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Abstract

Traditional cognitive science has assumed that cognition only occurs inside of our

brains and has supported the idea that behavior is merely a product of internal neural

activity. Recent approaches to cognitive science, namely, “4E” cognition, have called

into question all these assumptions, by arguing that the basis of cognition spans over

brain, body, and environment. In this sense, social interaction can have an effect in

the neural and behavioral complexity of the interactive agents. In order to investigate

these proposals as proof of concepts, researchers have made use of agent-based modeling

to generate minimal cognitive models following an evolutionary robotics methodology

and a dynamical systems approach to cognition. Following this line, recent studies

demonstrated that social interaction increases the complexity of neural dynamics of

interactive agents, which cannot be achieved in isolation. Inspired in these previous

studies, here we present a scientific research compilation that in conjunction led to the

development of the first minimal cognitive model that investigates the consequences

of brain size reduction, in terms of neural complexity, in the evolutionary transitions

from solitary to social groups, as is the case of Neolithic humans and eusocial insects.

We proposed to investigate and compare neural complexity of smaller-brained (2-neuron

model) and bigger-brained (3-neuron model) agents in different levels of coupling (dyadic

interaction, isolation and in the presence of a ghost partner). To achieve this goal, we

divided our studies into three main stages: (1) smaller-brained agent couplings, from the

perspective of complex systems, by integrating agent-based modeling and social network

analysis for a better visualization of the interactions between these simple components,
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and, from a dynamical systems approach to cognition, by analyzing the state spaces of

their decoupled continuous-time recurrent neural networks to gain insights into their

intrinsic basins of attraction; (2) bigger-brained agent couplings, from the perspective

of evolutionary robotics, by creating a new condition of evolving agents with ghost

agents as a source of non-social stimulation; and (3) smaller-brained vs bigger-brained

agent couplings, from an evolutionary robotics methodology and a dynamical systems

approach to cognition, by following standard practices of nonlinear time series analysis

to determine and compare the embedding dimension of their evolved neural activity in

solitary and social conditions. In short, we found that smaller-brained social agents

can achieve comparable levels of neural complexity as bigger-brained solitary agents,

which suggests that smaller-brained social agents take advantage of their capacity for

interacting to enhance their intrinsic neural complexity, thus, allowing them to achieve

similar behavioral performance with smaller brains. Our results open the possibility to

test this hypothesis in novel experimental work with real social species, such as social

insects.
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1
Introduction

“ Science has explored the microcosmos and the macrocosmos; we have

a good sense of the lay of the land. The great unexplored frontier is

complexity.

”
Heinz Pagels, The Dreams of Reason

1.1 Background and Problem Statement

Social interaction is inherently rooted in our human nature. We, as social beings,

are constantly involved in interaction with others, either in dyads (pairs), smaller, or
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larger groups. For instance, when having a conversation, collaborating in different

activities at school or work, dancing, among many others (De Jaegher et al., 2010).

Undoubtedly, relying in others has brought us several benefits in different scales, from

satisfying our most basic survival needs to achieving collective goals. Similarly, other

social species have taken advantage of social interaction, such as social insects. Social

insects, also known as eusocial insects, such as ants, bees, termites, and wasps, are

self-organized systems that commonly live in densely populated groups, also known

as colonies. They display complex collective behavior, e.g. building nests, foraging,

task allocation, feeding the brood, among other collective tasks, that arise from local

interactions between their simple individuals, and between these individuals and their

environment (Bonabeau et al., 1999). As we can see from these examples, social inter-

action results crucial to profoundly understand these complex phenomena, however, it

has remained scientifically poorly understood (Candadai et al., 2019).

Traditional cognitive science has supported the idea that cognition only relies on

the brain and that behavior is just a product of internal neural activity. However,

alternative paradigms to cognitive science, namely embodied, embedded, extended, and

enactive cognition (“4E” cognition), also known in conjunction as embodied cognitive

science, has challenged those assumptions by claiming that the basis of cognition spans

over brain, body, and environment. In this sense, social interaction can play a role as

an enabler of cognition, thus, enhancing our individual capacities (De Jaegher et al.,

2010). Recently, researchers from this community demonstrated that social interaction

increases the complexity of the dynamics of neural activity of embodied agents and

revealed that this cannot be achieved on their own (Candadai et al., 2019).

Inspired in these previous studies, here we provide a scientific research compilation

that in conjunction aims to gain novel insights into the relationship between neural

complexity and sociality, more specifically, we focused on the development of the first

minimal cognitive model that investigates the consequences of brain size reduction,
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in terms of neural complexity, in the evolutionary transitions from solitary to social

groups, as evidence has shown for the case of Neolithic humans (Brown, 1987; Brown

and Maeda, 2004; Henneberg, 1988; Henneberg and Steyn, 1993) and some eusocial

insects, such as wasps (O’Donnell et al., 2015).

1.2 Hypothesis

In general, we focused on the role of brain size in generating neural complexity in

solitary and social conditions. Specifically, our hypothesis is the following:

"It is possible for social agents with a smaller neural network to exhibit at least

the same complexity of neural activity as a solitary agent with a larger neural

network".

1.3 Objectives

1.3.1 General objective

Investigate and compare neural complexity of smaller-brained (2-neuron model) and

bigger-brained (3-neuron model) agents in different levels of coupling (dyadic interac-

tion, isolation and in the presence of a ghost partner).

1.3.2 Specific objectives

• Integrate agent-based modeling and social network analysis for a better visualiza-

tion of the interactions and a better understanding of the emergent properties of

complex systems consisted of smaller-brained components.
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• Replicate and extend the Candadai et al. (2019) model to analyze the state spaces

of the decoupled continuous-time recurrent neural networks of interactive smaller-

brained agents to get clarity on their intrinsic complexity.

• Address two of the main limitations of the Candadai et al. (2019) model by: (1)

including one more neuron in the internal layer of the neural architecture to build

bigger-brained agents, and (2) creating a new condition in which we evolve agents

with a ghost agent as a source of non-social stimulation to see the effects of a

richer environment.

• Create the first minimal cognitive model that analyzes and compares the levels of

neural complexity of smaller-brained and bigger-brained agents evolved in solitary

and social conditions to gain novel insights into the consequences of brain size re-

duction in the evolutionary transitions from solitary to social species, particularly,

the cases of Neolithic humans and some eusocial insects, such as wasps.

1.4 Thesis organization

In order to achieve our general and specific objectives, we divided our studies into

three main stages:

1. Smaller-brained agent couplings (Chapter 2): In this first stage, we investigated

them from two main perspectives:

(1) From the perspective of complex systems, we present our conference research

paper entitled: Applying Social Network Analysis to Agent-Based Models: A Case

Study of Task Allocation in Swarm Robotics Inspired by Ant Foraging Behavior.

Here we integrated agent-based modeling (ABM) and social network analysis

(SNA) for a better visualization of the interactions between simple components.
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This was applied to a minimalist case study in swarm robotics loosely inspired by

ant foraging behavior.

(2) From a dynamical systems approach to cognition, we present our workshop

research paper entitled: Enhanced Neural Complexity is Achieved by Mutually

Coordinated Embodied Social Interaction: A State-Space Analysis. Here we ana-

lyzed the state spaces of the decoupled continuous-time recurrent neural network

of interactive embodied agents, based on the Candadai et al. (2019) model, to

gain insights into their intrinsic basins of attraction.

2. Bigger-brained agent couplings (Chapter 3): In this second stage, we investi-

gated them from the following perspective:

(1) From an evolutionary robotics approach, we present our conference research

paper entitled: Levels of Coupling in Dyadic Interaction: An Analysis of Neu-

ral and Behavioral Complexity. Here we addressed two main limitations of the

Candadai et al. (2019) model. First, we added one more neuron to the original

configuration of the neural architecture of the embodied agents, thereby, building

bigger-brained agents (3-neuron model). And, second, we created a new condi-

tion in which we evolved agents with ghost agents, as a source of non-interactive

stimulation.

3. Smaller-brained vs bigger-brained agent couplings (Chapter 4): In this third

stage, we investigated them from the following perspectives:

(1) From an evolutionary robotics methodology and a dynamical systems ap-

proach to cognition, we present our journal article (accepted for publication) enti-

tled: Shrunken Social Brains? A Minimal Model of the Role of Social Interaction

in Neural Complexity. Here we show through a minimal cognitive model that the

neural complexity of smaller-brained agents evolved in interaction is comparable

to the neural complexity of bigger-brained agents evolved in solitary conditions.
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We followed standard practices of nonlinear time series analysis to determine and

compare the embedding dimension of the corresponding agent’s evolved neural

activity in solitary and social conditions.

Finally, in Chapter 5 we provide the conclusions and future directions for this

work.
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2
Smaller-brained agent couplings

In this chapter, we present our following conference and workshop papers:

• Applying Social Network Analysis to Agent-Based Models: A Case Study of Task

Allocation in Swarm Robotics Inspired by Ant Foraging Behavior by Georgina

Montserrat Reséndiz-Benhumea, Tom Froese, Gabriel Ramos-Fernández, and San-

dra E. Smith-Aguilar. Presented at The Artificial Life Conference 2019 (ALIFE

2019).

• Enhanced Neural Complexity is Achieved by Mutually Coordinated Embodied So-

cial Interaction: A State-Space Analysis by Georgina Montserrat Reséndiz-Benhumea

and Tom Froese. Presented at The Second International Workshop on Agent-

Based Modelling of Human Behaviour (2020 ABMHuB Workshop) held in con-

junction with the 2020 Conference on Artificial Life (ALIFE 2020).
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Chapter 2 – Smaller-brained agent couplings

2.1 Applying Social Network Analysis to Agent-

Based Models: A Case Study of Task Alloca-

tion in Swarm Robotics Inspired by Ant For-

aging Behavior

Abstract

Social network analysis and agent-based modeling are two approaches used to study

biological and artificial multi-agent systems. However, so far there is little work in-

tegrating these two approaches. Here we present a first step toward integration. We

developed a novel approach that allows the creation of a social network on the basis of

measures of interactions in an agent-based model for purposes of social network analysis.

We illustrate this approach by applying it to a minimalist case study in swarm robotics

loosely inspired by ant foraging behavior. For simplicity, we measured a network’s inter-
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Abstract 

Social network analysis and agent-based modeling are two 
approaches used to study biological and artificial multi-agent 
systems. However, so far there is little work integrating these 
two approaches. Here we present a first step toward integration. 
We developed a novel approach that allows the creation of a 
social network on the basis of measures of interactions in an 
agent-based model for purposes of social network analysis. We 
illustrate this approach by applying it to a minimalist case study 
in swarm robotics loosely inspired by ant foraging behavior. 
For simplicity, we measured a network’s inter-agent connection 
weights as the total number of interactions between mobile 
agents. This measure allowed us to construct weighted directed 
networks from the simulation results. We then applied standard 
methods from social network analysis, specifically focusing on 
node centralities, to find out which are the most influential 
nodes in the network. This revealed that task allocation 
emerges and induces two classes of agents, namely foragers and 
loafers, and that their relative frequency depends on food 
availability. This finding is consistent with the behavioral 
analysis, thereby showing the compatibility of these two 
approaches. 

Introduction 

Social network analysis (SNA) has been widely used in the 
study of biological multi-agent systems (Krause et al., 2015). 
In recent years, there has been an increasing interest in 
analyzing animal social networks (Scott and Carrington, 
2014). For example, there are studies in social networks of 
spider monkeys (Ramos-Fernández et al., 2009), crows (Rutz 
et al., 2012) and social insects (Charbonneau et al., 2013). 
Similarly, agent-based modeling (ABM) has been applied to 
the same area. Ramos-Fernández et al. (2006) studied the 
emergence of animal social structure using agent-based 
models. Guo and Wilensky (2016), researchers in Alife, have 
demonstrated the utility of agent-based models of social 
insects as powerful tools to understand complex system 
principles. Moreover, Wang et al. (2019) studied collective 
behavior of bacteria, which use signaling systems known as 
quorum-sensing (QS) to communicate and cooperate. They 
used an agent-based modeling approach to understand the 
emergence of complex QS architectures and functions. 

 On the other hand, there are few studies using these two 
approaches (SNA and ABM) in combination in artificial 
multi-agent systems (MAS), particularly, in swarm robotics. 
Swarm robotics is a recent approach in the field of artificial 
swarm intelligence to study the coordination of multi-robot 
systems (MRS) without central control inspired on swarms 
observed in nature, such as those of social insects. Collective 
behavior emerges from robot-robot and robot-environment 
interactions (Tan and Zheng, 2013). There is a strong 
potential found in mimicking social insect behavior because 
this is highly convenient for solving complex coordination 
tasks (Alers et al., 2014). For example, ant foraging behavior 
induces task allocation as an emergent property, which is 
suitable for swarm robotics (Labella et al., 2006). 
 In this study, we are interested in applying social network 
analysis to agent-based modeling. There are previous studies 
that successfully combined SNA and ABM (Fontana and 
Terna, 2015) or SNA and MAS (Ma et al., 2009; Grant, 
2009). For a better understanding, we have developed a 
taxonomy of social interaction models based on the approach 
of Powers et al. (2018), as shown in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: A taxonomy of social interaction models. We have 
two classes of social interaction models: network-based and 
behavior-based. Social network analysis (SNA) is an instance 
of network-based model and agent-based modeling (ABM) is 
an instance of behavior-based model. We propose there 
should be a bridge (dashed blue arrow) from behavior-based 
to network-based models to have a complete perspective of 
the network dynamics in a complex system in order to get new 
insights on their emerging properties. That is, moving from 
agent-based modeling to social network analysis. 
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 Figure 1 shows our proposed taxonomy where we consider 
there should be a bridge from behavior-based (e.g. ABM) to 
network-based (e.g. SNA) models to have a complete 
perspective of the network dynamics in a complex system in 
order to get new insights on its emerging properties. Thus, our 
representation of moving from ABM to SNA.  
 We found that this approach (from ABM to SNA) has not 
been exploited in foraging and task allocation in swarm 
robotics. However, there are previous papers using either one 
of these two approaches (ABM or SNA). Iba (2013), 
developed agent-based modeling and simulations with 
swarms; Palestra et al. (2017), modeled and simulated rescue 
robots using the swarm robotics approach; Koval et al. (2009), 
introduced a social network to a swarm robotics system in 
order to improve accuracy in automatic target recognition. 
 The main goal of this study is to apply our proposed 
approach, from agent-based modeling to social network 
analysis, to a case study in swarm robotics inspired by ant 
foraging behavior to show task allocation as an emergent 
property of the complex system.  

The case of ant foraging behavior in swarm robotics 

Task allocation, in social insects, refers to the processes by 
which a task is carried out by each member of the colony. As 
examples, we have foraging and brood care. Additionally, 
these processes adapt to changing conditions (Gordon, 2016). 
In this paper, we are interested in task allocation as an 
emergent property of ant foraging behavior.  
 The main features of ant foraging behavior can be 
summarized as follows (Labella et al., 2006):  
• The ant explores the environment in random displacements 
until it finds food. There are three cases of how to take it to 
the nest: (i) the ant pulls it, if it is not too heavy, (ii) the ant 
cuts it, (iii) the ant uses long or short recruitment (as a result 
of spreading pheromone trail).  
• In individual or collective retrieval, food is directly pulled 
to the nest. 
• When a forager returns to the nest, it unloads food by 
mouth-to-mouth contact into the crops (a pouch located just 
upstream of their stomachs) of other ants (Greenwald et al., 
2018). 
• After retrieving food, the ant goes straight back to the 
location where it found food. 
 Deneubourg et al. (1987) modeled an ant of the species 
Pachycondyla apicalis as an agent. Each agent has a 
probability Pl of leaving the nest, that varies depending on 
prior successes or failures. That is, when an ant retrieves food, 
its Pl increases by a constant Δ. Conversely, when an ant 
spends a lot of time without retrieving food, its Pl decreases 
by a constant Δ. Pl is bounded in the range [Pmin, Pmax]. They 
showed, by means of numerical simulations, that this model 
can explain task allocation and adaptation to the environment 
in ants (Labella et al., 2006).  
 The Variable Delta Rule algorithm (VDR) was based on 
Deneubourg et al.’s model. The main change was to multiply 
Δ by the number of consecutive successes or failures when 
increasing or decreasing the probability of leaving the nest, Pl, 
to carry out experiments in less time (Labella, 2003; Labella 
et al., 2006). This simple algorithm might be well suited for 
use in the context of swarm robotics. 

 Foraging, in test application for multi-robot systems 
(MRS), refers to searching for objects and taking them to a 
place called “nest” (Labella, 2003). 
 A swarm of interacting robots produces emergent 
behaviors. We can analyze the local interactions that allow the 
process of self-organization in these robots using social 
network analysis. Social network analysis studies the 
structural properties of groups or individuals in a network. It 
considers the effect of the interconnections on each other 
(Srivastava et al., 2014).  
 We developed an agent-based model based on the Variable 
Delta Rule algorithm to simulate a swarm of robots inspired 
by ant foraging behavior. Furthermore, for simplicity we 
focused on one of the main traits of Pachycondyla apicalis 
ants, that is hunting alone, consequently, there is no need of 
pheromone trails (Monmarché et al., 2000). Therefore, we 
modeled the case in which each forager takes only a unit of 
food when having a successful food retrieval without using 
pheromone trails. Then, we applied social network analysis to 
show task allocation as an emergent property of this model.  

Methods 

In this section, we present the methodology and tools that we 
used to implement, simulate and analyze the agent-based 
model of swarm robotics. 

Variable Delta Rule Algorithm 

We implemented the Variable Delta Rule algorithm (Labella, 
2003; Labella et al., 2006). It consists in the following rules: 
each time the mobile agent has a success in food retrieval, the 
number of successes is increased and multiplied by Δ, then it 
is added to its Pl. Conversely, if the mobile agent has a failure 
in food retrieval, the number of failures is increased and 
multiplied by Δ, then it is subtracted from its Pl. Therefore, 
each mobile agent’s probability of leaving the nest, Pl, is 
determined by the number of consecutive successful or failed 
food retrieval events. Note that Pl is bounded in the range 
[Pmin, Pmax]. This is shown in Algorithm 1. 
 

Algorithm 1 Variable Delta Rule  

Initialization: 
     successes  0 
     failures  0 
     Pl  Initial value 
 
if food is retrieved then 
     successes  successes + 1 
     failures  0 
     Pl  Pl  + (successes * Δ) 
     if Pl > Pmax then 
          Pl  Pmax 

     end if 
else if timeout then 
     failures  failures + 1 
     successes  0 
     Pl  Pl  - (failures * Δ) 
     if Pl < Pmin then 
          Pl  Pmin 
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Agent-based model (ABM) of swarm robotics 

Environment. The simulated environment is a bounded two-
dimensional grid (when a mobile agent reaches an edge it 
rotates 180 degrees and continues moving) and has a size of 
91 x 91 units, with a unique nest located at the center (cluster 
of brown patches). A unit of the grid is represented by a patch 
of 5 x 5 pixels. A unit of food is represented by a unit of the 
grid located in a food source.  
 A fixed value in the range [0, 200] is assigned to each unit 
of the grid as follows: the distance between the focal unit of 
the grid and the center of the nest is calculated, then it is 
subtracted from 200 to obtain its “nest scent” value. This 
value is greater as the focal unit of the grid is closer to the 
nest. This approach is used by mobile agents to find their way 
back to the nest, it is known as following “nest scent” and it is 
described as follows: before each step forward when coming 
back directly to the nest, the mobile agent is going to head 
toward the greatest value of “nest scent” that is ahead of it and 
between the angles -45, 0 or 45. This is repeated until 
reaching the nest (Wilensky, 1997). 
 On the grid, food sources are clusters of units of food that 
are established in a fixed position and have a variable size 
between small (9 units of food), medium (45 units of food) or 
large (109 units of food). We have three food sources 
identified with the following colors, from the closest to the 
furthest from the nest: magenta, lime and turquoise. Figure 2 
shows the distribution and different sizes for food sources in 
the environment. The environment is dynamic. A food source 
decreases by one unit of food each time a mobile agent has a 
successful food retrieval. 
 
a)                                b)                               c) 
 
 
 
 
 
 
 
 
Figure 2: The simulated environments with different sized 
food clusters: a) Small (9 units of food for each food source),   
b) Medium (45 units of food for each food source), c) Large 
(109 units of food for each food source). The nest is in the 
center of the environment (cluster of brown patches). There 
are three available food sources, the color of each one 
indicates the distance to the nest, from the closest to the 
furthest we have: magenta, lime and turquoise. 
 

 
Mobile Agents. We consider six mobile agents with initial 
positions in the center of the nest. Each mobile agent 
represents a robot. Movements, behaviors and interactions of 
mobile agents are described as follows:  
 
Movements. Mobile agents have two classes of movements, 
these are described as follows: 
• Foraging movement: When a mobile agent is out of the 
nest, it moves around the environment by random 
displacements to right and left each time-step, while 

considering not to take an occupied unit of the grid where 
another mobile agent is, as an obstacle avoidance mechanism. 
A displacement has a maximum turning angle of ± 40 degrees 
(Wilensky, 1997).  
• Nest seeking movement: When a mobile agent is returning 
to the nest, it moves by displacements following the “nest 
scent” in each time-step. That is, it moves towards the next 
unit of the grid that has the greatest value of “nest scent” until 
reaching the nest, while considering not to take an occupied 
unit of the grid where another mobile agent is, to avoid 
obstacles. 
 
Behaviors. Each mobile agent assumes one of the following 
behaviors per time-step depending on its own parameters and 
environment conditions (Labella et al., 2006): 
• Rest: Stays in the nest. 
• Search for food: Explores the environment while checking 
if there is a unit of food in the path. If there is one, the mobile 
agent takes it and returns to the nest with food (its number of 
successes is increased). If there is not one, the mobile agent 
keeps randomly moving around until a timeout occurs and it 
returns to the nest without food (its number of failures is 
increased). 
• Return to nest: Finds the way back to the nest following 
the “nest scent” (Wilensky, 1997). It returns to the nest if a 
unit of food was successfully retrieved or a timeout occurs. 
• Feed: Transfers food to all the mobile agents in the nest, 
when arriving to it after a successful food retrieval. Its number 
of successes is increased by one, therefore its probability of 
leaving the nest is going to be higher when updating it. 
 Furthermore, the mobile agents change their color to 
identify the performed behavior, as shown in Table 1. 
 

Behavior Color 
 

Rest Blue 
 

Search for food Red 
 

Return to nest 
(with food) 

Yellow 

Return to nest 
(without food) 

Violet 

Feed 
 

Orange 

 
Table 1: Colors representing the behavior of each agent. 
 
 
Interactions. 
• Agent - Agent (among mobile agents): When a mobile 
agent arrives to the nest after retrieving a unit of food, there is 
an interaction between that mobile agent (emitter) and all the 
mobile agents in the nest (receivers), which represents food 
transfer. When a mobile agent is the emitter, its corresponding 
interaction variables (each one corresponds to an emitter-
receiver interaction) increase by one. This is prompted by the 
forager ant’s interactions with the rest of the colony to feed 
them. Figure 4 shows an example of interaction among mobile 
agents. 
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Figure 4: Interaction between mobile agents. The orange-
colored mobile agent (emitter) returned to the nest after 
retrieving a unit of food, when it arrives to the nest it interacts 
with all the blue-colored mobile agents (receivers) that are on 
the cluster of brown patches. This interaction represents food 
transfer (white arrow) from emitter to receivers and is loosely 
inspired by a forager ant feeding the rest of the colony in the 
nest. 
 
 
• Agent - Food Source (among mobile agents and food 
source clusters): When a mobile agent finds and retrieves a 
unit of food, there is an interaction between that mobile agent 
and the retrieved unit of food from a food source, this is 
inspired by the forager ant’s interactions with a food source. 
Each time a unit of food is retrieved from a food source, the 
number of units of food of that food source is decreased and 
the retrieved unit of food changes to color black to represent it 
was taken. Figure 5 shows an example of interaction among a 
mobile agent and a food source.  
 
 
 
 
 
 
 
 
 
Figure 5: Interaction between a mobile agent and a food 
source. a) When a red-colored mobile agent finds out a unit of 
food, it interacts with the food source and b) it changes its 
color to yellow. The retrieved unit of food changes to color 
black to represent it was taken. 
 

Experiments 

The simulation-based experiments consisted in introducing a 
swarm of six mobile agents and three food sources (clusters of 
magenta, lime and turquoise patches), which we varied from 
small sizes (9 units of food for each food source cluster), 
medium sizes (45 units of food for each food source cluster) 
and large sizes (109 units of food for each food source 
cluster) to show task allocation under changing conditions of 
the environment. We created 30 instances per food sources 
size, i.e. 90 simulations in total. Each simulation lasted 2400 
time-steps. The model was initialized with the following 
parameters (Labella, 2003): The search timeout was fixed to 
228 units of time, Δ was set to 0.005, Pmin to 0.0015, Pmax to 
0.05 and Pinit to 0.033. Figure 6 shows a representative 
simulation of the agent-based model of swarm robotics and its 
components. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6: Screenshot of the agent-based model of swarm 
robotics after 2400 time-steps. a) Red-colored mobile agents 
are searching for food and b) blue-colored mobile agents are 
resting in the nest (cluster of brown patches). There are three 
food sources, from closest to furthest to the nest: c) magenta, 
d) lime and e) turquoise. 
 

Social network analysis (SNA) 

We followed the proposal by Wasserman and Faust (1994), 
who used network graphs to represent agent structures and 
network measures such as strength and centrality, to 
determine the particular role of individuals in the network’s 
structure. We propose to represent mobile agents and their 
interactions in each simulation as a weighted directed network 
and focus on outdegree and weighted outdegree centralities to 
identify the induced classes, as a result of task allocation: 
foragers and loafers. 
 We constructed ninety weighted directed networks, from 
the 90 simulations, i.e. 30 simulations per food sources size 
(small, medium and large) as described in the Methods. We 
added a directed edge between two nodes (source and target) 
to represent whenever one of the two mobile agents (emitter) 
interacted with another one in the nest (receiver) to represent 
food transfer, this is inspired by the forager ants’ interactions 
with the rest of the colony to feed them. Weights were 
assigned according to the number of interactions between the 
two mobile agents. Nodes were labeled with the six mobile 
agents’ identifiers, from 0 to 5.  
 Measures were computed for each weighted directed 
network. We focused on outdegree and weighted outdegree 
centralities. Degree centrality shows the quality of a network 
node’s interconnectedness by the number of direct contacts 
(Landherr et al., 2010). The outdegree is the number of ties 
that a node directs to others, it is interpreted as a quantity of 
information that is spread from one node to other (by 
outgoing edge). A high value is interpreted as sociability 
(Mansur et al., 2016). The centrality of nodes allows us to 
identify the most important or central nodes in a network. 

a) b) 
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Thus, outdegree centrality is a measure of the importance of a 
node, based on its number of ties. It is interpreted as the 
involvement of a node in the network. Weighted outdegree 
centrality is a measure of the importance of a node, based on 
its strength in terms of the total weight of their connections. It 
is interpreted as strength of collaborative ties (Opsahl et al., 
2010). To calculate node strength, we have the following 
equation: 
 
 
                                                                                              (1) 
 
 
where w is the weighted adjacency matrix and wij represents 
the weight of the tie, it is greater than 0 if the node i is 
connected to node j (Opsahl et al., 2010). 
 Outdegree centrality can lead us to identify the mobile 
agents who are the most interconnected to others (i.e. more 
ties), whereas weighted outdegree centrality can lead us to 
identify the mobile agents who have the greatest number of 
interactions (i.e. wider edges) with the rest. Hence, we need 
both centrality measures to identify the expected induced 
classes, as a result of task allocation: foragers and loafers. 
Foragers’ task consists in searching and retrieving food to 
feed the rest of the mobile agents; loafers’ task consists in 
staying in the nest. Thus, foragers must be the most 
interconnected to the rest (i.e. having more ties) and with the 
greatest number of interactions (i.e. having wider edges). In 
the shown networks, node size refers to the value of outdegree 
or weighted outdegree centralities. 
 According to Labella’s (2003) experimental results with 
MindS-bots (swarm of robots), he found that the distribution 
of probability of leaving the nest had two peaks and the 
boundary between the two groups was around 0.025, therefore 
there were two groups of MindS-bots: foragers (Pl  ≥ 0.025) 
and loafers (Pl  < 0.025). As described in the Experiments, our 
model was initialized under Labella’s (2003) experimental 
parameters, thus, we compared the results with the second 
parameter to identify foragers and loafers: mean probability of 
leaving the nest (mean Pl). Therefore, those mobile agents 
with mean Pl ≥ 0.025 are likely to be foragers (red-colored 
nodes) and those with mean Pl < 0.025 are likely to be loafers 
(blue-colored nodes). 

Results 

First, we show the results for three representative simulations 
(each one with a different food sources size). Then, we show 
in summary the results for the 90 simulations. 

Simulation 1 - Small food sources size  

Figure 7 shows the weighted directed network obtained with 
the results of simulation 1. The mean outdegree centrality of 
this network was 1.83, that indicates there were few nodes 
that were the most interconnected to others, in this case, only 
node 3 had ties to all the other nodes. The mean weighted 
outdegree centrality was 2.17, that indicates there were few 
interactions between mobile agents. There were two edges 
with high weight values, those were (3,2) and (3,5), which 
represented the greatest number of interactions between the 

mobile agents. Node 3 had the greatest number of ties and 
wider edges, moreover, it has a Pl  > 0.025, therefore we 
interpreted it as a forager. The mean probability of leaving the 
nest of all nodes was 0.021, which was less than 0.025, so we 
expected more loafers than foragers. Likely agents to be 
foragers by Pl were represented by red-colored nodes and 
likely agents to be loafers by Pl were represented by blue-
colored nodes. After analyzing the results, we got 1 forager 
(node 3) and 5 loafers (nodes 0, 1, 2, 4, 5). 
 
 
 
 
 
 
 
 
 
 

 
 

(a) Social network 1 with nodes sized by their outdegree 
centrality  

 
 
 
 
 
 
 
 
 
 
 

(b) Social network 1 with nodes sized by their weighted 
outdegree centrality  

 
Figure 7: Graphs of social network 1 (the size of food 
sources is small) between six mobile agents where node sizes 
are reflecting: (a) Outdegree centrality, (b) Weighted 
outdegree centrality. Edge widths are reflecting the number of 
interactions between mobile agents. Node colors represent the 
probability of leaving the nest: if Pl ≥ 0.025 the node is red, 
therefore, it is likely to be a forager and if Pl  < 0.025 the node 
is blue, therefore, it is likely to be a loafer. As it can be seen, 
node color and size are consistent with each other, that means 
bigger nodes and probability to be a forager coincide; 
similarly, smaller nodes and probability to be a loafer also 
coincide. Therefore, both approaches obtain same results (in 
this case, 1 forager and 5 loafers). 
 

Simulation 2 - Medium food sources size  

Figure 8 shows the weighted directed network obtained with 
the results of simulation 2. The mean outdegree centrality of 
this network was 2.67, that indicates there was a moderate 
number of nodes that were the most interconnected to others, 
more than in Simulation 1. The mean weighted outdegree 
centrality was 4.5, that indicates there was a greater number of 
interactions between mobile agents than in Simulation 1. 
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There were seven edges with high weight values, those were 
(1,5), (1,4), (1,3), (1,2), (0,4), (0,3) and (0,2) which 
represented the greatest number of interactions between 
agents. Nodes 0 and 1 had the greatest number of ties and 
wider edges, moreover, their Pl > 0.025, therefore we 
interpreted them as foragers. The mean probability of leaving 
the nest of all nodes was 0.022, which was less than 0.025, so 
we expected more loafers than foragers. After analyzing the 
results, we got 2 foragers (nodes 0, 1) and 4 loafers (nodes 2, 
3, 4, 5).  
 
 
 
 
 
 
 
 
 
 
 

(a) Social network 2 with nodes sized by their outdegree 
centrality  

 
 
 

 
 
 
 
 
 
 

(b) Social network 2 with nodes sized by their weighted 
outdegree centrality  

 
Figure 8: Graphs of social network 2 (the size of food 
sources is medium) between six mobile agents where node 
sizes are reflecting: (a) Outdegree centrality, (b) Weighted 
outdegree centrality. Edge widths are reflecting the number of 
interactions between mobile agents. Node colors represent the 
probability of leaving the nest: if Pl ≥ 0.025 the node is red; 
therefore, it is likely to be a forager and if Pl  < 0.025 the node 
is blue; therefore, it is likely to be a loafer. As it can be seen, 
node color and size are consistent with each other, that means 
bigger nodes and probability to be a forager coincide; 
similarly, smaller nodes and probability to be a loafer also 
coincide. Therefore, both approaches obtain same results (in 
this case, 2 foragers and 4 loafers). 
 

Simulation 3 - Large food sources size  

Figure 9 shows the weighted directed network obtained with 
the results of simulation 3. The mean outdegree centrality of 
this network was 3.6, that indicates there were many nodes 
that were the most interconnected to others, more than in 
Simulations 1 and 2. The mean weighted outdegree centrality 
was 6.83, that indicates there was a greater number of 
interactions between mobile agents than in Simulations 1 and 
2. There were many edges with high weight values, due to 

high food availability. Nodes 0, 3, 4 and 5 had the greatest 
number of ties and wider edges, moreover, their Pl  > 0.025, 
therefore we interpreted them as foragers. The mean 
probability of leaving the nest of all nodes was 0.029, which 
was greater than 0.025, so we expected more foragers than 
loafers. After analyzing the results, we got 4 foragers (nodes 
0, 3, 4, 5) and 2 loafers (nodes 1, 2).  
 
 
 
 
 
 
 
 
 
 
 

(a) Social network 3 with nodes sized by their outdegree 
centrality  

 
 
 
 
 
 
 
 
 
 
 

(b) Social network 3 with nodes sized by their weighted 
outdegree centrality 

 
Figure 9: Graphs of social network 3 (the size of food 
sources is large) between six mobile agents where node sizes 
are reflecting: (a) Outdegree centrality, (b) Weighted 
outdegree centrality. Edge widths are reflecting the number of 
interactions between mobile agents. Node colors represent the 
probability of leaving the nest: if Pl ≥ 0.025 the node is red; 
therefore, it is likely to be a forager and if Pl  < 0.025 the node 
is blue; therefore, it is likely to be a loafer. As it can be seen, 
node color and size are consistent with each other, that means 
bigger nodes and probability to be a forager coincide; 
similarly, smaller nodes and probability to be a loafer also 
coincide. Therefore, both approaches obtain same results (in 
this case, 4 foragers and 2 loafers). 
 

Summary of results 

The results of the social network analysis applied to the 90 
weighted directed networks obtained from the simulation 
experiments are summarized in Table 2. It reports the mean 
and standard deviation of number of foragers and loafers.  
 Figure 10 shows the results of mean and standard deviation 
of probability of leaving the nest of the six mobile agents in 
the 30 experiments per food sources size (i.e. 90 experiments 
in total). 
 Contrasting the results of Table 2 and Figure 10, we can see 
that the social network analysis results confirmed the 
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expectations of number of loafers and foragers obtained by 
the mean probability of leaving the nest varying the food 
sources size. Hence, the results proved task allocation among 
mobile agents as an emergent property of this model, inducing 
two classes: foragers and loafers. The number of foragers and 
loafers was adapted to the environment conditions (in this 
case, food availability). 
 
 

Food 
Sources 

Size 

Food 
availabi-

lity 

Number of 
Foragers 

Number of 
Loafers 

Small Low 1.1 ± 0.3051  4.9 ± 0.3051 

Medium Medium 3.07 ± 0.7397 2.93 ± 0.7397 

Large High 4.77 ± 0.4302 1.23 ± 0.4302 

 
Table 2: Mean and standard deviation of number of foragers 
and loafers calculated over 30 simulations per food sources 
size (i.e. 90 simulations in total) by applying social network 
analysis to the obtained weighted directed networks. The low 
values of standard deviation indicate that the behavior of the 
model was consistent across simulations.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10: Mean and standard deviation of probability of 
leaving the nest while varying food sources size. The low 
standard deviation indicates that the behavior of the model 
was consistent across simulation experiments. These results 
show that with a low availability of food (small sized food 
sources) the mean Pl < 0.025, therefore, we expected more 
loafers than foragers; with a medium availability of food 
(medium sized food sources) the mean Pl  is a little above 
0.025, therefore, we expected similar number of loafers and 
foragers; with a high availability of food (large sized food 
sources) the mean Pl  > 0.025, therefore, we expected more 
foragers than loafers.  
 

Emergent property - Task allocation  

In all simulations we observed that task allocation emerged 
and induced two classes: foragers and loafers. There were 

more loafers than foragers with low food availability (i.e. 
small sized food sources); there was similar number of loafers 
and foragers with medium food availability (i.e. medium sized 
food sources); and there were more foragers than loafers with 
high food availability (i.e. large sized food sources). 

Discussion  

As we have seen, moving from agent-based modeling (ABM) 
to social network analysis (SNA) lead us to a better 
understanding of the complex system by studying its emergent 
properties. In our agent-based model of swarm robotics we 
have shown that task allocation emerges and induces the 
creation of two classes: foragers and loafers. Furthermore, one 
of our main results was that the number of foragers and 
loafers changed with the conditions of the environment, as in 
real ant colonies. It means, task allocation changes as 
conditions vary (Gordon, 1999). Our model highlights that 
when more food is available, more foragers appear, and vice 
versa, as we observed in the weighted directed networks that 
we created for each simulation results. Thus, we conclude task 
allocation implies an adaptive and self-organized process 
(Labella, 2003). 
 A distinctive property revealed by the social network 
analysis was that the nodes with the greatest outdegree 
centralities were the most interconnected with the others (i.e. 
more ties) and those with the greatest weighted outdegree 
centralities had wider edges, therefore those nodes which 
were bigger in both graphs were the most interconnected 
mobile agents (i.e. having more ties) with the greatest number 
of interactions (i.e. having wider edges), hence we can call 
them, the “influentials” in the colony. These are the foragers.  

Conclusions and Future Work 

 To summarize, we presented and analyzed our agent-based 
model of swarm robotics using social network analysis to 
show that it exhibits task allocation as an emergent property 
due to the Variable Delta Rule algorithm (Labella, 2003; 
Labella et al., 2006), which was inspired by ant foraging 
behavior. In future work, we are going to explore more 
complicated scenarios, for example, considering cheaters, 
those social insects that exploit the benefits of biological 
cooperation without contributing to them (Dobata and Tsuji, 
2009). Moreover, this can be extended by using social 
network analysis to develop agent-based models, that is, 
moving from social networks to multi-agent systems in order 
to establish the measures of those networks and then design 
agent’s behaviors that will reach those measures. This could 
potentially be used in order to run game theoretic (network) 
models in an agent-based modeling framework. 
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Chapter 2 – Smaller-brained agent couplings

2.2 Enhanced Neural Complexity is Achieved by

Mutually Coordinated Embodied Social Inter-

action: A State-Space Analysis

Abstract

Although cognitive complexity has been usually related to brain size or number

of neurons, they are neither necessary nor sufficient conditions, since there are many

species in nature showing that even with simple brains, they can exhibit unexpected

levels of behavioral complexity. More recent approaches to cognitive science, such as

enactive cognition, have been investigating social interaction in itself as part of an

individual’s cognition. Recently, Candadai et al. (2019) have demonstrated through a

minimal model that social interaction increases agents’ neural complexity and revealed

that this cannot be achieved in isolation. In this paper, we first replicate the Candadai

et al. (2019) model to analyze the state-space of the autonomous continuous-time

recurrent neural networks of the interacting agents. Our results show that in terms of

complexity, it is as simple as it can be, a single fixed-point attractor. Then, we proceed

to ask whether, after loosening up the parameter constraints of this model, we will find

more complexity in the state-space as there will be a broader variety of values in the

parameters of neural controllers encoded in the genotype of each agent. Surprisingly,

the state-space of this second approach leads to the same results, a single fixed-point

attractor. Our findings, then, support the idea that cognitive complexity is mainly

driven by the dynamics of social interaction rather than internal complexity.
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Abstract 

Although cognitive complexity has been usually related to brain 
size or number of neurons, they are neither necessary nor 
sufficient conditions, since there are many species in nature 
showing that even with simple brains, they can exhibit 
unexpected levels of behavioral complexity. More recent 
approaches to cognitive science, such as enactive cognition, 
have been investigating social interaction in itself as part of an 
individual’s cognition. Recently, Candadai et al. (2019) have 
demonstrated through a minimal model that social interaction 
increases agents’ neural complexity and revealed that this 
cannot be achieved in isolation. In this paper, we first replicate 
the Candadai et al. (2019) model to analyze the state-space of 
the autonomous continuous-time recurrent neural networks of 
the interacting agents. Our results show that in terms of 
complexity, it is as simple as it can be, a single fixed-point 
attractor. Then, we proceed to ask whether, after loosening up 
the parameter constraints of this model, we will find more 
complexity in the state-space as there will be a broader variety 
of values in the parameters of neural controllers encoded in the 
genotype of each agent. Surprisingly, the state-space of this 
second approach leads to the same results, a single fixed-point 
attractor. Our findings, then, support the idea that cognitive 
complexity is mainly driven by the dynamics of social 
interaction rather than internal complexity.  

Introduction 

Traditionally, cognitive complexity has often been associated 
with brain size or number of neurons. The social brain 
hypothesis supports these ideas by assuming that socially 
living species, such as human and nonhuman primates, should 
have enlarged brain sizes as a result of the demands of social 
life, in comparison to the more isolated ones. Briefly, this 
hypothesis is based on the correlation between social 
complexity and brain/group sizes (Dunbar, 1998; Barret et al., 
2007). In contrast to these ideas, Barret et al. (2007) suggested 
that cognitive complexity might emerge from the interaction 
of brain, body and environment, and it is not simply 
attributable to the level of internal complexity itself. 
Furthermore, Barret (2011) argued that there are many of the 
so-called simpler animals with small brains that exhibit 
striking levels of behavioral complexity, such as paper wasps, 
which have the ability to recognize facial traits and use it to 
preserve social order in their hives and ants, which are able to 

find the shortest path to food sources through self-organizing 
processes. Therefore, these examples reinforce the idea that 
the complexity of behavioral activity is not merely a 
consequence of internal complexity and they highlight the 
importance of social interaction. 
 From an enactive cognition approach, social interaction is 
defined as a complex phenomenon involving engagement of 
at least two agents in a complex co-regulated pattern that 
enables social cognition (De Jaegher et al., 2010).  In the last 
decades, there have been increasing efforts in investigating 
social interaction by using agent-based models to provide 
proof of concepts in order to make conceptual advances. 
Some of these models known as “minimal models” have been 
inspired by William Grey Walter’s “turtle” mobile robots 
(Walter, 1950). These robots, which had only touch and light 
sensors and a very simple control architecture, performed 
surprising complex patterns of behaviors when interacting. On 
the basis of these findings, Di Paolo (2000) developed a 
simulation model of acoustically coupled embodied agents to 
study social coordination. In his model, these agents showed 
interesting behaviors, such as turn-taking and organized 
movement that emerged through their interaction via an 
acoustic medium. On the other hand, Froese et al. (2013a) 
created a minimal model of two acoustically coupled agents 
and demonstrated that in interactive scenario the neural 
dynamics of these agents has formal properties that could not 
be generated in isolation. Similar minimal approaches have 
been shown also to be very productive in studies of real social 
interaction in humans, e.g. perceptual crossing experiments 
(Froese, 2018).  
 Based on those previous works and following an 
evolutionary robotics methodology, Candadai et al. (2019) 
demonstrated that social interaction increases the complexity 
of an agent’s neural activity and revealed that this cannot be 
achieved in isolation. They performed experiments on agent-
based modeling using pairs of acoustically coupled embodied 
agents in an empty 2-dimensional environment, as shown in 
Figure 1.  
 
 
 
 
Figure 1: Illustration of a pair of acoustically coupled 
embodied agents in Candadai et al. (2019) model.   



 These experiments consisted of measuring neural entropy 
as an index of internal complexity. This was motivated by its 
interpretability, computational tractability and because of 
previous studies which have related higher levels of neural 
entropy with enhanced cognitive performance, e.g. enhanced 
generalization in motor learning tasks (Dotov and Froese, 
2018). There were two different scenarios: by artificially 
evolving interacting pairs of embodied agents (maximizing 
interaction entropy) and by artificially evolving isolated 
agents in the environment (maximizing isolation entropy). 
Moreover, they measured the interaction entropy of an agent 
in the presence of a “ghost” partner, which was playing back 
pre-recorded behavior of previous trials, thus, they were not 
able to mutually interact with each other. As a result, this led 
to a loss of internal complexity of the “live” agent and proved 
that active interdependent interaction increases their neural 
complexity.  
 We found the Candadai et al. (2019) model very insightful, 
however, they did not provide a dynamical systems analysis to 
get clarity on the internal complexity, consequently, we got 
the next open questions: How complex are the internal state 
spaces of these agents? And how is that internal complexity 
related to their underlying genetic complexity, and how does 
it evolve over generations? Therefore, in this study we aim to 
achieve three novel contributions: 
 

1. Loosening up genetic constraints: By proposing a 
novel approach that we call “layer-based 
unconstrained”, in order to see the effects of the 
loosened parameter constraints and allow a broader 
diversity in the genotypes of the agents. 
 

2. State-space analysis: By performing the dynamical 
systems analysis of the autonomous continuous-time 
recurrent neural network (CTRNN) of each best pair 
of agents for both approaches (layer-based 
constrained (original configuration) and layer-based 
unconstrained (proposed configuration)) in order to 
analyze their internal complexity. 
 

3. Evolutionary analysis of neural entropy: By 
observing how the normalized neural entropy of the 
best pair of agents is evolving through time in two 
different scenarios: interactive and under “ghost” 
condition. 
 

 Thus, these goals share the following underlying reason for 
being studied: To demonstrate that social interaction matters 
and makes a difference in the complexity of neural dynamics.  

Methods 

We started working on our model as a replication of the 
Candadai et al. (2019) model. We choose to maximize only 
interaction entropy. The fitness function for the evolutionary 
search (i.e. neural entropy, which has been used as an 
indication of cognitive complexity) does not explicitly 
optimize social interaction nor does it optimize any specific 
task. The implementation details of this model and our 
modifications are presented as follows: 
 

A. Body 
The body of each embodied agent is designed as circular with 
a radius, R, of 4 units, which has two acoustic sensors 
symmetrically positioned at an angle of 45 degrees to the 
central axis (i.e. positioned at 45 and 315 degrees, 
respectively); an acoustic emitter placed on the center of the 
body, therefore, equidistant to its own sensors; and two 
motors driving wheels placed on opposite sides of the agent 
that enable movement in a 2-dimensional environment. This 
design was initially inspired by Di Paolo’s acoustically 
coupled agents (Di Paolo, 2000).  The strength of the emitted 
signal experiences linear loss with distance. It will be 
maximum and equal to that of the emitted strength at a 
distance D = 2R, between the center of the agents and linearly 
decays with increasing distance. Furthermore, the “self-
shadowing” mechanism, i.e. experienced attenuation when the 
signal travels within the embodied agent, is modeled as a 
scaling factor over the sensory inputs in a range from 0.1 to 1. 
The equations for calculating the shielded distance, Dsh, that 
the signal passes through the body can be found in the 
Supplementary Material of Candadai et al. (2019). Then, the 
process of obtaining the sensory input for each sensor consists 
in first calculating it by applying the inverse square law 
without any “self-shadowing” attenuation, based on the 
distance between the sensor and the source, and then 
multiplying by the “self-shadowing” attenuating factor 
linearly mapped from 1 (when Dsh = 0) to 0.1 (when Dsh = 
2R). 
 
B. Environment 
The simulated environment is a 2-dimensional unlimited 
arena. Collisions are modeled as point elastic, i.e. no changes 
in their angular velocity (no friction between bodies) and 
conserving the momentum of the whole system by having 
zero net effect on their velocity vectors. This is achieved by 
exchanging the velocity vectors of the embodied agents, so 
they simply bounce off each other without loss of energy. 
Modeling energy transfer is considered for future work.  
 
C. Neural architecture  
The neural architecture of each of the embodied agents is 
composed of three layers, we called them as follows: sensor 
layer, neuron layer and actuator layer.  
 
 1. Sensor layer: The sensor layer consists in two sensor 
nodes with a sigmoidal activation function. Their output is 
given by: 

(3)  
 

where                              is the sigmoidal activation function, 
gs is the sensory gain, Is is the sensory input and θs is the bias. 
 
 2. Neuron layer: The neuron layer is modeled as a 
continuous-time recurrent neural network (CTRNN) (Beer, 
1995), consisting in two fully recurrently connected neurons, 
this corresponds to a 2-dimensional dynamical system. The 
activity in each neuron is governed by the following state 
equation: 
 

(4) 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
where dyi/dt refers to the rate of change of internal state yi of 
neuron i based on a time constant τi. This rate of change 
depends on three values: the current state, the weighted sum 
of outputs from the two neurons (N = 2) in the network and 
the total external input. The input from other neuron is 
calculated by weighting their output with weights from j to i, 
i.e. wij.  The output of each neuron based on its internal state is 
given by σ(yj + θj) where θj refers to a bias term for that 
neuron.  Lastly, the state is influenced as well by the total  
external input received by the neuron, given by the weighted 
sum of the sensory input with weights wis from sensor node s              
to neuron i and os being the sensory output from two sensors. 
 
 3. Actuator layer: The neurons feed into the actuator layer, 
where the input to each actuator node is a weighted sum of the 
outputs of the neuron. The actuator layer contains three 
actuator nodes, two corresponding to the left and right motors 
and one corresponding to the acoustic signal emitter. All of 
them are sigmoidal units with a gain and bias such that the 
output of actuator node i, mi, is given by: 
 
 

(5) 
 
 
where on is the output of the neuron, that is weighted by wni 
and θi is the bias term, and gm is their gain. 
 Note that locomotion is managed by the effective control of 
the two motors. Net linear velocity is given by the average of 
their corresponding outputs and angular velocity which rotates 
the agent is given by their difference divided by the radius of 
the agent. 
 
 D. Neural entropy  
During the entire course of behavior, i.e. 4 trials, the neural 
activity of each of the agents is recorded. Then, neural entropy 
in the 2-dimensional time series from the outputs of the two 
neurons (neuron layer) is measured as the neural complexity. 
The outputs of the two neurons are bounded in the range [0,1], 
as they are obtained from a sigmoid function. The output 
space is binned with 100 bins along each dimension, i.e. each 
axis  corresponds  to  the  outputs  of  the  first  and the second  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
neuron, respectively, each axis goes from 0 to 1 and is divided 
into 100 bins, totaling 10,000 bins. Thus, a 2-dimensional 
histogram is created at the end of the 4 trials with all the 
recorded binning data points. The entropy H of the neural time 
series is given by: 

 
 

(6) 
 
where the probability of the neural activity in a particular bin 
[i,j], pij, is given by the number of data points in that bin 
divided by the total number of data points. The neural entropy 
then is normalized in the range [0,1] through dividing by the 
maximum possible entropy, log(100 * 100), which is obtained 
when all bins are uniformly populated, therefore, a uniform 
distribution over the 2-dimensional histogram is achieved. 
Hence, normalized neural entropy is given by: 
 

(7) 
 
E. Evolutionary algorithm 
A real-valued genetic algorithm was used as an optimization 
technique for the parameters of the neural controllers in order 
to maximize the agents’ neural entropy. In contrast to the 
Candadai et al. (2019) model, here we followed two different 
approaches for the evolutionary optimization, namely, layer-
based constrained and layer-based unconstrained, as shown in 
Figure 2. Each of these approaches is described as follows: 
 1. Layer-based constrained: This approach followed the 
original configuration in the Candadai et al. (2019) model, 
where each agent had 20 parameters, i.e. for N agents, the 
genotype contained 20N parameters. Here, both sensor nodes 
shared same gain and bias, both neurons shared same time- 
constant and bias, and the three actuator nodes shared same 
gain and bias. Therefore, in each of the three layers (sensor 
layer, neuron layer and actuator layer) the parameters were 
limited to have common values. 
 2. Layer-based unconstrained: This is the proposed 
approach in order to loosen up the identified parameter 
constraints to allow more diversity in the genotypes and see 
the possible effects in the subsequently analysis. Here, in each 
of the three layers (sensor layer, neuron layer and actuator 

Figure 2: Two approaches based on layer parameter constraints of the neural controllers for the evolutionary search. (A) Layer-
based constrained. This is the original configuration in the Candadai et al. (2019) model, where for N agents, the genotype 
contained 20N parameters. In this approach, the two acoustic sensor nodes have common gain and bias, the two neurons have 
common time-constant and bias, and the three actuator nodes (two motors and an acoustic emitter) have common gain and bias.    
(B) Layer-based unconstrained. This is the proposed configuration in order to loosen up the original parameter constraints and 
allow more diversity in the genotype, where for N agents, the genotype contained 28N parameters. In this approach, sensor nodes, 
neurons and actuator nodes do not have common parameters.  



layer) there were no common parameter values. Thus, each 
agent had 28 parameters, i.e. for N agents, the genotype 
contained 28N parameters.  
 In both approaches, each of the parameters were initially 
encoded in the range [-1,1]. When performing the trials to 
evaluate the performance, these parameters were scaled in 
different ranges in order to build the agents.  For the sensor 
layer and actuator layer, their gains were scaled in the range 
[1,5] and their biases were scaled in the range [-3,3]. For the 
neuron layer, its time-constants were set in the range [1,2] and 
their biases were set in the range [-3,3]. Additionally, all 
weights from the three layers, were scaled in the range [-8,8]. 
All these parameter ranges were the same as those in the 
Candadai et al. (2019) model.  
 We performed 10 independent runs for each of the 
approaches (layer-based constrained and layer-based 
unconstrained), totaling 20 runs. Each of the runs started with 
a random population of 96 solutions, where each of them 
encoded the parameters for two agents in the interactive 
scenario and were evolved for up to 2000 generations.  
 In each generation, the agents built from the genotype were 
evaluated over 4 independent trials. Each trial lasted 200 units 
of time at a step size of 0.1 At the beginning of the trials, the 
agents were placed at 20 units from each other but varying 
their relative angle as  for each trial. During 
the 4 trials, the neural activity of each agent was recorded, and 
at the end, the normalized neural entropy was calculated, and 
fitness was set as the average normalized neural entropy of the 
two agents. 
 After the performance evaluation, an elite population of the 
top 4% solutions was kept as is, and the remainder of the 
solutions for a new population was created by mutating and, 
then, crossing over this elite fraction. Mutation was applied by 
adding a zero-mean Gaussian mutation noise with variance 
0.1 to the solutions, while, crossover involved that each 
parameter between a pair of solutions was swapped with a 
probability of 0.1.  
  
F. Analysis under “ghost” condition 
In order to delineate the role played by interdependent 
interaction on internal complexity, the best pair of agents in 
each of the selected generations (0, 1, 2, 3, 4, 5, 10, 50, 100, 
500, 1000, 2000) were tested under a “ghost” condition. Blue 
agent was referred as the “ghost” agent and red agent was 
referred as the “live” agent. The “ghost” agent was replaying 
pre-recorded behavior from previous trials and the “live” 
agent was allowed to interact with it. The active agent started 
at a different random initial angle from “ghost” agent, in order 
to not repeat its behavior from those trials, while keeping the 
initial distance the same (20 units). As the evolutionary fitness 
evaluation, 4 trials were conducted, and the normalized neural 
entropy of the active agent was measured based on its 
behavior in the presence of a “ghost” partner.  
 
G. Dynamical Systems Analysis 
In order to analyze the complexity of the state-spaces for the 
best pair of agents in each approach, we performed the 
dynamical systems analysis of the autonomous continuous- 
time recurrent neural network (CTRNN) using Dynamica 
(version 1.0.9), a Mathematica package for the analysis of 
smooth dynamical systems, developed by Randall D. Beer.  

Results 

This section presents the results obtained from the best pair of 
agents in each of the approaches, layer-based constrained and 
layer-based unconstrained. These results are analyzed in detail 
in the Discussion and Conclusions section.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Dynamical systems analysis of the autonomous 
continuous-time recurrent neural network for the best pair of 
agents in the layer-based constrained (A.1 and B.1) and layer-
based unconstrained (A.2 and B.2) approaches. The state- 
spaces of the dynamical systems are showing representative 
flow structure of a region of the activation space of the 
CTRNN. It can be seen that for red (A.1 and A.2) and blue 
(B.1 and B.2) agents there is a single stable fixed-point 
attractor (blue dot), the position of this point and its structure 
of attraction depend on the input values. In this case, the input 
values were those obtained at the end of the corresponding 
simulation (Generation 2000, Trial 1, best run in each case). 
The coordinates of the attractors are: (1.30753, -0.768629) in 
A.1, (0.2131, 0.6247) in B.1, (−0.42956,−0.96966) in A.2 and 
(−2.9214, 0.6546) in B.2, where y1-axis represents the states 
of neuron 1 and y2-axis represents the states of neuron 2. 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: (A.1 and A.2) Neural activity of the two neurons of 
red agent (A.1) and blue agent (A.2) in interactive scenario 
(representative trial from the best pair of agents in layer-based 
unconstrained approach). As it can be seen, when both agents 
are interacting the neural activity shows chaotic aperiodic 
activity that cannot be produced by 2-dimensional decoupled 
CTRNNs, as demonstrated in Figure 4. (B.1) Neural activity 
of the two neurons of red agent under “ghost” condition. It 
can be observed that when red agent is in the presence of a 
“ghost” partner, the neural activity demonstrates remarkably 
lower complexity than the neural activity of the same agent in 
interactive scenario (A.1). 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Discussion and Conclusions 

Our results in Figure 3 have shown that either in the layer-
based constrained or the layer-based unconstrained 
approaches, we got a single fixed-point attractor in the state-
space analysis of the autonomous continuous-time recurrent 
neural networks of each agent, it follows that, what insights 
can we get from these findings? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                                           
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Previous minimal models of adaptive behavior in different 
task domains that have followed evolutionary robotics 
methodology have gotten similar results, i.e. only single fixed-
point attractors. For instance, Campos and Froese (2017) 
developed a minimal model on referential communication 
based on the waggle dance of the bee to set the task for a 
receiver and a sender, then, by performing dynamical system 

Figure 5:  Results of behavioral patterns in different interaction conditions (in all images, earlier motion is darker than later 
motion to show directionality). (A.1 and A.2) Behavioral patterns for layer-based constrained approach. (A.1) Red and blue 
agents interacting in spiraling pairwise movement. (A.2) Red agent under “ghost” condition. In the presence of a “ghost” partner, 
the red agent moves in simple loops, therefore, its behavioral complexity is significantly reduced. (B.1 and B.2) Behavioral 
patterns for layer-based unconstrained approach. (B.1) Red and blue agents interacting in spiraling nested loops movement, where 
the red agent moves in smaller loops and the blue agent moves in bigger loops. (B.2) Red agent under “ghost” condition. In the 
presence of a “ghost” partner, the red agent moves in simple loops, therefore, its behavioral complexity is significantly reduced.  
 

Figure 6:  Normalized neural entropy of best pair of agents in each selected generation - best run (interactive vs under “ghost” 
condition scenarios) (A) Layer-based constrained approach. (B) Layer-based unconstrained approach. For both approaches it can 
be observed that when agents are able to mutually interact with each other they exhibit higher levels of normalized neural entropy, 
while under “ghost” condition, the “live” agent’s normalized neural entropy drops, therefore, it suffers a loss in internal 
complexity. The highest entropy scores of red agent under “ghost” condition are achieved during the initial generations until 
generation 50 (for A) and generation 500 (for B), after that they start to drop until generation 2000.  

A.2 B.2 

B.1 A.1 

A B 



analysis, they found only one fixed-point attractor that 
changed to different positions for each role, instead of having 
two different attractors, therefore, being an example of action 
switching models (Agmon and Beer, 2014). Furthermore, in 
social interaction minimal models, these results have been 
consistent as well, even when increasing the number of 
neurons (Froese and Fuchs, 2012) or having structurally 
identical pair of agents interacting, i.e. clones (Froese et al., 
2013a). What is interesting to remark here is that in our 
findings the state-spaces also showed complementary roles of 
the CTRNN for red and blue agents, however, there was never 
specified a task to achieve, as described before for other 
previous models. This is one of the most insightful ideas that 
we got by going deeper in the Candadai et al. (2019) model: 
by maximizing the neural entropy in the evolutionary 
optimization, we were not expecting a particular behavior 
from the agents, however, in both approaches the strategy that 
the agents found was the same: by mutually interacting. At 
this point, it is worth recalling that elevated levels of neural 
entropy have been associated with improved cognitive 
performance. Therefore, if those elevated levels of neural 
entropy in the agents were achieved by mutually interacting, 
as shown in Figure 6, this suggests that social interaction 
might play a relevant role for cognition. Thus, these ideas 
might reject the classical view of cognitive science where 
cognitive complexity relies only on internal complexity.  
 Following the previous points, now we can understand the 
reason why our results showed only single fixed-point 
attractors. According to Zarco and Froese (2018), in “world-
involving” scenarios obtained by evolutionary robotics 
methodology, the evolutionary search leads to a CTRNN 
structure that makes the agent to be interactively guided by 
the world. When an agent is evolved to display adaptive 
behavior, its CTRNN controllers usually exhibit a single 
attractor, however, still able of fruitful dynamics. Then, from 
the dynamical perspective, we can conclude that our agents in 
interaction became the whole brain-body-environment-body-
brain system (Froese et al., 2013b) demonstrating chaotic 
aperiodic neural activity as shown in Figure 4 (A.1 and A.2), 
which in principle should require 3-dimensional decoupled 
CTRNNs. Thus, when an agent was in the presence of a 
“ghost” partner, this system was incomplete, generating 
consequently, a loss in neural and behavioral complexity of 
the “live” agent as shown in Figures 4 (B.1), 5 (A.2 and B.2) 
and 6. Finally, we propose thinking about how human 
cognition is enriched in real “world-involving” scenarios 
given that our daily life is full of social interactions. 
 In future work we will extend these results by 
implementing 3-neurons model and maximizing transfer 
entropy. 
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Chapter 3 – Bigger-brained agent couplings

3.1 Levels of Coupling in Dyadic Interaction: An

Analysis of Neural and Behavioral Complex-

ity

Abstract

From an enactive approach, some previous studies have demonstrated that social in-

teraction plays a fundamental role in the dynamics of neural and behavioral complexity

of embodied agents. In particular, it has been shown that agents with a limited internal

structure (2-neuron brains) that evolve in interaction can overcome this limitation and

exhibit chaotic neural activity, typically associated with more complex dynamical sys-

tems (at least 3-dimensional). In the present paper we make two contributions to this

line of work. First, we propose a conceptual distinction in levels of coupling between

agents that could have an effect on neural and behavioral complexity. Second, we test

the generalizability of previous results by testing agents with richer internal structure

and evolving them in a richer, yet non-social, environment. We demonstrate that such

agents can achieve levels of complexity comparable to agents that evolve in interactive

settings. We discuss the significance of this result for the study of interaction.
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Embodied Cognitive Science Unit
Okinawa Institute of Science and
Technology Graduate University

Okinawa, Japan
Institute for Applied Mathematics

and Systems Research
National Autonomous University of Mexico

Mexico City, Mexico
georginamontserrat.resendizbenhumea@oist.jp

Ekaterina Sangati
Embodied Cognitive Science Unit
Okinawa Institute of Science and
Technology Graduate University

Okinawa, Japan
ekaterina.sangati@oist.jp

Tom Froese
Embodied Cognitive Science Unit
Okinawa Institute of Science and
Technology Graduate University

Okinawa, Japan
tom.froese@oist.jp

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Abstract—From an enactive approach, some previous studies
have demonstrated that social interaction plays a fundamental
role in the dynamics of neural and behavioral complexity of
embodied agents. In particular, it has been shown that agents
with a limited internal structure (2-neuron brains) that evolve
in interaction can overcome this limitation and exhibit chaotic
neural activity, typically associated with more complex dynamical
systems (at least 3-dimensional). In the present paper we make
two contributions to this line of work. First, we propose a
conceptual distinction in levels of coupling between agents that
could have an effect on neural and behavioral complexity. Second,
we test the generalizability of previous results by testing agents
with richer internal structure and evolving them in a richer, yet
non-social, environment. We demonstrate that such agents can
achieve levels of complexity comparable to agents that evolve in
interactive settings. We discuss the significance of this result for
the study of interaction.

Index Terms—agent-based modeling, social interaction, cou-
pling, neural entropy, evolutionary robotics, continuous-time
recurrent neural network, minimal cognition, dyad.

I. INTRODUCTION

Recent years have seen an increase in efforts to understand
the role of social interaction in social cognition from an
embodied perspective [1]–[7]. It has been argued that rather
than being merely an outcome of the dynamics of individ-
ual cognitive agents, social interaction can itself constitute
cognition and have an effect on the individuals that partake
in it1. According to one specific embodied cognition account
– enactivism – social interaction is defined as an active co-
regulated coupling between two or more autonomous agents,
where their role of interactors co-emerges with the interaction
itself and their individual cognitive capacities can be reduced
or augmented [1]–[3]. In this paper we focus on how differ-
ent levels of coupling can influence the agent’s neural and
behavioral complexity.

1This is admittedly a contentious claim, cf. [8].

The types of couplings distinguished in this and previous
work are inspired by a well-known experiment from develop-
mental psychology: the “double TV monitor” paradigm [9].
In this experiment, 2-month-old infants interact with their
mothers through a live video link. When the live video is
replaced with a recorded replay of the previous actions of the
mother, the infants become distressed, distracted and upset,
suggesting that the reciprocity of the interaction makes a
difference. That is, passive social input that is not sensitive
to one’s own response is not sufficient for a positive social
experience. Simulation studies described here show that it
might also not be sufficient for individual cognition.

Based on the previous approaches, we propose to distinguish
the following levels of coupling in dyadic interaction:

• 2-way or bidirectional coupling: Both agents are mutually
interacting, e.g. normal interaction as a mother playing
with her infant. Other examples are conversations, danc-
ing, collaborative work, etc. [3].

• 1-way or unidirectional coupling: Active agent is in the
presence of a non-interactive agent, which is showing pre-
recorded behavior, e.g. “double TV monitor” experiment.

• 0-way or no-way coupling: Active agent is not in the
presence of a social partner, i.e. is alone.

This distinction is not meant to be exhaustive and future
adjustments might be required. For instance, a case in which
one agent is fully interactive while the other is present but
staying still might fall somewhere between a 0-way and a 1-
way coupling. Additionally, even within the isolated condition,
one could distinguish different ways in which the agent can
couple to its physical environment – bidirectionally in a
full sensorimotor loop [10] or one-directionally, whereby the
agent is passively receiving stimulation from the environment.
However, this work focuses on the social interaction scenario
and we think it is still useful to think of levels of coupling
within this domain and how they might have distinct effects
on individual cognitive capacities.
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A. Previous work

Evolutionary robotics (ER) has been used as a scientific tool
to study minimal models of cognition. It is a methodology
especially suited for embodied cognition because it allows for
developing integrated sensorimotor systems which act in close
coupling with their environments, i.e. ER takes into account
both embodiment and situatedness in how they contribute to
the solution of particular cognitive tasks [11]. The Candadai
et al. (2019) model [7] is a minimal model of cognition in
interaction based on ER. This model demonstrates as a proof
of concept that social interaction transforms the neural and
behavioral dynamics of embodied agents more than what is
achievable by agents operating in isolation. In this model, pairs
of agents were evolved in a 2-dimensional environment to
maximize their individual neural entropy2. When the agents
were evolved together (interaction condition) they exhibited
mutually coordinated behavior and higher individual neural
entropy compared to when they were evolved alone (isolation
condition). Furthermore, when agents that evolved in the inter-
action condition were tested in the presence of a ”ghost” non-
interactive partner (ghost condition), they exhibited a loss in
neural and behavioral complexity. This condition is analogous
to a “double TV monitor experiment” in which infants used
to normal 2-way interaction mode are suddenly placed in a
1-way interaction mode.

In our previous work [12], we have replicated the Candadai
et al. (2019) model [7] with a less constrained parameter
space of the agents, leading to a broader diversity in the
agent genotypes but achieving similar results in terms of
neural complexity. We also provided a state-space analysis of
the evolved agents’ neural network activity, which showed a
single fixed-point attractor. This is consistent with previous
ER work that shows that CTRNN controllers are often able to
display rich dynamics despite having a single attractor because
the attractor landscape is constantly shifting in the agent’s
interaction with the environment [13], [14].

B. Current work

The Candadai et al. (2019) model [7] demonstrated that
2-way coupling leads to higher neural complexity than 1-
way coupling and 0-way coupling. However, the specific
implementation adopted is open to two central criticisms.

First, it is known that continuous dynamical systems can
only exhibit chaotic behavior when they have more than 2
dimensions [15]. This is indeed an assumption of the Candadai
et al. (2019) model [7]: the fact that the agents’ 2D brains
exhibit chaotic activity is remarkable because it means that
interaction can overcome the inherent limitations of their
brains. However, a corollary of this is that if agents had
brains with more dimensions, they could generate neural and
behavioral complexity without interaction. If so, this would

2It is important to emphasize here that maximizing this measure was not
meant to achieve any particular adaptive outcomes. Rather, the point is to
establish whether 2D brains can be evolved to become more complex and
whether interaction is an enabling condition for this.

limit the result to very constrained systems and tell us nothing
about cognition in multi-dimensional actual brains.

Second, it could be argued that a comparison between agents
evolved in isolation and agents evolved in interaction is not
a strong comparison that would justify far-reaching claims
about the role of interaction in cognitive complexity. The
isolated agents might be less complex not only because they
don’t interact but because they evolve in an overall poorer
environment from which they receive no input. It could be
that if the environment contained some stimulation, even if
not social, the agents could leverage it to create more neural
complexity.

In this study, we address these two limitations and investi-
gate whether the Candadai et al. (2019) model [7] results still
hold when we 1) include one more neuron in the internal layer
of the neural architecture of the agents, i.e. we construct a 3-
neuron model instead of 2-neuron model and 2) we create
a new condition in which we evolve agents with a ghost
agent, thereby providing them with a source of non-interactive
stimulation. As a result, we implement 4 conditions based
on 3 levels of coupling distinguished above, as illustrated in
Fig. 1, 2, 3:

• Interactive condition (2-way coupling): pairs of agents
are evolved in bidirectional interaction.

• Ghost-test condition (1-way coupling): pairs of agents
are evolved in bidirectional interaction but tested with a
ghost at the end.

• Ghost-evolution condition (1-way coupling): an active
agent is evolved in the presence of a sufficiently complex
ghost.

• Isolated condition (0-way coupling): agents are evolved
in isolation.

Fig. 1. Two-way coupling: Fully interactive condition, agents interact with
each other by sending and receiving acoustic signals.

Fig. 2. One-way coupling: “Live” agent (red) tested or evolved with a “ghost”
agent (blue). Live agent is sending and receiving acoustic signals. Ghost agent
is playing back pre-recorded behavior of previous trials and so sending pre-
recorded signals but not receiving anything.

In all conditions agents are evolved to maximize their
neural complexity operationalized, for simplicity, as Shannon



Fig. 3. Zero-way coupling. The “isolated” agent (red agent) is evolved on
its own, therefore, the agent neither receives any input from the environment
nor interacts with other agents.

entropy of neural outputs. However, the maximization of
predictive information (PI, [16]), which has been successfully
applied in previous self-organizing robotic systems where they
exhibited a wider behavioral spectrum [17], is considered as
an alternative approach for future work.

We then compare the level of neural and behavioral com-
plexity in the last generation across all conditions. We find
that despite having more powerful brains, agents that evolve
in isolation exhibit lower neural and behavioral complexity.
However, agents that evolve in the presence of the ghost
exhibit an interesting divergence between the complexity of
their neural output and behavior: their neural complexity is
comparable to that of agents that evolve in interaction while
their behavioral complexity is lower. We also investigate the
quality of interaction between social conditions and conclude
by placing our results in a broader theoretical context of
embodied cognition.

II. METHODS

A. Model Design

Our model is a replication of the Candadai et al. (2019)
model [7], except for the increased number of neurons in the
internal layer of the neural architecture: three neurons instead
of two.

1) Agents and environment: Agent bodies are circular, with
a radius of 4 units. Each of them has two acoustic sensors
symmetrically placed in the front of the agent at a 45◦ angle
to the central axis; an acoustic emitter positioned in the center
of the body; and two motors located in the right and left
sides of the agent to allow movement in a 2-dimensional
empty environment, which is an unlimited arena. Collisions
are modeled as point elastic, which means, no change in the
agents’ angular velocity (i.e. no friction between them) and
zero net effect on their velocity vectors (i.e. energy of the
complete system is conserved). This is achieved by exchanging
the agents’ velocity vectors, which causes them to bounce off
each other without loss of energy [4]. Each agent can emit
and sense acoustic signals. The strength of the acoustic signal
experiences two kinds of attenuation:

a) Attenuation due to distance: The maximum strength
of the emitted signal is exhibited from the source to a
distance equal to 2R between the center of the bodies of the
agents. The intensity of the signal obtained by each sensor is
then calculated by applying the inverse square law using the
distance between the sensor and the source.

b) Attenuation due to “self-shadowing” mechanism:
This attenuation occurs when the emitted signal passes within
the body of the sensing agent (as the intensity of the acoustic
signal is weakened due to the agent’s own embodiment). It
is modeled as a scaling factor over the sensory inputs in a
range from 0.1 (when the sensors of the sensing agent are
diametrically opposite from the source) to 1 (when the sensing
agent is facing the source). The equations to calculate the
distance that the emitted signal travels within the body of the
sensing agent, i.e. the shielded distance (Dsh), are available
in the Supplementary Material of the Candadai et al. (2019)
model [7].

According to the previous points, the sensory input for each
sensor of an agent is calculated using the distance between the
sensor and the source (applying the inverse square law), and it
is then multiplied by the “self-shadowing” attenuating factor
which goes linearly from 1 (when Dsh = 0) to 0.1 (when
Dsh = 2R).

2) Neural architecture: The neural architecture of each
agent consists of three layers, in our previous work we called
them: sensor layer, neuron layer and actuator layer. The main
difference from our current model and the Candadai et al.
(2019) model [7] is presented in the neuron layer, where
instead of two neurons, we use three neurons, as shown in
Fig. 4

a) Sensor layer: In this layer, there are two sensor nodes
with a sigmoidal activation function, whose output is given by:

os = gsσ(Is + θs) (1)

where gs is the sensory gain, σ(x) = 1/(1 + e−x) is the
sigmoidal activation function, Is is the sensory input and θs is
the bias. In this layer, both sensor nodes share common gain
and bias.

b) Neuron layer: This layer is modeled as a continuous-
time recurrent neural network (CTRNN) [18]. In contrast to
the Candadai et al. (2019) model [7], this layer now consists of
three fully recurrently connected neurons, which corresponds
to a 3-dimensional dynamical system. Each neuron’s activity
is governed by the following state equation:

τi
dyi
dt

= −yi +
N∑

j=1

wijσ(yj + θj) +

2∑

s=1

wisos (2)

where dyi/dt refers to the rate of change of internal state
yi of neuron i based on a time constant τi. The rate of change
dyi/dt depends on the current state of the neuron, the weighted
sum of outputs from other internal neurons and the total
external input from the sensors. The output of each neuron
based on its internal state is given by a sigmoid activation
function σ(yi+θj) where θj refers to the neuron’s bias. In this
implementation, the three neurons share same time-constant
and bias.

c) Actuator layer: The three internal neurons feed into
the actuator layer, where the input to each actuator node is
a weighted sum of the outputs of the neuron. The actuator



Fig. 4. Neural architecture of the 3-neuron model based on the Candadai et
al. (2019) [7] model, where the number of neurons in increased to three. In
this approach, the two sensor nodes share common gain and bias; the three
neurons share common time-constant and bias; and, the three actuator nodes
share common gain and bias.

layer contains three actuator nodes, two corresponding to the
motors and one corresponding to the acoustic signal emitter.
All of them are sigmoidal units with a gain and bias (but no
internal state) such that the output of the actuator node i, mi,
is given by:

mi = gmσ

(
N∑

n=1

wni ∗ on + θi

)
(3)

where on is the output of the neuron, that are weighted by
wni, θi is the bias and gm is the gain. In this layer, the three
actuator nodes share common gain and bias.

Locomotion is managed by the effective control of the two
motors. Net linear velocity is given by the average of their
corresponding outputs and angular velocity which rotates the
agent is given by their difference divided by the radius of the
agent.

3) Evolutionary optimization:
a) Fitness function: Neural entropy: The fitness function

for the evolutionary algorithm is the Shannon entropy of neural
outputs, i.e. neural entropy, which has been used as a proxy
of cognitive complexity. This function does not optimize any
particular task. The agents are initialized in a random position
in the environment (see below) and allowed to move around
over 4 trials, during which their neural activity is recorded.
The neural complexity is measured as the Shannon entropy
in the three-dimensional time series from the outputs of the
three neurons, which are bounded in the range from 0 to 1.
The output space is binned with 100 bins along each of the
three dimensions, i.e. one million bins in total. Then, a 3-
dimensional histogram is created using all the binning data
points acquired during the 4 trials. Thus, the Shannon entropy
H of the neural time series is given by:

H =
100∑

i=1

100∑

j=1

100∑

k=1

−pijklog(pijk) (4)

where the probability of the neural activity in a specific bin
[i, j], pij , is given by the number of data points in that bin
divided by the total number of data points. The neural entropy
is then normalized to be in the range from 0 to 1 by dividing by

the maximum neural entropy, i.e. log(100 ∗ 100 ∗ 100), when
all bins are uniformly populated. Therefore, the normalized
neural entropy is given by:

Ĥ = H/log(100 ∗ 100 ∗ 100) (5)

b) Genetic algorithm: We used a real-valued genetic
algorithm to optimize the parameters of the neural controllers,
such as weights, gains, biases and time-constants in order to
maximize the neural entropy of the agents. Each agent had 30
parameters, i.e. for N agents, the genotype consisted of 30N
parameters that were initially encoded in the range [−1, 1].
When building the agents from each genotype to perform the
4 trials, these parameters were scaled appropriately, following
the same parameter ranges as in the Candadai et al. (2019)
model [7] such that: for sensor and actuator nodes, the gains
were scaled in the range [1, 5] and the biases were scaled in
the range [−3, 3]; for neuron nodes, the time-constants were
scaled in the range [1, 2] and the biases were scaled in the
range [−3, 3]; all weights were scaled in the range [−8, 8].

The performance evaluation of the agents was obtained
according to each of the 4 conditions: interactive condition,
ghost-test condition, ghost-evolution condition and isolated
condition. The experimental setup for each of the 4 conditions
is described in detail in the Experiments section.

For all conditions, after the performance evaluation, we gen-
erated a new population by, first, keeping an elite population
of the top 4% solutions as it is and, second, by mutating
and crossing over this elite fraction to get the remainder of
the solutions. Mutation was obtained by adding a zero-mean
Gaussian mutation noise with variance 0.1 to the solutions
and, then, crossover was obtained by swapping each parameter
between a pair of solutions with a probability of 0.1.

B. Experiments

Here, we describe the implementation of the 4 conditions
introduced in the Introduction:

1) Condition 1: Interactive condition (2-way coupling): In
this condition, we performed 100 independent runs using 96
pairs of agents that were able to interact with each other. Each
pair’s agent parameters were encoded in a single genotype
subjected to evolutionary search. Initially, the agents were
placed at 20 units from each other. For each trial, their
relative angle was modified as [0, π/2, π, 3π/2], respectively,
where both agents’ heading direction was set to the right.
The population was evolved for up to 2000 generations to
maximize the neural entropy of both agents.

2) Condition 2: Ghost-test condition (1-way coupling):
In this condition, we selected the best pair of agents of
the best 10 runs previously obtained in the fully interactive
scenario and, then, tested them under a “ghost” condition. Red
agent was the “live” agent and blue agent was the “ghost”
agent. The “live” agent was able to interact with the “ghost”
partner, while, the “ghost” agent was just playing back pre-
recorded behavior from the previous trials in a fully interactive
scenario. The “live” agent was initially positioned at a different



angle (randomly selected from [0, π/2, π, 3π/2] but different
to the one it was chosen when the ”live” agent was in 2-
way interaction) from the “ghost” agent to avoid repeating the
behavior of those previous trials. The initial distance between
both agents was 20 units. We conducted 4 trials for each pair
of agents, as in the fully interactive condition, and measured
the normalized neural entropy of the “live” agent.

3) Condition 3: Ghost-evolution condition (1-way cou-
pling): In this condition, we selected the best blue agent of the
best run in fully interactive scenario and used it as the non-
interactive or “ghost” agent. We performed 10 independent
runs, where only the interactive or “live” agent was evolved
in the presence of the “ghost” partner, which was just playing
back the pre-recorded behavior in fully interactive scenario
(different for the 4 trials). The same playback was used for
all runs, all agents and all generations, in order to evolve the
agents to respond to a specific set of conditions and see the
effects on neural and behavioral complexity through each gen-
eration. The population in each run consisted of 96 individuals,
where each individual was encoding the parameters of only the
“live” agent. For each trial, the ”live” agent was placed 20 units
from the ”ghost” agent and their relative angle was modified as
[0, π/2, π, 3π/2], respectively. The population was evolved for
up to 2000 generations to maximize the interaction entropy of
“live” agents. Evaluation was performed the same way as for
Condition 1 with fitness derived only from the “live” agent’s
neural entropy.

4) Condition 4: Isolated condition (0-way coupling): In this
condition, we performed 10 independent runs using isolated
agents that were not receiving any input and were evolved
on their own to maximize their isolation entropy. Red agent
was referred as the “isolated” agent. The population in each
run consisted of 96 individuals, where each individual was
encoding the parameters for only one agent (“isolated” agent).
The population was evolved up to 2000 generations.

In all conditions, the agents’ initial heading direction was
set to the right.

III. RESULTS

Fig. 5 shows example trajectories and neural activation of
the best agents in 4 conditions from the best runs, respectively.
Complex behavior and neural activity can be clearly seen on
the fully interactive condition. This complexity seems to be
lost in the ghost-test condition, in line with Candadai et al.
(2019) model [7] results. The agent that exhibits complex
movement trajectory when interacting with a live partner,
starts to literally run in circles when the partner is non-
responsive. This is the case even though the agents in the
current experiment have a more complex 3-neuron brain that
could in principle exhibit chaotic activity. In the isolated
condition, the agent shows highly regular behavior and an
oscillatory pattern of neural activity, again, in line with the
results of the original model and despite a more complex
brain. The most interesting for our purposes ghost-evolution
condition, in which the agents are evolved in the presence of a
ghost partner displays something that seems as an intermediate

level of behavioral and neural complexity between the fully
interactive and the isolated case.

In order to go beyond intuitions and understand the general
pattern of differences between conditions, we run 4 statistical
tests comparing the best agents’ neural activity and movement
trajectories.

Specifically, in the first test we compared the average of
the means of neural entropy of 100 agent pairs in interac-
tive condition against the means of the best live agents in
other conditions. Given unequal sample size and significantly
different variances between conditions, F (3, 127) = 21.24,
p < .001, we performed a non-parametric Kruskal-Wallis
test, which showed a significant difference in neural entropy
between conditions, H(3) = 41.7, p < .001. Focused compar-
isons of the mean ranks between groups showed that agents
in isolated condition had significantly lower neural entropy
compared to interactive and ghost-evolution conditions, as
expected. However, somewhat surprisingly, the entropy in
ghost-evolution condition was significantly higher than in the
interactive or ghost-test conditions. This trend can also be seen
in Fig. 6A.

Next, we obtained a measure of behavioral complexity of
the live agents in all conditions. We recorded heading direction
angles at each time point of agent trajectories, which resulted
in 1D time series. We then computed sample entropy for each
such time series. Since there does not seem to be a universally
agreed upon measure of behavioral trajectory complexity, we
used sample entropy as a measure that has been shown to be
an appropriate index of complexity for biological time series
more broadly [19]. We have informally validated this measure
by checking that it reliably distinguishes between fully regular
circular and more complex movement patterns3. The data sub-
jected to statistical analysis were time series sample entropy
for all trials of the 10 best runs in each condition. In the
interactive condition, only one of live agents was considered.
Levene’s test for equality of variances was not significant and
there was a significant effect of condition on the level of
behavioral entropy, F (3, 153) = 20.98, p < .001. Post-hoc
Bonferroni-corrected tests showed that isolated agents’ entropy
was significantly lower than entropy in all other conditions
(p < .001) but also ghost-evolution condition entropy was
significantly lower than entropy in the interactive condition
(see Fig. 6B).

As the difference in neural and behavioral complexity in the
ghost-evolution condition compared to interactive condition
was in opposite directions (higher and lower respectively), we
run two further tests to investigate the type of interaction be-
tween the agents in 3 conditions with coupling (thus, excluding
the isolated condition). In the first test we have computed the
entropy of the distance between the agents while in the second
their synchrony. Distance entropy was measured with a binned

3We originally tried to estimate behavioral complexity using image entropy
calculated on generated plots of trajectories. However, this measure delivered
inconsistent results, most likely because it does not consider the temporally
ordered nature of movement coordinates and instead takes into account only
their spatial dispersion.



0 5 10 15 20 25 30

Tim e (s)

0.2

0.4

0.6

0.8

1.0

N
e

u
ra

l 
A

ct
iv

it
y 

- 
O

u
tp

u
ts

Neuron 1

Neuron 2

Neuron 3

0 5 10 15 20 25 30

Tim e (s)

0.0

0.2

0.4

0.6

0.8

1.0

N
eu

ra
l A

ct
iv

it
y 

- 
O

ut
pu

ts

Neuron 1

Neuron 2

Neuron 3

0 5 10 15 20 25 30

Tim e (s)

0.0

0.2

0.4

0.6

0.8

1.0

N
e

u
ra

l A
ct

iv
it

y 
- 

O
u

tp
u

ts
Neuron 1

Neuron 2

Neuron 3

0 5 10 15 20 25 30

Tim e (s)

0.0

0.2

0.4

0.6

0.8

1.0

N
e

u
ra

l A
ct

iv
it

y 
- 

O
u

tp
u

ts

Neuron 1

Neuron 2

Neuron 3

Fig. 5. Example plots of movement trajectories and neural activity across 4 conditions. Movement trajectories in red are of a live agent, movement trajectories
in blue are of a live agent in Figure A and of ghost replay in figures B and C. Neural activity plots show output of 3 internal neurons of the live agents.

Shannon entropy approach adopted in the original Candadai et
al. (2019) paper [7] . Synchrony was estimated with a Dynamic
Time Warping metric applied to 2-dimensional time series
representing the xy-coordinates of the two agents in all trials.
Only the first measure showed a significant overall effect of
condition, F (2, 27) = 4.27, p < .05 and a significant post-hoc
pairwise comparison between Ghost-evolution and Ghost-test
conditions. Fig. 6C and Fig. 6D show the overall trends for
these measures.
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Fig. 6. Individual and interaction measures across experimental conditions.
Figures A and B show neural and behavioral entropy of live agents. C: distance
entropy between agents. D: DTW-estimated distance between agents (lower
distance means more synchrony).

IV. DISCUSSION AND CONCLUSIONS

In this work, we have extended the Candadai et al. (2019)
model [7] in order to address some of its limitations. By
including one more neuron in the neuron layer, i.e. three
neurons instead of two, we have found that the results in
terms of neural and behavioral complexity are similar to those
in the original configuration. In particular, the agents’ neural
entropy is still higher in the interactive condition than in
the ghost-test or isolated conditions. Additionally, we have
quantitatively assessed behavioral complexity in all conditions
and this measure was found to be also lower in the isolated
condition. This means, perhaps unsurprisingly, that a powerful
brain operating in isolation, without any input is not able to
achieve high levels of neural or behavioral complexity.

Our second generalization test delivered mixed insights.
On the one hand, by observing example plots of neural
activation (Fig. 5), it can be suggested that in the interactive
condition, the neural activity of the three neurons exhibits
more chaotic activity than in the other conditions, including
the more stringent ghost-evolution condition. On the other
hand, this suggestion is not borne out by the statistical test
that shows that neural complexity in this condition is higher
than in the interactive condition. This would mean that richer
environment that provides constant but complex input to
the agent can compensate the relative poverty of the 1-way
coupling and lack of contingent response of the interaction
partner. At the same time, despite a higher neural complexity,
behavioral complexity in this setting is lower. Thus, agents
that are evolved to maximize their neural complexity in a rich



environment end up behaving in more predictable and regular
manner than agents that receive specifically social stimulation.

Briefly, our findings suggests that the richness of the envi-
ronment may compensate 1-way interaction in terms of neural
complexity, however, this does not apply in terms of behavioral
complexity. This suggests that the social world (i.e. real-
time interaction between agents becoming the whole brain-
body-environment-body-brain system [20]) allows for a greater
repertoire of behaviors transforming our individual capacities
[3].

Some possible limitations may be encountered in our model
based on the specific metrics that we used as a measure of
neural and behavioral complexity. Further work is needed to
compare the results by implementing alternative methods, e.g.
evolving agents to maximize predictive information (PI), using
permutation entropy and applied it to raw xy-coordinates, etc.

V. FUTURE WORK

In this paper, we have explored the neural and behav-
ioral complexity of embodied agents using different levels of
coupling in dyadic interaction. Future work will investigate
how different modes of coupling can affect individual and
interactive capacities of evolved agents. Specifically, it could
be argued that an opportunity to interact with multiple partners
could further enhance individual complexity. Alternatively,
allowing agents to use different interactive modalities, such
as distal and proximal coupling analogous to pheromone and
saliva-based interactions in ants, could enrich their cognition.
This will allow us to further understand how individual com-
plexity can be generated by interaction.

ACKNOWLEDGMENT

We are grateful to Alexey Yudin for sharing with us useful
suggestions for the analysis of the model.

The authors thank the Scientific Computing & Data Analy-
sis Section (SCDA) of Research Support Division at Okinawa
Institute of Science and Technology (OIST) for using their
High-Performance Computing resources.

We acknowledge the help from Randall D. Beer by provid-
ing the Evolutionary Agents C++ software package v1.2.

REFERENCES

[1] H. De Jaegher and E. Di Paolo, “Participatory sense-making: An enactive
approach to social cogntion,” Phenom. Cogn. Sci., vol. 6, no. 4, pp. 485–
507, 2007.

[2] H. De Jaegher and E. Di Paolo, “Making sense in participation: An
enactive approach to social cognition,” in Enacting Intersubjectivity: A
Cognitive and Social Perspective on the Study of Interactions (Emerging
Communication: Studies in New Technologies and Practices in Commu-
nication), F. Morganti, A. Carassa, and G. Riva, Eds. Amsterdam: IOS
Press, 2008, pp. 33–47.

[3] H. De Jaegher, E. Di Paolo, and S. Gallagher, “Can social interaction
constitute social cognition?,” Trends Cogn. Sci., vol. 14, no. 10, pp.
441–447, October 2010.

[4] E. A. Di Paolo, “Behavioral coordination, structural congruence and
entrainment in a simulation of acoustically coupled agents,” Adapt.
Behav., vol. 8, num. 1, pp. 27–48, 2000.

[5] T. Froese, C. Gershenson, and D. A. Rosenblueth, “The dynamically ex-
tended mind: A minimal modeling case study.” In 2013 IEEE Congress
on Evolutionary Computation, Cancun: IEEE Press, 2013, pp. 1419–
1426.

[6] T. Froese, “Searching for the conditions of genuine intersubjectivity:
From agent-based models to perceptual crossing experiments,” in The
Oxford Handbook of 4E Cognition, A. Newen, L. De Bruin, and S.
Gallagher, Eds. Oxford: Oxford University Press, 2018, chapter 9, pp.
163–186.

[7] M. Candadai, M. Setzler, E. J. Izquierdo, and T. Froese, “Embodied
dyadic interaction increases complexity of neural dynamics: A minimal
agent-based simulation model,” Front. Psychol., vol. 10, art. 540, pp.
1–5, March 2019.

[8] M. Herschbach, “On the role of social interaction in social cognition: a
mechanistic alternative to enactivism,” Phenom. Cogn. Sci., vol. 11, no.
4, pp. 467–486, 2012.

[9] L. Murray and C. Trevarthen, “Emotional regulations of interactions
between two-month-olds and their mothers,” in Social perception in
infants, T. M. Field and N. A. Fox, Eds. Norwood: Alex, 1985, pp.
177–197.
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Chapter 4 – Smaller-brained vs bigger-brained agent couplings

4.1 Shrunken Social Brains? A Minimal Model of

the Role of Social Interaction in Neural Com-

plexity

Abstract

The social brain hypothesis proposes that enlarged brains have evolved in response

to the increasing cognitive demands that complex social life in larger groups places on

primates and other mammals. However, this reasoning can be challenged by evidence

that brain size has decreased in the evolutionary transitions from solitary to social

larger groups in the case of Neolithic humans and some eusocial insects. Different

hypotheses can be identified in the literature to explain this reduction in brain size. We

evaluate some of them from the perspective of recent approaches to cognitive science,

which support the idea that the basis of cognition can span over brain, body and

environment. Here we show through a minimal cognitive model using an evolutionary

robotics methodology that the neural complexity, in terms of neural entropy and degrees

of freedom of neural activity, of smaller-brained agents evolved in social interaction

is comparable to the neural complexity of larger-brained agents evolved in solitary

conditions. The nonlinear time series analysis of agents’ neural activity reveals that the

decoupled smaller neural network is intrinsically lower dimensional than the decoupled

larger neural network. However when smaller-brained agents are interacting, their

actual neural complexity goes beyond its intrinsic limits achieving results comparable

to those obtained by larger-brained solitary agents. This suggests that the smaller-

brained agents are able to enhance their neural complexity through social interaction,

thereby offsetting the reduced brain size.
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ABSTRACT2

The social brain hypothesis proposes that enlarged brains have evolved in response to the3
increasing cognitive demands that complex social life in larger groups places on primates and4
other mammals. However, this reasoning can be challenged by evidence that brain size has5
decreased in the evolutionary transitions from solitary to social larger groups in the case of6
Neolithic humans and some eusocial insects. Different hypotheses can be identified in the7
literature to explain this reduction in brain size. We evaluate some of them from the perspective8
of recent approaches to cognitive science, which support the idea that the basis of cognition can9
span over brain, body and environment. Here we show through a minimal cognitive model using10
an evolutionary robotics methodology that the neural complexity, in terms of neural entropy and11
degrees of freedom of neural activity, of smaller-brained agents evolved in social interaction is12
comparable to the neural complexity of larger-brained agents evolved in solitary conditions. The13
nonlinear time series analysis of agents’ neural activity reveals that the decoupled smaller neural14
network is intrinsically lower dimensional than the decoupled larger neural network. However15
when smaller-brained agents are interacting, their actual neural complexity goes beyond its16
intrinsic limits achieving results comparable to those obtained by larger-brained solitary agents.17
This suggests that the smaller-brained agents are able to enhance their neural complexity through18
social interaction, thereby offsetting the reduced brain size.19

Keywords: agent-based modeling, social interaction, complexity, entropy, social brains, evolutionary robotics, continuous-time20
recurrent neural network, nonlinear time series analysis21
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1 INTRODUCTION
It is widely accepted that increased social group size is an important factor for explaining the evolution23
of increased brain size in primates, because of a concomitant increase in the cognitive demands posed by24
more complex forms of social competition and/or social bonding (Byrne, 1996; Dunbar and Shultz, 2007).25
However, this social brain hypothesis has come under pressure from various directions. Brain tissue is26
energetically expensive, and so primate brain size can only increase as an adaptive response to increased27
cognitive demands if such growth is enabled by a sufficiently high-quality diet. In fact, diet seems to be the28
primary factor that predicts brain size in primates (DeCasien et al., 2017). In this context the evolution of29
human brain size during the Paleolithic period can then be seen as fueled by the development of cooking,30
which significantly enhanced our energy intake and brought along with it an increase in cognitive and31
social complexity (Herculano-Houzel, 2016; Wrangham, 2009).32

It might therefore be expected that during the subsequent Neolithic period, with the advent of33
domestication, agriculture, and settled living in ever larger groups, human brain size will have continued to34
increase or at least remained stable. However, the opposite tendency has been observed: during this time35
period around the world human brain size underwent a notable reduction beyond that expected from an36
overall reduction in body size (Brown, 1987; Brown and Maeda, 2004; Henneberg, 1988; Henneberg and37
Steyn, 1993). In particular, reduction in cranial capacity is associated with the highest levels of population38
density, coinciding with the emergence of larger, socially and economically organized ways of life that39
mark the start of the Neolithic period (Bailey and Geary, 2009). The overall extent of the reduction is40
controversial (Leach, 2003), but according to some estimates it is comparable in extent to the increase in41
brain size associated with previous speciation events in human evolution (Henneberg, 2004).42

Although this curious fact about the most recent period of human brain evolution has so far received43
less attention, several hypotheses have been developed to account for it. These hypotheses can be grouped44
into two broad categories depending on whether they appeal to an increase in selection pressures favoring45
smaller brains or to a decrease in selection pressures favoring bigger brains. The former category includes46
selection pressure on improved brain efficiency, and more prominently the self-domestication hypothesis,47
which has proposed that there was an increase in selection pressure for reducing in-group competition48
(Hare, 2017; Hare et al., 2012), which has led to the prediction of reduced cranial capacity in Holocene49
humans (Cieri et al., 2014), as this is also observed in other domesticated animals (Leach, 2003).50

Alternatively, it could be that domesticated ways of life placed fewer cognitive demands on individuals’51
brains, which would then put this hypothesis in the latter category. Indeed, rather than just reducing52
cognitive demands, the human sociocultural environment makes cognition more efficient and more complex53
(Clark, 2006; Sterelny, 2017). Human evolution is characterized by an increase in sociocultural scaffolding54
of learning and apprenticeship (Sterelny, 2012), and so it makes sense that the increase in social institutions55
in the Neolithic period permitted the human brain of “doing more with less” size (Bednarik, 2014). Hodder56
(2020) jokingly refers to this possibility as the “smart phones, dumb people” syndrome. To be more precise,57
the latest theoretical developments in cognitive science promote an embodied, embedded, extended, and58
enactive (“4E”) approach to the mind (Newen et al., 2018), which argues that the basis of cognition is not59
limited to the brain but can spread out over brain, body and environment. On this view, cognitive processes60
are underdetermined by brain structure, which undermines the underlying assumption of the social brain61
hypothesis (Barona, 2020; Barrett et al., 2007). Living in a world of enhanced sociocultural scaffolding of62
cognition would permit brains to become smaller but, importantly, without a reduction in overall cognitive63
capacity of the appropriately scaffolded person. We could call this the social scaffolding hypothesis for64
decreased brain size.65
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Interestingly, a similar distributed cognition hypothesis has been proposed for the case of eusocial insects:66
in wasps the strongest changes in brain investment, namely a reduction in central processing brain regions,67
accompanied the evolutionary transition from solitary to social species but did not correlate specifically68
with the degree of social complexity (O’Donnell et al., 2015). More generally, the evolution of insect69
societies appears to have occurred without the evolution of any new dedicated neural structures (Farris,70
2016). Reasons for this are unclear, but a computational model suggests that there may be energetic71
advantages to optimizing total colony brain mass over individual brain mass (Feinerman and Traniello,72
2016).73

This suggests a more general hypothesis for decreased brain size, in which the key explanatory factor is74
not the complexity of the social world per se, but rather a more general principle of decreased in-group75
conflict and increased possibilities of relying on responsive others. In the case of insect colonies, this76
is achieved by the colony serving as an extended phenotype of the reproductive individuals, with most77
individuals being closely related to each other. In the Neolithic period human groups could no longer rely78
on such genetic relatedness for in-group support, but they were able to expand in size from extended family79
groups to large villages by developing new symbolic forms of group identification. This allowed unfamiliar80
individuals with a shared symbolic identity to rely on each other for support, based on early developing81
mutual socio-moral expectations (Jin and Baillargeon, 2017).82

However, in general it remains unclear whether the brain size reduction associated with the evolution83
of such large, yet tightly integrated and highly coordinated in-groups is better characterized as a case of84
“smart phone, dumb user” or of “doing more with less”. In other words, is it the case that brain size could85
decrease because it was possible for brain activity to become less complex (“dumb”) due to a reduction86
of cognitive demands in the social milieu (highly dependable and organized “smart” society)? Or could87
it also be the case that brain size could decrease because brain activity became more complex due to the88
cognitive scaffolding provided by that reliable social milieu? That is, a smaller brain could be producing89
activity equal in complexity to a larger brain (“doing more processing with less resources”) because it90
became supported by extended social structures. It is difficult to empirically arbitrate between these two91
possibilities. One piece of evidence in support of the latter possibility is that during human evolution the92
brain’s blood flow rate, which is indicative of levels of neural activity, has increased faster than brain size93
(Seymour et al., 2016). But also, more theoretical work is needed to deepen our conceptual understanding94
of how brains could do more with less during social interaction.95

2 METHODS
In the following we will explore these questions by employing the synthetic approach to studying adaptive96
behavior based on agent-based modeling, evolutionary algorithms, and dynamical systems analysis (Beer,97
1997; Cliff et al., 1993; Harvey et al., 2005). We will use this approach to create a simulated “thought98
experiment” (Di Paolo et al., 2000) that will permit us to investigate, in the most simplified manner possible,99
the potential roles of brain size and sociality in the generation of an individual’s neural complexity, where100
we will operationalize it in two ways.101

First, we will consider neural complexity to be captured by Shannon entropy calculated over neural102
output values. While it might seem that focusing on Shannon entropy, which is maximal for uniform103
distributions, will bring about cognitive or behavioral randomness, there are actually good reasons to104
consider it as a possible measure of complexity. For one, “the principle of maximum entropy”, which105
states that the distribution that maximizes Shannon entropy is to be preferred (Jaynes, 1957), is found to be106
operational in biological systems. For instance, maximizing the neural response entropy amplifies mutual107
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information between the brain activation and incoming stimuli (Laughlin, 1981). Furthermore, entropy has108
been suggested as a possible correlate of consciousness by the “entropic brain hypothesis” (Carhart-Harris,109
2018).2 Additionally, as stated in more recent work (Candadai et al., 2019), some previous studies have110
associated high levels of neural entropy with enhanced cognitive performance, e.g. improved generalization111
in motor learning tasks (Dotov and Froese, 2018).112

Second, for analysis of the results, we will complement the measure derived from information theory113
with a notion more closely associated with system dynamics by looking at the dimension of the attractor in114
the state spaces of evolved neural activity. Here, we employ the embedding dimension as a measure of the115
effective degrees of freedom or the complexity of the dynamics (Stam, 2005) of the corresponding agent’s116
neural activity (neural states). In order to calculate it, we follow standard practices of nonlinear time series117
analysis (Perc, 2006; Kodba et al., 2005; Froese et al., 2013), by: (1) using mutual information (MI) to118
estimate a proper embedding delay τ (Fraser and Swinney, 1986), and, (2) using the false nearest neighbor119
(FNN) method to determine a proper embedding dimension m (Kennel et al., 1992).120

Research (Froese and Di Paolo, 2010; Froese et al., 2013; Campos and Froese, 2017; Candadai et al.,121
2019; Reséndiz-Benhumea et al., 2020) suggests that in the absence of in-group competition3, it is easier122
to evolve increased complexity of neural activity in close interaction with other agents, than to do so alone123
by increasing the intrinsic complexity of the neural network architecture. In the present study, we extend124
these findings by focusing on the role of brain size in generating complexity of neural activity in solitary125
and social conditions. Our aim is to show that it is possible for social agents with a smaller neural network126
to exhibit at least the same complexity of neural activity as a solitary agent with a larger neural network.127

2.1 Model128

The implementation of the proposed model is based on the Candadai et al. (2019) model. Here, we129
evolved agents to maximize their entropy in individual and social scenarios using a smaller (2-neuron130
model) and a larger neural network (3-neuron model).131

2.1.1 Simulated agents and environment132

Agents have circular bodies, with a radius of 4 units. Each of them is provided with: two acoustic sensors,133
which are symmetrically positioned in its frontal side at ±45◦ with respect to its central axis; an acoustic134
emitter, which is located in its body’s center; and, two motors, which are driving two wheels in its left135
and right sides, respectively, that enable displacement in a 2-dimensional environment. The environment136
consists of an empty open-ended arena.137

Each agent emits and senses the strength of the acoustic signal from another agent. The strength of an138
agent’s acoustic signal experiences attenuation due to distance and “self-shadowing” (see Supplementary139
Material for details).140

2.1.2 Neural architecture141

The agent’s neural architecture consists of three fully connected layers: sensor layer, neuron layer and142
actuator layer. In this work, we study the comparison between a 2-neuron and a 3-neuron model, which143
reflects the number of neurons in the inner layer. Sensor and actuator layers are kept the same between the144
two models, except for the number of connections to the inner layer (see Figure 1).145

2 We admit that generalizability of our results needs to be checked with other possible measures of neural complexity. However, given that a choice of a
particular measure is in itself a challenging endeavor and each of the measures has advantages and disadvantages for trying to capture any particular phenomenon
(cf. a comparison of 12 different entropy measures for just anesthesia (Liang et al., 2015)), we believe using the most straightforward approach for understanding
the fundamental conceptual issues we tackle here is a good starting point.
3 In the studies mentioned above and the present study this feature is built-in given that selection pressure acts on pairs of agents together, rather than on
individuals.
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The sensor layer consists of two sensor nodes with a sigmoidal activation function and no inner state. The146
inner neuron layer is modeled as a continuous-time recurrent neural network (CTRNN) (Beer, 1995). In147
this layer, we are implementing 2 brain architectures: the use of two fully recurrently connected neurons for148
the 2-neuron model as shown in the Figure 1A, which corresponds to a 2-dimensional dynamical system;149
and the use of three fully recurrently connected neurons for the 3-neuron model as shown in the Figure 1B,150
which corresponds to a 3-dimensional dynamical system. In both architectures, each neuron’s activity is151
governed by the standard CTRNN state equation. The actuator layer consists of three actuator nodes, two152
correspond to the left and right motors for agent locomotion and one corresponds to the acoustic signal153
emitter for modulating the strength of the emitted signal. All actuator nodes are sigmoidal units with no154
internal state. Agent locomotion is the result of the effective control of the two motors, where net linear155
velocity is given by the average of the two actuator nodes corresponding to the right and left motors; and,156
the angular velocity, which refers to how fast an agent rotates, is given by their difference divided by the157
radius of the agent. The equations for each layer are provided in the Supplementary Material.158

2.1.3 Performance measure159

The measure that we use for evaluating agent’s performance is its entropy. In particular, we select simple160
multi-dimensional Shannon entropy calculated on neural output values, as in Candadai et al. (2019) model161
(see Supplementary Material for details).162

2.1.4 Genetic algorithm163

A real-valued genetic algorithm was used to optimize the parameters of the agents’ neural controllers (i.e.164
the connection weights, the time-constants, the biases and the gains) to maximize their neural entropy. It165
is important to highlight that no particular task was explicitly optimized. For the 2-neuron model, each166
agent had 20 parameters, and, for the 3-neuron model, each agent had 30 parameters. These parameters167
were encoded as the real-valued genotype, where each value was contained in the interval [-1,1] and scaled168
during simulation to specific parameter ranges.169

The agents were evaluated in each of the 4 independent trials and their neural outputs recorded in order170
to calculate their normalized neural entropy. Each trial lasted 200 simulation seconds at a step size of 0.1.171

Upon ranking the population according to fitness values, the new population was generated by keeping172
an elite population of the top 4% of the existing solutions and by mutating and crossing over these elite173
individuals to get the rest of the new solutions. Mutation consisted in adding zero-mean Gaussian mutation174
noise with a variance of 0.1 to the solutions and crossover consisted in swapping each parameter between a175
pair of solutions with a probability of 0.1.176

2.1.5 Experimental setup177

For both brain sizes (2-neuron and 3-neuron models) we evolved agents in two different evolutionary178
conditions: individual and social. Here we describe the implementation details for both scenarios.179

1. Individual Evolution (IE): We performed 10 independent runs with an initial random population of180
96 solitary agents, i.e. without an agent partner as shown in Figure 1C. The parameters for each agent181
were encoded as a single genotype (one solution). The solitary agents were not sensing any input,182
neither from another agent nor from the environment. For each trial, the agent’s initial position was set183
at coordinates (0, 0). The agent’s heading direction was initialized to the right. The population was184
evolved for 2000 generations to maximize the neural entropy of each solitary agent.185

2. Social Evolution (SE): We performed 10 independent runs with an initial random population of 96186
pairs of agents that were able to interact with each other as shown in Figure 1D. The parameters for187
each pair of agents were encoded as a single genotype (one solution) and were evolved together during188
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all generations. For each trial, there was a fixed initial position for each pair of agents: the first agent189
was always positioned at coordinates (0, 0), while the second agent was placed 20 units of distance190
from the first one, just varying their relative angle as [0, π/2, π, 3π/2], respectively. Furthermore, both191
agents’ heading direction was initialized to the right. The population was evolved for 2000 generations192
to maximize the neural entropy of each pair of agents.193

3 RESULTS
In this section, we present the results for the best agents in 2-neuron and 3-neuron models from the best194
runs. We focus on the comparison between 3-neuron agents evolved in solitary environment (Individual195
Evolution (IE)) and 2-neuron agents evolved in social environment (Social Evolution (SE)).196

3.1 Agent Behavior197

Figure 2A shows the trajectory of the best agent evolved in the IE condition in 3-neuron model. Figure198
2B shows the trajectory of the best pair of agents evolved in the SE condition in 2-neuron model. In the199
comparison of both images, it can be observed that the solitary agent exhibits less complex behavior than200
the pair of agents in interaction. In the former case, the agent is moving in simple loops, while in the latter,201
the agents are enhancing each other behavior by displaying spiralling nested pairwise loops movement.202

3.2 Statistical Analysis203

In order to capture the statistical differences between the conditions tested, we compared the means of204
neural entropy of evolved pairs of agents in the SE conditions against the neural entropy of evolved agents in205
the IE conditions, between 2-neuron and 3-neuron models. Specifically, we took the neural entropy values206
from the best agent pair or the best agent in the last generation of all 10 independent runs in each condition.207
There was a significant main effect of condition F (1, 36) = 6.55, p < .05 and a significant main effect208
of the number of neurons F (1, 36) = 4.62, p < .05 but no significant interaction effects. That is, neural209
entropy was higher in SE condition than in IE condition, and higher in 3-neuron than in 2-neuron model210
but these factors did not affect each other (see Figure 3). Social interaction between the larger-brained211
agents did not lead to a larger (or smaller) neural entropy gain compared to the smaller-brained agents.212

Since we were specifically interested in comparing neural entropy between agents evolved in social213
interaction (SE) in a 2-neuron model and agents evolved in isolation (IE) in a 3-neuron model, we also214
conducted a Bonferroni-corrected post-hoc t-test between these two conditions. The difference was not215
significant, p = 0.79.216

3.3 Nonlinear Time Series Analysis217

We performed the nonlinear time series analysis of the evolved agents’ neural activity (neural states) to218
determine their proper embedding delay τ using MI method and, then, their proper embedding dimension219
m using FNN method (see Supplementary Material for details).220

We distinguished two different testing modes for obtaining the time series of the evolved agents’ (in IE or221
SE, respectively) neural activity: (1) decoupled, when the evolved agent is tested in isolation (Input = 0);222
and (2) coupled, when the evolved agent is tested in the presence of an interactive partner. Furthermore,223
we only considered the neural states of neuron 1, trial 1, of the best agents from each run (10 runs), from224
2-neuron and 3-neuron models, correspondingly, to obtain their embedding dimension.225

Our results (see Figure 4) confirmed our hypothesis:226

1. By comparing the mean embedding dimension of the neural states of the coupled 2-neuron agent227
evolved in SE condition and the decoupled 3-neuron agent evolved in IE condition, we found that228
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the former was higher dimensional than the latter, thereby demonstrating that social smaller-brained229
agents have at least equivalent (i.e. equal or more) degrees of freedom of neural activity than isolated230
bigger-brained agents.231

2. Importantly, we found that this increase in degrees of freedom of neural activity in coupled socially232
evolved agents does not depend in their intrinsic complexity, as when being decoupled, their embedding233
dimension is lower than what can be achieved. This suggests, in line with previous work (Candadai234
et al., 2019; Reséndiz-Benhumea et al., 2020), that agents in interaction are enhancing each other’s235
neural complexity.236

4 DISCUSSION
In this paper, we have investigated the idea that brain size could decrease because agents could reliably237
take advantage of social interaction. A key open question in this regard is whether this reduction in brain238
size is made possible because of decreased cognitive demands (“smart phone, dumb user”), or because of239
increased cognitive scaffolding (“doing more with less”).240

By performing a statistical analysis, we found that smaller-brained social agents are able to exhibit241
comparable levels of neural complexity, as larger-brained solitary agents. This is in line with the idea that242
the brain of an agent in a reliable social setting can do more with less, and is consistent with our previous243
findings (Candadai et al., 2019; Reséndiz-Benhumea et al., 2020). Second, by performing a nonlinear244
time series analysis, we found that the embedding dimension of the neural states of the decoupled neural245
network is lower when agents evolved under social condition, which seems to be more in line with the idea246
of the brain as a “dumb user”. Therefore, in a way, both possibilities can co-exist depending on whether we247
focus on the topological structure (i.e. number of neurons) or the state dynamics (i.e. degrees of freedom)248
of the brain: during evolution of sociality an individual’s brain topological structure can become simplified,249
while its state dynamics can become more complex at the same time.250

An important implication of this computational proof of concept for the science of brain evolution,251
whether in humans or social insects, is that care should be taken when inferring cognitive capacities252
from brain size. The coupled brain, as part of a whole body and environment system, will exhibit neural253
dynamics that are underdetermined by the structure of the brain.254

There are several limitations to our model that need to be taken into consideration. First, our simulation255
involved separate evolutionary runs for different brain sizes and different conditions rather than integrating256
these factors within the same evolution. An alternative setup would be evolving a population of solitary257
large-brained agents and then transitioning them to a social smaller-brained population. It would be258
interesting to examine whether in such a scenario the same types of neural state spaces would be observed.259
Conceivably, the process of first evolving individual agents with a larger, more complex brain would be in260
tension with its later simplification once a social dimension is introduced and brain size is reduced.261

Second, an important characteristic of the brain neural complexity lies in its modular architecture in262
which the interplay between specialized (i.e., segregated) and integrated neuronal units results in variety263
and flexibility of cognition. In this regard, the use of Shannon entropy for measuring complexity is limited264
as it does not allow for quantification of such functional integration among differential neural activities.265
This can be addressed by exploring the use of more comprehensive measures of complexity (Tononi et al.,266
1994), thereby capturing the utility of such potential interplay between agent’s neural units on their evolved267
behaviour.268
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Third, the lack of input to the agents in isolated condition was an unrealistic impoverishment in that one269
could attribute the higher neural complexity in social than individual evolution to a richer input provided to270
the former. This is consistent with our previous result (Reséndiz-Benhumea et al., 2020) that evolving an271
isolated agent in the presence of a non-interactive “partner” can also lead to high neural complexity. The272
point here, however, is not to exclude other factors that might enable neural complexity.273

Fourth, social interaction simulated in our model is of a relatively simple kind: the agents were evolved274
always in the same pairs. It might be argued that our results are due to the availability of the same275
reliable partner and that a more realistic scenario in which they would have to interact with multiple, more276
unpredictable partners would not be possible with a smaller brain. Furthermore, brain size undoubtedly277
did increase over most of human evolution (Herculano-Houzel, 2016). We would like to point out that our278
work is not intended to deny this phenomenon but rather to put a more nuanced question into the spotlight.279
Namely, that it needs to be investigated what kind of social (and environmental) conditions lead to what280
type of consequences for brain structure and activity. Future work could explore how our findings scale up281
to larger groups and different kinds of social couplings.282

Finally, the agents in our simulation did not have any specific task they were required to solve as we283
optimized neural complexity directly. This might make conclusions about task-related neural complexity284
as opposed to task-independent complexity not entirely justified. However, related work by Nagar et al.285
(2019) that did include a behavioral task found results similar to ours.286

In addition to raising new modeling questions, our work leads to novel hypotheses that could be tested in287
experimental work. For instance, it is possible that even though social insects tend to have smaller brains288
than solitary insects, the individuals in a colony may nevertheless exhibit more complex neural activity.289
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Figure 1. Agent neural architecture and evolutionary conditions, (A) 2-neuron model neural architecture,
(B) 3-neuron model neural architecture. In both neural architectures, blue nodes refers to sensor nodes,
orange nodes refers to neurons (fully recurrently connected neurons) and purple nodes refers to actuator
nodes. (C) Evolving solitary agents (Individual Evolution (IE)), (D) Evolving interacting pair of agents
(Social Evolution (SE)).
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Figure 2. Behavior of agents during the last 10 simulation seconds of the trial. (A) Trajectory of the
best 3-neuron agent evolved in Individual Evolution (IE) condition, showing simple loop movement. (B)
Trajectories of the best pair of 2-neuron agents evolved in Social Evolution (SE) condition, showing
spiralling nested pairwise loops movement.
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Figure 3. Neural entropy values in all conditions tested: values from the best agent (IE) or agents pair
(SE) in the last generation in 10 runs of each condition. Note that the outlier in the SE, 3-neuron model was
not removed from the analysis.
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Figure 4. Embedding dimension in all conditions tested: The mean values are presented by gray diamonds.
The mean value of the Coupled Social Evolution (SE) condition in 2-neuron model is higher than the mean
value of the Decoupled Individual Evolution (IE) condition in 3-neuron model. Note that, for both models,
in the Coupled SE condition, the mean values are higher than their intrinsic dimensional limitations (i.e.
2-dimensional system for the case of 2-neuron model and 3-dimensional system for the case of 3-neuron
model). On the other hand, for both models, in the Decoupled SE condition, the mean values are lower
than their intrinsic dimensional limitations.

Frontiers 13

In review



Supplementary Material

This supplementary material document contains additional details of the methods section, including a
description of the performed analysis.

1 METHODS
1.1 Simulated agents and environment

The strength of an agent’s acoustic signal is attenuated in two different ways:

• Attenuation due to distance: The strength of the acoustic signal (or sound intensity) decays inversely
proportional to the square of the distance from the sound source, i.e. it obeys the inverse square law. It
will be maximum and equal to that of the emitted strength at a distance equal to the 2R between the
center of the agents.

• Attenuation due to “self-shadowing” mechanism: The “self-shadowing” mechanism refers to the
linear attenuation of the strength of the acoustic signal, which is proportional to the distance travelled
by the signal within the agent’s body, i.e. the shielded distance, Dsh. The range of Dsh goes from 0,
when there is a direct line between the sound source and the sensor, to 2R, when the sensor is directly
opposed to the sound source. This attenuation is a natural consequence of the agent’s embodiment (Di
Paolo, 2000). The equations to calculate the shielded distance, Dsh, are available in the Supplementary
Material of the Candadai et al. (2019) model.

Thus, the sensory input for each agent’s acoustic sensor (i.e. the attenuated strength of acoustic signal) is
obtained by first applying the inverse square law to the sound intensity at the position of the sensor and then
multiplying it by an attenuating factor that goes linearly from 1, when Dsh = 0, to 0.1, when Dsh = 2R
(Di Paolo, 2000).

Agents are able to navigate freely in the environment except when they are involved in a collision.
Collisions are modeled as point elastic, i.e. no effect in the agents’ angular velocity (frictionless bodies)
and the entire system’s energy is conserved (no loss of energy). Agent bodies are considered as identical,
so that when they are colliding, the result is the instantaneous exchange of their velocity vectors. Due to
lack of inertia, agents take back control of their movement immediately after colliding (Di Paolo, 2000).
1.2 Neural architecture

The output of the sensor layer nodes is given by:

os = gsσ(Is + θs) (S1)

where σ(x) = 1/(1 + e−x) is the sigmoidal activation function, Is is the sensory input, θs is the bias and
gs is the gain. Both sensor nodes share common bias and gain.

In both 2-neuron and 3-neuron architectures, each inner layer neuron’s activity is governed by the
following state equation:

τi
dyi
dt

= −yi +
N∑

j=1

wijσ(yj + θj) +
2∑

s=1

wisos (S2)
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where dyi/dt refers to the rate of change of internal state yi of neuron i based on a time constant τi. The
rate of change dyi/dt depends on three values: the current state of the neuron, the weighted sum of outputs
from all N neurons (for the 2-neuron model N = 2 and for the 3-neuron model N = 3 ) in the network
and the total external input. The output of each neuron based on its internal state is given by a sigmoidal
activation function σ(yj + θj) where θj refers to the neuron’s bias. The total external input received by the
neuron is given by the weighted sum of the sensory input with weights wis from sensor node s to neuron i
and os is the sensory output from each sensor node. All neurons share common time-constant and bias.

The input to the actuator layer is a weighted sum of the neurons’ outputs. The output of each of the
actuator layer node i, mi, is given by:

mi = gmσ

(
N∑

n=1

wni ∗ on + θi

)
(S3)

where on is the output of the corresponding neuron n, that are weighted by wni, θi is the bias and gm is
the gain. All actuator nodes share common bias and gain.
1.3 Performance measure

Neural complexity is calculated by creating a 2-dimensional or 3-dimensional (depending on the number
of neurons in the inner layer) histogram of neural output values in a given trial. The neural outputs
are obtained from a sigmoid function, therefore, they are bounded in the range [0, 1]. The output space
is divided into 100 bins along each dimension, i.e. totaling ten thousand bins for the 2-neuron model
(2-dimensional output space) and one million bins for the 3-neuron model (3-dimensional output space).

Then, the bins are filled with data points collected for each trial and the probability of the neural activity
being in a given bin [i, j], pi,j or [i, j, k], pi,j,k, respectively, is given by the number of points in that bin
divided by the total number of points in the trial (N = 2000).

From these probabilities, the neural entropy H is given by:

H =
100∑

i=1

100∑

j=1

−pijlog2(pij) (S4)

H =
100∑

i=1

100∑

j=1

100∑

k=1

−pijklog2(pijk) (S5)

for the 2-neuron and 3-neuron model respectively.

Next, the neural entropy is normalized to be in the range [0, 1] by dividing by the maximum
neural entropy that can be achieved in the given dimension and with the given number of
data points., i.e. log2(total number of fillable bins), where total number of fillable bins =
min(total number of bins, total number of data points). This is achieved when the data points for a
specific trial are uniformly populated among the bins. Hence, the normalized neural entropy is given by:

Ĥ = H/log2(total number of fillable bins) (S6)
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For both 2-neuron model and 3-neuron model, the total number of data points is 2000 per trial (i.e. one
data point per step size 0.1 for 200 simulation seconds). Since for both cases, the number of data points
in each trial is less than the total number of bins, we have that total number of fillable bins = 2000.
Thus, the normalized neural entropy per trial is given by:

Ĥ = H/log2(2000) (S7)

In contrast to the Candadai et al. (2019) implementation, we calculate neural entropy measure for
each experimental trial separately. The individual fitness value for an agent is calculated as the average
normalized neural entropy of all trials. In the case of interacting pairs of agents, the fitness value for each
pair is calculated as the average of their individual fitness values.
1.4 Genetic algorithm

Parameter ranges that were used to scale genotype values were as follows: for sensor and actuator nodes,
the gains were scaled in the interval [1,20] and [1,5] respectively; for neurons, the time-constants were
scaled in the interval [1,2]; all connection weights were scaled in the interval [-8,8] and all biases were
scaled in the interval [-3,3].
1.5 Nonlinear Time Series Analysis

Nonlinear time series analysis is a useful approach to understanding the underlying dynamics of a system
based solely on its realizations (e.g., time series observations) and without direct/explicit knowledge to its
(unknown) properties. It is a top-down approach in which one utilizes the system’s available observations
to realize its potential state space and attractor(s) (Stam, 2005).

Let {x0, x1, x2, ..., xt, ..., xn} be a time series associated with a system in which xt denotes the
system’s output at time t. Such time series along with delay coordinate embedding (Takens, 1981;
Perc, 2006; Kodba et al., 2005) procedure can be utilized to reconstruct the system’s attractor p(t) =
(xt, xt+τ , xt+2τ , ..., xt+(m−1)τ ), where τ and m are the embedding delay and the embedding dimension,
respectively.

To estimate the optimal embedding delay τ , Fraser and Swinney (1986) used the position at which xt and
xt+τ attained their first minimum mutual information (MI) i.e., the minimum amount of information that
the state xt provided about the state xt+τ (Perc, 2006; Kodba et al., 2005).

For estimating a proper embedding dimension m, Kennel et al. (1992) introduced the false nearest
neighbor method (FNN). The main idea of this method consists of minimizing the fraction of points having
a false nearest neighbor through the choice of a sufficiently large embedding dimension m.

In the present study, we were interested in determining the above embedding dimension m for the
time series of the evolved agents’ neural activity (neural states) in different conditions. We achieved this
objective as follows.

1. We obtained the time series of neural activity in both, 2-neuron and 3-neuron models, for following
conditions:
• Decoupled Individual Evolution (IE): From the best evolved agents (agent 1) of each run (10

runs) in IE condition, we tested them in isolation for 4 trials. Then, for determining the embedding
dimension m, we used the time series of neural states of neuron 1, trial 1, from the isolated agent
(agent 1).
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• Decoupled Social Evolution (SE): From the best evolved pairs of agents (agent 1 and agent 2) of
each run (10 runs) in SE condition, we tested agent 1 in isolation for 4 trials. Then, for determining
the embedding dimension m, we used the time series of neural states of neuron 1, trial 1, from the
isolated agent (agent 1).

• Coupled Social Evolution (SE): From the best evolved pairs of agents (agent 1 and agent 2) of
each run (10 runs) in SE condition, we tested agent 1 and agent 2 in interaction for 4 trials. Then,
for determining the embedding dimension m, we used the time series of neural states of neuron 1,
trial 1, from agent 1.

2. In order to estimate the optimal embedding delay τ using MI, we employed the nonlinear time series
analysis “mutual.exe” by Perc (2006). It requires the following parameters to be set by the user: number
of data points, number of bins, and maximal embedding delay. We estimated the proper number of
bins using Freedman–Diaconis rule (Freedman and Diaconis, 1981):

Bins =
‖max(x)−min(x)‖

2IQR(x)3√n
(S8)

where IQR(x) is the interquartile range of the data and n is the number of observations in the sample
x.

3. In order to determine the proper embedding dimension m using the FNN with Euclidean metric
(Kennel et al., 1992), we employed the NoLiTSA Python module by Manu Mannattil (Mannattil, 2018),
where we specified the optimal embedding delay τ previously estimated.
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5
Conclusions and future work

This thesis has explored the relationship between neural complexity and sociality

from the interdisciplinary perspective of embodied cognitive science using a wide variety

of scientific methods to the study of cognition.

Overall, our results shed light on different insights that can be summarized as fol-

lows:

First, from a complex systems theory perspective, the antireductionist quote, “the

whole is more than the sum of its parts”, which has been relevant for the new sciences

such as chaos, systems biology, network theory, among others, to illustrate how complex

behavior can emerge from large collections of simpler interactive components (Mitchell,

2009), can be extended according to our results of the smaller-brained agent couplings

section. We propose the following extension:
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“The whole is more than the sum of its parts (in isolation) . . . since, its parts

are also more when interacting, as they become integrated into ‘the whole’ of

a higher dimensionality”

In other words, from a dynamical systems perspective, on the one hand, when

our smaller-brained embodied agents are isolated, each of them is a 2-dimensional

(2-neuron) autonomous system, that can exhibit only single fixed-point or limit-cycle

attractors in their phase portraits (Beer, 1995). On the other hand, when our smaller-

brained embodied agents are mutually interacting, they become integrated into a larger

coupled system of a higher dimensionality, i.e. a brain-body-environment-body-brain

system (Froese et al., 2013b), thereby, allowing an increase in their neural complexity

beyond their intrinsic limits (i.e. degrees of freedom). This goes in line with the original

results of the Candadai et al. (2019) model.

Second, from an evolutionary robotics approach, according to our results of the

bigger-brained agent couplings section, by evolving embodied agents in the presence of

a ghost partner as a source of non-social stimulation, we found that the richness of the

environment may compensate unidirectional (or 1-way) interaction in terms of neural

complexity, nonetheless, this is not the same in terms of behavioral complexity, thus,

suggesting that a coupled system of embodied agents, that are responsive to each other

when interacting, allows a broader repertoire of behaviors.

Third, from an evolutionary robotics perspective and a dynamical systems approach

to cognition, our results in the smaller-brained vs bigger-brained agent couplings section

demonstrated that smaller-brained social agents can exhibit comparable levels of neural

complexity as bigger-brained solitary agents, importantly, without an increase in their

intrinsic degrees of freedom of neural activity. This suggests that smaller-brained social

agents take advantage of their capacity for interacting to enhance their intrinsic neural
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complexity, thus, allowing them to achieve similar behavioral performance with smaller

brains.

Finally, we conclude that our results provide relevant implications for the science of

brain evolution, as they suggest that a coupled brain, as part of a whole brain-body-

environment-body-brain system (Froese et al., 2013b), will display neural dynamics

that are underdetermined by the brain in itself.

In addition, our work opens the possibility to test this hypothesis in novel experi-

mental work with solitary and social species of real social insects.

Future work will look at increasing the number of embodied agents, inspired in ant

colonies, to get novel insights into the so-called "liquid" brains (Solé et al., 2019).
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