

#### UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO PROGRAMA DE POSGRADO EN CIENCIAS DE CIENCIAS DE LA TIERRA INSTITUTO DE GEOLOGÍA

### Cartografía geológica y origen de la estructura en flor de Cerro Pelón, Veracruz. Borde de la Cuenca Salina, sureste de México

## TESIS

#### QUE PARA OPTAR POR EL GRADO DE MAESTRO EN CIENCIAS DE LA TIERRA

Presenta:

#### ORESTES ANTONIO DE LA ROSA MORA

#### TUTOR

Dr. Gilberto Silva Romo Facultad de Ingeniería, UNAM

#### **MIEMBROS DEL COMITÉ TUTOR:**

Dra. Elena Centeno Garcia. Instituto de Geología, UNAM Dr. Gustave Tolson Jones, Instituto de Geología, UNAM Dr. Fanis Abdullin. Centro de Geociencias, UNAM Dra. Elisa Fitz Díaz, Instituto de Geología, UNAM

CIUDAD UNIVERSITARIA, CD. MX., MARZO DE 2021



Universidad Nacional Autónoma de México



UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

#### DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. "Declaro conocer el Código de Ética de la Universidad Nacional Autónoma de México, plasmado en la Legislación Universitaria. Con base en las definiciones de integridad y honestidad ahí especificadas, aseguro mediante mi firma al calce que el presente trabajo es original y enteramente de mi autoría. Todas las citas de, o referencias a la obra de otros autores aparecen debida y adecuadamente señaladas, así como acreditadas mediante los recursos editoriales convencionales".

Orestes Antonio de la Rosa Mora

#### Agradecimientos

Investigación realizada gracias al Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica (PAPIIT) de la UNAM, Proyecto IV 100516. Agradezco a la DGAPA-UNAM la beca recibida.

Agradezco a la Universidad Nacional Autónoma de México, al posgrado en Ciencias de la Tierra y al Consejo Nacional de Ciencia y Tecnología (CONACYT) por la beca otorgada.

A mi tutor el Dr. Gilberto Silva Romo por los consejos, recomendaciones y apoyo para la realización del presente trabajo. Gracias por su paciencia, compartir sus conocimientos y compañía.

Gracias a los miembros del jurado examinador, la Dra. Elena Centeno, la Dra. Elisa Fitz, el Dr. Gustave Tolson y el Dr. Fanis Abdullin por sus comentarios y sugerencias que mejoraron el producto final de este trabajo.

Agradezco especialmente a mis padres Lucy y Antonio por siempre apoyarme sin importar los obstáculos y dificultades que se presenten, a mi hermano Alfonso que sigues siendo mi inspiración para seguir adelante. A mi abuela Alicia que es mi luz de vida.

A mis amigas y amigos con los que comparto una forma de mirar y que me han acompañado durante este caminar Priz, David, Itza, Andrea, Sara, Ale, Fran, Svenja, Marisol, Luna, Adrian, Leo, Raquel y Tehua.

A mis compañeros colegas y profesores del A400 Yoalli, Nallely, Mtro. Campos y Dra. Claudia, Emmanuel, Salatiel, Esther, Ana, Beto, Boni, Alam e Ivan por la compañía y ayuda en la realización del presente trabajo. Un agradecimiento particular al Ing. Arcos por las observaciones realizadas durante la elaboración del trabajo.

3

#### Resumen

Cerca de la pequeña ciudad de Las Choapas, en Veracruz, México, está expuesta la estructura de Cerro Pelón, anteriormente descrita como un anticlinal de tendencia N-S reclinado hacia el este. Esta orientación difiere marcadamente de la tendencia estructural general NW-SE de la Sierra de Chiapas. En una interpretación generalmente aceptada, la estructura del Cerro Pelón se ha asociado con la tectónica de la sal, debido a su proximidad a la cuenca salina del Istmo de Tehuantepec; Sin embargo, sobre la base del mapeo de campo a diferentes escalas, el análisis estructural centrado en la cinemática de fallas y la reinterpretación de secciones sísmicas, en conjunto con una evaluación de provincias geológicas vecinas, proponemos que el Cerro Pelón es el resultado de una estructura floral positiva de Edad del Mioceno asociada con una falla lateral izquierda escalonada a la derecha de los sistemas de fallas Tuxtla-Malpaso y Veracruz. La termocronología basada en análisis de huellas de fisión en granos de apatita indica que el núcleo de la estructura inició su exhumación a los  $16.0 \pm 1.1$ Ma, la edad aquí asignada a la estructura de la flor positiva. La deformación sinedimentaria durante el Jurásico Temprano-Medio es evidente en el núcleo de la estructura. Además, en el área Cerro Pelón-Tecozautla se pueden reconocer tres eventos principales de deformación: D1 con una dirección de estiramiento máxima horizontal NW-SE caracterizada por fallas listricas sinedimentarias durante el Jurásico Temprano a Medio; D2 una fase de acortamiento orientada NE51 ° -SW51 ° que crea la estructura anticlinal durante el Eoceno; Cizalla lateral izquierda D3 asociada a los sistemas de fallas Tuxtla-Malpaso-Veracruz durante el Mioceno, que generó la estructura de flor positiva.

## Abstract

Near the small town of Las Choapas, in Veracruz, Mexico, is exposed the Cerro Pelón structure, previously described as a N-S-trending anticline reclined to the east. This orientation differs markedly from the general NW-SE structural trend of the Sierra de Chiapas. In a generally accepted interpretation, the Cerro Pelón structure has been associated with salt tectonics, owing to its proximity to the Tehuantepec Isthmus salt basin; However, on the basis of field mapping on different scales, structural analysis centered upon fault kinematics, and reinterpretation of seismic sections, in conjunction with an evaluation of neighboring geological provinces, we propose that the Cerro Pelón is the result of a positive flower structure of Miocene age associated with a right-stepping left-lateral fault of the Tuxtla-Malpaso and Veracruz fault systems. Thermochronology based on fission track analyses in apatite grains indicates that the nucleus of the structure initiated its exhumation at 16.0± 1.1 Ma, the age here assigned to the positive flower structure. Synsedimentary deformation during the Early-Middle Jurassic is evident in the nucleus of the structure. Further, in the Cerro Pelón-Tecozautla area three main deformation events can be recognized: D1 with a horizontal NW-SE maximum stretching direction characterized by synsedimentary listric faults during the Early to Middle Jurassic; D2 a shortening phase oriented NE51°-SW51° which creates the anticlinal structure during the Eocene; D3 left-lateral shear associated with the Tuxtla-Malpaso-Veracruz fault systems during the Miocene, which generated the positive flower structure.

# Índice

| Resumen4                                  |
|-------------------------------------------|
| Abstract                                  |
| Índice de figuras7                        |
| Capítulo 1 Introducción9                  |
| 1.1 Ubicación geográfica10                |
| 1.2 Antecedentes del área de estudio12    |
| 1.3 Planteamiento del problema15          |
| 1.4 Hipótesis de trabajo15                |
| 1.5 Objetivos15                           |
| 1.6 Metodología16                         |
| 1.6 Marco teórico19                       |
| 1.6.1 Principios de la Tectónica salina19 |
| 1.6.2 Fallas Laterales23                  |
| Capítulo 2 Marco geológico regional       |
| 2.1 Cuencas petroleras                    |
| 2.2 Sierra de Chiapas34                   |
| Capítulo 3 Registro estratigráfico        |
| 3.1 Flanco Occidental                     |
| 3.2 Flanco Oriental41                     |
| Capítulo 4 Cartografía geológica43        |
| Capítulo 5 Geocronología46                |
| 5.1 U/Pb en Circón Detrítico48            |
| 5.2 Trazas de fisión en apatito51         |
| Capítulo 6 Geología Estructural54         |
| 6.1 Flanco Occidental57                   |
| 6.2 Flanco Oriental60                     |
| 6.3 Sector Núcleo63                       |
| 6.4 Sector Sur                            |
| 6.5 Análisis de la estructura68           |

| 6.6 Secciones geológicas                                          | 72  |
|-------------------------------------------------------------------|-----|
| 6.7 Estructuras regionales                                        | 76  |
| Capítulo 7 Discusión                                              | 83  |
| Capítulo 8 Conclusiones                                           | 93  |
| Bibliografía                                                      | 96  |
| Anexo I Mapa Geológico Cerro Pelón                                | 100 |
| Anexo II Resultados de análisis geocronológicos                   | 101 |
| Anexo III Datos estructurales colectados en las campañas de campo | 107 |

# Índice de figuras

| Figura 1.1 Mapa de ubicación del área de estudio con respecto a las Cuencas del Sureste                        | 10         |
|----------------------------------------------------------------------------------------------------------------|------------|
| Figura 1.2 Mapa de localización del área de estudio                                                            | 11         |
| Figura 1.3 Evolución estructural del anticlinal Cerro Pelón                                                    | 14         |
| Figura 1.4 Mecanismos de formación de diapiros salinos                                                         | 21         |
| Figura 1.5 Tectónica salina en el contexto de fallas laterales                                                 | 22         |
| Figura 1.6 Esquema de la generación de fracturas Reidel en un modelo de laboratorio                            | 24         |
| Figura 1.7 Diagrama de esfuerzos asociados con una cizalla simple de sentido izquierdo                         | 25         |
| Figura 1.8 Estructuras relacionadas con fallas laterales                                                       | 26         |
| Figura 1.9 Esquema de estructuras en flor                                                                      | 27         |
| Figura 1.10 Bloques diagramáticos de la evolución de una estructura en flor                                    | 28         |
| Figura 2.1 Mapa de localización del área de estudios con respecto a las provincias geológicas del su<br>México | r de<br>29 |
| Figura 2.2 Dominios estructurales del Cuenca de Veracruz                                                       | 32         |
| Figura 2.3 Cuencas del Sureste                                                                                 | 33         |
| Figura 2.4 Sierra de Chiapas                                                                                   | 35         |

| Figura 3.1 Tabla de correlación estratigráfica entre los flancos de la estructura Cerro Pelón37                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figura 4.1 Mapas geológicos previos del área de estudio y mapa geológico en el trabajo actual44                                                       |
| Figura 5.1 Mapa de ubicación de las muestras colectadas para los estudios geocronológicos47                                                           |
| Figura 5.2 Gráfica de probabilidad relativa de edad y concordia de circones detríticos49                                                              |
| Figura 5.3 Resultados del análisis de TF52                                                                                                            |
| Figura 6.1 Mapa de sectores estructurales del área de estudio56                                                                                       |
| Figura 6.2 Diagramas en proyección de Schmidt de las localidades del flanco occidental59                                                              |
| Figura 6.3 Diagramas en proyección de Schmidt de las localidades del flanco occidental62                                                              |
| Figura 6.4 Diagramas en proyección de Schmidt de las localidades del núcleo65                                                                         |
| Figura 6.5 Diagrama en proyección de Schmidt de las localidades del sector sur67                                                                      |
| Figura 6.6 Comparación de la posición estructural de los flancos de la estructura Cerro Pelón68                                                       |
| Figura 6.7 Comparación de la posición estructural de los bloques del núcleo de la estructura Cerro<br>Pelón                                           |
| Figura 6.8 Comparación de los datos de estratificación en ambos flancos divididos con base en la edad                                                 |
| Figura 6.9 Interpretación de línea sísmica Cerro Pelón72                                                                                              |
| Figura 6.10 Sección A-A'73                                                                                                                            |
| Figura 6.11 Sección B-B'74                                                                                                                            |
| Figura 6.12 Mapa Geológico Regional79                                                                                                                 |
| Figura 6.13 Mapa Geológico Estructural Regional81                                                                                                     |
| Figura 7.1 Mapa Estructural del sur de México 85                                                                                                      |
| Figura 7.2 Restitución a la posición pre-Mioceno de la estructura Cerro Pelón                                                                         |
| Figura 7.3 Diagrama en proyección de Shmidt de la restitución a la posición horizontal de la tendencia de estratificación en los bloques del núcleo91 |

## Capítulo 1 Introducción

Dado que las rocas generadoras y almacenadoras del sistema petrolero en las cuencas del sureste se encuentran bajo una cubierta cenozoica de más de 2000 m, la información con que se cuenta acerca de éstas es indirecta, la estructura de Cerro Pelón representa una localidad privilegiada al exponer un registro continuo de la sucesión del Jurásico al reciente. Se ha relacionado la génesis de la estructura con la tectónica salina, debido a la cercanía con la Cuenca Salina del Istmo (Acevedo, 1960). Sin embargo, su ubicación dentro de la Sierra de Chiapas y su relación geométrica con los sistemas de fallas laterales de esta provincia sugieren una génesis producto de la cinemática lateral, por lo que el estudio de esta estructura puede ofrecer una visión más integral entre estas provincias. El presente trabajo se encuentra inscrito dentro del proyecto PAPIIT IV 100516 "Caracterización del sistema petrolero de las cuencas del Sureste de México a partir de su análogo en Cerro Pelón, Las Choapas, Veracruz", enfocado en el análisis de la continuidad de un sistema petrolero, que de manera análoga, deja observar las características que conforman los activos petroleros que actualmente se explotan al oriente de la zona de estudio.

La existencia de domos de sal es reportada desde mediados del siglo pasado, donde tomaron gran importancia en la exploración de yacimientos petroleros (Contreras y Castillón, 1960 y Castillón y Larios, 1963). El límite de la sal es definido por Wilson (1993), quien propone que no todos los horizontes de sal reportados en las cuencas del Sureste son de edad jurásica, debido a que en las secciones sísmicas se observan horizontes de sal homogéneos en niveles muy superiores al nivel de las rocas mesozoicas sin aparente perturbación de las rocas subyacentes, los cuales interpreta como horizontes salinos del Oligoceno resultado de una disminución del nivel del mar que permitió la formación de evaporitas en la zona del golfo (Fig. 1.1).



Figura 1.1. Mapa de ubicación del área de estudio con respecto a las Cuencas del Sureste. El área de estudio se ubica parcialmente fuera del límite de la sal en las Cuencas del Sureste propuesto por Wilson (1993), se presenta la ubicación de domos de sal en la Cuenca Salina del Istmo (Contreras y Castillón, 1960 y Castillón y Larios, 1963), se indica la profundidad de los domos con una escala de colores, los domos más someros tiene colores obscuros y los más profundos colores claros.

#### 1.1 Ubicación geográfica

El área de estudio se encuentra en el sur del estado de Veracruz, específicamente en el municipio de Las Choapas, que limita al oriente con el estado de Tabasco y al sur con el estado de Chiapas. La información cartográfica corresponde con las cartas de INEGI con escala 1:50,000 y claves E15C27, E15C26, E15C37 y E15C36. La configuración orográfica del área consiste en un alto topográfico

alineado N-S, que corresponde en el norte con el Cerro Pelón y al sur por el Cerro Jimbal, El alto topográfico está bordeado por lomeríos alargados dispuestos en forma subparalela (Fig. 1.2).

El acceso al área se realiza vía Coatzacoalcos Ver., por la carretera 108, después se continúa sobre la carretera 145D con dirección a Tuxtla Gutiérrez Chis., una vez que se pasa el acceso a la cabecera municipal Las Choapas Ver., en el kilómetro 61 se encuentra una desviación de terracería con dirección al sur, que comunica con el poblado Río Playas, el cual se encuentra dentro del área de estudio y a 1.5 km al norte de Cerro Pelón. Además de Río Playas, los poblados cercanos más importantes son San Miguel de Allende, Miguel Hidalgo y Costilla, Ignacio López Rayón, El Encajonado, Las Isabeles y Vista Hermosa.



Figura 1.2. Mapa de localización del área de estudio. Información tomada de INEGI.

#### 1.2 Antecedentes del área de estudio

El área de estudio fue reportada por primera vez por Benavides (1950), quien realizó estudios prospectivos para Petroleros Mexicanos (PEMEX); su trabajo consistió en la cartografía geológica del anticlinal Cerro Pelón, medición detallada de cinco columnas estratigráficas y levantamiento de cinco secciones estructurales. Dentro de sus aportaciones más importantes es el reporte de la Formación Salina de edad jurásica (o Jurásico–Triásico), descrita como arenisca micacífera de grano fino a grueso roja obscura, amarilla y gris, junto con conglomerados constituidos por clastos de rocas ígneas graníticas, pedernal, arenisca y cuarcita. Sobre la Formación Salina, Benavides (1950) reporta una sucesión estratigráfica conformada por las siguientes unidades; Caliza Chinameca de edad Jurásico Tardío–Cretácico Temprano (Kimmeridgiano al Barremiano), Lutita Méndez, unidades clásticas de edad cenozoica subdivididas en Eoceno temprano, Eoceno Superior, Oligoceno, Oligoceno tardío, Mioceno y reciente. Para Benavides (1950) la Formación Salina representa el depósito en un ambiente litoral a sub-litoral, condición que señala la proximidad del área a una masa continental al sur, e indaga sobre la posibilidad de que se trate de una cuenca cerrada a semicerrada de escasa profundidad en un clima árido.

Benavides (1950) resume estructuralmente el área en tres elementos: Anticlinal Cerro Pelón, Sinclinal Amates y Fallas. Define el anticlinal Cerro Pelón como una protuberancia que sobresale en el relieve, con rocas de edad jurásica en el núcleo y rocas más jóvenes en los flancos. En la región oriental los estratos buzan al occidente, donde los más jóvenes se encuentran debajo de los más antiguos; el eje de la estructura tiene una orientación N-S y en su extremo septentrional presenta una flexión hacia el NW. El Sinclinal Amates se encuentra al SE del Cerro Jimbal en el área del arroyo Amates, donde afloran tobas del Oligoceno, el eje de la estructura tiene una orientación SE a NW. El autor reporta tres conjuntos de fallas, una al norte del Cerro Jimbal con dirección WNW-ESE, que se infiere de edad Eoceno; al poniente del Cerro Pelón con orientación NW-SE; en el flanco oriental del anticlinal se reporta una falla inversa, la cual fue descrita en los afloramientos de los arroyos Guao y Guaíto, donde interrumpe la continuidad de un potente cuerpo de arenisca y conglomerados del Eoceno tardío, y afecta a formaciones de edad Oligoceno, por lo que se presume esta edad.

Acevedo (1960) identifica que el Cerro Pelón fungió como un alto topográfico desde el Cretácico. Sugiere la posibilidad de que la cercanía del Cerro Pelón a la Cuenca Salina del Istmo sea un factor importante de la deformación de las rocas, debido a la presencia de tectónica salina. El autor identifica dos domos salinos a poca distancia, el domo Cascajal a 14 km al NW y el domo Pedregal a 10 km al NE.

En trabajos posteriores se ha considerado a la región del Cerro Pelón como un alto topográfico (Meneses-Rocha, 2001; Guzmán-Speziale y Meneses-Rocha, 2000; Witt et al., 2012). Se ha determinado que durante el proceso de apertura del Golfo de México el paleo-relieve fue controlado por pilares y fosas tectónicas (estructuras de *graben* y *horts*), formando altos y bajos que condicionaron la sedimentación (Meneses-Rocha, 2001). Vázquez-Meneses et al. (2011) presentan la interpretación de una sección sísmica transversal a la estructura Cerro Pelón, junto con una reconstrucción cronológica del depósito-deformación para cada una de las unidades, desde el Jurásico al reciente. En ese estudio se calcularon espesores y erosión, calibrados con datos de madurez de la materia orgánica (reflectancia de vitrinita). Los autores proponen un modelo de evolución estructural que implica tectónica salina desde etapas tempranas (Fig 1.3).

En el contexto del proyecto PAPIIT 100516 "Caracterización del sistema petrolero de las cuencas del Sureste de México a partir de su análogo en Cerro Pelón, Las Choapas, Veracruz", Galicia-Flores y Lazcano-Camacho (2018) reconocen en el núcleo del Anticlinal Cerro Pelón dos unidades litoestratigráficas a partir de la Formación Salina descrita por Benavides (1950). Galicia-Flores y Lazcano-Camacho (2018) asignan las facies de abanico aluvial expuestas en el Cerro Pelón, a la Formación Todos Santos; así, restringen la denominación de Formación Salina para las facies lagunares que afloran en el Cerro Jimbal.



Figura 1.3. Evolución estructural del anticlinal Cerro Pelón, según Vázquez-Meneses et al. (2011). La sección tiene una orientación NE-SW transversal al eje de la estructura y está expresda enunidades cronoestratigráficas. A) En el Jurásico Medio el depósito se realiza sobre una topografía preexistente afectada por fallas. B) En el Jurásico Tardío se observa la actividad de las fallas que forman estructuras de graben y condicionan los espesores del depósito. C) Durante el Cretácico Temprano la actividad de las fallas continúa generando un alto en el extremo occidental y provoca un adelgazamiento del depósito en el occidente. D) En Cretácico Medio se establece una plataforma carbonatada y algunas de las fallas llegan a invertir su cinemática. E) En el Cretácico Tardío se genera una subsidencia en el extremo occidental de Cerro Peón. F) Durante el Paleoceno se incrementa la actividad de las fallas y se invierte la cinemática de algunas de ellas, se genera una flexión entre dos de las fallas que funcionan como depocentro de sedimentación. G) En el Eoceno se forma el anticlinal

Cerro Pelón. H) En el Oligoceno se genera un depocentro al occidente de Cerro Pelón que aumenta el espesor de la unidad en este sector. I) Durante el Mioceno la estructura queda sepultada y se genera, sin embargo, al Oriente de Cerro Pelón la subsidencia es mayor. J) Desde el Mioceno al reciente ocurre un levantamiento en la región que exhuma la estructura de Cerro Pelón.

#### 1.3 Planteamiento del problema

El área de estudio se encuentra en el límite de dos provincias geológicas distintas: la cuenca Salina del Istmo y la Sierra de Chiapas. La conformación de la estructura anticlinal se ha relacionado con la tectónica salina producto del movimiento de diapiros (Acevedo, 1960), a pesar de que se encuentra ubicada estrictamente en el borde noroccidental de la Sierra de Chiapas donde la deformación se relaciona con la cinemática izquierda de fallas laterales activas durante el Cenozoico (Guzmán-Speziale y Meneses-Rocha, 2000). Los estudios previos en el área no presentan el detalle cartográfico ni el análisis estructural suficiente para definir la cinemática de la estructura y su relación con la tectónica regional entre las dos provincias.

## 1.4 Hipótesis de trabajo

El Anticlinal Cerro Pelón es una estructura en flor positiva, emplazada en el salto derecho del sistema de fallas laterales izquierdas Tuxtla-Malpaso-Veracruz.

#### 1.5 Objetivos

Caracterizar el estilo de deformación del anticlinal Cerro Pelón y establecer su significado tectónico en el contexto regional.

**Objetivos particulares:** 

- Realizar una cartografía detallada del área de estudio.
- Realizar un análisis estructural.
- Obtener la edad de exhumación de la estructura.

#### 1.6 Metodología

El presente trabajo inicio con revisión de bibliografía sobre el área de estudio, posteriormente se elaboró un mapa topográfico a escala 1: 25,000 del área, mediante el gestor de sistema de información geográfica Qgis de licencia GPL (General Public License), con base en la información digital del Instituto Nacional de Estadística y Geografía. El mapa topográfico se utilizó como referencia espacial para realizar un estudio fotogeológico, a partir deimágenes obtenidas del globo terráqueo virtual Google-Earth. Se elaboró un mapa geológico preliminar que se afinó con la información obtenida en las campañas de trabajo de campo. Durante las salidas de campo se obtuvieron muestras de las diferentes unidades de roca y datos estructurales de estratificación, fracturas y fallas. Las muestras colectadas se procesaron para estudios termogeocronológicos en cristales de apatito y circón individuales.

Se realizaron dos estancias académicas: una en la Estación Regional Noroeste de la UNAM para aprender la técnica de separado de minerales por medio de líquidos pesados no tóxicos (politungstato de sodio) y el montado de minerales en la resina epóxica EpoFix; posteriormente se realizó otra estancia en el Centro de Geociencias de la UNAM donde aprendí la preparación de la muestra y la metodología para el análisis de trazas de fisión en apatito. Los análisis isotópicos se llevaron a cabo en el Laboratorio de Estudios Isotópicos del Centro de Geociencias de la UNAM.

A partir de la cartografía geológica, los datos estructurales obtenidos en campo, un mapa morfoestructural, dos secciones geológicas del área de estudio e información sísmica publicada, se llevó a cabo un análisis estructural basado en un sistema de información geográfica. En el análisis se consideró la información colectada en campo junto con información estructural obtenida del Servicio Geológico Mexicano y de PEMEX. También se hizo una reinterpretación-síntesis de un mapa cronoestratigráfico regional, y se elaboró una sección estructural regional.

#### 1) Análisis bibliográfico

Con la lectura de artículos previos sobre la zona de estudio, se obtuvo información sobre la estratigrafía y los rasgos estructurales reconocidos, actividad que sustentó el estudio de campo.

#### 2) Cartografía geológica

Para elaborar el mapa geológico anexo, se realizó un estudio fotogeológico para definir la distrubución de las distintas unidades geológicas en el área. Primero se obtuvo un mapa preliminar a escala 1:25,000 de un área de 280 km<sup>2</sup> que posteriormente se verificó en el trabajo de campo. El trabajo de campo consistió en tres campañas, en las cuales se obtuvieron muestras para petrografía, análisis isotópico geocronológico y micropaleontología. Se colectaron datos estructurales de la posición de los estratos, fallas y fracturas. Con la información recabada en el trabajo de campo se procedió a reinterpretar el mapa preliminar, el resultado fue una cartografía a detalle del área de estudio. Adicionalmente, con el objetivo de enmarcar el área de trabajo en un contexto regional se realizó un mapa regional de escala 1:125,000; este mapa se enfocó en la identificación de rasgos morfológicos y la caracterización de estructuras reportadas anteriormente. El mapa regional es una síntesis cronoestratigráfica de la información del SGM que comprende el área de dieciséis cartas del INEGI a escala 1:50,000.

#### 3) Análisis estructural

Con base en el mapa geológico a escala 1:25,000 y el software Orient (Vollmer, 2015) se realizó un análisis para definir la tendencia de los datos estructurales de estratificación. Se elaboró un mapa sintético, que presenta los seis sectores con tendencia semejante. Con la información resultante se propusieron esquemas de secciones tipo en un corte transversal y paralelo al eje de la estructura. Se comparó con la información de secciones sísmicas interpretadas y publicadas de autores anteriores (Benavides, 1950 y Vázquez-Meneses et al., 2011). Los datos obtenidos en campo se analizaron tomando en cuenta su ubicación y la edad de las unidades en las que fueron colectadas. El área de estudio se dividió en sectores estructurales que comparten tendencias generales de estratificación con el

objetivo de definir la estructura, y posteriormente se compararon las tendencias entre los sectores dividiéndolos estratigráficamente para identificar las etapas de deformación involucradas.

En el mapa de escala 1:125,000 se identificaron rasgos morfológicos no reportados y se resaltaron las estructuras (fallas, pliegues y domos salinos) indicadas por autores anteriores (Contreras y Castillón, 1960; Castillón y Larios, 1963; SGM). Con los datos obtenidos se generaron rosetas donde se graficó las tendencias de las lineaciones de fracturas identificadas. Se construyó una sección geológica con base en la información sísmica publicada y la reinterpretación de trabajos previos, la cual incluye un corte transversal al eje de la estructura de Cerro Pelón en su porción septentrional. También, se realizó un mapa estructural del sur de México donde se ubica la zona de estudio, con respecto a las estructuras regionales de la sierra y macizo de Chiapas, las cuencas petroleras del sureste (Cuenca Salina del Istmo, Cuenca de Comalcalco, Pilar Reforma Akal y Cuenca de Macuspana) y la cuenca de Veracruz.

#### 4) Geocronología

Procesado de muestras para el análisis de geocronológico U/Pb en circón detrítico con LA-ICP-MA y termocronología trazas de fisión en apatito. Se colectaron cuatro muestras para fechamiento por el método de LA-ICP-MS U/Pb en circón; una de las cuales resultó apropiada para el análisis de trazas de fisión en apatito. Cada muestra se fragmentó en la quebradora de quijadas y pulverizó en molino de disco; posteriormente se cribó, y se obtuvieron tres fracciones de tamaño (Mallas 100, 200 y < 200). Posteriormente se separaron los minerales pesados usando la mesa Wilfley; este proceso fue realizado en el taller de molienda del Instituto de Geología de la UNAM. Del concentrado resultante, se separó la fracción magnética con el uso del separador magnético Frantz de la Facultad de Ingeniería. En las instalaciones del taller de separación en la ERNO, a partir de la fracción no magnética se obtuvo un concentrado de minerales pesados con el uso del líquido pesado politungstato de sodio, para lo que se requirió de un embudo de decantación de 500 ml, un embudo Büchner y una bomba de vacío conectada a un matraz Kitasato. Finalmente, bajo el campo de un microscopio estereoscópico se realizó manualmente la separación individual de aproximadamente 150 cristales de circón por muestra. El montado y análisis de los cristales de circón individuales por el método de LA-ICP-MS se llevó a cabo en el Laboratorio de Estudios Isotópicos (LEI), Centro de Geociencias, Juriquilla, Qro.

Procesado de muestras para el análisis termocronológico de trazas de fisión en apatito detrítico. De la muestra clástica CP-17-76 de edad jurásica colectada en el núcleo del anticlinal, resultó con cristales de apatito, se aprovechó el concentrado de minerales pesados resultante de la separación por líquidos pesados; así se separaron 600 apatitos de manera manual. Los cristales de apatito se montaron en resina epóxica y pulieron con abrasivos (Lijas P-1500 (12.5  $\mu$ m) y P-2500 (8.3  $\mu$ m), alúmina en suspensión de 3, 1, 0.5 y 0.1  $\mu$ m). Se realizó un ataque químico con una solución de ácido nítrico (HNO<sub>3</sub>) de 5.5 molar a 21°C durante 20 segundos con la finalidad de resaltar las trazas de fisión (TF) en los cristales de apatito. El mismo procedimiento se realizó para una muestra del estándar apatito de Durango. Posteriormente se continuó con la selección de los cristales de apatito óptimos para el conteo de trazas de fisión. Los sesenta cristales seleccionados se marcaron en la imagen de cada cristal áreas superiores a 4000 [ $\mu$ m<sup>2</sup>] donde se encontraron las distribuciones de trazas de fisión más homogéneas, las cuales fueron contadas con ayuda de un microscopio petrográfico de luz reflejada y transmitida con una amplificación de 80X, con la finalidad de obtener la densidad de trazas (el factor  $\rho_s$ ). La cantidad de U<sup>238</sup> contenido en la muestra se obtuvo mediante el método LA-ICP-MS en el LEI del Centro de Geociencias, con un diámetro del láser de 60 $\mu$ m sobre las áreas marcadas.

#### 1.6 Marco teórico

#### 1.6.1 Principios de la Tectónica salina.

Los diapiros salinos se generan por el contraste de densidad entre las evaporitas y la columna sedimentaria que las sepulta. La diferencia de densidad provoca que la sal tienda a migrar verticalmente hacia la superficie, provocando cualquier debilidad estructural o deformando la sucesión suprayacente. Las rupturas de la cubierta de roca sobre la sal ocurren en un estado mecánico quebradizo (Fig. 1.3). De acuerdo con Hudec y Jackson (2012), el proceso de ascenso diapírico ocurre en cualquiera de las siguientes condiciones:

a) Punción reactivada: Los estratos de la cubierta se extiende de manera quebradiza y forman fallas en una estructura de graben; dicha extensión promueve más tarde la migración del diapiro a través de ellas (Fig. 1.4 A).

b) Punción activa: La migración de la sal es contemporánea a la formación de las fallas, de forma que los extremos del graben son levantados y plegados por el diapiro activo (Fig. 1.4 B).

c) Punción por erosión: El diapiro queda expuesto por erosión de la cubierta, lo cual permite el flujo de la sal por descompresión (Fig. 1.4 C).

d) Punción por empuje: En una estructura de falla inversa se puede emplazar el diapiro sobre el plano de falla, sobre bloque de piso (Fig. 1.4 D).

e) Un quinto mecanismo ocurre cuando la cubierta sedimentaría está saturada de fluidos y el emplazamiento del diapiro induce deformación dúctil en los sedimentos no litificados (Fig. 1.4 E).

f) Si el diapiro se expone en la superficie, se produce diapirismo pasivo, el cual asciende continuamente con respecto a las capas de roca que lo delimitan sin inducir deformación en ellas (Fig. 1.4 F).

Los primeros cuatro mecanismos con un comportamiento mecánico frágil pueden ocurrir dentro de un contexto tectónico de extensión. En este caso, el diapirismo se denomina activo porque depende de los esfuerzos extensionales. El mecanismo de perforación por empuje se presenta en un contexto tectónico compresivo, donde los mantos de sal susceptibles a ser deformados, son afectados en las primeras etapas de la deformación (Hudec y Jackson, 2012).



Figura 1.4. Mecanismos de formación de diapiros salinos. Tomado de Hudec y Jackson, 2012.

En un contexto regional existe una diferencia en los estilos estructurales donde se involucra la sal dependiendo del ambiente tectónico en donde se encuentre. Por ejemplo, en un régimen de deformación compresivos, la sal se desacopla del basamento y propicia deslizamientos de la cubierta hasta de cientos de kilómetros, en tanto que, en los márgenes pasivos, la sal se mantiene acoplada.

Las fallas laterales no tienen mucho efecto sobre la sal, a menos que la traza de la falla tenga un doblez, lo que provoque un régimen de deformación compresivo o extensivo, dependiendo de la cinemática de la falla y de la geometría del doblez de la traza. También existe una diferencia en las estructuras resultantes, si la falla lateral se presenta cuando ya existe un diapiro o cuando no. En el caso compresivo con la existencia de diapiro, este es aprisionado y la sal de la parte superior se extruye a la superficie (Fig. 1.5A), sin la existencia de un diapiro la sal funciona como un nivel de despegue que

permite la transmisión del movimiento de deslizamiento de la falla (Fig. 1.5B). En el caso sujeto a extensión, con la existencia de un diapiro, se ensanchará dependiendo de la cantidad de sal que aún guarde (Fig. 1.5C). En el caso donde no existe diapiro, se puede formar uno en un salto entre fallas en un régimen de esfuerzos en extensión (*stepover* extensional) (Fig. 1.5D).



Figura 1.5. Tectónica salina en el contexto de fallas laterales. Tomado de Hudec y Jackson, 2012.

#### 1.6.2 Fallas Laterales

Las fallas laterales se originan en regímenes de esfuerzos donde el esfuerzo principal es cercano a una posición horizontal, dando por resultado un plano de falla sub-vertical y un movimiento lateral entre los bloques que limita (Anderson, 1951). Las fallas laterales se clasifican con base en el desplazamiento relativo entre los bloques puede ser derecho o izquierdo. Como en todo régimen, este movimiento puede no ser enteramente lateral y combinarse con una componente vertical. La importancia geométrica y cinemática de estas estructuras fue descrita por Wilson (1965) quien las identificó dentro del contexto de apertura cortical en zonas divergentes del piso oceánico, las cuales ayudan a acomodar el movimiento lateral generado por la expansión del fondo oceánico.

Dentro de las estructuras asociadas a las fallas laterales se encuentran las fallas de Riedel (Riedel, 1929), descritas a partir de un experimento con una capa de arcilla húmeda sobre dos placas de metal independientes que se movían en un plano horizontal en direcciones opuestas, lo que generaba una ruptura en la capa de arcilla, agrietándose en direcciones preferenciales con respecto a la orientación del deslizamiento principal. Las estructuras resultantes son dos tipos de fallas laterales asociadas con el movimiento, unas que son del mismo sentido del movimiento, denominadas sintéticas y que forman un ángulo con respecto a la falla principal de 15° (cizalla R), y las fallas laterales en sentido opuesto que mantienen un ángulo con la falla principal de 75° (cizalla R') (Fig. 1.6A). El mayor esfuerzo ( $\sigma$ 1) se encuentra en la bisectriz del ángulo formado por las estructuras R y R'. Al continuar la deformación los bloques limitados por los dos conjuntos de fallas, puede sufrir un giro en sentido de la falla principal, llevando las estructuras R y R' a una nueva posición con un ángulo más alto con respecto a la falla principal, principal y pueden formarse nuevas estructuras de cizalla sintética, denominadas P, las cuales mantienen un ángulo muy pequeño con respecto a la falla principal (~10°) (Fig. 1.6B).



Figura 1.6. Esquema de la generación de fracturas Riedel en un modelo de laboratorio. A) Vista de planta de la generación de las fracturas sobre arcilla. B) Esquema de la relación angular de las fracturas con los esfuerzos principales. A) Modificado de Davis et al., 2000; B) Tomado de Woodcock y Schubert, 1994.

Waldron (2005) resume cuales son las estructuras asociadas a las fallas laterales al iniciar el movimiento y cómo evolucionan mientras la deformación aumenta, dando como resultado un giro de las estructuras primarias. En el primer momento se generan: 1) fallas laterales conjugadas, 2) pliegues, 3) fallas inversas y 4) fallas normales (Fig. 1.7A).

Las fallas laterales conjugadas, son pares de fallas que tienen un ángulo entre sí de 60°, aquellas que tienen el mismo sentido de cizalla que la falla principal se denominan sintéticas y tienen un ángulo pequeño (aproximadamente de 15°) con respecto a esta, las que tienen un sentido opuesto de cizalla con respecto a la falla principal son fallas antitéticas y tienen ángulos más grandes (~75°). En una cizalla, los ejes de los pliegues y las trazas de las fallas inversas se forman perpendiculares a la dirección del mayor acortamiento; en contraste, las fallas normales se orientan perpendiculares a la mayor extensión (Fig. 1.7A). A medida que el desplazamiento aumenta, los elementos rotan en un sentido sintético al de la falla; en este caso, en sentido antihorario, las estructuras tempranas rotan a una orientación más aproximada a la de la zona de cizalla (Fig. 1.7B). Conforme avanza la deformación la

rotación aumenta; entonces, las fallas normales con componente lateral pueden reactivarse como fallas inversas (Fig. 1.7C).



Figura 1.7. Diagrama de estructuras asociadas con una cizalla simple de sentido izquierdo en una zona de falla lateral izquierda. Modificado de Waldron (2005).

Por lo general, las fallas tienen trayectorias sinuosas o saltos entre ellas, y otras condiciones que resultan en estructuras asociadas, las cuales se clasifican con base en su ubicación dentro y alrededor de la traza de falla. Kim et al. (2002) las dividieron en zonas dañadas en la pared de falla, en la punta de la falla y en el enlace entre las fallas (Fig. 1.8A). En cada una de estas zonas se desarrollan distintos tipos de estructuras, las cuales también están condicionadas por la reología de los materiales y el régimen de deformación en cada zona. Los saltos que se forman entre dos fallas laterales paralelas y no colineales, pueden definirse cómo salto derecho o izquierdo, dependiendo a la dirección a la que se encuentre el siguiente segmento mirando desde la terminación de la falla. Los saltos pueden mantener un régimen de deformación extensivo o compresivo, dependiendo de la cinemática de las fallas laterales que enlazan, de tal manera que si el salto es en el sentido de la cinemática de la falla, el régimen es extensivo, y si el salto es en sentido contrario a la cinemática de la falla, el régimen es cada caso se generan estructuras distintas (Fig. 1.8B). En un salto en régimen extensivo se generan fracturas de extensión, cuenca tipo *pull-apart*, duplex y bloques girados. En un salto con régimen

compresivo se generan fallas de conexión que unen los dos segmentos de falla, estructuras duplex compresionales y rotación de bloques.



Figura 1.8. Estructuras relacionadas con fallas laterales, clasificadas con base en la ubicación respecto a la falla lateral mayor, modificado de Kim et al. (2004). A) Esquema de ubicación de las zonas dañadas con respecto a la falla mayor; B)
Estructuras formadas en la zona de enlace entre las fallas. Régimen de deformación de extensión, cuando el salto es en sentido de la cinemática de las fallas, fallas laterales izquierdas con salto a la izquierda. Régimen de deformación contractivo o compresivo cuando el salto es en sentido contrario a la cinemática. Por ejemplo:, fallas laterales izquierdas y salto a la derecha.

En ambos casos hay la rotación de bloques, pero con diferente sentido de giro. En un régimen en extensión, el giro de los bloques es de forma sintética, donde el bloque es cortado por las fracturas de extensión y por fallas antitéticas que determinan el giro del bloque, al girar se forman aberturas triangulares. En el caso contraccional, el giro es en sentido antitético, controlado por fallas sintéticas de enlace entre los segmentos de falla principales.

Las estructuras *duplex* se encuentran en ambos regímenes, los cuales en etapas posteriores de la evolución cinemática de la falla pueden generar estructuras en flor, las cuales pueden ser positiva en un régimen compresivo o negativa en un régimen extensivo. La peculiaridad de las estructuras en flor es la existencia de una serie de fallas de enlace con ángulo alto que se encuentran a profundidad contra una falla mayor, donde se combina desplazamiento lateral con vertical. La flor positiva se genera en un régimen compresivo, mantiene un movimiento vertical sobre fallas inversas que pueden exhumar las sucesiones más profundas y también se asocian con estructuras anticlinales. Las flores negativas se generan en un duplex extensional donde los movimientos verticales son en fallas normales donde se forman depresiones (Fig. 1.9), la identificación de estas estructuras no es sencilla debido a que las fallas son casi verticales y puede existir rotación de bloques asociado al movimiento lateral.



Figura 1.9 Esquema de estructuras en flor. A) Estructura en flor negativa; B) Estructura en flor positiva. Tomado de Woodcock y Rickards (2003).

Un ejemplo ilustrativo es el realizado por Woodcock y Rickards (2003), quienes identifican una estructura en flor positiva al noroeste de Inglaterra, el movimiento que la formó ocurrió en el carbonífero y exhuma una sucesión de edad paleozoica, delimitada por la falla mayor Dent y formando el anticlinal Taythes (Fig. 1.10).



Fig. 1.10. Bloques diagramáticos de la evolución de una estructura en flor positiva asociada a la cinemática lateral de la Falla Dent en Inglaterra. Modificado de Woodcock y Rickards (2003).

## Capítulo 2 Marco geológico regional

El área de estudio se encuentra en la confluencia de distintas provincias geológicas, se ubica específicamente en el extremo septentrional de la Sierra de Chiapas y en el borde sur de las provincias petroleras del sureste mexicano, que se subdivide en la Cuenca Salina del Istmo, Comalcalco, Macuspana y el Pilar Reforma Akal, en tanto que al noroeste se encuentra la Cuenca de Veracruz (Fig. 2.1).



Figura 2.1. Mapa de localización del área de estudio con respecto a las provincias geológicas del sureste de México. Las cuencas petroleras se encuentran bordeando la costa del Golfo de México, la Cuenca de Veracruz orientada NW-SE, las cuencas del sureste y el Pilar Reforma Akal se encuentran alineados NE-SW. Al sur se encuentra la Sierra de Chiapas que se conforma de la Subprovincia de Fallas Laterales (SPFL), la Subprovincia de Fallas Inversas (SPFI), la Sierra Monoclinal, el Macizo de Chiapas y el Anticlinal de Chicomuselo. Mapa compuesto con base en información de Ortega-Gutiérrez et al., 1992; Meneses-Rocha, 2001; Escalera-Alcocer y Hernández-Romano, 2009 y Abdullin et al., 2016.

La región sur de México atestigua un proceso tectónico global, la disgregación del supercontinente Pangea a finales del Triásico y principios del Jurásico, proceso donde se generó la apertura del Golfo de México. Este proceso inició con extensión de la corteza continental durante el Triásico Tardío (ca. 225 Ma); lo cual dejó como registro estratigráfico, unidades clásticas denominadas capas rojas en el centro de Texas (Dickinson et al, 2010) y en Eagle Mills, Arkansas (Moy y Traverse, 1986). Existen otros afloramientos de capas rojas de edad Triásico Tardío-Jurásico Inferior en el Noreste de México y en la Formación La Boca-Huizachal y otros de edad Jurásico Tardío en el norte de los estados de Veracruz-Puebla en las Formaciones La Joya-Cahuasas (Salvador, 1991). Posteriormente, se generan las primeras etapas de la cuenca marina donde, en un paso estrecho al océano, se introduce un flujo de agua de mar al continente, que es restringido episódicamente, lo que favorece la evaporación subsecuente y el depósito de grandes volúmenes de sal durante las primeras etapas de dislocación y expansión del fondo marino. Salvador (1991) indica que la sal Louann no puede ser fechada directamente, pero con respecto a sus relaciones estratigráficas es posible acotarla del Toarciano al Oxfordiano (176-156 Ma). La posterior expansión del piso oceánico provoca que el bloque Yucatán se separe y realice un giro antihorario hasta llegar a su posición actual, proceso que inició en el Calloviano (165-161 Ma) y terminó hacia el Valanginiano (135 Ma) (Marton y Buffer, 1994). Al reconstruir el movimiento con base a las anomalías magnéticas del fondo oceánico, el movimiento del bloque Yucatán se efectuó con respecto a tres polos de rotación distintos que fueron migrando en el tiempo durante la apertura (Pindell et al., 2016). Durante este proceso se generaron plataformas carbonatadas que se mantuvieron hasta finales del Cretácico. Finalmente, el registro estratigráfico del Cenozoico se distingue por los grandes espesores de terrígenos, resultado del aumento de aporte de sedimentos producto de las etapas más jóvenes del Orógeno Mexicano (Fitz-Díaz et al., 2017) y la generación de espacio de acomodamiento en las cuencas periféricas del Golfo de México

## 2.1 Cuencas petroleras

En el borde del Golfo de México durante el Cenozoico se generan depocentros sedimentarios que dan origen a las cuencas petroleras del sureste, las cuales son alimentadas con aporte del continente producto de la erosión de dos orógenos, el cinturón de pliegues y cabalgaduras mexicano y el cinturón

de pliegues y cabalgaduras de Chiapas. La región de la Cuenca de Veracruz es afectada por la manifestación más sur-oriental del Orógeno Mexicano durante el Paleoceno-Eoceno (Fitz-Díaz et al., 2017), representada por la Sierra de Zongolica en el borde nor-occidental y al interior de la cuenca en el frente tectónico sepultado. La deformación del borde de la cuenca generó un mecanismo de flexura de la corteza que dio por resultado una cuenca de antepaís, cuyo relleno siliciclástico de edad Mioceno-Plioceno se conoce como la Cuenca Terciaria de Veracruz (PEMEX-IMP-Amoco, 1995, PEMEX-BEG, 2001 en Escalera-Alcocer y Hernández-Romano, 2009). Jennette et al. (2003) dividen la cuenca en seis dominios o regiones estructurales con base en asociaciones de estilos estructurales y tiempo de deformación. 1) Monoclinal del margen oeste, donde los estratos del mioceno y el plioceno se superponen con una tendencia de monoclinal simple, y la estructura bascula? hacia el frente tectónico sepultado, se genera en la última fase de deformación del Mioceno; 2) Anticlinal Loma Bonita, un pliegue orientado nor-noroeste, es producto de dos fases de deformación, la primera por fallas extensionales del Oligoceno-Mioceno Temprano, expresadas por fallas de crecimiento escalonadas que sugieren una fase de extensión oblicua lateral izquierda; 3) Sinclinal de Tlacotalpan es el sector más profundo de la cuenca y representa un pliegue de escala cortical; la profundización se inició en el Oligoceno; 4) Alto de Anegada esta estructura se expresa como una flexión suave hacia arriba y los estratos terciarios inferiores se adelgazan hacia lo alto, se interpreta como una protuberancia periférica debido a la acción al empuje del frente tectónico (Meneses-Rocha, 2001); 5) Tren Antón Lizardo se compone de fallas normales, se han reportado sismos en el área que lo relacionan con una cizalla derecha (Suárez, 2000) y se considera que se ha experimentado un levantamiento desde hace 16 Ma; 6) Reentrada de Coatzacoalcos es un cinturón de pliegues y cabalgaduras al sur-occidente de complejo volcánico los Tuxtlas; con base en la asociación estratigráfica la actividad tectónica comenzó en el Mioceno Temprano alcanzando un máximo en el Mioceno Tardío (Fig 2.2).

Además de los dominios estructurales mencionados, en los perfiles sísmicos de PEMEX, Espinoza-Nava y Torín-Gama (2005); Andreani et al. (2008a) y Andreani et al. (2008b), han reconocido tres fallas de deslizamiento lateral izquierdo con orientación NW-SE, que afectan a la cuenca Veracruz (Fig. 2.2) dichas fallas cortan al Complejo Volcánico Los Tuxtlas con una edad de 8-7 Ma para el inicio del vulcanismo (Nelson y González-Caver, 1992; Jacobo-Albarrán, 1997 en Andreani et al., 2008a), los basaltos más jóvenes afectados por la falla se dataron con el método K/Ar que arrojó edades de 0.8±0.4 y 1.26±0.25 Ma (Jacobo-Albarrán, 1997 en Andreani et al., 2008a). Al noroeste, la tendencia fuera de la Cuenca de Veracruz tiene continuidad con la falla Río Actopan y la Falla de Agua Blanca dentro de la Faja Volcánica Trans-mexicana.



Figura 2.2. Dominios estructurales en la Cuenca de Veracruz: Frente tectónico sepultado, monoclinal Oeste, Anticlinal
 Loma Bonita, Sinclinal Tlacotalpan, Rentrada Coatzacoalcos, Tren Antonio Lizardo, Alto de Anegada, Campo Volcánico
 Los Tuxtlas. Estructuras reportadas en el área, Sierra de Zongolica, estructuras submarinas y Falla de Veracruz.
 Modificado de Andreani et al., 2008a y Escalera-Alcocer y Hernández-Romano, 2009.

La Provincia cuencas del sureste se conforma por el pilar Reforma-Akal y por las cuencas Salina del Istmo, Comalcalco y Macuspana (Fig. 2.3), las cuales se formaron sobre estructuras de fosas y pilares conformadas durante la apertura del Golfo de México, en el Jurásico Tardío. A partir del Cretácico la región evolucionó como una margen pasiva en la cual se establecieron ambientes de plataforma. Durante el lapso Cretácico tardío-Oligoceno, el desplazamiento del bloque Chortis genera una deformación por acortamiento que afecta el extremo sur de las cuencas, donde se forma una antefosa que genera pliegues en la Sierra de Chiapas. Durante el Mioceno se produce un aumento en la cantidad de aporte de sedimento, la apertura de la Cuenca de Macuspana y una deformación compresiva que se manifiesta en plegamiento de las unidades Mesozoicas sobre la Pilar Reforma-Akal (Fig. 2.3), producto del movimiento del Bloque Chortis hacia el oriente, lo que también produce deformación lateral en la Sierra de Chiapas. Por último, se produce un colapso gravitacional hacia el noroccidente y la tectónica salina que forma la Cuenca de Comalcalco (Escalera-Alcocer y Hernández-Romano, 2009).



Figura 2.3. Cuencas del Sureste. Se resalta la ubicación de las Cuencas Salina del Istmo, Comalcalco, Macuspana, Pilar Reforma-Akal y Cerro Pelón (CP); junto con las estructuras de fallas inversas y normales reportadas en el subsuelo, las estructuras de domos salinos profundos y superficiales, las estructuras de pliegues y fallas en el borde septentrional de la

Sierra de Chiapas, estructuras de fallas y fracturas en el campo volcánico de los Tuxtlas, la proyección de la Falla Veracruz en la Cuenca Salina del Istmo y el extremo noroccidental del sistema de fallas Tuxtla-Malpaso. Modificado de Contreras y Castillón 1960, Castillón y Larios 1963, Wilson 1993 Andreani et al., 2008a y Escalera-Alcocer y Hernández-Romano, 2009.

## 2.2 Sierra de Chiapas

La provincia de la Sierra de Chiapas se ubica al sur de las Cuencas del Sureste, se considera parte del Bloque Maya que limita al oriente con el sistema de fallas Motagua-Polochic y al sur con la Cizalla de Tonala (Meneses-Rocha 2001). En un contexto tectónico, la provincia chiapaneca es una zona compleja entre los límites de las placas de Norte América, Caribe y Cocos, en un enfoque clásico se ha subdividido en cinco sub-provincias: 1) Sub-provincia de Fallas de deslizamiento lateral, 2) Sub-provincia de Fallas Inversas, 3) Sierra Monoclinal, 4) Macizo Ígneo de Chiapas y 5) Anticlinal de Chicomuselo (Meneses-Rocha and Guzmán-Speziale, 2000 y Meneses-Rocha, 2001). Sin embargo, es parte de un ensamble tectónico compuesto por el Cinturón de Pliegues y Cabalgaduras de Chiapas, que abarca las sub-provincias de Fallas de deslizamiento lateral, fallas inversas y la sierra monoclinal (Mandujano-Velazquez y Keppie, 2009). En tanto que el Macizo Ígneo de Chiapas junto con el Anticlinal de Chicomuselo representan al basamento regional. La provincia Sierra de Chiapas está afectada por dos sistemas de fallas regionales de cinemática izquierda con una orientación E-W y SE-NW, el Sistema de Fallas de la Sierra Alta (SFSA) y el Sistema de Fallas Tuxtla-Malpaso (SFTM) (Witt et al., 2012) (Fig. 2.4).

Existen dos modelos que explican la formación de la Sierra de Chiapas, uno que enfatiza cinemática de deslizamiento lateral (Guzmán-Speziale y Meneses-Rocha, 2000; Andreani et al., 2008a, 2008b) y otro que sugiere que la exhumación se encuentra relacionada con la subducción de la cresta de Tehuantepec, en una rápida formación en un lapso de 2-2.5 Ma (Mandujano-Velazquez y Keppie, 2009), en ambos modelos se pretende resolver dos problemáticas fundamentales, el momento y la magnitud de la deformación responsable de la exhumación y discernir cuál fue el papel que jugó el Sistema de Fallas Polochic en la transferencia del movimiento a la Sierra de Chiapas. Para resolver estas incógnitas es necesario situarse dentro de uno de los dos modelos, planteados respecto al movimiento del bloque Chortis. El modelo tradicional que coloca al Bloque Chortis adyacente al Complejo Xolapa en el sur de México, antes de su migración hacia el sur en su posición actual (Pindell et al., 2006; Rogers et al., 2007; Ratschbacher et al., 2009). O el modelo Pacífico, que sitúa al Bloque Chortis al oeste de su posición actual, exponiéndolo como un bloque alóctono sobre la Placa Pacífica (Keppie y Morán-Zenteno, 2005). Cada modelo plantea la formación de la Sierra de Chiapas relacionada con el

movimiento del Bloque Chortis, el modelo tradicional es acorde con la generación de la Sierra de Chiapas a partir de fallas laterales propuesto por Guzmán-Speziale y Meneses-Rocha (2000), y el modelo Pacífico es compatible con la generación de la sierra resultado de la subducción de la cresta de Tehuantepec.



Figura 2.4. Sierra de Chiapas, sub-provincias: Anticlinorio de Chicomuselo, Macizo de Chiapas, Sierra Monoclinal,
Subprovincia de Fallas Laterales, Sub-provincia de Fallas inversas; Cerro Pelón (CP); estructuras regionales Sistema de
Fallas Tuxtla-Malpaso (SFTM), Sistema de Fallas de la Sierra Alta (SFSA), Graben de Ixtapa (GI) y el cinturón de
pliegues y cabalgaduras de Chiapas. Modificado de Witt et al. (2012), Meneses-Rocha y Guzmán- Speziale (2000);
Meneses Rocha (2001); Mandujano-Velazquez y Keppie (2009); Abdullin et al. (2016).
# Capítulo 3 Registro estratigráfico

En el área de estudio, en el denominado Anticlinal Cerro Pelón, aflora la sucesión sedimentaria más completa expuesta, correspondiente al sistema petrolífero del Sureste de México. La sucesión incluye las rocas mesozoicas y cenozoicas, en el núcleo de la estructura afloran en forma excepcional rocas clásticas de edad jurásica. Alrededor del núcleo está expuesta la sucesión marina del Jurásico Superior–Cretácico. En tanto que, en la periferia aflora la sucesión cenozoica, la cual presenta características diferentes entre los dos flancos, se han identificado unidades estratigráficas diferentes en los flancos oriental y occidental. De tal forma, en el proyecto PAPIIT IV 100516, en el cual se inscribe la presente tesis, se optó por una clasificación cronoestratigráfica para identificar las unidades que conforman la estructura en una aproximación semejante a la de Benavides (1950). En este trabajo, se presenta la cartografía geológica del área con una presentación cronoestratigráfica. Los aspectos relativos al mapa se describen en el capítulo 4. Así, en este capítulo se presentan las características generales de las unidades representadas en el mapa de acuerdo a Centeno-García et al. (2019), quienes proponen dos columnas cronoestratigráficas para describir la sucesión cenozoica, una para cada flanco de la estructura conforme a la Tabla de correlación de las unidades, basada en micropaleontología y fechamientos U/Pb en circones detríticos de (Figura 3.1).

En el núcleo de la estructura, Galicia-Flores y Lazcano-Camacho (2018) reconocieron diferencias claras entre las sucesiones expuestas en los cerros Pelón en el norte de la estructura y el Jimbal en el sur; tanto en sus características litológicas, como estructurales. Este último aspecto es el que sustenta parcialmente este trabajo. Galicia-Flores y Lazcano-Camacho (2018) restringen la extensión de la formación Salina al sector sur del núcleo; en tanto que en el norte identifican una unidad clástica que en este trabajo se denomina informalmente como formación Cerro Pelón.

|           |             |                                        |          | Flanco Occidental                                                                                                                                                                                                               |                   | Flanco Oriental                                                                                                                                |                    |
|-----------|-------------|----------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|           | Cuaternario | Holoceno                               |          | Reciente:<br>Arena, grava y arcilla arenosa.<br>(10 m)                                                                                                                                                                          | Q                 |                                                                                                                                                | Q                  |
| Cenozoico | g           | 0                                      | Medio    | MiTb: Tobas alternadas<br>con limolitas calcáreas.<br>(275 m)                                                                                                                                                                   | Mio               |                                                                                                                                                |                    |
|           | Neóger      | Miocen                                 | Inferior | MiTr: Turbiditas (lutitas y<br>areniscas finas, escasos<br>erraticos de cg) con pliegues<br>sinsedimentarios (slumps).<br>(112 m)                                                                                               | Mio inf           | Facies OMCg: Conglomerado<br>matriz soportado a clasto<br>soportado, con areniscas<br>conglomeráticas.<br>(330 m)                              |                    |
|           |             |                                        | Superior | Facies OsLum: Lutitas y<br>limolitas calcáreas a margas,<br>con escasos lentes de caliza<br>limosa.<br>(450 m)                                                                                                                  | Ols               | Facies OmsAr: arenisca<br>fina a media con<br>abundantes rizaduras<br>y estratificación cruzada.<br>(50 m)                                     | Ols a              |
|           |             | Paleógeno           Eoceno   Oligoceno | Medio    | Facies OmLum: Lutitas y<br>limolitas calcáreas a margas,<br>con escasas láminas de<br>areniscas muy finas.<br>(240 m)                                                                                                           | Olm               | (50 m)<br>Facies OimLum: Lutitas y<br>limolitas calcáreas con                                                                                  |                    |
|           | Paleógeno   |                                        | Inferior | Facies OiLul: Lutitas y<br>limolitas con escasas<br>areniscas.<br>(180 m)                                                                                                                                                       | Oli               | escasas areniscas muy finas,<br>descansa en discordancia<br>angular sobre el Eoceno.<br>(180 m)                                                | OL inf-med         |
|           |             |                                        | Superior | Facies EsLul: Lutitas y<br>limolitas con escasas<br>areniscas.<br>(240 m)                                                                                                                                                       | Eos               |                                                                                                                                                |                    |
|           |             |                                        |          | Facies EmCg: Conglomerado<br>matriz soportado a clasto<br>soportado, con peñascos<br>de caliza arrecifal.<br>(103 m)                                                                                                            |                   |                                                                                                                                                |                    |
|           |             |                                        | Interior | Facies EmAr: arenisca fina<br>a media con abundantes<br>rizaduras y estratificación<br>cruzada, escasas areniscas<br>conglomeráticas.<br>(160 m)                                                                                | Pal-Eo            | Facies EmAr: arenisca fina<br>a media con abundantes<br>rizaduras y estratificación<br>cruzada escasas areniscas<br>conglomeráticas.<br>(360m) | Pal-Eo             |
|           |             | Paleoceno                              |          |                                                                                                                                                                                                                                 | 0.0.0.0.0.0.0.0.0 | Límite K-Pg:<br>Brecha calcarea.                                                                                                               | 572802857 <u>5</u> |
| Mesozoico | ácico       | Superior<br>Superior                   |          | Fm. Méndez:<br>Lutitas calcárea color gris, are-<br>nosa en partes, estratificada<br>en capas de 2 a 40 cm, inter-<br>calada con arenisca de<br>grano fino. (650 m)                                                             | Ks                | Fm. Méndez.                                                                                                                                    | Ks                 |
|           | Cret        |                                        |          | Fm. Chinameca:<br>Caliza de color gris-obscuro a<br>gris-crema, arenosa a la base,<br>bituminosa en partes; hacia<br>la cima canas loriticultore re                                                                             | Js-Ki             | Fm. Chinameca.                                                                                                                                 | Js-Ki              |
|           |             | Su                                     | perior   | bandas delgadas de pedernal.<br>(300 m)                                                                                                                                                                                         | ial.              |                                                                                                                                                |                    |
|           | Jurásico    | Medio                                  |          | Fm. Cerro Pelón:<br>Arenisca, Arenisca conglome-<br>rática, paraconglomerado y<br>conglomerado, estratos de<br>~3 m, clasto de arenisca de<br>grano fino-medio, rocas ígneas<br>cuarcitas, en tamaños de<br>4-9 cm.<br>( 800 m) | Jm                | Fm. Cerro Pelón.                                                                                                                               | Jm                 |
|           | In          |                                        | ferior   | Fm. Salina:<br>Arenisca de grano fino a<br>medio con abundante mica, en<br>estratos 0.35-60 m;<br>estructuras sedimentarias de<br>rizaduras laminación flaser y<br>huellas de cristales.                                        | JI.               | Fm. Salina.                                                                                                                                    | Jī                 |

Figura 3.1. Tabla de correlación estratigráfica entre los flancos de la estructura Cerro Pelón. De acuerdo a Centeno-García et al. (2019).

#### Jurásico Inferior (Ji)

Con base en las edades de los circones detríticos más jóvenes se considera que la Formación Salina forma parte del Jurásico Inferior del sur de México. Esta sucesión clástica expuesta en el núcleo de la estructura anticlinal, descrita por primera vez por Benavides (1950), cómo arenisca micacífera de grano fino a grueso de colores rojo obscuro, amarillo y gris, junto con conglomerados constituidos por clástos de rocas graníticas, pedernal, arenisca y cuarcitas en guijarros redondeados de 0.5 a 5 cm de diámetro, con espesores de 800 m. En la columna Cerro Jimbal con un espesor parcial de 460.5 m, en estratos ondulados muy delgados, menores a 5 cm de espesor en la base de la columna, Galicia-Flores y Lazcano-Camacho (2018) reconocen facies lagunares conformadas por alternancia de areniscas de grano fino con lutita, areniscas de grano fino-medio con limolita y areniscas de grano medio a grueso que presentan estructuras sedimentarias como rizaduras simétricas, laminación flaser y huellas de cristales. Se trata de wackas feldespáticas cuya granulometría y espesor de los estratos aumenta de la base a la cima; de tal forma que, los estratos más jóvenes tienen espesores hasta de 45 cm. En el presente trabajo se reconoció niveles de material piroclástico intercalados en la sucesión de arenisca, los niveles tobáceos tienen espesores de hasta 40 cm y presentan las mismas estructuras sedimentarias antes mensionadas. De acuerdo con la disposición estructural que se reporta en este trabajo, se estima para la Formación Salina, un espesor de aproximadamente 2,000 m.

### Jurásico Medio-Superior? (Jm)

Galicia-Flores y Lazcano-Camacho (2018) proponen que en el bloque norte del núcleo aflora una formación correlativa a la Formación Todos Santos de Blair (1987) unidad no reportada anteriormente en el área. Sin embargo, en este trabajo se denomina informalmente cómo la formación Cerro Pelón por que sus características particulares. En el Cerro Pelón, Galicia-Flores y Lazcano-Camacho (2018) en una columna parcial identificaron cuatro facies fluviales de Miall (2006), 1) Facies (Gmm) de paraconglomerado polimíctico masivo soportado por matriz, interpretado como el resultado de un depósito generado por un flujo detrítico con comportamiento plástico. 2) Facies (Gmg) Paraconglomerado polimíctico con estratificación cruzada plana y con gradación normal e inversa soportado por matriz, interpretado como un depósito resultado de un flujo detrítico pseudoplástico. 3) Facies (Sp) arenisca conglomerática con estratificación cruzada plana, interpretado como depósito de estructuras de barras transversales o longitudinales. 4) Facies (Sm) subarcosa de grano medio a grueso

con laminación paralela plana poco clara, interpretado como depósito de flujo de sedimentos hiperconcentrados. Los conglomerados de la formación Cerro Pelón incluyen clastos de areniscas producto de la erosión de la Formación Salina.

#### Jurásico Superior-Cretácico Inferior (Js-Ki)

Esta unidad corresponde con la denominada Caliza Chinameca de edad Kimmeridgiano–Barremiano (Burkhardt en Castillo, 1955), fue observada por primera vez en la localidad de Chinameca caliza de color gris-obscuro a gris-crema, dura, fétida cuando se golpea, finalmente arenoso hacia la base y bituminosa en partes. Hacia la cima de la unidad se encuentran bien estratificada en capas delgadas y laminadas de color gris a gris obscuro, con capas de pedernal lenticulares y bandas delgadas de 2 a 5 cm, el espesor medio de la formación en los flancos de la estructura es de 300 m (Benavides, 1950; Castillo, 1955). En las cercanías del poblado López-Rayón, dentro del sistema petrolífero, la Formación Chinameca tiene características de roca generadora, el espesor en esta localidad es de 627 m (Hernández-Narváez, 2020).

## **Cretácico Superior (Ks)**

La unidad corresponde con la Formación Méndez a una edad Cretácico Superior, descansa sobre la Caliza Chinameca en el área, se compone de lutitas calcáreas de color gris a gris café, arenosa en partes, bien estratificada en capas delgadas de 2 a 40 cm, con intercalación de areniscas de grano fino arcillosa, el espesor de la unidad se encuentra entre 650 a 690m. En la cima presenta una brecha calcárea. La Formación Méndez se encuentra aflorando en ambos flancos de la estructura con características similares (Benavides, 1950).

# 3.1 Flanco Occidental

#### Paleoceno–Eoceno Inferior (Pal-Eo)

Esta unidad cronoestratigráfica incluye dos facies claramente distinguibles, en la parte basal se presentan areniscas de grano fino a medio con abundantes rizaduras y estratificación cruzada con algunas intercalaciones de areniscas conglomeráticas en estratos medianos. Este miembro tiene un espesor estimado de 160 metros. Sobre esta sucesión yacen las facies gruesas de conglomerados que tienen una expresión morfológica prominente, ya que conforman un lomerío paralelo a la estructura,

cuyo ancho decrece desde el sur hasta el norte, en donde se estima que el miembro tiene un espesor de 103 metros. Se trata de una sucesión de conglomerados que varía de matriz soportados a clasto soportados. Los conglomerados incluyen cantos y bloques de rocas máficas y ultramáficas, algunos bloques de lutitas y limolitas, así como peñascos de carácter arrecifal.

#### **Eoceno Superior (Eos)**

El Eoceno Superior está conformado por facies de finos; así se caracteriza por una alternancia de lutitas y limolitas con esporádicos horizontes de areniscas de grano fino. Ésta sucesión presenta un espesor de 240 m.

## **Oligoceno Inferior (Oli)**

Esta unidad representa una sucesión de unos 180 metros de una intercalación de lutitas y limolitas con escasas areniscas. La delimitación de la unidad está controlada por su contenido de microfósiles. La sucesión corresponde a la Formación La Laja (Benavides, 1950).

## Oligoceno Medio (Olm)

Durante el Oligoceno Medio continuó la acumulación de facies de finos. La principal diferencia con respecto al Oligoceno Inferior se refiere al carácter calcáreo de las lutitas y limolitas, las cuales gradúan a margas, la unidad presenta algunas láminas de areniscas muy finas. La sucesión tiene un espesor aproximado de 240 m.

### **Oligoceno Superior (Osm)**

El Oligoceno Superior también se caracteriza por una sucesión gruesa de facies de finos con lutitas y limolitas calcáreas a que gradúan a margas en estratos delgados. Esta sucesión con un espesor estimado en 450 m., presenta escasos lentes de caliza limosa.

#### **Mioceno Inferior (Mio inf)**

La unidad representa una sucesión de turbiditas de grano fino, caracterizada por lutitas y areniscas finas con pliegues sinsedimentarios y escasos conglomerados. La sucesión tiene un espesor de 112 m.

#### Mioceno Medio (Mio med)

El Mioceno Medio en el flanco occidental está representado por una alternancia de paquetes de limolitas calcáreas en estratos delgados con tobas silícicas de color blanco (Facies MiTb). Algunos niveles tobáceos presentan una expresión morfológica prominente en forma de cordones alineados en el sector más occidental del área estudiada. El espesor estimado para esta unidad es de aproximadamente 275 m.

# 3.2 Flanco Oriental

#### Paleoceno–Eoceno Inferior basal (Pal-Eo)

En el contacto entre la sucesión arcillosa de la Formación Méndez del Cretácico Superior y la sucesión clástica del Cenozoico, se presenta un horizonte de finos de unos cuantos centímetros que incluye material de eyecta e inmediatamente arriba una brecha calcárea con un espesor de aproximadamente 10 metros. Los clastos de la brecha tienen texturas y microfósiles de plataforma calcárea. El material de eyecta y la brecha se atribuyen a la perturbación que ocasionó el meteorito de Chicxulub. Encima de la brecha del límite Cretácico–Paleógeno, se presenta una sucesión de areniscas finas a medias con abundantes rizaduras y estratificación cruzada. La sucesión incluye algunas intercalaciones de areniscas conglomerática en estratos delgados y medianos. La unidad tiene un espesor total de 360 metros.

#### **Oligoceno Inferior–Medio (Olinf-med)**

Mediante una discordancia angular, el Oligoceno Inferior descansa sobre las rocas del Eoceno Inferior. Se trata de una sucesión de facies de finos de aproximadamente 180 m, se trata de una alternancia de lutitas y limolitas calcáreas con escasas areniscas muy finas.

## Oligoceno Superior (Os a)

En el flanco oriental de la estructura, el Oligoceno Superior consiste principalmente en facies arenosas de grano fino a medio con abundantes rizaduras y estratificación cruzada (Facies OlsAr). Ortega-Flores et al. (2019) reportan una sucesión incompleta del Oligoceno tardío de estratos delgados centimétricos a decimétricos que inicia con lodolitas y margas, sobre las cuales se acumularon estratos turbidíticos con secuencia de Bouma tanto completa como incompleta. Las areniscas son de grano medio a grueso por lo general feldespáticas y presentan laminaciones, estructuras de flama y carga, laminación

convoluta, rizaduras, estratificación cruzada, pliegues y fallas inversas sinsedimentarias. Esta sucesión corresponde con la Formación Depósito (Ortega-Flores et al., 2019). De acuerdo con Ortega-Flores et al. (2019) los detritos proceden principalmente desde la zona de sutura de Guatemala y en menor medida del Macizo de Chiapas.

## Cima del Oligoceno Superior-Mioceno Inferior (Olsminf)

La cima del Oligoceno Superior y el Mioceno Inferior en el flanco oriental se caracteriza por facies gruesas (Facies OMCg). Principalmente por conglomerados que varían de matriz soportado a clasto soportado intercalados con areniscas conglomeráticas que pueden representar flujos de escombros en un sistema turbidítico, se estima un espesor de 330 m.

## Cuaternario

El registro estratigráfico en el área termina con algunos depósitos recientes, principalmente como cintas fluviales y como planicies de inundación angostas en las márgenes del Río Playas. Estos depósitos consisten en arenas, gravas y arcillas arenosas con un espesor estimado en 10 m.

# Capítulo 4 Cartografía geológica

Con el fin del mejor análisis estructural del área de estudio y su entorno, se elaboraron mapas geológicos a distintas escalas. El mapa principal es una carta geológica a escala 1:25,000 de carácter cronoestratigráfico que abarca el área de la estructura Cerro Pelón, elaborado en proyección Universal Transversa de Mercator (UTM) con Datum WGS 84 en la zona 15 P, con una retícula en línea solida con coordenadas UTM cada 2000 m (Anexo I). Con el objetivo de colocar la estructura en un contexto regional, se realizó otro mapa geológico con una síntesis cronoestratigráfica de las formaciones reportadas, que abarca la porción norte de la Sierra de Chiapas, una fracción terrestre de las cuencas del sureste y de la cuenca de Veracruz, en el cual se resaltan las estructuras de fallas y pliegues circundantes al área (Fig. 6.12). En el trabajo cartográfico en Cerro Pelón, se utilizaron como referencia los bosquejos y mapas geológicos previos de Benavides (1950), Acevedo (1960), Islas-Tenorio et al. (2005). Esos mapas fueron integrados al sistema de información geográfica. En el siguiente esquema se presentan las características de los antecedentes cartográficos y una reducción del mapa principal del presente trabajo (Fig. 4.1).

Las aportaciones a la cartografía previa en el presente trabajo se encuentran en el mapa principal de este trabajo (carta geológica con división cronoestratigráfica a escala 1:25,000), muestra una mejor definición de la estructura, mayor cantidad de datos estructurales, mejor detalle en la extensión y delimitación de las unidades cronoestratigráficas. Además, integra los rasgos relevantes descritos por autores anteriores (Benavides, 1950; Acevedo, 1960), como la asimetría de los flancos en las unidades de edad cenozoica, junto con una discordancia en el flanco oriental, y corrobora la existencia de fallas que implican a las unidades mesozoicas en el flanco occidental. Todo esto, en su conjunto favoreció la reinterpretación estructural del área (Fig. 4.2D).

El mapa nuevo expresa unidades cronoestratigráficas, aunque la definición del núcleo es en unidades litoestratigráficas, en las que se propone la separación de las formaciones de edad jurásica, en el sur la Formación Salina y la formación Cerro Pelón en el norte, esta última renombrada en este trabajo con base en la descripción de Galicia-Flores y Lazcano-Camacho (2018). La datación por U/Pb en circones detríticos ayudó a definir con mayor exactitud su relación cronoestratigráficas (Ver capítulo 5).



Figura 4.1. Mapas geológicos previos del área de estudio y mapa geológico realizado en el trabajo actual. A) Mapa geológico de Benavides (1950), B) mapa geológico de Acevedo (1960); C) recorte de la carta Geológico-Minera SGM E15-8 "Villahermosa" Islas-Tenorio et al. (2005); D) este trabajo.

En las unidades que se encuentran expresadas con nomenclatura cronoestratigráficas, se detalló la delimitación de las unidades de edad Paleoceno-Eoceno y Oligoceno, subdividiendo en el flanco occidental en Eoceno–Paleoceno que cuenta con dos facies, en la parte basal areniscas de grano fino a medio con abundantes rizaduras y estratificación cruzada y en la cima conglomerado matriz soportado a clasto soportado con peñascos de arrecife; el Eoceno superior con lutita y limolitas con escasa arenisca; y al Oligoceno en Oligoceno inferior lutitas y limolitas con escasas areniscas, Oligoceno medio con lutitas y limolitas calcáreas con escasas láminas de areniscas muy finas y Oligoceno superior con lutitas y limolitas calcáreas a margas. Se delimitó la extensión del Mioceno, en el Mioceno inferior consta de turbiditas con intercalaciones de lutita y arenisca fina, en el Mioceno superior se encuentran horizontes de tobas alteradas intercaladas en limolitas calcáreas. En el flanco oriental se agrupó el Paleoceno–Eoceno compuesto de una brecha calcárea en la base y areniscas de gano fino a medio con abundantes rizaduras y estratificación cruzada; el Oligoceno se representa en tres paquetes: 1) Oligoceno inferior-medio caracterizado por lutitas y limolitas calcáreas con escasas areniscas muy finas, 2) Oligoceno superior "a" compuesto de areniscas de grano fino a medio con abundantes rizaduras y estratificación cruzada, y 3) Oligoceno superior "b" compuesto por conglomerado matriz soportado a clasto soportado, con areniscas conglomeráticas. En el mapa se incluye una columna cronoestratigráficas de correlación entre los dos flancos (Fig. 3.5).

Los datos estructurales colectados en el bloque núcleo sur (Cerro Jimbal) del llamado anticlinal Cerro Pelón, revelan un arreglo estructual E-W buzante al sur y con polaridad invertida, lo cual no coincide con lo reportado en el sector norte del núcleo (Cerro Pelón) donde las capas aparecen dispuestas con un rumbo N-S; los datos colectados en la porción central del núcleo no coinciden con ninguno de los extremos, mantienen una orientación de rumbo NE70° con una inclinación promedio de 60° al NW y polaridad normal. En los bloques centro y sur del núcleo está expuesta la Formación Salina. El arreglo estructural de estos sectores es un aporte fundamental para la comprensión de la evolución de la estructura. En el núcleo se identifican las fallas El Encajonado y Jimbal, que solo afectan a la Formación Salina, por relación estratigráfica se infiere que son previas a la sucesión Jurásico Superior -Cretácico Inferior. La Falla El Encajonado con un rumbo N53°E y de acuerdo a su expresión morfológica, se infiere una inclinación de 60° al NW. La Falla Jimbal presenta una tendencia S65°E, la estructura separa dos bloques conformados por la Formación Salina, pero con disposición estructural distinta, al noreste tiene una polaridad normal y al suroeste, polaridad invertida.

# Capítulo 5 Geocronología

En el presente trabajo se realizaron análisis geocronológicos con los métodos U/Pb en circones detríticos individuales y trazas de fisión en apatito, se obtuvieron las relaciones isotópicas para el sistema U/Pb, elementos traza con la técnica Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), los estudios fueron llevados a cabo en el LEI del Centro de Geociencias de la UNAM, las muestras fueron procesadas en el laboratorio de molienda del Instituto de Geología de la UNAM y en el laboratorio de separación de minerales de la Estación Regional Noroeste de la UNAM.

La ubicación de las muestras se encuentra marcadas en el mapa de la Figura 5.1 y se muestran en la siguiente tabla:

|           | X [m]      | Y [m    | Anál     | isis    |                       | Edad máxima de      |
|-----------|------------|---------|----------|---------|-----------------------|---------------------|
| Muestra   |            |         | geocrono | ológico | Unidad Estratigráfica | depósito, Ma        |
|           |            |         | U/Pb     | TF      |                       |                     |
| CP-16-145 | 15Q 402248 | 1946908 | X        |         | Formación Salina      | $183.5 \pm 5.5$     |
|           |            |         |          |         |                       | (Jurásico Inferior) |
| CP-17-68  | 15Q 401427 | 1937713 | X        |         | Formación Salina      | $182.9 \pm 3.5$     |
|           |            |         |          |         |                       | (Jurásico Inferior) |
| CP-17-76  | 15Q 402545 | 1937300 | X        | Х       | Formación Salina      | $178.9 \pm 3.9$     |
|           |            |         |          |         |                       | (Jurásico Inferior) |
| CP-17-95  | 15Q 402433 | 1946195 | X        |         | formación Cerro Pelón | $154.2 \pm 6.5$     |
|           |            |         |          |         |                       | (Jurásico Superior) |



Figura 5.1. Mapa de ubicación de las muestras colectadas para los estudios geocronológicos.

# 5.1 U/Pb en Circón Detrítico

El método de datación geocronológica de circones detríticos con U/Pb por medio de LA-ICP-MS (el procedimiento de procesado de las muestras se describe en el Capítulo 1) requiere del análisis de aproximadamente 100 cristales de circón por muestra de roca sedimentaria, los cuales son seleccionados de manera aleatoria, con el objetivo de procesar cristales de todas las poblaciones portamaño y forma que presenta la muestra. Con los datos de las poblaciones de edades de los circones detríticos, se obtiene la edad máxima de depósito de la roca sedimentaria, así como las edades de las diferentes fuentes de aporte del sedimento que la conformó, además, los datos de REE y elementos traza obtenidos; con lo todo cual, se realizan análisis de procedencia (Belousova et al., 2002), lo que hace que la técnica sea muy utilizada en geocronología.

Se analizaron las muestras: CP-16-145, CP-17-68, CP-17-76, y CP-17-95, las tres primeras fueron colectadas en la Formación Salina y la cuarta en la formación Cerro Pelón (los resultados de los análisis se muestran en el Anexo II). Dos muestras proceden del Cerro Pelón (CP-16-145 y CP-17-95) y dos del Cerro Jimbal (CP-17-68 y CP-17-76), (Fig. 5.1).



Figura 5.2. Gráficas de probabilidad relativa de edad y de concordia de circones detríticos de la muestra CP-16-145 (A, B); CP-17-68 (C, D); CP-17-76 (E, F); CP-17-95 (G, H). Ubicación en la Figura 5.1, errores sigma 1 en el Anexo II.

En la muestra CP-16-145 los circones de menor edad son 183.5, 184.1 y 198.2 Ma, la distribución es polimodal, el rango de probabilidad más alto se encuentra entre los 200–300 Ma con n=36, seguido de dos poblaciones con más de n=10 entre los 400–500 Ma y 900–1000 Ma (Neoproterozoico), y una poblaciones de más de n=5 circones en el rango 1.6–1.8 Ga (Paleoproterozoico), el circón más viejo de 2.7 Ga; los resultados obtenidos se encuentran sobre la línea de concordia, excepto un grupo que se encuentra por debajo la curva de discordia, la intersecciones entre la concordia y la discordia son 482 ± 84 y 2020 ± 120 Ma (Fig. 5.2A,B). Los circones más jóvenes en la muestra CP-17-68 son de 182.9, 192.3 y 194.2 Ma, el rango con mayor probabilidad es de 200–300 Ma con n=23, seguido de dos poblaciones de n=10-8 en los intervalos de 400-700 Ma (Neoproterozoico) y 1-1.2 Ga (Mesoproterozoico), una población de n=5 del 1.5–1.9 Ga (Paleoproterozoico), y dos circones de edad Arqueana; solo el circón más viejo sale de la curva de concordia, las intersecciones entre la concordia v la discordia son 583 ± 93 y 2697 ± 170 Ma (Fig. 5.2C,D). En la muestra CP-17-76 los circones más jóvenes son 178.9, 185.2 y 187.8 Ma, la distribución es trimodal con el mayor rango entre 200-300 Ma con n=34, dos grupos con menos de n=5 entre 400–550 Ma (Devónico Inferior–Cámbrico) y 900–1200 Ma (Mezoproterozoico), y tres circones Paleoproterozoicos; la intersección de la concordia y discordia es 230 ± 46 y 1410 ± 64 Ma (Fig. 5E,F). En la muestra CP-17-95 los circones más jóvenes son de 154.2, 156.9 y 182.3 (Jurásico Superior-Inferior), la gráfica es trimodal con un máximo 200-300 (Pérmico–Triásico) con n=36, contiene dos poblaciones con n=5 en los rangos de 400–500 Ma y 900 Ma, los circones más viejos que 1Ga son escasos, los circones más antiguos son de 1.74 y 1.66 Ga; solo dos circones se encuentran fuera de la curva de la concordia, las intersecciones entre la concordia y la discordia son 266 ± 34 y 1393 ± 64 (Fig. 5.2G,H).

## 5.2 Trazas de fisión en apatito

La geocronología por Trazas de fisión (TF) de <sup>238</sup>U es un método usado desde los años 60's, con el cual se puede obtener la edad de minerales como el apatito, circón, titanita, monacita, micas, granate, algunos vidrios volcánicos, fluorita y epidota. El método aplicado en apatito se caracteriza por tener temperaturas de cierre del sistema termocronológico de 90°C a 120°C, que permite ser usado en el estudio de procesos geológicos de baja temperatura, como velocidades de exhumación y el modelado térmico en cuencas sedimentarias (por ejemplo, Abdullin et al., 2016). El borrado parcial de las trazas de fisión en Fluor-apatitos se efectúa entre 60–120°C, pero la temperatura efectiva de cierre se encuentra en 110  $\pm$  10°C (Gleadow et al., 1986; Gallagher, 1995).

El estudio de TF en apatitos detríticos revela la edad a la cual la roca sedimentaria estuvo expuesta a una temperatura constante de 110  $\pm$  10°C. Con base en el gradiente geotérmico de la región, es posible relacionar la edad a la cual ocurrió el cierre del sistema termocronológico con la profundidad a la cual se alcanza esa temperatura en la región; lo cual permite estimar la velocidad de exhumación que experimentó la muestra. En este caso se utilizó la metodología de Abdullin et al. (2016) diseñada para rocas sedimentarias detríticas (Anexo III). Este método tiene las siguientes restricciones, a) un número mínimo de 500 cristales de apatito con tamaños mayores a 44  $\mu$ m (Diámetro del láser del equipo LA-ICP-MS), b) que el corte del mineral sea paralelo al eje cristalográfico C y c) que al área de de análisis no tenga zonaciones de U. Por otra parte, se debe considera que el resultado de los conteos de trazas de fisión es subjetivo y depende de la experiencia del operador.

#### Resultados

Se procesaron cuatro muestras para este estudio (CP-16-145, CP-17-68, CP-17-76, y CP-17-95) de las cuales la única apta fue CP-17-76. Se separaron 600 cristales de apatito de los cuales solo 62 cumplieron las características necesarias para el análisis. Los conteos de las trazas de fisión se realizaron por duplicado; uno lo realizó el sustentante del trabajo, el otro operador fue el Dr. Fanis Abdullin asesor en el estudio. Los resultados se presentan en Anexo II, donde se muestran los conteos realizados y los parámetros usados para el cálculo de la edad por trazas de fisión y la edad resultante de cada cristal de apatito.



Figura 5.3. Resultados del análisis de trazas de fisión realizado a la muestra CP-17-76. A) Gráfico radial de resultados de trazas de fisión; número de granos utilizados n=62; valor central de la gráfica 18.91 ± 0.85 Ma; Dispersión de edades para cada cristal de apatito (%); P (χ2) - prueba de probabilidad de chi-squared; escala de color con el contenido de Cl (wt%). No se realizó prueba de longitud media de las pistas (MLT). En el eje X se muestra los valores de incertidumbre en la precisión de la edad de cada cristal de apatito (σ/t, t/σ), en el eje Y izquierdo se presenta el error estándar de dos

unidades, y en el eje Y "curvo" derecho se muestra una escala de edad (Ma) para cada cristal de apatito. B) Gráfica que muestra la edad de cada cristal de apatito en comparación al contenido de Cl (wt%).

Para la obtención de la edad a partir de los resultados del análisis de trazas de fisión se utilizó el software RadialPlotter, se optó por una presentación de los datos en una gráfica radial (Fig. 5.3A), y se complementó con una gráfica binaria de la edad en comparación del contenido de cloro en cada cristal de apatito (Fig. 5.3B). El gráfico radial se utiliza debido a que los resultados de este tipo de análisis tienden a tener grandes variaciones en la precisión del cálculo de la edad para cada cristal (Galbraith, 1990). En la gráfica radial, el eje X expresa la precisión de la medición, en el eje Y del lado izquierdo se muestra una escala del error estándar unitario, en el eje Y "curvo" del lado derecho se presenta una escala de edad (Ma), donde su valor central se obtiene con base en el promedio ponderado de las edades de los cristales de apatito (Galbraith, 1990).

En el gráfico radial se observa una sola población de datos, con una dispersión del 27%, y en la gráfica binaria se identifica solamente cinco que tienen más del 1% en peso de Cl, por lo tanto, la población es mayormente de Fluor-apatito. El resultado del análisis por trazas de fisión reveló una edad de  $16 \pm 1.1$  Ma, que se interpreta como el momento de cierre del sistema geocronológico a una temperatura efectiva de  $110 \pm 10^{\circ}$ C. Los resultados son consistentes a pesar de carecer del estudio de medición de la longitud de trazas de fisión (MLT).

# Capítulo 6 Geología Estructural

Previamente, en numerosos trabajos, la estructura del Cerro Pelón ha sido interpretada como un anticlinal, sin proponer una explicación para su orientación anómala en el contexto regional (Benavides, 1950; Acevedo, 1960; Guzmán-Speziale y Meneses-Rocha, 2000; Meneses-Rocha, 2001; Islas-Tenorio et al., 2005; Vázquez-Meneses et al., 2011; Witt et al., 2012). Ello se debe a que este anticlinal tiene un eje orientado N-S y recostado hacia el oriente. En este trabajo se colectaron y compilaron datos estructurales de estratificación y fallas, con la finalidad de reconocer mejor las características geométricas de la estructura. Particularmente, se obtuvieron datos en el núcleo de la estructura que documentan una fase de deformación extensional previa a la formación del pliegue.

A escala regional, el eje de la estructura está orientado N-S, y su traza presenta una geometría de "Z" abierta, con el extremo norte flexionado al oeste; el flanco occidental mantiene un rumbo N-S con inclinaciones homogéneas entre 47°-62° en toda la sucesión hasta el Mioceno. En el flanco oriental las unidades Mesozoicas tienen un rumbo paralelo al eje y capas invertidas inclinadas hacia el oeste ~60°, las unidades posteriores al Oligoceno tienen una posición normal sub-horizontal (hay un hiatus del registro de las unidades de roca entre el Cretácico tardío y el Oligoceno en este flanco). La posición estructural de las rocas en el núcleo del pliegue, cambian a lo largo del eje. En el norte (Cerro Pelón) la sucesión de la formación, aquí denominada Cerro Pelón, tiene un rumbo N-S y se inclina ~57° al occidente. En la porción central del núcleo, la Formación Salina está dispuesta con un rumbo general S42°W y se inclina ~62° hacia el noroccidente con polaridad normal. Finalmente, en el sur (Cerro Jimbal) la sucesión de la Formación Salina está invertida, con un rumbo general E-W y se inclina ~67° hacia el sur. Al sur del Cerro Jimbal, aún dentro del área cartografiada en este trabajo, se encuentran dos estructuras plegadas, la mayor es el anticlinal Tecozautla, de carácter periclinal hacia el norte; de tal forma, está definido en la sucesión cenozoica. El eje del anticlinal es colineal con el arreglo estructural del núcleo identificado entre el Cerro Jimbal y el Cerro Pelón. La otra estructura es el Sinclinal El Amate (Benavides. 1950), definido también en la sucesión cenozoica; el sinclinal tiene un eje orientado NW57°, su flanco nororiental, la sucesión cenozoica sobrevace a las rocas mesozoicas, en aparente discordancia.

Con base en el arreglo de los datos estructurales vertidos en el mapa geológico, tanto las fallas observadas o interpretadas, así como los datos de estratificación obtenidos en once secciones recorridas. En el área se reconocen los cuatro sectores estructurales mostrados en la Figura 6.1. A continuación se presentan las características de cada sector.

| Sec             | ctor                    | Secciones                                                                |
|-----------------|-------------------------|--------------------------------------------------------------------------|
| Flanco O        | ccidental               | - La Gloria<br>- Miguel Hidalgo<br>- San Miguel Allende                  |
| Flanco Oriental |                         | - El Retiro<br>- Las Isabeles<br>- Entrada Tarahumara<br>- Vista Hermosa |
|                 | Bloque Cerro<br>Pelón   | - Cerro Pelón                                                            |
| Núcleo          | Bloque El<br>Encajonado | - El Encajonado                                                          |
|                 | Bloque Cerro<br>Jimbal  | - Cerro Jimbal                                                           |
| Sector Sur      |                         | - Sinclinal Los Amates<br>- López Rayón                                  |



Figura 6.1. Mapa de los sectores estructurales del área de estudio. Flanco occidental, Flanco oriental, Núcleo y Sector Sur. Secciones de colecta de datos estructurales: 1) La Gloria, 2) Miguel Hidalgo, 3) San Miguel Allende, 4) El Retiro, 5) Las Isabeles, 6) Entrada Tarahumara, 7) Vista Hermosa, 8) Cerro Pelón, 9) El Encajonado, 10) Cerro Jimbal, 11) Los Amates y 12) López Rayón. Diagramas en proyección estereográfica de cada sección, el código de colores con base en la edad de la unidad donde fue colectado el dato de estratificación (revisar figura 6.2). Secciones estructurales A-A' y B-B'.

# 6.1 Flanco Occidental

Los límites del flanco son de carácter estructural, al oriente con el núcleo, la falla San Miguel Allende y la Falla Olmeca con el sector sur, en el flanco se exponen las sucesiones del Jurásico Superior – Cretácico Caliza Chinameca, Méndez y la Cenozoica cuyas rocas más jóvenes son del Mioceno temprano, las cuales presentan relaciones de superposición concordantes, lo que permite estimar un espesor de 3.9 km de todo el paquete sedimentario.

La expresión morfológica de los diferentes paquetes sedimentarios es de lomeríos paralelos a la orientación de la estratificación, donde la continuidad es observada con relativa facilidad. En la porción norte, los lomeríos reflejan la flexión del eje hacia el occidente y al sur el truncamiento del flanco contra el núcleo (Fig. 6.1). Esta flexión bosquejada por los lomeríos refleja la posición de los estratos a lo largo del flanco; el rumbo en el centro del sector es N-S y en el norte y sur cambia a un promedio de S60°E. El truncamiento del flanco en el sur, donde las sucesiones Jurásico superior – Cretácico temprano, con una orientación N10°E se adelgazan paulatinamente hasta desaparecer contra las formaciones jurásicas clásticas del núcleo, es un hecho ya reportado por Benavides, (1950) y Acevedo, (1960). Esta condición estructural es más evidente en las unidades cenozoicas, donde su orientación es de ~N60°E, lo que indica que el límite con el núcleo es de carácter estructural y se propone la falla San Miguel Allende que con base en las relaciones de corte se le asigna una edad relativa máxima de Oligoceno Superior, aunque este límite no es plenamente reconocible en los rasgos morfológicos al norte de Cerro Pelón.

Los datos estructurales del flanco se colectaron en tres secciones, al norte, La Gloria que comprende los afloramientos entre la comunidad del mismo nombre y la localidad Río Playas, al centro del sector, la sección Miguel Hidalgo y al sur la sección San Miguel Allende donde los caminamientos fueron realizados desde la comunidad hacia el Cerro Jimbal (Fig. 6.2). La sección La Gloria incluye datos estructurales de estratificación obtenidos en la sucesión cenozoica, incluido un dato de Acevedo (1960) perteneciente a la Caliza Chinameca (Fig. 6.2A); los datos estructurales mostrados se colectaron en diferentes niveles de la columna estratigráfica, el promedio general del rumbo es S22°E e inclinación 53° al SW. Los datos estructurales colectados en las cercanías de la localidad Miguel Hidalgo contiene información estructural de las formaciones Caliza Chinameca, Méndez y la unidad de edad Paleoceno–

Eoceno; la orientación del conjunto de datos es homogéneo con un promedio en el rumbo de S05°W con inclinación de 62° al NW (Fig. 6.2B). En la sección San Miguel de Allende existe una diferencia entre los datos estructurales de los estratos del Cretácico superior y los datos recolectados en la sucesión de edad cenozoica. En la sucesión cenozoica se encuentran representada por el plano promedio de rumbo S41°E e inclinación de 48° al SW, que contrasta con la tendencia del Cretácico superior de rumbo N07°W e inclinación 45° al NE (Fig. 6.2C), siendo este último conjunto de datos el único que discrepa de la tendencia general. El afloramiento observado del Cretácico superior, en la sección Miguel Allende, se caracteriza por su poca extensión y se encuentra entre las unidades de edad Paleoceno–Eoceno superior y el contacto con el núcleo.

La disposición del flanco occidental define con mayor claridad la orientación del eje del anticlinal, todas las sucesiones sedimentarias, excepto las rocas del Cretácico superior en la sección San Miguel Allende, parecen compartir el mismo proceso de deformación, dada la posición concordante de las sucesiones en todo el flanco. En los dos extremos del flanco, las sucesiones cenozoicas comparten orientaciones similares de los estratos, lo que define un arreglo sigmoidal a la estructura. La continuidad de la sucesión al sur de San Miguel Allende pierde su orientación conforme se aproxima al límite con el dominio estructural en el Sector Sur.

| Sección            | Unidades involucradas                                                                                                                           | Promedio     |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| La Gloria          | <ul> <li>Formación Méndez</li> <li>Paleoceno–Eoceno</li> <li>Oligoceno inferior</li> <li>Oligoceno medio</li> <li>Oligoceno superior</li> </ul> | 158°, 53° SW |
| Miguel Hidalgo     | <ul> <li>formación Cerro Pelón</li> <li>Formación Chinameca</li> <li>Formación Méndez</li> <li>Paleoceno–Eoceno</li> </ul>                      | 184°, 62° NW |
| San Miguel Allende | - Formación Méndez                                                                                                                              | 353°, 51° NE |
|                    | - Paleoceno–Eoceno<br>- Oligoceno inferior<br>- Oligoceno medio<br>- Oligoceno superior<br>- Mioceno                                            | 140°, 48° SW |



Figura 6.2. Diagramas en proyección de Schmidt (hemisferio inferior) de las localidades del flanco occidental: A) Localidad la Gloria; B) Localidad Miguel Hidalgo; C) Localidad San Miguel Allende. En los diagramas se presenta polos de planos de estratificación, fractura o falla; la simbología de los planos promedio es la proyección de la traza del círculo mayor y un polo más grande. Código de colores de polos y planos presentados en las figuras 6.1, 6.3, 6.4, 6.5, 6.6 y 6.7.

# 6.2 Flanco Oriental

Los límites del flanco oriental con el núcleo son distintos con respecto a cada bloque. Con el bloque Cerro Pelón parece concordante, con los bloques El Encajonado y Cerro Jimbal son estructurales, y el límite con el sector sur se interpreta como la prolongación de la falla Jimbal hacia el oriente. En el flanco afloran las formaciones Caliza Chinameca (Jurásico superior- Cretácico inferior) y Méndez (Cretácico superior), el registro cenozoico más joven es del Oligoceno superior. Se puede dividir en dos dominios estructurales, el primero conformado por las formaciones mesozoicas que permanecen con un rumbo paralelo al eje de la estructura, en posición invertida e inclinaciones de 53°-70° hacia el occidente; el segundo localizado en las unidades cenozoicas, donde las rocas de edad Paleoceno–Eoceno están inclinadas 60° hacia el oriente y las de edad oligoceno son subhorizontales (Fig. 6.1), este cambio de inclinación indica una discordancia angular entre estas unidades, contraste marcado por el cambio morfológico de lomeríos paralelos al eje del anticlinal a una meseta delimitada con un escarpe de 300 m, condición reportada por autores anteriores (Benavides, 1950; Acebedo 1962).

En la sección el Retiro afloran las formaciones Caliza Chinameca y Méndez, con una posición estructural promedio de S29°E, 70° SW en posición invertida; la unidad de edad Paleoceno–Eoceno tiene una tendencia de N52°W, 67.5° NE y la sucesión del oligoceno inferior-medio con S89°W, 35° NW, lo que difiere de la unidad suprayacente. La posición de la sucesión mesozoica corresponde con el flanco invertido y las unidades cenozoicas varían conforme se asciende estratigráficamente (Fig. 6.3A).

En la sección Las Isabeles se observaron afloramientos amplios de la Caliza Chinameca, la cual presenta dos promedios de estratificación, uno principal de S15°E, 54° SW y uno secundario, de N51°W, 59° NE. En la Formación Méndez, la estratificación tiene un plano promedio de S38°E, 59° SW y en la unidad del Paleoceno-Eoceno de S40°E, 51° SW. Todas las unidades en la sección se encuentran en posición invertida, lo que indica con claridad que esta porción de la sucesión expuesta en el flanco se encuentra recostada (Fig. 6.3B). A escala de afloramiento se observa que, las dos tendencias de estratificación en la Caliza Chinameca definen pliegues dentro de la unidad; sin embargo, debido a la exposición parcial de las estructuras, no fue posible identificar si son sintectónicas o sinsedimentarias. Del análisis de las tendencias principales, se identificaron un plano axial recostado al occidente 156°, 84° SW; un eje inclinado 15° hacia el NW 25.5° y un ángulo inter-flanco de 65°.

La sección Tarahumara corresponde a la sucesión cenozoica, en ella, la posición de los estratos es normal. En la unidad Paleoceno-Eoceno la tendencia estructural es N02°E, 63° SE y en el Oligoceno es N39°W, 04° NE, las inclinaciones tienen una diferencia de inclinación de ~59° (Fig. 6.3C). En la sección Vista Hermosa se colectaron datos de estratificación en la cima de la Formación Méndez, en la base de la unidad de edad Paleoceno-Eoceno y en el Oligoceno. En esta sección se puede observar el cambio en la posición de los estratos conforme se asciende estratigráficamente. La Formación Méndez se encuentra en posición invertida con la tendencia S15°E, 43° SW, en la unidad de edad Paleoceno-Eoceno N16°W, 68 NE en posición normal y en la sucesión del Oligoceno N43°W, 12° NE en posición normal. Las tres tendencias son distintas, lo que indica que las unidades tienen una relación discordante o que los límites entre ellas son estructurales (Fig. 6.3D).

| Sección Unidades involucradas |                                                                                                     | Promedio                                             |
|-------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------|
| El Retiro                     | - Formación Caliza Chinameca<br>- Formación Méndez                                                  | 151°, 70° SW                                         |
|                               | - Paleoceno–Eoceno                                                                                  | 308°, 68 NE                                          |
|                               | - Oligoceno inferior                                                                                | 270°, 36° NW                                         |
| Las Isabeles                  | - Formación Caliza Chinameca                                                                        | 165°, 54° SW (Primario)<br>328°, 64° NE (Secundario) |
|                               | - Formación Méndez                                                                                  | 148°, 58° SW                                         |
|                               | - Paleoceno–Eoceno                                                                                  | 140°, 51° SW                                         |
| Entrada Tarahumara            | - Paleoceno–Eoceno                                                                                  | 002°, 63° SE                                         |
|                               | - Oligoceno inferior–medio                                                                          | 341°, 04° NE                                         |
| Vista Hermosa                 | - Formación Caliza Chinameca<br>- Formación Méndez                                                  | 165°, 43° SW                                         |
|                               | - Paleoceno–Eoceno                                                                                  | 343.9°, 67.5 NE                                      |
|                               | - Oligoceno inferior–medio<br>- Oligoceno superior turbidítico<br>- Oligoceno superior conglomerado | 318°, 12° NE                                         |
|                               | - Fallas Paleoceno–Eoceno                                                                           | 029°, 67° SW                                         |



Figura 6.3. Diagramas en proyección de Schmidt (hemisferio inferior) de las localidades del flanco oriental: A) el Retiro; B) Las Isabeles; C) Tarahumara y D) Vista Hermosa.

## 6.3 Sector Núcleo

En el núcleo de la estructura se reconocen tres bloques separados por fallas, con base en las diferencias en el arreglo estructural, se proponen los bloques; Cerro Pelón (norte), el Encajonado (central) y el Cerro Jimbal (sur) (Fig. 6.1).

#### **Bloque Cerro Pelón**

Se considera bloque Cerro Pelón a la porción del núcleo al norte de la falla El Encajonado, la cual se infiere con base en una discontinuidad morfológica, donde se observa un escarpe pronunciado con una orientación NE55°. La Falla El Encajonado sólo afecta el núcleo y no tiene continuidad en los flancos, por lo que se infiere como una estructura pre-depósito a la Caliza Chinameca (Fig. 6.1). En este bloque aflora la formación Cerro Pelón, con base en la morfología, se aprecia que la orientación de los estratos es paralela al eje de la estructura. En Cerro Pelón, el promedio de la estrutificación se presenta en posición normal y tiene una tendencia S40°E, 57° SW (Fig. 6.4A).

### **Bloque El Encajonado**

El bloque el Encajonado está limitado al norte por la Falla El Encajonado; al sur por la Falla Jimbal y al occidente por la Falla San Miguel Allende. La Falla Jimbal se expresa como un rasgo morfológico notable en el núcleo e interrumpe la continuidad del flanco oriental (Fig. 6.1). En este bloque se expone la Formación Salina, los datos colectados en la sección indican un promedio de estratificación de S42°W, 62° NW en posición normal (Fig. 6.4B), esta disposición discrepa de la geometría de los flancos. Se observó que la inclinación de la estratificación disminuye conforme se asciende estratigráficamente, pasando de ~80° en la base a 30° en la cima. Con base en una sección perpendicular al rumbo de la estratificación se calcula en el bloque, un espesor expuesto de ~2.1 km. Al oriente, en los afloramientos sobre el río Playas, la formación Chinameca presenta tres tendencias distintas de estratificación, las cuales no son congruentes con la posición de la Formación Salina en este bloque, condición que puede ser interpretada como un límite estructural o una discordancia estratigráfica.

## **Bloque Cerro Jimbal**

Los límites del bloque Cerro Jimbal son de carácter tectónico; al norte la Falla Jimbal; al occidente la Falla San Miguel Allende y al sur la Falla Olmeca. En el bloque aflora la Formación Salina, la cual, presenta polaridad invertida y una orientación de los estratos casi perpendicular al eje de la estructura (N88°E 67° SE) (Fig. 6.4C). García-Flores y Lazcano-Camacho, (2018) midieron una columna parcial de 460.5 m en la Formación Salina; de acuerdo con la tendencia de estratificación, se calcula un espesor expuesto de 2.2 km, en tanto que su área de afloramiento se extiende al oriente hasta la localidad de Lindavista. La tendencia estructural del bloque es particularmente anómala y no comparte similitud con ningún otro sector. En el sur, la Falla Olmeca pone en contacto a la Formación Salina con las unidades cenozoicas (Fig. 6.1).

| Sector        | Unidades involucradas        | Tendencia de plano promedio                                           |
|---------------|------------------------------|-----------------------------------------------------------------------|
| Corro Dolón   | - formación Cerro Pelón      | 141°, 58° SW                                                          |
|               | - formación Cerro Pelón      | 258°, 69° NW                                                          |
|               | - Formación Salina           | 223°, 62° NW                                                          |
| El Encajonado | - Formación Caliza Chinameca | 187°, 65° NE (Principal)<br>344°, 46° NE (Secundaria)<br>091°, 62° SW |
| Cerro Jimbal  | - Formación Salina           | 088°, 67° SE                                                          |



Figura 6.4. Diagramas en proyección de Schmidt (hemisferio inferior) de las localidades del núcleo: A) Bloque Cerro Pelón; B) Bloque El Encajonado C) Bloque Cerro Jimbal.

# 6.4 Sector Sur

El Sector Sur está limitado al norte por la Falla Olmeca que pone en contacto las unidades cenozoicas con el núcleo Jurásico. Se identifican dos estructuras, el Anticlinal Tecozautla con un eje N-S colineal al Cerro Pelón y al suroriente el Sinclinal Los Amates con un eje orientado NW57°. Se realizaron dos secciones, una en las cercanías de la localidad López Rayón y la segunda sobre el camino de Lindavista hacia Los Aztecas.

En la sección López Rayón, las formaciones Caliza Chinameca (S53°E, 48°SW) y Méndez (S41°E, 79° SW) mantienen una posición de estratificación similar, la unidad del Paleoceno-Eoceno presenta la misma orientación, pero en posición invertida con un plano de estratificación promedio N69°W, 74° NE, la unidad del Mioceno (S66°E, 67°SW) está dispuesta en posición normal con una orientación semejante a las formaciones del Mesozoico (Fig. 6.5A).

En la sección de Lindavista-Los Aztecas se obtuvieron datos de estratificación en ambos flancos del Sinclinal Los Amates (S42°E, 57°SW y N47°W, 52° NE) y en el flanco oriental del Anticlinal Tecozautla. El eje del sinclinal es ligeramente buzante con 04° al NW 45°, un ángulo inter-flanco de 72° y un plano axial sub-vertical (Fig. 6.5B). En el suroccidente del mapa no se cuentan con datos estructurales, guiado por la morfología se infiere que la unidad clástica del Mioceno tiene una posición estructural sub-horizontal, ligeramente basculada hacia el NE.

| Sección              | Unidades involucradas                                                          | Promedio                                              |
|----------------------|--------------------------------------------------------------------------------|-------------------------------------------------------|
| Sinclinal Los Amates | - Oligoceno inferior<br>- Oligoceno medio<br>- Oligoceno superior<br>- Mioceno | 138°, 57° SW (Principal)<br>313°, 52 NE (Secundaria)  |
|                      | - Fracturas Oligoceno                                                          | 272°, 61° NE (Principal)<br>006°, 88° SE (Secundaria) |
|                      | - Formación Caliza Chinameca                                                   | 127°, 48°, SW                                         |
| L ápaz Daván         | - Formación Méndez                                                             | 139°, 79°, SW                                         |
|                      | - Paleoceno–Eoceno                                                             | 291°, 74° NE                                          |
|                      | - Mioceno                                                                      | 114.2°, 67°, SW                                       |



Figura 6.5. Diagramas en proyección de Schmidt (hemisferio inferior) de las secciones del sector sur: A) sección López Rayón; B) Sección Lindavista – Los Aztecas.

# 6.5 Análisis de la estructura

Con el objetivo de construir secciones geológicas de la estructura en un corte sagital al eje y otro paralelo. Se comparan las tendencias de todas las secciones recorridas, para obtener una aproximación de la geometría. Ambos flancos de la estructura tienen una orientación e inclinación similar, el flanco occidental se puede representar por el plano S24°E, 54°SW y el flanco oriental con el plano S25°E, 56° SW, con un ángulo inter-flancos de 2.6° y un eje caracterizado por la recta 14°al NW 35°. Con lo cual, excepto para las capas post-oligocénicas del flanco oriental, la estructura corresponde con un pliegue isoclinal recostado al oriente, con eje ligeramente buzante al norte.



Figura 6.6. Comparación de la posición estructural de los flancos de la estructura Cerro Pelón. Diagrama en proyección de Schmidt (hemisferio inferior) con las tendencias de las secciones colectadas, mapa de localización y esquema de sección.

La posición de los estratos en el Cerro Pelón es de S40°E, 57°SW, en el sector Núcleo Centro tiene una tendencia de S 42.7°W, 62° NW, en el Cerro Jimbal, los estratos están invertidos con una orientación e inclinación de N88°E, 67° SE; al comparar la posición en cada sector del núcleo del anticlinal se observa que las tendencias del núcleo centro y Cerro Jimbal no comparten la posición general de la estructura, condición que dificulta la construcción de secciones paralelas al eje (Fig. 6.7).



Figura 6.7. Comparación de la posición estructural de los bloques del núcleo de la estructura Cerro Pelón. Diagramas en proyección de Schmidt (hemisferio inferior) contra las tendencias de las secciones colectadas, mapa de localización y esquema de sección. En el esquema de la sección las flechas indican la polaridad de la estratificación en los tres bloques del núcleo.

Al comparar los datos estructurales de ambos flancos, con base en un agrupamiento por edad e indicando el flanco al que pertenecen (Fig. 6.8), por una parte, un conjunto de edad Jurásico Superior-Cretácico Superior (formaciones Chinameca y Méndez), y otro del Paleoceno – Eoceno al Mioceno, se puede observar que existen diferencias entre la geometría del pliegue en los dos conjuntos. El pliegue

formado por las rocas del Jurásico Superior – Cretácico Superior es muy cerrado, con un ángulo entre flancos de 09°, la tendencia del flanco occidental es S10°E, 57°SW y la del flanco oriental S18°E, 62°SW. Para este arreglo estructural la guirnalda de distribución de los polos de estratificación se ajusta a un plano N75°E, 83° SE. En tanto que a partir del polo β, resulta un eje inclinado 07° al N15°W, dando una geometría de un pliegue cilíndrico cerrado recostado al oriente, ligeramente buzante al NW, con una dirección de acortamiento de N67°E-S67°W (Fig. 6.8 A). Por su parte, el pliegue definido en la sucesión cenozoica es abierto con un ángulo entre flancos de ~120°, la tendencia del flanco occidental se representa con el plano S25°E, 51°SW y la del flanco oriental N47°W, 10°NE; la distribución de los polos de planos de estratificación definen una guirnalda, con la cual se reconoce el plano N65°E, 88°SW, con un polo β ligeramente inclinado 02° al N25°W; por la distribución de los datos del Paleoceno-Eoceno que se encuentran fuera de la guirnalda, el pliegue tiene una geometría cónica hacia el sur, con eje sub-horizontal y ligeramente recostado al oriente, con una dirección de acortamiento de N62°E-S62°W (Fig. 6.8 B). El análisis de los datos revela que la morfología de la estructura en el mapa muestra un eje orientado N-S, a pesar de que ambos pliegues tienen geometrías distintas, con orientaciones de acortamiento son similares, los ejes tienen una orientación ~N28°W-N15°W, orientación que es parecida a las presentadas por las estructuras del cinturón de pliegues y cabalgaduras de Chiapas.



Figura 6.8. Comparación de los datos de estratificación de ambos flancos, agrupados con base en la edad de la sucesión portadora. A) Datos de estratificación del Jurásico Superior-Cretácico Superior. B) Datos de estratificación del Paleoceno-Eoceno, Oligoceno y Mioceno inferior.
### 6.6 Secciones geológicas

Se realizaron tres secciones geológicas de la estructura de Cerro Pelón, con base en la cartografía geológica obtenida en el presente trabajo, en la revisión de los esquemas de Benavides (1950) y en la información sísmica publicada (Vázquez-Meneses et al., 2011). Benavides (1950) realizó cinco esquemas de secciones obtenidas con datos geológicos-estructurales de superficie, tres de las cuales son transversales al eje del anticlinal Cerro Pelón y dos transversales al eje del sinclinal Amate (Fig. 4.2). En las secciones esquemáticas de Benavides (1950) se describe la posición recumbente hacia el oriente de la estructura y la existencia de fallas inversas que afectan la continuidad de la sucesión, estas interpretaciones se toman como referencias secundarias debido a la incertidumbre en profundidad. Vázquez-Meneses et al. (2011) realizaron un estudio basado en la interpretación de secciones sísmicas, información de pozos exploratorios y datos de geología superficial, donde interpretan la geometría en un corte transversal al anticlinal Cerro Pelón a una profundidad de 16 km (Fig. 6.9).



Figura 6.9. Interpretación de línea sísmica Cerro Pelón Centro. Cruza la estructura en una orientación sagital al eje. Tomado de Vázquez-Meneses et al., 2011.

La información de Vázquez-Meneses et al. (2011) fue de suma importancia para conocer la geometría de la estructura en profundidad; las relaciones temporales de las estructuras y los espesores estimados de las unidades cronoestratigráficas. Sin embargo, no se cuenta con información sin interpretar de la línea sísmica y tampoco de información sísmica de un transecto paralelo al eje de la estructura. En el presente trabajo se aporta nueva información sobre la estructura del núcleo, lo que permite hacer una interpretación de secciones en diferentes orientaciones, incluyendo una paralela al eje de la estructura (Fig. 6.1, Fig. 6.10 y Fig. 6.11).



Figura 6.10. Sección A-A'. Sección transversal al eje de la estructura anticlinal Cerro Pelón, con orientación NE75°, cruza las localidades Miguel Hidalgo (MH) y Las Isabeles (LI). Es la sección equivalente a "Cerro Pelón Centro" de Vázquez-Meneses et al. (2011). En el flanco occidental la sucesión delimitada por una falla inversa de alto ángulo que lo separa del núcleo, estructura identificada por primera vez por Benavides (1950) y reconocida por la información sísmica, el flanco oriental mantiene una geometría similar a la presentada en la sección A-A', donde se observa la continuación del sistema

de fallas Vista Hermosa (SFVH) de cinemática izquierda con componente inversa. Estas fallas del flanco oriental, con la combinación de una falla inversa que se interpreta por los datos sísmicos en el flanco occidental se enfatiza el desprendimiento de un bloque del basamento por debajo del núcleo de la estructura. La línea de corte se puede observar en la Figura 6.1 y en el Mapa Geológico.



Figura 6.11. Sección B-B''. Sección paralela al eje de la estructura anticlinal Cerro Palón, con orientación NE10°, cruza los tres sectores del núcleo y la localidad El Retiro (ER) del sector sur. La sección se construyó con base en la interpretación de la sección transversal (A-A') que cuentan con información sísmica y la cartografía geológica del presente trabajo. La sucesión estratigráfica se encuentra segmentada por fallas normales e inversas, se puede dividir en tres bloques, al sur la sucesión cenozoica es concordante y se encuentra inclinada hacia el norte. En el bloque central se exponen las formaciones jurásicas Salina y Cerro Pelón. las cuales están en contacto por la falla Encajonado (FEE), el bloque norte equivale al flanco oriental donde el contacto entre la sucesión mesozoica y cenozoica es por fallas en la sección A-A'. La geometría general es un horts delimitado al sur por la falla Olmeca (FO) de cinemática normal con un desplazamiento mínimo de ~4000 m, al norte la deformación se reparte en tres fallas que se unen a profundidad, en el bloque central se encuentran expuestas las formaciones más viejas, que a su vez están afectadas por fallas normales. La línea de corte se puede observar en la Figura 6.1 y en el Mapa Geológico.

En la construcción de las secciones se observa que la estructura, antes denominado anticlinal Cerro Pelón, se encuentra segmentada por fallas de cinemática lateral con componente inversa, que separan al núcleo parcial o totalmente de los flancos, con base en la sección transversal al eje (Figs. 6.10), el sector oriental está afectado por tres fallas de ángulo alto que se unen en profundidad, segmentan el

flanco en tres bloques que mantienen distintas posiciones de la sucesión sedimentaria, mientras que en el sector oriental se identifican dos fallas, una de ángulo alto con un desplazamiento relativamente menor que separa el núcleo del flanco, la cual fue identificada por Benavides (1950), y otra falla indicada por la información sísmica de Vázquez-Meneses et al. (2011). El conjunto de las fallas indica una estructura en flor que afecta el basamento y exhuma el núcleo, condición que explica la asimetría de los flancos y en el sector oriental, la desaparición de la posición recumbente de las unidades mesozoicas a las cenozoicas. En la sección B–B´ (Fig. 6.11) se presenta la estructura interna del núcleo, donde se reconocen las distintas posiciones de los bloques del núcleo, Cerro Jimbal, el Encajonado y Cerro Pelón, construcción necesaria para interpretar la relación de los bloques. En un primer acercamiento, la posición invertida y orientación perpendicular al eje de la estructura de la sucesión sedimentaria en el bloque Cerro Jimbal, dificulta conciliar un solo evento de deformación que explique la sucesión en su posición actual, junto con el arreglo del bloque el Encajonado, en el cual, la sucesión presenta posición normal con una orientación S42°E y disminuye su inclinación conforma se asciende estratigráficamente (Fig. 6.5B). Enfatizando que las fallas limítrofes entre los bloques, la Falla Jimbal y la Falla el Encajonado sólo afectan al núcleo, se interpreta que las estructuras se formaron después del depósito de la Formación Salina y antes del de la Caliza Chinameca. Por el cambio de inclinación de la sucesión, se interpreta que es resultado de una falla de crecimiento sinsedimentaria, relacionada con una deformación de extensión regional, motivo por el cual en esta sección se esquematiza la presencia de múltiples fallas de crecimiento que afectan a la Formación Salina. Las fallas antiguas pueden ser zonas de debilidad que se reactivan durante otro evento de deformación compresivo e invertir su cinemática, para exhumar el núcleo de la estructura. Lo que ofrece una solución a la yuxtaposición de las unidades cenozoicas en posición normal, con la sucesión jurásica en posición invertida, sobre la Falla Olmeca.

El conjunto de las dos secciones transversales y la sección paralela al eje, indican que la geometría de la estructura corresponde con una flor positiva que acumula mayor deformación en el sector oriental, donde las fallas de alto ángulo se unen en profundidad, y el núcleo esta segmentado en bloques con distintas disposiciones por fallas lístricas sinsedimentarias reactivadas, que funcionan como límites de la estructura.

### 6.7 Estructuras regionales

Con el objetivo de enmarcar la estructura de Cerro Pelón dentro de un contexto geológico regional, se elaboró un mapa regional a escala 1:125,000, que cubre un área aproximada de 15,400 km. En el mapa se reinterpreta la información de las cartas geológicas E15-7 y E15-8 del SGM (Aguilera-Martínez et al., 2000 e Islas-Tenorio et al., 2005). En el mapa regional se resaltan las fallas regionales reportadas y con base en la topografía se interpretan lineaciones de fracturas en las que se realizaron conteos estadísticos. En el sur del área del mapa aflora el Macizo de Chiapas, al que le sobreyacen las formaciones Salina, Todos Santos y Cerro Pelón del Jurásico Inferior-Medio. Sobre estas sucesiones, descansan las formaciones calcáreas del Jurásico Superior Edén, Uxpanapa, San Ricardo y Chinameca. El Cretácico Inferior, que corresponde a la Formación Sierra Madre, se expone entre los sistemas de fallas La Venta-Grijalva y Tuxtla-Malpaso. A su vez, le sobrevace la Formación Méndez expuesta en los flancos de las estructuras anticlinales al norte la Falla Malpaso. La sucesión del Paleoceno–Eoceno, formaciones Conglomerado Uxpanapa y Lutitas Nanchital, se encuentra bordeando las fallas y al sur del embalse de la presa Malpaso. Por otro lado, el registro Oligoceno conformado por las formaciones Depósito, La Laja y El Encanto se extiende al noreste del anticlinal Cerro Pelón. Finalmente, las formaciones Concepción y Filisola cubren el área representada por el norte del mapa, donde tienen hasta 5 km de espesor (Fig. 6.12).

En la región expresada por el mapa, el basamento y las unidades más antiguas (formación Cerro Pelón) se encuentran al suroeste, las rocas de edad cretácica se encuentran restringidas en una franja de ~30 km de ancho delimitada por los sistemas de fallas izquierdas La Venta–Grijalva y Tuxtla–Malpaso, las unidades cenozoicas se exponen al norte del sistema de fallas Tuxtla–Malpaso. En esta zona del mapa regional, se resalta la exposición de las rocas jurásicas y cretácicas en los flancos y núcleos de los anticlinales en particularmente en el Cerro Pelón que se encuentra a ~50 km al noreste de los afloramientos más cercanos de la Formación Todos Santos.

Se presenta una sección geológica esquemática construida con la información de Aguilera-Martínez et al. (2000); Islas-Tenorio et al. (2005); Witt et al. (2012) y Vázquez-Meneses et al. (2011). Se representan cuatro bloques, el primero corresponde a la exposición sur de la Formación Todos Santos, el segundo, en la exposición de la Formación Sierra Madre entre los sistemas de falla La Venta–

Grijalva y Tuxtla–Malpaso, el tercero, entre las fallas Malpaso y la falla Vista Hermosa, comprende las estructuras anticlinales, y el cuarto bloque, en la exposición de las unidades del Mioceno, en el área donde se profundizan las unidades Mesozoicas.

El segmento A–B tiene una orientación NE24°-SW24°, parte de la exposición de la Formación Todos Santos que se encuentra sobreyaciendo al basamento cristalino, compuesto por el Macizo de Chiapas (Meneses-Rocha 2001; Godínez-Urban et al., 2011; Witt et al., 2012). En esta zona, la Formación Todos Santos está afectada por fallas laterales izquierdas con componente normal orientadas E–W y SW–NE (fallas Río Alegre, Río Oaxaca–Río Pinal, La Gringa y Uzpanapa–Las flores), que conforman una estructura de cola de caballo, en la sección, las fallas afectan el basamento y basculan la sucesión jurásica hacia el norte. Entre los sistemas de fallas La Venta–Grijalva y Tuxtla–Malpaso se genera un bloque más bajo. Donde la sucesión cretácica se expone en la superficie y el Jurásico se encuentra subyaciendo a una profundidad de ~5000 m, las sucesiones forman una estructura de anticlinal. El Sistema de Fallas La Venta–Grijalva con una cinemática izquierda y componente normal es el límite sur del bloque; en tanto que, el límite norte es el Sistema de Fallas Tuxtla–Malpaso, también de cinemática izquierda, pero con componente inversa.

El segmento B–C tiene una orientación NE83°-SW83°, se construyó a partir de las interpretaciones de secciones sísmicas de Witt et al. (2012) y Vázquez-Meneses et al. (2011). La sección muestra un bloque limitado al sur por el sistema de fallas Tuxtla–Malpaso y al norte por el sistema de fallas Vista Hermosa; dentro del bloque, se observa un conjunto de estructuras anticlinal–sinclinal–anticlinal. El anticlinal al sur esta en el bloque de techo del sistema de fallas Tuxtla – Malpaso; seguido de un sinclinal en el área del Cerro Nanchital; el anticlinal al norte es la estructura del Cerro Pelón. A partir de las secciones sísmicas, se interpreta que el bloque se encuentra afectado por una cinemática transpresiva entre la falla Malpaso y la falla Vista Hermosa (Witt et al ., 2012).

El segmento C–D tiene una orientación NE54°-SW54°, su traza se localiza al noreste del anticlinal Cerro Pelón hacia la llanura costera de Tabasco, donde las unidades mesozoicas se encuentran debajo de una cobertura del Paleógeno y Neógeno de 5–7 km. Figura 6.12. Mapa Geológico Regional. Reinterpretación y síntesis cronoestratigráfica y estructural a partir de los mapas geológicos E15-7 y E15-8 del SGM (Aguilera-Martínez et al., 2000 e Islas-Tenorio et al., 2005). La interpretación de fallas, fracturas y lineaciones con base en la morfología del área, sistemas de falla Tuxtla-Malpaso, La Venta-Grijalva y Falla Veracruz tomado de Witt et al. (2012). Sección geológica construida con base en información de Aguilera-Martínez et al. (2000) e Islas-Tenorio et al. (2005), detalle del recuadro (A) tomado de Vázquez-Meneses et al. (2011) y detalle del recuadro (B) tomado de Witt et al. (2012).



![](_page_79_Figure_1.jpeg)

Con base en cartografía regional se realizó un mapa estructural donde se resaltan los sistemas de fallas regionales y rosetas con los conteos de lineaciones interpretadas por morfología. Se identifican cuatro sistemas de fallas laterales izquierdas con una orientación NW-SE; al sur se encuentra un sistema de fallas con geometría de cola de caballo que afecta a la Formación Todos Santos y bordea la exposición del Macizo de Chiapas. El sistema comprende las fallas Uzpanapa–Las Flores, La Gringa, Río Oaxaca–Río Pinal y Río Alegre. Al norte se encuentra el sistema de fallas La Venta–Grijalva que delimita el sur de la exposición de la sucesión del Cretácico (Formación Sierra Madre). El límite norte de esta sucesión lo conforma el Sistema de Fallas Tuxtla–Malpaso; se encuentran escamas del Paleógeno y Neógeno. En el sector noroeste del mapa se proyecta la tendencia del sistema de fallas Veracruz, el cual no tiene una expresión morfológica clara en el área de la Cuenca Salina del Istmo; sin embargo, la proyección del rasgo se encuentra alineada con escarpes que delimitan la exposición de las unidades del Oligoceno y es el límite entre la Sierra de Chiapas y las Cuencas del Sureste (Fig. 6.13A).

Dentro de los bloques segmentados por los sistemas de falla se presentan distintos tipos de estructuras de daño relacionadas con la cinemática izquierda. En algunos casos, estas se observan en la terminación de las fallas, como la geometría de cola de caballo, y en otros casos en los planos de falla o en las zonas que separan los sistemas de falla. En la zona ubicada entre los sistemas de falla La Venta–Grijalva y Tuxtla–Malpaso, se interpretaron lineamientos con base en la morfología, los cuales son acentuados por un proceso kárstico en la Formación Sierra Madre. Se reconocieron cinco sectores (Fig. 6.13) con las siguientes tendencias: 056° en el Sector-1, 072° en el Sector-2, 042° en el Sector-3, 065° en el Sector-4 y 060° en el Sector-5. Estos lineamientos se interpretan como fallas tipo Riedel (R y R') relacionadas con la cinemática izquierda de los sistemas de falla entre los cuales se encuentran, se identifica como fallas tipo R a las lineaciones que se encuentran en el rango de 070°–080° y como fallas tipo R' a las lineaciones que se encuentran en el rango de 040°–050°; de tal manera que, el sistema de deformación asociado a la zona dañada entre los dos sistemas de falla, tengan una orientación de acortamiento de N63°E, y una extensión en la orientación N27°W.

Entre el sistema de fallas Tuxtla–Malpaso y la proyección del sistema de fallas Veracruz se identifica una serie de pliegues anticlinales y sinclinales. Los ejes de los anticlinales Cerro Pelón y Tecozautla son colineales y buzan al norte, el sector norte del eje del anticlinal Cerro Pelón se flexiona al occidente; mientras que, el sector sur del eje del Anticlinal Tocozautla se flexiona al oriente; así, ambos

anticlinales presentan un arreglo estructural semejante a un sigmoide. Por otra parte, los ejes de los sinclinales Amate y Cerro Nanchital se encuentran alineados NW-SE, paralelos a la traza de los sistemas de falla, estas estructuras tienen mayor amplitud de flexión que los sinclinales; al sur del Cerro Nanchital se encuentra un tercer anticlinal segmentado por el sistema de fallas Tuxtla–Malpaso. Esta zona de pliegues se encuentra delimitada al oriente por un rasgo morfológico prominente, compuesto por un escarpe y una meseta, el cual bordea al anticlinal Cerro Pelón y al sinclinal Amate, en este trabajo se interpreta como la prolongación de la Falla Vista Hermosa con cinemática inversa; al noroeste de la zona de pliegues se encuentra el límite con la cuenca Salina del Istmo, donde se identifican rasgos morfológicos semicirculares correspondientes a las estructuras de domos salinos característicos de esta cuenca. La geometría de los pliegues enmarcados entre los sistemas de falla Tuxtla–Malpaso y Veracruz se interpretan como el resultado de un sistema de deformación transpresiva producto de un salto derecho en sistema de fallas izquierdas (Fig. 6.13C).

En un contexto regional los sistemas de fallas descritos se encuentran dentro de la subprovincia de fallas laterales de la Sierra de Chiapas (Meneses-Rocha, 2001), donde se ha reportado actividad sísmica histórica (Suter, 1991). Guzmán-Speziale y Meneses-Rocha (2000) interpretan los sistemas focales como un mecanismo tectónico activo con componente lateral izquierda en el sur de México (Fig. 6.13B) incluida la zona de estudio.

Figura 6.13. Mapa geológico estructural regional. A) mapa de estructuras regionales, información geológica tomada de las cartas geológicas E15-7 y E15-8 del SGM (Aguilera-Martínez et al., 2000 e Islas-Tenorio et al., 2005), consta de una simplificación de la litología y se resaltan las estructuras de fallas ya reportadas: sistema de fallas Tuxtla-Malpaso, el sistema de fallas La Venta-Grijalva y una proyección de la falla Veracruz (Witt. et al., 2012). Interpretación de lineaciones de fracturas con base en rasgos morfológicos, expresadas en rosetas de cinco sectores entre los sistemas de fallas Tuxtla-Malpaso y La Venta-Grijalva. Ubicación de domos de sal de la Cuenca Salina del Istmo (Contreras y Castillón, 1960 y Castillón y Larios, 1963), interpretación en una roseta

de la orientación de lineaciones con base en la morfología de los domos, entre los sistemas de falla Tuxtla-Malpaso y la falla Veracruz, sector seis. B) mapa de mecanismos focales de los sismos reportados en la región sur de México (Suter, 1991 en Guzmán-Speziale y Meneses-Rocha, 2000), se marca la ubicación del mapa A. C)

Interpretación de la cinemática involucrada entre el sistema de fallas Tuxtla-Malpaso (SFTM) y la falla Veracruz (FV), orientación de los esfuerzos entre los dos sistemas de falla y la elipse de deformación resultante.

![](_page_82_Figure_0.jpeg)

## Capítulo 7 Discusión

Desde los primeros estudios realizados en el área, la estructura de Cerro Pelón se caracterizó como un anticlinal con eje orientado N-S y recostado hacia el oriente (Benavides, 1950; Acevedo, 1960); su génesis se relacionó con la acción de tectónica salina, debido a la cercanía de la Cuenca Salina del Istmo, sobre todo por la presencia de dos domos cercanos, el domo Cascajal a 14 km al NW y el domo Pedregal a 10 km al NE. Con base en los datos del presente trabajo y la información analizada se ofrece una nueva interpretación del origen de la estructura Cerro Pelón, en la que se incluya su relación con las provincias y estructuras geológicas regionales. En virtud de la deformación compleja que presenta el área, la discusión de los resultados se plantea de la deformación más reciente a la más antigua.

El presente trabajo se apoya en el modelo tradicional del Bloque Chortís y la formación de la Sierra de Chiapas a partir de fallas laterales, debido a que los datos obtenidos son compatibles y permiten una mejor interpretación de la cinemática responsable de la formación de la estructura Cerro Pelón, debido a su particular orientación y geometría, que discrepa de otras estructuras de la sierra. Sin embargo, la estructura Cerro Pelón presenta una geometría distinta a las otras estructuras de la Sierra de Chiapas, donde la tendencia de los ejes de las estructuras es NW-SE, mientras que el eje del anticlinal Cerro Pelón está orientado N-S y mantiene una flexión en el norte hacia el occidente, el núcleo se encuentra truncado al sur, pero es colineal con el eje del anticlinal Tecozautla que en su extremo sur tiene una flexión al oriente y se alinea con la traza de la Falla Malpaso.

El conjunto de ambas estructuras asemeja una geometría sigmoidal, que limita al sur con el sistema de Fallas Tuxtla–Malpaso, al norte con la Cuenca de Comalcalco y al noreste con la Cuenca Salina del Istmo (Fig. 7.1), en las cuales no se encuentra una continuidad evidente de las estructuras que caracterizan a la Sierra de Chiapas, estas provincias mantienen un relieve poco abrupto y se conforman de grandes espesores de rocas del Mioceno. Al noreste de estas cuencas, en una interpretación regional, Andreani et al. (2008) relacionan la cinemática del Sistema de Fallas Tuxtla–Malpaso con la Falla Veracruz, cuya traza coincide con la ubicación de domos salinos dentro de la Cuenca Salina del Istmo. Con base en los mapas de Contreras y Castillón (1960) y Castillón y Larios (1963), los domos se observan burdamente alineados formando un ángulo aproximado de 70° con la proyección de la Falla Veracruz (Fig.6.14A), este arreglo de los domos se puede relacionar con la transferencia cinemática del

Sistema de Fallas Tuxtla–Malpaso a la Falla Veracruz, en un régimen extensional. Con base en la relación espacial entre los sistemas de fallas y la cinemática regional descrita por Andreani et al. (2008) la geometría del eje de los anticlinales Cerro Pelón–Tecozautla se interpreta como resultado de una zona compresiva entre dos sistemas de fallas izquierdos (Fig. 7.1). Estas relaciones morfoestructurales son congruentes con el modelo de formación de la Sierra de Chiapas a partir de una deformación de fallas laterales.

Fig. 7.1. Mapa estructural regional del sur de México. Se presentan las principales estructuras geológicas del Sureste de México, en las que se resalta los Sistemas de Fallas Tuxtla–Malpaso, Sistema de Fallas de Los Altos, Sistema de Fallas
Veracruz, los sistemas de falla izquierda en la Sierra de Chiapas (SFTM) mantienen una orientación y cinemática similar a la del Sistema de Fallas Veracruz, al extender la proyección de la traza de la falla Veracruz el área de Cerro Pelón se encuentra inscrita entre los dos sistemas de fallas izquierdas. En el área de la Cuenca Salina del Istmo, donde no se presenta una expresión morfológica de la extensión de la traza de la Falla Veracruz, se observa una alineación de las estructuras de domos perpendiculares a la proyección de esta falla. Las relaciones espaciales y cinemática entre los sistemas de fallas izquierdos indica que el anticlinal de Cerro Pelón se encuentra afectada por el salto cinemática derecho de estos sistemas de falla en un régimen compresivo. Recopilación de estructuras geológicas: cartas de escala 1:250,000 de clave E15-7, E15-8, E15-9, E15-10, E15-11, E15-12 y D15-2 del SGM; Sistema de Falla Veracruz (SFV), Sistema de Fallas Tuxtla–Malpaso (SFTM) y Sistema de Fallas Los Altos (SFLA) tomado de Andreani et al. (2008a, 2008b), Witt et al. (2012). Estructuras del subsuelo en las cuencas petroleras de PEMEX; Domos salinos en la cuenca Salina del Istmo tomado de Contreras y Castillón (1960); Castillón y Larios, (1963); Limite de la sal en las Cuencas del Sureste de Wilson (1993).

![](_page_85_Figure_0.jpeg)

La geometría sigmoidea del eje del anticlinal Cerro Pelón–Tecozautla se interpreta como una estructura de enlace entre los sistemas de falla izquierdos Tuxtla–Malpaso y Veracruz (Fig. 7.2), el eje mantenía una orientación similar a la de las otras estructuras del cinturón de pliegues y cabalgaduras de Chiapas, y experimentó un giro horario en un eje vertical, producto de la cinemática de las fallas izquierda. Con el objetivo de calcular el giro experimentado por el anticlinal Cerro Pelón, se compara con el promedio de la orientación de 19 estructuras anticlinales y sinclinales ubicados al norte del Sistema de Fallas de los Altos y en el sector oriental de la Sierra, regiones que no se encuentran afectadas por la deformación de fallas laterales, dando como resultado una tendencia de NW 39° (Fig. 7.2E), al girar en sentido antihorario la cantidad angular de 39° el eje del anticlinal Cerro Pelón que actualmente tiene una orientación N-S, se obtiene su posición original antes de ser afectado por la deformación de los sistemas de fallas laterales (Falla Veracruz y Sistema de Fallas Tuxtla-Malpaso) (Fig. 7.2A,B), en el giro se integra las estructuras contenidas en el núcleo de edad jurásica, que por su relación de corte se infieren de edad pre-Cretácica, las fallas Olmeca, Encajonado y los datos de estratificación obtenidos en el núcleo centro y sur (Fig. 7.2C–D).

La edad de la deformación se relaciona con la temporalidad de los sistemas de fallas y el levantamiento de la Sierra de Chiapas, en el Mioceno medio-tardío, atestiguado por el aumento de aporte de sedimentos de esta edad, hacia los depocentros de las cuencas del sureste, sin embargo no se conoce con precisión la cronología del levantamiento de la Sierra en sus diferentes segmentos. Guzmán-Speziale y Meneses-Rocha (2000) proponen que el origen del levantamiento se relaciona con un salto en la traza del Sistema de Fallas Motagua-Polochic y la cizalla de Tonalá hacia la región de la Sierra de Chiapas, lo que pudo generar el aumento en la velocidad de exhumación y se calcula un acortamiento de hasta 70 km (Meneses-Rocha, 2001), que incluye un acortamiento de 45 km en los últimos 6–5 Ma (Witt et al., 2012). Con el objetivo de restringir las etapas del levantamiento, Witt et al. (2012) analizaron seis muestras mediante el método de trazas de fisión, colectadas en diferentes puntos de la Sierra de Chiapas (Fig. 7.1), Witt et al. (2012) concluyen que el mayor acomodo de la deformación, se llevó a cabo en el segmento de la Sierra Alta sobre Sistema de Fallas Tuxtla–Malpaso durante el Plioceno; sin embargo, la muestra C14 colectada en rocas del Paleoceno, ubicada al sur de la presa Malpaso, registra una edad trazas de fisión de 16.5 ± 2.1 Ma (Witt et al., 2012). No obstante, el análisis de las curvas de enfriamiento de casi todos los datos de Witt et al. (2012) sugieren un levantamiento en el Eoceno, temporalidad que también reportan Villagómez y Pindell (2020).

![](_page_87_Figure_0.jpeg)

Fig. 7.2. Restitución a la posición pre-Mioceno de la estructura Cerro Pelón. A) Diagramas en proyección de Schmidt (hemisferio inferior) con la posición original del eje del anticlinal, estratificación en los tres sectores del núcleo y las fallas que los dividen 1.- Falla El Encajonado, 2.- Falla Jimbal, 3.- Falla Olmeca; se incluye la tendencia de las estructuras sinclinales y anticlinales del norte de la Sierra de Chiapas NW 39° B) Esquema de la posición del eje del anticlinal, las fallas y la estratificación para cada sector con respecto a la proyección de la Falla Veracruz y el Sistema de Fallas Tuxtla-Malpaso. C) Diagramas en proyección de Schmidt (hemisferio inferior) con la posición de la estratificación en cada sector

y las estructuras de falla que afectan el núcleo después de experimentar un giro con un eje vertical en sentido antihorario de 38.8°, los resultados se muestran en la tabla siguiente. D) Esquema de la orientación del eje del anticlinal Cerro Pelón y las estructuras de falla antes de ser afectado por la deformación de fallas laterales. E) Roseta que muestra la tendencia de la orientación de los ejes de 19 estructuras sinclinales y anticlinales ubicadas en la región norte de la Sierra de Chiapas.

| Estructura                   | Dato estructural | Dato Estructural | Datos después del Giro |
|------------------------------|------------------|------------------|------------------------|
| Falla Olmeca                 | N 85° W, 70° SW  | 095°,70° SW      | 056°, 70° SE           |
| Falla Jimbal                 | N63°W, 75° SW    | 117°, 75° SW     | 078°, 75° SE           |
| Falla Encajonado             | N55°E, 87°NW     | 235°, 87 NW      | 196.2°, 87° NW         |
| S0 Encajonado                |                  | 222.7°, 62.4° NW | 183.9°, 62.4° NW       |
| S0 Cerro Jimbal<br>invertido |                  | 087.6°, 67° SE   | 048.8°, 67° SE         |
| S0 Cerro Pelón               |                  | 140.7, 57.5° SW  | 101.9°, 57.5° SW       |

En la Falla Veracruz se reporta una edad mínima de  $2.6 \pm 0.13$  Ma, con base en su relación de corte con el Complejo ígneo de los Tuxtlas, al obtener la edad de un abanico aluvial que se encuentra segmentado por la traza de la falla mediante el método K/Ar (Jacobo-Albarrán, 1997 en Andreani et al., 2008), con base en indicadores y desplazamientos, Andreani et al. (2008) determinaron la cinemática izquierda, un desplazamiento estimado de 810 m y calcularon una velocidad de 0.3 mm/año, lo que indica que la deformación que afecta la región de Cerro Pelón durante el salto cinemático se encuentra acotada entre  $16.5 \pm 2.1$  y  $2.6 \pm 0.13$  Ma.

Con el objetivo de constreñir aún más esta edad, se realizó un fechamiento por trazas de fisión en cristales de apatito, contenidos en la muestra CP-17-67 colectada en la Formación Salina en el núcleo sur de la estructura (Cerro Jimbal). Tomando en cuenta una temperatura superficial de 20°C y asumiendo un gradiente geotérmico 20°C/km, la Formación Salina se encontraba a una profundidad de 4.5 km hace 16 ± 1.1 Ma, la velocidad de exhumación que experimentó el núcleo del anticlinal Cerro Pelón es de 279.5 m/Ma (0.28 mm/año). Con base en este resultado no sólo se acota la edad de la deformación que rota el eje del anticlinal en sentido antihorario; también, se documenta que la estructura experimentó una exhumación temprana con respecto a otros sectores de la Sierra de Chiapas. La cronología de la deformación y la configuración estructural, en la cual el núcleo se encuentra

limitado por fallas que segmentan la continuidad de los flancos (Fig. 6.1, Fig. 6.8, Fig. 6.9, Fig. 6.10, Fig. 6.11), en este trabajo se interpreta la estructura de Cerro Pelón–Tecozautla con una estructura de flor positiva dentro de una zona de daño en un régimen compresivo durante un salto cinemático derecho entre dos sistemas de falla izquierdos.

En la interpretación estructural de Vázquez-Meneses et al. (2011), con base en información sísmica, se refina la interpretación clásica de un anticlinal recostado. Además, definen una evolución tectonosedimentaria (Fig. 7.3) que comprende del Jurásico Medio al reciente. En la cual proponen la existencia de fallas sincrónicas al depósito del Jurásico medio, para el Cretácico bosquejan una sedimentación delgada que coincide con otras interpretaciones del área de Cerro Pelón donde se expone como un alto topográfico para esa época (Meneses-Rocha et al., 2001). En los diferentes estadios de la propuesta, se presentan reactivaciones de las fallas principales, el anticlinal inicia su formación en el Eoceno y se plantea la exhumación del núcleo durante los últimos 5 Ma. Esta etapa de exhumación, difieren de los resultados obtenidos en el estudio de trazas de fisión del presente trabajo, que documenta la exhumación a partir de  $16 \pm 1.1$  Ma. El continuo levantamiento y la subsidencia diferencial entre los bloques divididos por las fallas en el área durante las distintas etapas descritas, se refleja en la asimetría de los espesores de las distintas unidades en la estructura actual, de forma que se resuelve la ausencia de las unidades del Mioceno y el truncamiento de las unidades Mesozoicas en el flanco oriental del anticlinal.

Con la restitución de la orientación de la estructura anterior a ser afectada por la deformación de los sistemas de fallas laterales Tuxtla–Malpaso y Veracruz (Fig. 7.2C,D), se puede identificar la orientación original del acortamiento que formó el pliegue, en una dirección NE51°-SW51° perpendicular al eje de la estructura.

En la interpretación estructural de Vázquez-Meneses et al. (2011) no se considera la conformación estructural del núcleo (Fig. 1.3). La estructura del núcleo del anticlinal Cerro Pelón, no es abordado por autores anteriores (Benavides, 1952; Acevedo, 1960; Vázquez-Meneses et al., 2010 y Galicia-Flores y Lazcano-Camacho, 2018). En el núcleo están expuestas dos unidades litoestratigráficas diferentes con un arreglo estructural peculiar que se discute más adelante (Fig. 6.1, Fig. 6.4) por lo cual fue dividido en tres bloques 1) Cerro Pelón, 2) El Encajonado y 3) Cerro Jimbal (Fig. 6.7).

El problema que representa la posición actual del bloque Cerro Jimbal es identificar la deformación o deformaciones que lo llevaron de una posición sub-horizontal a la posición invertida actual y con un rumbo 088°, que representa la deformación acumulada de todos los eventos, con la certeza que en el modelo actual no es posible conciliar el giro en un solo movimiento, sobre todo, por la orientación perpendicular del bloque respecto al eje del anticlinal. La orientación de las secciones sísmicas en las que se basó las reconstrucciones presentadas por Vázquez-Meneses et al. (2011) no aportan muchos elementos para resolver la cinemática responsable de la orientación y la posición volcada de los estratos en el bloque sur del núcleo (Fig. 6.7), por lo que se realizó la sección B-B' orientada NE-SW 10°, para resolver la posición de los sectores núcleo norte, centro y sur (Fig. 6. 10), en la cual se observa el desplazamiento vertical del núcleo del anticlinal.

A partir de la restitución de la orientación del eje del anticlinal antes de ser afectado por la deformación de fallas laterales (Pre-Mioceno) (Fig. 7.2C) y la evolución estructural de Vázquez-Meneses et al. (2011) (Fig. 1.3g), se realizó una retrodeformación previa a la formación del pliegue en el Eoceno, con el objetivo de identificar la posición de las estructuras del núcleo en ese momento. En la retrodeformación de cizalla izquierda del Mioceno (Fig. 7.2C,D). Se tomó como referencia la posición de la formación Cerro Pelón, porque es el sector más joven del núcleo y a que es congruente con la tendencia del flanco occidental (Fig. 6.6). El giro se realizó alrededor de un eje horizontal paralelo al rumbo general de la estratificación SE 78.1°, con una magnitud angular de 57.5° en sentido antihorario (Fig. 7.3A). Después de este giro, las estructuras de falla muestran una alineación NE 16-45° SW, la estratificación del sector Jimbal se mantiene en posición invertida con un rumbo de 009.37° y una inclinación de 47.46° SE; la estratificación del sector Encajonado con un rumbo 212.19° y una inclinación de 69.33° NW. Se interpreta que este arreglo correspondía a las sucesiones expuestas en los bloques, antes de la generación del pliegue en el Eoceno.

![](_page_91_Figure_0.jpeg)

Figura 7.3 Diagramas en proyección de Schmidt de la restitución a la posición horizontal de la estratificación en los bloques del núcleo. A) Giro de 57.5° en sentido antihorario respecto a un eje horizontal con orientación SE 78.1°, rumbo de la estratificación del Cerro Pelón después de la restitución de la posición del eje del anticlinal antes de la deformación de fallas laterales (Fig. 7.2 C), el resultado es la posición de las estructuras del núcleo antes de la formación del pliegue en el Eoceno. B) Giro de 69.33° en sentido antihorario con respecto a un eje horizontal en dirección SW 32.19°, el resultado es la posición de estratificación del Cerro Jimbal durante la sedimentación en el sector El Encajonado.

| Estructura                        | Dato estructural después del giro<br>A. Estratificación Cerro Pelón<br>en posición horizontal | Dato estructural después del giro<br>B. Estratificación Sector<br>Encajonado en posición<br>horizontal |
|-----------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| Falla Olmeca                      | 017.35°, 42° SE                                                                               | 021.54°, 69.47° NW                                                                                     |
| Falla Jimbal                      | 045.4°, 27.75° SE                                                                             | 038.33°, 96.41° NW                                                                                     |
| Falla Encajonado                  | 16.74°, 87.99° SE                                                                             | 356.66°, 27.26° NW                                                                                     |
| Estratificación Sector Encajonado | 212.19°, 69.33° NW                                                                            | Horizontal                                                                                             |
| Estratificación Sector Jimbal     | 009.37°, 47.46° SE                                                                            | 014.05°, 66.62° NW                                                                                     |

Con base en la disposición que guarda la estratificación en los sectores Encajonado y Jimbal, es evidente que el sector Encajonado es más joven, ya que requiere un giro de menor magnitud para adoptar su posición horizontal original. Al aplicar al conjunto de estratificación y estructuras, un giro en sentido antihorario de 69.33° con respecto a un eje horizontal con dirección SW 32.19° (Fig. 7.3B), con esta operación la sucesión expuesta en el sector Encajonado adopta una posición horizontal, en tanto que en el sector Jimbal, se obtiene la posición de los estratos más viejos de la Formación Salina que conforman este último sector. El plano N14°E, 67°NW sería la posición residual representada en el bloque Jimbal (Fig. 7.3B), que representa la deformación sinsedimentaria provocada por la falla lístrica que separa ambos sectores. Así, la falla Jimbal se interpreta como parte de un conjunto de fallas lístricas durante el proceso de apertura del Golfo de México. Obteniendo la orientación original de las fallas que afectan a la Formación Salina, se puede identificar la dirección de la extensión sinsedimentaria; así, la extensión durante el depósito de la Formación Salina tuvo una orientación aproximada de NW45°-SE45°.

### Capítulo 8 Conclusiones

- Los análisis geocronológicos de datación de circones individuales con el método isotópico U/Pb con LA-ICP-MS realizados en las formaciones clásticas del núcleo arrojó una edad máxima de depósito para la Formación Salina de 178.9–182.9 Ma (Jurásico Inferior, Toarciano) y para la formación Cerro Pelón con una edad máxima de depósito de 154.2–156.9 Ma (Jurásico Superior, Kimmeridgiano); lo que sugiere una hiatus entre las dos formaciones tal vez de 25.35 ± 0.65 Ma.
- La estructura interna del núcleo está segmentada en tres bloques: en el norte el Bloque Cerro Pelón con un rumbo congruente con la estructura, al centro el Bloque El Encajonado con un rumbo oblicuo y al Sur el Bloque Cerro Jimbal con polaridad invertida y rumbo cuasiperpendicular al eje de la estructura, en los dos últimos aflora la Formación Salina. Las distintas posiciones de los bloques del núcleo indica una etapa de deformación que no puede ser conciliada con la formación de la estructura en flor e indica una deformación sinsedimentaria.
- Con base en la cartografía geológica se reinterpretó la estructura del Cerro Pelón como una flor positiva, interpretación que concilia los siguientes elementos:
  - Se infiere una configuración estructural en la cual el núcleo de la estructura está separado de los flancos por fallas laterales de cinemática izquierda con ángulo alto, la ramificación de las fallas que se unen en profundidad y la geometría de la estructura coinciden con una flor positiva. Esta interpretación resuelve la asimetría de los flancos y el cambio de posición de la sucesión mesozoica de recumbente a sub-horizontal en la sucesión cenozoica del flanco oriental.
  - 2) La génesis de la estructura en flor en un contexto regional se interpreta como producto de una deformación transpresiva en un salto cinemático derecho entre el sistema de

fallas Tuxtla–Malpaso a la Falla Veracruz, con base en la orientación y ubicación de la estructura con respecto a los sistemas de fallas laterales izquierdas.

El resultado de los análisis de trazas de fisión indica que la Formación Salina en el bloque Cerro Jimbal del núcleo del anticlinal experimentó una exhumación que inicio a los  $16 \pm 1.1$  Ma desde una profundidad de ca. 4.5 km, lo que indica que la formación de la estructura en flor positiva tuvo lugar en el Mioceno.

• Se identificaron tres eventos de deformación que afectaron la estructura Cerro Pelón:

#### D1 Deformación de edad Jurásica

El arreglo interno y la posición de los bloques del núcleo, El Encajonado y Cerro Jimbal, indican que la sedimentación de la Formación Salina ocurrió en el marco de una deformación por extensión, la que tuvo lugar en tiempo posterior al Jurásico Inferior (~183 Ma). Al llevar a la posición horizontal al bloque El Encajonado se obtiene la posición de las estructuras que afectaron a la Formación Salina en ese momento, que indican una deformación extensional con una orientación NW45°-SE45°, cuasi-perpendicular a las fallas que afectan a los bloques.

#### D2 Deformación de edad Eoceno?

Con base en la reconstrucción tectonosedimentaria de Vázquez-Meneses et al. (2011), durante el Eoceno se formó una estructura anticlinal, con base en la restitución de la orientación del eje antes de ser afectada por la cizalla izquierda del sistema de fallas Tuxtla–Malpaso y Veracruz en el Mioceno, se obtuvo la dirección NE51°-SW51° como la propia del mayor acortamiento que originó la estructura anticlinal.

#### D3 Deformación de edad Mioceno

La geometría sigmoidal del eje de la estructura Cerro Pelón y su ubicación entre las trazas de los sistemas de fallas Tuxtla-Malpaso y Falla Veracruz, ambos con desplazamiento lateral

izquierdo, indica que la estructura fue afectada por desplazamiento lateral, acortamiento y rotación en el Mioceno, hace aproximadamente 16  $\pm$  1.1 Ma, tiempo en que inició la exhumación de su núcleo y se conformó la estructura en flor. Al comparar la orientación del eje de la estructura Cerro Pelón con la orientación de 19 estructuras anticlinales y sinclinales del norte de la sierra de Chiapas, se infiere que el eje de la estructura Cerro Pelón giró 38.8° en sentido horario con respecto a un eje vertical durante esta deformación.

# Bibliografía

Abdullin, F., Solé, J., Meneses-Rocha, J. D. J., Solari, L., Shchepetilnikova, V., & Ortega-Obregón, C. (2016). LA-ICP-MS-based apatite fission track dating of the Todos Santos Formation sandstones from the Sierra de Chiapas (SE Mexico) and its tectonic significance. *International Geology Review*, *58*(1), 32-48.

Acevedo, J. S. (1960). Estructuras de la porción occidental del frente de la Sierra Madre de Chiapas. *Boletín de la Asociación Mexicana de Geólogos Petroleros*, *14*(5-6), 111-134.

Aguilera-Martínez, M. A., Zárate-López, J., Calleja-Moctezuma, A., Cureño-Suriano, R., & López-Gallardo, A. (2000). Carta Geológico-Minera Minatitlán E15-7. *Veracruz, Oaxaca y Tabasco, Escala, 1*, 250000.

Andreani, L., Le Pichon, X., Rangin, C., & Martínez-Reyes, J. (2008). The southern Mexico block: main boundaries and new estimation for its Quaternary motion. *Bulletin de la Société géologique de France*, *179*(2), 209-223.

Andreani, L., Rangin, C., Martínez-Reyes, J., Le Roy, C., Aranda-García, M., Le Pichon, X., & Peterson-Rodriguez, R. (2008). The Neogene Veracruz fault: evidences for left-lateral slip along the southern Mexico block. *Bulletin de la Société géologique de France*, *179*(2), 195-208.

Benavides, L. (1950). El Anticlinal del Cerro Pelón, Municipio de Minatitlán, Veracruz. *Boletín de la Asociación Mexicana de Geólogos Petroleros*, *2*(10), 599-616.

Castillon, M., & Larios, J. P. (1963). Salt deposits of the Isthmus of Tehuantepec. In *Symposium on salt. Northern Ohio Geol. Soc* (pp. 263-280).

Centeno-Garcia, E., Silva-Romo, G., Grajales-Nishimura, M., & Ortega-Flores, B. (2019). Caracterización del Sistema Petrolero de las Cuencas del Sureste de México a partir de su análogo en Cerro Pelón, Las Choapas, Veracruz. Libreto Guía del Taller Teórico Práctico, 60 (En proceso de publicación).

Contreras, H., & Castillon (M.). (1960). *Morfología y origen de los domos salinos del Istmo de Tehuantepec*. Asociacion Mexicana de Geologos Petroleros, 7(7-8), 221-242.

Davis, G. H., Bump, A. P., García, P. E., & Ahlgren, S. G. (2000). Conjugate Riedel deformation band shear zones. *Journal of Structural Geology*, *22*(2), 169-190.

Dickinson, W. R., & Gehrels, G. E. (2010). Insights into North American paleogeography and paleotectonics from U–Pb ages of detrital zircons in Mesozoic strata of the Colorado Plateau, USA. *International Journal of Earth Sciences*, 99(6), 1247-1265.

Escalera-Alcocer, A., & Hernández-Romano, U. (2009). Provincias Petroleras de Mexico. *WEC México. Schulmberger*.

Espinoza-Nava, M., & Toriz-Gama, J. (2005). Estilos estructurales en la región de Veracruz.– Asociación Mexicana de Geofísicos de Exploración, Delegación Veracruz. *Geogaceta*, *4*, 3-20.

Fitz-Díaz, E., Lawton, T. F., Juárez-Arriaga, E., & Chávez-Cabello, G. (2018). The Cretaceous-Paleogene Mexican orogen: Structure, basin development, magmatism and tectonics. *Earth-Science Reviews*, *183*, 56-84.

Galbraith, R. F. (1990). The radial plot: graphical assessment of spread in ages. *International Journal of Radiation Applications and Instrumentation*. *Part D. Nuclear Tracks and Radiation Measurements*, *17*(3), 207-214.

Galicia-Flores, E., & Lazcano-Camacho, M., (2018). Caracterización sedimentológica de la Formación Salina en el Anticlinal Cerro pelón. Las Choapas, Ver. (Tesis de Licenciatura). Facultad de Ingeniería, Universidad Nacional Autónoma de México.

Gallagher, K. (1995). Evolving temperature histories from apatite fission-track data. *Earth and Planetary Science Letters*, 136(3-4), 421-435.

Gleadow, A. J. W., Duddy, I. R., Green, P. F., & Lovering, J. F. (1986). Confined fission track lengths in apatite: a diagnostic tool for thermal history analysis. *Contributions to Mineralogy and Petrology*, *94*(4), 405-415.

Godínez-Urban, A., Lawton, T. F., Molina Garza, R. S., Iriondo, A., Weber, B., & López-Martínez, M. (2011). Jurassic volcanic and sedimentary rocks of the La Silla and Todos Santos Formations, Chiapas: Record of Nazas arc magmatism and rift-basin formation prior to opening of the Gulf of Mexico. *Geosphere*, *7*(1), 121-144.

Guzmán-Speziale, M., & Meneses-Rocha, J. J. (2000). The North America–Caribbean plate boundary west of the Motagua–Polochic fault system: a fault jog in southeastern Mexico. *Journal of South American Earth Sciences*, *13*(4-5), 459-468.

Hernández-Narváez, J. P. (2020). Análisis de microfacies y caracterización de la materia orgánica en rocas del Jurásico Superior en la localidad de Ignácio López Rayón, Veracruz. (Tesis de Maestría). Posgrado en Ciencias de la Tierra, Universidad Nacional Autónoma de México.

Hudec, M. R., & Jackson, M. P. (2012). De Re Salica: Fundamental principles of salt tectonics. *Regional Geology and Tectonics: Phanerozoic Passive Margins, Cratonic Basins and Global Tectonic Maps*, *1*, 19-41.

Islas Tenorio, J. J., Ramírez García, M. G., Gómez Áviles, A., Moreno Ruiz, J. P., Wingartz Carranza, J. A., & Mendieta Flores, J. L. (2005). Carta Geológico-Minera Villahermosa E15-8. *Servicio Geológico Mexicano, Pachuca*.

Jacobo-Albarrán, J. (1997). Studio geologico e petrologico del complesso vulcanico di Los Tuxtlas, Stato di Veracruz, Messico. Dissertation, Universita Degli Studi Di Pisa Dipartmento di Seienze della Terra, 145. Keppie, J. D., & Morán-Zenteno, D. J. (2005). Tectonic implications of alternative Cenozoic reconstructions for southern Mexico and the Chortis Block. *International Geology Review*, *47*(5), 473-491.

Kim, Y. S., Peacock, D. C., & Sanderson, D. J. (2004). Fault damage zones. *Journal of Structural Geology*, *26*(3), 503-517.

Marton, G., & Buffler, R. T. (1994). Jurassic reconstruction of the Gulf of Mexico Basin. *International Geology Review*, *36*(6), 545-586.

Meneses-Rocha, J.J., 2001, Tectonic evolution of the Ixtapa Graben, an example of a strike-slip basin of southeastern México, implications for regional petroleum systems, en: Bartolini, C., Buffler, R. T., Cantú-Chapa, A. (eds.), The western Gulf of México basin: tectonics, sedimentary basins, and petroleum systems: Tulsa, Oklahoma, American Association of Petroleum Geologists, Memoir, 75, 183-216.

Mandujano-Velazquez, J. J., & Keppie, J. D. (2009). Middle Miocene Chiapas fold and thrust belt of Mexico: a result of collision of the Tehuantepec Transform/Ridge with the Middle America Trench. *Geological Society, London, Special Publications, 327*(1), 55-69.

Moy, C., & Traverse, A. (1986). Palynostratigraphy of the subsurface eagle mills formation (Triassic) from a well in east-central texas, USA. *Palynology*, *10*(1), 225-234.

Nelson, S. A., & González-Caver, E. (1992). Geology and K-Ar dating of the Tuxtla volcanic field, Veracruz, Mexico. *Bulletin of Volcanology*, *55*(1-2), 85-96.

Ortega-Flores, B., Martini, M., Guerrero-Moreno, S., Colás, V., Solari, L., Centeno-Garcia, E., Silva-Romo, G & Grajales-Nishimura, M. (2019). Provenance analysis of Oligocene sandstone from the Cerro Pelón area, southern Gulf of Mexico. *International Geology Review*, *61*(8), 915-935.

Ortega-Gutiérrez, F., Mitre-Salazar, L. M., Roldán-Quintana, J., Aranda-Gómez, J. J., Morán-Zenteno, D.J., Alaniz-Álvarez, S.A., Nieto-Samaniego, Á.F., 1992, Carta geológica de la República Mexicana, quinta Edición, escala 1:2 000 000: México, D. F., Universidad Nacional Autónoma de México, Instituto de Geología; Secretaría de Energía, Minas e Industria Paraestatal, Consejo de Recursos Minerales, 1 mapa.

Pindell, J., Kennan, L., Stanek, K. P., Maresch, W. V., & Draper, G. (2006). Foundations of Gulf of Mexico and Caribbean evolution: eight controversies resolved. *Geologica Acta: an international earth science journal*, *4*(1-2), 303-341.

Ratschbacher, L., Franz, L., Min, M., Bachmann, R., Martens, U., Stanek, K., ... & López-Martínez, M. (2009). The North American-Caribbean plate boundary in Mexico-Guatemala-Honduras. *Geological Society, London, Special Publications*, *328*(1), 219-293.

Riedel, W. (1929). Zur Mechanik geologischer Brucherscheinungen ein Beitrag zum Problem der Fiederspatten. *Zentbl. Miner. Geol. Palaont. Abt.*, 354-368.

Rogers, R. D., Mann, P., & Emmet, P. A. (2007). Tectonic terranes of the Chortis block based on integration of regional aeromagnetic and geologic data. *Special Papers-Geological Society of America*, *428*, 65.

Salvador, A. (1991). Triassic-Jurassic. *The Gulf of Mexico Basin: Boulder, Colorado, Geological Society of America, Geology of North America, v. J,* 131-180.

Schaaf, P. E., Weber, B., Weis, P., Groß, A., Ortega-Gutiérrez, F., & Köhler, H. (2002). The Chiapas Massif (Mexico) revised: New geologic and isotopic data and basement characteristics. *Neues Jahrbuch fur Geologie und Palaontologie-Abhandlungen*, 225(1), 1-23.

Suárez, G., Delgado, H., Aguirre, G., & Stock, J. (2000). Reverse faulting in the Isthmus of Tehuantepec: Backarc deformation induced by the subduction of the Tehuantepec ridge. *Special Papers-Geological Society of America*, 334, 263-268.

Suter, M., Slemmons, D. B., Engdahl, E. R., Zoback, M. D., & Blackwell, D. D. (1991). State of stress and active deformation in Mexico and western Central America. *Neotectonics of North America*, *1*, 401-421.

Vazquez-Meneses, M. E., A. España-Pinto, E. Rosales-Contreras, J. Rosales-Rodriguez, A. Ruiz-Violante, and A. del Valle-Reyes, 2011, Structural evolution in the Tabasco Coastal Plain, Mexico: Gulf Coast Association of Geological Societies Transactions, 61, 671–674.

Vollmer, F. W. (2015). Orient 3: a new integrated software program for orientation data analysis, kinematic analysis, spherical projections, and Schmidt plots. In *Geological Society of America Abstracts with Programs*, 47(7), 49.

Waldron, J. W. (2005). Extensional fault arrays in strike-slip and transtension. *Journal of Structural Geology*, *27*(1), 23-34.

Weber, B., Valencia, V. A., Schaaf, P., Pompa-Mera, V., & Ruiz, J. (2008). Significance of provenance ages from the Chiapas Massif Complex (southeastern Mexico): redefining the Paleozoic basement of the Maya Block and its evolution in a peri-Gondwanan realm. *The Journal of Geology*, *116*(6), 619-639.

Wilson, J. T. (1965). A new class of faults and their bearing on continental drift. *Nature*, *207*(4995), 343.

Witt, C., Brichau, S., & Carter, A. (2012). New constraints on the origin of the Sierra Madre de Chiapas (south Mexico) from sediment provenance and apatite thermochronometry. *Tectonics*, *31*(6).

Woodcock, N. H., & Rickards, B. (2003). Transpressive duplex and flower structure: Dent fault system, NW England. *Journal of Structural Geology*, 25(12), 1981-1992.

Woodcock, N. H., & Schubert, C. (1994). Continental strike-slip tectonics. In Hancock, P.L. (Ed.), *Continental deformation*. Pergamon Press, Oxford, pp. 251–263.

![](_page_100_Figure_0.jpeg)

![](_page_100_Figure_1.jpeg)

![](_page_100_Figure_2.jpeg)

![](_page_100_Figure_3.jpeg)

| Elipsoide                                    | . GRS8 |
|----------------------------------------------|--------|
| Proyección Universal Transversal de Mercator |        |
| CuadrículaUTM a cada 2000 m                  | Ηſ     |
| DatumWGS 1984                                |        |
| Referencia de cotasNivel medio del mar       | ١f     |
| Declinación magnética Agosto 2014 2° 46' E   | V      |
| Variación magnética anual                    |        |
|                                              |        |

![](_page_100_Picture_5.jpeg)

![](_page_100_Picture_6.jpeg)

Mapa Geológico del Anticlinal Cerro Pelón.

Cartografía Geológica de Ing. Orestes Antonio de la Rosa Mora. Anexo l

Tesis "Cartografía geológica y origen de la estructura en flor de Cerro Pelón, Veracruz. Borde de la Cuenca Salina, sureste de México"

Elaborado en el proyecto PAPIIT IV 100516"Caracterización del sistemapetrolero de las cuencas del Sureste de México a partir de su análogo en Cerro Pelón, Las Choapas, Veracruz".

![](_page_100_Figure_11.jpeg)

### Anexo II Resultados de análisis geocronológicos.

Método U/Pb en circones individuales, en las muestras CP-16-145, CP-17-68, CP-17-76 y CP-17-95.

|                     |          |           |      | 1           |         | CO         | RRECTED RA | TIOS <sup>2</sup> |         |             |         |            |            |     | CORF       | RECIEDAGE | S (Ma)                               |     |               |     |
|---------------------|----------|-----------|------|-------------|---------|------------|------------|-------------------|---------|-------------|---------|------------|------------|-----|------------|-----------|--------------------------------------|-----|---------------|-----|
|                     | U (ppm)1 | Th (ppm)1 | Th/U | 207Pb/206Pb | ±2σ abs | 207Pb/235U | ±2σ abs    | 206 Pb/238U       | ±2σ abs | 208Pb/232Th | ±2σ abs | Rho        | 206Pb/238U | ±2σ | 207Pb/235U | ±2σ       | <sup>207</sup> Pb/ <sup>206</sup> Pb | ±2σ | Best age (Ma) | ±2σ |
| Zircon 01 CP-16-145 | 1        |           |      | 0.0513      | 0.0033  | 0.29       | 0.017      | 0.0408            | 0.0013  | 0.01309     | 0.00095 | 0.088515   | 257.8      | 7.8 | 258        | 13        | 230                                  | 140 | 257.8         | 7.8 |
| Zircon 02           | 167.4    | 86.9      | 0.52 | 0.0542      | 0.0031  | 0.304      | 0.015      | 0.0395            | 0.001   | 0.01217     | 0.00077 | 0.045223   | 249.5      | 6.4 | 269        | 12        | 450                                  | 130 | 249.5         | 6.4 |
| Zircon_02           | 176.6    | 166.8     | 0.94 | 0.0505      | 0.0044  | 0.225      | 0.017      | 0.0324            | 0.0011  | 0.01019     | 0.00071 | 0.059954   | 205.7      | 7.1 | 205        | 14        | 180                                  | 180 | 205.7         | 71  |
| Zircon_04           | 140      | 02.7      | 0.60 | 0.0305      | 0.0052  | 1 50       | 0.017      | 0.1622            | 0.0051  | 0.01013     | 0.00071 | 0.10111    | 074        | 20  | 056        | 41        | 030                                  | 150 | 074           | 20  |
| 211001_04           | 140      | 03.7      | 0.00 | 0.0715      | 0.0052  | 1.56       | 0.1        | 0.1032            | 0.0051  | 0.0497      | 0.0039  | 0.10111    | 974        | 20  | 950        | 41        | 930                                  | 150 | 974           | 20  |
| Zircon_05           | 33.18    | 16.26     | 0.49 | 0.0869      | 0.0035  | 2.752      | 0.094      | 0.231             | 0.0054  | 0.0667      | 0.0038  | 0.082459   | 1339       | 28  | 1346       | 26        | 1354                                 | 11  | 1339          | 28  |
| Zircon_06           | 129.3    | 63.3      | 0.49 | 0.0663      | 0.0054  | 0.265      | 0.02       | 0.02888           | 0.00087 | 0.00956     | 0.00069 | -0.027716  | 183.5      | 5.5 | 240        | 15        | 810                                  | 180 | 183.5         | 5.5 |
| Zircon_07           | 157.1    | 168.7     | 1.07 | 0.052       | 0.0029  | 0.259      | 0.014      | 0.03573           | 0.00084 | 0.01148     | 0.00067 | 0.20153    | 226.3      | 5.2 | 233        | 11        | 260                                  | 120 | 226.3         | 5.2 |
| Zircon 08           | 387.8    | 229.5     | 0.59 | 0.0546      | 0.0045  | 0.284      | 0.021      | 0.0379            | 0.0012  | 0.01281     | 0.00089 | 0.10206    | 239.8      | 7.5 | 253        | 17        | 380                                  | 170 | 239.8         | 7.5 |
| Zircon 09           | 112      | 119       | 1.06 | 0.0529      | 0.0024  | 0.309      | 0.013      | 0.04188           | 0.00099 | 0.01298     | 0.00073 | 0.25845    | 264 5      | 6.1 | 273        | 10        | 340                                  | 110 | 264.5         | 6.1 |
| Zircon 10           | 261.1    | 270.0     | 0.75 | 0.052       | 0.0019  | 0.294      | 0.011      | 0.0520            | 0.0011  | 0.01601     | 0.00099 | 0.4219     | 222.2      | 6.6 | 220.9      | 7.0       | 222                                  | 79  | 222.2         | 6.6 |
| 2000_10             | 301.1    | 270.9     | 0.75 | 0.053       | 0.0018  | 0.304      | 0.011      | 0.0529            | 0.0011  | 0.01001     | 0.00088 | 0.4210     | 332.3      | 0.0 | 329.0      | 7.9       | 323                                  | 10  | 332.3         | 0.0 |
| Zircon_11           | 1465     | 975       | 0.67 | 0.0511      | 0.0026  | 0.219      | 0.011      | 0.03147           | 0.00075 | 0.00897     | 0.00054 | 0.22549    | 199.7      | 4.7 | 202.6      | 9.3       | 220                                  | 110 | 199.7         | 4.7 |
| Zircon_12           | 482      | 249.4     | 0.52 | 0.0738      | 0.0036  | 1.495      | 0.072      | 0.1462            | 0.0043  | 0.0464      | 0.003   | 0.49411    | 879        | 24  | 924        | 29        | 1010                                 | 100 | 879           | 24  |
| Zircon_13           | 97.6     | 45.7      | 0.47 | 0.0549      | 0.0022  | 0.559      | 0.019      | 0.073             | 0.0017  | 0.0226      | 0.0014  | 0.29323    | 454        | 10  | 452        | 12        | 396                                  | 90  | 454           | 10  |
| Zircon 14           | 520      | 67.5      | 0.13 | 0.0534      | 0.0031  | 0.238      | 0.013      | 0.03205           | 0.00086 | 0.01053     | 0.00066 | 0.29766    | 203.4      | 5.4 | 216        | 11        | 330                                  | 130 | 203.4         | 5.4 |
| Zircon 15           | 253      | 222       | 0.88 | 0.052       | 0.0024  | 0.284      | 0.011      | 0.04016           | 8,000 0 | 0.01226     | 0.00072 | 0.057172   | 253.8      | 6.1 | 255.2      | 89        | 280                                  | 100 | 253.8         | 61  |
| Zircon 16           | 467      | 467       | 1.00 | 0.0567      | 0.0023  | 0.200      | 0.016      | 0.0205            | 0.0011  | 0.01257     | 0.00094 | 0.15455    | 240.5      | 6.6 | 275        | 12        | 450                                  | 120 | 240.5         | 6.6 |
| 211001_10           | 407      | 407       | 1.00 | 0.0307      | 0.0033  | 0.309      | 0.010      | 0.0395            | 0.0011  | 0.01257     | 0.00004 | 0.13433    | 245.5      | 0.0 | 215        | 13        | 430                                  | 130 | 245.5         | 0.0 |
| Zircon_1/           | 275.5    | 153.7     | 0.56 | 0.0842      | 0.0027  | 2.734      | 0.064      | 0.2335            | 0.0046  | 0.0654      | 0.0035  | -0.22704   | 1353       | 22  | 1337       | 18        | 1292                                 | 60  | 1353          | 22  |
| Zircon_18           | 488      | 179.7     | 0.37 | 0.0597      | 0.0038  | 0.349      | 0.018      | 0.0425            | 0.0011  | 0.01452     | 0.00098 | -0.40169   | 268.2      | 7   | 303        | 14        | 560                                  | 140 | 268.2         | 7   |
| Zircon_19           | 344      | 168       | 0.49 | 0.0747      | 0.0038  | 1.77       | 0.072      | 0.1727            | 0.0042  | 0.0508      | 0.003   | -0.18188   | 1027       | 23  | 1036       | 26        | 1083                                 | 87  | 1027          | 23  |
| Zircon 20           | 76.4     | 49.6      | 0.65 | 0.0511      | 0.0023  | 0.293      | 0.011      | 0.04106           | 0.00093 | 0.01309     | 0.0008  | 0.29817    | 259.4      | 5.8 | 260.3      | 9.1       | 251                                  | 98  | 259.4         | 5.8 |
| Zircon 21           | 646      | 202.1     | 0.31 | 0.0742      | 0.003   | 1.833      | 0.064      | 0.18              | 0.0039  | 0.0542      | 0.0037  | 0.26785    | 1067       | 21  | 1058       | 22        | 1034                                 | 82  | 1067          | 21  |
| Zircon 22           | 05.0     | 27.0      | 0.20 | 0.0794      | 0.0028  | 2 152      | 0.054      | 0.1057            | 0.0045  | 0.050       | 0.0022  | 0.0019921  | 1152       | 24  | 1165       | 17        | 1102                                 | 70  | 1152          | 24  |
| ZIICOII_22          | 95.9     | 37.0      | 0.39 | 0.0794      | 0.0028  | 2.152      | 0.054      | 0.1957            | 0.0045  | 0.059       | 0.0033  | -0.0010021 | 1152       | 24  | 1100       | 11        | 1001                                 | 70  | 1152          | 24  |
| Zircon_23           | 289      | 140.1     | 0.48 | 0.1226      | 0.004   | 6.21       | 0.15       | 0.3664            | 0.0081  | 0.1005      | 0.006   | 0.43149    | 2016       | 38  | 2005       | 22        | 1991                                 | 58  | 1991          | 38  |
| Zircon_24           | 150.8    | 31.1      | 0.21 | 0.0748      | 0.0034  | 1.718      | 0.068      | 0.1683            | 0.0041  | 0.0505      | 0.0038  | 0.17818    | 1002       | 23  | 1017       | 24        | 1055                                 | 97  | 1002          | 23  |
| Zircon_25           | 114.3    | 15.1      | 0.13 | 0.0523      | 0.0041  | 0.285      | 0.022      | 0.0396            | 0.001   | 0.01154     | 0.00086 | 0.14341    | 250.2      | 6.2 | 253        | 17        | 270                                  | 170 | 250.2         | 6.2 |
| Zircon 26           | 179      | 131       | 0.73 | 0.0541      | 0.0033  | 0.292      | 0.016      | 0.0406            | 0.001   | 0.01291     | 0.00084 | -0.1699    | 256.7      | 6.4 | 261        | 12        | 340                                  | 130 | 256.7         | 6.4 |
| Zircon 27           | 187.1    | 189.2     | 1.01 | 0.07        | 0.0023  | 1 589      | 0.043      | 0 164             | 0.0037  | 0.0516      | 0.003   | 0.57712    | 979        | 21  | 965        | 17        | 935                                  | 63  | 979           | 21  |
| Ziroon 20           | 501      | 74.0      | 0.15 | 0.0545      | 0.0027  | 0.000      | 0.052      | 0.1057            | 0.0001  | 0.0010      | 0.0000  | 0.16200    | 640        | 10  | 600        | 20        | 260                                  | 150 | 640           | 10  |
| 20001_28            | 501      | 74.0      | 0.15 | 0.0545      | 0.0037  | 0.803      | 0.053      | 0.1057            | 0.0031  | 0.0319      | 0.0023  | 0.16308    | 040        | 10  | 003        | 30        | 360                                  | 150 | 040           | 10  |
| Zircon_29           | 55       | 43.1      | 0.78 | 0.0667      | 0.0042  | 1.103      | 0.065      | 0.1202            | 0.003   | 0.0386      | 0.0024  | 0.098416   | /31        | 17  | 750        | 32        | 820                                  | 140 | /31           | 1/  |
| Zircon_30           | 52       | 35.6      | 0.68 | 0.05        | 0.0026  | 0.265      | 0.012      | 0.03824           | 0.00098 | 0.01142     | 0.00063 | 0.30206    | 241.9      | 6.1 | 238        | 9.8       | 190                                  | 110 | 241.9         | 6.1 |
| Zircon_31           | 384      | 366       | 0.95 | 0.1067      | 0.0038  | 4.48       | 0.12       | 0.3047            | 0.0069  | 0.0876      | 0.0062  | 0.32106    | 1714       | 34  | 1726       | 22        | 1738                                 | 64  | 1738          | 34  |
| Zircon 32           | 184.1    | 26.3      | 0.14 | 0.054       | 0.0023  | 0.396      | 0.014      | 0.0533            | 0.0012  | 0.01591     | 0.00088 | 0.10832    | 335        | 7.3 | 338        | 10        | 364                                  | 98  | 335           | 7.3 |
| Zircon 33           | 455      | 450       | 0.99 | 0.0731      | 0.0025  | 1.723      | 0.05       | 0.1701            | 0.0038  | 0.0521      | 0.0032  | 0.44044    | 1015       | 20  | 1016       | 18        | 1029                                 | 71  | 1015          | 20  |
| Zircon 34           | 325      | 43.7      | 0.13 | 0.0494      | 0.004   | 0.212      | 0.017      | 0.03122           | 0.00093 | 0.00955     | 0.00076 | 0 11146    | 198.2      | 5.8 | 194        | 14        | 180                                  | 170 | 198.2         | 5.8 |
| Zircon_04           | 122      | 60 F      | 0.10 | 0.0702      | 0.0041  | 1 504      | 0.021      | 0.1620            | 0.00000 | 0.00500     | 0.00010 | 0.11226    | 077        | 21  | 064        | 22        | 020                                  | 120 | 077           | 21  |
| 2000_35             | 132      | 00.5      | 0.52 | 0.0702      | 0.0041  | 1.504      | 0.08       | 0.1030            | 0.0039  | 0.0450      | 0.0026  | 0.11320    | 977        | 21  | 904        | 32        | 930                                  | 120 | 977           | 21  |
| Zircon_36           | 87.7     | 130.7     | 1.49 | 0.0486      | 0.0025  | 0.2151     | 0.0093     | 0.03198           | 0.00082 | 0.01008     | 0.00063 | 0.078972   | 202.9      | 5.1 | 197.5      | 7.8       | 150                                  | 110 | 202.9         | 5.1 |
| Zircon_37           | 463      | 364       | 0.79 | 0.0542      | 0.0031  | 0.305      | 0.014      | 0.041             | 0.0011  | 0.01283     | 0.00081 | 0.13798    | 258.9      | 6.6 | 269        | 11        | 380                                  | 120 | 258.9         | 6.6 |
| Zircon_38           | 251      | 233.6     | 0.93 | 0.0545      | 0.0047  | 0.33       | 0.028      | 0.0446            | 0.0015  | 0.0145      | 0.0013  | -0.010451  | 281.3      | 9.2 | 290        | 22        | 340                                  | 190 | 281.3         | 9.2 |
| Zircon 39           | 98.3     | 42.7      | 0.43 | 0.052       | 0.0034  | 0.283      | 0.018      | 0.0402            | 0.0011  | 0.01284     | 0.00079 | -0.07001   | 254.3      | 6.8 | 255        | 13        | 250                                  | 140 | 254.3         | 6.8 |
| Zircon 40           | 229      | 164       | 0.72 | 0.0491      | 0.0032  | 0.216      | 0.012      | 0.03287           | 0.00087 | 0.01017     | 0.00058 | 0.056328   | 208.5      | 5.4 | 198.5      | 9.8       | 130                                  | 140 | 208.5         | 5.4 |
| Zircon_40           | 271      | 422       | 1.56 | 0.0561      | 0.0062  | 0.257      | 0.022      | 0.0246            | 0.0017  | 0.0109      | 0.00000 | 0.072240   | 210        | 10  | 200.0      | 22        | 200                                  | 210 | 210           | 10  |
| 211001_41           | 2/1      | 422       | 1.50 | 0.0301      | 0.0003  | 0.257      | 0.027      | 0.0340            | 0.0017  | 0.0108      | 0.0011  | 0.072349   | 219        | 10  | 231        | 22        | 380                                  | 210 | 219           | 10  |
| Zircon_42           | 63.3     | 46.6      | 0.74 | 0.0722      | 0.0038  | 1.139      | 0.054      | 0.1133            | 0.0028  | 0.0377      | 0.0027  | 0.20447    | 692        | 16  | 769        | 26        | 1020                                 | 110 | 692           | 16  |
| Zircon_43           | 77.9     | 34.1      | 0.44 | 0.072       | 0.0031  | 1.708      | 0.068      | 0.1737            | 0.0042  | 0.0537      | 0.0034  | -0.030059  | 1032       | 23  | 1013       | 25        | 995                                  | 90  | 1032          | 23  |
| Zircon_44           | 113.3    | 33.7      | 0.30 | 0.0512      | 0.0037  | 0.299      | 0.019      | 0.0427            | 0.0014  | 0.0137      | 0.00099 | -0.020839  | 269.2      | 8.6 | 265        | 15        | 210                                  | 150 | 269.2         | 8.6 |
| Zircon 45           | 162      | 77.9      | 0.48 | 0.0733      | 0.003   | 1.787      | 0.064      | 0.1766            | 0.0042  | 0.0534      | 0.0032  | 0.19813    | 1048       | 23  | 1042       | 24        | 1007                                 | 86  | 1048          | 23  |
| Zircon 46           | 119.3    | 57.2      | 0.48 | 0.0605      | 0.0028  | 0.808      | 0.03       | 0.0962            | 0.0022  | 0.019       | 0.0018  | 0.26339    | 592        | 13  | 600        | 17        | 623                                  | 98  | 592           | 13  |
| Zircon 47           | 244      | 27.9      | 0.11 | 0.0805      | 0.0028  | 2 155      | 0.073      | 0 1031            | 0.0048  | 0.0547      | 0.0033  | 0.12527    | 1139       | 26  | 1166       | 25        | 1215                                 | 68  | 1138          | 26  |
| Zircon_4/           | 244      | 21.5      | 0.11 | 0.0003      | 0.0028  | 2.100      | 0.073      | 0.1931            | 0.0048  | 0.0347      | 0.0033  | 0.12027    | 611        | 20  | 640        | 20        | 1213                                 | 200 | 011           | 20  |
| Zircon_48           | 201      | 93        | 0.36 | 0.0639      | 0.0058  | 0.869      | 0.072      | 0.0995            | 0.0034  | 0.0346      | 0.003   | 0.0002506  | 611        | 20  | 040        | 39        | 000                                  | 200 | 110           | 20  |
| Zircon_49           | 37.2     | 24.1      | 0.65 | 0.0565      | 0.0045  | 0.312      | 0.021      | 0.0402            | 0.0013  | 0.01292     | 0.00087 | -0.033166  | 254.2      | 8.2 | 275        | 17        | 430                                  | 170 | 254.2         | 8.2 |
| Zircon_50           | 101.8    | 78.4      | 0.77 | 0.1276      | 0.0045  | 5.72       | 0.21       | 0.326             | 0.01    | 0.0978      | 0.0053  | 0.29939    | 1826       | 50  | 1932       | 36        | 2058                                 | 63  | 2058          | 50  |
| Zircon_51           | 103.5    | 99.4      | 0.96 | 0.0805      | 0.0028  | 2.274      | 0.07       | 0.2062            | 0.0055  | 0.0599      | 0.0038  | 0.13164    | 1208       | 28  | 1204       | 21        | 1203                                 | 68  | 1208          | 28  |
| Zircon 52           | 176.5    | 86.2      | 0.49 | 0.0761      | 0.0024  | 1.745      | 0.042      | 0.1681            | 0.0034  | 0.0462      | 0.0026  | 0.13937    | 1002       | 19  | 1025       | 15        | 1094                                 | 62  | 1002          | 19  |
| Zircon 53           | 660      | 122.9     | 0.19 | 0.0544      | 0.0022  | 0.577      | 0.023      | 0.0765            | 0.0017  | 0.0207      | 0.0012  | 0.23237    | 475        | 10  | 461        | 15        | 360                                  | 95  | 475           | 10  |
| Zircon E4           | 212.4    | 07.4      | 0.15 | 0.0344      | 0.0023  | 2.760      | 0.023      | 0.0705            | 0.0017  | 0.0207      | 0.0013  | 0.23231    | 1265       | 25  | 1247       | 17        | 1250                                 | 50  | 1265          | 25  |
| Zircon_54           | 312.4    | 97.4      | 0.31 | 0.0866      | 0.0026  | 2.769      | 0.063      | 0.2359            | 0.0048  | 0.07        | 0.0037  | 0.50155    | 1365       | 25  | 1347       | 1/        | 1358                                 | 59  | 1365          | 25  |
| Zircon_55           | 857      | 395.4     | 0.46 | 0.0652      | 0.0034  | 0.671      | 0.034      | 0.0751            | 0.0017  | 0.0268      | 0.0021  | 0.29613    | 467        | 10  | 527        | 23        | 800                                  | 120 | 467           | 10  |
| Zircon_56           | 220.6    | 117.9     | 0.53 | 0.0739      | 0.0034  | 1.658      | 0.069      | 0.1653            | 0.0044  | 0.088       | 0.033   | 0.1627     | 986        | 24  | 997        | 26        | 1057                                 | 94  | 986           | 24  |
| Zircon_57           | 111      | 0.248     | 0.00 | 0.0587      | 0.0021  | 0.625      | 0.02       | 0.0776            | 0.0021  | 0.0173      | 0.001   | 0.40794    | 481        | 13  | 493        | 12        | 566                                  | 86  | 481           | 13  |
| Zircon 58           | 659      | 211.4     | 0.32 | 0.1018      | 0.0035  | 3.81       | 0.16       | 0.2713            | 0.0098  | 0.0964      | 0.005   | 0.55106    | 1547       | 52  | 1595       | 41        | 1654                                 | 66  | 1654          | 52  |
| Zircon 50           | 260      | 74.6      | 0.22 | 0.0522      | 0.0033  | 0.227      | 0.029      | 0.0441            | 0.0014  | 0.0145      | 0.0011  | 0.020700   | 270.2      | 0.5 | 200        | 22        | 210                                  | 100 | 270.2         | 0 5 |
| ZIFCON_59           | 209      | /4.0      | 0.28 | 0.0522      | 0.0044  | 0.327      | 0.028      | 0.0441            | 0.0014  | 0.0145      | 0.0011  | -0.028798  | 2/8.2      | 8.5 | 289        | 22        | 310                                  | 190 | 218.2         | 8.5 |
| Zircon_60           | 109      | 116       | 1.06 | 0.0861      | 0.0027  | 2.583      | 0.07       | 0.215             | 0.0051  | 0.0766      | 0.0044  | 0.65057    | 1255       | 27  | 1295       | 20        | 1341                                 | 62  | 1255          | 27  |
| Zircon_61           | 368      | 126.2     | 0.34 | 0.0521      | 0.0035  | 0.297      | 0.02       | 0.0425            | 0.0011  | 0.01306     | 0.00091 | 0.25927    | 268.1      | 6.7 | 263        | 16        | 250                                  | 150 | 268.1         | 6.7 |
| Zircon 62           | 194.2    | 112.7     | 0.58 | 0.0704      | 0.0023  | 1.557      | 0.045      | 0.1604            | 0.0037  | 0.0494      | 0.0034  | 0.59073    | 959        | 21  | 952        | 18        | 951                                  | 65  | 959           | 21  |
| Zircon 63           | 426      | 49.4      | 0.12 | 0 1053      | 0.0036  | 4 39       | 0.13       | 0.3051            | 0.0066  | 0.0867      | 0.0049  | 0 41266    | 1716       | 32  | 1714       | 24        | 1719                                 | 59  | 1719          | 32  |
| Zircon 64           | 203      | 109.2     | 0.54 | 0.1840      | 0.0059  | 13.68      | 0.35       | 0.547             | 0.012   | 0.1567      | 0.0049  | 0.57871    | 2812       | 50  | 2727       | 23        | 2704                                 | 53  | 2704          | 50  |
| Zircon_04           | 203      | 105.2     | 0.34 | 0.1049      | 0.0039  | 13.00      | 0.33       | 0.047             | 0.012   | 0.1307      | 0.0000  | 0.37671    | 2013       | 50  | 2121       | 2.3       | 2704                                 | 100 | 2104          | 50  |
| Zircon_65           | 168.6    | 132       | 0.78 | 0.0523      | 0.0031  | 0.236      | 0.011      | 0.03348           | 0.00091 | 0.0104      | 0.00062 | -0.12599   | 212.3      | 5.7 | 215.1      | 9.3       | 280                                  | 130 | 212.3         | 5.7 |
| Zircon 66           | 302.9    | 235.3     | 0.78 | 0.0514      | 0.003   | 0 299      | 0.015      | 0.0423            | 0.001   | 0.01089     | 0.0008  | -0 24598   | 267.2      | 6.3 | 265        | 12        | 250                                  | 130 | 267.2         | 63  |

CP-16-145

|            | 10.0  |       |      |        |        |        |        |        |        |         |        | 0.4004.0   | 1070   | 0.5 | 1840 |    | 1700 | 100 |        |      |       |
|------------|-------|-------|------|--------|--------|--------|--------|--------|--------|---------|--------|------------|--------|-----|------|----|------|-----|--------|------|-------|
| Zircon_29  | 43.3  | 27.7  | 0.64 | 0.1081 | 0.0064 | 4.3300 | 0.2700 | 0.2961 | 0.0070 | 0.0844  | 0.0064 | 0.18616    | 1678   | 35  | 1/13 | 55 | 1780 | 120 | 1780.0 | 35.0 | 2.04  |
| Zircon_30  | 367   | 223   | 0.61 | 0.0924 | 0.0043 | 3.0800 | 0.1500 | 0.2438 | 0.0031 | 0.0707  | 0.0032 | 0.50315    | 1406   | 16  | 1428 | 39 | 1471 | 87  | 1471.0 | 16.0 | 1.54  |
| Zircon_31  | 403   | 372   | 0.92 | 0.0513 | 0.0031 | 0.2880 | 0.0180 | 0.0414 | 0.0006 | 0.0132  | 0.0007 | 0.15651    | 261.4  | 3.7 | 256  | 14 | 250  | 130 | 261.4  | 3.7  | -2.11 |
| Zircon 32  | 218.5 | 358   | 1.64 | 0.0600 | 0.0035 | 0.6960 | 0.0400 | 0.0850 | 0.0013 | 0.0263  | 0.0013 | -0 16776   | 526    | 7.6 | 538  | 25 | 610  | 130 | 526.0  | 7.6  | 2.23  |
| Zinner 22  | 0.42  | 555   | 0.05 | 0.0703 | 0.0005 | 3,3200 | 0.1100 | 0.0000 | 0.0013 | 0.0000  | 0.0010 | 0.4200.4   | 1104.6 | 6.4 | 1100 | 20 | 1170 | 00  | 1104.0 | C 4  | 0.50  |
| Ziicoli_33 | 045   | 347   | 0.03 | 0.0792 | 0.0033 | 2.2200 | 0.1100 | 0.2030 | 0.0012 | 0.0009  | 0.0029 | 0.43554    | 1194.0 | 0.4 | 1100 | 33 | 1170 | 00  | 1154.0 | 0.4  | -0.56 |
| Zircon_34  | 153.9 | 28    | 0.18 | 0.0802 | 0.0040 | 2.0000 | 0.1000 | 0.1860 | 0.0032 | 0.0623  | 0.0033 | 0.62949    | 1099   | 18  | 1113 | 35 | 1195 | 98  | 1099.0 | 18.0 | 1.26  |
| Zircon_35  | 128.3 | 129.8 | 1.01 | 0.0645 | 0.0069 | 0.3420 | 0.0360 | 0.0403 | 0.0009 | 0.0139  | 0.0011 | 0.48607    | 254.4  | 5.4 | 295  | 27 | 660  | 220 | 254.4  | 5.4  | 13.76 |
| Zircon 36  | 445   | 108.7 | 0.24 | 0.0557 | 0.0029 | 0.4960 | 0.0270 | 0.0649 | 0.0007 | 0.0199  | 0.0012 | 0.17969    | 405.5  | 4.4 | 409  | 18 | 440  | 110 | 405.5  | 4.4  | 0.86  |
| Zircon 37  | 395   | 204   | 0.52 | 0.0518 | 0.0030 | 0 3090 | 0.0180 | 0.0445 | 0.0014 | 0.0135  | 0.0008 | 0 35628    | 280.5  | 85  | 273  | 14 | 260  | 130 | 280.5  | 85   | -2.75 |
| 211con_57  | 000   | 100   | 0.52 | 0.0510 | 0.0050 | 0.0050 | 0.0050 | 0.0401 | 0.0000 | 0.0100  | 0.0000 | 0.03020    | 200.0  | 5.4 | 210  | 14 | 200  | 100 | 200.5  | 5.5  | 1.04  |
| Zircon_38  | 236   | 133   | 0.56 | 0.0522 | 0.0041 | 0.3050 | 0.0250 | 0.0431 | 0.0009 | 0.0133  | 0.0008 | 0.27786    | 271.8  | 5.4 | 269  | 20 | 270  | 170 | 2/1.8  | 5.4  | -1.04 |
| Zircon_39  | 127.6 | 69.2  | 0.54 | 0.1016 | 0.0048 | 4.0300 | 0.2000 | 0.2882 | 0.0031 | 0.0823  | 0.0041 | 0.32667    | 1632   | 15  | 1642 | 41 | 1655 | 86  | 1655.0 | 15.0 | 0.61  |
| Zircon_40  | 159.6 | 151   | 0.95 | 0.0542 | 0.0043 | 0.3130 | 0.0240 | 0.0423 | 0.0008 | 0.0138  | 0.0008 | -0.048555  | 267.3  | 5   | 275  | 19 | 320  | 170 | 267.3  | 5.0  | 2.80  |
| Zircon 41  | 279   | 178   | 0.64 | 0.1004 | 0.0047 | 3,9500 | 0.1900 | 0.2828 | 0.0040 | 0.0791  | 0.0039 | 0.506      | 1605   | 20  | 1622 | 41 | 1634 | 88  | 1634.0 | 20.0 | 1.05  |
| Zincon 42  | 247   | 141.5 | 0.57 | 0.0634 | 0.0022 | 0.0510 | 0.0520 | 0.1115 | 0.0014 | 0.0222  | 0.0017 | 0.21965    | 691.2  | 0.1 | 679  | 27 | 600  | 120 | 691.2  | 0.1  | 0.40  |
| ZIICOII_42 | 24/   | 141.5 | 0.37 | 0.0624 | 0.0032 | 0.9310 | 0.0320 | 0.1115 | 0.0014 | 0.0322  | 0.0017 | 0.31805    | 001.3  | 0.1 | 078  | 21 | 090  | 120 | 001.5  | 0.1  | -0.49 |
| Zircon_43  | 81.5  | 83.2  | 1.02 | 0.0750 | 0.0045 | 1.7600 | 0.1000 | 0.1718 | 0.0032 | 0.0528  | 0.0028 | 0.061337   | 1025   | 18  | 1028 | 38 | 1070 | 120 | 1025.0 | 18.0 | 0.29  |
| Zircon_44  | 249   | 357   | 1.43 | 0.0612 | 0.0035 | 0.7390 | 0.0430 | 0.0884 | 0.0013 | 0.0283  | 0.0015 | 0.018517   | 545.8  | 7.7 | 561  | 25 | 660  | 110 | 545.8  | 7.7  | 2.71  |
| Zircon_45  | 301   | 451   | 1.50 | 0.0591 | 0.0032 | 0.7750 | 0.0440 | 0.0951 | 0.0013 | 0.0302  | 0.0015 | -0.023152  | 585.7  | 7.5 | 581  | 25 | 550  | 120 | 585.7  | 7.5  | -0.81 |
| Zircon 46  | 100.9 | 69.6  | 0.69 | 0.0941 | 0.0049 | 2.8800 | 0.1700 | 0.2247 | 0.0039 | 0.0788  | 0.0041 | 0.7313     | 1306   | 20  | 1379 | 42 | 1499 | 94  | 1499.0 | 20.0 | 5.29  |
| Zimon 47   | 264   | 222   | 0.90 | 0.0512 | 0.0022 | 0.2690 | 0.0170 | 0.0271 | 0.0007 | 0.0107  | 0.0006 | 0 16920    | 224.7  | 12  | 241  | 14 | 270  | 140 | 224.7  | 4.2  | 2.61  |
| Ziicoli_47 | 304   | 323   | 0.89 | 0.0313 | 0.0033 | 0.2000 | 0.0170 | 0.03/1 | 0.0007 | 0.0107  | 0.0000 | 0.10829    | 234.7  | 4.2 | 241  | 14 | 270  | 140 | 234.7  | 4.2  | 2.01  |
| Zircon_48  | 887   | 193.1 | 0.22 | 0.0973 | 0.0043 | 3.2300 | 0.1500 | 0.2424 | 0.0019 | 0.0411  | 0.0023 | 0.54179    | 1399   | 10  | 1466 | 37 | 1572 | 84  | 1572.0 | 10.0 | 4.57  |
| Zircon_49  | 306   | 258   | 0.84 | 0.0827 | 0.0039 | 2.1800 | 0.1100 | 0.1919 | 0.0024 | 0.0580  | 0.0029 | 0.42182    | 1132   | 13  | 1173 | 35 | 1256 | 92  | 1132.0 | 13.0 | 3.50  |
| Zircon_50  | 243.5 | 83.4  | 0.34 | 0.0599 | 0.0032 | 0.7870 | 0.0440 | 0.0960 | 0.0014 | 0.0310  | 0.0017 | 0.13173    | 590.8  | 8.3 | 589  | 25 | 580  | 120 | 590.8  | 8.3  | -0.31 |
| Zircon 51  | 222.8 | 209   | 0.94 | 0.0541 | 0.0035 | 0.2870 | 0.0200 | 0.0382 | 0.0006 | 0.0128  | 0.0007 | 0 12264    | 241.6  | 4   | 256  | 15 | 360  | 150 | 241.6  | 4.0  | 5.63  |
| Zincon_51  | 120.2 | 62.2  | 0.40 | 0.0570 | 0.0035 | 0.5020 | 0.0250 | 0.0741 | 0.0011 | 0.0254  | 0.0017 | 0.12200    | 460.0  |     | 470  | 20 | 400  | 100 | 460.0  | 6.0  | 0.00  |
| Zircon_52  | 130.3 | 62.3  | 0.46 | 0.0570 | 0.0035 | 0.5930 | 0.0350 | 0.0741 | 0.0011 | 0.0254  | 0.0017 | 0.12260    | 460.8  | 6.9 | 472  | 23 | 490  | 130 | 460.8  | 6.9  | 2.37  |
| Zircon_53  | 248.7 | 100   | 0.40 | 0.0619 | 0.0036 | 0.7830 | 0.0470 | 0.0931 | 0.0011 | 0.0308  | 0.0016 | -0.0012811 | 574    | 6.7 | 586  | 27 | 640  | 130 | 574.0  | 6.7  | 2.05  |
| Zircon_54  | 91.4  | 55.1  | 0.60 | 0.1002 | 0.0050 | 3.7200 | 0.2000 | 0.2781 | 0.0048 | 0.0850  | 0.0045 | 0.30905    | 1581   | 24  | 1574 | 42 | 1627 | 90  | 1627.0 | 24.0 | -0.44 |
| Zircon_55  | 128.9 | 156.6 | 1.21 | 0.1136 | 0.0054 | 5.0600 | 0.2500 | 0.3258 | 0.0042 | 0.0967  | 0.0047 | 0.29684    | 1818   | 20  | 1828 | 42 | 1853 | 88  | 1853.0 | 20.0 | 0.55  |
| Zircon 56  | 113   | 155   | 1.37 | 0.0548 | 0.0049 | 0.3270 | 0.0300 | 0.0422 | 0.0012 | 0.0135  | 0.0009 | 0.054458   | 266.4  | 7.5 | 285  | 23 | 420  | 200 | 266.4  | 7.5  | 6.53  |
| Zircon_50  | 110   | 100   | 0.40 | 0.0340 | 0.0040 | 1.5020 | 0.0000 | 0.1072 | 0.0012 | 0.0100  | 0.0005 | 0.1001     | 000    | 1.0 | 000  | 20 | 1010 | 100 | 200.4  | 11.0 | 11.05 |
| Zircon_5/  | 116   | 56    | 0.48 | 0.0795 | 0.0049 | 1.5030 | 0.0940 | 0.1373 | 0.0019 | 0.0492  | 0.0035 | 0.1301     | 829    | 11  | 932  | 37 | 1210 | 120 | 829.0  | 11.0 | 11.05 |
| Zircon_58  | 215.9 | 6.69  | 0.03 | 0.0626 | 0.0035 | 0.8540 | 0.0500 | 0.0989 | 0.0014 | 0.0433  | 0.0046 | 0.25322    | 608    | 8   | 625  | 27 | 670  | 120 | 608.0  | 8.0  | 2.72  |
| Zircon_59  | 70.6  | 29.8  | 0.42 | 0.0771 | 0.0047 | 1.9200 | 0.1200 | 0.1853 | 0.0038 | 0.0587  | 0.0039 | 0.24934    | 1096   | 21  | 1086 | 41 | 1120 | 130 | 1096.0 | 21.0 | -0.92 |
| Zircon_60  | 284   | 138.3 | 0.49 | 0.0840 | 0.0042 | 2.3900 | 0.1200 | 0.2087 | 0.0026 | 0.0723  | 0.0035 | 0.26741    | 1222   | 14  | 1238 | 38 | 1287 | 96  | 1222.0 | 14.0 | 1.29  |
| Zircon 61  | 224   | 127   | 0.57 | 0.0556 | 0.0039 | 0.3310 | 0.0220 | 0.0439 | 0.0006 | 0.0138  | 0.0009 | -0 14149   | 276.6  | 3.9 | 291  | 17 | 390  | 160 | 276.6  | 3.9  | 4 95  |
| 21 con_01  | 447   | 100   | 1.00 | 0.0530 | 0.0000 | 0.0010 | 0.0120 | 0.0202 | 0.0000 | 0.0000  | 0.0005 | 0.000477   | 102.2  | 0.5 | 102  | 11 | 000  | 140 | 102.2  | 2.0  | 0.00  |
| ZIFCON_62  | 447   | 489   | 1.09 | 0.0510 | 0.0031 | 0.2100 | 0.0130 | 0.0303 | 0.0006 | 0.0093  | 0.0005 | 0.082477   | 192.3  | 3.0 | 193  | 11 | 230  | 140 | 192.3  | 3.0  | 0.36  |
| Zircon_63  | 130.8 | 133.1 | 1.02 | 0.0817 | 0.0043 | 2.3600 | 0.1300 | 0.2125 | 0.0032 | 0.0602  | 0.0030 | 0.16989    | 1242   | 17  | 1229 | 39 | 1230 | 100 | 1242.0 | 17.0 | -1.06 |
| Zircon_64  | 970   | 811   | 0.84 | 0.0529 | 0.0028 | 0.2880 | 0.0160 | 0.0396 | 0.0004 | 0.0120  | 0.0006 | 0.15363    | 250.4  | 2.7 | 257  | 12 | 310  | 120 | 250.4  | 2.7  | 2.57  |
| Zircon 65  | 87.2  | 82.7  | 0.95 | 0.0640 | 0.0039 | 1.0090 | 0.0630 | 0.1171 | 0.0024 | 0.0352  | 0.0019 | -0.0079063 | 714    | 14  | 710  | 31 | 730  | 140 | 714.0  | 14.0 | -0.56 |
| Zircon 66  | 240.7 | 212.4 | 0.88 | 0.0576 | 0.0048 | 0.3200 | 0.0290 | 0.0396 | 0.0007 | 0.0135  | 0.0008 | 0 20136    | 250.6  | 4.6 | 280  | 22 | 500  | 170 | 250.6  | 4.6  | 10.50 |
| Zircon_oo  | 240.7 | 46.0  | 0.00 | 0.0570 | 0.0040 | 0.3200 | 0.0250 | 0.0550 | 0.0007 | 0.0155  | 0.0000 | 0.23130    | 230.0  | 4.0 | 200  | 47 | 300  | 110 | 250.0  | 4.0  | 10.50 |
| Zircon_6/  | 571   | 46.9  | 0.08 | 0.0545 | 0.0028 | 0.4530 | 0.0250 | 0.0604 | 0.0008 | 0.0301  | 0.0020 | 0.28866    | 3/8    | 4.7 | 379  | 17 | 380  | 110 | 3/8.0  | 4./  | 0.26  |
| Zircon_68  | 263.2 | 10.81 | 0.04 | 0.0583 | 0.0030 | 0.7070 | 0.0390 | 0.0875 | 0.0014 | 0.0345  | 0.0036 | 0.079424   | 540.8  | 8.2 | 544  | 23 | 550  | 120 | 540.8  | 8.2  | 0.59  |
| Zircon_69  | 1053  | 792   | 0.75 | 0.0832 | 0.0037 | 1.2320 | 0.0670 | 0.1076 | 0.0029 | 0.0130  | 0.0008 | 0.9311     | 658    | 17  | 817  | 32 | 1273 | 87  | 658.0  | 17.0 | 19.46 |
| Zircon 70  | 179   | 114.3 | 0.64 | 0.0527 | 0.0039 | 0.3400 | 0.0250 | 0.0477 | 0.0012 | 0.0152  | 0.0009 | 0.14023    | 300.2  | 7.3 | 300  | 19 | 270  | 160 | 300.2  | 7.3  | -0.07 |
| Zircon 71  | 186   | 107.3 | 0.58 | 0.0745 | 0.0037 | 1.8620 | 0.0940 | 0 1804 | 0.0025 | 0.0525  | 0.0031 | 0.3987     | 1069   | 14  | 1065 | 34 | 1040 | 100 | 1069.0 | 14.0 | -0.38 |
| Zircon_71  | 120.5 | 102.2 | 0.50 | 0.0/40 | 0.0037 | 0.2720 | 0.0340 | 0.0403 | 0.0025 | 0.0325  | 0.0001 | 0.000147   | 2545   | E 7 | 244  | 14 | 100  | 140 | 2545   | 57   | 4.30  |
| Zircon_/2  | 130.5 | 102.5 | 0.76 | 0.0408 | 0.0032 | 0.2720 | 0.0100 | 0.0405 | 0.0009 | 0.0125  | 0.0008 | -0.023147  | 254.5  | 5.7 | 244  | 14 | 120  | 140 | 234.3  | 5./  | -4.30 |
| Zircon_73  | 543   | 268.4 | 0.49 | 0.0527 | 0.0027 | 0.3410 | 0.0190 | 0.0467 | 0.0007 | 0.0146  | 0.0008 | 0.31579    | 294.2  | 4.3 | 298  | 14 | 320  | 120 | 294.2  | 4.3  | 1.28  |
| Zircon_74  | 57    | 80.5  | 1.41 | 0.0616 | 0.0046 | 0.8320 | 0.0600 | 0.1016 | 0.0024 | 0.0296  | 0.0017 | 0.043683   | 623    | 14  | 611  | 33 | 600  | 160 | 623.0  | 14.0 | -1.96 |
| Zircon_75  | 166   | 140.6 | 0.85 | 0.0566 | 0.0034 | 0.5800 | 0.0360 | 0.0745 | 0.0012 | 0.0233  | 0.0012 | 0.1993     | 463    | 7.2 | 463  | 23 | 460  | 140 | 463.0  | 7.2  | 0.00  |
| Zircon 76  | 373   | 273   | 0.73 | 0.0525 | 0.0032 | 0.3180 | 0.0200 | 0.0439 | 0.0006 | 0.0145  | 0.0008 | 0.3089     | 277.2  | 4   | 279  | 16 | 300  | 140 | 277.2  | 4.0  | 0.65  |
| Zircon 77  | 221.0 | 240 5 | 1.09 | 0.0516 | 0.0022 | 0 2020 | 0.0190 | 0.0407 | 0.0007 | 0.0122  | 0.0007 | 0.11405    | 257.4  | 13  | 260  | 15 | 200  | 120 | 257.4  | 4.5  | 1.00  |
| Ziicoli_// | 221.5 | 240.5 | 1.00 | 0.0310 | 0.0035 | 0.2920 | 0.0180 | 0.0407 | 0.0007 | 0.0133  | 0.0007 | 0.11405    | 237.4  | 4.5 | 200  | 15 | 200  | 130 | 237.4  | 4.3  | 1.00  |
| Zircon_78  | 141.7 | 61.7  | 0.44 | 0.0837 | 0.0041 | 2.5200 | 0.1300 | 0.2182 | 0.0027 | 0.0636  | 0.0035 | 0.13297    | 1272   | 15  | 1275 | 37 | 1286 | 91  | 1272.0 | 15.0 | 0.24  |
| Zircon_79  | 359   | 760   | 2.12 | 0.0589 | 0.0030 | 0.6920 | 0.0400 | 0.0846 | 0.0021 | 0.0245  | 0.0013 | 0.67324    | 524    | 12  | 535  | 25 | 570  | 110 | 524.0  | 12.0 | 2.06  |
| Zircon_80  | 234.8 | 316   | 1.35 | 0.0515 | 0.0035 | 0.2850 | 0.0200 | 0.0401 | 0.0007 | 0.0121  | 0.0006 | 0.19514    | 253.7  | 4.2 | 254  | 16 | 250  | 150 | 253.7  | 4.2  | 0.12  |
| Zircon 81  | 76.6  | 56.5  | 0.74 | 0.0509 | 0.0064 | 0.2210 | 0.0230 | 0.0329 | 0.0011 | 0.0106  | 0.0008 | -0.081922  | 208.6  | 6.9 | 202  | 19 | 180  | 230 | 208.6  | 6.9  | -3.27 |
| Zircon 02  | E94   | 63.6  | 0.11 | 0.0594 | 0.0022 | 0 5920 | 0.0210 | 0.0715 | 0.0014 | 0.0176  | 0.0012 | 0.17029    | 445.2  | 9.5 | 465  | 20 | 500  | 110 | 445.2  | 0.5  | 4.26  |
| ZIICOII_02 | 504   | 02.0  | 0.11 | 0.0594 | 0.0032 | 0.5620 | 0.0510 | 0.0/15 | 0.0014 | 0.0176  | 0.0013 | 0.1/936    | 445.2  | 0.0 | 405  | 20 | 590  | 110 | 445.2  | 6.0  | 4.20  |
| Zircon_83  | 177.4 | 162.9 | 0.92 | 0.0605 | 0.0037 | 0.3420 | 0.0220 | 0.0405 | 0.0009 | 0.0131  | 0.0007 | 0.21172    | 256    | 5.3 | 298  | 16 | 620  | 140 | 256.0  | 5.3  | 14.09 |
| Zircon_84  | 140   | 41.5  | 0.30 | 0.0752 | 0.0039 | 1.9400 | 0.1400 | 0.1842 | 0.0094 | 0.0591  | 0.0033 | 0.7354     | 1089   | 52  | 1091 | 54 | 1060 | 100 | 1089.0 | 52.0 | 0.18  |
| Zircon_85  | 547   | 454   | 0.83 | 0.0518 | 0.0032 | 0.3050 | 0.0180 | 0.0424 | 0.0005 | 0.0132  | 0.0007 | -0.19189   | 267.4  | 3.3 | 270  | 14 | 300  | 140 | 267.4  | 3.3  | 0.96  |
| Zircon 86  | 127.4 | 61.8  | 0.49 | 0.0817 | 0.0042 | 2.3200 | 0.1200 | 0.2069 | 0.0027 | 0.0626  | 0.0033 | -0.082361  | 1212   | 14  | 1221 | 37 | 1225 | 97  | 1212.0 | 14.0 | 0.74  |
| Zincon_00  | 100   | 155   | 0.45 | 0.0522 | 0.0042 | 0.2470 | 0.0220 | 0.0005 | 0.0027 | 0.00110 | 0.0000 | 0.002001   | 224.0  | E 2 | 220  | 16 | 270  | 170 | 224.0  | 5.0  | 1.02  |
| Zircon_8/  | 180   | 155   | 0.83 | 0.0522 | 0.0046 | 0.2470 | 0.0220 | 0.0355 | 0.0008 | 0.0119  | 0.0008 | 0.32293    | 224.6  | 5.2 | 229  | 10 | 270  | 170 | 224.6  | 5.2  | 1.92  |
| Zircon_88  | 267   | 226   | 0.85 | 0.0713 | 0.0034 | 1.5300 | 0.0810 | 0.1552 | 0.0025 | 0.0498  | 0.0030 | 0.2882     | 930    | 14  | 941  | 33 | 970  | 110 | 930.0  | 14.0 | 1.17  |
| Zircon_89  | 814   | 1357  | 1.67 | 0.0533 | 0.0028 | 0.2400 | 0.0130 | 0.0327 | 0.0004 | 0.0103  | 0.0005 | -0.092247  | 207.3  | 2.3 | 218  | 11 | 330  | 120 | 207.3  | 2.3  | 4.91  |
|            |       |       |      |        |        |        |        |        |        |         |        |            |        |     |      |    |      |     |        |      |       |

| Zircon_90  | 222    | 53    | 0.24 | 0.2660 | 0.0120 | 24.3000 | 1.4000 | 0.6620 | 0.0110 | 0.1758 | 0.0093 | 0.88261   | 3280  | 44  | 3274 | 52 | 3278 | 71  | 3278.0 | 44.0 | -0.18 |
|------------|--------|-------|------|--------|--------|---------|--------|--------|--------|--------|--------|-----------|-------|-----|------|----|------|-----|--------|------|-------|
| Zircon_91  | 163.8  | 60.3  | 0.37 | 0.0943 | 0.0045 | 3.1600  | 0.1700 | 0.2488 | 0.0057 | 0:0776 | 0.0039 | 0.42041   | 1432  | 30  | 1446 | 45 | 1506 | 87  | 1506.0 | 30.0 | 0.97  |
| Zircon_92  | 115.7  | 38.6  | 0.33 | 0.0477 | 0.0041 | 0.3080  | 0.0260 | 0.0467 | 0.0012 | 0.0172 | 0.0012 | -0.067025 | 294.3 | 7.4 | 271  | 20 | 90   | 180 | 294.3  | 7.4  | -8.60 |
| Zircon_93  | 307.1  | 133   | 0.43 | 0.0737 | 0.0037 | 1.6640  | 0.0960 | 0.1646 | 0.0026 | 0.0558 | 0.0029 | 0.73642   | 982   | 14  | 999  | 38 | 1030 | 100 | 982.0  | 14.0 | 1.70  |
| Zircon_94  | 228.7  | 194   | 0.85 | 0.0592 | 0.0032 | 0.7290  | 0.0410 | 0.0891 | 0.0012 | 0.0268 | 0.0014 | 0.28909   | 550.2 | 7.2 | 555  | 24 | 560  | 120 | 550.2  | 7.2  | 0.86  |
| Zircon_95  | 151    | 84.8  | 0.56 | 0.0549 | 0.0048 | 0.3110  | 0.0280 | 0.0418 | 0.0011 | 0.0133 | 0.0010 | 0.14309   | 264.1 | 6.8 | 276  | 21 | 360  | 190 | 264.1  | 6.8  | 4.31  |
| Zircon_96  | 126.5  | 101.6 | 0.80 | 0.0512 | 0.0048 | 0.2910  | 0.0290 | 0.0405 | 0.0011 | 0.0137 | 0.0010 | 0.14728   | 255.7 | 6.8 | 257  | 22 | 280  | 200 | 255.7  | 6.8  | 0.51  |
| Zircon_97  | 35.9   | 53.9  | 1.50 | 0.0634 | 0.0077 | 0.6290  | 0.0730 | 0.0729 | 0.0025 | 0.0239 | 0.0016 | -0.075963 | 454   | 15  | 493  | 44 | 640  | 250 | 454.0  | 15.0 | 7.91  |
| Zircon_98  | 103.4  | 70.4  | 0.68 | 0.0533 | 0.0047 | 0.2930  | 0.0260 | 0.0400 | 0.0012 | 0.0124 | 0.0010 | 0.13241   | 252.7 | 7.4 | 262  | 19 | 340  | 190 | 252.7  | 7.4  | 3.55  |
| Zircon_99  | 287.8  | 254   | 0.88 | 0.0590 | 0.0032 | 0.5890  | 0.0340 | 0.0725 | 0.0009 | 0.0224 | 0.0012 | 0.24316   | 451.2 | 5.3 | 469  | 22 | 560  | 120 | 451.2  | 5.3  | 3.80  |
| Zircon_100 | 101.50 | 41.62 | 0.41 | 0.0752 | 0.004  | 1.85    | 0.1    | 0.1779 | 0.0028 | 0.0562 | 0.0032 | 0.12823   | 1055  | 15  | 1062 | 37 | 1060 | 110 | 1055   | 15   | 0.66  |

CP-17-76

|                    |                 |                       |      |                                      |         | COI                                 | RRECTED RAT | TOS <sup>2</sup> |         |                         |         |           |     |                                     |                | CORI                                | RECTED AGES | 6 (Ma)                               |     |               |      |   |        |
|--------------------|-----------------|-----------------------|------|--------------------------------------|---------|-------------------------------------|-------------|------------------|---------|-------------------------|---------|-----------|-----|-------------------------------------|----------------|-------------------------------------|-------------|--------------------------------------|-----|---------------|------|---|--------|
|                    | U (ppm)1        | Th (ppm) <sup>1</sup> | Th/U | <sup>207</sup> Pb/ <sup>206</sup> Pb | ±2σ abs | <sup>207</sup> Pb/ <sup>235</sup> U | ±2σ abs     | 206Pb/218U       | ±2σ abs | <sup>208</sup> Pb/232Th | ±2σ abs | Rho       | 20  | <sup>206</sup> Pb/ <sup>238</sup> U | ±2σ            | <sup>207</sup> Pb/ <sup>235</sup> U | ±2σ         | <sup>207</sup> Pb/ <sup>206</sup> Pb | ±2σ | Best age (Ma) | ±2σ  |   | Disc % |
| Zircon_01_CP-17-76 | 191.7           | 139                   | 0.73 | 0.0501                               | 0.0032  | 0.2680                              | 0.0170      | 0.0385           | 0.0009  | 0.0130                  | 0.0005  | 0.083804  |     | 243.7                               | 5.4            | 242                                 | 13          | 190                                  | 140 | 243.7         | 5.4  |   | -0.70  |
| Zircon_02          | 178             | 50.9                  | 0.29 | 0.0511                               | 0.0027  | 0.2960                              | 0.0150      | 0.0422           | 0.0009  | 0.0128                  | 0.0008  | -0.14599  |     | 266.4                               | 5.8            | 265                                 | 13          | 240                                  | 120 | 266.4         | 5.8  |   | -0.53  |
| Zircon_03          | 1530            | 572                   | 0.37 | 0.0562                               | 0.0018  | 0.3058                              | 0.0099      | 0.0394           | 0.0006  | 0.0131                  | 0.0004  | 0.15199   | . 4 | 249.1                               | 3.8            | 271.5                               | 8           | 461                                  | 69  | 249.1         | 3.8  |   | 8.25   |
| Zircon_04          | 449             | 45.8                  | 0.10 | 0.0554                               | 0.0021  | 0.5340                              | 0.0200      | 0.0688           | 0.0010  | 0.0240                  | 0.0010  | 0.41797   |     | 429.2                               | 6              | 434                                 | 13          | 411                                  | 85  | 429.2         | 6.0  |   | 1.11   |
| Zircon_05          | 95.4            | 49.2                  | 0.52 | 0.0865                               | 0.0031  | 2.8400                              | 0.1000      | 0.2364           | 0.0037  | 0.0733                  | 0.0030  | 0.15974   |     | 1368                                | 19             | 1365                                | 27          | 1339                                 | 69  | 1368.0        | 19.0 |   | -0.22  |
| Zircon_06          | 308.6           | 262.7                 | 0.85 | 0.0499                               | 0.0031  | 0.2850                              | 0.0170      | 0.0407           | 0.0008  | 0.0130                  | 0.0005  | -0.058095 | _   | 257.3                               | 4.8            | 256                                 | 13          | 180                                  | 140 | 257.3         | 4.8  |   | -0.51  |
| Zircon_07          | 252             | 63.4                  | 0.25 | 0.0633                               | 0.0026  | 0.9000                              | 0.0420      | 0.1031           | 0.0027  | 0.0350                  | 0.0017  | 0.50005   |     | 632                                 | 16             | 657                                 | 23          | 709                                  | 94  | 632.0         | 16.0 | L | 3.81   |
| Zircon_08          | 309             | 260                   | 0.84 | 0.0531                               | 0.0029  | 0.3070                              | 0.0160      | 0.0417           | 0.0008  | 0.0139                  | 0.0005  | -0.053733 | _   | 263.2                               | 4.9            | 277                                 | 12          | 350                                  | 120 | 263.2         | 4.9  |   | 4.98   |
| Zircon_09          | 133.3           | 102.3                 | 0.77 | 0.0528                               | 0.0039  | 0.3020                              | 0.0220      | 0.0418           | 0.0009  | 0.0130                  | 0.0007  | 0.21743   |     | 264                                 | 5.7            | 266                                 | 17          | 260                                  | 160 | 264.0         | 5.7  | L | 0.75   |
| Zircon_10          | 401             | 307                   | 0.77 | 0.0532                               | 0.0027  | 0.3090                              | 0.0140      | 0.0426           | 0.0008  | 0.0133                  | 0.0005  | -0.12972  |     | 269                                 | 4.8            | 275                                 | 11          | 320                                  | 120 | 269.0         | 4.8  |   | 2.18   |
| Zircon_11          | 918             | 39.1                  | 0.04 | 0.0598                               | 0.0020  | 0.6340                              | 0.0230      | 0.0761           | 0.0014  | 0.0258                  | 0.0027  | 0.4686    | -   | 472.6                               | 8.3            | 498                                 | 14          | 587                                  | 73  | 472.6         | 8.3  | Ŀ | 5.10   |
| Zircon_12          | 126.3           | 109.6                 | 0.87 | 0.0505                               | 0.0049  | 0.2140                              | 0.0190      | 0.0308           | 0.0007  | 0.0096                  | 0.0005  | -0.05313  |     | 195.8                               | 4.6            | 196                                 | 16          | 180                                  | 190 | 195.8         | 4.6  |   | 0.10   |
| Zircon_13          | <del>59.4</del> | 64.2                  | 1.08 | 0.0473                               | 0.0056  | 0.2690                              | 0.0340      | 0.0408           | 0.0014  | 0.0122                  | 0.0007  | 0.20971   |     | 257.7                               | <del>8.6</del> | 238                                 | 27          | 120                                  | 220 | 257.7         | 8.6  |   | -8.28  |
| Zircon_14          | 414             | 244                   | 0.59 | 0.0542                               | 0.0025  | 0.4700                              | 0.0210      | 0.0630           | 0.0011  | 0.0205                  | 0.0008  | 0.30847   |     | 393.8                               | 6.7            | 390                                 | 15          | 350                                  | 100 | 393.8         | 6.7  |   | -0.97  |
| Zircon_15          | 207             | 113                   | 0.55 | 0.0492                               | 0.0032  | 0.2820                              | 0.0180      | 0.0413           | 0.0011  | 0.0133                  | 0.0006  | 0.17312   | 1   | 261.8                               | 6.4            | 253                                 | 14          | 150                                  | 130 | 261.8         | 6.4  |   | -3.48  |
| Zircon_16          | 189             | 5.9                   | 0.03 | 0.0781                               | 0.0029  | 2.0700                              | 0.1100      | 0.1928           | 0.0062  | 0.0602                  | 0.0071  | 0.74039   |     | 1141                                | 34             | 1143                                | 34          | 1135                                 | 76  | 1141.0        | 34.0 | L | 0.17   |
| Zircon_17          | 135             | 14.3                  | 0.11 | 0.0754                               | 0.0030  | 1.8800                              | 0.1100      | 0.1796           | 0.0053  | 0.0517                  | 0.0028  | 0.73843   |     | 1064                                | 29             | 1072                                | 38          | 1063                                 | 79  | 1064.0        | 29.0 |   | 0.75   |
| Zircon_18          | 68.7            | 41.2                  | 0.60 | 0.0696                               | 0.0032  | 1.5030                              | 0.0700      | 0.1560           | 0.0034  | 0.0477                  | 0.0018  | 0.33635   |     | 934                                 | 19             | 937                                 | 28          | 890                                  | 100 | 934.0         | 19.0 |   | 0.32   |
| Zircon_19          | 93              | 116                   | 1.25 | 0.0622                               | 0.0077  | 0.2550                              | 0.0310      | 0.0296           | 0.0010  | 0.0103                  | 0.0006  | -0.15708  |     | 187.8                               | 6              | 231                                 | 25          | 610                                  | 270 | 187.8         | 6.0  |   | 18.70  |
| Zircon_20          | 807             | 520                   | 0.64 | 0.0571                               | 0.0021  | 0.3130                              | 0.0140      | 0.0402           | 0.0009  | 0.0131                  | 0.0007  | 0.4395    |     | 253.9                               | 5.4            | 276                                 | 11          | 493                                  | 88  | 253.9         | 5.4  |   | 8.01   |
| Zircon_21          | 384             | 62.4                  | 0.16 | 0.0527                               | 0.0024  | 0.2940                              | 0.0130      | 0.0403           | 0.0008  | 0.0148                  | 0.0009  | 0.18611   |     | 254.6                               | 5              | 261                                 | 9.9         | 290                                  | 100 | 254.6         | 5.0  | Ļ | 2.45   |
| Zircon_22          | 498             | 810                   | 1.63 | 0.0530                               | 0.0026  | 0.2350                              | 0.0110      | 0.0321           | 0.0006  | 0.0099                  | 0.0003  | -0.060299 | -   | 203.9                               | 3.8            | 215.2                               | 8.9         | 320                                  | 100 | 203.9         | 3.8  |   | 5.25   |
| Zircon_23          | 158             | 87.7                  | 0.56 | 0.0564                               | 0.0034  | 0.5420                              | 0.0320      | 0.0699           | 0.0012  | 0.0211                  | 0.0009  | -0.023814 |     | 435.4                               | 7.3            | 440                                 | 22          | 450                                  | 140 | 435.4         | 7.3  |   | 1.05   |
| Zircon_24          | 425             | 3.66                  | 0.01 | 0.0538                               | 0.0023  | 0.3980                              | 0.0180      | 0.0536           | 0.0011  | 0.0363                  | 0.0055  | 0.40925   |     | 336.5                               | 6.5            | 340                                 | 13          | 352                                  | 98  | 336.5         | 6.5  |   | 1.03   |
| Zircon_25          | 274             | 208.5                 | 0.76 | 0.0503                               | 0.0028  | 0.2770                              | 0.0150      | 0.0397           | 0.0007  | 0.0127                  | 0.0005  | 0.20156   | 1   | 250.6                               | 4.6            | 248                                 | 12          | 200                                  | 120 | 250.6         | 4.6  |   | -1.05  |
| Zircon_26          | 131.4           | 91.5                  | 0.70 | 0.0559                               | 0.0039  | 0.3050                              | 0.0190      | 0.0400           | 0.0010  | 0.0121                  | 0.0006  | -0.082185 |     | 252.6                               | 6              | 272                                 | 14          | 390                                  | 150 | 252.6         | 6.0  | L | 7.13   |
| Zircon_27          | 172.2           | 94.9                  | 0.55 | 0.0500                               | 0.0033  | 0.2940                              | 0.0180      | 0.0432           | 0.0010  | 0.0137                  | 0.0006  | 0.12989   | _   | 272.7                               | 6.3            | 263                                 | 15          | 180                                  | 130 | 272.7         | 6.3  |   | -3.69  |
| Zircon_28          | 104.7           | 99.1                  | 0.95 | 0.0943                               | 0.0034  | 3.5100                              | 0.1200      | 0.2696           | 0.0047  | 0.0817                  | 0.0026  | 0.25061   |     | 1538                                | 24             | 1528                                | 26          | 1510                                 | 66  | 1510.0        | 24.0 |   | -0.65  |
| Zircon_29          | 107.1           | 70.4                  | 0.66 | 0.1056                               | 0.0034  | 4.6800                              | 0.1500      | 0.3227           | 0.0049  | 0.0939                  | 0.0028  | 0.25013   |     | 1803                                | 24             | 1764                                | 28          | 1731                                 | 54  | 1731.0        | 24.0 |   | -2.21  |
| Zircon_30          | 412             | 422                   | 1.02 | 0.0511                               | 0.0024  | 0.2288                              | 0.0096      | 0.0325           | 0.0007  | 0.0100                  | 0.0004  | -0.18223  | _   | 206.2                               | 4.4            | 209                                 | 7.9         | 230                                  | 110 | 206.2         | 4.4  | L | 1.34   |
| Zircon_31          | 189.4           | 77.4                  | 0.41 | 0.0747                               | 0.0028  | 1.7650                              | 0.0630      | 0.1734           | 0.0028  | 0.0519                  | 0.0016  | -0.15817  |     | 1031                                | 15             | 1036                                | 23          | 1056                                 | 77  | 1031.0        | 15.0 |   | 0.48   |
| Zircon_32          | 175             | 135.1                 | 0.77 | 0.0999                               | 0.0031  | 4.1400                              | 0.1300      | 0.3004           | 0.0040  | 0.0849                  | 0.0022  | 0.26096   |     | 1693                                | 20             | 1661                                | 26          | 1622                                 | 56  | 1622.0        | 20.0 |   | -1.93  |
| Zircon_33          | 43.8            | 13.76                 | 0.31 | 0.0750                               | 0.0040  | 1.7040                              | 0.0980      | 0.1619           | 0.0037  | 0.0493                  | 0.0037  | 0.34404   | _   | 967                                 | 20             | 1004                                | 37          | 1100                                 | 110 | 967.0         | 20.0 |   | 3.69   |
| Zircon_34          | 64.6            | 42.7                  | 0.66 | 0.0470                               | 0.0050  | 0.2680                              | 0.0260      | 0.0394           | 0.0016  | 0.0134                  | 0.0012  | -0.02533  |     | 248.8                               | 9.8            | 239                                 | 21          | 10                                   | 200 | 248.8         | 9.8  |   | -4.10  |
| Zircon_35          | 376             | 103.9                 | 0.28 | 0.0765                               | 0.0023  | 2.1270                              | 0.0770      | 0.2008           | 0.0042  | 0.0591                  | 0.0026  | 0.72047   |     | 1179                                | 22             | 1156                                | 25          | 1104                                 | 59  | 1179.0        | 22.0 |   | -1.99  |
| Zircon_36          | 44.7            | 16.5                  | 0.37 | 0.0500                               | 0.0058  | 0.3080                              | 0.0320      | 0.0454           | 0.0021  | 0.0149                  | 0.0020  | 0.11665   |     | 286                                 | 13             | 273                                 | 26          | 180                                  | 230 | 286.0         | 13.0 |   | -4.76  |
| Zircon_37          | 427             | 607                   | 1.42 | 0.0551                               | 0.0031  | 0.2560                              | 0.0130      | 0.0333           | 0.0006  | 0.0105                  | 0.0004  | -0.05233  |     | 211.1                               | 3.5            | 231                                 | 11          | 430                                  | 120 | 211.1         | 3.5  |   | 8.61   |
| Zircon_38          | 176.3           | 127.9                 | 0.73 | 0.0527                               | 0.0032  | 0.2810                              | 0.0160      | 0.0387           | 0.0009  | 0.0121                  | 0.0005  | -0.024022 |     | 244.9                               | 5.8            | 252                                 | 12          | 320                                  | 130 | 244.9         | 5.8  |   | 2.82   |
| Zircon_39          | 233.8           | 130.9                 | 0.56 | 0.0526                               | 0.0029  | 0.3050                              | 0.0160      | 0.0420           | 0.0008  | 0.0141                  | 0.0006  | 0.044948  | _   | 265                                 | 4.8            | 272                                 | 12          | 300                                  | 120 | 265.0         | 4.8  |   | 2.57   |
| Zircon_40          | 178.5           | 74.9                  | 0.42 | 0.0768                               | 0.0030  | 1.9070                              | 0.0690      | 0.1816           | 0.0037  | 0.0568                  | 0.0020  | 0.28492   |     | 1078                                | 19             | 1085                                | 23          | 1121                                 | 76  | 1078.0        | 19.0 | L | 0.65   |
| Zircon_41          | 348             | 223.7                 | 0.64 | 0.0485                               | 0.0028  | 0.2750                              | 0.0150      | 0.0406           | 0.0008  | 0.0127                  | 0.0005  | 0.088443  |     | 256.5                               | 4.9            | 246                                 | 12          | 110                                  | 120 | 256.5         | 4.9  | L | -4.27  |
| Zircon_42          | 228.8           | 262                   | 1.15 | 0.0510                               | 0.0028  | 0.2970                              | 0.0170      | 0.0415           | 0.0009  | 0.0134                  | 0.0005  | 0.1826    |     | 262.1                               | 5.8            | 264                                 | 13          | 270                                  | 120 | 262.1         | 5.8  | L | 0.72   |
| Zircon_43          | 102.9           | 68.7                  | 0.67 | 0.0512                               | 0.0043  | 0.2810                              | 0.0240      | 0.0399           | 0.0011  | 0.0121                  | 0.0008  | 0.10567   |     | 252.3                               | 6.9            | 250                                 | 19          | 190                                  | 170 | 252.3         | 6.9  | L | -0.92  |
| Zircon_44          | 136.3           | 109.5                 | 0.80 | 0.0472                               | 0.0042  | 0.1860                              | 0.0150      | 0.0291           | 0.0009  | 0.0091                  | 0.0005  | -0.12786  | 3   | 184.6                               | 5.5            | 174                                 | 12          | 110                                  | 180 | 184.6         | 5.5  |   | -6.09  |

| Zircon_45   | 181.4 | 108.6 | 0.60                                  | 0.0547 | 0.0035 | 0.2960 | 0.0190 | 0.0396 | 0.0008 | 0.0123 | 0.0006 | 0.047621  | 250.6 | 5              | 262   | 15  | 350  | 140 | 250.6  | 5.0            | 4.35   |
|-------------|-------|-------|---------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|-----------|-------|----------------|-------|-----|------|-----|--------|----------------|--------|
| Zircon 46   | 207.2 | 113.8 | 0.55                                  | 0.0854 | 0.0026 | 2.8160 | 0.0900 | 0.2396 | 0.0036 | 0.0697 | 0.0018 | 0.38822   | 1384  | 19             | 1361  | 25  | 1330 | 60  | 1384.0 | 19.0           | -1.69  |
| Zircon 47   | 412   | 478   | 1.16                                  | 0.0516 | 0.0022 | 0.2790 | 0.0120 | 0.0393 | 0.0007 | 0.0125 | 0.0004 | 0 12287   | 248 5 | 4.5            | 249.9 | 94  | 250  | 96  | 248.5  | 4.5            | 0.56   |
| Zircon_48   | 228   | 423   | 1.86                                  | 0.0499 | 0.0031 | 0.2840 | 0.0160 | 0.0414 | 0.0009 | 0.0126 | 0.0004 | -0.081605 | 261.7 | 5.5            | 254   | 13  | 180  | 130 | 261.7  | 5.5            | 3.03   |
| Zircon_40   | 92.4  | 56.3  | 0.61                                  | 0.0528 | 0.0031 | 0.2040 | 0.0230 | 0.0414 | 0.0005 | 0.0120 | 0.0011 | 0.063896  | 266.8 | 0.3            | 262   | 18  | 250  | 190 | 266.8  | 0.3            | 1.83   |
| Zircon_40   | 70.9  | 50.5  | 0.67                                  | 0.0520 | 0.0047 | 0.2970 | 0.0250 | 0.0420 | 0.0013 | 0.0134 | 0.0009 | 0.010627  | 200.0 | 9.0            | 262   | 20  | 230  | 190 | 259.0  | 9.0            | - 1.03 |
| Zircon_50   | /9.0  | 33.2  | 0.67                                  | 0.0504 | 0.0046 | 0.2990 | 0.0260 | 0.0410 | 0.0014 | 0.0123 | 0.0008 | 0.010037  | 259   | 0.9            | 203   | 20  | 270  | 190 | 259.0  | 0.9            | 1.52   |
| Zircon_51   | 956   | 407   | 0.43                                  | 0.0526 | 0.0019 | 0.2270 | 0.0077 | 0.0314 | 0.0005 | 0.0100 | 0.0003 | 0.12719   | 199.3 | 3.1            | 208.3 | 0.0 | 308  | 83  | 199.3  | 3.1            | 4.32   |
| Zircon_52   | 229.7 | 184.2 | 0.80                                  | 0.0520 | 0.0030 | 0.3040 | 0.0170 | 0.0422 | 0.0010 | 0.0129 | 0.0005 | 0.059234  | 266.5 | 6              | 269   | 13  | 250  | 130 | 266.5  | 6.0            | 0.93   |
| Zircon_53   | 122.5 | 122.5 | 1.00                                  | 0.0558 | 0.0038 | 0.3100 | 0.0210 | 0.0406 | 0.0009 | 0.0144 | 0.0009 | 0.14784   | 256.6 | 5.5            | 273   | 16  | 390  | 150 | 256.6  | 5.5            | 6.01   |
| Zircon_54   | 220.2 | 171.3 | 0.78                                  | 0.0554 | 0.0038 | 0.2090 | 0.0150 | 0.0281 | 0.0006 | 0.0096 | 0.0004 | 0.22618   | 178.9 | 3.9            | 192   | 12  | 390  | 150 | 178.9  | 3.9            | 6.82   |
| Zircon_55   | 85.5  | 47    | 0.55                                  | 0.0490 | 0.0052 | 0.2170 | 0.0230 | 0.0312 | 0.0011 | 0.0110 | 0.0008 | 0.090494  | 198.3 | 6.7            | 198   | 19  | 170  | 220 | 198.3  | 6.7            | -0.15  |
| Zircon_56   | 219.5 | 129.1 | 0.59                                  | 0.0531 | 0.0035 | 0.3120 | 0.0190 | 0.0427 | 0.0010 | 0.0133 | 0.0005 | -0.10739  | 269.3 | 6              | 274   | 14  | 300  | 140 | 269.3  | 6.0            | 1.72   |
| Zircon_57   | 216.5 | 166.8 | 0.77                                  | 0.0542 | 0.0031 | 0.2880 | 0.0160 | 0.0390 | 0.0009 | 0.0125 | 0.0006 | 0.15028   | 246.4 | 5.4            | 258   | 13  | 360  | 130 | 246.4  | 5.4            | 4.50   |
| Zircon_58   | 187.6 | 130   | 0.69                                  | 0.0522 | 0.0034 | 0.2880 | 0.0190 | 0.0398 | 0.0008 | 0.0124 | 0.0005 | 0.078897  | 251.8 | 4.9            | 256   | 15  | 290  | 150 | 251.8  | 4.9            | 1.64   |
| Zircon 59   | 181   | 118.3 | 0.65                                  | 0.0589 | 0.0029 | 0.6410 | 0.0320 | 0.0780 | 0.0015 | 0.0246 | 0.0010 | 0.26422   | 484   | 8.9            | 501   | 20  | 540  | 110 | 484.0  | 8.9            | 3.39   |
| Zircon 60   | 176.2 | 94.6  | 0.54                                  | 0.0774 | 0.0027 | 1.9420 | 0.0690 | 0.1837 | 0.0030 | 0.0574 | 0.0017 | 0.11851   | 1087  | 16             | 1097  | 24  | 1131 | 70  | 1087.0 | 16.0           | 0.91   |
| Zircon 61   | 243.3 | 61.9  | 0.25                                  | 0.0728 | 0.0026 | 1.6520 | 0.0630 | 0.1643 | 0.0021 | 0.0481 | 0.0017 | 0.28991   | 981   | 12             | 991   | 24  | 1006 | 75  | 981.0  | 12.0           | 1.01   |
| Zircon_62   | 31.0  | 31.6  | 0.99                                  | 0.1135 | 0.0053 | 4 2000 | 0.3000 | 0.2670 | 0.0170 | 0.0639 | 0.0080 | 0.77648   | 1529  | 89             | 1672  | 60  | 1834 | 85  | 1834.0 | 89.0           | 8 55   |
| Zircon_62   | 73.7  | 42.0  | 0.55                                  | 0.0529 | 0.0035 | 4.2000 | 0.0000 | 0.2070 | 0.0170 | 0.0033 | 0.0000 | 0.05902   | 202.1 | 0.7            | 2012  | 21  | 210  | 100 | 202.1  | 9.7            | 1.01   |
| Zircon_65   | /3./  | 43.9  | 0.00                                  | 0.0556 | 0.0048 | 0.3250 | 0.0280 | 0.0449 | 0.0014 | 0.0146 | 0.0009 | -0.05895  | 203.1 | 0.7            | 200   | 21  | 310  | 190 | 205.1  | 0.7            | - 1.01 |
| Zircon_64   | 4/4   | //4   | 1.63                                  | 0.0792 | 0.0024 | 2.2150 | 0.0660 | 0.2020 | 0.0031 | 0.0594 | 0.0015 | 0.23909   | 1186  | 10             | 1185  | 21  | 1183 | 60  | 1186.0 | 16.0           | -0.08  |
| Zircon_65   | 782   | 19.9  | 0.03                                  | 0.0585 | 0.0019 | 0.7210 | 0.0240 | 0.0896 | 0.0013 | 0.0293 | 0.0028 | 0.1783    | 552.9 | 7.8            | 552   | 14  | 546  | /1  | 552.9  | 7.8            | -0.16  |
| Zircon_66   | 422   | 276   | 0.65                                  | 0.0741 | 0.0026 | 1.5490 | 0.0580 | 0.1539 | 0.0040 | 0.0379 | 0.0034 | 0.59615   | 922   | 22             | 959   | 22  | 1035 | 70  | 922.0  | 22.0           | 3.86   |
| Zircon_67   | 95.6  | 51.2  | 0.54                                  | 0.0528 | 0.0040 | 0.2950 | 0.0220 | 0.0410 | 0.0013 | 0.0134 | 0.0007 | 0.0958    | 258.7 | 8.3            | 261   | 17  | 310  | 170 | 258.7  | 8.3            | 0.88   |
| Zircon_68   | 105.3 | 117.9 | 1.12                                  | 0.0520 | 0.0048 | 0.2200 | 0.0200 | 0.0308 | 0.0009 | 0.0098 | 0.0005 | 0.058986  | 195.8 | 5.6            | 200   | 17  | 240  | 190 | 195.8  | 5.6            | 2.10   |
| Zircon_69   | 105.4 | 74.3  | 0.70                                  | 0.0504 | 0.0039 | 0.2670 | 0.0190 | 0.0391 | 0.0011 | 0.0126 | 0.0007 | 0.010182  | 247.2 | 6.7            | 242   | 16  | 170  | 160 | 247.2  | 6.7            | -2.15  |
| Zircon_70   | 118.5 | 119   | 1.00                                  | 0.0519 | 0.0034 | 0.2940 | 0.0190 | 0.0411 | 0.0012 | 0.0129 | 0.0007 | 0.0079905 | 259.4 | 7.7            | 261   | 15  | 240  | 140 | 259.4  | 7.7            | 0.61   |
| Zircon_71   | 103.5 | 151   | 1.46                                  | 0.0756 | 0.0028 | 1.8140 | 0.0670 | 0.1746 | 0.0033 | 0.0510 | 0.0015 | 0.1934    | 1040  | 18             | 1052  | 24  | 1081 | 73  | 1040.0 | 18.0           | 1.14   |
| Zircon_72   | 756   | 175.9 | 0.23                                  | 0.0561 | 0.0018 | 0.5560 | 0.0190 | 0.0718 | 0.0011 | 0.0228 | 0.0008 | 0.32964   | 447.1 | 6.5            | 449   | 12  | 453  | 74  | 447.1  | 6.5            | 0.42   |
| Zircon_73   | 149.9 | 124.8 | 0.83                                  | 0.0682 | 0.0029 | 1.3330 | 0.0570 | 0.1429 | 0.0024 | 0.0427 | 0.0013 | 0.16788   | 861   | 14             | 858   | 24  | 866  | 91  | 861.0  | 14.0           | -0.35  |
| Zircon 74   | 237.6 | 195.2 | 0.82                                  | 0.0922 | 0.0029 | 3.2300 | 0.1100 | 0.2556 | 0.0049 | 0.0742 | 0.0022 | 0.57479   | 1467  | 25             | 1462  | 26  | 1472 | 59  | 1472.0 | 25.0           | -0.34  |
| Zircon 75   | 135   | 77.3  | 0.57                                  | 0.0520 | 0.0033 | 0.3050 | 0.0190 | 0.0420 | 0.0010 | 0.0134 | 0.0008 | 0.022254  | 265.2 | 6.2            | 269   | 15  | 250  | 140 | 265.2  | 6.2            | 1.41   |
| Zircon 76   | 349.8 | 248.2 | 0.71                                  | 0.0960 | 0.0027 | 3 5000 | 0.1100 | 0.2638 | 0.0048 | 0.0778 | 0.0022 | 0.68644   | 1509  | 24             | 1526  | 24  | 1546 | 53  | 1546.0 | 24.0           | 1.11   |
| Zircon 77   | 412   | 224   | 0.54                                  | 0.0507 | 0.0022 | 0.3020 | 0.0130 | 0.0432 | 0.0008 | 0.0128 | 0.0005 | 0.20884   | 272.6 | 51             | 267   | 10  | 236  | 95  | 272.6  | 5.1            | 2.10   |
| Zircon_77   | 224.7 | 150.2 | 0.54                                  | 0.0507 | 0.0022 | 0.0160 | 0.0350 | 0.1106 | 0.0000 | 0.0120 | 0.0003 | 0.11201   | 676   | 10             | 650   | 10  | 600  | 93  | 676.0  | 10.0           | -2.10  |
| ZIICOII_70  | 234.7 | 139.2 | 0.00                                  | 0.000  | 0.0023 | 0.9160 | 0.0350 | 0.1106 | 0.0017 | 0.0339 | 0.0013 | 0.11291   | 070   | 10             | 009   | 19  | 009  | 04  | 0/0.0  | 10.0           | -2.30  |
| Zircon_/9   | /9.9  | 48.2  | 0.60                                  | 0.0511 | 0.0061 | 0.2170 | 0.0250 | 0.0320 | 0.0012 | 0.0098 | 0.0007 | 0.11664   | 204.1 | 7.5            | 207   | 20  | 280  | 230 | 204.1  | 7.5            | - 1.40 |
| Zircon_80   | 115.5 | 67.2  | 0.58                                  | 0.0566 | 0.0028 | 0./140 | 0.0340 | 0.0903 | 0.0018 | 0.0271 | 0.0014 | -0.12874  | 557   | 11             | 551   | 20  | 480  | 120 | 557.0  | 11.0           | -1.09  |
| Zircon_81   | 177.3 | 151.5 | 0.85                                  | 0.0566 | 0.0041 | 0.2960 | 0.0190 | 0.0382 | 0.0009 | 0.0115 | 0.0005 | -0.193    | 241.5 | 5.7            | 262   | 15  | 440  | 150 | 241.5  | 5.7            | 7.82   |
| Zircon_82   | 199   | 152.8 | 0.77                                  | 0.0511 | 0.0040 | 0.2340 | 0.0180 | 0.0334 | 0.0007 | 0.0110 | 0.0005 | 0.0090508 | 211.5 | 4.2            | 212   | 15  | 220  | 170 | 211.5  | 4.2            | 0.24   |
| Zircon_83   | 69.9  | 45.3  | 0.65                                  | 0.0616 | 0.0068 | 0.2490 | 0.0260 | 0.0292 | 0.0012 | 0.0096 | 0.0008 | -0.023452 | 185.2 | 7.3            | 224   | 21  | 570  | 240 | 185.2  | 7.3            | 17.32  |
| Zircon_84   | 152.6 | 108.4 | 0.71                                  | 0.0528 | 0.0035 | 0.3350 | 0.0230 | 0.0457 | 0.0009 | 0.0140 | 0.0005 | 0.15014   | 287.8 | 5.3            | 292   | 18  | 320  | 150 | 287.8  | 5.3            | 1.44   |
| Zircon_85   | 206.8 | 134.4 | 0.65                                  | 0.0521 | 0.0030 | 0.2940 | 0.0160 | 0.0417 | 0.0009 | 0.0134 | 0.0007 | 0.11956   | 263.3 | 5.3            | 261   | 13  | 270  | 130 | 263.3  | 5.3            | -0.88  |
| Zircon_86   | 172.5 | 91.5  | 0.53                                  | 0.0740 | 0.0029 | 1.6640 | 0.0640 | 0.1629 | 0.0026 | 0.0496 | 0.0017 | 0.15638   | 973   | 14             | 993   | 24  | 1028 | 78  | 973.0  | 14.0           | 2.01   |
| Zircon_87   | 90.9  | 61.9  | 0.68                                  | 0.0485 | 0.0054 | 0.2760 | 0.0300 | 0.0406 | 0.0011 | 0.0128 | 0.0008 | 0.060401  | 256.6 | <del>6.9</del> | 244   | 24  | 50   | 210 | 256.6  | <del>6.9</del> | -5.16  |
| Zircon_88   | 95.5  | 97.6  | 1.02                                  | 0.0514 | 0.0046 | 0.2710 | 0.0240 | 0.0388 | 0.0013 | 0.0115 | 0.0006 | -0.027752 | 245.5 | 8              | 247   | 19  | 260  | 190 | 245.5  | 8.0            | 0.61   |
| Zircon_89   | 107.2 | 42.8  | 0.40                                  | 0.0575 | 0.0032 | 0.7090 | 0.0390 | 0.0885 | 0.0018 | 0.0265 | 0.0010 | -0.092059 | 546   | 11             | 548   | 23  | 530  | 120 | 546.0  | 11.0           | 0.36   |
| Zircon 90   | 304.5 | 227.3 | 0.75                                  | 0.0485 | 0.0026 | 0.2790 | 0.0140 | 0.0402 | 0.0008 | 0.0125 | 0.0005 | -0.036129 | 254.1 | 5.1            | 250   | 11  | 190  | 120 | 254.1  | 5.1            | -1.64  |
| Zircon 91   | 87.7  | 66    | 0.75                                  | 0.0740 | 0.0029 | 1 7750 | 0.0740 | 0.1733 | 0.0030 | 0.0537 | 0.0019 | 0.51304   | 1030  | 17             | 1034  | 27  | 1036 | 79  | 1030.0 | 17.0           | 0.39   |
| Zircon 92   | 487   | 265   | 0.54                                  | 0.0520 | 0.0023 | 0 2970 | 0.0130 | 0.0417 | 0.0007 | 0.0164 | 0.0013 | 0 23307   | 263.1 | 45             | 263.4 | 9.8 | 277  | 0.4 | 263.1  | 45             | 0.11   |
| Zircon_92   | 225   | 205   | 0.16                                  | 0.0560 | 0.0023 | 0.5590 | 0.0130 | 0.0722 | 0.0007 | 0.0221 | 0.0014 | -0.059508 | 455.5 | 9.5            | 1/0   | 18  | 440  | 120 | 455.5  | 9.5            | -1 45  |
| Zircon_95   | 46.0  | 57.1  | 1.42                                  | 0.0300 | 0.0031 | 1 7000 | 0.0200 | 0.0752 | 0.0010 | 0.0231 | 0.0010 | -0.059506 | 400.0 | 9.0            | 1009  | 21  | 050  | 100 | 400.0  | 3.5            | -1.45  |
| Zircon_93_1 | 46.3  | 65.7  | 1.42                                  | 0.0709 | 0.0035 | 1.7090 | 0.0820 | 0.1/35 | 0.0039 | 0.0496 | 0.0019 | 0.19020   | 1031  | 21             | 1008  | 31  | 950  | 100 | 1031.0 | 21.0           | -2.28  |
| Zircon_94   | 98    | 41.1  | 0.42                                  | 0.0856 | 0.0034 | 2.5790 | 0.0960 | 0.2196 | 0.0042 | 0.0652 | 0.0022 | 0.18297   | 1279  | 22             | 1292  | 28  | 1315 | /7  | 1279.0 | 22.0           | 1.01   |
| Zircon_95   | 311.2 | 188.7 | 0.61                                  | 0.0571 | 0.0024 | 0.5970 | 0.0270 | 0.0782 | 0.0013 | 0.0237 | 0.0008 | 0.088881  | 485.2 | 7.8            | 476   | 16  | 477  | 92  | 485.2  | 7.8            | -1.93  |
| Zircon_96   | 124.1 | 47.7  | 0.38                                  | 0.0501 | 0.0034 | 0.3520 | 0.0230 | 0.0505 | 0.0012 | 0.0156 | 0.0010 | 0.099476  | 317.8 | 7.7            | 310   | 17  | 220  | 150 | 317.8  | 7.7            | -2.52  |
| Zircon_97   | 438   | 186.3 | 0.43                                  | 0.0565 | 0.0022 | 0.3510 | 0.0150 | 0.0462 | 0.0008 | 0.0162 | 0.0007 | 0.41099   | 291.2 | 5.2            | 305   | 11  | 468  | 78  | 291.2  | 5.2            | 4.52   |
| Zircon_98   | 556   | 378   | 0.68                                  | 0.0617 | 0.0022 | 0.7260 | 0.0300 | 0.0847 | 0.0018 | 0.0245 | 0.0006 | 0.61151   | 525   | 11             | 553   | 18  | 661  | 74  | 525.0  | 11.0           | 5.06   |
| Zircon_99   | 184.8 | 147.7 | 0.80                                  | 0.0509 | 0.0024 | 0.2750 | 0.0130 | 0.0394 | 0.0009 | 0.0125 | 0.0006 | 0.2965    | 249.7 | 5.8            | 247.9 | 9.7 | 220  | 100 | 249.7  | 5.8            | -0.73  |
| Zircon_100  | 176.8 | 64.6  | 0.37                                  | 0.0569 | 0.0028 | 0.6400 | 0.0320 | 0.0826 | 0.0016 | 0.0237 | 0.0011 | 0.21762   | 511.4 | 9.5            | 501   | 19  | 470  | 110 | 511.4  | 9.5            | -2.08  |
|             |       |       | · · · · · · · · · · · · · · · · · · · | -      | •      |        |        |        |        |        |        |           |       |                |       |     |      |     |        | -              | -      |

| Zircon_66          | 351   | 369             | 1.05            | 0.0533 | 0.0041 | 0.2690 | 0.0200 | 0.0368 | 0.0009 | 0.0113 | 0.0007 | 0.40  | 232.7  | 5.6             | 241.0            | 16.0            | 320.0  | 170.0            | 232.7            | 5.6             | 3.4  |
|--------------------|-------|-----------------|-----------------|--------|--------|--------|--------|--------|--------|--------|--------|-------|--------|-----------------|------------------|-----------------|--------|------------------|------------------|-----------------|------|
| Zircon_67          | 195   | 127.1           | 0.65            | 0.0540 | 0.0043 | 0.2760 | 0.0200 | 0.0374 | 0.0009 | 0.0116 | 0.0008 | -0.07 | 236.4  | 5.8             | 246.0            | 16.0            | 340.0  | 180.0            | 236.4            | 5.8             | 3.9  |
| Zircon 68          | 90.5  | 43.4            | 0.48            | 0.0559 | 0.0049 | 0.3240 | 0.0250 | 0.0431 | 0.0014 | 0.0131 | 0.0013 | -0.19 | 272.1  | 8.7             | 283.0            | 19.0            | 430.0  | 200.0            | 272.1            | 8.7             | 3.9  |
| Zircon_69          | 57.17 | 38.42           | 0.67            | 0.0639 | 0.0100 | 0.3410 | 0.0510 | 0.0397 | 0.0018 | 0.0146 | 0.0018 | 0.22  | 251.0  | 11.0            | 293.0            | 38.0            | 610.0  | 330.0            | 251.0            | 11.0            | 14.3 |
| Zircon_70          | 335   | 257             | 0.77            | 0.0534 | 0.0043 | 0.2970 | 0.0200 | 0.0399 | 0.0012 | 0.0116 | 0.0009 | 0.07  | 252.4  | 7.6             | 263.0            | 16.0            | 310.0  | 180.0            | 252.4            | 7.6             | 4.0  |
| Zircon_71          | 607   | 574             | 0.95            | 0.0620 | 0.0038 | 0.6140 | 0.0320 | 0.0711 | 0.0015 | 0.0226 | 0.0013 | 0.01  | 442.8  | 8.8             | 487.0            | 20.0            | 691.0  | 120.0            | 442.8            | 8.8             | 9.1  |
| Zircon_72          | 473   | 155             | 0.33            | 0.0913 | 0.0048 | 2.8990 | 0.1300 | 0.2301 | 0.0044 | 0.0675 | 0.0036 | 0.38  | 1335.1 | 23.0            | 1383.0           | 34.0            | 1451.0 | 99.0             | 1335.1           | 23.0            | 3.5  |
| Zircon_73          | 271.2 | 159.4           | 0.59            | 0.0528 | 0.0047 | 0.2920 | 0.0260 | 0.0399 | 0.0012 | 0.0131 | 0.0011 | 0.26  | 252.3  | 7.5             | 259.0            | 20.0            | 280.0  | 190.0            | 252.3            | 7.5             | 2.6  |
| Zircon_74          | 301   | 120.9           | 0.40            | 0.0490 | 0.0040 | 0.2090 | 0.0160 | 0.0310 | 0.0009 | 0.0111 | 0.0008 | 0.02  | 197.3  | 5.2             | 192.0            | 13.0            | 120.0  | 170.0            | 197.3            | 5.2             | -2.8 |
| Zircon_75          | 482   | 309             | 0.64            | 0.1021 | 0.0056 | 3.7400 | 0.2000 | 0.2650 | 0.0100 | 0.0814 | 0.0045 | 0.85  | 1515.0 | 52.0            | 1578.0           | 43.0            | 1660.0 | 100.0            | 1660.0           | 100.0           | 4.0  |
| Zircon_76          | 329   | 259             | 0.79            | 0.0496 | 0.0033 | 0.2940 | 0.0180 | 0.0424 | 0.0012 | 0.0143 | 0.0009 | -0.01 | 267.3  | 7.2             | 263.0            | 15.0            | 230.0  | 170.0            | 267.3            | 7.2             | -1.6 |
| Zircon_77          | 124   | 62.8            | 0.51            | 0.0498 | 0.0051 | 0.2880 | 0.0270 | 0.0412 | 0.0013 | 0.0138 | 0.0010 | 0.08  | 260.4  | 7.9             | 258.0            | 22.0            | 190.0  | 210.0            | 260.4            | 7.9             | -0.9 |
| Zircon_78          | 213.5 | 58.9            | 0.28            | 0.0764 | 0.0055 | 1.5560 | 0.0960 | 0.1489 | 0.0039 | 0.0399 | 0.0037 | 0.04  | 895.0  | 22.0            | 950.0            | 39.0            | 1080.0 | 150.0            | 895.0            | 22.0            | 5.8  |
| Zircon_79          | 315   | 108.3           | 0.34            | 0.0566 | 0.0044 | 0.2990 | 0.0200 | 0.0399 | 0.0011 | 0.0112 | 0.0009 | 0.01  | 252.0  | 7.0             | 265.0            | 16.0            | 430.0  | 170.0            | 252.0            | 7.0             | 4.9  |
| Zircon_80          | 197.5 | 191.4           | 0.97            | 0.0500 | 0.0049 | 0.2050 | 0.0180 | 0.0302 | 0.0009 | 0.0093 | 0.0007 | 0.20  | 191.9  | 5.8             | 188.0            | 15.0            | 160.0  | 200.0            | 191.9            | 5.8             | -2.1 |
| Zircon_81          | 306   | 150.3           | 0.49            | 0.0546 | 0.0033 | 0.5550 | 0.0290 | 0.0739 | 0.0017 | 0.0235 | 0.0014 | 0.13  | 459.5  | 10.0            | 448.0            | 19.0            | 400.0  | 140.0            | 459.5            | 10.0            | -2.6 |
| Zircon_82          | 203   | 226             | 1.11            | 0.0638 | 0.0064 | 0.2720 | 0.0250 | 0.0320 | 0.0010 | 0.0105 | 0.0008 | 0.18  | 203.0  | 6.5             | 243.0            | 20.0            | 660.0  | 220.0            | 203.0            | 6.5             | 16.5 |
| Zircon_83          | 237.6 | 127.4           | 0.54            | 0.0532 | 0.0040 | 0.2910 | 0.0200 | 0.0398 | 0.0011 | 0.0120 | 0.0009 | 0.23  | 251.2  | 6.6             | 259.0            | 16.0            | 300.0  | 170.0            | 251.2            | 6.6             | 3.0  |
| Zircon_84          | 148.9 | 109.3           | 0.73            | 0.1069 | 0.0058 | 4.3600 | 0.2200 | 0.3007 | 0.0085 | 0.0877 | 0.0050 | 0.73  | 1694.0 | 42.0            | 1702.0           | 43.0            | 1742.0 | 100.0            | 1742.0           | 100.0           | 0.5  |
| Zircon_85          | 424   | 253.1           | 0.60            | 0.0546 | 0.0033 | 0.4500 | 0.0240 | 0.0601 | 0.0013 | 0.0188 | 0.0011 | 0.16  | 376.5  | 8.0             | 377.0            | 17.0            | 376.0  | 130.0            | 376.5            | 8.0             | 0.1  |
| Zircon_86          | 253   | 330             | 1.30            | 0.0510 | 0.0039 | 0.3010 | 0.0190 | 0.0424 | 0.0012 | 0.0162 | 0.0010 | -0.28 | 267.5  | 7.5             | 267.0            | 15.0            | 230.0  | 170.0            | 267.5            | 7.5             | -0.2 |
| Zircon_87          | 60.1  | 46.6            | 0.78            | 0.0544 | 0.0084 | 0.3040 | 0.0400 | 0.0416 | 0.0016 | 0.0136 | 0.0012 | -0.05 | 263.0  | 9.6             | 264.0            | 32.0            | 370.0  | 300.0            | 263.0            | 9.6             | 0.4  |
| Zircon_88          | 359   | 210             | 0.58            | 0.0486 | 0.0039 | 0.2000 | 0.0150 | 0.0292 | 0.0008 | 0.0084 | 0.0006 | 0.18  | 185.5  | 5.0             | 184.0            | 13.0            | 130.0  | 160.0            | 185.5            | 5.0             | -0.8 |
| Zircon_89          | 449   | 141.7           | 0.32            | 0.0531 | 0.0033 | 0.4050 | 0.0220 | 0.0552 | 0.0013 | 0.0220 | 0.0014 | 0.17  | 347.1  | 7.6             | 344.7            | 16.0            | 341.0  | 130.0            | 347.1            | 7.6             | -0.7 |
| Zircon_90          | 1178  | 399             | 0.34            | 0.0726 | 0.0038 | 1.6540 | 0.0710 | 0.1647 | 0.0033 | 0.0504 | 0.0027 | 0.58  | 982.6  | 18.0            | 990.7            | 27.0            | 1000.0 | 110.0            | 982.6            | 18.0            | 0.8  |
| Zircon_91          | 586   | 132             | 0.23            | 0.0721 | 0.0042 | 1.5080 | 0.0730 | 0.1538 | 0.0040 | 0.0282 | 0.0025 | 0.34  | 922.0  | 22.0            | 933.0            | 29.0            | 979.0  | 120.0            | 922.0            | 22.0            | 1.2  |
| Zircon_92          | 221   | 259             | 1.17            | 0.0575 | 0.0040 | 0.4540 | 0.0280 | 0.0579 | 0.0015 | 0.0181 | 0.0011 | 0.11  | 362.6  | 8.9             | 379.0            | 20.0            | 490.0  | 160.0            | 362.6            | 8.9             | 4.3  |
| Zircon_93          | 198   | 108             | 0.55            | 0.0562 | 0.0043 | 0.5750 | 0.0430 | 0.0734 | 0.0022 | 0.0219 | 0.0016 | 0.33  | 457.0  | 13.0            | 459.0            | 28.0            | 420.0  | 170.0            | 457.0            | 13.0            | 0.4  |
| Zircon_94          | 137.5 | 165.2           | 1.20            | 0.0528 | 0.0061 | 0.2270 | 0.0250 | 0.0305 | 0.0013 | 0.0096 | 0.0007 | -0.11 | 193.4  | 8.2             | 207.0            | 20.0            | 280.0  | 250.0            | 193.4            | 8.2             | 6.6  |
| Zircon_95          | 138.7 | 108.4           | 0.78            | 0.0533 | 0.0054 | 0.2190 | 0.0190 | 0.0302 | 0.0010 | 0.0094 | 0.0007 | -0.05 | 191.8  | 6.0             | 202.0            | 17.0            | 270.0  | 210.0            | 191.8            | 6.0             | 5.0  |
| Zircon_96          | 294   | 187             | 0.64            | 0.0552 | 0.0041 | 0.2960 | 0.0190 | 0.0387 | 0.0011 | 0.0109 | 0.0008 | -0.11 | 245.0  | 6.6             | 265.0            | 16.0            | 390.0  | 170.0            | 245.0            | 6.6             | 7.5  |
| Zircon_97          | 142.8 | 150.8           | 1.06            | 0.0629 | 0.0076 | 0.2050 | 0.0220 | 0.0242 | 0.0010 | 0.0065 | 0.0006 | -0.23 | 154.2  | 6.5             | 188.0            | 18.0            | 630.0  | 250.0            | 154.2            | 6.5             | 18.0 |
| Zircon_98          | 67.2  | <del>41.3</del> | <del>0.61</del> | 0.1000 | 0.0160 | 0.5950 | 0.0910 | 0.0422 | 0.0020 | 0.0236 | 0.0027 | -0.08 | 266.0  | <del>12.0</del> | <del>475.0</del> | <del>55.0</del> | 1700.0 | <del>270.0</del> | <del>266.0</del> | <del>12.0</del> | 44.0 |
| Zircon_99          | 442   | 221.6           | 0.50            | 0.0522 | 0.0036 | 0.2990 | 0.0180 | 0.0420 | 0.0010 | 0.0133 | 0.0008 | -0.07 | 265.4  | 6.0             | 265.0            | 14.0            | 270.0  | 150.0            | 265.4            | 6.0             | -0.2 |
| Zircon_100         | 301   | 119             | 0.40            | 0.0616 | 0.0045 | 0.5640 | 0.0500 | 0.0668 | 0.0034 | 0.0190 | 0.0019 | 0.78  | 416.0  | 21.0            | 459.0            | 29.0            | 640.0  | 150.0            | 416.0            | 21.0            | 9.4  |
| Zircon_101         | 401   | 239             | 0.60            | 0.0607 | 0.0046 | 0.3800 | 0.0270 | 0.0456 | 0.0012 | 0.0168 | 0.0010 | 0.17  | 287.1  | 7.3             | 326.0            | 20.0            | 590.0  | 170.0            | 287.1            | 7.3             | 11.9 |
| Zircon_102         | 559   | 36.1            | 0.06            | 0.0943 | 0.0049 | 3.3900 | 0.1500 | 0.2635 | 0.0058 | 0.0720 | 0.0046 | 0.76  | 1511.0 | 28.0            | 1503.0           | 34.0            | 1511.0 | 97.0             | 1511.0           | 28.0            | -0.5 |
| Zircon_103         | 477   | 261             | 0.55            | 0.0567 | 0.0039 | 0.5310 | 0.0300 | 0.0680 | 0.0019 | 0.0212 | 0.0015 | -0.07 | 424.0  | 11.0            | 432.0            | 20.0            | 470.0  | 160.0            | 424.0            | 11.0            | 1.9  |
| Zircon_104         | 807   | 3.55            | 0.00            | 0.0595 | 0.0031 | 0.7760 | 0.0340 | 0.0939 | 0.0019 | 0.0359 | 0.0079 | 0.48  | 578.4  | 11.0            | 583.0            | 20.0            | 584.0  | 110.0            | 578.4            | 11.0            | 0.8  |
| Zircon_105_CP17-95 | 412.7 | 216.4           | 0.52            | 0.0524 | 0.0037 | 0.2940 | 0.0190 | 0.0404 | 0.0009 | 0.0131 | 0.0008 | -0.01 | 255.2  | 5.4             | 261.0            | 15.0            | 300.0  | 150.0            | 255.2            | 5.4             | 2.2  |

| Num de grano. | Ns  | Área [µm] | ρ       | 238U   | Edad TF [Ma] | 1SE [Ma] | CI (wt.%) |
|---------------|-----|-----------|---------|--------|--------------|----------|-----------|
| 1             | 39  | 9340      | 417559  | 58.47  | 13.8         | 3.1      | 0.170     |
| 2             | 65  | 7110      | 914205  | 108.42 | 16.3         | 3.0      | 0.169     |
| 3             | 35  | 8670      | 403691  | 28.10  | 24.3         | 4.6      | 0.358     |
| 4             | 17  | 7400      | 229730  | 22.75  | 19.5         | 5.4      | 0.291     |
| 5             | 25  | 10270     | 243427  | 27.97  | 26.0         | 5.9      | 0.176     |
| 6             | 10  | 8260      | 121065  | 18.52  | 12.6         | 4.4      | 0.316     |
| 7             | 34  | 8690      | 391254  | 46.25  | 16.3         | 3.7      | 0.309     |
| 8             | 12  | 8280      | 144928  | 5.66   | 49.3         | 16.0     | 1.037     |
| 9             | 42  | 8510      | 493537  | 76.10  | 12.5         | 2.7      | 0.124     |
| 10            | 44  | 7090      | 620592  | 58.44  | 20.5         | 4.1      | 0.272     |
| 11            | 50  | 11680     | 428082  | 39.70  | 26.2         | 4.9      | 3.322     |
| 12            | 23  | 6470      | 355487  | 50.20  | 13.7         | 3.4      | 0.189     |
| 13            | 12  | 12300     | 97561   | 19.59  | 9.6          | 3.2      | 0.236     |
| 14            | 30  | 6180      | 485437  | 59.33  | 15.8         | 3.5      | 0.234     |
| 15            | 88  | 7710      | 1141375 | 142.70 | 15.4         | 2.7      | 0.283     |
| 16            | 21  | 7350      | 285714  | 34.03  | 16.2         | 4.2      | 0.198     |
| 17            | 22  | 6780      | 324484  | 19.93  | 31.4         | 7.9      | 0.373     |
| 18            | 65  | 6730      | 965825  | 129.00 | 14.4         | 2.6      | 0.142     |
| 19            | 20  | 11420     | 175131  | 5.31   | 63.0         | 15.8     | 0.695     |
| 20            | 19  | 7550      | 251656  | 18.04  | 26.9         | 7.2      | 1.183     |
| 21            | 43  | 5490      | 783242  | 117.00 | 12.9         | 2.5      | 0.358     |
| 22            | 53  | 8900      | 595506  | 53.05  | 19.8         | 3.2      | 0.233     |
| 23            | 23  | 4780      | 481172  | 17.40  | 53.2         | 12.6     | 0.196     |
| 24            | 75  | 12450     | 602410  | 88.00  | 19.8         | 3.8      | 0.333     |
| 25            | 20  | 11820     | 169205  | 17.67  | 18.5         | 4.7      | 0.299     |
| 26            | 38  | 7830      | 485313  | 45.53  | 20.5         | 4.4      | 0.215     |
| 27            | 21  | 8300      | 253012  | 18.43  | 26.5         | 7.0      | 0.199     |
| 28            | 47  | 11960     | 392977  | 29.96  | 23.1         | 4.3      | 0.286     |
| 29            | 21  | 12500     | 168000  | 23.63  | 15.6         | 3.9      | 0.497     |
| 30            | 69  | 14190     | 486258  | 67.48  | 15.2         | 2.7      | 0.320     |
| 31            | 14  | 11250     | 124444  | 12.96  | 19.9         | 5.8      | 0.437     |
| 32            | 17  | 10140     | 167653  | 9.72   | 31.3         | 8.2      | 0.351     |
| 33            | 49  | 6380      | 768025  | 64.96  | 22.8         | 4.3      | 0.531     |
| 34            | 105 | 5430      | 1933702 | 246.20 | 15.1         | 2.2      | 0.485     |
| 35            | 9   | 7520      | 119681  | 7.14   | 32.3         | 11.7     | 0.394     |
| 36            | 30  | 10590     | 283286  | 23.79  | 23.4         | 4.9      | 0.074     |
| 37            | 62  | 9620      | 644491  | 70.00  | 20.5         | 3.3      | 1.318     |
| 38            | 43  | 9220      | 466377  | 58.30  | 18.0         | 3.2      | 1.473     |
| 39            | 10  | 8430      | 118624  | 18.14  | 12.6         | 4.4      | 0.243     |
| 40            | 97  | 6030      | 1608624 | 224.20 | 13.8         | 2.2      | 0.435     |
| 41            | 9   | 7560      | 119048  | 24.55  | 9.4          | 3.4      | 0.099     |
| 42            | 45  | 5790      | 777202  | 53.26  | 28.1         | 5.3      | 0.391     |
| 43            | 42  | 7580      | 554090  | 60.15  | 17.8         | 3.7      | 0.314     |
| 44            | 55  | 11930     | 461023  | 59.53  | 14.3         | 2.6      | 0.171     |
| 45            | 18  | 4650      | 387097  | 44.18  | 16.9         | 4.3      | 0.425     |
| 46            | 37  | 11500     | 321739  | 21.09  | 30.1         | 6.0      | 0.387     |
| 47            | 33  | 12080     | 273179  | 29.84  | 17.0         | 3.6      | 0.296     |
| 48            | 16  | 8930      | 179171  | 25.68  | 13.5         | 3.9      | 0.248     |

### Método Trazas de Fisión en apatitos detríticos, en las muestras CP-17-76.

| 49 | 24  | 5630  | 426288 | 46.84 | 17.5 | 4.1  | 0.405 |
|----|-----|-------|--------|-------|------|------|-------|
| 50 | 15  | 9110  | 164654 | 16.54 | 19.2 | 5.8  | 0.337 |
| 51 | 50  | 10140 | 493097 | 78.70 | 12.1 | 2.6  | 0.198 |
| 52 | 28  | 14230 | 196767 | 23.44 | 16.2 | 3.8  | 0.463 |
| 53 | 27  | 8800  | 306818 | 51.21 | 11.6 | 2.8  | 0.275 |
| 54 | 32  | 10610 | 301602 | 27.79 | 21.5 | 4.4  | 0.246 |
| 55 | 40  | 12150 | 329218 | 52.21 | 13.0 | 2.6  | 0.160 |
| 56 | 35  | 5290  | 661626 | 54.26 | 23.5 | 4.7  | 0.399 |
| 57 | 29  | 5550  | 522523 | 49.67 | 20.3 | 4.4  | 0.276 |
| 58 | 15  | 7030  | 213371 | 10.35 | 39.7 | 11.6 | 0.430 |
| 59 | 20  | 8060  | 248139 | 48.30 | 9.9  | 2.7  | 0.243 |
| 60 | 100 | 12350 | 809717 | 87.49 | 17.7 | 2.8  | 0.282 |
| 61 | 9   | 7040  | 127841 | 20.23 | 12.2 | 4.4  | 0.186 |
| 62 | 45  | 5480  | 821168 | 88.50 | 17.9 | 3.4  | 0.481 |

| Id | Estación                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Coordenadas W             | GS84/UTM Zona 15<br>Y | Dato Estructural | Tipo | Formación | Localidad          | Figura |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------|------------------|------|-----------|--------------------|--------|
| 1  | JCH-57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 399604                    | 1947249               | 150°, 52° SW     | S0   | Oli       |                    |        |
| 2  | JCH-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 399540                    | 1947635               | 179°, 45° SW     | SO   | Oli       |                    |        |
| 3  | JCH-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 399358                    | 1948139               | 150°, 40° SW     | S0   | Oli       |                    |        |
| 4  | JCH-63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 399313                    | 1948302               | 150°, 70° SW     | SO   | Oli       |                    |        |
| 5  | 1CH-56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 399359                    | 1947362               | 158° 51° SW      | 50   | Oli       |                    |        |
| 6  | 104-55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 200085                    | 1047211               | 156°, 51° SW     | 50   | Oli       |                    |        |
| 7  | JCH-55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 399065                    | 1947311               | 150,57 50        | 50   |           | La Gloria          | 6.2 A  |
| 1  | JCH-54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 398948                    | 1947328               | 158°, 55° SW     | 50   |           |                    |        |
| 8  | CP-16-136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 400519                    | 1947607               | 165°, 34° SW     | SO   | Pal-Eo    |                    |        |
| 9  | CP-16-135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 400540                    | 1947582               | 140°, 53° SW     | S0   | Pal-Eo    |                    |        |
| 10 | Acevedo1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 399886                    | 1947359               | 190°, 79° NW     | S0   | Pal_Eo    |                    |        |
| 11 | Acevedo2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 400947                    | 1946896               | 145°, 78° SW     | S0   | Oli       |                    |        |
| 12 | CP-16-126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 403595                    | 1947041               | 172°, 43° SW     | S0   | Ks        |                    |        |
| 13 | MCH-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 401796                    | 1944553               | 081° 69° SE      | S0   | Ki        |                    |        |
| 14 | MCH 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 401010                    | 1044410               | 175° 70° SW/     | 00   | Ki        |                    |        |
| 14 | MCH-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 401919                    | 1944410               | 1000 500 500     | 30   | KI Ka     |                    |        |
| 15 | MCH-07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 401517                    | 1944735               | 183°, 58° INW    | 50   | KS        |                    |        |
| 16 | SPP-001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 401790                    | 1944564               | 185°, 37° NW     | 50   | KI        |                    |        |
| 17 | JCH-70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 401196                    | 1944970               | 180°, 80° W      | SO   | Ks        |                    |        |
| 18 | JCH-71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 400376                    | 1944617               | 189°, 70° NW     | S0   | Pal_Eo    |                    |        |
| 19 | JCH-75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 400294                    | 1944592               | 201°, 62° NW     | SO   | Pal_Eo    |                    |        |
| 20 | JCH-77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 400266                    | 1944598               | 184°, 56° NW     | SO   | Pal Eo    |                    |        |
| 21 | JCH-78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 400223                    | 1944594               | 186° 50° NW      | S0   | Pal Fo    |                    |        |
| 22 | 1CH-79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 400188                    | 1944502               | 198° 50° NM/     | 50   | Pal Fo    |                    |        |
| 22 | 104.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 400100                    | 1044602               | 186° 20° 111/    | 60   | Pal Eo    | Miguel Hidalgo     | 6.2 B  |
| 23 | 1011.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 400133                    | 1044000               | 1720 720 014     |      |           |                    |        |
| 24 | JCH-81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 400519                    | 1944926               | 1/2", /2" SW     | 50   | Pal_E0    |                    |        |
| 25 | JCH-85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 400971                    | 1944913               | 010°, 88° SE     | SO   | Ks        |                    |        |
| 26 | Saul21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 401729                    | 1944656               | 181°, 61° NW     | S0   | Ks        |                    |        |
| 27 | CP-Em-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 402162                    | 1944159               | 186°, 58° NW     | S0   | J         |                    |        |
| 28 | CP-Em-41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 401835                    | 1942973               | 196°, 70° NW     | S0   | J         |                    |        |
| 29 | Acevedo10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 399950                    | 1942694               | 180°, 54° NW     | SO   | Pal Eo    |                    |        |
| 30 | Acevedo11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 399928                    | 1943764               | 200° 49° NIM     | 50   | Pal Fo    |                    |        |
| 21 | Acovede12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 400099                    | 1042000               | 1720 760 85      | 80   | Kc        |                    |        |
| 31 | Aceved012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 400988                    | 1943909               | 173,70 3E        | 30   | K5        |                    |        |
| 32 | Acevedo13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 401811                    | 1945605               | 150°, 38° SE     | 50   | KI        |                    |        |
| 33 | J-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 400934                    | 1936676               | 145°, 39° SW     | SO   | Oli       |                    |        |
| 34 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                       | 135°, 25° SW     | S0   | Oli       |                    |        |
| 35 | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 400007                    | 1000007               | 120°, 20° SW     | SO   | Oli       |                    |        |
| 36 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 400937                    | 1930927               | 120°, 26° SW     | S0   | Oli       |                    |        |
| 37 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | -                     | 155° 34° SW      | S0   | Oli       |                    |        |
| 38 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                       | 121° 75° SW      | 50   | Eos       |                    |        |
| 30 | 00.10.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100051                    | 1007055               | 1102 042 014     | 30   | Eus       |                    |        |
| 39 | CP-16-123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 400951                    | 1937255               | 116°, 64° SW     | 50   | EOS       |                    |        |
| 40 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                       | 006°, 40° SE     | S1   | Eos       |                    |        |
| 41 | CP-16-124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /01115                    | 1037854               | 340°, 67° NE     | S0   | Ks        |                    |        |
| 42 | 01-10-124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 401115                    | 1337034               | 190°, 90° NW     | S0   | Ks        |                    |        |
| 43 | 1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 101100                    | 1000101               | 334°, 36° NE     | S0   | Ks        |                    |        |
| 44 | J-05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 401169                    | 1938164               | 029°, 32° SE     | S0   | Ks        |                    |        |
| 45 | CP-16-125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 401193                    | 1938435               | 330° 22° NE      | 50   | Ks        |                    |        |
| 40 | CD 17 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 401100                    | 1036090               | 120% 20% 514/    | 00   | Oli       |                    |        |
| 40 | CP-17-55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 400910                    | 1920909               | 120,30 500       | 30   | OI        |                    |        |
| 47 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |                       | 094°, 34° SW     | 50   | OI        |                    |        |
| 48 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                       | 090°, 32° SW     | S0   | Oli       |                    |        |
| 49 | CP-17-55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 401019                    | 1937004               | 265°, 39° SE     | S0   | Oli       |                    |        |
| 50 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                       | 192°, 68° NW     | S1   | Oli       |                    |        |
| 51 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                       | 172°, 60° SE     | S1   | Oli       |                    |        |
| 52 | a construction of the second sec |                           |                       | 053°, 50° SE     | 50   | Ks        |                    |        |
| 53 | CP-17-56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 401102                    | 1937075               | 042° 50° 55      | 00   | Ke        |                    |        |
| 53 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                       | 126° 60° CM      | 50   | Eco       |                    |        |
| 54 | CP-17-57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 400953                    | 1937253               | 105,09 500       | 50   | EUS       |                    |        |
| 55 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                       | 135°, 63° SW     | 50   | EOS       |                    |        |
| 56 | CP-17-59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 401172                    | 1938157               | 010°, 52° SE     | S0   | Ks        | San Miquel Allende | 620    |
| 57 | 01 11-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -01112                    | 1000101               | 342°, 46° NE     | S0   | Ks        | Sun miguer Allende | 0.20   |
| 58 | CP-17-60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 401132                    | 1938148               | 329°, 66° NE     | S0   | Ks        |                    |        |
| 59 | CP-17-CP-124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 401114                    | 1937850               | 010°, 70° SE     | S0   | Ks        |                    |        |
| 60 | CP-17-61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Contraction of the second |                       | 004°, 67° SE     | SO   | Mio       |                    |        |
| 61 | CP-17-61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 398615                    | 1939412               | 015° 53° SE      | 50   | Mio       |                    |        |
| 62 | 01 17-01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                           |                       | 1/5° 65° 5\\/    | 50   |           |                    |        |
| 02 | 00.17.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 000070                    | 1007500               | 140,00° SW       | 50   | OIS       |                    |        |
| 63 | CP-17-62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 399873                    | 1937593               | 142°, 63° SW     | 50   | UIS       |                    |        |
| 64 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                       | 150°, 61° SW     | S0   | Ols       |                    |        |
| 65 | CP-17-63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 400117                    | 1938050               | 114°, 33° SW     | S0   | Olm       |                    |        |
| 66 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           |                       | 146°, 53° SW     | S0   | Oli       |                    |        |
| 67 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40000                     | 1005.100              | 151°, 50° SW     | S0   | Oli       |                    |        |
| 68 | CP-17-64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 400245                    | 1938497               | 168°. 85° SW     | S1   | Oli       |                    |        |
| 69 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           | -                     | 350° /6° NE      | S1   | Oli       |                    |        |
| 70 | CD 17 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 200052                    | 1027020               | 150°,40 INE      | 51   | Min       |                    |        |
| 70 | CP-1/-80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 399053                    | 193/820               | 152,00° SW       | 50   | IVIIO     |                    |        |
| /1 | SPP-030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 398787                    | 1938257               | 141°, 80° SW     | SO   | MIO       |                    |        |
| 72 | SPP-030                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 398787                    | 1938257               | 348°, 76° NE     | S0   | Mio       |                    |        |
| 73 | JCH-91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 399096                    | 1938851               | 189°, 80° NW     | SO   | Ols       |                    |        |
| 74 | JCH-96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 400594                    | 1938885               | 188°, 30° NW     | S0   | Pal Eo    |                    |        |
| 75 | CP-Sa-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 400939                    | 1936675               | 145°, 39° SW     | S0   | Oli       |                    |        |
| 76 | CP-Sa-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 400037                    | 1036027               | 135° 30° 5\/     | 50   | Oli       |                    |        |
| 70 | CD Co 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 400050                    | 1007060               | 1010 750 000     |      | For       |                    |        |
| 70 | CP-Sa-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 400953                    | 1937202               | 121 , 75° SW     | 50   | EOS       |                    |        |
| 18 | CP-Sa-12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 400953                    | 1937262               | 12P()94 SW       | 50   | E0S       |                    |        |
| 79 | Acevedo15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 399644                    | 1936060               | 146°, 48° SW     | S0   | Mio       |                    |        |
| 80 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                           | 1936060               | 167° 38° SW/     | 50   | Mio       |                    |        |

# Anexo III Datos estructurales colectados en las campañas de campo.
| Ы   | Estación             | Coordenadas Wo            | GS84/UTM Zona 15 | Dato Estructural | Tino        | Formación     | Localidad    | Figure |
|-----|----------------------|---------------------------|------------------|------------------|-------------|---------------|--------------|--------|
| 01  | LSIGGIOIT            | Х                         | Y                |                  | 50<br>1100  | Ko            | Locanudu     | rigura |
| 82  | CP-16-126            | 403595                    | 10/70/1          | 355°, 46° NE     | 50          | Ks            |              |        |
| 83  |                      | +00000                    | 1041041          | 215°, 74° NW     | S1          | Ks            |              |        |
| 84  | CP-16-127            | 403892                    | 1946620          | 076°, 32° SE     | S0          | Ks            |              |        |
| 85  | CP-16-128            | 403892                    | 1946620          | 188°, 52° NW     | S0          | Ks            |              |        |
| 86  |                      |                           |                  | 308°, 82° NE     | S0          | Pal_Eo        |              |        |
| 87  | CP-16-165            | 404133                    | 1947246          | 305°, 80° NE     | S0          | Pal_Eo        |              |        |
| 88  |                      |                           |                  | 333°, 44° NE     | S1          | Pal_Eo        |              |        |
| 89  | CP-16-166            | 404748                    | 1947775          | 260°, 42° NW     | SO          | Dl_inf-med_Lu |              |        |
| 90  | CP-16-167            | 405377                    | 1948084          | 300°, 36° NE     | SO          | DI_inf-med_Lu |              |        |
| 91  | CP-16-168            | 405808                    | 1948764          | 250°, 34° NW     | SO          | DI_Inf-med_Lu |              | 6.3 A  |
| 92  | CP-16-169            | 402182                    | 1947966          | 124° 60° SW      | 50          | Ki            |              |        |
| 93  | MCH-28               | 401531                    | 19/8778          | 173° 90° SW      | 50          | Ki            |              |        |
| 95  | MCH-31               | 432686                    | 1930030          | 268° 19° NW      | 50          | Ki            | El Retiro    |        |
| 96  | SPP-009              | 403130                    | 1946684          | 160°, 79° SW     | S2          | Ks            |              |        |
| 97  | SPP-009              | 403130                    | 1946684          | 304°, 77° NE     | S2          | Ks            |              |        |
| 98  | SPP-017              | 401517                    | 1948261          | 156°, 72° SW     | S0          | Ki            |              |        |
| 99  | SPP-017              | 401517                    | 1948261          | 155°, 69° SW     | S0          | Ki            |              |        |
| 100 | SPP-017              | 401517                    | 1948261          | 105°, 85° SW     | S2          | Ki            |              |        |
| 101 | SPP-017              | 401517                    | 1948261          | 197°, 56° SW     | S2          | Ki            |              |        |
| 102 | SPP-018              | 401510                    | 1948532          | 138°, 68° SW     | S0 inv      | Ki            |              |        |
| 103 | SPP-020              | 401533                    | 1948775          | 168°, 88° SW     | 50          | KI<br>Dol Eo  |              |        |
| 104 | SPP-021<br>CB-Sa-12  | 401951                    | 1047044          | 315°, 35° NE     | 50          | Pai_E0        |              |        |
| 105 | CP-Sd-13<br>CD-Sa-14 | 403394                    | 1947044          | 076° 32° CE      | 50          | Ke            |              |        |
| 107 | CP-Sa-14             | 404166                    | 1946392          | 188° 52° NM      | 50          | Ks            |              |        |
| 108 | Acevedo38            | 404119                    | 1946687          | 154°, 64° SW     | 50          | Pal Eo        |              |        |
| 109 |                      |                           | _,,              | 347°, 51° NE     | S0          | Ki            |              |        |
| 110 |                      |                           |                  | 314°, 76° SW     | S0          | Ki            |              |        |
| 111 | CP-16-100            | 403856                    | 1944189          | 025°, 82° SE     | S1          | Ki            |              |        |
| 112 |                      |                           |                  | 122°, 86° NE     | S1          | Ki            |              |        |
| 113 |                      |                           |                  | 035°, 76° SE     | S1          | Ki            |              |        |
| 114 | -                    |                           |                  | 325°, 65° NE     | SO          | Ki            |              |        |
| 115 | 00 40 400            | 100000                    | 101/005          | 231°, 80° NW     | S1          | Ki            |              |        |
| 116 | CP-16-103            | 403832                    | 1944285          | 285°, 60° NE     | 51          | KI            |              |        |
| 110 |                      |                           |                  | 034°, 45° SE     | 51<br>51    | KI            |              |        |
| 110 |                      |                           |                  | 235° 40° NM      | 51          | Ki            |              |        |
| 120 |                      | 403877                    |                  | 150°, 45° SW     | S0          | Ki            |              |        |
| 121 |                      | 4030/7                    |                  | 006°, 62° SE     | S2          | Ki            |              |        |
| 122 | CP-Pcontacto         | 404191                    | 1944691          | 151°, 66° SW     | S0-Contacto | Ks            |              |        |
| 123 | CD 16 107            | 40.41.00                  | 1042004          | 063°, 82° SE     | S1          | Ki            |              |        |
| 124 | CP-16-107            | 404109                    | 1943901          | 196°, 70° NW     | S1          | Ki            |              |        |
| 126 |                      | 404285                    | 19//159          | 345°, 44° SW     | S0-Contacto | Ki            |              |        |
| 127 | CTO-CZ-MNDZ          |                           |                  | 176°, 32° SW     | S0-Contacto | Ki            |              |        |
| 128 |                      |                           | 1044100          | 165°, 44° SW     | S0-Contacto | Ki            |              |        |
| 129 |                      |                           |                  | 162°, 63° SW     | S0-Contacto | Ki            |              |        |
| 130 |                      |                           |                  | 135°, 84° SW     | SO          | KI            |              |        |
| 122 | -                    |                           |                  | 304°, 53° NE     | 50          | Ki            |              |        |
| 132 |                      |                           |                  | 149° 50° SW      | 50          | Ki            |              |        |
| 134 |                      |                           |                  | 120°, 02° SW     | 50          | Ki            |              |        |
| 135 | CP-Cz-G2             | 404132                    | 1943834          | 050°, 68° SE     | S1          | Ki            |              |        |
| 136 |                      |                           |                  | 264°, 54° NW     | S1          | Ki            |              |        |
| 137 |                      |                           |                  | 051°, 59° SE     | S1          | Ki            | Las Isabeles | 6.3 B  |
| 138 |                      |                           |                  | 050°, 34° SE     | S1          | Ki            |              |        |
| 139 |                      |                           |                  | 010°, 25° SE     | S1          | Ki            |              |        |
| 140 |                      |                           |                  | 054°, 54° SE     | S1          | Ki            |              |        |
| 141 | CP-16-108            | 404132                    | 1943799          | 311°, 69° NE     | SO          | Ki            |              |        |
| 142 | OD 40 400            | 40.4000                   | 1943849          | 320°, 88° NE     | SO          | Ki            |              |        |
| 143 | CP-16-109            | 16-109 404228             |                  | 197°, 39° NW     | S1<br>81    | KI            |              |        |
| 144 |                      |                           |                  | 320° 88° ME      | 51          | Ki            |              |        |
| 145 | CP-16-110            | 404251                    | 10/2072          | 197° 39° NIM     | S1          | Ki            |              |        |
| 140 | 01-10-110            | -04231                    | 1343072          | 035°. 81° SF     | S1          | Ki            |              |        |
| 148 |                      |                           |                  | 321°, 61° NE     | S0          | Ks            |              |        |
| 149 |                      | CP-16-112-113 404189 1944 |                  | 227°, 22° NW     | SO          | Ks            |              |        |
| 150 |                      |                           |                  | 186°, 29° NW     | S0          | Ks            |              |        |
| 151 |                      |                           |                  | 114°, 86° SW     | SO          | Ks            |              |        |
| 152 |                      |                           |                  | 191°, 44° NW     | SO          | Ks            |              |        |
| 153 | CP-16-112-113        |                           | 1944668          | 109°, 76° SW     | S0          | Ks            |              |        |
| 154 |                      |                           |                  | 111°, 84° SW     | SO          | Ks            |              |        |
| 156 |                      |                           |                  | 286°, 41° NE     | SO          | Ks            |              |        |
| 157 |                      |                           |                  | 114°, 62° SW     | SO          | KS            |              |        |
| 150 |                      |                           |                  | 129°, 60° SW     | 50          | KS            |              |        |
| 160 |                      |                           |                  | 14, 54 INE       | 50          | Ke            |              |        |
| 161 |                      |                           |                  | 058°, 81° SF     | S1          | Ks            |              |        |
| 162 |                      |                           |                  | 009°. 54° SE     | S1          | Ks            |              |        |
| 163 | CP-16-114            | 404279                    | 1944715          | 100°, 90° SW     | S1          | Ks            |              |        |
| 164 |                      |                           |                  | 158°, 40° NE     | S1          | Ks            |              |        |
| 165 |                      |                           |                  | 1059, 55° SE     | S1          | Ks            |              |        |

| Id  | Estación      | Coordenadas W<br>X | GS84/UTM Zona 15<br>Y | Dato Estructural         | Tipo   | Formación    | Localidad           | Figura |
|-----|---------------|--------------------|-----------------------|--------------------------|--------|--------------|---------------------|--------|
| 166 |               |                    |                       | 166°, 90° SW             | S1     | Ks           |                     |        |
| 167 | CP-16-114     |                    |                       | 146°, 56° SW             | S0     | Ks           |                     |        |
| 168 |               |                    |                       | 096°, 87° SE             | S1     | Ks           |                     |        |
| 169 | OD 10 115     | 40.4055            | 1045107               | 005°, 40° SE             | S0     | Pal_Eo       |                     |        |
| 170 | CP-10-115     | 404655             | 1945157               | 144°, 55° SW             | S0     | Pal_Eo       |                     |        |
| 171 | A             | 404625             | 1945639               | 152°, 46° SW             | S0     | Pal_Eo       |                     |        |
| 172 | CP-16-129     | 405167             | 1945174               | 124°, 52° SW             | S0     | Pal_Eo       |                     |        |
| 173 | CP-16-130     | 405345             | 1944588               | 321°, 55° NE             | S0     | Pal_Eo       |                     | -      |
| 174 | SPP-029       | 403886             | 1944364               | 008°, 61° SE             | S2     | Ki           |                     |        |
| 175 | SPP-029       | 403886             | 1944364               | 007°, 60° SE             | S2     | Ki           |                     |        |
| 176 | CP-Sa-1       | 403856             | 1944189               | 347°, 71° NE             | S0     | Ki           |                     |        |
| 177 | CP-Sa-2       | 403831             | 1944288               | 336°, 54° NE             | S0     | Ki           |                     |        |
| 178 | CP-Sa-3       | 404109             | 1943901               | 162°, 63° SW             | S0     | Ki           |                     |        |
| 179 | CP-Sa-4       | 404853             | 1945133               | 144°, 55° SW             | S0     | Ks           |                     |        |
| 180 | CP-Sa-16      | 404602             | 1945678               | 152°, 46° SW             | S0     | Pal_Eo       |                     |        |
| 181 | CP-Sa-17      | 405160             | 1945165               | 124°, 52° SW             | S0     | Pal_Eo       | Las Isabeles        | 63B    |
| 182 | CP-Sa-22      | 403427             | 1944532               | 255°, 20° NW             | S0     | Ki           | Lus isubcies        | 0.0 D  |
| 183 | CP-Sa-23      | 403846             | 1944338               | 156°, 62° SW             | S0     | Ki           |                     | -      |
| 184 | CP-Sa-24      | 403921             | 1944565               | 100°, 63° SW             | S0     | Ki           |                     |        |
| 185 | CPSa-25       | 403934             | 1944575               | 210°, 65° NW             | S0     | Ki           |                     |        |
| 186 | CP-Sa-26      | 403949             | 1944590               | 165°, 45° SW             | S0     | Ki           |                     |        |
| 187 | CP-Sa-27      | 404049             | 1944659               | 158°, 62° SW             | S0     | Ki           |                     |        |
| 188 | CP-Sa-28      | 403941             | 1944582               | 020°, 76° SE             | SO     | Ki           |                     |        |
| 189 | CP-Sa-29      | 404107             | 1944673               | 342°, 52° NE             | 50     | KS           |                     |        |
| 190 | CP-Sa-30      | 404151             | 1944672               | 310°, 68° NE             | 50     | KS           |                     |        |
| 191 | CP-Sa-31      | 404169             | 1944673               | 150°, 65° SW             | 50     | KS           |                     |        |
| 192 | CP-Sa-32      | 404189             | 1944697               | 162°, 70° SW             | 50     | Ks           |                     |        |
| 193 | CP-Sa-33      | 404207             | 1944672               | 016°, 90° SE             | 50     | KS           |                     |        |
| 194 | CP-Sa-34      | 404326             | 1944745               | 147°, 45° SW             | 50     | KS           |                     |        |
| 195 | CP-Sa-35      | 404282             | 1944720               | 146°, 45° SW             | 50     | KS           |                     |        |
| 196 | CP-Sa-30      | 404357             | 1944835               | 150°, 36° SW             | 50     | KS           |                     |        |
| 197 | CP-Sa-37      | 404682             | 1945034               | 330°, 33° NE             | 50     | KS<br>Del Fe |                     |        |
| 198 | CD 10 100     | 405017             | 1044105               | 335°, 24° NE             | 50     | Pal_Eo       |                     |        |
| 199 | CP-16-160     | 405817             | 1944125               | 004°, 48° SE             | 50     | Pal_E0       |                     |        |
| 200 |               |                    |                       | 270° 24° NM              | 50     | Pal_E0       |                     |        |
| 201 | CP-16-161     | 407103             | 1945017               | 270,34 NW                | 50     | OL inf mod   |                     |        |
| 202 |               |                    |                       | 285', 41' NE             | 50     | Ol_inf-med   |                     |        |
| 203 |               |                    |                       | 072,03 SE                | 50     | Ol_inf-med   |                     |        |
| 204 | CD 16 162     | 407506             | 1045226               | 140° 91° SW              | 51     | OL inf mod   |                     |        |
| 205 | CP-10-102     | 407506             | 1945236               | 251° 62° NM              | 51     | OL inf mod   |                     |        |
| 200 |               |                    |                       | 231,02 NVV               | 51     | OL inf mod   |                     |        |
| 207 |               |                    |                       | 070° 15° SE              | 50     | OL inf-med   |                     |        |
| 200 | CD 17 275     | 407100             | 407190 1945039        | 064° 11° SE              | 50     | OL inf-med   | Entrada Tarabuamara | 620    |
| 209 | CF-17-275     | 407190             |                       | 064,11 SE<br>077° 10° SE | 50     | OL inf-med   | Entrada Tarandamara | 0.3 C  |
| 210 |               |                    |                       | 005° 75° SE              | 50     | Pal Fo       |                     |        |
| 211 | CP-17-276     | 406095             | 1944129               | 000°, 75° SE             | 50     | Pal Eo       |                     |        |
| 213 | CP-17-277     | 406084             | 1944222               | 002° 85° SE              | 50     | Pal Eo       |                     |        |
| 214 | 0. 1. 1.      | 100001             | TOTIEEE               | 009°, 50° SE             | 50     | Pal Fo       |                     |        |
| 215 | CP-17-278     | 405848             | 1944083               | 005°, 49° SE             | 50     | Pal Eo       |                     |        |
| 216 | Acevedo39     | 405483             | 1946496               | 136°, 07° SW             | 50     | Ol inf-med   |                     |        |
| 217 | Acevedo40     | 406009             | 1946447               | 324°. 10° NE             | S0     | Ol inf-med   |                     |        |
| 218 | Acevedo41     | 406806             | 1945831               | 321°. 05° NE             | SO     | Ol inf-med   |                     |        |
| 219 | Acevedo42     | 407248             | 1945489               | 067°, 07° SE             | SO     | OI inf-med   |                     |        |
| 220 | Acevedo43     | 406157             | 1945417               | 026°, 10° SE             | S0     | Ol_inf-med   |                     |        |
| 221 | CP-16-117     | 405409             | 1940850               | 347°, 55° SW             | SO     | Ks           |                     |        |
| 222 | Cp-16-131     | 405385             | 1941285               | 154°, 55° SW             | S0     | Ks           |                     |        |
| 223 | CP-16-132-133 | 405370             | 1939805               | 180°, 53° SW             | S0     | Pal Eo       |                     |        |
| 224 | 00 10 150     | 405044             | 10/11/001             | 162°, 63° SW             | S0     | Ks           |                     |        |
| 225 | CP-16-152     | 405614             | 1941981               | 162°, 63° SW             | S1     | Ks           |                     |        |
| 226 |               |                    |                       | 342°, 74° NE             | S0     | Pal_Eo       |                     |        |
| 227 |               |                    |                       | 342°, 74° NE             | SO     | Pal_Eo       |                     |        |
| 228 |               |                    |                       | 023°, 72° SE             | S1     | Pal_Eo       |                     |        |
| 229 | CP-16-152     | 406245             | 10/1927               | 027°, 66° SE             | S1     | Pal_Eo       |                     |        |
| 230 | 04-10-122     | 400245             | 1941027               | 032°, 66° SE             | S1     | Pal_Eo       |                     |        |
| 231 |               |                    |                       | 292°, 84° NW S1 Pal_Eo   | Pal_Eo |              |                     |        |
| 232 |               |                    |                       | 035°, 67° SE             | S1     | Pal_Eo       |                     |        |
| 233 |               |                    |                       | 025°, 62° SE             | S1     | Pal_Eo       |                     |        |
| 234 | CP-16-154     | 406611             | 1941738               | 142°, 84° SW             | S1     | Ol_inf-med   | Vista Hermosa       | 63D    |
| 235 | 0, 10 104     | 100011             | 1041100               | 070°, 80° SE             | S1     | Ol_inf-med   | visa nomosa         | 0.0 0  |
| 236 | CP-16-155     | 407069             | 1942098               | 335°, 14° NE             | S0     | Ols_Turb     |                     |        |
| 237 | CP-16-158     | 408131             | 1942232               | 299°, 04° NE             | S0     | Ols_Cong     |                     |        |
| 238 | CP-16-159     | 406762             | 1941772               | 342°, 09° NE             | S0     | Ol_inf-med   |                     |        |
| 239 | CP-17-72      | 405401             | 1940819               | 165°, 60° SW             | S0     | Ks           |                     |        |
| 240 | CP-17-274     | 406613             | 1941733               | 250°, 14° NW             | S0     | Ol_inf-med   |                     |        |
| 241 | 5. 11 EIT     | 100010             | 1041100               | 254°, 16° NW             | S0     | Ol_inf-med   |                     |        |
| 242 | CP-Sa-18      | 405382             | 1941287               | 154°, 35° SW             | S0     | Ks           |                     |        |
| 243 | CP-Em-29      | 405049             | 1940393               | 172°, 30° SW             | S0     | Ki           |                     |        |
| 244 | CP-Em-39      | 405049             | 1940393               | 172°, 30° SW             | S0     | Ki           |                     |        |
| 245 | Acevedo26     | 407665             | 1938376               | 327°, 23° NE             | S0     | Ols_Turb     |                     |        |
| 246 | Acevedo27     | 406705             | 1938928               | 346°, 61° NE             | S0     | Pal_Eo       |                     |        |
| 247 | Acevedo28     | 405724             | 1939493               | 10906° SW                | SO     | Pal_Eo       |                     |        |
| 248 | Acevedo30     | 405633             | 1942365               | 176°, 46° SW             | S0     | Ks           |                     |        |

|     | 1           | Coordonadae W    | C S94/UTM Zopp 15  |                  | . <u> </u> |            |                      |        |
|-----|-------------|------------------|--------------------|------------------|------------|------------|----------------------|--------|
| Id  | Estación    | X                | GS64/01 M 2011a 15 | Dato Estructural | Tipo       | Formación  | Localidad            | Figura |
| 249 | Acevedo31   | 406879           | 1940743            | 333°, 21° NE     | S0         | Ol_inf-med |                      |        |
| 250 | Acevedo32   | 407903           | 1940062            | 341°, 28° NE     | S0         | Ols_Cong   | Vista Hermosa        | 6.9.5  |
| 251 | Acevedo33   | 407484           | 1942120            | 330°, 18° NE     | S0         | Ols_Turb   |                      | 6.3 D  |
| 252 | Acevedo34   | 407358           | 1942963            | 055°, 07° SE     | 50         | Ols_Turb   |                      |        |
| 253 | ALEVEU055   | 408809           | 1940032            | 130° 83° SW      | 50         | 1          |                      |        |
| 255 | -           |                  |                    | 122°, 90° SW     | S0         | J          |                      |        |
| 256 | CP-16-145   | 402248           | 1946908            | 123°, 58° SW     | S0         | J          |                      |        |
| 257 |             |                  |                    | 285°, 64° NE     | S1         | J          | -                    |        |
| 258 | CP-16-145-b | 402246           | 1946910            | 100°, 82° SW     | S0         | J          |                      |        |
| 259 |             |                  |                    | 084°, 77° SE     | S0         | J          |                      |        |
| 260 | -           |                  |                    | 100° 82° SW      | 50         | J          |                      |        |
| 262 | -           |                  |                    | 253°, 76° NW     | S1         | .1         |                      |        |
| 263 | CP-16-163   | 402233           | 1946966            | 235°, 82° NW     | S1         | J          |                      |        |
| 264 |             |                  |                    | 225°, 70° NW     | S1         | J          |                      |        |
| 265 |             |                  |                    | 264°, 64° NW     | S1         | J          |                      |        |
| 266 |             |                  | 1000 Northeast 1   | 285°, 64° NE     | S1         | J          |                      |        |
| 267 | CP-16-164   | 402226           | 1946744            | 135°, 34° SW     | S0         | J          |                      |        |
| 268 | CP-17-88    | 402385           | 1946455            | 166°, 50° SW     | 50         | J          |                      |        |
| 209 | CP-17-89    | 402302           | 1946357            | 157° 66° SW      | 50         | .1         |                      |        |
| 271 | CP-17-91    | 402418           | 1946298            | 125°, 50° SW     | S0         | Ĵ          |                      |        |
| 272 |             |                  |                    | 142°, 80° SW     | S0         | J          |                      |        |
| 273 |             |                  |                    | 146°, 68° SW     | S0         | J          |                      |        |
| 274 |             |                  |                    | 127°, 50° SW     | S4         | J          |                      |        |
| 275 | -           |                  |                    | 133°, 60° SW     | S4         | J          |                      |        |
| 276 | _           |                  |                    | 132°, 61° SW     | S4         | J          |                      |        |
| 278 | CP-17-92    | 402426           | 1946278            | 148° 82° SW      | 54         | J<br>1     |                      |        |
| 279 |             |                  |                    | 149°, 59° SW     | S4         | J          |                      |        |
| 280 | -           |                  |                    | 309°, 77° NE     | S4         | J          |                      |        |
| 281 | -           |                  |                    | 159°, 70° SW     | S4         | J          |                      | 6.4 A  |
| 282 | _           |                  |                    | 150°, 68° SW     | S4         | J          | Bloque Cerro Pelón   |        |
| 283 |             |                  |                    | 156°, 52° SW     | S4         | J          |                      |        |
| 284 | _           |                  |                    | 147°, 69° SW     | 50         | J          |                      |        |
| 285 | -           |                  |                    | 149°, 60° SW     | 50         | J<br>1     |                      |        |
| 287 |             |                  |                    | 146°, 57° SW     | S0         | .]         |                      |        |
| 288 | CP-17-93    | -93 402483       |                    | 145°, 61° SW     | S0         | J          |                      |        |
| 289 |             |                  |                    | 146°, 55° SW     | S0         | J          |                      |        |
| 290 |             |                  |                    | 141°, 53° SW     | S0         | J          |                      |        |
| 291 |             |                  | 1946071            | 151°, 49° SW     | S0         | J          |                      |        |
| 292 |             |                  |                    | 131°, 49° SW     | S0         | J          | -                    |        |
| 293 | _           |                  |                    | 145°, 55° SW     | 50         | J          |                      |        |
| 294 | -           |                  |                    | 160°, 59° SW     | 50         | .1         |                      |        |
| 296 | -           |                  |                    | 149°, 76° SW     | S0         | Ĵ          |                      |        |
| 297 | 1           |                  |                    | 129°, 52° SW     | S0         | J          | -                    |        |
| 298 |             |                  |                    | 131°, 54° SW     | S0         | J          |                      |        |
| 299 | 000.000     | 100075           | 1010000            | 125°, 42° SW     | SO         | J          |                      |        |
| 300 | SPP-008     | 402675           | 1946699            | 146°, 47° SW     | SO         | KI         |                      |        |
| 302 | CP-3a-20    | 402248           | 1946908            | 155° 41° SW      | 50         | 1          |                      |        |
| 303 | CP-17-301   | 402349           | 1946371            | 154°, 54° SW     | S0         | J          |                      |        |
| 304 | CP-17-302   | 402346           | 1946358            | 156°, 75° SW     | S0         | J          |                      |        |
| 305 | CP-17-303   | 402418           | 1946302            | 147°, 61° SW     | S0         | J          |                      |        |
| 306 | CP-17-304   | 402425           | 1946281            | 149°, 60° SW     | S0         | J          |                      |        |
| 307 | CP-17-305   | 402420           | 1946257            | 132°, 55° SW     | S0         | J          |                      |        |
| 308 | CP-17-307   | 402468           | 1946151            | 148°, 54° SW     | 50         | J          |                      |        |
| 309 | CP-17-308   | 402469           | 1940148            | 154°, 54° SW     | 50         | J<br>1     |                      |        |
| 311 | GF-17-303   | +02+00           | 1040122            | 012°. 28° SE     | S0         | Ki         |                      |        |
| 312 | CP-17-83    | 404716           | 1939692            | 144°, 89° SW     | S1         | Ki         |                      |        |
| 313 |             |                  |                    | 317°, 63° NE     | S0         | Ki         |                      |        |
| 314 | CP-17-84    | 404595           | 1939576            | 088°, 65° SE     | S0         | Ki         |                      |        |
| 315 |             | 404395           | Ta2a2/0            | 085°, 65° SE     | S0         | Ki         |                      |        |
| 316 |             |                  |                    | 348°, 46° NE     | 50         | KI         |                      |        |
| 318 | CP-17-85    | 404671           | 1939185            | 188° 54° NW      | 50         | Ki         |                      |        |
| 319 | CP-17-86    | 404793           | 1938886            | 192°, 68° NW     | S0         | Ki         |                      |        |
| 320 | 00 17 07    | 40.4000          | 1000714            | 165°, 54° SW     | SO         | Ks         |                      |        |
| 321 | CP-1/-8/    | 404833           | 1938/11            | 155°, 49° SW     | S0         | Ks         |                      |        |
| 322 | CP-17-257   | 404139           | 1939384            | 205°, 72° NW     | S0         | J          | Bloque El encajonado | 6.4 B  |
| 323 | 00.47.075   | CP-17-258 403919 | 919 1939311        | 224°, 80° NW     | S0         | J          |                      |        |
| 324 | CP-17-258   |                  |                    | 221°, 72° NW     | 50         | J          |                      |        |
| 325 |             |                  |                    | 224° 60° NW      | 50         | J          |                      |        |
| 327 | CP-17-259   | 403537           | 1938958            | 220°, 46° NW     | S0         | Ĵ          | -                    |        |
| 328 |             |                  | 400001 1938928     | 229°, 60° NW     | S0         | J          |                      |        |
| 329 | CP-17-260   | 403565           | 1938934            | 2350 30° NW      | S0         | J          |                      |        |
| 330 | CP-Em-33    | 404785           | 1939822            | 100°, 55° SW     | S0         | Ki         |                      |        |
| 331 | CP-Em-34    | 404718           | 1939143            | 175°, 86° SW     | S0         | Ki         |                      |        |
| 332 | CP-Em-35    | 404699           | 1938854            | 210°, 80° NW     | SO         | Ki         | _                    |        |

| Id                | Estación           | Coordenadas W    | GS84/UTM Zona 15 | Dato Estructural                             | Tipo     | Formación | Localidad            | Figura |
|-------------------|--------------------|------------------|------------------|----------------------------------------------|----------|-----------|----------------------|--------|
| 224               | Co 16 104          | X                | Y<br>1027152     | 0040 600 65                                  | 80       |           |                      | 5      |
| 225               | CP 17 CP           | 405/15           | 1027712          | 094,00 SE                                    | 50       | J         |                      |        |
| 333               | 06-11-00           | 401427           | 1921112          | 002,02 SE                                    | 50       | J         |                      |        |
| 330               | CP-17-69           | 401486           | 1937793          | 084° 61° CE                                  | 50       | J         |                      |        |
| 331               | CD 17 70           | 401522           | 1027024          | 110° 70° CM                                  | 50       | J<br>1    |                      |        |
| 330               | CP-17-70           | 401522           | 1027006          | 110,70 SW                                    | 50       | J         |                      |        |
| 339               | CP-17-71           | 401506           | 1937886          | 080°, 60° SE                                 | SU       | J         |                      |        |
| 340               | CP-17-73           | 405622           | 1937060          | 079°, 68° SE                                 | SU       | J         |                      |        |
| 341               | CP-17-76           | 402545           | 1937300          | 094°, 58° SW                                 | SU       | J         |                      |        |
| 342               | 00.47.77           | 100100           | 1007150          | 100°, 44° SW                                 | 50       | J         |                      |        |
| 343               | CP-17-77           | 402492           | 1937453          | 100°, 75° SW                                 | SO       | J         |                      |        |
| 344               | CP-17-78           | 402484           | 1937740          | 080°, 71° SE                                 | SO       | J         |                      | 640    |
| 345               |                    |                  |                  | 109°, 82° SE                                 | S0       | J         |                      |        |
| 346               | CP 17-251          | 405247           | 1937007          | 265°, 85° NW                                 | SO       | J         |                      |        |
| 347               |                    |                  | 2007007          | 261°, 68° NW                                 | S0       | J         |                      |        |
| 348               | SPP-016            | 402539           | 1937315          | 105°, 58° SW                                 | S0       | J         | Bloque Cerro Jimbal  |        |
| 349               | SPP-016            | 402539           | 1937315          | 095°, 54° SW                                 | S0       | J         | Bioque Berre Biribai | 0.10   |
| 350               | SPP-033            | 402500           | 1937612          | 076°, 48° SE                                 | S0       | J         |                      |        |
| 351               | SPP-033            | 402500           | 1937612          | 091°, 57° SE                                 | S0       | J         |                      |        |
| 352               | SPP-033            | 402500           | 1937612          | 095°, 53° SE                                 | S0       | J         |                      |        |
| 353               | CP1_Bloque_Jimbal  | 402441           | 1937787          | 065°, 78° SE                                 | S0       | J         |                      |        |
| 354               | CP2_Bloque_Jimbal  | 402463           | 1937769          | 065°, 78° SE                                 | SO       | J         |                      |        |
| 355               | CP3_Bloque Jimbal  | 402497           | 1937707          | 075°, 65° SE                                 | S0       | J         |                      |        |
| 356               | CP4 Bloque Jimbal  | 402503           | 1937644          | 080°, 68° SE                                 | S0       | J         |                      |        |
| 357               | CP5_Bloque Jimbal  | 402513           | 1937623          | 087°, 62° SE                                 | S0       | J         |                      |        |
| 358               | CP6 Bloque Jimbal  | 402510           | 1937615          | 083°, 59° SE                                 | S0       | J         |                      |        |
| 359               | CP7 Bloque Jimbal  | 402467           | 1937486          | 079°. 78° SE                                 | SO       | J         |                      |        |
| 360               | CP8 Bloque limbal  | 402490           | 1937471          | 080° 81° SE                                  | 50       | .1        |                      |        |
| 361               | CP9 Bloque limbal  | 402545           | 1937311          | 090° 56° SW                                  | 50       | 1         |                      |        |
| 362               | CP10 Bloque limbal | 402456           | 1937209          | 093° 83° 614/                                | 50       | 1         |                      |        |
| 362               | CP11 Bloque limbel | 402430           | 1027005          | 120° 20° 514/                                | 50       | 1         |                      |        |
| 303               | CP Amoritan        | 402472           | 1024222          | 120,00 SW                                    | 50       | J         |                      |        |
| 304               | CP-Amonites        | 408987           | 1934222          | 134 , 20° SW                                 | 50       | KI        |                      |        |
| 305               | CP-16-121          | 407498           | 1932974          | 200°, 34° NW                                 | 50       | EO        |                      |        |
| 366               | CP-16-122          | 407287           | 1933386          | 292°, 84° NE                                 | SO       | EO        |                      |        |
| 367               | CP-17-75           | 409203           | 1934146          | 122°, 36° SW                                 | S0       | Ki        |                      |        |
| 368               | 5. 2. 10           |                  |                  | 124°, 27° SW                                 | S0       | Ki        |                      |        |
| 369               | CP-17-261          | 409209           | 1934147          | 140°, 37° SW                                 | S0       | Ki        |                      |        |
| 370               | 01 TI 201          | -00200           | 1004141          | 135°, 38° SW                                 | SO       | Ki        |                      |        |
| 371               |                    |                  |                  | 129°, 80° SW                                 | S0       | Ks        |                      |        |
| 372               | CP-17-262          | 407552           | 1933488          | 129°, 87° SW                                 | S0       | Ks        |                      |        |
| 373               |                    |                  |                  | 145°, 51° SW                                 | S0       | Ks        |                      |        |
| 374               |                    |                  |                  | 304°, 88° NE                                 | S0       | Eo        |                      |        |
| 375               | 00.17.000          | 407004           | 1000000          | 296°, 84° NE                                 | S0       | Eo        |                      |        |
| 376               | CP-17-263          | 407281           | 1933388          | 117°, 66° SW                                 | S0       | Eo        |                      |        |
| 377               | 1                  |                  |                  | 114°, 84° SW                                 | SO       | Eo        |                      |        |
| 378               |                    |                  |                  | 155°, 60° SW                                 | S0       | Ks        |                      |        |
| 379               |                    |                  |                  | 164°, 75° SW                                 | S0       | Ks        |                      |        |
| 380               |                    |                  |                  | 130°. 76° SW                                 | SO       | Ks        |                      |        |
| 381               |                    |                  | -                | 318°, 75° NF                                 | S4       | Ks        |                      |        |
| 382               |                    |                  | 321°, 85° NE     | 54                                           | Ks       |           |                      |        |
| 383               |                    |                  |                  | 310° 84° NE                                  | 54       | Ke        |                      |        |
| 384               | -                  |                  |                  | 325° 72° NE                                  | C/       | Ke        |                      |        |
| 204               | -                  |                  |                  | 310° 00° NE                                  | C/       | Ko        |                      |        |
| 202               | -                  |                  |                  | 310,00 NE                                    | 54       | KS        |                      |        |
| 300               |                    |                  |                  | 318, 08" NE                                  | 54       | KS        |                      |        |
| 387               | -                  |                  |                  | 324°, 87° NE                                 | 54       | KS        |                      |        |
| 388               |                    |                  |                  | 308°, 84° NE                                 | 54       | Ks        |                      |        |
| 389               | -                  |                  |                  | 299°, 82° NE                                 | S4       | Ks        |                      |        |
| 390               |                    |                  |                  | 323°, 85° NE                                 | S4       | Ks        | López Ravón          | 654    |
| 391               | CP-17-264          | 407319           | 1933449          | 310°, 82° NE                                 | S4       | Ks        | Lopoz nayon          | 0.0 A  |
| 392               | 01-11-204          | 401313           | 1999449          | 305°, 86° NE                                 | S4       | Ks        |                      |        |
| 393               |                    |                  |                  | 148°, 70° SW                                 | S4       | Ks        |                      |        |
| 394               |                    |                  |                  | 304°, 87° NE                                 | S4       | Ks        |                      |        |
| 395               |                    |                  |                  | 127°, 88° SW                                 | S4       | Ks        |                      |        |
| 396               |                    |                  |                  | 145°, 88° SW                                 | S4       | Ks        |                      |        |
| 397               |                    |                  |                  | 136°, 87° SW                                 | S4       | Ks        |                      |        |
| 398               | 1                  |                  |                  | 140°, 89° SW                                 | S4       | Ks        |                      |        |
| 399               |                    |                  |                  | 105°, 46° SW                                 | S4       | Ks        |                      |        |
| 400               | 1                  |                  |                  | 330°. 75° NE                                 | S4       | Ks        |                      |        |
| 401               | 1                  |                  |                  | 333°. 90° NE                                 | S4       | Ks        |                      |        |
| 402               | 1                  |                  |                  | 138° 81° SW                                  | S4       | Ks        |                      |        |
| 403               | -                  |                  |                  | 135° 87° SW/                                 | 54       | Ke        |                      |        |
| 404               | -                  |                  |                  | 327° 80° NE                                  | 54       | Ke        |                      |        |
| 404               | -                  |                  |                  | 310° 20° NE                                  | C/       | Ke        |                      |        |
| 405               |                    |                  |                  | 117° 64° CM                                  | 54       | Mio       |                      |        |
| 400               | -                  |                  |                  | 110° C4° SW                                  | 50       | IVIIO     |                      |        |
| 407               | -                  | CP-17-265 407029 | 407029 1932886   | 112°, 64° SW                                 | 50       | MIO       |                      |        |
| 408               | CP-17-265          |                  |                  | 112°, 73° SW                                 | 50       | MIO       |                      |        |
| 409               |                    |                  |                  | 160°, 89° SW                                 | S1       | Mio       |                      |        |
| 410               |                    |                  |                  | 170°, 15° SW                                 | S1       | Mio       |                      |        |
| 411               |                    |                  |                  | 165°, 89° SW                                 | S1       | Mio       |                      |        |
| 412               | CP-17-266          | 406902           | 1932684          | 116°, 67° SW                                 | S0       | Mio       |                      |        |
| 413               | CP-17-270          | 406666           | 103/827          | 175°, 77° SW                                 | S0       | Ki        |                      |        |
|                   | GP-11-2/U          | 400000           | 1934027          | 165° 74° SW                                  | SO       | Ki        |                      |        |
| 414               |                    |                  |                  | 100,74 000                                   |          |           |                      |        |
| 414<br>415        | 00 47 074          | 407004           | 1005010          | 109°, 62° SW                                 | S0       | Ki        |                      |        |
| 414<br>415<br>416 | CP-17-271          | 407361           | 1935018          | 109°, 62° SW<br>109°, 62° SW<br>106°, 64° SW | S0<br>S0 | Ki        |                      |        |

| Id  | Estación  | Coordenadas WGS84/UTM Zona 15 |              | Data Fatruatur-  | Tine | Formagién                | Localidad     | Eigura |  |
|-----|-----------|-------------------------------|--------------|------------------|------|--------------------------|---------------|--------|--|
| ia  |           | Х                             | Y            | Dato Estructural | про  | Formación                | LUCAIIUAU     | Figura |  |
| 418 | CP-Sa-5   | 407491                        | 1932976      | 266°, 34° NW     | S0   | Eo                       | -             |        |  |
| 419 | CP-Sa-6   | 407354                        | 1933111      | 271°, 25° NE     | S0   | Eo                       |               |        |  |
| 420 | CP-Sa-7   | 407484                        | 1933439      | 316°, 76° NE     | S0   | Ks                       | Ι όρος Βοιγόρ | 6 E A  |  |
| 421 | CP-Sa-8   | 407484                        | 1933439      | 310°, 80° NE     | S0   | Ks                       | Lopez Rayon   | 6.5 A  |  |
| 422 | CP-Sa-19  | 408569                        | 1933866      | 118°, 79° SW     | S0   | Ki                       |               |        |  |
| 423 | Acevedo24 | 405985                        | 1931214      | 317°, 38° NE     | S0   | Ols                      |               |        |  |
| 424 | CP-17-252 | 403956                        | 1934125      | 120°, 49° SW     | S0   | Mio                      |               |        |  |
| 425 | CP-17-253 | 404007                        | 1933463      | 272°, 13° NE     | S0   | Mio                      |               |        |  |
| 426 | CP-17-254 | 403380                        | 1932657      | 308°, 53° NE     | S0   | Oli                      |               |        |  |
| 427 | CP-17-255 | 403108                        | 1932137      | 310°, 52° NE     | S0   | Oli                      |               |        |  |
| 428 | CP-17-256 | 403087                        | 1931943      | 330°, 50° NE     | S0   | Oli                      |               |        |  |
| 429 |           |                               |              | 140°, 63° SW     | S0   | Oli                      |               |        |  |
| 430 |           |                               |              | 136°, 60° SW     | S0   | Oli                      |               |        |  |
| 431 |           |                               |              | 144°, 55° SW     | S0   | Oli                      |               |        |  |
| 432 |           |                               |              | 140°, 62° SW     | S0   | Oli                      |               |        |  |
| 433 |           |                               |              | 134°, 60° SW     | S0   | Oli                      |               |        |  |
| 434 |           |                               |              | 140°, 63° SW     | S0   | Oli                      |               |        |  |
| 435 | 00 17 007 | 405000                        | 1025102      | 136°, 57° SW     | S0   | Oli                      |               |        |  |
| 436 | CP-17-267 | 405096                        | 1935102      | 066°, 88° SE     | S0   | Oli                      |               |        |  |
| 437 |           |                               |              | 145°, 64° SW     | S0   | Oli                      | 1             |        |  |
| 438 |           |                               |              | 152°, 78° SW     | S0   | Oli                      |               |        |  |
| 439 |           |                               |              | 082°, 86° SE     | S0   | Oli                      |               |        |  |
| 440 |           |                               |              | 134°, 60° SW     | S0   | Oli                      |               |        |  |
| 441 |           |                               |              | 140°, 63° SW     | S0   | Oli                      |               |        |  |
| 442 |           |                               |              | 136°, 57° SW     | S0   | Oli                      |               |        |  |
| 443 |           |                               |              | 140°, 54° SW     | S0   | Oli                      |               |        |  |
| 444 |           |                               |              | 270°, 45° N      | S1   | Oli                      |               |        |  |
| 445 |           |                               |              | 294°, 56° NE     | S1   | Oli                      |               |        |  |
| 446 |           |                               | 296°, 50° NE | S1               | Oli  | - Lindavista-Los Aztecas | 0.5 B         |        |  |
| 447 |           |                               |              | 292°, 65° NE     | S1   | Oli                      | -             |        |  |
| 448 |           |                               |              | 262°, 63° NW     | S1   | Oli                      |               |        |  |
| 449 |           |                               |              | 359°, 75° NE     | S1   | Oli                      |               |        |  |
| 450 |           |                               |              | 266°, 74° NE     | S1   | Oli                      |               |        |  |
| 451 |           |                               |              | 95°, 72° SW      | S1   | Oli                      |               |        |  |
| 452 | CP-17-268 | 405139                        | 1934181      | 017°, 76° SE     | S1   | Oli                      |               |        |  |
| 453 |           |                               |              | 189°, 75° NW     | S1   | Oli                      |               |        |  |
| 454 |           |                               |              | 259°, 82° NW     | S1   | Oli                      |               |        |  |
| 455 |           |                               |              | 234°, 71° NW     | S1   | Oli                      |               |        |  |
| 456 |           |                               |              | 172°, 85° SW     | S1   | Oli                      |               |        |  |
| 457 |           |                               |              | 280°, 64° NE     | S1   | Oli                      |               |        |  |
| 458 |           |                               |              | 180°, 80° SW     | S1   | Oli                      |               |        |  |
| 459 |           |                               |              | 187°, 90° NW     | S1   | Oli                      | -             |        |  |
| 460 |           |                               |              | 020 °, 77° SE    | S1   | Oli                      | 1             |        |  |
| 461 |           |                               |              | 135°, 45° SW     | S0   | Oli                      | -             |        |  |
| 462 | CP-17-269 | 405344                        | 1934114      | 130°, 57° SW     | S0   | Oli                      | -             |        |  |
| 463 | CP-17-556 | 403139                        | 1932210      | 330°, 50° NE     | S0   | Oli                      |               |        |  |
| 464 | Acevedo20 | 402328                        | 1934826      | 304°, 25° NE     | S0   | Ols                      |               |        |  |
| 465 | Acevedo21 | 403192                        | 1935975      | 142°, 45° SW     | S0   | Olm                      |               |        |  |
| 466 | Acevedo22 | 404707                        | 1933293      | 132°, 24° SW     | S0   | Mio                      | -             |        |  |
| 467 | Acevedo23 | 404654                        | 1932110      | 293°, 28° NE     | S0   | Olm                      | -             |        |  |