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Abstract

Gravitational waves (GWs) have become an important topic during the last years. The
description of them can be achieved using the so known General Relativity (GR). The
GWs can be formed in different ways, for example a binary system of black holes rotat-
ing around each other. However, the primordial GWs, which are located at the largest
redshifts, might be better described by a completely different theory of gravitation;
Teleparallel Gravity (TG), rather than GR. In this thesis, I show that deviations can
be reached using TG extensions and that for other several reasons it can be considered
a more appropriate theory in the description of the gravitational interaction.
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Introduction

In 1907 Albert Einstein started to work in a new project when he came up with a deep
idea: For an observer in a free-falling cabin there is no gravitational field, and this
would be because of the equality of inertial and gravitational masses; in the free-falling
cabin the gravitational force and the force of inertia (which is the property common to
all the bodies that remain in their state, either at rest or in motion) cancel each other.
This idea would be known later as ‘the equivalence principle’, and Einstein thought
that it was a necessity to generalize the postulate of relativity on non inertial coordi-
nate systems [1]. From the equivalence principle Einstein concluded that the velocity of
light depend on the gravitational potential. Years of work ended with the publication
of the theory of General Relativity (GR) in 1915, a theory that is constructed over
pseudo-Riemannian geometry and that is based on the idea that the physics should
not depend on the reference systems, hence invariance of basic equations under trans-
formations of coordinates in a general coordinate system is an important requirement.
The curvature of space-time is the unique cause of gravity in GR; of course, this new
vision broke up with the Newtonian vision of gravity.

At this point, scientists had little knowledge about the universe. The idea that it was
static seemed reasonable, and with the intention to produce a universe with such fea-
ture, in 1917 Einstein included an additional term in his equations of GR, which was
weighted by a constant Λ called the cosmological constant [2]. Later on, the idea would
be rejected when in 1931 Edwin Hubble, after improving his 1929 work, reported in
his observations of the redshift of galaxies that the universe was expanding. Einstein
considered to have made a terrible mistake with the cosmological constant. Nonethe-
less, the use of this extra term would be considered, with other purposes, decades after.

In 1922, before the discovery of spin, the French mathematician Élie Cartan modi-
fied Einstein’s relativity allowing space-time to have, in addition to curvature, torsion,
and relating torsion to the density of intrinsic angular momentum [3]. Around those
years, and independently, the Austrian mathematician Roland Weitzenböck, thanks
to his work in differential geometry, developed a particular metric connection (that
today is called after him) which nullifies curvature and allows torsion to be the only
element that bends the manifold (space-time); indeed, torsion would be another nat-
ural space-time deformation [4]. Theories with active torsion sometimes are referred
as teleparallel, independently whether curvature is active too. Nevertheless, what we
might call Teleparallel Gravity (TG) is the theory in concordance with Weitzenböck’s
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vision; torsion is the unique element responsible for gravity.

Following these important works on torsion, in 1928 Einstein included torsion in GR
in his attempt of a unified field theory with teleparalellism. In fact, he received advise
from both Cartan and Weitzenböck, and Cartan wrote an essay about the history of
the relevant mathematical topic for Einstein’s paper [5]. This modification of GR is
known as the Einstein-Cartan theory. However, these kind of theories were left aside
until the late 1950s, when further investigation on torsion appeared. Theories that
consider important the inclusion of torsion, in addition to curvature, in the description
of the gravitational interaction; such as Einstein-Cartan and gauge theories for the
Poincaré and the affine groups, proposed curvature and torsion as independent degrees
of freedom, and considered that torsion should become relevant only when spins are
important.

The growing observational tensions across decades has motivated several physicist to
explore the possible landscape of gravity theories beyond GR, and specifically to study
the use of torsion to describe the gravitational interaction [6], independently whether
it is related with spin or not. TG started to gain some attention since then.

In 1927 the Belgian cosmologist Catholic priest Georges Lemaître, convinced that the
universe was expanding, followed the work of Einstein to propose a cosmological model.
This solution, which built the base for the Big Bang theory, was a symmetrical spheri-
cal space that grew exponentially over time, showing that the static cosmogonies were
unstable. Observations, as those captured by Hubble, gave popularity to Lemaître and
the idea that the universe is actually in expansion. Later on, in 1946, Lemaître pub-
lished a book that was made of a collection of five lectures delivered by him between
1929 and 1945 with regard to the primeval atom [7].

The properties of the expanding universe can also be investigated through the study
of Gravitational Waves (GWs), whose existence had been predicted by GR. This is
because a possible detection would lead to the understanding of not only the GWs
properties, as speed and polarization modes, but also to the understanding of the back-
ground on which they propagate. Evidently, a GW detection offers a new spectrum of
possibilities on which a better research of nature can be done at a fundamental level [8].

On September 14, 2015, almost one hundred years after the publication of GR, it was
directly measured, for the very first time, a GW. It was achieved by LIGO (Laser
Interferometer Gravitational-Wave Observatory), and corresponds to GWs that were
emitted by two black holes colliding and merging into one. This system was located
1.3 billion light-years away from earth [9], and in that moment, GWs passed from hav-
ing an indirect experimental confirmation to a direct experimental confirmation; GR
turned out to be a successful and consistent theory. Many models assume GR as the
correct theory to describe gravity as happens with the well known ΛCDM cosmological
model, which is the simplest model that predicts some of the most important features
of the universe and that is in concordance with the Big Bang theory. It was proposed in



CONTENTS 3

1998 and substituted SCDM (Standard CDM) of 1982 [10]. The ΛCDM cosmological
model is, in consequence, motivated by well-known observational successes in describ-
ing phenomenology at all scales to a very high precision [11, 12]. It does this through
the proposal of cold dark matter to explain the dynamics of galaxies and their clusters
[13, 14], and through a cosmological constant that models dark energy to explain the
late-time accelerated expansion of the Universe [15, 16]. The recovery of the cosmologi-
cal constant was an interesting fact; the initial purpose of using it was evidently wrong,
as it was mentioned by Einstein himself, but it is seen that its introduction gives to
gravitation the possibility to act repulsively over big spatial scales. In consequence, its
use seems to be feasible.

Figure 1: This figure, taken from [17], tries to explain the expansion of the universe.
As the figure grows, all relative distances increase at a rate that is proportional to their
magnitudes. This fact is stated in the Hubble-Lemaître law, which can be expressed as
follows: The redshift of a galaxy is directly proportional to the distance between it and
the observer. Therefore, the galaxies get apart from each other with a velocity that is
directly proportional to the distance between them.

The Standard Big Bang model, with the consideration of dark matter and dark energy,
has been proved on cosmological levels with high precision and currently accepted by
most of cosmologists. It is raised over three assumptions [18]:

1. The physical laws at the present time can be considered as valid in the early
universe. Consequently, GR is the correct theory to describe the gravitational
interaction at all epochs of the universe.

2. The cosmological principle is correct, so the geometrical properties of the Uni-
verse, considering sufficiently large scales, are based on the homogeneity and
isotropy. Figure 1, taken from [17], depicts these properties in a universe in
expansion. This is manifested in the so called Friedmann-Lemaître-Robertson-
Walker (FLRW) metric.
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3. On small scales, where there is anisotropy, the universe is described by a linear
expansion of the metric around the FLRW background.

Actual observations of the expansion of the universe indicate that around 70% of the
total energy density is characterized by a negative pressure (dark energy component)
and the remaining 30% correspond to non-relativistic matter (including baryons and
dark matter). Figure 2 schematizes these observations. There have been an enormous
amount of dynamical models for the dark energy that predict a dynamical equation of
state; such as quintessence and barotropic models [19]. Nevertheless, contemplating a
model with a cosmological constant and cold dark matter still seems to be consistent
with current observations [12].

Figure 2: Actual quantitative disposition of the energy density of the universe.

By virtue of what has been said, it is not strange that ΛCDM has had an immense
success. However, despite extraordinary efforts, dark matter remains to be directly
detected, and the cosmological constant description of dark energy continues to have
numerous problems. Moreover, the Standard Big Bang model cannot explain or solve
naturally three issues [20]:

• The flatness problem: It is known that the total density parameter Ω is within
a few percent of unity (the case Ω = 1 implies a flat universe), so at early
times it must have been extremely close to 1. However, it has been found that
almost all initial conditions lead either to a closed universe that recollapses almost
immediately, or to an open universe in which Ω quickly becomes smaller than is
now allowed by observation [21]. See Figure 3.
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Figure 3: The universe can be closed (left figure) with Ω > 1, open (middle figure)
with Ω < 1 and flat (right figure) with Ω = 1. Observations strongly support the fact
that the universe is practically flat and that the tendency for Planck power spectra
to favour closed universes is caused by systematic errors [22]. Consequently, the right
figure seems to be the correct description.

• The horizon problem: The temperature seen in different regions of the sky is
approximately the same, but this should not be the case since at early times,
the universe, from the point of view of the Standard Big Bang model, is greater
than the horizon distance, so the influence between real separated components of
the universe is not reached and, in consequence, thermal equilibrium would not
suppose to be seen [23]. See Figure 4.
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Figure 4: The Hubble horizon must have been greater than the universe at early epochs
in order to allow causal influence between the components of the universe and thermal
equilibrium could be reached, as it is now observed.

• The unwanted relics: Particles produced at early times in the universe, for ex-
ample the magnetic monopoles (see Figure 5), are not observable in current ob-
servations [24].

Figure 5: Why are we not able to detect magnetic monopoles? The answer might be
in the theory known as ‘inflation’.

These issues can be solved with inflation, a theory proposed formally in 1981 by the
cosmologist Alan Guth that states that the early universe had an exponential growth
epoch (Figure 6, taken from [25], depicts this behaviour), but evidently Einstein’s GR
must be modified in order to include it; the common way to do that is to include an
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scalar field called inflaton. As we will see later, this kind of change enters in the first
point of possible forms in which one can modify the field equations of Einstein.

Figure 6: Inflation, which occurs between t = 10−36s and t = 10−33s, is currently
accepted by the majority of cosmologists. When working in GR one needs to add, for
example, a scalar field in order to include inflation. However, some of TG models seem
to include it naturally. The figure, which shows the behavior of the scale factor against
the physical time, was taken from [25]. Notice how the scale factor R grows incredibly
fast during inflation.

Recently, the effectiveness of the late-time explaining power of the ΛCDM model has
been called into question. This has primarily taken the form of the so-called H0 tension
problem which characterises the disparity between late-time model-independent mea-
surements of the expansion of the Universe and their corresponding model-dependent
predictions from the early Universe (see Figure 7). This was first reported by the
Planck collaboration [26, 27], but has since grown in statistical relevance due to strong
lensing by the H0LiCOW (H0 lenses in Cosmograil’s wellspring) collaboration [28]
and measurements from Cepheids variables1 via SH0ES (Supernovae H0 for equation
of state). While measurements based on the tip of the red giant branch (TRGB,
Carnegie-Chicago Hubble Program) have yielded a lower H0 tension, new observations
may be needed to shed light on the problem such as through the use of GW astronomy
which may lead to more precise measurements of the possible discrepancy.

1A type of stars that change their brightness, through the variation of diameter and temperature,
with stable periods.
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Figure 7: There are two kinds of groups which have measured the Hubble parameter
at actual time. The first group, whose results are marked in blue in the figure, which
uses Cepheids variables and Supernovae, are based on the Distance Ladder Method
and predict, in recent years, H0 = 74.03 ± 1.42 km s−1Mpc−1. The second group,
whose results are marked in red in the figure, uses data of the early universe such
as CMB, and extrapolate the value of H to actual times, using a ΛCDM model and
predicting, in recent years, H0 = 67.4 ± 0.5 km s−1Mpc−1. What is happening? The
two error bars should superpose each other. One choice is to consider that the result
of the first group is wrong and has to improve its observations. The other possibility
is that the result of the second group is inaccurate due to the consideration of GR as
the fundamental theory. For many reasons it is adequate to seek a modified theory of
gravity, an alternative theory which refines the results.

The H0 tension problem may point to a problem in standard gravity at early-times
which is a rich area of observations. One such probe is the possible detection of pri-
mordial GWs, that is, the GWs produced by the Big Bang, and their imprint on the
cosmic microwave background radiation (CMB) which is depicted in Figure 8 (this was
taken from [29]). The effect of primordial GWs is on a non-vanishing CMB BB power
spectrum; this would occur in the very low frequency band and would bring impor-
tant cosmological information such as the tensor-to-scalar ratio, r, which is bounded
to r < 0.06 (with 95% confident level, at the pivot scale 0.002Mpc−1) by the Planck
collaboration [26]. Primordial GWs may serve as a probe of novel cosmological models
in determining which are physically viable [30, 31].
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Figure 8: The Cosmic Microwave Background, or CMB, is electromagnetic radiation
remaining from the early epoch of the universe. It was discovered in 1965 by A. Penzias
and R. Wilson, and is one of the proves in favour of the Big Bang theory [29]. In most
of the theoretical models it is produced by an isotropic Gaussian stochastic process.
The CMB anisotropies, caused due to the interaction of radiation with hot gas or
gravitational potentials, are quite important because we can extract all the information
related with the underlying theoretical model via the angular power spectrum from
them. This figure, taken from [29], shows an optimized image that filtered out any
unwanted impurities.

Rather than modifying the matter content of cosmological models, as in the ΛCDM
model, it may be the case that gravity needs to be modified. This supposition make
us thing about the fact that perhaps GR is not the ultimate description of the gravita-
tional interaction. There have been, in fact, a plethora of proposed theories of gravity
in which GR is either extended or alternated [12, 32], and primordial GWs would act
as an excellent probe of these models and may elucidate which models are physically
consistent. With ‘extended’ we mean that GR is generalized using some of its elements
(the Ricci scalar, for example) and, because of that, you can construct more complex
Lagrangians, meanwhile with ‘alternated’ we refer to change the elements used in GR,
and apply these other objects to describe gravity. One interesting approach that has
recently started gaining momentum is, precisely, that of TG (which belongs to the
modified-alternative theories of gravity). In TG, the curvature-based description of
gravity is replaced with torsion by the replacement of the Levi-Civita connection with
its Weitzenböck connection analog. TG is a gauge theory for the translations group,
so the gravitational field is represented by a translational gauge potential that appears
in the non-trivial part of the tetrad (and in fact this keeps the torsion different from
zero). According to GR, spacetime is geometrized by the use of curvature. However,
TG attributes gravitation to torsion not by geometrizing the interaction, but by acting
as a force; in fact, as a gauge theory, the gravitational interaction is described by a
force and the particles trajectories are not geodesic but force equations, with torsion
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playing the role of force. Anyway, classically speaking, it is a matter of convention to
describe gravitation with a pseudo-Riemannian with signature +2 (GR) or a Weitzen-
böck (TG) space-time structure [4]. Moreover, GR and TG can be made equal up to
a boundary term (this will be seen later in this work), which means that they produce
identical dynamical equations. The relation between the two theories is really impor-
tant in the sense that in this equivalence the geodesic equation is analog to the Lorentz
force equation of electrodynamics.

Figure 9: Evolution of the function of luminosity m−M versus redshift z for Type Ia
supernovae. The lower part of this curve determines H0, the upper part demonstrates
acceleration. This proclivity of the universe, discovered in 1998 and which motivated
the creation of the ΛCDM model, can be reached in TG without introducing any
cosmological constant. In a natural way, TG models reproduce this behavior. The
figure was taken from [17].

Why are we interested in TG? Why not another modified theory? The reason is that
TG features several advantageous properties that should be taken in consideration (see
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one reason in Figure 9, which was taken from [17]), such as its similarity to Yang-Mills
theory [33], which gives a dimension of particle physics. Another important character-
istic of TG is that it allows the definition of an energy-momentum gauge current for the
gravitational field, which is covariant under a spacetime general coordinate transforma-
tion, and transforms covariantly under a global tangent-space Lorentz transformation;
essentially that gauge current is a true spacetime tensor. Therefore, TG seems to pro-
vide a more appropriate environment to deal with the energy problem since in GR the
energy-momentum density for the gravitational field will always be represented by a
pseudotensor [34]. Also, TG does not require the introduction of a Gibbons–Hawking–
York boundary term in order to produce a well-defined formulation of the Hamiltonian
[35] rendering a more regular theory than GR. TG can also be constructed without the
weak equivalence principle [36] (local) while GR cannot; this can be considered as an
issue since the equivalence principle has presently passed all experimental tests. Nev-
ertheless, there are many controversies related with its validity, mainly at the quantum
level and this might be contemplated as a good point if we want to conciliate gravity
with quantum mechanics [37], because the last one is not constructed over this princi-
ple but over the uncertainty principle (non-local). There is also an important interest
in coupling a fundamental spin-2 field to gravitation; this can be more easily achieved
since the description of a gravitationally-coupled spinor field requires the use of the
tetrad formalism, which is essentially and naturally used in TG. Making, then, use of
the teleparallel paradigm to describe the dynamics of the spin-2 field interpreted as a
translational-valued 1-form, a sound spin-2 field theory emerges, and it is both gauge
and local-Lorentz invariant, and it preserves the duality symmetry of the free theory
[33].
In [38] is given an outlook of generalizations of TG: for example, it can be generalized
the lagrangian dependency into a sum of quadratic terms of the torsion tensor; these
terms are called vectorial, axial and purely tensorial torsions. Due to all these possibil-
ities of generalization, TG is a theory with many advantages and great transcendence.
Something important to be said is that one often looks for simple models, that is, mod-
els with the less number of free parameters as possible; this is not only for simplicity
purposes (see [39] for a better understanding on this subject). This consideration is
taken into account in the proposition of the models that are used in this work, among
other reasons that will be explained later.

The theory that is studied and used in this work reflects a different way to look at
gravity and to describe this fundamental interaction. A deeper research in TG must
be made to probe its power of explaining different phenomena. In this work the H0
tension is theoretically addressed from a different perspective using, precisely, TG. And
to find answers, primordial GWs are suggested to be investigated and studied by using
TG extensions, specifically f(T ) and f(T,B) models. The deviations from GR at high
redshifts will shed light into this problem and perhaps the data found could indicate if
TG is, actually, a better theory for describing the gravitational interaction.

In this thesis we use the following convention: (−,+,+,+), and the quantities cal-
culated with the Levi-Civita connection are denoted with a white circle on them; for
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example, something like Å. Quantities obtained with the Weitzenböck connection do
not have other marks. Throughout the work, we use Latin indices to refer to tangent
space coordinates while Greek indices refer to the general manifold. See Table 1.

Table 1
Symbol Description
µ, ν, . . . coordinate indices
a, b, . . . tangent space indices
xµ space-time coordinates
f cab coefficients of anholonomy
ηµν Minkowski spacetime metric
gµν arbitrary spacetime metric
ηab Minkowski tangent space metric

Λa
b(x) local Lorentz transformation
εab infinitesimal Lorentz transformation
ωabµ teleparallel spin connection
Dµ covariant derivative of Fock-Ivanenko

Rσ
µαν Riemann curvature tensor of TG

T aµν torsion tensor of ωabµ
T µ torsion vector defined by T νµν
ua anholonomic 4-velocity
uµ holonomic 4-velocity
dσ Minkowski interval
ds arbitrary interval
Ba

µ gauge potential one-form components
ea non-trivial frame field
ea non-trivial coframe field
eaµ non-trivial frame field components
e µ
a non-trivial coframe field components
e determinant of the tetrad

Γλµν teleparallel linear (Weitzenböck) connection
∇µ covariant derivative associated with Γλµν
Kc

ba contortion tensor
T torsion scalar
B boundary term
R Ricci scalar of TG
L Lagrangian density of TG and GR
S action of TG and GR

κ2 = 8πG gravitational coupling constant (c = 1)
S ρσ
a superpotential
j ρ
a gauge current or energy-momentum pseudo-current
T ρ
a matter energy-momentum tensor
ωµ quantity defined by ωabν h ν

a h µ
s ηbs

ω̊c bµ spin connection of GR
Γ̊λµν Christoffel symbol or general relativity connection
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Continuation of Table 1
Symbol Description
∇̊µ covariant derivative associated with Γ̊λµν
R̊σ

µαν Riemann curvature tensor of GR
R̊µν Ricci tensor of GR
R̊ Ricci scalar of GR

Table 1: Notation employed in the description of TG and GR.
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Chapter 1

General Relativity

Isaac Newton built the laws of motion over the idea that space and time were absolute.
This idea was clarified by the philosopher and Anglican cleric Samuel Clarke in his
letters to the mathematician and philosopher Gottfried Leibniz [40], and can be stated
in the following theses: First, space and time are logically and metaphysically prior to
physical bodies and events. Second, physical bodies and events exist within space and
time. Third, although we may distinguish regions of space and time, neither space nor
time strictly speaking are divisible since no region of space or time could be separated
from any other region. Fourth, ontologically speaking, space and time may be iden-
tified with attributes of God; infinite space just is the attribute of God’s immensity,
while infinite time just is the attribute of God’s eternity [41]. Leibniz did not share
those ideas, and indeed he wrote back to Clarke arguing these points and defending
an opposite vision; that space and time were not so much things in which bodies are
embedded, can be located and move, but systems of relations holding between ma-
terial things. Consequently, for Leibniz, space and time were relative. Nevertheless,
this relationalist point of view was not really taken into account in the scientific con-
text, perhaps because of the practical success of Newton’s substantivalism. In fact,
Newtonian mechanics and gravitation were actually successful for two centuries at ex-
plaining the solar system and astronomy in general. However, there was a particular
phenomenon that was not in agreement with Newton’s laws; the precession of Mer-
cury’s perihelion. Like the other planets that constitute our solar system, the axes of
the elliptical trajectory of Mercury slowly rotate with time. When all the known effects
were taken into account using Newtonian physics, the results were not in agreement
with observations. This problem could not be solved until the arrival of GR, whose
results were correct with high precision. In addition, other facts (which were not known
before the 20th century) cannot be explained by Newtonian physics. These are: First,
that motion and interaction effectively change the mass of objects; second, that light
falls and attracts other objects, even though is has no mass; and third, that time and
distances are observer-dependent notions [42]. We cannot blame Newton for not been
aware of this since these three facts are neither empirical nor logical at first sight, but
Einstein’s theory of gravitation changed the concept of space-time and matter in such a
way that could explain all these phenomena with great success. It is worth to mention
that even though Einstein was inspired by the ideas of the physicist and philosopher
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Ernst Mach and by Leibniz vision, GR is not a relationalist theory as it will be seen
clearly down below.
The theory of GR, which breaks with the absolute space and absolute time notions,
says that the gravitational interaction can be understood with the help of Riemannian
geometry; gravity is due to the curvature of space-time, and this is achieved with the
Levi-Civita connection, which holds the metricity condition1 and leaves curvature as
the unique basic element. The Levi-Civita connection in spatial coordinates (Christoffel
symbols) is given by

Γ̊σµν := 1
2g

σα
(
∂νgµα + ∂µgαν − ∂αgνµ

)
(1.1)

where repeated indexes indicate a sum, gµν is the metric tensor and gµν is the inverse.
Considering this connection, the curvature of the manifold is expressed through the
Riemann tensor (see Figure 1.1 taken from [43]),

R̊ρ
σµν = ∂µΓ̊ρ νσ − ∂νΓ̊ρ µσ + Γ̊ρ µλΓ̊λνσ − Γ̊ρ νλΓ̊λµσ, (1.2)

which satisfies the following identities:

R̊ρσµν = −R̊σρµν = −R̊ρσνµ, (1.3)

R̊ρσµν = R̊µνρσ, (1.4)

where R̊ρσµν = gραR̊
α
σµν . Also, the Riemann tensor satisfies the first Bianchi identity,

R̊ρσµν + R̊ρµνσ + R̊ρνσµ = 0, (1.5)

and the second Bianchi identity,

∇̊αR̊ρσµν + ∇̊µR̊ρσνα + ∇̊νR̊ρσαµ = 0, (1.6)

in which ∇̊α denotes covariant derivative. Another important object in GR is the Ricci
curvature tensor, defined as

R̊µν = R̊ρ
µρν , (1.7)

and the scalar curvature (or also called the Ricci scalar) is

R̊ = gµνR̊µν . (1.8)
1The non-metricity tensor is defined as Qαµν = ∇̊αgµν . The particular case Qαµν = 0 is known as

the metricity condition.
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Figure 1.1: The Riemann tensor moves the vectors when they are transported along a
closed curve. Figure taken from [43].

The dynamical variable in this theory is the metric, and the action to be considered,
known as the Einstein–Hilbert action, is varied with respect to that. Explicitly, the
Einstein-Hilbert action is

S =
∫
d4x

[
1

2κ2 R̊ + Lm

]
√
−g, (1.9)

where κ2 = 8πG, g = det(gµν) and Lm represents the Lagrangian for matter. Taking
the variation we have

δS =
∫ [

1
2κ2

(√
−gδR̊ + R̊δ

√
−g
)

+ δ(
√
−gLm)

]
d4x = 0

The variation of the last two terms are

δ
√
−g = −1

2
√
−ggµνδgµν ,

and

δ(
√
−gLm) := −1

2
√
−gTµνδgµν .

Now we will analyze the first term, which can be rewritten with the use of Eq.(1.8);

δR̊ = δ(R̊µνg
µν) = R̊µνδg

µν + gµνδR̊µν .

The variation of the Ricci tensor can be expressed as

δR̊µν = δR̊ρ
µρν = ∇̊ρ(δΓ̊ρ νµ)− ∇̊ν(δΓ̊ρ ρµ).

where has been used Eq.(1.2). Hence,

δR̊ = R̊µνδg
µν + gµν

[
∇̊ρ(δΓ̊ρ νµ)− ∇̊ν(δΓ̊ρ ρµ)

]
.
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Knowing that ∇̊αg
µν = 0, which is the metricity condition satisfied by the Levi-Civita

connection, the above expression may be expressed as

δR̊ = R̊µνδg
µν + ∇̊ρ

(
gµνδΓ̊ρ νµ − gµρδΓ̊ν νµ

)
.

However, the last term when multiplied by √−g changes to an ordinary derivative,
√
−g∇̊µA

µ = ∂µ(
√
−gAµ),

so this term will not contribute to the field equations and can be neglected. This is
because in the extreme values of the integration path there is no variation [44].
The result is, then,

∫ [
1

2κ2

(
R̊µν −

1
2gµνR̊

)
− 1

2Tµν
]
√
−gδgµνd4x = 0.

This is only the metric variation. The previous equation can only be satisfied if the
integrand is zero identically. The field equations, named the Einstein field equations,
are found to be

R̊µν −
1
2gµνR̊ = κ2Tµν , (1.10)

in which Tµν is the energy momentum tensor of matter. At this point non cosmologi-
cal constant has been taken into account, although, the corresponding term should be
introduced in the Einstein-Hilbert action in order to consider a dark energy contribu-
tion in the field equations. Something relevant to be said with regard to the physical
interpretation of GR is that equations (1.10) illustrate matter as the one in charge to
deform space-time and that space-time shows the trajectories that material bodies have
to follow (see Figure 1.2). However, according to GR, it is true that, in the absence of
matter, a curved universe can exist, even an expansive universe (de Sitter universes).
These features confirm that GR is not a relationalist theory since space and time can
exist without matter.

Given the Bianchi identities and the metricity condition, the equation

∇̊νT µν = 0, (1.11)

must hold. This is, in fact, the conservation of energy-momentum.



CHAPTER 1. GENERAL RELATIVITY 19

Figure 1.2: The phenomenology of gravity in the context of GR is frequently presented
as in this figure, which depicts the famous phrase of John A. Wheeler: Space-time tells
matter how to move; matter tells space-time how to curve.

The FLRW metric written in coordinates adapted to the symmetries, that is,

gµν =


−1 0 0 0
0 a2

1−Kr2 0 0
0 0 a2r2 0
0 0 0 a2r2sin2θ

 , (1.12)

is a solution of (1.10) taking into account a cosmological constant Λ. In the matrix,
a = a(t) is the scale factor andK represents the form of the large scale spatial curvature
(K = −1, K = 0 or K = 1 refers to a open, flat or closed universe, respectively).
FLRW describes an homogeneous and isotropic universe, in expansion or contraction,
which contains an ideal fluid. It is used in the ΛCDM model due to these properties,
and it provides the following equations of motion (taking into account that the energy
momentum tensor is equally homogeneous and isotropic):

H2 = 8πG
3 ρphysical, (1.13)

and

Ḣ = −8πG
2 (ρphysical + pphysical), (1.14)

where physical denotes the matter content related to baryonic matter and radiation.
The perfect fluid is described by a density ρphysical and a pressure pphysical. Equations
(1.13) and (1.14) are called the Friedmann equations, and in this case Λ = 0 and
K = 0. In consequence the large scale structure of the universe is flat, and it does not
expand or contract.

In the case of Eq.(1.11) we find that
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ρ̇physical + 3H(ρphysical + pphysical) = 0, (1.15)

which is basically a continuity equation.

Figure 1.3: This is the evolution of the density parameters; clearly, the sum of all
contributions must be equal to unity on a fixed redshift. The figure depicts that, in
the history of the universe, there have been three principal epochs; the radiation (r),
matter (m) and dark energy (DE) domination era, denoted by green, orange and blue
colors, respectively. Notice that this plot neglects the ‘curvature density’ Ωk, since we
consider a flat universe.

To solve Friedmann equations, (1.13) and (1.14), a relation must be assumed for the
physical density. Usually, the behavior is defined with

pphysical = ωρphysical, (1.16)

which is known as the equation of state, and ω is the state parameter (could be a
constant or maybe a function of something else). The solution of Eq.(1.15) is found
when considering

ρphysical ∝ a−3(1+ω).

In principle, the state parameter can adopt any value, but it has been found that some
particular numbers are special; ω = 0 refers to non-relativistic matter (dust), ω = 1/3
is radiation or relativistic matter and ω = −1 is related to a cosmological constant,
which mimics the behaviour of dark energy.

The density parameter is defined as



CHAPTER 1. GENERAL RELATIVITY 21

Ωi(t) = ρi(t)
ρcrit(t)

,

where i is a designation for the type of content we are considering (matter, for example).
The critical density ρcrit(t), for a flat universe, takes the following form

ρcrit(t) = 3H2

8πG.

The total density parameter is, in this case,

Ω = Ωm + Ωr + ΩK + ΩDE,

in which ΩK (that is zero when we consider a flat universe) stands for the contribution
of curvature to the total energy density, and ΩDE refers to the contribution of dark
energy. The evolution of the different density parameters is shown in Figure 1.3, and in
Figure 1.4 is depicted the relative size of the universe according to the values of those
parameters.

For an arbitrary cosmological constant Λ and large scale spatial curvature K, Eq.(1.13)
takes the form

ȧ2 = C

a
+ 1

3Λa3 −K, (1.17)

where

C = 8πG
3 a3ρphysical.

Taking equation (1.17) into account, the scale factor can be described differently de-
pending on the values of the parameters.

Figure 1.4: In this figure is shown the relative size of the universe depending on the
values of the density parameters.
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As it was mentioned before, ΛCDM model presents some issues that GR cannot solve.
The question, then, is the following: Is there a way to modify GR to adjust predictions?
Or, in other words, could one describe the gravitational interaction, in a precise manner,
without GR? The answer to both questions is yes. In fact, Lovelock’s theorem [12]
indicates different forms in which one can modify the field equations of Einstein:

1. Add other field in addition or instead of the metric tensor.

2. Add more than second-order derivatives of the metric.

3. Use more/less than four dimensions of space-time.

4. Consider non-local terms (or what is the same, violate the principle of locality).

5. Derive the field equations from something different of a variational principle (tak-
ing an emergent form of gravity).

6. Changing the gravitational connection.

Depending on the changes made, one would be constructing an extended or an alter-
native theory, but in any case it will be a modified theory of gravity. In simple words:
A modified GR is whatever proposal that add something new or change the elements in
the Einstein-Hilbert action [45]. For example, f(R̊) theories are extended theories of
GR since they consider an arbitrary function of the scalar curvature instead of using a
linear term as shown in equation (1.9), which is more general. Meanwhile, an alterna-
tive theory of GR would be, for example, MOND (Modified Newtonian Dynamics) in
which the background is completely different in the elements to those of GR. Diverse
modified theories are shown in Figure 1.5, which was taken from [46].

We have seen the phenomenological vision of GR as well as the principal equations and
elements of it. The mathematical elegance, the accuracy in describing different astro-
physical and cosmological systems and the brilliant explanation of space-time make GR
a worldwide accepted theory. However, as it was mentioned in the introduction, there
are some tensions which cannot be solved using GR; consequently, modified theories of
gravity have appeared in order to give solutions. In the next chapter we study a theory
considered as an alternative theory to GR, because it contemplates another dynamical
variable instead of the metric, and at the same time considered as an extended theory
by reason of its capability to generalize itself with the elements that are used in it.



CHAPTER 1. GENERAL RELATIVITY 23

Figure 1.5: This scheme, obtained from [46], depicts some of the most important
modified theories, ordered in categories. In red color the (main) first 5 points are
shown, through which one can modify the field equations of Einstein. The theory of
our interest lies, marked in blue, in the first category; add other field instead of the
metric tensor.



Chapter 2

Teleparallel Gravity

An alternative theory to GR that has gained strength is Teleparallel Gravity, a theory
that describes the gravitational interaction through torsion only [33]. The Weitzenböck
connection, which is the most general linear affine connection that is both curvature-
less and satisfies the metricity condition (non-metricity is shown in Figure 2.3, taken
from [43]), leaves torsion as the base element to model gravity. It is defined by

Γσµν := e σ
a ∂µe

a
ν + e σ

a ωabµe
b
ν , (2.1)

where ea ρ is the tetrad field (e ρ
a being the transpose), and ωabµ the spin connection.

Tetrads relate quantities on the tangent (inertial) space and the general manifold which
are represented by Latin and Greek indices, respectively. The role of the spin connec-
tion is to retain the invariance of the resulting field equations under local Lorentz
transformations (LLTs). Thus, for any choice of tetrad, the spin connection balances
this freedom with different inertial contributions. This is thus a flat connection, and
can vanish for particular frame (tetrad) choices. These will be related to other frames
by appropriate Lorentz matrices. In GR, the associated spin connections are not iner-
tial and are mainly hidden in the inertial structure of the theory. Both, the tetrad and
spin connection are the fundamental dynamical objects on which TG is based, and this
is invariant under LLTs as well as being generally covariant.

Taking the full breadth of LLTs (Lorentz boosts and rotations), tetrads for a particular
system can be related together through

e′aµ = Λa
be
b
µ, (2.2)

where Λa
b is the Lorentz matrix which satisfies

ηab = ηcdΛc
aΛd

b .

The spin connection is transformed according to

ω′aµb = Λa
cω

c
µd(Λ−1)db − (Λ−1)ac∂µΛc

b, (2.3)
where (Λ−1) represents the inverse of the Lorentz matrix. Considering the definition
of the torsion tensor given later and applying (2.2) and (2.3), we arrive to

24
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T ′aµν = Λa
bT

b
µν . (2.4)

Consequently, the torsion scalar is also covariant under LLTs, and since the field equa-
tions are based on T , then they are invariant under LLTs [47]. Clearly, when the spin
connection is zero then this is not longer true, in general.

As discussed above, there also exists the so-called good tetrads which allow vanishing
spin connection components [36]. This does not necessarily propagate at perturbative
level due to the gauge freedom. Tetrad and spin connection pairs produce generally
covariant theories which means dynamically equivalent field equations.
In TG, the metric tensor, gµν , is replaced as the fundamental dynamical variable in the
theory and subplanted by the tetrad that observes the following consistency relations

eaµe
µ

b = δab , eaµe
ν

a = δνµ, (2.5)

that form the conditions on which to create inverses of the tetrad fields. Here

δνµ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (2.6)

One direct application of the transformation rules is that between the Minkowski and
general spaces which takes the form

gµν = eaµe
b
νηab, ηab = e µ

a e ν
b gµν , (2.7)

where the tetrad is the principle variable of these relations. The Minkowski metric is,
according to our signature,

ηab =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (2.8)

It is important to point out that the curvature measured by the Riemann tensor will
always vanish in TG due to the curvature-less property of the Weitzenböck connection.
Thus, we necessitate a different measure of geometric deformation which in TG takes
the form of the torsion tension (see Figure 2.2, taken from [43]) which is defined as an
anti-symmetric property on the connection indices

T σµν := 2Γσ [νµ]. (2.9)

This is a measure of the field strength of gravitation (square brackets represent the
anti-symmetric operator A[µν] = 1

2(Aµν − Aνµ)) because the non-vanishing torsion is
directly related with the gauge field strength. This transforms covariantly under both
diffeomorphisms and LLTs (as it was already mentioned). As the Riemann tensor
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Figure 2.1: This figure, obtained from [43], shows the three alternatives to describe
gravity, including the most important elements of each one. In the highest circle there
is GR, in which the torsion tensor and the non-metricity vanish, surviving the cur-
vature tensor only, and the fundamental element is the metric tensor. The lower left
circle contains TEGR where the curvature tensor and non-metricity vanish, and the
fundamental object is the tetrad (in this case, Λα

β represents a tetrad in the covari-
ant formulation). In the lower right circle it can be seen the Symmetric Teleparallel
Equivalent of General Relativity (STEGR) in which both the curvature tensor and the
torsion tensor vanish, and the basic elements are the metric tensor and a kind of fields
that parametrize the connection. At the center of the figure it is shown the fact that
gravity, in all these alternatives, is described by a massless spin-2 particle that, overall,
implies the equivalence principle.
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measure curvature, the torsion tensor is a measure of the deformation of space-time
(derivation of equation (2.9) is shown in appendix A, among other details).

Figure 2.2: The name of ‘teleparallelism’ or ‘distant parallelism’ comes from the fact
that, in this theory, you can compare the direction of tangent vectors on the manifold
in different points due to the geometrical description of the affine connection. The
torsion tensor produces a non-closure of infinitesimal parallelograms when two vectors
are transported along each other. Figure taken from [43].

Other critical tensors can also be defined too, one of which is the contorsion tensor
which measures the difference between the Weitzenböck and Levi-Civita connections

Kσ
µν := Γσµν − Γ̊σµν = 1

2

(
T σ
µ ν + T σ

ν µ − T σµν
)
, (2.10)

where Γ̊σµν is the Levi-Civita connection. This quantity plays an important role in
relating TG with Levi-Civita based theories.

Figure 2.3: The covariant derivative of the metric, that is, the non-metricity tensor,
causes variation of the length of vectors when they are transported (parallelly) along
a curve. Figure taken from [43].

Another important ingredient in TG is that of the superpotential which is defined as

S µν
a := Kµν

a − e ν
a Tαµα + e µ

a Tανα. (2.11)

This is a representation with a latin index, however it can be rewritten with greek
indexes only. The superpotential may play a central role in reformulating TG as a
gauge theory of gravity with an associated gravitational energy-momentum tensor.
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The contraction of the superpotential and torsion tensors renders the torsion scalar,
namely

T := S µν
a T aµν , (2.12)

which is solely determined by the Weitzenböck connection (and consequently by the
tetrad and the spin connection) in the same way that the Ricci scalar is dependent
only on the Levi-Civita connection. Once again, we have here a representation with
a latin index in the superpotential and in the torsion tensor. It turns out that (see
appendix B) the torsion and Ricci scalars are equal up to a boundary term, i.e. [47]

R̊ = −T + 2
e
∂µ

(
eT σµ

σ

)
+R := −T +B, (2.13)

where R̊ is the Ricci scalar as determined using the Levi-Civita connection (non-zero),
R is the Ricci scalar as calculated with the Weitzenböck connection which vanishes, e
is the determinant of the tetrad field, e = det(eaµ) = √−g, and the boundary term,
that is basically a divergence of the torsion vector, is

B = 2
e
∂µ

(
eT µ

)
. (2.14)

The torsion vector is the result of a contraction of two indices in the torsion tensor;

T µ = T σµ
σ . (2.15)

The action

S =
∫
d4x

[
− 1

2κ2T + Lm

]
e, (2.16)

whose dynamical fields are the tetrad field and the spin connection, and where κ2 =
8πG and Lm represents the Lagrangian for matter, turns out to be a very important case
in TG called Teleparallel Equivalent of General Relativity (TEGR), this is because the
variation of such action with respect to the tetrad field results to completely equivalent
dynamical equations to GR. This can be seen from (2.16): Substituting the torsion
scalar and the relation e = √−g, we have

S =
∫
d4x

[
1

2κ2 (R̊−B) + Lm

]
√
−g. (2.17)

Nevertheless, linear boundary terms do not contribute to the field equations. Hence,
without loss of generality, we can write

S =
∫
d4x

[
1

2κ2 R̊ + Lm

]
√
−g, (2.18)

which agrees with (1.9). In consequence, describing the gravitational interaction through
curvature or torsion is simply a convention (Einstein could have constructed his theory
from torsion instead of curvature without any restriction). In Figure 2.1, taken from
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[43], it is shown that, in fact, there are three ways to model the bending of space-time,
or in other words, three ways to ‘geometrize’ gravity: Through curvature, torsion and
non-metricity [43]. In this figure, specifically, a limit is depicted in which the three
theories are equivalent in the equations of motion. Each theory can be generalized in
its elements, losing such equivalence between them. This work focus on TG, so it will
not be studied the non-metricity theories, but it is important to notice that curvature
is neither the only nor the best element to model gravity; these three possibilities are
equally valid. It has to be said, also, that classically it is impossible to make an obser-
vation in order to distinguish GR from TEGR, hence all classical experiments already
done that confirm GR can also be understood as a confirmation of TERG (and the
same with the equivalent limit of non-metricity theories).

The variation of (2.16) reads

δS =
∫ [
− 1

2κ2 (eδT + Tδe) + δ(eLm)
]
d4x = 0.

Considering the following relations

δe = ee λ
a δeaλ,

δT = 1
4δ
(
T µνλTµνλ

)
+ 1

2δ
(
T µνλTνµλ

)
− δ

(
T µTµ

)
,

δ(eLm) := eT λ
a δeaλ,

where T λ
a is the energy momentum tensor of matter, the variation can be expressed

as

∫ − 1
2κ2

[
e
(1

4δ
(
T µνλTµνλ

)
+1

2δ
(
T µνλTνµλ

)
−δ
(
T µTµ

))
+eTe λ

a δeaλ

)]
+eT λ

a δeaλ

d4x = 0.

Taking into account that

δ
(
TµνλT

µνλ
)

= −4T µνλTµνβe β
a δeaλ + 4T νλ

µ e µ
a ∂νδe

a
λ,

δ
(
TµνλT

νµλ
)

= 2
(
T βνµ − T µνβ

)
Tνµλe

λ
a δeaβ +

(
T µ β

ν − T β µ
ν

)
e ν
a ∂µδe

a
β,

δ
(
TµT

µ
)

= −2
(
T βTαβµ + TαTµ

)
e µ
a δeaα + 2

(
Tαe µ

a − T µe α
a

)
∂αδe

a
µ,

one obtains, after some work and considering that the integrand of the action after
being perturbed must be zero, the following field equations

−2
e
∂µ(ee ρ

a S
µν

ρ ) + 2e λ
a T ρµλS

νµ
ρ + 1

2Te
ν

a = κ2e ρ
a T ν

ρ , (2.19)
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where, again, T ν
ρ is the energy momentum tensor of matter.

Now, this variation was done with respect to the tetrad field and not with respect to the
spin connection because we are considering the Weitzenböck gauge, that is ωabµ = 0,
which simplifies the Weitzenböck conection and, hence, all the rest of the elements.
Consequently, the field equations are more simple, but the cost is that they are no
more invariant under LLTs.

Three things can be said with regard to TG physical interpretation: First, that space-
time suffers a natural deformation in this theory [4], something similar as the case
of GR. Second, that torsion is the only responsible for the gravitational attraction
between objects in nature. Third, that depending on the amount of matter is the
magnitude of the force because the bigger is the amount of matter, the bigger is the
deformation of space-time. So, the energy-momentum tensor is the source of torsion.
There have been, in fact, several researches about torsion and its possible relevance
in quantum mechanics and electrodynamics contexts [48], however it is nor clear what
torsion really is, physically speaking. In [49] the meaning of torsion in TG theories is
investigated, but there are still issues that are opened to debate.

2.1 f (T ) gravity
In the same way that GR can be generalized, TG can also be extended in different
forms [38]. The action (2.16) can be generalized to arbitrary functions of the torsion
scalar to produce f(T ) gravity [50, 51, 52, 53, 54] which follows the same reasoning
as f(R̊) gravity. f(T ) is the first and more direct extension of TG. However, unlike
f(R̊) gravity [32, 55, 56] that is a fourth order theory under the metric formalism,
f(T ) gravity produces generally second-order field equations in the tetrad fields. This
is interesting because it means that Lovelock’s theorem is weakened in TG [57, 58,
59] which has had interesting consequences for constructing scalar-tensor theories of
gravity [59, 60, 61, 62, 63, 64]. There are some works that analyze different f(T )
models with some good results; in [65] some f(T ) models are studied in the bayesian
framework, considering the background and the perturbative behavior simultaneously.
It was reported that those specific models, and one of them in particular, had an
good effectivity to predict cosmological data. Another example of the relevance of
f(T ) models is the one reported in [66]; with regard to the dark energy topic an f(T )
model (specifically, a combined f(T ) theory with both logarithmic and exponential
terms) was able to allow the crossing of the line that divides the phantom and non-
phantom region in the cosmological evolution. This is an important result in the cosmic
expansion context. So, as we can see, f(T ) gravity is one of the most studied and used
extensions of TG to describe the gravitational interaction.
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2.1.1 Field equations
In f(T ) gravity the action to be considered is

S =
∫
d4x

[
1

2κ2f(T ) + Lm

]
e, (2.20)

and its variation with respect to the tetrad field leads to

δS =
∫ [

1
2κ2

(
efT δT + fδe

)
+ δ(eLm)

]
d4x = 0,

where fT = df/dT . Considering previous relations, the variation can be expressed as

∫  1
2κ2

[
efT

(1
4δ
(
T µνλTµνλ

)
+1

2δ
(
T µνλTνµλ

)
−δ
(
T µTµ

))
+efe λ

a δeaλ

)]
+eT λ

a δeaλ

d4x = 0.

We get, after straightforward calculations,

4∂µ
(
efTS

µλ
a

)
− 4efTT σµaS λµ

σ − efe λ
a = 2κ2eT λ

a ,

which can be written as

4efTT∂µ(T )e ν
a S µλ

ν + 4fT∂µ
(
ee ν
a S µλ

ν

)
− 4efT e ν

a T σµνS
λµ

σ − efe λ
a = 2κ2ee ν

a T λ
ν ,

and where fTT = d2f/dT 2. Final arrangements give us the field equations in f(T )
gravity;

2
e
∂µ(ee ρ

a S
µν

ρ )fT +2e ρ
a S

µν
ρ ∂µ(T )fTT −2fT e λ

a T ρµλS
νµ

ρ − 1
2e

ν
a f = κ2e ρ

a T ν
ρ . (2.21)

These are in general second-order field equations in the tetrad fields pointing to a more
generalized Lovelock theorem in TG. This extension has a number of other similarities
with GR such as exhibiting the same GW polarizations [8, 67].
Notice that when f(T ) = −T , which is the TEGR case, Eq.(2.21) is reduced to
Eq.(2.19) as it is expected.

2.1.2 Friedmann equations and equation of state
Considering a FLRW metric and an energy momentum tensor associated with a perfect
fluid, from (2.21) we obtain the modified Friedmann equations in this case, which are

H2 = 8πG
3 ρphysical + 1

6

(
T − f + 2TfT

)
(2.22)

and
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Ḣ = −8πG
2 (ρphysical + pphysical) + Ḣ

(
1 + fT + 2TfTT

)
, (2.23)

whereH is the Hubble parameter, and ρphysical and pphysical are the density and pressure,
respectively, associated with the perfect fluid, which have a contribution of matter and
radiation; that is, ρphysical = ρm + ρr, where ρm is the baryonic matter (including dark
matter) and ρr is radiation (including neutrinos). In the TEGR limit we recover the
basic Friedmann equations of GR, as it should be, so the extra terms can be joined
together whether we define an effective contribution as follows:

ρeff := 1
2κ2

(
T − f + 2TfT

)
, (2.24)

peff := −2 Ḣ
κ2

(
1 + fT + 2TfTT

)
− ρeff . (2.25)

Consequently, Eq.(2.22) and Eq.(2.23) can be rewritten as

H2 = κ2

3

(
ρphysical + ρeff

)
, (2.26)

Ḣ = −κ
2

2

(
ρphysical + ρeff + pphysical + peff

)
, (2.27)

where the effective density and pressure (ρeff and peff , respectively) are related with
the contribution of dark energy to the total material content. The effective fluid also
satisfies a continuity equation;

ρ̇eff + 3H(ρeff + peff ) = 0. (2.28)
An effective equation of state parameter can be defined through ωeff := peff/ρeff ,
which for a general f(T ) model has the form

ωeff = −1− (1 + ω)

(
f − 2TfT

)(
1 + fT + 2TfTT

)
(
fT + 2TfTT

)(
T − f + 2TfT

) , (2.29)

where ω is given by Eq.(1.16).

2.1.3 f(T ) cosmology
In this section some cosmological results that have been obtained in some references
for some f(T ) models will be reviewed. What one should have in mind is that, ΛCDM
results to be a cosmological solution to GR theory with a FLRW metric, however, given
the inherent problems of this model, some solutions are searched through modifications
of GR, which implies to approve observational tests at a local (solar system) level and
a cosmological (large scales) level.
The simplest and more direct f(T ) model to be considered is a Power Law Model, that
is, a function that depends on a term (apart from the basic term that relates TG with
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GR) that is weighted by a coefficient and powered by a free parameter. As it was men-
tioned in the introduction, one should always look for models with a minimum of free
parameters for simplicity not only in the development of the equations but also in the
mathematical analysis. There is another reason; the number of restrictions is directly
related to the number of free parameters. The constrictions and the phenomenology
tend to be more complex and restrictive when one deals with many parameters. In
consequence, and following the law of parsimony, it is better and more suitable to work
with the minimum number of free parameters as possible; the Power Law Model is one
of the simplest models in that aspect [8, 68]. Mathematically, it takes the form

f = −T +mT b, (2.30)

with the following derivatives with respect to torsion:

fT = −1 +mbT b−1, (2.31)

and

fTT = mb(b− 1)T b−2. (2.32)

Figure 2.4: In the left panel it is a plot of the CMB TT power spectrum, where
DTT
l = l(l+1)CTT

l /2πµK2, for ΛCDM and for some particular cases of the Power Law
Model in f(T ), that is Eq.(2.30). The parameter n is just our parameter b. Now, in
the right panel it is shown the relative deviation of CMB TT power spectrum from
the base line Planck 2015 ΛCDM in comparison with the Power Law Model in f(T );
the black, blue and green curve refers to b = 0.1, b = 0.01 and b = 0.001 respectively.
Figure taken from [68].

From (2.30) it is observed that f = −T + constant corresponds to the recovery of
GR with a cosmological constant. This is achieved by considering b = 0 because the
additive constant in that case is related with, precisely, the cosmological constant. In
this model apparently one has two free parameters; b and m. However, working with
Eq.(2.22) at present time we obtain
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m = (6H2
0 )1−b

(1− Ωm0 − Ωr0

2b− 1

)
,

so m is just a parameter defined by the initial conditions, and depends on b which
turns out to be the only free parameter in this model. Whether m is small, we recover
GR solutions in astrophysical scales. Following the restriction (3.18) that will be seen
in the next chapter, it is convenient to consider b > 0.

Figure 2.5: These plots are the same as in figure 2.4, but for the CMB EE power
spectrum, DEE

l = l(l + 1)CEE
l /2πµK2. Again, the parameter n is just our parameter

b, and in the right panel the black, blue and green curve refers to b = 0.1, b = 0.01 and
b = 0.001 respectively. Figure taken from [68].

It is expected that an arbitrary f(T ) function will cause significant changes on the
CMB anisotropy, in all angular scales, since the scalar perturbations in f(T ) gravity
lead to a non-trivial modification on the dynamics of the scalar modes. Following this,
figures 2.4, 2.5 and 2.6, that were taken from [68], present some results for the Power
Law Model in the context of power spectrum, but also of a parametric space. Another
result of the CMB power spectrum of this model is shown in Figure 2.7 which was
taken from [8].
From Figure 2.6 can be seen that the H0 tension is solved with this model in TG
considering b ∈ [0.0, 0.1]. However, the σ8 tension1 is not solved with the Power Law
Model since from Planck CMB the value of amplitude of matter density fluctuations
is σ8 = 0.831± 0.013, which is about 2σ higher than σ8 = 0.75± 0.03 as given by the
Sunyaev-Zeldovich cluster abundances measurements [69], for example. Further inves-
tigation on this model should be done in order to find the solution for both tensions.
In Figure 2.7 is shown that for the angular scale l > 20 the theoretical predictions for
the Power Law Model and ΛCDM are practically the same. In consequence, for small

1σ8 is a cosmology parameter which measures the amplitude of the linear power spectrum on
the scale of 8 h−1 Mpc. It is a central parameter due to it has a big influence over the growth of
fluctuations in the early epoch of the universe. The σ8 tension is not other thing than the disparity
between current observations and theoretical results, just as it happens in the H0 tension.
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angular scales no deviations are expected compared to ΛCDM cosmology. Instead of
that, considerable deviations can be observed at large angular scales. In fact, due to
the theoretical CMB BB spectrum should present a peak at l ' 5 (because of the
effects of tensor modes on the scattering during the reionization epoch) still to be de-
tected by future experiments, the influence of the Power Law Model can be quantified
on the reionization peak, where we can note different predictions for a range of values
b compared to the reference ΛCDM scenario.

68 72 76 80
H0

0.81

0.84

0.87

0.90

0.93

σ
8

Figure 2.6: In this figure it is presented a parametric space in the plane H0 - σ8, where
the regions in red (blue) show the constraints for ΛCDM model from CMB + BAO
(CMB + BAO + H0), respectively. The regions in black (green) show the constraints
for the Power Law Model in f(T ), with b ∈ [0.0, 0.1], from CMB + BAO (CMB +
BAO + H0), respectively. The vertical gray band corresponds to H0 = 73.24 ± 1.74
km s−1Mpc−1. Figure taken from [68].
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Figure 2.7: This is the CMB BB power spectrum for ΛCDM, and for the Power Law
Model for various values of the free parameter b. We can see important deviations at
large angular scales; notice that those deviations are more significant when the value of
b is higher, close to 1. On the other hand, when the free parameter is practically zero
the second term of (2.30) acts like the standard cosmological constant and we recover
the ΛCDM cosmology. Figure taken from [8].

2.2 f (T,B) gravity
In order to compare TG with f(R̊) gravity one must consider arbitrary functions of
not only the torsion scalar but also the boundary term through f(T,B) gravity (see
Figure 2.8, taken from [47]) which provides a much richer class of models at the level
of the field equations because of the following: f(T,B) gravity has also been well
studied [36, 70, 71, 72, 73, 67, 74, 75] as a possible extension to TEGR; since the
boundary term embodies the fourth-order element of the Ricci scalar, f(T,B) gravity
is an interesting model in which the second- and fourth-order contributions to the
field equations are decoupled. This may be a more natural generalization of gravity in
fourth-order theories.

2.2.1 Field equations
Raising the TEGR action to its f(T,B) gravity extension results in the action

S =
∫
d4x

[
1

2κ2f(T,B) + Lm

]
e, (2.33)
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Figure 2.8: Relation between f(T,B) models and its particular cases. This diagram,
taken from [47], considers that the TEGR case is given by f(T ) = T because of the
signature used. In our case, f(T ) = −T is the TEGR limit.

where the tetrad field and the spin connection are the variables, but we will only focus
on the tetrad for the same reason given below Eq.(2.19). Taking a variation one gets

δS =
∫ [

1
2κ2

(
fδe+ efBδB + efT δT

)
+ δ(eLm)

]
d4x = 0.

We know three terms, those with δe, δT and δ(eLm). Basically we need to focus in the
variation of the boundary term with respect to the tetrad field. It is possible to find
that

efBδB = −
(
fBB + 2(∂µfB)T µ

)
δe− 2e(∂µfB)δT µ. (2.34)

Now, considering that

δT µ = −(e µ
a T λ + gµλTa + T λ µ

a )δeaλ + gµνe λ
a (∂λδea ν − ∂νδeaλ),

the last term of (2.34) can be written as

e(∂µfB)δT µ =
[
∂ν
(
e λ
a egµν(∂µfB)

)
− ∂ν

(
e ν
a egµλ(∂µfB)

)

−e(∂µfB)(e µ
a T λ + gµλTa + T λ µ

a )
]
δeaλ. (2.35)

Since the Weitzenböck connection satisfies the metricity condition, we can find that

∂λg
µν = −(Γ νµ

λ + Γ µν
λ ).

Knowing this and also that

∂λe = egµν∂λgµν ,
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one is able to find that

∂λe = eΓ σ
λ σ.

With the relation above and Eq.(2.10) at hand, we arrive to the following expressions:

∂ν
(
e λ
a egµν(∂µfB)

)
= ee λ

a �̊fB − e(∂µfB)(e λ
a Γ µν

ν − e λ
a Γνµ ν + Γµλ a), (2.36)

and

∂ν
(
e ν
a egµλ(∂µfB)

)
= ee ν

a ∇̊λ∇̊νfB + e(∂µfB)
(
gµλ(Γ ν

a ν − Γ ν
ν a)− Γ λµ

a

−Γ µλ
a + Γλµ a −Kλµ

a

)
. (2.37)

Substituting (2.36) and (2.37) in (2.35) we obtain

e(∂µfB)δT µ = −
[
e(∂µfB)

(
e µ
a T λ+gµλTa+T λ µ

a +gµλ(Γ ν
a ν−Γ ν

ν a)−Γ λµ
a −Γ µλ

a +Γλµ a−Kλµ
a

+Γµλ a + e λ
a Γ µν

ν − e λ
a Γνµ ν

)
− ee λ

a �̊fB + ee ν
a ∇̊λ∇̊νfB

]
δeaλ,

which can be simplified as

e(∂µfB)δT µ = −
[
e(∂µfB)

(
e µ
a T λ + Γλµ a − Γ µλ

a −Kλµ
a

)

−ee λ
a �̊fB + ee ν

a ∇̊λ∇̊νfB

]
δeaλ. (2.38)

Substituting (2.38) into Eq.(2.34) we have

efBδB =
[
−fBBee λ

a −2ee λ
a (∂µfB)T µ+2ee µ

a (∂µfB)T λ+2(∂µfB)e(Γλµ a−Γ µλ
a −Kλµ

a)

−2ee λ
a �̊fB + 2ee ν

a ∇̊λ∇̊νfB

]
δeaλ.

Introducing the superpotential and rearranging we get

efBδB =
[
2ee ν

a ∇̊λ∇̊νfB − 2ee λ
a �̊fB −BefBe λ

a + 2e(∂µfB)(2S λµ
a −K λµ

a

+Γλµ a − Γ µλ
a −Kλµ

a)
]
δeaλ.
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Notice, however, that −K λµ
a + Γλµ a − Γ µλ

a −Kλµ
a = 0. Hence, the variation of the

boundary term with respect to the tetrad field is

efBδB =
[
2ee ν

a ∇̊λ∇̊νfB − 2ee λ
a �̊fB −BefBe λ

a − 4e(∂µfB)S µλ
a

]
δeaλ.

Taking into account the previous equation and the variations seen before, Hamilton’s
principle applied to Eq.(2.33) lead us to

2ee ν
a ∇̊λ∇̊νfB − 2ee λ

a �̊fB −BefBe λ
a − 4e(∂µfB)S µλ

a − 4∂µ(efTS µλ
a )

+4efTT σµaS λµ
σ + efe λ

a = −2κ2eT λ
a .

Once again, T λ
a is the energy momentum tensor of matter. Modifying a little bit the

previous expression, finally we get the field equations in f(T,B) gravity

e µ
a �̊fB − e ν

a ∇̊µ∇̊νfB + 1
2Be

µ
a fB + 2

[
∂νfB + ∂νfT

]
S νµ
a + 2

e
∂ν

(
eS νµ

a

)
fT

−2fTT νσaS µσ
ν − 1

2e
µ

a f = κ2T µ
a , (2.39)

where the indices of T µ
a can be acted upon by the tetrad, or contracted with the

metric (on general manifold indices) as in standard gravity.

2.2.2 Friedmann equations and equation of state
The modified Friedmann equations in this case are

−3H2
(

3fB + 2fT
)

+ 3HḟB − 3ḢfB + 1
2f = κ2ρphysical (2.40)

and

−
(

3H2 + Ḣ
)(

3fB + 2fT
)
− 2HḟT + f̈B + 1

2f = −κ2pphysical, (2.41)

where ρphysical and pphysical are the density and pressure, respectively, associated with
the perfect fluid, which have a contribution of matter and radiation; that is, ρphysical =
ρm + ρr, where ρm is the baryonic matter (including dark matter) and ρr is radiation
(including neutrinos). Compare (2.40) and (2.41) with (2.22) and (2.23); in f(T,B)
there are no second derivatives with respect to torsion, but the change of the function
f with respect to the boundary term B appears several times. With regard to the
effective state parameter in this case, and following the same procedure as in 2.1.2, we
can see that for a general f(T,B) model we have

ωeff = −1 + f̈B − 3HḟB − 2ḢfT − 2HḟT
3H2(3fB + 2fT )− 3HḟB + 3ḢfB − 1

2f
, (2.42)

which is more complex than (2.29).
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2.2.3 f(T,B) cosmology
One of the many possibilities for an f(T,B) model is to consider a certain kind of
function which is based on the idea that the scalars T and B have to be coupled
somehow since as it is noticed from Eqs.(3.28)-(3.29), T and B require to be coupled
in order to study any possible deviation from GR. The simplest function of this type is
called a Mixed Power Law Model [36] and, without loss of generality, can be described
by

f = f0B
nTm, (2.43)

with the following derivatives with respect to torsion and boundary term

fT = f0mB
nTm−1, (2.44)

fB = f0nB
n−1Tm, (2.45)

ḟT = 6f0mB
n−1Tm−2

[
nT (6HḢ + Ḧ) + 2HḢ(m− 1)B

]
, (2.46)

ḟB = 6f0nB
n−2Tm−1

[
(n− 1)(6HḢ + Ḧ)T + 2mBHḢ

]
, (2.47)

f̈B = 6f0n

[[
(m− 1)Bn−2Tm−2 + 6(n− 2)Bn−3Tm−1

(
6HḢ + Ḧ

)][
2mBHḢ

+(n− 1)
(

6HḢ + Ḧ
)]

+Bn−2Tm−1
[
12HḢ(n− 1)

(
6HḢ + Ḧ

)

+(n− 1)T
(

6Ḣ2 + 6HḦ +
...
H

)
+ 2m

(
6HḢ(6HḢ + Ḧ) +BḢ2 +BHḦ

)]]
. (2.48)

In this model, f0, n andm are free parameters. Actually, it is going to be been seen that
at perturbative level f0 is not of importance because it is naturally eliminated when
this model is introduced in (3.29). Evidently, at background level this factor makes a
difference, but it is not the case in the perturbative context and can be neglected.
Following the restriction (3.30), it is convenient to consider m > 0 and preferably
n ≥ 0.
Figures 2.9, 2.10 and 2.11, taken from [36], depict some cosmological results obtained
from the Mixed Power Law Model.
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Figure 2.9: This is the evolution of the equation of state (EoS) for the Mixed Power
Law. In the left panel we have, resolving for T and B, the case T < B (solid line) and
T > B (dashed line). In the right panel it is shown the variation of m and n, with
m < n (solid line) and m > n (dashed line). Figure taken from [36].

Figure 2.10: Parameters and mean values for the Mixed Power Law Model model. The
parameters k and c0 are just our parameters n and f0, respectively. The cosmological
tests for the free parameters of this model considered the constraints solutions over T
and B imposed in this case, and the specific cosmological parameters were determined,
in addition to Ωm and H0 late Universe data. The codes CLASS and Monte Python
(see [76]) were used to constrain the model using a total sampler of CC+SNeIa+BAO.
Table taken from [36].

In the left panel of Figure 2.9, the Mixed Power Law Model model cross the phantom
divided-line but preserve its quintessence behaviour until at high redshift both scenar-
ios tend to ΛCDM model. With regard to the right panel of the same figure, at z < 4
both scenarios mimic a phantom energy.

Figure 2.11 shows the space parameter for ωmodel and Ωm with their probability density
function (PDF) versus Ωm up to 3− σ confidences levels (CL) using the joint sampler
CC+Pantheon+BAO; where CC indicates Cosmic Chronometers which are measure-
ments of H(z) [77], Pantheon refers to an amount of data related with luminosity
distances of Type Ia supernovae and BAO are the Baryon Acoustic Oscillations which
are frozen relics that provide distance estimates [78]. There are numerical codes as
Monte Carlo process for Cosmological Parameter extraction. This kind of process con-
tains likelihood codes of most recent experiments, and interfaces with the Boltzmann
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code CLASS or computing the cosmological observables.

In summary, the results here discussed, which were obtained from some references
[68, 8, 36], show that both the Power Law Model and the Mixed Power Law Model
give good results in cosmology and agree with GR in a particular limit, respectively.
Such results make us think that both extensions f(T ) and f(T,B) build good scenarios,
where torsion and the boundary terms, fitted with astrophysical data, can solve doubts
in the study of the late-time accelerating universe. Hence, given this reliability, we
think they should be tested in other situations, for example in the early universe and
in the GWs context. With regard to the GWs subject from the point of view of TG, a
theoretical study is done in chapter 3.
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Figure 2.11: One-dimensional marginalised distribution, and two-dimensional contours
with 68% and 95% confidence level for the free parameters (H0,m, k, c0), which in our
case are (H0,m, n, f0), for the Mixed Power Law model (2.43) using the constrained
solutions for T and B scalars and CC+Pantheon+BAO total sampler. Figure taken
from [36].
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Chapter 3

Perturbations in Teleparallel
Gravity

In GR, gravitational waves are ‘ripples’ in space-time caused by some of the most
violent and energetic processes in the Universe, that would travel at the speed of light,
carrying with them information about their origins, as well as clues of the nature of
gravity itself [79]. As it was mentioned, GR predicted the existence of GWs. The
source objects involved must be massive and subjected to gravitational acceleration;
this would disrupt space-time so that ‘waves’ of space-time propagate in all directions
away from the event/source. The most energetic GWs are produced by cataclysmic
or violent events such as colliding black holes, supernovae (which are massive stars
exploding at the end of their lifetimes), and colliding neutron stars. It has also been
predicted that the rotation of neutron stars that are not perfect spheres can also cause
GWs [80], and even the remnants of gravitational radiation created by the Big Bang
may cause them [81]. These last ones are the so known Primordial Gravitational Waves,
and its study would bring important data of the beginning of the universe. Information
can be obtained, particularly, from the BB-mode correlation angular power spectrum
of CMB (see Figure 3.1, taken from [82]).

45
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Figure 3.1: One of the multipole coefficients (the one related with gravitational waves)
in square microKelvin against the multipole moment. We can see that large scales
(low multipole moments) correspond to higher amplitudes of the multipole coefficients,
that is, higher temperature fluctuations. GWs are more easily located in this range of
observation. This figure was taken from [82].

3.1 Gravitational waves in GR
Mathematically speaking, what has to be done in order to study GWs in GR is to
perturb the metric, because a tensorial perturbation on the metric reflects as a per-
turbation in space-time itself. Usually, the universe is considered to be basically ho-
mogeneous and isotropic, with a gravitational field described by the FLRW metric
(see Eq.(1.12)). Assuming that all departures from that homogeneity and isotropy in
most of the history of the universe are small, then these deviations can be treated as
first-order perturbations. The total perturbed metric is

gµν = ḡµν + hµν , (3.1)

where ḡµν is the unperturbed K = 0 (flat) FLRW metric

ḡ00 = −1, ḡi0 = ḡ0i = 0, ḡij = a2δij, (3.2)

and hµν = hνµ is a small perturbation. The metric perturbation produces a perturba-
tion in the affine connection and, consequently, in all the rest of quantities reviewed in
chapter 1. After doing this and remain at first order in the Einstein field equations,
one obtains a quite complicated expression. Nevertheless, the spatial isotropy and ho-
mogeneity of the unperturbed metric and energy momentum tensor allow to simplify
the result by decomposing the perturbations into scalars, vectors and tensors, which
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are not coupled to each other by the field equations or conservation equations. So we
have [82]

h00 = −E, (3.3)

hi0 = a
(
∂iF +Gi

)
, (3.4)

hij = a2
(
Aδij + ∂i∂jB + ∂jCi + ∂iCj +Dij

)
, (3.5)

where the perturbations A, B, Ci, Dij, E, F and Gi are functions of the coordinates,
satisfying the conditions

∂iC
i = ∂iG

i = 0, (3.6)

∂iD
ij = 0, Dii = 0. (3.7)

Given that the scalar, vector and tensor perturbations are decoupled, one can analyze
each one separately in the perturbed Einstein field equations. We want to study the
tensor perturbations since from them we can extract information about the GWs.
Hence, we arrive to a wave equation called the gravitational wave propagation equation
(GWPE), that can be written in terms of h because Dij is directly related with hij. In
vacuum, the GWPE takes the form

ḧij + 3Hḣij −
∇̊2

a2 hij = 0, (3.8)

where hij is the traceless divergenless symmetric [82] perturbation tensor, ∇̊2 is the
Laplacian operator and a is the scale factor. The dots mean derivative with respect to
the physical time. By means of (3.7) we can see from (3.5), when considering tensor
perturbations only, that [83]

∇̊ih
ij = 0 = gijh

ij,

which is true in GR but also in TG, as we will see later.
The perturbation tensor is a matrix whose components give information about the
polarization of the GW. The unit linear polarization tensors for GWs that travel in the
z direction are

e+ = ex ⊗ ex − ey ⊗ ey (3.9)

and

e× = ex ⊗ ey + ey ⊗ ex. (3.10)
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The vectors ex and ey indicate oscillation in the x-direction and y-direction, respec-
tively, relative to an inertial frame1. In addition, the unit circular polarization tensors
for GWs are

eR = 1√
2

(e+ + ie×) (3.11)

and

eL = 1√
2

(e+ − ie×), (3.12)

where i refers to the imaginary unit. The metric perturbation acquires the following
form [11]:

hjk = Re
[
A0e

−iω(t−z)ePjk

]
, (3.13)

in which ePjk is the polarization tensor. Figures 3.2 and 3.3, taken from [85], show the
behavior, in different cases, of a ring of freely-falling particles when it is perturbed by
a GW.

The second term of (3.8) is dissipative, so this is a damped wave equation. The factor
multiplying ḣij is called ‘coefficient of friction’, but in this context this coefficient
is variable as the Hubble function depends on the redshift. It is desirable to plot a
component of hij (let’s say, h for simplicity) against the scale factor (or the redshift), so
one is able to see the evolution of the GW across the history of the universe. Whether
one is interested in primordial GWs it is important to pay attention to the lowest
range of values of a. TG may provide deviations of h from GR in this range. Tensorial
perturbations in TG are studied in the following sections, considering f(T ) and f(T,B)
models.

1General covariance suggests that the free fall trajectories ought to be identified as the inertial
trajectories and, hence, the geodesics of space-time. But whether that is so, then space-time is
curved. There are inertial trajectories and we can define local inertial frames in curved space-times,
but there are no extended inertial systems [84].



CHAPTER 3. PERTURBATIONS IN TELEPARALLEL GRAVITY 49

Figure 3.2: These figures, taken from [85], give the schematic deformations produced on
a ring of freely-falling particles by GWs that are linear polarized in the + (“plus”) and
× (“cross”) modes. The continuous lines and the dark filled dots show the positions
of the particles at different times, while the dashed lines and the open dots show the
unperturbed positions.

Figure 3.3: These figures, taken from [85], give the schematic deformations produced on
a ring of freely-falling particles by GWs that are circularly polarized in the R (clockwise)
and L (counter-clockwise) modes. The continuous lines and the dark filled dots show
the positions of the particles at different times, while the dashed lines and the open
dots show the unperturbed positions.
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3.2 Gravitational waves in f (T ) gravity
The calculations presented in this section can be found in [8, 86]; we follow these
references and discuss some important details.
In order to find a gravitational wave equation we need to make a perturbation in the
main quantities of Eq.(2.21). The tetrad can be decomposed as

eaµ(x) = ēaµ(x) + ξaµ(x),

where ēaµ(x) represents the part of the tetrad corresponding to metric components,
while ξaµ(x) involves the degrees of freedom released from the local Lorentz transfor-
mation (whose number is thus six) [86]. Given that we are interested in gravitational
waves we only need to focus on the components of the tetrad corresponding to the
components of the metric. Perturbing the tetrad fields ēaµ(x) around a flat FLRW
background we obtain:

ē0
µ = δ0

µ(1 + ψ) + aδiµ(Gi + ∂iF ),

ēaµ = a

[
δaµ(1− φ) + 1

2δ
i
µδ

aj
(
hij + ∂i∂jB + ∂jCi + ∂iCj

)
+ δa0δ

j
µ∂jF̄

]
,

ēµ0 = δµ0 (1− ψ)− 1
a
δµi(Gi + ∂iF ),

ēµa = 1
a

[
δµa (1 + φ)− 1

2δ
i
aδ
µj
(
hij + ∂i∂jB + ∂jCi + ∂iCj

)
− δµ0 δja∂jF̄

]
,

where the Latin indexes from the beginning of the alphabet span the spatial part of
the tangent space (the rest of indexes span all coordinates), a(t) is the scale factor,
φ, ψ, B and F are the scalar modes, Ci and Gi the vector modes, and hij the tensor
mode. Again, eaµ(x) is the general tetrad that can be decomposed in two parts, one
of them is ēaµ(x) which is the part of the tetrad related with the metric. Given the
perturbation over this last tetrad, the standard perturbed metric results to be

g00 = −1− 2ψ,

gi0 = −a[Gi + ∂iF ],

gij = a2
[
(1− 2φ)δij + hij + ∂i∂jB + ∂jCi + ∂iCj + 1

4hikhjk̄δ
kk̄
]
.

Observe that the metric tensor and the tetrad field share the same scalar, vector and
tensor perturbation modes, which is not strange because they relate with each other
through (2.7). Hence the properties of this modes will remain the same in TG; the
vector modes will be transverse and, given that the tensor modes in GR are transverse
and traceless, it follows that in TG we will also have [86]
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∇̊ih
ij = 0 = gijh

ij.

The scalar perturbations, related with matter perturbations, and the vector pertur-
bations, which fade away faster, exist under metric perturbations (see appendix C).
However, since we are interested in gravitational waves we will focus only and specifi-
cally on tensor perturbations. So the perturbed tetrad and metric read as follows

ē0
µ = δ0

µ, ēaµ = a
[
δaµ + 1

2δ
i
µδ

ajhij
]
,

ēµ0 = δµ0 , ēµa = 1
a

[
δµa −

1
2δ

µiδjahij
]
,

g00 = −1, gi0 = 0, gij = a2

4

[
4δij + 4hij + hikhjk̄δ

kk̄
]
.

Using this, one finds the following quantities as the perturbed tetrads are substituted
into the respective formulas:

Ti0j = Hδij + 1
2 ḣij, Tijk = 1

2(∂jhik − ∂khij), T = 6H2 + T (2), (3.14)

Si0j = Hδij −
1
4 ḣij, Sijk = 1

4a2 (∂jhik − ∂khij), (3.15)

where H is the Hubble function, T (2) is the second-order part of the torsion scalar
expansion and T (1) is the first-order part, but notice that T (1) vanishes identically.
The tetrad determinant turns out to be

e = a3
[
1 + 1

4
(
h2
xy + h2

xz + h2
yz − hxxhyy − hxxhzz − hyyhzz

)]
.

Now, one introduces this all perturbed quantities in Eq.(2.21) and neglect second and
higher order terms in the perturbation. After straightforward calculations one can find
the GWPE in vacuum [86];

ḧij + 3H
(

1 + Υ
)
ḣij −

∇̊2

a2 hij = 0, (3.16)

which is considered the general expression before analyzing a particular case. Here,

Υ = ḟT
3HfT

. (3.17)

Compare (3.16) with (3.8); the coefficient of friction has an extra contribution due to
TG. Taking into account f = −T we recover the GWPE of GR.
From Eq.(3.17) one can see that Υ→∞ when fT → 0, which means that we need to
be careful with the models chosen in order to avoid situations of divergencies. Another
thing to be said is that one should consider models such that
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1 + Υ > 0. (3.18)

This is because when the coefficient of friction is positive, the wave is damped and,
consequently, the amplitude decays. Whether (3.18) is not accomplished in the sense
that 1 + Υ < 0, the amplitude grows, which physically speaking has no sense as we
expect the GW to decay in time. And, in addition, the case 1 + Υ = 0 does not
represent a damped wave. Hence, this restriction is really important, and must be
considered always since it eliminates several model possibilities and reduce the values
of the parameters considered in each model. It is worth saying that we are avoiding the
scalar and vector perturbations, but they exist; the thing is that we are only focusing
on tensor perturbations because of the purposes of this work.

Notice the presence of the scale factor in the GWPE. It is true that a has an specific
form in TG; the scale factor will depend on the form of f which in this case depends
on torsion only (in section 3.3 the boundary term will be included), so we would have
to define or specify the Lagrangian f . However, what is usually done is to consider an
arbitrary a and plot the perturbation against the scale factor, as it will be shown in
Figure 3.4. We use, in section 3.3.1, specific expressions of a because we decided to plot
the perturbation against the cosmic time. Nevertheless, as we comment in that section,
these plots denote some "toy models" since consider specific era domination. In order
to study the GWPE we can evolve the history of the universe using the Cosmic Linear
Anisotropy Solving System (CLASS) software [87, 88], which is an excellent tool for
cosmologists who want to analyze their theoretical models. One possibility is to work
in the code with the effective state parameter; for example, inserting Eq.(2.30), (2.31)
and (2.32) in Eq.(2.29) we get

ωeff = −1 + (1 + ω) H2(b−1) − A
H2(b−1) − (A/b) , (3.19)

where

A = H
2(b−1)
0

1− Ωm,0 − Ωr,0
, (3.20)

and

H = a′

a2 . (3.21)

We could proceed to manipulate (3.19) on CLASS and treat TG as an effective fluid
(let’s say, indirectly), or we can use another method such as changing the correct
equations on CLASS and treat TG as a modified theory (let’s say, directly). In any
case, the result should be the same. There is already a study of GWs through CLASS;
in Figure 3.4, taken from [8], can be seen some graphs that show the behavior of
the GWs in the f(T ) Power Law Model in comparison with ΛCDM. Clearly, when
b → 0 the curves tend to the ΛCDM behaviour. Deviations from GR can be seen
when b → 1, and apparently these GWs dissipate energy faster. This could serve to
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establish restrictions on binary pulsars [89], for example. When the universe enters
into the accelerated era, only for the cases b = 10−6; 10−7 the tensor modes oscillations
are non-null. Nonetheless, in the case b = 10−6 the modes rapidly decay and only in
the case b = 10−7 they survive up to present time. This tell us that in this model the
‘effective teleparallel fluid’, characterized by (3.19), is a powerful dissipative medium.
This is because for larger values of b the tensorial modes enter in the cosmological
horizon earlier [8], in comparison with the prediction of ΛCDM cosmology, and hence
the GW amplitude goes quickly to zero already in radiation and matter epochs; we can
see it from the math since

lim
b→1

3H
(

1 + Υ
)
→∞,

so for b values close to unity the damping term in (3.16) becomes huge and the GW
decays faster with the running of time. With regard to the phase, it is not observed
any difference to GR because there is no phase modification in f(T ) gravity.
We tried to reproduce these plots, but for several reasons (different kind of problems in
the code) we have not reached that goal. However, we found while working on CLASS,
specifically on the Friedmann equation, that a clearer and better behavior of the Hubble
parameter requires −1 ≤ b ≤ 1. When the previous relation breaks, a big amount of
roots for the Friedmann equation appears, making the Hubble function more complex.
Whether −1 ≤ b ≤ 1 is satisfied, only one real root for the Hubble function emerge.
Consequently, the Power Law Model is physically viable when 0 < b ≤ 1, which means
that the contribution of the ‘extra’ term in the f(T ) function, that is mT b, should not
contribute too much, and of course this helps the GW to keep its energy through time.
If one is interested in primordial GWs, the last point is of vital importance since it is
expected to measure these particular GWs even though they arrive to us really weak.
If the extra term grows, it will be the case that at present time we would not, in theory,
be able to measure anything since, as it was mentioned before, the effective teleparallel
fluid is significantly dissipative.
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Figure 3.4: These plots were the results of [8] for the Power Law Model we have
been discussing. With a wave number k = 0.01 Mpc−1, the upper plot depicts the
propagation of the GWs for the ΛCDM model and for the f(T ) Power Law Model with
some values of the free parameter b over the full cosmological history. The lower plot
just shows some of these results in the late-time cosmological history.

3.3 Gravitational waves in f (T,B) gravity
The computation presented in this section was done by us, following the steps of the
previous section.
We will consider perturbations on a spatially flat cosmological background

ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2),

which can be straightforwardly described by the tetrad choice
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eaµ = diag(1, a(t), a(t), a(t)).

An interesting feature of this tetrad choice is that it allows vanishing spin connection
components and so acts as a good tetrad. Linear tensor perturbations of the cosmo-
logical background metric are represented by

gµν = −δµ0 δν0 + a2δµi δ
ν
j (1 + hij) ,

at the level of the metric tensor, and where indices i, j are both spatial. In our setting,
these perturbations are transverse, traceless and symmetric, which eliminates superflu-
ous degrees of freedom from the perturbation equations. Following the same procedure
as in the background scenario, we can choose components for the linear tetrad per-
turbation that reproduce the metric perturbations while also having vanishing spin
connection components. This is readily achieved for the choice

eaµ = δ0
µδ

a
(0) + 1

2aδ
i
µδ

a(j)hij, (3.22)

where parenthesis denotes tangent space indices. It is through this perturbation strat-
egy that the GWPE for f(T,B) gravity is obtained in this work.
Regularly, in f(T,B) gravity one can write

hµν = ηµaE
a
ν + ηνaE

a
µ, (3.23)

where |Ea
µ| << 1. Now, the first order perturbative tetrad Ea

µ is not symmetric due
to the f(T,B) gravity is not invariant under a local Lorentz transformation. We can
write this perturbation tetrad into symmetric and antisymmetric parts

Eµν = E(µν) + E[µν],

but in fact the antisymmetric part has no physical meaning because it is not involved
into the Lagrangian and in the field equations. In consequence we can set to zero the
antisymmetric component and Eq.(3.23) is rewritten as

hµν = 2ηµaEa
ν . (3.24)

Hence, it is a matter of convention to use the tetrad or the metric perturbation. Using
these tensor perturbations of the flat cosmological tetrad, we can deduce the perturbed
TG scalars, which are given by [36]

T = 6H2 , (3.25)
B = 6

(
3H2 + Ḣ

)
, (3.26)

and where the tetrad determinant turns out to be

e = a3
[
1 + 1

4
(
h2
xy + h2

xz + h2
yz − hxxhyy − hxxhzz − hyyhzz

)]
.
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Inserting the perturbed quantities in the field equations, including those of (3.14) and
(3.15), we obtain the GWPE;

[
δµa−

1
2δ

i
aδ
µjhij

]
f̈B−

[
δ0
a−

1
2δ

i
aδ

0jhij

]
f̈B+BfB2

[
δµa−

1
2δ

i
aδ
µjhij

]
+ 1

2a
(
ḣaµ−∂µha0

)(
ḟB+ḟT

)

−fTH
a

(
ḣaµ − ∂µha0

)
+ fT

2a
(
∂ν∂νhaµ − ∂ν∂µhaν

)
+3fTH

2a
(
∂νhaµ − ∂µhaν

)
− fT

4aAaµ −
f

2

[
δµa −

1
2δ

i
aδ
µjhij

]
= 0, (3.27)

where we have neglected the matter sector and considered that f depends on the time
coordinate only. Here,

Aaµ =
(
∂νhαa − ∂ahαν

)(
∂µhαν − ∂νhαµ

)
,

which we will neglect since the contribution of this term is of second order in the
perturbation.
After straightforward calculations, our resulting wave equation is

ḧij + 3H (1 + β) ḣij −
∇̊2

a2 hij = 0, (3.28)

where

β = 2
HfT

[
fTB

(
6HḢ + Ḧ

)
+ 2fTTHḢ

]
, (3.29)

which agrees with both its f(T ) gravity limit and its GR (or TEGR) limit, as one
would expect. The GWPE (3.28) is our principal result. About the emission of these
GWs, see appendix D.
From Eq.(3.29) we see that torsion needs to be present, that f0 cancels out at this level
and that, to be able to see all the contributions, T and B must be coupled. For this
reason, only mixed models should be considered. Similarly to Eq.(3.18) it is said that

1 + β > 0. (3.30)

Following the restriction (3.30), it is convenient to consider m > 0 and preferably
n ≥ 0.
The most general source-free GWPE on a flat cosmological background in modified
gravity has the generic form [90]

ḧij + (3 + αM)Hḣij − (1 + αT ) k
2

a2hij = 0, (3.31)

where αM is ‘Planck mass running rate’, and αT = c2
T − 1 is the tensor excess speed.

On comparison with (3.28), we can see that, in f(T,B) gravity
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• αM = 3β, which means that the Planck mass running rate is determined by the
torsion scalar and the boundary term.

• αT = 0, which implies, as in the f(T ) gravity case, that the GWs travel at the
speed of light (the speed is not modified by B). Consequently, f(T,B) gravity
exhibits a frictional term which would produce a modification of GW amplitudes
but no mass terms are produced meaning that the propagation speed remains
the speed of light in agreement with current observations.

Notice also that (3.31) is using the Fourier space since ∇̊2 → k2.

For the general GWPE that appears in Eq.(3.31), the meaning of the two modifying
parameters alter the phase and amplitude of the propagation of a GW through

hGW ∼ hGR e
− 1

2

∫
αMHdη︸ ︷︷ ︸

Amplitude

e
ik
∫ √

αT +
a2m2

g

k2 dη︸ ︷︷ ︸
Phase

,

where mg would be the mass of the graviton, and which is represented in conformal
time. In the case of f(T,B) gravity, it turns out that the graviton has no mass resulting
in

hGW ∼ hGRe
− 3

2

∫
βHdη ,

in which is clear that the dampening factor affects the amplitude only. The impact of
these alterations to the propagation of GWs also permeates into the GW luminosity
distance which in this setting turns out to be related to the electromagnetic luminosity
distance through [91]

dgL(z)
dEML (z) = exp

[
3
2

∫ z

0

β

1 + z′
dz′
]
,

which will play a crucial role in using GWs as standard sirens in future GW detectors
(see [92] for further discussion on this topic).
The approach that we noticed should be used in CLASS code is to add the effective
state parameter for each TG model and run the code, so one will assume a different
kind of fluid that will affect the dynamics of the GWs. Another approach could be
to plot directly the GWPE found, however, solving the equation is quite difficult and
complicated, speaking in computational terms. That is the reason the first approach
is reasonably more convenient, and that is why we proceeded to work on an expression
for the effective state parameter; inserting Eqs.(2.43), (2.44), (2.45), (2.46), (2.47) and
(2.48) in Eq.(2.42), we obtain

ωeff = −1 +
[
12mn(m− 1)

(
a′′a′

a5 − 2a
′3

a6

)
(6)n+m−3

(
a′2

a4 + a′′

a3

)n−1(a′2
a4

)m−2

+6n(n− 1)(m− 1)
(
a′′′

a4 − 6a
′3

a6

)
(6)n+m−4

(
a′2

a4 + a′′

a3

)n−2(a′2
a4

)m−2
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+72n
(
a′′′a′′a′

a9 −2a
′′′a′3

a10 −6a
′′a′4

a11 +12 a
′6

a12

)
(mn+n−m−1)(6)n+m−3

(
a′2

a4 +a
′′

a3

)n−2(a′2
a4

)m−1

+6n(n− 1)
(
a′′′′

a5 + a′′′a′

a6 − 12a
′′a′2

a7 + 42a
′4

a8

)
(6)n+m−2

(
a′2

a4 + a′′

a3

)n−2(a′2
a4

)m
12mn

(
a′′2

a6 − 13a
′′a′2

a7 + 22a
′4

a8

)
(6)n+m−2

(
a′2

a4 + a′′

a3

)n−1(a′2
a4

)m−1

−2m(2m− 1)
(
a′′

a3 − 2a
′2

a4

)
(6)n+m−1

(
a′2

a4 + a′′

a3

)n(a′2
a4

)m−1
]/

[
3n
(

3 a
′

a2 + 1
)
a′

a2 (6)n+m−1
(
a′2

a4 + a′′

a3

)n−1(a′2
a4

)m
+ (m− 1

2)(6)n+m
(
a′2

a4 + a′′

a3

)n(a′2
a4

)m

−18n(n− 1)
(
a′′′a′

a6 − 6a
′4

a8

)
(6)n+m−2

(
a′2

a4 + a′′

a3

)n−2(a′2
a4

)m
−6mn

(
a′′

a3 − 2a
′2

a4

)
(6)n+m−1

(
a′2

a4 + a′′

a3

)n−1(a′2
a4

)m]
. (3.32)

which we should use in the code. Nevertheless, as I already mentioned before, we have
had some problems in reaching the goal of plotting the GWs. We are still working on
that.
Now, it was mentioned that m > 0 and n ≥ 0, but also in consistency with the points
discussed in the previous section, it is precise that 0 < m ≤ 1 and 0 ≤ n ≤ 1 with one
exception; whether m = 1/2 and n = 0 the effective state parameter (3.32) becomes
undetermined. All the rest of possibilities are viable.

3.3.1 Specific cases
Dealing with Eq.(3.28) directly on Mathematica software and assuming a Power Law
Model on f(T,B) gravity, that is,

f(T,B) = b0B
k + t0T

m, (3.33)

in which b0, k, t0 and m are free parameters, we could plot some cases of perturbations
E(t), where t is the cosmic time in gigayears (1 Gyr = 109 yrs) . The quantity E(t),
which is the tetrad perturbation, is related to h(t), the metric perturbation, through
the equation (3.24); so it is a matter of convention to use one or another quantity. In
this case, we have used E(t).
The GW, modeled through Eq.(3.28) using (3.33), is embedded in radiation, matter
and dark energy, in an independent way, that is: We plot a GW with (3.28) using a set
of parameters in the Power Law Model on f(T,B) gravity considering an specific form
of the scale factor; first we use dark energy, then matter and later radiation. Finally,
we joined the three curves together in one figure. We repeated the same procedure for
different values of the free parameters. The plots are shown in figures 3.5, 3.6 and 3.7.
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Figure 3.5: E(t), which is the tetrad perturbation (3.24), is plotted against the cosmic
time. For this plot we have b0 = 0, k = 1, t0 = 7 and m = 0.5. The GW embedded
in dark energy, matter and radiation is represented by the black, grey and brown
curve, respectively. In this case, t0 is in L−1 units, where L is length (according to our
conventions, it might be in Planck lengths).
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Figure 3.6: E(t), which is the tetrad perturbation (3.24), is plotted against the cosmic
time. For this plot we have b0 = 0, k = 1, t0 = 13 and m = 0.4. The GW embedded in
dark energy, matter and radiation is represented by the black, grey and brown curve,
respectively. In this case, t0 is in L−6/5 units, where L is length (according to our
conventions, it might be in Planck lengths).
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Figure 3.7: E(t), which is the tetrad perturbation (3.24), is plotted against the cosmic
time. For this plot we have b0 = k = t0 = m = 1. The GW embedded in dark energy,
matter and radiation is represented by the black, grey and brown curve, respectively.
In this case, b0 and t0 are dimensionless.

According to our computation, t ≈ 14 Gyrs would be the present time. Now, in all of
the figures, we can see that the GW decays faster in dark energy rather than in other
substances; that could explain why the amplitude of GWs at present time (dark energy
epoch) is almost null. About Figure 3.7, we can see that the amplitude of the GWs
embedded in matter and radiation at present time is still huge, which may suggest
this is not a good model (we have discussed that, we cannot see all the contribution of
terms contained in the damping term when T and B are decoupled, as they are in this
case; for that reason, a better behaved GW might be seen in f(T,B) models where
both scalars are coupled). With regard to Figure 3.5 and Figure 3.6, the behavior is
much better since at present time the amplitude of the waves is small, but notice that
in those cases we have a kind of Power Law f(T ) model since the boundary term is
not present.
Clearly, these plots are not considering different epochs in the history of the universe,
but just a wave immerse in an specific medium. Consequently, they are not quite
reliable, and, for that reason, we stopped working on this kind of plots. We believe we
should work on CLASS (or a similar code) in order to obtain realistic results.

3.3.2 Perspectives
According to the issues discussion along this chapter, we consider the tensor pertur-
bations for specific models, for example a universe dominated solely by dark energy.
Up to this point, our equation (3.28) denotes a gravitational wave in a f(T,B) theory.
Once the form of this f(T,B) is set, we can proceed with the cosmological solutions at
perturbative level. For this, the next stage of this work will be working on CLASS and
rewrite the background module, which is initially set in the GR formalism. But there
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still remain some issues we are trying to solve. The effective state parameter is written
in terms of the Hubble parameter (both of them, the one for the Power Law Model
and the one for the Mixed Power Law Model), but this needs to be found (as it is not
defined in that part of the code yet) with a numerical root finding method using the
‘teleparallel’ Friedmann equations; we are using Ridders’ method, together with some
bracketing methods. After that, the effective state parameter needs to be integrated
(we are using Simpson’s 1/3 rule), but we are having divergences problems. The code
seems to be working fine (the numerical part) and the equations are consistent (the
theoretical part, which we discuss in this work), so we are actually dealing with this
and trying to find where the problem is. The future perspective is to continue working
and to solve this issue, we would like to be able to plot different cases for both models
and compare our results with those from the references given in this thesis.



Chapter 4

Conclusions

The main goal of this work was to understand and study the gravitational waves derived
from Teleparallel theories.

• In chapter 1 a review of GR was made. The principal reasons that motivated
Einstein to change the current theory of gravity in that time, that is, Newton’s
conception of gravity, were studied. The main quantities in GR were also pre-
sented, such as the Levi-Civita connection, the Riemann tensor, the Ricci tensor
and the Ricci scalar. In addition, the most important equations were reviewed,
including the Einstein field equation and the Friedmann equations, obtained con-
sidering the FLRW metric. Finally, it was mentioned the different ways in which
one can modify GR field equations, following the Lovelock’s theorem.

• In chapter 2 we reviewed the main quantities and equations in TG, showing two
possible extensions in that theory which involve the torsion scalar and the bound-
ary term. The Friedmann equations and the cosmology behind f(T ) and f(T,B)
was presented. It can be concluded that TG offers a compelling background sce-
nario, which can be reduced to GR in the TEGR limit. Nonetheless, the features
of teleparallel models, in particular of f(T,B) models, over Einstein’s theory of
gravity make TG a quite recommendable modified theory.

• In chapter 3 we studied the gravitational wave perturbation equations in GR and
in f(T ) gravity. After that we followed the same procedure and calculated the
GWPE for f(T,B) gravity. We discussed some specific cases, assuming a Power
Law Model for f(T,B) gravity, and finally we gave the perspectives of this work.

According to the studied in chapter 3 with regard to the GWPEs, two things can be
said about the model construction process:

1. In both f(T ) and f(T,B) models, it is completely necessary to have terms involv-
ing torsion in order to avoid divergences. It seems that in these TG extensions
the torsion cannot be neglected.

2. To be able to see the contribution of all terms in f(T,B) models, T and B must be
coupled. Simpler GWPEs can be reached by considering both scalars decoupled,
or even a model that does not depend on the boundary term.
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In relation to the models proposed, a couple of things should be mentioned:

1. The f(T ) Power Law Model is quite manageable due to it can be derived easily
with respect to the torsion scalar. The case b = 0 is an special limit, because
f = −T + constant gives GR with cosmological constant. As it was mentioned,
b > 0 because of the restriction (3.18), but also it was found while working
on CLASS that a clearer and better behavior of the Hubble parameter in the
Friedmann equation requires −1 ≤ b ≤ 1. Consequently, the Power Law Model
is physically viable when 0 < b ≤ 1. This suggests that the ‘extra’ term, that is
mT b, should not contribute excessively but enough to see deviations from GR at
high redshifts.

2. The f(T,B) Mixed Power Law Model is more complex than a simple sum of
independent terms of T and B. The necessity of the coupling between both
scalars in order to see all the contributions in (3.29) reveal that the torsion
and the boundary term are, in a sense, a single contribution to gravity; the
gravitational interaction is caused by a unique quantity which is not other thing
that the coupling of both scalars. Even if T and B are independent scalars and
produce gravity, the boundary term is derived from torsion as it can be seen from
(2.14), hence, it is not strange that the coupling of both scalars results to be a
good f(T,B) model. Now, the f0 parameter is not of importance at perturbative
level, although, at background level is quite important; f0 cannot be so large as
the matter content term should contribute significantly. Also, it was commented
thatm > 0 and n > 0. However, in consistency with point 1, the physically viable
Mixed Power Law Model should consider 0 < m ≤ 1 and 0 ≤ n ≤ 1, except for
the case m = 1/2 and n = 0. A deeper investigation on the phenomenology of
both scalars T and B could tell us more about the cases of torsion domination
(m > n), and boundary term domination (m < n).

Finally, Weitzenböck’s vision offers an interesting formalism and explanation about the
nature of space-time. One of the most interesting results was the necessity of coupling
the torsion scalar and the boundary term in order to see all the contributions of the
terms in the GWPE; as we already mentioned, it is not a surprise since the boundary
term is obtained directly from torsion, but this kind of details make us thing that,
maybe, the best models in TG are those which consider certain kind of coupling be-
tween both scalars. f(T ) and f(T,B) models have been well studied by most of people
dedicated to TG. We would like to focus, in future works, on f(B) models and try to
figure out whether they give good results and if this coupling in f(T,B) turns out to
be more convenient.
We plan to continue modifying a Boltzmann code and try to find some restrictions
over the Power Law and Mixed Power Law Models treated in this thesis. We are also
interested in comparing the possible results with LIGO’s data bases of GWs [93] and
perhaps, in a future, the data produced by the simulations of LISA (Laser Interferom-
eter Space Antenna) [94]. This study will be reported elsewhere.



Appendix A

A brief formalism of Teleparallel
Gravity

A.1 The torsion tensor
The following development can be found in [33, 37]. A Lorentz connection or spin
connection, which is given by

ωµ = 1
2ω

ab
µSab,

is a 1-form assuming values in the lie algebra of the Lorentz group. Sab is a given
representation of the Lorentz generators which is antisymmetric in ab, and ωab µ must
be equally antisymmetric so it can be lorentzian.
The spin connection is of great relevance to understand TG. This connection defines
the covariant derivative of Fock-Ivanenko;

Dµ = ∂µ −
i

2ω
ab

µSab,

whose second part acts only on the algebraic indices (or tangent space indices). Lorentz
generators take different values depending on the entity to which is applied the covari-
ant derivative of Fock-Ivanenko. For example, for an scalar field φ the generators
are:

Sab = 0.

For a Lorentz vectorial field φc the generators adopt a form

(Sab)c d = i(ηbdδca − ηadδcb),

so

Dµφc = ∂µφ
c − i

2ω
ab

µi(ηbdδca − ηadδcb)φd = ∂µφ
c + 1

2(ωadµδca − ωb µdδcb)φd
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= ∂µφ
c + 1

2(ωc dµ − ωc µd)φd.

Consequently,

Dµφc = ∂µφ
c + ωc dµφ

d, (A.1)

where the square brackets in the dµ indices of the spin connection have been omitted.
Tetrad fields relate tensors of the tangent (or internal) space tensors with spacetime
(or external) tensors. Lets say that φa is an internal, or Lorentz vector, so

φρ = e ρ
a φ

a

will be a vector in spacetime. Conversely,

φa = ea ρφ
ρ.

Under these operations, and due to the non-tensorial character, a connection is going to
adquire a vacuum (or non-homogeneous) term. For example, for each spin connection
ωabµ there is a corresponding general linear connection Γρ νµ given by

Γρ νµ = e ρ
a ∂µe

a
ν + e ρ

a ω
a
bµe

b
ν = e ρ

a

(
∂µe

a
ν + ωabµe

b
ν

)
, (A.2)

and following (A.1) we get

Γρ νµ = e ρ
a Dµea ν .

From (A.2) we see that the inverse expression is

ωabµ = ea ρ∂µe
ρ

b + ea ρΓρ νµe ν
b (A.3)

or

ωabµ = ea ρ∇µe
ρ

b . (A.4)

In equation (A.4), ∇µ is the standard covariant derivative in the connection Γρ νµ,
which only acts on external indices. And, as we know,

∇µφ
ν = ∂µφ

ν + Γν ρµφρ. (A.5)

It can be proved that the relation between both covariant derivatives is

Dµφd = ed ρ∇µφ
ρ, (A.6)

but is worth to mention that the Fock-Ivanenko covariant derivative can be defined for
all fields (tensorial and spinorial), whereas the standard covariant derivative can only
be defined for tensorial fields.
Rewriting equation (A.2) as

Γρ νµea ρ = ∂µe
a
ν + ωabµe

b
ν
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we notice that

∂µe
a
ν − Γρ νµea ρ + ωabµe

b
ν = 0,

which express an interesting property; that the total covariant derivative1 of the tetrad
is zero.
Now, when

∇λgµν = ∂λgµν − Γρ µλgρν − Γρ νλgµρ = 0

it is said that the metricity condition is satisfied, which means that the connection
Γρ λµ is compatible with the metric. Rewriting equation (A.3) as

ωabµe
ν

a = ∂µe
ν

b + Γν ρµe
ρ

b

it is possible to see that

∂µηab − Γρ aµηρb − Γρ bµηaρ = −ωc aµηcb − ωc bµηac,

but the left hand side is zero since

∇µηab = 0,

so

−ωc aµηcb − ωc bµηac = −ωbaµ − ωabµ = 0.

Consequently,

ωbaµ = −ωabµ.

Therefore, the fact that the metricity condition is fulfilled (or, said in other words,
that the metric is preserved) implies that the spin connection is lorentzian, that is,
antysimmetric in the algebraic indices. On the other hand, when ∇λgµν 6= 0, the
corresponding spin connection does not assume values in the Lie algebra of the Lorentz
group (it is not a Lorentz connection).
While the curvature of a Lorentz connection ωabµ is a 2-form assuming values in the
Lie algebra of the Lorentz group;

R = 1
4R

a
bνµS

b
a dx

ν ∧ dxµ,

the torsion is also a 2-form but assumes values in the Lie algebra of the translation
group;

T = 1
2T

a
νµPadx

ν ∧ dxµ,

1The total covariant derivative is that which contains both connections; the general linear connec-
tion (for external indices) and the spin connection (for internal indices).
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where Pa = ∂a are the translation generators. The components of curvature and torsion
are defined, respectively, as

Ra
bνµ = ∂νω

a
bµ − ∂µωabν + ωaeνω

e
bµ − ωaeµωe bν ,

T aνµ = ∂νe
a
µ − ∂µea ν + ωaeνe

e
µ − ωaeµee ν .

It is clear that through the contraction with tetrads, these tensors can be written in
spacetime-indexed forms; curvature as follows

Rρ
λνµ = e ρ

a e
b
λR

a
bνµ = ∂νe

ρ
ρ∂µe

ρ
λ −∂µeρ ρ∂νe

ρ
λ +∂νΓρ λµ−∂µΓρ λν+δaaeb λee ρ∂νe ρ

e ∂µe
ρ

b

+Γρ bµδaaeb λ∂νe ρ
e + eb λe

e
ρΓρ eν∂µe

ρ
b + Γρ eνΓe λµ − δaaeb λee ρ∂µe ρ

e ∂νe
ρ

b

−Γe bνδaaeb λ∂µe ρ
e − Γρ eµeb λee ρ∂νe

ρ
b − Γρ eµΓe λν ,

which is reduced to

Rρ
λνµ = ∂νΓρ λµ − ∂µΓρ λν + Γρ ηνΓ

η
λµ − Γρ ηµΓη λν ; (A.7)

and torsion as

T ρνµ = e ρ
a T

a
νµ = e ρ

a ∂νe
a
µ−e ρ

a ∂µe
a
ν+eρ η∂νe η

µ +eρ ηΓ
η
λνe

λ
µ −eρ η∂µe η

ν −eρ ηΓ
η
λµe

λ
ν

that is reduced to

T ρνµ = Γρ µν − Γρ νµ, (A.8)
which is basically equation (2.9).

Being TG a gauge theory it is characterized by a gauge potential with values in the
Lie algebra of the translation group,

Bµ = Ba
µPa.

The 1-form potential is constructed with the generators of infinitesimal translations.
The fundamental field strength in TG is due to the gauge potential,

F a
µν = ∂µB

a
ν − ∂νBa

µ. (A.9)
A local translation of the tangent space coordinates

x′a = xa + αa (A.10)
with α = α(xµ), defines a gauge transformation. Under such transformation, the gauge
potential behaves as

B′aµ = Ba
µ − ∂µαa. (A.11)
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With the above relation we can see that

F ′aµν = ∂µB
′a
ν − ∂νB′aµ = ∂µ(Ba

ν − ∂ναa)− ∂ν(Ba
µ − ∂µαa)

= ∂µB
a
ν − ∂νBa

µ − ∂µ∂ναa + ∂ν∂µα
a = ∂µB

a
ν − ∂νBa

µ = F a
µν ,

so the field strength is invariant.

The gauge potential appears as the non-trivial part of the tetrad field

eaµ = ∂µx
a +Ba

µ. (A.12)

Substituting (A.10) and (A.11) in (A.12) prime, we have

e′aµ = ∂µx
′a +B′aµ = ∂µ(xa + αa) + (Ba

µ − ∂µαa) = ∂µx
a +Ba

µ

= eaµ,

so the tetrad field is also invariant.

The non-vanishing torsion in Eq.(A.8) relates directly with the gauge field strength of
Eq.(A.9) through the relation

T ρµν = e ρ
a F

a
µν .

This is the reason why in chapter 2 it was mentioned that the torsion tensor was a
measure of the field strength of gravitation.

A.2 Is the weak equivalence principle necessary in
TG?

The universality of free fall, a claim that comes directly from Galileo Galilei, asserts
that: All test bodies fall in a gravitational field with the same acceleration regardless of
their mass or internal composition. This is in agreement with Newtonian mechanics
and is equivalent the requirement of equality between inertial and gravitational masses
[95]. This claim is also known as the weak equivalence principle (see Figure A.1, taken
from [47]), and in GR its validity is a necessity. We will see, following [37], that in TG
this is not the case.
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Figure A.1: It does not matter the weight of the test body, it will always fall with the
same acceleration. Hence, two different bodies with different weights will reach the
floor at the same time. This is the weak equivalence principle. Image taken from [47].

The action of a spinless particle in a gravitational field Ba
µ is, equivalently to electro-

magnetism,

S =
∫ 2

1

[
−midσ −mgB

a
µuadx

µ
]
,

where ua is the particle four-velocity seen from the tetrad frame and

dσ =
√
ηabdxadxb

is the Minkowski tangent-space invariant interval. In gauge theories is possible to
represent, separately, the inertial and the gravitational parts of the particle. The first
term in the action contains the inertial mass mi and the second term refers to the
coupling of such particle to the gravitational field through its gravitational mass mg.
This cannot be done in GR as this is not a gauge theory.
The action can be expressed as

S =
∫ 2

1
mi

[
− dσ

ds
− mg

mi

Ba
µua

dxµ

ds

]
ds,

where

ds =
√
gµνdxµdxν
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is the space-time invariant. The four-velocity results to be holonomic in terms of the
tangent-space line element;

ua = dxa

dσ
,

and on the other side

uµ = dxµ

ds
= e µ

a ua.

In consequence,

S =
∫ 2

1
mi

[
− dσ

ds
− mg

mi

Ba
ρuau

ρ
]
ds.

Taking the variation of this action (with respect to the space-time coordinates) we
obtain

δS =
∫ 2

1
mi

[(
∂µx

a + mg

mi

Ba
µ

)
dua
ds
− mg

mi

(
∂µB

a
ρ − ∂ρBa

µ

)
uau

ρ

]
δxµds = 0

Using Eq.(A.9), the action takes the form
∫ 2

1
mi

[(
∂µx

a + mg

mi

Ba
µ

)
dua
ds
− mg

mi

F a
µρuau

ρ

]
δxµds = 0

Since δxµ is arbitrary, the following relation must be true:(
∂µx

a + mg

mi

Ba
µ

)
dua
ds

= mg

mi

F a
µρuau

ρ.

This is the gravitational force equation. Evidently, the particular case mi = mg means
that the weak equivalence principle holds. However, at this point nothing with regard
to the masses have been assumed, and, a priori, nothing can be said. What must be
observed is that, even though the equation of motion depends explicitly on the ratio
mg/mi, neither the gauge potential nor the field strength depends on this relation.
Consequently, the teleparallel field equation and the equation of motion can be obtained
with the gauge potential independently of the validity of the weak equivalence principle.
It is concluded that the weak equivalence principle is not a necessity in TG.



Appendix B

Relation between scalars

The following can be found in [47]. The Riemann tensor is written in terms of the
Weitzenböck connection as

Rµ
αγλ = ∂γΓµαλ − ∂λΓµαγ + ΓµβγΓ

β
αλ − ΓµβλΓβαγ, (B.1)

as it was seen on Eq.(A.7). Nevertheless, the Weitzenböck connection can be expressed
as

Γλµν = Γ̊λµν +Kλ
µν (B.2)

With this expression at hand, the Riemann tensor takes the form

Rµ
αγλ = R̊µ

αγλ + ∇̊γK
µ

α λ − ∇̊λK
µ

α γ +K µ
β γK

β
α λ −K

µ
β λK

β
α γ. (B.3)

The Ricci tensor is, then,

Rαλ = R̊αλ + ∇̊µK
µ

α λ − ∇̊λK
µ

α µ +K µ
β µK

β
α λ −K

µ
β λK

β
α µ, (B.4)

and the Ricci scalar results

R = R̊ + ∇̊µK
λµ
λ − ∇̊λK

λµ
µ +K µ

β µK
λβ
λ −K

µ
β λK

λβ
µ. (B.5)

Given the contorsion tensor

K λ
µ ν = 1

2

(
T λµν − T λ

νµ + T λ
µ ν

)
, (B.6)

the Ricci scalar can be rewritten, after straightforward calculations, as

R = R̊− 2∇̊µT
[λµ]

λ + T = R̊− 2
e
∂µ(eT µ) + T, (B.7)

which means that

R̊ = −T +B +R, (B.8)

where the definition of the boundary term was applied.
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Appendix C

Scalar and vector perturbations in
f (T ) and f (T,B)

The information presented here (taken from [96]) refers to the non-tensor perturbed
quantities in TG, considering the signature (+,−,−,−).

C.1 Vector and pseudovector perturbations
Usually, the vector modes are ignored since there are few known physical processes in
which they can be generated, and also these kind of modes are diluted more quickly.
The non-zero components of the vectorial and pseudo vectorial perturbations for the
torsion tensor and the superpotential are

δT 0
0i = aβ̇i , (C.1)

δTi0j = 2∂iḣj −
1
a
∂jbi − εkijσ̇k , (C.2)

δT 0
ij = a(∂iβj − ∂jβi) , (C.3)

δTijk = 2(∂i∂jhk − ∂i∂khj) + εijl∂kσl − εikl∂jσl , (C.4)

δS00i = − 1
2a2

[
2aH(bi − βi) + εilk∂kσl

]
, (C.5)

δSi0j = − 1
2a

[1
2

(
∂i(bj + βj − aḣj) + ∂j(bi − βi − aḣi)

)]
, (C.6)

δS0ij = − 1
4a3

[
∂i(bj − βj + 2aḣj)− ∂j(bi − βi + 2aḣi)− 2aεlijσ̇l

]
, (C.7)

δSijk = − 1
2a2

[
δimεkjl∂lσm + δij

(
2aH(bk − βk)− aβ̇k − 2∂2hk

)
−δik

(
2aH(bj − βj)− aβ̇j − 2∂2hj

)
− 2δil∂k∂lhj + 2δkl∂i∂jhl

]
, (C.8)

and the perturbations related to the torsion and boundary term scalars are

δT = 0 , (C.9)
δB = 0 . (C.10)
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C.2 Scalar and pseudo scalar perturbations
These kind of modes represent perturbations in the energy density of the cosmological
fluid that is been considered at last scattering, and they also are the only fluctuations
which can form structure though gravitational instability. The components of the
torsion tensor and the superpotential for scalar and pseudo scalar perturbations up to
first order are

δT 0
0i = ∂i(aβ̇ − φ) , (C.11)

δTi0j = ∂i∂j(ḣ− a−1b)− εlij∂lσ̇ − ψ̇δij , (C.12)
δT 0

ij = 0 , (C.13)
δTijk = δij∂kψ − δik∂jψ + δil(εklm∂j∂mσ − εjlm∂k∂mσ) , (C.14)

δS00i = −H
a
∂i

(
b− β − (aH)−1ψ

)
, (C.15)

δSi0j =
[
(2Hφ+ ψ̇)δij + 1

2∂i∂j(ḣ− a
−1b)− 1

2∂
2(ḣ− a−1b)δij

]
, (C.16)

δS0ij = 1
2a2 εijk∂kσ̇ , (C.17)

δSijk = 1
2a2

[
δik∂j

(
2aH(b− β) + φ− ψ − aβ̇

)
− δij∂k

(
2aH(b− β)

+φ− ψ − aβ̇
)]
, (C.18)

and the perturbations up to first order to the scalar torsion and boundary term become

δT = 4H
(

3Hφ+ 3ψ̇ + 1
a
∂2b− ∂2ḣ

)
, (C.19)

δB = −
[
H
(1
a
∂2(6β − 10b)− 6(6ψ̇ + φ̇− 2∂2ḣ+ 6Hφ)

)
+ 2
a
∂2(β̇ − ḃ) + 2

a2∂
2(2ψ − φ)

+2(∂2ḧ− 6Ḣφ− 3ψ̈)
]
. (C.20)

Then, the perturbation conservation equations become

∇̊µT0
µ = δρ̇+ 3H(δP + δρ) + ∂2v(P + ρ)

a
− 3ψ̇(P + ρ)

+∂2ḣ(P + ρ) = 0 , (C.21)

∇̊µTiµ = ∂i

[
δP + (ρ+ P )

(
4aH(b+ v − β) + φ+ a(ḃ− β̇ + v̇)

)
+a(ρ̇+ Ṗ )(v + b− β)

]
= 0 . (C.22)



Appendix D

Emission of Gravitational Waves in
TG

Einstein field equations can be modified in order to have fourth order terms in the
derivative of the metric tensor. Such modification, which has been proposed in order
to explain different phenomena like the cosmic acceleration, consist in adding a term
containing the fourth derivative of the metric tensor gµν as follows

R̊µν −
1
2gµνR̊ = κ2Tµν + L2R̊;αβ

µανβ, (D.1)

where κ2 = 8πG (in units of c = 1). L is the length scale at which the modification
to the field equations becomes important. We pinpoint that these field equations do
not arise from an action principle, and hence they should be treated as an effective
theory in which the scale L arises from an effective treatment of an underlying theory
which does derive from an action. The left hand side can be reached in the TEGR
limit, while the extra term (the second term of the right hand side) represent the fourth
order modification of standard GR, which can be achieved in f(T,B) gravity. Precisely,
the underlying theory which does derive from an action can be TG, moreover since the
decomposition of second and fourth order terms in the derivative of the tetrad field is
a natural feature of this theory.
In order to obtain the vacuum solutions, we set Tµν = 0 and arrive to

R̊µν −
1
2gµνR̊− L

2R̊;αβ
µανβ = 0. (D.2)

The wave equation satisfied by the gravitational wave can be found when we perturb
the metric up to O(1), that is

gµν = ηµν + hµν (where hµν � 1). (D.3)

Here ηµν is the Minkowski metric (−,+,+,+) and hµν is the small perturbation to the
flat Minkowski space-time. Perturbing Eq.(D.2) we obtain

δR̊µν + L2

2 δ[gµνgρσR̊;γδ
ργσδ] = L2δ[R̊;αβ

µανβ]. (D.4)
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The second term on the left hand side is the Ricci scalar term which is obtained by
taking the trace of the field equation (D.2). In order to simplify the mathematical
formulation, we can choose the Lorentz gauge, which is

∂νh
ν
µ −

1
2∂µh = 0. (D.5)

Using this gauge, the perturbed field equations become

�hµν − ηµν∂µ∂νhµν + ηµν�h+ L2

2 ηµν∂
α∂β�hαβ

= L2
(
�2hµν − ∂β∂ν�hµβ − ∂α∂µ�hαν + ∂α∂β∂µ∂νhαβ

)
(D.6)

We can simplify even more whether we apply the TT (traceless and transverse) gauge
which is the general convention used to study GWs. The TT gauge is given by

hµµ = 0 ; ∂νhµν = 0. (D.7)

This gauge reflects the transverse nature of the GWs. Applying TT gauge, we obtain
the modified wave equations (free space) as

(L2�2 −�)hµν = 0 (D.8)

where � = ηµν∂
µ∂ν is the D’Alembertian operator. The first term inside the bracket

gives the fourth order modification to the free space wave equation. Clearly, we can
recover the wave equation for standard GR when L = 0. Now, following the same
procedure as for the vacuum case, one can obtain the modified linearized Einstein’s
equation in TT gauge as

�
(
�− 1

L2

)
hµν = 16πG

L2 Tµν . (D.9)

The solution of the above equation can be obtained using a Green’s function. Let’s
consider that the source is compact, and located in a region x′ which includes the origin
x′ = 0, and the observer is far away, at r = x. Let’s also restrict ourselves to slowly
moving compact sources, and because the system is compact it follows that |x′| � |x|,
which implies that most radiation is emitted at frequencies such that r � 1/ω. Hence,
we can take r ≈ x− x′. The equation satisfied by the Green’s function G(r, t− t′) is

�
(
�− 1

L2

)
G(r, t− t′) = 4πδ(t− t′)δ3(r), (D.10)

where r = |x − x′| and δ(r) denotes the Dirac delta function. The corresponding
retarded Green’s function in this particular case can be shown to be

G(r, t− t′) =
LJ1(

√
(t− t′)2 − r2/L)√

(t− t′)2 − r2
Θ(t− t′ − r), (D.11)
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where Jn is the Bessel function of the first kind and Θ is the Heaviside step function.
The general solution for the GW can be obtained by integrating the Green’s function
over all the sources

hµν(x, t) = 4G
L2

∫
d3x′dt′G(r, t− t′)Tµν(x′, t′). (D.12)

Using Eq.(D.11), we integrate Eq.(D.12) over t′ and x′, so we have

hµν(x, t) = 4G
L

∫ ∫
dx′ dt′

J1(
√

(t− t′)2 − r2/L)√
(t− t′)2 − r2

Θ(t− t′ − r)Tµν(t′, x′). (D.13)

Now, as a consequence of the Bianchi identities, the energy conservation equations for
the modified field equations are given by

(κ2Tµν + L2R̊;αβ
µανβ);ν = 0. (D.14)

We now perturb the above equations in the weak field limit (up to first order) and use
the form of δR̊;αβ

µανβ from the right hand side of (D.6). Writing the covariant derivative
in terms of the partial derivative and Christoffel symbols, we can neglect the terms
involving the Christoffel symbols since they produce higher order corrections. Hence
retaining only the partial derivative, we get the energy conservation equations as

(κ2δTµν + L2δR̊;αβ
µανβ),ν = 0. (D.15)

Since we are considering weak field limit, the magnitude of energy momentum tensor
must be small. Hence we are ignoring the higher order corrections to Tµν such that the
lowest non-vanishing term is the same as the order of magnitude as the perturbation.
In consequence, we will denote δTµν as Tµν .
Taking the partial derivative of the right hand side of (D.6) (which denotes δR̊;αβ

µανβ)
and applying Lorentz and TT gauge, it can be easily seen that (δR̊;αβ

µανβ),ν = 0. Using
this result and differentiating Eq.(D.15) with respect to time, we get

∂2

∂t2r
T00 = − ∂2

∂x′i∂tr
T0i = ∂2

∂x′i∂x
′
j

Tij. (D.16)

Multiplying the above equation with x′ix′j and integrating, we have

d2

dt2r

∫
d3x′x′ix

′
jT00 =

∫
d3x′x′ix

′
j

∂2

∂x′kx
′
l

Tkl = 2
∫
d3x′Tij. (D.17)

The quadrupole moment of the source is defined in terms of the energy momentum
tensor as follows

Iij(t′) =
∫
d3x′x′ix

′
jT00(t′,x′). (D.18)

Given that in the chosen gauge, hij is traceless and transverse, it is more convenient
to replace Iij by its traceless (reduced) quadrupole moment, which is defined as
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Qij(t′) =
∫
d3x′(x′ix′j −

1
3δijr

′2)T00(t′,x′), (D.19)

where T00 is related with the physical density. In f(T,B) gravity we would have, for a
FLRW metric,

Qij(t′) =
∫
d3x′

(
x′ix
′
j−

1
3δijr

′2
) 1
κ2

[
−3H2

(
3fB+2fT

)
+3HḟB−3ḢfB+ 1

2f
]
. (D.20)

With the intention to make Qij transverse, we project its components on a transversal
plane using the projection operator P a

b (x′) = δab −
x′ax′

b

r′2 , where x′ = (x′, y′, z′) and
r′ = |x′|. Using the basic properties of the projection operator, that is, P 2 = P and
P b
aP

a
c = P b

c , we get the traceless-transverse quadrupole moment:

Q̄ij = P a
i Q

abP b
j −

1
2P

abQabPij. (D.21)

Using the previous relations, we obtain the quadrupole formula for the emission of
GWs as

hij = −2G
L

∫ t−r/c

−∞

J1
(√

τ2−r2

L

)
√
τ 2 − r2

¨̄Qij(t′)dt′

= 2G
L

∫ ∞
0

J1(s)√
s2 + χ2

¨̄Qij(t′r)ds.
(D.22)

Here τ = t − t′, χ = r/L, s = c
√
τ 2 − r2/c2/L and t′r =

(
t− L

√
s2+χ2

c

)
. Eq.(D.22) is

valid in TG because, as we have mentioned, the fourth order modification of Einstein
field equations is equivalent to f(T,B) gravity. Consequently, the emission of GWs in
TG comes from a quadrupole moment; the behavior of matter is the same as in GR.
This is interesting because neither the dominant moment of GR, nor the speed, nor
even the polarization modes, is different from TG. The main difference, as we showed
in chapter 3, is the amplitude of the GW.
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