UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

ESTUDIO SOBRE EL ANALISIS DE FOURIER DE LAS ORBITAS EN EL PLANO ECUATORIAL DE UN DIPOLO MAGNETICO

1

por

JAIME LIFSHITZ GAJ

Tesis presentada en cumplimiento parcial de los requisitos para el grado de

MAESTRO EN CIENCIAS MATEMATICAS

de la

FACULTAD DE CIENCIAS

.

México 1941

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

AGRADEDIMIENTOS

Deseo hacer públicos mis sinceros agradecimientos a todos -mis profesores, muy particularmente al Ing. Ricardo Monges López con cuya benevolencia he contado siempre, así como al Dr. Alfredo Baños Jr. a quien debo el alto honor de haberme ayudado y dirigido en este trabajo. El desarrollo de esta tesis forma parte de los trabajos que he llevado a cabo, como Investigador del Instit<u>u</u> to de Física, bajo la dirección del Dr. Alfredo Baños Jr.

INDICE

		P	ág
1.	PROE	BLEMA GENERAL	1
2.	SOLU	CION DEL CASO $\gamma_1 > 1$ en funciones elipticas	7
3.	DESA	RROLLO EN SERIES DE FOURIER	11
	a)	Deducción de los coeficientes de Fourier a_{2n} (n \neq 0)	
		de la función e ^{-X}	12
	b)	Deducción del término secular a _o de la función e ^{-X} :	15
	c)	Deducción de los coeficientes de Fourier a _{2n} (n ≠ 0)	
		de la función e^{-2x}	17
	a)	Deducción del término secular a _o de la función e ^{-2x} a	20
	e)	Deducción de los coeficientes de Fourier a_{2n} (n \neq 0)	
		de la función e^{2x}	21
	f)	Deducción del término secular a _o de la función e ^{2x} 2	25
4	g)	Extensión del teorema de los residuos para un caso par	
		ticular de funciones multiformes	26
	h)	Deducción de los coeficientes de Fourier a_{2n} (n \neq 0)	
		para la función x	29
	i)	Deducción del término secular a de la función x.	32
	j)	Comparación de diferentes métodos de integración uti-	
		lizados	34
	k)	Series de Fourier obtenidas	35
		- iii -	

4.	COMPARACION DE LOS RESULTADOS OBTENIDOS POR DOS PROCEDI-		
	MIENTOS DIFERENTES		
5.	RESULTADOS DE LOS CALCULOS NUMERICOS PARA DIFERENTES VALO-		
	RES DEL PARAMETRO q		
	a) La órbita límite para q = 0		
	b) La órbita límite para q = 1		
	c) Imagen gráfica de los resultados numéricos anteriores 49		
6.	RESUMEN.		
7.	BIBLIOGRAFIA		

١

- iv -

Pág.

1, PROBLEMA GENERAL

La teoría de la radiación cósmica primaria, basada en la suposición de la existencia al infinito de partículas eléctricamente cargadas con una distribución homogénea e isotrópica, fue des<u>a</u> rrollada por G. Lemaître y M. S. Vellarta.¹

Como primera aproximación consideraron el compo magnético terrestre como el de un dipolo magnético. El problema dinámico del movimiento de una partícula eléctricamente cargada en el campo de un dipolo magnético fue estudiado anteriormente por C. Störmer.² En un punto dado las direcciones de las trayectorias dinámicamente posibles para una energía dada llenan un como de forma bastante irregular.³

¹G. Lemaître y M. S. Vallarta, "On Compton's Latitude Effect of Cosmic Rachation," Phys. Rev., 43, 87-91 (1933); este es el artículo original con que Lemaître y Vallarta iniciaron sus trabajos acerca de la radiación cósmica. - Para una biblicgrafía completa de los trabajos de Lemaître y Vallarta véase Alfredo Baños Jr. Journal of the - Franklin Institute, Vol. 227, No. 5 (1939), pág. 644. - Un excelente compendio fue publicado por M. S. Vallarta, University of Toronto Studies, Applied Mathematics Series No. 3, (1938).
² Carl Störmer, "Sur le mouvement d'un point matériel portant une charge d'électricité sous l'action d'un aimant

elémentaire," Vid. Selsk. Skr., Oslo (1904); Carl Stőrmer, Zeits. f. Astrophys. <u>1</u>, 237-274 (1930).

²G. Lemaître y M. S. Vallarta, Phys. Rev. <u>43</u>, 87 (1033).

Basándose en el teorema de Liouville referente a la conserva ción del elemento de volumen en el espacio-fase Lemaître y Vallar ta encontraron que la intensidad de la radiación para partículas de una energía dada es, en una dirección permitida, igual a la in tensidad al infinito, o sea que es constante para todas las direc ciones permitidas.⁴ Este resultado permite reducir el problema del cálculo de las intensidades al cálculo de la forma del cono para diferentes energías.

Tomando coordenadas esféricas (ρ, φ, θ) con origen en el cen tro del dipolo y la dirección Norte terrestre (Sur del dipolo) se gún OZ se pueden obtener fácilmente las ecuaciones del movimien to.

Una transformación de variables propuesta por Störmer⁵ con-siste en introducir una nueva unidad de longitud ℓ definida por

$$\ell = \sqrt{\frac{M[e]}{m v}}$$
 cm

donde M es el momento magnètico del dipolo en u.o.m., e es la carga eléctrica en u.e.s. de la partícula en estudio, m su masa rolativista y v su velocidad. Siendo la fuerza ejercida sobre la partícula cargada ortogonal a la trayectoria, la velocidad de ésta se conserva constante en magnitud siéndolo, por lo tanto, la masa relativista. Por ello, para una partícula dada, la unidad - ℓ definida antes es una constante.

Definiendo dos nuevas variables r,s por:

-Carl StSrmer, Pub. Univ. Obs. Oslo, No. 10 (1934).

⁴G. Lemaître, Ann. Soc. Sci. de Bruxelles, <u>A54</u>, 162-174, (1934).

$$\rho = \ell r; \quad vdt = \ell ds,$$

las ecuaciones del movimiento son:⁶

$$\frac{d^2 r}{ds^2} - r \left(\frac{d\lambda}{ds}\right)^2 - r \left(\frac{d\phi}{ds}\right)^2 \cos^2 \varphi = -\frac{\cos^2 \lambda}{r^2} \frac{d\phi}{ds}, \qquad (1)$$

$$\mathbf{r} \frac{\mathrm{d}^2 \lambda}{\mathrm{ds}^2} + 2 \frac{\mathrm{dr}}{\mathrm{ds}} \frac{\mathrm{d\lambda}}{\mathrm{ds}} * \mathbf{r} \left(\frac{\mathrm{d}\varphi}{\mathrm{ds}}\right)^2 \operatorname{sen\lambda} \cos\lambda = - \frac{2 \operatorname{sen\lambda}}{\mathbf{r}^2} \frac{\cos\lambda}{\mathrm{ds}}, \quad (2)$$

$$\frac{1}{r \cosh \lambda} \frac{d}{ds} (r^2 \cos^2 \lambda \frac{d\varphi}{ds}) = \frac{2 \operatorname{sen} \lambda}{r^2} \frac{d\lambda}{ds} \div \frac{\cos \lambda}{r^3} \frac{dr}{ds}, \quad (3)$$

y además la ecuación de la conservación de la velocidad:

$$\left(\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\mathbf{s}}\right)^2 \neq \mathbf{r}^2 \left(\frac{\mathrm{d}\lambda}{\mathrm{d}\mathbf{s}}\right)^2 \neq \mathbf{r}^2 \cos^2 \lambda \left(\frac{\mathrm{d}\varphi}{\mathrm{d}\mathbf{s}}\right)^2 = 1.$$
(4)

La transformación antes indicada permite eliminar de las ecu<u>a</u> ciones del movimiento todos los factores físicos, quedando exclusivamente el carácter métrico del movimiento.

La ecuación (3) es directamente integrable, dando lugar a la relación

$$r^{2}\cos^{2}\lambda \frac{d\varphi}{ds} + \frac{\cos^{2}\lambda}{2} = 2\gamma_{1} = \text{constante}, \qquad (5)$$

donde la constante de integración $2y_1$ es igual al momento de la cantidad de movimiento al infinito de la partícula con respecto - al eje del dipolo.

Substituyendo de la ecuación (5) la cantidad $\frac{d\gamma}{ds}$ en las ecua ciones (1), (2) y (4) se obtienen ecuaciones diferenciales en las que no aparece la variable φ , lo que significa que estas ecua-

⁶ Alfredo Baños Jr., Journal of the Franklin Institute, 227, 631 (1939).

valor de φ se obtiene de la ecuación (5) mediante una cuadratura.

Para estudiar el movimiento en el plano meridiano es conve-niente efectuar la transformación conforme propuesta por Störmer:⁷

$$e^{\mathbf{x}} = 2\gamma_{1}\mathbf{r},$$

$$ds = \frac{e^{2\mathbf{x}}}{(2\gamma_{1})^{3}} d\sigma$$

mediante la cual las coordenadas polares (r,λ) se convierten en coordenadas cartesianas (x,λ) , transformándose el semiplano meridiano en una faja infinita limitada por las líneas $\lambda = \pm \frac{\pi}{2}$.

Aplicando esta transformación, las ecuaciones de movimiento toman la forma:⁸

$$\left(\frac{\mathrm{d}x}{\mathrm{d}\sigma}\right)^2 \div \left(\frac{\mathrm{d}\lambda}{\mathrm{d}\sigma}\right)^2 = \mathrm{ae}^{2x} - \left(\mathrm{e}^{-x}\mathrm{cos}\lambda - \mathrm{sec}\lambda\right)^2 = \mathrm{P}, \qquad (6)$$

$$\frac{d^2 x}{d\sigma^2} = ae^{2x} - e^{-x} + e^{-2x} \cos^2 \lambda = x = \frac{1}{2} \frac{\partial P}{\delta x}, \quad (7)$$

$$\frac{d^2\lambda}{d\sigma^2} = e^{-2x} \operatorname{sen}\lambda \cos\lambda - \frac{\operatorname{sen}\lambda}{\cos^2\lambda} = \Lambda = \frac{1}{2} \frac{\partial P}{\partial \lambda}; \quad (8)$$

donde $a = \frac{1}{16y_1^4}$. La ecuación (6) no es independiente de las -otras dos. Por su forma, requiere que la función $P(x,\lambda;y_1)$ sea positiva para la posibilidad del movimiento, condición que di $\frac{7}{Carl}$ Störmer, Zeits. f. Astrophys. <u>1</u>, 237-274 (1930). ⁸Alfredo Baños Jr. Loc. cit., pág. 643. vide, para un valor de χ_1 dado, el plano meridiano en dos par-tes: una en la que el movimiento es posible y otra en la que el movimiento está prohibido. La frontera entre estas regiones es la curva definida por la ecuación P = 0.

Para $\gamma_1 < 1$ la región permitida es conexa, pudiendo llegar a cualquier punto de esta región una partícula del infinito. Para $\gamma_1 > 1$ la región permitida se compone de dos partes separadas por una región prohibida, por lo cual las partículas de una parte no pueden pasar a la otra, en particular, de la región que se extiende al infinito a la región interna.

Dentro del intervalo $0.78856 < y_1 < 1$, para cada valor de y_1 existen dos órbitas periódicas, simétricas con respecto a -- $\lambda = 0$, que fueron descubiertas por St5rmer,⁹ llamándoselas, órb<u>i</u> tas principales.¹⁰ Una de ellas, la externa, es inestable en el sentido dinámico y las trayectorias que le son asintóticas const<u>i</u> tuyen, según lo demostraron Lemaître y Vallarta, la frontera en-tre las direcciones permitidas y prohibidas, es decir, son tange<u>n</u> tes, para el punto por el que pasan, a las generatrices del cono de direcciones permitidas. Las órbitas internas, para valores de $y_1 < 1$, son estables no teniendo la misma importancia para la teo ría de rayos cósmicos como las externas, pero su estabilidad las presenta como un factor importante en la teoría de la variación del campo magnético terrestre.

Al estudiar las órbitas periódicas simétricas, para valores de $\gamma_1 > 1$, que por continuidad pueden ser consideradas como con-

- 5 -

⁹Carl Störmer, Loc. cit., pág. 237.

¹⁰ M. S. Vallarta, University of Toronto Studies. Applied Mathematics Series No. 3; pág. 21 (1938).

tinuación de las órbitas internas, se encontró que, para el valor de $\chi_1 = 1.31359$, entas órbitas tienden a confundirse con las ór bitas ecuatoriales,¹¹ las que en el plano meridiano son todas periódicas para $\chi_1 > 1$.

Para poder estudiar más a fondo el comportamiento de las órbitas internas en la vecindad del plano ecuatorial es factor im-portante conocer la estabilidad de estas órbitas y de las ecuatoriales, la que cuantitativamente está dada por el exponente cara<u>c</u> terístico.¹²

Las ecuaciones del movimiento (6), (7) y (8) no son, en gen<u>e</u> ral, integrables. El caso de las trayectorias ecuatoriales es -una excepción, pues en este caso se puede llevar a cabo la solu-ción mediante funciones elípticas. La parte geométrica del pro-blema ha sido resuelta ya por C. Graef y S. Kusaka¹³ y posteriormente por el autor.¹⁴

Para poder calcular el exponente característico es convenien te tener expresadas las coordenadas, que para una órbita periódica son funciones periódicas de tiempo, en forma de series de Fou-

¹²H. Poincaré, "Les Méthodes Nouvelles de la Mécanique Cé leste" (Gauthier-Villars, Paris, 1892), Vol. I, Cap. --IV.

¹³C. Graef y S. Kusaka, Journal of Mathematics and Physics, Vol. XVII, <u>1</u>, 43-54 (1938).

¹¹ Trabajo inédito del autor realizado bajo la supervisión del Director del Instituto de Física.

¹⁴ J. Lifshitz, "Trayectorias ecuatoriales de una prtícula cargada eléctricamente en el campo de un dipolo." Traba jo premiado por el Instituto de Física en el <u>Cuarto Concurso Científico-Técnico-Histórico</u> convocado por la Fa--cultad de Ingeniería y Ciencias Físicas y Matemáticas --con el deseo de fomentar la investigación científica en México y con motivo del CXLVI aniversario de la fundación del Real Seminario de Minería (1939). Próxima publica--ción en el Vol. No. 1 de los Anales del Instituto de Física.

rier. En tal caso las ecuaciones en variaciones, que sirven para obtener el exponente característico se reducen a la forma de la ecuación de Hill.¹⁵

El presente trabajo tiene por objeto encontrar las series de Fourier equivalentes a las funciones elípticas que aparecen en la solución del problema.

2. SOLUCION DEL CASO $\chi_1 > 1$ EN FUNCIONES ELIPTICAS

Las ecuaciones de movimiento para una trayectoria ecuatorial son:

$$\frac{d^{2}x}{d\sigma^{2}} = ae^{2x} - e^{-x} \neq e^{-2x} = X(x,0;y_{1}), \qquad (9)$$

$$\frac{d^2\lambda}{d\sigma^2} = 0 = \Lambda(x,0;\gamma_1), \quad (10)$$

$$\left(\frac{dx}{d\sigma}\right)^2 = ae^{2x} - (e^{-x} - 1)^2 = P(x,0;y_1);$$
 (11)

donde ahora la ecuación (11) es la primera integral de la ecuación (9). Introduciendo una nueva variable $\xi = e^{-x}$ esta última ecuación se reduce a:

$$(-\frac{1}{\xi} \frac{d\xi}{d\sigma})^{2} = a \xi^{-2} - (\xi - 1)^{2};$$

$$\therefore (\frac{d\xi}{d\sigma})^{2} = a - \xi^{2} (\xi - 1)^{2};$$

$$= \frac{1}{16\chi_{1}^{4}} - \xi^{2} (\xi - 1)^{2}.$$
 (11a)

¹⁵Whittaker y Watson, "A course of Modern Analysis," (Cambridge: University Press; 4th ed., 1927), §19.41.

Las cuatro raíces del polinomio del segundo miembro son:

$$\begin{aligned} & \propto & = \frac{1}{2} \left(1 + \sqrt{1 + 1/ \chi_1^2} \right), \\ & \beta & = \frac{1}{2} \left(1 + \sqrt{1 - 1/ \chi_1^2} \right), \\ & \gamma & = \frac{1}{2} \left(1 - \sqrt{1 - 1/ \chi_1^2} \right), \\ & \delta & = \frac{1}{2} \left(1 - \sqrt{1 + 1/ \chi_1^2} \right). \end{aligned}$$

La ecuación (lla) se puede escribir en la forma:

$$\frac{d\xi}{d\sigma} = \sqrt{(\alpha - \xi)(\xi - \beta)(\xi - \gamma)(\xi - \delta)},$$

donde ξ , por su definición, tiene significado físico sólo para valores positivos, existiendo por ello, para valores de $\gamma_1 > 1$, dos regiones permitidas para valores de

$$x \stackrel{>}{=} \xi \stackrel{>}{=} \beta y \qquad \delta \stackrel{>}{=} \xi > 0.$$

Para valores de $\chi_1 < 1$ las raíces β y β son imaginarias, -existiendo una sola región permitida para valores de ξ

El caso que nos interesa es el de $\gamma_1 > 1$ en la región interna, - o sea, para

Contando la variable σ a partir del punto $\xi = \alpha$, la solución de la ecuación anterior es:

$$\sigma = \int_{\xi}^{\varphi} \frac{\partial \xi}{\partial x - \xi \int_{\xi} - \beta \int_{\xi} \xi - \beta \int_{\xi} \xi - \xi \int$$

o sea
$$\sigma = \frac{2}{\sqrt{(\alpha - \gamma)}(\beta - \delta)} \sin^{-1} \left(\sqrt{\frac{\beta - \delta}{\alpha - \beta}} \cdot \frac{\alpha - \xi}{\xi - \delta}; \frac{\sqrt{\alpha - \beta}}{\alpha - \gamma} \cdot \frac{\xi - \delta}{\beta - \delta} \right)$$

El valor
$$k = \sqrt{\frac{\lambda - \beta}{\alpha - \gamma} \cdot \frac{\lambda - \delta}{\beta - \delta}} = \frac{\sqrt{1 + 1/\beta_1^2} - \sqrt{1 - 1/\beta_1^2}}{\sqrt{1 + 1/\beta_1^2} + \sqrt{1 - 1/\beta_1^2}}$$
 es el mó-

dulo de la función elíptica que aparece en la ecuación anterior. $\sqrt{(\alpha-\chi)(\alpha-\delta)} \sim \alpha$ d£

Designando el valor
$$\frac{\sqrt{(\alpha-\gamma)(\beta-\delta)}}{2} \int_{\beta}^{\infty} \frac{d\xi}{\sqrt{(\alpha-\xi)(\xi-\beta)(\xi-\gamma)(\xi-\delta)}} por -$$

K, éste coincide con la definición del cuarto de período de la función elíptica snu (correspondiente a $\frac{\pi}{2}$ para sen u trigo nométrica).

Si se escribe $\omega = \frac{\sqrt{(\alpha - \lambda)}(\lambda - \delta)}{2} \cdot \frac{\pi}{K} = \frac{\alpha - \lambda}{2 \cdot \frac{2K}{\pi}}$, de la ecuación anterior se deduce que

$$e^{-\mathbf{X}} = \boldsymbol{\xi} = \frac{\boldsymbol{\alpha} + \delta \mathbf{k} \, \operatorname{sn}^2 \left(\frac{2K}{\pi} \omega \sigma\right)}{1 + \mathbf{k} \, \operatorname{sn}^2 \left(\frac{2K}{\pi} \omega \sigma\right)}.$$
 (12)

El valor de ω ha sido escogido de modo que el período de - $\xi = \xi(\omega s)$ sea π , pudiendo ser la función desarrollada en armónicos pares. El haber escogido este período se debe a que en las órbitas periódicas internas los armónicos impares tienden hacia cero al tender χ_1 hacia 1.31359, quedando finitos sólo los -armónicos pares. Ademis, presenta la ventaja de dar las ecuaciones de Hill en la forma normal, ya que la serie de Fourier que en éstas aparece tiene un período π .

Entre los valores de las constantes que aparecen en las ecu<u>a</u> ciones anteriores existen relaciones algebraicas muy variadas. A continuación aparecen las que serán utilizadas en los cálculos -posteriores:

$$-\alpha\delta = \beta\gamma = \frac{1}{4\gamma_1^2} = \sqrt{a},$$

$$\alpha + \delta = \beta + \gamma = 1,$$

$$\frac{\alpha - \delta}{1 + k} = \alpha - \gamma = \frac{4K}{\pi}\omega,$$

$$\left(\frac{\alpha - \delta}{1 + k}\right)^2 = \frac{1}{4}\left(\sqrt{1 + 1/\gamma_1^2} + \sqrt{1 - 1/\gamma_1^2}\right)^2$$

$$= -\frac{2\alpha\delta}{k} = \frac{1}{1 + k^2} = \frac{\alpha\gamma + \beta\delta}{k^2},$$

$$\alpha + \delta k = (1 + k)\beta,$$

$$\alpha k + \delta = (1 + k)\gamma,$$

$$\alpha^2 - \delta^2 = \alpha - \delta = 2\alpha - 1.$$

Poniendo $x = \psi + \psi_1 \quad y \quad \lambda = \gamma + \gamma_1$, donde $\psi(\sigma) \quad y \quad \gamma(\sigma)$ constituyen una solución periódica, las ecuaciones en variaciones serán:¹⁶

$$\frac{\mathrm{d}^{2}\psi_{1}}{\mathrm{d}\sigma^{2}} = \left(\frac{\partial X}{\partial x}\right) \psi_{1} \div \left(\frac{\partial X}{\partial \lambda}\right) \eta_{1},$$
$$\frac{\mathrm{d}^{2}\eta_{1}}{\mathrm{d}\sigma^{2}} = \left(\frac{\partial \Lambda}{\partial x}\right) \psi_{1} \div \left(\frac{\partial \Lambda}{\partial \lambda}\right) \eta_{1};$$

donde los paréntesis significan que una vez verificada la diferen ciación se substituirá ψ en lugar de x y η en lugar de λ .

En el caso de las órbitas ecuatoriales se tiene $(\frac{\partial X}{\partial \lambda}) = (\frac{\partial \Lambda}{\partial x})$ = 0 obteniéndose:

16 Odon Godart, Ann. de la Soc. Sci. de Bruxelles, <u>I</u> <u>58</u>, 30 (1938).

$$\frac{d^2 \psi_1}{d\sigma^2} = \left(\frac{\partial X}{\partial x}\right) \psi_1 = \left(2ae^{2\psi} - 2e^{-2\psi} + e^{-\psi}\right) \psi_1, \quad (13)$$

$$\frac{d^2 \eta_1}{d\sigma^2} = \left(\frac{\partial \Lambda}{\partial \lambda}\right) \eta_1 = \left(e^{-2\psi} - 1\right) \eta_1; \qquad (14)$$

las dos ecuaciones tienen la forma de ecuaciones de Hill si se -substituyen las funciones $X_x = \frac{\partial X}{\partial x}$ y $\Lambda_{\lambda} = \frac{\partial \Lambda}{\partial \lambda}$ por sus respectivas series de Fourier.

Las funciones que interesa desarrollar en serie de Fourier son X, X_x , Λ_λ . Las tres funciones son expresiones lineales de e^{2x} , e^{-x} y e^{-2x} . A continuación se deducen los desarrollos en serie de Fourier de estas tres funciones y de la función --x = log (e^x) a fin de comprobar los resultados mediante la ecuación (9).

3. DESARROLLO EN SERIES DE FOURIER

Las expresiones de e^{-x} , e^{-2x} y e^{2x} en función de σ se obtienen fácilmente de la ecuación (12). Para valores reales de σ las tres funciones satisfacen las condiciones de Dirichlet.¹⁷ La variable $x = \log (e^x)$ también satisface estas condiciones -para valores reales de σ . Por ello los coeficientes de la serie de Fourier se pueden encontrar mediante integración.

La doble periodicidad de las cuatro funciones anteriores pe<u>r</u> mite encontrar las integrales necesarias tasándose en el teorema

¹⁷Whittaker y Watson, op. cit., §9.1.

de los residuos, lo que reduce el trabajo de la integración al es tudio de las funciones en la vecindad de sus puntos singulares en el plano complejo de la variable σ . Las <u>subtro</u> funcionos y todas sus derivadas son continuas para valores reales de σ . Este mét<u>o</u> do ha sido ya utilizado en el libro de Whittaker y Watson "A --Course of Modern Analysis," §22.6, para el desarrollo de las fu<u>n</u> ciones de Jacobi en series de Fourier.

3a. <u>Deducción de los coeficientes de Fourier a_{2n} (n \neq 0) para la función e^{-x} . - De la ecuación (12) se tiene la relación:</u>

$$e^{-\mathbf{X}} = f(\omega\sigma) = f(z) = \frac{\alpha + \delta k \, \operatorname{sn}^2 \left(\frac{2Kz}{z}\right)}{1 + k \, \operatorname{sn}^2 \left(\frac{2Kz}{z}\right)}.$$

Utilizando el mismo simbolismo que Whittaker y Watson en el Capítulo XXI: $i\frac{K}{K} = \zeta$, $q = e^{-\pi \frac{K}{K}} = e^{\pi i \zeta}$, se ve que la función f(z) tiene períodos π y $\pi \zeta$; es decir: $f(z + \pi) = f(z)$, $f(z + \pi \zeta) = f(z)$, por lo que será suficiente estudiar la función dentro de la celda indicada en la figura l.

Siendo $\operatorname{sn}^2\left(\frac{2\operatorname{Kz}}{\pi}\right)$ una función meromorfa,¹⁸ los únicos pun-tos singulares de f(z) pueden provenir de los ceros del denomin<u>a</u> dor o de los polos del numerador. Como para los puntos en que el numerador tiene un polo el denominador también tiene uno del mismo orden, la segunda posibilidad se descarta. Los únicos polos de f(z) serán las raíces de la ecuación

$$1 \neq k \sin^2 \left(\frac{2K\pi}{\alpha}\right) = 0$$

Dentro de la celda la función tendrá dos polos simples: 19

$$z_1 = \frac{\pi z}{4}; z_2 = \frac{3\pi z}{4}$$

Siendo z_1 un polo simple se tendrá, para su residuo:²⁰

$$R_{1} = \frac{\lim_{x \to z_{1}} (z - z_{1}) f(z)}{z - z_{1}} = \frac{\lim_{x \to z_{1}} z_{1} \left[\frac{\alpha + \delta k \sin^{2} \left(\frac{2Kz}{\pi} \right)}{1 + k \sin^{2} \left(\frac{2Kz}{\pi} \right)} \right]}{\frac{1 + k \sin^{2} \left(\frac{2Kz}{\pi} \right)}{z - z_{1}}} = \frac{\alpha + \delta k \sin^{2} \left(\frac{2Kz_{1}}{\pi} \right)}{\frac{1}{z - z_{1}}} = \frac{\alpha + \delta k \sin^{2} \left(\frac{2Kz_{1}}{\pi} \right)}{\frac{2Kz_{1}}{\pi} \cos^{2} \left(\frac{2Kz_{1}}{\pi} \right)} = \frac{\alpha + \delta k \sin^{2} \left(\frac{2Kz_{1}}{\pi} \right)}{\frac{2Kz_{1}}{\pi} \cos^{2} \left(\frac{2Kz_{1}}{\pi} \right)} = \frac{\alpha + \delta k \sin^{2} \left(\frac{2Kz_{1}}{\pi} \right)}{\frac{2Kz_{1}}{\pi} \cos^{2} \left(\frac{2Kz_{1}}{\pi} \right)} = \frac{\alpha + \delta k \sin^{2} \left(\frac{2Kz_{1}}{\pi} \right)}{\frac{2Kz_{1}}{\pi} \cos^{2} \left(\frac{2Kz_{1}}{\pi} \right)} = \frac{\alpha + \delta k \sin^{2} \left(\frac{2Kz_{1}}{\pi} \right)}{\frac{2Kz_{1}}{\pi} \cos^{2} \left(\frac{2Kz_{1}}{\pi} \right)} = \frac{\alpha + \delta k \sin^{2} \left(\frac{2Kz_{1}}{\pi} \right)}{\frac{2Kz_{1}}{\pi} \cos^{2} \left(\frac{2Kz_{1}}{\pi} \right)} = \frac{\alpha + \delta k \sin^{2} \left(\frac{2Kz_{1}}{\pi} \right)}{\frac{2Kz_{1}}{\pi} \cos^{2} \left(\frac{2Kz_{1}}{\pi} \right)} = \frac{\alpha + \delta k \sin^{2} \left(\frac{2Kz_{1}}{\pi} \right)}{\frac{2Kz_{1}}{\pi} \cos^{2} \left(\frac{2Kz_{1}}{\pi} \right)} = \frac{\alpha + \delta k \sin^{2} \left(\frac{2Kz_{1}}{\pi} \right)}{\frac{2Kz_{1}}{\pi} \cos^{2} \left(\frac{2Kz_{1}}{\pi} \right)} = \frac{\alpha + \delta k \sin^{2} \left(\frac{2Kz_{1}}{\pi} \right)}{\frac{2Kz_{1}}{\pi} \cos^{2} \left(\frac{2Kz_{1}}{\pi} \right)} = \frac{\alpha + \delta k \sin^{2} \left(\frac{2Kz_{1}}{\pi} \right)}{\frac{2Kz_{1}}{\pi} \cos^{2} \left(\frac{2Kz_{1}}{\pi} \right)} = \frac{\alpha + \delta k \sin^{2} \left(\frac{2Kz_{1}}{\pi} \right)}{\frac{2Kz_{1}}{\pi} \cos^{2} \left(\frac{2Kz_{1}}{\pi} \right)} = \frac{\alpha + \delta k \sin^{2} \left(\frac{2Kz_{1}}{\pi} \right)}{\frac{2Kz_{1}}{\pi} \cos^{2} \left(\frac{2Kz_{1}}{\pi} \right)} = \frac{\alpha + \delta k \sin^{2} \left(\frac{2Kz_{1}}{\pi} \right)}{\frac{2Kz_{1}}{\pi} \cos^{2} \left(\frac{2Kz_{1}}{\pi} \right)} = \frac{\alpha + \delta k \sin^{2} \left(\frac{2Kz_{1}}{\pi} \right)}{\frac{2Kz_{1}}{\pi} \cos^{2} \left(\frac{2Kz_{1}}{\pi} \right)} = \frac{\alpha + \delta k \sin^{2} \left(\frac{2Kz_{1}}{\pi} \right)}{\frac{2Kz_{1}}{\pi} \cos^{2} \left(\frac{2Kz_{1}}{\pi} \right)} = \frac{\alpha + \delta k \sin^{2} \left(\frac{2Kz_{1}}{\pi} \right)}{\frac{2Kz_{1}}{\pi} \cos^{2} \left(\frac{2Kz_{1}}{\pi} \right)} = \frac{\alpha + \delta k \sin^{2} \left(\frac{2Kz_{1}}{\pi} \right)}{\frac{2Kz_{1}}{\pi} \cos^{2} \left(\frac{2Kz_{1}}{\pi} \right)} = \frac{\alpha + \delta k \sin^{2} \left(\frac{2Kz_{1}}{\pi} \right)}{\frac{2Kz_{1}}{\pi} \cos^{2} \left(\frac{2Kz_{1}}{\pi} \right)} = \frac{\alpha + \delta k \sin^{2} \left(\frac{2Kz_{1}}{\pi} \right)}{\frac{2Kz_{1}}{\pi} \cos^{2} \left(\frac{2Kz_{1}}{\pi} \right)} = \frac{\alpha + \delta k \sin^{2} \left(\frac{2Kz_{1}}{\pi} \right)}{\frac{2Kz_{1}}{\pi} \cos^{2} \left(\frac{2Kz_{1}}{\pi} \right)} = \frac{\alpha + \delta k \sin^{2} \left(\frac{2Kz_{1}}{\pi} \right)}{\frac{2Kz_{1}}{\pi} \cos^{2} \left(\frac{2Kz_{1}}{\pi} \right)} = \frac{\alpha + \delta k \sin^{2} \left(\frac{2Kz_{1}}{\pi} \right)}$$

$$=\frac{(\alpha-\delta)}{2k}\frac{\pi}{k} = -i\frac{\alpha-\delta}{1+k}\cdot\frac{\pi}{4k} = -i\omega.$$

El valor del residuo para el otro polo se deduce fácilmente del teorema de que la suma de los residuos de una función elíptica dentro de una celde es nula, siendo, por lo tanto:

$$R_2 = -R_1 = i\omega.$$

¹⁸E. Goursat, "Cours d'Analyse Mathématique," (Feris: Gauthier-Villars; 5eme. ed., 1929), Vol. II, §292.
¹⁹Whittaker y Watson, op. cit., §22.41, ex. 2.
²⁰E. Goursat, op. cit., §294.

Como x es el período de la función f(z) en el desarrollo en serie de Fourier los armónicos impares serán nulos y los pares estarán dados por las fórmulas:

$$a_{2n} = \frac{2}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(z) \cos 2nz dz.$$

En virtud de las fórmulas de Euler la expresión anterior es igual a la parte real de la integral:

$$\frac{2}{\pi}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}f(z) e^{2\pi i z} dz.$$

Integrando a lo largo de la trayectoria C: $(-\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2} + \pi \delta, -\frac{\pi}{2} + \pi \delta, -\frac{\pi}{2})$ se tendrá:

$$\int_{C} f(z) e^{2\pi i z} dz = \int_{C}^{\frac{\pi}{2}} + \int_{T}^{\frac{\pi}{2} + 3C} + \int_{T}^{-\frac{\pi}{2} + 3C} + \int_{T}^{-\frac{\pi}{2} + 3C} f(z) e^{2\pi i z} dz.$$

Como f(z+x) = f(z) y $e^{2\pi i(z+x)} = e^{2\pi i z}$, la segunda y cuarta integrales son iguales y de signos contrarios, cancelándose en la suma anterior:

$$\int_{C} f(z) e^{2\pi i z} dz = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(z) e^{2\pi i z} dz + \int_{-\frac{\pi}{2}+\pi\delta}^{-\frac{\pi}{2}+\pi\delta} f(z) e^{2\pi i z} dz$$
$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(z) e^{2\pi i z} dz - \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(z+\pi\delta) e^{2\pi i (z+\pi\delta)} dz$$
$$= (1 - e^{2\pi i \pi\delta}) \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(z) e^{2\pi i z} dz$$
$$= (1 - q^{2\pi}) \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(z) e^{2\pi i z} dz = 2\pi i \Sigma R.$$

En el punto z₁ el residuo del integrando es:

$$-i\omega e^{\frac{2\pi i z}{1}} = -i\omega e^{\frac{\pi z}{2}} = -iq^2\omega,$$

y en z_2 el residuo es:

$$i \omega e^{2 \operatorname{ni} \mathbf{z}_2} = i \omega e^{\operatorname{ni} \frac{3\pi \delta}{2}} = i q^2 \omega.$$

$$\therefore \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f(z) e^{2\pi i z} dz = \frac{2\pi i}{1-q^{2n}} (-iq^{\frac{n}{2}}\omega + iq^{\frac{3n}{2}}\omega) = 2\pi \omega \frac{q^{\frac{n}{2}}}{1+q^{n}};$$

$$\therefore a_{2n} = 4\omega \frac{q^{\frac{n}{2}}}{1+q^{n}}, \quad n \neq 0.$$
(15)

3b. <u>Deducción del término secular</u> a₀ para la función e^{-x} .-Para n = 0 el método anterior no es aplicable, ya que la inte-gral de f(z) a lo largo de la trayectoria antes indicada es nula. Encontraremos el valor de la integral de una expresión más general:

$$\varphi(z) = \frac{A + Bk \sin^2(\frac{2Kz}{\pi})}{1 + k \sin^2(\frac{2Kz}{\pi})}$$

donde **A** y B son constantes arbitrarias. El residuo de $\varphi(z)$ en el punto $z_1 = \frac{\pi \zeta}{4}$ es:

$$R = \lim_{z \to z_1} (z - z_1)\varphi(z) = \frac{A + Bk \operatorname{sn}^2(\frac{2Kz_1}{\pi})}{\frac{d}{dz_1}(1+k \operatorname{sn}^2(\frac{2Kz_1}{\pi}))}$$

$$= \frac{(A - B)\pi}{2k \cdot 2Ki \frac{1+k}{k}} = -i\omega \frac{A - B}{\alpha - \delta}.$$

Tomando la integral de la expresión $\varphi(z)$ a lo largo de la trayectoria C_1 : $(-\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2} + \frac{\pi z}{2}, -\frac{\pi}{2} + \frac{\pi z}{2}, -\frac{\pi}{2})$ de la figura l,

$$\int_{0}^{\pi} \varphi(z) dz = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} + \int_{\frac{\pi}{2}}^{\frac{\pi}{2} + \frac{\pi}{2}} + \int_{\frac{\pi}{2} + \frac{\pi}{2}}^{\frac{\pi}{2} + \frac{\pi}{2}} + \int_{\frac{\pi}{2} + \frac{\pi}{2}}^{\frac{\pi}{2}} \varphi(z) dz;$$

la segunda y la cuarta integrales se cancelan por la misma razón que en el caso anterior. El único polo dentro de la trayectoria es el punto z₁.

Teniendo en cuenta la relación:²¹

$$\operatorname{sn} (\mathbf{u} + \mathbf{i}\mathbf{K}') = \frac{1}{\mathbf{k}} \operatorname{ns} \mathbf{u}$$

se puede escribir

$$\int_{C_{1}}^{\pi} \varphi(z) dz = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \varphi(z) dz - \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \varphi(z + \frac{\pi\delta}{2}) dz$$

$$= \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{A + Bk \sin^{2} \left(\frac{2Kz}{z}\right)}{1 + k \sin^{2} \left(\frac{2Kz}{\pi}\right)} dz - \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{A + Bk \sin^{2} \left(\frac{2Kz}{\pi} + iK^{*}\right)}{1 + k \sin^{2} \left(\frac{2Kz}{\pi} + iK^{*}\right)} dz$$

$$= \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{A + Bk \sin^{2} \left(\frac{2Kz}{\pi}\right)}{1 + k \sin^{2} \left(\frac{2Kz}{\pi}\right)} dz - \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{Ak \sin^{2} \left(\frac{2Kz}{\pi}\right) + B}{1 + k \sin^{2} \left(\frac{2Kz}{\pi}\right)} dz$$

$$= I_{1} - I_{2} = 2\pi i \Sigma R = 2\pi \omega \frac{A - B}{\varkappa - \delta}.$$

Por otra parte: $I_{1} + I_{2} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{A + Bk \ sn^{2} \ (\frac{2Kz}{\pi})}{1 + k \ sn^{2} \ (\frac{2Kz}{\pi})} dz + \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{Ak \ sn^{2} \ (\frac{2Kz}{\pi}) + B}{1 + sn^{2} \ (\frac{2Kz}{\pi})} dz$

²¹Whittaker y Watson, op. cit., § 22.34.

$$- 17 - \frac{\pi}{2} = \sqrt[3]{\frac{\pi}{2}} (A + B) dz = \pi (A + B).$$

$$\therefore I_1 = \frac{1}{2} (\pi(A+B) + 2\pi\omega \frac{A-B}{\alpha-\delta}) = \frac{\pi}{2} (A+B + 2\omega \frac{A-B}{\alpha-\delta}). \quad (16)$$

Por consiguiente, para deducir el término secular a_0 de la función e^{-X} , basta poner, en el resultado anterior, $A = \alpha y - B = \delta$, obteniéndose:

$$a_{0} = \frac{2}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\alpha + \delta k \sin^{2} \left(\frac{2Kz}{\pi}\right)}{1 + k \sin^{2} \left(\frac{2Kz}{\pi}\right)} dz$$
$$= \frac{2}{\pi} I_{1} = 1 + 2\omega. \qquad (17)$$

3c. <u>Deducción de los coeficientes de Fourier a_{2n} $(n \neq 0)$ </u> para la función e^{-2x} . - La expresión explícita de e^{-2x} en fun-ción de z = $\omega\sigma$ es:

$$e^{-2x} = f_{1}(z) = \left[\frac{\alpha + \delta k \sin^{2}\left(\frac{2Kz}{2}\right)}{1 + k \sin^{2}\left(\frac{2+z}{4}\right)}\right]^{2}$$

Por razonamientos similares a los utilizados para la función ant<u>e</u> rior se llega a la conclusión de que los únicos polos que tiene la función $f_1(z)$ dentro de la celda dibujada en la figura l son los puntos $z_1 = \frac{\pi \delta}{4}$ y $z_2 = \frac{3\pi \delta}{4}$. Son polos dobles, por lo cual el método antes utilizado para encontrar la parte principal²² de la función no es aplicable.

En el punto z_1 , el coeficiente de $\frac{1}{(z-z_1)^2}$ en la serie de Laurent²² será el cuadrado del residuo en el caso anterior, porque $f_1(z) = [f(z)]^2$, o sea $(-i\omega)^2 = -\omega^2$.

²²Whittaker y Watson, op. cit., § 5.6, § 5.61.

Para encontrar el coeficiente de $\frac{1}{z-z_1}$ en la misma serie, o sea el residuo, se recurrirá al siguiente artificio. La inte-gral de $f_1(z)$ a lo largo de la trayectoria C_{1^2} $\left(-\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2} + \frac{\pi\delta}{2}, -\frac{\pi}{2} + \frac{\pi\delta}{2}, -\frac{\pi}{2}$ es el único punto singular dentro de la trayectoria. Las integrales $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}+\frac{\pi\delta}{2}} y$ $\frac{\pi}{2}$ se cancelan como en los casos anteriores. Utilizando la misma transformación que con la función $\cdot \varphi(z)$ se tendrá:

$$2\pi i R_{1} = \int_{C_{1}} f_{1}(z) dz = \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} + \int_{\frac{\pi}{2}}^{\frac{\pi}{2}+\frac{\pi}{2}} + \int_{\frac{\pi}{2}+\frac{\pi}{2}}^{\frac{\pi}{2}+\frac{\pi}{2}} + \int_{\frac{\pi}{2}+\frac{\pi}{2}}^{\frac{\pi}{2}+\frac{\pi}{2}} f_{1}(z) dz$$

$$= \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \left[\frac{\alpha + \delta k \sin^{2} \left(\frac{2Kz}{\pi}\right)}{1 + k \sin^{2} \left(\frac{2Kz}{\pi}\right)} \right]^{2} dz + \int_{\frac{\pi}{2}+\frac{\pi}{2}}^{\frac{\pi}{2}+\frac{\pi}{2}} \left[\frac{\alpha + \delta k \sin^{2} \left(\frac{2Kz}{\pi}\right)}{1 + k \sin^{2} \left(\frac{2Kz}{\pi}\right)} \right]^{2} dz$$

$$= \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \left[\frac{\alpha + \delta k \sin^{2} \left(\frac{2Kz}{\pi}\right)}{1 + k \sin^{2} \left(\frac{2Kz}{\pi}\right)} \right]^{2} - \left[\frac{\alpha k \sin^{2} \left(\frac{2Kz}{\pi}\right) + \delta}{1 + k \sin^{2} \left(\frac{2Kz}{\pi}\right)} \right]^{2} \right] dz$$

$$= \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \left[\frac{\alpha + \delta k \sin^{2} \left(\frac{2Kz}{\pi}\right)}{1 + k \sin^{2} \left(\frac{2Kz}{\pi}\right)} - \frac{\alpha k \sin^{2} \left(\frac{2Kz}{\pi}\right) + \delta}{1 + k \sin^{2} \left(\frac{2Kz}{\pi}\right)} \right] dz$$

=
$$\int f(z) dz = 2\pi i (-i\omega);$$

 $R_1 = -i\omega.$

La transformación que lleva, en el integrando, la diferencia de los cuadrados a la diferencia de las expresiones respectivas se debe a que:

$$\frac{\alpha + \delta k \, \operatorname{sn}^2 \, (\frac{2Kz}{\pi})}{1 + k \, \operatorname{sn}^2 \, (\frac{2Kz}{\pi})} + \frac{\alpha k \, \operatorname{sn}^2 \, (\frac{2Kz}{\pi}) + \delta}{1 + k \, \operatorname{sn}^2 \, (\frac{2Kz}{\pi})} = \alpha + \delta = 1.$$

La parte principal de $f_1(z)$ en el punto z_1 es:

$$-\frac{\omega^2}{(z-z_1)^2}-\frac{i\omega}{z-z_1}$$

El residuo en el punto z_2 es $R_2 = -R_1 = i\omega$ en virtud de que la suma de los residuos de todos los polos comprendidos dentro de una celda de periodicidad es nula.²³ Por lo tanto la parte principal de $f_1(z)$ en el punto z_2 es:

$$-\frac{\omega^2}{(z-z_2)^2} \div \frac{i\omega}{z-z_2}$$

El residuo de la función $f_1(z) e^{2\pi i z}$ en el punto z_1 es: $\left[(-i\omega) e^{2\pi i z} + (-\omega^2) \frac{de^{2\pi i \overline{z}}}{\omega z} \right]_{z=z_1} = -i\omega q^2 - 2i\pi \omega^2 q^2,$

y en el punto z₂ es:

$$\frac{3n}{i\omega q^2} - 2in\omega^2 q^2.$$

Integrando $f_1(z) e^{2\pi i z}$ a lo largo de la trayectoria C: $(-\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2} \star \pi z, -\frac{\pi}{2} \star \pi z, -\frac{\pi}{2})$ y aplicando el mismo razonamiento que antes se obtiene:

$$\int_{C} f_{1}(z) e^{2\pi i z} dz = (1 - q^{2n}) \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f_{1}(z) e^{2\pi i z} dz = 2\pi i \Sigma R$$
$$= 2\pi i \left(-i\omega q^{2} - 2in\omega^{2} q^{2} + i\omega q^{2} - 2in\omega^{2} q^{2} \right).$$

$$\therefore a_{2n} = \frac{2}{\pi} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} f_1(z) \cos 2nz dz$$

23Whittaker y Watson, op. cit., § 20.12.

$$= \frac{4\omega q^2}{1+q^n} + 4n\omega^2 \frac{2q^2}{1-q^n}, \quad (n \neq 0). \quad (18)$$

3d. <u>Deducción del término secular a_0 para la función e^{-2x} </u>.-Para encontrar el término a_0 seguirá el siguiente método:

$$\int_{0}^{2\pi} dn^{2} \frac{2Kz}{\pi} dz = \frac{\pi}{2K} \int_{0}^{4K} dn^{2} u \, du = \frac{\pi}{2K} \cdot 4E = \frac{2\pi E}{K}.$$

De los teoremas de adición para las funciones elípticas de Jaco-bi²⁴ se tiene:

$$dn^{2}\left(\frac{2Kz}{\pi} + \frac{iK^{i}}{2}\right) = \left[\frac{dn\left(\frac{2Kz}{\pi}\right)dn\left(\frac{iK^{i}}{2}\right) - k^{2}sn\left(\frac{2Kz}{\pi}\right)sn\left(\frac{iK^{i}}{2}\right)cn\left(\frac{2Kz}{\pi}\right)cn\left(\frac{iK^{i}}{2}\right)}{1 - k^{2}sn^{2}\left(\frac{2Kz}{\pi}\right)sn^{2}\left(\frac{iK^{i}}{2}\right)}\right]^{2}$$

substituyendo las funciones de $(\frac{iK'}{2})$ y efectuando las operaciones algebraicas la expresión anterior toma la forma:¹⁹

$$(1+k) \frac{1-2k^2 \operatorname{sn}^2(\frac{2Kz}{\pi})+k^2 \operatorname{sn}^4(\frac{2Kz}{\pi})}{(1+k \operatorname{sn}^2(\frac{2Kz}{\pi}))^2} - 2ik(1+k) \frac{\operatorname{sn}(\frac{2Kz}{\pi}) \operatorname{cn}(\frac{2Kz}{\pi}) \operatorname{dn}(\frac{2Kz}{\pi})}{(1+k \operatorname{sn}^2(\frac{2Kz}{\pi}))^2}$$

La integral de la parte imaginaria de la expresión anterior es -una función racional de $\operatorname{sn}^2(\frac{2Kz}{\pi})$ y por ello esta integral en-tre limites 0 y 2π es nula. Ahora bien,

$$(1+k) \int_{0}^{2\pi} \frac{1 - 2k^{2} \operatorname{sn}^{2}(\frac{2Kz}{\pi}) + k^{2} \operatorname{sn}^{4}(\frac{2Kz}{\pi})}{(1 + k \operatorname{sn}^{2}(\frac{2Kz}{\pi}))^{2}} dz = \int_{0}^{2\pi} dn^{2} (\frac{2Kz}{\pi} + \frac{iK^{*}}{2}) dz$$

$$+ \int_{\frac{\pi \delta}{4}}^{2\pi + \frac{\pi \delta}{4}} dn^2 \left(\frac{2Kz}{\pi}\right) dz = \int_{\frac{\pi \delta}{4}}^{0} + \int_{0}^{2\pi} + \int_{2\pi}^{2\pi + \frac{\pi \delta}{4}} dn^2 \left(\frac{2Kz}{\pi}\right) dz$$

$$= \int_{0}^{2\pi} dn^{2} \left(\frac{2Kz}{\pi}\right) dz = \frac{2\pi E}{K}.$$
 (19)

²⁴Whittaker y Watson, op. cit., §22.21.

Le primera y la tercera integrales se suprimieron porque, en virtud de la periodicidad del integrando, tienen valores iguales y de signos contrarios. Recordando la expresión explícita de la -función e^{-2x} , por operaciones algebraicas sencillas se encuen-tra la relación:

$$\frac{\left[\frac{\alpha}{\alpha} + \delta k \sin^{2}\left(\frac{2Kz}{\pi}\right)\right]^{2}}{\left[\frac{1+k}{\pi} \sin^{2}\left(\frac{2Kz}{\pi}\right)\right]^{2}} = \frac{(\alpha-\delta)^{2}}{2(1+k)} \cdot \frac{1 - 2k^{2} \sin^{2}\left(\frac{2Kz}{\pi}\right) + k^{2} \sin^{4}\left(\frac{2Kz}{\pi}\right)}{(1+k)^{2} \sin^{2}\left(\frac{2Kz}{\pi}\right)^{2}} + \frac{1}{2(1+k)} \cdot \frac{\alpha^{2} - \delta^{2} + 2\alpha(\alpha k+\delta) + \left[\delta^{2} - \alpha^{2} + 2\delta(\delta k+\alpha)\right] k \sin^{2}\left(\frac{2Kz}{\pi}\right)}{1 + k \sin^{2}\left(\frac{2Kz}{\pi}\right)}.$$

Las fórmulas (16) y (19) dan las integrales de los dos suma<u>n</u> dos. Aplicándolas se tiene:

$$\int_{0}^{2\pi} \left[\frac{\alpha + \delta k \, \operatorname{sn}^{2} \, \frac{2K\pi}{\pi}}{1 + k \, \operatorname{sn}^{2} \, \frac{2K\pi}{\pi}} \right]^{2} \, \mathrm{d}z = 2\omega \cdot \frac{\alpha - \delta}{1 + k} \cdot 2E + \pi \, \frac{k^{2}}{1 + k^{2}} + 2\omega\pi.$$

$$\therefore a_{0} = 2\omega \, \frac{\alpha - \delta}{1 + k} \, \frac{2E}{\pi} + \frac{k^{2}}{1 + k^{2}} + 2\omega. \qquad (20)$$

3e. Deducción de los coeficientes de Fourier a_{2n} $(n \neq 0)$ para la función e^{2x} . - La expresión que se va a estudiar es:

$$e^{2x} = f_2(z) = \left[\frac{1 \div k \sin^2\left(\frac{2Kz}{\pi}\right)}{\alpha + \delta k \sin^2\left(\frac{2Kz}{\pi}\right)}\right]^2$$

La función $f_2(z)$ tiene, dentro de la celda, (Fig. 2) dos polos dobles, localizados en los puntos z_1 y z_2 . Los valores z_1 y z_2 son las raíces de la ecuación:

$$\alpha + \delta k \sin^2 \frac{2Kz}{\pi} = 0;$$

$$\therefore \quad \operatorname{sn} \frac{2Kz_1}{\pi} = - \operatorname{sn} \frac{2Kz_2}{\pi} = \sqrt{-\frac{1}{5}} + \frac{1}{k} > 1.$$

Ahora bien, escribiendo $z_1 = \frac{\pi \zeta}{2} \div r$, se tiene:²¹

$$\operatorname{sn} \frac{2Kz_{1}}{\pi} = \operatorname{sn} \left(\frac{2Kr}{\pi} \div iK^{2} \right) = \frac{1}{k \operatorname{sn} \left(\frac{2Kr}{\pi} \right)};$$

$$\therefore \quad \text{sn} \quad (\frac{2Kr}{\pi}) = \sqrt{\frac{-\delta}{\alpha k}} < \sqrt{\frac{1}{2}} < 1.$$

Por ser este valor real e inferior en valor absoluto a la unidad existe un valor de r entre $-\frac{\pi}{2}$ y $\frac{\pi}{2}$ que satisface la relación anterior. Para encontrar este valor se recurrirá a la fórmula -que suministra Wilson.²⁵ Fácilmente se puede demostrar que -- $z_2 = \frac{\pi z}{2} - r$.

Para encontrar la parte principal de $f_2(z)$ en el punto z_1 se ve que:

 $f_{2}(z) = \left[1 + k \sin^{2} \left(\frac{2Kz}{\pi}\right)\right]^{2} \cdot \left[\sqrt{x} + \sqrt{-\delta k} \sin \frac{2Kz}{\pi}\right]^{-2} \cdot \left[\sqrt{x} - \sqrt{-\delta k} \sin \frac{2Kz}{\pi}\right]^{-2}$

²⁵E. B. Wilson, "Advanced Calculus." (Ginn and Company: --Boston, 1912), §189, formula 10. los primeros dos factores son funciones regulares en el punto z_1 y el tercero tiene un polo doble. Desarrollando en series de potencias estos factores y multiplicándolas, se obtendrá el result<u>a</u> do buscado. Para obtener la parte principal es suficiente obte-ner el desarrollo de sn $\frac{2Kz}{\pi}$ hasta la segunda potencia inclusive.

A fin de simplificar la escritura y las operaciones se escr<u>i</u> birá el desarrollo en función de $u = \frac{2Kz}{\pi}$:

$$sn u_{1} = sn \frac{2Kz_{1}}{\pi} = \sqrt{\frac{\alpha}{\delta k}},$$

$$cn u_{1} = -\sqrt{1 - sn^{2}} u_{1} = -\sqrt{1 \div \frac{\alpha}{\delta k}} = -i \sqrt{\frac{1 + k}{k} \cdot \frac{\beta}{-\delta}},$$

$$dn u_{1} = -\sqrt{1 - k^{2} sn^{2}} u_{1} = -\sqrt{1 \div \frac{\alpha k}{\delta}} = -i \sqrt{(1 + k) \cdot \frac{\gamma}{-\delta}},$$

donde los signos "-" que preceden a las radicales se deben a -que para $0 < r < \frac{\pi}{2}$, los valores de las funciones cn y dn de-ben ser imaginarios negativos.²⁶ El desarrollo en series de po-tencias se obtiene por la serie de Taylor;²⁷

sn u=sn u₁ + cn u₁dn u₁ (u-u₁) + $\frac{-(1+k^2) \operatorname{sn} u_1 + 2k^2 \operatorname{sn}^3 u_1}{2!} (u-u_1)^2 + \dots$

$$= \sqrt{\frac{\alpha}{-\delta k}} \left[1 - (1+k)(1-u_1) - \frac{(1+k)(\gamma + \beta k)}{2\delta} (u-u_1)^2 + \dots \right]$$

Substituyendo esta expresión en cada uno de los tres factores de la función que se estudia se obtiene:

26
Whittaker y Watson, op. cit., § 22.34.
²⁷Whittaker y Watson, op. cit., § 20.12.

$$(1 + k \sin^{2} u)^{2} = (\frac{\alpha - \delta}{\delta})^{2} - \frac{4\alpha (\alpha - \delta)(1 + k)}{\delta^{2}} (u - u_{1}) + \dots,$$
$$(\sqrt{\alpha} + \sqrt{-\delta k} \sin u)^{-2} = \frac{1}{4\alpha} + \frac{1 \div k}{4\alpha} (u - u_{1}) + \dots,$$
$$(\sqrt{\alpha} - \sqrt{-\delta k} \sin u)^{-2} = \frac{1}{(1 + k)^{2}\alpha} \frac{1}{(u - u_{1})^{2}} - \frac{\chi + \beta k}{(1 + k)^{2}\alpha \delta} \frac{1}{u - u_{1}} + \dots$$

La parte principal de $f_2(z)$, que es igual al producto de estas tres funciones es:

$$\frac{\left(\frac{\alpha}{1+k}\right)^{2}}{\left(\frac{\alpha}{\delta}\right)^{2}}\frac{1}{\left(u-u_{1}\right)^{2}}+\frac{0}{u-u_{1}}}{\left(\frac{\alpha}{1+k}\right)^{2}}$$

$$=\frac{\left(\frac{\alpha}{1+k}\right)^{2}}{4\left(\alpha\delta\right)^{2}}\frac{1}{\left(\frac{2K}{\pi}\right)^{2}}\frac{1}{\left(z-z_{1}\right)^{2}}}{\left(\frac{2K}{\pi}\right)^{2}}\frac{1}{\left(z-z_{1}\right)^{2}}}{\left(\frac{\alpha}{1+k}\right)^{2}}$$

El residuo de la función $f_2(z) e^{2\pi i z}$ en el punto $z = z_1$ es:

$$R_{1} = \frac{\omega^{2}}{a} \frac{de^{2niz}}{dz} \Big|_{z=z_{1}} = \frac{2in\omega^{2}}{a} e^{2niz_{1}}$$
$$= \frac{2in\omega^{2}}{a} e^{2ni\frac{\pi}{2}} e^{2nir} = \frac{2in\omega^{2}}{a} q^{n} e^{2nir}$$

Operaciones similares llevan al resultado:

$$R_2 = \frac{2in\omega^2}{a} q^n e^{-2nir}.$$

La parte real de la integral $\frac{2}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} f_2(z) e^{2\pi i z} dz$ da el -coeficiente a_{2n} del desarrollo de $f_2(z)$ en serie de Fourier. Con un razonamiento igual al seguido con las funciones anteriores

se obtiene, integrando a lo largo de la trayectoria C:
$$\left(-\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2$$

$$\therefore a_{2n} = -\frac{16q^n}{1-q^{2n}} \frac{\omega^2 n}{a} \cos(2nr), (n \neq 0).(21)$$

1

į.

π

3f, <u>Deducción del término secular a para la función e^{2x}.</u>-Para obtener el término secular la serie de Fourier para e^{2x} se puede seguir este método:

Basándose en las fórmulas para la diferenciación de las funciones elípticas de Jacobi,²⁷ se obtiene la siguiente relación

$$\frac{d}{dz} \left(\frac{\operatorname{sn}\left(\frac{2\mathrm{Kz}}{\pi}\right) \operatorname{cn}\left(\frac{2\mathrm{Kz}}{\pi}\right) \operatorname{dn}\left(\frac{2\mathrm{Kz}}{\pi}\right)}{\alpha + \delta k \operatorname{sn}^{2}\left(\frac{2\mathrm{Kz}}{\pi}\right)} \right)$$
$$= \frac{2\mathrm{K}}{\pi} \left(\frac{\left[1 + k \operatorname{sn}^{2}\left(\frac{2\mathrm{Kz}}{\pi}\right)\right]^{2}}{\alpha + \delta k \operatorname{sn}^{2}\left(\frac{2\mathrm{Kz}}{\pi}\right)} \right]^{2} \alpha + \frac{k}{\delta} \operatorname{sn}^{2}\left(\frac{2\mathrm{Kz}}{\pi}\right) \right)$$

La integral del primer miembro de la ecuación anterior entre 0 y 2π es nula, por ser la integral indefinida una función periódica con período de π . Por lo tanto:

$$\int_{0}^{2\pi} \left[\frac{1 + k \sin^{2} \left(\frac{2Kz}{\pi}\right)}{\alpha + \delta k \sin^{2} \left(\frac{2Kz}{\pi}\right)} \right]^{2} dz = -\frac{k}{\alpha \delta} \int_{0}^{2\pi} \sin^{2} \left(\frac{2Kz}{\pi}\right) dz$$
$$= \frac{-\alpha \delta}{k(\alpha \delta)^{2}} \int_{0}^{2\pi} \left(1 - dn^{2} \left(\frac{2Kz}{\pi}\right)\right) dz$$
$$= -\frac{2\pi\alpha \delta}{kk} + \frac{\alpha \delta}{ak} \frac{2\pi E}{K}$$
$$= \frac{\pi}{a} \left(\frac{1}{1 + k^{2}} - 2\omega \frac{\alpha - \delta}{1 + k} \frac{2E}{\pi}\right);$$
$$\therefore a_{0} = \frac{1}{a} \left(\frac{1}{1 + k^{2}} - 2\omega \frac{\alpha - \delta}{1 + k} \frac{2E}{\pi}\right).$$

- 26 -

3g. <u>Extensión del teorema de los residuos para un caso par-</u> <u>ticular de funciones multiformes</u>.- El teorema de los residuos no es aplicable a las funciones multiformes. Para obtener una expr<u>e</u> sión similar para esta clase de funciones se trazarán del punto de partida de la integración cortes hacia los puntos de ramificación²⁸ de la función comprendidos dentro de la trayectoria rodean do estos puntos con pequeñas circunferencias conectadas a los cor tes (Fig. 3). Conectando estos cortes y circunferencias que ro-dean a los puntos de ramificación a la trayectoria C, se obtie-

28 Appel y Goursat, "Théorie des Fonctions Algébriques," -(Paris, Gauthier-Villars, 2eme. ed., 1929), Vol. I. --Chap. IV. En este libro están explicadas las propiedades de las funciones multiformes algebraicas, sus singu laridades y los métodos de estudiarlas. La explicación se extiende fácilmente a todas las funciones multifor-mes, en particular el concepto de puntos de ramificacio nes y los métodos de transformación de las funciones -multiformes en uniformes, tanto el método de cortes como el de las superficies de varias hojas de Riemann. -El método de cortes se utiliza mucho en este libro para estudiar las integrales do las funciones algebraicas, lo que es un problema muy parecido al tratado aquí. ne una región simplemente conexa en la cual cada una de las ramas de la función es una función uniforme, siendo ahora aplicable el teorema de los residuos. Si la función multiforme es del tipo - $F'(z) \log f(z)$, donde tanto F'(z) como f(z) son funciones me

romorfas¹⁸ dentro de la trayectoria de integración, los puntos de ramificación de la expresión anterior serán los ceros y los polos de la función f(z). Suponiendo que los polos de la función --F'(z) no coinciden con los puntos de ramificación se podrá encon trar una expresión analítica para la integral de la expresión pro puesta a lo largo de una trayectoria cerrada. Designando el corte y la circunferencia, correspondientes a un punto de ramifica-ción, por C_n , el teorema de los residuos puede escribirse en la fórmula:

$$j^{*} \mathbb{F}'(z) \log f(z) dz + j^{*} + j^{*} + ... = 2\pi i \Sigma R,$$
 (23)
C(A) $C_{1} C_{2}$

donde $\begin{pmatrix} f \\ C(A) \end{pmatrix}$ indica que la integral se lleva a cabo a partir del C(A) punto A, y las R's son los residuos del integrando dentro de la trayectoria y pueden provenir sólo de los polos de F'(z). - Si z_1 es un cero de orden n_1 de la función f(z) se tentrá:

- 27 -

$$\int_{a}^{b} F'(z) \log f(z) dz = \int_{a}^{b} + \int_{a}^{a'} + \int_{a}^{b'} F'(z) \log f(z) dz$$
,
C₁

donde C_1 , es la circunferencia que rodea el primer punto de ramificación z_1 . En la vecindad del punto z_1 , la función f(z)puede escribirse como $f(z) = (z - z_1)^{n_1} \varphi(z)$, donde $\varphi(z)$ es regular para $z = z_1$ y diferente de cero. Tomando la circunferencia C_1' de radio r y designando por M y m respectivamen te las cotas superiores de F'(z) y log $\varphi(z)$ dentro y so-bre la circunferencia, el integrando tiene por cota superior la expresión M(m + n_1 log r). Siendo la longitud de la trayectoria de integración $2\pi r$, el valor absoluto de la integral sobre C_1' es inferior a $2\pi rM(m + n_1 | \log r |)$, expresión que tiende ha cia cero con r. Por otra parte se tiene:

$$F'(v) = F'(v')$$
; $\log f(v) = \log f(v') + 2n_{\pi}\pi i$,

donde v y v' son puntos correspondientes sobre los lados del corte.

La segunda relación se obtiene de la integración de $\frac{f'(z)}{f(z)}$ a lo largo de la trayectoria B_1 (Fig. 3) que comprende un solo punto de ramificación z_1 . Como z_1 es el único punto singular de esta función con un residuo n_1 la ecuación anterior es el r<u>e</u> sultado de la aplicación del teorema de los residuos.²⁹

$$\therefore \int_{a}^{b} F'(z) \log f(z) dz + \int_{b'}^{a'} F'(z) \log f(z) dz$$

$$= \int_{a}^{b} - \int_{a'}^{b'} F'(z) \log f(z) dz = \int_{a}^{b} 2n_{1}\pi i F'(z) dz$$

$$= 2n_{1}\pi i \left[F(b) - F(a)\right].$$

 29 E. Goursat, op. cit., § 299.

Haciendo tender el radio r de la circunferencia que rodea el punto z_l hacia cero se llega a la relación:

$$\int_{C_1}^{3} F'(z) \log f(z) dz = 2n_1 \pi i \left[F(z_1) - F(a) \right].$$

En el caso de un polo la expresión que se obtiene es semejante p<u>e</u> ro con signo contrario.

Substituyendo esta expresión y otras similares en la ecua-ción (23) se tiene:

$$f' = F'(z) \log f(z) dz$$

C(A)

$$= 2\pi i \left[-\sum_{c} \sum_{c} F(z_{c}) + \sum_{p} \sum_{p} F(z_{p}) + (\sum_{c} \sum_{c} \sum_{p} \sum_{p})F(a) + \sum_{c} F(z_{c}) \right], \quad (24)$$

donde n_c es el orden del cero z_c y n_p el del polo z_p . Se ve que la integral es independiente del punto inicial sólo en el caso de que el número⁶ de polos y el de ceros dentro de la trayectoria de integración, tomando cada uno con su orden de multipli-cidad, sean iguales.

3h. <u>Deducción de los coeficientes de Fourier a_{2n} $(n \neq 0)$ </u> para la función x.- Para encontrar los coeficientes a_{2n} del desarrollo en serie de Fourier de la función

$$x = \log \frac{1 + k \sin^2 \left(\frac{2Kz}{\pi}\right)}{\alpha + \delta k \sin^2 \left(\frac{2Kz}{\pi}\right)}$$

substituiremos en la fórmula (24) f(z) por

$$e^{\mathbf{X}} = \frac{1 + k \, \operatorname{sn}^2 \left(\frac{2Kz}{\pi}\right)}{\alpha + \delta k \, \operatorname{sn}^2 \left(\frac{2Kz}{\pi}\right)}$$

y F'(z) por $e^{2\pi i z}$, tomando como trayectoria de integración la misma que se utilizó para otras funciones, C: $(-\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2} + \pi z)$, $-\frac{\pi}{2} + \pi z$, $-\frac{\pi}{2}$, como se muestra en la figura 4.

La función e^x tiene dos ceros sencillos dentro de la tra-yectoria C, $z = \frac{\pi \vec{\sigma}}{4}, \frac{5\pi \vec{\sigma}}{4}, y$ dos polos sencillos, $z = \frac{\pi \vec{\sigma}}{2} + r$.

Siendo F'(z) una función entera, el sumando ΣR es nulo. Igualmente desaparece el sumando que depende del punto de parti-da, porque el número de ceros y el de polos de la función e^{X} -son iguales dentro de la celda de periodicidad lo cual es propiedad general de las funciones elípticas.³⁰ Por otra parte,

$$F(z) = -\frac{i}{2n} e^{2niz}.$$

Substituyendo los valores indicados en la fórmula (24) se ob tiene:

$$\int_{C(-\frac{\pi}{2})} \log \frac{1 + k \sin^2(\frac{2Kz}{\pi})}{\alpha + \delta k \sin^2(\frac{2Kz}{\pi})} e^{2\pi i z} dz$$

³⁰Whittaker y Watson, op. cit., § 20.13.

$$= 2\pi i \left(\frac{-i}{2n}\right) \left[-e^{2\pi i \frac{\pi \delta}{4}} - e^{2\pi i \frac{3\pi \delta}{4}} + e^{2\pi i \left(\frac{\pi \delta}{2} + r\right)} + e^{2\pi i \left(\frac{\pi \delta}{2} - r\right)} \right]$$
$$= \frac{\pi}{n} \left(-q^{\frac{n}{2}} - q^{\frac{3n}{2}} + 2q^{\frac{n}{2}} \cos 2\pi r \right).$$

Por otra parte, a lo largo de la trayectoria C, $\operatorname{sn}^2(\frac{2Kz}{\pi})$ se observa positiva y menor que $1/k^2$, por lo que la función

$$\frac{1 + k \sin^2 \left(\frac{2Kz}{\pi}\right)}{\kappa + \delta k \sin^2 \left(\frac{2Kz}{\pi}\right)}$$

se conserva real y positiva. La parte imaginaria de la función multiforme

$$\log \frac{1 + k \sin^2 \left(\frac{2Kz}{\pi}\right)}{\alpha + \delta k \sin^2 \left(\frac{2Kz}{\pi}\right)}$$

es constante (cero si se toma el valor principal). Por ello, tomando en consideración las relaciones $sn^2 (u + 2K) = sn^2u y$ sn (n + 2iK') = sn u, se puede escribir:

$$\log \frac{1 + k \sin^2 \left(\frac{2K(z + \pi)}{\pi}\right)}{\alpha + \delta k \sin^2 \left(\frac{2K(z + \pi)}{\pi}\right)} = \log \frac{1 + k \sin^2 \left(\frac{2Kz}{\pi}\right)}{\alpha + \delta k \sin^2 \left(\frac{2Kz}{\pi}\right)}$$

$$\log \frac{1 + k \operatorname{sn}^2 \left(\frac{2K(z + \pi \delta)}{\pi}\right)}{\alpha + \delta k \operatorname{sn}^2 \left(\frac{2K(z + \pi \delta)}{\pi}\right)} = \log \frac{1 + k \operatorname{sn}^2 \left(\frac{2Kz}{\pi}\right)}{\alpha + \delta k \operatorname{sn}^2 \left(\frac{2Kz}{\pi}\right)}.$$

$$\therefore \int_{C(-\frac{\pi}{2})} \log \frac{1 + k \sin^2(\frac{2Kz}{\pi})}{\alpha + \delta k \sin^2(\frac{2Kz}{\pi})} e^{2\pi i z} dz$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} + \int_{\frac{\pi}{2}}^{\frac{\pi}{2}+\pi\delta} + \int_{-\frac{\pi}{2}+\pi\delta}^{-\frac{\pi}{2}+\pi\delta} + \int_{-\frac{\pi}{2}+\pi\delta}^{-\frac{\pi}{2}} \log \frac{1 + k \sin^2(\frac{2Kz}{\pi})}{\alpha + \delta k \sin^2(\frac{2Kz}{\pi})} e^{2\pi i z} dz.$$

En virtud de las relaciones antes indicadas y de la periodicidad de la función e^{2niz} se deduce, siguiendo el mismo método
que en los casos anteriores, que la suma de la segunda y la cuarta integrales es nula y la tercera integral es igual a - q²ⁿ v<u>e</u> ces la primera:

$$\therefore \int_{C(-\frac{\pi}{2})} \log \frac{1+k}{\alpha+\delta k} \frac{\sin^2(\frac{2Kz}{\pi})}{\sin^2(\frac{2Kz}{\pi})} e^{2\pi i z} dz$$

$$= (1 - q^{2\pi}) \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log \frac{1+k}{\alpha+\delta k} \frac{\sin^2(\frac{2Kz}{\pi})}{\sin^2(\frac{2Kz}{\pi})} e^{2\pi i z} dz.$$

$$a_{2\pi} = \frac{2}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log \frac{1+k}{\alpha+\delta k} \frac{\sin^2(\frac{2Kz}{\pi})}{\sin^2(\frac{2Kz}{\pi})} \cos 2\pi z dz$$

$$= \frac{2}{\pi} \frac{1}{1-q^{2\pi}} \frac{\pi}{n} (-q^{\frac{\pi}{2}} - q^{\frac{2\pi}{2}} + 2q^{\frac{\pi}{2}} \cos 2\pi r)$$

$$= \frac{4}{\pi} \frac{q^{\frac{\pi}{2}} \cos 2\pi r}{1-q^{2\pi}} - \frac{2}{\pi} \frac{q^{\frac{\pi}{2}}}{1-q^{\pi}}. \quad (n \neq 0) \quad (25)$$

31. <u>Deducción del término secular a para la función x</u>.-Para encontrar el término secular de esta serie se utilizará la misma fórmula tomando para F: (z) la función³¹ Z(u) = $Z(\frac{2Kz}{\pi})$ = $\frac{\pi}{du} \log \Theta(u) = \frac{\pi}{2K} \frac{1}{dz} \log \Theta(\frac{2Kz}{\pi})$.

La función log
$$\frac{1 + k \sin^2(\frac{2Kz}{\pi})}{\alpha + \delta k \sin^2(\frac{2Kz}{\pi})}$$
 está estudiada ya.

La función Z(u) tiene las propiedades:

 $Z(u + 2K) = Z(u), \quad Z(u + 2iK') = T(u) - \frac{\pi i}{L}.$ (26)

Integrando a lo largo de la trayectoria C: $\left(-\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2} + \pi z\right)$, - $\frac{\pi}{2} + \pi z$, $-\frac{\pi}{2}$, se obtiene, substituyendo en la fórmula (24) las funciones f(z) y F[:](z) por e^x y $Z(\frac{2Kz}{\pi})$:

$$\int_{C(-\frac{\pi}{2})} \log \frac{1 + k \sin^2(\frac{2Kz}{\pi})}{\alpha + \delta k \sin^2(\frac{2Kz}{\pi})} Z(\frac{2Kz}{\pi}) dz$$

$$= \frac{\pi^2 i}{K} \log \frac{\theta(iK' + \frac{2Kr}{\pi}) \cdot \theta(iK' - \frac{2Kr}{\pi}) \cdot \frac{1}{\delta}}{\theta(\frac{iK'}{2}) \cdot \theta(\frac{3iK'}{2})}$$

$$= \frac{\pi^2 i}{2} \log \frac{H^2(\frac{2Kr}{\pi})}{(-\delta) \theta^2(\frac{iK'}{2})}$$

Por otra parte, teniendo en cuenta las relaciones (26), y s<u>i</u> guiendo el mismo procedimiento que antes, se puede escribir:

$$\int_{C(-\frac{\pi}{2})}^{3} \log \frac{1 + k \sin^{2} (\frac{2Kz}{\pi})}{\alpha + \delta k \sin^{2} (\frac{2Kz}{\pi})} Z(\frac{2Kz}{\pi}) dz$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} + \int_{\frac{\pi}{2}}^{\frac{\pi}{2} + \pi \cdot \mathbf{Z}} + \int_{-\frac{\pi}{2} + \pi \cdot \mathbf{Z}}^{-\frac{\pi}{2} + \pi \cdot \mathbf{Z}} + \int_{-\frac{\pi}{2} + \pi \cdot \mathbf{Z}}^{-\frac{\pi}{2}} \log \frac{1 + k \sin^{2} (\frac{2Kz}{\pi})}{\alpha + \delta k \sin^{2} (\frac{2Kz}{\pi})} Z(\frac{2Kz}{\pi}) dz$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} + \int_{\frac{\pi}{2} + \pi \cdot \mathbf{Z}}^{-\frac{\pi}{2} + \pi \cdot \mathbf{Z}} \log \frac{1 + k \sin^{2} (\frac{2Kz}{\pi})}{\alpha + \delta k \sin^{2} (\frac{2Kz}{\pi})} Z(\frac{2Kz}{\pi}) dz$$

$$= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log \frac{1 + k \sin^{2} (\frac{2Kz}{\pi})}{\alpha + \delta k \sin^{2} (\frac{2Kz}{\pi})} \cdot \left(Z(\frac{2Kz}{\pi}) - Z(\frac{2Kz}{\pi} + 2iK^{\dagger})\right) dz$$

$$= \frac{\pi i}{K} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log \frac{1 + k \sin^2 \left(\frac{2Kz}{\pi}\right)}{\alpha + \delta k \sin^2 \left(\frac{2Kz}{\pi}\right)} dz$$

$$= \frac{\pi^2 i}{K} \log \frac{H^2 \left(\frac{2Kr}{\pi}\right)}{(-\delta) \cdot \theta^2 \left(\frac{1K^{\dagger}}{\pi}\right)}$$

$$\therefore a_0 = \frac{2}{\pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \log \frac{1 + k \sin^2 \left(\frac{2Kz}{\pi}\right)}{\alpha + \delta k \sin^2 \left(\frac{2Kz}{\pi}\right)} dz$$

$$= 2 \log \frac{H^2 \left(\frac{2Kr}{\pi}\right)}{(-\delta) \cdot \theta^2 \left(\frac{1K^{\dagger}}{2}\right)} \qquad (27)$$

- 34 -

3j. <u>Comparación de diferentes métodos de integración utili-</u> <u>zados</u>.- Basándose en las propiedades de la función Z se podrían deducir todos los términos seculares por el mismo procedimiento, sin recurrir a artificios especiales, pero los resultados que se obtienen estarán dados mediante las funciones Z y Z', siendo más difícil su cálculo numérico. Por ejemplo, para e^{-X} se ot-tiene por este método:

$$a_{o} = 4\omega + 2\delta - \frac{8\kappa_{1}}{\pi} \omega Z(\frac{1\kappa'}{2}),$$
 (28)

valor que debe compararse con el obtenido anteriormente en la fó<u>r</u> mula (17).

Para comprober la igualdad de los resultados (17) y (28) se substituirá el valor $u = \frac{iK'}{2}$ en la ecuación³² que define $\theta(u)$, obteniéndose:

١

³²E. B. Wilson, op. cit., § 175.

$$\Theta(\frac{1K'}{2}) = 1 - (q^2 + q^2) + (q^3 + q^5) - (q^2 + q^2) + \dots$$

- 35 -

Igualmente se obtiene:

$$\theta'(\frac{iK'}{2}) = \frac{\pi i}{K} \left[(q^2 - q^2) - 2(q^3 - q^5) + 3(q^2 - q^2) - \dots \right]$$

Para una órbita calculada se tienen los siguientes datos numéricos:

$$q = 0.026668$$

 $\omega = 0.38820$
 $\delta = -0.18465$

Substituyendo estos valores en la fórmula (28) se tiene:

$$Z(\frac{iK'}{2}) = \frac{\Theta'(\frac{iK'}{2})}{\Theta(\frac{iK'}{2})} = 0.381827 \cdot \frac{\pi i}{2K}$$

 $a_0 = 4 \cdot 0.38820 - 2 \cdot 0.18465 + 4 \cdot 0.381827 \cdot 0.38820 = 1.766401.$

La expresión obtenida por medio de (17) da el valor:

 $a_{2} = 1 + 2\omega = 1 + 2 \cdot 0.38820 = 1.75640$,

lo que comprueba la equivalencia de los dos resultados.

3k. <u>Series de Fourier obtenidas</u>.- Con los resultados de -los cálculos anteriores, se pueden encontrar las series de Fou-rier buscadas. Utilizando las mismas letras para los coeficien-tes de las series de Fourier que emplea el Dr. A. Baños Jr. en su trabajo³³ se tiene, para

³³Alfredo Baños Jr., Journal of Mathematics and Physics. -Vol. XVIII, No. 3, 211 (1939).

$$x = z_0 + z_2 \cos 2\omega\sigma + z_4 \cos 4\omega\sigma + ...,$$

$$z_{o} = \log \frac{H^{2}(\frac{2Kr}{\pi})}{(-\delta) \theta^{2}(\frac{1K'}{2})},$$

$$z_{2n} = \frac{1}{n} \left(\frac{4q^{n} \cos 2nr}{1-q^{2n}} - \frac{2}{1-q^{n}}\right).$$
(29)

Para $X = ae^{2x} - e^{-x} + e^{-2x}$, se tiene:

$$X = Z_{0} + Z_{2} \cos 2\omega\sigma + Z_{4} \cos 4\omega\sigma + ...,$$

$$Z_{0} = 0,$$

$$Z_{2n} = 4n\omega^{2}(-\frac{4q^{n} \cos 2nr}{1 - q^{2n}} + \frac{2q^{2}}{1 - q^{n}}) = -4n^{2}\omega^{2}z_{2n}.$$
(30)

La verificación de la ecuación (9) es inmediata tomando los valores de los coeficientes Z_{2n} y z_{2n} .

Para dar a las ecuaciones (13) y (14) la forma de la eucación de Hill pasaremos todos los términos al primer miembro y dividir<u>e</u> mos entre ω^2 . Los coeficientes de las dos series de las ecuaci<u>o</u> nes en ψ_1 y γ_1 los designaremos por A y B, por estar lig<u>a</u> dos a los coeficientes a y b del trabajo del Dr. A. Baños --Jr.³³ con un coeficiente constante. Los coeficientes de Hill correspondientes a las ecuaciones (13) y (14), tienen los desarro-llos siguientes:

 $-\frac{1}{\omega^2} \mathbf{X}_{\mathbf{x}}^{=} - \frac{1}{\omega^2} (2a e^{2\mathbf{x}} - 2e^{-2\mathbf{x}} + e^{-\mathbf{x}}) = A_0 + 2A_2 \cos 2\omega\sigma + 2A_4 \cos 4\omega\sigma + \dots,$

 $-\frac{1}{\omega^2}\Lambda_{\lambda}=-\frac{1}{\omega^2}(e^{-2x}-1)=B_0\div 2B_2\cos 2\omega\sigma+2B_4\cos 4\omega\sigma+\ldots$

Los valores de estos coeficientes están dados por las expresiones:

$$A_{0} = -\frac{1}{2\omega^{2}} \left(\frac{3-k^{2}}{1+k^{2}} - 2\omega - 8\omega \frac{\alpha - \delta}{1+k} \frac{2E}{\pi} \right),$$

$$A_{2n} = \frac{16 nq^{n} \cos 2nr}{1-q^{2n}} + \frac{8nq^{\frac{n}{2}}}{1-q^{n}} + \frac{2q^{\frac{n}{2}}}{\omega(1+q^{n})},$$

$$B_{0} = \frac{1}{2\omega^{2}} \left(\frac{2+k^{2}}{1+k^{2}} - 2\omega \frac{\alpha - \delta}{1+k} \frac{2E}{\pi} - 2\omega \right),$$

$$B_{2n} = -\frac{4nq^{\frac{n}{2}}}{1-q^{n}} - \frac{2q^{\frac{n}{2}}}{\omega(1+q^{n})}.$$
(31)

El hecho de formar los coeficientes de las series de X, $-\frac{1}{\omega^2} X_x \quad y \quad \frac{1}{\omega^2} \Lambda_\lambda$ aplicando layes conmutativa y asociativa de la suma y el de diferenciar la serie que representa x término a término para compararla con la de X se justifica por el hecho de que las series de x, e^{-x} , e^{-2x} y e^{2x} son series uniforme-mente y absolutamente convergentes lo mismo que la serie formada por segundas derivadas de la serie $x = x(\sigma)$. La demostración es fácil notando que:

$$\lim_{n \longrightarrow \infty} \frac{z_{2n+2}}{z_{2n}} = q^{\frac{1}{2}} < 1,$$

siendo los términos de la serie trigonométrica que representa a x menores que los correspondientes de una serie geométrica con-vergente de términos constantes.

Para las series formadas de la que representa $x = x(\sigma)$ por diferenciación término a término, la relación de los coeficientes al inmediatamente anterior también tiene el límite $q^{1/2} < 1$, -ciendo por lo tanto todas estas series uniformemente y absoluta-mente convergentes para valores de σ reales.

Si la parte imaginaria de $\omega\sigma$ es menor en valor absoluto a $p < -i \frac{\pi B}{4}$, la expresión

$$\overline{\lim} \left| z_{2n} \cos 2n\omega \sigma \right|^{\frac{1}{n}} \leq q^{\frac{1}{2}} e^{2p} = e^{\frac{i}{2} \frac{\pi \sigma}{2} + 2p} < 1.$$

Dentro de la faja - $p \leq I(\omega \sigma) \leq p$, la serie obtenida es uniform<u>e</u> mente convergente por ser sus términos menores que los de una serie geométrica convergente de términos constantes. Dentro de la región especificada la serie trigonométrica de x será una fun--ción analítica de σ .³⁴

Un razonamiento idéntico demuestra que las funciones e^{-x} y e^{-2x} definidas por las series trigonométricas son funciones analíticas dentro de la misma región.

Para la función e^{2x} la región de convergencia es más amplia porque

$$\frac{1}{\lim |a_{2n}|^n} = q.$$

Aplicando las mismas razones que en las otras series se obtiene ... una región donde la función es analítica:

$$-p_1 \leq I(\omega\sigma) \leq p_1 < -i \frac{\pi \delta}{2}.$$

Los resultados anteriores están en concordancia con la distribu-ción de los puntos singulares de las funciones estudiadas. 54 E. Goursat, op. cit., §290. A fin de verificar las fórmulas obtenidas se compararán los valores numéricos que dan estas fórmulas, para un valor de q d<u>a</u> do, con resultados obtenidos al aplicar el método práctico de an<u>á</u> lisis de Fourier.³⁵

Tomando $q = 10^{-2}$ y aplicando las fórmulas que dan los dif<u>e</u> rentes parámetros en función de q se obtienen los valores:

> k = 0.334,5444,81 1.221,6842, z 0.028,0572, ิล = 1.146,1446, \propto = = ... 0.146,1446,δ 2K # 2F -1.040,4000, 0.961,9376, = = 0.448,5620, ω $= 34^{\circ}5'25.82''$. r

El período se dividirá en 24 partes iguales. Como entre los armónicos sólo aparecen los cosenos pares, es suficiente te-ner los valores entre $\omega \sigma = 0^{\circ}$ y $\omega \sigma = 90^{\circ}$, cada 15°.

Los valores necesarios para hacer el análisis armónico están calculados según se indica, en unidades de la séptima decimal, en la <u>Tabla I</u>. Aplicando el método de análisis armónico se obtienen los valores de los coeficientes, los que aparecen comparados con

³⁵Whittaker y Robinson, "The Calculus of Observations." --(London: Blackie and Son, 2nd. ed., '932), Chap. X.

TABLA I

	-ωσ = 0 ⁰	15 ⁰	30°	45 ⁰	60°	75 ⁰	90 ⁰
Η (<u>2K</u> ωσ)	0	163,6468	316,1645	447,1689	547,7226	610,94 9 8	632 , 4555
$\Theta \left(\frac{2 K}{\pi} \omega \sigma\right)$	980,0000	982 ,67 95	99 0, 0000	1	1.010,0000	1.017,3205	1.020,0000
$\sin \frac{2}{\pi} \frac{K}{\omega} \omega = \frac{1}{\sqrt{k}} \frac{H}{\Theta}$	о	268,5483	514,9970	721,1047	874,5125	968,4439	1
sn ² 2 <u>κ</u> ωσ	ο	72 ,11 82	265,2219	519,9920	764,7721	937 , 8836	1
$\propto + \delta k sn^2$	1.146,1446	1.142,0916	1.131,2394	1.116,9215	1.103,1651	1.093,4364	1.089,9455
$e^{X} = \frac{1 + k \sin^{3}}{\alpha + \delta k \sin^{3}}$	872 , 4 9 03	899,8688	974 ,1 436	1.074,3459	1.173,0690	1.244,3869	1.270,2877
x	-1 36,4036	-105,5063	-26,1970	71,7120	159,6233	218,6429	239,2434
e ^{2x}	761,2393	809,7639	948 , 9557	1.154,2191	1.376,0909	1.548,4988	1.613,6308
a e ^{2x}	21,3582	22,7197	26,6250	32,3842	38,6093	43,4465	45,2740
$U = \frac{e^x - 1}{e^{2x}}$	-167,5028	-123,6548	-27,2472	64,4123	125,7686	157,8218	167,5028
$U' = \frac{2 - e^x}{e^{2x}}$	1.481,1501	1.358,5827	1.081,0371	801,9743	600,9276	487,9649	452,2176
$\mathbf{X} = \mathbf{a} \ \mathbf{e}^{2\mathbf{X}} - \mathbf{U}$	188,8610	146,3745	53,8722	-32,0281	-87 ,1 593	-114,3753	-122,2288
$X_{x} = 2 a e^{2x} - U^{t}$	-1.438,4336	-1.313,1433	-1.027,7870	-737,2060	-523,7089	-401,0718	-361,6697
$-\Lambda_{\lambda} = 1 - e^{-2x}$	-313,6474	-234,9279	-53,7 ⁸ 99	133,6134	273,3038	354,2133	380,2796

ł

los valores obtenidos por aplicación de las fórmulas en las <u>Ta--</u> blas II y III.

Aparentemente existe una discrepancia notable en el décimo armónico entre los valores calculados por los dos métodos. Para explicar esta diferencia notemos que si a una función periódica f(x) se le aplica el método numérico de análisis de Fourier los coeficientes obtenidos a'_r y b'_r son tales que si 2n es el n<u>ú</u> mero de intervalos en que se divide el período, la expresión:

$$\frac{1}{2} a_0' + a_1' \cos x + a_2' \cos 2x + \dots + a_{n-1}' \cos (n-1) x + \frac{1}{2} a_n' \cos nx + b_1' \sin x + b_2' \sin 2x + \dots + b_{n-1}' \sin (n-1) x$$
(32)

es igual a f(z) para todo punto $x = \frac{k\pi}{n}, (k = 0, 1, 2, ..., 2n-1)$. Los coeficientes están dados por las fórmulas:³⁶

$$a_{r}^{\prime} = \frac{1}{n} \sum_{k=0}^{2n-1} f(\frac{k\pi}{n}) \cos \frac{kr\pi}{n} ; r = 0, 1, 2, ..., n;$$

$$b_{r}^{\prime} = \frac{1}{n} \sum_{k=0}^{2n-1} f(\frac{k\pi}{n}) \sin \frac{kr\pi}{n} ; r = 1, 2, ..., (n-1).$$

Si la función f(x), desarrollada en serie de Fourier da una serie absolutamente convergente, se podrá obtener la relación entre los coeficientes del polinomio trigonométrico (32) y los coefi-cientes de la serie de Fourier, substituyendo $f(\frac{k\pi}{n})$ por la se-rie correspondiente en las fórmulas arriba indicadas. Teniendo en cuenta las fórmulas:

³⁶Whittaker y Robinson, op. cit., §134.

TABLA	. II
TART.A	ТТ

	z	'n	z _n		ž.
n	(1)	(2)	(2.)	(1)	(2)
0	61,6158	61,6160	0	0	0
2	-187,1517	-187,1517	150,6255	150,6256	150,6256
4		-10,1457	32,6624	32,6623	32,6623
6	-6677	-6679	4,8378	4,8365	4,8379
8	-499	-500	6440	6426	6439
10	-41	-40	816	825	805
12	-4	-3	96	116	95
14					10
16					1

TABLA III

	an	b _n	A	'n	E	n
n	(1)	(1)	(1)	(2)	(1)	(2)
0	-817,1619	84,2881	4.061,2802	4.061,2802	418,9108	418,9108
2	-526,7660	-340,2405	1.309,0096	1.309,0095	-845,4952	-845,4951
4	-81,4017	-50,1372	202,2827	202,2825	-124,5906	-124,5905
6	-11,4346	-6,6233	-8,4149	28,4149	-16,4587	-16, 4587
8	-1,4674	-8234	3,6465	3,6459	-2,0462	-2,0459
10	-1813	-997	4505	4446	-2477	-2446
12	-211	-114	524	525	-284	-2 85
14				60		-3 2
16				7		-4

- (1) Valores obtenidos de los de la Tabla I por análisis armónico aproximado.
- (2) Valores obtenidos mediante formulas.

 $\sum_{\substack{k=0\\k=0}}^{2n-1} \cos \frac{kr\pi}{n} \cos \frac{kp\pi}{n} = \begin{cases} 2n \text{ para } r+p = 2r_1n \text{ y } r-p \neq 2p_1n, \\ n \text{ para } r+p = 2r_1n \text{ o } r-p = 2p_1n, \\ 0 \text{ para los demás casos;} \end{cases}$

 $\sum_{k=0}^{2n-1} \operatorname{sen} \frac{kr\pi}{n} \cos \frac{k\pi}{n} = 0;$

 $\sum_{k=0}^{2n-1} \operatorname{sen} \frac{kr\pi}{n} \operatorname{sen} \frac{kp\pi}{n} = \begin{cases} n \quad \text{para} \quad r + p = 2r_1n, \\ -n \quad \text{para} \quad r - p = 2p_1n, \\ 0 \quad \text{para los demás casos;} \end{cases}$

donde r, p, r₁ y p₁ son números enteros.

Si representamos f(x) por la serie:

 $\frac{1}{2} \circ \circ a_1 \cos x + \dots + a_m \cos mx + \dots$

+ b_l sen x + ... + a_m sen mx +...,

se obtiene:

 $a_{r}^{\prime} = \sum_{k=0}^{\infty} a_{2kn+r} + \sum_{k=1}^{\infty} a_{2kn-r}, \quad r = 0, 1, ..., n;$

 $b_r' = \sum_{k=0}^{\infty} b_{2kn+r} - \sum_{k=1}^{\infty} b_{2kn-r}, \quad r = 1, 2, ..., (n-1).$

Tomando en cuenta estas expresiones, el valor del coeficiente del décimo armónico del cálculo numérico debe ser igual, despreciando armónicos de orden superior, a la suma del 10° y 14- armónicos - exactos. Por ejemplo, $A_{10} + A_{14} = 4446 + 60 = 4506$, valor que difiere del obtenido por cálculo numérico ($A_{10}^{i} = 4505$) en una - unidad de séptimo orden. Tomando en consideración este factor de

corrección en la comparación de los dos métodos, la discrepancia máxima no pasa de dos unidades de séptimo orden en la <u>Tabla III</u>.

Para x calculado según el método numérico existe otra cau sa de discrepancia para los armónicos de orden elevado. Se debe a que estos coeficientes se obtienen de los coeficientes de la se rie de x multiplicándolos por $4n^2\omega^2$, valor que es muy grande para n elevado y hace que una diferencia despreciable en X aparezca como una diferencia notable en x. Por ejemplo, en el do ceavo armónico de x una diferencia de una unidad trae una diferencia de 29 unidades en x. Por ello los valores de los coe-ficientes de la serie de 🕱 calculados mediante fórmulas y que son exactos a siete decimales de compararán con los de la serie de X calculados por el otro procedimiento y no con los de X. -En tal caso la discrepancia máxima entre los valores de la Tabla II obtenidos por los dos métodos tampoco pasa de 2 unidades de séptimo orden.

Estos resultados sirven de comprobación de la exactitud de las fórmulas obtenidas.

5. RESULTADOS DE LOS CALCULOS NUMERICOS PARA DIFEREN TES VALORES DEL PACAMETRO q.

Para tener una idea general del comportamiento de las órbi-tas, conforme q varía desde cero hasta la unidad, he calculado ocho órbitas para valores de q(0 < q < 1) escogidos arbitrariamen te. Las <u>Tablas IV-VIII</u> muestran los resultados de estos cálculos, indicando en la primera línea, los números 2,3,...,9 las órbi-tas calculadas y reservándose los números 1 y 10 para los casos limites q = 0 y q = 1 respectivamente. Los valores correspondientes de q y de g_1 aparecen en todas las tablas en la segunda y tercera lineas. La <u>Tabla IV</u> contiene los parámetros principales que sirven de base para el cálculo; la <u>Tabla V</u>, los coeficientes de Fourier de la coordenada de posición x; la <u>Ta-bla VI</u>, los coeficientes de Fourier de la aceleración x = X, y las <u>Tablas VII y VIII</u>, los coeficientes de Fourier de los coefi-cientes de Hill en las ecuaciones (13) y (14), cuyas expresiones explícitas están dadas por las fórmulas (31) y (31a).

El método de cálculo utilizado ha sido el mismo que para el valor q = 0.01 ya expuesto y posteriormente los resultados nu-méricos han sido comprobados por las fórmulas (29), (30), (31) y (31a) que dan los coeficientes de las series de Fourier. Para la órbita No. 8 hubo que hacer la división del período en 36 par-ses en vez de 24, porque los armónicos de orden elevado iban -creciendo en valor, y para la órbita No. 9 se dividió en 48 par tes. Las fórmulas indicaron, según se puede ver de las tablas -que las primeras 7 órbitas resultaron correctas en 4 decima-les por el método de enálisis armónico aproximado, pero para obte ner con la misma exactitud la octava órbiba habría que hacer la división del período en 72 partes (de 5[°] en 5[°]), ya que existen armónicos de orden 36 de valor numérico mayor que una unidad de cuarto orden.

5a. <u>La órbita límite para q = 0</u>.- Para completar el cua-dro anterior hubo que calcular los valores correspondientes a -q = 0 y q = 1. Para la órbita 1 (q = 0) todos los valores se pueden obtener de las fórmulas haciendo tender q hacia cero excepto los valores z_0 y r. Para z_0 se puede notar que x va

TABLA IV

	1	2	3	4	5	6	7	8	9	•
q	0	0.00101,7	0.00241,3	0.00465,6	0.00821,7	0.01423,8	0.02666,8	0.06887,3	0.23383,8	1
δ_1	00	2,00000	1.63299	1.41421	1.26491	1.15470	1.06905	1.01000	1.00002	l
k	0	0.12702	0.19460	0.26795	0.35100	0.45142	0.58957	0.81860	0.99106	l
\propto	1	1.05902	1.08630	1,11237	1.13738	1.16144	1.18465	1.20362	1.20710	1,20711
3	l	0.93301	0.89528	0.85355	0.80619	0.75000	0.67678	0.57019	0.50316	0.50000
N	0	0.06599	0.10472	0-14645	0.19381	0.25000	0.32322	0.42981	0.49684	0.50000
ΰ'	0	05902	08630	-,1 1237	 13738	16144	18465	 20362	20710	20711
<u>2 K</u> 77	.1	1.00407	1.00968	1.01871	1.03314	1.05776	1.10952	1.29457	2.17167	ω .
<u>2 E</u> 77	1	0•99595	0.99046	0.98181	0.96845	0.94692	0.90642	0.801ć4	0.65316	0.63662
60	0.5	0•49400	0.48609	0.47409	0.45665	0.43083	0.38820	0.29887	0.16553	0
r	45°	41 ⁰ 22'30"	39 ⁰ 26 ' 50"	37 ⁰ 22'00"	35 ⁰ 01'40"	32 °13 ′20"	28°21'10"	21 ⁰ 25'05"	11 ° 35'40"	0

- 43a **-**

TABLA V

	1	2	3	4	5	6	7	8	9	10
q	0	101,7	241,3	465,6	821,7	1423,8	2666,8	6887,3	23383,8	1
d'	00	2.00000	1.63299	1.41421	1.26491	3015470	1.06905	1.01000	1.00002	1
z_0 z_2 z_4 z_6 z_8 z_{10} z_{12} z_{14} z_{14} z_{16} z_{18} z_{20} z_{22}	0	702 -6332 -102 -2	1634 -9662 -242 -8	3063 -13221 -469 -21 -1	5171 -17158 -832 -50 -3	8361 -21753 -1450 -114 -10 -1	13810 -27695 -2725 -293 -35 -5 -1	25923 -36071 -6849 -1233 -239 -50 -11 -3 -1	45433 -35394 -17216 -7055 -2760 -1083 -435 -179 -75 -33 -14 -7	69315 0 0 0 0 0 0 0 0 0 0 0 0
^z 24 ^z 26									-3 -1	0 0

- 43b

I

TABLA VI

9 23383,8 1.00002 9786 7366 6792	1 1 0 0
23383,8 1.00002 9786 7366 6792	1 1 0 0
1•00002 ⊴786 7366 6792	1 0 0
⊴786 7366 6792	0 0
7366 6792	0
6792	
	0
4724	0
2899	0
1675	0
938	0
515	0
278	0
150	0
80	0
42	2
22	0
11	0
6	0
3	0
1	0
	4724 2899 1675 938 515 278 150 80 42 22 11 6 3 1

- 43c -

TABLA VII

	1	2	3	4	5	6	7	8	9	10
đ	0 60	101,7 2.00000	2 41, 3 1.63299	465,6 1.41421	821,7 1.26491	1423,8 1.15470	2666,8 1.06905	6887,3 1.01000	23383,8 1.00002	1 1
A_0 A_2 A_4 A_6 A_10 A_{12} A_{14} A_{16} A_{20} A_{22} A_{24} A_{26} A_{28} A_{30} A_{32} A_{34}	4.0000 0 0	4.0079 3863 203 9	4.0182 6030 484 33 2	4.0331 8546 935 90 8 1	4.0529 1.1698 1658 211 25 3	4.0769 1.6128 2899 485 74 11 2	4.0911 2.3961 5552 1261 264 54 10 2	3.8388 4.7098 1.5774 5451 1821 580 179 54 16 5 1	-1.5702 13.4762 7.8731 4.3238 2.4104 1.3563 7582 4178 2268 1215 644 339 177 92 47 24 12 6	88888888888888888888888888888888888888

- 43d -

TABLA VIII

				1	1	[[T	
 	1	2	3	4	5	6	7	8	9	10
q	0	101,7	241,3	465,6	821,7	1423,8	2666,8	6887,3	23383,8	1
ð,	ω	2.00000	1.63299	1.41421	1.26491	1.15470	1.06905	1.01000	1.00002	1
B ₀ B ₂ B ₄ B ₆ B ₁₂ B ₁₄ B ₁₆ B ₁₂ B ₁₄ B ₁₈ B ₂₂ B ₂₆ B ₂₈ B ₁₂ B ₁₄ B ₁₆ B ₁₂ B ₁₆ B ₁₂ B ₁₆ B ₁₂ B ₁₆ B ₁₂ B ₁₆ B ₁₆ B ₁₆ B ₁₆ B ₁₆ B ₁₇ B ₁₆ B ₁₈ B ₂₈ B ₃₉ B ₃₈ B ₃₈	0	409 -2566 -122 -5	977 3986 292 19 1	1905 -5608 -569 -52 -4	3415 -7593 -1017 -122 -14 -1	6071 -1.0303 -1800 -283 -42 -6 -1	1.1926 -1.4906 -3508 -747 -151 -30 -6 -1	3.5281 -2.7705 -1.0123 -3379 -1076 -332 -100 -30 -10 -3	19.1775 -7.3180 -4.6907 -2.7400 -1.5444 -8524 -4635 -2488 -1323 -698 -365 -190 -99 -51 -26 -13 -7 -3 -7 -3 -1	88888888888888888888888888888888888888
	1			I	1					

I 43e

I

ria entre valores $\log \propto y \log \beta$ y al tender q hacia cero -las dos expresiones anteriores tienden hacia cero. La curva que representa x en función de σ tiende hacia el eje- σ (x = 0). Permaneciendo finito el período, de ello se deduce que z_o tiende hacia 0 ya que

$$z_{o} = \frac{\omega}{2\pi} \int_{0}^{\omega} x(\sigma) d\sigma.$$

Para el valor de r se notará que:

$$q \xrightarrow{\lim_{q \to 0} -\frac{1}{10} + \frac{1}{10} + \frac{1}{10} = \frac{1}{\sqrt{1+1/y_{1}^{2} + 1}} \cdot \frac{\sqrt{1+1/y_{1}^{2} + \sqrt{1-1/y_{1}^{2}}}{\sqrt{1+1/y_{1}^{2} - \sqrt{1-1/y_{1}^{2}}}}$$

$$= \frac{1}{q} \xrightarrow{\lim_{q \to 0} 0} \left[\frac{\sqrt{1+1/y_{1}^{2} + \sqrt{1-1/y_{1}^{2}}}}{\sqrt{1+1/y_{1}^{2} + 1}} \right]^{2} \cdot \frac{1 + 1/y_{1}^{2} - 1}{1+1/y_{1}^{2} - (1-1/y_{1}^{2})}$$

$$= \frac{1}{2} \lim_{q \to 0} 0 \left[\frac{\sqrt{1+1/y_{1}^{2} + \sqrt{1-1/y_{1}^{2}}}}{\sqrt{1+1/y_{1}^{2} + 1}} \right]^{2}$$

$$= \frac{1}{2} \lim_{q \to \infty} 0 \left[\frac{\sqrt{1+1/y_{1}^{2} + \sqrt{1-1/y_{1}^{2}}}}{\sqrt{1+1/y_{1}^{2} + 1}} \right]^{2}$$

$$= \frac{1}{2} \lim_{q \to \infty} 0 \left[\frac{\sqrt{1+1/y_{1}^{2} + \sqrt{1-1/y_{1}^{2}}}}{\sqrt{1+1/y_{1}^{2} + 1}} \right]^{2} = \frac{1}{2}.$$

El parámetro r está definido por la ecuación:

$$\operatorname{sn}\frac{2\mathrm{Kr}}{\pi} = \sqrt{\frac{\delta}{\kappa}},$$

o su equivalente:

$$\frac{2Kr}{\pi} = \int_{0}^{\sqrt{-\delta/\alpha k}} \frac{dz}{\sqrt{(1-z^{2})(1-k^{2}z^{2})}}$$

Toniendo en cuenta las desigualdades:

$$\frac{1}{\sqrt{1-z^2}} \leq \frac{1}{\sqrt{(1-z^2)(1-k^2z^2)}} \leq \frac{dz}{\sqrt{(1-z^2)(1-k^2)}}$$

e integrando entre límites 0 y v-b/ak se obtiene

$$\operatorname{sen}^{-1} \sqrt{\frac{-\delta}{\alpha \, k}} \leq \frac{2 \mathrm{Kr}}{\pi} \leq \frac{1}{\sqrt{1 - k^2}} \operatorname{sen}^{-1} \sqrt{\frac{-\delta}{\alpha \, k}}.$$

Altender q hacia 0, $\frac{2Kr}{\pi}$ tiende hacia sen⁻¹ $\sqrt{\frac{1}{2}} = \frac{\pi}{4} = 45^{\circ}$, por estar comprendido entre dos valores que tienden a este limite común. Por otra parte, $\lim_{\alpha \to 0} \frac{2K}{\pi} = 1$, siendo por lo tanto -q $\frac{\lim r}{\longrightarrow} 0$ $r = 45^{\circ}$.

5b. La órbita No. 10, (q = 1).- Para la órbita 10 (q = 1)los valores γ_1 , k, α , β , γ , δ se encontrarán inmediatamente de las fórmulas respectivas pasando al límite. Para estudiar otros parámetros se designará $\eta = 1 - q$ como infinitesimal básica. -De la serie de Taylor se tiene:

$$\log q = -\gamma + 0(\gamma^2).$$

De la relación log q log q' = π^2 , donde q' es el parámetro -conjugado de q, resulta:

$$\log q' = -\frac{\pi^2}{2} + 0(1),$$

una cantidad negativa infinitamente grande de primer orden, siendo por ello q' infinitesimal con respecto a pⁿ cualquiera que sea n.

El comportamiento del parámetro K en la vecindad de q = 1 se deduce de la expresión siguiente: 37 ³⁷Wilson, op. cit., § 189, ecuación (9).

$$\frac{2K}{\pi} = \frac{-4 \log q'}{\pi (1 + \sqrt{k})^2} (1 + 2q'^4 + ...)^2 = \frac{\pi}{\eta} + 0(1)$$

la cual muestra que K es una cantidad infinita de primer orden. El valor de ω se obtiene de la fórmula (Sección 2):

$$\omega = \frac{\alpha - \gamma}{2 \frac{2K}{\pi}} = \frac{.353567}{\pi} + 0(\gamma^2),$$

o sea una infinitesimal de primer orden.

El valor de E tiende hacia la unidad según se puede ver de la fórmula:

$$E = \int_0^{\frac{\pi}{2}} \sqrt{1 - k^2 \operatorname{sen}^2 \varphi} \, \mathrm{d} \varphi.$$

Teniendo en condideración los valores obtenidos para K, ω y E, fácilmente se deduce que los coeficientes A_0 y B_0 son cantidades infinitas de 2⁰ orden y los demás coeficientes de estas dos series son infinitamente grandes de primer orden.

Para el valor de r se utilizará la relación

$$\frac{1}{1-z^2} \stackrel{>}{=} \frac{1}{\sqrt{(1-z^2)(1-k^2z^2)}} \stackrel{>}{=} \frac{1}{1-k^2z^2}.$$

El valor de $(\sqrt{-\delta/\alpha k})|_{q=1} = \sqrt{2} - 1$ se obtiene por substitución directa. Integrando las desigualdades anteriores entre 0 y - $\sqrt{-\delta/\alpha k}$ y utilizando la definición integral de r ya indicada -- para la órbita 1 se tiene:

$$\tanh^{-1}\sqrt{\frac{-\delta}{\alpha k}} \geq \frac{2Kr}{\pi} \geq \frac{1}{k} \tanh^{-1} k \sqrt{\frac{-\delta}{\alpha k}}.$$

Por el razonamiento ya utilizado se obtiene:

$$q \xrightarrow{\lim n 1} \frac{2Kr}{\pi} = \tanh^{-1} (\sqrt{2} - 1) = .441,$$

$$\therefore r = \frac{.4417}{\pi} + o(\eta^2),$$

una infinitesimal de primer orden.

Para los coeficientes de la serie de x se utilizará el siguiente método.

Dado un valor $\epsilon > 0$ arbitrario se puede encontrar un valor $\eta > 0$ (γ aquí no es la infinitesimal básica discutida antes) tal - que:

$$\left| \log \frac{1 + k \sin^2 \left(\frac{2Kz}{\pi}\right)}{\alpha + \delta k \sin^2 \left(\frac{2Kz}{\pi}\right)} - \log 2 \right| < \epsilon, \quad \text{si } 1 > \sin \frac{2Kz}{\pi} > 1 - \frac{1}{2Kz}$$
$$y \quad 1 > k \ge k_1 > 1 - \frac{1}{2Kz}$$

lo que no es sino la expresión de la continuidad de la función -log $\frac{1 + k u^2}{\alpha + \delta k u^2}$ con respecto a las variables u y k.

Por otra parte, haciendo tender k hacia la unidad, $\frac{2K}{\pi}$ -crece indefinidamente y por lo tanto existe, para un valor \in y un valor γ definidos anteriormente un valor de k = $k_0 \ge k_1$ tal que para todos los valores de k tales que $l \ge k \ge k_0$ se verifique la desigualdad:

$$\frac{\tanh^{-1}(1-\eta)}{\frac{2K}{2}} < \epsilon.$$

Definiendo ζ como $\zeta = \frac{\tanh^{-1}(1-7)}{\frac{2K_0}{\sqrt{2k}}} < \epsilon$, donde K_0 es el valor correspondiente a k_0 , se tendrá para toda k tal que -- $1 > k \ge k_0$:

$$\frac{2Kz_1}{\pi} = \int_0^{1-t} \frac{dx}{\sqrt{(1-x^2)(1-k^2x^2)}} < \tanh^{-1}(1-t) = \frac{2K_0 \xi}{\pi} \le \frac{2K \xi}{\pi}.$$

Para todo valor de z en el intervalo $(5, \frac{\pi}{2})$ y todo valor de k tal que $1 > k \ge k_0$ se tiene:

$$\operatorname{sn} \left(\frac{2\mathrm{Kz}}{\pi}\right) \geq \operatorname{sn} \frac{2\mathrm{K}\zeta}{\pi} > \operatorname{sn} \frac{2\mathrm{Kz}_1}{\pi} = 1 - \gamma.$$

Las desigualdades anteriores se verifican, porque todos los valores de z que allí aparecen están en el intervalo $(0, \frac{\pi}{2})$ en el cual la función sn $\frac{2Kz}{\pi}$ es una función creciente de z.

Utilizando las relaciones obtenidas se puede escribir:

$$\begin{vmatrix} x_{0} - \log 2 \end{vmatrix} = \begin{vmatrix} \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} (\log e^{x} - \log 2) dz \end{vmatrix}$$
$$= \begin{vmatrix} \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} (\log e^{x} - \log 2) dz + \frac{2}{\pi} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} (\log e^{x} - \log 2) dz \end{vmatrix}$$
$$\leq \frac{2}{\pi} \int_{0}^{\frac{\pi}{2}} |\log e^{x} - \log 2| dz + \frac{2}{\pi} \int_{\frac{\pi}{2}}^{\frac{\pi}{2}} |\log e^{x} - \log 2| dz.$$

El valor máximo del primer integrando es log $2 \propto$ porque $e^{\mathbf{x}}$ varía entre $\propto y_{\beta}$ y $2 > \frac{1}{\beta} > \frac{1}{\kappa}$. El valor máximo del segundo inte-grando no pasa de \in según la forma en que se han definido los valores \mathcal{G} y k_0 , siendo cierta la afirmación anterior para todos los valores de $k \ge k_0$. De lo anterior se deduce:

$$\begin{aligned} |z_0 - \log 2| < \frac{2}{\pi} \cdot 5 \log 2 + \frac{2}{\pi} (\frac{\pi}{2} - \frac{\pi}{2}) \in \\ < \frac{2}{\pi} \log 2 + \frac{\pi}{2} \cdot \epsilon + \frac{2}{\pi} \cdot \frac{\pi}{2} \cdot \epsilon = \frac{2}{\pi} (\log 2 + \frac{\pi}{2}) \in < 2\epsilon, \end{aligned}$$

una cantidad infinitamente pequeña.

Siendo cierta esta relación para todo valor de k tal que - $1 > k > k_0$, se puede escribir

$$\lim_{k \to 1} z_0 = \log 2.$$

Para los demás términos de la serie se tiene:

$$\begin{vmatrix} z_{2n} \end{vmatrix} = \begin{vmatrix} \frac{4}{\pi} \int_{0}^{\frac{\pi}{2}} \log e^{x} \cos 2nz \, dz \end{vmatrix} = \begin{vmatrix} \frac{4}{\pi} \int_{0}^{\frac{\pi}{2}} (\log e^{x} - \log 2) \cos 2nz \, dz \end{vmatrix}$$
$$\leq \frac{4}{\pi} \int_{0}^{\frac{\pi}{2}} \log e^{x} - \log 2 \mid dz < 4\epsilon.$$

La última expresión tiende hacia cero al tender k hacia 1, c<u>o</u> mo ha sido mostrado arriba, por lo cual

$$\lim_{k \to \infty} z_{2n} = 0 \quad (n = 1, 2, 3, ...).$$

Los coeficientes de X se obtienen de los de x multipli-cándolos por -4 $n^2 \omega^2$ (= 0 para este caso porque ω = 0) siendo por lo tanto nulos.

5c. <u>Imagen gráfica de los resultados numéricos anteriores</u>.-En las figuras 5-8 están las representaciones gráficas de los resultados numéricos más importantes indicados en las tablas IV, V, VII y VIII. En todas las figuras fue tomado el parámetro q como variable independiente. Para que no se aglumeren demasiado.-los puntos correspondientes a las órbitas de valor q pequeño -- $(\gamma_1 \text{ grande})$, lo que produciría en las figuras líneas con una pendiente muy fuerte, siendo ésto poco conveniente para ver con claridad la variación de los parámetros, se utilizó el papel semilogaritmico, mediante lo cual se ha extendido la región vecina del punto q = 0 hasta -co.

Fig.6

ω;z_o 0.6₁ ٠ 0.5 z. w 0.4 0.3 • • • 0.2 0.1 0 0.00/ 0.002 0.004 0.006 0.008 0.01 0,1 Fiq.8 1 . 7

En la figura 5 aparecen el parámetro fundamental de Störmer γ_1 y los valores de $\frac{2K}{\pi}$ y $\frac{2E}{\pi}$, múltiplos de los parámetros K y E llamados integrales elípticas completas de primera y segunda clase respectivamente. Para calcular, dado el valor de q, el valor de γ_1 es necesario encontrar antes el valor del módulo k de la función elíptica. La fórmula que nos suministra este va lor es:

$$\sqrt{k} = \frac{H_1(0)}{\theta_1(0)} = \frac{2 q^4 + 2 q^4 + 2 q^4 + \dots}{1 + 2q + 2 q^4 + \dots}$$

Il valor de γ_1 está dado por la relación: $\gamma_1^2 = \frac{1+k^2}{2k}$ (≥ 1 , porque k es positivo).

Como k es una función creciente del parámetro q variando desde O hasta l para $0 \le q \le 1$, el valor de γ_1 , según se ve de la fórmula arriba utilizada, disminuye para el mismo intervalo de q desde ∞ hasta la unidad.

Para calcular el valor de $\frac{2K}{\pi}$ se utilizó la fórmula:

$$\frac{2K}{\pi} = \theta_1^2(0) = (1 + 2q \div 2q^4 + \dots)^2.$$

De la misma se ve claramente que $\frac{2K}{\pi}$ es una función crecien te de q, siendo igual a la unidad para q = 0 y tendiendo ha-cia el infinito en la vecindad de q = 1, lo que ya fue encontra do con mayores detalles anteriormente. El valor de $\frac{2E}{\pi}$ se en-cuentra de la fórmula:³⁸

 38 Wilson, op. cit., §191, fórmula (20).

$$\frac{K - E}{K} = \frac{\Theta''(0)}{\Theta(0)}$$

la que, con una ligera variación algebraica, puede escribirse como:

$$\frac{2E}{\pi} = \frac{2K}{\pi} - \frac{8}{\sqrt{k^{2}} \theta_{1}^{2}(0)} (q - 4q^{4} + 9q^{9} - \dots),$$

donde $k' = \sqrt{1-k^2} = \left(\frac{1-2q+2q^4-\ldots}{1+2q+2q^4+\ldots}\right)^2 = \frac{\theta^2(0)}{\theta_1^2(0)}.$

Para ver el comportamiento general de $\frac{2E}{\pi}$ es más cómoda su definición mediante la integral:

$$E = \int_0^{\frac{\pi}{2}} \sqrt{1 - k^2 \operatorname{sen}^2 \varphi} \, \mathrm{d}\varphi,$$

la que muestra que E es una función decreciente de k (y por lo tanto de q) y disminuye desde $\frac{\pi}{2}$ para k = 0 hasta la unidad para k = 1.

En la figura 5 están las gráficas de k y r, siendo k el módulo de las funciones elípticas y \pm r las partes reales de las dos raíces del denominador de la función e^{2x} (Sección 3e). El valor de k se puede deducir de la fórmula ya indicada. Para valores de q vecinos a q = 1 es más conveniente, tanto para el cálculo numérico como para el estudio del comportamiento la -fórmula:

$$k = \left(\frac{1 - 2q! + 2q! 4 - \dots}{1 + 2q! + 2q! 4 + \dots}\right)^2 = 1 - 8 q! + 0(q!^2),$$

donde q' es el parámetro conjugado de q y está definido por la relación log q log q' = π^2 ya utilizada anteriormente. Si - se toma la cantidad infinitesimal $\chi = 1 - q$ como infinitesimal básica en la vecindad del punto q = 1 repitiendo el razonamiento ya usado se llega a la conclusión de que tanto q' como (1-k) son infinitesimales con respecto a χ^n , cualquiera que sea el va lor de n. De ello se puede deducir que para q = 1 todas las derivadas de k con respecto a q son nulas, lo cual explica el achatamiento que se nota en la curva en la vecindad de este punto. En el lenguaje geométrico se dice que el contacto de la curva -k = k(q) con la recta horizontal que pasa por este punto es de orden infinito. De ambas fórmulas se puede ver que k es una -función constantemente creciente de q y vale cero para q = 0 y la unidad para q = 1. Para el cálculo de r se puede utili-zar la fórmula:³⁹

$$\frac{dn}{\pi} \frac{2KT}{\pi} = \frac{1 + 2q \cos 2r + 2q^4 \cos 4r + \dots}{1 - 2q \cos 2r + 2q^4 \cos 4r + \dots}$$

de donde se obtienen las relaciones aproximadas:

$$\frac{\mathrm{dn} \frac{2\mathrm{Kr}}{\pi} - \sqrt{\mathrm{k'}}}{\mathrm{dn} \frac{2\mathrm{Kr}}{\pi} + \sqrt{\mathrm{k'}}} \cong 2\mathrm{q} \cos 2\mathrm{r} \quad \mathrm{o} \cong \frac{2\mathrm{q} \cos 2\mathrm{r}}{1 + 2\mathrm{q}^4 \cos 4\mathrm{r}}$$

despreciando en el primer caso las potencias de q superiores al tercer grado y en el segundo caso las superiores al octavo. Las cantidades que aparecen en el primer miembro están ya definidas en este trabajo: k' es el módulo conjugado $(k^2 + k'^2 = 1)$, y el valor dn $\frac{2Kr}{r}$ está dado por la expresión:

$$dn \frac{2Kr}{\pi} = \sqrt{1 - k^2 sn^2 \frac{2Kr}{\pi}} = \sqrt{1 - k^2 (\frac{-\delta}{\kappa k})} = \sqrt{\frac{\kappa + \delta k}{\kappa}}$$

 39_{Wilson} , op. cit., §189, ecuación (10).

El comportamiento general de r se ve claramente de su definición mediante la integral:

$$\frac{2Kr}{\pi} = \int_{0}^{\sqrt{-\delta/\alpha k}} \frac{dz}{\sqrt{(1-z^{2})(1-k^{2}z^{2})}}$$

en la cual el factor rápidamente creciente $\frac{2K}{\pi}$ en el primer miem bro sugiere que r es una función decreciente de q variando -desde 45° para q = 0 hasta 0° para q = 1. Todos los parámetros discutidos hasta ahora están tomados de la Tabla IV.

Los valores más importantes de los coeficientes de Fourier en las ecuaciones en variaciones son los términos seculares. Los términos seculares A_0 y B_0 de las Tablas VII y VIII respectivamente aparecen en la figura 7. Las fórmulas que dan sus valo-res están comprendidas entre las fórmulas (31) y (31a) respecti-vamente. El coeficiente B_0 crece constantemente desde 0 para q = 0 hasta infinito para q = 1. El coeficiente A_0 crece de<u>s</u> de el valor 4 para q = 0 hasta un máximo que difiere poco de 4, para el valor de q = 0.025, valor que corresponde $y_1 = 1.1$, disminuyendo después rápidamente, pasando a valores negativos y tendiendo hacia - ∞ para q = 1.

En la figura 8 aparecen ω y z_0 tomados de las Tablas IV y V respectivamente. El valor de ω está dado por la fórmula

$$\omega = \frac{\alpha - \lambda}{2 \frac{2K}{\pi}}$$

El numerador de esta expresión puesto explicitamente en función - de χ_1 es:

$$\propto -\gamma = \sqrt{1 + 1/\gamma_1^2} + \sqrt{1 - 1/\gamma_1^2} = (2 + 2\sqrt{1 - 1/\gamma_1^4})^{1/2}$$

función creciente de γ_1 y por lo mismo decreciente de Q. El denominador de la fórmula que da el valor de ω es una función creciente de q como ya fue demostrado anteriormente, pudiendo deducirse que ω disminuye constantemente al aumentar q. El va lor de ω , que es 2π veces la frecuencia del movimiento decrece desde $\frac{1}{2}$ para q = 0 hasta cero para q = 1. El último re-sultado equivale a decir que para q = 1 la órbita deja de ser periódica ya que el período, que es el valor recíproco de la frecuencia tiende hacia infinito, perdiendo significado la periodic<u>i</u> dad para el límite. Este caso corresponde a la órbita doblemente asintótica a la órbita circular de radio 1.

El término secular de la coordenada de posición z_0 crece desde cero para q = 0 hasta log 2 para q = 1, como ya ha si do demostrado en la Sección 5b. Su expresión explícita aparece entre las fórmulas (29).

Otros coeficientes que aparecen en las Tablas IV-VIII no ti<u>e</u> nen la misma importancia para tener la idea del movimiento y por ello no se hicieron sus gráficas respectivas.

6. RISUMEN

1) El estudio del movimiento de una partícula cargada eléctricamente en el campo de un dipolo magnético se reduce a la solu ción de tres ecuaciones diferenciales simultaneas de segundo or --Tomando como coordenadas de la partícula cargada las coorde den. nadas esféricas, que presentan la ventaja de ofrecer la misma simetría que el dipolo, se puede reducir el sistema de ecuaciones diferenciales a un sistema de des ecuaciones de segundo orden, re duciéndose el estudio del movimiento en tres dimensiones al estudio del movimiento de la partícula en su propio plano meridiano y de la rotación del plano meridiano alrededor del eje polar. <u>E1</u> ~ sistema obtenido no ea integrable directamente, pero mediante integración numérica fueron encontradas propiedades muy interesar-tes de las órbitas, en particular de las órbitas periódicas ortogonales a la intersección de los planos meridiano y ecuatorial --descubiertas por Störmer y estudiadas detalladamente por Lemaitre y Vallarta. Las trayectorias en el plano ecuatorial son solubles mediante funciones elípticas y, en el caso particular de que el -X1, introducido por StSimer para disminuir el número parámetro de grados de libertad, sea mayor que la unidad, se reducen a una trayectoria rectilinea periòdica a lo largo de la intersección de los planos meridiano y ecuatorial.

2) Para estudiar las órbitas simétricas, que para el valor de $\chi_1 = 1.31359$ tienden hacia las órbitas ecuatoriales, y para

estudiar en general el comportamiento de las órbitas en el plano meridiano en la vecindad de las órbitas ecuatoriales es necesario resolver las ecuaciones en variaciones, que para las órbitas ecua toriales se reducen a la forma de dos ecuaciones de Hill. La fun ción periódica que aparece en la ecuación de Hill en forma canóni ca está presentada como serie de Fourier. Para nuestro caso particular se necesitan encentrar las series de Fourier conociendo las funciones elípticas correspondientes. Además, para la verifi cación del resultado es conveniente encontrar las series de Fourier que nos den la coordenada y la aceleración de la partícula, a fin de poder verificar el resultato modiante la ecuación del m<u>c</u> vimiento.

3) Todas estas funciones son deblemente periódicas, lo cual permite encontrar las integrales que dan los coeficientes de Fourier con sólo estudiar los puntos singulares de estas funciones. Los dos coeficientes de Hill y la aceleración son funciones elipticas, siendo aplicable para su estudio el teorema de los resi-duos. Para la coordenada de posición, que es logaritmo de una -función elíptica se necosita aplicar un teorema más general que el anterior aplicable a funciones multiformes no algebraicas. El caso particular que aquí se presenta fue resuelto recurriendo al artificio de cortes.

4) Las fórmulas que se obtuvieron presentan la ventaja so--bre el método numérico para obtener las series antes mencionadas de ser cómodas para el cálculo y ser más seguras en los resulta--dos, ya que el método numérico mediante la fórmula trapezoidal no da valores exactos, principalmente para armónicos elevados en las
órbitas de valores de χ_1 próximo a la unidad, como se vió al -comparar los resultados obtenidos por los dos métodos.

5) Para tener una idea general del comportamiento de las ór bitas se han calculado varias de éstas, tomando como parámetro -principal la q de Jacobi. Para los casos extremos q = 0 y -q = 1, que no representan en realidad órbitas periódicas en el sentido estricto de la palabra, ya que para q = 0 la órbita se reduce a un punto y para q = 1 el período crece indefinidamente, perdiendo sentido la periodicidad, hubo que aplicar métodos especiales para calcular los valores límites de algunos de los coeficientes buscados.

7. BIBLIOGRAFIA

- 1) H. Poincaré, "Les Méthodes Nouvelles de la Mécanique Céles-te," (Gauthier-Villars; Paris, 1892), Vol. I.
- Whittaker and Watson, "A Course of Modern Analysis," (Cam--bridge: University Press; 4th. ed., 1927).
- 3) E. Goursat, "Cours d'Analyse Mathématique," (Paris: Gauthier-Villars; 5eme. ed., 1929), Vol. II.
- 4) E. B. Wilson, "Advanced Calculus," (Ginn and Company; Boston, 1912).
- 5) P. Appell et E. Goursat, "Théorie des Fonctions Algébriques et de leurs Intégrales," (Paris: Gauthier-Villars; 2eme. ed., 1929), Vol. I.
- 6) Whittaker and Robinson, "The Calculus of Observations," ---(Blackie and Son Limited; London, 2nd. ed., 1932).

- 58 --
- 7) G. Lemaître and M. S. Vallarta, Phys. Rev. <u>43</u>, (1933).
- 8) G. Lemaître. Ann. de la Soc. Sci. de Bruxelles <u>A 54</u>, (1934).
- 9) M. S. Vallarta, University of Toronto Studies, Applied Mathematics Series, <u>No. 3</u>, (1938).
- 10) Carl Störmer, Vid. Selsk. Skr., Oslo (1904).
- 11 Carl Störmer, Zeits. f. Astrophys. 1, (1930).
- 12) Carl Störmer, Pub. Univ. Obs. Oslo, No. 20, (1934).
- 13) A. Baños Jr., Journal of the Franklin Institute, Vol. 227, --No. 5, (1939).
- 14) Odon Godart, Ann. de la Soc. Sci. de Bruxelles <u>I 58</u>, (1938).
- 15) C. Graef and S. Kusaka, Journal of Mathematics and Physics, Vol. XVII, <u>1</u> (1938).