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Resumen

Para estudiar politopos abstractos regulares se han usado mayormente métodos

algebraicos, pues se conoce una forma de construirlos a partir de su grupo de au-

tomorfismos. Estos grupos están caracterizados en términos de relaciones que debe

cumplir un conjunto de generadores distinguidos y propiedades de intersección que

deben cumplir algunos subgrupos. En esta tesis generalizamos estos resultados para

politopos de k órbitas en banderas con k arbitraria. Las relaciones y propiedades de

intersección que debe satisfacer un grupo para ser el grupo de automorfismos de un

politopo son dadas en términos de su gráfica de tipo de simetŕıa. Con estos resultados

construimos algunos ejemplos de poliedros de tres órbitas cuyos grupos de automor-

fismos son grupos simétricos dados, politopos de dos órbitas en banderas con rango

arbitrario, y politopos con orugas dadas como gráficas de tipo de simetŕıa y grupos

de automorfismos booleanos.
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Abstract

In order to study abstract regular polytopes the main methods have been alge-

braic, since there is a known way to construct them from their automorphism groups.

These groups are characterized in terms of relations that a distinguished set of genera-

tors must satisfy and intersection properties that must hold for certain subgroups. In

this thesis we generalize these results for polytopes with k flag-orbits for arbitrary k.

The relations and intersection properties a group must satisfy to be the automorphism

group of an abstract polytope are given in terms of its symmetry type graph. We use

these results to construct some examples of 3-orbit polyhedra whose automorphism

groups are given symmetric groups, 2-orbit polytopes of any rank, and polytopes with

given caterpillars as their symmetry type graph and Boolean automorphism groups.
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Introducción

Desde que la humanidad empezó a estudiar matemáticas, hemos estado fascina-

dos por las formas geométricas, en particular los poliedros. Ejemplos clásicos incluyen

la demostración en Los Elementos de Euclides de que existen sólo 5 sólidos platóni-

cos [19] o la enumeración de Arquimedes de los que ahora conocemos como sólidos

arquimedianos (ver [14]). Con el progreso de las matemáticas a través de la histo-

ria, hemos estudiado objetos cada vez más generales. Una forma de generalizar es

considerando dimensiones (rangos) más altas, introduciendo el concepto de politopos.

Los politopos convexos tienen vértices (0-caras), aristas (1-caras) y caras de toda

dimensión hasta llegar a la dimensión del politopo mismo. Dos caras de diferente

dimensión son disjuntas o una de ellas está contenida en la otra. Por lo tanto, cada

politopo convexo induce una ret́ıcula de caras cuyos elementos son las caras de todos

los rangos y están ordenadas por contención.

Los politopos abstractos son una generalización de la ret́ıcula de caras de un poli-

topo convexo. Capturan la información combinatoria del politopo e ignoran la infor-

mación geométrica, como son medidas de distancia, área, ángulos, etc. La ret́ıcula de

caras de un politopo convexo es un politopo abstracto, pero los politopos abstractos

vii
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incluyen objetos mucho más generales, como pueden ser politopos esqueletales, pro-

yectivos y otros. Los politopos abstractos fueron introducidos por Danzer y Schulte

en [7], pero las ideas vienen del trabajo de Grümbaum en [13].

Los poliedros convexos se pueden pensar como encajes de gráficas con ciertas pro-

piedades en la superficie de una esfera, por lo que otra forma de generalizar poliedros

consiste en encajar gráficas en otras superficies. Esto da origen al estudio de mapas

(ver [21] y [20], por ejemplo).

En [37], Wilson introduce el concepto de maniplex como una generalización tanto

de mapas como politopos abstractos (o gráficas de banderas de politopos abstractos,

para ser más precisos). De hecho, los mapas pueden ser pensados como maniplexes

de rango 3.

Desde que empezamos a estudiar formas, hemos estado fascinados por sus si-

metŕıas. Por ejemplo, en la antigua Grecia se estudió extensamente a los sólidos

platónicos y los sólidos arquimedeanos. Los politopos, mapas y maniplexes más estu-

diados son aquellos con el mayor grado de simetŕıa.

Una buena manera de medir el grado de simetŕıa de un politopo es contando

el número de órbitas en banderas bajo la acción de su grupo de automorfismos (es

decir, su grupo de simetŕıas). Una bandera en un politopo consiste de una cara de

cada rango, todas incidentes entre śı. Los politopos con una órbita en banderas se

llaman regulares y son por mucho los más estudiados. El libro [25] es la referencia

estándar y está dedicado exclusivamente al estudio de politopos abstractos regulares.

Más recientemente se ha popularizado el estudio de politopos y maniplexes de 2

órbitas en banderas (ver [17], por ejemplo). Estudiando politopos de dos órbitas, uno
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se da cuenta que hay varios tipos distintos de ellos, dependiendo de cuáles simetŕıas

pueden ocurrir y cuáles no. Por ejemplo, los politopos quirales son aquellos en los

que no hay “reflexiones” pero śı hay todas las “rotaciones” posibles. En el contexto

de mapas, los mapas rotables, es decir, aquellos que tienen toda la posible simetŕıa

de rotación y pueden o no tener simetŕıa de reflexión, son ampliamente estudiados;

muchos autores incluso se usan la palabra regular para referirse a ellos (ver [21], por

ejemplo).

Los politopos de dos órbitas de ciertos tipos son mucho más elusivos que los regu-

lares. En 1991 [33], Schulte y Weiss estudian politopos quirales y clasifican sus grupos

de automorfismos en términos de generadores y relaciones. Los poliedros (3-politopos)

quirales hab́ıan sido estudiados en el contexto de mapas en superficies, mientras que

Schulte y Weiss [34] dan ejemplos de familias infinitas de 4-politopos quirales finitos e

infinitos. También construyen ejemplos de 5-politopos quirales (localmente) infinitos

y formulan la pregunta sobre la existencia de politopos quirales (finitos e infinitos) en

rangos superiores [35]. En 2008, Conder, Hubard y Pisanski usan métodos algebraicos

para construir los primeros ejemplos de politopos quirales finitos de rango 5 [2], y es

hasta 2010, casi 20 años después del primer art́ıculo de Schulte y Weiss, que Pellicer

finalmente prueba que existen politopos quirales de todo rango mayor a 2 [29]. Sin

embargo, los grupos de automorfismos de los politopos construidos son demasiado

grandes como para ser entendidos.

La teoŕıa general de poliedros de 2 órbitas fue estudiada por Hubard en [17]

en 2010, donde usa un acercamiento similar al de politopos quirales para encontrar

condiciones en un conjunto de generadores de un grupo para que sea el grupo de auto-
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morfismos de un poliedro de 2 órbitas. En 2016 Matteo clasifica los politopos convexos

de dos órbitas y demuestra que sólo existen en dimensiones 2 y 3 (geométricamen-

te) [24]. Recientemente, Pellicer, Potočnik y Toledo muestran que hay maniplexes de

2 órbitas de cualquier tipo en rangos mayores a 2, pero podŕıan no ser gráficas de

banderas de politopos [31].

En [27], Orbanić, Pellicer y Weiss estudian mapas de 3 órbitas y también los

dividen en tipos según cuáles simetŕıas están o no permitidas.

La literatura sobre politopos de k órbitas con k ≥ 3 es mucho menos abundante.

En [4] Cunningham y Pellicer dan una lista de problemas abiertos (en ese momento)

sobre politopos de k órbitas para k arbitrario.

Para estudiar politopos de k órbitas se necesita algún método para encontrar

todos los distintos tipos que pueden existir. Para esto, en [5] se introduce el concepto

de gráfica de tipo de simetŕıa de un maniplex como una generalización del śımbolo

de Delaney-Dress previamente usado para mapas en [9] y [10]. La gráfica de tipo de

simetŕıa de un politopo o maniplex es una gráfica que no sólo nos dice cuántas órbitas

en banderas tiene el politopo o maniplex , sino que también cómo están conectadas y

qué tipo de simetŕıas tiene el objeto. Esencialmente, resume la información sobre la

estructura simétrica del politopo o maniplex.

El reto de encontrar politopos con gráfica de tipo de simetŕıa dada es en general

muy dif́ıcil, como uno puede notar, por ejemplo, al ver la historia de los politopos

quirales. Hay algunas condiciones necesarias que una gráfica debe satisfacer para

poder ser el tipo de simetŕıa de un politopo o maniplex. A las gráficas que satisfacen

estas condiciones las llamamos multi-maniplexes en esta tesis. En el momento en que
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esta tesis está siendo escrita, no se sabe si todo multi-maniplex de rango n ≥ 3 es la

gráfica de tipo de simetŕıa de un politopo o maniplex. De hecho, éste es el problema

12 en [4].

Previamente se mencionó que se sabe que todos los multi-maniplexes de 2 vértices

son gráficas de tipo de simetŕıa de un maniplex [31], pero no se sabe si estos mani-

plexes son politopales (i.e. la gráfica de banderas de un politopo). Se sabe que todo

multi-maniplex de 3 vértices en rango n ≥ 3 es la gráfica de tipo de simetŕıa de un

politopo [5].

Usando asignaciones de voltaje uno puede construir un maniplex M a partir de

un multi-maniplex X y un grupo G (satisfaciendo algunas condiciones). Entonces,

G actuará en M por automorfismos y el cociente de M por la acción de G será X.

Esto quiere decir queM tendrá a X como su gráfica tipo de simetŕıa si y sólo si todo

automorfismo de M es representado por la acción de algún elemento en G. En esta

tesis daremos condiciones algebraicas sobre G que nos dirán si el maniplex construido

M es politopal o no, traduciendo aśı el problema de encontrar politopos con gráfica

de tipo de simetŕıa dada a un problema de teoŕıa de grupos.

Los métodos principales para el estudio de politopos regulares (ver [25]) y poliedros

de dos órbitas (ver [17]) han sido algebraicos. Los grupos de automorfismos de estos

politopos se caracterizan por estar generados por cierta cantidad de elementos que

cumplen ciertas relaciones y algunas propiedades de intersección que dependen del

tipo de simetŕıa. En [4] Cunningham y Pellicer formulan la siguiente pregunta:

Pregunta 1. Dado un conjunto de generadores distinguidos del grupo de automor-

fismos de un politopo de k órbitas ¿qué análogo de la propiedad de la intersección
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debe cumplirse?

En esta tesis daremos una respuesta completa a esta pregunta en términos de la

gráfica de tipo de simetŕıa. Más aún, a partir de la gráfica de tipo de simetŕıa también

contestaremos la pregunta que le sigue, sobre cómo construir un politopo de k órbitas

a partir de su grupo de automorfismos. La pregunta dice:

Pregunta 2. Describir una forma de contruir un politopo general como una geometŕıa

de incidencia de clases laterales de su grupo de automorfismos dado un conjunto de

generadores distinguidos.

Las preguntas 1 y 2 son los problemas 1 y 2 en [4], respectivamente.

Esta tesis está dividida en 5 caṕıtulos. En el caṕıtulo 1 damos definiciones for-

males de los conceptos básicos que usaremos durante la tesis, tales como politopos

abstractos, maniplexes y gráficas. También presentamos el concepto de gráfica de tipo

de simetŕıa de un politopo e introducimos los multi-maniplexes también llamados en

la literatura gráficas admisibles, como posibles candidatos para la gráfica de tipo de

simetŕıa de un politopo. Además repasaremos un famoso resultado sobre politopos

regulares donde se caracterizan sus grupos de automorfismos. En el caṕıtulo 2 presen-

tamos el concepto de asignación de voltaje como una forma de recuperar un maniplex

a partir de uno de sus cocientes por la acción de un grupo; las asignaciones de voltaje

serán la principal herramienta que usaremos en nuestras construcciones en caṕıtulos

posteriores. En el caṕıtulo 3 usamos métodos análogos a los usados para politopos

regulares [25] y poliedros de dos órbitas [17] para caracterizar los grupos de automor-

fismos de poliedros de 3 órbitas. En el caṕıtulo 4 generalizamos los métodos usados
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en el caṕıtulo 3 para encontrar condiciones necesarias que debe cumplir un grupo

para ser el grupo de automorfismos de un politopo de k órbitas con gráfica de tipo

de simetŕıa dada; y usamos estos resultados para encontrar politopos con una oruga

como su gráfica de tipo de simetŕıa y grupo de automorfismos booleano. Finalmente

en el caṕıtulo 5 estudiamos los maniplexes de 2 órbitas construidos en [31] y usamos

los resultados del caṕıtulo 4 para encontrar ejemplos de estos maniplexes que son

politopales.
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Introduction

Pretty much since humanity started studying mathematics, we have been fas-

cinated by geometrical shapes, in particular polyhedra. Early examples include

the proof in Euclid’s The Elements that there exist only 5 Platonic solids [19] and

Archimedes’s enumeration of the now called Archimedean solids (see [14]). As math-

ematics progressed throughout history, we have come to study more and more general

objects. One line of generalization is to consider higher dimensions (ranks), introduc-

ing the concept of polytopes.

Convex polytopes have vertices (0-faces), edges (1-faces) and faces of every di-

mension up to the dimension of the polytope itself. Two faces of different dimensions

are either disjoint or one contained in the other. So each convex polytope induces a

face-lattice whose elements are the faces of all ranks and they are ordered by inclusion.

Abstract polytopes are a generalization of the face-lattice of a convex polytope.

They capture the combinatorial information of the polytope while ignoring geometric

information such as measures of distance, area, angles, etc. The face-lattice of a

convex polytope is an abstract polytope, but abstract polytopes may include far

more general objects, such as skeletal polytopes, projective polytopes and others.

xv
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Abstract polytopes were introduced by Danzer and Schulte in [7], but the ideas come

from the work by Grünbaum in [13].

Convex polyhedra can be thought of as embeddings of graphs with certain prop-

erties into the surface of a sphere, so another way of generalizing polyhedra is by

embedding graphs into other surfaces. This has given rise to the study of maps

(see [21] and [20], for example).

In [37], Wilson introduces the concept of maniplex as a generalization of both maps

and abstract polytopes (or flag graphs of abstract polytopes, to be more precise). In

fact, maps may be thought of as maniplexes of rank 3.

Since we started studying shapes, we have been fascinated by their symmetries.

For example, the ancient Greeks studied extensively the Platonic solids and the

Archimedean solids. The most studied polytopes, maps and maniplexes are those

with the highest degree of symmetry.

A flag in a polytope consists of one face of each rank all incident to each other.

A good way of measuring the degree of symmetry of a polytope is by counting the

number of flag orbits under the action of its automorphism group (that is, its group

of symmetries). Polytopes with only 1 flag-orbit are called regular and they are by far

the most studied. The book [25] is the standard reference and is dedicated exclusively

to abstract regular polytopes.

More recently the study of 2-orbit polytopes and maniplexes (abstract polytopes

or maniplexes with 2 flag-orbits) has become more popular (see [17], for example).

When studying 2-orbit polytopes, one realizes that there are many different types of

them, depending of which symmetries can occur or not. For example, chiral polytopes
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(the most studied non-regular polytopes) are 2-orbit polytopes where there are no

“reflections’ but there are all “rotations”. In the context of maps, rotary maps, i.e.

those with all the possible rotational symmetry, are extensively studied; many authors

even use the word regular to refer to them (see [21], for example).

Certain types of 2-orbit polytopes are much more elusive than regular ones. In

1991 [33], Schulte and Weiss study chiral polytopes and classify their automorphism

groups in terms of generators and relations. Chiral 3-polytopes had been studied

as maps on surfaces, while Schulte and Weiss [34] give examples of infinite families

of finite and infinite chiral 4-polytopes. They also construct examples of (locally)

infinite 5-polytopes and post the question of the existence of higher rank (finite and

infinite) chiral polytopes [35]. In 2008, Conder, Hubard and Pisanski use algebraic

methods to construct the first examples of finite chiral polytopes of rank 5 [2], and

it is until 2010, almost 20 years after Schulte and Weiss’s first paper, that Pellicer

finally proves that chiral polytopes exist in any rank higher than 2 [29]. However, the

automorphism groups of the constructed polytopes are too big to be understood.

The general theory of 2-orbit polyhedra was studied by Hubard in [17] in 2010,

where she uses a similar approach to that of chiral polytopes to find conditions on a

set of generators of a group to be the automorphism group of a 2-orbit polyhedron.

In 2016 Matteo classifies 2-orbit convex polytopes and finds that they only exist in

dimensions 2 and 3 (geometrically) [24]. More recently, Pellicer, Potočnik and Toledo

show that there are 2-orbit maniplexes of any type with rank higher than 2, but they

might not necessarily be flag graphs of polytopes [31].

In [27] Orbanić, Pellicer and Weiss study 3-orbit maps and they also divide them



xviii INTRODUCTION

by types according to what kind of symmetries are allowed or not.

The literature on k-orbit polytopes with k ≥ 3 is far less abundant. In [4] Cunning-

ham and Pellicer give a list of open problems (at the time) about k-orbit polytopes

for arbitrary k.

In order to study k-orbit polytopes one needs a certain method to find all the

different types that might exists. To do this, in [5] the concept of symmetry type

graph of a maniplex is introduced as a generalization of the Delaney-Dress symbol

previously used for maps and described in [9] and [10]. The symmetry type graph

of a polytope or maniplex is a graph that not only tells us how many orbits the

polytope or maniplex has, but also how these orbits are connected and what kinds

of symmetries the object has. Essentially, it summarizes the information about the

symmetric structure of the polytope or maniplex.

The problem of finding polytopes with a given symmetry type graph is in general

very difficult, as one can note, for example, by looking at the history of chiral poly-

topes. There are some necessary conditions a graph must satisfy to be the symmetry

type graph of a maniplex or polytope. Graphs satisfying these conditions are called

multi-maniplexes in this thesis. At the time this thesis is being written, it is not

known if every multi-maniplex with rank n ≥ 3 is the symmetry type graph of a

polytope or a maniplex. This is in fact Problem 12 in [4].

Previously we mentioned that it is known that all multi-maniplexes with 2 vertices

are symmetry type graphs of a maniplex [31], but it is not known if they are polytopal

(i.e. the flag graph of a polytope). It is known that every multi-maniplex with 3

vertices with rank n ≥ 3 is the symmetry type graph of a polytope [5].
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By using voltage assignments one can construct a maniplex M from a multi-

maniplex X and a group G (satisfying some conditions). Then G will act on M by

automorphisms and the quotient of M by the action of G will be X. This means

thatM will have symmetry type graph X if and only if every automorphism ofM is

represented by the action of an element of G. In this thesis we give an algebraic test to

G that tells us if the constructed maniplexM is polytopal or not, thus translating the

problem of finding polytopes with a given symmetry type graph to a group-theoretic

one.

The main methods for studying regular polytopes (see [25]) and 2-orbit polyhe-

dra (see [17]) have been algebraic. The automorphism groups of these polytopes are

characterized as groups generated by a certain amount of elements satisfying cer-

tain relations and intersection properties that depend on the symmetry type. In [4]

Cunningham and Pellicer ask the following question for k-orbit polytopes:

Question 1. Given a distinguished generating set for the automorphism group of a

k-orbit polytope, what analogue of the intersection condition holds?

We shall give a complete answer to this question in this thesis in terms of the

symmetry type graph. Moreover, given the symmetry type graph we will also an-

swer its follow-up question, which asks how to rebuild a k-orbit polytope from its

automorphism group. More concretely, the question asks:

Question 2. Describe a way to build a general polytope as a coset geometry of its

automorphism group, given a distinguished set of generators.

Questions 1 and 2 are Problems 1 and 2 in [4], respectively.



xx INTRODUCTION

This thesis is divided into 5 chapters. In Chapter 1 we give formal definitions

of the basic concepts we are going to use throughout the thesis, such as abstract

polytopes, maniplexes and graphs. We also present the concept of the symmetry type

graph of a polytope and introduce multi-maniplexes, previously known as allowable

graphs, as possible candidates to the symmetry type graph of a polytope. We also

review a famous result about regular polytopes in which their automorphism groups

are characterized. In Chapter 2 we present the concept of voltage assignments as a

way to recover a maniplex from one of its quotients by the action of a group; voltage

assignments will be the main tool we use for our constructions in later chapters. In

Chapter 3 we use methods analogous to those used for regular polytopes in [25] and

2-orbit polyhedra [17] to characterize the automorphism groups of 3-orbit polyhedra

with each of the three possible symmetry type graphs; and we use these results to

make some constructions of families of 3-orbit polyhedra. In Chapter 4 we generalize

the methods used in Chapter 3 to find necessary conditions for a group to be the

automorphism group of a k-orbit polytope with a given symmetry type graph; and we

use these results to find polytopes with a caterpillar as its symmetry type graph and

Boolean automorphism group. Finally, in Chapter 5 we study the 2-orbit maniplexes

constructed in [31] and we use the results from Chapter 4 to find examples of those

maniplexes that are polytopal.



Chapter 1

Basic concepts

In this chapter we introduce the main concepts we will be using in this thesis.

We study polytopes in a pure combinatorial manner: we are interested in incidence

between faces, edges and vertices but not in angles, distances and areas. To take

this approach we use the concept of abstract polytopes, introduced by Danzer and

Schulte in [7]. The idea is to look at polytopes as partially ordered sets satisfying

certain conditions that are always satisfied by, for example, the face lattices of convex

polytopes.

In Section 1.1 we introduce the concept of abstract polytope, as well as some

generalizations. We also introduce the main concepts used when studying abstract

polytopes, such as faces, flags, rank, isomorphisms and automorphisms and duality.

In Section 1.2 we define the basic concepts of Graph Theory we will be using, such

as the concept of graph itself as well as vertices, darts, edges (links, loops and semi-

edges), degree of a vertex, simple graphs, subgraphs, k-valent graphs, paths, and graph

1
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homomorphisms, isomorphisms and automorphisms. Even if the reader is familiar

with Graph Theory, we recommend reading Section 1.2, since notation and some con-

cepts may be different from what the reader is used to. In Section 1.3 we introduce

the concept of the flag graph of a polytope and present the concept of a maniplex

as its generalization. We also present some theorems that characterize which mani-

plexes are flag graphs of polytopes. In Section 1.4 we introduce the concept of the

symmetry type graph of a polytope or a maniplex and introduce multi-maniplexes as

their generalization. Then we present the main questions motivating this thesis: Can

we characterize when a multi-maniplex is the symmetry type graph of a polytope or

a maniplex? And, can we characterize the automorphism groups of a polytope with a

given symmetry type graph? Finally in Section 1.5 we present an answer previously

given in [7] to the second question for the particular case of regular polytopes.

1.1. Polytopes as posets

A flagged partially ordered set (poset) is one in which there is a least and a

greatest element and each of its maximal chains, called flags, has the same finite

cardinality. A flagged poset admits a unique order-preserving rank function rank :

P → {−1, 0, 1, . . . , n} where n+ 2 is the size of the flags. The function rank satisfies

that if x < y and there is no element z satisfying x < z < y then rank(y) =

rank(x) + 1, meaning that the triplet (P , <, rank) is a ranked poset1. The number

n is called the rank of P .

1Usually the definition of a ranked poset asks for the codomain of rank to be the natural numbers
and that if x is minimal then rank(x) = 0, but we will ignore this technicalities.
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rank

3

2

1

0

−1

{1,2} {2,3}

{1} {2} {3}

0

{1,2,3,4}

{1,2,3}

Figure 1.1: Example of the Hasse diagram of a flagged poset.

Flagged posets are often represented by their Hasse diagram. The Hasse diagram

of a ranked poset 2 P has its elements represented by points on different levels, each

level corresponding to a rank. If two elements, x, y have consecutive ranks and are

incident (i.e. rank(y)− rank(x) = 1 and x < y), we draw a line segment connecting

them. In this way, an element a is greater than an element b if and only if there is a

strictly downwards path from a to b in the Hasse diagram.

Chains in a Hasse diagram look like a set of points connected on a strictly down-

wards path. A maximal chain consists of all the points in a maximal strictly down-

wards path. A ranked poset is a flagged poset if and only if each of its maximal chains

goes through all the levels.

In Figure 1.1 we see the Hasse diagram of the poset P := {∅, {1}, {2}, {3}, {1, 2},

{2, 3}, {1, 2, 3}, {1, 2, 3, 4}} ordered by containment. This is in fact an example of a

flagged poset. Highlighted in red is the flag Φ = {∅, {3}, {2, 3}, {1, 2, 3}, {1, 2, 3, 4}}.

An (abstract) n-polytope (also called an (abstract) polytope of rank n) is a flagged

2Hasse diagrams can be constructed also for non-ranked posets and even to dense posets, but we
only use the more simple ones.
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poset P of rank n that satisfies the diamond condition and the strong flag connected-

ness as defined below:

Diamond condition: if F < G and rank(G) − rank(F ) = 2 then there exist

exactly two different elements H1, H2 ∈ P such that F < Hi < G for i ∈ {1, 2}.

In any flagged poset, if two flags Φ and Ψ coincide in all but one of their elements

we say that they are adjacent. If the element they do not have in common is of rank

i we say that they are i-adjacent. The diamond conditions assures that every flag Φ

has exactly one i-adjacent flag for each i ∈ {0, 1, . . . , n−1}. If the diamond condition

holds, we denote by Φi the unique i-adjacent flag to Φ. Recursively, if w is a sequence

of elements of {0, . . . , n − 1} (a word on {0, . . . , n − 1}) we denote by Φwi the flag

(Φw)i.

Strong flag connectedness: given two flags Φ and Ψ, there is a sequence of

adjacent flags connecting Φ to Ψ, such that each flag in the sequence contains

the elements in the intersection Φ ∩Ψ.

In terms of the Hasse diagram, the diamond condition tells us that if rank(G)−

rank(F ) = 2 and F < G, the subset {H : F ≤ H ≤ G} looks precisely like a

“diamond” (see Figure 1.2). In Figure 1.1 we see that the diamond condition is

satisfied for F = {2} and G = {1, 2, 3}, since there are exactly two elements between

them ({1, 2} and {2, 3}), but it is not satisfied if we take F = {3} and G = {1, 2, 3},

thus the example given is not an abstract polytope. The strong flag connectedness is

a bit harder to see; it says that given two flags, one can get from one to the other by

changing elements not in the intersection one at a time. Strong flag connectedness
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G

H1 H2

F

Figure 1.2: A Hasse diagram showing the diamond condition.

can be understood better in terms of the flag graph of the polytope, which we will

define in Section 1.3.

As their name suggests, the easiest examples of abstract polytopes are the face

lattices of convex polytopes. The Hasse diagram of a tetrahedron is illustrated in

Figure 1.3. Figure 1.3(b) shows some examples of the diamond condition. One should

be able to convince oneself using symmetry properties of the tetrahedron that these

examples are enough to show that the whole poset satisfies the diamond condition.

In Figure 1.3(c) we see two highlighted flags (red and blue) with a vertex in common.

One can transform the red flag to the blue flag without ever changing the vertex in

common by changing the edge, then the face of rank 2, and then the edge again. This

is an example of the kind of sequences of flags required for strong flag connectedness.

A flagged poset satisfying the diamond condition (but not necesarrily the strong

flag connectedness) is called a pre-polytope.

As an example of a pre-polytope that is not a polytope we consider two cubes

with one vertex in common (see Figure 1.4) and take the face lattice of the result. If

we let Φ be a flag on one of the cubes containing the glued vertex and let Ψ be one

on the other cube, there will be no way of getting from Φ to Ψ without changing the
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(a) The Hasse diagram of a tetrahedron.

(b) Examples of the diamond condition.

(c) Example of strong flag connectedness. One can get from the red flag to the blue flag by changing the edge, then
the 2-face, and then the edge again, as indicated by the green arrows.

Figure 1.3: The Hasse diagram of a tetrahedron. This is an example of an abstract polytope of
rank 3.
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Φ

Ψ

Figure 1.4: Two cubes with a vertex in common form an example of a pre-polytope that is not a
polytope

vertex (in fact we will not be able to get from Φ to Ψ by changing one face at a time).

Another example would be one cube in which we glue two opposite vertices. In that

case all flags would be connected, but there would be pairs of flags sharing a vertex

but such that one should change the vertex to get from one to the other.

In this thesis, unless stated otherwise, by a polytope we mean an abstract polytope

and we use n to denote its rank. The elements of rank i in a polytope are called i-

faces. The (n − 1)-faces of an n-polytope are often referred to as facets, 0-faces as

vertices and 1-faces as edges. The −1-face and the n-face of an n-polytope are called

the improper faces, and every other face is called a proper face. Given a flag Φ, we

denote its i-face as Φi.

To picture flags in convex (and some other) polytopes we use what is called the

barycentric subdivision. To do this for each flag Φ we form a simplex whose vertices

are the barycenters of each of its proper faces. In the barycentric division, i-adjacent

flags correspond to simplices that share a facet, specifically the one that contains all
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Figure 1.5: Barycentric subdivision of the tetrahedron.

of their vertices except the barycenter of the i-face. In Figure 1.5 we can see the

barycentric subdivision of a tetrahedron.

An isomorphism between two polytopes P and P ′ is simply an isomorphism of

posets, that is, a bijection γ : P → P ′ such that A < B if and only if Aγ < Bγ. In

this case we say that P and P ′ are isomorphic and write P ∼= P ′.

As usual, the automorphisms of a polytope P (the isomorphisms between P and

itself) form a group. We denote this group by Γ(P).

Given a poset P one can get a dual poset P∗ just by reversing the order, or in

terms of the Hasse diagram by “flipping it over”. In the case of polytopes, the dual

P∗ of a polytope is still a polytope and it is still called the dual polytope. The dual

of a polytope has exactly the same automorphism group as the polytope, that is

Γ(P) = Γ(P∗).

If a polytope is isomorphic to its dual it is called self-dual.
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1.2. Graphs

We will work with lots of graphs in this thesis. There exist several definitions

of graph in literature, and although most of them are equivalent, in our case it is

important which one we are working with. We will be using one of the broadest ones,

which includes graphs with parallel edges, loops and semi-edges (which as we shall

see, should be distinguished from one another).

In this thesis, a graph is a 4-tuple X = (V,D, (·)−1, I) where:

V is a non-empty set whose elements are called vertices.

D is a set whose elements are called darts.

(·)−1 : D → D is an involution called the inverse.

I : D → V is a function that maps each dart to a vertex called its initial vertex

or start-point.

Given a dart d, its end-point or terminal vertex is simply T (d) := I(d−1).

The edges of a graph X are the orbits of D under the action of the group generated

by (·)−1 (i.e., pairs {d, d−1}) and we denote the set of edges of X by E(X) or just E

when the underlying graph is implicit. The end-points of an edge are the end-points

(or start-points) of its darts.

An edge with just one dart is called a semi-edge, and it consists of a dart d

satisfying d = d−1. We will often refer to the only dart of a semi-edge as a semi-edge

itself, it should be clear from context if the term refers to a dart d which is its own

inverse or an edge with only one dart.
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semi−edge

parallel edges

loop

links

Figure 1.6: Example of a graph with all possible kinds of edges.

If an edge consist of two different darts but they both have the same starting

point, we call it a loop. A dart in a loop has the same starting and terminal vertex,

but in contrast to a semi-edge it can be “traveled backwards”.

Edges that are not semi-edges or loops are called links.

Two different darts with the same start-point and the same end-point are called

parallel darts3. In the same way, two edges (wether they are links, loops or semi-edges)

with the same end-points are called parallel edges.

We say that an edge e is incident to the vertices that are start-points of at least

one of its darts.

As usual, we will think of a graph as a drawing where the vertices are represented

by points and edges are represented by line segments joining their end-points. Loops

will be represented by a closed curve based on the point representing their end-point,

while semi-edges will be represented as line segments having one end-point on the

vertex they are incident to, leaving the other end-point “hanging”. For an example,

see Figure 1.6.

3One may want to exclude the two darts of a loop in this definition. However, the graphs that
appear in this thesis have no loops (only links and semi-edges), so this distinction does not matter.
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The valency or degree of a vertex v, denoted by deg(v) is the cardinality of the set

of darts whose starting vertex is v. Note that this means that each loop adds 2 to the

degree of a vertex, while links and semi-edges add 1. In other words, the valency of

a vertex v is the sum of the number of links and semi-edges incident to it plus twice

the number of loops incident to it.

A graph is called simple if it has no loops, no semi-edges, and no parallel edges. .

Given a graph X, its subgraphs are those graphs whose sets of vertices and darts

are subsets of the sets of vertices and darts of X respectively, and the start-points

and inverses of darts are the same as in X. A spanning subgraph is a subgraph with

all the vertices of X.

If U is a subset of the vertex set of a graph X the subgraph induced by U is

the subgraph whose vertex set is U and its darts are all the darts of X with both

endpoints in U . If A is a set of edges of a graph X the subgraph induced by A is the

subgraph whose vertex-set are all the endpoints of edges in A and its set of darts are

the darts of edges in A.

A graph in which every vertex has valency k is called a k-valent 4 graph.

A path5 in a graph X is a finite sequence of darts W = d1d2 . . . , dk such that the

end-point of each dart is the start-point of the next one. The number k is called the

length of W and it is denoted by `(W ). The start-point or initial vertex of W is the

start-point of d1 and the end-point or terminal vertex of W is the end-point of dk. If

4Most texts use the term k-regular graph, but we reserve the word regular for concepts that are
more related to symmetry and regular actions.

5Some texts use the term walk to refer to what we are calling a path, and use the word path only
when they do not go through the same vertex more than once. We stick to the name path here to
be consistent with the terminology from [11].
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a path W starts at a vertex u and ends at a vertex v, we say that W goes from u to

v and write W : u→ v, and we also say that it connects u to v. If we talk about the

end-points (in plural) of a path, we mean both its end-point and its start-point. The

inner vertices of a path are the start-points of the darts except the first one, that is,

“all the vertices along the way” from the start-point to the end-point.

We will change a little the definition of “path” when dealing with paths of length

0. The empty sequence is not considered a path of length 0, but each vertex is. When

thought of as a path of length 0, a vertex u is a path that goes from u to u (denoted

u : u→ u).

A graph X is connected if for every two vertices u and v there is a path going from

u to v. The connected components of a graph are its maximal connected subgraphs.

We denote by X(u) the connected component of X containing the vertex u.

A path is closed if its end-point is the same as its start-point. A path is a cycle

if it is closed and it visits each inner vertex exactly once. We will often think of

cyclical permutations of a cycle as being the same cycle. We will often also identify a

cycle with the subgraph induced by its edges, so in this terms a cycle is just a finite

connected 2-valent subgraph or a graph induced by a single semi-edge.

A connected graph without cycles is called a tree. It is important to mention that

every connected graph has at least one spanning subgraph which is a tree, this is

called a spanning tree. If X is any graph, a spanning forest is a spanning subgraph

consisting of a spanning tree for each of its connected components.

Given two graphs X = (V (X), D(X), (·)−1
X , IX) and Y = (V (Y ), D(Y ), (·)−1

Y , IY ),

a homomorphism from X to Y is a pair of functions f = (f1, f2) (acting on the right)
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such that:

f1 : V (X)→ V (Y ) and f2 : D(X)→ D(Y ).

For all d ∈ D(X) we have that IY (df2) = (IX(d))f1 and (df2)−1
Y = (d−1

X )f2.

We usually write vf (for a vertex v) and df (for a dart d) instead of vf1 and df2

respectively. We also write f : X → Y , when f is a homomorphism from X to Y .

Note that the image of a link under a homomorphism can be any type of edge,

while the image of a loop cannot be a link and the image of a semi-edge should always

be a semi-edge.

The image of a connected graph under a homomorphism must be connected, since

the image of a path is a path connecting the images of its end-points.

If both parts of a homomorphism f = (f1, f2) : X → Y are invertible and f−1 :=

(f−1
1 , f−1

2 ) is also a homomorphism, we say that f (and f−1) is an isomorphism. Also,

we say that X and Y are isomorphic and write X ∼= Y . The concept of automorphism

is now intuitive. We denote the automorphism group of a graph X by Γ(X).

1.3. Flag graphs and maniplexes

Given a flagged poset P of rank n, one can define a graph G(P) associated with it,

together with a {0, 1, . . . , n− 1} coloring of its edges (that is, a function that assigns

one of these numbers to each edge). This graph is called the flag graph of P . The

vertices of G(P) are the flags of P and if two flags are i-adjacent we draw a link of

color i between them.
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In the case of a pre-polytope, each flag is i-adjacent to exactly one other flag,

which means that its flag graph is n-valent and the coloring is proper, that is, no two

darts of the same color start at the same vertex. In this case, we can be more formal

and say that a dart of G(P) is a pair (Φ, i) where Φ is a flag and i ∈ {0, 1, . . . , n− 1}.

Then I(Φ, i) := Φ and (Φ, i)−1 := (Φi, i) (recall that Φi is the only i-adjacent flag to

Φ).

Let i, j ∈ {0, 1, . . . , n − 1} be such that |i − j| > 1. Then, any flag Φ of a pre-

polytope P and its i-adjacent flag Φi have the same r-faces for r 6= i, in particular

for r ∈ {j − 1, j, , j + 1}. So their j-adjacent flags Φj and Φij should have the same

j-face. In fact they have the same r-faces for r 6= i. In other words, Φij is equal

to Φji whenever |i − j| > 1. In terms of the flag graph, this means that, whenever

|i− j| > 1, the connected components of the subgraph induced by the edges of colors

i and j are 4-cycles.

In Figure 1.7 we see a triangular prism (in stereographic projection) transposed

with its flag graph.

It is interesting to note that if P was only a flagged poset but not a pre-polytope,

something similar happens: given a flag Φ and one of its i-adjacent flags Ψ, if for some

j with |i− j| > 1 one can change the j-face of Φ, then one can also change the j-face

of Ψ simultaneously (as Φ and Ψ have the same (j−1)-face and the same (j+1)-face)

and one would get i-adjacent flags Φ′ and Ψ′. But in this case the 4-cycle that these

four flags form in the flag graph would not necessarily be a connected component of

the graph induced by the edges of colors i and j as each vertex might be incident to

more than one edge of each color. That is, in the flag graph of a flagged poset every
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Figure 1.7: Flag graph of the triangular prism.

path consisting of two edges of colors i and j with |i − j| > 1 can be extended to a

unique 4-cycle with alternating colors i and j.

In the case of an abstract polytope P , we can see that the strong flag connectedness

of P implies that its flag graph is also connected. The flag graph of a polytope has

properties in common with the flag graph of a map.This is why Steve Wilson [37]

introduced the concept of a maniplex which generalizes both of these ideas.

There are lots of equivalent definitions of what a maniplex is (see [37]). Here

we use the following one: an n-maniplex is a simple, connected n-valent graph M

together with a proper coloring of its edges with colors {0, 1, . . . , n − 1} satisfying

that if |i− j| > 1, then the connected components of the graph induced by the edges

of colors i and j are 4-cycles. The vertices of a maniplex are called flags.

It follows from the definition that each flag is incident to exactly one edge of each
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color. Then, for each i ∈ {0, 1, . . . , n− 1} one can define an involution ri on the flags

of the maniplex that maps each flag to the other end of the edge of color i which is

incident to it. In other words Φri = Ψ if and only if Φ and Ψ are connected by an

edge of color i (in which case we say they are i-adjacent).

The permutations ri with i ∈ {0, 1, . . . , n−1} are involutions with no fixed points

and generate a group which acts transitively on the flags ofM, sinceM is connected.

They also satisfy that if |i−j| > 1 then rirj is also an involution with no fixed points,

or in other words, ri and rj commute 6. One may use these involutions also as an

alternative definition of a maniplex, i.e. a maniplex may also be defined as a set

F whose elements are called flags, and an indexed set of involutions {ri}n−1
i=0 of F

satisfying:

For every i the involution ri has no fixed points.

If Φri = Φrj for some flag Φ, then i = j.

The group 〈ri : i = 0, . . . , n− 1〉 acts transitively on F .

If |i− j| > 1 then rirj is an involution.

Note that these conditions imply that the involutions rirj have no fixed points.

Since Φri is the flag i-adjacent to Φ it is convenient to denote it by Φi and to

follow the same recursive notation as in polytopes to define Φw where w is a word on

{0, 1, . . . , n− 1}.
6This kind of “far commutativity” is pretty common in Mathematics (and in day to day life):

the order of the factors does not affect the product as long as the factors are far enough from each
other so that one does not affect what the other does. You can put on a shoe and a sock in any
order and get the same result, as long as they are not on the same foot.
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The group 〈ri : i = 0, . . . , n− 1〉 is called the monodromy or connection group of

M. In this thesis we will denote it by Mon(M) and we will call each of its elements

a monodromy. If w is a word on the alphabet {0, 1, . . . , n− 1} we identify w with the

monodromy x 7→ xw, that is , we identify the word = a1a2 . . . ak with the monodromy

ra1ra2 . . . rak .

A maniplex homomorphism is a graph homomorphism that preserves the color

of the edges. The image of a dart under a maniplex homomorphism is completely

determined by the image of its starting point, so we may think of a maniplex ho-

momorphism by considering only its action on the flags. In other words, it is more

convenient to think of a maniplex homomorphism as a mapping between flags that

preserves i-adjacencies for all i ∈ {0, 1, . . . , n− 1}.

In terms of the monodromy group, a function γ between the flags of a maniplex

M and the flags of a maniplexM′ is a homomorphism if and only if it commutes with

the monodromies, i.e. (Φi)γ = (Φγ)i for all i ∈ {0, 1, . . . , n − 1} and every flag Φ in

M (which could be written as riγ = γri for all i ∈ {0, 1, . . . , n− 1}), or equivalently

(Φw)γ = (Φγ)w for every monodromy w (which could be written as ωγ = γω for all

ω ∈Mon(M)).

The notions of isomorphism and automorphism follow naturally. As with poly-

topes, we denote the automorphism group of a maniplex M by Γ(M). We will see

later that the automorphism group of P as a polytope coincides with that of G(P) as

a maniplex, that is Γ(P) = Γ(G(P)).

If Φ and Ψ are flags of a maniplex M, there exists a monodromy w such that

Ψ = Φw. Then, if γ : M → M′ is a maniplex homomorphism, we have that Ψγ =
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(Φw)γ = (Φγ)w. This means that γ is completely determined by its action on only

one flag (Φ, for example). In particular, the automorphism group of a maniplex acts

freely on its flags. Of course, this is also true for polytopes.

A maniplexM also has a dual maniplexM∗ which is obtained simply by replacing

each color i by n− 1− i. IfM is the flag graph of a polytope P it is easy to see that

M∗ is the flag graph of P∗.

Just as with polytopes, the dual of a maniplex has the same automorphism group

as the original maniplex. A maniplex isomorphic to its dual is called self-dual.

LetM be an n-maniplex. If I ⊂ {0, 1, . . . , n− 1}, we defineMI as the subgraph

ofM induced by the edges of colors in I. If i ∈ {0, 1, . . . , n− 1}, we use the symbol i

to denote the set {0, 1, . . . , n− 1} \ {i}, and more generally, if K ⊂ {0, 1, . . . , n− 1},

we denote its complement by K. In particular Mi is the subgraph of M obtained

by removing the edges of color i. We will use this notation also for any graph with a

coloring of its edges even if it is not a maniplex.

Given the flag graph of a polytope P , one may use the strong flag connectedness

to recover P from it. To do this, note that if two flags Φ and Ψ share the same i-face

there should be a path in the flag graph from Φ to Ψ that does not use darts of color

i. Conversely, if there is such a path between Φ and Ψ, since after traveling one dart

one arrives to a flag with the same faces except for the one with rank equal to the

color of the dart, then Φ and Ψ (and every flag along the way) must have the same

i-face. This means that the set of flags with the same i-face F as Φ is precisely the

connected component Mi(Φ). One may identify this connected component with the

i-face F .
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Moreover, if an i-face F and a j-face G are incident, there should be a flag Φ

containing both of them. So the subgraphs corresponding to F and G should have

Φ in their intersection. Conversely, if the subgraphs corresponding to F and G have

non-empty intersection, the flags in the intersection have both F and G as elements,

implying that F and G are incident.

One may use this to get a ranked poset P(M) from any maniplex M. The

elements of rank i of the poset would be the connected components ofMi. The order

is then defined by the rule F < G if and only if F ∩G 6= ∅ and rank(F ) < rank(G),

where rank is the rank function of P defined by rank(F ) = i if F is a connected

component of Mi.

In [11, Proposition 3.1] it is proved that if M is any maniplex then P(M) is in

fact a poset (actually it is a flagged poset).

Let P and P ′ be two isomorphic polytopes, let Φ be a flag of P and let γ : P → P ′

be an isomorphism. Then for every i ∈ {0, 1, . . . , n − 1}, Φγ and (Φi)γ should be

i-adjacent flags of P ′, since they must have the same j-faces for j 6= i (since there

pre-images do), and they must have a different i-face (for the same reason). This

means that γ induces a maniplex homomorphism between the flag graphs of P and

P ′.

On the other hand, a maniplex homomorphism between G(P) and G(P ′) would

induce a homomorphism of polytopes between the faces of P and P ′ which is defined

by looking at the i-faces of P and P ′ as connected components of G(P)i and G(P ′)i

respectively.

We have sketched a proof of the following theorem (which appears in [11]).
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Theorem 1.3.1. Let P be a polytope and let M = G(P) be its flag graph. Then P

is isomorphic (as a poset) to P(M) and Γ(P) = Γ(M).

As an example one may look at Figure 1.7 and note that in fact when we erase

the edges of color 0 (blue) we get one connected component around each vertex of

the triangular prism; when we erase the edges of color 1 (red) we get a connected

component around the midpoint of each edge of the triangular prism and that com-

ponent will always be a 4-cycle of colors 0 and 2; and finally when we erase the edges

of color 2 (green) we get a connected component inside each 2-face of the triangular

prism (including the outter face).

Theorem 1.3.1 implies that all the information of the polytope P can be obtained

from its flag graph.

Before moving on, we want to show how in addition to the faces we can actually

get every kind of chain of a polytope P from looking at subgraphs of the flag graph

P . Let K be a subset of {0, 1, . . . , n−1}. A chain C in P is of type K if it has exactly

one element of each rank in K and no faces with rank not in K.

Just as we noted that an i-face can be identified with a connected component of

Mi, a chain of type K may be identified with a connected component ofMK : Let C

be a chain of type K, and let Φ be a flag containing C. Due to the strong connectivity

of P , one can get from Φ to another flag Ψ by a path that does not uses darts with

colors in K if and only if Ψ also contains C.

In [11] Garza-Vargas and Hubard prove some characterizations of polytopal mani-

plexes, i.e. those maniplexes that are isomorphic to flag graphs of polytopes. These

results will be summarized in Theorem 1.3.3, which in particular implies that the
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converse of Theorem 1.3.1 is also true. Before stating Theorem 1.3.3 we need some

more definitions. If r and s are integer numbers let us denote by [r, s] the set

{k ∈ Z : r ≤ k ≤ s}.

Definition 1.3.2. LetM be an n-maniplex. We say thatM satisfies the strong path

intersection property (or SPIP) if for every two subsets I, J ⊂ {0, 1, . . . , n − 1} and

for any two flags Φ and Ψ, whenever there is a path W from Φ to Ψ using only darts

of colors in I and also a path W ′ from Φ to Ψ using only darts of colors in J , then

there also exists a path W ′′ from Φ to Ψ that uses only darts of colors in I ∩ J .

We say thatM satisfies the weak path intersection property (or WPIP) if for any

two flags Φ and Ψ and for all k,m ∈ {0, 1, . . . , n − 1}, whenever there is a path W

from Φ to Ψ with only darts of color in [0,m] and a path W ′ from Φ to Ψ with only

darts of colors in [k, n− 1], then there is also a path W ′′ from Φ to Ψ with only darts

of colors in [k,m].

Theorem 1.3.3. [11, Theorem 5.3] Let M be a maniplex. Then the following con-

ditions are all equivalent:

M satisfies the SPIP.

M satisfies the WPIP.

M is polytopal.

In any of these cases P(M) is a polytope whose flag graph is isomorphic to M.
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1.4. Symmetry type graphs and Multi-maniplexes

An important kind of graph homomorphisms are covering homomorphisms. We

say that p : X → Y is a covering homomorphism (or a covering for short) if it is

surjective and for every vertex v in X, the restriction of p to the darts starting in x

is a bijection with the darts starting on xp. In particular, covering automorphisms

preserve the valency of vertices. In this case we also say that X covers Y or that X

is a cover of Y .

A covering transformation of X with respect to a covering homomorphism p is an

automorphism α of X that leaves invariant the fibers (pre-images of a single vertex or

a single dart) of p, that is, αp = p. These transformations also form a group, which

we denote by CT (p). We say that p is a regular covering if CT (p) acts regularly on

each fiber of vertices, that is, if for any vertices v and u in X with up = vp there is a

(unique) covering transformation f such that uf = v.

Regular coverings are intimately related with the quotients of graphs by subgroups

of its automorphism group. IfG acts onX by automorphisms, then the quotient graph

Y = X/G is defined as follows:

The vertices of Y are the orbits of vertices of X under the action of G.

The darts of Y are the orbits of the darts of X under the action of G.

The starting point IY (dG) of a dart dG in Y is IX(d)G, where IX(d) is the

starting point of d in X.

The inverse dart of dG is d−1G.
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One can verify that X/G is well defined and that the natural projection π : X →

X/G is a regular covering with covering transformations group CT (π) = G.

Conversely, if p : X → Y is a regular covering, then Y is isomorphic to X/CT (p)

(see [15] for the topological analogous theorem which has an analogous proof).

Let p : X → Y be a covering and let u and v be vertices in X and Y respectively,

such that p(u) = v. Let W = y1y2 . . . yk be a path in Y starting in v. Since p is a

covering, there is a unique dart x1 starting in u which is mapped to y1. There is also a

unique dart x2 starting at the end of x1 which is mapped to y2. In this way, following

a simple induction we get a unique path W̃ starting at u and such that W̃p = W .

This path W̃ is called the lift of W starting at u.

Let X be a connected graph, let p : X → Y be a covering and let α ∈ CT (p).

Suppose α fixes a vertex x, and let x′ be any other vertex in X. Let W̃ : x → x′

be a path in X and let W := W̃p. Then W = W̃αp, which means that W̃α is a

lift of W starting at xα = x, but since W̃ is the only lift of W starting at x, we get

W̃α = W̃ , in particular x′α = x′. This proves that α fixes every vertex, but since p is

acts as a bijection on the darts starting at each vertex and αp = p, then α must also

fix every dart. This proves α must be the identity, in other words, CT (p) acts freely

on each fiber. In particular we have shown that to prove that p is regular we only

have to prove that CT (p) acts transitively on each fiber (the uniqueness is given).

Moreover, if we know the action of CT (p) on any fiber, we know its action on any

other fiber (using the connectedness as we just did), so it is enough to prove that it

acts transitively on one fiber.

Lemma 1.4.1. If ϕ : M → M′ is a maniplex homomorphism then it is in fact a
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covering.

Proof Recall that by the definition of a maniplex homomorphism, if e is an edge in

M of color i, then the edge eϕ ofM′ also has color i. Let Φ be any flag in the image

of ϕ. Let Ψ be any other flag inM′. Then there is a path W from Φ to Ψ. Let Φ̃ be a

flag inM such that Φ̃ϕ = Φ. Let W̃ be the path that starts in Φ̃ and follows exactly

the same colors as W (in fact, W̃ will be the lift of W ) and let Ψ̃ be its end flag.

Since ϕ is a maniplex homomorphism it must satisfy that W̃ϕ = W , which implies

that Ψ̃ϕ = Ψ. This proves that ϕ is surjective.

Now let Φ̃ be any flag inM and let Φ := Φ̃ϕ. Let d̃ be a dart starting at Φ̃. Then

d̃ϕ must be a dart starting at Φ and having the same color as d̃. We know that there

is exactly one such dart. Conversely, if d is a dart starting at Φ, there is exactly one

dart starting at Φ̃ with that same color. This proves that ϕ is locally a bijection and

hence a covering.

Given a maniplex M and a group G ≤ Γ(M), the symmetry type graph (STG)

of M with respect to G, denoted by T (M, G) is simply the quotient M/G where

the color of the orbit of each dart is the color of the dart itself. When G = Γ(M)

we define T (M) := T (M,Γ(M)) and call it the symmetry type graph (STG) of M.

We say that M is a k-orbit maniplex if it has k flag-orbits under the action of its

automorphism group. In other words M is a k-orbit maniplex if its STG T (M) has

exactly k vertices. A regular7 maniplex is a 1-orbit maniplex, that is, one in which

the automorphism group acts regularly on its flags.

7In literature sometimes the term reflexible is prefered. Here we use regular to have the same
nomenclature both for polytopes and maniplexes.
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Lemma 1.4.2. If H is a subgroup of G then T (M, G) is covered by T (M, H).

Proof Let ϕ : T (M, H) → T (M, G) be defined by (xH)ϕ := xG. This is in fact

well defined, because xH = yH ⇒ x−1y ∈ H ⊂ G ⇒ xG = yG. Now recall that the

monodromies and automorphisms of a maniplex commute, and thus, (xH)i = (xi)H.

By applying ϕ we get that (xH)iϕ = (xi)Hϕ = (xi)G = (xG)i. This proves that ϕ

is a color preserving homomorphism. The same argument used in Lemma 1.4.2 to

prove that ϕ is locally a bijection holds here. Hence, ϕ is a covering.

The symmetry type graph of a polytope (with respect to a group) is just the sym-

metry type of its flag graph (with respect to the same group). A k-orbit polytope is

one with k flag-orbits under the action of its automorphism group, that is, one with

a STG with exactly k-vertices. Regular polytopes are just 1-orbit polytopes.

In Figure 1.8 we see once again the flag graph of a triangular prism, this time

together with its symmetry type graph. The vertices of the flag graph have been

colored to show to what orbit do they correspond in the symmetry type graph.

In Section 1.3 we discussed that there is a natural correspondence between the

i-faces of a polytope P and the connected components of G(P)i. Let G be a group

of automorphisms of P and let p : G(P) → T (P , G) be the natural projection. Let

F be an i-face of P and let Φ and Ψ be two flags containing F . Then Φ and Ψ are

connected by a path W that does not use the color i. After applying p we get that

Φp and Ψp are connected by the path Wp which does not use the color i. We have

thus proven that the orbits of the flags that share a particular i-face are in the same

connected component of T (P , G)i.
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Figure 1.8: Flag graph of the triangular prism together with its symmetry type graph. The color
of the vertices on the flag graph corresponds to the color of their orbit in the symmetry type graph.
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Now let F ′ be another i-face in the same G-orbit as F . Let γ ∈ G be such

that F ′γ = F . Let Φ′ be a flag containing F ′. Then Φ′γ is a flag containing F . By

construction, Φ′p = (Φ′γ)p, which means that Φ′p is in the same connected component

of T (P , G)i as Φp.

Conversely, if two flags Φ and Φ′ are such that Φp and Φ′p are connected by a

path W that does not use the color i, then there is a lift W̃ of this path connecting Φ

to a flag Ψ in the same orbit as Φ′. Then there exists γ ∈ G such that Ψ = Φ′γ. By

taking the i-face of both sides we get Ψi = Φ′iγ, but Ψi = Φi, since they are connected

by a path that does not use the color i. We conclude then that the i-faces Φi and Φ′i

are on the same G-orbit.

We have proved proposition 1.4.3:

Proposition 1.4.3. Let P be an n-polytope and let G be a group of automorphisms of

P. Let i ∈ {0, 1, . . . , n− 1}. Then the connected components of T (P , G)i correspond

to the G-orbits of i-faces of P, i.e., two flags have i-faces in the same G-orbit if and

only if their orbits are in the same connected component of T (P , G)i.

Just as we did for the flag graph, this result can be generalized when we consider

many colors instead of just one:

Proposition 1.4.4. Let P be an n-polytope and let G be a group of automorphisms of

P. Let K ⊂ {0, 1, . . . , n−1}. Then the connected components of T (P , G)K correspond

to the G-orbits of chains of type K of P, i.e., two flags have subchains of type K in

the same G-orbit if and only if their orbits are in the same connected component of

T (P , G)K.
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Figure 1.9: When we remove edges of color 2 from the STG of the prism we get one component for
each 2-face orbit.

In Figure 1.9 we see how after removing the edges of color 2 from the STG of

the triangular prism we get one connected component per 2-face orbit. The square

2-faces are in cyan and brown flags, while triangular 2-faces are only in magenta flags.

In Figure 1.10 we see that if we remove edges of colors 1 and 2 from the STG of the

triangular prism we get one connected component per orbit of chains of type {1, 2},

that is, incident pairs of the form C = {e, F} where e is an edge and F a 2-face. If

F is a triangle, C is contained only in magenta flags, if e is in a triangle but F is

a square all flags containing C are cyan, and if e is shared by two squares all flags

containing C are brown.
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Figure 1.10: When we remove edges of colors 1 and 2 from the STG of the prism we get one
component for each orbit of chains of type {1, 2}.
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Figure 1.11: In a multi-maniplex X, if |i− j| > 1 the possible connected components of X{i,j} are
any of the ones shown in this figure. These are the quotients of a 4-cycle.

LetM be a maniplex, G a group of automorphisms ofM, and p :M→ T (M, G)

the natural covering homomorphism. SinceM is connected and p is a homomorphism,

T (M, G) is also connected. Since each flag of M is incident to exactly one edge of

each color in {0, 1, . . . , n−1} and p is a covering, the same must be true for T (M, G),

even though T (M, G) might not be simple. And finally, if |i− j| > 1 then a path of

length 4 that alternates the colors of its darts between i and j must end at the point

where it started, (i.e. it must be closed), and since p is a covering, the same must

be true for T (M, G), but in this case it might visit each vertex more than once, i.e.

it might be any quotient of a 4-cycle (see Figure 1.11). These necessary properties

determine what we will call in this thesis a multi-maniplex 8.

Definition 1.4.5. A multi-maniplex of rank n is a connected n-valent graph X to-

gether with a coloring of its edges c : E(X) → {0, 1, . . . , n − 1} satisfying that each

vertex is incident to exactly one edge of each color and that paths of length 4 that

8In literature, (see [4], for example) what we call multi-maniplexes have been called allowable
graphs. The author of this thesis thinks that the name allowable graph is too generic and prefers
the name multi-maniplex that compares to maniplex in the same way that multi-graph compares to
graph.
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alternate between darts of two non-consecutive colors are closed.

Note that since multi-maniplexes are n-valent and each vertex is incident to an

edge of each of n colors, they cannot have loops, but only links and demi-edges.

A homomorphism h : X → Y between multi-maniplexes is just a graph homo-

morphism that preserves the color of the edges. The notions of isomorphism and

automorphism follow in a natural way. We may also talk about coverings in multi-

maniplexes, but just as in maniplexes they happen to be the same as homomorphisms.

A multi-maniplex X may also be defined by its monodromy group, that is, the

group Mon(X) generated by the permutations ri which map each vertex to the end-

point of the dart of color i starting at that vertex. Just as in the case of maniplexes,

these permutations are involutions and commute when their indices are far apart.

More precisely, for all i, j ∈ {0, 1, . . . , n − 1} it is satisfied that r2
i = 1 and rirj =

rjri whenever |i − j| > 1. Because of the connectivity we have that Mon(X) acts

transitively on the vertices of X. In contrast with maniplexes, since multi-maniplexes

are not necessarily simple, we cannot assure that xri 6= x for a vertex x or that

xri = xrj implies i = j.

A multi-maniplex X also has a dual multi-maniplex X∗ which is obtained (just

as with maniplexes) by replacing each color i with n − 1 − i. Once again, the dual

of a multi-maniplex has the same automorphism group as the multi-maniplex. As

suspected, it is easy to see that if X is the STG of a maniplex M (or a polytope

P) with respect to some group, then X∗ is the STG of M∗ with respect to the same

group.

A multi-maniplex isomorphic to its dual is called self-dual.
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When studying polytopes and maniplexes together with their STGs, the following

two questions occur naturally.

Question 3. Given a multi-maniplex X how to determine if there exists a polytope

(or a maniplex) whose STG is isomorphic to X?

Question 4. Given a multi-maniplex X and a group G, how to determine if there is

a polytope P (or a maniplex M) such that STG(P , G) ∼= X (or STG(M, G) ∼= X)?

How to determine if G is the full automorphism group of P (or M) or just a proper

subgroup?

These two questions are the motivation for this thesis. The second part of Ques-

tion 4 emphasizes why Question 3 is not as trivial as it may initially look like.

In this thesis we give some advances in answering these questions.

1.5. Regular polytopes

Question 4 has been answered for regular polytopes [7] and also 2-orbit polyhe-

dra [17] and lastly for 2-orbit polytopes [18]. In this section we will outline the method

used for regular polytopes so that in further chapters we can use similar techniques.

Let P be a regular polytope and let Φ be any flag of P . Then for every i there is an

automorphism that maps Φ to its i-adjacent flag Φi. We denote such an automorphism

by ρi. By applying ρi twice we notice that Φρ2
i = (Φi)ρi = (Φρi)

i = Φ, and since the

action of the automorphisms is free, we have that ρi must be an involution.

Now consider some other flag Ψ. Since P is regular there is an automorphism

γ ∈ Γ(P) such that Ψ = Φγ. Let w = i1i2 . . . ik be a word in {0, 1, . . . , n − 1} such
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that Ψ = Φw. Now let σ = ρikρik−1
. . . ρi1 . Then one can verify with a simple induc-

tion that Φσ = Φw = Ψ = Φγ, and since the action is free this implies that σ = γ.

We have actually proved that the set {ρ0, ρ1, . . . , ρn−1} generates the whole automor-

phism group of P . The automorphisms ρ0, ρ1, . . . , ρn−1 are called the distinguished

generators of Γ(P) with respect to Φ.

Moreover, we can notice that for any set I ⊂ {0, 1, . . . , n − 1}, the orbit of Φ

under the group 〈ρi : i ∈ I〉 coincides with its orbit under the group 〈ri : i ∈ I〉 which

consists of those flags that have the same j-faces as Φ for j /∈ I. Note that this is not

necessarily true for an arbitrary flag Ψ. The flag Φ satisfies this property because it

is the flag with respect to which we are naming the generators ρi.

This actually has to do with the following proposition, which can be found in [26,

Corolary 3.8].

Proposition 1.5.1. Let P be a regular polytope with automorphism group Γ(P) and

monodromy group Mon(P) = 〈r0, r1, . . . , rn−1〉. Let ρ0, ρ1, . . . , ρn−1 be the distin-

guished generators of Γ(P) with respect to some flag Φ. Then the map

ri1ri2 . . . rik−1
rik 7→ ρikρik−1

. . . ρi2ρi1

is a group anti-isomorphism.

Also as a consequence of Proposition 1.5.1 we have that if |i − j| > 1 then ρiρj

must be an involution (since rjri is). Since the generators are also involutions one

might write this as ρiρj = ρjρi whenever |i− j| > 1.

For every I ⊂ {0, 1, . . . , n−1} let ΓI be the subgroup of Γ generated by {ρi : i ∈ I}.
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For I, J ⊂ {0, 1, . . . , n − 1} consider an element γ in the intersection ΓI ∩ ΓJ . We

noticed before that since γ is in ΓI we know that Φγ has the same i-faces as Φ for

any i not in I, but this is also true for i not in J . So if we denote the complement of

a set A in {0, 1, . . . , n− 1} by A we have that (Φγ)i = Φi for all i in I ∪ J , which by

De Morgan’s law is equal to I ∩ J . This means that γ is in ΓI∩J .

We have proved the following result:

Proposition 1.5.2. If Γ is the automorphism group of a regular polytope and {ρ0,

ρ1, , . . . , ρn−1} are its distinguished generators with respect to some flag Φ then

∀I, J ⊂ {0, 1, . . . , n− 1} 〈ρi : i ∈ I〉 ∩ 〈ρi : i ∈ J〉 = 〈ρi : i ∈ I ∩ J〉. (1.1)

The property 1.1 is known as the intersection property (for regular polytopes).

We have found two properties about the automorphism group of a regular poly-

tope: the intersection property and the far commutativity. In [7] (see also [25, Sec-

tion 2E]) it is proved that these properties are in fact enough to ensure that the group

is the automorphism group of a regular polytope:

Theorem 1.5.3. [7] Let Γ be a group. Then there is a regular polytope P(Γ) having

Γ as its automorphism group if and only if Γ is generated by a set of involutions

{ρ0, ρ1, . . . , ρn−1} satisfying the intersection property (1.1) and that if |i− j| > 1 then

ρiρj is also an involution.

A group generated by involutions satisfying the conditions of Theorem 1.5.3 is

called a string C-group. The canonical examples are the so called string Coxeter
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groups, which are groups Γ with a presentation

Γ = 〈ρ0, ρ1, . . . , ρn−1 | (ρiρj)2 = (ρi−1ρi)
pi = 1 (|i− j| > 1)〉,

where pi is either a positive integer or infinity9 for each i ∈ {1, 2, . . . , n−1}. If pi =∞

for all i, Γ is called the universal string Coxeter group, and it is the automorphism

group of the universal polytope of rank n. It is known [25, Section 3D] that if U

is the universal polytope of rank n and P is any other polytope there is a covering

p : G(U) → G(P) (where G denotes the flag graph of its argument). Moreover,

one can see that for any multi-maniplex X there is a covering p : G(U) → X. In

particular this means that for every multi-maniplex there exists some group G such

that X = T (U , G), giving a partial answer to Question 3, but only when X has only

one vertex this is the actual symmetry type graph of U .

We have sketched a proof of one implication in Theorem 1.5.3. For the other

one we need to construct a polytope starting from the group Γ and its generators

{ρ0, ρ1, . . . , ρn−1}. To do this we have to make some observations about the case

when we already know that Γ is the automorphism group of a polytope P .

Let Φ be the base flag of the polytope P and denote by i the set {0, 1, . . . , n −

1}\{i}. The first observation is that Γi should be the stabilizer of the i-face Φi. This

is because as we have noted, the elements of Γi are precisely those that map Φ to a

flag with the same i-face.

Now consider any other i-face F . Since P is regular, there is an element γ ∈ Γ

9A relation (ρi−1ρi)
∞ = 1 just means that the order of (ρi−1ρi) is infinite. The relation may be

ignored when constructing the group as a quotient of a free group by the normalizer of the elements
of R.
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mapping Φi to F . Let σ ∈ Γ be any other element that maps Φi to F . Then

σγ−1 should stabilize Φi, so σ ∈ Γi γ. So the coset Γiγ consists precisely of those

automorphisms that map Φi to F . So it is natural to associate this coset with the

i-face F .

To construct a polytope P(Γ) from a group Γ first we define its i-faces to be simply

the right cosets of Γi.

Then we need to define the incidence relation. This is easy as well: if F < H there

should be a flag Ψ that includes both of them. Let γ ∈ Γ be such that Ψ = Φγ. If F

is associated with the coset Γi σ and H is associated with Γj τ , then γ ∈ Γi σ ∩ Γj τ .

So the obvious way to define the order relation in P(Γ) is the following:

Γi σ < Γj τ if and only if Γi σ ∩ Γj τ 6= ∅ and i < j.

In [25] and [7] it is proved that the poset (P(Γ), <) is in fact a regular polytope

and its automorphism group is Γ. Analogous results have being found for 2-orbit

polyhedra (2-orbit polytopes of rank 3) [17], chiral polytopes (a special kind of 2-

orbit polytopes) [33] and finally for all 2-orbit polytopes [18].

In this thesis we will generalize these results for arbitrary k-orbit polytopes. More

concretely, in Chapter 3 we find an analogous result for 3-orbit polyhedra and in

Chapter 4 we explore the results for 3-orbit polyhedra to find a generalization for

polytopes with any symmetry type graph.



Chapter 2

Voltage Assignments

Coverings and covering spaces are a very common topic in algebraic topology. A

natural question in this topic is when does an automorphism of a topological space X

lift to an automorphism of a covering space X̃ (see [23], for example). This question

has been of particular interest when studying embeddings of graphs in CW-complexes,

as well as when studying coverings of graphs and maps. These coverings are usually

described in terms of voltage assignments, introduced by Gross in 1973 in [12] as a

way to get complex embeddings of graphs from simpler ones. Voltage assignments are

a combinatorial tool used to study topological concepts, however they may be used

to study pure combinatorial objects as well, as Malnič, Nedela and Škoviera noted

in 1998 in [22]. In this article they study the problem of lifting (and projecting)

automorphisms in graphs in terms of voltage assignments.

In the last 3 chapters of this thesis we will construct polytopes and maniplexes by

applying voltage assignments to multi-maniplexes. We will use the results from [22]

37
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to determine when the constructed polytope or maniplex has additional symmetries

to the ones we are looking for.

In this chapter we review the concept of voltage assignments for graphs and review

the results of [22].

To define what voltage assignments are, we will need some concepts as homo-

topic paths and fundamental groupoid. These concepts are a discretization of the

corresponding concepts in algebraic topology (see [23]).

2.1. Fundamental groupoid

Recall that, in a graph, a path W = d1d2 . . . dk is just a finite sequence of darts

each starting in the end-point of the previous one. A reduced path is one in which

consecutive darts are not inverse of one another. Let W0 = W be any path and

recursively define Wi+1 to be the path obtained from Wi after removing a pair of

consecutive inverse darts. Eventually you will get to a reduced path Wk. This path

is called the reduction of W . It can be shown that this reduction is well defined

independently of the order in which we chose to remove pairs of consecutive inverse

darts. If the reduction of a path has no darts, then the path must be closed and we

consider its reduction to be the path of length 0 based on its only end-point. Two

paths W,W ′ : u→ v are homotopic if they have the same reduction. We denote that

W and W ′ are homotopic by writing W ∼ W ′.

Homotopy is an equivalence relation and we will often identify a path with its

homotopy class.
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Given two paths W : u → v and V : v → w, one can multiply these paths

by “concatenating” them, that is, if W = x1x2 . . . xk and V = y1y2 . . . ym, then

WV : u→ w is defined as WV := x1x2 . . . xky1y2 . . . ym. If W is of length 0 then WV

is defined as V , and if V is of length 0 then WV := W .

If W ∼ W ′ and V ∼ V ′ then WV ∼ W ′V ′. This implies that one can also multiply

the homotopy classes of paths and this product is well-defined.

The set of homotopy classes of paths in a graph X, together with the previously

defined multiplication, is called the fundamental groupoid of X and it is denoted by

Π(X) or just Π if X is implicit. It is in fact a groupoid, in the sense of the following

definition 1 2:

Definition 2.1.1. A groupoid is a triplet (G,C, ·) where G is a set, C is a binary

relation in G called compatibility and · : (a, b) 7→ ab is a function called “partial

operation” with domain {(a, b) ∈ G × G : aCb} and codomain G, satisfying the

following conditions:

Associativity: If aCb and bCc then abCc, aCbc and (ab)c = a(bc).

Local neutral elements: For every a ∈ G there are elements ea, fa ∈ G such that

aCea, faCa and aea = faa = a.

Local inverse elements: For all a ∈ G there is an element a−1 ∈ G such that

aCa−1, a−1Ca, aa−1 = fa and a−1a = ea.
1There are several equivalent ways to define a groupoid: another familiar one is to define it

as a category in which all the arrows are isomorphisms. Under this definition the objects of the
fundamental groupoid Π(X) would be the vertices of X.

2Some authors [16] use the term groupoid to refer to a set with a total binary operation without
any extra axioms (what some other authors [1] call a magma). This concept has no relation with
the way we are using the term here.
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Groupoids generalize groups in the sense that a group is a groupoid where every

two elements are compatible.

Paths of length 0 act as local neutral elements by definition. The inverse of a path

W = x1x2 . . . xk is just W−1 = x−1
k x−1

k−1 . . . x
−1
1 . Associativity is intuitive.

In any groupoid G local neutral elements can be identified as those elements e

such that eCe and e2 = e. If e is a local neutral element, the set {x ∈ G : xCe, eCx}

forms a group. In the case of the fundamental groupoid of a graph (or a topological

space) this group would consist of all the closed paths based at a vertex u . This

group is called the fundamental group (based on u) and we denote it by Πu(X) or

just Πu if X is implicit.

If a graph is connected (or a topological space path-connected) then all funda-

mental groups are isomorphic independently of the base vertex. In fact, if W : u→ v

is a path (considered up to homotopy), then WΠvW−1 is exactly the same set as Πu,

and the function V 7→ WVW−1 is an isomorphism from Πv to Πu.

There is a natural way to find a generating set for the fundamental group of a

graph. Let X be a graph, without loss of generality consider X to be connected and

let u be a fixed vertex. Let T be a spanning tree of X. For every dart d in X define

the path Wd as the path that goes from u to the starting point of d through the

spanning tree T , then follows d, and then goes back to u from the end-point of d

through T . Note that since T is a tree Wd is well defined. Note also that if d is a

dart in T , then Wd is homotopic to the path of length 0 based at u, so we do not

need to consider these darts when constructing a generating set. For every dart d the

path Wd−1 coincides with W−1
d , so for each edge in X but not in T we only have to
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consider the path associated to one of its darts and we automatically generate the

one associated to the other one. Now consider any closed path W = x1x2 . . . xk based

on u. One can prove that in fact W is homotopic to Wx1Wx2 . . .Wxk . So a natural

set of generators for Πu is {Wd : d ∈ A} where A is a set consisting of one dart of

each edge in X but not in T .

2.2. Voltages and regular coverings

If G and G′ are groupoids, a function f : G → G′ is a groupoid homomor-

phism if it maps compatible pairs to compatible pairs (aCb implies f(a)Cf(b)) and

f(ab) = f(a)f(b) whenever aCb. We say that f is a groupoid anti-morphism if

aCb⇒ f(b)Cf(a) and f(ab) = f(b)f(a).

If X is a graph, a voltage assignment is simply a groupoid anti-morphism ξ :

Π(X) → G where G is a group3. In this case G is called the voltage group (of ξ).

The pair (X, ξ) is called a voltage graph.

Since the fundamental groupoid of a graph X is generated by the darts of X, a

voltage assignment is determined by the voltages of the darts. So one could consider

a voltage assignment simply as a function ξ mapping each dart to an element of a

group in such a way that for every dart x we have that ξ(x−1) = ξ(x)−1. Then the

voltage of a path W = x1x2 . . . xk would be defined as ξ(W ) = ξ(xk)ξ(xk−1) . . . ξ(x1).

One can verify that this defines in fact a groupoid anti-morphism.

3Some other authors define a voltage assignment as a groupoid homomorphism. The reason
for this difference is that authors who define the voltage assignment as a homomorphism write
automorphisms as acting on the left. When the action of the automorphisms is on the right, as it is
standard in the polytopes community, voltage assignments must be anti-morphisms.
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Given a graph X = (V,D, (·)−1, I) and a voltage assignment ξ with voltage group

G, we can define a new graph Xξ, called the derived graph of ξ in the following

manner: The vertex set of Xξ is V × G and the dart set is D × G. The starting

vertex of the dart (x, g) is (I(x), g) for any x ∈ D and g ∈ G, and the inverse of

(x, g) is (x−1, ξ(x)g). A more intuitive way to say this is that the end-point of (x, g)

is (T (x), ξ(x)g) where T (x) is the end-point of x.

In less formal terms, the derived graph Xξ has one copy of the vertices X for each

element of G, and the voltage of each dart tells us how the darts travel from copy to

copy.

When drawing a voltage graph we label each edge with the voltage of one of its

darts and draw an arrow from the start-point of that dart to its end-point, so that

we know which dart has the voltage in the label and which one has the inverse. If

the voltage is trivial or has order two the orientation may be omitted. If the voltage

is trivial the label may be omitted too.

In Figure 2.1(a) we see a voltage graph with voltage group Z. In Figure 2.1(b) we

see the derived graph Xξ. Since the voltage group is infinite, in this case the derived

graph is also infinite.

There is a natural projection π from the derived graph Xξ to the voltage graph X.

We can observe that this projection is a covering. In fact the darts starting at a vertex

(v, g) are precisely the darts of the form (x, g) where x is a dart in X starting at v.

Moreover, π is a regular covering, since the voltage group G acts by automorphisms

on Xξ with the action defined by (x, h)g = (x, hg) (with x either a dart or a vertex),

and this action is transitive on each fiber of a vertex (note that the fiber of v consists
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+1 −1
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(a) A voltage graph (X, ξ) with voltage group Z.
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(b) The derived graph Xξ of the voltage graph in Figure 2.1(a). This is an infinite graph.

Figure 2.1: Example of voltage graph and its derived graph.
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of the elements of the form (v, g) with g ∈ G).

Note that if d is a dart in X going from x to y and g ∈ G, the lift (see section 1.4)

of d starting at (x, g) is precisely the dart (d, g), which ends at (y, ξ(d)g). By a simple

induction, we should also note that if W is a path in X starting at x, then the lift W̃

of W starting at (x, g) ends at (z, ξ(W )g) where z is the end-point of W .

In fact, every regular cover of a graph is isomorphic to the derived graph from

some voltage assignment. To see this, let p : X → Y be a regular covering. We will

define a voltage assignment ξ : Π(Y )→ CT (p) such that Y ξ is isomorphic to X.

For every vertex v in Y we fix one element of its fiber and call it ṽ. We call the

vertex ṽ the base vertex of the orbit v. Let y be any dart in Y going from a vertex

v0 to a vertex v1. Let x be the lift of y starting at ṽ0, in other words, let x be the

dart starting at ṽ0 that is mapped to y by p (x exists and is unique because p is a

covering). The end-point u of x is on the pre-image of v1. Since p is regular, there is

a unique covering transformation γ ∈ CT (p), such that uγ = ṽ1. Define ξ(y) := γ.

To show that ξ in in fact a voltage assignment, one only needs to see that ξ(y−1) =

ξ(y)−1. This follows from the fact that p is a covering and thus locally an isomorphism,

and the fact that CT (p) is a subgroup of Γ(X). Moreover, p is equivalent to the

canonical projection π : Y ξ → Y , i.e. there is an isomorphism ϕ : X → Y ξ such

that ϕπ = p. To define the isomorphism ϕ we start by noticing that since p is a

regular cover, every vertex of X can be written uniquely in the form ṽγ, where v is

some vertex of Y and γ ∈ CT (p). Then we define (ṽγ)ϕ := (v, γ). We define ϕ in

an analogous way for darts. It is straightforward to see that ϕ is an isomorphism

between X and Y ξ and that ϕπ = p.
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Note that the voltage assignment ξ depends only on our election of the representa-

tives {ṽ : v ∈ Y }, but every choice will give a voltage assignment that gives a derived

graph isomorphic to Y and a covering equivalent to p. Given a spanning tree T of

Y we can choose the representatives {ṽ : v ∈ Y } in such a way that all the darts in

T have trivial voltage. To do this we first choose a vertex v0 in Y and an arbitrary

representative ṽ0. Then, if v is a vertex of Y there is a unique path W : v0 → v

contained in the spanning tree T . Let W̃ be the lift of W starting at ṽ0. Then ṽ is

simply defined as the end-point of W̃ . Essentially, we lift the entire spanning tree T

to X and the representatives of each vertex in Y lies in the lifted tree.

Lemma 2.2.1. Let X be a graph with vertex set V , let v ∈ V , and let C be its

connected component in X. Let ξ : Π(X) → G be a voltage assignment with a

spanning forest of trivial voltage. Then the connected component of (v, 1) in the

derived graph Xξ has vertex set V (C)× ξ(Πv).

Proof Suppose that in the derived graph Xξ there is a path W̃ from (v, 1) to (u, γ).

Then, γ must be the voltage of the path W := W̃p from v to u. We know also that

there is a path V from u to v in X through the spanning tree T of C, and its lift Ṽ in

Xξ goes from (u, γ) to (v, γ). Then the closed path WV ∈ Πv based on v has voltage

γ, which implies that (u, γ) ∈ V (C)× ξ(Πv).

Conversely, let (u, γ) ∈ V (C)× ξ(Πv). If a path W ∈ Πv has voltage γ we can lift

it to a path W̃ on Xξ that goes from (v, 1) to (v, γ). We also have a path V in the

spanning tree T from v to u, and its lift Ṽ starting at (v, γ) ends in (u, γ). Then the

path W̃ Ṽ goes from (v, 1) to (u, γ).
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Corollary 2.2.2. Let X be a graph and let ξ : Π(X) → G be a voltage assignment

with a spanning tree of trivial voltage. Then the derived graph Xξ is connected if and

only if X is connected and ξ(Πv) = G for some (or any) vertex v.

Corollary 2.2.2 can be improved to include even the case when X does not have

a spanning tree with trivial voltage.

Corollary 2.2.3. Let X be a graph and let ξ : Π(X) → G be a voltage assignment.

Then the derived graph Xξ is connected if and only if X is connected and ξ(Πv) = G

for some (or any) vertex v.

Proof If Xξ is connected, then there must be a path W̃ from (v, 1) to (v, γ) for each

γ ∈ G. This means that γ is the voltage of the path W̃p, which is closed and based

at v.

Conversely, if ξ(Πv) = G, then (v, 1) is connected to (v, γ) for all γ ∈ G. Now

let u be any vertex in X. There is a path W in X from v to u. This path has lifts

that go from (v, γ) to (u, ξ(W )γ). This implies that (v, 1) is connected to (u, ξ(W )γ)

for all γ, but ξ(W )G = G, so (v, 1) is connected to (u, γ) for all γ ∈ G. Since u was

arbitrary, this proves that Xξ is connected.

In Section 2.1 we have seen how to obtain the generators of the fundamental group

of a graph X. If ξ : Π(X) → G is such that Xξ is connected, Corollary 2.2.3 tells

us that ξ restricted to the fundamental group based at a vertex v must be surjective.

This gives a way to find a natural generating set for G: they are simply the voltages

of the paths that generate Πv(X). In the case when X has a spanning tree T with

trivial voltage on all its edges, we may use this tree to choose a set of generators of
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Πx(X), and the voltage of each generator of Πx(X) is the voltage of the only dart in

that path not in T , so the generators of G are the voltages of the darts not in T . In

other words we have proved the following corollary.

Corollary 2.2.4. Let X be a graph, ξ : Π(X) → G a voltage assignment and T a

spanning tree of X. Let A be a set consisting of one dart of each edge not in T . If

the derived graph Xξ is connected, then G is generated by {ξ(Wd) : d ∈ A}, where

Wd is the path that goes from v to the start-point of d through the tree T , then goes

through d, and then back from the end-point of d to v through the tree T .

In particular, if all the darts in T have trivial voltage, G is generated by ξ(A).

2.3. Lifting and projecting automorphisms

Let p : X → Y be a covering. Let τ̃ be an automorphism of X and τ an automor-

phism of Y . If τ̃ p = pτ we say that τ is a projection of τ̃ and that τ̃ is a lift of τ . We

also say that τ lifts to τ̃ and that τ̃ projects to τ .

Not necessarily every automorphism of X projects, neither does every automor-

phism of Y has to lift. In 1998 Malnič , Nedela and Škoviera proved the following

theorems [22]:

Theorem 2.3.1. Let p : X → Y be a regular graph covering. Let τ̃ be an au-

tomorphism of X. Then τ̃ projects to an automorphism τ of Y if and only if

τ̃−1CT (p)τ̃ = CT (p). In particular the whole automorphism group Γ(X) projects

if and only if CT (p) is a normal subgroup.

Proof First suppose τ̃ projects to an automorphism τ of Y . Then we have that
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τ̃ p = pτ , which implies pτ−1 = τ̃−1p, that is τ̃−1 projects to τ−1. Let σ̃ ∈ CT (p),

that is σ̃p = p. We want to prove that τ̃−1σ̃τ̃ ∈ CT (p). To do this we just apply p

on the right:

τ̃−1σ̃τ̃ p = τ̃−1σ̃pτ = τ̃−1pτ = pτ−1τ = p.

So we conclude that τ̃−1σ̃τ̃ ∈ CT (p).

Conversely, suppose τ̃−1CT (p)τ̃ = CT (p), or equivalently τ̃CT (p)τ̃−1 = CT (p).

We define τ : Y → Y by declaring that yτ := xτ̃p where y is a vertex or dart in Y

and x is in the fiber of y. Let us show first that τ is well defined. If x and x′ are in

the fiber of y, since p is regular there is a covering transformation σ̃ ∈ CT (p) such

that xσ̃ = x′. By hypothesis, there exists γ̃ ∈ CT (p) such that σ̃ = τ̃ γ̃τ̃−1. Then

x′τ̃ p = (xσ̃)τ̃ p

= (xτ̃ γ̃τ̃−1)τ̃ p

= xτ̃ γ̃p

= xτ̃p (γ̃ ∈ CT (p)).

This proves that τ is well defined. The fact that τ̃ projects to τ is given and the

fact that τ is an automorphism of Y comes from the fact that p is a covering.

In Chapter 3 we will use Theorem 2.3.1 applied to voltage graphs with no non-

trivial symmetries. In this case, the theorem tells us that the normalizer of CT (p) in
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Γ(Xξ) must be CT (p) itself.

Recall that Π(X) denotes the fundamental groupoid of the graph X and Πx(X)

denotes the fundamental group of X based at vertex x. Note that since Xξ is con-

nected, Corollary 2.2.3 tells us that ξ restricted to a fundamental group Πx(X) is

onto, and therefore the functions τ# defined in Theorem 2.3.2 are defined in all their

domain.

Theorem 2.3.2. Let X be a connected graph and let ξ : Π(X) → G be a voltage

assignment such that there is a spanning tree T of X with trivial voltage on all its

darts and such that Xξ is connected. Let τ be an automorphism of X. Then the

following statements are all equivalent:

1. The automorphism τ lifts to an automorphism τ̃ of Xξ.

2. If two paths W,W ′ ∈ Π(X) have the same two end-points and the same voltage,

then Wτ and W ′τ also have the same voltage.

3. For some vertex x, if two closed paths W,W ′ ∈ Πx(X) have the same voltage,

then Wτ and W ′τ have the same voltage.

4. For every vertex x, if two closed paths W,W ′ ∈ Πx(X) have the same voltage,

then Wτ and W ′τ have the same voltage.

5. The function τ# : G → G given by ξ(W ) 7→ ξ(Wτ) whenever W ∈ Π(X) is

well defined and it is a group automorphism.

6. The function τ#
x : G → G given by ξ(W ) 7→ ξ(Wτ) whenever W ∈ Πx(X) for

some vertex x in X is well defined and it is a group automorphism.
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7. The function τ#
x : G → G given by ξ(W ) 7→ ξ(Wτ) whenever W ∈ Πx(X) for

every vertex x in X is well defined and it is a group automorphism.

8. For every vertex x ∈ X, if W ∈ Πx(X) is a path with trivial voltage, then

ξ(Wτ) = 1.

9. There is a vertex x ∈ X such that if W ∈ Πx(X) is a path with trivial voltage,

then ξ(Wτ) = 1.

Theorem 2.3.2 is the main result from [22]. We omit the proof here since it is not

the main focus of this thesis.

In some of our examples in Section 4.4 and in Chapter 5, we will find voltage

graphs with a single non-trivial automorphism τ . We will then use the equivalence

between conditions (5) and (1) of Theorem 2.3.2 to determine if the derived graph (in

our case a maniplex) admits a particular symmetry. Sometimes some other conditions

may be easier to check, but our examples will be simple enough that we can verify

right away if τ# is an automorphism or not.



Chapter 3

3-orbit polyhedra

In Theorem 1.5.3 and Proposition 1.5.2 we have seen sufficient and necessary con-

ditions on a set of generators of a group for it to be the automorphism group of a

regular polytope. These conditions take the form of relations and intersection prop-

erties. Cunningham, Del Ŕıo-Francos, Hubard and Toledo found in [5] analogous

relations for a set of generators of automorphism groups of 3-orbit polyhedra, that

is, 3-orbit abstract polytopes of rank 3. In this section we want to find analogous

intersection properties for 3-orbit polyhedra, to completely characterize their auto-

morphism groups. To do this we combine the techniques used for regular polytopes

in [7] with the ones used for 2-orbit polyhedra in [17].

Afterwards, in Chapter 4 we analyze how the intersection properties for each

symmetry type relate to their respective STG. We use this to generalize the results of

this chapter to find the intersection properties that characterize the automorphisms

groups of polytopes with any given symmetry type.
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First, in Section 3.1 we find all possible multi-maniplexes with 3 vertices. In

Section 3.2 we study the structure of the automorphism groups of 3-orbit polyhedra

in terms of generators and relations depending on the STG given in [5, Corollary 5.4].

In Section 3.3 we see how to reconstruct a 3-orbit polyhedron from its automorphism

group, again depending on its STG. In Section 3.4 we find the intersection properties

a group must satisfy to be the automorphism group of a 3-orbit polyhedron with

a given STG. In Section 3.5 we analyze some extra conditions that differentiate a

3-orbit polyhedron from a regular polyhedron with a subgroup of its automorphism

group acting with 3 orbits on flags. Finally, in Section 3.6 we apply the knowledge

acquired in previous sections to show that for almost every symmetric group Sn and

for every 3-vertex multi-maniplex X of rank 3, Sn is the automorphism group of a

3-orbit polyhedron with STG isomorphic to X.

3.1. Symmetry types

First we want to find all the possible multi-maniplexes with 3 vertices to analyze

them individually, since they are the possible STGs of 3-orbit polytopes. Then we

will restrict ourselves to rank 3.

In [27] Orbanić, Pellicer and Weiss classified 3-orbit maps, and in [5, Proposi-

tion 4.1] Cunningham, Del Ŕıo-Francos, Hubard and Toledo have classified 3-orbit

polytopes. Here we show the classification in [5] using the same notation as this

article.

Let X be a multi-maniplex with 3 vertices (any rank) and let x, y and z be its
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vertices. Since X is connected, at least one of its vertices, say y, should be adjacent

to the other 2. Suppose i is the color of an edge between x and y and j the color of

the edge between y and z. We claim that |i − j| = 1. If |i − j| > 1 then the path

W of length 4 starting at x following the color sequence ijij should end at x. We

know that after 2 steps the path W would be at z. There cannot be an edge of color

i between x and z because we already have an edge of that color incident to x. The

same happens with y and z. So the edge of color i incident to z must be a semi-edge,

which means that after 3 steps of W we would still be at z. Finally, when we take

the edge of color j incident to z we go back to y, contradicting that W ends at x.

This proves that |i − j| = 1. Moreover, we have proved that any two edges incident

to y either have the same endpoints or their colors differ by exactly 1.

Now we claim that there can be at most 3 links incident to y (two links incident to

y and x and one incident to y and z or vice versa). If there were three edges between

x and y at least one of them would have a color far from j. Analogously, there cannot

be three edges between y and z. If we had 2 edges on each side of y (2 to x and 2 to

y) two of them on different sides would have colors far apart.

Finally we claim that there cannot be any link between x and z. Suppose there

is a link of color i between x and y and one of color j between y and z. We have

proved that |i− j| = 1, so if there was a link of color k between x and z, then either

|i− k| > 1 or |j− k| > 1, and both things are impossible due to the previous analysis

replacing y with x or z respectively.

We have proved that up to isomorphism, the possible 3-vertex multi-maniplexes

are in one of the families illustrated in Figure 3.1. The names given here are the ones
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(a) The multi-maniplex 3i,i+1.
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(b) The multi-maniplex 3i.

Figure 3.1: Possible 3-vertex multi-maniplexes

that appear in [5, Section 4].

When we restrict ourselves to rank 3 we get only 3 possible multi-maniplexes,

namely 301, 312 and 31. They are illustrated on Figure 3.2.

Note that the multi-maniplexes 301 and 312 are duals of each other, so we may

study only one of them and each result will induce an analogous one for the other

multi-maniplex by duality. On the other hand, the multi-maniplex 31 is self-dual.

Typical examples of polyhedra with STG 312 are prisms over polygons other than

a square 1(see Figure 1.8). By duality, typical examples of polyhedra with STG 301

are bipyramids over polygons other than a square (which would give an octahedron).

Even though prisms are more intuitive to study than bipyramids, the author of this

thesis has chosen to focus on STG 301 instead of 312. The reasons shall be apparent

in Section 3.5.

Examples of polyhedra with STG 31 are the Petrie duals (which will be defined

1the prism over a square is combinatorially a cube which is regular
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(a) The multi-maniplex 301.
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(b) The multi-maniplex 312.
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(c) The multi-maniplex 31.

Figure 3.2: Possible 3-vertex multi-maniplexes of rank 3.
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shortly) of prisms over 4k-gons (with k > 1).

Given a convex polyhedron P , a Petrie polygon is a cyclic sequence of edges (1-

faces) such that 2 consecutive edges share a 2-face and a vertex (0-face), but any 3

consecutive edges do not share either. This definition can be generalized for abstract

polytopes, but for degenerate examples (with vertices of valency 2, for example) a

slightly different definition is required. If we make a flagged poset with the same

vertices and edges as P but where the 2-faces are the Petrie polygons, we get a new

poset Pπ called the Petrie dual of P , which may or may not be a polyhedron. In

fact it is even possible that the Petrie polygons of a polyhedron are not abstract

2-polytopes, as they may use the same vertex more than once violating the diamond

condition, and sometimes they might even repeat edges (which does not have any

meaning in a poset sense but it does on maps).

One can see that the Petrie dual of a regular polyhedron is a regular map, or in

other words, the automorphism group of a regular polyhedron acts transitively on

incident triplets {F0, F1, P} where F0 is a 0-face, F1 is a 1-face incident to F0 and P

is a Petrie polygon containing F1 and F0.

In the case of prisms, the Petrie dual of a p-gonal prism is a polyhedron if and

only if p is divisible by 4.

In terms of maniplexes, the Petrie dual Mπ of a 3-maniplex M is obtained by

replacing r0 with r0r2. When thought of as a graph, the Petrie dual of a 3-maniplex

M is constructed by erasing the edges of color 0 and adding new edges of color 0

between each flag and its 02-neighbor (the 2-neighbor of its 0-neighbor). The flag

graph of the Petrie dual of a polyhedron is the Petrie dual of its flag graph. If Pπ is
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not a polyhedron, then G(P)π is the flag graph of Pπ when it is thought of as a map.

Analogously one may define the Petrie dual of a multi-maniplex of rank 3, and the

Petrie dual of the STG of a maniplex (or polyhedron) is the STG of its Petrie-dual.

3.2. Generators and relations

The symmetry type of a polytope P is covered regularly by the flag graph of

P with covering transformation group Γ := Γ(P). This means that we can recover

the flag graph of P via a voltage assignment ξ with voltage group Γ, as discussed

in Section 2.2. Then, we may use Corollary 2.2.4 to obtain a generating set for the

group Γ. In this section we will do this to obtain distinguished generators of the

automorphism group of a 3-orbit polyhedron depending on its symmetry type graph.

3.2.1. Symmetry type 301

Let P be a polyhedron with symmetry type 301. In the multi-maniplex 301 there

is only one spanning tree: the one consisting of the two links, so we assign trivial

voltage to both of its edges. Let Φ be a base flag of the orbit x in Figure 3.2(a).

Then the base flags of the orbits y and z are Φ0 and Φ01 respectively. To assign

voltages to the semi-edges we consider the following automorphisms of P . Let αi

be the automorphism that maps Φ to Φi with i = 1, 2, let γ2 be the automorphism

that maps Φ0 to Φ02, and finally let βi be the automorphism that maps Φ01 to Φ01i

for i = 0, 2. We assign the voltage αi to the semi-edge of color i incident to x, γ2

to the semi-edge of color 2 incident to y and βi to the semi-edge of color i incident
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to z (see Figure 3.3). We can see that all these automorphisms are involutory by

examining what they do when applied twice to their respective base flags. For example

Φ0γ2
2 = (Φ02)γ2 = (Φ0γ2)2 = (Φ02)2 = Φ0. As established in Section 1.3, the action of

the automorphism group on the flags of a polytope must be free, so it is enough to

show that one flag is fixed to ensure that the automorphism is the identity. Note that

we can use the same argument used to prove the freedom of the action to determine

how these automorphisms act on any flag. For example, if we want to calculate Φβi

we write Φ as (Φ01)10, and therefore Φβi = (Φ01)10βi = (Φ01βi)
10 = Φ01i10. Notice

that βi maps the base flag Φ to the end-point of the path that is the lift of a closed

path with voltage βi.

α

γ

β

β
α

01

22

0

2

1

2

2

2

0

x y z

1

Figure 3.3: STG 301 with its voltage assignment.

Take for example a triangular bipyramid (see Figure 3.4). The flag Φ must be

a flag at a vertex of degree 3. We can see that α1, the automorphism that maps Φ

to its 1-adjacent flag, is the reflection on the plane orthogonal to the face Φ2 that

contains its opposite edge (Figure 3.4(a)), while α2 is a reflection on the plane that

contains the edge Φ1 and is orthogonal to the opposite faces (Figure 3.4(b)). In this

particular case, β0 coincides with α1 since this automorphism also maps Φ01 to its

0-adjacent flag (see Figure 3.4(c)). This happens only on polyhedra in which the

faces are triangles. Finally, β2 is a reflection on the plane that includes the triangle

on which the bipyramid is based (Figure 3.4(d)).
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Φ

(a) α1.

Φ

(b) α2.

Φ
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(c) β0.

Φ
01

(d) β2.

Figure 3.4: The generators of the automorphism group of a triangular bipyramid.
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(a) STG 301 with its standard voltage assignment.
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(b) STG 31 with its standard voltage assignment.

Figure 3.5: Possible symmetry type graphs of 3-orbit polyhedra together with their standard voltage
assignment.

Because G(P) should be a maniplex, the voltage of the two closed paths of T (P)

of length 4 with alternating colors 0 and 2 must be trivial. The path that follows

the colors 0202 starting at x has voltage α2γ2, and since we want this to be 1 we

get α2 = γ−1
2 = γ2. Similarly, the path that follows the colors 0202 starting at z has

voltage (β2β0)2 and using the fact β0 and β2 are involutions we get that this voltage

is 1 if and only if β0 and β2 commute. Thus, we get a voltage graph as the one in

Figure 3.5(a).

Therefore we have proven the following proposition:

Proposition 3.2.1. [5, Corollary 5.4] Let P be a polyhedron with symmetry type 301

and let Φ be a base flag of P. Then Γ(P) is generated by 4 automorphisms α1, α2, β0

and β2 acting on Φ as follows:

Φα1 = Φ1, Φα2 = Φ2, Φβ0 = Φ01010, Φβ2 = Φ01210,
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and satisfying, at least, the following relations:

α2
1 = α2

2 = β2
0 = β2

2 = (β0β2)2 = 1. (3.1)

We say that α1, α2, β0 and β2 are the distinguished generators of Γ(P) with respect

to Φ.

3.2.2. Symmetry type 31

If the symmetry type of P is 31, we have to choose one spanning tree to have trivial

voltage. Let us choose the one with the edge of color 0. Analogously to the process

we did before, we assign voltages to the other darts. However, this time instead of α2

we have to assign a voltage to the dart of color 2 that goes from x to y. This link tells

us that Φ0 and Φ2 are in the same orbit, so its voltage must be an automorphism that

maps Φ0 to Φ2. Let us call this automorphism α02. This is the voltage of the edge of

color 2 that connects x and y. In this case we get the voltage graph in Figure 3.5(b).

In Figure 3.6 we see a map of the so called {6, 3} type on the torus. This is an

example of a polyhedron with STG 31. The automorphism α1 that maps the base

flag Φ to its 1-adjacent flag is the reflection on the line that bisects the angle of the

2-face Φ2 at the vertex Φ0 (the purple line). The automorphism α02 that maps Φ0 to

Φ2 (and therefore maps Φ to Φ02) is a half-turn around the midpoint of the edge Φ1.

The automorphism β0 that maps Φ01 to its 0-adjacent flag (and therefore maps Φ to

Φ01010) is a reflection on the line orthogonal to the edge Φ01
1 that contains its midpoint

(the brown line). And finally, the automorphism β2 that maps Φ01 to its 2-adjacent
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ΦΦ

β
0

α
1 β

2
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02

Figure 3.6: A map of type {6, 3} on the torus with STG 31.

flag (and therefore maps Φ to Φ01210) is the reflection on the line containing the edge

Φ01
1 (the green line).

The fact that the paths of length 4 that alternate colors 0 and 2 must have trivial

voltage in this case tells us that α02 is also an involution and, again, that β0 and β2

commute. So we get the following proposition analogous to Proposition 3.2.1.

Proposition 3.2.2. [5, Corollary 5.4] Let P be a polyhedron with symmetry type 31

and let Φ be a base flag of P. Then Γ(P) is generated by 4 automorphisms α1, α02, β0

and β2 acting on Φ as follows:

Φα1 = Φ1, Φα02 = Φ02, Φβ0 = Φ01010, Φβ2 = Φ01210,
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and satisfying, at least, the following relations:

α2
1 = α2

02 = β2
0 = β2

2 = (β0β2)2 = 1. (3.2)

We say that α1, α02, β0 and β2 are the distinguished generators of Γ(P) with re-

spect to Φ.

3.3. Reconstruction with cosets

We discussed in Section 1.3 a natural way to recover the poset P from the graph

G(P) by taking the i-faces to be the connected components of the graph induced by

the edges of colors different than i, and defining two faces to be incident if and only

if they have non-empty intersection.

On the other hand, in Section 2.2 we discussed how to recover G(P) from T (P) us-

ing a voltage assignment, which we have concretely constructed for 3-orbit polyhedra

on Section 3.2. We want to concatenate these two constructions to get a reconstruc-

tion of P just by looking at the graphs in Figure 3.5. In what follows we give the

detail of such construction for each of the STG of 3-orbit polyhedra.

In this section we will assume that we have the STG of a 3-orbit polyhedron P ,

together with the defining relations of the distinguished generators of its automor-

phism group given in Propositions 3.2.1 and 3.2.2. Using this information, we shall

recover the polyhedron P .
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3.3.1. Symmetry type 301

Throughout this section we let P be a polyhedron with symmetry type 301. Let

Φ be the base flag of the orbit x (of Figure 3.2(a)), and let α1, α2, β0 and β2 be the

distinguished generators of Γ(P) with respect to Φ.

First, going back to Proposition 1.4.3, we see that P has two orbits of 0-faces, two

orbits of 1-faces and one orbit of 2-faces.

We consider the following subgroups of Γ(P):

Γ0 := 〈α1, α2〉, Γ′0 := 〈α2, β2〉, Γ1 := 〈α2〉,

Γ′1 := 〈β0, β2〉, Γ2 := 〈α1, β0〉. (3.3)

These groups are obtained by removing the edges of one color from STG 301,

choosing one connected component and then taking the voltages of closed paths based

on the leftmost possible vertex.

We claim that these subgroups are the stabilizers of faces of P (Figure 3.7): Γ0 is

the stabilizer of Φ0, the 0-face of Φ (blue vertex in Figure 3.7); Γ′0 is the stabilizer of

Φ0
0 = Φ01

0 (red vertex); Γ1 is the stabilizer of Φ1 = Φ0
1 (blue edge); Γ′1 is the stabilizer

of Φ01
1 (red edge); and Γ2 is the stabilizer of Φ2 = Φ0

2 = Φ01
2 (blue 2-face).

It is easy to see that each of these groups stabilizes the corresponding face of P .

To convince ourselves that the stabilizers are not any larger we go back to strong

connectedness. For example, let γ stabilize Φ0. Then there is a path W̃ from Φ to Φγ

that does not use the color 0. Its projection in T (P) = 301 is a closed path W based
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Φ

Figure 3.7: The distinguished subgroups are the stabilizers of the faces of the base flags, highlighted
in blue and red.

on x that does not use the color 0, and the voltage of W must be γ. The voltages of

such paths are exactly Γ0. The proof for the other stabilizers follows a similar fashion.

In the case of the triangular bipyramid (see Figure 3.4):

Γ0 is a copy of the dihedral group D3 generated by α1 and α2,

Γ1 is a cyclic group of order 2 generated by the reflection α2,

Γ′0 is a copy of the Klein 4-group generated by α2 and β2,

Γ1 is a copy of the Klein 4-group generated by β0 = α1 and β2,

Γ2 is a cyclic group of order 2 generated by α1 = β0.

Let F := {Φ−1,Φ0,Φ
0
0,Φ1,Φ

01
1 ,Φ2,Φ3} and C := {Γ−1,Γ0,Γ

′
0,Γ1,Γ

′
1,Γ2,Γ3} where

Γ−1 and Γ3 are two different formal copies of Γ. Then each element of C is the stabilizer

of an element of F . Define P ′ := {Aγ : A ∈ C, γ ∈ Γ(P)}. This shall be our base set.

Note that if Ψ = Φγ for some automorphism γ ∈ Γ, then the coset Γiγ is the set

of all the automorphisms that map the i-face of Φ to the i-face of Ψ. We get a similar
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result if Ψ = Φ0γ or Ψ = Φ01γ but replacing Γi by the respective stabilizer of the

i-face of Φ0 or Φ01. In other words we have the following lemma that shall be useful

to construct a new poset from the STG 301, that will turn out to be isomorphic to P .

Lemma 3.3.1. Let C = {Γ−1,Γ0,Γ
′
0,Γ1,Γ

′
1,Γ2,Γ3}, where the elements of C are

defined in (3.3) and Γ−1 and Γ3 are formal copies of Γ. Let Ω ∈ {Φ,Φ0,Φ01}, γ ∈

Γ(P) and Ψ = Ωγ. If A ∈ C is the stabilizer of Ωi, the i-face of Ω, then Aγ is the set

of all automorphisms that map Ωi to Ψi.

We have to define the order (incidence relation) on P ′, to show that P ′ is an

abstract polytope. Before doing so, we define the rank of the faces: the rank func-

tion is given by the subscript of the element of C, for example rank(Γ′0γ) = 0 and

rank(Γ2γ) = 2 for every γ ∈ Γ(P).

We are now ready to define the incidence relation. We say that two cosets Aσ

and Bτ , with σ, τ ∈ Γ(P) and A,B ∈ C, are incident if and only if Aσ ∩Bτ 6= ∅ and

{A,B} 6= {Γ0,Γ
′
1}. Now we define that Aσ < Bτ if and only if they are incident and

rank(Aσ) < rank(Bτ). To give an intuition to the origin of this restriction refer to

Figure 3.7, where we see that edges in the orbit of the red edge may never be incident

to vertices in the orbit of the blue vertex. We will give a more complete explanation

of the reasons behind this rule in Chapter 4.

Theorem 3.3.2. The pair (P ′, <) is an abstract polyhedron isomorphic to P.

Proof Note that we only need to show that there is a bijection φ between P and P ′

such that φ and φ−1 preserve the order, since that would show that the posets are

isomorphic, and hence P ′ is an abstract polyhedron.
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Before defining the bijection between P and P ′ observe that every i-face of P is in

the same orbit as one of the elements of F := {Φ0,Φ
0
0,Φ1,Φ

01
1 ,Φ2}. So let ψ : P → F

be the function that assigns to each i-face F of P , the face in F belonging to the

same orbit as F . In other words Fψ is the “representative” of F in F .

We are now ready to define φ : P → P ′ as follows. The image of an i-face F

of P under φ is the element in P ′ of rank i that consists of all the automorphisms

that map Fψ to F . In other words Fφ := Aγ where A = StabΓ(Fψ) and γ ∈ Γ is

an automorphism satisfying (Fψ)γ = F . By Lemma 3.3.1 φ is in fact a well-defined

function. The definition of ψ, together with Lemma 3.3.1, makes it clear that φ is a

bijection.

If F,G ∈ P are such that F < G with ranks i and j respectively (with i < j),

then there is a flag Ψ of P containing both of them. Such a flag is in one of the orbits

of Φ,Φ0 or Φ01. Then there is an automorphism γ that maps this base flag to Ψ.

Thus, γ maps the i-face of the base flag to F and the j-face of the base flag to G.

Symbolically this is, γ ∈ Fφ ∩Gφ, which implies that Fφ < Gφ.

On the other hand, if Fφ < Gφ then there exists γ ∈ Fφ ∩ Gφ. This γ satisfies

that Fφ = Aγ and Gφ = Bγ where A is the stabilizer of Fψ and B is the stabilizer

of Gψ. Note that since (A,B) 6= (Γ0,Γ
′
1), one of the base flags Φ = {Φ0,Φ1,Φ2},

Φ0 = {Φ0
0,Φ1,Φ2} and Φ01 = {Φ0

0,Φ
01
1 ,Φ2} contains the i-face stabilized by A and

the j-flag stabilized by B (there is no base flag containing Φ01
1 and Φ0

0). In other

words, γ maps the i-face of a base flag to F and the j-face of the same base flag to G.

The i and j-faces of such base flag are incident, and since γ is an automorphism, this

implies that F < G. Hence, φ is an order preserving bijection, and thus the theorem
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follows.

3.3.2. Symmetry type 31

Similarly as above, throughout this section we now let P be a polyhedron with

symmetry type 31. Let Φ be the base flag of the orbit x of Figure 3.5(b), and let

α1, α02, β0 and β2 the distinguished generators of Γ(P) with respect to Φ. For this

symmetry type we consider the following groups of Γ(P):

Γ0 := 〈α1, β
α02
2 〉, Γ1 := 〈α02〉,

Γ′1 := 〈β0, β2〉, Γ2 := 〈α1, β0〉, (3.4)

where the element as superscript denotes conjugation, that is xy := y−1xy. These

subgroups are obtained in the same way as those in (3.3).

In a similar way to what we did in Section 3.3.1, Γ0 is the stabilizer of Φ0, Γ1 is the

stabilizer of Φ1 = Φ0
1, Γ′1 is the stabilizer of Φ01

1 and Γ2 is the stabilizer of Φ2 = Φ0
2 =

Φ01
2 . Since Φ0

0α02 = Φ2
0 = Φ0

0, then the stabilizer of Φ0
0 = Φ01

0 is Γα02
0 = 〈αα02

1 , β2〉, the

conjugate of Γ0 by α02.

Let us go back to our example of the map in the torus. First let us notice that

in this particular case βα02
2 coincides with α1. In Figure 3.8 we can see that Φ0 (the

blue vertex) is stabilized only by α1 = βα02
2 and the identity. The edge Φ1 (the blue

edge) is stabilized only by α02 and the identity. The 2-face Φ2 (the blue face) is

stabilized by β0 and α1, and therefore by the Klein 4-group they generate. The edge

Φ01
1 is stabilized by β0 and β2 and therefore, by the Klein 4-group they generate. And
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Figure 3.8: The faces of a map of type {6, 3} on the torus stabilized by the groups in C.

finally, the vertex Φ0
0 (the red vertex) is stabilized only by β2 = αα02

1 and the identity.

Note that the stabilizer of the red vertex is the conjugate of the stabilizer of the blue

vertex by α02. This is because α02 maps the blue vertex to the red one.

Similarly as before we let C := {Γ−1,Γ0,Γ1,Γ
′
1,Γ2,Γ3} and F := {Φ0,Φ1,Φ

01
1 ,Φ2};

and define P ′ := {Aγ : A ∈ C, γ ∈ Γ(P)}. In this case we define the incidence relation

as follows:

We define that

Γ0σ < Γ1τ ⇔ Γ0σ ∩ Γ1τ 6= ∅.

Γ0σ < Γ′1τ ⇔ α02Γ0σ ∩ Γ′1τ 6= ∅.

Γ0σ < Γ2τ ⇔ (Γ0σ ∪ α02Γ0σ) ∩ Γ2τ 6= ∅.

Γ1σ < Γ2τ ⇔ Γ1σ ∩ Γ2τ 6= ∅.

Γ′1σ < Γ2τ ⇔ Γ′1σ ∩ Γ2τ 6= ∅.
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(3.5)

As usual, Γ−1 is defined to be the least element (and thus less than any other

element) and Γ3 the greatest element.

Theorem 3.3.3. The pair (P ′, <) is an abstract polyhedron isomorphic to P.

Proof As is the proof of Theorem 3.3.2, we only need to show that there is an

isomorphism between P and P ′ as posets. We shall define φ : P → P ′ by separating

two cases as follows:

If F is an element of a flag Ψ in the orbit x (the orbit of Φ), then let Fφ := Γiγ

where i is the rank of F and γ is such that Ψγ−1 = Φ.

If F is a 1-face such that for every flag Ψ containing F we have that Ψ and

Φ are in different orbits, then there exists γ ∈ Γ(P) such that Φ01γ is a flag

containing F . In this case, let Fφ := Γ′1γ.

We claim that this φ is a well defined isomorphism between the posets.

First note that all the elements of P have an image under φ. This is true as the

STG of P is 31 which implies that P is vertex and face transitive, and it has exactly

two orbits of edges, namely the orbits of Φ1 and Φ01
1 (see Proposition 1.4.3). Thus, it

is clear that φ is a well-defined bijection between P and P ′.

Let F and G be, respectively, an i-face and a j-face of P with i < j. If F < G,

there is a flag Ψ that contains both F and G. We divide the analysis in cases,

depending on the orbit of Ψ.
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Case I: If Ψ = Φγ for some γ ∈ Γ(P), then by the definition of φ, Fφ = Γiγ and

Gφ = Γjγ, so γ ∈ Γiγ ∩ Γjγ = Fφ ∩Gφ and thus Fφ < Gφ.

Case II: Suppose now that Ψ = Φ0γ for γ ∈ Γ. If (i, j) = (1, 2), then Ψ0 also

contains F and G, and Ψ0 = Φγ, so we are back to the previous case. Otherwise

i = 0. Note that Ψ2 also contains F and

Ψ2 = (Φ0γ)2 = Φ02γ = Φα02γ,

so Fφ = Γ0α02γ. On the other hand, since Ψj = Ψ0
j for j 6= 0, then Ψ0 = Φγ contains

G no matter if j is 1 or 2, and hence Gφ = Γjγ.

If j = 1, since Γ1 = 〈α02〉 we know that α02γ ∈ Γ0α02γ ∩Γ1γ, which is saying that

Γ0α02γ < Γ1γ, and this means that Fφ < Gφ. If j = 2 we have γ ∈ Γα02
0 γ ∩ Γ2γ ⊂

(Γ0α02γ ∪α02(Γ2α02γ))∩Γ2γ 6= ∅ which is saying that Γ0α02γ < Γ2γ, and this means

that Fφ < Gφ.

Case III: The third case is when Ψ = Φ01γ. If i = 0, similarly as in the previous

case we get that Ψ12 = Φα02γ, and then Fφ = Γ0α02γ. If j = 2 we get again that

Gφ = Γ2γ; and if i = 1 (resp. j = 1), then Fφ = Γ′1γ (resp. Gφ = Γ′1γ). In every

case Fφ < Gφ with γ as witness of the non-empty intersection.

Now assume that Fφ < Gφ. To prove that F < G one would have to study many

cases, but they are all analogous to corresponding cases of the implication we already

proved. For example, suppose Fφ = Γ0σ and Gφ = Γ2τ with α02Γ0σ ∩ Γ2τ 6= ∅. Let

γ ∈ α02Γ0σ ∩ Γ2τ . Then (Φγ)0 = (Φα02γ)2 is a flag that contains both G and F ,

implying that F < G. The other cases follow in a similar fashion.
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3.4. Intersection properties

Now we want to characterize which groups are automorphism groups 3-orbit poly-

hedra. For starters, they need to be generated by 4 involutions, two of which com-

mute. But this is not sufficient. The set of automorphisms that map a given chain to

another chain, must be the intersection of the sets of automorphisms that map each

face of the first chain to the face of the second chain with the same rank. This simple

fact can be used to deduce the following two propositions.

Proposition 3.4.1. Let P be a 3-orbit polyhedron with STG 301 with a base flag Φ

in the orbit x (of Figure 3.5(a)), and let α1, α2, β0, β2 be the distinguished generators

of Γ := Γ(P) with respect to Φ. For each i ∈ {0, 1, 2}, let Γi and Γ′i be as in (3.3).

Then the following properties are satisfied.

Γ0 ∩ Γ1 = 〈α2〉, Γ′0 ∩ Γ1 = 〈α2〉, Γ′0 ∩ Γ′1 = 〈β2〉, Γ0 ∩ Γ2 = 〈α1〉,

Γ′0 ∩ Γ2 = 1, Γ1 ∩ Γ2 = 1, Γ′1 ∩ Γ2 = 〈β0〉. (3.6)

Here we have used the simplified notation 1 to denote the trivial group {1} and

we stick to this convention for the rest of the thesis.

Proof Let Ψ ∈ {Φ,Φ0,Φ01} and let F < G be two faces of Ψ. Consider an automor-

phism γ that is in both the stabilizer of F and the stabilizer of G. Since each flag has

exactly 5 faces, counting the least and greatest faces, then Ψγ has the same faces as

Ψ except for (maybe) one. Hence, γ must be either the identity or an automorphism

that maps Ψ to its i-adjacent flag where i ∈ {0, 1, 2} \ {rank(F ), rank(G)}. Each
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possible choice for Ψ and i (9 options) gives one of the intersections in (3.6) (some

of them more than once).

The properties in (3.6) shall be called the intersection properties of class 301.

Proposition 3.4.2. Let P be a 3-orbit polyhedron with STG 31 with a base flag Φ in

the orbit x (of Figure 3.5(b)), and let Γ = 〈α1, α02, β0, β2〉 be its automorphism group

with its set of distinguished generators with respect to Φ. Let Γi, for i ∈ {0, 1, 2}, and

Γ′1 be as in (3.4). Then the following properties are satisfied.

Γ0 ∩ Γ1 = 1, Γα02
0 ∩ Γ′1 = 〈β2〉, Γ0 ∩ Γ2 = 〈α1〉, α02Γ0 ∩ Γ2 = ∅,

Γα02
0 ∩ Γ2 = 1, Γ1 ∩ Γ2 = 1, Γ′1 ∩ Γ2 = 〈β0〉. (3.7)

Proof Most of these properties are proved in complete analogy to Proposition 3.4.1.

The only exception would be α02Γ0 ∩ Γ2 = ∅, so we only give the details of this one.

Suppose there exists γ ∈ α02Γ0 ∩ Γ2. Then γ = α02γ0 for some γ0 ∈ Γ0. This implies

that Φ0γ = Φ0α02γ0 = Φ2γ0 has the same 0-face as Φ. On the other hand, since

γ ∈ Γ2, then Φ0γ has the same 2-face as Φ. So Φ0γ should be either Φ or Φ1, but

none of them are on the same orbit as Φ0, so we reached a contradiction.

The properties in (3.7) shall be called the intersection properties of class 31.

We have proved that in order for a group to be the automorphism group of a 3-

orbit polyhedron it must be generated by four involutions, two of which commute, and

that satisfy the intersection properties of the corresponding symmetry type. Now we
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want to prove that these conditions are enough to ensure that there is a polyhedron

in which the given group acts by automorphisms with three orbits on flags and the

desired symmetry type graph.

To construct such polyhedron we apply the methods we used to construct P ′ in

Section 3.3.

3.4.1. Symmetry type 301

In this section we prove the following theorem:

Theorem 3.4.3. Let Γ be a group with a distinguished set of generators {α1, α2, β0, β2}

which are all involutions satisfying that β0β2 is also an involution, as well as the

intersection properties (3.6). Then there is a polyhedron P(Γ) in which Γ acts by

automorphisms with 3 flag orbits arranged as in symmetry type graph 301.

By using the subgroups in (3.3), we define P(Γ) in the exact same way as we

defined P ′ in Section 3.3.1. That is, we set

Γ0 := 〈α1, α2〉, Γ′0 := 〈α2, β2〉, Γ1 := 〈α2〉,

Γ′1 := 〈β0, β2〉, Γ2 := 〈α1, β0〉.

Let C := {Γ−1,Γ0,Γ
′
0,Γ1,Γ

′
1,Γ2,Γ3}, where Γ−1 and Γ3 are different formal copies

of Γ, and define

P(Γ) := {Aγ : A ∈ C, γ ∈ Γ}.
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For A,B ∈ C and σ, τ ∈ Γ, we define:

Aσ < Bτ ⇔ rank(A) < rank(B), Aσ ∩Bτ 6= ∅ and {A,B} 6= {Γ0,Γ
′
1}.

As before, rank(A) is the subscript of the element of C. First we need to prove

that this is in fact a polyhedron.

The first step is to verify that “ < ” is a strict partial order on P(Γ).

Lemma 3.4.4. (P(Γ), <) is a flagged poset.

Proof By definition ” < ” is irreflexive, so we only need to prove that it is transitive.

Since we are in rank 3, given three elements F0, F1, F2 which are not the least or

greatest element with F0 < F1 and F1 < F2, each Fi must have rank i. So there are

two cases to consider: when F1 is a coset of Γ1 and when it is a coset of Γ′1.

Start by assuming that Aσ < Γ1τ with A ∈ {Γ0,Γ
′
0}, and Γ1τ < Γ2ζ. We

want to prove that Aσ < Γ2ζ. Note that by the definition of the subgroups in C,

Γ1 = 〈α2〉 and α2 ∈ Γ0 ∩ Γ′0. Hence, Γ1 ⊂ A. Since Aσ < Γ1τ , there exist γ0 ∈ A

and γ1 ∈ Γ1 such that γ0σ = γ1τ , so that στ−1 = γ−1
0 γ1. On the other hand,

since Γ1τ < Γ2ζ, then we have that τζ−1 = γ′1γ2 for some γ′1 ∈ Γ1 and γ2 ∈ Γ2. Then

σζ−1 = στ−1τζ−1 = γ−1
0 γ1γ

′
1γ2. But we know that Γ1 ⊂ A and thus η := γ−1

0 γ1γ
′
1 ∈ A.

This implies that η−1σ = γ2ζ ∈ Aσ ∩ Γ2ζ, so Aσ < Γ2ζ.

Suppose now that Γ′0σ < Γ′1τ and Γ′1τ < Γ2ζ. Similarly to the previous case we

have that there exist γ0 ∈ Γ′0, γ1 ∈ Γ′1 and γ2 ∈ Γ2 such that σζ−1 = γ0γ1γ2. By

definition, Γ′1 = 〈β0, β2〉, and β0 and β2 are commuting involutions, which implies

that there exist ε, δ ∈ {0, 1} such that γ1 = βδ2β
ε
0. Recall also that Γ′0 = 〈α2, β2〉 and
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Γ2 = 〈α1, β0〉, so if we define η := γ0β
δ
2 and ζ := βε0γ2, then η ∈ Γ′0 and ζ ∈ Γ2. Hence,

η−1σ = ζζ, implying that Γ′0σ < Γ2ζ.

We have proven that P(Γ) is in fact a poset. We next need to prove that it is a

flagged poset, that is, that chains can be extended to have 3 elements (plus the least

and greatest element). We shall only show that a chain with faces of ranks 0 and 2

can be extended to a chain with a face of each rank, since the definition of the order

relation makes the other cases obvious. Let A ∈ {Γ0,Γ
′
0}, and let σ, ζ ∈ Γ be such

that Aσ < Γ2ζ. Thus, there exists τ ∈ Aσ ∩ Γ2ζ, which serves as the witness that

Aσ < Bτ < Γ2ζ, where B = Γ1 if A = Γ0 and B = Γ′1 if A = Γ′0.

It is straightforward to see that by the definition of the incidence relations on

P(Γ), the elements of Γ act as automorphisms (order preserving bijections) of the

poset P(Γ), when multiplied on the right.

The following lemma shall make the rest of the proof of Theorem 3.4.3 a little

easier. Note that, for convenience, in what follows we omit the greatest and the least

elements of each flag.

Lemma 3.4.5. Every flag of P(Γ) is in the same orbit as one of the flags {Γ0,Γ1,Γ2},

{Γ′0,Γ1,Γ2} or {Γ′0,Γ′1,Γ2}.

Proof We divide the proof in two cases, depending on the type of 1-face of the flag.

Let us start by considering a flag Ψ of the type {Aσ,Γ1τ,Γ2ζ} with A ∈ {Γ0,Γ
′
0}.

Note that Γ1 = 〈α2〉, with α2 an involution, and Γ1τ < Γ2ζ. Hence, there exists

ε ∈ {0, 1} such that τ̃ := αε2τ ∈ Γ2ζ.

On the other hand, since Aσ < Γ1τ , there exists γ0 ∈ A and δ ∈ {0, 1} such that
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γ0σ = αδ2τ . The fact that α2 ∈ A, implies that αδ2γ0σ ∈ Aσ which in turn gives us

that τ ∈ Aσ. Multiplying on the left by αε2 we get that τ̃ ∈ Aσ.

Thus Ψ = {Aσ,Γ1τ,Γ2ζ} = {Aτ̃ ,Γ1τ̃ ,Γ2τ̃} = {A,Γ1,Γ2}τ̃ which implies that Ψ

is either in the orbit of {Γ0,Γ1,Γ2} or in the orbit of of {Γ′0,Γ1,Γ2}.

If now Ψ is a flag of the type {Γ′0σ,Γ′1τ,Γ2ζ}, by the definition of Γ′1 we get that

βθ2β
δ
0τ ∈ Γ′0σ for some δ, θ ∈ {0, 1} (recall that β0 and β2 are commuting involutions).

Multiplying on the left by βθ2 we get that βδ0τ ∈ Γ′0σ, as β2 ∈ Γ′0. This implies that

Γ′0σ = Γ′0β
δ
0τ .

Similarly, there is some ε ∈ {0, 1} such that βε2τ ∈ Γ2ζ, and thus Γ2ζ = Γ2β
ε
2τ .

By defining τ̃ := βδ0β
ε
2τ we get that Ψ = {Γ′0,Γ′1,Γ2}τ̃ (again, recall that β0 and β2

are commuting involutions).

Hence Ψ is in the same orbit as {Γ′0,Γ′1,Γ2}, which settles the lemma.

Now let us show that Γ acts freely on the flags of P(Γ). Let Ψ = {A,B,Γ2},

with A ∈ {Γ0,Γ
′
0} and B ∈ {Γ1,Γ

′
1} be a base flag (this implies in particular that

(A,B) 6= (Γ0,Γ
′
1)), and let γ ∈ Γ be such that Ψγ = Ψ. Then γ ∈ A ∩ B ∩ Γ2. The

intersection properties (3.6) imply immediately that if B = Γ1, then γ = 1. They also

imply that β0 6= β2, since Γ′0 ∩ Γ2 = 1, which in turn also implies that when B = Γ′1

we have that γ = 1. This, together with Lemma 3.4.5 tells us that the action of Γ is

in fact free on the set of all flags of P(Γ), and thus Γ can be regarded as a subgroup

of the automorphism group of P(Γ).

We now turn our attention to see that P(Γ) satisfies the diamond condition.

Lemma 3.4.6. P(Γ) satisfies the diamond condition.
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Proof Because of Lemma 3.4.5 we only need to prove that the diamond condition is

satisfied when the faces F and G, such that F < G and their ranks differ in two, are

both in C. So let F,G ∈ C be two incident faces with their ranks differing by 2. We

need to show that there are exactly two faces H1 and H2 such that F < Hi < G.

We start by assuming that Γ−1 < Aσ < Γ1, with A ∈ {Γ0,Γ
′
0}. Since Aσ∩Γ1 6= ∅,

without loss of generality we may assume that σ ∈ Γ1. Recall that by definition

Γ1 ⊂ A, so we have that Aσ = A. Hence the only two elements of rank 0 in P(Γ)

that are incident to Γ−1 and Γ1 are Γ0 and Γ′0. These two groups are different since

α1 ∈ Γ0 but by the intersection condition Γ′0 ∩ Γ2 = 1 we know that α1 /∈ Γ′0. This

settles the diamond condition when F is the least face and G = Γ1, as Γ−1 ∩Aσ 6= ∅

for all σ ∈ Γ and A ∈ {Γ0,Γ
′
0}.

It is easy to see that Γ1 < Γ2σ < Γ3 if and only if Γ2σ ∈ {Γ2,Γ2α2}. Because of

the intersection property Γ1 ∩ Γ2 = 1, we know that α2 /∈ Γ2, so these two cosets are

different and the diamond condition is satisfied when F = Γ1 and G is the greatest

element.

Suppose now that F = Γ−1 and G = Γ′1, and let Γ−1 < Aσ < Γ′1. Then A = Γ′0 and

without loss of generality we may assume that σ ∈ Γ′1. By definition of the groups,

and because β0 and β2 are commuting involutions, we have that Γ′1 = {1, β0, β2, β0β2},

so σ must be one of these four elements. Since β2 ∈ Γ′0 we get that Γ′0σ ∈ {Γ′0,Γ′0β0}.

The intersection property Γ′0 ∩ Γ2 = 1 implies that β0 /∈ Γ′0 and thus these two cosets

are different.

The argument for the case when F = Γ′1 and G = Γ3 is similar to the previous

one, as one can see that Γ′1 < Γ2σ if and only if Γ2σ ∈ {Γ2,Γ2β2}, and these two
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cosets are different because of the intersection property Γ′1 ∩ Γ2 = 〈β0〉.

If now we have that F = Γ0 < Γ1σ < Γ2 = G, Lemma 3.4.5 lets us assume that

σ ∈ Γ0 ∩ Γ2. By the intersection property Γ0 ∩ Γ2 = 〈α1〉, we have that σ = 1 or

σ = α1 (recall that α1 is an involution) and thus, Γ1σ ∈ {Γ1,Γ1α1}. These two cosets

are different because of the intersection property Γ1 ∩ Γ2 = 1, which implies that

α1 6= α2 and that that α1 /∈ Γ1.

The last case to consider is when F = Γ′0 < Bσ < Γ2 = G, with B ∈ {Γ1,Γ
′
1}. By

Lemma 3.4.5 we can assume that σ ∈ Γ′0 ∩ Γ2, which by the intersection property is

trivial. Then Bσ ∈ {Γ1,Γ
′
1}. Since β0 6= β2 we know that Γ′1 has order 4, so it must

be different from Γ1 which has order 2.

Figure 3.9 summarizes the diamond conditions for STG 301.

By Lemma 3.4.6 we know that in the flag graph of P(Γ) each flag is incident to

an edge of each color in {0,1,2}, and because P(Γ) is a poset, then for any flag Ψ we

have that Ψ02 = Ψ20. This means that once we prove that P(Γ) is connected we will

know that it is in fact a maniplex. Until then, we only know that it is the disjoint

union of maniplexes.

If we define Φ to be the flag {Γ0,Γ1,Γ2}, then Figure 3.9 shows that Φ0 =

{Γ′0,Γ1,Γ2} and Φ01 = {Γ′0,Γ′1,Γ2}. We note here that no element of Γ can take

Φ to Φ0 or to Φ01, and no element of Γ can take Φ0 to Φ01. Of course this does not

imply that these three flags are under different orbits of the automorphism group of

P(Γ), it just implies that they are in different orbits under the action of Γ. Note also

that Figure 3.9 and the definition of the elements of C imply that in fact
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0-adjacencies:

Γ1τ

Γ0τ Γ′0τ

Γ−1

Γ′1τ

Γ′0τ Γ′0β0τ

Γ−1

1-adjacencies:

Γ2τ

Γ1τ Γ1α1τ

Γ0τ

Γ2τ

Γ1τ Γ′1τ

Γ′0τ

2-adjacencies:

Γ3

Γ2τ Γ2α2τ

Γ1τ

Γ3

Γ2τ Γ2β2τ

Γ′1τ

Figure 3.9: Summary of the diamond condition for the class 301.
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Φαi = Φi for i = 1, 2,

Φ0α2 = Φ02,

Φ01βj = Φ01j for j = 0, 2. (3.8)

Hence the i-adjacent flag to Φ is in the same orbit as Φ, for i = 1, 2; the 2-adjacent

flag to Φ0 is in the same orbit as Φ0; and the j-adjacent flags to Φ01 are in the same

orbit as Φ01, for j = 0, 2. We have therefore established the following result.

Lemma 3.4.7. The group Γ is a group of automorphisms of P(Γ) that acts with three

flag orbits and symmetry type 301.

Recall that we can use (3.8) and the fact that automorphisms commute with

monodromies to determine how do the distinguished generators act on any of the

base flags:

Φαi = Φi Φ0αi = Φi0 Φ01αi = Φi01 for i = 1, 2.

Φβj = Φ01j10 Φ0βi = Φ01i1 Φ01βj = Φ01j for j = 0, 2. (3.9)

We still need to prove that P(Γ) is strongly flag connected. To do this, we see the

sequences of adjacent flags of P(Γ) as paths on its flag graph. Note that since all the

elements in C are subgroups of Γ, we have that if A ∈ C then StabΓ(A) = A.

Lemma 3.4.8. P(Γ) is strongly flag connected
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Proof Let B := {Φ,Φ0,Φ01} be the set of base flags. Let Ψ and Ψ′ be two flags of

P(Γ) and let K be the set of ranks of the faces in their intersection Ψ∩Ψ′. We want

to find a path connecting Ψ and Ψ′ that does not use colors in K.

By Lemma 3.4.5 there exists τ ∈ Γ such that Ψτ ∈ B. If we find a path W

connecting Ψτ and Ψ′τ , then Wτ−1 is a path connecting Ψ and Ψ′ using the same

colors. Note that K is also the set of ranks of the faces that Ψτ and Ψ′τ have in

common. So, without loss of generality, we can assume that Ψ ∈ B. We analyze

different cases, depending on the cardinality of K. Note that −1 and 3 are always in

K so |K| ≥ 2.

We start with the case when |K| = 2, that is K = {−1, 3}. By Lemma 3.4.5

there exists τ ′ ∈ Γ such that Ψ′τ ′ ∈ B. We know that Γ is generated by α1, α2, β0, β2,

so we can express τ ′ as a product of these elements. Then (3.9) together with the

fact that Ωiγ = (Ωγ)i, for every flag Ω, every γ ∈ Γ and i ∈ {0, 1, 2}, tells us that

there is a path from Ψ′ to Ψ′τ ′. This path is determined by the way τ ′ is expressed

in terms of α1, α2, β0 and β2 (see (3.9)), for example, if τ ′ = αiβj and Ψ′τ ′ = Φ, then

Ψ′ = Φβjαi = Φ01j10αi = Φi01j10. Since both Ψ and Ψ′τ are elements of B, there is

a path between them (of length at most two). The concatenation of these two paths

gives us one from Ψ′ to Ψ. Since K has no elements different from −1 and 3, there is

no condition on the colors of the edges of this path that needs to be satisfied.

Let us now consider the case |K| = 3, that is K = {−1, i, 3}, for some i ∈

{0, 1, 2}. Then the i-face Ψ′i of Ψ′ coincides with the i-face Ψi of Ψ. Since Ψ ∈ B,

then Ψ′i = Ψi ∈ {Γ0,Γ
′
0,Γ1,Γ

′
1,Γ2}. By Lemma 3.4.5 there exists σ ∈ Γ such that

Ψ′σ ∈ B. Note that the i-face of Ψ′σ is Ψ′iσ, but since Ψ′σ ∈ B, then Ψ′iσ must be in
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{Γ0,Γ
′
0,Γ1,Γ

′
1,Γ2} and since σ cannot exchange Γi with Γ′i, then Ψ′iσ must be equal

to Ψi. Therefore σ ∈ StabΓ(Ψi) = Ψi. The definition of B implies that between any

two elements of B there is a path of length at most two. Furthermore, if the two

elements coincide in a face of rank i, then, since Γ acts on P(Γ) with symmetry type

301, such a path does not have edges of color i. This implies that there is a path (of

length at most two) between Ψ and Ψ′σ without the undesired color. On the other

hand, using (3.9) one can see that the elements of the group Ψi map the base flag

Ψ′σ with i-face Ψi to a flag connected to it by a path that does not use the color i.

Thus, since σ−1 ∈ Ψi, there is a path from Ψ′ to Ψ′σ that does not use the color i.

Concatenating these two paths we obtain a path from Ψ to Ψ′ without colors in K.

Finally, if K has exactly two elements (other than −1 and 3), then Ψ′ is i-adjacent

to Ψ with i /∈ K, so the dart of color i starting in Ψ finishes in Ψ′ and we are done.

Lemmas 3.4.6, 3.4.7, and 3.4.8 give us the proof of Theorem 3.4.3.

3.4.2. Symmetry type 31

In this section we turn our attention to the symmetry type 31 and show, for this

type, an analogous theorem to Theorem 3.4.3:

Theorem 3.4.9. Let Γ be a group with a distinguished set of generators {α1, α02, β0, β2}

which are all involutions satisfying that β0β2 is also an involution, as well as the

intersection properties (3.7). Then there is a polyhedron P(Γ) in which Γ acts by

automorphisms with 3 flag orbits arranged as in symmetry type graph 31.
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Again, recall that

Γ0 = 〈α1, β
α02
2 〉, Γ1 = 〈α02〉, Γ′1 = 〈β0, β2〉 and Γ2 = 〈α1, β0〉,

and these subgroups satisfy the intersection properties (3.7). In a similar way to the

previous case, we set C := {Γ−1,Γ0,Γ1,Γ
′
1,Γ2,Γ3} and define

P(Γ) := {Aγ : A ∈ C, γ ∈ Γ}. (3.10)

The order relation in P(Γ) is defined as follows.

Γ0σ < Γ1τ if and only if Γ0σ ∩ Γ1τ 6= ∅;

Γ0σ < Γ′1τ if and only if α02Γ0σ ∩ Γ′1τ 6= ∅;

Γ0σ < Γ2ζ if and only if (Γ0σ ∪ α02Γ0σ) ∩ Γ2ζ 6= ∅;

Aτ < Γ2ζ if and only if Aτ ∩ Γ2ζ 6= ∅, for A ∈ {Γ1,Γ
′
1}. (3.11)

Lemma 3.4.10. The set P(Γ) given in (3.10) with the order (3.11) is a poset and the

elements of Γ act on it on the right as poset automorphisms. This action is transitive

on the elements of rank 0 and 2, while it has two orbits on elements of rank 1.

Proof The only interesting part of showing that P(Γ) is a poset is the transitivity,

and there are two cases to check, depending on the type of the 1-face. Let σ, τ, ζ ∈ Γ

be such that Γ0σ < Γ1τ and Γ1τ < Γ2ζ. Since Γ0σ < Γ1τ and α02 is an involution,

there exist γ0 ∈ Γ0 and ε ∈ {0, 1} such that γ0σ = αε02τ . On the other hand,

Γ1τ < Γ2ζ implies that there exist δ ∈ {0, 1} and γ2 ∈ Γ2 such that αδ02τ = γ2ζ. If
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ε = δ, then γ0σ = γ2ζ ∈ Γ0σ ∩ Γ2ζ, and hence Γ0σ < Γ2ζ. Otherwise {ε, δ} = {0, 1}

and therefore α02γ0σ = γ2ζ ∈ α02Γ0σ ∩ Γ2ζ, which again implies that Γ0σ < Γ2ζ.

For the second case we now let σ, τ, ζ ∈ Γ be such that Γ0σ < Γ′1τ and Γ′1τ < Γ2ζ.

In this case Γ0σ < Γ′1τ implies that there exist γ0 ∈ Γ0 and γ1 ∈ Γ′1 such that

α02γ0σ = γ1τ . And Γ′1τ < Γ2ζ implies that there exist γ′1 ∈ Γ′1 and γ2 ∈ Γ2 such

that τ = γ′1γ2ζ. Thus we have that α02γ0σ = γ1γ
′
1γ2ζ. Recall that Γ′1 = 〈β0, β2〉

and that these generators are commuting involutions. Hence, γ1γ
′
1 = βε2β

δ
0 for some

ε, δ ∈ {0, 1}. Then α02γ0σ = βε2β
δ
0γ2ζ. Multiplying on the left by βε2 and setting

γ′0 := (βα02
2 )εγ0 = (βε2)α02γ0 ∈ Γ0 and γ′2 := βδ0γ2 ∈ Γ2 we get that α02γ

′
0σ = γ′2ζ.

Then α02Γ0σ ∩ Γ2ζ 6= ∅, so Γ0σ < Γ2ζ.

By the definition of the order of P(Γ) it is immediate that Γ acts by automorphisms

on the poset, that the action is transitive on elements of ranks 0 and 2 and that it

has at most two orbits of elements of rank 1. To see that it has exactly two orbits of

elements of rank 1 we need to show that there is no element of Γ mapping Γ1 to Γ′1.

In fact, if such an element σ exists, then Γ1σ = Γ′1, which cannot happen since they

have different cardinalities. Then Γ has exactly two orbits on the elements of rank 1

of P(Γ).

Note that Lemma 3.4.10 does not imply that the automorphism group of P(Γ)

does not act transitively on the elements of rank 1, but only that Γ itself does not.

Now we want to prove that P(Γ) is a flagged poset. For this we first need to show

that every maximal chain Φ of P(Γ) must have at least two elements (in addition to

the least and greatest elements): let A,B ∈ C, with rank(A) < rank(B) (recall that

the function rank is indicated by the subscript) and let τ ∈ Γ. Then Aτ is incident
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to Bτ , except in the case when {A,B} = {Γ0,Γ
′
1}. Also, Aτ is incident to Bα02τ ,

except in the case when {A,B} = {Γ′1,Γ2}. This implies that every chain with one

non trivial element can be easily extended to a chain with two non trivial elements.

Hence, we only need to show that any chain with two elements can be extended to a

chain with three elements (in addition to the least and greatest elements).

Let Aσ < Bτ be two incident elements of P(Γ). Start by noticing that if A = Γ1,

then Γ0σ < Γ1σ and by Lemma 3.4.10, {Γ0σ,Γ1σ,Γ2τ} is a chain. A similar argument

holds when B = Γ1, so that {Γ0σ,Γ1τ,Γ2τ} is a chain. If now A = Γ′1 (resp. B = Γ′1),

then {Γ0α02σ,Γ
′
1σ,Γ2τ} (resp. {Γ0σ,Γ

′
1τ,Γ2τ}) is a chain. Finally, if A = Γ0 and

B = Γ2, then there exists ζ ∈ (Γ0σ∪α02Γ0σ)∩Γ2τ , so we analyze two cases depending

on whether ζ is in Γ0σ∩Γ2τ or in α02Γ0σ∩Γ2τ . First note that in both cases ζ ∈ Γ2τ ,

and thus Γ2ζ = Γ2τ . Now, if ζ ∈ Γ0σ, then Γ0ζ = Γ0σ, and therefore {Γ0σ,Γ1ζ,Γ2τ}

is a chain. On the other hand, if ζ ∈ α02Γ0σ, then α02ζ = γ0σ, for some γ0 ∈ Γ0,

which implies that Γ0σ = Γ0γ0σ < Γ1γ0σ = Γ1α02ζ = Γ1ζ. Hence {Γ0σ,Γ1ζ,Γ2τ} is

again a chain. We have thus showed that (P , <) is a flagged poset.

Now we turn our attention to the diamond condition.

Lemma 3.4.11. The flagged poset P(Γ) satisfies the diamond condition.

Proof Recall that Γ1 = 〈α02〉 where α02 is an involution, and Γ′1 = 〈β0, β2〉 where β0

and β2 are commuting involutions.

We start by showing that there are exactly two elements of rank 0, and two of

rank 2 incident to each element of rank 1. Of course, since there are two orbits of

elements of rank 1 under Γ, then there are two cases to consider here.
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Consider first a face Γ1τ . We have that Γ0σ < Γ1τ if and only if αε02τ ∈ Γ0σ for

some ε ∈ {0, 1}, and this is equivalent to Γ0σ ∈ {Γ0τ,Γ0α02τ}. According to the

intersection property Γ0∩Γ1 = 1, these two cosets are different. Similarly, Γ1τ < Γ2ζ

if and only if Γ2ζ ∈ {Γ2τ,Γ2α02τ}, and these two cosets are different because of the

intersection property Γ1 ∩ Γ2 = 1. We have found the 0-adjacent flag of a flag with

1-face Γ1τ (see Figure 3.10).

Now let us consider a face of the form Γ′1τ . Then Γ0σ < Γ′1τ if and only if

α02γ0σ = βε2β
δ
0τ for some ε, δ ∈ {0, 1} and some γ0 ∈ Γo. Multiplying on the left by

α02β
ε
2 we get that γ′0σ = α02β

δ
0τ for some γ′0 ∈ Γ0, so Γ0σ ∈ {Γ0α02τ,Γ0α02β0τ}. The

intersection properties Γα02
0 ∩Γ2 = 1 (which implies that β0 6= β2) and Γα02

0 ∩Γ′1 = 〈β2〉

imply that these two cosets are different. We have found the 0-adjacent flag of a flag

with 1-face Γ′1τ (see Figure 3.10).

In a similar way, Γ′1τ < Γ2ζ if and only if Γ2ζ ∈ {Γ2τ,Γ2β2τ}, and these two cosets

are different because of the intersection property Γ′1 ∩ Γ2 = 〈β0〉. We have found the

2-adjacent flag of a flag with 1-face Γ1τ (see Figure 3.10).

Now consider two incident faces Γ0σ < Γ2ζ. We need to show that there are

exactly two 1-faces incident to both Γ0σ and Γ2ζ. By the definition of the order “<”

we have that (Γ0σ ∪ α02Γ0σ) ∩ Γ2ζ 6= ∅. We have to consider two cases:

Case Γ0σ ∩ Γ2ζ 6= ∅

Let η ∈ Γ0σ ∩ Γ2ζ, so that Γ0σ = Γ0η and Γ2ζ = Γ2η. We have that Γ0η < Γ1τ <

Γ2η if and only if αε02τ ∈ Γ0η and αδ02τ ∈ Γ2η for some ε, δ ∈ {0, 1}. If ε 6= δ we would

have that αδ02τ ∈ (α02Γ0 ∩ Γ2)η which is empty because of an intersection property.

This implies that ε = δ, so αε02τ ∈ (Γ0∩Γ2)η. Since Γ0∩Γ2 = 〈α1〉 then (Γ0∩Γ2)η =



88 CHAPTER 3. 3-ORBIT POLYHEDRA

{η, α1η} and thus αε02τ ∈ {η, α1η}. This implies that Γ1τ = Γ1α
ε
02τ ∈ {Γ1η,Γ1α1η},

and these two cosets are different because of the intersection property Γ0 ∩ Γ1 = 1.

Hence there are exactly two faces Γ1τ satisfying Γ0σ < Γ1τ < Γ2ζ.

Now suppose that Γ0η < Γ′1τ < Γ2η for some τ ∈ Γ. Then,

α02β
ε
2β

δ
0τ ∈ Γ0η (3.12)

and

βε
′

2 β
δ′

0 τ ∈ Γ2η, (3.13)

for some ε, δ, ε′, δ′ ∈ {0, 1}.

Multiplying (3.12) on the left by (βα02
2 )ε+ε

′
we get

α02(β2)ε+ε
′
α02α02β

ε
2β

δ
0τ = α02β

ε′

2 β
δ
0τ ∈ Γ0η,

and thus,

βε
′

2 β
δ
0τ ∈ α02Γ0η. (3.14)

Analogously, multiplying (3.13) on the left by βδ+δ
′

0 we get

βε
′

2 β
δ
0τ ∈ Γ2η. (3.15)

But (3.14) together with (3.15) contradict the intersection property α02Γ0∩Γ2 = ∅,

implying that there is no face Γ′1τ incident to both Γ0η and Γ2η.

We have found the 1-adjacent flag of a flag with 0-face Γ0σ = Γ0τ and 2-face
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Γ2ζ = Γ2τ when τ ∈ Γ0σ ∩ Γ2ζ 6= ∅ (see Figure 3.10).

Case α02Γ0σ ∩ Γ2ζ 6= ∅

Let η ∈ α02Γ0σ ∩ Γ2ζ. Then Γ0σ = Γ0α02η and Γ2ζ = Γ2η. Then, since the

intersection property Γα02
0 ∩ Γ2 = 1 holds, we get that α02Γ0σ ∩ Γ2ζ = (Γα02

0 ∩ Γ2)η =

{η}, so η is actually unique.

We know that there is a τ ∈ Γ such that Γ0σ < Γ1τ < Γ2ζ if and only if αε02τ ∈

Γ0σ = Γ0α02η and αδ02τ ∈ Γ2ζ = Γ2η for some ε, δ ∈ {0, 1}. Note that the intersection

property α02Γ0 ∩ Γ2 = ∅ implies

(α02Γ0 ∩ Γ2)−1η = (Γ0α02 ∩ Γ2)η = ∅,

and hence ε 6= δ. Therefore αδ02τ ∈ (Γα02
0 ∩ Γ2)η = {η}, so Γ1τ = Γ1η. Since

η ∈ α02Γ0σ ∩ Γ2ζ is unique, Γ1η is the only element of the form Γ1τ incident to both

Γ0σ and Γ2ζ.

Now suppose Γ0σ < Γ′1τ < Γ2ζ for some τ ∈ Γ. Then, Γ0α02η = Γ0σ < Γ′1τ implies

that Γα02
0 η ∩ Γ′1τ 6= ∅, so that βε2β

δ
0τ ∈ Γα02

0 η for some ε, δ ∈ {0, 1} and γ0 ∈ Γ0. Now

since β2 ∈ Γα02
0 , then βδ0τ ∈ Γα02

0 η. Analogously, Γ′1τ < Γ2ζ = Γ2η and the fact that

β0 ∈ Γ2 implies that βε
′

2 τ ∈ Γ2η for some ε′ ∈ {0, 1}. Hence βε
′

2 β
δ
0τ ∈ βε

′
2 Γα02

0 η = Γα02
0 η

and βε
′

2 β
δ
0τ = βδ0β

ε′
2 τ ∈ βδ0Γ2η = Γ2η. In other words, βε

′
2 β

δ
0τ ∈ (Γα02

0 ∩ Γ2)η = {η}.

Hence Γ′1τ = Γ′1β
ε′
2 β

δ
0τ = Γ′1η. And since η ∈ α02Γ0σ ∩ Γ2ζ is unique, there is exactly

one element Γ′1τ incident to both Γ0σ and Γ2ζ, when α02Γ0σ ∩ Γ2ζ 6= ∅.

We have found the 1-adjacent flag of a flag with 0-face Γ0σ = Γ0α02η and 2-face

Γ2ζ = Γ2η when η ∈ α02Γ0σ ∩ Γ2ζ 6= ∅ (see Figure 3.102). This settles the diamond

2In Figure 3.10 we have used the letter τ instead of η just to have a consistent notation.
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0-adjacencies:

Γ1τ

Γ0τ Γ0α02τ

Γ−1

Γ′1τ

Γ0α02τ Γ0α02β0τ

Γ−1

1-adjacencies:

Γ2τ

Γ1τ Γ1α1τ

Γ0τ

Γ2τ

Γ1τ Γ′102τ

Γ0α02τ

2-adjacencies:

Γ3

Γ2τ Γ2α02τ

Γ1τ

Γ3

Γ2τ Γ2β2τ

Γ′1τ

Figure 3.10: Summary of the diamond condition for STG 31.

condition.

The diamond condition given by the proof above is summarized in Figure 3.10.

Note that the following lemma (which is analogous to Lemma 3.4.5) also follows from

the proof of Lemma 3.4.10.

Lemma 3.4.12. Every flag on P(Γ) is in the same orbit as one of the flags Φ :=

{Γ0,Γ1,Γ2}, Φ0 = {Γ0α02,Γ1,Γ2} or Φ01 = {Γ0α02,Γ
′
1,Γ2}.

By noting that Φα1 = Φ1, Φ0α02 = Φ2 and Φ01βi = Φ01i, we get that in fact Γ
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acts on P(Γ) with symmetry type 31.

Finally we would need to prove that P(Γ) is strongly flag connected. This proof

is mostly analogous to that of Lemma 3.4.8. We have to consider two flags Ψ and Ψ′.

Without loss of generality we can assume that Ψ is one of the base flags {Φ,Φ0,Φ01}.

Then we take an automorphism σ that maps Ψ′ to a base flag and express it in terms

of the distinguished generators and use equations analogous to (3.9) to show that

there is a path from Ψ′ to Ψ′σ that does not use colors corresponding to the ranks

of faces in Ψ ∩ Ψ′. The only case that would be different is when Ψ and Ψ′ share

a 0-face and Ψ ∈ {Φ0,Φ01}. In this case Ψ′0 = Ψ0 is equal to Γ0α02 which is not a

group. This means that σ ∈ StabΓ(Γ0α02) = Γα02
0 = 〈αα02

1 , β2〉. Once again we verify

that the generators of this group map Ψ′σ to an element that is connected to it by a

path that does not use the color 0, so Ψ′ is connected to Ψ′σ by a path that does not

use the color 0, and Ψ′

Therefore, we have proved Theorem 3.4.9.

3.5. Regular polyhedra with a 3-orbit acting sub-

group

We have shown that there is a one to one correspondence between polyhedra with

a group acting with 3 orbits on flags and groups generated by four involutions two of

which commute, satisfying some intersection properties. However, when constructing

the polyhedron from a group Γ, we do not ensure that Γ is the full automorphism

group of the polyhedron P(Γ). In fact, this need not to be the case.
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In fact we have mentioned that the quadrangular bipyramid (octahedron) is reg-

ular, in contrast to other bipyramids which have symmetry type 301. If we use the

construction in Section 3.3 to build a quadrangular bipyramid from a subgroup of the

automorphism group of the octahedron, what we get would be a regular polyhedron,

not one with symmetry type 301.

In each class, the intersection properties imply that the intersection of the stabi-

lizers of the faces in a base flag (recall that the stabilizer of Γ0α02 is Γα02
0 on class 31)

is trivial. This tells us that Γ acts faithfully on each orbit, and hence Γ is in fact a

subgroup of the automorphism group of P(Γ) and, as such, it acts freely on its flags.

Suppose that two flags Ψ and Ψ′ are in different orbits under the action of Γ but

in the same orbit under the action of the full automorphism group of P(Γ) (in either

class). Without loss of generality we may assume that Ψ is not in the orbit y (as Ψ′

might be). By doing a small exhaustive search looking at the STGs we can notice

that there exists i ∈ {0, 1, 2} such that Ψi is in the same Γ-orbit as Ψ, but (Ψ′)i is not

in the Γ-orbit of Ψ′. That is, Ψ,Ψ′ and (Ψ′)i are all in different Γ-orbits, but they are

in the same orbit under the action under the full automorphism group. This implies

that all flags are in the same orbit under the action of the full automorphism group

of P(Γ), thus, in this case P(Γ) is in fact a regular polyhedron instead of a 3-orbit

polyhedron.

In particular we have shown that ifM is a maniplex, Γ a group of automorphisms

of M acting with 3 orbits, p : M → T (M,Γ) is the natural projection, and τ̃ is

an automorphism of M, then τ̃ projects if and only if τ̃ is in Γ. This implies by

Theorem 2.3.1 that the normalizer of Γ in the full automorphism group is Γ itself.
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In this section we give a criterion to recognize which groups Γ make P(Γ) a regular

polyhedron.

Using Theorem 1.5.3 we can prove the following two theorems.

Theorem 3.5.1. Let S = {α1, α2, β0, β2} be the set of distinguished generating invo-

lutions of a group Γ satisfying the intersection properties (3.6) and that β0 commutes

with β2. Let 〈S | R〉 be a presentation for Γ. Let Γ̃ := 〈S ∪ {α0} | R ∪R′〉 where

R′ := {α2
0 = 1, α0α2 = α2α0, β2 = αα1α0

2 , β0 = αα1α0
0 }.

Let ν : Γ→ Γ̃ be the natural homomorphism. Then P(Γ) is regular if and only if

ν is injective and α0 /∈ ν(Γ).

Proof Let Φ be the base flag of P(Γ) satisfying that Φαi = Φi, and Φ01βj = Φ01j for

i ∈ {1, 2} and j ∈ {0, 2}.

Let us first assume that P(Γ) is a regular polyhedron and let Γ′ be its full auto-

morphism group. Theorem 1.5.3 tells us that Γ′ can be generated by involutions ρ0, ρ1

and ρ2, where Φρi = Φi for i = 0, 1, 2. Since the action of Γ′ is regular on the flags

of P(Γ), this implies that ρ1 = α1 and ρ2 = α2. Then let us now rename α0 := ρ0.

Thus, Γ′ is generated by S ′ := S ∪ {α0}. The set S ′ satisfies the relations in R (since

S does). Theorem 1.5.3 also tells us that α2
0 = 1 and that α0α2 = α2α0 hold. Recall

also that Φβ0 = Φ01010 = Φαα1α0
0 and Φβ2 = Φ01210 = Φαα1α0

2 so by the regularity of

the action we get β0 = αα1α0
0 and β2 = αα1α0

2 . Hence, the relations in R′ also hold,

and therefore Γ′ is a quotient of Γ̃. Since the natural inclusion of Γ in Γ′ is injective

and does not have α0 in its image, the same is true for ν.
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For the converse, suppose that ν is injective and α0 /∈ ν(Γ). We shall abuse

notation and identify Γ with its image as a subgroup of Γ̃. First we want to prove

that Γ̃ satisfies the conditions in Theorem 1.5.3. By construction Γ̃ is generated by

the three involutions α0, α1, α2 and α0 commutes with α2, so we only need to show

that the intersection property (1.1) holds. Define Γ̃i := 〈αj : j 6= i〉 for i = 0, 1, 2. It

is enough to prove that Γ̃i ∩ Γ̃j = 〈αk〉 when {i, j, k} = {0, 1, 2}.

Let σ ∈ Γ̃2. Then σ has to be of one of the following forms:

1. α0α1α0α1 . . . α0α1,

2. α0α1α0α1 . . . α1α0,

3. α1α0α1α0 . . . α1α0, or

4. α1α0α1α0 . . . α0α1.

Let ` be the length of σ as a word in {α0, α1} and let k and r be integers such that

` = 6k + r with 0 ≤ r < 6. Then, using the definition in (3.3) and the relations in

R′, we may write σ as (β0α1)kκ (if σ is of the forms 1 or 2) or (α1β0)kκ (if σ is of

the forms 3 or 4) where κ is a word of length r < 6 in {α0, α1}. In the forms 1 and

2, κ begins with α0 and we can assume that κ has length less than 5, otherwise we

may replace it with β0. In the forms 3 and 4, if the length of κ is positive, we may

write κ = α1κ
− where κ− has length less than 5. So we can conclude that σ ∈ Γ2κ,

for some κ with length from 0 to 4 in {α0, α1} starting with α0. Now, κ may only be

one of the following:

1, which implies σ ∈ Γ2.
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α0 which implies σ ∈ Γ2α0.

α0α1, which implies σ ∈ Γ2α0α1.

α0α1α0 = β0α0α1, which implies σ ∈ Γ2α0α1.

α0α1α0α1 = β0α0, which implies σ ∈ Γ2α0.

So we have proved that Γ̃2 = Γ2 ∪ Γ2α0 ∪ Γ2α0α1. In analogy we can also notice that

Γ̃0 = Γ0 and Γ̃1 = Γ1 ∪ Γ1α0.

Now, using the intersection properties 3.6, we have that

Γ̃0 ∩ Γ̃1 = Γ0 ∩ (Γ1 ∪ Γ1α0)

= (Γ0 ∩ Γ1) ∪ (Γ0 ∩ Γ1α0)

= 〈α2〉 ∪ (Γ0 ∩ Γ1α0).

Since α0 /∈ Γ we get Γ0 ∩ Γ1α0 = ∅ so Γ̃0 ∩ Γ̃1 = 〈α2〉. In a similar way we have

that

Γ̃0 ∩ Γ̃2 = Γ0 ∩ (Γ2 ∪ Γ2α0 ∪ Γ2α0α1)

= (Γ0 ∩ Γ2) ∪ (Γ0 ∩ Γ2α0) ∪ (Γ0 ∩ Γ2α0α1).

Since α0 /∈ Γ we get that Γ0 ∩Γ2α0 = Γ0 ∩Γ2α0α1 = ∅ and so Γ̃0 ∩ Γ̃2 = Γ0 ∩Γ2 =

〈α1〉.

When calculating Γ̃1 ∩ Γ̃2 we get the union of the following factors:

Γ1 ∩ Γ2 = 1, Γ1 ∩ Γ2α0 = ∅, Γ1 ∩ Γ2α0α1 = ∅,
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Γ1α0 ∩ Γ2 = ∅, (Γ1 ∩ Γ2)α0 = {α0}, Γ1α0 ∩ Γ2α0α1 = ∅.

Here we have used several times the fact that α0 /∈ Γ to obtain that most factors

are empty. To justify the emptiness of the last factor note that

αα0
1 = β0α0α1 /∈ Γ,

so

Γ1 ∩ Γ2α
α0
1 = ∅,

and multiplying on the right by α0 we get

Γ1α0 ∩ Γ2α0α1 = ∅.

Therefore we have Γ̃1 ∩ Γ̃2 = 〈α0〉 and thus the hypotheses of Theorem 1.5.3 are

satisfied.

Notice that since we have regarded Γ as a subgroup of Γ̃, then it acts on the regular

polyhedron P(Γ̃) (constructed as in Theorem 1.5.3) by automorphisms. Moreover, if

we define Φ̃ := {Γ̃0, Γ̃1, Γ̃2} we can see that:

Φ̃α1 = {Γ̃0, Γ̃1α1, Γ̃2} = Φ̃1.

Φ̃α2 = {Γ̃0, Γ̃1, Γ̃2α2} = Φ̃2.

Φ̃α0 = Φ̃0 is in a different Γ-orbit than Φ̃ since α0 /∈ Γ.

Φ̃0α2 = Φ̃02.
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Φ̃01 = Φ̃α1α0 = Φ̃0αα0
1 is in a different Γ-orbit than Φ̃ and Φ̃0 since neither α1α0

nor αα0
1 = β0α0α1 are in Γ.

Φ̃01βi = Φ̃01αα1α0
i = Φ̃01i for i = 0, 2.

In conclusion Γ acts on P(Γ̃) with symmetry type 301 and the voltage assignment

on Figure 3.5(a). When we apply Theorem 3.4.3 we get that P(Γ) is isomorphic to

P(Γ̃).

Theorem 3.5.2. Let S = {α1, α02, β0, β2} be the set of distinguished generating invo-

lutions of a group Γ satisfying the intersection properties (3.7) and that β0 commutes

with β2. Let 〈S | R〉 be a presentation for Γ and let Γ̃ := 〈S∪{α0, α2} | R∪R′〉 where

R′ := {α2
0 = α2

2 = 1, α0α2 = α2α0 = α02, β2 = αα1α0
2 , β0 = αα1α0

0 }.

If ν : Γ → Γ̃ is the natural homomorphism, then P(Γ) is regular if and only if ν

is injective and α0 /∈ ν(Γ).

Proof We start by noticing that the relations between α2, α0 and α02 imply that α2

and α0 are in the image of ν only simultaneously.

If P(Γ) is a regular polyhedron, the fact that ν is injective and α0 /∈ ν(Γ) is proved

in complete analogy to Theorem 3.5.1.

Suppose that ν is injective and that α0, α2 /∈ ν(Γ). Again, we identify Γ with

ν(Γ), and let Γ̃i = 〈αj, αk〉, where {i, j, k} = {0, 1, 2}.

In this case we have that Γ0 = 〈α1, β
α02
2 〉, and since β2 = αα1α0

2 then

βα02
2 = (αα1α0

2 )α0α2 = αα1α2
2 ,
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so we have that Γ0 = 〈α1, α
α1α2
2 〉. We also have that Γ1 = 〈α02〉 = 〈α0α2〉 and

Γ2 = 〈α1, β0〉 = 〈α1, α
α1α0
0 〉.

As in the previous theorem, we want to use Theorem 1.5.3 to construct a regular

polyhedron P(Γ̃), so we need to show that the subgroups Γ̃i satisfy some intersection

properties. Using the relations in R′ one can see that Γ̃0 = Γ0 ∪ Γ0α2 ∪ Γ0α2α1,

Γ̃1 = Γ1 ∪ Γ1α0 = Γ1 ∪ Γ1α2 and Γ̃2 = Γ2 ∪ Γ2α0 ∪ Γ2α0α1.

If we calculate Γ̃0 ∩ Γ̃1 we get a union of the following factors, where all the

equalities are consequences of the intersection properties (3.7) and the assumption

that α2 /∈ Γ:

Γ0 ∩ Γ1 = 1, Γ0 ∩ Γ1α2 = ∅, Γ0α2 ∩ Γ1 = ∅

(Γ0 ∩ Γ1)α2 = {α2}, Γ0α2α1 ∩ Γ1 = ∅, Γ0α2α1 ∩ Γ1α2 = ∅.

To justify the emptiness of the last factor notice that αα2
1 = α1α2β

α02
2 , so if

Γ0α2α1 ∩ Γ1α2 6= ∅ it would imply that α2 ∈ Γ. We have proved that Γ̃0 ∩ Γ̃1 = 〈α2〉.

Interchanging the symbols 0 and 2 we get also that Γ̃2 ∩ Γ̃1 = 〈α0〉.

Finally, if we calculate Γ̃0 ∩ Γ̃2 we get the union of the following factors, where,

again, all equalities follow from the intersection properties (3.7) and the fact that

α2 /∈ Γ:

Γ0 ∩ Γ2 = 〈α1〉, Γ0 ∩ Γ2α0 = ∅, Γ0 ∩ Γ2α0α1 = ∅,

Γ0α2 ∩ Γ2 = ∅, (Γ0α02 ∩ Γ2)α0 = ∅, Γ0α2 ∩ Γ2α0α1,
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Γ0α2α1 ∩ Γ2 = ∅, Γ0α2α1 ∩ Γ2α0, (Γ0α02 ∩ Γ2)α0α1 = ∅.

We claim that the two factors missing to calculate are actually empty. Indeed,

if Γ0α2 ∩ Γ2α0α1 6= ∅ we would have that α0α1α2 ∈ Γ. Note that above we have

shown that αα2
1 /∈ Γ1 and note that α0α1α2 = α0α2α2α1α2 = α02α

α2
1 /∈ Γ, which is

a contradiction, so Γ0α2 ∩ Γ2α0α1 = ∅. In a similar way we can see that Γ0α2α1 ∩

Γ2α0 6= ∅ implies that α2α1α0 ∈ Γ1, but α2α1α0 = (α0α1α2)−1 /∈ Γ, which is again a

contradiction, so Γ0α2α1∩Γ2α0 must be empty. We have proved that Γ̃0∩ Γ̃2 = 〈α1〉.

The rest of the proof is completely analogous to that of Theorem 3.5.1.

3.5.1. Regular polyhedra and Symmetry type 301

We end this section by noticing an interesting relation between regular polyhedra

and those with STG 301 and triangular faces.

In general there is an easy way to construct a 3-orbit polyhedron from a regular

polyhedron: simply “glue” a pyramid on each of its 2-faces. In some cases this

could give rise to a new regular polyhedron, for example, an octahedron can be

thought of as a quadrangular dihedron (a polyhedron consisting of two squares glued

by their border) with a pyramid glued on each face. But in general we would get a

polyhedron with symmetry type 301 and triangular faces. In fact this is “almost” the

only way to get this kind of polyhedra. We formalize this in Theorem 3.5.3 (where

by a triangular dihedron we mean a polyhedron consisting of only two 2-faces, both

of them triangular).

We point out that the above operation is the dual operation of the truncation,
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described in [27]. In fact, Proposition 5.1 of [27] shows that if a map covers STG 312

and has vertices of degree 3, then it is the truncation of a regular map. Although the

result is very similar to the one we give here, since we are dealing with polyhedra and

not maps, extra conditions need to be satisfied. For example, the dual of the triangular

dihedron covers STG 312 and has vertices of degree 3 but cannot be obtained as the

truncation of a polyhedron (though it is the truncation of the regular map on the

sphere with one vertex, one edge and two faces).

Theorem 3.5.3. Let Γ be a group. Then Γ is the automorphism group of a regular

polyhedron P if and only if there exists a polyhedron P ′ with triangular faces, differ-

ent than the triangular dihedron, on which Γ acts by automorphisms with symmetry

type 301 and satisfying that there is at most one edge connecting any two vertices in

different Γ-orbits.

Proof First note that the automorphism α1β0 maps the base flag Φ to Φ010101 (see

Proposition 3.2.1) so it acts as a 3-step rotation around the base 2-face. This means

that the degree of the 2-faces is equal to three times the order of α1β0, so faces are

triangular if and only if α1 = β0.

Let Γ be the automorphism group of a regular polyhedron P . Let {ρ0, ρ1, ρ2}

be its distinguished generators with respect to a base flag Φ, as in Theorem 1.5.3.

Relabel these generators as

α1 = β0 := ρ0,

α2 := ρ1,

β2 := ρ2,
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and set Γ0,Γ
′
0,Γ1,Γ

′
1 and Γ2 as in (3.3). Notice that here we are using the notation

for polytopes with STG 301 and not the one for regular polyhedra, so Γ1, for example,

is not equal to 〈ρ0, ρ2〉. Actually,

Γ0 := 〈ρ0, ρ1〉, Γ′0 := 〈ρ1, ρ2〉, Γ1 := 〈ρ1〉,

Γ′1 := 〈ρ0, ρ2〉, Γ2 := 〈ρ0〉.

We now verify that these subgroups of Γ satisfy the intersection properties (3.6).

The fact that Γ2 is now a subgroup of Γ0 and Γ′1 automatically gives us

Γ0 ∩ Γ2 = Γ′1 ∩ Γ2 = 〈ρ0〉 = 〈α1〉 = 〈β0〉.

Similarly, since Γ1 is a subgroup of Γ0 and Γ′0 we get

Γ0 ∩ Γ1 = Γ′0 ∩ Γ1 = 〈ρ1〉 = 〈α2〉.

Now we use Theorem 1.5.3 to prove the remaining three intersection properties:

Γ′0 ∩ Γ′1 = 〈ρ1, ρ2〉 ∩ 〈ρ0, ρ2〉 = 〈ρ2〉

= 〈β2〉.

Γ′0 ∩ Γ2 = 〈ρ1, ρ2〉 ∩ 〈ρ0〉 = 1.

Γ1 ∩ Γ2 = 〈ρ1〉 ∩ 〈ρ0〉 = 1.

Then, because of Theorem 3.4.3, Γ acts with 3 flag orbits on P ′ := P(Γ) with
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symmetry type 301.

We now want to prove that two 0-faces on different orbits (under Γ) are connected

by at most one 1-face. If we refer to Figure 3.9 we notice that the 1-faces of type Γ1τ

are incident to two 0-faces in different orbits, while the ones of type Γ′1τ are incident

to two 0-faces in the orbit of Γ′0. Moreover, if Γ1τ is incident to Γ0 and Γ′0, then

τ ∈ Γ0 ∩ Γ′0 but according to Theorem 1.5.3 this intersection is 〈ρ0, ρ1〉 ∩ 〈ρ1, ρ2〉 =

〈ρ1〉 = 〈α2〉 = Γ1. So Γ1 is the only 1-face incident to both Γ0 and Γ′0. Since the 1-face

Γ1 does not have parallel edges (different 1-faces connecting the same two 0-faces)

no other 1-face on its orbit has, which proves that two 0-faces in different orbits are

joined by at most one 1-face.

Finally, since α2 = ρ1 6= ρ2 = β2, we have that P ′ is not the triangular dihedron.

For the converse we start with the distinguished generators α1, α2, β2 with respect

to some base flag Φ (with β0 = α1 since faces are triangular) and relabel them

{ρ0, ρ1, ρ2} respectively. We shall verify that these generators satisfy the condition of

Theorem 1.5.3.

First we see that 〈ρ1, ρ2〉 ∩ 〈ρ0, ρ2〉 = Γ′0 ∩ Γ′1, which according to the intersection

properties (3.6) is equal to 〈β2〉 = 〈ρ2〉.

Now let us calculate 〈ρ1, ρ2〉 ∩ 〈ρ0, ρ1〉 = Γ′0 ∩ Γ0. We do not have an intersection

property involving these two groups, but we know that they are the stabilizers of the

vertices Φ0 and (Φ0)0, respectively. Since these two 0-faces are in different orbits there

is at most one 1-face incident to both of them. This 1-face is Φ1, which is stabilized

by Γ1 = 〈ρ1〉. This proves that 〈ρ1, ρ2〉 ∩ 〈ρ0, ρ1〉 = 〈ρ1〉.

We also know that β2 = ρ2 /∈ 〈ρ0, ρ1〉, since otherwise it would be in 〈ρ1, ρ2〉 ∩
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〈ρ0, ρ1〉 = 〈ρ1〉 and thus it would be equal to ρ1 = α2, but this only happens in the

triangular dihedron. This is used to calculate 〈ρ0, ρ2〉∩〈ρ0, ρ1〉, together with the fact

that ρ2 = β2 commutes with β0 = α1 = ρ0. In fact, this intersection is

〈ρ0, ρ2〉 ∩ 〈ρ0, ρ1〉 = (〈ρ0〉 ∩ 〈ρ0, ρ1〉) ∪ (〈ρ0〉ρ2 ∩ 〈ρ0, ρ1〉) = 〈ρ0〉 ∪ ∅ = 〈ρ0〉.

All the other intersection properties for regular polyhedra follow from the fact that

the three generators are different (which is a consequence of P ′ not being a triangular

dihedron).

By looking at the proof of Theorem 3.5.3 we see a natural correspondence between

regular polyhedra and polyhedra in class 301 with triangular faces and the mentioned

restrictions. In fact, given the regular polyhedron P we can get P ′ by gluing a pyramid

on each 2-face. Theorem 3.5.3 tells us that given the mentioned conditions, this is

the only way to get such polyhedron.

To recover P from P ′ we can take the 2-faces of P to be the 0-faces of P ′ stabilized

by conjugates of Γ0, its 1-faces to be the 1-faces of P ′ stabilized by conjugates of Γ′1

and its 0-faces to be the 0-faces of P ′ stabilized by conjugates of Γ′0. The incidence

between 0-faces and 1-faces is inherited from P ′. Declare that a face F (of rank 0

or 1) is incident to a 2-face G if and only if there exists a 2-face H in P ′ which is

incident to both F and G in P ′.
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3.6. Example: symmetric groups

In this section we use our results to show that for any class X and for almost

every n there is a 3-orbit polyhedron in the class X with the symmetric group on n

elements as its automorphism group.

Proposition 3.6.1. Let n ≥ 4. There is a polyhedron with triangular faces in which

Sn acts by automorphisms with symmetry type 301. Moreover, if n 6= 12 we can assure

that Sn is the full automorphism group of such polyhedron.

Proof Recall that polyhedra in class 301 have triangular faces if and only if α1 =

β0. We need to find involutory permutations α1 = β0, α2, β2 ∈ Sn so that Sn =

〈α1, α2, β2〉, that satisfy that α1 and β2 commute and such that by defining the sub-

groups Γ0,Γ
′
0,Γ1,Γ

′
1 and Γ2 as in (3.3), the intersection properties (3.6) are satisfied.

We shall do so in two cases, depending on the parity of n. Consider Sn as the permu-

tation group of the integers modulo n. We will abuse notation and write k to denote

the congruence class of k modulo n.

For odd n let α1 = β0 : k 7→ −k, α2 : k 7→ 1−k and let β2 be the transposition that

interchanges 1 and −1. It is clear that these are involutions and that β0 commutes

with β2. It is straightforward to see that whenever n ≥ 4 these involutions are all

distinct, but for n = 3 we have that β0 = β2, and that violates the intersection

property Γ′0 ∩ Γ2 = 1. Moreover, we see that α1α2 : k 7→ k + 1 (modulo n) is an

n-cycle and together with the transposition β2 generates the whole group Sn (since n

is odd). Note further that α2β2 has order 4 as it permutes 1, 0,−1, 2 cyclically and

maps any other k to 1− k.
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Now let us prove that the intersection properties (3.6) are satisfied. Since β0 = α1

we see that Γ2 = 〈α1〉 = 〈β0〉 making most of the properties tautological. The

exceptions are Γ′0 ∩ Γ′1 = 〈β2〉 and Γ′0 ∩ Γ2 = 1. To prove these two properties note

that since n ≥ 4, both generators of Γ′0 = 〈α2, β2〉 fix the element (n + 1)/2 (recall

that we are in the case when n is odd), but β0 does not, so β0 cannot be in Γ′0, and

then neither can β0β2 which is the other element in Γ′1.

Theorem 3.4.3 ensures that Sn acts by automorphisms on P(Sn) with symmetry

type 301. To ensure that P(Sn) is in fact a 3-orbit polytope and not a regular one we

shall use the fact that regular polytopes are vertex-transitive.

The automorphism α1α2 maps the base flag Φ = {Γ0,Γ1,Γ2} to the flag Φ21, so

it acts as a 1 step rotation around the vertex Φ0 = Γ0. This means that the vertices

of type Γ0γ (that is, the vertices in the same Γ-orbit as the base vertex Γ0 = Φ0) are

incident to as many edges as the order of α1α2, in this case n.

On the other hand, the automorphism α2β2 maps Φ0 = {Γ′0,Γ1,Γ2} to

Φ0α2β2 = (Φα2)0β2

= (Φ20)β2

= (Φβ2)20

= (Φ01210)20

= Φ01212

= (Φ0)1212,

so it acts as a 2-step rotation around the vertex (Φ0)0. This means that the vertices
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of the type Γ′0γ (that is, the vertices in the same Γ-orbit as Γ′0 = Φ0
0) are incident to

as many edges as twice the order of α2β2, which is 4, so the degree of these vertices is

8. Since n is odd these two cannot be equal, so P(Sn) cannot be regular. Therefore

P(Sn) is in class 301.

Now, if n is even we do the same construction but using α1 = β0 : k 7→ n+ 1− k,

α2 : k 7→ −k and β2 the transposition that interchanges 0 and 1. The n-cycle

α2α1 : k 7→ k + 1 (modulo n) and the transposition β2 generate Sn. Now n/2 is fixed

by α2 and β2, and the rest of the proof of the polytopality of P(Sn) is analogous.

The degree of the vertices of type Γ0γ is again n, while of the ones of type Γ′0γ

is twice the order of α2β2 which permutes 1,−1, 0 cyclically and it maps any other k

to n− k. So for n = 4 the order of α2β2 is 3 and vertices of type Γ′0γ have degree 6,

and for n > 4 the order of α2β2 is 6 and vertices of type Γ′0γ have degree 12. So for

n 6= 12, P(Sn) is not a regular polyhedron, but a 3-orbit one with STG 301.

Note that if we replace the symmetry type graph 301 by 312 in Proposition 3.6.1

the result still holds. The examples would be the duals of the examples constructed

for Proposition 3.6.1.

As of now we still do not know if P(S12) as constructed in the proof of Proposi-

tion 3.6.1 is a 3-orbit polyhedron or a regular one.

Proposition 3.6.2. Let n ≥ 5. Then Sn is the automorphism group of a polyhedron

with triangular faces and symmetry type 31.

Proof The proof is pretty similar to that of Proposition 3.6.1 and it is also divided

in cases depending on the parity of n.
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For odd n we choose α1 = β0 : k 7→ −k, α02 : k 7→ 1 − k and β2 as the trans-

position that interchanges 1 and −1. One can see that βα02
2 is the transposition that

interchanges 0 and 2 and that αα02
1 : k 7→ 2− k.

Both generators of Γ0 = 〈α1, β
α02
2 〉 leave invariant the set {0, 2,−2} but α02 does

not. This proves that Γ0 ∩ Γ1 = 1 and that α02Γ0 ∩ Γ2 = ∅.

In the same way, the generators of Γα02
0 = 〈αα02

1 , β2〉 leave the set {−1, 1, 3} in-

variant and, for n ≥ 5, but β0 does not, so Γα02
0 ∩ Γ′1 = 〈β2〉 and Γα02

0 ∩ Γ2 = 1.

The other intersection properties are tautological.

For even n we choose α1 = β0 : k 7→ 1− k, α02 : k 7→ −k and β2 only interchanges

0 and 1. This time βα02
2 is the transposition that interchanges 0 and −1 and αα02

1 :

k 7→ −k − 1.

Now the set {−1, 0, 1, 2} is invariant under Γ0 but not under α02 (because n > 5).

Moreover, the set {−2,−1, 0, 1} is invariant under Γα02
0 but not under α1 = β0. This

proves the intersection properties in analogy to the odd case.

Theorem 3.4.9 ensures that Sn acts by automorphisms on a polyhedron P(Sn)

with symmetry type 31.

To prove that these polyhedra are not regular we use the fact that the Petrie dual

(see the beginning of this chapter) of a regular polyhedron is also a regular maniplex.

The edge in the base flag Φ is in two Petrie polygons. Remember that the Petrie

dual of a 3-maniplex can be obtained by replacing the monodromy r0 by r0r2. Then

the automorphism λ := α1α02 maps Φ to Φ021 = Φ(r0r2)r1, so it acts as a one-step

rotation on one of the Petrie polygons containing the base edge. On the other hand,

the automorphism κ := α02α1β2 maps Φ to Φ01210102 = Φ012012 (here we have used
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that α1 = β0 implies that faces are triangles, so we can replace the word 1010 by the

word 01). Then κ maps Φ0 to Φ0120120 = Φ0(r1r0r2)2, which means that it acts as

a two-step rotation on the other Petrie polygon containing the base edge. Then, if

P(Sn) is regular the orders of α02α1β2 and (α1α02)2 should be the same.

If n is odd, one can see that α02α1β2 interchanges 0 and 1, maps 2 to −1 and

maps any other k to k − 1, so it has order 2(n − 2), while (α1α02)2 : k 7→ k + 2 has

order n. Since n ≥ 5 these orders cannot be equal, so P(Sn) in not regular.

If n is even α02α1β2 fixes 0, maps −1 to 1 and maps any other k to k+ 1 so it has

order n− 1 while (α1α02)2 : k 7→ k + 2 has order n/2 and again these orders cannot

be equal, so P(Sn) is not regular.

Unfortunately, the argument about the Petrie polygons does not work for proving

that the polyhedron constructed in proposition 3.6.1 is not regular when n = 12 since

both Petrie polygons are of size 12.



Chapter 4

Intersection properties: the general

case

In Chapter 3 we constructed polytopes with a given symmetry type graph X from

groups. We started by giving a voltage assignment ξ to X to get a voltage graph and

then looked for conditions on the voltages such that the derived graph is a maniplex

and that this maniplex is polytopal. In particular in Theorems 3.4.3 and 3.4.9, we

have found necessary and sufficient conditions for a group G to act by automorphisms

on a polyhedron with some specific symmetry type X. These conditions are of the

following kinds:

G has to be generated by a certain set of elements. These generators are the

voltages of darts not in a selected spanning tree of the voltage graph (X, ξ).

Some conditions on these generators, mostly relations between them, that en-

sure that the derived graph Xξ is in fact a maniplex.

109
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Some intersection properties that ensure that the derived maniplex is polytopal.

We want to look at these conditions and the corresponding voltage graphs to find

out what is the true meaning of them and where they come from, so that we can

generalize these results for k-orbit n-polytopes with k and n arbitrary.

4.1. Voltage graphs with maniplexes as their de-

rived graphs

First we turn our attention to the relations between the generators. We know

that to find the generators of our group we first choose a spanning tree of the multi-

maniplex we want as our STG and assign trivial voltage to all of its darts. Then

we have a method to assign voltages to the remaining darts. By Corollary 2.2.3 the

voltages of these darts have to generate the whole voltage group, or otherwise the

derived graph would not be connected.

Let X be a multi-maniplex with fundamental groupoid Π(X) (see Section 2.1),

and let ξ : Π(X)→ Γ be a voltage assignment with a voltage group Γ. As usual, we

assume that there is a spanning tree T of X with trivial voltage in all its darts. As

noted above, the set ξ(D), where D is the set of darts of X, must be a generating set

of Γ for Xξ to be connected. We can get a more refined set of generators by choosing

a subset D′ ⊂ D satisfying that no dart in D′ has trivial voltage and that D′ has at

most one dart on each edge. Once we have chosen D′ we call ξ(D′) the distinguished

generators of Γ. Now we want to find the conditions on these generators that ensure

that Xξ is actually a maniplex.
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We want Xξ to be simple. So first, we want Xξ to not have semi-edges. We know

that Xξ covers X and that the image of a semi-edge under a covering must be a

semi-edge. The pre-image of a semi-edge e based on a vertex v in X consists of the

edges of the form (e, γ), that start at the vertex (x, γ) and end in (x, ξ(e)γ), so (e, γ)

is a semi-edge if and only if ξ(e) = 1. We also know that the voltage of a semi-edge

must have order at most 2 (remember that ξ(e−1) = ξ(e)−1), so we conclude that, in

order for Xξ to not have semi-edges, the voltage of any semi-edge in X must have

order exactly 2.

Second, we want Xξ to not have parallel darts, i.e. different darts with the same

initial and terminal vertices. If Xξ had parallel darts, their images would also be

parallel darts1. Suppose Xξ has two parallel darts (d, σ) and (d′, τ). Since both darts

start at the same vertex, say (x, σ) = (x, τ), we know that σ = τ . The common

end-point of (d, σ) and (d′, τ) could be written as (y, ξ(d)σ) or (z, ξ(d′)σ), where y is

the end-point of d and z the end-point of d′. The fact that these two are the same

is equivalent to saying that y = z and ξ(d) = ξ(d′). So (d, σ) and (d′, σ) are parallel

darts if and only if d and d′ are parallel darts with the same voltage. Thus, Xξ has

no parallel darts if and only if all pairs of parallel darts in X have different voltage.

Now we want to ensure that if |i−j| > 1, the paths of length 4 in Xξ that alternate

colors between i and j are closed. Let W̃ be one of these paths. Projecting W̃ to X

we get a path W in X of length 4 that alternates colors between i and j, and since

X is a multi-maniplex we know that W is closed. Say that W is based on a vertex x.

1Under any graph homomorphism parallel darts are mapped to either parallel darts or to the
same dart, but since homomorphism of multi-maniplexes preserve color, they cannot be mapped to
the same dart.
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Then W̃ goes from a vertex of the form (x, γ) to (x, ξ(W )γ). So W̃ is closed if and

only if ξ(W )γ = γ, or in other words, W has trivial voltage.

In conclusion, we have proved the following lemma:

Lemma 4.1.1. Let X be a multi-maniplex and let ξ : Π(X)→ Γ be a voltage assign-

ment with a spanning tree T of trivial voltage on all its darts. Then Xξ is a maniplex

if and only if

1. The set ξ(D) generates Γ, where D is the set of darts of Γ,

2. ξ(d) has order exactly 2 when d is a semi-edge,

3. ξ(d) 6= ξ(d′) when d and d′ are parallel darts, and

4. if |i−j| > 1 every (closed) path W of length 4 that alternates between the colors

i and j has trivial voltage.

The fourth condition on the above lemma can be expressed as a set of relations

between the distinguished generators of Γ, one relation for each path of length 4

satisfying the condition (we may get some redundancy). Some of these relations may

say that two generators are the same, as it was the case for γ2 and α2 in Section 3.2.

We also have relations of the type α2 = 1 where α is the voltage of a semi-edge

(second condition), but in addition to this we also have the inequalities α 6= 1 when

α is the voltage of a semi-edge (second condition again), and that α 6= β, when α and

β are the voltages of parallel darts (third condition).

One could use the group Γ := 〈S|R〉 as the voltage group where S has a generator

for each edge not in the spanning tree of X and R has one element for each path
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of length four alternating between two non-consecutive colors. In fact every voltage

group that gives a maniplex should be a quotient of this group, or in other words

Γ is the “most general” group we can use as a voltage group to get a maniplex as

the derived graph. We know (see Section 1.5) that X = T (U , G) where U is the

universal polytope of rank n and G is some group. This means that there is some

voltage assignment ξ on X with voltage group G such that Xξ is isomorphic to the

flag graph of U . Because of the universality of U we get that G and Γ must be the

same. In other words, if we use the most general group as our voltage group we will

always get the flag graph of the universal polytope as the derived graph.

4.2. Voltage graphs and the path intersection prop-

erty

Now that we know which voltage assignments give rise to maniplexes, we want to

know when these maniplexes are polytopal, so that we obtain an abstract polytope

with the base multi-maniplex as its symmetry type graph with respect to Γ. In

Chapter 3 we found these conditions on the form of intersection properties on some

subgroups of Γ and their cosets. We want to look for an interpretation of these

properties by observing the base multi-maniplex.

Let us look at the intersection properties of STG 31 (3.7):

Γ0 ∩ Γ1 = 1, Γα02
0 ∩ Γ′1 = 〈β2〉, Γ0 ∩ Γ2 = 〈α1〉, α02Γ0 ∩ Γ2 = ∅,
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Figure 4.1: STG 31 with its standard voltage assignment.

Γα02
0 ∩ Γ2 = 1, Γ1 ∩ Γ2 = 1, Γ′1 ∩ Γ2 = 〈β0〉 (4.1)

where recall that α1, α02, β0, β2 and β0β2 are involutions and

Γ0 := 〈α1, β
α02
2 〉, Γ1 := 〈α02〉,

Γ′1 := 〈β0, β2〉, Γ2 := 〈α1, β0〉.

How can we see these subgroups and these properties by looking at the voltage

graph of 31?

For the following discussion we introduce some new notation. Let X be a multi-

maniplex of rank n and let I ⊂ {0, 1, . . . , n − 1} be a set of colors. Let u and v be

vertices in X. We define Πu,v
I (X) as the set of paths from u to v in X that use only

colors in I considered up to homotopy. We omit X when it is clear which multi-

maniplex we are talking about. If u = v we may write Πu
I (X) instead of Πu,u

I (X). In

other words, Πu
I (X) is the fundamental group of XI (the subgraph of X induced by

the edges with colors in I) based on u.

Back to our example, note that Γ0 is the set of voltages of closed paths based on

x that alternate color between 1 and 2, that is Γ0 = ξ(Πx
{1,2}). Similarly, Γ1 is the set
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Figure 4.2: When looking at closed paths based on x in this diagram we get an idea where the
property Γ0∩Γ1 = 1 comes from. We have first removed edges of color 0 from Figure 4.1, then color
1 and then both.

of voltages of paths based on x that alternate colors between 0 and 2, however, one

can also understand Γ1 as the voltages of closed paths with these colors but based

on y, that is Γ1 = ξ(Πx
{0,2}) = ξ(Πy

{0,2}). If we look at voltages of closed paths with

colors 0 and 2, but based on z we get Γ′1, that is Γ′1 = ξ(Πz
{0,2}). Finally, Γ2 is the set

of voltages of closed paths that alternate colors between 0 and 1, based in either x, y

or z, that is Γ2 = ξ(Πx
{0,1}) = ξ(Πy

{0,1}) = ξ(Πz
{0,1}).

The only closed path (up to homotopy) that uses only the color 2 based at x has

trivial voltage, that is ξ(Πx
{2}) = 1. This may give some meaning to the intersection

property Γ0 ∩ Γ1 = 1 as it can be written as ξ(Πx
{1,2}) ∩ ξ(Πx

{0,2}) = ξ(Πx
{2}). In

Figure 4.2 we attempt to show this idea graphically.

If we look at the voltages of colors 1 and 2 based on y or z what we get is
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Figure 4.3: When looking at closed paths based on y or z on this diagram we get an idea where the
property Γα02

0 ∩ Γ2 = 1 comes from. Also if we look at open paths from x to y we get an idea for
the origin of the intersection property α02Γ0 ∩ Γ2 = ∅.

Γα02
0 = ξ(Πy

{1,2}) = ξ(Πz
{1,2}), which also appears in the intersection properties. For

example, the property Γα02
0 ∩ Γ2 = 1 can be read as ξ(Πy

{1,2}) ∩ ξ(Π
y
{0,1}) = ξ(Πy

{1})

as the only closed path (up to homotopy) based at y that uses only the color 1 has

trivial voltage. Again, we attempt to give an intuition to the origin of this property

in Figure 4.3.

The intersection property α02Γ0 ∩ Γ2 = ∅ is a particularly interesting one, since

it involves a left coset and the empty set. Here we should remember that if W is a

path from u to v in some graph X, then any path from u to v in that graph may be

written (up to homotopy) as VW where V is some closed path based on u. In this

way, if U is a path with colors 1 and 2 from x to y, we may write U as V d, where V

is a closed path based on x with those same colors and d is the dart of color 2 from x
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to y. Then ξ(U) = ξ(d)ξ(V ) = α02ξ(V ) ∈ α02ξ(Π
x
{1,2}) = α02Γ0. So the coset α02Γ0 is

the set of voltages of paths from x to y with colors 1 and 2, that is α02Γ0 = ξ(Πx,y
{1,2}).

If we do the same with colors 0 and 1, and take d to be the dart of color 0, we

get that ξ(U) = ξ(d)ξ(V ) = ξ(V ) ∈ Γ2. So Γ2 may also be interpreted as ξ(Πx,y
{0,1}).

Actually, since there is a spanning tree with trivial voltage with edges of color 0 and

1, we may think of Γ2 as the set of voltages of paths of color 0 and 1 between any

two vertices.

The empty set may have many interpretations, but in this case we may see that

while it is possible to go from x to y with colors 0 or 2, it is not possible with just

the color 1, this is Πx,y
{1} = ∅. So the intersection property α02Γ0 ∩Γ2 = ∅ may also be

interpreted as ξ(Πx,y
{1,2})∩ ξ(Π

x,y
{0,1}) = ξ(Πx,y

{1}). We may also illustrate this property in

the diagram in Figure 4.3 but by looking at open paths from x to y.

This motivates us to state the following theorem:

Theorem 4.2.1. Given a multi-maniplex X and a voltage assignment ξ such that

Xξ is a maniplex, Xξ is the flag graph of a polytope if and only if

ξ(Πx,y
I (X)) ∩ ξ(Πx,y

J (X)) = ξ(Πx,y
I∩J(X)),

for all I, J ⊂ {0, . . . , n− 1} and all vertices x, y in X.

Proof Assume first that Xξ is the flag graph of a polytope. We know by The-

orem 1.3.3 that it satisfies the SPIP. Let x and y be vertices in X and I, J ⊂

{0, 1, . . . , n − 1}. Let W ∈ Πx,y
I (X) and W ′ ∈ Πx,y

J (X) be paths with the same

voltage ω. Then W and W ′ both lift to paths W̃ and W̃ ′ respectively in Xξ that go



118 CHAPTER 4. INTERSECTION PROPERTIES: THE GENERAL CASE

from (x, 1) to (y, ω) . Moreover, W̃ uses edges with colors in I while W̃ ′ uses edges

with colors in J . Since Xξ satisfies the PIP, there is a path W̃ ′′ from (x, 1) to (y, ω)

that uses only colors in I ∩ J . Then its projection W ′′ := p(W̃ ′′) is a path in X that

goes from x to y, it uses only colors in I ∩ J and has voltage ω. This proves that

ξ(Πx,y
I (X)) ∩ ξ(Πx,y

J (X)) ⊂ ξ(Πx,y
I∩J(X)). Since the other inclusion is given, equality

must hold.

Now assume that ξ(Πx,y
I (X))∩ξ(Πx,y

J (X)) = ξ(Πx,y
I∩J(X)) for all I, J ⊂ {0, 1, . . . , n−

1} and all vertices x and y. Let W̃ and W̃ ′ be paths in Xξ from a vertex (x, γ) to

a vertex (y, τ). Let I be the set of colors of darts in W̃ and J be the set of colors

of darts in W̃ ′, and let W := p(W̃ ) and W ′ := p(W̃ ′). Then W ∈ Πx,y
I (X) and

W ′ ∈ Πx,y
J (X), but they both have voltage ω := τγ−1. Our hypothesis says that there

is a path W ′′ ∈ Πx,y
I∩J(X) that also has voltage ω. Then W ′′ has a unique lift W̃ ′′

which is a path in Xξ from (x, γ) to (y, τ) and it uses darts of colors in I ∩ J . This

proves that Xξ satisfies the SPIP, and therefore it is the flag graph of a polytope.

Note that the set ξ(Πx,x
I (X)) = ξ(Πx

I (X)) is a group, since it is the image of a

group under a groupoid anti-morphism. Actually, we shall find a set of distinguished

generators for the group ξ(Πx
I (X)) in a similar way as the distinguished generators of

the automorphism group of a k-orbit polytope are found in [5]. Recall that XI is the

subgraph of X induced by the edges with colors in I and that XI(x) is the connected

component of XI containing the vertex x. Fix a spanning tree T xI for XI(x) (usually

we would try to have as big an intersection with the spanning tree T of X as possible,

but this is only for convenience). For each dart d in XI(x) but not in T xI we get a cycle

Cd of the form WdV where W is the unique path contained in T xI from x to the initial
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vertex of d, and V is the unique path contained in T xI from the terminal vertex of d to

x. As previously discussed, the set {Cd} where d runs over the darts in XI(x) not in

T xI , is a generating set for Πx
I (X). Then {ξ(Cd)} is a set of generators for ξ(Πx

I (X)).

We might consider only one dart d for each edge in XI(x) not in T xI . If we denote by

Wy the unique path contained in T xI from x to y, then Πx,y
I (X) = Πx

I (X)Wy, which

implies that ξ(Πx,y
I (X)) = ξ(Wy)ξ(Π

x
I (X)). Hence, all the intersection properties can

be given in terms of groups generated by the distinguished generators and some of

their left cosets.

Theorem 4.2.1 gives an intersection property for each pair of vertices (x, y) and

each two sets of colors I, J ⊂ {0, 1, . . . , n−1}. If we prove an intersection property for

the pair (x, y), by taking the inverse on both sides we get the corresponding property

for the pair (y, x), so we can consider only unordered pairs {x, y}, but this reduces the

number of intersection properties to check only by a factor of 2. The total number of

intersection properties is quadratic on the number of vertices and exponential on the

number of colors (it is in fact (v(v+1)/2)×(2n(2n+1)/2) = 2n−2(2n+1)v(v+1) where

v is the number of vertices and n is the rank). This number gets too big too quickly,

but many of these properties may always be redundant, either because they are true

for any group (for example, the intersection of a group and one of its subgroups is the

smaller subgroup) or because they are a consequence of other intersection properties.

Fortunately, we may reduce the number of intersection properties to check. To do

this, we follow the same proof but using the weak path intersection property instead

of the strong one. Doing this we get the following refinement of the previous theorem.

Theorem 4.2.2. Given a multi-maniplex X and a voltage assignment ξ such that
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Xξ is a maniplex, then Xξ is the flag graph of a polytope if and only if

ξ(Πx,y
[0,m](X)) ∩ ξ(Πx,y

[k,n−1](X)) = ξ(Πx,y
[k,m](X)),

for all k,m ∈ {0, . . . , n− 1} and all pairs of vertices (x, y) in X.

With Theorem 4.2.2 the number of intersection properties to check is now quadratic

on the number of vertices and also quadratic on the rank, significantly less than with

Theorem 4.2.1.

Note that we still have to check for all values of k and m even if k > m, in which

case we would have that ξ(Πx,y
[k,m](X)) is the trivial group when x = y and the empty

set when x 6= y.

Using Theorem 4.2.2 on STG 31 we get the following intersection properties (in

parentheses the values of k and m and a choice of endpoints for each property):

〈α1, β0〉 ∩ 〈α1, β
α02
2 〉 = 〈α1〉 (m = 1, k = 1, x→ x)

〈α1, β0〉 ∩ 〈αα02
1 , β2〉 = 1 (m = 1, k = 1, y → y)

〈α1, β0〉 ∩ α02〈α1, β
α02
2 〉 = ∅ (m = 1, k = 1, x→ y)

〈α1, β0〉 ∩ {α02} = ∅ (m = 1, k = 2, x→ y)

〈β0〉 ∩ 〈αα02
1 , β2〉 = 1 (m = 0, k = 1, z → z)

〈β0〉 ∩ 〈β2〉 = 1 (m = 0, k = 2, z → z)

We have omitted some redundant cases. The last property is redundant as well

since we already know parallel edges must have different voltages. So in the end we
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Figure 4.4: Voltage graphs.

get only 5 intersection properties instead of the 7 given in (3.7). This is not too big

of a difference, but for higher ranks the difference will get huge quickly.

4.3. Constructing a polytope from the voltage group

In Section 1.5 we described a way to construct a regular polytope from its auto-

morphism group by defining the faces to be cosets of some subgroup. In Section 3.3

we did something similar for 3-orbit polyhedra. Now we want to do the same but for

polytopes of any rank with any given symmetry type.

Now we turn our attention once more to the examples with STG 301 and STG 31.

Let us look at the voltage graphs in Figure 4.4.

Recall that if I ⊂ {0, . . . , n − 1}, then XI has a connected component for each

Γ-orbit of the connected components of (Xξ)I (Proposition 1.4.4).

In Section 3.3 we saw that for STG 301, when constructing a polyhedron from the
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voltage graph in Figure 4.4(a) the faces were cosets of the subgroups:

Γ0 := 〈α1, α2〉, Γ′0 := 〈α2, β2〉, Γ1 := 〈α2〉,

Γ′1 := 〈β0, β2〉, Γ2 := 〈α1, β0〉.

And for STG 31 (Figure 4.4(b)) the faces were cosets of the subgroups:

Γ0 := 〈α1, β
α02
2 〉, Γ1 := 〈α02〉,

Γ′1 := 〈β0, β2〉, Γ2 := 〈α1, β0〉.

We can see these subgroups in their voltage graph. In STG 301 (see Figure 4.5)

we have that:

Γ0 is the group consisting of the voltages of closed paths based on x that do not

use the color 0, that is Γ0 = ξ(Πx
0
) (recall that i denotes the set {0, 1, . . . , n −

1} \ {i}).

Γ′0 consists of voltages of closed paths based on y that do not use the color 0 or

Γ′0 = ξ(Πy

0
).

Γ1 consists of voltages of closed paths based on x that do not use the color 1,

or Γ1 = ξ(Πx
1
).

Γ′1 consists of voltages of closed paths based on z that do not use the color 1,

or Γ′1 = ξ(Πz
1
).
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Figure 4.5: The distinguished subgroups we use to construct a polyhedron from voltage graph 4.1
are voltages of fundamental groups after removing one color.

Γ2 consists of voltages of closed paths based on x that do not use the color 2 or

Γ2 = ξ(Πx
2
).

On the other hand, in STG 31 (see Figure 4.6) we have that:

Γ0 consists of the voltages of closed paths based on x that do not use the color

0, or Γ0 = ξ(Πx
0
).

Γ1 consists of voltages of closed paths based on x that do not use the color 1,

or Γ1 = ξ(Πx
1
).

Γ′1 consists of voltages of closed paths based on z that do not use the color 1,
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Figure 4.6: The distinguished subgroups we use to construct a polyhedron from voltage graph 4.4(a)
are voltages of fundamental groups after removing one color.

or Γ′1 = ξ(Πz
1
).

Γ2 consists of voltages of closed paths based on x that do not use the color 2,

or Γ2 = ξ(Πx
2
).

In both STGs, since after removing the edges of color 1 we get two connected com-

ponents, there are two orbits on 1-faces, and because of that we have two subgroups

with subscript 1. These groups correspond to voltages of closed paths that do not

use the color 1, but one of them is based on x and the other one on z. Notice that

x and z are in different components after removing the edges of color 1. Something
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similar happens with the 0-faces in STG 301.

Note that in each case we have decided that we will take the voltages of closed

paths based on the left-most vertex on its corresponding component. In most cases,

this choice is irrelevant, but for example, had we decided in STG 31 to base Γ0 on y

instead of x, we would have gotten 〈αα02
1 , β2〉 which is a conjugate of our choice for Γ0

and the rules of incidence would be different (as we will see below). The important

thing is that we have to chose a vertex from each component of the voltage graph

after removing the edges of the corresponding color.

Now we want to see in the voltage graphs where the order relation comes from.

For STG 301 we defined that Aσ < Bτ if and only if Aσ ∩ Bτ is non-empty,

rank(A) < rank(B) and (A,B) 6= (Γ0,Γ
′
1). The fact that we need Aσ ∩ Bτ 6= ∅ is

related to the fact that when constructing a poset from a maniplex (as in Section 1.3)

faces are incident if and only if they have non-empty intersection as subgraphs of the

maniplex.

The inequality (A,B) 6= (Γ0,Γ
′
1) should jump to our eyes. What makes this pair

special? By looking at Figures 4.5(a) and 4.5(c) we should note that the connected

component X0(x) associated with Γ0 only has the vertex x, while the connected com-

ponent X1(z) associated with Γ′1 only has z, meaning they have an empty intersection.

This means that a vertex in the orbit of Γ0 should never be incident to an edge in

the orbit of Γ′1.

So the first rule we have to take into account is that for two cosets Aσ and Bτ

to be incident, the subgraphs from which A and B come from must have non-empty

intersection.
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The order for STG 31 was defined as follows

Γ0σ < Γ1τ if and only if Γ0σ ∩ Γ1τ 6= ∅;

Γ0σ < Γ′1τ if and only if α02Γ0σ ∩ Γ′1τ 6= ∅;

Γ0σ < Γ2ξ if and only if (Γ0σ ∪ α02Γ0σ) ∩ Γ2ξ 6= ∅;

Γ1τ < Γ2ξ if and only if Γ1τ ∩ Γ2ξ 6= ∅;

Γ′1τ < Γ2ξ if and only if Γ′1τ ∩ Γ2ξ 6= ∅.

We should ask ourselves why do we use a right coset Aσ in some cases and a

two-sided coset α02Aσ in others?

As discussed in Section 4.2, the coset α02Γ0, for example, is the set of voltages of

paths from x to y without the color 0, that is, α02Γ0 = ξ(Πx,y

0
). This is also true if

we replace y by z.

We now examine the incidence rules while looking at Figure 4.6. For example,

Γ0σ < Γ′1τ if and only if α02Γ0σ ∩ Γ′1τ is not empty. Recall that Γ0 is associated

with X0(x) while Γ′1 is associated with X1(z) (Figure 3.4), and we see that these two

subgraphs intersect only in z. Informally speaking, Γ′1 is based at z, but Γ0 is based

at x, so it makes sense that we have to multiply by α02 since we have to get to a

vertex in the intersection.

Consider now the rule “Γ0σ < Γ2ξ if and only if (Γ0σ ∪ α02Γ0σ) ∩ Γ2ξ 6= ∅”. The

group Γ0 is again associated with the graph X0(x) while Γ2 is associated with X2(x).

The intersection of these two graphs has all three vertices x, y and z. Hence it makes

sense that we have to consider the right coset Γ0σ (in case a flag that contains the
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chain {Γ0σ,Γ2ξ} is in the orbit x) and the two-sided coset α02Γ0σ (in case a flag

that contains the chain {Γ0σ,Γ2ξ} is in the orbit y or z). Note that we do not have

two-sided cosets of Γ2 since X2(x) contains the spanning tree with trivial voltage. We

should have such cosets, but the left part is the voltage of a path from x to y or z

in this graph, and such a path has trivial voltage. This is also the reason why we do

not have two-sided cosets when comparing Γ2ξ with Γ1τ or Γ′1τ .

Finally we have the rule “Γ0σ < Γ1τ if and only if Γ0σ ∩ Γ1τ is not empty”.

According to the intuition we have been following to this point the rule should be

“[. . .](Γ0σ ∪ α02Γ0σ) ∩ Γ1τ is not empty”, since both x and y are in the intersection

of the graphs X0(x) and X1(x). But, it is straight forward to see that if α02Γ0σ∩Γ1τ

is not empty, then Γ0σ ∩ Γ1τ is also not empty (just multiply the element in the

intersection by α02 on the left). We can notice this also graphically: since both

graphs have a link of color 2 connecting x and y, if there was a flag in the orbit y

serving as witness of Γ0σ < Γ1τ , its 2-adjacent flag would also be a witness, but it

would be in the orbit x.

Now we want to formalize everything we have just discussed while generalizing it

to arbitrary multi-maniplexes.

We know how to recover a polytope from its flag graph (see Theorem 1.3.3) and

we know when Xξ is the flag graph of a polytope for a given multi-maniplex X and a

voltage assignment ξ (see Theorem 4.2.2). By concatenating the construction of Xξ

from X and ξ, and the construction of a polytope P from Xξ we get a construction of

a polytope from X and ξ. We want to translate this to a construction only in terms

of subgroups of Γ and their cosets.
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Let ≺ be a well order relation on the vertices of X. Let C be a (connected)

component of XI for some I ⊂ {0, 1, . . . , n − 1} and let x be its least vertex with

respect to ≺. Let C := (Xξ)I(x, 1), that is, the connected component of (Xξ)I

containing (x, 1). If (x, γ) ∈ C, there is a path W̃ from (x, 1) to (x, γ) which uses

only colors in I. Then its projection is a closed path W based on x that uses only

colors in I with voltage γ. This means that when considering the action of Γ on Xξ,

the stabilizer of C coincides with ξ(Πx
I (X)). If we now consider a coset ξ(Πx

I (X))σ,

this would be the set of elements of Γ that map C to (Xξ)I(x, σ).

We know that the i-faces of the polytope that has Xξ as its flag graph, correspond

to the connected components of (Xξ)i. This makes natural the following construction:

Given X and ξ satisfying Theorem 4.2.2 and a well order ≺ on the vertices of

X, we construct a partially ordered set P(X, ξ) with a rank function whose ele-

ments of rank i are the right cosets of groups of the type ξ(Πx
i
(X)) where x ∈

{min(C)|C is a connected component of Xi}. Here we have used the order relation

≺ to have a natural representative for each component where we will base a funda-

mental group. It is possible that ξ(Πx
i
(X)) = ξ(Πy

j
(X) with i 6= j or for i = j but

with x and y in different connected components of Xi. In this case we still have to

consider them as different elements, so in reality we must use formal copies of this

groups, one for each pair (i, C) where i ∈ {0, 1, . . . , n − 1} and C is a connected

component of Xi. We will abuse notation and still use ξ(Πx
i
(X)) to denote the formal

copy of this group corresponding to the pair (i,Xi(x)).

We still need to define the order on P(X, ξ). We do this as follows:

First, for all i ∈ {0, 1, . . . , n−1} and every vertex y in X we look at the connected
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component Xi(y) and fix a path going from its least vertex x = min(Xi(y)) to y. We

call this path W y
i and we denote its voltage by ωyi := ξ(W y

i ).

Definition 4.3.1. Order in P(X, ξ): Given 0 ≤ i < j ≤ n− 1 let C be a connected

component of Xi and C ′ be a connected component of Xj. Let x and x′ be their

respective least vertices. Let γ, γ′ ∈ Γ. We say that ξ(Πx
i
(X))γ < ξ(Πx′

j
(X))γ′ if and

only if for some y ∈ C ∩ C ′ it occurs that ωyi ξ(Π
x
i
(X))γ ∩ ωyj ξ(Πx′

j
(X))γ′ 6= ∅.

Theorem 4.3.2. Let X be a multi-maniplex and ξ : Π(X)→ Γ a voltage assignment

satisfying Theorem 4.2.2. Let

P(X, ξ) := {ξ(Πx(C))τ : C is a connected component of Xi

for some i ∈ {0, 1, . . . , n− 1}, x = min(C), τ ∈ Γ},

together with the order defined in Definition 4.3.1. Then P(X, ξ) is a polytope in

which Γ acts as automorphisms with symmetry type graph X.

Proof We have discussed in Section 2.2 the fact that if ξ : X → Γ is a voltage

assignment, then p : Xξ → X is a covering with covering transformations group

CT (p) = Γ. In other words, T (Xξ,Γ) = X. Theorem 4.2.2 implies that if we look

at the poset P(Xξ) (which is a polytope) we also have that T (P(Xξ),Γ) = X. So

in order to prove that T (P(X, ξ),Γ) = X it is enough to find a poset isomorphism

ϕ : P(Xξ) → P(X, ξ) such that it commutes with the action of Γ, i.e. such that

C̃σϕ = C̃ϕσ for all faces C̃ in P(Xξ) and all σ ∈ Γ.

Let C̃ be a face of P(Xξ), that is C̃ is a connected component of (Xξ)i for some

color i. Let C := p(C̃) and let x := min(C). Then C̃ has a flag of the type (x, γ)
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for some γ ∈ Γ. Let K̃ be the connected component of (Xξ)i that contains (x, 1). As

previously discussed, the set of elements of Γ that map K̃ to C̃ is ξ(Πx
i
(X))γ. We

want to identify C̃ with this coset, so we define C̃ϕ := ξ(Πx
i
(X))γ = {τ ∈ Γ : (x, τ) ∈

C̃, x = min(p(C̃))}. We want to prove that ϕ is a poset isomorphism and that it

commutes with the action of Γ.

We show first that ϕ commutes with the action of Γ. Let C̃ be a face in Xξ and let

σ ∈ Γ. By the definition of ϕ we know that C̃ϕ = ξ(Πx
i
(X))γ where i is the rank of

C̃, x = min(p(C̃)) and γ ∈ Γ is any element such that (x, γ) ∈ C̃. On the other hand

(C̃σ)ϕ = ξ(Πx′

i
(X))γ′ where x′ = min(p(C̃σ)) and (x′, γ′) ∈ C̃σ. First note that

since C̃ and C̃σ are in the same orbit, then p(C̃) = p(C̃σ), and thus x = x′. Also,

the flag (x, γσ) = (x, γ)σ is in C̃σ. This proves that (C̃σ)ϕ = ξ(Πx
i
(X))γσ = (C̃ϕ)σ.

Now we prove that ϕ is an isomorphism of posets. Let C̃ and C̃ ′ be incident faces

of P(Xξ) of ranks i and j respectively with i < j (which means that C̃ < C̃ ′). Then

there is a flag (y, τ) in C̃ ∩ C̃ ′. Its first entry y must be in C ∩ C ′ where C = p(C̃)

and C ′ = p(C̃ ′).

Note that the path W y
i is contained in C while W y

j is contained in C ′. Then, these

paths have lifts W̃ y
i and W̃ y

j respectively, that go from (x, (ωyi )
−1τ) and (x′, (ωyj )

−1τ)

respectively to (y, τ). Note that W̃ y
i is contained in C̃ and W̃ y

j is contained in C̃ ′.

Thus (ωyi )
−1τ ∈ C̃ϕ and (ωyj )

−1τ ∈ C̃ ′ϕ. Then

τ ∈ ωyi (C̃ϕ) ∩ ωyj (C̃ ′ϕ).

But this means that C̃ϕ < C̃ ′ϕ in P(X, ξ).

Conversely, suppose that C̃ϕ < C̃ ′ϕ in P(X, ξ). We want to prove that C̃ < C̃ ′ in
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Xξ. Let us write C̃ϕ = ξ(Πx
i
(X))γ where i is the rank of C̃, x is the least element of

C := p(C̃) and γ is an element of the voltage group such that (x, γ) ∈ C̃. Analogously,

we write C̃ ′ϕ = ξ(Πx′

j
(X))γ′ where j is the rank of C̃ ′, x′ is the least element of

C ′ := p(C̃ ′) and γ′ is an element of the voltage group such that (x′, γ′) ∈ C̃ ′.

By hypothesis ωyi ξ(Π
x
i
(X))γ and ωyj ξ(Π

x′

j
(X))γ′ have non-empty intersection for

some y ∈ C∩C ′. Let τ be an element in the intersection. Then (ωyi )
−1τ ∈ ξ(Πx

i
(X))γ.

This implies that (x, (ωyi )
−1τ) is in the same connected component of (Xξ)i as (x, γ),

that is (x, (ωyi )
−1τ) ∈ C̃. But at the same time there is a lift of W y

i that connects

(x, (ωyj )
−1τ) with (y, τ), and since W y

i does not use the color i, its lift is contained in

C̃, which proves that (y, τ) ∈ C̃. Analogously, the fact that (ωyj )
−1τ ∈ ξ(Πx′

j
(X))γ

implies that (y, τ) ∈ C̃ ′. Thus, we have proved that C̃ ∩ C̃ ′ is not empty, or in other

words C̃ < C̃ ′ in P(Xξ).

Therefore, ϕ is an isomorphism and the theorem follows.

4.4. Example: Caterpillars

Let us define a caterpillar2 as a multi-maniplex X with a unique spanning tree,

that is, one in which the only cycles (closed paths not repeating inner vertices) are

semi-edges. In particular, a caterpillar may not have pairs of parallel edges. If there

are three links (edges joining different vertices) incident to one vertex, at least two

of them must have colors differing by more than 1, which would imply that there is

a 4-cycle. This implies that caterpillars consist in fact of a single path P (which we

2In graph theory, a tree with a path that is at distance at most one of every other vertex is called
a caterpillar graph. This is a different concept to the one we are using in this thesis, although it has
the same visual origin (they look like a worms with hairs).
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Figure 4.7: A finite caterpillar.

will call the underlying path of X) and lots of semi-edges. Of course, the colors of

two consecutive edges on the path must differ by exactly one, otherwise there would

be a 4-cycle.

Let X be a finite caterpillar (that is, one with a finite number of vertices). Let P be

its underlying path, let k be the length of P , and x0, x1, . . . , xk its vertices ordered as

they are visited by P (in the notation of other sources we would say P = x0x1x . . . xk,

but we are thinking of paths as sequences of darts, not vertices). Recall that, if n

is the rank of X, the darts of X consist of pairs (xi, j) where i ∈ {0, . . . , k} and

j ∈ {0, . . . , n− 1} is the color of the dart. For each i ∈ {1, . . . , k} let ci be the color

of the link that connects xi−1 to xi.

We want to assign voltages to the semi-edges of X in order to get the flag graph

of a polytope as the derived maniplex.

First we want to note that in caterpillars the conditions of Theorems 4.2.1 and 4.2.2

can be simplified, as stated in the following lemma:

Lemma 4.4.1. Let X be a caterpillar and let ξ : Π(X)→ Γ be a voltage assignment

such that all the darts in the underlying path of X have trivial voltage. Then the

following statements are equivalent.

1. Xξ is polytopal.
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2. For every vertex x in X and all sets I, J ⊂ {0, 1, . . . , n− 1} the equation

ξ(Πx
I (X)) ∩ ξ(Πx

J(X)) = ξ(Πx
I∩J(X))

holds.

3. For every vertex x in X and all k,m ∈ {0, 1, . . . , n− 1} the equation

ξ(Πx
[0,m](X)) ∩ ξ(Πx

[k,n−1](X)) = ξ(Πx
[k,m](X))

holds.

Proof To prove this we only have to note that for every set of colors I ⊂ {0, 1, . . . ,

n− 1} the set ξ(Πx,y
I (X)) is either ξ(Πx

I (X)) or empty, depending on whether or not

the segment of P that goes from x to y (which we will denote [x, y]) uses or not only

colors in I. In fact, if [x, y] uses only colors in I then

ξ(Πx,y
I (X)) = ξ(Πx

I (X)[x, y]) = ξ([x, y])ξ(Πx
I (X)) = 1 · ξ(Πx

I (X)) = ξ(Πx
I (X)).

Note also that ξ(Πx,y
I (X)) ∩ ξ(Πx,y

J (X)) is empty if and only if one of the factors

is empty. These observations together with Theorems 4.2.1 prove the equivalence

between conditions 1 and 2, and with Theorem 4.2.2 we prove the equivalence between

conditions 1 and 3, thus proving the lemma.

Recall that a Boolean group is a group in which every non-trivial element has

order exactly 2. In particular, all Boolean groups are Abelian, and finitely generated
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Boolean groups are isomorphic to a direct product of cyclic groups of order 2. The

rank of a group is the least number of elements that generates it. A finite Boolean

group is determined, up to isomorphism, by its rank; in fact, every Boolean group of

rank k is isomorphic to Zk2.

Proposition 4.4.2. Every caterpillar is the quotient of the flag graph of a polytope

by a Boolean group.

Proof Let X be a caterpillar. We want to find a Boolean group B and a voltage

assignment ξ : Π(X)→ B such that Xξ is polytopal. The simplest way to define this

voltage assignment is to first assign a different independent generator of a Boolean

group to each semi-edge and then take the quotient by the subgroup generated by

4-paths with alternating non-consecutive colors. This results in a voltage assignment

where the voltage group is a Boolean group with rank as high as possible and satisfying

that if ξ(e) is generated by the voltages of some set of semi-edges, it must coincide

with the voltage of one of those semi-edges.

A more algorithmic way to get the same result would be the following:

First let B be a Boolean group of rank n− 1 and assign a different element of B

to each semi-edge incident to x0 in such a way that B is generated by these voltages.

Define δi := ci+1− ci for i = 1, . . . , k−1. Note that δi ∈ {−1, 1}. Now, recursively on

i, if (xi, j) is a semi-edge and j 6= ci− δi assign to this semi-edge the same voltage as

the one from (xi−1, j) (we know that (xi−1, j) is a semi-edge because j differs from ci

in more than 1, and the links incident to xi−1 have colors ci and ci−1 = ci + δi−1). We

do this because the path (xi−1, ci)(xi, j)(xi, ci)(xi−1, j) must have trivial voltage. If

j = ci−δi (this is ci−1 if ci+1 = ci+1 and ci+1 if ci+1 = ci−1), we increase the rank
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of B by one (that is, embed B in B × Z2) and assign a new independent generator

(one can think of it as (0, 1) where the 0 in the first coordinate is the identity of B) as

the voltage of (xi, j) (computationally we would then rename B = B × Z2). Finally,

since δk is undefined, assign new independent generators as the voltages of the darts

(xk, ck + 1) and (xk, ck − 1) (if they exist) after increasing the rank of B accordingly,

and for the other semi-edges on xk copy the voltage of the semi-edge of the same color

on xk−1. Let us denote this voltage assignment by ξ.

Note that our definition of ξ satisfies that if i ∈ {1, 2, . . . , k}; r, s ∈ {0, 1, . . . , n−1}

and (xi−1, r) and (xi, s) are semi-edges, then ξ(xi, s) = ξ(xi−1, r) if and only if r = s

and |r− ci| 6= 1. It also satisfies that if i < ` < j and (xi, r) and (xj, r) are semi-edges

such that ξ(xi, r) = ξ(xj, r) = γ, then (x`, r) is also a semi-edge and ξ(x`, r) = γ.

By Lemma 4.1.1, this voltage assignment gives in fact a maniplex. We claim that

it also satisfies the second statement of Lemma 4.4.1, and hence, it is the flag graph

of a polytope.

We know that ξ(Πx
I ) is the group generated by the voltages of the semi-edges in

the component XI(x).

Suppose that for some vertex x there is a semi-edge e in XI(x) and a semi-edge

e′ in XJ(x) with ξ(e) = ξ(e′) = γ for some γ ∈ Γ. If e = e′ then e ∈ XI∩J(x). If

e 6= e′ then we have that for some i, j ∈ {0, . . . , k − 1} and some r ∈ {0, . . . , n − 1}

occurs that e = (xi, r) and e′ = (xj, r); in particular r ∈ I ∩ J . If x ∈ [xi, xj] then, as

previously observed, ξ(x, r) = γ (see Figure 4.8) and since (x, r) ∈ XI∩J(x) this means

γ is a generator of ξ(Πx
I∩J). If x /∈ [xi, xj] consider without loss of generality that xi

is further away from x than xj, i.e. xj ∈ [xi, x] (see Figure 4.9). Then [xi, x] uses
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Figure 4.8: If x ∈ [xi, xj ] then (x, r) has voltage γ ∈ ξ(ΠI∩J(X)).
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Figure 4.9: If xj ∈ [xi, x] then e′ = (xj , r) is in XI∩J(x) and has voltage γ.

only colors in I and [xj, x] ⊂ [xi, x] uses only colors in J . Then since [xj, x] ⊂ [xi, x]

we know that [xj, x] uses only colors in I ∩ J , meaning that e′ ∈ XI∩J(x) and since

its voltage is γ, this proves that γ is always a generator of ξ(Πx
I∩J). We have proved

that if γ is a generator of both ξ(Πx
I (X)) and ξ(Πx

J(X)), then it is also a generator

of ξ(Πx
I∩J(X)).

Now let σ ∈ ξ(Πx
I (X)) ∩ ξ(Πx

J(X)) be arbitrary. Since the group B is Boolean,

σ may be written as σ = γ1γ2 . . . γs where the elements γ1, γ2, . . . , γs are different

generators of B, and this decomposition is unique up to reordering of the factors.

Since σ ∈ ξ(Πx
I (X)), and because the voltage of a semi-edge is always a generator,

each γi is also in ξ(Πx
I (X)), and since σ ∈ ξ(Πx

J(X)) each γi is also in ξ(Πx
J(X)). But,

because of our previous claim, this implies that each γi is in ξ(Πx
I∩J(X)), implying

that σ ∈ ξ(Πx
I∩J(X)). Therefore, ξ(Πx

I ) ∩ ξ(Πx
J) = ξ(Πx

I∩J).
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Proposition 4.4.2 is still true for infinite caterpillars. Even if our algorithmic way

of assigning voltages may not be feasible, the voltage assignment is still well defined

as a quotient of the Boolean group with one independent generator assigned to each

semi-edge.

Now we are concerned with whether or not the group B as constructed in the

proof of Proposition 4.4.2 is the full automorphism group of Xξ. First we investigate

what could be the symmetry type of Xξ with respect to its full automorphism group.

Let us introduce some concepts.

Given a caterpillar, we call an end-point a vertex incident to just one link (those

are the end-points of the underlying path). Note that a caterpillar is finite if and only

if it has exactly two end-points. Every symmetry must map end-points to end-points.

If a caterpillar is finite there is at most one non-trivial symmetry and its action on

the vertices x0, x1, . . . , xk is given by xj 7→ xk−j. We will call a finite caterpillar

symmetric if it has a non-trivial symmetry.

Recall that a word w in {0, 1, . . . , n−1} is simply a finite sequence w = a1a2 . . . at,

with ai ∈ {0, 1, . . . , n − 1} for each i = 1, 2, . . . , t. The inverse of a word w is the

word w−1 that has the same colors as w but written in reverse order, that is, if

w = a1a2 . . . at then w−1 = atat−1 . . . a1. A word is reduced if it has no occurrence of

the same color twice in a row, that is w = a1a2 . . . at is reduced if and only if ai+1 6= ai

for all i = 1, 2, . . . , t − 1. We will work with reduced words from now on. A word

w = a1a2 . . . at is a palindrome if ai = at+1−i for all i ∈ {1, 2, . . . , t}. A palindrome

word of even length can be written as vv−1 for some word v and is necessarily not

reduced. A palindrome word of odd length can always be written as w = vav−1 for
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some color a and some word v.

Given a segment [x, y] in a caterpillar, its underlying word is the word w consisting

of the colors of the links in the path that goes from x to y. When we speak of the

underlying word of a caterpillar X we are referring to the underlying word of its

underlying path in a fixed orientation.

We say that a segment [x, y] is a palindrome if its underlying word v is a palin-

drome.

Proposition 4.4.3. Let X be a finite caterpillar and let Y be a multi-maniplex not

isomorphic to X such that there is a multi-maniplex homomorphism (or covering)

h : X → Y . Then Y is a caterpillar. Moreover, if Y has at least 2 vertices and

S = c1c2 . . . ck is the underlying word of X, then there is some r < k such that

w = c1c2 . . . cr is the underlying word of Y and one of the following statements is

true:

1. There exist colors a1, a2, . . . , at ∈ {cr + 1, cr − 1} and b1, b2 . . . , bt−1 ∈ {c1 + 1,

c1 − 1} such that S = wa1w
−1b1wa2w

−1b2 . . . bt−1watw
−1.

2. There exist colors a1, a2, . . . , at ∈ {cr+1, cr−1} and b1, b2 . . . , bt ∈ {c1+1, c1−1}

such that S = wa1w
−1b1wa2w

−1b2 . . . bt−1watw
−1btw.

In any case, if i ≡ j (mod 2r + 2) then h(xi) = h(xj). Also if i ≡ −j − 1

(mod 2r + 2) then h(xi) = h(xj).

Before proving Proposition 4.4.3 let us remark that it simply means that the

quotients of a caterpillar X are those caterpillars Y such that X can be “folded” into

Y . We illustrate this concept in Figure 4.10: the semi-edges are not drawn and the
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Figure 4.10: The caterpillar X covers the caterpillar Y if and only if it “folds” into it.

names of the vertices have been omitted, but the idea is that X must be “folded”

into “layers” of r + 1 vertices and then each vertex will be projected to the vertex

on Y in the same horizontal coordinate. The layer ` consists of the vertices xi where⌊
i

r+1

⌋
= ` (b·c denotes the floor function). Even layers go from left to right, while odd

layers go from right to left, hence the underlying word of even layers is w = c1c2 . . . cr

while the underlying word of odd layers is w−1 = crcr−1 . . . c1.

Now we proceed with the proof.

Proof Consider the equivalence relation ∼h on X given by x ∼h y if and only if

h(x) = h(y). Recall that by the definition of a multi-maniplex homomorphism x ∼h y

implies that xm ∼h ym for every monodromy m of X. We have actually shown that

Y is isomorphic to X/ ∼h.

We already know that all multi-maniplex homomorphisms are surjective (see Sec-
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tion 1.4). By hypothesis h is not an isomorphism, which implies it cannot be injective.

Let x and y be two different vertices on X such that x ∼h y. Let x0, x1, . . . , xk be the

sequence of vertices in the underlying path of X. There is a monodromy m such that

xm = x0, and so x0 ∼h ym and ym is different from x0. Now let q be the minimum

positive number such that xq ∼h x0. We know that q exists because x0 ∼h ym. Note

that if q = 1 we would have that xi0 ∼h x0 for all i, which would imply that the same

is true for x1 and in turn also for x2 = xc21 and so on. This would mean that all the

vertices of X are equivalent, meaning that Y has only one vertex and the proposition

follows. So we may assume that q > 1.

We know that xq−1 = x
cq
q is equivalent to x

cq
0 . If cq 6= c1, we would have that

x
cq
0 = x0. This would imply that xq−1 is equivalent to x0, contradicting the minimality

of q. So we have proved that cq = c1.

Now note that if for some ` we have that x` ∼ x1, then xc1` ∼ xc11 = x0. In

particular this tells us that for 1 < ` < q − 1, x` cannot be equivalent to x1. Now we

can use the same argument we used to prove that cq = c1 to prove that cq−1 = c2.

Analogously we can prove that c3 = cq−2, c4 = cq−3 and so on. In other words,

[x0, xq] is a palindrome. Since for all i, ci and ci+1 are different, then q is odd, say

q = 2r + 1. Let v be the underlying word of the segment [x0, xq]. Then v may

be written as v = wcr+1w
−1 where w = c1c2 . . . cr. Call a1 := cr+1 and note that

a1 ∈ {cr + 1, cr − 1}.

For all i = 0, 1, . . . , k, denote by î the residue of dividing i by 2r + 2. We will

prove by induction on i that xi ∼h x î for all i = 0, 1, . . . , k and that ci = c î when

i is not divisible by r + 1, ci ∈ {c1 + 1, c1 − 1} if i is an even multiple of r + 1 and
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ci = {cr + 1, cr − 1} when i is an odd multiple of r + 1.

Let our induction hypothesis be that x` ∼h x̂̀ for all ` < i, and that c` = ĉ̀ if `

is not divisible by r + 1.

We start with the case when i ≡ 0 (mod 2r + 2). In this case we want to prove

that xi ∼h xî and that ci ∈ {c1 + 1, c1 − 1}. By our induction hypothesis we know

that xi−1 ∼h x2r+1 ∼h x0 and ci−1 = c2r+1 = c1. In particular ci ∈ {c1 + 1, c1 − 1}.

This implies that xi = xcii−1 ∼h x
ci
0 = x0 = x î (since ci 6= c1). Thus i satisfies our

claim.

Now we proceed with the case when i is an odd multiple of r+1, that is î = r+1.

In this case we want to prove that xi ∼h xî and that ci ∈ {cr+1, cr−1}. Our induction

hypothesis tells us that xi−1 ∼h xr and that ci−1 = cr. Hence ci ∈ {cr + 1, cr − 1}.

Note that one of the colors in {cr + 1, cr − 1} is actually cr+1, while the other is the

color of a semi-edge incident to xr. Since xr+1 ∼h xr we have that xi = xcii−1 ∼h

xcir ∼h xr ∼h xr+1 = x î. Thus i satisfies our claim.

Finally we prove our claim for the case when i is not divisible by r + 1. Our

induction hypothesis tells us that xi−1 ∼h xî−1
. Note that î = î− 1 + 1. Since i

is not a multiple of r + 1 we know that x î = x
c î

î−1
is not equivalent to x

î−1
. This

implies that x
c î
i−1 is not equivalent to xi−1, and since it is adjacent to xi−1 it must

be equal to either xi or xi−2. If i ≡ 1 (mod 2r + 2) then by induction hypothesis

xi−1 ∼h x0, but recall that x0 ∼h x2r+1 = xq by definition of q, and by induction

hypothesis xi−2 ∼h xî−2
= x2r+1. This means that xi−2 ∼h xi−1, so x

c î
i−1 must be xi,

implying that ci = c î and that xi ∼ x î. A similar argument proves that if i ≡ r + 2

(mod 2r+ 2) we also have that x
c î
i−1 = xi and ci = c î. If i 6≡ 1 (mod r+ 1) then our
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induction hypothesis tells us that ci−1 = c
î−1
6= c î, and since xi−2 = x

ci−1

i−1 = x
c
î−1

i−1 , the

only possibility is that x
c î
i−1 = xi, implying that ci = c î and that xi ∼h x î. Thus, i

satisfies our claim. Note that we have also proved that if i is not divisible by r + 1

then xi−1 cannot be an end-point of X.

We have proved that xi ∼h x î for all i = 0, 1, . . . , k. This implies automatically

that if i ≡ j mod 2r + 2 then xi ∼h xj. Moreover, if i ≡ −j − 1 (mod 2r + 2),

then î = 2r + 1− ĵ. Now since v is a palindrome, we know that x` ∼h x2r+1−` for all

` = 0, 1, . . . , 2r + 1, in particular x î = x2r+1−ĵ ∼h x ĵ. This, together with the fact

that xi ∼h x î and xj ∼h x ĵ, implies that xi ∼h xj.

We have already proved that S = wa1w
−1b1wa2w

−1 . . . and it ends after an oc-

currence of w or w−1. To end the proof note that since h is surjective we already

know exactly what multi-maniplex Y is: It is a caterpillar with vertex sequence

h(x0), h(x1), . . . , h(xr). In fact, for i = 1, . . . , r − 1 and j = 0, 1, . . . n − 1 we know

that h(xi) is different from h(xi)
j = h(xji ) if and only if j ∈ {ci−1, ci}; and if i = 0

(resp. r) then h(xi) is different from h(xi)
j if and only if j = c1 (resp. cr).

If we look closely at the proof of Proposition 4.4.3 we will notice that we have

not actually used the fact that X is finite, but only the fact that it has at least one

end-point. So the proposition may be generalized to the following one:

Proposition 4.4.4. Let X be a caterpillar with at least one end-point and let Y be

a multi-maniplex such that there is a multi-maniplex homomorphism (or covering)

h : X → Y . Then Y is a caterpillar. Moreover, if S = c1c2 . . . is the color sequence

of X starting at its end-point and Y has at least two vertices, then there is some r

such that w = c1c2 . . . cr is the underlying word of Y and there exist colors a1, a2, . . . ∈
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{cr + 1, cr − 1} and b1, b2 . . . ∈ {c1 + 1, c1 − 1} such that S = wa1w
−1b1wa2w

−1b2 . . ..

If X is finite it ends after an occurrence of either w or w−1. If i ≡ j (mod 2r + 2)

then h(xi) = h(xj). Also if i ≡ −j − 1 (mod 2r + 2) then h(xi) = h(xj).

Let us look now at the degenerate cases. If Y has only one vertex we can think that

the previous theorems still hold but with w being the empty word, and since c1 and cr

do not exist, we get rid of the restrictions ai ∈ {cr+1, cr−1} and bi ∈ {c1 +1, c1−1}.

In Figure 4.10 X would have only one vertex and no links per layer; essentially X

would be “standing up” instead of being folded. If Y is isomorphic to X then S = w

and we would have no ai or bi. In Figure 4.10 X would have only one layer.

Given a caterpillar, we have given a voltage assignment ξ with a Boolean voltage

group B such that Xξ is polytopal (see Proposition 4.4.2). Now we want to know

when can we claim that B is the full automorphism group of Xξ, or in other words,

when can we claim that X is the STG of Xξ.

Let X be a finite caterpillar and let ξ : Π(X) → B be the voltage assignment

constructed in the proof of Proposition 4.4.2. If X is symmetric, its non-trivial

symmetry induces an automorphism of B which is just a reordering of the generators.

This implies that this symmetry always lifts (see conditions 1 and 5 of Theorem 2.3.2),

so in this case the original caterpillar is not the symmetry type of the derived polytope.

But we will see in Theorem 4.4.5 that if this is not the case we can be almost sure

that the caterpillar is in fact the symmetry type graph of the derived polytope by its

full automorphism group. In this case, by “almost” we mean that if this is not the

case, the caterpillar must have a very specific structure.

Theorem 4.4.5. Let X be a finite caterpillar of length k and rank n. Let S =
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c1c2 . . . ck be the underlying word of X. Then at least one of the following statements

is true:

1. X is symmetric.

2. X is the STG of a polytope with a Boolean automorphism group.

3. c1 is in {1, n−2} and there exist r ∈ {1, 2, . . . , k−1}, and a1, a2, . . . , at ∈ {cr−

1, cr+1} where t = (k+1)/(2r+2) ∈ Z, such that S = wa1w
−1bwa2w

−1b . . . bwatw
−1

where w = c1c2 . . . cr, and b = 0 if c1 = 1 and b = n− 1 if c1 = n− 2.

4. There exist r ∈ {1, 2, . . . , k − 1} and a, b ∈ {0, n− 1} such that

S = waw−1bwaw−1b . . . bwaw−1bw,

where w = c1c2 . . . cr. Also (c1, b), (cr, a) ∈ {(1, 0), (n− 2, n− 1)}.

Proof Suppose that X is not symmetric and that it is not the STG of a polytope

with a Boolean automorphism group.

Consider the voltage assignment ξ : Π(X) → B previously discussed. We say

that two vertices x and y of X are equivalent (x ∼ y) if there exist σ, τ ∈ B such

that the flags (x, σ) and (y, τ) of Xξ are in the same orbit under the action of the

automorphism group of Xξ. Note that in this case (x, σ) and (y, τ) are in the same

orbit for all σ, τ ∈ B. Then ∼ is an equivalence relation preserved by i-adjacency,

that is x ∼ y ⇒ xi ∼ yi. Moreover, the natural function h : X → X/ ∼ is a

multi-maniplex homomorphism, so by Proposition 4.4.3 there exists some r such that

the S can be written as wa1w
−1b1wa2w

−1b2 . . . ending after an occurrence of either



4.4. EXAMPLE: CATERPILLARS 145

w or w−1, where w = c1c2 . . . cr, ai ∈ {cr + 1, cr − 1} and bi ∈ {c1 + 1, c1 − 1} (see

Figure 4.10).

If S = w then X is the STG of Xξ. If S = wa1w
−1 then X is symmetric. So we

may assume that S = wa1w
−1b1 . . .. Let j ∈ {0, 1 . . . , k − 1} be a number such that

the segment [x0, xj+1] has the underlying word wa1w
−1b1wa2w

−1b2 . . . w
−1bi for some

i. We know in particular that bi differs from c1 in exactly 1. We want to prove that

(c1, bi) ∈ {(1, 0), (n− 2, n− 1)}. Let us assume this is not the case. We will get to a

contradiction.

Let q be the other number that differs from bi in exactly 1 (that is q = 2bi − c1).

Since (c1, bi) 6= (1, 0), (n − 2, n − 1) we know that q ∈ {0, 1, . . . , n − 1}, and thus it

is the color of some edges of X. So there are semi-edges e, e′ incident to x0 of colors

q and bi respectively. Let α := ξ(e) and β := ξ(e′). The voltage of the closed path

ee′ee′ is (βα)2 = 1 because B is Boolean. This means that its lift, (the path of length

4 that starts at (x0, 1) in Xξ and alternates colors between q and bi) must be closed.

By Theorem 4.4.3, we know that cj = cj+2 = c1 6= q, so we know that the darts

(xj+1, q) and (xj, q) are semi-edges. Let κ := ξ(xj, q) and λ = ξ(xj+1, q). The path

of length 4 that alternates colors between q and bi and starts at xj is closed, and

its voltage is λκ. Note that since |q − bi| = 1 the construction of ξ tells us that

ξ(xj, q) 6= ξ(xj+1, q), that is λ 6= κ, which implies λκ 6= 1. This means that the path

of length 4 in Xξ starting at (xj, 1) and alternating colors between r and bi is not

closed (it ends at (xj, λκ).

We see that the path of length 4 in Xξ starting at (xj, 1) and alternating colors

between r and cj+1 is not closed, but the one starting at (x0, 1) is. This contradicts



146 CHAPTER 4. INTERSECTION PROPERTIES: THE GENERAL CASE

c
1

c
1

b
i

qq
b

i

x
0

x
1

x
j−1

x
j

x
j+1

q

κ λ
α

β

Figure 4.11: The voltage of the path that alternates colors between r and bi starting at xj is λκ 6= 1.

the fact that (xj, 1) and (x0, 1) are in the same orbit. The contradiction comes from

the fact that there are edges of color q = 2bi − c1 ∈ {0, 1, . . . , n− 1}, so to avoid this

we must have that (c1, bi) ∈ {(1, 0), (n− 2, n− 1)}. Since c1 is fixed, every bi must be

the same.

If the underlying word of X ends after an occurrence of w we may look at X in

the other direction. Then the previous result tells us that every ai is equal to some a

and that (cr, a) ∈ {(1, 0), (n− 2, n− 1)}.

Remark 4.4.6. If the third or fourth condition is the one holding in Theorem 4.4.5,

the actual STG of Xξ is a finite caterpillar with underlying word w where w is a word

satisfying the third or fourth condition for S in Theorem 4.4.5.

As an example of Remark 4.4.6 consider a caterpillar X with underlying word

S = 1210101 0 1010121 0 1210101

(some spaces have been added between characters to make it easier to read). By

taking w = 1 we see that condition 3 is satisfied, so the symmetry type graph of Xξ

could be the caterpillar with underlying word 1. But, if instead we take w = 1210101,

then condition 4 is satisfied, so the actual symmetry type graph of Xξ could also be
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the caterpillar with underlying word 1210101. It could also happen that X itself is

the symmetry type graph of Xξ.

By doing exactly the same proof as in Theorem 4.4.5, we obtain the following

analogous result for infinite caterpillars with one end-point :

Theorem 4.4.7. Let X be an infinite caterpillar with one end-point. Let S be the

sequence of colors of the underlying path of X starting at its end-point. Then one of

the following statements is true:

1. X is the STG of a polytope with a Boolean automorphism group.

2. There exist some number r and colors b, a1, a2, . . . ∈ {0, 1, . . . , n− 1} such that

S = wa1w
−1bwa2w

−1bwa3w
−1 . . . where w = c1c2 . . . cr and (c1, b) ∈ {(1, 0), (n−

2, n− 1)}.

Remark 4.4.8. If the second condition is the one holding, the actual STG of Xξ is a

finite caterpillar with underlying word w for some w satisfying this condition.
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Chapter 5

2-orbit polytopes

It is quite clear that 2-orbit polytopes are the second most symmetric kind of

polytopes after regular ones, so naturally they have been the second most studied

family. Nevertheless, the general theory of 2-orbit polytopes has been much more

challenging than that of regular ones.

There are 2n − 1 multi-maniplexes of rank n with exactly 2 vertices, or in other

words, 2-orbit n-polytopes may have 2n − 1 different symmetry type graphs. One of

those symmetry type graphs, the one with no semi-edges, corresponds to the so called

chiral polytopes: those with all possible “rotational” symmetry but no “reflection”

symmetry at all. Historically, chiral polytopes have been the most studied type of

2-orbit polytopes. The main theory of (abstract) chiral polytopes was developed in

1991 by Schulte and Weiss [33] but the existence of chiral polytopes in any rank was

one of the main questions to consider. Rank 3 chiral polytopes had been studied in

the context of maps on surfaces, and in the 1970’s Coxeter gave examples of rank 4

149
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chiral polytopes arising as quotients of hyperbolic tessellations [3]. However it is until

2008 that algebraic methods are developed to find (finite) chiral polytopes of rank

5 [2]. In 2010, almost 20 years after the publication of [33], Pellicer proves that there

exist abstract chiral polytopes in any rank n ≥ 3 [29].

Also in 2010, Hubard [17] describes a way to construct 2-orbit polyhedra of any

type from groups (similar to what we did in Chapter 3) and examples of 2-orbit poly-

hedra are well known for all 7 symmetry types. In 2016, Pellicer [30] finds geometric

examples of 2-orbit polytopes of any rank with a fixed symmetry type. However, the

challenge of finding 2-orbit polytopes of any possible type has not had that much of

an advancement.

In 2019, Pellicer, Potočnik and Toledo [31] find a way to construct 2-orbit mani-

plexes of any type. To do this they use a voltage assignment on the symmetry type

graph, just as we have been doing in this thesis. However, they do not try to answer

the question of whether or not their examples are polytopal. This is due to the fact

that there was no method to find the intersection properties that the voltage group

should satisfy for the derived maniplex to be polytopal. However, in Chapter 4 of

this thesis we have found the intersection properties for every symmetry type graph,

in particular those of 2 vertices, which means we have a way to try and determine

the polytopality of these 2-orbit maniplexes.

The 2-orbit n-maniplexes constructed in [31] depend on choosing a certain (n−1)-

maniplexM satisfying some conditions and some monodromy η ofM satisfying other

conditions. They show that given a 2-vertex multi-maniplex, there exists a maniplex

M and a monodromy η of M satisfying such conditions and thus, the n-maniplex
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obtained has the desired symmetry type graph. In this chapter we shall show that

some of the maniplexes constructed in [31] are in fact polytopal. More specifically,

we shall see that there exists a maniplexM and some particular monodromy η ofM

not only satisfying the conditions required in [31], but also that for 2-vertex multi-

maniplexes with exactly 2 links, the constructed maniplex is polytopal. Of course,

to show such polytopality we shall show that the voltage assignment satisfies the

corresponding intersection properties.

In Section 5.1 we describe the construction 2̂M, which gives rise to a family of

regular polytopes of all ranks that we will be using for all our examples. In Section 5.2

we describe the construction given in [31] to get 2-orbit maniplexes, and finally, in

Section 5.3 we use this construction to prove that if X is a 2-vertex multi-maniplex

with exactly 2 links, then there exists a polytope P with X as its symmetry type

graph.

5.1. The construction 2̂M

The main theorem in [31] states that given a regular maniplex M of rank n with

some conditions, and a multi-maniplex X of rank n + 1 with 2 vertices, there is a

voltage assignment ξ on X that gives a 2-orbit maniplex M̃ with symmetry type

graph X. The voltage group is a group acting on the set MW × Z2k, where MW

consists of a specific half of the flags of M and k is a very large number.

To be more precise, the conditions on M are (equivalent to) the following:

1. M has to cover Xn (the multi-maniplex of rank n obtained by deleting the darts



152 CHAPTER 5. 2-ORBIT POLYTOPES

of color n).

2. There is an involutory monodromy η inM that maps all the flags of any given

facet to different facets.

A concrete family of maniplexes satisfying these conditions is given and its ele-

ments are calledMn where n denotes the rank. This family is constructed recursively

and it does not depend on the choice of X. More concretely, M2 is the flag graph of

the square, andMn+1 is constructed fromMn as 2̂Mn (which we will define shortly)1.

In [28] it is proved that if P is a regular polytope then 2̂G(P) is the flag graph of a

regular polytope, and we will see shortly a proof of the fact that ifM is regular 2̂M is

regular too. This implies that the family {Mn}n≥2 consists of flag graphs of regular

polytopes. Since there are known examples of 2-orbit polyhedra (rank 3) with any

given symmetry type, we are only concerned about the family {Mn}n≥3, which are

the maniplexes used to construct 2-orbit maniplexes of ranks 4 and higher.

The construction 2̂M works as follows: Given a maniplex M, the flags of 2̂M are

F(M) × ZFac(M)
2 , where F(M) is the set of flags of M and Fac(M) is the set of

facets. We will think of ZFac(M)
2 as the set of its functions from Fac(M) to Z2. Then

the adjacencies are defined by:

(Φ, x)i := (Φi, x) if i < n,

(Φ, x)n := (Φ, x+ χFac(Φ)),

1We should remark that 2̂P is actually (2P
∗
)∗, where the superscript ∗ denotes duality and 2P is

a better-known construction (see [6]).
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where Fac(Φ) denotes the facet of Φ and given a facet F ∈ Fac(M) the vector χF is

the one associated with the characteristic function of F , that is, the vector with 1 in

the coordinate corresponding to F and 0 in every other one.

If we remove the edges of color n from 2̂M we get one connected component for

each vector x ∈ ZFac(M)
2 . Each component consists of all flags of type (Φ, x) where Φ

is a flag of M. In particular, every facet of 2̂M is isomorphic to M.

Given a polytope P we can give a construction 2̂P such that the flag graph of 2̂P

is the maniplex 2̂G(P), where G(P) denotes the flag graph of P . This construction is

the following:

For −1 ≤ i ≤ n, denote by Fi the set of i-faces of P . If f ∈ ZFac(M)
2 the support

of f , denoted by supp(f), is defined as the set of facets F ∈ Fac(M) such that

f(F ) = 1. If we denote by F̂i the set of i-faces of 2̂P , then for −1 ≤ i ≤ n let

F̂i := Fi×ZFac(M)
2 / ∼ where (F, x) ∼ (F ′, x′) if and only if F = F ′ and for every facet

G ∈ supp(x + x′) we have that F ≤ G. We then add a formal greatest face Fn+1.

Finally, the incidence relation on 2̂P is given by (A, x) < (B, y) if and only if A < B

and (A, x) ∼ (A, y).

There is a natural bijection between the flags of 2̂G(P) and the flags of G(2̂P), and

it is given by (Φ, x) 7→ {(Φj, x)|j ≤ n}. This bijection maps (Φ, x)i = (Φi, x) to

{((Φi)j, x)|j ≤ n} = {(Φj, x)|j ≤ n}i for i < n and it maps (Φ, x)n = (Φ, x+ χFac(Φ))

to {(Φj, x+χFac(Φ))|j ≤ n}, and since Φj ≤ Fac(Φ) for j < n this is {(Φj, x)|j ≤ n}n,

so this bijection is an isomorphism between 2̂G(P) and G(2̂P).

We can prove that ifM is a regular maniplex then 2̂M is a regular maniplex too.

It is not difficult to see that the automorphisms of M have a natural action on 2̂M.
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If σ is an automorphism of M then it can be extended to an automorphism of 2̂M

by defining (Φ, x)σ := (Φσ, σ−1x). Note that supp(σ−1x) = supp(x)σ, so we are

actually using the natural action of an automorphism on a set of facets. Let us show

that this is in fact a maniplex automorphism:

If i < n then

((Φ, x)i)σ = (Φi, x)σ

= ((Φi)σ, σ−1x)

= ((Φσ)i, σ−1x)

= ((Φ, x)σ)i.

And for i = n we get

((Φ, x)n)σ = (Φ, x+ χFac(Φ))σ

= (Φσ, σ−1(x+ χFac(Φ)))

= (Φσ, σ−1x+ σ−1χFac(Φ))

= (Φσ, σ−1x+ χFac(Φσ))

= ((Φ, x)σ)n.

This implies that the automorphism group of M acts transitively on the flags of

the facet (Fn, 0) where Fn is the greatest face ofM. But for any y ∈ ZFac(M)
2 we have

that the function Ty given by (Φ, x)Ty = (Φ, x+ y) is also an automorphism. In fact
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for i < n we get

((Φ, x)i)Ty = (Φi, x)Ty

= (Φi, x+ y)

= (Φ, x+ y)i

= ((Φ, x)Ty)
i.

And for i = n we get:

((Φ, x)n)Ty = (Φ, x+ χFac(Φ))Ty

= (Φ, x+ y + χFac(Φ))

= (Φ, x+ y)n

= ((Φ, x)Ty)
n.

This implies that 2̂M is facet-transitive and in conclusion regular. Following this

same logic, in [31, Proposition 11] it is also proved that if an n-maniplex M has

symmetry type graph X then the symmetry type graph of 2̂M is obtained by adding

semi-edges of color n to each vertex of X. In fact, in [8] it is proved that the au-

tomorphism group of 2̂M is a semi-direct product T o Γ(M), where T is the group

{Ty : y ∈ ZFac(M)
2 }.

When we letM2 be the flag graph of a square and defineMi+1 := 2̂Mi for i ≥ 2,

M3 happens to be the a map on the torus called {4, 4}(4,0) which can be thought of

as a 4 × 4 chess board in which we identify opposite sides (without twisting). The
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3-faces of every subsequent Mn will be of this type and we will make use of this in

our proofs.

Recall that a lattice is a poset in which every pair of elements {A,B} has a lowest

upper bound A ∨ B (called the join of A and B) and a greatest lower bound A ∧ B

(called the meet of A and B). It is known that if P is a lattice then 2̂P is also a

lattice. One can verify that if A and B are faces of P , x, y ∈ ZFacP
2 and there is at

least one facet of 2̂P containing both (A, x) and (B, y) then,

(A, x) ∨ (B, y) = (A ∨B, x) ∼ (A ∨B, y),

and

(A, x) ∧ (B, y) = (C, x) ∼ (C, y)

where C is the greatest lower bound of the set supp(x + y) ∪ {A,B} (which always

exists on a lattice that is also a ranked poset). For a full proof of a more general

result see [32, Theorem 5].

Corollary 5.1.1. For n ≥ 2, the poset associated with Mn is a lattice.

Proof Notice that the face lattice of the square (M2) is a lattice. The result follows

by induction on n.

In [31, Proposition 14, Lemma 16] it is proved that the family {Mn}n≥3 satisfies

both conditions mentioned at the beginning of this section. To prove that is satisfies

the second condition, the authors prove and use the following lemma:
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Lemma 5.1.2. [31, Lemma 15] If M has a set of facets S which is not invariant

under any non-trivial automorphism, then there is an involutory monodromy η of 2̂M

that maps all the flags of any given facet to different facets.

Such a set S is constructed forM3, and recursively constructed forMn+1 in terms

of one constructed for Mn. The construction is as follows:

If S ⊂ Fac(M) is a set of facets that is not invariant under any non-trivial

automorphism, then Ŝ := {(Fn, χF )|F ∈ S} ∪ {(Fn, 0)} is a set of facets of 2̂M and it

satisfies the same condition.

In [31] the authors only care that S is not invariant under any non-trivial automor-

phism, however we shall choose an S that satisfies some extra conditions, which will

prove useful when dealing with the polytopality of the constructed 2-orbit maniplexes.

From now on, we call the shaded set in Figure 5.12 S3, and we call Sn ⊂ Fac(Mn)

the set constructed recursively as Sn := Ŝn−1 for n ≥ 4. Note that S3 is not invariant

under non-trivial automorphisms of M3, and therefore Sn is not invariant under

non-trivial automorphisms of Mn.

Definition 5.1.3. Given a polytope P and a face f ∈ P let us define its closure f

as the set of all the facets of P which are incident to f .

Given a pre-ordered3 set (P ,≤), one can give it a topology by defining that a

subset C is closed if and only if whenever x ∈ C and x ≤ y then y ∈ C. In fact every

topology on a finite set can be obtained from a pre-order in this way (see [36]). In

2In the article [31] the authors actually use the complement of this example to show that a set S
not invariant under non-trivial automorphisms exist.

3A pre-order ≤ in a set P is a relation that is transitive and reflexive, but it may not be anti-
symmetric.
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Figure 5.1: The set S3 consisting of the shaded 2-faces is not invariant under any non-trivial
symmetry of M3 and it is not contained in the closure of two 0-faces.

such context, the closure of a set S is just S = {y ∈ P : ∃x ∈ S, x ≤ y}. If we remove

the least and greatest faces of P and equip it with this topology, then what we are

calling the closure of f is actually just the set of facets contained in the topological

closure of {f}.

Lemma 5.1.4. Given any two proper faces u, v of Mn with n ≥ 3, the set Sn is not

contained in u ∪ v.

Proof We proceed by induction on n. For n = 3 this is a simple observation obtained

from Figure 5.1. Note that the closure of a face is contained in the closure of any

incident face of smaller rank, so we only need to prove the lemma for 0-faces. Suppose

the lemma is true for Mn. Let u, v be 0-faces of Mn+1, so that u = (u′, x) and

v = (v′, y) for some u′, v′ 0-faces of Mn and x, y ∈ ZFac(Mn)
2 . We will prove that

u ∪ v does not cover even Sn+1 \ {(Fn, 0)}, so we may assume that both u and v are

each incident to at least one element of Sn+1 other than (Fn, 0), say for example that

u = (u′, x) < (Fn, χG) for some facet G ofMn. By our definition of the order <, this
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implies that u′ < Fn (which is tautological) and (u′, x) ∼ (u′, χG), so we may assume

without loss of generality that x = χG. Analogously we may assume that there exists

a facet F in Mn such that y = χF .

Now a facet (Fn, z) is in u∪v if and only if supp(z+χG) ⊂ u′ or supp(z+χF ) ⊂

v′. By induction hypothesis, Sn is not contained in u′ ∪ v′, so there exists a facet

D ∈ Sn \ (u′ ∪ v′). Then (Fn, χD) is a facet in Sn+1 not in u ∪ v.

In topological terms, Lemma 5.1.4 tells us that no set of two elements is dense in

Sn.

Now we turn our attention to the monodromy η. In the proof of Lemma 5.1.2

found in [31], η is constructed as follows:

Let M be a regular maniplex and let S be a set of facets not invariant under

non-trivial automorphisms. For every facet F ∈ S let ΦF be a fixed base flag in that

facet. Let F0 be a base facet in S and let Φ = ΦF0 . For every F ∈ S, let ωF be a

monodromy ofM that maps Φ to ΦF . Note that sinceM is regular, its monodromy

group acts regularly on its flags, so ωF is actually unique. Then for every flag (Ψ, x)

in 2̂M define (Ψ, x)η := (Ψ, x +
∑

F∈S χFac(ΨωF )). The action of η will be more clear

with the following lemma.

Lemma 5.1.5. Let (Ψ, x) ∈ 2̂M. Let γ be the automorphism of M mapping the

base flag Φ of F0 to Ψ. Then, the vector corresponding to the facet of (Ψ, x)η differs

from x only in the coordinates corresponding to Sγ, that is, if (Ψ, x)η = (Ψ, y) then

supp(x+ y) = Sγ.
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Proof For every F ∈ S we have that

ΨωF = (Φγ)ωF = (ΦωF )γ,

so

Fac(ΨωF ) = Fac((ΦωF )γ) = (Fac(ΦωF ))γ = (Fac(ΦF ))γ = Fγ.

This implies that (Ψ, x)η = (Ψ, x +
∑

F∈S χFac(ΨωF )) = (Ψ, x +
∑

F∈S χFγ) so

y = x+
∑

F∈S χFγ. By doing the change of variable G = Fγ we get y = x+
∑

G∈Sγ χG

and supp(x+ y) = Sγ.

Given two sets S and S ′ of facets of a polytope P , we say that S ′ is a copy of S

if there is an automorphism γ of P such that S ′ = Sγ. Lemma 5.1.5 tells us that if

(Ψ, x)η = (Ψ, y) then supp(x+ y) is a copy of S.

In [31, Lemma 15] it is proved that η is in fact a monodromy of 2̂M and that if S

is not invariant under non-trivial automorphisms ofM then η maps all the flags of a

facet of 2̂M to different facets.

Note that using a set of facets of Mn not invariant under non-trivial automor-

phisms we constructed the monodromy η forMn+1. We have found such sets of facets

for Mn with n ≥ 3, which means that we have found the monodromy η for n ≥ 4.

We have not found the monodromy η forM3, since every set of facets (edges) ofM2

(the square) is invariant under some non-trivial automorphism. Actually M3 does

not have such a monodromy. Suppose there is a monodromy η of M3 mapping each

flag in a facet ofM3 to a different facet. Since there is an action of the dihedral group

D4 acting transitively on the flags of a facet, this same group should act transitively
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on the facets of their images. One can verify that there is no set of 8 facets of M3

admitting such action.

However, the map on the torus {4, 4}(8,0) (a chess board of regular size where

each border is identified with its opposite) does admit such a monodromy: simply

take η = r2r1r0r1r2r1r2. This maps the 8 flags of a facet to the 8 squares where a

knight could legally move in a game of chess. This example also covers all 2-vertex

multi-maniplexes in rank 3, so to construct 2-orbit polytopes of rank 4 one may use

this example instead of M3.

5.2. 2-orbit maniplexes

The symmetry type of a 2-orbit maniplex is denoted by 2nI where n denotes the

rank4 and I is a proper subset of {0, 1, . . . , n − 1}. In this notation, I is the set of

colors i such that any flag is in the same orbit as its i-adjacent flag. In terms of the

symmetry type graph, I is the set of colors of the semi-edges.

In order to find 2-orbit polytopes (resp. maniplexes) with every possible 2-vertex

multi-maniplex as its symmetry type graph, we only need to find those where 0, n−1 /∈

I. To prove this one should observe that, given an n-polytope P there are several

constructions (for example 2̂P) that give an (n+1)-polytope with the same symmetry

type graph but with an extra semi-edge of color n at each vertex. Conjugating with

duality, one can construct an (n + 1)-polytope which has the same symmetry type

as P but with colors shifted by 1, and an extra semi-edge of color 0 at each vertex.

Suppose that we want to find a polytope (resp. maniplex) with symmetry type

4Some texts assume that the rank is implicit and simply write 2I .
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2kJ . Let r be the least color not in J and let s be the greatest color not in J .

Then it is enough to find a polytope (resp. maniplex) with symmetry type 2nI where

I := J − r = {j − r|j ∈ J} ∩ [0, n− 1] and n = s− r + 1. Note that I satisfies that

0, n−1 /∈ I since 0 = r− r and n−1 = s− r and by construction r, s /∈ J . Therefore,

using a polytope (resp. maniplex) with symmetry type 2nI as well as the operations

2̂M and duality, one can obtain the desired polytope (resp. maniplex) of symmetry

type 2kJ .

Given a 2-vertex multi-maniplex X = 2n+1
I with 0, n /∈ I, the authors of [31] give

a voltage assignment to its darts such that the derived graph is a 2-orbit maniplex

with X as its symmetry type graph. We discuss this voltage assignment next.

Let us color the vertices of X one white and one black. Let {r0, r1, . . . , rn−1} be

the distinguished generators of the monodromy group of Mn. If a is a semi-edge

incident on the white vertex we assign to it the voltage ri where i is its color. If a is a

semi-edge of color i incident to the black vertex, we assign to it the voltage r0rir0, or

in other words, ri if i > 1 and r0r1r0 if i = 1. Finally, if a is a dart of color i < n from

the white vertex to the black vertex we assign to it the voltage r0ri, in particular, the

voltage of the edge of color 0 is trivial. We shall give the voltage of the edge of color

n shortly (which will be an involution, so orientation is irrelevant). From now on, we

call this voltage assignment ξ.

Let p : Mn → Xn be a homomorphism (covering). We color the vertices of Mn

white or black according to the color of their image under p. Since Xn has exactly 2

vertices and Mn covers X, then every monodromy of Mn either preserves the color

of every flag or it changes the color of every flag. Note that the voltages of every dart
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Figure 5.2: The voltage ξ we use on X = 2n+1
I .

preserve the color of the flags when thought of as monodromies.

5.2.1. The voltage of the dart of color n

Now we turn our attention to the voltage of the dart of color n. In [31] the

authors make the voltage group act on (Mn)w × Z2k for some large k, where (Mn)w

is the set of white flags ofMn (recall that all voltages preserve the color of the flags).

The action is simply defined by (Ψ, x)ω = (Ψω, x) for all (Ψ, x) ∈ (Mn)w × Z2k

and every monodromy ω, or in other words, each monodromy acts as usual in the

(Mn)w-coordinate and as the identity on the Z2k-coordinate. The voltage ỹn of

the dart of color n is defined as the composition of three commuting involutions

ρ̃0r0s. Both r0 and ρ̃0 act only on the (Mn)w coordinate and are independent of

the Z2k one, while s acts only on the Z2k coordinate. To avoid future confusion, the

reader must recall that F(Mn) = F(Mn−1) × ZFacMn−1

2 , so F(Mn) × Z2k may be

regarded as F(Mn−1) × ZFacMn−1

2 × Z2k. The importance of the Z2k coordinate is

to prove that the derived maniplex is in fact a 2-orbit maniplex instead of a regular

one, but it has no importance when proving that the derived graph is a maniplex.

For our purposes we will ignore s for now and consider as if all actions were on
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F(Mn) = F(Mn−1)×ZFacMn−1

2 and assign the voltage yn := ρ̃0r0 to the edge of color

n.

In order to define ρ̃0 we first need to choose a base flag ΦF for each facet F of

Mn. For the proof in [31] to work, we first choose a base facet F0 = (fn−1, 0) of

Mn (where fn−1 is the greatest face of Mn−1) and then for every white flag Ψ in

F0 we set Ψr0ηr0 to be the base flag of its facet. Recall that η maps all the flags of

F0 to different facets, so there is no ambiguity. In [31] all the other base flags are

chosen arbitrarily, however we will later have a preferred choice for them too. Then

we define ρ̃0 as the flag-permutation that acts on each facet F as the reflection (facet

automorphism) that fixes all the faces of the base flag ΦF but its 0-face.

Note that if we replace a base flag with any flag sharing the same edge (1-face)

and the same facet, we get the same permutation ρ̃0. So we may define a base edge of

a facet F as the 1-face of the corresponding base flag and forget about the base flag.

Now the previous choice of base edges would be equivalent to the following: For

every black flag Ψ in F0 we set (Ψη)1 to be the base edge of its facet.

Let Ψ be a black flag in F0. Since Mn = 2̂Mn−1 and by the choice of F0, the

flag Ψ can be written as (ψ, 0) for some flag ψ in Mn−1. Lemma 5.1.5 tells us that

Ψη = (ψ, x) for some x ∈ ZFac(Mn−1)
2 satisfying that supp(x) is a copy of Sn−1.

So for facets corresponding to vectors whose support is a copy of Sn−1 we are

forced to choose a specific base edge, but for any other facet we may choose the base

edge as we want. Let (e, 0) be the base edge of the base facet F0 = (fn−1, 0). Then

for every x whose support is not a copy of Sn−1 we choose (e, x) as the base edge of

the facet (fn−1, x). We summarize this in the following definition:
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Definition 5.2.1. Base edges: Let (e, 0) be the base edge of the base facet of Mn,

let x ∈ ZFac(Mn)
2 and let fn−1 be the greatest face of Mn−1. If supp(x) is not a copy

of Sn−1, then we define the base flag of the facet (fn−1, x) of Mn to be (e, x). If

supp(x) = Sn−1γ for some γ ∈ Γ(Mn−1), then we define the base edge of (fn−1, x)

to be (eγ, x).

Corollary 5.2.2. If x ∈ ZFac(Mn)
2 is such that supp(x) ⊂ u ∪ v for some faces u, v

in Mn−1, then the base edge of the facet (fn−1, x) is (e, x).

Proof If supp(x) ⊂ u∪ v, then, because of Lemma 5.1.4 supp(x) cannot be a copy

of Sn−1. Then, Definition 5.2.1 gives us the desired result.

Corollary 5.2.3. If (e, 0) is the base edge of the base facet (fn−1, 0) of Mn, then it

is also the base edge of any other facet containing it.

Proof If (fn−1, x) is a facet containing (e, 0) then supp(x) ⊂ e. Then, Corollary 5.2.2

tells us that base edge of (fn−1, x) is (e, x) ∼ (e, 0).

Finally we let yn := ρ̃0r0 and extend the voltage assignment ξ by assigning yn as

the voltage of the edge of color n of X. Note that since ρ̃0 acts as an automorphism

in each facet, it commutes with all the monodromies that do not use the generator

rn. In particular ρ̃0 commutes with r0, implying that yn is an involution.

As previously discussed, in [31] the authors consider the voltage group as acting

on (Mn)w × Z2k where (Mn)w is the set of white flags of Mn and k is some large

integer. If (Ψ, a) ∈ (Mn)w×Z2k and ω is a color preserving monodromy ofMn then

(Ψ, a)ω is simply defined as (Ψω, a). Then they use ỹn := ρ̃0r0s as the voltage of
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the edge of color n, where s is an involution acting only on the Z2k coordinate. We

will call the voltage assignment used in [31] ξ′. In [31] the authors prove that Xξ′ is

a maniplex with STG X. The proof of the fact that Xξ′ is a maniplex also applies

to Xξ, but the proof of the fact Xξ′ is not regular relies heavily on k being large5.

On the other hand Xξ is either regular or has STG X. However our proofs to show

polytopality of some derived maniplexes will be much clearer if we work with the

voltage assignment ξ and consider that ξ = ξ′πMn where πMn is the projection to

theMn-coordinate. That is, the ξ-voltage of a path is just the first coordinate of the

ξ′-voltage of the same path. Note that two paths may have the same ξ-voltage while

having different ξ′-voltages, but not the other way around.

5.3. Polytopality

In this section we prove that if I = {1, 2, . . . , n− 1}, then the derived graph from

the voltage graph X = 2n+1
I in Figure 5.2 is polytopal. We will also prove that most

of the intersection properties are also satisfied for arbitrary I, implying that there are

only a few intersection properties that would be needed to check to prove that there

are 2-orbit polytopes of all symmetry types in rank n ≥ 3.

In order to deal with the intersection properties in Theorem 4.2.1 for this particular

5The idea of the proof to show that Xξ′ has two orbits is the following: They find a path W in
X whose voltage is some µ with order bounded from below in terms of k (this is [31, Lemma 25]).
Then they prove that the voltage µ′ of the image of W under the automorphism that swaps the
vertices of X has order bounded from above and this bound does not depend on k(this is [31,
Lemma 28]). Therefore, Theorem 2.3.2 (conditions (1) and (5)) assures that the reflection swapping
the two vertices of X does not lift. Now, because X has only two orbits every automorphism of Xξ′

must project (using Theorem 2.3.1 and the fact the voltage group has index at most 2). Therefore
the automorphism group of Xξ′ must be the voltage group and the STG of Xξ′ is X.
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voltage assignment, we should first understand better what are the voltages of paths

in the voltage graph in Figure 5.2 with respect to the colors they use. To do this we

prove Lemmas 5.3.2 and 5.3.3, which describe the voltages of (most) closed and open

paths respectively.

Let us first prove the following:

Claim 5.3.1. Let n ≥ 3. Let W = d1d2 . . . dm be a path in the voltage graph of

Figure 5.2. Let ci be the color of the dart di. If ci 6= 1, n for all i ∈ {1, 2, . . . ,m}

then ξ(W ) = rε0rcmrcm−1 . . . rc1 where ε is 0 or 1 depending on whether the path W is

closed or open, respectively.

Proof Note that W is closed if it uses an even number of links, and it is open if it

uses an odd number of links.

If dm is a semi-edge based on the white vertex, then

ξ(d1d2 . . . dm) = rcmξ(d1d1 . . . dm−1).

If dm is a dart from the white vertex to the black one, then

ξ(d1d2 . . . dm) = r0rcmξ(d1d1 . . . dm−1).

If dm is a dart from the black vertex to the white one, then

ξ(d1d2 . . . dm) = rcmr0ξ(d1d1 . . . dm−1)
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but since cm 6= 1 we know that rcmr0 = r0rcm and we get

ξ(d1d2 . . . dm) = r0rcmξ(d1d1 . . . dm−1).

And if dm is a semi-edge on the black vertex then

ξ(d1d2 . . . dm) = r0rcmr0ξ(d1d1 . . . dm−1)

but since cm 6= 1 this means ξ(d1d2 . . . dm) = rcmξ(d1d1 . . . dm−1). If we repeat this

argument for dm−1, then dm−2 and so on, and note that since ci 6= 1 then rci commutes

with r0 for all i, we get the desired result.

Recall that if Φ is a flag and K ⊂ {0, 1, . . . , n − 1}, then (Φ)K denotes the set

of faces in Φ whose rank is in K. The following lemma characterizes the voltages of

closed paths that do not use edges of color 1 or the edge of color n and voltage yn.

Lemma 5.3.2. Let ω be a monodromy ofMn that preserves the color of its flags and

K ⊂ {0, 1, . . . , n − 1}. Suppose 1 ∈ K. Then for every white flag Φ of Mn we have

that (Φ)K = (Φω)K if and only if ω is the voltage of a closed path based on the white

vertex of X that does not use colors in K ∪ {n}.

Proof If (Φ)K = (Φω)K , by strong connectedness of Mn there is a path W̃ from Φ

to Φω not using colors in K. Let c1c2 . . . ck be the sequence of colors of W̃ . Then

Φω = Φrc1rc2 . . . rck , but sinceMn is regular, the action of the monodromy group on

the flags is regular, so we conclude that ω = rc1rc2 . . . rck .
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Let W be the path on X that starts on the white vertex and follows the sequence

of colors c1c2 . . . ck, that is W = p(W̃ ). We know that Φω and Φ are both white,

so W must be a closed path. Recall that the voltage of W is the product of the

voltages of its darts but in reverse order. Let a1a2 . . . ak be the dart sequence of W .

Let us consider W−1 = akak−1 . . . a1. Since W does not use colors in K and 1 ∈ K

Claim 5.3.1 tells us that ξ(W−1) = rε0ω and since W is closed, W−1 is closed too, so

ε = 0 and ξ(W−1) = ω. Thus we have found a closed path that does not use colors

in K ∪ {n} and has voltage ω.

For the converse, let W = a1a2 . . . ak be a closed path based on the white vertex

of X and suppose that W does not use colors in K ∪ {n}. Since W does not use the

color 1 (because 1 ∈ K) Claim 5.3.1 tells us that ξ(W ) = rckrck−1
. . . rc1 =: ω where

ci is the color of ai. Since ci /∈ K ∪ {n} we know that (Φω)K = (Φ)K .

The following lemma characterizes the voltages of open paths that do not use

edges of color 1 or the edge of color n and voltage yn.

Lemma 5.3.3. Let ω be a monodromy of Mn that preserves the color of the flags

and K ⊂ {0, 1, . . . , n− 1}. Then (Φ)K = (Φ0ω)K if and only if ω is the voltage of an

open path in X that does not use colors in K ∪ {n}.

Proof If (Φ)K = (Φ0ω)K , by strong connectedness ofMn there is a path W̃ from Φ

to Φ0ω not using colors in K ∪ {n}. Let c1c2 . . . ck be the sequence of colors of W̃ .

Then Φr0ω = Φrc1rc2 . . . rck , but since Mn is regular, the action of the monodromy

group on the flags is regular, so we conclude that r0ω = rc1rc2 . . . rck , which means

ω = r0rc1rc2 . . . rck .
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Once again let W−1 be the path on X that starts on the white vertex and follows

the sequence of colors ckck−1 . . . c1, that is W = p(W̃ ). Since ω preserves the color of

the flags Φ0ω has a different color from Φ, so W is an open path.

The rest of the proof is analogous to that of Lemma 5.3.2.

We want to show that if X is a 2-vertex multi-maniplex with only a 0-link and an

n-link, and ξ is the voltage assignment defined in Section 5.2, then the condition of

Theorem 4.2.2 is satisfied, that is, we want to prove that if X = 2̂n+1
[1,n−1], we have that

ξ(Πa,b
[0,m](X)) ∩ ξ(Πa,b

[k,n−1](X)) = ξ(Πa,b
[k,m](X)),

for all k,m ∈ [0, n] and all pairs of vertices (a, b).

In [31] the authors only use the sets Sn to find the monodromy η of Mn sending

each flag of a facet to a different facet. To ensure that η acts this way they only need

to use the fact that Sn is not invariant under non-trivial automorphisms, and they

do not consider any other properties. However, for our purposes this condition is not

enough. We need η to also send the flags of the base facet “very far away”. This is

to ensure that “close facets” have the same base edge as the base facet. This is why

we have proved Corollary 5.2.2.

First we will prove that the intersection condition is satisfied for k > 1 for every

2-vertex multi-maniplex 2n+1
I where 0, n /∈ I.

Theorem 5.3.4. Let X be an (n+1)-multi-maniplex with two vertices and with links

of color 0 and n, that is X = 2n+1
I with 0, n /∈ I. Let ξ be the voltage assignment
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defined in Section 5.2. Then, for k > 1 and for all m ∈ [0, n] we have that

ξ(Πa,b
[0,m]) ∩ ξ(Π

a,b
[k,n]) = ξ(Πa,b

[k,m]),

for all pairs of vertices (a, b) in X.

Before proceeding with the proof, let us introduce a few new concepts. LetM be

a maniplex of rank n and let µ be a flag-permutation ofM. Let i ∈ {0, 1, . . . , n− 1}

and let F and G be i-faces of M. If µ maps every flag with i-face F to a flag with

i-face G we will say that µ maps F to G. In the case where F = G we will say that

µ fixes F . If µ fixes F for every i-face F we will say that µ fixes i-faces.

Recall that the interval [k,m] is considered to be the empty set when k > m and

that ξ(Πa,b
∅ ) is the trivial group 1 if a = b and it is the empty set if a 6= b.

Proof If m = n there is nothing to prove. If m < n then ξ(Πa,b
[0,m]) is generated by

monodromies of Mn mapping any white flag Φ in Mn to a white flag with the same

i-faces for i > m.

Now let W ∈ Πa,b
[k,n]. If ξ(W ) ∈ ξ(Πa,b

[0,m]) then it must be a monodromy of Mn

that preserves i-faces for i > m. Let Φ be the base flag of the base facet ofMn. Note

that, since k > 1, the elements of ξ(Πa,b
[k,n]) are products of flag permutations that do

not change the 1-face of Φ, that is, for every ω ∈ ξ(Πa,b
[k,n]) we have that (Φω)1 = Φ1.

This implies that Φωyn = Φω, as all facets containing Φ1 must have it as their base

edge because of Corollary 5.2.3. Note also that if 1 < i < n, then the voltage of

all darts of color i is the same. This means that if we write ξ(W ) ∈ ξ(Πa,b
[k,n]) as the

product of the voltages of the darts of W , it acts on Φ the same way as the voltage



172 CHAPTER 5. 2-ORBIT POLYTOPES

e e

e

01 Φ

Figure 5.3: The edges e, e0 and e1 illustrated on a 3-face of Mn−1.

of the path W ′ that follows the same colors as W but ignoring each occurrence of a

dart of color n.

If W uses an even number of darts of color n, then W ′ has the same end-points

as W and its voltage ξ(W ′) acts in the same way as κ = ξ(W ) on Φ. Since Mn is

regular, if κ is a monodromy of Mn it must coincide with ξ(W ′), since it is also a

monodromy acting the same way on some flag. But W ′ ∈ Πa,b
[k,n−1], so then we have

that κ ∈ ξ(Πa,b
[0,m]) ∩ ξ(Π

a,b
[k,n−1]). Since κ ∈ ξ(Πa,b

[k,n−1]) it must be a monodromy that

preserves i-faces for i < k, and since κ ∈ ξ(Πa,b
[0,m]), it also preserves i-faces for i > m.

Then, by Lemmas 5.3.2 and 5.3.3, κ ∈ ξ(Πa,b
[k,m]).

Now we want to prove that if ξ(W ) ∈ ξ(Πa,b
[0,m]) then W cannot use an odd number

of darts of color n, thus proving that ξ(Πa,b
[0,m]) ∩ ξ(Π

a,b
[k,n]) = ξ(Πa,b

[k,m]).

Let (e, 0) be the 1-face of Φ, (e0, 0) be the 1-face of Φ1 and (e1, 0) be the 1-face of

Φ010. Here we are thinking of e, e0 and e1 as 1-faces of the polytope Mn−1, which is

naturally isomorphic to any facet of Mn (see Figure 5.3).

If F = (fn−1, x) is a facet of Mn which has (e, x) as its base edge, then yn inter-
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e e

e

01

Figure 5.4: If (e, x) is the base edge of a facet, then yn interchanges the edges (e0, x) and (e1, x)
while it fixes the edge (e, x).

changes flags with 1-face (e0, x) with flags with 1-face (e1, x), while it fixes flags with

1-face (e, x) (see Figure 5.4).

Let ω ∈ ξ(Πa,b
[k,n−1]), let F be a facet with base edge (e, x), and let Ψ be a flag

with facet F and 1-face (ej, x) for j ∈ {0, 1}. Let (ψ, y) = Ψω. If we write ω as a

product of the voltages of darts, every time we change the facet ofMn (that is, every

occurrence of rn−1 or r0rn−1), we must change to a new facet with the same edge.

This means that the edge of Ψω must be the same as the edge of Ψ, or in other words,

that (ej, y) ∼ (ej, x) where ∼ is the equivalence relation we used when defining 2̂P

for a polytope P . Then supp(x+ y) is contained in ej.

Now let κ ∈ ξ(Πa,b
[k,n]) and consider Φ1κ and Φ10κ. Since 0 /∈ I, then {Φ1κ,Φ10κ}

has exactly one white flag and one black flag. Set (ψ, x) to be the white flag in

{Φ1κ,Φ10κ}. Using again the fact that the voltage of a dart with color greater than

1 does not depend on its base point, we may write κ as ω1ynω2yn . . . ωs−1ynωs where

ωi ∈ ξ(Πa,b
[k,n−1]) . Each ωi may change the facet to one where the support of the
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corresponding vector differs in coordinates corresponding to a set contained in e0∪e1.

Let (ψi, xi) = Φ1ω1ynω2yn . . . ωi if (ψ, x) = Φ1κ or Φ10ω1ynω2yn . . . ωi if (ψ, x) = Φ10κ.

We claim that supp(xi) ⊂ e0 ∪ e1. This is proved by a simple induction on i. For

i = 0 we have that x0 = 0, which has support supp(0) = ∅ ⊂ e0 ∪ e1. If the claim

is true for i, since supp(xi) ⊂ e0 ∪ e1, Corollary 5.2.2 the facet ofMn corresponding

to xi has (e, xi) as its base edge. This implies that, if (ψ, xi) has (ej, xi) as its

1-face, then (ψi+1, xi+1) = (ψ, xi)ynωi+1 has e1−j as its 1-face. This implies that

supp(xi + xi+1) ⊂ e0 ∪ e1. Then

supp(xi+1) = supp((xi + xi+1) + xi) ⊂ supp(xi + xi+1) ∪ supp(xi) ⊂ e0 ∪ e1.

Thus we have proved our claim. Note that x = xs, so our claim and Corollary 5.2.2

tell us that the facet (fn−1, x) of Mn (where fn−1 is the greatest face of Mn−1) has

base edge (e, x).

Since we assumed that W uses an odd number of darts of color n, we know by

our claim that its voltage κ = ξ(W ) maps Φ1 or Φ10, with edge (e0, 0) to a flag with

edge (e1, x) (for some x). But we know also that it maps Φ to a flag with the same

edge e. Since Mn is regular, κ cannot be a monodromy of Mn (if a monodromy of a

regular polytope fixes one edge, it must fix all edges), so it cannot be in ξ(Πa,b
[0,m]).

Corollary 5.3.5. Let X be an (n+1)-multi-maniplex with two vertices and with links

of color 0 and n, that is X = 2n+1
I with 0, n /∈ I. Let ξ′ be the voltage assignment
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defined as in Section 5.2 . Then, for k > 1 and for all m ∈ [0, n] we have that

ξ′(Πa,b
[0,m]) ∩ ξ

′(Πa,b
[k,n]) = ξ′(Πa,b

[k,m]),

for all pairs of vertices (a, b) in X.

Proof Since for m = n there is nothing to prove, let us assume that m < n. Let

ω̃ ∈ ξ′(Πa,b
[0,m]) ∩ ξ′(Π

a,b
[k,n]). Let ω = ω̃πMn , that is, ω is the same function as ω̃

but considering only its action on the F(Mn)-coordinate. By Theorem 5.3.4 ω ∈

ξ(Πa,b
[k,m]). We also know that since m < n and ω̃ ∈ ξ′(Πa,b

[0,m]) then ω̃ is a monodromy

ofMn and does not change the Z2k-coordinate of the elements of F(Mn)×Z2k. Let

W ∈ Πa,b
[k,m] be a path such that ξ(W ) = ω. Then (ξ′(W ))πMn = ξ(W ) = ω = ω̃πMn ,

but also (ξ′(W ))πZ2k
= IdZ2k

= ω̃πZ2k
. Therefore ξ′(W ) = ω̃ ∈ ξ′(Πa,b

[k,m]).

Theorem 5.3.6. If X = 2n+1
[1,n−1], then X is the symmetry type graph of a polytope.

Proof We will prove that the voltage assignment ξ defined in Section 5 satisfies that

ξ(Πa,b
[0,m]) ∩ ξ(Π

a,b
[k,n]) = ξ(Πa,b

[k,m]) (5.1)

for all k,m ∈ [0, n] and all pairs of vertices (a, b). This will imply that ξ′ also

satisfies this intersection property (exactly as in the proof of Corollary 5.3.5). Then

Theorem 4.2.2 will imply that both Xξ and Xξ′ are polytopal, and since we already

know that Xξ′ has STG X the theorem follows. Since Theorem 5.3.4 tells us that (5.1)

holds for k > 1 and it trivially holds for k = 0, we only need to prove the case where

k = 1.
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yn rn−1
rn−1

ri
ri

n−1
n

n−1

i i

Figure 5.5: The multi-maniplex (2n+1
[1,n−1])0 with its voltage assignment.

Let us first find the distinguished generators of ξ(Πa
[1,n]), where a is the white

vertex in Figure 5.2. When we remove the link of color 0, we are left with only

one spanning tree, consisting only of the link of color n and voltage yn = r0ρ̃0 (see

Figure 5.5). Then, the generator corresponding to a semi-edge of color i ∈ [1, n− 1]

on the white vertex is its voltage ri. The generator corresponding to a semi-edge e

on the black vertex is the voltage of the path anea
−1
n , where an is the dart from the

white vertex to the black one with color n. This voltage is

ξ(anea
−1
n ) = ξ(an)−1ξ(e)ξ(an) = (yn)(r0rir0)(yn) = ρ̃0riρ̃0.

Since ρ̃0 acts as an automorphism in each facet, for i < n− 1 we get ρ̃0riρ̃0 = ri.

So in conclusion, ξ(Πa
[1,n]) is equal to 〈{ri}n−2

i=1 ∪ {ρ̃0rn−1ρ̃0}〉. Note that each ri fixes

the vertex of any flag.

Now let us turn our attention to the generator ρ̃0rn−1ρ̃0. Let (u, 0) = Φ0 be

the base vertex, and let (v, 0) be the other vertex incident to the base edge (e, 0)

(see Figure 5.6). Let x ∈ ZFac(Mn−1)
2 have support contained in u ∪ v. We know by

Corollary 5.2.2 that the facet (fn−1, x) of Mn has base edge (e, x). Let Ψ = (ψ, x)

be a flag with vertex (u, x). Let (ψ′, x) := Ψρ̃0. We must have that ψ′0 = v. Then
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Ψρ̃0rn−1 = (ψ′, x + χF ) for some F ∈ v. Since supp(x + χF ) ⊂ u ∪ v we know that

the facet (fn−1, x + χF ) has base edge (e, x + χF ). This implies that Ψρ̃0rn−1ρ̃0 =

(ψ′, x+ χF )ρ̃0 = (ψ, x+ χF ). In conclusion we have proved the following lemma:

Lemma 5.3.7. If supp(x) ⊂ u ∪ v and ψ is a flag in Mn−1 with vertex u, then

(ψ, x)ρ̃0rn−1ρ̃0 = (ψ, y) for a vector y satisfying supp(y) ⊂ u ∪ v.

Moreover, if ω ∈ ξ(Πa
[1,n]) and (ψ, x)ω = (ψ′, y) then ψ′0 = u and supp(y) ⊂ u∪v.

Now we are ready to prove the case for closed paths, that is, we may prove that

ξ(Πa
[1,n]) ∩ ξ(Πa

[0,m]) = ξ(Πa
[1,m]).

Once again, for m = n there is nothing to prove, so let m < n.

We prove first the case when m < n − 1. Let ω ∈ ξ(Πa
[1,n]) ∩ ξ(Πa

[0,m]). Since

ω ∈ ξ(Πa
[0,m]) = 〈ri|i ≤ m〉 it must be a monodromy of Mn and since m < n − 1, it

must fix facets. If Φ is the base flag of the base facet of Mn, Lemma 5.3.7 implies

that Φω = (ψ, x) for some flag ψ in Mn−1 and some vector x ∈ ZFac(Mn−1)
2 satisfying

ψ0 = u and supp(x) ⊂ u∪v. But since ω must fix facets, x is actually 0. This means

that (Φω)0 = Φ0, and since Mn is regular, this means that ω fixes all 0-faces. Also

because of the regularity of Mn, the monodromies in ξ(Πa
[0,m]) = 〈ri|i ≤ m〉 that fix

0-faces are 〈ri|1 ≤ i ≤ m〉, but this is precisely ξ(Πa
[1,m]).

Now, if m = n−1 we have a little more work to do. We proceed as in the previous

case, but we cannot ensure that x = 0. However, we have that Φω = (ψ, x) and the

inclusion supp(x) ⊂ u ∪ v still holds. By writing the 2-face of Φ as Φ2 = (Q, 0), we

know that Q is a square. Let w be the opposite vertex of u in Q and q be the opposite
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Φ

e uv

Q
qw

Figure 5.6: The 2-face Q and its vertices u, v, w and q.

vertex to v, so that the vertices of Q are uvwq in cyclical order (see Figure 5.6).

Since ω is a monodromy of Mn, it must commute with the automorphism ρ1 of

Mn, which maps Φ to Φ1. This implies that

Φ1ω = (Φω)ρ1 = (ψ, x)ρ1 = (ψρ1, ρ1x).

Here we have used the way Γ(Mn−1) acts on Mn discussed at the beginning of this

chapter. Note that we have used the same symbol ρ1 to denote an automorphism of

Mn and also an automorphism of Mn−1, but because of the way Γ(Mn−1) acts on

Mn this is actually not ambiguous.

Notice that supp(ρ1x) = (supp(x))ρ1 must be contained in (u ∪ v)ρ1 = u ∪ q.

On the other hand, the vector corresponding to Φ1 is 0, so Lemma 5.3.7 tells us

that supp(ρ1x) ⊂ u ∪ v. Every facet incident to both v and q must be incident

to Q = v ∨ q (see Corollary 5.1.1), and hence also to u. Then, the intersection

(u ∪ q) ∩ (u ∪ v) is just u which means that ω fixes the vertex of Φ1, and therefore
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it must fix the vertex of every flag (again, Mn is regular). Hence, we conclude that

ξ(Πa
[1,n]) ∩ ξ(Πa

[0,m]) = ξ(Πa
[1,m]).

Now let us solve the case for open paths, that is, let us prove that ξ(Πa,b
[0,m]) ∩

ξ(Πa,b
[1,n]) = ξ(Πa,b

[1,m]) when a is the white vertex and b the black vertex.

First notice that since we only have links of colors 0 and n, we know that ξ(Πa,b
[1,m])

is in fact empty. So what we really want to prove is that there are no monodromies

in ξ(Πa,b
[1,n]).

Now notice that Πa,b
[1,n] = Πa

[1,n]an, where once again, an is the dart of color n from

a to b. Then

ξ(Πa,b
[1,n]) = ξ(Πa

[1,n]an) = ynξ(Π
a
[1,n]).

Let ω ∈ ξ(Πa
[1,n]). We want to prove that ynω is not a monodromy ofMn. If it was,

it would also act as a monodromy on Mn−1 (just ignore the ZFac(Mn−1)
2 -coordinate).

Take the base flag φ of Mn−1. Then φynω = φω, and as we have noted before

(Lemma 5.3.7), this must be a flag with vertex u (the same vertex as φ). Now, if

we consider φ1 (with vertex u) we get that φ1ynω = φ1ρ̃0r0ω = φ010ω is a flag with

vertex w. Then ynω cannot act as a monodromy onMn−1, since it fixes the vertex of

some flags but it changes the vertex of others and Mn−1 is regular. Therefore, ynω

is not a monodromy of Mn. We have proved that ξ(Πa,b
[0,m]) ∩ ξ(Π

a,b
[1,n]) = ∅.

Thus we have proved that (5.1) holds. By doing a proof analogous to that of

Corollary 5.3.5 we get that ξ′(Πa,b
[0,m])∩ξ′(Π

a,b
[k,n]) = ξ′(Πa,b

[k,m]) for all k,m ∈ [0, n]. Theo-

rem 4.2.2 then implies that Xξ′ is polytopal. Since we already knew that T (Xξ′) = X,

we have found a polytope whose symmetry type graph is X.

Recall once again that examples of polyhedra (rank 3) of all possible 2-orbit sym-
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metry types exist, in particular those with 1 or 2 links. Applying the constructions

2P or 2̂P repeatedly to the examples of 2 links of Theorem 5.3.6 or the examples of

rank 3 one gets that all symmetry types with 1 or 2 links exist in any rank higher

than two6. In addition to this, as previously discussed, in [29] Pellicer proves that

chiral polytopes (i.e. those with symmetry type 2n∅ ) exist in rank 3 or higher, and if

we use the constructions 2P or 2̂P to those, we get all symmetry types where all the

links have consecutive colors. In conclusion, we have the following theorem:

Theorem 5.3.8. Let n ≥ 3 and let X = 2nI be a 2-vertex multi-maniplex of rank n.

Let I := {0, 1, . . . , n− 1} \ I be the set of the colors of the links of X. Then, in any

of the following cases, X is the symmetry type graph of a polytope.

I has exactly 1 or 2 elements.

I is an interval [k, `] = {k, k + 1, . . . , `}.

Theorem 5.3.8 ensures that of the total of 2n− 1 multi-maniplexes of rank n with

2 vertices at least n2−n+1 are the symmetry type of a polytope (n with 1 link, n(n−1)
2

with 2 links and n(n−1)
2
− n+ 1 with an interval of links of size at least 3). It appears

that there is still a long way to go, nevertheless, Theorem 5.3.4 and Corollary 5.3.5

ensure that to prove that there are polytopes with symmetry type 2nI , one should

only check that (5.1) is satisfied for k = 1 for the voltage ξ (and this would imply

that it is also satisfied for ξ′). Sadly, the proof of Theorem 5.3.6 cannot be easily

generalized to arbitrary I. This is because the voltage of a link of color 1 ≤ i < n

would be r0ri and this affects most arguments used, mainly because there would be

6The examples of rank 3 with two links ensure that there are examples of two links in higher
ranks with the two links with colors differing by 1 or 2.
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paths whose voltage change 0-faces but they do not use the color 0. The author of

this thesis conjectures that if this challenge is solved for one example 2nI with 3 or

more links of non-consecutive colors, the same solution must work for all others, and

that would prove that there exist 2-orbit polytopes of any possible symmetry type

(and rank n ≥ 3).

In the past, the problem of finding polytopes with a given symmetry type graph

X has been very hard to attack, mainly because not much is known about their

automorphism groups. In this thesis we have seen that Theorems 4.2.1 and 4.2.2

provide a powerful algebraic tool that lets us build examples from groups. It also

gives us necessary conditions for a group to be the automorphism group of a polytope

with certain symmetry type. Theorem 4.3.2 also lets us build examples of polytopes

with a given symmetry type graph with respect to a given group (which may not be

the full automorphism group) as coset geometries. We hope that these tools may be

used to find examples of elusive symmetry types and maybe give an answer to the

problem of whether or not every multi-maniplex of rank n ≥ 3 is the symmetry type

graph of a polytope.
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Robert Jajcay, editors, Symmetries in Graphs, Maps, and Polytopes. SIGMAP

2014, volume 159 of Springer Proceedings in Mathematics & Statistics, pages

263–272. Springer, Cham., 2016. 150
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