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Notation

Along the thesis, the main notation is as follows:

� ∃ - ”There exists”.

� ∀ - ”For all”.

� < - ”Lesser than”, ≤ - ”Lesser or equal than”, > - ”Greater than”, ≥ - ”Greater or equal
than”.

� A⇒ B - The statement A implies B.

� A⇔ B - The statements A and B are equivalent.

� a ∈ A - The element a belongs to the set A.

� A ⊂ B- The set A is a subset of B.

� A \B - The set A is out of B.

� f : A→ B - f is map from A to B.

� ∇ - The gradient of function.

� C - Set of the complex numbers.

� R - Set of the real numbers.

� R+ - Set of the positive real numbers.

� N - Set of the natural numbers.

� Let x ∈ C be a complex number, Re (x) corresponds to its real term and Im (x) is its
imaginary term.

� || · || - Euclidean norm of a vector.

� | · | - Absolute value of a function.

� Let x ∈ Rn be a vector, ẋ represents the first derivative of x respect to time, high order
derivatives are represented by x(n), where n says the order of the derivative.

� max and min - Maximum and minimum, respectively, value of a function.
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� Let M ∈ Rn×m be a matrix. MT is the transpose of M . If m = n, M−1 represents the
inverse of M .

� Let Si, for i = 1, ..., k, be multiple sets, the symbol S1,...,k represents the intersections of
all sets, i. e. S1 ∩ · · · ∩ · · · ∩ Sk.

� For a vector field f , ∂f
∂x

is its Jacobian matrix. Likewise, let g be a vector field, 〈f, g〉
corresponds to Lie brackets.

�
∏if

i=i0
Fi - Product of the function Fi, from the value i = i0 until if , where i ∈ N.

� 4 - End of a definition, theorem, lemma and proposition.

� - End of a proof.

� Finally, a new function is added. For a variable x ∈ R and a real number p ∈ R, the
symbol dxcp = |x|psign (x) corresponds to the signed power of x to p. If p = 0, the sign
of x is obtained.
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Chapter 1

Introduction

1.1 Motivation and State of the Art

Mathematical models are an important tool to study the behaviour of a physical system by
means of differential equations. In this way, a Multiple-Input Multiple-Output (MIMO) system
can be modelled as a system of Ordinary Differential Equations (ODEs) of first order [23] as
follows

ξ̇ =F (ξ, t) +Bξ(ξ, t)ν,

σ =h(ξ),
(1.1)

where ξ ∈ Rnξ corresponds to the state variables, ν ∈ Rm is the input vector, σ ∈ Rm are the
outputs. Likewise, the vector field F (ξ, t) is the internal dynamic of the system, G(ξ, t) is the
input matrix and finally h(ξ) is a continuous function of the states.

In control theory, the system (1.1) takes an important place because it allows to design
control laws. Two of the main control tasks are regulation and tracking. In regulation task,
the control objective consists in taking the outputs of a system to a desired value. While in
tracking task, the outputs are brought to a desired signal.

1.1.1 Systems with Disturbances/Uncertainties

In general, obtaining a mathematical model that can perfectly represent the behaviour of a
physical system is difficult (or even impossible). This is a consequence of unknown elements
(uncertainties) or exogenous signals (perturbations), which affect the physical system and are
not considered in the mathematical model. Considering these unknown terms, a better approx-
imation of a physical system can be modelled as follows

ξ̇ =F (ξ, t) +Bξ(ξ, t)ν + ψ(ξ, t)

σ =h(ξ)
(1.2)

where ξ ∈ Rs are the states, σi are the outputs and vi are the control inputs. f and gi are smooth
vector fields, hi are smooth real-valued output functions, and ψ is a smooth time dependent
vector field representing some parameter or model uncertainties and/or external perturbations
acting on the system. Likewise, the matrix Bξ(ξ, t) could be partially unknown. This can be
represented as Bξ(ξ, t) = ∆Bξ(ξ,t)B̄ξ(ξ, t), which is assumed to be nonsingular for all ξ and t,
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and ∆Bξ is the uncertainty. So, the control objective is designing robust controllers that can
deal with the uncertainties and perturbations.

The outputs σi can represent tracking errors or sliding variables in sliding-mode control
as e.g. [26, 28, 29]. Therefore, the control task can be reduced to render the outputs σi = 0
asymptotically or in finite-time, despite the acting perturbations/uncertainties ψ and uncertain
matrix G(t, x). When the (unperturbed) system (1.2) has a well-defined vector relative degree
ρ = [ρ1, · · · , ρm], with nonsingular matrix

G(ξ) = ∆G


Lbξ1L

ρ1−1
f h1(ξ) · · · LbξmL

ρ1−1
f h1(ξ)

Lbξ1L
ρ2−1
f h2(ξ) · · · LbξmL

ρ2−1
f h2(ξ)

...
. . .

...

Lbξ1L
ρm−1
f hm(ξ) · · · LbξmL

ρm−1
f hm(ξ)

 ∈ Rm×m , (1.3)

and some regularity assumptions on the distributions are satisfied, it is well-known [21] that
the system can be transformed by a diffeomorphism of the states and a regular feedback ν =
α(ξ) + β(ξ)u, with matrix β(ξ) ∈ Rm×m invertible, to the (Byrnes-Isidori) normal form

η̇ = q (η, x) + µ0(t, x, η) , (1.4)

ẋ = Ax+ ∆BxB̄x (u+ ρ(t, x, η)) + µ(t, x, η) (1.5)

y1 = x1, 1 ,

...

ym = xm, 1 ,

where the vector x = col (x1 , · · · , xm) ∈ Rn is composed of the partial state vectors xi ∈ Rρi ,
n =

∑m
i=1 ρi, and u ∈ Rm is the transformed control vector. Note that the uncertain-

ties/perturbations from ψ(t, ξ) are also included. Subsystem (1.4) corresponds to the zero
dynamics, with state η ∈ Rs−n. Matrices A and B̄x have the Brunovsky canonical form, i.e.

A =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Am

 ∈ Rn×n , Ai =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 ∈ Rρi×ρi , i = 1, ...,m .

B̄x =


b̄x1 0 · · · 0
0 b̄x2 · · · 0
...

...
. . .

...
0 0 · · · b̄xm

 ∈ Rn×m , b̄xi =

0
...
1

 ∈ Rρi×1 , i = 1, ...,m.

In these coordinates and without uncertainties (i. e. ∆G = Im), the decoupling matrix G from
(1.3) becomes the identity matrix, i.e.

G = Im . (1.6)

The uncertainties/perturbations vector ψ(t, ξ) is decomposed in three terms: µ0(t, x, η) affects
the zero-dynamics, µ1(t, x, η) is a matched term, acting on the control channel, and µ2(t, x, η)
is a not matched term, acting on the main dynamics.
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If the (perturbed) zero dynamics (1.4) is well-behaved, in the sense that its trajectories are
globally bounded for all times, whenever (x(t), η(t)) is bounded. So the control task consists
in solving the output-zeroing problem for the main dynamics (1.5), rejecting perturbations µ1,
uncertainties µ2 and uncertainties B̃.

It is important to stress that linear controller can obtain exponential stability. As a result of
this, a linear controller can deal with perturbations µ1 and uncertainties µ2 if these are bounded
by c ||x||2. However, the main problem appears when the perturbation µ1 is non-vanishing at
origin ξ = 0 because a continuous static controller cannot deal with it.

1.1.2 Stability Analysis

Two of the main tools to show the stability of trajectories in a non-linear or linear system are
the Lyapunov’s methods. First one corresponds to analyse the system around a point by mean
of a linealization of the system, obtaining a local result of stability. However, this method is
not always applicable. Second method analyse the original system and global results can be
obtained. This method consists on building Lyapunov functions, which are not always easy to
build, to proof the stability of the origin of a system. By converse Lyapunov theorem, if the
origin of a system is stable, then there exists a Lyapunov function that ensures it. Therefore,
the main task is finding Lyapunov functions that can show the stability of the origin of a
closed-loop system.

Recently, the homogeneity has taken a big importance as a result of its properties [4]. One
of them is that the homogeneity degree determines the kind of stability of a system. Stability
in Finite-Time (FT) is a desired feature for the origin of a system. This can be obtained if the
homogeneity degree is negative [4, 56, 50, 9].

It is worth mentioning that a linear system has the property of homogeneity so it is ex-
pected to obtain a homogeneous theory similar to the linear one. Actually, in a similar way
that a linealization can approximate a non-linear system, it can be obtained a homogeneous
approximation [2]. In this case, it is possible to analyse near to origin and in the infinity to
obtain both approximations. Therefore, using the homogeneous approximation, a non-linear
system can be studied [6]. Likewise, it is noted that a homogeneous system cannot generally be
linearized by Taylor series so homogeneous approximations allow to analyse a greater amount
of non-linear systems.

It is important to stress that the main Multiple-Input Multiple-Output (MIMO) control
strategies are based on systems of Single Input and Single Output (SISO). Likewise, note that
if a system can be perfectly transformed to (1.5), the system can be seen as multiple decoupled
SISO systems and they can be controlled by using independent SISO control laws. Therefore,
these strategies are an important base for controlling MIMO systems.

1.1.3 Classic Integral Control

One of the main tools to deal with perturbations is the classic integral control, which presents
a control law in the following form

u =φu(x) + z,

ż =φz(x).
(1.7)
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The control design is divided in two parts. First, the static controller φu(x), which stabilizes
the origin of the closed-loop system without perturbation, is designed. Subsequently, the dy-
namics of the integral action z, which has to compensate for perturbations without affecting the
stability of the closed-loop system, is designed. So, a controller that is able to reject constant
perturbations is obtained.

1.1.4 Sliding Mode Control

Sliding Mode (SM) theory is one of the most popular methods to deal with external perturba-
tions. The basic concepts of First Order Sliding Modes (FOSM) are presented in [53]. In the
FOSM method, a sliding surface s = 0 with relative degree 1 is designed such that the origin of
the closed-loop system is stable. Therefore, the control task is keeping the trajectories of the
system in that surface. Using this technique, the resulting controller is written in the form

u = −ksign (s) , k > 0, (1.8)

This controller can deal with bounded perturbations, whose bound is smaller than k. Note that
bounded perturbations is a larger class than constant ones. However, as consequence of the
discontinuity of the controller, the so called ”chattering” effect appears. This could generate
continuous damage to actuators and no desired vibrations in the system.

This FOSM theory has been extended and High Order Sliding Modes (HOSM) has been
designed [11, 14]. In this theory, the resulting controller is very similar to previous one and can
be written as follows

u = −ksign (σ(x)) , k > 0, (1.9)

where σ(x) is a homogeneous function of the states. Analogously to FOS method, this controller
can deal with bounded perturbations, whose bound is smaller than k and the ”chattering” effect
also appears so this is still a problem implement the controller. One of the solutions to deal
with this is using Quasi-Continuous (QC) controllers as it has been done in [27], reducing the
chattering effect but without eliminating the discontinuity in the control variable.

One new technique to design SM controller is the implicit Lyapunov function that is pre-
sented in [48]. In this methodology, the Lyapunov function is implicitly built and it has to be
calculated online. The main advantage of this methodology is that the controller is designed
by mean of Linear Matrix Inequalities (LMIs), which is a similar result to the linear case.

It is worth mentioning that the SM controllers has the property of homogeneity [26], which
is a desired property in order to design control laws.

1.1.5 Homogeneous Integral Control

Based on the classic integral controller and the homogeneity degree, in [44] a continuous ho-
mogeneous integral controller, which can obtain a FT stabilization of trajectories, is applied
to manipulator robots is presented. This work was continued in [43]. The main problem of
these works is that they do not present a formal proof of stability. They only proof stability
by means of simulations.

In [55, 51, 38, 22, 33], a discontinuous integral controller that allows to stabilize the origin
of an integrators chain of second order is presented. This result is proven by means of a strong
Lyapunov function and the controller can deal with Lipschitz perturbation, i. e. perturbation
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with bounded derivative. This result can be seen as a generalization of the so called Super-
Twisting Algorithm (STA), which was presented in [25] and whose Lyapunov function was built
in [41].

It is important to note that the discontinuity in a discontinuous integral controller is located
in the integral action. Therefore, the resulting control variable is continuous, allowing to reduce
strongly the ”chattering” effect.

Using the result presented in [38] as main base, in my master’s thesis [52], a discontinuous
integral controller for arbitrary relative degree has been presented. Likewise, in [31] a homoge-
neous integral controller with negative homogeneity degree is designed by mean of an implicit
Lyapunov function.

1.1.6 Implicit Lyapunov Function Method

An interesting method to design homogeneous controllers is the Implicit Lyapunov Function
(ILF) method. This one allows to design homogeneous controllers. Using this method, an
integral controller for SISO systems is presented in [31]. The ILF method was proposed orig-
inally in [48] to design static state-feedback controllers. We considered in [31] homogeneous
controllers of non-positive homogeneity degree, affected solely by time-varying matched pertur-
bations. In the current paper, we extend this result to MIMO systems, of arbitrary (negative
or positive) degree of homogeneity, and considering vanishing not matched perturbations and
non-vanishing matched perturbations, which can both depend on state and time. The design
of these homogeneous continuous or discontinuous integral controllers - for SISO and MIMO
systems - is developed around the ILF method [48].

An important advantage of the proposed solution is the obtainment of constructive rules
for tuning the control gains formulated in the form of LMIs, similar to linear time-invariant
systems. Since a direct application of the ILF idea does not lead to a usable integral controller,
we combine the ILF method for the design of a (rational) state feedback controller and an
explicit Lyapunov function for the calculation of the integral part. This resembles the idea
used for the Super-Twisting in [41], and which is generalized for arbitrary order in [24]. This
leads to a very useful method for designing homogenous integral controllers of an arbitrary
positive or negative degree.

1.2 Problem Statement

Consider a MIMO system in the form

ẋ =Ax+B (u+ ρ(t)) + µ(t, x) (1.10)

y =[x1,1, ..., xm,1]T ∈ Rm (1.11)

where x = [xT1 , ..., x
T
m]T ∈ Rn (xi ∈ Rni where ni is the relative degree of the first state of xi

which correspond to the outputs) are the states, which are assumed to be measured, u ∈ Rm

is the control inputs vector, ρ : R+ → Rm is a perturbation vector and µ : Rn → Rn are
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uncertainties in the original system. The matrix A ∈ Rn×n is defined as

A =


A1 0 · · · 0
0 A2 · · · 0
...

...
. . .

...
0 0 · · · Am

 ∈ Rn×n, Ai =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0

 ∈ Rni×ni , i = 1, ...,m.

The matrix B ∈ Rn×m corresponds to

B =


b̄1

b̄2
...
b̄m

 ∈ Rn×m, b̄i =

 0
...

g̃i(t, x)bi

 ∈ Rni×m, bi ∈ R1×m, i = 1, ...,m.

where g̃i, i = 1, ...,m are smooth functions of states and time. The decoupling matrix is defined
as follows

G = ∆GḠ ∈ Rm×m, (1.12)

where

Ḡ =

 b1
...
bm


is the nominal part, which is assumed to be known, and the matrix

∆G = diag (g̃1, ..., g̃m)

represents the uncertainties.

Assumption 1. The decoupling matrix G is assumed to be invertible for all x ∈ Rn, t ∈ R+.
Therefore, the matrix Ḡ has to be nonsingular and the uncertainties have to satisfy

|g̃i| ≥ g̃ > 0.

Without losing of generality, these uncertainties are assumed to satisfy

g̃i ≥ g̃ > 0.

The control objective is to robustly stabilize the origin of system (1.10), asymptotically
or in finite time, despite the vector of perturbations ρ and vector of uncertainties µ, using a
homogeneous controller.

1.3 Objectives

1.3.1 General Objective

Design of homogeneous integral controllers that can stabilize the origin of the system (1.10),
using explicit and implicit Lyapunov functions.
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1.3.2 Particular Objectives

1) Obtain a homogeneous integral control for the system (1.10) with uncertainties in the
decoupling matrix, using the Lyapunov function approach.

2) Design homogeneous integral controllers with positive homogeneity degree for the system
(1.10) with uncertainties in the decoupling matrix, using the Lyapunov function approach.

3) Design homogeneous integral controllers for the system (1.10) without uncertainties in
the decoupling matrix with the implicit Lyapunov function approach.

1.4 Contributions

� A homogeneous integral control with negative homogeneity degree is presented.

� A homogeneous integral control with positive homogeneity degree is presented.

� A fixed-time integral controller is designed.

� A homogeneous integral control with positive and negative homogeneity degree is pre-
sented, using the implicit Lyapunov function.

1.5 Thesis Structure

In Chapter 2, some preliminaries are presented. This chapter presents some concepts of Lya-
punov functions for differential equations and inclusions, weighted homogeneity, the implicit
Lyapunov function method and some key lemmas.

In Chapter 3, a family of homogeneous integral controllers with negative homogeneity degree
is presented. These controllers allow to stabilize the origin of a system in finite time. They are
experimentally applied to a magnetic suspension system. In Chapter 4, a family of homogeneous
integral controllers with negative homogeneity, which allows to stabilize rationally the origin
of a system, and a Fixed-Time controller, which is designed by switching the previous two
homogeneity degrees. All controllers are proven by using explicit Lyapunov functions and
shown its performance is shown by simulations.

In Chapter 5, a homogeneous integral control with positive and negative homogeneity degree
is presented. This result is proven by using the implicit Lyapunov function method.

1.6 Published Papers

In [35], a homogeneous discontinuous integral control is presented. This controller can stabilize
the origin of a chain of integrators, rejecting Lipschitz perturbation. A similar result can be
seen in Chapter 3, where a homogeneous controller is presented. Actually, both controllers are
proven by using a very similar Lyapunov function. In [36], the discontinuous integral controller
is applied to a magnetic suspension system. This result is written in Section 3.2. Likewise, in
collaboration with the PhD student Diego Gutiérrez Oribio, the discontinuous integral controller
is applied to a reaction wheel pendulum in [16, 18, 17]. In [37], the homogeneous integral
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controller is presented using the implicit Lyapunov function method. This result i es shown in
Chapter 5.

10



Chapter 2

Preliminaries

In this chapter, the main concepts and useful tools for this work are presented. First, Lyapunov
stability, which is the main theory to prove the results, and some related concepts are described.
Secondly, the definition of weighted homogeneity, which is a property that all considered systems
have, is presented. Subsequently, the concept of implicit Lyapunov function is defined. Finally,
some key lemmas, which are very important in the proofs, are given.

2.1 Lyapunov Stability

Consider the autonomous system
ẋ = f(x) (2.1)

where x ∈ R are states of the system, f : D → Rn is a continuous mapping in a domain
D ⊂ Rn. Without loss of generality, let x̄ = 0 ∈ D be an equilibrium point of (2.1), i. e.
f(0) = 0. Then

Definition 1. (Lyapunov stability) [23] The equilibrium point x = 0 of (2.1) is

� stable if, for each ε > 0, there is δ = δ(ε) > 0 such that

||x(0)|| < δ ⇒ ||x(t)|| < ε, ∀t ≥ 0

� unstable if it is not stable.

� asymptotically stable if it is stable and δ can be chosen so that

||x(0)|| < δ ⇒ lim
t→∞

x(t) = 0

4

Definition 1 states that an equilibrium point of a system is stable if every solution that
starts in a neighbourhood of the origin (i. e. ||x(0)|| < δ) stays close, otherwise the origin is
unstable. Moreover, if all trajectories converge to origin, it is asymptotically stable.

Generally, proving the stability of an equilibrium point of (2.1) by means of Definition 1 is
not possible. To manage it, a useful tool is defined by the Barbashin-Krasovskii theorem
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Theorem 1. [23] Let x = 0 be an equilibrium point for (2.1). Let V : Rn → R be a continuously
differentiable function such that

V (0) = 0 and V (x) > 0, ∀ x 6= 0 : (2.2)

||x|| → ∞ ⇒ V (x)→∞ (2.3)

V̇ (x) < 0, ∀x 6= 0 (2.4)

then x = 0 is globally asymptotically stable. 4

In Theorem 1, the function V (x) is known as Lyapunov function. Likewise, if a Lyapunov
function V (x) satisfies locally the conditions (2.2) - (2.4), then asymptotically stability is got
locally as well.

If a function V (x) is proven to satisfy 2.2, then V (x) is named candidate Lyapunov function.
In general, it is easy to propose a candidate Lyapunov function but finding a function that
satisfies the conditions (2.2)-(2.4) is more complicated.

2.1.1 Stability of Differential Inclusions

Consider the differential inclusion [56]

ẋ ∈ F (t, x) (2.5)

where x ∈ Rn are states. F : [0,+∞)×R→ R is a multivalued function. F is assumed to be a
non empty subset, compact and convex of R for every x ∈ R and it is a upper semi-continuous
function. Likewise, a solution of this differential inclusion is any function x(t) that is defined
in some interval I ⊆ [0,∞] and is absolutely continuous in each compact subinterval of I such
that ẋ(t) ∈ F (t, x(t)) almost everywhere on I. The equilibrium point is defined as 0 ∈ F (t, 0).
A differential inclusion ẋ ∈ F (x) that is associated to ẋ = f(t, x) is referred to as Filippov
differential inclusion and its solutions as Filippov solutions [39, 13].

Since solutions of differential inclusion are not unique, two definitions of stability are intro-
duced [56]. The first one is weak stability, when stability is satisfied by at least one solution,
and strong stability, which ensures the property for all solutions.

Definition 2. [56] F is strongly asymptotically stable if, and only if, its solutions globally exist
and there exists a function β ∈ KL such that for every solution x(t, x(0)) of (2.5), the inequality
||x(t, x(0))|| ≤ β(t, ||x(0)||) is satisfied. 4

Lemma 1. [4] Let F : [0,+∞) × R → R be a set-valued map such that the (local) existence
of solutions of (2.5) is ensured. Assume that there exists a strict LF V , i. e. a function
V = V (t, x) such that, for some functions a, b, c ∈ K∞0 ,

a(||x||) ≤ V (t, x) ≤ b(||x||), ∀t ∈ [0,+∞), x ∈ R, (2.6)

t1 ≤ t2 =⇒ V (t2, x(t2))− V (t2, x(t2)) ≤ −
∫ t2

t1

c(||x(τ)||)dτ (2.7)

for each pair times (t1, t2) and each solution x(·) : |t1, t2| → Rn of (2.5). Then the origin is
Uniformly Globally Asymptotically Stables (UGAS) for (2.5). 4

Note that Lyapunov functions for differential inclusions are similar to Lyapunov functions
for DEs.
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2.1.2 Types of Stability

In this subsection, the system (2.1) is considered to define the type of stability of a system.

Exponential Stability

Definition 3. [4] The origin is said to be exponentially stable for (2.1) if there exist three
numbers ω < 0, M > 0 and δ > 0 such that for any x0 ∈ Bδ, the solution x(·) of (2.1) issuing
from x0 at t = 0 is defined on [0,+∞) and it fulfills

∀t ≥ 0, ||x(t)|| ≤Meωt ||x0|| . (2.8)

The infimum of the numbers ω < 0 for which (2.8) is satisfied (for some constants M, δ > 0)
is called the exponent of 0. 4

Theorem 2. [4] Let f be a vector field of class C1 on a neighbourhood Ω of 0 ∈ R, and assume
that f(0) = 0. Then (2.1) is exponentially stable at 0 if, and only if, the Jacobian matrix
A =

(
∂f
∂x

)∣∣
x=0

is Hurwitz. Moreover, the exponent of 0 is sup{Re (λ) , λ ∈ σ(A)}, being σ(A)
the eigenvalues of A. 4

Theorem 3. [4] Let f be a vector field of class C1 near 0 and such that f(0) = 0. Then the
following statements are equivalent

1. 0 is exponentially stable for (2.1)

2. There exists a function V of class C1 in a neighbourhood of 0 such that, for some positive
constants C1, C2, C3, r and δ

||x|| < δ ⇒ C1 ||x||r ≤ V (x) ≤ C2 ||x||r , (2.9)

||x|| < δ ⇒ 〈∇V (x), f(x)〉 ≤ −C3 ||x||r , (2.10)

3. There exists a symmetric positive definite matrix S ∈ Rn×n such that, for some positive
constants C, δ

||x|| < δ ⇒ 〈Sx, f(x)〉 ≤ −C ||x||2 . (2.11)

4

Rational Stability

Definition 4. [4] The origin is said to be rationally stable for (2.1) if there exist positive
numbers M , k, η and δ (with η ≤ 1) such that for any x0 ∈ Bδ, the solution x(·) of (2.1)
issuing from x0 at t = 0 is defined on [0,+∞) and it fulfills

∀t ≥ 0, ||x(t)|| ≤M(1 + ||x0||k t)−
1
k ||x0||η (2.12)

4
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Theorem 4. [4] Let f be a vector field of class C1 near 0 and such that f(0) = 0. Then
the origin is rationally stable if, and only if, there exists a continuous function V defined in a
neighbourhood of 0 and such that, for some positive constants C1, C2, C3, r1, r2, r3 and δ, with
r3 > r2

||x|| < δ ⇒ C1 ||x||r1 ≤ V (x) ≤ C2 ||x||r2 (2.13)

||x|| < δ ⇒ V̇ (x) ≤ −C3 ||x||r3 (2.14)

4

Corollary 1. [4] Let f be a vector field of class C1 near 0 and such that f(0) = 0. Let
ψ(t, x) the flow of the system 2.5. Assume that (2.12) is satisfied and that for some constants
C, p, δ > 0 ∣∣∣∣∣∣∣∣∂ψ∂x (t, x)

∣∣∣∣∣∣∣∣ ≤ C(1 + ||x||k t)p, ∀t ≥ 0, ||x|| < δ (2.15)

Assume that ||g(x)|| = o(||x||k+η+r(1−η)) as x→ 0. Then the origin is still AS for the perturbed
system

ẋ = f(x) + g(x). (2.16)

4

Finite-Time Stability

Definition 5. [4, 8] Consider f to be

� a continuous vector field defined on a neighbourhood of 0

� f(0) = 0

� (2.1) possesses unique solutions in forward time

and let φ(t, x) denote the flow map, which is continuously defined on an open set in R+ × Rn.
Then the origin is said to be finite-time stable for (2.1) if it is stable and there exist an open
neighbourhood U of the origin and a function T : U \ {0} → (0,+∞) (called the settling-time
function) such that, for each x ∈ U \ {0}, φ(·, x) is defined on [0, T (x)), φ(t, x) ∈ U \ {0} ∀ ∈
[0, T (x)), and limt→T (x) φ(t, x) = 0. 4

Theorem 5. [4, 8] Let f be as in Definition 5. Then the origin is finite-time stable and the
settling-time function is continuous at 0 if, and only if, there exist real numbers C > 0 and
α ∈ (0, 1), and a continuous positive definite function V defined on an open neighbourhood Ω
of 0, such that

∀x ∈ Ω \ {0}, V̇ (x) ≤ −CV (x)α. (2.17)

If this is the case, then the settling-time function T (x) is actually continuous in a neighbourhood
of 0, and it fulfills (for ||x|| small enough)

T (x) ≤ 1

C(1− α)
V (x)1−α (2.18)

4
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Fixed-Time Stability

Definition 6. [47] The origin is said to be fixed-time stable, also called as uniformly in the
initial condition finite-time stable [12], for (2.1) if it is globally finite-time stable and the settling-
time function T (x) is bounded by a positive number Tmax > 0, i. e. T (x) ≤ Tmax,∀x ∈ Rn.
4

2.2 Weighted Homogeneity

The classic homogeneity can be extended to functions and vector fields by mean of the following
definition

Definition 7. [4, 56] Fix a set of coordinates (x1, ..., xn) ∈ Rn. Let r = (r1, ..., rn) be a n-tuplet
of positive real numbers, which is called weights vector.

� The one-parameter family of dilations (δrε )ε>0 (associated with r) is defined by

δrε (x) := (εr1x1, ..., ε
rnxn), ∀x = (x1, ..., xn) ∈ Rn, ∀ε > 0.

� A function V : Rn → R is said to be δr-homogeneous of degree m ∈ R if

V (δrε (x)) = εmV (x), ∀x ∈ Rn, ∀ε > 0

� A vector field f = [f1(x), ..., fn(x)]T is said to be δr-homogeneous of degree k if the com-
ponent fi is δr-homogeneous of degree k + ri, ∀i, i. e.

fi(ε
r1x1, ..., ε

rnxn) = εk+rifi(x), ∀x ∈ Rn, ∀ε > 0, i = 1, ..., n

or equivalently
f(δrεx) = εkδrεf(x), ∀x ∈ R, ∀ε > 0

� A multivalued vector field F (x) ∈ Rn is said to be δrε -homogeneous of degree k if

F (δrεx) = εkδrεF (x), ∀x ∈ R, ∀ε > 0.

4

In Definition 7, the idea of classic homogeneity is conserved, having an scaling factor.
However, this is weighted for each coordinate.

Definition 8. [4] The (generalized) Euler vector field e associated with the family of dilations
(δrε )ε>0 is defined by

e = [r1x1, ..., rnxn]T

4

Proposition 1. [4] Let (δrε )ε>0 and e be as in Definition 8. Let V (respectively, f) be a function
(respectively, a vector field) of class C1 in Rn , and let m, k ∈ R. Then

1. V is δr-homogeneous of degree m if, and only if, e · V = mV .
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2. f is δr-homogeneous of degree m if, and only if, [e, f ] = ∂f
∂x
e− ∂e

∂x
f = kf . 4

Corollary 2. [4] Let (δrε ) be any family of dilations on Rn, and let V1, V2 (respectively f1,
f2) be δr-homogeneous functions (respectively, vector fields) of degrees m1, m2 (respectively, k1,
k2). Then V1V2 (respectively V1f1, [f1, f2]) is δr-homogeneous of degree m1 + m2 (respectively,
m1 + k1, k1 + k2). 4

An important tool for homogeneous functions (respectively, vector fields) is the homogeneous
norm, which is defined as follows

Definition 9. [4] A δr-homogeneous norm is a map x→ ||x||r,p, where for any p ≥ 1

||x||r,p :=

(
n∑
i=1

|xi|
p
ri

) 1
p

, ∀x ∈ Rn.

The set Sr,p =
{
x : ||x||r,p = 1

}
is the corresponding δr-homogeneous unit sphere. 4

Homogeneity and Stability

Note that a linear system is δ1- homogeneous of degree 1. An asymptotically stable linear
system has a strict quadratic Lyapunov function (i. e., a δ1-homogeneous function of degree
2). Any homogeneous system that is asymptotically stable admits a homogeneous Lyapunov
function [4].

Theorem 6. [4] Let f be a continuous vector field on Rn such that the origin is an AS equilib-
rium point. Assume f is δr-homogeneous of degree k for some r ∈ Rn

+. Then, for any p ∈ N∗
and any m > p ·maxi(ri), there exists a strict LF V ∈ Cp for (2.1), which is δr-homogeneous
of degree m. 4

An interesting property of homogeneous systems is presented in the following corollary

Corollary 3. [4, 56] Let f be as in Theorem 6 with homogeneity degree k,

� if k > 0, then x = 0 for (2.1) is rationally stable.

� if k = 0, then x = 0 for (2.1) is exponentially stable.

� if k < 0, then x = 0 for (2.1) is FT stable.

4

2.3 Implicitly defined Lyapunov Function

The Lyapunov function that ensures the stability of an equilibrium point can be defined ex-
plicitly or also implicitly. The so called implicit Lyapunov function is as follows [1, 48]
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Theorem 7. Consider a system described by a differential inclusion

ẋ(t) ∈ F (t, x(t)), t ∈ R+, x(0) = x0 ∈ Rn , (2.19)

where x ∈ Rn is the state, F : R0+ × Rn → Rn is a multivalued map satisfying standard
assumptions

0 ∈ F (t, 0) , for almost every t ≥ 0 .

If there exists a continuous function

Q : R+ × Rn → R
(V, x)→ Q(V, x)

satisfying the conditions:

C1) Q is continuously differentiable outside the origin;

C2) for any x ∈ Rn \ {0} there exists V ∈ R+ such that

Q (V, x) = 0 ;

C3) let Ω = {(V, x) ∈ R+ × Rn : Q(V, x) = 0} and

lim
x→0

V = 0 , lim
V→0+

‖x‖ = 0 , lim
‖x‖→∞

V = +∞ ; ∀(V, x) ∈ Ω ;

C4) ∂Q(V, x)
∂V

< 0 ∀V ∈ R+ and x ∈ Rn \ {0} ;

C5) supt∈R+,y∈F (t,x)
∂Q(V,x)
∂x

y < 0 ∀(V, x) ∈ Ω ;

then the origin of system (2.19) is globally uniformly asymptotically stable.

Note that under the restrictions imposed on the function Q in Theorem 7 a Lyapunov
function V exists, which is defined implicitly by the equation Q(V (x), x) = 0. This is a result
of the conditions. Condition C2 requires V to be positive definite for any x ∈ Rn \ {0} and,
together with C4, implies that V is a function. Condition C3 says that V is positive definite
and radially unbounded. Finally, conditions C4 and C5 imply that V̇ (x) is negative definite.
The implicit Lyapunov function V (x) is continuously differentiable for every x ∈ Rn \ {0}.
However, it is not assured to be differentiable at x = 0.

2.4 Key Lemmas

In this section, important lemmas are presented.

2.4.1 Young’s Inequality

The first lemma corresponds to Young’s inequality

Lemma 2. [19] For any real numbers a > 0, b > 0, c > 0, p > 1 and q > 1, such that 1
p
+ 1

q
= 1.

Then the following inequality always hold

ab ≤ cp
ap

p
+ c−q

bq

q

4
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2.4.2 Important Homogeneity Property

The second lemma is a well-known property of continuous homogeneous functions and it is
going to be a key element in the realized proofs.

Lemma 3. [2, 20, 38] Let η : Rn → R and γ : Rn → R≥0 be two continuous r-homogeneous
functions of degree m > 0 and γ(x) ≥ 0,

{x ∈ Rn \ {0} : γ(x) = 0} ⊆ {x ∈ Rn \ {0} : η(x) < 0}

then there exists a real number λ∗ such that for all λ > λ∗, for all x ∈ Rn \ {0} and for some
c > 0, it is satisfied

η(x)− λγ(x) ≤ −c ||x||mr,p
4

Lemma 3 can be extended to discontinuous homogeneous functions as follows

Lemma 4. [11] Let η : Rn → R and γ : Rn → R≥0 be two lower (upper) semicontinuous
single-valued r-homogeneous of degree m > 0. Suppose γ(x) ≥ 0 (γ(x) ≤ 0) on Rn. If η(x) > 0
(η(x) < 0) for all x 6= 0 such that γ(x) = 0, then there exists a real number λ∗ and a constant
c > 0 such that for all λ > λ∗ and for all x ∈ Rn \ {0}

η(x) + λγ(x) ≥ c ||x||mr,p(
η(x) + λγ(x) ≤ −c ||x||mr,p

)
4

2.4.3 Monotonicity Property

Lemma 5. [32] Let x and y be two real number, the following equality is always satisfied

sign
(
dx+ ycβ − dxcβ

)
= sign (y) , β > 0
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Chapter 3

Integral Control of Homogeneous
Systems with Negative Homogeneity
Degree by Explicitly defined Lyapunov
Functions

In this chapter, a homogeneous integral control is presented. This controller is presented for
negative and positive homogeneity degrees. The stability proof is based on an explicitly defined
Lyapunov function.

3.1 A Family of Homogeneous Integral Controllers with

Negative Homogeneity Degree

In this section, a family of homogeneous integral controllers is presented. These controllers are
designed such that the closed-loop system without perturbations and uncertainties is homoge-
neous with negative homogeneity degree. As a result of the negative homogeneity degree, these
controllers can get FT stabilization, see Corollary 3. They generalize the results of [52].

In order to design the control law, the vector of weights is defined as r = (r1,1, ..., r1,n1 , .., rm,1,
..., rm,nm), where ri,j+1 = ri,j + d, i = 1, ...,m, j = 1, ..., ni + 1 (d < 0 is the homogeneity de-
gree). Likewise, in order to get homogeneity, the weight of the last state for each subsystem is
assumed to be the same, i. e. r1,n1 = · · · = rm,nm . For i = 1, ...,m, define also the following
recursive functions

ν̄i,1 =− ki,ni
⌈
xi,1 − dν̄i,2c

ri,1
αi,2

⌋ ri,ni+1

ri,1

ν̄i,j =− k
−
αi,j
ri,j

i,j−1

[
dxi,jc

αi,j
ri,j − dν̄i,j+1c

αi,j
αi,j+1

]
, j = 2, ..., ni − 1

ν̄i,ni =− k
−
αi,n
ri,ni

ni−1 dxi,nic
αi,ni
ri,ni

(3.1)
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with ri,j ≤ αi,j ≤ · · · ≤ αi,ni and αi,1 = ri,1 for the static controller, and

σIi =

⌈
xi,1 +

ni∑
j=2

kIi dxi,jc
ri,1
ri,j

⌋ ri,ni+2

ri,1

(3.2)

for the integral action.
Consider also the following assumption

Assumption 2. The derivative of the elements of the vector of perturbations ρ in system (1.10)
are assumed to be bounded by |ρ̇i| ≤ Lρi ||x||

r1,n1+2

r,1 . Likewise, the components of the vector of
uncertainties are bounded by |µi,j| ≤ Lµi,j ||x||

ri,j+1

r,1

Therefore, using the LF that is presented in Subsection 3.3, the following theorem can be
stated.

Theorem 8. Select a homogeneity degree d ∈ [−1, 0) and consider the system (1.10), where
Assumptions 1 and 2 are satisfied. Then the controller

u =Ḡ−1

 ν̄1 + z1
...

ν̄m + zm


żi =− kIi,1σIi , i = 1, ...,m

(3.3)

stabilizes the origin of system (1.10) in finite time, despite the uncertainties g̃, the vector of
uncertainties µ with maxi=1,..,m

(
maxj=1,..,ni

(
Lµi,j

))
small enough and the perturbation vector

ρ, for any kIi,j , j = 2, ..., ni, appropriate gains ki,j, for j = 1, ..., ni − 1, ki,ni large enough and
integral gains kIi,1 > Lρi for i = 1, ...,m sufficiently small, for i = 1, ...m. 4

Theorem 8 was proven by using a strong Lyapunov function. This proof is presented in
Section 3.3.

Remark 1. The previous theorem can be seen as an extension of the result presented in [52, 35].
Actually, if α1 = · · · = αn = r1, a controller in the following form

u =− kn

⌈
x1 +

n∑
i=2

k̄−1
i−1 dxic

r1
ri

⌋ rn+1
r1

+ z, k̄i =
i∑

j=1

k
r1
rj+1

j , i = 2, .., n− 1

ż =− kI1

⌈
x1 +

n∑
i=2

kIi dxic
r1
ri

⌋ rn+2
r1

(3.4)

is obtained. This one has the same form as the controller presented in [52, 35].

Note that the class of perturbations and uncertainties that the controller (3.3) can reject
depends on the homogeneity degree. For example, if d = −1, the controller can reject Lipschitz
perturbations. However, as a property of homogeneity, the controller (3.3) can reject locally
any perturbation ρ whose derivative is bounded by ||x||2.
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Remark 2. As a result of homogeneity properties [26], the theoretical steady-state precision of
the states (after the transient), when a discrete-time implementation is performed, are given by∣∣∆xi,j

∣∣ < ∆1τ̄
ri,j ,

where ∆i,j > 0 for i = 1, ...,m, j = 1, ..., ni are some constants dependent on the gains and τ̄
as the sample time.

It is important to stress that the Lyapunov function which is presented in Section 3.3
allows to prove the stability of the origin of closed-loop system when the homogeneity degree
is zero. However, this controller is only able to get exponential stability. This controller will
be simulated in Subsection 3.1.3 in order to compare three kind of controllers.

3.1.1 Computing the Gains

Using the Lyapunov function that is presented in Section 3.3, the gains ki,j for i = 1, ...,m and
j = 1, ..., ni can be calculated. Therefore, consider the system

ξ̇i,1 =ξi,2 −
ri,1
ri,ni+1

|ξn+1|
ri,1−ri,ni+1

ri,ni+1 ξ̇i,ni+1

ξ̇i,j =ξi,j+1, j = 2, ..., ni − 1

ξ̇i,ni =− g̃i(x, t)ki,ni

⌈ξi,1 + dξi,n+1c
ri,1

ri,ni+1 − dν̄ξ2c
ri,1
α2

⌋ ri,ni+1

r1

− ξi,ni+1


ξ̇i,ni+1 =k̄Ii,1

[
σξIi − ˙̄ρi(t, x)

]
, k̄Ii,1 =

kIi,1
ki,ni

, ρ̄i =
1

kIi,1
ρi

for i = 1, ...,m, where

ν̄ξi,j =− k
−
αi,j
ri,j

i,j−1

[
dξi,jc

αi,j
ri,j −

⌈
ν̄ξi,j+1

⌋ αi,j
αi,j+1

]
, j = 2, ..., ni − 1

ν̄ξi,ni =− k
−
αi,ni
ri,ni

i,ni−1 dξi,nic
αi,ni
ri,ni ,

σξIi =

⌈
ξi,1 + dξi,ni+1c

ri,1
ri,ni+1 +

n∑
j=2

kIi,j dξi,jc
ri,1
ri,j

⌋ ri,ni+2

ri,1

.

and the following recursively defined functions

Vi,j (ξi,1, ..., ξi,j) =γi,j−1Vi,j−1 +Wi,j,

Wi,j (ξi,1, ..., ξi,j) =
ri,j
p
|ξi,j|

p
ri,j −

⌈
νξi,j−1

⌋ p−ri,j
ri,j ξi,j +

(
1− ri,j

p

)
|νξi,j−1

|
p
ri,j ,

νξi,j (ξi,1, ..., ξi,j) =− ki,j
⌈
dξi,jc

αi,j
ri,j −

⌈
νξi,j−1

⌋αi,j
ri,j

⌋ ri,j+1
αi,j

, for j = 1, ..., ni − 1
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which correspond to the terms that construct the Lyapunov function. Likewise, consider the
following functions

Fi,j(ξ) =γi,j−1

j−1∑
a=1

[(
∂

∂ξi,a
Vi,j−1

)
ξi,a+1

]
, j = 2, ..., ni

Gi,j(ξ) =

[
dξi,jc

p−ri,j
ri,j −

⌈
νξi,j−1

⌋ p−ri,j
ri,j

] ⌈
dξi,jc

αi,j
ri,j −

⌈
νξi,j−1

⌋αi,j
ri,j

⌋ ri,j+1
αi,j

, j = 2, ..., ni − 1

Gi,ni(ξ) =g̃

[
dξi,nic

p−ri,ni
ri,ni −

⌈
νξi,ni−1

⌋ p−ri,ni
ri,ni

]⌈ξi,1 + dξi,ni+1c
ri,1

ri,ni+1 −
⌈
ν̄ξi,2

⌋ ri,1
αi,2

⌋ ri,ni+1

ri,1

− ξi,ni+1


Gzi,j(ξ) =− p− ri,j

ri,j

∣∣νξi,j−1

∣∣ p−2ri,j
ri,j

[
ξj − νξi,j−1

]
ν̇i,j−1, j = 2, ..., ni

Fzi(ξ) =

[
dξi,ni+1c

p−ri,ni+1

ri,ni+1 − ri,1
ri,ni+1

γi,ni−1

(
∂

∂ξi,1
Vi,ni−1

)
|ξi,ni+1|

ri,1−ri,ni+1

ri,ni+1

] [
σξIi − ˙̄ρi(t, x)

]
,

for i = 1, ...,m.

Therefore, for i = 1, ...,m, the gains ki,j can be calculated as follows

ki,j > max
ξ∈Rn

(
Fi,j +Gzi,j

Gi,j

)
, j = 1, ...., ni − 1, max

ξ∈Rn

(
ki,ni >

Fi,ni +Gzi,ni
− kIi,1Fzi

Gi,j

)
. (3.5)

It is important to stress that there exist a finite maximum in the righ-hand. This is proven
in Section 3.3.

3.1.2 Scaling the Gains

Consider the additional terms xi,ni+1 = zi + ρi(t, x) and the following change of coordinates

χ =λx,

where λ ≥ 1 and the closed-loop system (1.10) with the controller (3.3), the dynamics of χ can
be written as follows

χ̇i,j =χi,j+1 + µλi,j(χ), j = 1, ..., ni − 1,

χ̇i,ni =ν̄λi,l(χ) + χi,ni+1 + µλi,ni (χ)

χ̇i,ni+1 =− λ1−
ri,ni+2

ri,1 kIi,1σIλi (χ) + ρλi(t, χ),
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for i = 1, ...,m, where

ν̄λi,1(χ) =− λ1−
ri,ni+1

ri,1 ki,ni

⌈
χi,1 −

⌈
ν̄λi,2

⌋ ri,1
αi,2

⌋ ri,ni+1

ri,1

ν̄λi,j(χ) =−
(
λ

1−
ri,j
ri,j−1 ki,j−1

)−αi,j
ri,j

[
dχi,jc

αi,j
ri,j −

⌈
ν̄λi,j+1

⌋ αi,j
αi,j+1

]
, j = 2, ..., ni − 1

ν̄λi,ni(χ) =−
(
λ

1−
ri,ni
ri,ni−1 kni−1

)−αi,ni
ri,ni dχi,nic

αi,ni
ri,ni

σIλi (χ) =

⌈
χi,1 +

ni∑
j=2

λ
1−

ri,1
ri,j kIi,j dxi,jc

ri,1
ri,j

⌋ ri,ni+2

ri,1

∣∣µλi,j(χ)
∣∣ ≤λ1−

ri,j+1
ri,1 Lµi,j ||χ||

ri,j+1

r,1 , j = 1, ..., ni

|ρ̇λi(t, χ)| ≤λ1−
ri,ni+2

ri,1 Lρi ||χ||
ri,ni+2

r,1 .

Therefore, if the gains ki,j, kIi,j for i = 1, ...,m, j = 1, ..., ni can reject the vector of uncer-
tainties µ and vector of perturbations ρ, scaling the gains as follows

kλi,j =λ
1−

ri,j+1
ri,j ki,j, j = 1, ..., ni − 1

kλi,ni =λ
1−

ri,ni+1

ri,1 ki,ni

kIλi,1 =λ
1−

ri,ni+2

ri,1 kIi,1

kIλi,j =λ
1−

ri,1
ri,j kIi,j , j = 2, ..., ni

(3.6)

for i = 1, ...,m, the controller (3.3) can deal with uncertainties µ that are bounded by

|µi,j(x)| ≤ λ
1−

ri,j+1
ri,1 Lµi,j ||x||

ri,j+1

r,1 , j = 1, ..., ni, i = 1, ...,m;

and perturbations ρ whose derivative is bounded by

|ρ̇i(t, x)| ≤ λ
1−

ri,ni+2

ri,1 Lρi ||x||
ri,ni+2

r,1 , i = 1, ...,m.

3.1.3 Simulation Example

In this subsection, the behaviour of the integral controller (3.3) of three homogeneity degrees
is illustrated. In order to it, consider the following academic example

ẋ =


ẋ1,1

ẋ2,1

ẋ2,2

ẋ3,1

ẋ3,2

ẋ3,3

 =Ax+B (u+ ρ) + µ

y =

x1,1

x2,1

x3,1

 .

(3.7)
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where

A =


0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

 , B =


10 (1 + 0.5 sin(t)) −5 (1 + 0.5 sin(t)) 3 (1 + 0.5 sin(t))

0 0 0
2 (3− cos(t)) 7 (3− cos(t)) 3 (3− cos(t))

0 0 0
0 0 0

2 (2 + sin(t)) 2 (2 + sin(t)) 8 (2 + sin(t))

 .

The decoupling matrix G corresponds to

G = ∆GḠ = diag (1 + 0.5 sin(t), 3− cos(t), 2 + sin(t))

10 −5 3
2 7 3
2 2 8


whose determinant is greater than zero for all t > 0. This matrix is assumed to be unknown.
However, its nominal part Ḡ is known.

The control law is designed to be homogeneous with homogeneity degree 1 and this can be
written as

u = Ḡ−1

v1

v2

v3

 (3.8)

and the transformed system can be written as follows

ẋ =



0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

x+



1 + 0.5 sin(t) 0 0
0 0 0
0 3− cos(t) 0
0 0 0
0 0 0
0 0 2 + sin(t)


v1

v2

v3

+ ρ̄

+ µ

y =

x1,1

x2,1

x3,1

 .
(3.9)

where

ρ̄ =Ḡρ

v1 =− k1,1 dx1,1c
1

1−d + z1,

ż1 =− kI1,1 dx1,1c
1+d
1−d

v2 =− k2,2

⌈
x2,1 + k

− 1−2d
1−d

2,1 dx2,2c
1−2d
1−d

⌋ 1
1−2d

+ z2,

ż2 =− kI2,1
⌈
x2,1 + kI2,2 dx2,2c

1−2d
1−d

⌋ 1+d
1−2d

v3 =− k3,3

⌈
x3,1 + k

− 1−3d
1−2d

3,1

⌈
dx2,2c

α3,2
1−2d + k

−
α3,2
1−d

3,2 dx3,3c
α3,2
1−d

⌋ 1−3d
α3,2

⌋ 1
1−3d

+ z3,

ż3 =− kI3,1
⌈
x3,1 + kI3,2 dx3,2c

1−3d
1−2d + kI3,3 dx3,3c

1−3d
1−d

⌋ 1+d
1−3d
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Note that the elements of Ḡ are constant. Therefore, if ρ is a function Lipschitz, then ρ̄ is
also a Lipschitz function.

For simulations, a fourth-order Runge-Kutta method of fixed step is used as integration
method. The sampling time was 1× 10−4[s]. Initial conditions are x(0) = (0.2, 0.2, 0, 0.2, 0, 0).
The non-vanishing matching perturbation is given by

ρ̄(t) =

0.5 + 0.05 sin(t)
0.25 + 0.1 cos(t)

0.1t

 .

which is time-varying and the third component is a ramp. The vanishing non matched pertur-
bation µ is state-dependent and is given for the simulation as

µ(x) =


µ1,1

µ2,1

µ2,2

µ3,1

µ3,2

µ3,3

 =



0.3 dx1,1c
1

r1,1 + 0.2 dx2,2c
1

r2,2

0.2 dx2,1c
r2,2
r2,1 + 0.1x2,2

0.2 dx1,1c
1

r1,1 + 0.2 dx2,1c
1

r2,1

0.5 dx3,1c
r3,2
r3,1

0.1 dx3,1c
r3,3
r3,1 + 0.1x3,3

0.3 dx3,2c
1

r3,2


.

Controllers with 3 different homogeneity degrees are considered in simulations. These ho-
mogeneity degrees are d = {−1, −1

2
, 0}. The homogeneity degree d = −1 corresponds to the

discontinuous case and it is represented by the subindex D. The homogeneity degree d = −1
2

corresponds to continuous but not linear case and it is represented by the subindex H. The
homogeneity degree d = 0 corresponds to the linear case and is represented by the subindex L.

The parameter α3,2 is fixed as α3,2 = 1− 4d and the gains are selected as follows:

k1,1 = k2,1 = k3,1 = 1.5, k2,2 = k3,2 = 3, k3,3 = 7

kI1,1 = kI2,1 = kI3,1 = 1, kI2,2 = kI3,2 = kI3,3 = 0.

Figure 3.1 shows the states of the closed-loop system, using the three integral controllers.
It is easy to see that trajectories are the furthest with the linear controller, see Figure 3.1a. On
the other hand, the best performance is obtained by using the discontinuous one, see Figure
3.1a.

Figure 3.2 presents the control signals generated by the three integral controllers. Note
that in steady-state, they all tend to converge to the inverse of the perturbation, since they
aim to compensate for it. However, the best compensation is obtained with the discontinuous
controller as the previous figures showed.

In figure 3.3, the integral errors, which are defined as zi + µ1,i, are presented. Again, it is
possible to see that these integral errors tend to zero. However, only the discontinuous integral
controller is able to compensate perfectly the perturbations. It is important to note that the
constant part of all perturbations is fully compensated by all controllers. This is so expected,
since the integral controller is structurally robust against constant perturbations.
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(a) Homogeneity degree d = 0. (b) Homogeneity degree d = −1
2
.

(c) Homogeneity degree d = −1.

Figure 3.1: Time evolution of all states for Integral controllers L (3.1a), H (3.1b) and D (3.1c)

3.2 Experimental Validation of the Integral Controller

In this subsection, the controller that was presented in [52], which is a particular case of the
controller (3.3) (see Remark 1), is used to control a Magnetic Suspension (MS) system. This
system corresponds to the model 730 of the Educational Control Products (ECP), which is
shown in Figure 3.4.

3.2.1 Model Description

The system consists of two coils (an upper and a lower one), which are energized by a voltage
source. The magnetic field produced in the coils exerts a electromagnetic force on the magnetic
disc, that can move up and downwards along a glass guide. For the experiments, a single coil
and a single magnetic disc have been used.

In order to model the system, consider the following Lagrangian function [54]

L =
1

2
L(y)I2

c +
1

2
mẏ2 ,

where the first term corresponds to the magnetic energy stored in the coil and the second one is
associated to the kinetic energy stored in the disc. From this Lagrangian, the following dynamic
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(a) Input signal u1. (b) Input signal u2.

(c) Input signal u3.

Figure 3.2: Time evolution of the three control signals u1 (3.2a), u2 (3.2b) and u3 (3.2c),
generated by the Integral controllers L, H and D.

equations are obtained:

ẋ1 = x2

ẋ2 = − k
m
x2 +

1

2m

∂L(x1)

∂x1

x2
3 − g

ẋ3 =
1

L(x1)

(
−Rx3 −

∂L(x1)

∂x1

x2x3 + u

)
.

(3.10)

x1 = y ≥ 0 is the (optically measured) upward position of the disc (y = 0 when the disc is
next to the lower coil), x2 = ẏ is its (vertical) velocity and x3 = Ic is the current in the coil,
u = V , corresponds the control variable and it is the voltage at the coil, m is the mass of the
magnetic disc, g is the gravity acceleration, k is a viscous friction coefficient betweenthe disc
and the glass guide, R is the electric resistance of the circuit and L(x1) is the inductance of the
coil. For this latter function a model similar to the one presented in [23, p. 31] is used

L(x1) = L1 −
aL0

a+ x1

, (3.11)

where L0, L1 > L0 and a are positive constants, being a the distance from the core to an
extreme of the coil. In the model presented in [23] the object suspended in the magnetic field
is a ferromagnetic ball, that increases the magnetic permeability of the coil core when it is next
to it and is decreased when it is far from it. In contrast, the disc in our experimental setup
is diamagnetic and faces the coil with the opposite polarity, thus diminishing the magnetic
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(a) First integral error signal z1 + µ1, 1. (b) Second integral error signal z2 + µ1, 2.

(c) Third integral error signal z3 + µ1, 3.

Figure 3.3: Time evolution of the three integral error signals z+µ1, i.e. z1+µ1, 1 (3.3a), z2+µ1, 2

(3.3b), and z3 + µ1, 3 (3.3c), for the Integral controllers L, H and D.

permeability of the coil core. For this reason model (3.11) represents the situation that the
inductance has its minimum value L1 − L0 when the disc is next to the coil and increases to a
constant value L1 when y =∞.

Using this expression for the inductance, the following mathematical model for the MS is
obtained

ẋ1 = x2

ẋ2 = − k
m
x2 +

aL0

2m

x2
3

(a+ x1)2
− g

ẋ3 =
1

L(x1)

(
−Rx3 −

aL0x2x3

(a+ x1)2
+ u

) (3.12)

Table 3.1 presents some nominal values of the parameters, obtained from the producer’s
manual and some simple experiments.

Note that there may be eventually some undesired friction between the disc and the guide.
This effect is not considered in the model (3.12) and it will be treated as an unmodelled per-
turbation/uncertainty for the controller design. In the experimental results, dry and dynamic
friction phenomenon plays indeed an important role in the behaviour of the system.
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Figure 3.4: Magnetic Suspension System

Table 3.1: Nominal Parameters of the Magnetic Suspension System

Symbol Value Symbol Value
L̄0 0.25[H] L̄1 0.6[H]
R̄ 1.75[Ω] m̄ 0.12[kg]
ḡ 9.81[m

s2
] ā 8.8[mm]

k̄ 0.1[Ns
m

]

3.2.2 Control objective and model transformation

The control aim is to robustly regulate the disc position y = x1 to a constant reference value r, or
to robustly track a (smooth) reference signal r(t) either asymptotically (indeed exponentially),
i.e. limt→∞ y(t) − r(t) = 0, or in finite time, i.e. ∃T > 0 such that y(t) − r(t) = 0 for
t ≥ T . Robustness means that this objective should be attained despite of parameter and
model uncertainties and the unmodelled friction.

Since system (3.12) has well-defined relative degree δ = 3 when x3 6= 0, it is possible to
show that the map T (x)

T (x) =

 h(x)
Lfh(x)
L2
fh(x)

 =

 x1

x2

− k
m
x2 + aL0

2m

x23
(a+x1)2

− g

 , (3.13)

is a diffeomorphism defined on the set {x ∈ R3|x1 > 0, x3 > 0}. It is important to mention
that the current x3 cannot be measured in the experimental setup. However, defining new
coordinates z = T (x), with T given in (3.13), it can be estimated as

x̂3 =

√
2m̄

āL̄0

(ā+ z1)

∣∣∣∣z3 +
k̄

m̄
z2 + ḡ

∣∣∣∣ 12 . (3.14)

Applying a preliminary nominal control law

u =R̄x̂3 + āL̄0
x2x̂3

(ā+ x1)2
+ L̄(x1)v ,
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system (3.12) becomes

ẋ1 = x2

ẋ2 = − k
m
x2 +

aL0

2m

x2
3

(a+ x1)2
− g

ẋ3 = g1(x)v + ρ1(x),

(3.15)

where

g1(x) =
L̄(x1)

L(x1)

ρ1(x) =
1

L(x1)

(
R̄x̂3 +

āL̄0x2x̂3

(ā+ x1)2
−Rx3 −

aL0x2x3

(a+ x1)2

)
.

In the new coordinates z, this system is transformed to the controllability form

ż1 =z2

ż2 =z3

ż3 =− k

m
z3 −

2z2

(a+ z1)

[
z3 +

k

m
z2 + g

]
+

√
2aL0

m

∣∣z3 + k
m
z2 + g

∣∣ 12
(a+ z1)

(g̃1(z)v + ρ̃1(z)) ,

(3.16)

where g̃1(z) = g1(T−1(z)) and ρ̃1(z) = ρ1(T−1(z)). Using the nominal feedback transformation

v =

√
m̄

2āL̄0

(ā+ z1)∣∣∣ḡ + k̄
m̄
z2 + z3

∣∣∣ 12
(
k̄

m̄
z3 + w

)
+

√
2m̄

āL̄0

∣∣∣∣ḡ +
k̄

m̄
z2 + z3

∣∣∣∣ 12 z2 ,

the system can be represented by the simple dynamics

ż1 = z2,

ż2 = z3,

ż3 = gw(z)w + ρ2(z),

where

gw(z) =g̃1(z)g2(z) ≥ ḡw > 0

g2(z) =

√
m̄aL0

māL̄0

∣∣z3 + k
m
z2 + g

∣∣ 12 (ā+ z1)∣∣∣ḡ + k̄
m̄
z2 + z3

∣∣∣ 12 (a+ z1)

ρ2(z) =

√
2aL0

m

∣∣z3 + k
m
z2 + g

∣∣ 12
(a+ z1)

ρ̃1(z)− k

m
z3 −

2z2

(a+ z1)

[
z3 +

k

m
z2 + g

]
+

g2(z)

[
k̄

m̄
z3 +

2z2

(ā+ z1)

[
z3 +

k̄

m̄
z2 + ḡ

]]
with a new control input w and where ρ2(z) represents unmodelled perturbations and/or

uncertainties.

30



The tracking error vector, defined as

e =

e1

e2

e3

 =

z1 − r
z2 − ṙ
z3 − r̈

 ,
has the following dynamics

ė1 = e2

ė2 = e3 (3.17)

ė3 = gw(z)w + ρ(t, z) ,

where ρ(t, z) = ρ2(z)− ...
r (t). Thus, the reference tracking problem for system (3.12) is equiv-

alent to the (robust) stabilization problem for system (3.17). For the controller to be able
to compensate

...
r in equation (3.17) it is required that the reference r(t) is smooth, having a

Lipschitz continuous
...
r (t). Note that the perturbation ρ(t, z) in (3.17) is not vanishing, i.e.

it does not become zero when the tracking error vanishes, and the control coefficient gw(z) is
uncertain and bounded by gw(z) ≥ ḡw > 0.

3.2.3 Experimental results

A series of control experiments on the Magnetic Suspension System setup described in Subsec-
tion 3.2.1 is performed, as illustrated in Figure 3.4. The integral controller is built for three
different values of the homogeneity degree d: (i) d = 0, which corresponds to the linear case;
(ii) d = −0.5 which corresponds to a non-linear but continuous and homogeneous integral
controller; and (iii) d = −1 corresponding to the discontinuous integral controller.

The control algorithm was implemented in Simulink, using Euler’s integration method of
fixed-step with a sampling time of 1× 10−4 [s]. The controllers - for all experiments - has the
form

w =
1

ḡw

[
−k3

⌈
de3c

r1
r3 + k

r1
r3
2 de2c

r1
r2 + k

r1
r3
2 k

r1
r2
1 e1

⌋ r4
r1

+ ζ

]
,

ζ̇ =− kI1
⌈
e1 + kI2 de2c

r1
r2 + kI3 de3c

r1
r3

⌋ r5
r1 , (3.18)

where the homogeneity weights are r5 = r4 + d, r4 = r3 + d, r3 = r2 + d and r2 = r1 + d. The
weight r1 was fixed as r1 = 4 and the gains were selected as k3 = 21, k2 = 7, k1 = 3, kI1 = 2
and kI2 = kI3 = 0. These gains were selected by simulations. For d = −0.5 and d = −1 with a
scaling factor of λ = 2, but this factor has to be increased to λ = 100 for the linear controller
(d = 0), in order to make it work appropriately. Otherwise, the gains are not large enough for
the linear controller to have a good performance. In the experimental setup this is caused by
the strong effect of the friction between the disc and the guide, that requires a stronger control
action.

Two sets of experiments were performed. For the two sets, system has been initialized at
the origin.
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Regulation and tracking

In the first set of experiments the control objective is to track a constant reference during the
first 25 seconds, and then to track a sinus signal, whose amplitude is 0.015 [m] and frequency of
0.2 [Hz], after this period. This can be seen in Figure 3.5, which presents the time behaviour of
position and reference for the three integral controllers. The perturbations associated with this
experiment are not known explicitly since they are due to the parameters and model mismatch
and the friction between disc and guide. Moreover, there is also a sensor noise present in the
results, which affect both the estimation of the states by the differentiator and the controller.

Figure 3.5: Position (experiment 1)

Figure 3.5 shows that the discontinuous integral controller can track both the constant and
the time-varying reference with high precision, despite the perturbations, uncertainties and
sensor noise. The homogeneous integral controller (d = −0.5) achieves a very small tracking
error, while the linear controller is unable to track the time-varying reference. This is confirmed
by Figure 3.6, which shows the tracking errors. Note that the linear controller presents an
oscillation typical for a system with dry friction. Therefore, the second set of experiment has
the objective of studying this effect more closely. Since dry friction is not Lipschitz and therefore
does not satisfy the theoretical conditions to be compensated by any of the controllers, it is
very surprising that the discontinuous controller does not show this oscillation and achieves a
very high precision with a tracking error smaller than 0.5 [mm]. In the next sets of experiments,
a possible explanation for this unexpected behaviour is provided.

Figure 3.7 exhibits the velocity for all controllers. The discontinuous controller has a smaller
peaking than the other ones. This is possibly due to the fast estimation (and compensation) of
the perturbation by the discontinuous integral action. A similar result is true for the current,
which is illustrated in Figure 3.8.

In Figure 3.8, the current is drawn. It is possible to see that it has a behaviour similar to
reference which it was expected, because it is a virtual control for the position and the response
of electric dynamics is by far faster than mechanic one.

Finally, Figure 3.9 shows that the control signal is continuous for all controllers. Although
the control signal for the discontinuous controller presents smaller peakings than the others, it is
oscillating at a higher frequency. This is due to the fast switching of the discontinuous integral
controller, which is aimed at estimating and compensating the perturbations and uncertainties
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Figure 3.6: Tracking error (experiment 1)

Figure 3.7: Velocity (experiment 1)

on line. It is important to note that although the case d = −1 has a discontinuity, this one is
in the integral action so that the chattering effect is strongly attenuated and all control signals
are continuous.

Perturbed Regulation

Motivated by the previous results (see Figure 3.6) showing a strong effect of the (unmodelled
dry) friction on the performance of the linear controller, the following experiments have been
performed using the linear d = 0 and the discontinuous d = −1 integral controllers. The control
objective is to regulate the position of the disc at a constant value y = 2 [cm]. However, at
time t = 30 seconds an extra weight of 20 grams is added to the disc and again at time t = 60
seconds, a further extra weight of 20 grams is added to the disc. Since the reference and the
perturbations are constant, theoretically the linear controller should be able to compensate
their effects. However, in these situations the effect of the dry friction is very strong, making
it difficult for both controllers to compensate its effect.

Figure 3.10 shows the time behavior of the tracking error. Surprisingly again, the discon-
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Figure 3.8: Current (experiment 1)

Figure 3.9: Control signal (experiment 1)

tinuous integral controller can regulate with high precision the position with an error smaller
than 0.1 [mm], despite the perturbation caused by the sudden change of weight of the disc and
the action of the dry friction. Of course, after each change of mass, there is a transient time
until the position is recovered. For the linear controller, note again that a kind of limit cycle is
attained, which is apparently caused by the dry friction between disc and guide.

In Figure 3.11 the control signal is presented. The discontinuous integral controller presents
a high oscillatory signal mounted on a constant value, required to compensate the effect of
the increased mass of the disc. This oscillatory signal is produced by the switching of the
discontinuous integral term and aims at compensating the effect of (among others) the dry
friction. Although theoretically, the dry effect cannot be fully compensated by the discontinuous
integral controller, its attempt to compensate its effect produce an oscillation, which maintains
the disk moving and thus avoiding the dry friction regime. As a consequence, the oscillation
around the right position of the disk causes an error that is much smaller than the one produced
by the linear controller.

This signal, generated by the discontinuous control algorithm by itself, is reminiscent of
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Figure 3.10: Tracking Error (experiment 2)

some classical strategies to reduce the effect of dry friction in mechanical systems, by which
a dither signal is added to the control variable to maintain the system in the viscous friction
regime, avoiding the dry friction regime [45]. Therefore, the discontinuous integral controller
does not have to deal with dry friction because it is avoided as a result of the chattering effect.

Figure 3.11: Voltage (experiment 2)

To reinforce the hypothesis that the behaviour of the linear and discontinuous controllers is
caused by dry friction, for which there is no direct evidence, a simulation study is performed.
A (simple) dry friction model is added to system (3.12) as follows

ẋ1 = x2

ẋ2 = f1(x) + ρf

f1(x) = − k
m
x2 +

aL0

2m

x2
3

(a+ x1)2
− g

ẋ3 =
1

L(x1)

(
−Rx3 − aL0

x2x3

(a+ x1)2
+ u

)
,

(3.19)

35



where ρf corresponds to a dry friction term given by

ρf =

{
−0.025sign (x2) , x2 6= 0

−sign (f1(x)) min (|f1(x)| , 0.5) , x2 = 0 .
(3.20)

This model is similar to the one proposed in [45].
In Figure 3.12 the tracking error is presented for both controllers. Note that for the linear

controller an oscillation similar to the one of Figure 3.10 is observed, while the discontinuous
controller presents again a high precision response. Moreover, Figure 3.13 shows the value of
the dry friction force ρf during the simulation. For the discontinuous controller, its value is
oscillating. This could be seen as a ”dithering” effect [45] that allows avoiding the dry friction
in this case. This strengthens our hypothesis.

Figure 3.12: Tracking Error (simulation with dry friction)

Figure 3.13: Dry friction (simulation)

3.3 Proof of Theorem 8

In this section, the proof of Theorem 8 is presented. For that, an explicit Lyapunov function
is constructed.
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Defining the variables xi,ni+1 = zi + ρ̄i(t, x) and ρ̄i(t, x) = 1
kIi,1

ρi(t, x) for i = 1, ...,m, the

closed-loop system is

ẋi,j =xi,j+1 + µi,j, i = 1, ..., n− 1, 2

ẋi,ni =g̃i(x, t) [ν̄i,1(x) + xi,ni+1] + µi,ni ,

ẋi,ni+1 =− kIi,1 [σIi + ˙̄ρi(t, x)] ,

(3.21)

for i = 1, ...,m.
Using the change of coordinates

ξi,1 =xi,1 − dξi,ni+1c
ri,1

ri,ni+1 ,

ξi,j =xi,j, j = 2, ..., ni

ξi,ni+1 =k−1
i,ni
xi,ni+1,

which is diffeomorphism, for i = 1, ...,m, the closed-loop system is transformed into

ξ̇i,1 =ξi,2 + µi,1 −
ri,1
ri,ni+1

|ξn+1|
ri,1−ri,ni+1

ri,ni+1 ξ̇i,ni+1

ξ̇i,j =ξi,j+1 + µi,j, j = 2, ..., ni − 1

ξ̇i,ni =µi,ni − g̃i(x, t)ki,ni

⌈ξi,1 + dξi,n+1c
ri,1

ri,ni+1 − dν̄ξ2c
ri,1
α2

⌋ ri,ni+1

r1

− ξi,ni+1


ξ̇i,ni+1 =k̄Ii,1

[
σξIi − ˙̄ρi(t, x)

]
, k̄Ii,1 =

kIi,1
ki,ni

,

(3.22)

for i = 1, ...,m, where

ν̄ξi,j =− k
−
αi,j
ri,j

i,j−1

[
dξi,jc

αi,j
ri,j −

⌈
ν̄ξi,j+1

⌋ αi,j
αi,j+1

]
, j = 2, ..., ni − 1

ν̄ξi,ni =− k
−
αi,ni
ri,ni

i,ni−1 dξi,nic
αi,ni
ri,ni ,

σξIi =

⌈
ξi,1 + dξi,ni+1c

ri,1
ri,ni+1 +

n∑
j=2

kIi,j dξi,jc
ri,1
ri,j

⌋ ri,ni+2

ri,1

.

To construct the Lyapunov function, let us introduce the following recursively defined in-
termediate functions

Vi,j (ξi,1, ..., ξi,j) =γi,j−1Vi,j−1 +Wi,j,

Wi,j (ξi,1, ..., ξi,j) =
ri,j
p
|ξi,j|

p
ri,j −

⌈
νξi,j−1

⌋ p−ri,j
ri,j ξi,j +

(
1− ri,j

p

)
|νξi,j−1

|
p
ri,j ,

νξi,j (ξi,1, ..., ξi,j) =− ki,j
⌈
dξi,jc

αi,j
ri,j −

⌈
νξi,j−1

⌋αi,j
ri,j

⌋ ri,j+1
αi,j

, for j = 1, ..., ni − 1
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for i = 1, ...,m, with initial functions

Vi,1(ξi,1) =
ri,1
p
|ξi,1|

p
ri,1 , νi,1(xi,1) = −ki,1 dξi,1c

ri,2
ri,1 ,

ri,1 ≤αi,1 ≤ · · · ≤ αi,ni

The proposed Lyapunov function is given by

V (ξ) =
m∑
i=1

[
γi,ni−1Vi,ni−1 +Wni +

ri,ni+1

p
|ξi,ni+1|

p
ri,ni+1

]
.

This function is smooth (at least C1). Using the Young’s inequality [see Lemma 2], it can
be shown to be positive definite.

The derivative of V along the trajectories of system (3.22) corresponds to

V̇ =
m∑
i=1

[
γni−1V̇ni−1 + Ẇni + dξi,ni+1c

p−ri,ni+1

ri,ni+1 ξ̇i,ni+1

]
,

=
m∑
i=1

[
Fi,n +Gzi,n − g̃i(x, t)ki,niGi,ni +Gµi − kIi,1Fzi

]
where

Fi,ni =γi,ni−1

ni−1∑
j=1

[(
∂

∂ξi,j
Vi,ni−1

)
ξi,j+1

]

Gi,ni =

[
dξi,nic

p−ri,ni
ri,ni −

⌈
νξi,ni−1

⌋ p−ri,ni
ri,ni

]⌈ξi,1 + dξi,ni+1c
ri,1

ri,ni+1 −
⌈
ν̄ξi,2

⌋ ri,1
αi,2

⌋ ri,ni+1

ri,1

− ξi,ni+1


Gµi =γi,ni−1

ni−1∑
j=1

[(
∂

∂ξi,j
Vi,ni−1

)
µi,j

]
+

[
dξi,nic

p−ri,ni
ri,ni −

⌈
νξi,ni−1

⌋ p−ri,ni
ri,ni

]
µi,ni

Gzi,ni
=− p− ri,ni

ri,ni

∣∣νξi,ni−1

∣∣ p−2ri,ni
ri,ni

[
ξni − νξi,ni−1

]
ν̇i,ni−1

Fzi =

[
dξi,ni+1c

p−ri,ni+1

ri,ni+1 − ri,1
ri,ni+1

γi,ni−1

(
∂

∂ξi,1
Vi,ni−1

)
|ξi,ni+1|

ri,1−ri,ni+1

ri,ni+1

] [
σξIi − ˙̄ρi(t, x)

]
,

Using the Lemma 5, the following equality

sign

⌈ξi,1 + dξi,ni+1c
ri,1

ri,ni+1 −
⌈
ν̄ξi,2

⌋ ri,1
αi,2

⌋ ri,ni+1

ri,1

− ξi,ni+1

 = sign

⌈ξi,1 − ⌈ν̄ξi,2⌋ ri,1αi,2

⌋ ri,ni+1

ri,1


is satisfied and using algebraic tools, it can be proven that

dξi,nic
p−ri,ni
ri,ni −

⌈
νξi,ni−1

⌋ p−ri,ni
ri,ni = 0 ⇔ ξi,1 −

⌈
ν̄ξi,2

⌋ ri,1
αi,2 = 0.
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Therefore, the term Gn can be proven to be positive semidefinite so that

V̇ ≤
m∑
i=1

[
Fi,ni +Gzi,ni

− g̃
i
ki,niGi,ni +Gµi − kIi,1Fzi

]
.

If µi,j ≤ Lµi,j ||x||
ri,j+1

r,1 , the derivative V̇ can be bounded by

V̇ ≤
m∑
i=1

[
Fi,ni +Gzi,ni

− g̃ki,niGi,ni + L̄µiḠµi − kIi,1Fzi
]

where

L̄µi = max
j=,1...,ni

(Li,j)

Ḡµi =γi,ni−1

ni−1∑
j=1

∣∣∣∣( ∂

∂ξi,j
Vi,ni−1

)
||x||ri,j+1

r,1

∣∣∣∣+

∣∣∣∣dξi,nic p−ri,niri,ni −
⌈
νξn−1

⌋ p−rn
rn

∣∣∣∣ ||x||rn+1

r,1 .

Note that this bound is homogeneous of degree p+ d. Therefore, all properties of homoge-
neous functions can be applied. So, using Lemma 3, for continuous case, or 4, for discontinuous
one, this term can dominate the rest of the terms for gains ki,ni , i = 1, ...,m large enough. The
terms Gi,ni is zero only on the intersection of the following sets

Si,ni =
{
ξ|ξi,ni = νξi,ni−1

}
, i = 1, ...,m.

On these sets, the derivative of V is

V̇
∣∣∣
S(1,n1),...,(m,nm)

=
m∑
i=1

[Fi,ni ]

∣∣∣∣∣
S(1,n1),...,(m,nm)

+
m∑
i=1

[[
L̄µiḠµi − kIi,1Fzi

]]∣∣∣∣∣
S(1,n1),...,(m,nm)

It is important to note that functions νξi,ni−1
are the homogeneous controllers for the ni− 1

reduced subsystems and Fi,n are the derivative of their respective Lyapunov functions. There-
fore, the first term is negative semidefinite by construction. Using Lemma 3 or 4, these can
dominate for kii,1 and L̄µi for i = 1, ...,m sufficiently small. The term

∑m
i=1 [Fi,ni ]|S(1,n1),...,(m,nm)

is zero only on the set

S0 = {ξ|(ξ1,1, ..., ξ1,n1 , ..., ξm,1, ..., ξm,nm) = 0} .

On this set, the derivative of V is

V̇
∣∣∣
S0

=−
m∑
i=1

[kIi,1Fzi ]|S0
,

=−
m∑
i=1

[
kIi,1 dξi,ni+1c

p−ri,ni+1

ri,ni+1

[
dξi,ni+1c

ri,ni+2

ri,ni+1 − ˙̄ρi

]]
,

which is negative if
|ρ̇i| < kIi,1 ||x||

ri,ni+2

r,1 , i = 1, ...,m

so V̇ is negative definite. Therefore the origin of closed-loop system (3.21) is stable in FT.
Note that in the discontinuous case, the previous condition becomes into

|ρ̇i(t)| < kIi,1 , i = 1, ...,m

which implies that ρi must be Lipschitz functions.
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Chapter 4

Integral Control of Homogeneous
Systems with Positive Homogeneity
Degree by Explicitly defined Lyapunov
Functions

In this chapter, a homogeneous integral control is presented. This controller is presented for
positive homogeneity degrees. The stability proof is based on an explicitly defined Lyapunov
function.

4.1 A Family of Homogeneous Integral Controllers with

Positive Homogeneity Degree

In this section, a family of homogeneous integral controllers is presented. In contrast to result
presented in previous chapter, the family of controllers is homogeneous with positive homogene-
ity degree so they can get rational stabilization, see Corollary 3. This property implies that
the controller is weak when the trajectories are near to the origin, so this point is not achieved.
However, it is strong when the trajectories are far from the origin. This latter property becomes
important in finite-time but asymptotically, when the initial conditions are large.

In order to present the controller, define the vector of weights r = (r1,1, ..., r1,n1 , .., rm,1,
..., rm,nm), where ri,j+1 = ri,j + d, i = 1, ...,m, j = 1, ..., ni + 1 (d > 0 is the homogeneity
degree). Likewise, in order to get homogeneity, the weight of the last state for each subsystem
is assumed to be the same, i. e. r1,n1 = · · · = rm,nm . For i = 1, ...,m, define also the following
recursive functions

σi,1 =− k1 dxi,1c
ri,2
ri,1

σi,j =− ki,j
⌈
dxi,jc

ri,ni+1

ri,j − dσi,j−1c
ri,ni+1

ri,j

⌋ ri,j+1
ri,ni+1

, j = 2, ..., ni

(4.1)

for static controller and the following term

σIi =−

[
dxi,1c

ri,ni+2

ri,1 +

ni∑
j=2

kIi,j dxi,jc
ri,ni+2

ri,j

]
(4.2)
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for integral action.
Consider also the following assumption

Assumption 3. The derivative of the elements of the vector of perturbations ρ in system (1.10)
is assumed to be bounded by |ρ̇i| ≤ Lρi ||x||

r1,n1+2

r,1 . Likewise, the components of the vector of
uncertainties are bounded by |µi,j| ≤ Lµi,j ||x||

ri,j+1

r,1

Therefore, using the Lyapunov function that is presented in Section 4.3, the following the-
orem can be stated.

Theorem 9. Select a homogeneity degree d > 0 and consider the system (1.10), where As-
sumptions 1 and 3 are satisfied. Then the controller

u =Ḡ−1

 σ1,n1 + z1
...

σm,nm + zm

 ,
żi =− kIi,1σIi , i = 1, ...,m

(4.3)

stabilizes rationally the origin of system (1.10), despite the uncertainties g̃, the uncertainties
vector µ with maxi=1,..,m

(
maxj=1,..,ni

(
Lµi,j

))
small enough and the perturbation vector ρ, for

any kIi,2 > 0, any kIi,j, for j = 3, ..., ni, appropriate gains ki,j, for j = 1, ..., ni − 1, ki,ni large

enough and kIi,1 > max

(
1, (ki,1)

−
ri,ni+2

ri,ni+1
(
kIi,2

)−1
)
Lρi sufficiently small, for i = 1, ...,m. 4

Note that the functions σ have a similar structure to functions ν̄ that are defined in (3.1).
However, in this case, the homogeneity degree is positive so all terms σ are differentiable in
contrast to ν̄. As a result of this smoothness, the controller with positive homogeneity degree
can be written as

σn = −ki,ni dxnc
ri,ni+1

ri,ni − k̄i,ni−1 dxi,ni−1c
rni+1

ri,ni−1 − · · · − k̄i,1 dx1c
ri,ni+1

ri,1 (4.4)

k̄i,j =

ni∏
a=j

ki,a

ri,ni+1

ri,a+1 , i = 1, ...,m, (4.5)

which is a polynomial-like function of the states. This structure of controller is very familiar for
linear controller and it can be get for controllers with positive homogeneity degree. However,
this structure has not ben proven to work for arbitrary relative degree yet when the controller
has negative homogeneity degree.

It is important to recall that the controller (4.3) can only get rational stability. In order
to compare this controller to the controller with negative homogeneity degree, consider the
following differential inequality

dV

dt
≤ −CV

p+d
p , C > 0,

which is associated to the derivative of the homogeneous Lyapunov function for a homogeneity
degree d ∈ R. Note that there are three cases:
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� d < 0 implies that exponent es lesser than 1. Therefore, solving this inequality, the time
convergence Tf from a level surface Vi to Vf can be estimated as follows

Tf ≤
1

C

∣∣∣p
d

∣∣∣ [V | dp |i − V |
d
p |

f

]
,

� d = 0 implies that the exponent is equal to 1, Therefore, solving this inequality, the time
convergence Tf from a level surface Vi to Vf can be estimated as follows

Tf ≤
1

C
ln

(
Vi
Vf

)
,

� d > 0 implies that the exponent is greater than 1. Therefore, solving this inequality, the
time convergence Tf from a level surface Vi to Vf can be estimated as follows

Tf ≤
1

C

∣∣∣p
d

∣∣∣ [V −| dp |f − V
−| dp |
i

]
.

Note that when Vf , only the case d < 0 has a finite time of convergence. Therefore, the
convergence in finite tine can be ensure. However, when Vf is equal to a constant, the time of
convergence for case d < 0 and d = 0 tends to infinity as Vi tends to infinity. Meanwhile, for
case d > 0 this convergence time is bounded by the final surface Vf .

On the other hand, the perturbations that the controllers can deal are different. Again,
there are three cases:

� d < 0, the vector of perturbations ρ has to satisfy

|ρ̇i| ≤ Lρi ||x||
β−ρi
r,1 , 0 ≤ β−ρi < 1 i = 1, ...,m,

� d = 0, the vector of perturbations ρ has to satisfy

|ρ̇i| ≤ Lρi ||x||r,1 ||x||r,1 , i = 1, ...,m,

� d > 0, the vector of perturbations ρ has to satisfy

|ρ̇i| ≤ Lρi ||x||
β+
ρi
r,1 , β+

ρi
> 1 i = 1, ...,m,

Note that when the homogeneous norm are small, the case d < 0 can deal with bigger
perturbations. This means that the controller with homogeneity degree d < 0 can deal with
perturbations that are bounded by the others bounds. However, when the homogeneous norm
are large, the case d > 0 can reject bigger perturbations. So, this controller can deal with the
other perturbations out of the unit homogeneous sphere.
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4.1.1 Scaling the Gains

Consider the additional terms xi,ni+1 = zi + ρi(t, x) and the following change of coordinates

χ =λx,

where λ ∈ (0, 1] and the closed-loop system (1.10) with the controller (4.3), the dynamics of χ
can be written as follows

χ̇i,j =χi,j+1 + µλi,j(χ), j = 1, ..., ni − 1,

χ̇i,ni =σλi,l(χ) + χi,ni+1 + µλi,ni (χ)

χ̇i,ni+1 =− λ1−
ri,ni+2

ri,1 kIi,1σIλi (χ) + ρλi(t, χ),

for i = 1, ...,m, where

σλi,1(χ) =− λ1−
ri,2
ri,1 k1 dχi,1c

ri,2
ri,1

σλi,j(χ) =− λ1−
ri,j+1
ri,j ki,j

⌈
dχi,jc

ri,ni+1

ri,j −
⌈
σλi,j−1

⌋ ri,ni+1

ri,j

⌋ ri,j+1
ri,ni+1

, j = 2, ..., ni

σλIi (χ) =

[
dχi,1c

ri,ni+2

ri,1 +

ni∑
j=2

λ
ri,ni+2

ri,1
−
ri,ni+2

ri,j kIi,j dχi,jc
ri,ni+2

ri,j

]
∣∣µλi,j(χ)

∣∣ ≤λ1−
ri,j+1
ri,1 Lµi,j ||χ||

ri,j+1

r,1 , j = 1, ..., ni

|ρ̇λi(t, χ)| ≤λ1−
ri,ni+2

ri,1 Lρi ||χ||
ri,ni+2

r,1 .

Therefore, if the gains ki,j, kIi,j for i = 1, ...,m, j = 1, ..., ni can reject the vector of uncer-
tainties µ and vector of perturbations ρ, scaling the gains as follows

kλi,j =λ
1−

ri,j+1
ri,j ki,j, j = 1, ..., ni

kIλi,1 =λ
1−

ri,ni+2

ri,1 kIi,1

kIλi,j =λ
ri,ni+2

ri,1
−
ri,ni+2

ri,j kIi,j , j = 2, ..., ni

(4.6)

for i = 1, ...,m, the controller (4.3) can deal with uncertainties µ that are bounded by

|µi,j(x)| ≤ λ
1−

ri,j+1
ri,1 Lµi,j ||x||

ri,j+1

r,1 , j = 1, ..., ni, i = 1, ...,m;

and perturbations ρ whose derivative is bounded by

|ρ̇i(t, x)| ≤ λ
1−

ri,ni+2

ri,1 Lρi ||x||
ri,ni+2

r,1 , i = 1, ...,m.

It is important to stress that although Theorem 9 considers positive homogeneity degree, the
Lyapunov function that is presented in Subsection 4.3 can be used for proving the controller
with homogeneity degree equal to zero. Therefore, the numerical results consider this case,
which corresponds to a linear controller.
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4.2 Simulation Results

In this section, the behaviour of the integral controller (4.3) of two homogeneity degrees is
illustrated. In order to it, consider the same academic example that in previous chapter, i. e.

ẋ =


ẋ1,1

ẋ2,1

ẋ2,2

ẋ3,1

ẋ3,2

ẋ3,3

 =Ax+B (u+ ρ) + µ

y =

x1,1

x2,1

x3,1

 .

(4.7)

where

A =


0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

 , B =


10 (1 + 0.5 sin(t)) −5 (1 + 0.5 sin(t)) 3 (1 + 0.5 sin(t))

0 0 0
2 (3− cos(t)) 7 (3− cos(t)) 3 (3− cos(t))

0 0 0
0 0 0

2 (2 + sin(t)) 2 (2 + sin(t)) 8 (2 + sin(t))

 .

The decoupling matrix G corresponds to

G = ∆GḠ = diag (1 + 0.5 sin(t), 3− cos(t), 2 + sin(t))

10 −5 3
2 7 3
2 2 8


whose determinant is greater than zero for all t > 0. This matrix is assumed to be unknown.
However, its nominal part Ḡ is known.

The control law is designed to be homogeneous with homogeneity degree 1 and this can be
written as

u = Ḡ−1

v1

v2

v3

 (4.8)

and the transformed system can be written as follows

ẋ =



0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

x+



1 + 0.5 sin(t) 0 0
0 0 0
0 3− cos(t) 0
0 0 0
0 0 0
0 0 2 + sin(t)


v1

v2

v3

+ ρ̄

+ µ

y =

x1,1

x2,1

x3,1

 .
(4.9)
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where

ρ̄ =Ḡρ

v1 =− k1,1 dx1,1c
1

1−d + z1,

ż1 =− kI1,1 dx1,1c
1+d
1−d

v2 =− k2,2 dx2,2c
1

1−d − k2,2k
1

1−d
2,1 dx2,1c

1
1−2d + z2,

ż2 =− kI2,1
[
dx2,1c

1+d
1−2d + kI2,2 dx2,2c

1+d
1−d

]
v3 =− k3,3 dx3,3c

1
1−d − k3,3k

1
1−d
3,2 dx3,2c

1
1−2d − k3,3k

1
1−d
3,2 k

1
1−2d

3,1 dx3,1c
1

1−3d + z3,

ż3 =− kI3,1
⌈
dx3,1c

1+d
1−3d + kI3,2 dx3,2c

1+d
1−2d + kI3,3 dx3,3c

1+d
1−d

⌋
For simulations, a fourth-order Runge-Kutta method of fixed step is used as integration

method. The sampling time was 1 × 10−4[s]. The initial conditions are x(0) = (2, 2, 0, 2, 0, 0).
The non-vanishing matching perturbation is given by

ρ̄(t, x) =

 0.5
0.25
0.1

 .

which is constant. The vanishing non matched perturbation µ is state-dependent and is given
for the simulation as

µ(x) =


µ1,1

µ2,1

µ2,2

µ3,1

µ3,2

µ3,3

 =



0.3 dx1,1c
1

1−d + 0.2 dx2,2c
1

1−d

0.2 dx2,1c
1−d
1−2d + 0.1x2,2

0.2 dx1,1c
1

1−d + 0.2 dx2,1c
1

1−2d

0.5 dx3,1c
1−2d
1−3d

0.1 dx3,1c
1−d
1−3d + 0.1x3,3

0.3 dx3,2c
1

1−2d


.

Controllers with 2 different homogeneity degrees are considered in simulations. These ho-
mogeneity degrees are d = {0, 0.2}. The homogeneity degree d = 0.2 corresponds to the
homogeneous case and it is represented by the subindex PH. The homogeneity degree d = 0
corresponds to linear case and it is represented by the subindex L.

The gains are selected as follows:

k1,1 = k2,1 = k3,1 = 2, k2,2 = k3,2 = 5, k3,3 = 9

kI1,1 = kI2,1 = kI3,1 = 1, kI2,2 = kI3,2 = 0.5, kI3,3 = 0,

Figure 4.1 shows the states of the closed-loop system, using the two integral controllers. All
trajectories converges to origin. However, the worst performance is obtained with the positive
homogeneous integral controller, see Figure 4.1b.

Figure 4.2 presents the control signals generated by the three integral controllers. Note that
in steady-state, they all tend to converge to the inverse of the perturbation, since they aim to
compensate for it. However, the best compensation is obtained with linear controller as the
previous figures showed.
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(a) Homogeneity degree d = 0. (b) Homogeneity degree d = 1
4
.

Figure 4.1: Time evolution of all states for Integral controllers L (4.1a) and PH (4.1b)

(a) Input signal u1. (b) Input signal u2.

(c) Input signal u3.

Figure 4.2: Time evolution of the three control signals u1 (4.2a), u2 (4.2b) and u3 (4.2c),
generated by the Integral controllers L and PH.

In figure 4.3, the integral errors, which are defined as zi + ρi, are presented. These integral
errors tend slowly to zero and the integral controller associated to the linear integral controller
(L) is nearer to zero.

Additionally, a second simulation was made with different initial condition, which are defined
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(a) First integral error signal z1 + ρ1. (b) Second integral error signal z2 + ρ2.

(c) Third integral error signal z3 + ρ3.

Figure 4.3: Time evolution of the three integral error signals z+µ1, i.e. z1+µ1, 1 (4.3a), z2+µ1, 2

(4.3b), and z3 + µ1, 3 (4.3c), for the Integral controllers L and PH.

as x(0) = n(1, 1, 1, 1, 1, 1), where n = 1, 10, 100, 1000. In fig 4.4, the euclidean norm ||x||2 is
shown. It is easy to see that if the initial condition is far from the origin, the integral controller
PH is faster than the integral controller L. Therefore, although near to origin the linear
controller keeps the trajectories nearer to the origin, the positive homogeneous controller can
bring the trajectories to a neighbourhood of the origin in finite time.

Figure 4.4: Time evolution of ||x||2 for Integral controllers L and PH
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In Figure 4.5, the convergence time to the ball ||x||2 = 1 from the four initial conditions.
In this figure, the behaviour of the linear controller (L) can be approximated to a line, which
is expected. Meanwhile the controller with positive homogeneity degree tend to a fixed time,
which can be approximated to 12 seconds.

Figure 4.5: Convergence time to the ball ||x||2 = 1

4.3 Proof of Theorem 9

The proof of Theorem 9 is presented. For this, a strong and smooth explicit Lyapunov function
is constructed

Analogously to negative homogeneity degree case, the variables xi,ni+1 = zi + ρ̄i(t, x) and
ρ̄(t, x) = 1

kIi,1
ρi(t, x) are defined for i = 1, ...,m. So the closed-loop system can be written as

follows

ẋi,j =xi,j+1 + µi,j, j = 1, ..., n− 1

ẋi,ni =g̃i(x, t) [σi,ni(x) + xi,ni+1] + µi,ni
ẋi,ni+1 =− kIi,1 [σIi + ˙̄ρi(t, x)] .

(4.10)

for i = 1, ...,m.

Using the change of coordinates

ξi,1 = dxi,1c
ri,ni+1

ri,1 − ξi,ni+1

ξi,j =xi,j, j = 2, ..., ni

ξi,ni+1 =k̄−1
i,1 xi,ni+1
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for i = 1, ...,m, where k̄i,1 is defined in (4.4), the closed-loop system is transformed into

ξ̇i,1 =
ri,ni+1

ri,1
|ξi,1 + ξi,ni+1|

ri,ni+1−ri,1
ri,ni+1 [ξi,2 + µi,1]− ξ̇i,ni+1

ξ̇i,j =ξi,j+1 + µi,j, j = 2, ..., ni − 1

ξ̇i,ni =µi,ni − g̃i(x, t)ki,ni
[
dξi,nic

ri,ni+1

ri,ni −
⌈
σξi,ni−1

⌋ ri,ni+1

ri,ni

]
ξ̇i,ni+1 =k̄Ii,1

[
σξIi − ˙̄ρi(t, x)

]
, k̄Ii,1 =

kIi,1
k̄i,1

,

(4.11)

where

σξi,1 =− ki,1 dξi,1c
ri,2

ri,ni+1

σξi,j =− ki,j
⌈
dξi,jc

ri,ni+1

ri,j −
⌈
σξi,j−1

⌋ ri,ni+1

ri,j

⌋ ri,j+1
ri,ni+1

, j = 2, ..., ni

σξIi =− kIi,1

[
dξi,1 + ξi,ni+1c

ri,ni+2

ri,ni+1 +

ni∑
j=2

kIi,j dξi,jc
ri,ni+2

ri,j

]

for i = 1, ...,m.

It is important to note that as a result of the fact that the controller is a polynomial-like
function and the homogeneity is positive, the dynamics ξ̇i,ni has not an extra term as in the
negative homogeneity degree case.

Considering the following recursive terms

Vi,j (ξi,1, ..., ξi,j) =γi,j−1Vi,j−1 +Wi,j,

Wi (ξi,1, ..., ξi,j) =
ri,j
p
|ξi,j|

p
ri,j −

⌈
σξi,j−1

⌋ p−ri,j
ri,j ξi,j +

(
1− ri,j

p

)
|σξi,j−1

|
p
ri,j ,

where

Vi,1(ξi,1) =
ri,ni+1

p
|ξi,1|

p
ri,ni+1 .

The proposed Lyapunov function can be written as follows

V =
m∑
i=1

[
γi,ni−1Vi,ni−1 +Wi,ni +

ri,ni+1

p
|ξi,ni+1|

p
ri,ni+1

]
,

The derivative of V along the trajectories of system (4.11) corresponds to

V̇ =
m∑
i=1

[
γi,ni−1V̇i,ni−1 + Ẇi,ni + dξi,ni+1c

p−ri,ni+1

ri,ni+1 ξ̇i,ni+1

]
,

=
m∑
i=1

[
Fi,ni +Gzi,ni

− g̃i(x, t)ki,niGi,ni +Gµi − kIi,1Fzi
]
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where

Fi,ni =γi,ni−1

[
ri,ni+1

ri,1

(
∂

∂ξi,1
Vi,ni−1

)
|ξi,1 + ξi,ni+1|

ri,ni+1−ri,1
ri,ni+1 ξi,2 +

ni−1∑
j=2

[(
∂

∂ξi,j
Vi,ni−1

)
ξi,j+1

]]

Gi,ni =

[
dξi,nic

p−ri,ni
ri,ni −

⌈
σξi,ni−1

⌋ p−ri,ni
ri,ni

] [
dξi,nic

ri,ni+1

ri,ni −
⌈
σξi,ni−1

⌋ ri,ni+1

ri,ni

]
Gµi =γi,ni−1

[
ri,ni+1

ri,1

(
∂

∂ξi,1
Vi,ni−1

)
|ξi,1 + ξi,ni+1|

ri,ni+1−ri,1
r+
i,ni+1 µi,j +

ni−1∑
j=2

[(
∂

∂ξi,j
Vi,ni−1

)
µi,j

]]
+[

dξi,nic
p−ri,ni
ri,ni −

⌈
σξi,ni−1

⌋ p−ri,ni
ri,ni

]
µi,ni

Gzi,ni
=− p− ri,ni

ri,ni

∣∣σξi,ni−1

∣∣ p−2ri,ni
ri,ni

[
ξi,ni − σξi,ni−1

]
σ̇ξi,ni−1

Fzi =

[
dξi,ni+1c

p−ri,ni+1

ri,ni+1 − γi,ni−1

(
∂

∂ξi,1
Vi,ni−1

)] [
σξIi − ˙̄µi(t, x)

]
using algebraic tools, the term Gi,ni can be proven to be positive semidefinite

V̇ ≤
m∑
i=1

[
Fi,ni +Gzi,ni

− g̃
i
ki,niGi,ni +Gµi − kIi,1Fzi

]
if µi,j ≤ Lµi,j ||x||

ri,j+1

r,1 for i = 1, ...,m, j = 1, ..., ni, the derivative V̇ can be bounded by

V̇ ≤
m∑
i=1

[
Fi,ni +Gzi,ni

− g̃ki,niGi,ni + L̄µiḠµi − kIi,1Fzi
]

where

L̄µi = max
j=1,...,ni

(
Lµi,j

)
Ḡµi =γi,ni−1

[
ri,ni+1

ri,1

∣∣∣∣ ∂

∂ξi,1
Vi,ni−1

∣∣∣∣ |ξi,1 + ξi,ni+1|
ri,ni+1−ri,1
ri,ni+1 ||x||ri,2r,1 +

ni−1∑
j=2

∣∣∣∣( ∂

∂ξi,j
V +
i,ni−1

)
||x||ri,j+1

r,1

∣∣∣∣
]

+∣∣∣∣dξi,nic p−ri,niri,ni −
⌈
σξi,ni−1

⌋ p−ri,ni
ri,ni

∣∣∣∣ ||x||ri,ni+1

r,1

Note that this bound is homogeneous of degree p+ d. Therefore, all properties of homoge-
neous functions can be applied. Using Lemma 3, the terms Gi,ni can dominate the rest of the
terms for ki,ni , i = 1, ...,m large enough. The terms G+

i,ni
is only zero on the intersection of the

following sets
Si,ni =

{
ξ|ξi,ni = σξi,ni−1

}
, i = 1, ...,m.

On these sets, the derivative of V is

V̇
∣∣∣
S(1,n1),...,(m,nm)

=
m∑
i=1

[
Fi,ni |S(1,n1),...,(m,nm)

+
[
L̄µiḠµi − kIi,1Fzi

]∣∣
S(1,n1),...,(m,nm)

]
.
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It is important to note that σξi,ni−1
corresponds to the homogeneous controller for the

corresponding ni − 1 reduced subsystems and Fi,ni is the derivative of its respective Lyapunov
function until the last one, i. e. Vi,1. Therefore, the first term can be analysed in a similar form
for Si,j for i = 1, ...,m, j = 1, ..., ni−1. This is having a negative term, which can dominate for
ki,j for i = 1, ...,m, j = 1, ..., ni − 1 large enough. This strategy can be applied until to reach
the following sets

Si,2 =

{
ξ|ξi,2 = σξi,1 = −ki,1 dξi,1c

ri,2
ri,ni+1

}
,

where the derivative is

V̇
∣∣∣
S(1,2),...,(m,nm)

=−
m∑
i=1

[
ki,1Gi,1 +

[
L̄µiḠµi − kIi,1Fzi

]∣∣
(1,2),...,(m,nm)

]
where

Gi,1 =

[
ni−1∏
j=1

γi,j

]
r+
i,ni+1

ri,1
|ξi,1 + ξi,ni+1|

ri,ni+1−ri,1
ri,ni+1 |ξi,1|

p+ri,2−ri,ni+1

ri,ni+1

Ḡµi

∣∣
S(1,2),...,(m,nm)

=

[
ni−1∏
j=1

γi,j

]
ri,ni+1

ri,1
|ξi,1 + ξi,ni+1|

ri,ni+1−ri,1
r+
i,ni+1 |ξi,1|

p−ri,ni+1

ri,ni+1 ||x||ri,2r,1

∣∣
S(1,2),...,(m,nm)

Fzi |S(1,2),...,(m,nm)
=

[
dξi,ni+1c

p−ri,ni+1

ri,ni+1 −

[
ni−1∏
j=1

γi,j

]
dξi,1c

p−ri,1
ri,1

][
dξi,1 + ξi,ni+1c

ri,ni+2

ri,ni+1 −

k̄Ii,2 dξi,1c
ri,ni+2

ri,ni+1 − ˙̄ρi(t, x)

]
,

k̄Ii,2 =kIi,2ki,1

ri,ni+2

ri,ni+1

Note that the terms Gi,1 are positive semidefinite and using Lemma 3, this term can dom-
inate for L̄µi and kIi,1 small enough. These terms are zero only on the intersections of the
sets

Si,1 = {ξ|ξi,1 = 0 ∪ ξi,1 = −ξi,ni+1} .

On these sets, the derivative of V is

V̇
∣∣∣
S(1,2),...,(m,nm)

=


−
∑m
i=1 kIi,1

[⌈
ξi,ni+1

⌋ p−ri,ni+1
ri,ni+1

][⌈
ξi,ni+1

⌋ ri,ni+2
ri,ni+1 − ˙̄ρi(t, x)

]
, ξi,1 = 0

−
∑m
i=1 kIi,1

[
1 +

[∏ni−1
j=1 γi,j

]] ⌈
ξi,ni+1

⌋ p−ri,1
ri,1

[
k̄Ii,2

⌈
ξi,ni+1

⌋ ri,ni+2
ri,ni+1 − ˙̄ρi(t, x)

]
, ξi,1 = −ξi,ni+1

which is negative if

kIi,2 > 0 and |ρ̇i(t, x)| < min

(
kIi,1 , kIi,1kIi,2ki,1

ri,ni+2

ri,ni+1

)
||x||ri,ni+2

r,1

so V̇ is negative definite. Therefore the origin of closed-loop system (4.10) is rationally stable.

52



4.4 A Fixed-Time Controller

As it has already mentioned, a controller with negative homogeneity degree, for example (3.3),
can obtain stability in FT. This means that this controller is strong when the trajectories are
near to the origin. However, when the trajectories are far from the origin, this controller does
not work very well. On the other hand, a controller with positive homogeneity degree, for
example (4.3), can obtain rational stability. This means that this controller is strong when the
trajectories are far from the origin. However, when the trajectories are near to the origin, this
controller does not work very well.

Therefore, combining these two kinds of controllers, it is possible to obtain a fixed-time
integral controller. This implies that the trajectories of the closed-loop system converge to the
origin before a constant T .

For controller with positive homogeneity degree, define the vector of weights r+ = (r+
1,1, ...,

r+
1,n1

, .., r+
m,1, ..., r

+
m,nm), where r+

i,j+1 = r+
i,j + d+, i = 1, ...,m, j = 1, ..., ni + 1 (d+ > 0 is the

positive homogeneity degree). Likewise, in order to get homogeneity, the weight of the last
state for each subsystem is assumed to be the same, i. e. r+

1,n1
= · · · = r+

m,nm . Likewise, for
i = 1, ...,m consider the following functions

σ+
i,1 =− k+

1 dxi,1c
r+
i,2

r+
i,1

σ+
i,j =− k+

i,j

dxic
r+
i,ni+1

r+
i,j −

⌈
σ+
i,j−1

⌋ r+i,ni+1

r+
i,j


r+
i,j+1

r+
i,ni+1

, j = 2, ..., ni

(4.12)

for static controller and the following term

σ+
Ii

=− k+
Ii,1

dxi,1c r
+
i,ni+2

r+
i,1 +

ni∑
j=2

k+
Ii,j
dxi,jc

r+
i,ni+2

r+
i,j

 (4.13)

for integral action.
For controller with positive homogeneity degree, the vector of weights is defined as r− =

(r−1,1, ..., r
−
1,n1

, .., r−m,1,
..., r−m,nm), where r−i,j+1 = r−i,j + d−, i = 1, ...,m, j = 1, ..., ni + 1 (d− < 0 is the negative
degree). Likewise, in order to get homogeneity, the weight of the last state for each subsystem
is assumed to be the same, i. e. r−1,n1

= · · · = r−m,nm . For i = 1, ...,m, define also the following
recursive functions

ν̄−i,1 =− k−i,n

⌈
xi,1 − dν̄i,2c

r−
i,1
αi,2

⌋ r−
i,ni+1

r−
i,1

ν̄−i,j =− k−i,j−1

−
α−
i,j

r−
i,j

dxi,jcα−i,jri,j −
⌈
ν̄−i,j+1

⌋ α−
i,j

α−
i,j+1

 , j = 2, ..., ni − 1

ν̄−i,n =− k−n−1

−
α−
i,n

ri,ni dxi,nc
α−
i,n

r−
i,ni

(4.14)
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with r−i,j ≤ α−i,j ≤ · · · ≤ α−i,ni and α−i,1 = ri,1 for the static controller, and

σ−Ii =

xi,1 +
n∑
j=2

k−Ii dxi,jc
r−
i,1

r−
i,j


r−
i,n+2

r−
i,1

(4.15)

for the integral action.
Consider also the following assumption

Assumption 4. The derivative of the elements of the vector of perturbations ρ in system (1.10)
is assumed to be bounded by

|ρ̇i| ≤ Lρi ||x||
r−1,n1+2

r−,1 .

Likewise, the components of the vector of uncertainties are bounded by

|µi,j| ≤ Lµi,j min

(
||x||r

−
i,j+1

r−,1 , ||x||r
+
i,j+1

r+,1

)
So, using the technique proposed in [3], the following theorem can be obtained:

Theorem 10. Select a homogeneity degree d ∈ [−1, 0) and consider the system (1.10), a positive
homogeneity degree d+ > 0 and consider the system (1.10) where Assumptions 1 and 4. Then
the control law

u =(1− θ)σ+
n + θν̄−1 + z,

ż =− (1− θ)k+
I1σ

+
I − θk

−
I1σ
−
I ,

θ =

{
0, ||x||r+,1 > 1

1, ||x||r+,1 ≤ 1 ∪ θ = 1

(4.16)

stabilizes the origin of system (1.10) in fixed-time despite the uncertainties g̃, the uncertain-
ties vector µ with maxi=1,..,m

(
maxj=1,..,ni

(
Lµi,j

))
small enough and the perturbation vector

ρ, for any k+
Ii,2

> 0, any k+
Ii,j ∈ R, for j = 3, ..., ni, any k−Ii,j ∈ R, for j = 2, ..., ni,

appropriate gains k+
i,j, k

−
i,j,, for j = 1, ..., ni − 1, gains k+

i,ni
, k−i,ni large enough and k+

Ii,1
>

max

(
1, (ki,1)

−
ri,ni+2

ri,ni+1
(
kIi,2

)−1
)
Lρi, k

−
Ii,1

> Lρi sufficiently small, for i = 1, ...,m. 4

Remark 3. It is important to stress that the controller with positive homogeneity degree can
dominate the same perturbation of a controller with negative homogeneity degree if the states are

out of the unit homogeneous sphere ||x||
r+1,n1+2

r+,1 = 1. Therefore, the most important bound for the

perturbation ρ depends mainly on the homogeneous norm ||x||
r+1,n1+2

r+,1 . However, this cannot be
applied for the uncertainties so that their bounds depend on the minimum of both homogeneous
norms.

Theorem 10 presents a controller which is able to stabilize the origin of system (1.10) in
FxT. This property implies that the trajectories converge to origin before a time T independent
of the initial conditions. This controller starts with the positive homogeneous controller (4.3),
and after reaching the unit homogeneous sphere ||x||r+,2 ≤ 1 there is a single switching to the
controller (3.3). As a result of using this strategy, the proof is a simple consequence of the
stability of each controller in an independent way.
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Remark 4. Note that a similar result can be obtained using any other negative homogeneous
IC as the controller that is presented in [52]. Actually, this controller was used in [34] for
controlling a SISO system of order 3. Therefore, Theorem 10 can be seen as an extension of
this result for arbitrary order.

Simulation Results

In this subsection, the behaviour of the integral controller (4.16) is illustrated. In order to do
this, consider the same academic example as in previous section. This system can be written
as

ẋ =


ẋ1,1

ẋ2,1

ẋ2,2

ẋ3,1

ẋ3,2

ẋ3,3

 =Ax+B (u+ ρ) + µ

y =

x1,1

x2,1

x3,1

 .

(4.17)

where

A =


0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

 , B =


10 (1 + 0.5 sin(t)) −5 (1 + 0.5 sin(t)) 3 (1 + 0.5 sin(t))

0 0 0
2 (3− cos(t)) 7 (3− cos(t)) 3 (3− cos(t))

0 0 0
0 0 0

2 (2 + sin(t)) 2 (2 + sin(t)) 8 (2 + sin(t))

 .

The decoupling matrix G corresponds to

G = ∆GḠ = diag (1 + 0.5 sin(t), 3− cos(t), 2 + sin(t))

10 −5 3
2 7 3
2 2 8


whose determinant is greater than zero for all t > 0. This matrix is assumed to be unknown.
However, its nominal part Ḡ is known.

The control law is designed to be homogeneous with homogeneity degree 1 and this can be
written as

u = Ḡ−1

v1

v2

v3

 (4.18)
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and the closed-loop system can be written as follows

ẋ =



0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

x+



1 + 0.5 sin(t) 0 0
0 0 0
0 3− cos(t) 0
0 0 0
0 0 0
0 0 2 + sin(t)


u1

u2

u3

+ µ̃1

+ µ2

y =

x1,1

x2,1

x3,1

 .
(4.19)

where

µ̃1 =G̃µ1,

v1 =(1− θ)v+
1 + θv−1 + z1, ż1 = (1− θ)ż+

1 + θż−1
v2 =(1− θ)v+

2 + θv−2 + z2, ż2 = (1− θ)ż+
2 + θż−2

v3 =(1− θ)v+
3 + θv−3 + z3, ż3 = (1− θ)ż+

3 + θż−3

v+
1 =− k+

1,1 dx1,1c
1

1−−d+ , ż+
1 = −k+

I1,1
dx1,1c

1+d+

1−d+

v+
2 =− k+

2,2 dx2,2c
1

1−d+ − k+
2,2k

+
2,1

1
1−d+ dx2,1c

1
1−2d+ ,

ż+
2 =− k+

I2,1

[
dx2,1c

1+d+

1−2d+ + k+
I2,2
dx2,2c

1+d+

1−d+

]
v+

3 =− k+
3,3 dx3,3c

1
1−d+ − k+

3,3k
+
3,2

1
1−d+ dx3,2c

1
1−2d+ − k+

3,3k
+
3,2

1
1−d+ k+

3,1

1
1−2d+ dx3,1c

1
1−3d+ ,

ż+
3 =− k+

I3,1

⌈
dx3,1c

1+d+

1−3d+ + k+
I3,2
dx3,2c

1+d+

1−2d+ + k+
I3,3
dx3,3c

1+d+

1−d+

⌋
v−1 =− k−1,1 dx1,1c

1
1−d− ,

ż−1 =− k−I1,1 dx1,1c
1+d−
1−d−

v−2 =− k−2,2
⌈
x2,1 + k−2,1

− 1−2d−
1−d− dx2,2c

1−2d−
1−d−

⌋ 1
1−2d−

,

ż−2 =− k−I2,1

⌈
x2,1 + k−I2,2 dx2,2c

1−2d−
1−d−

⌋ 1+d−
1−2d−

v−3 =− k−3,3

x3,1 + k−3,1
− 1−3d−

1−2d−

⌈
dx2,2c

α−3,2
1−2d− + k−3,2

−
α−3,2
1−d− dx3,3c

α−3,2
1−d−

⌋ 1−3d−

α−3,2


1

1−3d−

,

ż−3 =− k−I3,1
⌈
x3,1 + k−I3,2 dx3,2c

1−3d−
1−2d− + k−I3,3 dx3,3c

1−3d−
1−d−

⌋ 1+d−
1−3d−

θ =

{
0, ||x||r+,1 > 1

1, ||x||r+,1 ≤ 1 ∪ θ = 1

For simulations, a fourth-order Runge-Kutta method of fixed step is used as integration
method. The sampling time was 1 × 10−4[s]. Four initial conditions x(0) = n(1, 1, 1, 1, 1, 1),
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where n = 1, 10, 100, 1000, are considered. The non-vanishing matching perturbation is given
by

ρ̄ =

0.5 + 0.05 sin(t)
0.25 + 0.1 cos(t)

0.1t

 .

which is time-varying and the third component is a ramp. The vanishing non matched uncer-
tainties µ is state-dependent and is given for the simulation as

µ(x) =


µ1,1

µ2,1

µ2,2

µ3,1

µ3,2

µ3,3

 =


0

0.2x1,1 + 0.1x2,2 + 0.15x3,3

0
0.2x2,1 + 0.25x3,2

0.3x1,1 + 0.2x2,2

0

 .

The negative homogeneity degree is chosen as d− = −1, which corresponds to the discon-
tinuous case. On the other hand, the positive homogeneity degree is chosen as d+ = 0.2. the
gains were chosen as in previous sections, i. e.

k+
1,1 = k+

2,1 = k3,1 = 2, k+
2,2 = k+

3,2 = 5, k+
3,3 = 9

k+
I1,1

= k+
I2,1

= k+
I3,1

= 1, k+
I2,2

= k+
I3,2

= 0.5, k+
I3,3

= 0,

k−1,1 = k−2,1 = k−3,1 = 1.5, k−2,2 = k3,2 = 3, k−3,3 =, α−3,2 = r−3,1 − d−

k−I1,1 = k−I2,1 = k−I3,1 = 1, k−I2,2 = k−I3,2 = k−I3,3 = 0,

Figure 3.1 shows the states of the closed-loop system, using the FxT integral controller for
the three initial conditions. It is easy to see that the trajectories are brought to origin for all
initial conditions.

Figure 4.7 presents the control signals generated by the integral controller. Note that in
steady-state, they all tend to converge to the inverse of the perturbation, since they aim to
compensate for it.

In figure 3.3, the integral errors, which are defined as zi + µ1,i, are presented. Again, it
is possible to see that these integral errors tend to zero. This means that perturbations are
rejected by the integral controller.

Finally, fig 4.9, the euclidean norm ||x||2 is shown. It is easy to see that the this norm
converges to zero for all initial condition. Note that time between the first initial condition and
the second one is bigger than the time between second initial condition and the third and so
on, which is expected in fixed-time controllers. This can be verified in Figure 4.10, where the
time for the fixed-time controller tends to a constant time, meanwhile the convergence time for
discontinuous integral controller increases a lot. This time is even worse than the convergence
time that is obtain with a linear controller.

57



(a) Initial condition with n = 1. (b) Initial condition with n = 10.

(c) Initial condition with n = 100. (d) Initial condition with n = 1000.

Figure 4.6: Time evolution of all states for Integral controller with the three different initial
conditions.
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(a) Input signal u1. (b) Input signal u2.

(c) Input signal u3.

Figure 4.7: Time evolution of the three control signals u1 (4.7a), u2 (4.7b) and u3 (4.7c),
generated by the Integral controller for the four initial conditions.

59



(a) First integral error signal z1 + µ1, 1. (b) Second integral error signal z2 + µ1, 2.

(c) Third integral error signal z3 + µ1, 3.

Figure 4.8: Time evolution of the three integral error signals z+µ1, i.e. z1+µ1, 1 (4.8a), z2+µ1, 2

(4.8b), and z3 + µ1, 3 (4.8c), for the four initial conditions.
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Figure 4.9: Time evolution of ||x||2 for the four initial conditions

Figure 4.10: Convergence time to the ball ||x||2 = 1.
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Chapter 5

Integral Control of Homogeneous
Systems with Implicitely Defined
Lyapunov Functions

In this chapter, a Homogeneous IC is presented for well-known MIMO systems. In contrast to
controllers that are presented in Chapters 3 and 4, these controllers are designed by using an
implicit Lyapunov function.

In this chapter, Assumption 1 is replaced by the following one

Assumption 5. The matrix B is assumed to be constant and completely known.

The controller is considered to have the following form

u = v1(x) + z ,

ż = v2(x) ,
(5.1)

which resembles the classical PI-controller. This controller is composed of a (continuous) state
feedback u1, which is able to stabilize the origin of the nominal system in the absence of the
non-vanishing perturbation ρ, and an integral term u2, which is allowed to be discontinuous,
and with the aim to estimate and compensate the perturbation term ρ. Note that even when
the function u2 is discontinuous, the control signal u is continuous, since it is the addition of
the signal generated by the continuous state feedback u1 and the time integral of the possible
discontinuous signal u2. This fact may help in reducing the chattering effect.

Due to the multiple properties of homogeneous systems, as e.g. achieving in a simple form
finite-time stability and making use of a powerful mathematical apparatus, the controller (5.1)
is designed such that the closed-loop system (without perturbations) is homogeneous of degree
ν, for positive or negative values of ν. The weights of the vectors (x1, ..., xm) are given by
ri = (ri, 1, ..., ri, ni), for i = 1, ...,m, with components ri, j+1 = ri, j + ν, j = 1, ..., ni. The vector
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of weights can be written as r = [r1, ..., rm], and the dilation matrix is given by

Λr(λ) = diag{λr} =

diag{λr1} · · · 0
...

. . .
...

0 · · · diag{λrm}

 =



λr1, 1 · · · 0 · · · 0 · · · 0
...

. . .
... · · · ...

. . .
...

0 · · · λr1, n1 · · · 0 · · · 0
...

...
...

. . .
...

...
...

0 · · · 0 · · · λrm, 1 · · · 0
...

. . .
... · · · ...

. . .
...

0 · · · 0 · · · 0 · · · λrm,nm


.

Fix (without loss of generality) all the weights of the components of vector z to be equal to
1, i.e. rz, i = rz = 1 for i = 1, · · · , m. From their relationship with the weights of x, given by
rz, i = ri, ni + ν, it can be conclude that

rz, i = rz = 1 , ri, ni = 1− ν , ri, j = 1− (ni + 1− j) ν , −1 ≤ ν <
1

maxni
, (5.2)

for i = 1, · · · , m , and j = 1, · · · , ni.
For homogeneity of the closed-loop system, function u1 requires to be homogeneous of degree

1, while function u2 needs to be homogeneous of degree 1+ν. The homogeneity degree ν of the
closed-loop system can be selected in the interval given in (5.2), because of the non negativity
of the weights.

On the one extreme of the interval, when ν = −1, function u2 is discontinuous, with homo-
geneity degree zero. In this case the right-hand side of the closed-loop system is discontinuous,
the trajectories are to be understood in the sense of Filippov [13], and convergence is in finite-
time (recall Lemma 3). A linear state feedback with linear integral control has homogeneity
degree ν = 0, the right-hand-side is globally Lipschitz, and convergence is exponential. When
ν > 0 the right-hand side of the closed-loop system is locally but not globally Lipschitz and
convergence is rational.

5.1 Control Design

First some value of the homogeneity degree ν in the interval −1 ≤ ν < 1
maxni

, which determines
the corresponding weights, is selected. By solving the following matrix inequalities, for some
ε > 0 and some positive definite and constant matrix R ∈ Rn×n > 0,

HrP + PHr < 0 , Hr = −diag {ri}
P (A−BK) + (A−BK)T P ≤ ε (HrP + PHr)−R , ε > 0 , R > 0 , (5.3)

a constant, symmetric and positive definite matrix P = P T ∈ Rn×n and a constant matrix
K ∈ Rm×n are found. It is shown in [48, 49] that inequalities (5.3) have always a solution
P > 0 and K for any ν. Moreover, these matrix inequalities can be transformed to an LMI,
which is manageable by using standard software. Furthermore, given P , it is also shown in
[48, 49] that the equation

Q (V, x) , xTΛr

(
V −1

)
PΛr

(
V −1

)
x− 1 = 0 , (5.4)
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defines implicitly a unique, continuous, homogeneous of degree 1, radially unbounded and
positive definite function V : Rn → R+, such that Q (V (x), x) = 0 (see Theorem 7). Assume
now that the perturbations ρ and µ satisfy globally the following conditions:∣∣∣∣∣∣∣∣dρdt

∣∣∣∣∣∣∣∣
∞

= ||ρ̇||∞ ≤ D1 +D2‖x‖1+ν
r, p , D1, D2 ≥ 0 (5.5)

µTΛr

(
V −1

)
PR−1PΛr

(
V −1

)
µ ≤ βεV 2νxTΛr

(
V −1

)
(−HrP − PHr) Λr

(
V −1

)
x , 0 ≤ β < 1 .

(5.6)

Define also the following function (which is the partial derivative of Q with respect to V )

QV (V, x) := V −1xTΛr

(
V −1

)
(HrP + PHr) Λr

(
V −1

)
x .

Therefore, the following theorem can be stated

Theorem 11. Consider the system (1.10) and the homogeneous integral controller

u = u1(x) + z = −V (x)KΛr

(
V −1(x)

)
x+ z ,

ż = u2(x) = γ
V ν(x)

QV (V (x) , x)
BTPΛr

(
V −1(x)

)
x , γ > 0 ,

(5.7)

for some −1 ≤ ν < 1
maxni

. Let ζ := z + ρ(t, x, η). Then for any β < 1, any D2 ≥ 0 and a
sufficiently large γ > 0, the point (x, ζ) = 0 of the closed-loop system is

1. GFTS if ν = −1, D1 > 0 and D1+D2

γ
sufficiently small.

2. GFTS if −1 < ν < 0 and D1 = 0.

3. Globally Exponentially Stable if ν = 0 and D1 = 0.

4. Rationally stable if 0 < ν < 1
maxni

and D1 = 0.

4

The proof of this result is deferred until Section 5.4. To show the convergence of the
closed-loop with the integral controller (5.7) a (strong) Lyapunov Function will be used, which
combines the implicit Lyapunov function V obtained from (5.4) with an explicit term depending
on the integral variable. The devised Lyapunov Function has the form (see (5.16) below)

V (x, z) = θ

(
1

2
V 2 (x) +

1

γ
zT z

) 3−ν
2

− 1

γ
[x1, n1 , · · · , xm,nm ] dzc2 , γ > 0 , θ > 0 . (5.8)

Using this Lyapunov function and Lemma 3 (see the proof in Section 5.4) it is possible to
estimate for ν 6= 0 the transit time

1. ν = −1 and D1 > 0 or −1 < ν < 0 and D1 = 0: The convergence time from an initial
condition (x0, ζ0), where ζ0 = z0 + ρ(0) includes the initial value of the perturbation, is
upper bounded by

Ti→0 (x0, ζ0) =
3− ν
|ν| η

V
|ν|
3−ν (x0, ζ0) ,

for some η > 0 depending on the parameters of the problem.
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2. 0 < ν < 1
maxni

and D1 = 0: The transit time from an arbitrarily large initial condition
(x0, ζ0)→∞ to a final condition different from zero (xf , ζf ) 6= 0, is upper bounded by

T∞→f (xf , ζf ) =
3− ν
νη

1

V
ν

3−ν (xf , ζf )
,

for some η > 0 depending on the parameters of the problem.

In conclusion, for ν < 0 the convergence to zero from an arbitrary initial condition is in finite-
time. For ν > 0 the convergence to zero happens only asymptotically, but the convergence to
an, e.g., small ball around the origin from ”infinity” occurs in finite-time.

Note from the Theorem 11 that (assuming for simplicity that D2 = 0) if D1 > 0, i.e. the
perturbation ρ is not a constant, then convergence to zero will be only possible if ν = −1,
i.e. the controller u2 is discontinuous. From Item (1) of the Theorem 11 it follows that a
perturbation of any size D1 > 0 can be fully compensated in this case by choosing a sufficiently
large integral gain γ.

However, if ν > −1 and D1 > 0 the trajectories of the system are globally uniformly
ultimately bounded with bound b, that is, (see [23]) for every initial condition there is a finite
time T (independent of the initial time) such that the trajectories will enter a neighborhood of
zero of radius b and remain there for all future times. This is also equivalent to saying that for
the closed-loop system the map ρ̇→ (x, ζ) is ISS. This is basically the content of the following
Lemma, which is also proven in Section 5.4. The first part of this result can be derived from
[7].

Lemma 6. Consider the closed-loop system of Theorem 11 under the same hypothesis.

(i) If −1 < ν < 1
maxni

and D1 > 0 the closed-loop system is Input-to-State Stable (ISS) from
the input ρ̇ to the state (x, ζ).

(ii) Let b be the ultimate bound. If D1+D2

γ
is sufficiently small, then

lim
ν→−1+

b = 0 .

The second item in the Lemma 6 is interesting, since it shows that the nearer the homogene-
ity degree ν is to the discontinuous case ν = −1, the smaller is also the effect of the perturbation
ρ when it is not constant. This is, in some sense, intuitively appealing. Note however, that for
this to be true it is required to have the ratio D1+D2

γ
, between the size of ρ̇ and the integral

gain γ, small. If this is not the case, then the conclusion is false. Note that smallness of D1+D2

γ

can always be achieved by selecting γ sufficiently large.

5.2 Discussion of the results

Some observations with respect to the results are presented below.
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� For the implementation of the controller (5.7) it is necessary to find the actual value of
V (x) by solving the (implicit) equation Q(V, x) = 0. This can be hardly done analytically,
so that it has to be obtained numerically on-line. A numerical procedure is proposed in
[48].

� The asymptotic stability of the closed-loop, and moreover the existence of a smooth and
strong Lyapunov Function[10], implies that the asymptotic stability is robust under rather
general perturbations to the vector field, as e.g. small discretization errors, small delays
in states or small noises acting on the variables. For homogeneous systems this robustness
has some interesting forms (see e.g. [26, 28] and [7]). In particular, for the implementation
of the control law derived using the implicit Lyapunov function method, it is shown in
[48, 49] that the discretization and numerical errors induced by the on-line solution of
the implicit equation Q(V, x) = 0 does not destroy the stability properties, and ultimate
boundedness of the solutions is attained.

� For −1 < ν < 1
maxni

both control functions u1 and u2 in (5.7) are continuous everywhere.
However, for ν = −1 although u1 is continuous everywhere, u2 is continuous for x ∈
Rn \ {0}. At x = 0 it is discontinuous, but its value is bounded (see remark 13 in [49,
Remark 13]). This kind of controllers is usually named Quasi-Continuous controllers in
the High-Order Sliding-Mode literature [27, 30], in contrast to the Discontinuous ones,
which have discontinuities also outside from x = 0.

� Note that in (5.5) the bound can also depend on z, i.e. ||ρ̇||∞ ≤ D1 + D2‖(x, z)‖1+ν
r, p ,

without any change in the proof. Moreover, when ν = −1 the bound becomes simply
||ρ̇||∞ ≤ D1 +D2.

� The matched perturbation, i.e. the perturbation entering through the same channel as
the control variable, has two terms: the components µi,ni for i = 1, ...,m of the vector
µ, which is vanishing at x = 0, and ρ, which is non vanishing. If ρ depends only on an
external perturbation, what it can be represented as an exogenous time-varying signal
ρ(t), then it has to be constant (i.e. ρ̇(t) ≡ 0) for a continuous integral term (ν > −1),
but it can be an arbitrary Lipschitz continuous signal, i.e. |ρ̇(t)| ≤ D1 + D2, for the
discontinuous integral term (ν = −1). In this latter case the exogenous signal ρ(t) can be
time-varying and it does not require to be bounded, but its derivative has to be bounded.
This is a much larger class of perturbations that can be fully compensated. When ρ is
also a function of the states x, ρ̇ may also depend on u and z. If condition (5.5) is satisfied
only locally instead of globally, then the stability result will be also local.

� The bound (5.6) for µ imposes to each of the components of the vector µ to satisfy

|µi, j(t, x, η)| ≤ δi, j‖x‖ri, j+νr, p , (5.9)

for some δi, j ≥ 0, and where the weights ri, j are given in (5.2). This requires µi, j to be
vanishing when x = 0, and to grow with the homogeneity degree corresponding to the
variable xi, j+1, i.e. of the component of the vector field of its channel. The problem of
how to check the implicitly defined inequality (5.6) has been already addressed in the
paper [49, Proposition 16]. Likewise, an alternative method is provided in the following
paragraph.
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� Since (5.6) depends on the value of the function V , which can be determined numerically
on-line, the actual value of the allowed size of δi, j in (5.9) can be calculated in the following
form. First, note that

α1 ‖x‖r, p ≤ V ≤ α2 ‖x‖r, p , (5.10)

where α1 = min‖x‖r, p=1 V (x) can be readily obtained from V . The term on the left-hand

side of (5.6) satisfies

µTΛr

(
V −1

)
PR−1PΛr

(
V −1

)
µ ≤ λmax

(
PR−1P

) m∑
i=1

ni∑
j=1

( µi,j
V ri,j

)2

,

while the one on the right-hand side fulfills

xTΛr

(
V −1

)
(−HrP − PHr) Λr

(
V −1

)
x ≥

λmin (−HrP − PHr)

λmax (P )
xTΛr

(
V −1

)
PΛr

(
V −1

)
x =

λmin (−HrP − PHr)

λmax (P )
, (5.11)

where the latter equality follows since xTΛr (V −1)PΛr (V −1)x = 1. Using the two previ-
ous inequalities, (5.6) is satisfied if

m∑
i=1

ni∑
j=1

( µi,j
V ri,j+ν

)2

≤ λmin (−HrP − PHr)

λmax (P )λmax (PR−1P )
βε .

Using (5.9) and (5.10) it follows that, for (5.6) to be satisfied, it suffices to verify

m∑
i=1

ni∑
j=1

(
δi,j

α
ri,j+ν
1

)2

≤ λmin (−HrP − PHr)

λmax (P )λmax (PR−1P )
βε . (5.12)

Note that this implies that asymptotic stability is always preserved for sufficiently small
values of δi, j.

� In the proof of the Theorem 11 it is also shown that the integral variable z converges
(nearly fixed-time, exponentially or in finite-time) to the value of ρ if D1 = 0 for −1 <
ν < 1

maxni
, or when D1 > 0 if ν = −1. This shows, as it is well-known for the classical

case, that the integral part of the controller reconstructs the perturbation and thus is able
to fully compensate for it.

� For this controller, if stability is achieved for some value of the integral gain γ, say γ∗,
the stability is preserved for any γ ≥ γ∗, without changing the gain K. This property
can be understood from the passivity interpretation given in the proof of the Theorem in
Section 5.4. The controller proposed in [24] posses this property, but it is not shared by
other integral controllers presented in the literature as e.g. [39, 35].

� In general, the gain selection here is easier than for the integral controllers designed using
explicit Lyapunov functions, as e.g. the ones presented in [39, 15].

� There are some differences between the controller (5.7) and other integral controllers
presented e.g. in [39, 33, 35, 40]:
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(i) In (5.7) the integral action u2 depends on the full state x, while u2 in [39, 33, 35]
can be a function of x1 alone, or x1 and a homogeneous function of any other states.

(ii) For ν = −1 the integral controller in (5.7) is discontinuous only at x = 0, so that
it is of the quasi-continuous form. However, u2 in [39, 33] can be discontinuous on
homogeneous varieties larger than the set {x = 0}.

(iv) Since the implicit Lyapunov function V is not smooth at x = 0, the Lyapunov
function (5.8) for (5.7) is not smooth. In contrast, the Lyapunov functions for the
controllers in [39, 33, 35] are smooth. Moreover, the basic idea of the proof is
completely different, and the specific properties are different.

5.3 Simulation Example

In this section the behaviour of the integral controllers of different homogeneity degrees de-
veloped in the paper is illustrated. For this, a simulation study is performed on the following
academic example

ẋ =


ẋ1,1

ẋ2,1

ẋ2,2

ẋ3,1

ẋ3,2

ẋ3,3

 =


0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

x+


10 −5 3
0 0 0
2 7 3
0 0 0
0 0 0
2 2 8

 (u+ ρ) + µ

y =

x1,1

x2,1

x3,1

 .

(5.13)

This is a MIMO system, having 6 states, 3 control inputs and 3 outputs. It is assumed that is
already in the normal form. Although the matrix B is not in the Brunovsky form, it can be
easily transformed to it by just multiplying the control input by an invertible matrix M , i.e.
v = Mu. The subsystems have relative degrees 1, 2 and 3, respectively. For the simulation,
non-vanishing matching perturbation ρ is given by

ρ(t) =

0.5 + 0.05 sin(t)
0.25 + 0.1 cos(t)

0.1t

 .

ρ is time-varying and the third component is a ramp. The vanishing non matched perturbation
µ is state-dependent and is given for the simulation as

µ(x) =


µ1,1

µ2,1

µ2,2

µ3,1

µ3,2

µ3,3

 =



0.3 dx1,1c
1

r1,1 + 0.2 dx2,2c
1

r2,2

0.2 dx2,1c
r2,2
r2,1 + 0.1x2,2

0.2 dx1,1c
1

r1,1 + 0.2 dx2,1c
1

r2,1

0.5 dx3,1c
r3,2
r3,1

0.1 dx3,1c
r3,3
r3,1 + 0.1x3,3

0.3 dx3,2c
1

r3,2


.
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Note that the powers correspond to the weights of homogeneity associated to the variables.
This is chosen in this way, because the growth of the vanishing perturbation which can be
compensated depends on the homogeneity degree of the integral control designed.

4 integral controllers are designed, given by equation (5.7), with respective homogeneity
degrees ν = {−1, −1

2
, 0, 1

4
}. In all cases, the Lyapunov matrix P and the state-feedback gain

matrix K are obtained by solving an LMI problem derived from equation (5.3). For this,
YALMIP of MATLAB� with the SeDuMi solver is used. A value of ε = 0.5 was used. The
following matrices are obtained, for each of the controllers

PL =



0.1653 0 0 0 0 0
0 0.5053 0.1685 0 0 0
0 0.1685 0.1685 0 0 0
0 0 0 1.2731 1.0042 0.2162
0 0 0 1.0042 1.1071 0.2677
0 0 0 0.2162 0.2677 0.1338

 , K
T
L =



−1.4613 −2.5934 0.8822
2.3072 0.2229 −1.0588
2.2188 0.0806 −1.0011
0.1116 0.3246 0.6270
0.0965 0.3744 0.8683
0.1136 0.2308 0.2890

 ,

PH =



0.0327 0 0 0 0 0
0 0.3230 0.0680 0 0 0
0 0.0680 0.0340 0 0 0
0 0 0 5.0131 1.9358 0.2048
0 0 0 1.9358 0.9107 0.1122
0 0 0 0.2048 0.1122 0.0249

 , K
T
H =



1.3902 1.0852 −2.3251
1.3689 2.2945 −3.0996
0.5738 0.9693 −1.4777
8.6435 3.0146 4.7366
4.7411 1.6549 2.5864
1.1533 0.4343 0.3531

 ,

PD =



0.0094 0 0 0 0 0
0 0.1921 0.0285 0 0 0
0 0.0285 0.0095 0 0 0
0 0 0 8.0861 1.9738 0.1345
0 0 0 1.9738 0.5780 0.0457
0 0 0 0.1345 0.0457 0.0065

 , K
T
D =



−1.5880 −5.2796 −2.8393
17.5418 1.0609 −7.4199
5.6924 0.1046 −2.3723
42.9179 −6.2731 20.9095
14.6293 −2.1035 7.0112
2.2693 −0.1809 0.6029

 ,

PPH =



0.3411 0 0 0 0 0
0 0.4060 0.1709 0 0 0
0 0.1709 0.3419 0 0 0
0 0 0 0.1597 0.1778 0.0817
0 0 0 0.1778 0.6238 0.2103
0 0 0 0.0817 0.2103 0.2804

 , K
T
PH =



1.1855 1.3700 −1.4182
−0.2230 0.2721 −0.0904
−0.5456 0.3841 −0.1159
0.1363 −0.0087 0.0292
0.2764 −0.0720 0.2400
0.4796 −0.0219 0.0731

 .

Subindex L stands for the linear integral controller (with homogeneity degree ν = 0), H
represents the homogeneous continuous controller (with homogeneity degree ν = −1

2
), D cor-

responds to discontinuous case (with homogeneity degree ν = −1), while PH symbolize the
integral controller with positive homogeneity degree (ν = 1

4
).

As integration method for the simulation, a fourth-order Runge-Kutta method of fixed
step is used. The sampling time was 1 × 10−5[s]. In all cases an integral gain of γ = 5 is
implemented. During the simulation, the actual value of the (implicit) Lyapunov function is
obtained numerically on-line using the method presented in [48].

The simulation results are organized in two groups.

(i) Figures 5.1 to 5.3, present the results for the integral controllers L, H and D. They
illustrate mainly the behaviour in steady-state, since negative homogeneity degrees are
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particularly good performing near the equilibrium point. In particular, it is emphasized
the high precision of the discontinuous controller D, despite of time-varying perturbations.

For these simulations a small initial condition x0 = x(0) =
[
0.2 0.2 0 0.2 0 0

]T
is

selected.

Figure 5.1 contains the time behaviour of the states for the linear L (Figure 5.1a), the
homogeneous H (Figure 5.1b) and the discontinuous D (Figure 5.1c) integral controllers,
respectively. As expected, the steady-state behaviour of the discontinuous D controller is
much better, i.e. the error is smaller, than that of the homogeneous H and of the linear
L ones. Moreover, the smaller the homogeneity degree, the smaller also the final error.
Since the initial condition is small, it is also noticeable that the D controller converges
faster than the other ones.

(a) Homogeneity degree ν = 0. (b) Homogeneity degree ν = −1
2
.

(c) Homogeneity degree ν = −1.

Figure 5.1: Time evolution of all states for Integral controllers L (5.1a), H (5.1b) and D (5.1c)

Figure 5.2 shows the three control signals generated by the L, H and D integral con-
trollers. As is characteristic of the integral action, all are continuous. Note, moreover,
that in steady-state they all converge to the inverse of the perturbation, since they aim
to compensate for it. As shown in the previous figures, the lower the homogeneity degree,
the better is the compensation and the nearer the control signal is to the perturbation.

It has been shown in the main Theorem, that the signal z+ρ converges to zero. This is a
characteristic of the integral action, being able to estimate the non-vanishing perturbation
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(a) Input signal u1. (b) Input signal u2.

(c) Input signal u3.

Figure 5.2: Time evolution of the three control signals u1 (5.2a), u2 (5.2b) and u3 (5.2c),
generated by the Integral controllers L, H and D.

in order to counteract its influence in the system. The time evolution of z+ ρ is depicted
in Figure 5.3 for the three integral controllers L, H and D. Again, the discontinuous
controller D is able to force this signal to zero in finite-time, showing that it can estimate
exactly the perturbation, while the H and the L controllers are only capable to perform
an approximate estimation. Once again, the smaller the homogeneity degree the smaller
is also the estimation error.

(ii) Fig. 5.4 shows the behaviour of the PH integral controller, compared to the linear (L) and
the discontinuous (D) ones. Since a remarkable characteristic of controllers with positive
homogeneity degree is its high velocity of convergence for large initial conditions, a much
larger initial state x(0) = 3, 000× [1, 1, 1, 1, 1, 1] was selected. For these simulations, the
perturbations were eliminated, i.e. ρ = 0, µ = 0, since they are more relevant for the
steady-state behaviour.

Figure 5.4 presents the Euclidean norm ‖x (t) ‖2 of the states for the integral controller
with positive homogeneity degree PH. For comparison, the corresponding norms for the
linear L and the discontinuous D integral controllers are also shown. It is apparent that
the convergence velocity to a neighbourhood of the equilibrium for the PH controller is
much higher than that for the linear and the discontinuous controllers.
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(a) First integral error signal z1 + ρ1. (b) Second integral error signal z2 + ρ2.

(c) Third integral error signal z3 + ρ3.

Figure 5.3: Time evolution of the three integral error signals z + ρ, i.e. z1 + ρ1 (5.3a), z2 + ρ2

(5.3b), and z3 + ρ3 (5.3c), for the Integral controllers L, H and D.

Figure 5.4: Time evolution of the Euclidean norm ‖x (t) ‖2 of the states for the Integral con-
trollers L, PH and D.

5.4 Lyapunov Function

The proof of Theorem 11 is divided in two parts, including also Lemma 6, in three parts:
i) First the design of the state feedback controller u1 using the implicit Lyapunov function
method is considered. For this the matched perturbation ρ is assumed to be absent. ii) Then
the implicit Lyapunov function is completed with an extra (explicit) term to build a weak
Lyapunov Function to design the integral term u2. Since the previous weak Lyapunov function
does not allow to assert robustness with respect to e.g. perturbation ρ, the weak Lyapunov
function is completed with an extra cross-term in order to obtain a strong LF, which allows us
to assure robustness and the type of convergence.
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5.4.1 Design of the static feedback control u1(x) using an ILF

First, it is designed a state feedback controller u1(x) for the system

ẋ = Ax+Bu1(x) + µ(t, x, z) .

using the implicit Lyapunov function Method, developed in [48, 49]. The Lyapunov function
V is defined implicitly by equation (5.4), i.e.

Q (V, x) = xTΛr

(
V −1

)
PΛr

(
V −1

)
x− 1, P = P T > 0 .

Q satisfies all conditions C1-C5 of Theorem 7 the details are given in [48, 49]). The derivative
of Q with respect to time can be written as

Q̇ (V, x) = QV (V, x) V̇ +
∂Q (V, x)

∂x
(Ax+Bu1 + µ) = 0

where

QV (V, x) ,
∂Q (V, x)

∂V
= V −1xTΛr

(
V −1

)
(HrP + PHr) Λr

(
V −1

)
x ,

∂Q(V, x)

∂x
= 2xTΛr

(
V −1

)
PΛr

(
V −1

)
,

and Hr = −diag {ri}. By hypothesis HrP + PHr < 0, so that condition C4 in Theorem 7 is
satisfied, and the derivative V̇ can be obtained from Q̇ as follows

V̇ = −2 (QV (V, x))−1 xTΛr

(
V −1

)
PΛr

(
V −1

)
(Ax+Bu1 + µ) .

It can be easily shown that matrices A and B satisfy the following properties

λνΛr (λ)A = AΛr (λ) , Λr (λ)B = λ1−νB .

Using them in the previous expression of V̇ , V̇ can be written as

V̇ =− 2 (QV (V, x))−1 xTΛr

(
V −1

)
P
[
V νAΛr

(
V −1

)
x+ V −1+νBu1 + Λr

(
V −1

)
µ
]

=− (QV (V, x))−1 xTΛr

(
V −1

) [
V ν
(
PA+ ATP

)
Λr

(
V −1

)
x+ 2V −1+νPBu1 + 2PΛr

(
V −1

)
µ
]
.

Selecting the controller u1 as
u1 (x) = −V KΛr

(
V −1

)
x ,

the following derivative is obtained

V̇ = − (QV (V, x))−1

[
Λr (V −1)x
Λr (V −1)µ

]T [
V ν
(
P (A−BK) + (A−BK)T P

)
P

P 0

] [
Λr (V −1)x
Λr (V −1)µ

]
.

Assuming that the perturbation µ(t, x, z) satisfies the bound (5.6), which can be written as[
Λr (V −1)x
Λr (V −1)µ

]T [−βεV ν (HrP + PHr) 0
0 −V −νPR−1P

] [
Λr (V −1)x
Λr (V −1)µ

]
≥ 0 ,
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where 0 ≤ β < 1. Adding this inequality to the one of V̇ , the following bound is arrived

V̇ ≤ − (QV (V, x))−1

[
Λr
(
V −1

)
x

Λr
(
V −1

)
µ

]T [
V ν
(
P (A−BK) + (A−BK)T P − βε (HrP + PHr)

)
P

P −V −νPR−1P

] [
Λr
(
V −1

)
x

Λr
(
V −1

)
µ

]

Using Shur’s complement, it can be concluded that V̇ < 0 if

V ν
(
P (A−BK) + (A−BK)T P − βε (HrP + PHr) +R

)
≥ 0 .

And thus, condition (5.3), together with the definition of QV , implies that

V̇ ≤ −(1− β)εV ν (QV (V, x))−1 xTΛr

(
V −1

)
(HrP + PHr) Λr

(
V −1

)
x ≤ −(1− β)εV ν+1 .

5.4.2 Design of the dynamic control feedback u2(x) using an explicit
(control) Lyapunov Function

Consider now the full closed-loop system, where ζ = z + ρ(t, x, η) is defined as state variable,
which is the addition of the integral state z and the matched perturbation ρ. Since ρ is unknown,
this implies that the variable ζ is not available for feedback. Using as states (x, ζ) the dynamics
of the closed-loop system are given by

ẋ = Ax+B (u1 + ζ) + µ(t, x, η) ,

ζ̇ = u2(x) + d(t, x, η)

d(t, x, η) :=
d

dt
ρ(t, x, η) .

The perturbation d is the total time derivative of the matched perturbation ρ. According to
(5.5), it is assumed to be bounded as ||d||∞ ≤ D1 +D2‖x‖1+ν

r, p . Our aim in this section will be
to design u2(x).

Note first that a direct utilization of the implicit Lyapunov function method proposed in
[48, 49] is unfeasible for the design of a usable integral term u2(x), since the implicit Lyapunov
function method would lead to a controller as u2(x, ζ), and since ζ is not measurable, the
control would not be implementable. Moreover, a function u2 depending on (x, ζ) is not a
”true” integral action. For these reasons, it is necessary to combine the implicit Lyapunov
function V with some other (explicit) terms to arrive at a Lyapunov function appropriate for
the design of the integral controller. The following development is based on the idea used
in [41, 42] to obtain a Lyapunov function for the Super-Twisting algorithm, which has been
generalized to an arbitrary order in [24]. Since the implicit Lyapunov function V is not smooth
at x = 0, it leads to a non-smooth Lyapunov function. This technical issue does not cause any
serious problems with the proof, since the lack of differentiability can be overcome by using e.g.
the idea presented in [42] for the Super-Twisting (for more details see [40]). This argumentation
is not repeated in what follows.

5.4.3 A weak Lyapunov Function

First a homogeneous and smooth (except at x = 0) but weak Lyapunov function, whose homo-
geneity degree is 2rz = 2, for the integral control is constructed

W (x, ζ) =
1

2
V 2 (x) +

1

γ
ζT ζ , γ > 0 . (5.14)
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Using the results of the previous section for the function V and the perturbation µ, it is arrived
the following expression for its derivative

Ẇ ≤ V
{
−(1− β)εV 1+ν − 2V −1+ν (QV (V, x))−1 xTΛr

(
V −1

)
PBζ

}
+

2

γ
(u2 + d)T ζ

= −(1− β)εV 2+ν − 2V ν (QV (V, x))−1 xTΛr

(
V −1

)
PBζ +

2

γ
uT2 ζ +

2

γ
dT ζ .

Note that the first term is negative (in x), while the second one is a cross-term, without
definite sign. The third term depends on the selection of u2, and the last one is the effect of
the perturbation d. If the term due to the perturbation is omitted, Ẇ can be rendered at least
negative semi-definite by selecting u2(x) such that the cross-term is cancelled, i.e. with

u2 (x) = γV ν (QV (V, x))−1BTPΛr

(
V −1

)
x , (5.15)

where the parameter γ > 0 can be selected arbitrarily. With this selection, it is obtained

Ẇ ≤ −(1− β)εV 2+ν +
2

γ
dT ζ ,

which is negative semi-definite for d ≡ 0, and therefore W is a weak Lyapunov function. Using
the extended LaSalle’s invariance theorem, which is presented in [5, 46], the origin (x, ζ) = 0,
in the absence of perturbation d = 0, can be concluded to be GAS. For ν = 0 the convergence
is exponential, since the homogeneity degree is zero, while for ν < 0 the convergence is in
finite-time, due to negative homogeneity degree of the vector field, and for ν > 0 convergence
is nearly fixed-time, due to the positive homogeneity degree (see Corollary 3).

A Passivity Interpretation

The weak Lyapunov function (5.14) has a simple passivity interpretation: The system is a
negative feedback interconnection of two passive systems, subsystem x and subsystem ζ. Sub-
system x is a (strictly) passive system with V as storage function, input u1 and output u2, as
given in (5.15). Subsystem ζ is also passive, with storage function ζT ζ, input u2 and output ζ.
W is the storage function of the interconnected system.

5.4.4 A Strong Lyapunov Function

The weak Lyapunov function W does neither allow us to establish the robustness of the closed-
loop with respect to the perturbation d nor to estimate its convergence time, for example. It is
advantageous to have a strong Lyapunov function, i.e. one with a negative definite derivative,
instead of only a negative semi-definite one. In this section, a strong Lyapunov function is
obtained by adding a cross-term to W as

V (x, ζ) = θWα (x, ζ)− 1

γ
xTρ dζc

ω , γ > 0 , θ > 0 , α =
1 + ω − ν

2
, ω = 2 . (5.16)

Here, the vector xρ = (x1, n1 , · · · , xm,nm)T is composed of the ρi-th components of the state x,
with time derivative given by ẋρ = u1 + ζ + µ̄ and the vector µ̄ = (µ1, n1 , · · · , µm,nm) contains
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the ni-th components of the perturbation vector µ. Due to homogeneity, V can be proven to
be positive definite for θ > 0 sufficiently large.

Its time derivative along the closed-loop system is

V̇ (x, ζ, d) ≤ αθWα−1

(
−(1− β)εV 2+ν +

2

γ
dT ζ

)
− 1

γ
(u1(x) + ζ + µ̄)T dζcω

− 1

γ
ωxTρ diag

(
|ζ|ω−1

)
(u2 (x) + d)

= −W (x, ζ) +
(
2αθWα−1ζT − ωxTρ diag{|ζ|ω−1}

) 1

γ
d− 1

γ
µ̄T dζcω , (5.17)

where

W (x, ζ) , θα(1− β)εWα−1 (x, ζ)V 2+ν (x) +
1

γ
ωxTρ diag{|ζ|ω−1}u2 (x) +

1

γ
uT1 (x) dζcω +

1

γ
ζT dζcω .

Note that V (x, ζ) is homogeneous of degree δV = 1 + ω − ν, function W is homogeneous of
degree δW = 1 + ω, while the term

(
2αθWα−1ζT − ωxTρ diag{|ζ|ω−1}

)
is homogeneous of degree

δd = ω − ν. Note that δW = δd if ν = −1, i.e. when u2 (x) is a discontinuous function of
homogeneity degree 0.

The derivative of the Lyapunov function V in (5.17) has three terms. The second and third
ones depend on the perturbations d and µ, respectively. In absence of these perturbations, the
derivative of V is negative definite.

Lemma 7. W (x, ζ) > 0 for θ > 0 large enough.

Proof. Note first that, although function u2 is discontinuous at x = 0 for ν = −1, the function
W is continuous (and homogeneous). Recall the following well-known property of continuous
homogeneous functions (see e.g. [11, Lemma 12]):

Let η : Rn → R and ϕ : Rn → R+ be two continuous homogeneous functions, with weights
r = (r1, ..., rn) and degrees m, with ϕ(x) ≥ 0, such that it holds {x ∈ Rn\{0} : ϕ(x) = 0} ⊆
{x ∈ Rn\{0} : η(x) > 0}. Then, there exists a real number λ∗ such that, for all λ ≥ λ∗ for all
x ∈ Rn \ {0}, and some c > 0, η(x) + λϕ(x) > c ‖x‖mr, p .

The claim of the Lemma is a simple consequence of this property. The first term inW is non
negative and it vanishes only when x = 0. The value of W for x = 0 is W (0, ζ) = 1

γ
ζT dζcω,

which is positive for ζ 6= 0. And therefore W can be rendered positive definite selecting θ > 0
sufficiently large (for any γ > 0).

Due to homogeneity, there exist positive constants 0 < ηW < η̄W and ηd > 0 such that

ηWV
δV+ν

δV (x, ζ) ≤ W (x, ζ) ≤ η̄WV
δV+ν

δV (x, ζ) ,∣∣2αθWα−1ζT − ωxTρ diag{|ζ|ω−1}
∣∣ ≤ ηdV

δd
δV (x, ζ) .

Moreover, from inequality (5.6) it follows that each component µi, j, for i = 1, · · · , m,
j = 1, · · · , ni, of the vector µ is bounded by |µi, j| ≤ βεδV ri, j+ν , for some δ > 0. Since
ri, ni = 1− ν, this implies for the term µ̄T dζcω

|µ̄T dζcω | ≤ βεδ̄V
δV+ν

δV (x, ζ) ,
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for some δ̄ > 0. Besides, from inequality (5.5) it also follows that (for some η̃d > 0)∣∣∣∣(2αθWα−1ζT − ωxTρ diag{|ζ|ω−1}
) 1

γ
d

∣∣∣∣ ≤ 1

γ

(
ηdD1V

δd
δV (x, ζ) + η̃dD2V

δd+1+ν

δV (x, ζ)

)
.

Accordingly, if it is defined β̃ = βεδ̄ + η̃dD2, inequality (5.17) can be written as

V̇ (x, ζ) ≤ −
(
ηW −

1

γ
β̃

)
V

3
3−ν (x, ζ) + ηdV

2−ν
3−ν (x, ζ)

1

γ
D1 . (5.18)

Remark 5. Note that the solution to the scalar differential equation ξ̇ = −κξ
3

3−ν , with ξ ≥ 0
κ > 0 and −1 ≤ ν < 1

maxni
, is given by

ξ−
ν

3−ν (t) = ξ−
ν

3−ν (t0)− ν

ν − 3
κ(t− t0) , if ν 6= 0, or ξ(t) = exp(−κ(t− t0))ξ(t0) , if ν = 0 .

From these expressions, the transit time Ti→f to go from an initial value ξi to a final one ξf
can be calculated, for ν 6= 0, is given by

Ti→f =
ν − 3

νκ

(
ξ
− ν

3−ν
i − ξ−

ν
3−ν

f

)
.

If ν < 0 and ξf = 0, then Ti→0 = ν−3
νκ
ξ
− ν

3−ν
i is finite. In contrast, if ν > 0 and ξ0 → ∞, then

T∞→f = 3−ν
νκ
ξ
− ν

3−ν
f is finite. Note that this is related to the results of Corollary 3.

From inequality (5.18), it can be obtained the following conclusions:

1. In the absence of the non-vanishing part of the perturbation d, i.e. D1 ≡ 0, or equivalently,
if ρ is an arbitrary constant plus a term vanishing with the state x: the origin (x, ζ) = 0 is
Globally Asymptotically Stable (GAS) for any value of−1 ≤ ν < 1

maxni
if the perturbation

satisfies (5.6) with β̃
γ

sufficiently small, i.e. 0 ≤ β̃
γ
≤ ηW . This can be always achieved

selecting γ sufficiently large.

Using the comparison principle, the convergence time from an initial condition (x0, ζ0)
to the origin for ν < 0 can be obtained from (5.18) as

Ti→0 =
ν − 3

ν
(
ηW −

β̃
γ

)V− ν
3−ν (x0, ζ0) ,

or from an initial condition at infinity to a final condition (xf , ζf ) when ν > 0 to be

T∞→f =
3− ν

ν
(
ηW −

β̃
γ

)V− ν
3−ν (xf , ζf ) .

2. In presence of a non-vanishing time-varying matched perturbation ρ, i.e. D1 > 0, two
situations are considered, associated to the relation between the powers of V in (5.18):
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(a) ν = −1: In this case the two powers are equal, (5.18) becomes V̇ ≤ −
(
ηW −

β̃
γ
− ηd 1

γ
D1

)
V

3
4

and the origin (x, ζ) = 0 is Globally Finite-Time Stable if the perturbation is suffi-
ciently small (or γ sufficiently large), i.e.

1

γ
D1 <

ηW −
β̃
γ

ηd
. (5.19)

The convergence time from an initial condition is given by

Ti→0 =
4(

ηW −
β̃
γ
− ηd 1

γ
D1

)V 1
4 (x0, ζ0) .

(b) −1 < ν < 1
maxni

: In this case, the powers in (5.18) satisfy 2−ν
3−ν <

3
3−ν , so that the

term due to the perturbation d dominates near the origin (x, ζ) = 0 and V̇ can be
positive in a neighborhood of zero. However, far from the origin the negative term
is dominating, and V̇ < 0 at points far from zero, i.e. choosing some 0 < λ < 1,

V̇ ≤ −λ

(
ηW −

β̃

γ

)
V

3
3−ν − (1− λ)

(
ηW −

β̃

γ

)
V

3
3−ν + ηdV

2−ν
3−ν

1

γ
D1

= −λ

(
ηW −

β̃

γ

)
V

3
3−ν −

[
(1− λ)

(
ηW −

β̃

γ

)
V

1+ν
3−ν − ηd

1

γ
D1

]
V

2−ν
3−ν

≤ −λ

(
ηW −

β̃

γ

)
V

3
3−ν , ∀V (x, ζ) ≥

 ηd
1
γ
D1

(1− λ)
(
ηW −

β̃
γ

)
 3−ν

1+ν

.

From this latter inequality, the trajectories of the closed-loop system can be con-
cluded to be ultimately and uniformly bounded, and that they will arrive at the set

V (x, ζ) ≤
(

ηd
1
γ
D1

(1−λ)
(
ηW−

β̃
γ

)
) 3−ν

1+ν

in finite-time, and they will remain there for all future

times. This is also equivalent to saying that the system is ISS with respect to d.

Note that when D1 satisfies (5.19), λ can be selected such that
ηd

1
γ
D1

(1−λ)
(
ηW−

β̃
γ

) < 1.

Since limν→−1+
3−ν
1+ν

= +∞, the final bound can be concluded for the trajectories

shrinks to zero as ν → −1, i.e. limν→−1+

(
ηd

1
γ
D1

(1−λ)
(
ηW−

β̃
γ

)
) 3−ν

1+ν

= 0.
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Chapter 6

Discussion of the Results and
Conclusions

6.1 Discussion of the Results

In this thesis, two ways to design homogeneous integral controllers are presented. The first one
uses explicitly defined Lyapunov functions and the second one uses implicitly defined Lyapunov
functions.

The controllers are designed with positive and negative homogeneity degree. However, there
are two important differences between both controllers.

1. In the controller that is obtained by using implicitly defined Lyapunov functions, the
integral action is depending on all states. Meanwhile, using explicitly defined Lyapunov
functions the integral action can be designed such the dynamics of integral action only
depends on the first state for negative homogeneity degree or first and second states for
positive homogeneity degree.

2. In the controller that is obtained by using explicitly defined Lyapunov functions, the can
deal with a diagonal uncertainty in the control matrix and the gains can be calculated
by the inequalities (3.5) and (??), which can be very hard to compute for high order
systems. Meanwhile, using implicitly defined Lyapunov functions, the control matrix
must be completely known and the gains can be calculated by solving the inequalities
(5.3), which is by far easier than the previous case.

The Sliding Mode (SM) controllers are

6.2 Conclusions

The homogeneity property is a useful tool to design controllers. This allows to design integral
homogeneous controllers with:

� negative homogeneity degree,

� homogeneity degree equals to zero and

� positive homogeneity degree.
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The controllers with negative homogeneity degree allow to get finite time stability, where
the trajectories converge to the origin. It is important to stress that this kind of controller are
better near to origin.

The controllers with homogeneity degree equals to zero are very similar to linear controllers.
This kind of controllers can obtain exponential stability so the trajectories converge exponen-
tially to origin, i. e. they converge at infinity.

The controllers with positive homogeneity degree allow to get rational stability, where the
trajectories do not converge to the origin. In contrast to controllers with negative homogeneity
degree, this kind of controller are better from the origin.

Combining a controller with positive homogeneity degree and another one with negative
homogeneity degree, the fixed-time stability can be obtained. This means that the trajectories
of the closed-loop system converge to origin before a time T , which does not depend on initial
conditions.

The integral controller can be designed by using the the implicit Lyapunov method or
building an explicit Lyapunov function. However, there is a main difference. This difference
appears in the dynamic part of the integral action. Using the implicit Lyapunov method this
dynamics depend on all states. Meanwhile, using an explicit Lyapunov function, the dynamic
of the integral action does not have to depend on the all states.
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