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Resumen

Algunas aplicaciones en campos tan diversos como el cómputo gráfico, imágenes médicas o el

reconocimiento de patrones aluden a la representación de objetos tridimensionales a través de sus

superficies discretas. Este trabajo trata de la representación de superficies extraídas de objectos

voxelizados las cuales están compuestas por un conjunto de caras cuadradas, conectadas por arista,

ortogonales entre sí, y comúnmente procedentes de la superficie envolvente de una voxelización.

Se propone el uso de un nuevo método para la representación de superficies voxelizadas mediante

un descriptor unidimensional obtenido a partir de su modelo de conectividad facial, o también

llamada gráfica facial de adjacencia. Para sólidos simples homeomórficos a la esfera, nuestro

método cifra uno de los ciclos Hamiltonianos existentes en la gráfica de adyacencia de forma

que éste termina por describir una secuencia específica de caras que recorre la totalidad de la

superficie en un modo no redundante. Para cifrar el descriptor obtenido también proponemos un

nuevo código de cadena exclusivo para representar superficies voxelizadas. Una vez computada

una secuencia de caras, nuestro código cifra en una cadena los cambios de dirección ortogonales

usando un alfabeto de nueve símbolos y con una longitud definida por el número de caras en

la superficie. Se estudian algunas de las propiedades del nuevo código cadena incluyendo su

invarianza a la rotación, traslación y opcionalmente al punto de inicio. También se analizan

algunas transformaciones morfológicas que pueden ser directamente ejecutadas sobre la cadena

(p.e., espejo, complemento o inverso). Se hace una extensión para objetos complejos permitiendo

la descripción de un mayor número de superficies al cifrar un árbol de expansión en la gráfica de

adyacencia. Esta estructura, conocida como árbol de superficie, es una representación más resiliente

que permite describir una amplia gama de superficies incluyendo aquellas provenientes de objetos

con agujeros y de superficies abiertas. Finalmente, presentamos algunos resultados de aplicar

nuestro método sobre objetos de distintas fuentes con la intención de demostrar algunos de sus

beneficios al ser usado con datos reales.
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Abstract

Many applications in areas as diverse as computer graphics, medical imaging, or pattern recognition

call for the digital representation of three-dimensional objects in the form of discrete surfaces.

This work deals with the representation of surfaces extracted from voxelized datasets which are

composed by a set of edge-connected square faces, orthogonal to each other, and commonly

proceeding from the enclosing surface of a voxelization. We propose a new method for the lossless

representation of voxelized surfaces by means of a one-dimensional descriptor computed from

the topological model of its face connectivity also known as the face adjacency graph. For simple

solids homeomorphic to the sphere, our method encodes one of the Hamiltonian cycles laying in

the adjacency graph that depicts an specific sequence of faces traversing the entire surface in a

free-redundancy fashion. In order to encode the resulted descriptor into a single chain we propose

a new chain code specifically for the representation of these discrete surfaces. Once a sequence of

faces is computed, our chain code encodes the orthogonal direction changes into a chain by using

a nine-symbol alphabet whose length is defined by the number of faces in the surface. We study

some properties of our new chain code including its invariance under rotation, translation and,

optionally, starting point. Morphological transformations directly applied to the chain are revised

as well (e.g., mirror, complement or inverse). An extension for the description of more complex

objects is also introduced allowing the representation of a larger number of surfaces by encoding

a spanning tree in the adjacency graph. This last structure, referred to as surface tree, is a more

resilient way to describe a larger variety of surfaces including those from multi-holed objects as

well as non-enclosing surfaces. Finally, we present some results of applying our method on large

objects coming from different sources to demonstrate the convenience of our method when using

real data.
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1
Introduction

1.1 Motivation

T
HE number of applications using 3D images to solve real life problems has experienced a

steady growth during the last years. In many areas like medical imaging, an appropriate

representation of 3D images plays an essential role in assisting experts to provide

accurate diagnoses. Along with the advancement in computation capabilities, 3D systems have

become prevalent for many applications of high complexity requiring real-time processing such as

surgical navigation systems, robotics, and different tasks involving computer-aided design (CAD)

as well as computer-aided manufacturing (CAM) for the creation of medical models. As a result of

this trend, there is an eruption in the study of areas related to the representation and analysis of

3D objects, placing these topics among some of the most active and relevant in computer science.



Chapter 1. Introduction

While significant progress has been made across all these topics, there is also a case in arguing

a fair amount of these advancement tends to converge into similar paradigms. In fact, in some

cases these turn into simple iterations over the same paradigms with a marginal improvement

under certain conditions, or minor considerations that take advantage of the improved hardware

capabilities. Among these recurrently studied approaches, there is a wide preference to address any

problem related to the three-dimensional representation by targeting classic solutions developed

in the spatial domain and, mostly, by merely using geometrical techniques.

In this work, we explore an alternative mechanism for the efficient representation of 3D objects.

In particular, we study the representation of discrete objects defined as a set of voxels, also known

as a voxelization. The foundations of our proposal build on top of the topological representation

of the boundary surface which is defined by the intersection of internal and external voxels (i.e.,

model and its spatial complement). By means of a 1-dimensional descriptor encoded into a single

chain we describe this surface in a lossless and compact way. While there is a large number of data

structures that could potentially span along the whole surface to later be serialized into a chain,

in this work we explore the computation of two structures: a 1-dimensional string built from a

Hamiltonian sequence of edge-connected faces, and the spanning tree embracing the whole set of

faces.

Our method establishes a univocal correspondence between the geometrical realization of the

surface and its topological representation as a single chain. This implies a two-direction conversion

route from either of these representations to the other. The geometry and topology duality is

designed so that some of the most common ambiguities existing in other major works here revised

are avoided by ensuring our chain descriptor always describes a unique surface.

Chain code methods are still widely used, in part, because of their ability to preserve infor-

mation while allowing considerable data reduction. Additionally, these methods permit the use

of grammatical techniques for object analysis and morphological transformations. The chain

code presented in this work proposes the use of a finite alphabet of nine symbols to represent

the different changes of direction resulting from moving between two contiguous orthogonal

faces adjacent by edge. Among the properties of this new chain code, we analyze the invariance

under the rotation and translation transformations as well as the invariance to the starting point.

2



1.2 Contribution

These properties enable the possibility for other geometrical transformations such as the specular

image (i.e., mirroring) or the geometrical complement. In all cases, these transformations are

directly performed from the chain representation. To the best of our knowledge, our proposed

descriptor is the first chain code published in the specialized literature that is explicitly aimed to

the representation of surfaces rather than curves.

1.2 Contribution

A number of different 3D applications can derive from the usage of our proposed descriptor. In

this work we highlight the lossless compact representation of three-dimensional objects as one

main benefit implicitly granted by this method. The contribution of this work, however, by no

means is limited to a mere compression technique but our method is envisioned to also assist in

the analysis and recognition of discrete solids by providing efficient and flexible mechanisms for

their convenient manipulation directly from a single chain.

1.3 Organization and outlet

This dissertation is organized as follows. In Chapter 2 we give an introduction to the representation

of discrete surfaces. There we set most of the foundations to compute our proposed descriptor as

well as providing background for some of the areas addressed in this work. In that chapter we

also review the set of concepts and definitions used throughout this document. Chapters 3 and 4

present our first approach for the representation of simple voxelized solids by means of encoding a

Hamiltonian cycle that is extracted from the face adjacency graph. Chapter 5 extends our method

for the representation not only of enclosing surfaces but of any boundary surface regardless of its

genus. Chapter 6 pursues validation of our method by testing against a set of experiments related

to the description of complex volumes. In this chapter some of the contributions of this proposed

method are analyzed including data compression, representation of open and enclosing surfaces,

and morphological transformations directly applied to the chain descriptor. We also include a brief

comparison with other representation methods based on edge tracking. Finally, in Chapter 7 we

discuss the results and we give some conclusions.
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2
Background

O
NE of the first approaches for representing surfaces by means of a graph descriptor was

presented by Ansaldi et al. [2]. In that work the authors propose the use of a graph

known as the face adjacency graph where each node represents a face on the enclosing

surface, and two nodes are connected by an arc whenever the corresponding faces are adjacent by

edge. Proper handling of such a structure sets the basis for our work leveraging a number of basic

concepts of graph theory as well as some of the most relevant results in topics related to this area.

Aiming for clarity, while introducing our method and its foundations, we briefly go through some

of the notions of graph theory referred throughout this work regardless of being, in some cases,

either widely known concepts or derivable definitions. Next section presents some of these notions

without pretending to be a comprehensive list of terms and definitions but instead a conveniently

selected subset of concepts that will provide context along this work.



Chapter 2. Background

2.1 Concepts and definitions

We define a graph as the ordered pair G = (V, E) of a set V of nodes and a set E of arcs1 such that

E ⊆ V2. The degree of a node, written as deg x for x ∈ V(G), is the number of arcs in E(G) incident

to x. The minimum and maximum degree of a graph G, denoted as δ(G) and ∆(G), respectively, are

the minimum and maximum degrees of any node in V(G). If all the nodes in G have the same

degree we say G is a regular graph and, more specifically, a k-regular graph if k is the degree of the

graph. Two properties commonly analyzed in a graph are its order and degree. Unless otherwise

specified, these properties refer to the number of nodes and the minimum degree of any node in

the graph; that is |V(G)| and δ(G), respectively [3].

We say G′ is the induced subgraph of G if V(G′) ⊆ V(G) and E(G′) contains all the arcs xy ∈ E(G)

with x, y ∈ V(G′). Given a graph H, we say that G is an H-free graph if G does not contain any

induced subgraph isomorphic to H.

The graph G is a complete graph if E(G) contains the arcs connecting all the pairwise combi-

nations of nodes in V(G). A complete graph of order n is denoted as Kn (e.g., K3 is a triangle). A

clique is an induced subgraph that is complete; that is, the subset of nodes such that every two

distinct nodes are adjacent.

An independent set of G is a subset of nodes V ′(G) ⊆ V(G) in which no two nodes are adjacent.

That subset is said to be maximum if there is no larger subsets in G and the size of V ′(G) is known

as the independence number of G denoted by β0(G). There exists a correlation between cliques

and complete graphs such that a set in G is independent if and only if it is also a clique in the

complement graph of G. This property plays an important role in some of the background results

relying on the presence of large arc densities.

Another graph derivation of particular importance in some of the results explored in within

this chapter is the closure. The closure graph of G, denoted as [G], is the graph resulting from

adding arcs to connect all non-adjacent nodes whose combined degree is greater or equal to the

order of the graph. In consequence, [G] is a graph such that V(G) = V([G]), E(G) ⊆ E([G]), and

1Literature in the area commonly refers to the elements in V(G) and E(G) as vertices and edges. Instead, our naming
convention uses the terms nodes and arcs in a deliberate attempt to distinguish elements in an adjacency relationship
from the geometrical notion of points and line segments in n-dimensional polytopes.
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2.1 Concepts and definitions

deg x + deg y < n for non-adjacent x, y ∈ V(G) with n being the order of G.

A bipartite graph G is a graph whose nodes can split into two disjoint sets VA(G) and VB(G)

(i.e., VA(G)
⋃

VB(G) = V(G), VA(G)
⋂

VB(G) = ∅) such that for every arc xy ∈ E(G), x ∈ VA(G) and

y ∈ VB(G). Analogously, a complete bipartite graph is such that each node of VA(G) is connected to

every node in VB(G) and it is denoted as Km,n where m and n are the number of nodes in VA(G) and

VB(G), respectively.

A planar graph is a graph that can be embedded in a plane in such a way no arcs cross each

other. Planarity of the face-adjacency graph implies a number of topological conditions over the

manifold or orientable surface, and therefore over the enclosed object represented by it. The most

significant of these conditions is a genus 0 which, as far as our work is concerned, is a restriction to

represent only objects with no holes, necessarily meaning an homeomorphic to the sphere. This

homeomorphism has direct influence in the Euler’s characteristic via the relationship χ = 2 − 2g

where g is the genus and therefore Euler’s characteristic χ is equal to 2 for objects with no holes.

It is worth noticing that given the planarity condition in the face adjacency graph of objects

with no holes, the relationship χ is also satisfied by the Euler’s formula χ = V − E + F = 2 where F

is the number of faces in the graph [4, 5].

In this context, a path P is a non-empty graph of the form V = {x0, x1, . . . , xk} and E =

{x0x1, x1x2, . . . , xk−1xk}, and we say that P is a simple path when all its nodes are distinct. The

number of arcs in a path determines its length and we denote paths of length k by Pk. For k ≥ 3 the

graph C = P + xkx0 is called a cycle and it has length k + 1; this is analogously denoted as Ck+1.

For a non-empty graph G we say the graph is connected when there exists a path for every pair

of nodes in G. Additionally, the graph is said to be k-connected when the induced subgraph resulted

from removing any subset of k − 1 nodes remains connected. By leveraging these definitions, we

can define a tree as a special type of connected graph containing no cycles; this is why it is also

called an acyclic graph.

Finally, we say G′ ⊆ G is a spanning subgraph of G if V(G′) spans all of G, that is to say,

V(G′) = V(G). This definition naturally expands to any specific type of subgraph (e.g., spanning

tree, spanning path, and spanning cycle).
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Chapter 2. Background

For the purposes pursued in this work, the spanning subgraphs are of particular importance in

the creation of descriptors that preserve the information of any enclosing surface. The computation

of spanning paths is an open problem in Graph Theory and it is commonly referred to as the

"Hamiltonian problem". The next section presents the state of the art for Hamiltonicity using some

of the concepts introduced in this section in such a way that, later in Chapter 3, we can use one of

these results for the concrete type of graph resulting from the the representation of the discrete

surface of a voxelization. Chapter 5 makes use of a different spanning subgraph to extend our

method to represent a wider variety of objects by taking advantage of some of the properties of

spanning trees.

2.2 The Hamiltonian problem

Named after Sir William Rowan Hamilton, the Hamiltonian problem in its general form finds

conditions under which a graph contains a spanning cycle. Bermond [6] gives a thorough intro-

duction to the problem. Considered as a fundamental problem in Graph Theory, the Hamiltonian

problem traces its origins to the mid-nineteenth century with the invention of the icosian game2.

Thenceforth, hamiltonicity has been a widely explored condition with a large number of results

that solve the problem, or any of its variants, for very specific cases.

Although the general form of the Hamiltonian problem belongs to the complexity class of

NP-complete problems, there is a handy number of well known characterizations where the

existence of a spanning cycle is proved. Among these characterizations we can mention the family

of complete graphs Kn with n ≥ 3; the edge graph of any platonic solid (e.g., tetrahedron, cube,

octahedron, dodecahedron, icosahedron); or the family of graphs whose degree is greater or equal

to half of its order.

Despite of the hardness in its general form, several results have been reported in the specialized

literature for a large amount of its variants. Gould has compiled and classified one of the most

comprehensive lists of results for the Hamiltonian problem and whose publication has taken place

in a series of surveys within the last few decades [9–11].

2Mathematical puzzle invented by Hamilton and published in 1857. The game consists in finding a Hamiltonian
cycle in the edge graph of a dodecahedron [7, 8].
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2.2 The Hamiltonian problem

Hamiltonicity has been studied with relation to various parameters such as density, toughness,

probability, forbidden subgraph patterns, and distance. Among all these parameters, the density of

arcs in the graph is among the most studied properties.

There are four results that based on their impact should be considered as the foundations for

much of the work coming afterwards. The first of these results is the Dirac’s theorem [12] which

is based in the most intuitive approach to generate the sufficient conditions for Hamiltonicity:

large density of arcs. In particular, Dirac’s theorem states that a graph G of order n ≥ 3 such that

δ(G) ≥ n
2 is necessarily Hamiltonian.

The rationale behind larger arc densities favoring the Hamiltonicity chances is that a large

amount of connections between nodes reduces the chances of potential obstructions. The family of

complete graphs Kn is the best example of this characteristic as these graphs are by definition free

of obstructions, hence trivially Hamiltonian. Following this same principle, Dirac’s theorem is a

proof for the minimal number of arcs needed per node in order to guarantee no obstructions will

be found during the computation of a Hamiltonian cycle.

Ore [13] relaxed Dirac’s condition with a proof for a lower arc density. The proof states that

for a graph G of order n ≥ 3, G is Hamiltonian when the condition deg x + deg y ≥ n is satisfied for

every pair of nonadjacent nodes x, y ∈ V.

The aforementioned proof led to other authors trying to lower the arc density bounds being

the Bondy-Chvátal theorem [14] the culmination of these refinements. This theorem states that a

graph G is Hamiltonian if and only if its closure [G] is also Hamiltonian. Bondy-Chvátal result is

so far the best characterization based on the degree of the nodes and generalizes all the previous

results that are based on this approach including Dirac’s and Ore’s theorems.

One aspect of the Bondy-Chvátal work that is worth noticing is the fact this theorem does not

need to set conditions for every pair of non-adjacent nodes but instead it only sets the conditions

for those nodes required to ensure the Hamiltonicity of the closure. Considering there is a natural

proclivity for the closure of a graph to have a high-density of arcs, it is not uncommon to end

up with one of those trivial cases of Hamiltonicity where the closure graph resembles something

similar to a complete graph Kn. As a corollary to the Bondy-Chvátal theorem we could enunciate,

in fact, that all graphs whose closure is a complete graph are trivially Hamiltonian.
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The fourth of the fundamental results of the Hamiltonian problem used in this work is presented

by Chvátal-Erdös [15]. This result makes use of the independence number of a graph G stating that

if G is a k-connected graph and β0(G) ≤ k, then G is Hamiltonian. In this theorem a new parameter

replaces the arc density as the primary condition to address the problem. More specifically, the

independence number of the graph is used in an effort to find an alternative characterization of

the Hamiltonian problem.

Countless results exploring different properties have been reported since. Many of these

often resulting from simple observations like the group of results known as the Forbidden Graphs.

The Forbidden Graphs approach originated from early observations made by Goodman and

Hedetniemi [16] on specific graphs and it is commonly studied around the presence of the

complete bipartite graph K1,3, also called the claw, and some of its variants. Among other line

graphs theorems, Goodman-Hedetniemi Theorem on forbidden graphs [16] states that if G is a

2-connected {K1,3,K1,3 + xy}-free graph with x and y being nodes in the large partition of K1,3, then

G is necessarily Hamiltonian.

Introducing the additional restriction of graph planarity to the Hamiltonian problem opened a

new range of possibilities by allowing the demonstration of solutions otherwise uncertain as well

as improving the complexity bounds of the existing solutions. One of the most significant results

for planar graphs is presented by Tutte [17, 18] and extends the Whitney’s [19] proof about the

Hamiltonicity of 4-connected planar triangulations. Tutte characterizes 4-connected planar graphs

by stating that if these graphs have at least two arcs, then they are Hamiltonian.

Not only is Tutte’s result universal to 4-connected planar graphs but also is the anchor to a

series of results for this family of graphs. First, Plummer [20] conjectured that 4-connected planar

graphs were not only Hamiltonian but Hamiltonian-connected implying there exists a Hamiltonian

path between every given pair of nodes. Later, Thomassen [21] extended Tutte’s result proving

Plummer’s conjecture in the following theorem:

Theorem 2.1. Let B be a 2-connected plane graph with outer (exterior) cycle Z. Let v and e be a

node and arc, respectively, of Z and let u be any node of G distinct from v. Then G has a vu path P

containing e such that
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(i) each P-component has at most three nodes of attachment and

(ii) each P-component containing an edge of C has at most two nodes of attachment.

Among other corollaries, Thomassen presents proofs to Tutte’s theorem as well as Plummer’s

conjecture as two particular cases of his theorem. Thomassen result is of special importance for

the sake of our work. Chapter 3 revisits this theorem as the fundamental result used to obtain a

sequence of elements in the surface to be encoded as a chain.

Some polynomial algorithms solving the Hamiltonian problem for 4-connected planar graphs

have been published based on similar proofs. For instance, Gouyeaur-Beauchamps [22] presented

a solution with time complexity in the order of O(n3), being n the number of nodes of the graph.

However, it is Thomassen’s proof the one inspiring the most notorious algorithm for such graphs in

the work published by Chiba and Nishizeki [23]. In that work, the authors use Thomassen’s proof

to compute a Hamiltonian path for any pair of nodes in linear time (i.e., O(n) complexity, n being

the number of nodes) by means of a novel divide-and-conquer approach. Chapter 3 describes

in detail such an algorithm and the Appendix A provides a basic example of how to compute a

Hamiltonian cycle for the face adjacency graph of a given voxelization.

2.3 Spanning trees

The spanning tree of a graph G is a subgraph including all the nodes in V(G) but only the minimum

possible number of arcs in E(G) simply to keep the subgraph connected. This necessarily implies

the subgraph is a tree as otherwise this would be contradicting its premise of using the minimum

number of arcs to connect the subgraph.

In the case of weighted graphs, the computation of the spanning tree optimizes the total

weight of the connecting arcs and this problem is also referred as the Minimum Spanning Tree

Problem (MSTP). MSTP is of high importance and popularity due to the number of related problems

in a wide variety of areas [24]; for example, to minimize the cost of power networks, wiring

connections, piping, or voice recognition. It is a standard practice when discussing the MSTP to

refer to Kruskal’s [25] and Prim’s [26] algorithms as the two most common and efficient solutions

that offer a polynomial complexity solution to the problem of O(n log n).
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2.4 Tortuosity

One of the interesting properties of a curve is its tortuosity defined as the amount of twists and

turns in it, thus, allowing to measure the curve’s roughness. While there exist in the literature

multiple attempts to quantify this property, there is no unique or widely accepted methods clearly

prevailing over the rest [27–31].

From the mathematical standpoint, one of the simplest notions of tortuosity for 2D and 3D

curves is the ratio of the curve’s length with respect to the straight distance between its ends [32].

Based on this notion, the measure of tortuosity for a straight line is equal to one, and this ratio

proportionally increases as the length increases due to all twists and turns along the curve. One

oddity of this method is found when computing the ratio for closed curves where the distance

among end points is considered to be zero thus the ratio become infinite.

For a measure of tortuosity the author of [33] makes an analogy with how driving a car in

a constant-curve trajectory should necessarily be easier than driving it in a constantly changing

trajectory. This derives in the author’s proposal of a measure of relative change of the curvature by

calculating the derivative of the logarithmic function in the curve. The measure of tortuosity for a

straight line in that case is left undefined. In [27], the author proposes a similar metric based on

the integral of the square of the curvature, additionally allowing the result to be divided by the

chord of the curve as an optional normalization step. Authors in [34] offer a different variation for

these approaches where the tortuosity of a straight line is estimated to be zero.

When it comes to discrete curves, author of [31] proposes a simple measure of tortuosity that

is calculated as the sum of all the discrete segments individually quantified as a factor of Π-radian

in the range [-1, 1]. This means a quantification of relative changes of direction between -180 and

180 degrees; and for any given segment, the closer to zero, the less roughness in the curve. Thus,

the tortuosity for straight lines is equal to 0, and for a closed curves equal to 2.

There are also attempts in the 3D space to measure tortuosity. In the case of 3D curves, most

of them simply adapt from the same definitions used for their corresponding two-dimensional

version. In other cases, measures of tortuosity for the 3D space refers to the tortuosity of surfaces,

commonly referred to as the surface roughness [35].
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2.5 3D Chain Codes

Chain code techniques are widely used because of the advantages these entail preserving infor-

mation and allowing considerable data reduction. Chain codes are the standard input format for

numerous shape analysis algorithms. One of the first and most widely recognized approaches

was published by Freeman for the representation of digital curves using a chain code [36]. In

this work, Freeman describes a simple method to encode digital curves as a way to describe

arbitrary geometric configurations. This method uses a simple numerical technique referred to as

the rectangular array (alternatively hexagonal array) and in principle this was used only for the

representation of 2D elements. A natural extension to this work [37], proposed the representation

of 3D digital curves in 1974. This extension to 3D line structures combines two chain symbols

so it represents all possible combinations to transition from a given vertex towards any of the 26

neighbors in a cubic grid.

Guzman-Arenas [38] defines a canonical shape description for 3D stick bodies which are 3D

components characterized by a juxtaposition of more or less elongated limbs (usually cylinders or

cones meeting at their ends). Each of these limbs extend in one of three orthogonal directions.

Jonas et al. [39] presented the use of digital representation schemes for 3D curves. While

this work is focused in a two-dimensional representation, methods applicable to curves in the

three-dimensional space and higher are also described as a possibility of this method.

Bribiesca [40] proposes a new chain code for the representation of 3D curves. This new method

considers the discretization of a curve in constant straight-line segments encoded by a single chain

representing orthogonal changes of direction with a five-symbol alphabet. In contrast to Freeman’s

encoding, Bribiesca’s only uses relative changes of direction allowing the curve descriptor to be

invariant under translation, rotation, and the starting point (i.e., chain can be optionally encoded

using always the same initial reference). In [41] Bribiesca also offers a different variation for his

method representing 3D curves offering a novel encoding using a binary alphabet.

Regarding the compact representation of voxel-based objects, Bribiesca et al. [1] use the five

symbol chain code for the representation of a tree enclosing the surface from the edges. Martinez

et al. [42] extend this method optimizing the representation of those flat portions in a voxelization.
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3
Hamiltonian trace of the surface enclosing simple

voxelizations

This chapter explains the process to obtain the 1-dimensional descriptor tracing the discrete surface

of simple voxelizations that successively can be encoded as a chain. One of the key requirements

for the obtained descriptor is to necessarily deliver a univocal representation of the enclosing

surface. This means avoiding common weaknesses in some of the existing descriptors that under

certain circumstances could potentially fail to retrieve an unambiguous representation of a surface.

We consider a voxelization to be a discrete function S : Z3 → {0, 1} where the points corre-

sponding to the interior of the solid are assigned a value 1 and those outside the solid are receive a

value of 0. We say the voxelization is simple provided the topology of the discrete object does not

contain holes, then properly having genus 0.



Chapter 3. Hamiltonian trace of the surface enclosing simple voxelizations

An important assumptions made in this work for the voxelizations is that these were previously

segmented; segmentation is by itself a complex topic that requires further considerations in order

to get an appropriate isolation of real 3-dimensional objects. A second assumption is that the

geometric representation of the surface was already computed, for instance, by using a boundary

tracking algorithm such as the one proposed by Artzy [43], or any other.

It is worth mentioning some advantages of using this kind of discrete surfaces over other

polygonizations like the triangulations obtained from the Marching Cubes algorithm [44]. Besides

the higher efficiency of the algorithms used to compute the enclosing surface, the resulted meshes

from the Artzy algorithm are already a discrete representations with no precision loss since

no interpolation is required along the process to calculate the vertex positions. Moreover, the

enclosing mesh does not suffer from most of the common issues related to the over tessellation

and geometrical ambiguities in Marching Cubes [45] that can lead to have an unbearable amount

of polygons and, in some cases, even to produce holes in the surface due to a case interpretation

ambiguity.

Finally, there is a topological advantage in using the discrete surface of a voxelization over other

polygonizations. Meshes obtained from the enclosing surface can be alternatively represented by

means of a regular graph with very specific properties leveraged by our work. As previously stated,

the face adjacency graph of a mesh symbolizes the neighboring relationship among faces. In the

case of discrete surfaces then the square faces always having four other contiguous neighbors

producing adjacency graph that are 4-regular and 4-connected.

In Fig 3.1 we present an example of the face adjacency graph for a simple voxelization as well

as its visual representation superimposed onto the enclosing surface. Fig 3.1a shows the enclosing

surface of a discrete solid composed by 6 voxels and 26 external faces labeled from 0 to 25 to

illustrate the correlation with the nodes of the graph representation. Fig 3.1b presents the face

adjacency graph for the previous surface using a conventional graph diagram. This illustrates each

node in the graph symbolizing a face in the enclosing surface whereas the arcs connect two nodes

representing adjacent faces. It is worth noting face adjacency graphs not only track the adjacency

relationship but also preserve the neighboring order of occurrence for all connections of a given

node (e.g., clockwise order).
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(a) (b)

(c) (d)

Figure 3.1: (a) The enclosing surface of a solid made of 6 voxels and 26 external faces; (b) the
face adjacency graph of the enclosing surface outlining with bold lines a Hamiltonian
cycle; (c) the enclosing surface with its face adjacency graph superimposed; (d) the final
representation of the enclosing surface being superimposed with the Hamiltonian cycle
that could represent it.

For the purposes here pursued, we consider that neighboring voxels of an object can be

connected only by face, or by edge; meaning those that are strictly connected by vertex are

not considered to be part of the same object. Thus, it is straightforward to conclude that as

aforementioned the adjacency graphs for this kind of objects should necessarily be 4-regular and

4-connected provided every face in the surface has exactly four neighbors. Moreover, considering

we deal with only genus-0 solids (i.e., with no holes) satisfying the condition of planarity is a direct

consequence that enables, among other things, the capability to draw the adjacency graph with no

crossings. Later in this chapter, these properties combined play an important in guaranteeing the

existence of a Hamiltonian cycle in this specific family of graphs.
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In Fig 3.1c we present the same discrete surface along with its overlapping adjacency graph

to bring some intuitions on this geometric-topological duality, as well as the reasons behind the

graph necessarily being a planar, 4-regular, 4-connected graph. For this graph a Hamiltonian cycle

represents a sequence of unrepeated faces, progressively connected by edge and whose first and

last faces are also connected. Fig 3.1b exemplify a Hamiltonian cycle using bold connectors to

outline the cycle; and Fig 3.1d presents this Hamiltonian cycle superimposed over the enclosing

surface.

Although in its most general form the Hamiltonian problem is considered to be NP-complete,

when it comes to 4-connected planar graphs not only there is proof for Hamiltonicity [18, 21, 46]

but the problem becomes computable with polynomial complexity bounds [22, 23]. In addition

to the theoretical repercussion here entailed, this also implies the existence of efficient solutions

to the problem that can used in practice. From the compilation of results presented in Chapter

2, Theorem 2.1 in particular is of special importance as it sets the foundations for the algorithm

proposed by Chiba and Nishizeki that is explained in the next section.

Regarding the adjacency graph of objects with holes, there are formal conjectures stating the

Hamiltonicity in these cases as well [47, 48]. In particular, the main conjecture in [49] states that

the enclosing surface of any solid composed of voxels is Hamiltonian. Despite these last results,

in this chapter we limit our method to obtain a descriptor for simple voxelizations given the lack

of suitable methods to find Hamiltonian cycles in non-planar graphs with polynomial complexity

bounds. Nevertheless, in Chapter 5 we extend our method to also describe objects with holes by

means of a tree structure.

3.1 Hamiltonian cycle extraction: terms and definitions

This section gives an overview of the algorithm used to compute a Hamiltonian cycle in a 4-

connected planar graph which in our case corresponds to the face adjacency graph of the extracted

surface. The algorithm formally presented by Chiba and Nishizeki [23, 50] has an O(n) time

complexity on the number of nodes of the graph. The algorithm is based on Tutte’s [17, 18] and

Thomassen’s [21] proofs for the Hamiltonicity of this kind of graphs. In a nutshell, Thomassen’s

proof uses an inductive argument yielding a divide-and-conquer algorithm. The inductive argument
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allows to recursively decompose the graph into several subgraphs, find on of the Hamiltonian

paths existing in these smaller components by applying the inductive hypothesis until convergence

into the trivial base case (i.e., triangle), and finally merge these individual results into a general

Hamiltonian cycle embracing the whole surface.

A few additional considerations required for the core algorithm are presented below. It is

worth noting that all these definitions apply for a very specific type of 2-connected planar graphs

that is resulted from the algorithm’s decomposition process. While the decomposition converges

into more simple cases, the splits are made so it is guaranteed for the individual components to

preserve the connectivity properties explained below [50].

Definition 3.1 Let G = (V, E) be a 2-connected simple graph. A pair {x, y} of nodes

x, y ∈ G is a separation pair if G contains two subgraphs G1 = (V1, E1) and G2 = (V2, E2)

satisfying

(1) V = V1 ∪ V2, V1 ∩ V2 = {x, y}, and

(2) E = E1 ∪ E2, E1 ∩ E2 = ∅, |E1| ≥ 2, |E2| ≥ 2.

Fig 3.3a shows the example of a separation pair. Given a separation pair {x, y} we call split

graphs of G the graphs G1 = (V1, E1 ∪ {x, y}) and G2 = (V2, E2 ∪ {x, y}), see Fig 3.3b. The arc (x, y) is

called a virtual arc since it shall be temporarily added regardless of that arc previously existing in

G, or not.

Definition 3.2 A set {x, y, z} of nodes x, y and z in G is a separation triple if G has

two subgraphs G1 = (V1, E1) and G2 = (V2, E2) satisfying that

(1) V = V1 ∪ V2, V1 ∩ V2 = {x, y, z}, |V1| ≥ 4, |V2| ≥ 4, and

(2) E = E1 ∪ E2, E1 ∩ E2 = ∅

A conclusive implication of Theorem 2.1 is that a 4-connected planar graph G always contains

a Hamiltonian cycle provided the following reasoning. Let s and t be two adjacent nodes on the

exterior cycle Z and let e , (s, t) be an arc on Z, then the path P joining s and t through e must

be a Hamiltonian path of G and consequently P + (s, t) must be a Hamiltonian cycle of G. Thus,
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an algorithm for finding the path going from s to t immediately yields an algorithm for finding a

Hamiltonian cycle.

As aforesaid, regardless of the original connectivity in graph G, the subgraphs it decomposes

into are not necessarily 4- but 2-connected. However, because of the way G splits, these 2-

connected subgraphs inherit a property referred to as internally 4-connected which means they

contain no separation pairs or triples in its interior nodes.

Finally, for the sake of defining a naming convention for the distinctive elements used in

G during the graph decomposition (i.e., two different types of reductions) we label the most

significant elements in the general case. Let G be a 2-connected plane graph with outer facial

cycle Z. Let s and t be two distinct nodes on Z, and let e = (a, b) be an arc on Z such that e , (s, t).

After interchanging the roles of s and t and mirroring G, if necessary, lets assume without loss of

generality that t , a, b and that nodes s, a, b and t appear clockwise in Z as shown in Fig 3.2a; note

that s = a is possible to occur as shown in Fig 3.2b. Let r be the node on Z counterclockwise next

to s, and f be the arc joining r and s.

Definition 3.3 A separation pair is called vertical if either x ∈ Psa − s and y ∈ Pbr, or

x = s and y ∈ Pbt − t.

(a) (b)

Figure 3.2: Representation of the general configuration of a 4-connected planar graph before being
decomposed into multiple subgraphs (a) when s , a, and (b) when s = a
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3.2 Core algorithm

3.2 Core algorithm

Algorithm 3.1 is the core algorithm that uses a recursive function to compute one of the Hamiltonian

paths that start at node s, traverses all the way to node t after visiting all the nodes of the graph,

and it always considers the arc e as one of its hops in the resulting path.

Algorithm 3.1: Compute a Hamiltonian path s-t passing by arc e

1 Function HamiltonianPath(G, s, t, e)
2 if G has exactly three nodes then
3 return trivial path P(G, s, t, e)

4 else if G has a vertical separation pair then
5 TYPE I reduction

6 else
7 TYPE II reduction

During each recursion the algorithm performs one of three possible cases: a base case to

compute the trivial Hamiltonian path for a 2-connected graph with only three nodes (a.k.a.

triangle); and two other cases called TYPE I and TYPE II reductions where the graph decomposes

into smaller subgraphs and for each of the resulting components a recursive call is made to later

merge the different sub-paths. Appendix A builds from the scratch a simple example of this

algorithm. In that section, the algorithm is used to compute one of the Hamiltonian cycles lying in

the face adjacency graph presented in Fig 3.1.

Authors in [23, 50] state the following lemma for a planar graph G with outer facial cycle Z:

let s and t be two distinct nodes on Z and let e , (s, t) be an arc on Z. If G is internally 4-connected

with respect to (s, t, e), then G has a Hamiltonian path P(G, s, t, e) which connects s and t, and

contains e. Moreover, if G has no vertical separation pair, then P(G, s, t, e) does not contain arc

f = (s, r).

The proof provided by the authors to this lemma is an induction on the number of nodes of G

and such a proof leads to the three cases above mentioned with |G(V)| = 3 being the trivial case,

and |G(V)| > 3 one of the two reduction types. While the trivial case does not deserve further

analysis, for the case of the reduction types the next subsections describe in detail each of them

with all their corresponding considerations for their split and merge processes.
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Chapter 3. Hamiltonian trace of the surface enclosing simple voxelizations

3.2.1 TYPE I REDUCTION: THERE EXISTS A VERTICAL SEPARATION PAIR {x, y} IN G

Given its simplicity, this should be the preferred reduction type to perform only requires that a

graph G has at least one vertical separation pair [51], see Fig 3.3a. Without loss of generality we

denote the resulting split graphs as Gl and Gr and assume Gr is the one containing the arc e as

shown in Fig 3.3b.

In the case of having multiple separation pairs, the of rule of thumb to pick one pair is choosing

{x, y} such that Gr has the minimum number of nodes as this will increase the chances for Gl to

find another vertical separation pair during its next recursive call.

Let us distinguish from two possible subcases. First, when t ∈ Gl as shown in Fig 3.3. Let

e′ = (x, y) be a virtual arc. Then, Gl is clearly internally 4-connected with respect to (s, t, e′), while

Gr is internally 4-connected with respect to (x, y, e), or with respect to (y, x, e) if y = b. Therefore by

the inductive hypothesis Gl has a Hamiltonian path given as

P(G, s, t, e) = P(Gl, s, t, e′) + P(Gr, x, y, e) − e′, or

P(G, s, t, e) = P(Gl, s, t, e′) + P(Gr, y, x, e) − e′.

The second subcase occurs when t < Gl. Let e′ = (y, x), then Gl and Gr are internally 4-connected

with respect to (y, s, e′) and (x, t, e), respectively. Here s , x since G is internally 4-connected with

respect to (s, t, e). Thus G has a Hamiltonian path

P(G, s, t, e) = P(Gl, y, s, e′) + P(Gr, x, t, e) − e′.

Note that P(Gr, x, t, e) does not contain the arc (x, y) since there exist no vertical separation pair

in Gr.

(a) (b)

Figure 3.3: Graph decomposition leading to TYPE I reductions. (a) Representation of a 4-connected
planar graph with a vertical separation pair (x, y). (b) The split graphs Gl and Gr resulted
after split in separation pair (x, y).
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3.2 Core algorithm

3.2.2 TYPE II REDUCTION: NO VERTICAL SEPARATION PAIRS IN G

This reduction type is harder than TYPE I and it should be applied only when G does not have a

vertical separation pair as illustrated in Fig 3.4a. Let Cb be the block of G − Psa which contains t

(cross-hatched in Fig 3.4). Thus Cb must entirely contain Pbr otherwise it would mean G contains a

vertical separation pair which is a contradiction for the reason we are applying a TYPE II reduction

in the first place. Repeat splitting of Cb at every separation pair such that one of the two split

graphs entirely contains Pbr. For example, in the case of Fig 3.4a, Cb is split into four components

(square pattern). The component containing Pbr is called Gb while each of the others is called G2
g

where g = (x, y) is a virtual arc contained in the component. Here we may assume the possibility of

interchanging the roles of x and y so that x , b.

Now for each cutnode u of G − Psa contained in Cb let Cu be the maximal subgraph of G − Psa

which can be separated from Cb at u. Let C3
u be the subgraph induced by the nodes of Cu and the

nodes in Psa which are adjacent to Cu. Let x (respectively y) be the vertex of Psa ∩ C3
u which is

nearest to s (respectively a) along Psa. Add a new arc e′ = (u, y) to C3
u if it does not exist, and let

G3
u be the resulting graph. The graph presented in Fig 3.4a has six G3

u subgraphs (hatched) aligned

in the top row of Fig 3.4b.

Finally, we define G4
g for a virtual arc g as the graph formed by merging a G2

g with all the G2
g’s

and C3
u ’s drawn above. The following is the sequence of steps:

(1) C4
g ← G2

g,

(2) while C4
g has a virtual arc g′ , g, iterate to merge a new G2

g into C4
g,

(3) construct the subgraph of G induced by the nodes of Psa adjacent to C4
g, and redefine C4

g as

the subgraph,

(4) G4
g ← C4

g − x − y.

Fig 3.4b illustrates G4
g for a virtual edge g. Let v (respectively w) be the node of G4

g that appears

first (respectively last) on Psa. Let w′ (respectively v′) be the node adjacent to y (respectively x)

and appearing last (respectively first) in the outer path Pwv of G4
g.
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Chapter 3. Hamiltonian trace of the surface enclosing simple voxelizations

(a) (b)

(c)

Figure 3.4: Graph decomposition leading to TYPE II reductions. (a) Representation of a 4-connected
planar graph with no vertical separation pair. (b) Construction of the subgraph G4

g2
.

(c) Decomposed subgraphs Gb (cross-hatched), G2
b (squares pattern) and G3

u (hatched)
resulted from a graph wit no vertical separation pairs.
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3.2 Core algorithm

Let G be an internally 4-connected plane graph containing no vertical separation pair. Then all

the decomposed graphs Gb, G2
g, G3

u and G4
g are internally 4-connected with respect to (s′, t′, e′) if s′,

t′, and e′ are defined as follows, see Fig 3.4c.

(1) Case Gb: Let s′ = b, and t′ = t. If t , r, let e′ be the arc clockwise incident to r on the outer

facial cycle Z′ of Gb; if t = r, let e′ be the arc counterclockwise incident to b.

(2) Case G2
g: Let s′ = y, t′ = x, and let e′ be the arc counterclockwise incident to y on the outer

facial cycle of G2
g.

(3) Case G3
u: Let s′ = u, t′ = x, and let e′ = (u, y).

(4) Case G4
g: Let s′ = w, t′ = v. If w′ , v′, let e′ = (a′, b′) be an arbitrary arc on the outer path

Pw′v′; if w′ = v′, let e′ be an arbitrary arc on Pwv incident to w′(= v′).

By the inductive hypothesis used for the previous decomposition [23], all the decomposed

subgraphs Gb, G2
g, G3

u, and G4
g have Hamiltonian paths. With them we can construct a Hamiltonian

path P(G, s, t, e) of G as follows:

(1) P← Psb + (Gb, b, t, e′).

(2) Extend P into a Hamiltonian path P(G, s, t, e) of the whole G.

(1) While there is a virtual arc g = (x, y) in Gb repeat the following extension:

- If g ∈ P, then let P← P − g + P(G2
g, y, x, e

′) and merge G2
g into Gb.

- If g < P, then construct G4
g, and set P← P − Pvw + P(G4

g),w, v, e′ and delete g from

Gb.

(2) Finally, for each u of the cutnodes of G − Psa contained in Gb, set P = P − Pxy +

P(G3
u, u, x, (u, y)) − (u, y).

The resulting P forms a Hamiltonian path P(G, s, t, e) for the initial graph G.
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4
A new chain code for the representation of

enclosing surfaces

In this chapter we introduce a new chain code and some of its properties for the representation of

enclosing surfaces described as a sequence of square faces. In order to use this new chain code it

is assumed the sequence of faces was already obtained in the form of a Hamiltonian cycle, like

the one illustrated by Fig 3.1d. In that figure it can be observed an important characteristic of the

Hamiltonian cycle and one we take advantage of: the transitions between faces may only produce

a finite number of orthogonal changes of direction. It is by coding these changes that we will be

constructing a new chain descriptor.

Two adjacent faces c and d sharing an edge in the surface and represented by the position of

their respective centers satisfy the symmetric relationship ω defined as (c, d) ∈ ω⇔ ||c − d|| ≤ 1.



Chapter 4. A new chain code for the representation of enclosing surfaces

Definition 4.4 An element ai ∈ {0 . . . 8} of a chain symbolizes the transition (c, d)

representing the orthogonal change of direction from the oriented face c to one of its

ω-adjacent faces d under the following criteria:

(1) Consider the oriented face c having counterclockwise ω-adjacent faces d j, for

0 ≤ j ≤ 3. Assume we are conceptually into c by using an inward transition

represented by the pair (d0, c). We refer to the remaining ordered pairs (c, d1),

(c, d2), and (c, d3) as the right, middle, and left transitions, respectively.

(2) We say that a transition from c to d j is convex, flat or concave when the adjacent

faces c and d j subtends an interior angle equal to 90, 180, or 270 degrees,

respectively.

The assignment of values for an element ai is as follows. We assign the value “0” to the element

when referring to a right-convex change of direction with respect to the inward transition, “1”

is assigned for a right-flat change, and “2” specifies a right-concave transition. Next values “3”,

“4”, and “5” represent the middle-convex, -flat, and -concave transitions, respectively. Finally, “6”,

“7”, and “8” are assigned to the three corresponding changes for a left-convex, -flat and -concave

transitions.

Fig 4.1 illustrates these nine transitions representing the reference of an inward transition with

a black segment pointing to the center of the origin face. The right, middle, and left transitions are

shown in the upper, middle, and lower rows, respectively. The left, central, and right columns show

the convex, flat, and concave transitions, respectively. For further reference, each configuration

shows the code assigned on top of the corresponding transition.

Definition 4.5 A chain A is an ordered sequence of elements defined by

A = a1a2 . . . an = {ai : 1 ≤ i ≤ n},

where n indicates the number of chain elements which gets determined by the number

of faces in the surface and therefore the same number of nodes in the adjacency graph.
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Figure 4.1: The nine relative changes of direction for the representation of enclosing surfaces. The
inward (entry) edge is denoted with a black inward segment and the back faces are shaded
in darker gray for reference. In order to ease the visual interpretation of our chain code,
we also use the following color code in addition to the numeric representation of the chain
element for the rest of this document: (a) 0-red; (b) 1-orange; (c) 2-yellow; (d) 3-green;
(e) 4-cyan; (f) 5-azure; (g) 6-blue; (h) 7-purple; and (i) 8-magenta.

29



Chapter 4. A new chain code for the representation of enclosing surfaces

4.1 Encoding a chain descriptor for enclosing surfaces

A chain representing the discrete surface of a voxelization is the result of encoding each of the

transitions in the sequence of faces fully covering surface. For the type of voxelizations initially

addressed in this work (i.e., no holes), this sequence proceeds from a previously computed

Hamiltonian cycle. Each transition gets assigned an element with a value in the range [0 − 8] in

accordance to the nine configurations presented in Fig 4.1. It is because its condition of being a

cycle that we can arbitrarily select any face as the starting point for the encoding of the chain.

Fig 4.2 exemplifies the encoding of the cycle obtained in the last chapter and illustrated in Fig

3.1d. In order to have a visual reference of our starting point, we denote the starting element with

a black node. Fig 4.2a shows the encoding of the first element of the chain corresponding to an

element “0” resulting from a right-convex transition. In Fig 4.2b we set the next element of the

chain as “6” to describe a left-convex transition towards the following face. Figs 4.2c-e illustrate

the step-by-step encoding of the next three elements of the chain while Fig 4.2f presents the final

chain fully encoded.

Our method establishes a univocal correspondence between the geometrical realization of the

surface and the chain code that describes it. Not only does this imply there is always a unique

chain representing a given sequence of faces but also that we can recover this geometric realization

directly from the chain descriptor with no place for ambiguities.

From a given chain, the process to recover the enclosing surface requires a direct face-by-face

reconstruction of the surface as we walk through the chain elements. This recovery mechanism is

straightforward and does not require further analysis since it can be easily derived as the inverse

process to Fig 4.2.

4.2 Independence of rotation and translation

Because its construction only depends on the relative changes of direction, our chain code is

invariant under rotation and translation of the represented surface. This means the same chain

descriptor can be used to describe a given object represented by its discrete surface regardless of

its position or orthogonal rotation in world coordinates.
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4.2 Independence of rotation and translation

0...
(a)

06...
(b)

062...
(c)

0620...
(d)

06201...
(e)

06201364304850630706310376
(f)

Figure 4.2: Encoding the chain of a solid composed of 26 faces: (a)-(e) step-by-step encoding of the
first five elements of the chain; (f) final representation of the enclosing surface encoded as
a chain code (starting face is denoted with a black node)
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4.3 Inverse of a chain

The inverse of a chain A is another chain AI of the same length that is obtained by traversing the

same cycle in the opposite direction. The i-th element of the chain AI is computed as follows:

aI
i = a(n−i+1) mod 3 − 3[a(n−i+2) div 3] + 6,

where n is the number of chain elements (i.e., number of nodes in the adjacency graph); div

and mod are both functions used respectively to obtain the quotient and remainder of an integer

division. It is worth to note by encoding cycles that we are allowed to use modular arithmetic

to calculate an element subindex. This means ai+1 would represent the first element of the chain

whenever i is equal to the index of the last element. Alternatively, ai−1 would be the last element

when i refers to the first chain element. As an example, in Fig 5.3b we illustrate the inverse of a

chain describing the surface in Fig 5.3a.

In a similar fashion, we can also recover the original chain A by means of applying the same

transformation to invert back a chain AI that was previously inverted.

4.4 Normalized representation (independence to the starting point)

Our chain descriptor uniquely describes a surface meaning there are not two different voxelizations

producing the same chain code. In an opposite way, a given model effectively could be represented

by multiple chain descriptors. In fact, the number of different descriptors is equal to the amount

of Hamiltonian cycles that can be found in the enclosing surface. Moreover, each cycle can itself

be encoded by a number of different chains depending on the selection of starting point and

direction used to encode it. Certainly to guarantee the first statement is a sufficient condition for

any application aiming to an accurate and compact representation of 3D objects, but when it comes

to more advanced applications (e.g., object recognition and analysis) a 1-to-1 correspondence

between the object and its descriptor is necessary.

By utilizing common properties of a chain code, our descriptor can in theory be normalized

as many other chain codes in the specialized literature ensuring a biunivocal correspondence
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4.5 Invariance under mirroring transformation

between the chain and the object it represents. As an example, the normalization can select among

all the possible chains representing the surface that chain whose sequence of elements adds to

the minimal integer. This search would consider every possible starting point for every existing

cycle, traversed in both directions. Fig 5.3c shows the normalized chain for the solid displayed in

Fig 5.3a; this chain retrieves the minimum integer that can be represented by any cycle over the

surface.

Although the normalized representation implies an exhaustive search over every possible cycle

that is computed in the surface, this property enables our chain code to be invariant under the

starting point. Other approaches more suitable for specific situations can be instrumented instead.

For example, minimizing the number of convex transitions, reducing the tortuosity (i.e., maximize

the number of “flat” transitions), or optimizing the number of certain occurrences in favor of a

maximum compression rate.

Unfortunately, because of the exponential increment in the number of cycles as the number of

nodes of the graph grows, this is not always a feasible solution. In fact, one may like to avoid this

normalized representation and the computation of multiple Hamiltonian cycles when dealing with

relatively large objects. Still, for a given cycle it could be valuable in some cases to normalize the

chain with respect to the starting-point with a simple search for the minimum integer within all

possible circular-shifts traversed in both directions.

4.5 Invariance under mirroring transformation

Our proposed descriptor for discrete surfaces may be made invariant also under mirroring trans-

formation by means of the following definition.

Definition 4.6 The chain of the mirror of a solid is another chain (termed mirroring

chain) whose elements “0”, “1”, and “2” are interchanged with elements “6”, “7”, and

“8”, respectively.

Fig 5.3d illustrates the mirror transformation applied over the chain presented in Fig 5.3a. This

makes possible to directly pass from the chain describing a given surface to the chain describing its

specular image; and vice versa throughout the same definition.
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05630643610706313063208036
(a)

60380863064630707604306323
(b)

01136413641436106307756868
(c)

65036043076160373603862630
(d)

23852845812728515285026258
(e)

83608245278182575825680852
(f)

Figure 4.3: Some transformations directly applied to the chain descriptor of the surface presented in
(a): (b) inverse of the chain obtained by traversing the same cycle in the opposite direction;
(c) starting-point invariant representation of the surface chosen so as the sequence of
elements retrieves the minimum integer; (d) mirror of the surface; (e) complement of a
surface (back side of faces is shaded in dark color to differentiate from the front side); (f)
mirror of the complement to illustrate the wrapping surface.
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4.6 Invariance under complement transformation

Since we consider the type of surfaces our chain code represents as oriented surfaces, our proposed

code must necessarily distinguish between the face’s front and the back side. By means of a simple

transformation, our proposed chain code allows reversing the orientation for each face in the

surface so our chain code may be made invariant under what is referred to as the “complement”

transformation. It is defined as follows:

Definition 4.7 The complement of a surface’s chain is another chain (termed

complement chain) whose elements “0”, “3”, and “6” are interchanged with elements

“2”, “5”, and “8”, respectively.

The name of this transformation comes after the idea of representing the enclosing surface

of a different voxelization that complements the space in the rectangular grid where the original

chain was obtained. In other words, for a dataset of voxels discretized with values 0 or 1, this

transformation conceptually means we pass from describing the enclosing surface of the 1-value

voxelization to describe the 0-value voxelization complementing the space, and vice versa.

Fig 4.3e shows the complement surface for the solid shown in Fig 5.3a. In this illustration we

denote the back side of the oriented faces with a dark shading to differentiate them from their

front side.

One handy application of the complement transformation is to obtain the wrapper of a solid

by means of computing the mirror of its complement. In Fig 4.3f we show what would be the

surface of the voxelization wrapping the solid that is presented in Fig 5.3a by means of mirroring

its complement shown in Fig 4.3e. From a Computer Graphics standpoint for instance, this would

be the geometric representation of the same surfaces after reversing its normal vectors.
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5
Representation of voxel-based surfaces by means

of a tree-structured chain code

I
N the previous chapters a new method was presented for the representation of enclosing

surfaces. This method encodes one of the Hamiltonian cycles laying in the face adjacency

graph to produce a one-dimensional descriptor with nine-symbol alphabet, see Chapters 3

and 4. Nonetheless, the main limitation of this method is that it can only be used to describe the

enclosing surface of objects with no holes since the Hamiltonicity proof and existence of efficient

algorithms to compute those sequences is only available for graphs such as the ones of closed

surfaces with topological genus 0.

In this chapter we extend our method for the representation of any discrete surface regardless

of its genus and whether being closed or not. The new description takes advantage of a different
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structure in the form of a tree that is also extracted from the face adjacency graph. We refer to this

new descriptor as the surface tree.

The encoding of a surface tree uses the same nine-symbol alphabet as well as a parenthesis

notation to group its branches. Although this method is suitable to represent trees of any degree,

for the particular use given in this work the maximum degree of a tree will be four.

Our surface tree method also represents a lossless and compact way to describe any discrete sur-

face while preserving the geometrical information. In fact, a surface tree provides similar properties

to the Hamitonian descriptor including invariance under translation and rotation. Furthermore,

there are equivalencies to also permit performing some of the morphological transformations like

mirroring and complement transforming; as well as flipping the surface by directly applying simple

grammatical techniques to the chain.

5.1 Construction of a surface tree

In order to compute a surface tree we assume that the boundary surface is readily available and

that is composed of a set of orthogonal square faces representing the intersection of 0- and 1-valued

voxels in a scene. Every face is represented by a node visually placed on its centroid and we say

that two faces c and d in the discrete surface are adjacent whenever they share an edge. In other

words, faces c and d are adjacent when both faces belong to the binary symmetric relationship ω

defined as (c, d) ∈ ω⇔ ||c − d|| ≤ 1.

Surface trees describe any boundary surface by encoding one of the spanning trees in the face

adjacency graph. Any of the popular algorithms used in the literature to compute the Minimum

Spanning Tree (MST) [25, 26] could be used to find the tree structure. In its most general form

and assuming no additional optimizations are made, this family of algorithms converge to time

complexities in the order of O(n log n) where n is the number of nodes of the graph. Although these

bounds imply an acceptable solution to many of the real-life problems, it is true they also add an

unnecessary overhead to the problem because of the algorithm design not only aims for a tree but

for an optimal one whose arc connections add up to the minimum weight assuming dealing with a

weighted graph.
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Below we propose a different algorithm to compute surface trees that directly derives from the

MST algorithm family but instead of doing any arc-weight considerations, our algorithm spans in a

greedy fashion improving the time bounds to the order of O(n). It is also important to note that as

the tree spans, the encoding of its different orthogonal transitions can be made by using the same

table of possible transitions presented in Fig 4.1.

Given an arbitrary face s in the surface and a transition (r, s) representing an initial transition

from face r to the starting face s, the algorithm’s output provides a list T of encoded transitions

depicting the surface tree. This algorithm starts by adding to T the available transitions going from

s to all its ω-adjacent faces that have not been visited yet. Therefore, in every iteration the face

connected by the incoming transition gets excluded of being re-added. The expansion of the tree

occurs by repeating the same step for each of the ω-adjacent neighbors until reaching completion

determined by having all faces in the surface marked as visited.

During the execution of the algorithm a few auxiliary structures are used to track the preliminary

state of the tree. These include a queue Q of inward transitions and a set V of flags that tracks the

list of visited faces to prevent re-entrance.

Algorithm 5.1: Surface tree constructing algorithm

1 Function SURFTREE(s, (r, s))
2 Q← ∅, V ← ∅, T ← ∅ ;
3 Q← Q ∪ (r, s) ;
4 V ← V ∪ s ;
5 while Q , ∅ do
6 (b, c)← Extract(Q) ;
7 C ← {(c, d) | (c, d) ∈ ω, b , d} ;
8 while C , ∅ do
9 (c, d)← Extract(C) ;

10 if d < V then
11 T ← T ∪

[
(c, d) : Code (b, c, d)

]
;

12 Q← Q ∪ (c, d) ;
13 V ← V ∪ d ;

14 return T

Fig 5.1 illustrates the execution of the algorithm to obtain the surface tree for a given enclosing

surface. Firstly, face 8 is arbitrarily selected as the starting node using the inward transition (3, 8)

as the initial reference, see Fig 5.1a. The logic in lines 2-4 of Algorithm 5.1 takes care of pushing
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this transition into the queue Q and signaling face 8 as a visited face in the set of flags V. After

these initialization lines, Q is not empty anymore so the condition in line 5 should be satisfied the

first time. Next, lines 6-7 are executed to pop out transition (b, c) from the head of the queue and

use it as the new inward transition for the next face to be processed. For visual reference, Fig 5.1

highlights with a yellow sphere the centroid of the next face to be processed.

In line 7 the set C of transitions connecting c to its ω-adjacent faces is created. Fig 5.1b

illustrates the extraction of transition (3, 8) from Q and how it follows creating the set C of

transitions (8, 6), (8, 13), and (8, 15).

Lines 8 to 13 check whether the neighbors of every element in C have been visited. In case

such of one faces has not been visited, the face is marked as visitied in V at the same time the

corresponding transition is pushed into Q and added to the list T . For our example, after this

iteration the state of the different structures should be as follows: T contains transitions [(8, 6) : 0],

[(8, 13) : 3], [(8, 15) : 7]; Q has (8, 6), (8, 13), (8, 15); and the faces 6, 13, and 15 are marked as

visited in V. Later, the algorithm loops to Line 5 in order to process the next iteration, which

corresponds to face 6. This process keeps repeating the expansion of whatever is the current face

until Q is empty, see Figs 5.1c-h.

It is worth to note that in line 11 the items in T keep track not only of the transitions but also of

the numeric representation it gets assigned through a lookup to the table of possible configurations.

The method Code is responsible for returning the appropriate code given a transition (c, d) and its

inward reference.

Finally, Fig 5.1i shows the adjacency graph for the solid used in Fig 5.1 outlining with thicker

lines the spanning tree obtained in Fig 5.1h.

The process to recover a boundary surface from this tree descriptor is relatively straightforward

by simply traversing the spanning tree in either a breadth-first or depth-first fashion. This process

consists of a face-by-face reconstruction of the surface as indicated by the numeric value of each

one of the transitions. Note that different selections of the face used as the root and the initial

inward transition used as a reference will produce different spanning trees. In Section 5.3 we

provide a brief insight for the normalization of the tree descriptor.
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5.2 Codification of a surface tree as a chain

After obtaining the tree descriptor an additional process is required to encode a surface tree into

a chain. One of the simplest ways to represent trees as a chain is the well-known parentheses

notation [52]. By using this notation we establish a simple correspondence between the different

branches of the tree and the different blocks delimited by nested parentheses. In order to exemplify

this process, we demonstrate the codification of the surface tree obtained along the different steps

presented in Fig 5.1.

Starting with Fig 5.1b, the arbitrarily selected root face is expanded to get the chain (0)(3)(7).

This chain describes the three different transitions available to move from the current face 8

to neighbor faces 6, 13 and 15, respectively. Although nothing prevent us from encoding the

neighbors in any order, note that we notation follow the counterclockwise convention to be more

intentional in the final resulting chain.

We continue encoding expanding face 6 as shown in Fig 5.1c. After this expansion the prelimi-

nary chain updates to be (0(0)(4))(3)(7). Subsequently, after expanding face 13 as presented in

Fig 5.1d we end up having the chain (0(0)(4))(3(5)(7))(7). Later, expansion of faces 15, 3, and 2

shown in Figs 5.1e-g produce chains (0(0)(4))(3(5)(7))(7(4)(6)), (0(0(7))(4))(3(5)(7))(7(4)(6))

and, (0(0(7))(4(3)(7)))(3(5)(7))(7(4)(6)), respectively, and so on.

The final version of the surface tree fully encoded into a single chain as shown in Fig 5.1h is

(0(0(7(0)))(4(3(7))(7)))(3(5(3)(6))(7(0(8(3)))(5(1(3)(6))(3))))(7(4(1(6(4)))(3(4))(6(4)))(6)).

In order to test the robustness of the surface tree description, Fig 5.2 depicts the process of

producing the surface tree of different types of discrete surface: an enclosing surface, an open

surface, and another open surface with holes are tested.

Firstly, in Figs 5.2a-d we show the results of applying the SURFTREE algorithm (Algorithm 5.1)

to compute a tree descriptor for a solid made of 11 voxels. The resulting tree shown in Fig 5.2d

yields the following chain:

(0(0(7))(5(0(3(7))(7))(4(3(7(4)))(7(4(3))))(7(3(2(6))))))(3(4(2(6(4)))(3(7))(8(0(7))(4(3))))

(7(2(4(6))(6))))(7(3(4))(6(4))).
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Q→ (3, 8)

(a)

Q→ (8, 6) (8, 13) (8, 15)

(b)

Q→ (8, 13) (8, 15) (6, 3) (6, 2)

(c)

Q→ (8, 15) (6, 3) (6, 2)
(13, 14) (13, 17)

(d)

Q→ (6, 3) (6, 2) (13, 14)
(13, 17) (15, 19) (15, 9)

(e)

Q→ (6, 2) (13, 14) (13, 17)
(15, 19) (15, 9) (3, 0)

(f)

Q→ (13, 14) (13, 17) (15, 19)
(15, 9) (3, 0) (2, 1) (2, 7)

(g)

Q→ ∅

(h) (i)

Figure 5.1: Construction of the surface tree for a solid made out of 8 voxels. (a) Root selection; (b)-(g)
Step-by-step expansion of the first few nodes. Below each subfigure we show the state of
the queue Q of inward transitions whereas the values in set T are directly displayed in the
picture on top of the corresponding transition; (h) Final spanning tree. (i) Face adjacency
graph outlining with thicker lines the spanning tree obtained in this figure.
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Then, for the open surface in the second row of Fig 5.2 we illustrate the process of obtaining

its surface tree in the sequence of Figs 5.2e-h. The surface is made of 25 square faces and its final

surface tree gets encoded as follows:

(0(0)(5(0(7))(4(7(4)))(7(3(2)(5)))))(3(4(2)(5(4))(8(4)))(7(2(4))))(7(6)).

Finally, in the third row of Fig 5.2 we are describing a multi-holed open surface. We illustrate

in Figs 5.2i-l the process to compute this surface tree resulting in the following chain descriptor:

(0(0)(5(0(7))(4(7(4(6(5)(8(3))))))))(7(0(5(4(0(5(1(5)))))))(6)).

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 5.2: We show the process of producing the surface trees from: (a)-(d) the enclosing surface of
a simple solid composed of 11 voxels and 42 oriented faces; (e)-(h) a non-closed surface
obtained from a subset of 25 faces of the previous surface; (i)-(l) a multi-holed surface
made of 22 faces resulting from removing three faces of the previous non-closed surface.
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5.3 Some properties of the surface trees

The surface tree mechanism provides a number of geometrical and topological properties about

the surface it describes. Analogous to our Hamiltonian surface representation, by means of these

attributes the analysis and morphological transformation of surfaces is also allowed directly from

its compact representation as a chain. Throughout this section these properties are individually

outlined.

5.3.1 INDEPENDENCE TO ROTATION AND TRANSLATION

The construction of a surface tree is based on the codification of relative changes of direction

between adjacent faces orthogonal to each other. Because the codification of any transition is not

relative to a global frame or reference, then the description of surface trees is invariant under

rotation and translation.

5.3.2 LENGTH OF THE CHAIN DESCRIPTOR

A surface made of n faces yields a chain whose length L is computed as

L = 3(n − 1). (5.1)

This formula states a linear mapping between the number of faces in the surface and the

number of elements in the tree only excluding the root face that is used for reference purposes.

The factor of 3 in this mapping comes from the overhead added by the parenthesis notation.

Proofs for this and other theorems in this section are not included but easily derivable from

their definitions.

5.3.3 MIRROR TRANSFORMATION

One of the handy properties of surface trees is allowing to easily compute a mirror surface (i.e.,

specular image) by means of the following definition.

44



5.3 Some properties of the surface trees

Definition 5.8 Let T be a surface tree, T M (termed as the mirror of T) is the tree

descriptor obtained by swapping elements “0”, “1”, and “2” with “6”, “7”, and “8”.

Fig 5.3b illustrates the mirror surface obtained from the surface tree of Fig 5.3a.

5.3.4 COMPLEMENT TRANSFORMATION

In the context of surface trees we refer to the result of inverting convex and concave transitions as

the complement of a surface. We explain such a process by means of the following definition.

Definition 5.9 Let T be a surface tree, TC (termed as the complement of T) is the

descriptor obtained by interchanging in T every occurrence of elements “0”, “3”, and

“6” with elements “2”, “5”, and “8”, respectively.

As an example of this property we illustrate in Fig 5.3c the complement transformation of the

surface presented in Fig 5.3a. Note that in this figure we show back faces shaded darker to make

distinction from front faces.

5.3.5 FLIP TRANSFORMATION

Motivated by the idea of dealing with oriented surfaces, we define an operation to easily flip the

orientation of the faces as follows:

Definition 5.10 For a surface tree T we obtain the flipped surface T F by means of

the following mapping between elements ai ∈ T and elements aF
i ∈ T F

aF
i = 8 − ai. (5.2)

The following theorem is a direct consequence of the previous definitions:

Theorem 5.1. Functions used to apply the mirror, complement and flip transformations of a surface

tree are all involutions.
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The above theorem states these three morphological functions are their own inverse so the

following statement is always true for f being any of the mirror (M), the complement (C), or the

flip (F) transformation functions:

T = (T f ) f . (5.3)

Theorem 5.2. By combining previous results, we can alternatively flip a surface tree T as follows

T F = (TC)M = (T M)C . (5.4)

In Fig 5.3d we exemplify this transformation by flipping the surface presented in Fig 5.3a.

5.3.6 ORIGIN OF CONSTRUCTION AND UNIQUENESS OF THE DESCRIPTOR

Even when a boundary surface can be described by several trees, any of these trees uniquely

describes a surface. This concept is analogous to our Hamiltonian method where two different

surfaces may never produce the exact same descriptor. On top of this condition rely many

applications such as the compression and lossless representation of surfaces. However, in other

cases a normalized description is required so the surface is uniquely represented by only one tree.

Potential to select any node as the root of the tree for our method derives in the undesired

outcome of having multiple possible descriptors. Similar to other methods in literature [1],

the origin of description of our tree has a direct effect on the final descriptor obtained. Some

applications require to have a unique origin that can be easily identifiable after slightest variation

to the surface. While this is a topic of high complexity, this section offers some insights with the

intention to hint some of the alternatives for the origin-normalization problem. However, we are

aware better alternatives exist depending on the specific application these target.

Based on the approaches taken by other works [1, 53], our proposal to the root selection is to

choose that face whose centroid is closest to the geometrical center of mass of the represented

solid. Additionally, the initial transition used as a reference may be chosen such that it is maximally

aligned to the major axis used during the computation of the eccentricity of the solid [54]. This

major axis can be determined as the segment of line between the centers of the two faces furthest

apart. Additional criteria must be used for tied situations.
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(a) (b)

(c) (d)

Figure 5.3: Example of some basic transformations directly applied to surface trees: (a) the surface
tree of a simple voxelized solid, (b) the mirror surface obtained by interchanging 0↔ 6,
1↔ 7, and 2↔ 8, (c) the complement surface obtained by replacing 0↔ 2, 3↔ 5, and
6↔ 8, and (d) the flipped surface by the symmetrical and bijective mapping f (ai) = 8 − ai

which swaps 0↔ 8, 1↔ 7, 2↔ 6, and 3↔ 5. Note that back faces are shaded in darker
gray to be distinguished from front faces.
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6
Experimental results of the proposed methods

I
N this chapter we present the results of applying the methods proposed in the previous

chapters to a set of binary voxelizations and discrete surfaces that are used as the input.

The objects used here for experimentation proceed from different sources to prove the

efficiency of our descriptor for the loosely representation of different types of discrete surfaces.

This chapter is organized so that the results for both methodologies introduced in Chapters 3 and

5 are individually analyzed following the same order of appearance in the upcoming sections.

The examples used along this chapter draw upon the representation of real and artificially

created objects. In all cases, objects passed through a discretization process whose output is stored

in any of the specific file formats designed to describe discrete volumes. Note that the resulting

three-dimensional representation not necessarily has to end up with a binary formatted dataset

but an additional process may be necessary to generate datasets that map to {0, 1}. Thresholding is
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possibly the simplest and the most commonly used method applied to real-object scans such as

those proceeding from medical imaging scans. A thresholding process usually implies some level

of user interaction to manually select the best value to generate the expected visualization.

As aforementioned in previous chapters, it is also important to emphasize that our proposal

to represent 3D objects centers specifically in the lossless description of their enclosing surfaces.

While this kind of surface may be explicitly generated or, somehow, alternatively upfront provided,

in most cases these will require a surface-tracking extra step to compute the surface (e.g., using

Artzy’s algorithm [43]).

6.1 Hamiltonian-based description of simple voxelized surfaces

6.1.1 REPRESENTATION

Below we show some examples of the representation of large objects by means of our proposed

chain code encoding a Hamiltonian cycle in the enclosing surface under the assumption that these

objects contain no holes. We first present in Fig 6.1 the encoded surface for the model of an

elephant made of 3 990 faces. From its face adjacency graph, which has the same number of nodes,

we compute and then encode the Hamiltonian cycle [23].

For the example in Fig 6.1 in particular, we display both the chain descriptor over its enclosing

surface and the numeric representation of the chain. Additionally, this figure also uses a five

color label system to assist the reader in tracking different parts in the chain descriptor that is

superimposed to the discrete surface. Any of these color labels marks both an specific face and the

part of the chain which encodes that part of the surface.

In Fig 6.7 we present descriptors for a few other solids proceeding from different sources.

Starting at the top of the figure, there is the model of a horse composed of 12 384 faces. In the

bottom-left corner of that figure we illustrate the chain descriptor for a voxelization of the Venus

de Milo model whose enclosing surface is composed of 66 036 faces. Finally, at the bottom-right

corner, we present the scanned model of a real tooth obtained by CT and then it was binarized

by thresholding to an appropriate value representing the tooth surface. This enclosing surface is

made of 56 680 faces.
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I072686831053165141341674643437444760473534701812783743130744135604477018748305131447744473447113204434414432447745371576448
438260652770771141441658348608260507243628353717530514502830535365735347417608432014534530580423280283 I074460580284830580641
81241651467411870411673527114447860651233610535782645807608234864606078020634732043063104036240652813428128305830765260506465
305028014873847353486071140621 I435348244645371721364328421673104771148738231177474372142344414774076444382711428043284781274
43053074444376444382747114144428043284781274443835361051320620620280444444147743864444438268268608608608682605305802062062062
06118028027444480207260762844371860771614407171623835353535371182605406206206153531741717177171435417305804771176580411440537
6048747014044315784102780641656 I06280113765236113083643711711434354674712644741774044324060407447350630806234468446741353443
08274014735374672310761076082834453058345345648117186406183535435353453051328028028053534421681364313073761060610772541720646
51440623578353445063130706324174382735353534826130832802802802805344417417432813547144074278123177473512343144786445374460774
11450243444318024465167476045371607714414730506328142161470174771437640165834018751605477041177117444573043580644151273762804
11434580653411353765313083628351236523652365236526826041758304135830583058344444382744406281274474381273470652717535448274714
74343537444453471474237471172735065417446107765448261744171707435247414705444065232780414723545352707405343441534444428044444
41717152608353605812744435444460873435740782753724734372830756482740771183605071760582313624533763084774150274502717074324171
06238131832530762416062802061445344453444145124743544460844608681267544471283805707444270717608265827382373620206205703621771
177470140 I447711317747342141442443644473444344328020236473176034374143761065307606414117064614340177444774044314017477117711
31473534744477440531057487017704431401747583061086077145280536202717444062047147145043182361506142804237411431843538273827344
47147147174438268417658045344417147147143534534280423741137215684353543534714714717460844774453075280617147028042805341135435
43714716084744447744415347058015345061105446086516506087477170570534530541176086824658243058473103624116746104147744743107647
11414376110634476430470441443376061106530577801411703616140176832052374411457065644064474477404431401747711771177474404434141
16447477116107610578177308260765183204524386580610774428044158014741738271354354062061453443540623453418236144471406244407241
18361074536144481465434535344382735353534537273827382365174354775341717417407243535353506144353543451461444406241144274481473
45356074354353535348361071741716547750280428027405353534534354354314710744423107445647534534354353535740717417658056072740535
06153177054351441745244428064564383543574071765802740453444144114743547355807234113836177123086711747714116721744453171770543
51361130841645643538444457344483181645345345063084714444064561460847381273471386441582644075816417382682360483170583444445360
58147135447405365273582361827644827581714354428051641534471444444417072343534174154442443448053434148264741444447144354354162
37144713845361174230578306427104452446537152340606117304376058268417611834482674183453447144444731481464354344745445741682643
86071744444714435730873548264816477028135531835144461444071714327414541342804146153714444471354320362160580245045404432150611
30847438274453483175361482607446171714738268465264471717481444642385353736235418414446053534447523426534817127447140723281453
44153105738275607836144438614716582644471744484186077362074544171278117147144424534505630811743547435460868126860774536474204
32353420611743044386826447477143141027758011405741740614537414746083534823605835348267328483050621328050615308342440626062404
11760756077176084434864870444502435152648060827758043130743757606230436561060610718607606113076517236181318273443411377610606
10760782774183816048678160424041178136432052365711744444417017365464361801137184076060776061060737173653053058045364144441173

Figure 6.1: Chain descriptor for the model of an elephant made of 3 990 faces thus the same number
of chain elements. We use five color labels to help following part of the chain.

51



Chapter 6. Experimental results of the proposed methods

Figure 6.2: Chain descriptor of three models: (top) a horse made of 12 384 faces; (bottom-right) the
CT-scan of a tooth with 56 680 faces; and (bottom-left) the voxelization of the Venus de
Milo composed of 66 036 faces. The numeric representation of the chain is omitted due to
space constraints.
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Due to the space constraints in the printed version of this work, for the models in Fig 6.7

we have limited to the visual display of their descriptors without the corresponding numeric

representation as a chain. Instead, we only illustrate the superimposed Hamiltonian cycle relying

upon our color system to portray the notion of the different chain code values. In addition to that,

a zoom-in window to a small portion of the model is used to illustrate with higher detail certain

regions of the surface.

6.1.2 3D OBJECTS COMPRESSION

The representation of 3D objects by means of spatial occupancy arrays calls for large amounts of

data to be stored as the storage requirements increase by the cubic of the linear resolution of a

three-dimensional object. Moreover, even when these structures are subject of high compression

rates, the efficiency of the compression algorithms substantially decreases as the discretization

levels increase. Among other things, this means that dealing with multi-value datasets is not nearly

as efficient as storing a binarized version of the dataset. Furthermore, there are fundamental

problems inherent to the representation of large ranges of the voxelized space opposed to the

representation of individual objects previously isolated from the scene. One of these problems is

the complexity of the segmentation itself.

In computer vision, the process of partitioning a digital representation of the volume as a

multi-valued dataset is already a complicated topic that frequently requires the use of complex

algorithms (e.g., edge detection, region-growing, clustering). In the best case, this segmentation

process represents at the very least an additional step of moderated complexity that is needed

prior the display or manipulation of a model. That is when representing models isolated from the

rest of the scene pays off.

In order to address the above mentioned problem, we explore alternative mechanisms for the

representation of segmented 3D models with the primary goal of providing efficient storage as well

as displaying and operating these objects directly from their descriptors. Our proposal is based on

the direct representation of the enclosing surface, thus removing the rest of the 3D voxel-based

space. Hence, an intrinsic contribution of our method turns to be offering lossless and compact

representation of discrete surfaces by means of a 1-dimensional chain descriptor.
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In Table 6.1 we do a numerical assessment of our Hamiltonian-cycle-based method using

the ratio of the chain size (CS) in comparison to four of the common representations used to

represent 3D objects. Firstly, a surface described as a simple set of vertices and faces (SS). This

representation uses 32-bit integers to describe the vertex coordinates and each of the four vertex-

index representing a face. The second comparison is made against an uncompressed version of the

dataset after being binarized and optimized to describe 1-bit voxels (DS). The third representation

of the solid is with an octree of the dataset [55] using one bit to represent each node of the tree

(ODS). Finally, the fourth comparison is against the compressed version of the octree used in the

previous step (HODS). The compression is made using a Huffman1 encoding technique [56].

In the table we also provide the length of the chain used to represent every model, their

dimensions in 3D space, and the number of vertices and faces of their surface. It can be observed

from the ratio CS/SS that the chain is a much more compact representation than the traditional

surface methods (e.g., obj, ply, 3ds, wrl, stl, fbx). In particular, our chain representation stabilizes

in the limits to the 2% of the size required by these other methods.

In the case of the ratio CS/DS, the ratio decreases as the model resolution increases and shows

again a better performance in our chain representation. The ratio decrement as the size of the

model increases can be explained by the direct mapping in the lenght of our chain code with

respect to the size of the described surface. In contrast, for the volumetric representations, the size

of a dataset grows in proportion to the three-dimensional space of the model implying a higher

representation of data. With the ratio CS/ODS, our chain representation still demonstrates a higher

efficiency as the size of the model increases, specially when the volume tends to become irregular.

Finally, although the ratio CS/HODS suggests the chain representation could not beat the

storage efficiency in the compressed representation as an octree, our descriptor still exhibited an

adequate performance by keeping the storage bounds roughly in the same order of complexity,

besides of offering other potential advantages like the previously mentioned segmentation which

means a faster recovery; and the set of capabilities allowing the analysis and morphological

transformations by grammatical techniques applied to the chain.

1In information theory the Huffman-codes are a widely used variable-length encoding for compression purposes
[56]. Huffman’s method is an entropy encoding based on having the more frequent symbols assigned a shorter code
than those with lower probability, or frequency of occurrence.
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MODEL

CHAIN SURFACE DATASET RATIO CS/x

Length Verts Faces W×H×D
CS∗ x =SS∗ x =DS∗ x =ODS∗ x =HODS∗

(KB) (%) (%) (%) (%)

elephant 3 990 3 983 3 990 50 × 50 × 50 1.52 1.40 10.01 112.52 158.78

horse 12 384 12 376 12 384 90 × 90 × 90 4.62 1.37 5.20 82.15 186.16

venus 66 036 65 992 66 036 256 × 256 × 256 18.12 1.00 0.88 29.59 161.19

tooth 56 680 56 638 56 680 256 × 256 × 161 17.25 1.11 1.34 26.40 142.13

∗ File size of the model described as:
(CS) the proposed chain compressed by using Huffman encoding [56];
(SS) an uncompressed representation of its surface by using 32-bit numbers for each vertex coordinate and face index;
(DS) an uncompressed representation of the dataset;
(ODS) an octree representation of the dataset;
(HODS) a compressed octree representation by using Huffman encoding.

Table 6.1: Comparison of the storage requirements when using our proposed chain code against some
of the common representations as a surface and volume. For the models used in this section,
the table presents its dimensions when represented as a chain, surface and dataset. In the
last four columns shows the size percentage of our chain code (CS) with respect to the other
representations (SS, DS, ODS, HODS).

Fig 6.3a plots the behavior of the function describing the size increment of the chain as the

size of the model increases. This trend is approximated by an order-1 (linear) equation where the

slope m < 1
3 indicates that a single storage unit (i.e. a byte) represents in average just a little bit

more than three polygons of the enclosing surface.

In Fig 6.3b we present another plot in order to compare the growth of the different types of

3D descriptors with respect to our chain code method. The chart illustrates a clear compression

advantage of the CS, ODS, and HODS methods over the geometrical-based SS and DS, hence

supporting our method as a higher-compression alternative to the raw representations of the

surface or the volume.

While the value range for the y-axis in Fig 6.3b is linearly plotted to be illustrative of a real

comparison against the mechanisms describing raw surfaces and volumes (i.e. SS and DS), in

Fig 6.3c we use a different range to center the comparison with the more sophisticated ODS

and HODS methods. As explained during the analysis of Table 6.1, our compression method is

very comparable to the Huffman encoding of an octree representation but with the advantages

mentioned before.
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(a)

(b)

(c)

Figure 6.3: (a) Plot of CS growth as the size of the model increases. (b) Comparison of CS, SS, DS,
ODS and HODS growth. (c) Comparison of CS, ODS, HODS at a better scale
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6.1.3 COMPARISON WITH OTHER CHAIN CODES

There exists a number of works in the specialized literature already proposing the use of 3D chain

codes as an alternative method for the representation of different three-dimensional structures

[37, 40, 57]. To the best of our knowledge, our chain code is the first one specifically used for

the representation of discrete surfaces. Nevertheless, when in comes to other chain codes used to

represent digital curves, we can find that in most cases these are easily adaptable to describe a

given sequence of faces in the discrete surface. Along this subsection we briefly compare our chain

code against two of the well-known chain codes, the first one proposed by Freeman [37] and the

second by Bribiesca [40].

While Freeman’s code was originally intended for tracking 2D contours, a simple adjustment to

the chain code’s alphabet can easily extend it to represent 3D curves. Since the discrete curves

studied in this work tracks the surface exclusively following orthogonal changes of direction, we

can then use the alphabet of six elements illustrated in Fig 6.4a. In Fig 6.4c we use the label

<Fre> to indicate the chain corresponding to this variant of the Freeman’s code and it tracks a

given sequence of faces (i.e. computed Hamiltonian cycle) in the surface of the voxelization.

Also in Fig 6.4c, we present the chain obtained from the method proposed by Bribiesca [40]

for 3D curves; such a chain is labeled as <Bri>. Bribiesca’s code uses an alphabet coding the five

relative changes of direction shown in Fig 6.4b [38]. Finally, we use the label <Our> to indicate

our proposed chain code using an alphabet of nine relative changes.

In addition to the number of elements in each alphabet, it is worth noticing that the codes

proposed by Freeman and Bribiesca require twice the number of elements than our code does. This

gives to our code an advantage for the compression application since this means a single face can

be encoded by using one of only nine available values; this in contrast to the 36 and 25 possible

values in Freeman’s and Bribiesca’s codes, respectively2. This ultimately implies a higher entropy

of our method for the representation of discrete surfaces.

2The number of available values corresponds to the number of possible combinations resulting from having two
contiguous elements of the chain.
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(a) (b)

<Fre>:4334430035005551241003444215225325523444215511500412
<Bri>:1302021021102001311304300131102111023100131020230431
<Our>:6 5 3 7 0 7 1 3 0 6 3 1 3 0 7 0 8 3 0 4 6 7 1 6 3 0

(c)

Figure 6.4: (a) Extension of the Freeman’s chain code alphabet to represent 3D curves. This codifica-
tion depends on an absolute coordinate system. (b) The five relative changes of direction
in Bribiesca’s chain code for digital curves. (c) Codification of one cycle by using the
Freeman’s code <Fre>, Bribiesca’s code <Bri> and our proposed chain code <Our>.

6.1.4 MULTI-RESOLUTION REPRESENTATION OF AN ENCLOSING SURFACE

Some of the major topics in computer graphics are related to the compact representation and

efficient display of 3D objects. For this purpose, the display of the surfaces proceeding from a

voxelization play an important role being among the most common meshes given their simplicity

and the convenience entailed over other traditional polygonizations which commonly lead to

over tessellation problems or geometric ambiguities [45]. In Chapter 3 we briefly addressed

some details in this regards and discussed about the efficiency of the algorithms used for surface
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extraction striving in some of these advantages.

In the other hand, one of the common concerns of using surfaces proceeding from a voxelization

in their coarse appearance but for this issue there also exist mitigation techniques to improve

the visualization of these cubic surfaces. Most of these techniques in fact, act directly over the

illumination model to “fake” its boxy appearance and make it look smoother. For example, a simple

manipulation of the surface normals can help to retrieve smoother renderings [58]. It is in part

because of these encouraging results and the ubiquitous presence of these kind of surfaces that we

consider our method entails a contributions to a relevant area.

In Fig 6.5 we present at multiple resolutions the model of a CT-scanned tooth previously used

in Fig 6.7. The eight resolutions used in Figs 6.5a-h correspond to voxelization of the model

as a dataset of 1, 2, 4, 8, 16, 32, 64, and 128 voxels per side, respectively. For each of these

representations a single chain was computed to describe the corresponding surface. Previously, in

a different subsection, we already noted in terms of the compression efficiency how advantageous

our contour-oriented description is versus a raw volume-based representation.

Given the importance of the problems it can solve, different mechanisms for the measure of

discrete compactness have been studied in the past. In addition to the compression of 3D objects,

in this subsection we expand the areas of application of our method to also produce a measure of

discrete compactness that is directly computed from the chain descriptor.

Based on the measure of compactness presented in [59] and assuming that the length of

each side of the voxels is equal to 1, we replace from the formula in Bribiesca’s work the area of

the enclosing surface for the length of our chain descriptor to obtain the following measure of

compactness:

Cd =
V − n/6

V −
3√
V2
,

where Cd is the discrete compactness, V is the number of voxels of the solid, and n is the length of

the chain descriptor.

Fig 6.5 shows under each subfigure the number of voxels, the length of its chain descriptor, and

its measure of compactness. It is important to note how some of the gaps within the tooth recesses

start to get filled up with smaller voxels which gives as a result a higher measure of compactness
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as the model resolution increases. As for models previously used in this section, their measure of

discrete compactness based on their sizes and chain length are 0.94407 for the elephant, 0.96428

for the horse, 0.98563 for the Venus de Milo, and 0.99102 for the tooth in its original resolution.

These measures roughly correspond to what it could be anticipated from a visual inspection to be

the order from the less to most compact model.

V = 1
n = 6

Cd = unde f ined

(a)

V = 5
n = 20

Cd = 0.80283

(b)

V = 24
n = 58

Cd = 0.91413

(c)

V =124
n =176

Cd =0.95494

(d)

V =729
n =652

Cd =0.95730

(e)

V = 4 586
n = 2 458

Cd =0.96899

(f)

V = 31 873
n = 9 348

Cd =0.98209

(g)

V = 236 054
n = 36 518

Cd =0.99023

(h)

Figure 6.5: Multi-resolution representation of the CT-scanned model of a tooth used in this chapter.
Voxelizations are adapted to the following resolutions in order to fit in a dataset of
maxside equal to (a)1; (b)2; (c)4; (d)8; (e)16; (f)32; (g)64; and (h)128. Below each
representation is the number of voxels of the solid (V), the length of the chain descriptor
(n) and a measure of discrete compactness (Cd).
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6.2 Tree-based description of complex voxelized surfaces

As a complement of the representation made for simple voxelizations, this section studies the

extended version of the descriptor based on a spanning-tree structure covering the surface. That

is, our tree structure can span over any voxelized surface regardless of its topological genus, and

whether it is a closed surface or just a patch. Throughout this section we use this method to

represent a wide variety of these voxelized surfaces.

6.2.1 REPRESENTATION OF LARGE SURFACES

Below some examples of large objects are described by means of the surface tree method introduced

in Chapter 5. Similarly to the set of models used in the previous section, the discrete surfaces

analyzed in this section are also either directly created or obtained from the implicit voxelization in

a dataset. In the case of multi-value datasets, the final voxelization was extracted by thresholding

to an arbitrary selected isovalue chosen by visual inspection.

In Fig 6.6 we start with the encoding of the scanned model of a bunny made out of 2 206 faces

which is described with a chain of 6 615 elements. As part of this figure we illustrate the encoding

of the proposed tree structure superimposed to the corresponding surface. Also in this figure, we

use again the system of five color labels to assist with the identification of different regions in the

surface described with the chain.

Fig 6.7 presents more examples of discrete surfaces proceeding from different sources, all of

them described with a surface tree. Starting from the top-left corner, we show the model of a rib

cage obtained from the 3D reconstruction of a CT-scanned human chest [60]. The model in this

figure is an implicit surface whose isovalue was appropriately adjusted to display the rib cage and

it is composed of 593 412 faces. In the bottom-right corner we show the scan of a Buddha statuette

whose voxelization presents an enclosing surface made of 32 146 faces. Finally, the bottom-left

corner shows a digital elevation model (DEM)3 of the Iztaccihuatl volcano whose enclosing surface

has 121 548 faces. Due to space constraints, this figure omits the numeric representation of the

chain and only displays the tree descriptor superimposed over the discrete surface.

3Digital Elevation Models are digital representations of a terrain’s surface and are commonly the basis of digitally
produced relief maps [1]
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Figure 6.6: Surface tree description of the Stanford Bunny whose enclosing-surface consists of 2 206
faces. Below the model we include the chain code of 6 615 elements which uses five different
labels to assist the reader following the descriptor in different regions of the surface.

62



6.2 Tree-based description of complex voxelized surfaces

Figure 6.7: Three different models described with a surface tree: (top) rib cage drawn with 593 412
faces and extracted from a 3D reconstructed dataset of a CT-scanned human chest;
(bottom-right) surface with 32 146 faces obtained from the scan of a “Happy Buddha”
statuette; and (bottom-left) a surface with 121 548 faces generated from a digital elevation
model (DEM) of the Iztaccihuatl volcano. Due to the limitation of space, the numeric
representation of the chain is omitted.
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By having all models in this section coming from different sources, we pretend to perform

a more comprehensive validation of our methodology. Hence, we include large surfaces that

in some cases are artificially generated but in some others are representations of real objects

used in real applications. Among these models we bear with different topological genus (i.e., in

homeomorphism to the n-torus) like in the case of the Buddha statuette containing multiple holes;

or even open surfaces like in the case of the rib cage model.

Regarding the representation of open surfaces, Fig 6.8 shows the example of an open surface

corresponding to the landform of the Iztaccihuatl volcano. This figure only uses the land relief

patch from the enclosing surface of the Iztaccihuatl model we previously presented in Fig 6.7.

We take reuse the model but this time only representing as an open surface its relief. Some of

the morphological operations directly applied over the tree descriptor are illustrated using this

figure. More specifically, Figs 6.8b and 6.8c illustrate respectively the mirror and complement

transformations applied to the surface patch presented in Fig 6.8a.

6.2.2 COMPRESSION EFFICIENCY OF A SURFACE TREE

Previously in this chapter, we analyzed the storage advantages for our 1-dimensional Hamilton-

based descriptor over the traditional occupancy arrays and other representations. To some extents,

this section is just a corollary for the descriptions made with a surface tree as we will see these

advantages do not change much.

While the encoding of a tree structure greatly depends on the additional step used to serialize

it into a single chain, most of compression efficiency analysis remains true with one simple

adjustment: now, to compute the length of the chain, we also need to take into consideration the

overhead added by the parenthesis notation required to serialize this structure. More specifically,

when we refer to equation 5.1, the storage requirements increase by a factor of 3 with respect to

the 1-dimensional descriptor.

Despite of this space increment by a constant, the Big-O analysis does not change its order of

complexity remaining based as a linear function on the number of faces the discrete surface being

represented.
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(a)

(b)

(c)

Figure 6.8: Discrete surface representing the relief of the Iztaccihuatl volcano model in Fig 6.7. (b)
Result of applying the mirroring (a.k.a. specular image) transformation to the tree
description in (a). (c) Result of applying the complement transformation to the tree
description in (a). This figure illustrates the usage of the mirror transformation to find
the symmetries, and the complement transformation to convert those valley regions in the
landform into hills, and viceversa.
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6.2.3 AMBIGUITIES IN SIMILAR METHODS USED FOR THE REPRESENTATION OF ENCLOSING SURFACES

There are other methods in the specialized literature also used to describe voxelized surfaces

but sometimes suffering of some ambiguities. For example, Sagols [49] explores the use of a

Hamiltonian sequence of numbered faces as the way to describe voxelized solids, also referred as

voxsolids. Similar to our method, Sagols’ work uses the face adjacency graph as its fundamental

structure to extract these sequences and has as its main contribution the conjecture that such a

graph is always Hamiltonian for any voxsolid [61].

Nevertheless, due to its lack of references to reconstruct the geometrical representation of

the solid, this characterization of the surface still falls short from being a reliable method for the

representation of discrete solids. In particular, this limitation results in a number of ambiguities

when it comes to the representation of voxsolids. For example, the Fig 6.9 shows a simple case

where two different voxelizations may lead to have the same adjacency graph, therefore to have

the exact same descriptor. Moreover, the lack of a suitable polynomial algorithm to compute the

Hamiltonian sequence restricts its use to only those cases where the voxelization does not contains

holes as it has been previously assessed.

Figure 6.9: Example of the ambiguity of representing boundary surfaces exclusively by using their face
adjacency graph. The figure shows two different surfaces with the same adjacency graph
resulting in the same sequence of faces to describe the voxelization.
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6.2 Tree-based description of complex voxelized surfaces

Another method also using a tree descriptor spanning along the enclosing surface is the

enclosing trees proposed by Bribiesca et. al [1]. Enclosing trees expand through the edges of the

surface, hence, they use a tree of maximum degree equal to six given the number of edges that can

be incident to a single vertex.

Although the enclosing trees method holds some similarities with our tree descriptor, in our

method we use trees of lower degree and their encoding depends on a different alphabet that is

exclusive for the representation of surfaces rather than 3D curves.

In the case of enclosing trees, similar ambiguities in the representation of voxelizations may

lead to have a single descriptor representing multiple voxsolids.

Fig 6.10 illustrates a simple case used as a counter examples of one of those cases where a

single descriptor represents two different voxsolids. While some details in the implementation of

the surface trees’ algorithm could lead to have a slightly different output where the final encoding

avoids this particular problem, this still helps to understand that chances of eventual occurrences

of other ambiguous instances are possible.

Figure 6.10: Example of an ambiguity found in the enclosing trees method presented in [1]. This
figure illustrates two different enclosing surfaces represented by the same enclosing tree.
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6.2.4 COMPARISON WITH ENCLOSING AND EDGING TREES

In comparison with enclosing trees [1], our method not only avoids potential pitfalls related to

the representation of multiple solids using the same descriptor but also offers an edge when it

comes to the representation of non-closed surfaces. Specifically, for the reconstruction of a surface

from our chain descriptor, each element in the chain possesses an explicit meaning on how the

corresponding face should be placed in the surface without requiring any additional context from

other non-contiguous chain elements as it occurs with the enclosing surface method.

From a compression perspective, by having the length of a chain descriptor determined as a

function of the number of vertices or faces, respectively, both methods flaunt very comparable

compression efficiency as per the Euler’s characterization [4, 5] ensuring the number of vertices

grows more or less in the same order of magnitude than the number of faces of the surface.

Another related method that can be used as reference is edging trees [42] which is an extension

to the enclosing trees where an additional brute force post-process allows the optimization of large

flat portions of the surface. While this extension reuses the same chain code and same alphabets

the enclosing trees use, the length of the output chain gets reduced in proportion to the amount of

flat regions in the surface. In those cases, the compression efficiency of edging trees surpasses that

from our method at the expense of having a much more complex extraction of the edge encoding.

Finally, a natural comparison for our surface tree method is with the 1-dimensional descriptor

earlier proposed in this work. That descriptor results from the encoding of a Hamiltonian cycle

extracted from the face adjacency graph of a simple voxelization and, although both methods

use the same alphabet of nine symbols, in terms for compression efficiency the Hamiltonian

descriptor has an edge over surface trees. Nevertheless, we still need to consider the surface

trees method as an extension of the Hamiltonian description but being a more generic solution

for the representation of any discrete surface, and allowing the surface encoding regardless of its

topological isomorphism.
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6.2.5 MEASURE OF TORTUOSITY (SURFACE ROUGHNESS)

Tortuosity is one of the interesting properties of curves and surfaces with several applications

that can be derived from it [27, 29, 30, 34]. For instance, in materials engineering, the surface

tortuosity is an important parameter related to the tribological4 behavior of surfaces so it is used

to study asperity and deformations caused by the increments in their friction, as well as other

phenomena. In [28], a metric of the surface roughness is used to assist in the analysis of cracks in

concrete. Regarding usage in medical applications, a research in [62] states the surface roughness

as a key factor in determining the low-thrombogenic5 behavior of biomaterials. This section deals

with a new proposal to measure surface tortuosity directly from the tree description.

Our proposed measure of surface tortuosity τ, also considered as the surface roughness, is

defined by the ratio:

τ =
transitionsnon− f lat

transitionstotal

where transitionsnon− f lat refers to the number of occurrences described in Fig 4.1 as convex, or

concave transitions (i.e., 0, 2, 3, 5, 6, 8). The ratio τ is ultimately obtained by dividing over the total

number transitions encoded in our tree descriptor.

Considering the multiple ways existing to span a tree fully enclosing the represented surface,

we also propose the use of the well-known family of MST algorithms [25, 26] to compute a

canonical form of the tree that minimizes the amount of non-flat transitions. Our measure of

surface tortuosity is then defined as a scalar value in the range [0, 1] where 0 is assigned to a

completely flat surface, and 1 represents the maximum possible roughness for a discrete surface

with no flat zones.

In Fig 6.11 we present some examples of our proposed measure for three different surfaces. Fig

6.11a illustrates the simplest of these surfaces, corresponding to a model composed of 9 voxels and

29 transitions (i.e., 30 faces). In this model, the minimum number of non-flat transitions required

to enclose the surface is equal to 5, therefore the measure of relative tortuosity τ is 5/29 ' 0.17241.

Fig 6.11b isolates the tree descriptor and highlights its non-flat transitions for a better visualization.

4Related to the study of interacting surfaces in relative motion considering principles of friction, lubrication and wear.
5Thrombogenicity refers to the tendency of a material in contact with the blood to produce a thrombus or clot.

69



Chapter 6. Experimental results of the proposed methods

(a) (b)

(c) (d)

Figure 6.11: Measure of surface tortuosity (surface roughness) computed for a MST-based tree descrip-
tor minimizing the number of non-flat transitions: (a) 9-voxels model with 5 non-flat
transitions; (b) isolated tree from the previous model; (c) bunny model whose tree
descriptor uses 1 035 transitions, 251 non-flat; (d) bull model with 2 017 transitions, 496
non-flat. Digital version of this document represents non-flat transitions in red (covex),
or blue (concave) colors to distinguish from the rest of them represented in white (flat).

Figs 6.11c-d display more examples of models composed of 1 222 and 2 274 voxels, respectively.

In the case, of the bunny (bunny16) the spanning tree uses 1 035 transitions where 251 of them

correspond to non-flat transitions producing a ratio τ ' 0.24251. For the model of a voxelized bull,

the ratio τ = 496/2017 ' 0.24591.

In Fig 6.12 we illustrate the measure of tortuosity applied on more complex models. In the

top-left corner we show the model of a building with a surface tree of 78 717 transitions, with

only 2 845 of them being non-flat resulting in τ ' 0.03614. Additionally, the models of a Hand and

Atenea their ratio τ is approximately 0.28857 and 0.25429, respectively.
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6.2 Tree-based description of complex voxelized surfaces

Figure 6.12: Examples of surface tortuosity applied on larger models. Digital version of this document
represents non-flat transitions in red (covex), or blue (concave) colors to distinguish
from the rest of them represented in white (flat).

71
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Among the different object in 6.12, it is worth noticing the large flat portions in the Building

model leading to a low measure of tortuosity. In contrast, the Hand model present significantly

less flattening resulting in a large number of convex or concave transitions thus a large roughness.

Table 6.2 lists all the different models used along this chapter and sorts them by tortuosity in

non-decreasing order. This table shows Building, Iztaccihuatl, and Simple model as those with

less roughness. The result could be considered as expected given the large flatten areas in the

model proportional to the entire surface. In the case of the Tooth model, much higher roughness is

resulted precisely from the lack for these flattened zones. Another aspect worth to mention occurs

for the two different voxelizations made for the Bunny model at different resolutions where the

reported roughness keeps in a consistent range suggesting certain tolerance of our measure to the

model resolution.

Finally, we consider important to emphasize our decision to minimize the non-flat transitions

was made with the intention of offering to the reader ideas of simple applications. This, of course,

should not limit by any means the possibilities of our method to optimize any other property, and

therefore opening a world of possibilities for exploring different applications that use discrete

surfaces.

MODEL VOXELS

TORTUOSITY MEASURE

TRANSITIONS
τ =

non− f lat
totalnon-flat total

building 300 258 2 845 78 717 0.03614

iztla 960 903 19 802 121 543 0.16292

simple 9 5 29 0.17241

bunny24 3 673 517 2 205 0.23447

bunny16 1 222 251 1 035 0.24251

bull 2 274 496 2 017 0.24591

chest 1 264 095 150 419 593 411 0.25348

venus 396 157 16 772 66 035 0.25399

atenea 185 494 7 900 31 067 0.25429

budha 96 089 8 531 32 145 0.26539

elphant 6 344 998 3 989 0.25019

horse 89 673 6 865 25 177 0.27267

hand 20 768 5 636 19 531 0.28857

tooth 429 887 17 820 56 679 0.31440

Table 6.2: Comparison of the tortuosity measure applied on different models used along this chapter
and sorted in an incremental order of surface roughness.
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7
Conclusions and future work

T
HIS work proposed a new mechanism for the representation of discrete surfaces by means

of a new chain code. The represented surfaces are constructed from a set of edge-

connected square faces, orthogonal to each other, and commonly proceeding from the

enclosing surface of a voxelization. One of the main traits of our method is the serialization of

three-dimensional surfaces into a single one-dimensional descriptor. Two different approaches

were presented to accomplish this representation.

Our first approach addresses the representation of simple voxelizations, corresponding to those

where the voxelization represents objects with no holes. For this approach, the serialization of the

surface is accomplished by encoding one of the Hamiltonian cycles embedded in the adjacency

graph. This representation deeply relies on existing proofs of Hamitonicity for 4-connected planar

graphs which were cited during the background analysis.



Chapter 7. Conclusions and future work

The second approach extends our Hamiltonian method by encoding a spanning tree in the

surface. We refer to this second method as surface trees and it allows the representation of

practically any discrete surface regardless of its genus, and whether being closed or not. In fact,

describing a wide range of surfaces is the main advantage held over the Hamiltonian descriptor.

The down side is a lower entropy resulting from the requirements to store branch information and

therefore increasing the size of the descriptor by a factor of 3.

A new chain code was also proposed in this work for the encoding of these descriptors. The

new chain code encodes orthogonal changes of direction along a sequence of edge-connected faces

using a nine-symbol alphabet producing chains whose length gets determined by the number of

faces in the surface. The new code is studied along some of its main properties that include the

invariance under rotation and translation. In this document we also offer simple ideas to normalize

it with respect the starting point, as well as a set of morphological transformations that can be

directly applied to the chain to obtain the mirror, the complement, or the reversed surface. To the

best of our knowledge, this is the first chain code explicitly used for the representation of surfaces.

Our methodology is tested against a wide variety of models proceeding from different sources,

sizes, and resolutions.

Among the applications that can be derived from our work, in this paper we analyzed the

lossless compression of 3D objects showcasing its higher compression rate and other advantages

over the traditional formats used for these kind of 3D models. We also presented an example where

this method is used to represent a multi-dimensional voxel-based discretization of a CT-scanned

image.

Specifically in the case of the Hamiltonian descriptor, a measure of discrete compactness

was directly obtained from the chain descriptor by adapting a previous definition presented in

Bribiesca’s work. Finally, for the surface tree representation, an MST variation was also used to

obtain the spanning tree with minimum number of non-flat transitions as the proposal of a measure

of tortuosity. An equivalent solutions using a different MST can be pursued for the optimization of

other properties like the object convexity.

74



Future work

There is a number of applications derived from our method initially envisioned for this work.

However, we scoped in this investigation to state the foundations of our method as well as only

basic applications. From a high-level perspective, further applications can fall into one of the

following two categories. First, the object analysis and recognition which is based on the study of

certain occurrences in the chain. This is in fact, a way to characterize the represented surface by

studying patterns and offering comparison metrics directly from the chain. The second category

corresponds to the direct manipulation of the surface by applying grammatical techniques.

Through this document, we briefly addressed some of the possibilities offered by the MST

algorithms to optimize different properties in the spanning tree. Optimization of any given property

yields to a canonical representation with potential to be a defacto metric to measure such property.

For instance, a relatively simple line of investigation could follow up on possible applications that

are based on the convexity or concavity of a three-dimensional object which is directly related to

optimize the number of convex or concave transitions in the surface.

Among the open questions raised by this work suggesting further exploration we put to the

reader’s consideration a few of them:

(1) Does the topological relationship of the model and its chain allow to determine the Euler

number directly from the chain?

(2) What other geometric properties can be obtained from the chain (volume, compactness,etc.)?

(3) Can we infer when the represented surface is an enclosing surface?

(4) Is it possible to find out when a chain describes a non-orientable surface in the form of a

Klein Bottle, a Möbious Strip, or other topological realizations?

(5) Is there a chain equivalence between descriptors allowing to know when two different chains

represent the same object?

A number of other fascinating problems could be studied in relationship to the duality of an object

and its chain description.
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A
Appendix: Step-by-step example of the

Hamiltonian cycle algorithm

We develop in detail an example of the Algorithm 3.1 used to find Hamiltonian cycles for 4-

connected planar graphs [23]. The full algorithm incorporates different cases for all the possible

configurations as well as a number of considerations for each of them but in this example we

illustrate the process using a relatively simple graph that only requires a subset with some of the

most basic types of graph decomposition. More specifically, for the Type I reduction described

in Section 3.2.1, we are not covering all the edge cases leading to interchange nodes s and t.

Likewise for the Type II reduction described in Section 3.2.2, we only consider cases where the

induced subgraph G′ = G − Psa contains a single block generating the sub-case for Gb with no

further separation pairs that could additionally produce subgraph types G2
g, G3

u, or G4
g.



Chapter A. Appendix: Step-by-step example of the Hamiltonian cycle algorithm

As we keep decomposing the graph into smaller subgraphs, for each subcase a recursive call

is made in order to compute a small portion of the entire Hamiltonian path that once found, it

gets merged into the preceding step. Unless representing the trivial case (i.e. triangle graph), each

subcase generates a new step that is queued and subsequently illustrated when it corresponds.

This logic causes a divergent flow that easily becomes hard to track down as the graph keeps

decomposing as well as when local results start converging.

Aiming for a better interpretation of each step in the example below, we first sketch out a basic

signaling convention to provide the reader with the necessary context. In the top-left corner of

each figure illustrating one step, we signal its information with different boxes with the format:

1
2
3
41
2
3
4

Box 1 (black) indicates what the current step is. Box 2 (green) traces back to the preceding step

so once the resulted path is found the user can follow how this is merged into its caller. Box 3 (red)

is a reference to the following step(s) after a decomposition. Note that the number of sub-calls is

determined by the number of subgraphs so there could potentially be multiple boxes, or even none

when no further decomposition is possible (trivial case).

The reduction types diagrammatically explained in Chapter 3 assume without loss of generality

that s, e, and t appear respectively in clockwise order in the outer cycle Z. While this is only

a conceptual representation, in practice these elements can appear counterclockwise without

signifying anything but a symmetrical consideration in labeling the graph elements. Same goes for

a Type I reduction where left and right are merely a notation to refer to the subgraph that does

(Gr) and does not (Gl) contain e. Box 4(blue) provides the context in this regards.

Each step labels s, t, and e as these are the main parameters used by the algorithm. These

are also labeled with apostrophe in each of the decomposed subgraphs to denote the parameters

passed to the recursive calls. Labels for a and b; x and y; and r are used only when necessary.

Finally, the portion of a graph needing to get removed is grayed out and the partial results of

H-paths are outlined with bold lines so this can later being merged into its preceding step.
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In this example we use the adjacency graph

presented in Fig 3.1 arbitrarily selecting two

adjacent nodes s, t, and one arc e , (s, t)

incident to s. We will use 0, 2, and arc (0, 1),

respectively. Note that s and t must be adja-

cent so we can close the cycle once the path

s− t is found. The reason for e to be different

to (s, t) is precisely to reserve this arc (aka

f ) to close the cycle. See Fig 3.2.
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e

s=a

t=r

A BA B

To reinforce with a visual reference, we re-

draw the graph so its outer facial cycle Z

contains the nodes s, t, and the arc e thus

the graph resembles that diagrammatically

presented in Fig 3.2. Note how the adja-

cency relationship among all nodes of the

graph is preserved as well as the clockwise

order of appearance for all its neighbors.

s'=bt'=t=r
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e

e’

s=a

Gb

B
A
CB
A
C

Split: by no existing a separation pair (see

Definition 3.1), the Algorithm 3.1 leads to

a Type II reduction where the path Psa only

consisting of node 0 is removed. A recursive

call is made over the induced subgraph Gb

after s, t, and e are redefined as directed in

Subsection 3.2.2.

Merge: the combined Hamiltonian path is a

merge of Psb and Hamitonian path for Gb.
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s'=b

s=at’=t=r
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e’

eGb

C
B
DC
B
D

Split: no separation pair exists leading to an-

other Type II reduction where the removed

path Psa only consists of node 1 this time.

Here again, no other subgraphs are split

from component Cb and the recursive call

is made only over the induced subgraph Gb.

Merge: the combined Hamiltonian path is a

merge of Psb and Hamitonian path for Gb.
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e
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s’=b

rD
C
ED
C
E

Split: for the third consecutive time, no ver-

tical separation pair is found so we repeat a

Type II reduction with Psa only consisting of

node 4. The recursive call is made only over

the induced subgraph Gb after the s, t, and e

are redefined.

Merge: the combined Hamiltonian path is a

merge of Psb consisting of node 1 and Gb’s.
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e'=e

b
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6
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e'

t'=t

s'=s

a

r

y

x

Gl
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s'

t’

E
D
FE
D
F KE
D
F K

Split: a separation pair (13, 6) is found lead-

ing to a Type I reduction case as the one de-

scribed in Subsection 3.2.1. Graph splits in

Gl and Gr and the s, t, e tuple get redefined

for each of the subgraphs before recursive

calls in Steps F and K, respectively.

Merge: by combining the Hamiltonian paths

of Gl and Gr, and discarding e ∈ E(Gl), we

obtain the Hamiltonian path for this graph

before split.
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26

13
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t’

F
E
GF
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Split: separation pair (13, 2) leads to Type I reduc-

tion where Gr results in a trivial case so there is

only recursive call for Gl. Note the order inver-

sion of s′ and t′ so b , t in the next iteration.

Merge: combine the Hamiltonian paths computed

for Gl and Gr; and discard arc e ∈ E(Gl).
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GlGr

x
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s’=s

G
F
HG
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H

Split: separation pair (2, 14) leads to Type I reduc-

tion with a trivial Gr and recursive call to Gl.

Merge: Gl + Gr paths discarding arc e ∈ E(Gl)

results in the combined Hamiltonian path.

Gb

s’=b

7 5
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14 11

2

e’

t’=t

e

s=a r

H
G
IH
G
I Split: no separation pair leads to a Type II reduc-

tion with Psa consisting only of node 2 and no

further splits in Cb so we only call recursively Gb.

Merge: Psb added to path in Gb produce the com-

bined Hamiltonian path of the graph.

Gb
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e’
e

t’=t=r

s’=b

I
H
JI
H
J

Split: another Type II reduction with Psa consist-

ing only of node 14 and no further splits of Cb so

we only call recursively for Gb.

Merge: Psb added to path in Gb produce the com-

bined Hamiltonian path of the graph.
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e

t’=t
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s’=b

r

J
I

J
I

Split: a Type II reduction with Psa = {7} leads to

a trivial case for the resulted subgraph Gb.

Merge: by combining path Psb and trivial path

found in Gb subgraph.
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Gb
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K
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Split: no separation pair leads to a Type II

reduction. After removing the path Psa =

{13, 17} we have a single component with no

further separation pairs in the induced sub-

graph Gb.

Merge: the combined Hamiltonian path

adding back the path Psb and the Hamito-

nian path of Gb.
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ee’
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Split: no separation pair again leads to an-

other Type II reduction with Psa = {10}.

Since no other subgraphs split from com-

ponent Cb, there is only one recursive call

for the induced subgraph Gb.

Merge: the combined Hamiltonian path is

resulted from the merging of Psb and the

Hamitonian path of Gb.
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Split: a separation pair (16, 15) leads to a

Type I reduction with Gl and Gr being not

trivial cases with recursive calls in Steps N

and U, respectively.

Merge: Gl + Gr paths minus the arc e ∈ E(Gl)

results in the combined Hamiltonian path.
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e
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N
M
ON
M
O Split: Type II reduction with Psa = {14} with no

further splits in Cb. Therefore, only one recursive

call recursively for Gb.

Merge: Psb and the path in Gb produce the com-

bined Hamiltonian path of the graph.
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e
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t’=trs=as’=bO
N
PO
N
P Split: Type II reduction with Psa = {16} with no

further splits in Cb. Therefore, only one recursive

call recursively for Gb.

Merge: Psb and Hamiltonian path in Gb give us

the combined path.
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Split: vertical separation pair (25, 24) leads to the

non-trivial subgraphs Gl and Gr.

Merge: paths obtained from the recursive calls

for each subgraph minus the virtual edge in Gl

produce the combined Hamiltonian path.
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b

t’Q
P
RQ
P
R Split: vertical separation pair (24, 21) leads to Gl

and a trivial subgraph Gr.

Merge: paths obtained from the recursive calls for

each subgraph minus the virtual edge e = (24, 21)

outlines the Hamiltonian path.
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Split: no separation pair causes a Type II reduc-

tion with Psa = {24} and Gb with no further splits.

Merge: Psb and the trivial path in Gb produce the

combined Hamiltonian path of the graph.
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P
TS
P
T Split: a Type II reduction with Psa = {25}. The

induced subgraph Gb has no further splits.

Merge: Psb and the trivial path in Gb produce the

combined Hamiltonian path of the graph.
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Split: vertical separation pair (23, 18) leads to triv-

ial subgraphs Gl and Gr after a Type I reduction.

Merge: paths from the trivial subgraphs outlines

the Hamiltonian path after removing e = (23, 18).
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Split: a Type II reduction with Psa = {16}. Induced

subgraph Gb presents no further splits.

Merge: Psb and the path in Gb produce the Hamil-

tonian path of the entire graph.

r

8

6

93

e’

t’=t

s’=s=a

Gl

158

9

e’=e

b

s’=s=a

y

x

Grt’

V
U
WV
U
W

Split: vertical separation pair (9, 8) leads to sub-

graph Gl and trivial Gr after a Type I reduction.

Merge: Gl +Gr paths after removing e = (9, 8) pro-

duce the Hamiltonian path of the entire graph.
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Split: Type II reduction with Psa = {9}. The in-

duced subgraph Gb implies a trivial case.

Merge: Psb and trivial path in Gb produce the

Hamiltonian path of the graph.
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