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T E S I S

que para optar por el grado de

MAESTRO EN CIENCIAS (FÍSICA)
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Abstract

In this thesis, I study the temporal coherence of photon pairs generated by a process

of four-wave mixing in a cold rubidium atomic cloud. The second-order cross-correlation

and autocorrelation functions of the system were measured. Both were used to measure

the Cauchy coefficient R resulting in a factor of 105, indicating a strong violation of the

Cauchy-Schwarz inequality and then showing non-classicality in the temporal coherence

of the generated photon pairs. Using a model based on a solution of the Schrödinger

equation for a consecutive decay, the experimental data were fitted, obtaining measure-

ments of the coherence time τ0, the bandwidth of the idler photon Γ and the spectral

brightness B of the source.
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Resumen

En esta tesis estudio la coherencia temporal de los pares de fotones generados por

un proceso de mezclado de cuatro ondas en una nube de átomos fŕıos de Rubidio. En él

se midieron la correlación cruzada de segundo orden y la función de autocorrelación del

sistema. Ambas fueron usadas para medir en coeficiente de Cauchy R resultando en un

factor de 105, indicando una fuerte violación de la desigualdad de Cauchy-Schwarz, lo

cual implica la no clasicalidad en la coherencia temporal de los fotones generados. Usando

un modelo basado en una solución de la ecuación de Schrödinger para un decaimiento

consecutivo, se ajustaron los datos experimentales, midiendo el tiempo de coherencia τ0,

el ancho de banda Γ del fotón acompañante y el brillo espectral B de la fuente.
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Chapter 1

Introduction

The emergence of quantum mechanics more than 100 years ago was a revolutionary

moment for science and for the way we see and describe the world. The early quantization

of electromagnetic energy was proposed by Planck in 1901 [1] to explain the black-body

radiation. Later, Einstein propose the photon in its description of the photoelectric effect

[2]. From the very beginning, it was not clear how to transform from classical to quantum

theories. One of the first steps towards a methodology to achieve that transition was

done by Dirac in 1925 [3]. He created what is now known as canonical quantization.

Since these discoveries, statistical tests have been developed to differentiate between

quantum and classical light.

One of the most important steps towards the modern understanding of light was the

experiment of Hanbury-Brown and Twiss in 1956 [4], which analyzed the coincidences

between two detectors. The intensity correlations of light coming from a star helped to

determine its size. This experiment, along with the development of the first lasers in

the 60s [5], motivated the concept of second-order coherence [6]. This was later written

in terms of quantum operators [7] and integrated into the modern analysis of photon

sources that we have nowadays. Along with these studies, Roy Glauber developed a

theory of photodetection [8] which has been the base of the majority of quantum optics

experiments.
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Introduction 1.1. COMPLETE QUANTUM SYSTEMS

The first experimental demostrations of single photon sources were performed in the

early 70s. One of these was the spontaneous parametric down-conversion (SPDC) in non-

linear crystals [9]. Another source developed at that time was the photon pair generation

by four-wave mixing (FWM) in atomic media [10]. A decay photon pair generated in

a calcium source using FWM was used to demonstrate for the first time a violation of

the Bell inequalities [11]. Since their appearence, the generation of single photons has

been an useful tool for quantum optics. With them, we can perform a wide variety of

experiments: from fundamental tests of quantum principles to applications in quantum

information [12].

1.1 Complete quantum systems

A complete quantum system is defined as the fundamental block of a quantum net-

work. It consists of a node, where the information is processed, stored or replicated

and messengers that communicate nodes between them. Figure 1.1 presents a scheme

of a quantum repeater: a simple quantum network that compensates the losses in a

transmission line between two points.

One of the possible experimental realizations of a complete quantum systems is an

atomic ensemble taking the roll of a node and photons acting as messengers of information

[13]. In this case the communication of both elements is given by the interaction between

light and atoms. The photons need to have the suitable frequency and bandwidth to be

able to interact with an atomic ensemble, and also need to be enough for an efficient

process. Both SPDC and FWM sources can provide us with photons with the correct

frequency and bandwidth to interact with atoms. Both kinds of sources can even generate

photons in the telecom band (1260-1625 nm), which can make possible to send these

photons through the optical fibers currently used [14, 15].

LAFriOC – 2 – Irvin Fermı́n Angeles Aguillón



Introduction 1.1. COMPLETE QUANTUM SYSTEMS

Figure 1.1: Scheme of a quantum repeater. The distance between two observers Alice
and Bob is divided into smaller blocks. In those blocks there are two sources of entan-
gled photons, where one of each one of them is sent into two quantum memories. The
others are sent into a Bell-state measurement (BSM). When the BSM is performed it
is found that the photons in the memories will have correlations too. By performing
consecutively BSM between neighboring blocks, the photons stored at Alice and Bob
memories will be correlated. Figure from https://qt.eu/discover-quantum/underlying-
principles/quantum-repeaters/

The SPDC process has been the most studied photon source over the years. It

has some features that facilitate applications, like scalability [16] and the possibility

of building robust systems [17]. There are also services of quantum security based on

quantum key distribution [18] with SPDC sources being offered commercially [19]. These

sources can be reduced in size and moved outside laboratory conditions in order to have

daily-life applications. However, using atomic sources of light we can reach a higher

degree of control of the photon parameters because it is possible to selectively prepare

the atomic states using high-precision spectroscopy. Alkaline atoms facilitate this kind

of experiments, since they have only one electron in their outer shell.

Atomic ensembles are a complement to SPDC technology because in addition to pho-

ton pair generation we can make quantum memories [20] and the possibility of repeaters

with them [21]. Great progress has been made recently regarding this kind of systems:

quantum memories at single-photon level [22], multiplexed memories [23], a memory

LAFriOC – 3 – Irvin Fermı́n Angeles Aguillón



Introduction 1.2. DESCRIPTION OF THIS WORK

of a single atom [24], a deterministic photon source based on a quantum memory [25]

and a quantum network of hundreds of kilometers that connect two room-temperature

quantum memories [26].

Two of the most commonly used energy level systems for implementing FWM in

atomic gases are the diamond and the double-Λ configurations, shown in Figure 1.2. In

the diamond configuration, there is a ladder-type excitation from state |0〉 to |2〉 and

a double cascade-decay from |2〉 to |0〉. The double-Λ system consists of an excitation

from level |0〉 to |2〉 followed by a decay from |2〉 to level |1〉, then another excitation

from |1〉 to |3〉 and finally a decay from |3〉 to |0〉. The decays of this process produce

signal and idler photons, as indicated in Figure 1.2.

Figure 1.2: Typical energy level schemes for a FWM process. The straight lines represent
the excitation of transitions while the curly lines are the generated signal and idler
photons.

1.2 Description of this work

Laser cooling [27] is a well-known technique to trap atoms. Since its development in

the 80s [28], it has been widely used for various lines of research: it is the initial step to
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Introduction 1.2. DESCRIPTION OF THIS WORK

create Bose-Einstein condensates [29], to study the fundamentals of quantum mechanics

like quantum jumps [30] and a single-photon interacting with a single atom [31]. It

is used also for applications, like metrology [32], atomic clocks [33] and the studies of

quantum communications, like quantum memories [34], or quantum encryption [35].

In this work I describe our experimental apparatus built in the Cold Atoms and

Quantum Optics Laboratory (LAFriOC, IF-UNAM) capable of generating photon pairs

by a nonlinear FWM process in a diamond configuration using the atomic Rubidium

isotope 87. The energy levels used are: |0〉 = 5S1/2, |1〉 = 5P3/2, |2〉 = 5D3/2 and

|3〉 = 5P1/2 and the emitted photons have near-infrared wavelength: 762 nm for the

signal and 795 nm for the idler, as described in Figure 1.2.

This Thesis is organized as follows: Chapter 2 contains the theoretical framework of

FWM in the diamond scheme. It begins by studying the classical electromagnetic fields

and their canonical quantization. Then the correlation functions between two random

variables and their relevance to the coherence theory is discussed. The interaction Hamil-

tonian regarding a FWM process is considered to deduce the phase-matching conditions.

This chapter concludes with a proposal to solve numerically the atomic system.

Chapter 3 contains a description of the experimental setup: our laser system and con-

trol, the optical pumping, our cooling system to create a magneto-optical trap (MOT),

and our optical setup for single-photon detection. Chapter 4 has our main results: using

a consecutive decay model we fit the experimental data for the cross-correlation func-

tion between the signal and idler photons and their autocorrelations. We measured an

heralded coherence time for the cross-correlation and a thermal coherence time for the

autocorrelation. We also measured a strong violation of the Cauchy-Schwarz inequality

R = (4.49± 0.43)× 105 > 1, which means that the time coherence of our photon pairs is

highly non-classical. Chapter 5 presents numerical calculations of the master equations
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Introduction 1.2. DESCRIPTION OF THIS WORK

to calculate the cross-correlation function. Finally, Chapter 6 gives a summary of our

results and an outlook for future experiments.

LAFriOC – 6 – Irvin Fermı́n Angeles Aguillón



Chapter 2

Theory

Our experiment with cold atoms produces photon pairs. To describe them and de-

sign an adequate detection system we need to understand the quantization of the elec-

tromagnetic field. In this chapter we build a model to describe the quantized radiation

field together with a description of the atomic interaction with light. To understand the

statistics of the generated photons we also study the correlation functions between fields.

2.1 Classical electromagnetic fields

We consider the behaviour of the classical electric E(r, t) and magnetic B(r, t) fields

in free space, without boundaries and sources, described by the Maxwell equations [36]

~∇ · E = 0,~∇× E = −∂B
∂t
,

~∇ ·B = 0,~∇×B = ε0µ0
∂E
∂t
,

(2.1)

manipulating these expressions and considering the following identity for any given op-

erator O: ~∇× (~∇×O) = ~∇(~∇·O)−∇2O, we can obtain a homogeneous wave equation

for each field

∇2E− 1
c2
∂2E
∂t2

= 0,

∇2B− 1
c2
∂2B
∂t2

= 0,
(2.2)

7



Theory 2.1. CLASSICAL ELECTROMAGNETIC FIELDS

where c = 1/√ε0µ0, c is the speed of light, ε0 the permittivity of vacuum and µ0 its

permeability. This system of partial differential equations has various solutions. In

Cartesian coordinates they can be written as

E(r, t) = E0 exp{i(k · r− ωt)},

B(r, t) = B0 exp{i(k · r− ωt)},
(2.3)

where k is the propagation vector of the light, r is the position vector and ω its angular

frequency. Vectors E0 and B0 are the amplitudes of the fields and their directions. It

is well known that we can express both fields in general by using the vector potential

A(r, t),

B(r, t) = ~∇×A(r, t) , E(r, t) = −∂A(r, t)
∂t

. (2.4)

Along with the divergence condition

~∇ ·A(r, t) = 0, (2.5)

which is known as the Coulombs gauge, it is straightforward to show that this vector

potential also satisfies

∇2A− 1
c2
∂2A
∂t2

= 0, (2.6)

which is another homogeneous wave equation.

2.1.1 Expansion of the plane wave

Making a Fourier decomposition of the potential vector A(r, t) in Cartesian coordi-

nates and imposing periodical boundaries in a cube of side L, we obtain

A(r, t) = 1
ε

1/2
0 L3/2

∑
k

ak(t)eik·r, (2.7)

LAFriOC – 8 – Irvin Fermı́n Angeles Aguillón



Theory 2.1. CLASSICAL ELECTROMAGNETIC FIELDS

where k represents the direction of propagation and ak are the coefficients of the Fourier

series. If we substitute equation (2.7) into equation (2.6), and by applying the operator

∇2 we get a factor −k2 from the exponential, obtaining

1
ε

1/2
0

∑
k

(
−k2 − 1

c2
∂2

∂t2

)
ak(t)eik·r = 0, (2.8)

for all r and all k, so if we consider the dispersion relationship c = ω/k with k = |k| the

result is (
∂2

∂t2
+ ω2

k

)
ak = 0, (2.9)

which is the equation of the harmonic oscillator for each term in the sum. The general

solution of this equation is

ak = cke−iωt + ck∗eiωt. (2.10)

It is worth noting that we can separate the vectorial part of this quantity by ck = ε̂kck,

with ε̂k a unitary vector, and ck =
√
~ωk/2ε0L3. This unitary vector will correspond to

the polarization directions of the light, because the condition of equation (2.5), could

also be viewed as k · ak(t) = 0 and thus they correspond to the transversal components

of the field. By substituting equation (2.10) in the Fourier decomposition of equation

(2.7), we obtain

A(r, t) = 1
ε

1/2
0 L3/2

∑
k

∑
s

[ck,sε̂k,se−iωt + c∗k,sε̂
∗
−k,se

iωt]eik·r,

= 1
ε

1/2
0 L3/2

∑
k

∑
s

[ck,sε̂k,sei(k·r−ωt) + c∗k,sε̂
∗
−k,se

−i(k·r−ωt)],

= 1
ε

1/2
0 L3/2

∑
k

∑
s

[uk,sε̂k,seik·r + u∗k,sε̂
∗
−k,se

−ik·r],

(2.11)

where the sum over the index s represents the sum over each component of the polar-

ization directions that we could have and uk,s(t) = ck,se
−iωt. Using the definition of the

LAFriOC – 9 – Irvin Fermı́n Angeles Aguillón



Theory 2.1. CLASSICAL ELECTROMAGNETIC FIELDS

vector potential in equation (2.4) we can also express the electrical and magnetic fields

in terms of these harmonic oscillators

E(r, t) = i

ε
1/2
0 L3/2

∑
k

∑
s

ω[uk,s(t)ε̂k,seik·r + u∗k,s(t)ε̂∗k,se−ik·r], (2.12)

B(r, t) = i

ε
1/2
0 L3/2

∑
k

∑
s

[uk,s(t)(k× ε̂k,s)eik·r + u∗k,s(t)(k× ε̂∗k,s)e−ik·r]. (2.13)

Up to this point we have only considered classical fields. We now follow the steps

needed for their quantization. For that matter, it will be useful to calculate the energy

of the system [36]

H = 1
2

∫
L3

[ε0E2(r, t)]d3r, (2.14)

where L3 is the integration volume. Solving this integral, gives

H = 1
2

∫
L3

[ε0|E · E∗|]d3r,

= 1
2ε0L3

∑
k,k′

∑
s,s′

∫
L3

[ε0ω2uk,s(t)u∗k′,s′(t)ei(k−k’)·r]d3r,

= 1
2L3

∑
k,k′

∑
s,s′

ω2uk,s(t)u∗k′,s′(t)
∫
L3
ei(k−k’)·rd3r,

= 1
2L3

∑
k,k′

∑
s,s′

ω2uk,s(t)u∗k′,s′(t)L3δk,k’δs,s′ ,

= 1
2
∑
k

∑
s

ω2|uk,s(t)|2.

(2.15)

Now we introduce a pair of canonical variables Qk,s and Pk,s, defined as

Qk,s(t) = [uk,s(t) + u∗k,s(t)],

Pk,s(t) = −iω[uk,s(t)− u∗k,s(t)],
(2.16)

which are the real and imaginary part of uk,s(t) = (Qk,s(t) + iPk,s(t)). If we recall the

time dependence of uk,s(t) = ck,se
−iωt, we can obtain the evolution of Qk,s(t) and Pk,s(t)
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∂

∂t
Qk,s(t) = Pk,s(t),

∂

∂t
Pk,s(t) = −ω2Qk,s(t),

(2.17)

so we can finally express the energy H as a function of the canonical variables

H = 1
2
∑
k

∑
s

[P 2
k,s(t) + ω2Q2

k,s(t)]. (2.18)

Once we write the energy, we can apply the usual steps for the canonical quantization.

2.2 Quantization of the electromagnetic field

This formalism indicates that we have to associate the dynamic variables of the classic

theory pi, qi with operators in a Hilbert space p̂i, q̂i. Usually, we denote the difference

between operators and dynamic variables with a “hat” symbol in the operators upper

part. In addition to this, a postulate indicates that we have to impose the canonical

commutation relationship between each pair of those operators [p̂, q̂] = i~.

For the electromagnetic field, there are a pair of canonical variables Pk,s(t) andQk,s(t),

as defined in equation (2.16), quantum mechanics postulates indicate that they follow

the canonical commutation relations:

[Q̂k,s(t), P̂k′,s′(t)] = i~δ3
k,k′δs,s′ ,

[Q̂k,s(t), Q̂k′,s′(t)] = 0,

[P̂k,s(t), P̂k′,s′(t)] = 0.

(2.19)

Then, equation (2.18) can be now expressed as the Hamiltonian operator of the quantized

radiation field

Ĥ = 1
2
∑
k

∑
s

[P̂ 2
k,s(t) + ω2Q̂2

k,s(t)], (2.20)
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where, if we define the well-known annihilation and creation operators

âk,s = 1√
2

(Q̂k,s + iP̂k,s), â†k,s = 1√
2

(Q̂k,s − iP̂k,s), (2.21)

the subscripts k and s in equation (2.21) refer to each mode k, with polarization s. The

Hamiltonian then simplifies into

Ĥ =
∑
k

∑
s

~ωk
(
â†k,sâk,s + 1

2

)
, (2.22)

where we use the commutation relation [âk,s, â†k,s] = δkk′δss′ to invert the order of the

operator âk,sâ†k,s and obtaining the factor 1
2 in the simplifying process. After performing

the canonical quantization, we can express the electric and magnetic fields in terms of

the annihilation and creation operators

Ê(r, t) = i

L3/2

∑
k

∑
s

(
~ω
2ε0

)1/2

(âk,s(t)ε̂k,seik·r + â†k,s(t)ε̂∗k,se−ik·r), (2.23)

and

B̂(r, t) = i

L3/2

∑
k

∑
s

(
~

2ωε0

)1/2

(âk,s(t)(k× ε̂k,s)eik·r + â†k,s(t)(k× ε̂∗k,s)e−ik·r). (2.24)

At this stage, let us recall some basic aspects of the quantum theory [37]. The state

of the field is described by a vector |ψ〉 in a Hilbert space, commonly known as ket.

The time evolution of this state is governed by the Schrödinger equation, and in general,

there are three representations for this description: the Schrödinger picture, where the

operators remain constant in time, and the state vectors evolve; the Heisenberg picture,

where the kets remain constant, and the operators evolve in time; and the interaction

picture where both operators and states evolve in time. Each physical observable has

a Hermitian operator Ô associated with it, and when we measure that observable we

obtain an eigenvalue O of that operator. The fact that those operators Ô have to be

Hermitian is a necessary condition because the eigenvalues of such operators are real. In
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general, when we make a measurement of the operator Ô as the system is in the state

|ψ〉, the result can be written in terms of the Born rule

〈Ô〉 =
∑
i

OiPi, (2.25)

where Pi is the probability of measuring the eigenvalue Oi, given by the projection of

the state |ψ〉 into the eigenvector |oi〉 of such operator: Pi = |〈oi|ψ〉|2, assuming the

eigenvector set |oi〉 are orthogonal.

2.3 Quantum detection theory and correlation functions

Glauber first worked out the theory of photodetection based on quantum electrody-

namics (QED) and then defined multi-order correlation functions similar to the classical

coherence theory [8].

Recalling the expression for the electric field in equation (2.23), and consider only

the positive oscillating part, where only the annihilation operator âk,s is present. In the

process of detecting photons, the detector absorbs a photon and transforms it into a

photo-electron, that produces a photo-electrical current via the photoelectric effect. So

in this process we will have the annihilation operator present due to the absorption of

this photon. Suppose that we have an initial state |i〉 and after the detection we end in

a final state |f〉 then the expectation value of the photodetection process is

〈f |Ê(+)(r, t)|i〉, (2.26)

where r is the position of the detector and t the time when the detection is registered. If

we consider an ideal photodetector with frequency-independent absorption probability,

the detection rate will be proportional to the sum of the squared matrix elements over

all final states |f〉 [8]
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∑
f

|〈f |Ê(+)(r, t)|i〉|2 =
∑
f

(〈f |Ê(+)(r, t)|i〉)†〈f |Ê(+)(r, t)|i〉,

=
∑
f

〈i|Ê(−)(r, t)|f〉〈f |Ê(+)(r, t)|i〉,

= 〈i|Ê(−)(r, t)Ê(+)(r, t)|i〉,

(2.27)

where we use that all the final states |f〉 form a complete basis and (Ê(+)(r, t))† =

Ê(−)(r, t) and Ê(−) refers to the negative oscillating part of the electric field that is

obtained by taking the Hermitian conjugate of equation (2.23). A completely similar

procedure can be performed for the case where there are two different detectors in posi-

tions r1 and r2. In such case, the matrix element related to the photodetection process

is

〈f |Ê(+)(r1, t1)Ê(+)(r2, t2)|i〉, (2.28)

and thus, the probability related to the matrix element is:

〈i|Ê(−)(r2, t2)Ê(−)(r1, t1)Ê(+)(r1, t1)Ê(+)(r2, t2)|i〉. (2.29)

Using these ideas, we can define a series of functions to measure the correlations of

electric fields. In general, the correlation function of degree N is defined as

G(N)(x1,x2, ...xN) = 〈ψ|Ê(−)(x1)...Ê(−)(xN)Ê(+)(xN)...Ê(+)(x1)|ψ〉, (2.30)

with xi = ri, ti. Those correlation functions determine coherence properties of the fields.

The first order correlation function G(1), which is the correlation of the field operator,

measure the spatial coherence of optical fields and the visibility of their interference

fringes. The second order G(2), correlation of intensity, determines the temporal coher-

ence. In section (4.2.1) we present how we can measure experimentally the correlation

functions.
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2.4 Four-wave mixing

Four-wave mixing is a non-linear optical process involving four electromagnetic fields.

In this process, the interaction of two or three fields with a medium generates one or

two radiation fields. In general, the polarization P of a medium in the presence of an

applied optical field E can be described as a series [38]

P = ε0[χ(1)E + χ(2) : EE + χ(3) : EEE + ...], (2.31)

where the n-order non-linear susceptibilities χ(n) are n-rank tensors respectively and the

operation : means a summation over all the possible contributions of the susceptibility

tensor χ(n) in each direction of the fields E. Our non-linear medium is an atomic cloud

it is centrosymmetric, so the non-zero susceptibilities would be the odd terms. In a

non-centrosymmetric medium, like the crystals used in SPDC, the non-zero terms are

the even [38]. The susceptibility regarding FWM is χ(3). The interaction Hamiltonian

for a FWM process in the interaction picture is given by [38]

HI = ε0
4

∫
V
d3r

(
χ(3) : E(+)

1 E(+)
2 E(−)

3 E(−)
4 + χ(3) : E(−)

1 E(−)
2 E(+)

3 E(+)
4

)
. (2.32)

In our case, we have to express each component of the fields involved in the FWM. As

shown in Figure 2.1, we send two laser beams p1 and p2 with different frequencies ω1 and

ω2 to the atomic medium, and generate two photons with frequencies ωs and ωi. Since

the two initial fields p1 and p2 are lasers, we can model them as classical monochromatic

propagating plane waves.

E+
p1(r, t) = ~Ep1e

i[kp1·r−ωp1t],

E+
p2(r, t) = ~Ep2e

i[kp2·r−ωp2t],

(2.33)
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Figure 2.1: Schematics of a FWM process in an atomic cloud. Sending two frequencies
p1 and p2 produce two other different frequencies s and i.

where Epi is the amplitude of each pumping field i = 1, 2. The output fields are photons

with frequencies ωs and ωi respectively, so we model them as quantized fields using

equation (2.23):

Ê(+)
s (r, t) = i

L3/2

(
~ωs
2ε0

)1/2

âk,s(t)eiks·rε̂k,s,

Ê
(+)
i (r, t) = i

L3/2

(
~ωi
2ε0

)1/2

âk,s(t)eiki·rε̂i,s,
(2.34)

making a Fourier transform of the annihilation operators, we obtain

Ê(+)
s (r, ω) = i

L3/2

∫
dω

ε̂k,s√
2π

(
~ωs
2ε0

)1/2

âk,s(ω)ei(ks·r−ωt),

Ê
(+)
i (r, ω) = i

L3/2

∫
dω

ε̂i,s√
2π

(
~ωi
2ε0

)1/2

âk,s(ω)ei(ki·r−ωt).
(2.35)

Substituting this into the equation (2.32) the interaction Hamiltonian becomes

HI = ε0
4

∫
V
d3r

(
χ(3)Ep1e

(ikp1·r−ωp1t)Ep2e
−i(kp2·r−ωp2t)

 i

L3/2

∫
dωs

1√
2π

(
~ωs
2ε0

)1/2

â†k,s(ωs)e−i(ks·r−ωst)


×

 i

L3/2

∫
dωi

1√
2π

(
~ωi
2ε0

)1/2

â†k,s(ωi)e−i(ki·r−ωit)
+ h.c.

)
,

(2.36)

LAFriOC – 16 – Irvin Fermı́n Angeles Aguillón



Theory 2.4. FOUR-WAVE MIXING

where the h.c represents the Hermitian conjugate. Re-arranging and factorizing the

exponential terms we have

HI = ε0
4

∫
V
d3r

(
χ(3)Ep1Ep2e

i∆k·r ~
4πε0L3

∫
dωs

∫
dωiâ

†
k,s(ωs)â

†
k,s(ωi)e−i∆ωt + h.c.

)
,

(2.37)

where: ∆k = kp1 + kp2 − ks − ki and ∆ω = ωp1 + ωp2 − ωs − ωi. Performing the spatial

integral in the direction z′ parallel to the vector ∆k

∫
V
ei∆kz

′
d3r =

∫ L/2

−L/2
L2ei∆kzdz′,

= L2 1
i∆ke

i∆kz′
∣∣∣∣L/2
−L/2

,

= L2

i∆k (ei∆kL/2 − e−i∆kL/2),

= 2L2

∆k sin(∆kL/2),

= L
sin(∆kL/2)

∆kL/2 ,

= L sinc(∆kL/2),

(2.38)

thus equation (2.37) becomes

HI = i~L
2π

∫
dωs

∫
dωi

(
−i
√
ωsωi
2c χ(3)Ep1Ep2 sinc

(
∆kL

2

)
â†k,s(ωs)â

†
k,s(ωi)e−i∆ωt + h.c.

)
.

(2.39)

The position-dependent term can be written as

sinc
(

∆k · Lẑ
2

)
. (2.40)

If ∆k = 0 this term becomes one, the HI reach its maximum value meaning the

maximum generation of photons. The phase-matching condition is

kp1 + kp2 = ks + ki. (2.41)
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The wavevector k is strongly related to the momentum of the wave, we can interpret

the phase-matching condition as a conservation of momentum from the pumping waves

and the signal and idler photons.

In a practical way, this relationship tells us that the sum of the pumping waves in-

cident angles must be equal to the sum of the outgoing angles of the signal and idler

photons. As we mention in section 3.4 the pumping fields are sent collinear in our exper-

iments. Thus, the generated photons are expected to propagate in the same direction as

the FWM laser beams.

Analogously, if we consider a time integral of equation (2.37), we can deduce the

condition ∆ω = 0. It means that the sum of the frequencies of the pump beams must

be equal to the frequencies of the emitted photons, i.e., ωp1 + ωp2 = ωs + ωi.

2.5 Dipole interaction between light and atoms

We seek to describe the interaction of atoms and light with quantum mechanics. This

is done with the Jaynes-Cummings model [39]. The excitation transitions considered are

dipolar, so we deduce an interaction term using the dipolar approximation.

2.5.1 Hamiltonian in the dipole approximation

We consider the most simple atom: a nucleus composed by a proton of mass mp at

a position rp and an electron with me at re with a Coulombian interaction V (|rp − re|).

This is a good approximation for an alkaline atoms. The total Hamiltonian is [37]

H0 = Hp +He + V (|rp − re|). (2.42)

In terms of the center of mass position R and the relative coordinate r = re−rp with

M = mp +me, we can express the positions rp and re as
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rp = R− µ

mp

r , re = R + µ

me

r, (2.43)

where the reduced mass is defined as µ = mpme/(mp+me), while the momenta associated

with those new coordinates is

P = pp + pe p = µ

me

pe −
µ

mp

pp. (2.44)

So the corresponding Hamiltonian in those coordinates is

H0 =
p2
p

2mp

+ p2
e

2me

+ V = P2

2M + p2

2µ + V, (2.45)

which corresponds to the sum of the kinetic energy and potential energy terms associated

with the new coordinates. According to the minimal coupling [40], where we have the

prescription to replace the canonical momentum p by p − eA in the Hamiltonian, we

have

H = 1
2m [p− eA(r, t)]2, (2.46)

so, for each coordinate

HR = 1
2M [P2 − eP ·A(R, t)− eA(R, t) ·P + e2A2(R, t)],

Hr = 1
2µ [p2 − ep ·A(r, t)− eA(r, t) · p + e2A2(r, t)].

(2.47)

Using the Coulomb gauge one can prove that p ·A = A · p so we can sum the two

middle terms for each case
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H ' 1
2M [P2 − 2eP ·A(R, t)] + 1

2µ [p2 − 2ep ·A(r, t)] + V,

= P2

2M + p2

2µ −
eP ·A(R, t)

M
− ep ·A(r, t)

µ
+ V,

= H0 −
eP ·A(R, t)

M
− ep ·A(r, t)

µ
,

= H0 −
eP ·A(R, t)

M
− ep ·A(r, t)

me

− ep ·A(r, t)
mp

,

(2.48)

where we also neglected the terms proportional to A2. If we assume the mass between

particles mp >> me so we can approximate M ∼ mp. The only non-zero term is

H ' H0 −
ep ·A(r, t)

me

' H0 −
ep ·A(R, t)

me

, (2.49)

where the last equality its true by applying the electric dipole approximation, A(r, t) '

A(R, t) which takes into account only the first term in the dipole expansion of the

potential vector A(r, t). Physically this approximation means that because the Coulomb

potential keeps the electron close, the external field irradiated to the atom would be the

same for the electron and the nucleus. Now, using the canonical commutator relations

between the operators [r̂, p̂] = i~ we can express p̂ in the form:

p̂ = 1p̂ = [r̂, p̂]
i~

p̂,

= 1
2i~ [r̂, p̂2],

= µ

i~

r̂,
p̂2

2µ

 ,
(2.50)

and since r commute with the operator P and also with V (r)

p = µ

i~

[
r,

p2

2µ + P2

2µ + V

]
= −µ

i~

[
p2

2µ + P2

2µ + V, r
]

= iµ

~
[H0, r] , (2.51)

so substituting this equality in equation (2.49)
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H = H0 − e
iµ

~me

[H0, r] ·A(R, t). (2.52)

If we consider the eigenstate set |ψi〉 of the operator H0 with energies Ei of each

atomic level, forming a complete basis, we can calculate the matrix elements of the

previous Hamiltonian

Hij = 〈ψi|H|ψj〉 = 〈ψi|H0|ψj〉 −
iµe

~me

〈ψi| [H0, r] ·A(R, t)|ψj〉,

= Eiδij −
iµe

~me

〈ψi|(H0r− rH0)|ψj〉 ·A(R, t),

= Eiδij −
iµe

~me

(〈ψi|H0r|ψj〉 − 〈ψi|rH0|ψj〉) ·A(R, t),

= Eiδij −
iµe

~me

(Ei〈ψi|r|ψj〉 − Ej〈ψi|r|ψj〉) ·A(R, t),

= Eiδij −
iµe

~me

(Ei − Ej)〈ψi|r|ψj〉 ·A(R, t),

= Eiδij −
iµe

me

ωij〈ψi|r|ψj〉 ·A(R, t),

(2.53)

where we used (Ei −Ej) = ~ωij. Recalling the relationship between the field E and the

vector potential A in equation (2.4) and performing its Fourier transform

E(R, t) = −∂A
∂t

= − ∂

∂t

∫
Ã(R, ω)eiωtdω,

=
∫ ∞

0
[iωÃ(+)(R, ω)e−iωt + iωÃ(−)(R, ω)eiωt]dω,

(2.54)

and making a direct comparation with the Fourier transform of the field

E(R, t) =
∫ ∞

0
[Ẽ(+)(R, ω)e−iωt + Ẽ(−)(R, ω)eiωt]dω, (2.55)

we can identify that

Ẽ± = ±iωÃ±, (2.56)

so, returning to the Hamiltonian in equation (2.53) with this realtionship in mind
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Hij = Eiδij −
µeiω

me

〈ψi|r|ψj〉 ·
(∫ ∞

0
[Ã(+)

e−iωt + Ã(−)
eiωt]dω

)
,

= Eiδij + µe

me

〈ψi|r|ψj〉 ·
(∫ ∞

0
[(−iω)Ã(+)

e−iωt + (−iω)Ã(−)
eiωt]dω

)
,

= Eiδij + µe

me

〈ψi|r|ψj〉 ·
(∫ ∞

0
[Ẽ(+)

e−iωt + Ẽ(−)
eiωt]dω

)
,

= Eiδij + µ

me

〈ψi|r|ψj〉 · eE(R, t).

(2.57)

Finally, by making the aproximation that µ/me ' 1, we get:

Hij = Eiδij + eE(R, t) · 〈ψi|r|ψj〉, (2.58)

where the last term is the well-known interaction Hamiltonian between an atom and an

electromagnetic field in the dipole approximation.

2.5.2 Jaynes-Cummings model

The Jaynes-Cummings model [39] is composed by two parts: the non-interacting

system of the light and the atom, and their interacting part in the dipole approximation.

We have already discussed the form of the Hamiltonian of a quantized field in equation

(2.22). The dipole interaction part of the Hamiltonian follows from equation (2.58),

HI = eE(R, t) · 〈ψi|r|ψj〉. (2.59)

If we consider the Hamiltonian part of the free atom and the set of j energy eigenstates

{|ψj〉} of the system, we could write it as a sum of projectors

Hat =
∑
i

Ei|ψi〉〈ψi|. (2.60)

Gathering all these components together we can write the Jaynes-Cummings inter-

action Hamiltonian of a two level atom
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H = Hat +Hrad +HI = E0|b〉+ E1|e〉+
∑
k

~ωk
(
â†k,sâk,s + 1

2

)
+ eE · r, (2.61)

with kets |b〉 and |e〉 for the ground and excited states respectively. The set {|e〉, |b〉} is

a complete basis, so we can express the operator r as

r = 1̂ r 1̂ =
∑
i

|i〉〈i| r
∑
j

|j〉〈j|,

= (|e〉〈e|+ |b〉〈b|) r (|e〉〈e|+ |b〉〈b|),

= |e〉〈e|r|e〉〈e|+ |b〉〈b|r|e〉〈e|+ |e〉〈e|r|b〉〈b|+ |b〉〈b|r|b〉〈b|,

(2.62)

where the first and the last terms are zero because atoms do not have permanent dipolar

moments and thus 〈b|r|b〉 = 〈e|r|e〉 = 0. Then

r = |b〉〈b|r|e〉〈e|+ |e〉〈e|r|b〉〈b|,

= rbe|b〉〈e|+ reb|e〉〈b|,

= rbeσ̂eb + rebσ̂be,

= rbeσ̂− + rebσ̂+,

(2.63)

where σ− = σeb = |b〉〈e|, σ+ = σbe = |e〉〈b| are the atomic ladder operators and rbe, reb,

the dipole matrix element corresponding to the transition from the state |e〉 to the state

|b〉 and from |b〉 to the state |e〉, respectively.

2.5.3 Rotating-wave approximation

Using the Jaynes-Cummings model in the interaction picture, the time evolution of

the atomic operators σ have two temporal dependencies: an oscillation proportional to

the sum of frequencies and another proportional to the difference. In the rotating-wave

approximation, we neglect the sum terms by the following argument:

The interaction Hamiltonian of a two level atom and a single mode of a quantized

field in the dipole approximation is:

LAFriOC – 23 – Irvin Fermı́n Angeles Aguillón



Theory 2.5. DIPOLE INTERACTION BETWEEN LIGHT AND ATOMS

HI = er · E, (2.64)

substituting equations (2.63) and (2.23),

HI = e(rbeσ̂− + rebσ̂+) · E0(â† + â),

= e{(rbe · E0)σ̂−â† + (rbe · E0)σ̂−â+ (reb · E0)σ̂+â† + (reb · E0)σ̂+â},
(2.65)

where we have four terms. Considering the creation and annihilation operators in the

interaction picture

â(t) = â(0)e−iωrt, â†(t) = â†(0)eiωrt, σ̂±(t) = σ̂±(0)e±iωat, (2.66)

where ωr is the frequency of the radiation fields and ωa the frequency of the energetic

difference between the atomic level e and b. Checking the time dependence of the terms

in the interaction Hamiltonian

HI = {(rbe · E0)σ̂−â†eit(ωr−ωa) + (rbe · E0)σ̂−âe−it(ωr+ωa)

+ (reb · E0)σ̂+â†eit(ωr+ωa) + (reb · E0)σ̂+âe−it(ωr−ωa)},
(2.67)

where the first and last terms have an oscillation proportional to the difference of fre-

quency between ωa and ωr, while the second and third terms oscillate proportionally to

the sum of those frequencies. Those second and third terms are known as the rapidly

oscillating terms and are neglected because if we do a time average they will reduce

to zero. So we only keep the terms with an oscillation proportional to the frequency

difference

HI = {(rbe · E0)σ̂−â†eit(ωr−ωa) + (reb · E0)σ̂+âe−it(ωr−ωa)}. (2.68)

This is called the rotating-wave approximation and is valid for low intensities and near-

resonance frequencies (ωa ∼ ωr).
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2.5.4 Density matrix

The density matrix or density operator of a quantum system is defined in general as

ρ =
∑
j

pj|ψj〉〈ψj|, (2.69)

where pj are non-negative coefficients and {|ψj〉} is the basis set of that system. The

time evolution of the density matrix is calculated by applying the Schrödinger equation

∂ρ

∂t
= ∂

∂t

∑
j

pj|ψj〉〈ψj|

 ,
=
∑
j

pj

(
∂|ψj〉
∂t
〈ψj|+ |ψj〉

∂〈ψj|
∂t

)
,

= 1
i~
∑
j

pj (H|ψj〉〈ψj| − |ψj〉〈ψj|H) ,

= 1
i~
H

∑
j

pj|ψj〉〈ψj|

−
∑

j

pj|ψj〉〈ψj|

H,
= 1
i~
Hρ− ρH,

= 1
i~

[H, ρ].

(2.70)

The density operator is useful to calculate expectation values of operators O since

〈O〉 =
∑
i

〈ψi|O|ψi〉 =
∑
i

∑
j

〈ψi|O|ψj〉〈ψj|ψi〉 =
∑
i

∑
j

〈ψj|ψi〉〈ψi|O|ψj〉,

= Tr(
∑
i

|ψi〉〈ψi|O) = Tr(ρO).
(2.71)

The density matrix has encoded all the information about a quantum system. It is

useful for describing mixed states, that cannot be described by a single ket. In our case,

it is handy for describing a system of more than two levels. So, by finding the evolution

of the density matrix, we could calculate the time evolution of operators in the system

and their expected values.
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2.5.5 Spontaneous decay and the Lindblad equation

The next ingredient we need to add to our model is the spontaneous emission phe-

nomenon. It cannot be described in closed quantum systems. We need to incorporate

dissipation into our model.

We could model the decay by considering that our two level atom is a damped

harmonic oscilator surrounded by a reservoir of many modes of a radiation field. By

analyzing this system we can deduce the master equation [41]

ρ̇ = 1
i~

[H, ρ] +
∑
ij

γij
2 (2AjiρAij − AjiAijρ+ ρAjiAij), (2.72)

where H is the Hamiltonian of the system, Aij the ladder operators. For a two level

atom the master equation is [41]:

ρ̇ = −i2 ωA[σz, ρ] + γ

2 (2σ−ρσ+ − σ−σ+ρ+ ρσ−σ+),

= −i2 ωA[σz, ρ] + L̂(ρ),
(2.73)

where γ is the decay rate of the excited level and L̂ is the Lindblad operator term. This

model includes the Born-Markov approximation in its deduction. This approximation

reads that the evolution of the density matrix depends only on its present states and not

on its past history, as discussed in [41].

If we add the Lindblad term to the Jaynes-cummings model, we have the complete

description of the two-level atom interacting with an electromagnetic field with sponta-

neous decay.

The models discussed in this section can be extended to atoms with more levels: for

the atomic part in the Hamiltonian, we have to list all the relevant levels, and in the

interaction section, we have to consider a dipolar term for each dipole transition allowed

between those levels, and we add a Lindblad term for each spontaneous decay. In the
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following section we will use this model to describe a four-level atoms dynamics where

our FWM process occurs.

2.6 Four-level atom

Now that we have built the master equation for a two-level atom we continue to

consider our system with four levels. For the FWM process we send two pump beams

in our experimental system that couple the base state |0〉 to the intermediate level |1〉

and then to level |2〉, as described in Figure 2.2. Of all the possible decay paths that

the atoms can take, we focus on atoms decaying to level |3〉 and then to the state |0〉 by

emitting a photon pair.

Figure 2.2: Schematics diagram of a four-level atom in a diamond configuration. The
pumping beams are represented with straight lines and the meandering curves show
the possible decays. Ω1,Ω2 stand for the Rabi frequencies of each laser, ∆ and δ their
detuning and γi the correspondent decay rate of each level.

According to the Jaynes-Cunnings model and all the details we discussed in section

2.5.2, we can write the Hamiltonian for our four-level system as:
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H = Hat +Hrad +HI , (2.74)

where the free atomic Hamiltonian is the sum of the projectors of each level multiplied

by their energies Ei = ~ωi,

Hat =
∑
i

~ωi|i〉〈i| =
∑
i

~ωiσii, (2.75)

where i runs from 0 to 3 and σij = |i〉〈j|. The radiation part is given by

Hrad =
∑
k

~ωk
(
â†kâk + 1

2

)
, (2.76)

and finally the interaction Hamiltonian

HI = er · Ep1 + er · Ep2, (2.77)

is the sum of the dipole term for each pump laser. We can model each laser in a

semiclassical way, just like equation (2.33). So

er · E1 + er · E2 = Ω01(σ01e
−iωp1t + σ10e

iωp1t) + Ω12(σ12e
−iωp2t + σ21e

iωp2t), (2.78)

where we use the definition

Ωij = dij · Epi

~
, (2.79)

and d = er. Here, we have to make an important note regarding the polarization of the

pumping light. Due to the vectorial character of this dot product, the Rabi frequency Ωij

depends on the direction of the electrical field that interacts with the dipole dij. In other

words, the polarization of the beam. In the section 2.7 the selection of the quantization

axis of our system is discussed.
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So far our four-level Hamiltonian is

H =
∑
i

~ωiσii +
∑
k

~ωk
(
â†kâk + 1

2

)
+ Ω01(σ01e

−iωp1t + σ10e
iωp1t)

+Ω12(σ12e
−iωp2t + σ21e

iωp2t).
(2.80)

To eliminate the explicit time-dependence in the exponential terms, we make a uni-

tary transformation U to the so-called Rotating frame,

U =
3∑
j=1

e−iωjt|j〉〈j|. (2.81)

Here the oscillating terms of the Hamiltonian are transformed into differences of

frequency, in the form

H = ~∆σ11 + ~δσ22 +
∑
k

~ωk
(
â†kâk + 1

2

)
+ Ω01(σ01 + σ10) + Ω12(σ12 + σ21), (2.82)

where ∆ = ω01− ωp1 and δ = ω12− ωp2 are the differences between transition and beam

frequencies. The master equation for our system is, according to equation (2.72)

ρ̇ = 1
i~

[H, ρ] + L̂1(ρ) + L̂2(ρ) + L̂3(ρ) + L̂4(ρ), (2.83)

which includes a Lindblad term for each decay. Calculating the matrix elements of

this master equation 〈j|ρ̇|i〉, where i, j = 0, 1, 2, 3 we have a system of 16 differential

equations. This linear system can be numerically solved to obtain the evolution of each

term of the density matrix.

2.6.1 Numerical Solution

In this subsection a basic structure is described of how to solve numerically the

master equation (2.83) of a four-level atom. Since we have a four-level atomic system,

the density matrix has 4× 4 = 16 complex terms. However, we can use some properties
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of the density matrix to simplify this problem. Consider the hermiticity of the density

matrix

ρ† = ρ. (2.84)

In other words ρij = ρ∗ji, which means that the non-diagonal elements are not inde-

pendent among each other and that the diagonal terms ρii are real. Also,

∑
j

ρjj = 1, (2.85)

reduces the system of equations and, we can rearrange it into a matrix form V̇ =MV.

Appendix A includes the matrix M explicitly, along with the code to solve numer-

ically the system of equations for our case. Solving it gives us the temporal evolution

of the density matrix. A natural question arises here: how can we associate the exper-

imental data and these results? The key, at least for the second-order cross-correlation

function, is the following.

Let us consider the G
(2)
SI cross-correlation function, as defined in equation (2.29),

where we focus on detecting the signal Ês at the time t and idler photons Êi at the time

t+ ∆t that are produced by the FWM process where both are quantized fields with the

form given by equation (2.35). Thus we obtain:

G
(2)
SI (t, t+ ∆t) = 〈i|

(
−i
L3/2

∑
k

(
~ω
2ε0

)
â†k(t)εke−ik·r

)(
−i
L3/2

∑
k

(
~ω
2ε0

)
â†k(t+ ∆t)εke−ik·r

)
(

i

L3/2

∑
k

(
~ω
2ε0

)
âk(t+ ∆t)εke−ik·r

)(
i

L3/2

∑
k

(
~ω
2ε0

)
âk(t)εke−ik·r

)
|j〉,

= 〈i|
(
−i
L3/2

(
~ω
2ε0

)
â†s(t)εse−ik·r

)(
−i
L3/2

(
~ω
2ε0

)
â†i (t+ ∆t)εie−ik·r

)
(

i

L3/2

∑
k

(
~ω
2ε0

)
âi(t+ ∆t)εieik·r

)(
i

L3/2

(
~ω
2ε0

)
âs(t)εseik·r

)
|j〉,

∝ 〈i|â†s(t)â
†
i (t+ ∆t)âi(t+ ∆t)âs(t)|j〉,

(2.86)
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where from step one to step two we remove the sum of modes because we experimen-

tally filter all the frequencies and detect only the signal and idler photons. Finally we

conclude that the correlation function G
(2)
SI is proportional to the expectation value of

the annihilator and creation operators. This correlation function is also proportional to

the atomic operators [42]

G
(2)
SI (t, t+ ∆t) = f(r)2〈σ̂32(t)σ̂03(t+ ∆t)σ̂30(t+ ∆t)σ̂23(t)〉, (2.87)

where f(r) is a geometrical factor. The atomic operators σ̂32 and σ̂03 correspond to

the radiation operators âs and âi, respectively. The important part of the last equation

lies into the proportionality between both expectation values. By normalizing equations

(2.86) and (2.87) we may focus only in the temporal behavior. Taking the expectation

value proportional to G(2)
SI in terms of the atomic operators

G
(2)
SI (t, t+ ∆t) ∝ 〈σ̂32(t)σ̂03(t+ ∆t)σ̂30(t+ ∆t)σ̂23(t)〉,

= Tr[σ̂32(t)σ̂03(t+ ∆t)σ̂30(t+ ∆t)σ̂23(t)ρ(t0)],

= Tr[σ̂03(t+ ∆t)σ̂30(t+ ∆t)σ̂23(t)ρ(t0)σ̂32(t)],

(2.88)

and then, using the evolution operator Û that follows Â(t) = Û−1(t, t0)Â(t0)Û(t, t0) for

any given operator Â, the right side of equation (2.88) is

Tr[Û(t+ ∆t, t0)σ̂03(t0)Û−1(t+ ∆t, t0)Û(t+ ∆t, t0)σ̂30(t0)Û−1(t+ ∆t, t0)

Û−1(t, t0)σ̂23(t0)Û(t, t0)ρ(t0)Û−1(t, t0)σ̂32(t0)Û(t, t0)],

= Tr[Û(t+ ∆t, t0)σ̂03(t0)σ̂30(t0)Û−1(t+ ∆t, t0)Û−1(t, t0)σ̂23(t0)Û(t, t0)ρ(t0)

Û−1(t, t0)σ̂32(t0)Û(t, t0)],

(2.89)

where

σ̂23(t0)Û(t, t0)ρ(t0)Û−1(t, t0)σ̂32(t0) = σ̂23(t0)ρ(t)σ̂32(t0) = |3〉〈2|ρ(t)|2〉〈3| = ρ22(t)|3〉〈3|.

(2.90)
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So, substituting in equation (2.89)

ρ22(t)Tr[Û(t+ ∆t, t0)σ̂03(t0)σ̂30(t0)Û−1(t+ ∆t, t0)Û−1(t, t0)|3〉〈3|Û(t, t0)],

= ρ22(t)Tr[Û(t+ ∆t, t0)|3〉〈3|Û−1(t+ ∆t, t0)Û−1(t, t0)|3〉〈3|Û(t, t0)],

= ρ22(t)Tr[Û(t, t0)Û(t+ ∆t, t0)|3〉〈3|Û−1(t+ ∆t, t0)Û−1(t, t0)|3〉〈3|],

= ρ22(t)Tr[Û(t+ ∆t, t)|3〉〈3|Û−1(t+ ∆t, t)|3〉〈3|],

= ρ22(t)ρ′33(t+ ∆t),

(2.91)

where we consider the condition of ρ′33(t + ∆t) = 1 when ∆t = 0 meaning that all the

population of atoms at time ∆t = 0 is in the state |3〉. So, summarizing everything we

have

G
(2)
SI (t, t+ ∆t) ∝ ρ22(t)ρ′33(t+ ∆t), (2.92)

where the terms ρ22 and ρ′33 are the population of the levels |2〉 and |3〉 respectively.

With this result, we have a direct connection between the cross-correlation function and

terms of the density matrix that is very useful to compare the numerical simulation with

the experimental data. The numerical simulation results, along with a comparison with

our experimental data are given in section 5.

2.7 Introducing the experimental conditions

Recalling the equation (2.79) of the Rabi frequency of an atomic transition from a

level |g〉 to a level |e〉 and, considering spherical coordinates in terms of the Cartesian

basis

ê± = ∓ 1√
2

(x̂± iŷ),

ê0 = ẑ,

(2.93)
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so we can describe any given vector Â as

Â =
1∑

q=−1
Aqêq. (2.94)

where q is an index that runs from −1 to 1. In this basis the electric field Ê is

Ez =E0,

Ex = − 1√
2

(E+1 − E−1),

Ey = i√
2

(E+1 + E−1).

(2.95)

For our experiment, we chose ŷ as the quantization axis and the propagation of our

beam is in the ẑ direction, as illustrated by the diagram in Figure 2.3. We select this

direction because the coils generate a magnetic gradient two times stronger in the ŷ

direction, representing a preferential direction. It is worth noting that this is just a

convention used for simplicity in the calculations; if we select any other direction to be

our quantization axis, the calculations would be totally equivalent. Given this selection,

the index q in equation (2.94) represent π polarization for q = 0 and σ± polarization for

q = ±1

We choose that the pump p1 has linear polarization in the x̂ direction and p2 is also

linear, in the ŷ direction. Given the convention of Figure 2.3, the Rabi frequency can be

expressed as

Ωij = eE0

~
〈i|r̂ · ê|j〉 = eE0

~
〈i|

1∑
q=−1

êqrq|j〉. (2.96)

We have to consider that each state |i〉 and |j〉 has its corresponding quantum num-

bers: n, L, s, J , F , m. It is well known that one can separate the geometrical part of

angular momentum using the Wigner-Eckart theorem, resulting in
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Figure 2.3: Schematics of the quantization axis in our experimental setup. The figure
shows that the pump beams are propagating in the ẑ direction and we define the quan-
tization axis in the same direction of the magnetic gradient, ŷ direction. The figure is
not to scale.

Ωe,g = eE0

~
(−1)F−m

1∑
q=−1

(
F 1 F ′

−m q m′

)
(−1)J+I+F ′+1

√
(2F + 1)(2F ′ + 1)

×
{
J I F
F ′ 1 J ′

}
〈n′, j′||r̂||n, j〉,

(2.97)

where the expectaion value 〈n′, j′||r̂||n, j〉 only depends on the radial parts of the wave

functions, also known as the radial dipole matrix element. This is a well known value

that we can consult in the literature [43], it has been measured experimentally and cal-

culated for Rubidium transitions. The other terms in equation (2.97) have a geometrical

dependence that can be calculated using the 3-j and 6-j Wigner symbols, where we need

the quantum numbers of the initial and final state, denoted by F,m and F ′,m′ respec-

tively. The q of each pumping beam can be determined by their polarization direction.

The p1 beam has linear polarization in the x̂ direction, we have to consider q = −1, 1
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and for p2 light polatization linear in the ŷ direction means that we only have to consider

the term q = 0.

Figure 2.4 presents a schematics of the relevant hyperfine levels for our FWM process.

Those are the levels employed for the calculations of the Rabi frequencies in Appendix

B. Each of them has a number of Zeeman sublevels following the rule m = −F,−F +

1, ..., 0, F − 1, F .

Figure 2.4: Relevant hyperfine levels for the pumping in the FWM process. We indicate
the polarization of each beam in Cartesian and spherical coordinates, along with the
change of the magnetic quantum number ∆m that each beam produce.

When we calculate the total Rabi frequency of each pumping beam, we should con-

sider all the possible combinations of excited levels. From the ground state 5S1/2 to the

intermediate state 5P3/2 and then to the excited state 5D3/2. Then we add each case

to the corresponding Rabi frequency. Tables in Appendix B displays our results for the

geometrical part of equation (2.97).
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Chapter 3

Experimental setup

Our experimental setup generates near-infrared photon pairs with a FWM process

in cold Rubidium atoms. We use cold atoms because the reduction in thermal noise can

help us to demonstrate quantum information principles and protocols. This chapter gives

a description of each part of the experimental setup as well as how our measurements

are performed.

3.1 Laser system

To achieve the atomic excitations requiered for magneto-optical trapping and to

induce a four-wave mixing process, we need to generate laser light with the correct

frequency and bandwidth. For the MOT, we also need to amplify it to a suitable power

of around 200 mW. Finally, we need to distribute the light of each laser to the required

part of the experiment. First we describe the properties of the light needed for laser

cooling and then for the FWM.

3.1.1 Frequencies for laser cooling

For our purpose the advantages of using cold instead of room temperature or hot

atoms are that we can achieve higher spectral brightness (a parameter discussed later in

section 4.2.2) and increase the signal to noise ratio.

36



Experimental Setup 3.1. LASER SYSTEM

Figure 3.1: Hyperfine levels of the D2 transition of Rubidium 87. To close the cycle
transiton 5S1/2F = 2 → 5P3/2F

′ = 3 we need to add a repump beam for the 5S1/2F =
1→ 5P3/2F

′ = 2.

For laser cooling we need a closed cycle, where our atoms remain absorbing the

cooling beam and emitting spontaneously. Each absorption and emission will reduce

their speed because the cooling beam is red-detuned dozens of MHz [27]. We achieve

this by using the D2 line transition 5S1/2F = 2 → 5P3/2F
′ = 3, indicated in Figure

3.1. From selection rules of dipolar transitions we know that the excited atoms in

the level 5P3/2F
′ = 3 could only decay to the F = 2, giving us a cyclic transition.

However we have a leakage of atoms populating the 5S1/2, F = 1 state via non-resonant

excitation of the 5S1/2, F = 2 → 5P3/2, F
′ = 2 transition. To eliminate this leak and

return the atoms to the cooling cycle, we incorporate a repump laser resonant to the

5S1/2F = 1→ 5P3/2F
′ = 2 transition.

3.1.2 Frequencies required for FWM

Figure 3.2 indicates the energy levels for the FWM process. We need light to excite

the 5S1/2, F = 2→ 5P3/2, F
′ = 3 transition, the 5P3/2, F = 3→ 5D3/2, F

′′ = 3 transition
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and a seed beam, resonant the 5S1/2, F = 2 → 5P1/2, F
′ = 2 transition. They are

indicated in Figure 3.2 with straight lines.

The p1 beam needs to be tenths of MHz away from the resonant transition 5S1/2F =

2 → 5P3/2F
′ = 3 because we do not want to populate the state 5P3/2. We call this

detuning ∆. The p2 beam should compensate ∆ and also have the freedom to be tuned

a few MHz around the 5D3/2, F
′′ = 3 level, indicated with δ. We show both detunings in

Figure 3.2. The seed beam will be resonant with the transition 5S1/2F = 2→ 5P1/2F
′ =

2. The power needed in each case are: the p1 beam needs from 100 to 100 µW. The p2

beam, from 3 to 8 mW. The seed beam power needs 5 mW.

Figure 3.2: Schematics of the four wave mixing process in atomic Rubidium 87 imple-
mented in our experiments. The straight lines represent the pumping beams, while the
meandering curves depict signal and idler photons. ∆ is the diference between the fre-
quency of the transition 5S1/2F = 2 → 5P3/2F

′ = 3 and p1, while δ is the diference
between transition 5P3/2F

′ = 3→ 5D3/2F
′′ = 3 and p2.
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3.2 Laser light generation and stabilization

The atom that we use is the isotope 87 of Rubidium which has well-known D transi-

tions [43] useful for laser cooling. One of the main advantages of using Rubidium is that

the cooling transitions are in the near-infrared spectrum, making them accesible with

extended cavity diode lasers.

We use extended cavity diode lasers (ECDL) to generate light for our experiments.

These are highly reliable and low-cost lasers, available in the near-infrared region of the

electromagnetic spectrum. They have a bandwidth of less than 250 kHz, enough for the

light to interact with rubidium atoms. We use high-resolution spectroscopy to lock each

laser to the cooling, repump, p1, p2 and seed transitions, respectively.

Our main optical reference is the master laser, Figure 3.3. This is a single-mode laser

using the Cateye configuration (MOGLabs model CEL002), with around 150 kHz band-

width. We lock the laser to the C13 crossover using a saturated Doppler-free absorption

spectroscopy setup, that is −211.8 MHz away from the 5S1/2F = 2→ 5P3/2F
′ = 3 tran-

sition [44]. It can produce approximately 60 mW of experimentally useful light, divided

as follows (see Figure 3.3):

• The first step of the two-photon spectroscopy of the pump laser p2

• The input of a tapered amplifier

• Optical pumping p1

The repump laser is a home-made, ECDL in Littrow configuration [45]. We use a

polarization spectroscopy array to lock it to the 5S1/2, F = 1→ 5P3/2, F
′ = 2 transition

[46]. After the spectroscopy, we have around 30 mW of experimentally-useful light, which

is enough for saturating the atom number in the trap.
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The seed laser with light of 795 nm has a polarization spectroscopy array to lock

its frequency to the 5S1/2, F = 2 → 5P1/2, F
′ = 2. This light its not present during

experiments. However it is very useful for alignment purposes, indicated in section 3.4.

Figure 3.3: Block diagram of light distribution from the preparation boards to the science
chamber. Blocks with dashed borders represent the fine-tuning and distribution arrays
and straight-line borders.

Figure 3.3 shows a schematics of our laser system. Frequency preparation boards

are represented by gray boxes with straight borders and the light distribution arrays are

displayed with dotted borders. Our laser system is arranged in modules with specific

functions that are communicated by single-mode optical fibers. The power that we lose

on those fibers depends on the origin of the light: for the light emitted by the tapered
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amplifier, we could couple around 50% and for the light which comes from another fiber,

we could reach 90%. This is because the more Gaussian-like of the input mode, the

better coupling we can reach.

From the master laser we send 15 mW of light into a tapered amplifier (MOGLABS

MOA002) obtaining around 1.25 W of optical power. We couple the output beam to a

fiber to filter it into a Gaussian mode, achieving about 50% of efficiency, and send it to

the fine-tuning board. It is composed of an array of various AOMs that tune with sub-

MHz precision the frequency of the laser beams: the cooling, the p1, the probe and the

repump. First, the beam from the tapered amplifier passes through AOM2 which drives a

60 MHz frequency, leaving it at a -151.8 detuning from the 5S1/2, F = 2→ 5P3/2, F
′ = 3

transition. This beam is then split into the cooling and probe beams.

The cooling beam passes through AOM3 in a double-pass configuration of 2 × 70

MHz. This changes its frequency to -11.8 MHz, which is suitable for optimizing the laser

cooling. After that we incorporate the repump laser beam, coming from a fiber, into

the same optical path and send them through a fiber into the laser cooling distribution

board, see Figure 3.3. There we separate the beam into three equal parts, using a system

of three polarizing beam splitters (PBS) and three λ/2. Those 3 parts provide the light

for laser cooling in the x, y, and z direction of our MOT.

The probe beam passes through AOM4 in a double pass configuration of 75 MHz, so

the frequency of this beam will end -1.8 MHz off-resonance. This allows us to variate its

frequency from -20 MHz to 20 MHz around the 5S1/2F = 2→ 5P3/2F
′ = 3. This beam

is sent to the FWM distribution board through an optical fibre. It is used to measure

the optical density of the atomic cloud as mentioned in section 3.3.1

The p1 beam comes directly from the master laser. We send it through an AOM in

double-pass configuration of 70 MHz leaving it at -60 MHz from resonance. In this way
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we set the detuning ∆ of the FWM process, described in Figure 3.2. We couple that

into the same optical fiber as the probe beam and send them into the FWM distribution

board. Since we do either the OD measurements or the FWM process at the same time,

one of these optical paths would be blocked for each measurements.

3.2.1 Stabilization of p2

Our spectroscopy setup for the p2 light is based on [47]. Laser light at 776 nm is

generated by a ECDL with a Cateye configuration (CEL002). To tune its frequency to

the 5P3/2 → 5D3/2 transition, we use a two-photon saturated absorption spectroscopy

setup described, illustrated in the Figure 3.4 a) There we send about 3 mW of light from

the master laser into a spectroscopy cell. We use the AOM to shift its frequency by

2× 70 MHz, driving it to −71.8 MHz off-resonance from the 5S1/2F = 2→ 5P3/2F
′ = 3

transition and, at the same time, modulate it with 250 kHz.

In the opposite direction, we send the light emitted from the 776 nm laser to the

cell. This counterpropagating configuration reduces the Doppler effect because only

atoms with zero velocity in the transverse direction interact with both beams. After

this beam passes through the spectroscopy cell, we send it to a detector connected

to the Moglabs laser controller (DLC202) in charge of the locking process. When the

modulated frequency p1 and p2 are on-resonance with the two-photon transition, the

atoms inside the cell will absorb light from both probe beams, causing a modulation

of intensity. We detect the intensity of the output beam p2 and obtain the saturation

signal by de-modulating it.

Figure 3.4 b) shows the error signal obtained from the spectroscopy used for laser

locking. A characterization made with frequency rule determines that the stronger signal

correspond to the transition 5P3/2, F
′ = 3→ 5D3/2, F

′′ = 3, the next to the 5P3/2, F
′ =

3→ 5D3/2, F
′′ = 2 and 5P3/2, F

′ = 3→ 5D3/2, F
′′ = 1 is the smallest signal.
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Figure 3.4: Two photon spectroscopy for the tuning of the p2 pump laser to the transition
5P3/2 → 5D3/2. a) Optical array of two photon spectroscopy. The red line represents
780 nm light and the orange one, 776 nm. b) Typical error signal of the spectroscopy
obtained from this array and used for the laser locking.

It has been previously reported that this two-photon spectroscopy requires a more

sophisticated configuration due to a small saturation signal: using a PMT to detect

blue fluorescence which is another possible decay path from the state 5D3/2 [48]. We

found that one can simply heat the spectroscopy cell to increase the partial pressure

of Rubidium by evaporating the atoms deposited on its walls to enhance the saturated

absorption signal. Two 25 W resistors (10 Ω, with a 2A current) attached to the base

of the cell its enough to reach about 70◦ C after an hour of heating. This results in a
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20 mV peak-to-peak signal for the 5P3/2F
′ = 3 → 5D3/2F

′′ = 3 transition, see Figure

3.4 b). This signal is suitable for the locking with a standard PID circuit. Raising the

temperature more, we can lock the laser the other hyperfine transitions 5P3/2F
′ = 3 →

5D3/2F
′′ = 2 and 5P3/2F

′ = 3 → 5D3/2F
′′ = 1. This laser provides about 25 mW of

usable power and we can modify the two-photon detuning δ between −15 to 15 MHz

with the AOM in this array.

3.3 Magneto-optical trap and vacuum system

To create a MOT we need high vacuum (10−9 Torr) and a source of Rubidium atoms.

We achieve these with the compact vacuum system depicted in Figure 3.5. It contains

a Hybrid pump (model NEXTORR D 100-5) that is composed of an ionic pump and a

NEG (Non-evaporable getter), capable of reaching ultra-high vacuum (< 10−10 Torr).

Our science chamber Figure 3.6 is a quartz cell made of a single piece, custom made

by Precision Glassblowing [49]. It has an octagonal configuration, with 1-inch lateral

windows and broadband antireflection coating (550-900 nm). For a complete description

of this system and its implementation, please consult reference [46].

The MOT is setup in a retroreflection configuration as shown in Figure 3.6. The

collimation tubes labeled C1 and C2, consist of a telescope that amplifies the diameter

of the beam from 1.1 mm to around 20 mm and a λ/4 that changes the polarization

of the beam from linear to circular. Two of the beams have circular polarization in

one direction, while the third beam also has circular polarization, but in the opposing

direction. When the beams retroreflect the polarization direction is reversed according

to Maxwells equations in a dielectric; the electric field direction remains equal after the

reflection but the propagation vector reverses.

Our Rubidium source is a SAES dispenser with 1.2 cm of length (model RB/NF/3.4/12

FT10+10). Two dispensers are located in the vacuum system as shown in Figure 3.6,
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Figure 3.5: 3D render of the vaccum system used in the experiment, where the science
chamber, hybrid pump, getter feedtrough and the coils are presented.

making sure that the side where the Rubidium is emitted goes towards the science cham-

ber. They are power supplied by the shown feedthroughs.

The process of activation of the dispenser was the following: we slowly raised the

current by increments of around 0.1 A each while watching the pressure inside the cham-

ber and avoiding raises two orders of magnitud. Then, we let the system stabilize for

about 30 minutes, and continue rising. The final operation current that we found was 3

A. With this current, we can create a MOT with OD up to around 20.

3.3.1 Optical density

When we have many atoms confined in a small space compared to their emission

wavelength there can be modifications to the emitted light. These are known as collective

effects [50], and to know how relevant they are it is important to know the number of
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Figure 3.6: Top view of the science chamber and its connection with the vacuum system
(not to scale). The coordinate system is indicated at the center of the MOT.

atoms in our trap. This section focuses on optical density (OD), a parameter that we can

experimentally measure and by which we can estimate the number of atoms interacting

with the FWM light. In chapter 4 we discuss a possible measurements of this effects and

in section 5.1 we calculate the mean distance between atoms.

The optical density is proportional to the number of atoms interacting with the

beam. Suppose that we have an atomic gas crossed by a laser beam with frequency

ω near resonance to an excitable atomic transition with frequency ω0. That beam will

suffer an intensity reduction because the atoms will absorb some light, given by the

Beer’s Law

dI

dz
= −~ωγtn = −σIn, (3.1)
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where n is the atomic density, σ is the absorption cross section and γt is the total

scattering rate, that depends on the laser detuning from the atomic transition. For a

two level atom [51]

γt = s0γ/2
1 + s0 + (2∆/γ)2 , (3.2)

with γ being the transition natural decay rate, ∆ = ω − ω0, s0 = I/Isat and Isat is the

on-resonance saturation intensity

Isat = cε0γ
2~2

|ε̂ · ~d|
, (3.3)

which depends on the polarization of the incident light ε̂ and the direction of the atomic

dipole moment operator. In the low intensity limit I << Isat (s0 < 1) equation (3.3) is

γp = Iγ

2Isat
γ2

γ2 + 4∆2 . (3.4)

Using this approximation and substituting in the equation (3.1), we have

Iout = I0 exp
{
−OD γ2

γ2 + 4∆2

}
, (3.5)

which is an exponential of a Lorentzian. For measuring OD we use about 10 µW, yielding

an intensity of I = 1.05 mW cm−2, less than the saturation intensity of the Rubidium for

this transition, Isat = 2.50 mW cm−2 for linear polarization. Although the probe beam

is less than the saturation intensity, both still are comparable so we are not deep in the

low intensity limit.

For OD measurements in our experiment: we send the probe laser across the center

of the MOT. Using the AOM4 in the distribution board, described in the Figure 3.3,

we drive the frequency of this beam from -20 MHz to 30 MHz around resonance of the

5S1/2F = 2→ 5P3/2F
′ = 3 and take 3 series of data; one with the MOT turned on and
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the probe beam present (Iat), the second with the MOT on and without the probe beam

(IDark), and the last one with the MOT turned off and with the probe beam turned on

(I0). Then we compute absorption

Iexp = Iat − Idark
I0 − Idark

, (3.6)

by substracting the background noise of the detector. A typical Iexp data set is depicted

by the black dots in the Figure 3.7. Using equation (3.5) we fit the experimental points

with a Lorentzian function with the Optical Density(OD) as the only free parameter.

Figure 3.7: Typical data set (black dots) and fit (red curve) for the optical density of
our MOT. For this case we measure a OD of 20.3 ± 0.1. The experimental parameters
were: detuning ε of -25 MHz, Pressure 10−9 Torr, magnetic gradient of 23 Gauss cm−1

and repump power of 5 mW.

Figures 3.8 and 3.9 show an OD characterization of the MOT as a function of: the

detuning of the cooling beam, the pressure inside the vacuum chamber, (proportional

to the atoms emitted by the dispenser), the gradient from our quadrupole magnetic
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field and the power of the re-pump beam (measured at the input of the laser cooling

distribution board, Figure 3.3). This caracterization was done following this order: (i)

detuning ε, (ii) pressure, (iii) magnetic gradient, and (iv) repump power. After the series

of data was taken, we choose the parameter that yields larger OD. Those parameters

were: ε = −23 MHz, pressure of 10−9 Torr, a magnetic gradient of 22 Gauss cm−1 and

9 mW of repump power.

Figure 3.8 shows the OD dependency on the detuning of the ε cooling beam (blue)

and the pressure inside the vacuum chamber (black). As a function of ε, OD displays

a linear behavior up to a maximum, around 23 MHz. From the observed behavior one

can conclude that the cooling detuning ε is a suitable parameter to variate OD from 8

to about 19. To get the black experimental dots in Figure 3.8 we worked with a base

pressure of 10−10 Torr and gradually increased it by raising the current through one

of the Rubidium dispensers. From these data we can see that the OD behaves like a

logarithmic function, reaching a saturation point around 4 × 10−9 Torr. We usually do

not change this parameter because the changes in pressure are slow, so we would have

to wait longer between experiments. Also this could make it hard to reproduce the same

experimental conditions.

The variation of OD as a function of the re-pump power and the quadrupole magnetic

field are plotted in Figure 3.9. Both have similar behavior raising at the start and

reaching a maximum of 23 and 20 respectively. For higher values, the OD decreases in

both cases. Both of these parameters can be considered when we want to make small

adjustments in the OD.

From this characterization we can conclude that our experimental control of OD goes

from 8 to 24. The detuning ε is the better parameter to variate OD because it behaves

linearly. For small adjustments we can change either the repump power or the magnetic
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Figure 3.8: Variation of OD with respect to the detuning ε of the cooling laser (Figure
3.1) in blue and the pressure inside the vacuum chamber in black. For the black points
the experimental parameters were: a detuning ε of -25 MHz, a magnetic gradient of 20
Gauss cm−1 and a repump power of 3 mW. For data in blue: a repump power of 3 mW,
a pressure of 10−9 Torr and a magnetic gradient of 20 Gauss cm−1.

gradient. However the change in the magnetic gradient also modifies the size of the

MOT. So the best parameters for control OD are the repump power and the cooling

detuning ε.
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Figure 3.9: Variation of OD with respect to the re-pump power (in blue) and the
quadrupole magnetic field (in black). For the black points the experimental parame-
ters were: a detuning ε of -25 MHz, a pressure of 10−9 Torr and a repump power of 3
mW. For data in blue: a detuning ε of -25 MHz, a pressure of 10−9 Torr, a magnetic
gradient of 22 Gauss cm−1.

3.4 FWM pumping and photon-pair collection

The left side of Figure 3.10 shows the experimental setup for the FWM pumping.

It has three inputs for preparing the polarization and send the p1, p2 and seed beams

to the experiment. We chose a collinear configuration for the FWM pumping because

in this way we facilitate the photon collection. Using a PBS, we match the seed and

p1 beams optical paths, and finally, we use an interference filter (IF1) to combine them

with the p2 beam, making the three of them collinear. In this case the phase matching

condition of equation (2.41) is fulfilled trivially: all of the waves involved in the FWM

process travel in the same direction.

The detection system is presented on the right-hand side of Figure 3.10. It filters the

signal and idler photos and guide them into the avalanche photodetectors (APD). Given
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Figure 3.10: Schematics of the optical pumping (left) and the photon collection system.
The later consists of a separation of frequency using two Interference filters, followed by
a separation of polarization, using a λ/2 and a PBS. We can monitor each component
of the polarization state of the photons simultaneously.

our collineal configuration the strong pump beams and the low-power signal and idler

photons exit from the atomic gas in the same direction. To our advantage these frequen-

cies are all separated by at least 4 nm, which gives us the option of using interference

narrowband filters to separate them. The filters we use have a 2 nm linewidth and it is

possible to tune their center frequency by changing the angle between the filter and the

incident beam. So we can choose the transmission frequency for each optical path. To

further reduce the noise, we use two filters at the same angle for each photon path, two

filters centered in 780 nm for the signal photon (762 nm) and two filters centered in 808

nm for the idler photon (795 nm).

After the filtering we send the signal and idler photons through a half-waveplate

(λ/2), a polarization beamsplitter (PBS), and we couple each exit component of the
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PBS into an optical fiber. Finally we connect each of those four fibers into an avalanche

photodiode (ID120). These APDs can detect single photons with a quantum efficiency

> 70% for near infrared photons. They have an active area of 500 µm, a dark count rate

of around 300 counts/s, and a typical time resolution of 400 ps.

The alignment process of the detection modules is the following: we first send the

p1, the p2 and the seed beams into the MOT with the APDs turned off. Then we use a

CMOS camera (DCC1545M) and put it in front of the beam after the first filter IF2 is

in place. Then we rotate it making sure that only the 762 nm light is passing through

(we do that by blocking each pump beam separately and noticing that every time we

lose all the signal detected by the camera). We perform the same process for the second

filter IF2. After that, we guide the generated 762 nm light into the optical fiber and

then couple it. For us, this was the trickiest part because we do not have a laser source

with 762 nm, so we cannot align the signal part of the array by sending a laser beam

with 762 nm.

The optical path of the idler photons is less complicated because we have a laser

source with 795 nm. We can align the filters IF3 and the corresponding optical fiber

with the seed beam. After that, we turn it off and connect the fibers to the APDs

looking for counts. The goal is to detect even a little signal at the APD because then it

can be optimized. We use the coincidences between APD channels as an optimization

parameter because if we optimize using the individual counts we usually couple photons

coming from the spontaneous emission and not from the parametric process.

We do the alignment process with both transmitted and reflected components of the

PBS. We use the coincidences detected in pairs of channels in order to align each optical

path. This allows us to monitor each of the two outputs of the PBS for the two different
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photons. This setup is intended for polarization correlations experiments and density

matrix reconstruction via quantum tomography, which we will explore in the near future.

3.4.1 A note regarding noise in detectors

The avalanche photo-detectors not only read the signal sourced by the photon pairs,

but they can also detect noise with diverse origin. For example the dark count noise is

the current present an APD circuit even with no light arriving at the detector. Thermal

noise is another example, it arises in the (load) resistor that transforms the current into

the signal voltage. In this note we analyze the most fundamental one: the quantum shot

noise.

Photons arriving at an APDs active area generate electrons that, using a bias voltage,

produce a current called photocurrent. Not every photon contributes to this photocur-

rent. The probability of having n free electrons contributing to the photocurrent is given

by the distribution of Poisson [52]

p(n) = Nne−N

n! , (3.7)

where N is the average number of detected photons in an interval δt. By using the

Stirling’s formula it can be proved that for the limit N →∞ this probability turns into

a Gaussian distribution [52]

p(x) = e−(x−σ)2/(2σ)
√

2πσ
, (3.8)

where σ is its variance. Thus if we consider each of the noise sources (thermal noise, dark

count noise) as an independent random variable, and apply the central limit theorem

to each distribution, we can assume that the noise of our detectors follows a Gaussian

distribution [53]. This will become important in the section 2.3, where we add a noise

Gaussian distribution and the theorical g(2)
SI (∆t) distribution by performing a convolution

between them.

LAFriOC – 54 – Irvin Fermı́n Angeles Aguillón



Experimental Setup 3.5. EXPERIMENTAL SEQUENCE

To reduce the dark counts present in our APDs we turn them on without input signal

and check how many counts they are detecting. We can modify their nominal operation

temperature -40◦C and bias current 30 V to reduce the dark counts. We set each of

them to around 100 counts per second.

3.5 Experimental sequence

A schematics of the duty cycle in our photon pair experiments can be found in Figure

3.11. We have a loading time of 500 µs, where the atoms are trapped in the MOT. This is

followed by 200 µs where the MOT is turned off. At this stage we trigger the APD1 and

APD2 gate for the photon count to start and turn on the p1 beam. It is worth noticing

that the coils, the re-pump, and the p2 beam are always turned on. Given the size of

the pumping beams and the gradient (20 Gauss cm−1), we conclude that the magnetic

fields effects could have in the trapped atoms via Zeeman effect are neglectable because

they only produce an energy shift of about 1 MHz on atoms at the border of the beam.

Figure 3.11: Schematics of a typical duty cycle in our FWM experiments. In green we
have the MOT loading stage of 500 µs, with the cooling, re-pump, and coils present.
This is followed by a 200 µs FWM pulse, in red. At this stage we turn off the cooling
beams, turn on p1 and turn on the gating for the APD acquisition. The coils, repump
and p2 always are turned on (blue).
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For controlling the pulses of this sequence and the OD measurements, we use a

low-cost data acquisition DAQ card, brand Labjack and model T7. It has 23 digital

input/output channels, 2 analog outputs, and a 32 KB RAM memory card. This card is

capable of providing us with the necessary response time in both of these applications.

More details are discussed in [54, 55].
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Chapter 4

Temporal statistics and correlations of the generated photons

In this chapter, I show an analysis of the temporal statistics measurements and co-

herence of the photon pairs generated in our system. Considering the time evolution

of a consecutive cascade-decay given by the Schrödinger equation, an expression for

the second-order coherence is reached. It is used to fit our experimental data for the

cross-correlation function between signal and idler photons. Measurements of the auto-

correlation functions are also analyzed. Using those measurements we found a strong

violation of the Cauchy-Schwarz inequality, indicating that the temporal coherence of

our photon pairs has a non-classical nature.

4.1 Theory of cascade-decay

Let us consider a double decay configuration, where an atom is initialy in an excited

level |a〉, later it decays to a level |b〉 and then to a ground state |c〉, as described in

Figure 4.1. The decay generates two consecutive photons k and q, with frequencies ωk

and ωq respectively, which passes first through a state |b〉 and ends at a ground state |c〉.

The interaction Hamiltonian of this three-level atom and the emmited radiation field is,

after using the RWA in equation (2.64)

HI = ~
∑
k

(
gakσ

(1)
+ âke

i(ωab−ωk)t + h.c.
)

+ ~
∑
q

(
gbqσ

(2)
+ âqe

i(ωbc−ωq)t + h.c.
)
, (4.1)
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where we sum over modes labeled with k and q for each decay, gij are the coupling

constants for |a〉 → |b〉 and |b〉 → |c〉 respectively and σ
(1)
+ = |a〉〈b| and σ

(2)
+ = |b〉〈c| are

the corresponding raising atomic operators for each decay.

The state of the system at time t can be written as

|ψ(t)〉 = ca(t)|a, 0k, 0q〉+
∑
k

cbk(t)|b, 1k, 0q〉+
∑
k,q

cc,k,q(t)|c, 1k, 1q〉, (4.2)

where the first entry in each ket correspond to the atomic states, the second and third

entry are the number of photons emitted in the modes k and q respectively. Finally

ca, cb,k and cc,k,q are time-dependent probability amplitudes to be determined. From the

Schrödinger equation in the interaction picture given by

Figure 4.1: Energy diagram of a double decay in a three level atom. The excited states
|a〉 and |b〉 have the correspondant decay rates Γa,Γb and emmit two photons, labeled
k, q respectively.

d

dt
|ψ(t)〉 = − i

~
HI |ψ〉, (4.3)

we have in the left side term
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d

dt
|ψ(t)〉 = ċa(t)|a, 0k, 0q〉+

∑
k

ċbk(t)|b, 1k, 0q〉+
∑
k,q

ċc,k,q(t)|c, 1k, 1q〉, (4.4)

while for the right side:

HI |ψ(t)〉 = ~{
∑
k

(
Ωakσ

(1)
+ âke

i(ωab−ωk)t + h.c.
)

+
∑
q

(
Ωbqσ

(2)
+ âqe

i(ωbc−ωq)t + h.c.
)
}ca(t)|a, 0k, 0q〉

+ ~{
∑
k

(
Ωakσ

(1)
+ âke

i(ωab−ωk)t + h.c.
)

+
∑
q

(
Ωbqσ

(2)
+ âqe

i(ωbc−ωq)t + h.c.
)
}
∑
k

cbk(t)|b, 1k, 0q〉

+ ~{
∑
k

(
Ωakσ

(1)
+ âke

i(ωab−ωk)t + h.c.
)

+
∑
q

(
Ωbqσ

(2)
+ âqe

i(ωbc−ωq)t + h.c.
)
}
∑
k,q

cc,k,q(t)|c, 1k, 1q〉.

(4.5)

Simplifying the last equation by applying the definition of the atomic and radiation

operators σ+, σ− and a, a†, the only non-zero terms are

HI |ψ〉 = ~
∑
k

Ωake
i(ωab−ωk)tcbk(t)|a, 0k, 0q〉+ ~

∑
kq

Ωbqe
−1(ωbc−ωq)tcc,k,q|b, 1k, 0q〉

+ ~
(∑

k

Ωake
i(ωab−ωk)tca +

∑
k

Ωbqe
−i(ωbc−ωq)tcc,k,q

)
|c, 1k, 1q〉.

(4.6)

On both sides of equation (4.3) we have terms multiplying ket states. Those coeffi-

cients have to be equal in each case, leading to a system of differential equations

ċa(t) = −i
∑
k

Ωake
i(ωab−ωk)tcbk,

ċbk(t) = −icaΩake
−i(ωab−ωk)t − i

∑
q

Ωbqcc,k,qe
i(ωbc−ωq)t,

ċc,k,q(t) = −iΩbqcb,ke
−i(ωbc−ωq)t.

(4.7)

We consider now the Weisskopf-Wigner approximation [39], which reads

−i
∑
k

Ωakcb,ke
i(ωab−ωk)t ' −Γa

2 ca,

−i
∑
k,q

Ωbkcc,k,qe
i(ωbc−ωq)t ' −Γb

2 cb,k,
(4.8)

where Γa and Γb are the decay rates of each level. This approximation considers that

we are interested in time scales much larger than the transition frequencies i.e, t >>
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1/ωab, 1/ωbc. So, when we integrate formally the system of equations (4.7), we can

change the sum of modes k to an integral and change the upper time integration limit to

infinity, which gives us the Einstein A coefficient [39]. Substituting equation (4.8) into

(4.7), we get:

ċa(t) = −Γa
2 ca,

ċbk(t) = −icaΩake
−i(ωab−ωk)t − Γb

2 cb,k,

ċc,k,q(t) = −iΩbqcb,ke
−i(ωbc−ωq)t.

(4.9)

The solution for the first coefficient is straightforward: ċa(t) = e−Γat/2. Substituting

that in the equation of ˙cb,k and integrating

cbk(t) = −iΩak

∫ tf

0
dt′e−i(ωab−ωk)t−Γa(t−t′)/2e−Γbt/2,

= −iΩak
e(i(ωk−ωab)−Γa/2)t′−Γb/2(t−t′)

−i(ωab − ωk)− 1
2(Γa − Γb)

∣∣∣∣∣
tf

0
,

= −iΩak
e(i(ωk−ωab)−Γa/2)t − e−Γbt/2

i(ωk − ωab)− 1
2(Γa − Γb)

.

(4.10)

To find cc,k,q, we use the last expression and plug it into equation (4.9)

ċc,k,q(t) = −iΩbqe
−i(ωbc−ωq)t

(
−iΩak

e(i(ωk−ωab)−Γa/2)t − e−Γbt/2

i(ωk − ωab)− 1
2(Γa − Γb)

)
,

= ΩbqΩake
−i(ωbc−ωq)t

(
e(i(ωk−ωab)−Γa/2)t − e−Γbt/2

i(ωk − ωab)− 1
2(Γa − Γb)

)
,

= ΩbqΩak

(
e(i(ωk−ωab)−Γa/2)t−i(ωbc−ωq)t − e−Γbt/2−i(ωbc−ωq)t

i(ωk − ωab)− 1
2(Γa − Γb)

)
.

(4.11)

Integrating

cc,k,q(t) = ΩbqΩak

i(ωk − ωab)− 1
2(Γa − Γb)

∫ t

0
dt′
(
e(i(ωk−ωab)−Γa/2)t′−i(ωbc−ωq)t′ − e−Γbt′/2−i(ωbc−ωq)t′

)
,

= ΩbqΩak

i(ωk − ωab)− 1
2(Γa − Γb)

[
e(i(ωk+ωq−ωac)−Γa/2)t

i(ωk + ωq − ωac)− Γa/2
− e(i(ωq−ωbc)−Γb/2)t

i(ωq − ωbc)− Γb/2

]
,

(4.12)
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and taking the limit for t >> 0

cc,k,q(∞) = ΩbqΩake
−i(k+q)r

i(ωk − ωab)− 1
2(Γa − Γb)

[
1

i(ωk + ωq − ωac)− Γa/2
− 1
i(ωq − ωbc)− Γb/2

]
,

= ΩbqΩake
−i(k+q)r

i(ωk − ωab)− 1
2(Γa − Γb)

[
i(ωk − ωab − (Γa+Γb

2 ))
(i(ωk + ωq − ωac)− Γa/2)(i(ωq − ωbc)− Γb/2)

]
,

= ΩbqΩake
−i(k+q)r

(i(ωk + ωq − ωac)− Γa/2)(i(ωq − ωbc)− Γb/2) .

(4.13)

We consider the steady-state limit, from equation (4.2) we can conclude that ca(∞) =

cb,k(∞) = 0 because for a long time the atom would be in the ground state |c〉. Therefore,

for the steady-state limit the state of the atomic system is

|ψ〉 =
∑
k,q

ΩbqΩake
−i(k+q)·r

(i(ωk + ωq − ωac)− Γa/2)(i(ωq − ωbc)− Γb/2) |c, 1k, 1q〉. (4.14)

Now, recall that the two-photon correlation function in equation (2.29) can be written

as

G
(2)
DD(r1, t1; r2, t2) = 〈0|Ê(+)(r2, t2)Ê(+)(r1, t1)|ψ〉, (4.15)

where the subscript DD means double decay and |0〉 is the initial state and then calculate

it using the quantized electric fields of equation (2.35)
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G
(2)
DD(t1, t2) =

∑
k,q

∑
i,s

〈0|aiase−i(ωit1+i·r1)e−i(ωst2+s·r2)

−ΩbqΩake
−i(k+q)·r

(i(ωk + ωq − ωac)− Γa/2)(i(ωq − ωbc)− Γb/2) |c, 1k, 1q〉,

=
∑
k,q

∑
i,s

〈0|δk,iδq,se−i(ωit1+i·r1)e−i(ωst2+s·r2)

−ΩbqΩake
−i(k+q)·r

(i(ωk + ωq − ωac)− Γa/2)(i(ωq − ωbc)− Γb/2) |0〉,

=
∑
k,q

e−i(ωkt1+k·r1)e−i(ωqt2+q·r2)e−i(ωkt2+k·r2)e−i(ωqt1+q·r1)

−ΩbqΩake
−i(k+q)·r

(i(ωk + ωq − ωac)− Γa/2)(i(ωq − ωbc)− Γb/2) .

(4.16)

For making the sum over all the k and q modes we consider the continuous limit,

asuming the emission spectrum are sharply peaked Lorentzians [39]

G
(2)
DD(t1, t2) = −

∫
k
dk
∫
q
dqe−i(ωkt1+k·r1)e−i(ωqt2+q·r2)e−i(ωkt2+k·r2)e−i(ωqt1+q·r1)

ΩbqΩake
−i(k+q)·r

(i(ωk + ωq − ωac)− Γa/2)(i(ωq − ωbc)− Γb/2) .
(4.17)

Now, simplifying and splitting the integrals into angular and radial factors, we get

G
(2)
DD(t1, t2) = −

∫ ∞
0

k2dk
∫ π

0
sin θk2dθk

∫ 2π

0
dφk

∫ ∞
0

q2dq
∫ π

0
sin θq2dθq

∫ 2π

0
dφq

× e−i(ωkt1+k∆r1 cos θk)e−i(ωqt2+q∆r2) cos θqe−i(ωkt2+k∆r2 cos θk)e−i(ωqt1+q∆r1) cos θq

× ΩbqΩak

(i(ck + cq − ωac)− Γa/2)(i(cq − ωbc)− Γb/2) ,

= (2π)2

∆r1∆r2
k0q0ΩbqΩak

×
∫ ∞

0

∫ ∞
0

dkdq
e−ickt1(e−ik∆r1 − eik∆r1)e−ickt1(e−iq∆r2 − eiq∆r2)
(i(ck + cq − ωac)− Γa/2)(i(cq − ωbc)− Γb/2) .

(4.18)

For the integral of k and q we consider extending the lower limit to −∞. This leads

us to a complex integral for k and q. Each one of them has a pole in q = (Γb/2 + ωbc)/c

and k = (ωac − iΓa/2)/c− q. By applying the Cauchy integral theorem [56]

1
2πi

∫ ∞
−∞

eiχt
1

χ− iε
dχ = Θ(t), (4.19)
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where the Θ(t) is the Heaviside step function. Equation (4.18) is

G
(2)
DD(t1, t2) = −(2π)4k0q0ΩbqΩak

∆r1∆r2
e−(iωbc+Γa/2)(t1−∆r1/c)Θ(t1 −∆r1/c)

× e−(iωbc+Γb/2)[(t2−∆r2/c)−(t1−∆r1/c)]Θ[(t2 −∆r2/c)− (t1 −∆r1/c)],

= −(2π)4k0q0ΩbqΩak

∆r1∆r2
e−(iωbc+Γa/2)(t2−∆r2/c)Θ(t2 −∆r2/c)

× e−(iωbc+Γb/2)[(t1−∆r1/c)−(t2−∆r2/c)]Θ[(t1 −∆r1/c)− (t2 −∆r2/c)],

. (4.20)

if we define ∆τ = (t1 −∆r1/c)− (t2 −∆r2/c), this equation can be written as [39]

G
(2)
DD(∆τ) = A0e

−Γb/2∆τΘ(∆τ), (4.21)

where A0 is a constant and for ∆τ << Γ−1
a ; it can be shown [39] that the decaying term

exp{−Γa/2(t2 −∆r2/c)} goes also to a constant, assuming Γk < Γq. Our system fulfills

it given: Γk = 0.6 MHz corresponding to the 5D3/2 and Γq = 36 MHz. Equation (4.21)

is the same result that was deduced in the 70s [57] by using Green’s function formalism.

It tells us that the cross-correlation function of photon pairs produced in a consecutive

decay as a function of ∆τ would behave as a decaying exponential with a constant Γb/2

multiplied by a Heaviside step function. This is an asymmetric function because of the

well-ordered decays of this system. Equation (4.21) tells us also that if we measure

the cross correlation fuction G
(2)
DD(∆τ) we can determine the decay constant Γb of the

intermediate level.

4.2 Experimental measurements

In this section, I present the analysis of the experimental data and the measure-

ments of the autocorrelation and cross-correlation functions. This constitutes a first

characterization of our photon source properties and time coherence.
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4.2.1 Coincidence measurements

If we consider two detectors at positions r1 and r1, we can measure the statistical

correlation of the optical field at these two locations. With the help of an AND gate we

can measure coincidences with our detectors. An AND gate is an electronic circuit with

two inputs that can only send a pulse if it receives a signal in both of them. We use an

AND gate to measure coincidences from photons arriving within the duration of a set

time TR, see Figure 4.2.

Figure 4.2: Coincidence measurements between fields Ês(t) and ÊI(t) arriving to de-
tector A and B respectively. When two pulses overlap within a time TR we detect one
coincidence. The time T is the total integration time. Figure adapted from [58].

According to detection theory, the joint probability of detecting an arriving photon

in detector A during a time interval t′ to t′+dt′ and another photon by detector B during

the interval t′′ to t′′ + dt′′ is

pSI(t′, t′′)dt′dt′′ = α′α′′〈Ê(−)
I (t′′)Ê(−)

S (t′)Ê(+)
S (t′)Ê(+)

I (t′′)〉dt′dt′′, (4.22)
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where α′ and α′′ are the efficiency of each detector A, and B. The brackets means the

expectation value. Integrating over time we obtain the coincidence rate of two photons

in a finite time integral T

CSI =
∫
T
pSI(t′, t′′)dt′dt′′ =

α′α′

T

∫ T/2

−T/2

∫ T/2

−T/2
〈Ê(−)

I (t′′)Ê(−)
S (t′)Ê(+)

S (t′)Ê(+)
I (t′′)〉dt′dt′′.

(4.23)

Recalling the definition of the general correlation function in equation (2.30) for N=2,

given that we have two detectors

G(2)(t1, t2) = 〈Ê(−)(t2)Ê(−)(t1)Ê(+)(t1)Ê(+)(t2)〉. (4.24)

Equation 4.24 states that the coincidence rate of two photons its proportional to their

second-order cross-correlation function. In other words, when we make a coincindence

detection between the signal and idler phtons, we are measuring G(2)
SI (t1, t2). If we nor-

malize equation (4.24) by the product of the intensities we have the second-order degree

of coherence function

g2(x1,x1) = CSI = 〈Ê(−)(x2)Ê(−)(x1)Ê(+)(x1)Ê(+)(x2)〉
〈Ê(−)(x2)Ê(+)(x2)〉〈Ê(−)(x1)Ê(+)(x1)〉

, (4.25)

where CSI means the normalized coincidence rate.

4.2.2 Cross-correlation measurements

It has been shown that the second-order coherence g(2)
SI (∆t) decays as the Fourier

transform of single heralded photons [59]; meaning that by measuring the cross-correlation

function we will directly measure the coherence time.

We measure the cross-correlation function of our photon-pairs by using the detection

setup of Figure 3.10. We detect counts of the signal and idler photons using the APD1

and APD4 respectively. The data is acquired, organized and sent to the procesing
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computer by a time tagger with ps resolution. Then with a program written in Phyton

we analyze the data and set the coincidence time TR mentioned in Figure 4.2. Usually

we consider TR = 1.2 ns with an integration time of T = 17 seconds. We achieve the

maximum pair generation with perpendicular linear polarization of the p1 and p2 beams.

The photon-pair coincidence rate between the signal and idler that we can achieve is

about 104 counts per second. The non-normalized histogram of coherence detected and

the experimental conditions are shown in Figure 4.3.

Figure 4.3: Histogram of cross-correlation function G(2)
SI (∆t) detected between the signal

and idler photons. ∆t is the delay between the signal of a photon arriving at the detector
APD1 and the idler photon arriving at APD4. The experimental parameters were:
∆ = −70 MHz, δ = 6 MHz, OD=20 and the power of the pump beams p1 = 500 µW,
p2 = 7 mW.

Equation 4.21 from section 4.1 states that the experimental data follows a time

dependece in the form
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G
(2)
ij (∆t) = G0 exp{(−(∆t)/τ0)}Θ(∆t) + β, (4.26)

where G0 is the maximum coincidence rate, τ0 is the coherence time and β is the value

of G(2)
ij (∆t) for ∆t >> 1. As discussed in section 4.2.1, we need to normalize G(2)

SI (∆t)

to obtain the second order degree of coherence

g
(2)
ij (∆t) =

G
(2)
ij (∆t)
acc

= β

acc
+ G0

acc
exp{(−(∆t)/τ0)}Θ(∆t). (4.27)

The normalization term in equation 4.27 are the accidental coincidences. For a suf-

ficiently large time, our fields are totally uncorrelated, so the expectation value in the

denominator of eq (4.25) would be the product of two totally uncorrelated intensities of

each field, hence g(2)
ij (∆t) = 1 meaning β/acc = 1. These two intensities are

acc = RiRjTRT, (4.28)

where Ri and Rj are the total number of individual photon detections corresponding to

the i and j channel, TR the coincidence window time, T is the total integration time.

Such intensities are the number of arriving photons, so we consider count rates Ri and

Rj of each channel. Using this normalization, we can show that for τ >> 1, it happens

that g(2)
ij (τ) = 1.

Another way where we can find acc is directly from the non-normalized data presented

in Figure 4.3. We can fit the equation (4.26) and determine the value acc because for a

long time τ >> 1 implies both g
(2)
ij (τ) = 1 and the exponential term goes to zero.

Of course, both ways of finding the accidental coincidence value should be equivalent.

We found acc = 6.24 ± 1.21 by fitting equation 4.26 to the experimental data and

acc = 5.97± 1.25 calculated with equation (4.28). Those two values do agree within the

error bars. Its worth noticing that the fit of the equation (4.26) depends largely on the
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number of experimental points we consider. To get a better β value, we should include

the most possible points from the plateau. For our case, that fitting interval was from

-20 to 100 ns. The fact that the fitted acc is greater than the calculated parameter is

expected because equation (4.28) does not consider suplementary photons generated by

spontaneous emission.

As discussed in section 3.4.1, we can model the noise of our detectors like a random

variable with the Gaussian distribution given by equation (3.8) where σ is the width of

the Gaussian distribution. Thus the photon detection is the double stochastic process,

which is described by the convolution between the distributions given by equations (4.27)

and (3.8), i. e.,

g
(2)
fit(∆t) = (f ∗ g(2)

ii )(∆t) = 1
2
G0

acc
e

(
σ2−2∆tτ0

2τ2
0

) [
erf

(
∆tτ0/σ − σ√

2τ0

)
+ 1

]
, (4.29)

Equation (4.29) is the fitting function for the experimental data. It smoothens the

Heaviside step function. Figure 4.4 plots the normalized experimental data fitted by

a curve with the form of equation (4.30). Both follow the same qualitative behavior

and agree qualitatively up to a certain extent. Using that fit, we can estimate that the

maximum value for the cross-correlation function is g(2)
SI (∆tmax) = 1146± 53.

The parameter σ from the fit results of Figure 4.4 gave us a value of σ = 0.61±0.04 ns,

which agree with the nominal time response of the detector according to the manufacturer

tres = 400 ps. The difference between values could be due to different time responses

depending on the wavelength of incoming light.

We have some good agreement between the model of the second-order time-coherence

and the experimental data because both follow the same general behavior: it has a fast

rise after ∆t = 0 and then a slow decay after reaching a maximum. We are detecting

a large number of coincidences for positive values of ∆t. This is modeled with the
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Figure 4.4: Normalized cross-correlation function g(2)
SI (∆t) of the signal and idler photons.

The blue points are the experimental data and the red line is the fitted equation (4.29).
From the fit: g0 = 424±12, σ = 0.61±0.04 ns and τ0 = 4.4±0.1 ns. The residuals, which
are the value of the model minus the experimental value, are plotted in the upper part
of the figure. The experimental conditions were: ∆ = −70 MHz, δ = 6 MHz, OD=20
and the power of the pump beams p1 = 500 µW, p2 = 7 mW.

Heaviside function in equation (4.26). Our atomic structure in diamond configuration

assures us that after detecting a signal photon, we will detect an idler because the well

time-ordered events described in Figure 4.21.This condition is called Heralded photons.

After reaching the maximum, the behavior of g(2)
SI (∆t) would give us information

about the decay lifetime of the intermediate level 5P1/2. At ∆t = 0 when we detect a

signal photon, we know that the excited atom is in the level 5P1/2. We measure a decay
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time of τ0 = 4.4 ± 0.1 ns, which do not agree with the 5P1/2 level lifetime τnat = 27 ns.

We think this reduction of the decay time it is due to collective effects present in the

atomic cloud that modify the output photons properties.

We can determine the idler photons bandwidth from the fit of the data in Figure 4.4,

with the expression

Γ = 1
2πτ0

. (4.30)

Substituting the measured value of τ0 our heralded photons have bandwidth of Γ =

36.2 ± 0.8 MHz. This factor is ten times smaller than the bandwidth measured in

experiments of hot atoms [60]. The photon badwidth from this kind of sources can be

reduced down to 20 MHz by modifying the experimental parameters [61]; by using a

low-loss cavity [59] it can be reduced to 8 MHz.

With the bandwith of our idler photons and the coincidence rate rc we can calculate

the spectral brightness for our source of photon pairs. This parameter is defined as

B = 2πτ0rc = rc
Γ . (4.31)

High value of B means either a high coincidence rate rc and/or low bandwidth Γ,

which is necessary for quantum information applications because with these two param-

eters we can promote the interaction between photons and atoms.

In our case the coincidence rate rc is obtained from the unnormalized histogram G
(2)
SI

plotted in Figure 4.3. The maximum coincidence rate achieved was done at δ = 0.5

MHz, giving a value of rc = (10.15± 0.14)× 103 s−1. So, the maximum brightness of our

source is B = 280 coincidences (s MHz)−1. This value is consistent with observations in

similar sources [62], and two orders of magnitude larger than the value reported for hot

atomic ensembles [60].
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4.2.3 Autocorrelation function

The autocorrelation function of the signal and idler photons can be found by first

considering the power spectrum of a thermal source S(∆ω), which is a Lorentzian dis-

tribution [42] and then making a Fourier transform [63]

G(1)(∆t) =
∫ ∞
−∞

dτeiω∆tS(∆ω),

=
∫ ∞
−∞

dτeiω∆t
(

1
π

γ/2
(ω − ω0)2 + (γ/2)2

)
,

= exp(−iω0∆t− γ∆t),

(4.32)

then using the property

G(1)(−∆t) = G(1)(∆t)∗, (4.33)

together with

G(2)(∆t) = 1 +G(1)(∆t), (4.34)

the expected distribution of the second-order autocorrelation function is

G2
ii(∆t) = G0 exp(−|∆t|/τ) + 1, (4.35)

where G0 is the maximum number of coincidences and τ the coherence time. In a similar

manner as in the cross-correlation function calculation we can model the detector noise

as a random variable following a Gaussian distribution with width σ. This is a double-

stochastical process, described by a convolution between the distributions f and g

(f ∗ g(2)
ii )(x) =

∫ ∞
−∞

f(t− x)g(t)dt =
∫ ∞
−∞

G0 exp{−|t|/τ} 1
σ2π exp

{
−(t− x)2

2σ2

}
,

= G0

σ2π

[∫ ∞
0

exp
{
−(t− x)2

2σ2 − t

τ

}
+
∫ 0

−∞
exp

{
−(t− x)2

2σ2 + t

τ

}]
.

(4.36)
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In equation (4.36) the integral is split in two sections to separate the absolute value

of equation (4.35). Manipulating both polynomial of the exponents

−(t− x)2

2σ2 ∓ t

τ
= −τ(t2 − 2tx+ x2)± t2σ2

2σ2τ
,

= −
t2 − 2t(x∓ σ2

τ
) + (x∓ σ2

τ
)2 − (x∓ σ2

τ
)2 + x2 ± t2σ2τ−1

2σ2 ,

= −
(t− x± σ2

τ
)2

2σ2 + 1
2σ2

(
2xσ

2

τ
∓ σ2

τ 2

)
,

(4.37)

the second term in the last line of equation (4.37) comes out of the integral because it

does not depend on t. The integral of the first term can be solved with the change of

variable χ = (t− x± σ2

τ
)/
√

2σ and using

erfc(x) = 2√
π

∫ ∞
x

e−χ
2
dχ. (4.38)

Substituting equation (4.37) in both integrals, re-arraging terms, and returning to

our variable x→ ∆t we have the fitting function

g
(2)
fit(∆t) = 1

2G0e

(
σ2−2∆tτ0

2τ2
0

) [
erfc

(
σ2 −∆tτ0√

2στ0

)
+ e

2∆t
τ0 erfc

(
σ2 + ∆tτ0√

2στ0

)]
, (4.39)

where G0 and τ are the same constants of equation (4.35) and σ the width of the

Gaussian.

To measure the autocorrelations, we use the experimental setup described in Figure

3.10. Each signal separately detected using a Hanbury-Brown and Twiss interferometer

coupling the four beams into single-mode fibers, and then send them into the APDs 1

to 4. We balance the number of counts in each APD to divide the signal by 50/50.

Measuring coincidences between APD1 and APD2 gives us the autocorrelation of the

signal photons, and for the idler photons, APD3 and APD4.
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We have approximately ∼ 100 coincidences per second. To collect data for the anal-

ysis, we integrate each signal for about ∼ 20 minutes. Figures 4.5 and 4.6 present the

experimental data of each case and the corresponding fitted curves. We need to nor-

malize the experimental data using the accidental coincidences acc defined in equation

(4.28) to fit the normalized autocorrelation function g
(2)
ii from equation (4.39).

Figure 4.5: Normalized time autocorrelation function of the signal photons. The blue
dots are the experimental data and the red line is the fit of equation (4.29). The param-
eters of the fit are: g0 = 0.22 ± 0.03, σ = 9.77 ± 2.12 ns and τ0 = 18.92 ± 2.65 ns. The
residuals, which are the value of the model minus the experimental value, are plotted in
the upper part of the figure. The experimental conditions were: ∆ = −70 MHz, δ = 6
MHz, OD=20 and the power of the pump beams p1 = 500 µW, p2 = 7 mW.

Using those fits, we found that for ∆t = 0, g(2)
II (0) = 1.59 ± 0.02 and g

(2)
SS(0) =

1.84 ± 0.02. The corresponding value for the signal photons is larger than the idler
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Figure 4.6: Normalized time autocorrelation function of the idler photons. The blue
dots are the experimental data and the red line is the fit of eq. (4.29). The parameters
of the fit are: g0 = 0.12 ± 0.03, σ = 0.17 ± 0.04 ns and τ0 = 12.80 ± 0.90 ns. The
residuals, which are the value of the model minus the experimental value, are plotted in
the upper part of the figure. The experimental conditions were: ∆ = −70 MHz, δ = 6
MHz, OD=20 and the power of the pump beams p1 = 500 µW, p2 = 7 mW.

because the APDs have different quantum efficiency depending on the wavelengths. We

can also see that the idler photon distribution is sharper than the signal. That means

the Gaussian distribution of our detector noise is wider for the signal photon wavelength

and less for the idler.

We identify the behavior of the autocorrelation of both photons as a thermal source.

That is because during the experiment, we have around 5×107 atoms emitting, creating

a bunching effect of the emmited photons.
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We note that the distribution functions that we fit to the autocorrelation in equation

(4.35) and the cross-correlation (4.26) are similar. The principal differences are an abso-

lute value of the time difference ∆t for the first case and the Heaviside step function in

the second case. This difference is associated with the nature of the source: the cross-

correlation measure heralded photon pairs while the autocorrelation data comes from a

thermal source.

4.3 Cauchy-Schwarz inequality

The results from time-correlation measurements from section 4.2.2 and 4.2.3 contain

all the information required to evaluate the Cauchy-Schwarz inequality, which evaluates

the classicallty of the photon pair statistics.

Let u and v be two non-zero complex vector fields fulfilling the Maxwell equations,

and define the complex number λ 6= 0

λ = 〈u,v〉
||v||2

, (4.40)

where 〈·, ·〉 denotes the interior product. If we consider the term

0 ≤ ||u− λv||2,

= 〈u,u〉 − 〈λv,u〉 − 〈u, λv〉+ 〈λv, λv〉,

= 〈u,u〉 − λ〈v,u〉 − λ〈u,v〉+ λλ〈v,v〉,

= ||u||2 − 〈v,u〉
||v||2

〈u,v〉 − 〈v,u〉
||v||2

〈u,v〉+ 〈v,u〉
||v||2

〈u,v〉
||v||2

||v||2,

= ||u||2 − |〈u,v〉|
2

||v||2
,

|〈u,v〉|2 ≤ ||u||2||v||2,

(4.41)

finally, we have
|〈u,v〉|2

||u||2||v||2
≤ 1. (4.42)
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The Cauchy-Schawartz inequality (4.42) is valid for any pair of vectors describing a

classical field. The coefficient R evaluated for classical fields must satisfy [58]:

R = [g(2)
SI (∆t)]2

g
(2)
S (0)g(2)

I (0)
≤ 1, (4.43)

for every ∆t. In our photon case, considering the results of the autocorrelation measure-

ments g(2)
SS(0) and g(2)

II (0) from the signal and idler photons respectively, and the maximum

of the cross-correlation g
(2)
SI (∆tmax) = 1146± 53, we can evaluate the coefficient R

R = (4.49± 0.43)× 105 > 1. (4.44)

This is a strong violation of the inequality by five order of magnitude. Larger than

the ∼ 102 reported by FWM in hot atoms or SPDC [60, 64]. We think that one of the

reasons why we can reach such values is because the thermal noise suppression of our

system, by trapping the atoms in a MOT. Comparable values are reported by similar

experimental setups [65, 61].

This violation warranties that the statistics of the light produced in our experiment

cannot be described using the classical theory of light.
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Chapter 5

Numerical calculations

In this chapter, I describe numerical calculations solving the master equation (2.83)

that describes our system. Based on a program written by our collaborator Dr. Ricardo

Gutiérrez-Jáuregui, I wrote a version myself in Python, the language that we use in the

lab. This was an opportunity to learn about numerical calculations of atomic systems

and also to compare between the numerical solutions and the experimental data. We

are interested in this formalism because we can directly include collective effects in the

equations by modifying the decay constants.

5.1 Collective effects in photon pair generation: a first ap-
proach

In fluorescence experiments a dilute atomic gas is driven by a laser from the ground

state to a excited state. In some cases one can consider that each atom is interacting

independently with the radiation field. Here the emission is isotropic, obeying an expo-

nential law with a characteristic time τ , which is the inverse of the decay rate Γ of the

given atomic transition. If the atomic gas is more dense, we would have modifications in

these photon properties. These modifications in general are called collective effects [66]

and they are discussed in the next subsection.

To apply the theory of collective effects, our system should be in the high atomic

density regime, defined by the condition [67]
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λ < 〈r〉, (5.1)

where λ is the wavelength of the interacting light and 〈r〉 is the average distance between

atoms. To estimate the inter-particle distance a first approximation can be to consider

all atoms inside a volume V equidistant between them, expressed as

〈r〉 ∼ 1
n1/3 , (5.2)

where n is the particle density n = N/V for a number N of particles inside a volume

V . This is not our case because center of the atomic cloud is more dense than the outer

part. However this approximation can give us an upper bound.

The laser interacting with the atomic cloud has a diameter of 1.1 mm, and the

diameter of our MOT is about 5 mm. Lets recall the experiment setup with Figure (5.1)

Figure 5.1: Schematics of the interaction area between the pumping laser and the atomic
cloud.

According to the OD measurements in Chapter 3 we have an estimated number of

5 × 107 atoms interacting with the pumping beams. Supposing our atoms inside the
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cloud are evenly distributed and calculating the density n, we can estimate the distance

between atoms

〈r〉 = 4.5× 10−6 m, (5.3)

which is larger compared to the emission wavelength λ = 0.8× 10−6 m, but comparable.

So, we are not yet in the high atomic density regime. That means we cannot apply

directly the theory of collective effects, but it can give us a first approximation for

describing our experimental results. Equation (2.72) includes atom collective effects

with one Lindblad term for each decay under consideration in the form of

L̂i(ρ) = γeff

2 (2σjiρσij − σijσjiρ− ρσijσji). (5.4)

In a first approach we consider that the collective effects can be modeled as an effective

decay constant γeff , which will modify the decay time τ0 = 1
γeff

of a particular transition,

according to [66]

τ0 = τnat
1 + µOD , (5.5)

where τnat is the single-atom decay time, µ is a geometrical factor and OD is the optical

density. The validity of this model for our system has yet to be shown. However the

fact that we can modify the coherence time τ0 by changing the number of atoms add

control to our photon-pair source, and it will be important for the design of experiments

in quantum information

5.2 Four-level solution

Using the method described in section 2.6.1 we solved numerically the master equa-

tion for the four-level atomic system mentioned in Figure 2.2. It solves equation (2.72)

to obtain the time evolution of each component of the density matrix. Figure 5.2 shows
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Numerical calculation 5.2. FOUR-LEVEL SOLUTION

the experimental data for the cross-correlation in red dots. The blue curve depicts the

fitted numerical calculation for the density matrix terms of equation (2.92). As we can

see both curves have very similar behavior, with a quick rise at the beginning followed

by a slow exponential-type decay. Although we indeed see a clear similarity between

both behaviours, we can also see a difference in the slopes of the rising and decay parts,

particularly for the points near ∆t = 0 ns and ∆t = 15 ns.

Figure 5.2: Cross-correlation function resulting from the four-level atomic calculation
(blue continuous line) and experimental data (red dots). The experimental conditions
in both systems were: ∆ = −70 MHz, δ = −2 MHz, OD=20 and the power of the pump
beams p1 = 500 µW, p2 = 7 mW.

There are some oscillations in the experimental data, as shown in Figure 5.3 that

are not found in the numerical calculation. Those oscillations could be explained as

interference between photons produced in different decay paths, called quantum beats

[68]. This behavior can not be explained with this model because we are only considering
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Figure 5.3: Normalized cross-correlation function g(2)
SI (∆t) of the signal and idler photons.

The black points are the experimental data and the red line is the fitted equation (4.29).
The experimental conditions were the same that in Figure 4.4 but this is a plot focusing
on the time interval ∆t from -10 to 40

a four-level atom. Adding more atomic levels could describe the data better, as we will

see in the next section.

5.3 Nine-level solution

By using the program of Ricardo we solve the master equation for our experimental

conditions with nine energy levels. Considering the relevant hyperfine structure in our

FWM process, we label the following nine Rubidium levels as described in Figure 5.4.

We introduce our experimental conditions to the program through the Rabi frequen-

cies exciting atomic levels, as shown in Figure 5.4, and the single-atom decay constants

for Rubidium. With this numerical calculations we can take a qualitative insight to the

possible collective efects, by changing the decay constants γ for example. To compare

between simulation results and experimental data we use the term in equation (2.92).
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Figure 5.4: Atomic levels are considered for the master equation calculations. Here we
show the labels of the levels as used in the program’s code.

As a first approach, we consider all the decay constants modified by the same amount,

which means

γeffi = αγi, (5.6)

where α is a multiplicative constant. In that case, the cross-correlation function will

have the behavior showed in Figure 5.5. As we can see, when we increase the value of α,

the width of the distribution decreases. Qualitatively this corresponds to the behavior

of equation (5.5). This behavior could give us an insight into how much the collective

effects are present in our system through the value of α: We can measure the width of

our experimental data and fit a value of α to the atomic calculation that results in a

comparable width of both distributions. We can also manipulate the number of atoms

experimentally to modify α so we can control the coherence time τ .

Another case to consider is that the effective decay constant γeff does not change

by the same amount for each level. That represent a complex case, because in principle

we do not know how the γeff change for each decay. To get some idea, we can analyze
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Figure 5.5: Cross-correlation function of the photon pairs with a variation of the mul-
tiplicative constant α of every γi decay term. The width of the distribution grows as α
change. The experimental conditions considered were: ∆ = −70 MHz, δ = −2 MHz,
OD=20 and the power of the pump beams p1 = 500 µW, p2 = 7 mW.

the behavior when one of the four decays between fine levels is significantly bigger than

the others. For simplicity, we consider the case where for a set of four effective constant,

one of the four constants αi, described in Figure 5.4, are set to a value ten times bigger

than the others. In Figure 5.6 is the results of the numerical calculation for each case.

From these cases, we can conclude the following: The stationary value of g(2)
SI (∆t)

for long times ∆t >> 1 changes drastically for each case. When the γeff4 is the one

with a multiplication factor of 10, we have the smallest value of the cross-correlation

function for ∆t >> 1. On the contrary, when γeff3 is 10 times greater, we have the

biggest g(2)
SI (∆t) value in the limit. This information also could help us to shape the

values of γeff , because we can extract from our experimental data the limit value of

LAFriOC – 83 – Irvin Fermı́n Angeles Aguillón



Numerical calculation 5.3. NINE-LEVEL SOLUTION

Figure 5.6: Cross-correlation function of the photon pairs with a variation of the mul-
tiplicative constant α of each γi decay term, i runs from 1 to 4 see Figure (5.4). The
principal changes are the limiting value when ∆t >> 1 and the maximum of the dis-
tribution. The experimental conditions considered were: ∆ = −70 MHz, δ = −2 MHz,
OD=20 and the power of the pump beams p1 = 500 µW, p2 = 7 mW.

the cross-correlation function, and consider it for adjusting the value of each γeff in the

atomic calculation.

We can also get from our experimental data the ratio between the maximum of the

g
(2)
SI (∆t) distribution and the stationary value when ∆t >> 1, and compare them to that

same ratio from the experimental data to find the best suitable αi values. In Figure

5.6 we can note the variations in that quotient for each case. In both Figure 5.5 and

Figure 5.6 we can see quantum beats probably produced by interference between photons

decaying from the level |7〉 and |8〉 into |0〉 (see Figure 5.4).

The qualitative analysis of Figure 5.5 and Figure 5.6 gave us an insight about the

possible control of the temporal coherence that we can achieve in our system. We can
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modulate its form, changing the amplitude and the coherence time τ by modifying the

number of atoms. These effects can be used to enhance the control of our photon pair

source.

LAFriOC – 85 – Irvin Fermı́n Angeles Aguillón



Chapter 6

Conclusions and outlook

This thesis presented our first studies on the coherence time of photon pairs gener-

ated by FWM in a cold atomic Rubidium cloud. By solving the Schrödinger equation

of consecutive cascade decays we obtain a model that reproduces the behavior of our

experimental data. By fitting them we measure a coherence time of τ0 = 4.4±0.1 ns and

a bandwidth of Γ = 36.2± 0.8 MHz. Our system can achieve rates of about 104 photon

pairs per second and brightness B of 280 coincidences (s MHz)−1. Table 6.1 presents

a comparation of parameters between our source and typical values of hot atoms and

SPDC.

Source type R Γ (MHz) B (MHz s)−1

Cold atoms 4.49× 105 36 280
Hot atoms 280 350 0.34

SPDC 100 THz 3940*

Table 6.1: Comparison of typical values of R coefficient, bandwidth Γ and spectral
brightness B from different photon sources. Parameters taken from [60, 64].

The spectral brightness found in sources for SPDC is reported in the units (MHz s

mW)−1, and the spectral brightness from atomic sources in (MHz s)−1. SPDC sources

consider in their B definition how many photons are generated as a function of the
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pumping beam, while the atomic sources do not. This means the comparison between

them can not be done directly.

We measured the Cauchy coefficient R of the time coherence of our photon pairs.

Using the measured values of cross-correlation and autocorrelation functions. We found

a value of R = (4.49 ± 0.43) × 105, strongly violating the Cauchy-Schwarz inequality,

which indicates that the coherence time of our photon pairs is non-classical.

6.1 Limit of studies and future work

While the model used here describes the general behavior of the experiment, the

model do not describe the oscilation of our data. By considering only three levels in our

model, it limits the description of phenomena like collective effects or quantum beats. In

Chapter 5 we apply the Jaynes-Cummings formalism and solve numerically the master

equations of the system for four and nine energy levels respectively, and also compare

them with the experimental data. With four levels, we obtain similar results compared

with the solution of the Schrödinger equation. When we solve the system for nine levels,

there are oscillations in the cross-correlation function due to interference between levels,

being quantum beats. We can observe those same oscilations in the experimental data.

6.2 Polarization entanglement

One of the variables that we can easily modify and detect in our experiment is the

polarization of the produced photons. It has been shown that the photon pairs generated

present quantum correlations in polarization and can form Bell states [68, 60].

We have measured polarization correlations in our system, finding that the polariza-

tion of the generated photons depends on the pumping polarization. Using the atomic

degrees of freedom in our system and the experimental parameters can give our system
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versatility to produce and control these entangled states. The next step in our exper-

iment would be to measure and control the polarization entanglement of the emitted

photons. By controlling the polarization states of the generated photons we can use

them to imprint and manage information with them, useful for security protocols like

quantum key distribution [69].

6.3 Application: Quantum memory

In a future experiment we plan to use our generated photon pairs to write on a

quantum memory. The work done in this thesis shows that we can produce photon

pairs resonant to the 5S1/2 → 5P1/2 transition, with a bandwidth of Γ = 36.2 MHz. In

principle, they can transfer information imprinted in them by interacting with atoms.

Future work is needed in order to demostrate if this interaction is possible, and to identify

the important parameters to promote it. Recently it has been shown that a quantum

memory protocol is possible by atoms interacting with few photons [70]. The modulation

of the time coherence and the polarization entanglement would be useful to control the

properties of the photons that we will send to the memory, to store the polarization

state.
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Appendix A

Program for a four-level atom

In this appendix there is a brief description of a program that I wrote in Python. It

is based on a program written by Dr. Ricardo Gutiérrez-Jáuregui in FORTRAN to solve

the dynamics of the master equation for an arbitrary number of atomic states. This

program was mainly intended to connect our experimental results with a first simple

atomic description. We find similarities and discrepancies with a system with more

levels.

This program solves the system of differential equations that we obtain from the

master equation for a four-level atom interacting with two near-resonance lasers and

including a decay for each level via Lindblad terms. Recalling the master equation

(2.83), we calculate the matrix elements

〈i|ρ̇|j〉 = 1
i~
〈i|(Hρ− ρH)|j〉+ γ1

2 〈i|(2σ10ρσ01 − σ10σ01ρ+ ρσ10σ01)|j〉

+ γ2

2 〈i|(2σ21ρσ12 − σ21σ12ρ+ ρσ21σ12)|j〉+ γ3

2 〈i|(2σ32ρσ23 − σ32σ23ρ+ ρσ32σ23)|j〉

+ γ4

2 〈i|(2σ03ρσ30 − σ03σ30ρ+ ρσ03σ30)|j〉,
(A.1)

where γi is the decay rate of each level i, the atomic operators σij = |j〉〈i| and H the four

level Hamiltonian in equation (2.82). We can reduce this equation using the properties

σij|k〉 = |j〉〈i|k〉 = |j〉δik. (A.2)
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If we do that and apply the hermiticity of the density matrix as discussed in section

2.6 , we end with a system of 16 linear differential equations. We can express this system

of differential equations in a matrix form V̇ =MV where V is a vector with 16 entries,

each one of them being an element of the density matrix and M is a 16× 16 matrix of

coefficients. In the program we re-arrange the terms of the density matrix so we only

have a real system of equations with this nomenclature for the density matrix elements

V =



ρ00
ρ11
ρ22
ρ33

Re(ρ01)
Im(ρ01)
Re(ρ02)
Im(ρ02)
Re(ρ03)
Im(ρ03)
Re(ρ12)
Im(ρ12)
Re(ρ13)
Im(ρ13)
Re(ρ23)
Im(ρ23)



. (A.3)

The code used for the atomic calculations uses a function named odeint from the

package scipy that solves the system of differential equations using a library in the

FORTRAN language called Isoda.

The basic structure of the program is the following:

• We first declare a series of vectors with 4 components and 4× 4 matrices. Here we

will introduce the experimental parameters and the initial conditions.

• Define the 16 component vector containing the element of the density matrix, the

interval of time, and the 16 × 16 M matrix, that contains the master equation

(A.1).
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• Build the function deriv(,) which would take as inputs a matrix, a number, and a

vector, and it performs a matrix multiplication between the vector and the matrix

• We use the package odeint to solve the differential equation corresponding to the

vector and matrix system. It returns a series of strings with the time evolution of

each component of the vector.
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import numpy as np

from scipy.integrate import odeint

%matplotlib inline

#Declare arrays of each variable

R=np.ones((4,4))

I=np.ones((4,4))

R1=np.zeros((4,4))

I1=np.zeros((4,4))

dR=np.zeros((4,4))

dI=np.zeros((4,4))

dR1=np.zeros((4,4))

dI1=np.zeros((4,4))

g=np.zeros((4,4))

gdth=np.zeros(4)

rab=np.zeros((4,4))

detdt=np.zeros(4)

88



d=np.zeros(4)

# Detuning from level 1

detdt[1] = -60

d[1]= -60

# Detuning from level 2

detdt[2] = -7

d[2]= -7

# Decay rate from 5P 3/2 to 5S 1/2

g[0,1] = 26.285

# Decay rate from 5D 3/2 to 5P 3/2

g[1,2] = 0.3664

# Decay rate from 5D 3/2 to 5P 1/2

g[2,3] = 2.436
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# Decay rate from 5P 1/2 to 5S 1/2

g[0,3] = 17.96

# Helping variables for the calculus

gdth[0] =0

gdth[1] = 0.5*(g[0,1])

gdth[2] = 0.5*(g[1,2]+g[2,3])

gdth[3] = 0.5*(g[0,3])

# Defining Rabi frequencies

rab=np.zeros((4,4))

rab[0,1]=15.1368/2

rab[1,2]=16.9108/2

# Nomenclature for Vector V=(R00,R11,R22,R33,R01,I01,R02,I02,R03,I03,R12,I12,R13,I13,R23,I23)

# Matrix A of the system

A=np.array([[0,g[0,1],0,g[0,3],0,-rab[0,1],0,0,0,0,0,0,0,0,0,0],
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[0,-g[0,1],g[1,2],0,0,rab[0,1],0,0,0,0,0,-rab[1,2]/2,0,0,0,0],

[0,0,-g[1,2]-g[2,3],0,0,0,0,0,0,0,0,rab[1,2]/2,0,0,0,0],

[0,0,g[2,3],-g[0,3],0,0,0,0,0,0,0,0,0,0,0,0],

[0,0,0,0,-gdth[0]-gdth[1],d[0]-d[1],0,-rab[1,2]/2,0,0,0,0,0,0,0,0],

[rab[0,1]/2,-rab[0,1]/2,0,0,-d[0]+d[1],-gdth[0]-gdth[1],rab[1,2]/2,0,0,0,0,0,0,0,0,0],

[0,0,0,0,0,-rab[1,2]/2,-gdth[0]-gdth[2],d[0]-d[2],0,0,0,rab[0,1]/2,0,0,0,0],

[0,0,0,0,rab[1,2]/2,0,-d[0]+d[2],-gdth[0]-gdth[2],0,0,-rab[0,1]/2,0,0,0,0,0],

[0,0,0,0,0,0,0,-rab[2,3]/2,-gdth[0]-gdth[3],d[0]-d[3],0,0,0,rab[0,1]/2,0,0],

[0,0,0,0,0,0,0,0,-d[0]+d[3],-gdth[0]-gdth[3],0,0,-rab[0,1]/2,0,0,0],

[0,0,0,0,0,0,0,0,0,0,-gdth[1]-gdth[2],rab[0,1]/2+d[1]-d[2],0,0,0,0],

[0,rab[1,2]/2,-rab[1,2]/2,0,0,0,0,0,0,0,-rab[0,1]/2-d[1]+d[2],-gdth[1]-gdth[2],0,0,0,0],

[0,0,0,0,0,0,0,0,0,rab[0,3],0,0,-gdth[1]-gdth[3],d[1]-d[3],0,rab[1,2]/2],

[0,0,0,0,0,0,0,0,-rab[0,3],0,0,0,-d[1]+d[3],-gdth[1]-gdth[3],-rab[1,2]/2,0],

[0,0,0,0,0,0,0,0,0,0,0,0,0,rab[1,2]/2,-gdth[2]-gdth[3],d[2]-d[3]],

[0,0,0,0,0,0,0,0,0,0,0,0,-rab[1,2]/2,0,-d[2]+d[3],-gdth[2]-gdth[3]]])

# Initial conditions
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b_0=np.array([0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0])

# Define the function deriv(), which will make a product between the matrix and the vector and help to solve the system

def deriv(A, t, Ab):

return np.dot(Ab, A)

time = np.linspace(0, 1, 900000)

# Solve differential equation system using package scipy.integrate

Sol = odeint(deriv,b_0, time, args=(A,))

Sol
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Appendix B

Calculation of Rabi frequencies

In this appendix I present the results of the calculation of the geometrical part G of

equation (2.97), which is the transition Rabi frequency between two levels

G = (−1)F−m
1∑

q=−1

(
F 1 F ′

−m q m′

)
(−1)J+I+F ′+1

√
(2F + 1)(2F ′ + 1)

{
J I F
F ′ 1 J ′

}
,

(B.1)

where F,m denote the quantum numbers of the initial state and F ′,m′ the numbers of

the final state, and the 3-j Wigner symbols are denoted by circular parentheses and 6-j

symbols denoted by curly brackets.

The p1 beam that connects the transition 5S1/2, F = 2 → 5P3/2, F
′ have horizontal

polarization in the x̂ direction, according to our quantization axis selection of Figure 2.3.

This means q = −1,+1 for the spherical basis that translate into σ+ + σ− polarization.

The geometrical factors G are
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F = 2→ F ′ = 3
σ+ σ−

m m’ G m m’ G
-2 -1 1/(2

√
15) -2 -3 1/2

-1 0 1/(2
√

5) -1 -2 1/
√

6
0 1 1/

√
10 0 -1 1/

√
10

1 2 1/
√

6 1 0 1/(2
√

5)
2 3 1/2 2 1 1/(2

√
10)

F = 2→ F ′ = 2
σ+ σ−

m m’ G m m’ G
-2 -1 1/(2

√
6) -1 -2 −1/(2

√
6)

-1 0 1/4 0 -1 −1/4
0 1 1/4 1 0 −1/4
1 2 1/(2

√
6) 2 1 1/(2

√
10)

F = 2→ F ′ = 1
σ+ σ−

m m’ G m m’ G
-2 -1 1/(2

√
10) 0 -1 1/(4

√
15)

-1 0 1/(4
√

5) 1 0 1/(4
√

5)
0 1 1/(4

√
15) 2 1 1/(2

√
10)
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The p2 beam that connects the transition 5P3/2F
′ = 3 → 5D3/2, F

′′ have horizontal

polarization in the ŷ direction, according to our quantization axis selection of Figure

2.3. This means q = 0 for the spherical basis that translate into π polarization. The

geometrical factors G are

F ′ = 3→ F ′′ = 3
π

m m’ G
-3 -3 −(

√
3
5/2)

-2 -2 −1/(
√

15)
1 1 −1/(2

√
15)

0 0 0
1 1 1/(2

√
15)

2 2 1/(
√

15)
3 3 (

√
3
5/2)

F ′ = 3→ F ′′ = 2
π

m m’ G
-2 -2 1/(2

√
15)

1 1
√

2
3/5

0 0
√

3/10
1 1

√
2
3/5

2 2 1/(2
√

15)
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F ′ = 2→ F ′′ = 3
π

m m’ G
-2 -2 1/(2

√
15)

1 1
√

2
3/5

0 0
√

3/10
1 1

√
2
3/5

2 2 1/(2
√

15)

F ′ = 2→ F ′′ = 2
π

m m’ G
-2 -2 −1/(

√
15)

1 1 −1/(2
√

15)
0 0 0
1 1 1/(2

√
15)

2 2 1/(
√

15)

F ′ = 2→ F ′′ = 1
π

m m’ G
1 1 1/5
0 0 2/(5

√
3)

1 1 1/5

F ′ = 1→ F ′′ = 2
π

m m’ G
1 1 1/5
0 0 2/(5

√
3)

1 1 1/(2
√

15)

F ′ = 1→ F ′′ = 1
π

m m’ G
1 1 −1/(2

√
15)

0 0 0
1 1 1/(2

√
15)
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México, 2017.

[45] C. Hawthorn, K. Weber, and R. Scholten. “Littrow configuration tunable exter-
nal cavity diode laser with fixed direction output beam.” In: Review of Scientific
Instruments 72.12 (2001), pp. 4477–4479.

[46] A. Mart́ınez Vallejo. Construcción de una trampa magneto-óptica. Tesis de Maestŕıa,
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