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A mis padres, Maricela y José Antonio, gracias por brindarme la oportunidad de

estudiar, sin su apoyo no hubiera llegado hasta aqúı, gracias por estar presentes en mi

vida. A mi hermano Ricardo, por enseñarme tantas cosas de mi misma.
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Chapter 1

Introduction

A distributed system is a set of computers or processes, that cooperates and coordinates
for solving a common problem [46]. Typically, they exchange information and coor-
dinate their actions one way or another. For this thesis, we are going to concentrate
on systems whose computers or processes (processes from now on) are physically apart
and communicate with each other by sending and receiving messages through channels.
Channels can be reliable or not, or further assumptions about it can be made, for ex-
ample, if channels are first in first out (FIFO) or they can lose an arbitrary number of
messages, etc.

Processes can be connected to each other or not. A distributed system can be
represented by a connected undirected graph with the set of processes being the vertices
and the set of channels being the edges. For this work, we are interested in arbitrary
graphs, for being closer to real-life scenarios, and spanning trees for being a weak enough
topology that keeps connected the network including all the processes.

A distributed system is said to be asynchronous if there is no fixed upper bound on
how long it takes for a message to be delivered or how much time takes for a process to
execute one step [8].

When designing algorithms for distributed systems, it is necessary to consider all the
aspects of the systems including the number of processes participating, the way processes
are going to communicate with each other, the reliability of the communication channels,
synchrony in the system, etc. In this work, those aspects are a very important part as
it will be noted in later chapters.

1.1 Consensus

Many applications in real life require processes to synchronize and agree on a common
decision like an output or the next step to take, for instance, bank systems, ticket sale
systems, etc. But synchronize and agree on a common decision is not only important
in real-life applications, but it is also important in theoretical computer science. One of
the most important problems in the distributed and concurrent computing area is the
consensus, in which every process decides a value previously proposed by some process
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and the decided value is the same for every process.
Its importance comes from the possibility of using some concurrent objects for solv-

ing consensus and the universality of the consensus, that explained in a very superficial
way, is that given sufficiently enough concurrent objects of the kind that can be used
for solving consensus, one can construct an implementation of any concurrent object
with a sequential specification [29].

Unfortunately, it has been shown that this problem cannot be solved in asynchronous
systems with even just one failure [24]. The main argument of this result is that a process
can’t distinguish if another process has crashed or it is only very slow.

Given the importance of consensus and its impossibility result, a lot of different ap-
proaches have been proposed to circumvent this result: randomization [10, 9], partially
synchronous models [22], set agreement [14], unreliable failure detectors [12], among
others. This thesis concentrated on the last one.

1.2 Failure detectors

Chandra and Toueg proposed the unreliable failure detectors [12] model as an external
module that can provide to every process information about the status of the processes.
Failure detectors were proposed to augment the asynchronous model of computation
with the ability to distinguish, probably with mistakes, if a process has crashed or it is
only very slow. Surprisingly enough, even with a considerable number of mistakes, they
can be used for solving the consensus problem.

For solving the consensus using a failure detector, every process has available a
failure detection module that can be queried about the status of the processes. Then,
over asynchronous rounds every process proposes a value that is communicated to each
process and a process waits for another process value if it is not suspected to have failed
by querying the failure detection module.

Assuming that we have a failure detector that do not make any mistakes, namely, a
perfect failure detector, it can be used for solving consensus in any system [18]. Unfor-
tunately, it is impossible to design failure detectors that do not make any mistakes in
realistic situations, since it takes time for a process to answer a query and it is impossible
to distinguish a crashed process from one whose answeris still to arrive [39]. However, it
is possible to implement failure detectors that can make mistakes and eventually remain
correct.

Failure detectors can make an arbitrary number of mistakes by not identifying
crashed processes or by wrongfully suspecting correct processes. The type of mistakes
that can be done is defined by two properties: Completeness, defining how and when
crashed processes are suspected and Accuracy, defining how and when correct processes
are not suspected. In [12] two types of completeness and four types of accuracy are
defined, giving place to a hierarchy of eight failure detectors. It has been shown that
even with the weakest failure in the hierarchy proposed by Chandra and Toueg, the
Consensus problem can be solved [11] as it is explained in more detail in Chapter 2.

In this work, we are concentrated in designing algorithms with small messages for
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implementing failure detectors. In particular, we are interested in the eventually perfect
(♦P ) class which can provide incorrect information for a finite time, but eventually,
it stabilizes and provides perfect information permanently which is interesting enough
because:

1. ♦P can be implemented in real systems [39]

2. There is a lot of work in complete networks (as it is seen in Chapter 2), but less
in arbitrary networks

3. Despite the initial mistakes, it can be used for solving the consensus [11]

Then, we move to the weaker problem The Eventual Leader(Ω) failure detector,
which is the weakest failure detector that can be used for solving consensus as it is
explained in Chapter 2. A failure detector of class Ω provides the name of a process
that is still working and eventually the name is the same for all participating processes.

1.3 Related work

Initial research on failure detector implementations concentrated in the case where there
is a direct link between each pair of processes. More recently there has been interest
in failure detectors for arbitrarily connected networks, given that real networks are not
fully connected.

Notice that using a routing algorithm to simulate a fully connected network is prob-
lematic because the routing algorithm may need information about crashes, precisely
the information a failure detector provides. Additionally, a routing layer increases the
uncertainty about timing and may hinder the performance of the failure detector.

For arbitrarily connected networks, the definitions of completeness and accuracy
need to be extended [2]. Informally, strong completeness requires that each process
eventually suspects all processes that are not in its partition, while eventual strong
accuracy requires the failure detector of every processor to eventually stop suspecting
all processes that are in its partition. Further generalizations to dynamic networks can
be found in [26].

Hutle [32] proposed a ♦P implementation, for arbitrarily connected networks, in
a model where processes do not need to know a bound on the communication delay
between arbitrary processes but only a bound on the jitter on communications between
neighbors.

A different, very weak model of ADD channels was proposed by Sastry and Pike [48],
as a realistic partially synchronous model of ill-behaved channels that can lose and
reorder messages. Each channel guarantees that some subset of the messages sent on it
will be delivered in a timely manner and such messages are not too sparsely distributed
in time. More precisely, for each channel there exist constants K,D, not known to
the processes (and not necessarily the same for all channels), such that for every K
consecutive messages sent in one direction, at least one is delivered within time D.
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Sastry and Pike described a ♦P implementation for a fully connected network, which
was later extended to an arbitrarily connected network of ADD channels by Kumar and
Welch [34].

Implementations are usually based on heartbeat style failure detectors in which ev-
ery fixed amount of time, a message is sent to every neighbor [2]. The implementation
by Hutle [32] mentioned above works even if all processes are not known in advance,
and hence definitions of completeness and accuracy properties need to be extended ap-
propriately. In this implementation, every process pi has, for every other process pj it
knows, a heartbeat table including heartbeat counters and distance counters, and hence
the size of a heartbeat message is O(log n+ log t) bits, where n is the number of nodes,
and t is the round number, which is unbounded. Therefore, the size of the heartbeat
messages is unbounded. The implementation of Kumar and Welch [34] also uses heart-
beats, but uses more detailed path information, to achieve messages of bounded size.
However, the size is exponential in n, namely O((n+ 1)!) bits.

1.4 Contribution

Our motivation was to find an implementation of ♦P using messages of size polynomial
in n, the number of processes participating (and independent of t, the number of rounds),
in an arbitrary connected network. We select for our implementation the ADD model,
which is explained in more detail in Chapter 3, as an interesting realistic model to
test our ideas, but we extend our work to other models, in particular to networks with
unknown membership, in which processes do not require knowledge on the total number
of processes. Then, we wanted to reduce the message size even further, by moving from
♦P to the weaker Ω problem, assuming a network with weaker constraints.

As it is explained in Chapters 4 and 5, in this work we concentrate on the design
of failure detectors on partially synchronous systems where the communication is very
weak and not all processes are communicated with each other. We focus on providing
an implementation that sends messages of bounded size improving on the previous
bounds on the current implementations of ♦P and Ω by using a novel technique well
known before but not used for failure detection: Time-To-Live (TTL) values, which are
commonly used for limiting the lifetime of packets in a network or for the number of
hops a packet can take [35, 51].

Designing algorithms for failure detection is not trivial. Usually, failure detectors
use timeouts for determining if a process crashes. If very large timeouts are chosen, the
system has less false suspicions, but its overall performance is slowed down. Smaller
timeouts increase performance at the cost of mistakes. It is difficult to perform ex-
periments to estimate good timeouts for many reasons, including the well-known phe-
nomenon of very high variability of delays in practice. As it its explained in Chapter 5,
this problem can be eased by the election of some parameters.

This thesis presents implementations of the failure detectors ♦P and Ω, both im-
plementations using the same networking technique of TTL values for achieving small
messages in an arbitrarily connected network of ADD channels and implementations in
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networks with unknown membership, where processes know nothing about the network.
It is worth to mention that an easy way to implement Ω consists of implementing ♦P

first and then to output the smallest identity of a non-faulty process. But in particular,
the implementation of ♦P requires a system with stronger conditions [12], so in this
work we propose another approach for implementing Ω in a weaker system than the one
required for ♦P .

1.5 Organization of the thesis

Chapter 2 gives us a general view of the Failure Detector area, by introducing the
original Chandra and Toueg hierarchy, showing algorithms for solving the consensus
using a failure detector and presenting more related work to ♦P and Ω, that were the
main motivation for this work.

Chapter 3 introduces the formal model and the ADD channels. Chapter 4 presents
two algorithms that use small messages for implementing ♦P in a partitionable network
and networks with unknown membership. Chapter 5 presents the Span-Tree model,
a condition for the network to be connected despite failures, and two communication
efficient algorithms for implementing Ω in networks assuming the Span-Tree model and
networks with unknown membership. Conclusions are presented in Chapter 6.
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Chapter 2

Failure Detectors

In the consensus problem every process pi proposes a value vi and after some finite time,
every process must decide a value vj such that vj was proposed by some process and vj
is the same for all processes participating. In the shared memory model, one can use
instances of some sequential specified objects in order to solve consensus. This is used
to evaluate the coordination power of those objects, better known as synchronization
primitives [30]. Furthermore, one can use objects that solve consensus for implementing
any concurrent object [30].

One of the most important results in the distributed computing area is the impos-
sibility of the consensus in asynchronous systems with even just one failure [24]. This
result even has a name: The FLP impossibility result after Fisher, Lynch and Pat-
terson. The main argument of the FLP result, is that a process cannot distinguish if
another process has crashed or it is only very slow. So Chandra and Toueg defined a
mechanism to circumvent this problem: an unreliable failure detector [12] which is an
external module that can provide to every process information about the status of the
processes.

Failure detectors are characterized by two properties. Completeness means that ev-
ery correct process eventually suspects every crashed process and accuracy that restricts
the mistakes that the failure detector can make.

Instead of focusing on a particular implementation of the failure detector (involving
the network topology, timing assumptions, message delays, etc.) it is only needed
to focus on the abstract properties it satisfies for a long enough period that allows
the algorithm to solve the problem. When designing an algorithm that uses a failure
detector as a module, it is assumed that the failure detector satisfies properties related
to the detection of failures and the algorithm is proved to be correct only assuming
those properties.

It is natural to ask which conditions must satisfy an underlying system for imple-
menting a failure detector. As it is explained later, some failure detectors cannot be
implemented on certain systems, for example, a purely asynchronous system, because
that would be a contradiction of the FLP result.

In this chapter, we concentrate on three main lines of research as it is stated in
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the mindmap in Figure 2.1. The first line (purple nodes in mindmap) deals with the
original hierarchy proposed by Chandra and Toueg as with the reductions between
failure detectors, because that is the base for building the hierarchy. The second line
deals with how to use the failure detector abstraction for solving certain problems
(yellow nodes in mindmap), in particular for solving the consensus. For some problems,
some failure detectors not in the hierarchy of Chandra and Toueg have been proposed,
and it has been shown that some of them are the weakest for solving certain problems.
The third line concerns the design of algorithms for failure detection (teal nodes in
mindmap). A lot of failure detectors of the original hierarchy have been designed for
weaker systems. For some of them, it is needed to extend the completeness and accuracy
properties due to the assumptions of the underlying system. Once an algorithm is
proposed, we would like to know if it is efficient.

Following the mindmap showed in Figure 2.1, this chapter is divided as follows.
Section 2.1 introduces formally the Chandra and Toueg hierarchy defined in [12]. Sec-
tion 2.2 shows how to use different failure detectors for solving the consensus and shows
other classes of failure detectors not in the original hierarchy. Some network models that
are considered for implementing failure detectors and some implementations of failure
detectors can be found in Section 2.3.

2.1 The Chandra and Toueg hierarchy

Chandra and Toueg defined unreliable failure detectors in [12] as a module that can be
queried by the processes about the operational status of every participating process in
the network. In the same paper two types of completeness and four types of accuracy are
defined. All of them differ in how much information the failure detector must provide,
how much mistakes it can make and when this information must be given correctly.

2.1.1 Model

The model considered in [12] consists of asynchronous systems in which there is no
bound in the message delay or the clock drift. The system consists of a set of n processes
Π = {p1, p2, ..., pn}. Every pair of processes is connected by a reliable communication
channel. A process is correct in an execution if it does not crash; otherwise, it is faulty.
The number of processes that can fail in the system is denoted with f < n and the
number of processes that actually crashes during an execution is t ≤ f .

Every process has access to a failure detector that it can query. When a failure
detector module is queried, it returns an array of processes that are suspected to be
failed. Formally, pi suspects pj at time t if only if suspecti[j] = true at time t.

2.1.2 Failure detector classes

The two completeness and four accuracy properties stated by Chandra and Toueg in [12]
are as follows.

Definition 1 (Completeness). The two types of completeness are defined as follows.
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1. Strong Completeness: Eventually every process that crashes is permanently
suspected by every correct process

2. Weak Completeness: Eventually every process that crashes is permanently sus-
pected by some correct process

It is easy to design a failure detector that satisfies one of the completeness properties.
Let us consider a failure detector that marks as suspected every process in the network.
That failure detector satisfies completeness (strong or weak) but it is not useful. To
balance the scale, the accuracy property will limit the mistakes (processes marked as
failed even if they are correct) that the failure detector can make.

Definition 2 (Accuracy). The four types of accuracy are defined as follows.

1. Strong Accuracy: No process is suspected before it crashes

2. Weak Accuracy: Some correct process is never suspected

3. Eventual Strong Accuracy: There is a time after which correct processes are
not suspected by any correct process

4. Eventual Weak Accuracy: There is a time after which some correct process is
never suspected by any correct process

The strong and weak accuracy are called perpetual properties and the eventual strong
and eventual weak accuracy are called eventual properties.

By selecting one of the completeness properties and one of the accuracy properties,
there are defined eight classes of failure detectors. Every class has its own name as it is
shown in Table 2.1.
hhhhhhhhhhhhhhCompleteness

Accuracy
Strong Weak Eventually strong Eventually weak

Strong
P

Perfect
S

Strong
♦P

Eventually perfect

♦S
Eventually

strong

Weak
Q

Quasiperfect
W

Weak

♦Q
Eventually

quasiperfect

♦W
Eventually

weak

Table 2.1: Classes of failure detectors

2.1.3 Reducibility

To establish a hierarchy, Chandra and Toueg defined the concept of reducibility between
failure detectors. Informally, one can use a failure detector D for implementing another
failure detector D′.

Definition 3 (Reducibility). A failure detector D′ is reducible to failure detector D if
there is a distributed algorithm TD→D′ that can transform D into D′.
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The algorithm that transforms D into D′ uses D to maintain a variable outputp for
every process pi. That variable emulates the output of D′ at pi. Intuitively, failure
detector D must provide at least as much information of failures as D′ does.

If an algorithm uses failure detector D′ for solving a problem and there exists the
reduction TD→D′ , failure detector D can be used instead of D′.

We will say that D ≥ D′ if D′ is reducible to D or that D′ is weaker than D. If
D′ ≥ D too, it is said that D and D′ are equivalent and write D ∼= D′.

For the classes C and C′ of failure detector, we have that C ≥ C′ if for every failure
detector D′ ∈ C′ there is a failure detector D ∈ C such that D ≥ D′. As the relation of
equivalence defined before, if C ≥ C′ and C′ ≥ C, then the classes C and C′ are equivalent,
written as C ∼= C′.

In the case in which C ≥ C′ and C is not equivalent to C′, we say that C′ is strictly
weaker than C and write C > C′.

A trivial reduction algorithm results by only querying the failure detector D and
writing the current value in the output variable of every process. From the trivial
reduction, the following relations are given:

P ≥ Q,S ≥W, �P ≥ �Q, �S ≥ �W

2.1.4 Using weak completeness to simulate strong completeness

Failure detectors satisfying weak completeness can be used to simulate strong complete-
ness. Remember that weak completeness means that every crashed process is suspected
by one correct process.

The algorithm for transforming weak completeness to strong completeness is very
easy. Since a correct process pi suspects all crashed process, and the accuracy property
does not change, pi only has to send its information periodically to all the processes
and that is enough for all of them to have all the failure information of the system.
Algorithm 1 shows how is the transforming algorithm.

Algorithm 1 Code for process pi

outputp = ∅

while true do
pi queries its local failure detector module Di

suspectsi = Di

send(i, suspectsi) to all
end while

upon receiving (j, suspectsj) from neighbor pj
begin:

outputi = (outputi ∪ suspectsj − {j})
end
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For showing that the transformation algorithm is correct, it is necessary to show
that the simulated failure detector satisfies strong completeness and that it maintains
its accuracy property (perpetual or eventual).

Showing strong completeness is relatively simple. For all processes pj that fail, there
is a correct process pi that eventually suspects pj (weak completeness). When pi sends
its suspect list to every process,every failed process pj is marked as suspected, so every
process adds pj to its suspect list. Since pj failed, there will be a time in which every
process stops receiving messages from pj , so they do not take out pj from their suspect
list again.

For proving that perpetual accuracy is preserved, since no process suspects pj before
time, no process sends a message with pj in the suspect list before pj crashes (if it does).
For eventual accuracy, if pj is correct and all the correct processes do no suspect pj , and
there is some process that suspects pj , then it eventually fails. On the other hand, if
pj is correct, eventually every correct process pk receives again a message from pj , then
pk removes pj from outputk. Since no correct process suspects pj , no process sends pj
to the suspect list. Then, pk does not add pj to outputk again.

This reduction gives place to the following relations:

Q ≥ P,W ≥ S, �Q ≥ �P, �W ≥ �S

Corollary 1. Q ∼= P , W ∼= S, �Q ∼= �P and �W ∼= �S

And as a consequence of the given reductions is the Corollary 1, this means that
the given reduction algorithms collapses the eight failure detector classes into four, but
one natural question is What is the relation between the four collapsed classes? There
are some classes that are incomparable between them as is shown in [12].

Theorem 2. P > S, �P > �S, P > �P , S > �S, P > �S and, S and �P are
incomparable.

2.2 Using failure detectors for solving problems

Algorithms for solving consensus and failure detectors that are not in the hierarchy
of Chandra and Toueg that were introduced for solving different problems in the dis-
tributed computing area are shown in this section.

For the following algorithms it is assumed a Reliable Broadcast communication prim-
itive (otherwise, in a purely asynchronous system failure detectors would not be able to
help solving consensus) as it is defined in [12] that satisfies the following properties:

• Validity : If a correct process R-broadcast a message m then it eventually R-
delivers m

• Agreement : If a correct process R-delivers a message m then all correct process
eventually R-deliver m
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• Uniform integrity : For any message m every process R-delivers m at most once,
and only if m was previously R-broadcast by some process.

The implementation of Reliable Broadcast for asynchronous systems that is used in
the next algorithms can be found in [12].

2.2.1 S for solving consensus

In this section a particular implementation of the consensus using a failure detector of
class S is presented. This implementation is an instance of the shown in [12].

Algorithm 2 has three phases. In the first phase, processes exchange information.
Initially, every process pi sends its value to every process and in the subsequent rounds,
pi sends the values it learned in the previous rounds. When every process pi waits for
the value of the other processes, let us say pj , pi waits for the value of pj as long as
the failure detector does not suspect pj . In the second phase, every process pi sends its
estimated vector to every process pj . Again, pj waits for the message of pi as long as pj
does not suspect pi. Then, processes compare their estimated vectors and in the third
phase, processes decide.

The algorithm satisfies termination. It can only be blocked in the wait statements,
but remember that S satisfies strong completeness, meaning that eventually every cor-
rect process pi eventually suspects every crashed process. So if pi waits for a message
from pj and pj failed, pi eventually suspects pj and does not wait forever. It satisfies
validity because in every phase, it stores in the estimated vector a value proposed by a
process or ⊥.

Since S satisfies weak accuracy, there will be a correct process c that is never sus-
pected by any process, meaning that at least the message of c is received in phase 1 and
2. At the end of phase 2, the vector of estimated values must be the same as the vector
of the process c, which guarantees that at the end every process decides the same value
(agreement).

2.2.2 ♦S for solving consensus

In this section it is shown how to solve the consensus using an eventually strong failure
detector ♦S. As it is something to note, the implementation using S is very different
from the one that is shown in this section. It is needed to assume that f < dn2 e, i.e. a
majority of processes is correct.

For this algorithm the coordinator paradigm is used . In every round, there will be
a coordinator that tries to gather the information, lock a value and then decide.

Algorithm 3 works in asynchronous rounds. Every round has four phases and at the
beginning of the round a coordinator c is calculated. In the first phase, every process
sends its estimate to the coordinator and it waits for a majority of values received. In
the second phase, the coordinator estimates a new value and it is communicated to
every process pj . In the third phase, every process pj waits for the estimated of the
coordinator as long as pj does not suspect c. If pj receives the estimated value of c, pj
sends an acknowledge message to c an adopts that value as a new estimate. Otherwise,
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Algorithm 2 Code for process pi

Variables
V [] = ∅
aux[] = V
msgs = []
V [i] = vi

for r = 1 to n− 1 do . Asynchronous Rounds
send(r, aux, i) to all neighbors
wait until ∀j : received(rj , auxj , j) or j ∈ Di . Wait while pj is not suspected
msgs[r] = {(r, auxj , j)|received(r, auxj , j)} . All the messages of round r
aux[] = ∅
for k = 1 to n do . Collects values of other processes

if V [k] = ∅ and ∃(r, auxj , j) ∈ msgs[r] such that auxj [k] 6= ∅ then
V [k] = auxj [k]
aux[k] = auxj [k]

end if
end for

end for

send(V ) to all neighbors
wait until ∀j : received(Vj) or j ∈ Di . Wait while pj is not suspected
last msgs = {Vj |received(Vj)}
for k = 1 to n do

if ∃Vj ∈ last msgs with Vj [k] = ∅ then
V [k] = ∅

end if
end for

decide(first nonempty entry of V )

sends a message of non-acknowledgment. In the fourth phase, the coordinator waits for a
majority of acknowledgment messages. If that is the case, the coordinator communicates
to every processes the decision.

The coordinator is not blocked since it is assumed that f < dn2 e, so eventually
receives the values of a majority of processes. Since ♦S satisfies strong completeness,
eventually every crashed process is suspected by every correct processes and the wait
statement of phase 3 does not block the algorithm.

♦S satisfies eventual weak accuracy, meaning that eventually there is a process c that
is not suspected by any correct process. Eventually, there will be a round coordinated
by c, so in phase 3 all the correct processes wait for the estimated value of c since
none of them suspect c. Finally, the correct processes send its acknowledgment to the
coordinator.
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Algorithm 3 Code for process pi

Variables
estimate = v . Estimated decision value. Initialized with self-value.
msgs = [] . Messages of every round are stored here
state = undecided . Current state of the decision
r = 0 . Current round number
last round = 0 . Last round number in which pi updated its estimate
c = 0 . Current coordinator
while state = undecided do

r = r + 1
c = (r mod n) + 1 . Calculate the current coordinator
Phase 1
send(i, r, estimate, last round) to coordinator c . Send the estimated value to

the coordinator
Phase 2
if i = c then . If pi is the coordinator

wait until dn+1
2 e messages (j, r, estimatej , last roundj) are received . Wait

for the estimated of a majority of processes
msgs[r] = {m = (j, r, estimatej , last roundj)|pi received m from pj} . All

the messages of round r
t = max{last roundj |(j, r, estimatej , last roundj) ∈ msgs[r]} . The most

recent round in which pj updated its estimatej from the messages received in round
r

estimate = {estimatej |(j, r, estimatej , t) ∈ msgs[r]}
send(i, r, estimatei) to all neighbors

end if
Phase 3
wait until received(c, r, estimatec) from c or c ∈ Di . Wait for the message of

the coordinator while it is not suspected
if received(c, r, estimatei) from c then

estimate = estimateci
last round = r
send(i, r, ack) to c

else
send(i, r, nack) to c

end if
Phase 4
if i = c then

wait until dn+1
2 e messages (j, r, ack) o (j, r, nack)

if dn+1
2 e messages (j, r, ack) are received from processes j then

R− broadcast(i, r, estimate, decide)
end if

end if
when R deliver (j, rj , estimatej , decide)
if state = undecided then

decide(estimatej)
state = decided

end if
end while
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2.2.3 The weakest failure detector for solving consensus

The weakest failure detector of the hierarchy proposed by Chandra and Toueg for solving
Consensus in any system with n > 2f is of class ♦W , the eventually weak failure
detector [11]. They proved that ♦W can be reduced to every failure detector D that
can be used to solve the consensus, i.e. ♦W is weaker than any failure detector that
can be used to solve Consensus. The idea for proving that, is that any failure detector
that can be used for solving the consensus must provide at least as much information
as ♦W and then show how to transform any failure detector to ♦W .

A very superficial look to the proof consists of the following. It is assumed that there
is an algorithm A that implements consensus using a failure detector D. Then, it is aims
at giving a transformation algorithm T for implementing the failure detector of class Ω
(we talk about it in section 2.2.4) in which eventually, every correct process must elect a
correct process as a leader. And finally, there is a reduction that transforms Ω into ♦W .
The proof in [11] is a very extensive and technical proof. In [25] is given a less technical
and friendly explanation of the proof and in [16] is given a simple transformation for
reducing Ω to ♦W .

2.2.4 Other classes of failure detectors

For solving different problems in the distributed computing area, some failure detectors
were designed that are not in the original hierarchy of Chandra and Toueg. Instead,
new classes of failure detectors have been proposed for the same model of computation.
In this section some of these failure detectors are described.

Leader failure detector

The Leader failure detector Ω [36, 12] is a weaker version of the Leader election problem
that is defined as follows. Each process pi has a local variable leaderi, and it is required
that all the local variables leaderi, once changed from its initial values, forever contain
the same identity, which is the identity of one of the processes. A classical way to elect
a leader consists in selecting the process with the smallest (or largest) identity1.

Leader election has been intensively investigated in asynchronous failure-free systems
where the processes communicate by message-passing. If processes may crash, the
system is fully asynchronous, and the elected leader must be a process that does not
crash, leader election cannot be solved [47]. Not only the system must no longer be
fully asynchronous, but the leader election problem must be weakened to the eventual
leader election problem. This problem emerges naturally from the ♦W failure detector.

The Ω failure detector was proposed in [11] for showing that ♦W is the weakest
failure detector that can be used for solving the consensus. They claimed that Ω is at
least as strong as ♦W , so every failure detector D that is as as strong as Ω is as strong
as ♦W .

1A survey on election algorithms in failure-free message-passing systems appears in Chapter 4 of [46].
The aim is to elect a leader as soon as possible, and with as few messages as possible, and it can be
done on a ring with 1.271 n log(n) + O(n) messages [31, 6].
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Definition 4. The leader failure detector satisfies the following properties [44]:

• Validity: Each invocation of Ω returns a process name

• Eventual leadership: Exists time t, such that for all time t′ > t and for some
correct process pi, every invocation of Ω for every correct process returns pi

Quorum failure detector

The quorum failure detector, denoted as Σ, was introduced in [19]. In [20] is showed
that Σ is the weakest failure detector that can be used for implementing an atomic
register in asynchronous message-passing systems. It is important to mention that a
register can be implemented if a majority of processes is correct [7] without using any
failure detector. But using the failure detector implements the atomic register without
the majority assumption.

The output of failure detector Σ at process pi at any time t, consists of a set of
processes that are said to be trusted by pi.

Definition 5. The quorum failure detector satisfies the following properties [19]:

• Intersection: Given any two lists of trusted processes at any time and by different
processes, at least one process belongs to both lists

• Completeness: Eventually no crashed process is ever trusted by any correct process

From the intersection and completeness properties the accuracy can be derived as
follows: Every set of correct processes contains at least one correct processes.

Anonymously perfect failure detector

The anonymously perfect failure detector, denoted as ?P was introduced in [28] for
solving the Non-Blocking Atomic Commit [50] in which eventually, every correct process
should agree in a common decision for a transaction: commit or abort.

The failure detector class ?P gives information about failures but without indicating
which process failed, only that there has been a failure. A failure is detected if only if
it actually happened.

Definition 6. The anonymously failure detector satisfies the following properties [28]:

• Anonymous Completeness: If some process crashes, eventually every correct pro-
cess permanently detects a crash

• Anonymous Accuracy: No crash is detected unless some process crashes
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Heartbeat failure detector

The heartbeat failure detector (HB) was proposed in [1] for solving the quiescent reliable
communication problem (i.e. algorithms that eventually stops sending messages). This
class of failure detector outputs a vector of counters, with one entry for every process.
If a process crashes, the counter does not increases, otherwise, it is not bounded.

Definition 7. The heartbeat failure detector satisfies the following properties [1]:

• HB-Completeness: For every correct process pi and for every crashed process pj
neighbor of pi, the heartbeat counter of pj is bounded in pi

• HB-Accuracy: For every correct process pi, the heartbeat counter is non-decreasing
and for every correct neighbor pj of pi, the hearbeat counter of pj in pi is unbounded

2.3 Algorithm design for failure detectors

Since the beginning of this chapter, we have considered the failure detectors as a black-
box that satisfies certain properties for solving problems, or for proving which is the
weaker failure detector that can solve a problem, but we have not focused on a particular
network model or given an actual algorithm for implementing a failure detector. In [12]
it was proposed the first implementation of a failure detector of class ♦P which consists
in encapsulating techniques already known such as timeouts.

For designing an algorithm for failure detection, it is needed to consider different as-
pects of the network such as the communication model (faulty links), level of synchrony
of the system (partially synchronous, synchronous or asynchronous), the topology of
the network (complete or arbitrary) and which kind of failure we are coping (crash,
omission, byzantine). Once we have establish which kind of network we need to assume
and which class of failure detector we want to implement, we need to know whether it
is possible to implement that kind of failure detector or a weaker one. For example, it
has been shown in [39] that the failure detectors that satisfy any perpetual accuracy
cannot be implemented in a partially synchronous system with failures.

Some of the network assumptions may cause that no implementation of a failure
detector can satisfy completeness and accuracy, for example, if we consider partitionable
networks, neither the completeness nor accuracy defined in [12] can be satisfied since
processes in distinct connected components (partitions) cannot distinguish if a processes
failed or it is in a different partition.

As we showed in section 2.2.4, failure detectors not in the hierarchy of Chandra
and Toueg have been proposed for solving different problems for the same model of
computation, but what if we need to change that model? Then we need to propose an
extension of the completeness and accuracy properties.

In the following sections are shown some models of computation and their different
extensions of the completeness and accuracy properties.
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2.3.1 Partitionable networks

If it is considered a network of arbitrary topology with no further assumptions, due
to failures the network may be broken into pieces called partitions. As was explained
before, under this assumption it is no possible to satisfy the completeness and accuracy
defined by Chandra and Toueg, so it is needed to extend the properties. In [2] it
is defined the extension of the completeness and accuracy properties for partitionable
networks.

Definition 8. An eventually strong failure detector ♦S for partitionable networks sat-
isfies the following properties [2]:

• Strong completeness: For every process pj such that pj has crashed or is not in
the same partition of pi, eventually pi suspects pj

• Eventual weak accuracy: For every partition P there is a correct process pj that
is not suspected by any correct process pi in the same partition

2.3.2 Networks with unknown membership

Another interesting and realistic model are the networks with unknown membership, i.e.
networks in which the number and the name of the participants are not known by any
participant in the network. In [33] it is showed that no failure detector of the hierarchy
of Chandra and Toueg can be implemented in a network with unknown membership.
This is because in every algorithm that runs in a system where there is at least one
process that has not knowledge of at least some other process, weak completeness cannot
be satisfied.

Again, it is needed to extend the properties for networks with unknown membership.
In this case, every process needs to communicate its name to other processes. We will
say that a correct process pi knows process pj if pj is in the list of known processes of
pi. A process pj is known if there is some correct process pi that knows pj . In [27] is
proposed an implementation of ♦S for networks with unknown membership.

Definition 9. An eventually strong failure detector ♦S for networks with unknown
membership satisfies the following properties [2]:

• Strong completeness: Eventually, for every faulty and known process pj, it is
suspected by every known correct process pi

• Eventual weak accuracy: Eventually, there is a correct and known process pj that
is not suspected by any correct and known process pi

2.4 Related work to ♦P

Failure detectors were introduced by Chandra and Toueg [12] and are classified by
completeness and accuracy properties, for non-partitionable networks. Some classes
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of failure detectors of this hierarchy output a list of processes that are suspected to
have failed, but there are many other classes of failure detectors. In this thesis it
is presented an implementation of ♦P for complete networks with crash failures and
unreliable channels that eventually delivers a message.

Aguilera, Chen and Toueg [1] propose the Heartbeat failure detector, not in the
original hierarchy of Chandra and Toueg. The Heartbeat failure detector does not use
timeouts, instead they use an unbounded counter that increases with every message
received by the process. The failure detector module of every process does not output
a suspect list, instead the output is a vector with unbounded counters. The network
model assumes that channels connecting processes may fail by dropping messages or by
disconnecting processes, producing partitions of the network into maximal connected
components. The completeness and accuracy properties were adapted for partitionable
networks [2].

In [3], it was given an implementation of ♦P for complete networks with message
losses and n participating processes, where only n bidirectional links are required to be
eventually timely.

In [39] the implementability of different classes of failure detectors in several models
of partial synchrony is studied. It is shown that no failure detector with perpetual
accuracy (namely, P , Q, S, and W ) can be implemented in these models in systems
with even a single failure. Also, in these models of partial synchrony, a majority of
correct processes is necessary to implement a failure detector of the class θ proposed by
Aguilera et al. Finally, a family of distributed algorithms is presented that implements
the four classes of unreliable failure detectors with eventual accuracy (namely, ♦P , ♦Q,
♦S, and ♦W ). The algorithms are based on a logical ring arrangement of the processes,
to define the monitoring and failure information propagation pattern.

Another algorithm for ♦P for arbitrarily connected networks is presented in [32].
This algorithm uses unbounded heartbeat counters and timeouts. In this algorithm,
every process does not need to know the name of all processes in the network, but it
needs to know which processes are its neighbors and more importantly, it needs to know
the bound on the variability of the delays on the communication between neighbors.

Algorithms that implement failure detectors in partially synchronous systems are
presented in [36]. A ♦P optimal implementation in terms of the number of bidirectional
links is described. Observe that, if (uni)directional links are considered, ♦P can be
implemented even if only n directional links carry messages forever [40].

The Average Delayed/Dropped (ADD) channels were introduced in [48]. They pro-
vide a very weak communication model. An algorithm for implementing ♦P on a
complete network connected by ADD channels is proposed in the same paper. An im-
plementation of the eventually perfect failure detector in an arbitrary, partitionable
network composed of ADD channels using messages of size O((n+ 1)!) bits is described
in [34]. In [49] there where established necessary and sufficient conditions for crash-
quiescent failure detection in a system with ADD channels.
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2.5 Related work to Ω

Many algorithms electing an eventual leader in crash-prone partially synchronous sys-
tems have been proposed. Surveys of such algorithms are presented in [45, Chapter
17] when communication is through a shared memory, and in [47, Chapter 18] when
communication is through reliable message-passing.

A communication optimal implementation of ♦S (recall that �S ∼= �W ∼= Ω) is
presented in [38], where the network is complete and every process is connected by a
reliable communication channel. It uses messages of size O(log n) and it is focused
on the number of processes that the leader communicates with. It proposes also a
measure to evaluate the efficiency of algorithms implementing failure detectors called
the monitoring degree which is the number of processes that are monitored at some
time.

In [37] there are proposed algorithms for every class of the original hierarchy of
Chandra and Toueg. It is assumed that the network is complete, every channel is
reliable and processes are arranged in a ring. The aim of those algorithms is to send
messages in at most 2n links.

In [4] there are proposed different levels of communication reliability and is its
showed that in systems with only some timely channels and a complete network it
is necessary that correct processes send messages forever even with just at most one
process crash. More precisely, it is showed that Ω can be implemented in a complete
network with only one processes having timely output channels. Despite being a com-
plete network, there might be the case in which a pair of processes cannot communicate
with each other (for arbitrary delays) and the easy way to elect the leader (selecting the
process with minimum id) cannot be used. Instead, the less suspicious process is elected.
An Ω implementation in the previous described model that is communication-efficient
i.e. eventually only one process sends message is given. Another implementation in
networks whose all links are fair is given. A fair link may lose an infinite number of
messages but if a message is repeatedly sent, then it is eventually delivered [2].

An algorithm for implementing Ω in networks with unknown membership is pre-
sented in [33]. This algorithm works in a complete network and every process needs
to communicate its name to every neighbor using a broadcast protocol. In [23] it is
presented an implementation of Ω for the case of the crash-recovery model in which
processes can crash and then recover infinitely many times and channels can lose mes-
sages arbitrarily. It assumes the existence of a core that remains connected, it is partially
synchronous and eventually all its processes are correct.

The case for dynamic systems is addressed in [41], and the case where the underlying
synchrony assumptions may change with time is addressed in [5]. Stabilizing leader
election in crash-prone synchronous systems is investigated in [17].
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Chapter 3

Formal model

A failure detector cannot be implemented in a purely asynchronous system since it
would contradict the FLP impossibility result. In [21] are described different types of
partial synchrony and defined what is the least amount of synchrony sufficient to solve
consensus.

In real life scenarios, despite having most of the time reliable communication, we
do not have any timing guarantee which means that the worst case scenario (arbitrary
delays and failures) can actually happen. For this work, we use the ADD model first
proposed by Sastry et al in [48], which models a scenario as the described above.

This chapter introduces the formal model in which the algorithms of Chapters 4
and 5 were designed.

3.1 Processes

The system consists of a finite set of processes Π = {p1, p2, ..., pn}. Every process pi has
an identity, and without loss of generality we consider that the identity of pi is its index
i. As there is no ambiguity, we use indifferently pi or i to denote the same process.

Every process pi has also a read-only local clock clocki(), which is assumed to gener-
ate ticks not necessarily at constant rates, but with bounded drift. Local clocks need not
to be synchronized and are used only to implement timers. To simplify the presentation,
it is assumed that local computations have zero duration.

For notational simplicity, in the explanation and the proofs, we assume the existence
of an external reference clock which remains always unknown to the processes. The
range of its ticks is the set of natural numbers. It allows to associate consistent dates
with events generated by the algorithm.

3.2 Communication graph

The communication graph is represented by a directed graph G = (Π, E), where an edge
(pi, pj) ∈ E means that there is a unidirectional channel that allows the process pi to
send messages to pj . A bidirectional channel can be represented by two unidirectional
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channels, possibly with different timing assumptions. Thus, each process pi has a set of
input channels and a set of output channels.

The graph connectivity requirement on the communication graph G depends on the
problem to be solved. It will be stated in every chapter, depending on the presented
algorithm.

3.3 Distributed algorithms

A distributed algorithm is a collection of local algorithms A1, A2, . . . , An. Every pro-
cess pi ∈ Π follows the specification of Ai. An execution is an infinite sequence
α = C0, s0, C1, s1, . . . with C0 being the initial configuration of the system and Ci+1

being the resulting configuration of applying the event si to the configuration Ci. Every
event si corresponds to the specification of Aj , which can be sending or receiving a
message or a local computation.

Processes may fail only by crashing. Given an execution α, a process pi is said to
crash at time t if pi does not perform any event in α after time t and crashed(α, t) is
the set of all processes that have crashed by time t. A process pi is correct at time t if
pi has not crashed by time t and correct(α, t) = Π− crashed(α, t).

If a process p ∈ crashed(α, t) at some t, we say that pi is a faulty process in α. If
a process p ∈ correct(α, t) for all t, we say that pi is a correct process in α. Graph
G at time t is defined as G(t) = (correct(α, t), E′) with E′ = {(u, v)|(u, v) ∈ E and
u, v ∈ correct(α, t)}. A partition P is a maximal strongly connected component of G.

3.4 Initial knowledge of a process

All processes know the name of every process in the network. This assumption is not
trivial, as it has been shown in [33] that without this assumption, it is not possible to
implement a failure detector class even in a fully synchronous system with reliable links.
However, we discuss extensions of failure detector definitions where this assumption is
no longer true (as discussed in the Introduction).

3.5 ADD Channels

A directed channel (pi, pj) satisfies the ADD property if there are two constants K and
D (unknown to the processes1) such that

• for every K consecutive messages sent by pi to pj , at least one is delivered to pj
within D time units after it has been sent. The other messages from pi to pj can
be lost or experience arbitrary delays

Each directed channel can have its own pair (K,D). To simplify the presentation, and
without loss of generality, we assume that K = max{Ki,j} and D = max{Di,j}.

1Always unknown, as the global time, is also never known by the processes.
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3.5.1 The ♦ADD property

The eventual ADD property, states that the ADD property is satisfied only after an
unknown but finite period of time. Hence this weakened property allows the system
to experience an initial anarchy period during which the behavior of the channels is
arbitrary.
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Chapter 4

♦P implementations

This chapter presents implementations of ♦P using messages of size O(n log n), in arbi-
trarily connected network of ADD channels and networks with unknown membership.
We are inspired by the networking technique of time-to-live (TTL) values1 to design a
very flexible, novel failure detector and then extend it to more dynamic networks.

TTL’s are commonly used for limiting the lifetime of packets in a network or the
number of hops a packet can take [35, 51]. We use this idea in our ♦P implementation,
to solve the challenge of sending messages of small size. We implement the following
analogy. Each process pi emits heartbeats at a certain frequency, and with maximal in-
tensity. The intensity is encoded by an integer value, that works similar to a TTL value.
These heartbeats are propagated by echoing through the network, perhaps varying the
frequency, due to the K,D bounds of each channel they traverse. They lose intensity as
they go farther away from its origin pi. If pi crashes its heartbeats eventually fade out.
But if pi remains alive, all processes (in the connected component of pi) keep on hearing
from pi’s heartbeats, although perhaps with low intensity, if a process is far away.

In more detail (but still very roughly), each process pi periodically sends a set of up
to n elements. This set indicates that pi is alive, and summarizes what pi knows about
other processes. Each element is a pair (pj ,m) consisting a process identifier pj and an
integer value m between 1 and n − 1 that its called hopbound. Thus, a maximum of
n log n bits in total. The m component of a pair contains the current intensity of the
heartbeat of process pj . For itself, process pi sends a pair with intensity n− 1 because
this value is strong enough to guarantee that the heartbeats of pi can reach all the nodes
in the network.

Whenever pi receives a set with hopbound values from one of its neighbors, it must
update its own knowledge (in a somewhat delicate way), and send the new set to
its neighbors, making sure that the hopbound values received are forwarded with an
intensity decremented by one. In particular, the node takes the largest hopbound value
it learns about another process pj , and resends it. But it cannot resend it only once,

1Time to live (TTL) is a mechanism that limits the lifetime of data in a computer or network. Once
the prescribed event count or timespan has elapsed, data is discarded or revalidated. In computer
networking, TTL prevents a data packet from circulating indefinitely. Source: Wikipedia.
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because an ADD channel could lose it. Thus, it repeatedly resends it, until due to
some suspicion, it starts to accept lower hopbound values for that node, pj . The first
challenge is that if a process pj crashes, eventually its hopbound values should disappear
and everyone must suspect it. The opposite challenge is to make sure that if pj does not
crash, eventually nobody suspects it. For this, a process pi that learns a hopbound value
from pj must resend it repeatedly to make sure the information is not lost by an ADD
channel, since particular messages on an ADD channel may be lost. Our algorithm is
carefully tuned to balance these two challenges, and to make sure pi stops resending the
hopbound of pj if it does not eventually get fresh information from which it can deduce
that pj remains alive.

4.1 In partitionable networks

For this implementation we consider a partitionable network connected with ADD chan-
nels. Every process knows n and the name of every participant in the network.

4.1.1 ♦P specification

We will say that a process pi suspects process pj if pj is in the failure list of pi. A
partition P is a maximal strongly connected component of G.

The oracle ♦P is formally specified as follows. For each execution α and every
correct process pi in α, there is a time ta such that for every t > ta the failure detector
satisfies:

• Strong completeness: For every process pj such that it is crashed or it is not
in the same partition of pi in G(t), pi suspects pj at time t

• Eventual strong accuracy: For every correct process pj in the same partition
of pi in G(t), pi does not suspect pj at time t

4.1.2 Description of the algorithm

In this section we describe our algorithm. Algorithm 8 uses the standard technique of
heartbeats and timeouts, i.e. a process sends periodically a message to its neighbors.
Its neighbors estimate the time of arrival of a new message, managing timeouts. We
extend these traditional ideas, with time-to-live values.

Algorithm 8 is composed of three main modules. The first module (line 7) prepares
and sends periodically heartbeat messages to neighbors. The second module deals with
the reception of messages from neighbors (line 19), and timeouts are estimated. The
third module deals with the expiration of the timer that the algorithm uses. When the
timeout of a process expires, that process is suspected (line 35).

In what follows a subscript in the name of a variable is used for denoting which
process it belongs to; for example the timeouti[j] corresponds to pj ’s timeout entry in
pi and hopboundi will denote a hopbound value of pi.
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Alive messages. Every process pi sends an alive message to all its neighbors every
T units of time (as usual, T can be adjusted to save bandwidth or improve response
time, as desired). This alive message contains a set, which is stored in the local variable
bagi and it is called bag. When Algorithm 8 starts, the bag contains only a pair (i, n−k),
where the n − k variable is an integer called hopbound (line 9) and in this particular
case k = 1 since is the origin of the message. When a process pi receives pairs from
its neighbors, it gathers all the information to create a new set (line 12) and sends this
new set to all its neighbors (line 15).

Reception of the alive messages. When process pi receives an alive message
from a neighbor pj , the message contains a set with several pairs, potentially a pair
for every process in the network. Process pi only takes information from a pair labeled
with pj sent by pj . By only taking information about neighbors directly from neighbors
we are giving priority to the topology graph, namely, at some point, a process pj at
distance k from pi eventually will have stored permanently the pair (i, n− k).

When a set is delivered, pi takes the information from pairs (`,m) such that p` is not
a neighbor of pi or ` = j, since neighbor pj sends information of itself directly (line 21).
Process pi stores the received hopbound of process pj in hopboundi[j].

Timer estimation. When pi receives an alive message from a neighbor pj , it saves
its hopbound value (which will be always n− 1) and estimates how much time will take
to receive another message from pj . This estimation is in timeouti[j]. If this timeout
expires, pi suspects pj and sets suspecti[j] to true (line 35). If pi receives a message
of pj and suspecti[j] is true, probably pj was wrongly suspected by pi and the timeout
value was estimated to be too small, so pi stops suspecting pj by setting suspecti[j] to
false and incrementing the timeouti[j] (line 26). Process pi does not suspect process
pj if pi receives periodically heartbeats from pj on time, (namely, before the timeout
expires).

The same idea is used for processes that are not neighbors of pi, but in this case
their timeout is estimated in relation to their hopbound value, as it is explained below.

The algorithm uses the function estimateT imeout (line 32) to increase the timeout
each time a false suspicion is detected. For correctness, we need to assume only that
the function increments the timeout. For performance, one may tune this increment.
Here we use the constant 2 to reach a correct timeout exponentially fast.

Time-to-live values. This is the strategy used for preventing that a pair labeled
with a crashed process remains forever in the network. Every time a process pi sends
an alive message, it first decrements by one the hopbound value of every process. A
pair (j, hopboundi[j]) will only be added to the set of pairs the process will send, if
hopboundi[j] − 1 > 0 (line 12). On the other hand, since the longest path in the
network may be of length n− 1, a process pi adds to its own set the pair (i, n− 1), to
guarantee that every process is informed that it is alive, by receiving a pair (i, n − k)
with k > 1.

Intuitively, process pi should store the hopbound of a process pj every time it receives
the pair (`,m) in the set of any neighbor pj . Because channels are unreliable, and they
have different latencies, it may be the case that a process pk wrongly suspects a process
pj . Hence, a process always keeps the max(hopboundi[`],m).
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We need to avoid the situation that if pj fails, the other processes will keep receiving
messages labeled with pj forever. To solve this problem, the maximum hopbound of pj
received by process pi sent by pj is stored (first condition in line 22). If this value is
not received again before the timeouti[j] expires, process pj is suspected by pi and pi
stores any other hopbound received, which must be a smaller one (second condition in
line 22). Thus, if pj fails, eventually all the pairs labeled with j will fade away. Hence,
eventually every correct process suspects pj .

Each process pi manages the following local variables:

• in neighborsi (resp., out neighborsi) is a (constant) set containing the identities
of the processes pj such that there is channel from pj to pi (resp., there is channel
from pi to pj).

• T is an integer, time between successive heartbeats.

• n is an integer, number of processes in the network.

• clocki() is the local clock of process pi.

• lastAlivei is an array of clock times, lastAlivei[j] stores the last time that pi
received a pair from pj .

• timeouti is an array of integers of estimated timeouts for all processes.

• suspecti is an array of booleans for suspecting processes.

• bagi array for storing the ordered pairs (process, hopbound) for sending to neigh-
bors.

4.1.3 Correctness proof

To prove the correctness of the algorithm, we need to show that the implementation
above satisfies strong completeness and eventual strong accuracy. In what fol-
lows, we consider an infinite execution α of Algorithm 8.

First, we prove some preliminary lemmas. The following simple lemma is similar to
results proved in [48] and [34].

Lemma 3. Let pi and pj be two correct neighboring processes. Then, there is an upper
bound ∆ = K × T +D on the time between the consecutive reception at pj of two alive
messages from pi.

Proof The channel delivers correctly one message for every K consecutive messages
sent by pi to pj with delay at most D. This means that at most K − 1 messages
are lost between two messages delivered consecutively to pj . Recall that pi sends a
message every T ticks in line 7. Since we are assuming clocks run at constant speed,
the maximum time between the consecutive reception of two messages from pi in pj is
K × T +D = ∆. �Lemma 3
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Algorithm 4 Code for process pi

Constants
1: neighbors, T, n

Variables
2: clocki() = 1
3: for each j in Π do
4: lastAlivei[j] = 0; timeouti[j] = T ; suspecti[j] = false;
5: end for
6: bagi ← {∅}

7: every T units of time of clock()i do
8: begin:
9: bagi ← {(i, n− 1)}

10: for each j ∈ Π− {i} do
11: if (suspecti[j] = false and hopboundi[j] > 1) then
12: bagi ← bagi ∪ {(j, hopboundi[j]− 1)}
13: end if
14: end for
15: for each j ∈ out neighborsi do
16: send alive(bagi) to pj
17: end for
18: end

19: when alive(bag) is received % from pj in in neighborsi
20: begin:
21: for each (`,m) ∈ bag such that ` /∈ neighbors \ {j} do
22: if (hopboundi[`] ≥ m) or (suspecti[`] = true) then
23: hopboundi[`]← m
24: if (suspecti[`] = true) then
25: suspecti[`]← false
26: estimateTimeout(j)
27: end if
28: lastAlivei[`]← clock()
29: end if
30: end for
31: end

32: function estimateTimeout(j)
33: timeouti[j]← 2 · timeouti[j]
34: end function

35: when timeouti[j] = clocki()− lastAlivei[j]
36: begin:
37: suspecti[j]← true
38: end

Given two processes pi, pj ∈ Π connected by a channel, in what follows we call ∆
the bound given by Lemma 3.
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Observation 4. Given two correct neighboring processes pi and pj, after an interval of
time at most ∆, process pj receives the first alive message from pi.

G at time t is defined as G(t) = (correct(α, t), E′) with E′ = {(u, v)|(u, v) ∈ E and
u, v ∈ correct(α, t)}.

Let tf be the earliest time when all the failures in α have occurred.

Lemma 5. The following properties hold:

1. G(t) = G(t′) for all t, t′ ≥ tf ,

2. There is a time tε ≥ tf after which the last message from the set of crashed
processes is delivered to a correct process.

Proof The proof of part 1 is as follows. At time tf all the failures have occurred,
then it is true that crashed(α, t) = crashed(α, t′) for all t, t′ ≥ tf . Since correct(α, t) =
Π − crashed(α, t), then by the definition of G(t) it is true that G(t) = G(t′) for all
t, t′ ≤ tf .

The proof of part 2 is as follows. Every faulty process sends a finite number of
messages before crashing. Then, by the properties of the ADD channel, these messages
are lost, delivered or experience arbitrary delays. So there exists a time tε ≥ tf after
which the last message sent by the set of faulty process is delivered.

�Lemma 5

Part 1 of Lemma 5 shows that there is a time after which the topology of the
communication graph does not change, once all the failures have occurred. We will call
G(tε) the final graph.

Recall that process pj does not suspect process pi if it receives pairs labeled with
pi periodically. Roughly, what we show in Lemma 6 is that, once the topology of the
graph stabilizes and all the messages from crashed processes are delivered, all processes
at distance k from a process pi, eventually receive the pair (i, n − k). First, let us
illustrate with an example why it is important to consider graph G(tε).

Consider the graph G(t) with t < tε of Figure 4.1a with n = 5 and the hopbound
values from process p1 that every process has stored. Neighbors of p1 receive pair (1, 4),
and the neighbors of neighbors of p1 receive pair (1, 3) and so on. In this graph, the
distance from p1 to p4 is 2. Now, let us assume that only process p2 fails. The final
graph G(tε) is shown in Figure 4.1b. In G(tε), the distance from p1 to p4 is 3. As soon as
all the messages from p2 are delivered, it must happen that the value hopbound4[1] = 3
expires, since p4 will not receive again that pair. Then, eventually, every ∆ units of time,
p4 will receive a message from p5 including the pair (1, 2), and that is the maximum
hopbound1 that p4 can receive. This hopbound1 in p4 is not a coincidence, this value
corresponds to n− d(p1, p4) = 5− 3 = 2 with d(p1, p4) the distance of p1 to p4 in G(tε).
Lemma 6 shows formally this property.

A correct path from pi to pj is a path where the first process is pi, the last process
is pj and all processes on it are correct. Lemma 6 shows that there is some time t such
that t > tε after which correct processes connected by correct paths, satisfy the eventual
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(a) Graph G(t) with t < tε
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(b) Final graph G(tε)

Figure 4.1: Graph G before and after failures.

strong accuracy property, i.e. eventually a correct process does not suspect a correct
process in its same partition.

Lemma 6. Let pi and pj be two correct processes in V (G(tε)) such that d(pi, pj) = m
with m < n in G(tε). Then, the following properties hold:

1. There is a time tq ≥ tε after which hopboundj [i] is equal to n−m permanently ,

2. There is a time t′q ≥ tε after which pj stops suspecting pi permanently .

Proof We prove this lemma by strong induction on the length of the path connecting
pi to pj .

Base case: m = 1. For every correct processes pi, pj at distance 1 (that is, neigh-
bors), the two properties are satisfied.

The proof of property 1 is as follows. When pj receives an alive message from pi, it
goes through the pairs and stores only the hopbound values from the set of processes
which are not direct neighbors, plus pi (line 21). Since n− 1 is the greatest hopboundi
value that pj can receive, the first condition in line 22 is true and the hopboundj [i] is
set to n − 1 (line 23). If another process pj sends an alive message including a pair
labeled with pi, the condition in line 21 is not true, so line 23 is not reached, and the
hopboundj [i] variable is not changed.

We now prove property 2. If pj is wrongly suspecting pi, it increases the timer
in timeoutj [i] (line 26) and eventually gets a value X such that X > ∆ and stops
changing. Let us consider the time before timeoutj [i] = X. If pj is suspecting pi,
when pj receives a message from pi, the condition in line 24 is true, so pj increases
the timeoutj [i] variable and sets the suspectj [i] variable to false. Since the timeoutj [i]
variable reached its upper bound and pj receives a message from pi in at most every
∆ units of time, then condition in line 35 is never true, so the suspectj [i] variable does
not change. Then, pj stops suspecting pi permanently.

Induction step: Assume that for all correct processes p` such that d(i, `) <= m−1
in G(tε), the properties are true. Let pj be a correct process such that d(i, j) = m in
G(tε) and let π = pi, ..., p`, pj be a minimum length path of correct processes connecting
pi to pj . We prove that the properties are true for pj .
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The proof of both properties is as follows. By property 2 and property 1 of the
inductive hypothesis, for all t > max(t`, t

′
`), pj includes the pair (i, n −m) in its bag

when it sends an alive message, since n −m > 0 and suspect`[i] = false (condition in
line 11 is true). By Lemma 3, that bag is delivered to pj at time at most max(t`, t

′
`)+∆.

Since π is a minimum length path connecting pi to pj , the largest hopboundi that pj
can receive is n−m.

In case of hopboundj [i] > n −m, i.e. pi and pj were connected by a path shorter
than π, eventually pj suspects pi (since this path does not exist anymore) and second
condition in line 22 is true so line 23 is executed, i.e. hopboundj [i] = n−m.

Since pj receives the maximum hopboundi that it can receive in at most every ∆
units of time, if pj is wrongly suspecting pi, it increases the timeoutj [i] (line 26) and
gets the value X which reaches the upper bound ∆.

Let us consider the time before timeoutj [i] = X. If pj is suspecting pi, condition in
line 24 is true. When pj receives a message from pj , process pj sets hopboundj [i] = n−m,
increases the timeoutj [i] and sets the suspectj [i] to false. Since the timeoutj [i] reached
its upper bound and pj receives messages from pj including the pair (`, n − m) in at
most ∆ ≤ X time, then condition in line 35 will never be true, so the suspectj [i]
variable will not change, thus line 23 is only executed if first condition of line 22 is true,
but the maximum hopboundi that can be received is n −m, so hopbound`[i] = n −m
permanently. �Lemma 6

The following theorem proves one of the two requirements of an eventual perfect
failure detector. The other requirement will be stated in Theorems 14 and 15.

Theorem 7 (Eventual Strong Accuracy). Let pi and pj be two correct processes. After
tf , if pi and pj are on the same partition, pj eventually does not suspect pi permanently.

Proof Since pi and pj are on the same partition i.e. the same connected component,
there exists a correct path of minimum length between pi and pj and vice versa in G(tf ).
Then, by property 2 of Lemma 6, there is a time after which pj does not suspect pi
permanently. �Theorem 7

The following lemma, shows that the neighbors of a crashed process pi satisfy strong
completeness, i.e. neighbors of pi eventually suspect pi permanently.

Lemma 8. Let pi and pj be two neighboring processes such that pj is correct and pi is
faulty. There exists a time t after which pj suspects pi.

Proof Before pi fails, it sent a finite number of messages to pj and pj only changes
timeoutj [i] when an alive message from pi arrives, so eventually timeoutj [i] stops
changing. Let t` the time when pj receives the last message from pi. By time t =
t`+ timeoutj [i] the timeout for a message from pi expires and pj sets suspectj [i] to true
(line 35). This is permanent, since pj only changes suspectj [i] if it receives a message
from pi, but it will not receive any other messages from pi. �Lemma 8

Now we have to prove that after tf , all correct processes suspect all crashed processes.
In order to prove that, first we show that once a process pi fails, the pairs labeled with
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pi eventually stop being sent by any correct process. Then, we show that there is a time
t > tf after which all processes in V (G(t)) suspect all crashed processes. First, let us
observe the following.

Observation 9. By Lemma 6, we can conclude that the largest hopboundi that a process
at distance k of pi in G can receive is n− k.

A process pj suspects pi if pj does not receive a pair labeled with pi before the timer
expires. When pi fails, processes know this information because as the time goes by, the
hopbounds from pi fade away in the network until the point where no process receives
pairs labeled with pi. Lemma 11 states this idea formally. We give an example of how
this happens.

Let us consider graph G in Figure 5.1, with the hopbound value from p1 that every
process has stored.

When p1 fails, as soon as the timer expires in p3 and p2, they suspect p1. We draw
in red processes that suspects p1 in Figure 4.2b.

Then, when neighbors of p1 suspect it, they do not include in their bags permanently
pairs labeled with p1. Thus, the hopbound1 stored in p4, p5 and p6 expires, and when
one of these processes receives a pair labeled with p1, it takes this new value (second
condition in line 22). A possible execution is illustrated in Figure 4.2c. At time t2, the
longest hopbound1 that a process could have stored is n− 2 = 7− 2 = 5.

After pair (1, 5) expires, the largest hopbound1 that a process can have stored is
n− 3, as illustrated in Figure 4.2d.

Thus, in the graph of Figure 4.2e, processes p5, p6 and p7 keep a hopbound1 = 1,
which means that they do not include in their bags pairs labeled with p1. Therefore, p4

suspects p1, so even if its hopbound1 is greater than 1 it does not include a pair labeled
with p1. Then, by time t∗ no process sends pairs labeled with p1.

The following lemma proves that the hopbound of a crashed process eventually
disappears.

Lemma 10. After a process pi crashes, there is a time t1 such that for all t > t1 correct
neighbors of pi do not include in their bags pairs labeled with pi.

Proof By Lemma 6, only processes that are neighbors of pi can have hopboundi = n−1.
Let td be the time where the last message from pi arrives to a correct neighboring process
pj . By Lemma 8, there is a time t1 ≥ td when all the correct neighbors of pi suspect it.
Therefore, for every t ≥ t1, neighbors of pi do not include any pair labeled with pi in
their bags (line 11). �Lemma 10

Observe that neighbors are the only processes that can include the pair (i, n− 2) in
their bags, because they have set hopboundi = n− 1 permanently.

Lemma 11. After a process pi fails, for every 1 < k ≤ n − 1, there is a time tk

after which every process having hopboundi = n− k does not include in its bag the pair
(i, n−(k+1)) and the maximum hopboundi that a correct process can have is n−(k+1).
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Figure 4.2: Spread of failure information of p1.
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Proof We prove the lemma by induction over k.
Base case: k = 2. Let us assume that there is a set S2 of correct processes such

that hopboundi = n − 2. By Lemma 10, neighbors of pi are the only processes that
can send hopboundi = n− 2, and after time t1 (given by Lemma 10) they do not send
pairs labeled with pi. Then, there is a time t2 after which the timer for n− 2 in all the
processes of S2 expires. Then, when a pair (i,m) arrives to some process in S2, m can
be at most n− 3, so the maximum hopboundi that a correct process can have stored is
n− 3.

Induction step: Assume that for 1 < k < n − 1, after time tk, processes having
hopboundi = n−k do not include in their bags the pair (i, n−(k+1)) and the maximum
hopboundi that a correct process can have stored is n− (k + 1). Let Sk+1 be the set of
correct processes having hopboundi = n− (k+ 1) and let q ∈ Sk+1. Recall that process
pj includes a pair labeled with pi if pj does not suspect pi and hopboundj [i] − 1 > 0
(condition in line 11). In case that pj suspects pi, this Lemma is true because the first
condition in line 11 is not true. Thus we have to prove the case where pj does not
suspect pi. There are two cases.

Case 1: k + 1 6= n − 1. By the inductive hypothesis, there is a time tk after which
processes having hopboundi = n − k do not send the pair (i, n − (k + 1)). Then, the
hopboundi = n−(k+1) expires in every process in Sk+1. When an alive message arrives
with a pair (i,m), only the second condition of line 22 can be true, namely, a smaller
hopboundi is stored. This value is smaller than n−(k+1) since by inductive hypothesis,
the maximum hopboundi that a process can have stored is n − (k + 1). Therefore, at
time tk+1 processes in Sk+1 do not include the pair (i, n − (k + 2)) and the maximum
hopboundi that a process can have stored is n− (k + 2).

Case 2: k+1 = n−1. It is important to note that if a process pj has hopboundj [i] = 1
at any time, the second condition in line 11 is not true, so pj does not include in its bag a
pair labeled with pi. Therefore, after time tk+1, correct processes having hopboundi = 1
do not send a message to its neighbors with a pair labeled with pi.

�Lemma 11

Lemma 12. After some process pi crashes, there is a time t∗ after which every correct
process in V (G(t∗)) does not send a pair labeled with pi.

Proof This lemma is direct consequence of Lemma 11.
�Lemma 12

Let P t
k

1 , ..., P t
k

` be the set of partitions of G(tk). Lemma 13 shows that given two
processes pi and pj at different partitions, pj eventually stops receiving pairs labeled
with pi.

Lemma 13. Let pi be a correct process such that at time tk, p ∈ P tki , and let P t
k

j ∈ G(tk)

such that i 6= j. Then, there is a time t after which all correct processes in P t
k

j do not
send a pair labeled with pi.

Proof Let td < tf be the time when there was the last path π of length m connecting
pi to pj , and let tk > td be the time when a pk ∈ π crashes causing that pi and pj are
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in different partitions. Let P t
k

j be the partition where pj is, and p` ∈ P t
k

j the process
that has the largest hopboundi with hopboundp` [i] = n−m.

Following the same argument of Lemma 11, there will be a time when the timer for
n −m expires and the maximum hopboundi that a process in P t

k

j can have is at most
n − (m + 1). Therefore, we can conclude that there exists a time t when all processes
in the partition of pj do not send any pair labeled with pi.

�Lemma 13

The following two theorems show the strong completeness property: eventually every
correct process suspects permanently every faulty process or processes that are not in
the same partition.

Theorem 14 (Strong Completeness). Let pi be a faulty process. There is a time t after
which all correct processes suspect pi permanently.

Proof Let us consider td the time when pi fails. By Lemma 11, there is a time t∗ after
which all correct processes in V (G(t∗)) stops sending messages labeled with pi.

Let r ∈ V (G(t∗)). Process pj only changes timeout`[i] when a message labeled with
pi arrives, so eventually timeout`[i] will stop changing.

Let t` = max(timeout`[i]) with ` ∈ V (G(t∗)). By time t∗ + t`, the timer for a
message labeled with pi expires and every process pj sets suspect`[i] to true (line 35).
This is permanent, since pj only changes suspect`[i] if it receives a pair labeled with pi,
but it will not receive any other pair. �Theorem 14

Recall that tf is the earliest time when all the failures have occurred. Thus, if pi is
a process in a partition P t

f

i , then pi is correct.

Theorem 15 (Strong Completeness). Let P t
f

i , P
tf
j be two distinct partitions at time

tf . Then, there is a time t ≥ tf at which every (correct) process q ∈ P tfj suspects every

p ∈ P tfi permanently.

Proof The proof is similar to the proof of Theorem 14. First we focus on the time
when the messages of pi fade away in the network. Then, the proof is the same for both
cases. By Lemma 13, every j ∈ P tfj stops sending messages labeled with pi at time t∗∗.
Following the same argument of Theorem 14, there is a time after which all processes
` ∈ P tfj set suspect`[i] to true permanently (line 35).

�Theorem 15

Theorem 16. Algorithm 8 implements ♦P in an arbitrary network using messages of
O(n log n) size.

Proof Strong completeness is given by Theorem 14 and Theorem 15. Eventual strong
accuracy is given by Theorem 7. Every time a process pi sends an alive message, it sends
the variable bagi, which contains n integers bounded by n, the number of identifiers in
the network, which can be represented by log n bits. Thus, the size of the messages
used in the algorithm are bounded by O(n log n).

�Theorem 16
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4.2 In networks with unknown membership

In the model proposed in Section 4.1 we assumed that every process pi knows the
names of all the processes in the network. This is because without this assumption, no
failure detector of the original hierarchy can be implemented as shown in [33]. Recently,
more general models have been proposed, like dynamic networks, and networks with
unknown membership e.g. [26]. Such works had to adapt the completeness and accuracy
properties, and proposed a new failure detector class called ♦SM.

The algorithm proposed in Section 4.1.2 can be extended to work in a network with
unknown membership. For that, we consider the same timing model of Section 4.1 and
the communication model of [26], i.e. processes communicate each other by sending and
receiving messages via a packet network that keeps the bounds given by ADD channels.

In a dynamic network, processes do not know the names of all the participants in
the network. They learn the names dynamically, as processes show up and send alive
messages to their neighbors. Because of this, every process keeps a list of processes it
knows, namely, processes from which it has received messages. To extend completeness
and accuracy for dynamic networks, we define these properties formally as in [26].

4.2.1 ♦PM specification

Given an execution α, a process pi is said to be known if there is a process pj and a
time t such that for all t′ ≥ t, pi is in the known list of pj . We define known(α, t) as the
set of all processes that are known at time t. We define the following sets:

• CRASHED(α) =
⋃
t∈N

crashed(α, t)

• CORRECT (α) = Π− CRASHED(α)

• KNOWN(α) =
⋃
t∈N

known(α, t)

In our original model, the network is partitionable, so we have to give a new definition
of completeness and accuracy for partitionable and with unknown membership networks.
For this, let us define K(pj) = {pi| there exists a time t in which pi knows pj}. ♦PM

for partitionable networks is formally defined as follows. For each execution α, there is
a time ta such that for every t > ta the failure detector satisfies:

• Strong completeness: For every process pj ∈ CRASHED or pj ∈ CORRECT
that is not in the same partition of pi ∈ CORRECT ∩K(pj) in G(t), pi suspects
pj at time t

• Eventual strong accuracy: For every process pj ∈ CORRECT in the same
partition of pi in G(t), pi does not suspect pj at time t

Strong completeness means that if a process pj has crashed or if it is correct, but is
in a different partition than a process pi that does know about pj , eventually pi suspects
pj . Eventual strong accuracy means that if a process pj is correct and is in the same
partition that pi is, eventually pi does not suspect pj .
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4.2.2 Description of the algorithm

Algorithm 8 can be modified to implement ♦PM, with the changes described next.
The first time pi receives through channel m a message sent by a process pj , pj and

m become synonyms from a neighbor addressing point of view. As every process pi
knows nothing about the network, the longest path known by pi initially is of length 1
(there might be some reachable process). Recall that a pair (j, ttl) is added to the bag of
pi if hopboundi[j]−1 > 0. Then, when Algorithm 5 starts, process pi broadcasts a HB
message included in its bag, the pair (i, localhopbound) (line 8) with localhopboundi = 2.
This is to guarantee that neighbors forward the information of pi to their neighbors.
And as pi discovers new processes in the network, namely, receives pairs from processes
that it does not know, the localhopbound grows.

Thus, instead of fixing the hopbound of pi to n−1, it grows dynamically as processes
are discovered. The data structures used for storing timeouts, clock values, etc. need
to be dynamic as well. In Algorithm 5 we use the array notation for convenience, but
in an implementation, a more efficient (dynamic) data structure will be used.

New processes may be discovered when an alive message from a neighbor arrives.
Processes that have been discovered are stored in the local variable known. When pi
receives an alive message from a neighbor pj containing a bag, pi goes through the
pairs (`,m) in the bag and it checks if pj is a known process. If that is the first time
that pi receives a message labeled with pj , pi discovers pj , i.e. it adds to its set of
known processes (line 29), and adds a new entry in every variable (line 30), initialized
as described in Algorithm 8.

Algorithm 5 shows only the required modifications; it includes only the lines that
need to be modified in every module, as well as the new variables that are needed.

4.2.3 Correctness proof

To prove the correctness of Algorithm 5, we need to show that the implementation
satisfies the strong completeness and eventual strong accuracy for partitionable
networks with unknown membership.

First, we have to prove that the localTTL of every process pi is bounded by n+ 1.

Lemma 17. For every correct process pi, hopboundi[i] ≤ n+ 1.

Proof Let pi be a correct process. At the beginning of the execution hopboundi[i] = 2
and this value only is changed every time that pi receives a pair from a process that
it does not know (line 22). Since |Π| = n, the maximum number of distinct processes
that pi can know is n− 1, so the line 22 can only be executed n− 1 times. Therefore,
hopboundi[i] ≤ 2 + n− 1 = n+ 1

�Lemma 17

We only present a sketch of the proof for completeness and accuracy. The proof is
very similar to the one given in Section 4.1.3. We have to show that given two correct
processes pi and pj connected by a correct path in the final graph, pj eventually knows
pi and pj eventually does not suspect pi just as Lemma 6.
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Algorithm 5 Code for process pi

Constants
1: T

Variables
2: clocki() = 1
3: neighbors← ∅
4: knowni ← ∅ . Set containing processes known by pi
5: hopboundi[i]← 2 . hopbound value of pi

6: every T time units of clocki() do
7: begin:
8: bagi = {(i, hopboundi[i])}
9: for each j ∈ knowni − {i} do

10: if suspecti[j] = false and hopboundi[j] > 1 then
11: bagi ← bagi ∪ {(i, hopboundi[j]− 1)}
12: end if
13: end for
14: broadcast(bagi, i)
15: end

16: when alive(bagi) is received from pj through channel m
17: neighborsi ← neighborsi ∪ j
18: begin:
19: for each (`,m) ∈ bag such that ` /∈ neighbors \ {j} do
20: if ` /∈ known then
21: Discover(`)
22: hopboundi[i]← hopboundi[i] + 1
23: else
24: Include code of Algorithm 8 from line 22 to 29
25: end if
26: end for
27: end

28: function Discover(`)
29: knowni ← knowni ∪ {`}
30: Add a new entry in lastAlivei, timeouti and suspecti and initialize
31: end function

32: when timeouti[j] = clock()− lastAlivei[j]
33: begin:
34: suspecti[j]← true
35: end

For proving that all the pairs of a crashed process pi eventually fade out from the
network, the proof is similar to that of Lemma 11, but assuming that it is only true
for processes that know pi. Similarly with the proof of Lemma 13, only processes in
a different partition than pi that know pi stops sending messages labeled with pi. For
processes that do not know pi, this is true.
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Chapter 5

Ω implementations

As it is discussed in Chapter 1, it has been shown that it is easy to implement the
leader failure detector Ω given an implementation of ♦P . Given the vector output of
♦P , output the smallest identity of a non-faulty process for Ω. But the implementation
of ♦P requires a system with stronger conditions [12].

In this chapter it is presented an implementation of Ω in a much weaker system than
the one assumed in Chapter 4. The most important contribution of this algorithm is
that it achieves a smaller message size complexity and that we provide a mechanism for
detecting ill paths as it is explained later.

This chapter also presents an implementation of Ω in networks with unknown mem-
bership that eventually uses messages of size O(log n).

5.1 In networks with ♦ADD channels

This section presents Algorithm 7 that implements Ω, assuming each process knows n,
the number of processes.

5.1.1 Ω specification

In this section we define formally the specification of Ω. For the first implementation
we consider that there is a time τ after which there is a directed spanning tree (i) that
includes all the correct processes and only them, (ii) its root is the correct process with
the smallest identity, and (iii) its channels satisfy the ♦ADD property. This behavioral
assumption is called Span-Tree. Since the network remains connected despite failures,
the specification of the failure detector is the same as the presented in Chapter 2.

Let us observe that the local variables leaderi of all the processes always contain a
process identity. Hence, the proof must only show that the variables leaderi of all the
correct processes eventually converge to the same process identity, which is the identity
of one of them.

Definition 10. The leader failure detector satisfies the following properties [44]:

• Validity: Each invocation of Ω returns a process name
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• Eventual leadership: ∀t′ ≥ t and for some correct process pi, every invocation of
Ω for every correct process returns pi

5.1.2 Description of the algorithm

This algorithm uses local variables at each process, and describes the statements each
process has to execute. A parameter T denotes an arbitrary duration. Its value affects
the efficiency of the algorithm, but not its correctness1.

The algorithm uses a single type of message denoted alive. Such a message carries
two values: a process identity and an integer x ∈ {2, . . . , n − 1}. In the following, “*”
stands for any process identity. A message alive(∗, n− 1) is called generating message,
while a message alive(∗, n− k) such that 1 ≤ k < n− 1, is called forwarding message.
Moreover, the value n− k is called hopbound value.

When process pi starts the algorithm, it proposes itself as candidate to be leader.
It sends a generating alive(i, n− 1) message to its neighbors every T time units.

When a process pi receives an alive(j, n − k) message such that 1 ≤ k < n − 1,
it learns that (a) pj is candidate to be leader, and (b) there is a path with k hops
from pj to itself. If j < i, pi adopts pj as current leader, and forwards messages
alive(j, n−(k+1)) to its neighbors. It follows that a generating message alive(j, n−1)
(which can be issued only by pj) can give rise to a finite number of forwarding messages
alive(j, n− 2), alive(j, n− 3),..., possibly up to alive(j, 2).

The hopbound stands for “upper bound on the number of forwarding” that –due to
the last message alive(j,−) received by pi– the message alive(j,−) sent by pi has to
undergo to be received by all processes. It is similar to a time-to-live value.

As it is possible that there are several paths from pj to pi of different lengths, pi can
receive different hopbound values of forwarding messages alive(j, n− k) with leader j.
As it does not know which of those paths will satisfy the ♦ADD property, pi manages
a timer for each value of n − k for each potential leader. In this way, pi can associate
increasing penalties with each hopbound value, namely, every time a hopbound value
does not arrive on time, its penalty is increased. Assuming pj will be the elected leader,
pi selects a hopbound value associated with pj with the smallest penalty, which allows
pi to identify a path satisfying the ♦ADD property from an alive(j, n− k) message.

Each process pi manages the following local variables.

• in neighborsi (resp., out neighborsi) is a (constant) set containing the identities
of the processes pj such that there is channel from pj to pi (resp., there is channel
from pi to pj).

• leaderi contains the identity of the elected leader.

• timeout i[1..n, 1..n] is a matrix of timeout values and timer i[1..n, 1..n] is a matrix
of timers, such that the pair 〈timer i[j, n − k], timeout i[j, n − k]〉 is used by pi to
monitor the elementary paths from pj to it whose length is k.

1If T is too big, the failure detection of a process currently considered as a leader can be delayed.
On the contrary, a too small value of T can entail false suspicions of the current eventual leader pj until
the corresponding timer timer i[j] has been increased to an appropriate timeout value.
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• hopboundi[1..n] is an array of non-negative integers; hopboundi[i] is initialized to
n, while each other entry hopboundi[j] is initialized to 0. Then, when j 6= i,
hopboundi[j] = n − k 6= 0 means that, if pj is currently considered as leader by
pi, the information carried by the last message alive(j, n − 1) sent by pj to its
out-neighbors (which forwarded alive(j, n− 2) to their out-neighbors, etc.) went
through a path2 of k different processes before being received by pi. The code
executed by pi when it receives a message alive(j,−) is detailed in Section 5.1.3.

• penaltyi[1..n, 1..n] is a matrix of integers such that pi increases penaltyi[j, n− k]
each time the timeri[j, n − k] expires. It is a penalization counter monitored by
pi with respect to the elementary paths of length k starting at pj and ending at
pi.

• not expiredi is an auxiliary local variable.

5.1.3 Algorithm

As many other leader election algorithms, Algorithm 7 elects the process that has the
smallest identity among the set of correct processes. It is made up of three main sections:
the one that generates and forwards the alive() messages, the one that receives alive()
messages and the one that handles the timer expiration. Every section is described in
detail below.

Launching the algorithm: The processes are not required to launch the algorithm
simultaneously. Actually this is impossible as, even if their local clocks progress to the
same speed, they are not initially synchronized.

It is assumed that any number of processes x, 1 ≤ x ≤ n, start independently the
algorithm3. Other processes start the algorithm when receiving an alive() message
for the first time. When this occurs, a process executes its initialization part before
processing the message.

Initialization (Lines 2-9): Initially, each process pi is candidate to be the leader,
which is locally encoded by leaderi = i (line 2). Process pi also assigns n to hopboundi[i],
sets timer i[i, n] to +∞ (so this timer can never expire).

Then (lines 4-8), for each j 6= i, pi assigns arbitrary positive integer values to each
timeout i[j, x] for 1 ≤ x ≤ n, sets the entries timer i[j, x] to the associated timeout val-
ues, initializes the penalties to −1, and assigns 0 to each hopboundi[j]. (While the
algorithm is correct whatever the initial timeout values, values obtained from previous
experiments can be used to obtain algorithms instances which allow to expedite even-
tual leader election.)

Generating and forwarding messages (Lines 9-16): Every T time units of its
local clock clocki(), a process pi sends the message alive(leaderi, hopboundi[leaderi]−
1). As previously defined, this message is a generating message if leaderi = i and a

2In the graph theory, such a cycle-free path is called an elementary path.
3As in many other algorithms, since early on e.g. [13].
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Algorithm 7 Eventual leader election in the ♦ADD model with known membership

Constants
1: out neighbors, T, n

Variables
2: clocki() = 1
3: leaderi ← i; hopboundi[i]← n; set timer i[i, n] to +∞;
4: for j ∈ {1, · · · , n} \ {i} and each x ∈ {1, · · · , n} do
5: timeout i[j, x]← any positive integer;
6: set timer i[j, x] to timeout i[j, hb];
7: set penalty i[j, x] to − 1; hopboundi[j]← 0
8: end for

9: every T units of time of clock()i do
10: begin:
11: if (hopboundi[leaderi] > 1) then
12: for each j ∈ out neighborsi do
13: send alive(leaderi, hopboundi[leaderi]− 1) to pj
14: end for
15: end if
16: end

17: when alive(`, hb← n−k) such that ` 6= i is received . from a process in in neighborsi
18: begin:
19: if (` ≤ leaderi) then
20: leaderi ← `;
21: if ([timeri[leaderi, hb] expired) then
22: increase the value of timeout i[leaderi, hb]
23: end if
24: set timeri[leaderi, hb] to timeout i[leaderi, hb];
25: not expiredi ← {x | timeri[leaderi, x] not expired }
26: hopboundi[leaderi] ← max{x ∈ not expired with smallest non-negative

penaltyi[leaderi, x]}
27: end if
28: end

29: when timeri[leaderi, hb] expires and (leaderi 6= i) do
30: begin:
31: penaltyi[leaderi, hb]← penaltyi[leaderi, hb] + 1;
32: if

(
∧1≤x≤n ([timeri[leaderi, x] expired)

)
then

33: leaderi ← i;
34: else
35: same as lines 25-26
36: end if
37: end

forwarding message if leaderi 6= i (in this case it is the forwarding of the last message
alive(leaderi, hopbound) previously received by pi). This message sending is controlled
by the predicate of line 11, namely, it occurs only if hopboundi[leaderi] > 1. The message
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sent is then alive(leaderi, hopboundi[leaderi]− 1).
The message forwarding is motivated by the fact that, if hopboundi[leaderi] > 1,

maybe processes have not yet received a message alive(leaderi,−) whose sending
was initiated by leaderi and then forwarded along paths of processes (each process
having decreased the carried hopbound value) has not reached all the processes. In
this case, pi must participate in the forwarding. To this end, it sends the message
alive(leaderi, hopboundi[leaderi]− 1) to each of its out-neighbors (line 12).

Let us observe that during the anarchy period during which, due to the values of
the timeouts and the current asynchrony, channel behavior and process failure pattern,
several generating messages alive(∗, n−1) can be sent by distinct processes (which com-
pete to become leader) and forwarded by the other processes with decreasing hopbound
values. But, when there are no more process crashes and there are enough directed
channels satisfying the ADD property, there is a finite time from which a single process
(namely, the correct process p` with the smallest identity) sends messages alive(`, n)
and no other process pj sends the generating message alive(j, n).

Message reception (Lines 17-28): When a process pi such that leaderi 6= i receives
a (generating or forwarding) message alive(`, hb), it discards it if ` > leaderi (predicate
of line 19). This is due to the fact that pi currently considers leaderi as leader, and the
eventual leader must be the correct process with the smallest identity. If ` ≤ leaderi,
pi considers ` as its current leader (line 19). Hence, if ` < leaderi, p` becomes its new
leader, while its current leader does not change if ` = leaderi.

Then, as the message alive(`, hb) indirectly comes from leaderi = ` (which gen-
erated alive(`, n − 1)) through a path made up of k = n − hb different processes, pi
increases the associated timeout value if the timer timer i[leaderi, hb] expired before it
received the message alive(`, hb) (line 21). Moreover, whether timer i[leaderi, hb] ex-
pired or not, pi resets timer i[leaderi, hb] (line 24) thereby starting a new monitoring
session with respect to its current leader and the elementary paths of length hb from
leaderi to it.

The role of the timer timer i[`, hb] is to allow pi to monitor p` with respect to the
forwarding of the messages alive(`, hb) it receives such that hb = n − k (i.e., with
respect to the messages received from pj along elementary paths the length of which is
k).

Finally, pi updates hopboundi[leaderi]. To update hopboundi[leaderi], pi first com-
putes the value of not expiredi (line 25) which is a bag of elementary path length x
such that timeri[leaderi, n − x] is still running4. The idea then is to select the less
penalized path (hence the “smallest non-negative value” at line 26). But, it is possi-
ble that there are different elementary paths of lengths x1 and x2 such that we have
penaltyi[leaderi, n− x1] = penaltyi[leaderi, n− x2]. In this case, in a conservative way,
max(n− x1, n− x2) is selected to update the local variable hopboundi[leaderi].

Timer expiration (Lines 29-37): Given a process pi, when the timer currently
monitoring its current leader through a path of length k = n − hb expires (line 29), it

4A bag (also called multiset or pool) is a “set” in which the same element can appear several times.
As an example, while {a, b, c} and {a, b, c, b, b, c} are the same set, they are different bags.
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increases its penaltyi[leaderi, n− k] entry (line 31).
The entry penaltyi[j, n − k] is used by pi to cope with the negative effects of the

channels which are on elementary paths of length k from pj to pi and do not satisfy
the ADD property. More precisely we have the following. If, while pi considers pj is
its current leader (we have then leaderi = j), and timeri[j, n − k] expires, pi increases
penaltyi[j, n− k]. The values in the vector penaltyi[j, 1..n] are then used at lines 25-26
(and line 35) to update hopboundi[leaderi] which (if pj is the eventually elected leader)
will contain the length of an elementary path from pj to pi made up of ♦ADD channels
(i.e., a path on which timeri[j, n− k] will no longer expire).

Then, if for all the hopbound values, the timers currently monitoring the current
leader have expired (line 32), pi becomes candidate to be leader (line 33).

If one (or more) timer monitoring its current leader has not expired, pi recomputes
the path associated with the less penalized hopbound value in order to continue moni-
toring leaderi (line 35).

5.1.4 Correctness proof

Lemma 18. Let pi and pj be two correct processes connected by a ♦ADD channel, from
pi to pj. There is a time after which any two consecutive messages received by pj on
this channel are separated by at most ∆ = K × T +D time units.

Proof For the channel (pi, pj), let us consider a time from which it satisfies the ADD
property. Due to the ADD property, the channel delivers then to pj (at least) one
message from every sequence of K consecutive messages sent by pi. Moreover, this
message takes at most D time units. This means that at most (K − 1) messages
can be lost (or take more than D time units) between two messages from pi delivered
consecutively by pj . As pi sends a message every T clock ticks and the local clocks
run at a constant speed, the maximal delay between the consecutive receptions by pj
of messages sent by pi is ∆ = K × T +D. �Lemma 18

Given any run r of Algorithm 7, let correct(r) denote the set of processes that are correct
in this run and crashed(r) denote the set of processes that are faulty in this run.

Lemma 19. Given a run r, there is a time ta after which there are no messages
alive(i, n− a) with pi ∈ crashed(r) and 1 ≤ a < n− 1.

Proof The proof of this lemma is by induction over a.
Base case: a = 1. There is a time t1 after which no process sends alive(i, n− 1)

messages with pi ∈ crashed(r).
Let us remind that a generating message alive(i, n−1) can be sent only by process

pi. If pi crashes, it sends a finite number of messages alive(i, n− 1). As this is true for
any process that crashes, there is a finite time t1 after which generating messages are
sent only by correct processes.

Induction step: Let us assume there is a time ta after which no process sends
messages alive(i, n− a) with pi ∈ crashed(r) and 1 ≤ a < n− 1. To show that there is
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a time ta+1 after which no process sends alive(i, n− (a+ 1)) with pi ∈ crashed(r) and
1 < a+ 1 ≤ n− 1, we consider two cases.

• Case 1: a+ 1 6= n− 1. Since channels neither create nor duplicate messages and
processes send a finite number of forwarding messages alive(i, n−a) before ta (as
defined by the inductive assumption), there is a finite time at which every process
pj whose timerj [i, n − a] is running, is such that timerj [i, n − a] expires for the
last time. When this occurs the predicate at line 32 is evaluated. If the predicate
is true (i.e. all the timers for pi expired), pj proposes itself as leader. Hence, the
lemma follows from the fact the next alive message that pj sends, cannot be
alive(i,−).

If the predicate at line 32 is not true, pj computes a new hopbound value (with
respect to pi if pj still considers it as its current leader), which is the largest
hopbound value whose timer has not expired and which has the lowest penalty
number (line 35). It follows from the inductive assumption that, after time ta,
no process sends alive(i, n − a) messages with 1 ≤ a < n − 1. Then, the new
hopbound value (with respect to pi) must be at most n− (a+ 1). So in the next
alive message, the largest hopbound value (with respect to pi) that can be sent
by any process pj is (n − (a + 2)), so no process pj sends forwarding messages
alive(i, n− (a+ 1)).

• Case 2: a+ 1 = n− 1. The proof of this case follows directly from the predicate
at line 11 (namely hopboundj [i] > 1), which prevents any process pj to send a
message alive(∗, 1).

�Lemma 19

Theorem 20. Given a run r satisfying the Span-Tree property, there is a finite time
after which the variables leaderi of all the correct processes contain the smallest identity
` ∈ correct(r). Moreover, after p` has been elected, there is a finite time after which the
only messages sent by processes are alive(`,−) messages.

Proof Initially (as any other process) the correct process p` with the smallest identity
considers itself leader (line 2). Then it can be demoted only at line 20 when it receives a
message alive(j,−) such that j < leader` = ` (line 19). As p` is the correct process with
the smallest identity, it follows that such a message was sent by a faulty process pj (that
crashed after it sent the generating message alive(j, n− 1)). Due to Lemma 19, there
is a finite time τ after which there are no more messages alive(j,−) such that j < `.
Hence, whatever the faulty process pj , there is time τ ′ > τ at which all the timers
timeri[j, hb] with hb ≤ n, have expired, and then p` considers itself leader (line 33).
Then, due to the predicate of line 19, it can no longer be locally demoted. Moreover,
due to Span-Tree assumption, there is a path made up of correct processes connected
by �ADD channels from p` to any other correct process. Due to Lemma 18 it follows
then that there is a finite time after which each correct process repeatedly receives
messages alive(`,−) with some hopbound value. Due to lines 19-20, processes adopts
p` as leader. Since processes are repeatedly receiving messages alive(`,−) with some
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hopbound value, the predicate at line 32 cannot become true as at least one hopbound
value is always arriving on time at every correct process.

After p` has been elected, any alive process pi is such that forever leaderi = ` and
timer i[`,−] for some hopbound value never expires. It follows that, at line 12, a process
pi can send alive(`,−), messages only. �Theorem 20

Theorem 21. The size of a message is O(log n).

Proof The proof follows directly from the fact that a message carries a process identity
which belongs to the set {1, · · · , n} and a hopbound number hopbound such that 2 ≤
hopbound ≤ n− 1. �Theorem 21

5.1.5 Time complexity

Given a run r, let ` denote the smallest identity such that ` ∈ correct(r). Let tr be the
time after which:

1. All failures already happened

2. All ♦ADD channels satisfy their constants K and D

Lemma 22. Let pi be a correct process such that for every t > tr, hopboundi[`] = n−k.
Then, for every correct process pj such there is an ♦ ADD channel from pi to pj,
timeoutj [`, n− (k + 1)] ≤ C + 2log(d∆e) with timeoutj [`, n− (k + 1)] = C before tr.

Proof Since pi sends a message every T units of time, by Lemma 18, after tr, the
maximum delay between the consecutive reception of two messages from pi to pj is ∆.
After tr, the timeoutj [`, n− (k + 1)] stops changing when ∆ ≤ timeouti[`, n− (k + 1)],
so it cannot happen again that pj expires timeri[`, n− (k+ 1)]. Therefore, the timeout
is not incremented again. In the case in which timeouti[`, n − (k + 1)] ≥ ∆ before tr,
this lemma is true.

In the other case, consider that ∆ ≤ d∆e and then 2log(∆) ≤ 2log(d∆e). Since the
timeout increment under false suspicions is exponential, timeouti[`, n−(k+1)] needs to
be incremented at most dlog ∆e times for ∆ ≤ timeouti[`, n−(k+1)]. Once it is true that
∆ ≤ timeouti[`, n−(k+1)], it cannot happen again that pi expires timeri[`, n−(k+1)], so
the timeout is not incremented again. Therefore timeouti[`, n− (k+1)] ≤ C+2log(d∆e).

�Lemma 22

Lemma 22 states that a timeout value is increased a finite number of times. Let
tc be the time after which all timeouts reached its maximum, namely, no timeout is
increased again. The following claims refer to the communication graph at this time.

Lemma 23. For every correct process pi such that there is a minimum length path of
♦ ADD channels of length k from p` to pi, leaderi = ` at time tc + (k ×∆).
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Proof Let Sk = {pi| there is a minimum length path of ♦ ADD channels from p` to
pi} and let x be the maximum length of a minimum length path of ♦ ADD channels
from p` to any correct process.

Base case: At time tc + ∆, every pi ∈ S1 has leaderi = `. Since after tc no timer
expires again, by Lemma 18, after ∆ units of time, every pi ∈ S1 receives a message
from p` including itself as the leader. Since p` is the correct process with the smallest
identity, condition in line 19 is true and leaderi = ` after tc + ∆.

Induction step: Let us assume that for 1 ≤ k < x and for every pi ∈ Sk, leaderi = `
at time tc + (k ×∆). Let pj ∈ Sk+1 be a neighbor of pi, namely, pj is connected to pi
by an ♦ ADD channel and k + 1 is the length of the minimum length path of ♦ ADD
channels connecting p` to pj . There can be two cases for pi.

1. hopboundi[`] = n− k. In this case, since the maximum distance between any two
processes is n−1, condition in line 11 must be true and in ∆ units of time at most,
pj must receive an alive(`, n − (k + 1)) message from pi. Since p` is the correct
process with the smallest identity, condition in line 19 is true and leaderj = `.

2. hopboundi[`] = n − k′ with k′ > k. In this case, we have to show that k′ <
(n− 1) for the condition in line 11 to be true. The only way in which pi can have
hopboundi[`] = n − k′ is because there is a path of length k′ from p` to pi. This
path must be simple in order to k′ < (n−1), otherwise there must be a cycle in the
path of length n− 1 between p` and pi. Let p`, q1, q2, ..., qs, qs+1, ..., qc, qs, ..., pi be
that path with a cycle. So it must be that at some time qs has hopbounds[`] = n−s
because it received alive(`, n− s) from qs−1 and then hopbounds[`] = n− (s+ a)
with a the length of the cycle that it received from qc. But this cannot be forever
since qs−1 keeps sending alive(`, n − s) to qs, so eventually every timerm[`, n −
(s − b)] with s < m ≤ a and s + 1 ≤ b ≤ c for every process in the cycle must
expire, which produces that n − (s + a) does not arrive again and eventually
penaltys[`, n−s] < penaltys[`, n− (s+a)]. Then, in line 26, hopbounds[`] = n−s.
So, this case cannot happen, and therefore k′ < (n− 1), condition in line 11 must
be true and in ∆ units of time at most, pj must receive an alive(`, n− (k′ + 1))
message from pi.

In both cases, leaderj = ` after tc + ((k + 1)×∆). �Lemma 23

Theorem 24. For every correct process pi it takes O(D ·∆) time to have leaderi = `
with D the diameter of the graph.

Proof The proof is direct from Lemma 23. �Theorem 24

5.1.6 Simulation experiments

This section presents simulation experiments related to the performance predicted by
Theorem 24 of Algorithm 7. Only a few experiments are presented, a more detailed
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experimental study is beyond the scope of this thesis. Our experiments show that a
leader is elected in time proportional to the diameter of the network, in two network
topologies: a ring and a random regular graph of degree 3.

Considering the constants K and D satisfied by an ♦ ADD once it stabilizes,
Lemma 18 shows that for a given T (the frequency with which the messages are sent),
then ∆ = K × T + D is an upper bound on the time of the consecutive reception of
two messages by a process. According to Theorem 24, the time to elect a leader is pro-
portional to the diameter of the network, where the K, D and T determine the slope
of the function.

For the (time and memory) efficiency of the experiments we assume some simplifying
assumptions, which seem sufficient for a preliminary illustration of the results:

• All the channels are ♦ ADD to avoid the need of a penalization array

• All the messages are delivered within time at most D or not delivered at all. This
is sufficient to illustrate the convergence time to a leader. Additional experimental
work is needed to determine the damage done by messages that are delivered very
late

• We selected K = 4, D = 12 and T = 1, 5, 10

Convergence experiments

The experiments of the ring in Figure 5.1(a) and Figure 5.1(b), are when the probability
of a message being lost is 1%, and 99% respectively. The case of a random graph of
degree 3 up to 50,000 nodes is in Figure 5.1(c) when the probability of a message being
lost is 1%. These experiments verify that indeed the convergence time is proportional
to the diameter. The constants appear to be smaller than ∆, the one predicted by
Theorem 24.

Simulation details

We performed our simulation results in a 48 core machine with 256GB of memory, using
a program based on the Discrete Event Simulator Simpy, a framework for Python. We
used the packet NetworkX to model graphs composed of ADD channels. To generate
the ring and the random regular graph networks we used:

• networkx.generators.classic.cycle graph

• networkx.generators.random graphs.random regular graph

For the ring simulations, experiments were performed for each n from 10 up to 400
nodes, and taking the average of 10 executions, for each value of n. For the random
regular networks, the degree selected was 3, and experiments starting with n starting
in 100, up to 10, 000, taking the average of 5 executions. The n was incremented by 100
to reach 10,000 and from then on until 50,000 we incremented n by 10,000 each time.
A performance impediment was indeed the large amount of memory used.
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(a) A ring with drop rate of 1%

(b) A ring with drop rate of 99%

Figura 4: Comportamiento de los tiempos de convergencia para redes regulares
aleatorias de hasta 50 000 nodos. Tasa de pérdidas del 1% para distintos valores
del Parámetro T

6

(c) A 3-regular random graph with drop rate
of 1%

Figure 5.1: Convergence time in terms of the network diameter
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The convergence time curves we obtained for the ring experiment are functions of
the form f(x) = c ·x, where x represents the diameter of the network, and the constant
c is, roughly, between 2.5 and 4.5 as T goes from 1 to 10. While for the random regular
networks, we again got a constant that doubled in size, roughly, as T goes from 1 to 10.
This behavior seems to be better than the one predicted by Theorem 24, which says
that the constant c should have grown 10 times.

Re-election convergence simulation

If an elected leader fails, we would like to know in how much time a new leader is
elected.

Note that the ♦ ADD channels can arbitrarily delay the delivery of some messages.
This condition has a great impact in the time it takes to Algorithm 7 to change a failed
leader. For the following simulations again we assume that all the messages are delivered
within time at most D or not delivered at all. But note that in a realistic scenario, we
can ease the impact of the arbitrarily delayed messages by adding a timestamp to every
message and keeping track for every neighbor of this timestamp. If the timestamp of
the recently received message is smaller than the current one, just ignore the message.
This timestamp does not have a bound, but if we use an integer and increase it by one
every second that a message is sent, this integer can hold on up for a century without
overflowing 5. By adding an integer to the message, we keep messages of size O(log n).

For the simulation of Figure 5.2 we selected K = 4, D = 12, T = 1 and the
probability of a message being lost is 1% . We performed this simulation on a ring. The
algorithm starts at time t0 and continues its execution till the average time in which a
leader is elected (the curve represented in orange). In this time, the candidate to be
the leader fails and then a timer from an external observer is started in every process.
This timer is used to know the average time needed for each process to discard the
failed leader (curve represented in purple) and then converge to a new leader (curve
represented in blue). This experiment verify that indeed the convergence time after the
current leader fails is proportional to the diameter since ∆ = K×T +D = 3 + 12 = 15.

5.2 In networks with unknown membership

Here, while n exists and has a fixed value, it is no longer assumed that processes know it.
Consequently, the processes have an “Unknown Membership” of how many and which
are the processes in the network. Nevertheless, for convenience, the proposed algorithm
still uses the array notation for storing the values of timers, timeouts, hopbounds, etc.
(in an implementation dynamic data structures –e.g., lists– should be used).

Algorithm 9 solves eventual leader election in the ♦ ADD model with unknown
membership, which means that, initially, a process knows nothing about the network,
it knows only its input/output channels.

5An unsigned integer can be codified with 32 bits, so its maximum value can be 4294967296 '
4.3× 109. A year has 31536000 ' 3.1× 107 seconds.
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Figure 5.2: Convergence time for re-election

Our goal is to maintain the O(log n) bound on the size of the messages even in this
model. It seems that it is not easy to come up with a minor modification of the first
algorithm. For instance, a classic way of ensuring that forwarding the alive message is
cycle-free is to include the path information in the message along which the forwarding
occurred, as done in the paper [34]. This would result in message sizes of exponential
size, while assuming a slightly different model, we show how to eventually stay with
O(log n) messages.

Furthermore, since we want the complexity to be O(log n) eventually, we need to
design a mechanism that works as a broadcast in which once a process pi knows a new
process name from pj , the later does not need to send to pi the same information but
only the leader information. The proposed mechanism in this paper is not the same as
the proposed in [52] since we are preventing processes to send all the known names but
eventually, only the leader information.

Since no process has knowledge about the number of participating processes, this
number must be learned dynamically as the names of processes arrives. In order for the
leader to reach every process in the network, there must be a path of ♦ ADD channels
from every correct process to the leader. It follows that an algorithm for eventual leader
election in networks with unknown membership cannot be a straightforward extension
of the previous algorithm. More precisely, instead of the unidirectional channels and
Span-Tree assumptions, Algorithm 9 assumes that (i) all the channels are bidirectional
♦ ADD channels, and (ii) the communication network restricted to the correct processes
remains always connected (namely, there is always a path –including correct processes
only– connecting any two correct processes).

In Algorithm 7, every process pi uses n to initialize its local variable hopboundi[i]
(which thereafter is never modified). In the unknown membership model, hopboundi[i]
is used differently, namely it represents the number of processes known by pi so far. So
its initial value is 1. Then, using a technique presented in [52], hopboundi[i] is updated
as processes know about each other: every time a process pi discovers a new process
identity it increases hopboundi[i].
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5.2.1 Description of the algorithm

Initially each process pi only knows itself and how many channels are connected to it.
So the first thing pi needs to do is communicate its identity to its neighbors. Once its
neighbors know about it, pi no longer sends its identity. The same is done with other
names that pi learns. For that, pi keeps a pending set for every channel connected to
it that tracks the information it needs to send to its neighbors. So initially, pi adds the
pair (new, i) to every pending set.

During a finite amount of time, it is necessary to send an alive() message to every
neighbor without any constraint because the set of process names needs to be commu-
nicated to other processes. That is, information about a leader might be empty and the
message only contains the corresponding pending set.

When process pi receives an alive() message from pj , this message can contain
information about the leader and the corresponding pending set that pj saves for pi.
First, pi processes the information contained in the pending set and then processes the
information about the leader.

We next analyze how process pi solves its subtasks.
How pi learns new process names. If pi finds a pair with a name labeled as

new and is not aware of it, it stores the new name in the set knowni, increases its
hopbound value, and adds to every pending set (except to the one belonging to pj) this
information labeled as new. In any case, pi needs to communicate pj that it already
knows that information, so pi adds this information to the pending set of pj but labeled
as an acknowledgment.

When pj receives name labeled as an acknowledgment from pi, i.e. (ack, name), it
stops sending the pair (new, name) to it, so it deletes that pair from pi’s pending set.
Eventually, pi receives a pending set from pj not including (new, name), so pi deletes
(ack, name) from pj ’s pending set.

How pi processes the leader information. As in Algorithm 7, every process
keeps as leader a process with minimum id. Since it is assumed that all the channels are
♦ ADD, there is no need to keep a timer for every hopbound value or a penalty array.
In this case, process pi keeps the largest n−k, i.e. hopbound value that it receives from
the process it considers to be the leader. If this value (or a greater one) does not arrive
on time, pi proposes itself as the leader. In case a smaller hopbound value of the leader
arrives, it is only taken if its timer expired.

Each process pi manages the following local variables.

• leaderi contains the identity of the candidate leader.

• hopboundi[·] is an array of natural numbers; hopboundi[i] is initialized to 1.

• timeouti[·] and timeri[·] have the meaning as in Algorithm 7. So, when pi knows
pj , the pair 〈timer i[j], timeout i[j]〉 is used by pi to monitor the sending of messages
by pj (which is not necessarily a neighbor of pi).

• knowni is a new set containing the processes currently known by pi. At the
beginning, pi only knows itself.
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• out neighborsi is a new set containing the local names of the channels connecting
pi to its neighbor processes. The first time pi receives through channelm a message
sent by a process pj , pj and m become synonyms from a neighbor addressing point
of view.

• pendingi[1, ..., k] is a new array in which, when pi knows pj , pendingi[j] contains
the pairs of the form (label, id) that are pending to be sent through channel
connecting pi and pj . There are two possible labels, denoted new and ack.

The code of Algorithm 9 addresses two complementary issues: the management of
the initially unknown membership, and the leader election.

Initialization (Lines 2-7): Initially, each process pi knows only itself and how many
input/output channels it has. Moreover, it does not know the name of the processes
connected to these channels (if any) and how many neighbors it has (the number of
channels is higher or equal to the number of neighbors). So when the algorithm begins,
it proposes itself as the leader and in the pending sets of every channel adds its pair
(new, i) for neighbors to know it.

Sending a message (Lines 8-17): Every T units of time, pi sends a message through
every channel m. In some cases the leader information is empty because of the condition
of line 11. But in any case, it must send a message that includes information about the
network that is included in the set pendingi[j].

Receiving a message (Lines 18-49): When pi receives a message (line 18) from
process pj (through channel m), at the beginning it knows from which channel it came
and eventually knows from whom is from. When the message is received, the informa-
tion included in pending (lines 21-37) is processed, and then the leader information is
processed (lines 39-49).

Processing new information (Lines 21-37): The input parameter set pending
includes pairs of the form (label, id), where label ∈ {new, ack} and id is the name of
some process. When pi processes the pairs that it received from pj there can be two
kinds of pairs. The first is a pair with label new (line 22), which means that pj is
sending new information (at least for pj) to pi. When this information is actually new
for pi (line 24) then, it stores this new name, increases its hopbound entry and adds
to every pending set (but not the one from which it received the information) this new
information (line 27).

In case that pi already knows the information labeled as new for pj (line 28), then
pi needs to check if it is included in the pending set to pj this information as new too.
If that is the case, then in deletes from pending[m] this pair (line 29). In any case, pi
adds to the pending set the pair (ack, k) for sending through the channel from where
this message was received (line 30).

If pi receives the pair (ack, k) (line 33), then it deletes the pair (new, k) from the set
pendingi[m], because the process that sent this pair, already knows k.

Processing the leader related information (Lines 39-49): If the leader related
information is not empty, pi processes it. As in the first algorithm, if the identity of
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Algorithm 9 Eventual leader election in the ♦ ADD model with unknown membership

Constants
1: T , out neighborsi

Variables
2: clocki() = 1
3: leaderi ← i; hopboundi[i]← 1;
4: knowni ← {i}; out neighborsi initialized to the channels of pi;
5: for each m ∈ out neighborsi do
6: pendingi[m]← {(new, i)}
7: end for

8: every T time units of clocki() do
9: begin:

10: for each channel m ∈ out neighborsi (let pj be the associated neighbor) do
11: if (hopboundi[leaderi] > 1) then
12: send alive(leaderi, hopboundi[leaderi]− 1, pendingi[j]) to pj
13: else
14: send alive(⊥,⊥, pendingi[j]) to pj
15: end if
16: end for
17: end

18: when alive(`, hb← n− x, pending) is received from pj through channel m
19: begin:
20: seti ← ∅;
21: for each (label, k) ∈ pending do
22: if (label = new) then
23: seti ← set ∪ {k};
24: if (k /∈ knowni) then
25: knowni ← knowni ∪ {k}; hopboundi[i]← hopboundi[i] + 1;
26: add an entry in timeouti, timer, hopboundi;
27: add (new, k) to every pending[p] with p 6= m
28: else if ((new, k) ∈ pendingi[m]) then
29: pendingi[m]← pendingi[m] \ (new, k) end if;
30: pendingi[m]← pendingi[m] ∪ (ack, k)
31: end if
32: else
33: pendingi[m]← pendingi[m] \ (new, k)
34: end if
35: end for
36: for each (ack, k) ∈ pendingi[m] such that k /∈ seti do
37: pendingi[m]← pendingi[m] \ {(ack, k)}
38: end for
39: if (` ≤ leaderi and ` 6= i) then
40: leaderi ← `;
41: if (hb ≥ hopboundi[leaderi]) ∨ (timer i[leaderi] expired) then
42: hopboundi[leaderi]← hb
43: if ([timeri[leaderi] expired) then
44: increase the value of timeout i[leaderi];
45: end if
46: set timeri[leaderi] to timeout i[leaderi]
47: end if
48: end if
49: end

50: when (timeri[leaderi] expires) do leaderi ← i
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the proposed leader is smaller than the current one, then it is set as pi’s new leader
(line 40). Then, it processes the hopbound. If the recently arrived hopbound is greater
than the one currently stored, then the recently arrived is set as the new hopbound
(line 42). If the timer for the expected leader expired, it needs more time to arrive to
pi, so when the timeout is increased (line 44) and the timer is set to timeout (line 46).

Deleting pairs (Lines 28, 33 and 36): If some process pi wants to send some
information k to pj , it adds to the pending set of pj the pair (new, k). When pj receives
this pair, it looks if it is already in its set, in that case, it deletes the pair from pi’s
pending set (line 28). Then, pj adds an (ack, k) to the pending set of pi. As soon as pi
receives this pair from pj , it deletes from pj ’s pending set the pair (new, k) (line 33). So
the when pj receives a pending set from pi without the pair (new, k), it means that pi
already received the acknowledgment message, so pj deletes (ack, k) from pi’s pending
set (line 36).

Timer expiration (Line 50): When the timer for the expected leader expires, pi
proposes itself as the leader.

Notice that, when compared to Algorithm 7, Algorithm 9 does not use the local
arrays penaltyi[1..n, 1..n] employed to monitor the paths made of non-ADD channels.

5.2.2 Correctness proof

In the following we consider that there is a time τ after which no more failures occur,
and the network is such that (i) there is a bidirectional path between every two correct
processes, and (ii) its channels satisfy the ♦ ADD property. Assuming this, this section
shows that Algorithm 9 eventually elects a leader despite initially unknown membership.

Lemma 25. For any pi, pj ∈ correct(r) that are neighbors, eventually knowni =
knownj.

Proof Let pi and pj be two correct neighboring process. Assume that pi communicates
with pj through ♦ADD channel a and on the other direction is channel b. At the
initialization, pi puts in all the pending sets the pair (new, i) (line 6). Since it sends
this set every T units of time through all the channels (lines 11-14), for Lemma 18, pj
eventually receives the pending set which contains at least the pair (new, i). Then, for
every pair (label, k) that is received in pj there are two cases: the pair contains new
information or an acknowledgment.

When pj receives a pair (new, k) and it is the first time that it receives a pair with
name k (condition in line 24), it adds k to its list of knownj (line 25), adds to every
pending set of every channel (except the one channel from which the message arrived
from) the pair (new, k) (line 27). In which case pj already knows k, if pj is trying to
send this information as new to pi, the pair is deleted from the pending set because pi
already knows this information (line 28). Finally, in either case pj adds the pair (ack, k)
to the pending set of channel b, namely, the one from which pj received the pair (new, k)
(line 30).

The second case is when the pair is an acknowledgment (ack, k). Since acknowledg-
ment messages are only received if previously pj sent (new, k) pair to pi, then pj deletes
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the pair (new, k) (if there is one) from the pending set of b (line 33). Thus no pair
with label new is deleted until an acknowledgment is received or if it is received the
same pair. But the acknowledgment is added only if the new pair was delivered to the
receiver, meaning that pj knows the same names that pi.

Then, there cannot be some k′ ∈ knowni that pj does not know eventually and vice
versa. �Lemma 25

Lemma 26. For every pi, pj ∈ correct(r), such that pj is at distance d from pi, there
is a time td after which i ∈ knownj.

Proof Let d′ be the maximum distance between pi and any other process. The proof
of this lemma is by induction over d with 1 ≤ d ≤ d′.

Base case: : d = 1. There is a time t1 after which for every j ∈ correct(r) at
distance 1 from pi, eventually i ∈ knownj .

Since every process is connected by an ♦ ADD channel, eventually every neighbor
pj of pi receives a message from it that contains in the pending set the pair (new, i)
since pi added to every pending set that pair initially (line 8). Then, every pj adds to
its known set i, and adds to the pending set of pi the pair (ack, i). Process pi does not
delete pair (new, i) from the pending set of pj till it receives an (ack, i) from pj but this
pair is only added if pj received before the pair (new, i) from pi before. So eventually,
every neighbor knows pi.

Induction case: Let us assume there is a time td after which for every pj at distance
d < d′ from pi, i ∈ knownj . We have to show that there is a time td+1 after which for
every pj at distance d+ 1 ≤ d′ from pi, i ∈ knownj

By the induction assumption, all processes pj at distance d from pi knows i. It means
that before pj knew pi at some time pj received the pair (new, i) from some neighbor.
Since pj did not knew pi, it added the pair (new, i) to the pending set of every neighbor.
Then, eventually that pending set is sent to every neighbor of pj , so eventually pi is
known by processes at distance d+ 1. �Lemma 26

Lemma 27. Given a run r, there is a finite time ta after which there are no messages
alive(i, k − a, pending) with pi ∈ crashed(r) such that 1 ≤ a < k ≤ n.

Proof First, note that the only process that can change the entry hopboundi[i] is pi
when it knows a new process (line 25). Since it only knew a finite number of processes
before it failed, then the entry hopboundi[i] is finite and has an upper bound. Let us
call k the value hopboundi[i] had before it failed.

The proof of this lemma is the same that for Lemma 19, by strong induction over
a. Just note that when the timer expires is because alive() message arrived with pi as
leader, no matter which hopbound of pi is expected. �Lemma 27

What Lemma 25 shows is that eventually all the correct processes have the same set
known and what Lemma 26 proves is that every correct process is in the known set of
every correct process. Recall that for every process pi, entry hopboundi[i] is increased
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every time pi knows a new process, namely, hopboundi[i] contains the cardinality of
knowni. Then, we can conclude that there is a time tf after which for every correct
process pi, there is a constant k ≤ n such that hopboundi[i] = k, namely, each process
has the same hopbound. Let τ be the time after which all the failures already happened.
Let ` be the smallest identity in correct(r).

Lemma 28. Let pi ∈ correct(r) at distance d from p` after tf with 0 ≤ d ≤ n − 1.
There is a time t > τ and t > tf after which hopboundi[`] = k − d and leaderi = `
permanently.

Proof We prove this lemma by strong induction on the length of the path connecting
p` to pi.

Base case: d = 0. For process p`, the two properties are satisfied.
Due to Lemmas 25 and 26, it is true that hopbound`[`] = k. It can not be changed by
any process since the only processes that can write hopbound`[`] = k is itself.

If leader` = `′ such that `′ < `, it means that p`′ failed since it is assumed that ` is
the smallest index of a correct process. Due to Lemma 27, there is a time after which
p` stops receiving messages with leader p`′ . Eventually, the timer for p′` expires and p`
proposes itself as the leader. This can only happen a finite number of times since the
number of participating processes and the number of messages sent are finite.

Let us consider the last time in which the timer for receiving a message including
a pair with p`′ expires, then line 50 is executed, so leader` = `. Since p` is the correct
process with the minimum identity, it does not execute line 40 again.

Inductive case: Let us assume that there is a time after which hopboundj [`] =
n−(m−1) and leaderj = ` permanently. Let pi be a correct process at distance m from
p` and let π = p`, ..., pj , pi be a minimum length path of correct processes connecting p`
to pi. We have to show that hopboundi[`] = k −m and leaderi = `.

By the induction assumption there is a time after which correct processes at distance
m− 1 satisfy the property. Since those processes send messages every T units of time,
eventually process pi receives a message including p` as the leader.

If leaderi = p`′ such that `′ < ` eventually leaderi = p` (same argument as base
case).

Since pi and pj are connected by ♦ ADD channels, eventually pi receives an alive
message from pj including p` as the leader, so it sets leaderi = ` because condition in
40. Since there is a path of minimum length m connecting p` and pi, k−m is the largest
hopbound value of p` that pi can receive. Then, the first condition in line 41 is true and
the hopboundi[`] is set to k −m.

If another process sends an alive message including a pair (p`,m
′, pending) with

m < m′ we have two cases.

• Case 1: The timer for p` is expired. In that case, second condition in line 41 is
true, so hopboundi[`] = m (line 42) and the timeout is increased (line 44). Since
processes are connected by ♦ ADD channels, there is a time after which messages
from pj arrive after at most ∆ time to pi, meaning that if the timer is expired,
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every time that pi receives an alive message from pj it increases the timeout.
Eventually, the timeout gets a value X > ∆ and stops changing.

This means that eventually this case is no longer true, namely the timeri[`] does
not expire and as consequence hopboundi[`] = k − m and leaderi = ` does not
change.

• Case 2: The timer for p` is not expired, so only first condition in line 43 can
be true, since by the induction assumption, pj sends (p`, n − m, pending) to pi
every T units of time, so the hopboundi[`] = k −m does not change and since we
assumed that ` is the minimum index number, it must be that leaderi = `.

�Lemma 28

Lemma 29. There is a time after which, at each correct process pi and any of its
channels m, the set pendingi[m] becomes and forever remains empty.

Proof Let pi and pj be two correct neighboring processes such that pi is connected to
pj through channel a and in the other direction through channel b. We want to show
that eventually pendingi[a] (pendingi[b]) is empty.

Assume, without loss of generality, that pi adds pair (new, k) to pendingi[a]. Even-
tually pj receives the pair (new, k) from pi. If this pair is already in pendingj [b], then
it is deleted (line 28) because pi already knows k. Then pj adds to pendingj [b] pair
(ack, k) (line 30).

Eventually, pi receives the pair (ack, k) from pj , so it deletes its (new, k) pair from
pendingi[a] (line 33). Then, eventually pj receives a message from pi without the pair
(new, k), so pj deletes the (ack, k) from pendingj [b] (line 36).

Process pi can only add a finite number of new pairs in pendingi[a], since the number
of different processes is finite. Then, pj can only add an ack pair to pendingj [b] if
it receives a new pair from pi, namely, the number of ack pairs that it can add to
pendingj [b] is finite too.

All the new pairs are deleted as soon as the acknowledgment arrives, and the ack

pairs are deleted as soon as the new pairs stops arriving. So eventually, every pending
set of correct processes is empty. �Lemma 29

Theorem 30. Given a run r, there is a finite time after which the variables leaderi of
all the correct processes contain forever the smallest identity ` ∈ correct(r).

Proof The proof follows from Lemma 28. �Theorem 30

Theorem 31. Eventually, the size of a message is O(log n).

Proof By Lemma 29, eventually each variable pendingi[m] of a correct process is forever
empty. So eventually, any alive message carries a process identity which belongs to
the set {1, · · · , n} and a hopbound number hopbound such that 2 ≤ hopbound ≤ n− 1.

�Theorem 31
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Chapter 6

Conclusions

The ♦ADD model has been studied in the past as a realistic, particularly weak commu-
nication model. A channel from a process pi to a process pj satisfies the ADD property
if there are two integers K and D (which are unknown to the processes) and a finite time
τ (also unknown to the processes) such that, after τ , in any sequence of K consecutive
messages sent by pi to pj at least one message is delivered by pj at most D time units
after it has been sent.

In this thesis, we presented an algorithm to implement an eventually perfect fail-
ure detector in an arbitrary network connected by ADD channels using messages of
O(n log n) size. For achieving small messages we used the time-to-live networking
technique. In our basic implementation, the number and the name of processes in the
network are known. Then we show how to extend the algorithm to work when each
process knows initially only its neighbors. A process dynamically adapts its timeouts
and failure information as it learns of known processes in the network.

Then, we assume a weaker model in which the ADD property is satisfied after some
finite, but unknown, time and we proved that we can implement the leader failure
detector on this model by providing an algorithm for implementing it. Again, we used
the time-to-live values for achieving messages of size O(log n). For this implementation
is given a study of the performance and it showed that the more often the heartbeats
are sent, the faster processes converge to the same leader, proving that having messages
of small size is a great advantage.

Finally, we provide an algorithm for the eventual leader election for networks with
unknown membership, which is something more than just an extension of the first
algorithm since the assumed model is different. For the unknown membership model
and the Ω implementation, we conjecture that it is necessary that the process identities
are repeatedly communicated to the potential leader.

To the best of our knowledge, this is the first time that the technique of time-to-live
values (well-known in the networking literature) is used for failure detectors. We make
a first step in showing that it is a useful technique that leads to flexible failure detector
implementations, of small message size.

In future work, we plan to study how to adapt it to more dynamic network scenar-
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ios [26]. Specially we are interested in showing that our algorithms can be adapted to
other partially synchronous models such as the one of [32], and even ones where chan-
nels are unidirectional or they may fail in one direction. Namely, in situations where
reliable link protocol implementations are impossible, see e.g. [42].

Another interesting opportunity is the study of communication-efficient algorithms,
meaning that after some finite time, only some linear number of edges carry out messages
from the leader [4]. It would be interesting to investigate if there is a communication-
efficient implementation for ♦P or Ω in the ADD model for networks of arbitrary topol-
ogy in which after some finite time, only a spanning tree carries messages from the
leader being the root since all the current works are for complete networks and Ω im-
plementations.

There are many interesting opportunities to explore tuning and extensions of our
time-to-live approach. For example, for the concrete case of partitionable networks,
while a node remains alive, everyone in its connected component keeps on receiving
heartbeats, albeit of low intensity if it is a distant node, and hence the intensities can
be used to estimate distances. It seems that in some situations a node does not need
to send its current vector of TTL values to all its neighbors. To reduce load, it could
send it in a round-by-round way, at the cost of increasing the time to detect failures.
It is also of interest to investigate ways of tolerating very slow, old messages that can
be delivered by an ADD channel, long after a process is dead. The algorithm works
correctly, but these messages can affect performance by temporarily stopping to suspect
a process that is long ago dead.

An interesting point for further research is the condition of only taking information
of a neighbor from its alivemessage for the ♦P implementation. If this condition is
removed, then we are giving priority to the underlying graph of time. This means
that a process pj possibly receives information of a neighboring process pi from another
neighbor pk, which means that maybe is faster to know about pi in pj from another
path that goes through pk. If this condition is removed from our algorithm, it does
not work, particularly 6 is not true but maybe it can be modified to work without this
condition. A mechanism of penalization similar to the one presented in Algorithm 7
maybe can be used.

A much more detailed analysis would be needed for dynamic networks, but it seems
the time-to-live approach could be adapted for this case too. An interesting open ques-
tion is if the approach would be useful in dynamic networks with unknown membership,
of the time-free type; such a failure detector (that does not rely on timers to detect fail-
ures) has been proposed in [27].

The performance analysis for Algorithm 3 has been proved experimentally in cycles
and regular graphs. This experimental analysis is out of the scope of this work but inter-
esting things emerged while doing it. For example, the amount of local memory needed
for networks using hundreds of processes started to be a problem since matrices with
a quadratic number of entries are used. It can be interesting to perform optimizations
for memory use.

Finally, as it has been said in earlier chapters, failure detectors were proposed for
circumvent the FLP impossibility result. Future work is to use the failure detectors pre-
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sented in this thesis for solving the consensus using the eventual ADD model. It would
be an interesting study because it does not seem easy to propose an implementation
that copes with the weak properties that the ADD channels provide, in particular, the
messages delivered with bounded, but unknown and arbitrarily large delay and because
solving consensus in arbitrary graphs using failure detectors is a non explored work.
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