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cional Autónoma de México (UNAM) sea un proyecto social de alto impacto en nuestro páıs.
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Resumen

En este trabajo, se estudian los efectos de un campo magnético externo uniforme y constante
sobre la masa del pión neutro en el contexto del modelo sigma lineal acoplado con quarks.
La motivación principal de este estudio se fundamenta en la importancia de los efectos de
un medio magnetizado sobre las propiedades básicas de los grados de libertad hadrónicos.
Estas propiedades como funciones de la intensidad del campo magnético contribuyen a una
descripción apropiada de sistemas f́ısicos como estrellas de neutrones [1, 2] y el plasma de
quarks y gluones generado en colisiones periféricas de iones pesados [3, 4].

Los piones neutros no experimentan directamente los efectos de un campo magnético
y su masa a primera vista permanece intacta. Sin embargo, esta propiedad cambia una
vez que se consideran las interacciones entre piones y otras part́ıculas que se encuentran en
el vaćıo fuertemente interactuante. A partir del origen dinámico de las masas de ciertas
part́ıculas, debido al rompimiento espontáneo de la simetŕıa quiral, es posible estudiar sus
modificaciones al considerar condiciones externas como lo son: la temperatura, densidad y
campos electromagnéticos. Como consecuencia, las correcciones magnéticas a la masa del
pión neutro han sido determinadas a través de diferentes técnicas. Los primeros cálculos que
permitieron obtener las correcciones magnéticas a la masa del pión neutro corresponden al
formalismo de la Cromodinámica Cuántica en la ret́ıcula (“Lattice Quantum Chromodynam-
ics”, LQCD, por sus siglas en inglés) [5,6], donde un comportamiento decreciente monótono
de la masa como función de la intensidad de campo magnético es confirmado en la mayoŕıa
de los estudios realizados con dicho método. Otra técnica frecuentemente empleada es el uso
de modelos efectivos. En el contexto de uno de ellos, el modelo sigma lineal acoplado con
quarks, se ha determinado que la masa del pión neutro tiene un comportamiento decreciente
en el régimen de campo débil [7]. Sin embargo, un estudio reciente en la Ref. [8], donde se
incluyen las modificaciones magnéticas a los acoplamientos del modelo, predice que la masa
comienza a decrecer y en un valor intermedio de la intensidad del campo magnético empieza
a crecer superando su valor en ausencia de campo magnético. Estudios similares con el mod-
elo de Nambu-Jona-Lasinio obtuvieron un comportamiento similar en la región de campo
fuerte [9, 10].

En este trabajo, se busca responder si es posible reproducir el comportamiento decre-
ciente obtenido por los resultados de LQCD a partir de un estudio en la aproximación de
campo magnético intenso. Esta cuestión es abordada en un análisis que combina de manera
apropiada una elección de parámetros libres en el modelo con el efecto del campo magnético
externo a un lazo sobre los elementos involucrados en la relación de dispersión del pión neu-
tro, a saber, el valor de expectación en el vaćıo del campo sigma, la autoenerǵıa del pión
neutro, el acoplamiento entre bosones y el acoplamiento bosón-fermión.

Siguiendo esta v́ıa, las predicciones del modelo sigma lineal con quarks sujeto a un medio
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magnetizado reproducen la dependencia de la intensidad del campo magnético en la masa
del pión neutro reportada en los estudios recientes de LQCD, donde las técnicas utilizadas
implementan valores de la masa del pión neutro en ausencia de campo magnético mayores al
valor f́ısico (m0 ≈ 140MeV). A través de una comparación de estos resultados, se obtuvo que
cuando el valor f́ısico de la masa del pión neutro en vaćıo es utilizado en nuestra aproximación,
la curva que indica el comportamiento de la masa como función de la intensidad del campo
está ligeramente por debajo de los datos obtenidos por LQCD. En este sentido, este resultado
es nuestra predicción si en algún momento las técnicas de LQCD permiten realizar cálculos
usando el valor f́ısico de la masa del pión neutro. Además, mediante este estudio, fue posible
mostrar un comportamiento creciente monótono para el valor de expectación en el vaćıo del
campo sigma como función de la intensidad del campo magnético, dado que este valor en el
modelo corresponde a un parámetro de orden, el comportamiento obtenido permite sustentar
el fenómeno de catálisis magnética.

Finalmente, los resultados en este trabajo pueden ser utilizados para saber si mediante
esta aproximación es posible reproducir el comportamiento de la masa de los piones cargados
en presencia de un campo magnético externo con la misma elección de parámetros libres.
Otros posibles escenarios donde los resultados de este trabajo pueden tener un impacto
potencial incluyen el cálculo de la viscosidad laminar y de bulto en materia con quarks y
mesones y la ecuación de estado nuclear en objetos astrof́ısicos densos y compactos, como lo
son las estrellas de neutrones. Los resultados de esta investigación fueron reportados en las
siguientes publicaciones [11,12].



Chapter 1

Introduction

The study of quantum systems subject to electromagnetic fields has become an active area of
research given the important role they play in quantum processes [13,14]. In fact, it is well-
known that several phenomena may arise in the presence of a classical electromagnetic field.
A relevant example of this discussion is the breaking of chiral symmetry when we take into
account an external magnetic field. Under such conditions, it has been demonstrated that
a magnetized medium has a strong tendency to produce stronger quark-antiquark conden-
sates, which are associated with the spontaneous chiral symmetry breaking. This mechanism
seems to be universal and model-independent and it is referred to the literature as mag-
netic catalysis [15–17]. On the other hand, when temperature is considered, magnetic fields
suppress the condensate formation producing the opposite effect whereby the pseudocritical
temperature for the chiral phase transition is reduced, this is the so-called inverse magnetic
catalysis [18–34].

Furthermore, much effort has also been invested to study the basic properties of mag-
netized hadronic degrees of freedom. The subject is relevant e.g. for a suitable description
of physical systems such as cold neutron stars [1, 2] and the quark gluon plasma generated
in heavy ion collisions [3, 4]. As is well known, the nuclear equation of state is affected by
baryon and meson masses and couplings, this fact motivates studies intented to understand
how these parameters change in the presence of electromagnetic fields [35–47].

Due to the dynamical origin of mass for certain particles through the chiral symmetry
breaking, it is plausible to investigate the mass modifications by external conditions. As a
starting point, because of their relevant role in the chiral symmetry breaking, it is important
to study the magnetic field effects on pion properties such as masses and form factors.

On general grounds, charged and neutral pions behave differently under the influence of
an external magnetic field. On one hand, charged pions with mass m0 and at rest in the
direction of the magnetic field, have an energy spectrum given by

E2 = m2
0 + (2n+ 1)|eB|, (1.1)

where B is the field strength, e is the charge of the positron and n labels the n th Landau level.
The lowest-energy state can be interpreted as the magnetic-field-dependent mass, which is
then given by

m2
B = m2

0 + |eB|. (1.2)

On the other hand, neutral pions do not experience directly the effects of a magnetic field,
and, thus, their mass remains at first sight unaffected. However, this property changes once
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we consider the interactions between pions and other particles that populate the strongly
interacting vacuum.

Actually, the magnetic-field-driven modifications of the neutral pion mass were first de-
termined using lattice QCD (LQCD) calculations in Refs. [5, 6]. These works found contra-
dictory results: Ref. [6] obtains a neutral pion mass that monotonically decreases with the
field strength, whereas Ref. [5] finds a dip at an intermediate value and then an increase for
larger field strengths. This discussion was revisited in Refs. [48, 49], where the monotonic
decrease of the pion mass as a function of the field strength was confirmed.

Another approach involves the use of effective field theories. Working in the context of
the linear sigma model with quarks (LSMq) in the weak field limit, Ref. [7] has shown that
the neutral pions mass decreases as a function of the field strength in the weak field regime.
In this study, the magnetic field modification of the boson self-coupling was highlighted as a
key element in the behavior of the magnetic modification of the neutral pion mass. Recently,
Ref. [8], using the same model and accounting for the magnetic-field-driven modifications of
the couplings, found that the neutral pion mass begins to decrease and at an intermediate
value it starts increasing to exceed the neutral pion mass in vacuum. A similar study in
Refs. [9, 10] with the Nambu-Jona-Lasinio (NJL) model obtained the same behavior.

In this work we intent to answer whether the LSMq is able to reproduced the mono-
tonically decreasing behavior of the recent LQCD results taking into account an analysis in
the strong field regime. We address this question by means of an analysis which properly
combines the setting of the free parameters of the model with the effects of the magnetic field
corrections at one-loop order of the elements involved in the neutral pion mass dispersion re-
lation, namely, the vacuum expectation value of the sigma field, the neutral pion self-energy,
the boson self-coupling and boson-fermion coupling. The results of this project were reported
in the following published articles [11,12].

This work is organized as follows: In Chap. 2, the linear sigma model with quarks is
introduced. Chapter 3 is devoted to discuss the field strength dependence of the propagators
for the bosonic and fermionic cases in a constant uniform magnetic field. Chapter 4 contains
the necessary elements to obtain the magnetic corrections to the pion mass at one-loop order.
In Chap. 5, the neutral pion mass is calculated from its dispersion relation and compared with
the recent LQCD calculations, showing in all cases that the monotonic decrease with the field
strength can be reproduced for an appropriate choice of parameters. Conclusions and a brief
summary are presented in Chap. 6. Finally, a brief discussion about the regularization and
renormalization procedures, some useful dimensional regularization formulas and the explicit
computation of the one-loop corrections to the effective potential, the self-energy and the
couplings are shown in the appendixes.



Chapter 2

The linear sigma model coupled with
quarks

In this chapter the LSMq is introduced as an effective field theory of QCD in the low-energy
regime, the chiral symmetry in this model and the spontaneous symmetry breaking (SSB)
are discussed. Finally, a list of the Feynman rules of this theory is presented.

The LSMq was introduced in 1960s by Gell-Mann and Lévy as a model to describe the
pion-nucleon interaction [50]. This model can be adapted to describe the interactions among
small-mass mesons and quarks and captures the approximate chiral symmetry of two-flavor
QCD. The Lagrangian of the LSMq with two species of massless quarks u and d is given by

L =
1

2
(∂µσ)2 +

1

2
(∂µ~π)2 +

a2

2
(σ2 +~π2)− λ

4
(σ2 +~π2)2 + iψ̄γµ∂µψ− igγ5ψ̄~τ ·~πψ− gψ̄ψσ, (2.1)

where ~τ = (τ1, τ2, τ3) are the Pauli matrices,

ψL,R =

(
u
d

)
L,R

, (2.2)

is a SU(2)L,R doublet, σ is a real scalar field and ~π = (π1, π2, π3) is a triplet of real scalar
fields. π3 corresponds to the neutral pion, whereas the charged ones are represented by the
combinations

π− =
1√
2

(π1 + iπ2), π+ =
1√
2

(π1 − iπ2). (2.3)

λ is the boson’s self-coupling and g is the fermion-boson coupling. a2 > 0 is the mass squared
parameter. Eq. (2.1) can be written in terms of the charged and neutral-pion degrees of
freedom as

L =
1

2
[(∂µσ)2 + (∂µπ0)2] + ∂µπ−∂

µπ+ +
a2

2
(σ2 + π2

0) + a2π−π+ −
λ

4
(σ4 + 4π2

−π
2
+ + 2σ2π2

0

+ 4σ2π−π+ + 4π−π+π
2
0 + π4

0) + iψ̄ /∂ψ − gψ̄ψσ − igγ5ψ̄(τ+π+ + τ−π− + τ3π0)ψ, (2.4)

where the combination of Pauli matrices are defined as follows

τ+ =
1√
2

(τ1 + iτ2), τ− =
1√
2

(τ1 − iτ2). (2.5)
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The LSMq Lagrangian is invariant under SU(2)L × SU(2)R chiral transformation [51]

ψL,R → exp(−i~θL,R · ~τ)ψL,R. (2.6)

However, the chiral symmetry does not appear in the low-energy particle spectrum since it
is spontaneously broken.

2.1 SSB of chiral symmetry in the linear sigma model

with quarks

Since chiral symmetry is spontaneously broken, the σ field acquires a non-vanishing vacuum
expectation value

σ → σ + v,

which breaks the SU(2)L × SU(2)R symmetry down to SU(2)L+R. Moreover, v is an order
parameter in this model: when this shift goes to zero the chiral symmetry is restored. Once
the order parameter is considered explicitly, the resulting Lagrangian can be expressed as
follows

L =
1

2
∂µσ∂

µσ +
1

2
∂µπ0∂

µπ0 + ∂µπ−∂
µπ+ −

1

2
m2
σ(v)σ2 − 1

2
m2

0(v)π2
0

− m2
0(v)π−π+ + iψ̄ /∂ψ −mf (v)ψ̄ψ + Lint − Vtree, (2.7)

where the interaction Lagrangian is defined as

Lint = −λ
4
σ4 − λvσ3 − λv3σ − λσ2π−π+ − 2λvσπ−π+ −

λ

2
σ2π2

0 − λvσπ2
0 − λπ2

−π
2
+

− λπ−π+π
2
0 −

λ

4
π4

0 + a2vσ − gψ̄ψσ − igγ5ψ̄ (τ+π+ + τ−π− + τ3π0)ψ, (2.8)

and the fields develop masses given by

m2
σ(v) = 3λv2 − a2, m2

0(v) = λv2 − a2, mf (v) = gv. (2.9)

Doing explicitly the matrix product in the flavour space, the interaction Lagrangian can be
written as

Lint = −λ
4
σ4 − λvσ3 − λv3σ − λσ2π−π+ − 2λvσπ−π+ −

λ

2
σ2π2

0 − λvσπ2
0 − λπ2

−π
2
+ −

λ

4
π4

0

− λπ−π+π
2
0 − i
√

2g
(
ūγ5dπ+ + d̄γ5uπ−

)
− igūγ5uπ0 + igd̄γ5dπ0 − gūuσ − gd̄dσ.

(2.10)

Furthermore, the tree-level potential is given by

Vtree = −a
2

2
v2 +

λ

4
v4, (2.11)

this expression has a minimum as a function of v, called the vacuum expectation value of the
σ field, namely,

v0 =

√
a2

λ
. (2.12)
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As a consequence of the spontaneous symmetry breaking, three massless Goldstone bosons
are generated, namely, the neutral and charged pions. In fact, when v = v0, the linear term in
σ vanishes and the pions become massless. However, the σ and quark fields remain massive,
unlike in the case of QCD with massless dynamical quarks.

In order to include a finite pion mass, m0 (fixed value, independent of v), one adds an
explicit symmetry-breaking term [51] in the Lagrangian of Eq. (2.7) such that

L → L′ = L+
m2

0

2
v(σ + v). (2.13)

This term modifies the tree-level potential. In particular, the minimum is shifted according
to the following expression

v0 → v′0 =

√
a2 +m2

0

λ
. (2.14)

Correspondingly, the expressions for the masses, evaluated at the minimum obtained after
the explicit breaking of the symmetry, are given by

mf (v
′
0) = g

√
a2 +m2

0

λ
,

m2
σ(v′0) = 2a2 + 3m2

0,

m2
0(v′0) = m2

0. (2.15)

Furthermore, from Eq. (2.15), we can get an expression for the parameter a, which is given
by

a =

√
m2
σ − 3m2

0

2
. (2.16)

Setting m0 = 140 MeV and mσ = 400− 600 MeV, we get a = 225− 390 MeV.

2.2 Feynman rules of the linear sigma model with quarks

This chapter concludes by listing the Feynman rules deduced from the Lagrangian density in
Eq. (2.10). After accounting for the number of permutations for a set of equivalent lines and a
factor of i coming from the action, these are displayed in Fig. 2.1 and Fig. 2.2. Fig. 2.1 shows
the vertices arising in the meson sector and Fig. 2.2 shows the quark-meson vertices. Dashed
lines represent the neutral and charged pions and double lines represent the σ, whereas thin
solid lines represent the d quark and thick solid lines represent the u quark.
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Figure 2.1: Meson interactions in the LSMq. Dashed lines are used to represent the neutral and
charged pions, whereas double lines represent the σ.

Figure 2.2: Quark-meson interactions in the LSMq. Dashed lines represent the neutral and charged
pions, whereas the double lines represent the σ. Solid lines represent the quarks. Thin solid lines
represent the d quark and thick solid lines represent the u quark.

Up to this point, we have the neccessary elements to study the LSMq from a perturbative
approach. The process to include the effects from a uniform constant magnetic field is
described in the next chapter.



Chapter 3

Classical magnetic field in QFT

This chapter is devoted to briefly discussing the way we include the effect of an external
magnetic field in the LSMq and some representations for the propagators of charged particles
subject to a constant uniform magnetic field.

With the purpose of considering the effects of a magnetized medium in the propagation
of the charged modes, we make the minimal substitution in the Lagrangian of Eq.(2.7)

∂µ → Dµ = ∂µ + iqAµ, (3.1)

where q is the particle’s electric charge and Aµ is the vector potential. Choosing the magnetic

field to point in the direction of the ẑ axis, namely, ~B = Bẑ, the vector potential can be
expressed in the symmetric gauge as

Aµ(x) =
1

2
xνF

νµ. (3.2)

A gauge transformation can be perfomed in the vector potential as

Aµ(x)→ A′µ(x) = Aµ(x) + ∂µΛ(x), (3.3)

where Λ is a well-behaved function determined by the gauge choice. As a consequence, a
more general expression can be written as a gauge transformation from the symmetric gauge
to an arbitrary gauge:

Aµ(x) =
1

2
xνF

νµ + ∂µΛ(x). (3.4)

3.1 Propagators of charged particles

Notice that the ordinary derivative becomes the covariant derivative only for particles with
non-vanishing electric charge. As a consequence, the propagation of charged bosons and
fermions is described by propagators in the presence of a constant magnetic field. Using the
Schwinger proper time representation [52], the fermion propagator can be written as

S(x, x′) = eiΦ(x,x′)S(x− x′), (3.5)

where Φ(x, x′) is the Schwinger phase given by

Φ(x, x′) = q

∫ x′

x

dξµ

[
Aµ(ξ) +

1

2
F µν(ξ − x′)ν

]
, (3.6)
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and represents the translationally noninvariant and gauge-dependent part of the propagator
in the presence of a magnetic background. Using Eq.(3.4) with Eq.(3.6), the Schwinger phase
can be computed using the expression [14]

Φ(x, x′) = q

[
1

2
xµFµνx

′ν + Λ(x′)− Λ(x)

]
, (3.7)

On the other hand, S(x− x′) is translationally and gauge invariant and can be expressed in
terms of its Fourier transform as

S(x− x′) =

∫
d4p

(2π)4
S(p)e−ip·(x−x

′), (3.8)

where

iS(p) =

∫ ∞
0

ds

cos(|qB|s)
eis(p

2
‖−p

2
⊥

tan(|qB|s)
|qB|s −m2

f+iε)
[(
mf + /p‖

)(
cos(|qB|s)

+ γ1γ2 sin(|qB|s)sgn(qB)
)
− /p⊥

cos(|qB|s)

]
. (3.9)

Hereafter γ0, γ1, γ2, γ3 and γ5 = iγ0γ1γ2γ3 are Dirac matrices. The four-vectors with the
indexes ⊥ and ‖ belong to the Euclidean {1, 2}-subspace and the Minkowski {0, 3}-subspace
respectively [53]. As a consequence, a‖ · b‖ = a0b0 − a3b3 and a⊥ · b⊥ = a1b1 + a2b2 where
aµ‖ = (a0, 0, 0, a3), bµ‖ = (b0, 0, 0, b3), aµ⊥ = (0, a1, a2, 0) and bµ⊥ = (0, b1, b2, 0). Accordingly, the

Feynman slash notation is used, /a‖ = aµ‖γµ and /a⊥ = aµ⊥γµ.
In a similar fashion, for a charged scalar field, we have

D(x, x′) = eiΦ(x,x′)D(x− x′), (3.10)

where the translationally and gauge-invariant part of the propagator is given by

D(x− x′) =

∫
d4p

(2π)4
D(p)e−ip·(x−x

′), (3.11)

with

iD(p) =

∫ ∞
0

ds

cos(|qB|s)
eis(p

2
‖−p

2
⊥

tan(|qB|s)
|qB|s −m2

b+iε), (3.12)

where the boson and fermion masses are mb and mf , respectively. It is worth to mention
that the integration over the proper time, s, in Eqs.(3.9), (3.12) is performed in a complex
plane s over the contour that begins in the point s = 0 and lies below the real axis due to
the poles of the integrand [53].

3.2 Expansion over Landau levels

The propagators in Eqs. (3.9) and (3.12) can also be expanded as a sum over Landau levels [13,
53, 54]. In this last representation, the expressions for the charged scalar and a fermion
propagators are given by

iD(p) = 2ie−
p2⊥
|qB|

∞∑
n=0

(−1)nL0
n

(
2p2⊥
|qB|

)
p2
‖ −m2

b − (2n+ 1)|qB|+ iε
, (3.13)
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iS(p) = ie−
p2⊥
|qB|

∞∑
n=0

(−1)nDn(p)

p2
‖ −m2

f − 2n|qB|+ iε
, (3.14)

where

Dn(p) = 2(/p‖+mf )O+L0
n

(
2p2
⊥

|qB|

)
−2(/p‖+mf )O−L0

n−1

(
2p2
⊥

|qB|

)
+4/p⊥L

1
n−1

(
2p2
⊥

|qB|

)
, (3.15)

respectively; Lmn (x) are the generalized Laguerre polynomials and L0
−1(x) = 0. In Eq. (3.15)

the projection operators O± are defined as

O± =
1

2
(1± iγ1γ2 sign(qB)) . (3.16)

3.3 Strong magnetic field approximation

In the strong field limit, if charged particles do not have enough momentum to overcome
the energy gap between succesive energy levels or Landau levels, one can consider the low-
est Landau level (LLL) as a good aproximation for this physical situation. On one hand,
considering just the contribution from n = 0 in Eqs. (3.14) and (3.15), we have

iS → iSLLL(k) = 2ie
−k2⊥
|qB|

/k‖ +mf

k2
‖ −m2

f + iε
O+, (3.17)

where the projection operator O+ reflects the spin polarized nature of the ground state, the
orientation of the spin is parallel (antiparallel) to the magnetic field in the case of a positive
(negative) electric charge of the fermions [13].

On the other hand, the propagator of a charge scalar particle in the Lowest Landau Level
approximation is given by the following equation

iD → iDLLL(k) =
2ie−

k2⊥
|qB|

k2
‖ −m2

b − |qB|+ iε
. (3.18)

In both Eqs.(3.17) and (3.18) the transverse and longitudinal momenta decouple.
With these expressions at hand, we are able to perform calculations at one-loop order

considering the effects from a uniform constant magnetic field.



Chapter 4

One-loop magnetic corrections

The necessary elements to determine the magnetic corrections to the neutral pion mass at
one-loop are discussed in detail in this section. The starting point to compute the magnetic-
field-induced modification to the neutral pion mass is the equation defining its dispersion
relation in the presence of the magnetic field, namely,

q2
0 − |~q|2 −m2

0(λB, vB)− Re[Π(B, q;λB, gB, vB)] = 0, (4.1)

where Π is the neutral pion self-energy, and λB, gB, vB represent the magnetic-field-dependent
boson-self coupling, boson-fermion coupling and vacuum expectation value, respectively. The
computation requires knowledge of each of these elements as functions of the field strength.
vB can be computed finding the minimum of the magnetic-field-dependent one-loop effective
potential. This can be analytically computed using the full magnetic field dependence of the
charged particle propagators. For the neutral pion self-energy and the magnetic field correc-
tions to the couplings, we work in the large field limit and, thus, resort to using propagators
in the LLL approximation.

4.1 Magnetic corrections to the vacuum expectation

value

The magnetic correction to the vacuum expectation value can be obtained by identifying the
minimum for the effective potential in the presence of the magnetic background, vB. For the
LSMq in a magnetized medium, the effective potential at one-loop contains fermion as well
as boson contributions which modify the location of the minimum as a function of the field
strength. The effective potential up to one-loop order has six contributions, namely,

V eff = V tree + V 1
π0 + V 1

σ + V 1
π− + V 1

π+ +
∑
f

V 1
f . (4.2)

The first term on the right-hand side of Eq. (4.2) represents the classical or tree-level potential
and it can be read off from Eqs. (2.7) and (2.11). The second and third terms are the neutral
contributions associated with the sigma and neutral pion, respectively. The remaining terms
include the magnetic modifications to the effective potential, the fourth and fifth terms
are associated with the charged pions, while the last one is the fermion contribution. To
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illustrate the computation of these corrections at one-loop order, we study the general case
for the bosonic and fermionic contributions to the effective potential.

First, the contribution to the effective potential at one-loop from a charged boson with
mass mb and charge qb is given by the expression [55]

V 1
b = − i

2

∫
d4k

(2π)4
ln
[
−D−1

b (k)
]
, (4.3)

where the charged boson propagator is given by Eq. (3.13). The computation of Eq. (4.3)
is performed in Appendix B. In fact, an analytical expression for an arbitrary magnetic field
strength can be found. Working in the MS renormalization scheme this expression is given
by

V 1
b =

1

16π2

[
2|qbB|2ψ−2

(
1

2
+

m2
b

2|qbB|

)
− 1

2
|qbB|m2

b ln(2π)−m
4
b

4
ln

(
µ2

m2
b

)
−m

4
b

4
ln

(
m2
b

2|qbB|

)]
,

(4.4)
where ψ−2(x) is the polygamma function of the order of −2 and µ is the renormalization
scale. Notice that in the limit B → 0, Eq. (4.4) becomes

V 1
b −−−→

B→0
V 1
b = − m4

b

64π2

[
3

2
+ ln

(
µ2

m2
b

)]
, (4.5)

which corresponds to the contribution to the effective potential from a neutral boson with
mass mb [56]. Thus, we use Eq. (4.5) to account for the contribution coming from the fourth
and fifth terms of Eq. (4.2). In order to identify the purely magnetic contribution from
Eq. (4.4), V 1

b(B), we subtract Eq. (4.5) from Eq. (4.4) such as

V 1
b(B) =

1

16π2

[
2|eB|2ψ−2

(
1

2
+

m2
b

2|eB|

)
− 1

2
|eB|m2

b ln(2π)− m4
b

4
ln

(
m2
b

2|eB|

)
+

3m4
b

8

]
. (4.6)

In the second place, the contribution from a single fermion with mass mf and charge qf
can be obtained from the expression [57]

V 1
f = iNc

∫
d4k

(2π)4
Tr
[
ln
(
S−1
f (k)

)]
, (4.7)

where Nc is the number of colors and iSf (k) is given by Eqs. (3.14) and (3.15). The explicit
computation is shown in Appendix B. Once again, the result can be provided for an arbitrary
field strength. Working with the MS renormalization scheme, this is given by

V 1
f = − Nc

8π2

(
4|qfB|2ψ−2

(
m2
f

2|qfB|

)
−
m4
f

2
ln

(
µ2

2|qfB|

)
−m2

f |qfB|

[
1− ln

(
m2
f

4π|qfB|

)])
.

(4.8)
In the limit B → 0, Eq. (4.8) becomes

V 1
f = Nc

m4
f

16π2

[
3

2
+ ln

(
µ2

m2
f

)]
, (4.9)
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which corresponds to the contribution to the effective potential from a fermion in the absence
of the magnetic field. Thus, the purely magnetic contribution from Eq. (4.8) is given by

V 1
f(B) = − Nc

8π2

[
4|qfB|2ψ−2

(
m2
f

2|qfB|

)
−
m4
f

2
ln

(
m2
f

2|qfB|

)
+

3

4
m4
f −m2

f |qfB|

+ m2
f |qfB| ln

(
m2
f

4π|qfB|

)]
. (4.10)

When the tree-level effective potential is modified by one-loop corrections, the curvature
and the position of the minimum are bound to change, therefore the minimum becomes
unstable under radiative corrections. The changes are driven both from purely vacuum
contributions as well as from magnetic field effects. The vacuum modifications need to be
absorbed with a redefinition of the vacuum terms so as to make sure that any change in the
position of the minimum truly comes from the magnetized background. This is accomplished
by enforcing the vacuum stability conditions [57,58], introducing counterterms in such a way
that

V tree → V tree + δV tree = −a
2 +m2

0 + δa2

2
v2 +

λ+ δλ

4
v4, (4.11)

where δa2 and δλ are to be determined from the conditions

1

2v

dV vac

dv

∣∣∣
v=v0

= 0,

d2V vac

dv2

∣∣∣
v=v0

= 2a2 + 2m2
0. (4.12)

V vac contains the contribution from the three pions, the σ and the three color charges for the
two light quarks, in the limit B → 0, namely,

V vac = −a
2 +m2

0 + δa2

2
v2 +

λ+ δλ

4
v4 − 3

m4
0(v)

64π2

[
3

2
+ ln

(
µ2

m2
0(v)

)]

− m4
σ(v)

64π2

[
3

2
+ ln

(
µ2

m2
σ(v)

)]
+ 2Nc

∑
f

m4
f (v)

16π2

[
3

2
+ ln

(
µ2

m2
f (v)

)]
, (4.13)

where

δa2 =
1

16π2λ

[
8a2g4Nc + 8g4m2

0Nc − 6a2λ2 − 12m2
0λ

2

+ 3a2λ2 ln

(
µ2

m2
0

)
+ 3a2λ2 ln

(
µ2

2a2 + 3m2
0

)]
, (4.14)

δλ =
1

16π2

[
3λ2 ln

(
µ2

m2
0

)
+ 9λ2 ln

(
µ2

2a2 + 3m2
0

)
− 8g4Nc ln

(
λµ2

g2(a2 +m2
0)

)]
. (4.15)
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Figure 4.1: Comparison between the position and curvature of the minimum of V tree and V vac

computed with µ = 0.3 GeV and 1 GeV, after implementing the vacuum stability conditions. Also,
an example of the position of the minimum for V eff, vB, computed with |eB| = 1 GeV2 is shown.
For the calculation we use m0 = 140 MeV, λ = 3.67, g = 0.46, and, correspondingly, mσ = 435
MeV, a = 256 MeV, and v0 = 152 MeV.

Therefore, once we include the vacuum terms evaluated on the vacuum expectation value
in the effective potential at finite magnetic field and set the stability conditions to suppress
the vacuum corrections, we accomplish that the modifications to the minimum come from the
purely magnetic effects, namely, the charged pions and fermions contributions. As a result,
the one-loop effective potential in a magnetized medium can be written as

V eff (B) = −a
2 +m2

0

2
v2 − δa2

2
v2

0 +
λ

4
v4 +

δλ

4
v4

0 − 3
m4

0(v0)

64π2

[
3

2
+ ln

(
µ2

m2
0(v0)

)]

− m4
σ(v0)

64π2

[
3

2
+ ln

(
µ2

m2
σ(v0)

)]
+ 2Nc

∑
f

m4
f (v0)

16π2

[
3

2
+ ln

(
µ2

m2
f (v0)

)]

+
2

16π2

[
2|eB|2 ψ−2

(
1

2
+
m2

0(v)

2|eB|

)
− 1

2
|eB|m2

0(v) ln(2π)− m4
0(v)

4
ln

(
m2

0(v)

2|eB|

)

+
3m4

0(v)

8

]
− Nc

8π2

∑
f

[
4|qfB|2ψ−2

(
m2
f (v)

2|qfB|

)
−
m4
f (v)

2
ln

(
m2
f (v)

2|qfB|

)
+

3

4
m4
f (v)

− m2
f (v)|qfB|+m2

f (v)|qfB| ln
(
m2
f (v)

4π|qfB|

)]
. (4.16)

Up to this point, we use natural units so that the speed of light, c, and the reduced Planck
constant, ~, become: c = ~ = 1. According to these constraints, the units of electrical charge,
also, can be redefined by choosing ε0 = 1 where ε0 is the vacuum permittivity. Since

c2 =
1

ε0µ0

, (4.17)

the vacuum permeability, µ0, equals to 1. The value of the fine structure constant, αem, is
a dimentionless quantity with the same value in all systems of units. In natural units, αem
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becomes

αem =
e2

4π
≈ 1

137
. (4.18)

This clearly shows that the elementary electric charge has no dimensions in this system and
e ≈ 0.303.

Fig. 4.1 shows the tree-level potential V tree and the vacuum one-loop potential V vac com-
puted for µ = 0.3 GeV and 1 GeV, after implementing the stability conditions. Notice that
after the vacuum stability conditions are implemented, the vacuum position and curvature
remain at their tree-level values and that these quantities are independent of the choice of
the renormalization scale µ. Also, shown in the figure is the magnetic-field-modified position
of the minimum when adding the magnetic effects to the tree-level potential, for |eB| = 1
GeV2. Figure 4.2 shows the position of the minimum, vB, as a function of the field strength.
Notice that, as expected, vB grows with the field strength, signaling magnetic catalysis.

0 1 2 3 4

1.0

1.2

1.4

1.6

1.8

2.0

|eB|[GeV2]

v
B
/v
0

Figure 4.2: Magnetic modification to the vacuum expectation value, vB, as a function of the field
strength. For the calculation we use m0 = 140 MeV, λ = 3.67, g = 0.46, and correspondingly
mσ = 435 MeV, a = 256 MeV and v0 = 152 MeV. The choice of these parameters will be explained
further on.

With the magnetic corrections to the vacuum expectation value at hand, we now turn our
attention to computing the rest of the elements, starting from the magnetic modifications to
the self-energy.

4.2 Neutral pion’s self-energy

The neutral pion self-energy at one loop can be determined according to the following equa-
tion

Π(B, q) =
∑
f

Πff̄ (B, q) + Ππ−(B) + Ππ+(B) + Ππ0 + Πσ. (4.19)

The five terms on the right-hand side of Eq. (4.19) correspond to the Feynman diagrams
contributing to this self-energy at one-loop order. The subindices represent the kind of
particles in the loop. The contributions to this self-energy are: the quark-antiquark loop, Πff̄ ,
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depicted in Fig. 4.3 and the boson loops, Ππ± , Ππ0 , Πσ. The Feynman diagram corresponding
to Ππ− is depicted in Fig. 4.4, and we single it out from the neutral boson loops, since this
diagram, together with the diagram corresponding to its charge conjugate (CC) Ππ+ , are
the only ones modified by the presence of the magnetic field. Diagrams with neutral bosons
in the loop contribute only to vacuum renormalization and not to the magnetic properties
of the system. Therefore, hereafter we do not consider the latter for the description of the
magnetic modifications of the pion self-energy.

Figure 4.3: Feynman diagram showing the one-loop contributions from fermions to the neutral pion
self-energy in the LSMq.

First, we concentrate on the contribution from the quark-antiquark loop for a single quark
species, given explicitly by

− iΠff̄ (B, q) = −g2

∫
d4k

(2π)4
Tr[γ5iSf (k)γ5iSf (k + q)] + CC, (4.20)

Since both particles flow with the same charge around the loop, the Schwinger phase vanishes.
The quark propagator in the presence of a magnetic field, iSf , is written in the strong field
limit using the LLL contribution according to Eq. (3.17). The procedure to compute this
contribution is shown in Appendix C and is given by

−iΠff̄ =
ig2|qfB|

2π2
e
− 1

2|qfB|
q2⊥

∫ 1

0

dx

[
1

ε
+ln (4π)−γE−ln

(
∆1

µ2

)
−1+

x(1− x)q2
‖ +m2

f

∆1

]
, (4.21)

where ∆1 = x(x−1)q2
‖+m

2
f and µ is the ultraviolet renormalization scale. In order to capture

the overall magnetic field effects for on-shell and nonmoving pions, we resort to computing
the fermion contribution to the pion self-energy in the static limit, namely, q0 = mB and
~q = ~0. As also discussed in Appendix C, working with the MS renormalization scheme, this
is explicitly given by

Πff̄ =
g2|qfB|

2π2

[
ln

(
m2
f

µ2

)
− 2mB√

4m2
f −m2

B

arccsc

(
2mf

mB

)]
. (4.22)

Notice that Eq. (4.22) has an explicit dependence on µ as usual in one-loop calculations
where, in order to regulate the integration, such a scale needs to be introduced. In the
strong field limit, µ needs to be chosen in such a way that this becomes the largest of all
energy scales, larger than the gap

√
2|eB|, between the LLL and the first excited Landau

level. To accomplish this constraint, we chose µ2 = 2|eB|+m2
0. A more in-depth discussion
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about this choice is provided in the next section. With this choice, the contribution from the
quark-antiquark loop for a single quark species becomes

Πff̄ =
g2|qfB|

2π2

[
ln

(
m2
f

2|eB|+m2
0

)
− 2mB√

4m2
f −m2

B

arccsc

(
2mf

mB

)]
. (4.23)

We proceed to compute the charged boson loop contribution to the pion self-energy. This

Figure 4.4: Feynman diagram showing the one-loop contribution from charged pions to the neutral
pion self-energy in the LSMq.

can be written as

− iΠπ± =

∫
d4k

(2π)4
(−2iλ)iDπ±(k). (4.24)

Notice that since the initial and final loop space-time points in the tadpole Feynman diagram
coincide, the Schwinger phase vanishes. To compute Eq. (4.24) in the strong field limit, we
use the charged boson propagator in LLL approximation as Eq. (3.18). The procedure to
compute this contribution is shown in Appendix C. Choosing µ2 = 2|eB|+m2

0 [11], the result
can be expressed as

Ππ± = −λ|eB|
4π2

ln

(
|eB|+m2

0

2|eB|+m2
0

)
. (4.25)

Once we determine the magnetic corrections to the vacuum expectation value of the sigma
field and the self-energy we conclude the one-loop calculations studying the magnetic modi-
fications to the couplings.

4.3 Magnetic corrections to the boson self-coupling

The corrections induced by an external magnetic field to the boson self-coupling, λ, can be
obtained at one-loop order from the Feynman diagram depicted in Fig. 4.5, where the loop
pions are the charged ones. In our approach, the external particles do not experience the
effects of the magnetic field so that they can be adressed properly as plane waves. The
only particles affected by the magnetic background are the charged, loop particles. With
this idea we intend to capture the distinction between the modification of the interaction,
that in a perturbative approach is a short distance effect, from the asymptotic propagation
of the external particles, which corresponds to a long distance effect. Therefore, since the
correction we look for is, in this sense, independent of whether the external bosons are charged
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or neutral, the electric charge of the external particles is irrelevant. Thus, the correction we
look for is written as

− i6λΓBλ =

∫
d4k

(2π)4
(−2iλ)iDπ−(k)(−2iλ)iDπ−(k + p+ r) + CC, (4.26)

where CC denotes the charge conjugate term and the subscript in the boson propagator
indicates the propagating species. Since the loop in Fig. 4.5 involves the same propagating
particle, the Schwinger phase vanishes. According to the explicit computation shown in

Figure 4.5: Feynman diagram representing the magnetic correction to the boson self-coupling at
one loop. The loop particles are considered as electrically charged whereas the external ones can
be either charged or neutral.

Appendix D and in the static limit p0, r0 → 0, ~p = ~r = ~0, we have

ΓBλ = − λ

12π2

[
1

ε
− γE + ln (4π)− ψ0

(
|qbB|+m2

0

2|qbB|

)
+ ln

(
µ2

2|qbB|

)]
, (4.27)

where ψ0 is the digamma function and |qbB| = |eB| for the charged pions. According to the
modified minimal subtraction scheme MS, the first three terms in Eq. (4.27) are associated
to the corresponding vertex counter-term. Consequently, the finite magnetic correction to
the boson self-coupling is given by

ΓBλ = − λ

12π2

[
ln

(
µ2

2|eB|

)
− ψ0

(
|eB|+m2

0

2|eB|

)]
. (4.28)

As can be seen in Eq. (4.28), the arbitrary field strength result depends on the ultraviolet
renormalization scale µ. With the aim of clarifying an appropriate choice of this scale, we
study the correction to the couplings in the limits when |eB| → ∞ and |eB| → 0. First,
in the strong field limit where, as a good approximation, one can consider just the lowest
Landau level contribution from Eq. (3.18) with Eq. (4.26), and working also in the static limit
(with p0, r0 → 0), the magnetic correction to the boson self-coupling in the LLL is given by

ΓLLLλ = − λ

6π2

|eB|
|eB|+m2

0

, (4.29)

which is independent of µ. In the second place, in the absence of a magnetic field, the one-
loop correction to the boson self-coupling can be determined from Eq. (4.28) taking the limit
|eB| → 0 and is given by

Γλ = − λ

12π2
ln

(
µ2

m2
0

)
. (4.30)
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A comparison of both limits with the arbitrary result was studied in Ref. [11], and it was
concluded that it is necessary that µ depends on |eB| in order to be consistent with Eq. (4.30)
and Eq. (4.29). In fact, the match is obtained when µ2 is explicitly chosen as µ2 = m2

0+2|eB|,
for which the arbitrary field strength result becomes

ΓBλ = − λ

12π2

[
ln

(
m2

0 + 2|eB|
2|eB|

)
− ψ0

(
|eB|+m2

0

2|eB|

)]
. (4.31)

With this choice, the result reproduces the behavior of the coupling in both extreme limiting
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Figure 4.6: Ratio between the magnetic field dependence of the effective boson self-coupling λB =
λ(1 + ΓBλ ) and the vacuum self-coupling in the arbitrary field approach and the strong field limit,
both computed in the static limit (with p0, r0 → 0). For the calculation we use λ = 3.67 and m0 =
0.140 GeV. Shown are the cases where for the arbitrary field intensity calculation, the ultraviolet
renormalization scale µ2 is taken as m2

0 + 2|eB| (red line) and a fixed value µ2 = m2
0 (blue line).

For both cases the self-coupling relative change from the vacuum value is rather small.

values of |eB| and it is also compatible with the behavior of the coupling found in Ref. [7]
for the weak field case. This behavior is shown in Fig. 4.6 where we plot the ratio between
the effective, magnetic-field-dependent boson self-coupling λB = λ

(
1 + ΓBλ

)
as a function of

the field strength and the vacuum boson self-coupling. In contrast, when µ is taken at a
fixed value, the arbitrary field result does not match the LLL case. We interpret this result
as signaling that when the field strength is the largest energy scale, µ needs to be taken also
as this large scale since otherwise the computation is not consistent when the strength of
the magnetic field surpasses a given fixed scale. At the same time, when the field strength
vanishes, the only remaining energy scale is the pion mass and µ needs to be taken solely
as this energy scale. Equally important, 2|eB| corresponds to the square of the energy gap
between Landau levels, and, thus, that in order for µ to correspond to the largest energy
scale, it is important that for large values of the field strength, µ2 is taken as the square of
this energy gap. In contrast, as also shown in Fig. 4.6, the usual prescription, whereby one
just subtracts the vacuum correction, represented by the blue line computed with µ2 = m2

0,
behaves opposite to what is expected from the result obtained using the LLL propagator.
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4.4 Magnetic corrections to the boson-fermion coupling

The magnetic corrections to the boson-fermion coupling g at one-loop level can be obtained
from the sum of the three Feynman diagrams depicted in Fig. 4.7. Since the correction

Figure 4.7: Feynman diagrams that contribute to the boson-fermion coupling at one-loop order.
The diagrams show the case with a neutral pion and two u quarks as the external particles. Here
x, y and z are internal points, while a, b and z are external points in configuration space.

can be obtained from the sum of the allowed diagrams coupling one boson and two quarks,
here we consider the magnetic correction to the boson-fermion coupling for the choice of
external particles shown in Fig. 4.7. Also, as discussed in the previous section, the use of
propagators in the LLL approximation provides a reliable description in the strong field limit,
we hereby restrict ourselves to this case using the LLL approximation, Eq. (3.18), for the
boson propagator and Eq. (3.17) for the fermion propagator.

We start by computing the contribution from the diagram in Fig. 4.7(a). This diagram
is associated with the quantity IB1,g which is explicitly given by

IB1,g =

∫
d4x d4y d4x

∫
d4s

(2π)4

d4t

(2π)4

d4k

(2π)4
eiΦ1,le−ip·y

(√
2gγ5

)
e−is·(x−y)iSd(s)

×
(
−gγ5

)
eiq·xe−it·(z−x)iSd(t)

(√
2gγ5

)
e−ik·(y−z)iDπ−(k)eir·z + CC. (4.32)

The information from the Schwinger phases is contained in the function Φ1,l(x, y, z). This
function depends on the space-time points located at the vertices. For the calculation to
have a solid physical meaning, this phase should be a gauge-invariant quantity. We proceed
to show this fact explicitly. Notice that the total Schwinger phase Φ1,t associated to the
Feynman diagram in Fig. 4.7(a), contains not only the information of the space-time points
at the interaction vertices x, y, z, but also the one coming from the external space-time points
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a, b, c. Therefore Φ1,t is given explicitly by

Φ1,t = Φd(x, y) + Φπ−(y, z) + Φd(z, x) + Φu(y, b) + Φu(c, z). (4.33)

Using Eq. (3.7) with Eq. (4.33), we have

Φ1,t = −1

2
qdFµν (yµxν + xµzν)−1

2
qπ−Fµνz

µyν−1

2
quFµν (bµyν + zµcν)+qu[Λ(b)−Λ(c)]. (4.34)

It is worth pointing out that terms depending on Λ evaluated at the internal space-time points
add up to zero. Therefore, the integration over the configuration space becomes independent
of the gauge choice. However, this would not be the case when we just consider the phase
factors associated to the particles within the loop, since the result of the integration would
then become gauge dependent. This observation is essential since otherwise one faces a non-
conservation of electric charge at each vertex when just considering the phases within the
loop. On the other hand, Eq. (4.34) contains a mixing between the phases associated to loop
particles, Φ1,l, and the phases from external particles, Φext, where the last term is associated
to the external charged lines in the diagram and can be written as

Φext = −1

2
quFµν (bµxν + xµcν) + qu[Λ(b)− Λ(c)]. (4.35)

In order to separate these contributions as

Φ1,t = Φ1,l + Φext, (4.36)

we resort to considering that the external particles can be described as plane waves. Phys-
ically, this means that we consider the propagation of the external particles during short
distances and times. In this manner we neglect long distance effects introduced when the
magnetic field acts on the external particles. Therefore, we can take yµ ≈ bµ and zµ ≈ cµ

such that

Φ1,t = −1

2
quFµν (bµxν + xµcν) + qu[Λ(b)− Λ(c)]− 1

2
qπ−Fµν (yµxν + zµyν + xµzν) . (4.37)

Using this approximation we can separate the phase factors coming from external and inter-
nal, loop particles. Thus, for the computation of the magnetic field correction for the coupling
g, we need only to account for the last term in Eq. (4.37), whereas the first term and second
term in Eq. (4.37) are associated to the external phase given by Eq. (4.35). Therefore, we
have

Φ1,l = −1

2
qπ−Fµν (yµxν + zµyν + xµzν) . (4.38)

It is important to note that the contribution from the Schwinger phase is gauge-invariant.
Using that F21 = −F12 = |B| and qπ− = −|e|, we get

Φ1,l =
1

2
|eB|εij (xiyj + yizj + zixj) , i, j = 1, 2, (4.39)

where εij is the Levi-Civita symbol. Having identified the Schwinger phase contribution,
we can perform the integration over coordinates. Upon doing so, we obtain the energy-
momentum conservation for the external particles, and can write

IB1,g = (2π)4δ(4)(p− r − q)gγ5ΓB1,g, (4.40)
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where gγ5Γ1,g is identified as the contribution to the magnetic field correction to the vertex,
given explicitly by

gγ5ΓB1,g =
1

π2|eB|2

∫
d2s⊥d

2t⊥
d4k

(2π)4

(√
2gγ5

)
iSd(k‖ + p‖, s⊥)

(
−gγ5

)
iSd(k‖ + r‖, t⊥)

×
(√

2gγ5
)
iDπ−(k‖, k⊥)ei

2
|eB| εij(s−q−t)i(s−p−k)j + CC. (4.41)

Following the procedure explicitly shown in Appendix E and the static limit p0 = r0 = mf

and ~p = ~r = ~0, we get

ΓLLL1,g =
g2|eB|

16π2m2
f

∫ 1

0

du
u

u2 + α(1− u)

[
1 +

(2− u)u

u2 + α(1− u)

]
, (4.42)

where α = (m2
0 + |eB|)/m2

f .
We proceed with the contribution from the Feynman diagram depicted in Fig. 4.7(b).

This contribution can be obtained from the function IB2,g, which can be written as follows

IB2,g =

∫
d4x d4y d4z

∫
d4s

(2π)4

d4t

(2π)4

d4k

(2π)4
eiΦ2,le−ip·y

(
gγ5
)
e−is·(x−y)iSu(s)

×
(
gγ5
)
eiq·xe−it·(z−x)iSu(t)

(
gγ5
)
e−ik·(y−z)iDπ0(k)eir·z + CC. (4.43)

In a similar fashion, we first compute the Schwinger phase associated to the whole diagram
in Fig. 4.7(b), namely,

Φ2,t = Φu(x, y) + Φu(z, x) + Φu(y, b) + Φu(c, z). (4.44)

Using Eq. (3.7) with Eq. (4.44), we have

Φ2,t = −1

2
Fµνqu (yµxν + bµyν + xµzν + zµcν) + qu [Λ(b)− Λ(c)] . (4.45)

Once again terms that depend on Λ, evaluated at internal points, cancel out. On the other
hand, the Schwinger phase associated to the tree-level diagram is given by Eq. (4.35). Adding
and subtracting the first term from this equation to Eq. (4.45), we have

Φ2,t = −1

2
Fµνqu (yµxν + bµyν + xµzν + zµcν) + qu [Λ(b)− Λ(c)]

− 1

2
quFµν (bµxν + xµcν) +

1

2
quFµν (bµxν + xµcν) . (4.46)

Assuming that yµ ≈ bµ and zµ ≈ cµ (short space-time interval propagation after the interac-
tion), we get

Φ2,t = −1

2
quFµν (bµxν + xµcν) + qu [Λ(b)− Λ(c)] . (4.47)

This result coincides with Eq. (4.35). Therefore, we can conclude that the Schwinger phase
associated to the loop particles vanishes

Φ2,l = 0. (4.48)
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Upon integration over configuration space, we are able to identify the contribution to the
magnetic correction from this diagram, gγ5Γ2,g, as

IB2,g = (2π)4δ(4)(p− r − q)gγ5Γ2,g. (4.49)

Again, notice that using this approximation we recover the energy-momentum conservation
for the external particles, whereas the magnetic correction is associated to the loop and can
be expressed as

gγ5ΓB2,g =

∫
d4k

(2π)4

(
gγ5
)
iSu(k + p)

(
gγ5
)
iSu(k + r)

(
gγ5
)
iDπ0(k) + CC. (4.50)

The computation of this quantity is explicitly performed in Appendix E in the strong field
limit and can be expressed as

ΓLLL2,g = − g2

2π2m2
f

∫ 1

0

du

∫ ∞
0

dk⊥ k⊥e
− 3k2⊥
|eB|

u

u2 + β(1− u)

[
1 +

(2− u)u

u2 + β(1− u)

]
, (4.51)

where β = (k2
⊥ +m2

0)/m2
f .

The diagram in Fig. 4.7(c) can be obtained from the function IB3,g, given explicitly by

IB3,g =

∫
d4x d4y d4z

∫
d4s

(2π)4

d4t

(2π)4

d4k

(2π)4
eiΦ3,le−ip·y (−ig) e−is·(x−y)iSu(s)

×
(
gγ5
)
eiq·xe−it·(z−x)iSu(t) (−ig) e−ik·(y−z)iDσ(k)eir·z + CC. (4.52)

In a similar fashion, one can compute the Schwinger phase from this loop, Φ3,l(x, y, z). It is
easy to see that this phase satisfies Φ3,t = Φ2,t and therefore, the internal Schwinger phase
vanishes when considering short-range propagation of the external particles, namely,

Φ3,l = 0. (4.53)

After performing the integration over the configuration space, we obtain a the relation be-
tween IB3,g and the contribution to the magnetic correction to the boson-fermion coupling,
gγ5Γ3,g, given by

IB3,g = (2π)4δ(4)(p− r − q)gγ5Γ3,g, (4.54)

with

gγ5ΓB3,g =

∫
d4k

(2π)4
(−ig) iSu(k + p)

(
gγ5
)
iSu(k + r) (−ig) iDσ(k) + CC. (4.55)

Once again, using the LLL propagators and following the explicit procedure shown in Ap-
pendix E, we get

ΓLLL3,g =
g2

2π2m2
f

∫ 1

0

du

∫ ∞
0

dk⊥ k⊥e
− 3k2⊥
|eB|

u

u2 + γ(1− u)

[
1 +

(2− u)u

u2 + γ(1− u)

]
, (4.56)

where γ = (k2
⊥ +m2

σ)/m2
f .
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The total magnetic correction to the boson-fermion coupling in the strong field limit is
given by the sum of the three contributions, namely,

ΓLLLg = ΓLLL1,g + ΓLLL2,g + ΓLLL3,g . (4.57)

The effective boson-fermion coupling, geff is thus given by

gB = g
(
1 + ΓLLLg

)
. (4.58)

Figure 4.8 shows the behavior of the boson-fermion coupling as a function of the field strength.
For the calculation we set m0 = 0.140 GeV, mf = 0.3 GeV and mσ = 0.4, 0.6 GeV. Notice
that the coupling decreases monotonically over a large range of the field strength. However,
the relative change is rather small.

LLL, m0=0.140 GeV, mσ=0.435 GeV

LLL, m0=0.100 GeV, mσ=0.400 GeV

0 1 2 3 4 5
0.975
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0.985
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|eB|[GeV2]
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B
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Figure 4.8: Magnetic field dependence of the effective boson-fermion coupling gB = g(1+ΓBg ) in the
static limit and the strong field approximation. For the calculation we used g = 0.46, mf = 0.07
GeV and the two values mσ = 0.400 GeV and 0.435 GeV and m0 = 0.100 GeV and 0.140 GeV. In
both cases gB monotonically decreases in an interval |eB| = 1− 5 GeV2.

In this chapter we determined the behavior of the vacuum expection value for an arbitrary
field strength and the neutral pion self-energy, the boson self-coupling and the boson-fermion
coupling in the strong field limit. These elements allow us to study the magnetic corrections
to the neutral pion mass through its dispersion relation. This analysis is performed in the
next chapter.



Chapter 5

Magnetic modifications to the neutral
pion mass

In this chapter we study the dispersion relation of the neutral pion in Eq. (4.1) at one-loop
order in order to determine the magnetic-field-dependent neutral pion mass. Furthermore, a
comparison with the recent LQCD results is performed. We employ a proper set of parameters
in agreement with their choice for the physical pion mass in vacuum. The results presented
below were reported in Ref. [12].

Hereafter, we consider Eq. (4.1) in the limit where ~q → ~0 and q0 → mB, namely,

m2
B = m2

0(λB, vB) + Π(B, q0 = mB, ~q = 0;λB, gB, vB), (5.1)

where, in order to incorporate the magnetic-field-dependent boson self-coupling and vacuum
expectation value in the three-level pion mass, we write

m2
0(λB, vB) = λBv

2
B − a2. (5.2)

The expressions in Eq. (2.9) reduce the parameter space in the LSMq so that there are
four free parameters associated with physical quantities in vacuum, namely, m0, mf , λ and g.
Additionally, we consider that in the absence of baryons, the constituent quark mass is such
that m0 = 2mf . With this choice, the only free parameters are λ and g. We have explored a
large range for these parameters and hereby we show the results for the set that best describes
simultaneously the LQCD data of Refs. [48, 49]. Since these works report their findings for
different values of the vacuum pion mass, we also vary this mass, and, consequently, the rest
of the dependent parameters have to be changed to suit these choices. In particular, a larger
vacuum pion mass implies a larger σ mass. Thus, in the strong field limit, our results are
restricted to the domain where |eB| > m2

σ. Figure 5.1 shows the magnetic-field-dependent
neutral pion mass as a function of the field strength computed for two cases: with (black dots)
and without (blue diamonds) magnetic-field-dependent couplings, using as inputs m0 = 140
MeV, λ = 3.67, g = 0.46, and, correspondingly, mσ = 435 MeV, a = 256 MeV and v0 = 152
MeV. The former shows a monotonic decrease, whereas the latter starts off decreasing to later
on increase as a function of the field strength. This result signals the importance of including
magnetic field corrections to the couplings in the calculation of the magnetic-field-dependent
neutral pion mass.

In order to compare with LQCD simulations, which are implemented for different values
of the vacuum pion mass, Fig. 5.2 shows the magnetic-field-dependent neutral pion mass as



Chapter 5. Magnetic modifications to the neutral pion mass 31

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

◆ λ, g

● λB, gB

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

|eB| [GeV2]

m
B
/m

0

Figure 5.1: Magnetic modification to the neutral pion mass, for two different cases: Blue diamonds
correspond to tree-level couplings, and black dots correspond to magnetic-field-dependent couplings.
The calculation using tree-level couplings starts off decreasing to later on increase, whereas the
calculation using magnetic-field-dependent couplings decreases monotonically as a function of the
field strength. For the calculation we use m0 = 140 MeV, λ = 3.67, g = 0.46, and, correspondingly,
mσ = 435 MeV, a = 256 MeV, and v0 = 152 MeV.

a function of the field strength when varying the input vacuum pion mass. Shown are three
cases: m0 = 140 MeV (black dots), m0 = 220 MeV (blue triangles) and m0 = 415 MeV (red
diamonds). Notice that, as the physical pion mass decreases, the corresponding magnetic-
field-dependent pion mass also decreases and that all cases show a monotonic decrease as a
function of the field strength, in agreement with the LQCD findings.

To make direct contact with LQCD data, Fig. 5.3 shows the results for the magnetic-field-
dependent neutral pion mass as a function of the field strength using as input m0 = 415 MeV
and with λ = 3.67 and g = 0.46, compared to the results from Ref. [48]. The data points
correspond to the πd (blue diamonds) and πu (red diamonds) masses computed also using as
input m0 = 415 MeV. Our calculation does a nice description of the data average, particularly
for the largest field strengths. Figure 5.4 shows also a comparison of our calculation with the
LQCD calculation of Ref. [49], this time computed with m0 = 220 MeV as input together
with λ = 3.67 and g = 0.46. The data points correspond to the πd (blue diamonds) and πu
(red diamonds) masses computed also using as input m0 = 220 MeV. Once again, we notice
that our calculation does a nice job describing the average of the LQCD masses, particularly
for large values of the field strength.

Finally, Fig. 5.5 shows a comparison of our calculation with the results of the LQCD
calculations from Refs. [48, 49]. The data points correspond to the lowest reached values of
each LQCD calculation, m0 = 415 MeV for the former and m0 = 220 MeV for the latter. The
calculation (black dots) is performed with m0 = 140 MeV as input, together with λ = 3.67
and g = 0.46. The result of the calculation using as input the physical pion mass in vacuum
lies below the LQCD points. In this sense, this result can be considered as our prediction
when and if LQCD techniques can be performed for a physical vacuum pion mass.
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Figure 5.2: Magnetic modification to the neutral pion mass for three different values of pion mass
in vacuum: black dots, m0 = 140 MeV, blue triangles, m0 = 220 MeV and red diamonds m0 = 415
MeV. Notice that, as the physical pion mass decreases the corresponding magnetic-field-dependent
pion mass also decreases and that all cases show a monotonic decrease as a function of the field
strength, in agreement with the recent LQCD findings.
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Figure 5.3: Magnetic modification to the neutral pion mass. Blue and red diamonds correspond to
the masses of πd and πu reported by LQCD in Ref. [48] with m0 = 415 MeV. Black dots are the
result from Eq. (5.1) with m0 = 415 MeV, λ = 3.67, g = 0.46, and, correspondingly, mσ = 1291
MeV, a = 758 MeV and v0 = 451 MeV.
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Figure 5.4: Magnetic modification to the neutral pion mass. Blue and red triangles correspond to
the masses of πd and πu reported by LQCD in Ref. [49] with m0 = 220 MeV. Black dots are the
result from Eq. (5.1) with m0 = 220 MeV, λ = 3.67, g = 0.46, and, correspondingly, mσ = 684
MeV, a = 402 MeV and v0 = 239 MeV.
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Figure 5.5: Magnetic modification to the neutral pion mass. Blue and red diamonds correspond
to the masses of πd and πu reported by LQCD in Ref. [48] with m0 = 415 MeV. Green and gray
triangles correspond to the masses of πd and πu reported by LQCD in Ref. [49] with m0 = 220 MeV.
Black dots are the result of Eq. (5.1) with m0 = 140 MeV, λ = 3.67, g = 0.46, and, correspondingly,
mσ = 435 MeV, a = 256 MeV and v0 = 152 MeV. As expected, when for the calculation we use
as input the physical pion mass m0 = 140 MeV, the theoretical curve lies below the LQCD data
which were obtained using larger vacuum pion masses.
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Conclusions

The Linear Sigma Model with quarks (LSMq) is an effective model of QCD in the low-energy
regime. This model describes the interaction among light mesons and quarks and captures
the chiral symmetry of QCD. Since the masses of the particles species in this model have a
dynamical nature through the chiral symmetry breaking, the main objective of this work is
to provide an appropriate description of the magnetic field effects in the neutral pion mass
at one-loop level by using charged particle propagators in the presence of a uniform and
constant magnetic field.

The approach adopted consists of the proper inclusion of the purely magnetic field mod-
ifications on the model couplings, the σ vacuum expectation value and the neutral pion
self-energy combined with a suitable set of parameters. Following this path the predictions
from the LSMq subject to a magnetized medium reproduce the magnetic field dependence of
the neutral pion mass reported by recent LQCD calculations. Additionally, a monotonically
increasing behavior as a function of the field strength was determined for the σ vacuum ex-
pectation value which is to be expected on general grounds given by the well-known magnetic
catalysis phenomenon.

As has been previously discussed, the boson self-coupling and the boson-fermion coupling
play a significant role for the monotonically decreasing behavior of the neutral pion mass.
For the former, the results for an arbitrary field strength, as well as in the strong field
are provided in detail. In this case, the full magnetic field result for the boson self-coupling
allowed us to study its ultraviolet scale dependence, considering the strong field limit and the
result in absence of magnetic field we found an appropriate choice for the renormalization
scale that produces the expected behavior for both extreme limits and is supported by a
reliable physical interpretation. For the latter, we solely consider a calculation in the strong
field limit. Furthermore, we have shown that when considering that the external charged
particles propagate during short space-time intervals, the effects coming from the Schwinger
phase become gauge invariant and the energy-momentum conservation can be factored out
from the vertex function.

By comparing to the LQCD results for the smallest pion mass allowed by that technique,
we obtain that when the physical pion mass is used in our approach, the magnetic-field-
dependent neutral pion mass curve lies a bit below the LQCD data. In this sense, this result
is our prediction if the LQCD techniques allow for calculations using the physical vacuum
pion mass.

Finally, the results in this work can be used to address whether this approach can also
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reproduce the magnetic field behavior of the charged pion mass with the same set of param-
eters. Other possible physical scenarios where the results of this work can have a potential
impact include the nuclear equation of state within dense and compact astrophysical objects,
such as the cores of neutron stars, which are affected by magnetic-field-dependent baryon
and meson masses and couplings, and the shear and bulk viscosity in quark-meson matter.



Appendix A

Regularization and Renormalization

The aim of this section is to briefly discuss the regularization and renormalization procedures
and show explicitly some relations in the context of the dimensional regulatization method.

Regularization is a procedure which modifies an original quantum field theory in order to
study short-distance physical effects (ultraviolet regime). Usually, when radiative corrections
are considered (one-loop or higher corrections), the regularization procedures allow us to
deal with divergent expressions by introducing the concept of regulator. For instance, in the
dimensional regularization method, ε, is the regulator. The original theory is recovered in
the limit in which the regulator goes away , ε → 0, but the virtue of the regulator is that
for a non-zero positive value, the result is finite. This method is widely used because it is
the only known method which is Lorentz-invariant and gauge-invariant. An overview of this
method is shown below.

In dimensional regularization we promote from 4 dimensions to d according to∫
d4l

(2π)4
= µ4−d

∫
ddl

(2π)d
, (A.1)

where µ is the ultraviolet renormalization scale and have energy units. This variable plays
an important role in the renormalization group approach and physically it can be chosen as
the largest energy scale of the system.

On one hand, at the one-loop level, the calculation of Feynman diagrams in vacuum
involve the relations in Eq.(A.2) and (A.3) which can be solved as a d−dimensional integration
in Minkowski space [59]∫

ddl

(2π)d
1

(l2 −∆)n
=

(−1)ni

(4π)d/2
Γ
(
n− d

2

)
Γ(n)

(
1

∆

)n− d
2

, (A.2)∫
ddl

(2π)d
l2

(l2 −∆)n
=

(−1)n−1i

(4π)d/2
d

2

Γ
(
n− d

2
− 1
)

Γ(n)

(
1

∆

)n− d
2
−1

. (A.3)

where n. In fact, from Eqs. (A.2) and (A.3) it can be seen that d is not necessarily an
integer. On the other hand, once we incorporate a uniform and constant time external
magnetic field, the propagators can be separated in structures which depend on the parallel
and perpendicular momentum coordinates (relative to the magnetic field direction, where
the zeroth component is included in the parallel structure) independently. Usually when
one-loop level calculations are considered, the parallel structure may be divergent, while the
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perpendicular structure is convergent. The prescription to promote from 4 dimensions to d
in this case is usually performed in the following manner∫

d4l

(2π)4
=

∫
d2l‖d

2l⊥
(2π)4

= µ4−d
∫

dd−2l‖
(2π)d−2

∫
d2l⊥
(2π)2

. (A.4)

Thus, according to this separation, the general relations in Eqs.(A.2) and (A.3) can be written
in d− 2 dimensions as follows∫

dd−2l‖
(2π)d−2

1

(l2‖ −∆)n
=

(−1)ni

(4π)(d−2)/2

Γ
(
n− d−2

2

)
Γ(n)

(
1

∆

)n− d−2
2

, (A.5)

∫
dd−2l‖

(2π)d−2

l2‖
(l2‖ −∆)n

=
(−1)n−1i

(4π)(d−2)/2

d− 2

2

Γ
(
n− d−2

2
− 1
)

Γ(n)

(
1

∆

)n− d−2
2
−1

. (A.6)

Following this path, consider Eq. (A.5) for n = 1

µ4−d
∫

dd−2l‖
(2π)d−2

1

l2‖ −∆
= − i

(4π)(d−2)/2

Γ
(
1− d−2

2

)
Γ(1)

(
µ2

∆

)1− d−2
2

, (A.7)

taking d = 4− 2ε, we get

µ4−d
∫

dd−2l‖
(2π)d−2

1

l2‖ −∆
= − i

4π
(4π)εΓ(ε)

(
µ2

∆

)ε
. (A.8)

Considering an expansion in ε→ 0 we are able to identify the divergent term as

(4π)εΓ (ε)

(
µ2

∆

)ε
=

1

ε
+ ln (4π)− ln

(
∆

µ2

)
− γE +O(ε). (A.9)

Thus, we get

µ4−d
∫

dd−2l‖
(2π)d−2

1

l2‖ −∆
= − i

4π

[
1

ε
+ ln(4π)− ln

(
∆

µ2

)
− γE +O(ε)

]
. (A.10)

Furthermore, taking n = 2 in Eqs.(A.5) and (A.6) with d = 4− 2ε

µ4−(d−2)

∫
dd−2l‖

(2π)d−2

1

(l2‖ −∆)2
=

i

(4π)1−ε
Γ (1 + ε)

Γ(2)

(
µ2

∆

)1+ε

, (A.11)

µ2−(d−2)

∫
dd−2l‖

(2π)d−2

l2‖
(l2‖ −∆)2

= − i

(4π)1−ε (1− ε)Γ (ε)

Γ(2)

(
µ2

∆

)ε
. (A.12)

We proceed using the properties: Γ(z + 1) = zΓ(z), Γ(2) = 1, and an expansion in ε → 0
such as the results are given by

µ4−(d−2)

∫
dd−2l‖

(2π)d−2

1

(l2‖ −∆)2
=

i

4π

µ2

∆
[1 +O(ε)] , (A.13)

µ2−(d−2)

∫
dd−2l‖

(2π)d−2

l2‖
(l2‖ −∆)2

= − i

4π

[
1

ε
− ln

(
∆

4πµ2

)
− γE − 1 +O(ε)

]
, (A.14)
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Finally, following a similar procedure as before, setting n = 3 in Eqs.(A.5) and (A.6), we
have

µ4−d
∫

dd−2l‖
(2π)d−2

1

(l2‖ −∆)3
= − i

4π

1

2

1

∆2
+O(ε), (A.15)

µ4−d
∫

dd−2l‖
(2π)d−2

l2‖
(l2‖ −∆)3

=
i

4π

1

2

1

∆
+O(ε). (A.16)

With these expressions at hand, we are able to solve the integration which arise from the
elements needed to compute the neutral pion mass at one-loop order in the strong field limit.

Naturally, it is essential to express our predictions for the physical quantities in terms of
physical parameters. The physical parameters can not be the ones which define the theory
through its Lagrangian (bare parameters) because once we consider the effects of interactions,
the direct connection between physical and bare parameters breaks. The renormalization
procedure deals with the need to express our results in terms of measured quantities rather
than abstract parameters which appear in the Lagrangian. To make contact with reality, the
Lagrangian can be written in terms of renormalized fields and parameters. The remaining
terms, which relate renormalized and bare quantities, are reinterpreted as counterterms. It
is worth to mention that the renormalization is not intrinsically related with the existence of
infinities in the theory and it is a necessary procedure even if the theory is finite.

A widely-used scheme of renormalization is the modified minimal substraction scheme
(MS). In the MS renormalization scheme, the pole, the Euler-Mascheroni constant, γE, and
the ln (4π) terms are associated with the counterterms.

The dimensional regularization and the MS renormalization scheme are widely used when
account for the necessary elements to compute the magnetic correction to the neutral pion
mass at one-loop.



Appendix B

Magnetic corrections to the effective
potential

Consider the contribution from a single charged boson to the effective potential at one-loop
order, given by [55]

V 1
b = − i

2

∫
d4k

(2π)4
ln
[
−D−1

b (k)
]
, (B.1)

which can also be written as [56]

V 1
b =

1

2

∫
dm2

b

∫
d4k

(2π)4
iDb(k). (B.2)

Using the boson propagator expanded over Landau levels in Eq. (3.13), taking a Wick rotation
k0 → ik4, and using a Schwinger parameter, we get

V 1
b =

∫
dm2

b

∫
d4kE
(2π)4

∫ ∞
0

ds
∞∑
n=0

(−1)ne
− k2⊥
|qbB|L0

n

(
2k2
⊥

|qbB|

)
e−s[k

2
E‖+m

2
b+(2n+1)|qbB|−iε]. (B.3)

Using the definitions

s1 = 2k2
⊥/|qbB|,

r1 = −e−2s|qbB|,

α(kE‖) = k2
E‖ +m2

b − iε, (B.4)

we write

V 1
b =

∫
dm2

b

∫
d4kE
(2π)4

∫ ∞
0

ds
∞∑
n=0

rn1L
0
n (s1) e−s[α(kE‖)+|qbB|]e

− k2⊥
|qbB| . (B.5)

Using the generating function of Laguerre polynomials

∞∑
n=0

rn1L
0
n(s1) =

1

1− r1

e
− r1

1−r1
s1 , (B.6)

we have

V 1
b =

∫
dm2

b

∫ ∞
0

ds
e−s|qbB|

1− r1

I⊥(s)I‖(s), (B.7)
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where we define

I⊥(s) =

∫
d2k⊥
(2π)2

e
− k2⊥
|qbB|

(1−2ηb(s)),

I‖(s) = µ4−d
∫
dd−2kE‖
(2π)d−2

e−sα(kE‖),

ηb(s) =
1

e2|qbB|s + 1
. (B.8)

We can take ε → 0 and use dimensional regularization. Once we carry out the integration,
I⊥(s) and I‖(s) can be written as

I⊥(s) =
|qbB|

4π tanh (|qbB|s)
,

I‖(s) = µ2ε 1

(4πs)1−ε e
−sm2

b . (B.9)

Using the explicit expressions in Eq. (B.9), we get

V 1
b =

∫
dm2

b

∫ ∞
0

ds
|qbB|

8π sinh (|qbB|s)
µ2ε

(4πs)1−ε e
−sm2

b . (B.10)

By writing

1

sinh (|qbB|s)
= 2

∞∑
n=0

e−(2n+1)|qbB|s, (B.11)

we can perform the integration over ds such that

V 1
b =

|qbB|
16π2

∫
dm2

b

(
4πµ2

2|qbB|

)ε
Γ(ε) ζ

(
ε,

1

2
+

m2
b

2|qbB|

)
. (B.12)

Considering an expansion in ε→ 0, we have

V 1
b =

|qbB|
16π2

∫
dm2

b

{
ζ

(
0,

1

2
+

m2
b
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(
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+ ζ(1,0)

(
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1

2
+

m2
b

2|qbB|

)}
, (B.13)

where ζ(s, c) is the Hurwitz zeta function and it is classically defined by the formula

ζ(s, c) ≡
∞∑
n=0

1

(n+ c)s
, (B.14)

for c > 0 and R[s] > 1 (by analytic continuation to other s 6= 1), and

d

ds
ζ(s, c)|s=0 = ζ(1,0)(0, c). (B.15)
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Using the following identities:

ζ (0, c) =
1

2
− c,

ζ(1,0) (0, c) = ln
[
(2π)−1/2 Γ (c)

]
,

(B.16)

we get

V 1
b = − 1

32π2
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2
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. (B.17)

Considering the MS renormalization scheme, we have

V 1
b =

1

32π2

∫
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b m
2
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, (B.18)

solving the integral for dm2
b , we get the final result

V 1
b =

1

16π2

[
2|qbB|2ψ−2
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2
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2
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b ln(2π)− m4
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4
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2|qbB|
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, (B.19)

where ψ−2(x) is the polygamma function of the order of −2. In the context of the LSMq we
have to consider the contribution of both charged pions such that the magnetic correction
from bosons in this model can be written as

V 1
π+ + V 1

π− =
1

8π2

[
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(
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2
+
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2
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4
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)]
. (B.20)

The magnetic corrections from the fermion contribution to the effective potential can be
computed from [57]

V 1
f = iNc

∫
d4k

(2π)4
Tr ln

[
S−1
f (k)

]
. (B.21)

In a similar fashion to the boson case, it can be shown that

V 1
f = −2iNc
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∫
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f
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(B.22)
where we consider the particle-antiparticle contributions and a sum over the polarizations
with respect to the magnetic field direction, σ. Making a Wick rotation and considering a
Schwinger proper time parametrization, we have

V 1
f = −2Nc

∑
σ=±1

∫
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f

∫ ∞
0

ds
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Using the following definitions:

s2 = 2k2
⊥/|qfB|,

r2 = −e−2s|qfB|,

β(kE‖) = k2
E‖ +m2

f − iε, (B.24)

we get
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f = −2Nc
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Using the generating function of Laguerre polynomials

∞∑
n=0

rn2L
0
n(s2) =

1

1− r2

e
− r2

1−r2
s2 , (B.26)

we obtain
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where after introducing dimensional regularization, we use the definitions

J⊥(s) =

∫
d2k⊥
(2π)2

e
− k2⊥
|qfB|
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e2|qfB|s + 1
, (B.28)

where we have considered ε→ 0. Once we carry out the integration, J⊥(s) and J‖(s) can be
written as

J⊥(s) =
|qfB|

4π tanh (|qfB|s)
,

J‖(s) = µ2ε 1

(4πs)1−ε e
−sm2

f . (B.29)

Using the identity ∑
σ=±1

e−s|qfB| = 2 cosh (|qfB|s), (B.30)

we have
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We now use that
1

tanh (|qfB|s)
=
∞∑
n=0

e−2n|qfB|s +
∞∑
n=0

e−(2n+2)|qfB|s, (B.32)
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to integrate over ds such that

V 1
f = −Nc|qfB|
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Considering an expansion in ε→ 0, we get
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Using the identities in Eq. (B.16), we have
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After the MS renormalization scheme is implemented, we get
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Finally, integrating over dm2
f , we obtain
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Magnetic corrections to the neutral
pion self-energy

Consider the quark loop which can be made either of quarks u or d, as depicted in Fig. 4.3.
The contribution from a quark flavor f is given by

− iΠff̄ (B, q) = −g2

∫
d4k

(2π)4
Tr[γ5iSf (k)γ5iSf (k + q)] + CC, (C.1)

where we used that the Schwinger phase vanishes. We now use Eq. (3.17) to account for the
strong field limit, and the properties of the Dirac matrices

O±/a‖ = /a‖O
±,

O±γ5 = γ5O±,
O+ +O− = I,(
O±
)2

= O±,
γ5/a‖ = −/a‖γ

5, (C.2)

where aµ‖ = (a0, 0, 0, a3), /a‖ = a‖µγ
µ and the projection operators are defined according to

Eq. (3.16). Adding up the contribution from the CC diagram, we get

− iΠff̄ = 4g2

∫
d4k

(2π)4
e
− k

2
⊥+(k+q)2⊥
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N
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where we define

N ≡ Tr
[
(mf − /k‖)((/k + /q)‖ +mf )

]
A = (k + q)2

‖ −m2
f + iε,

B = k2
‖ −m2

f + iε. (C.4)

We proceed to integrate over the perpendicular coordinates relative to the magnetic field.
The result is given by

− iΠff̄ = g2 |qfB|
2π

e
− 1

2|qfB|
q2⊥

∫
d2k‖
(2π)2

N
AB

. (C.5)
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We introduce the Feynman parametrization

1

AB
=

∫ 1

0

dx

[Ax+B(1− x)]2
. (C.6)

The denominator of Eq. (C.5) can be written as

Ax+B(1− x) = (k + xq‖)
2 −∆1 + iε, (C.7)

where ∆1 = x(x− 1)q2
‖ +m2

f and ε→ 0. We make the change of variables k‖ = l‖− xq‖ such
that the numerator, N , can be expressed as

N = 4m2
f − 4l2‖ + 4x(1− x)q2

‖. (C.8)

Notice that we have taken into account that the trace of an odd number of Dirac matrices
vanishes and that the linear term l‖ will vanish in the integration. Thus, the contribution to
the self-energy becomes

− iΠff̄ =
2g2|qfB|

π
e
− 1

2|qfB|
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]
. (C.9)

In order to find the integral over parallel coordinates relative to the magnetic field we proceed
using the dimensional regularization relations in Eqs.(A.13) and (A.14)
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]
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(C.10)
In the static limit, ~q = ~0, and setting the zeroth component of the momentum equal to the
neutral pion mass, q0 = mB, one can solve Eq. (5.1) self-consistently. We proceed using the
MS renormalization scheme to obtain a finite expression given by

− iΠff̄ =
ig2|qfB|

2π2
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[
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B
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− 1− ln

(
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B +m2
f

µ2

)]
. (C.11)

The integration over the Feynman parameter can be performed provided that 4m2
f > m2

B;
this condition is the threshold relation for this process, and it must remain valid upon the
choice of the set of parameters. Substituting and reducing terms, we get
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2π2
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. (C.12)

Setting µ2 = 2|eB|+m2
0, we obtain
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Finally, we compute the contribution from the tadpole in Fig.4.4. Its explicit expression
is given by

− iΠπ± =

∫
d4k

(2π)4
(−2iλ)iDπ±(k), (C.14)
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where we used the fact that the Schwinger phase vanishes in the tadpole. In the strong field
limit we use the boson propagator in Eq. (3.18). The contribution from the two charged
pions can be written as

− i(Ππ+ + Ππ−) = −8iλ

∫
d4k

(2π)4

ie−
k2⊥
|eB|

k2
‖ − |eB| −m2

0 + iε
. (C.15)

We proceed with the integration over the perpendicular coordinates relative to the magnetic
field to obtain

− i(Ππ+ + Ππ−) =
2λ|eB|
π

∫
d2k‖
(2π)2

1

k2
‖ −∆2 + iε

, (C.16)

where ∆2 = |eB| + m2
0 and ε → 0. Using dimensional regularization as in Eq. (A.10), the

integration over the parallel coordinates of momentum relative to the magnetic field direction
can be found and taking ε→ 0, we have

− i(Ππ+ + Ππ−) = −iλ|eB|
2π2

[
1

ε
+ ln(4π)− γE − ln

(
|eB|+m2

0

µ2

)]
. (C.17)

Using the MS renormalization scheme, we obtain

Ππ+ + Ππ− = −λ|eB|
2π2

ln

(
|eB|+m2

0

µ2

)
. (C.18)

Setting µ2 = 2|eB|+m2
0, we get

Ππ+ + Ππ− = −λ|eB|
2π2

ln

(
|eB|+m2

0

2|eB|+m2
0

)
. (C.19)



Appendix D

Magnetic corrections to the boson
self-coupling

To compute the magnetic correction to the boson self-coupling, we start from the Landau level
representation of the charged boson propagator in Eq. (3.13) and use it with the expression
for the magnetic correction to λ given by

− i6λΓBλ =

∫
d4k

(2π)4
(−2iλ)iDB

π−(k)(−2iλ)iDB
π−(k + p+ r) + CC. (D.1)

Performing a Wick rotation in k and s = r + p, such that k0 → ik4 and s0 → is4, then

k2
‖ → −k2

E‖, (k + s)2
‖ → −(k + s)2

E‖, d
4k → id4kE. (D.2)

We now introduce two Schwinger parameters, x1, x2, d2x = dx1dx2 such that the magnetic
correction can be written as

ΓBλ = −16

3
λ

∫
d4kE
(2π)4

∫
d2x

∞∑
n,m=0

rn1 r
m
2 L

0
n (s1)L0

m (s2)

× e
− k2⊥
|qbB|

− (k+s)2⊥
|qbB|

−x1[α(kE‖)+|qbB|]−x2[β(kE‖)+|qbB|], (D.3)

where

s1 = 2k2
⊥/|qbB|, s2 = 2(k + s)2

⊥/|qbB|,
α(kE‖) = k2

E‖ +m2
0 − iε,

β(kE‖) = (k + s)2
E‖ +m2

0 − iε, (D.4)

and ri = −e−2|qbB|xi , i = 1, 2. Using the generating function of Laguerre polynomials

∞∑
n=0

rni L
0
n(si) =

1

1− ri
e
− ri

1−ri
si , (D.5)

we obtain

ΓBλ = −16

3
λ

∫
d2x

e−(x1+x2)|qbB|

(1− r1)(1− r2)
I(x1, x2)J(x1, x2), (D.6)
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where we define

I(x1, x2) =

∫
d2k⊥
(2π)2

e
− k2⊥
|qbB|

(1−2η(x1))− (k+s)2⊥
|qbB|

(1−2η(x2))
,

J(x1, x2) = µ4−d
∫
dd−2kE‖
(2π)d−2

e−x1α(kE‖)−x2β(kE‖),

η(|qbB|xi) =
1

e2|qbB|xi + 1
, (D.7)

with i = 1, 2 and ε → 0. To carry out the integrals, we use dimensional regularization,
namely, ∫

d4kE
(2π)4

→ µ4−d
∫
dd−2kE‖
(2π)d−2

∫
d2k⊥
(2π)2

. (D.8)

First, to find I(x1, x2) we consider the change of variable

q⊥ = k⊥ +
1− 2η(|qbB|x2)

2(1− η(|qbB|x1)− η(|qbB|x2))
s⊥, (D.9)

and the identity
1− 2η(|qbB|xi) = tanh(|qbB|xi). (D.10)

Completing the square, we have

I(x1, x2) =
|qbB|/4π

tanh(|qbB|x1) + tanh(|qbB|x2)

× exp

[
− tanh(|qbB|x1) tanh(|qbB|x2)

|qbB|(tanh(|qbB|x1) + tanh(|qbB|x2))
s2
⊥

]
.

(D.11)

Next, J(x1, x2) can be found using the change of variables

qE‖ = kE‖ +
x2

x1 + x2

sE‖. (D.12)

Carrying out the integral and using d = 4− 2ε, we obtain

J(x1, x2) = µ2ε

(
1

4π(x1 + x2)

)1−ε

e
− x1x2
x1+x2

s2
E‖−(x1+x2)m2

0 . (D.13)

Using the identities
e−xi|qbB|

1− ri
=

1

2 cosh (|qbB|xi)
, (D.14)

and

1

sinh (|qbB|(x1 + x2))
=

1

tanh(|qbB|x1) + tanh(|qbB|x2)

1

cosh (|qbB|x1) cosh (|qbB|x2)
, (D.15)

together with Eqs. (D.11) and (D.13), we get

ΓBλ = − λ

12π2

∫
d2x

(4πµ2)ε

(x1 + x2)1−ε
|qbB|

sinh (|qbB|(x1 + x2))
exp

[
− x1x2

x1 + x2

s2
E‖ − (x1 + x2)m2

0

]
× exp

[
− tanh(|qbB|x1) tanh(|qbB|x2)

|qbB|(tanh(|qbB|x1) + tanh(|qbB|x2))
s2
⊥

]
. (D.16)
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We perform the change of variables

x1 = s(1− y), x2 = sy, dx1dx2 = sdsdy. (D.17)

These variables have the domains 0 < y < 1 and s > 0. Substituting these new variables, we
obtain

ΓBλ = − λ

12π2

∫ ∞
0

ds

∫ 1

0

dy (4πµ2s)ε
|qbB|

sinh (|qbB|s)
exp

[
−sy(1− y)s2

E‖ − sm2
0

]
× exp

[
− tanh(|qbB|s(1− y)) tanh(|qbB|sy)

|qbB|(tanh(|qbB|s(1− y)) + tanh(|qbB|sy))
s2
⊥

]
. (D.18)

Equation (D.18) is the general expression for the magnetic correction to the boson self-
coupling. This expression contains a divergence that should be regularized. Considering the
static limit in Eq. (D.18), which implies that s2

E‖ → 0 and s2
⊥ = 0, the general magnetic

correction reduces to

ΓBλ = − λ

12π2

∫ ∞
0

ds (4πµ2s)ε
|qbB|

sinh (|qbB|s)
e−sm

2
0 . (D.19)

Notice that in this limit both integrals can be solved analytically∫ ∞
0

ds
sεe−sm

2
0

sinh (|qbB|s)
=

1

|qbB|

(
1

2|qbB|

)ε
Γ(ε+ 1)ζ

(
ε+ 1,

|qbB|+m2
0

2|qbB|

)
, (D.20)

where ζ is the Hurwitz zeta function. Considering an expansion in ε→ 0, we have(
4πµ2

2|qbB|

)ε
≈ 1 + ε ln

(
4πµ2

2|qbB|

)
,

Γ(ε+ 1) ≈ 1− εγE,

ζ

(
ε+ 1,

|qbB|+m2
0

2|qbB|

)
≈ 1

ε
− ψ0

(
|qbB|+m2

0

2|qbB|

)
, (D.21)

where ψ0 is the digamma function. Therefore, we finally obtain

ΓBλ = − λ

12π2

[
1

ε
− γE + ln (4π)− ψ0

(
|qbB|+m2

0

2|qbB|

)
+ ln

(
µ2

2|qbB|

)]
, (D.22)

where |qbB| = |eB|.
Finally, the magnetic correction to the λ coupling in strong field limit can be determined

using the Eq. (D.1)

− i6λΓLLLλ =

∫
d4k

(2π)4
(−2iλ)DLLL

π− (k)(−2iλ)DLLL
π− (k + p+ r) + CC, (D.23)

writing explicitly the charged scalar propagator in the LLL approximation and considering
a two factor from the charged conjugate diagram, we get

ΓLLLλ = −4

3
iλ

∫
d4k

(2π)4

2ie−
k2⊥
|eB|

k2
‖ − |eB| −m2

0 + iε

2ie−
(k+p+r)2⊥
|eB|

(k + p+ r)2
‖ − |eB| −m2

0 + iε
, (D.24)
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let us denote s ≡ p+ r and doing the integral in the perpendicular as follows∫
d2k⊥
(2π)2

e−
k2⊥
|eB| e−

(k+p+r)2⊥
|eB| =

|eB|
8π

e−
1

2|eB| s
2
⊥ , (D.25)

substituting the last result, we obtain

ΓLLLλ =
2

3π
iλ|eB|e−

s2⊥
2|eB|

∫
d2k‖
(2π)2

1

k2
‖ − |eB| −m2

0 + iε

1

(k + s)2
‖ − |eB| −m2

0 + iε
. (D.26)

In order to integrate the parallel coordinates we use a Feynman parameter

ΓLLLλ =
2

3π
iλ|eB|e−

s2⊥
2|eB|

∫ 1

0

dx

∫
d2k‖
(2π)2

1

[Cx+D(1− x)]2
,

where C = (k+s)2
‖−|eB|−m2

0+iε y D = k2
‖−|eB|−m2

0+iε. Considering a change of variable

in the denominator such as k‖ = q‖ − xs‖, d2k‖ = d2q‖ and ∆3 = x(x− 1)s2
‖ + |eB|+m2

0, we
have

ΓLLLλ =
2

3π
iλ|eB|e−

s2⊥
2|eB|

∫ 1

0

dx

∫
d2q‖
(2π)2

1

(q2
‖ −∆3 + iε)2

,

Setting ε→ 0 and using the equation (A.13) in order to perform the dimensional regulariza-
tion, we have

ΓLLLλ = − 1

6π2
λ|eB|e−

s2⊥
2|eB|

∫ 1

0

dx
1

∆
,

substituting the value of ∆

ΓLLLλ = − 1

6π2
λ|eB|e−

s2⊥
2|eB|

∫ 1

0

dx
1

x(x− 1)s2
‖ + |eB|+m2

0

. (D.27)

Considering the static limit p0 = r0 = m0 and ~p = ~r = ~0

ΓLLLλ = − 1

6π2
λ|eB|e−

s2⊥
2|eB|

∫ 1

0

dx
1

4m2
0x(x− 1) + |eB|+m2

0

,

we can use the following relation to integrate over the Feynman parameter∫ 1

0

dx
1

4x(x− 1) + a
=

1√
a− 1

arctan

(
1√
a− 1

)
, a > 1,

taking a = (|eB|+m2
0) /m2

0 which satisfies the required condition, we get

ΓLLLλ = − 1

6π2
λ

√
|eB|
m0

arctan

(
m0√
|eB|

)
. (D.28)

Another case of interest is to consider all component of external momentum as zero, this
assumption let us obtain the following expression

ΓLLLλ = − 1

6π2
λ
|eB|

|eB|+m2
0

. (D.29)



Appendix E

Magnetic corrections to the
boson-fermion coupling

We start writing the contribution from the diagram in Fig. 4.7(a) which can be obtained
from the expression

IB1,g =

∫
d4x d4y d4x

∫
d4s

(2π)4

d4t

(2π)4

d4k

(2π)4
eiΦ1,le−ip·y

(√
2gγ5

)
e−is·(x−y)iSd(s)

(
−gγ5

)
eiq·x

× e−it·(z−x)iSd(t)
(√

2gγ5
)
e−ik·(y−z)iDπ−(k)eir·z + CC, (E.1)

where the Schwinger phase contribution is finite and is given by

Φ1,l =
1

2
|eB|εij (xiyj + yizj + zixj) , i, j = 1, 2. (E.2)

The integration over configuration space can be performed using the factorization between
parallel and perpendicular components. Recall that for four-vectors aµ and bµ

aµb
µ = a0b0 − a1b1 − a2b2 − a3b3 = a‖ · b‖ − a⊥ · b⊥. (E.3)

Thus, integrating over configuration space and taking into account Eq. (E.3) to include the
Schwinger phase contribution, we obtain

IB1,g = δ(2)(p− q − r)⊥
∫

d4s

(2π)4

d4t

(2π)4

d4k

(2π)4

4

|eB|2
(2π)10δ(2)(s− q − t)‖

× δ(2)(p− s+ k)‖

(√
2gγ5

)
iSd(s)

(
−gγ5

)
iSd(t)

(√
2gγ5

)
iDπ−(k)

× ei
2
|eB| εij(s−q−t)i(s−p−k)j + CC. (E.4)

We first integrate over d2s‖ and d2t‖ using the Dirac delta distributions to get

IB1,g = (2π)4δ(4)(p− q − r) 1

π2|eB|2

∫
d2s⊥d

2t⊥
d4k

(2π)4

(√
2gγ5

)
iSd(k‖ + p‖, s⊥)

(
−gγ5

)
× iSd(k‖ + r‖, t⊥)

(√
2gγ5

)
iDπ−(k‖, k⊥)ei

2
|eB| εij(s−q−t)i(s−p−k)j + CC. (E.5)
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Notice that with this procedure we can identify the Dirac delta distribution for energy-
momentum conservation in Eq. (E.5) such that

IB1,g = (2π)4δ(4)(p− r − q)gγ5ΓB1,g. (E.6)

The contribution to the magnetic correction to the boson-fermion coupling, gγ5ΓB1,g, is thus
given by

gγ5ΓB1,g =

∫
d2s⊥d

2t⊥
π2|eB|2

d4k

(2π)4

(√
2gγ5

)
iSd(k‖ + p‖, s⊥)

(
−gγ5

)
iSd(k‖ + r‖, t⊥)

×
(√

2gγ5
)
iDπ−(k‖, k⊥)ei

2
|eB| εij(s−q−t)i(s−p−k)j + CC. (E.7)

Equation (E.7) is general enough and could be computed using either the complete propaga-
tors or approximations to them. In this work we consider the propagators in the strong field
limit. Substituting Eqs. (3.18) and (3.17) and adding the charge conjugate contribution, we
have

ΓLLL1,g =
16ig2

π2|eB|2

∫
d2s⊥d

2t⊥
d4k

(2π)4
e
− s2⊥
|qdB|

− t2⊥
|qdB|

− k2⊥
|q
π−B|

N1

A1B1C1

ei
2
|eB| εij(s−q−t)i(s−p−k)j , (E.8)

where we have defined for convenience the quantities

N1 = (/k‖ + /p‖ +md)(md − /k‖ − /r‖),

A1 = (k‖ + p‖)
2 −m2

d + iε,

B1 = (k‖ + r‖)
2 −m2

d + iε,

C1 = k2
‖ −m2

0 − |eB|+ iε. (E.9)

We also resort to working in the static limit, setting the perpendicular coordinates of external
momenta to zero. On doing so, we can integrate over the perpendicular coordinates relative
to the magnetic field. The result is given by

ΓLLL1,g =
ig2|eB|

4π

∫
d2k‖
(2π)2

N1

A1B1C1

, (E.10)

Introducing the Feynman parametrization

1

A1B1C1

=

∫ 1

0

dx

∫ 1−x

0

2dy

(A1x+B1y + C1(1− x− y))3
. (E.11)

The denominator of Eq. (E.11) can be expressed as

A1x+B1y + C1(1− x− y) = (k‖ + xp‖ + yr‖)
2 −∆ + iε, (E.12)

where

∆ = (xp‖ + yr‖)
2 − xp2

‖ + xm2
d − yr2

‖ + ym2
d

+ (1− x− y)(m2
0 + |eB|). (E.13)
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On the other hand, it is useful to consider the change of variables as k‖ = l‖ − xp‖ − yr‖,
dk‖ = dl‖. Then the numerator, N , can be written as

N1 = −l2‖ − 2xyp‖ · r‖ +md/p‖ −md/r‖ − x(x− 1)p2
‖

− y(y − 1)r2
‖ − (1− x− y)/p‖/r‖ +m2

d, (E.14)

where we have already discarded linear terms of l‖. At this point we can use the Dirac
equation for outgoing states assuming that they are not affected by the external magnetic
field. This means that the spinors satisfy the Dirac equation in vacuum

ū(p‖)/p‖ = ū(p‖)mu, /r‖u(r‖) = muu(r‖). (E.15)

Here, it is worth to note that in this computation we assume that the values of the quark
masses remain fixed to just their vacuum values, md = mu = mf . Then, taking the static
limit, p3 = r3 = 0 and p0 = r0 = mf , we get

ū(p‖)N1u(r‖)=ū(p‖)(−l2‖ + 2m2
f (x+ y)−m2

f (x+ y)2)u(r‖). (E.16)

Thus, once we consider ū(p‖)Γ
LLL
1,g u(r‖) and use Eq. (E.16), we get

ΓLLL1,g =
ig2|eB|

2π

∫ 1

0

dx

∫ 1−x

0

dy

∫
d2l‖

(2π)2

[ −l2‖
(l2‖ −∆ + iε)3

+
2m2

f (x+ y)−m2
f (x+ y)2

(l2‖ −∆ + iε)3

]
,

(E.17)
where with the above assumptions, ∆ is simplified to

∆ = m2
f (x+ y)2 + (1− (x+ y))(m2

0 + |eB|). (E.18)

In order to integrate over d2l‖ we consider Eqs.(A.15) and (A.16), then

ΓLLL1,g =
g2|eB|

16π2m2
f

∫ 1

0

dx

∫ 1−x

0

dy
1

(x+ y)2 + α(1− (x+ y))

[
1 +

2(x+ y)− (x+ y)2

(x+ y)2 + α(1− (x+ y))

]
,

(E.19)
where α = (m2

0 + |eB|)/m2
f . With the purpose of finding the integral over Feynman param-

eters, consider the following linear transformation

u = x+ y, v = 1− x. (E.20)

The Jacobian satisfies det(J) = 1 and the region of integration becomes u ∈ [0, 1] and
v ∈ [1− u, 1]. Thus,

ΓLLL1,g =
g2|eB|

16π2m2
f

∫ 1

0

du

∫ 1

1−u
dv

1

u2 + α(1− u)

[
1 +

(2− u)u

u2 + α(1− u)

]
. (E.21)

Performing the integration over dv, we get the final expression for this contribution

ΓLLL1,g =
g2|eB|

16π2m2
f

∫ 1

0

du
u

u2 + α(1− u)

[
1 +

(2− u)u

u2 + α(1− u)

]
. (E.22)
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We now proceed with I2,g which is given by

IB2,g =

∫
d4x d4y d4z

∫
d4s

(2π)4

d4t

(2π)4

d4k

(2π)4
eiΦ2,le−ip·y

(
gγ5
)
e−is·(x−y)iSu(s)

(
gγ5
)
eiq·x

× e−it·(z−x)iSu(t)
(
gγ5
)
e−ik·(y−z)iDπ0(k)eir·z + CC. (E.23)

Performing the integration over configuration space, we have

IB2,g =

∫
d4s

(2π)4

d4t

(2π)4

d4k

(2π)4
(2π)12δ(4)(s− t− q)δ(4)(p− s+ k)δ(4)(t− k − r)

(
gγ5
)

× iSu(s)
(
gγ5
)
iSu(t)

(
gγ5
)
iDπ0(k) + CC, (E.24)

Integrating over d4s and d4t, we obtain

IB2,g = (2π)4δ(4)(p−r−q)
∫

d4k

(2π)4

(
gγ5
)
iSu(k+p)

(
gγ5
)
iSu(k+r)

(
gγ5
)
iDπ0(k)+CC. (E.25)

At this point we can identify the contribution to the magnetic correction from this diagram,
gγ5ΓB2,g, which can be expressed as

IB2,g = (2π)4δ(4)(p− r − q)gγ5ΓB2,g, (E.26)

where

gγ5ΓB2,g =

∫
d4k

(2π)4

(
gγ5
)
iSu(k + p)

(
gγ5
)
iSu(k + r)

(
gγ5
)
iDπ0(k) + CC. (E.27)

Using Eqs. (3.17) and (3.18) to account for the strong field limit, we have

ΓLLL2,g = −4ig2

∫
d4k

(2π)4
e−

(k+p)2⊥
|quB|

− (k+r)2⊥
|quB|

N2

A2B2C2

, (E.28)

where we define

N2 = (/k‖ + /p‖ +mu)(mu − /k‖ + /r‖),

A2 = (k‖ + p‖)
2 −m2

u + iε,

B2 = (k‖ + r‖)
2 −m2

u + iε,

C2 = k2 −m2
0 + iε. (E.29)

We now introduce a Feynman parametrization in the same fashion of Eq. (E.11). The de-
nominator can be written as

A2x+B2y + C2(1− x− y) = (k‖ + xp‖ + yr‖)
2 −∆⊥ + iε, (E.30)

where

∆⊥ = (xp‖ + yr‖)
2 − xp2

‖ + (x+ y)m2
u − yr2

‖ + (1− x− y)(m2
0 + k2

⊥). (E.31)
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Let us consider the change of variable k‖ = l‖ − xp‖ − yr‖, dk‖ = dl‖, then in terms of these
variables, the numerator N2 can be written as

N2 = −l2‖ − 2xyp‖ · r‖ +mu/p‖ −mu/r‖ − x(x− 1)p2
‖

− y(y − 1)r2
‖ − (1− x− y)/p‖/r‖ +m2

u, (E.32)

where we already discarded linear terms in l‖. We now use the Dirac equation for outgoing
states once we set pi = ri = 0, i = 1, 2 and assume that these states are not affected
by the external magnetic field, according to Eq. (E.15). Finally, setting p3 = r3 = 0 and
p0 = r0 = mu, we get

ū(p‖)N2u(r‖)=ū(p‖)(−l2‖ + 2m2
u(x+ y)−m2

u(x+ y)2)u(r‖). (E.33)

Thus, once we have considered ū(p‖)Γ
LLL
2,g u(r‖), we have

ΓLLL2,g = −8ig2

∫ 1

0

dx

∫ 1−x

0

dy

∫
d2k⊥d

2l‖
(2π)4

e−
2k2⊥
|quB|

×

[
−l2‖

(l2‖ −∆⊥ + iε)3
+

2m2
u(x+ y)−m2

u(x+ y)2

(l2‖ −∆⊥ + iε)3

]
, (E.34)

where ∆⊥ is simplified according to the previous assumptions to become

∆⊥ = m2
u(x+ y)2 + (1− (x+ y))(k2

⊥ +m2
0). (E.35)

The integral over d2l‖ is found to be

ΓLLL2,g = −g
2

π

∫ 1

0

dx

∫ 1−x

0

dy

∫
d2k⊥
(2π)2

e−
2k2⊥
|quB|

[
1

∆⊥
+

2m2
u(x+ y)−m2

u(x+ y)2

∆2
⊥

]
. (E.36)

Using the change of variables given in Eq. (E.20) the integral over dv can be performed to
get

ΓLLL2,g = − g2

πm2
u

∫ 1

0

du

∫
d2k⊥
(2π)2

e−
2k2⊥
|quB|

u

u2 + β(1− u)

[
1 +

(2− u)u

u2 + β(1− u)

]
, (E.37)

where β = (k2
⊥ +m2

0)/m2
u. We write the integration using polar coordinates

d2k⊥ = dk1dk2 = k⊥dk⊥dθ, (E.38)

where k⊥ =
√
k2

1 + k2
2 and θ ∈ [0, 2π]. Performing the integral over dθ and substituting

|quB| = 2|eB|/3 and mu = mf , we have

ΓLLL2,g = − g2

2π2m2
f

∫ 1

0

du

∫ ∞
0

dk⊥ k⊥e
− 3k2⊥
|eB|

u

u2 + β(1− u)

[
1 +

(2− u)u

u2 + β(1− u)

]
. (E.39)

Finally, IB3,g can be written as

IB3,g =

∫
d4x d4y d4z

∫
d4s

(2π)4

d4t

(2π)4

d4k

(2π)4
eiΦ3,le−ip·y (−ig) e−is·(x−y)iSu(s)

(
gγ5
)
eiq·x

× e−it·(z−x)iSu(t) (−ig) e−ik·(y−z)iDσ(k)eir·z + CC. (E.40)
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After integration over configuration space, we get

IB3,g =

∫
d4s

(2π)4

d4t

(2π)4

d4k

(2π)4
(2π)12δ(4)(s− t− q)δ(4)(p− s+ k)δ(4)(t− k − r) (−ig)

× iSu(s)
(
gγ5
)
iSu(t) (−ig) iDσ(k) + CC. (E.41)

Integrating over d4s and d4t, we have

IB3,g = (2π)4δ(4)(p−q−r)
∫

d4k

(2π)4
(−ig) iSu(k+p)

(
gγ5
)
iSu(k+r) (−ig) iDσ(k)+CC, (E.42)

from where we can identify the contribution to the magnetic correction according to the
expression

IB3,g = (2π)4δ(4)(p− r − q)gγ5Γ3,g, (E.43)

where

gγ5ΓB3,g =

∫
d4k

(2π)4
(−ig) iSu(k + p)

(
gγ5
)
iSu(k + r) (−ig) iDσ(k) + CC. (E.44)

We now use the propagators for the charged particles in the LLL. After simplifying and
adding the contribution from the charge conjugate diagram, we get

ΓLLL3,g =4ig2

∫
d4k

(2π)4
e−

(k+p)2⊥
|quB|

− (k+r)2⊥
|quB|

N3

A3B3C3

, (E.45)

where we define

N3 = (mu − /k‖ − /p‖)(/k‖ + /r‖ +mu),

A3 = (k‖ + p‖)
2 −m2

u + iε,

B3 = (k‖ + r‖)
2 −m2

u + iε,

C3 = k2 −m2
σ + iε. (E.46)

The denominator can be written as

A3x+B3y + C3(1− x− y) = (k‖ + xp‖ + yr‖)
2 −∆⊥ + iε, (E.47)

where

∆⊥ = (xp‖ + yr‖)
2 − xp2

‖ + (x+ y)m2
u − yr2

‖ + (1− x− y)(m2
σ + k2

⊥). (E.48)

Using the change of variable k‖ = l‖−xp‖−yr‖, dk‖ = dl‖, the numerator, N3, can be written
as

N3 = −l2‖ − 2xyp‖ · r‖ −mu/p‖ +mu/r‖ − x(x− 1)p2
‖

− y(y − 1)r2
‖ − (1− x− y)/p‖/r‖ +m2

u, (E.49)

where we have neglected linear terms of l‖. We proceed as for the previous cases. We use

Eq. (E.15) and work in the static limit, ~p = ~r = ~0 and p0 = r0 = mu, to obtain

ū(p‖)N3u(r‖)=ū(p‖)(−l2‖ + 2m2
u(x+ y)−m2

u(x+ y)2)u(r‖). (E.50)
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Thus, the integral can be written as

ΓLLL3,g = 8ig2

∫
d2k⊥
(2π)2

∫ 1

0

dx

∫ 1−x

0

dy

∫
d2l‖

(2π)2
e−

2k2⊥
|quB|

×

[
−l2‖

(l2‖ −∆⊥ + iε)3
+

2m2
u(x+ y)−m2

u(x+ y)2

(l2‖ −∆⊥ + iε)3

]
,

(E.51)

where
∆⊥ = m2

u(x+ y)2 + (1− (x+ y))(k2
⊥ +m2

σ). (E.52)

Now, we can perform the integration over d2l‖ to get

ΓLLL3,g =
g2

0

∫
d2k⊥
(2π)2

∫ 1

0

dx

∫ 1−x

0

dye−
2k2⊥
|quB|

[
1

∆⊥
+

2m2
u(x+ y)−m2

u(x+ y)2

∆2
⊥

]
. (E.53)

The last expression can be simplified if we consider the change of variables given by Eq. (E.20).
After integration over dv, we have

ΓLLL3,g =
g2

πm2
u

∫ 1

0

du

∫
d2k⊥
(2π)2

e−
2k2⊥
|quB|

u

u2 + γ(1− u)

[
1 +

(2− u)u

u2 + γ(1− u)

]
, (E.54)

where γ = (k2
⊥ +m2

σ)/m2
u. We can now perform another integration after switching to polar

coordinates according to Eq. (E.38). Performing the integration for dθ and substituting
|quB| = 2|eB|/3 and mu = mf , we have the final result

ΓLLL3,g =
g2

2π2m2
f

∫ 1

0

du

∫ ∞
0

dk⊥ k⊥e
− 3k2⊥
|eB|

u

u2 + γ(1− u)

[
1 +

(2− u)u

u2 + γ(1− u)

]
. (E.55)
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