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I N T R O D U C T I O N

The rapid advances in computing have made the study of relational
data an important tool to understand complex phenomena. Recon-
structing a phylogenetic tree, modelling atomic fission, the spread of
a disease, all can be fitted into a solid mathematical framework by
representing them as networks and trees. This entails the challenge of
finding suitable families of probability measures that can replicate the
behaviors observed empirically.

Networks, understood as a collection of relations between entities,
can be encompased within the rich theory of random graphs, from
where the challenge of building models that can mimic the power-law
behaviour most real world networks possess arises (Crane, 2018).

A common assumption among probabilistic models for networks is
exchangeability over vertices (Orbanz and Roy, 2015), (Crane, 2018),
appealing to Aldous-Hoover theorem (Aldous, 1985) to construct
prior distributions over classes of random graphs. While theoretically
appealing, this framework produces dense graphs with probability
one (Orbanz and Roy, 2015), which limits their applicability.

In response to this limitation, over the past few years several fam-
ilies of models have been developed that move away from vertex
exchangeability, instead relying on an exchangeable point process
representation of adjacency matrices (Caron and Fox, 2017), (Veitch
and Roy, 2015), (Borgs et al., 2016), or on switching the exchangeability
assumption from vertices to edges (Crane and Dempsey, 2018), (Cai,
Campbell, and Broderick, 2016a), for example. These models, un-
der certain conditions, can produce sparse networks with power-law
degree distributions.

In this thesis we will review some of the most used models for
random graphs, focusing on how to generate sparsity and in the
drawbacks the basic models have. We will also discuss some of the
newer models that have appeared on the literature, finishing with
an extension of the edge-exchangeable model to accommodate for
temporal dynamics, based on (Palla, Caron, and Teh, 2016).

This work will be divided in three chapters. The first chapter
will serve as an introduction, providing the necessary background
on random measures, bayesian statistics and (random) graphs and
partitions.

The second chapter will be dedicated to random graph models. The
first half will cover some of the classic models, starting with the initial
work by Erdős and Rényi and then following with generalizations of
it and some other generating algorithms that sample more flexible
graph structures. On the second half we will study the random graphs
arising from the theory of graph limits and two of its extensions using
random measures. We will discuss the general theory and provide its
sparsity and power law properties.
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Finally, on chapter 3 we will propose a model for dynamic networks
in continuous time based on the edge-exchangeable framework. We
will state some of its basic properties and perform a simulation study
in order to analyze the sparsity of the graphs it generates.



1
P R E L I M I N A R I E S

1.1 random measures

Random measures and point processes play a key role in several areas
of probability and statistics, such as bayesian nonparametrics (Ghosal
and Vaart, 2017), branching processes (Kallenberg, 2017) and stochastic
geometry (Chiu et al., 2013). This section will develop the basic theory
behind them and lay the ground for many of the topics covered in this
work.

Let X be a Polish space, X its Borel σ-field and MbX the set of locally
bounded measures over (X,X), that is, the set of measures {ν} such
that ν(A) < ∞ for every bounded Borel set A. We will endow MbX
with the σ-field generated by the mappings πA : µ 7→ µ(A) for every
A ∈ X, M.

Definition 1.1. A random measure is a measurable mapping from (X,X)
to (Mb

X,M). Equivalently, a random measure is a locally bounded kernel
ξ : X×X → [0,∞], i. e., a function ξ such that ξ(·,A) is measurable for
every A ∈ X and ξ(ω, ·) is a locally bounded measure for fixed ω ∈ X.

Now we will define several functionals that will prove to be useful
througout the rest of this section. The ω argument will be omitted.
Let ξ be a random measure.

• The intensity or mean measure, E [ξ], is given by

E [ξ(A)] .

• For every bounded, positive and measurable function, f, the
Laplace functional of ξ is defined as

Lξ(f) = E

[
exp
{
−

∫
fdξ
}]

.

• The characteristic functional of ξ is defined for every bounded,
measurable function, f, as

Φξ(f) = E

[
exp
{
i

∫
fdξ
}]

.

Note that the mean measure is a measure and both functionals
uniquely determine ξ (Kallenberg, 2017).

Definition 1.2. (Kingman, 1967). A completely random measure (CRM)
is a random measure, ξ, such that if A1,A2, . . . ,An are disjoint members of
X, the random variables

ξ(A1), ξ(A2), . . . , ξ(An)

are independent.
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1.1 random measures 7

Completely random measures provide a tractable way of construct-
ing distributions over the space of probability measures (James, Lijoi,
and Prünster, 2009), which makes them a central piece of many appli-
cations, particularly bayesian statistics. We will first focus on the main
concept required to understand the theory: the Poisson point process.

Definition 1.3. A Poisson point process (PPP) ξ with intensity measure
µ is a completely random measure such that for every µ-finite measurable
set1 A, ξ(A) ∼ Po (µ(A)).

Poisson point processes belong to a more general type of random
measures called point processes: integer-valued random measures. Ev-
ery point process ξ has the following representation (Daley and Vere-
Jones, 2007)

ξ =
∑
i

δXi ,

where Xi are random elements of X. If all Xi are distinct a.s., the
process is called simple. This implies that ξ(A) 6 |A| a.s. for every
simple point process ξ and every measurable set A. For the purpose
of this dissertation we will only work with simple Poisson point
processes and for the sake of simplicity we will omit the adjective.

Not all measures can be the intensity measure of a simple Poisson
point process. Indeed, suppose µ has an atom at x. Then

P (ξ ({x}) > 1) = 1− e−µ({x}) − µ ({x}) eµ({x}) > 0,

which contradicts the previous statement. Consequently, a mean
measure must be non atomic.

Proposition 1.1. The Laplace functional of a Poisson point process ξ with
mean measure ν is given by

E
[
e−fξ

]
= exp

{∫
X

(
1− e−f

)
dν
}

,

for all measurable f : X→ R+.

Now consider the set functions

λθ(A) = − log E
[
e−θξ(A)

]
, θ > 0.

It can be proven (Kingman, 1967) that these functions are indeed
measures and by uniqueness of the Laplace transforms, they determine
the measures ξ(A) for all measurable A.

If the λθ from a completely random measure ξ are σ-finite for all
θ, we say ξ is a Σ-finite random measure. This property allows us to
decompose the law of ξ in three components.

Theorem 1.1. (Kingman, 1967). A Σ-finite completely random measure, ξ,
can be decomposed as the sum of three independent components:

ξ = β+Ψ+Φ,

where

1 We consider the zero-measure case to be degenerate.
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1. β: a non atomic deterministic σ-finite Borel measure.

2. Φ =
∑
aj∈AΦ({aj})δaj , where A is countable, making Φ a random

measure with fixed atoms.

3. Ψ: a completely random measure with law given by

E
[
e−tΨ(A)

]
= exp

{
−

∫
A×R̄+

(
1− e−ts

)
ν(dx, ds)

}
,

where ν is a measure on X× (0,∞] such that ν ({x}× [0,∞)) = 0

and
∫

X

∫
(s∧ 1)ν(dx, ds) <∞.

The ψ component is a purely atomic random measure whose atoms
correspond to a Poisson process on X × (0,∞], and from now on
we will only consider CRM with both β,Φ = 0. Then, for every
nonnegative measurable function f : X→ R, the Laplace functional of
this type of CRM has the form

exp
{
−

∫ (
1− e−sf(x)

)
ν(dx, ds)

}
so that its law is fully characterized by the so called intensity measure,
ν, and can be represented as the functional of a Poisson point process
Ñ with intensity measure ν

ξ(B) =

∫
B×R+

s Ñ(dx, ds), for all B ∈ X.

Intensity measures for this type of CRM can be classified in two
cases (James, Lijoi, and Prünster, 2009). Let µ be a non-atomic and
σ-finite measure on X. We say ν is:

1. Homogeneous if for some measure ρ on R+,

ν(dx, ds) = ρ(ds)µ(dx).

2. Non-homogeneous if

ν(dx, ds) = ρ(ds|x)µ(dx),

where ρ is a conditional measure obtained via disintegration
(Kallenberg, 2002).

A complete random measure ξ over the positive real line with the
usual topology generates a stochastic process φ : R→ R

φ(t) =

ξ ((0, t]) if t > 0

ξ ([t, 0)) if t < 0

This construction ensures that φ is right-continuous and increasing,
defining a random cumulative distribution function, which determines
ξ uniquely. The independence of ξ on disjoint sets implies that for
numbers t1 < t2 < · · · < tn, the increments
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φ(ti) −φ(ti−1) = ξ ((ti−1, ti])

are independent. This type of process, increasing and with indepen-
dent increments, is called a subordinator.

Subordinators are a special case of Lévy processes, a stochastic process
that starts at zero almost surely and that has stationary, independent
increments. Lévy processes can be characterized in the following way:

Theorem 1.2. (Lévy-Itô). Let X be a Lévy process in R. Then for all t > 0
and η ∈ R there exists a ∈ R, σ ∈ R and a σ-finite measure ν called the
Lévy measure concentrated on R \ {0} satisfying

∫
R
(1∧ x2)ν(dx) < ∞

such that the characteristic function of X has the form E
[
eiηXt

]
= etψη ,

where

ψη = aiη+
1

2
σ2η2 +

∫
R\{0}

(
eiηx − 1− iηxI|x|<1

)
ν(dx). (1)

When X is a subordinator, ψη takes the form

ψη = aiη+

∫∞
0

(
eiηx − 1− iηxI0<x<1

)
ν(dx)

Note that (1) implies that the law of the process (Xt) is fully de-
termined by the law of X1, which in turn is characterized by the
characteristic triplet (a,σ2,ν).

When working with subordinators, instead of the characteristic
function, it is more convenient to use the Laplace transform, which is
given by

E
[
e−ηX1

]
= exp

{
−

(
aη+

∫∞
0

(
1− e−ηx

)
ν(dx)

)}
, η > 0.

In terms of the increments if s < t,

E
[
e−η(Xt−Xs)

]
= exp

{
−(t− s)

(
aη+

∫∞
0

(
1− e−ηx

)
ν(dx)

)}
Kingman’s decomposition together with this last expression implies

that the increments Xt − Xs of a subordinator form a completely
random measure with constant β = a and intensity measure ν, which
gives a bijection between subordinators and CRMs.

Example 1.1. (Gamma process). Let (Xt)t>0 be a Lévy process with
characteristic triplet (0, 0,ν), where ν(ds) = e−s

s ds. Then the Laplace
transform of the increments is a Frullani integral which takes the form

E
[
e−η(Xt−Xs)

]
= exp

{
−(t− s)

∫∞
0

(
1− e−ηx

)
ν(dx)

}

= exp
{
−(t− s)

∫∞
0

(
1− e−ηx

) e−x
x

dx
}

=
1

(1+ η)t−s
.
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Hence Xt −Xs ∼ Gamma(t− s, 1). By an extension procedure this
generates a homogeneus completely random measure ξ over R ×
R+ by ξ(A) = ξ(A) ∼ Gamma(λ(A), 1), where λ(·) is the Lebesgue
measure over R. This can be extended (James, Lijoi, and Prünster,
2009) to every Polish space X by replacing the Lebesgue measure by a
non-atomic, σ-finite measure.

Example 1.2. (σ-stable process). Let σ ∈ (0, 1) and α a non-atomic
measure over a Polish space X, and consider a CRM ξσ with Lévy
measure

ν(ds, dx) =
σ

Γ(1− σ)s1+σ
dsα(dx).

Then ξσ is called a σ-stable process with parameter measure α. More-
over, for any measurable function f : X→ R+ such that

∫
|f|σ dα <∞,

the Laplace functional is E
[
e−
∫
f dξσ

]
= e−

∫
fα dα, which implies that

the Laplace transform of ξα(A) has the form E
[
e−λξσ(A)

]
= e−λ

σα(A),
corresponding to a positive stable distribution.

Random probability measures can be obtained by normalizing al-
most surely finite completely random measures. A CRM ξ with Lévy
measure ν has finite and positive total mass ξ(X) a.s. if, respectively,
ν (X×R+) =∞ and∫

X

∫
R+

(
1− e−λs

)
ν(dx, ds) <∞

for all positive λ (James, Lijoi, and Prünster, 2009). In that case, we
define a normalized random measure with independent increments
(NRMI) p̃ by

p̃(dx) =
ξ(dx)
ξ(X)

.

It is worth noting that NRMIs select only discrete distributions
almost surely (James, 2003), which implies that p̃ admits the following
representation

p̃ =
∑
i>1

p̃iδXi ,

where Xi are random elements of X sampled from the atomless factor
of its intensity measure and the p̃i sum up to one a.s.

Example 1.3. Dirichlet process. (Ferguson, 1973). Let α be a non-
atomic, finite measure on a Polish space X. A random measure P is
called a Dirichlet process with base measure P0 = α/α(X) and preci-
sion parameter M = α(X), P ∼ DP(M,P0), if for every finite measur-
able partition B1, . . . ,Bn the joint distribution of (P(B1), . . . ,P(Bn)) is
a k-dimensional Dirichlet distribution with parameters α(B1), . . . ,α(Bn).

Ever since its introduction by Ferguson, the Dirichlet process has
been one of the fundamental models of Bayesian nonparametrics.
There are several ways to prove its existence (Ferguson, 1973), but we
will focus on normalizing a gamma process with intensity measure α.

It is well known (Ferguson, 1973) that if Z1, . . . ,Zn are independent
gamma random variables with Zj ∼ Gamma(αj, 1), j = 1, . . . ,n, then(

Z1∑n
1 Zj

, . . . ,
Zn∑n
1 Zj

)
∼ Dirichlet (α1, . . . ,αn) .
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Figure 1: Two samples of size 100 of a Dirichlet process with base measure
N (0, 1). Left, precision parameter 1; right, 0.5.

Now let us consider a measurable partition B1, . . . ,Bn and aΦ gamma
CRM with Lévy measure α. Then, by independence over disjoint sets,(

Φ(B1)∑n
1 Φ(Bj)

, . . . ,
Φ(Bn)∑n
1 Φ(Bj)

)
∼ Dirichlet (α(B1), . . . ,α(Bn)) ,

which corresponds to the definition of a Dirichlet process. Since the
partition was arbitrary, we can conclude that a normalized gamma
random measure coincides in law with a Dirichlet process.

The Dirichlet process possesses another representation particularly
useful for simulation, the stick-breaking (Sethuraman, 1994).

Let v1, v2 . . .
iid
∼ Beta(1,M) and θ1, θ2, . . .

iid
∼ P0. Set

w1 = v1 and wi = vi

i−1∏
j=1

(1− vj), i > 2.

Then ∞∑
i=1

wiδθi ∼ DP(α,M).

This type of representation can be used to construct other random
measures, such as the two-parameter Poisson-Dirichlet process or Pitman-
Yor process.

Definition 1.4. Let σ ∈ (0, 1) and θ > −σ. Let v1, v2, . . . be a sequence
of independent random variables with vk ∼ Beta(θ+ kσ, 1− σ). Define the
weights

w1 = v1 and wi = vi

i−1∏
j=1

(1− vj), i > 2.

Then the random measure defined as∑
j>1

wjδθj

is called a Pitman-Yor process with parameters (σ, θ).
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1.2 bayesian statistics

The uncertainty present in complex systems can be splitted into two
different kinds: epistemic and aleatory (Goldstein, n.d.). Aleatory
uncertainty is that which relates to the intrinsic to the system and
cannot be resolved except by direct observation, whereas epistemic
uncertainty captures our lack of knowledge that can be reduced by
gathering more information.

Statistical analysis represents both uncertainties using a probabilistic
model, which can be regarded as a family of probability measures
over the sample space2, {Pθ}, indexed by a parameter θ ∈ ϑ, such that
the data X ∼ Pθ for a given θ. Within this context, the distributions
represent the aleatory uncertainty, whereas the parameter represents
the epistemic one.

Bayesian statistics solves the epistemic uncertainty by placing a
distribution over θ called the prior distribution, and conditioning it
with respect to the data, obtaining the posterior distribution.

Formally, if the parameter space is equiped with a σ-field, A, the
prior distribution is the push-forward measure of the mesaurable
function Θ : (X,X) → (ϑ,A), and the distribution Pθ | θ, called the
likelihood, is a regular conditional probability over the sample space,
(X,X), then (X, θ) has a well defined joint distribution over the prod-
uct space (X×Θ,X⊗A). This, in turn, lets us define the posterior
distribution P (θ ∈ A | X) for all A ∈ A as a regular conditional proba-
bility on the parameter space. Note that all the previous conditional
measures are guaranteed to exist if both X and Θ are Polish.

When the Pθ are all absolutely continuous with respect to a σ-
finite measure ν on (X,X), the marginal distribution of X, µX, can be
calculated using Fubini’s theorem as

µX(A) =

∫
ϑ

∫
A

fX|θ(x | θ)ν(dx)µθ(dθ)

=

∫
A

∫
ϑ

fX|θ(x | θ)µθ(dθ)ν(dx),

where fX|θ denotes the Radon-Nikodym derivative dPθ
dν . It follows

that µX is absolutely continuous with respect to ν with density

fX(x) =

∫
ϑ

fX|θ(x | θ)µθ(dθ).

This measure is usually called the prior predictive distribution of X.
The same calculation can be repeated for the posterior distribution,

obtaining the posterior predictive distribution, that is, the distribution of
new data, X∗, given the previous observations, X,

fX∗|X(x
∗ | x) =

∫
ϑ

fX|Θ(x | θ)µΘ|X(dθ).

2 For example, all normal distributions with unit variance.
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In the case where the data points x1, . . . , xn are conditionally iid
given θ, both distributions take the form

fX(x) =

∫
ϑ

n∏
i=1

fX|Θ(xi | θ)µθ(dθ),

fX∗|X(x
∗ | x) =

∫
ϑ

m∏
i=1

fX|Θ(x
∗
i | θ)µΘ|X(dθ),

where x∗1, . . . , x∗m are the new observations.
In most standard cases, the posterior distribution can be calculated

using Bayes’ theorem.

Theorem 1.3. (Bayes’ theorem) (Schervish, 1995). Suppose that the condi-
tions above hold. Suppose that for all θ, Pθ � ν for some σ-finite measure
on (X,X), and let fX|Θ(x | θ) be the conditional density with respect to ν of
X given Θ = θ. Let µΘ be the prior distribution. Then µΘ|X � µΘ a.s. with
respect to the marginal distribution of X and the Radon-Nikodym derivative
is

dµΘ|X

dµΘ
(θ | x) =

fX|θ(x | θ)∫
ϑ fX|θ(x | t) dµΘ(t)

A probabilistic model that fulfills the condition that for all θ, Pθ � ν

for some σ-finite measure ν is said to be dominated. This is not a trivial
assumption. In fact, most cases where ϑ is infinite-dimensional3 are
not dominated (Ghosal and Vaart, 2017). Particularly, NRMIs are not
dominated.

Proposition 1.2. Consider the random discrete distribution

Ξ =
∑

wkδθk ,

where the weightswk sum up to one and θ1, θ2, . . .
iid
∼ G, with G an atomless

probability measure on a Polish space (X,X). Then the familiy {Ξθ | θ} is
not dominated.

Proof. Suppose that we observe θ1 = x1. Then Ξ would take values
on A = {Probability measures on (X,X) with an atom at x1}., which
entails that

P (Ξ ∈ A | θ1 = x1) = 1,

whereas, since G is atomless,

P (Ξ ∈ A) = 0.

Hence the posterior is not dominated by the prior, implying that the
prior cannot be dominated.

Since NRMIs locations are sampled from an atomless distribution,
this last proposition entails that they are not dominated either, so
Bayes’ theorem cannot be used to calculate their posteriors. However,
as shown in (James, Lijoi, and Prünster, 2009), a closed-form formula
can be found.

3 In this case we say the model is nonparametric, as opposed to a parametric model
whose parameter space has a finite dimension.
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Theorem 1.4. (James, Lijoi, and Prünster, 2009). Let p̃ be a NRMI with
intensity ν(dx, ds) = ρ(ds | x)H(dx) obtained by normalizing µ̃. Then

µ̃ | (X,Un) ∼ µ̃Un +
k∑
i=1

J
(Un)
i δX∗i ,

where µ̃Un is a CRM with Lévy intensity ν(Un)(dx, ds) = e−Unsρ(ds | x)α(dx),
the nonnegative jumps J(Un)n are mutually independent and independent from
µ̃ with (Lebesgue) density function fi(s) ∝ snie−Unsρ(ds | X∗i ). Moreover

p̃ | (X,Un) ∼ w
µ̃Un

µ̃Un(X)
+ (1−w)

∑k
i=1 J

(Un)
i δX∗i∑k

r=1 J
(Un)
r

,

where w = µ̃Un(X)/
[
µ̃Un(X) +

∑k
i=1 J

(Un)
i

]
.

This means that the posterior distribution of a NRMI has fixed
atoms at the observation points. In the case of a Dirichlet process
P̃ ∼ DP(M,P0), this last formula reduces to

P̃ | x1, . . . , xn ∼ DP

(
M

M+n
P0 +

n

M+n

1

n

n∑
i=1

δxi ,M+n

)
.

Note that by taking M close to zero we can make the prior less in-
formative. Conditioning and margianlizing P̃, the posterior predictive
is

Xn+1 | X1 = x1, . . . ,Xn = xn ∼
M

M+n
P0 +

1

M+n

n∑
i=1

δxi .

Even though the Bayesian approach to statistical learning provides
us with a solid mathematical framework to do inference, we have not
yet justified why is considering the parameters random a plausible
assumption. To do this we will start by defining a weaker dependence
assumption than independence: exchangeability.

Definition 1.5. A vector of random variables (X1, . . . ,Xn) is said to be
exchangeable if

(X1, . . . ,Xn)
d
= (Xπ(1), . . . ,Xπ(n))

for every permutation π of the indices.
A sequence X1,X2 . . . of random variables is exchangeable if its finite-

dimensional distributions are exchangeable.

Exchangeability possesses a remarkable property discovered by
Bruno de Finetti that links it with the usual iid assumption from
frequentist statistics.

Theorem 1.5. (de Finetti)4. Let X be a Polish space equipped with its Borel
σ-field X. Let PX be the space of all probability measures over (X,X). An

4 The general version here presented was first proved by Hewitt and Savage in 1955(Or-
banz and Roy, 2015).
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infinite sequence of random elements of X, {Xi}∞i=1, is exchangeable if and
only if there exists a random probability measure Q over PX such that for all
n and all measurable A1, . . . ,An,

P (X1 ∈ A1, . . . ,Xn ∈ An) =
∫
PX

n∏
i=1

P(Xi ∈ Ai)Q(dP). (2)

Furthermore,

Q = lim
n→∞ 1n

n∑
i=1

IXi a.s.

Proof. We will use a proof by Aldous (Aldous, 1985) to prove the
equivalent statement: the sequence is conditionally independent given
Q.

X1,X2, . . . |Q = P
iid
∼ P.

For the sake of simplicity we will restrict ourselves to the case X = R.
Note that the reverse implication is immediate, i. e., a conditionally iid
sequence is always exchangeable.

First assume X1,X2, . . . are exchangeable random variables and
define the decreasing familiy of σ-fields

Fn = σ (Xn+1,Xn+2, . . . ) .

Note that T :=
⋂∞
n=1Fn is the tail σ-algebra.

We will prove that the sequence {Xn}n is conditionally independent
given T . Fix m > 1. By exchangeability,

(Xm,Xm+1,Xm+2, . . . ) d
= (Xm,Xn+1,Xn+2, . . . ) ,

and since Fn ⊆ σ (Xm,Xn+1,Xn+2, . . . ), by the Disintegration Theo-
rem,

E [φ(Xm) | Fm+1]
d
= E [φ(Xm) | Fn]

for each bounded measurable φ : R→ R. Also, as E [φ(Xm) | Fn]→
E [φ(Xm) | T ] a.s. by the Backwards Martingale Convergence Theo-

rem, E [φ(Xm) | Fm+1]
d
= E [φ(Xm) | T ]. The equality in law and the

set inclusion T ⊆ Fm imply that for all A ∈ Fm+1∫
A

E [φ(Xm) | Fm+1] dP =

∫
A

E [φ(Xm) | T ] dP,

thus E [φ(Xm) | Fm+1] = E [φ(Xm) | T ] = E [φ(Xm) | Fm+1, T ] a.s.,
which in turn means that Xm and Fm+1 are conditionally indepen-
dent given T . Since m is arbitrary, X1,X2,X3, . . . are conditionally
independent given T .

Furthermore, exchangeability also implies that

(X1,Xn+1,Xn+2, . . . ) d
= (Xn,Xn+1,Xn+2, . . . )

for all n, hence by the same argument as before

E [Xn | Fn] = E [X1 | Fn] a.s.
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Thus conditioning on T and by the tower property, E [Xn | T ] =

E [X1 | Fn | T ] a.s. and therefore the sequence X1,X2, . . . is iid given
T .

Now take the empirical distribution

Ξn =
1

n

n∑
i=1

δXi ,

and denote Ξ∞ := limn→∞ Ξn. Ξ∞(·,A) is T -measurable for all mea-
surable A, since for all k,

Ξ∞ = lim
n→∞ 1n

k∑
i=1

δXi︸ ︷︷ ︸
0

+ lim
n→∞ 1n

n∑
i=k+1

δXi = lim
n→∞ 1n

n∑
i=k+1

δXi ,

so Ξ∞ is Fk-measurable for all k, and hence for the tail σ-field as
well. From this we can conclude that the sequence X1,X2, . . . is iid
conditioned to the random measure Ξ∞.

The convergence statement then follows from the Strong Law of
Large Numbers, since conditionally to Ξ∞, the Ξn converge almost
surely to the (conditional) distribution of X1,X2, . . . , which by unicity
is a.s. equal to Ξ∞. In consequence, by the Disintegration and Bounded
Convergence theorems, for all bounded and measurable f

E [f(Ξ∞,Ξn)] = E

[∫
f(Ξ∞, s)P (Ξn ∈ ds | Ξ∞)

]
n→∞−→ E

[∫
f(Ξ∞, s)P (Ξ∞ ∈ ds | Ξ∞)

]
= E [f(Ξ∞,Ξ∞)] Ξ∞ − a.s.

Hence

1

n
(δX1 + δX2 + · · ·+ δXn)

n→∞
=⇒ Ξ∞ Ξ∞ − a.s.

De Finetti’s representation then guaranties the existence of an al-
most sure unique prior distribution under which the data becomes
independent, and gives a way to approximate it. Moreover, it justifies
using random parameters instead of fixed ones.

1.3 random graphs and networks

Random graphs are among the most used models for studying rela-
tional data (Crane, 2018). Yet, no general framework of how to model
real-world networks has ben found. This section will lay out the
main properties and definitions of network theory, giving a particular
emphasis on how can random graphs be used as prior distributions
over structured data.

Let us first recall the basic definitions of graph theory. The first half
of this chapter will be based on (Hofstad, 2016). A graph G is a pair
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(E,V), where E is a countable set of edges and V is the set of vertices.
If G is directed, the edges are indicated as ordered pairs (u, v), whereas
if it is undirected, as sets {u, v}. From this point forward, unless stated
otherwise, we will only consider finite graphs and the number of
edges will be written as |G|.

A graph can be represented using its adjacency matrix, a matrix A
whose Aij entry equals 1 if there is an edge that goes from vertex i to
vertex j, and equals zero otherwise. Note that a graph is undirected if
and only if its adjacency matrix is symmetric.

Now let us consider connectivity. The degree of a node v, deg(v)
is the number of edges containing v. If the graph is directed, the
out-degree and the in-degree are defined as the number of outgoing
and ingoing links, respectively. The degree distribution is the discrete
probability mass function k 7→ P (Dn = k), where Dn is de degree of
a randomnly chosen vertex, and represents the empirical distribution
of the degrees in the graph.

The degree distribution encodes information about the density of
the graph, e. g., how close the number of edges is to the maximum
possible number of connections, which in case of an undirected graph
of size n it is equal to

(
n
2

)
. Then, a dense graph (V ,E) has number

of edges Ω(|V |2), in contrast of a sparse graph, with number of edges
O(|V |) (Orbanz and Roy, 2015). This can be summarized with the
density number |E|/|V |2, a graph being sparse if it has density number
of order 1/|V |.

Figure 2: Left: the neural network of a Caenorhabditis elegans nematode
with density number 4.9%. Right: a randomly generated net-
work with density number 57.3%. Color darkness and size of
nodes are directly proportional to their degree. Data obtained from
https://snap.stanford.edu/data/C-elegans-frontal.html.

Many real-world networks are observed sequentially, growing in
size as we observe them. This makes it reasonable to consider graph
sequences {Gn}n, where n denotes the number of vertices, the size of
the graph.

Denote the rate of nodes with degree k in Gn by P(n)k ,

P
(n)
k =

1

n

n∑
i=1

I{
d
(n)
i =k

},
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where dni denotes the degree of the ith vertex in Gn.
Using P(n)k , the graph Gn being sparse can be equivalently formu-

lated as it having
lim
n→∞P(n)k = pk, k > 0,

for some deterministic probability distribution {pk}k. This alternative
definition allows us to define a behaviour often encountered in appli-
cations: power-law degree distributions. When considering random
graphs, that is, graphs whose adjacency matrix is random, the conver-
gence must be restated as convergence in probability (or equivalently,
in distribution).

Definition 1.6. We call a graph sequence {Gn}n>1 scale-free with exponent
τ when it is sparse and

lim
k→∞ log [1− F(k)]

log (1/k)
= τ− 1,

where F(k) =
∑
l6k pl denotes the cumulative distribution function corre-

sponding to {pk} defined as in the paragraphs above.

This last expression is equivalent to

pk ∝ k−τ,

so that the limiting law follows a power law, a heavy-tailed probability
distribution, which implies the existence of highly connected nodes.
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Figure 3: The image on the left depicts the degree distribution on a log-log
scale of the graph on the right generated according to a power law.
As expected, the degree distribution in this scale shows an almost
linear behaviour.

Often, graphs exhibit a clustering behaviour in which a large fraction
of the vertices lies in a single connected component. For a graph
Gn = (V ,E) let G (v) = {u ∈ [n] : distG(u, v) < ∞} for every node v,
where distG(u, v) is the minimal number of edges in a path linking
u and v, equalling ∞ when there is no such path. Let Cmax be the
largest connected component, satisfying |Cmax| = maxv∈V |C (v)|. Note
that Cmax is not necessarily unique. In case it is not, we define Cmax as
any of the maximums with equal probability.
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Definition 1.7. A graph sequence {Gn}n>1 is called highly connected
when

lim inf
n→∞ |Cmax| /n > 0,

in which case Cmax is called the giant component. Furthermore, for a highly
connected graph sequence, its giant component is called unique when

lim inf
n→∞

∣∣C(2)

∣∣ /n = 0,

where C(2) is the second largest cluster. This intuitively means that

The giant component of a graph can be thought of as beign a large,
densely connected blob of vertices surrounded by a cloud of mostly
unconnected nodes. The uniqueness condition above described intu-
itively means that after the largest cluster, all others sharply decrease in
size. These connected components are often refered to as communities.

Figure 4: On the left, a random graph with a giant component colored in
green. On the right, a sparse graph whose nodes are colored
according to the community they belong to.

Another connectivity behaviour often found empirically is when
most nodes are not neighbours of one another and yet, most are
connected by a small number of steps. This can be formalized using
the typical distance, defined as Hn = distG(U1,U2), where U1 and U2
are two vertices sampled uniformly from a graph G of size n. A graph
with this characteristic is called small-world.

Definition 1.8. We say that a graph sequence {Gn}n>1 is a small world
when there exists a constant K <∞ such that

lim
n→∞P (Hn 6 K logn) = 1.

Further, we say that {Gn}n > 1 is an ultra-small world when, for every
ε > 0,

lim
n→∞P (Hn 6 ε logn) = 1.

This definition can be informally stated as the typical distance begin
proportional to logn.

Now let us focus on a modelling perspective, based on (Orbanz and
Roy, 2015). When representing relational data as edges in a graph, it is
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Figure 5: Comparison between a non-small-world (left) and a small-world
graph (right). Both have roughly the same number of nodes. Note
the low typical distance between nodes on the right plot.

usually assumed that as more data is observed, the graph grows. This
violates the usual frequentist statistics assumptions, where multiple
independent graphs are expected. A way to circumvent this is by
assuming some form of symmetry, dependence that allows statistical
learning.

The Bayesian approach for sequences of random variables using de
Finetti’s theorem poses a similar situation. Herein it is assumed that
data points are sampled from an infinite, exchangeable random vector,
and then made iid by conditioning on a random measure constructed
as the limit of the empirical distribution. This idea can be generalized
to random graphs by considering exchangeable random graphs, i. e.,
random graphs law-invariant to permutation of its vertices.

Definition 1.9. A X-valued d-array is a collection xk1 , xk2 , . . . , xkd of
elements of X indexed by k1, . . . ,kd ∈N.

A d-array can be thought of as a d-dimensional sequence. Let us
consider 2-arrays, i. e., arrays of the form {xij}16i,j<∞.

Definition 1.10. Let
{
Xij
}

, 1 6 i, j < ∞, be random 2-arrays. They are
separately exchangeable if(

Xij
)
16i,j6n

d
=
(
Xσ(i)τ(j)

)
16i,j6n , (3)

for all n and all permutations σ, τ of N, and where d
= denotes equality in

distribution. They are jointly exchangeable if (3) holds in the special case
τ = σ.

Exchangeable arrays have a de Finetti-type representation reformu-
lated as random functions instead of random measures.

Theorem 1.6. (Aldous-Hoover). An X-valued random 2-array (Xij) is
jointly exchangeable if and only if there is a random function F : [0, 1]3 → X

such that (
Xij
) d
=
(
F
(
Ui,Uj,U{i,j}

))
, (4)

where {Ui}i∈N, {U{i,j}} are iid Uniform[0, 1] random variables. Note that
the {i, j} subindex is ordered.
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This theorem can be specialized to the case of separate exchange-
ability.

Corollary 1.1. (Aldous). An X-valued random 2-array (Xij) is separately
exchangeable if and only if there is a random function F : [0, 1]3 → X such
that (

Xij
) d
=
(
F
(
Ui,Uj,Uij

))
,

where {Ui}i∈N, {Uj}j∈N and {Ui,j} are iid Uniform[0, 1] random variables.
In this case, the Uij are symmetric in the sense that Uij = Uji.

At a first glance, this does not seems related to de Finetti’s theorem.
However, (2) can be restated as follows(Orbanz and Roy, 2015).

Corollary 1.2. A sequence X1,X2, . . . of random elements of a Polish space
X is exchangeable if and only if there exists a random function F : [0, 1]→ X

such that if U1,U2, . . . is an iid sequence of Uniform[0, 1] random variables,

(X1,X2, . . . ) d
= (F(U1), F(U2), . . . ) .

In the case where X = [a,b], this reformulation is easily justified
by the fact that any random variable X with cumulative distribution
function F has the same law as F−(U), where U ∼ Uniform[0, 1] and F−

is a right-continuous pseudo-inverse of F. The de Finetti measure can
then be replaced by its random CDF, confirming the corollary above.

Clearly, a random graph is exchangeable if and only if its adjacency
matrix is jointly exchangeable. Hence (4) can be used to build prior
measures over graphs. First we must refine some technical details.

If a random 2-array X is binary, is undirected and has a zero di-
agonal5 is jointly exchangeable, the random function in (4) takes the
form

F
(
Ui,Uj,U{i,j}

)
=

1 if U{i,j} < W(Ui,Uj)

0 otherwise
,

for a random function W : [0, 1]2 → [0, 1]. If we consider a 2-array as
an infinite dimensional adjacency matrix, each U{i,j} is then associated
to and edge, and each Ui to a vertex. This last representation is
equivalent to

U1,U2, . . .
iid
∼ Uniform[0, 1]

X{i,j} ∼ Bernoulli
(
W
(
Ui,Uj

))
Thus Aldous-Hoover theorem implies that an infinite exchangeable

simple random graph can be obtained by sampling from a Bernoulli
distribution parametrized by a random function W. This random
function is called a graphon, and is unique up to measure-preserving
bijections. Conversely, all exchangeable graphs with n nodes define
an empirical graphon obtained by dividing [0, 1]2 into a n×n grid and
assigning each square i, j the value zero if there is no edge between
node i and node j, and 1 otherwise, obtaining a checkerboard-like
function.

5 A graph with this property is called simple.
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With this scheme, inference for a single observed graph instead of
many can be solved in the same way as in the one-dimensional case
by assumming that the collected data represents a finite-dimensional
restriction of a graph with infinite vertices. Nevertheless, a careful
analysis must be done to work around the lack of unicity of the
graphon by considering equivalent graphons such that the generating
arrays are equal up to reordering of rows and columns (Kallenberg,
2002).

Graphons can be further studied as graph limits. Roughly speaking,
a sequence of simple graphs {Gn} converges if for every fixed graph F,
the proportion of copies of F in Gn converges. The formal definition
requires a lengthy exposition outside the bounds of this dissertation.

If a sequence of graphs converges, the object it converges to is a
graphon. Furthermore, Gn → W if and only if Wn ⇒ W weakly,
where Wn are the empirical graphons.
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Figure 6: The two rightmost images depict the empirical graphon and the
graphon the random graph on the left was sampled from. For
the graphon, darker shades represent larger values, and for the
empirical graphon, black represents 1 and white 0.

Graph convergence can be metrizised using the cut distance.

Definition 1.11. Let w be a graphon. The cut norm is defined as

‖w‖� = sup
S,T⊆[0,1]

∫
S×T

w(x,y) dx dy.

with its induced cut metric denoted by d�.

Now let us define the equivalence relation ∼ such that for two
graphons w1, w2, w1 ∼ w2 if they both generate the same random
graphs. Then the cut metric induces a pseudometric by

δ�(w1,w2) := inf
w ′∈[w2]

d�(w1,w ′),

where [w2] is the equivalence class of w2. We can use this cut pseudo-
metric to redefine graph convergence: a graph sequence {Gn} converges
if δ�(wGn ,w) → 0 for some measurable function w : [0, 1]2 → [0, 1],
where wGn denotes the empirical graphons.

If W is the space of all graphons, we can also use ∼ to construct the
quotient space W\ ∼, making (W\ ∼, δ�) a compact metric space, from
which an integral version of Aldous-Hoover theorem can be derived:
G is an exchangeable 2-array if and only if

P (G ∈ A) =
∫
W\∼

Pŵ(A)ν(dŵ),
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with Pŵ is the distribution over exchangeable arrays induced by a
class representative of ŵ sampled from a unique probability measure
ν over W\ ∼. Note that using the quotient space allows us to make
the representation unique.

Exchangeable random graphs have an unfortunate restriction: they
can only be dense.

Proposition 1.3. An exchangeable random graph is either dense or empty
with probability one.

Proof. Let W be a random graphon and let Gn be an undirected
random graph with n vertices sampled from Gn using Aldous-Hoover.
Then the expected proportion of edges in Gn is given by

1

2

∫
[0,1]2

W(x,y) dx du,

where the 1/2 was introduced because the adjacency matrix is symmet-
ric. If this last integral equals zero, then since W is non-negative Gn
will be empty almost surely. At the same time, if the integral is a posi-
tive constant p, then the expected number of edges is p

(
n
2

)
= Θ(n2),

so by the Strong Law of Large Numbers, the number of edges is Θ(n2)
with probability one.

This last proposition entails a major disfunction when working with
exchangeable random graphs, since most real-world graphs are sparse,
not dense (Crane, 2018).

Another possible source of model misspecification is sampling.
Consider an algorithm that extracts a sample graph from a data base.
Can this graph be representative of the whole data? The answer to
this question relies on the algorithm used. When coupled with a
probabilistic model, that is, an infinite random graph from where we
assume the observations were sampled from, this question translates
as whether the sampling method is projective and consistent (Crane,
2018), (Orbanz, 2017).

Take an injection ψ : [n]→ [N], 1 6 n 6 N and a binary matrix yN

of dimensions N×N. A sampling operator is a map

S
ψ
N→n

(
yN
)
=
(
yNψ(i)ψ(j)

)
16i,j6n

i. e., a restriction to n vertices of the original structure.
A sampling scheme is defined (Orbanz, 2017) as a random sampling

operator, making ψ aleatory.

Definition 1.12. A sampling scheme is projective if for all n

S
ψ
N→n(y

N) 4 SψN→n+1(y
N),

where x 4 y if x is a subgraph of y.

Definition 1.13. A sampling scheme is consistent if given an infinite graph
y there exists a random variable S∞(y),

S
ψ
n→k(y)

n→∞
=⇒ S∞(y)∣∣k,
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where ⇒ denotes the weak convergence and the restriction operator ·
∣∣
k

extracts a subgraph composed of the first k vertices of its input (Orbanz,
2017).

These two properties do not state anything regarding the appropi-
ateness of the sampling scheme to preserve the characteristics of the
graph it samples from. Akin to regular experimental design, the choice
of the sampling algorithm depends on the particular characteristics of
the graph one wishes to maintain.

Now we will introduce some common sampling schemes for undi-
rected graphs as presented in (Kolaczyk, 2009), noting that modifying
them to accomodate directed graphs is relatively straightforward. Let
G = (V ,E) be an undirected graph with adjacency matrix (yij).

• Induced and Incident Subgraph Sampling. In this method we
select a random sample of vertices and edges, respectively, and
then recover the corresponding edge or vertex pair.

Induced sampling arises naturally in social network settings,
where people are first chosen and then asked about their rela-
tionships with each other. At the same time, an example where
incindent sampling can be used is in the reconstruction of tele-
phone call graphs or other types of telecommunication, where
the calls are first observed and then paired to their respective
senders and receivers.

Figure 7: Example of induced sampling. Starting nodes are depicted in red,
with their adjacing nodes in orange.

• Snowball sampling. Start with an initial vertex v∗ and a fixed
radius r = 1, 2, . . . . Then we observe the neighbours of order r
of v∗ by doing

N(v∗, 1) = {v ∈ V : yv∗v = 1}

N(v∗, 2) =
⋃

{v∈V :N(v∗,1)}

{
v ′ ∈ V : yvv ′ = 1

}
\N(v∗, 1)

...
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N(v∗,k) =
⋃

{v∈V :N(v∗,k−1)}

{
v ′ ∈ V : yvv ′ = 1

}
\

k−1⋃
j=1

N(v∗, j)

...

This sampling method can be exemplified by the behaviour some
spiders used by web search engines exhibit, where a website
is visited, the hyperlinks it contains are visited, then all the
hyperlinks these websites contain are visited too, and the process
is repeated up to a fixed number of steps.

Figure 8: Example of snowball sampling of degree 2. The starting node is
colored in red, the first order neighbours in orange and the second
order neighbours in yellow.

• Path tracing. Here, we start with a set of vertices {vi}i and then
we find paths between all possible pairs, that is, a connected
subgraph of G containing {vi}i. This type of sampling is used
during contact tracing in epidemiology, wherein the possible
contagion routes are traced between sick individuals.

Figure 9: Example of path tracing. Starting nodes are depicted in red and
their corresponding paths in yellow
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1.4 random partitions

This section will be based on (Bertoin, 2006). Let us begin with a few
definitions.

Definition 1.14. A partition of B ⊆ N is a countable collection π =

{πi}i∈N of pairwise disjoint subsets of B, called blocks, such that
⋃
i∈N πi =

B, which are always enumerated in increasing order of their least element,
that is

minπi 6 minπj,

for all i 6 j and with the convention that min ∅ =∞.

1. We write PB for the set of partitions of B. In the special case when
B = [k] = {1, . . . ,k} for some k ∈ N ∪ {∞}, we simply write Pk :=

P[k]; in particular P∞ := PN.

2. We denote by

#π := #{i ∈N : πi 6= ∅} = max{i ∈N : πi 6= ∅}

the cardinal of the set of non-empty blocks of a partition π.

If B ′ ⊂ B is a subset of a block B and π ∈ PB a partition of B,
we write π|B ′ for the restriction of π to B ′, that is the partition of B ′

π|B ′ = {πi ∩B ′}i∈N. This restriction yields the notion of compatibility.

Definition 1.15. A sequence π(1), π(2),. . . of partitions of [1], [2], . . . is
called compatible if for all integers k ′ 6 k, π(k

′) = π(k)|[k ′].

Clearly, if π ∈ P∞ is a partition of N, then the sequence of restric-
tions

{
π|[n]
}
n∈N

is compatible. The converse is also true, i. e.given a
compatible sequence of partitions

{
π(n) : π(n) ∈ Pn

}
n∈N

there exists
π ∈ P∞ such that π|[n] = π(n) for all n. Indeed, if we take

πi =
⋃
n∈N

πi(n), i ∈N,

then {πi}i∈N is a partition π of N, and π|[n] = π(n) for all n.
A topology over P∞ can be induced from endowing it with the

following metric.

Proposition 1.4. The space P∞ is endowed with the ultrametric6

d(π,π ′) = max
{
k ∈N : π|[k] = π

′|[k]
}−1 , π,π ′ ∈ P∞,

with the convention that 1/max N = 0. Then (P∞,d) is compact.

Now we need to introduce the concept of mass partition.

Definition 1.16. A mass partition is an infinite numerical sequence s =
(s1, s2, . . . ) such that s1 > s2 > · · · > 0 and

∑∞
i=1 si 6 1. The terms si

are called the fragments of s, and the space of mass partitions is denoted by
Pm.

6 An ultrametric is a metric such that the triangle inequality is strengthened to d(x,y) 6
max{d(x, z),d(z,y)}.
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We can also define s0 := 1−
∑∞
i=1 si, the mass of the amount of

[0, 1] not contained in s. A mass partition is called proper if s0 = 0 and
improper otherwise.

Akin to P∞, Pm can also be made to have “nice” topological prop-
erties by endowing it with the proper metric.

Proposition 1.5. The space Pm endowed with the uniform metric

d(s, s ′) = max
i∈N

{|si − s
′
i|}, s, s

′ ∈ Pm

is compact, and the induced topology coincides with that of pointwise conver-
gence.

A map between P∞ and Pm can be given by considering the notion
of asymptotic frequency of blocks.

Definition 1.17. 1. We say that a block B possesses an asymptotic
frequency if and only if the limit

|B| := lim
n→∞ 1n# (B∩ [n]) = lim

n→∞ 1n#{k ∈ B : k 6 n}

exists.

2. If each block of some partition π has an assymptotic frequency, then
we say π possesses asymptotic frequencies. We then write |π| =

(|π1|, . . . ) and then |π|↓ =
(
|π|
↓
1, . . .

)
for the mass partition given by

the decreasing rearrangement of the sequence |π|.

3. We say that a partition π has proper asymptotic frequencies if π
possesses asymptotic frequencies with

∞∑
i=1

|πi| = 1.

Note that the last sum always exists by the fact that it is always
bounded by 1, fact given by Fatou’s lemma.

When some block of a partition does not have an asymptotic fre-
quency we can add the extra point |π| = |π|↓ = ∂ to Pm, which allows
us to define the measurable (but not continuous) map π 7→ |π|↓ from
P∞ → Pm ∪ {∂}. The lack of continuity can be easily seen from the fact
that given π ∈ P∞ and s ∈ Pm, by compactness one can always find
two sequences {π(n)}n and {s(n)}n of partitions and mass partitions,
respectively, such that π(n) → π and s(n) → s, and then glue them
together by taking

π̃(n) = π(n)|[n] ∪ πs
(n)

|N\[n],

where πs
(n)

is any partition whose asymptotic frequencies equal s(n)7.
By this construction,

{
π̃(n)
}
n

converges to π and
{∣∣π̃(n)}

n

∣∣↓ con-
verges to s.

7 For example, a partition sampled from a paint-box, defined further ahead.
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Partitions can also be identified through an equivalence relation ∼π
such that i ∼π j if and only if i and j belong to the same block. This
characterization allows us to define the group action of Sym([n]) on
Pn by taking a permutation σ ∈ Sym([n]), a partition π ∈ Pn and
defining the equivalence relation ∼σ(π)

i ∼π j⇔ σ(i) ∼σ(π) σ(j),

which constitutes a partition itself. This leads to the concept of ex-
changeable random partitions.

Definition 1.18. Let n ∈ N ∪ {∞}. A random partition π of [n] is called
exchangeable if for every permutation σ of [n], σ(π) and π have the same
law.

Recalling that the asymptotic frequency of a block B is defined as

|B| = lim
n→∞ 1n

n∑
i=1

I{i ∈ B},

then for an exchangeable random partition Π, {I{i ∈ B}} is an ex-
changeable sequence and hence by de Finetti’s theorem, |B| exists
almost surely. As consequence, the law of π is fully characterized by
its asymptotic frequencies, that is,

P (Π = π) = P
(
|Π|↓ = |π|↓

)
.

Mass partitions and partitions can be connected by a paint-box
distribution. Take a mass partition s = (s1, s2, . . . ) and consider an
interval representation, that is a collection of disjoint subintevals of
(0, 1) ϑ = {I}j whose Lebesgue measures correspond to the elements of

s, for instance, {[si−1, si−1 + si]}i. Let U1,U2
iid
∼ U[0, 1], and consider

the random partition π of N generated by assigning n ∈N to block bj
if Un ∈ Ij, and asigning it to its own singleton block if Uj ∈ [0, 1] \ ϑ.
This is equivalent to the following equivalence relation:

i ∼π j⇔ (i = j) or (Ui and Uj belong to the same block of ϑ)

The name paint-box comes from thinking the mass partition divides
the unit interval into different colors, randomly coloring with them
every natural number.

Figure 10: Representation of a paint-box sampling procedure. In this case,
the assigned blocks are {{1, 4}, {2, 3, 5}, {6}}.

Now take a permutation σ and a paint-box partition ∼π. Then

i ∼σ(π) j⇔ (i = j) or (Uσ(i) and Uj belong to the same block of ϑ).

Since theUi are iid, σ(π) and π are equal in distribution, which implies
that paint-box partitions are exchangeable.



1.4 random partitions 29

Another important property of paint-boxes is the fact that they
are invariant to the exact interval representation of the underlying
mass partition used. As the elements of every interval representation
always have the same Lebesgue measure by definition, the probability
that Ui and Uj belong to the same block does not change when the
representation does, thus the law of the paint-box remains unchanged.

The partitions sampled from a paint-box share the following ele-
mentary properties.

Proposition 1.6. Let π be a paint-box based on a mass-partition s ∈ Pm.
Then the following assertions hold:

1. The paint-box posseses asymptotic frequencies equaling the mass-
partition, i. e., |π|↓ = s.

2. If |πi| = 0, then πi is either a singleton or is empty almost surely, and
singletons occur if and only if s is improper, the set of singletons π0
having an assymptotic frequency given by 1−

∑∞
i=1 si.

Proof. Each random block of a paint-box has the form B = {n ∈ N :

Un ∈ A}, where A is a measurable interval member of an interval
representation of the underlying mass-partition. Since the Ui are iid,
by the Strong Law of Large Numbers

B∩ [n]
n

=
1

n

n∑
i=1

I(Ui ∈ A)
n→∞−→ |A| a.s.

Also, |π0| = 1−
∑∞
i=1 si.

The remaining claims follow from the last argument and by con-
struction of the paint-box.

Exchangeable random partitions can be represented in a similar way
as graphs and sequences.

Theorem 1.7. (Kingman) Let π be an exchangeable random partition of N.
Then the law of π can be expressed as a mixture of paint-boxes

P (π ∈ ·) =
∫
Pm

P
(
|π|↓ ∈ ds

)
ρs(·),

where ρs is the law of the paint-box based on s.

Proof. This proof is due to Aldous (Aldous, 1985). We will prove the
equivalent statement that there exists a probability measure µ on Pm
such that conditioning on it, π ∼ µ.

Let b : N→N be a function that maps all elements of a block of π
onto the same member of said block, for instance, the minimum. Also

let U1,U2, . . .
iid
∼ U[0, 1] independent of π and b.

Take ξi = Ub(i) and σ a permutation of N. Then i ∼π j if and only
if ξi = ξj, and ξσ(i) = Ub(σ(i)).

Since the Ui are iid and independent of π and b, ({Ui}i,π)
d
=(

{Uσ(i)}i,σ(π)
)
, which makes {ξi}i an exchangeable sequence, and

so by de Finetti’s theorem there exists a random probability measure
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µ such that conditioning on it, the ξ1, . . . are iid with law µ. Define
the quantile function

q(s) = inf{x ∈ (0, 1) : µ([0, x]) > s}

and introduce the set of flat points of q

ϑ = {x ∈ (0, 1) : ∃ε > 0 such that q(x) = q(y) whenever |x− y| < ε},

so we can define an interval representation of ϑ by making the lengths
of the intervals components coincide with the masses of the atoms of
ϑ.

Now let V1, . . .
iid
∼ U[0, 1] independent of π, Ui and b, Then condi-

tionally on µ,

(q(V1),q(V2), . . . )
d
= (ξ1, ξ2, . . . ) ,

thus i ∼π j if and only if q(Vi) = q(Vj), which only happens if Vi
and Vj fall in the same interval component of ϑ, which is a paint-box
construction.

Kingman’s representation allows us to circumvent the lack of conti-
nuity of the map π→ |π|↓ by considering convergence in distribution,
making this map a bijective correspondence continuous in law called
Kingman’s correspondence.

Theorem 1.8. Let
{
π(n)
}
n

and π(∞) be random exchangeable partitions.
The following conditions are equivalent:

• When n→∞,
∣∣π(n)∣∣↓ converges in distribution on Pm to

∣∣π(∞)
∣∣↓.

• When n→∞, π(n) converges in distribution on P∞ to π(∞).

The law of an exchangeable partition π can be specified by working
with its restrictions. Consider a partition ϕ = (B1, . . . ,Bk, ∅, . . . ) of [n]
with Bk 6= ∅. The exchangeability of π implies that

P
(
π|[n] = φ

)
= p (#B1, . . . , #Bk) ,

where p is a symmetric function over a finite (but not fixed) amount
of positive integers called the exchangeable partition probability function
(EPPF) of π. When π ∈ P∞, the compatibility condition translates to
the addition rule:

p(n1, . . . ,nk) =

p(n1, . . . ,nk, 1) +
k∑
j=1

p(n1, . . . ,nj−1,nj + 1,nj+1, . . . ,nk).

Proposition 1.7. Let s ∈ Pm be a proper mass partition such that all
the terms of s are distinct, and ρs the law of s. Let also x1, . . . , xk be k
terms sampled without replacement from s, and (B1, . . . ,Bk, ∅, . . . ) be some
partition of [n] with Bk 6= ∅. Then we have

ρs
(
π|[n] = (B1, . . . ,Bk, ∅, . . . ) , |π1| = k1, . . . , |πk| = xk

)
= x#B1

1 · · · x#Bk
k ,
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and as consequence,

ρs
(
π|[n] = (B1, . . . ,Bk, ∅, . . . ) | |π1| = k1, . . . , |πk| = xk

)
=(

k∏
i=1

x#Bk−1
k

)k−1∏
j=1

(
1− (x1 + · · ·+ xj)

)
A particularly important family of random partitions are the Poisson-

Dirichlet partitions. The most general one is the two-parameter Pois-
son Dirichlet distribution PD(σ, θ) defined at the end of the first
section of this chapter. When σ ∈ (0, 1) and θ = 0, one obtains the
partition generated by the atoms of a normalized stable subordinator,
and when θ > 0 and σ = 0, the PD(0,σ) coincides with the partition
generated by the atoms of a Dirichlet process.

Now consider pσ,θ the EPPF of a PD(σ, θ) partition and pick integers
n1, . . . ,nk with k 6 n and n1 + · · · + nk = n. Then pσ,θ has the
following explicit formulas:

• For σ = 0 we have the Ewens sampling formula:

pσ,θ(n1, . . . ,nk) =
θk

θ(θ+ 1) · · · (θ+n− 1)

k∏
i=1

(ni − 1)!

• For σ > 0 we have the Pitman sampling formula:

pσ,θ(n1, . . . ,nk) =
(θ/σ)k↑
(θ)n↑

k∏
i=1

−(−σ)ni↑,

where for any integer l > 1 and real number a,

(a)0↑ = 1 and (a)l↑ = a(a+ 1) · · · (a+ l− 1)

Two-parameter Poisson Dirichlet partitions can be recursively gen-
erated using a procedure called a Chinese restaurant process, described
as follows:

Algorithm 1 Chinese restaurant process (σ, θ)

1: Assign 1→ {1}.
2: for i = 2, 3, . . . do
3: Make i join an existing block Bk with probability #Bk−σ

θ+i−1 .
4: Assign i→ {i} with probability θ+Kσ

θ+i−1 , with K the number of
currently existing blocks.

5: end for

The name “Chinese restaurant” comes from imagining a seating
costumers at tables with infinite capacity in a Chinese restaurant, so
that the first client arrives and sits at the first table, the second one
then comes and either sits at the same table as costumer one or on its
own table, and in general, every client must choose between sitting at
an occupied table with probability directly proportional to the number
of people seated at it or at an unoccupied table.
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1.5 distributional symmetries

This last section is based on (Orbanz and Roy, 2015).
Representation theorems like de Finetti’s, Aldous-Hoover and King-

man’s allow us to build Bayesian models over different types of struc-
tured data by parametrizing the law of exchangeable structures, giving
a way to specify a prior over the parameter space and, sometimes,
providing convergence results that add some form of consistency to
the model.

The general scheme for these three theorems can be written as
follows:

• Consider X∞ a space of infinite structures.

• Identify a parameter space O for exchangeable random struc-
tures X∞ of X∞.

• Find a family of distributions on X∞ called the ergodic measures
such that each element θ ∈ O determines an ergodic distribution
pθ.

• If ν is a probability measure over O, the law of any exchangeable
random element X∞ ∈ X∞ can be represented as a mixture of
the ergodic distributions

P (X∞ ∈ ·) =
∫
O

pθ(·)ν(dθ) (5)

This last integral representation can be rewritten as a sampling
scheme that defines a Bayesian model over X∞:

Θ ∼ ν

X∞ | Θ ∼ pΘ,

and when coupled with a law of large numbers, the last scheme
allows us to do statistical inference by approximating the infinite
structure through a finite sample.

This framework can be further generalized to any probabilistic sym-
metry, not just exchangeability. Consider a group G of transformations

of X∞. We call a random structure X G-invariant if g(X) d
= X for all

g ∈ G. For example, in the case of Aldous-Hoover theorem, the trans-
formations correspond to the subgroup generated by row and column
permutations.

Under some technical conditions, particularly, that G is locally
compact and second-countable, the law of any G-invariant random
structure can be decomposed as in (5). This, however does not mean
that a statistical model can be built with it, we first need a convergence
result that justifies inference from a finite sample.

Definition 1.19. A countable group G is amenable if there is a sequence
A1,A2, . . . of finite subsets of G so that for some c > 0 and all g ∈ G,

|gAk ∩Ak|
|Ak|

k→∞−→ 1
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If this last condition holds, we get the following result (Orbanz,
2017):

Theorem 1.9. Let X be a random element of a Polish space X and f, {fi}i∈N

function from X→ R in L1(X), such that fi → f X-almost-surely. Let T be
a measurable action of a countable, amenable group G, and F be the empirical
measure defined by the sequence {Ak} obtained by amenability

(x,k) 7→ Fxk(·) =
1

|Ak|

∑
g∈Ak

δTg(x)(·),

Assume that (5) exists for G, and let ξ be the random ergodic measure for X
as in (5), then

FXk (fk)
k→∞−→ ν(f) a.s.

Moreover, if the fk are all dominated by an integrable function g, then the
convergence is also in L1(X).

When taking G the finitary symmetric group8, this theorem spe-
cializes for general exchangeable random structures, particularly ex-
changeable sequences and partitions.

8 The subgroup FSymm of the symmetric group such that every g ∈ FSymm, Supp(g) =
{ω : ωg 6= ω} is finite.



2
G E N E R AT I V E M O D E L S F O R R A N D O M G R A P H S

This chapter will be divided in two sections. First, based on (Hofstad,
2016), we will present some of the basic random graph models, cov-
ering Erdős-Rényi, preferential attachment, stochastic block models
and the configuration model. On the second part we will review
various of the more sophisticated models that attempt to overcome
the drawbacks of the ones presented in the first section.

2.1 classical models

2.1.1 Erdős-Rényi

Generate a random graph of n vertices by sampling independently
each possible edge with probability p. This is called the Erdős-Rényi
graph, ERp(n), and it is considered the keystone of the field (Hofstad,
2016).

When p is constant, the probability of a graph with m edges equals
pm(1− p)n−m, so we can get an uniform distribution over the set
of graphs with n vertices by taking an Erdős-Rényi graph with edge
probability p = 0.5. In the following we will be concerned about the
case p = λ/n, λ > 0.

Theorem 2.1. Let Pλ denote the law of an ERλ/n(n) random graph. Then

• (Subcritical regime). If λ < 1, then

|Cmax|

logn
Pλ−→ 1

λ− 1− log λ
,

where Pλ−→ denotes convergence in probability and |Cmax| is the size of
the largest connected component.

In other words,

|Cmax| = O(logn) as n→∞ with high probability (WHP).

• (Supercritical regime). If λ > 1, then the graph will have a giant
component of size O(n) WHP, and the distance between any two
vertices in the giant component will be O(logn) asymptotically WHP.

• (Critical regime). If λ = 1, the largest component will have size
O(n2/3) WHP.

This last theorem shows that in the subcritical regime the largest
component size is logarithmically small; whereas in the supercritical
regime its size is larger than logn.

The critical case is far more complex than the other two. An unicylic
graph is a graph with k vertices and k edges containing exactly one

34
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cycle. When λ 6= 1, if A < ∞ is a constant, the expected number
of unicyclic components with less than A logn vertices is of order
λ(A logn)2, hence they generally are rare. Conversely, in the critical
case when λ = 1, the expected number without size restrictions is
approximately 1

6 logn.

Figure 11: Three ERλ/300(300) random graphs with λ = 0.1, 1 and 10, respec-
tively. Note the different behaviors according to their criticalities:
the subcritical case shows very few connected vertices, the criti-
cal one exhibits many unicyclic components and the supercitical
graph has a single giant component with many edges.

Erdős-Rényi random graphs have some characteristics that make
them unable to replicate real-world behaviors, the most prominent
ones being independence and their degree distribution.

Since every edge is Bernoulli-distributed, the degree distribution
for each vertex v equals

P (deg(v) = k) =
(
n− 1

k

)
pk(1− p)n−1−k,

so if p = λ/n, λ > 0, the degree distribution converges in law to a
Poisson(λ) random variable, making highly connected nodes very un-
likely. When paired with independence between edges, this translates
to low clustering, a property often observed in real-world networks.
Furthermore, since for large k the Poisson probability mass function is
much smaller than k−τ for any τ > 0, the Erdős-Rényi random graph
is not scale-free.

This last convergence result can be strengthened to the proportion
of edges with a given degree k converging in probability to a Poisson
probability mass function evaluated at k, impliying that ERλ/n(n) is a
sparse random graph.

Another related definition for an Erdős-Rényi is when the number
of edges is fixed. Here, we begin with n vertices and sample uniformly
without replacement m edges between them. If we write Pλ for the
law of ERλ/n(n) and Pm for the one of this last model, then the
following relation allows us to translate results for ERλ/n(n) to this
alternative model:

Pλ(·) =
n(n−1)/2∑
M=1

Pm(·)P (Binom(n(n− 1)/2, λ/n) =M) .
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2.1.2 Stochastic block models

The Erdős-Rényi random graph can be generalized to produce graphs
containing communities by first labelling each node according to
the community it belongs to and then connecting it to the rest of
the nodes with different probabilities depending on their respective
memberships. This can be formalized as follows.

Definition 2.1. Let n ∈ N be the number of vertices, k the number of
communities, p the k-dimensional vector of probabilities of belonging to
each community and W a symmetric κ× k matrix whose entries are the
connectivity probabilities. The pair (X,G) is a stochastic block model with
parameters n, p and W SBM(n,p,W) if X is an n-dimensional random
vector with iid components distributed according to p and G is a simple graph
with n vertices where vertices i, j are connected with probability WXi,Xj
independently of other pairs of vertices. We also define the community sets
by Ωi = {v ∈ [n] : Xv = i} for all i ∈ [k].

Figure 12: A graph sampled from a stochastic block model with three com-
munities, each represented by a different color.

Note that when all the entries of W are the same the Erdős-Rényi is
recovered.

When p is uniform and W takes the same values on the diagonal
and outside the diagonal, i. e.,

W =



a b b · · · b

b a b · · · b

b b a · · · b
...

...
...

. . .
...

b b b · · · a


,

then one obtains a symmetric stochastic block model with parameters n,
k, a and b, denoted SBM(n,k,a,b).

An important task of this type of model is how precisely we can
recover the labels X by observing G.
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Definition 2.2. The agreement between two community vectors x,y ∈ [k]n

is obtained by maximizing the common components between x and any
rellabeling of y, i. e.

A(x,y) = max
π∈Sym([k])

1

n

n∑
i=1

I(xi = π(yi)),

where Sym([k]) is the group of permutations of [k].

Definition 2.3. Let (X,G) ∼ SBM(n,p,W). If there exists an algorithm
that inputs G and outputs X̂, then one can have

• Exact recovery: P
(
A(X, X̂) = 1

)
= 1− o(1).

• Almost exact recovery: P
(
A(X, X̂) = 1− o(1)

)
= 1− o(1).

• Partial recovery: P
(
A(X, X̂ > α)

)
= 1− o(1), α ∈ (0, 1).

Intuitively, exact recovery means that the entire partition is correctly
recovered, almost exact allows for an increasingly smaller proportion
of misclassified vertices and partial recovery allows for a constant
fraction of misclassified nodes.

The connectivity of a symmetric stochastic block model exhibits a
similar behavior to the Erdős-Rényi model.

Theorem 2.2. Let n,k be positive integers, then the two following statements
hold:

• For a,b > 0, SBM(n,k,a logn/n,b logn/n) is connected with high
probability if and only if d = [a+ (k− 1)b]/k > 1.

• SBM(n,k,a/n,b/n) has a giant component if and only if d > 1.

These two connectivity properties can be used to state recovery con-
ditions for both the logarithmic and linear regime SBMs, since it can be
proven that if d < 1 exact recovery in SBM(n,k,a logn/n,b logn/n)
and almost exact recovery in SBM(n,k,a/n,b/n) are not solvable.

2.1.3 Configuration model

The configuration model is a model that generates random graphs
from a given degree sequence. This can be accomplished by construct-
ing a multigraph, i. e.a graph that allows multiple connection between
nodes, with the given degree sequence in such a way that the number
of multiple edges and self-loops converges to zero as the number of
nodes increases.

A multigraph with n vertices and degree sequence d = {dj}j can
be constructed by taking k half-edges for each node j, choosing two
half-edges uniformly at random and connecting them to form an edge.
This procedure is repeated until all the half-edges are connected, and
the resulting multigraph is called the configuration model with degree
sequence d, abbreviated CMn(d).
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If G = (xij)i,j∈[n] is a multigraph on the vertices [n] such that
di = xii +

∑
j∈[n] xij, then

P (CMn(d) = G) =
1

(ln − 1)!!

∏
i∈[n] di!∏

i∈[n] 2
xii
∏
16i6j6n xij!

,

where (ln − 1)!! =
∏ln/2
k=1 (2k− 1). Hence conditioned on the event

{CMn(d) is a simple graph}, the configuration model has a uniform
law over all simple graphs with degree sequence d.

While this sampling scheme produces random multigraphs with
any given degree sequence1, the model is not capable to produce
simple graphs for every degree sequence; first they must satisfy the
following regularity conditions:

1. Weak convergence of vertex weight. There exists a distribution
function F such that

Dn =⇒ D,

where Fn and F are the distribution functions of Dn and D,
respectively, and Dn is the degree of a uniformly chosen vertex
U, thus making Fn = n−1

∑
j∈[n] I{dj 6 x}. We further assume

that D > 1 a.s.

2. Convergence of average vertex degrees.

lim
n→∞E [Dn] = E [D] .

3. Convergence of second moment vertex degrees.

lim
n→∞E

[
D2n
]
= E

[
D2
]

.

Theorem 2.3. Assume d = {dk}k∈[n] satisfy the above conditions. Then
the probability that CMn(d) is a simple graph is asymptotically equal to
e−ν/2−ν

2/4, where

ν =
E [D(D− 1)]

E [D]
.

There are two typical ways to obtain degree sequences that satisfy
the regularity conditions.

• Fixed degrees moderated by a distribution function F.

Fix a distribution function F take the number of vertices with
degree k equal to

nk = dnF(k)e− dnF(k− 1)e,

and take the corresponding degree sequence d = {dk} as the
unique ordered degree sequence compatible with {nk}k>0. This
implies that

Fn(k) =
1

n
dnF(k)e,

and all the conditions are fulfilled providing that D has finite
second moment.

1 assuming its total degree ln is an even number.
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• Iid degrees.

This situation comes with the problem that the sum of the se-
quence might not be odd, which impossibilitates the generation
of a simple undirected graph. One way to overcome this is by
adding a half-edge to the n vertex, increasing dn by 1. Then the
conditions above hold by the Strong Law of Large Numbers.

It is worth noting that if the second moment of D is infinite, then
the probability of sampling a simple graph from the configuration
model converges to zero.

2.1.4 Preferential attachment

Preferential attachment models describe a growing sequence of graphs{
PA(m,δ)
t

}
t>0

such that PA(m,δ)
t is a graph with t vertices and mt

edges for some m = 1, 2, . . . and δ > −m and the probability of
adding an edge to a vertex is an increasing affine function of its
degree, promoting the emergence of hubs.

We will first define the model for m = 1. Henceforth, the vertices
of PA(m,δ)

t will be denoted by v(1)1 , v(1)2 , . . . , v(1)t and their degrees by
Di(t). A self-loop increases the degree by 2, by convention.

The growth mechanism is defined inductively as follows:

Algorithm 2 Preferential attachment PA(1,δ)
t

1: Start with PA(1,δ)
1 having a single vertex with a single self-loop.

2: for t = 2, 3, . . . do
3: Add a vertex v(1)t+1 by connecting it with probability

P
(
v
(1)
t+1 → v

(1)
i

∣∣∣PA(1,δ)
t

)
=

 1+δ
t(2+δ)+(1+δ) for i = t+ 1
Di(t)+δ

t(2+δ)+(1+δ) for i ∈ [t]

4: end for

Note how new edges are more likely to connect to high degree
vertices, making their degrees even larger.

The mechanism for m > 1 can be defined accordingly as below:

Algorithm 3 Preferential attachment PA(m,δ)
t

1: Generate PA(1,δ/m)
mt .

2: for j = 1, 2, . . . do
3: Collapse the vertices v(1)(j−1)m+1, . . . , v(1)jm to form the vertex

v
(m)
j of PA(m,δ)

t .
4: end for

This construction implies that an edge in PA(m,δ)
t is attached to

vertex v(m)
j with probability proportional to the total weight of the m
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vertices v(1)(j−1)m+1, . . . , v(1)jm , and since the total sum of their degrees is

equal to the degree of v(m)
j , the probability of adding an edge to it is

proportional to its degree plus δ.

Figure 13: A graph sampled from a preferential attachment model using the
Barabási-Albert algorithm.

There is an alternative definition form > 2. We make the convention
Dt+1(0, t) = 0.

Algorithm 4 Preferential attachment PM(m,δ)
t

1: Start with PA(m,δ)
1 having a single vertex with m self-loops.

2: for t = 2, 3, . . . do
3: Add a vertex v(1)t+1 to PA(m,δ)

t with m edges attached to it.

4: Connect each eth edge to v(m)
i , i ∈ [t] with probability

∝

Dt+1(0, t) + 1+ eδ/m for i = t+ 1

Di(e− 1, t) + δ for i ∈ [t]

5: end for

The above model for δ = 0 is called the Barabási-Albert model, and
several different properties arise when varying the parameters m and
δ. For example, when m = 1 and δ > −1, self-loops do not occur.

Preferential attachment models have the advantage of producing
scale-free graphs. If we take the empirical degree distribution

Pk(t) =
1

t

t∑
i=1

I{Di(t) = k},

and for m > 1 and δ > −m we define {pk}k>0 by pk = 0 for k =

0, . . . ,m− 1 and for k > m,

pk =

(
2+

δ

m

)
Γ(k+ δ)Γ

(
m+ 2+ δ+ δ

m

)
Γ(m+ δ)Γ

(
k+ 3+ δ+ δ

m

) .

By rearranging
∑
pk to a telescopic sum we can prove that {pk} is a

probability mass function and

P

(
max
k

|Pk(t) − pk| > C

√
log t
t

)
= o(1),
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thus Pk(t)
P−→ pk in probability for any fixed k. pk can be represented

as the expectation of the functional of a negative binomial random
variable X with random probability of success U1/(2+δ/m), U ∼ U[0, 1],

pk = E [P (X = k)] ,

from where we can deduce that, asymptotically

pk = cm,δk
−τ (1+O(1/k))

with

cm,δ =

(
2+

δ

m

)
Γ
(
m+ 2+ δ+ δ

m

)
Γ(m+ δ)

and τ = 3+
δ

m
> 2.

Therefore the asymptotic degree distribution of a stochastic block
model is close to a power law with exponent τ, and any τ > 2 can be
obtained by properly tuning m and δ.

2.2 aldous-hoover and beyond

The sampling scheme induced by the Aldous-Hoover theorem can
be utilized to build nonparametric models for (vertex) exchangeable
random graphs by reconstructing graphons from an observed, finite
network. This can be done by placing a suitable prior on the space of
measurable functions from [0, 1]3 → [0, 1].

The lack of uniqueness of the graphon representation makes the
regression problem ill-posed, requiring a more structured approach.
Two different directions have been explored (Cai, Ackerman, and
Freer, 2015): estimating the graphon function W and estimating the
values of the graphon function, i. e., inferring the graphon by directly
recovering a measurable function up to equivalence from the data and
estimating the latent probabilities W(Ui,Uj) without considering the
value of the graphon in any other points not contained in the original
sample.

In the latter case the problem can be written as

Aij =W(Ui,Uj) + εij = Pij + εij,

where A is the observed adjacency matrix, W the graphon and Uk
iid
∼

U[0, 1]. This is reminiscent of the problem stated in factor analysis,
where the loadings of some latent factors are estimated. In (Zhang,
Levina, and Zhu, 2017) a smoothing estimator is defined by averaging
over an apropiate set of neighbours of i, Ni such that Pi ′j ≈ Pij for all
i ′ ∈ Ni,

P̂ij =
1

|Ni|

∑
i ′∈Ni

Ai ′j.

When estimating the entire graphon an approximation in the cut
distance can be made using piece-wise constant functions (Cai, Acker-
man, and Freer, 2015) where a measurable partition of [0, 1] S1, . . . ,Sk
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called the steps of W is induced such that W is constant in every prod-
uct set Si × Sj. The partition can be estimated, for instance, by using
a stochastic block model approach or a Chinese restaurant process
(Orbanz and Roy, 2015).

Another approach is to estimate a continuous graphon by placing
a gaussian process with a suitable covariance function prior over
the function W. Since continuous functions are dense in the space
of measurable functions, we can approximate any graphon by this
method. In (Lloyd et al., 2012) the graphon is decomposed into two
functions H and Θ

F(Ui,Uj,Uij) = H(Uij,Θ(Ui,Uj)).

A Gaussian process prior is then placed over Θ and H is assumed to
be equal in law to

H(Uij,Θ(Ui,Uj))
d
= Θ(Ui,Uj) + εij, εij ∼ N (0,σ) .

Although vertex exchangeability gives an elegant way to model
networks, it has some inherently problematic properties that makes it
unfeasible for most applications. The first one is that it only produces
dense graphs. The second, and probably the most dire one, is the fact
that graphons cannot replicate collective behaviors.

Consider a large or infinite graph y. Fitting a graphon model to it
is equivalent to the following sampling algorithm (Orbanz, 2017):

Algorithm 5 Sampling a subgraph of size k from a graph y of size n

1: Draw Φn ∼ U(Sn).
2: Permute the graph Xn := Φn(y).
3: Return the subgraph Sn→k(y) = Xn

∣∣
k

.

In other words, this means that every random graph sampled from
this algorithm is vertex exchangeable and for every graphon w there
is a graph y such that its induced random graph is equal in law to
S∞(y), where S∞ fulfills

S∞(y)∣∣k = lim
n→∞Sn→k(y).

Now consider that a sample of y Xk = S∞(y)∣∣k contains a subgraph
of size2 j 6 k, xj. By exchangeability, y must contain an infinite
amount of copies of xj. If xj appears m times in Xk, then since there
are

(
k
j

)
possible subgraphs of size j in Xk, then the graphon model

would assume that a frequency m/
(
k
j

)
of all subgraphs of size j in y

matches xj, thus as j gets smaller, the probability that a reconstructed
graph from a graphon contains xj gets larger. In other words,

Small observed patterns have a higher probability than larger ones.

As a corollary of this last statement, since isolated subgraphs of Xk
have a size k in order to explicitly include the missing edges, we have
that graphon models do not reproduce, in general, partially isolated
subgraphs (Orbanz, 2017).

2 In this contex the size is defined as the number of vertices.
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2.2.1 Caron-Fox model

Caron and Fox (Caron and Fox, 2017) proposed a probabilistic model
capable of producing sparse graphs that represents a random adja-
cency matrix as a simple point process on R+. We will describe said
model next following (Caron and Fox, 2017) and (Veitch and Roy,
2015).

Consider an infinite symmetric adjacency matrix Z. It can be repre-
sented as

Z =

∞∑
i=1

∞∑
j=1

zij δ(θi,θj), (6)

where zij = zji = 1 if θi and θj are connected and zero otherwise,
and θk ∈ R+ represents the time at which a potential node enters the
network.

Each node θi is endowed with a sociability parameter wi that define
the the link probabilities

P
(
zij = 1 | {wi}

)
=

1− exp
{
−2wiwj

}
i 6= j

1− exp
{
−w2i

}
i = j

Finally, the sociability parameters and node locations are sampled
from a homogeneous completely random measure with no determin-
istic component with Lévy measure ν(dw, dθ) = ρ(dw)λ(dθ), where
ρ is a Lévy measure on (0,∞) and λ is the Lebesgue measure.

A more general model can be defined by considering directed
multigraphs by changing the zij for nij the number of connections
from i to j. In this case, given a CRM W a directed multigraph D can
be generated from a Cox process with intensity given by the product
measure W ⊗W on R2+. An undirected graph with self-edges can
then be produced by connecting two nodes if there is an interaction
between them, i. e., setting zij = 1 if nij + nji > 0 and 0 otherwise.
This yields the following sampling scheme:

W =

∞∑
i=1

wiδθi ∼ CRM(ρ, λ)

D |W =

∞∑
i=1

∞∑
j=1

nijδ(θi,θj) ∼ PPP(W ⊗W) (7)

Z =

∞∑
i=1

∞∑
j=1

min{nij +nji, 1}δθi,θj

This construction is equivalent to the simpler model (6). Indeed, if
we identify the weights of the CRM as the sociability parameters, for
i 6= j,

P
(
zij = 1 | w

)
= P

(
nij +nji > 0 | w

)
= 1− P

(
nij +nji = 0 | w

)
,

where w = {wi}. By the hierarchical construction above the nij
are independent Poisson(wiwj) random variables, thus nij + nji ∼
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Poisson(2wiwj) and the desired result follows. The case i = j can be
derived in an analogous way.

This model can be simulated from drawing upon exchangeability
for point processes. A point process ξ is said to be jointly exchangeable
if for any measure-preserving transformation f : R+ → R+

ξ
d
= ξ ◦ (f⊗ f)−1 ,

where ⊗ is the tensor product. Note that this implies that for any
intervals Ai = [h(i− 1),hi] with i ∈N and h > 0,

ξ
(
Ai ×Aj

) d
= ξ

(
Aπ(i) ×Aπ(j)

)
for (i, j) ∈N2 and any permutation π of N.

Exchangeable random measures have a representation theorem due
to Kallenberg (Veitch and Roy, 2015).

Theorem 2.4. A random measure ξ on R2+ is jointly exchangeable if and
only if almost surely

ξ =
∑
ij

f(α, ϑi, ϑj, ζ{i,j})δθi,θj+

∑
jk

[
g(α, ϑj,χjk)δθj,σjk + g

′(α, ϑj,χjk)δσjk,θj
]
+

∑
k

[
l(α,ηk)δρk,ρ ′k

+ l ′(α,ηk)δρ ′k,ρk

]
+

∑
j

[
h(α, ϑj)(δθk ⊗ λ) + h

′(α, ϑj)(λ⊗ δθk)
]
+βλD + γλ2

for some measurable functions f > 0 on R4+, g,g ′ > 0 on R3+ and
h,h ′, l, l ′ > 0 on R2+, some collection of iid uniform random variables(
ζ{i,j}

)
on [0, 1], some independent unit rate Poisson processes {(θj, ϑj)} and

{(σij, ξij)}j for i ∈N on R2+ and {(ρj, ρ ′j,ηj)} on R3+ and some independent
set of random variables α,β,γ > 0. Here λ and λD are the Lebesgue measure
on R+ and on the diagonal of R2+ {(s, s) ∈ R2+}

It can be proven (Caron and Fox, 2017) that the random measure
(7) is jointly exchangeable and thus the above representation exists. In
particular, if (θi, ϑi) is a Poisson process on R2+ and we define the tail
Lévy intensity

ρ̃ :=

∫∞
x

ρ(dw),

then the CRM W =
∑
iwiδθi with Lévy measure ρ(dw)λ(dθ) can

be constructed from the bidimensional point process by taking wi =
ρ̃−1(ϑi), and the Kallenberg representation for the model for undi-
rected graphs is formulated by taking α = β = γ = 0, h = h ′ = l =

l ′ = 0 and

f(α, ϑi, ϑj, ζ{i,j}) =

1 ζ{i,j} 6M(ϑi, ϑj)

0 otherwise
,
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where M : R2+ → [0, 1] is defined by

M(ϑi, ϑj) =

1− exp
{
−2ρ̃−1(ϑi)ρ̃

−1(ϑj)
}

ϑi 6= ϑj

1− exp
{
−ρ̃−1(ϑi)

2
}

ϑi = ϑj

The function f is equivalent to the Aldous-Hoover representation for
exchangeable arrays, and W in this case is akin to a graphon.

In order to study the sparsity properties of model (7) we must first
introduce its restriction to the bounded squares [0,α]2, α > 0. If the
CRM has finite activity, there will be a finite number of (potential)
nodes in [0,α], whereas if it has infinite activity, an infinite number is
expected. Now we define the number of nodes with at least degree
one Nα and the total number of edges N(e)

α ,

Nα = #{θi ∈ [0,α] : Z ({θi}× [0,α]) > 0}

N
(e)
α = Z

(
{(x,y) ∈ R2+ : 0 6 x 6 y 6 α}

)
,

and we shall only consider Lévy measures ρ such that
∫∞
0 ρ(dw) > 0,

since the case
∫∞
0 ρ(dw) = 0 corresponds to Nα = N

(e)
α = 0 almost

surely. We also write for two almost surely divergent positive stochas-
tic processes Xα and Yα,

Xα = o(Yn) a.s.⇔ lim
n→∞Xα/Yα = 0 a.s.

Xα = Θ(Yn) a.s.⇔ lim sup
n→∞ Xα/Yα <∞ and lim sup

n→∞ Yα/Xα <∞ a.s.

Theorem 2.5. Consider a point process Z representing an undirected graph
as in (7), and assume that the directing Lévy measure ρ satisfies

∫∞
0 wρ(dw) <∞.

• If ρ has finite activity, then the number of edges scales quadratically
with the number of observed nodes, N(e)

α = Θ(N2α) almost surely
when α→∞, and thus the graph is dense.

• If ρ has infinite activity, the number of edges scales subquadratically
with the number of observed nodes, N(e)

α = o
(
N2α
)

almost surely
when α→∞, implying that the graph is sparse.

If we assume to have observed a set of undirected connections
{zij}16i,j6Nα or undirected connections {nij}16i,j6Nα , we order the
location of the observed nodes 0 < θ1 < · · · < θNα < α and we write
wi =W({θi}) the set of sociability parameters and φ the set of hyper-
parameters of the Lévy measure, then the posterior distribution for
the node locations, sociability parameters of the observed nodes and
the sum of the weights of the sociability parameters of the unobserved
nodes w∗ can be written as follows.
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Theorem 2.6. For Nα > 1 let θ1 < . . . < θNα be the set of support points
of the measure Dα =

∑
16i,j6Nα nijδ(θi,θj). Let wi = Wα({θi}) and

w∗ =W
∗
α −
∑Nα
i=1wi. We have

P
(
{wi ∈ dwi}16i6Nα ,w∗ ∈ dw∗ | {nij}16i,j6Nα ,φ

)
∝

exp

−

(
Nα∑
i=1

wi +w∗

)2
{
Nα∏
i=1

wmi

i ρ(dwi)

}
G∗α(dw∗),

where mi =
∑Nα
j=1(nij +nji) > 0 for 1 6 i 6 Nα are the node degrees of

the multigraph and G∗α is the Stiltjes measure of the random variable W∗α
with Laplace transform

E [exp {−tW∗α}] = exp {−αψ(t)} .

Conditionally on observing an empty graph we have

P (w∗ ∈ dw∗ | Nα = 0,φ) ∝ exp
{
−w2∗

}
G∗α(dw∗).

The model we last described can be inscribed in a bigger family of
random graphs models driven by graphices called Kallenberg exchange-
able graphs, which will be described next in accordance with (Veitch
and Roy, 2015). Let us first give some formal definitions. Let G be an
undirected graph whose vertices are labeled with values in R+ and
let e(G) and v(E) the set of edges and vertices of G, respectively.

Definition 2.4. An adjacency measure is a locally finite symmetric sim-
ple measure in R+. The restriction of an adjacency measure ξ to [0,α]2,
ξ(· ∩ [0,α]2) is called an α-truncation. The adjacency measure of G is the
adjacency measure

∑
(x,y)∈e(G) δ(x,y).

Given an adjacency measure
∑
i<κ δei , where e1, e2, · · · ∈ R2+, we

can construct its associated graph by taking the edge set equal to
{ei}i<κ and vertex set {x : ei = (x,y) for some i < κ,y ∈ R+}.

The correspondence between graphs and adjacency measures allows
us to characterize random graphs invariant to the relabeling of their
vertices using Kallenberg’s scheme for exchangeable random measures,
considering exchangeable adjacency maesures instead of exchangeable
arrays. In this case, Kallenberg’s representation assumes the following
form:

Theorem 2.7. Let ξ be a random adjacency measure. ξ is jointly exchange-
able if and only if almost surely

ξ =
∑
ij

I(ζ{i,j} 6W(α, ϑi, ϑj)))δθi,θj+

∑
jk

I(ξjk 6 S(α, ϑj))
(
δθj,σjk + δσjk,θj

)
+

∑
k

I(ηk 6 I(α))
(
δρk,ρ ′k

+ δρ ′k,ρk

)
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for some measurable functions S : R2+ → R+, I : R+ → R+ and W :

R3+ → [0, 1] with W(a, ·, ·) symmetric for all positive a, some collection
of iid uniform random variables on [0, 1] {ζ{i,j}} some independent unit
rate Poisson processes {(θj, ϑj)} and {(σij, ξij)}j for i ∈ N on R2+ and
(ρj, ρ ′j,ηj) on R3+ and an independent random variable α > 0 that can be
chosen deterministic if and only if ξ is an ergodic element.

The second term corresponds to stars centered at the points {θj} and
the third term to isolated edges. Since α is not random, the ergodic
measures are completely determined by the triple (I,S,W). These
functions cannot be arbitrarly chosen, we need to impose restrictions
in order to guarantee that the restrictions to bounded rectangles are
finite. These conditions are stated in the following definition:

Definition 2.5. A graphex is a triple (I,S,W), where I > 0 is a non-
negative real, S : R+ → R+ is integrable and W : R2+ → [0, 1] is symmetric
and satisfies the following conditions:

1. Λ{µW =∞} = 0 and Λ{µW > 1} <∞,.

2.
∫

R2+

W(x,y)I(µW(x) 6 1)I(µW(y) 6 1) dxdy <∞,

3.
∫

R+

W(x,y) dxdy <∞,

whereΛ denotes the Lebesgue measure on R+ and µW(x) =
∫

R+
W(x,y)dy

is called the graphex marginal.

Theorem (2.7) gives a simple algorithm to sample graphs from a
graphex.

Algorithm 6 Sampling from a graphex

1: Draw nodes (θi, ϑi) from a unit rate Poisson process.
2: Connect them with probability W(ϑi, ϑj).
3: for i = 1, 2, . . . do
4: Sample nodes from a Poisson process with rate S(ϑi).
5: Connect them only to θi.
6: end for
7: Sample pairs of vertices connected only to each other from a

Poisson process with rate I.

This lets us define the class of graphs sampled from a graphex:
Kallenberg exchangeable graphs.

Definition 2.6. A Kallenberg exchangeable graph (KEG) associated with
a graphex (I,S,W) is the random graph G whose adjacency measure χ has
the form (2.7). G induces a Kallenberg exchangeable graph model, a family of
α-truncations Gα = ξ(· ∩ [0,α]2), α ∈ R.

Now we shall consider only KEGs with graphex (0, 0,W), since the
structural complexity of the adjacency matrix is only given by W. In
this case, we have the following density result:
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Theorem 2.8. Let G be a Kallenberg exchangeable graph with graphex
(0, 0,W). If W is compactly supported, then G is dense almost surely.
Conversely, if W is integrable and not compactly supported, then G is sparse
almost surely.

Consider W with compact support. Then it corresponds to the
rescaling of a graphon. Now consider a graphon W̃. In correspon-
dence, we can define a graphex with compact supportW by

W(x,y) =

W̃ (x/c,y/c) x 6 c,y 6 c

0 otherwise
.

In this case points (θ, ϑ) of the latent Poisson point process will
not connect to any edge if ϑ > c, and thus for the finite size α-
restriction Gα the underlying point process is a Poisson point process
on [0,α]× [0, c], rendering the following sampling scheme:

Nα ∼ Poisson(cα)

{θi} | Nα
iid
∼ U[0,ν]

{ϑi} | Nα
iid
∼ U[0, 1]

(θi, θj) | ϑi, ϑj
iid
∼ Bernoulli

(
W̃(ϑi, ϑj)

)
,

which corresponds to the usual graphon model with iid uniform labels
instead of integer ones, proving that the only compactly supported
graphices are graphons.

Another specific case of a graphex model corresponds to the Caron-
Fox model. Indeed, we can choose

W(x,y) =

1− exp
{
−2ρ̃−1(x)ρ̃−1(y)

}
x 6= y

1− exp
{
−ρ̃−1(x)2

}
x = y

,

where ρ̃−1 is the inverse tail Lévy intensity of an underlying com-
pletely random measure, then we recover the Caron-Fox model.

2.2.2 Edge-exchangeable graphs

Imagine uniformly sampling a list of emails. This can be represented
as a set of tuples {(xi, xj)}i,j, where xi represents the sender and xi the
receiver. If we uniformly sample this list, then the law of the resulting
sample would be invariant to edge relabeling, that is, the probability
of observing a set of emails is the same regardless of which specific
emails are included in the sample. This type of invariance is called
edge exchangeability, and can be defined as the law of a graph being
invariant to the order of arrival of its edges.

The theory behind edge-exchangeable graphs has been parallely
developed in (Cai, Campbell, and Broderick, 2016a) and (Crane and
Dempsey, 2018), and while they are somewhat equivalent, we will
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restrict ourselves to the construction developed in (Cai, Ackerman,
and Freer, 2015) and (Cai, Campbell, and Broderick, 2016b).

Consider a projective sequence of graphs, i. e., a sequence G1 =

(V1,E1),G2 = (V2,E2), . . . such that En ⊆ En+1 for all n. Let us only
consider graphs without isolated vertices, so the set of vertices can
be defined as the union of the edges, making each Gn completely
determined by En. Using this perspective, each graph Gn can be
represented as a set of vertices, each vertex being itself a set containing
the indices of the edges it is attached to, for instance, {{1, 2, 3}, {2}, {1, 3}}.

Define for each graph Gn the step-augmented edge set E ′n as the
collection of edges decorated with the step in which it was added
to the sequence of graphs, E ′n = {(e1, s1), . . . , (em, sm)}, for some m.
Then the step-augmented graph sequence can be defined as a sequence of
step-augmented edge sets {E ′n}n = (E ′1,E ′2, . . . ).

1

2 3

2

3 1

Figure 14: Left: a planar representation of the graph encoded by
{{1, 2, 3}, {2}, {1, 3}}. Right: the same graph with its edge labels
reordered. Under edge exchangeability both graphs have the
same probability.

Definition 2.7. Let {Gn}n be a random graph sequence with step-augmented
edge sets E ′n. We call {Gn}n edge-echangeable if for every n and every

permutation π of [n] Gn
d
= G̃n, where G̃n has step-augmented edge set

πE ′n := {(e1,π(s1)), . . . , (em,π(sm))}.

Intuitively, edge exchangeability of a random graph sequence means
that its law is invariant to the order of arrival of its edges.

A de Finetti-like representation for this symmetry can be stated
by defining a graph paint-box. Heuristically, a graph paint-box corre-
sponds to first sampling a sequence of random open subsets of (0, 1)
representing the vertices, {Ck}k, C ′1 and C ′2, and sampling iid sequence
of uniform random variables on (0, 1), {Vn}n, each Vn corresponding
to an edge. The first sequence of vertices {Ck} represents regular ver-
tices and the other two the dust vertices, i. e., vertices that occur in only
one edge (regular vertices being vertices that are not dust vertices).
We then have the next three cases:

• if Vn ∈ Ck ∩Cj for k 6= j, then the nth edge connects vetices k
and j, and we restrict Vn to only be contained in two of the Ci
at a time.

• If Vn ∈ Ck and Vn ∈ C ′1, the nth edge connects a regular vertex
with a dust vertex that only ever connects with the nth edge.

• If Vn ∈ C ′1 and Vn ∈ C ′2, the nth edge links two different dust
vertices, producing an isolated component.
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Definition 2.8. An edge-exchangeable graph sequence {Gn}n possesses a
graph paint-box if there exists random open Lebesgue measurable subsets
{Ck}k and C ′1 and C ′2 of (0, 1) such that

1. the sets C ′2 and
⋃
kCk ∪C ′1 are disjoint,

2. any V ∈ (0, 1) is an element of either C ′2 or exactly two sets (Ck)k
and C ′1.

The graph sequence can then be generated by doing

1. Sample Vi
iid
∼ U(0, 1).

2. Set Ik = {n : Vn ∈ Ck} for all k.

3. Set I ′1 = {{n} : Vk ∈ C ′i} and I ′2 = {{n}, {n} : Vn ∈ C ′2}.

4. For each n, let Gn be the collection {Ik}k, I ′1 and I ′2 truncated up to
the first n indices.

Clearly every graph sampled from a graph paint-box is edge-
exchangeable since the Vi are independent. The converse also holds,
that is, an edge-exchangeable random graph always has a graph paint-
box, yielding the desired integral representation (Cai, Campbell, and
Broderick, 2016b). Thus, the law of every edge-exchangeable graph is
fully characterized by a random measure on N2.

The distribution of an edge-exchangeable graph has a decomposi-
tion akin to the exchangeable partition probability functions studied in
the last chapter. Let Ḡn be the multiset containing the degree of each
vertex, e. g., for the graph in figure 14, Ḡn = {3, 1, 2}. Also let κ(Gn) be
the number of unique orderings of the sets in Gn. For instance, in the
last example, κ(Gn) = 3! = 6. We say Gn has an exchangeable vertex
probability function (EVPF) if the distribution of Gn depends only on
κ(Gn), n and Ḡn, the multiset of degrees of the vertices of Gn .

Definition 2.9. A random graph Gn has an exchangeable vertex probability
function if its law can be decomposed as

P (Gn) = κ(Gn)p
(
n, Ḡn

)
,

for some function p : N× G→ R+, where G is the set of all finite graphs.

Because the distribution of a random graph having an EVPF only
depends on the degrees of the vertices, it is edge exchangeable; how-
ever, not all edge exchangeable random graphs have an EVPF. In fact,
edge exchageable graphs having one are called frequency models (Cai,
Campbell, and Broderick, 2016a).

Take an infinite amount of latent vertices indexed by the natural
numbers N, an infinity of edge labels {θ{i,j}} in a set Θ and positive
edge frequencies {w{i,j}} in R+. Either {θ{i,j}} or {w{i,j}} can be random,
and we define the random measure on Θ

W :=
∑

{i,j}:i,j∈N

w{i,j}δθ{i,j} . (8)
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There are two posiible ways to construct an edge-exchangeable
graph from this last measure. If the weights are normalized, i. e.,∑
i,jw{i,j} = 1, then {wi,j}i,j∈N is a probability distribution over all

possible vertex pairs, and then a multigraph can be sampled by the
following algorithm:

Algorithm 7 Normalized case

1: Draw {w{i,j}} and {θ{i,j}}.
2: Set E0 = ∅.
3: for k = 1, 2, . . . do
4: Sample an edge e from the distribution {w{i,j}}.
5: Set Ek = Ek−1 ∪ {e}.
6: end for

If the weights do not sum up to one, then the measure is not a
probability measure. Consequently we introduce f(m | w) a distri-
bution over the non-negative integers given some rate w ∈ R+. The
multigraph then is sampled as follows.

Algorithm 8 Non-normalized case

1: Draw {w{i,j}} and {θ{i,j}}.
2: Set E0 = ∅ and F = ∅.
3: for k = 1, 2, . . . do
4: For every edge e = {i, j} draw its multiplicity me ∼ f(·|we).
5: Add me copies of edge e to F.
6: Set Ek = Ek−1 ∪ F.
7: end for

In both cases, since conditionally on
{
w{i,j}

}
the edges are iid, the

resulting multigraphs are edge-exchangeable, and these algorithms
are called frequency models.

Theorem 2.9. A regular graph sequence has a frequency model if and only
if it has an EVPPF.

This last theorem implies that by restricting to the frequency models
we can obtain a tractable familiy of models suitable for estimation,
the particular properties of the graphs sampled from each model
depending on the choice of the random measure W.

At a first glance the representation (8) is quite similar to Kallenberg
exchangeable graphs; albeit it has some differences. In the construc-
tion developed by Caron and Fox (Caron and Fox, 2017) the weight
measure W =

∑
iwiδθi is first sampled and then the graph measure

G =
∑
i,j

gijδ{θi,θj}

is constructed by sampling the gij once given wij for each pair i, j,
whereas graph frequency models repeatedly sample the number of
edges gij and add the result. Furthermore, the graphex-based model
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generates a projective family of graphs by restricting the graph mea-
sure to the rectangle [0,y]× [0,y] for some y ∈ R+, and then progres-
sively increasing the value of y; in contrast, frequency models fix y
beforehand and grow the network by the resampling of the gij.

Example 2.1. Let W ∼ PPP(ν) for some non-atomic, σ−finite measure
ν satisfying ν([0, 1]) =∞ and

∫1
0w dν <∞, so that W is a countable

infinite set of rates and
∑
w∈W w < ∞ almost surely. Take w{i,j} =

wiwj if i 6= j and w{i,i} = 0 for all i.
We use algorithm 8 to sample a multigraph (V ,E) by taking f(· | w)

be Bernoulli(w), which makes the multiplicity of each edge after n
steps Binom(n,wiwj). A graph (V̄ , Ē) can be then generated by setting
V̄ = V and Ē equal to the set of edges with multiplicity at least one.

The density properties of the generated graphs can be summarized
by the following theorem.

Theorem 2.10. Suppose ν has a regularly varying tail, so there exist α ∈
(0, 1) and l : R+ → R+ such that for all c > 0, limx→∞ l(cx)l(x) = 1 and∫1

x

ν(dw) ∼ xαl(x−1) when x→ 0.

Then as n→∞,

#Vn
a.s.
= Θ (nαl(n)) ,

#En
a.s.
= Θ(n) and

#Ēn
a.s.
= O

(
l(n1/2)min

{
n(1+α)/2, l(n)n3α/2

})
.

This last theorem implies that the multigraph is sparse when α ∈
(1/2, 1) and thus its restriction to a graph is sparse when α ∈ (0, 1).

Now let us consider a variation of the graph frequency model. Take
wij = wiwj and W ∼ PD(α, θ). This model is called the Hollywood
model (Crane, 2018), and a computationally tractable way to simulate
from this model can be derived by harnessing the stick-breaking
representation of the two-parameter Poisson-Dirichlet distribution,
constructing the edge frequencies and vertex labels at the same time.

Assume at time t the network has t− 1 edges and a random number
of vertices Nt with N1 = 0. Label these vertices as 1, . . . ,Nt and take
Dt(i) as the degree of node i before the tth edge is added. When
the t−th edge arrives, its two attached vertices v1(t) and v2(t) are
randomly chosen between the existing vertices 1, . . . ,Nt and a new
vertex Nt+1 as follows.

P (v1(t) = i) ∝

Dt(i) −α, i = 1, . . . ,Nt

θ+αNt i = Nt + 1
(9)

After v1(t) is chosen, v2(t) is sampled using (9) replacing Nt =

Nt + 1 if v1(t) = Nt + 1 and leaving it as Nt if no new node has been
added.
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This generates a growing sequence of networks {Gn}n∈N with n
edges and a random number Nn of vertices, whose expected value
satisfies as n→∞ (Crane, 2018)

E [Nn] ∼
Γ(θ) + 1

αΓ(θ+α)
(2n)α.

Moreover, if we write Nk(g) as the number of vertices of degree k in
a graph g with vertex set V(g), this construction gives a closed-form
formula for the distribution of Gn,

P (Gn = g) = α#V(g) (θ/α)
↑v(g)

θ↑(2n)

∞∏
k=2

exp
{
Nk(g) log(1−α)↑(k−1)

}
,

where x↑j = x(x+ 1) · · · (x+ j− 1) is the rising factorial.
We then get a result regarding the sparsity and power-law properties

of the Hollywood process.

Theorem 2.11. Let G = {Gn}n∈N be a realization of a Hollywood process
with parameters α and θ. Then

• {Gn}n∈N is sparse almost surely if 1/2 < α < 1, and

• {Gn}n∈N has almost surely a power law degree distribution with
exponent α+ 1 if 0 < α < 1.



3
E D G E - E X C H A N G E A B L E D Y N A M I C N E T W O R K S

Consider a sequence of time-evolving interactions that can appear
and disappear over time, e.g., the interactions between elements in a
complex chemical reaction. This type of phenomena can be modelled
through dynamic random graphs by considering time-dependent
connection probabilities. In this section we will adapt the methods
developed in (Palla, Caron, and Teh, 2016) to the context of edge-
exchangeable frequency models.

Start with a frequency model

W =
∑
i,j

wiδθ{i,j}

G |W =
∑
i,j

e{i,j}δ(i,j)

eij
iid
∼ Ber(wiwj)

Here we fix the atoms θi,j belonging to a compact space Θ and fol-
lowing (Palla, Caron, and Teh, 2016) we incorporate continuous-time
dynamics by sampling the latent sociabilities from a time-dependent
random measure on Θ

Wt =
∑
i,j

wi(t)wj(t)δθ{i,j} , t > 0,

conceived by obtaining the weights from a continuous-time Feller
process known as an SF-Harris process (Anzarut and Mena, 2019)
with transition semigroup

Ktf(x) =
(
1− e−λt

)
Wf+ e−λtf(x), λ > 0,

whereW = (wi)i is a Poisson point process on [0, 1] with a non-atomic,
σ-finite intensity measure ν satisfying ν([0, 1]) =∞ and

∫1
0wν(dw) <∞, guaranteeing that Wt is countably infinite and that

∑
w∈Wt

w <∞
almost surely.

The SF-Harris process is time-reversible and has W as invariant
measure, which makes it strictly stationary. Further, it is uniformly
ergodic and has mean E [Wt] = E [W] = ν. Having an arbitrary
stationary measure allows us to incorporate power-law behaviours,
making the model more flexible.

54
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Figure 15: Sample trajectories of the two largest weights of an SF-Harris
process with a standard beta process with parameters α = 1 and
γ = 5 as its invariant measure and two different values of λ: 1

on the left and 10 on the right. Note how higher values of λ
correspond to a higher amount of jumps.

We also model the presence of a connection between each pair of
nodes as a continuous-time two-state chain such that infinitesimally,
given Wt,

P
(
eij(t+ dt) = 1 | eij(t) = 0

)
= wi(t)wj(t)dt+ o(dt) (10)

P
(
eij(t+ dt) = 0 | eij(t) = 1

)
= ρdt+ o(dt)

P
(
eij(t+ dt) = 1 | eij(t) = 1

)
= (1− ρ) dt+ o(dt)

P
(
eij(t+ dt) = 0 | eij(t) = 0

)
=
(
1−wi(t)wj(t)

)
dt+ o(dt)

Thus the infinitesimal generator A(ij)(t) for this process has the
form

A(ij)(t) =

[
−wi(t)wj(t) wi(t)wj(t)

ρ −ρ

]
This implies that for each pair of nodes θi, θj new edges arrive

according to a Poisson process with intensity wi(t)wj(t) and are
deleted after an exponentially-distributed random time with intensity
ρ.

Note how since the state-space is finite then (11) is a Feller process
(Kallenberg, 2002). Moreover, we consider the eij(t) independent given
Wt, hence the process (eij(t))ij is still Feller since by proposition 19.3
of (Kallenberg, 2002), weak convergence of the random sequence is
equivalent to the weak convergence of each individual component,
thus fulfilling the necessary conditions.

This scheme yields the following model:

Wt ∼ SF-Harris(α,W) (11)

eij(t) |Wt =
∑

wi(t) δθi ∼ 2-State-Chain(ρ,wiwj) (12)

Gt | eij(t) =

∞∑
i

eij(t) δθ(i,j)

An additional assumption required to better model real-world phe-
nomena is that at each time t only a finite number of interactions
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are present, which can be achieved by imposing restrictions on the
intensity measure of W.

This sampling procedure can be formalized by considering the pair(
Gt |Wt

Wt

)
(13)

taking values on Msim
θ ×M

[0,1]
θ , the product of spaces of simple

point processes and atomic measures on [0, 1] with a fixed set of atoms
θ.

The time-homogeneous transition semigroup of this process takes
the form

Ttf =

∫ ∫
f(w, e)Pwt (e, de)St(w, dw), f ∈ Cb

(
Msim
θ ×M

[0,1]
θ

)
,

where St is the semigroup of the process Wt and Pwt the one of Gt|Wt.
This last semigroup can be obtained by considering the transforma-

tion φθ : {0, 1}N →Msim
θ ,

(eij)i,j
ϕ−→
∑
i,j

eij δθij ,

where {0, 1}N has the product topology induced by endowing each
{0, 1} with the discrete metric, which coincides with the `1 distance.
This makes {0, 1}N compact and Hausdorff (as a subset of [0, 1]).

Proposition 3.1. The transformation ϕθ is a homeomorphism.

Proof. First let us show that ϕθ is continuous. To do this notice that a
sequence (xi)i∈N in {0, 1}N convergences to x = (x1, x2, . . . ) ∈ {0, 1}N

if and only if each of its projections converges in {0, 1}, and thus for
each ε > 0 and each n we can take 2−n−1ε and find an Nn > 0 such
that |xni − xi| < 2

−n−1ε for all n > Nn, hence

∞∑
n=1

|xni − xi| <

∞∑
n=1

2−n−1ε = 2
ε

2
= ε,

which entails that convergence in the product topology implies con-
vergence in `1. Hence for all bounded measurable functions f (each
bounded by Kf) and all µ,ν ∈Msim

θ (Θ)∫
f dµ−

∫
f dν =

∑
i

e
µ
ijf(θij) −

∑
ij

eνijf(θij) 6 K
∑

|e
µ
ij − e

ν
ij|,

and thus ϕθ is continuous on its coefficients eij; moreover, it also
has a continuous inverse∑

i,j

eij δθij
ϕ−1

−→ (eij)i,j,

since if a sequence xn = {(x1n, x2n, . . . )} ⊂ {0, 1}N converges in `1 to
x ∈ {0, 1}N then for all i

|xin − xi| 6
∞∑
i=1

|xin − xi|,
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implying that each component of xn converges in `1 and therefore
in the discrete topology, so xn converges in the product space. The
continuity of ϕ−1 follows by taking the constant function equal to 1

in Msim(Θ).

Then by taking the transition semigroup of (eij) given Wt, i. e.

P∗tf = E
[
f
(
(eij)

)
| Fe

t ,Wt
]

,

where Fe
t is the natural filtration generated by the process (eij), we

can define for all f ∈ Cb
(
Msim(Θ)

)
Pwt f = P

∗
t(f ◦ϕθ) ◦ϕ−1

θ ,

which by the continuity of both ϕθ and ϕ−1
θ is a well defined transition

semigroup on Msim(Θ).
Now we shall give conditions for the finiteness of the number of

edges at each time. Note that by Markov’s inequality,

P (#Et =∞) = P

( ∞⋂
k=1

#Et > k

)

= lim
n→∞P

(
n⋂
k=1

#Et > k

)

= lim
n→∞P (#Et > n) 6 lim

n→∞ E [#Et]
n

,

which implies that if the expected number of connections is finite then
#Et is almost surely finite. A sufficient condition for integrability can
be stated in terms of the Lévy measure of the stationary distribution
of Wt.

Theorem 3.1. The expected number of edges #Et and vertices #Vt is given
by

E [#Et] =
∫ ∫

wv

ρ+wv
ν(dw)ν(dv)

and if ρ > 1

E [#Vt] =
∫
1− exp

{
−

∫
1−

ρ

ρ+wv
ν(dv)

}
ν(dw).

Proof. First we note that the form of the transition semigroup of the
SF-Harris process implies that if W is the stationary measure then by
Campbell’s theorem for all ν-integrable functions f,

E [f(Wt)] = E [f(W)] =

∫
f(w) dν(dw).

Further, if for each eij(t) we take the initial measure

µ(de | wi,wj) =
wiwj

wiwj + ρ
δ1 +

wiwj

wiwj + ρ
δ0,
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then the law of eij(t) equals

L
(
eij(t)

)
=

wi(t)wj(t)

wi(t)wj(t) + ρ
δ1 +

ρ

wi(t)wj(t) + ρ
δ0.

This can be seen by noting that the two-state Markov chain is time-
homogeneus and has that exact invariant measure, making it strictly
stationary, and hence by starting the randomized chain on µ the
relation holds.

This, along with Fubini’s theorem gives

E [#Et] = E

 ∞∑
i,j=1

eij(t)


=

∞∑
i,j=1

E
[
E
[
eij(t) |Wt, eij(s) = 0

]]

=

∞∑
i,j=1

E

[
wiwj

ρ+wiwj

]
.

Rearranging the sums and using Slivnyak-Mecke’s1 and Fubini’s
theorems,

E [#Et] =
∑
w∈W

E

 ∑
v∈W\{w}

wv

ρ+wv


=
∑
w∈W

∫
E

[
wv

ρ+wv

]
ν(dv)

=

∫
E

[∑
w∈W

wv

ρ+wv

]
ν(dv)

Then, by Campbell’s theorem,

E [#Et] =
∫

E

[∑
w∈W

wv

ρ+wv

]
ν(dv) =

∫ ∫
wv

ρ+wv
ν(dw)ν(dv).

Now for the vertices, by the conditional independence of the eij and
Fubini’s theorem,

E [#Vt] = E

[ ∞∑
i=1

I(Degi(t) > 0)

]

= E

[ ∞∑
i=1

P
(
Degi(t) > 0 |Wt, eij(s) = 0

)]

= E

 ∞∑
i=1

1− ∞∏
j=1

P
(
eij(t) = 0 | eij(s) = 0,Wt

)

= E

 ∑
w∈Wt

∏
v∈Wt\{w}

(
1−

ρ

ρ+wv

) .

1 See appendix A.
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Using Slivnyak-Mecke’s theorem

E [#Vt] = E

 ∑
w∈Wt

1− ∏
v∈Wt\{w}

ρ

ρ+wv



=

∫
E

1− ∏
v∈Wt

ρ

ρ+wv

 ν(dw)

=

∫
1− E

exp

 ∑
v∈Wt

log
(

ρ

ρ+wv

)
 ν(dw)

Finally, since w ∈ (0, 1) and noting that
∣∣∣log ρ

ρ+wv

∣∣∣ = − log ρ
ρ+wv ,

exponentiating we get

ρ+wv

ρ
= 1+

w

ρ
v 6 1+ v 6 ev if ρ > 1,

and
∫1
0 v ν(dv) <∞,

∫1
0

log
(

ρ

ρ+wv

)
ν(dv) <∞, so by Campbell’s

theorem,

E [#Vt] =
∫
1− E

exp

 ∑
v∈Wt

log
(

ρ

ρ+wv

)
 ν(dw)

=

∫
1− exp

{
−

∫
1−

ρ

ρ+wv
ν(dv)

}
ν(dw).

In the context of (13) this last result is true for any initial measure
µ⊗∞(de | w)ν0(dw), where ν0 is whichever starting measure for
W and µ⊗∞φx is the pushforward measure of φx with respect to the
infinite-product measure µ⊗∞ obtained from the Daniell-Kolmogorov
extension theorem by the conditional independence of the eij(t).

Furthermore, by the geometric ergodicity of the two-state Markov
chain it is not unreasonable to conjecture the asymptotic veracity of
the statement for any initial measure of the process (13).

3.1 simulation

Sampling for the aforementioned stochastic process can be done in a
two-stage procedure:

1. Fix a sequence of times t1, . . . , tn and simulate a trajectory of
the sociability parameters,

(Wt1 , . . .Wtn) ,

2. then sample the edges’ paths,(
eij(t1), . . . , eij(tn)

)
ij

.
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While the second stage of this procedure is straight-forward to do,
the feasibility of the first one depends on the exact random measure
chosen as the stationary distribution of the SF-Harris process, since
one must simulate from some finite-dimensional approximation of it.

Some random measures, like the Dirichlet or the beta process2,
can be managed by truncating their stick-breaking representation
(Sethuraman, 1994), (Teh, Görür, and Ghahramani, 2007); but this
approach is not always feasible nor computationally tractable (Favaro,
Lijoi, and Prünster, 2012).

In the general setting, one wishes to find a series representation for
the random measure W, that is, a way to expand W as

W =

∞∑
k=1

wkδθk .

Doing so would yield an iterative sampling method that can be
stopped at any time to obtain a finite-dimensional representation
of W. Now we will present three different ways this can be achieved,
based on the survey provided in (Campbell et al., 2019): the inverse
Lévy, Bondesson and thinning representations. In the following, let ν
be the jump part of the Lévy measure of a homogeneous completely

random measure W and let Γk =
∑k
l=1 El, with El

iid
∼ Exp(1) be the

ordered jumps of a homogeneous unit-rate Poisson process on R+.

Inverse Lévy representation

Let ν̄(x) = ν ([x,∞)) be the tail Lévy measure and define its general-
ized inverse

ν̄−1(u) = inf
x
{x : ν ([x,∞)) 6 u}.

Then, in distribution,

W
d
=

∞∑
k=1

ν−1 (Γk) δθk .

The weights of this representation are non-increasing, guaranteeing
the sampling of atoms with the higher mass first; however, the inverse
tail Lévy measure is not analitically tractable in most of the cases
(Campbell et al., 2019).

Bondesson representation

W has a Bondesson representation if for c > 0 and a density g on R,

W
d
=

∞∑
k=1

Vke
−Γk/cδθk , Vk

iid
∼ g.

Not all completely random measures have said representation; indeed,
if ν(dθ) = ν(θ) dθ, i. e., ν has a (Lebesgue) density such that θν(θ)

2 A beta process is a CRM on [0, 1] with Lévy measure ν(dw) = γαw−1(1−w)1−α dw.
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is nonincreasing, limθ→∞ θν(θ) = 0, cν := limθ→0 θν(θ) < ∞ and
cν > 0 then we can take

g = −c−1ν
d

dυ
υν(υ)

and ν has a Bondesson representation with density g.

Thinning representation

We say thatW has a thinning representation if there exists a probability
measure g on R+ such that ν is absolutely continuous with respect to
g and

W
d
=

∞∑
k=1

VkI

(
dν
dg

(Vk) > Γk

)
δθk , Vk

iid
∼ g.

This has the disadvantage that as Γk → ∞ a.s. when k → ∞, the
probability that dν

dg (Vk) > Γk decreases in k and thus the amount of
atoms sampled with zero mass becomes increasingly frequent, making
this representation inefficient for a large amount of atoms.

Example 3.1. The 3-parameter beta process on [0, 1] is defined as
having Lévy measure

ν(dw) = γ
Γ(1+α)

Γ(1−β)Γ(α+β)
w−1−β(1−w)α+β−1 dw,

where γ > 0 and β ∈ (0, 1). This CRM has finite total mass if α >
−β, and has been known to exhibit power-law behaviours when
normalized (Campbell et al., 2019).

If β = 0 then it corresponds to the standard beta process and if we
further let α = 1, it has inverse Lévy representation

∞∑
k=1

Wi δθi , Wk =

k∏
i=1

βi, βi
iid
∼ Beta(γ, 1). (14)

Moreover, if α > 1 and β = 0, then θν(w) = γα(1−w)1−α, which
is nonincreasing in [0, 1]. Further,

cν = γα and g(υ) = (α− 1)(1− v)α−2.

This corresponds to the density of a Beta(1,α− 1) random variable,
from which the weights of the Bondesson representation are then
sampled.

If we take g = Beta(1−β,α+β) the thinning representation for the
beta process takes the form

∞∑
k=1

Vk I (VkΓk 6 γ) δθk , Vk
iid
∼ Beta (1−β,α+β) .

Now we will illustrate the empirical behaviour of the graph se-
quences sampled from this model by employing a standard beta
process as the stationary measure of the sociability parameters.

We truncate the outer sum to 10,000 and fix the parameters of the
beta process to α, ρ = 1 and let γ = 5, 100. To simulate we use the
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inverse Lévy representation (14) at times t = 0, 1, 2 and the transition
of the two-state chain:

p00(t) =
ρ

wiwj + ρ
+

wiwj

wiwj + ρ
e−(wiwj+ρ)t

p01(t) =
wiwj

wiwj + ρ
−

wiwj

wiwj + ρ
e−(wiwj+ρ)t

p10(t) =
ρ

wiwj + ρ
−

ρ

wiwj + ρ
e−(wiwj+ρ)t

p11(t) =
wiwj

wiwj + ρ
+

ρ

wiwj + ρ
e−(wiwj+ρ)t

,

which yields the following algorithm:

Algorithm 9 Graph sampling with a beta process base measure

1: Sample vi
iid
∼ Beta(γ, 1) for i = 1, . . . n.

2: Take wi(0) =
∏
j6i vi for all i.

3: Sample u ∼ U(0, 1).
4: Sample G0 by adding an edge between nodes i and j if

u <
wiwj

wiwj + ρ
.

5: for t = t1, t2, . . . do
6: Sample u ∼ U(0, 1).
7: if u 6 e−λt then
8: Set Wtk =Wtk−1
9: else

10: Simulate vi
iid
∼ Beta(γ, 1) for i = 1, . . . n.

11: Take wi(tk) =
∏
j6i vi for all i.

12: end if
13: Sample u ∼ U(0, 1).
14: if eij(tk−1) == 0 then
15: if u < wi(tk)wj(tk)

wi(tk)wj(tk)+ρ
− e−(wi(tk)wj(tk)+ρ)t wi(tk)wj(tk)

wi(tk)wj(tk)+ρ

then
16: Set eij(tk) = 1
17: else
18: Set eij(tk) = 0
19: end if
20: else
21: if u < ρ

wi(tk)wj(tk)+ρ
− e−(wi(tk)wj(tk)+ρ)t ρ

wi(tk)wj(tk)+ρ

then
22: Set eij(tk) = 0
23: else
24: Set eij(tk) = 1
25: end if
26: end if
27: end for

In order to illustrate that the model produces sparse graphs we
sample a sequence of dynamic networks by varying the truncation
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number and calculating the number of edges present at each time.
The results are presented in figure 16.

Figure 16: Simulated data from a model with weights generated by a beta
process. The plot on the left was generated using γ = 3, while the
one on the right with γ = 50. Each color represents a different
sampling time. The dashed line is a line with slope 2. Both axes
are on a log scale.

To check whether each graph was sparse we plotted the number of
vertices against the number of edges (on a log scale) and compared
it to a line of slope 2. In all cases the point cloud appears to follow a
straight line with a slope smaller than two, which indicates that the
graphs are sparse since, empirically, #En ∼ o

(
#V2n

)
. Also we note that

higher levels of γ give sparser networks.
As a complement we simulated again a graph sequence with pa-

rameters ρ,α = 1 and γ = 15. The degree distribution of each graph
is plotted on figure 17. Note how the shape does not seem to corre-
pond to a power law, which is expected since the beta process fails
to reproduce that kind of behaviour (Broderick, Jordan, and Pitman,
2012).

Figure 17: Degree distribution of a graph sequence across times 1, 2, 3, 4

and 5. The number of atoms was truncated to 200. Each color
represents a different sampling time. Both axes are in a log scale.



4
C O N C L U S I O N S

Building probabilistic models for relational data that can mimic real-
world behaviour has proven to be a daunting challenge. Most of the
classic models fail to reproduce sparcity and power laws, or are too
restrictive to be useful for applications.

In recent years a new trend of models that exploit the rich theory of
Bayesian nonparametrics has arisen. They move past the framework
provided by dense graph limits by encoding the connection probabil-
ities as a random measure whose atoms correspond to the nodes in
the graph it produces.

Throughout this dissertation we have reviewed some of these mod-
els, namely the ones based on graphices (Caron and Fox, 2017), (Veitch
and Roy, 2015) and on edge-exchangeability (Crane and Dempsey,
2018), (Cai, Campbell, and Broderick, 2016a). These are able to pro-
duce sparse graphs and power laws, provided their base completely
random measures have said property.

On the last chapter we built a continuous-time graph-valued Markov
process based on the edge-exchangeable framework and explored
its sparsity properties through simulation. While we have found
that the graps it samples are indeed sparse, the specific role of its
parameters, particularly the death rate of its edges, needs to be further
studied and verified theoretically. Moreover, a closer examination of
its properties as a Markov process can be useful, specifically stability
can continuity results, e. g., ergodicity and whether the process has
the Feller property.

In the same fashion as in (Palla, Caron, and Teh, 2016), a direct
extension of this model is to consider a linear-birth-death process
instead of a two-state chain to generalize it to multigraphs. This
however would complicate the topology of its state-space, making it
more difficult to handle.

Finally, an estimation procedure still needs to be researched. Markov
chain Montecarlo is the usual choice for Bayesian models, since it can
separate each individual parameter and perform an iterative algorithm.
This carries the problem of efficiency, since usually many iterations
need to be performed in order to guarantee convergence. Another
possibility, not necessarily incompatible with MCMC, is the usage
of the many algorithms deviced in the machine learning community
for estimating hidden Markov processes in order to propagate the
information of the graph into the latent connection probabilities.
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A P P E N D I X A . F U N C T I O N A L S O F P O I S S O N P O I N T
P R O C E S S E S

In this appendix we will state two different theorems useful for com-
puting expectations of functionals of Poisson point processes. The first
one is Campbell’s theorem.

Theorem A.1. (Campbell) (Kingman, 1967). Let Π be a Poisson point
process on S with rate measure ν and let f : S→ R be measurable. Then

E

[∑
x∈Π

f(x)

]
=

∫
S

f(x)ν(dx).

Moreover, if ∫
S

1∧ |f(x)|ν(dx) <∞,

then for all θ ∈ C

E
[
eθ(
∑
x∈Π f(x))

]
= exp

{∫
S

(
eθf(x) − 1

)
ν(dx)

}
.

The second part of the theorem is particularly useful to calculate
expectations of products by transforming them to a sum using the log-
arithm and then composing it with the exponential function; provided
the integrability condition holds.

The second theorem is a corollary of the Slivnyak-Mecke’s theorem
for reduced Palm distributions of point processes, which intuitively
correspond to conditioning the process to having a point on some
location.

Theorem A.2. (Slivnyak-Mecke) (Cai, Campbell, and Broderick, 2016a). Let
Π be a Poisson point process on S with rate measure ν and let f : S×Ω→
R+ be measurable. Then

E

[∑
x∈Π

f (x,Π \ {x})

]
=

∫
S

E [f(x,Π)] ν(dx).
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A P P E N D I X B . A S Y M P T O T I C S N O TAT I O N

Here we will establish the notation used throughout this work, directly
transcribing appendix A.1 in (Caron and Fox, 2017). Let (Xt)t>0 and
(Yt)t>0 two almost surely divergent stochastic processes defined on
the same probability space. Then

Xt = O(Yt) a.s. if lim sup
t→∞

Xt

Yt
<∞ a.s.

Xt = o(Yt) a.s. if lim sup
t→∞

Xt

Yt
= 0 a.s.

Xt = Ω(Yt) a.s. if Yt = O(Xt) a.s.

Xt = ω(Yt) a.s. if Yt = o(Xt) a.s.

Xt = Θ(Yt) a.s. if Xt = O(Yt) and Xt = Ω(Yt) a.s.

These can be interpreted as

Xt = O(Yt) if Xt does not grow at a faster rate than Yt

Xt = o(Yt) if Xt grows at a strictly slower rate than Yt

Xt = Ω(Yt) if Xt does not grow at a slower rate than Yt

Xt = ω(Yt) if Xt strictly grows at a faster rate than Yt

Xt = Θ(Yt) if Xt and Yt grow at the same rate.
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C
A P P E N D I X C . G L O S S A RY

This small glossary is designed to help readers understand the key
concepts behind this dissertation, providing short and less technical
explanations than the ones given in the main text.

• Dense graph. We say a graph is dense if the number of edges is
roughly of the same order as the maximum number of possible
edges, which in the case when the graph has n edges corresponds
to it being of order n2.

This kind of graphs are usually not suitable for real-world applica-
tions since most graphs observed empirically are not dense (Orbanz
and Roy, 2015).

• Kallenberg exchangeability. Kallenberg exchangeability of a graph
consists of its adjacency matrix represented as a point process being
exchangeable, that is, being invariant (in law) to area-preserving
transformations. In terms of network theory, this is translated to
the moment of arrival of each new node to the network being
exchangeable. As an example consider Facebook. If its profiles and
the friendships between them are Kallenberg-exchangeable then
its distribution is invariant to the order in which new users sign
up, not taking into account whether they have any connections
whatsoever.1

• Power laws. A power law describes the behaviour of the tail of
a probability distribution, making it decay slowly. In the case of
random graphs, it models situations where nodes with a distin-
guishably larger amount of edges than the average are observed,
for instance, an epidemic in which certain individuals can spread
the disease to an unexpectedly large number of people.

In contrast to exchangeable graphs, a network with a power law
exhibits unhomogeneous behaviours better suitable for many real-
world applications.

• Sparse graph. A graph is sparse if, in average, has the same amount
of edges as vertices. Intuitively this implies that the number of
connections is much less than the maximum amount possible, in
contrast with a dense graph.

This definition of sparsity is somewhat arbitrary, tailored to work on
graph sequences with an increasing number of nodes rather than on
a single, isolated finite graph (Crane, 2018). The general definition
is rather vague, a graph being sparse simply if the number of edges
is negligible compared to the number of nodes.

1 These interpretation and example were taken from section 7.3.3 of (Crane, 2018)
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• Vertex exchangeability. A random network is vertex-exchangeable
if its distribution remains invariant to the reordering of its vertices.
This is a homogeneity condition. Indeed, since the distribution of
the graph must look the same from the perspective of every vertex,
the graph is not likely to have any discernable patterns. According
to (Crane, 2018), this also corresponds to any finite sample of the
network being representative of it.
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