

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

POSGRADO EN CIENCIAS DE LA TIERRA INSTITUTO DE GEOLOGÍA

Líneas guía para la identificación de sucesiones fluviales antes cartografiadas como Formación Matzitzi

TESIS

Que para optar por el grado de Maestro en Ciencias de la Tierra

PRESENTA:

JONATHAN ABIMAEL ANAYA GUARNEROS

TUTOR:

DR. MICHELANGELO MARTINI Instituto de Geología, UNAM

JURADO EVALUADOR:

DR. LUIGI SOLARI (Centro de Geociencias, UNAM) DRA. CLAUDIA CRISTINA MENDOZA ROSALES (Facultad de Ingeniería, UNAM) DR. ROBERTO MALDONADO VILLANUEVA (Centro de Geociencias, UNAM) DR. AARON MARTIN (División de Ciencias aplicadas IPICYT)

Ciudad Universitaria, CDMX, a noviembre de 2020

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. Declaro conocer el Código de Ética de la Universidad Nacional Autónoma de México, plasmado en la Legislación Universitaria. Con base en las definiciones de integridad y honestidad ahí especificadas, aseguro mediante mi firma al calce que el presente trabajo es original y enteramente de mi autoría. Todas las citas de, o referencias a, las obras de otros autores aparecen debida y adecuadamente señaladas, así como acreditadas mediante los recursos editoriales convencionales".

Jonathan Abimael Anaya Guarneros Septiembre de 2020

Agradecimientos

A Miche por ser un gran tutor y una de las mejores personas que he conocido. No tengo palabras para expresar mi gratitud hacia él por todas las enseñanzas y todo su compromiso en la elaboración de este trabajo, que indudablemente se ha enriquecido con sus observaciones, correcciones y comentarios. Y a quién debo todos mis conocimientos y gusto por las rocas sedimentarias. Mil gracias.

Al Instituto de Geología y la UNAM por ser mi casa nuevamente por dos años y donde aprendí muchísimas cosas nuevas y conocí personas increíbles. A mis profesores de la maestría por sus enseñanzas y consejos.

A la Dra. Claudia Mendoza-Rosales por todas las observaciones y comentarios realizados en los exámenes tutorales y todas sus enseñanzas sedimentológicas desde la Facultad de Ingeniería ¡mil gracias Doctora! También, a las Dras. Elena Centeno-García y Pilar Navas-Parejo por sus recomendaciones y observaciones. Al Dr. Luigi Solari por su apoyo en los fechamientos U-Pb, sus comentarios y discusión de los afloramientos. Al Dr. Roberto Maldonado-Villanueva por sus muy acertadas observaciones petrológicas. Y al Dr. Aaron Martin por sus comentarios y sugerencias.

Al proyecto PAPIIT IN104018 bajo la dirección del Dr. Michelangelo Martini y al *GSA research grant* por el apoyo económico otorgado para la realización de este trabajo. Al CONACYT por la beca otorgada durante mis estudios de maestría.

Quiero agradecer a Mildred por su apoyo en campo, en la realización del mapa geológico y por siempre estar dispuesta a ayudarme. A Scarlette por su apoyo en la cartografía. A Ismael por su gran ayuda en la molienda de muestras. A Rodrigo por darme hospedaje en las visitas a Juriquilla. A la Dra. Berlaine por su ayuda en la discusión de los afloramientos. A la comunidad de Los Reyes Metzontla por ser personas tan maravillosas y abrirme las puertas para estudiar sus rocas.

Al Dr. Carlos Ortega por su apoyo en los fechamientos U-Pb, a la M.C. Consuelo Macias por su apoyo en la separación de minerales pesados, al técnico Juanito por la tinción y preparación de láminas delgadas, al técnico Manuel por permitirme usar el Laboratorio de Molienda. A Mary, la Dra. María Colín y Araceli por su apoyo en todos los tramites.

Al Ing. Javier Arellano por permitirme ser su ayudante, donde aprendí mucho, por su amistad y confianza brindada en estos años.

A mis amigas las Quelilas: Claudia Martínez, Ana Lau Cacheux y Gesi de Anda por todos sus consejos, risas, buenos y malos momentos, son las mejores. No tengo palabras para expresar cuanto las amo. A Orlando por todas las aventuras vividas. A Esther Hernández por ser una de mis mejores amigas y a quién le debo su compañía en las clases, te quiero mucho Estheren. A mi Siljis, por todos esos bailes y su maravillosa amistad, no tienes idea de cuanto te quiero. A Néstor, mil gracias señora. A Memo Vera, Yasma y Ana Margarita por su amistad y compañía en las clases. A Miriam, Cynthia y Nicté por esos "5 minutos" de chisme diarios, gracias por su amistad, bailes y comidas. Al grupo de Microfacies, donde conocí grandes amigos. Y finalmente, al grupo de Geología de Campo por su notablemente contribución en la realización del mapa geológico. Y todos a quienes no he puesto aquí y que han contribuido en mayor o menor medida a que terminara este trabajo.

A mi familia por ser mi motor y siempre apoyarme. A mis papás Mayra e Ismael por su paciencia, compresión y risas. A Merith por ser la mejor hermana de este mundo. Por ser tan hermosos conmigo, no tengo como agradecerles tanto... los amo. A mi Logan y Meche...

Índice

Re	Resumeniv					
Ał	ostrac	t	vi			
1.	1. Introducción					
2.	Ant	recedentes	5			
	2.1	La Formación Matzitzi	5			
	2.2	Sucesiones fluviales del Mesozoico sobreyacentes a la Formación Matzitzi	8			
	2.3	Posibles rocas fuentes de las sucesiones fluviales	9			
	2.3.	1 Complejo Oaxaqueño	9			
	2.3.	2 Complejo Acatlán	11			
	2.3.	3 Complejo Ayú	12			
	2.3.	4 Arco Pérmico del Este de México	12			
	2.3.	5 Provincia volcano-sedimentaria de Nazas	13			
3	Pro	blemática y objetivos	15			
	3.1	Planteamiento de problema	15			
	3.2	Hipótesis	15			
	3.3	Objetivo	16			
	3.4	Justificación	16			
	3.5	Área de estudio	17			
4	Me	todología	18			
	4.1	Trabajo de campo	18			
	4.2	Análisis de forma de clastos	18			
	4.3	Petrografía de areniscas	19			
	4.4 Separación y petrografía de minerales pesados		22			
	4.5	Geocronología U-Pb en circones detríticos	23			
	4.5.	1 Escalamiento multidimensional	23			
5 Observaciones de campo		servaciones de campo	25			
	5.1	Litofacies	25			
	5.1.	1 Conglomerado soportado por los clastos y masivo	26			
	5.1.	2 Conglomerado soportado por los clastos con gradación inversa	26			
	5.1.	3 Conglomerado soportado por la matriz y masivo	26			
	5.1.	4 Conglomerado con estratificación cruzada curvada a planar	28			

	5.1.5	Arenisca con estratificación cruzada curvada a planar	28
	5.1.6	Arenisca con rizaduras	29
	5.1.7	Arenisca de relleno	29
	5.1.8	Lodolita y arenisca muy fina con laminación plano-paralela de régimen inferior	30
	5.2 Eler	mentos arquitectónicos	30
	5.2.1	Elemento Depósitos de flujos gravitacionales (SG)	31
	5.2.2	Elemento Finos de la llanura de inundación (FF)	32
	5.2.3	Elemento Abanico de desborde (CS)	33
	5.2.4	Elemento Dique natural o levee (LV)	34
	5.2.5	Elemento Capas y formas de fondo de grava (GB)	34
	5.2.6	Elemento Canal (CH)	35
	5.3 Car	acterísticas sedimentológicas de las sucesiones fluviales en el área de estudio	37
	5.3.1	Conjuntos de la Formación Matzitzi	39
	5.3.2	Sistemas fluviales del Cretácico	43
6	Análisis	dimensional de clastos	44
7	Petrogra	afía de areniscas	46
	7.1 Cor	njunto 1	46
	7.1.1	Elemento CH	46
	7.1.2	Elemento SG	51
	7.2 Cor	ijunto 2	54
	7.3 Sist	emas fluviales del Cretácico	56
8	Petrogra	afía de minerales pesados	58
	8.1 Cor	ijunto 1	59
	8.1.1	Elemento CH	59
	8.1.2	Elemento SG	60
	8.2 Cor	ajunto 2 de la Formación Matzitzi	61
	8.3 Suc	esiones fluviales del Cretácico	62
9	Geocron	ología U-Pb en circones detríticos	63
	9.1 Cor	ijunto 1	63
	9.1.1	Elemento CH	63
	9.1.2	Elemento SG	64
	9.2 Suc	esiones fluviales del Cretácico	66
1	0 Discu	sión	68

10.1	Ambiente de depósito	68			
10.1	.1 Conjunto 1 de la Formación Matzitzi	68			
10.1	.2 Conjunto 2 de la Formación Matzitzi	69			
10.1	.3 Sistemas fluviales del Cretácico	70			
10.2	Procedencia	71			
10.2	2.1 Conjunto 1 de la Formación Matzitzi	71			
10.2	2.2 Conjunto 2 de la Formación Matzitzi	75			
10.2	2.3 Sucesiones fluviales del Cretácico	78			
10.3	Significado geológico del Conjunto 2 originalmente agrupado en la Formación Matzitzia	81			
10.4	Líneas guía para la identificación de las sucesiones fluviales en el área de estudio	84			
Conclusiones					
Bibliografía					
Anexo 1					
Anexo 2	A 1	00			
Anexo 2B					
Anexo 2C					
Anexo 3	1	03			

Resumen

La colisión y amalgamiento de las diferentes masas continentales que llevaron a la formación de Pangea ocurrió finales del Paleozoico. En el sur de México, este evento tiene su expresión en la zona de Falla de Caltepec, una estructura cortical que pone en contacto a las rocas pre-Mesozoicas del Complejo Oaxaqueño y el Complejo Acatlán. La sucesión fluvial más antigua depositada en la margen ecuatorial occidental de Pangea y que sobreyace a esta sutura es la Formación Matzitzi. La edad de la Formación Matzitzi ha sido constreñida por la gran abundancia de plantas fósiles del Pérmico Superior. Sin embargo, nuevas edades U-Pb del Jurásico Medio en circones detríticos contenidos en las areniscas de la Formación Matzitzi sugieren que esta sea posiblemente una mezcla de sucesiones fluviales distintas.

En efecto, los datos presentados en este trabajo demuestran que las rocas descritas previamente como Formación Matzitzi contienen dos sucesiones fluviales con características distintivas, pero la complejidad estructural debida a las múltiples reactivaciones de la zona de Falla de Caltepec dificulta el reconocimiento de una y otra. Para definir las diferencias entre las distintas sucesiones sedimentarias, se tomaron muestras de diferentes depósitos fluviales originalmente mapeados como Formación Matzitzi en el área entre Los Reyes Metzontla, Santiago Coatepec y la autopista Tehuacán-Oaxaca. Además, se recolectaron muestras de las unidades fluviales cretácicas expuesta en el área de estudio para una comparación. En este trabajo, se presenta una guía para reconocer las diferentes sucesiones fluviales basada en datos sedimentológicos, petrográficos y geocronológicos. Los datos obtenidos en este trabajo permitieron identificar dos conjuntos distintos dentro de la Formación Matzitzi, las cuales se distinguen por sus características litológicas, procedencia y edad. El Conjunto 1 se caracteriza por los elementos arquitectónicos típicos de un sistema fluvial anastomosado. Las facies conglomeráticas de este conjunto se caracterizan por contener clastos con forma compacta. La principal fuente de detrito son las rocas de alto grado del Complejo Oaxaqueño, y en cantidad menor, las rocas metasedimentarias de bajo grado del Complejo Acatlán, y las rocas volcánicas félsicas del Arco Pérmico del Este de México. Se propone que este conjunto mantenga el nombre de Formación Matzitzi, debido a que contiene los afloramientos con base en los cuales esta unidad litoestratigráfica fue originalmente definida, así como la característica flora fósil del Pérmico. Los depósitos fluviales post-180 Ma del Conjunto 2 contienen elementos arquitectónicos típicos de un

abanico aluvial y un río trenzado. La forma de los clastos en las facies conglomeráticas varía de compacta a en disco, en cuchillo y elongada. Las rocas del Conjunto 2 fueron alimentadas por las rocas de alto grado del Complejo Oaxaqueño, rocas volcánicas del Jurásico Inferior y Medio de la Provincia volcano-sedimentaria de Nazas y, en menor medida, por las sucesiones carbonatadas del Jurásico Superior o Cretácico Inferior circundantes al Golfo de México, el Arco Pérmico del Este de México y el Complejo Acatlán. Considerando que las rocas del Conjunto no se parecen en procedencia a las sucesiones de abanico aluvial del Cretácico Inferior expuestas en el área de estudio, se propone definir informalmente a esta sucesión fluvial como una nueva unidad estratigráfica llamada formación Agua de Mezquite.

Diferenciar entre las distintas sucesiones fluviales que afloran en el sur de México permitirá una correcta reconstrucción de los estilos fluviales asociados a las variaciones topográficas durante el amalgamiento y ruptura de Pangea, así como enriquecer los modelos paleogeográficos de México de finales del Paleozoico e inicios del Mesozoico.

Abstract

At the end of Paleozoic time, the collision and amalgamation of continental masses led to the formation of Pangea. In southern Mexico, this process is expressed by the Caltepec Fault zone, a crustal structure that bounds pre-Mesozoic rocks of the Oaxacan and Acatlán complexes. The oldest fluvial succession deposited on the western margin of equatorial Pangea and above covering the Caltepec Fault zone is the Matzitzi Formation. The age of the Matzitzi Formation has been constrained by its Upper Permian flora. However, new Middle Jurassic ages on zircon grains from sandstone deposits mapped as the Matzitzi Formation suggest that this unit is probably a mix of different fluvial succession.

In effect, data shown in this work demonstrate that the rocks described previously as Matzitzi Formation contains two fluvial succession with distinctive features, but the structural complexity associated with the multiple reactivations of Caltepec Fault zone does not permit the correct recognition of these successions. In order to define the differences of these sedimentary successions, a representative sampling of the different fluvial deposits mapped as Matzitzi Formation has been performed in the area between Los Reyes Metzontla, Santiago Coatepec, and the Tehuacán-Oaxaca highway. In addition, sample from Cretaceous fluvial units exposed in this area has been collected for comparison. In this work, it is presented a guide for discrimination of the different fluvial successions exposed in the study area according to their sedimentological, petrographic, and geochronological characteristics. Data presented in this work permit dividing the Matzitzi Formation into two sets. Set 1 consists of architectonic elements typical of an anastomosing fluvial system. Clasts in conglomerate deposits are mainly compact. Set 1 is mostly sourced by high-grade rocks of the Oaxacan Complex and, minorly, by low-grade metasedimentary rocks of the Acatlán Complex, and felsic volcanic rocks of the Permian East Mexico Arc. It is proposed to keep the name of Matzitzi Formation for this set, because it contains the fluvial deposits on which this unit was firstly defined, as well as the characteristic Upper Paleozoic fossil flora. The post-180 Ma fluvial deposits of Set 2 contain the architectonic elements typical of alluvial fans and braided rivers. Clasts in conglomerate deposits vary from compact to platy, bladed, and elongated. Rocks of Set 2 are derived from high-grade rocks of the Oaxacan Complex, volcanic rocks of the Lower-Middle Jurassic Nazas volcanic-sedimentary Province and, minorly, from Upper Jurassic or Lower Cretaceous carbonate successions of the circum-Gulf of Mexico area, the Permian East Mexico Arc, and the Acatlán Complex. Considering that Set 2 deposits show a different provenance relative to alluvial fan deposits of the Cretaceous units exposed in the study area, it is proposed here to define informally these fluvial deposits as a new stratigraphic unit called Agua de Mezquite formation.

The correct recognition of the different fluvial successions that outcrops in southern Mexico will permit to differentiate changes in the fluvial drainage associated with topographic variations during the amalgamation and the subsequent break-up of Pangea. In addition, the recognition of fluvial succession associated to different tectonic settings will improve the paleogeographic reconstructions during Late Paleozoic and Early Mesozoic time.

1. Introducción

Entre el Pérmico Tardío y el Triásico Temprano, la colisión y amalgamación de las diferentes masas continentales existentes en el planeta Tierra determinó la formación del supercontinente Pangea (Dickinson y Lawton, 2001). En el sur de México, dicho proceso de amalgamación está expresado por la zona de Falla de Caltepec, la cual representa la zona de sutura entre dos terrenos continentales que corresponden al microcontinente Oaxaquía y al Complejo Acatlán (Elías-Herrera *et al.*, 2005; Fig. 1.1). De acuerdo con los datos actualmente disponibles, la zona de Falla de Caltepec fue activa durante el Pérmico Temprano y Medio (~270-276 Ma), actuando como una estructura transpresiva dextral con orientación aproximada de N-S (Elías-Herrera y Ortega-Gutiérrez, 2002; Fig. 1.1).

Figura 1.1 Reconstrucción paleogeográfica del Pérmico Tardío-Triásico Temprano de la margen ecuatorial occidental de Pangea, donde se muestra la ubicación de depósito de la Formación Matzitzi (cuadro anaranjado). Modificado de Elías-Herrera y Ortega-Gutiérrez (2002) y Martini y Ortega-Gutiérrez (2018). OAX: Oaxaquía, AC: Complejo Acatlán, CA: Andes colombianos, M: Bloque de Mérida, C: Terreno de Caborca y ZFC: zona de Falla de Caltepec.

El primer registro estratigráfico formado en el sur de México inmediatamente después de la amalgamación de Pangea es representado por los depósitos fluviales de la Formación Matzitzi (*e.g.* Centeno-García *et al.*, 2009). Dicha formación es de suma importancia debido

a que representa el registro estratigráfico de uno de los primeros sistemas fluviales desarrollado en la margen ecuatorial occidental de Pangea. Con base en el reconocimiento de asociaciones de facies, Centeno-García *et al.* (2009) han sugerido que la Formación Matzitzi representa el registro estratigráfico de un sistema fluvial anastomosado que drenó la parte ecuatorial de la Pangea occidental.

La edad de depósito de la Formación Matzitzi representa actualmente un problema abierto. Desde hace poco más de cuatro décadas, los estudios paleontológicos han indicado la presencia de una flora abundante del Paleozoico Superior. En particular, las identificaciones paleontológicas reportadas por Silva-Pineda (1970) indican una edad pensilvánica, mientras que revisiones posteriores de Weber (1987), Weber (1997) y Flores-Barragán et al. (2019) del mismo material y ejemplares nuevos sugieren más bien edades del Pérmico Inferior y Superior. Sin embargo, recientemente varios autores (Bedoya-Mejía, 2018; Macías-Romo et al., 2019) han reportado edades U-Pb en circones de aproximadamente 240 Ma para un cuerpo ígneo felsítico interpretado por Centeno-García et al. (2009) como un nivel de toba intercalado con los depósitos fluviales de la Formación Matzitzi. Adicionalmente, algunos depósitos fluviales expuestos en las cercanías de Los Reyes Metzontla, los cuales originalmente habían sido mapeados como parte de la Formación Matzitzi (Centeno-García et al., 2009), han revelado un contenido abundante en circones del Jurásico Inferior-Medio (Bedoya-Mejía, 2018). Por lo tanto, los datos paleontológicos y geocronológicos disponibles hasta el momento parecen sugerir que la Formación Matzitzi no es una unidad estratigráfica única, sino que incluye sucesiones fluviales del Pérmico, Triásico, Jurásico Medio o posteriores. Con base en esta premisa, el registro estratigráfico que tradicionalmente se ha agrupado dentro de la Formación Matzitzi no debería ser considerado como una unidad estratigráfica única, sino como un conjunto de formaciones diferentes que representan los registros fluviales desarrollados en diferentes tiempos y bajo diferentes contextos tectónosedimentarios, como son la fase final de ensamble de la Pangea occidental en el Pérmico y el inicio de la fragmentación de este mismo supercontinente desde el Triásico (Martini y Ortega-Gutiérrez, 2018). Redefinir la estratigrafía de los depósitos fluviales originalmente incluidos en la Formación Matzitzi es una tarea fundamental hoy en día, porque permitiría:

- reconstruir con más precisión los patrones de drenaje fluvial durante el Pérmico, el Triásico y el Jurásico y, por ende, determinar las variaciones en la configuración topográfica asociadas a la consolidación y fragmentación del supercontinente Pangea;
- gracias a lo anterior, entender la historia de exhumación de la litosfera continental en el sur de México durante la consolidación y fragmentación de Pangea; y
- 3) ayudar los estudios paleontológicos enfocados en entender los efectos de la más grande extinción de masa de la historia del planeta, es decir, la Gran Mortandad del Pérmico-Triásico (Erwin, 1994), simplemente con definir cuáles son las sucesiones formadas durante el Paleozoico y las que se desarrollaron en vez durante el Mesozoico.

La metodología más tradicional en uso para la reconstrucción estratigráfica es la cartografía geológica basada en los principios estratigráficos fundamentales dictados por Steno ya en la segunda mitad del año 1600. Sin embargo, dada la complejidad estructural de la región (Elías-Herrera et al., 2005; Centeno-García et al., 2009), resulta difícil seguir de manera continua el registro estratigráfico por distancias largas y documentar posibles discordancias angulares que puedan sugerir superficies de contacto entre unidades fluviales distintas. Por lo tanto, la aplicación de esta metodología resulta difícil en el área de interés. Otra metodología que en los últimos años ha florecido en varios campos de las geociencias, incluyendo la sedimentología, es el fechamiento U-Pb en circón. Sin embargo, una reconstrucción estratigráfica de detalle basada únicamente en el fechamiento isotópico se traduciría en un gasto de dinero muy grande y, considerando que en toda el área solamente hay un único nivel de rocas ígneas (e.g. Centeno-García et al., 2009), la gran mayoría de los fechamientos serían en circones detríticos de las rocas clásticas, de los cuales se obtendrían edades máximas de depósito y no la edad precisa de formación del registro estratigráfico. Una alternativa para diferenciar entre los diferentes depósitos fluviales actualmente incluidos en la Formación Matzitzi es estudiar con detalle la procedencia de los depósitos fluviales en las localidades en las cuales con seguridad sabemos su edad. En caso de observase claras diferencias que permitan distinguir entre una u otra sucesión, realizar un muestreo sistemático de todos los depósitos continentales en el área de interés y subdividir unidades con base en sus diferencias composicionales. Está metodología es razonable y no implica el dispendio de grandes recursos económicos. Por esta razón, este trabajo quiere ser un estudio piloto con el cual se evalúa el potencial de esta metodología, realizando el análisis de procedencia de detalle de los depósitos fluviales que se han agrupado dentro de la Formación Matzitzi, para reconocer posibles diferencias sustanciales entre ellos y distinguir distintas sucesiones sedimentarias.

2. Antecedentes

2.1 La Formación Matzitzi

La Formación Matzitzi aflora en las cercanías de los poblados de los Reyes Metzontla, San Luis Atolotitlán y Coatepec, en el sur del estado de Puebla, y sobre la autopista federal 135D Tehuacán-Oaxaca (Fig. 2.1). La Formación Matzitzi fue descrita informalmente por Calderón-García (1956) como una sucesión de arenisca intercalada con lutita, esporádicos lentes de conglomerado y capas de carbón, presentando un abundante registro de plantas fósiles. Cinco décadas después, Centeno-García *et al.* (2009) realizaron el primer estudio sedimentológico detallado de esta unidad estratigráfica, utilizando herramientas como el análisis de litofacies y de conjuntos de litofacies. Aunque estos autores no definen la geometría tridimensional de los elementos arquitectónicos, lo cual es imprescindible para un profundo entendimiento del tipo de ambiente fluvial (Miall, 2006), ellos describen tentativamente a la Formación Matzitzi como una sucesión clástica desarrollada en un sistema fluvial anastomosado e identifican dentro del registro estratigráfico de esta unidad seis asociaciones de facies diferentes, cada una representativa de un subambiente específico, las cuales son:

- Depósitos de flujos de escombro de tipo aluvial o de relleno de canal. Esta asociación de litofacies está representada por depósitos de conglomerado masivo soportado tanto por la matriz como por los clastos, mal clasificado y con clastos bien redondeados a subredondeados, los cuales están compuestos por gneis, que tentativamente se han asignado como parte del Complejo Oaxaqueño.
- Depósitos de barra transversal y de relleno de canal. Esta asociación está representada por conglomerado soportado por los clastos, que muestran gradación normal, imbricación y estratificación horizontal a cruzada.
- <u>Relleno de canal o barra transversal o de punto</u>. Esta asociación está conformada por arenisca, con esporádicos lentes de conglomerado y algunos horizontes de limolita. La arenisca es masiva o puede presentar estratificación cruzada, así como estratificación plano-paralela. En ocasiones pueden presentarse horizontes de paleosuelos.
- 4. <u>Depósitos de abanico de desborde o *crevasse splay*</u>. Esta asociación se compone de arenisca fina a gruesa en estratos ondulosos y con estratificación cruzada.

- 5. <u>Depósitos de llanura de inundación</u>. Esta asociación se compone por una alternancia de arenisca fina a media, limolita y arcillolita en estratos tabulares que presentan estratificación heterolítica de tipo *flaser* y estructuras de fluidificación de sedimento. Esta asociación contiene abundantes paleosuelos con abundantes marcas de raíces y troncos en posición de vida.
- 6. <u>Depósitos de pantano</u>. Esta asociación está compuesta por arcillolita negra, limolita carbonosa y arenisca con estratificación heterolítica *flaser* y estructuras de fluidificación de sedimento. Esta asociación de facies presenta un mayor contenido de materia orgánica respecto a los depósitos finos de planicie de inundación.

Figura 2.1. Mapa geológico de la zona de estudio que sintetiza la información previa a este trabajo. Modificado de Centeno-García *et al.* (2009) y Elías-Herrera *et al.* (2011).

La Formación Matzitzi es una de las pocas unidades del Paleozoico Superior en México que presenta interestratificación con rocas volcánicas. En la cercanía del pueblo de San Luis Atolotitlán (Fig. 2.1) está expuesto un cuerpo volcánico felsítico de forma lenticular que ha sido interpretado por algunos autores como un depósito piroclástico interestratificado (Centeno-García *et al.*, 2009), mientras que otros autores han propuesto que se trata de un diquestrato cuyo emplazamiento fue posterior al depósito de la sucesión fluvial (Elías-Herrera *et al.*, 2011). La presencia de peperitas reportadas por Bedoya-Mejía (2018) y Macías-Romo *et al.* (2019) sugiere que el emplazamiento del cuerpo magmático fue penecontemporáneo a los depósitos fluviales aledaños (Skilling *et al.*, 2002).

Aún no se sabe con certeza bajo qué tipo de régimen tectónico se desarrolló la cuenca donde se depositó la Formación Matzitzi; sin embargo, dada la afinidad geoquímica de arco de las rocas felsíticas de Atolotitlán (Centeno-García *et al.*, 2009) y su correlación con otras sucesiones vulcano-sedimentarias en el centro y norte de México (*e.g.* formaciones Tuzancoa y Arco Las Delicias), se ha propuesto que la Formación Matzitzi pudo haberse depositado en una cuenca de tras-arco asociada al Arco Pérmico del Este de México (Centeno-García *et al.*, 2009; 2019).

La edad de la Formación Matzitzi aún es un tema de discusión, dados los nuevos datos que han salido a la luz en los últimos años, y que han abierto la posibilidad de una extensión de su rango de edad. Los primeros estudios paleobotánicos en la Formación Matzitzi realizados por Silva-Pineda (1970) permitieron establecer una edad del Pensilvánico. Sucesivamente, Weber (1997) revisó el material fosilífero de la Formación Matzitzi y le asignó una edad entre el Pensilvánico y el Pérmico por la presencia de *Lonesomia mexicana*. Estudios paleobotánicos posteriores confirmaron una edad del Pensilvánico al Pérmico Inferior (Hernández-Láscares, 2000). Los análisis paleopalinológicos hechos por Gerwert-Navarro y Villanueva-Amadoz (2019) proponen una edad para la Formación Matzitzi que va desde el Carbonífero, mientras que Flores-Barragán *et al*. (2019) proponen una edad del Pérmico Superior. Por otra parte, los circones contenidos en las rocas volcánicas felsíticas de Atolotitlán han arrojado una edad U-Pb de ~240 Ma (Bedoya-Mejía, 2018; Macías-Romo *et*

al., 2019), lo cual abre las posibilidades que la edad de la Formación Matzitzi pueda extenderse hasta el Triásico Medio o que las rocas del Triásico impliquen la existencia de otra unidad estratigráfica.

Los estudios sobre la procedencia de la Formación Matzitzi son escasos y están enfocados principalmente a los depósitos de conglomerado. Juarez-Zuñiga *et al.* (2020) realizaron fechamientos isotópicos en los clastos volcánicos de esta unidad estratigráfica, determinando edades del Pérmico Superior (~270-290 Ma) y que corresponden a la edad máxima de depósito de para esta formación, así mismo, estos autores sugieren que dichos fragmentos provienen del Arco Pérmico del Este de México. Sobre la procedencia de las facies arenosas, la información es muy escasa y puntual. Los circones detríticos de tres muestras de areniscas muestran la predominancia de edades U-Pb en un rango de ~960 a 1330 Ma, y en una sola muestra se han obtenido dos grupos de edades adicionales, el primero que va de ~225 a 280 Ma y el segundo de ~173 a 200 Ma (Bedoya-Mejía, 2018; Fig. 2.2)

Figura 2.2. Estimador de densidad de Kernel (Vermeesch, 2012) e histograma que muestran las distribución estadística de una muestra de la Formación Matzitzi, donde se observan tres grupos de edades: 1) de ~960 a 1330 Ma, 2) de ~225 a 280 Ma y 3) ~173 a 200 Ma. Modificado de Bedoya-Mejía (2018).

2.2 Sucesiones fluviales del Mesozoico sobreyacentes a la Formación Matzitzi

En los alrededores de Los Reyes Metzontla afloran otras unidades fluviales, que a diferencia de la Formación Matzitzi, son claramente del Mesozoico. En algunos lugares, el contacto

discordante de estas unidades estratigráficas con la Formación Matzitzi es claro; sin embargo, en otras localidades las exposiciones son escasas, discontinuas o están afectados por la zona de Falla de Caltepec, por lo que resulta muy difícil diferenciar entre la Formación Matzitzi y las sucesiones fluviales sobreyacentes. Estas sucesiones fluviales sobreyacentes son informales y se han agrupado como unidad de Lechos rojos por Centeno-García *et al.* (2009) y como formaciones Caltepec y La Compañía por Mendoza-Rosales (2010).

Las formaciones Caltepec y La Compañía afloran en las cercanías de las localidades de La Compañía, Los Reyes Metzontla y Caltepec (Fig. 2.1). De acuerdo con Mendoza-Rosales (2010), la formación Caltepec corresponde a una sucesión grano-decreciente de conglomerado, arenisca conglomerática y lodolita que descansan discordantemente sobre la Formación Matzitzi y las rocas cristalinas de basamento. Los principales componentes que constituyen a los conglomerados de esta unidad son clastos de esquisto verde, granito, cuarzo metamórfico, gneis milonítico, rocas volcánicas y arenisca. La formación Caltepec varía lateralmente a la formación La Compañía, esta última interpretada como una unidad de transición continental-marina donde se intercalan depósitos fluviales y marinos (Mendoza-Rosales, 2010). La edad máxima propuesta para la formación Caltepec es del Cretácico Inferior y se basa en la presencia de clastos de calizas con fósiles de *Texturalia sp.* (González-Hervet *et al.*, 1984).

2.3 Posibles rocas fuentes de las sucesiones fluviales

2.3.1 Complejo Oaxaqueño

El microcontinente Oaxaquia es un bloque continental que aflora en la parte oriental del territorio mexicano y se compone de rocas en facies de granulitas del Meso y Neoproterozoico (Solari *et al.*, 2003; Ortega-Gutiérrez *et al.*, 2018). Oaxaquia ha sido interpretada como el vestigio de un arco intraocéanico del Mesoproterozoico Tardío al Neoproterozico Temprano que quedó entre las masas continentales de Báltica y Amazonia durante la consolidación del supercontinente Rodinia (Ortega-Gutiérrez *et al.*, 2018).

Los afloramientos más cercanos de Oaxaquia al área de estudio son los del Complejo Oaxaqueño (CO). El CO se extiende en una banda irregular de ~290 km de longitud con una tendencia hacia el N y está delimitado al oeste por la zona de Falla de Caltepec (Ortega-Gutiérrez *et al.*, 2018). El CO se compone de ortogneises máficos a félsicos que incluyen una

suite AMCG (anortosita-mangerita-charnockita-granito), así mismo se compone de paragneises, calc-silicatos, mármoles y pegmatitas (Solari *et al.*, 2003; Ortega-Gutiérrez *et al.*, 2018). De acuerdo con Ortega-Gutiérrez *et al.* (2018) las principales fases distintivas del CO son ortopiroxeno, clinopiroxeno, feldespato potásico con microestructura mesopertítica, plagioclasa localmente con microestructura antipertítica, cuarzo con inclusiones aciculares de rutilo, hornblenda, granate, rutilo e ilmenita. En los paragneises, mármoles y calc-silicatos se encuentran comúnmente sillimanita, escapolita, wollastonita y olivino. Localmente, a lo largo de las mayores estructuras paleozoicas y mesozoicas, en donde este complejo fue repetidamente exhumado (*e.g.* la zona de Falla de Caltepec), los gneises granulíticos del CO han experimentado una fuerte retrogresión a facies de esquistos verdes y anfibolitas de bajo grado (Solari *et al.*, 2003; Elías-Herrera *et al.*, 2005). Las fases minerales que evidencian esta retrogresión son biotita, muscovita, epidota, titanita y anfiboles como actinolita y antofilita, que generalmente forman coronas alrededor del piroxeno, hornblenda e ilmenita (Solari *et al.*, 2003). Los circones de las rocas del CO arrojan edades de entre ~880 a 1450 Ma, con una cantidad menor de cristales con edades de hasta ~1780 Ma (Solari *et al.*, 2014; Fig. 2.3).

Figura 2.3. Estimador de densidad de Kernel (Vermeesch, 2012) e histograma que muestran la distribución estadística de los orto y paragneises del Complejo Oaxaqueño, donde se muestra un grupo poblacional de ~880 a 1450 Ma. Modificado de Solari *et al.* (2014).

2.3.2 Complejo Acatlán

El Complejo Acatlán (CA) está constituido por una amplia variedad de litologías, las cuales comprenden varios procesos tectónicos superpuestos, que incluyen una fase de rifting y una orogénica relacionados a la apertura y cierre del Océano Reico (Keppie et al., 2008). En síntesis el CA está compuesto por a) un ensamble de *rift* del Cámbrico-Silúrico desarrollado a lo largo de la margen meridional del Océano Reico y que fue parcialmente subducido durante del Devónico Tardío, b) un ensamble metavolcánico-sedimentario del Devónico y Carbonífero asociado a la exhumación del ensamble de rift y c) un ensamble metasedimentario depositado durante un periodo de transpresión dextral (Keppie *et al.*, 2008; Ortega-Gutiérrez et al., 2018). En general, el CA está compuesto por metapsammita, metapelita, metabasita, metagranitoides y escasas rocas ultramáficas. El grado metamórfico de estas rocas varía entre la facies de subesquistos verdes y hasta la de eclogita (Keppie et al., 2008). Sin embargo, las rocas de alto grado se han reequilibrado en las facies de esquistos y subesquistos verdes durante la exhumación. Así que en general, el CA es una de las fuentes en el sur de México de rocas metamórficas de bajo grado (Martini et al., 2020). Entre los minerales más representativos del CA están: cuarzo, moscovita, clorita, actinolita, epidota, turmalina, feldespato potásico y plagioclasa, y pequeños granos de biotita para las rocas de bajo grado, así como, anfibol sódico a cálcico-sódico, plagioclasa, cuarzo, fengita, granate, rutilo, clinozoisita, turmalina, feldespato potásico, biotita en cristales de grano grueso y relictos de onfacita para las rocas de alto grado (Ortega-Gutiérrez et al., 2018; Martini et al., 2020). Debido a su gran variedad litológica, el CA se caracteriza por presentar un grupo muy heterogéneo de espectros de edad de circones. Los circones de los metagranitoides de bajo y alto grado presentan edades U-Pb entre ~250 y 450 Ma (Talavera-Mendoza et al., 2005; Morales-Gámez et al., 2008). Las rocas metasedimentarias son muy heterogéneas en su firma de circones detríticos, algunas solo contienen un grupo de edades entre ~880 y 1320 Ma, mientras que otros contienen también grupos de edades de ~430 y 740 Ma y ~275 a 350 Ma (Martini et al., 2020 y referencias en él; Figs. 2.4 A-D).

Figura 2.4. Estimadores de densidad de Kernel (Vermeesch, 2012) e histogramas que muestran la distribución estadística de A) metagranitoides del Complejo Acatlán (Talavera-Mendoza *et al.*, 2005; Morales-Gámez *et al.*, 2008; Galaz *et al.*, 2013), B) y C) ensamble de rift del Cámbrico-Silúrico de alta presión (Talavera-Mendoza *et al.*, 2005; Murphy *et al.*, 2006; Vega-Granillo *et al.*, 2007; Morales-Gámez *et al.*, 2008; Galaz *et al.*, 2008; Galaz *et al.*, 2008; Cepeda-Granillo *et al.*, 2008; Cepeda-Martínez *et al.*, 2018) del Complejo Acatlán, y D) ensamble del Carbonífero Superior (Kirsch *et al.*, 2012) del Complejo Acatlán.

2.3.3 Complejo Ayú

El Complejo Ayú corresponde a un conjunto de rocas metasedimentarias e ígneas polideformadas en facies de anfibolita, parcialmente migmatizadas entre ~160 y ~170 Ma (Helbig *et al.*, 2012). Tradicionalmente, estas rocas fueron consideradas como parte del CA (Ortega-Gutiérrez, 1978). Sin embargo, basados en nuevos datos U-Pb, Helbig *et al.* (2012) le asignan una edad del Triásico a estas rocas metamórficas e introducen el nombre de Complejo Ayú para diferenciarlas del CA. Los minerales representativos del Complejo Ayú son: cuarzo, plagioclasa, biotita, moscovita, titanita, granate y hornblenda (Helbig *et al.*, 2012). Las edades U-Pb representativas varían entren ~185 a ~1600 Ma, con dos grupos de edades entre ~230 a ~400 y ~880 a ~1280 Ma (Martini *et al.*, 2020 y referencias en él).

2.3.4 Arco Pérmico del Este de México

Se ha asignado como Arco Pérmico del Este de México a un conjunto de cuerpos intrusivos del Carbonífero-Pérmico (*e.g.* Plutones de Totoltepec, Etla, Cozahuico y La Carbonera), los

cuales se han interpretado como las raíces de un arco continental desarrollado a lo largo de la margen occidental de Pangea (Dickinson y Lawton, 2001; Kirsch *et al.*, 2012). Estos cuerpos intrusivos contienen circones con edades en un rango entre ~250 y 320 Ma (Fig. 2.5; Elías-Herrera *et al.*, 2005; Ortega-Obregón *et al.*, 2014).

Figura 2.5. Estimador de densidad de Kernel (Vermeesch, 2012) e histograma que muestran la distribución estadística para el metagranito Cozahuico, donde se observan un grupo de edades muy bien definido entre ~257 y 286 Ma (Elías-Herrera *et al.*, 2005).

La expresión superficial de este arco es muy limitada, en el territorio mexicano existen pocos afloramientos de sucesiones volcano-sedimentarias que muestran evidencias de actividad magmática durante el Carbonífero-Pérmico. Entre ellos se encuentran las formaciones Tuzancoa y Guacamaya en los estados de Hidalgo y Tamaulipas (Arellano-Gil *et al.*, 1998; Rosales-Lagarde *et al.*, 2005; Centeno-García *et al.*, 2019). Otro registro de actividad volcánica del Paleozoico Superior es representado por la Riolita Sosola, la cual aflora en el estado de Oaxaca y presenta una edad de ~270 Ma (Ortega-Obregón *et al.*, 2014).

2.3.5 Provincia volcano-sedimentaria de Nazas

La Provincia volcano-sedimentaria de Nazas corresponde a un conjunto de sucesiones volcano-sedimentarias del Jurásico Inferior a Medio que están expuestas de manera aislada en todo el este de México, desde los estados de Durango y Nuevo León en el norte, hasta los estados de Guerrero, Oaxaca y Chiapas en el sur (*e.g.* Martini y Ortega-Gutiérrez, 2018). El

origen y significado tectónico de esta provincia aún son temas de debate. Se han propuesto dos escenarios: 1) la provincia Nazas representa un arco continental y extensional (Arco Nazas) asociado a la subducción a lo largo del Pacífico (*e.g.* Stern y Dickinson, 2010); o 2) la provincia Nazas es una *suite* magmática relacionada a la extensión intracontinental resultado del rompimiento de Pangea (Martini y Ortega-Gutiérrez, 2018). El reciente trabajo de Cavazos-Tovar *et al.* (2020) pone en evidencia que la concentración de elementos mayores y traza en las rocas volcánicas de la Provincia Nazas no son las típicas de un arco magmático, sino de productos asociados a la fusión de la corteza continental en un régimen de extensión litosférica. Las rocas volcano-sedimentarias de la provincia Nazas se caracterizan por contener circones con edades que van desde ~163 a ~193 Ma (Fig. 2.6; Barbosa-Gudiño *et al.*, 2008; Durán-Aguilar, 2013; Rubio-Cisneros y Lawton, 2011; Zepeda-Martínez *et al.*, 2018).

Figura 2.6. Estimador de densidad de Kernel (Vermeesch, 2012) e histograma que muestran la distribución estadística de una muestra de la Provincia volcano-sedimentaria de Nazas, modificado de Rubio-Cisneros y Lawton (2011).

3 Problemática y objetivos

3.1 Planteamiento de problema

La información paleontológica sugiere una edad del Paleozoico Superior para la Formación Matzitzi. Sin embargo, los datos U-Pb en circón obtenidos del cuerpo felsítico intercalado con las rocas sedimentarias de la Formación Matzitzi indican una edad del Triásico Medio (Bedoya-Mejía, 2018), y algunos depósitos de areniscas considerados como parte de la Formación Matzitzi contienen un grupo consistente de granos de circón del Jurásico Inferior a Medio (Fig. 2.3). Estos datos sugieren la posibilidad que la Formación Matzitzi esté conformada por más de una unidad fluvial, las cuales fueron depositadas entre el final del Paleozoico, durante el Mesozoico o Cenozoico. Bajo esta consideración, el registro estratigráfico actualmente incluido en la Formación Matzitzi no debe tratarse como una simple formación, sino como una mezcla de unidades que registran diferentes episodios de depósito en el sur de México. Considerando el rango total de edad, las rocas actualmente agrupadas dentro de la Formación Matzitzi se han depositado bajo contextos tectónicos muy diferentes, como el ensamble de Pangea durante el Paleozoico Superior y la posterior disgregación de este supercontinente durante el Mesozoico. Por lo tanto, es posible afirmar que, en la actualidad, las diferentes sucesiones que actualmente están agrupadas dentro de esta unidad necesitan ser identificadas, caracterizadas y separadas en cuanto representan diferentes ciclos de sedimentación fluvial.

3.2 Hipótesis

Los datos paleontológicos y geocronológicos disponibles sugieren que el registro estratigráfico actualmente agrupado dentro de la Formación Matzitzi sea el conjunto de diferentes sucesiones fluviales depositadas entre el Paleozoico Superior y el Mesozoico. Por ende, dichas sucesiones se han desarrollado bajo distintos contextos tectónicos: las del Paleozoico Superior se depositaron en el momento en que ocurría la amalgamación de Pangea, mientras que las formadas durante el Mesozoico fueron contemporáneas al proceso de ruptura del supercontinente Pangea. Bajo estas consideraciones, el detrito que conforma a estas sucesiones fluviales debería de mostrar ciertas diferencias importantes en la procedencia, debido a los cambios en la configuración topográfica y, consecuentemente, en el patrón de drenaje fluvial. Por ello, se prevé que las diferentes sucesiones que actualmente

conforman la Formación Matzitzi sean reconocibles con base en diferencias importantes en la procedencia.

3.3 Objetivo

El objetivo medular de este proyecto es evaluar el potencial del análisis de procedencia de rocas clásticas como una herramienta eficiente para diferenciar las diferentes unidades fluviales que actualmente están agrupadas dentro de la Formación Matzitzi. En caso de que la metodología resulte eficaz, se procederá en definir las características composicionales de las sucesiones del final del Paleozoico y del Mesozoico, poniendo en relieve las diferencias sustanciales que permiten diferenciar a cada una. Considerando, que dentro de una cuenca sedimentaria continental la procedencia puede variar de un elemento arquitectónico a otro (*e.g.* entre el drenaje axial de una cuenca y sus abanicos aluviales adyacentes; Miall, 2006), en este trabajo se considera imprescindible caracterizar desde el punto de vista sedimentológico los afloramientos seleccionados para el análisis de procedencia. Por ende, aunque no representa el objetivo principal de este trabajo, se pretende identificar los elementos arquitectónicos que componen las diferentes sucesiones fluviales agrupadas dentro de la Formación Matzitzi. Esto permitirá inclusive poner a prueba y enriquecer el modelo sedimentológico propuesto por Centeno-García *et al.*, (2009) para la Formación Matzitzi.

3.4 Justificación

A pesar de que en las últimas décadas se han logrado avances muy importantes en la reconstrucción paleogeográfica de Pangea, hasta la fecha existen controversias sobre la posición de algunas piezas del rompecabezas y su relación con las piezas adyacentes. Estas deficiencias dificultan entender con detalle la dinámica del proceso de consolidación de Pangea. Entender si las rocas que conforman a la Formación Matzitzi registran los eventos de amalgamiento o ruptura de Pangea ayudaría a la formulación de modelos paleogeográficos más precisos sobre la configuración del sur de México entre el Paleozoico Superior y el Mesozoico. Diferenciar entre las diferentes unidades fluviales que están agrupadas en la Formación Matzitzi ayudará a redefinir la estratigrafía del sur de México y así mismo reconocer cambios en el estilo y distribución del drenaje fluvial y en la configuración topográfica durante la transición ensamble-ruptura de Pangea. A su vez, estos cambios

permitirían reconstruir la historia de exhumación de la litosfera continental en el sur de México durante el evento de consolidación y dispersión del supercontinente Pangea. Adicionalmente, a finales del Pérmico e inicios del Triásico, ocurrió el evento de extinción de masa más catastrófico que nuestro planeta haya conocido (Erwin, 1994). Por lo tanto, la redefinición estratigráfica del registro actualmente incluido en la Formación Matzitzi ayudará a futuros estudios paleontológicos enfocados en entender los efectos de esta hecatombe mediante el reconocimiento de las sucesiones que se depositaron durante el Paleozoico Superior y aquellas que se desarrollaron durante el Mesozoico.

3.5 Área de estudio

El área de estudio se encuentra en el sector SE del estado de Puebla, entre los poblados de Los Reyes Metzontla, San Francisco Xochiltepec, Santiago Coatepec y sobre la carretera federal 135D Tehuacán-Oaxaca (Fig. 2.1). La zona estudiada en este trabajo ha sido dividida en dos sectores (Fig. 2.1), donde se localizan afloramientos de edad paleontológica o geocronológica conocida. En los sectores seleccionados se encuentran las mejores exposiciones de los depósitos fluviales objetos de estudio, lo que permitió la descripción litológica, medición de perfiles de litofacies y la descripción de elementos arquitectónicos fluviales.

4 Metodología

4.1 Trabajo de campo

El punto de partida de esta tesis es el trabajo de campo en los alrededores de las localidades de Los Reyes Metzontla, Xochiltepec, Coatepec, San Luis Atolotitlán y sobre la carretera federal 135D Tehuacán-Oaxaca (Fig. 2.1). En cada una de las localidades se realizó la cartografía geológica y la descripción de las unidades aflorantes, incluyendo su textura, fábrica, estructuras sedimentarias, contenido paleontológico, geometría de los estratos y sus relaciones de contacto. La observación de estas características ha permitido definir litofacies de acuerdo con el esquema propuesto por Miall (2006). El análisis de la asociación de litofacies, así como de su geometría tridimensional y relación de contacto con las adyacentes permitió el reconocimiento de elementos arquitectónicos de acuerdo con el esquema descrito por Miall (2006). El resultado final fue la realización de dos mapas geológicos donde se observa la distribución de las distintas sucesiones fluviales aflorantes en el área de estudio (Capítulo 5). Adicionalmente, el trabajo de campo sirvió para la recolección de muestras representativas de las diferentes sucesiones fluviales en las localidades donde se han realizado estudios paleontológicos y geocronológicos previamente. Dichas muestras son el material de base con que se ha realizado el análisis de procedencia en que se enfoca este trabajo. Adicionalmente, se han tomado varias muestras en otras localidades donde la edad de las rocas es desconocida, para poderlas correlacionar por afinidad de procedencia con las localidades tipo y, de esta manera, determinar la distribución de las diferentes sucesiones fluviales presentes en el área de estudio. De cada afloramiento se ha tomado una muestra de aproximadamente 15 kg, cuidando que no tuviera rastros de meteorización que pudieran afectar a alguno de los componentes clásticos de la roca. La ubicación de las muestras se presenta en los mapas geológicos en el Capítulo 5.

4.2 Análisis de forma de clastos

Con el fin de determinar cuantitativamente posibles diferencias texturales entre diferentes depósitos fluviales expuestos en el área de estudio, durante las campañas de campo se recolectaron, 91, 39 y 33 clastos de tres depósitos de conglomerado anteriormente considerados como Formación Matzitzi. Se midieron las dimensiones de los tres ejes principales (A: eje largo, B: eje medio y C: eje corto) con ayuda de un medidor vernier. Las medidas obtenidas se graficaron en la hoja *Excel Tri-plot* (Graham y Midgley, 2000), que

permitieron graficar los resultados en los diagramas de Sneed y Folk (1958), Cann *et al.* (2014) y Graham y Midgley (2000). Los resultados de estas mediciones se muestran en el **Anexo 1**.

4.3 Petrografía de areniscas

Se realizó un estudio petrográfico en lámina delgada de 22 muestras colectadas en las campañas de campo. Las láminas delgadas fueron teñidas con rodizonato de potasio para distinguir los cristales de feldespato potásico de los cristales de cuarzo. El primer paso del análisis petrográfico fue observar las muestras al microscopio y determinar para cada una las diferentes categorías de componentes detríticos. En general, se diferenciaron 37 categorías que se presentan en el **Anexo 2**.

Una vez que los componentes de las rocas fueron identificados, se realizó un conteo de puntos con la técnica de Gazzi-Dickinson (Gazzi, 1966; Dickinson, 1970). Para ello, se ha utilizado un contador manual. El método consiste en colocar una lámina delgada de la muestra a estudiar sobre la platina del microscopio petrográfico, previamente instalado el contador de puntos. El contador de puntos es un soporte metálico con dos brazos ortogonales que permite desplazar la sección delgada en cuestión en dos direcciones. El contador cuenta con una escala milimétrica, lo que permite determinar de manera cuantitativa cuanto se va a desplazar la lámina. El desplazamiento de la lámina debe de ser repetitivo, de manera que se establezca una rejilla regular y se cuenten los clastos que caen en las intersecciones. Este método permite determinar de manera exacta los porcentajes modales de los diferentes componentes de las muestras estudiada. En este trabajo se utilizó un desplazamiento de 1 mm para cada lámina analizada. No existe aún un número determinado de cuantos puntos deben de contarse; sin embargo, por encima de los 300 puntos se ha observado que el error 2σ contiene un índice de confianza del 95%. Para el conteo de puntos realizado en este trabajo se contaron entre 350 y 600 puntos, tratando de cubrir la mayor parte de cada lámina. De acuerdo con la metodología de Gazzi-Dickinson (Fig. 4.1):

- 1) Todos los componentes monominerales se cuentan como clastos monocristalinos;
- Los granos policristalinos compuestos por cristales mayores a 0.0625 mm se cuentan como granos monocristalinos, y se le asigna la categoría dependiendo del cristal que se encuentre en el cruce del microscopio;

- Los granos policristalinos compuestos por cristales de tamaño inferior a 0.0625 mm se cuentan como líticos;
- 4) Los granos policristalinos mixtos (constituidos por cristales tanto mayores como menores a 0.0625 mm) se cuentan como granos monocristalinos o líticos dependiendo de la porción del grano que se encuentre bajo el cruce.

Figura 4.1. Esquema de clasificación de los componentes de una arenisca de acuerdo con el método de conteo de puntos de Gazzi-Dickinson. Modificado de Zuffa (1985). Q: cuarzo, K feldespato potásico y P: plagioclasa.

De acuerdo con Dickinson (1970) y Marsaglia e Ingersoll (1992), los líticos volcánicos pueden ser de cuatro tipos:

- Los líticos *lathwork* son fragmentos volcánicos porfídicos. Se cuentan como líticos solamente las partes afaníticas del fragmento. Composicionalmente corresponden a un basalto o basalto-andesita.
- Los líticos microlíticos son fragmentos volcánicos afaníticos compuestos por microlitos subedrales a euedrales de plagioclasa. Composicionalmente corresponden a una andesita.
- Los líticos felsíticos son fragmentos volcánicos porfídicos con fenocristales de cuarzo, plagioclasa y feldespato potásico. Composicionalmente corresponden a una dacita o riolita.
- 4) Los líticos vítreos están compuestos por vidrio y pueden contener agregados microcristalinos. El color del vidrio puede usarse para inferir la composición del

lítico: vidrios incoloros generalmente corresponden a rocas ácidas; sin embargo, el sideromelano que es un vidrio incoloro basáltico se identifica por su alteración a palagonita.

Los líticos metamórficos fueron clasificados usando el esquema propuesto por Garzanti y Vezzoli (2003) y las modificaciones hechas por Martini *et al.* (2020). De acuerdo con estos autores, los líticos metamórficos se dividen en cuatro grupos según el tipo de protolito; metapelíticos, metapsammíticos/metafelsíticos, metabasíticos y metacarbonatados. A su vez, a cada tipo de lítico se le asigna uno de los cuatro rangos metamórficos con base en la paragénesis y en observaciones texturales y microestructurales (Fig. 4.2).

- <u>Rango metamórfico 1 (facies de zeolita)</u>: los fragmentos muestran el desarrollo de clivaje poco penetrativo definido por la cristalización de láminas de arcillas muy finas, además del desarrollo de estructuras de disolución por presión. En los líticos metabasíticos se desarrollan minerales del grupo de las zeolitas.
- 2) <u>Rango metamórfico 2 (facies de prehnita-pumpelita)</u>: los fragmentos muestran el desarrollo de un clivaje penetrativo definido por la cristalización de láminas de arcillas más grandes respecto a las del rango 1 y el desarrollo de estructuras de disolución por presión y microestructuras de recristalización por *bulging* (~280-400°C; Stipp *et al.*, 2002). En los líticos metabasíticos se desarrollan minerales del grupo de prehnita-pumpelita y pistachita.
- 3) <u>Rango metamórfico 3 (facies de esquisto de baja temperatura)</u>: los fragmentos muestran el desarrollo de una esquistosidad definida por la cristalización de moscovita menores a 0.062 mm y con microestructuras de recristalización por *bulging*. En los líticos metabasíticos se desarrollan cristales de clinozoisita.
- 4) <u>Rango metamórfico 4 (facies de esquisto de alta temperatura)</u>: los fragmentos muestran el desarrollo de esquistosidad definida por la cristalización de moscovita mayores a 0.062 mm y el desarrollo de microestructuras de recristalización por rotación de subgrano (~400-500°C). En los líticos metabasíticos se desarrollan cristales de anfibolita de la serie actinolita-tremolita.

Figura 4.2. Diagrama de P-T de facies metamórficas tomado de Martini *et al.* (2020), mostrando los principales minerales y rangos metamórficos de acuerdo con la clasificación de Garzanti y Vezzoli (2003). Mientras que los rango de temperatura para las microestructuras en granos de cuarzo se establecen de acuerdo con Stipp *et al.* (2002).

4.4 Separación y petrografía de minerales pesados

Se seleccionaron 10 muestras para la separación de minerales pesados en búsqueda de trazadores de procedencia sólidos que puedan reforzar el análisis de composición de roca total. El procesos de separación de minerales pesados es descrito por Morton (1985) y consiste de cuatro etapas:

- Molienda, la cual se ha realizado en el taller de molienda del Centro de Geociencias de la Universidad Nacional Autónoma de México (UNAM) utilizando una prensa hidráulica.
- 2) Separación de la fracción inferior a 0.18 mm con el ayuda de un tamiz.
- 3) Concentración por densidad por vía húmeda utilizando la mesa Wilfley.
- Decantación en líquidos pesados, en particular se usó bromorformo, cuya densidad es de 2.89 g/cm3.

Los minerales pesados obtenidos después de estos cuatro pasos fueron montados en láminas delgadas para realizar una descripción petrográfica de cada uno de ellos. El análisis petrográfico se basa en el reconocimiento de cada especie mineral por sus características ópticas. Las concentraciones absolutas de minerales pesados no fueron obtenidas, debido a

que no se midieron los pesos totales de las muestras y el concentrado de minerales pesados como se indica en Garzanti y Andò (2019). Por ende, las paragénesis descritas en este trabajo son tomadas como un indicador cualitativo de procedencia.

4.5 Geocronología U-Pb en circones detríticos

Se seleccionaron 5 muestras para determinar la edad U-Pb en cristales de circón detrítico. De la etapa de concentración de minerales pesados antes descrita, el concentrado resultante fue dividido en dos porciones, una para la realización de láminas de minerales pesados y otro para la separación de circones detríticos. Para cada muestra, se montaron entre 250 y 300 cristales de circón usando una lupa binocular y seleccionándolos manual y aleatoriamente. Los cristales fueron montados sobre una base de vidrio a la cual se le pegó cinta de doble pegamento, luego fueron embebidos en una resina epóxica y se pulieron con abrasivos para dejarlos expuestos para el análisis. Utilizando la técnica de catodoluminiscencia se identificó en primera instancia que los cristales montados efectivamente fueran circones y también se pudieron observar las texturas internas de los cristales para así seleccionar de manera adecuada los puntos a analizar. Los análisis de LA-ICP-MS (Laser Ablation Inductively Coupled Plasma Mass Spectrometry) se realizaron en el Laboratorio de Estudios Isotópicos del Centro de Geociencias de la UNAM, siguiendo la metodología y tratamientos descritos en Solari et al. (2018). Las edades de circones individuales fueron obtenidas con un láser excímero Resolution M50 de longitud de onda de 193 nm, con un oscilador Lambda Physik LPX 220 y acoplado a un cuadrupolo Thermo ICap Qc ICPMS. Para la reducción de datos se utilizó la metodología descrita en Solari et al. (2018), utilizando el software Iolite (Paton et al, 2011). Los datos fueron graficados en el diagrama de Wetherill (1956) a través del programa Isoplot.

4.5.1 Escalamiento multidimensional

El uso de la geocronología U-Pb en circones detríticos es una herramienta muy útil en los estudios de procedencia. Dado el gran uso de esta técnica y la gran cantidad de datos, se ha optado por usar otras técnicas estadísticas multivariables que permitan manejarlos de manera estadística. Las 5 muestras utilizadas fueron comparadas con otras muestras selectas de las posibles rocas fuente para construir un escalamiento multidimensional (MDS; Vermeesch, 2013). Este método consiste en generar un mapa bidimensional mediante la creación de una

matriz de disimilitud entre n número de muestras, a la cual se le aplica la prueba de efecto de tamaño de Kolmogorov-Smirnov para medir la disimilitud y representar las muestras en un espacio euclidiano. El MDS grafica la distancia entre las muestras y se utilizó un *script* con el *software* R, por lo que muestras similares aparecen cercanas y muestras disimilares aparecen alejadas (Vermeesch, 2013).
5 Observaciones de campo

5.1 Litofacies

En la Tabla 5.1 se muestra la descripción e interpretación de las 10 litofacies identificadas en el trabajo de campo para las distintas sucesiones fluviales que afloran en el área de estudio.

Tabla 5.1. Resumen de las litofacies descritas para los depósitos fluviales en el área de estudio.					
Litofacies	Descripción	Interpretación			
Gcm	Conglomerado soportado por los	Depósito de flujo de detrito con			
	clastos y masivo	comportamiento pseudoplástico (baja			
		resistencia y alta viscosidad)			
Gci	Conglomerado soportado por los	Depósito de flujo de detrito			
	clastos y con gradación inversa	hiperconcentrado con comportamiento			
		plástico (alta resistencia) o			
		pseudoplástico (baja resistencia)			
Gmm	Conglomerado soportado por la	Depósito de flujo de detrito con			
	matriz y masivo	comportamiento pseudoplástico (baja			
		resistencia y alta viscosidad)			
Gt	Conglomerado con estratificación	Depósito de barra fluvial transversal 3D			
	cruzada curvada				
Gp	Conglomerado con estratificación	Depósito de barra fluvial transversal 2D			
	cruzada planar				
St	Conglomerado con estratificación	Tren de dunas 3D			
	cruzada curvada				
Sp	Conglomerado con estratificación	Tren de dunas 2D			
	curvada planar				
Sr	Arenisca con rizaduras	Tren de rizaduras por flujo unidireccional			
Ss	Arenisca de relleno	Depósito de relleno en las partes			
		profundas de canales			
Fl	Lodolita y arenisca muy fina con	Depósito por decantación en condiciones			
	laminación plano-paralela de	de corrientes de tracción muy débiles o			
	régimen inferior	aguas estancadas			

5.1.1 Conglomerado soportado por los clastos y masivo

En el área de estudio, la litofacies de Conglomerado soportado por los clastos y masivo (Gcm) está representada por cuerpos conglomeráticos soportados por clastos de guijarros, que forman depósitos de algunos centímetros hasta 2.5 m de espesor. Los clastos son muy bien redondeados, con formas casi esféricas, y mal seleccionados (Fig. 5.1A). No se presenta alguna estructura sedimentaria primaria interna en estos depósitos. Algunos afloramientos presentan clastos alargados y redondeados y localmente imbricación (Fig. 5.1B). La base de estos conglomerados está representada por una superficie neta y no erosiva. Los clastos están constituidos por gneises félsicos y máficos y en menor proporción de rocas volcánicas y areniscas. De acuerdo con Miall (2006) la litofacies Gcm es el registro estratigráfico de flujos de detrito de alta energía, los cuales se caracterizan por bajos potenciales erosivos y que tienden a rellenar la topografía existente.

5.1.2 Conglomerado soportado por los clastos con gradación inversa

La litofacies de Conglomerado soportado por los clastos con gradación inversa (Gci) está representada por cuerpos de conglomerado soportado por clastos de guijarros con gradación inversa, que llegan a formar depósitos individuales de hasta 90 cm de espesor. Estos depósitos están compuestos por clastos muy bien redondeados con formas casi esféricas, y mal seleccionados (Fig. 5.1C). Localmente dichos depósitos presentan sectores con mayor abundancia de matriz. En ninguno de los afloramientos analizados se pudo observar la base de estos depósitos. Los clastos de este conglomerado están compuestos por fragmentos gneis de composición félsica y máfica y, en menor proporción rocas volcánicas, arenisca y anortosita. De acuerdo con Miall (2006) la litofacies Gci puede ocurrir de dos maneras: 1) como resultado de flujos de detrito hiperconcentrados con comportamiento plástico o 2) como resultado de flujos de detrito con comportamiento pseudoplástico.

5.1.3 Conglomerado soportado por la matriz y masivo

La litofacies de Conglomerado soportado por la matriz masivo (Gmm) no presenta alguna estructura interna y se compone de partículas tamaño grava de hasta 10 cm de diámetro, bien redondeadas y mal clasificadas (Fig. 5.1D). Los clastos en su mayoría están compuestos por fragmentos de gneis félsico y máfico, y en menor proporción fragmentos de roca volcánica y de arenisca. Es posible observar en algunos afloramientos fragmentos de caliza *mudstone*

y pedernal negro (Fig. 5.2). De acuerdo con Miall (2006), los depósitos de la litofacies Gmm son el resultado de flujos de detrito con comportamiento pseduoplástico con baja resistencia y alta viscosidad.

Figura 5.1. Fotografías de las litofacies conglomeráticas: A) litofacies de Conglomerado soportado por los clastos y masivo, B) litofacies de Conglomerado soportado por la matriz con fragmentos alargados y con imbricación, C) litofacies de Conglomerado soportado por los clastos y con gradación inversa (la flecha anaranjada apunta hacia la cima del estrato) y D) litofacies de Conglomerado soportado por la matriz y masivo.

Figura 5.2 Fragmentos de caliza *mudstone* (izquierda) y pedernal negro (derecha) en la litofacies de Conglomerado soportado por matriz masivo.

5.1.4 Conglomerado con estratificación cruzada curvada a planar

Las litofacies de Conglomerado con estratificación cruzada curvada (Gt) y planar (Gp) forman depósitos lentiformes de espesor decimétrico a métrico. La base de estos lentes es erosiva y es sobreyacida por un *lag* basal de intraclastos de lutita y arenisca fina. Por encima del *lag* basal, se observa un conglomerado de gránulos soportado por clastos, mal clasificados y con clastos dominantemente subredondeados. Las estructuras sedimentarias características son la estratificación cruzada curvada y planar (Fig. 5.3A). De acuerdo con Miall (2006), las litofacies Gt y Gp representan depósitos de barras fluviales transversales.

5.1.5 Arenisca con estratificación cruzada curvada a planar

Las litofacies de Arenisca con estratificación cruzada curvada (St) y planar (Sp) están compuestas por arenisca media a muy gruesa, que presentan de manera evidente estratificación cruzada variando de curvada a planar (Figs. 5.3A y B). Estas litofacies sobreyacen de manera transicional a las litofacies Gt y Gp o directamente a las superficies de erosión. De acuerdo con Miall (2006), las litofacies St y Sp son el resultado del desarrollo de trenes de dunas 3D y 2D respectivamente.

Figura 5.3. Fotografías de las litofacies: A) Conglomerado con estratificación cruzada curvada (Gt) que cambia verticalmente a la litofacies de Arenisca con estratificación cruzada planar (Sp) y son cortados por superficies erosivas (líneas anaranjadas), sobre la base se observa la litofacies de Arenisca de relleno (Ss), B) litofacies de Arenisca con estratificación cruzada planar y C) litofacies de Arenisca con rizaduras.

5.1.6 Arenisca con rizaduras

La litofacies de Arenisca con rizaduras (Sr) se conforma por depósitos de arenisca fina a media, bien clasificada y con laminación cruzada curvada a planar (Fig. 5.3C). Localmente, la preservación de láminas paralelas tanto del *lee side* como del *stoss side* de las rizaduras indica que se trata de rizaduras montantes. Estas litofacies se encuentran en estratos centimétricos y están sobreyaciendo de manera transicional a las litofacies St y Sp, y a su vez la litofacies es sobreyacida en contacto erosivo por las litofacies Gt, Gp y St. También, la litofacies Sr se alterna con estratos delgados de limolita, formando estratificación lenticular. De acuerdo con Miall (2006), esta litofacies se forma por la migración de trenes de rizaduras por la acción de un flujo unidireccional de baja velocidad.

5.1.7 Arenisca de relleno

Este tipo de litofacies se desarrolla por encima de superficies de erosión canalizadas y se compone de arenisca gruesa y pobremente clasificada. Esta litofacies muestra una tenue estratificación cruzada y contiene un *lag* de intraclastos de limolita y arenisca fina (Fig. 5.3A). El espesor de esta litofacies es de hasta 25 cm. De acuerdo con Miall (2006), esta

litofacies se desarrolla por el depósito rápido de mantos arenosos en la parte basal de un canal inmediatamente después de su formación.

5.1.8 Lodolita y arenisca muy fina con laminación plano-paralela de régimen inferior

La litofacies de Lodolita y arenisca muy fina con laminación plano-paralela de régimen inferior (Fl) está compuesta por estratos centimétricos, finamente laminados y de forma tabular de lodolita y arenisca muy fina. Localmente estos contienen laminación convoluta (Fig. 5.4A) y estructuras de carga y flama (Fig. 5.4B). Esta litofacies se caracteriza por contener una gran abundancia de plantas fósiles (Fig. 5.4C). De acuerdo con Miall (2006), la litofacies Fl se forma por el depósito de material fino en suspensión o por corrientes de tracción débiles.

Figura 5.4. Fotografías de las litofacies de Lodolita y areniscas muy finas con A) laminación convoluta, B) estructuras de carga y flama y C) plantas fósiles.

5.2 Elementos arquitectónicos

Con base en la combinación de la distintas litofacies, la geometría tridimensional y las relaciones de contacto, se identificaron 6 elementos arquitectónicos distintos. A continuación, se muestra un resumen de las características distintivas de estos elementos en la Tabla 5.2.

Elemento arquitectónico	Litofacies	Interpretación			
Depósitos de flujos	Gcm, Gci y Gmm	Depósitos generados por			
gravitacionales (SG)		inestabilidad gravitacional del			
		detrito a lo largo de una pendiente			
Finos de la llanura de	Sr y Fl	Llanura de inundación formada			
inundación (FF)		adyacente al canal			
Abanico de desborde o	Sp, Sr y Fl	Abanicos adyacentes al canal			
crevasse splay (CS)		principal, formados durante eventos			
		de desborde que rompieron el dique			
		natural			
Dique natural o levee (LV	Sr y Fl	Diques naturales que se distribuyen			
		paralelamente a la margen del canal			
Capas y formas de fondo de	Gt, Gp, St, Sp, Sr y Fl	Barra de grava de acreción frontal.			
grava (GB)		Típica de sistemas fluviales con alto			
		a moderado índice de bifurcación			
Canal (CH)	Gt, Gp, St, Sp, Ss, Sr y Fl	Canal con relleno sencillo. Típico de			
		sistemas fluviales anastomosados			

Tabla 5.2. Resumen de los elementos arquitectónicos para los depósitos fluviales en el área de estudio.

5.2.1 Elemento Depósitos de flujos gravitacionales (SG)

El elemento de Depósitos de flujos gravitacionales (SG) está compuesto por las litofacies Gcm, Gci y Gmm. En algunas ocasiones la totalidad del elemento está conformado por una sola de estas litofacies y, en otros casos, el elemento se conforma por la asociación de dos o tres litofacies (Fig. 5.5). El elemento SG se caracteriza por presentar una base no erosiva, que principalmente refleja la topografía preexistente (Fig. 5.6). De acuerdo con Miall (2006), el elemento SG corresponde a depósitos generados por el emplazamiento de flujos de detrito de diferente densidad.

Figura. 5.5. Perfil de litofacies del elemento de Depósito de flujos gravitacionales (SG) sobre la barranca de Coatepec.

Figura 5.6. Fotografía donde se muestra al elemento de Depósito de flujos gravitacionales (SG). Las líneas verdes representan las bases no erosivas del elemento SG, mientras que las líneas anaranjadas representan bases erosivas del elemento GB (Capas y formas de fondo de grava).

5.2.2 Elemento Finos de la llanura de inundación (FF)

El elemento Finos de la llanura de inundación (FF) se caracteriza por presentar paquetes tabulares y continuos, compuestos por una alternancia rítmica de las litofacies Sr y Fl que se extienden lateralmente desde decenas a cientos de metros (Fig. 5.7). Este elemento tiene un amplio interés paleontológico debido a su gran abundancia de plantas fósiles. De acuerdo con Miall (2006), el elemento FF representa el registro estratigráfico de eventos de inundación sucesivos en la llanura de inundación adyacente a los canales de un sistema fluvial, donde el proceso de decantación del material fino en suspensión es predominante.

Figura 5.7 Fotografía del elemento de Finos de la llanura de inundación donde se muestra la asociación de litofacies Fl y Sr en estratos delgados y tabulares.

5.2.3 Elemento Abanico de desborde (CS)

El elemento Abanico de desborde (CS) está compuesto por cuerpos tabulares centimétricos a decimétricos que se intercalan con los depósitos del elemento FF. El elemento CS se compone por la asociación de litofacies Ss, Sp y Sr. Se conforma por una base erosiva sobreyacida por la litofacies Ss y verticalmente pasa transicionalmente a las litofacies Sp y Sr. El elemento CS se caracteriza por una serie de clinoformes que muestran evidencia de acreción frontal, como lo indica la geometría de los *forsets* que buzan en la misma dirección que los clinoformes (Fig. 5.8). De acuerdo con Miall (2006), el elemento CS representa abanicos que se forman adyacentemente al margen de los canales de un sistema fluvial durante eventos de ruptura de los diques naturales. Estos eventos propician una expansión del flujo y su consecuente pérdida de competencia debido a un cambio de condiciones confinadas a no confinadas.

Figura 5.8. Fotografía del elemento Abanico de desborde o crevasse splay (CS) y las paleocorrientes medidas.

5.2.4 Elemento Dique natural o *levee* (LV)

El elemento Dique natural o *levee* (LV) se caracteriza por ser un cuerpo en forma de cuña compuestos por una alternancia de litofacies Sr y Fl. Se encuentra alternado con el elemento FF y adyacente a los bordes del elemento canal (CH). De acuerdo con Miall (2006), el elemento LV se distribuye paralelamente a los márgenes de los canales y es el resultado del depósito repetido a partir de eventos de desborde.

5.2.5 Elemento Capas y formas de fondo de grava (GB)

Está compuesto por un conjunto de depósitos lenticulares grano-decrecientes que se cortan uno a otro vertical y lateralmente. La base de estos depósitos lenticulares es una superficie erosiva cóncava hacia arriba, la cual es sobreyacida por la litofacies Gp, que hace transición verticalmente a las litofacies Sp, Sr y, finalmente, Fl (Fig.5.9). De acuerdo con Miall (2006), el elemento GB representa el registro estratigráfico de barras transversales que crecen paralelas a la dirección de corriente. La tendencia grano-decreciente de los depósitos refleja la progresiva pérdida de energía de la corriente fluvial entre un periodo de aguas altas y uno de aguas bajas.

Figura 5.9. Arriba: fotomosaico interpretado del elemento de Capas y formas de fondo de grava (GB). Abajo: perfil de litofacies medido sobre el arroyo Barranca Grande, en la localidad de Agua de Mezquite.

5.2.6 Elemento Canal (CH)

El elemento Canal (CH) se compone por cuerpos lentiformes de espesor métrico intercalados con los depósitos finos del elemento FF. La extensión lateral de estos cuerpos varía entre ~10 y ~20 m, lo que define una razón espesor/ancho de 1:10 a 1:20 para estos cuerpos (Fig. 5.10A). Lateralmente, estos lentes presentan terminaciones acuñadas. La superficie de base es erosiva y cóncava hacia arriba. El techo, en vez, es representado por una transición gradual a los depósitos finos del elemento FF. Cada cuerpo lentiforme está compuesto por las litofacies Gt, Gp, St, Sp, Sr y Fl, las que definen una tendencia grano-decreciente (Fig. 5.10B).

- Base erosiva de elemento arquitectónico

- Falla sinsedimentaria

Elementos arquitectónicos:

CH: canal FF: finos de la llanura de inundación

Litofacies:

- Cima no erosiva de elemento arquitectónico St: Arenisca con estratificación cruzada cruvada Estratificación cruzada a planar
 - Sr: Arenisca con rizaduras
 - FI: Lodolita y arenisca muy fina con laminación plano-paralela de régimen inferior

Localmente, varios elementos CH pueden estar apilados y amalgamados, lo que genera paquetes arenosos de decenas de metros, donde cada elemento es delimitado por diversas superficies erosivas sucesivas (Fig. 5.11). En el elemento CH, las litofacies St, Sp y, sobre todo, Sr presentan una geometría montante, lo cual denota que el crecimiento del relleno de estos canales ocurrió dominantemente por agradación vertical, lo cual define su principal característica de depósito. De acuerdo con Miall (2006), el elemento CH representa el registro

estratigráfico de canales cuyo relleno se debe a procesos de acreción vertical con relleno sencillo.

Figura 5.11. Arriba: fotomosaico del elemento Canal con relleno multi-historia e interpretado. Abajo: perfil de litofacies medido sobre la carretera Tehuacán-Oaxaca.

5.3 Características sedimentológicas de las sucesiones fluviales en el área de estudio

Con base en las características sedimentológicas observadas en cada sucesión fluvial, se realizaron dos mapas geológicos donde se distinguen las diferentes sucesiones fluviales con

base en las diferentes asociaciones de elementos arquitectónicos (Figs. 5.12 y 13). En la Tabla 5.3 se resumen las asociaciones de elementos arquitectónicos de cada unidad fluvial expuesta en el área de estudio. Las sucesiones fluviales previamente cartografiadas como Formación Matzitzi se separaron en dos asociaciones con base en los elementos arquitectónicos. Estas dos asociaciones se denominarán de manera provisional Conjunto 1 y Conjunto 2, y se discutirá al final cual es el significado de esta dualidad (ver **Capítulo 10**).

estudio							
		Elementos arquitectónicos Litofacies Otras observacio					
Formación Matzitzi							
Conjunto 1		SG	Gcm, Gci y Gmm	Clastos esféricos de			
				gneis, arenisca y roca			
				volcánica			
		СН	Gt, Gp, Ss, St, Sp y Sr				
		FF	Sr y Fl				
		CS	Ss, Sp y Sr				
		LV	Sr y Fl				
Conjunto 2		SG	Gcm, Gci y Gmm	Clastos esféricos y			
				alargados de gneis,			
				pedernal y caliza			
		GB	Gp, St, Sp, Sr y Fl				
Sucesiones fluviales del Cretácico							
Formación	La	GB	Gt, Gp, St, Sp, Sr y Fl				
Compañía							
Formación		SG	Gcm	Clastos con formas			
Caltepec				alargadas de gneis y			
				esquisto			
		GB	Gp,St, Sp, Sr y Fl	Color rojizo			

Tabla 5.3. Asociaciones de elementos arquitectónicos en las diferentes sucesiones fluviales en el área de estudio

Figura 5.12. Mapa geológico del área comprendida entre Agua de Mezquite y Coatepec. La rocas de basamento y la cobertura cenozoico han sido marcadas de acuerdo con Centeno-García *et al.* (2009) y Elías-Herrera *et al.* (2011).

5.3.1 Conjuntos de la Formación Matzitzi

El Conjunto 1 de la Formación Matzitzi se caracteriza por la asociación de elementos arquitectónicos CH, LV, CS, FF y SG, en correspondencia a las asociaciones de litofacies reportadas por Centeno-García *et al.* (2009). Se distribuye en la porción NW del área de estudio, entre los poblados de Xochiltepec y Los Reyes Metzontla, y en la porción suroriental, entre Coatepec y el Cerro Machichi (Fig. 5.12). También, aflora sobre la carretera Tehuacán-Oaxaca (Fig. 5.13). Este conjunto sobreyace discordantemente y por falla a los gneises del Complejo Oaxaqueño. Sin embargo, comúnmente, sus relaciones de contacto son enmascaradas por el complejo arreglo estructural que caracteriza el área. En efecto, las rocas

de Conjunto 1 se encuentran frecuentemente formando cuñas delimitadas por fallas laterales derechas con componente normal con una orientación NW-SE.

Figura 5.13. Mapa geológico del área aledaña a la carretera Tehuacán-Oaxaca.

Texturalmente, el elemento SG del Conjunto 1 se caracteriza por contener clastos muy bien redondeados y formas esféricas. Estos clastos están constituidos por fragmentos de gneis félsico y máfico, rocas volcánicas felsíticas, arenisca y anortosita.

En este trabajo, se reporta por primera vez la presencia de dos depósitos volcánicos adicionales a la felsita de San Luis Atolotitlán, los cuales se encuentran interestratificados

con los depósitos fluviales del Conjunto 1 de la Formación Matzitzi. Estos depósitos volcánicos presentan una geometría tabular (Fig. 5.14A). En ambos casos, estos depósitos sobreyacen a una alternancia de lutita y arenisca en contacto localmente erosivo. En proximidad del contacto, la lutita y arenisca fina son altamente carbonosas y, poco a poco alejándose de este contacto, se hacen cada vez menos carbonosas (Fig. 5.14B). Considerando que el carbón es el resultado de un proceso de transformación de la materia orgánica vegetal por la temperatura, se considera que esta variación en el contenido de carbón en los depósitos subyacentes a las rocas volcánicas pueda estar relacionado con un gradiente de temperatura vertical propiciado por el emplazamiento de estos depósitos volcánicos calientes. Por lo contrario, el contacto superior de estos depósitos volcánicos con los depósitos fluviales es neto, no erosivo y no presenta evidencia de procesos térmicos. Estos depósitos volcánicos son mal seleccionados y dominantemente masivos y se componen de fragmentos líticos, fragmentos de feldespato, cuarzo y biotita cloritizada embebidos en una matriz de tamaño ceniza (Fig. 5.14C). En proximidad de la base, es posible observar numerosos intraclastos de la lutita y la arenisca fina subyacentes (Fig. 5.14C), lo que pone en evidencia el carácter erosivo de estos flujos volcánicos. Por otro lado, a lo largo del contacto basal, los depósitos de arenisca y lutita subyacentes presentan peperitas (Fig. 5.14D), las cuales se forman típicamente por la interacción entre un cuerpo volcánico caliente y todavía en un estado plástico y un depósito sedimentario no litificado y saturado en agua (Skilling et al., 2002). Petrográficamente, se caracterizan por tener una textura porfídica, con una alta densidad de xenocristales de feldespato mesopertítico y cuarzo de origen metamórfico que, localmente, presenta bahías de disolución, fenocristales de plagioclasa, biotita cloritizada y fragmentos de roca en una matriz de ceniza (Fig. 5.15E).

Figura 5.14. Fotografías que muestran algunos detalles de los depósitos de ceniza del Conjunto 1 de la Formación Matzitzi. A) geometría tabular y paralela a la estratificación, B) contacto basal del depósito volcánico con los depósitos fluviales en los cuales se observa una disminución progresiva de carbón con la distancia del contacto, como lo marca la variación progresiva en el color, C) intraclastos de arenisca en la parte inferior del depósito volcánico, D) peperita desarrollada a lo largo del contacto basal del depósito volcánico y E) fotomicrografía de una muestra de depósito de ceniza, donde se observa un cristal de cuarzo con bahías de disolución.

El Conjunto 2 de la Formación Matzitzi se compone exclusivamente por los elementos arquitectónicos GB y SG. Se distribuye en las porciones occidentales del área de estudio, cerca del poblado de Agua de Mezquite, y al oriente del Cerro Machichi (Fig. 5.12). Sobreyace discordantemente a los gneises del Complejo Oaxaqueño. Sin embargo, debido a la complejidad estructural del área, ninguna relación estratigráfica con las demás unidades sedimentarias ha sido observada en campo. También en este caso, estos depósitos conforman cuñas que están delimitadas por fallas con orientación NW-SE.

A diferencia del Conjunto 1, el elemento SG del Conjunto 2 presenta numerosos clastos con formas alargadas y, localmente, exhibe imbricación. Este conjunto contiene clastos de gneis

félsico y máfico, se pueden observar abundantes clastos de rocas volcánicas máficaintermedia y algunos clastos de pedernal negro y caliza *mudstone*, que en el Conjunto 1 son ausentes. Algunos fragmentos volcánicos presentan formas y bordes irregulares, recordando formas típicas de peperitas (Fig. 5.15). Sin embargo, un estudio más detallado se tendrá que hacer para reconocer si de verdad se trata de estas.

Figura 5.15. Clasto de fragmentos volcánico con forma irregular dentro de la litofacies Gmm del Conjunto 2 de la Formación Matzitzi.

5.3.2 Sistemas fluviales del Cretácico

Las sucesiones fluviales del Cretácico agrupan las formaciones Caltepec y La Compañía. Sobreyacen discordantemente a las rocas del Conjunto 1 de la Formación Matzitzi y se distribuyen principalmente en los sectores NW y E del área de estudio (Fig. 5.12). Particularmente, la formación Caltepec se caracteriza por una intercalación de los elementos GB y SG que muestran típicamente una coloración rojiza. En estos depósitos, los clastos son alargados y muy bien redondeados. Se componen de fragmentos de gneis, esquisto, rocas volcánicas y arenisca. La formación La Compañía se compone de una intercalación del elemento GB con depósitos de calizas.

6 Análisis dimensional de clastos

Para mostrar las diferencias observadas en las facies conglomeráticas de los Conjuntos 1 y 2 de la Formación Matzitzi, se analizó la forma de 91 clastos de un afloramiento del elemento SG del Conjunto 1 (C3 en la Fig. 5.13). Los resultados de las mediciones de las dimensiones de los clastos se presentan en el **Anexo 1**. Los clastos de este depósito son compactos, compactos-en forma de disco (*platy*), compactos- en forma de cuchillo (*bladed*) y compactos-elongados (Figs. 6.1 y 6.2). La relación eje corto/largo varía de 0.43 a 0.82.

Para el Conjunto 2 se analizaron dos afloramientos (C1 y C2 en la Fig. 5.12), correspondientes a los elementos SG y GB, y para cada uno se analizaron 41 y 36 clastos respectivamente. Los clastos del Conjunto 2 al igual que los del Conjunto 1 son compactos, compactos-en forma de disco (*platy*), compactos- en forma de cuchillo (*bladed*) y compactos-elongados; sin embargo, presentan una cantidad significante de clastos con formas en plato, cuchillo y elongadas y hasta en muy en plato y muy elongadas (Figs. 6.1 y 6.2). La relación eje corto/largo varía entre 0.26 y 0.9.

Figura 6.1. Diagrama ternario de Sneed y Folk (1958) con las modificaciones hechas por Cann *et al.* (2014) y Graham y Midgley (2000) para los clastos de los conglomerados de los Conjuntos y 2 de la Formación Matzitzi. Donde a: eje largo, b: eje intermedio y c: eje corto de un clasto.

Figura 6.2. Textura de los conglomerados de A) Conjunto 1 y B) Conjunto 2 de la Formación Matzitzi.

7 Petrografía de areniscas

Se realizó el análisis petrográfico y se determinaron modas detríticas para 22 muestras de arenisca, 15 corresponden al Conjunto 1 cartografiado originalmente como Formación Matzitzi, 5 muestras más del Conjunto 2 y las 2 últimas muestras corresponden a las sucesiones fluviales del Cretácico (formaciones Caltepec y La Compañía). Las clases tomadas en este trabajo y los resultados del conteo de puntos se presentan en los **Anexos 2A-C.**

7.1 Conjunto 1

Del Conjunto 1 de la Formación Matzitzi se analizaron muestras de los elementos arquitectónicos CH y SG. A continuación se presentan los resultados.

7.1.1 Elemento CH

Las muestras colectadas del elemento CH son areniscas gruesas, mal clasificadas, compuestas por clastos subredondeados a subangulosos que presentan contactos cóncavosconvexos a suturados. El pegamento de estas muestras es una matriz compuesta por hojuelas de minerales arcillosos y óxidos que representan menos del 5% del volumen total de cada muestra. En el diagrama QFL de Garzanti (2016), estas muestras grafican en los campos de arenisca cuarzo-feldespática, lito-cuarzo-feldespática y lito-feldespato-cuarzosa (Fig. 7.1A), con una composición promedio %Q: 35.9-57.1%, %F: 27.8-57.7% y %L: 4.1-13.2%. El cuarzo y el feldespato derivan principalmente de fragmentos faneríticos metamórficos con textura granoblástica ameboide y poligonal (Fig. 7.2A y B). La textura granoblástica ameboide es expresada por la presencia de microestructuras de recristalización por migración de borde de grano (Fig. 7.2A), las cuales sugieren una roca fuente metamórfica de temperatura media a alta (Stipp et al., 2002; Passchier y Trouw, 2005). En algunos casos, el cuarzo presenta inclusiones aciculares de rutilo a lo largo de los principales planos cristalográficos (Fig. 7.2C), lo cual es típico de rocas metamórficas de temperatura alta (e.g.Sato y Santosh, 2007). Los cristales de cuarzo muestran comúnmente extinción ondulada y dominios de subgranos, y localmente presentan una estructura de ajedrez, la cual se ha reportado en la literatura para rocas de temperatura alta (>700°C; Fig. 7.2D; Passchier y Trouw, 2005). En estas rocas, el feldespato se distribuye casi equitativamente entre plagioclasa y feldespato potásico (Fig. 7.1B). El feldespato potásico comúnmente presenta microestructuras pertítica y mesopertítica (Fig. 7.2E), esta última es típica en rocas de temperatura alta (>700°C; Jiao y Guo, 2011).

Los líticos metamórficos son los más abundantes y se encuentran en porcentajes modales entre 64.7 y 100% del total de este tipo de fragmentos y definen una petrofacies metamorficlástica (*sensu* Garzanti, 2019) en el diagrama ternario LmLvLs (Fig. 7.1C). Los líticos sedimentarios están presentes en cantidades inferiores variables entre 5.3 y 26.3%. Finalmente, los líticos volcánicos se encuentran en cantidades subordinadas, siempre menores a 8.8% del total de líticos.

Los líticos metamórficos más abundantes son los del tipo metapelítico y metapsammítico/metafelsitico (Fig. 7.1D) y cuyo rango metamórfico varía entre 2 y 4 (Fig. 7.1E). Los líticos metapelíticos de rango 2 están representados por pizarras caracterizadas por una foliación continua, la cual está definida por minerales arcillosos y cantidades subordinadas de clorita. Los líticos metapelíticos de rango 3 y 4 están compuestos por esquistos de mica blanca, los tamaños de los cristales de mica blanca son de unas decenas de micra para el rango 3 (Fig. 7.3A) y mayores a 62 µm en el rango 4 (Fig. 7.3B). Los líticos metapsammíticos/metafelsíticos de rango 2 están compuestos por rocas cuarzosas con una textura dominantemente granoblástica y se caracteriza por una foliación espaciada y disyuntiva definida por la orientación de hojuelas de minerales arcillosos y óxidos que se concentran a lo largo de planos de disolución por presión (Fig. 7.3C). Los líticos metapsammíticos/metafelsíticos de rango 3 están compuestos por esquistos cuarzosos a esquistos cuarzo-micáceos que presentan una foliación espaciada disyuntiva dada por la orientación preferencial de micas y localmente de cuarzo. Los líticos de este tipo en rango 4 se caracterizan por presentar microestructuras de recristalización por rotación de subgrano (Fig. 7.3D).

Figura 7.1. Diagramas ternarios que muestran las variaciones composicionales de las muestras analizadas. A) diagrama de clasificación de areniscas de Garzanti (2016) que presenta Q: cuarzo total, F: feldespato total y L: líticos totales, B) diagrama QmKP, donde Qm: cuarzo monocristalino, K: feldespato potásico y P: plagioclasa, C) diagrama LmLvLs, donde Lm: líticos metamórficos, Lv: líticos volcánicos y Ls: líticos sedimentarios, D) diagrama LmfLmpLv, donde Lmf: líticos metafelsíticos, Lmp: líticos metapelíticos y Lv: líticos volcánicos, E) diagrama Lm1-2Lm3-4Ls, donde Lm1-2: líticos metamórficos de rango 1 a 2, Lm3-4: líticos metamórficos de rango 3 a 4 y Ls: líticos sedimentarios, F) diagrama LvfLvlLvm, donde Lvf: líticos volcánicos felsíticos, LvI: líticos volcánicos *lathwork* y Lvm: líticos volcánicos microlíticos, y G) diagrama QpLssLsc, donde Qp: cuarzo policristalino, Lss: líticos sedimentarios siliciclásticos y Lsc: líticos sedimentarios.

Localmente, algunas muestras presentan líticos metabasíticos de rango 2 a 3. Los fragmentos de rango 2 son metabasitas de clorita y epidota, mientras que los fragmentos de rango 3 son metabasitas de clinozoisita y clorita. Subordinadamente, se pueden encontrar líticos metacarbonatados con texturas granoblásticas poligonales.

Figura 7.2. Fotomicrografías de los fragmentos faneríticos de las muestras del elemento CH del Conjunto 1 de la Formación Matzitzi. A) fragmento policristalino de cuarzo (Q) y feldespato mimerquítico con microestructuras de migración de borde de grano, B) fragmento de cuarzo con textura granoblástica poligonal, C) cristal individual de cuarzo con inclusiones aciculares de rutilo (Rt), D) cristal de cuarzo con extinción en forma de tablero de ajedrez y E) fragmento individual de feldespato potásico mesopertítico, K: feldespato potásico y P: plagioclasa.

El porcentaje restante de líticos está representado por cantidades subordinadas de líticos sedimentarios y volcánicos. Por un lado, los líticos sedimentarios son del tipo siliciclástico y están representados por limolitas cuarzosas y cuarzo arcillolitas (Fig. 7.3E). Por otro lado, los líticos volcánicos son del tipo felsítico y se caracterizan por ser porfídicos con fenocristales de cuarzo y feldespato embebidos en una matriz microcristalina de cuarzo, feldespato y óxidos (Fig. 7.3F).

Figura 7.3. Fotomicrografías de líticos más representativos de las muestras del elemento CH del Conjunto 1 de la Formación Matzitzi. A) lítico metapelítico de rango 3 con foliación continua definida por pequeños cristales de mica blanca (Wmca), B) lítico metapelítico de rango 4 con foliación continua definida por cristales de mica blanca mayores a 62 µm, C) lítico metapesammítico/metafelsitico de rango 2 con foliación espaciada definida por superficies de disolución por presión (flecha amarilla), D) lítico metapesammítico/metafelsitico de rango 4 con microestructura de recristalización por rotación de subgrano (flecha amarilla), E) lítico sedimentario siliciclástico de limolita arenosa de cuarzo (Q) y plagioclasa (P) y F) lítico volcánico felsítico porfídico y con fenocristal de plagioclasa (P).

7.1.2 Elemento SG

Este conjunto de muestras es representativo de la matriz de conglomerados soportados por la matriz interpretados como el elemento de Depósitos de flujos gravitacionales (SG). Las muestras colectadas son areniscas gruesas, mal clasificadas, con partículas subredondeadas a subangulosas que presentan contactos cóncavos-convexos, tangenciales y en menor medida suturados. Los granos arenosos están ensamblados por hojuelas de minerales arcillosos en abundancia menor al 5% del volumen total de cada muestra. En el diagrama QFL de Garzanti (2016) grafican en los campos de arenisca lito-cuarzo-feldespática, cuarzo-lito-feldespática, lito-feldespato-cuarzosa y feldespato-lito-cuarzosa (Fig. 7.1A). La composición promedio de este conjunto de areniscas es Q: 21-44.6%, F: 28.2-56.6% y L: 16.3-34.4%. Estas rocas muestran un ligero enriquecimiento en líticos con respecto a las muestras del elemento CH de la Formación Matzitzi (Fig. 7.1A). En el diagrama QmKP (Fig. 7.1B) se observa que la mayoría de las muestras presentan concentraciones equivalentes de plagioclasa y feldespato potásico. Solamente dos muestras presentan una concentración netamente mayor de plagioclasa. Al igual que las areniscas del elemento CH, el cuarzo y el feldespato en estas rocas proceden de fragmentos faneríticos metamórficos, como lo evidencian los dominios de subgrano en tablero de ajedrez, las microestructuras de migración de borde de grano (Fig. 7.4A), las inclusiones aciculares de rutilo en los cristales de cuarzo (Fig. 7.4B) y la microestructura mesopertítica en el feldespato potásico (Fig. 7.4C). Es común encontrar cristales de plagioclasa con maclas mecánicas o con fracturas producidas por compactación (Fig. 7.4D).

Figura 7.4. Fotomicrografías de los componentes faneríticos de las muestras del elemento SG del Conjunto 1 de la Formación Matzitzi. A) fragmento fanerítico y policristalino con estructura de migración de borde de grano, B) cristal individual de cuarzo con inclusiones aciculares de rutilo (Rt), C) cristal individual de feldespato potásico mesopertítico y D) cristal individual de plagioclasa (P) fracturado por compactación.

Al igual que las areniscas del elemento CH, en este conjunto de muestras los líticos metamórficos son los más abundantes, con porcentajes que varían entre 67.9 y 95.8% (Fig. 7.1C). Por lo tanto, estas muestras definen una petrofacies metamorficlástica en el diagrama LmLvLs (*sensu* Garzanti, 2019). Los líticos sedimentarios están presenten en abundancias menores, alcanzando porcentajes de 20.6%, mientras que, los líticos volcánicos presentan proporciones iguales o menores a 12.5%.

Los líticos metamórficos más abundantes son los metapelíticos y metapsammíticos/metafelsíticos de rango dominante entre 2 y 3 (Figs. 7.1D, 7.5A y 7.5B), excepto para una muestra, en la cual los líticos metabasíticos de rango 2 a 3 son los más abundantes. Los líticos metabasíticos de rango 2 están representados por metabasitas de clorita y epidota, con cantidades subordinadas de titanita (Fig. 7.5C). Los de rango 3

corresponden a metabasitas de clorita y clinozoisita. En menor proporción es posible encontrar líticos metacarbonatados, los cuales estás compuestos por cristales de calcita con textura granoblástica poligonal (Fig. 7.5D).

Los líticos sedimentarios están representados por fragmentos de limolitas y limolita arenosa de cuarzo (Fig. 7.5E) y arcillolita que muestran evidencias de deformación por compactación, formando una pseudomatriz (*sensu* Dickinson, 1970; Fig. 7.5F).

Los líticos volcánicos están representados únicamente por la variedad felsítica. Estos fragmentos presentan textura porfídica con fenocristales de cuarzo en una matriz microcristalina de cuarzo, feldespato y óxidos (Fig. 7.5G).

Figura 7.5. Fotomicrografías de líticos más representativos de las muestras del elemento SG del Conjunto 1 de la Formación Matzitzi. A) lítico metapelítico de rango 4 con foliación definida por cristales de mica blanca (Wmca) mayores a 62µm, B) lítico metapsammítico/metafelsitico de rango 2 con textura nematoblástica definida por la orientación de cristales de cuarzo, C) lítico metabasítico de rango 2 con paragénesis epidota (Ep)+ clorita (Chl)+ plagioclasa (P)+ titanita (Ti), D) cristales de cuarzosa (Q), F) lítico sedimentario siliciclástico de limolita arenosa cuarzosa (Q), F) lítico sedimentario siliciclástico de

arcillolita deformado, formando una pseudomatriz y G) lítico volcánico felsítico porfídico con fenocristal de plagioclasa (P).

7.2 Conjunto 2

Del Conjunto 2 se colectaron 5 muestras de los elementos SG y GB. Estas muestras corresponden a arenisca media a gruesa, mal clasificada, con partículas subredondeadas a subangulosas con contactos tangenciales, cóncavos-convexos y subordinadamente suturados. Las areniscas están ensambladas por una matriz arcillosa que representa menos del 5% del volumen total de las muestras. En el diagrama QFL de Garzanti (2016) grafican en los campos de arenisca feldespato-cuarzosa y lito-feldespato-cuarzosa, graficando similarmente a las muestras del elemento CH del Conjunto 1 (Fig. 7.1A). La composición promedio de este conjunto de areniscas es Q: 48.6 a 57.9%, F: de 30.6 a 43.2% y L: de 5.7 a 14.2%. En el diagrama QmKP (Fig. 7.1B), las muestras presentan cantidades similares de plagioclasa y feldespato potásico. Tanto el cuarzo como el feldespato derivan principalmente de fragmentos metamórficos faneríticos y presentan microestructuras de migración de borde de grano, inclusiones de rutilo acicular en el cuarzo y feldespato potásico mesopertítico.

En el diagrama LmLvLs (Fig. 7.1C) se observa que los líticos volcánicos son los más abundantes (51.9 a 73.9% de los líticos totales), definiendo en este caso una petrofacies volcanoclástica (*sensu* Garzanti, 2019). Después, le siguen los líticos sedimentarios cuya proporción va de 7.4 a 36.6%. Los líticos metamórficos son los menos abundantes, los cuales pueden o no estar presentes en las muestras, y cuando lo están alcanzan porcentajes de hasta 15.2%.

Los líticos volcánicos están representados por una gama más amplia en este tipo de fragmentos, siendo los más abundantes los de la clase felsítica, seguido por los *lathwork* y por último los del tipo microlíticos (Fig. 7.1E). Los líticos volcánicos felsíticos presentan una textura porfídica con fenocristales de cuarzo, feldespato potásico y plagioclasa en una matriz microcristalina compuestas por cuarzo, feldespato y óxidos (Fig. 7.6A) y algunos muestran textura reomórfica (Fig. 7.6B). Los líticos volcánicos *lathwork* presentan una textura porfídica, con fenocristales de plagioclasa en una matriz hipocristalina constituida de microlitos de plagioclasa y vidrio (Fig. 7.6C). Finalmente, los líticos microlíticos presentan una textura afanítica con cristales de plagioclasa menores a 62 µm (Fig. 7.6D).

Los líticos sedimentarios también presentan una gama más amplia en estas muestras (Fig. 7.1F). Los líticos sedimentarios siliciclásticos son los más abundantes y están representados por limolita y limolita arenosa, mal clasificadas y compuestas por cuarzo y feldespato (Fig. 7.6E). Le siguen los líticos sedimentarios carbonatados y que corresponden a fragmentos compuestos en su totalidad de micrita y clasifican como caliza *mudstone* (Fig. 7.6F). También, es posible observar que hay una mayor abundancia de cuarzo policristalino con respecto a las muestras del Conjunto 1 (Fig. 7.6G).

Cuando están presentes, los líticos metamórficos corresponden a metapelitas de rango 3 y en menor medida metapsammitas/metafelsitas de rango 2 a 3 (Fig. 6.6H).

Figura 7.6. Fotomicrografías de los líticos más representativos de las muestras del Conjunto 2 de la Formación Matzitzi. A) lítico volcánico felsítico porfídico con fenocristal de plagioclasa (P) en una matriz microcristalina de cuarzo y plagioclasa, B) lítico volcánico felsítico reomórfico con fenocristales de cuarzo (Q) y plagioclasa (P), C) lítico volcánico *lathwork* porfídico y con fenocristales de plagioclasa (P), D) lítico volcánico microlítico, E) lítico sedimentario siliciclástico de limolita arenosa, F) lítico sedimentario carbonatado de caliza *mudstone*, G) cuarzo policristalino y H) lítico metapsammítico/metafelsitico de rango 3 con foliación continua definida por la orientación de cristales pequeños de mica blanca.

7.3 Sistemas fluviales del Cretácico

Se analizaron dos muestras de las formaciones Caltepec y La Compañía. Estas muestras fueron extraídas de los elementos GB y SG. Ambas muestras son de arenisca gruesa, mal seleccionada, con partículas subredondeadas a subangulosas que presentan contactos tangenciales a cóncavos-convexos, y localmente suturados. Las muestras están ensambladas por una matriz de minerales arcillosos y un cementante de óxidos. En el diagrama QFL de Garzanti (2016), estas muestras grafican en los campos de arenisca cuarzo-feldespática y lito-feldespato-cuarzosa. Dichas muestras presentan una composición similar a las muestras del elemento CH del Conjunto 1 y a las del Conjunto 2 de la Formación Matzitzi. La composición promedio es Q: 44.4 a 47.8%, F: 40.9 a 49.8% y L: 2.4 a 14.8% (Fig. 7.1A). En el diagrama QmKP (Fig. 7.1B), las muestras están mayormente enriquecidas en plagioclasa respecto al feldespato potásico. El cuarzo y el feldespato potásico de estas muestras derivan principalmente de rocas faneríticas metamórficas, lo cual es evidenciado por las microestructuras de migración de borde de grano (Fig. 7.7A) y cantidades subordinadas de feldespato potásico mesopertítico. Una característica particular de estas muestras son los fragmentos de protomilonita con porfidoblastos de cuarzo y plagioclasa (Fig. 7.7B).

En el diagrama LmLvLs se observa que estas muestras están mayormente enriquecidas en líticos metamórficos, con cantidades que van de 65.8 a 91.7% del total de los líticos, definiendo una petrofacies metamorficlástica (*sensu* Garzanti, 2019; Fig. 7.1C). Después le siguen líticos volcánicos (8.3 a 19.7% del total de líticos) y finalmente, los líticos sedimentarios con cantidades menores o iguales a 14.5%.

Los líticos metamórficos más abundantes son los líticos metapelíticos y metapsammíticos/metafelsíticos de rango 2 a 3 (Figs. 7.1D, E Y 7.7C). Los líticos volcánicos están representados por la variedad felsítica (Fig. 7.1F), mientras que los líticos sedimentarios

son fragmentos de limolita arenosa y limolitas cuarzosas (Fig. 7.1G) con óxidos como cementante (Fig. 7.7D)

Figura 7.7. Fotomicrografías de componentes representativos de las muestras de los Sistemas fluviales del Cretácico. A) fragmento fanerítico con microestructura de migración de borde de grano, B) fragmento de protomilonita con por porfidoblastos de cuarzo y plagioclasa, C) lítico metapsammítico/metafelsitico de rango 2 con foliación espaciada definida por superficies de disolución por presión y F) lítico sedimentario siliciclástico de limolita con cementante de óxidos.

8 Petrografía de minerales pesados

Se seleccionaron 10 muestras para el análisis petrográfico de minerales pesados. 7 corresponden al Conjunto 1, la cuales fueron extraídas de los elementos CH (MAT-3, 4, 10, 11 y 12) y SG (MAT-14 y 17). Una muestra fue colectada del elemento GB del Conjunto 2 (MAT-1). Finalmente, dos muestras más fueron extraídas de las sucesiones fluviales del Cretácico (MAT-2 y 8). En las Figuras 5.12 y 13 se muestra la ubicación de donde fueron colectadas las muestras. En la Tabla 8.1, se presenta un resumen de los principales minerales pesados encontrados en las láminas analizadas. Estos minerales fueron separados en tres categorías semicualitativas principales: minerales abundantes (más de 10 cristales), minerales poco abundantes (entre 2 y menos de 10 cristales) y subordinados (solo aparece un único cristal o un par en la muestra).

Tabla 8.1. Asociación de minerales pesados de las muestras analizadas. Gr: granate, Zr: circón, Ap:					ı, Ap:								
apatito, Rt: rutilo, Chl: clorita, Wmca: mica blanca, Bt: biotita, Anf: actinolita-tremolita, Hrb:													
hornblenda, Czo: c	linozo	oisita, l	Ep: epic	dota, 🛛	Fur: tu	rmalina,	Cor: c	orindó	n.		1		
Muestra/Mineral	Gr	Zr	Ар	Rt	Chl	Wmca	Bt	Anf	Hrb	Czo	Ер	Tur	Cor
			(Conju	nto 1 (element	o CH)						
MAT-11													
MAT-10													
MAT-4													
MAT-3													
MAT-12													
Conjunto 1 (elemento SG)													
MAT-14													
MAT-17													
Conjunto 2 (elemento GB)													
MAT-1													
Sucesiones fluviales del Cretácico													
MAT-2													
MAT-8													

Leyenda Abundante Poco abundante Subordinado No presente

Е	0
С	õ

8.1 Conjunto 1

8.1.1 Elemento CH

El análisis petrográfico de cinco muestras del elemento CH de la Formación Matzitzi muestra que la asociación de minerales pesados de las rocas analizadas está conformada, en orden de abundancia cualitativa decreciente, por: circón, apatito, granate y rutilo y como minerales más abundantes, clorita y mica blanca parcialmente cloritizada, como minerales menos abundantes turmalina, clinozoisita, biotita, y finalmente algunos cristales de mica blanca saginítica y corindón en cantidades subordinadas (Fig. 8.1A-P).

Figura 8.1. Fotomicrografías de los minerales pesados de las muestras del elemento CH del Conjunto 1 de la Formación Matzitzi. Cristales de circón (Zr) y apatito (Ap) observados en A) nicoles paralelos y B) nicoles cruzados, cristal de apatito (Ap) con cavidades internas por disolución observado en C) nicoles paralelos y D) nicoles cruzados, , E) cristal de granate (Gr) y mica blanca cloritizada (Wmca), F) cristal de granate (Gr), G) cristales de rutilo (Rt), H) cristal de clorita (Chl), I) y J) cristal de turmalina (Tur) en nicoles paralelos y cruzados respectivamente, K) y L) cristal de clinozoisita (Czo) en nicoles paralelos y cruzados, M) y N) cristal de biotita (Bt) en nicoles paralelos y cruzados respectivamente, O) mica blanca saginitica (Wmca) y P) cristal de corindón (Cor).

8.1.2 Elemento SG

Las dos muestras colectadas del elemento SG pertenecen al Conjunto 1 definido con base en las modas detríticas de roca total. El análisis petrográfico muestra que la asociación de minerales pesados está conforma, en orden de abundancia cualitativa decreciente, por: circón, apatito, rutilo y, en algunas muestras, granate como minerales más abundantes, mica blanca, clorita y, en algunas muestras, clinozoisita como minerales menos abundantes y, finalmente, epidota, hornblenda y turmalina como minerales en cantidades menores (Fig. 8.2A-L).

Figura 8.2. Fotomicrografías de las minerales pesados de las muestras del elemento SG del Conjunto 1 de la Formación Matzitzi. Cristal de circón (Zr) observado en A) nicoles paralelos y B) nicoles cruzados. C) cristales de rutilo (Rt), cristales de epidota (Ep), apatito (Ap) y circón (Zr) observados en D) nicoles paralelos y E) nicoles cruzados, F) cristales de granate (Gr) y clorita (Chl), cristales de clinozoisita (Czo) observado en G) nicoles paralelos y H) nicoles cruzados, I) cristal de mica blanca (Wmca) saginítica, cristal de turmalina (Tur) observado en J) nicoles paralelos y K) nicoles cruzados, y L) cristal de biotita (Bt).
8.2 Conjunto 2 de la Formación Matzitzi

Se analizó únicamente una muestra de minerales pesados del Conjunto 2 de la Formación Matzitzi. Se muestra que la asociación de minerales pesados cualitativa (de mayor a menor abundancia relativa) es: circón, apatito y rutilo como minerales más abundantes, como minerales menos abundantes aparecen clinozoisita, turmalina y mica blanca cloritizada y saginítica y finalmente la clorita como mineral subordinando (Fig. 8.3A-H). El granate no aparece en los concentrados.

Figura 8.3. Fotomicrografías de los minerales pesados de la muestra del Conjunto 2 de la Formación Matzitzi. Cristales de circón (Zr), apatito (Ap) y turmalina (Tur) observados en A) nicoles paralelos y B) nicoles cruzados, cristal de turmalina (Tur) observado en C) nicoles paralelos y D) nicoles cruzados, cristales de clinozoisita (Czo) y circón observados en E) nicoles paralelos y F) nicoles cruzados, G) cristal de mica blanca (Wmca) saginítica, y H) cristal de rutilo (Rt).

8.3 Sucesiones fluviales del Cretácico

Se analizaron dos muestras de las formaciones fluviales del Cretácico, una de la formación Caltepec y otra de la formación La Compañía. Los datos obtenidos muestran que la asociación de minerales pesados de estas muestras está compuesta, en orden de abundancia cualitativa decreciente, por: circón, rutilo y, en algunas muestras, clinozoisita como minerales más abundantes, mica blanca y apatito aparecen como minerales menos abundantes y, finalmente, clorita y anfibol verde como minerales subordinados (Fig. 8.4A-H). Es de notar que el granate y la turmalina no aparece en la paragénesis de estas muestras.

Figura 8.4. Fotomicrografías de los minerales pesados de las muestras de las sucesiones fluviales del Cretácico. A) Cristal de circón (Zr) en nicoles cruzados, B) cristal de clorita (Chl) en nicoles cruzados C) cristal de rutilo (Rt), D) cristal de apatito (Ap), cristales de clinozoisita (Czo) observados en E) nicoles paralelos y F) nicoles cruzados, y cristal de anfibol (Anf) de la serie actinolita-tremolita observado en G) nicoles paralelos y H) nicoles cruzados.

9 Geocronología U-Pb en circones detríticos

Con el objetivo de reforzar el análisis de procedencia y ver posibles diferencias entre los distintos depósitos fluviales estudiados, se realizó el fechamiento U-Pb en cristales de circón detrítico de tres muestras de la Formación Matzitzi y dos de las sucesiones fluviales del Cretácico. Los resultados de los análisis isotópicos se muestran en el **Anexo 3**.

9.1 Conjunto 1

De las tres muestras extraídas del Conjunto 1 de la Formación Matzitzi, dos corresponden al elemento CH y una al elemento SG.

9.1.1 Elemento CH

Del elemento CH fueron recolectadas las muestras MAT-3 y MAT-10. Los circones seleccionados son redondeados a subredondeados y varían de anedrales a subedrales, con coloraciones rosáceas a incoloros y, en ocasiones, es evidente el zoneamiento concéntrico (Fig. 9.1). Se analizaron 100 cristales de circón para la muestra MAT-3 y 97 para la muestra MAT-10.

Figura 9.1. Imagen de catodoluminiscencia de cristales de circón seleccionados. Obsérvese que algunos presentan zoneamiento concéntrico.

Los resultados muestran que la mayoría de los cristales analizados arrojaron edades concordantes, con menos del 5% del total de datos que son ligeramente discordantes (Fig. 9.2). Ambas muestras definen un solo grupo de edades que van de ~995 a 1380 Ma para la muestra MAT-3 (Fig. 9.3A) y de ~970 a 1360 Ma para la muestra MAT-10 (Fig. 9.3B). Un

número subordinado de cristales han arrojado edades aisladas entre ~1400 y 1500 Ma para ambas muestras.

Figura 9.2. Diagramas de concordia para las muestras MAT-3 (A) y MAT-10 (B) del elemento CH del Conjunto 1 de la Formación Matzitzi.

Figura 9.3. Estimadores de densidad de Kernel (Vermeesch, 2012) e histogramas que muestran la distribución estadística de las edades U-Pb en cristales de circón para las muestras MAT-3 (A) y MAT-10 (B) del elemento CH del Conjunto 1 de la Formación Matzitzi.

9.1.2 Elemento SG

Del elemento SG se colectó la muestra MAT-17. Se analizaron 99 cristales de circón, los cuales son redondeados a subredondeados y varían entre anedrales a subedrales con formas prismáticas, con coloraciones rosáceas a incoloras y, en ocasiones, es evidente el zoneamiento concéntrico (Fig. 9.4).

Figura 9.4. Imagen de catodoluminiscencia de los cristales de circón seleccionados para la muestra MAT-17. Obsérvese que algunos cristales presentan zoneamiento concéntrico.

Los resultados obtenidos muestran que la mayoría de los cristales analizados ha arrojado edades concordantes, con escasos datos ligeramente discordantes (Fig. 9.5). Al igual que las muestras del elemento CH, las edades obtenidas definen un grupo de edades entre ~990 y 1400 Ma. Algunos cristales subordinados analizados han arrojado edades de entre ~1470 y 1685 Ma (Fig. 9.6).

Figura 9.5. Diagrama de concordia para la muestra MAT-17 del elemento SG del Conjunto 1 de la Formación Matzitzi.

Fig. 9.6. Estimador de densidad de Kernel (Vermeesch, 2012) e histograma que muestran la distribución estadística de las edades U-Pb en cristales de circón para la muestra MAT-17 del elemento SG Conjunto 1 de la Formación Matzitzi.

9.2 Sucesiones fluviales del Cretácico

Se tomaron dos muestras de arenisca de las unidades fluviales del Cretácico. La muestra MAT-2 fue colectada del elemento GB de la formación La Compañía, mientras que la muestra MAT-8 fue tomada del elemento SG de la formación Caltepec (Fig. 5.12). Los cristales de circón seleccionados son redondeados a subredondeados y varían de anedrales a subedrales, con coloraciones rosáceas, marrones e incoloras (Fig. 9.7). Se analizaron 100 y 99 cristales de circón para las muestras MAT-2 y MAT-8, respectivamente.

Figura 9.7. Imagen de catodoluminiscencia de los cristales de circón seleccionados para una muestra de los sistemas fluviales del Cretácico. Obsérvese que algunos cristales presentan zoneamiento concéntrico.

Para ambas muestras se observa que la mayoría de los datos son concordantes, con algunas edades ligeramente discordantes (Fig. 9.8). Al igual que las muestras de la Formación

Matzitzi, las muestras de las unidades fluviales del Cretácico definen un grupo de edad que va de ~1005 a 1360 Ma para la formación La Compañía (Fig. 9.9A) y de ~940 a 1490 Ma para la formación Caltepec (Fig. 9.9B). Adicionalmente a este grupo, es notable la presencia en ambas muestras de otro grupo de edades que va de ~274 a 282 Ma y de ~251 a 325 Ma para las formaciones La Compañía y Caltepec, respectivamente (Figs. 9.9A-B).

Figura 9.8. Diagramas de concordia para las muestras MAT-2 (A) y MAT-8 (B) de las sucesiones fluviales del Cretácico.

Figura 9.9. Estimadores de densidad de Kernel (Vermeesch, 2012) e histogramas que muestran la distribución estadística de las edades U-Pb en cristales de circón para las muestras MAT-2 (A) y MAT-8 (B) de los sucesiones fluviales del Cretácico.

10 Discusión

10.1 Ambiente de depósito

10.1.1 Conjunto 1 de la Formación Matzitzi

El Conjunto 1 de la Formación Matzitzi está compuesto por los elementos arquitectónicos CH, FF, CS, LV y SG, que son elementos importantes típicos de los sistemas fluviales anastomosados (Fig. 10.1; Miall, 2006; Makaske, 2001). Estos ríos son el resultado de la coalescencia de diferentes cinturones fluviales y se caracterizan por una compleja red de canales separados por grandes llanuras de inundación (Makaske, 2001). Los canales de los ríos anastomosados se caracterizan por un relleno relativamente sencillo generado principalmente por agradación. En el área de estudio, este proceso es evidenciado por rizaduras con geometría montante, las cuales indican que el crecimiento del relleno de estos canales ocurría principalmente en la vertical (*e.g.* Miall, 2006).

La coexistencia en esta sucesión de canales individuales y canales amalgamados sugiere variaciones en la tasa de subsidencia con respecto a la tasa de sedimentación durante el tiempo. En efecto, si la tasa de sedimentación es más lenta que la generación de nuevo espacio de acomodo por subsidencia es posible formar canales sobreimpuestos o amalgamados, que están separados por superficies de erosión (Fig. 10.1; Makaske, 2001). Por lo contrario, si la tasa de sedimentación es muy rápida con respecto a la tasa de creación de nuevo espacio de acomodación por subsidencia, los canales serán aislados y completamente rodeados por los depósitos de llanura de inundación (Makaske, 2001).

Por otro lado, el elemento SG del Conjunto 1 de la Formación Matzitzi es el resultado de depósitos de flujos gravitacionales, los cuales se forman por la inestabilidad gravitacional a lo largo de una pendiente y son típicos en zonas tectónicamente activas, donde se generan pendientes abruptas (Miall, 2006). Dado que el elemento SG se distribuye en las cercanías de las zonas de contacto de la Formación Matzitzi con el Complejo Oaxaqueño, se propone que estos depósitos sean el resultado de abanicos aluviales que se formaron a lo largo de los bordes de la cuenca que alojaba en su parte central el sistema fluvial anastomosado, así como se representa en la Figura 10.1.

Las características antes descritas soportan el modelo sedimentario de Centeno-García *et al.* (2009), donde se sugiere que la Formación Matzitzi representa el registro estratigráfico de un sistema fluvial anastomosado.

Figura 10.1 Modelo sedimentario de la para el Conjunto 1 de la Formación Matzitzi. Modificado de (Makaske, 2001).

10.1.2 Conjunto 2 de la Formación Matzitzi

El Conjunto 2 de los depósitos cartografiados originalmente como Formación Matzitzi está conformado por los elementos GB y SG. Esta asociación de elementos es típica de sistemas fluviales de alta energía que escurren en zonas con pendientes altas, y que desarrollan una compleja red de canales que van rápidamente migrando lateralmente en el tiempo. Estas condiciones se desarrollan en abanicos aluviales y ríos trenzados (Fig. 10.2; Miall, 2006). Para discriminar entre uno y otro tipo de drenaje es necesario realizar un análisis de paleocorrientes. Sin embargo, dado que los afloramientos observados de este conjunto se encuentran siempre como cuñas tectónicas delimitadas por fallas laterales, el análisis de paleocorrientes podría verse afectado, dado que no se tiene la certeza sí estos depósitos han sufrido rotaciones tectónicas importantes.

Figura 10.2. Modelo sedimentario propuesto para el Conjunto 2. A) modelo de abanico aluvial y B) rio trenzado. Modificado de Nichols (2009).

10.1.3 Sistemas fluviales del Cretácico

Mendoza-Rosales (2010) interpreta que las formaciones Caltepec y La Compañía representan el registro de un abanico-delta, que varía lateralmente a una laguna costera donde hay aporte de ambientes fluviales, y asocia este abanico-delta al desarrollo de escarpes del basamento. Los datos obtenidos en este trabajo suportan la idea de Mendoza-Rosales (2010). En efecto, la formación Caltepec se compone de una alternancia de elementos GB y SG que, de acuerdo con Miall (2006), son típicos de sistemas fluviales trenzados y abanicos aluviales. El análisis de paleocorrientes realizado en este trabajo permite establecer que, existe una dispersión en la dirección de los *forsets* de hasta 60°.

10.2 Procedencia

10.2.1 Conjunto 1 de la Formación Matzitzi

Los datos petrográficos indican que las areniscas de canal y de flujos de escombros del Conjunto 1 de la Formación Matzitzi fueron derivadas principalmente de rocas metamórficas de alto grado. En efecto, la textura granoblástica ameboide expresada por microestructuras de migración de borde de grano, la extinción en forma de tablero de ajedrez, las inclusiones de rutilo acicular que se desarrollan a lo largo de los ejes cristalográficos de los granos de cuarzo y las microestructuras mesopertíticas en el feldespato potásico sugieren una fuente metamórfica de temperatura alta (Stipp et al., 2002; Passchier y Trouw, 2005; Sato y Santosh, 2007; Jiao y Guo, 2011). Estas características texturales, microestructurales y composicionales han sido descritas para los orto y paragneises de alto grado del Complejo Oaxaqueño (Keppie et al., 2003; Ortega-Gutiérrez et al., 2018; Martini et al., 2020). La asociación rutilo+granate+corindón encontrada en los concentrados de minerales pesados extraídos de estas rocas, también soporta el aporte de las rocas de alto grado del Complejo Oaxaqueño (Ortega-Gutiérrez et al., 2018). Igualmente, este escenario es indicado por los datos geocronológicos que documentan un único grupo de edades del Meso-Neoproterozoico para estas rocas (Fig. 10.3A), el cual coincide con el grupo de edades reportado para las rocas de alto grado del Complejo Oaxaqueño (Solari et al., 2014; Ortega-Gutiérrez et al., 2018; Martini et al., 2020; Fig. 10.3B). El mapa de escalamiento multidimensional también soporta está idea, donde las muestras del Conjunto 1 tienen similitudes de primer y segundo orden con una muestra representativa del Complejo Oaxaqueño (Fig. 10.4; Solari et al., 2014).

Las areniscas del Conjunto 1 presentan hasta un 15% de fragmentos líticos metamórficos, los cuales están representados principalmente por líticos metapelíticos У metapsammíticos/metafelsíticos de rango metamórfico 2 a 4, que corresponden a facies de subesquistos y esquistos verdes (Garzanti y Vezzoli, 2003; Martini et al., 2020). Una característica interesante es el ligero enriquecimiento en fragmentos líticos de las muestras tomadas del elemento SG con respecto a las tomadas del elemento CH (Fig. 7.1A). De manera tentativa, se especula que este enriquecimiento se deba a que los abanicos aluviales son depósitos más proximales respecto a los de canal y que los fragmentos metasedimentarios de bajo grado son relativamente inestables durante el transporte (Garzanti, 2017), generando una pérdida progresiva de estos con la distancia. Rocas metasedimentarias en facies de

subesquistos a esquistos verdes son muy abundantes en el Complejo Acatlán (*e.g.* Keppie *et al.*, 2008). El aporte del Complejo Acatlán es sugerido por la presencia de algunos granos de turmalina en los concentrados de minerales pesados, ya que este mineral es ausente en el Complejo Oaxaqueño y es muy abundante en el Complejo Acatlán (Martini *et al.*, 2020). Las rocas metasedimentarias del Complejo Acatlán son muy heterogéneas en cuanto a sus firmas de edad de circones detríticos. Algunas presentan una firma idéntica la del Complejo Oaxaqueño, caracterizada por un solo grupo principal de edades entre ~ 880 y ~ 1320 Ma (Figs. 10.3C-F; Talavera-Mendoza *et al.*, 2005; Murphy *et al.*, 2006; Vega-Granillo *et al.*, 2007; Morales-Gámez *et al.*, 2008). Otras muestran grupos de edades adicionales de ~ 430-740 Ma y ~275-350 Ma (Figs. 10.3 C-F; Keppie *et al.*, 2008; Galaz *et al.*, 2013; Zepeda-Martínez *et al.*, 2018). La ausencia en las muestras analizadas de un grupo consistente de edades Paleozoicas sugiere que, posiblemente, las rocas metasedimentarias del Complejo Acatlán que alimentaron los depósitos del Conjunto 1 son las que presentan puramente circones Proterozoicos.

Aunque los líticos metapelíticos y metapsammíticos/metafelsíticos son los más abundantes del Conjunto 1, en este trabajo se reportan líticos metabasíticos y metacarbonatados. Metabasitas en facies de subesquisto a esquisto verde han sido reportados en las partes retrogresadas del Complejo Oaxaqueño como en las del Complejo Acatlán (Kirsch *et al.* 2013). En ambos casos, se trata de metabasitas de clorita, mica blanca, epidota y calcita (Keppie *et al.*, 2003; Kirsch *et al.*, 2013). Por otro lado, los líticos metacarbonatados no son diagnósticos de alguna fuente en particular, ya que rocas metasedimentarias carbonatadas están presentes tanto en el Complejo Oaxaqueño como en el Complejo Acatlán (*e.g.* Ortega-Gutiérrez *et al.*, 2018)

Los líticos volcánicos encontrados en el Conjunto 1 de la Formación Matzitzi son exclusivamente felsíticos. Juarez-Zuñiga (2019) también reporta en los conglomerados del elemento SG de la Formación Matzitzi líticos volcánicos felsíticos con edades U-Pb en circón entre ~285 y 269 Ma. De acuerdo con este autor, estos clastos volcánicos probablemente derivan del Arco Pérmico del Este de México y representan la edad máxima de depósito para la Formación Matzitzi (Centeno-García *et al.*, 2019; Juarez-Zuñiga, 2019).

Finalmente, los fragmentos sedimentarios siliciclásticos de limolita a arenisca, que de acuerdo con Juarez-Zuñiga (2019) tienen una edad máxima de depósito de ~290 Ma. No se sabe con certeza de que sucesión sedimentaria derivan; sin embargo, se tratan de extraclastos y no representan el reciclaje de la misma unidad, debido a las diferencias texturales con respecto a las muestras del Conjunto 1.

En síntesis, con base en las observaciones realizadas en este trabajo, el Conjunto 1 de la Formación Matzitzi se formó a partir de la erosión del Complejo Oaxaqueño, del Complejo Acatlán y, en menor proporción, del Arco Pérmico del Este de México.

Figura 10.3. Estimadores de densidad de Kernel (Vermeesch, 2012) e histograma que muestra la distribución estadística de las edades de circones detríticos de A) 3 muestras del Conjunto 1 de la Formación Matzitzi (este trabajo), B) los orto y paragneises del Complejo Oaxaqueño (Solari *et al.*, 2014), C) metagranitoides del Complejo Acatlán (Talavera-Mendoza *et al.*, 2005; Morales-Gámez *et al.*, 2008; Galaz *et al.*, 2013), D) y E) ensamble de rift del Cámbrico-Silúrico de alta presión (Talavera-Mendoza *et al.*, 2005; Murphy *et al.*, 2006; Vega-Granillo *et al.*, 2007; Morales-Gámez *et al.*, 2008; Galaz *et al.*, 2013) y bajo grado metamórfico (Keppie *et al.*, 2008; Zepeda-Martínez *et al.*, 2018) del Complejo Acatlán, y F) ensamble del Carbonífero Superior (Kirsch *et al.*, 2012) del Complejo Acatlán.

Figura 10.4. Mapa de escalamiento multidimensional (Vermeesch, 2013) para los Conjuntos 1 y 2 de la Formación Matzitzi y los sistemas fluviales del Cretácico con sus posibles rocas fuente: muestras Rs-Dy-1 (Durán-Aguilar, 2013), 3R (Zepeda-Martínez *et al.*, 2018) y VH-31-03 Y VH-3102 (Rubio-Cisneros y Lawton, 2011) de la Provincia vulcano-sedimentaria Nazas, muestra GC-1 del Granito Cozahuico (Elías-Herrera *et al.*, 2005), y muestra OC-1012 del Complejo Oaxaqueño (Solari *et al.*, 2014).

10.2.2 Conjunto 2 de la Formación Matzitzi

Al igual que para el Conjunto 1, las areniscas del Conjunto 2 fueron derivadas en gran parte de rocas metamórficas de alto grado, como lo atestiguan los fragmentos policristalinos con texturas granoblásticas ameboides evidenciadas por microestructuras de migración de borde de grano, los cristales de cuarzo con inclusiones aciculares de rutilo y el feldespato potásico con microestructura mesopertítica. Lo anterior sugiere que la principal fuente de estos depósitos fluviales son las rocas de alto grado metamórfico del Complejo Oaxaqueño. Esta aseveración es soportada por las edades de circones detríticos en estas rocas sedimentarias. En efecto, uno de los grupos principales de edades para estas rocas se traslapa con el rango de edades reportado para el Complejo Oaxaqueño (Fig. 10.5A y B; Solari *et al.*, 2014; Bedoya-Mejía, 2018).

Una característica distintiva del Conjunto 2 es su abundancia de líticos volcánicos. Además, a diferencia de los líticos volcánicos del Conjunto 1 de la Formación Matzitzi, los cuales son exclusivamente felsíticos, en el Conjunto 2 los líticos volcánicos presentan un mayor rango composicional, abarcado líticos tipo *lathwork*, microlíticos y felsíticos, que composicionalmente van desde basalto a dacitas-riolitas (Dickinson, 1970; Marsaglia y Ingersoll, 1992). La presencia de estos fragmentos indica que este conjunto registra la erosión de una fuente volcánica. No se sabe con exactitud la edad de estos fragmentos volcánicos. Sin embargo, Bedoya-Mejía (2018) ha reportado un grupo abundante de circones con edades entre ~173 y 200 Ma (Figs. 10.5A y C), que podrían derivar de estas rocas volcánicas. Rocas volcánicas con edades del Jurásico Inferior y Medio han sido reportadas en la Provincia volcano-sedimentaria Nazas (Rubio-Cisneros y Lawton, 2011; Martini y Ortega-Gutiérrez, 2018; Zepeda-Martínez et al., 2018; Fig. 10.5B). Las áreas más próximas donde se encuentran rocas volcánicas de estas edades son Diquiyú y Olinalá (Campa-Uranga et al., 2004; Durán-Aguilar, 2013; Zepeda-Martínez et al., 2018). El escalamiento multidimensional muestra que la roca del Conjunto 2 tiene similitudes de primer y segundo orden con las muestras representativas de la Provincia volcano-sedimentaria Nazas (Fig. 10.4). Considerando la presencia de circones con edades del Pérmico (Figs. 10.5A y D) en la arenisca analizada por Bedoya-Mejía (2018), se considera la posibilidad que, al igual que para el Conjunto 1, por lo menos parte de los fragmentos volcánicos felsíticos hayan derivado del Arco Pérmico del Este de México.

Otra característica distintiva del Conjunto 2 es que contiene una mayor variedad de líticos sedimentarios. Los líticos sedimentarios siliciclásticos son los más abundantes, Sin embargo, también hay líticos sedimentarios carbonatados, los cuales no fueron observados en ninguna muestra del Conjunto 1. Esto no solo se observó en las areniscas, sino también en los conglomerados. Desafortunadamente, los clastos carbonatados observados no contienen fósiles, por lo que su procedencia y edad son difíciles de constreñir. Sucesiones carbonatadas del Jurásico Superior y Cretácico Inferior son abundantes en toda la zona circundante al Golfo de México (*e.g.* Goldhammer, 1999; Martini y Ortega-Gutiérrez, 2018). En la Cuenca de Ayuquila, se reporta una caliza del Jurásico Superior denominada Caliza Chimeco (Campos-Madrigal *et al.*, 2013). Alencaster y Buitrón-Sánchez (1965) le asignan una edad del Oxfordiano (Jurásico Superior) con base en su contenido fosilífero. Sin embargo, calizas del Cretácico Inferior también se reporta en el área de estudio en la formación La Compañía (Mendoza-Rosales, 2010). Por ello, las sucesiones carbonatadas del Jurásico Superior-Cretácico Inferior representan una posible fuente de los clastos de caliza.

Finalmente, el Conjunto 2 tiene un contenido ligeramente mayor de cuarzo policristalino respecto a las muestras del Conjunto 1 de la Formación Matzitzi. Esta categoría de acuerdo con Dickinson (1970) se asigna a fragmentos afaníticos constituidos solamente por cuarzo cuyo origen es incierto, por lo que pueden representar la matriz de líticos volcánicos felsíticos, partes afaníticas de líticos metamórficos cuarcíticos o fragmentos de rocas sedimentarias silícicas como radiolarita y pedernal. Las observaciones de campo han permitido determinar que los conglomerados de esta formación contienen fragmentos de pedernal, por lo que en este trabajo se propone que el cuarzo policristalino corresponda a fragmentos de pedernal. La procedencia de estos fragmentos es incierta. Las sucesiones carbonatadas del Jurásico Superior y Cretácico Inferior contienen abundante pedernal diagenético de color negro, y podrían ser una posible fuente (Mendoza-Rosales, 2010; Campos-Madrigal *et al.*, 2013).

Los líticos metamórficos son los menos abundantes y son principalmente de rocas metasedimentarias en facies de esquistos verdes. La presencia de turmalina en estas rocas sugiere que el Complejo Acatlán pudo proporcionar estos clastos, aunque, esta suposición debe de corroborarse con datos de química mineral (Martini *et al.*, 2020).

Sintetizando, las observaciones realizadas en este trabajo sugieren que el Conjunto 2 deriva principalmente de la erosión del Complejo Oaxaqueño, la Provincia volcano-sedimentaria Nazas y, en menor medida, de sucesiones carbonatadas del Jurásico Superior-Cretácico Inferior, del Arco Pérmico del Este Mexicano y el Complejo Acatlán.

La edad máxima de depósito del Conjunto 2 es de ~177 Ma (Fig. 10.6), la cual fue calculada haciendo la media aritmética de los cinco circones más jóvenes, dado que los errores 2σ se traslapan (Dickinson y Gehrels, 2009). Sin embargo, dado el error de 0.81, en este trabajo se toma como la edad máxima de depósito ~180 Ma.

Figura 10.5. Estimadores de densidad de Kernel (Vermeesch, 2012) e histogramas que muestran la distribución estadística de las edades de circones detríticos de A) Conjunto 2 (Bedoya-Mejía, 2018), B) el Complejo Oaxaqueño (Solari *et al.*, 2014), C) el metagranito Cozahuico (Elías-Herrera *et al.*, 2005), D) arenisca de la Provincia volcano-sedimentaria Nazas (Rubio-Cisneros y Lawton, 2011), E)) metagranitoides del Complejo Acatlán (Talavera-Mendoza *et al.*, 2005; Morales-Gámez *et al.*, 2008; Galaz *et al.*, 2013), F) y G) ensamble de rift del Cámbrico-Silúrico de alta presión (Talavera-Mendoza *et al.*, 2005; Murphy *et al.*, 2006; Vega-Granillo *et al.*, 2007; Morales-Gámez *et al.*, 2008; Galaz *et al.*, 2013) y bajo grado metamórfico (Keppie *et al.*, 2008; Zepeda-Martínez *et al.*, 2018) del Complejo Acatlán, y H) ensamble del Carbonífero Superior (Kirsch *et al.*, 2012) del Complejo Acatlán.

Figura 10.6. Edad máxima de depósito para el Conjunto 2 de la Formación Matzitzi. Datos tomados de Bedoya-Mejía (2018).

10.2.3 Sucesiones fluviales del Cretácico

Al igual que las areniscas de los Conjuntos 1 y 2 de la Formación Matzitzi, las muestras de las sucesiones fluviales del Cretácico derivaron en gran parte de rocas metamórficas de alto grado, como lo atestiguan los fragmentos policristalinos con texturas granoblásticas ameboides evidenciadas por microestructuras de migración de borde de grano, los cristales de cuarzo con inclusiones aciculares de rutilo y el feldespato potásico mesopertítico. Lo anterior sugiere que la principal fuente de estos depósitos fluviales son las rocas de alto grado del Complejo Oaxaqueño. Esta aseveración es soportada por un grupo principal de edades de circones detríticos que se traslapa con el rango de edades reportado para el Complejo Oaxaqueño (Figs. 10.7A-C; Solari *et al.*, 2014). Además, el mapa de escalamiento

multidimensional muestra similitudes de segundo orden con la muestra del Complejo Oaxaqueño (Fig. 10.4).

Una característica distintiva de las areniscas de las sucesiones fluviales del Cretácico es la presencia de fragmentos de milonita. En zonas aledañas se han reportado este tipo de rocas en la zona de Falla de Caltepec (Elías-Herrera y Ortega-Gutiérrez, 2002). El grupo de edades de ~250 a 350 Ma en las muestras analizadas, consistente con el grupo de edades reportado para los metagranitoides del Arco Pérmico del Este de México que van de ~257 a 286 Ma (Fig. 10.7D), por lo que se propone que estos fragmentos deriven de esta Provincia.

Al igual que las muestras del Conjunto 1 de la Formación Matzitzi, los líticos metamórficos son los más abundantes, se tratan de rocas metasedimentarias en facies de esquisto verde. Una posible fuente de estos fragmentos son las rocas metasedimentarias de bajo grado del Complejo Acatlán. En efecto, esta aseveración es soportada por un grupo de edades de circones detríticos de ~250 a ~350 Ma que es consistente con la edades reportadas para las rocas metasedimentarias del ensamble del Carbonífero Superior del Complejo Acatlán (Figs. 10.7 E-H; Kirsch *et al.*, 2012).

En síntesis, las areniscas de las sucesiones fluviales del Cretácico derivaron principalmente del Complejo Oaxaqueño, y en menor medida de las rocas metasedimentarias de bajo grado del Complejo Acatlán y del Arco Pérmico del Este de México.

Figura 10.7. Estimadores de densidad de Kernel (Vermeesch, 2012) e histogramas que muestran la distribución estadística de las edades de circones detríticos de A) y B) las areniscas de las sucesiones fluviales del Cretácico analizadas en este trabajo, C) el Complejo Oaxaqueño (Solari *et al.*, 2014), D) el metagranito Cozahuico (Elías-Herrera *et al.*, 2005), E) metagranitoides del Complejo Acatlán (Talavera-Mendoza *et al.*, 2005; Morales-Gámez *et al.*, 2008; Galaz *et al.*, 2013), F) y G) ensamble de rift del Cámbrico-Silúrico de alta presión (Talavera-Mendoza *et al.*, 2005; Murphy *et al.*, 2006; Vega-Granillo *et al.*, 2007; Morales-Gámez *et al.*, 2008; Galaz *et al.*, 2008; Galaz *et al.*, 2008; Zepeda-Martínez *et al.*, 2018) del Complejo Acatlán, y H) ensamble del Carbonífero Superior (Kirsch *et al.*, 2012) del Complejo Acatlán.

10.3 Significado geológico del Conjunto 2 originalmente agrupado en la Formación Matzitzi

La integración de los datos reportados en este trabajo con los de Bedoya-Mejía (2018) permite definir algunas diferencias substanciales entre los diferentes depósitos fluviales del área de estudio. Estas diferencias se sintetizan en la Tabla 10.1. En particular, resalta que la Formación Matzitzi, así como se había considerado anteriormente, contiene dos diferentes sucesiones con diferentes características sedimentológica, de procedencia y edad. Estas diferencias justifican que se separen estos dos conjuntos y se consideren como unidades estratigráficas distintas. En este trabajo se propone que la sucesión fluvial del Conjunto 1 se continúe denominando Formación Matzitzi, en cuanto esta contiene los afloramientos con base en que fue originalmente definida, así como la flora del Paleozoico Superior que ha sido estudiada y que es típica de esta unidad. Los depósitos fluviales del Conjunto 2 se consideran en este trabajo como una nueva unidad estratigráfica de edad posterior a los 180 Ma, llamada formación Agua de Mezquite, la cual se define a continuación de manera informal.

De acuerdo con el Código Estratigráfico Norteamericano (Barragán *et al.*, 2010), una tesis es considerada un medio poco adecuado para la descripción y definición formal de una unidad estratigráfica y no constituye una publicación valida. Sin embargo, reconocer que dentro de la Formación Matzitzi existen diferentes unidades estratigráficas es de suma importancia para la reconstrucción de la estratigrafía en el sur de México, y se considera fundamental separar adecuadamente estas sucesiones fluviales. Por ello, en este trabajo se presenta una breve descripción de acuerdo con el Código Estratigráfico Norteamericano (Barragán *et al.*, 2010), para definir informalmente a la formación Agua de Mezquite y justificar su separación de la Formación Matzitzi.

El nombre de la formación Agua de Mezquite deriva de la comunidad homónima localizada en el estado de Puebla, entre las localidades de Zapotitlán Salinas y Los Reyes Metzontla (Fig. 5.12), donde se encuentran las mejores exposiciones que permiten una descripción más detallada de esta unidad. La formación Agua de Mezquite se distribuye además al oriente del Cerro Machichi y al norte del poblado de San Luis Atolotitlán (Fig. 5.12).

La formación Agua de Mezquite es una intercalación de arenisca, conglomerado y, en menor proporción, limolita. Esta unidad estratigráfica contiene una intercalación de cuerpos con

base erosiva y cóncava hacia arriba, cortándose lateral y verticalmente, estos cuerpos se componen por conglomerado con estratificación cruzada curvada y planar, arenisca con estratificación cruzada curvada y planar, y rizaduras y limolita con laminación plano-paralela de régimen inferior. También, se alternan cuerpos de conglomerado masivo y ocasionalmente con gradación inversa. Los clastos de los conglomerados tienen formas obladas, en disco, en cuchillo y compactas. Los principales componentes de los conglomerados son fragmentos gneis cuarzo-feldespático, roca volcánica, arenisca, caliza y pedernal. Petrográficamente, se compone de fragmentos monocristalinos y policristalinos faneríticos de cuarzo y feldespato con textura granoblástica ameboide. Los líticos que contiene son principalmente volcánicos y texturalmente corresponden a fragmentos tipo *lathwork*, felsíticos y en menor proporción microlíticos, fragmentos de caliza *mudstone* y cuarzo policristalino.

El espesor estratigráfico de esta unidad no es claro, dada la intensa deformación que afecta al área de estudio. Esto mismo, ha dificultado comprender las relaciones estratigráficas que la formación Agua de Mezquite guarda con otras unidades estratigráficas. La formación Agua de Mezquite sobreyace en discordancia litológica a los gneises cuarzo-feldespáticos del Complejo Oaxaqueño, esta discordancia se localiza al norte del poblado de Los Reyes Metzontla (Fig. 5.12). Los datos reportados por Bedoya-Mejía (2018) indican que la formación Agua de Mezquite al menos tiene una edad máxima de depósito de 180 Ma, la cual no es necesariamente la edad real de depósito de esta unidad estratigráfica. Sin embargo, debido a la presencia de fragmentos de caliza que pueden proceder de las sucesiones carbonatadas del Jurásico Superior o Cretácico Inferior, no se descarta que esta formación pueda ser cretácica o inclusive cenozoica.

Las características sedimentológicas indican que la formación Agua de Mezquite es una intercalación de elementos GB (barras y formas de fondo de grava) y SG (depósitos de flujos gravitacionales) que, de acuerdo con Miall (2006), corresponden a sistemas fluviales asociados a altas pendientes. Por esta razón, el ambiente sedimentario bajo el cual se depositó la formación Agua de Mezquite puede tratarse de un río trenzado o abanico aluvial.

Figura 10.1 Resumen de las características de las sucesiones fluviales estudiadas.							
Unidad estratigráfica	Elementos arquitectónicos	Ambiente sedimentario	Forma de clastos	Principal fuente de detrito	Otras fuentes de detrito	Edad	Minerales pesados
Formación Matzitzi (Conjunto 1)	CH, SG, LV, CS, FF	Sistema fluvial anastomosado y abanico aluvial	Compactos, compactos- elongados, compactos-	Rocas de alto grado del Meso- Neoproterozoico del Complejo	1) Complejo Acatlán (líticos metamórficos en facies de subesquisto a esquisto verde)	Paleozoico Tardío (edad paleontoló	Granate, circón, rutilo, apatito, clinozoisita,
			cuchillo, compactos-disco	Oaxaqueño	 2) Arco Pérmico del Este de México (líticos volcánicos felsíticos) 3) Areniscas (post- 290 Ma) 	gica) o Triásico Medio (edad Felsita Atolotitlán	pistachita, mica blanca sagínitica, biotita, clorita, turmalina y
Formación Agua de Mezquite (Conjunto 2)	GB y SG	Río trenzado o abanico aluvial	Compactos, compactos- elongados, compactos- cuchillo, compactos-disco, elongados, cuchillo, disco, muy elongados y	Rocas del alto grado del Meso- Neoproterozoico del Complejo Oaxaqueño	 Provincia vulcanosedimentaria Nazas (líticos volcánicos <i>lathwork</i> a felsíticos)) Post- Jurásico Medio (edad máxima de depósito 180 Ma)	Circón, rutilo, apatito, clorita, mica blanca sagínitica, clinozoisita y turmalina
					2) Sucesiones carbonatadas del Jurásico Superior-Cretácico Inferior (caliza y pedernal)		
			muy en disco		3) Complejo Acatlán (líticos metamórficos en facies de subesquisto a esquisto verde)		
					4) Arco Permico del Este de México (líticos volcánicos felsíticos)		
Formaciones Caltepec y La Compañía	GB y SG	Río trenzado y abanico aluvial	No aplica	Rocas de alto grado del Meso- Neoproterozoico del Complejo Oaxaqueño	 Complejo Acatlán (líticos metamórficos en facies de subesquisto a esquisto verde) Arco Pérmico del Este de México (líticos 	Cretácico Inferior (edad paleontoló gica)	Circón, rutilo, apatito, clorita, mica blanca sagínitica, anfibol verde
					volcánicos felsíticos)		y clinozoisita

10.4 Líneas guía para la identificación de las sucesiones fluviales en el área de estudio

Los datos sedimentológicos, petrográficos y geocronológicos permiten diferenciar entre las distintas unidades fluviales aflorantes en la región comprendida entre Los Reyes Metzontla y Coatepec. Esta información se resume en la Tabla 10.1. De acuerdo los datos presentados en este trabajo, es posible diferenciar entre la Formación Matzitzi, las formaciones cretácicas y la nueva formación denominada en este trabajo como formación Agua de Mezquite.

El análisis de elementos arquitectónicos indica que la Formación Matzitzi está compuesta por elementos típicos de un sistema fluvial anastomosado con abanicos aluviales en las partes marginales de la cuenca. Por otro lado, las formaciones Agua de Mezquite, Caltepec y La Compañía se caracterizan por una alternancia de elementos de típicos de sistemas fluviales de alta energía y gradiente topográfico como son los ríos trenzados y abanicos aluviales.

Como se ha dicho antes, todas las muestras analizadas de las 3 unidades fluviales tienen como principal componente fragmentos derivados de una fuente metamórfica de alto grado que se relaciona con el Complejo Oaxaqueño, lo cual es soportado por un grupo de edades de circones del Meso al Neoproterozoico.

A pesar de este punto en común, hay también diferencias mayores. Mientras que la Formación Matzitzi y las formaciones Caltepec y La Compañía son definidas por petrofacies metamorficlásticas y contienen principalmente líticos metamórficos en facies de subesquistos a esquistos verdes que proceden de los ensambles del Complejo Acatlán; y en menor proporción líticos volcánicos felsíticos del Arco Pérmico del Este Mexicano. La formación Agua de Mezquite es representada por petrofacies vulcanoclásticas, presentando líticos volcánicos que derivan de la Provincia volcano-sedimentaria Nazas. Otra característica composicional es una mayor variedad de líticos sedimentarios como caliza y pedernal que podrían derivar de sucesiones carbonatadas de Jurásico Superior y Cretácico Inferior (Mendoza-Rosales, 2010; Campos-Madrigal *et al.*, 2013).

La edad de la Formación Matzitzi es aún un tema de debate, esta podría ser del Paleozoico Superior de acuerdo con el contenido fósil (Weber *et al.*, 1987; Flores-Barragán *et al.*, 2019) o inclusive del Triásico Medio por la edad de la Felsita Atolotitlán (Elías-Herrera *et al.*, 2011; Bedoya-Mejía, 2018). La edad de las formaciones Caltepec y La Compañía ha sido asignada al Cretácico Inferior de acuerdo con el contenido fósil (Mendoza-Rosales, 2010 y referencias en él). Finalmente, la edad de la formación Agua de Mezquite es una edad máxima de depósito del Jurásico Medio (Bedoya-Mejía, 2018), aunque no se descarta que pueda ser cretácica o inclusive cenozoica.

Conclusiones

Los resultados presentados en este trabajo permiten establecer líneas guía para la identificación de las sucesiones fluviales en el área de estudio. Estas guías se basan en datos sedimentológicos, petrográficos y geocronológicos. Estas observaciones permitieron dividir a la Formación Matzitzi en dos conjuntos, los cuales fueron comparados con las sucesiones fluviales del Cretácico que afloran en el área de estudio.

El Conjunto 1 se caracteriza por ser una alternancia de conglomerado, arenisca y lodolita, los elementos arquitectónicos son los típicos de un sistema fluvial anastomosado. Los conglomerados presentan formas compactas. Las areniscas de este conjunto derivaron principalmente de las rocas de alto grado del Complejo Oaxaqueño, como lo indica un único grupo de edades del Proterozoico que son concordantes para el rango de edades reportado para el Complejo Oaxaqueño; con aportes menores de las rocas metasedimentarias de bajo grado del Complejo Acatlán y rocas volcánicas felsíticas del Arco Pérmico del Este de México. Se propone que estas rocas mantengan el nombre de Formación Matzitzi debido a que incluyen los afloramientos donde fue originalmente definida y porque contiene la flora fósil del Pérmico.

El Conjunto 2 se caracteriza por una alternancia de areniscas y conglomerados, cuyos elementos arquitectónicos son de abanico aluvial o río trenzado. Los conglomerados contienen formas compactas, en disco, en cuchillo y obladas. Al igual que el Conjunto 1, las areniscas derivan principalmente de las rocas de alto grado del Complejo Oaxaqueño, como lo indica un grupo de edades concordantes con el rango de edad reportado para este complejo. El Conjunto 2 contiene en su mayoría líticos volcánicos de un amplio rango composicional, la aparición de un grupo de edades del Jurásico Inferior-Medio sugiere que estas rocas derivan de las sucesiones volcano-sedimentarias de la Provincia Nazas, además, este conjunto contiene clastos de calizas y pedernal que derivarían de las sucesiones carbonatadas del Jurásico Superior- Cretácico Inferior circundantes al Golfo de México. En menor medida, se reportan fuentes como el Arco Pérmico del Este de México y el Complejo Acatlán. Estos datos soportan que este grupo se separe de la tradicional Formación Matzitzi, por lo que se introduce por primera vez de manera informal, el nombre de formación Agua de Mezquite para este conjunto de rocas. La edad máxima de depósito de 180 Ma se basa en la edad de

los circones más jóvenes. Sin embargo, se necesitan trabajos posteriores para entender con más detalle la edad de depósito y las relaciones estratigráficas con otras unidades dada la complejidad estructural de la zona de estudio.

Finalmente, las formaciones Caltepec y La Compañía incluidas agrupadas como sucesiones fluviales del Cretácico Inferior se depositaron en un abanico fluvial que varía lateralmente a depósitos marinos someros. Las areniscas derivan principalmente de las rocas de alto grado del Complejo Oaxaqueño, las rocas metasedimentarias del Complejo Acatlán y las rocas del Arco Pérmico del Este de México. Asimismo, estas diferencias en la procedencia con el Conjunto 2, justifican que las sucesiones fluviales del Cretácico se separaren de la formación Agua de Mezquite.

Bibliografía

- Alencaster, G., Buitrón-Sánchez, B. E. (1965). Fauna del Jurásico Superior de la región de Petlacingo, Puebla. *Paleontología Mexicana*, 21(53), 14.
- Arellano-Gil, J., Vachard, D., Yussim, S., Flores de Dios, A. (1998). Aspectos estratigráficos, estructurales y paleogeográficos del Pérmico Inferior al Jurásico Inferior en Pemuxco, estado de Hidalgo, México. *Revista Mexicana de Ciencias Geologicas*, 15(1), 9–13.
- Barbosa-Gudiño, J. R., Orozco-Esquivel, T., Gómez-Anguiano, M., Zavala-Monsiváis, A. (2008). Aportaciones para la interpretación estratigráfica y estructural de la porción noroccidental de la Sierra de Catorce, San Luis Potosí, México. *Journal of South American Earth Sciences*, 25(1), 49–63.
- Barragán, R., Campos-Madrigal, E., Ferrusquía-Villafranca, I., López-Palomino, I., Tolson, G. (2010). Código estratigráfico norteamericano. *Boletín de La Sociedad Geológica Mexicana*, 117.
- Bedoya-Mejía, A. (2018). Análisis de procedencia y termocronología detrítica de las formaciones Matzitzi y Tianguistengo: implicaciones tectónicas en la evolución paleozoica-mesozoica del sur de México. Tesis de mestría. Universidad Nacional Autónoma de México.
- Calderón-García, A. (1956). Bosquejo geológico de la región de San Juan Raya, Puebla. *XX Congreso Geológico Internacional*, 9–27. Instituto de Geología, Universida Nacional Autónoma de México.
- Campa-Uranga, M. F., García-Díaz, J. l., Iriondo, A. (2004). El arco sedimentario del Jurásico Medio (Grupo Tecocoyunca y Las Lluvias) de Olinalá, Guerrero. GEOS: Unión Geofísica Mexicana, 24, 174.
- Campos-Madrigal, E., Centeno-García, E., Mendoza-Rosales, C. C., Silva-Romo, G. (2013). Sedimentología, reconstrucción paeoambiental y significado tectónico de las sucesiones clásticas del Jurásico Medio en el área Texcalapa, Puebla- Huajuapan de León, Oaxaca. *Revista Mexicana de Ciencias Geológicas*, 30(1), 24–50.

Cann, J. H., Lower, C. S., Jago, J. B. (2014). Provenance and sediment characteristics of

contemporary gravel deposits at Sellicks Beach, eastern shore of Gulf St. Vincent, South Australia. *Australian Journal of Earth Sciences*, *61*, 819–836.

- Cavazos-Tovar, J. G., Gómez-Tuena, A., Parolari, M. (2020). The origin and evolution of the Mexican Cordillera as registered in modern detrital zircons. *Gondwana Research*, 86, 83–103.
- Centeno-García, E., Mendoza-Rosales, C., Silva-Romo, G. (2009). Sedimentología de la Formación Matzitzi (Paleozoico superior) y significado de sus componentes volcánicos, región de Los Reyes Metzontla-San Luis Atolotitlán, Estado de Puebla. *Revista Mexicana de Ciencias Geológicas*, 26(1), 18–36.
- Centeno-García, E., Mendoza-Rosales, C., Silva-Romo, G., Campos-Madrigal, E. (2019). Magmatismo del Paleozoico Tardío-Mesozoico Temprano en México, implicaciones tectónicas. En Simposio GeoPangea: desde la consolidación hasta la dispersión del último supercontinente (Vol. 122, p. 18).
- Dickinson, W. R. (1970). Interpreting detrital modes of greywackes and arkose. *Journal of Sedimentary Petrology*, 40(2), 695–707.
- Dickinson, W. R., Gehrels, G. E. (2009). Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. *Earth and Planetary Science Letters*, 288(1), 115–125.
- Dickinson, W. R., Lawton, T. F. (2001). Carboniferous to Cretaceous assembly and fragmentation of Mexico. *Geological Society of America Bulletin*, *113*(9), 1142–1160.
- Durán-Aguilar, R. F. (2013). Sedimentología y geocronología de los lechos rojos del Jurásico. Correlaciones y procedencia. Tesis de mestría. Universidad Nacional Autónoma de México.
- Elías-Herrera, M., Ortega-Gutiérrez, F. (2002). Caltepec fault zone: An Early Permian dextral transpressional boundary between the Proterozoic Oaxacan and Paleozoic Acatla'n complexes, southern Mexico, and regional tectonic implications. *Tectonics*, 21(3), 1013.
- Elías-Herrera, M., Ortega-Gutiérrez, F., Macías-Romo, C., Sánchez-Zavala, J. L., Solari, L.

A. (2011). Colisión oblicua del Cisuraliano-Guadalupiano entre bloques continentales en el sur de México: evidencias estratigráfico-estructurales y geocronólogicas. *Simponsio En Honor Del Dr. Zoltan de Cserna*, 159–164. Ciudad de México, Instituto de Geología, Universidad Nacional Autónoma de México.

- Elías-Herrera, M., Ortega-Gutiérrez, F., Sánchez-Zavala, J. L., Macías-Romo, C., Ortega-Rivera, A., Iriondo, A. (2005). La falla de Caltepec: raíces expuestas de una frontera tectónica de larga vida entre dos terrenos continentales del sur de México. *Boletín de La Sociedad Geológica Mexicana. Volumen Conmemorativo Del Centenario. Grandes Fronteras Tectónicas de México, LVII*(1), 83–109.
- Erwin, D. H. (1994). The Permo-Triassic extinction. Nature, 367, 231-236.
- Flores-Barragán, M. A., Velasco de León, M. P., Lozano-Carmona, D. E., Ortega-Chavez,
 E. (2019). Avances en el conocimiento de la paleoflora de la Formación Matzitzi y sus implicaciones temporales. *Simponsio Geopangea: Desde La Consolidación Hasta La Dispersión Del Último Supercontinente*, 21–22. Instituto de Geología, Universidad Nacional Autónoma de México.
- Galaz, G., Keppie, J. D., Lee, J. W. K., Ortega-Rivera, A. (2013). A high-pressure folded klippe at Tehuitzingo on the western margin of an extrusion zone, Acatlán Complex, southern México. *Gondwana Research*, 23(2), 641–660.
- Garzanti, E. (2016). From static to dynamic provenance analysis—Sedimentary petrology upgraded. *Sedimentary Geology*, *336*, 3–13.
- Garzanti, E. (2017). The Maturity Myth In Sedimentology and Provenance Analysis. *Journal* of Sedimentary Research, 87, 353–365.
- Garzanti, E. (2019). Petrographic classification of sand and sandstone. *Earth-Sciences Reviews*, 192, 545–563.
- Garzanti, E., Andò, S. (2019). Heavy Minerals for Junior Woodchucks. Minerals, 9, 148.
- Garzanti, E., Vezzoli, G. (2003). A Classification of Metamorphic Grains in Sands Based on their Composition and Grade. *Journal of Sedimentary Research*, 73(5), 830–837.

- Gazzi, P. (1966). Le arenarie del flysch sopracretaceo dell'Appennino modenese; correlazioni con il flysch di Monghidoro. *Mineral. Petrogr., Acta 12, 69–97.*
- Gerwert-Navarro, M., Villanueva-Amadoz, U. (2019). Estudios paleobotánicos sobre la Formación Matzitzi. Simposio GeoPangea: Desde La Consolidación Hasta La Dispersión Del Último Supercontinente, 122.
- Goldhammer, R. K. (1999). Mesozoic sequence stratigraphy and paleogeographic evolution of northeast Mexico. In *Mesozoic Sedimentary and Tectonic History of North-Central Mexico*. Geological Society of America Special Paper, 340, 1–58.
- González-Hervet, M. G., González-Martínez, P. R., Rojas-Rosas, R., Miranda-Peralta, L. R., Arredondo-Delgadillo, M. (1984). Caracteristícas estratigráficas y estructurales del límite de los terrenos Mixteco y Oaxaca, en la región de Los Reyes Metzontla, Pue. *Boletín de La Sociedad Geológica Mexicana*, 45(1–2), 21–32.
- Graham, D. J., Midgley, N. G. (2000). Graphical representation of particle shape using triangular diagrams: an Excel spreadsheet method. *Earth Surface Processes and Landforms*, 25, 1473–1477.
- Helbig, M., Keppie, J. D., Murphy, J. B., Solari, L. A. (2012). Exotic rifted passive margin of a back-arc basin off western Pangea: Geochemical evidence from the early Mesozoic Ayú Complex, southern Mexico. *International Geology Review*, 5, 863–881.
- Hernández-Láscares, D. (2000). Contribución al conocimiento de la estratigrafía de la Formación Matzitzi, área Los Reyes Metzontla- Santiago Coatepec, extremo suroriental del estado de Puebla. Tesis de maestría. Universidad Nacional Autónoma de México.
- Jiao, S., Guo, J. (2011). Application of the two-feldspar geothermometer to ultrahightemperature (UHT) rocks in the Khondalite belt, North China craton and its implications. *American Mineralogist*, 96(2–3), 250–260.
- Juarez-Zuñiga, S. (2019). Análisis de los conglomerados de la formación Matzitzi, sur de México :implicaciones para la evolución del Paleozoico. Tesis de maestría. Universidad Nacional Autónoma de México.

Juarez-Zuñiga, S., Solari, L. A., Ortega-Obregón, C. (2020). Permian igneous clasts from the

Matzitzi Formation, southern Mexico: isotopic constrains on the final amalgamation of Pangea. *Geological Society of London. Special Publication*, 503.

- Keppie, J. D., Dostal, J., Cameron, K. L., Solari, L. A., Ortega-Gutiérrez, F., Lopez, R. (2003). Geochronology and geochemistry of Grenvillian igneous suitesin the northern Oaxacan Complex, southern Mexico: tectonicimplicationsJ. *Precambrian Research*, 120, 365–389.
- Keppie, J. D., Dostal, J., Miller, B. V., Ramos-Arias, M. A., Morales-Gámez, M., Nance, R., Cooper, P. (2008). Ordovician–earliest Silurian rift tholeiites in the Acatlán Complex, southern Mexico: Evidence of rifting on the southern margin of the Rheic Ocean. *Tectonophysics*, 461(1–4), 130–156.
- Keppie, J. D., Dostal, J., Murphy, J. B., Nance, R. (2008). Synthesis and tectonic interpretation of the westernmost Paleozoic Variscan orogen in southern Mexico: from rifted Rheic margin to active Pacific margin. *Tectonophysics*, 461, 277–290.
- Kirsch, M., Keppie, D. J., Murphy, B., Solari, L. (2012). Permian–Carboniferous arc magmatism and basin evolution along the western margin of Pangea: Geochemical and geochronological evidence from the eastern Acatlán Complex, southern Mexico. *Geological Society of America Bulletin*, 124, 1607–1628.
- Kirsch, M., Keppie, D. J., Murphy, J. B., Lee, J. K. W. (2013). Arc plutonism in a transtensional regime: the late Paleozoic Totoltepec pluton, Acatlán Complex, southern Mexico. *International Geology Review*, 55(3), 263–286.
- Macías-Romo, C., Elías-Herrera, M., Sánchez-Zavala, J. L. (2019). ¿Magmatismo Triásico (riodacita Atolotitlán) sedimentario en la Formación Matzitzi, unidad post-orogénica de traslape en el sur de México? Simposio GeoPangea: Desde La Consolidación Hasta La Dispersión Del Último Supercontinente, 24. Instituto de Geología, Universida Nacional Autónoma de México.
- Makaske, B. (2001). Anastomasing rivers: a review of their classification, origin and sedimentary products. *Earth-Sciences Reviews*, *53*, 149–196.

Marsaglia, K. M., Ingersoll, R. V. (1992). Compositional trends in arc-related, deep-marine

sand and sandstone: A reassessment of magmatic-arc provenance. *Geological Society* of America Bulletin, 102(12), 1637–1649.

- Martini, M., Ortega-Gutiérrez, F. (2018). Tectono-stratigraphic evolution of eastern Mexico during the break-up of Pangea: A review. *Earth-Sciences Reviews*, *183*, 38–55.
- Martini, M., Solari, L., Peña-Guerrero, M., Martinez-Zepeda, M., Montomoli, C. (2020). Guidelines for assessing the provenance of Mesozoic and Cenozoic clastic successions sourced by pre-Jurassic basement complexes in southernmost North America. *Journal* of Sedimentary Research, 90(5), 513–532.
- Mendoza-Rosales, C. C. (2010). Estratigrafía y facies de las cuencas cretácicas del sur de Puebla y su significado tectónico. Tesis de doctorado. Universidad Nacional Autónoma de México.
- Miall, A. D. (2006). The Geology of Fluvial Deposits. Sedimentary Facies, basin Analysis, and Petroleum Geology: Heidelberg, Germany, Springer, 582.
- Morales-Gámez, M., Keppie, J. D., Norman, M. (2008). Ordovician–Silurian rift-passive margin on the Mexican margin of the Rheic Ocean overlain by Carboniferous–Permian periarc rocks: Evidence from the eastern Acatlán Complex, southern Mexico. *Tectonophysics*, 461(1–4), 291–310.
- Morton, A. C. (1985). Heavy minerals in provenance studies. En Zuffa (ed.), Provenance od arenites: D. Reidel Publishing Company, 249-277.
- Murphy, J. B., Keppie, J. D., Nance, R. ., Miller, B. V., Dostal, J., Middleton, M., Storey, C. (2006). Geochemistry and U–Pb protolith ages of eclogitic rocks of the Asís Lithodeme, Piaxtla Suite, Acatlán Complex, southern Mexico: tectonothermal activity along the southern margin of the Rheic Ocean. *Journal of the Geological Society*, *163*, 683–695.
- Nichols, G. J. (2009). Rivers and alluvial fans. In *Sedimentology and stratigraphy*: Wiley-Blackwell, 2nd edition, 129–150.
- Ortega-Gutiérrez, F. (1978). *Estratigrafía del Complejo Acatlán en la Mixteca Baja, Estados de Puebla y Oaxaca:* Universidad Nacional Autónoma de México.

- Ortega-Gutiérrez, F., Elías-Herrera, M., Morán-Zenteno, D. J., Solari, L., Weber, B., Luna-González, L. (2018). The pre-Mesozoic metamorphic basement of Mexico, 1.5 billion years of crustal evolution. *Earth-Sciences Reviews*, 183, 2–37.
- Ortega-Obregón, C., Solari, L. A., Gómez-Tuena, A., Elías-Herrera, M., Ortega-Gutiérrez, F., Macías-Romo, C. (2014). Permian-Carboniferous arc magmatism in southern Mexico: U-Pb dating, trace elements and Hf isotopic evidence on zircons of earliest subduction beneath the western margin of Gondwana. *International Journal of Earth Science*, 103(5), 1287–1300.
- Passchier, C. W., Trouw, R. A. J. (2005). Deformation mechanisms. In *Micro-tectonics*, 25–66.
- Paton, C., Hellstrom, J., Paul, B., Woodhead, J. D., Hergt, J. M. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. *Journal of Analytical Atomic Spectrometry*, (12).
- Rosales-Lagarde, L., Centeno-García, E., Dostal, J., Sour-Tovar, F., Ochoa-Caramillo, H., Quiroz-Barroso, S. (2005). The Tuzancoa Formation: Evidence of an Early Permian Submarine Continental Arc in East-Central Mexico. *International Geology Review*, 47, 901–919.
- Rubio-Cisneros, I. I., Lawton, T. F. (2011). Detrital zircon U-Pb ages of sandstones in continental red beds at Valle de Huizachal, Tamaulipas, NE Mexico: Record of Early-Middle Jurassic arc volcanism and transition to crustal extension. *Geosphere*, 7(1), 159– 170.
- Sato, K., Santosh, M. (2007). Titanium in quartz as a record of ultrahigh-temperature metamorphism: the granulites of Karur, southern India. *Mineralogical Magazine*, 71(2), 143.
- Silva-Pineda, A. (1970). Plantas del Pensilvánico de la región de Tehuacan: Instituto de Geología, Universidad Nacional Autónoma de México, 29, 108.
- Skilling, I. P., White, J. D. L., McPhie, J. (2002). Peperite: a review of magma-sediment minglig. *Journal of Volcanology and Geothermal Research*, 114, 1–17.

- Sneed, E. D., Folk, R. L. (1958). Pebbles in the lower Colorado river, Texas a study in particle morphogenesis. *Journal of Geology*, 666(2), 114–150.
- Solari, L. A., González-León, C. M., Ortega-Obregón, C., Valencia-Moreno, M., Rascón-Heimpel, M. A. (2017). The Proterozoic of NW Mexico revisited: U-Pb geochronology and Hf isotopes of Sonoran rocks and their tectonic implication. *International Journal* of Earth Science, 107, 845–861.
- Solari, L. A., Keppie, J. D., Ortega-Gutiérrez, F., Cameron, K. L., Lopez, R., Hames, W. E. (2003). 990 and 1100 Ma Grenvillian tectonothermal events in the northern Oaxacan Complex, southern Mexico: roots of an orogen. *Tectonophysics*, 365, 257–282.
- Solari, L. A., Ortega-Gutiérrez, F., Elías-Herrera, M., Ortega-Obregón, C., Macías-Romo, C., Reyes-Salas, M. (2014). Detrital provenance of the Grenvillian Oaxacan Complex, southern Mexico: a zircon perspective. *International Journal of Earth Science*, 103, 1301–1315.
- Stern, R. J., Dickinson, W. R. (2010). The Gulf of Mexico is a Jurassic backarck basin. *Geosphere*, 6(6), 739–754.
- Stipp, M., Stünitz, H., Heilbronner, R., Schmid, S. M. (2002). The eastern Tonale fault zone: a "natural laboratory" for crystal plastic deformation of quartz over a temperature range from 250 to 700 °C. *Journal of Structural Geology*, 24, 1861–1884.
- Talavera-Mendoza, O., Ruíz, J., Gehrels, G. E., Meza-Figueroa, D. M., Vega-Granillo, R., Campa-Uranga, M. F. (2005). U–Pb geochronology of the Acatlán Complex and implications for the Paleozoic paleogeography and tectonic evolution of southern Mexico. *Earth and Planetary Science Letters*, 235(3–4), 682–699.
- Vega-Granillo, R., Talavera-Mendoza, O., Meza-Figueroa, D. M., Ruíz, J., Gehrels, G. E., López-Martínez, M., de la Cruz-Vargas, J. C. (2007). Pressure-temperature-time evolution of Paleozoic high-pressure rocks of the Acatlán Complex (southern Mexico): Implications for the evolution of the Iapetus and Rheic Oceans. *Geological Society of America Bulletin*, *119*(9–10), 1249–1264.

Vermeesch, P. (2012). On the visualisation of detrital age distributions. Chemical Geology,

(312–313), 190–194.

- Vermeesch, P. (2013). Multi-sample comparison of detrital age distributions. *Chemical Geology*, *341*, 140–146.
- Weber, R. (1997). How old is the Triassic flora of Sonora and Tamaulipas, and news on Leonardian fl oras in Puebla and Hidalgo, México. *Revista Mexicana de Ciencias Geologicas*, 14(2), 225–243.
- Weber, R., Centeno-García, E., y Magallón-Puebla, S. A. (1987). La Formación Matzitzi tiene edad permocarbonífera. *II Simponsio Sobre La Geología Regional de México*, 57–59. Instituto de Geología, Universida Nacional Autónoma de México.
- Wetherill, G. W. (1956). Discordant Uranium-Lead Ages, I. Transactions, American Geophysical Union, 37(3), 320–326.
- Zepeda-Martínez, M., Martini, M., Solari, L. A. (2018). A major provenance change in sandstones from the Tezoatlán basin, southern Mexico, controlled by Jurassic, sinistral normal motion along the Salado River fault: Implications for the reconstruction of Pangea. *Journal of South American Earth Sciences*, 86, 447–460.
- Zuffa, G. G. (1985). Optical analyses of arenites: influence of methodology on compositional results. In *Provenance of arenites*, 165–189.
Anexo 1

Mediciones de clastos de los conglomerados de los Conjuntos 1 y 2 de la Formación Matzitzi. Donde, a: eje largo, b: eje medio y c: eje corto. C1, C2 y C3 son los afloramientos donde se realizó la medición de clastos (Figs. 5.12 y 13).

	CON	JUNTO 2				CONJ	UNTO 1		
	C1: 18.244	454; -97.493	3507			C3: 18.0933	88; -97.339	076	
а	b	с	c/a	b/a	а	b	с	c/a	b/a
48	33.48	25.3	0.53	0.70	64.76	57.18	52.4	0.81	0.88
42.16	34.78	24.48	0.58	0.82	100.56	81.44	58.24	0.58	0.81
43.68	32.82	21.1	0.48	0.75	57.94	46.74	45.96	0.79	0.81
48.46	28.16	26.76	0.55	0.58	102.02	77.8	61.82	0.61	0.76
53.1	29.74	19.94	0.38	0.56	55.72	42.72	41.78	0.75	0.77
53.04	50.96	29.18	0.55	0.96	74.36	59.54	50.14	0.67	0.80
37.58	29.16	25.36	0.67	0.78	59.78	53.36	36.34	0.61	0.89
45.06	29.46	27.74	0.62	0.65	67.36	65.22	38.4	0.57	0.97
34.66	25.12	23.04	0.66	0.72	82.88	57.72	43.52	0.53	0.70
36.74	25.24	23.9	0.65	0.69	90.46	71.9	51.84	0.57	0.79
39.26	33.88	26.74	0.68	0.86	105.02	88.14	57.98	0.55	0.84
47.06	34.88	33.74	0.72	0.74	60.98	53.02	47.02	0.77	0.87
46.8	30.64	19.76	0.42	0.65	67.66	53.74	44.94	0.66	0.79
35.12	29.6	25.22	0.72	0.84	89.86	61.34	54.02	0.60	0.68
50.62	28.86	25.22	0.50	0.57	58.56	56.84	42.92	0.73	0.97
46.92	35.12	21.9	0.47	0.75	69.08	59.98	38.96	0.56	0.87
38.38	25.64	17.14	0.45	0.67	72.76	41.16	38.74	0.53	0.57
39.12	28.14	21.72	0.56	0.72	64.62	49.52	36.9	0.57	0.77
54.84	35.72	27.54	0.50	0.65	100.12	78.78	58.56	0.58	0.79
26	18.04	10.76	0.41	0.69	72.76	47.92	37.98	0.52	0.66
66.64	51.38	31.22	0.47	0.77	95.78	75.34	57.66	0.60	0.79
55.08	51.9	28.78	0.52	0.94	55.98	40.6	37.34	0.67	0.73
32.62	23.96	18.94	0.58	0.73	81.32	74.22	48.76	0.60	0.91
26.58	19.16	17.48	0.66	0.72	103.26	82.98	70.96	0.69	0.80
38.76	21.64	15.6	0.40	0.56	50.94	44.14	41.2	0.81	0.87
48.88	41.84	23.04	0.47	0.86	65.48	48.04	40.58	0.62	0.73
27.72	21.38	19	0.69	0.77	52.44	45.98	30.36	0.58	0.88
28.04	25.98	19.44	0.69	0.93	66.8	51.22	47.86	0.72	0.77
29.04	19.16	17.82	0.61	0.66	96.66	51.76	47.74	0.49	0.54
30.4	26.82	20.62	0.68	0.88	71.42	52.56	39.12	0.55	0.74
24.56	21	17.62	0.72	0.86	92.72	74.8	51.52	0.56	0.81
36.38	29.66	28.4	0.78	0.82	58.54	46.94	44.24	0.76	0.80
26.92	25.8	17.64	0.66	0.96	72.6	48.24	36.4	0.50	0.66
32.78	27.64	23.48	0.72	0.84	45.14	37.52	34.48	0.76	0.83
27.82	14.08	13.64	0.49	0.51	119.02	104.88	89.08	0.75	0.88
29.48	20	17.14	0.58	0.68	78.98	74.22	60.14	0.76	0.94

1									
25.74	23.76	22.48	0.87	0.92	53.44	43.74	31.1	0.58	0.82
29.24	24.98	22.26	0.76	0.85	115.94	88.34	72.58	0.63	0.76
35.16	25.76	18.14	0.52	0.73	85.46	84.06	58.04	0.68	0.98
21.72	17.04	12.18	0.56	0.78	96.6	68.08	63.56	0.66	0.70
22.86	17.14	17	0.74	0.75	99.88	80.9	65.96	0.66	0.81
	C2: 18.2462	270; -97.494	4579		124.54	95.62	71.82	0.58	0.77
70.76	44.32	36.6	0.52	0.63	89.08	75.42	60.58	0.68	0.85
79.54	67.38	24.94	0.31	0.85	78.76	74.56	62.48	0.79	0.95
39	36.32	21.48	0.55	0.93	92.46	70	46.96	0.51	0.76
65.46	29.68	17.12	0.26	0.45	56.3	44.34	33.62	0.60	0.79
73.58	49.26	41.04	0.56	0.67	55.04	41.96	34.64	0.63	0.76
37.12	29.88	23.42	0.63	0.80	88.26	73.58	56.98	0.65	0.83
43.78	40.98	21.4	0.49	0.94	85.72	78.98	58.12	0.68	0.92
36.42	27.64	17.46	0.48	0.76	42.1	35.58	33.04	0.78	0.85
46.9	31.72	23.88	0.51	0.68	40.02	28.98	26.38	0.66	0.72
68.48	47.44	23.26	0.34	0.69	42.88	32.76	25.02	0.58	0.76
83.56	68.76	33.16	0.40	0.82	110.32	64.76	58.96	0.53	0.59
62.98	36.96	34.86	0.55	0.59	87.88	61.04	44.02	0.50	0.69
50.06	35.94	33.24	0.66	0.72	143.72	87.62	82.08	0.57	0.61
31.8	24.48	21.02	0.66	0.77	92.66	90.22	59.66	0.64	0.97
79.38	52.56	23.42	0.30	0.66	64.06	55.9	47.26	0.74	0.87
47.02	39.24	30.2	0.64	0.83	80.74	64.54	59.58	0.74	0.80
32.48	26.92	13.98	0.43	0.83	100.14	90.92	69.12	0.69	0.91
64.48	45.62	31.72	0.49	0.71	91.32	76.8	60.92	0.67	0.84
42.3	31.32	27.38	0.65	0.74	93	81.62	75.88	0.82	0.88
72.66	62.48	19.26	0.27	0.86	64.58	54.46	41.96	0.65	0.84
38.04	29.4	24.82	0.65	0.77	57.9	46.88	46.54	0.80	0.81
48.94	32.98	20.5	0.42	0.67	64.36	52.38	38.08	0.59	0.81
79.72	59.84	43.7	0.55	0.75	106.5	104.64	86.76	0.81	0.98
50.98	35.64	19.66	0.39	0.70	75.02	66.04	42.38	0.56	0.88
119.12	70.06	49.2	0.41	0.59	76.28	63.72	42.98	0.56	0.84
29.88	24.04	20.24	0.68	0.80	80.78	66.02	49	0.61	0.82
43.04	28.46	22.96	0.53	0.66	69.04	43.74	32.42	0.47	0.63
62.08	48.58	26.42	0.43	0.78	65.16	44.52	30.06	0.46	0.68
25.14	23.76	22.68	0.90	0.95	48.04	41.82	31.34	0.65	0.87
28.86	27.88	17.98	0.62	0.97	53.38	48.16	35.22	0.66	0.90
30.92	27.06	20.82	0.67	0.88	57.88	47.98	45.52	0.79	0.83
71.96	58.22	41.54	0.58	0.81	49.26	32.48	31.12	0.63	0.66
100.48	70.82	37.96	0.38	0.70	51.74	35.34	27	0.52	0.68
25.12	19.84	16.02	0.64	0.79	63.52	53.98	44.66	0.70	0.85
25.74	21.9	13.36	0.52	0.85	55.98	42.98	37.44	0.67	0.77
42.06	35.62	14.88	0.35	0.85	51.78	45.86	23.66	0.46	0.89
					49.86	43.96	36.14	0.72	0.88

41.3	35.72	30.96	0.75	0.86
44.94	34.98	24.12	0.54	0.78
56.1	55.14	41.86	0.75	0.98
58.18	48.46	43.36	0.75	0.83
103.04	80.64	61.72	0.60	0.78
75.64	63.16	37.56	0.50	0.84
102.76	82.68	54.26	0.53	0.80
50.28	35.02	31.98	0.64	0.70
47.48	40.84	33.86	0.71	0.86
42.48	36.04	29.34	0.69	0.85
145.82	125.62	97.44	0.67	0.86
158.56	138.98	67.48	0.43	0.88

Parámetro	Definición
Qs	Cristal individual de cuarzo
Qru	Cristal individual de cuarzo con inclusiones aciculares de rutilo
QRm	Cuarzo en fragmento fanerítico metamórfico
QLm	Cuarzo en lítico metamórfico
QLv	Cuarzo en lítico volcánico
QLss	Cuarzo en lítico sedimentario siliciclástico
Qp	Cuarzo policristalino
Ps	Cristal individual de plagioclasa
PRm	Plagioclasa en fragmento fanerítico metamórfico
Psa	Cristal individual de plagioclasa con estructura antipertítica
PLvf	Plagioclasa en lítico volcánico
PLmf	Plagioclasa en lítico metamórfico
PLss	Plagioclasa en lítico sedimentario siliciclástico
Ks	Cristal individual de feldespato potásico
Ksm	Cristal individual de feldespato potásico con estructura mesopertítica
Ksp	Crsital individual de feldespato potásico con estructura pertítica
KRm	Feldespato potásico en fragmento fanerítico metamórfico
KLv	Feldespato potásico en lítico volcánico
Lmf (2-4)	Lítico metafelsitico/metapsammítico (los números indican el rango metamórfico)
Lmp (2-4)	Lítico metapelítico de rango 2 a 4 (los números indican el rango metamórfico)
Lmb (2-3)	Lítico metapelítico de rango 2 a 3 (los números indican el rango metamórfico)
Lmc	Lítico metacarbonatado
Lvf	Lítico volcánico felsítico
Lvmi	Lítico volcánico microlítico
Lvl	Lítico volcánico lathwork
Lss	Lítico sedimentario siliciclástico
Lsc	Lítico sedimentario carbonatado
Mtz	Matriz
Inc	Intraclastos
Arg	Componente argilitizado
нм	Minerales pesados no opacos
Bt	Biotita
Wmca	Mica blanca
Ор	Minerales opacos
Categoría	Definición
Qm	Cuarzo monocristalino total (Qs+QRm+Qru+QLmf+QLvf+QLss)
Q	Cuarzo total (Qm+Qp)
Р	Plagioclasa total (Ps+Psa+PRm+PLvf+PLvl+PLmf)
к	Feldespato potásico total (Ks+KRm+Ksm+Ksp)
F	Feldespato (P+K)
Lm	Líticos metamórficos totales (Lmf+Lmb+Lmp+Lmc)
Lv	Liticos volcánicos totales (Lvf+Lvmi+Lvl)
Ls	Líticos sedimentarios totales (Lss+Lsc)
L	Líticos totales (Lm+Lv+Ls)

Anexo 2A. Parámetros y categorías definidos para el conteo de puntos en areniscas.

Anexo 2B. Resultados del conteo de puntos realizado.

Muestra	Coordenadas	Qs	Qru	QRm	Qp	Ps	Psa	PRm	Ks	Ksm	Ksp	KRm	Lmf 2	Lmf3	Lmf4	Lmp2	Lmp3	Lmp4	Lmb2	Lmb3	Lmc	QLmf	PLmf	Lvf	Lvl	Lvm	QLv	PLv	KLv	Lss	Lsc	QLss	PLss	Bt	Wmca	HM	Op	Mtz	Inc	Arg	TOTAL
															C	onjunt	o 1 elemo	ento CH	de la F	ormació	n Matz	itzi																			
MAT-3	18.212048; -97.416776	164	1	25	0	85	2	14	97	29	1	14	6	2	0	14	29	5	0	1	1	0	0	0	0	0	0	0	0	8	0	1	0	0	3	16	3	2	0	4	527
MAT-4	18.215176; -97.414763	228	0	16	0	79	4	12	63	13	3	8	7	11	0	16	13	2	0	1	0	0	0	2	0	0	0	0	0	12	0	3	1	0	7	12	2	11	0	0	526
MAT-5	18.224807; -97.413588	226	4	27	0	96	0	13	11	9	1	0	11	2	0	26	15	2	0	0	0	3	0	5	0	0	0	0	0	11	0	11	2	0	9	6	16	11	0	0	517
MAT-7	18.241671; -97.444943	163	0	6	2	77	5	3	97	14	2	1	0	4	0	2	9	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	9	3	0	75	0	0	0	473
MAT-10	18.153525; -97.302547	165	1	110	1	45	1	25	64	39	3	30	3	8	2	7	13	13	0	3	4	1	0	1	0	0	0	0	0	3	0	0	0	7	17	1	4	4	0	0	575
MAT-11	18.153461; -97.302462	157	2	32	0	89	1	34	101	54	3	25	5	2	0	6	5	0	4	0	0	0	0	3	0	0	0	0	0	9	0	0	0	6	0	5	7	1	0	5	556
MAT-12	18.153397; -97.302331	138	1	61	0	66	1	25	91	35	2	13	0	4	0	0	13	0	0	0	8	3	0	0	0	0	0	0	0	0	0	0	0	4	13	4	8	4	37	0	531
MAT-13	18.114839; -97.340206	167	0	20	0	84	3	19	103	21	2	15	1	2	0	24	12	1	0	2	2	0	0	4	0	0	0	1	0	6	0	0	0	0	4	22	11	13	0	3	542
															0	Conjunt	o 1 elem	ento SG	de la F	ormació	n Matz	itzi																			
MAT-14	18.171112; -97.390140	237	0	5	0	98	1	2	53	7	1	0	9	17	3	15	53	11	0	3	4	0	0	2	0	0	0	0	0	22	0	0	0		6	22	8	6	0	10	595
MAT-15	18.171112; -97.390140	188	0	18	0	121	0	11	7	14	0	0	12	11	3	21	85	29	0	7	9	1	3	13	0	0	0	0	0	0	0	0	0	3	4	14	15	9	0	19	617
MAT-16A	18.171076; -97.390245	215	0	8	1	86	4	9	61	33	5	0	3	10	2	21	29	5	2	0	0	1	0	5	0	0	0	1	0	20	0	1	0	0	7	5	5	9	0	0	548
MAT-16B	18.171076; -97.390245	186	4	11	0	75	3	9	69	28	5	3	11	5	0	21	23	0	0	2	0	2	0	11	0	0	0	1	1	15	0	2	1	0	16	13	15	10	0	9	551
MAT-16C	18.171076; -97.390245	116	6	11	0	57	3	24	131	27	0	49	8	8	1	19	9	1	0	11	0	1	0	11			1	1	0	16	0	5	0	0	16	16	5	11	0	0	564
MAT-17	18.170987; -97.390397	162	0	50	0	182	0	27	0	10	0	1	1	13	3	30	41	15	4	8	0	0	0	3	0	0	0	0	0	2	0	0	0	1	6	9	25	13	0	0	606
MAT-18B	18.169831; -97.390426	99	0	12	2	194	2	21	59	19	0	0	9	8	0	5	2	0	81	5	3	0	0	0	0	0	0	0	0	15	0	0	0	0	0	31	4	2	0	0	573
																С	onjunto	2 de la l	Formaci	ón Matz	itzi																				
MAT-1A	18.252552; -97.495102	256	5	17	4	83	4	9	68	15	3	3	0	4	0	0	0	0	0	0	8	0	0	20	14	10	5	7	1	17	6	8	0	0	1	4	10	7	0	4	593
MAT-1B	18.252552; -97.495102	270	2	25	3	80	2	11	52	18	4	5	0	0	0	0	0	0	0	0	0	0	0	37	14	1	7	4	1	25	5	12	0	0	0	10	1	1	0	37	627
MAT-26	18.200906; -97.412245	122	0	113	0	82	0	23	34	0	0	9	0	0	0	0	0	0	0	0	0	0	0	11	6	0	0	0	0	6	0	0	0	11	0	0	6	6	0	11	440
MAT-28	18.245592; -97.492230	168	0	23	2	40	0	15	60	0	0	27	2	0	0	0	0	0	0	0	0	0	0	14	12	2	0	0	0	6	3	0	0	2	0	0	6	15	0	10	407
MAT-29	18.239220; -97.490904	109	0	52	1	97	0	2	45	0	0	0	2	2	0	0	7	0	0	0	0	0	0	2	7	5	0	0	0	2	0	0	0	0	2	1	0	12	0	0	348
			-				_	_	-				-	Sist	emas flu	viales o	lel Cretá	icico (fo	rmacior	es Calte	pec y I	a Comp	añía)	-				-						-							
MAT-2	18.251389; -97.490833	128	0	99	0	133	2	44	13	13	3	2	10	6	2	13	18	1	0	0	0	1		15	0	0	0	0	0	11	0	0	0		5	16	4	0	0	2	541
MAT-8	18.223424; -97.461237	147	0	93	0	145	0	74	5	19	4	3	0	9	1	0	1	0	0	0	0	3	3	1	0	0	0	0	0	0	0	0	0	1	0	0	28	1	0	0	538

Muestra	%Q	%F	%L	%Qm	%К	%P	%Lm	%Lv	%Ls	%Lmf	%Lmp	%Lv	%Lm1-2	%Lm3-4	%Ls	%Lvf	%Lvl	%Lvm	%Qp	%Lss	%Lsc
								Co	onjunto 1	elemento	CH de la F	ormación N	latzitzi								
MAT-3	38.28	48.50	13.23	44.11	32.56	23.33	87.88	0.00	12.12	14.29	85.71	0.00	30.77	56.92	12.31	0.00	0.00	0.00	0.00	100.00	0.00
MAT-4	50.00	37.04	12.96	57.44	20.23	22.33	78.13	3.13	18.75	35.29	60.78	3.92	37.10	43.55	19.35	100.00	0.00	0.00	0.00	100.00	0.00
MAT-5	57.05	27.79	15.16	67.25	5.21	27.54	77.78	6.94	15.28	21.31	70.49	8.20	55.22	28.36	16.42	100.00	0.00	0.00	0.00	100.00	0.00
MAT-7	44.30	51.55	4.15	45.92	30.98	23.10	93.75	0.00	6.25	26.67	73.33	0.00	12.50	81.25	6.25	0.00	0.00	0.00	0.00	100.00	0.00
MAT-10	51.29	38.19	10.52	57.23	28.10	14.67	92.98	1.75	5.26	27.66	70.21	2.13	19.23	75.00	5.77	100.00	0.00	0.00	0.00	100.00	0.00
MAT-11	35.90	57.71	6.39	38.35	36.75	24.90	64.71	8.82	26.47	33.33	52.38	14.29	48.39	22.58	29.03	100.00	0.00	0.00	0.00	100.00	0.00
MAT-12	44.03	50.54	5.42	46.56	32.34	21.10	100.00	0.00	0.00	23.53	76.47	0.00	0.00	100.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
MAT-13	38.24	50.72	11.04	42.99	32.41	24.60	81.48	7.41	11.11	6.82	84.09	9.09	52.08	35.42	12.50	100.00	0.00	0.00	0.00	100.00	0.00
								Co	onjunto 1	elemento	SG de la F	ormación N	latzitzi								
MAT-14	44.57	29.83	25.60	59.90	15.10	25.00	82.73	1.44	15.83	26.36	71.82	1.82	18.05	65.41	16.54	100.00	0.00	0.00	0.00	100.00	0.00
MAT-15	37.43	28.21	34.36	57.02	5.79	37.19	93.16	6.84	0.00	14.94	77.59	7.47	19.64	80.36	0.00	100.00	0.00	0.00	0.00	0.00	0.00
MAT-16A	43.30	38.12	18.58	53.07	23.35	23.58	74.23	5.15	20.62	20.00	73.33	6.67	28.26	50.00	21.74	100.00	0.00	0.00	0.00	100.00	0.00
MAT-16B	42.01	39.96	18.03	51.25	26.50	22.25	70.45	12.50	17.05	22.54	61.97	15.49	41.56	38.96	19.48	100.00	0.00	0.00	0.00	100.00	0.00
MAT-16C	27.13	56.59	16.28	32.41	47.92	19.68	67.86	13.10	19.05	29.82	50.88	19.30	36.99	41.10	21.92	100.00	0.00	0.00	0.00	100.00	0.00
MAT-17	38.41	39.86	21.74	49.07	2.55	48.38	95.83	2.50	1.67	16.04	81.13	2.83	29.91	68.38	1.71	100.00	0.00	0.00	0.00	100.00	0.00
MAT-18B	21.08	55.04	23.88	27.34	19.21	53.45	88.28	0.00	11.72	70.83	29.17	0.00	76.00	12.00	12.00	0.00	0.00	0.00	0.00	100.00	0.00
									Conj	unto 2 de	la Formaci	ón Matzitzi									
MAT-1A	52.03	34.04	13.93	60.12	18.60	21.28	15.19	55.70	29.11	8.33	0.00	91.67	0.00	14.81	85.19	45.45	31.82	22.73	14.81	62.96	22.22
MAT-1B	55.19	30.62	14.19	64.10	16.23	19.68	0.00	63.41	36.59	0.00	0.00	100.00	0.00	0.00	100.00	71.15	26.92	1.92	9.09	75.76	15.15
MAT-26	57.88	36.45	5.67	61.36	11.23	27.42	0.00	73.91	26.09	0.00	0.00	100.00	0.00	0.00	100.00	21.15	11.54	0.00	0.00	18.18	0.00
MAT-28	51.60	37.97	10.43	57.36	26.13	16.52	5.13	71.79	23.08	6.67	0.00	93.33	18.18	0.00	81.82	26.92	23.08	3.85	6.06	18.18	9.09
MAT-29	48.65	43.24	8.11	52.79	14.75	32.46	40.74	51.85	7.41	16.00	28.00	56.00	15.38	69.23	15.38	3.85	13.46	9.62	3.03	6.06	0.00
							Sis	temas flu	viales del	Cretácico	(formacio	nes Caltepe	c y La Compa	iñía)							
MAT-2	44.36	40.86	14.79	52.05	7.08	40.87	65.79	19.74	14.47	27.69	49.23	23.08	37.70	44.26	18.03	100.00	0.00	0.00	0.00	100.00	0.00
MAT-8	47.83	49.80	2.36	48.99	6.25	44.76	91.67	8.33	0.00	83.33	8.33	8.33	0.00	100.00	0.00	100.00	0.00	0.00	0.00	0.00	0.00

Anexo 2C. Parámetros recalculados en base 100 para la construcción de los diagramas ternarios de la Figura 7.1.

Anexo 3.

Resultados de geocronología U-Pb en circones detríticos. Los análisis fueron realizados en el Laboratorio de Estudios Isotópicos del Centro de Geociencias, mediante la técnica LA-ICP-MS. Los errores son reportados a nivel sigma-2. Las filas marcadas en gris muestran los datos excluidos por presentar valores de discordancia menores a -15% y mayores a 12%.

					Relaci	ones isotópica	s corregidas										Edades cori	regidas (I	Ma)		
Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ abs	²⁰⁷ Pb/ ²³⁵ U	±2σabs	²⁰⁶ Pb/ ²³⁸ U	±2σ abs	²⁰⁸ Pb/ ²³² Th	±2σ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ^{206P} b	±2σ	Mejor edad (Ma)	±2σ	Disc %
							Eleme	ento CH de	el Conjun	to 1 de la F	ormación	Matzitzi							•		
MAT-3																					
MAT-3_Zrn-84	1436	101.5	0.07	0.0911	0.0062	1.5270	0.0990	0.1223	0.0071	0.1265	0.0073	0.79	744.0	41.0	940.0	43.0	1445.0	110.0	744.0	41.0	20.85
MAT-3_Zrn-43	1020	279	0.27	0.0857	0.0052	1.5880	0.1100	0.1346	0.0070	0.0429	0.0032	0.82	814.0	40.0	966.0	45.0	1327.0	120.0	814.0	40.0	15.73
MAT-3_Zrn-55	40.8	14.59	0.36	0.0728	0.0069	1.6500	0.1600	0.1671	0.0085	0.0539	0.0050	0.00	996.0	47.0	1003.0	59.0	1050.0	180.0	996.0	47.0	0.70
MAT-3_Zrn-48	151.4	55.3	0.37	0.0732	0.0052	1.7150	0.1300	0.1703	0.0080	0.0504	0.0034	0.08	1014.0	44.0	1010.0	49.0	990.0	150.0	1014.0	44.0	-0.40
MAT-3_Zrn-38	170.3	63.9	0.38	0.0745	0.0049	1.8170	0.1300	0.1733	0.0081	0.0571	0.0038	0.15	1030.0	45.0	1050.0	46.0	1050.0	130.0	1030.0	45.0	1.90
MAT-3_Zrn-58	197	62.6	0.32	0.0763	0.0051	1.8380	0.1300	0.1760	0.0084	0.0532	0.0038	0.15	1045.0	46.0	1057.0	47.0	1097.0	130.0	1045.0	46.0	1.14
MAT-3_Zrn-76	328	95.8	0.29	0.0735	0.0046	1.7880	0.1200	0.1792	0.0083	0.0534	0.0033	0.09	1062.3	46.0	1040.0	44.0	1020.0	130.0	1062.3	46.0	-2.14
MAT-3_Zrn-44	157.6	75.1	0.48	0.0774	0.0052	1.9150	0.1400	0.1794	0.0085	0.0529	0.0034	0.29	1063.0	46.0	1084.0	48.0	1135.0	130.0	1063.0	46.0	1.94
MAT-3_Zrn-37	265.7	57.4	0.22	0.0735	0.0046	1.8250	0.1200	0.1799	0.0087	0.0553	0.0036	0.43	1066.0	48.0	1056.0	43.0	1026.0	130.0	1066.0	48.0	-0.95
MAT-3_Zrn-89	348	99.9	0.29	0.0734	0.0045	1.8240	0.1200	0.1806	0.0084	0.0542	0.0034	0.41	1070.1	46.0	1053.0	44.0	1025.0	120.0	1070.1	46.0	-1.62
MAT-3_Zrn-13	438	64.7	0.15	0.0763	0.0047	1.9690	0.1300	0.1818	0.0085	0.0675	0.0045	0.30	1076.7	46.0	1104.0	46.0	1109.0	120.0	1076.7	46.0	2.47
MAT-3_Zrn-85	497	27.8	0.06	0.0748	0.0046	1.8720	0.1200	0.1824	0.0085	0.0554	0.0040	0.20	1080.2	46.0	1072.0	45.0	1058.0	120.0	1080.2	46.0	-0.76
MAT-3_Zrn-92	116.3	39.43	0.34	0.0751	0.0051	1.8870	0.1400	0.1827	0.0086	0.0532	0.0037	0.13	1081.0	47.0	1078.0	46.0	1053.0	140.0	1081.0	47.0	-0.28
MAT-3_Zrn-40	203.8	92.6	0.45	0.0741	0.0049	1.8970	0.1300	0.1842	0.0087	0.0560	0.0035	0.25	1090.0	47.0	1081.0	45.0	1059.0	130.0	1090.0	47.0	-0.83
MAT-3_Zrn-67	530	111.3	0.21	0.0746	0.0046	1.8560	0.1200	0.1844	0.0086	0.0566	0.0035	0.29	1091.1	47.0	1065.0	44.0	1058.0	130.0	1091.1	47.0	-2.45
MAT-3_Zrn-99	54.6	18.7	0.34	0.0739	0.0059	1.9400	0.1600	0.1860	0.0096	0.0545	0.0046	0.07	1099.0	52.0	1087.0	55.0	1020.0	160.0	1099.0	52.0	-1.10
MAT-3_Zrn-14	138.2	59	0.43	0.0792	0.0053	2.0930	0.1500	0.1862	0.0088	0.0581	0.0037	-0.07	1100.0	48.0	1144.0	49.0	1159.0	140.0	1100.0	48.0	3.85
MAT-3_Zrn-90	562	32	0.06	0.0754	0.0047	1.9610	0.1300	0.1873	0.0088	0.0532	0.0045	0.37	1106.0	48.0	1104.0	44.0	1072.0	130.0	1106.0	48.0	-0.18
MAT-3_Zrn-68	465	80.9	0.17	0.0770	0.0048	1.9460	0.1300	0.1873	0.0087	0.0557	0.0038	0.07	1106.7	47.0	1096.0	45.0	1113.0	130.0	1106.7	47.0	-0.98

MAT-3_Zrn-31	147.4	52.8	0.36	0.0754	0.0049	1.9890	0.1400	0.1879	0.0089	0.0561	0.0040	0.32	1112.0	50.0	1110.0	47.0	1093.0	130.0	1112.0	50.0	-0.18
MAT-3_Zrn-03	66.4	29.9	0.45	0.0805	0.0060	2.1190	0.1600	0.1887	0.0092	0.0598	0.0048	0.09	1114.0	50.0	1150.0	53.0	1215.0	150.0	1114.0	50.0	3.13
MAT-3_Zrn-24	260	87.2	0.34	0.0766	0.0049	2.0420	0.1400	0.1889	0.0088	0.0557	0.0035	0.03	1115.1	48.0	1128.0	48.0	1101.0	130.0	1115.1	48.0	1.14
MAT-3_Zrn-51	167.2	69.3	0.41	0.0782	0.0055	2.0140	0.1900	0.1897	0.0120	0.0569	0.0044	0.46	1119.0	65.0	1118.0	55.0	1139.0	130.0	1119.0	65.0	-0.09
MAT-3_Zrn-61	456	66.2	0.15	0.0756	0.0047	1.9300	0.1300	0.1900	0.0091	0.0550	0.0039	0.41	1121.0	49.0	1090.0	45.0	1091.0	130.0	1121.0	49.0	-2.84
MAT-3_Zrn-86	178.6	39.5	0.22	0.0796	0.0052	2.1240	0.1500	0.1936	0.0093	0.0605	0.0045	0.16	1141.0	50.0	1160.0	46.0	1191.0	130.0	1141.0	50.0	1.64
MAT-3_Zrn-16	153	72.7	0.48	0.0776	0.0048	2.1460	0.1400	0.1942	0.0092	0.0581	0.0038	0.35	1144.0	50.0	1162.0	47.0	1144.0	130.0	1144.0	50.0	1.55
MAT-3_Zrn-02	309	89.7	0.29	0.0784	0.0048	2.1280	0.1400	0.1950	0.0094	0.0593	0.0039	0.51	1148.0	51.0	1156.0	47.0	1157.0	120.0	1148.0	51.0	0.69
MAT-3_Zrn-26	684	114.4	0.17	0.0772	0.0047	2.1610	0.1400	0.1965	0.0091	0.0585	0.0036	0.04	1156.6	49.0	1168.0	46.0	1133.0	120.0	1156.6	49.0	0.98
MAT-3_Zrn-28	62.7	23	0.37	0.0815	0.0061	2.2700	0.1800	0.1968	0.0097	0.0627	0.0048	0.36	1158.0	52.0	1225.0	60.0	1248.0	140.0	1158.0	52.0	5.47
MAT-3_Zrn-98	217.9	70.2	0.32	0.0805	0.0052	2.1920	0.1500	0.1973	0.0093	0.0582	0.0038	0.15	1161.0	50.0	1177.0	48.0	1205.0	130.0	1161.0	50.0	1.36
MAT-3_Zrn-79	123	57	0.46	0.0774	0.0054	2.0860	0.1500	0.1981	0.0097	0.0579	0.0040	0.14	1165.0	52.0	1145.0	48.0	1146.0	130.0	1165.0	52.0	-1.75
MAT-3_Zrn-11	172.3	62.8	0.36	0.0784	0.0050	2.1760	0.1500	0.1984	0.0094	0.0597	0.0041	0.24	1166.0	50.0	1177.0	48.0	1147.0	130.0	1166.0	50.0	0.93
MAT-3_Zrn-63	100.6	28	0.28	0.0787	0.0055	2.1250	0.1600	0.1987	0.0096	0.0605	0.0047	0.37	1168.0	51.0	1152.0	53.0	1169.0	140.0	1168.0	51.0	-1.39
MAT-3_Zrn-53	151.1	58.4	0.39	0.0818	0.0052	2.2320	0.1500	0.2001	0.0095	0.0595	0.0040	0.17	1176.0	51.0	1192.0	50.0	1240.0	130.0	1176.0	51.0	1.34
MAT-3_Zrn-20	186.2	86.6	0.47	0.0808	0.0050	2.2880	0.1500	0.2007	0.0095	0.0600	0.0040	0.30	1179.0	51.0	1210.0	49.0	1208.0	120.0	1179.0	51.0	2.56
MAT-3_Zrn-36	314	115.2	0.37	0.0789	0.0049	2.2080	0.1500	0.2010	0.0094	0.0598	0.0037	0.27	1181.0	51.0	1182.0	47.0	1176.0	110.0	1181.0	51.0	0.08
MAT-3_Zrn-70	263.8	89.8	0.34	0.0795	0.0050	2.1780	0.1500	0.2013	0.0094	0.0622	0.0041	0.38	1182.0	50.0	1172.0	48.0	1193.0	130.0	1182.0	50.0	-0.85
MAT-3_Zrn-10	464	95.4	0.21	0.0763	0.0047	2.1690	0.1500	0.2015	0.0097	0.0610	0.0040	0.48	1183.0	52.0	1170.0	47.0	1105.0	120.0	1183.0	52.0	-1.11
MAT-3_Zrn-72	651	189	0.29	0.0803	0.0049	2.1780	0.1400	0.2014	0.0094	0.0604	0.0037	0.25	1183.0	51.0	1175.0	47.0	1211.0	110.0	1183.0	51.0	-0.68
MAT-3_Zrn-05	205	85.5	0.42	0.0788	0.0051	2.2150	0.1600	0.2022	0.0096	0.0608	0.0038	0.35	1187.0	51.0	1190.0	49.0	1163.0	120.0	1187.0	51.0	0.25
MAT-3_Zrn-12	178	51.4	0.29	0.0792	0.0052	2.2830	0.1600	0.2031	0.0096	0.0632	0.0044	0.08	1192.0	51.0	1208.0	48.0	1180.0	130.0	1192.0	51.0	1.32
MAT-3_Zrn-30	533	131.6	0.25	0.0781	0.0048	2.2640	0.1600	0.2032	0.0098	0.0821	0.0055	0.75	1192.0	52.0	1199.0	49.0	1144.0	120.0	1192.0	52.0	0.58
MAT-3_Zrn-50	166	27.6	0.17	0.0817	0.0053	2.2900	0.1600	0.2036	0.0097	0.0642	0.0051	0.58	1195.0	52.0	1210.0	49.0	1228.0	130.0	1195.0	52.0	1.24
MAT-3_Zrn-73	242	70.5	0.29	0.0787	0.0049	2.1850	0.1600	0.2039	0.0100	0.0612	0.0041	0.65	1196.0	54.0	1180.0	47.0	1177.0	120.0	1196.0	54.0	-1.36
MAT-3_Zrn-06	248	63.6	0.26	0.0791	0.0050	2.2520	0.1500	0.2045	0.0097	0.0606	0.0039	0.45	1199.0	52.0	1196.0	47.0	1174.0	130.0	1199.0	52.0	-0.25

MAT-3_Zrn-17	107.8	110.9	1.03	0.0830	0.0054	2.3900	0.1600	0.2044	0.0097	0.0631	0.0040	0.23	1199.0	52.0	1241.0	51.0	1263.0	130.0	1199.0	52.0	3.38
MAT-3_Zrn-45	613	109	0.18	0.0791	0.0048	2.2170	0.1500	0.2045	0.0098	0.0605	0.0037	0.59	1199.0	52.0	1185.0	47.0	1170.0	120.0	1199.0	52.0	-1.18
MAT-3_Zrn-49	181.6	69.2	0.38	0.0797	0.0050	2.2330	0.1500	0.2045	0.0096	0.0633	0.0041	0.29	1199.0	51.0	1190.0	48.0	1188.0	130.0	1199.0	51.0	-0.76
MAT-3_Zrn-96	264	87.4	0.33	0.0783	0.0050	2.1940	0.1500	0.2039	0.0098	0.0588	0.0039	0.52	1199.0	54.0	1180.0	48.0	1152.0	120.0	1199.0	54.0	-1.61
MAT-3_Zrn-15	371	53.7	0.14	0.0784	0.0048	2.2720	0.1500	0.2047	0.0098	0.0630	0.0041	0.68	1200.0	53.0	1205.0	50.0	1163.0	130.0	1200.0	53.0	0.41
MAT-3_Zrn-23	177.6	75.1	0.42	0.0811	0.0050	2.3230	0.1500	0.2046	0.0097	0.0609	0.0038	0.11	1200.0	52.0	1221.0	50.0	1226.0	130.0	1200.0	52.0	1.72
MAT-3_Zrn-18	165.4	78.5	0.47	0.0831	0.0055	2.4010	0.1700	0.2050	0.0097	0.0623	0.0039	0.00	1202.0	52.0	1241.0	50.0	1277.0	130.0	1202.0	52.0	3.14
MAT-3_Zrn-08	159.5	76.6	0.48	0.0819	0.0053	2.3670	0.1700	0.2052	0.0096	0.0621	0.0039	0.17	1203.0	51.0	1230.0	50.0	1230.0	130.0	1203.0	51.0	2.20
MAT-3_Zrn-46	73.6	35	0.48	0.0790	0.0058	2.1870	0.1700	0.2055	0.0100	0.0596	0.0043	0.37	1204.0	54.0	1177.0	56.0	1160.0	140.0	1204.0	54.0	-2.29
MAT-3_Zrn-56	100.6	38.85	0.39	0.0811	0.0058	2.2540	0.1700	0.2057	0.0098	0.0635	0.0045	0.08	1205.0	52.0	1198.0	54.0	1198.0	140.0	1205.0	52.0	-0.58
MAT-3_Zrn-94	142.1	55.1	0.39	0.0860	0.0059	2.4340	0.1800	0.2059	0.0100	0.0639	0.0048	0.37	1207.0	54.0	1253.0	53.0	1330.0	140.0	1207.0	54.0	3.67
MAT-3_Zrn-88	328	144	0.44	0.0813	0.0051	2.3010	0.1600	0.2062	0.0098	0.0608	0.0038	0.25	1209.0	52.0	1216.0	46.0	1234.0	120.0	1209.0	52.0	0.58
MAT-3_Zrn-33	455	155.4	0.34	0.0809	0.0049	2.3510	0.1600	0.2066	0.0097	0.0612	0.0037	0.55	1210.0	52.0	1227.0	47.0	1221.0	130.0	1210.0	52.0	1.39
MAT-3_Zrn-19	167.9	79.9	0.48	0.0805	0.0056	2.3590	0.1700	0.2069	0.0097	0.0625	0.0039	-0.01	1212.0	52.0	1226.0	53.0	1210.0	130.0	1212.0	52.0	1.14
MAT-3_Zrn-80	115.7	45.8	0.40	0.0800	0.0052	2.2510	0.1600	0.2068	0.0099	0.0618	0.0040	0.49	1212.0	53.0	1193.0	52.0	1193.0	130.0	1212.0	53.0	-1.59
MAT-3_Zrn-93	105.4	40.6	0.39	0.0821	0.0060	2.3480	0.1800	0.2068	0.0098	0.0645	0.0048	-0.07	1212.0	53.0	1227.0	52.0	1244.0	140.0	1212.0	53.0	1.22
MAT-3_Zrn-29	553	116.4	0.21	0.0807	0.0049	2.3580	0.1600	0.2073	0.0096	0.0634	0.0039	0.13	1214.3	51.0	1229.0	47.0	1218.0	120.0	1214.3	51.0	1.20
MAT-3_Zrn-09	180	87.6	0.49	0.0806	0.0052	2.3430	0.1600	0.2085	0.0098	0.0631	0.0038	0.09	1221.0	52.0	1223.0	50.0	1207.0	130.0	1221.0	52.0	0.16
MAT-3_Zrn-82	154.5	57.5	0.37	0.0803	0.0051	2.2980	0.1600	0.2086	0.0099	0.0615	0.0044	0.10	1221.0	53.0	1210.0	48.0	1212.0	130.0	1221.0	53.0	-0.91
MAT-3_Zrn-57	172.8	88.3	0.51	0.0800	0.0051	2.2510	0.1600	0.2088	0.0100	0.0605	0.0037	0.27	1225.0	55.0	1198.0	47.0	1206.0	120.0	1225.0	55.0	-2.25
MAT-3_Zrn-64	170.3	63.2	0.37	0.0801	0.0051	2.2540	0.1600	0.2094	0.0099	0.0654	0.0045	0.26	1226.0	53.0	1196.0	49.0	1187.0	130.0	1226.0	53.0	-2.51
MAT-3_Zrn-32	413	107.9	0.26	0.0821	0.0050	2.4160	0.1600	0.2095	0.0097	0.0643	0.0040	0.34	1226.2	52.0	1246.0	48.0	1250.0	110.0	1226.2	52.0	1.59
MAT-3_Zrn-07	324	92.4	0.29	0.0813	0.0049	2.3970	0.1600	0.2095	0.0098	0.0622	0.0038	0.26	1226.3	52.0	1243.0	49.0	1224.0	120.0	1226.3	52.0	1.34
MAT-3_Zrn-91	241	85.2	0.35	0.0806	0.0050	2.3250	0.1600	0.2099	0.0098	0.0627	0.0040	0.37	1228.0	52.0	1221.0	50.0	1212.0	120.0	1228.0	52.0	-0.57
MAT-3_Zrn-27	221.1	79.1	0.36	0.0836	0.0055	2.4610	0.1700	0.2100	0.0098	0.0686	0.0049	0.07	1228.8	52.0	1258.0	51.0	1280.0	120.0	1228.8	52.0	2.32
MAT-3_Zrn-65	250.9	118.8	0.47	0.0790	0.0050	2.2320	0.1500	0.2101	0.0098	0.0636	0.0040	-0.21	1229.0	52.0	1193.0	49.0	1197.0	130.0	1229.0	52.0	-3.02

MAT-3_Zrn-83	340	142.4	0.42	0.0851	0.0054	2.4360	0.1700	0.2101	0.0098	0.0683	0.0044	0.65	1229.3	52.0	1251.0	51.0	1309.0	120.0	1229.3	52.0	1.73
MAT-3_Zrn-34	228	104	0.46	0.0821	0.0052	2.4300	0.1700	0.2109	0.0099	0.0634	0.0041	0.41	1233.0	53.0	1256.0	47.0	1249.0	130.0	1233.0	53.0	1.83
MAT-3_Zrn-22	475	262.7	0.55	0.0794	0.0048	2.3700	0.1600	0.2110	0.0100	0.0644	0.0038	0.52	1234.0	54.0	1232.0	48.0	1187.0	130.0	1234.0	54.0	-0.16
MAT-3_Zrn-87	137.1	49.4	0.36	0.0801	0.0056	2.3220	0.1700	0.2113	0.0100	0.0601	0.0041	0.07	1236.0	53.0	1218.0	53.0	1201.0	140.0	1236.0	53.0	-1.48
MAT-3_Zrn-21	181.1	57.7	0.32	0.0831	0.0052	2.5130	0.1700	0.2121	0.0099	0.0671	0.0042	0.27	1240.0	53.0	1275.0	49.0	1263.0	120.0	1240.0	53.0	2.75
MAT-3_Zrn-62	338.5	106.3	0.31	0.0815	0.0050	2.3400	0.1600	0.2125	0.0099	0.0638	0.0041	0.48	1242.0	53.0	1223.0	47.0	1239.0	120.0	1242.0	53.0	-1.55
MAT-3_Zrn-69	102	37.2	0.36	0.0773	0.0053	2.2350	0.1600	0.2125	0.0100	0.0609	0.0043	0.25	1242.0	54.0	1189.0	50.0	1155.0	140.0	1242.0	54.0	-4.46
MAT-3_Zrn-74	502	264.9	0.53	0.0818	0.0050	2.3700	0.1600	0.2125	0.0099	0.0620	0.0037	0.36	1242.1	53.0	1233.0	47.0	1242.0	120.0	1242.1	53.0	-0.74
MAT-3_Zrn-60	93.3	35.5	0.38	0.0821	0.0055	2.3540	0.1700	0.2126	0.0100	0.0634	0.0044	0.13	1243.0	54.0	1226.0	50.0	1232.0	130.0	1243.0	54.0	-1.39
MAT-3_Zrn-39	118.5	45.1	0.38	0.0825	0.0055	2.4670	0.1800	0.2129	0.0100	0.0684	0.0050	0.33	1244.0	54.0	1259.0	53.0	1274.0	140.0	1244.0	54.0	1.19
MAT-3_Zrn-47	181	71.3	0.39	0.0815	0.0052	2.3850	0.1600	0.2132	0.0100	0.0623	0.0039	0.23	1246.0	53.0	1236.0	49.0	1224.0	130.0	1246.0	53.0	-0.81
MAT-3_Zrn-97	490	150	0.31	0.0806	0.0049	2.3900	0.1600	0.2135	0.0099	0.0667	0.0041	0.28	1247.2	53.0	1239.0	47.0	1208.0	120.0	1247.2	53.0	-0.66
MAT-3_Zrn-01	146.9	47.5	0.32	0.0796	0.0051	2.3900	0.1600	0.2145	0.0100	0.0665	0.0043	0.08	1253.0	54.0	1238.0	49.0	1196.0	130.0	1253.0	54.0	-1.21
MAT-3_Zrn-81	140.2	41.42	0.30	0.0777	0.0051	2.2960	0.1600	0.2157	0.0100	0.0641	0.0043	0.21	1259.0	55.0	1215.0	52.0	1154.0	130.0	1259.0	55.0	-3.62
MAT-3_Zrn-42	287	82	0.29	0.0799	0.0049	2.3740	0.1600	0.2158	0.0100	0.0638	0.0041	0.39	1259.4	53.0	1234.0	48.0	1190.0	120.0	1259.4	53.0	-2.06
MAT-3_Zrn-77	109	34.93	0.32	0.0815	0.0055	2.3860	0.1700	0.2160	0.0100	0.0675	0.0051	0.15	1261.0	54.0	1236.0	51.0	1216.0	130.0	1261.0	54.0	-2.02
MAT-3_Zrn-25	917	406	0.44	0.0871	0.0052	2.6400	0.1700	0.2170	0.0100	0.0621	0.0036	0.74	1266.0	54.0	1316.0	55.0	1360.0	120.0	1266.0	54.0	3.80
MAT-3_Zrn-52	50.6	22.3	0.44	0.0828	0.0060	2.4420	0.1800	0.2171	0.0110	0.0631	0.0055	0.07	1266.0	59.0	1251.0	54.0	1265.0	130.0	1266.0	59.0	-1.20
MAT-3_Zrn-04	206.8	64.6	0.31	0.0900	0.0072	2.7100	0.2400	0.2179	0.0100	0.0870	0.0110	0.81	1271.0	55.0	1320.0	63.0	1385.0	150.0	1271.0	55.0	3.71
MAT-3_Zrn-35	198.2	148.4	0.75	0.0824	0.0052	2.4850	0.1700	0.2180	0.0100	0.0644	0.0040	0.00	1271.0	54.0	1269.0	51.0	1255.0	120.0	1271.0	54.0	-0.16
MAT-3_Zrn-100	674	136.9	0.20	0.0813	0.0049	2.4850	0.1600	0.2187	0.0100	0.0603	0.0038	0.13	1274.8	54.0	1267.0	47.0	1228.0	120.0	1274.8	54.0	-0.62
MAT-3_Zrn-59	349.1	103.3	0.30	0.0815	0.0050	2.4380	0.1600	0.2193	0.0100	0.0697	0.0044	-0.16	1279.3	55.0	1253.0	48.0	1241.0	130.0	1279.3	55.0	-2.10
MAT-3_Zrn-75	84.8	35.6	0.42	0.0859	0.0063	2.6100	0.2000	0.2271	0.0110	0.0685	0.0046	0.18	1319.0	58.0	1304.0	57.0	1322.0	130.0	1319.0	58.0	-1.15
MAT-3_Zrn-71	68.8	37.4	0.54	0.0891	0.0063	2.8900	0.2100	0.2429	0.0120	0.0678	0.0045	-0.17	1401.0	61.0	1376.0	56.0	1381.0	140.0	1381.0	140.0	-1.82
MAT-3_Zrn-78	224	94.3	0.42	0.0954	0.0060	3.5000	0.3000	0.2690	0.0160	0.0818	0.0053	0.92	1535.0	83.0	1539.0	71.0	1536.0	120.0	1536.0	120.0	0.26
MAT-3_Zrn-41	265	119.4	0.45	0.0959	0.0058	3.6300	0.2400	0.2728	0.0130	0.0822	0.0050	0.64	1555.0	66.0	1558.0	54.0	1542.0	120.0	1542.0	120.0	0.19

MAT-3_Zrn-66	467	121.7	0.26	0.1010	0.0061	3.6300	0.2300	0.2664	0.0120	0.0805	0.0049	0.40	1523.0	61.0	1559.0	52.0	1637.0	110.0	1637.0	110.0	2.31
MAT-3_Zrn-54	507	707	1.39	0.1084	0.0066	4.5600	0.3000	0.3109	0.0140	0.0865	0.0050	0.38	1745.0	71.0	1741.0	55.0	1770.0	110.0	1770.0	110.0	-0.23
MAT-3_Zrn-95	282.5	266.7	0.94	0.1716	0.0100	10.6400	0.6900	0.4514	0.0210	0.1196	0.0069	-0.09	2401.0	93.0	2492.0	62.0	2571.0	100.0	2571.0	100.0	3.65

MAT-10			-		•	•	-	•					•				-				
Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ abs	²⁰⁷ Pb/ ²³⁵ U	±2σabs	²⁰⁶ Pb/ ²³⁸ U	±2σ abs	²⁰⁸ Pb/ ²³² Th	±2σ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ^{206P} b	±2σ	Mejor edad (Ma)	±2σ	Disc %
Mat10_Zrn-93	114.2	54.6	0.478108581	0.0743	0.0033	1.519	0.056	0.1489	0.0018	0.0388	0.0016	-0.26675	895	10	941	20	1053	82	895	10	4.89
Mat10_Zrn-76	812.3	148	0.182198695	0.0887	0.0032	1.842	0.055	0.1516	0.0018	0.0859	0.0034	0.26422	909.8	10	1060	19	1394	70	909.8	10	14.17
Mat10_Zrn-90	690	219	0.317391304	0.0782	0.0026	1.637	0.054	0.1534	0.0048	0.0214	0.0011	0.23443	920.2	27	987	22	1149	68	920.2	27	6.77
Mat10_Zrn-09	653	234	0.358346095	0.0728	0.0024	1.613	0.046	0.1609	0.0017	0.0437	0.0016	0.62902	961.8	9.2	975	18	1005	65	961.8	9.2	1.35
Mat10_Zrn-55	172.8	52.4	0.303240741	0.0696	0.0026	1.568	0.05	0.1627	0.0018	0.0501	0.0017	0.27484	971.7	10	956	20	924	79	971.7	10	-1.64
Mat10_Zrn-74	247	122.8	0.497165992	0.0715	0.0026	1.609	0.049	0.1639	0.0017	0.05045	0.0014	0.0072213	978.3	9.5	973	19	972	75	978.3	9.5	-0.54
Mat10_Zrn-94	371	219	0.590296496	0.075	0.0025	1.772	0.059	0.1647	0.0055	0.0483	0.0014	0.44544	983	33	1042	28	1066	70	983	33	5.66
Mat10_Zrn-08	486	16.4	0.033744856	0.0712	0.0025	1.615	0.046	0.1648	0.0018	0.0545	0.0035	0.15959	983.2	10	976	18	964	70	983.2	10	-0.74
Mat10_Zrn-53	384	106.6	0.277604167	0.0714	0.0025	1.639	0.047	0.1655	0.0019	0.0474	0.0015	0.36161	987.3	10	985	18	976	70	987.3	10	-0.23
Mat10_Zrn-15	212.1	90.3	0.425742574	0.072	0.0027	1.653	0.053	0.166	0.0019	0.0506	0.0016	0.14656	990	11	990	20	978	76	990	11	0.00
Mat10_Zrn-04	668	85.9	0.128592814	0.0718	0.0024	1.663	0.049	0.1668	0.0025	0.049	0.0016	0.21863	994.6	14	995.7	18	977	70	994.6	14	0.11
Mat10_Zrn-87	492	175	0.355691057	0.0744	0.0031	1.76	0.055	0.1679	0.0043	0.0496	0.0029	0.50476	1000	24	1030	21	1056	74	1000	24	2.91
Mat10_Zrn-64	1206	57.9	0.04800995	0.0736	0.0045	1.734	0.14	0.16786	0.0084	0.0497	0.0043	0.67023	1000.3	46	1021	49	1029	97	1000.3	46	2.03
Mat10_Zrn-42	546	63.1	0.115567766	0.0739	0.0025	1.695	0.059	0.1681	0.0037	0.0503	0.0026	0.53212	1002	20	1006	22	1034	68	1002	20	0.40
Mat10_Zrn-63	507	59.88	0.118106509	0.07105	0.0024	1.669	0.046	0.1684	0.0022	0.0532	0.0019	0.51073	1003	12	996.3	17	956	70	1003	12	-0.67
Mat10_Zrn-38	683	189	0.276720351	0.0714	0.0024	1.66	0.045	0.1685	0.0018	0.0498	0.0013	0.21373	1003.6	9.7	993	18	972	65	1003.6	9.7	-1.07
Mat10_Zrn-80	251.4	85.2	0.338902148	0.0741	0.0027	1.722	0.055	0.1688	0.0018	0.0525	0.0018	0.17485	1005.7	10	1016	20	1036	73	1005.7	10	1.01
Mat10_Zrn-70	963	206	0.213914849	0.0779	0.003	1.814	0.064	0.1689	0.0039	0.038	0.0026	0.20005	1005.8	22	1050	23	1141	69	1005.8	22	4.21
Mat10_Zrn-73	487	96	0.197125257	0.0727	0.0025	1.716	0.047	0.1723	0.0017	0.0521	0.0016	-0.012781	1025	9.1	1014.1	17	1000	71	1025	9.1	-1.07
Mat10_Zrn-57	416	99.3	0.238701923	0.0736	0.0025	1.771	0.051	0.1734	0.0022	0.049	0.0016	0.38615	1030.5	12	1034	20	1033	69	1030.5	12	0.34
Mat10_Zrn-91	455	194	0.426373626	0.0778	0.0026	1.872	0.052	0.1741	0.0025	0.0339	0.0017	0.44822	1035	13	1071	18	1144	66	1035	13	3.36
Mat10_Zrn-37	519	53.7	0.103468208	0.0762	0.0025	1.848	0.054	0.1756	0.0023	0.0506	0.0017	0.47132	1043	12	1062	20	1098	68	1043	12	1.79
Mat10_Zrn-78	310	151.2	0.487741935	0.0753	0.0027	1.826	0.053	0.1762	0.0017	0.0525	0.0014	0.27943	1046	9.4	1059	20	1069	74	1046	9.4	1.23
Mat10_Zrn-67	482	25.8	0.053526971	0.0748	0.0026	1.82	0.053	0.1767	0.0022	0.0603	0.0028	0.43808	1049	12	1052	19	1065	72	1049	12	0.29

Mat10_Zrn-59	1112	10.2	0.009172662	0.07581	0.0024	1.871	0.047	0.18037	0.0017	0.0564	0.0048	0.50121	1069	9.4	1070.7	17	1089	62	1069	9.4	0.16
Mat10_Zrn-61	510	158.7	0.311176471	0.0747	0.0025	1.869	0.05	0.1811	0.0019	0.05439	0.0014	0.24098	1072.8	11	1069.6	18	1060	66	1072.8	11	-0.30
Mat10_Zrn-54	342	163.9	0.479239766	0.0763	0.0028	1.908	0.058	0.1818	0.0019	0.0526	0.0015	0.25088	1076.9	10	1085	20	1095	72	1076.9	10	0.75
Mat10_Zrn-89	535	35.64	0.066616822	0.0768	0.0026	1.921	0.055	0.1825	0.0018	0.0599	0.0024	-0.0058382	1080.7	10	1090	19	1112	68	1080.7	10	0.85
Mat10_Zrn-43	142.7	50.92	0.356832516	0.0786	0.0029	1.959	0.072	0.1829	0.0027	0.0562	0.0019	0.22704	1083	15	1100	24	1168	74	1083	15	1.55
Mat10_Zrn-71	1000.2	138	0.137972406	0.0763	0.0025	1.92	0.05	0.183	0.0017	0.05393	0.0015	0.30126	1083.4	9.3	1087.7	17	1101	65	1083.4	9.3	0.40
Mat10_Zrn-34	357	86	0.240896359	0.0786	0.0029	2.053	0.071	0.1838	0.005	0.0323	0.002	0.17513	1088	28	1132	26	1150	66	1088	28	3.89
Mat10_Zrn-06	584	60.5	0.10359589	0.0758	0.0025	1.921	0.05	0.1844	0.0026	0.059	0.0021	0.62225	1091	14	1089.6	18	1088	65	1091	14	-0.13
Mat10_Zrn-85	151.9	72.7	0.478604345	0.076	0.0031	1.931	0.065	0.1845	0.0023	0.0543	0.0018	0.13755	1091.7	12	1093	22	1102	76	1091.7	12	0.12
Mat10_Zrn-01	706	38	0.053824363	0.0758	0.0025	1.946	0.049	0.1854	0.002	0.058	0.0023	0.10264	1096.1	11	1098.1	17	1087	65	1096.1	11	0.18
Mat10_Zrn-31	863	10.28	0.011911935	0.0749	0.0025	1.928	0.056	0.1857	0.0025	0.0588	0.0051	0.6969	1098	13	1094	19	1064	66	1098	13	-0.37
Mat10_Zrn-26	415	47.8	0.115180723	0.0741	0.0025	1.936	0.054	0.1864	0.0025	0.0573	0.0024	0.031913	1102	14	1093	19	1053	67	1102	14	-0.82
Mat10_Zrn-22	650	14.2	0.021846154	0.07623	0.0025	1.957	0.054	0.1867	0.0031	0.0588	0.0034	0.7335	1103	17	1100.4	19	1102	64	1103	17	-0.24
Mat10_Zrn-20	120.1	45.1	0.3755204	0.0774	0.0031	2.008	0.068	0.1875	0.0024	0.0583	0.0021	-0.011031	1108	13	1117	22	1131	81	1108	13	0.81
Mat10_Zrn-56	950	372	0.391578947	0.0846	0.0031	2.2	0.067	0.1878	0.0031	0.054	0.0018	0.55927	1109.6	16	1180	21	1304	68	1109.6	16	5.97
Mat10_Zrn-99	752	270	0.359042553	0.0782	0.0026	1.988	0.052	0.1878	0.0025	0.0538	0.0014	0.55045	1110	14	1111.1	18	1156	63	1110	14	0.10
Mat10_Zrn-44	333.8	115.7	0.346614739	0.079	0.0034	2.086	0.11	0.1899	0.012	0.0545	0.006	-0.28574	1121	64	1144	38	1170	78	1121	64	2.01
Mat10_Zrn-10	141.3	58	0.410474168	0.0841	0.0028	2.21	0.075	0.1909	0.0038	0.0424	0.0025	0.21866	1126	20	1182	26	1288	71	1126	20	4.74
Mat10_Zrn-28	392	16.8	0.042857143	0.0776	0.0028	2.036	0.062	0.1911	0.0027	0.064	0.011	0.66349	1127	15	1126	21	1132	71	1127	15	-0.09
Mat10_Zrn-41	312	155.4	0.498076923	0.0799	0.0028	2.107	0.062	0.1926	0.0021	0.0527	0.0016	-0.37317	1136	11	1150	20	1188	68	1136	11	1.22
Mat10_Zrn-18	355.6	99.7	0.280371204	0.0791	0.0027	2.104	0.057	0.1936	0.0018	0.0453	0.0016	-0.0023481	1140.8	9.7	1150	19	1177	66	1140.8	9.7	0.80
Mat10_Zrn-24	181.3	89.7	0.494760066	0.0789	0.003	2.101	0.07	0.1935	0.0023	0.0591	0.0019	0.36131	1142	12	1148	23	1164	77	1142	12	0.52
Mat10_Zrn-52	209	69.6	0.333014354	0.0781	0.0029	2.108	0.065	0.1944	0.0028	0.0464	0.0016	0.23502	1145	15	1153	20	1148	73	1145	15	0.69
Mat10_Zrn-11	278	129.8	0.466906475	0.0801	0.0028	2.157	0.062	0.1954	0.0029	0.0543	0.0015	0.25682	1150	16	1167	21	1195	68	1150	16	1.46
Mat10_Zrn-65	225	42.6	0.189333333	0.0791	0.0028	2.132	0.064	0.1954	0.0023	0.0602	0.0021	0.34232	1150	12	1158	21	1176	73	1150	12	0.69
Mat10_Zrn-98	102	20.48	0.200784314	0.0783	0.0031	2.115	0.075	0.1958	0.0025	0.0604	0.0026	0.33225	1153	14	1152	24	1143	80	1153	14	-0.09

Mat10_Zrn-100	469.6	105.2	0.224020443	0.0802	0.0027	2.143	0.06	0.196	0.0026	0.0575	0.0015	0.38167	1153.9	14	1162	20	1204	67	1153.9	14	0.70
Mat10_Zrn-16	173.7	89.1	0.512953368	0.0803	0.0028	2.172	0.061	0.197	0.0022	0.0591	0.0017	0.16921	1159.3	12	1171	21	1201	68	1159.3	12	1.00
Mat10_Zrn-13	818	83	0.101466993	0.07924	0.0025	2.137	0.055	0.1973	0.0023	0.0598	0.0018	0.74634	1160	12	1160	18	1176	63	1160	12	0.00
Mat10_Zrn-46	759	109	0.143610013	0.07885	0.0026	2.134	0.063	0.1973	0.0044	0.0527	0.0042	0.7959	1160	24	1161	21	1166	65	1160	24	0.09
Mat10_Zrn-68	219.7	40.89	0.186117433	0.0799	0.003	2.18	0.065	0.198	0.002	0.0607	0.0021	-0.039107	1164.7	11	1174	21	1188	73	1164.7	11	0.79
Mat10_Zrn-17	263.9	75.1	0.284577491	0.0796	0.0029	2.188	0.07	0.1982	0.0027	0.0579	0.0019	0.38961	1165.5	14	1176	21	1191	71	1165.5	14	0.89
Mat10_Zrn-23	586.7	141	0.240327254	0.07984	0.0027	2.172	0.063	0.1987	0.0021	0.0605	0.0017	0.66008	1168.4	11	1171	20	1190	65	1168.4	11	0.22
Mat10_Zrn-40	1110	162	0.145945946	0.0795	0.0025	2.175	0.056	0.199	0.0026	0.0497	0.0043	0.62841	1170	14	1174.1	17	1183	63	1170	14	0.35
Mat10_Zrn-84	344.3	118.8	0.345047923	0.0789	0.0028	2.177	0.059	0.1996	0.002	0.0588	0.0017	-0.064275	1173.3	11	1173.1	19	1164	69	1173.3	11	-0.02
Mat10_Zrn-66	196	27.26	0.139081633	0.0785	0.0032	2.208	0.12	0.2008	0.0065	0.0595	0.0025	0.30868	1180	34	1183	33	1167	75	1180	34	0.25
Mat10_Zrn-32	474	90	0.189873418	0.0803	0.0027	2.222	0.06	0.2013	0.002	0.0697	0.0024	0.10474	1182.1	11	1187	19	1200	66	1182.1	11	0.41
Mat10_Zrn-02	246.3	46.2	0.187576127	0.0796	0.0029	2.212	0.069	0.2014	0.002	0.0611	0.0026	0.1602	1183	11	1186	21	1194	70	1183	11	0.25
Mat10_Zrn-07	771	101.7	0.131906615	0.0789	0.0026	2.199	0.058	0.2018	0.002	0.0583	0.0017	0.25954	1184.9	11	1182	19	1174	65	1184.9	11	-0.25
Mat10_Zrn-14	727.5	45.8	0.062955326	0.0805	0.0026	2.228	0.064	0.2018	0.0028	0.0573	0.0022	0.61476	1185.1	15	1189	20	1212	66	1185.1	15	0.33
Mat10_Zrn-49	318	88.8	0.279245283	0.0851	0.0029	2.39	0.072	0.204	0.0033	0.0659	0.0027	0.65055	1197	18	1239	22	1315	68	1197	18	3.39
Mat10_Zrn-47	173	74.5	0.430635838	0.0891	0.0033	2.5	0.079	0.2043	0.0025	0.0562	0.0016	0.31632	1198	14	1271	23	1410	73	1198	14	5.74
Mat10_Zrn-88	439	213	0.485193622	0.0819	0.0028	2.295	0.068	0.2055	0.0023	0.05844	0.0015	0.58559	1205	12	1213	21	1240	66	1205	12	0.66
Mat10_Zrn-86	169.2	70.1	0.4143026	0.081	0.003	2.304	0.07	0.2059	0.0026	0.0609	0.0017	0.072862	1207	14	1213	21	1222	71	1207	14	0.49
Mat10_Zrn-45	578	127	0.219723183	0.0806	0.0027	2.298	0.06	0.2064	0.0022	0.0637	0.0018	0.019014	1209.4	12	1211.2	19	1208	66	1209.4	12	0.15
Mat10_Zrn-75	141.9	74	0.52149401	0.0809	0.0032	2.309	0.081	0.207	0.0027	0.0612	0.002	0.36428	1213	14	1213	25	1209	78	1213	14	0.00
Mat10_Zrn-19	132.9	56.48	0.424981189	0.0834	0.0033	2.38	0.077	0.2075	0.003	0.0606	0.0019	0.050507	1215	16	1240	24	1269	82	1215	16	2.02
Mat10_Zrn-48	142.4	49.19	0.345435393	0.0802	0.0032	2.301	0.081	0.2074	0.003	0.0617	0.0019	0.42954	1215	16	1210	24	1200	76	1215	16	-0.41
Mat10_Zrn-12	161.1	70.5	0.437616387	0.0813	0.003	2.343	0.075	0.2083	0.0022	0.0607	0.0017	0.18564	1219.5	12	1224	23	1222	72	1219.5	12	0.37
Mat10_Zrn-21	198.6	66.6	0.335347432	0.0818	0.003	2.353	0.068	0.2085	0.0029	0.0654	0.0021	0.33192	1221	15	1230	21	1236	69	1221	15	0.73
Mat10_Zrn-33	205.9	130.5	0.633802817	0.083	0.0028	2.383	0.066	0.2094	0.0022	0.0615	0.0016	0.077843	1225.7	12	1237	20	1265	66	1225.7	12	0.91
Mat10_Zrn-72	138.3	78.8	0.56977585	0.0818	0.0032	2.353	0.082	0.2095	0.0025	0.0628	0.0018	0.1305	1226	13	1229	25	1232	77	1226	13	0.24

Mat10_Zrn-83	369	131.2	0.355555556	0.0821	0.0029	2.351	0.077	0.2096	0.0034	0.0615	0.0018	0.71664	1226	18	1227	23	1244	69	1226	18	0.08
Mat10_Zrn-77	113.3	48.5	0.428067079	0.0814	0.0032	2.38	0.087	0.2097	0.0025	0.0658	0.002	0.59563	1227	13	1234	26	1230	77	1227	13	0.57
Mat10_Zrn-96	261	69.6	0.266666667	0.0817	0.0031	2.394	0.088	0.2108	0.0038	0.0661	0.0033	0.089199	1233	20	1240	25	1233	73	1233	20	0.56
Mat10_Zrn-05	131	50.7	0.387022901	0.0808	0.003	2.348	0.079	0.2119	0.0035	0.0659	0.0022	0.35219	1239	18	1225	24	1208	64	1239	18	-1.14
Mat10_Zrn-29	545	87	0.159633028	0.0814	0.003	2.416	0.1	0.2122	0.0046	0.0762	0.0028	0.90133	1240	24	1245	28	1243	68	1240	24	0.40
Mat10_Zrn-25	284	62.6	0.220422535	0.082	0.003	2.401	0.07	0.2124	0.0024	0.0625	0.0016	0.22906	1241.5	13	1242	21	1239	68	1241.5	13	0.04
Mat10_Zrn-50	259	88.8	0.342857143	0.0817	0.0028	2.394	0.066	0.2137	0.0024	0.0607	0.0017	0.15455	1249	13	1240	20	1235	68	1249	13	-0.73
Mat10_Zrn-62	200.9	90.4	0.449975112	0.0826	0.0029	2.436	0.069	0.215	0.0024	0.0632	0.0018	0.11867	1255.4	13	1252	20	1254	68	1255.4	13	-0.27
Mat10_Zrn-58	179.5	57.3	0.319220056	0.083	0.003	2.447	0.079	0.216	0.0027	0.0624	0.0023	0.45673	1261	14	1259	24	1262	67	1261	14	-0.16
Mat10_Zrn-39	239.2	72.2	0.301839465	0.0818	0.0029	2.446	0.069	0.2166	0.0022	0.0583	0.002	-0.045229	1264.1	12	1255	20	1241	71	1264.1	12	-0.73
Mat10_Zrn-95	172	59.9	0.348255814	0.0831	0.003	2.458	0.082	0.2174	0.0027	0.0627	0.002	0.43257	1268	14	1258	24	1266	69	1268	14	-0.79
Mat10_Zrn-79	274	96	0.350364964	0.0817	0.0032	2.501	0.094	0.2198	0.0032	0.0607	0.0019	0.40275	1281	17	1271	26	1239	76	1281	17	-0.79
Mat10_Zrn-51	70.1	20.92	0.298430813	0.0874	0.0039	2.95	0.12	0.2461	0.0052	0.0656	0.0031	0.36706	1418	27	1402	31	1350	79	1350	79	-1.14
Mat10_Zrn-60	271	160.5	0.592250923	0.0944	0.0032	3.043	0.1	0.2348	0.0043	0.0704	0.0019	0.7385	1359	23	1417	26	1527	63	1359	23	4.09
Mat10_Zrn-36	457	174	0.380743982	0.0892	0.0029	3.034	0.11	0.2482	0.0085	0.0628	0.004	0.74414	1429	45	1416	31	1405	61	1405	61	-0.92
Mat10_Zrn-35	451	176.2	0.390687361	0.0931	0.003	3.232	0.084	0.251	0.0025	0.0745	0.0019	0.56327	1444	13	1464	20	1489	59	1489	59	1.37
Mat10_Zrn-30	123.1	43.1	0.350121852	0.1012	0.0034	3.744	0.11	0.2714	0.0041	0.0733	0.0025	0.43382	1548	21	1587	25	1644	65	1644	65	2.46
Mat10_Zrn-97	155	115.8	0.747096774	0.104	0.0037	4.32	0.17	0.301	0.0073	0.0862	0.0022	0.80096	1696	38	1694	32	1699	70	1699	70	-0.12
Mat10_Zrn-69	80.19	26.59	0.33158748	0.1277	0.0064	5.13	0.44	0.2955	0.01	0.1051	0.0042	0.40073	1669	49	1840	59	2064	76	2064	76	9.29
Mat10_Zrn-27	193	67	0.347150259	0.1395	0.0046	7.07	0.31	0.3738	0.012	0.1048	0.0031	0.068736	2047	57	2120	44	2219	60	2219	60	3.44
Mat10_Zrn-92	50	38.7	0.774	0.175	0.0066	11.8	0.44	0.4931	0.011	0.1309	0.0044	-0.16277	2584	51	2587	38	2600	61	2600	61	0.12

							Elem	ento SG de	el Conjun	to 1 de la F	ormaciór	Matzitzi									
MAT-17																					
Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ abs	²⁰⁷ Pb/ ²³⁵ U	±2σabs	²⁰⁶ Pb/ ²³⁸ U	±2σ abs	²⁰⁸ Pb/ ²³² Th	±2σ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ^{206P} b	±2σ	Mejor edad (Ma)	±2σ	Disc %
Mat17_Zrn-49	2190	218	0.099543379	0.07582	0.0024	1.01	0.033	0.097	0.0031	0.0357	0.0014	0.9409	597	18	708	17	1088	62	597	18	15.68
Mat17_Zrn-04	2269	173	0.076245042	0.0747	0.0024	1.58	0.066	0.1527	0.006	0.0578	0.0035	0.8753	916	34	962	28	1059	65	916	34	4.78
Mat17_Zrn-19	306	92	0.300653595	0.071	0.0025	1.644	0.05	0.1662	0.0037	0.0516	0.0018	0.35172	991.3	21	987	19	951	73	991.3	21	-0.44
Mat17_Zrn-02	228	97	0.425438596	0.073	0.0029	1.7	0.057	0.1667	0.0035	0.0499	0.0016	-0.068896	994	20	1007	23	1018	85	994	20	1.29
Mat17_Zrn-61	341.3	84.1	0.246410782	0.0751	0.0025	1.743	0.047	0.1682	0.0033	0.052	0.0017	0.26433	1002.3	18	1024	17	1066	70	1002.3	18	2.12
Mat17_Zrn-27	675	80.2	0.118814815	0.0728	0.0024	1.712	0.05	0.1709	0.0037	0.0575	0.0019	0.57961	1017.3	21	1013	19	1004	65	1017.3	21	-0.42
Mat17_Zrn-28	376.5	127.3	0.33811421	0.0738	0.0024	1.73	0.045	0.1716	0.0034	0.0537	0.0014	0.39726	1021	19	1019.4	17	1032	67	1021	19	-0.16
Mat17_Zrn-13	584	55.7	0.095376712	0.07978	0.0026	1.916	0.05	0.1737	0.004	0.0701	0.0025	0.60756	1032	22	1086.2	17	1194	63	1032	22	4.99
Mat17_Zrn-42	455	175	0.384615385	0.0752	0.0025	1.818	0.048	0.1762	0.0035	0.05236	0.0012	0.22226	1045.9	19	1051	17	1070	65	1045.9	19	0.49
Mat17_Zrn-79	279.7	51.97	0.185806221	0.0757	0.0026	1.825	0.082	0.1802	0.0081	0.0551	0.0019	0.82702	1068	45	1053	32	1082	68	1068	45	-1.42
Mat17_Zrn-81	476	97.5	0.204831933	0.0746	0.0024	1.842	0.047	0.1806	0.0036	0.0533	0.0015	0.26047	1070	20	1060	17	1053	67	1070	20	-0.94
Mat17_Zrn-92	423.5	70.6	0.166706021	0.0772	0.0026	2.002	0.055	0.1884	0.0037	0.0534	0.0016	0.39286	1112.7	20	1117	19	1122	68	1112.7	20	0.38
Mat17_Zrn-44	223	71.1	0.318834081	0.0773	0.0028	2.032	0.069	0.1888	0.0042	0.0571	0.0017	0.49457	1115	23	1125	23	1144	70	1115	23	0.89
Mat17_Zrn-72	157	90	0.573248408	0.0774	0.0028	1.986	0.059	0.1898	0.0043	0.0582	0.0018	0.43275	1120	22	1110	19	1124	71	1120	22	-0.90
Mat17_Zrn-26	237.5	65.1	0.274105263	0.0795	0.0027	2.087	0.058	0.1917	0.0041	0.0603	0.0017	0.31885	1131	22	1147	19	1179	68	1131	22	1.39
Mat17_Zrn-70	208	88.6	0.425961538	0.0782	0.0027	2.046	0.097	0.1921	0.008	0.0607	0.0024	0.64669	1132	44	1128	34	1146	67	1132	44	-0.35
Mat17_Zrn-73	309	49.1	0.158899676	0.0778	0.0026	2.085	0.059	0.195	0.0043	0.0573	0.0022	0.41075	1148	24	1143	21	1139	65	1148	24	-0.44
Mat17_Zrn-32	797	138.3	0.173525721	0.07873	0.0025	2.117	0.054	0.1951	0.0038	0.0573	0.0018	0.19087	1148.7	21	1154.1	18	1163	63	1148.7	21	0.47
Mat17_Zrn-78	164.8	68.1	0.413228155	0.0792	0.0032	2.112	0.074	0.1952	0.0038	0.0575	0.0019	0.2252	1149.5	21	1151	24	1165	80	1149.5	21	0.13
Mat17_Zrn-35	834	155.3	0.186211031	0.07804	0.0025	2.103	0.059	0.1954	0.004	0.0586	0.0016	0.76557	1150.7	22	1149	20	1145	65	1150.7	22	-0.15
Mat17_Zrn-53	500	281.7	0.5634	0.0818	0.0029	2.191	0.17	0.1959	0.01	0.0564	0.0041	0.42962	1153	52	1178	42	1238	67	1153	52	2.12
Mat17_Zrn-09	767	67.1	0.087483703	0.0771	0.0024	2.096	0.054	0.1961	0.004	0.0603	0.0019	0.75236	1154.1	21	1147	17	1121	62	1154.1	21	-0.62
Mat17_Zrn-98	180.6	26.6	0.147286822	0.0787	0.0029	2.115	0.074	0.1976	0.0051	0.0591	0.0026	0.65559	1162	27	1152	24	1164	70	1162	27	-0.87

Mat17_Zrn-100	256	76.5	0.298828125	0.0786	0.0029	2.131	0.063	0.1979	0.0043	0.0579	0.0015	0.18278	1164	23	1160	21	1154	74	1164	23	-0.34
Mat17_Zrn-94	355	78.7	0.221690141	0.0769	0.0026	2.099	0.059	0.1979	0.0039	0.0595	0.0015	0.4225	1166	21	1150	20	1114	68	1166	21	-1.39
Mat17_Zrn-30	386	171	0.443005181	0.0783	0.0026	2.161	0.062	0.1986	0.0045	0.062	0.0019	0.48988	1168	24	1168	20	1150	66	1168	24	0.00
Mat17_Zrn-14	189.2	35.8	0.189217759	0.0783	0.003	2.171	0.078	0.1995	0.005	0.0608	0.0024	0.23596	1172	27	1170	24	1146	73	1172	27	-0.17
Mat17_Zrn-48	410	24.6	0.06	0.0771	0.0028	2.128	0.11	0.1996	0.0063	0.0615	0.0024	0.75644	1173	33	1157	32	1129	73	1173	33	-1.38
Mat17_Zrn-40	489.4	160.6	0.328156927	0.0807	0.0027	2.21	0.056	0.2002	0.0044	0.0629	0.002	0.3524	1176	24	1184	18	1211	64	1176	24	0.68
Mat17_Zrn-83	121.4	40.6	0.334431631	0.0868	0.0064	2.41	0.21	0.2006	0.0051	0.0752	0.011	0.12075	1179	27	1244	53	1344	110	1179	27	5.23
Mat17_Zrn-20	698	182	0.260744986	0.0781	0.0026	2.189	0.07	0.2016	0.0051	0.0654	0.002	0.61305	1184	27	1177	21	1145	65	1184	27	-0.59
Mat17_Zrn-29	426	172	0.403755869	0.0813	0.0028	2.271	0.063	0.2023	0.0041	0.0603	0.0015	0.0013139	1187	22	1203	20	1222	69	1187	22	1.33
Mat17_Zrn-97	96.8	28.19	0.291219008	0.0784	0.003	2.187	0.074	0.2024	0.0049	0.0632	0.0027	0.39572	1188	26	1175	24	1146	76	1188	26	-1.11
Mat17_Zrn-93	190	40	0.210526316	0.0787	0.0028	2.204	0.062	0.2025	0.004	0.0617	0.0023	0.23802	1188.7	22	1181	20	1176	68	1188.7	22	-0.65
Mat17_Zrn-68	332	63.7	0.19186747	0.0799	0.0027	2.209	0.062	0.2027	0.004	0.0604	0.002	0.42456	1189.8	22	1183	19	1190	67	1189.8	22	-0.57
Mat17_Zrn-41	143	53.8	0.376223776	0.0809	0.003	2.243	0.066	0.2033	0.0046	0.0605	0.0018	0.32912	1193	24	1198	21	1218	73	1193	24	0.42
Mat17_Zrn-11	248	96.2	0.387903226	0.0797	0.0029	2.256	0.076	0.2036	0.0055	0.0616	0.0024	-0.15058	1195	29	1198	21	1183	73	1195	29	0.25
Mat17_Zrn-56	191	72.7	0.380628272	0.0821	0.003	2.324	0.071	0.2039	0.0041	0.0641	0.0018	0.18126	1196	22	1218	22	1240	74	1196	22	1.81
Mat17_Zrn-95	241	82.8	0.343568465	0.08039	0.0026	2.245	0.065	0.2039	0.0047	0.0624	0.002	0.60974	1196	25	1194	20	1204	64	1196	25	-0.17
Mat17_Zrn-10	1200	654	0.545	0.0802	0.0026	2.256	0.081	0.2043	0.0061	0.0608	0.0019	0.70628	1198	32	1198	24	1198	64	1198	32	0.00
Mat17_Zrn-66	116.9	49.2	0.420872541	0.0816	0.0032	2.264	0.069	0.2042	0.0056	0.0622	0.0027	0.4348	1198	30	1204	22	1228	75	1198	30	0.50
Mat17_Zrn-45	329.5	153.6	0.46616085	0.0838	0.0029	2.331	0.07	0.2043	0.0043	0.0591	0.0014	0.32575	1198.2	23	1221	22	1282	68	1198.2	23	1.87
Mat17_Zrn-36	231.2	68.4	0.295847751	0.0804	0.0028	2.265	0.068	0.2049	0.0044	0.0634	0.0018	0.47201	1201	24	1200	21	1201	70	1201	24	-0.08
Mat17_Zrn-43	167.3	13.78	0.082367005	0.0792	0.0028	2.229	0.065	0.2048	0.0041	0.0594	0.0034	0.17347	1201.1	22	1189	20	1177	74	1201.1	22	-1.02
Mat17_Zrn-17	859	212	0.246798603	0.0795	0.0027	2.252	0.11	0.205	0.0081	0.0619	0.0026	0.35413	1201.9	44	1197	31	1182	67	1201.9	44	-0.41
Mat17_Zrn-50	139.3	54.7	0.392677674	0.08	0.0031	2.226	0.15	0.2058	0.012	0.0586	0.0032	0.18865	1206	65	1188	55	1195	75	1206	65	-1.52
Mat17_Zrn-58	281	77.2	0.274733096	0.0829	0.0028	2.365	0.062	0.206	0.0042	0.0648	0.0017	0.072683	1207	22	1232	19	1262	65	1207	22	2.03
Mat17_Zrn-16	301	70.9	0.235548173	0.0788	0.0026	2.275	0.069	0.2061	0.0056	0.0648	0.0022	0.45346	1208	30	1204	21	1162	67	1208	30	-0.33
Mat17_Zrn-22	275.5	87.7	0.318330309	0.081	0.0029	2.312	0.067	0.206	0.0042	0.0692	0.002	0.26508	1208	22	1215	21	1216	69	1208	22	0.58

Mat17_Zrn-88	196.8	75.6	0.384146341	0.0889	0.0032	2.527	0.088	0.2058	0.0045	0.0696	0.0025	0.22265	1209	24	1279	27	1397	70	1209	24	5.47
Mat17_Zrn-54	252	70.9	0.281349206	0.0808	0.0026	2.302	0.065	0.207	0.0044	0.0585	0.0023	0.57613	1213	24	1215	20	1213	63	1213	24	0.16
Mat17_Zrn-24	526	199.3	0.378897338	0.08	0.0028	2.297	0.077	0.2078	0.0066	0.0606	0.0018	0.32438	1217	35	1211	24	1205	67	1217	35	-0.50
Mat17_Zrn-60	309	46.9	0.151779935	0.0799	0.0027	2.291	0.063	0.2078	0.0041	0.0632	0.0022	0.28734	1217	22	1209	20	1191	67	1217	22	-0.66
Mat17_Zrn-31	247.5	113.5	0.458585859	0.0806	0.0027	2.297	0.066	0.208	0.0041	0.0629	0.0015	0.28571	1218.3	22	1212	21	1206	67	1218.3	22	-0.52
Mat17_Zrn-47	153.6	69.7	0.453776042	0.08	0.003	2.298	0.074	0.2087	0.0044	0.0592	0.0017	0.38189	1222	24	1210	22	1189	74	1222	24	-0.99
Mat17_Zrn-84	143.1	53.9	0.376659679	0.0822	0.0031	2.366	0.073	0.2094	0.0043	0.0616	0.002	0.13777	1225.6	23	1234	23	1250	70	1225.6	23	0.68
Mat17_Zrn-52	332	106.6	0.321084337	0.0804	0.0028	2.329	0.064	0.2101	0.0042	0.0582	0.0016	0.14088	1229.2	23	1220	20	1210	69	1229.2	23	-0.75
Mat17_Zrn-80	423	244	0.576832151	0.08132	0.0026	2.343	0.058	0.2102	0.0041	0.0613	0.0014	-0.074018	1229.8	22	1225	17	1227	63	1229.8	22	-0.39
Mat17_Zrn-63	176.2	60.5	0.343359818	0.0829	0.0029	2.372	0.066	0.2104	0.0044	0.0627	0.0019	0.21713	1231	23	1233	20	1267	70	1231	23	0.16
Mat17_Zrn-86	144.2	37.5	0.260055479	0.0807	0.003	2.349	0.074	0.2106	0.0041	0.0635	0.0023	0.3113	1232	22	1226	22	1207	74	1232	22	-0.49
Mat17_Zrn-25	582	213	0.365979381	0.08	0.0026	2.338	0.062	0.2111	0.0041	0.06491	0.0014	0.17147	1234.8	22	1223	19	1191	65	1234.8	22	-0.96
Mat17_Zrn-21	174	66.9	0.384482759	0.0821	0.003	2.39	0.14	0.2111	0.011	0.0663	0.0031	0.21994	1235	57	1239	43	1244	75	1235	57	0.32
Mat17_Zrn-69	105.4	44.9	0.425996205	0.081	0.0031	2.369	0.074	0.2114	0.0044	0.0634	0.0024	0.0034718	1236.2	23	1232	21	1224	77	1236.2	23	-0.34
Mat17_Zrn-76	252	146.2	0.58015873	0.0839	0.0029	2.416	0.068	0.2115	0.0043	0.063	0.002	0.35941	1236.6	23	1249	20	1286	66	1236.6	23	0.99
Mat17_Zrn-03	119.9	45.7	0.381150959	0.0811	0.0031	2.367	0.072	0.2116	0.0044	0.0616	0.0022	0.077086	1237	23	1231	22	1214	75	1237	23	-0.49
Mat17_Zrn-39	226	97.7	0.432300885	0.08	0.0028	2.315	0.078	0.2116	0.0056	0.0645	0.0021	-0.19525	1237	29	1216	22	1207	68	1237	29	-1.73
Mat17_Zrn-06	233.9	115.8	0.495083369	0.0821	0.0028	2.406	0.095	0.2117	0.0058	0.0602	0.0017	0.35811	1238	31	1244	29	1245	69	1238	31	0.48
Mat17_Zrn-33	137.7	50.6	0.367465505	0.0811	0.0031	2.412	0.082	0.212	0.0045	0.0653	0.0023	0.24756	1240	24	1247	25	1249	76	1240	24	0.56
Mat17_Zrn-07	171.9	76	0.44211751	0.0834	0.0031	2.451	0.08	0.2124	0.0044	0.0627	0.002	-0.19329	1241.3	23	1257	22	1271	70	1241.3	23	1.25
Mat17_Zrn-90	309	90	0.291262136	0.0799	0.0028	2.359	0.07	0.2125	0.0049	0.0671	0.0018	0.6496	1242	26	1229	21	1190	68	1242	26	-1.06
Mat17_Zrn-65	260	84.8	0.326153846	0.0823	0.0029	2.391	0.066	0.2128	0.0043	0.064	0.0021	0.34396	1243.7	23	1239	20	1247	69	1243.7	23	-0.38
Mat17_Zrn-05	734	390	0.53133515	0.0812	0.0026	2.397	0.068	0.2128	0.005	0.0649	0.0015	0.40088	1244	27	1241	21	1232	63	1244	27	-0.24
Mat17_Zrn-99	239.9	69.52	0.289787411	0.079	0.0028	2.331	0.068	0.2129	0.0043	0.065	0.0018	0.28586	1244	23	1221	20	1177	67	1244	23	-1.88
Mat17_Zrn-67	368	80.5	0.21875	0.08295	0.0027	2.422	0.063	0.213	0.0043	0.0646	0.002	0.46336	1245	23	1249	19	1269	66	1245	23	0.32
Mat17_Zrn-77	262	67.7	0.258396947	0.0817	0.0029	2.4	0.12	0.2134	0.0088	0.0564	0.0022	0.88634	1245	47	1237	37	1232	70	1245	47	-0.65

Mat17_Zrn-82	447	233	0.521252796	0.0803	0.0026	2.345	0.065	0.2135	0.0046	0.0606	0.0019	0.21259	1247.3	24	1227.9	19	1201	61	1247.3	24	-1.58
Mat17_Zrn-01	95	37	0.389473684	0.0813	0.0035	2.407	0.09	0.214	0.0045	0.0627	0.0026	-0.018855	1250	24	1242	27	1223	89	1250	24	-0.64
Mat17_Zrn-18	223.8	61.3	0.273905273	0.0825	0.0028	2.781	0.075	0.2438	0.0048	0.0618	0.002	-0.1156	1406	25	1350	20	1252	69	1252	69	-4.15
Mat17_Zrn-59	371	150	0.404312668	0.0819	0.0027	2.411	0.063	0.2145	0.0042	0.0629	0.0016	0.2253	1252.6	23	1245	19	1240	67	1252.6	23	-0.61
Mat17_Zrn-46	169	77.2	0.456804734	0.0796	0.0029	2.354	0.07	0.2147	0.0044	0.0612	0.002	0.090457	1253.5	23	1228	20	1203	74	1253.5	23	-2.08
Mat17_Zrn-96	215.7	98.4	0.456189152	0.081	0.0029	2.393	0.072	0.2148	0.0043	0.0635	0.0016	0.2615	1254.5	23	1239	22	1223	70	1254.5	23	-1.25
Mat17_Zrn-75	106.5	35.7	0.335211268	0.0834	0.0034	2.47	0.079	0.2175	0.0045	0.0638	0.0026	0.014371	1269	24	1262	23	1268	77	1269	24	-0.55
Mat17_Zrn-89	200.4	78.8	0.393213573	0.0808	0.0029	2.43	0.075	0.2181	0.0048	0.0623	0.002	0.6107	1272	25	1249	21	1209	72	1272	25	-1.84
Mat17_Zrn-12	267.7	121.2	0.452745611	0.0809	0.0028	2.464	0.066	0.2191	0.0044	0.069	0.0018	0.04534	1277	23	1261	19	1220	70	1277	23	-1.27
Mat17_Zrn-91	109.4	36.15	0.330438757	0.0817	0.0031	2.434	0.08	0.2195	0.0052	0.064	0.0022	0.20423	1279	27	1252	24	1257	80	1279	27	-2.16
Mat17_Zrn-23	130	55.31	0.425461538	0.0826	0.0031	2.526	0.082	0.2209	0.0055	0.0703	0.0023	0.4742	1287	29	1278	23	1252	80	1287	29	-0.70
Mat17_Zrn-34	249.4	103.7	0.415797915	0.0813	0.0028	2.484	0.076	0.2221	0.0045	0.0663	0.0018	0.30308	1292.9	24	1270	21	1231	68	1292.9	24	-1.80
Mat17_Zrn-57	176	80.9	0.459659091	0.0851	0.0028	2.62	0.082	0.2229	0.0057	0.0628	0.0016	0.47428	1297	30	1305	24	1313	67	1297	30	0.61
Mat17_Zrn-64	310	252	0.812903226	0.0808	0.0026	2.49	0.072	0.2248	0.0056	0.0505	0.0036	0.26956	1307	29	1269	20	1213	63	1307	29	-2.99
Mat17_Zrn-62	141.8	50.21	0.354090268	0.0824	0.0028	2.578	0.072	0.2285	0.0047	0.0622	0.0019	0.16723	1326	25	1293	21	1247	67	1326	25	-2.55
Mat17_Zrn-71	138	117.4	0.850724638	0.0909	0.003	2.834	0.097	0.2292	0.0058	0.0678	0.0017	0.17644	1330	30	1363	24	1439	64	1330	30	2.42
Mat17_Zrn-37	207	64.6	0.312077295	0.0869	0.0033	2.792	0.14	0.2346	0.008	0.0771	0.0028	0.46716	1358	41	1357	33	1356	67	1358	41	-0.07
Mat17_Zrn-08	398	170.2	0.427638191	0.0877	0.0029	2.83	0.082	0.2374	0.0053	0.0728	0.0021	0.69225	1373	27	1362	22	1372	69	1373	27	-0.81
Mat17_Zrn-87	211	180	0.853080569	0.088	0.003	2.826	0.11	0.2377	0.0067	0.069	0.0017	0.13499	1375	36	1362	31	1395	68	1375	36	-0.95
Mat17_Zrn-38	422	327	0.774881517	0.0874	0.0031	2.925	0.08	0.2413	0.0059	0.0672	0.002	0.58595	1394	31	1388	22	1380	67	1394	31	-0.43
Mat17_Zrn-74	269	109.1	0.405576208	0.0921	0.0031	3.301	0.092	0.2627	0.0053	0.0779	0.002	0.63543	1503.4	27	1483	22	1472	63	1472	63	-1.38
Mat17_Zrn-51	199.1	269.7	1.354595681	0.093	0.0032	3.553	0.11	0.2779	0.0058	0.0759	0.0019	0.28371	1581	28	1538	23	1484	62	1484	62	-2.80
Mat17_Zrn-55	277	41	0.14801444	0.095	0.0033	3.375	0.091	0.2585	0.0057	0.0732	0.0027	0.22434	1482	29	1501	21	1541	64	1541	64	1.27
Mat17_Zrn-15	196.5	121.6	0.618829517	0.1035	0.0039	3.977	0.15	0.2766	0.007	0.0809	0.0024	0.17091	1574	35	1629	30	1685	72	1685	72	3.38

								Siste	emas fluv	iales del Cr	etácico										
MAT-2 (forma	ción La C	ompañía)																			
Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ abs	²⁰⁷ Pb/ ²³⁵ U	±2σabs	²⁰⁶ Pb/ ²³⁸ U	±2σ abs	²⁰⁸ Pb/ ²³² Th	±2σ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ^{206P} b	±2σ	Mejor edad (Ma)	±2σ	Disc %
MAT-2_Zrn-88	534.9	147.1	0.275004674	0.0522	0.0028	0.32	0.017	0.04343	0.00064	0.01374	0.00076	0.18616	274	4	282	13	320	120	274	4	2.84
MAT-2_Zrn-81	827	135.4	0.163724305	0.0514	0.0023	0.312	0.014	0.04365	0.00059	0.01431	0.00081	0.15015	275.4	3.6	274.9	11	253	100	275.4	3.6	-0.18
MAT-2_Zrn-24	121	83.4	0.689256198	0.053	0.0049	0.327	0.031	0.04392	0.001	0.01406	0.00098	0.012046	277.1	6.4	284	24	350	200	277.1	6.4	2.43
MAT-2_Zrn-72	406	87.1	0.21453202	0.0645	0.0052	0.396	0.031	0.04408	0.00085	0.0215	0.0024	0.064428	278.1	5.2	337	21	730	140	278.1	5.2	17.48
MAT-2_Zrn-87	152.4	90.5	0.593832021	0.0562	0.0055	0.338	0.032	0.0443	0.001	0.01406	0.00073	0.0019076	279.2	6.4	298	24	440	200	279.2	6.4	6.31
MAT-2_Zrn-92	118.1	66.5	0.563082134	0.056	0.0044	0.331	0.022	0.0445	0.0013	0.014	0.0011	0.046253	280.6	8	292	17	400	160	280.6	8	3.90
MAT-2_Zrn-10	74	32.75	0.442567568	0.07	0.0078	0.42	0.043	0.0445	0.0018	0.0171	0.0017	-0.34694	281	11	352	30	900	220	281	11	20.17
MAT-2_Zrn-47	320	94	0.29375	0.0553	0.0039	0.347	0.023	0.04461	0.00083	0.0142	0.0011	0.1629	281.3	5.1	301	18	400	150	281.3	5.1	6.54
MAT-2_Zrn-40	135	70.7	0.523703704	0.0523	0.0057	0.309	0.029	0.0448	0.0012	0.0141	0.0011	0.0092571	282.6	7.7	279	24	270	220	282.6	7.7	-1.29
MAT-2_Zrn-41	103.2	19.39	0.187887597	0.0761	0.0038	1.756	0.079	0.1688	0.003	0.0551	0.004	0.024708	1005	17	1034	31	1108	100	1005	17	2.80
MAT-2_Zrn-19	236	91.7	0.388559322	0.0822	0.0052	1.9	0.13	0.1702	0.0027	0.0646	0.0056	0.69074	1013	15	1084	46	1240	120	1013	15	6.55
MAT-2_Zrn-90	88.4	20.2	0.228506787	0.075	0.0034	1.774	0.078	0.1715	0.003	0.0611	0.0047	0.23846	1020	17	1033	29	1049	92	1020	17	1.26
MAT-2_Zrn-79	273.7	97.8	0.357325539	0.0767	0.0029	1.841	0.087	0.173	0.0061	0.0553	0.0025	0.4408	1028	34	1060	34	1150	74	1028	34	3.02
MAT-2_Zrn-12	154	41.6	0.27012987	0.0749	0.0034	1.853	0.085	0.1796	0.0034	0.0555	0.0029	0.32709	1065	18	1060	31	1068	88	1065	18	-0.47
MAT-2_Zrn-82	314.6	54.2	0.172282263	0.0783	0.0028	1.962	0.071	0.1799	0.0026	0.0552	0.0027	0.48842	1066	14	1101	24	1161	74	1066	14	3.18
MAT-2_Zrn-89	31.73	16.9	0.532618973	0.078	0.0072	1.92	0.17	0.1809	0.0054	0.0518	0.0039	0.061906	1071	29	1094	57	1120	180	1071	29	2.10
MAT-2_Zrn-62	1120	344	0.307142857	0.0771	0.0038	1.943	0.21	0.1825	0.011	0.0548	0.0035	0.43366	1080	56	1095	60	1120	86	1080	56	1.37
MAT-2_Zrn-60	350	110	0.314285714	0.0779	0.0027	1.947	0.07	0.1829	0.0033	0.0572	0.0025	0.36421	1082	18	1095	24	1135	69	1082	18	1.19
MAT-2_Zrn-96	294	34.8	0.118367347	0.0768	0.0029	1.952	0.091	0.1843	0.0045	0.0539	0.0033	0.73269	1090	24	1099	30	1105	76	1090	24	0.82
MAT-2_Zrn-84	246	103	0.418699187	0.0801	0.0031	2.108	0.078	0.1902	0.0031	0.0576	0.0023	0.28814	1122	17	1150	26	1197	74	1122	17	2.43
MAT-2_Zrn-74	188.7	51.1	0.270800212	0.0784	0.003	2.052	0.076	0.191	0.0025	0.0592	0.0029	0.16305	1126.8	13	1134	24	1155	79	1126.8	13	0.63
MAT-2_Zrn-52	468.2	132.5	0.282998718	0.0801	0.0029	2.124	0.073	0.1919	0.0027	0.0551	0.0019	0.33523	1131	14	1155	23	1199	73	1131	14	2.08
MAT-2_Zrn-29	248	86.5	0.348790323	0.0792	0.003	2.093	0.075	0.193	0.0026	0.058	0.0023	0.16164	1138	14	1150	24	1175	74	1138	14	1.04

MAT-2_Zrn-83	85.6	26.19	0.305957944	0.079	0.0035	2.096	0.098	0.1938	0.0033	0.0609	0.003	0.25556	1142	18	1143	32	1154	91	1142	18	0.09
MAT-2_Zrn-58	192.6	63	0.327102804	0.0806	0.0032	2.178	0.084	0.1946	0.0026	0.0618	0.003	0.19576	1146	14	1175	28	1200	79	1146	14	2.47
MAT-2_Zrn-38	429	178	0.414918415	0.0809	0.0028	2.201	0.074	0.1959	0.0033	0.0552	0.002	0.47921	1153	18	1180	23	1218	66	1153	18	2.29
MAT-2_Zrn-34	229	78.2	0.341484716	0.0814	0.0029	2.219	0.077	0.1972	0.0026	0.0601	0.0025	0.29716	1160	14	1185	24	1223	71	1160	14	2.11
MAT-2_Zrn-43	186.6	61.03	0.327063237	0.0808	0.0032	2.235	0.085	0.1973	0.0027	0.0588	0.0026	0.14565	1161	15	1194	25	1232	85	1161	15	2.76
MAT-2_Zrn-93	193	60.9	0.315544041	0.0831	0.0033	2.304	0.092	0.1985	0.0035	0.0607	0.0025	0.21424	1167	19	1211	28	1289	82	1167	19	3.63
MAT-2_Zrn-39	129.2	34.9	0.270123839	0.0777	0.0039	2.111	0.1	0.1987	0.0032	0.0575	0.0031	0.21853	1168	17	1148	33	1112	98	1168	17	-1.74
MAT-2_Zrn-98	162	56	0.345679012	0.0822	0.0033	2.286	0.089	0.1987	0.0028	0.0596	0.0026	0.28283	1168	15	1206	27	1249	74	1168	15	3.15
MAT-2_Zrn-42	585	187.7	0.320854701	0.0812	0.0027	2.243	0.069	0.2001	0.0024	0.0589	0.002	0.25131	1175.6	13	1194	22	1222	65	1175.6	13	1.54
MAT-2_Zrn-27	105	35.05	0.333809524	0.0786	0.0035	2.164	0.09	0.2006	0.0028	0.06	0.0029	0.0093114	1178	15	1167	29	1167	89	1178	15	-0.94
MAT-2_Zrn-94	119.9	35.6	0.296914095	0.0805	0.0033	2.265	0.09	0.2011	0.0036	0.0616	0.0036	0.27494	1181	19	1202	29	1203	79	1181	19	1.75
MAT-2_Zrn-55	134.5	37.1	0.275836431	0.0814	0.0031	2.246	0.086	0.2013	0.003	0.0643	0.0038	0.26698	1182	16	1200	27	1219	77	1182	16	1.50
MAT-2_Zrn-59	346.1	93.3	0.269575267	0.0795	0.0027	2.222	0.074	0.2013	0.0025	0.0612	0.0024	0.39237	1182.4	14	1187	24	1185	71	1182.4	14	0.39
MAT-2_Zrn-03	99.8	28.08	0.281362725	0.084	0.0037	2.329	0.097	0.2018	0.0031	0.0637	0.0037	0.2366	1185	17	1225	30	1285	86	1185	17	3.27
MAT-2_Zrn-02	175.9	56.7	0.32234224	0.079	0.0033	2.202	0.089	0.2019	0.0025	0.0607	0.0026	0.29198	1185.6	13	1182	27	1165	83	1185.6	13	-0.30
MAT-2_Zrn-97	226	77.4	0.342477876	0.0869	0.0031	2.41	0.09	0.2028	0.0033	0.0583	0.0027	0.52681	1190	18	1251	29	1350	70	1190	18	4.88
MAT-2_Zrn-76	838	325	0.387828162	0.0811	0.0025	2.271	0.063	0.2025	0.0024	0.0619	0.0019	0.2213	1190.1	13	1202.8	20	1225	59	1190.1	13	1.06
MAT-2_Zrn-32	356	149.6	0.420224719	0.0799	0.0028	2.254	0.072	0.203	0.0024	0.0599	0.002	0.05353	1191.2	13	1197	22	1186	70	1191.2	13	0.48
MAT-2_Zrn-56	164.6	54.2	0.329283111	0.0826	0.0039	2.337	0.11	0.2043	0.0032	0.0626	0.0029	0.11625	1198	17	1219	32	1238	93	1198	17	1.72
MAT-2_Zrn-18	108.4	37.1	0.342250923	0.0823	0.0039	2.301	0.11	0.2049	0.0035	0.0618	0.0033	0.11355	1201	19	1213	33	1231	93	1201	19	0.99
MAT-2_Zrn-28	200	72.3	0.3615	0.0816	0.003	2.288	0.08	0.2049	0.0029	0.062	0.0027	0.32314	1201	16	1207	25	1234	70	1201	16	0.50
MAT-2_Zrn-57	128.6	36	0.279937792	0.0853	0.004	2.402	0.096	0.2049	0.0038	0.0602	0.0033	0.019917	1201	20	1240	29	1312	90	1201	20	3.15
MAT-2_Zrn-75	259	29.3	0.113127413	0.0812	0.0029	2.301	0.086	0.2049	0.0038	0.0592	0.0033	0.3611	1201	20	1213	25	1227	73	1201	20	0.99
MAT-2_Zrn-06	90	28.1	0.312222222	0.0816	0.0043	2.261	0.1	0.205	0.0041	0.0605	0.003	-0.062689	1202	22	1200	31	1230	100	1202	22	-0.17
MAT-2_Zrn-71	173.2	61.5	0.355080831	0.0845	0.0033	2.365	0.084	0.2051	0.0032	0.0624	0.0026	0.14506	1202	17	1233	25	1308	75	1202	17	2.51
MAT-2_Zrn-15	155	54	0.348387097	0.0797	0.0033	2.249	0.093	0.2054	0.0029	0.0565	0.0031	0.32637	1204	16	1193	29	1195	74	1204	16	-0.92

MAT-2_Zrn-33	100.5	26	0.258706468	0.0815	0.0034	2.324	0.094	0.2054	0.0034	0.0635	0.004	0.18783	1204	18	1217	28	1232	83	1204	18	1.07
MAT-2_Zrn-67	133.4	31.7	0.237631184	0.0811	0.0035	2.269	0.093	0.2055	0.0037	0.0621	0.0036	0.48221	1204	20	1204	28	1216	83	1204	20	0.00
MAT-2_Zrn-50	127.7	41.26	0.323101018	0.0806	0.0032	2.302	0.094	0.2058	0.0035	0.0597	0.0028	0.26067	1206	19	1210	29	1230	82	1206	19	0.33
MAT-2_Zrn-14	282	104.8	0.371631206	0.081	0.003	2.33	0.078	0.2066	0.0027	0.061	0.0026	0.090137	1210	15	1220	24	1237	74	1210	15	0.82
MAT-2_Zrn-16	134.6	39.5	0.29346211	0.0804	0.0041	2.274	0.11	0.2066	0.003	0.062	0.0034	0.4064	1211	16	1209	33	1219	96	1211	16	-0.17
MAT-2_Zrn-68	214.8	74	0.344506518	0.0827	0.003	2.335	0.08	0.2069	0.0027	0.0591	0.0024	0.18388	1212	14	1224	25	1261	73	1212	14	0.98
MAT-2_Zrn-08	253	86	0.339920949	0.0804	0.0029	2.3	0.072	0.2071	0.0033	0.0639	0.0023	0.22271	1213	18	1214	23	1219	68	1213	18	0.08
MAT-2_Zrn-54	299	85	0.284280936	0.0819	0.0028	2.354	0.08	0.2071	0.0037	0.0605	0.0026	0.48067	1213	20	1227	25	1243	65	1213	20	1.14
MAT-2_Zrn-63	100.2	29.6	0.295409182	0.0807	0.0036	2.29	0.1	0.2073	0.0032	0.0637	0.0041	-0.073101	1214	17	1209	31	1207	89	1214	17	-0.41
MAT-2_Zrn-91	196	74.3	0.379081633	0.0825	0.0032	2.348	0.087	0.2073	0.0027	0.0595	0.0024	0.26421	1215	14	1228	26	1244	78	1215	14	1.06
MAT-2_Zrn-35	145.6	47.8	0.328296703	0.0796	0.0035	2.286	0.1	0.2076	0.0031	0.065	0.0032	0.1943	1216	17	1204	31	1189	88	1216	17	-1.00
MAT-2_Zrn-70	159.1	40	0.251414205	0.0798	0.0029	2.289	0.076	0.2078	0.0028	0.0626	0.003	0.13457	1217	15	1208	23	1198	72	1217	15	-0.75
MAT-2_Zrn-99	107.8	35.6	0.330241187	0.0816	0.0038	2.308	0.11	0.2074	0.0037	0.0626	0.004	0.23637	1217	19	1210	33	1214	94	1217	19	-0.58
MAT-2_Zrn-20	120.7	46.5	0.385252693	0.0819	0.0034	2.349	0.089	0.2083	0.0034	0.0597	0.0027	0.01662	1219	18	1225	27	1248	81	1219	18	0.49
MAT-2_Zrn-100	160.5	40.25	0.250778816	0.0837	0.0031	2.402	0.09	0.2081	0.003	0.0614	0.0031	0.35707	1219	16	1241	27	1275	73	1219	16	1.77
MAT-2_Zrn-21	191	73.6	0.385340314	0.0825	0.0031	2.36	0.082	0.2082	0.0027	0.0626	0.0024	0.24359	1221	14	1232	26	1247	73	1221	14	0.89
MAT-2_Zrn-78	226	81.3	0.359734513	0.0821	0.0032	2.354	0.089	0.2086	0.0028	0.0602	0.0024	0.29232	1221	15	1227	27	1236	78	1221	15	0.49
MAT-2_Zrn-17	659	104.4	0.158421851	0.0789	0.0024	2.263	0.068	0.2088	0.0034	0.0646	0.0027	0.54296	1222	18	1200	21	1171	59	1222	18	-1.83
MAT-2_Zrn-66	153.6	42.5	0.276692708	0.0825	0.0034	2.367	0.093	0.209	0.0032	0.0632	0.0032	0.27429	1223	17	1233	27	1254	78	1223	17	0.81
MAT-2_Zrn-01	169.8	56.9	0.335100118	0.0806	0.0033	2.319	0.088	0.2096	0.0032	0.0633	0.0026	0.091454	1226	17	1216	27	1197	83	1226	17	-0.82
MAT-2_Zrn-07	143.9	50.2	0.34885337	0.0834	0.0033	2.391	0.089	0.2097	0.0032	0.061	0.0029	0.081716	1227	17	1241	26	1275	79	1227	17	1.13
MAT-2_Zrn-22	108.4	32.4	0.298892989	0.0814	0.0039	2.378	0.11	0.2098	0.0036	0.0648	0.0036	0.27698	1227	19	1236	33	1234	93	1227	19	0.73
MAT-2_Zrn-95	139.9	52.7	0.376697641	0.0824	0.0034	2.371	0.095	0.2097	0.0028	0.0587	0.0029	0.16906	1227	15	1231	29	1240	83	1227	15	0.32
MAT-2_Zrn-11	146.8	40.9	0.278610354	0.0839	0.0036	2.419	0.098	0.2098	0.0028	0.0615	0.0032	0.16445	1228	15	1253	29	1274	85	1228	15	2.00
MAT-2_Zrn-51	181	61.7	0.340883978	0.0789	0.0029	2.309	0.08	0.2099	0.0032	0.0601	0.003	0.25899	1228	17	1216	25	1168	74	1228	17	-0.99
MAT-2_Zrn-64	128.9	22.6	0.175329713	0.0797	0.0038	2.333	0.11	0.21	0.0033	0.0655	0.0037	0.091983	1228	18	1218	33	1177	96	1228	18	-0.82

MAT-2_Zrn-30	132.3	47	0.355253212	0.0812	0.0033	2.372	0.094	0.2101	0.0029	0.0669	0.0033	-0.013233	1229	15	1231	28	1222	83	1229	15	0.16
MAT-2_Zrn-53	81.5	26.09	0.320122699	0.0813	0.004	2.366	0.11	0.2094	0.0041	0.0622	0.0039	0.083339	1229	21	1233	34	1229	100	1229	21	0.32
MAT-2_Zrn-49	84.9	25.2	0.296819788	0.0808	0.0041	2.36	0.12	0.2104	0.004	0.064	0.0048	0.40566	1230	21	1223	38	1200	100	1230	21	-0.57
MAT-2_Zrn-05	166.8	47.1	0.282374101	0.0781	0.0031	2.283	0.089	0.2107	0.0028	0.0626	0.0031	0.27085	1232	15	1211	27	1164	75	1232	15	-1.73
MAT-2_Zrn-09	156.1	64.7	0.414477899	0.0808	0.0037	2.348	0.1	0.2108	0.0031	0.0657	0.0028	0.014803	1233	17	1227	30	1206	89	1233	17	-0.49
MAT-2_Zrn-37	148.3	49.8	0.335805799	0.0824	0.0039	2.395	0.11	0.211	0.0029	0.0648	0.0027	0.12354	1236	16	1241	32	1256	92	1236	16	0.40
MAT-2_Zrn-45	169.7	86.7	0.510901591	0.0827	0.003	2.445	0.085	0.2121	0.003	0.0632	0.0024	0.28776	1240	16	1257	26	1267	72	1240	16	1.35
MAT-2_Zrn-61	137.4	51.1	0.371906841	0.0808	0.0034	2.38	0.097	0.2123	0.0028	0.0601	0.0028	0.2213	1241	15	1237	28	1221	81	1241	15	-0.32
MAT-2_Zrn-36	605	129.6	0.214214876	0.0808	0.0025	2.364	0.068	0.2123	0.0024	0.0652	0.0023	0.309	1241.1	13	1233	21	1217	60	1241.1	13	-0.66
MAT-2_Zrn-46	133.7	37.86	0.283171279	0.0813	0.0035	2.441	0.1	0.213	0.0036	0.0613	0.0033	0.27613	1245	19	1251	30	1231	87	1245	19	0.48
MAT-2_Zrn-73	223	65.4	0.293273543	0.0823	0.0032	2.422	0.09	0.2131	0.003	0.0617	0.0027	0.27561	1245	16	1253	27	1257	77	1245	16	0.64
MAT-2_Zrn-86	105.6	31	0.293560606	0.0839	0.0036	2.462	0.1	0.2131	0.0032	0.0635	0.0036	0.078025	1245	17	1262	28	1296	79	1245	17	1.35
MAT-2_Zrn-13	171	42.9	0.250877193	0.08	0.003	2.319	0.09	0.2135	0.0031	0.0638	0.0031	0.26158	1247	17	1219	29	1197	71	1247	17	-2.30
MAT-2_Zrn-69	261	69.6	0.266666667	0.082	0.003	2.428	0.082	0.2135	0.003	0.062	0.0028	0.090622	1247	16	1252	24	1243	75	1247	16	0.40
MAT-2_Zrn-48	218	67.8	0.311009174	0.0805	0.0031	2.394	0.097	0.2146	0.0029	0.0635	0.0025	0.3044	1253	15	1245	27	1206	75	1253	15	-0.64
MAT-2_Zrn-31	163.9	45.9	0.28004881	0.0822	0.0033	2.444	0.092	0.2143	0.003	0.0655	0.0028	0.10719	1254	15	1257	26	1258	74	1254	15	0.24
MAT-2_Zrn-44	368	87.9	0.238858696	0.0816	0.0027	2.427	0.074	0.2153	0.0028	0.0657	0.0025	0.19728	1257	15	1250	22	1229	65	1257	15	-0.56
MAT-2_Zrn-25	189	57.2	0.302645503	0.0792	0.0029	2.374	0.08	0.216	0.0032	0.0641	0.0031	0.13804	1260	17	1233	24	1175	69	1260	17	-2.19
MAT-2_Zrn-65	96.9	34.1	0.351909185	0.0842	0.0043	2.5	0.12	0.2172	0.0036	0.0636	0.0032	0.32934	1267	19	1268	36	1284	97	1267	19	0.08
MAT-2_Zrn-80	241.6	72.9	0.301738411	0.0836	0.0049	2.516	2.2	0.2172	0.14	0.0653	0.045	-0.078371	1267	500	1275	240	1288	97	1267	500	0.63
MAT-2_Zrn-77	168.1	51.3	0.305175491	0.0825	0.0036	2.489	0.099	0.2187	0.0033	0.0648	0.0035	0.015862	1275	17	1266	29	1260	85	1275	17	-0.71
MAT-2_Zrn-23	309	340	1.100323625	0.0867	0.0033	2.655	0.098	0.2225	0.0029	0.0672	0.0021	0.51111	1295	15	1314	27	1352	71	1295	15	1.45
MAT-2_Zrn-85	105.4	25.7	0.243833017	0.0845	0.0039	2.64	0.14	0.2248	0.0058	0.0641	0.004	0.50401	1306	31	1311	39	1311	89	1306	31	0.38
MAT-2_Zrn-04	422.2	250.5	0.593320701	0.0852	0.0028	2.639	0.079	0.2253	0.0029	0.0668	0.0021	0.27644	1310	15	1311	22	1320	64	1310	15	0.08
MAT-2_Zrn-26	194	120.3	0.620103093	0.0853	0.0028	2.756	0.083	0.2341	0.0034	0.0724	0.0026	0.17909	1356	18	1343	23	1317	65	1356	18	-0.97

MAT-8 (forma	ción Calte	epec)	•		•	•	-	•							•		-				
Análisis	U (ppm)	Th (ppm)	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2σ abs	²⁰⁷ Pb/ ²³⁵ U	±2σabs	²⁰⁶ Pb/ ²³⁸ U	±2σ abs	²⁰⁸ Pb/ ²³² Th	±2σ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2σ	²⁰⁷ Pb/ ²³⁵ U	±2σ	²⁰⁷ Pb/ ^{206P} b	±2σ	Mejor edad (Ma)	±2σ	Disc %
Mat08_Zrn-60	1236	144.6	0.116990291	0.0574	0.0023	0.318	0.012	0.03985	0.00064	0.01408	0.00062	0.12667	251.9	4	279.9	8.9	532	80	251.9	4	10.00
Mat08_Zrn-61	247.3	67.1	0.271330368	0.056	0.0035	0.325	0.019	0.04134	0.00072	0.01342	0.00081	-0.011984	261.1	4.4	284	15	490	130	261.1	4.4	8.06
Mat08_Zrn-13	379	99.17	0.261662269	0.0521	0.0034	0.307	0.023	0.04241	0.00086	0.01277	0.0011	0.13384	267.8	5.3	271	17	290	110	267.8	5.3	1.18
Mat08_Zrn-36	222.3	61.4	0.276203329	0.0586	0.0033	0.342	0.018	0.04248	0.00083	0.01571	0.001	0.09419	268.2	5.1	298	13	580	120	268.2	5.1	10.00
Mat08_Zrn-55	243.7	43.9	0.180139516	0.0559	0.0025	0.331	0.014	0.04281	0.00062	0.0145	0.00092	0.07357	270.2	3.9	289.8	10	430	95	270.2	3.9	6.76
Mat08_Zrn-51	501	78.7	0.157085828	0.0541	0.0022	0.322	0.013	0.04295	0.00062	0.01455	0.0008	0.23351	271.1	3.8	282.9	9.8	377	90	271.1	3.8	4.17
Mat08_Zrn-82	362	111	0.306629834	0.0523	0.0025	0.312	0.015	0.04358	0.00092	0.01412	0.00072	0.18791	275	5.7	275.2	11	277	110	275	5.7	0.07
Mat08_Zrn-03	164	114	0.695121951	0.0516	0.0032	0.312	0.019	0.04377	0.00077	0.01394	0.00067	0.20573	276.1	4.8	275	14	270	130	276.1	4.8	-0.40
Mat08_Zrn-84	617	75.7	0.122690438	0.0527	0.0022	0.3183	0.013	0.04386	0.00061	0.01402	0.00078	-0.023968	276.7	3.8	280.3	9.8	308	95	276.7	3.8	1.28
Mat08_Zrn-57	187	114	0.609625668	0.0545	0.0029	0.325	0.017	0.044	0.0008	0.01318	0.00073	-0.17238	277.6	5	291	13	360	120	277.6	5	4.60
Mat08_Zrn-46	184	62.6	0.340217391	0.0539	0.0033	0.328	0.02	0.04403	0.00082	0.01418	0.00095	0.21921	277.7	5.1	287	15	340	140	277.7	5.1	3.24
Mat08_Zrn-28	273.2	152.4	0.557833089	0.0528	0.0033	0.321	0.02	0.04421	0.00077	0.01418	0.00085	-0.13116	278.9	4.7	282	15	300	130	278.9	4.7	1.10
Mat08_Zrn-44	306.7	107.9	0.351809586	0.0519	0.0024	0.319	0.015	0.0443	0.00079	0.01358	0.00072	0.28328	279.4	4.8	280	12	260	110	279.4	4.8	0.21
Mat08_Zrn-81	85	31.5	0.370588235	0.0532	0.0042	0.329	0.026	0.04446	0.00095	0.01279	0.001	-0.053571	280.4	5.8	290	19	310	160	280.4	5.8	3.31
Mat08_Zrn-47	82	48.1	0.586585366	0.0516	0.0041	0.318	0.027	0.0446	0.001	0.01388	0.00097	0.25473	281.2	6.3	281	21	240	170	281.2	6.3	-0.07
Mat08_Zrn-30	132.3	45.3	0.342403628	0.0542	0.0033	0.329	0.019	0.04461	0.00085	0.01458	0.0011	0.10925	281.3	5.2	288	14	380	130	281.3	5.2	2.33
Mat08_Zrn-23	146.5	65.3	0.445733788	0.0509	0.0036	0.317	0.023	0.0449	0.0012	0.01447	0.0014	0.16776	283.3	7.1	278	19	230	160	283.3	7.1	-1.91
Mat08_Zrn-86	159.3	105.9	0.664783427	0.0526	0.0037	0.324	0.021	0.04521	0.00089	0.01469	0.00073	-0.21239	285	5.5	286	15	310	150	285	5.5	0.35
Mat08_Zrn-83	306	152.4	0.498039216	0.0502	0.0026	0.321	0.016	0.04559	0.00073	0.01326	0.00063	0.10975	287.4	4.5	282	13	200	120	287.4	4.5	-1.91
Mat08_Zrn-90	162.4	23.9	0.147167488	0.0526	0.0034	0.377	0.024	0.0516	0.001	0.0176	0.0019	0.10997	324.5	6.2	330	17	320	130	324.5	6.2	1.67
Mat08_Zrn-79	1292	268	0.207430341	0.0694	0.0022	0.972	0.032	0.10084	0.0015	0.03667	0.0014	0.52092	619.3	8.8	689	16	907	69	619.3	8.8	10.12
Mat08_Zrn-32	399	36.2	0.090726817	0.0736	0.0026	1.591	0.056	0.1573	0.003	0.0457	0.0026	0.39361	941.9	17	966	23	1037	72	941.9	17	2.49
Mat08_Zrn-80	319.7	107.2	0.335314357	0.074	0.0026	1.616	0.053	0.1585	0.0025	0.045	0.0019	0.097354	948.6	14	976	21	1034	70	948.6	14	2.81
Mat08_Zrn-99	239.7	72.3	0.301627034	0.0727	0.0027	1.602	0.061	0.1616	0.0023	0.0489	0.002	0.43899	965.4	13	972	24	996	76	965.4	13	0.68

Mat08_Zrn-62	775	176	0.227096774	0.0747	0.0025	1.656	0.066	0.1633	0.0034	0.0467	0.002	0.021421	975.1	19	992	24	1059	65	975.1	19	1.70
Mat08_Zrn-08	217.7	65.8	0.302250804	0.0709	0.0028	1.617	0.061	0.164	0.0021	0.05	0.0021	0.094336	979.1	12	975	24	952	79	979.1	12	-0.42
Mat08_Zrn-05	130.3	25.8	0.198004605	0.0733	0.0031	1.648	0.075	0.165	0.003	0.0453	0.0049	0.45132	984	16	991	27	1024	87	984	16	0.71
Mat08_Zrn-10	86.5	21.69	0.250751445	0.0723	0.0029	1.652	0.064	0.1654	0.0026	0.0499	0.0026	0.038139	986.9	14	989	25	981	84	986.9	14	0.21
Mat08_Zrn-35	63.5	21.8	0.343307087	0.0733	0.0052	1.64	0.12	0.1656	0.0042	0.0491	0.0046	0.14432	987	23	980	49	1020	160	987	23	-0.71
Mat08_Zrn-64	330	41.95	0.127121212	0.0749	0.0028	1.693	0.068	0.1657	0.0025	0.0451	0.0023	0.28217	988.2	14	1005	24	1060	73	988.2	14	1.67
Mat08_Zrn-68	167.8	62.72	0.373778308	0.0737	0.0031	1.67	0.064	0.1664	0.0028	0.0429	0.0022	0.26728	992	16	996	25	1020	84	992	16	0.40
Mat08_Zrn-25	613	132.2	0.215660685	0.0694	0.0029	1.566	0.066	0.16706	0.002	0.0561	0.0067	0.99977	995.9	11	957	26	908	86	995.9	11	-4.06
Mat08_Zrn-70	91.2	28.3	0.310307018	0.0735	0.0033	1.695	0.076	0.1677	0.0025	0.0488	0.0028	0.034717	999.4	14	1004	29	1020	91	999.4	14	0.46
Mat08_Zrn-54	90.1	39.18	0.434850166	0.0744	0.0035	1.717	0.076	0.1679	0.0031	0.0537	0.0026	0.037115	1000	17	1013	27	1050	95	1000	17	1.28
Mat08_Zrn-72	38.9	14.57	0.374550129	0.071	0.0037	1.618	0.084	0.1678	0.0028	0.0486	0.0029	0.12528	1000	16	986	33	950	110	1000	16	-1.42
Mat08_Zrn-15	100.8	26.6	0.263888889	0.0747	0.0033	1.745	0.077	0.1693	0.0026	0.0519	0.0032	0.045122	1008	15	1022	29	1055	90	1008	15	1.37
Mat08_Zrn-02	216.6	60.4	0.278855032	0.0733	0.0027	1.716	0.063	0.1695	0.0024	0.05	0.002	0.21366	1009.2	13	1013	23	1023	79	1009.2	13	0.38
Mat08_Zrn-78	117	62.5	0.534188034	0.0719	0.003	1.701	0.072	0.1699	0.0027	0.05	0.0023	0.13254	1011	15	1010	26	989	92	1011	15	-0.10
Mat08_Zrn-100	74.99	22.64	0.301906921	0.0745	0.0034	1.726	0.075	0.1699	0.0026	0.0485	0.0025	0.051989	1011.5	14	1016	28	1046	95	1011.5	14	0.44
Mat08_Zrn-07	72.7	21.1	0.290233838	0.0698	0.0031	1.661	0.076	0.1702	0.0028	0.0513	0.0029	0.14104	1013	16	995	29	920	96	1013	16	-1.81
Mat08_Zrn-12	100.1	34.8	0.347652348	0.0723	0.0035	1.712	0.078	0.1703	0.0026	0.0524	0.0025	-0.037213	1013.7	14	1021	30	1007	96	1013.7	14	0.71
Mat08_Zrn-21	102.8	21.39	0.20807393	0.0729	0.0031	1.715	0.073	0.1703	0.0026	0.0497	0.003	0.12618	1013.8	14	1012	27	998	84	1013.8	14	-0.18
Mat08_Zrn-76	136.1	32	0.235121234	0.0754	0.003	1.75	0.067	0.171	0.0026	0.0481	0.0021	0.062956	1017.3	14	1028	24	1068	79	1017.3	14	1.04
Mat08_Zrn-49	153.4	42.2	0.275097784	0.0736	0.0026	1.74	0.064	0.1713	0.0026	0.0528	0.0024	0.30777	1019.4	14	1025	24	1031	81	1019.4	14	0.55
Mat08_Zrn-77	318	85.3	0.268238994	0.0725	0.0026	1.73	0.065	0.1714	0.0026	0.052	0.0023	0.41863	1019.5	14	1022	24	1013	68	1019.5	14	0.24
Mat08_Zrn-16	117.3	42.6	0.363171355	0.0719	0.003	1.711	0.072	0.1716	0.0027	0.0522	0.0024	0.22335	1021	15	1014	26	978	82	1021	15	-0.69
Mat08_Zrn-58	128.8	49.2	0.381987578	0.0715	0.0029	1.692	0.066	0.1723	0.0026	0.0513	0.0026	0.28281	1025	14	1004	25	962	83	1025	14	-2.09
Mat08_Zrn-85	60.5	16.13	0.26661157	0.0746	0.0036	1.776	0.082	0.1732	0.0031	0.0495	0.0036	0.26214	1030	17	1042	30	1061	88	1030	17	1.15
Mat08_Zrn-52	117.5	40.3	0.342978723	0.0737	0.0031	1.765	0.071	0.1736	0.0027	0.0506	0.0027	0.11915	1032	15	1036	27	1029	83	1032	15	0.39
Mat08_Zrn-29	1013	40	0.039486673	0.0788	0.0027	1.858	0.08	0.1737	0.0034	0.092	0.0047	0.039574	1032.4	19	1066	26	1164	65	1032.4	19	3.15

Mat08_Zrn-37	252	55	0.218253968	0.0765	0.0027	1.896	0.11	0.1764	0.0093	0.0488	0.0041	0.34259	1047.5	53	1079	44	1114	67	1047.5	53	2.92
Mat08_Zrn-94	151.3	34.98	0.231196299	0.0765	0.0031	1.856	0.072	0.1789	0.0028	0.0564	0.0029	-0.11501	1061	15	1068	25	1097	83	1061	15	0.66
Mat08_Zrn-71	578	203.3	0.351730104	0.0799	0.0025	2.034	0.064	0.1849	0.0025	0.0528	0.002	0.66862	1093.8	14	1126.8	21	1192	62	1093.8	14	2.93
Mat08_Zrn-95	361.4	177.4	0.490868843	0.0776	0.0026	1.972	0.068	0.1851	0.0027	0.0599	0.0022	0.032265	1094.6	15	1105	24	1141	68	1094.6	15	0.94
Mat08_Zrn-27	175.7	53	0.301650541	0.0798	0.022	2.023	0.8	0.1854	0.0065	0.0396	0.054	0.41709	1096	35	1122	130	1204	240	1096	35	2.32
Mat08_Zrn-67	172.3	24	0.139291933	0.0783	0.0029	2.107	0.076	0.1938	0.0026	0.0608	0.0027	0.43884	1142	14	1149	25	1147	71	1142	14	0.61
Mat08_Zrn-59	237	51.3	0.216455696	0.0786	0.0029	2.093	0.092	0.1942	0.0037	0.0572	0.0024	0.73273	1144	19	1144	31	1157	72	1144	19	0.00
Mat08_Zrn-11	325	95.3	0.293230769	0.0804	0.0027	2.15	0.092	0.1943	0.0071	0.0563	0.0038	0.0048453	1145	39	1164	32	1203	67	1145	39	1.63
Mat08_Zrn-33	415.3	73.3	0.176498916	0.0801	0.0027	2.132	0.073	0.1947	0.0029	0.0619	0.0025	0.31313	1146	15	1161	23	1196	66	1146	15	1.29
Mat08_Zrn-88	191.7	56.2	0.293166406	0.0794	0.0026	2.13	0.071	0.1947	0.0026	0.0557	0.0024	0.31483	1146.6	14	1158	22	1179	68	1146.6	14	0.98
Mat08_Zrn-04	413	93.6	0.226634383	0.0766	0.0026	2.076	0.084	0.1947	0.0039	0.0598	0.0025	0.37153	1147	21	1140	27	1116	68	1147	21	-0.61
Mat08_Zrn-06	149.3	67.7	0.453449431	0.0788	0.0028	2.104	0.073	0.1951	0.003	0.0608	0.0025	0.37374	1149	16	1149	24	1168	68	1149	16	0.00
Mat08_Zrn-22	259	116	0.447876448	0.0795	0.003	2.161	0.084	0.1958	0.0034	0.0561	0.0041	0.57975	1153	18	1168	26	1179	70	1153	18	1.28
Mat08_Zrn-53	839.3	169.3	0.201715715	0.08048	0.0025	2.186	0.07	0.1965	0.0031	0.0542	0.0025	0.49157	1156.6	17	1178.2	23	1211	60	1156.6	17	1.83
Mat08_Zrn-93	469	290.2	0.618763326	0.0847	0.0028	2.328	0.12	0.199	0.0074	0.065	0.0022	0.8574	1170	41	1219	42	1305	67	1170	41	4.02
Mat08_Zrn-96	136	56	0.411764706	0.0806	0.0029	2.194	0.081	0.1998	0.0028	0.0604	0.0026	0.30855	1174	15	1181	26	1206	76	1174	15	0.59
Mat08_Zrn-41	419	93	0.221957041	0.0784	0.0026	2.19	0.08	0.2008	0.0032	0.064	0.0026	0.70186	1179	17	1176	25	1153	67	1179	17	-0.26
Mat08_Zrn-98	140.9	47.94	0.340241306	0.0802	0.0031	2.218	0.082	0.2012	0.003	0.062	0.0026	0.2535	1181	16	1188	25	1206	72	1181	16	0.59
Mat08_Zrn-09	241	97.4	0.404149378	0.079	0.0028	2.196	0.076	0.2019	0.003	0.0572	0.0023	0.30672	1185	16	1179	24	1167	70	1185	16	-0.51
Mat08_Zrn-74	154.7	50.8	0.328377505	0.0801	0.0029	2.227	0.077	0.2017	0.0038	0.06	0.0028	0.050256	1185	20	1188	25	1192	73	1185	20	0.25
Mat08_Zrn-19	124.3	35.6	0.286403862	0.0784	0.003	2.193	0.086	0.2022	0.003	0.0609	0.0028	0.31996	1187	16	1179	27	1154	80	1187	16	-0.68
Mat08_Zrn-31	110.7	33.31	0.300903342	0.0809	0.0033	2.301	0.089	0.2023	0.0029	0.0632	0.0029	0.13519	1188	15	1211	26	1220	81	1188	15	1.90
Mat08_Zrn-40	70.5	18.8	0.266666667	0.0797	0.0035	2.227	0.09	0.2026	0.0036	0.0632	0.0033	0.30981	1189	19	1192	27	1175	86	1189	19	0.25
Mat08_Zrn-34	829	297	0.358262967	0.08002	0.0025	2.247	0.072	0.2034	0.0031	0.0633	0.0023	0.77193	1193	16	1195	23	1196	62	1193	16	0.17
Mat08_Zrn-17	211.3	68.8	0.325603407	0.0806	0.0029	2.278	0.087	0.2036	0.0034	0.0578	0.0027	0.19702	1194	18	1205	26	1206	74	1194	18	0.91
Mat08_Zrn-24	156.5	35.6	0.227476038	0.0808	0.0031	2.266	0.081	0.2036	0.003	0.0617	0.0027	-0.084609	1194.8	16	1201	25	1207	76	1194.8	16	0.52

Mat08_Zrn-48	132.5	34.54	0.260679245	0.0811	0.0029	2.284	0.081	0.2039	0.0033	0.0615	0.0029	0.12147	1196	18	1210	24	1236	72	1196	18	1.16
Mat08_Zrn-92	177.4	36.31	0.204678692	0.0802	0.0029	2.267	0.081	0.2042	0.0033	0.0619	0.0028	0.40434	1198	18	1201	26	1203	73	1198	18	0.25
Mat08_Zrn-97	133.6	51.9	0.388473054	0.0823	0.0031	2.316	0.083	0.2067	0.0032	0.0611	0.0027	0.041818	1211	17	1216	26	1246	74	1211	17	0.41
Mat08_Zrn-14	131.5	42.25	0.321292776	0.0796	0.003	2.293	0.085	0.2076	0.0029	0.0618	0.003	0.12701	1216.1	16	1209	26	1193	79	1216.1	16	-0.59
Mat08_Zrn-39	234	57.2	0.244444444	0.0813	0.0028	2.34	0.087	0.2077	0.0031	0.0666	0.0029	0.3601	1216.5	17	1224	26	1233	68	1216.5	17	0.61
Mat08_Zrn-56	528	139.5	0.264204545	0.081	0.0026	2.34	0.087	0.209	0.0049	0.057	0.0022	0.73094	1223	26	1224	27	1219	65	1223	26	0.08
Mat08_Zrn-18	176.4	57	0.323129252	0.0808	0.0028	2.349	0.083	0.2091	0.0032	0.0629	0.0029	0.39338	1224	17	1226	25	1217	69	1224	17	0.16
Mat08_Zrn-89	125.9	33.8	0.268467037	0.0817	0.0032	2.302	0.083	0.2085	0.0036	0.0617	0.0028	0.133	1224	19	1215	26	1225	78	1224	19	-0.74
Mat08_Zrn-42	337	177	0.525222552	0.081	0.0027	2.372	0.078	0.2095	0.0031	0.0643	0.0025	0.31755	1226	17	1234	23	1224	65	1226	17	0.65
Mat08_Zrn-01	198.6	54.4	0.273917422	0.0801	0.0029	2.295	0.084	0.2095	0.0029	0.0626	0.0029	0.28428	1226.2	16	1210	25	1194	72	1226.2	16	-1.34
Mat08_Zrn-66	183.6	62.7	0.341503268	0.0807	0.0029	2.336	0.085	0.2097	0.0029	0.0607	0.0025	0.4334	1227	15	1222	26	1214	74	1227	15	-0.41
Mat08_Zrn-69	154.7	38.5	0.248868778	0.081	0.0029	2.315	0.086	0.2098	0.0032	0.061	0.0032	-0.55795	1228	17	1216	26	1209	78	1228	17	-0.99
Mat08_Zrn-45	174.1	55.2	0.317059161	0.0811	0.0028	2.358	0.079	0.2108	0.0031	0.0648	0.0028	0.2798	1233	16	1231	25	1218	68	1233	16	-0.16
Mat08_Zrn-65	96.4	29.29	0.303838174	0.0796	0.0032	2.305	0.09	0.211	0.0035	0.0654	0.0032	0.076307	1234	19	1211	27	1203	79	1234	19	-1.90
Mat08_Zrn-20	96.8	30.7	0.31714876	0.0802	0.0034	2.328	0.11	0.2115	0.0032	0.06	0.0029	0.39048	1236	17	1222	33	1186	86	1236	17	-1.15
Mat08_Zrn-38	158	53.3	0.337341772	0.0819	0.0029	2.386	0.089	0.2118	0.0044	0.0605	0.0035	0.22299	1238	23	1241	29	1235	72	1238	23	0.24
Mat08_Zrn-91	78	32.1	0.411538462	0.0878	0.0036	2.547	0.1	0.2118	0.0039	0.0626	0.003	-0.039978	1238	21	1284	28	1380	77	1238	21	3.58
Mat08_Zrn-73	818	75.2	0.09193154	0.08108	0.0025	2.375	0.072	0.2118	0.0027	0.051	0.0019	0.45839	1238.4	14	1234.8	22	1222	62	1238.4	14	-0.29
Mat08_Zrn-63	427	124	0.290398126	0.0795	0.0027	2.342	0.11	0.2118	0.0063	0.0583	0.0028	0.83657	1239	33	1224	30	1193	67	1239	33	-1.23
Mat08_Zrn-43	140.2	75.4	0.537803138	0.0824	0.0031	2.514	0.094	0.2206	0.0032	0.0665	0.0028	0.23745	1285	17	1275	27	1250	74	1285	17	-0.78
Mat08_Zrn-50	149	80	0.536912752	0.0877	0.003	2.743	0.093	0.2257	0.0033	0.0642	0.0025	0.51399	1312	17	1339	25	1371	66	1312	17	2.02
Mat08_Zrn-87	131.2	46.1	0.351371951	0.0849	0.003	2.646	0.085	0.2264	0.0035	0.0662	0.0029	0.021499	1315	18	1315	24	1308	70	1315	18	0.00
Mat08_Zrn-75	147	38.1	0.259183673	0.0927	0.0034	3.19	0.11	0.2472	0.0037	0.0745	0.0032	-0.077609	1424	20	1453	27	1490	68	1490	68	2.00