a certain bacteria or strain follows. Figure modified from [8]. 

 

Specifically, Taheri-Aragui et al., using the mother machine, monitored E. coli cells and found that 

the adder model relations are verified when bacteria grow in media with different nutrient quality.  

They also found deviations in the nutrient growth law at the single-cell level [6, 23], which can be 

explained by the adder mechanism as well.  

Similarly, analyzing how individual cells grow when they overproduce unnecessary proteins at 

different levels can give information on the molecular mechanisms. Are relationships between the 



5 

 

physiological parameters that characterize the Adder model conserved when growth is perturbed 

by overexpression? Are there deviations from the population-level behavior? Is there a cost in 

growth associated with the fluctuations in production? 

To address these questions, in the present work, I explore the effect on bacterial growth due to 

overexpression of unnecessary protein in different conditions, at population and single-cell levels. 

I constructed a set of E. coli strains, the ProVenus set, which have different synthesis levels of the 

fluorescent protein Venus, a protein that is unnecessary for bacteria, see Fig.1.4. I used the mother 

machine device and fluorescent microscopy to monitor the growth and protein content over time 

of cells of all such strains. I also grow the cells under a flow of various growth media. Then, I can 

characterize the growth for cells changing the protein production and nutrient quality.  

In the next chapter, I describe the steps I followed for constructing the microfluidic device, the 

protocol I used to transform the ProVenus strains, and report the experimental setup for monitoring 

the cells using fluorescent microscopy. 

With the data obtained from the ProVenus set, first, I explore the population-level relations of 

bacterial growth, such as the nutriment growth law and the ones from the resource allocation 

model.  

In chapter 4, I consider the single-cell nature of the data and analyze how cell growth changes as 

a function of the expression of the unnecessary protein Venus in individual cells across the strains. 

I characterize the correlation between the different measured parameters (size, division time, 

fluorescence) and how such correlations change for a different level of unnecessary synthesis to 

test some cell size models and division control mechanisms. 

My goal is that the relations of protein production and the cell size, growth rate, and other cell 

parameters shed light on the mechanisms that cells follow to grow and divide. Also, how these 

relations give rise to the known population-level behavior. 
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Figure 1.4. a) Schematics of the microfluidic experimental setup and ProVenus strains. In the 

Mother Machine device, cells get constrained into the cell channel where they can grow and 

divide while fed by a constant flow of fresh growth media. The ‘mother’ cell in the base can be 

monitored for many generations using time-lapse imaging. The ProVenus strains, which I 

monitored, produce fluorescent proteins in multiple levels. Each strain has a plasmid that 

expresses the fluorescent protein Venus controlled by a constitutive promoter from a group 

(Pro4, Pro5, …, ProD) with various promoter strengths. All the strains were grown under the 

flow of three different growth media, referred to as poor, intermediate, and rich. b) Typical time 

trace of a ProBVenus cell growing in the mother machine in rich medium. The cell length (top) 

and fluorescence (bottom) increase continuously until cell division occurs (vertical gray lines). 

c) Concentration (fluorescence/area) over time of a cell from each strain of the ProVenus.  The 

rainbow color code corresponds to the level of strength of the Venus promoter. 

 

The ProVenus strains express the unnecessary protein constitutively, so they have a constant 

synthesis of Venus. For this reason, with such strains, it cannot be analyzed the effect on growth 

when cells have a sudden decrease or increase of protein production.   

There are some proteins that cells natively synthesize in oscillatory or pulse-like dynamics.  

Such cases are an interesting system for analyzing the impact in growth due to the sudden protein 

synthesis in the same strain, thus allowing as well to study the effect over time.  

Some proteins that E. coli produces in pulses are proteins related to the assembly and functioning 

of the flagella, the organelle that allows bacteria to move [47].  



7 

 

The flagellar transcriptional system is organized into a transcriptional hierarchy of three promoter 

classes that are temporally regulated for the flagella assembly, see Fig.1.5a. The class-1 promoter 

flhDp regulates the formation of a macromolecular complex FlhD4C2, also called the master 

regulator. FlhD4C2 governs the activation of the class-2 promoters that control the expression of 

the genes for the flagellar hook and basal body. One of the class-2 promoters controls the 

production of the protein FliA that mediates the expression of the class-3 genes for the filament 

synthesis and motor elements that power the flagellum rotation.  

In [47], we reported that the class-2 promoters present sharp bursts of activity followed by long 

periods with no activity that can extend across several cell divisions. Hence, the class-2 flagellar 

proteins are synthesized with intermittences while bacteria grow. For this reason, I decided to study 

the effect on cell growth due to flagellar protein production. To do this analysis, I used a mother 

machine device to monitor an E. coli strain named here DCF, which expresses the fluorescent 

protein Venus when class-1 is activated and a cyan fluorescent protein CFP when a class-2 

promoter is activated (Fig.1.5b). In Chapter 5, I analyze the response of individual cells subject to 

the perturbations on protein production: How cells change in size, division time, and other 

parameters before, during, and after a burst in protein expression.  

In summary, in the following chapters, I present an analysis of the variations of the physiological 

parameters within a population and across populations when cells are subject to different levels of 

unnecessary protein synthesis and grow in diverse nutrient quality. I compare the results with the 

expectation of various growth models, both population-level and for the cell size and division 

control mechanisms of individual cells. 
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Figure 1.5. a) Hierarchy of the flagellar regulatory system. The assembly of the flagellum in 

E. coli is coordinated by the orderly activation of three promoter classes. The class-1 promoter, 

flhDp, produces the master regulator FlhDC that directs the transcription of the class-2 

promoters. Class-2 promoters control the genes that codify the proteins that form the hook 

and basal body substructure (structures in blue). One of the class-2 proteins is a sigma factor 

that directs the expression of class-3 promoters, which controls the genes for the structure of 

the filament and chemosensory pathway. b) The strain DCF has two mutations in the 

chromosome to report the activity of class-1 and class-2 promoters [47]. The gene for Venus 

fluorescent protein expression was inserted downstream the class-1 native promoter and 

operon. The promoter for the class-2 promoter fliFp, controls the activity of the cyan 

fluorescent protein CFP. c) Top: Area of a DCF cell over multiple generations. The gray 

vertical lines correspond to a time point where the cell divide. Bottom: Activity (derivative of 

the fluorescence) for the class-1 (yellow) and class-2 (blue) promoters. The activity of Class-

2 displays pulse-like dynamics, in which burst of activity followed by periods of no activity 

that can last several generations. 
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2. Method Development 

2.1 Introduction 

 

Our experimental setup’s goal is to measure bacteria’s physiological characteristics when they 

overproduce unnecessary proteins.  

To convey this, I constructed a set of E. coli strains that overproduce the unnecessary protein Venus 

in various quantities called ProVenus. To these strains, I want to measure the cell size, division 

time, growth rate, and fluorescence, which is a proxy of the number of unnecessary proteins Venus 

in the cells. 

The experiments that I performed are single cells growing inside a microfluidic device called the 

‘Mother Machine’ [14]. In this device, cells can grow under stable conditions with a constant flow 

of growth medium that feeds them for long periods. Inside de device, cells get trapped in small 

channels while they can still grow and divide. Using microscopy techniques, I took time-lapse 

images of the cells growing. From the images, it can be extracted different physiological 

parameters like cell size, division time, and the fluorescence of the cells over time. 

In the following sections, I describe the different steps that I followed to make these experiments: 

from the constructions of the strains, fabrication of the microfluidic device, the setup of the 

microscopy experiments, and the process to extract the dataset from the images. 

 

2.2 Construction of E. coli strains with different levels of unnecessary protein synthesis 

 

To analyze the relationship between unnecessary protein synthesis and bacterial growth, I use two 

types of E. coli strains: 

• ProVenus strains. This set of strains synthetize the fluorescent protein Venus at various 

levels, each with a steady synthesis rate over time. 

• DCF strain. Reports the activity of the genes that code for a class of flagellar proteins that 

are synthetized with a pulse-like dynamics [47].  

 



10 

 

The description and protocol for the construction of the ProVenus set is bellow, while the DCF 

strain construction is in [47]. 

a) Strains with constitutive expression of Venus 

For cells to synthesize the Venus proteins, they need to be programmed to do so: the gene’s genetic 

sequences that code for Venus and the promoter to initiate its transcription need to be added into 

their genome. The cell’s own machinery for replication, transcription, and translation will then 

synthesize the Venus protein. There are two possibilities for adding these sequences into the 

genome: one is to include it in the cell’s chromosome, and the other is to add that sequence in a 

plasmid1. I decided to produce Venus from a plasmid since a cell can maintain multiple plasmid 

copies (as dictated by their copy number, which is the average number of plasmid copies per cell); 

thus, there would be a higher protein synthesis.  

 

I use a set of constitutive promoters2 from the Pro-series, Pro1, Pro4, … ProB, ProD, which are 

artificial promoters with various strengths, to control Venus transcription [22]. In this way, cells 

with different promoters will have as well different levels of Venus expression. 

The plasmid also has an antibiotic resistance gene (resistance to Kanamacyn) and the sequence of 

the origin of replication pSC101, Fig. 2.1. The antibiotic resistance gene is a selectable marker, 

and the origin of replication is the sequence necessary for the bacteria to replicate the plasmid with 

~5 copies per cell.  

The steps I followed to construct the plasmids are: 

1. I amplified (using PCR) the sequences of the origin of replication plus the gene that confers 

antibiotic resistance from a backbone of a plasmid that already contained them. 

 
1 A plasmid is a structure in bacterial cells consisting of DNA that can exist and replicate independently of the 

chromosome. Plasmids provide genetic instructions for certain cell activities (e.g. resistance to antibiotic drugs). 

They can be transferred from cell to cell in a bacterial colony. Plasmids are widely used as vectors to produce 

recombinant DNA for gene cloning. 

   
2 Constitutive Genes are genes that are expressed following interaction between a promoter and RNA polymerase 

without additional regulation [61]. 
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2. I ordered the sequence for the linear fragment of the promoter Pro5 plus a ribosomal 

binding site (RBS) plus the Venus gene, ‘Pro5_Venus’, from a custom oligonucleotide 

supplier company.  

3. Using Isothermal Assembly, I assembled the two linear sequences, the backbone and the 

‘Pro5_Venus’ , to circled into the plasmid pPro5Venus, i.e. to join the linear fragments in 

order to form the circular molecule that is a plasmid. 

4. I transformed the plasmid into an E. coli strain (Dh5α), selected the colonies resistant to 

kanamycin, and have yellow fluorescence under the microscope. 

5. For the rest of the plasmids, I amplified the complete linear sequence of pPro5Venus with 

primers that helped to swap the Pro5 10-box with the respective sequence for each 

promoter Pro1, Pro2, …, ProD. Each plasmid was circularized using the NEB KLD 

Enzyme Mix (New England Biolabs). 

 

 

Figure 2.1. Schematic of a ProVenus strain. An E. coli strain (MG1655) was 

transformed with a plasmid, pProVenus, which constitutively expresses the yellow 

fluorescent protein Venus. A promoter Pro from a set of synthetic promoters with 

variable strength, Pro∈{Pro1, Pro4, …, ProD} from [22] controls Venus 

expression. The plasmid also contains a selectable marker, a kanamycin antibiotic 

resistance gene (KanR), and the origin of replication pSC101. 

 

Once I constructed the plasmids, I transformed each of them into an E. coli strain via 

electroporation. The strain in which the plasmid was transformed is a MG1655 strain, with a point 
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mutation in the motA gene (E98K) that disables flagellar rotation and prevents cells from 

swimming out of the channels in the “mother machine”. 

After growing the transformed cells on LB medium for recovery, I plated them in agar plates with 

kanamycin, from where I selected resistant colonies. I verified the presence and sequence of the 

plasmid on the strains by colony PCF and sequencing. I also used Fluorescence microscopy to 

choose fluorescent colonies, ensuring the cells synthesize the Venus proteins. 

Then, I measured the fluorescence level of the ProVenus set using flow cytometry. Such technique 

consists of directing a UV beam into a liquid flow that contains bacteria in low density, where the 

beam gets scattered. Fluorescence detectors sense the spectrum of wavelengths of the scattered 

light. If the bacteria contain a fluorescent protein, the emitted light has a particular wavelength that 

is detected and then processed to measure the fluorescence intensity. In Fig.2.2, I show the 

fluorescence distributions of a population from each of the ProVenus strains. The order of the 

strains by fluorescence is expected from the promoter strength reported by Davis et al. [22]. 

 

 

Figure 2.2. Fluorescence of ProVenus Strains. Strains with a different promoters 

(Pro1, …, ProD) controlling Venus expression were grown in liquid growth 

medium until exponential phase and measured their fluorescence using a flow 

cytometry instrument. The bars’ height shows the mean yellow fluorescence over a 

population of cells of each strain and the error bars the standard deviation.  
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b) Strain flagellar genes reporters 

As mention in Chapter 1, E. coli’s flagellar promoter genes are divided into three coordinately 

regulated classes. This regulatory hierarchy acts to ensure the orderly synthesis of the proteins that 

conform the different parts of the flagella.  

Class-1 promoter, flhDp, controls the production of the master regulator of the network, FlhDC, 

which directs the transcription of class-2 genes, genes that produce the proteins necessary for the 

assembly of the hook and basal body of the flagella. One of the class-2 gene products FliA, is a 

sigma factor [13] that controls the activation of class-3 promoters, whose products are the proteins 

that compose the flagellin and the motor system. 

In the present work, in chapter 5, I analyze the cell growth and the flagellar promoter activity of 

the DCF strain (called E98KFC in [47]). This strain has the following mutations in its gnome: 

• Class-1 reporter. The Venus gene was added downstream the class-1 operon flhDC (the set 

of genes controlled by class-1 promoter), as a reporter of the activity of this class. 

• Class-2 reporter. A copy of the class-2 promoter and the gene that codes for the cyan 

fluorescent protein SCFP3A was inserted in the galK region of the chromosome (this region 

is a standard region in molecular engineering to make transformations in bacteria). The 

native fliF gene was left intact. 

• The strain has a point mutation (E98K) in the MotA gene, which disables flagellar rotation 

and prevents cells from swimming out of the channels in the “mother machine”. 

• A detailed protocol for the chromosomal engineering steps followed in the construction on 

this strain can be found in [47]. 
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Figure 2.3 Diagram of a DCF strain. The E. coli strain has two mutations in the 

chromosome to report the activity of class-1 and class-2 promoters [47]. The gene for the 

Venus fluorescent protein expression was inserted downstream the class-1 native 

promoter and operon. In a different region of the chromosome, a copy of the class-2 

promoter fliFp controls the activity of the cyan fluorescent protein CFP. 

 

2.3 Microfluidic device construction 

The Mother Machine is a microfluidic device where individual bacteria can grow and be monitored 

under controlled conditions for a long time [14]. 

The device consists of small channels closed on one end and connected perpendicularly on the the 

end to a wide channel in which liquid growth media can flow, see Fig.2.4. Once the device is 

loaded with bacteria, individual cells get trapped at the closed end of the cell channels, where there 

is enough space to grow while the liquid media also feeds them. As the cells grow and divide, the 

newly born cells get pushed out of the cell channels and washed away with the growth media flow, 

while the ‘mother’ cell remains at the bottom. The mother cell can easily be monitored over time 

since, in principle, it remains at the same position while growing and dividing under controlled 

conditions.  

 In this section, I describe the steps to fabricate a mother machine device: the modifications to the 

classical design, the fabrication of the mold, and the device casting.  

 

E. coli MG1655 
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Figure. 2.4. The Mother Machine device confines bacteria into channels, where 

they can grow while being monitored with a microscope over long periods of time. 

Bacteria grow and divide inside the channels, allowing the daughter cells to move 

and eventually leave the cell channels. There is a continuous flow of fresh medium 

in the Feeding channels, so the cells remain in balanced growth throughout the 

experiment. 

 

Modifications of the standard Mother Machine 

Using the computer drawing package AutoCAD, I designed the microfluidic device to maximize 

the number of cell channels and positions captured in the 5 min intervals when the pictures of the 

time-lapse are taken.  

As pictured in Fig.2.5, the design consists of two layers: the small features, the cell channels, and 

the other for big features, the feeding channels, and the wide-area for the growth medium’s inlet 

and outlet. The first layer supports the cell channels (A in Fig. 2.5) that are 1.2 µm wide and 25 

µm long. I included an extra area along the open side of the channels (B in Fig.2.5). This structure 

enhances the efficiency of cell load in the channels and helps the halo-effect that can appear in the 

intersection of the two layers does not disturb the clearness of the tracked cells in the image. 

The second layer implements the features for the feeding channels (C in Fig. 2.5). These are 8.1 

mm long and 150 µm wide. At the start and end of the feeding channels, there is a circular area (E 

and D in Fig.2.5) that serves as inlets and outlets, respectively, to connect the tubing to flow media.  
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Figure 2.5. Mother Machine mold design. It consists of two layers for different UV light 

expositions. The first layer (blue) contains the cell channels (A) and an extra area (B) to avoid 

a halo effect in the microscope. The second layer (green) has four independent feeding channels 

(C), and the wide circular area that corresponds to the inlets and outlets for the liquid growth 

media. 

 

Fabrication of the device mold using Photolithography  

Using the design described above, I created a mold from which we can cast many identical devices. 

For constructing this mold, I used Photolithography, a technique used to pattern a 2-D design on a 

thin silicon substrate (a wafer). 

The first step consists of coating the silicon wafer with a negative photoresist named SU-8. This 

photoresist is a light-sensitive viscous substrate that hardens when exposed to light and is soluble 

to a liquid photoresist developer. Typically, a mask is used in the SU-8 covered wafer to block light 

selectively with the microfluidic device pattern. Thus, only the exposed features (i.e., the channels) 

will be hardened while the not exposed area will be dissolved when ‘washed’ with the photoresist 

developer [14].  

I modified such protocol so the device’s features are exposed directly to the wafer without the need 

for a mask. I used a direct laser writer, which receives as an input the file with the device’s design 

(Fig. 2.6), and with a laser, it exposes it directly to the resist-covered wafer.  
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To ‘print’ the mother machine design illustrated in Fig.2.6, I followed two rounds of coating, 

exposition, developing, and hardening, one for each layer (feeding channels and flow channels). 

These ‘two rounds’ are necessary because for each layer it is used a photoresist with different 

viscosity, leading to different heights (more viscous photoresist results in a thicker coat and 

therefore a larger height, in comparison with a less viscous photoresist). The protocol I followed 

aims to have a height of 1.2μm for the microchannels and 11μm for the feeding channels. I 

corroborated the sizes of the features by measuring with a stylus contact profilometer.  

In Appendix 1 there is a detailed protocol with the parameters I used in the different steps in the 

mold fabrication. 

 

Device casting and loading  

The material I used for the microfluidic device is a solid but soft material named PDMS 

(Polydimethylsiloxane), which is non-toxic for bacteria, easy to work with, and transparent [59]. 

The following are the general steps to make the device: 

1. The mold is placed in an empty Petri dish with the device’s features facing up. A mixture 

of liquid PDMS and a curing agent are poured.  

2. The dish is placed into a vacuum chamber for a few minutes to discard possible bubbles of 

air due to the mixing and pouring.  

3. Then it is incubated at 65°C for some hours, so the polymer becomes a solid. 

4. Once solid, the device is cut and separated from the mold, and some holes are made 

transversally. These holes are the inlets/outlets where the growth media enters/exits. 

5. The device then is Plasma bonded 3 to a slice of glass to cover the grooves and seal the 

actual channels where cells can be confined, and growth media can flow.  

  

 
3 Plasma bond, consists of exposing the surfaces to an oxygen plasma. This process cleanses the surfaces and 

modifications of the OH groups in the glass and sianol groups in the PDMS, allowing, once attached to the exposed 

surfaces, to create a strong covalent bond between them [60]. 
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2.4 Fluorescence microscopy  

 

The first step to set up a mother machine experiment is to load the bacteria into a device. I convey 

this by pipetting in a high-density culture of the bacteria. For the media to flow inside the feeding 

channels, the device’s inlets need to be connected to syringes filled with media, which are 

controlled by pumps that maintain a constant flux of 4-5µl/min throughout the experiment. The 

outlets also need to be connected to a waste container.  

Once the device is loaded and connected to the media, I place it on the stage of an inverted 

microscope and select different device regions with cells trapped in the channels. Pictures of these 

regions are taken automatically every 5 minutes. I set the microscope to acquire two different 

pictures for each position, one using phase-contrast imaging and the other with fluorescence 

microscopy. 

The automated acquisition of the images is controlled by a Matlab script interfacing μManager 

[47]. This program controls the stage of the microscope (so the microscope can focus on the 

selected different regions), the LED light source (to excite the fluorophores), the camera, and a 

shutter (to acquire and control the settings of the pictures).  

In Fig.2.6, I show an example of the images taken during an experiment. The phase-contrast image 

(black and white) and fluorescence image (yellow) are overlapped. Bacteria inside the 

microchannels have different levels of fluorescence since they correspond to a different ProVenus 

strain. 

Before starting the time-lapse, I wait ~6 hours since the device is mounted in the microscope so 

that cells can adapt to the growth conditions (the temperature, the growth media, etc.). Typically 

an experiment lasts ~24 hours to have a statistically significant number of division events.  
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Figure 2.7. Picture of bacteria inside microchannels. The phase-contrast (in gray) 

and fluorescence (in yellow) images are overlapped.  The different brightness from 

the yellow fluorescence is because there are three different strains from the 

ProVenus set in the channels. The ‘cell channel 1’ has cells from a strain with high 

production of Venus; the two channels in the middle do not produce it, and in ‘cell 

channel 4’, there is an intermediate level of Venus production.  

 

2.5 Image processing 

For the extraction of the data as cell size, division time, etc., from the cells in the images, I used 

the software Bacmman [58]. This software allows customizing a pipeline with multiple image-

processing transformations to segment the cells and track their position and progeny across the 

different images of the time-lapse. 

In Fig.2.7, I show a screenshot of the program’s output, a phase-contrast image of a single cell 

channel over a short period of time. Segmentation and tracking are calculated from the phase-

contrast images. The segmented cells are outlined in pink. The lines that connect the channels from 

different time points correspond to tracks of the same bacteria; each time there is a division, the 

color of the tracks changes.  

Using an interface provided by Bacmman, I performed a manual revision and correction of 

mistakes in the segmentation and tracking of all the processed experiments. Then, it can be 

extracted the cell size, division time, total fluorescence, etc. for all detected cells over time.  
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Figure 2.7. Segmentation and tracking results of cells confined on a channel. The image is a 

screenshot of the Bacmman software interface. It shows a single channel over a 2 hours. The 

time between two images (the units of the x-axis) is 5 minutes. A typical experiment from this 

work lasts ~24 hours. The segmented cells are shown with the pink outline. The tracking is 

represented with the arrows that connect the cells among images from the previous and 

posterior time points. Each time a division is detected, the color of the joining lines changes. 
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3. Cost of unnecessary proteins in the growth of E. coli  

3.1 Background and Introduction 

There are different kinds of perturbations that can change bacterial growth. For instance, by 

modulating the nutrient quality that feeds the cells, their size changes following an exponential 

dependence on the growth rate, a relation known as the “nutritional growth law” [2, 6]. Also, 

directly changing the configuration of the proteome by overexpressing unnecessary proteins 

changes the growth rate: it has been observed that as the unnecessary protein production increases, 

the growth rate decreases [11]. Lastly, by inducing bacteria with non-lethal doses of the antibiotic 

chloramphenicol, the translation of proteins is inhibited while decreasing cell growth [2, 16, 17]. 

In [4], Scott and Gunderson et al. performed a series of population-level experiments in E. coli, to 

characterize the growth rate and protein content of bacteria under the mentioned perturbations.  

Based on their results, they presented a phenomenological model that describes and predicts the 

growth rate 𝜆 of a strain in different conditions, with the equation: 

𝜆 =  𝜅𝑡(1 −  Φ) (
𝜅𝑛

𝜅𝑛 + 𝜅𝑡
) 

(3.1) 

where the ‘nutritional effectiveness’ 𝜅𝑛 reflects the nutrient quality of the growth media; 𝜅𝑡, the 

‘translational effectiveness’ is a parameter that correlates linearly with the speed of translational 

elongation; Φ is the fraction of proteins in the cells that do not change when there are nutrient 

variations. 

Equation 3.1 is analogous to the equation that describes an electrical current in a circuit with two 

resistors in series. This resemblance led Scott and Gunderson et al. to make the analogy of the 

bacterial growth with a simple electric circuit, where 𝜆 is the current flowing through the circuit 

with the resistors in series with conductance 𝜅𝑛 and 𝜅𝑡, while the total voltage is 1 −  Φ (see 

Fig.3.1).  

Having a rich media is analogous to having a high conductance 𝜅𝑛; inhibiting translation with a 

dose of chloramphenicol is like decreasing the conductance 𝜅𝑡; if the cells have an expression of 

unnecessary proteins, an increase of the fraction of nutrient-independent proteins leads to a 

decrease in the voltage (1- Φ). 
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Figure 3.1. The expression of growth rate (Eq. 3.1) is identical to the equation obtained 

with Ohm’s law for a circuit with two resistors connected in series. The voltage is equivalent 

to 1-Φ, and the growth rate 𝜆 to the current that passes through the resistors with 

conductance 𝜅𝑡 and 𝜅𝑛. Changing to a richer nutrient is as decreasing the blue resistor with 

conductance 𝜅𝑛, for which case the current would increase. Increasing translational 

inhibition with antibiotics is as increasing the brown resistor with conductance 𝜅𝑡, then the 

current would decrease. Expressing unnecessary proteins would be as decreasing the 

voltage 1 − Φ. Then by decreasing the voltage 1 − Φ while the resistances remain constant, 

the whole current 𝜆 decreases. Figure modified from [3]. 

 

The main observation that led Scott and Gunderson et al. to Eq.3.1 is that there are different kinds 

of proteins whose fraction on the proteome follow a different growth rate function. They found 

that by modulating the nutrient quality to increase the growth rate 𝜆, the fraction 𝜙𝑅 of ribosome-

related proteins, increases linearly as in Fig.3.2a, with the mathematical expression: 

𝜙𝑅 = 𝜆/𝜅𝑡 +  𝜙0 (3.2) 

where 𝜙0, is the vertical intercept of ribosomal proteins and 𝜅𝑡 is the inverse of the slope They 

also found that when inhibiting translation, 𝜙𝑅 follows a linearly inverse function  

𝜙𝑅 = 𝜙𝑚𝑎𝑥 − 𝜆 /𝜅𝑛 (3.3) 

As illustrated in Fig. 3.2 with the dashed lines (each of them corresponding to different growth 

media). 𝜙𝑚𝑎𝑥 is the vertical intercept of the  of ribosomal proteins and 𝜅𝑛 the inverse of the slope. 

In contrast with the ribosomal proteins, as shown in Fig.3.2b, the fraction 𝜙𝑃 of “other” 

constitutive proteins P decreases linearly as the nutrient-dependent growth rate 𝜆 increases. Lastly, 

the fraction 𝜙𝑄 of the housekeeping proteins, Q, remains fixed, independently on the nutrient 

conditions. Finally, overexpressing an unnecessary protein U takes an imposed faction 𝜙𝑈 of the 
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proteome, therefore it is also independent of the nutrient. Note that equation 3.1 is obtained directly 

from Eq.3.2 and Eq. 3.3, with Φ = 𝜙𝑄 + 𝜙𝑈 = 1 − 𝜙𝑚𝑎𝑥 + 𝜙0.  

 

 

 

Figure 3.2. Bacterial growth laws. a) The fraction of ribosomal proteins  𝜙𝑅, is a linear function 

of growth rate when the nutrient quality varies (dark line), while when there is translational 

inhibition (dashed lines), the ribosomal proteins follow a decreasing linear function of the 

growth rate. b) By contrast, the fraction of constitutive proteins 𝜙𝑃 decreases as the growth rate 

increases when nutrient quality becomes poorer, while (dashed lines) the growth rate decreases 

due to translational inhibition with antibiotics. c) The proteome can be divided at least into three 

sectors: the sector associated with housekeeping proteins Q is fixed whose fraction 𝜙𝑄 of the 

total proteome, has been experimentally found to be ~0.5 for E. coli; the ribosomal related 

proteins 𝑅 are represented by the fraction 𝜙𝑅, and “other” constitutive proteins P by the fraction 

𝜙𝑃. If the cells have artificially imposed expression of unnecessary proteins U, that occupy a 

fraction 𝜙𝑈, those decrease the size of the sectors P and R. The fraction of the ribosomal and 

other proteins change depending on the growth conditions, following the growth laws from (a) 

and (b), and 𝜙𝑅 +  𝜙𝑃 + 𝜙𝑄 + 𝜙𝑈 = 1. Figure modified from [4]. 

 

Considering that the sectors R, P, Q, and U, integrate the total proteome (𝜙𝑄 + 𝜙𝑃 + 𝜙𝑅 + 𝜙𝑈 =

1), the linear relations of the proteins described in Fig.3.2 (known as growth laws) can be 

understood as the cell allocating resources between the protein sectors, differently depending on 

what is optimal for growth at a given condition. 

The growth rate of a population of cells that overexpress unnecessary protein 𝑈 can be written in 

terms of the fraction that it takes from the proteome as: 

𝜆(𝑈) = 𝜆(𝑈 = 0) ∙  (1 −
𝜙𝑈

(1 − 𝜙𝑄)
) 

(3.4) 
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Since (1 − 𝜙𝑄) ∼0.5 is fixed, the equation above shows that increasing the fraction of unnecessary 

proteins can only decrease (linearly) the growth rate. 

 

This framework from Scott et, al., allows us to understand in terms of Ohm’s law and predict the 

growth rate of bacteria without the need to describe their underlying molecular mechanisms.  

In a further analysis, Basan et al., [11], also analyzed the cell size under the three mentioned 

perturbations:  nutrient quality variations, translational inhibition, and unnecessary protein 

production. 

Their experiments also were at the population level, as they consisted in obtaining the exponential 

bacterial growth curve in batch culture, from which subsamples were taken to measure the average 

cell size.  They corroborate the nutritional growth law, namely, that the cell size is an exponential 

function of the growth rate when nutritional content is varied. Interestingly, they also found that 

when growing bacteria that produce unnecessary proteins, the growth rate decreases while the cell 

size increases, which is a different tendency than the one given by the growth law, Fig.3.3. To 

explain such behavior, they also propose an allocation resource model, in which there is a ‘division’ 

kind of protein X, for which an individual cell needs to reach a certain value since the cell is born 

and while it grows, in order for the cell to divide.  

 

 

Figure 3.3. Cell size shows a different trend as a function of growth rate when it is 

modulated by nutrient quality (green) than when the expression of an unnecessary protein 

is varied (red). When the growth rate is modulated by nutrient quality, cell size follows an 

exponential function [2, 11] which is known as a “nutritional growth law”. The relation 

when there is unnecessary expression is reported experimentally by Basan et al. in [11]. The 

image is a representation of the results from [11]. 
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Here I present the results of a series of experiments in E. coli strains, which have a different level 

of the unnecessary fluorescent protein Venus and grown in three different growing media. 

Different from what was done by Scott and Gunderson et al. and Basan’s experiments, as described 

in chapter 2, the experiments I performed consisted of monitoring and measuring single cells over 

time, by using a microfluidic device [14]. Therefore, rather than having the populational growth 

rate (the inverse of the time that it takes for the population’s size to double), I analyze the relation 

of the average of cell size, division time, etc., of individual cells. 

Since the unnecessary protein that the strains produce is fluorescent, measuring their fluorescence 

gives a relative amount of unnecessary production. 

In this chapter, first I compare my results with the population-level results from Scott and 

Gunderson et al. and Basan et al. and analyze if this Venus dataset follows the predictions 

established by their models.  

 

3.2 Fluorescence distribution of ProVenus series 

The ProVenus strains differ among them in the strength of the promoter that controls the expression 

of the fluorescent protein Venus. As described in chapter 2, the promoters used in such strains 

(listed from low to high strength) are Pro1, Pro4, Pro5, ProA, ProB, ProC, and ProD [22]. A strain 

with a weak promoter will produce few fluorescent proteins and therefore its fluorescence will be 

lower in comparison with a strain that has a stronger promoter.  

Fig.3.4a shows the mean fluorescence (total fluorescence/cell size) over time of one mother cell 

for each strain in the ProVenus set. Those time traces were obtained by growing and monitoring 

bacteria in a Mother Machine device, fed by a constant flux of rich liquid growth medium. In 

Fig.3.4b is the fluorescence distribution of many cells for each ProVenus set.  
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a) 

 

b) 

 

Figure 3.4 ProVenus series’s Fluorescence. a) Time series of the mean fluorescence (total 

fluorescence divided by size) of a mother cell from each strain of the pProVenus set. Such 

strains have promoters with different strengths (Pro4, Pro5, …, ProD, [22]) controlling the 

expression of the fluorescent protein Venus. b) Distributions of fluorescence for a population 

of each strain. Fluorescent measurements were obtained from microfluidics (mother machine) 

experiments. 

 

3.3 Effect of Venus production on Size 

The size distribution of the wild type strain, when grown in the mother machine, are right-skewed 

as it is shown in Fig.3.5, which is a characteristic that has been widely reported [92, 9, 6, 14]. 

The mean size, when grown in poor medium, is 2.4 𝜇𝑚2 (blue), in the intermediate medium, 2.6 

 𝜇𝑚2(orange), and even bigger, in the rich one (red) the mean is 3.10  𝜇𝑚2. Therefore, using the 

mean of the distributions as the measurement representative for the population agrees with the 

second growth law, which says that for many microorganisms, on average, the size increases when 

increased the nutritional content of the growth media [2]. 
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Figure 3.5. Distribution of size of the wild type bacteria (no fluorescent protein 

production) when grown in different growth media with different nutritional content: 

poor medium (blue), intermediate (orange), and rich (red). Although there is a big 

overlap in the distributions, their mean values do show the increment in size, being 

〈𝑆〉𝑃𝑜𝑜𝑟 = 2.4 𝑢𝑚2, 〈𝑆〉𝐼𝑛𝑡𝑒𝑟𝑚 = 2.6 𝑢𝑚2 and 〈𝑆〉𝑅𝑖𝑐ℎ = 3.10 𝜇𝑚2. 

 

Besides the growth media, the overproduction of a protein also induces a change in the cell size 

[11]. Accordingly, Fig.3.6 shows the cell size distribution (using kernel density plots) of the 

ProVenus strains in different media. In the poor and intermediate media, there is a clear shift of the 

size distribution for the strains that produce more Venus, being the difference between wild type 

(WT) and the ProD (the strain that produces the most Venus, black line),  𝛥𝑆(𝐷, 𝑊𝑇)𝑃𝑜𝑜𝑟 = 45%. 

For the intermediate, the difference is 𝛥𝑆(𝐷, 𝑊𝑇)𝐼𝑛𝑡𝑒𝑟𝑚 = 40%. In contrast, in the case of cells 

growing in rich medium, the size of the population is very small among the series, being the biggest 

difference 𝛥𝑆(𝐷, 𝑊𝑇)𝑅𝑖𝑐ℎ = 2%. The difference in size between wild type and ProD is not 

conserved between different growth media. On the right side of Fig.3.6 it is shown the mean and 

variance of the ProVenus strains in the three different media, poor (blue), intermediate (orange), 

and rich (red).  
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Figure 3.6. Left: Size of ProVenus strains grown in three different media, poor (top), 

intermediate, (middle), and rich (bottom). The color code corresponds to the amount of 

the unnecessary protein Venus produced on each stain: light grey corresponds to the wild 

type strain, that does not produce Venus, and the darkest to the strain that has the strongest 

promoter for Venus expression, ProD. For the three plots, kernel density plots are shown 

rather than the histograms of the data, to have a better visualization of the differences 

among strains.  Right: Mean and variance of the size distribution of ProVenus strains 

growing in the three different media, poor (blue triangles): intermediate (orange 

diamonds), and rich (red circles). 

 

Fig 3.6 and Fig 3.7, show the size distributions of the cells at all time points; these distributions 

include the measurements in size of the cells regardless of their stage in the division cycle: whether 

they just divided, about to divide or anytime in between. To verify if this inclusion of all time 

points could mask a possible difference among the ProVenus strains in the rich media, I calculated 

the difference of the size at birth 𝑆𝑏, and size just before division 𝑆𝑑𝑖𝑣, between WT and the strain 

with ProD. These are, respectively:  𝛥𝑆𝑏(𝐷, 𝑊𝑇)𝑅𝑖𝑐ℎ = 5.3% and 𝛥𝑆𝑑𝑖𝑣(𝐷, 𝑊𝑇)𝑅𝑖𝑐ℎ = 5.4%. 

Although these differences are higher than when taking all the data points (which is 2%), it is fair 
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to say that the production of the Venus protein does not induce much change in the size of the cells 

when grown in rich medium. 

 

To characterize the effect in size due to Venus production I will first analyze some quantities related 

to size. To know what is a relevant measure for the size to reflects changes due to the protein 

production on a population of bacteria, I analyzed the relationship between cell size, cell size at 

birth 𝑆𝑏, at division 𝑆𝑑𝑖𝑣 and the average size 𝑆̅ (see diagram in Fig.3.7a), among strains in different 

media. Fig.3.7b shows the relation between the average cell size when cells are born 〈𝑆𝑏〉 and the 

average when cells are about to divide 〈𝑆𝑑𝑖𝑣〉. It can be seen that they follow a linear relationship 

and not surprisingly, with a slope that is close to 2, confirming that on average cells divide 

approximately in half.  

I also calculate the average size throughout the division time, 𝑆̅, and then take the average over the 

population, 〈𝑆̅〉. For the ProVenus strains in the three different media, the population average of 

the mean size 〈𝑆̅〉 is a linear function of the size at birth 〈𝑆𝑏〉 with a slope of ~1/ln(2), Fig.3.7c. 

Considering that the cell size increases exponentially, 𝑆(𝑡) = 𝑆𝑏2𝛼𝑡, then the average over the 

doubling time is: 

𝑆̅ =
1

𝑇𝑑
∫ 𝑆(𝑡)𝑑𝑡

𝑇𝑑

0
=  

𝑆𝑏

𝑇𝑑 𝛼 ln (2)
[2𝛼𝑇𝑑 − 1]. (3.5) 

 

Then, since the average division time and elongation rate of a population is 〈𝛼〉 ~〈1/𝑇𝑑〉, [6, 23], 

then it is fulfilled the relation 〈𝑆̅〉 =  〈𝑆𝑏〉/ ln 2 from Fig.3.7c 

For a cell on a specific time 𝑡, its total fluorescence 𝐹(𝑡) is a proxy for the number of Venus 

proteins at that time. To quantify the fluorescence on a single cell, it could be considered the 

average over time, since the cell is born until its division. Nonetheless, similar to the size, the 

average over the population of the average fluorescence over division time is approximately 〈�̅�〉 =

ln(2) ∗ 〈𝐹𝑏〉, and the average of fluorescence at birth and division are proportional such that 

〈𝐹𝑑𝑖𝑣〉 = 2 ∗ 〈𝐹𝑏〉 .  
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a) 

 

b) 

 

c)  

 

Figure 3.7. Average Size of ProVenus strains. (a) Illustration of a growing bacteria with size 

at birth 𝑆𝑏, and size just before division 𝑆𝑑𝑖𝑣, at time point 𝑇𝑑. 𝑆̅ is the average size of the cell, 

from its birth until its division. (b) Average size before division 〈𝑆𝑑𝑖𝑣〉 as a function of the size 

at birth 〈𝑆𝑏〉, of a population of each ProVenus strain on the three different growth media: poor 

(blue triangles), intermediate (orange diamonds), and rich (red circles). The dashed line shows 

the best linear fit to the data, which gives a slope of ~1.95. (c) Population average of the mean 

size of cells 𝑆̅ (mean size of a cell from birth until division) as a function of the average size 

at birth 〈𝑆𝑏〉. The color code is the same as in (b) and the dashed line shows the linear function 

with slope 1/ln(2). 

 

Fig. 3.8 reports the average size at birth 〈𝑆𝑏〉 relative to the size of the strain with no fluorescence.  

as a function of the fluorescence at birth 〈𝐹𝑏〉. The relative difference of the size is computed by 

using:  

R.D. (𝑋𝑖, 𝑋𝑊𝑇) =  
𝑋𝑖 −  𝑋𝑤𝑡

𝑋𝑊𝑇
 

(3.6) 

where 𝑋𝑖 corresponds to the average of a variable 𝑋 in a population of strain 𝑖 (one of the ProVenus 

strains), and 𝑋𝑊𝑇 is the average of the same variable for the wild type strain.  The size of the cells 

growing in poor and intermediate media are bigger as the fluorescence gets higher, while in rich 

media, does not seems to be any appreciable change on size except by the strongest promoter (in 

red—see the data point at the extreme right of the plot, corresponding to the highest fluorescence).  
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Figure 3.8. Relative difference of the mean size 〈𝑆𝑏〉𝑢 of each ProVenus strain 𝑢 respect 

to the mean size at of the strain with no Venus production 〈𝑆𝑏〉0 as a function of the mean 

fluorescence at birth 〈𝐹𝑏〉𝑢. The different style of markers corresponds to each growth 

media, blue for poor, orange for intermediate and red for rich media. The relative 

difference for each strain in a given medium is calculated respective to the wild type strain 

growth in the same growth medium. The bars show the standard deviation of the mother 

cells for each strain and growth media condition. 

 

This result qualitatively agrees with what Basan et al. observed in [11]: the average cell size in a 

population increases when it is forced to overproduce unnecessary protein and the effect on the 

bacteria at a given load of unnecessary protein is different depending on the growing conditions.  

The effect on cell size due to the production of an amount 𝑈 (or fluorescence 𝐹) of Venus proteins, 

(relative to the case of no Venus production, Eq.3.4), is higher in the poorest media than in the rich 

one, as seen in Fig.3.8.  

This result could be understood by considering that, for an originally small cell with mass 𝑚𝑐 

(bacteria in poor media), an extra mass, ∆𝑚𝑢 added to it (the mass corresponding to unnecessary 

production), will comprise a higher fraction of the original mass 𝑚𝑐 than when the original mass 

is bigger, (which is the case of cells grown in rich medium). This simplistic view is suggested by 

considering, as Scott and Gunderson et al. did, that the production of unnecessary protein increases 

the fixed fraction of proteome, but not the relative fractions of other sectors. 
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3.4 Effect of Venus production on Division Time 

Fig.3.9 shows the distribution of the division time, 𝑇𝑑𝑖𝑣, for the wild type strain, grown in the three 

different growth media. The mean division time in the rich medium is 〈𝑇𝑑𝑖𝑣〉𝑅𝑖𝑐ℎ=41min. For the 

other two media, their mean value, shown in Fig.3.9b, are 〈𝑇𝑑𝑖𝑣〉𝐼𝑛𝑡𝑒𝑟𝑚.=85min, and 

〈𝑇𝑑𝑖𝑣〉𝑃𝑜𝑜𝑟=92.5min, which suggest the cells divide faster in the intermediate medium than in the 

poor one. But, in contrast with the mean, the mode of the distributions in intermediate medium is 

75min and 65min for the poor. Since the mean and mode of the size distribution are smaller for 

the poor medium, followed by the intermediate and then by the rich medium (Fig.3.9), according 

to the growth law, the same trend should be followed by the average elongation rate (the inverse 

of the division time). Remember that the growth law states that the cell size is an exponential 

function of the growth rate when the latter is modulated with the nutritional content [2, 6]. 

Considering this law, since the mean (not the mode) of division time, is the function that meets the 

expected relationship with the size for the different growth media, I would keep the mean as the 

measurement to quantify and describe different variables of the populations. 

 

a) 

 

b) 

 

Figure 3.9. Division time, 𝑇𝑑𝑖𝑣, of WT in three different growth media. (a) Division time 

distributions of the WT strain (strain with no Venus production), grown in various growth 

media: poor (blue), intermediate (orange), and rich (red). (b) Mean (dark gray), mode (light 

gray) and standard deviation (error bar), of the 𝑇𝑑𝑖𝑣 distributions from (a). 

  

The differences in the distribution of the division time 𝑇𝑑𝑖𝑣 among the different ProVenus are not 

as drastic as in the distributions of size, which can be noted in Fig.3.10. In Fig 3.10 top, it is shown 

that in intermediate medium the distribution for all ProVenus strains and wild type (where the 
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lightest gray corresponds to no Venus production and the darkest the maximum production) are 

similar among them. The top right panel of this figure shows the corresponding mean and standard 

deviation for each strain, relative to the wild type.  

In the rich media, Fig.3.10 bottom, the mean value of the division time distributions increases as 

the expression of Venus becomes higher. Both the mean and standard deviation are higher for 

strains with a higher Venus production. This in concordance with Scott and Gunderson et al. 

observations [12]:  bacteria overexpressing unnecessary protein have a lower growth rate than 

when there is no overexpression. 

 

Figure 3.10. Left: Distribution of the division time 𝑇𝑑𝑖𝑣 of the ProVenus and WT strains 

grown in the intermediate and rich media. Right: corresponding mean and standard 

deviation of the division time distributions for all the strains. Values are divided by the 

respective mean and standard deviation of the WT strain. 

 

The division time distributions of cells growing in poor medium, Fig. 3.11 show a slight decrease 

in the mean and standard deviation as the production of Venus becomes higher, but the mode of 

the distribution is similar among the strains.  
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The decrease in division time when unnecessary proteins are being produced has not yet reported 

before, and it goes in contradiction with what is established from some cell size and growth models  

and reported from experiments [19,12, 21,11, 20].  Although in the following chapters this 

relationship is be persistent, further analysis and experiments need to be done to demonstrate it 

true and if so, understand the mechanism behind it.  

 

a) b) 

 

 

Figure 3.11 Division time of the ProVenus strains when grown in a poor medium. a) 

The shape of the distributions of 𝑇𝑑𝑖𝑣 changes for the different strains. As the promoter 

becomes stronger, the mode of the distributions slightly increases (blue circles, in (b)), 

while the standard deviation and the mean decrease (red and gray circles); the three 

measurements are relative to WT’s respective values. Missing describing b). 

 

On Fig.3.12 it is shown the mean division time of the ProVenus strains as a function of their 

fluorescence at birth 〈𝐹𝑏〉, when grown with the three different growth media. As before, this figure 

shows the division time relative to the wild type strain (Eq. 3.4), to make it easier to compare the 

increment among the strains and growth media.  

Cells growing in rich media (red circles, Fig.3.12) divide slower as a function of fluorescence; the 

strain with the highest fluorescence has an average division time approximately 16% larger than 

wild type. The bars correspond to the standard deviation of  𝑇𝑑𝑖𝑣 for different mother cells. For the 

intermediate medium (orange diamonds) the division time of the ProVenus strains slightly 

increases compared with the wild type, although the variation among mother cells is bigger as the 

size of the bars suggests. For the poor media (blue triangles) the mean 𝑇𝑑𝑖𝑣 describes a tendency 

of the population dividing faster as the fluorescence increases. It is worth noticing that there is a 

higher variation in 𝑇𝑑𝑖𝑣 in poor and intermediate media than in the case of the rich media. Given 
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that the division time distributions have long tails (Fig.3.11), more data might be necessary to 

accurately calculate the mean values 〈𝑇𝑑𝑖𝑣〉. Further analysis needs to be done to give a better 

measurement of the division time that characterizes a population of individual cells in poor media, 

maybe by considering more than the first moment of the distribution. 

 

 

Figure 3.12. Relative difference of the mean division time 〈𝑇𝑑𝑖𝑣〉𝑢 for each ProVenus 

strain 𝑢, relative to the mean division time of the wild-type strain (strain with no 

fluorescent protein expression) 〈𝑇𝑑𝑖𝑣〉0 (Eq.3.6), as a function of the mean fluorescence 

at birth 〈𝐹𝑏〉𝑢, when cells are grown in different media. The bars show the standard 

deviation of the average division time of the mother cells, for each strain and growth 

media condition. 

 

3.5 Effect of Venus production on Elongation Rate 

Another relevant quantity that describes the physiology of the cells is the elongation rate: the rate 

at which a cell changes its size. If an individual cell 𝑖 that grows exponentially as 𝑆𝑖(𝑡) = 𝑆𝑏
𝑖 2𝛼𝑖𝑡, 

then 𝛼𝑖, which is its instantaneous elongation rate, can be calculated from the time traces of the 

bacteria, taking its derivative: 

1

𝑆𝑢

d𝑆𝑢

d𝑡
= ln(2) ∗ 𝛼𝑢 

(3.7) 

As mentioned before, the inverse of the average elongation rate, 1/〈𝛼𝑢〉, of a population should 

be equal to the average division time of a population 〈𝑇𝑑𝑖𝑣
𝑢 〉, which is true for the ProVenus strains 

in the three different media, as seen in Fig.3.13. A linear fit to these averages was applied and the 

resulting slope is ~1.03. 
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It is important to note that what I obtain from my experiments is the elongation rate 𝛼 of individual 

cells (calculated from Eq.3.5), while in the populational experiments the growth rate, 𝜆 is the rate 

at which the population doubles its size. In other words, from one populational experiment, it is 

obtained one measurement of 𝜆 and from a single-cell experiment, what is obtained is a distribution 

of the elongation rate 𝛼. Nonetheless, it has been observed that 𝜆 and the population average 〈𝛼〉 

obey the relationship [6]: 

〈1/S dS/dt〉 =  〈𝛼〉 ∗ ln(2)  =  〈1/𝑇𝑑𝑖𝑣〉 ∗ ln(2)  =  𝜆  (3.8) 

Then we can investigate the growth rate relations known from previous population-level studies 

with the average of the elongation rate of a population of single cell, given that 〈𝛼〉 =  𝜆/ln(2) . 

 

Figure 3.13. Comparison of the mean division time 〈𝑇𝑑𝑖𝑣〉 and the inverse of the elongation 

rate, 1/〈α〉, for the ProVenus series in poor, intermediate, and rich media. The bars show the 

standard deviation of average 〈𝑇𝑑𝑖𝑣〉 and 1/〈α〉 of various mother cells, for each strain and 

growth media. The dashed line represents the identity function. The best fit for these data 

with a linear function gives a slope of ~1.03.  

 

 

To compare my result with the theory developed by Scott and Gunderson et al., Eq.3.4, it is 

important to notice that the fluorescence 𝐹 that I measured experimentally comes only from the 

expression of the Venus protein. It is then expected for 𝐹 to be proportional to the number of 

unnecessary proteins 𝑈 (Venus) produced in the cell. By contrast, from Eq. 3.4 what is obtained is 

the growth rate as a function of the fraction of the unnecessary proteins from the proteome 𝜙𝑈. 

Considering the cell size to be proportional to the total amount of proteins in the cell (over two-

thirds of dry-mass in different conditions [11]), then 𝜙𝑈 ~ 𝑈/𝑠𝑖𝑧𝑒 , where 𝑈 is the number of 

unnecessary proteins, and 𝜙𝑈~𝐹/ 𝑠𝑖𝑧𝑒. The size here is given in a number of pixels from our 
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image and has no physical dimension; similarly, the intensity 𝐹 of the fluorescent signal is 

presented as a dimensionless quantity. 

Then, according to Eq.3.4 and the above considerations, the relative difference of growth rate 𝜆𝑈 =

𝜆(𝑈) of a strain that produces 𝑈 unnecessary proteins, relative to the growth rate 𝜆0 of a strain 

with no unnecessary production, R.D. (𝜆𝑈, 𝜆0) is: 

𝑅. 𝐷. (𝜆𝑈, 𝜆0) =
𝜆𝑈 − 𝜆0

𝜆0
 = −

𝜙𝑈

1 − 𝜙𝑄
~ −

𝐹

𝑠𝑖𝑧𝑒
  . 

(3.7) 

The relation from above holds for the mean elongation rate as well, 𝑅. 𝐷. (〈𝛼〉𝑢, 〈𝛼〉0) =

 〈𝐹〉𝑢/ln(2), where 𝑢 is an index to indicate the different ProVenus strains with different amount 

of Venus expression, 𝑢 = {𝑃𝑟𝑜1, … , 𝑃𝑟𝑜𝐷}, and 〈𝛼〉0 is the average elongation rate for the strain 

with no Venus production. 

a) 

 

 

 

b) 

 
c) 

 

Figure 3.14. a) Relative difference, of the mean elongation rate 〈𝛼〉𝑢 of the ProVenus strains 𝑢 that 

produce the unnecessary fluorescent protein Venus, with respect to the mean elongation rate 〈𝛼〉0 

WT strain (without Venus production) as a function of the fluorescence mean 〈𝐹〉𝑢. The color code 

corresponds to different growth media in which the strains were grown. The elongation rate was 

calculated by taking the mean of the elongation rate 𝛼𝑖, obtained by fitting the size of each 

individual cell 𝑖 to 𝑆𝑖(𝑡)=𝑆𝑏𝑖𝑟𝑡ℎ
𝑖 2𝛼𝑖𝑡. Then for the population 𝑢 of cells, 𝜆𝑢 = ln(2) 〈𝛼𝑖〉𝑢, the 

bracket means the population average. The bars show the standard error for each strain and the 

dotted line is the best linear fit to the data for each growth media. b) Kernel density estimation for 

4 of the Venus set of strains; in order of fluorescence WT (no fluorescence), Pro5, ProC, and ProD, 

grown in the rich media. c) Density for the same strains as in (b) but grown in poor media. For each 



38 

 

strain, the elongation rate was calculated from 1500 individual cells.  For each strain in rich 

medium, it was analyzed ~3000 individual cells and ~1500 for each strain in intermediate and poor 

media. 

 

Fig.3.14 shows the difference of the average elongation rate for each Venus strain, relative to the 

strain with no Venus 𝑅. 𝐷. (〈𝛼〉𝑢, 〈𝛼〉0) for the Venus set in three different growth media, Rich, 

Intermediate and Poor, as a function of the average fluorescence. The markers show the mean 

values for each strain, the error bars correspond to the standard deviation from single cell 

measurements, and the dashed lines, the best fit for the data-points of the strains in each media. 

The rich and intermediate media curves show a decrease of the elongation rate as the fluorescence 

gets larger, as expected from Eq.3.6. However, in poor media the noise is too large to draw any 

conclusions. Nonetheless, the mean value of the elongation rate is not enough to understand the 

noise emerging poor medium case. In Fig.3.14b and c, I show the distribution of elongation rate α 

for 4 strains, WT, that do not produce any Venus, and Pro5, ProC, ProD, in the Rich and Poor 

media. In Rich media, as the fluorescence is larger, the elongation rate distributions shift to the 

left, so the mean of α clearly decreases, relatively to that of WT (〈𝛼〉0).  

 

In Poor medium, the peaks of the distributions are close and have a long-left tail that seems to 

decrease as the fluorescence increases. Because of this, the calculation of the mean, and therefore 

the relative difference, has high noise. But considering the shape of the distribution, not only the 

mean value of the elongation rate might be necessary to understand the noise emerging from the 

poorest media. 

Considering that the nutritional growth law, which establishes that cells are bigger when grown in 

rich media than in a poor one, 𝑠𝑖𝑧𝑒𝑅𝑖𝑐ℎ > 𝑠𝑖𝑧𝑒𝑃𝑜𝑜𝑟, then the absolute relative difference of the 

growth rate (Eq.3.7) should be larger for cells growing in poor than in rich media: 

 

|R. D. (𝜆𝑅𝑖𝑐ℎ
𝑈 , 𝜆𝑅𝑖𝑐ℎ

0 )| < |R. D. (𝜆𝑃𝑜𝑜𝑟
𝑈 , 𝜆𝑃𝑜𝑜𝑟

0 )|  (3.9) 
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The same relation should hold in the case of the relative elongation rate. Nevertheless, data from 

Fig.3.14a suggest it might not be the case since the absolute difference is larger in the rich medium 

than in the poor one for the higher values or 〈𝐹〉.  

One possible reason for these observed discrepancies between model predictions and the 

experimental results can be explained as follows:  

I assumed the fluorescence to be proportional to the number of proteins U:  

𝐹 = 𝑎 ∗ 𝑈 = 𝑎 ∗ 𝜙𝑈 ∗ 𝑠𝑖𝑧𝑒 , (3.10) 

with 𝑎 being a proportionality factor that relates the number of fluorescent proteins and the 

fluorescence they produce. If 𝑎 depends on the quality of the growth media, then the X-axis in 

Fig.3.14a needs to be adjusted to represent correctly Eq.3.9. To prove or disprove this point, it 

would be necessary to make calibration experiments of the Fluorescence produced by a number 

(or fraction) of Venus proteins. However, if 𝑎 is the same for all media and Fig.3.14 is correct, then 

the deviation observed in this figure cannot be explained by considering that the unnecessary 

protein only changes the “fixed” sector of the proteome (the “voltage” in the Ohm’s law analogy) 

but also affects the “capacitance” of the resistors. 

 

3.6 Nutritional growth law and unnecessary expression 

As mentioned in this chapter’s introduction, the size of bacteria has an exponential dependence on 

the nutrient-imposed growth rate, a relation known as the ‘nutritional growth law’.  

In Fig.3.15a,  I show with big markers the average size at birth, 𝑆𝑏𝑖𝑟𝑡ℎ, as a function of the average 

elongation rate 𝛼, for the WT strain (that does not produce any fluorescent protein) growing in the 

three different growth media. The small circles are averages of individual lineages, while the 

dashed line is the best exponential fit for this relation. As already shown by Taheri-Araghi et al. 

[6], the average size as a function of the average elongation rate, measured for individual cells 

with Eq.3.7, reproduces the nutrient-imposed curve of size and growth rate. 

As the level of unnecessary production increases, the relation between size and growth rate 

separates from the nutrient-quality curve, as seen in Fig.3.15b, as previously reported by Basan et 

al. for population-level experiments [11]. While in the three different growth media the cell size 

increases with Venus production (as indicated by the brown arrow), the elongation rate shows a 
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tendency to decrease in the rich and intermediate media, while in the poor one it is not conclusive. 

These observations are the same as in sections 3.6 and 3.5, where the size and the elongation rate 

were analyzed as functions of the fluorescence.  

a) b) 

 
 

Figure 3.15. Average size at birth, 𝑆𝑏𝑖𝑟𝑡ℎ, as a function of the average growth (elongation) rate 

𝛼. a) The big markers correspond to the averages of all single cells of the strain with no Venus, 

grown in the three different growth media. The smaller circles are averages of different lineages 

in the population, red for the rich media, orange for the intermediate and blue for the poor. The 

dashed line is the best exponential fit. b) Average size vs average elongation rate for all the 

ProVenus strains in the three different growth media. As the strains produce more Venus, the 

averages separate from the dashed line, which is the same as in (a). The green arrow indicates the 

curve of nutrient modulated growth, and the brown arrow the direction of the curves with a higher 

level of production (or fluorescence). 

 

3.7 Discussion 

The relations among different physiological parameters when considering the averages of the 

single-cell measurements of the ProVenus strains coincide with most of the relations known from 

populational/bulk experiments.  

The negative correlation between protein overexpression and growth rate follows a linear negative 

function [4]. From the three different growth media in which the ProVenus series were grown, in 

two of them (rich and intermediate), such a linear negative relationship was observed. In the other 

growth medium used (poor), there is a slight positive tendency of increased mean elongation rate 

for the strains that produce the most unnecessary protein, but because of the high variation in 

elongation rate in this specific media, there is still further acquisition of data and analysis to be 

performed before making any conclusion about this contra-intuitive observation. The effect that 

unnecessary protein production has on the elongation rate, as defined with the relative difference 
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with no-unnecessary production, is larger for rich media than for other media. This result does not 

agree with the Scott and Gunderson et al. model. To understand the reason for this discrepancy it 

would be necessary to make “calibration experiments”, to actually map the fraction of the Venus 

content in the strains and their fluorescence, on the different growth media. This would help to 

prove/disprove the theory or identify if there are missing considerations in the treatment of the 

fluorescent data.  

In agreement with Basan et al, the average cell size increases when there is unnecessary 

overproduction, and since under this same perturbation the elongation rate decreases, the size as a 

function of elongation rate shows a negative correlation, displaying a different tendency as the one 

predicted by the nutrient-limiting growth relation (the nutritional growth curve). 

In summary, here I presented an analysis for the growth of E. coli under various conditions: 

different growth media and levels of overexpression of unnecessary protein. This analysis mostly 

consisted of relating the average values of the growth variables, which confirm the results already 

obtained at the population level and raise new questions for further analysis. Given the 

experimental setup I used in this dataset, I can also analyze how these variables relate to a single-

cell level. Such an analysis is presented in the following chapter.  



42 

 

4. Correlation between cell growth and unnecessary protein synthesis at single-cell 

level 

4.1 Introduction  

A population of bacteria has a stable and reproducible average cell size, division time, or proteome 

content when grown under a steady condition. Some of these physiological parameters can even 

be predicted using the so-called growth laws, as described in Chapter 3 [2, 4, 8]. However, the 

mean population behavior of bacteria does not give enough information to understand the process 

by which individual cells control their growth. 

Over the years, different cell size control models have been proposed [8], which are briefly 

described in Fig.4.1. The ‘sizer’ model states that cells monitor their size and divide once they 

reach a target size. The ‘timer’ model claims that cells divide after a fixed time since birth. Finally, 

the ‘adder’ control model states that there is a continuous expansion of length until it has added a 

fixed length  regardless of birth size.  

 

 

Figure 4.1. Bacterial size control models. In the ‘sizer’ model (top), cells divide once they 

reached a fixed size 𝑆𝑑𝑖𝑣, independent of the size at birth  𝑆𝑏. In the ‘timer’ model (middle), the 

size depends solely on the age of the cells and divide after a fixed duration since birth, such that 

the division time 𝑇𝑑𝑖𝑣 is constant. In the ‘adder’ model (bottom), there is a constant mass (or 

content) ∆ that cells need to reach to triggers its division. The relations between the variations in 

size at division 𝑆𝑑𝑖𝑣 and division time 𝑇𝑑𝑖𝑣 as functions of variations of size at birth 𝑆𝑏 for a 

population of bacteria that follows each model are shown on the right side. Those relations help 

determine which model is that a certain bacteria or strain follows. Figure modified from [8]. 
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The specific relationships between size at birth, size at division, and division time are distinct for 

these different models and can be used to discriminate between the three different hypotheses (see 

illustration in Fig.4.1). It has been observed that different species of bacteria follow one or a 

combination of these mechanisms [6, 7, 9, 31-37]; for E. coli, it has been reported by several 

single-cell studies that the model that best describes its growth is the adder model [5, 6, 7, 9, 33]. 

Specifically, Taheri-Aragui et al., using the mother machine, monitored E. coli cells and found that 

the adder model relations are verified when bacteria grow in media with different nutrient quality.  

The same study also found deviations in the nutrient growth law at the single-cell level [6, 23].  

As shown in Chapter 3, at the population level, overproducing unnecessary proteins changes the 

rate of growth. Therefore, one could ask: what is the effect on growth at the individual cell level 

when the cells overproduce unnecessary proteins? Are the relationships described by the Adder 

model conserved at the individual cell level?  

Presumably, the only systematic analysis of the effect on growth when cells produce different 

levels of unnecessary proteins, including cell size measurements, is the one from Basan et al. [11]. 

Their main observation (presented in Chapter 3, Fig.3.3) is that when there is an expression of 

unnecessary proteins, the mean cell size of a population increases while the growth rate decreases. 

Such relation goes in the ‘opposite direction’ than the nutrient growth law.  

Their experiments consisted of growing bacteria in bulk, where the individual behavior of cells 

cannot be distinguished from each other. In other words, they did not have access to single-cell 

parameters, such as the distributions of size at birth and division, elongation rate, and division time 

of their populations.  

Nevertheless, they presented a possible mechanism for individual cells to explain their results.  

This hypothesis is that there is a ‘division protein’ 𝑋, which a cell synthesizes and accumulates 

over its cell cycle, and once it reaches a threshold 𝑋𝑑𝑖𝑣 it triggers cell division, as illustrated in 

Fig.4.2. In their model, as in Scott and Gunderson et al.'s model (Fig.3.2), the cell allocates 

resources among the different sectors of proteins: housekeeping 𝑄, ribosome-associated 𝑅, and 

‘others’ 𝑃, including the 𝑋 sector. The fraction of each sector depends on nutrient quality.  
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Then, if the cell is forced to overproduce unnecessary proteins 𝑈, the resources are split to 

synthesize such U proteins, which takes away resources otherwise destined to the other sectors. 

Under this condition, the cell needs a longer time for 𝑋 to reach the threshold 𝑋𝑑𝑖𝑣, making division 

time longer than if the cell did not have to produce U. 

 

 

Figure 4.2 Diagram of Basan et al. model [11]. There is a kind of protein X, ‘division protein’, 

which the cell needs to accumulate and reach up to a threshold 𝑋𝑑𝑖𝑣 to trigger division. In a) a 

wild type strain is represented with its different protein sectors, as in Scott and Gunderson et al. 

(see chapter 3): housekeeping Q, ribosome-affiliated proteins R, constitutive P, plus the division 

proteins ‘X’. According to experimental results, the fraction of Q proteins is fixed. b) If a cell 

that produces unnecessary protein U is born with the same cell size as (a), the fraction of the 

protein sectors R, P, and X are compressed, since the fraction of Q is fixed and of U is imposed. 

Therefore, since the initial amount of X is less, it will take the cell a longer time 𝑇𝑑𝑖𝑣 to reach 

the threshold 𝑋𝑑𝑖𝑣 of X than if there was no U protein.  

 

In this section, I present the analysis of a new single-cell dataset for different strains that 

overproduce the unnecessary protein Venus grown in different growth media. With this dataset, I 

check the validity of Basan et al.’s hypothesis by relating the size, and fluorescence at birth and 

division, with the division time. Also, I explore the extension of the adder model for the strains 

that have different levels of unnecessary proteins.  

Overall, I analyze the deviations from the relations at the population level presented in chapter 3 

and identify mathematical relations that describe the effect on the protein production on the 

different growth variables at the single-cell level. 
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4.2 Control of cell size  

As I mentioned above, E. coli growth is phenomenology consistent with the adder model [5, 6, 7, 

9, 33]. That is, a cell 𝑖 add a fixed amount Δ of mass at each generation, so that the size at division 

𝑆𝑑𝑖𝑣
𝑖  and the size at birth 𝑆𝑏

𝑖   obey the following relationship: 

 𝑆𝑑𝑖𝑣
𝑖 = 𝑆𝑏

𝑖 +  Δ . (4.1) 

To determine whether or not the overproduction of protein affects this relationship (Fig.4.1), in 

Fig.4.3 I show the size at division as a function of the size at birth for the Venus strains grown in 

the intermediate medium. The triangles correspond to the population average for each strain  𝑗 =

{WT, Pro1, Pro4, … }, which, as shown in chapter 3, follow the function 〈𝑆𝑑𝑖𝑣
𝑖 〉𝑗 = 2〈𝑆𝑏

𝑖 〉𝑗 (the 

brackets define an ensemble average over the population 𝑗 of 𝑁 cells). 

 

 a) b) 

 

Figure 4.3. a) Size at division 𝑆𝑑𝑖𝑣 as a function of the size at birth 𝑆𝑏 for each ProVenus strain 

𝑢 growing in the “intermediate” medium. The larger markers show the mean over a population 

of individual cells 𝑖, 〈𝑆𝑑𝑖𝑣
𝑖 〉𝑗  vs 〈𝑆𝑏

𝑖 〉𝑗, and the dashed line corresponds to the best linear fit, which 

has a slope 2.01. For each strain, the cells were grouped by their cell size at birth into six 

intervals. The small markers show the mean of the size at division 𝑆𝑑𝑖𝑣
𝑗

 as a function of the mean 

size at birth 𝑆𝑏
𝑗
 of those six groups per each strain 𝑗 (connected lines). The rainbow color code 

represents the level of fluorescence of the strains. b) Slope and intercept obtained from the best 

linear fit for each strain in (a), as a function of the mean fluorescence. 

 

I divided each population 𝑗, into six equally sized intervals depending on the value of the size at 

birth, 𝑆𝑑𝑖𝑣
𝑗

. The small circles show the mean size at division of the individual cells (indicated with 
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the 𝑖 index) corresponding to each interval 𝑘, 𝑆�̅�𝑖𝑣
𝑗𝑘

≔ 〈𝑆𝑑𝑖𝑣
𝑖 〉𝑗𝑘, as a function of the mean size at 

birth for each interval and each strain 𝑆�̅�
𝑗𝑘

. For simplicity, henceforth I will indicate the mean of a 

variable X over individual cells 𝑖, belonging to a bin 𝑘 of a population 𝑗, such as 〈𝑋𝑖〉𝑗𝑘, only as 

�̅�𝑏
𝑗
. This representation with the binning of some variables helps to visualize the relationship at the 

single-cell level, so I refer to it as the ‘single-cell trend’, a term also used in other work [6, 20]. 

The single-cell trend for all strains shows deviations from the population trend, which coincides 

with Eq.4.1 since, as displayed in Fig4.3b, the calculated slope obtained from the best fit of each 

curve in Fig.4.3a is positive and relatively constant among strains. The intercept for each strain 

then corresponds approximately to the added size Δ𝑗, which gets larger as the fluorescence 

(unnecessary production) of the strain 𝑢 increases, Fig.4.3b.  

Similarly, each ProVenus strain grown in the other two growth media have a positive correlation 

between 𝑆�̅�
𝑗
 and 𝑆�̅�𝑖𝑣

𝑗
, as can be observed in Fig.4.4a, where the mean 𝑆�̅�𝑖𝑣

𝑗
 is shown as a function 

of the binned size at birth 𝑆�̅�
𝑗
, rescaled by the populational mean 𝑆�̅�

𝑗
/〈𝑆𝑏

𝑖 〉𝑗 for each strain 𝑗 

(continuous lines) in the three different media, poor (circles in blue), intermediate (in orange), and 

rich (in red). The slopes corresponding to each strain's linear fit are in Fig.4.4b, as a function of 

the mean fluorescence of each strain. The slope has a low correlation with the fluorescence, with 

a Pearson correlation coefficient of -0.17, showing that there is no clear bias on the size regulation 

due to the unnecessary protein production.  

Given that an individual cell 𝑖, (from the population 𝑗), grows exponentially with time 𝑆𝑖𝑗(𝑡) =

𝑆𝑏
𝑖𝑗

2𝛼𝑖𝑗𝑡, then at the time of division  

 
 𝑆𝑖𝑗(𝑇𝑑𝑖𝑣

𝑖𝑗
) = 𝑆𝑑𝑖𝑣

𝑖𝑗
= 𝑆𝑏

𝑖𝑗
2𝛼𝑖𝑗𝑇𝑑𝑖𝑣

𝑖𝑗

 , (4.2) 

 

therefore, considering Eq.4.1, the division time is: 

 
 

𝑇𝑑𝑖𝑣
𝑖𝑗

=  
1

𝛼𝑖𝑗
log2 (1 +

Δ𝑗

𝑆𝑏
𝑖𝑗

) 
(4.3) 
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In Fig.4.4c is presented the mean of the division time 𝑇𝑑𝑖𝑣
𝑗

, as a function of the binned scaled size 

at birth, 𝑆�̅�
𝑗
/〈𝑆𝑏

𝑖 〉𝑗, for all ProVenus strains in the three different growth media. All populations 

show a negative correlation between 1/𝑇𝑑𝑖𝑣
𝑖𝑗

 and 𝑆𝑏
𝑖𝑗

 which is consistent with the functional form of 

Eq.4.3, if Δ𝑗=fixed.  

 

 

a) 

 

 

b) 

 

c) 

 

  

d) 

 

 

Figure 4.4. a) Mean size at division 𝑆�̅�𝑖𝑣
𝑗

 as a function of the binned rescaled size at birth 

𝑆�̅�
𝑗
/〈𝑆𝑏

𝑖 〉𝑗 (rescaled by the average size at birth over all individual cells 𝑖), for each ProVenus 

strain 𝑗 (connected lines) growing in three different media, rich (red), intermediate (orange), 

and poor (blue). b) Slope obtained from the linear fit to the single-cell (binned) relation 𝑆�̅�𝑖𝑣
𝑗

vs 

𝑆�̅�
𝑗
 for each strain and condition in (a). The dashed lines correspond to the average of the slopes 

for each growth media, with the color being the same as the data points. c) and d) Division time 

�̅�𝑑𝑖𝑣
𝑗

, and the mean added size Δ̅𝑗 (defined for a cell 𝑖 Δ𝑖𝑗 ∶= 𝑆𝑑𝑖𝑣
𝑖𝑗

− 𝑆𝑏
𝑖𝑗

) , as functions of the 

binned rescaled size at birth 𝑆�̅�
𝑗
/〈𝑆𝑏

𝑖 〉𝑗, for each ProVenus strain 𝑗 grown in three different media. 

The color code is the same as in (a).  

 

   

Lastly, similar to Fig.4.4a and b, Fig4.4d shows the mean Δ𝑗 of the added size as a function of 

𝑆�̅�
𝑗
/〈𝑆𝑏

𝑖 〉𝑗 for each strain growing in the different media. It can be appreciated that some of the 
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curves do not show a completely flat trend, which is consistent with the slope for 𝑆�̅�𝑖𝑣
𝑗

 vs 𝑆�̅�
𝑗
 not 

being precisely 1. Despite these small deviations, which can be explained by molecular and 

segmentation noise [38], the relations among the growth variables are more aligned with the adder 

model, even so, that the name ‘near adder’ control has been used to describe the size control of E. 

coli [49]. Then, the adder control mechanism still holds during the overproduction of unnecessary 

proteins. 

Although the molecular basis of the adder regulation is unclear, [6,8,9], as mentioned in the 

introduction, one hypothesis is that there is a specific kind of “division” proteins that are 

responsible for cells to trigger division [11, 20, 45]. This analysis shows that the added size (or 

protein) increases as the strains produce more unnecessary proteins. In the following sections, I 

will further discuss this point.  

 

4.3 Deviations from “population” behavior 

When considering a single cell 𝑖, the elongation rate 𝛼𝑖 (how fast the cell’s body grows) obtained 

by fitting the temporal evolution of its size by the function 𝑆𝑖(𝑡) = 𝑆𝑏
𝑖 2𝛼𝑡, and the frequency of 

division 1/𝑇𝑑𝑖𝑣
𝑖  (how fast they divide), are different variables. Such distinction is not possible to do 

at a population level, where, as seen in Chapter 3, the averages over a population result to be the 

same 〈1/𝑇𝑑𝑖𝑣
𝑖 〉 = 〈𝛼𝑖〉.  

To analyze this distinction, in Fig.4.5a I show the mean size at birth S̅𝑏
𝑗
 as a function of the binned 

inverse of the division time 1/�̅�𝑑𝑖𝑣
𝑗

 for the ProVenus distributions for each growth media 𝑗. First, 

there is a noticeable difference between media: In poor (blue) and intermediate (orange) media, 

for the slowest dividing bacteria the relation is closely similar to the one obtained at the population 

level (circles). However, when division is faster, the correlation between division time and 

elongation rate decreases. In rich media (red), this correlation is lost, as indicated by the zero slope 

for all the strains observed in the bottom plot of Fig.4.5a. The X-axis indicates the mean 

fluorescence of each strain to relate Pearson’s correlations with the amount of protein they produce 

on average: In the poor and intermediate media, as the population has higher fluorescence, the 

correlation 𝑅(𝛼, 1/𝑇𝑑𝑖𝑣) decreases, while in the rich media, all the strains show close to zero 

correlation, independent of Venus's amount. 
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a) 

 
 

 

 

b)  

 

 

 

Figure 4.5. Elongation rate 𝛼 versus the inverse division time 1/𝑇𝑑𝑖𝑣. a) The larger markers 

correspond to the population averages for each ProVenus series in poor (blue), intermediate 

(orange), and rich (red). The smaller markers correspond to the mean value of the data binned 

1/�̅�𝑑𝑖𝑣. The bottom plot shows the average of the Pearson’s correlation coefficient between 𝛼 

and 1/𝑇𝑑𝑖𝑣, 𝑅(𝛼, 1/𝑇𝑑𝑖𝑣) calculated for many mother cells. b) Enlarged elongation rate versus 

division time plots, for the strains grown in rich (top) and intermediate (bottom) media. The 

rainbow color code corresponds to different fluorescence levels, from gray, which corresponds 

to the WT strain with no unnecessary production, to the strain with the highest production, 

ProD (red). The arrows indicate the direction of increasing protein production.  

 

This observation was made by Kennard et al. [23] for strains grown in different growth media, but 

they did not explore the effect on growth due to unnecessary protein production.  

In Fig.4.5b, I show the close-up of the ProVenus strains in the rich and intermediate media. The 

rainbow code color represents the fluorescence level, from wild-type in gray (no fluorescence) 

until ProD strain in red, which is the strain with highest Venus production (higher fluorescence). 

The arrows also indicate the direction of increasing fluorescence. In rich media, the slope across 

strains seems to be the same and is almost horizontal, which means that 𝛼 does not depend on the 

levels of unnecessary protein produced within each strain. In the intermediate media, cells with 

long division times have the same relationship with 𝛼 across strains, and they are close to the 𝑦 =

𝑥 function. For shorter division times, cells deviate from the identity, and they deviate more as 

they produce more unnecessary protein.   
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From Eq.4.3, the case of 1/𝑇𝑑𝑖𝑣~𝛼 is obtained when the size at birth is close to the added size, 

Δ~𝑆𝑏. 

With this, it can be interpreted from Fig.4.5b that for the WT strain there is a majority of cells for 

which Δ~𝑆𝑏. But then, since producing more Venus increases the size (mass) of the cells, for the 

strains with higher production, the relation deviates more from the identity/population curve.   

The phenomenological interpretation from Kennard et. al, which is based on considering these 

deviations due only  to the growth media, is that when bacteria are divide slowly, they have enough 

time to respond to transient environmental fluctuations and equally coordinate the elongation rate 

and division frequency. Whereas in rich media, individual cells do not have enough time to react 

and adapt their divisions. This hypothesis could be extended to include deviations due to the 

overproduction of proteins, considering that it may also introduce fluctuations in the allocation of 

resources and the number of proteins. 

 

4.4 Effect on division time of overexpression of the fluorescent protein Venus 

To study the effects on division time of overexpression of the fluorescent protein Venus, I analyzed 

the relationship between division time 𝑇𝑑𝑖𝑣 for various fluorescence levels in single cells. More 

specifically, I measured the fluorescence at birth 𝐹𝑏𝑖𝑟𝑡ℎ, just before division 𝐹𝑑𝑖𝑣, and the difference 

Δ𝐹 = 𝐹𝑑𝑖𝑣 − 𝐹𝑏𝑖𝑟𝑡ℎ.  

First, in Fig.4.6a, I show the relationship between 𝑇𝑑𝑖𝑣 and 𝐹𝑏𝑖𝑟𝑡ℎ. As discussed in Chapter 3, I take 

the mean of division time 〈𝑇𝑑𝑖𝑣〉𝑗, and fluorescence 〈𝐹𝑏𝑖𝑟𝑡ℎ〉𝑗 over the population 𝑗 of individual 

cells for each ProVenus strain, and plot 〈𝑇𝑑𝑖𝑣〉𝑗 versus 〈𝐹𝑏𝑖𝑟𝑡ℎ〉𝑗. The relationship shows a positive 

slope in rich and intermediate medium (large red circles and orange diamonds). For poor medium 

〈𝑇𝑑𝑖𝑣〉𝑗 decreases with 〈𝐹𝑏𝑖𝑟𝑡ℎ〉𝑗, but as mentioned before, a larger data set is needed to support this 

claim. 

Contrary to the observed behavior at the population level, the relation at the single-cell level of 

division time and fluorescence at birth, �̅�𝑑𝑖𝑣
𝑗

 versus �̅�𝑏𝑖𝑟𝑡ℎ
𝑗

, shows a negative slope. In Fig.4.6a, this 

effect is shown with the small markers and joined by continuous lines corresponding to each strain 

j. I quantified this negative correlation between 𝑇𝑑𝑖𝑣
𝑗

 and 𝐹𝑏𝑖𝑟𝑡ℎ
𝑗

 using Pearson’s correlation 
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coefficient as shown in Fig.4.6a, right panel. This result demonstrates that cells that are born with 

fewer fluorescent proteins take longer to divide than those born with more fluorescent proteins. 

 

 

 

a) 

 

 

 

 

 

 
b) 

 

 

 

Figure 4.6. a) Relation between the division time, 𝑇𝑑𝑖𝑣, and the fluorescence at birth, 𝐹𝑏𝑖𝑟𝑡ℎ.  

On the left, the large markers (triangles, diamonds, and circles) indicate the average for the 

ProVenus strain in the three different media (poor, intermediate, and rich, respectively). The 

smaller circles joined by lines correspond to the binned �̅�𝑑𝑖𝑣  versus �̅�𝑏𝑖𝑟𝑡ℎ for each strain at 

different media. The right pane shows the average Pearson’s correlation 𝑅(𝐹𝑏𝑖𝑟𝑡ℎ, 𝑇𝑑𝑖𝑣) over all 

mother cells for each ProVenus strain on each growth media. Similarly, in (b) is shown 𝑇𝑑𝑖𝑣 as 

a function of the fluorescence at the division time, 𝐹𝑑𝑖𝑣.  

 

In Fig.4.6b, I show the relation between 𝑇𝑑𝑖𝑣 and the fluorescence just before dividing, 𝐹𝑑𝑖𝑣. Each 

strain 𝑗 also has a positive correlation between 𝑇𝑑𝑖𝑣
𝑗

 and 𝐹𝑑𝑖𝑣
𝑗

. In other words, the cells with higher 

fluorescence at the time of division grew for a longer time before division. The right panel contains 

the mean Pearson’s coefficient 𝑅(𝐹𝑑𝑖𝑣 , 𝑇𝑑𝑖𝑣) calculated for each lineage as a function of each 

strain's mean fluorescence, which corroborates the positive correlation.  
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These two relationships showing opposite slopes between 𝐹𝑏𝑖𝑟𝑡ℎ
𝑗

 and 𝑇𝑑𝑖𝑣
𝑗

  and between 𝐹𝑑𝑖𝑣
𝑗

  and 

𝑇𝑑𝑖𝑣 suggest that what correlates with the division time is the accumulation of unnecessary protein 

during the cell cycle. Indeed, in Fig.4.7a, I show 𝑇𝑑𝑖𝑣 as a function of the fluorescence accumulated 

during the cell cycle Δ𝐹 = 𝐹𝑑𝑖𝑣 − 𝐹𝑏𝑖𝑟𝑡ℎ, which shows a positive correlation for all strains in 

different media. The Pearson’s correlation 𝑅(Δ𝐹, 𝑇𝑑𝑖𝑣) in Fig.4.7a increases as the strains produce 

more Venus and is larger than the one obtained in Fig.4.6b 

 

a) 

 

 b) 

 

  

Figure 4.7. a) Relation between the division time, 𝑇𝑑𝑖𝑣, and the accumulated fluorescence Δ𝐹 =
𝐹𝑑𝑖𝑣 − 𝐹𝑏𝑖𝑟𝑡ℎ.  On the left, the large markers (triangles, diamonds, and circles) indicate the 

average for the ProVenus strain in the three different media (poor, intermediate, and rich, 

respectively). The circles correspond to the mean �̅�𝑑𝑖𝑣  as a function of the binned mean �̅�𝑏𝑖𝑟𝑡ℎ 

for each strain at different media. b) Average Pearson’s correlation 𝑅(ΔF, 𝑇𝑑𝑖𝑣) over all the 

mother cells for each ProVenus strain on each growth media. 

 

Variation in fluorescence in a population of cells is due to the difference in the number of 

fluorescent proteins it contains. Since cells also vary in size, one can imagine the case in which 

there are variations in the number of fluorescent proteins while the concentration (its fraction in 

the proteome) remains invariant, or the case in which this fraction also changes.  

 

According to Scott and Gunderson et al., a population of bacteria growing under a steady condition 

𝑙 (𝑙 index indicates both the strain with constitutive production and growth condition) would have 

a stable fraction of unnecessary protein U, 𝜙𝑈
𝑙 , and also a stable fraction of division protein X, 𝜙𝑋

𝑙 . 

By contrast, changing the growth condition would change the protein sectors’ fraction and affect 
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the mean elongation rate, division time, and cell size. This point, discussed in Chapter 3, explains 

why the mean division time 〈𝑇𝑑𝑖𝑣〉 over a population of cells is longer as it has a larger mean 

fluorescence (either 〈𝐹𝑏𝑖𝑟𝑡ℎ〉 or 〈𝐹𝑑𝑖𝑣〉): each strain has a different mean fraction of unnecessary 

production 𝜙𝑈
𝑙  that ‘takes away’ resources from other sectors, including from X. Therefore, as 𝜙𝑈

𝑙  

gets larger, 𝜙𝑋
𝑙  lowers making the mean division time of the population to increase. 

 

By definition, the number of division protein X and unnecessary proteins U in a cell 𝑖 are:  

𝑋𝑙𝑖(𝑡) = 𝑀𝑙𝑖(𝑡) ∗  𝜙𝑋
𝑙 (𝑡), 

𝑈𝑙𝑖(𝑡) = 𝑀𝑙𝑖(𝑡) ∗ 𝜙𝑈
𝑙 (𝑡) 

(4.4) 

(4.5) 

where 𝑀𝑙𝑖 is the total amount of protein in the cell 𝑖.  

If 𝜙𝑈
𝑙  and 𝜙𝑥

𝑙  are approximately constant, the fluorescence 𝐹𝑙𝑖 of a cell will be positive proportional 

to the amount of both proteins 𝑈𝑙𝑖 and 𝑋𝑙𝑖. 

𝐹𝑙𝑖(𝑡) ∝ 𝑈𝑙𝑖(𝑡) =  
𝜙𝑈

𝑙

𝜙𝑋
𝑙 ∗ 𝑋𝑙𝑖(𝑡) 

 (4.6) 

According to Basan’s model, the number of division proteins 𝑋𝑙𝑖 needs to cross the threshold 𝑋𝑑𝑖𝑣 

(which is assumed the same for all conditions) to trigger division.  

Therefore, considering this model and Eq.4.5, cells with a low level of fluorescence 𝐹𝑙𝑖 at the 

beginning of a cell cycle would also have few 𝑋𝑙𝑖 proteins and would take longer to reach 𝑋𝑑𝑖𝑣 

and divide (after a time 𝑇𝑑𝑖𝑣
𝑙𝑖 ) than a cell born with a lower fluorescence. This negative correlation 

between 𝐹𝑏𝑖𝑟𝑡ℎ
𝑙  and 𝑇𝑑𝑖𝑣

𝑙  for a strain 𝑗 is observed in Fig.4.6a for almost all ProVenus strains.  

We assume that the unnecessary proteins are produced at a constant rate since the promoters are 

constitutive and cells are growing at a steady rate. Consequently, the longer a cell takes to divide, 

the more Venus proteins accumulate from birth to division. Therefore in individual cells, the 

accumulated fluorescence should be positively correlated with division time, which is the result 

observed in Fig.4.7. 

We hypothesize that, at least for the cells in rich media, the fraction of protein sectors is 

approximately constant among individual cells under stable conditions and that the number of 

unnecessary proteins 𝑈 and division proteins 𝑋 are positively correlated.  
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Under this hypothesis, the ribosomal related proteins 𝑅 can synthesize simultaneously the proteins 

of both sectors, 𝑋 and 𝑈. In this way, the variations in the abundance of ribosomes drive variations 

in proteins 𝑋 and 𝑈. 

That a population of cells has their fractions of proteins constant is a strong assumption. These 

sectors most probably have variations among individual cells, which would add noise to the 

division time of a population. Those variations might even depend on the growth media. I discuss 

this point in the following section. 

 

4.5 Correlation between Cell Size and Expression Levels of Fluorescent Proteins 

To visualize the relationship of cell size and unnecessary proteins in individual cells, I show in 

Fig.4.8 the mean size at birth 𝑆𝑏
𝑙 , as a function of the binned fluorescence at birth, 𝐹𝑏𝑖𝑟𝑡ℎ

𝑙 , for each 

ProVenus stain 𝑙 in three different growth media (small circles joined by straight lines).  

The single-cell relations for each strain do not fall onto the mean population behavior curve (large 

markers) of each corresponding growth media. Nonetheless, there is a positive correlation between 

𝑆𝑏
𝑙 , and 𝐹𝑏𝑖𝑟𝑡ℎ

𝑙  for each strain in the three different growth media: the cells that have more Venus 

protein are also larger. 

All the ProVenus strains have a positive Pearson’s correlation 𝑅(𝐹𝑏𝑖𝑟𝑡ℎ, 𝑆𝑏), which becomes larger 

as the strains produce more fluorescent proteins, indicated in Fig.4.8b. In the case of the rich media, 

all the strains have a correlation 𝑅(𝐹𝑏𝑖𝑟𝑡ℎ, 𝑆𝑏) higher than in the other media (>0.5 for all strains). 

For poor medium it is noticeable that the correlation depends on the production of Venus of each 

population being low for small production (0.15 for the strain that produces the lower fluorescence, 

Pro1) and higher for high amounts of production (0.75 for the strain that synthesizes the higher 

fluorescence, ProD). 
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a)  b) 

 

 

 

 

Figure 4.8. a) For each ProVenus strain grown in a specific media, the cells were grouped by 

level of fluorescence at birth 𝐹𝑏𝑖𝑟𝑡ℎ in five intervals. The small dots joined with continuous 

lines show the mean of the cell size at birth 𝑆�̅� and fluorescence  �̅�𝑏𝑖𝑟𝑡ℎ of those groups for each 

strain in different media. The blue triangles, orange diamonds, and red circles show the 

population averages for the strains grown in the three media, poor, intermediate, and rich, 

respectively. The dashed lines indicate the trend of the population averages of the ProVenus on 

each media. b) Average Pearson’s coefficient of size and fluorescence calculated for each 

mother cell from the ProVenus strains in poor, intermediate, and rich media. The color code is 

the same as the average values in (a). 

 

As already mentioned, the proteome can be divided into different types of proteins (or sectors). If 

cells express unnecessary proteins, these proteins make up a sector 𝑈 and add extra mass to the 

cell’s total mass (and volume) [12,11,39,40]. Also, cells increase the number of endogenous 

proteins when there is unnecessary protein production [11, 41]. Therefore, the extra cellular mass 

when there is overexpression is a combination of the unnecessary proteins and proteins from other 

sectors. 

Since the mass 𝑀𝑙𝑖 of a cell 𝑖 is proportional to its size 𝑆𝑙𝑖 [11], and the fluorescence level 𝐹𝑙𝑖 is a 

proxy of the number of 𝑈𝑙𝑖, equation Eq.4.5 leads to  

𝐹𝑙𝑖(𝑡) ∝ 𝑆𝑙𝑖(𝑡) ∗  𝜙𝑈
𝑙 (𝑡). (4.7) 

If the fraction of unnecessary protein 𝜙𝑈
𝑙  is the same over time and independent of the mass and 

size of the cell 𝑖, the fluorescence level would be approximately proportional to the size, 𝐹𝑖𝑙 ∝ 𝑆𝑖𝑙.  

Rescaling by the respective mean value of each population of strains 𝑙, these quantities would be 

approximatively �̅�𝑖𝑙/〈𝐹𝑖〉𝑙 = 𝑆̅𝑖𝑙/〈𝑆𝑖〉𝑙.  
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a) 

 

b) 

 

Figure 4.9. On the left is the fluorescence �̅� as a function of the binned cell size 𝑆̅ of the 

ProVenus strains at birth (a) and at division (b), all variables scaled by the mean value of the 

population. The color corresponds to the growth media in which the cells were grown, poor 

in blue, intermediate medium in orange and rich medium in red. On the right is the slope of 

the best linear fit of each of the curves, as a function of the average fluorescence of each 

strain in different growth media, the color code corresponds as well to the growth media.  

 

I tested this relation for the ProVenus strains. In Fig.4.9a, I show the rescaled fluorescence as a 

function of the binned rescaled size for each ProVenus strain in the three different growth media. 

Fig.4.9b shows the slopes of the curves from Fig.4.9a and how they depend on the average 

fluorescence per population. In the rich and intermediate media, the proportionality constant is 

closer to one and similar for all the strains (Fig.4.9b). It can be concluded that, in such media, the 

fraction of the unnecessary fluorescent proteins 𝜙𝑈
𝑙  is well conserved among cells of each 

ProVenus strain. In poor media, the curves corresponding to strains with low Venus fall outside the 

identity curve more than in the other two media (blue curves in Fig.4.9a), meaning that they have 

a significant cell-to-cell variation in the fraction to Venus 𝜙𝑈
𝑙 . The slope for the strains with low 

Venus production is close to zero, but it increases as the strain’s fluorescence 〈𝐹𝑖〉𝑙 . Therefore, the 

strains with a higher level of unnecessary production have a more conserved fraction of proteins 

𝜙𝑈
𝑙 .  

 

We do not have a model to simulate cell growth under different protein production and growth 

conditions that accounts for the noise in the size of the protein sectors. Nevertheless, I present 

below a hypothesis about why the fraction of unnecessary protein is stable in rich media but not in 

the poor.  
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In rich media, the resources are in excess and always available to robustly allocate them among 

the different protein sectors. By contrast, since the nutrients are more limited in poor media, cells 

need to make a trade-off among the different sectors to distribute the resources, then the noise in 

allocation among sectors is bigger.  

For cells that produce a low level of unnecessary protein 𝑈, other sectors of proteins constitute a 

larger percentage of the total proteome; therefore, the cells’ size is mainly subject to variations of 

other sectors other than 𝜙𝑈
𝑙  . When cells are forced to synthesize Venus in greater quantities, Venus 

has a greater fraction of the proteome, thus has a higher effect on the cell size. Therefore, the high 

unnecessary protein concentration exceeds the intrinsic noise in allocation due to the low 

resources.  

 

4.6 Correlation between elongation rate and Expression Levels of Fluorescent Proteins 

Data in Figure 4.10a show the elongation rate 𝛼𝑙 as a function of the binned fluorescence 𝐹𝑏𝑖𝑟𝑡ℎ
𝑙  

for each ProVenus strain 𝑙 in different growth media (small circles joined by straight lines), and 

the mean for each population, 〈𝛼〉𝑙 versus 〈𝐹𝑏𝑖𝑟𝑡ℎ〉𝑙 (large markers). 

For rich media, while the mean elongation rate of a population decreases as the strain has a higher 

fluorescence, at the single-cell level, the correlation between 𝛼𝑙 and 𝐹𝑏𝑖𝑟𝑡ℎ
𝑙  is close to zero for all 

strains (Fig.4.10b). There is a smaller change between the mean of populations of different strains 

in the other two media. Nevertheless, at the single-cell level, there is a weak negative correlation 

between 𝛼 and 𝐹𝑏𝑖𝑟𝑡ℎ (Fig.4.10b).  

Previous work that analyzed single-cell measurements from E. coli found that the elongation rate 

has a weak correlation with other cell parameters, such as cell size and division time [53]. They 

assume that the cell must control α independent of other parameters. Such result coincides with 

the case of cells growing in rich media in this work. 

Why is there a negative correlation at the single-cell level at poor media while there is no 

correlation in rich media? The answer could be related to the hypothesis proposed in the previous 

section: there are bigger variations on the fraction of different protein sectors among individual 

cells of a population when the resources are scarce.  

 



58 

 

 

a) b) 

 

 

 

Figure 4.10. a) For each ProVenus strain grown in a specific media, the cells were grouped 

by level of fluorescence at birth 𝐹𝑏𝑖𝑟𝑡ℎ in five intervals. The small dots joined with 

continuous lines show the mean of the elongation rate �̅�𝑗 and fluorescence  �̅�𝑏𝑖𝑟𝑡ℎ
𝑗

 of those 

groups for each strain 𝑗 in different media. The blue triangles, orange diamonds, and red 

circles show the cells' mean values per strain grown in the three media, poor, intermediate, 

and rich, respectively. b) Average of the Pearson’s coefficient between 𝛼 and 𝐹𝑏𝑖𝑟𝑡ℎ of each 

mother cell from the ProVenus strains in poor, intermediate, and rich media. The color code 

is the same as the average values in (a). 

 

 

4.7 Single-cell deviations from the growth law  

As mentioned before, for many microorganisms, the average size of a population across different 

growth media (diverse nutrient quality) follows an exponential function of its growth. In recent 

years by using microscopy and microfluidic techniques, Taheri-Araghi et al. [6] revealed that the 

trend of the relationship ‘size versus division frequency’ within a population of individual cells 

deviates from the nutrient growth law. In Fig.4.11a, I show the same result for the wild-type strain 

in three growth media. The larger markers indicate the mean size as a function of the frequency of 

division time in each media. As seen in Eq.3.8 and Fig.3.16, the same relation of the population 

averages follows in the ‘mean size versus mean elongation rate’ and would be similar as well with 

the growth rate (〈𝛼〉 ∗ ln(2)  =  〈1/𝑇𝑑𝑖𝑣〉 ∗ ln(2)  =  𝜆). The small circles show the mean size 𝑆�̅�
𝑙  

versus the mean frequency of division 1/�̅�𝑑𝑖𝑣
𝑙  for each population 𝑙 binned by the frequency of 

division. The dashed curve corresponds to exponential best fit to the averages of the populations.  
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a) 

 

b) 

 

c) 

 

Figure 4.11 a): Size at birth 𝑆𝑏 versus division frequency 1/𝑇𝑑𝑖𝑣 for the wild-type strain grown 

in three different media. In red, the large marker corresponds to the mean values of the cells 

growing in the rich medium, while the small markers show the single-cell relationship (mean 

values of the data binned by 1/𝑇𝑑𝑖𝑣) division frequency in equal size bins. Similarly, the 

markers in orange and blue correspond to cells growing in the intermediate and poor media. 

The dashed line is the best fit of an exponential function to the data, only to illustrate the known 

relation of the nutrient growth law [6]. b) 𝑆𝑏 versus 1/𝑇𝑑𝑖𝑣 for the different ProVenus strains 

growing in different media. As in (a), the large markers show each population's respective mean 

and the small markers the relation for the data binned by division frequency values. The arrows 

indicate the order of increasing protein production, from lower to higher. c) Rescaled version 

of the single-cell relations in (b), 𝑆�̅�/〈𝑆𝑏〉 versus 1/�̅�𝑑𝑖𝑣/〈1/𝑇𝑑𝑖𝑣〉 for the ProVenus strains in 

poor (right), intermediate (middle), and rich (right) media. 

 

These single-cell level deviations have been observed when the growth rate (division frequency) 

was controlled by changing the media's nutrient content [6, 23]. In this work I extend the analysis 

for growth changes due to the overexpression of the unnecessary protein, for the ProVenus series. 

The results are reports in Fig.4.11b. As the strains produce more Venus, the mean deviates from 

the ‘nutritional growth law’ as indicated by the arrows. The single-cell relations for the strains with 

different production (small circles) exhibit a similar relationship across various media.  

As presented in Fig.4.11c, for each growth media, the size at birth rescaled by its mean �̅�𝑏/〈𝑆𝑏〉  

versus the rescaled division frequency 1/�̅�𝑑𝑖𝑣/〈1/𝑇𝑑𝑖𝑣〉 for each ProVenus strain and media fall 

into the same curve.  
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The deviations from the population trend when there is overexpression of unnecessary proteins 

and the rescaling with the mean expression of unnecessary proteins is a novel result; however, they 

were predicted by a model for bacterial growth, which I discuss in the section that follows. 

 

4.8 Using Bertaux’ allocation model to interpret single-cell data 

In a recently published work, Bertaux et al. [11] present a cell physiology model that considers the 

allocation and dynamics of different kinds of proteins and their effect on single-cell growth. This 

model is more detailed than Scott and Gunderson et al.’s model described in chapter 3, which only 

considers changes of the protein composition at the population level but not variations in individual 

cells. As illustrated in Fig.4.12, there are different kinds of proteins that have different functions.  

 

 

 

Figure 4.12. Diagram showing the structure of Bertaux model. The model consists of two kinds 

of cell components: precursors and proteins. The proteome is divided into different protein 

sectors: transport E, housekeeping Q, useless proteins U, division X, ribosomal R (active 𝑅𝑎 or 

inactive 𝑅𝑖). The precursors are assigned to a sector 𝑖 by an allocation fraction 𝑓𝑖. E proteins 

transform the nutrients, which have a 𝑘 nutrient quality, into precursors. R proteins synthesize 

the proteins from precursors at a rate 𝜎, and has a saturation constant 𝑎𝑠𝑎𝑡. The sum of the 

proteins and precursors equals the total mass (volume) of a cell. Nutritional limitations are 

modeled with the parameter 𝑘, expression of the unnecessary protein by the fraction 𝑓𝑈 and 

translational inactivation by changing the rate of 𝑅𝑖 . Figure modified from [20]. The dynamics 

of the absolute amounts of coarse-grained cell components are described by the set of 

differential equations on the left. 
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The metabolic and transport proteins 𝐸 transform the nutrients, which have a 𝑘 nutrient quality, 

into precursors A, and the ribosomal proteins R synthesize the proteins out the precursors. As 

proposed by Basan et al.’s (see Fig.4.2), in Bertaux’s model, a cell divides when it accumulates X 

proteins up to a fixed threshold 𝑋𝑑𝑖𝑣. The housekeeping proteins are involved in the basic 

functioning of a cell and compose a fixed fraction of its proteome, regardless of the growth 

conditions [24, 12]. Finally, the unnecessary proteins do not have any function in a cell. 

The number of precursors assigned to each protein sector Ζ, (Ζ = {𝐸, 𝑅, 𝑋, 𝑅, 𝑈}) depends on the 

allocation fraction 𝑓Ζ.  The fraction of the unnecessary proteins 𝑓𝑈 is fixed and imposed in a 

simulation, and the fraction for the housekeeping 𝑓𝑄 is fixed (~0.5).  

Few parameter values were obtained by fitting experimental results previously reported from 

ribosomal abundance under growth limitations.  

This model implements stochasticity using Gillespie’s algorithm for a single cell. When cell 

division occurs, the model keeps tracking the mother's growth. When 𝑋 reaches the division 

threshold 𝑋𝑑𝑖𝑣, each molecule (protein and precursor) is kept in the mother cell, with probability 

½. 

The model reproduces the growth law and Basan’s population results, as shown below. The model 

also displays the ‘near-adder’ relations as in Fig.4.4. 

Using this model, I simulated my experimental conditions: time-lapses of individual cells with 

different levels of unnecessary protein growing in various growth media. The strains with varying 

levels of unnecessary protein are simulated by changing the fraction 𝑓𝑢 of unnecessary proteins U, 

𝑓𝑢 = {0.2, 0.4, 0.8, 0.1, 0.12}, and the diverse growth media with changes in the 𝑘 parameter, 𝑘 =

{1, 4, 8}. 

Fig.4.13 shows some results of these simulations: the relations of cell size at birth 𝑆𝑏, division time 

𝑇𝑑𝑖𝑣 and elongation rate 𝛼, with the number of unnecessary proteins at birth 𝑈𝑏𝑖𝑟𝑡ℎ. 

The results are qualitatively similar to the experimental results, both at the population level (the 

mean over the cells of each simulation, large markers on the right panels of 4.12a, b, and c) and 

for individual cells (averaging over the binned data, smaller markers joined by a straight line).  
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a) 

 

b) 

c) 

Figure 4.13. Results of several simulations of the growth of cell lineages using Bertaux 

stochastic model for bacterial growth. The simulations vary in two parameters:  the parameter 

𝑘, representing the nutrient quality of the growth media, 𝑘 = {1, 4, 8} (indicated by different 

colors), and the fraction of unnecessary proteins 𝑓𝑈={0.2, 0.4, 0.8, 0.1, 0.12} (order in the 

direction indicated by the arrow).  a) Left: Size at birth 𝑆𝑏 (measured by its total number of 

proteins plus precursors), as a function of the number of unnecessary proteins at birth 𝑈𝑏𝑖𝑟𝑡ℎ. 

The diamond markers show the mean 〈𝑆𝑏〉 versus 〈𝑈𝑏𝑖𝑟𝑡ℎ〉 over individual cells for different 

populations.  The colors indicate the nutrient quality 𝑘 and the arrows the order of the 

populations with low to higher 𝑓𝑈. The circles connected with lines correspond to the cell size 

over intervals of the data of each population binned by 𝑈𝑏𝑖𝑟𝑡ℎ. The gray dashed lines are the best 

linear fit to the mean values 〈𝑆𝑏〉 versus 〈𝑈𝑏𝑖𝑟𝑡ℎ〉 for each value of the nutrient quality 𝑘. Right: 

Pearson correlation coefficient between the fluorescence and size at birth 𝑅(𝐹𝑏𝑖𝑟𝑡ℎ, 𝑆𝑏) for each 

population as a function of its mean fluorescence at birth. The color markers correspond to the 

nutrient quality 𝑘 as in the left plot. b) and c) Similar plots as in (a), but for the relation of 

division time 𝑇𝑑𝑖𝑣 and elongation rate 𝛼 with the fluorescence at birth 𝑈𝑏𝑖𝑟𝑡ℎ respectively 
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The mean cell size of a population with a given nutrient quality 𝑘 increases with the number of 

𝑈𝑏𝑖𝑟𝑡ℎ. Also, the variations of individual cells increase, although the trend does not fall into the 

population trend of each k. The correlation between 𝑆 and 𝑈 also increases as the strains produce 

more unnecessary protein, noted in the Pearson’s correlation coefficient 𝑅(𝑈𝑏𝑖𝑟𝑡ℎ, 𝑆𝑏) in Fig.4.13a, 

right panel. 

By contrast, the relation between the mean division time 〈𝑇𝑑𝑖𝑣〉 and the amount of unnecessary 

protein 〈𝑈𝑏𝑖𝑟𝑡ℎ〉 for individual cells is the opposite; individual cells that have few proteins at birth 

𝑈𝑏𝑖𝑟𝑡ℎ, have a longer division time. This negative correlation is observed both in the trend of the 

binned data and the correlation coefficient in 𝑅(𝑈𝑏𝑖𝑟𝑡ℎ, 𝑇𝑑𝑖𝑣) on Fig.4.12b. This result is analogous 

to the one shown in Fig.4.6a.  

The coincidence between the experimental and simulation results about the relationship between 

division time and unnecessary expression supports the scenario discussed in chapter 4.4. This 

scenario consists of two parts. On the one hand, to divide, cells need to accumulate a quantity of a 

protein X up to a fixed threshold independent of any growth condition.  

On the other hand, the variations in fluorescence in the population of a single strain under stable 

conditions are mainly due to the variation in the number of fluorescent proteins, while the fraction 

of these proteins (and the fraction of other proteins) in the cells exhibits small variations. 

Then, the fluctuations in the number of unnecessary proteins 𝑈 are a response to changes in the 

number of ribosomal proteins R. More ribosomal proteins mean more synthesis of any type of 

proteins; therefore, the 𝑋 proteins respond in the same way to 𝑅 (see equations in Fig.4.12). When 

there is an increase in 𝑈 proteins, there is also an increase in X, proteins which make the cells 

reach the threshold 𝑋𝑑𝑖𝑣 and divide faster. Thus 𝑈𝑏𝑖𝑟𝑡ℎ (and the fluorescence 𝐹𝑏𝑖𝑟𝑡ℎ) and 𝑇𝑑𝑖𝑣 are 

negatively correlated.  

Finally, the elongation rate as a function of the unnecessary protein has a weak negative correlation 

with the number of unnecessary proteins. The correlation is independent of the nutrient parameter 

𝑘 and the fraction 𝑓𝑈, as in the experimental results from Fig.4.10.  

 

The model also reproduces the nutrient growth law. The mean size 〈𝑆𝑏〉𝑘 is an exponential function 

of the division frequency 〈1/𝑇𝑑𝑖𝑣〉𝑘, when 𝑓𝑈 = 0 (large markers that fall on the dashed 
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exponential curve in Fig.4.14a). The mean values when 𝑓𝑈 is higher have a different trend 

(indicated by the gray arrow), similar to the results in Fig.4.11b and [11].  

The single-cell data (smaller markers joined by a line for each population) show that there is a 

systematic deviation from the population average for all conditions. These deviations are 

qualitatively similar to the ones of the ProVenus strains in Fig.4.11b. They also collapse onto the 

same curve when both parameters are rescaled by their population mean, as indicated in Fig.4.14b. 

 

 

a) 

 
 

b)  

 

Figure 4.14. Results from Bertaux et. al model. a) Average number of molecules (proteins 

plus precursors) in the cells at birth 𝑆𝑏 vs frequency of division 1/𝑇𝑑𝑖𝑣, for various 

combinations of parameters. The colors show the simulations with the same parameter 

for nutrient quality 𝑘={1, 4, 8}. The fraction of unnecessary protein used are  𝑓𝑈={0, 0.02, 

0.04, 0.08, 0.1}, and are displayed in increasing order  as indicated by the arrow. The big 

diamond markers correspond to the average over all the cells for a given condition, 

whereas the small circles correspond to the mean values for the data being equally binned 

by 1/𝑇𝑑𝑖𝑣. b) For all the conditions in (a) (all combinations in the values of 𝑘 and 𝑓𝑈), the 

mean of the rescaled size at birth as a function of the binned rescaled elongation rate, 

overlap in the same curve.  

  

4.9 Discussion 

Here I presented an analysis of the correlation between different cell parameters that characterize 

the production of unnecessary proteins (cell size, division time, and elongation rate) and the 

fluorescence of individual cells from the ProVenus strains in different growth media. 

I showed that the adder size control is robustly conserved for the ProVenus cells growing in the 

three different growth media. No matter how much “stressed” the cells are due to the 

overexpression of unnecessary proteins, the cell size and division time obey the adder relations.  
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Although the adder relations have been widely observed for many conditions and microorganisms 

in a steady-state, their underlying biophysical and molecular mechanisms are still unknown [45]. 

A possible dynamical mechanism proposes a division protein, 𝑋, which a cell accumulates during 

growth, and once reached a fixed threshold, the cell divides [11].  

Like the other types of protein (ribosomal, housekeeping, etc.), this X protein composes a sector 

on the cells' proteome, which changes depending on the nutrient (described by Scott and 

Gunderson [12], see chapter 3.1). This model of the accumulation threshold explains why the mean 

cell size of a population increases while the elongation rate decreases when the cells overexpress 

unnecessary proteins [11].  

Recent work by Panlilo et al. showed experimentally that single cells change their size, elongation 

rate, and division time when they switch on nutrients [45]. They found that these changes can be 

explained with the accumulation/threshold hypothesis better than with other division mechanisms 

[46]. 

 

The results presented in this chapter, particularly the correlation between size, division time, and 

fluorescence at birth, can be as well understood under the accumulation/threshold model and some 

considerations described below.  

I found that individual cells’ fluorescence is proportional to their size in rich media, which implies 

that the unnecessary (fluorescent) U protein fraction is well conserved in a population.  

Since any type of protein needs ribosome-related proteins 𝑅 to be synthesized, if the protein 

fractions are fixed, the accumulation of unnecessary and division proteins will be positively 

correlated (both subject to the variations on 𝑅 proteins). Hence a positive correlation between 

fluorescence level and size at birth and a negative correlation between fluorescence at birth and 

division time. In other words, a small cell has also a small number of unnecessary proteins (making 

the fluorescence low) and a low number of X proteins, causing the cell to take a longer time to 

accumulate division proteins until the threshold is reached and the cell divides. On the contrary, 

bigger cells have more proteins, therefore higher fluorescence, and consequently reach faster the 

division threshold (Fig.4.15) 
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Figure 4.15. The correlations at the single-cell level between the size at birth 𝑆𝑏 and division 

time 𝑇𝑑𝑖𝑣 with the number of unnecessary 𝑈 proteins at birth can be explained by the 

simultaneous synthesis of 𝑈 proteins and division proteins 𝑋 by the ribosomal proteins 𝑅. At a 

steady-state, this simultaneous synthesis implies stable protein sectors, 𝜙𝑈, 𝜙𝑋, …, which do 

not compete for the 𝑅 proteins. Since the ribosomes drive changes both in 𝑈 and 𝑋 proteins, 

there is a correlation between them. Below is a representation of two cells with a low (left) and 

high (right) level of 𝑅 proteins at birth. An increased number of R proteins in a cell yields a 

higher protein synthesis, thus a large cell mass and size. Hight load of R also implies more 𝑋 

protein synthesis, hence a shorter time for the cell to reach the threshold 𝑋𝑑𝑖𝑣 and divide. 

 

 

In poor media, the correlation between division time and fluorescence at birth is close to zero for 

strains with low mean Venus synthesis. Such correlation decreases and is negative as the average 

Venus synthesis of the population is greater. Besides, Venus proteins concentration is poorly 

conserved among cells from the strains with low fluorescence levels. We hypothesize that in poor 

media, the proteome sectors have a big cell-to-cell variability since there is competition between 

different proteins because of the low resources available. 

Bertaux's model, which I discussed above, is of particular interest because it is based on the 

proteome allocation theory and because it modeled cell division with the accumulation of a 
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division protein [45]. This model can reproduce qualitatively well single-cell relations between the 

growth parameters: The relations proper of the adder mechanism and the deviations on the nutrient 

growth law. With the model, I simulated my experimental conditions: populations with different 

levels of unnecessary protein growing in various nutrient conditions. 

The correlation between unnecessary proteins and division time from the model agrees better with 

the results obtained in the rich media experiments. Nonetheless, it does not reproduce all the 

behavior in poor conditions, a case for which we hypothesize there is significant noise in the 

protein concentrations.  

Overall, the analysis of the experimental data shown in this chapter reproduces different results of 

the effect of unnecessary proteins from single and population levels and encompasses various cell 

growth models such as the adder model, size growth laws, and the threshold initiator model.  
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5. Growth dependance on protein synthesis with pulse dynamics  

 

5.1 Introduction 

Classically, the study on how microorganisms control cell size and division has been addressed by 

measuring physiological parameters as the cell size and doubling time, under balanced growth. 

This is achieved by growing bacteria while maintaining the same growth conditions, such as 

keeping a constant flux of growth media, constant temperature, and, as I presented in Chapters 2 

and 3, maintaining a steady production of unnecessary protein. Independent experiments under 

different conditions contributed to identifying the growth laws and the adder mechanism as the 

underlying principles that govern cell growth  [2, 3, 4, 6, 11]. 

However, this empirical description is a mean-field theory of cellular growth that predicts neither 

the time dependence of the growth parameters (cell size, division time, elongation rate) nor the 

causal relationships between them [45]. With this in mind, I decided to analyze the dynamics of 

individual cells when subject to big temporal fluctuations in the production of proteins and the 

associated effect on the growth. To do this, I chose to study the dynamics of the synthesis of 

flagellar proteins in E. coli, which, as I demonstrated with others in Kim et al. [48], exhibit large 

pulses during the flagellum synthesis. For this reason, the flagellar system is a good system to 

characterize the effect that large pulses on protein synthesis have on cellular growth.  

As briefly described in Chapter 1, the promoters that control flagellar genes show sharp bursts of 

activity followed by long periods with no activity that can extend across several cell divisions. The 

flagellar system consists of three classes of promoters that activate and control flagellar proteins’ 

production in an organized way to coordinate the synthesis of the flagella [52], as illustrated in 

Fig.5.1. The class-1 promoter flhDp regulates the expression of the proteins FlhD and FlhC, which 

together form a macromolecular complex FlhD4C2, also called the master regulator of the system. 

FlhD4C2 governs the activation of the class-2 promoters that control the expression of the genes 

for the flagellar hook and basal body. One of the class-2 promoters controls the production of the 

protein FliA that mediates the expression of the class-3 genes for the filament synthesis and motor 

elements that power the flagellum rotation.  
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 Hierarchical organization 

of the flagellar promoters 

 

 

Figure 5.1 The diagram indicates the main components of the flagellum of E. coli. The 

organized activation of flagellar promoters coordinates the assembly of the different elements. 

There is a class-1 promoter, flhDp, the master regulator of the system and regulates the class-2 

promoters, which controls the genes that encode the basal body and hook’s molecular elements. 

fliA, a class-2 gene, encodes the sigma factor FliA, which drives the transcription of the class-3 

operons. The class-3 operons encode products needed in the late flagellar assembly, such as the 

proteins that integrate the filament and the motor’s components. 

 

Although the master regulator FlhD4C2 governs the class-2 promoters’ expression, the observed 

pulses of the class-2 are not deterministically determined by temporal variations of the class-1 

promoter activity. We proposed in [56] a model in which another non-flagellar protein, YdiV, 

sequesters the master regulator FlhD4C2. YdiV serves as a filter that eliminates small-amplitude 

FlhD4C2 fluctuations and integrates over time fast fluctuations, creating intermittency in the class-

2 expression. For this reason, the activity in class-2 presents pulses even when the class-1 promoter 

exhibits steady dynamics similar to that of a constitutive (i.e., unregulated) promoter. 

Particularly, the synthesis of flagella represents a high energetic cost for the bacterium as refs. [54, 

55] established at a population level. For instance, using competition experiments, it has been 

demonstrated that a population of cells that do not produce flagella (strain with the master regulator 
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genes deleted, ΔflhDC) grows faster than a population that synthesizes flagella [55]. Besides, 

flagella are composed of dozens of proteins whose assembly requires the expression of more than 

50 different genes that manage the logistics of component production [51, 52, 53].   

Because of the high burden that flagellar protein synthesis represents on populations of cells, we 

can expect it to affect the bacteria’s cell growth. However, since its synthesis has pulse-like 

dynamics, it is unclear how it will be affected over time: how do size, elongation rate, and division 

time change and respond to pulses of the flagellar promoter activity?  

To investigate this question I monitored single cells of the strain DCF (the description of the strain 

construction is in Chapter 2.2) growing under stable conditions in the mother machine. The DCF 

strain reports the activity of the class-1 promoter flhDp with the yellow fluorescent protein. 

In previous chapters, I analyzed the growth of strains with different levels of steady synthesis of 

unnecessary proteins. In contrast, here, I explore the effect on the growth of temporal fluctuations 

of protein synthesis within the same strain. 

 

I found some noticeable changes in the cell’s physiology associated with the flagellar expression.  

The cell size and elongation rate increase with the (flagellar) protein expression while division 

time decreases.  

Interestingly, the relation between protein expression and elongation rate and the division time is 

contrary to the relation of the mean values across strains. As seen in past chapters, a population of 

a strain with high protein production has, on average, a slower growth (and longer division time) 

than another population with a lower protein expression. As I will show in this chapter, for 

individual cells, when there is a higher expression of unnecessary protein, the cells grow more and 

faster.  

Studying the time series of individual cells also revealed a shift in elongation rate respect to the 

promoter activity: the elongation rate increase precedes the expression pulses. This observation 

then challenges the notion of the growth rate changing as a direct consequence of the protein 

production pulses.  

 



71 

 

5.2 Pulsating behavior in the synthesis of flagellar proteins 

As mentioned above, under certain conditions, E. coli synthesizes flagellar proteins with pulse-

like dynamics. I constructed the DCF strain to monitor such activity, which expresses two 

fluorescent proteins, Venus and CFP, controlled by the class-1(flhDp) and class-2 (fliFp) flagellar 

promoters, respectively. Contrary to the ProVenus strains, which I analyzed in previous chapters, 

in DCF we are interested in the correlation between the production of flagellar proteins and growth, 

while the fluorescent proteins serve to report the activity of the flagellar promoters. 

While the CFP total fluorescence does not represent the amount of all class-2 flagellar proteins, 

the derivative of the fluorescence does measure the promoter activity of the class-2 promoter fliFp. 

Besides, since all class-2 promoters have synchronous activity, we consider the calculated 

promoter activity for fliFp, a robust proxy for the activity of all class-2 promoters. 

Fig.5.2a shows an example of various time traces of the DCF strain. At the top is the total 

fluorescence controlled by the class-1 (yellow) and class-2 (blue) promoters, and in the middle the 

promoter activity for both classes, 𝑃𝐴𝑐𝑙𝑎𝑠𝑠−1 and 𝑃𝐴𝑐𝑙𝑎𝑠𝑠−2, is shown. These plots show that the 

class-1 promoter activity does not vary much over time compared to the variation of class-2 

activity, which shows the pulse-like behavior we reported in [48] — periods of high activity 

followed by periods of no activity. 

In Fig.5.2a bottom, I plotted the area of a cell lineage (the track of a mother cell over time). The 

green points correspond to the measured area of the cells. The gray curves show the best 

exponential fit to the area of each cell (we used the function 𝑆(𝑡) = 𝑆𝑏2𝛼𝑡). Each discontinuity 

corresponds to an event of cell division, indicated by the vertical lines in the three panels of 

Fig.5.2a. It can be observed that the pulses can last longer than one cell generation.  
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a) 

 

 

 

 

b) 

 

Figure 5.2. a) Time series corresponding to a cell lineage from the strain DCF, which has 

fluorescent markers for the class-1 (yellow) and class-2 (blue) flagellar promoters. The top panel 

shows the measured fluorescence as a function of time. The middle pannel shows the calculated 

Promoter Activity, PA, smoothed using the Savitzky–Golay filter. The bottom pannel displays 

the measured size (surface area, green dots) and the best exponential fit to the points for each 

cell (gray curves). b) Distribution of class-1 and class-2 Promoter Activities for cells of the DCF 

strain. Both distributions are rescaled by the respective mean of the population. They correspond 

to the measurements of 50 lineages, tracked by ~47 hours. 

 

There are noticeable differences in the class-1 and class-2 promoter activity distributions for many 

mother cells, as can be seen in Fig.5.2b which shows the promoter activity normalized by its mean 

to facilitate the comparison between the class-1 and class-2 distributions. 𝑃𝐴𝑐𝑙𝑎𝑠𝑠−2 has a long tail 

on the right, corresponding to the pulses, with a mean 𝜇2 = 197.35, coefficient of variation 

𝐶𝑉2=1.50 and skewness 𝜇32
=2.44. On the other hand, class-1 shows a distribution with mean 𝜇1 =

46.87, coefficient of variation 𝐶𝑉1=0.682 and skewness 𝜇31
=0.95. 

Class-1 and class-2 promoter activities are dynamically different: the autocorrelation function for 

class-1 activity decays sharply, while class-2 decays slowly, showing longer correlation times, as 

shown in Fig.5.3a. In other words, the class-1 signal loses the memory from its past states faster 

than that of class-2. This difference in the dynamics of the two classes indicates that the class-2 
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pulses are not a direct consequence of the transcription or translational regulation of flhDC, the 

class-1 regulator. 

      a)        b) 

 

 

 

 

Figure 5.3. a) Normalized autocorrelation function of the flagellar promoter activity of 

class-1 (yellow) and class-2 (blue) time series. At the bottom, an example of a lineage 

time series with the same color cod is shown. For each promoter, I estimated the 

autocorrelation from 50 lineages, each at least 30 generations long. b) Cumulative 

distribution of the ON (cyan) and OFF (gray) durations of the class-2 promoter activity 

𝑃𝐴𝑐𝑙𝑎𝑠𝑠−2 plotted as log(1 − CDF). Below is the 𝑃𝐴𝑐𝑙𝑎𝑠𝑠−2 series of a lineage with the 

same color code, for the ON and OFF states, defined by the threshold 𝑡2 = 100. 

 

I defined a pulse by considering a fixed threshold 𝑡2 such that when 𝑃𝐴𝑐𝑙𝑎𝑠𝑠−2 is above it, the 

system is ‘ON’ and below it, the system is ‘OFF’. We set the threshold by taking the mean of the 

derivative of the autofluorescence (the natural emission of the cells, which is not controlled by any 

promoter) plus two standard deviations. Any signal below the threshold corresponds to zero 

promoter activity of the cells. The duration of the class-2 ON and OFF state are approximated by 

exponential distributions, with mean values 𝜇𝑂𝑁 = 1.4 and  𝜇𝑂𝐹𝐹 = 2.1, respectively. The 

cumulative distribution of the ON and OFF state duration is represented in Fig.5.3b as the 
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logarithm of 1-CDF (Cumulative Distribution Function), showing longer periods of inactivity than 

the pulses’ duration. 

 

Class-2 promoters display activity in pulses with different amplitudes and different periods, and 

the periods of no activity have on average a longer duration than the ON states. Thus, this 

experimental system is well suited to study the effects of temporal fluctuations of protein synthesis 

on the cell growth parameters, such as cell size, elongation rate, etc., as I will present in the 

following sections.  

 

5.3 Correlation between class-2 flagellar protein production and cell size 

To characterize the relationship between the synthesis of flagellar proteins and cell size, I sorted 

all the cells of the CDF strain by their size at birth 𝑆𝑏 in equally spaced bins. Then, I calculated the 

mean promoter activity of the class-1 and class-2 promoters within each bin. Fig.5.4a indicates the 

mean promoter activity rescaled by its mean as a function of the mean rescaled cell size 𝑆𝑏.  

This plot allows us to see that cells with different sizes have a similar class-1 promoter activity 

(orange circles) as can be seen from the close to the zero-slope of the orange line. There is a 

noticeable difference in the class-2 promoter (blue circles). The relationship between size and 

promoter activity has a greater slope than for class-1; cells that are smaller at birth also have low 

promoter activity than larger cells at birth.  

As a reference, I plotted in Fig.5.4a the relationship between size and the activity of the constitutive 

promoter Pro4, which controls the steady expression of the fluorescent protein Venus (from the 

strain Pro4Venus analyzed in previous chapters). This Pro4 strain does not pulse, and the slope of 

the size versus promoter activity nears zero.  

Variations in the class-2 protein synthesis have a stronger correlation with the cell size than for the 

class-1 proteins. While the class-1 promoter involves the synthesis of only two different class-1 

proteins, several class-2 promoters synchronously control the expression of many more proteins, 

therefore more mass is associated with increments in the class-2 activity.  
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As we can see in Fig.5.4b, for low values of the class-2 promoter activity, (lower than 𝑃𝐴𝑐𝑙𝑎𝑠𝑠−2 =

100), 𝑆𝑏𝑖𝑟𝑡ℎ does maintain similar values. However, as 𝑃𝐴𝑐𝑙𝑎𝑠𝑠−2 increases, (which corresponds 

to the cells during pulses), the cell size also increases. 

 

      a) 

 

b) 

 

Figure 5.4. a) Mean of the normalized flagellar class-1 (orange) and class-2 (blue) promoter 

activity, PA, as functions of the binned cell size at birth, 𝑆𝑏𝑖𝑟𝑡ℎ, rescaled by their mean. The 

green data points correspond to the Pro4Venus strain, which has a constitutive promoter Pro4 

that controls the expression of Venus (see chapter 4). b) Mean size at birth for equally spaced 

bins of the class-2 promoter activity, 𝑃𝐴𝑐𝑙𝑎𝑠𝑠−2. 

 

To visualize the variations in cell size during the pulses, I divided the time traces into peak-to-peak 

intervals that include a peak of a pulse, the following OFF state, and the next pulse, as exemplified 

in Fig.5.5a. Then, I organized the intervals into two distinct families whose durations are either 

within 3-5hours or 5-8hours. Finally, I rescaled each interval’s duration so that they all start at 0 

and end at 1.  

I show the average of the peak-to-peak intervals for the 𝑃𝐴𝑐𝑙𝑎𝑠𝑠−2 that originally has a duration 

between 3-5 hours (blue) and 5-8 hours (gray) in the top panel of Fig.5.5b, and below it, the cell 

size 𝑆(𝑡) for the same intervals. 

The average size displays some fluctuations, which are similar for the two sets of intervals. There 

are peaks at the beginning and end of the curves that coincide with the peaks of the 𝑃𝐴𝑐𝑙𝑎𝑠𝑠−2, 

indicating their positive correlation on time. Nevertheless, there are two other peaks during the 

OFF state for which we do not have a biological explanation. However, we speculate it might be 
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related to the activation of the class-3 genes. Further analysis and experiments are needed to 

understand this. 

To better understand the relation between cell size and class-2 activity, I calculated the cross-

correlation between the size S(t) and the 𝑃𝐴𝑐𝑙𝑎𝑠𝑠−2(𝑡). In Fig.5.3, in gray is the cross-correlation 

between the time series 𝑆𝑖(𝑡 + 𝜏) and 𝑃𝐴𝑖
𝑐𝑙𝑎𝑠𝑠−2(𝑡), for different time lags 𝜏, for each cell lineage 

𝑖. The lag 𝜏 refers to how far the series are offset, and its sign determines which series is shifted. 

Then, the correlations in Fig.5.3 shows the similarity of the time series in different times. In blue 

is the average correlation over the cells, which has a maximum value at lag zero. 

From the cross-correlation of each mother I obtained the lag that corresponds to the higher 

correlation, the lag at which there is a higher similitude between S(t) and 𝑃𝐴𝑐𝑙𝑎𝑠𝑠−2(𝑡). The 

histogram of the lags is in Fig.5.5b, and shows that there is a higher statistical correlation between 

𝑃𝐴𝑐𝑙𝑎𝑠𝑠−2(t) and S(t) when the latter has a zero and positive delay smaller than 25 minutes, relative 

to 𝑃𝐴𝑐𝑙𝑎𝑠𝑠−2(𝑡). 

We conclude that the changes in size occur in a time immediately after the pulses. When a single 

cell has a class-2 pulse, it triggers the production of flagella proteins resulting in an immediate 

increase in cell mass simply because of the addition of new proteins, the flagellar proteins.  

Once the production is decreased or stopped, the cell starts reducing its size as the flagellar proteins 

get diluted after cell division, exported out of the cell, or degraded. 
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              a)               

 

b)  c) 

 

 

  

Figure 5.5. a) Each peak-to-peak interval was rescaled to have a duration from 0 to 1. The top 

panel shows the average of 𝑃𝐴𝑐𝑙𝑎𝑠𝑠−2 of such intervals that originally had a duration between 

3-5 hours (blue) and 5-8 hours (gray). At the bottom is the average of the area at birth 𝑆𝑏𝑖𝑟𝑡ℎ 

corresponding to the same peak-to-peak intervals. I computed the averages by dividing the 

normalized time into evenly spaced intervals. c) top: In gray is the cross-correlation between 

𝑃𝐴𝑐𝑙𝑎𝑠𝑠−2(𝑡) and size 𝑆(𝑡 + 𝜏) for many cell lineages, and in blue is the average for each lag 

𝜏 . Bottom: histogram of the lags corresponding to the maximum correlation per each lineage 

from the top panel.  

 

5.4 Correlation between class-2 flagellar protein production and elongation rate 

The average elongation rate of a population decreases when forced to increase the number of 

unnecessary synthetized proteins [11, 13]. As discussed in Chapter 3, when the fraction of 
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unnecessary proteins increases, the resources invested in its synthesis are “taken away” from being 

used on other proteins needed for cell growth (principally ribosomal proteins). 

However, as I showed in Chapter 4, single-cells of a population have a weak correlation between 

elongation rate and the number of unnecessary proteins, when its expression is constitutive. 

Here I analyze elongation rate as a function of class-2 promoter activity in individual cells of the 

DCF strain. In Fig.5.6, I show the mean elongation rate 𝛼 over cells of different equal-sized groups 

of the population selected by their value of class-2 promoter activity. The plot shows that the 

elongation rate and the promoter activity are positively correlated. Also, the Pearson’s correlation 

coefficient between them is 𝑅(𝛼, 𝑃𝐴𝑐𝑙𝑎𝑠𝑠−2) = 0.287. By contrast, the class-1 activity showed a 

weak correlation, 𝑅(𝛼, 𝑃𝐴𝑐𝑙𝑎𝑠𝑠−1) = 0.081. 

To compare with the behavior of cells that have a constitutive expression, in Fig.5.6 (in brown) is 

displayed the elongation rate as a function of the binned activity corresponding to the Pro4Venus 

strain. Similar to the flagellar promoter, the constitutive expression of the unnecessary protein 

Venus has a positive correlation with 𝛼.   

 

 

Figure 5.6. Individual cells of the DCF strain were grouped as depending on their 

class-2 promoter activity in 7 equally sized groups. In blue is the mean elongation 

rate of each bin as a function of the mean promoter activity. Similarly, the brown 

markers correspond to the mean elongation rate as a function of the mean activity 

of the constitutive promoter Pro4 in the Pro4Venus strain. 

 

An interesting observation is that while the mean growth rate of a population of cells is negatively 

correlated with the mean value of the unnecessary protein expression across strains, at the single 
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cell level (Fig.3.14), for one strain the correlation among such variables is positive (as 

demonstrated in Fig.5.6).  

Generally, the activity of a promoter describes the rate of synthesis of the protein it controls, while 

the elongation rate 𝛼 measures the rate at which a cell grows or acquires its mass. Since the cell’s 

mass is composed ~95% of proteins (which includes the flagellar proteins) [11], 𝛼 is affected by 

the synthesis rate of its different proteins. Therefore, both 𝛼 and promoter activity (constitutive or 

flagellar promoter) depends positively on the synthesis capacity of the cell, which in turn depends 

on the ribosomal protein 𝑅.  I interpret the relations in Fig.5.6 as reflecting  the elongation rate and 

promoter activity dependence on the ribosomal content. 

 

 a) b) 

 

Figure 5.7. a) Average Promoter Activity of many peak-to-peak intervals that were 

rescaled to have a duration from 0 to 1. The averages include intervals that originally 

lasted between 3 and 5 hours (blue curves) and 5 to 8 hours (in gray). At the bottom is 

the average of the elongation rate for the same rescaled intervals. b) Same averages as 

in a) but with the x-axis multiplied by the intervals’ average duration. I computed all 

averages by dividing the normalized time into evenly spaced intervals. The number of 

peak-to-peak intervals on each group is 84 and 72 for 3-5 hrs and 5-8 hrs, respectively. 

 

To relate 𝛼 with the actual pulses of 𝑃𝐴𝑐𝑙𝑎𝑠𝑠−2 I present in Fig.5.7a the average 𝑃𝐴𝑐𝑙𝑎𝑠𝑠−2 (at the 

top) and the average 𝛼 (at the bottom) over the binned peak-to-peak intervals (same interval groups 
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as in Fig.5.5b). The mean 𝛼 over time presents a similar shape than 𝑃𝐴𝑐𝑙𝑎𝑠𝑠−2:  𝛼 is high during 

the average of the is first peaks, it decreases when the 𝑃𝐴𝑐𝑙𝑎𝑠𝑠−2 is OFF, and then increases again 

around the same time as the average of the second peak. As can be seen in Figure 5.5, the 𝛼 time-

series is shifted to the left when compared to that of 𝑃𝐴𝑐𝑙𝑎𝑠𝑠−2, and contains broader ‘peaks’. 

In Fig.5.7b, I show the same intervals as in the left, but with the normalized duration multiplied 

by the mean of the original duration of each group’s intervals. With such transformation, it is easier 

to observe that there is more decrease in the elongation rate in the curve corresponding to 5-8 

hours. A possible interpretation is that as more time passes after a pulse, the cell has more time to 

“relax” and reach a steady elongation rate before it increases again. 

From Fig.5.7 it can be observed that the first maximum of the elongation rate precedes the 

promoter activity’s first peak. To verify this, in Fig.5.8a in gray, I show the cross-correlation 

between the 𝑃𝐴𝑐𝑙𝑎𝑠𝑠−2 and 𝛼, Corr(𝛼(𝑡 + 𝜏), 𝑃𝐴𝑐𝑙𝑎𝑠𝑠−2), as a function of the time lag 𝜏 for various 

time series, each corresponding to a cell lineage. In blue is the average of the correlation for each 

lag. The maximum of the average correlation is at a lag time of -20 minutes. In Fig.5.8b is the 

histogram of the lags with maximum correlation for all the lineages, which shows that the lag with 

higher frequency is 25±5 minutes. In other words, there is a greater similarity of 𝑃𝐴𝑐𝑙𝑎𝑠𝑠−2 time-

series with the elongation rate shifted ~20 minutes negatively. On average, the cells’ elongation 

rate changes before the synthesis of class-2 proteins. 
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a) b) 

 

 

Figure 5.8. a) Cross-correlation between the class-2 prompter activity 𝑃𝐴𝑐𝑙𝑎𝑠𝑠−2 and the 

elongation rate 𝛼, Corr(𝛼(𝑡 + 𝜏), 𝑃𝐴𝑐𝑙𝑎𝑠𝑠−2(𝑡)) as a function of the time lag 𝜏, for many 

lineages (gray) and the average per lag (blue). The dashed vertical line is placed at lag 𝜏 =
0. The maximum value of the average correlation corresponds to lag 𝜏 = 20min. b) 

Histogram of the lags that correspond to the maximum value of each cell lineage’s 

correlation in a). The lag with a higher frequency is -25 minutes. 

 

This result is unexpected for us since it goes against the scenario in which the sudden increase in 

class-2 protein synthesis is the cause of the change in the elongation rate. 

More experiments are necessary to elucidate if the mechanism by which cells modify the 

elongation rate previous to a pulse of protein production is inherent to the flagellar system or if, in 

general, cells “prepare” for a sudden perturbation on the proteome. 

To consider the effect of the amplitude of the class-2 pulses, I sorted all the intervals of the 

promoter activity series that presented a pulse into three equally sized groups by amplitude. Each 

interval starts at the begging of a pulse and lasts all the subsequent OFF state before a second pulse 

appears. I aligned the series of each group so that the maximum pulses match into the same 

timepoint and then calculated the average of the promoter activity at each time (see Fig.5, left). 

For those same groups, I calculated the mean of the elongation rate, shown in the right panel, where 

the blue vertical line indicates the time point that corresponds to the maximum value of the 

promoter activity. By comparing these two plots, it is noticeable that the elongation rate is higher 

for the pulses with bigger amplitude. After that, for the three groups, there is a decrease in the 

elongation rate. Therefore, the elongation rate during the 𝑃𝐴𝑐𝑙𝑎𝑠𝑠−2  also depends on its amplitude. 



82 

 

This result, reported in Fig.5.9, also shows that the elongation rate has memory since its value after 

a pulse will depend as well on the amplitude of the previous pulses. 

   

 

Figure. 5.9. Intervals containing a 𝑃𝐴𝑐𝑙𝑎𝑠𝑠−2 pulse and the following OFF state are divided 

into three equally sized groups depending on the pulses’ amplitude. On the left it is shown 

the average 𝑃𝐴𝑐𝑙𝑎𝑠𝑠−2 for each group. The average elongation rate for the same four groups 

is plotted at the right, while the gray horizontal line marks the population’s mean 

elongation rate. The color code corresponds to each group’s level of promoter activity, and 

the label is the mean amplitude of the pulses. The shaded regions in each curve show the 

respective standard deviation at each time point for each group. The vertical dashed line 

corresponds to the time of the maximum value of the promoter activity, to which all peaks 

were aligned.  

 

5.5 Correlation between class-2 flagellar protein production and division time 

There are also changes in division time related to the production of flagellar proteins. In Fig.5.10 

in blue is the mean division time 𝑇𝑑𝑖𝑣 as a function of the binned class-2 promoter activity, 

calculated from the DCF strain. They have a negative correlation, with a Pearson’s coefficient of 

𝑅(𝑇𝑑𝑖𝑣, 𝑃𝐴𝑐𝑙𝑎𝑠𝑠−2) = −0.228. Class-1 activity had a very weak correlation with 𝑇𝑑𝑖𝑣 with a 

coefficient 𝑅(𝑇𝑑𝑖𝑣, 𝑃𝐴𝑐𝑙𝑎𝑠𝑠−1) = −0.061 (not include it in the plot). Similarly, in brown is the 

mean 𝑇𝑑𝑖𝑣 as a function of the binned activity of the constitutive promoter Pro4, from the 

Pro4Venus strain. 𝑇𝑑𝑖𝑣 also has a negative correlation with the constitutive promoter activity, with 

a Person’s coefficient 𝑅(𝑃𝐴𝑃𝑟𝑜4, 𝑇𝑑𝑖𝑣) = −0.351. 

Fig.5.11a shows the average class-2 promoter activity (top panel) and the average division time 

(bottom panel) of the peak-to-peak intervals as a function of the normalized duration. Same 

interval groups as in Fig.5.7, one with a duration of 3-5 hours and the other of 5-8 hours. The figure 
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shows a negative correlation between the division time 𝑇𝑑𝑖𝑣 and the promoter activity 𝑃𝐴𝑐𝑙𝑎𝑠𝑠−2 

during the pulses and the OFF state.  

 

 

Figure 5.10. Division Time 𝑇𝑑𝑖𝑣 as a function of the binned promoter activity of the class-2 

promoter measured from DCF strain (blue markers), and constitutive promoter Pro4 from 

Pro4Venus strain (brown markers). The number of DCF cells is 1388, and 937 of the 

Pro4Venus. The bins are equally sized, and the error bars show the standard error for each bin. 

 

In Fig.5.11b, the same averages as in (a) are plotted, but the normalized duration is multiplied by 

the mean duration of each group’s interval in order to illustrate the difference in the average of the 

intervals depending on the duration between peaks.  It is noticeable that the average division time 

is longer when there is a longer duration between peaks (for the intervals from 5-8 hours), as if 

due to the fact that there is a longer OFF duration after a peak, the cells keep adjusting the 𝑇𝑑𝑖𝑣 to 

be longer.  

 

In Chapter 4, I showed a negative correlation between the division time and the number of 

unnecessary proteins of cells at birth grow (Fig.3.). We proposed a positive correlation between 

the synthesis of unnecessary proteins 𝑈 and division proteins 𝑋, assuming cells divide after 

accumulating 𝑋 until a fixed threshold is reached. In this way, when there is a high production of 

𝑈 proteins, there is an increased synthesis of 𝑋 proteins, and cells divide faster than when there is 

a lower synthesis of proteins. 
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 a) b) 

 

Figure 5.11. a) Peak-to-peak intervals of 𝑃𝐴𝑐𝑙𝑎𝑠𝑠−2 (Fig.5.6a) were rescaled to have a 

maximum duration of one and averaged over small-time windows. This was done for two 

groups of intervals, lasting between 3 and 5 hours (blue), and t 5 to 8 hours (gray). The bottom 

panel shows the average of the division time 𝑇𝑑𝑖𝑣 corresponding to the same intervals. b) 

Same averages as in (a), but the x-axis is multiplied by the mean duration of each group’s 

intervals. The number of peak-to-peak intervals on each group is 84 and 72 for 3-5 hrs and 5-

8 hrs, respectively. 

Here, in Fig.5.11 and 5.12, I show a negative correlation between 𝑃𝐴𝑐𝑙𝑎𝑠𝑠−2 and 𝑇𝑑𝑖𝑣, also implying 

a positive relationship between the rate of synthesis of class-2 proteins and 𝑋 protein synthesis.  

It is important to mention that the 𝑋 and class-2 protein synthesis have different dynamics. The 

flagellar protein synthesis is coordinated by a complex molecular mechanism involving other 

flagellar proteins. In contrast, the 𝑋 proteins might be constitutively expressed [11, 45].   

Nonetheless, this analysis demonstrates that both proteins respond to a similar process, probably 

at the transcriptional or translational level, involving the number of available ribosomal proteins 

in a cell over time. 
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5.6 Discussion  

In this chapter I presented an analysis of the variation in the parameters that characterize single 

cell growth (size, elongation rate, and division time) while they produce flagellar proteins with 

pulse-like dynamics. I performed a single-cell experiment in which I monitored the growth 

parameters and the activity of the flagellar class-1 and class-2 promoters of E. coli over many 

lineages. As reported in [48], we found that, while the activity of the class-1 flagellar promoter 

presents a steady expression over time, the class-2 promoters have pulse-like dynamics.  

The analysis described in this chapter indicates that the cells exhibit variations in the cell 

parameters that correlate with the flagellar promoters’ activity, particularly with class-2. The 

correlations between the flagellar promoters’ activity and growth parameters (cell size, division 

time, and elongation rate) are similar as in the case when cells overexpress the unnecessary proteins 

Venus with the promoter Pro4. While Pro4 is a constitutive promoter, the flagella promoters are 

involved in a complex system that coordinates the flagella’s assembly and functioning. 

Nevertheless, in both cases, cells are bigger when they synthesize more proteins; the synthesis rate 

is positively correlated with the elongation rate and negatively correlated with the division time.   

The similarity in the correlations between the promoter activity and cell parameters suggests an 

upstream mechanism that both Venus and class-2 proteins are subjected to, probably in the 

transcription and translation processes. For instance, the elongation rate and the promoter activity 

will respond to fluctuations in the number of ribosomes since both directly involve protein 

synthesis. In the same context, the relation between promoter activity and division time makes 

sense when assuming that cells divide when they accumulate a division protein up to a fixed 

threshold (chapter 4, Fig.4.1). The division proteins and class-2 protein synthesis should be 

positively correlated due to their dependence on ribosomal proteins, thus leading to the negative 

correlation between the division time and the class-2 promoter activity. 

At first sight, these results challenge the scenario that, if cells produce unnecessary proteins, there 

will be a cost on growth (a slower elongation rate), which is what happens at a population level. 

Here, we observe the opposite at the single-cell level: when the unnecessary protein synthesis 

increases, the elongation rate and division frequency increase as well.  

However, this discrepancy can be reconciled with previous observations by considering that 

regardless of the level of unnecessary protein production of a certain strain, the ribosome content 
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of individual cells positively correlates with elongation rate and protein synthesis. When 

comparing strains, the average ribosome concentration in cells is lower for the population that 

produces the more unnecessary protein, so the average elongation rate and synthesis capacity 

decreases (as discussed in chapter 3). It is important to mention that I am considering populations 

of bacteria that have already reached a steady-state, namely, populations that have adapted to an 

optimal proteome configuration.  

By studying the pulses in individual cells, I analyzed the cell growth response over time. We found 

that there are big variations in elongation rate, similar to the class-2 promoter activity pulses, but 

preceding the latter. This result is surprising since it goes against our notion that the elongation 

rate changes due to the sudden class-2 expression.  

Nevertheless, the increase in elongation rate preceding the class-2 promoter activity pulses may 

reflect the synthesis of other proteins involved in the flagellar system prior to class-2 expression—

for example, the synthesis of the protein YdiV, which sequesters the class-1 complex FlhD4C2 and 

prevents the activation of class 2 promoters [47, 53, 54, 55]. These results also demonstrate the 

dependence of flagella production on the cell’s intrinsic processes since the correlation between 

the flagellar pulses and cell parameters can be described with the interactions between flagellar, 

ribosomal, and division proteins. 

In the future, I would like to discriminate if the change in elongation rate before the production of 

proteins is a specific phenomenon to the flagellar system or if it is related to a general process in 

the production of any protein. I could address this question by performing experiments to monitor 

individual cells while artificially inducing the synthesis of an unnecessary protein, such as Venus. 

This would have a directed protein production, unlike the flagellar proteins, which are part of a 

complex system that involves several different flagellar proteins. Besides, this suggested 

experiment would allow us to control the fraction of unnecessary proteins that cells accumulate 

before they reach steady-state, allowing me to study the transition between the single-cell and 

population trends.  

Although there are still many questions left unanswered, the results presented here describe, for 

the first time, the growth of single-cells over time when they are subject to sudden protein 

production. This is an important first step to understand the mechanism of allocation of resources 

among different protein sectors. 
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Appendix 1. Microfluidic master fabrication 

 

New designs for the microfluidic device were created in AutoCAD; generally, it consists of two 

layers, one for the cell channels and a second one for the feeding channels. The cell channels were 

1.1μm wide and 25μm long. The edges of the channels were smoothed out to reduce the halo that 

appears during phase-contrast imaging. We also added a trough at the boundary where the cell 

channels meet the feeding channel so that the phase contrast halo from the feeding channel does 

not affect the imaging of the cells inside the channel (Fig.2.6). The feeding channels were 8.1mm 

long and 100μm wide. 

Fabrication of the master mold was carried out using standard UV photolithography in a clean 

room environment at the Center for Nanoscale Systems at Harvard University. We modified the 

fabrication procedure from the method described in [24] by exposing the SU-8 using a Heidelberg 

MLA150 Maskless Aligner (Heidelberg Instruments). The MLA150 enabled us to directly “print” 

our AutoCAD designs without a mask and often resulted in more accurate printing of smaller 

features. 

To print the microfluidic device master, we used the following protocol. The spin coating 

parameters shown below are written using the abbreviation: speed (rpm)/acceleration 

(rpm/sec)/time (sec): 

 

1) First layer: cell channels. 

a. Place a 3″ wafer at a spinner and rinse it by adding acetone and isopropyl alcohol (IPA) 

while it is spinning. 

b. Let the wafer dry for 15 minutes on a hotplate at 200°C.  

c. Let the wafer cool down for a few minutes and place it on a spin chuck.  

d. Slowly pour SU-8 2002 until it covers ~2/3 of the wafer. Here, avoid any bubbles in the 

resist since even small bubbles can distort the cell channel. 

e. Spin the wafer using the program: Step 1: 500/100/10, Step 2: 3500/300/60.  

f. Bake the wafer for 1 min at 65°C, 1 min at 95°C, 1 min at 65°C.  
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g. Expose the wafer with the cell channel design using the MLA150 with a dosage of 2500 

mJ/cm2. In our cell channel design, we also include cross-shaped marks which will serve 

as alignment marks during the exposure of the feeding channel layer. 

h. After exposure in the MLA, bake the wafer for 1 min at 65°C, 1 min 95°C and 30 seconds 

at 65°C. 

i. Gently immerse the wafer in a SU-8 developer.  

j. Bake the wafer for 15 minutes on a hot plate at 150°C (“hard bake” step).  

k. Measure the channel height using a profilometer. The expected high is ~1.2μm. 

 

2) Second layer: feeding channels. 

a. Place the wafer with the cell channels on a spin chuck.  

b. Slowly pour SU-8 2010 photoresist on the wafer covering ~2/3 of its area.  

c. Spin the wafer using the program: Step 1: 500/100/10. Step 2: 3000/300/60.  

d. Bake it using hot plates for 1 min at 65°C, 2 min 95°C and 1 min at 65°C.  

e. Use cotton swabs soaked with propylene-glycol-methyl-ether-acetate (PGMA) to wipe SU-

8 off from the region of the wafer where the alignment crosses are printed. 

f. Bake the wafer at 65°C for 1 minute.  

g. Load the feeding channel design into the MLA. Place the wafer in the MLA and align the 

wafer by identifying the crosses using the cameras of the MLA. Once alignment is 

complete, expose with a dosage of 4500 mJ/cm2 and focus offset (“defoc”) -2. 

h. Once the design is exposed, bake the wafer at 65°C for 1 min, 95°C for 4 min and 65°C 

for 1 min. 

i. Immerse the wafer in a container with PGMA and shake it very slowly for 1 min. j. Rinse 

the wafer with IPA to remove the remaining SU-8. k. Let the wafer hard bake at 150ºC for 

15 minutes. l. Measure the feeding channel height using the profilometer. The expected 

height is ~11μm. 
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