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Resumen en extenso del trabajo

Breast Glandular Tissue Volume and Volumetric Glandular
Ratio measurement using Dual-Energy Mammography

Resumen. La densidad mamaria se define como la fracción de tejido glandular dentro de la mama, y
está asociada a un incremento en el riesgo de padecer cáncer de mama. El objetivo de este trabajo fue
desarrollar un método para medir volumen de tejido glandular y densidad mamaria a partir de mamografías
digitales de energía dual. Dicho método está basado en el formalismo de descomposición en base de
materiales y, a partir de una calibración inical, permite medir volumen de tejido glandular y volumen
total de la mama a partir de imágenes mamográficas adquiridas con técnicas de energía dual. El método
se aplicó en imágenes clínicas de 14 pacientes provenientes de un estudio multimodalidad. Se evaluó el
acuerdo entre las medidas obtenidas con la técnica de energía dual y estudios de resonancia magnética de
las mismas pacientes. Se encontró un buen acuerdo entre ambas modalidades para el volumen glandular
(prueba de Wilcoxon, p > 0.05), Sin embargo, la mamografía por energía dual subestimó el volumen
total mamario, lo cual resultó en una sobre-estimación de la densidad mamaria. El método propuesto
es computacionalmente barato, fácil de calibrar y produce medidas comparables con las obtenidas en
estudios de resonancia magnética.

Introducción

La glándula mamaria está compuesta principalmente por dos tipos de tejido: fibroglandu-
lar (denominado simplemente “glandular”, en adelante) y adiposo. El término “densidad
mamaria” se usa para describir la proporción de tejido glandular dentro de la mama. La
evaluación de la densidad mamaria es un problema de interés clínico desde finales de los
años sesenta, cuando se empezó a investigar su asociación con el incremento en riesgo de
padecer cáncer de mama [1, 2, 24, 25, 5].

Tradicionalmente, la densidad mamaria es evaluada de manera visual por un radiólogo
y reportada según el sistema BI-RADS [6]. Esta evaluación es subjetiva y depende del
entrenamiento y experiencia de quien la realiza [7, 8]. Debido a esto, la densidad mamaria
no puede ser validada como un parámetro cuantitativo ni un indicador de riesgo en sentido
estricto.

Para responder a la necesidad de medidas cuantitativas, recientemente se han desarrollado
y comercializado herramientas para calcular densidad mamaria a partir de mamografías
digitales convencionales (es decir, de energía única). Dos ejemplos de estas herramientas
son VolparaDensity (Volpara Solutions, Ltd.) [11] y Quantra (Hologic, Inc.) [12] , ambas
validadas para su uso clínico en EUA. Debido a las limitaciones de las imágenes mamográ-
ficas convencionales, estas herramientas no son capaces de medir volumen directamente.
Otras modalidades de imagen como tomografía computada (CT) de mama, resonancia
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RESUMEN EN EXTENSO DEL TRABAJO 3

magnética (RM), tomosíntesis mamaria y mamografía digital de energía dual (DEDM, por
sus siglas en inglés) son capaces de proveer información volumétrica directamente [13].

Medir densidad mamaria usando DEDM es, en esencia, un problema de descomposición
de materiales. Para resolver este problema, se combinan dos imágenes adquiridas con
diferentes espectros (“baja energía” y “alta energía”) para producir mapas bidimensiona-
les (2D) de espesor de tejido, los cuales se integran píxel a píxel para obtener medidas
volumétricas. Trabajos como los de Ducote et al [18, 19], y Kappadath et al [20] han
explorado la descomposición de materiales en imágenes mamográficas de energía dual.
En particular, en los trabajos de Ducote y Molloi [18, 19] se midió densidad mamaria en
placas de material equivalente a tejido mamario, reportando el error en esta cantidad así
como la dosis impartida por cada adquisición de energía dual. Sin embargo, estos trabajos
carecieron de un análisis de incertidumbre, así como de una metodología completa para
procesar imágenes clínicas y, finalmente, comparaciones con otras modalidades de imagen.

El objetivo de este trabajo fue desarrollar y evaluar un método para medir densidad ma-
maria y volúmenes mamarios (de tejido glandular y total) usando DEDM. El método
desarrollado se aplicó en imágenes clínicas de 14 pacientes de alto riesgo (con lesiones
unilaterales en la mama contralateral a la estudiada), adquiridas con una técnica de ener-
gía dual. Los resultados se compararon con los obtenidos al medir estas cantidades usando
imágenes de RM de las mismas pacientes.

Material y métodos

Todas las imágenes mamográficas analizadas en este trabajo fueron adquiridas en una
estación Amulet Innovality (FUJIFILM Corporation). Los parámetros de adquisición de
las imágenes de baja y alta energía fueron los siguientes:

• Baja energía (LE). Potencial del tubo de Rayos-X: 31 kV. Ánodo: Tungsteno.
Filtro: Rodio (50µm).

• Alta energía (HE). Potencial del tubo de Rayos-X: 45 kV. Ánodo: Tungsteno.
Filtro: Aluminio (700µm) + 5 mm de Al externo.

Se procesaron imágenes de 14 pacientes provenientes de un estudio clínico previo [65].
El criterio de inclusión del protocolo fue sospecha de cáncer de mama multicéntrico. El
protocolo incluyó la adquisición de secuencias de RM (con y sin contraste) y un estudio
de mamografía contrastada. Este último fue un estudio temporal, en el cual se adquirieron
imágenes de la mama sospechosa antes de la inyección de medio de contraste, así como 1,
2, 3, y 4 minutos después de esta. Posteriormente se adquirieron mamografías de energía
dual de la mama contra-lateral, las cuales fueron procesadas en este trabajo. Dado que la
adquisición fue realizada entre 5 y 6 minutos despúes de la inyección de medio de contraste,
no se puede descartar la presencia de trazas del mismo en la mama contralateral. Está
pendiente la cuantificación de yodo en las imágenes procesadas, así como su posible efecto
en los cálculos presentados. Los estudios de RM fueron adquiridos en un resonador GE de
3T (General Electric Medical Systems, y se usaron secuencias IDEAL (Fat-only) para los
cálculos de volumen.
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La figura 0.0.1 resume el procedimiento para calcular volumen glandular, total y su co-
ciente, denominado fracción glandular volumétrica o V GR por sus siglas en inglés.

Figura 0.0.1. Esquema del método para calcular Vg, VT y V GR a partir
de mamografías de energía dual.

La calibración Al-PMMA consiste en obtener un par de imágenes de energía dual (F,G)
de un objeto en forma de escalón, el cual contiene regiones con diferentes combinaciones
de espesor de aluminio y PMMA (tAl, tP ). Para un par de imágenes de energía dual y un
par de materiales, se puede encontrar una función que relaciona espesor de material con
valor de píxel. Usando los datos del conjunto de calibración, se ajustaron las siguientes
funciones para recuperar (tAl, tP ) de las imágenes:

tAl =
a+ bF + cG+ dF

2 + eFG+ kG
2

1 +mF + nG
tP = aF + bG

Figura 0.0.2. Ilustración del arreglo de calibración.

Los materiales de interés son tejido glandular y tejido adiposo. En ausencia de material
tejido equivalente para la calibración, se optó por usar aluminio y PMMA en la calibración.
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Para relacionar espesores de Al y PMMA (tAl, tP ) con espesores de tejido glandular y adi-
poso (tg, ta), se usó el formalismo de descomposición en base de materiales [16, 17, 26].
A partir de este formalismo se obtienen expresiones lineales que relacionan los espesores
de ambos pares de materiales. Después de aplicar estas expresiones, se obtienen imá-
genes -o mapas- de espesor de tejido glandular tg(i, j), adiposo ta(i, j) y espesor total
T (i, j) = tg(i, j)+ta(i, j). Al integrar estas imágenes sobre el área de la mama se obtienen
las medidas volumétricas.

Para medir volúmenes a partir de los estudios de RM, se segmentó el tejido adiposo dentro
de la mama. Esto se hizo implementando una rutina de umbralaje adaptativo basada en
el método de Wellner [70, 71]. El resultado son cortes binarizados, donde un valor de 1
corresponde a un píxel adiposo, y un valor de 0 corresponde a un píxel glandular. Para
obtener los volúmenes, se cuenta el número de píxeles y se multiplica por las dimensiones
de vóxel.

Resultados y discusión

La figura 0.0.3 muestra ejemplos de los mapas de espesor tg(i, j), ta(i, j), T (i, j) obtenidos
a partir de un par de imágenes clínicas de energía dual.

Figura 0.0.3. Mapas 2D generados a partir de un conjunto de imágenes
de energía dual.

De acuerdo con estudios previos [42, 44, 72], la densidad mamaria decrece conforme el
espesor de la mama comprimida aumenta. La densidad mamaria calculada en este traba-
jo, V GRDEDM , muestra este mismo comportamiento. También, V GRDEDM disminuye
como función del volumen total de la mama, comportamiento que está de acuerdo con
estudios de biopsia [48, 49]. Se ha reportado [35, 74] que la densidad mamaria disminuye
como función de la edad, pero no se encontró dependencia respecto a esta variable en
V GRDEDM . Sin embargo, el tamaño de población de este estudio es demasiado pequeño
como para confirmar o descartar definitivamente estas tendencias. Las gráficas en la figura
0.0.4 muestran el comportamiento de V GRDEDM como función del espesor de la mama
comprimida Tc y del volumen total de la mama VT .
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Figura 0.0.4. Izquierda: V GR vs espesor de mama comprimida. Las lí-
neas punteadas representan modelos G1, G2 que predicen el comportamien-
to decreciente [44]. Derecha: V GR vs VT . La línea punteada representa
un ajuste lineal.

Finalmente, se evaluó tanto la correlación como el acuerdo entre las medidas obtenidas
usando DEDM y las obtenidas usando RM. Las figuras 0.0.5 - 0.0.7 muestran diagramas
de dispersión y gráficas de Bland-Altman para las tres cantidades calculadas (volumen
glandular, volumen total, y V GR). En las gráficas de Bland-Altman se visualizan las
diferencias entre ambas técnicas1 graficadas como función de su promedio. Los límites de
acuerdo (LoA) en la gráfica de Bland-Altman se calculan de la siguiente manera:

LoA = �̄V ± 1.96��V ,

donde �̄V representa el promedio de las diferencias, y ��V su desviación estándar.

Figura 0.0.5. Izquierda: diagrama de dispersión de Vg,DEDM vs Vg,MRI .
Derecha: gráfica de Bland-Altman para �Vg.

1Estas diferencias se definieron como la cantidad calculada con RM restada de la cantidad calculada
con DEDM. Como ejemplo, la diferencia en volumen glandular es �Vg = Vg,DEDM � Vg,MRI
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Figura 0.0.6. Izquierda: diagrama de dispersión de VT,DEDM vs VT,MRI .
Derecha: gráfica de Bland-Altman para �VT .

Figura 0.0.7. Izquierda: diagrama de dispersión de V GRDEDM vs
V GRMRI . Derecha: gráfica de Bland-Altman para �V GR.

La correlación entre los resultados de ambas técnicas se evaluó calculando los coeficientes
de correlación de Spearman (⇢). Los resultados se muestran en el cuadro 0.0.1. Valores de
p < 0.05 indican correlaciones estadísticamente significativas con un nivel de confianza
de 95 %.

Cantidad ⇢ p

Vg 0.87 < 0.001

VT 0.98 < 0.001

V GR 0.58 0.03

Cuadro 0.0.1. Resumen de correlaciones entre medidas obtenidas us-
ando DEDM y MRI.
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Para Vg y VT , se encontró una correlación fuerte (⇢ � 0.7) entre las medidas obtenidas
usando ambas técnicas. Por otro lado, la correlación encontrada en V GR fue moderada
(0.5 < ⇢ < 0.7). En todos los casos, las correlaciones fueron estadísticamente significativas
con un nivel de confianza de 95 %.

El cuadro 0.0.2 muestra el promedio, la mediana y el rango intercuartil (IQR) de las
diferencias �Vg, �VT y �V GR.

Cantidad Promedio Mediana IQR

�Vg 6.4cm3 21.9cm3 55.9cm3

�VT �107.6cm3 �62.2cm3 170.6cm3

�V GR 6.9% 9.0% 15.6%

Cuadro 0.0.2. Resumen del acuerdo entre medidas obtenidas usando
DEDM y MRI.

Para determinar si las diferencias fueron estadísticamente significativas, se usó la prueba de
Wilcoxon con un nivel de significancia ↵ = 0.05. Se encontró que la diferencia en volumen
glandular no fue significativa (p = 0.58), mientras que las diferencias en volumen total y
VGR lo fueron (p = 0.02 y p = 0.01, respectivamente). Esto permite concluir que DEDM
tiende a sub-estimar el volumen total de la mama, lo cual resulta en una sobre-estimación
de VGR en comparación con las medidas de RM

La sobre-estimación de la densidad mamaria -respecto a otras modalidades 3D de imagen
como RM- es una característica bien reportada de los métodos basados en mamografía [51,
54, 79, 52]. En particular, Tagliafico et al [54] reportan una sobre-estimación promedio de
16.2 % relativa a medidas de RM. En el caso de este trabajo, la sobre-estimación relativa
promedio es de 18.5 %. Rahbar y colaboradores [80] compararon volúmenes medidos
usando Quantra y Volpara con resultados de RM, encontrando un buen acuerdo en VT

con diferencias significativas en Vg. En contraste, el método descrito en este trabajo
muestra un buen acuerdo en Vg , con diferencias significativas en VT .

Debido a que no hay métodos estandarizados para calcular volúmenes y densidad mamaria
usando RM o mamografía (excluyendo las alternativas comerciales), es difícil realizar
comparaciones concluyentes entre estudios y modalidades. Por ejemplo, Wang et al [52]
reportaron un coeficiente de correlación de 0.38 entre Vg calculada usando Quantra y
usando RM. Por su parte, Kontos et al [51] reportaron un coeficiente de 0.15 comparando
la misma cantidad medida con Quantra y RM. Citando un último ejemplo, Holland et al
[56] reportaron coeficientes de correlación de hasta 0.86 cuando se compara Vg calculado
con un método basado en mamografía con RM.

Los resultados y literatura discutidos sugieren que las medidas de volumen y densidad
mamaria, provenientes de diferentes modalidades de imagen, no son equivalentes. Para
interpretar estas diferencias, se deben tomar en cuenta variables como características del
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grupo de pacientes y procedimientos de adquisición al intentar comparar resultados entre
estudios y modalidades diferentes.

Conclusiones

Se desarrolló y evaluó un método que permite medir volúmenes de tejido glandular y
adiposo en mamografías de energía dual. Como parte del trabajo, se desarrolló una rutina
de pre-procesamiento de imágenes mamográficas que mejora los tiempos de cálculo y
disminuye el ruido en las imágenes. El método tiene poca complejidad computacional,
se puede implementar en equipos de uso personal, y su calibración requiere el uso de
materiales comúnmente hallados en la clínica.

El método se aplicó en imágenes de 14 pacientes adquiridas en una unidad comercial, y
los resultados se compararon con medidas de RM de las mismas pacientes. Las medidas
volumétricas de RM requirieron de la programación de una rutina de segmentación basada
en umbralaje adaptativo.

Las medidas de densidad mamaria volumétrica producidas por ambas modalidades se
encontraron en intervalos comparables. Se evaluó la correlación y el acuerdo entre ambas
modalidades. El nivel de correlación fue de alto (⇢ = 0.87 y ⇢ = 0.98 para volumen
glandular y total, respectivamente) a moderado (⇢ = 0.58 para densidad mamaria), y
hubo un buen acuerdo en ambas medidas de volumen glandular. También se encontró un
buen acuerdo para volumen total, pero las diferencias entre ambos métodos aumentan para
mamas más grandes. Debido a esto, el método basado en DEDM tiende a sobre-estimar
la densidad mamaria en comparación con RM.

Una primer factor limitante del trabajo es la posible presencia de yodo en las mamas
analizadas. El objetivo de trabajos futuros será cuantificar su presencia y determinar si
afecta o no las medidas volumétricas.

Finalmente, debido a que el número de imágenes procesadas es pequeño y provienen de
pacientes de alto riesgo, los resultados no se pueden comparar directamente con otros
estudios. En trabajos futuros, se buscará incluir un conjunto mayor de pacientes, así como
realizar un análisis de robustez del método.
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CHAPTER 1

Introduction

The term “breast density” dates back to the days of analog mammography, and it was
coined to describe the composition of the breast in terms of fatty tissue (dark areas on
mammograms) and fibroglandular tissue (bright areas on mammograms). Breast density
assessment has been a problem of clinical interest since the late sixties, when its association
with an increase in breast cancer risk was first investigated [1].

Since then, many studies have found that a higher breast density -as assessed in screening
mammograms- implies an increased risk of breast cancer. The reported increase in risk
varies between 1.8- and 6-fold depending on the study [2, 24, 25, 5].

Traditionally, breast density is assessed by a radiologist’s eye and categorized using the
Breast Imaging Reporting and Database System (BI-RADS). BI-RADS was developed by
the American College of Radiology (ACR), and it divides breast density in four categories:
I to IV, where I represents an almost fatty breast with less than 25% density, and IV
represents a breast with 75% or greater density [6]. This categorization procedure is
subjective and depends strongly on the clinician’s training and expertise, which introduces
a degree of intra- and inter-observer variability to the results1 [7, 8]. The qualitative
nature of this parameter prevents it from being a true risk predictor. As such, there is a
current need for quantitative methods for breast density determination.

One first step into a more quantitative direction is the segmentation of fibroglandular tissue
from digitized or natively digital mammograms, achieved by the interactive (i.e. human-
controlled) thresholding of the image. This thresholding approach is at the heart of many
software utilities such as Cumulus (University of Toronto, Canada) and other in-house
developed ones. The result is an area-based percentage mammographic density, sometimes
referred to as 2D breast density. These methods have two main drawbacks: 1) they still
depend on an operator’s input to define the thresholds, and as such exhibit a degree of
inter- and intra-observer variability [9] and 2) the area-based measurements cannot take
into account the 3D distribution of glandular tissue, which results in breast density over-
estimation. Furthermore, it is argued that a volumetric breast density measurement would
be a better breast cancer risk predictor [10].

Responding to a clinical interest for automated volumetric breast density measurements,
tools such as VolparaDensity (Volpara Solutions, Ltd.) [11] and Quantra (Hologic, Inc.)
[12] have been developed and commercialized. Both of them use a physics-based approach

1Ciatto et al [8] found “substantial” intra-observer agreement, reporting an average kappa-statistic
value of  = 0.71 [0.33, 0.88]. Inter-observer agreement was found to be “moderate” at best, with an
average kappa-statistic value of  = 0.54 [0.02, 77].

11



1. INTRODUCTION 12

to calculate glandular volume and volumetric breast density using conventional (single-
energy) digital mammograms. Given that they don’t require any human input to perform
calculations, these tools have increased reproducibility and robustness. On grounds of
these advantages and the growing interest in providing breast density reports, both of
them have been cleared for clinical use by the FDA [6, 13].

As single-energy X-ray imaging only allows for the direct quantification of a single material,
the aforementioned tools do not calculate volumes directly; instead, they calculate density
as a percentage and use other information such as compressed breast thickness to estimate
the total breast volume. From those measurements, the total glandular volume is derived
[14]. Since these methods rely upon acquisition parameters, the potential absence or
mislabelling of DICOM headers limits their application. Furthermore, as compression is
applied the paddle tilts from the thoracic wall to the breast edge, and so the reported
value is not representative of the thickness throughout the complete breast area [15].
Because of this, “native” volume measurements are preferable. Imaging modalities such
as breast CT (bCT), MRI, digital breast tomosynthesis (DBT), and dual-energy digital
mammography (DEDM) are able to provide volumetric information natively.

Breast density measurement using DEDM is, in essence, a material decomposition prob-
lem. The goal is to combine two images acquired with different X-ray imaging spectra in
order to produce tissue thickness maps (fibroglandular and adipose in this case). These
tissue maps can then be integrated over the breast area to produce volumetric measure-
ments. The decomposition of dual energy images into material thickness images has been
previously investigated with an emphasis in bone and soft tissue separation [16, 17];
however, as shown in [18, 19, 20] and similar studies, the formalism can also be applied
to breast fibroglandular tissue separation and quantification.

The aim of this work was to develop and evaluate a method for calculating breast density
and breast glandular volume using dual-energy digital mammography. The presented
method is based on the inverse mapping and material decomposition formalisms, and it
was applied to clinical images of 14 patients that underwent a multimodality study. The
availability of MR studies from the same patients enabled us to assess the agreement
between these two modalities. The proposed DEDM-based method is computationally
inexpensive, fully automatic, and only requires an initial calibration using readily available
materials in a clinical setting.



CHAPTER 2

Background

2.1. Dual-Energy mammography

Dual-energy X-ray imaging is based on the energy dependence of each material’s atten-
uation properties. Figure 2.1.1 shows the energy dependence of the linear attenuation
coefficient, µ, for materials of mammographic interest.

Figure 2.1.1. Linear attenuation coefficients for materials of mammo-
graphic interest. Data taken from [21]

Dual energy images are acquired using two different spectra, usually referred to as low-
energy (LE) and high-energy (HE). The spectral features of each X-ray beam are dictated
by the X-ray tube’s potential (kV) and anode/filter combination, as well as any present
external filtering. Figure 2.1.2 shows a pair of calculated spectra representative of those
used in this work, while figure 2.1.3 shows mamograms acquired using LE and HE spectra.

Both images have appreciably different contrast characteristics, but their true utility lies
in the fact that they can be combined to produce “material-enhanced” images. One such
example is contrast-enhanced digital mammography (CEDM), in which a weighed sub-
traction is performed to generate contrast between iodine-based contrast medium and
the surrounding mixture of breast tissue .The weighing factor can be altered to high-
light -or eliminate- different materials. These subtraction-based methods provide contrast
information, but to truly quantify material presence a calibration is needed [20].

13
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Figure 2.1.2. Examples of mammography LE and HE spectra. Tube
potential, anode and filter listed in the figure.

Figure 2.1.3. Left: Low-Energy mammogram. Right: High-Energy
mammogram. Both images have logarithmic “for display” intensity values,
where higher gray values (white) are indicative of greater attenuation.

2.2. Dual-energy material calibration surfaces

Consider a mono-energetic acquisition system with energy E0 and an imaged object of
thickness T , composed of materials a and b with thicknesses ta and tb, respectively (figure
2.2.1). Let S be the signal registered by the detector after imaging the previously de-
scribed object. Assuming simple exponential attenuation, the logarithmic signal intensity
registered by the detector, normalized by the background signal S0 (no object present),
can be written as [22]:
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f = � ln

✓
S

S0

◆
= � ln

✓
Q(E0)�0e

�µa(E0)ta�µb(E0)tb

Q(E0)�0

◆
= µa(E0)ta + µb(E0)tb,

where Q(E) represents the detector’s quantum efficiency (i.e. the signal produced per
inciding x-ray photon) and �0, the total incident photon flux.

Figure 2.2.1. Schematic representation of the two material and detector
X-ray imaging system.

Now, consider independent acquisitions of the same object, using two different beams
with single energies Ef (LE) and Eg (HE). The following system of equations for the low-
and high-energy log signals arises:

f = µa(Ef )ta + µb(Ef )tb ,

g = µa(Eg)ta + µb(Eg)tb

Provided Ef 6= Eg, this system can be inverted to find the material thicknesses ta, tb.
This yields the following expressions:
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ta = Pa(f, g) ,

tb = Pb(f, g) ,

where Pa and Pb are linear polynomials in f and g; that is, first order surfaces in the
(f, g, ta) and (f, g, tb) spaces. By imaging materials of known ta and tb distributions, and
measuring pixel values on the dual-energy images, calibration surfaces can be found.

However, real systems are poly-energetic, and non-linear effects such as beam hardening
and scattering are present. Because of this, it’s expected that the surfaces Pa and Pb will
be non-linear functions of f and g. Cardinal et al [22] first evaluated the performance
of different higher-order surfaces, and it was found that the following eight-parameter
rational function produced the best calibration results:

(2.2.1) ti(f, g; a, b, c, d, e,m, n) =
a+ bf + cg + df

2 + efg + kg
2

1 +mf + ng
,

where ti represents material thickness, f and g pixel values in log-normalized HE and
LE images, and {a, b, c, d, e, k,m, n} are the surface parameters determined by solving
the non-linear least squares problem. As the surface equations proposed and evaluated
by Cardinal et al make no physical assumptions, they have been used to solve the dual-
energy decomposition problem across different mammography systems and techniques
[19, 23, 24, 25].

2.3. Basis material decomposition formalism

Ideally, the calibration surfaces discussed in section 2.2 are found by imaging samples of
the materials of interest. In many cases such samples are not available, or the calibration
phantoms may prove hard to accurately manufacture. The basis material decomposition
formalism provides a way to find an equivalence between two pairs of materials in dual-
energy images.

This formalism is based on the following proposition: over the diagnostic X-ray energy
range, where photoelectric absorption and Compton scattering are the most prevalent
photon interactions, one material’s mass attenuation coefficient can be written as a linear
combination of other two materials’ attenuation coefficients [16, 17, 26, 27]. The latter
materials are called basis materials:

µa

⇢a
= k1

µ⇠

⇢⇠
+ k2

µ⌘

⇢⌘
,



2.3. BASIS MATERIAL DECOMPOSITION FORMALISM 17

where the subindex a represents the material of interest; ⇠ and ⌘, the chosen basis mate-
rials. k1 and k2 are the basis material decomposition coefficients, assumed to be constant
throughout the diagnostic X-ray energy range.

The proposed method was calibrated using known aluminum (Al) and acrylic (PMMA)
thicknesses. Therefore, Al and PMMA were decomposed in terms of the adipose and
glandular tissue base in order to relate both pairs of materials. The Al and PMMA
attenuation coefficients are expressed as the following linear combinations:

(2.3.1)
µAl

⇢Al

= a1
µg

⇢g
+ a2

µa

⇢a
,

(2.3.2)
µP

⇢P
= b1

µg

⇢g
+ b2

µa

⇢a
,

where the subindexes Al, P, a, g are used to indicate Al, PMMA, adipose tissue, and
glandular tissue respectively. The method used to find {a1,a2, b1, b2} is discussed in section
3.4. The expressions relating material thicknesses are derived next.

The following derivation assumes simple exponential attenuation conditions. If an object
comprised of glandular tissue thickness tg -with density ⇢g- and adipose tissue thickness
ta -with density ⇢a- is imaged using two mono-energetic beams with energies L and H,
the log-attenuation equations can be written as follows:

CH = tgµ
H

g
+ taµ

H

a
,

CL = tgµ
L

g
+ taµ

L

a
,

where CH and CL represent the logarithmic attenuation produced by the high and low-
energy beams, respectively. Now, let’s suppose a combination of Al and PMMA thick-
nesses produces equivalent attenuations:

CH = tAlµ
H

Al
+ tPµ

H

P
,

CL = tAlµ
L

Al
+ tPµ

L

P
.

The system

(2.3.3)

8
<

:

tAlµ
H

Al
+ tPµ

H

P
= tgµ

H

g
+ taµ

H

a

tAlµ
L

Al
+ tPµ

L

P
= tgµ

L

g
+ taµ

L

a
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has an unique solution (tAl, tP ) for each pair of energies (L,H) provided L 6= H. This is
to say, there exists an unique combination of (tAl, tP ) that produces the same attenuation
as the combination of (tg, ta). Substituting 2.3.1 and 2.3.2 in the system 2.3.3:

(2.3.4)

8
<

:

tgµ
H

g
+ taµ

H

a
= (A1 +B1)µH

g
+ (A2 +B2)µH

a

tgµ
L

g
+ taµ

L

a
= (A1 +B1)µL

g
+ (A2 +B2)µL

a

where

A1 = tAla1
⇢Al

⇢g
; A2 = tAla2

⇢Al

⇢a

B1 = tP b1
⇢P

⇢g
; B2 = tP b2

⇢P

⇢a
.

System 2.3.4 can be expressed in matrix form as

M�!
T =


(A1 +B1)µH

g
+ (A2 +B2)µH

a

(A1 +B1)µL

g
+ (A2 +B2)µL

a

�

where M =


µ
H

g
µ
H

a

µ
L

g
µ
H

g

�
is the matrix of tissue attenuation coefficients, and

�!
T =


tg

ta

�

is the thickness vector for which we wish to solve. This system has the following unique
solution, provided M is non-singular (L 6= H):

(2.3.5)
tg = A1 +B1 = tAla1

⇢Al

⇢g
+ tP b1

⇢P

⇢g
,

ta = A2 +B2 = tAla2
⇢Al

⇢a
+ tP b2

⇢P

⇢a
.

Equations 2.3.5 are used to map Al and PMMA thicknesses, obtained from the calibration,
to equivalent glandular and adipose tissue thicknesses.

While it is true that real systems do not conform to the exponential attenuation as-
sumption, this assumption is a compromise made in order to derive analytical, linear
relationships between material thicknesses. In particular, the potential error introduced by
the mono-energetic spectra assumption is addressed in the uncertainty calculations (see
Appendix A).
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2.4. Breast Density measurements using mammography

This section oresents a brief overview of mammography-based methods for breast density
measurement. The findings of population breast density studies will also be discussed.

Mammography-based methods can be divided into four categories: visual examination of
mammograms, area-based methods, single-energy absorptiometry (SXA), and dual-energy
material decomposition. Visual examination provides a qualitative density measurement,
while area-based methods rely on segmentation techniques (such as thresholding) to pro-
duce bidimensional breast density measurements. Finally, both SXA and dual-energy
methods are able to provide volumetric measurements i.e. volumetric breast density.

Visual examination of mammograms is the oldest method, and it remains the standard
clinical practice as of yet. The Breast Imaging Reporting and Data System (BI-RADS)
system provides a way to classify breasts according to their mammographic density, as
illustrated in figure 2.4.1.

Figure 2.4.1. Craneo-caudal (CC) mammographic views depicting the
four BI-RADS categories. Breast A is almost entirely fatty, B shows scat-
tered areas of glandular content, C is heterogenously dense, and D is ex-
tremely dense. Figure adapted from [28].

As previously stated, the qualitative nature of visually-assessed breast density prevents it
from being a true risk predictor or biomarker.

The first step towards a quantitative breast density measurement was taken well before the
introduction of digital imaging, in the form of interactive thresholding methods. In [29],
a method involving the digitization of radiographic films is presented. After digitizing the
film, a histogram-based thresholding was performed to segment breast from background,
and to determine its glandular tissue proportion. The aforementioned thresholding was
manually carried out by an operator, whose task was to identify gray values corresponding
to glandular tissue. Once the threshold was set, breast density was calculated as the ratio
of pixels above the threshold (assumed to be glandular) to total pixels within the breast
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area. This is the working principle of algorithms such as Cumulus 1 [29, 30] and Madena
[31].

While showing better reproducibility than visual assessment, interactive thresholding meth-
ods still rely on trained human input to define the density threshold. Because of this,
attempts to automate the measurement process were made. The resulting automatic
area-based methods employed more advanced forms of segmentation such as maximum
entropy [32], adaptive fuzzy c-means [33], and machine learning approaches [34]. These
algorithms eliminated the human component and thus improved reproducibility. However,
doubts have been cast on the accuracy with which 2D breast density reflects the glandu-
lar tissue proportion within the breast, and whether volumetric measurements would be
a more adequate risk predictor [9, 10]. Figure 2.4.2 exemplifies how area-based breast
density measurements fail to take into account the tridimensional distribution of glandular
tissue: it represents two breasts for which the craneo-caudal projection of glandular tissue
covers the same area, but the glandular tissue distribution is different along the longitu-
dinal axis. These two breasts would have the same 2D breast density, even though one of
them has a larger fraction of glandular tissue.

Figure 2.4.2. Top: lateral view of compressed breasts, in which the red
regions represent glandular tissue. Bottom: X-ray illustrations demonstrat-
ing how area-based methods would fail to capture the increase in glandular
tissue volume.

1Not to be confused with Cumulus V, which does provide volumetric measurements.
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In their watershed paper [35], Yaffe et al used prototype breast CT scanners to measure
volumetric breast density. Up to that date, the prominent belief was that the average
breast had a density of 50%. What they found, instead, was an average breast density
of 19% among their patient cohort, hence bringing to attention “the myth of the 50/50
breast”. Thus, interest started to shift towards automated volumetric breast density mea-
surements.

Volumetric methods measure the differences in attenuation produced by adipose and
glandular tissue, and thus can be classified as SXA. Within this family of methods, there
exists another sub-classification: methods that rely on calibration objects, and methods
that utilize physics models.

Briefly, calibration-based methods such as the ones presented in [36, 37, 38], involved
imaging phantoms (tissue equivalent, acrylic or aluminum) either alongside the breast or
before the acquisition. Then, the attenuation in each pixel was referenced against the
calibration array or calibration curve in order to determine the percentage of glandular
tissue.

Physics modeling methods, such as Quantra and Volpara, are based on the so-called “hint

representation” first developed by Highnam and Brady [39, 40]. This formalism models
the energy imparted to the detector at every pixel, Eimp(i, j), by the primary X-ray beam
that goes through the compression paddle, breast and detector system:

(2.4.1) E
imp(i, j) = �(Vt, i, j)Apts

Emaxˆ
0

N0(Vt, ")G(")D(")e�µluc(")hplatee
�hµ(")

d",

where � is the photon flux, Vt is the tube voltage, Ap is the area of the pixel, ts is the
time of exposure, Emax is the maximum photon energy, N0 is the relative number of
incident x-ray photons at the specific energy ", D is the detector efficiency, G is the grid
transmission, µluc is the linear attenuation coefficient of Lucite, hplate is the thickness of
the Lucite breast compression plate and hµ(") is the linear x-ray attenuation coefficient
due to breast tissues in the column of tissue above pixel (i, j). Assuming each column
of breast tissue is composed only of adipose and glandular tissues, hµ can be written as
follows:

hµ(") = hintµint(") + hfatµfat(") ,

where hint is the thickness of the tissue of interest (glandular), hfat represents adipose
tissue thickness, and µi their respective linear attenuation coefficients. Furthermore, if the
total breast thickness H = hint + hfat is known, the previous equation can be rewritten
as:

(2.4.2) hµ(") = hint(i, j)(µint(")� µfat(")) +Hµfat(").
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If parameters such as tube voltage, current, time of exposure, breast thickness, and
material attenuation coefficients are known, after substituting 2.4.2 in 2.4.1 the only
unknown is hint(i, j). By equating the primary energy found in the practical case with the
theoretical value and solving the resulting nonlinear equation, hint(i, j) can be found.

The Quantra algorithm follows this approach, with the addition of incorporating informa-
tion from the DICOM headers to help calibrate the model to the specific imaging system
being used, and to determine H [41]. This methodology is commonly reffered to as
“absolute physics modeling”.

Volpara, on the other hand, uses what’s known as “relative physics modeling”. This
method involves finding a pixel signal corresponding to purely adipose tissue, and using
this value as a reference [14]:

hint(i, j) =
ln (P (i, j)/Pfat)

µfat � µint

.

P (i, j) represents the pixel value at coordinates (i, j), while Pfat represents the pixel
value corresponding to the entirely adipose region.The values in the denominator are the
effective x-ray linear attenuation coefficients for fat and glandular tissue at the particular
acquisition conditions (target, filter, tube voltage and recorded breast thickness combina-
tion). Currently, Volpara and Quantra have risen to prominence on grounds of being fully
automated, requiring no calibration, and being FDA-approved for clinical use.

As single-energy X-ray imaging can only be used to quantify one material at a time,
these methods rely on breast compression models and other acquisition data to estimate
total breast volume and derive volumetric measurements. DEDM allows for the simul-
taneous quantification of two materials, and thus is able to provide natively volumetric
measurements.

The use of dual-energy decomposition to solve the breast density determination problem
has been investigated in the past, particularly by Ducote and Molloi [18, 19]. The
method proposed in the referenced works was based on the dual energy material calibration
formalism discussed in section 2.2, and was calibrated tissue-equivalent material slabs.
Percent volumetric breast density was measured on tissue-equivalent phantoms, and they
reported a root mean square error of 5% in their measurements. However, these works
did not report the uncertainty associated with their breast density measurements, and the
proposed method was not applied to clinical images. Finally, it is important to point out
that dual-energy methods are not limited to glandular and adipose tissue decomposition.
Works such as [23] have expermimented with decomposing the breast in protein, water
and lipid content.

This concludes the review on mammography-based breast density measurement methods.
The remainder of this section will be devoted to summarizing the known characteristics
of breast density as measured using mammography - hereinafter referred to as “mammo-
graphic breast density”.
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Mammographic breast density has been found to be dependent on three variables, namely:
compressed breast thickness, patient’s age, and total breast volume. The works carried out
by Klein et al [42], Young et al [43] and Dance et al [44] first showed the breast thickness
dependence. These three studies calculated breast density on screening populations by
using measurements of the mAs (determined by the AEC) to draw a relationship between
the compressed breast and a phantom material. Dance proposed the following cubic
models -divided by age group- to describe this behavior:

(2.4.3) Gi(Tc) = aT
3
c
+ bT

2
c
+ cTc + d,

where i = 1 represents the age 40-49 group and i = 2, the age 50-64 group. The values
of the coefficients are given in table 2.4.1.

Coefficient Age 40-49 Age 50-64

a 0.00005209 �0.0001118

b 0.00125494 0.03932

c �1.988 �4.544

d 138.8 176.0

Table 2.4.1. Coefficients for Dance’s polynomial model of glandularity
as a function of breast thickness (in cm) [44].

By proposing different functions for each age group, Dance’s work accounted for the
age dependence of breast density. Klein also noted this dependence, pointing out that
their calculated glandular fraction (breast density) decreased from about 65% (20 years)
to about 30% (at the age of 75 years). This age dependence was also noted in semi-
quantitative studies such as [45], where the breast density of 1353 women was visually
assessed. Breast density was found to progressively decrease from the age cohort of 25- to
29-year-olds, in which 38% of patients had predominantly (>50%) fatty breasts, through
the cohort of 75- to 79- year-olds, in which 76% had predominantly fatty breasts.

In a large-scale, quantitative study (N=15351) Alonzo-Prolux et al [46] reported a de-
crease in volumetric breast density from 45% to 25% as age increased from 35 to 75
years, and an increase to 30% at 80 years. This work also presented the measured breast
density and glandular volume distributions, which were found to be non-normal. Though
this may indicate a more complex age-dependence, they argued the increase past age 80
could be a due to the fact that women in that older age group continued to present for
mammography imaging because of a higher breast cancer risk, which might imply a higher
breast density.

Breast CT studies [35, 47] also confirmed this dependence. In particular, Huang et al
[47] presented a thorough analysis of volumetric breast density as a function of different
biological and anatomical variables, one of them being age. In this study, the breast
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volumes (adipose and glandular) and volumetric breast density of 219 patients were plotted
as a function of their age. They found that, as women aged, the volume of adipose tissue
increased steadily while the volume of fibroglandular tissue decreased gradually. The
results from bCT indicate that the age dependence is not exclusive to mammographic
breast density.

Lastly, mammographic density has also been observed to be dependent on total breast
volume. Alonzo-Prolux et al [46] reported a steady decline in volumetric breast density
with increasing breast size, possibly explained by the association between breast size and
body fat. The previously referenced bCT study [47] found an association between breast
diameter and volumetric breast density, in that the latter decreases as the former increases.

The reports on the total volume dependence are limited, though biopsy studies such as
[48, 49] have shown that smaller breasts have greater areas of collagen and glands. These
results suggest higher volumetric glandular densities on smaller breasts.

2.5. Breast Density measurements using MRI

MRI has been recognized as a superior modality for volumetric breast density measure-
ments, and is often used as a reference when assessing the performance of methods based
on image modalities such as DBT, Breast CT and Digital Mammography [55, 57, 56].
By nature, it produces 3D images with strong contrast between fibroglandular tissue and
adipose tissue. Furthermore, tissue overlap is not a problem in 3D imaging techniques.

Measuring breast tissue volumes using MRI is a segmentation problem; that is, to assign
each voxel a degree of membership to the glandular and adipose tissue categories. There
are several ways to perform this segmentation, such as adaptive thresholding [?], fuzzy
c-means (FCM) clustering [45], and deep learning-based methods [59]. In this work we
implemented an adaptive thresholding solution, and the details will be discussed on section
3.8.

Modern MR systems provide a wide breadth of acquisition sequences to choose from,
each with their own contrast properties (see figure 2.5.1). Because of this, works such as
[47] have assessed their performance in the breast density measurement problem. In the
referenced study, Tagliafico et al. compared the performance of T1-turbo spin-echo (T1-
tSE), T2-turbo spin-echo (T2-tSE), VIBRANT (Volume Imaging for Breast Assessment)
and IDEAL sequences. They concluded that T1-weighed sequences remain the most
clinically viable and are sufficient for breast density measurement purposes, but IDEAL
sequences -if available- may provide a truer tissue separation because tissue contrast in
these sequences are a product of biochemical differences between the tissues.
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Figure 2.5.1. Matched axial MRI slices of the same patient, acquired
using three different sequences (indicated on each image).

In this work, breast volumes were measured using IDEAL sequences. IDEAL stands for
“Iterative Decomposition of water and fat with Echo Asymmetry and Least squares es-
timation”, and is an implementation of Dixon’s method [61] proprietary of GE systems
(General Electric Medical Systems, Milwaukee, WI, USA) [62]. In essence, this method
relies on in- and out-of-phase imaging (acquiring two images at different echo times), ex-
ploiting the difference in chemical shift between water and fat. These sequences provide
“water-only” and “fat-only” images, which allows for the quantification of both materials
within a voxel.

2.6. Multimodality studies

The ever-increasing breadth of modalities and algorithms that can be used to assess breast
density raises an obvious question: are the resulting measurements equivalent? (And if
not, which technique should be recognized as the “gold standard”?). To help answer this
question, several multimodality studies have been carried out. In this section, the main
findings of such studies are be summarized.

Klifa et al [50] compared MRI breast density measurements (FCM implementation on fat-
supressed gradient recall echo sequences) to digitized mammography results (customized
threshold-based method). Breast density was calculated for 35 women at high-risk for
breast cancer. Mammographic breast density was found to be higher than the MRI
counterpart, and better correlation between the two measurements was found for lower
density breasts (<20%, R2 = 0.732). For higher densities (>20%), R2 = 0.264. The
overall correlation coefficient without the density separation was R

2 = 0.67. Finally, the
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authors observed that the range in MRI density measurements was smaller than the range
of corresponding mammographic densities.

Kontos et al [51] compared two methods: Quantra, MRI (FCM implementation on T1
sequences). Glandular volume, total volume, and volumetric breast density (VBD) were
measured for 32 women in a high risk population, with recently detected abnormalities
(only the contralateral breast images were processed). The authors found that VBD
showed good correlation (R2 = 0.8), though the measured values were higher for the
mammography-based method. Also, there was good agreement in total volume, as the
distributions’ means showed no statistical difference. However, lower agreement was found
in glandular volume, particularly for lower density breasts, with MRI providing lower values.
Finally, they found a better correlation between the two methods when for higher VBD
values.

In [52], Wang et al compared Quantra measurements to MRI measurements. Glandular
volume, total volume and volumetric breast density (VBD) were measured for 123 screen-
ing patients. The authors performed linear regressions on the Quantra measurements as
a function of MRI measurements, and found the following R

2 coefficients: 0.89 for total
volume, 0.38 for glandular volume, and 0.50 for VBD. To be noted, the regression equa-
tion slope parameters were significantly different than one, and intercepts significantly
different than zero. The reported root mean square errors (with respect to MRI) were
110.55 cm3 for total volume, 55.10 cm3 for glandular volume, and 6.48% for VBD.

In a follow up work [53] the same group compared four methods: SXA (custom imple-
mentation), Quantra, Volpara and MRI. Glandular volume, total volume and volumetric
breast density (VBD) were calculated for 99 screening patients. They used the MRI re-
sults as ground truth, and evaluated the correlation between them and the remaining three
methods. Correlation coefficients for volumetric breast density were 0.78, 0.51 and 0.73
for SXA, Quantra and Volpara, respectively. In this work, the non-normality of the glan-
dular volume distribution was pointed out, and the authors performed a log normalization
before carrying out the statistical analysis. By calculating the kappa statistic, substan-
tial agreement was found between all percent fibroglandular tissue measures (=0.72 to
0.63), but only moderate agreement for log glandular volumes. The kappa statistics for
all percent density measures were highest in the comparisons of the SXA and MRI results.
The largest error source between MRI and the mammography techniques was found to
be differences in measures of total breast volume. The RMSE in the evaluated quantities
ranged from 4.4% (Volpara) to 10% (SXA) for VBD, 0.37 (Volpara) to 0.57 (Quantra)
for log glandular volume, and 108 cm3 (SXA) to 121 cm3 (Volpara) for TBV.

Tagliafico et al [54]compared full field digital mammography (FFDM), DBT and MRI
measurements. The used algorithms were all based based on Shannon’s maximum en-
thropy segmentation method. They measured percent breast density in a group of 48
patients that underwent diagnostic imaging (only images of unaffected breasts were pro-
cessed). They found good (R2 = 0.9) correlation between MRI and DBT measurements,
and between DBT and Digital mammography (R2 = 0.94). Correlation between MRI
and Digital mammography was lower (R2 = 0.78). It was also found that mammogra-
phy over-estimated VBD by 16.2% in comparison to MRI, and 15.1% in comparison to
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DBT. The increased VBD values in FFDM can be explained by the fact that they used a
thresholding method on 2D images, which resulted in area density measurements.

In another three-modality study, Pertuz et al [55] compared FFDM (Volpara), DBT (In-
house method) and MRI (FCM implementation on T1 sequences). The authors measured
total volume, glandular volume, and VBD in a population of 80 women undergoing high-
risk screening. The performed statistical analysis showed significant differences in VBD
and glandular tissue volume, but not in total breast volume, among the studied modalities.
Substantial correlation among VBD measurements was also found, with the strongest
being between MRI and DBT. High correlationns were also observed for estimates of total
breast volume across the three modalities.

Finally, Holland et al [56] compared a custom FFDM method (similar to the Volpara
implementation of the hint representation) to MRI. Total volume, glandular volume and
VBD were measured in a group of 202 patients (no other information is provided). High
correlations in total volume were found, with R

2 values ranging from 0.77 to 0.81, de-
pending on the FFDM method’s parameters. However, it was found that FFDM tended
to over-estimate this quantity. VBD showed substantial differences among the two tech-
niques, especially for dense breasts. Lower correlations were found in glandular volume,
with R

2 ranging from 0.62 to 0.74.

Results from multimodality studies can be summarized by the following bullet points:

• There is good agreement in total volume, when comparing mammography-based
methods to 3D modalities such as MRI.

• The main source of disagreement in VBD across these modalities stems from
differences in measured glandular volume.

• Agreement in VBD seems to be better for less dense breasts.
• Mammography-based methods tend to over-estimate glandular tissue volume,

which in turn results in over-estimation of VBD. Additionally, the variation in
VBD among a given population seems to be higher when measured using mam-
mography, with the range in MRI measurements being markedly compressed in
comparison.

• Even though inter-modality correlations range from decent to excellent, the mea-
sured quantities may not be equivalent. As there is no agreed-upon ground truth,
multimodality studies can only evaluate relative performance between methods.

• Many of the cited studies involve high risk patients, and therefore a selection
bias is not out of the question.



CHAPTER 3

Materials and methods

3.1. DEDM image acquisition

All mammography images used in this work were acquired at the Radiodiagnostic De-
partment of Mexico’s National Cancer Institute (INCAN), using a commercial Amulet
Innovality digital mammography and DBT station (FUJIFILM Corporation). This sta-
tion is equipped with a tungsten anode X-ray tube and selectable Rh (50µm) and Al
(700µm) filters. Detector-wise, it features a logarithmic response a-Se flat panel detector,
in which individual detector elements are set in a hexagonal array. This system is capable
of producing digital mammograms with square pixels down to 50µm in side [63, 64].

Acquisitions were performed in “manual mode” (AEC bypassed). The dual-energy tech-
nique was optimized in a previous study [65], and the acquisition parameters are shown
in table 3.1.1.

Technique kV mAs Filter
LE 31 63 Rh
HE 45 63 Al + 5mm Al (external)

Table 3.1.1. DEDM acquisition parameters.

Figure 3.1.1. Raw mammograms of the same patient as figure 2.1.3.
Display window has been adjusted to cover the entire the dynamic range.

28



3.2. DEDM IMAGE PRE-PROCESSING 29

All calibration and clinical images were acquired as craneo-caudal projections with right
breast orientation (RCC). They were exported and processed as “raw” images (.std files).
In this format, the images have a size of 2364x2964 px, with each pixel being 100µm
in side. The pixel value (PV) - signal intensity relationship is linear and non-inverted;
this is, higher PV, displayed as whiter shades of gray, are indicative of lower attenuation.
Given the detector’s logarithmic response, raw images need no log-transformation prior to
processing. Figure 3.1.1 shows an example of a pair of clinical raw images.

3.2. DEDM image pre-processing

The pre-processing routine applied to all DEDM images (both calibration and clinical)
involves the following two steps:

(1) Detector non-uniformity correction.
(2) Downsampling.

The pre-processing was applied in the stated order, and each step will be discussed in the
following sections.

3.2.1. Non-uniformity correction. Figure 3.2.1 shows a map of percentage differ-
ences (relative to the mean) corresponding to an uniform PMMA slab 4cm in thickness,
which covered the entire detector area. These maps, and therefore the unprocessed im-
ages, exhibit intensity gradients: the LE image, a falloff near the outer edge; the HE
image, an increase.

Figure 3.2.1. Pixel value difference maps (relative to the mean value)
corresponding to an uniform PMMA slab, displayed using the same scale.
Note that the relative difference can reach values of up to 15% for the HE
image.
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If the response were thoroughly uniform, the imaged slab would translate to uniform
images, and the maps in figure 3.2.1 would be equal to zero in every region. This non-
uniformity affects both the calibration and volume calculations, and must be accounted
for before any further processing takes place.

To this end, the following correction was devised: First, an “uniformity image” U
0 was

acquired. U0 is obtained by imaging, in Quality Assurance (QA) mode, the aforementioned
PMMA slab using the clinical DE technique. In order to minimize quantum noise effects
on the correction, U0 was convolved with a 40x40 pixel median filter H:

U = U
0 ⇤H .

If Iij is the unprocessed image, the corrected image is given by:

(3.2.1) I
0
ij
= Iij

✓
U

Uij

◆
,

where U is the mean value of the uniformity image. The subindexes i, j represent arbitrary
pixel coordinates in each image, so eq. 3.2.1 indicates pixel-by-pixel operations.

3.2.2. Downsampling. The purpose of this pre-processing stage is two-fold:

• Improve the DE calibration quality.
• Reduce resulting noise and computation times.

In order to prevent aliasing, downsampling is usually preceded by a low-pass filter applica-
tion. In this case, a Gaussian filter was used. Gaussian filtering and downsampling were
handled using the ImageJ implementation contained in the Downsample function [66],
using parameters �source = �target = 1. Image dimensions were reduced by a factor of 4,
so the resulting images had a size of 591x741 px, with a pixel area of 0.16 mm2.

Downsampling, by definition, reduces spatial resolution. For this application, the tradeoff
is well worth it since the interest lies in measuring overall breast composition, rather than
visualizing fine details.
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3.3. Dual-energy calibration

The calibration discussed in section 2.2 required imaging an Al-PMMA phantom with
different thickness combinations. The step-wedge configuration shown in figure 3.3.1
provided a total of 43 data points for use in the calibration: 42 (tAl, tP ) combinations,
plus the background signal region.

Figure 3.3.1. Illustration of the Al-PMMA step-wedge array used to
calibrate the method.

The calibration set is described mathematically as C = P ⇥A. P={0,10, 20, 30, 35, 40}
and A={0, 0.1, 0.3, 0.4, 0.5, 0.6, 0.7} were the PMMA and Al thickness steps in mm,
respectively. Once the DE calibration images had been pre-processed, mean pixel values
(MPV) were measured inside each thickness combination region using a square 20x20 px
ROI (figure 3.3.2). ROIs placements were recorded and applied using an ImageJ macro,
which resulted in MPV measurements corresponding to the same pixels in LE and HE
images.

Figure 3.3.2. Left: LE calibration image. Right: Closeup showing ROI
definitions.
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The measured pixel values in each region were subtracted from the “background” signal;
that is, the MPV measured in a region where tAl = tP = 0:

F = f(0, 0)� f(tAl, tP ) ,

G = g(0, 0)� g(tAl, tP ) ,

where F represents PV in the LE image and G represents PV in the HE image. The
calibration dataset consisted of points in the (F,G, tAl) and (F,G, tP ) spaces. Two
different functions were then fitted to the dataset: a first order surface, and the 8-
parameter rational function (eq. 2.2.1):

ti,1 = aF + bG ,

ti,2 =
a+ bF + cG+ dF

2 + eFG+ kG
2

1 +mF + nG
.

3.4. Basis material decomposition

Going back to equations 2.3.1 and 2.3.2, for each pair of energies (L,H) a system of 2
equations can be defined. For the Al attenuation coefficient decomposition, the pair of
equations becomes:

µ
L

Al

⇢Al

= a1

µ
L

g

⇢g
+ a2

µ
L

a

⇢a
,

µ
H

Al

⇢Al

= a1

µ
H

g

⇢g
+ a2

µ
H

a

⇢a
.

In matrix form, the systems for the Al and PMMA attenuation coefficient decomposition
become

(3.4.1) M�!
a =


µ
L
g/⇢g µ

L
a/⇢a

µ
H
g /⇢g µ

H
a/⇢a

� 
a1

a2

�
=


µ
L

Al/⇢Al

µ
H

Al/⇢Al

�
, and

(3.4.2) M
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�
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By inverting systems 3.4.1 and 3.4.2, the set of parameters {a1,a2, b1, b2} is determined.
Given the energy dependence of effective atomic numbers, the solutions to these systems
are not the same for each pair of energies considered [67]. As the dual-energy spectra are
poly-energetic, the systems were solved for each possible pair of energies within the [10,
45] keV range, in steps of 1keV.

The material attenuation coefficient data were obtained from the XCOM database (NIST).
XCOM calculates the attenuation coefficients for compounds and mixtures by performing
a weighted sum over the attenuation coefficients of the constituting elements. The weight
factors are obtained from the material composition percentage (mixtures) or the chemical
formula (compounds) [68]. Table 3.4.1 shows the compositions of the materials of interest
in this work.

H C O N S,P,K,Ca Al ⇢ [g/cm3]

Breast glandular tissue 10.2 18.4 67.7 3.2 0.5 0 1.04

Breast adipose tissue 11.2 61.9 25.1 1.7 0.1 0 0.93

PMMA 8.05 59.98 31.96 0 0 0 1.19

Al 0 0 0 0 0 100 2.7

Table 3.4.1. Material compositions (percentage) and densities. Breast
tissue percentage compositions were taken from [69].

3.5. Material decomposition accuracy test

In order to test the material decomposition accuracy, a step-wedge arrangement of tissue
equivalent slabs was imaged (figure 3.5.1).

Figure 3.5.1. Tissue-equivalent slab configuration used to test the ma-
terial decomposition relationships. Each slab is 10mm in thickness and
equivalent to different proportions of glandular/adipose tissue.
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A LE image of the illustrated arrangement is shown in figure 3.5.2. The “steps” of the
arrangement define regions with different glandular ratio values.

Figure 3.5.2. LE image of the slab configuration. Glandular ratio inside
each region is also shown.

The equivalent nominal glandular thickness te of each slab was obtained by multiplying
its glandular fraction by the slab thickness. For instance, te = 7 mm for the “70/30” slab.
The nominal glandular ratio inside region i was calculated as GRi = 100·

P
te/10n, where n

is the number of superimposed slabs in region i and
P

te is the sum of their equivalent
glandular thicknesses.

Glandular tissue and adipose tissue thickness maps tg(i, j) and ta(i, j) were generated, as
well as total thickness maps T (i, j) = tg(i, j) + ta(i.j). Finally, the glandular ratio map
was calculated as GR(i, j) = tg(i,j)/T (i,j). For each map, MPV inside each region were
measured and compared to the nominal quantities.

3.6. Patient images

The patient images used in this work were acquired as part of a completed clinical study
[65]. The protocol included twenty-six patients with suspected multicentric breast cancer,
and it involved the acquisition of various MRI sequences (both pre and post-contrast) and
a CEDM study. The latter consisted of a single energy temporal (SET) acquisition of the
suspicious breast at 1, 2, 3 and 4min post-contrast injection, followed by a DE acquisition
of the contralateral (non-suspect) breast. Only the DE images of the contralateral breast
were processed in this work.
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Out of the twenty-six available image sets, twelve were discarded because they either
showed artifacts, or were acquired with a different technique to that used in the DEDM
calibration. This left us with a population of N = 14, with characteristics shown in table
3.6.1:

Patient ID Age [years] Examined Breast Tc [mm]

1 48 R 59

2 44 R 68

3 43 R 60

4 61 R 40

5 61 R 43

6 58 L 43

7 55 R 52

8 39 R 43

9 36 R 51

10 61 R 56

11 58 R 39

12 45 R 49

13 52 R 57

14 56 R 48

Table 3.6.1. Patient group characteristics. Mean age was 51.2 years. Tc

represents the compressed breast thickness, as registered by the mammog-
raphy unit.

The MRI studies were acquired on a 3T GE system at INCAN’s Radiodiagnostic Depart-
ment. The segmentation of breast tissues was performed on pre-contrast IDEAL (FatOnly)
slices. These sequences consisted of 40 axial slices with square pixels 0.7813 mm in side,
and 5.5 mm inter-slice spacing (voxel size = 3.35 mm3).

3.7. Clinical DEDM image processing and volumetric calculations

In addition to the pre-processing described in section 3.2, clinical DEDM images required
an extra step of processing: masking the breast region. This masking served two purposes:

• The mask defined the breast area, necessary for calculating volumes.
• It excluded the breast border and the associated artifact (see figure 3.7.1) from

the calculation.
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Figure 3.7.1. Left to right: glandular ratio map without breast masking.
Binary mask. Glandular ratio map calculated after applying the binary mask
to the original images. The high GR region along the edge is considered
an artifact in the calculation, since there is no glandular tissue present in
that area.

A bespoke mask was generated for each pair of DE images. This was done in the following
way: first, a preliminary glandular ratio map GR(i, j) was calculated. From GR(i, j), a
gradient magnitude image G(i, j) was generated. As GR increases abruptly near the edge
of the breast, G(i, j) has the highest values in that region - which means this parameter
can be used as a criterion for elimination. The following image was then computed:

T
⇤(i, j) =

(
0 G(i, j) > G0

T (i, j) otherwise

where T (i, j) is the preliminary total thickness image and G0 is a empirically determined
threshold. Next, T ⇤(i, j) is binarized in order to obtain a mask. As the resulting image
is likely to have imperfections near the edge, the following morphological operations were
applied: filling, spur pixel removal, and erosion along the breast edge. Finally, a gaussian
filter was applied and a final thresholding was performed in order to smooth out the mask.
This process is illustrated in figure 3.7.2.
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Figure 3.7.2. 1) Preliminary GR map. 2) Gradient magnitude image
G(i, j). 3) Preliminary total thickness image T (i, j). 4) T ⇤(i, j). 5) Bina-
rized T

⇤(i, j). 6) Resulting binary mask after applying the morphological
processing.

Given a pair of clinical DE images, ILE and IHE, the following processing steps were taken
to obtain the volumetric measurements:

1. Pre-processing (non-uniformity correction and downsampling).

2. Normalization of the DE images. As the calibration was performed in terms of
background-normalized PV, the LE image is defined as F = ILE,0 � ILE(i, j); simi-
larly the HE image is G = IHE,0 � IHE. The background PV was measured in regions
with no breast present.

3. Pixel-by-pixel application of the Al-PMMA calibration. Al and PMMA thickness maps
were generated using the following equations:

tAl =
a+ bF + cG+ dF

2 + eFG+ kG
2

1 +mF + nG
and tP = aF + bG .

4. Pixel-by-pixel application of the basis material decomposition relationships 2.3.5 . At
this stage, preliminary tissue thickness and GR maps were generated:
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tg = tAla1
⇢Al

⇢g
+tP b1

⇢P

⇢g
, ta = tAla2

⇢Al

⇢a
+tP b2

⇢P

⇢a
, T = tg+ta and GR = 100 ·(tg/T ).

5. Breast masking generation and application. The binary mask was applied to the
preliminary maps generated in step 4.

6. Volume calculations. The tissue maps were integrated over the entire image to produce
volumetric measurements:

(3.7.1) Vg =
X

i,j

tg(i, j)dA, VT =
X

i,j

T (i, j)dA,

where dA is the pixel area (0.16 mm2). As the binary masks were applied beforehand, pixels
outside the breast area do not contribute to the area integrals. Finally, the volumetric
glandular ratio, or volumetric breast density, was computed as:

(3.7.2) V GR[%] = 100

✓
Vg

VT

◆
.

3.8. Clinical MRI processing and volume segmentation

As previously stated, each patient MRI study consisted of 40 slices. Each one of them
was a 16-bit depth DICOM image, 512x512 px in size. The individual slices were exported
as text matrices and processed in this format.

In terms of pre-processing, a background intensity gradient correction (sometimes referred
to as bias-field correction) was performed, followed by the application of a mask to define
the breast region. Let S be a MRI slice. The background-corrected slice S

⇤ is given by:

S
⇤ =

S

S ⇤G256

where G256 is a Gaussian filter with � = 256px. The convolution in the denominator has
the effect of erasing all high-frequency content, leaving only the low-frequency background
gradient. Once each slice was corrected, a ROI surrounding the breast of interest was
manually defined on the center slice, as shown in figure 3.8.1. The complement to this
ROI was mapped to zero for each slice, and the resulting images were binarized. Each slice
was morphologically processed (filling and closing) and the erosion operation was applied
along the edge of the breast in order to exclude this region. The resulting binary slices
BM(i, j) constituted the breast mask, and it was applied before the tissue segmentation
took place.
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Figure 3.8.1. 1) Center slice of a clinical MR volume, yellow lines indi-
cate the segmented breast region. 2) All pixels outside the selected ROI
are mapped to zero. 3) Resulting binary mask for the same slice.

In order to segment adipose tissue from non-adipose tissue -assumed to be glandular-, an
adaptive thresholding method was applied. This method is a customized implementation
of Wellner’s method [70, 71]. It consists of comparing each pixel to an average of the
surrounding neighborhood, and if the value of the current pixel is t percent lower than
the average then it’s set to zero. Mathematically, each slice S

⇤(i, j) was binarized thus:

Ba(i, j) =

8
><

>:

0 S
⇤(i, j)  Sn(1� t/100)

1 otherwise

,

where Sn is the average PV in the n ⇥ n neighborhood surrounding pixel (i, j), and t is
the threshold value. For this application, the empirically determined values n = 10 and
t = 5 were used. Ba(i, j) is the binary image in which a value of 1 represents a pixel that
is comprised of adipose tissue.

Figure 3.8.2. Left: Binary adipose tissue slice. Right: Binary breast
mask slice.
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The adipose tissue volume was calculated by counting the non-zero pixels in every Ba(i, j)
slice, and then multiplying that number by the voxel dimensions. Similarly, the total
volume was obtained by counting the non-zero pixels in BM(i, j). The glandular volume
Vg was calculated by subtracting the adipose volume from the total volume.

Pa,k =
X

i,j

Ba(i, j), PT,k =
X

i,j

BM(i, j),

Va,MRI = dV

X

k

Pa,k, VT,MRI = dV

X

k

PT,k,

Vg,MRI = VT,MRI � Va,MRI ,

with Px,k representing the number of adipose (x = a) or total (x = T ) pixels inside
the breast area in a given slice k, and dV the voxel dimensions. Finally, the volumetric
glandular ratio was computed as the quotient of Vg and VT :

(3.8.1) V GRMRI [%] = 100

✓
Vg,MRI

VT,MRI

◆
.



CHAPTER 4

Results and discussion

4.1. Dual-Energy calibration

Figure 4.1.1 shows the calibration data points obtained from the step-wedge array shown
in figure 3.3.1, while table 4.1.1 shows the fitted parameters for the material thickness
functions as well as the R

2 value and the root-mean-square error (RMSE).

Figure 4.1.1. DE Calibration data set, plotted as background-normalized
PV vs material thickness. LE PV in red, HE PV in blue.

Material Function Parameters Value R
2 RMSE [mm]

Al tAl =
a+bF+cG+dF

2+eFG+kG
2

1+mF+nG

a -2.11E-04

0.9971 0.014

b 1.34E-03
c -2.86E-03
d -1.03E-06
e 4.43E-06
k -4.65E-06
m -7.75E-04
n 1.64E-03

PMMA tP = aF + bG
a -0.01128 0.9999 0.1263b 0.04113

Table 4.1.1. DE calibration fit parameters and goodness of fit metrics

41
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It was found that a linear surface provided a good fit for tP . This function was preferred
over the 8-parameter one because linear expressions propagate less uncertainty and noise.
Figure 4.1.2 shows absolute and relative errors in the calibration points, as a function of
known thickness.

(a) (b)

(c) (d)

Figure 4.1.2. Absolute and relative errors in the calibration data. t
⇤
i

represents the calculated thickness; ti, the nominal values.

For both materials, the absolute error was fairly independent of material thickness, as can
be seen on figure 4.1.2 A and B. This means that the relative error in the calculations
decreased as the thickness increases, and its values were typically below 5% (figure 4.1.2
C and D). However, for very small aluminum thicknesses (0.1mm), this error went as high
as 17%.

For a true separation of materials, the estimates of one material thickness must be in-
dependent from the second material thickness. Figure 4.1.3 shows the estimates of one
material thickness when the second one varied in thickness (i.e., thickness values along
each “step” region). Figure 4.1.4 shows the calculated maps for the calibration phantom
in which the adequate separation can be visually confirmed.
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Figure 4.1.3. Left: variation in the Al thickness estimate when the su-
perimposed PMMA varied from 0 to 40 mm. Right: variation in the PMMA
thickness estimate when the underlying Al layers varied from 0 to 0.7 mm.
Dotted lines indicate the actual material thickness.

Figure 4.1.4. tAl(i, j) and tP (i, j) calculated from the calibration phan-
tom images.

To conclude the Al-PMMA calibration evaluation, a second step-wedge phantom with a
different material arrangement was imaged. This array consisted of the following thickness
steps tP={0,10, 20, 30, 40, 45, 50} mm and tAl={0, 0.1, 0.3, 0.4, 0.5, 0.6, 0.7} mm
. The resulting material thickness maps are shown in figure 4.1.5. Mean thickness and
its standard deviation were measured inside each material “step” region, and compared to
the known material thickness (figure 4.1.6).
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Figure 4.1.5. tAl(i, j) and tP (i, j) calculated from a second Al-PMMA array.

(a) (b)

(c) (d)

Figure 4.1.6. Errors in thickness estimation on an independent Al-
PMMA array. The length of each error bar represents the standard de-
viation of the measured thickness values inside each “step” ROI.
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Figure 4.1.5 shows that separation of the two materials was achieved, though there were
some artifacts in tAl(i, j) introduced by edges in the PMMA slabs. The mean percent
error in material thickness across all regions was 2.3% for Al and 2.5% for PMMA, and
for both materials it was typically below 4%.

4.2. Basis material decomposition parameters

Figure 4.2.1 shows maps containing the solutions {a1, a2, b1, b2} to systems 3.4.1 and
3.4.2, for each pair of energies (L < H) in the [10,45] keV interval.

(a) (b)

(c) (d)

Figure 4.2.1. Calculated basis material decomposition parameters for
each pair of energies. Absolute values are plotted for figure consistency.

The presence of gradients in each parameter map confirms the energy dependence of
{a1, a2, b1, b2} mentioned in section 2.3. In order to find the average parameters and their
standard deviation, only energy pairs within the [10, 31]⇥ [10, 45] keV region were taken
into account, as 31 keV and 45 keV are the respective energy cutoffs in the LE and HE
spectrum. Results are shown in table 4.2.1.
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Parameter Mean Value Standard Deviation
a1 12.72 0.07
a2 -11.16 0.11
b1 0.1709 0.0015
b2 0.8015 0.0022

Table 4.2.1. Basis material decomposition parameters

4.3. Material decomposition test

Figure 4.3.1 shows the calculated thickness and GR maps corresponding to the step-wedge
array described in section 3.5 and illustrated in figure 3.5.1.

Figure 4.3.1. Tissue thickness and GR maps corresponding to the phan-
tom configuration shown in figure 3.5.1

Table 4.3.1 compares the measured mean values inside each region to their nominal
counterparts. Measured quantities are identified with an asterisk (*), and all thicknesses
are reported in mm.
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Region tg t
⇤
g

ta t
⇤
a

T T
⇤

GR[%] GR
⇤[%]

1 10 11.26± 0.23 0 0.03± 0.60 10 11.29± 0.64 100 99.74± 2.06

2 17 16.83± 0.33 3 2.62± 0.37 20 19.45± 0.50 85 86.51± 1.68

3 22 21.50± 0.49 8 8.84± 0.58 30 30.34± 0.76 73.3 70.86± 1.61

4 25 24.32± 0.73 15 16.56± 0.84 40 40.88± 1.12 62.5 59.49± 1.79

5 25 24.53± 1.03 25 26.84± 1.25 50 51.37± 1.62 50 47.75± 2.01

Table 4.3.1. Tissue thickness and GR inside each one of the regions
(steps) defined in figure 3.5.2.

The mean absolute errors in the calculations were as follows: for tg, 0.61 mm; for ta, 0.92
mm; and for GR, 1.89%. It is worth pointing out that regions 4 and 5 had practically
the same calculated tg, even though there was an additional adipose tissue slab in the
latter region. This indicates that the Al-PMMA material separation discussed in section
4.1 translated to an adequate glandular and adipose tissue separation.

4.4. DEDM calculations in clinical images

Figure 4.4.1. 2D maps generated from patient 10’s set of DEDM images.
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Figure 4.4.1 shows tg(i, j), ta(i, j), T (i, j) and GR(i, j) obtained from one patient’s set
of DEDM images. Such maps were generated for all 14 patient images, and glandular
volume Vg, total breast volume, VT and volumetric glandular ratio V GR were calculated.
Table 4.4.1 shows the volumetric measurements (all reported in cm3) obtained for each
patient, using both DEDM and MRI.

ID Vg,DEDM VT,DEDM V GRDEDM (%) Vg,MRI VT,MRI V GRMRI(%)

1 179.3± 11.1 731.7± 40.6 24.5± 2.8 230.2± 23.4 792.8± 42.1 29.0± 3.3

2 168.6± 9.4 746.4± 39.9 22.6± 2.1 189.8± 21.5 813.2± 40.1 23.3± 2.9

3 215.3± 9.3 835.8± 40.2 25.8± 2.3 292.2± 35.1 1010.7± 49.3 28.9± 3.7

4 360.5± 17.3 844.0± 29.9 42.7± 2.5 312.7± 52.1 1149.1± 45.6 27.2± 4.7

5 261.6± 16.1 590.4± 30.0 44.3± 3.5 177.1± 28.9 609.8± 29.6 29.0± 4.9

6 154.4± 12.0 400.3± 24.7 38.6± 3.8 125.2± 18.0 463.8± 27.5 27.0± 4.2

7 428.7± 21.5 1061.3± 46.8 40.4± 2.7 409.3± 60.4 1600.0± 53.4 25.6± 3.9

8 152.3± 11.3 411.3± 27.0 37.0± 3.7 150.9± 22.7 575.1± 24.9 26.2± 4.1

9 96.5± 11.1 181.9± 24.9 53.0± 9.5 68.0± 3.8 155.2± 14.0 43.8± 4.7

10 166.9± 9.3 575.4± 16.3 29.0± 1.8 218.9± 24.1 756.4± 32.3 28.9± 3.4

11 88.4± 8.7 236.1± 27.0 47.4± 6.1 63.9± 6.6 203.7± 15.1 31.4± 4.0

12 165.9± 11.5 407.5± 14.4 40.7± 3.2 131.1± 12.9 383.4± 22.2 34.2± 3.9

13 117.1± 12.3 519.2± 23.2 22.6± 2.6 136.9± 22.2 523.5± 25.8 26.1± 4.4

14 178.3± 7.7 491.7± 29.7 36.3± 2.7 138.4± 19.4 503.6± 25.8 27.5± 4.1

Table 4.4.1. Volumetric measurements corresponding to each patient.

For a detailed description of the uncertainty calculations in both modalities, refer to
appendix A.

V GR values calculated using DEDM were viewed as a function of three variables, namely:
compressed breast thickness Tc, patient’s age, and total breast volume. This was done
because, as discussed in section 2.4, mammographic breast density has been found to
exhibit particular behaviors as a function of the first two variables, and biopsy studies
have provided insight between the breast density-volume relationship.

Breast density, as calculated using mammography, is known to decrease as a function of
compressed breast thickness [42, 44, 72]. Figure 4.4.2 shows the VGR measurements for
each of the 14 patients as a function of compressed breast thickness, as registered by the
mammography station (Tc). Also included in this plot are breast density values predicted
by Dance’s model (as defined by equation 2.4.3).
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Figure 4.4.2. V GR vs Tc plot. Dotted lines show Dance’s model for
two age groups: 40-49 years in black (G1), and 50-64 in blue (G2).

The VGR measured in this work tends to decrease as a function of Tc. In this sense, VGR
calculated using DEDM shows the same behavior one would expect from “traditional”
breast density measurements.

The age dependence of glandular fraction has also been noted in the literature [35, 46,
73, 74]. Across multiple studies, it has been observed that the glandular tissue fraction
within the breast tends to decrease as age increases. Figure 4.4.3 shows this work’s VGR
plotted as a functon of age.
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Figure 4.4.3. V GR vs patient’s age.
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The results obtained from the analyzed population show no apparent age dependence.
However, the following caveat applies when comparing the presented results to those
reported in other mammography-based studies:

As our sample size is considerably smaller than the population referenced in section 2.4,
and given the racial differences in breast composition [74], we cannot conclude much
about the conformance (or non-conformance) of the calculated values to their expected
behaviors in terms of age and compressed breast thickness. Moreover, since our sample
population consists of breast cancer suspects -who are likely to have higher breast densities,
given its association with breast cancer-, an overall bias in breast glandularity is not out
of the question.

Biopsy studies [48, 49] have shown that smaller breasts have greater areas of collagen and
glands, which should result in a greater glandular density, or in our case, V GR. Figure
4.4.4 shows both Vg and VT as a function of VT .

Inspecting figure 4.4.4, it can be seen that there is a linear increase of Vg as a function of
VT . It can also be seen that the linear relationship has a slope lesser than 1, which means
that while Vg increases for larger breasts (in terms of VT ), their ratio -V GR- gets smaller
(both volumes progressively distance from one another in the plot).

This dependence can be better visualized in figure 4.4.5, where V GR is plotted as a
function of VT . A moderate negative correlation (Spearman’s ⇢ = �0.4) between the two
variables can be observed: smaller breast volumes tend to have higher glandular ratios.
However, the low statistical significance of the correlation (p = 0.17) prevents us from
confirming any total volume dependence. In this work, age, Tc and VT were regarded as
independent variables. A multivariate analysis would allow for the assessment of possible
variable interactions and their effect on V GR. However, such analyses require larger
databases to yield results with significant statistical power.

Figure 4.4.4. Vg (red squares) and VT (blue circles) as a function of VT
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Figure 4.4.5. V GR vs VT . Dotted line shows a linear fit. A p < 0.05
value indicates statistical significance of the correlation.

4.5. DEDM-MRI comparison

In this last section, the correlation -and more importantly- agreement between DEDM
and MRI volumetric measurements is discussed. Three variables were compared: Vg, VT ,
and V GR.

Table 4.5.1 and figures 4.5.1 - 4.5.3 summarize both modalities’ measurement distribu-
tions. The solid red line in the boxplots indicates the median of the distribution, while
the box indicates the inter-quartile range (IQR), and the “whiskers” define the data range.
Outliers are plotted as red crosses.

Figure 4.5.1. Boxplots summarizing the Vg distributions for each modality.
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Figure 4.5.2. Boxplots summarizing the VT distributions for each modality.

Figure 4.5.3. Boxplots summarizing the V GR distributions for each modality.

Quantity Mean Median IQR Min Max
Vg,DEDM 195.29 167.78 53.46 88.38 428.74
Vg,MRI 188.92 164.02 94.83 63.90 409.32
VT,DEDM 573.80 547.31 334.29 181.93 1061.27
VT,MRI 681.45 592.47 334.37 155.23 1599.99

V GRDEDM 36.06 37.81 15.64 22.56 53.05
V GRMRI 29.17 28.20 2.61 23.34 43.83

Table 4.5.1. Vg, VT and V GR distribution summary for DEDM and
MRI. Values related to Vg and VT are reported in cm3, while those related
to V GR are reported as percentages.
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The distributions showed volume measurements were in similar ranges. On the other hand,
the V GRMRI range was markedly compressed when compared to its DEDM counterpart,
as observed by Klifa et al [50].

Previous studies [53, 75, 76, 77] have noted the non-normality of the volume distribu-
tions. The Shapiro-Wilk test (↵ = 0.05) was applied to the obtained volume and V GR

distributions and it was found that, for some of them, the null hypothesis (the volume
values do not follow a normal distribution within the sampled population) cannot be re-
jected. As normality cannot be assumed, there are two options: transform the data to
make it normal, or run non-parametric tests. Given the small amount of samples, the
latter option was deemed more adequate.

In order to assess the correlation between DEDM and MRI measurements, Spearman’s
correlation coefficients (⇢) were calculated. Vg and VT showed strong correlations (⇢ �
0.7) between DEDM and MRI measurements, while the correlation was only moderate
(0.5 < ⇢ < 0.7) for V GR. For the three quantities, the correlations were statistically
significant at a 95% confidence level (p < 0.05). These results are shown in table 4.5.2.

Quantity ⇢ p

Vg 0.87 < 0.001

VT 0.98 < 0.001

V GR 0.58 0.03

Table 4.5.2. Correlation summary for DEDM and MRI measurements.

Figures 4.5.4 through 4.5.6 show the DEDM-calculated variables plotted against their
MRI-calculated counterparts, along with linear fits.

Figure 4.5.4. Vg,DEDM vs Vg,MRI
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Figure 4.5.5. VT,DEDM vs VT,MRI

Figure 4.5.6. V GRDEDM vs V GRMRI

The results showed strong correlations between DEDM-calculated volumes and their MRI
counterparts, and a moderate correlation between V GR measurements. However, cor-
relation does not imply agreement. To assess the latter, the following distributions were
considered:

�Vg = Vg,DEDM � Vg,MRI ,

�VT = VT,DEDM � VT,MRI, and

�V GR = V GRg,DEDM � V GRg,MRI .
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Figures 4.5.7 through 4.5.9 show boxplots corresponding to �Vg, �VT and �V GR.

Figure 4.5.7. �Vg distribution.

Figure 4.5.8. �VT distribution.

Figure 4.5.9. �V GR distribution.
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As these distributions inherit the previously discussed non-normality, the Wilcoxon signed
rank test (↵ = 0.05) was performed to test the null hypothesis that their medians are
equal to zero. If the hypothesis holds (p > 0.05), we can conclude there is no statistically
significant difference between the median difference and zero, and thus, there is agreement
between the two measurements.

In order to assess the limits of agreement between the two modalities and to visualize any
dependence or bias in the discrepancies, Bland-Altman plots were constructed (figures
4.5.10 through 4.5.12). These plots are constructed by plotting the differences between
the two techniques as a function of their mean [78]. In the presented plots, dotted black
lines indicate the lower and upper limits of agreement (LoA) i.e. the interval in which
the differences are likely to be found. The red line indicates the mean of the differences.
RPC stands for reproducibility coefficient, and CV stands for coefficient of variation. The
Bland-Altman statistics were computed as follows :

LoA = �̄V ± 1.96��V ,

RPC = 1.96��V , and

CV = 100
⇣
��V

�̄V

⌘
,

where �̄V represents the average difference and ��V its standard deviation.

Figure 4.5.10. Bland-Altman plot for Vg. Black error bar shows the
largest uncertainty in �Vg
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Figure 4.5.11. Bland-Altman plot for VT . Black error bar shows the
largest uncertainty in �VT

Figure 4.5.12. Bland-Altman plot for V GR. Black error bar shows the
largest uncertainty in �V GR

The Wilcoxon signed rank test let us conclude that there was agreement in Vg, while
statistically significant differences were found for VT and V GR. Specifically, the proposed
DEDM method showed a tendency to under-estimate VT and in result, over-estimate
V GR. Going back to the discussion in section 2.6, the over-estimation of V GR (or
VBD), relative to MRI, is a common feature of mammography-based methods [51, 52,
54, 56, 79]. The mean differences in VT (107.6 cm3) and V GR (6.9%) are remarkably
similar to those reported by Wang [52] (110.55 cm3and 6.48%, respectively). In our case,
however, the disagreement in V GR was driven mainly by discrepancies in VT .

The Bland-Altman plot for �VT shows a trend in total volume discrepancy: it tends to
be larger as the total breast volume increases. Also to be noted is that the range in V GR
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is smaller in MRI, which is consistent with results reported in other MRI-mammography
comparative studies [45].

As there are no standardized methods to calculate breast density using MRI nor digital
mammography (besides commercial software in the latter modality), definitive compar-
isons between studies and modalities are hard to make. For instance, [52] reports a
correlation coefficient of 0.38 in Vg when comparing Quantra (digital mammography) to
MRI. Another study [51] comparing Quantra to MRI measurements reports a correlation
coefficient of 0.15 in the same quantity. To cite a final example, [56] reports correla-
tion coefficients of up to 0.86 when comparing Vg measurements made using an in-house
mammography-based method to MRI.

When comparing image modalities, one must take into account that absolute volume
agreement, or lack thereof, is influenced by each technique’s field of view. The volumes
present in the image are not exactly the same as result of factors such as MRI breast
region segmentation, mammography placement, and amount of compression. Because
of this,V GR is a more robust measurement and should be favored over absolute vol-
ume measurements, especially when comparing two different image modalities. This is
elaborated further on appendix B.

The previously discussed results and literature suggest that breast density and volume
measurements across different modalities may not be equivalent, and many variables,
ranging from patient cohort characteristics to study acquisition methodology, must be
considered before attempting to draw comparisons between studies and image modalities.

Since the clinical DEDM images used in this work were acquired after contrast medium
injection, the presence of iodine in the analyzed breast is possible. The extent and signif-
icance of its presence are yet to be determined. Another limitation of this work is that it
all images were acquired on a single mammography station, and the robustness of the cal-
ibration method remains to be assessed. Finally, a more advanced segmentation method
(such as FCM) for MRI calculations could provide more accurate reference values, as the
utilized thresholding method binarizes the image in glandular and adipose content, while
other segmentation methods are able to provide fractional glandular/adipose values.



CHAPTER 5

Conclusions

In this work, a method that enables the measurement of breast glandular and adipose
tissue in DEDM images was developed and evaluated. This method provides inherently
volumetric measurements, which are comparable to those produced by image modalities
such as MRI and breast CT. Unlike many commercially available mammography-based
tools, the results provided by the proposed method have associated uncertainties. The
method is fully automatable once the calibration images have been acquired, which rep-
resents an improvement over thresholding-based interactive software.

A DEDM image pre-processing routine was developed. This routine addresses factors such
as background image inhomogeneity and noise, and it improves the material thickness
calculations and computation times. As a result of this pre-processing, and given the fact
that the calculations involve only arithmetic operations, the method is computationally
inexpensive and it can be properly implemented in consumer-grade computers. It is also
easy to calibrate since it only requires aluminum sheets and PMMA slabs, two commonly
found materials in a clinical setting. However the calibration is not universal, and it must
be carried out for each clinical DE protocol.

The method was applied to images from 14 patients acquired on a commercial mammog-
raphy unit, and the results were compared with MRI volumetric measurements of the same
patients. The MRI volumetric breast density measurements required the development of
a custom segmentation routine based on adaptive local thresholding. To the author’s
knowledge, this work is the first to implement the dual-energy material decomposition
formalism to process clinical mammography images and to compare the results with MRI
measurements of the same patients.

The volumetric and breast density measurements produced by both modalities were in
comparable ranges. Both correlation and agreement between the two modalities was
assessed. Strong to moderate correlations were found in the three evaluated quantities
(glandular volume, total volume and VGR), and good agreement was found in absolute
glandular volume. There was also a good agreement in total volume for smaller breasts,
but the discrepancy between both modalities increased for larger breasts. Because of this,
it was found that the DEDM-based method tended to over-estimate breast density when
compared to MRI. The difference in volume estimations between both techniques could
be the result of the inherent field-of-view mismatch, as discussed in Appendix B.

As the number of processed images was quite small, no conclusions could be drawn about
the population. Future works will seek to include a larger patient group, as well as to
perform robustness assessments.
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APPENDIX A

Uncertainty calculations

The uncertainty associated to the proposed volumetric DEDM measurements has three
components:

• Calibration uncertainty (repeatability).
• Basis material decomposition uncertainty.
• Processing method (breast masking).

The calibration uncertainty component was obtained by imaging 3 calibration sets and
finding the corresponding fit parameters for each. The average p̄i and standard deviation
�pi

of each parameter set was obtained, and the former was taken to be the uncertainty
associated to that parameter. The parameter uncertainties were propagated in order to
generate Al and PMMA thickness uncertainties �ti:

(A.0.1) �tj =

vuutX

i

✓
�tj

�pi

◆2

(�pi)
2

where tj represents the fitted functions for either Al or PMMA thickness, shown in table
4.1.1. Equation A.0.1 was applied pixel-by-pixel to generate material thickness uncertainty
maps, �tAl(i, j) and �tP (i, j).

Next up is the basis material decomposition uncertainty component. The standard devia-
tions of {a1, a2, b1, b2} (table 4.2.1) were taken as the uncertainties of these parameters.
These were propagated, pixel by pixel, from the material change equations 2.3.5 and the
Al-PMMA uncertainty maps A.0.1. This resulted in glandular and adipose tissue uncer-
tainty maps �tg(i, j) and �ta(i, j).

Finally, the breast masking introduces its own independent uncertainty component. There
were two controllable variables in this process: the gradient intensity G0 used as threshold,
and the breast edge erosion radius r.

G0 defines the edge section to be removed from the image. By quantifying the changes in
volume produced by varying G0 in an interval Go 2 [G⇤ ��G,G

⇤ +�G], an uncertainty
was associated to the variation in this parameter. Figure A.0.1 illustrates the effect of
varying G0.
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Figure A.0.1. Masks generated by different G0 values. The resulting
area difference, when generating the mask using G0 = 0.005 (left) and
G0 = 1.5 (right), was 15.48 cm2.

The second variable, r, also defines the mask dimensions, and therefore the calculated
volume. Figure A.0.2 illustrates this effect.

! = 0px ! = 20px

Figure A.0.2. Masks generated by using r = 0 px and r = 20 px as
erosion radius. The area difference between both masks was 22.31 cm2.
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For each patient image, 220 masks were generated. These masks feature varying values
of G0 and r: G0 2 [0.005, 1.500] (in steps of 0.001) and r 2 [0, 20]px (in steps of
1px). Volume calculations were carried out using the different masks, and the average
and standard deviation were calculated. Figure A.0.3 shows an example of the 220 volume
points for one patient.

Figure A.0.3. Calculated total and glandular volume distributions (for
a single patient) obtained by varying mask parameters G0 and r.

The standard deviations of these volume distributions are denoted by �M,g (glandular)
and �M,T (total), and they were the uncertainty component associated to the masking
process. The average masking uncertainty components were 4.5% for glandular volume
and 6% for total volume. These values represent the change in breast area -and thus
calculated volume- when the mask parameters are chosen differently. The variation was,
predictably, larger in total volume than in glandular volume, since the latter is mainly
concentrated towards the chest wall, where masking had a reduced effect. Considering
the three components, the uncertainty in glandular and total volume was calculated as:

�Vg =

s
dA2

X

i,j

(�tg(i, j))2 + �
2
M,g

, and

�VT =

s
dA2

X

i,j

(�T (i, j))2 + �
2
M,T

.
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Finally, the uncertainty in V GR was given by:

�V GR =

s
V

2
T
�V 2

g
+ V 2

g
�V

2
T

V
4
T

⇤ 100.

For DEDM, average relative uncertainty in VGR was close to 10%.

Compared to the DEDM uncertainty calculation, MRI was fairly straightforward. In this
case, the following image processing parameters had an effect on the calculated volumes:

• Erosion radius r used for breast mask generation.
• Adaptive thresholding neighborhood dimension N .
• Adaptive thresholding percentage threshold T .

For each patient, volume measurements were performed varying the [r,N, T ] parameters.
Figure A.0.4 shows an example of the resulting distribution.

Figure A.0.4. Calculated volume distribution obtained by varying pa-
rameter set [r,N, T ] . r 2 [0, 3] px, N 2 [5, 15], and T 2 [1, 4].

The standard deviations of these volume distributions were denoted by �MRI,g (glandular)
and �MRI,T (total), and they were the uncertainty component associated to the MRI
volume calculations. Therefore, the VGR uncertainty was given by
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�V GRMRI =

s
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2
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�
2
MRI,g

+ V 2
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�
2
MRI,T

V
4
T

⇤ 100

Figure shows a breakdown of the uncertainty calculations for Vg,MRI , VT,MRI and V GRMRI .

Figure A.0.5. Relative uncertainty in MRI calculations as a function of
total breast volume.

Average relative uncertainty in V GRMRI was close to 14%, and the main contributing
factor was the uncertainty in glandular volume estimation i.e. the change produced by
varying the adaptive thresholding parameters.

The uncertainties associated to the data shown in table 4.4.1, as well as the plots presented
throughout sections 4.4 and 4.5, were calculated using the methods described in this
section.

There is one additional uncertainty component, namely: that related to image acquisition.
For DEDM, this encompasses patient positioning differences, compression force, and the
use of different mammography units. As shown in appendix B, V GR is not susceptible to
changes in the field of view resulting from positioning differences. The effect of the other
two factors could be evaluated as part of a future robustness assessment. The extent to
which acquisition and reconstruction parameters could affect the MRI measurements is
yet to be investigated.



APPENDIX B

Field-of-view mismatch between MRI and DEDM

As mentioned in section 4.5, the breast region present in each modality is likely to be
different and as such, each modality measures different organ volumes. In order to assess
the difference produced by a possible “Field-of-view (FOV) mismatch”, the nipple-pectoral
distance (NPD) was measured. This measurement was carried out in the DEDM images
and in the center slice of the MRI volume, where the breast projection is largest.

Across all DEDM images, NPD was smaller than in MRI. In fact, the pectoral muscle
wasn’t visible in the mammography projections. Figure B.0.1 shows �VT as a function of
�NPD = NPD(MRI)�NPD(DEDM).

Figure B.0.1. �VT vs �NPD plot for the 14 patients included in this work.

The difference in total volume increased as the difference in NPD did. Because of this,
differences in VT across both modalities -as observed in figure 4.5.11- could be attributed
to the FOV mismatch.

Next, MRI breast regions were manually redefined to match the DEDM NPD measure-
ments, and volumetric measurements were performed using the newly defined regions.
Figures B.0.2, B.0.3 and B.0.4 show boxplots of the �Vg, �VT and �V GR distribu-
tions obtained using NPD-corrected MRI volumes next to the ones obtained without such
correction.
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Figure B.0.2. Effects of NPD correction on the �Vg distribution.

Figure B.0.3. Effects of NPD correction on the �VT distribution.

Figure B.0.4. Effects of NPD correction on the �V GR distribution.
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The NPD correction brought an agreement to the total volume measurements, but in-
creased the discrepancies in glandular volume. However, the VGR distribution remained
practically unaffected. Table B.0.1 summarizes the distributions.

Quantity Mean Median p (Wilcoxon test)
�V

⇤
g

6.37 21.95 0.58
�Vg 51.07 38.60 6.1E-04
�V

⇤
T

-107.65 -62.25 0.016
�VT 56.46 39.42 0.119

�V GR
⇤ 6.89 9.00 0.013

�V GR 6.7 9.03 0.016

Table B.0.1. �Vg, �VT and �V GR distribution summary. Values re-
lated to Vg and VT are reported in cm3, while those related to V GR are
reported as percentages. Asterisks indicate values without NPD correction.

To clearly see the effect the NPD correction had on Vg and VT , the NPD-corrected MRI
volumes were plotted as a function of MRI volumes without correction (figures B.0.5 and
B.0.6).

The slopes of both fits were practically the same for both volumes (a = 0.7379 for
glandular volume, a = 0.7391 for total volume). This means both volumes were reduced
in the same proportion (approximately 26%). Due to this, their ratio remained constant
(figure B.0.7).

Figure B.0.5. NPD-corrected Vg vs non-corrected Vg. Dotted line shows
linear fit.
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Figure B.0.6. NPD-corrected VT vs non-corrected VT . Dotted line
shows linear fit.

Figure B.0.7. NPD-corrected V GR vs non-corrected V GR. Solid black
line represents the identity line.

This experiment led to the conclusion that, while glandular and total volume measurements
were highly sensitive to breast region definition, VGR was fairly robust. As such, the
volume ratio should be preferred when comparing different image modalities, where an
exact matching of breast regions is impossible to achieve.
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