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Abstract

In this work a study of the qqQ baryons and qqqQQ̄ pentaquarks is presented, where q represents
the light quarks and Q the heavy quarks:

In the first part, a study of the strong and radiative decays for singly heavy baryons, in the
deformed quark model, is presented. The treatment is for both, the S- and P -wave states. In partic-
ular, for the electromagnetic case one can focus on the two independent decays widths Σ∗+Q (uuQ)→
ΣQ(uuQ)+γ and Λ∗Q(udQ)→ ΛQ(udQ)+γ, the generalization to the rest is obtained immediately by
flavor symmetry properties. On the other hand, the strong decay widths are calculated by means of
the Elementary-Meson Emission Model, where each of the contributions owing to individual isospin
channels are also obtained. The results of both types of processes are reported and compared with
the current experimental data and with other works.

In the second part, a classification of ground and one orbital excited states for the hidden charm
pentaquark with total angular momentum JP = 3/2− is made, and for configurations with flavor
content uudcc̄. From a large number of states, 5 for ground states and 19 for radially excited states,
it is found that only 3 can contribute to the photoproduction of pentaquarks. Finally in order to
obtain their decay widths , whose current interest is relevant for confirmation in new experiments, the
orbital contribution to the photoproduction of these pentaquark states is calculated. The analysis
is through two approximations: the harmonic oscillator and the hyper-Coulomb potentials. At the
end, the photoproduction channel p(uud) + γ → Pc(uudcc̄) is found to be highly suppressed, either
in ground or excited pentaquark states, and calculated with both the harmonic oscillator and the
hypercentral models.
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Resumen

En este trabajo se presenta un estudio de qqQ bariones y qqqQQ̄ pentaquarks donde q representa
los quarks ligeros y Q los quarks pesados:

En la primera parte, se presenta un estudio de los decaimientos electromagnéticos y fuertes de
bariones con un quark pesado, en el modelo de quarks deformado. El tratamiento es tanto para los
estados de onda S como P . En particular, para el caso electromagnético uno puede enfocarse en
dos decaimientos independientes Σ∗+Q (uuQ) → ΣQ(uuQ) + γ y Λ∗Q(udQ) → ΛQ(udQ) + γ, donde
la generalización al resto se obtiene directamente debido a las propiedades de simetría de sabor.
Por otro lado, se calculan las anchuras de decaimientos fuertes por medio del Elementary-Meson
Emission Model, donde también se obtienen cada una de las contribuciones debidas a los canales
individuales de isoespín permitidas por las reglas de selección. Se reportan los resultados de ambos
tipos de procesos y se comparan tanto con los datos experimentales como con otros trabajos actuales.

En la segunda parte, se muestra una clasificación de los estados base y estados con un cuanto
de excitación orbital de los pentaquarks, con momento angular total JP = 3/2− y contenido de
sabor uudcc̄. Se encuentra que, de un gran número de estados, 5 para estados base y 19 para
estados radialmente excitados, sólo 3 de estos pueden contribuir a la fotoproducción del pentaquark.
Finalmente, con el fin de obtener las anchuras de decaimiento de la fotoproducción de los estados
pentaquark, cuyo interés es relevante para la confirmación en nuevos experimentos, se calcula la
contribución orbital de este proceso. Para este fin se utilizan dos aproximaciones: un potencial tipo
oscilador armónico y un hiperpotencial tipo Coulomb. Se encuentra que el canal de fotoproducción
del pentauquark p(uud) + γ → Pc(uudcc̄) está altamente suprimido, ya sea en los estados base o
excitados y calculado con ambos modelos, el del oscilador armónico y el hipercentral.

III



IV



Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1 qqq Baryons 3
1.1 Quark Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 Multiquark States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Baryon states in SU(3) with flavors u, d, s. . . . . . . . . . . . . . . . . . . . 5

1.2 The wave functions of three-flavor baryons . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 Color wave function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2 Orbital wave function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.3 Spin wave function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.4 Flavor wave function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2.5 Spin-flavor wave functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3 Four-flavor SU(4) quark model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.1 Classification of three-quark baryons with heavy quark content . . . . . . . . 16
1.3.2 Heavy Baryons: qqQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Deformed quark model (qqQ or QQq) 21
2.1 Quark harmonic oscillator model: Hamiltonian for three particles m1 = m2 6= m3 . . 21
2.2 Mass spectra of heavy baryons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Strong Couplings of Heavy Baryons 31
3.1 The interaction Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Strong decay widths of ΣQ and ΛQ baryons . . . . . . . . . . . . . . . . . . . 38
3.1.2 Strong decay widths of ΞQ and Ξ′Q baryons . . . . . . . . . . . . . . . . . . . 39
3.1.3 Strong decay widths of ΩQ baryons . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Electromagnetic Couplings of Heavy Baryons 47
4.1 The interaction Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5 qqqqq̄ Pentaquarks 63
5.1 Pentaquark wave functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.1.1 Orbital wave function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.1.2 Color wave function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.1.3 Spin wave function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.1.4 Flavor wave function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.1.5 Ground-state pentaquarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.1.6 Orbital-excited pentaquarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Photocouplings of hidden-charm pentaquarks 71
6.1 Electromagnetic decays by pair-annihilation . . . . . . . . . . . . . . . . . . . . . . . 73

6.1.1 Decay width for the photoproduction of pentaquarks . . . . . . . . . . . . . . 73
6.2 Color-Spin-Flavor Matrix Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2.1 Ground state pentaquarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2.2 Pentaquarks with one quantum of orbital excitation in ρ and λ . . . . . . . . 77

V



VI CONTENTS

6.2.3 Pentaquarks with one quantum of orbital excitation in η and ζ . . . . . . . . 77

7 Harmonic Oscillator Quark Model 79
7.1 Proton Charge Radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2 Pentaquark Charge Radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.3 Orbital matrix element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.3.1 Ground state pentaquark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.3.2 Parameters for pentaquarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.3.3 Pentaquark with one quantum of excitation in ζ . . . . . . . . . . . . . . . . 82

7.4 Discussion of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

8 Hypercentral Quark Model 87
8.1 Proton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.2 Proton Charge Radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8.3 Pentaquark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8.3.1 Hyperradial equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.3.2 Hyperangular equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.3.3 Confining potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

8.4 Pentaquark Charge Radius . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.5 Overlap of the orbital part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

8.5.1 Ground state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.5.2 Pentaquark with one quantum of excitation in η and ζ . . . . . . . . . . . . . 95

8.6 Discussion of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

9 Summary and Conclusions 99
9.1 Heavy Baryons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.2 Pentaquarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

A Conventions 101
A.1 The non-relativistic limit of the electromagnetic quark current . . . . . . . . . . . . 101

B Useful relations 103
B.1 Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
B.2 Bessel functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
B.3 Modified Bessel functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

B.3.1 Radial contribution of the baryon states . . . . . . . . . . . . . . . . . . . . . 104
B.3.2 Spin-flavor contributions of the H1 matrix elements . . . . . . . . . . . . . . 105

C Dynamical analysis for the strong and electromagnetic process 107
C.0.1 Four-momentum conservation in Pc → p+ γ process . . . . . . . . . . . . . . 107
C.0.2 Four-momentum conservation in B → B′ +M process . . . . . . . . . . . . . 107
C.0.3 Four-momentum conservation in B → B′ + γ process . . . . . . . . . . . . . . 108



Introduction

In the quark model hadrons are described as composite particles consisting of quarks and antiquarks.
The minimal quark content is a quark-antiquark pair for mesons and a three-quark configuration for
baryons. In the original version of the quark model there were three possible quark flavors, up, down
and strange, together called the light quarks. Later, evidence was found for the existence of three
other quark flavors, charm, bottom and top, called the heavy quarks. In recent years, the LHCb,
Belle, BaBar and BESIII collaborations have discovered a large amount of new hadrons with heavy
quark flavors. The LHCb Collaboration has announced the observation of new baryon resonances,
particularly singly charm and singly bottom baryons. For example, in 2019 LHCb reported the
observation of new ground states Σ±b with spin-parity JP = 1/2+ and Σ∗±b with 3/2+ as well as the
resonance Σb(6097)±, all were found in the Λ0

bπ
± channels using pp collision data [1]. For the case

of the Ξc/b and Ξ′c/b baryons there has been a lot of information provided not only by LHCb, but
also by Belle and BaBar. For the charm sector, the following resonances have been well established:
Ξc(2645), Ξc(2790), Ξc(2815), Ξc(2930), Ξc(2970), Ξc(3055), Ξc(3080) and Ξc(3123). There are
further resonances just discovered by LHCb, the new single charm resonances Ξ0

c(2923) and Ξ0
c(2939)

observed in the channel Λ+
c K
− [2]. Not to forget the bottom sector, where since 2015 LHCb observed

Ξ−b (5935) and Ξ−b (5955) resonances close to the threshold Ξbπ [3], and the resonances Ξb and Ξ∗b
[4, 5]. The resonance Ξ0

b(5945) was reported decaying to Ξbπ [6], while Ξ−b (6227) was observed in
2018 in both ΛbK and Ξbπ channels [7]. Additional to these long list of heavy baryons, in 2017 the
LHCb Collaboration found, the following five narrow states Ωc(3000),Ωc(3050),Ωc(3066),Ωc(3090)
and Ωc(3117) in the Ξ+

c K
− decay channel [8, 9]. Very recently the knowledge of Ωb has been

expanded with the discovery of more resonances, because the LHCb collaboration reported 4 signals
in Ωb(6316), Ωb(6330), Ωb(6340) and Ωb(6350) in the Ξ0

bK
− mass spectrum [10].

In 2015, for the first time. LHCb observed two signals in the J/ψ p channel of the Λ0
b → J/ψ pK−

decay, consistent with a charmonium-pentaquark state with minimal quark content uudcc̄ [11, 12].
The measured masses of these resonances were 4380±8±29 MeV and 4449.8±1.7±2.5 MeV, and the
pentaquarks were denoted as Pc(4380) and Pc(4450), respectively. The preferred assignments JP
were suggested with opposite parity, and with one state having spin 3/2, while the other 5/2. More
recently, in 2019 with more data and statistics the LHCb collaboration discovered a new narrow
pentaquark state Pc(4312)+, with a mass of 4311.9±0.7+6.8

−0.6 MeV [13] and in the same channel than
previously observed. Additionally, they confirmed not only the pentaquark signal Pc(4450)+, but
also it was observed to consist of two narrow peaks Pc(4440)+ with a mass of 4440.3±1.3+4.1

−4.7 MeV and
Pc(4457)+ with 4457.3± 0.6+4.1

−1.7 MeV. Currently, there are several interpretations trying to provide
an explanation for all these detected signals. Some works find them to be kinematical effects [14], or
anomalous triangle singularities [15]. Others interpret them as molecular states [16, 17, 18, 19, 20],
and others, like the present, guide their study with compact five quark states [21, 22, 23, 24, 25].
One of the main motivations to carry out an analysis of these pentaquark states qqqcc̄ is precisely to
identify the multiplet to which they belong, in order to be able to describe their decay widths and
thus obtain a direct connection to the experiment. There is not just theoretical work to interpret
and comprehend the pentaquark signals, but also experimental efforts trying to confirm them. The
GlueX experiment located in Hall D at Jefferson Lab has had, as one of its main purposes, the
search and confirmation of the announced pentaquark states by LHCb, through electron scattering
experiments based on J/ψ photoproduction [26, 27, 28, 29, 30]. In 2019, The GlueX Collaboration
published the first results of the collected data by 2016 and 2017, where in the conclusions of their
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analysis they did not see evidence, to date, of the pentaquark signals by this mechanism [31].
The aim of this thesis is to present a study of the heavy baryons and pentaquarks in the frame-

work of the quark model, in particular, masses, electromagnetic and strong decays widths. This
thesis is organized as follows: In Chapter 1, the Constituent Quark Model is reviewed focusing on
the baryons with flavor content u, d and s. Later, in Chapter 2 an extension to four flavors, u, d, s
and Q is presented, where Q represents, either charm c, or bottom b heavy quarks. Within this
classification, the deformed quark model is introduced in which we distinguish the light from the
heavy quarks masses, in order to construct the S- and P -wave states of all singly heavy baryons.
Through a mass rule which takes into account spin-orbit, isospin and flavor dependent contribu-
tions, the mass spectra are derived. In Chapters 3 and 4, the strong and electromagnetic couplings
of baryons are discussed, in order to obtain the corresponding decay widths. At the end of this
chapter, all the results are presented and discussed, where they are also compared with other works.
In Chapter 5, the orbital, spin, color and flavor wave functions of the pentaquarks are obtained
based on the permutation symmetry under the three light quarks and distinguishing the charm and
the anti-charm from the other flavors. In addition, a classification of the pentaquarks is derived
for the ground-state and the one orbital excited states. Once constructed all the pentaquark wave
functions, then is discussed in Chapter 6 the photoproduction of the hidden-charm pentaquarks by
a pair annihilation process, not only for the color-spin-flavor matrix elements, but also the orbital
contribution to the photoproduction of pentaquark as a form factor that contains all the information
of the orbital part. In Chapters 7 and 8, this orbital part is calculated in terms of two approxima-
tions: with an harmonic oscillator and a hyper-Coulomb potentials. The results are presented and
discussed at the end of the chapter. I present the summary and the main conclusions of the complete
work in Chapter 9. The technical details about reductions in the calculations along the work, as
well as the non-relativistic limit and some useful formulas are provided in the Appendices. Finally,
at the end of this text three articles are added, two of which were already published in The Journal
of Physics G: Nuclear and Particle Physics [32] and The European Physical Journal C [33]. The
last article was already sent to be considered for publication in Physical Review D [34]. The first
work includes the analysis and classification of the hidden-charm pentaquark from the ground state
as qqqqq̄ configurations, where the mass spectrum and the magnetic moments of these pentaquarks
are also calculated. The second focuses on the identification and classification of the Ωc baryons
discovered by the LHCb [8], as well as the the strong decay widths. At the end of this work are
presented some predictions for the Ωb states that later were confirmed from the LHCb Collaboration
[10]. The last paper contains new information in the spectrum and strong decay widths for the
recently detected Ξc/b and Ξ′c/b baryons states.



Chapter 1

qqq Baryons

1.1 Quark Model
Hadrons are systems of strongly interacting particles corresponding to bound states of quarks and
gluon fields. The multiquark systems depend on the internal degrees of freedom like color, flavor
and spin, as well as the spatial degrees of freedom due to relative motion of the constituent quarks.
In particular, baryons are fermions with baryon number B = 1. In the most general case, they
are composed of three quarks. (i) The color part of their states functions is an SU(3) singlet, a
completely antisymmetric state of three colors. (ii) Since quarks are fermions, the total wave function
must be antisymmetric under interchange of any two equal-mass quarks. These two principles provide
the necessary elements to classify multiquark states.

It is important to emphasize the fact that the only three flavors considered in this section are u,
d and s. Besides spin S = 1

2 for each flavor, we have other internal degrees of freedom. They are the
three colors r, g and b. The algebraic structure of the constituent states of quarks will be formed by
the spin-flavor (sf) and color (c) groups

Gsfc = SUsf (6)⊗ SUc(3), (1.1)

where SUsf (6) represents the group of unitary transformations for spin and flavor as coupled states,
and group SUc(3) the unitary transformations among the three colors. The spin-flavor algebra can
be divided into groups

SUsf (6) ⊃ SUf (3)⊗ SUs(2). (1.2)

In the same way we can decompose the flavor algebra as

SUf (3) ⊃ SUI(2)⊗UY (1), (1.3)

with label I denoting the isospin and Y the hypercharge of quarks. These quantum numbers can
be expressed in terms of the charge Q of quarks, through the Gell-Mann–Nishijima relation,

Q = I3 +
Y

2
= I3 +

B + S
2

, (1.4)

where the hypercharge is defined as the sum of baryon number B plus the strangeness S of quarks
and I3 denotes the projection of isospin I,

Y ≡ B + S. (1.5)

In Table 1.1, I present the quantum numbers of quarks and antiquarks. Quarks have baryon
number B = 1

3 , spin S = 1
2 and positive parity, whereas antiquarks have B = − 1

3 , S = 1
2 and

negative parity.
The technique of Young diagrams is very useful to classify multiquark states.

3



4 CHAPTER 1. QQQ BARYONS

Table 1.1: Quantum numbers of quarks and antiquarks. Here, S denotes spin, S strangeness, I
isospin and I3 isospin projection.

B SP I I3 S Y Q

u 1
3

1
2

+ 1
2

1
2 0 1

3
2
3

d 1
3

1
2

+ 1
2 - 1

2 0 1
3 - 1

3

s 1
3

1
2

+ 0 0 -1 - 2
3 - 1

3

ū - 1
3

1
2

− 1
2 - 1

2 0 - 1
3 - 2

3

d̄ - 1
3

1
2

− 1
2

1
2 0 - 1

3
1
3

s̄ - 1
3

1
2

− 0 0 1 2
3

1
3

Young Diagrams

Making use of the Young diagrams technique and the multiplet labels of SU(n), it is possible to:

1. Construct the allowed representations of SU(n) for the multiquark system with n = 2, 3 and 6
degrees of freedom for the spin, flavor (or color) and spin-flavor respectively. That is, determine
the structure of the complete multiplet.

2. Identify and label the particle multiplets of SU(n).

3. Find the number of particles of a multiplet by its label.

The U(n) Young tableaux is labeled by a string of numbers [f1, f2, ..., fn] with the restriction
that f1 ≥ f2 ≥ ... ≥ fn, where fi denotes the number of the i-th row. Under SU(n) the Young
tableau [f1f2, ..., fn] is equivalent to [f1 − fn, f2 − fn, ..., f1 − fn], i.e., there is one label less in this
representation. Quarks transform as the fundamental representation [1] under SU(n). However, an-
tiquarks transform according to the conjugate representation [1n−1] under SU(n). As a result, the
three quarks belong to a flavor triplet [1] of SUf (3), and the three antiquarks to an flavor anti-triplet
[11].

Labels of SU(3) multiplets

Usually, multiplets are identified by their dimension, but in general this classification is not unique.
For example, quarks and antiquarks have the same dimension. For the particular case of SU(3) we
have the labels (λ, µ), which are related to the Young diagrams by (λ, µ) = (f1 − f2, f2 − f3). The
dimension of a given representation can be calculated in a closed formula, for this case dim(λ,µ) =
(λ + 1)(µ + 1)(λ + µ + 2)/2. This shows that the quarks belong to (λ, µ) = (1, 0) with dimension
dim(1,0) = 3, and the antiquarks to (λ, µ) = (0, 1) with dimension dim(0,1) = 3 each with three
flavors outlined in the plane weight diagram I3 − Y as can be seen in Table 1.1 and Fig. 1.1.
Consequently, it is better to introduce this notation to identify states.

The spin of quarks and antiquarks is determined by the representation [f1, f2] ≡ [f1 − f2] of SUs(2)



1.1. QUARK MODEL 5

Fig. 1.1: Triplet of quarks with [1] ≡ (λ, µ) = (1, 0) and the antiquarks [11] ≡ (λ, µ) = (0, 1)

as S = f1−f2
2 . The spin-flavor classification of a single quark and antiquark is given by

SUsf (6) ⊃ SUf (3) ⊗ SUs(2)

quark [1] ⊃ [1] ⊗ [1]

⊃ ⊗
(1.6)

antiquark [11111] ⊃ [11] ⊗ [1]

⊃ ⊗ .

1.1.1 Multiquark States

The restriction that physical states are color singlets, makes quarks or anti-quarks grouped into
multiplets with states of only three quarks (q3 baryons), or quark antiquark pairs (mesons qq̄),
or products of these. That is, individual quark states do not exist in isolation. In general, the
multiquark configurations can be expressed as

q3m+nq̄3k+n , (1.7)

which can be reduced to qqq baryons for m = 1 and k = n = 0, or we can obtain q̄q̄q̄ anti-baryons
for m = n = 0, k = 1, and qq̄ mesons for m = k = 0 y n = 1. Moreover, we can have tetraquark
states qqq̄q̄ with n = 2, m = k = 0, and pentaquarks states qqqqq̄ with m = n = 1 and k = 0.

1.1.2 Baryon states in SU(3) with flavors u, d, s.

Baryons are configurations of three quarks qqq ≡ q3 which interact with each other through gluonic
exchange. The color part of its wave function is a color singlet state of SU(3). Since quarks are
fermions their wave function must be completely antisymmetric under exchange of any two quarks
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Table 1.2: Baryon states of color, flavor and spin-flavor allowed

q3 Dimension

color [111] singlet

spin [3] 4
[21] 2

flavor [3] decuplet
[21] octet
[111] singlet

spin-flavor [3] 56
[21] 70
[111] 20

of equal masses (u and d in the limit of isospin symmetry). In general spin, flavor and spin-flavor
states for a system with q3 are obtained by taking the product

[1] ⊗ [1] ⊗ [1] = [3] ⊕ 2 [21] ⊕ [111]

(1.8)

⊗ ⊗ = ⊕ 2 ⊕

The symmetry of permutation for q3 system is characterized then by Young diagram [3] (symmetric),
[21] (mixed symmetry) and [111] (antisymmetric). In flavor space, these representations are usually
denoted by their dimensions, as 10 (decuplet), 8 (octet) and 1 (singlet), respectively.
The total angular momentum of baryon is given by the coupling of spins, since we do not consider
relative orbital angular momentum. Because the representation of SU(2) can have at most two rows,
this means that the spin of the three quarks can have at least two values S = f1−f2

2 = 3
2 which

corresponds to the Young diagram [3], or S = 1
2 from the Young tableaux [21]. In this case the

antisymmetric representation [111] does not occur. The dimension of spin is given by 2S + 1, and
the color, spin, flavor and spin-flavor states are listed in the Table 1.2.

The spin and flavor content for each multiplet of spin-flavor is given by decomposition of SUsf (6)
representations into SUf (3)⊗ SUs(2) according to the Young diagrams technique

SUsf (6) ⊃ SUf (3)⊗ SUs(2)

[56] ⊃ 28 ⊕ 410,

[70] ⊃ 28 ⊕ 48 ⊕ 210 ⊕ 21,

[20] ⊃ 28 ⊕ 41,

where the superscript index denotes 2S + 1. For example, the symmetric representation [56] con-
tains a flavor octet with S = 1

2 characterized by (λ, µ) = (1, 1), and a flavor decuplet with S = 3
2

by (λ, µ) = (3, 0). In the absence of orbital excitations the parity of the qqq baryons is positive
P (qqq) = (+)(+)(+)(−)l = +.

In Table 1.3 the flavor classification of the octet and the decuplet are presented, in terms of isospin
I and hypercharge Y according to the decomposition of flavor symmetry SUf (3) in SUI(2)⊗UY (1).
Nucleon and Delta are non strange baryons with strangeness S = 0, while the hyperons Σ, Λ, Ξ
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Table 1.3: Baryon classification of ground state according to SUf (3) ⊃ SUI(2)⊗ UY (1)

I Y Q

JP = 1
2

+
octet Nucleon N 1

2 1 0,1
Sigma Σ 1 0 -1,0,1
Lambda Λ 0 0 0
Xi Ξ 1

2 -1 -1,0

JP = 3
2

+
decuplet Delta ∆ 3

2 1 -1,0,1,2
Sigma Σ∗ 1 0 -1,0,1
Xi Ξ∗ 1

2 -1 -1,0
Omega Ω 0 -2 -1

and Ω carry strangeness S = −1,−1,−2 y −3, respectively. The flavor singlet [111] corresponds
to an electromagnetic orbitally excited baryon Λ which has isospin I = 0 and hypercharge Y = 0
(strangeness S = −1).

The weight diagram of the octet and decuplet can be seen in the Fig. 1.2. The generators of
three-flavor SU(3) quark model are given in terms of 8 Gell-Mann 3 × 3 λ matrices, where these
matrices are traceless Tr(λa) = 0 and hermitian [35]. The 8 generators of SU(3) can be divided
into two weight operators

Î3 =
1

2
λ3 =

1

2
(u†u− d†d)

Ŷ =
1√
3
λ8 =

1

2
(u†u+ d†d− 2s†s), (1.9)

and also three raising and three lowering operators

I+ =
1

2
(λ1 + iλ2) = u†d I− =

1

2
(λ1 − iλ2) = d†u

U+ =
1

2
(λ6 + iλ7) = d†s U− =

1

2
(λ1 − iλ2) = s†d

V+ =
1

2
(λ4 + iλ5) = u†s V− =

1

2
(λ1 − iλ2) = s†u. (1.10)

The step operators connect different states within a SU(3) flavor multiplet, on the other hand, the
weight operators gives the eigenvalues of isospin and hypercharge.

1.2 The wave functions of three-flavor baryons
The complete wave function for baryons can be obtained under the two principles with which the
chapter was started, i.e., since the three quarks should satisfy the Pauli exclusion principle, the total
wave function must be antisymmetric under any permutation of three quarks. On the other hand,
physical states are scalars in color space, which means that the color part is an antisymmetric SU(3)
singlet

ψ = ψoφfχsψc, (1.11)

The last condition implies that spin-flavor and orbital parts must have the same symmetry; the
options for both are symmetric, mixed symmetry, or antisymmetric. Since we are not considering
orbital excitations (in particular just baryons in the ground state), the orbital wave function ψo is
symmetric, and therefore the spin-flavor part has to be symmetric too.
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(a) (b)

Fig. 1.2: Baryon octet JP = 1
2

+ and baryon decuplet JP = 3
2

+

1.2.1 Color wave function
The basic properties defining this degree of freedom are:

1. Any quark u, d, s,... can exist in three different color states, which are called r, g and b, and of
course these labels are associated with to ’red’, ’green’ and ’blue’, respectively.

2. Each one of those states are characterized by two conserved color charges, IC3 and Y C , which
are similar to electric charge in the electromagnetic case. These charges depend only on the
states of color r, g, b and not on the flavors u, d, s, ....

3. only states with zero value for color charges are observables like free particles, and they are
called color singlets. This property is known as color confinement.

Now, since the wave function of color singlet should be antisymmetric, the only combination for
the three degrees of freedom is

|ψc〉 =
1√
6
|rgb− grb+ brg − rbg + gbr − bgr〉, (1.12)

and it has the six possible combinations of colors r, g and b.

1.2.2 Orbital wave function
In order to understand the structure of orbital wave function, the relative motion between the three
quarks is taken into account. This dynamics is studied through the quark harmonic oscillator model,
that proposes a Hamiltonian responsible for confinement of three effective quarks 1, 2 and 3 taken
with equal masses (m1 = m2 = m3)

H =
p1

2

2m
+
p2

2

2m
+
p3

2

2m
+

1

2
C

3∑
i<j

|~ri − ~rj |2, (1.13)

where it is assumed that the interaction comes from a harmonic oscillator potential. The case with
unequal quark masses will be discussed in Section 2.

The analytical solutions for the eigenstates are well known, and to get them it is customary to
use a change of coordinates in order to decouple the Hamiltonian into several oscillators. This work
is carried out by the Jacobi coordinates, which are defined for equal masses as
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~ρ ≡ 1√
2
(~r1 − ~r2)

~λ ≡ 1√
6
(~r1 + ~r2 − 2~r3)

~R ≡ 1
3 (~r1 + ~r2 + ~r3)

⇒



~r1 = ~R+ 1√
2
~ρ+ 1√

6
~λ

~r2 = ~R− 1√
2
~ρ+ 1√

6
~λ

~r3 = ~R−
√

2
3
~λ,

(1.14)

where the Jacobian corresponding to this change of coordinates into Cartesian ones, turns out to be

3∏
i=1

d3ri = 3
√

3d3ρd3λd3R. (1.15)

With these new coordinates the Hamiltonian can be rewritten as

H =
PCM

2

2M
+

pρ
2

2mρ
+

pλ
2

2mλ
+

3

2
Cρ2 +

3

2
Cλ2, (1.16)

so that this Hamiltonian now includes the center of mass motion with M = 3m, plus two harmonic
oscillators ρ and λ with the same spring constant C and the same effective mass mρ = mλ = m. In
this case since all three quarks have the same mass, both oscillators have the same frequency, hence
this system is degenerate. The associated momenta to these coordinates are

~P = M
d~R

dt
, ~pρ = mρ

d~ρ

dt
, ~pλ = mλ

d~λ

dt
, (1.17)

or in form of coordinated system is

~pρ = 1√
2
(~p1 − ~p2),

~pλ = 1√
6
(~p1 + ~p2 − 2~p3),

~P = ~p1 + ~p2 + ~p3

⇒



~p1 = 1
3
~P + 1√

2
~pρ + 1√

6
~pλ

~p2 = 1
3
~P − 1√

2
~pρ + 1√

6
~pλ

~p3 = 1
3
~P −

√
2
3 ~pλ,

and in analogy to the cartesian coordinates here we have the Jacobian

3∏
i=1

d3pi =
1

3
√

3
d3pρd

3pλd
3P. (1.18)

With the above change of coordinates, the orbital baryon wave function ψoB(~r1, ~r2, ~r3) is given
by

ψoB(~r1, ~r2, ~r3) =
1

(2π)3/2
e
~PCM ·~Rψrel(~ρ,~λ), (1.19)

where the relative wave functions are expressed in terms of coupled harmonic oscillator wave func-
tions, as

ψrel(~ρ,~λ) =
1√
3
√

3

∑
mρmλ

〈lρmρlλmλ|LM〉ψnρlρmρ(~ρ)ψnλlλmλ(~λ). (1.20)

All things considered, the ground state for the relative motion in coordinate space is given by

ψrel0 (~ρ,~λ) =
1√
3
√

3

α3

π
3
2

e−α
2(ρ2+λ2)/2, (1.21)
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while for states with one quantum of radial excitation in the λ-mode and ρ-mode, one has

ψrelλ (~ρ,~λ) =
1√
3
√

3

α3/2

π
3
4

e−α
2ρ2/2

√
8

3
√
π
λα5/2e−α

2λ2/2Y1,mlλ
(λ̂), (1.22)

and

ψrelρ (~ρ,~λ) =
1√
3
√

3

α3/2

π
3
4

e−α
2λ2/2

√
8

3
√
π
ρα5/2e−α

2ρ2/2Y1,mlρ
(ρ̂), (1.23)

respectively. The above expressions are given in terms of the spherical harmonics, and also with the
harmonic oscillator constant and frequency

α2 = (3Cm)
1
2 , ω =

√
3C

m
. (1.24)

Making a Fourier transform it is easy to obtain the wave function in momentum space, for example,
for the ground state one obtain

ψrelB ( ~pρ, ~pλ) =

√
3
√

3
1

π
3
2α3

e−(p2ρ+p2λ)/2α2

. (1.25)

1.2.3 Spin wave function
In this section the spin wave functions for baryon configurations are obtained. For this purpose let
us start considering just one quark. The spin wave function in the notation |[f ], S,MS〉 is given
for the representation [1] of Young tableaux. The only two states associated with the spin are:

|[1], 1/2, 1/2〉 = | ↑〉 and |[1], 1/2,−1/2〉 = | ↓〉. (1.26)

The allowed spin wave function for two quarks are given by the Young tableaux: [2] for S = 1
(symmetric), and [11] for S = 0 (antisymmetric). The spin is given by a closed formula S =
(f1 − f2)/2. Hence the states associated with this configuration are

|[2], 1, 1〉 = | ↑↑〉 and |[11], 0, 0〉 =
1√
2

(| ↑↓〉 − | ↓↑〉). (1.27)

If we use the spin ladder operator for two particles S− = S1− + S2− over the state |[2], 1, 1〉, we
can get the remaining projections:

|[2], 1, 0〉 =
1√
2

(| ↑↓〉+ | ↓↑〉) and |[2], 1,−1〉 = | ↓↓〉. (1.28)

In the same way, for three quarks the spin wave functions are given by the following Young
tableaux: [3] for S = 3/2, and [21] for S = 1/2. The explicit relations can be obtained by coupling the
third quark to the basis of the first two quarks, and adding the respective Clebsh Gordan coefficient

|(S12, S3)SMS〉 =
∑

M12,M3

〈S12M12, S3M3|S,MS〉|S12M12〉|S3M3〉. (1.29)

In this way, the totally symmetric A1 wave function is

|[3], 3/2, 3/2〉A1
= |(1, 1/2)3/2, 3/2〉 = 〈1, 1, 1/2, 1/2|3/2, 3/2〉|[2]1, 1〉|[1]1/2, 1/2〉 = | ↑↑↑〉, (1.30)
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for the states with symmetry Eλ and Eρ we have

|[21], 1/2, 1/2〉Eλ = |(1, 1/2)1/2, 1/2〉 = 〈1, 0, 1/2, 1/2|1/2, 1/2〉|[2]1, 0〉|[1]1/2, 1/2〉+

〈1, 1, 1/2,−1/2|1/2, 1/2〉|[2]1, 1〉|[1]1/2,−1/2〉

= − 1√
6

(| ↑↓↑〉+ | ↓↑↑〉) +

√
2

3
| ↑↑↓〉 =

1√
6

(2| ↑↑↓〉 − | ↑↓↑〉 − | ↓↑↑〉) (1.31)

and

|[21], 1/2, 1/2〉Eρ = |(0, 1/2)1/2, 1/2〉 = 〈0, 0, 1/2, 1/2|1/2, 1/2〉|[11]0, 0〉|[1]1/2, 1/2〉

=
1√
2

(| ↑↓↑〉 − | ↓↑↑〉). (1.32)

The three states above are in their maximum projection, so we can use S− operator for three
particles to get the missing states. In summary the next projections are obtained

χEλ ≡ |[21], 1/2, 1/2〉Eλ =
1√
6

(2| ↑↑↓〉 − | ↑↓↑〉 − | ↓↑↑〉)

χEρ ≡ |[21], 1/2, 1/2〉Eρ =
1√
2

(| ↑↓↑〉 − | ↓↑↑〉

χ
−1/2
Eλ

≡ |[21], 1/2,−1/2〉Eλ =
1√
6

(| ↓↑↓〉+ | ↑↓↓〉 − 2| ↓↓↑〉)

χ
−1/2
Eρ

≡ |[21], 1/2,−1/2〉Eρ =
1√
2

(| ↑↓↓〉 − | ↓↑↓〉). (1.33)

The spin projections of MS = 3/2 are got through Eq. (1.30) as follows

χA1 ≡ |[3], 3/2, 3/2〉A1 = | ↑↑↑〉

χ
1/2
A1
≡ |[3], 3/2, 1/2〉A1

=
1√
3

(| ↑↑↓〉+ | ↑↓↑〉+ | ↓↑↑〉)

χ
−1/2
A1

≡ |[3], 3/2,−1/2〉A1 =
1√
3

(| ↓↓↑〉+ | ↓↑↓〉+ | ↑↓↓〉)

χ
−3/2
A1

≡ |[3], 3/2,−3/2〉A1
= | ↓↓↓〉. (1.34)

1.2.4 Flavor wave function
Because of the symmetric nature of the isospin doublet u-d, the algebra that describes them is
equivalent to the spin group SU(2). The obtaining of baryon states with three constituent quarks
is analogous to the derivation of spin states with three particles, where their degrees of freedom
are projections +1/2 ≡ ↑ and −1/2 ≡ ↓. With this in mind, orthogonal states can be obtained
directly by simply replacing in Eqs. (1.31) and (1.32), the projections ↑ and ↓, for the flavors u and
d, respectively. Then, the following states are obtained:

|φλ〉 =
1√
6

(2|uud〉 − |udu〉 − |duu〉)

|φρ〉 =
1√
2

(|udu〉 − |duu〉). (1.35)

Because of the states |ψ1〉 and |ψ2〉 have the same symmetry as that of the permutations λ and ρ,
their states are labeled as |ψ1〉 = |ψλ〉 for the symmetric and |ψ2〉 = |ψρ〉 for the antisymmetric
combination for the proton.
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In order to obtain the rest of the antisymmetric (or symmetric) wave functions of the octet and
decuplet, the flavor symmetry SU(3) is exploited. In this approach, the initial flavor state of the
proton is taken, and the other wave functions of the octet baryons are generated from the upper and
lower operators Î±, V̂± and Û±. The antisymmetric flavor wave function of the proton is associated
with:

|φρp〉 =
1√
2

(|udu〉 − |duu〉). (1.36)

The antisymmetric flavor wave function of the neutron can be obtained by applying the operator
I−, as follows

I−|φρp〉 = d†u
1√
2

(|udu〉 − |duu〉) =
1√
2

(|ddu〉+ |udd〉 − |ddu〉 − |dud〉)

=
1√
2

(|udd〉 − |dud〉) ≡ |φρn〉.

(1.37)

In the same way, applying U− to the state of proton is obtained the antisymmetric Σ+ flavor wave
function associated with the next resulting state

U−|φρp〉 = s†d
1√
2

(|udu〉 − |duu〉) =
1√
2

(|usu〉 − |suu〉) ≡ |φρΣ+〉.

(1.38)

Table 1.4: Flavor wave functions for octet baryons JP = 1
2

+.

Baryon |(λ, µ)I, I3, Y 〉 |φλ〉 |φρ〉
p |(1, 1) 1

2 ,
1
2 , 1〉

1√
6
(2|uud〉 − |udu〉 − |duu〉) 1√

2
(|udu〉 − |duu〉)

Σ+ |(1, 1)1, 1, 0〉 − 1√
6
(|usu〉+ |suu〉 − 2|uus〉) − 1√

2
(|suu〉 − |usu〉)

Λ0 |(1, 1)0, 0, 0〉 1
2 (|sud〉 − |sdu〉 1√

12
(2|uds〉 − 2|dus〉+ |sdu〉

−|dsu〉+ |usd〉) −|sud〉+ |usd〉 − |dsu〉)

Ξ0 |(1, 1) 1
2 ,

1
2 ,−1〉 − 1√

6
(2|ssu〉 − |uss〉 − |sus〉) − 1√

2
(|sus〉 − |uss〉)

If we follow the same idea of using the SU(3) operators, it is possible to build the rest of the
antisymmetric ρ wave functions of the baryon octet, as well as the symmetric one λ. As it was
mentioned before, the states of this flavor multiplet are characterized by their labels (p, q); (1, 1) for
the octet, (3, 0) for the decuplet and (0, 0) for the singlet. Additionally, we have the labels of isospin
I, its projection I3, and the hypercharge Y . The flavor wave functions are labeled as |(p, q), I, I3, Y 〉
and all of these states were obtained using the phase convention of Baird and Biedenharn [36, 37].
The results are shown in Table 1.4. Similarly, one can obtain the symmetric flavor wave function
for decuplet just by simply replacing ↑→ u and ↓→ s in Eq. (1.35), so these results are shown on
Table 1.5. The rest of the states either octet or decuplet can be derived from the lower and upper
operators of SU(3).

1.2.5 Spin-flavor wave functions
Up to this point, the wave functions of light baryons have already been obtained, for all their degrees
of freedom separately. However, in order to have the total baryon wave function, it is still necessary
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Table 1.5: Flavor wave functions for decuplet baryons JP = 3
2

+.

Barión |(λ, µ)I, I3, Y 〉 |φS〉
∆++ |(3, 0) 3

2 ,
3
2 , 1〉 |uuu〉

Σ∗+ |(3, 0)1, 1, 0〉 1√
3
(|uus〉+ |usu〉+ |suu〉)

Ξ∗0 |(3, 0) 1
2 ,

1
2 ,−1〉 1√

3
(|uss〉+ |sus〉+ |ssu〉)

Ω− |(3, 0)0, 0,−2〉 |sss〉

to discover the connection of these independent wave functions on the complete structure of the
wave function. In order to comprehend the combinations of these states, it is necessary to develop
the complete algebraic structure. This is accomplished by combining the orbital part Gorb with the
internal spin-flavor-color part Gsfc of Eq. (1.1) as follows

G = Gorb ⊗ Gsfc = Gorb ⊗ SUsf (6)⊗ SUc(3), (1.39)

this decomposition indicates how to combine the spin-flavor part with the color and the orbital part,
in order to obtain the total baryon wave function.

Before continuing, it is necessary to check the symmetry properties of the three quarks as a
system of indistinguishable or identical particles. All possible permutations of particle labels form
the symmetric group of permutation S3. The irreducible representation of S3 is given by the following
Young diagrams [3], [21] and [111]. For the orbital part, we use the notation ψS (symmetric), ψρ,
ψλ (with mixed symmetry) and ψA (antisymmetric), respectively.

The total wave function must be a color singlet, and the three quarks must satisfy the previously
stated condition of the antisymmetry under any permutation of the three quarks

ψA2 =
[
ψc
A × ψosf

S

]
A
, (1.40)

which means that the permutation symmetry of the spatial wave function is the same as that of
the spin-flavor part

ψosf
S =

[
ψo
t × ψsf

t

]
S
, (1.41)

with t = A1, E,A2 and the square brackets denote the tensor coupling under the point group D3.
The S3 invariant space-spin-flavor baryon wave functions are given by [38]. For ground state

LP = 0+ of the spin-flavor 56-plet
28[56, 0+] : ψS(χρφρ + χλφλ)/

√
2

410[56, 0+] : ψSχSφS (1.42)

For excited states with LP = 1− corresponding with the spin-flavor 70-plet, the following configu-
rations are considered

28[70, 1−] : [ψρ(χρφλ + χλφρ) + ψλ(χρφρ − χλφλ)]/2
48[70, 1−] : (ψρφρ + ψλφλ)χS/

√
2

210[70, 1−] : (ψρχρ + ψλχλ)φS/
√

2
21[70, 1−] : (ψρχλ − ψλχρ)φA/

√
2 (1.43)

Here the notation for these states is

|ψ〉 = |2S+1dim{SUf (3)}J [dim{SUsf (6)}, LP ]〉 (1.44)

The orbital angular momentum L is coupled with the spin S to the total angular momentum J of
the baryon, ~J = ~L+ ~S.
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Fig. 1.3: Weight diagram for the three quark flavor representation and its relation with the lowering
operators of SU(3).

1.3 Four-flavor SU(4) quark model

In this second analysis, we introduced an extension of the quark model, going from the description of
three to four flavors, that is, in addition to the three degrees of freedom (u, d and s) c is considered
as an extra degree of freedom [39, 40, 41, 42]. Like in the previous case, the indistinguishability of
particles in the coordinate space wave function is still preserved, because of the fact that in this
model equal masses are taken. The new classification of states can now be carried out through
the group SU(4). There are 15 generators without trace for this group, and its representations are
15 traceless 4 × 4 matrices Fi = λi

2 [35]. These matrices correspond to a generalization of Pauli
matrices for SU(2), and the 3 × 3 Gell-Mann matrices for SU(3). The λi are normalized in such
way that Tr(λiλj) = 2δij . The 15 generators of SU(4) can be divided into three weight operators

Î3 =
1

2
λ3 =

1

2
(u†u− d†d)

Ŷ =
1√
3
λ8 =

1

3
(u†u+ d†d− 2s†s)

Ẑ =
1

2

√
3

2
λ15 =

1

4
(u†u+ d†d+ s†s− 3c†c), (1.45)

where the hat is placed over the generators in order to avoid confusion with the eigenvalues I3, Y
and Z. There are six operators with which it is possible to go over the triplet of quarks u, d and s
from SU(3) (see Fig. 1.3 )

I+ =
1

2
(λ1 + iλ2) = u†d I− =

1

2
(λ1 − iλ2) = d†u

U+ =
1

2
(λ6 + iλ7) = d†s U− =

1

2
(λ6 − iλ7) = s†d

V+ =
1

2
(λ4 + iλ5) = u†s V− =

1

2
(λ4 − iλ5) = s†u. (1.46)

Moreover, when we considering the remaining six operators of SU(4), it is possible to move
towards states with content of one heavy quark, for example a charm c quark (see Fig.1.4). For that
reason, it can be noted that with this symmetry it is possible to go through the multiple-states with

K+ =
1

2
(λ9 + iλ10) = u†c K− =

1

2
(λ9 − iλ10) = c†u

L+ =
1

2
(λ11 + iλ12) = d†c L− =

1

2
(λ11 − iλ12) = c†d

M+ =
1

2
(λ13 + iλ14) = s†c M− =

1

2
(λ13 − iλ14) = c†s. (1.47)
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Fig. 1.4: Weight diagram for the four quark flavor representation and its relation with the lowering
operators of SU(4).

Its algebra relations are given as follows

[I+, I−] = 2Î3 [Î3, I±] = ±I±
[U+, U−] = 2U3 [U3, U±] = ±U±
[V+, V−] = 2V3 [V3, V±] = ±V±
[K+,K−] = 2K̂3 [K̂3,K±] = ±K±
[L+, L−] = 2L3 [L3, L±] = ±L±

[M+,M−] = 2M3 [M3,M±] = ±M±. (1.48)

The third components can be expressed in terms of Î3, Ŷ and Ẑ as

U3 = −1

2
Î3 +

3

4
Ŷ

V3 = +
1

2
Î3 +

3

4
Ŷ

K3 = +
1

2
Î3 +

1

4
Ŷ +

2

3
Ẑ

L3 = −1

2
Î3 +

1

4
Ŷ +

2

3
Ẑ

M3 = −1

2
Ŷ +

2

3
Ẑ. (1.49)

In view of this new treatment for the four flavors, these states can be classified by finding an
irreducible representation of SU(4) symmetry. This can be carried out by decoupling the spin-
flavor basis, because we consider as independent the orbital and color parts of the rest of total wave
function, so one has

SUsf(8) ⊃ SUf(4) ⊗ SUs(2)
[f ] [g] S

(1.50)

Even when the mass difference restriction for heavy quarks can be implemented in the study of
the orbital wave function, the flavor decomposition into subgroups can be useful for labeling ground
state baryons with an additional quark content

SUf(4) ⊃ SUf(3) ⊗ UZ(1)
[g ] [h]

⊃ SUI(2) ⊗ UY(1) ⊗ UZ(1)
I

⊃ SOI3(2) ⊗ UY(1) ⊗ UZ(1).
I3 Y Z

(1.51)
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The labels associated to these subgroups are related to the hypercharges Y and Z, and in turn these
two are related to the baryon number B, strangeness S, charm C and bottom B. The relations can
be rewritten as follows [43]

Y = B + S − C

3
(1.52)

Z =
3

4
B − C . (1.53)

The electric charge Q change in comparison with the previous one of Eq. (1.4), as a generalization
of the Gell-Mann–Nishijima

Q = I3 +
B + S + C

2
. (1.54)

Again, as in the previous case of the three flavor scheme, here the Young tableau technique is
also used to construct the allowed representation of multiquark systems. This justifies the fact that
labels [f ], [g] and [h] are used for spin-flavor and flavor states of 4(3) types of flavors (according to
the dimension of representation in SU(n) ), respectively.

Considering the previous discussion, the flavor states can be identified with the following notation
|[g], [h], I, I3, Y, Z〉. The four quarks transform as the fundamental representation [1] of SU(4) with

|φ(u)〉 =

∣∣∣∣[1], [1],
1

2
,

1

2
,

1

3
,

1

4

〉
(1.55a)

|φ(d)〉 =

∣∣∣∣[1], [1],
1

2
,−1

2
,

1

3
,

1

4

〉
(1.55b)

|φ(s)〉 =

∣∣∣∣[1], [1], 0, 0,−2

3
,

1

4

〉
(1.55c)

|φ(c)〉 =

∣∣∣∣[1], [0], 0, 0, 0,−3

4

〉
, (1.55d)

and the four antiquarks according to the conjugate representation [111]

|φ(ū)〉 = +

∣∣∣∣[111], [11],
1

2
,−1

2
,−1

3
,−1

4

〉
, (1.56a)

∣∣φ(d̄)
〉

= −
∣∣∣∣[111], [11],

1

2
,

1

2
,−1

3
,−1

4

〉
, (1.56b)

|φ(s̄)〉 = +

∣∣∣∣[111], [11], 0, 0,
2

3
,−1

4

〉
, (1.56c)

|φ(c̄)〉 = −
∣∣∣∣[111], [111], 0, 0, 0,

3

4

〉
, (1.56d)

where the phase convention of Baird and Biedenharn [36, 37] is used.
Even though the strong interaction does not distinguish between quarks of different flavor, the

SUf(4) flavor symmetry is broken dynamically by the quark masses. The spin, orbital and color
parts are the same as before.

1.3.1 Classification of three-quark baryons with heavy quark content
For this study, it is convenient to use SU(4) symmetry to find the configurations of qqq baryons
with the possibility to have any of four types of flavors, among them u, d, s, and especially heavy
baryons containing one or more heavy quarks Q (either a charm quark c, or a bottom quarks b).

Taking the product of representations in spin-flavor for the three quarks are obtained the possible
configurations

[1]8 ⊗ [1]8 ⊗ [1]8 = [3]120 ⊕ 2 [21]168 ⊕ [111]56, (1.57)



1.3. FOUR-FLAVOR SU(4) QUARK MODEL 17

Table 1.6: Spin-flavor classification of qqq states.

SUsf(8) ⊃ SUf(4) ⊗ SUs(2)

[f ] ⊃ [g] ⊗ [g′] S =
g′1−g

′
2

2

[3]120 [3]20 ⊗ [3]4
3
2

[21]20 ⊗ [21]2
1
2

Table 1.7: SUf(4) ⊃ SUf(3) ⊗ UZ(1) flavor classification of three-quark states (here q refers to the
light flavors: u, d, s).

SUf(4) ⊃ SUf(3)

[g] ⊃ [h]

[3]20 ⊃ [3]10 ⊕ [2]6 ⊕ [1]3 ⊕ [0]1

[21]20 ⊃ [21]8 ⊕ [2]6 ⊕ [11]3 ⊕ [1]3

Z = 3
4 Z = − 1

4 Z = − 5
4 Z = − 9

4
qqq qqc qcc ccc

[3] is a totally symmetric representation with dimension 120, [21] corresponds to a mixed-
symmetric with dimension 168, and [111] is a totally antisymmetric representation with dimension
56.

The analysis of wave function is in the same way as that developed in Section 1.2 for q3 baryons
with just three flavors. Thus, the coupled spin-flavor wave function is symmetric as discussed before
and the relevant part to be considered corresponds only to that symmetric representation [3] of Eq.
(1.57). The flavor and spin decomposition of this spin-flavor configuration can be seen on Table 1.6.
There are two flavor multiplets of SUf(4), [3] associated with states SP = 3/2+ and [21] with 1/2+.
With the aim of achieving an irreducible representation, a decomposition of four into three flavors
can be made SUf(4) ⊃ SUf(3)⊗ UZ(1), the result is shown in Table 1.7.

The symmetric 20-plet splits into a uds baryon decuplet, a sextet with one charm quark, a triplet
with two charm quarks and a singlet consisting of three charm quarks. The 20-plet, with mixed
symmetry, splits into a uds octet, a sextet and an anti-triplet with one charm quark and a triplet
with two charm quarks (see Fig. 2.1).

Considering the previous analysis, it seems reasonable to assume that the baryon states of three
quarks can be labeled by ∣∣[f ], (α, β, γ), (λ, µ), I, Y, Z, Lπ, SP ; JP

〉
. (1.58)

Where [f ] is the label for spin-flavor part (either symmetric [3], antisymmetric [111] or mixed sym-
metric [21]). Here the labels of the SU(4) multiplet are used: (α, β, γ) = (g1−g2, g2−g3, g3−g4) to
describe the flavor part with the isospin I, and for the case of the hypercharges Y and Z the labels
of the SU(3) multiplet are considered: (λ, µ) = (h1 − h2, h2 − h3) already introduced in Section
1.1.1. Furthermore, the orbital part is represented by the orbital angular momentum and parity Lπ.
The last labels are for the total angular momentum, which is given by the sum of orbital and spin
parts ~J = ~L + ~S. The total parity is given by the product of the orbital motion and the intrinsic
parity of the quarks, P = πP.

As an example, the nucleon wave function is given by

|N(939)〉 =

∣∣∣∣[3], (1, 1, 0), (1, 1),
1

2
, 1,

3

4
, 0+,

1

2

+

;
1

2

+〉
. (1.59)

Here (α, β, γ) = (1, 1, 0) denotes the SU(4) mixed symmetry 20-plet, and (λ, µ) = (1, 1) the SU(3)
flavor octet. In a similar way it is possible to represent the other baryons, even those with heavy
quark content.
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1.3.2 Heavy Baryons: qqQ
The total baryon wave function considered as a product of the color, spin, flavor and orbital parts
has to be antisymmetric, Eq. (1.11). Furthermore, because the color part is antisymmetric, the
orbital and spin-flavor parts necessarily have the same symmetry. This means that they can form
any of the following combinations: symmetric, mixed symmetry or antisymmetric.

An additional reduction to construct the baryon wave functions with one heavy quark Q arises
when the flavor of this quark is distinguished from the rest of constituents in the flavor wave function.
By choosing Q in the third position and symmetrizing the remaining two flavors we can find either
a completely symmetric, or a completely antisymmetric flavor wave function

⊗ = ⊕

The symmetry sextet consists of the charge states of ΣQ, two charge states of Ξ′Q, and ΩQ. The
flavor wave functions with maximum charge are

ΣQ = uuQ

Ξ′Q = (us+ su)Q/
√

2

ΩQ = ssQ. (1.60)

The antisymmetric states form an antitriplet consisting of ΛQ and two charge states of ΞQ

ΛQ = (ud− du)Q/
√

2

ΞQ = (us− su)Q/
√

2. (1.61)

To form both the ground and excited states of the heavy baryons it is necessary to consider all
the possible configurations of the wave functions. It is useful to take into account the more general
derivation of the wave functions, the case of baryons with three invariant constituent quarks under
permutation of themselves, see Section 1.3.1. From this point of view, the configuration of interest
for this work will be a particular case of the Eqs.(1.42) and (1.43). In these expressions aside from the
flavor part there are five wave functions; three for the spin part χρ, χλ and χS , which for maximum
spin projection are

χEρ = (↑↓ − ↓↑) ↑ /
√

2

χEλ = (2 ↑↑↓ − ↑↓↑ − ↓↑↑)/
√

6

χA1
= ↑↑↑, (1.62)

and two for the radial part ψλ and ψρ. The orbital wave function for the ground state is denoted
by ψ0. It was already mentioned that lambda and rho labels are associated with symmetry and
antisymmetry under the interchange of the first two particles, respectively. The S label refers to the
symmetric spin wave function with S = 3/2.

The color part factorizes in both the ground and excited states, and due to the orthogonality of
the basis, the overlap of any two states in the color part will always be one. Moreover, because the
processes in which we are interested are color independent, then it is enough to construct the baryon
wave functions just considering the orbital-spin and flavor parts.

With this information, it is now straightforward to write the total wave functions of the baryons.
In particular, for ΣQ hyperons, since the flavor part is symmetric, then spin-orbital combinations
must be symmetrically coupled. For the heavy baryons of the sextet one obtains the wave functions

2ΣQ = uuQ[ψ0 × χEλ ]J=1/2

4ΣQ = uuQ[ψ0 × χA1
]J=3/2

2ρ(ΣQ)J = uuQ[ψρ × χEρ ]J
2λ(ΣQ)J = uuQ[ψλ × χEλ ]J
4λ(ΣQ)J = uuQ[ψλ × χA1

]J . (1.63)
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for the ΣQ hyperons,

2Ξ′Q =
1√
2

(us+ su)Q[ψ0 × χEλ ]J=1/2

4Ξ′Q =
1√
2

(us+ su)Q[ψ0 × χA1
]J=3/2

2ρ(Ξ′Q)J =
1√
2

(us+ su)Q[ψρ × χEρ ]J

2λ(Ξ′Q)J =
1√
2

(us+ su)Q[ψλ × χEλ ]J

4λ(Ξ′Q)J =
1√
2

(us+ su)Q[ψλ × χA1 ]J . (1.64)

for the Ξ′Q hyperons, and

2ΩQ = ssQ[ψ0 × χEλ ]J=1/2

4ΩQ = ssQ[ψ0 × χA1
]J=3/2

2ρ(ΩQ)J = ssQ[ψρ × χEρ ]J
2λ(ΩQ)J = ssQ[ψλ × χEλ ]J
4λ(ΩQ)J = ssQ[ψλ × χA1

]J . (1.65)

for the ΩQ hyperons.
Similarly, for the heavy baryons of the anti-triplet one has

2ΛQ =
1√
2

(ud− du)Q[ψ0 × χEρ ]J=1/2

2ρ(ΛQ)J =
1√
2

(ud− du)Q[ψρ × χEλ ]J

4ρ(ΛQ)J =
1√
2

(ud− du)Q[ψρ × χA1 ]J

2λ(ΛQ)J =
1√
2

(ud− du)Q[ψλ × χEρ ]J . (1.66)

for the ΛQ hyperons, and

2ΞQ =
1√
2

(us− su)Q[ψ0 × χEρ ]J=1/2

2ρ(ΞQ)J =
1√
2

(us− su)Q[ψρ × χEλ ]J

4ρ(ΞQ)J =
1√
2

(us− su)Q[ψρ × χA1
]J

2λ(ΞQ)J =
1√
2

(us− su)Q[ψλ × χEρ ]J , (1.67)

for the ΞQ hyperons.
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Chapter 2

Deformed quark model (qqQ or QQq)

2.1 Quark harmonic oscillator model: Hamiltonian for three
particles m1 = m2 6= m3

Fig. 2.1: SU(4) multiplets of qqq baryons made of u, d, s, and c quarks: (a) the [21]20 multiplet with
JP = 1/2+ containing the baryon octet, and (b) the [21]20 multiplet with JP = 3/2+ containing
the baryon decuplet (taken from [43]).

The study of the orbital wave function of baryons with different quark masses now becomes
relevant [44]. In a baryon configuration made of three constituent quarks, either Qqq or QQq, it is
of special interest to make a distinction between the heavy quarks Q, and the light quarks q. We
consider the harmonic oscillator potential, in order to describe the interaction between the three

21
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effective quarks 1, 2 and 3. Thus, the Hamiltonian is of the form

H =
p1

2

2m
+
p2

2

2m
+
p3

2

2m′
+

1

2
C

3∑
i<j

|~ri − ~rj |2, (2.1)

where quarks 1 and 2 have equal masses m, while quark 3 has the mass m′.
If relative coordinates are used (similar to Jacobi coordinates, but modified for this system with

different masses), Eq. (2.1) will be rewritten in a more convenient way. For this purpose the following
coordinates and its corresponding transformation are defined



~ρ = 1√
2
(~r1 − ~r2),

~λ = 1√
6
(~r1 + ~r2 − 2~r3),

~R = m(~r1+~r2)+m′ ~r3
2m+m′

⇒



~r1 = ~R+ 1√
2
~ρ+

√
3
2m
′

2m+m′
~λ

~r2 = ~R− 1√
2
~ρ+

√
3
2m
′

2m+m′
~λ

~r3 = ~R−
√

6m
2m+m′

~λ,

where the corresponding Jacobian to the change of Cartesian to Jacobi coordinates turns out to be

3∏
i=1

d3ri = 3
√

3d3ρd3λd3R. (2.2)

With these new coordinates the harmonic oscillator Hamiltonian can be rewritten as a separable
one for each coordinate. The problem now includes the center of mass motion plus two independent
harmonic oscillators in the ρ- and λ-mode, with the same spring constant C, but different masses

H =
PCM

2

2M
+

pρ
2

2mρ
+

pλ
2

2mλ
+

3

2
Cρ2 +

3

2
Cλ2, (2.3)

where the masses can be redefined as

M = 2m+m′, mρ ≡ m, mλ ≡
3mm′

2m+m′
, (2.4)

and
~PCM = M

d~R

dt
, ~pρ = mρ

d~ρ

dt
, ~pλ = mλ

d~λ

dt
. (2.5)

More explicitly



~pρ = 1√
2
(~p1 − ~p2)

~pλ = 3√
6

m′( ~p1+ ~p2)−2m~p3
2m+m′

~P = ~p1 + ~p2 + ~p3

⇒



~p1 = m
M
~P + 1√

2
~pρ + 1√

6
~pλ

~p2 = m
M
~P − 1√

2
~pρ + 1√

6
~pλ

~p3 = m′

M
~P −

√
2
3 ~pλ,

and equally

3∏
i=1

d3pi =
1

3
√

3
d3pρd

3pλd
3P. (2.6)

The eigenstates of the Hamiltonian from Eq. (2.3) are well known [45]. With the above change
of coordinates, the baryon wave function ψoB(~r1, ~r2, ~r3) is given by

ψoB(~r1, ~r2, ~r3) =
1

(2π)3/2
e
~PCM ·~RψrelB (~ρ,~λ), (2.7)
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where the relative wave functions are expressed in terms of the coupled harmonic oscillator wave
functions

ψrelB (~ρ,~λ) =
1√
3
√

3

∑
mρmλ

〈lρmρlλmλ|LM〉ψnρlρmρ(~ρ)ψnλlλmλ(~λ). (2.8)

Then the ground state in this new coordinate space is

ψrelB (~ρ,~λ) =
1√
3
√

3

α
3
2
ρ

π
3
4

α
3
2

λ

π
3
4

e−
α2
ρ
2 ρ2e−

α2
λ
2 λ2

. (2.9)

Again, the relative wave functions for one radial λ-excitation and one radial ρ-excitation are

ψrelλ (~ρ,~λ) =
1√
3
√

3

α
3/2
ρ

π
3
4

e−α
2
ρρ

2/2

√
8

3
√
π
λα

5/2
λ e−α

2
λλ

2/2Y1,mlλ
(λ̂), (2.10)

and

ψrelρ (~ρ,~λ) =
1√
3
√

3

α
3/2
λ

π
3
4

e−α
2
λλ

2/2

√
8

3
√
π
ρα5/2

ρ e−α
2
ρρ

2/2Y1,mlρ
(ρ̂), (2.11)

with the harmonic oscillator constants and frequencies given by

α2
i = (3Cmi)

1
2 and ωi =

√
3C

mi
, i = {ρ, λ}. (2.12)

By making a Fourier transform is easy to obtain the wave function for the ground state in
momentum space

ψrelB ( ~pρ, ~pλ) =

√
3
√

3
1

π
3
4α

3
2
ρ

1

π
3
4α

3
2

λ

e
− 1

2α2
ρ
p2ρ
e
− 1

2α2
λ

p2λ
, (2.13)

and similar expressions can be obtained for radially excited states.
These results are also valid for qqq configurations in which all the quark masses are the same, so

that the results discussed in Section 1.2.2 can be recovered.
So far, a simple analysis on frequencies can be done by considering the case where m = m1 =

m2 < m3 = m′; this condition is consistent with a system containing two light quarks and one heavy
quark qqQ. As a consequence, mλ > mρ, and then ωλ < ωρ, i.e., the λ state is less energetic than ρ
state. The last condition obtained suggest that states with one quantum of excitation in λ will be
more relevant for this configuration. A diagram corresponding to these energy modes is shown in
Figure 2.2.

By contrast, for the other case where m = m1 = m2 > m3 = m′ is associated with QQq, the
conclusion is the opposite, and the largest contribution for baryons with two heavy quarks will be
the ρ mode.

2.2 Mass spectra of heavy baryons
We characterize the mass spectra of baryons with a single heavy quark, where we consider a Hamil-
tonian given by

H = Hho +A S2 +B ~S · ~L+ E I2 +GC2SUf (3). (2.14)

The first term is the conventional harmonic oscillator Hamiltonian, and the perturbation term is
formed by the sum of the spin, spin-orbit, isospin and flavor dependent contributions. In this
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(a) (b)

Fig. 2.2: Baryon energy levels for states with one quantum of excitation in λ and ρ, associated to
qqQ configuration, with m < m′ (left), and for QQq configuration with m > m′ (right).

notation S, L, I and C2SUf (3) are the spin, angular momentum, isospin and the quadratic Casimir
operators. For this approach of the spectrum, we use the explicit form of Hho in terms of Jacobi
coordinates previously defined

Hho =

3∑
i=1

(mi +
p2
i

2mi
) +

1

2
C

3∑
i<j

|~ri − ~rj |2

= 2m+m′ +
P 2
CM

2(2m+m′)
+

pρ
2

2mρ
+

pλ
2

2mλ
+

1

2
mρω

2
ρρ

2 +
1

2
mλω

2
λλ

2. (2.15)

Consequently, the mass spectrum of heavy baryons is analyzed with the mass formula

M = 2m+m′ + ωρnρ + ωλnλ +A S(S + 1)

+B
1

2
[J(J + 1)− L(L+ 1)− S(S + 1)]

+E I(I + 1) +G
1

3
[λ(λ+ 3) + µ(µ+ 3) + λµ] . (2.16)

Here nρ and nλ denote the number of quanta in the ρ- and λ- oscillator, respectively. The la-
bels (λ, µ) are the standard labels of SU(3) already discussed. The parameters A, B, E and G in
Eq. (2.14) were determined through the analysis of some known baryons from the experimental data.

Parameters

We obtain the quark masses by reproducing the ground state masses of Ωc(2695), Ω∗c(2765), Ξcc(3621)
and Σb(5814). The two spring constants C, one for the charm and the other for the bottom sec-
tor, as the case may be, were fixed by reproducing the mass difference between Ξc(2790) with
JP = 1/2− and the Ξc(2469) ground state, and the difference between Λb(5919) with JP = 1/2−

and the Λb(5619) ground state, respectively. On the other hand, we obtain the rest of parameters by
studying them term by term. For the spin-spin interaction, we estimate the mass difference between
Σ∗c(2520) with JP = 3/2+ and Σc(2469) with JP = 1/2+, and taking the isospin average. The
spin-orbit part can be calculated by the mass difference of Λc(2595) and Λc(2625) with SP = 1/2−

and SP = 3/2−, respectively. The mass splitting due to the flavor dependent contribution can be
obtained from the mass difference between Ξ∗c and Ξc, with a mass of 2578.1 MeV and 2469.37 MeV,
respectively, whereas for the bottom counterparts, we have Ξ∗b and Ξb with masses 5935.02 MeV
and 5793.2 MeV, respectively. We study the isospin-flavor contribution through the mass difference
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Table 2.1: Parameters values for baryons with a single heavy quark Q = c, or Q = b.

Q = c Q = b
mu = md 295 295 MeV

ms 450 450 MeV
mQ 1605 4920 MeV
C 0.0328 0.0235 GeV3

A 21.54± 0.37 6.73± 1.63 MeV
B 23.91± 0.31 5.15± 0.33 MeV
E 30.34± 0.23 26.00± 1.80 MeV
G 54.37± 0.58 70.91± 0.49 MeV

between the lightest charmed ground states Σc and Λc, and bottom ground states Σc and Λc. The
list of these parameters are in Table 7.1.

Now, because we have explicitly classified and built all the baryon wave functions with a single
heavy quark in previous sections, we know all their quantum numbers, so we can obtain their mass
spectra. In Tables 2.2 and 2.3 we essentially present the list of states organized according to the
notation 2S+1L(BQ)JP , where the quantum numbers for each baryon BQ are given. The pair (nρ, nλ)
represents the radial contributions of the states. Particularly, (0, 0) is the configuration of the ground
state ψ0, whereas (1, 0) and (0, 1) represent one quantum of excitation in the ρ mode ψρ and one
quantum of excitation in the λ mode ψλ, respectively.

In addition, a comparison between the theoretical and the experimental masses can be done. A
detailed discussion on the mass spectrum of ΩQ can be found in [33], and a supplement in [46], while
the spectra of baryons ΞQ and Ξ′Q are established in [34]. It is important to emphasize that the only
study that these publications have in common with the present work is the derivation of the mass
spectrum for the heavy baryons already mentioned. However, the rest of their research is done with
a different model.

Even though experimentally we have concise information about the heavy baryon spectrum with
the knowledge of some resonances, theoretically, one still expects some missing resonances predicted
by the quark model, and that is one of the reasons for the study in this work. Here, aside from
comparing our results on singly charm and singly bottom baryon masses together with their assigned
quantum numbers against the recently observed resonances and data in PDG [47], we also provide
predictions of new states, which could be benchmarked with present and future LHCb measurements
as well as with the lattice QCD (LQCD) computations [48, 49, 50, 50, 51, 52, 53, 54, 55, 56, 57, 58].

Mases of ΣQ and ΛQ baryons

From figures 2.3 to 2.6 we present our theoretical estimation (blue circles) of the mass spectra
and quantum numbers for single charm baryons Σc and Λc, and single bottom baryons Σb and
Λb. Besides, we contrast with the experimental information of resonances (red triangles). This
comparison easily reveals the good agreement between the theoretical masses and the experimental
data. Specially, if we focused on ΣQ states of flavor sextet 6, all the assigned masses overlap with the
experimental data and their uncertainties, where Σc(2455) and Σc(2520) are assigned to the ground
states with JP = SP = 1/2+ and 3/2+, respectively, while Σc(2800) is to the λ−mode excitation
with JP = 1/2−. Similarly, Σb and Σ∗b resonances observed by LHCb [1] are assigned to the ground
states with JP = SP = 1/2+ and 3/2+, respectively, yet Σb(6097) has a correspondence with one
quantum of excitation in λ and JP = 1/2−.

For ΛQ states of the flavor anti-triplet 3̄ there is still a remarkable coincidence with the ex-
perimetal results in the bottom sector, where we associate Λb to the only ground state SP = 1/2+,
whereas the λ-modes with JP = 1/2− and JP = 3/2− are assigned to Λb(5912) and Λb(5920) res-
onances [59]. In case of the charm sector a difference (less than 60 MeV) can be seen for Λc(2592)
and Λc(2628). In our analysis it was assigned the λ−mode excitation with JP = 1/2− and 3/2− to
these baryons, respectively.
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Table 2.2: Single-charm baryons of ground state and with one quantum of radial excitation. Here
we use the notation 2S+1L(BQ)JP to label the states by their quantum numbers, and (nρ, nλ) are
used to identify the radial contributions of the states.

State M th(MeV) (nρ, nλ) I L S JP Mexp(MeV) Name
2(Σc)1/2+ 2453±2 (0,0) 1 0 1

2
1
2

+
2453.54± 0.31 Σc(2455)

4(Σc)3/2+ 2518±2 (0,0) 1 0 3
2

3
2

+
2518.13± 0.90 Σc(2520)

2λ(Σc)1/2− 2819±2 (0,1) 1 1 1
2

1
2

−
2799.67± 9 Σc(2800)

4λ(Σc)1/2− 2848±3 (0,1) 1 1 3
2

1
2

−

2λ(Σc)3/2− 2855±2 (0,1) 1 1 1
2

3
2

−

4λ(Σc)3/2− 2884±2 (0,1) 1 1 3
2

3
2

−

4λ(Σc)5/2− 2944±2 (0,1) 1 1 3
2

5
2

−

2ρ(Σc)1/2− 3007±2 (1,0) 1 1 1
2

1
2

−

2ρ(Σc)3/2− 3043±2 (1,0) 1 1 1
2

3
2

−

2(Ξ′c)1/2+ 2570±2 (0,0) 1
2 0 1

2
1
2

+ 2578.90±0.5 Ξ′c(2578)
4(Ξ′c)3/2+ 2635±2 (0,0) 1

2 0 3
2

3
2

+ 2645.97±0.27 Ξc(2645)
2λ(Ξ′c)1/2− 2905±2 (0,1) 1

2 1 3
2

1
2

−

4λ(Ξ′c)1/2− 2934±3 (0,1) 1
2 1 3

2
1
2

− 2923.04±0.25 Ξc(2923)
2λ(Ξ′c)3/2− 2941±2 (0,1) 1

2 1 1
2

3
2

− 2938.55±0.21 Ξc(2939)
4λ(Ξ′c)3/2− 2970±2 (0,1) 1

2 1 3
2

3
2

− 2964.88±0.26 Ξc(2965)
4λ(Ξ′c)5/2− 3030±2 (0,1) 1

2 1 3
2

5
2

−

2ρ(Ξ′c)1/2− 3060±2 (0,1) 1
2 1 1

2
1
2

− 3055.9±0.4 Ξc(3055)
2ρ(Ξ′c)3/2− 3096±2 (0,1) 1

2 1 1
2

3
2

− 3078.55±1.1 Ξc(3080)
2(Ωc)1/2+ 2702±2 (0,0) 0 0 1

2
1
2

+ 2695.2±1.7 Ωc(2695)
4(Ωc)3/2+ 2767±2 (0,0) 0 0 3

2
3
2

+ 2765.9±2.0 Ωc(2770)
2λ(Ωc)1/2− 3016±2 (0,1) 0 1 1

2
1
2

− 3000.4±0.2 Ωc(3000)
4λ(Ωc)1/2− 3045±3 (0,1) 0 1 3

2
1
2

− 3050.2±0.1 Ωc(3050)
2λ(Ωc)3/2− 3052±2 (0,1) 0 1 1

2
3
2

− 3065.5±0.3 Ωc(3066)
4λ(Ωc)3/2− 3080±2 (0,1) 0 1 3

2
3
2

− 3090.0±0.5 Ωc(3090)
4λ(Ωc)5/2− 3140±2 (0,1) 0 1 3

2
5
2

− 3188±14 Ωc(3188)
2ρ(Ωc)1/2− 3146±2 (1,0) 0 1 1

2
1
2

−

2ρ(Ωc)3/2− 3182±2 (1,0) 0 1 1
2

3
2

−

2(Λc)1/2+ 2284±1 (0,0) 0 0 1
2

1
2

+
2286.46± 0.14 Λc

2λ(Λc)1/2− 2650±1 (0,1) 0 1 1
2

1
2

−
2592.25± 0.28 Λc(2595)

2λ(Λc)3/2− 2686±1 (0,1) 0 1 1
2

3
2

−
2628.11± 0.19 Λc(2625)

2ρ(Λc)1/2− 2837±1 (1,0) 0 1 1
2

1
2

−

4ρ(Λc)1/2− 2866±2 (1,0) 0 1 3
2

1
2

−

2ρ(Λc)3/2− 2873±1 (1,0) 0 1 1
2

3
2

−

4ρ(Λc)3/2− 2902±2 (1,0) 0 1 3
2

3
2

−
2939.60± 1.5 Λc(2940)

4ρ(Λc)5/2− 2962±2 (1,0) 0 1 3
2

5
2

−

2(Ξc)1/2+ 2461±1 (0,0) 1
2 0 1

2
1
2

+ 2469.43±0.26 Ξc(2469)
2λ(Ξc)1/2− 2797±1 (0,1) 1

2 1 1
2

1
2

− 2793.25±0.5 Ξc(2790)
2λ(Ξc)3/2− 2832±1 (0,1) 1

2 1 1
2

3
2

− 2818.5±0.28 Ξc(2815)
2ρ(Ξc)1/2− 2951±1 (1,0) 1

2 1 1
2

1
2

−

4ρ(Ξc)1/2− 2980±2 (1,0) 1
2 1 3

2
1
2

−

2ρ(Ξc)3/2− 2987±1 (1,0) 1
2 1 1

2
3
2

−

4ρ(Ξc)3/2− 3016±2 (1,0) 1
2 1 3

2
3
2

−

4ρ(Ξc)5/2− 3076±2 (1,0) 1
2 1 3

2
5
2

−
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Table 2.3: Single-bottom baryons of ground state and with one quantum of radial excitation. Nota-
tion as in Table 2.2.

State M th(MeV) (nρ, nλ) I L S JP Mexp(MeV) Name
2(Σb)1/2+ 5803±4 (0,0) 1 0 1

2
1
2

+ 5812.78±0.13 Σb
4(Σb)3/2+ 5824±7 (0,0) 1 0 3

2
3
2

+
5832.50± 0.16 Σ∗b

2λ(Σb)1/2− 6097±4 (0,1) 1 1 1
2

1
2

−
6096.90± 1.7 Σb(6097)

4λ(Σb)1/2− 6109±7 (0,1) 1 1 3
2

1
2

−

2λ(Σb)3/2− 6105±4 (0,1) 1 1 1
2

3
2

−

4λ(Σb)3/2− 6117±7 (0,1) 1 1 3
2

3
2

−

4λ(Σb)5/2− 6130±7 (0,1) 1 1 3
2

5
2

−

2ρ(Σb)1/2− 6287±4 (1,0) 1 1 1
2

1
2

−

2ρ(Σb)3/2− 6295±4 (1,0) 1 1 1
2

3
2

−

2(Ξ′b)1/2+ 5926±2 (0,0) 1
2 0 1

2
1
2

+ 5935.02±0.05 Ξ′b(5935)
4(Ξ′b)3/2+ 5946±6 (0,0) 1

2 0 3
2

3
2

+ 5955.33±0.13 Ξ′∗b (5954)
2λ(Ξ′b)1/2− 6189±2 (0,1) 1

2 1 3
2

1
2

−

4λ(Ξ′b)1/2− 6202±6 (0,1) 1
2 1 3

2
1
2

−

2λ(Ξ′b)3/2− 6197±2 (0,1) 1
2 1 1

2
3
2

−

4λ(Ξ′b)3/2− 6210±6 (0,1) 1
2 1 3

2
3
2

−

4λ(Ξ′b)5/2− 6223±6 (0,1) 1
2 1 3

2
5
2

− 6226.90±2.0 Ξb(6227)
2ρ(Ξ′b)1/2− 6354±2 (0,1) 1

2 1 1
2

1
2

−

2ρ(Ξ′b)3/2− 6362±2 (0,1) 1
2 1 1

2
3
2

−

2(Ωb)1/2+ 6061±2 (0,0) 0 0 1
2

1
2

+ 6046.1±1.7 Ωb
4(Ωb)3/2+ 6082±6 (0,0) 0 0 3

2
3
2

+

2λ(Ωb)1/2− 6305±2 (0,1) 0 1 1
2

1
2

− 6315.6±0.6 Ωb(6316)
4λ(Ωb)1/2− 6317±6 (0,1) 0 1 3

2
1
2

− 6339.7±0.6 Ωb(6340)
2λ(Ωb)3/2− 6313±2 (0,1) 0 1 1

2
3
2

− 6330.3±0.6 Ωb(6330)
4λ(Ωb)3/2− 6325±6 (0,1) 0 1 3

2
3
2

− 6349.9±0.6 Ωb(6350)
4λ(Ωb)5/2− 6338±6 (0,1) 0 1 3

2
5
2

−

2ρ(Ωb)1/2− 6452±2 (1,0) 0 1 1
2

1
2

−

2ρ(Ωb)3/2− 6460±2 (1,0) 0 1 1
2

3
2

−

2(Λb)1/2+ 5610±1 (0,0) 0 0 1
2

1
2

+
5619.62± 0.16 Λb

2λ(Λb)1/2− 5903±1 (0,1) 0 1 1
2

1
2

−
5912.20± 0.13 Λb(5912)

2λ(Λb)3/2− 5911±1 (0,1) 0 1 1
2

3
2

−
5920.00± 0.09 Λb(5920)

2ρ(Λb)1/2− 6093±1 (1,0) 0 1 1
2

1
2

−

4ρ(Λb)1/2− 6105±6 (1,0) 0 1 3
2

1
2

−

2ρ(Λb)3/2− 6101±1 (1,0) 0 1 1
2

3
2

−

4ρ(Λb)3/2− 6113±6 (1,0) 0 1 3
2

3
2

−

4ρ(Λb)5/2− 6126±6 (1,0) 0 1 3
2

5
2

−

2(Ξb)1/2+ 5784±2 (0,0) 1
2 0 1

2
1
2

+ 5794.41±0.55 Ξb(5794)
2λ(Ξb)1/2− 6048±2 (0,1) 1

2 1 1
2

1
2

−

2λ(Ξb)3/2− 6055±2 (0,1) 1
2 1 1

2
3
2

−

2ρ(Ξb)1/2− 6213±2 (1,0) 1
2 1 1

2
1
2

−

4ρ(Ξb)1/2− 6225±6 (1,0) 1
2 1 3

2
1
2

−

2ρ(Ξb)3/2− 6220±2 (1,0) 1
2 1 1

2
3
2

−

4ρ(Ξb)3/2− 6233±6 (1,0) 1
2 1 3

2
3
2

−

4ρ(Ξb)5/2− 6246±6 (1,0) 1
2 1 3

2
5
2

−
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Fig. 2.3: Mass spectrum for the Σc baryons
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Chapter 3

Strong Couplings of Heavy Baryons

The fundamental theory to study the hadrons and their dynamical process is QCD. However, there
are many complications in the non-perturbative regime. Part of the problem is in explaining the
transition from a completely relativistic theory to a non-relativistic approximate one, which strictly
can only be done by discussing the strong interaction Hamiltonian (or Lagrangian) of the QCD.
That is why in the quark model to deal with this problem it is assumed that this Hamiltonian is
replaced by a "Hamiltonian model", where the gluons are integrated out from the action of the
QCD [60]. Then, by using an effective Hamiltonian, an approximately satisfactory description of the
hadrons in terms of only quarks is obtained, but which still has the essential characteristic of having
a Dirac-like free part. These quarks are going to differ from the quark fields in the Lagrangian of
QCD. Although these have the same quantum numbers as the fundamental quarks of QCD, they
are different in their dynamical properties, like their mass. In principle, it is possible to transform
the Hamiltonian with a Dirac-like part into a Hamiltonian that leads to the Schrödinger equation
for the quarks under the non-relativistic approximation. In relation to the above, there are two
hypotheses in which the quark model is based: 1. This Hamiltonian in the non-relativistic case has
as its main characteristic eigenstates with a defined number of quarks and antiquarks (the so-called
approximation of valence quarks) and 2. The constituent quarks in the non-relativistic limit obey
the Schrödinger equation to a reasonably good approximation.

3.1 The interaction Hamiltonian
Given the energetic nature of the heavy baryons announced in recent years by the LHCb collabo-
ration, it is of primary interest to obtain a description for the strong couplings between the singly
heavy baryons and the pseudoscalar mesons. To this end, we choose to study the strong decays in
the framework of the Elementary-meson emission model [60], which propose an effective interaction
Hamiltonian . This Hamiltonian can be derived by introducing a vector-axial coupling through
a Lagrangian density that considers the interaction between the axial current of quarks and the
derivative of the pseudoscalar meson field

LI(x) = −gqq
′M

2m
q̄(x)γµγ5τ

aq(x)∂µϕ
a(x). (3.1)

This is motivated by a simplified description of the emission and absorption of mesons, described
in terms of an elementary quantum. In this model, a hadron composed of quarks emits a meson
through one of its constituent quarks in such a way that the total number of quarks is conserved.
In order to obtain the Hamiltonian of interaction, is necessary to write the total lagrangian

L = i
∑
q

q̄(x)(∂µγ
µ −mq)q(x) +

1

2

(
∂µϕ

a(x)∂µϕa(x)−m2(ϕa(x))2
)

+ LI(x), (3.2)

where for simplicity such an expression has its indices suppressed. The momentum π0 is given by

π0 = ∂0ϕa − gqq′M
2m

q̄γ0τaγ5q. (3.3)

31
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Here the isospin part is in τa flavor matrices . Then the Hamiltonian density is

H(~x) =
∑
q

q̄(−iγ · ∇+mq)q +
1

2
(π0)2 +

1

2
(∇ϕa)2 +

1

2
m2(ϕa)2

+
gqq′M
2m

(
q̄γµτaγ5qπ

0 − q̄γτaγ5q · ∇ϕa
)

+
1

2

(gqq′M
2m

q̄γ0τaγ5q
)2

(3.4)

If we work in the interaction representation, then the free-meson Hamiltonian density are the sum
of the quadratic terms with π0 and ϕ

H0(~x) =
1

2

(
(π0)2 + (∇ϕa)2 +m2(ϕa)2

)
, (3.5)

where

∂ϕ(~x)

∂t
=
δH0

δπ0
= π0(x), (3.6)

and then the Hamiltonian interaction density will be

HI(~x) =
gqq′M
2m

(
q̄γµτaγ5q∂

0ϕa − q̄γτaγ5q · ∇ϕa
)

+
1

2

(gqq′M
2m

q̄γ0γ5q
)2

. (3.7)

One can notice that the difference between HI(x) and LI(x) is only in the four-fermionic term of Eq.
(3.7). However, because we want to consider only meson-emission and we are working in first order
in he coupling constant, this four-fermion term is irrelevant. At the end, we have HI(x) = −LI(x).

Therefore, the effective interaction Hamiltonian is

Hs =

∫
d3x

gqq′M
2m

q̄(~x)γµγ5τ
aq(~x)∂µϕ

a(~x). (3.8)

This interaction, like the fundamental interactions of QCD between fermions and gauge bosons, is
a three-line interaction. In this case, between the quarks and the elementary meson as in the Fig.
4.1 at the quark level. This resolution in quarks naturally restricts our study to a non-relativistic
approach. The interaction Hamiltonian in the non-relativistic approximation is given by [38, 60, 61]

Hs =
1

(2π)3/2(2k0)1/2

3∑
j=1

XM
j

[
2g(~sj · ~k)e−i

~k·~rj + h~sj ·
(
~pje
−i~k·~rj + e−i

~k·~rj ~pj

)]
. (3.9)

In a non-relativistic approximation at the level of hadrons composed of constituent quarks, the decay
mechanism of a baryon in two hadrons corresponds directly to the creation of a pair qq̄. Here XM

j

is the flavor operator, whose effect on the initial baryon states BQ is the emission of one meson M
through the jth constituent quark, so that the total number of quarks is conserved in the strong de-
cay BQ → B′Q+M . The diagram associated to this process is shown in Figure 4.1. The Hamiltonian
also depends on the spin, coordinate and momentum of the jth constituent quark, ~sj , ~rj and ~pj ,
respectively. The meson energy is denoted by k0 = EM = EBQ −EB′Q , and ~k = ~PM = ~P − ~P ′ = kẑ

corresponds to the momentum carried by the meson. Of course, ~P = Pz ẑ and ~P ′ = P ′z ẑ are
the momentum of the initial and final baryon. Furthermore, we have two coupling constants g and
h for each term in the transition operator. The fixed values of these constants will be discussed later.

For convenience, the above operator Eq.(3.9) can be simplified by using Jacobi coordinates and
also by taking the rest frame of the initial baryon. Once we implement these tools, the operator is
reduced to a new and more operational expression:

Hs =
1

(2π)3/2(2k0)1/2

3∑
j=1

{
XM
j

[
(2gk − mj

M
hk)sj,zÛj + 2hsj,zT̂j,z + h

(
sj,+T̂j,− + sj,−T̂j,+

)]}
,

(3.10)
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Fig. 3.1: Elementary-meson emission in a strong decay BQ → B′Q +M .

where the momentum conservation Pz − P ′z = k was used such that Pz + P ′z = 2Pz − k, and the
rest frame of BQ (Pz = 0) was adopted in order to eliminate the center of mass momentum. The
explicit operators related with each jth constituent are given by

Û1 = e
−i 1√

2
kρz−i

√
3/2m′

2m+m′ kλz , Û2 = e
i 1√

2
kρz−i

√
3/2m′

2m+m′ kλz , Û3 = ei
√

6m
2m+m′ kλz (3.11)

T̂1,m =
1

2

[(
1√
2
Pρ,m +

1√
6
Pλ,m

)
Û1 + Û1

(
1√
2
Pρ,m +

1√
6
Pλ,m

)]
(3.12)

T̂2,m =
1

2

[(
− 1√

2
Pρ,m +

1√
6
Pλ,m

)
Û2 + Û2

(
− 1√

2
Pρ,m +

1√
6
Pλ,m

)]
(3.13)

T̂3,m = −1

2

(√
2

3
Pλ,mÛ3 + Û3

√
2

3
Pλ,m

)
. (3.14)

The label m is used to denote either the z component (also called zero component 0) of the momen-
tum operator, or the projections ± from the momentum ladder operators. In the strong decays of
present interest the initial baryon state has the total angular momentum ~J = ~L+ ~S, where ~L can be
either ~L = 0 or ~L = 1. The final baryon B′Q considered here is from ground state and then always
has ~L′ = 0, i.e. ~J ′ = ~S′. The helicity amplitude for the strong the decays is given by

Aν(k) = 〈ψB′Q ; 1/2, ν|Hs|ψBQ ; J, ν〉, ν = 1/2, 3/2.

=
∑

m={0,1,−1}

〈10Sν −m|Jν〉〈ψB′Q00;S′ν|Hs|ψBQL,m;S, ν −m〉

=
1

(2π)3/2(2k0)1/2

〈L0Sν|Jν〉
3∑
j=1

ζj,0Zj,0(k) +
1

2
〈L1Sν − 1|Jν〉

3∑
j=1

ζj,+Zj,−(k)

+
1

2
〈L− 1Sν + 1|Jν〉

3∑
j=1

ζj,−Zj,+(k)

 (3.15)

with the radial matrix elements defined from the next functions

Zαj,0(k) ≡
(

2gk − mj

M
hk
)
Uαj (k) + 2hTαj,0(k) (3.16)
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and

Zαj,±(k) ≡ 2hTαj,±(k). (3.17)

The explicit definition of this matrix elements are

Uαj ≡ 〈ψgs|e−i
~k·~rj |ψα〉, (3.18)

Tαj,0 ≡ 〈ψgs|T̂αj,0|ψα〉 (3.19)

and

Tαj,± ≡ 〈ψgs|T̂αj,±|ψα〉. (3.20)

The analytical results for each of these radial matrix elements are classified according to the initial
and final orbital baryon wave function:

Ground state to ground state

U3(k) = e
− 3m2k2

2α2
λ
(2m+m′)2

U1(k) = U2(k) = e
− k2

8α2
ρ e
− 3m′2k2

8α2
λ
(2m+m′)2

T3,0(k) = m′k0

[
− 3m2k

α2
λ(2m+m′)2

]
e
− 3m2k2

2α2
λ
(2m+m′)2

T1,0(k) = T2,0(k) = mk0

[
− k

4α2
ρ

− 3m′2k2

4α2
λ(2m+m′)2

]
e
− k2

8α2
ρ e
− 3m′2k2

8α2
λ
(2m+m′)2

One quantum of excitation in ρ to ground state

Uρ3 = 0

Uρ1 = −Uρ2 = −i k

2αρ
e
− k2

8α2
ρ e
− 3m′2k2

8α2
λ
(2m+m′)2

(3.21)
T ρ3,0 = 0

T ρ1,0 = −T ρ2,0 = −imk0

2αρ
e
− k2

8α2
ρ e
− 3m′2k2

8α2
λ
(2m+m′)2

[
1− k2

4α2
ρ

− 3m′2k2

4α2
λ(2m+m′)2

]
T ρ3,± = 0

T ρ1,± = −T ρ2,± = ∓i mk0√
2αρ

e
− k2

8α2
ρ e
− 3m′2k2

8α2
λ
(2m+m′)2
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One quantum of excitation in λ to ground state

Uλ3 = i

√
3m

2m+m′
k

αλ
e
− 3m2k2

2α2
λ
(2m+m′)2

Uλ1 = Uλ2 = −i k

2
√

3αλ

3m′

2m+m′
e
− k2

8α2
ρ e
− 3m′2k2

8α2
λ
(2m+m′)2

(3.22)

Tλ3,0 = i
k0

αλ

√
3mm′

2m+m′

[
1− 3m2k2

α2
λ(2m+m′)2

]
e
− 3m2k2

2α2
λ
(2m+m′)2

Tλ1,0 = Tλ2,0 = −i k0

2
√

3αλ

3mm′

2m+m′
e
− k2

8α2
ρ e
− 3m′2k2

8α2
λ
(2m+m′)2

[
1− k2

4α2
ρ

− 3m′2k2

4α2
λ(2m+m′)2

]
Tλ3,± = ±im′k0

√
6m

(2m+m′)αλ
e
− 3m2k2

2α2
λ
(2m+m′)2

Tλ1,± = Tλ2,± = ∓i
√

6mk0

2αλ

m′

2m+m′
e
− k2

8α2
ρ e
− 3m′2k2

8α2
λ
(2m+m′)2 .

On the other hand, the spin-flavor matrix elements are

ζj,0 ≡ 〈ψB′Q |X
M
j Sj,0|ψBQ〉 (3.23)

and

ζj,± ≡ 〈ψB′Q |X
M
j Sj,±|ψBQ〉. (3.24)

In turn, these matrix elements are split into the spin contribution of the Sj,m operator, with the
initial and final spin wave functions from Eqs. (1.62), and the flavor matrix elements of XM

j for the
flavor wave functions φ and φ′.

Because of the flavor symmetry properties of the total wave function for every single charm (or
bottom) baryon, it is just necessary to calculate the spin expectation values for only two baryons,
and the rest of baryon decays are similar to these first two, see Eqs (1.63) - (1.65). We take ΣQ
and ΛQ, such that one is symmetric and the other is antisymmetric in flavor, respectively. This
fact restricts the spin-orbit combinations, in such a way that we obtain all the independent spin
configurations.

Table 3.1: Spin matrix elements si,m for strong decays of heavy baryons BQ → B′Q +M . The final
states are from the [21]20 multiplet with JP = 1/2+.

Initial State B ν s1,− s2,− s3,− s1,z s2,z s3,z s1,+ s2,+ s3,+
2ρ(ΣQ)J

1
2 0 0 0 − 1

2
√

3
1

2
√

3
0 − 1√

3
1√
3

0

2λ(ΣQ)J
1
2 0 0 0 1

3
1
3 − 1

6
2
3

2
3 − 1

3

4λ(ΣQ)J
1
2 − 1√

6
- 1√

6
2√
6

1
3
√

2
1

3
√

2
− 2

3
√

2
1

3
√

2
1

3
√

2
− 2

3
√

2

2ρ(ΛQ)J
1
2 0 0 0 − 1

2
√

3
1

2
√

3
0 − 1√

3
1√
3

0

2λ(ΛQ)J
1
2 0 0 0 0 0 1

2 0 0 1

4ρ(ΣQ)J
1
2 − 1√

2
1√
2

0 1√
6

- 1√
6

0 1√
6

- 1√
6

0
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Table 3.2: Spin matrix elements si,m with helicities ν = 1/2 and ν = 3/2 for strong decays of heavy
baryons BQ → B′Q +M . The final states are from the [21]20 multiplet with JP = 3/2+.

Initial State B ν s1,− s2,− s3,− s1,z s2,z s3,z s1,+ s2,+ s3,+
2ρ(ΣQ)J

1
2 0 0 0 1√

6
− 1√

6
0 − 1√

6
1√
6

0

3
2 0 0 0 0 0 0 − 1√

2
1√
2

0

2λ(ΣQ)J
1
2 0 0 0 1

3
√

2
1

3
√

2
− 2

3
√

2
− 1

3
√

2
− 1

3
√

2
2

3
√

2

3
2 0 0 0 0 0 0 − 1√

6
− 1√

6
2√
6

4λ(ΣQ)J
1
2

1√
3

1√
3

1√
3

1
6

1
6

1
6

2
3

2
3

2
3

3
2 0 0 0 1

2
1
2

1
2

1√
3

1√
3

1√
3

2ρ(ΛQ)J
1
2 0 0 0 1

3
√

2
1

3
√

2
− 2

3
√

2
− 1

3
√

2
− 1

3
√

2
2

3
√

2

3
2 0 0 0 0 0 0 − 1√

6
− 1√

6
2√
6

2λ(ΛQ)J
1
2 0 0 0 1√

6
− 1√

6
0 − 1√

6
1√
6

0

3
2 0 0 0 0 0 0 − 1√

2
1√
2

0

4ρ(ΣQ)J
1
2

1√
3

1√
3

1√
3

1
6

1
6

1
6

2
3

2
3

2
3

3
2 0 0 0 1

2
1
2

1
2

1√
3

1√
3

1√
3

Evaluation of the spin matrix elements are straightforward (results are presented in Tables 3.1
and 3.2), whereas the flavor matrix elements require a little more effort in order to be evaluated
channel by channel. Fortunately, they can be calculated directly through the Wigner-Eckart theorem

〈φ′|XM
j |φ〉 = 〈(p2, q2), I2,MI2 , Y2|T (p,q),I,MI ,Y |(p1, q1), I1,MI1 , Y1〉

= 〈I1,MI1 , I,MI |I2,MI2〉
∑
γ

〈
(p1, q1) (p, q)
I1, Y1 I, Y

∣∣∣∣ (p2, q2)γ
I2, Y2

〉
〈(p2, q2)||T (p,q)||(p1, q1)〉γ .

(3.25)

Here (pi, qi) refers to the SU(3) labels from the flavor baryon multiplets, so they can be (2, 0) for
the sextets, one with JP = 1/2+ or the other with JP = 3/2+, and (0, 1) for the anti-triplet with
JP = 1/2+. The labels (p, q) are for the flavor meson multiplets (1, 1) or (0, 0). The subindex γ
is associated to the different multiplicities, where the notation here involves the quantum numbers
(p, q), I,MI , Y corresponding with the reduction of flavor algebra, Eq.(1.2).

A simplification on the flavor matrix elements in Eq. (3.25) is directly proportional (through
the isospin Clebsh-Gordan coefficients) to the isoscalar factors times the reduced matrix elements.
This separation allow us, on the one hand, to calculate the dependence on isospin I,MI and hyper-
charge Y , and on the other hand to evaluate separately the couplings of the flavor multiplets (p, q).
The results of this last couplings are in Table 3.3. The nonzero isoscalar factors in their matrix
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representation for each decay channel are given by

(20) −→ (20)⊕ (11) ΣQ
Ξ′Q
ΩQ

 −→
 ΣQπ ΣQη8 Ξ′QK

ΣQK̄ Ξ′Qπ Ξ′Qη8 ΩQK

Ξ′QK̄ ΩQη8

 =
1√
40

 24 − 4 12
18 9 1 12

24 16

1/2

(20) −→ (01)⊕ (11) ΣQ
Ξ′Q
ΩQ

 −→
 ΞQK ΛQπ

ΞQη8 ΞQπ ΛQK̄
ΞQK̄

 =
1√
8

 −4 4
−3 3 2

8

1/2

(20) −→ (20)⊕ (00) ΣQ
Ξ′Q
ΩQ

 −→
 ΣQη1

Ξ′Qη1

ΩQη1

 =

 1
1
1



(01) −→ (01)⊕ (11)(
ΛQ
ΞQ

)
−→

(
ΞQK ΛQη8

ΞQπ ΞQη8 ΛQK̄

)
=

1√
16

(
−12 4

−9 − 1 6

)1/2

(01) −→ (20)⊕ (11)(
ΛQ
ΞQ

)
−→

(
Ξ′QK ΣQπ

ΩQK Ξ′Qη8 Ξ′Qπ ΣQK̄

)
=

1√
16

(
−4 − 12

4 − 3 3 − 6

)1/2

(01) −→ (01)⊕ (00)(
ΛQ
ΞQ

)
−→

(
ΞQη1

ΛQη1

)
=

(
1
1

)
(3.26)

The spin-flavor matrix elements for an specific channel are calculated by multiplying their corre-
sponding spin part, isospin Clebsh-Gordan coefficient, isoscalar factor and reduced matrix element
together. Consequently, by also incorporating the orbital matrix elements, the helicity amplitudes
Aν(k) of Eq. (3.15) are obtained.

Finally, the strong decay width of baryons by the emission of a pseudoscalar meson is

Γ(BQ → B′Q +M) = 2πρ
2

2J + 1

∑
ν>0

|Aν(k)|2, (3.27)

where we take the rest frame of the final baryon B′Q, in which the momentum of the emitted meson
is given by

k2 = −m2
M +

(m2
BQ
−m2

B′Q
+m2

M )2

4m2
BQ

(3.28)

and the phase space factor is

ρ = 4π
EB′QEMk

mBQ

. (3.29)
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Table 3.3: SUf (3) Reduced Matrix Elements

〈(p2, q2)||T (p,q)||(p1, q1)〉
(p2, q2) (p1, q1) 〈T1〉 〈T2〉 〈T3〉
(2,0) (2,0)

√
10
3

√
10
3 0

(2,0) (0,1)
√

2 -
√

2 0

(0,1) (0,1) - 2√
3

- 2√
3

0

(0,1) (2,0) 2 -2 0

Of course, the energies of the resulting baryon and meson in these process are given by EB′Q =√
m2
B′Q

+ k2 and EM =
√
m2
M + k2, respectively.

The theoretical strong decay widths were calculated as the sum of several significant contributions
coming from the possible isospin channels. Each one of these combinations was established from
selection rules of their quantum numbers. The numerical contribution to the total decay width from
every initial ground or excited baryon state BQ was evaluated, and the possible decay channels are
configurations of ground state baryons B′ and pseudoscalar mesons M . In any case, every one of
these baryon states comes from either the flavor sextet 6 (with SP = 1/2+ or 3/2+) or the flavor
anti-triplet 3̄ (with SP = 1/2+). The results can be found from Table 3.4 to 3.9.

The results of the total strong decay widths calculated in the elementary-meson emission model
are shown in Tables 3.10 and 3.11, and they are of the order of a few MeV. In these strong couplings
there are two parameters g and h, which where fitted from the experimental widhts of two omega
strong decays, they are Ωc(3050) and Ωc(3066), and are fixed for all the single charm and single
bottom baryon decays calculated in this work. Specially, these resonances were marked with a star
in Table 3.10. The values of these parameters are g = 1.821 GeV−1 and h = −0.356 GeV−1.

3.1.1 Strong decay widths of ΣQ and ΛQ baryons
The total decay widths for ΣQ states Γ(2S+1L(ΣQ)JP ), are at most composed from the sum of four
individual contributions. They correspond to different isospin channels as

Γ(2S+1L(ΣQ)JP ) = Γ(Σ∗Q → ΣQ + π) + Γ(Σ∗Q → ΛQ + π)

+Γ(Σ∗Q → 4ΣQ + π) + Γ(Σ∗Q → ΣQ + η), (3.30)

where we simplify the notation by choosing 2S+1L(ΣQ)JP ≡ Σ∗Q, and hereafter we generalize to all
singly heavy quark baryons with 2S+1L(BQ)JP ≡ B∗Q. For Σc the first three terms are the most
relevant, since those give the greatest contribution to the total width, as can be seen in Table 3.4.
However, the fourth term of the η channel is different from zero (but much smaller than 1 MeV). In
fact, a similar situation occurs for Σb, and this term is absent.

As far as currently information is available, the ground state resonances Σc(2455) and Σc(2520)
are entirely dominated by the Λcπ channel in approximately 100% of the branching fraction [47, 62],
and that is what naturally our study reflects. The Σc(2800) resonance is assigned in our formalism
to the state 2λ(Ξ′c)1/2− . The decay width in this case was reported by the Belle Colaboration [63]
and later confirmed by BaBar [64], where experimentally is reported Γ = 69.67 ± 41 MeV with a
large statistical uncertainty. In our prediction based in three channels Σcπ, Λcπ and Σcπ we report
a width consistently below this data.

In 2019 the LHCb Collaboration announced the observation of ground states Σ±b with spin-parity
JP = 1/2+ and Σ∗±b with 3/2+, where their masses and widths were measured with high precision
[1]. Of course in comparison with the charm sector, now these widths are governed by the final
states Λ0

bπ
±, as can be well understood in our description, see Table 3.5. In the same experimental
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Table 3.4: Decay modes for charmed baryons Σc and Λc. Decay widhts are in MeV units.

State Γ(Σcπ) Γ(Σcη) Γ(Λcπ) Γ(Λcη) Γ(Σ∗cπ)
2(Σc)1/2+ – – 0.572 – –
4(Σc)3/2+ – – 3.458 – –

2λ(Σc)1/2− 0.827 – 1.963 – 0.763
4λ(Σc)1/2− 1.038 – 4.884 – 0.877
2λ(Σc)3/2− 6.193 – 4.679 – 0.947
4λ(Σc)3/2− 0.400 – 0.964 – 5.396
4λ(Σc)5/2− 3.209 – 5.643 – 8.226
2ρ(Σc)1/2− 4.403 0.153 – – 14.84
2ρ(Σc)3/2− 8.997 0.099 – – 12.242
2(Λc)1/2+ – – – – –

2λ(Λc)1/2− 0.035 – – – –
2λ(Λc)3/2− 0.043 – – – –
2ρ(Λc)1/2− 2.235 – – 0.114 1.921
4ρ(Λc)1/2− 1.648 – – 0.274 1.382
2ρ(Λc)3/2− 10.320 – – 0.081 1.839
4ρ(Λc)3/2− 0.728 – – 0.123 13.054
4ρ(Λc)5/2− 4.7165 – – 1.004 12.683

data analysis, it was observed the resonance Σb(6097), and reported with the assumption of relative
angular momentum between the Λ0

b and π± taken to be 1. In our study we expect a total of five
P-wave states described as λ-excitations and two P-wave states as ρ-excitations. From these excited
states, we do the assignment 2λ(Σb)1/2− → Σb(6097).

We obtain the total decay widths for ΛQ states, essentially, as the sum of three different partial
widths

Γ(2S+1L(ΛQ)JP ) = Γ(Λ∗Q → ΣQ + π) + Γ(Λ∗Q → ΛQ + η) + Γ(Λ∗Q → 4ΣQ + π). (3.31)

Unlike the ΣQ states, for ΛQ we expect the opposite description, such that we predict negative
parity P-wave states as follows; five in ρ-mode and two in λ-mode. For these excited states we
do the assignment 2λ(Λc)1/2− → Λc(2595), 2λ(Λc)3/2− → Λc(2625) and 4λ(Λc)3/2− → Λc(2940)

while for states with bottom we link them as 2λ(Λb)3/2− → Λb(5912) and 2λ(Λb)3/2− → Λb(5920).
Particularly, the strong decay widths for these last two resonances, together with the ground state
Λb (Λc), are zero within our study with the elementary-meson emission model, where the LHCb
Collaboration gives small upper limits [59] of less than 0.67 MeV, see Table 3.11. This fact shows
a good agreement of our calculations with the data. One can observe that the smaller numbers are
calculated for the widths of Λb, in comparison with Λc.

Experimentally, one has the total decay widths to compare with. In our study we report the
decay widths they are within all these benchmarks for ΣQ and ΛQ, as is shown in Tables 3.10 and
3.11. This comparison gives support to our analysis and reveals a reasonable agreement from our
calculations to the experimental data.

Although the structure of states for both single charm and single bottom baryons is similar from
the quark model point of view, the large gap between their masses, in general, leads to smaller
widths for charm sector in comparison with bottom sector.

3.1.2 Strong decay widths of ΞQ and Ξ′Q baryons

In our classification we distinguish between baryons with a prime Ξ′Q belonging to a flavor sextet
6, and those without prime ΞQ belonging to a flavor antitriplet 3̄. Nevertheless, all states coming
from both ΞQ and Ξ′Q are always isospin doublets, so they are related between themselves through
SUf (2) flavor symmetry in their light quark structure.
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Table 3.5: Decay modes for charmed baryons Σb and Λb. Decay widhts are in MeV units.

State Γ(Σbπ) Γ(Λbπ) Γ(Σ∗bπ)
2(Σb)1/2+ – 1.693 –
4(Σb)3/2+ – 2.691 –

2λ(Σb)1/2− 0.227 2.170 0.824
4λ(Σb)1/2− 0.188 4.605 0.528
2λ(Σb)3/2− 2.744 4.760 0.512
4λ(Σb)3/2− 0.167 0.974 2.232
4λ(Σb)5/2− 1.200 5.940 3.155
2ρ(Σb)1/2− 2.941 – 12.017
2ρ(Σb)3/2− 6.496 – 8.914
2(Λb)1/2+ – – –

2λ(Λb)1/2− – – –
2λ(Λb)3/2− – – –
2ρ(Λb)1/2− 0.196 – 0.783
4ρ(Λb)1/2− 0.168 – 0.505
2ρ(Λb)3/2− 2.650 – 0.485
4ρ(Λb)3/2− 0.162 – 2.119
4ρ(Λb)5/2− 1.172 – 3.055

From all studied baryons, the Ξ
(′)
c/b have the widest nonzero contribution of isospin channels, for

in general they can be written maximum with 7 terms

Γ(2S+1L(Ξ
(′)
Q )JP ) = Γ(Ξ

(′)∗
Q → ΣQ + K̄) + Γ(Ξ

(′)∗
Q → ΛQ + K̄) + Γ(Ξ

(′)∗
Q → ΞQ + π)

+Γ(Ξ
(′)∗
Q → ΞQ + η) + Γ(Ξ

(′)∗
Q → Ξ′Q + π) + Γ(Ξ

(′)∗
Q → 4ΣQ + K̄)

+Γ(Ξ
(′)∗
Q → 4Ξ′Q + π). (3.32)

There has been a lot of progress in the understanding of the Ξ
(′)
Q spectra. From a few years ago to

date, the LHCb, Belle, BaBar together with other Collaborations have accumulated more and more
data such that new resonances appear, among them, the following resonances have been reported
Ξc(2645), Ξc(2790), Ξc(2815), Ξc(2930), Ξc(2970), Ξc(3055), Ξc(3080) and Ξc(3123). In our study
we analyze some of these resonances in order to access and comprehend the spectra and the strong
decays of all Ξ

(′)
Q baryons.

First of all we make the next states assignment: for positive parity S-wave states we have
2(Ξ′c)1/2+ → Ξc(2578), 4(Ξ′c)3/2+ → Ξ∗c(2645), while for negative parity P-wave states 2ρ(Ξ′c)1/2− →
Ξc(3055), 2ρ(Ξ′c)3/2− → Ξc(3080).

For baryons from the antitriplet 3̄ we keep the analogue correspondence 2(Ξc)1/2+ → Ξc(2469)

for ground state, while 2λ(Ξc)1/2− → Ξc(2790) and 2λ(Ξc)3/2− → Ξc(2815) are λ-excitations.
Very recently, the results of the LHCb showed new single charm resonances Ξ0

c(2923) and
Ξ0
c(2939) in the channel Λ+

c K
− [2]. Additionally the Collaboration reported the Ξ0

c(2965) state very
close to the already known Ξ0

c(2970). They were observed with not only their masses and widths, but
also with a possible relation between them. In our analysis, we establish the following assignment
to these states 4λ(Ξ′c)1/2− → Ξc(2923), 2λ(Ξ′c)3/2− → Ξc(2939) and 4λ(Ξ′c)3/2− → Ξc(2965).

As has been previously discussed there exist a SUf (3) flavor symmetry relation between any
baryon BQ of the same multiplet, because the wave function of every single charm or single bottom
baryon fundamentally differ each other only in the flavor part. Now, since the symmetry properties
of wave functions for baryons Ξ

(′)
Q are not independent from ΣQ and ΛQ, by construction we have

the same number of states for Ξ
′

Q than for ΣQ, that is to say, 9 states, and equality, the same 8
states for ΞQ than for ΛQ (including in both cases the ground states).
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Table 3.6: Decay modes for charmed baryons Ξc, Ξ′c and Ωc. Decay widhts are in MeV units.

State Γ(ΣcK̄) Γ(ΛcK̄) Γ(Ξcπ) Γ(Ξcη) Γ(Ξ′cπ) Γ(Σ∗cK̄) Γ(Ξ∗
′

c π)
2(Ξ′c)1/2+ – – – – – – –
4(Ξ′c)3/2+ – – 0.698 – – – –

2λ(Ξ′c)1/2− – 0.023 0.663 – 0.091 – 0.178
4λ(Ξ′c)1/2− – 0.178 1.622 – 0.083 – 0.130
2λ(Ξ′c)3/2− – 1.731 2.920 – 1.726 – 0.177
4λ(Ξ′c)3/2− 0.003 0.426 0.656 – 0.113 – 0.924
4λ(Ξ′c)5/2− 0.668 3.400 4.724 0.018 1.077 0.061 2.326
2ρ(Ξ′c)1/2− 0.002 – – – 1.056 0.849 4.224
2ρ(Ξ′c)3/2− 4.091 – – – 3.453 1.446 3.154
2(Ξc)1/2+ – – – – – – –

2λ(Ξc)1/2− – – – – 0.026 – 0.001
2λ(Ξc)3/2− – – – – 0.164 – 0.053
2ρ(Ξc)1/2− 0.756 0.262 1.077 – 0.337 – 0.435
4ρ(Ξc)1/2− 0.689 0.980 2.670 – 0.287 – 0.328
2ρ(Ξc)3/2− 0.436 2.479 3.625 – 2.756 – 0.398
4ρ(Ξc)3/2− 0.077 0.557 0.783 – 0.169 1.043 1.993
4ρ(Ξc)5/2− 1.583 3.705 5.092 0.071 1.368 1.407 3.413

For baryons with one bottom quark, since 2015 LHCb observed Ξ−b (5935) and Ξ−b (5955) reso-
nances close to the threshold Ξbπ [3], where in the quark model we associate them with spin-parity
JP = 1/2+ and 3/2+ prime ground states, respectively. For unprimed resonances Ξb and Ξ∗b [4, 5] we
assign the same quantum numbers. Of course, the main difference between our previous assignation
are the multiplets to which those baryons belongs.

On the other hand, there had been other resonances: Ξ0
b(5945) was reported decaying to Ξbπ [6],

and Ξ−b (6227) was observed in 2018 in both ΛbK and Ξbπ channels [7], with a width of ' 18 MeV.
Because of the mass and width of the last resonance, in our analysis we assigned our state 4λ(Ξ′b)5/2−

to Ξ−b (6227). Now, with more statistics that resonance is confirmed by the LHCb Collaboration [65].
We calculate not only the decay widths for every assigned state, but also the widths for the rest

of the spectra Ξ
(′)
c/b. Our results are listed in Table 3.10 for charm Ξ

(′)
c and in Table 3.11 for bottom

Ξ
(′)
b , in order that they can be compared with the experimental widths, and also with other works.

All of the strong decays are in good agreement with the experimental data, with the only exception
of Ξc(3080), where our result is slightly above of the effective value. Therefore, it can be said that
the resonances can be satisfactorily understood within the elementary-meson emission model.

3.1.3 Strong decay widths of ΩQ baryons

According to the study of the isoscalar factors for the ΩQ strong decays there are a total of three
non zero contributions for the total decay widths, and they are Ξ′QK̄, ΞQK̄ and 4Ξ′QK̄. Then we
have

Γ(2S+1L(ΩQ)JP ) = Γ(Ω∗Q → Ξ′Q + K̄) + Γ(Ω∗Q → ΞQ + K̄) + Γ(Ω∗Q → 4Ξ′Q + K̄). (3.33)

In 2017, the LHCb Collaboration announced the observation of five resonances Ωc(3000), Ωc(3050),
Ωc(3065), Ωc(3090) and Ωc(3119) [8, 9]. At the same time, a further resonance was reported
Ωc(3188), but because the absence of enough statistic, they did not claim it as an authentic res-
onance. All these signals were discovered in the Ξ+

c K
− decay channel. One year later, the Belle

Collaboration confirmed the observation of the first four resonances together with Ωc(3188), however,
they do not observe the Ωc(3119).
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Table 3.7: Decay modes for bottom baryons Ξb and Ξ′b. Decay widhts are in MeV units.

State Γ(ΣbK̄) Γ(ΛbK̄) Γ(Ξbπ) Γ(Ξ′bπ) Γ(Σ∗bK̄) Γ(Ξ∗
′

b π)
2(Ξ′b)1/2+ – – – – – –
4(Ξ′b)3/2+ – – 0.288 – – –

2λ(Ξ′b)1/2− – 0.033 0.642 0.001 – 0.158
4λ(Ξ′b)1/2− – 0.001 1.542 0.001 – 0.111
2λ(Ξ′b)3/2− – 1.068 2.754 0.610 – 0.100
4λ(Ξ′b)3/2− – 0.277 0.599 0.040 – 0.430
4λ(Ξ′b)5/2− – 2.161 3.950 0.324 – 0.807
2ρ(Ξ′b)1/2− – – – 0.645 0.401 3.908
2ρ(Ξ′b)3/2− 1.005 – – 2.301 1.267 2.627
2(Ξb)1/2+ – – – – – –

2λ(Ξb)1/2− – – – – – –
2λ(Ξb)3/2− – – – – – –
2ρ(Ξb)1/2− – 0.009 0.631 0.009 – 0.205
4ρ(Ξb)1/2− – 0.089 1.442 0.013 – 0.131
2ρ(Ξb)3/2− – 1.164 2.264 0.684 – 0.119
4ρ(Ξb)3/2− – 0.278 0.483 0.043 – 0.506
4ρ(Ξb)5/2− – 1.925 3.076 0.312 – 0.814

Table 3.8: Decay modes for charmed baryons Ωc. Decay widhts are in MeV units.

State Γ(Ξ′cK̄) Γ(ΞcK̄) Γ(4Ξ′cK̄)
2(Ωc)1/2+ – – –
4(Ωc)3/2+ – – –

2λ(Ωc)1/2− – 1.924 –
4λ(Ωc)1/2− – 0.800 –
2λ(Ωc)3/2− – 3.500 –
4λ(Ωc)3/2− 0.004 1.047 –
4λ(Ωc)5/2− 1.799 14.046 0.988
2ρ(Ωc)1/2− 0.838 – 0.005
2ρ(Ωc)3/2− 4.580 – 2.586

The experimental knowledge on Ωb has been expanded this year with the inclusion of more
resonances to the spectra, since the LHCb collaboration reported 4 signals in Ωb(6316), Ωb(6330),
Ωb(6340) and Ωb(6350) in the Ξ0

bK
− mass spectrum [10].

In this work we assign the quantum numbers of ground and excited states ΩQ through the quark
model. In tables 2.2 and 2.3 we presented our predictions for the mass spectra and we compare
our results with the experimental data. Right there can bee seen all the assignments between our
different states with the resonances.

Finally, looking at the total decay widths on Tables 3.10 and 3.11, for both sectors charm and
bottom it can be seen a good agreement between our results and the experimental widths.

Some of the strong decay channels are forbidden by phase space.
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Table 3.9: Decay modes for charmed baryons Ωb. Decay widhts are in MeV units.

State Γ(Ξ′bK̄) Γ(ΞbK̄) Γ(4Ξ′bK̄)
2(Ωb)1/2+ – – –
4(Ωb)3/2+ – – –

2λ(Ωb)1/2− – 3.263 –
4λ(Ωb)1/2− – 3.663 –
2λ(Ωb)3/2− – 2.460 –
4λ(Ωb)3/2− – 0.149 –
4λ(Ωb)5/2− – 1.831 –
2ρ(Ωb)1/2− 2.507 – 0.002
2ρ(Ωb)3/2− 0.401 – 2.474
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Table 3.10: Decay widths for charmed baryons in MeV.

State Present work Ref. [33, 34] Ref. [66] Exp Γexp
tot

2(Σc)1/2+ 0.57 · · · · · · Σc(2455) 1.86± 0.19
4(Σc)3/2+ 3.36 · · · · · · Σc(2520) 15.04± 0.45

2λ(Σc)1/2− 3.55 · · · 22.65 Σc(2800) 69.67± 41
4λ(Σc)1/2− 6.80 · · · 17.63
2λ(Σc)3/2− 11.82 · · · 36.5
4λ(Σc)3/2− 6.76 · · · 24.69
4λ(Σc)5/2− 17.08 · · · 33.22
2ρ(Σc)1/2− 19.40 · · · · · ·
2ρ(Σc)3/2− 21.34 · · · · · ·
2(Λc)1/2+ – · · · · · · Λc

2λ(Λc)1/2− 0.05 · · · · · · Λc(2595) 2.6± 0.6
2λ(Λc)3/2− 0.06 · · · · · · Λc(2625) < 0.97
2ρ(Λc)1/2− 4.27 · · · · · ·
4ρ(Λc)1/2− 3.31 · · · · · ·
2ρ(Λc)3/2− 12.24 · · · · · ·
4ρ(Λc)3/2− 13.90 · · · · · · Λc(2940) 20± 6
4ρ(Λc)5/2− 18.40 · · · · · ·
2(Ξ′c)1/2+ – – · · · Ξ′c(2578)
4(Ξ′c)3/2+ 0.70 0.07 · · · Ξc(2645) 2.25± 0.41

2λ(Ξ′c)1/2− 0.96 0.96 21.67
4λ(Ξ′c)1/2− 2.01 0.70 37.05 Ξc(2923) 7.1± 2.0
2λ(Ξ′c)3/2− 6.55 3.56 20.89 Ξc(2939) 10.2± 0.14
4λ(Ξ′c)3/2− 2.12 2.39 12.33 Ξc(2965) 14.1± 1.6
4λ(Ξ′c)5/2− 12.28 7.66 20.2
2ρ(Ξ′c)1/2− 6.13 16.98 · · · Ξc(3055) 7.8± 1.9
2ρ(Ξ′c)3/2− 12.14 8.70 · · · Ξc(3080) 4.6± 3.3
2(Ξc)1/2+ – – · · · Ξc(2469)

2λ(Ξc)1/2− 0.02 0.49 3.61 Ξc(2790) 9.5± 2.0
2λ(Ξc)3/2− 0.22 0.63 2.11 Ξc(2815) 2.48± 0.5
2ρ(Ξc)1/2− 2.87 2.42 · · ·
4ρ(Ξc)1/2− 4.95 2.28 · · ·
2ρ(Ξc)3/2− 9.69 9.25 · · ·
4ρ(Ξc)3/2− 4.62 6.82 · · ·
4ρ(Ξc)5/2− 16.64 8.75 · · ·
2(Ωc)1/2+ – – · · · Ωc(2695) < 10−7

4(Ωc)3/2+ – – · · · Ωc(2770)
2λ(Ωc)1/2− 1.92 0.48 4.38/4.28 Ωc(3000) 4.6± 0.6
4λ(Ωc)1/2− 0.8* 1.0 – Ωc(3050) 0.8± 0.2
2λ(Ωc)3/2− 3.5* 3.5 4.96 Ωc(3066) 3.5± 0.4
4λ(Ωc)3/2− 1.05 1.09 0.94 Ωc(3090) 8.7± 1.0
4λ(Ωc)5/2− 16.83 9.87 9.53 Ωc(3188) 60± 26
2ρ(Ωc)1/2− 6.28 4.92 · · ·
2ρ(Ωc)3/2− 7.04 3.82 · · ·
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Table 3.11: Decay widths for bottom baryons in MeV.

State Present work Ref. [33, 34] Ref. [66] Exp Γexp
tot (MeV)

2(Σb)1/2+ 1.69 · · · · · · Σb 5.08± 0.365
4(Σb)3/2+ 2.69 · · · · · · Σ∗b 10.01± 0.5

2λ(Σb)1/2− 3.22 · · · 22.66 Σb(6097) 29.95± 4.6097
4λ(Σb)1/2− 5.32 · · · 14.21
2λ(Σb)3/2− 8.02 · · · 39.29
4λ(Σb)3/2− 3.37 · · · 26.29
4λ(Σb)5/2− 10.29 · · · 38.34
2ρ(Σb)1/2− 14.96 · · · · · ·
2ρ(Σb)3/2− 15.41 · · · · · ·
2(Λb)1/2+ – · · · · · · Λb

2λ(Λb)1/2− – · · · · · · Λb(5912) < 0.66
2λ(Λb)3/2− – · · · · · · Λb(5920) < 0.63
2ρ(Λb)1/2− 0.98 · · · · · ·
4ρ(Λb)1/2− 0.67 · · · · · ·
2ρ(Λb)3/2− 3.14 · · · · · ·
4ρ(Λb)3/2− 2.28 · · · · · ·
4ρ(Λb)5/2− 4.23 · · · · · ·
2(Ξ′b)1/2+ – – 0.078 Ξ′b(5935) < 0.08
4(Ξ′b)3/2+ 0.29 0.03 0.98 Ξb(5955) 1.25± 0.6

2λ(Ξ′b)1/2− 0.83 1.10 27.05
4λ(Ξ′b)1/2− 1.65 0.92 32.24
2λ(Ξ′b)3/2− 4.53 3.25 24.15
4λ(Ξ′b)3/2− 1.35 1.72 15.83
4λ(Ξ′b)5/2− 7.24 3.97 24.39 Ξb(6227) 18± 6
2ρ(Ξ′b)1/2− 4.95 14.01 · · ·
2ρ(Ξ′b)3/2− 7.20 6.19 · · ·
2(Ξb)1/2+ – – · · · Ξb(5794)

2λ(Ξb)1/2− – – 2.88
2λ(Ξb)3/2− – – 2.95
2ρ(Ξb)1/2− 0.85 1.63 · · ·
4ρ(Ξb)1/2− 1.68 1.60 · · ·
2ρ(Ξb)3/2− 4.23 4.18 · · ·
4ρ(Ξb)3/2− 1.31 2.8 · · ·
4ρ(Ξb)5/2− 6.13 4.69 · · ·
2(Ωb)1/2+ – – · · · Ωb < 10−7

4(Ωb)3/2+ – – · · ·
2λ(Ωb)1/2− 3.26 0.50 49.38 Ωb(6316) < 2.8± 4.2
4λ(Ωb)1/2− 3.66 2.79 94.98 Ωb(6340) < 1.5± 1.8
2λ(Ωb)3/2− 2.46 1.14 1.82 Ωb(6330) < 3.1± 4.7
4λ(Ωb)3/2− 0.15 0.62 0.22 Ωb(6350) < 2.8± 3.2
4λ(Ωb)5/2− 1.83 4.28 1.60
2ρ(Ωb)1/2− 2.51 4.92 · · ·
2ρ(Ωb)3/2− 2.88 3.82 · · ·
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Chapter 4

Electromagnetic Couplings of Heavy
Baryons

In the present Chapter is proposed an effective interaction Hamiltonian between the quark current
and the electromagnetic field, with the proposal of considering process with the interaction of three
lines between the quarks and the photon. Here is considered the emission (or absorption) of a
photon by a quark. A general and detailed discussion of this process as well as the reduction of to a
non-relativistic approximation is presented later in Chapter 6. Here we focus in the non-relativistic
approximation of the electromagnetic interaction Hamiltonian.

4.1 The interaction Hamiltonian

A process of electromagnetic decay between a heavy baryon BQ and a baryon of the ground state
B′Q is produced by the emission of a left-handed photon as a result of the electromagnetic coupling
with the constituent quarks of the resonance.

BQ → B′Q + γ (4.1)

The non-relativistic Hamiltonian of interaction for the electromagnetic couplings is given by [38]

Hem = 2

√
π

k0

3∑
j=1

µj

[
ksj,−e

−i~k·~rj − 1

2g

(
pj,−e

−i~k·~rj + e−i
~k·~rjpj,−

)]
, (4.2)

where ~rj , ~pj , ~Sj and µi are the coordinate, momentum, spin and magnetic moment of the jht
constituent, respectively. k0 is the photon energy and ~k = kẑ the momentum carried by the emitted
photon along the quantization axis, z. The parameter g is related to the quark scale magnetic
moment, which is taken to be g = 1, in order to have the magnetic moment of the proton. A
simplification can be obtained by taking the photon momentum k with left-handed polarization
ε∗µ = 1√

2
(0, 1,−i, 0). The Feynman diagram related to this process is shown in Figure 4.1

The electromagnetic decays of a given baryon can be completely specified by defining matrix
elements of Hamiltonian operator Eq. (4.2). In general, the expression for the helicity amplitudes
of electromagnetic decays are denoted as

Aν = 〈ψB′Q ; J ′, ν − 1|Hem|ψBQ ; J, ν〉, ν = 1/2, 3/2. (4.3)

Since the final states in which we are interested on are the ground states corresponding to baryons
with total angular momentum and parity 1

2

+ from Fig. 2.1, the possible values of the helicity can
only be ν = 1

2 ,−
1
2 . One of them is between the initial baryon state with helicity ν = 1

2 and the final
state with ν = − 1

2 . The second possible matrix element is where the initial baryon has ν = 3
2 and

47
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Fig. 4.1: Photon emission in a radiative decay BQ → B′Q + γ.

the final state ν = 1
2 . As was discussed in the previous section we are interested in radially excited

states with at most one orbital excitation. Therefore, the selection rules for the quantum numbers
of the initial baryons states BQ turn out to be

J = 1/2; ν = 1/2

J = 3/2; ν = 1/2, 3/2;

J = 5/2; ν = 1/2, 3/2. (4.4)

In order to calculate the helicity amplitudes of the baryons, it is necessary to expand the basis
of total angular momentum |(nρlρ)(nλlλ)L, S; JM〉 to the uncoupled basis of angular momentum.

The final state is a ground state baryon with L′ = 0 and J ′ = S′

|L = 1, S; JM〉 =
∑
mlms

〈LmlSms|JM〉|Lml, Sms〉. (4.5)

As a consequence the helicity amplitude can be reexpressed as

Aν(k) =
∑
ml,ms

〈LmlSms|Jν〉〈ψB′Q0, 0;S′ν − 1|Hem|ψBQL,ml;S,ms〉

= 2

√
π

k0

〈L, 0;Sν|J, ν〉〈ψB′Q0, 0;S′, ν − 1|
3∑
j=1

µjksj,−Ûj |ψBQL, 0;S, ν〉

−〈L, 1;Sν − 1|J, ν〉〈ψB′Q0, 0;S′, ν − 1|
3∑
j=1

µj
1

2g
T̂j,−|ψBQL, 1;S, ν − 1〉

 , (4.6)

with the operators Ûj and T̂j,− previously defined.
Evidently, the relevant term with the information of the spin-flip part from the electromagnetic

interaction Hamiltonian is the first one of Eq. (4.6). Indeed, the operator µjsj,− only acts on the
spin-flavor part of the total baryon wave function. The second term has the contribution of the
orbit-flip due to the form of the operator T̂j,− which gives a nonzero contribution for a decay where
initial state corresponds to a radially excited state and final state corresponds to a ground state.



4.1. THE INTERACTION HAMILTONIAN 49

Table 4.1: Non vanishing spin-flip amplitudes for helicities ν = 1/2 and ν = 3/2 in the elec-
tromagnetic decays Σ∗Q(uuQ) → 2ΣQ(uuQ) + γ (top), Σ∗Q(uuQ) → 4ΣQ(uuQ) + γ (middle) and
Σ∗Q(udQ)→ 2ΛQ(udQ) + γ (bottom).
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Table 4.2: Non vanishing spin-flip amplitudes for helicities ν = 1/2 and ν = 3/2 in the elec-
tromagnetic decays Λ∗Q(udQ) → 2ΛQ(udQ) + γ (top), Λ∗Q(udQ) → 2ΣQ(udQ) + γ (middle) and
Λ∗Q(udQ)→ 4ΣQ(udQ) + γ (bottom).
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Similarly to the strong couplings, in the electromagnetic decays there is a contribution from both
the matrix elements corresponding to the radial part, and a contribution from the spin-flavor part of
the total baryon wave function. In the Appendix B, I present an illustrative example to obtain both
types of contributions for an electromagnetic decay process, whose initial state has one quantum of
radial excitation in λ, and the decaying baryon is from ground state. Here the transition matrix
element is evaluated for an operator Ûλ,3 defined implicitly from ~r3 in the baryon coordinate system.

The results of the radial contribution of the orbital matrix elements for both the spin-flip and
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the orbit-flip operator are given by

Uρ1 = −Uρ2 = −i k

2αρ
e
− k2

8α2
ρ e
− 3

8

(
m′k

αλ(2m+m′)

)2

Uρ3 = 0

Uλ1 = Uλ2 = −i 1

2αλ

√
3m′k

2m+m′
e
− k2

8α2
ρ e
− 3m′2k2

8α2
λ
(2m+m′)2

Uλ3 = i

√
3m

2m+m′
k

αλ
e
− 3m2k2

2α2
λ
(2m+m′)2 (4.7)

and

T ρ1 = −T ρ2 = imk0
1√
2αρ

e
− k2

8α2
ρ e
− 3

8

(
m′k

αλ(2m+m′)

)2

T ρ3 = 0

Tλ1 = Tλ2 = imk0

√
6

2

1

αλ

m′

2m+m′
e
− k2

8α2
ρ e
− 3

8

(
m′k

αλ(2m+m′)

)2

Tλ3 = −im′k0

√
6m

2m+m′
1

αλ
e
− 3

2

(
mk

αλ(2m+m′)

)2

, (4.8)

respectively, where definitions of Uα,i and Tα,i with α = ρ, λ and i = 1, 2, 3 are the usual ones as
those presented in the strong couplings. For the ground states one obtains

U3,0 = e
− 3m2k2

2α2
λ
(2m+m′)2 (4.9)

U1,0 = U2,0 = e
− k2

8α2
ρ e
− 3m′2k2

8α2
λ
(2m+m′)2 (4.10)

As it was already discussed, for the single charm and single bottom baryons, we have symmetry
relations in their wave function Eqs. (1.63) - (1.65), particularly, in their spin-orbit part we obtained
only two independent combinations. We choose take ΣQ and ΛQ, such that the rest of heavy baryons
in the sextet 6 and/or in the antitriplet 3̄ representations can be obtained by means of the flavor
symmetry of SUf (3).

In this work, we are interested in studying the radiative decay widths of the singly heavy baryons
not only for spin-parity JP = 1/2+ -sextet and -antitriplet, but also for the spin-parity JP =
3/2+ -sextet. For this proposal we focused on all the independent transitions going from states
2S+1L(ΣQ)JP ≡ Σ∗Q and 2S+1L(ΛQ)JP ≡ Λ∗Q towards the allowed ground states. Thus, we have
on the one hand Σ∗Q → 2ΣQ + γ, Σ∗Q → 4ΣQ + γ and Σ∗Q → 2ΛQ + γ, and on the other hand
Λ∗Q → 2ΛQ + γ, Λ∗Q → 2ΣQ + γ and Λ∗Q → 4ΣQ + γ. We calculate the contribution of the spin-flavor
matrix elements from the electromagnetic Hamiltonian 4.2, for both the spin- and the orbit-flip
terms. Our results are listed in Tables 4.1 - 4.4.

Taking all the matrix elements and factors into account, it is straightforward to write the ana-
lytical expressions of the helicity amplitudes. We present our results in Tables 4.5 and 4.6.

Table 4.4: Non vanishing orbit-flip amplitudes for helicities ν = 1/2 and ν = 3/2 in the elec-
tromagnetic decays Λ∗Q(udQ) → 2ΛQ(udQ) + γ (top), Λ∗Q(udQ) → 2ΣQ(udQ) + γ (middle) and
Λ∗Q(udQ)→ 4ΣQ(udQ) + γ (bottom).

Λ∗Q ν 〈µ1〉 〈µ2〉 〈µ3〉 CG
2λ(ΛQ)J

1
2

1
2 (µu + µd)

1
2 (µu + µd) µQ 〈11 1

2 -
1
2 |J

1
2 〉

2λ(ΛQ)J
3
2

1
2 (µu + µd)

1
2 (µu + µd) µQ 〈11 1

2
1
2 |J

3
2 〉

2ρ(ΛQ)J
1
2

1
2 (µu − µd) - 1

2 (µu − µd) 0 〈11 1
2 -

1
2 |J

1
2 〉

2ρ(ΛQ)J
3
2

1
2 (µu − µd) - 1

2 (µu − µd) 0 〈11 1
2

1
2 |J

3
2 〉

4ρ(ΛQ)J
1
2

1
2 (µu − µd) - 1

2 (µu − µd) 0 〈11 3
2 -

1
2 |J

1
2 〉

4ρ(ΛQ)J
3
2

1
2 (µu − µd) - 1

2 (µu − µd) 0 〈11 3
2

1
2 |J

3
2 〉
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Table 4.3: Non vanishing orbit-flip amplitudes for helicities ν = 1/2 and ν = 3/2 in the elec-
tromagnetic decays Σ∗Q(uuQ) → 2ΣQ(uuQ) + γ (top), Σ∗Q(uuQ) → 4ΣQ(uuQ) + γ (middle) and
Σ∗Q(udQ)→ 2ΛQ((udQ)) + γ (bottom).

Σ∗Q ν 〈µ1〉 〈µ2〉 〈µ3〉 CG
2λ(ΣQ)J

1
2 µu µu µQ 〈11 1

2 -
1
2 |J

1
2 〉

3
2 µu µu µQ 〈11 1

2
1
2 |J

3
2 〉

4λ(ΣQ)J
1
2 µu µu µQ 〈11 3

2 -
1
2 |J

1
2 〉

3
2 µu µu µQ 〈11 3

2
1
2 |J

3
2 〉

2ρ(ΣQ)J
1
2

1
2 (µu − µd) − 1

2 (µu − µd) 0 〈11 1
2 -

1
2 |J

1
2 〉

3
2

1
2 (µu − µd) − 1

2 (µu − µd) 0 〈11 1
2

1
2 |J

3
2 〉

The helicity amplitude is related to the radiative decay width through

Γ(BQ → B′Q + γ) = 2πρ
1

(2π)3

2

2J + 1

∑
ν>0

|Aν(k)|2. (4.11)

Here the widths are calculated in the rest frame of the final baryon B′Q, where the momentum of
the emitted photon is

k =
m2
BQ
−m2

B′Q

2mBQ

, (4.12)

and the phase space factor has the following form

ρ = 4π
EB′Qk

2

mBQ

. (4.13)

The energy of the decaying baryon in this process is EB′Q =
√
m2
B′Q

+ k2. The value of factor

g = 1 is taken for all electromagnetic decays.
We estimate the radiative decay widths, and compared our results with other approaches. In

Table 4.7 we present our result between ground states. From Tables 4.8 to 4.14 we have the elec-
tromagnetic decay widths for radially excited states. Unlike the case of strong couplings where we
obtained widths of a few MeV, in electromagnetic couplings we obtain smaller widths of the order
of KeV.

A few months ago, for the first time The Belle Collaboration reported the electromagnetic de-
cay of the excited charm baryons Ξc(2790) and Ξc(2815). They determined the partial widths of
the electromagnetic decays for neutral baryons as Γ(Ξ0

c(2815) → Ξ0
c + γ) = 320 ± 45 KeV and

Γ(Ξ0
c(2790) → Ξ0

c + γ) = 800 ± 320 KeV, while for charged baryons they gave the following upper
limits to their widths Γ(Ξ+

c (2815)→ Ξ+
c + γ) < 80 KeV and Γ(Ξ+

c (2790)→ Ξ+
c + γ) < 350 KeV.

We already identify these resonances with λ-exited states and we calculated the radiative decay
widths as Γ(Ξ0

c(2815)→ Ξ0
c+γ) = 711.45 KeV, Γ(Ξ0

c(2790)→ Ξ0
c+γ) = 547.16 KeV, Γ(Ξ+

c (2815)→
Ξ+
c + γ) = 2.80 KeV and Γ(Ξ+

c (2790)→ Ξ+
c + γ) = 0.92 KeV.
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Table 4.5: Helicity amplitudes for photocouplings of heavy baryons, Σ∗Q(uuQ) → 2ΣQ(uuQ) + γ

(top), Σ∗Q(uuQ)→ 4ΣQ(uuQ) + γ (middle) and Σ∗Q(udQ)→ 2ΛQ(udQ) + γ (bottom).
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Table 4.6: Helicity amplitudes for photocouplings of heavy baryons, Λ∗Q(udQ) → 2ΛQ(udQ) + γ

(top), Λ∗Q(udQ)→ 2ΣQ(udQ) + γ (middle) and Λ∗Q(udQ)→ 4ΣQ(udQ) + γ (bottom).

Λ∗Q J A 1
2
/2µ

√
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√
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Table 4.7: Radiative decay widths of ground states baryons in KeV units.
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Table 4.8: Decay Widths for Photocouplings of Σc Baryons in KeV units.

BQ → B′Qγ M(MeV) Present work ChQM [66, 78] Ref. [79] LCQSR[80]
2λ(Σ++

c )1/2 → 2Σ++
c γ 2799.67± 9 46.36 283 51.0± 9.1 440(1± 0.25)

4λ(Σ++
c )1/2 → 2Σ++

c γ 2818.34 23.47 8.54 36(1± 0.4)
2λ(Σ++

c )3/2 → 2Σ++
c γ 2843.57 609.54 210 9(1± 0.1)

4λ(Σ++
c )3/2 → 2Σ++

c γ 2861.43 77.17 17.5
4λ(Σ++

c )5/2 → 2Σ++
c γ 2933.26 63.32 13.6

2ρ(Σ++
c )1/2 → 2Σ++

c γ 2980.23 144.18 –
2ρ(Σ++

c )3/2 → 2Σ++
c γ 3023.33 143.09 –

2λ(Σ+
c )1/2 → 2Σ+

c γ 2799.67± 9 38.17 1.60 28.4± 3.3
4λ(Σ+

c )1/2 → 2Σ+
c γ 2818.34 2.72 0.92

2λ(Σ+
c )3/2 → 2Σ+

c γ 2843.57 19.48 4.64
4λ(Σ+

c )3/2 → 2Σ+
c γ 2861.43 9.37 1.86

4λ(Σ+
c )5/2 → 2Σ+

c γ 2933.26 8.54 1.46
2ρ(Σ+

c )1/2 → 2Σ+
c γ 2980.23 8.14 –

2ρ(Σ+
c )3/2 → 2Σ+

c γ 3023.33 8.08 –
2λ(Σ0

c)1/2 → 2Σ0
cγ 2799.67± 9 367.29 205 9.1± 1.5

4λ(Σ0
c)1/2 → 2Σ0

cγ 2818.34 2.38 1.02
2λ(Σ0

c)3/2 → 2Σ0
cγ 2843.57 878.16 245

4λ(Σ0
c)3/2 → 2Σ0

cγ 2861.43 7.10 2.12
4λ(Σ0

c)5/2 → 2Σ0
cγ 2933.26 4.46 1.64

2ρ(Σ0
c)1/2 → 2Σ0

cγ 2980.23 39.72 –
2ρ(Σ0

c)3/2 → 2Σ0
cγ 3023.33 39.42 –

2λ(Λ+
c )1/2 → 2Λ+

c γ 2592.25± 0.28 2.72 0.26 274.3± 52 189(1± 0.3)
2λ(Λ+

c )3/2 → 2Λ+
c γ 2628.11± 0.19 15.08 0.30

2ρ(Λ+
c )1/2 → 2Λ+

c γ 2786.41 8.03 1.59
4ρ(Λ+

c )1/2 → 2Λ+
c γ 2804.28 4.02 0.80

2ρ(Λ+
c )3/2 → 2Λ+

c γ 2829.51 8.01 2.35
4ρ(Λ+

c )3/2 → 2Λ+
c γ 2939.60± 1.5 10.31 3.29

4ρ(Λ+
c )5/2 → 2Λ+

c γ 2919.20 6.31 –
2λ(Ξ+

c )1/2 → 2Ξ+
c γ 2793.25 0.92 4.65 249.6±41.9 265(1±0.4)

2λ(Ξ+
c )3/2 → 2Ξ+

c γ 2818.50 2.80 2.80
2ρ(Ξ+

c )1/2 → 2Ξ+
c γ 2951 16.16 1.39

4ρ(Ξ+
c )1/2 → 2Ξ+

c γ 2980 8.63 0.75 56.4± 19.2
2ρ(Ξ+

c )3/2 → 2Ξ+
c γ 2987 17.47 1.88

4ρ(Ξ+
c )3/2 → 2Ξ+

c γ 3016 25.33 2.81
4ρ(Ξ+

c )5/2 → 2Ξ+
c γ 3076 16.35 –

2λ(Ξ0
c)1/2 → 2Ξ0

cγ 2793.25 547.16 263 119.3±21.7 2.7(1± 0.3)
2λ(Ξ0

c)3/2 → 2Ξ0
cγ 2818.50 711.45 292

2ρ(Ξ0
c)1/2 → 2Ξ0

cγ 2951 26.45 5.57
4ρ(Ξ0

c)1/2 → 2Ξ0
cγ 2980 14.12 3.00 2.5± 1.7

2ρ(Ξ0
c)3/2 → 2Ξ0

cγ 2987 28.59 7.50
4ρ(Ξ0

c)3/2 → 2Ξ0
cγ 3016 41.46 11.2

4ρ(Ξ0
c)5/2 → 2Ξ0

cγ 3076 26.75 –
2λ(Ξ

′+
c )1/2 → 2Ξ

′+
c γ 2905 11.92 0.03 21(1± 0.2)

4λ(Ξ
′+
c )1/2 → 2Ξ

′+
c γ 2923.04 2.86 0.33

2λ(Ξ
′+
c )3/2 → 2Ξ

′+
c γ 2938.55 11.90 12.1

4λ(Ξ
′+
c )3/2 → 2Ξ

′+
c γ 2964.88 11.64 2.06

4λ(Ξ
′+
c )5/2 → 2Ξ

′+
c γ 3030 11.74 1.63

2ρ(Ξ
′+
c )1/2 → 2Ξ

′+
c γ 3055.90 16.14 –

2ρ(Ξ
′+
c )3/2 → 2Ξ

′+
c γ 3078.55 17.06 –

2λ(Ξ
′0
c )1/2 → 2Ξ

′0
c γ 2905 451.00 472 132(1± 0.2)

4λ(Ξ
′0
c )1/2 → 2Ξ

′0
c γ 2923.04 0.81 0.20

2λ(Ξ
′0
c )3/2 → 2Ξ

′0
c γ 2938.55 840.62 302

4λ(Ξ
′+
c )3/2 → 2Ξ

′0
c γ 2964.88 2.68 1.21

4λ(Ξ
′+
c )5/2 → 2Ξ

′0
c γ 3030 1.76 0.93

2ρ(Ξ
′0
c )1/2 → 2Ξ

′+
c γ 3055.90 26.41 –

2ρ(Ξ
′0
c )3/2 → 2Ξ

′0
c γ 3078.55 27.92 –

2λ(Ω0
c)1/2 → 2Ω0

cγ 3000.4 449.87 0.36/0.20 mixed
4λ(Ω0

c)1/2 → 2Ω0
cγ 3050.2 0.22 0.36/0.20 mixed

2λ(Ω0
c)3/2 → 2Ω0

cγ 3065.6 872.73 0.35
4λ(Ω0

c)3/2 → 2Ω0
cγ 3090.2 0.62 1.12× 10−3

4λ(Ω0
c)5/2 → 2Ω0

cγ 3188 0.14 1.00× 10−4

2ρ(Ω0
c)1/2 → 2Ω0

cγ 3146 15.72 –
2ρ(Ω0

c)3/2 → 2Ω0
cγ 3182 17.75 –
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Table 4.9: Decay Widths for Photocouplings of Σc Baryons in KeV units.

BQ → B′Qγ M(MeV) Present work ChQM [66, 78]
2λ(Σ++

c )1/2 → 4Σ++
c γ 2799.67± 9 8.06 3.04

4λ(Σ++
c )1/2 → 4Σ++

c γ 2818.34 0.15 387
2λ(Σ++

c )3/2 → 4Σ++
c γ 2843.57 13.67 14.7

4λ(Σ++
c )3/2 → 4Σ++

c γ 2861.43 58.16 181
4λ(Σ++

c )5/2 → 4Σ++
c γ 2933.26 438.40 168

2ρ(Σ++
c )1/2 → 4Σ++

c γ 2980.23 67.28 –
2ρ(Σ++

c )3/2 → 4Σ++
c γ 3023.33 71.15 –

2λ(Σ+
c )1/2 → 4Σ+

c γ 2799.67± 9 0.81 0.31
4λ(Σ+

c )1/2 → 4Σ+
c γ 2818.34 10.65 1.75

2λ(Σ+
c )3/2 → 4Σ+

c γ 2843.57 1.45 1.55
4λ(Σ+

c )3/2 → 4Σ+
c γ 2861.43 23.82 0.68

4λ(Σ+
c )5/2 → 4Σ+

c γ 2933.26 6.29 0.89
2ρ(Σ+

c )1/2 → 4Σ+
c γ 2980.23 3.80 –

2ρ(Σ+
c )3/2 → 4Σ+

c γ 3023.33 4.02 –
2λ(Σ0

c)1/2 → 4Σ0
cγ 2799.67± 9 1.08 0.39

4λ(Σ0
c)1/2 → 4Σ0

cγ 2818.34 37.73 289
2λ(Σ0

c)3/2 → 4Σ0
cγ 2843.57 1.67 1.82

4λ(Σ0
c)3/2 → 4Σ0

cγ 2861.43 265.45 159
4λ(Σ0

c)5/2 → 4Σ0
cγ 2933.26 655.27 160

2ρ(Σ0
c)1/2 → 4Σ0

cγ 2980.23 18.53 –
2ρ(Σ0

c)3/2 → 4Σ0
cγ 3023.33 19.60 –

2λ(Ξ
′+
c )1/2 → 4Ξ

′+
c γ 2905 1.01 1.61

4λ(Ξ
′+
c )1/2 → 4Ξ

′+
c γ 2923.04 1.94 0.16

2λ(Ξ
′+
c )3/2 → 4Ξ

′+
c γ 2938.55 1.62 1.59

4λ(Ξ
′+
c )3/2 → 4Ξ

′+
c γ 2964.88 3.72 1.64

4λ(Ξ
′+
c )5/2 → 4Ξ

′+
c γ 3030 2.16 2.35

2ρ(Ξ
′+
c )1/2 → 4Ξ

′+
c γ 3055.90 6.21 –

2ρ(Ξ
′+
c )3/2 → 4Ξ

′+
c γ 3078.55 6.95 –

2λ(Ξ
′0
c )1/2 → 4Ξ

′0
c γ 2905 0.38 1.00

4λ(Ξ
′0
c )1/2 → 4Ξ

′0
c γ 2923.04 51.61 125

2λ(Ξ
′0
c )3/2 → 4Ξ

′0
c γ 2938.55 0.55 1.05

4λ(Ξ
′0
c )3/2 → 4Ξ

′0
c γ 2964.88 289.26 187

4λ(Ξ
′0
c )5/2 → 4Ξ

′0
c γ 3030 586.26 192

2ρ(Ξ
′0
c )1/2 → 4Ξ

′0
c γ 3055.90 10.16 –

2ρ(Ξ
′0
c )3/2 → 4Ξ

′0
c γ 3078.55 11.33 –

2λ(Ω0
c)1/2 → 4Ω0

cγ 3000.4 0.09 0.02/0.08mixed

4λ(Ω0
c)1/2 → 4Ω0

cγ 3050.2 64.84 0.02/0.08mixed

2λ(Ω0
c)3/2 → 4Ω0

cγ 3065.6 0.17 5.17× 10−4

4λ(Ω0
c)3/2 → 4Ω0

cγ 3090.2 326.91 0.33
4λ(Ω0

c)5/2 → 4Ω0
cγ 3188 661.96 0.18

2ρ(Ω0
c)1/2 → 4Ω0

cγ 3146 5.42 –
2ρ(Ω0

c)3/2 → 4Ω0
cγ 3182 6.74 –
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Table 4.10: Decay Widths for Photocouplings of Σb Baryons in KeV units.

BQ → B′Qγ M(MeV) Present work ChQM [66]
2λ(Σ+

b )1/2 → 2Σ+
b γ 6096.90± 1.7 411.59 1016

4λ(Σ+
b )1/2 → 2Σ+

b γ 6109.42 10.44 5.31
2λ(Σ+

b )3/2 → 2Σ+
b γ 6104.68 1206.75 483

4λ(Σ+
b )3/2 → 2Σ+

b γ 6117.14 31.57 13.1
4λ(Σ+

b )5/2 → 2Σ+
b γ 6130.02 22.85 8.07

2ρ(Σ+
b )1/2 → 2Σ+

b γ 6287.12 105.26 –
2ρ(Σ+

b )3/2 → 2Σ+
b γ 6294.85 105.74 –

2λ(Σ0
b)1/2 → 2Σ0

bγ 6096.90± 1.7 35.15 74.9
4λ(Σ0

b)1/2 → 2Σ0
bγ 6109.42 0.56 0.32

2λ(Σ0
b)3/2 → 2Σ0

bγ 6104.68 87.66 37.9
4λ(Σ0

b)3/2 → 2Σ0
bγ 6117.14 1.71 0.80

4λ(Σ0
b)5/2 → 2Σ0

bγ 6130.02 1.23 0.49
2ρ(Σ0

b)1/2 → 2Σ0
bγ 6287.12 5.94 –

2ρ(Σ0
b)3/2 → 2Σ0

bγ 6294.85 5.97 –
2λ(Σ−b )1/2 → 2Σ−b γ 6096.90± 1.7 71.06 212
4λ(Σ−b )1/2 → 2Σ−b γ 6109.42 2.99 1.37
2λ(Σ−b )3/2 → 2Σ−b γ 6104.68 256.94 94.0
4λ(Σ−b )3/2 → 2Σ−b γ 6117.14 9.04 3.39
4λ(Σ−b )5/2 → 2Σ−b γ 6130.02 6.55 2.08
2ρ(Σ−b )1/2 → 2Σ−b γ 6287.12 28.99 –
2ρ(Σ−b )3/2 → 2Σ−b γ 6294.85 29.13 –
2λ(Λ0

b)1/2 → 2Λ0
bγ 5912.20± 0.13 65.30 50.2

2λ(Λ0
b)3/2 → 2Λ0

bγ 5920.00± 0.09 68.91 52.8
2ρ(Λ0

b)1/2 → 2Λ0
bγ 6093.30 5.92 1.62

4ρ(Λ0
b)1/2 → 2Λ0

bγ 6105.77 2.98 0.81
2ρ(Λ0

b)3/2 → 2Λ0
bγ 6101.03 5.95 1.81

4ρ(Λ0
b)3/2 → 2Λ0

bγ 6113.49 8.35 2.54
4ρ(Λ0

b)5/2 → 2Λ0
bγ 6126.37 5.35 –

2λ(Ξ0
b)1/2 → 2Ξ0

bγ 6048 143.67 63.6
2λ(Ξ0

b)3/2 → 2Ξ0
bγ 6055 152.14 68.3

2ρ(Ξ0
b)1/2 → 2Ξ0

bγ 6213 11.03 1.86
4ρ(Ξ0

b)1/2 → 2Ξ0
bγ 6225 5.72 0.93

2ρ(Ξ0
b)3/2 → 2Ξ0

bγ 6220 11.28 2.10
4ρ(Ξ0

b)3/2 → 2Ξ0
bγ 6233 16.36 2.94

4ρ(Ξ0
b)5/2 → 2Ξ0

bγ 6246 10.82 –
2λ(Ξ−b )1/2 → 2Ξ−b γ 6048 143.96 135
2λ(Ξ−b )3/2 → 2Ξ−b γ 6055 148.21 147
2ρ(Ξ−b )1/2 → 2Ξ−b γ 6213 18.05 7.19
4ρ(Ξ−b )1/2 → 2Ξ−b γ 6225 9.36 3.59
2ρ(Ξ−b )3/2 → 2Ξ−b γ 6220 18.46 8.13
4ρ(Ξ−b )3/2 → 2Ξ−b γ 6233 26.78 11.4
4ρ(Ξ−b )5/2 → 2Ξ−b γ 6246 17.71 –
2λ(Ξ

′0
b )1/2 → 2Ξ

′0
b γ 6189 95.15 76.3

4λ(Ξ
′0
b )1/2 → 2Ξ

′0
b γ 6202 0.79 0.25

2λ(Ξ
′0
b )3/2 → 2Ξ

′0
b γ 6197 191.27 43.9

4λ(Ξ
′0
b )3/2 → 2Ξ

′0
b γ 6210 2.44 0.67

4λ(Ξ
′0
b )5/2 → 2Ξ

′0
b γ 6226.90 1.90 0.44

2ρ(Ξ
′0
b )1/2 → 2Ξ

′0
b γ 6354 11.11

2ρ(Ξ
′0
b )3/2 → 2Ξ

′0
b γ 6362 11.39

2λ(Ξ
′−
b )1/2 → 2Ξ

′−
b γ 6189 80.91 190

4λ(Ξ
′−
b )1/2 → 2Ξ

′−
b γ 6202 1.40 1.48

2λ(Ξ
′−
b )3/2 → 2Ξ

′−
b γ 6197 200.34 92.3

4λ(Ξ
′−
b )3/2 → 2Ξ

′−
b γ 6210 4.33 2.94

4λ(Ξ
′−
b )5/2 → 2Ξ

′−
b γ 6226.90 3.38 1.88

2ρ(Ξ
′−
b )1/2 → 2Ξ

′−
b γ 6354 18.18 –

2ρ(Ξ
′−
b )3/2 → 2Ξ

′−
b γ 6362 18.64 –

2λ(Ω−b )1/2 → 2Ω−b γ 6305 71.62 154
4λ(Ω−b )1/2 → 2Ω−b γ 6317 0.89 0.64
2λ(Ω−b )3/2 → 2Ω−b γ 6313 157.90 83.4
4λ(Ω−b )3/2 → 2Ω−b γ 6325 2.75 1.81
4λ(Ω−b )5/2 → 2Ω−b γ 6338 2.05 1.21
2ρ(Ω−b )1/2 → 2Ω−b γ 6452 10.85 –
2ρ(Ω−b )3/2 → 2Ω−b γ 6460 11.19 –
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Table 4.11: Decay Widths for Photocouplings of Σb Baryons in KeV units.

BQ → B′Qγ M(MeV) Present work ChQM [66]
2λ(Σ+

b )1/2 → 4Σ+
b γ 6096.90± 1.7 7.21 16.9

4λ(Σb)1/2 → 4Σ+
b γ 6109.42 34.94 867

2λ(Σ+
b )3/2 → 4Σ+

b γ 6104.68 7.95 15.6
4λ(Σb)3/2 → 4Σ+

b γ 6117.14 317.94 527
4λ(Σ+

b )5/2 → 4Σ+
b γ 6130.02 805.74 426

2ρ(Σ+
b )1/2 → 4Σ+

b γ 6287.12 51.49 –
2ρ(Σ+

b )3/2 → 4Σ+
b γ 6294.85 52.04 –

2λ(Σ0
b)1/2 → 4Σ0

bγ 6096.90± 1.7 0.39 1.03
4λ(Σ0

b)1/2 → 4Σ0
bγ 6109.42 3.66 63.6

2λ(Σ0
b)3/2 → 4Σ0

bγ 6104.68 0.43 0.95
4λ(Σ0

b)3/2 → 4Σ0
bγ 6117.14 26.30 39.8

4λ(Σ0
b)5/2 → 4Σ0

bγ 6130.02 56.99 32.6
2ρ(Σ0

b)1/2 → 4Σ0
bγ 6287.12 2.91 –

2ρ(Σ0
b)3/2 → 4Σ0

bγ 6294.85 2.94 –
2λ(Σ−b )1/2 → 4Σ−b γ 6096.90± 1.7 2.05 4.36
4λ(Σ−b )1/2 → 4Σ−b γ 6109.42 4.33 182
2λ(Σ−b )3/2 → 4Σ−b γ 6104.68 2.27 4.02
4λ(Σ−b )3/2 → 4Σ−b γ 6117.14 57.59 107
4λ(Σ−b )5/2 → 4Σ−b γ 6130.02 176.61 85.3
2ρ(Σ−b )1/2 → 4Σ−b γ 6287.12 14.18 –
2ρ(Σ−b )3/2 → 4Σ−b γ 6294.85 14.33 –
2λ(Ξ

′0
b )1/2 → 4Ξ

′0
b γ 6189 0.50 0.89

4λ(Ξ
′0
b )1/2 → 4Ξ

′0
b γ 6202 13.26 69.5

2λ(Ξ
′0
b )3/2 → 4Ξ

′0
b γ 6197 0.57 0.90

4λ(Ξ
′0
b )3/2 → 4Ξ

′0
b γ 6210 70.24 47.5

4λ(Ξ
′0
b )5/2 → 4Ξ

′0
b γ 6226.90 122.68 41.5

2ρ(Ξ
′0
b )1/2 → 4Ξ

′0
b γ 6354 5.18 –

2ρ(Ξ
′0
b )3/2 → 4Ξ

′0
b γ 6362 5.35 –

2λ(Ξ
′−
b )1/2 → 4Ξ

′−
b γ 6189 0.89 3.54

4λ(Ξ
′−
b )1/2 → 4Ξ

′−
b γ 6202 9.26 164

2λ(Ξ
′−
b )3/2 → 4Ξ

′−
b γ 6197 1.00 3.60

4λ(Ξ
′−
b )3/2 → 4Ξ

′−
b γ 6210 61.86 104

4λ(Ξ
′−
b )5/2 → 4Ξ

′−
b γ 6226.90 133.21 88.2

2ρ(Ξ
′−
b )1/2 → 4Ξ

′−
b γ 6354 8.48 –

2ρ(Ξ
′−
b )3/2 → 4Ξ

′−
b γ 6362 8.75 –

2λ(Ω−b )1/2 → 4Ω−b γ 6305 0.43 1.49
4λ(Ω−b )1/2 → 4Ω−b γ 6317 9.44 99.23
2λ(Ω−b )3/2 → 4Ω−b γ 6313 0.49 1.51
4λ(Ω−b )3/2 → 4Ω−b γ 6325 50.39 70.68
4λ(Ω−b )5/2 → 4Ω−b γ 6338 87.05 63.26
2ρ(Ω−b )1/2 → 4Ω−b γ 6452 4.53 –
2ρ(Ω−b )3/2 → 4Ω−b γ 6460 4.74 –
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Table 4.12: Decay Widths in KeV units.

BQ → B′Qγ M(MeV) Present work ChQM [66] Ref. [79] LCQSR [80]
2λ(Σ+

c )1/2 → 2Λ+
c γ 2799.67± 9 86.51 48.3 33.5± 8.8

4λ(Σ+
c )1/2 → 2Λ+

c γ 2818.34 44.91 52.1 701(1±0.4)
2λ(Σ+

c )3/2 → 2Λ+
c γ 2843.57 89.79 87.3

4λ(Σ+
c )3/2 → 2Λ+

c γ 2861.43 124.24 105
4λ(Σ+

c )5/2 → 2Λ+
c γ 2933.26 73.28 59.4

2ρ(Σ+
c )1/2 → 2Λ+

c γ 2980.23 164.57 –
2ρ(Σ+

c )3/2 → 2Λ+
c γ 3023.33 132.325 –

2λ(Λ+
c )1/2 → 2Σ+

c γ 2592.25± 0.28 1.27 0.45 2.1± 0.4 29(1± 0.3)
2λ(Λ+

c )3/2 → 2Σ+
c γ 2628.11± 0.19 3.48 1.17

2ρ(Λ+
c )1/2 → 2Σ+

c γ 2786.41 147.98 41.6
4ρ(Λ+

c )1/2 → 2Σ+
c γ 2804.28 9.96 48.0

2ρ(Λ+
c )3/2 → 2Σ+

c γ 2829.51 696.78 0.08
4ρ(Λ+

c )3/2 → 2Σ+
c γ 2939.60± 1.5 36.06 0.55

4ρ(Λ+
c )5/2 → 2Σ+

c γ 2919.20 24.17 –
2λ(Ξ+

c )1/2 → 2Ξ
′+
c γ 2793.25 5.78 1.43 54(1± 0.4)

2λ(Ξ+
c )3/2 → 2Ξ

′+
c γ 2818.50 8.96 2.32

2ρ(Ξ+
c )1/2 → 2Ξ

′+
c γ 2951 251.52 128

4ρ(Ξ+
c )1/2 → 2Ξ

′+
c γ 2980 7.76 0.41 40.1± 6.9

2ρ(Ξ+
c )3/2 → 2Ξ

′+
c γ 2987 810.98 110

4ρ(Ξ+
c )3/2 → 2Ξ

′+
c γ 3016 25.92 1.85

4ρ(Ξ+
c )5/2 → 2Ξ

′+
c γ 3076 20.15 –

2λ(Ξ0
c)1/2 → 2Ξ

′0
c γ 2793.25 0.12 0.00 1.3± 1.4 0.54(1± 0.4)

2λ(Ξ0
c)3/2 → 2Ξ

′0
c γ 2818.50 0.19 0.00

2ρ(Ξ0
c)1/2 → 2Ξ

′0
c γ 2951 5.33 0.00

4ρ(Ξ0
c)1/2 → 2Ξ

′0
c γ 2980 0.16 0.00 9.2± 1.0

2ρ(Ξ0
c)3/2 → 2Ξ

′0
c γ 2987 17.20 0.00

4ρ(Ξ0
c)3/2 → 2Ξ

′0
c γ 3016 0.55 0.00

4ρ(Ξ0
c)5/2 → 2Ξ

′0
c γ 3076 0.43 –

2λ(Ξ
′+
c )1/2 → 2Ξ+

c γ 2905 53.30 46.4 214(1± 0.3)
4λ(Ξ

′+
c )1/2 → 2Ξ+

c γ 2923.04 28.62 14.5
2λ(Ξ

′+
c )3/2 → 2Ξ+

c γ 2938.55 60.32 46.1
4λ(Ξ

′+
c )3/2 → 2Ξ+

c γ 2964.88 90.65 54.6
4λ(Ξ

′+
c )5/2 → 2Ξ+

c γ 3030 63.58 32.0
2ρ(Ξ

′+
c )1/2 → 2Ξ+

c γ 3055.90 429.50 –
2ρ(Ξ

′+
c )3/2 → 2Ξ+

c γ 3078.55 396.70 –
2λ(Ξ

′0
c )1/2 → 2Ξ0

cγ 2905 1.13 0.00 4.8(1± 0.3)
4λ(Ξ

′0
c )1/2 → 2Ξ0

cγ 2923.04 0.61 0.00
2λ(Ξ

′0
c )3/2 → 2Ξ0

cγ 2938.55 1.28 0.00
4λ(Ξ

′0
c )3/2 → 2Ξ0

cγ 2964.88 1.92 0.00
4λ(Ξ

′0
c )5/2 → 2Ξ0

cγ 3030 1.35 0.00
2ρ(Ξ

′0
c )1/2 → 2Ξ0

cγ 3055.90 9.10 –
2ρ(Ξ

′0
c )3/2 → 2Ξ0

cγ 3078.55 8.41 –
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Table 4.13: Decay Widths in KeV units.

BQ → B′Qγ M(MeV) Present work ChQM [66]
2λ(Σ0

b)1/2 → 2Λ0
bγ 6096.90± 1.7 89.34 133

4λ(Σ0
b)1/2 → 2Λ0

bγ 6109.42 44.89 63.6
2λ(Σ0

b)3/2 → 2Λ0
bγ 6104.68 89.68 129

4λ(Σ0
b)3/2 → 2Λ0

bγ 6117.14 125.69 170
4λ(Σ0

b)5/2 → 2Λ0
bγ 6130.02 80.41 83.3

2ρ(Σ0
b)1/2 → 2Λ0

bγ 6287.12 97.10 –
2ρ(Σ0

b)3/2 → 2Λ0
bγ 6294.85 90.98 –

2λ(Λ0
b)1/2 → 2Σ0

bγ 5912.20± 0.13 0.39 0.14
2λ(Λ0

b)3/2 → 2Σ0
bγ 5920.00± 0.09 0.56 0.21

2ρ(Λ0
b)1/2 → 2Σ0

bγ 6093.30 140.41 16.2
4ρ(Λ0

b)1/2 → 2Σ0
bγ 6105.77 4.05 0.02

2ρ(Λ0
b)3/2 → 2Σ0

bγ 6101.03 432.40 15.1
4ρ(Λ0

b)3/2 → 2Σ0
bγ 6113.49 12.28 0.07

4ρ(Λ0
b)5/2 → 2Σ0

bγ 6126.37 8.92 –
2λ(Ξ0

b)1/2 → 2Ξ
′0
b γ 6048 0.53 1.32

2λ(Ξ0
b)3/2 → 2Ξ

′0
b γ 6055 0.70 1.68

2ρ(Ξ0
b)1/2 → 2Ξ

′0
b γ 6213 206.94 94.3

4ρ(Ξ0
b)1/2 → 2Ξ

′0
b γ 6225 3.06 0.16

2ρ(Ξ0
b)3/2 → 2Ξ

′0
b γ 6220 489.41 69.4

4ρ(Ξ0
b)3/2 → 2Ξ

′0
b γ 6233 9.33 0.80

4ρ(Ξ0
b)5/2 → 2Ξ

′0
b γ 6246 6.82 –

2λ(Ξ−b )1/2 → 2Ξ
′−
b γ 6048 0.01 0.00

2λ(Ξ−b )3/2 → 2Ξ
′−
b γ 6055 0.01 0.00

2ρ(Ξ−b )1/2 → 2Ξ
′−
b γ 6213 4.39 0.00

4ρ(Ξ−b )1/2 → 2Ξ
′−
b γ 6225 0.06 0.00

2ρ(Ξ−b )3/2 → 2Ξ
′−
b γ 6220 10.38 0.00

4ρ(Ξ−b )3/2 → 2Ξ
′−
b γ 6233 0.20 0.00

4ρ(Ξ−b )5/2 → 2Ξ
′−
b γ 6246 0.14 –

2λ(Ξ
′0
b )1/2 → 2Ξ0

bγ 6189 55.68 72.2
4λ(Ξ

′0
b )1/2 → 2Ξ0

bγ 6202 29.40 34.0
2λ(Ξ

′0
b )3/2 → 2Ξ0

bγ 6197 57.63 72.8
4λ(Ξ

′0
b )3/2 → 2Ξ0

bγ 6210 84.78 94.0
4λ(Ξ

′0
b )5/2 → 2Ξ0

bγ 6226.90 57.45 47.7
2ρ(Ξ

′0
b )1/2 → 2Ξ0

bγ 6354 273.84 –
2ρ(Ξ

′0
b )3/2 → 2Ξ0

bγ 6362 261.91 –
2λ(Ξ

′−
b )1/2 → 2Ξ−b γ 6189 1.18 0.00

4λ(Ξ
′−
b )1/2 → 2Ξ−b γ 6202 0.62 0.00

2λ(Ξ
′−
b )3/2 → 2Ξ−b γ 6197 1.22 0.00

4λ(Ξ
′−
b )3/2 → 2Ξ−b γ 6210 1.80 0.00

4λ(Ξ
′−
b )5/2 → 2Ξ−b γ 6226.90 1.21 0.00

2ρ(Ξ
′−
b )1/2 → 2Ξ−b γ 6354 5.81 –

2ρ(Ξ
′−
b )3/2 → 2Ξ−b γ 6362 5.56 –
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Table 4.14: Decay Widths in KeV units.

BQ → B′Qγ M(MeV) Present work ChQM [66]
2λ(Λ+

c )1/2 → 4Σ+
c γ 2592.25± 0.28 0.03 0.05

2λ(Λ+
c )3/2 → 4Σ+

c γ 2628.11± 0.19 0.22 0.26
2ρ(Λ+

c )1/2 → 4Σ+
c γ 2786.41 5.19 0.02

4ρ(Λ+
c )1/2 → 4Σ+

c γ 2804.28 6.70 0.09
2ρ(Λ+

c )3/2 → 4Σ+
c γ 2829.51 7.05 6.81

4ρ(Λ+
c )3/2 → 4Σ+

c γ 2939.60± 1.5 118.56 17.40
4ρ(Λ+

c )5/2 → 4Σ+
c γ 2919.20 511.46 –

2λ(Ξ+
c )1/2 → 4Ξ

′+
c γ 2793.25 0.59 0.44

2λ(Ξ+
c )3/2 → 4Ξ

′+
c γ 2818.50 1.17 0.99

2ρ(Ξ+
c )1/2 → 4Ξ

′+
c γ 2951 3.63 0.25

4ρ(Ξ+
c )1/2 → 4Ξ

′+
c γ 2980 22.99 43.4

2ρ(Ξ+
c )3/2 → 4Ξ

′+
c γ 2987 5.12 0.52

4ρ(Ξ+
c )3/2 → 4Ξ

′+
c γ 3016 197.06 58.1

4ρ(Ξ+
c )5/2 → 4Ξ

′+
c γ 3076 561.27 –

2λ(Ξ0
c)1/2 → 4Ξ

′0
c γ 2793.25 0.01 0.00

2λ(Ξ0
c)3/2 → 4Ξ

′0
c γ 2818.50 0.03 0.00

2ρ(Ξ0
c)1/2 → 4Ξ

′0
c γ 2951 0.08 0.00

4ρ(Ξ0
c)1/2 → 4Ξ

′0
c γ 2980 0.49 0.00

2ρ(Ξ0
c)3/2 → 4Ξ

′0
c γ 2987 0.11 0.00

4ρ(Ξ0
c)3/2 → 4Ξ

′0
c γ 3016 4.18 0.00

4ρ(Ξ0
c)5/2 → 4Ξ

′0
c γ 3076 11.90 –

2λ(Λ0
b)1/2 → 4Σ0

bγ 5912.20± 0.13 0.07 0.09
2λ(Λ0

b)3/2 → 4Σ0
bγ 5920.00± 0.09 0.11 0.15

2ρ(Λ0
b)1/2 → 4Σ0

bγ 6093.30 2.77 0.02
4ρ(Λ0

b)1/2 → 4Σ0
bγ 6105.77 11.18 8.25

2ρ(Λ0
b)3/2 → 4Σ0

bγ 6101.03 3.06 0.03
4ρ(Λ0

b)3/2 → 4Σ0
bγ 6113.49 109.74 9.90

4ρ(Λ0
b)5/2 → 4Σ0

bγ 6126.37 291.42 –
2λ(Ξ0

b)1/2 → 4Ξ
′0
b γ 6048 0.11 2.04

2λ(Ξ0
b)3/2 → 4Ξ

′0
b γ 6055 0.16 2.64

2ρ(Ξ0
b)1/2 → 4Ξ

′0
b γ 6213 2.11 0.62

4ρ(Ξ0
b)1/2 → 4Ξ

′0
b γ 6225 24.08 80.0

2ρ(Ξ0
b)3/2 → 4Ξ

′0
b γ 6220 2.31 0.80

4ρ(Ξ0
b)3/2 → 4Ξ

′0
b γ 6233 155.84 78.0

4ρ(Ξ0
b)5/2 → 4Ξ

′0
b γ 6246 313.78 –

2λ(Ξ−b )1/2 → 4Ξ
′−
b γ 6048 0.002 0.00

2λ(Ξ−b )3/2 → 4Ξ
′−
b γ 6055 0.003 0.00

2ρ(Ξ−b )1/2 → 4Ξ
′−
b γ 6213 0.04 0.00

4ρ(Ξ−b )1/2 → 4Ξ
′−
b γ 6225 0.51 0.00

2ρ(Ξ−b )3/2 → 4Ξ
′−
b γ 6220 0.05 0.00

4ρ(Ξ−b )3/2 → 4Ξ
′−
b γ 6233 3.31 0.00

4ρ(Ξ−b )5/2 → 4Ξ
′−
b γ 6246 6.66 –
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Chapter 5

qqqqq̄ Pentaquarks

In 2015 the LHCb collaboration announced the observation of two resonances in the J/ψ p chan-
nel consistent with pentaquark states, one with mass of 4380±8 ± 29 MeV and the other with
4449.8±1.7 ± 2.5 MeV, both candidates were analyzed from the Λ0

b → J/ψ pK− decay. Although
they did not determine the angular momentum and parity of Pc(4380)+ and Pc(4450)+, their fit
solution suggested two states with opposite parity and possible spin 3/2 and 5/2 [11]. Later, in
2019 with more data and statistics the LHCb collaboration discovered a new narrow pentaquark
state Pc(4312)+ [13], and confirmed not only the pentaquark signal Pc(4450)+, but also this was
observed to consist of two narrow peaks Pc(4440)+ and Pc(4457)+. One of the ways to confirm the
nature of the pentaquark signal is to photoproduce the states Pc using an electromagnetic probe:
p(uud) + γ → Pc(uudcc̄). This process is relevant the for current experimental efforts at JLab [81].
However, since in none of those announcements the quantum numbers of these resonances were de-
termined, their understanding and interpretation remains as an open problem. For this reason we are
interested in studying not only ground but also exited pentaquark states, and how to photoproduce
them.

In our previous work on pentaquarks [82] through the constituent quark model we made a com-
plete classification of the ground state pentaquarks, where we essentially distinguished the four
constituent quarks from the antiquark. Nevertheless, we did not introduce any distinction between
the heavy from the light quarks, nor did we evaluate the orbital contribution to the photoproduction
of pentaquark. In the present work we address and solve not only these problems, but also obtain
the decay widths for the photoproduction of ground and radially excited pentaquarks configurations,
qqqQQ̄, where q denotes the light quarks (u, d, s) and Q the heavy quarks (c, b).

5.1 Pentaquark wave functions

In order to construct the pentaquark wave functions for both ground and excited states, we im-
plement two conditions: (i) the pentaquark wave function should be antisymmetric under any per-
mutation of the three light quarks, and (ii) as all physical states, it should be a color singlet. As a
matter of fact, in this work we use the first condition different from our previous work [82], since here
we focus on distinguishing the heavy from the light quarks. Of course, the number of pentaquark
states is the same in both classification schemes. The spin part is standard and is obtained in a
straightforward way.

In the following, the wave function of each of the degrees of freedom for the pentaquark is
derived, starting with the orbital part by introducing an harmonic oscillator quark model, followed
by the spin, whose obtaining is direct and standard. Subsequently, the flavor part is constructed
by fixing the charm and the anti-charm cc̄ quarks in the fourth and fifth position of the states, and
antisymmetrizing with respect to the three remaining light quarks. Finally, the color wave function
is constructed for states with 4 quarks and by coupling at the end the fifth quark.
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5.1.1 Orbital wave function
The Hamiltonian proposed in the harmonic oscillator quark model for the five quarks is

H =
p1

2

2m
+
p2

2

2m
+
p3

2

2m
+
p4

2

2m′
+
p5

2

2m′
+

1

2
C

5∑
i<j

|~ri − ~rj |2, (5.1)

where oscillators 1, 2 and 3 have equal masses m, while 4 and 5 have m′.
If relative coordinates are used (similar to Jacobi coordinates, but modified for this system with

different quark masses), Eq. 5.1 can be rewritten in a more convenient way. For this purpose the
following coordinates are defined



~ρ ≡ 1√
2
(~r1 − ~r2)

~λ ≡ 1√
6
(~r1 + ~r2 − 2~r3)

~η ≡ 1√
2
(~r4 − ~r5)

~ζ ≡
√

6
5

[
1
3 (~r1 + ~r2 + ~r3)− 1

2 (~r4 + ~r5)
]

~R ≡ m(~r1+~r2+~r3)+m′(~r4+~r5)
3m+2m′

⇒



~r1 = 1√
2
~ρ+ 1√

6
~λ+

√
10
3 m
′

3m+2m′
~ζ + ~R

~r2 = − 1√
2
~ρ+ 1√

6
~λ+

√
10
3 m
′

3m+2m′
~ζ + ~R

~r3 = −
√

2
3
~λ+

√
10
3 m
′

3m+2m′
~ζ + ~R

~r4 = 1√
2
~η −

√
15
2 m

3m+2m′
~ζ + ~R

~r5 = − 1√
2
~η −

√
15
2 m

3m+2m′
~ζ + ~R

its Jacobian corresponding to the change from Cartesian coordinates turns out to be

5∏
i=1

d3ri = 5
√

5d3ρd3λd3ηd3ζd3R. (5.2)

Moreover, their conjugate momentum associated to the above coordinates are



~pρ = 1√
2
(~p1 − ~p2)

~pλ = 1√
6
(~p1 + ~p2 − 2~p3)

~pη = 1√
2
(~p4 − ~p5)

~pζ =
√

10
3
m′

M (~p1 + ~p2 + ~p3)−
√

15
2
m
M (~p4 + ~p5)

~P = ~p1 + ~p2 + ~p3 + ~p4 + ~p5

⇒



~p1 = 1√
2
~pρ + 1√

6
~pλ +

√
2
15 ~pζ + m

M
~P

~p2 = − 1√
2
~pρ + 1√

6
~pλ +

√
2
15 ~pζ + m

M
~P

~p3 = −
√

2
3 ~pλ +

√
2
15 ~pζ + m

M
~P

~p4 = 1√
2
~pη −

√
3
10 ~pζ + m′

M
~P

~P5 = − 1√
2
~pη −

√
3
10 ~pζ + m′

M
~P ,

and equally,

5∏
i=1

d3pi =
1

5
√

5
d3pρd

3pλd
3pηd

3pζd
3P. (5.3)

In the new coordinates the Hamiltonian separates into center-of-mass motion, plus four indepen-
dent harmonic oscillators ρ, λ, η and ζ

H =
P 2

2M
+

pρ
2

2mρ
+

pλ
2

2mλ
+

pη
2

2mη
+

pζ
2

2mζ
+

5

2
Cρ2 +

5

2
Cλ2 +

5

2
Cη2 +

5

2
Cζ2, (5.4)

with the same spring constant C, but in general with different masses (and therefore different fre-
quencies) defined as follows

M = 3m+ 2m′, mρ = mλ ≡ m, mη ≡ m′, mζ ≡
5mm′

3m+ 2m′
, (5.5)

where the corresponding harmonic oscillator constants and frequencies are given by

α2
i = (5Cmi)

1
2 , ωi =

√
5C

mi
, i = {ρ, λ, η, ζ}. (5.6)
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or more explicitly

α2
ρ = (5Cm)

1
2 = α2

λ, α2
η = (5Cm′)

1
2 , α2

ζ = (5C
5mm′

3m+ 2m′
)

1
2 . (5.7)

In order to see the effect of the light and heavy quark masses, we rewrite the harmonic oscillator
constants αζ and αη in terms of just α2

ρ, through a as follows

α2
η = α2

ρ

√
a, α2

ζ = α2
ρ

√
5a

3 + 2a
, a ≡ m′

m
. (5.8)

Of course, coordinates and momenta are also related by

~P = M
d~R

dt
, ~pρ = mρ

d~ρ

dt
, ~pλ = mλ

d~λ

dt
, ~pη = mη

d~η

dt
, ~pζ = mζ

d~ζ

dt
. (5.9)

In the following we study not only the orbital wave function, but also the color, spin and flavor
wave functions by means of their symmetry properties under interchange of any of the three light
quarks, condition (i). This can be investigated though the irreducible representation of the permu-
tation group S3: one has the symmetric f = [3], antisymmetric f = [111] or mixed symmetric [21]
representations, or equivalently by those of the point group D3 which is isomorphic to S3 as A1, A2

and E, respectively. Here I use the later notation, where A1 and A2 are one-dimensional, and E
two-dimensional whose components are written as Eρ and Eλ. As a result, we can label our wave
function based on their symmetry properties.

The eigenstates of Hamiltonian 5.4 are well known. The ground state pentaquark in mo-
mentum space is given by

ψoA1
(gs) = δ3(~P − ~KPc)

√
5
√

5ψo0(~pρ)ψ
o
0(~pλ)ψo0(~pη)ψo0(~pζ), (5.10)

where

ψo0(~pi) =
1

π3/4α
3/2
i

e
− 1

2α2
i

p2i (5.11)

is the solution for a three-dimensional harmonic oscillator in the ground state and oscillating in the
i-mode. The wave functions for excited states with one orbital excitation in some of the i-modes are
given by

ψoEρ(ρ) = δ3(~P − ~KPc)

√
5
√

5ψo1(~pρ)ψ
o
0(~pλ)ψo0(~pη)ψo0(~pζ) (5.12)

ψoEλ(λ) = δ3(~P − ~KPc)

√
5
√

5ψo1(~pρ)ψ
o
1(~pλ)ψo0(~pη)ψo0(~pζ) (5.13)

ψoA1
(η) = δ3(~P − ~KPc)

√
5
√

5ψo0(~pρ)ψ
o
0(~pλ)ψo1(~pη)ψo0(~pζ) (5.14)

ψoA1
(ζ) = δ3(~P − ~KPc)

√
5
√

5ψo0(~pρ)ψ
o
0(~pλ)ψo0(~pη)ψo1(~pζ), (5.15)

so that

ψo1(~pi) = i

√
8

3

pi

π1/4α
5/2
i

Y1,µ(p̂i)e
− 1

2α2
i

p2i (5.16)

is the first excited state for one oscillator in momentum space. By making a Fourier transform one
can also obtain the corresponding wave functions in coordinate space.

ψoA1
(gs) =

1

(2π)3/2
e
~P ·~R 1√

5
√

5
ψo0(~ρ)ψo0(~λ)ψo0(~η)ψo0(~ζ), (5.17)
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with

ψo0(~ri) =
α

3/2
i

π3/4
e−

α2
i
2 r

2
i (5.18)

is the solution for a three-dimensional harmonic oscillator in the ground state and oscillating in the
i-mode. The wave functions for excited states with one orbital excitation in some of the i-modes are
given by

ψoEρ(ρ) =
1

(2π)3/2
e
~P ·~R 1√

5
√

5
ψo1(~ρ)ψo0(~λ)ψo0(~η)ψo0(~ζ) (5.19)

ψoEλ(λ) =
1

(2π)3/2
e
~P ·~R 1√

5
√

5
ψo1(~ρ)ψo1(~λ)ψo0(~η)ψo0(~ζ) (5.20)

ψoA1
(η) =

1

(2π)3/2
e
~P ·~R 1√

5
√

5
ψo0(~ρ)ψo0(~λ)ψo1(~η)ψo0(~ζ) (5.21)

ψoA1
(ζ) =

1

(2π)3/2
e
~P ·~R 1√

5
√

5
ψo0(~ρ)ψo0(~λ)ψo0(~η)ψo1(~ζ), (5.22)

where

ψo1(~ri) = i

√
8

3

α
5/2
i ri
π1/4

Y1,µ(r̂i)e
−α

2
i
2 r

2
i (5.23)

The same analysis on frequencies as in heavy baryons can be done, if we consider the above
masses and specially m′ > m this implies mη > mζ > m = mρ = mλ, which is equivalent to have
a system with two heavy and three light quarks qqqQQ̄. From the above and taking into account
the inverse relation on frequencies with masses follows that ωη < ωζ < ωρ = ωλ. This is the order
of relevance for each modes, where the less nonzero energetic orbital state is the best candidate to
contribute to the photocouplings [82].

5.1.2 Color wave function
In [82], we obtained the q4 color wave functions specified by the Young tableaux [211] under the
permutation group S4 with F1 symmetry under the tetrahedral group. In that study, once the
antiquark q̄ with Young tableaux [11] was coupled to the q4 color wave function, the complete
pentaquark color wave functions were obtained, and the color singlet [222] condition under SU(3)
group was satisfy. The color wave functions for the pentaquark are explicitly given by

∣∣∣ψcEρ〉 =
1

12
[|((2gbr − 2bgr − rgb+ grb+ rbg − brg)r + 3(rgr − grr)b− 3(rbr − brr)g)r̄〉

+|((2brg − 2rbg − gbr + bgr + grb− rgb)g + 3(gbg − bgg)r − 3(grg − rgg)b)ḡ〉
+|((2rgb− 2grb− brg + rbg + bgr − gbr)b+ 3(brb− rbb)g − 3(bgb− gbb)r)b̄〉

]
,

(5.24)

∣∣ψcEλ〉 =
1

4
√

3
[|((2rrg − rgr − grr)b− (2rrb− rbr − brr)g + (rgb+ grb− rbg − brg)r)r̄〉

+|((2ggb− gbg − bgg)r − (2ggr − grg − rgg)b+ (gbr + bgr − grb− rgb)g)ḡ〉
+|((2bbr − brb− rbb)g − (2bbg − bgb− gbb)r + (brg + rbg − bgr − gbr)b)b̄〉

]
(5.25)

and ∣∣ψcA2

〉
=

1

3
√

2
[|((rgb− grb+ brg − rbg + gbr − bgr)r)r̄〉

+|((rgb− grb+ brg − rbg + gbr − bgr)g)ḡ〉
+|((rgb− grb+ brg − rbg + gbr − bgr)b)b̄〉

]
(5.26)



5.1. PENTAQUARK WAVE FUNCTIONS 67

The labels Eρ, Eλ and A2 refer to the symmetry properties of the color wave function under the
permutation of the first (three) light quarks.

5.1.3 Spin wave function

The construction of spin wave functions for pentaquark configurations is developed in an analogous
way than the analysis followed by a system with three particles, where in Eqs. (1.33) and (1.34) we
obtained the following spin states with maximum projection

|[3], 3/2, 3/2〉A1 = | ↑↑↑〉

|[21], 1/2, 1/2〉Eρ =
1√
2

(| ↑↓↑〉 − | ↓↑↑〉

|[21], 1/2, 1/2〉Eλ =
1√
6

(2| ↑↑↓〉 − | ↑↓↑〉 − | ↓↑↑〉). (5.27)

In the case of four quarks, the wave functions are given by the Young tableaux [4] for S = 2, [31]
for S = 1 and [22] for S = 0. The fourth quark can be coupled with the states of three quarks
through the following relation with the Clebsh-Gordan coefficients

|(S123, S4)SMS〉 =
∑

M123,M4

〈S123M123, S4M4|S,MS〉|S123M123〉|S4M4〉. (5.28)

Therefore one obtains the following states with S = MS and labeled by |[f ]S,MS〉

|[4], 2, 2〉A1
= |(3/2, 1/2)2, 2〉 = |[3]3/2, 3/2〉A1

| ↑〉
|[31], 1, 1〉Eρ = |(1/2, 1/2)1, 1〉 = |[21]1/2, 1/2〉Eρ | ↑〉
|[31], 1, 1〉Eλ = |(1/2, 1/2)1, 1〉 = |[21]1/2, 1/2〉Eλ | ↑〉

|[31], 1, 1〉A1
= |(3/2, 1/2)1, 1〉 =

√
3

2
|[3]3/2, 3/2〉A1

| ↓〉 − 1

2
|[3]3/2, 1/2〉A1

| ↑〉

|[22], 0, 0〉Eρ = |(1/2, 1/2)0, 0〉 =
1√
2
|[21]1/2, 1/2〉Eρ | ↓〉 −

1√
2
|[21]1/2,−1/2〉Eρ | ↑〉

|[22], 0, 0〉Eλ = |(1/2, 1/2)0, 0〉 =
1√
2
|[21]1/2, 1/2〉Eλ | ↓〉 −

1√
2
|[21]1/2,−1/2〉Eλ | ↑〉, (5.29)

where the labels of these states comes from the symmetric permutation group S3. The rest of the
spin projections can be calculated by applying the lowering operator in spin space.

Finally, the construction of the wave functions for the five quarks can be done by coupling one
quark state to the four spin states obtained before, as follows

|(S1234, S5)SMS〉 =
∑

M1234,M5

〈S1234M1234, S5M5|S,MS〉|S1234M1234〉|S5M5〉. (5.30)
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The explicit spin wave functions of the pentaquarks, with S = MS are given by

|χA1 , 5/2, 5/2〉 = |(2, 1/2)5/2, 5/2〉 = |[4], 2, 2〉A1 | ↑〉

|χA1 , 3/2, 3/2〉 = |(2, 1/2)3/2, 3/2〉 =
2√
5
|[4], 2, 2〉A1 | ↓〉 −

1√
5
|[4], 2, 1〉A1 | ↑〉

|χEρ , 3/2, 3/2〉 = |(1, 1/2)3/2, 3/2〉 = |[31], 1, 1〉Eρ | ↑〉
|χEλ , 3/2, 3/2〉 = |(1, 1/2)3/2, 3/2〉 = |[31], 1, 1〉Eλ | ↑〉
|χA1

, 3/2, 3/2〉 = |(1, 1/2), 3/2, 3/2〉 = |[31], 1, 1〉A1
| ↑〉

|χEρ , 1/2, 1/2〉 = |(1, 1/2)1/2, 1/2〉 =

√
2

3
|[31], 1, 1〉Eρ | ↓〉 −

1√
3
|[31], 1, 0〉Eρ | ↑〉

|χEλ , 1/2, 1/2〉 = |(1, 1/2)1/2, 1/2〉 =

√
2

3
|[31], 1, 1〉Eλ | ↓〉 −

1√
3
|[31], 1, 0〉Eλ | ↑〉

|χA1 , 1/2, 1/2〉 = |(1, 1/2)1/2, 1/2〉 =

√
2

3
|[31], 1, 1〉A1 | ↓〉 −

1√
3
|[31], 1, 0〉A1 | ↑〉

|χEρ , 1/2, 1/2〉 = |(0, 1/2)1/2, 1/2〉 =
1

2
√

3
|[22], 0, 0〉Eρ | ↑〉

|χEλ , 1/2, 1/2〉 = |(0, 1/2)1/2, 1/2〉 =
1

2
√

3
|[22], 0, 0〉Eλ | ↑〉 (5.31)

Here the notation |χt, S,MS〉 is used, where labels χt keep the symmetry information under inter-
change of any of the three light quarks associated to the permutation group S3. Again, the other
spin projections can be obtained by using the lowering operator.

5.1.4 Flavor wave function
Since we are interested in obtaining the pentaquark flavor wave functions with the explicit distinction
of the heavy quarks, we fixed the charm quark c in the four position and the anti-charm c̄ in the
fifth position of the states, so that we antisymmetrize with respect to the three remaining flavors.
Therefore the three possible configurations are

|φA1〉 =

∣∣∣∣ 1√
3

(uud+ udu+ duu)cc̄

〉
, (5.32)

∣∣φEρ〉 =

∣∣∣∣ 1√
2

(ud− du)ucc̄

〉
, (5.33)

|φEλ〉 =

∣∣∣∣ 1√
6

(2uud− udu− duu)cc̄

〉
, (5.34)

for the antisymmetric A1, and mixed symetric Eρ and Eλ wave functions under S3, respectively.

5.1.5 Ground-state pentaquarks
In this work the interest is in constructing the pentaquark configurations with JP = 3/2− for ground
state and JP = 3/2+ for the excited states. Since the total ground state pentaquark wave function
(with orbital angular momentum and parity LP = 0+) has to be antisymmetric (A2), it can be
written as

ψ =
[
ψo
A1
× ψcsf

A2

]
A2
, (5.35)

where the symmetric (A1) orbital wave function is coupled with the antisymmetric color-spin-flavor
part, and due to the symmetry properties of the color part one can have

ψcsf
A2

=
[
ψc
A2
× ψsf

A1

]
A2
,

ψcsf
A2

=
[
ψc
E × ψsf

E

]
A2
, (5.36)
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In turn we obtain the following combinations for the spin-flavor part

ψsf
A1

= [φA1
× χA1

]A1
= φA1

χA1
,

ψsf
A1

= [φE × χE ]A1
=

1√
2

(φEρχEρ + φEλχEλ),

ψsf
E = [φA1

× χE ]E = φA1
χE ,

ψsf
E = [φE × χA1

]E = φEχA1
,

ψsf
E = [φE × χE ]E =

{
1√
2
(φEρχEλ + φEλχEρ),

1√
2
(φEρχEρ − φEλχEλ),

ψsf
A2

= [φE × χE ]A2
=

1√
2

(φEλχEρ − φEρχEλ). (5.37)

Considering all the above, in order to satisfy conditions for the totally antisymmetric wave function
and the color singlet states, there are five configurations for the ground states pentaquark

ψ1 = ψoA1
ψcA2

φA1
χA1

, (5.38)

ψ2 =
1√
2
ψoA1

ψcA2
(φEρχEρ + φEλχEλ), (5.39)

ψ3 =
1√
2
ψoA1

(ψcEλφEρ − ψ
c
EρφEλ)χA1

, (5.40)

ψ4 =
1√
2
ψoA1

φA1
(ψcEλχEρ − ψ

c
EρχEλ), (5.41)

ψ5 =
1

2
ψoA1

[
φcλ(φEρχEλ + φEλχEρ)− φcEρ(φEρχEρ − φEλχEλ)

]
. (5.42)

5.1.6 Orbital-excited pentaquarks

The wave functions of the excited pentaquarks can be obtained if we guide ourselves by similar
restrictions on the symmetry of total wave function and color confinement. States with one quantum
of radial excitation, LP = 1−, have different symmetry properties in their wave functions. The orbital
wave function for one quantum of excitation is either mixed symmetric E for an excitation in ρ or
λ, ψoEρ(ρ) and ψoEλ(λ) or symmetric A1 for an excitation in η or ζ, ψoA1

(η) and ψoA1
(ζ).

The orbital part of the pentaquark wave function can have aside from ψo = ψoE for the excitation
in the ρ and λ coordinates, the wave functions ψo = ψoA1

(η), ψoA1
(ζ) for one quantum of excitation

in the η or ζ coordinate, respectively. Then for this case the total wave functions can be

ψ =
[
ψo
A1
× ψcsf

A2

]
A2

ψ =
[
ψo
E × ψcsf

E

]
A2
, (5.43)

and besides the orbital part, we have the color symmetry properties, so that we can have either the
same sort of combinations as for the ground state pentaquarks

ψcsf
A2

=
[
ψc
A2
× ψsf

A1

]
A2

ψcsf
A2

=
[
ψc
E × ψsf

E

]
A2
, (5.44)

or new configurations

ψcsf
E =

[
ψc
A2
× ψsf

E

]
E
,

ψcsf
E =

[
ψc
E × ψsf

A2

]
E
,

ψcsf
E =

[
ψc
E × ψsf

A1

]
E
,

ψcsf
E =

[
ψc
E × ψsf

E

]
E
. (5.45)
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The explicit form of all these possible configurations are

ψ1 = ψoηψ
c
A2
φA1

χA1
(5.46)

ψ2 =
1√
2
ψoηψ

c
A2

(φEρχEρ + φEλχEλ) (5.47)

ψ3 =
1√
2
ψoη(ψcEλφEρ − ψ

c
EρφEλ)χA1

(5.48)

ψ4 =
1√
2
ψoηφA1

(ψcEλχEρ − ψ
c
EρχEλ) (5.49)

ψ5 =
1

2
ψoη
[
ψcEλ(φEρχEλ + φEλχEρ)− ψcρ(φEρχEρ − φEλχEλ)

]
, (5.50)

for one quantum of excitation in the η mode, and

ψ6 = ψoζψ
c
A2
φA1

χA1
(5.51)

ψ7 =
1√
2
ψoζψ

c
A2

(φEρχEρ + φEλχEλ) (5.52)

ψ8 =
1√
2
ψoζ (ψcEλφEρ − ψ

c
EρφEλ)χA1

(5.53)

ψ9 =
1√
2
ψoζφA1(ψcEλχEρ − ψ

c
EρχEλ) (5.54)

ψ10 =
1

2
ψoζ
[
ψcEλ(φEρχEλ + φEλχEρ)− ψcρ(φEρχEρ − φEλχEλ)

]
, (5.55)

for the excitation in ζ.
On the other hand, the explicit nine possible pentaquark configurations with excitation in the ρ

and λ coordinates in the orbital part are

ψ11 =
1√
2

(ψoEρψ
c
Eλ
− ψoEλψ

c
Eρ)φA1χA1 (5.56)

ψ12 =
1

2
(ψoEρψ

c
Eλ
− ψoEλψ

c
Eρ)(φEρχEρ + φEλχEλ) (5.57)

ψ13 =
1

2

[
ψoEρ(ψ

c
EρχEρ − ψ

c
Eλ
χEλ)− ψoEλ(ψcEρχEλ + ψcEλχEρ)

]
φA1

(5.58)

ψ14 =
1

2

[
ψoEρ(ψ

c
EρφEρ − ψ

c
Eλ
φEλ)− ψoEλ(ψcEρφEλ + ψcEλφEρ)

]
χA1

(5.59)

ψ15 =
1

2
√

2

{
ψoEρ

[
ψcEρ(φEρχEλ + φEλχEρ)− ψcEλ(φEρχEρ − φEλχEλ)

]
−ψoEλ

[
ψcEρ(φEρχEρ − φEλχEλ) + ψcEλ(φEρχEλ + φEλχEρ)

]}
(5.60)

ψ16 =
1√
2

(ψoEρχEρ + ψoEλχEλ)ψcA2
φA1 (5.61)

ψ17 =
1√
2

(ψoEρφEρ + ψoEλφEλ)ψcA2
χA1

(5.62)

ψ18 =
1

2

[
(ψoEρ(φEρχEλ + φEλχEρ) + ψoEλ(φEρχEρ − φEλχEλ)

]
ψcA2

(5.63)

ψ19 =
1

2
(ψoEλψ

c
Eλ

+ ψoEρψ
c
Eρ)(φEλχEρ − φEρχEλ). (5.64)

(5.65)



Chapter 6

Photocouplings of hidden-charm
pentaquarks

In this chapter we study the photocouplings for pentaquarks in both ground and excited states. The
Hamiltonian of interaction for electromagnetic couplings is given by [60]

H = e

∫
d3xĴµ(~x)Aµ(~x) (6.1)

where Aµ is the electromagnetic field and Jµ is the quark current given by

Ĵµ(~x) =
∑
q

q̄(~x)eqγ
µq(~x). (6.2)

Here, the sum runs over all flavors. For each flavor q, there is a quark field q(~x) (Dirac spinor field)
and eq is the quark charge in the flavor space, in e units. For simplicity, we chose this implicit
notation to avoid to add other flavor index. These field are expressed in terms of the creation an
annihilation operators of second quantization

Aµ(~x) =

∫
d3k

(2π)
3
2

1√
2k0

[
aµ(~k)ei

~k·~x + a†µ(~k)e−i
~k·~x
]

(6.3)

q(~x) =

∫
d3p

(2π)
3
2

(
m

p0

) 1
2 ∑

s

[
us(~p)bs(~p)e

i~p·~x + vs(~p)d
†
s(~p)e

−i~p·~x] (6.4)

with the commutation and anticommutation relations given by[
aµ(~k), a†ν(~k′)

]
= −gµνδ3(~k − ~k′), (6.5)

{
bs(~p), b

†
s′(
~p′)
}

=
{
ds(~p), d

†
s′(
~p′)
}

= δss′δ
3(~p− ~p′), (6.6)

and the normalization of plane waves

〈~k, µ|~k′, ν〉 = −gµνδ3(~k − ~k′) (6.7)

〈~p, s|~p′, s′〉 = δss′δ
3(~p− ~p′). (6.8)

The spinors have the normalization

u†s(~p)us′(~p
′) = v†s(~p)vs′(~p

′) =
p0

m
δss′ . (6.9)

71
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Considering all these conventions for the interaction Hamiltonian and the electromagnetic field, the
electric charge e is expressed in Heaviside-Lorentz units. The quark current is

Ĵµ(~x) =
∑
q

∫
d3p′

(2π)
3
2

(
m

p′0

) 1
2 ∑

s′

[
ūs′(~p′)b

†
s′(
~p′)e−i

~p′·~x + v̄s′(~p′)ds′(~p′)e
i~p′·~x

]
eqγ

µ

∫
d3p

(2π)
3
2

(
m

p0

) 1
2 ∑

s

[
us(~p)bs(~p)e

i~p·~x + vs(~p)d
†
s(~p)e

−i~p·~x] (6.10)

in turn this current can be expanded into four currents which can be taken into account depending
on the type of process to be analyzed

Jµ1 (~x) =

∫
d3p

(2π)
3
2

(
m

p0

) 1
2
∫

d3p′

(2π)
3
2

(
m

p′0

) 1
2 ∑

q

∑
ss′

ūs′(~p′)eqγ
µus(~p)b

†
s′(
~p′)bs(~p)e

i(~p−~p′)·~x

(6.11)

Jµ2 (~x) =

∫
d3p

(2π)
3
2

(
m

p0

) 1
2
∫

d3p′

(2π)
3
2

(
m

p′0

) 1
2 ∑

q

∑
ss′

ūs′(~p′)eqγ
µvs(~p)d

†
s′(
~p′)b†s(~p)e

i(−~p−~p′)·~x

(6.12)

Jµ3 (~x) =

∫
d3p

(2π)
3
2

(
m

p0

) 1
2
∫

d3p′

(2π)
3
2

(
m

p′0

) 1
2 ∑

q

∑
ss′

v̄s′(~p′)eqγ
µus(~p)ds′(~p′)bs(~p)e

i(~p+~p′)·~x

(6.13)

Jµ4 (~x) =

∫
d3p

(2π)
3
2

(
m

p0

) 1
2
∫

d3p′

(2π)
3
2

(
m

p′0

) 1
2 ∑

q

∑
ss′

v̄s′(~p′)eqγ
µvs(~p)ds′(~p′)d

†
s(~p)e

i(~p′−~p)·~x.

(6.14)
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Fig. 6.1: Electromagnetic decay of pentaquark Pc into a baryon B and a photon, Pc → B + γ.

The operator Jµ1 (~x) by its structure is related to an elastic process between quarks, the operator
Jµ2 (~x) is related to a process of creating a quark-antiquark pair while operator Jµ3 (~x) represents a
process involving the annihilation of a quark-antiquark pair and finally Jµ4 (~x) represents an
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elastic process between antiquarks. In this way the effective Hamiltonian can be separates in four
terms denoted by

Hi = e

∫
d3xJµi (~x)Aµ(~x) (6.15)

The prime interest of this work is calculate the photocouplings for pentaquarks, in particular an
electromagnetic decay process between the pentaquark (configuration qqqcc̄) and the proton (qqq),
hence the relevant term for this decay process Pc → p+ γ is the annihilation of a cc̄ pair

H3 = e

∫
d3x

∫
d3p

(2π)
3
2

(
m

p0

) 1
2
∫

d3p′

(2π)
3
2

(
m

p′0

) 1
2
∫

d3k

(2π)
3
2

1√
2k0

∑
q

∑
ss′

v̄s′(~p′)eqγ
µus(~p)

ds′(~p′)bs(~p)e
i(~p+~p′)·~x

[
aµ(~k)ei

~k·~x + a†µ(~k)e−i
~k·~x
]

(6.16)

H3 = e

∫
d3p

(2π)
3
2

(
m

p0

) 1
2
∫

d3p′

(2π)
3
2

(
m

p′0

) 1
2
∫

d3k

(2π)
3
2

1√
2k0

∑
q

∑
ss′

v̄s′(~p′)eqγ
µus(~p)ds′(~p′)bs(~p)[

aµ(~k)δ3(~p+ ~p′ + ~k) + a†µ(~k)δ3(~p+ ~p′ − ~k)
]
. (6.17)

In particular, the emission and absorption processes of a photon with momentum ~k depend
completely in the creation and annihilation operator terms of the electromagnetic field, respectively.

In the non-relativistic limit the quark currents for H3 can be reduce as follows (see Appendix A)

v̄s′(~p′)γ
0us(~p) → χ†s′

~σ · (~p+ ~p′)

2m
χs

v̄s′(~p′)γ
kus(~p) → χ†s′σ

kχs (6.18)

6.1 Electromagnetic decays by pair-annihilation
Since the current interest is in the photoproduction of pentaquark Pc(uudcc̄) → p(uud) + γ, we
need the ground states for both the proton and the pentaquark. The wave function for the proton
hereafter will be denoted as |B〉 and is given in the momentum space in terms of the creation
operators of quarks acting on the vacuum state and the normalization factor 1/

√
3! corresponding

with three identical particles.

|B〉 =
1√
6

∫ 8∏
i=6

d3piΨp(~p6, ~p7, ~p8)b†6(~p6)b†7(~p7)b†8(~p8)|0〉. (6.19)

The pentaquark wave function is

|Pc〉 =
1√
6

∫ 5∏
i=1

d3piΨPc(~p1, ~p2, ~p3, ~p4, ~p5)b†1(~p1)b†2(~p2)b†3(~p3)b†4(~p4)d†5(~p5)|0〉. (6.20)

Because we are fixing the charm and the anticharm quarks, while we antisymmetrized the rest
three light quarks, the normalization factor in this case is also 1/

√
3!.

6.1.1 Decay width for the photoproduction of pentaquarks
The radiative decay widths for pentaquark states (similar to the heavy baryons) can be calculated
from the helicity amplitudes as [38, 83, 84]

Γ(Pc → B + γ) = 2πρ
2

2J + 1

∑
ν>0

|Aν(k)|2 , (6.21)
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where ρ is the phase space factor calculated in the rest frame of the pentaquark

ρ = 4π
EBk

2

mPc

, (6.22)

and EB =
√
m2
B + k2 is the energy of the baryon (in this case proton). The square of the four-

momentum (k0,~k) of photon is given by

Q2 = QµQµ = k2
0 − k2, (6.23)

such that if one study the energy and momentum conservation for this dynamical process (see
Appendix C), then the following relation is obtained

k2 =

(
Q2 −m2

Pc
−m2

B

2mPc

)2

−m2
B . (6.24)

Of course k = |~k| is the magnitude of the three-momentum of the photon at which the photopro-
duction of the pentaquark occurs.

Since the squared mass of the photon is Q2 = 0, the previous equation is reduced to

k =
m2
Pc
−m2

B

2mPc

. (6.25)

By using the effective values of proton, mB = 0.938 GeV , and pentaquark, mPc = 4.450
GeV , in Eq. (6.25), one obtains the momentum of the photon for the photoproduction channel
as k = 2.12 GeV .

The helicity amplitude for this process is defined as the transition matrix element between the
pentaquark and proton through

Aν(k) = 〈B, 1/2, ν − 1; γ |H3|Pc, 3/2, ν〉 , (6.26)

where ν is the helicity label. For each configuration of pentaquark states there is a matrix element
to be evaluated, as follows

Aν(k) = 〈γB|H3|Pc〉 = e

∫
d3x

(2π)3

∫
d3p9

∫
d3p10

∫
d3k

(2π)
3
2

1√
2k0∑

q

∑
s,s′

〈γB|v̄s′( ~p10)γµequs(~p9)ds′(~p10)bs(~p9)a†µ(~k)e−i
~k·~x|Pc〉ei( ~p9+ ~p10)·~x.

(6.27)

Considering just the emission process of a photon with momentum ~k and polarization ε∗µ, we
have

〈~k, ε|Aµ(~x)|0〉 =
1

(2π)
3
2

1√
2k0

ε∗µe
−i~k·~x, (6.28)

so, after considering the matrix element of Aµ(~x) and integrating into coordinate space, the Eq.
(6.27) is reduced to

〈γB|H3|Pc〉 =
e

6

∫ 10∏
i=1

d3pi
1

(2π)
3
2

√
2k0

∑
q

∑
s,s′

Ψ∗B(~p6, ~p7, ~p8)v̄s′γ
µequsε

∗
µΨPc(~p1, ~p2, ~p3, ~p4, ~p5)

δ3(~p9 + ~p10 − ~k)(−1)〈0|b8b7b6bsds′b†1b
†
2b
†
3b
†
4d
†
5|0〉. (6.29)

The resulting matrix element can be evaluated by doing all the contractions between fermion oper-
ators through the anti commutation relations of Eq. (6.6) in such a way that terms of annihilation
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acting on vacuum vanishes, for example ds′d
†
5|0〉 = (δs′,5δ

3( ~p10− ~p5)−d†5ds′)|0〉 = δs′,5δ
3( ~p10− ~p5)|0〉.

Besides is used the antisymmetric property of the wave function for fermions under interchange of
any two particles to rename the subscripts and simplified the expressions, as follows

〈0|b8b7b6bsb†1b
†
2b
†
3b
†
4ds′d

†
5|0〉 = −3δs′,5δ

3( ~p10 − ~p5)δs,4δ
3(~p9 − ~p4)〈0|b8b7b6b†1b

†
2b
†
3|0〉

= −3!δs′,5δ
3( ~p10 − ~p5)δs,4δ

3(~p9 − ~p4)δ1,6δ
3(~p1 − ~p6)

δ7,2δ
3(~p7 − ~p2)δ8,3δ

3(~p8 − ~p3). (6.30)

Choosing the left-handed polarization for photon, we have εµ∗ = 1√
2
(0,−1, i, 0)

〈γB|H3|Pc〉 =
e

(2π)
3
2

√
2k0

∫ 10∏
i=1

d3piΨ
∗
B(~p6, ~p7, ~p8)

∑
q

∑
s,s′

v̄s′γ
µequsε

∗
µΨPc(~p1, ~p2, ~p3, ~p4, ~p5)

δ3(~p9 + ~p10 − ~k1)δs′,5δ
3( ~p10 − ~p5)δs,4δ

3(~p9 − ~p4)δ1,6δ
3(~p1 − ~p6)

δ7,2δ
3(~p7 − ~p2)δ8,3δ

3(~p8 − ~p3)

=
e

(2π)
3
2

√
2k0

∫ 5∏
i=1

d3piΨ
∗
B(~p1, ~p2, ~p3)

∑
q

∑
4,5

v̄5γ
µequ4ε

∗
µΨPc(~p1, ~p2, ~p3, ~p4, ~p5)

δ3(~p4 + ~p5 − ~k). (6.31)

From the non-relativistic limit of Eq. (6.18), the left-handed polarization vector and the orthogo-
nality properties of Pauli spinors, one has

〈γB|H3|Pc〉 =
e

(2π)
3
2

√
2k0

∫ 5∏
i=1

d3piΨ
∗
B(~p1, ~p2, ~p3)

∑
q

∑
4,5

(−(~σ · ~ε)δ4,5)eqΨPc(~p1, ~p2, ~p3, ~p4, ~p5)

δ3(~p4 + ~p5 − ~k), (6.32)

where ~σ · ~ε = −σ−√
2
, and because q index is asociated implicitly to the spinor index s by definition

(in this case s = 4 = 5), then the implicit sum on q reduces to label 4, which corresponds to fixed
the flavor label of charm quark. Therefore, at the end we obtained the following reduced expression

〈γB|H3|Pc〉 =
e

(2π)
3
2

√
2k0

∫ 5∏
i=1

d3piΨ
∗
B(~p1, ~p2, ~p3)

σ−√
2
ecΨPc(~p1, ~p2, ~p3, ~p4, ~p5)δ3(~p4 + ~p5 − ~k).

(6.33)

This result corresponds to an electromagnetic decay processes of pentaquark Pc into a baryon B,
Fig. 6.2, where three particles are observers and the photo-coupling is between the fourth quark c
and the fifth antiquark c̄. The position of cc̄ are taken fixed without loss of generality in order to
evaluate the spin flavor matrix elements. It can be shown that the results are invariant regardless of
the contraction of quark c in any position with antiquark c̄ fixed as a convention in the fifth position
(taken as distinguishable from the rest).

Aν(k) = 〈γB|H3|Pc〉 =
e

(2π)
3
2 2
√
k0

〈ψcsfB
1

2
, ν − 1|ecσ−|ψcsfPc

3

2
, ν〉

∫ 5∏
i=1

d3piψ
∗
B(~p1, ~p2, ~p3)ψPc(~p1, ~p2, ~p3, ~p4, ~p5)δ3(~p4 + ~p5 − ~k)

=
e

(2π)
3
2 2
√
k0

〈ψcsfB
1

2
, ν − 1|ecσ−|ψcsfPc

3

2
, ν〉F (k). (6.34)

The total wave function is split in Ψ ≡ ψcsfψ , where ψ itself is denoted as the orbital wave
function. In this way it is enough to calculate the matrix elements for these degrees of freedom
separated from the orbital overlap, so that in the integral expression of Eq. (6.34), the form factor
F (k), gives the orbital contribution to the photoproduction of pentaquark from the orbital part of the
pentaquark wave function.
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Fig. 6.2: Electromagnetic decay of pentaquark Pc into a baryon B and a photon, Pc → B + γ.

6.2 Color-Spin-Flavor Matrix Elements
A first analysis of these matrix elements has already been done for a case of the ground states pen-
taquarks with identical quarks and an antiquark q4q̄. These results were published and are found in
Table 11 of our first work on pentaquarks. [82].

An important result obtained in that analysis of these expectation values is the relation between
the helicity amplitudes 1/2 and 3/2. It is direct to demonstrate that they are proportional by
studying the commutation properties of their operators, as follows.

Writing the operator that contracts particle 4 with 5 as

θ =

4∑
i=1

a↑(4)a↑(5) (6.35)

and the operator whose propose is lower the spin projection of the i-th quark can be defined as

S− =

5∑
i=1

a†↓(i)a↑(i) (6.36)

then without loss of generality we can calculate the helicity amplitude matrix element of the pen-
taquark with S = 3/2, which is the only possibility different from zero for all the matrix elements

〈χB ; 1/2,−1/2|θ|χPc ; 3/2, 1/2〉 =
1√
3
〈χB ; 1/2,−1/2|θS−|χPc ; 3/2, 3/2〉

=
1√
3
〈χB ; 1/2,−1/2|S−θ + [θ, S−]|χPc ; 3/2, 3/2〉

=
1√
3
〈χB ; 1/2, 1/2|θ|χPc ; 3/2, 3/2〉. (6.37)

As a conclusion the proportionality factor for the transition matrix elements with initial pentaquark
spin states with spin 1/2 and 3/2 is 1/

√
3. In the following, I will derive the explicit value of this

transition matrix elements for the cases of interest.

6.2.1 Ground state pentaquarks
The operator of the electromagnetic couplings affects the total pentaquark wave functions and spe-
cially the color part. For each configuration of color ψcEρ , ψ

c
Eλ

and ψcA2
derived in Eqs. (5.24)-(5.26)

we can compute the overlap with the nucleon wave function separately. The color singlet for the
nucleon B and its product with the meson J/ψ is
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ψcBJ/ψ =
1√
6

(rgb− grb+ gbr − bgr + brg − rbg)
1√
3

(rr̄ + gḡ + bb̄) (6.38)

There are three pentaquark configurations that do not contribute to the photocouplings due their
color part, since we have the following overlaps

〈ψcBJ/ψ|ψ
c
Eρ〉 = 0

〈ψcBJ/ψ|ψ
c
Eλ
〉 = 0

〈ψcBJ/ψ|ψ
c
A2
〉 = 1. (6.39)

Additionally, because the final state of the process is the proton of the octet, the only configura-
tion relevant for the photocoupling is ψ2 of Eq. (5.39). Taking the example with helicity ν = 3/2 is
straightforward to get

〈ψcsfB
1

2
, ν − 1 =

1

2
|ecσ−|ψcsfPc

3

2
, ν =

3

2
〉 =

1

2
〈ψSψcA(φρχρ + φλχλ)|ψSψcA(φρχρ + φλχλ)〉 = ec.

(6.40)

The matrix element for helicity amplitude ν = 1/2 is then given by

〈ψcsfB
1

2
, ν − 1 = −1

2
|ecσ−|ψcsfPc

3

2
, ν =

1

2
〉 =

ec√
3
.

(6.41)

The photocouplings to the other pentaquark configurations ψ1, ψ3, ψ4 and ψ5 vanish.

6.2.2 Pentaquarks with one quantum of orbital excitation in ρ and λ

For this modes, we need to study the nine configurations of Eqs. (5.56)-(5.64). Considering the
overlaps of color part, we can discard five configurations, from Eq. (5.56) to (5.60) and since the
calculation of the matrix elements for the other three involves the following overlaps 〈φS |φρ〉 =
〈φS |φλ〉 = 〈χρ|χS〉 = 〈χλ|χS〉 = 0. Thus, the complete photocouplings are zero for these modes.

6.2.3 Pentaquarks with one quantum of orbital excitation in η and ζ

In this case due to the correspondence of the excited radial part with the symmetric wave function
ψS → ψη,ζ whose color-spin-flavor matrix elements were calculated in Eq. (6.40) and (6.41), we
obtain the same results.

〈ψcsfB
1

2
, ν − 1 =

1

2
|ecσ−|ψcsfPc η,ζ

3

2
, ν =

3

2
〉 = ec (6.42)

and

〈ψcsfB
1

2
, ν − 1 = −1

2
|ecσ−|ψcsfPc η,ζ

3

2
, ν =

1

2
〉 =

ec√
3

(6.43)
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Chapter 7

Harmonic Oscillator Quark Model

In this Chapter, the aim is to evaluate the remaining part of the photocoupling of the pentaquarks,
Eq. (6.34), this basically corresponds to the overlap F (~p1, ~p2, ~p3, ~p4, ~p5) of both the wave functions
of the pentaquark and the proton. To build these wave functions we will implement two different
descriptions. On the one hand we will consider in this section a harmonic oscillator approximation,
HO, and on the other hand in the next section we will use an approximation with a Coulomb-type
potential in the Hypercentral Quark Model. With these two techniques we obtain the widths for
the pentaquark photoproduction process in two different and comparable ways.

7.1 Proton Charge Radius

In Chapter 1, we study the orbital proton wave function, where from Eqs. (1.19) and (1.21) it can
be written explicitly in coordinates space

ψgsp =
1

(2π)3/2
e
~PCM ·~R 1√

3
√

3

β3

π
3
2

e−β
2(ρ2+λ2)/2. (7.1)

The observable corresponding to the proton charge radius is calculated (within the harmonic oscil-
lator model) as the following expectation value

r2
p = 〈r2

ch〉p = 〈ψgsp |
3∑
i=1

ei(~ri − ~R)2|ψgsp 〉

=
1

3
(2eu + ed)〈ψgsp |ρ2 + λ2|ψgsp 〉

=
1

β2
, (7.2)

where ~R is the center-of-mass vector for the proton. For convenience, here we use β (instead of α
from Section 1.2.2) to denote the harmonic oscillator constant, and it can be determined by fitting
the proton radius.

7.2 Pentaquark Charge Radius

The explicit ground state pentaquark wave function in coordinate space is given by

ψgsPc =
1

(2π)3/2
e
~P ·~R 1√

5
√

5

α
3
2
ρ

π
3
4

α
3
2

λ

π
3
4

α
3
2
η

π
3
4

α
3
2

ζ

π
3
4

e−
α2
ρ
2 ρ2e−

α2
λ
2 λ2

e−
α2
η
2 η2e−

α2
ζ
2 ζ

2

, (7.3)
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where again from Eq. (5.8) one has the following relations

α2
ρ = α2

λ, α2
η = α2

ρ

√
a, α2

ζ = α2
ρ

√
5a

3 + 2a
, a ≡ m′

m
. (7.4)

One of the important observables that we can now calculate with this wave function is the charge
radius of the pentaquark

r2 ≡ 〈R2
ch〉Pc = 〈ψgsPc |

5∑
i=1

ei(~ri − ~R)2|ψgsPc〉

=
1

3
(2eu + ed)〈ψgsPc |~ρ

2 + ~λ2 +
10m′2

(3m+ 2m′)2
~ζ2|ψgsPc〉

=
1

α2
ρ

(
1 +

1

5

(
5a

3 + 2a

) 3
2

)
, (7.5)

with ~R, in this case is the center-of-mass vector of the pentaquark. It is important to mention
that R2

ch is not fixed, because we do not know the experimental value of the charge radius for the
pentaquark. However, this is a useful relation to watch what happen at the limits a → 0 and
a → ∞, where a = m′/m was defined in Eq. (5.8). In the first case we have m′ << m, that is to
say, considering just the three valence light quarks with masses m, we see that Eq. (7.5) reproduce
the correct limit of proton charge radius R2

ch = 1
α2
ρ
from Eq.(7.2), as it should. On the other hand,

taken the case m′ >> m, we obtain a finite value of 1
α2
ρ

(
1 + 1

2

(
5
2

) 1
2

)
.

7.3 Orbital matrix element
To obtain the overlap between pentaquark and proton states it is necessary to compute, from Eq.
(6.34), the next integral on five momentums

F (k) =

∫ 5∏
i=1

d3piψ
∗
B(~p1, ~p2, ~p3)ψPc(~p1, ~p2, ~p3, ~p4, ~p5)δ3(~p4 + ~p5 − ~k). (7.6)

7.3.1 Ground state pentaquark
The total baryon (and proton in particular) wave function in momentum space can be expressed in
terms of its relative wave function from (1.21), so one has

ψB(~p1, ~p2, ~p3) = δ3(~p1 + ~p2 + ~p3 − ~KB)ψrelB ( ~pρ, ~pλ).

= δ3(
3m

M
~P +

√
6

5
~pζ − ~KB)

√
3
√

3

(
1

π
3
4 β

3
2

)2

e
− 1

2β2
(p2ρ+p2λ)

, (7.7)

with β the harmonic oscillator constant of proton.

Similarly, in Eq. (5.10), it was obtained the wave function of pentaquark in momentum space,
and explicitly is given by

ψPc(~p1, ~p2, ~p3, ~p4, ~p5) = δ3(~P − ~KPc)ψ
rel
Pc ( ~pρ, ~pλ, ~pη, ~pζ)

= δ3(~P − ~KPc)

√
5
√

5
1

π
3
4α

3
2
ρ

1

π
3
4α

3
2

λ

1

π
3
4α

3
2
η

1

π
3
4α

3
2

ζ

e
− 1

2α2
ρ
p2ρ
e
− 1

2α2
λ

p2λ
e
− 1

2α2
η
p2η
e
− 1

2α2
ζ

p2ζ
. (7.8)
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Now, with the above ground state wave functions, the orbital part contribution can be evaluated.
For this propose, Eq. (7.6) is written in terms of Jacobi coordinates

Fgs(k) =
3

3
4 5

3
4

5
√

5

(
1

π3/4β3/2

)2(
1

π2α2
ραηαζ

)3/2 ∫
d3pρd

3pλd
3pηd

3pζd
3P

δ3(
3m

M
~P +

√
6

5
~pζ − ~KB)δ3(~P − ~KPc)δ

3

(
2m′

M
~P −

√
6

5
~pζ − ~k

)

e
− 1

2β2
(p2ρ+p2λ)

e
− 1

2α2
ρ
p2ρ
e
− 1

2α2
λ

p2λ
e
− 1

2α2
η
p2η
e
− 1

2α2
ζ

p2ζ
. (7.9)

Here

δ3
(
~p4 + ~p5 − ~k1

)
= δ3

(
2m′

M
~P −

√
6

5
~pζ − ~KB

)
(7.10)

and

δ3

(
3m

M
~P +

√
6

5
~pζ − ~KB

)
=

1∣∣∣√ 6
5

∣∣∣3 δ3

(
~pζ −

√
5

6
( ~KB −

3m

M
~P )

)
. (7.11)

Doing the integrals of P and pζ one obtains

Fgs(k) =
3

3
4 5

3
4

5
√

5

(
1

π3/4β3/2

)2(
1

π2α2
ραηαζ

)3/2
(√

5

6

)3 ∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

d3pρd
3pλd

3pη

δ3
(
~KPc − ~KB − ~k

)
e
− 1

2β2
(p2ρ+p2λ)

e
− 1

2α2
ρ

(p2ρ+p2λ)
e
− 1

2α2
η
p2η
e
− 1

2α2
ζ

5
6 ( ~KB− 3m

M
~KPc)

2

.

(7.12)

The integrals on ~pρ, ~pλ and ~pη are direct, since these functions are just gaussians. Working in
the rest frame of pentaquark, ~KPc = 0, then the momentum of baryon B (proton) becomes the
momentum of the outgoing photon ~KB = ~k. Therefore, the orbital part for the ground state
pentaquark is

Fgs(k) =

√
5
√

5

3
√

3

(
2αρβ

α2
ρ + β2

)3(
αη
αζ

)3/2

e
− 5

12α2
ζ

k2

=

(√
5(2a+ 3)

3

) 3
4 (

2αρβ

α2
ρ + β2

)3

e
− 5

12α2
ρ

√
2a+3
5a k2

, (7.13)

where β is inversely proportional to the proton charge radius, Eq. (7.2), αρ can be parametrized
in terms of the pentaquark charge radius r, Eq. (7.5), and a = m′/m was defined in Eq. (5.8). The
graph for this result, Eq. (7.13), can be seen in Fig. 7.1 in terms of the charge radius, once we fix
the value of the outgoing photon as k = 2.1 GeV obtained by studying the dynamical analysis of
photoproduction of the pentaquark in Eq. (6.25).

In Fig. 7.1 can also be seen the behavior of the orbital matrix element in terms of k, when
we take the charge radius of pentaquark equal to 1fm (experimental charge radius of proton is
≈ 0.84fm). Just as a matter of analysis, in all these plots we include aside from the curves with
the mass of the heavy quark m′ as the mass of the constituent charm quark mc, also the plots as
if we were considering either the mass of the bottom quark m′ = mb or the mass of up and down
quarks m′ = mu = md. Equally important, we can analyze the behaviour of the form factor from
Eq. (7.13) as a function of the charge radius of the pentaquark Fgs(r). This can be done, since the
coefficient αρ is related to the charge radius of pentaquark r by Eq. (7.5).
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7.3.2 Parameters for pentaquarks

Table 7.1: Parameters values for pentaquarks uudQQ̄ with heavy quarks Q = u = d, Q = c, Q = b.
Although k = 2.12 GeV is the photon momentum calculated for the hidden charm pentaquak, here
we use the same value of k to estimate the orbital contribution of every hypothetical pentaquark
with different heavy quark mass mQ.

Q = u = d Q = c Q = b
m = mu = md 320 320 320 MeV
m′ = mQ 320 1500 4920 MeV

k 2.12 2.12 2.12 GeV
β = 1/rp 1.19 1.19 1.19 fm

In our previous work [82], through a mass formula, we estimate values of the constituent quark
masses u = d and c. In the same manner is calculated the mass for quark b. Also, the momentum
of the photon k was obtained by means of the dynamical analysis of the photoproduction process,
and parameter β was determined from the proton charge radius rp in Eq. (7.2). The values for this
parameters are given in Table 7.1.

7.3.3 Pentaquark with one quantum of excitation in ζ

From the pentaquark signals discovered by LHCb it is not clear to which quantum numbers they
are assigned. For this reason we consider to study not only the ground-state pantaquarks, but also
the orbital-excited pentaquark states. From our analysis of the previous section on the color-spin-
flavor matrix elements Eqs. 6.42 and 6.43, we notice that the only excited pentaquark states that
contributed to the photoproduction process, are those with only one orbital excitation in η or ζ.
Moreover, it can be shown that the only non-vanishing contribution in the orbital matrix element
of Eq.(7.6), is for ζ and the result is

Fζ(k) = −i
√

5

3

√
5
√

5

3
√

3

α
3/2
η

α
5/2
ζ

(
2αρβ

α2
ρ + β2

)3 ∣∣∣∣(1− 3m

M

)
~KP∗c
− ~K1

∣∣∣∣ e− 5
6 |(1− 3m

M ) ~KP∗c −
~K1|2/2α2

ζ .

(7.14)

Taking the pentaquark at the rest frame one obtains

Fζ(k) = −i
√

5

3

√
5
√

5

3
√

3

α
3/2
η

α
5/2
ζ

(
2αρβ

α2
ρ + β2

)3

k e−
5
6k

2/2α2
ζ , (7.15)

or in terms of the mass ratio a = m′/m, one has

Fζ(k) = −i
√

5

3

(√
5(2a+ 3)

3

) 3
4 (

2αρβ

α2
ρ + β2

)3
k

αρ

(
5a

2a+3

) 1
4

e−5k2/12α2
ρ

√
5a

2a+3 . (7.16)

The effect of this result on the photoproduction of the ζ-excited pentaquark is shown in Fig. 7.2.
Again, αρ can be written in terms of the pentaquark charge radius Eq. (7.5), while β is fixed by
the charge radius of proton. The last equation in terms of quotient a can also be studied as ground
state, when we take different values for the mass of quark Q.
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Fig. 7.1: Orbital contribution to the photoproduction of the ground state pentaquark Pc(uudQQ̄)
in the Harmonic Oscillator Model. The solid blue line represents the case with the hidden charm
pentaquarks mQ = m′ = mc, while the red dotted line and the green dashed line contemplate an
hypothetical pentaquark made of only light quarks mQ = m′ = mu = md, and with bottom quark
mQ = m′ = mb, respectively. Graphs (a) and (b) are given in terms of the pentaquark charge radius
r, where the momentum of photon was taken as 2.1GeV . By contrast, (c) and (d) are given in terms
of the photon momentum k, so that the pentaquark charge radius was fixed in 1fm. Graphs (b)
and (d) are in logarithm scale.

7.4 Discussion of results
One can study the orbital contribution F as a function of not only the momentum of the photon
F (k), but also as a function of the pentaquark charge radius F (r), from Eq. (7.5). One of the facts
one can see in F (r) for both ground Fgs(r) and excited states Fζ(r) is that, there is only a small
contribution of the orbital function to the radiative decay width for a short range of the pentaquark
charge radius r (approximately between 0.1 and 0.5 fm). After the function reaches its maximum,
as r grows, the orbital part starts to decrease exponentially.

Moreover, close to the neighborhood of k = 2.1GeV where the photoproduction occurs, we ob-
serve a very small factor for the orbital matrix element, of the order of ∼ 10−9. This factor will even
become smaller once we take its square modulus, in order to calculate the radiative decay widths of
pentaquarks Γ(Pc → B+γ), Eqs. (6.21) and (6.26). Thus, since the phase space factor is a constant
whose value do not change significantly our previous result, we found that the photoproduction
channel of pentaquark is highly suppressed.
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Fig. 7.2: Similar to Fig. 7.1, here are shown the orbital contribution to the photoproduction of one
orbital excited pentaquark in the ζ mode. In (a) and (b) the overlap is expressed as a function of
the pentaquark charge radius r with momentum of the photon k = 2.1GeV , while in (c) and (d) F
is function of k, where r = 1fm. The right graphs are in logarithmic scale respect to the left ones.

A similar behaviour occurs for functions depending on k: Fgs(k) and Fζ(k). A notorious dif-
ference is in k = 0, since Fgs(k = 0) = 0, while Fζ(k = 0) starts in a fixed value, according to
the analytical expressions of Eqs. (7.13) and (7.15). Another comparison incorporating both of
our perspectives of the orbital contribution to the fotoproduction of the ground and excited hidden
charm pentaquarks is shown in Figure 7.3.

Finally, because we have the form factors, from Eq. (6.21) we can calculate the radiative decay
widths in terms of either the pentaquark charge radius r, or the photon momentum k. The results
are presented in Fig. 7.4.

In general, it can be concluded that no matter how big the mass of the heavy quark mQ = m′ is,
after certain range one can ensure that the bigger of the photon momentum k (or pentaquark charge
radius r) is, the much smaller the orbital factor F becomes. Of course, this behaviour is dominated
by the decreasing exponential trend as we found analitically from Eq. (7.13) to (7.16).

Because of the nature of our results, which are model dependent, it is of special interest to know
whether the results of the Harmonic Oscillator still holds true in a different model. For that reason
we investigated a new approach with a different treatment and formalism, the Hypercentral Model.
The last model consider fundamentally an hypercoulomb potential, and it will be presented in the
next section.
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Fig. 7.3: Comparison between the ground and the only orbital excited pentaquark state Pc(uudcc̄)
for functions Fgs(k), Fgs(r), Fζ(k) and Fζ(r) in the Harmonic Oscillator Model.
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Fig. 7.4: Electromagnetic decay widths for the photoproduction of ground and orbital excited pen-
taquarks in the harmonic oscillator model: P ∗c (uudcc̄)→ p+ γ. The widths are given in KeV units
and as a function of both the pentaquark charge radius and the momentum of the photon. In (b)
and (d) are shown the zoom from (a) and (c) around the region of interest, 1 fm and 2.1 GeV ,
respectively.



Chapter 8

Hypercentral Quark Model

In this section, I present an independent solution of the orbital contribution to the photoproduction
of pentaquark through the hypercentral approximation, HC. This model is based fundamentally
in a Coulomb-like interaction, which with the introduction of the hyperspherical coordinates can
be written as a hyper-Coulomb potential with dependence only in a new coordinate, called the
hyperradius [85, 86, 87]. This formalism can be applied for systems with three particles and has
been successful into describe many aspects of the light baryons [88, 89], including to the low-lying
states of the spectra. This treatment can also be extended to N-body quantum systems in three
dimensions [85, 90] and in particular to configuration with five particles, as compact pentaquarks.

8.1 Proton
Considering a system with three particles with different masses mi, i = 1, 2, 3., in a potential
depending only on x, then

H =

3∑
i=1

pi
2

2mi
+ V (x). (8.1)

The Jacobi coordinates for this Hamiltonian, can be defined as



~ρ = ~r2 − ~r1,

~λ =
(
~r3 − m1 ~r1+m2 ~r2

M2

)(
m3(M2)2

m1m2(M3)

) 1
2

,

~R = m1 ~r1+m2 ~r2+m3 ~r3
M3

⇒



~r1 = −m2

M2
~ρ− m1m2

(M2)2

(
m3(M2)2

m1m2(M3)

) 1
2 ~λ+ ~R

~r2 = m1

M2
~ρ− m1m2

(M2)2

(
m3(M2)2

m1m2(M3)

) 1
2 ~λ+ ~R

~r3 = M2

M3

(
m1m2(M3)
m3(M2)2

) 1
2 ~λ+ ~R

(8.2)

where the Jacobian associated with this transformation is

3∏
i=1

d3ri =

(
m1m2M3

M2
2m3

) 3
2

d3ρd3λd3R. (8.3)

The relation of these coordinates with x, can be obtained through the hyperspherical coordi-
nates. Here x is called the hyperradius and five angles are introduced: ξ is the hyperangle and
the pair of angles associated with ~ρ and ~λ are Ωρ = (θρ, φρ), and Ωλ = (θλ, φλ), respectively. The
correspondence between both coordinate system is

x =

√
~ρ2 + ~λ2 and ξ = arctg

(ρ
λ

)
. (8.4)

87
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Working on a description of the system with Jacobi coordinates, one can separate the center of mass
kinetic energy from the relative motion

H =
PCM

2

2M3
+
pρ

2

µ
+
pλ

2

µ
+ V (~ρ,~λ). (8.5)

Considering the six-dimensional Coulumb potential

V (x) = − τ√
~ρ2 + ~λ2

, (8.6)

and the previous relations of Eq. (8.4), is possible to rewrite the Hamiltonian as

H =
PCM

2

2M3
− 1

2m

[
∂2

∂x2
+

5

x

∂

∂x
− Λ2(Ωρ,Ωλ, ξ)

x2

]
− τ

x
. (8.7)

The solution for the CM motion are plane waves, and the complete ground state eigenfunction
(without any radial excitation) for this Hamiltonian is

ψp( ~x1, ~x2, ~x3) =
1

(2π)
3
2

e−i
~Kp· ~Rpφp(~ρ,~λ) =

[
(2g3)6

5!

] 1
2 1

π
3
2

e−g3x
(

M2
2m3

m1m2M3

) 3
4 1

(2π)
3
2

e−i
~Kp· ~Rp ,

(8.8)

with

g3 =
τµ√
2 5

2

, and µ =
2m1m2

m1 +m2
. (8.9)

We associate the masses mi, with those masses of the constituent u and d quarks, and therefore this
wave function to the proton.

8.2 Proton Charge Radius
In this Hypercentral model is calculated the charge radius for proton. By taking equal masses
m1 = m2 = m3 one has

〈r2
ch〉p =

∫ 3∏
i=1

d3riψ
∗
p

3∑
j=1

(
~rj − ~R

)2

ejψp

=
7

4

(
5
2

√
2

τµ

)2

e. (8.10)

If one takes the above approach along with the constituent quark masses of mu = md = 320MeV ,
and uses the experimental value: 〈rch〉p = 0.84fm, then one obtains τ = 3.43.

8.3 Pentaquark
We consider a Hamiltonian of five particles with different masses mi

H =

5∑
i=1

pi
2

2mi
+ V (x) (8.11)

where the potential is assumed to depend on x only, such that each individual particle is subject to
the same potential V (x). Then we introduce the Jacobi coordinates with a convenient normalization:
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~ρ = ~r2 − ~r1

~λ = 1√
Nλ

(
~r3 − m1 ~r1+m2 ~r2

M2

)
~η = 1√

Nη

(
~r4 − m1 ~r1+m2 ~r2+m3 ~r3

M3

)
~ζ = 1√

Nζ

(
~r5 − m1 ~r1+m2 ~r2+m3 ~r3+m4 ~r4

M4

)
~R = m1 ~r1+m2 ~r2+m3 ~r3+m4 ~r4+m5 ~r5

M5

⇒



~r1 = −m2

M2
~ρ−

√
Nλm3

M3

~λ−
√
Nηm4

M4
~η −
√
Nζm5

M5
ζ + ~R

~r2 = m1

M2
~ρ−

√
Nλm3

M3

~λ−
√
Nηm4

M4
~η −
√
Nζm5

M5
ζ + ~R

~r3 =
√
NλM2

M3

~λ−
√
Nηm4

M4
~η −
√
Nζm5

M5
ζ + ~R

~r4 =

√
NηM3

M4
~η −
√
Nζm5

M5
ζ + ~R

~r5 =

√
NζM4

M5
ζ + ~R

The four vectors ~ρ, ~λ, ~η and ~ζ have a total of twelve components, and the normalization factors
are

Nλ =
m1m2M3

M2
2m3

, Nη =
m1m2M4

M2M3m4
, Nζ =

m1m2M5

M2M4m5
, (8.12)

with the notation in masses is simplified by

Mn =

n∑
i=1

mi, n = 2, 3, 4, 5. (8.13)

The Jacobian from Cartesian to Jacobi coordinates is

5∏
i=1

d3ri =

(
m3

1m
3
2M5

M4
2m3m4m5

) 3
2

d3ρd3λd3ηd3ζd3R. (8.14)

This transformation separates the kinetic energy into the center of mass, and furthermore, into four
independent Jacobi terms, with the same reduced mass µ = 2m1m2

m1+m2

H =
P 2

2M5
+
pρ

2

µ
+
pλ

2

µ
+
pη

2

µ
+
pζ

2

µ
+ V (x). (8.15)

Jacobi coordinates separate the system into a Schrödinger equation for the relative motion of
the five particles in a potential field V (x) and a Schrödinger equation for the motion of the center
of mass. In this case, the five particle wave function is also separable into a product of the center-
of-mass times the relative parts. Naturally the center-of-mass solution is trivial and shows that the
system moves as a free particle of total mass M5.
For the purpose of find the eigenfunctions for the relative movement of this Hamiltonian it is intro-
duce a new change of coordinates to the twelve-dimentional hyperspherical polar coordinates, where
aside from the hyperradius

x =
√
ρ2 + λ2 + η2 + ζ2, (8.16)

we consider the three hyperangles given by

ξ1 = arctan
(ρ
λ

)
ξ2 = arctan

(
η

ζ

)
ξ = arctan

(√
ρ2 + λ2

η2 + ζ2

)
, (8.17)

and the four pairs of angles associated with ~ρ, ~λ, ~η and ~ζ defined by Ωρ = (θρ, φρ), Ωλ = (θλ, φλ),
Ωη = (θη, φη) and Ωζ = (θζ , φζ), respectively. The Jacobian for this change of coordinates is

5∏
i=1

d3ri =

(
m3

1m
3
2M5

M4
2m3m4m5

) 3
2

d3Rx11dxdΩ, (8.18)
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with

dΩ = (cosξ1)2(sinξ1)2dξ1(cosξ2)2(sinξ2)2dξ2(cosξ)5(sinξ)5dξdΩρdΩλdΩηΩζ . (8.19)

For these new coordinates we express the kinetic energy as

T =
P 2

2M5
− 1

2µ

(
∂2

∂x2
+

11

x

∂

∂x
− Λ2(Ω)

x2

)
, (8.20)

so that Λ2(Ω) is the generalized angular momentum operator in twelve dimensions and Ω contains
the information of all the angular coordinates. Since the operator Λ2(Ω) is given in hyperspherical
coordinates, it satisfies the following eigenvalue equation

Λ2(Ω)Y[γ](Ω) = γ(γ + 10)Y[γ](Ω), (8.21)

where γ(γ + 10) are the eigenvalues, and Y[γ](Ω) the hyperspherical harmonics. Here [γ] is a short-
hand notation for the quantum numbers γ, γ1, γ2, lρ,mρ, lλ,mλ, lη,mη, lζ ,mζ .

For potentials that only depends on the hyperradius x the Schrödinger equation of the relative
motion can be separated into a hyperangular and a hyperradial equation.

8.3.1 Hyperradial equation

The hyperradial Schrödinger equation is given by[
− 1

2µ

(
∂2

∂x2
+

11

x

∂

∂x
− γ(γ + 10)

x2

)
− τ

x

]
Rωγ(x) = ERωγ(x) (8.22)

which can be solved analytically to obtain

E = − µτ2

2(ω + 11
2 )2

(8.23)

Rωγ(x) =

√
(ω − γ)!(2g)12

(ω + γ + 10)!(2ω + 11)
(2gx)γe−gxL2γ+10

ω−γ (2gx) (8.24)

g =
µτ√

2
(
ω + 11

2

) . (8.25)

The normalization for the radial wave function is∫
x11Rωγ(x)Rωγ(x) = 1. (8.26)

Therefore, the radial solution for ground state ω = γ = 0 and the fist excited state with ω = γ = 1
are

R00(x) =

√
(2g0)12

11!
e−g0x (8.27)

R11(x) =

√
(2g1)12

13!
(2g1x)e−g1x, (8.28)

with g0 = µτ√
2 11

2

and g1 = µτ√
2 13

2

for the ground state and one orbital excited state, respectively.
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8.3.2 Hyperangular equation
The hyperangular Schrödinger equation is given by

Λ2(Ω)Y[γ](Ω) =

[
− 1

(cosξ)5(sinξ)5

∂

∂ξ

(
(cosξ)5(sinξ)5 ∂

∂ξ

)
+

Λ2
2(Ω2)

(cosξ)2
+

Λ2
1(Ω1)

(sinξ)2

]
Y[γ](Ω)

= γ(γ + 10)Y[γ](Ω). (8.29)

Here there are two angular momentum operators in six-dimensions Λ2
1(Ω1) = Λ2

1(ξ1,Ωρ,Ωλ) and
Λ2

1(Ω2) = Λ2
2(ξ2,Ωη,Ωζ), fulfilling the eigenvalue equations

Λ2
1(Ω1)Y[γ1](Ω1) = γ1(γ1 + 4)Y[γ1](Ω1) (8.30)

Λ2
2(Ω2)Y[γ2](Ω2) = γ2(γ2 + 4)Y[γ2](Ω2) (8.31)

with [γ1] = γ1, lρ,mρ, lλ,mλ, and [γ2] = γ2, lη,mη, lζ ,mζ . Because of the angular equation is
separable in ξ, Ω1 and Ω2, the solution can be written as

Y[γ](Ω) = Aγ(ξ)Y[γ1](Ω1)Y[γ2](Ω2) (8.32)

With this form is obtained the differential equation in ξ[
− 1

(cosξ)5(sinξ)5

∂

∂ξ

(
(cosξ)5(sinξ)5 ∂

∂ξ

)
+
γ1(γ1 + 4)

(cosξ)2
+
γ2(γ2 + 4)

(sinξ)2
− γ(γ + 10)

]
A[γ](ξ) = 0

(8.33)

The solution of A[γ](ξ) is given in terms of Jacobi polynomials as

Aγ(ξ) = (cosξ)γ2(sinξ)γ1P (α,β)
n (cos2ξ)/

√
Nγ (8.34)

where

α = γ1 + 2

β = γ2 + 2

n =
1

2
(γ − γ1 − γ2)

Nγ =
Γ(n+ α+ 1)Γ(n+ β + 1)

2(2n+ α+ β + 1)Γ(n+ 1)Γ(n+ α+ β + 1)
(8.35)

The equations for Ω1 and Ω2 satisfying Eqs. (8.30) and (8.31) are

Λ2(Ω1)Y[γ1](Ω1) =

[
− 1

(cosξ1)2(sinξ1)2

∂

∂ξ1

(
(cosξ1)2(sinξ1)2 ∂

∂ξ1

)
+
L2(Ωλ)

(cosξ1)2
+
L2(Ωρ)

(sinξ1)2

]
Y[γ1](Ω1)

= γ1(γ1 + 4)Y[γ1](Ω1) (8.36)

Λ2(Ω2)Y[γ2](Ω2) =

[
− 1

(cosξ2)2(sinξ2)2

∂

∂ξ2

(
(cosξ2)2(sinξ2)2 ∂

∂ξ2

)
+
L2(Ωλ)

(cosξ2)2
+
L2(Ωρ)

(sinξ2)2

]
Y[γ2](Ω2)

= γ1(γ2 + 4)Y[γ2](Ω2) (8.37)

in these case the four angular momentum operators L2(Ωα) satisfies the following equations

L2(Ωρ)Ylρmρ(Ωρ) = lρ(lρ + 1)Ylρmρ(Ωρ) (8.38)

L2(Ωλ)Ylλmλ(Ωλ) = lλ(lλ + 1)Ylλmλ(Ωλ) (8.39)
L2(Ωη)Ylηmη (Ωη) = lη(lη + 1)Ylηmη (Ωη) (8.40)

L2(Ωζ)Ylζmζ (Ωζ) = lζ(lζ + 1)Ylζmζ (Ωζ) (8.41)

again, both equations (8.36) and (8.37) are separable. The solutions can be written as

Y[γ1](Ω1) = Aγ1(ξ1)Ylρmρ(Ωρ)Ylλmλ(Ωλ) (8.42)
Y[γ2](Ω2) = Aγ2(ξ2)Ylηmη (Ωη)Ylζmζ (Ωζ) (8.43)

(8.44)
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then are obtained the differential equations in ξ1 and ξ2[
− 1

(cosξ1)2(sinξ1)2

∂

∂ξ1

(
(cosξ1)2(sinξ1)2 ∂

∂ξ1

)
+
lλ(lλ + 1)

(cosξ1)2
+
lρ(lρ + 1)

(sinξ1)2
− γ1(γ1 + 4)

]
Aγ1(ξ1) = 0 (8.45)[

− 1

(cosξ2)2(sinξ2)2

∂

∂ξ2

(
(cosξ2)2(sinξ2)2 ∂

∂ξ2

)
+
lζ(lζ + 1)

(cosξ2)2
+
lη(lη + 1)

(sinξ2)2
− γ2(γ2 + 4)

]
Aγ2(ξ2) = 0 (8.46)

(8.47)

and solutions are given in terms of Jacobi polynomials

Aγ1(ξ1) = (cosξ1)lλ(sinξ1)lρP (α1,β1)
n1

(cos2ξ1)/
√
Nγ1 (8.48)

Aγ2(ξ2) = (cosξ2)lζ (sinξ2)lηP (α2,β2)
n2

(cos2ξ2)/
√
Nγ2 (8.49)

where

α1 = lρ +
1

2
α2 = lη +

1

2

β1 = lλ +
1

2
β2 = lζ +

1

2

n1 =
1

2
(γ1 − lρ − lλ) n2 =

1

2
(γ2 − lη − lζ)

Nγi =
Γ(ni + αi + 1)Γ(ni + βi + 1)

2(2ni + αi + βi + 1)Γ(ni + 1)Γ(ni + αi + βi + 1)
(8.50)

The quantum numbers for ground state and the first excited state are placed in Table 8.1

Table 8.1: Low lying quantum numbers for the hyperspherical harmonics with ω = γ = 0 and 1.

γ γ1 γρ γλ γ2 lη lζ
Y[0] 0 0 0 0 0 0 0
Y[1]ρ 1 1 1 0 0 0 0
Y[1]λ 1 1 0 1 0 0 0
Y[1]η 1 0 0 0 1 1 0
Y[1]ζ 1 0 0 0 1 0 1

The hyperangular equation for ground state is

Y[0](Ω) =
2
√

15

π3
(8.51)

and for the first excited states by

Y[1]ρ(Ω) =
4
√

60

π5/2
Y1mρ(Ωρ)sinξsinξ1 (8.52)

Y[1]λ(Ω) =
4
√

60

π5/2
Y1mλ(Ωλ)sinξcosξ1 (8.53)

Y[1]η (Ω) =
4
√

60

π5/2
Y1mη (Ωη)cosξsinξ2 (8.54)

Y[1]ζ (Ω) =
4
√

60

π5/2
Y1mζ (Ωζ)cosξcosξ2 (8.55)

(8.56)

with the normalization ∫
Y ∗[0] (Ω)Y[0](Ω)dΩ = 1 (8.57)∫

Y ∗[1]α (Ω)Y[1]α(Ω)dΩ = 1 (8.58)
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for α = ρ, λ, η, ζ.
Summarising, the total wave function for ground state and in general for one quantum of excitation in

α are

ψgs(~r1, ~r2, ~r3, ~r4, ~r5) =

(
a2

2a+ 3

)3/4

R00(x)Y[0](Ω)
1

(2π)
3
2

e−i
~KPc · ~RPc . (8.59)

ψexc,α(~r1, ~r2, ~r3, ~r4, ~r5) =

(
a2

2a+ 3

)3/4

R11(x)Y[1]α(Ω)
1

(2π)
3
2

e−i
~KPc · ~RPc . (8.60)

with the normalization ∫ 5∏
i=1

d3riψ
∗
gs(~r1, ~r2, ~r3, ~r4, ~r5)ψgs(~r1, ~r2, ~r3, ~r4, ~r5) = 1 (8.61)

and ∫ 5∏
i=1

d3riψ
∗
exc,α(~r1, ~r2, ~r3, ~r4, ~r5)ψexc,α(~r1, ~r2, ~r3, ~r4, ~r5) = 1. (8.62)

The eigenfunctions for Hamiltonian of Eq. (8.15) are expressed in terms of the hyperradius x

ψPc( ~x1, ~x2, ~x3, ~x4, ~x5) =
1

(2π)
3
2

e−i
~KPc ·~RφPc(~ρ,~λ, ~η, ~ζ)

=

[
(2g0)12

11!

] 1
2 2
√

15

π3
e−g0x

(
M4

2m3m4m5

m3
1m

3
2M5

) 3
4 1

(2π)
3
2

e−i
~KPc ·~R, (8.63)

where

g0 =
τµ√
2 11

2

. (8.64)

8.3.3 Confining potential
The hyperradial Schrödinger equation presented in Eq. (8.22) can be solved analytically only for two
potentials; either for the twelve-dimensional harmonic oscillator or, as it was obtained in this section, for
the twelve-dimensional hyper-Coulomb potential

V (x) = − τ
x
. (8.65)

From several works based in different approaches and mainly in lattice QCD calculations [91], one expects
a confining quark potential with an extra linear term for hadronic states, as follows

V (x) = − τ
x

+ ε x. (8.66)

Nevertheless, this potential cannot be solved analytically, unless the linear term can be expanded in pertur-
bation theory, provided that the parameter ε, real and positive, is small enough to consider the new term as
a perturbation in the complete Hamiltonian. In fact this is a good approximation for the low-lying states in
which we are interested on. At first order in the perturbation theory [86], the solutions for both the proton
and the pentaquark wave functions in this model remain exactly the same as we already obtain, and that is
the reason why the wave functions in our derivation do not change if we consider the linear term in V (x).

8.4 Pentaquark Charge Radius
This observable is calculated using the previous pentaquark coordinates and also the ground state wave
functions from The Hypercentral Model

〈r2
ch〉Pc =

∫ 5∏
i=1

d3riψ
∗
Pc

5∑
j=1

(
~rj − ~R

)2

ejψPc

=
13

4

(
11
2

√
2

τµ

)2(
m1m2(2M2

3 + 3m2
4)

M2M3m4M4
+
m1m2(M2

2 + 2m2
3)

M2
2m3M3

−m1m2(2M2
4 − 5m2

5)

M2M4m5M5
+
m2

1 +m2
2

M2
2

)
e, (8.67)
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here, the mass-dependent factor reduces to 6/5, when equal masses are taken. On the other hand, similarly
to the harmonic oscillator, one can also simplify this results by talking the masses m1 = m2 = m3 = m for
the light quarks, m4 = m5 = m′ for the heavy quarks with the definition of a = m′/m to obtain

〈r2
ch〉Pc =

13

4

(
11
2

√
2

τµ

)2
3(1 + a)

3 + 2a
e. (8.68)

Finally, by using the effective masses mu = md = 320MeV for m and mc = mc̄ = 1500MeV for m′,
respectively, and taking the same value of τ = 3.43 as fitted to the proton in Eq. (8.10), then one obtains
〈rch〉Pc = 2.96fm.

8.5 Overlap of the orbital part

8.5.1 Ground state
From making a Fourier Transform of the orbital overlap from the discussed Harmonic Oscillator formalism,
we can obtain the form factor given the orbital contribution in the space of coordinates

F (k) =

∫ 5∏
i=1

d3xi

∫
d3x0ψ

∗
p( ~x1, ~x2, ~x3)ψgsPc( ~x1, ~x2, ~x3, ~x4, ~x5)

δ3(− ~x4 + ~x0)δ3(− ~x5 + ~x0)e−i
~k· ~x0 .

(8.69)

Once the wave functions are placed into the integral, the above expression can be reduced to the next explicit
integral

Fgs(k) =

(
m2

1m
2
2M5

M2
2M3m4m5

) 3
4

N
− 3

2
ζ (4π)3

[
(2g3)6(2g0)12

5!11!

] 1
2 1

π
3
2

2
√

15

π3

1

q∫
dρdλdηρ2λ2η sin (qη)e−g3

√
ρ2+λ2

e
−g0

√
ρ2+λ2+

(
1+

Nη
Nζ

M2
3

M2
4

)
η2

, (8.70)

where q is defined as

q =
√
Nη

m5M3 −m4M5 −M3M4

M4M5
k. (8.71)

The last integral can still be simplified by using a change of variables from ρ and λ to polar coordinates,
where the angular part is solved immediately, and leaving us at the end with an integral in two variables.
Unfortunately, this improper integral is hard to solve analytically, because of its asymptotic behaviour. That
is the reason why we choose to solve it numerically.

Eq. (8.70) can be rewritten in terms of

m = m1 = m2 = m3, and m′ = m4 = m5, (8.72)

again with

a ≡ m′

m
. (8.73)

Fgs(k) =

(
2a+ 3

3a2

) 3
4
(
a(a+ 3)

2a+ 3

) 3
2

(4π)2

[
(2g3)6(2g0)12

5!11!

] 1
2 1

π
3
2

2
√

15

π3∫
dρdλd3ηρ2λ2e

−i~k·~η 1√
2

√
a+3
3a e−g3

√
ρ2+λ2

e
−g0

√
ρ2+λ2+

(
2(3+a)
3+2a

)
η2

, (8.74)

Fgs(k) =

(
2a+ 3

3a2

) 3
4
(
a(a+ 3)

2a+ 3

) 3
2

(4π)3

[
(2g3)6(2g0)12

5!11!

] 1
2 1

π
3
2

2
√

15

π3∫
dρdλdηρ2λ2η2j0

(
− 1√

2

√
a+ 3

3a
kη

)
e−g3
√
ρ2+λ2

e
−g0

√
ρ2+λ2+

(
2(3+a)
3+2a

)
η2

. (8.75)
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8.5.2 Pentaquark with one quantum of excitation in η and ζ

In virtue of previous definition of mass ratio, the proton wave function and pentaquark wave function with
one quantum of excitation in η and ζ can be written as

ψ∗B( ~x1, ~x2, ~x3) =

[
(2g3)6

5!

] 1
2 1

π
3
2

e−g3x
(

8

3
√

3

) 1
2 1

(2π)
3
2

e−i
~KPc · ~RPc , (8.76)
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Fig. 8.1: Orbital contribution function to the photoproduction of ground and orbital excited pen-
taquaks Pc(uudcc̄) in the Hypercentral Model. The upper plot (a) was calculated in terms of the
pentaquark charge radius r, taken the momentum of the photon as k = 2.1 GeV , whereas (c) is in
terms of k, fixing r = 1fm. The graphs on the right hand side (b) and (d) are simply a zoom of the
left ones. The analysis takes into account the orbital overlap with both excited modes, η and ζ.

ψPc,η( ~x1, ~x2, ~x3, ~x4, ~x5) =

[
(2g1)14

13!

] 1
2 8
√
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2
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(
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) 3
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ψPc,ζ( ~x1, ~x2, ~x3, ~x4, ~x5) =

[
(2g1)14

13!

] 1
2 8
√

15

π
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2
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(
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) 3
4

Y1,mζ cos(ξ)cos(ξ2)

1

(2π)
3
2

e−i
~KPc · ~RPc , (8.78)
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respectively. Then, the orbital contributions for pentaquark with one quantum of excitation in η and ζ are

Fη(k) = i

(
(a+ 3)2

3(2a+ 3)

) 3
4

32
√

15

[
(2g3)6(2g1)14

5!13!

] 1
2

Y1,mη (k̂)∫
x5dxη3dηe−g3xe

−g1
√
x2+

2(3+a)
3+2a

η2

j1

(
− 1√

2

√
a+ 3

3a
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)
, (8.79)

Fζ(k) = i

(
2a+ 3

3

) 3
4
(

3 + a

3

) 3
2

32
√

15

[
(2g3)6(2g1)14
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] 1
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x2+
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ζ2j1
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2

√
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9a
kζ

)
. (8.80)

Unlike the Harmonic Oscillator Model, here there are two excited states which in principle can be can-
didates to be photoproduced as pentaquark states. The above results together with the orbital function for
the ground state, can be graphed in terms of the photon momentum and the pentaquark charge radius, Fig.
8.1.

8.6 Discussion of results
From the Hypercentral Model we observe a pretty similar behavior compared with the Harmonic Oscillator,
since we have, qualitatively, the same shape of curves in each orbital function. Again, the photoproduction
process is in essence ruled by, in this case, two decreasing exponentials inside the analytical expresions of
the integrals, Eqs (8.75), (8.79) and (8.80). Nevertheless, in the present model there is a spherical Bessel
function j1 competing with the exponentials, where although j1(r) is a roughly like oscillating function, it
has a decaying behaviour as r grows. The numerical solution shows that it is still preserved the fact that,
after the function reaches its maximum, the larger the charge radius is, the much smaller the orbital factor
becomes, as can be seen in charts from Fig. 8.1. An equivalent argument follows for j1(k).

Particularly, around k = 2.1GeV in chart (d) Fig. 8.1, one can observe that the r-dependent orbital
factors are equal to or less than the order of 10−3 for both ground and excited states. The same order
of magnitude keeps for the k-dependent orbital factors in chart (b). On the other hand, in Fig. 8.2, we
obtain the radiative decay widths Γ(Pc → p + γ) in terms of the pentaquark charge radius. They mainly
depend on the square modulus of the orbital overlaps, so around 1fm we have an upper bound of the order
of ∼ 10−2, as one could expect from Eq. (6.21), in comparison with the orbital functions. This result
shows that although the orbital contribution, and therefore the electromagnetic width, is greater for the Hy-
percoulomb potential than for the Harmonic Oscillator, the photoproduction channel is still very suppressed.

Furthermore, one can compare results coming from the Hypercentral Model with results from the Har-
monic Oscillator Model, in order to extract relevant information. For this purpose, we take the ground
state pentaquark in each framework and graph both orbital functions Fgs(k), Fig. 8.3. Even though the
decay is smoother for the HC than for the HO, these functions decreased exponentially after they reach their
maximum, where it is observed a gap between both graphs (a difference of roughly six orders of magnitude)
at photon momentum 2.1 GeV coming from the dynamical of the photoproduction process. Evidently, the
orbital suppression of HO is higher than the HC for every value of k.

Of course, these conclusions together with those of the Harmonic Oscillator model were obtained under
the hypothesis of a compact pentaquark structure. Such assumption was considered in the pentaquark clas-
sification of the wave function. There, we looked for configurations with hidden charm for JP = 3/2−, and
flavor content uudcc̄.

Hopefully, this study can provide insight in the understanding of the hidden charm pentaquark signals.
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Fig. 8.2: Electromagnetic decay widths for the photoproduction of ground and orbital excited pen-
taquarks in the hypercentral model: P ∗c (uudcc̄)→ p+ γ. The widths are given in KeV units, and as
a function of both the pentaquark charge radius and the momentum of the photon. In (b) and (d)
are shown the zoom from (a) and (b) around the region of interest in 1fm and 2.15GeV , respectively.
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Fig. 8.3: Comparison between the Hypercentral Quark Model and the Harmonic Oscillator Quark
Model. Both overlaps Fgs(k) in (a) were done for ground state pentaquarks taking its charge radius
fixed at 1fm. Graph (b) is showed in logarithm scale.
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Chapter 9

Summary and Conclusions

In this thesis I presented a study on multiquark systems with the heavy quarks. In particular, I focused
on the singly-heavy quark baryons, and the hidden charm pentaquarks. Throughout the manuscript several
process of current experimental interest were discussed and analyzed. Conclusions are presented below:

9.1 Heavy Baryons
• In the quark model singly-charm and singly-bottom baryons belong to either the flavor anti-triplet

3̄ with spin and parity SP = 1/2+ or the flavor sextet 6 with SP = 1/2+, 3/2+. For ground state
baryons all states are S-wave states with LP = 0+ and JP = SP . P -wave baryons with LP = 1−

have negative parity and |L − S| ≤ J ≤ L + S. Furthermore, by using a mass rule which considers
spin-orbit, isospin and flavor dependent contributions, we obtain the mass spectra. Our results are
showed in Tables 2.2 and 2.3. As can be seen, there is a good agreement between our assignments and
the experimental data for most of the heavy baryons. The only exceptions are a few resonances of the
charm sector, specifically, Σc(2800), Ξc(2815) and Ξc(3080), whose deviations are under 0.35%, while
for Λc(2595) and Λc(2625) are less than 1.7%.

• By means of the Elementary-Meson Emission Model, we calculate all the strong decay widths allowed
by the selection rules between singly heavy baryons. Each one of the contributions owing to individual
isospin channels are listed from Table 3.4 to Table 3.9, whereas the total widths are presented in Tables
3.10 and 3.11. We found that with the exception of Ξc(3080) and Ωb(6340), all our theoretical results
are consistently below the reported total decay widths. There are only a few works with a complete
study on strong widths for heavy baryons. We compared our results with these approaches, and we
observe that quark model is in better agreement with the current experimental data.

• We also obtained the radiative decay widths for baryons with one heavy quark c or b. Unlike the
strong widths, for these decays there is not much experimental information. However, there are plenty
of works with different approaches to compare with. Particularly, between ground states, Table 4.7,
we observe a very close similarity from the Light cone QCD sum rules (LCQSR), hypercentral quark
model (hCQM) and both the relativistic (RQM) and non-relativistic quark models (NRQM). For the
bag model (BM) and the heavy hadron chiral perturbation theory (HHChPT) we observe widths
slightly smaller than ours. On the other hand, we found a few discrepancies for the vector-meson
dominance model (VDM) and the chiral quark model (ChQM). Furthermore, I report not only the
electromagnetic widths for ground state but also for the orbital excited initial baryons, From Table
4.8 to Table 4.14.

• The signals Ωc(3000), Ωc(3050), Ωc(3065), Ωc(3090), Ωc(3019) and Ωc(3188) reported by either the
LHCb or Belle Collaborations [8, 9] were interpreted as orbital excited states in the ρ and λ coordinates
by considering an harmonic oscillator hamiltonian in [33]. Moreover, we calculate the strong decay
widths within a 3P0 model. In the same work, we give our predictions on new negative parity states
and strong widths of the Ωb states, which had not been reported experimentally at that time. Later
in [10] the LHCb reported detection of four signals: Ωb(6316), Ωb(6330), Ωb(6340) and Ωb(6350) in
the Ξ0

bK
− mass spectrum, where these new data confirmed all our preceding assignments and strong

widths.
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• In a last study with the 3P0 model [34], we also calculate the mass spectrum and strong widths of the
single heavy baryons Ξc/b and Ξ′c/b. Here we proposed the identification of the new states reported
by the LHCb and we found our results compatible with the current documented experimental data.

9.2 Pentaquarks
• First, I presented the classification of ground and orbital excited pentaquark states with total angular

momentum and parity JP = 3/2− for qqqQQ̄ configurations, which distinguishes between light and
heavy quarks. For the radial part, two scenarios are considered, the harmonic oscillator model and
the hypercentral model. Aside from obtaining the color-spin-flavor matrix elements, we also calculate
the orbital transition matrix elements for the photoproduction channel of these states. As a result, we
found that from a large number of pentaquark states, 5 for ground states and 19 for radially excited
states, at the end of process there are contributions of only a few ones; 1 ground state, Eq. (5.40),
and 2 radially excited states, Eqs. (5.48) and (5.53). This fact is due to the symmetry properties of
the color wave functions and the orthogonality of the spin and flavor wave functions.

• When we investigate, with the HO, the behaviour of the orbital part F (r) in the photoproduction of
the three non vanishing pentaquarks, we observe only a very small contribution to the radiative decay
width, at most of the order of O(10−2). This happens for a short range of pentaquark charge radius
r (roughly between 0.1 < r < 0.5 fm) and for a framework where the pentaquark is at rest having a
photon momentum of k = 2.1 GeV . After the function reaches its maximum, as r grows the orbital
part starts to decrease monotonously and exponentially, as it was shown analytically in Eqs. (7.13)
and (7.15). This fact can be seen in Fig. 7.3. Something equivalent occurs for F (k), if we assume, as
a matter of test, a pentaquark grater than the proton charge radius (0.84 fm), and we choose to set
r at for instance 1 fm, Fig. 7.3. The radiative decay widths presented in Fig. 7.4, also reflect the
behavior of the form factor.

• Working in the HC model, we additionally were able to obtain reduced expressions for the orbital
contribution to the photoproduction of pentaquarks F (r), but in integral forms, Eqs. (8.75), (8.79) and
(8.80). In such a case, besides all the integrands have two decreasing exponentials, they also depend on
a continuous spherical Bessel functions j1(r), which has a roughly like decreasing oscillating behaviour
as r grows. We solved numerically these integrals in terms of the r, Fig. 8.1, where we observe a
pretty similar behavior compared with the HO. Indeed, when we studied the asymptotical behaviour
of these solutions, we showed through a nonlinear fit that they decay as a decreasing exponential, so
they rapidly approaches to zero as r grows. Again, we obtain an equivalent behavior for F (k), as in
the HO, Fig. 8.1. Moreover, in this case we obtain the radiative decay widths Γ(r), Fig. 8.2, which
in addition to reflect the same characteristics as F (r), they show also the decaying trend. Naturally,
this is due to Γ(r) goes essentially as the square modulus of F (r).

• Finally, under our hypothesis and considering all our results, we found that the photoproduction
channel of pentaquark p+ γ → Pc(uudcc̄) is highly suppressed, either in ground or excited states, and
calculated with both the harmonic oscillator and the hypercentral models. For this reason we do not
expect it to be feasible to experimentally reproduce the pentaquark state through the photoproduction
process.

• The fact that, to date, the pentaquark has not been observed by the GlueX experiment [31] at Jefferson
Lab does not exclude that the signals observed by LHCb belong to compact pentaquark states.



Appendix A

Conventions

Here are discussed the algebraic reductions to the formalism of the electromagnetic couplings, specially to
the quark current, presented in Chapter 6. Along this thesis we choose to work in the conventional metric

gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (A.1)

The Dirac equation for fermions is given by

(iγµ∂µ −m)ψ = 0, (A.2)

where ψ is the Dirac spinor and µ = {0, 1, 2, 3}. The Dirac matrices satisfy the following algebraic
relations

{γµ, γν} = 2gµν (A.3)

γ0 =

(
I 0
0 −I

)
(A.4)

γk =

(
0 σk

−σk 0

)
(A.5)

where σk are Pauli matrices. The solution to Dirac Equation in a non-relativistic limit are Pauli Spinors.
Some useful definitions are presented in the following

vs = γ5us (A.6)

{γµ, γ5} = 0 (A.7)

(γ0)2 = I4×4 (A.8)

γ5 =

(
0 I
I 0

)
(A.9)

A.1 The non-relativistic limit of the electromagnetic quark
current

In Chapter 6, Eq. 6.18 were presented the two relations between the quark current componentes in the
covariant notation and the equivalents in a non-relativistic approximation
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v̄s′(~p′)γ
0us(~p) → χ†s′

~σ · (~p+ ~p′)

2m
χs

v̄s′(~p′)γ
ius(~p) → χ†s′σ

iχs. (A.10)

Here are calculated this relations explicitly. Starting with the zero component one has
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0us(~p) = ūs(~p′)γ

5γ0γµQus(~p)
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(A.11)

and taking the non-relativistic limit, then the expression above is reduced to

≈ Q
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Now, for the spatial component one has

v̄s′(~p′)γ
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~σ·~p′
E′+m

)
Q

(
σk 0
0 σk

)(
χs

~σ·~p
E+m

χs

)
,

=

(
E′ +m

2m

)1/2(
E +m

2m

)1/2 (
χ†s′ χ†s′

~σ·~p′
E′+m

)
Q

(
σkχs

σk
~σ·~p
E+m

χs

)
,

=

(
E′ +m

2m

)1/2(
E +m

2m

)1/2
(
χ†s′σkχs + χ†s′

~σ · ~p′
E′ +m

σk
~σ · ~p
E +m

χs

)
,

(A.13)

and using non-relativistic limit we finally obtain

≈ Q
(
χ†s′σkχs

)
.



Appendix B

Useful relations

In this Appendix are presented some mathematical tools, which are relevant for the evaluations of the
transition matrix elements of many decay processes along this thesis.

B.1 Integrals

∫ ∞
0

xµe−α
2x2Jν(βx)dx =

βνΓ( 1
2
(µ+ ν + 1))

2ν+1αµ+ν+1Γ(ν + 1)
1F1

(
ν + µ+ 1

2
, ν + 1,− β2

4α2

)
=

βν

2ν+1

Γ(µ+ν+1
2

)

αµ+ν+1Γ(ν + 1)
e
− β2

4α2

1 F1

(
ν − µ+ 1

2
, ν + 1,

β2

4α2

)
=

(
β2

2α

)ν Γ(µ+ν+1
2

)

2αµ+1Γ(ν + 1)
e
− β2

4α2

1 F1

(
ν − µ+ 1

2
, ν + 1,

β2

4α2

)
(B.1)

where 1F1 represent the hyper-geometrical confluent functions.

B.2 Bessel functions

jl(kr) =

√
π

2kr
Jl+ 1

2
(kr) (B.2)

where Jl+ 1
2
(kr) are de Bessel functions and jl(kr) are de regular solutions (known as spherical Bessel

functions) of the Bessel’s equation used to solve the radial part of a free particle as a Central- Force problem
with potential V = 0 and energy E ≥ 0.

The plane waves ei~k·~r and partial waves (or spherical waves) jl(kr)Yl,m(θφ) are a complete sets of
eigenfunctions of the free particle Hamiltonian and both sets are equivalent. The expansion of plane waves
in terms of partial waves is

ei
~k·~r = 4π

+∞∑
l=0

+l∑
m=−l

iljl(kr)Yl,m(k̂)Y ∗l,m(r̂) (B.3)

B.3 Modified Bessel functions
Other important expansion is for cylindrical waves

e−
~k·~r = 4π

+∞∑
l=0

+l∑
m=−l

(−1)lil(kr)Yl,m(k̂)Y ∗l,m(r̂) (B.4)

where

il(kr) =

√
π

2kr
Il+ 1

2
(kr) (B.5)
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These functions called the modified Bessel functions are defined in such way that are related to spherical
Bessel ones as

il(kr) = i−ljl(kr) (B.6)

B.3.1 Radial contribution of the baryon states
As previously derived in Eq. (2.9), the orbital wave function corresponding to the ground state is

ψrelgs ≡ ψoB(~ρ,~λ) =
α

3
2
ρ

π
3
4

α
3
2
λ

π
3
4

e−
α2
ρ
2
ρ2e−

α2
λ
2
λ2

(B.7)

and those corresponding to one quantum of excitation in ρ and λ are

ψrelρ (~ρ,~λ) =
1√
3
√

3
ψ0,0,0(~ρ)ψ1,1,mρ(~λ) =

1√
3
√

3

√
8

3
√
π
e−ρ

2α2
ρ/2ρα5/2

ρ Y1,mρ(ρ̂)
α

3
2
λ

π
3
4

e−λ
2α2
λ/2 (B.8)

followed by

ψrelλ (~ρ,~λ) =
1√
3
√

3
ψ0,0,0(~ρ)ψ1,1,mλ(~λ) =

1√
3
√

3

α
3
2
ρ

π
3
4

e−ρ
2α2
ρ/2

√
8

3
√
π
λα

5/2
λ e−λ

2α2
λ/2Y1,mλ(λ̂) (B.9)

respectively. The only non vanishing contribution in the overlap is for projections mλ = mρ = 0, since the
final state is the ground state.

Terms with a quantum of excitation in λ

First, it is illustrative to evaluate an integral (associated to orbital contributions of spin-flip amplitude) that
contains a quantum of excitation in λ, and the coordinate ~r3 = ~R−

√
6m

2m+m′
~λ. Starting with

Uλ,3 = 〈ψgs|e−i
~k·~r3 |ψλ〉 =

1

π5/2

√
8

3
α3
ρα

4
λ

∫
d3ρd3λe−ρ

2α2
ρe−λ

2α2
λλei

~k·β3~λY1,mλ(λ̂)

=
1

π5/2

√
8

3
α3
ρα

4
λ

(√
π

α2
ρ

)3 ∫
d3λe−λ

2α2
λλei

~k·β3~λY1,mλ(λ̂).

for simplicity, here was defined β3 ≡
√

6m
2m+m′ . Here is used the plane wave expansion in partial waves:

ei
~k·β3~λ = 4π

+∞∑
l=0

+l∑
m=−l

iljl(β3kλ)Yl,m(k̂)Y ∗l,m(λ̂) (B.10)

where jl(x) are the spherical Bessel functions.

Uλ,3 =
1

π5/2

√
8

3
α4
λ

√
π

3
∫
d3λe−λ

2α2
λλ4π

+∞∑
l=0

+l∑
m=−l

iljl(β3kλ)Y ∗l,m(λ̂)Yl,m(k̂)Y1,mλ(λ̂)

=
4π

π5/2

√
8

3
α4
λ

√
π

3
∫
λ2dλe−λ

2α2
λλ

+∞∑
l=0

+l∑
m=−l

iljl(β3kλ)Yl,m(k̂)δl,1δm,mλ

= 4i

√
8

3
α4
λ

∫
λ2dλe−λ

2α2
λλj1(β3kλ)Y1,mλ(k̂)

= 4i

√
8

3
α4
λY1,mλ(k̂)

∫
λ3dλe−λ

2α2
λ

√
π

2β3k
J3/2(β3kλ)

= 4i

√
8

3
α4
λ

√
π

2β3k
Y1,mλ(k̂)

∫
λ5/2dλe−λ

2α2
λJ3/2(β3kλ).

where was used an identity to change the spherical Bessel function in terms of the cylindrical, jl(x) =√
π
2x
Jl+1/2(x). The last integral is known and it is equal to [92]:∫ ∞

0

xµe−α
2x2Jν(βx)dx =

βνΓ( 1
2
(µ+ ν + 1))

2ν+1αµ+ν+1Γ(ν + 1)
1F1

(
ν + µ+ 1

2
, ν + 1,− β2

4α2

)
. (B.11)
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Now, in this case µ = 5/2 and ν = 3/2, also the momentum ~k of the photon with left-handed polarization
is chosen along the z direction such that ~k = kẑ, so the previous integral becomes

Uλ,3 = 4i

√
8

3
α4
λ

√
π

2β3k
Y1,mλ(k̂)

(β3k)
3
2 Γ( 5

2
)

25/2α5
λΓ( 5

2
)

1F1

(
5

2
,

5

2
,−β

2
3k

2

4α2
λ

)

=
i

2

√
8π

3
k
β3

αλ
Y1,mλ(k̂) e

−
β23k

2

4α2
λ ,

= i

√
3m

2m+m′
k

αλ
e
− 3m2k2

2α2
λ
(2m+m′)2 . (B.12)

where Y1,mλ(k̂) = 1
2

√
3
π
. A similar calculation can be made for ~r1 = ~R + 1√

2
~ρ +

√
3
2
m′

2m+m′
~λ coordinate. The

result is

Uλ,1 = −i 1

2αλ

√
3m′k

2m+m′
e
− k2

8α2
ρ e
− 3m′2k2

8α2
λ
(2m+m′)2 . (B.13)

Interestingly, the result is exactly the same for the missing term with ~r2 = ~R − 1√
2
~ρ+

√
3
2
m′

2m+m′
~λ coordinate,

and is getting Uλ,2 = Uλ,1. This can be seen from the fact that

〈ψgs|e−i
~k·~r1 − e−i~k·~r2 |ψλ〉 = 0, (B.14)

because ψλ is symmetric under interchange of the first two quarks.

Terms with a quantum of excitation in ρ

Can be demonstrated in an equivalent way that the integrals for the case of the terms with ρ excitation are

Uρ,3 = 0

and as before, a relation between terms ~r1 and ~r2 is getting

Uρ,1 = −Uρ,2 = −i k

2αρ
e
− k2

8α2
ρ e
− 3

8

(
m′k

αλ(2m+m′)

)2

(B.15)

a similar argument is used to prove the above identity, since ψρ is symmetric under interchange of the first
two quarks

〈ψgs|e−i
~k·~r1 + e−i

~k·~r2 |ψρ〉 = 0 (B.16)

B.3.2 Spin-flavor contributions of the H1 matrix elements
Evaluating the spin-flavor part is easier, since all the ingredients are available to perform the overlap of the
states. Again, an example is useful to understand how the spin-flip operator affects the hyperons states and
thus obtain the transition matrix elements. The only part of H1 operator acting in the initial state to give a
contribution is ejsj,−. Consider the 2ρ(Σ∗+b )→ Σ+

b decay and the component j = 1, so the matrix element
to be calculated in the spin-flavor basis (for helicity ν = 1/2) is

〈Σ+
b ; 1/2, ν − 1/2|e1s1,−|2ρ(Σ∗+b ); J, ν〉 = 〈uub 1√

6
(↓↑↓ + ↑↓↓ −2 ↓↓↑)|e1s1,−|uub

1√
2

(↑↓ − ↓↑) ↑〉

= − 1√
3
eu (B.17)

where the operator only affected fist component of the spin-flavor resonance lowering the spin projection and
recording the charge of quark u. The result must be multiplied by their respective Clebsh-Gordan coefficient,
in this case 〈10 1

2
1
2
|J 1

2
〉. In the same way, the rest of the spin-flip amplitudes can be calculated, either for

helicity ν = 1/2 or helicity ν = 3/2. The results are shown in Tables ?? and 4.2. The Clebsch-Gordan
factors are shown in Table (B.1).
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Table B.1: Clebsch-Gordan coefficients for all the possible spin-angular momentum couplings.

CG J = 1
2 J = 3

2 J = 5
2

〈10 1
2

1
2 |J

1
2 〉 − 1√

3

√
2
3 0

〈10 3
2

1
2 |J

1
2 〉 − 1√

3
− 1√

15

√
3
5

〈11 1
2 −

1
2 |J

1
2 〉

√
2
3

1√
3

0

〈11 3
2 −

1
2 |J

1
2 〉

1√
6

√
8
15

√
3
10

〈10 3
2

3
2 |J

3
2 〉 0 −

√
3
5

√
2
5

〈11 1
2

1
2 |J

3
2 〉 0 1 0

〈11 3
2

1
2 |J

3
2 〉 0

√
2
5

√
3
5



Appendix C

Dynamical analysis for the strong and
electromagnetic process

C.0.1 Four-momentum conservation in Pc → p+ γ process
For three-momentum conservation we have the relation

~KPc = ~KB + ~k (C.1)

0 = ~KB + ~k (C.2)

where ~KPc , ~KB and ~k are the 3-momentum of the pentaquark, proton and the outgoing photon, respec-
tively. Choosing the reference frame of pentaquark at rest, then ~KPc = 0 and ~KB = −~k, i.e., KB = k.

For energy conservation one has EPc = mB , EB =
√
m2
B +K2

B and k0 are the energy of pentaquark,
proton and photon, respectively, such that

EPc = EB + k0

mPc =
√
m2
B +K2

B + k0

mPc =
√
m2
B + k2 + k0

Therefore, if one calculates the square of the four-momentum (k0,~k) of photon

Q2 = QµQµ = k2
0 − k2, (C.3)

then one obtains

k2 =

(
Q2 −m2

Pc −m
2
B

2mPc

)2

−m2
B . (C.4)

and because the squared mass of photon Q2 = 0, the previous equation is reduced to

k =
m2
Pc −m

2
B

2mPc

(C.5)

By using the effective values of proton, mB = 0.938 GeV , and pentaquark, mPc = 4.450 GeV , in the above
equation, one obtains the momentum of photon for the photoproduction channel as, k = 2.12 GeV .

C.0.2 Four-momentum conservation in B → B′ +M process
In the rest frame of the decaying baryon, the energy for each one of hadron involve in process are

EB = mB

EB′ =
√
m2
B′ + p2

B′

EM =
√
m2
M + k2
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Energy conservation implies

EB = E′B + EM

mB =
√
m2
B′ + p2

B′ +
√
m2
M + k2

mB =
√
m2
B′ + k2 +

√
m2
M + k2 (C.6)

Where in the last line was used the momentum conservation ~pB = ~pB′ +~k, i.e. ~pB′ = −~k. Solving Eq. (C.6)
for k2 of emitted meson

k2 = −m2
M +

(m2
B −m2

B′ +m2
M )2

4m2
B

. (C.7)

C.0.3 Four-momentum conservation in B → B′ + γ process
In the rest frame of the decaying baryon, the energy for initial and final baryons, and photon are

EB = mB

EB′ =
√
m2
B′ + p2

B′

Eγ = k

Energy conservation implies

EB = E′B + Eγ

mB =
√
m2
B′ + p2

B′ + k

mB =
√
m2
B′ + k2 + k (C.8)

Where in the last line was used the momentum conservation ~pB = ~pB′ +~k, i.e. ~pB′ = −~k. Solving Eq. (C.6)
for k of emitted meson

k =
m2
B −m2

B′

2mB
(C.9)
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