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Abstract

Nowadays, the electric industries face an unprecedented growth of new technologies
for generating energy. Microturbines, photovoltaic cells, wind turbines, wave energy
converters are examples of renewable energy generators used to supply clean energy
in a distributed manner. Moreover, microgrids (MGs) and, more precisely, islanded
microgrids (IMGs) have been proposed as a viable alternative, especially for small
remote cities, in contraposition to large generation units and large electric power sys-
tems, which often require enormous investments. However, new phenomena appear in
MGs with distributed generation, and new challenges are faced in grid planning and
operation.

Energy Management Systems (EMSs) are responsible for the operation, control,
and protection of Electric Power Systems (EPSs). Within this heading are the also
known multimachine power systems (MPSs), the single-machine infinite-bus (the most
straightforward power system under some restrictive considerations) as well as the MGs
(including the IMG structures). For these tasks, precise information is needed, for
example, bus voltages and phase angles, electrical frequency, mechanical speed of the
rotating machinery, generated active and reactive power. Despite the improved quality
of the measurement devices, it is always necessary to count on a suitable tool able to
deliver information about the system state for adequate control and operation of the
grid; admittedly, a state estimator is a convenient tool for these purposes. The power
system community has widely studied the power system state estimation for many
years. Commonly, this task is done under the steady-state assumption. The nodal
voltage phasors are reconstructed through a set of measurements which are nonlinear
functions of the state at specific time intervals. This state estimation approach strongly
depends on available measurements (redundancy is needed), and it cannot capture the
dynamic phenomena related to the system. Thus, it is essential to count on detailed
nonlinear models and estimation schemes that dynamically estimate the state.

The topic addressed in this present dissertation is the design of state estimation
schemes for dynamic systems such that the MPSs and IMG structures. Firstly, adopting
a differential-algebraic (DA) representation for an IMG consisting of a set of hydroelec-
tric and wind generators, a polynomial load model as well as the network restrictions,
two centralized estimators based on Kalman Filter theory are proposed which are easy
to construct and robust against measurement noise and model uncertainties. Both
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estimators, through a set of measurements given by bus voltage phasors and power
outputs of generators, can depict in real-time the dynamic variables (load angles, in-
ternal voltages, mechanical speeds) of generators together with the algebraic variables
(bus voltage magnitudes and phase angles) through the same estimation scheme, thus
reducing the number of the employed sensors. Furthermore, the estimation schemes
can recover the transient and steady-state regimes associated with the operation of the
IMG. Finally, both estimators’ performance is evaluated using practical IMG models
containing wind power and hydroelectric generators, under load and wind variations,
and three-phase faults.

Secondly, the problem of estimating the states of an MPS consisting of intercon-
nected synchronous generators through a purely inductive transmission network and a
constant impedance load model is addressed within a constructive framework by com-
bining notions and tools from electrical engineering, model design for a specific purpose
at hand, the nonlinear estimation. The estimation of dynamic variables (load angle,
relative speed, and electrical power variation) of each generator is carried out using the
load angle as individual measured output and not requiring the knowledge of the global
system, the result is a design with (i) systematic construction, (ii) solvability in terms
of observability and robust convergence in the presence of modeling-measurement er-
ror criterion coupled with a conventional-like simple pole placement-based tuning, and
(iii) robust functioning underlain by an adequate compromise between reconstruction
speed, robustness concerning model error and measurement noise, as well as on-line
computational load. The proposed design methodology is: (i) put in perspective with
previous sliding modes (SM) and extended Kalman filter (EKF) techniques, and (ii)
illustrated through numerical simulation with a representative case example, including
favorable comparison against the conventional EKF.



Contents

List of Figures xiii

List of Tables xv

1 Thesis Contribution and Outlines 5
1.1 Introduction and Thesis Motivation . . . . . . . . . . . . . . . . . . . . 5
1.2 Thesis Hypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 State Estimation Problem and Power System Description 11
2.1 Dynamic State Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Model Under Consideration . . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Observation Problem . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.1.3 State Estimation Problem for IMG structures and MPSs . . . . . 12

2.2 Microgrid Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Microgrid Architecture . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.2 Microgrid Model Incorporating Renewable Energy Resources . . 13

2.2.2.1 Hydroelectric Generators . . . . . . . . . . . . . . . . . 14
2.2.2.2 Wind Power Generators . . . . . . . . . . . . . . . . . . 15
2.2.2.3 Microgrid’s Nodal Power Balance Equations . . . . . . 17
2.2.2.4 Observation Model and Bad Data Detection Analysis . 18

2.3 A Multimachine Power System Dynamic Model . . . . . . . . . . . . . . 19

3 Dynamic State Estimation for Islanded Microgrid Structures 23
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Dynamic State Estimation Algorithm for IMG structures based on Ex-

tended Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.1 Structure-Preserving Model in Discrete Form . . . . . . . . . . . 25
3.2.2 Dynamic State Estimation Algorithm based on EKF . . . . . . . 26

3.2.2.1 Bad Data Analysis . . . . . . . . . . . . . . . . . . . . . 29

ix



CONTENTS

3.2.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.3.1 Dynamic State Estimation with Wind Speed and Load

Variations . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.3.2 Dynamic State Estimation with Load and Wind Varia-

tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Dynamic State Estimation Algorithm for IMG Structures based on Sin-

gular Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.1 Singular Perturbation Theory for Structure-Preserving Models . 36
3.3.2 Proposed Method for Dynamic State Estimation Using the UKF

for DAEs based on Singular Perturbation Theory (UKF-SPT) . . 37
3.3.2.1 Bad Data Analysis . . . . . . . . . . . . . . . . . . . . . 40

3.3.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3.3.1 Practical IMG and comparison against the conventional

Extended Kalman Filter for DA systems . . . . . . . . 41
3.3.3.2 IMG under three-phase fault . . . . . . . . . . . . . . . 45

3.4 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4 Decentralized Robust State Estimation of Multimachine Power Sys-
tems 49
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.3 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.1 Nonlinear Extended Kalman Filter and Sliding Mode Perturba-
tion Observer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 State Estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.4.2 MPS Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4.3 Estimation Model . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.4 Observability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.5 Nominally Convergent Estimator . . . . . . . . . . . . . . . . . . 59
4.4.6 Tuning Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.7 Robust Convergence (in the presence of noise and parasitic dy-

namics) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.4.8 Tuning Procedure (in the light of R convergence with noise and

upper limit identification) . . . . . . . . . . . . . . . . . . . . . . 66
4.4.9 GE-EKF equivalence . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.4.10 Epilogue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.5.1 Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5.2 Robust Testing Scheme . . . . . . . . . . . . . . . . . . . . . . . 71

4.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Conclusions and Future Research 79
5.1 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

x



CONTENTS

A Nonlinear Maps and Open Loop System Functions 83

B IMG Parameters 85

Bibliography 87

xi



List of Figures

2.1 A typical MR usually includes loads and DERs units [9] . . . . . . . . . 14

3.1 Microgrid with hydro generation and wind generation. . . . . . . . . . . 30
3.2 Load angle, electrical frequency and q-axis E.M.F of hydro generator. . 31
3.3 Mechanical speed of WG, d-axis E.M.F of WG and q-axis E.M.F of WG. 31
3.4 Nodal voltage magnitudes of the Microgrid. . . . . . . . . . . . . . . . . 31
3.5 Microgrid with hydro generation and wind generation. . . . . . . . . . . 32
3.6 Wind speed variations and load profile variations. . . . . . . . . . . . . . 33
3.7 Electrical frequency, Mechanical speed of WG 1, Mechanical speed of

WG 2, Mechanical speed of WG 3. . . . . . . . . . . . . . . . . . . . . 34
3.8 Nodal voltage magnitudes of the Microgrid. . . . . . . . . . . . . . . . . 34
3.9 Wind speed and load variations. . . . . . . . . . . . . . . . . . . . . . . 41
3.10 Dynamic of γ of each measurement. . . . . . . . . . . . . . . . . . . . . 42
3.11 Nodal voltage magnitudes of the Microgrid . . . . . . . . . . . . . . . . 43
3.12 Nodal voltage magnitudes of the Microgrid . . . . . . . . . . . . . . . . 43
3.13 Comparison between the developed UKF-SPT and the conventional EKF.

Electrical frequency of the IMG and mechanical speeds of WG 1, 2 and 3. 44
3.14 Load angle, electrical frequency and q-axis E.M.F of hydro generator. . 45
3.15 Mechanical speed of WG, d-axis E.M.F of WG and q-axis E.M.F of WG. 46

4.1 (a) GE condition (4.50) fulfillment (—-), non-fulfillment (....), and thresh-
old case (–..–..) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2 WSCC 3-machine, 9-bus system [12] . . . . . . . . . . . . . . . . . . . . 70
4.3 Comparison between the GE estimator and the conventional EKF. Load

angle and relative speed of generator one. . . . . . . . . . . . . . . . . . 72
4.4 Comparison between the GE estimator and the conventional EKF. The

electrical power variation and the nonlinear interconnection term of gen-
erator one. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Comparison between the GE estimator and the conventional EKF. Load
angle and relative speed of generator two. . . . . . . . . . . . . . . . . . 73

4.6 Comparison between the GE estimator and the conventional EKF. The
electrical power variation and the nonlinear interconnection term of gen-
erator two. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xiii



LIST OF FIGURES

4.7 Comparison between the GE estimator and the conventional EKF. Load
angle and relative speed of generator three. . . . . . . . . . . . . . . . . 74

4.8 Comparison between the GE estimator and the conventional EKF. The
electrical power variation and the nonlinear interconnection term of gen-
erator three. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

xiv



List of Tables

3.1 State estimation techniques [4] . . . . . . . . . . . . . . . . . . . . . . . 40
3.2 RMSE in per-unit associated with estimators performance . . . . . . . . 44
3.3 Execution times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4 Comparison of different state estimation approaches . . . . . . . . . . . 48

4.1 Machine data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.2 State estimation techniques . . . . . . . . . . . . . . . . . . . . . . . . . 76

xv



Notation and Acronyms

Variables and Constant Definitions

δi — Power angle of the synchronous generator
ωi, f0 — Rotor speed of the synchronous generator and synchronous frequency
Pi — Difference between the electrical power minus mechanical input power
E′qi — q- transient voltage of the synchronous generator
Pmi — Per unit mechanical input power
Efi — Per unit field voltage
Hi, Di — Inertia constant and damping factor per unit
xdi , xqi — Direct- and quadratic-axis reactance
x′di — Direct-axis transient reactance
τi — Direct-axis transient open-circuit time constant of the synchronous generator
Pgi , Qgi — Generated active and generated reactive powers by the synchronous generator
Pgsi , Qgsi— Generated active and generated reactive powers by the wind generator
Pwt, ρ — Mechanical power developed by the wind turbine’s rotor and air density
A, Vw — Swept area of the blades and wind speed
λ, ngb – Tip speed ratio and gear box ratio
R, β — Rotor blade radius of the turbine and pitch angle
e′di , e

′
qi — d- and q- transient voltage of the induction generator

ωmi , ωb — Mechanical speed of the induction generator and base angular speed
ωs, Rr — Electrical rotating speed of the stator and rotor resistance
T ′0 — Transient open-circuit time constant of the induction generator
Lmi , Lrri — Mutual inductance and rotor inductance of the induction generator
X ′ — Transient reactance of the induction generator
Heqi — Equivalent inertia of the turbine-generator group
Tei , θe — Per unit electromagnetic torque and electrical angle
Vi, θi — Terminal bus voltage and phase angle
f , g — Nonlinear differential equations related to the generators and nonlinear alge-

braic equations related to the network restrictions

1



LIST OF TABLES

Acronyms

MG — Microgrid
IMG — Islanded Microgrid
DAEs — Differential Algebraic Equations
DA — Differential Algebraic
ODEs — Ordinary Differential Equations
DERs — Distributed Energy Resources
IG — Induction Generator
SG — Synchronous Generator
WLS — Weighted Least-Squares
E.M.F — Electromotive Force
RMSE — Root Mean Square Error
IS — Input-to-State
SE — State Estimation
R — Robust
NL — Nonlinear
GE — Geometric Estimator
MPS — Multimachine Power System
OL — Open Loop
CL — Closed Loop
EKF — Extended Kalman Filter
UKF — Unscented Kalman Filter
SPT — Singular Perturbation Theory
IS — Input-to-State
EU — Exponentially Ultimate
SS — Steady State
SMPO — Sliding Mode Perturbation Observer
SM — Sliding Modes

Extended Kalman Filter - Islanded Microgrids

x — Dynamic variables
z — Algebraic variables
nd — Dimension of dynamic variables
nz — Dimension of algebraic variables
x̂ — Estimated value of x
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ẑ — Estimated value of z
xaug — Grouping of dynamic and algebraic variables
P yy
k+1 — Covariance of the measurement
P xy
k+1 — Cross covariance of the state and measurement
P aug
k+1 — Predicted estimation error covariance of the augmented state
P aug
k+1|k+1 — Updated estimation error covariance of the augmented state
Wm,W c— Weights for the mean and the covariance of the state or measurement
X̂aug
k — Sigma points of the augmented state

X̂aug
k+1|k — Predicted sigma points of the augmented state

3





Chapter 1

Thesis Contribution and Outlines

1.1 Introduction and Thesis Motivation

Nowadays, the electric industry faces an unprecedented growth of new technologies
for the generation and distribution of energy. Microturbines, photovoltaic cells, wind
turbines, wave energy converters are examples of renewable energy generators used to
supply clean energy in a distributed manner. Moreover, microgrids (MGs) have been
proposed as a viable alternative, especially for small remote cities, in contraposition to
large generation units and large electric power systems, which often require enormous
investments. However, new phenomena appear in MGs (either when they work con-
nected to the main grid or as an islanded system) with distributed generation, and new
challenges are faced in grid planning, and operation [1, 2].

Energy Management Systems (EMSs) are responsible for monitoring, controlling,
and protecting the MPSs, including their variants; the MGs can operate connected to
the main grid or as an islanded system (IMGs). For this, the EMSs require information
about the state variables of the system [2], which are associated with bus voltages and
phase angles, electrical frequency, mechanical speeds of rotating machinery. Despite
the improved quality of the measurement devices, it is always necessary to count on a
suitable tool able to deliver information about the system state variables for adequate
control and operation of the grid; admittedly, a state estimator is a convenient tool for
these purposes [3, 4]. The estimated values of state variables can be used as references
for local controllers or oscillation monitoring [5].

Usually, the estimation task has been carried out through the traditional static state
estimation (SSE) approach under the steady-state assumption. The estimator refines
the information received from the Supervisory Control And Data Acquisition (SCADA)
systems and Phasor Measurement Unit (PMU) devices to obtain the best estimate of
bus voltage magnitudes, and phase angles, which represent the algebraic variables of
the system [5, 6].

The estimators designed under this approach strongly depends on available measure-
ments, besides those estimators that only adopt measurements from SCADA systems
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1. THESIS CONTRIBUTION AND OUTLINES

measurements (whose sampling rate is slower than those provided by PMUs) could
not provide an estimate of transient behavior associated with the operation of gen-
erators, which correspond to the dynamic part of the system. It is also essential to
consider these dynamic variables and algebraic variables (i.e., the network bus voltage
phasors), allowing a general overview of the system. Therefore, it is necessary to count
on dynamic models, and dynamic state estimation (DSE) algorithms that can provide
enhanced dynamic visibility for power system monitoring [5].

In this research work, a set of non-linear differential-algebraic equations (DAEs) and
a set of non-linear ordinary differential equations (ODEs) are employed for describing
power system dynamics, and they are used to design the dynamic estimators.

1.2 Thesis Hypotheses

The research work presented in this dissertation is derived under the following hypothe-
ses:

◦ The nonlinear dynamic systems describe the behavior of electrical power networks
correctly. A set of nonlinear differential-algebraic equations or a set of nonlin-
ear ordinary differential equations can be employed to represent the associated
phenomena.

◦ A set of measurements that guaranteed the system’s observability can be em-
ployed to design dynamic estimators that reconstruct the state variables of these
mathematical representations.

1.3 Research Objectives

The research work has as the main objective to design robust dynamic state estimation
schemes for dynamic systems that represent electric power systems, such as MPSs or
IMG structures, considering:

◦ The proposed estimators should have the capacity to estimate the transient and
steady-state regimes associated with the operation of these systems.

◦ The proposed estimators should include an observability analysis to determine
the required measurements to reconstruct the state.

◦ The proposed estimation schemes should be generic to network decomposition,
which means that it can integrate different topologies, generator units, loads.

◦ For a dynamic system that represents an IMG consisting of a set of hydroelectric
and wind generators interconnected with another set of loads (polynomial load

6



1.4 Contributions

model) through power lines and whose interaction is described by a differential-
algebraic system (also known as structure-preserving models). The dynamic vari-
ables (load angles, internal voltages of generators, mechanical speeds) and alge-
braic variables (bus voltage magnitudes and phase angles) should be estimated in
real-time in the presence of system disturbances through a minimum number of
measurements (only the minimal amount to guarantee observability properties),
which are based on bus voltage phasors and power outputs of generators. In turn,
for the estimator design, the IMG structure can be assumed as a positive sequence
balanced electrical network. It is assumed to know the parameters (those related
to the generators and the electrical network). Moreover, a nominal control input
should be considered such that the IMG can operate within the established limits.

◦ For a dynamic system that represents a MPS consisting of a set of intercon-
nected synchronous generators through a purely inductive transmission network
and including a constant impedance load model, thus all zero injection nodes are
removed considering only the generator nodes and whose dynamic behavior is
described by a set of nonlinear differential ordinary equations. The estimation of
dynamic variables (load angle, relative speed, and electrical power variation) of
every generator should be carried out using the load angle as unique measured
output and not requiring the global system’s knowledge. The proposed estimator
should reconstruct in a fast and robust way the state, even in the presence of mea-
surement noise and parametric uncertainty coupled with a precise and systematic
industrial-like tuning. Besides, the convergence must be guaranteed.

1.4 Contributions

The contributions of the thesis are divided into two main challenges, which are stated
as follows.

1. The first addressed challenge is the design of robust dynamic estimators for IMG
structures highlighting the following four main contributions: (i) the proposed
estimators based on a centralized approach are able to depict in real-time the dy-
namic variables (load angles, internal voltages, mechanical speeds) of generators
together with the algebraic variables (bus voltage magnitudes and phase angles)
through the same estimation scheme thus reducing the number of the employed
sensors, (ii) the developed dynamic estimators allows estimating the transient and
steady-state regimes of an IMG, (iii) the design of estimator is generic concern-
ing the network decompositions as well as the nonlinear dynamics associated with
generators are considered, and (iv) the proposed variant of the Unscented Kalman
Filter (UKF) significantly reduces the creation of algebraic loops in comparison
with the traditional UKF for differential-algebraic systems, thus decreasing the
simulation time and the computational load.
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1. THESIS CONTRIBUTION AND OUTLINES

2. The second addressed challenge focuses on designing a dynamic state estimator for
a MPS highlighting the following contributions: (i) based on a state-unmeasured
input observable model of the MPS the dynamic variables of generators (load
angles, relative speeds, and electrical power variations) are reconstructed in a
decentralized way by using load angle as the unique measured output, (ii) the de-
veloped estimator retains the low-dimensionality (low online computational load),
disturbance rejection capability, and formal assessment of robust convergence of
a sliding mode observer, and the robustness of the Extended Kalman Filter con-
cerning measurement noise but coupled with a conventional-like simple tuning
scheme, (iii) identification of the underlying state-input observability property
that justifies the feasibility of quickly and robustly the reconstruction of the aug-
mented state in the presence of measurement noise which clearly leads to upper
and lower observer gains that are equivalent to the ultimate gains in the industrial
application tunings, (iv) the presented convergence analysis of estimation error
dynamics is based on input-to-state stability sense with respect to model errors
and measurement noise yielding to robust convergence conditions of the type small
gains which is sharper, more transparent and with greater interpretability than
those based on Lyapunov functions, and (v) the proposed estimation methodology
can be easily implemented in power grids with traditional and renewable sources
(like those documented in [7]) allowing the estimation of dynamic variables of
generators and inverters in a decentralized way through local information with a
conventional-like simple tuning scheme.

1.5 Thesis Outline

The outline of the present thesis is organized into five chapters boarding the two chal-
lenges mentioned earlier.

Chapter 2: The state estimation problem is presented, and the dynamic model of
IMG structures and MPSs employed in the analysis of the design of state estima-
tion algorithms are introduced.

Chapter 3: The dynamic state estimation algorithms for IMGs structures based on
Kalman Filter theory are presented.

Chapter 4: A new decentralized dynamic state estimator for MPS is introduced with
a comparative study case with the conventional EKF.

Chapter 5: The concluding remarks of this thesis work are given, and future work
ideas are established.
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Chapter 2

State Estimation Problem and Power

System Description

Abstract: This chapter is devoted to present the dynamic state estimation prob-
lem for IMG structures and MPSs. They are viewed as dynamic systems represented
by a set of nonlinear ODEs or nonlinear DAEs. Firstly, the IMG model based on
the differential-algebraic (DA) model is presented considering hydro generators, wind
power generators, and those algebraic restrictions that describe the nodal power bal-
ance equations. Secondly, a new representation of an MPS is introduced, usually used
for stability analysis for large-scale power systems. The introduced models represent
the starting point to design the state estimation schemes.

2.1 Dynamic State Estimation

2.1.1 Model Under Consideration

Generally, the dynamic behavior of an electric power system, either be an IMG or an
MPS, can be described through a set of nonlinear DAEs:

ẋ(t) = f(t,x, z, u), x(t0) = x0

0 = g(t,x, z), z(t0) = z0

y(t) = h(t,x, z)
(2.1)

where x ∈ Rnd are the state variables associated with the generation unit dynamics;
these can be, for instance, the internal variables of a power plant (say hydroelectric or
wind turbine) such as the rotor angle, mechanical speed, and internal voltages, z ∈ Rnz
are variables related to the algebraic interconnection constraints, such as voltage mag-
nitude, and voltage phase angle on each network bus, including load buses, f ∈ Rnd
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2. STATE ESTIMATION PROBLEM AND POWER SYSTEM DESCRIPTION

are the nonlinear local Lipschitz functions that describe the dynamic behavior of gen-
erators, g ∈ Rnz is the set of algebraic equations representing the network restrictions,
u ∈ Rp is the input vector (e.g., field voltage, mechanical input power) and y ∈ Rm
are the nonlinear observation equations (outputs) which can be the state or nonlinear
functions of the state.

The next section the observation problem for DA systems is derived from the ideas
presented in [8].

2.1.2 Observation Problem

Given a dynamic system described by a representation (2.1) the observation problem
is reduced to find an estimated (x̂(t), ẑ(t)) for (x(t), z(t)) from the knowledge of y(τ),
u(τ) for an specific time interval 0 ≤ τ ≤ ∞.

The observation problem for dynamic systems is divided into two parts [8].

Observability: Considering only the available information (u, y), it should be possible
to retrieve the real value of x(t) and z(t), over a specific time interval t ∈ [t0, t0 +
T ], T > 0.

Observer design: An observer is given by an auxiliary system for (x, z) such that

(i) x̂(0) = x0 ⇒ x̂(t) = x(t), ∀t ≥ 0;
(ii) ẑ(0) = z0 ⇒ ẑ(t) = z(t), ∀t ≥ 0;

(iii) ||end || = ||x̂(t)− x(t)|| → 0, as t→∞;
(iv) ||enz || = ||ẑ(t)− z(t)|| → 0, as t→∞

If i) and ii) hold for any x̂(0),x(0), ẑ(0), z(0), the observer is global.
If iii) and iv) hold with exponential convergence, the observer is exponential.
If iii) and iv) hold with a convergence rate which can be tuned, the observer is

tunable.

2.1.3 State Estimation Problem for IMG structures and MPSs

The IMG estimation problem whose mathematical representation is given by (2.1)
turns to be a problem of observer design to estimate the state variables, x(t) and
z(t) in real-time using a set of measurements that guarantee the IMG’s observability.
Depending on each electrical power grid and its components, these measurements may
be given by bus voltage phasors and the power outputs of generators. In turn, for
estimator design, it is assumed the knowledge of the parameters (those related to the
generators and the electrical network), for a MPS consisting of a set of interconnected
synchronous generators through a purely inductive transmission network and whose
dynamic behavior is described by a set of nonlinear ODEs (for this all zero injection
nodes are removed considering only the generator nodes). The estimation problem is
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reduced to estimate the x(t) variables (load angle, relative speed, and electrical power
variation) of each generator employing the load angle as individual measured output
(one per generator).

Here below, in Section 2.2, the IMG mathematical model is presented, and in Section
2.3, a MPS dynamic model is introduced.

2.2 Microgrid Description

2.2.1 Microgrid Architecture

An MG can operate in two ways: connected to the main grid or islanded. When
it operates in isolation, it can be disconnected from the main network and operate
autonomously [1] and its main characteristics are:

◦ The MGs are composed of distributed energy resources (DERs), storage assets,
and loads.

◦ Local control over DERs without the necessity of a dispatch center.

◦ Likewise, the IMG is susceptible to frequency variations due to the marked dif-
ference between the inertias of generation units; conventional generation sources
(hydroelectric generation - synchronous generators), distributed energy resources
(wind, solar), and those inverted sources (without inertia)[9].

To ensure the correct operation of an IMG, the EMSs require precise information
about IMG state variables allowing its protection and control [10]. There are different
methods and tools to achieve the correct operation of an IMG: (i) state estimation
schemes (to provide accurate information about the IMG state), (ii) backup (batteries,
capacitor bank), and (iii) control approach (centralized or decentralized) through speed
governors, automatic voltage regulators, flywheel backup generators, “droop control”,
etc [1, 9].

Figure 2.1 shows a typical MG including DERs, industrial and residential loads, lo-
cal producers, some fossil energy-based producers, and one Point of Common Coupling
(PCC) with the grid.

2.2.2 Microgrid Model Incorporating Renewable Energy Resources

As previously mentioned, the mathematical model emerging from an IMG may be
described by a nonlinear semi-explicit DAE (2.1). For this, the nonlinear differen-
tial functions f(t,x, z, u) and nonlinear algebraic constraints g(t,x, z) are given by
the expressions derived in Sections 2.2.2.1, 2.2.2.2 and 2.2.2.3, whereas, the model of
measured outputs y are presented in Section 2.2.2.4.
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Utility Grid
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Figure 2.1: A typical MR usually includes loads and DERs units [9]

2.2.2.1 Hydroelectric Generators

Synchronous generators convert the mechanical input power from a prime mover into
electrical power to supply the demand [11]. This generator is characterized by its ability
to vary its power production within a few second, an important feature which is helpful
for electrical frequency regulation purposes in IMG structures.

Assuming that a synchronous generator (SG) is connected to a generic node “i”
of the microgrid, its dynamics may be described through the widely used flux-decay
model, which involves the swing equations together with the transient voltage dynamics
[12, 13]:

δ̇i = ωi − 2πf0 (2.2a)
2Hiω̇i = Pmi −Di(ωi − 2πf0)− Pgi (2.2b)

τiĖ
′
qi = −xdi

x′di
E′qi +

xdi − x′di
x′di

Vi cos(δi − θi) + EFi (2.2c)

where δi, ωi and E′qi , are the rotor angle, the rotor speed, and the quadrature axis
internal electromotive force (E.M.F), respectively. The terms Vi and θi are the terminal
voltage magnitude and the phase angle, f0 is the synchronous frequency (Hz), Pmi is
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the mechanical power, Pgi is the active power injected by the synchronous generator,
Hi, Di are the inertia constant and the damping coefficient, respectively, xdi , xqi are
the direct and quadrature axis synchronous reactance, x′di is the direct axis transient
reactance, τi represents the direct axis transient open-circuit time constant and EFi is
the field voltage.

The active and reactive powers delivered by the generator are given by

Pgi =
E′qiVi

x′di
sin(δi − θi) +

x′di − xqi
2xqix′di

V 2
i sin(2(δi − θi)) (2.3a)

Qgi =
(
x′di + xqi
2xqix′di

−
x′di − xqi
2xqix′di

cos(2(δi − θi))
)
V 2
i −

E′qiVi

x′di
cos(δi − θi) (2.3b)

The mechanical input power Pmi and the field voltage EFi can be modified by
including speed governors and automatic voltage regulators.

2.2.2.2 Wind Power Generators

Wind power sources are one of the fastest-growing sources worldwide, especially suit-
able for remote areas. In this present thesis, to test the proposed state estimators,
different practical IMGs with wind generation have been considered. Each wind power
generator is represented by a fixed-speed wind generator based on a squirrel-cage in-
duction generator (SCIG) driven by a wind turbine. The stator terminals are directly
connected to the grid through a coupling power transformer. Since the speed is almost
fixed to the grid frequency and is not controllable, an alternative to the frequency regu-
lation can include doubly-fed induction generators with their local controls by including
a converter model.

Firstly, the aerodynamic model of the wind turbine rotor includes the conversion of
the kinetic energy from the wind into mechanical power developed by the wind turbine’s
rotor is computed by [14].

Pwt = 1
2ρ · c1

(
c2
λα
− c3β − c4β

c5 − c6

)
· e
−c7
λα A · V 3

w (2.4)

with

λα =
[( 1
λ+ c8β

)
−
(

c9
β3 + 1

)]−1
, λ = R · ngb · ωm

Vw
(2.5)

where Pwt is the mechanical power developed by the wind turbine, ρ is the air density
(kg/m3), A is the swept area of the blades (m2) and Vw is the wind speed (m/s), β
is the pitch angle of the rotor blades (degrees) and λ is the tip speed ratio, ngb is the
gearbox ratio, ωm is the angular mechanical speed (rad/s), R is the rotor blade radius
of the turbine (m) and the constants c1 to c9 are the design parameters of the wind
turbine.
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Assuming an induction generator (IG)-based on wind generator, the two electrical
equations describing the machine’s dynamics in the dq reference frame, are [11]:

T ′0i
de′di
dt

= ωsiLmiiqri + (ωsi − ωmi)Lrri
Rri

e′qi (2.6a)

T ′0i
de′qi
dt

= −ωsiLmiidri −
(ωsi − ωmi)Lrri

Rri
e′di (2.6b)

where “i” is the counter index which depends on the node of the islanded microgrid
where the induction generator is connected, the subscripts s and r represent quantities
corresponding to the stator and rotor, respectively, e′di and e′qi are the per-unit electro-
motive force behind the transient reactance, ωsi is the electrical rotating speed of the
stator, ωmi is the mechanical speed of the generator rotor, ωbi is the base angular speed
used to calculate the inductive reactances (rad/s), Rri represents the rotor resistance
and T ′0i is the transient open-circuit time constant (seconds) [3, 4].

The machine’s rotor motion equation is given by swing equation describing the
accelerations and the decelerations of wind generators

dωmi
dt

= Tei − Tmi
2Heqi

(2.7)

where Heqi is the equivalent inertia of the turbine-generator group, it includes the
inertia constants of the generator and turbine. The per-unit electromagnetic torque
Tei is expressed as,

Tei =
−Rsi (e′2di

+ e′
2
qi

+ e′di
Vi sin(θi − θe)− e′qi

Vi cos(θi − θe)) +X′iVi(e
′
di

cos(θi − θe) + e′qi
sin(θi − θe))

ωsi (R2
si

+X′
2
i )

(2.8)

where X ′i is the transient reactance, it is given by X ′i = (Lssi − L2
mi/Lrri)ωsi , of which

Lssi = Lsσi + Lmi . The subscripts r, m, s and σ stand for the rotor, mutual, stator
and leakage inductances, respectively. The mechanical torque Tm (p.u) is determined
by Tmi = Pwti/ωmi .

Finally, the active and reactive powers injected by each wind generator are expressed
in terms of dynamic and algebraic variables to attain the correspondence between the
network and the wind generator as follows:

Pgsi = Vi

(
Rsi (Vi + e′di

sin(θi − θe)− e′qi
cos(θi − θe)) +X′i(e

′
di

cos(θi − θe) + e′qi
sin(θi − θe))

R2
si

+X′
2
i

)
(2.9a)

Qgsi = Vi

(
−Rsi (e′di

cos(θi − θe) + e′qi
sin(θi − θe)) +X′i(Vi + sin(θi − θe)e′di

− cos(θi − θe)e′qi
)

R2
si

+X′
2
i

)
(2.9b)
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where the terms e′di , e
′
qi and ωmi are the dynamics states of the induction genera-

tor, these states together with those of hydroelectric generators, will represent the set
of dynamic variables to be estimated by this introduced dynamic estate estimation
approach.

2.2.2.3 Microgrid’s Nodal Power Balance Equations

The power transmission line is one of the major components of an electric power system.
Its major function is to transport electric energy, with minimal losses, from power
sources to loads. The design of a transmission line depends on four electrical parameters
[15]:

1. Series resistance

2. Series inductance

3. Shunt capacitance

4. Shunt conductance

For estimation purposes, a medium-length transmission line model is adopted whose
single-phase equivalent model can be represented by π configuration (the shunt capac-
itance of the line is divided into two equals parts placed at the sending and receiving
ends of the line) [15]. Thus, the active and reactive powers, P cali and Qcali , at bus “i”
are nonlinear functions of nodal voltages and network impedances, as cited as follows:

P cali = V 2
i Gii +

N∑
j=1,j 6=i

ViVj [Gij cos(θi − θj) +Bij sin(θi − θj)] (2.10a)

Qcali = −V 2
i Bii +

N∑
j=1,j 6=i

ViVj [Gij sin(θi − θj)−Bij cos(θi − θj)] (2.10b)

where Gij and Bij are the conductance and the susceptance between the bus “i ” and
“j”, θj is the nodal phase angle and Vj is the nodal voltage magnitude at bus “j”.

The nodal balance equations are defined as:

∆Pi = PGi − PLi − P cali = 0 (2.11a)
∆Qi = QGi −QLi −Qcali = 0 (2.11b)

Notice that (2.11a)-(2.11b) imply that there is a generator connected to the cor-
responding bus “i”, the terms PGi and QGi represent the active and reactive powers
injected by the generator unit at bus “i”. This generator may be either synchronous or
asynchronous depending on the type of power plant to be considered, i.e., hydroelectric
generator (2.3a)-(2.3b) or wind power generator (2.9a)-(2.9b). PLi and QLi are the
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active and reactive powers drawn by the load at bus “i”. Respectively, for this, it has
been considered a polynomial load model.

Remark 2.1 For a hydro generator the nonlinear functions f are given by (2.2a)-
(2.2c), the dynamic and algebraic variables will be, x :=

[
δi, ωi, E

′
qi

]>
∈ Rnd and

z :=
[
θi, Vi

]>
∈ Rnz , respectively, and the inputs u :=

[
Pmi , EFi

]
. Whereas for a fixed

speed wind generator, the nonlinear functions f are given by (2.6a)-(2.7), the dynamic
and algebraic variables will be, x :=

[
ωmi , e

′
di
, e′qi

]>
∈ Rnd and z :=

[
θi, Vi

]>
∈ Rnz ,

respectively. The nonlinear algebraic equations g(t,x, z) related to the microgrid’s
nodal power balance equations are given by (2.11a)-(2.11b) and the measured outputs
y = h(t,x, z) used for estimators design is cited in the following Section 2.2.2.4.

2.2.2.4 Observation Model and Bad Data Detection Analysis

The dynamic estate estimation algorithms introduced in this research work based on the
Kalman filter theory consider four measured outputs (2.12), provided by a measurement
device installed at the generic bus “i”(assuming a synchronous generator connected to
this bus) [3, 4]:

h1 =
E′qiVi

x′di
sin(δi − θi) +

x′di − xqi
2xqix′di

V 2
i sin(2(δi − θi))

h2 =
(
x′di + xqi
2xqix′di

−
x′di − xqi
2xqix′di

cos(2(δi − θi)
)
V 2
i −

E′qiVi

x′di
cos(δi − θi)

h3 = Vi, h4 = θi (2.12)

For the 3-bus IMG (employed in study cases of Sections 3.2.3 and 3.3.3), the observ-
ability property is guaranteed using these four measurements from bus one. Depending
on each electrical power grid and their components, for the 7-bus IMG (used in simula-
tion results of Subsections 3.2.3.2, 3.3.3.1 and 3.3.3.2), the set of measurements (2.12)
can be completed with those signals associated with the output powers of wind genera-
tors (2.9a)-(2.9b). With these measurements, the reconstruction of IMG state variables
is guaranteed under the observability criterion for DA systems presented in [16, 17].

The dynamic state estimation algorithms must include a bad data analysis to detect
and handle the effects of gross measurement errors. The proposed estimators based on
the Kalman Filter theory can identify the gross errors through a normalized innovation
vector. Following the ideas presented in [18], a measurement must be discarded if it is
more significant than 1.5 p.u.
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2.3 A Multimachine Power System Dynamic Model

A modified model of a MPS made of N interconnected generators, considering the
electrical power as the third state instead of the internal voltage, whose dynamics are
described under standard assumptions [19–23], by following mechanical and energy
balances:

δ̇i = ωi, δi(0) = δi0, yi = δi, i = 1, ...,N (2.13a)
ω̇i = −aiωi − biPi + dωi , ωi(0) = ωi0 (2.13b)
Ṗi = −ciPi + γi(δ,ω,dγ ,pi,pIi) + ui, Pi(0) = Pi0 (2.13c)

where

δ = [δ1, ..., δN]>, ω = [ω1, ..., ωN]>, Pi = ∆Pei = Pei − Pmi (2.13d)

δi ∈ A = [0, 2π], ωi ∈ Ωi = [0, ω+
i ], ui ∈ Ui = [u−i , u+

i ] (2.13e)

ai = Di/Mi, bi = 1/Mi, ci = 1/T ′di , ui = ciIqiEfi (2.13f)

w = [Idi , E′qi , E
′
qj , Ė

′
qj , Qei ]

>, ηi = [Pmi , Iqi ]> dγ = [w,ηi]> (2.13g)

pi = [ai, bi, ci, ρi, ρti ]>, pIi = Bij (2.13h)

γi(δ,ω,dγ ,pi,pIi) =− ci(ρi − ρti)(IqiIdi)− ciPmi −Qeiωi

+ E′qi

 N∑
j=1

Ė′qjBij sin(δi − δj)−
N∑
j=1

E′qjBij cos(δi − δj)ωj


(2.13i)

For the i-th generator: δi is the load angle [rad], ωi is the relative speed [p.u.] (with
respect to the synchronous speed), Pi is the electrical power (Pei) minus mechanical
input (Pmi known and constant) power [p.u.], dwi is a known persistent disturbance
[p.u.], ηi (or w) is the measured vector (or unmeasured vector) input [p.u.], yi (or ui)
is the measured output [rad] (or control input [p.u.]) associated with Efi, which is an
equivalent EMF in the excitation coil, gi is a (Lipschitz bounded) nonlinear function,
ρi (or ρti) is the direct axis (or transient) reactance [p.u.], Di is the per unit damping
factor, Mi is the inertia constant [s], T ′di is the direct axis transient short circuit time
constant [s], Idi (or Iqi) is the direct (or quadratic) axis current [p.u.], Qei is the reactive
power [p.u.], E′qi is the transient EMF in the quadrature axis [p.u.], and Bij is the i-th
row and j-th column element of nodal susceptance matrix at the internal nodes after
eliminating all physical buses, pi (or pIi) are the local (or interaction) parameters and
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N is the number of generators connected to the grid.
In per-machine vector notation, the MPS NL model (2.13) is written as

ẋi = Aixi+bddωi +bu[γi(x,dγ) +ui], xi(0) = xi0 , yi = cyxi, i = 1, ...,N (2.14)

where

xi =

δiωi
Pi

 , Ai =

0 1 0
0 −ai −bi
0 0 −ci

 , bu =

0
0
1

 , bd =

0
1
0

 , cy = [1, 0, 0]

In compact form, the MPS NL model (2.14) is rewritten as

ẋ = f(x,dx), x(0) = x0, y = Cx, x0 ∈ X0 ⊆ X, x ∈ X, dx ∈ Dx (2.15a)

where (bd: block diagonal matrix)

f(x̄, d̄x) = Ax+Bddω +Bu[u+ γ(x, dγ)] = 0 (2.15b)

||γ(x, dγ)− γ(x̄, d̄γ)|| ≤ lγx||x− x̄||+ lγdγ ||dγ − d̄γ || (2.15c)

x =


x1
...
xN

 , dγ =


dγ1
...
dγN

 , u =


u1
...
uN

 , dω =


dω1
...
dωN

 , dx =

dωu
dγ


A = bd[A1, . . . ,AN], Bd = bd[bd1 , . . . , bdN ]
Bu = bd[bu1 , . . . , buN ], C = bd[cy1 , . . . , cyN ]

x̄ is unique robustly stable nominal steady-state (SS) given by the nonlinear algebraic
equation (AE) (2.15b) and d̄x is the associated nominal input. Since γ is a Lipschitz
bounded function (2.15c) about the nominal operation, for each admissible initial-input
pair [x0,dx(t)] the NL ODE has a unique state motion x(t) and a unique measured
output trajectory y(t):

x(t) = τx[t,x0,dx(·)] ∈ X, y(t) ∈ Cx(t) (2.16)

when the exogenous input dx(t) reaches asymptotically its nominal value d̄x, the state
motion x(t) and the measured output y(t) reach asymptotically their nominal values,
i.e.,

x0 ∈ X0 \ x0, dx(t)→ d̄x, =⇒ x(t)→ x̄ ∈ X, y(t)→ ȳ (2.17)

subjected to bounded -in the sense of the Euclidian norm |(·)| of (·)- initial state-input
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disturbances
|x0 − x̄| ≤ ε+0 , |dx(t)− d̄x| ≤ ε+dx (2.18)

the state motion and output signal are exponentially ultimate (EU) bounded about
their nominal values x̄ and ȳ, respectively:

|x(t)− x̄| = |y(t)− ȳ| ≤ axe−λxtε+0 + bxε
+
dx

:= εx, ax, bx, λx > 0 (2.19)

and the motion rate of change is EU bounded as

|ẋ(t)| ≤ λ+
x εx + b+x εdx := εẋ (2.20)

Remark 2.2 In comparison with the synchronous generator model (2.2c)-(2.2c)
presented in Subsection 2.2.2.1, which is employed specifically in the IMG studies de-
rived in Chapter 3.The state variable ωi (2.13b) of the MPS dynamic model (2.13)
stands for the generator relative speed, and it should be taking into account in the
estimation methodology proposed in Chapter 4.
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Chapter 3

Dynamic State Estimation for Islanded

Microgrid Structures

Abstract: This chapter presents the centralized dynamic state estimation algorithms
for DA models whose methodology relies on the Kalman Filter theory. Firstly, an es-
timator based on the Extended Kalman Filter is introduced. Secondly, an Unscented
Kalman Filter adopting the Singular Perturbation Theory is presented. Both estima-
tors can recover the dynamic and algebraic variables of an IMG through the same
estimation scheme. The proposed methodology uses fewer measurements concerning
the conventional static estimators as well, as the transient and steady-state regimes are
captured.

This chapter is based on the work:

1. Natanael Vieyra, Paul Maya, and Luis M. Castro. “Dynamic State Estimation
for Microgrid Structures.”, Electric Power Components and Systems, Vol. 48,
2020, pp. 1-13.

2. Natanael Vieyra, Paul Maya, and Luis M. Castro. “Effective dynamic state
estimation algorithm for Islanded microgrid structures based on singular pertur-
bation theory.”, Electric Power Systems Research, Vol. 187, 2020, pp. 106455.

3.1 Introduction

An MG can operate either connected to a large power system or as an islanded system
supplying off-grid areas or islands. When the MG operates as an islanded system, the
frequency and voltage regulation are carried out through local controls over distributed
generation resources without a central dispatcher’s necessity. The present dissertation
deals with MGs operating as isolated systems (IMGs), which implies that they are more
susceptible to frequency and voltage variations.
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To ensure the correct operation of an IMG, the EMSs require precise information
about IMG state variables associated with bus voltages and phase angles, electrical
frequency, mechanical speeds of rotating machinery allowing its protection and control
[10]. Despite the improved quality of the measurement devices, it is always necessary
to count on a suitable tool able to deliver information about the system variables for
adequate control and operation of the grid; admittedly, a state estimator is a convenient
tool for these purposes.

For this, different state estimation algorithms have been proposed. In [10], for
instance, a distributed dynamic state estimator is proposed to estimate the dynamic
variables of energy resources. Then the estimated values of each component are con-
verted to phasor data with time, and the EMS collects them. This data, together with
those provided by conventional meters, are used as input to the static state estimation,
ultimately generating real-time operating conditions of MGs. In [24], two techniques
for state estimation are used in a droop-controlled IMG, an Unscented Kalman Filter
and a nonlinear Particle Filter are reported; authors assure that their algorithms can
deal with Gaussian noise in all measurements, and some numerical simulations show
it. The results are reduced to a specific droop-controlled IMG. For an electrical system
including multiple microgrids, a state estimation algorithm based on the WLS method
is proposed [25]. However, there are three main drawbacks: it adopts a steady-state
approach, the strong dependency on the available measurements, and the high com-
putational burden. Thus, to reduce the required computational load, a decentralized
estimator has been developed in [26–28]. However, the employed dynamic models and
grid topologies may not be so practical, thus introducing frailty in the formulation [3, 4].
In [29] assuming that the system has slowly changing states and not considering the
nonlinear dynamics of distributed energy resources (DERs), a quasi-dynamic approach
is adopted. The voltages values of an island microgrid are reconstructed through a
modified nodal load observer (NLO).

In the context of the state estimation problem for IMG structures consisting of hy-
droelectric and wind generators interconnected with another set of loads (polynomial
load model) through power lines and whose interaction is described by a differential-
algebraic system (also known as structure-preserving models). This detailed mathe-
matical representation of the IMG allows capturing different dynamic phenomena as-
sociated with generators and the electrical grid. The dynamic variables (load angles,
internal voltages of generators, and mechanical speeds) and algebraic variables (bus
voltage magnitudes and phase angles) are estimated in real-time in the presence of sys-
tem disturbances (wind and load variations, three-phase faults) using two estimators
based on Kalman Filter theory through a minimum number of measurements (only the
minimal amount to guarantee observability properties), which are based on bus voltage
phasors and power outputs of generators. The parameters of generators as well as of
the electrical network are known to design the state estimators. Moreover, the IMG is
considered as a positive sequence balanced network.
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3.2 Dynamic State Estimation Algorithm for IMG struc-

tures based on Extended Kalman Filter

Firstly, in this thesis work, a dynamic state estimator based on Extended Kalman
Filter (EKF) ad-hoc for DAEs is proposed. It should be highlighted that the EKF is a
broadly used technique that has shown its usefulness in nonlinear systems, represented
by ODEs, of different nature [30]. However, when a set of nonlinear differential-algebraic
equations represent the system, its implementation is more complex and rarely used [3].
Specifically, in electric power systems, few research works are reported in the scientific
literature, but none for IMG structures [31–34].

Using a nonlinear representation of an IMG (2.1) allowed the design of an estimator
based on EKF (Subsection 3.2.2), which recovers the transient and steady-state regimes
associated with the IMG operation, contrary to other existing approaches [25, 35, 36].
It should be highlighted that the design of the state estimation algorithm is generic
concerning the network decomposition, where the nonlinear dynamics associated with
the DERs are also considered in contrast with [26–28, 37, 38]. Furthermore, the adopted
DA representation of an IMG (2.1) allows considering the nodal voltage phasors as a
part of the state variables to be estimated. Thus, the estimation of dynamic variables
of each generator (load angles, internal voltages, and mechanical speeds) is independent
of the existence of a measurement device (delivering information about the voltage and
current phasors) in that generator terminal for this instance; the proposed dynamic
estimator uses a minimum number of measurements (only the minimal amount to
guarantee observability properties - Subsection 2.2.2.4). In this way, the proposed
in this dissertation is different to other existing dynamic approaches [31–34, 39–47] ,
which assume that the all nodal voltage phasors are known or are available through
measurement devices.

3.2.1 Structure-Preserving Model in Discrete Form

To design an state estimation scheme based on EKF for a DA system that allows
estimating the dynamic and algebraic state variables arising from an IMG represented
by a set of DAEs (2.1) is necessary to obtain its discrete equivalent representation due
to that the measurements (Subsection 2.2.2.4) are available only during specific time
intervals. Furthermore, the following assumptions should be taken into account [3]:

1. All the inputs are considered constants.

2. The measurements are obtained at intervals of ∆t, the discrete measurements
may be expressed by

yk+1 = h(xk+1, zk+1) + vk+1 (3.1)

where vk ∈ Rm represents the noise that affects the measurements, it may be
modeled as Gaussian white noise with zero-mean whose covariance matrix Rk is

25



3. DYNAMIC STATE ESTIMATION FOR ISLANDED MICROGRID
STRUCTURES

known.

Thus, the stochastic nonlinear discrete-time DA system is described as [48]:

xk+1 = xk +
∫ (k+1)∆t

(k)∆t
f(x(t), z(t))dt+wk+1, x ∈ Rnd , z ∈ Rnz (3.2a)

0 = g(xk+1, zk+1) (3.2b)

which, in turn, may be expressed in compact form as:

xk+1 = F (xk, zk,wk), x ∈ Rnd , z ∈ Rnz (3.3a)
0 = g(xk+1, zk+1) (3.3b)

where wk ∈ Rnd is a noise vector affecting the system state variables and whose covari-
ance matrixQk is known. Expressions (3.3a)-(3.3b) are represented by (2.2a)-(2.2c) and
(2.6a)-(2.7) in their discrete form, and g are the network restrictions, given by (2.11a)
and (2.11b), whereas, the discrete measured outputs (3.1) are based on measurement
models reported in Subsection 2.2.2.4.

The estimation problem of an IMG whose discrete mathematical representation is
given by (3.3a)-(3.3b) and considering a set of measurements (bus voltage phasors and
power outputs of generators) turns to be a problem of observer design to estimate the
state variables, those related to generators, x (load angle, mechanical speeds, internal
voltages, electrical frequency) and electrical network, z (bus voltage phasors) in real-
time despite the presence of system disturbances. The parameters of generators and
the electrical network are assumed known. Moreover, a nominal control input for the
synchronous generators (mechanical input power and field voltage) is considered to
obtain a correct transient behavior.

3.2.2 Dynamic State Estimation Algorithm based on EKF

The estimation problem for IMG structures derived in Subsection 2.1.3 is solved through
a unique adaptation of the EKF algorithm for DA systems documented in [48]. Com-
pared with the mentioned scheme, the proposed estimator is based on the full discrete
representation of the DA system. For the estimator reported in [48], it is assumed
that only the measurements are in their discrete form while the associated dynamics
are continuous. Thus, the prediction step strongly depends on the selected DA solver
directly affecting the execution times. Moreover, this reported approach may not be
suitable to capture the fast dynamics of an IMG. This problem is avoided by adopt-
ing the full discrete representation of the IMG (3.4a)-(3.4b) due to that the prediction
step is done more appropriately because the filter performance does not depend on the
selected solver.

The proposed dynamic state estimation algorithm is able to provide an estimated
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of (xk, zk) at time k, given the initial estimate (x0, z0), the series of measurements,
y1, ...,yk, and the information of the DA system F , g, h, Qk and Rk. The estimation
scheme is summarized in the following steps:

Prediction Step [3, 48] - The predicted mean values of dynamic and algebraic
variables together with the error covariance matrix are computed.

• The initial conditions (x0, z0) of dynamic and algebraic variables are set as well
as the covariance matrix P aug

0 associated with the estimation errors of both state
variables is initiated. Also, the covariance matricesQk andRk should be precised,
which are tuning to improve the EKF performance.

• Consider (x̂k|k, ẑk|k) as the estimated state variable at the instant k with infor-
mation at the same time instant. Solve (3.4a)-(3.4b) to obtain the estimated
state variable with the previous step information (x̂k+1|k, ẑk+1|k). This predic-
tion also could be carried out using a DAE solver [49, 50] or any other integration
algorithms such as [51, 52].

x̂k+1|k = F (x̂k|k, ẑk|k) (3.4a)
0 = g(x̂k+1|k, ẑk+1|k) (3.4b)

the augmented state variable estimated is then obtained by

x̂augk+1|k =
[
x̂k+1|k ẑk+1|k

]>
• A linear approximation of the DA model is used to obtain the error covariance

matrix of the augmented state variable:

ẋ = Ax+Bz (3.5a)
0 = Cx+Dz (3.5b)

where [
A B
C D

]
=
[
∂f
∂x

∂f
∂z

∂g
∂x

∂g
∂z

]∣∣∣∣∣
x̂aug
k|k

(3.5c)

f and g are given by the expressions presented in Subsections 2.2.2.1, 2.2.2.2 and
2.2.2.3, respectively.
Specifically, according to the algebraic restrictions derived from Subsection 2.2.2.3,
the term ∂g/∂z is invertible, (3.5b) is differentiated once to obtain:

ż = −D−1Cẋ

= −D−1CAx−D−1CBz (3.6)
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which in matrix form becomes[
ẋ
ż

]
=
[

A B
−D−1CA −D−1CB

] [
x
z

]
(3.7)

in compact form,
ẋaug = Λkx

aug (3.8)

The state transition matrix is given by

φk = exp(Λk∆t) (3.9)

The error covariance matrix associated with the state estimation is calculated as:

P aug
k+1|k = φkP

aug
k|k φ

>
k + ΓkQkΓ>k (3.10a)

where
Γ =

[
I

−D−1C

]∣∣∣∣∣
x̂aug
k|k

(3.10b)

Equation (3.10b) is related to the noise effects on the augmented state variable,
and I is a nd × nd identity matrix.

Correction Step [3, 48] - The updated mean and the updated covariance matrix
are obtained.

• The Kalman filter gain of the augmented state variable is obtained as:

Kaug
k+1 = P aug

k+1|kH
aug>
k+1 (Haug

k+1P
aug
k+1|kH

aug>
k+1 +Rk+1)−1 (3.11)

where Haug
k+1 is the linearized measurement model evaluated at x̂augk+1|k.

• The update of the estimated state variable is given by

x̂augk+1|k+1 = x̂augk+1|k +Kaug
k+1(yk+1 − h(x̂augk+1|k)) (3.12)

Notice that (3.12) suggests that only the differential variables are considered
x̂k+1|k+1.

• Given x̂k+1|k+1 the update of algebraic variables ẑk+1|k+1 is calculated as

g(x̂k+1|k+1, ẑk+1|k+1) = 0 (3.13)
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• Finally the covariance matrix has to be updated

P aug
k+1|k+1 = (I −Kaug

k+1H
aug
k+1)P aug

k+1|k (3.14)

3.2.2.1 Bad Data Analysis

The estimation algorithm based on EKF for DA systems also includes a bad data
detection analysis that can detect and handle the gross errors affecting the measure-
ments used in the estimation task (Subsection 2.2.2.4). The proposed EKF, through a
normalized innovation vector, identifies the gross errors:

γk+1,j = |yk+1,j − ŷk+1,j |√
Haug
k+1,jP

aug
k+1H

aug
k+1,j +R2

k,j

≤ Υ (3.15)

where k indicates the k-th time step, the index j corresponds to the j-th measurement,
in the case of Rk, represents the j-th diagonal element.

The innovation vector associated with each measurement must be within a range
of values delimited by a threshold value Υ . According to [18], the measurement has
to be discarded if it is more significant than 1.5 p.u. Thus, the yk+1 is discarded and
replaced by yk to update the estimated state.

3.2.3 Simulation Results

The EKF for DA systems proposed in Section (3.2) is assessed through two practical
IMGs (three and seven buses) considering hydroelectric and wind generators and a set of
loads (polynomial load model) under different scenarios; under load and wind variations
as well as are considered process and measurement noises (modeled as white Gaussian
noises). It should be highlighted that in comparison with [26–28, 37, 38] the present
work used a nonlinear model to represent the dynamic behavior of an IMG, considering
the dynamics associated with generators as well as the network restrictions. Thus,
the mathematical representation adopted allows capturing a wide variety of nonlinear
phenomena.

3.2.3.1 Dynamic State Estimation with Wind Speed and Load Variations

In the first instance, the performance of the proposed estimation scheme is evaluated
using a meshed 3-bus IMG containing a 5-MW hydro generator and a 0.9-MW wind
generator, initially operating at Vw = 12 m/s. Generation units are feeding into a
load rated at 3+j1 MVA. The system’s base is 10 MVA, and the microgrid’s nominal
frequency is 50 Hz. Based on the observability criterion for DAEs [16, 17]. For this IMG,
the observability is guaranteed using the measurement model given by (2.12) previously
presented in Subsection 2.2.2.4. The considered measurements are obtained through a
measurement device installed at bus one using a sampling rate of 120 samples/s [53].
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Figure 3.1: Microgrid with hydro generation and wind generation.

Two disturbances affect the microgrid operation. It is considered to wind speed
changes from 12 m/s to 14 m/s, whereas the load connected to node three is sub-
jected to 3 % variations approximately. Both study cases are simulated for 40 seconds
where the initial steady-state equilibrium point, shown in (3.16), is obtained through
a conventional power-flow algorithm [3].

x =



δ1 = 0.3945rad
ω1 = 1p.u.
E′q1 = 0.9117p.u.
ωm2 = 1.0094p.u.
e′d2 = −0.1548p.u.
e′q2 = 0.9048p.u.

z =



θ1 = 0rad
θ2 = −0.0014rad
θ3 = −0.0396rad
V1 = 1p.u.
V2 = 0.9789p.u.
V3 = 0.9540p.u.

(3.16)

The covariances matrices assocaited with the process and measurement noises are
set to Qk = diag([3 × 10−7, 3 × 10−6, 3 × 10−7, 3 × 10−6, 3 × 10−7, 3 × 10−7]) and
Rk = diag([5 × 10−6, 5 × 10−6, 5 × 10−5, 5 × 10−5]) and the initial covariance matrix
is established as P aug

0 = 4.5× 10−6I12×12. Moreover, the mechanical input power Pmi
and the field voltage EFi are considered known and constants during time simulation.

Figure 3.2 shows the performance of the proposed estimator for the dynamic vari-
ables associated with the hydroelectric generator connected to bus one. It is noted that
the estimator can adequately capture the transient behavior of these variables quite
well. Similarly, the dynamic variables of the wind generator are suitably estimated, as
shown in Fig. 3.3, where it is observed that the proposed approach can recover the
transients of the wind generator.
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Figure 3.2: Load angle, electrical frequency and q-axis E.M.F of hydro generator.
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Fig. 3.4 further demonstrate the dynamic state estimator’s good capabilities con-
cerning the transient behavior of the system’s nodal voltage magnitudes. The root
means square errors (RMSE) obtained by the dynamic performances of the proposed
estimator reported in this simulation study are quite inferior to 1× 10−8 p.u.

The proposed dynamic state estimation algorithm allows estimating the dynamic
and algebraic variables through the same estimation scheme. In this way, following
the proposed methodology, estimating all the states arising from an IMG is carried
out employing fewer measurements than static estimators, thus properly capturing
the estimation of both the steady-state and transient operation of MGs with fewer
computing requirements. This method may represent a vital tool for ensuring the
overall stability of new microgrid structures subject to disturbances.

3.2.3.2 Dynamic State Estimation with Load and Wind Variations

The new approach’s usefulness and suitability are demonstrated using the IMG shown
in Fig. 3.5. It is an electrical grid containing three wind generators and one hydro gen-
erator that supplies power to two distributed loads. The distribution line impedance
is z = 0.12 + j0.25 p.u/km whose length is shown in Fig. 3.5. The system’s base is 10
MVA, and the microgrid’s nominal frequency is 50 Hz.
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Figure 3.5: Microgrid with hydro generation and wind generation.

The dynamic variables to be estimated are given by:

x := [δ1 ω1 E′q1 ωm1 e′d1 e′q1 ωm2 e′d2 e′q2 ωm3 e′d3 e′q3 ωm4 e′d4 e′q4 ]>

whereas the algebraic variables to be estimated correspond to the nodal voltages:

32



3.2 Dynamic State Estimation Algorithm for IMG structures based on Extended
Kalman Filter

z := [θ1 θ2 θ3 θ4 θ5 θ6 θ7 V1 V2 V3 V4 V5 V6 V7]>

The state estimation algorithm considers a set of ten measurements; the first four
measurements are given by (2.12), which are obtained through a sensor installed at
bus 1. The remaining generator buses have considered three sensors at buses 4, 6, and
7, delivering information about the active and reactive power injected by each wind
generator. These output signals are given by (2.9a) and (2.9b), respectively.

The proposed state estimation algorithm used the following covariance matrices:
Qk = diag([4 × 10−5, 4 × 10−5, 4 × 10−5, 4 × 10−5, 4 × 10−5, 4 × 10−5, 9 × 10−6, 9 ×
10−6, 9 × 10−6, 9 × 10−6, 9 × 10−6, 9 × 10−6]), Rk = 3 × 10−6 I10×10 and the initial
covariance matrix is set as P aug

0 = 4.5× 10−11I26×26. The performance of the method
is tested by tracking the system dynamics when the IMG is affected by wind speed
variations in the wind turbines and load changes, as shown in Fig. 3.6.
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Figure 3.6: Wind speed variations and load profile variations.

The solid line in Fig. 3.7 represents actual values; the magenta dashed line is the
estimated value from EKF. The generators experiment transient fluctuations due to
wind speed and load variations. In Fig. 3.7, the islanded microgrid shows a transient
behavior adequately estimated by the state estimation algorithm. Figure 3.7 shows the
filter’s performance estimating the electrical frequency and wind generators’ mechanical
speed.
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Figure 3.8: Nodal voltage magnitudes of the Microgrid.
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Figure 3.8 shows the estimation of bus voltage magnitudes. Again, it is corroborated
that the introduced dynamic state estimator approach estimates the dynamic voltage
performance correctly in the face of rather extreme variations in wind speed and load
profile.

To offer an alternative to the estimation task for IMG given by a set nonlinear
DAEs. An estimator based on UKF, which dismisses the main drawbacks associated
with the EKF, is presented in the following section.

3.3 Dynamic State Estimation Algorithm for IMG Struc-

tures based on Singular Perturbation Theory

For state estimation, the EKF requires the computation of Jacobian matrices to ap-
proximate the nonlinear functions, resulting in a nontrivial task. Moreover, the EKF
performance is degraded in highly nonlinear systems because of uncertainty propagation
through the system. The Unscented Kalman filter emerged to overcome the drawbacks
above of EKF, which is based on producing several sampling points (also known as
sigma points) around the current state estimate based on its covariance. These points
are propagated through the nonlinear functions to better approximate the mean and
covariance associated with the mapping results [54, 55].

The estimation of the dynamic and algebraic variables of an IMG is carried out
using a modified version of the Unscented Kalman Filter (UKF) for DAEs. Few works
reported in the scientific literature are focused on adapting the UKF for differential-
algebraic (DA) systems [48, 55, 56].

Indeed, it is well-known that the main drawback of the UKF for DA systems is
that it requires calculating a set of consistent sigma points in every prediction and
correction step, reflecting in algebraic loops and a high computational load. Later,
this aspect affects the execution times, representing a problem if the estimated values
are used for monitoring and control purposes. Thus, a new dynamic state estimation
based on UKF for DA systems is presented in this present dissertation. Firstly, in
Subsection 3.3.1 the proposed estimator employs the Singular Perturbation Theory
(SPT) to rewrite the set of DAEs (IMG model - (2.1)) into a set of ODEs as wells its
discrete equivalent is generated. Then, the new representation of the IMG is considered
for the state estimation algorithm presented in Subsection 3.3.2, which reduces the
creation of algebraic loops considerably compared with the traditional UKF for DA
systems [48].

The main features of the proposed methodology are summarized as: (i) like the pre-
vious EKF, the developed method based on UKF-SPT allows estimating the transient
and steady-state regimes of an IMG, contrary to other existing approaches [25, 35, 36],
(ii) in contrast with [26, 27, 37, 38, 57], the design of this state estimation algorithm
is general concerning the network decomposition as well as compared with [37, 38] the
nonlinear dynamics associated with the generator are also included, (iii) the state es-
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timation of all state variables arising from an IMG represented for a DA system (2.1)
is carried out using fewer measurements (Subsection 2.2.2.4) concerning the conven-
tional static estimators, which usually require redundancy on measurements, and (iv)
the microgrid’s nodal voltage phasors are considered as a part of the state variable to
be estimated, which is sharp contrast with other estimation approaches [31–34, 39–47].
In all fo them, the measured generator’s terminal voltage phasors are treated as known
inputs or outputs to estimate the dynamic variables of generators.

3.3.1 Singular Perturbation Theory for Structure-Preserving Models

Within the time span of stability analysis, the time scales are associated with various
speed responses of different devices such as generators, excitation systems, and network
interconnections [58].

Contrary to the traditional singular perturbation theory (SPT) studies, which are
focused on finding reduced slow subsystems [58, 59]. For estimator design purposes, a
tailored model of an IMG structure based on a DA system (2.1) is obtained through
the singular perturbation theory. The structure-preserving model (2.1) is remodeled
as a pure ODE system; the new representation (3.17) recovers the same nonlinear
phenomena that can be described by a conventional DA model (2.1), the standard
model of an SPT problem is expressed as [58, 59]:

ẋ(t) = f(t,x, z, ε)
εż(t) = g(t,x, z, ε)

(3.17)

where x ∈ Rnd is the vector of slow variables , z ∈ Rnz represents the vector of fast
variables, and ε > 0 is the small singular perturbation parameter, which is the ratio of
the time scales of the slow and fast phenomena [58]. The SPT approach is asymptotic
because as ε→ 0, the results tend to be the exact results when ε = 0.

The first task of time scale modeling is to identify ε, which could be due to small
and large time constants ratios. The time scales can be analyzed by computing the
system eigenvalues considering the parameters of generators and transmission lines to
obtain the slow and fast variables.

Adopting this new representation makes it possible to design an estimator based
on the UKF theory to recover all the state variables from an IMG represented as a
DA system. The proposed approach allows generating a consistent set of sigma-points
required to execute the prediction and correction step, avoiding the traditional DA
model (2.1), due to the newly generated model is an entirely differential system.

To design the state estimation algorithm, the system (3.17) may be expressed as

ẋaug = F (xaug, ε,w), xaug = [x, z]>

y = h(xaug, ε,v) (3.18)
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where xaug ∈ Rnd+nz is the augmented state variables, which comprises the dynamic
variables; these can be, for instance, the internal variables of a power plant (say hydro-
electric or wind turbine) such as the rotor angle, mechanical speed, and internal volt-
ages, and the algebraic variables which are associated with network restrictions (bus
voltage phasors), F is composed by f(x, z, ε) represented by (2.2a)-(2.2c) and (2.6a)-
(2.7), and (1/ε)g(x, z, ε) are the network restrictions, given by (2.11a) and (2.11b),
h ∈ Rm represents the set of measured outputs that are obtained at intervals of ∆t,
whose mathematical representation is given in Section 2.2.2.4, w ∈ Rnd+nz and v ∈ Rm
are the process and measurement noises, respectively.

To derive the discrete-time UKF algorithm, the basic definition of the time deriva-
tive of the augmented state variable (3.18) must be considered [4],

xaug(k + 1) = xaug(k) + ∆t× F (xaug, ε,w) (3.19)

which is appropriately rewritten in compact form:

xaugk+1 = F (xaugk , ε,wk) (3.20a)
yk+1 = h(xaugk+1, ε,vk+1) (3.20b)

The proposed UKF uses the expressions (3.20a) and (3.20b) to predict and correct
the state variables of an IMG expressed as a DA system. As it will be appreciated in the
following section, the Kalman gain computation implies that the covariance matrix Qk

associated with the dynamic variables must be modified to generate a new covariance
matrix Qaug

k , which comprises the augmented state variable (dynamic and algebraic
variables).

The estimation problem of an IMG structure whose discrete mathematical repre-
sentation is given by (3.20a) - (3.20b) turns to be a problem of observer design to
estimate the augmented state variable xaug in real-time despite the presence of system
disturbances, using the same set of measurements (those used for EKF design). Again,
as considered in the previous Section 3.2, the knowledge of generator and network pa-
rameters is assumed known, and nominal control input is considered to assure a correct
transient behavior when the system is subject to different types of disturbances.

The proposed dynamic state estimation algorithm based on SPT includes the steps
presented in the following section.

3.3.2 Proposed Method for Dynamic State Estimation Using the UKF

for DAEs based on Singular Perturbation Theory (UKF-SPT)

The Unscented Transformation is a technique in which a group of deterministic samples
is selected such that the weight of the mean and the covariance are equivalent to an
aleatory variable through the nonlinear transformation. The UKF of an IMG adopting
the SPT has the following steps:
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• Set the value of ε that allows to recover the real behavior of the IMG as an ODE
system and define a sampling period to obtain the discrete form of the singularly
perturbed system (3.19) and represented in compact form as (3.20a).

• Set the weights of sigma-points, the adjustment of a transformation can be rep-
resented by three parameters: (i) α, can be modified between 10−4 and 1, (ii)
β, is used to include information about the previous distribution, and (iii) κ is
commonly established as zero. Using these three parameters, the new adjustment
parameter λ, the weights associated with the mean Wm and with the covariance
W c, are obtained as:

µ = α2(naug + κ)− naug
Wm

0 = µ/(naug + µ)
W c

0 = µ/(naug + µ) + 1− α2 + β

Wm
i = W c

i = 1/[2(naug + µ)], i = 1, ..., 2naug, naug = nd + nz

• Set the values related to the covariance matrices, Qaug
k and Rk. Also, initiate the

state variables and the covariance matrix, ˆxaug = E[xaug] and P0 = E[(xaug −
x̂aug)(xaug − x̂aug)>], respectively.

• A set of naug × (2naug + 1) sigma-points associated with the augmented state
variable must be generated:

X̂aug
k|k,0 = x̂augk|k

X̂aug
k|k,i = x̂augk|k +

(√
(naug + µ)P aug

k|k

)
i

X̂aug
k|k,i = x̂augk|k −

(√
(naug + µ)P aug

k|k

)
i−naug

(3.21)

where
(√

(naug + µ)P aug
k|k

)
i

is the i-th column of the matrix square root, x̂augk|k
is the estimated value of the augmented state variable and P aug

k|k is the error
covariance matrix.

• Each sigma-point of the augmented state variable is propagated through the sin-
gularly perturbed model (3.20a) to obtain X̂aug

k+1|k,i.

X̂
aug(i)
k+1|k = F (X̂aug(i)

k , ε, wk) (3.22)

• The estimation of the augmented state variable x̂augk+1|k and the covariance matrix
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P aug
k+1|k are given by

x̂augk+1|k =
2naug∑
i=0

Wm
i X̂

(i)
augk+1|k

(3.23a)

P aug
k+1|k =

2naug∑
i=0

W c
i (X̂aug(i)

k+1|k − x̂
aug
k+1|k)(X̂

aug(i)
k+1|k − x̂

aug
k+1|k)

> +Qaug
k+1 (3.23b)

• Compute
Y

(i)
k+1|k = h(X̂aug(i)

k+1|k ) (3.24)

• The Kalman gain for the augmented state variable is obtained by Kaug
k+1 =

P xy
k+1(P yy

k+1)−1, where

P yy
k+1 =

2naug∑
i=0

W c
i (Y (i)

k+1|k − ŷk+1|k)(Y
(i)
k+1|k − ŷk+1|k)> +Rk+1 (3.25a)

P xy
k+1 =

2naug∑
i=0

W c
i (X̂aug(i)

k+1|k − x̂
aug
k+1|k)(Y

(i)
k+1|k − ŷk+1|k)> (3.25b)

• The estimated of the measured output and the update of the estimated augmented
state are given by

ŷk+1|k =
2naug∑
i=0

Wm
i Y

(i)
k+1 (3.26a)

x̂augk+1|k+1 = x̂augk+1|k +Kaug
k+1(yk+1 − h(x̂augk+1|k)) (3.26b)

• From (3.26b) only the differential variables are considered x̂k+1|k+1. In this way,
given x̂k+1|k+1 the algebraic variables ẑk+1|k+1 are updated through the con-
straints

g(x̂k+1|k+1, ẑk+1|k+1) = 0 (3.27)

• Finally the covariance matrix is updated as:

P aug
k+1|k+1 = (I −Kaug

k+1H
aug
k+1)P aug

k+1|k (3.28)
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3.3.2.1 Bad Data Analysis

The proposed UKF-SPT, like the previous state estimation algorithm based on EKF
3.2.2, also identifies the gross errors that affect the measurement outputs through a
normalized innovation vector, which is computed as follows:

γk+1,j = |yk+1,j − ŷk+1,j |√∑2naug
i=0 W c

i (Y (i)
k+1|k,j − ŷk+1|k,j)2 + r2

k,j

≤ Υ (3.29)

where k indicates the k-th time step; the index j corresponds to the j-th measurement;
rk,j , represents the j-th diagonal element of Rk. The innovation vector associated with
each measurement must be within a range of values delimited by a threshold value of
Υ . As stated in [18], a measurement must be discarded if it is greater than 1.5 p.u.
Thus, when a gross error is detected, the yk+1,j is discarded and replaced by yk,j to
update the estimated state variable.

Table 3.1 is added to clarify the main characteristics of the proposed UKF-SPT
concerning some similar estimators for DA systems.

Technique Characteristics

Proposed UKF-SPT ◦ Estimation without linearizing with a similar computational burden as of
EKF.

◦ The creation of algebraic loops needed by
sigma-points generation is significantly reduced adopting the SPT.

◦ High performance under very nonlinear systems and when the process and
measurement noise is relatively big.

EKF for DA systems ◦ Suitable for nonlinear systems.
◦ The state estimation algorithm requires computing the Jacobian expres-
sions.

◦ Its performance is not ideal in highly nonlinear systems.

UKF for DA systems re-
ported in [48]

◦ Estimation without linearizing and suitable for the high nonlinear processes.

◦ Computational burden is very high because of the generation of consistent
sigma-point (creation of algebraic loops).

Table 3.1: State estimation techniques [4]

3.3.3 Simulation Results

This section presents another test case adopting again the 7-bus IMG consisting of three
wind generators and one hydro-generator (Fig. 3.5). This power grid was used to assess
the EKF performance in the simulation results presented in Subsection 3.2.3.2. Firstly,
in Subsection 3.3.3.1 to demonstrate the functioning of the proposed UKF-SPT, the
algorithm is tested under load and wind variations assuming noisy measurements. For
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comparative purposes, the conventional EKF for DA systems [48] is included. Secondly,
in Subsection 3.3.3.2 the proposed estimator is tested when the 7-bus IMG is subject
to a three-phase fault in the transmission line 5-6. Its performance is compared with
the conventional EKF and UKF for DA systems [48].

3.3.3.1 Practical IMG and comparison against the conventional Extended

Kalman Filter for DA systems

As previously mentioned in Subsection 3.2.3.2 there are 26 state variables arising from
DA representation of 7-bus IMG; 12 are dynamic variables associated with the genera-
tors, and 14 are algebraic variables given by nodal voltage phasors. Again the set of ten
measurements provided by a measurement device installed at bus one and whose mea-
surement model is given by (2.12), which together with those measurements related
to the active and reactive powers injected by each wind generator (2.9a) and (2.9a)
allow the estimation of all state variables of this IMG. Only the electrical frequency,
mechanical speeds of wind generators, and nodal voltage magnitudes are reported for
study purposes.

The following covariance matrices are considered for the EKF: QEKF,k = diag([4×
10−5, 4 × 10−5, 4 × 10−5, 4 × 10−5, 4 × 10−5, 4 × 10−5, 9 × 10−6, 9 × 10−6, 9 × 10−6,
9×10−6, 9×10−6, 9×10−6]), REKF,k = 3×10−6 I10×10 and the initial covariance matrix
is set as P aug

EKF,0 = 4.5× 10−11I26×26. On the other hand, for the developed UKF-SPT,
we have that: QUKF−SPT,k = 4× 10−6I26×26, RUKF−SPT,k = 5× 10−4 I10×10 and the
initial covariance matrix is set as PUKF−SPT,0 = 4.5×10−6I26×26. The performance of
the two methods is assessed by tracking the system dynamics when the IMG is affected
by wind and load variations, as shown in Fig. 3.9.
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Figure 3.9: Wind speed and load variations.
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The ten measured outputs are intentionally affected by Gaussian noise with a zero
mean and variance of 3× 10−7 while the Gaussian process noise is set to a variance of
1× 10−9. Furthermore, for this study case, only the measurements related to bus one
(h1, h3, and h4) are affected by gross errors during different time instants. The rest of
the measurements are only corrupted by Gaussian noise. The measurement associated
with the active power generated by the synchronous generator (h1) is affected by gross
errors at t= 1 [s], 3 [s], 20 [s] and 30 [s]. Similarly, the phase angle measurement (h3)
is affected at different time instants as shown in Fig. 3.10. On the other hand, the
measurement of the bus voltage magnitude (h4) is affected only at t= 10 [s] and 12 [s].
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Figure 3.10: Dynamic of γ of each measurement.

The estimation of the nodal voltage magnitudes of the IMG is shown in Fig. 3.11
and 3.12. The estimators can reconstruct the dynamic voltage performance correctly
in the face of rather extreme disturbances by assuming that they are known (the wind
and load variations are assumed as known exogenous inputs for both estimators). As
noticed the EKF performance is seriously affected by the noise, and these estimated
values hardly can be used for monitoring or control purposes.

Figure 3.13 depicts the performances of the proposed UKF-SPT and the EKF esti-
mating the IMG electrical frequency and the mechanical speed of the wind generators.
The UKF-SPT, in comparison with the EKF, can capture the transient behavior re-
lated to these dynamic variables reducing considerably the the white Gaussian noise
effect in the estimated signals.
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Figure 3.11: Nodal voltage magnitudes of the Microgrid
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Figure 3.12: Nodal voltage magnitudes of the Microgrid
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Figure 3.13: Comparison between the developed UKF-SPT and the conventional EKF.
Electrical frequency of the IMG and mechanical speeds of WG 1, 2 and 3.

Traditional Proposed
Variables EKF UKF-SPT

f 2.3784× 10−5 9.4659× 10−7

ωm1 2.8624× 10−5 2.4767× 10−5

ωm2 1.4000× 10−3 3.0065× 10−5

ωm3 1.4000× 10−3 3.0269× 10−5

θ1 3.4164× 10−4 1.9774× 10−4

θ2 3.2967× 10−4 2.0719× 10−4

θ3 3.1652× 10−4 2.2323× 10−4

θ4 3.0430× 10−4 2.3258× 10−4

θ5 3.7539× 10−4 2.5227× 10−4

θ6 1.1300× 10−3 2.7124× 10−4

θ7 1.4000× 10−3 2.7310× 10−4

V1 4.6606× 10−4 5.5691× 10−5

V2 4.4455× 10−4 5.6981× 10−5

V3 4.0848× 10−4 5.3204× 10−5

V4 3.6940× 10−4 4.8919× 10−5

V5 3.6381× 10−4 4.7837× 10−5

V6 3.4401× 10−4 4.2621× 10−5

V7 3.3975× 10−4 4.2237× 10−5

Table 3.2: RMSE in per-unit associated with estimators performance
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Table 3.2 reports the RMSE associated with the estimation task, noticing that
the RMSE obtained by the UKF-SPT is smaller than the one obtained by the EKF
method for some variables estimation as the electrical frequency up to 80% smaller.
The proposed estimation scheme base on the UKF-SPT suitably recovers the IMG
state variables in a dynamic fashion and with a shallow margin of error.

3.3.3.2 IMG under three-phase fault

In this section, the proposed estimator is tested using the 7-bus IMG, which is affected
by a three-phase fault applied to bus 5, at t = 0.5 [s]. The fault is cleared after 0.1 [s]
(clearing time TCL). Figures 3.2 and 3.3 show the network’s dynamic performance for
selected variables, where it is observed that the IMG returns to the pre-fault conditions.

For this study case, the conventional UKF for DA systems [48] is also included
for comparative purposes. For this, the three estimators are tested under the same
conditions (the three-phase fault and process/measurement noises). The traditional
EKF and the proposed UKF-SPT estimators employed the same covariance matrices
associated with the process and measurement noises used in the previous study case
(Subsection 3.3.3.1). On the other hand, for the conventional UKF, the following
covariance matrices are considered: QUKF,k = diag([20×10−5, 20×10−5, 10×10−5, 40×
10−5, 4×10−5, 40×10−5, 40×10−5, 40×10−5, 40×10−5, 40×10−5, 40×10−5, 40×10−5]),
RUKF,k = 5 × 10−5I10×10 and the initial covariance matrix is set as PUKF,0 = 10 ×
10−9I12×12. Also, the same set of ten measurements are used.

Principally, to show the prowess of the proposed UKF-SPT, the performance of the
estimators is studied for the estimation of dynamic state variables of the synchronous
generator connected to node one and the wind power generator at node four.
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Figure 3.14: Load angle, electrical frequency and q-axis E.M.F of hydro generator.
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As can be appreciated from Fig. 3.2 and 3.3, all estimators recover the transient and
the steady-state regimes associated with the 7-bus IMG operation. It should be pointed
out that the transient and the steady-state responses obtained with the developed
UKF-SPT are better than those acquired by the other estimators. Furthermore, the
UKF-SPT considerably reduces the noise effect in the estimated values.

0 1 2 3 4 5 6 7 8 9 10
1.005

1.01

1.015

1.02

1.025

ω
m

1
[p
.u
]

 

 

0 2 4 6 8 10 12 14 16 18 20
−0.4

−0.3

−0.2

e
′ d
1
[p
.u
]

 

 

0 2 4 6 8 10 12 14 16 18
0.7

0.75

0.8

Time [s]

e
′ q
1
[p
.u
]

 

 

6.8 7 7.2

1.012

1.014

0.58 0.6 0.62

−0.38

−0.37

−0.36

19 19.5 20

−0.2

−0.198

13 13.5 14

0.815

0.816

0.817

ωm1 ωm1
- EKF ωm1

- UKF ωm1
- UKF-SPT

e′d1 e′d1 -EKF e′d1 - UKF e′d1 - UKF-SPT

e′q1 e′q1 - EKF e′q1 - UKF e′q1 - UKF-SPT

Figure 3.15: Mechanical speed of WG, d-axis E.M.F of WG and q-axis E.M.F of WG.

Furthermore, a comparative analysis about the execution times of three estimators
is presented. The simulation results were obtained through a computer with Intel (R)
Core (TM) i5-2.9GHz, 8 GB of RAM, 64-bit OS, with MATLAB / Simulink R2013-b
platform to simulate the test case using an integration time step of 1 [ms]. Under these
conditions, the execution times are reported in Table 3.3. Note that the computational
time of the UKF-SPT is reduced by about 95 % concerning the conventional UKF for
DA systems, showing that the algebraic loops considerably affect the execution time.

The difference among execution times lies in the fact that the proposed UKF-SPT
adopts a completely differential representation of the IMG. Thus, the prediction step is
carried out more efficiently, reducing the algebraic loops. In contrast, the conventional
EKF and UKF for DA systems [48] resort to algebraic loops for both the prediction
and correction steps, an aspect that directly reflects on increased execution times.

The minimum, average, and maximum computing times are obtained for ten IMG
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test system simulations.

Algorithm EKF UKF Proposed UKF-SPT

Execution minimum time [min] ≈ 7.250 ≈ 95.0 ≈ 4.150
Execution average time [min] ≈ 7.613 ≈ 101.6 ≈ 5.632

Execution maximum time [min] ≈ 8.166 ≈ 106.0 ≈ 5.866

Table 3.3: Execution times

3.4 Concluding Remarks

This chapter has put forward a novel and comprehensive state estimation methodology
for the dynamic state estimation for IMG structures modeled as a set of DAEs con-
sisting of two dynamic estimators based on Kalman Filter theory derived in Sections
3.2 and 3.3. As corroborated from simulation results, all the state variables (dynamic
and algebraic) of an IMG can be estimated. This feature dramatically contrasts with
other existing estimation approaches [31–34, 39–47] where the bus voltage phasors are
considered as known inputs available through measurement device, as well as the new
operation points of the IMG in the presence of different perturbations are obtained.
Furthermore, the proposed estimators can capture the transient and steady-state be-
havior associated with the IMG operation employing fewer measurements than con-
ventional static estimators. The developed dynamic state estimation algorithms may
be straightforwardly implemented, this being an essential feature for evaluating the
estimation schemes for IMGs consisting of several electrical variables to be estimated.
Specifically, the proposed UKF-SPT estimator reduces the algebraic loops present in
the prediction and correction steps compared with other UKF estimators for DA sys-
tems, thus, reducing the required computational load and the simulation time.

To clarify the main contributions of both proposed estimators for IMG structures
(EKF and UKF-SPT) concerning the previous dynamic estimation approaches for elec-
tric power systems, Table 3.4 is added.

As mentioned above the two proposed estimators offer a solution for IMGs state
estimation problem but there are some aspects that should be pointed out as: (i) these
state estimation algorithms were designed based on a centralized approach (also known
wide-area) requiring the global knowledge of the system and of a generalized set of
measurements to reconstruct the state variables, (ii) the computational efficiency is
not optimal; the number of equations involved by the estimators increases considerably
according to the network dimension, as well as, the Riccati equations (those related to
the correction step) grows quadratically according to the states to be estimated, this is
directly reflecting on extra computational load, (iii) the tuning scheme, which is related
to the selection of covariances matrices (Qk,Rk) is not transparent, these usually are
set through heuristic methods, and (iv) the proposed estimators do not have a formal
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convergence proof their functioning is just corroborated by numerical simulations.
These points are used to motivate the scope of the following chapter; the design of a

dynamic estimator for MPSs taking as main objectives: (i) the computational efficiency,
(ii) robust functioning against measurement noise and parametric uncertainty, (iii) the
decentralization of dynamic variables estimation, and (iv) tuning criteria coupled with
formal convergence analysis.

Proposed Estimators
for IMG structures Other Existing Approaches [31–34, 39, 42–46]

Based on EKF/UKF-SPT EKF, UKF, Particle Filter (PF), Extended PF, H-infinity
Adopted Model Differential Algebraic Equations (DAEs) Ordinary Differential Equations (ODEs)

Applied to Islanded Microgrids
Transmission systems, the reported approaches in [28, 37, 38] are applied to
MGs in comparison to those ones [33, 39, 44] which are applied to a Single Machine
Infinite-Bus Power System.

Generator units Synchronous generators and wind generators Synchronous generators and in [37, 38] different energy resources are considered
(PV, wind generators), but they are represented as idealized voltage sources.

Estimated State Variables Dynamic (generator units) and
algebraic variables (bus voltage phasors)

Only dynamic variables (those which are related to generator units). Moreover, with
respect to the approach [60] the dynamic variables together with phase angles θi are
estimated but considering constant generator terminal voltages which reduce
the ability to capture the full of the system.

Bus voltage phasors Estimated by the proposed estimator The algebraic variables (Vi, θi) are treated as known inputs obtained by
a PMU device.

Approach Centralized Decentralized
Measurements Fewer More - a PMU at every generator terminal

Computational burden More Less and with respect to [43] the proposed Particle Filter (PF) demands an extra
computational load due to high complexity difficult to implement.

Table 3.4: Comparison of different state estimation approaches
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Chapter 4

Decentralized Robust State Estimation

of Multimachine Power Systems

Abstract: In this chapter, a decentralized state estimation algorithm of a class of Mul-
timachine Power System is presented. Firstly, the MPS model presented in Section 2.3
is rewritten, adding a new state variable representing the nonlinear interaction among
machines, unknown disturbances, and parametric uncertainty. Later a Luenberger-type
nonlinear observer is designed to estimate every generation unit’s state by considering
only local information. A comparison with the traditional Extended Kalman Filter
(centralized version) is carried out to show the proposed design’s potential.

4.1 Introduction

Using voltage phasors, active and reactive powers, and frequency as measurements,
different state estimation schemes based on the Extended Kalman Filter (EKF) have
been proposed [31, 32, 34, 40–42, 61–63]. These reported estimators can recover tran-
sient and steady-state behavior, even in the presence of faults and disturbances (e.g.,
three-phase faults and sudden load changes). The EKF and its variations [4, 64, 65]
are well known and have a constructive design showing a robust behavior against pa-
rameter errors and measurement noise. However, they require a large computational
load associated with the number of equations to be solved and a heuristic tuning, not
to mention the lack of convergence proofs. Most of these approaches [31, 34, 40, 41]
are centralized (also known as wide-area estimation schemes). The main drawback is
that the computational load gradually increases according to the system’s dimension.
They require collecting all the measurements and using them together with the whole
system to estimate the state [66]. Also, there are decentralized (or local) approaches
adopting only the local generator model and using local information to estimate the
states [32, 33, 42, 61–63].

Another approach used over 20 years to recover the dynamic state variables raised

49
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from a MPS model is the observers based on sliding modes (SM) theory. For exam-
ple, in [67], the dynamic state variables of every machine are augmented considering
an additional state, which accounts for the unmeasured bounded disturbances and the
interconnection among generators. Based on the sliding modes perturbation observer
(SMPO) technique, the resulting estimation scheme has a less computational load than
the EKF. Its robust behavior and convergence are formally tested in the presence of
model and parameter errors. However, it is necessary to include a perturbation estima-
tor that complicates both the resulting scheme and the large set of non-parameterized
gains tuning. In [68], a sliding mode observer is designed, the relative speed is esti-
mated using load angle with electrical power as measurements. This estimation scheme
does not have a systematic construction despite representing the interconnection terms
and uncertainties by nonlinear functions. It requires additional information, local and
neighboring, measurements to reconstruct the state. The reported SM design presents
a complex structure, unclear tuning, and noise can considerably affect its behavior.

Along with the aforementioned estimation schemes, in scientific literature, Luen-
berger like observers can be found [69–71]. In [69, 70], the estimator design is based on
the fully linearized representation of the MPS, ignoring the model errors. On the other
hand, by adopting a linear representation of MPS, the state is reconstructed through
a centralized approach [71]. Specifically, the observer gains are precalculated off-line
around a particular equilibrium point.

These considerations motivate the scope of the present study: developing a state
estimation design methodology that retains the advantages of EKF and SM estimators
and overcomes their obstacles. The aims are: (i) to retain the low-dimensionality (low
online computational load), disturbance rejection capability and formal assessment of
robust convergence of the SM observer, and the robustness of the EKF concerning
measurement noise, and (ii) draw robust functioning assurance conditions coupled with
a conventional-like simple tuning scheme.

The problem is solved within a constructive geometric estimation framework by
combining ideas from electrical engineering, SM and EKF estimation, MPS industrial
control with conventional tuning, and small gain-based convergence assessment for
two-subsystems interconnections. Through the unknown input-state extension with
integral action, [72] of the geometric state estimation [73, 74], the dynamic states of
generators are recovered with a non-high gain observer based on a state-unmeasured
input observable decentralized model through the local information by using load angle
as the individual measured output.

Firstly, a tailored model is built. The observability analysis shows that the aug-
mented state can be reconstructed in a fast and robust way, even in the presence of
measurement noise and parametric uncertainty. Secondly, a dynamic state estima-
tor requiring fewer measurements and a precise and systematic industrial-like tuning
is presented. Also, the computational load is significantly reduced, allowing on-line
implementations. Finally, the estimator is connected and compared with previous re-
lated studies with NL EKF and SM observer designs. The proposed methodology is
illustrated and tested with a representative benchmark example employed in previous
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MPS studies [32, 40, 55, 68, 75–77], finding that the proposed estimator yields a better
compromise between reconstruction speed, robustness to modeling and measurement
errors, and on-line computational load than the compromises of the SMPO and EKF
observers.

4.2 Preliminaries

The dynamic model of MPS (2.13) presented in Section 2.3 is taking as the starting
point to design a decentralized estimator. The following theoretical assumptions are
imposed:

Assumption 1. Only the load angle associated with each generator bus is measured.

Assumption 2. The adopted MPS model (2.13) - Section 2.3, considers loads of the
constant impedance type, i.e., all zero injection nodes are removed considering
only the generator nodes. Moreover, it is assumed that the generators are con-
nected through a purely inductive network.

Assumption 3. For MPS model (2.13), the dynamic state variables of each generator
are given by load angle, relative speed and electrical power variation, i.e., xi :=[
δi, ωi, Pi

]>
, where Pi = ∆Pei = Pei − Pmi by assuming a constant mechanical

input power for every generator.

The following estimation objective is formulated:

Objective. Estimate in a decentralized fashion the dynamic variables xi :=
[
δi, ωi, Pi

]>
of each generator using the associated load angle as individual measured output
and assuming that dωi , Iqi , Pmi and ui are known.

The state estimation objective is achieved following a methodology which involves
the steps below:

1. The state estimation problem of MPS is solved within a constructive framework,
by combining notions and tools from electrical engineering, nonlinear estimation,
and model design.

2. In Subsection 4.4.3 a tailored estimation model of MPS (2.13) is built, adding a
new state variable one per machine, which stands for the nonlinear interaction
among machines, unknown disturbances, and parametric uncertainties.

3. An observability analysis is carried out in Subsection 4.4.4, showing that the aug-
mented state can be reconstructed in a fast and robust way, even in the presence
of measurement noise and model errors. This observability (instant) property
indicates that the dynamic variables of each generator xi can be estimated in a
distributed way.
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4. Through the unknown input-state extension with integral action [72] of the geo-
metric state estimation [73, 74] (Subsection 4.4.5). The dynamic state variables
xi of each generator are reconstructed in a decentralized way employing a state-
unmeasured input observable decentralized model (Subsection 4.4.3) through lo-
cal information and by using the associated load angle as the individual measured
output (one measurement per machine).

5. The proposed GE estimator is coupled with conventional tuning (Subsection
4.4.6) and small gain-based convergence analysis for estimation error dynamics
against measurement noise and parasitic dynamics (Subsection 4.4.7). Following
the steps presented in this chapter, the proposed estimation methodology can
be extrapolated to more complex grids (with the same assumptions presented in
Section 4.2) considering more generators and interconnections.

6. The estimation methodology is put in perspective with previous (EKF and SMPO)
approaches employed for MPSs, and it is illustrated and tested with a representa-
tive case example used in many estimation and control studies by power system
community [32, 40, 55, 68, 75–77], including functioning comparison it is NL EKF
counterpart.

In the next sections, the proposed methodology is explained in detail. Firstly, a
short explanation of NL EKF and SMPO estimators is given to motivate a design of an
improved estimation scheme that allows retaining the main features of both techniques.
Furthermore, the steps involved in the formulation of the linear decentralized observable
model are given, and details about the construction of the proposed estimation scheme
are presented.

4.3 Motivation

As a preamble for estimator design, and for comparison purposes versus existing esti-
mation methodologies, in this section are recalled: the NL EKF as one of the most em-
ployed and accepted model-based state estimation technique in MPS and sliding mode
perturbation observer (SMPO) as a representative example of academic research.

4.3.1 Nonlinear Extended Kalman Filter and Sliding Mode Pertur-

bation Observer

By assuming that the associated stochastic observability condition [78] of the stochastic
version of the MPS model (2.15a) is met, it is denoted by

ẋ = f(x,dx) +w, x(0) = x0, w ∼ N [0,Q], y = Cx+ v, v ∼ N [0,R] (4.1a)
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the related NL EKF is written as

˙̂x = f(x̂,dx) + gekf (Σ,R)(y −Cx̂), x̂(0) = x̂0 (4.1b)
Σ̇ = ΣJ(x̂,dx) + J>(x̂,dx)Σ +Q−ΣC>R−1CΣ, Σ(0) = Σ0 (4.1c)

where

nx =3N, nΣ = nx(nx + 1)/2, nekf = nΣ + nx (4.1d)
gekf (σ,R) = ΣC>R−1, J(x̂,dx) = ∂xf(x,dx) (4.1e)

R = bd(r1, . . . , rN), Q = Q> = bd[q1, . . . , qN] (4.1f)
qi = qiI3×3, dim Σ = dimQ = nx × nx (4.1g)
κekf = (r>, q>)>, dimκekf = nk = 2N (4.1h)

x̂ is the estimate of the state x, Σ is the estimate error covariance matrix with nΣ
equations of the Ricatti matrix ODE, Q (or R) is the model (or measurement) error
covariance (symmetric positive definite) diagonal (or block diagonal) matrix with N
adjustable parameter vector r (or qi), nekf is the number of estimator ODEs, and
κekf is the vector with the 2N adjustable parameters of the NL EKF, according to the
expressions.

The advantages of the EKF are the simplicity of construction and its robust behavior
in model parameters and measurement noise errors. Its disadvantages are (i) an on-line
computational load that grows rapidly (quadratically) nΣ with the number of nx = 3N
of states, and (ii) the choice of the tuning pairs (ri=1,...,N, qi=1,...,N), one per machine,
ri is set equal to the squared instrument standard deviation and qi=1,...,N are found
from functioning-based calibration/tuning based on experience and heuristics, without
clear/transparent/explicit connection between the dependency of estimator convergence
on the choice of the qi’s.

On the other hand and according to the SMPO technique [67, 79, 80], based on the
model

ẋi = Aixi + bddωi + bu(ui + σi), xi(0) = xi0 (4.2a)
σ̇i = 0, σi(0) = σi0 (4.2b)

with augmented fictitious state, one per machine, that accounts for the combined ef-
fect of unmeasured disturbances and state dependency on other machines, under the
assumption that γ̇i(x,dγ) is bounded, the state estimation task can be done in a decen-
tralized manner with the following observer driven by standard (constant gain [%i, %σi ])
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and sliding (on-off gain [ki, kσi ] sign) measurement injections:

˙̂xi = Aix̂i + bddωi + bu(ui + σ̂i)− %i(yi − cyx̂i)− kisgn(yi − cyx̂i), x̂i(0) = x̂i0
(4.3a)

˙̂σi = −%σi(yi − cyx̂i)− kσisgn(yi − cyx̂i), dim(x̂i, σ̂i) = (3N,N) σ̂i(0) = σ̂i0
(4.3b)

where the standard/asymptotic gain pair (%i, %σi) is chosen with pole placement, and
the gains pair ki, kσi of the sliding surface is tuned according to inequalities so that the
error dynamic on the sliding mode is stable.

The preceding SM observer design (4.3) has: (i) a systematic construction, (ii) a
difficult tuning with many (typically eight) per-machine adjustable parameters, and
(iii) convergence criteria coupled with a tuning guideline based on upper bounds of
estimation errors (including the convergence to the sliding surface). It must be pointed
out that [67]: (i) as it stands, the SMPO observer (4.3) is highly susceptible to mea-
surement noise, and (ii) consequently, the observer (4.3) must be further redesigned to
cope with measurement noise. As far as we know, such redesign has not been executed
in the reported study [67].

The preceding considerations motivate the present study on the improvement of
the MPS state estimator designs. Concerning the EKF design, formal functioning
assessment, robustness to persistent model parameter error, online computational load,
and tuning systematicity must be attained. Furthermore, for SMPO observers, tuning
simplicity and robustness for measurement noise must be retained.

4.4 State Estimator

In this section, the estimation problem is presented in formal fashion. Then, the lin-
ear decentralized observable model with unknown-reconstructible input is derived. A
compact representation of this estimation model is obtained to carry out a formal ob-
servability analysis. It is taken as a reference to derive the proposed estimation scheme,
including the conditions to ensure estimation error dynamics convergence against mea-
surement and parametric uncertainties coupled with a practical tuning guideline.

4.4.1 Problem

The present study consists in designing the linear gains (kxi , kιi) (four per machine) of
the model-based NL state estimator for the MPS system (2.14), of the form

˙̂xi = Aix̂i + bddωi + bu(ui + ι̂i) + kxi (ζoi , $o
i )(yi − cyx̂i), x̂i(0) = x̂i0 (4.4a)

˙̂ιi = kιi(ζoi , $o
i )(yi − cyx̂i), ι̂i(0) = ιi0 , i = 1, . . . ,N (4.4b)
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with constant-gain measurement injection correction to preclude functioning fragility
concerning measurement noise and with a decentralized structure (including Ai which
is a suitable variant of Ai of SMPO (to be precised)) intended to draw a tuning scheme
as conventional as possible, in terms of the per-machine adjustable damping-frequency
pair (ζoi , $o

i ): (i) associated with the state convergence error of the i-th machine, and
(ii) with transparent connection with the natural damping-frequency pair of the i-th
machine.

Driven by the measured input-output pair signals (yi,di)(t) of the actual MPS
(2.14), the dynamic data processor must produce a robustly convergent state estimates
χ̂i(t), i.e.,

χ̂i0 ≈ χi0 =⇒ χ̂i(t) −→r χi(t) = τi[t,χi0 ,di(·)] ∈ X, yi = κχi(t) (4.5)

where
χi = [xi, ιi]>, κ = [1, 0, 0, 0], di = [dωi , ui]>, dim(χ̂i) = 4

The present dissertation is focused on designing a methodology with:
1. Systematic construction.

2. A robust convergence criterion coupled with simple gain tuning.

3. Identification of the underlying solubility (observability) property.

4. Robust functioning in the sense of an adequate compromise between reconstruc-
tion speed, robustness concerning model error and noise, and online computa-
tional load.

In this way, motivated by a geometric estimator (GE) based on a state-unmeasured
input observable decentralized model, the augmented state is reconstructed by the un-
known input-state extension with integral action [72] of the geometric state estimation
[73, 74]. The GE drops the SM-type discontinuous injection functions to eliminate
unduly sensitivity to noise and through conventional Luenberger-like injection, effec-
tively and more simply with more application-oriented tuning (tested in a large indus-
trial scale multi-component distillation column, with experimental data [81]) what the
SMPO (4.3) does.

4.4.2 MPS Dynamics

For the observer model design (in Subsection 4.4.3) and gain tuning simplicity purposes
(in Subsection 4.4.6), the expression γi(x,dγ) (2.13i) is expanded in Taylor series (TS)
expansion about the nominal state-input pair (x̄, d̄γ)

γi(x,dγ) = li(x− x̄) + oi(x,dγ) (4.6a)
li = [∂xγi(x,dγ)](x,dγ)=(x̄,d̄γ) = [αi,−qi, 0], oi(x̄, d̄γ) = 0 (4.6b)
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with linear component li(x− x̄) and nonlinear one oi(x,dγ) Lipschitz bounded as

|oi(x,dγ)| ≤ Loix (x,dγ)|x− x̄|+Loiw (x,dγ)|dγ − d̄γ | ≤ loix |x− x̄|+ loidγ |dγ − d̄γ | (4.7a)

Loix (x̄, d̄γ) = 0 ≤ Loix (x,dγ)loix := max
(x,dγ)∈X×Dγ

Loix (x,dγ) (4.7b)

Loidγ (x̄, d̄γ) = 0 ≤ Loidγ (x,dγ)loidγ := max
(x,dγ)∈X×Dγ

Loidγ (x,dγ) (4.7c)

and express the MPS (2.14) in per-machine ιi-parametric form

ẋi = Aixi + bddωi + bu(ui + ιi), x̂i(0) = x̂i0 (4.8a)
yi = cyxi, ιi = gi(x,dγ), i = 1, . . . ,N (4.8b)

where

gi(x,dγ) = oi(x,dγ)− lix̄, gi(x̄, d̄γ) = lix̄

αi = Ē′qi

N∑
j=1

Bij
[ ¯̇E′qj cos(δ̄i − δ̄j) + Ē′qj sin(δ̄i − δ̄j)ω̄j

]
, qi = Q̄ei

Ai =

 0 1 0
0 −ai −bi
αi −qi −ci

 , |eAit| ≤ aie−λit, λi = ζmi w
m
i

λi = min(ζmi $m
i , $

e
i ) ≈

λi1,2 = −ζmi $m
i ±

[
$m
i

√
1− ζmi 2

]
j

λi3 = −$e
i

(4.9)

and λi1,2 and λi3 are the three eigenvalues of Ai in (4.8) which can be uniquely solved
as a function of i-th machine parameters:

(ζmi , $m
i , $

e
i ) = F(ai, bi, αi, qi, ci)

From the application of standard (Lyapunov’s converse theorem [82], and Gronwall’s
generalized lemma [82, 83]), the i-th machine state motion-output signal pair is EU
bounded as follows
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|xi(t)− x̄i| = |yi(t)− ȳi| ≤ aie−lxi tεi0 + (ai/lxi)εΘi
≤ aiεxi0 + (ai/lxi)εΘi := εxi , ai, lxi > 0 (4.10)

|ẋi(t)| ≤ λ+
i εxi + (ai/lxi)+εΘi := εẋi (4.11)

where
0 < ai < ax, lxi = λi − ailΘixi > λx, λi = ζmi $

m
i , λ+

i = $e
i

Θi = bddωi + bu[ui + gi(x,dγ)], |Θi|(t) ≤ εΘi
εΘi = lΘidωi

εdωi + lΘiui εui + lΘix εx + lΘidγ εdγ

The MPS representation (4.8) retains the linear part of γi(x,dγ) incorporating αi
and qi in Ai of SMPO approach allowing to have a better description of the i-th machine
3rd-order dynamics regarded as individual.

4.4.3 Estimation Model

It is assumed that the signal ιi is in a slow-varying regime (SVR) concerning the
exponential convergence speed $o

i of the observer (to be designed), i.e.,

ι̇i = ġi(x,dγ) = Fi(x,dγ , ḋγ) ≈svr 0 |ι̇i/ιi| := λi << $o
i , i = 1, . . . ,N (4.12)

understanding that the pertinence of this assumption will be validated a posteriori
when assessing the estimation error dynamics of the proposed methodology. From
the enforcement assumption (4.12) on the MPS model (4.8) with the omission of the
nonlinear static map, the linear decentralized estimation model follows:

ẋi = Aixi + bddωi + bu(ui + ιi), xi(0) = xi0, yi = cyxi (4.13a)
ι̇i ≈ 0, ιi(0) = ιi0, i = 1, . . . ,N (4.13b)

where ιi is a an unknown exogenous input signal.
In compact notation, the augmented linear decentralized system (4.13) is written

as:
χ̇i = Aaχi + βddωi + βuui, i = 1, . . . ,N (4.14a)
yi = κχi (4.14b)

where
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Aa =


0 1 0 0
0 −ai −bi 0
αi −qi −ci 1
0 0 0 0

 , βd =
[
bd
0

]
, βu =

[
bu
0

]
, κ = [1, 0, 0, 0]

4.4.4 Observability

Here, the candidate model’s robust observability is characterized and expressed as solv-
ability of an instantaneous observability problem, which in turn provides a coordinate
change to the model form where estimator convergence coupled with a simple and
application-oriented pole placement-based tuning can be executed.

The observability matrix of the state-augmented estimation model (4.14) is given
by

Oi =


κ
κAa

κA2
a

κA3
a

 =


1 0 0 0
0 1 0 0
0 −ai −bi 0
−biαi a2

i + biqi bi(ai + ci) −bi

 (4.15)

rank Oi = 4 det(Oi) 6=r 0 ⇐⇒ bi = Di/Mi 6=r 0, i = 1, . . .N (4.16)

meaning that the matrix pair (Aa, κ) is robustly observable because the coefficient bi
which denotes a parameter associated with the inertia constant (Mi) is robustly strictly
positive bi >r 0.

Let us now consider the problem of uniquely-robustly and instantaneously deter-
mining at each time t the augmented state χi(t) of the estimation model (4.13) on the
basis of the measured output (yi) and input (ui and dωi) signals as well as their time
derivatives (up to adequate order) at time t.

For this aim, perform successive time derivations of the output map of the estimation
model (4.14) to draw the four algebraic equation set [84]

ψi(t) = Oiχi + %i(t), i = 1, . . .N, Oi : (4.15) (4.17)

where

ψi =


yi
ẏi
ÿi
˙̇ẏi

 , %i(t) = Tiυi, Ti =


0 0 0
0 0 0
0 κAaβd 0

κA2
aβu κA2

aβd κAaβd

 , υi = [ui, dωi , ḋωi ]>
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Oi is the i-th Kalman observability matrix and Ti is the i-th Toeplitz transmission
matrix [84] with Markov parameters with respect to υi.

By the observability property (4.16), the preceding algebraic equation has a robust-
unique solution

χi(t) = O−1
i [ψi(t)− %i(t)] := si[ψi(t),υi(t)], i = 1, . . . ,N, Oi : (4.15) (4.18)

establishing that the linear-decentralized observer model (4.13), with the unmeasured
input ιi as augmented state, is instantaneously observable in the sense that [85, 86]: the
state χi at time t is robustly-uniquely determined by the measured output-signal pair
and its derivatives (up to order one) at time t. Eq (4.17) is an auxiliary “improper”
observer, in the sense that it requires signal derivatives that establish the attainable
behavior attainable with any proper observer.

According to the estimation model (4.14): the observability of this augmented state
implies the reconstructibility through a suitable dynamic observer (arbitrarily fast, up
to model error and noise levels), to be designed in the next subsection, of the unknown
augmented state ιi(t) of the estimation model (4.13). This key robust observability
property in the light of the standard model (2.14) and its realization in ι-parametric
form (4.8): (i) means that the (numerical) value for the image signal ιi(t) of the state-
vector-pair (xi,di)(t) under the nonlinear algebraic map gi associated with the standard
model (2.14) expressed in ι-parametric form (4.8) can be reconstructed, (ii) explain-
s/is in agreement the functioning of the SMPO (4.3) observer as consequence of the
Kalman observability-based property (4.15) of the its augmented state model (4.14),
where our/the unknown-recosntructible ιi is called the “fictitious state”, and (iii) ex-
plains the functioning of the NL EKF because the R observability of the augmented
linear system (4.14) implies the fulfillment of the local time-varying stochastic (weighted
Grammian) observability condition which is behind of the NL EKF [78], because the
Kalman observability of the four-state per machine augmented decentralized linear
model (4.14) implies the stochastic observability of the set of three-state per machine
nondecentralized standard nonlinear model (4.8).

4.4.5 Nominally Convergent Estimator

Recall the structure of the auxiliary observer (4.17), set the robustly invertible time-
varying coordinate change υ

zi(t) = Oiχi(t) + %i(t), i = 1, . . . ,N (4.19)

and apply it to (4.14) get the observer model (4.20) in z-coordinate

żi = Γizi + βφi(t), zi(0) = zi0 yi = κzi, i = 1, ...,N (4.20)
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where

Γi =


0 1 0 0
0 0 1 0
0 0 0 1
−γi1 −γi2 −γi3 −γi4

 , (γi1, γi2, γi3, γi4) = (0, biαi, aici − biqi, ai + ci)

φi(t) = κA2
aβdḋωi + κA2

aβuu̇i + κAaβdd̈ωi = ciḋωi − biu̇i + d̈ωi

β = [0, 0, 0, 1]>, κ = [1, 0, 0, 0]

and, for the moment, the exogenous input φi(t) of (4.20) is assumed to be known, in the
understanding that -as we shall see later- the improperness (dependency of measured
signal derivatives) in the observer disappears when it is written in original coordinates.

Based on the candidate model (4.20) set the linear-decentralized improper observer
in z-coordinates

˙̂zi = Γiẑi + βφi(t) + ki(yi − κẑi), ẑi(0) = ẑi0 , i = 1, ...,N (4.21)

with adjustable gain

ki(ζoi , $o
i ) = [ki1, ki2, ki3, ki4]> = [4ζoi$o

i , (4ζoi 2 + 2)$o
i

2, 4ζoi$o
i

3, $o
i

4]> (4.22)

To assess nominal convergence with respect to actual MPS (4.13), let us express
the actual MPS in z-coordinate

żi = Γizi + β{φi(t)− biFi(z,dγ , ḋγ)}, zi(0) = zi0

yi = κzi, i = 1, ...,N
(4.23)

where

Fi(z,dγ , ḋγ) = {[∂xoi(x,dγ)]f(x,dx) + [∂dγoi(x,dγ)]ḋγ}x=Oz+M%

and substract the preceding i-th machine model (4.23) from observer (4.21) to draw
the estimation error dynamics

˙̃zi = Eiz̃i + βθi(t), z̃i(0) = z̃i0 , i = 1, ...,N (4.24)

where

Ei = Γi − kioκ, |e−Eit| ≤ aie−λ
o
i t (4.25a)

θi(t) =Fi(z,dγ , ḋγ), |θi|(t) ≤ εθi = lFiz εz + lFidγ εdγ + lFi
ḋγ
εḋγ (4.25b)
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with state error motions EU bounded as

|z̃i(t)| ≤ aoi e−λ
o
i t|z̃i0 |+ (aoi /λoi )εθi , i = 1, ...,N (4.26)

The application to (4.14) of the inverse coordinate change

χ̂i(t) = O−1
i (ẑi(t)− %i(t)), i = 1, ...,N (4.27)

yields the robustly convergent observer in χi-coordinate

˙̂χi = fi(χ̂i,di) + koi (ζoi , $o
i )(yi − κχ̂i), i = 1, ...,N (4.28)

where

koi (ζoi , $o
i ) = O−1

i ki(ζoi , $o
i ) = (kδi , kωi , kPi , kιi)>(ζoi , $o

i )
kδi (ζoi , $o

i ) = 4ζoi$o
i , kωi (ζoi , $o

i ) = (4ζoi 2 + 2)$o
i

2

kPi (ζoi , $o
i ) = −(ai/bi)(4ζoi 2 + 2)$o

i
2 − (1/bi)4ζoi$o

i
3

kιi(ζoi , $o
i ) = −αi4ζoi$o

i + (qi − ((ciai)/bi))(4ζoi 2 + 2)$o
i

2 − ((ci + ai)/bi)4ζoi$o
i

3 − (1/bi)$o
i

4

The robustly convergent estimation error of the MPS estimator (4.28) is EU bounded
as:

|χ̃i(t)| ≤ aχi e−λ
o
i t|χ̃i0 |+ (aχi /λoi )εθi (4.29)

The linear-decentralized observer (4.28) in (xi, ιi) coordinates is given by

˙̂xi = Aix̂i + bddωi + bu(ui + ι̂i) + kxi (ζoi , $o
i )(yi − cyx̂i), x̂i(0) = x̂i0 (4.30a)

˙̂ιi = kιi(ζoi , $o
i )(yi − cyx̂i), ι̂i(0) = ιi0 , i = 1, . . . ,N (4.30b)

where
kxi (ζoi , $o

i ) = (kδi , kωi , kPi )>(ζoi , $o
i ), kιi = kιi(ζoi , $o

i )

The GE estimator (4.28) allows reconstructing the dynamic variables (load angle,
relative speed, and electrical power variation) together with the fictitious state of every
generator in a decentralized way using the load angle as individual measurement output.
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Its detailed form is written as follows:

˙̂
δi = ω̂i + kδi (ζoi , $o

i )(yi − δ̂i), δ̂i(0) = δ̂i0 , yi = δi (4.31a)
˙̂ωi = −aiω̂i − biP̂i + dωi + kωi (ζoi , $o

i )(yi − δ̂i), ω̂i(0) = ωi0 (4.31b)
˙̂
Pi = αiδ̂i − qiω̂i − ciP̂i + ui + ι̂i + kPi (ζoi , $o

i )(yi − δ̂i), P̂i(0) = P̂i0 (4.31c)
˙̂ιi = kιi(ζoi , $o

i )(yi − δ̂i), ι̂i(0) = ι̂i0 , i = 1, ...,N (4.31d)

The proposed decentralized estimator (4.30) derived following the methodology pre-
sented in Section (4.4) allows estimating the dynamic variables (load angle, relative
speed, and electrical power variation) of each generator in a decentralized fashion us-
ing local information and the load angle as individual measured output. Furthermore,
by including a formal convergence analysis of estimation error dynamics (Subsection
4.4.7) in the presence of measurement noise and parasitic dynamics. The proposed
methodology can be applied in different power networks (with the same assumptions
of Section 4.2), considering more generator units and network connections under dis-
tinct scenarios (variations in the mechanical input power, load changes, model errors,
unknown disturbances) and the convergence of estimation error is still guaranteed.

4.4.6 Tuning Scheme

The tuning guideline is derived according to the pole placement approach. For this,
the natural decentralized characteristic polynomial of Ai is obtained

pi(λ) = λ3 + ai1λ
2 + ai2λ+ ai3 = (λ− λi1)(λ− λi2)(λ− λi3) = 0

λi1,2 = −ζmi $m
i ±

[
$m
i

√
1− ζmi 2

]
j, λi3 = −$e

i

(4.32)

The characteristic polynomial of Ei (4.25a) is

pi(λ) = λ4 + ai1λ
3 + ai2λ

2 + ai3λ+ ai4 = (λ− λi1)(λ− λi2)(λ− λi3)(λ− λi4) = 0 (4.33)

in terms of gains ki and entries of Γi is given by

pi(λ) = λ4+(γi4+ki1)λ3+(γi3+γi4ki1+ki2)λ2+(γi3ki1+γi4ki2+γi2+ki3)λ+(γi2ki1+γi3ki2+γi4ki3+γi1+ki4)
(4.34)

Motivated by optimal LQR and EKF as well as GE [87], two complex-conjugate pole
pairs give the prescribed pole pattern associated with (4.34) with damping frequency
pair

νi1,2 = −ζoi$o
i ±

[
$o
i

√
1− ζoi 2

]
j, νi3,4 = −ζoi$o

i ±
[
$o
i

√
1− ζoi 2

]
j (4.35)
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where
ζoi = nζi ζ

m
i , $o

i = n$i $
m
i

nζi = nζ ∈ [1, 6] := Jζ , n$i = n$ ∈ [10, 50] := J$

in order to: (i) exploit the natural characteristics of MPS to obtain a better functioning
in terms of an adequate compromise between speed reconstruction and tolerance to
measurement noise (in the next Subsection), and (ii) have a conventional-like simple,
transparent, and easy to apply tuning procedure based on two-parameter tuning.

This tuning procedure is compared favorably concerning: (i) the tuning of NL EKF,
which does not have a clear physical meaning, and (ii) the SMPO estimation scheme
(4.3) based on the selection of 8 tuning parameters, which are connected via existence-
like pole placement theoretical argument for asymptotic injection part and not clear
meaning for the nonlinear sliding/saturation part.

4.4.7 Robust Convergence (in the presence of noise and parasitic dy-

namics)

To ensure robust convergence and a tuning procedure against measurement noise and
parametric uncertainty. The actual dynamics of MPS in z-coordinates are considered

π̇ = %(z,dx;π, υ), π(0) = π0 (4.36a)
żi = Γizi + β{φi(t)− biFi(z,dγ , ḋγ)}, yi = κzi + eyi(π) zi(0) = zi0 (4.36b)

Subtract (4.21) from (4.36) and obtain the estimation error dynamics:

π̇ = %(z,dx;π, υ), π(0) = π0 (4.37a)
˙̃zi = Aiz̃i + εi(z,υi, υ̇i,dγ , ḋγ ; z̃, υ̃i, ˙̃υi, d̃γ , ˙̃dγ , p̃i, π), z̃(0) = z̃i0 (4.37b)

where

z̃i = ẑi − zi, zi =
[
z1i, z2i, z3i, z4i

]>
, Ai =


−4ζoi$o

i 1 0 0
−(4ζoi 2 + 2)$o

i
2 0 1 0

−4ζoi$o
i

3 0 0 1
−$o

i
4 −γi2 −γi3 −γi4


(4.38a)

|eAit| ≤ aeie−λsi t, λsi = ζoi$
o
i , {εi} : (A.0.3a) (4.38b)

System (4.37) is made by two subsystems interconnected via Lipschitz bounded
map (εi).

From the application of Lyapunov’s converse theorem, the estimation errors of
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(4.37b) are bounded as

|z̃i| ≤ aei |z̃i0 |e−ζ
o
i$

o
i (t−t0) + aei

∫ t

t0
e−ζ

o
i$

o
i |εi(z,υi, υ̇i,dγ , ḋγ ; z̃, υ̃i, ˙̃υi, d̃γ , ˙̃dγ , p̃i, π)|dτ

(4.39)
considering, |p̃i| ≤ εpi yields,

|z̃i| ≤aei |z̃i0 |e−ζ
o
i$

o
i (t−t0) + aei l

εi
i

∫ t

t0
e−ζ

o
i$

o
i (t−τ)|z̃i|

+ aei

∫ t

t0
e−ζ

o
i$

o
i (t−τ)[lεiz |z̃|+ lεiπ |π|+ lεiυi |υ̃i|+ lεiυ̇i | ˙̃υi|+ lεidγ |d̃γ |+ lεi

ḋγ
| ˙̃dγ |+ lεipiεpi ]dτ

(4.40)

where lεia is the Lipschitz constant of εi with respect to its argument a.
The application to this inequality of Gronwall’s generalized lemma followed by in-

tegration by parts, and obtain the associated decay factor lψi , the estimation errors
(4.40) are rewritten as:

|z̃i| ≤ aei |z̃i0 |e−li(t−t0) + aei l
εi
z

li
|z̃|+ aei l

εi
π

li
|π|+

aei l
εi
υi

li
|υ̃i|+

aei l
εi
υ̇i

li
| ˙̃υi|+

aei l
εi
dγ

li
|d̃γ |

+
aei l

εi
ḋγ

li
| ˙̃dγ |+

aei l
εi
pi

li
εpi

(4.41)

where

li = ζoi$
o
i − aei lεizi (4.42)

The norm of parasitic and estimation errors dynamics associated with the i-th (4.37)
generator are replaced by its upper bound (|πi|, |z̃i|)(t) ≤ (σπi , σzi)(t) [72, 87]:

σ̇π(t) = −l%πσπ + aπl
%
υευ(t), σπ(0) = σπ0 (4.43a)

σ̇zi(t) = −liσzi + aei l
εi
π σπ + aei [lεiz εz(t) + lεidγ εdγ (t) + lεi

ḋγ
εḋγ (t) + lεiυiευi(t) + lεiυ̇iευ̇i(t)

+ lεipiεpi ], σzi(0) = σzi0 (4.43b)

where
l%π > 0, li = ζoi$

o
i − aei lεizi > 0 (4.44)

(4.44) reflects the individual R stability of the parasitic (4.37a), and estimation error
dynamics (4.37b) of the i-th generator. In vector form, the preceding bounding linear
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system (4.43) is written as:

σ̇a(t) = Aaσa + dσa(t), σa(0) = σa0 (4.45)

where

σa = [σπ, σzi ]>, Aa =
[
−l%π 0
aei l

εi
π −li

]
(4.46a)

da(t) =
[

aπl
%
υευ(t)

aei(lεiz εz(t) + lεidγ εdγ (t) + lεi
ḋγ
εḋγ (t) + lεiυiευi(t) + lεiυ̇iευ̇i(t) + lεipiεpi)

]
(4.46b)

based on the small gain theorem [83] conditions for the robust functioning of the sys-
tem (4.45) and by Hurwitz Criterion: the system (4.45) is by construction RE stable
according to

det(Aa) > 0
l%πli > 0, ⇒ |eAat| ≤ ae−lit, li >r 0 (4.47)

system (4.45) is RE stable if $o
i is set so that

ζoi$
o
i > λdi($o

i , $
o
i

2) (4.48)

where

λdi($o
i , $

o
i

2) := aei l
εi
zi($

o
i , $

o
i

2) (4.49)

Proposition 1. The GE error dynamics (4.37) are RE stable if the stabilizing term
λsi dominates the potentially destabilizing one λdi , this is (see Fig. 4.1)[88]

λsi($o
i , ζ

o
i )− λdi($o

i , $
o
i

2) := λ($o
i , $

o
i

2) > 0 (4.50)

where
λsi(ζoi , $o

i ) = ζoi$
o
i (4.51a)

λdi($o
i , $

o
i

2) = aei l
εi
zi($

o
i , $

o
i

2) (4.51b)

lεizi is a nonlocal Lipschitz constant and aei is an strictly positive constant.
Condition (4.50) states that the linear-in-$o

i stabilizing term λsi dominates the
potentially destabilizing term λsi (that grows linearly and quadratically with $o

i ).
In the next proposition, the preceding convergence condition is stated in terms of

low ($o
i
−) and high ($o

i
+) gain limits:

(i) Eq. (4.50) has two strictly positive and sufficiently separated roots ($o
i
−, $o

i
+)
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for $o
i

$o
Li = $o

i
−($o

i , $
o
i

2) $Hi = $o
i

+($o
i , $

o
i

2), 0 < $o
Li < $o

Hi (4.52)

(ii) Proposition 2. The system (4.36) is RE stable if $o
i is set sufficiently above (or

below) its lower (or upper) limit $o
i
− (or $o

i
+), according to the expressions:

$o
i
−($o

i , $
o
i

2) < $o
i < $o

i
+($o

i , $
o
i

2) (4.53)

In industrial practice, the upper bound $o
i

+ (4.53) is called ultimate gain (where
inadmissible oscillatory behavior by error-noise propagation starts with $o

i increase)
[89].

Figure 4.1: (a) GE condition (4.50) fulfillment (—-), non-fulfillment (....), and threshold
case (–..–..)

4.4.8 Tuning Procedure (in the light of R convergence with noise and

upper limit identification)

From Proposition 2 in the light of the prescribed linear, non-interactive, pole assignable
(LNPA) output error dynamical feature, the next conventional-like linear-filter tuning
guidelines follows [88]:

1. Estimate the output natural frequency λi of each machine, and set the output
error responses from 10 to 50 times faster than the dominant dynamics: $o

i =
n$λi with n$ ≈ 10− 50 ∈ J$.
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2. Gradually increase nw until the response becomes oscillatory at the ultimate value
n+
w , back off and set nw = n+

w/(2–3) and set the damping factor ζoi = nζi ζ
m
i with

nζ ∈ [1, 6] := Jζ .

3. Start with
nζ = 4 ∈ Jζ , n$ = 10 ∈ J$

4.4.9 GE-EKF equivalence

For this, the EKF approach suggests the following decentralized stochastic model of
MPS with augmented state

χ̇i = fi(χi,di(t)) +Bi(χi, t)µi(t), χi(0) = χi0 (4.54a)
µ̇i = wi(t), µi(0) = µi0 yi = κχi + vi (4.54b)

where
fi(χi,di(t)) = Aaχi + βddωi + βuui, di =

[
dωi
ui

]

with
wi ∼ N [0, qi], vi ∼ N [0, ri], χi0 ∼ N [χ̂i0 ,Pχ0 ] (4.55a)

µi0 ∼ N [µ̂i0 ,Pµ0 ], {Bi, qi, ri,Pi0} := Mi (4.55b)

the i-th augmented state, one per machine, µi is an integrated white noise (Wiener
process), Bi is an adjustable (to be chosen appropriately) nonlinear gain matrix that
sets the model noise injection mechanism, wi (or vi) is a zero-mean Gaussian white
noise with constant intensity matrix qi (or ri), and χi0 (or µi0) is a random vector with
mean χ̂i0 (or µ̂i0) and error covariance matrix Pχ0 (or Pµ0). Differently from the EKF
approach (with constant matrix Bi equal to the identity) employed in the majority of
MPS estimation studies [3, 32, 34, 42], here the fictitious state of the SMPO observer
design is incorporated and the noise coefficient matrix is a design degree of freedom.
In compact form, the stochastic model (4.54) is written as:

ẋa = fa(xa, t) +Ba(xa, t)wi(t), xa(0) = xa0

yi = κxa + vi (4.56)

where

fa(xa, t) =
[
fi(χi,di) +Bi(χi, t)µi

0

]
, xa = [χi, µi]>, Ba =

[
0
I

]
(4.57)

Assuming the augmented model motion xa(t) is stochastically observable (with
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respect to yi) [78], the associated EKF is given by

˙̂xa = fa(x̂a, t) + gekf (Pi, ri)(yi − κx̂a), gekf = Piκ
>r−1

i

x̂a(0) = x̂a0 (4.58a)
Ṗi = PiJa(x̂a, t) + J>a (x̂a, t)Pi +BaqiB

>
a − Piκ>a r−1

i κPi,

Pi(0) = Pi0 (4.58b)

where

Ja(x̂a, t) = ∂xafa(xa, t) =
[
∂χifi(χi,di) Bi(χi, t)

0 0

]
(4.59)

dim xa = 4, dim gekf=4×1; dim yi = 1; dimκ = 1×4; dimPi = dimJa(x̂a, t) = 4×4
The conditions for the equivalence between the GE (4.28) and the EKF (4.58) are

given in terms of the choices of: (i) the pole placement-based tuning scheme of the GE
(4.28) and (ii) the tuning matrix quartet Mi (4.55b) of the EKF (4.58).

Lemma 1. The GE (4.28) and the EKF (4.58) yield the same state estimate if and
only if:

(i) The gain vector koi of the GE (4.28) is set with a Butterworth pole configuration
[88], and the ith 5-th output error derivative (ŷi−yi)(5) is modeled as a zero-mean
uncorrelated white noise wi with intensity qi, according to the expressions

(ŷi − yi)(5) = wi ∼ N [0, qi], i = 1, . . . ,N (4.60)

(ii) For GE-EKF connection purposes, the flattening nonlinear coordinate change re-
lated to the robust observability property takes the EKF dynamic Riccati equa-
tion (RE) (4.58b) into the static RE (4.61)

ΓiΣi + ΣiΓ>i + πiqiπ>i −Σi∆>i r−1
i ∆iΣi = 0 (4.61)

where

Γi =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 , πi =


0
0
0
1

 ∆i = [1, 0, 0, 0]

Σi is the solution of the static matrix Riccati equation (RE) and the matrix
quartet Mi (4.55b) of the EKF (4.58) is set as follow

Bi = [O−1
i ]πy, qi = qiI4×4, qi = ($o

i )10ri (4.62a)
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πy = [0, 0, 0, 1]>, Pi0 = [O−1
i ][Σi][O−1

i ]> (4.62b)

The EKF (4.58) and (4.62) with dynamic Riccati equations (REs) is identical to
the GE (4.28) without REs. Particularly, the solution of the static RE (4.61) via But-
terworth pole-placement yields the optimal stationary gain ki (4.63) which in original
coordinates sets the gain gekf of EKF (4.58) and (4.62) [87].

ki = Σi∆>i r−1
i (4.63)

4.4.10 Epilogue

According to theoretical ideas and developments and the robust functioning assessment
of the proposed methodology, in terms of a suitable compromise between construction-
tuning simplicity and systematicity, robustness (reliability), reconstruction speed, and
on-line computational load. The NL GE estimator: (i) retains the acceptance and ro-
bust functioning in the presence of model parameter and measurement noise errors of
the NL EKF and resolves the heavy on-line computational load and problematic heuris-
tic tuning coupled with formal convergence analysis on RE-IS sense based on small gain
theorem for coupled nonlinear systems and identification of NL observability property,
and (ii) retains the robustness of SMPO against to the combined effect of unmeasured
disturbances and state dependency on other machines as well as its comparatively low
computational load, and the integral action achieves effectively and in a more straight-
forward manner (fewer tuning parameters) than the one of the SM with perturbation
estimation scheme (4.3).

In Subsection 4.4.9, the proposed GE (4.28) for MPS was formally connected with
the standard NL EKF approach employed in previous MPS estimation studies.

4.5 Simulation Results

In this section, the simulation results corroborate and illustrate the theoretical devel-
opments of Sections 4.3 and 4.4 with realistic testing using the popular Western System
Coordinating Council (WSCC) [12] previously used in MPSs studies [32, 40, 55, 68, 75–
77], which is shown in Fig.4.2.

Parameters Generator 1 Generator 2 Generator 3
Di [p.u.], T ′di [s] 6, 8.96 5, 6 2, 5.89

Mi [s] 2× 23.1 2× 6.1 2× 3.01
x′di [p.u.] , xdi [p.u.] 0.0608, 0.146 0.1198, 0.8958 0.1813, 1.3125

Field voltage Efi [p.u.] 1.056 1.789 1.403
Mechanical input power Pmi [p.u.] 0.716 1.63 0.85

Table 4.1: Machine data
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The system’s nominal parameters and the operations used for the sample problem
investigated are listed in Table 4.1. For evaluation purposes, the MPS from Fig. 4.2,
the loads are assumed to be of the constant impedance type. Thus, the generators are
connected through a reduced network which is also assumed as purely inductive and
whose admittance matrix is computed from line parameters showed in Fig. 4.2.

The comparison between the proposed (4.28) and SMPO (4.3) observers has been
already discussed in the theoretical developments: (i) the tuning of the proposed ob-
server -underlain by robust convergence conditions- is considerably simpler, and (ii) in
the presence of measurement noise, the SMPO observer (4.3) undergoes inadmissible
behavior degradation -of chattering type- by measurement noise. Thus, the behavior of
the proposed GE (4.21) in the present of realistic measurement noise will be compared
with the standard-centralized NL EKF (4.1b)-(4.1c).

~ ~

~
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Y
=
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Z
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Z
=
0.039+j0.17

Y
=
0.+j0.179

100MW
35MVAR

Figure 4.2: WSCC 3-machine, 9-bus system [12]

4.5.1 Tuning

For MPS of Fig. 4.2, the three GE estimators (one per generator unit) follow:
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4.5 Simulation Results

λ1 = 1/15seg−1, λ2 = 1/20seg−1, λ3 = 1/20seg−1

where λ1,2,3 are the dominant frequencies associated with each machine. The adjustable
vector ki (4.22) of the proposed GE (4.21) is set according to the tuning procedure of
Subsection 4.4.8. For each GE estimator there are two complex-conjugate pole pairs
(4.35) with damping frequency pair: $o

i is set with n$ ≈ 10 times faster than the
dominant frequency λi and the damping factor ζoi is set as nζ ≈ 4 with respect to the
natural damping factor of MPS dynamics.

For the centralized version of the traditional EKF (4.1b)-(4.1c), the covariance
matrices Q,R are

R = bd(r1, r2, r3), r1 = 1× 10−4, r2 = 1× 10−3, r3 = 1× 10−5

Q = bd(q1, q2, q3), q1 = [1× 10−5]I3×3 q2 = [1× 10−6]I3×3 q3 = [1× 10−6]I3×3

4.5.2 Robust Testing Scheme

The measured outputs are corrupted with noise which is represented by high-frequency
sine signals:

y1 = δ1 + 0.0002 sin(250t), y2 = δ2 + 0.0002 sin(350t), y3 = δ3 + 0.0001 sin(400t)

Moreover, to evaluate the transient performance of both estimators, different initial
conditions (with respect to operation points) have been intentionally considered for the
actual MPS model and both estimators, as presented in [42, 68]. The initial transient
dynamic response associated with the MPS can be related to the one obtained when the
electrical power network considers loads and distributed energy resources with promi-
nent stochastic behaviors [5]. In this way, in the first instance, the convergence of the
proposed decentralized estimator is demonstrated against initial condition uncertainties
(for comparative purposes, both estimators are not initiated with the same conditions
of MPS dynamics). It is a critical advantage compared to the traditional dynamic esti-
mators, usually based on the Kalman filter theory. As stated in [5], if these estimation
schemes are not initiated correctly, the estimation error convergence is not guaranteed.
An estimator should estimate the actual states even if it is not initiated with the same
conditions of the system [82].

Furthermore, in the present comparative study, once the generators are in the
steady-state regime, the dynamic state algorithms are tested under a persistent dis-
turbance acting on the rotating shaft of the generator one at t=30 [s] (assumed as a
known input for both estimators) and an electromagnetism disturbance entering the
excitation winding of the generator three at t=40 [s] (considered as an unknown input
for both estimators), both disturbances are modeled as step signals acting 0.5 seconds.
Figures 4.3 - 4.8 depicts the performance of estimators, in solid lines, are represented

the actual values of the load angle, relative speed, the electric power variation, and
the nonlinear interconnection term of every generator unit; on the other hand, the
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4. DECENTRALIZED ROBUST STATE ESTIMATION OF MULTIMACHINE
POWER SYSTEMS

dashed lines are used to show the estimated variables by both the EKF (green) and the
proposed GE estimator (red).
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Figure 4.3: Comparison between the GE estimator and the conventional EKF. Load
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0 10 20 30 40 50

0

0.5

1

δ
2
[r
ad

]

 

 

0 10 20 30 40 50

−0.5

0

0.5

Time [s]

ω
2
[p
.u
.]

 

 

0 1 2

−0.45

−0.4

−0.35

−0.3

40 45

−0.2

−0.1

0

0 0.1 0.2
1

1.05 δ2 δ̂2,EKF δ̂2,GE

ω2 ω̂2,EKF ω̂2,GE
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4.5 Simulation Results

As can be appreciated, the convergence associated with the proposed GE is consid-
erably faster than the one obtained by the conventional EKF in its centralized version.
The transient behavior related to the MPS operation is recovered by the developed GE
estimator, an essential strength for monitoring and control purposes. In the opposite
case, the EKF cannot assure the reconstruction of the transient behaviors of the gen-
erators showing a slow convergence rate to the actual states. Also, specifically for the
disturbance that affects generator three at t=40 [s], which also disturbs the behavior of
the other two generators. As mentioned above, it is assumed as an unknown exogenous
input for both estimators. The EKF performance is not good, recovering this transient
behavior. In the opposite case, the proposed GE can estimate the dynamic variables
of each generator correctly because the unknown disturbance is included in the nonlin-
ear interconnection term (one per machine), which is reconstructed together with the
dynamic variables. It can deal with the unmodeled system dynamics.

Remarks:

R- 4.1 It is necessary to point out that, for the system in the example (Fig. 4.2), the
EKF needs to solve 54 ODEs (considering 45 Riccati equations), whereas the GE
estimator only solves 12 ODEs.

R- 4.2 The proposed GE estimator only needs local information to achieve its task
using load angle as the unique measurement. In contrast, the EKF needs local and
neighborhood information. It requires the measurement of the load angle together
with the unmeasured vector inputs w = [Idi , E′qi , E

′
qj , Ė

′
qj , Qei ]

> to estimate the
state in each machine, in a practical sense, means the use of more sensors.

R- 4.3 The difference among estimators lies in the simplicity of implementation, con-
struction, and computational load of the proposed GE estimator. This estimation
scheme is easy to construct and syntonize, presenting a good convergence speed
to the actual states.

R- 4.4 In comparison with the centralized approach reported in [68] based on the SM
theory, the proposed methodology in this thesis requires fewer measurements to
estimate the relative speed together with the electrical power variation whose
estimation is only based on the load angle as measured output, thus reducing
the number of required sensors. In [68] despite representing the interconnection
terms and uncertainties by nonlinear functions of the state, the estimation scheme
does not have a systematic construction and requires more local and neighboring
information about generators to reconstruct the state.

Table 4.2 are cited some similar state estimation schemes to highlight some critical
aspects as construction, convergence proof, and tuning guideline.
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4. DECENTRALIZED ROBUST STATE ESTIMATION OF MULTIMACHINE
POWER SYSTEMS

Technique Construction, Tuning & Convergence Pros & Cons

EKF [31–34, 40, 41]
◦ Easy to construct, widely known, and
accepted.
◦ Without formal convergence analysis.

◦ The EKF has not been reached
industrial testing, perhaps because
of heavy online computational load
(especially for control), and it does
have a fine and precise tuning.
◦ Robust functioning.

Sliding Mode Ob-
server [67, 68]

◦ Decentralization and allows detecting
and reject model disturbances.
◦ Convergence criteria based on Lya-
punov functions ideas.

◦ It has a severe obstacle for practi-
cal applicability, high susceptibility
to noise, difficult tuning in the sense
of the observer’s gains are not pa-
rameterized.
◦ Robust concerning persistent
modeling error, but the fragility
to measurement noise is a problem
(that is handled with chattering re-
mediation - saturated function).

High Gain [90]

◦ Decentralized (the nonlinear intercon-
nection along with the error modeling
can be assumed an extra state).
◦ The tuning procedure is based on
singular perturbation theory and pole
placement approach.

◦ The MPS is considered as a system
that can be fully linearized.

Linear Observer
(Luenberger type)
[71]

◦ The estimator adopts the linear rep-
resentation of a MPS. Moreover, the
nonlinear interconnection terms among
generator units are considered.
◦ The observer gains are precalculated
off-line around a particular equilibrium
point (without convergence analysis).

◦ The reported state estimation
scheme adopts a centralized (wide-
area) approach.
◦ A set of constants associated
with the boundness of the nonlin-
ear interconnection terms must be
obtained to compute the observer
gains through solving an LMI (Lin-
ear Matrix Inequality).
◦ The reported observer can deal
with uncertainties related to the
model.

Nonlinear Observer
(Luenberger-
Kalman) [69]

◦ Based on the fully linearized model of
the MPS.
◦ The observer gains depend on the Ja-
cobian expression of MPS, and they are
computed based on Kalman Filter the-
ory, but there is not any convergence
proof documented.

◦ The main problem relies that the
observer gains directly depends on
the accuracy of the used model.
◦ The reported observer does not
have a fine-tuning, and it does not
consider the uncertainties and dis-
turbances of the model.

Table 4.2: State estimation techniques

4.6 Concluding Remarks

A nonlinear geometric (G), Luenberger-like, decentralized, and robustly convergent
state estimation design for Multimachine Power Systems (MPSs) has been developed,
with emphasis on the attainment of a compromise between reconstruction speed, ro-
bustness, computational load, and tuning simplicity that is better than the ones of

76



4.6 Concluding Remarks

previous studies with NL EKF and SMPO designs.
The proposed estimation scheme presents similar advantages to EKF, solves the

measurement with noise injection optimally, and Sliding Modes approach the decen-
tralized structure. Moreover, it has a simple and clear to understand pole-placement
tuning and low computational load. The robust convergence is formally proved through
input-to-state (IS) stability and small gain ideas.

A comparison with the centralized nonlinear EKF (one of the most known estimators
in the Electric Power Community) was carried out via numerical simulation. Due to its
simplicity, the GE estimator has the advantage of solving considerably fewer equations,
almost a quarter of the total ODEs of the EKF, which is reflected in less computational
load. Noisy measurements, initial condition uncertainties, and different disturbances
were considered in the simulation, showing a better performance by the GE estimator
in speed convergence and less impact against measurement noises.

The present study on MPS estimation is a point of departure to address the
observer-based output-feedback control design problem with an application-oriented
robust-decentralized scheme.
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Chapter 5

Conclusions and Future Research

The Electric Power System is one of the most complex systems created by humans. The
different nature of their components causes complex phenomena that detailed mathe-
matical representations must capture. As previously was mentioned, state estimation is
an important tool to deliver information about the system state variables for adequate
control, monitoring, and protection purposes. Understanding the system dynamics,
the solutions proposed in this dissertation are complete because they solve the estima-
tion problem for IMG structures and MPSs considering different aspects, such as (i)
the on-line computational load, (ii) detailed mathematical models, and their respective
properties are exploited for estimator design purposes (tailored models are created for
this), (iii) identification of observability properties of employed models are presented
coupled with the required measurements to estimate the state variables, (iv) specifically
for the proposed geometric estimator for MPSs, a formal convergence analysis of esti-
mation error dynamics is presented based on input-to-state stability sense concerning
model errors and measurement noise yielding to robust convergence conditions of the
type small gains which are sharper, more transparent and with greater interpretability
than those based on Lyapunov functions, and (v) the tuning scheme of proposed esti-
mators plays an important role in estimating the state variables clearly and simply. In
this way, the proposed dynamic state estimation algorithms show similar or superior
performance to other previous alternatives.

The dynamic state estimation in IMG structures is addressed through two estima-
tors based on the Kalman Filter theory, which allows estimating the dynamic variables
of generators (load angle, mechanical speeds, and internal voltages) together with those
algebraic variables (bus voltage phasors) related to network restrictions using fewer
measurements compared to the conventional static estimators. Besides, the estimators
can estimate the transient and steady-state regimes associated with the IMG operation
following the proposed methodology.

To offer an alternative to those proposed centralized estimators for IMG structures
addressing their main drawbacks (computational load, heuristic tuning, global infor-
mation exchange). For this, a new methodology for the online state estimation of MPS
is proposed, through the unknown input-state extension with integral action of the
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geometric state estimation, the augmented state (lumping in one fictitious state, after
linearization, the combined effect of unmeasured disturbances and state dependency on
other machines) is recovered with a non-high gain observer coupled with simple conven-
tional tuning and convergence criteria. Based on a state-unmeasured input observable
decentralized model, the dynamic state (load angle, relative speed, and electrical power
difference) of every generator is estimated through the local information, using load an-
gle as individual measured output.

This dissertation’s dynamic estimators offer a solution to the estimation problem
for IMG structures and MPSs. Nevertheless, there are open problems that should
be addressed in the future, like validating the proposed dynamic estimators through
specialized software and using different electrical networks containing conventional and
renewable generation, inverter sources, and dynamic load models. This and other
aspects are addressed in the following Section.

5.1 Future Research

Future work can be generalized into the following aspects:

◦ Dynamic state estimation, whether being carried out in a centralized or distribut-
ed/decentralized manner, needs real-time measurements, and this information
needs to be transferred to proper locations, such as a control center at transmis-
sion or distribution level. Thus, it should be included analysis about which are
the data requirements, such as data rates, signals, sensor placement, reliability,
redundancy (for wide-area applications), data communication requirements [5].

◦ Power systems have been improved over time considering complex and different
variables (inclusion of different generation sources), diversity between configura-
tions, with mixed slow and fast dynamics. Thus, the estimation algorithms should
be improved to work with increasingly complex models to meet the operational
requirements of future power systems [5].

◦ To explore how dynamic state estimation can be compatible with a control room
environment in terms of information, technological infrastructure, and human-
machine interface [5].

◦ To implement the developed state estimation algorithms in different electrical
networks and validate them with specialized software, such as DIgSilent, PSCAD.

◦ To implement and adapt the proposed geometric estimator for electrical networks,
which can contain conventional and renewable generation, inverter sources, and
dynamic load models, similar to those considered in IMG studies. The estimation
of dynamic variables associated with generators through local information will
allow decentralized control schemes to address the frequency control problem for
IMG structures.
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5.1 Future Research

◦ The present study on MPS estimation is a point of departure to address the
observer-based output-feedback control design problem with an application-oriented
robust-decentralized scheme.

81





Appendix A

Nonlinear Maps and Open Loop System

Functions

gi(x,dγ) = −ci(ρi − ρti)(IqiIdi)− ciPmi + E′qi

 N∑
j=1

Ė′qjBij sin(δi − δj)

−
N∑
j=1

E′qjBij cos(δi − δj)ωj

− αiδ̄i (A.0.1)

ι̇i = ġi(x,dγ) = Fi(x,dγ , ḋγ) =

 N∑
j=1

E′qiĖ
′
qjBij cos(δi − δj) +

N∑
j=1

E′qiE
′
qjBij sin(δi − δj)ωj

ωi
−

 N∑
j=1

E′qiĖ
′
qjBij cos(δi − δj) +

N∑
j=1

E′qiE
′
qjBij sin(δi − δj)ωj

ωj −
 N∑
j=1

E′qiBij cos(δi − δj)ωj

 Ė′qj
−

 N∑
j=1

E′qjBij cos(δi − δj)

 [ajωj − bjPj + dωj ]

+

 N∑
j=1

Ė′qjBij sin(δi − δj)−
N∑
j=1

E′qjBij cos(δi − δj)ωj

 Ė′qi (A.0.2)

εi(z,υi, υ̇i,dγ , ḋγ ; z̃, υ̃i, ˙̃υi, d̃γ , ˙̃dγ , p̃i, π) =
4ζieyi(π)

(4ζ2
i + 2)w2

i eyi(π)
(4ζiw3

i )eyi(π)
Φi(zi,υi, υ̇i; z̃i, υ̃i, ˙̃υi, p̃i, π) + ϑi(z,dγ , ḋγ ; z̃, d̃γ , ˙̃dγ) + w4

i eyi(π)

 (A.0.3a)
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Φi(zi,υi, υ̇i; z̃i, υ̃i, ˙̃υi, p̃i, π) = Ψi(zi; z̃i, p̃i) + φ̃i(t) (A.0.3b)
Ψi(zi; z̃i, p̃i) = −γ̃i2(z2i + z̃2i)− γ̃i3(z3i + z̃3i)− γ̃i4(z4i + z̃4i)
= −(b̃i + bi)(α̃i + αi)(z2i + z̃2i) + [(b̃i + bi)(q̃i + qi)− (ãi + ai)(c̃i + ci)](z3i + z̃3i)
− [(ãi + ai) + (c̃i + ci)] (z4i + z̃4i) (A.0.3c)

φ̃i(t) = c̃iḋωi(π) + (c̃i + ci) ˙̃dωi(π)− b̃iu̇i(π)− (b̃i + bi) ˙̃ui(π) + ¨̃dωi(π) (A.0.3d)

ϑi(z,dγ , ḋγ ; z̃, d̃γ , ˙̃dγ) = bi

[
Fi(z + z̃,dγ + d̃γ , ḋγ + ˙̃dγ)− Fi(z,dγ , ḋγ)

]
(A.0.3e)

=

[
N∑
j=1

bi(E′qi
+ Ẽ′qi

)(E′qj
+ Ẽ′qj

)Bij cos(z1ij + e1ij) +
N∑
j=1

bi(E′qi
+ Ẽ′qi

)(E′qj
+ Ẽ′qj

)Bij sin(z1ij + e1ij)

(z2j + z̃2j)] (z2i + z̃2i)−

[
N∑
j=1

biE
′
qi
E′qj

Bij cos(z1ij) +
N∑
j=1

biE
′
qi
E′qj

Bij sin(z1ij)z2j

]
z2i

+

[
N∑
j=1

bi(E′qi
+ Ẽ′qi

)(Ė′qj
+ ˙̃E′qj

)Bij cos(z1ij + e1ij) +
N∑
j=1

bi(E′qi
+ Ẽ′qi

)(E′qj
+ Ẽ′qj

)Bij sin(z1ij + e1ij)

]
(z2j + z̃2j)

−

[
N∑
j=1

biE
′
qi
Ė′qj

Bij cos(z1ij) +
N∑
j=1

biE
′
qi
E′qj

Bij sin(z1ij)

]
z2j − bici(ρi − ρti )Ĩqi İdi

− bici(ρi − ρti )İqi Ĩdi

−

[
N∑
j=1

bi(E′qj
+ Ẽ′qj

)Bij cos(z1ij + e1ij)

]
(z3j + z̃3j) +

[
N∑
j=1

biE
′
qj
Bij cos(z1ij)

]
z3j

+

[
N∑
j=1

bi(Ė′gj
+ ˙̃E′qj

)Bij sin(z1ij + e1ij)−
N∑
j=1

bi(E′gj
+ Ẽ′qj

)Bij sin(z1ij + e1ij)(z2j + z̃2j)

]
(Ė′qi

+ ˙̃E′qi
)

−

[
N∑
j=1

biĖ
′
gj
Bij sin(z1ij)−

N∑
j=1

E′gj
Bij sin(z1ij)z2j

]
Ė′qi
−

[
N∑
j=1

bi(E′qi
+ Ẽ′qi

)Bij cos(z1ij + e1ij)(z2j + z̃2j)

]
(Ė′qj

+ ˙̃E′gj
)

+

[
N∑
j=1

biE
′
qi
Bij cos(z1ij)z2j

]
Ė′qj

+

[
N∑
j=1

bi(E′qi
+ Ẽ′qi

)Bij sin(z1ij + e1ij)

]
(Ë′qj

+ ¨̃E′qj
)−

[
N∑
j=1

biE
′
qi
Bij sin(z1ij)

]
Ë′qj

− bici ˙̃Pmi (A.0.3f)

where

z1ij = z1i − z1j , z̃1ij = z̃1i − z̃1j (A.0.3g)
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Appendix B

IMG Parameters

Study cases Sections 3.2.3 and 3.3.3. Parameters given on a 10 MVA base: Synchronous
generator power base established on 5 MW, EFi = 0.8460 p.u, Pmi = 0.2333 p.u,
Di = 0.8 p.u, Hi = 5 s, τ1 = 7 s, xdi = 1.35 p.u, x′di = 0.20 p.u, xqi = 1.39 p.u,
and x′qi = 0.3 p.u. For the simulation of the IG the following data was considered:
Rri = 0.01 p.u, Rsi = 0.01 p.u, Lmi = 3.0 p.u, Lsσi = 0.10 p.u, Lrσi = 0.08 p.u,
Pnom = 0.9 MW, 50 Hz, 4 pole pairs. Wind turbine data: Rb = 57 m, ρ = 1.225
kg/m3, ngb = 67.5 m, c1 = 0.5, c2 = 116, c3 = 0.4, c4 = 0, c5 = 0, c6 = 5, c7 = 21,
c8 = 0.08, c9 = 0.035, β = 0, Heq = 3 s.
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