

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE INGENIERÍA

Geología estructural y mineralización epitermal de la región de Actopan y Santa Rosa, Sierra de Pachuca, Estado de Hidalgo.

TESIS

Que para obtener el título de

Ingeniera Geóloga P R E S E N T A Sabrina Jacqueline Salvador Santamaría

DIRECTOR DE TESIS

Dr. en C.T. Edgar Ángeles Moreno

Ciudad Universitaria, Cd. Mx., 2020

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Geología estructural y mineralización epitermal de la región de Actopan y Santa Rosa, Sierra de Pachuca, Estado de Hidalgo.

SABRINA JACQUELINE SALVADOR SANTAMARÍA

DIRECTOR: DR. EDGAR ANGELES MORENO

SINODALES-REVISORES ING. ALFREDO VICTORIA MORALES M. C. EDITH FUENTES GUZMAN M. I ISABEL DOMINGUEZ TREJO ING. JULIETA MARES LÓPEZ M. C. EMILIANO CAMPOS MADRIGAL

> Universidad Nacional Autónoma de México Facultad de Ingeniería División de Ingeniería en Ciencias de la Tierra Año 2020

Agradecimientos

Agradecimientos

A Dios por todo lo bueno que me ha dado, por jamás abandonarme y ser la fuerza en mí. A mi madre por ser la mejor, por entenderme, por tu paciencia, por todo el esfuerzo que has puesto en mis hermanos y en mí. A mi papá Cruz por permitirnos tener un hogar, aunque ya no estemos en el mismo lugar sé que siempre nos acompañas y dónde estés sigues siendo el mejor padre que toda nuestra familia pudo tener.

A todos mis amigos por brindarme tanta alegría en cada etapa, en especial a Rebeca mi bff, vamos a cumplir nuestras metas, ya verás. A Claus porque vamos en el camino juntas, ojalá te hubiera conocido mucho antes, a Verito y Karencita por ser las niñas más listas y bonitas en todos los sentidos que pude conocer en la facultad. A todos esos amigos que han sido mis confidentes, pero especialmente a Alejandro Rodríguez y Alejandro Rosales, jespero que sigamos siendo buenos amigos siempre!

A la señora Leticia Rodea y su familia, por apoyarme en todos los sentidos, por ser como una madre para mí, por brindarme la confianza en todo momento, es usted una persona maravillosa.

A Pedro por brindarme todo el apoyo durante este tiempo, por estar en lo difícil y decidir seguir ahí, cuidándome y dando lo mejor de ti, por demostrarme que puedo aprender cosas nuevas, porque me siento feliz sabiendo que fuimos educados de la misma forma, en el amor a Dios, con principios y valores y porque juntos todo ha sido mejor.

Quiero manifestar un agradecimiento especial al Dr. Edgar Ángeles Moreno, por toda la paciencia, el conocimiento y la dedicación que tuvo para este trabajo, por el interés que demostró desde que me propuso el tema y hasta este momento, por llevarme a campo y enseñarme todo lo que pudo con la mejor disposición. También a Ruth y Noé mis queridos compañeros de campo, que trabajaron a mi lado dando lo mejor de sí mismos.

Al Ing. Alfredo Victoria, a la M. C. Edith Fuentes, a la Ing. Julieta Mares, al M. C. Emiliano Campos y la M. I Isabel Domínguez por sus valiosas revisiones que me ayudaron a concluir este trabajo y sobre todo por la comprensión y paciencia que han tenido conmigo.

A la Universidad Nacional Autónoma de México y a la Facultad de Ingeniería, por brindarme la mejor educación que pude tener.

"Por mi raza hablará el espíritu".

Resumen

Resumen

La Sierra de Pachuca ubicada dentro de la Faja Volcánica Transmexicana contiene el distrito Minero de clase mundial como es Pachuca-Real del Monte. Muchos estudios se han realizado relacionados a las mineralizaciones, geología básica y exploración minera, sin embargo, estudios específicos y a escalas locales de geología estructural son escasos y más aún en el sector poniente de la Sierra de Pachuca en las cercanías de Actopan, San José Tepenené y Capula-Santa Rosa. La geología estructural en relación con la mineralización epitermal es de importancia para entender la distribución de alteraciones hidrotermales y la distribución de la mineralización en el distrito minero y hacen falta trabajos de esta índole. El objetivo principal de este trabajo fue caracterizar la geología estructural en relación con la mineralización epitermal de la zona de Actopan y Santa Rosa mediante la elaboración de cartografía geológico-estructural, geológico-minera y un análisis estructural, para averiguar si existieron posibles controles estructurales en la mineralización de las vetas epitermales. Las metodologías empleadas para lograr los objetivos y resolver el problema planteado, en este trabajo fueron: investigación documental, cartografía geológica y geológico-minera, geología de campo, geología estructural, análisis estructural e integración.

Los resultados de este trabajo muestran que la zona de estudio entre Actopan y Santa Rosa, parte poniente de la Sierra de Pachuca, contiene a la Formación Vizcaína que son una secuencia de derrames andesíticos con depósitos volcaniclásticos y a veces depósitos piroclásticos que varían de composición andesítica a dacítica. Esta formación fue intrusionada por domos y diques que varían de composición de riolítica a riodacítica y que en este trabajo se definió como unidad San José que es equivalente a la Formación Cerezo en Real del Monte. La Formación El Zumate es la unidad que aparece en niveles estratigráficos superiores que fue intrusionada por diques riolíticos de la unidad San José. Los domos y diques estuvieron ligados a la mineralización epitermal y se emplazaron un poco antes de que ocurriera esta y existe una relación espacial muy cercana. Las vetas de cuarzo con oro y plata y alteraciones epitermales como propilítica, clorítica, argilización y

••••

silicificación fueron controladas por fracturas y fallas que ocurrieron en tres eventos de extensión (deformación) (E1, E2, E3). El evento E1 fue asociado a extensión N-S y NNE-SSW y que dictaminó la orientación de la Sierra de Pachuca y emplazamiento de las rocas volcánicas de la Formación Vizcaína con un correspondiente basculamiento de las capas. El evento E2 fue un evento que combinó movimiento lateral y fallamiento normal (transtensional) (extensiones E-W, NE-SW y NW-SE) y que estuvo implicado con el emplazamiento de criptodomos, domos y diques riodacíticos de la unidad San José y que después de este emplazamiento continuo el fallamiento y fracturamiento en donde los fluidos hidrotermales aprovecharon las zonas de permeabilidad para emplazarse en forma de vetas epitermales. El evento E3 es extensional N-S (post-mineral) y relacionado con la formación de las rocas basálticas de conos cineríticos pertenecientes al vulcanismo de la Faja Volcánica Transmexicana.

Abstract

The Sierra de Pachuca is located in the Transmexican Volcanic Belt and contains the worldclass mining district such as Pachuca-Real del Monte. Many studies have been carried out related to mineralization, basic geology and mining exploration. However, specific studies in local scales of structural geology are scarce and even more so in the western sector of the Pachuca mountain range near Actopan, San José Tepenené and Capula-Santa Rosa. Structural geology in relation to epithermal mineralization is important to understand the distribution of hydrothermal alterations and the distribution of mineralization in the mining district that works are needed. The main objective of this work was to characterize the structural geology in relation to the epitermal mineralization of the area of Actopan and Santa Rosa through the elaboration of geological-structural, geological-mining cartography and a structural analysis, to find out if there were possible structural controls in the mineralization of the epithermal veins. The methodologies used to achieve the objectives and solve the problem, several methodologies were used. The methodologies used in this work were: documentary research, geological and geological-mining cartography, field geology, structural geology, structural analysis and integration. The results of this work show that the study area between Actopan and Santa Rosa, a western part of the Sierra de Pachuca, contains the Vizcaína Formation that are a sequence of andesitic effusions with volcaniclastic deposits and sometimes pyroclastic deposits that vary in andesitic composition to dacitic. This formation was intrused by domes and dikes that vary from rhyolitic to riodacitic composition and which in this work was defined as a San José unit that is equivalent to the Cerezo Formation in Real del Monte. The El Zumate Formation is the unit that appears in higher stratigraphic levels that was intrused by rhyolitic dykes of the San José unit. The domes and dikes were linked to epithermal mineralization and were located a little before this occurred and there is a very close spatial relationship. The gold and silver quartz veins and epithermal alterations such as propylitic, chloritic, argillization and silicification were controlled by fractures and failures that occurred in three extension (deformation) events (E1, E2, E3). The E1 event was associated with the N-S and NNE-SSW extension and which ruled the orientation of the

ĪV

Abstract

Sierra de Pachuca and the location of the volcanic rocks of the Vizcaína Formation with a corresponding tilting of the layers. The E2 event was an event that combined lateral movement and normal (transtensional) failure (extensions EW, NE-SW and NW-SE) and was involved with the location of cryptodomes, domes and riodacitic dikes of the San José unit and later from this continuous location the failure and fracturing where the hydrothermal fluids took advantage of the permeability zones to be located in the form of epithermal veins. The E3 event is extensional N-S (post-mineral) and related to the formation of basaltic rocks of cineritic cones belonging to the volcanism of the Transmexican Volcanic Belt.

Contenido

Resumen
Abstract
Contenido
Capítulo 11
Introducción
1.1 Planteamiento y justificación del problema1
1.2 Hipótesis
1.3 Objetivos
1.3.1 Objetivo general3
1.3.2 Objetivos específicos
1.4 Localización del área de estudio4
Capítulo 2
Marco Teórico
2.1 Faja Volcánica Transmexicana5
2.2 Distrito Minero de Pachuca-Real del Monte (DM-PRM)
2.3 Fallas importantes de la zona de estudio12
2.4 Vetas13
2.5 Depósitos Epitermales de Intermedia y baja sulfuración
Capítulo 3
Metodología15
3.1 Investigación documental16
3.2 Cartografía geológica y geología de campo16
3.3 Geología estructural17
3.4 Análisis estructural17
Capítulo 4
Estratigrafía

4.1 Formación Vizcaína	20
4.2 Unidad San José	23
4.3 Formación Zumate	25
4.4 Unidad Santa María	27
Capítulo 5 Geología Estructural	29 29
5.1 Zona minera Santa Ana-Capula	29
5.2 Zona minera Santa Rosa	31
5.2.1 Fallas San Felipe	31
5.2.2 Fallas y vetas-falla La Cruz	32
5.2.3 Fallas y vetas-falla Santa Rosa	32
5.3 Zona minera Santa Lucía-San José Tepenené	33
5.3.1 Vetas-falla del área La Trinidad	33
5.3.2 Vetas-falla del área Samaría	34
5.3.3 Vetas-falla y fracturas enfrente de Los Frailes	34
5.4 Zona minera Puerto del Oro-Ernestina	
5.4.1 Fallas NE-SW	36
5.4.2 Fallas NW-SE	
Capítulo 6 Estructuras, texturas de mineralización y alteraciones hidrotermales	
6.1 Estructuras de mineralización	
6.1.1 Tipos de vetas epitermales	37
6.2 Alteraciones hidrotermales	
6.3 Clasificación de las alteraciones hidrotermales	
6.4 Alteraciones relacionadas a la actividad magmática somera	40
6.5 Alteraciones hidrotermales en el área de estudio	43

Capítulo 7	45
Discusión: Análisis estructural (deformación)	45
7.1 Análisis de orientación de fallas y fracturas	45
7.2 Análisis de Deformación	49
7.3 Controles estructurales	52
7.4 Modelo conceptual	54
Conclusiones	56
Referencias	57
10. Anexos	61
Anexo 1 Datos utilizados en estereogramas y rosetas (Fallas, vetas, fracturas y dique	s).
	61
Anexo 2 Tablas de datos utilizados para el análisis en FaultKin	71

Índice de figuras

Figura 1.1 Localización del área de estudio4
Figura 2.1 Ubicación Regional de la Faja Volcánica Transmexicana (Gómez-Tuena et al., 2005)5
Figura 2.2 Distrito Minero de Pachuca-Real del Monte (DM-PRM) (Modificada de Segerstrom, 1961; Geyne et
al., 1963 en Camprubí, 2018)
Figura 2.3 Columna estratigráfica del distrito Minero de Pachuca-Real del Monte (modificada de Geyne et al.,
1963)11
Figura 2.4 Esquema zoneamiento típico de alteración para los depósitos de baja e intermedia sulfuración
(modificado de Buchanan, 1981 tomado de González Pena, 2010)
Figura 3.1 Esquema metodológico del trabajo desarrollado15
Figura 4.1 Mapa geológico estructural del área de San José Tepenené y Santa Rosa 18
Figura 4.2 Columna estratigráfica esquemática del área de estudio19
Figura 4.3 Afloramientos de la Formación Vizcaína en el área de Actopan, San José Tepenené y Santa Rosa. A,
Unidades de derrames andesíticos separados por superficies de enfriamiento, se encuentran basculadas
hacia el Norte y afectadas por fallas normales, área de La Trinidad. B, Flujos de andesitas con abundantes
autoclastos andesíticos porfídicos, área de Capula-Arévalo. C, capas de depósitos piroclásticos
andesíticos con variación textural y tamaño de grano. D, andesitas con alteración propilítica afectados
por fallas con alteración argílica. E, diques y diquestratos andesíticos con textura afanítica afectan a
andesitas. F, brechas volcánicas andesíticas intercaladas con derrames lávicos andesíticos22
Figura 4.4 Afloramientos con estructuras magmáticas de la unidad San José. A, Domo riodacítico entre las
Peñas Los Frailes y San José Tepenené, corta a andesitas de la Formación Vizcaína. B, foliación de flujo y
pliegues de flujo en dique riodacítico enfrente de las Peñas Los Frailes. C, pliegues de flujo en dique
riolítico a lo largo del camino San José Tepenené a San Jerónimo. D, diques riolíticos que cortan a
andesita de la Formación Vizcaína, en área minera de Santa Lucía-San José Tepenené. E, acercamiento
de contacto dique riolítico con andesita del punto D. F, pliegues de flujo en riolitas en domo riolítico en
Puerto del Oro
Figura 4.5 Afloramientos de la Formación Zumate en el área de estudio. A y B Afloramiento de la formación
Zumate donde se observa los flujos lávicos en capas casi horizontales. C, Diques riodacíticos de la unidad
San José intrusionan a la parte basal piroclástica de la Formación El Zumate
Figura 4.6 Afloramientos de la unidad Santa María. A, vista al Sur desde las peñas Los Frailes, se observa
discordancia entre la unidad Santa María y rocas volcánicas del Grupo Pachuca. B, cono piroclástico con
depósitos de escoria basáltica y piroclásticos, conos cineríticos entre San Juan Solís y Santa María27
Figura 5.1 Mapa geológico-estructural del área de estudio30
Figura 5.2 Estereograma y roseta de todas las fallas obtenidas en campo de la Zona minera de Santa Ana -
Capula a partir de 3 datos, ver tabla A1 en anexo 31
Figura 5.3 Estereograma y roseta de todas las fallas obtenidas en campo de la Zona minera de Santa Rosa a
partir de 68 datos, ver tabla A2 en anexos

Figura 5.4 Estereograma y roseta de todas las fallas obtenidas en campo de la Zona minera de Santa Lucía -
San José Tepenené obtenidos a partir de 48 datos (datos estructurales en tabla A3 en los anexos) 34
Figura 5.5 Estrías en los afloramientos de rocas ígneas ácidas con alteración argílica y limonitas cercanos a las
peñas de Los Frailes
Figura 5.6 Estereograma y roseta de todas las fallas obtenidas en campo de la Zona minera Puerto del Oro-
Ernestina obtenidos a partir de 78 datos (datos numéricos en anexos en tabla A4)
Figura 6.1. Tipos de estructuras en vetas epitermales en el área de estudio. A, rebaje de la veta Trinidad. B,
rebaje de la veta La Cruz. C, vetas ramaleadas con texturas de cuarzo drúsico y estructura brechada en
socavón La Cruz. D y E, veta de cuarzo drúsico y coloforme con limonitas indígenas encajonada en
andesitas fracturadas, área de Santa Rosa. F, veta de cuarzo con estructura brechada y fracturada con
jarosita y arcillas blancas de alteración; socavón de la obra La Esmeralda 38
Figura 6.2- Modelo de Lowell y Guilbert (1970) para el depósito de San Manuel-Kalamazoo, Arizona,
mostrando el zoneamiento vertical y lateral de la alteración y la mineralización típico de los pórfidos de
cobre40
Figura 6.3- Sección esquemática de los patrones de alteración en sistemas de epitermales de baja sulfuración,
(modificado de Hedenquist et al., 2000)41
Figura 6.4. Tipos de alteraciones hidrotermales en el área de estudio. A, andesita silicificada al alto de la veta
falla Capula-Arévalo con vetillas-fractura con jarosita y cuarzo. B, vetillas fractura con jarosita (pirita) y
goethita supergénica. C, alteración argílica con sericita y vetillas de jarosita (derivada de pirita) en la
veta-falla Reforma con dique riolítico. D, veta Reforma con alteración argílica y limonitas supergénicas.
E, vetillas en stockwork de jarosita con texturas de lisigan de las limonitas en riodacítica con alteración
argílica, en el área de la veta La Cruz. F, fallas y fracturas con alteración argílica con limonitas rodeadas
de roca andesítica con alteración propilítica44
Figura 7.1 Estereogramas y rosetas de las fallas mapeadas en la zona de estudio. A, Zona minera de Santa Ana
- Capula. B, Zona minera Santa Rosa. C, Zona minera de Santa Lucía – San José Tepenené. D, Zona minera
Ernestina – Puerto del Oro47
Figura 7.2 Estereogramas y rosetas de las fracturas mapeadas en la zona de estudio. A, Zona minera de Santa
Ana - Capula. B, Zona minera Santa Rosa. C, Zona minera de Santa Lucía – San José Tepenené. D, Zona
minera Ernestina – Puerto del Oro48
Figura 7.3 Estereograma de deformación para la Zona minera de Santa Rosa.
Figura 7.4 Estereograma de fallas que muestra direcciones de extensión principal para las fallas de la zona de
Santa Lucía-San José Tepenené50
Figura 7.5 Estereograma de fallas que muestra direcciones de extensión principal para las fallas de la zona
mineralizada Ernestina-Puerto del Oro51
Figura 7.6 Esquema que muestra las relaciones entre los eventos de extensión, la mineralización y la formación
de unidades geológicas para el área de estudio54
Figura 7.7 Esquema que muestra un modelo conceptual propuesto para la integración de litología, domos
ígneos, mineralización y estructuras de deformación para el área de estudio

Índice de tablas

Zona minera Santa Ana-Capula61
Tabla A1. Datos de fallas para los estereogramas y rosetas de la zona minera Santa Ana-Capula 61
Tabla B1. Datos de vetas para los estereogramas y rosetas de la zona minera Santa Ana-Capula61
Tabla C1. Datos de fracturas para los estereogramas y rosetas de la zona minera Santa Ana-Capula.
Tabla D1. Datos de diques para los estereogramas y rosetas de la zona minera Santa Ana-Capula 62
Zona Minera de Santa Lucía - San José Tepenené62
Tabla A2. Datos de fallas para los estereogramas y rosetas de la zona minera Santa Lucía – San José Tepenené
Tabla B2. Datos de veta para los estereogramas y rosetas de la zona minera Santa Lucía – San José Tepenené
Tabla C2. Datos de fracturas para los estereogramas y rosetas de la zona minera Santa Lucía – San José Tepenené
Tabla D2. Datos de diques para los estereogramas y rosetas de la zona minera Santa Lucía – San José Tepenené
Zona minera Santa Rosa
Tabla A3. Datos de fallas para los estereogramas y rosetas de la zona minera Santa Rosa64
Tabla B3. Datos de vetas para los estereogramas y rosetas de la zona minera Santa Rosa65
Tabla C3. Datos de fracturas para los estereogramas y rosetas de la zona minera Santa Rosa (continúa en la siguiente página)
Tabla C3. Datos de fracturas para los estereogramas y rosetas de la zona minera Santa Rosa (continuación)
Tabla D3. Datos de diques para los estereogramas y rosetas de la zona minera Santa Rosa
Zona minera Ernestina – Puerto del Oro68
Tabla A4. Datos de fallas para los estereogramas y rosetas de la zona minera Ernestina – Puerto del Oro
Tabla B4. Datos de vetas para los estereogramas y rosetas de la zona minera Ernestina – Puerto del Oro
Tabla C4. Datos de fracturas para los estereogramas y rosetas de la zona minera Ernestina – Puerto del Oro69
Tabla D4. Datos de diques para los estereogramas y rosetas de la zona minera Ernestina – Puerto del Oro70
Zona Minera de Santa Rosa71
Tabla A5. Datos de Fallas de la Zona Minera de Santa Rosa utilizados para el análisis en FaultKin 71
Zona Minera Santa Lucía – San José Tepenené72
Tabla A6. Datos de Fallas de la Zona Minera Santa Lucía – San José Tepenené utilizados para el análisis en FaultKin
Zona Minera de Ernestina Puerto del oro73
Tabla A7. Datos de Fallas de Zona Minera de Ernestina Puerto del oro utilizados para el análisis en FaultKin

Capítulo 1

Introducción

1.1 Planteamiento y justificación del problema

La geología estructural es la rama de la Geología que estudia y caracteriza mediante mediciones y descripciones a las estructuras de masas rocosas en la corteza terrestre, esta disciplina es una herramienta que lleva a la comprensión de la disposición de estas estructuras en una región y de la historia de su desarrollo geológico. Para la geología minera la geología estructural aplicada a la minería es de gran ayuda pues existen acumulaciones minerales que dependen de la geometría y de la permeabilidad de las estructuras de deformación (fracturas, fallas, foliaciones, pliegues, etc.); con una cartografía geológico-estructural con enfoque minero y un análisis estructural adecuado se puede convertir este conocimiento en guías de exploración importantes de mineralización económica y a su vez el conocimiento estructural es útil para integrarse a un modelo de yacimiento que se usa en varias etapas de la exploración y la explotación.

El Distrito Minero de Pachuca-Real del Monte (DM-PRM) es un distrito de clase mundial y está formado de vetas epitermales de intermedia a baja sulfuración encajonadas en rocas volcánicas (Geyne *et al.*, 1963). El distrito minero de Pachuca-Real del monte se encuentra dentro de la sierra de Pachuca que es un centro volcánico del Cenozoico y ubicado dentro de la Faja Volcánica Transmexicana. Muchos estudios se han realizado relacionados a las mineralizaciones, geología básica y exploración minera (Valverde-Ramírez *et al.*, 1977; Orozco-Sánchez, 1979; De Léon-Chávez, 1982; González-Gallardo *et al.*, 1987; García-Castro, 1987; García-Castro *et al.*, 1988, 1988(a), 1988(b); Dueñas-García, 1989; De los Santos-Montaño, J., 1996), sin embargo, estudios específicos y a escalas locales de geología estructural son escasos y más aún en el sector poniente de la sierra de Pachuca en las cercanías de Actopan, San José Tepenené y Capula-Santa Rosa. Otros estudios recientes que se han desarrollado han sido de carácter geográfico y regional como la aplicación de Sistemas de Información Geográfica a la sierra de Pachuca (Rodríguez-

Introducción

Gómez, 2012) y no geológico-estructurales que sean de carácter semidetallado y con trabajo de campo.

Los depósitos minerales del distrito minero de Pachuca-Real del Monte son de origen epigenético, ocurrieron como rellenos de fisuras, formados ampliamente como incrustaciones sobre las paredes de cavidades abiertas y sólo sobre una menor escala las vetas minerales remplazaron la pared de roca y los minerales formados en una etapa temprana. El reemplazamiento afectó principalmente los fragmentos de roca atrapados o incluidos en las fisuras por movimiento de las paredes. El ensamblaje de cuarzo, bustamita o rodonita, calcita, pirita, esfalerita, galena, calcopirita y sulfuros de plata con plata y oro nativo, representan los principales rellenos de vetas, (Geyne, *et al.*, 1963).

Debido a que la mineralización en la sierra de Pachuca es de tipo epitermal, el estudio de la geología estructural puede mostrar posibles "trayectorias" por las que ocurrió el tránsito de los fluidos y que dieron lugar a las mineralizaciones, lo que significa que posiblemente algunos de los clavos de mineral del DM-PRM tengan un control estructural.

Este trabajo de investigación busca la caracterización geológico-estructural y sus relaciones con la mineralización de las vetas epitermales de las zonas mineras de Actopan y Santa Rosa, que están localizadas en el extremo poniente de la sierra de Pachuca, y que la zona de estudio comprende parte de los municipios de El Arenal, Actopan y Mineral del Chico.

1.2 Hipótesis

Las estructuras mineralizadas (vetas y vetas-falla) de la región minera de Actopan, San José Tepenené y Santa Rosa fueron controladas estructuralmente por fallas y fracturas y siguieron patrones geométricos regulares.

Introducción

1.3 Objetivos

1.3.1 Objetivo general

Caracterizar la geología estructural en relación con la mineralización epitermal de la zona de Actopan y Santa Rosa mediante la elaboración de cartografía geológico-estructural, geológico-minera y un análisis estructural, para averiguar si existieron posibles controles estructurales en la mineralización de las vetas epitermales.

1.3.2 Objetivos específicos

- Elaborar cartografía geológica estructural y geológico-minera mediante trabajo de campo para establecer relaciones estructurales con alteraciones hidrotermales y vetas epitermales.
- Integrar algunos datos geológico-mineros levantados por el Consejo de Recursos
 Minerales (hoy SGM) en los años setenta, ochenta y noventa para tener una cartografía geológico-minera más completa.
- Realizar un análisis estructural a partir de relaciones de corte en campo y datos de gabinete de las estructuras de mineralización y de deformación.
- Determinar posibles guías estructurales en la mineralización mediante la integración del resultado del análisis estructural con el trabajo de campo para proponer un posible modelo conceptual de control estructural en la mineralización.

Introducción

1.4 Localización del área de estudio

El área de estudio se localiza en el extremo poniente de la sierra de Pachuca dentro del estado de Hidalgo, abarca partes de los municipios de El Arenal y Mineral del Chico (figura 1.1). El área tiene coordenadas UTM-WGS84 extremas y en cada esquina: 512,500 mE; 2237,000mN y 518, 500 mE, 2230,000mN. El área cubre una superficie de 42 km².

Figura 1.1 Localización del área de estudio.

Capítulo 2

Marco Teórico

2.1 Faja Volcánica Transmexicana

La Faja Volcánica Transmexicana (FVTM) constituye uno de los arcos volcánicos más complejos y variados de la región circum-Pacífica, se desarrolla sobre la margen sudoccidental de la Placa de Norteamérica como resultado de la subducción de las Placas Rivera y Cocos a lo largo de la trinchera de Acapulco, se suele dividir en tres sectores: occidental, central y oriental, que presentan diferencias significativas en lo que respecta al tipo de volcanismo y su composición química (Ferrari, 2000), figura 2.1.

Figura 2.1 Ubicación Regional de la Faja Volcánica Transmexicana (Gómez-Tuena et al., 2005).

La Sierra de Pachuca se encuentra en el sector oriental de la Faja Volcánica Transmexicana (FVTM), al oriente del sistema de fallas Taxco-Querétaro, Sistema de Fallas Taxco-San Miguel de Allende, (SFTSMA) (Alaniz-Álvarez *et al.*, 2002). En la parte oriente de la FVTM gran parte del volcanismo está emplazado en grandes estratovolcanes, calderas y complejos de domos de composición de andesítica a riolítica alineados a lo largo de estructuras corticales, mientras que los volcanes monogenéticos de composición basáltica representan sólo una pequeña fracción del volumen de magma emplazado (Gómez-Tuena *et al.*, 2005).

En este sector el arco volcánico se emplaza sobre una corteza de edad precámbrica presumiblemente de tipo cratónico (Oaxaquia, Ortega-Gutiérrez *et al.*, 1996).

La Sierra de Pachuca (figura 2.2) que contiene al Distrito Minero de Pachuca-Real del Monte (DM-PRM) en el contexto de la FVTM, implicaría que las rocas volcánicas que componen la Sierra de Pachuca son rocas volcánicas antiguas (paleo-Faja?) del Mioceno medio y tardío (Gómez-Tuena *et al.*, 2005), sin embargo aún queda abierta la posibilidad de interpretar sus edades, ya que no hay muchos fechamientos de sus rocas volcánicas y los que existen no se han realizado con recientes técnicas radiométricas.

Figura 2.2 Distrito Minero de Pachuca-Real del Monte (DM-PRM) (Modificada de Segerstrom, 1961; Geyne et al., 1963 en Camprubí, 2018).

2.2 Distrito Minero de Pachuca-Real del Monte (DM-PRM).

El Distrito Minero de Pachuca-Real del monte (DM-PRM) se encuentra dentro del estado de Hidalgo, que a su vez está situado en la porción de centro-sur de la República Mexicana, colinda al norte con el estado de San Luís Potosí, al sur con los estados de México y Tlaxcala, al este con los estados de Veracruz y Puebla y al oeste con el estado de Querétaro.

El DM-PRM cubre una superficie de 130 km² (Salinas-Hernández, en Oviedo-Gámez y Hernández-Badillo, 2012) fue descubierto en 1522 y que de acuerdo con Río-Torres (2009) ha producido hasta la fecha más de 100 millones de toneladas que contienen 1300 millones de onzas de plata y 7.5 millones de onzas de oro. Las obras mineras del distrito en longitud alcanzan cerca de 3000 km. Estudios importantes del distrito minero son los trabajos de Bastin (1948), Wisser (1951), Thornburg (1952) y Geyne *et al.*, (1963).

De acuerdo con Río-Torres (2009) y que está basado en trabajo de Geyne *et al.* (1963) el distrito minero pasó por varias etapas históricas de actividad minera:

Los primeros 200 años después de la conquista destaca el uso del método de patio por los españoles para el beneficio del mineral que desarrolló Bartolomé de Medina en 1555 en Pachuca. Entre 1738 hasta 1810 Don José Alejandro Bustamante y Bustillo propuso la explotación de todas las minas abandonadas a lo largo de la veta Vizcaína mediante la construcción de un socavón de drenaje de 2400 m de longitud que fue denominado socavón del Morán.

Entre 1824 a 1849 compañías inglesas llegaron al distrito atraídos por su riqueza y producen modernos sistemas de explotación con la mecanización de las minas al instalar bombas y malacates movidos por el vapor.

De 1849 a 1906 la Sociedad Aviadora de Minas de Real del Monte y Pachuca formada por mexicanos continúa con la explotación de las minas.

De 1906 a 1947 la *United States and Refining Company* de los E.U.A. explota minas en la parte sur del distrito.

De 1947 a 1990 con la adquisición de las acciones de nacional financiera, la Compañía de Real del Monte y Pachuca S.A. de C.V. se convierte en la primera empresa paraestatal de México. En 1990 la compañía se desincorpora del sector público pasando a sector privado.

Desde 2006 a la fecha se continuó con la exploración de los sectores norte y noroeste del distrito, pero en un *joint venture* entre la compañía Solitario Resources y la empresa *Newmont Mining*, mientras que la Compañía de Real del Monte y Pachuca continúa con trabajos en los fundos principales del distrito y trabajos de beneficio de mineral en la planta de Loreto en la ciudad de Pachuca. Existen pequeños mineros que aún continúan trabajando en la parte interna y norte del distrito.

En el DM-PRM a grandes rasgos afloran cuatro paquetes litológicos, que de la base a la cima están constituidos por un conglomerado epicontinental; un paquete volcánico andesítico; un paquete volcánico riolítico; y un paquete volcánico basáltico. Sólo se observa el conglomerado epicontinental en el límite septentrional del distrito, (Simons y Mapes, 1957; Fries, 1960 en Azpeitia, 2007).

- Conglomerado epicontinental; conocido como Fanglomerado El Morro, descrito por Simons y Mapes (1957). Consiste en un conglomerado fluvio-lacustre que se interdigita con algunos niveles volcánicos (Azpeitia, 2007). Constituido por fragmentos de caliza, marga, lutita, pedernal y en menor proporción andesíticos, emplazados en una matriz arenosa oxidada (Azpeitia, 2007). Este fanglomerado tiene sus equivalentes en el centro y sur de México; Conglomerados de Guanajuato (Edwards, 1955), Balsas de los

estados de Morelos y Guerrero (Fries, 1960) y Rojo de Zacatecas (Azpeitia, 2007). Estas rocas se depositaron desde el Paleoceno hasta el Oligoceno (Azpeitia, 2007).

- La unidad volcánica andesítica yace concordantemente sobre el Fanglomerado El Morro y discordante sobre las formaciones Tamaulipas y Soyatal (Simons y Mapes, 1957 en Azpeitia, 2007). Su afloramiento es muy amplio en este distrito. Está constituida por una secuencia de lava masiva de textura afanítica a porfídica su composición va de andesita basáltica a riodacita, con interestratificación de toba y brecha de derrame con horizontes mal consolidados en la base y cuerpos andesítico-latíticos en forma de diques. Estas rocas han sido caracterizadas como de afinidad calcoalcalina (Geyne *et al.,* 1963; JICA, 1980 en Azpeitia, 2007).

Estas rocas son importantes por contener la mineralización en forma de estructuras tabulares (vetas). Representan parte del evento hidrotermal terciario que se desarrolló en la región central de México. Por correlación con el distrito de Zimapán se le asigna una edad correspondiente al Oligoceno, 38 a 27 Ma (JICA, 1980 en Azpeitia, 2007).

- La unidad volcánica riolítica está poco expuesta en el distrito, siendo representada por ignimbritas y riolita masiva, con algunos horizontes de brecha. En los alrededores de Zimapán, se le ha asignado una edad de 26 a 27 Ma (JICA, 1980), que corresponde a la parte tardía del Oligoceno (Azpeitia, 2007). Desde el punto de vista metalogénico, la riolita contiene mineralización de elementos preciosos bajos en sulfuros en este distrito (JICA, 1980 en Azpeitia, 2007).

- La unidad volcánica basáltica está constituida por derrames y diques de carácter calcoalcalino con pequeñas intercalaciones de niveles riolíticos, de edad plio- cuaternaria, típicos de la Faja Volcánica Transmexicana. Los depósitos basálticos son comunes hacia la porción central del estado, donde las lavas se intercalan con depósitos fluvio-lacustres o coronan a éstos (Azpeitia, 2007).

De acuerdo con el trabajo de Geyne *et al.* (1963) la columna estratigráfica del distrito minero alcanza un espesor medido de cerca 2600 m, y la columna estratigráfica se muestra en la figura 2.3. Esta columna volcánica es considerada con un rango de edades del Oligoceno al Plioceno tardío por Geyne *et al.*, (1963) cuyo basamento son rocas sedimentarias de origen marino de edad Cretácica y que están plegadas y con presencia de fallas inversas, estructuras de deformación de la orogenia Laramide (Azpeitia, 2007).

De acuerdo con *Geyne et al.*, (1963) la secuencia volcánica cenozoica se compone de diez formaciones geológicas desde la base a la cima de la columna: Santiago, Corteza, Pachuca, Real del Monte, Santa Gertrudis, Vizcaína, Cerezo, Tezuantla, Zumate y San Cristóbal. Los tipos de rocas de estas formaciones varían desde basaltos, riolitas, dacitas y andesitas. Las unidades son separadas por discontinuidades erosionales y algunas discontinuidades angulares.

Una edad en comunicación personal obtenida por Clark, 1986 en Río-Torres (2009) es de un intervalo de 23.7 a 21.6 Ma, edad de K-Ar probablemente de roca total en rocas de la secuencia Santa Gertrudis-Zumate. Y existe otra edad K-Ar de roca total de una andesita con alteración hidrotermal de 20.3 \pm 0.5 Ma (McKee *et al.*, 1992 en Río-Torres, 2009).

EDAD	UNIDAD LITOLÓGICA	LÍMITES DE ESPESOR	COLUMNA LITOLÓGICA	DESCRIPCIÓN LITOLÓGICA
Pleistoceno y reciente	Corrientes, brecha y toba de basato divinco (b-500) Aluvión (b-210) Corrientes, toba de basato divinco (b-200) Aluvión (b-200) Calinos Districto Calinos Corrientes, toba de colorito (b-30) Colorito toba de colorito colorito toba de colorito (b-20) Colorito toba de colorito toba de colorito	0-500 +m		Taludes y derrumbes -Mezcla inequigranular de bloques angulosos con materiales de grano más fino y con suelo. Desense de la constructiona de la constructiona de la constructiona de la constructiona Desales ionais de limo y ohomes de color grans canc. Corrientes, brecha y toba de basalto olívinico - Principalmente corrientes y ceniza, con poca brecha, predominantemente de composición basálica. Aluvión -Suelo, limo, arcilla, arena y grava, masivas a bien estratificadas y parcialmente cementadas por calcithe y óxios de hierro hidratados. Traquita Guajolote -Principalmente corrientes con poca ceniza y brecha, de composición traguita.
Plioceno	Formación San Cristobal (0-250) (0-200) Formación El Grando Navajas (0-500)	0-500 +		Formación San Cristobal - Corrientes de andesita y basalto olivínicos, con cantidades meno- res de brecha y toba; principalmente de textura densa, aunque las partes superior e inferior de las corrientes están vesiculares; localmente aparece una capa tobácea basal de 1-2 m de espesor. Riofita algos - Principalmente corrientes pero se incluyen localmente estratos de toba y Formaciones Actionifico El Gande y Tarrango -Depótitos aluviales ligeramente cementa- dos, masivos a bien estratificados, incluyendo localmente capas margoeas, tobáceas y respectivamente. Todos estas las áreas de desagüe del Río Metztitán y la cuenca de México, redos estas interestratificados entre sí o se translapan en edad.
	— DISCORDANCIA ANGULAR Formación Zumate	0-360 +		Corrientes y brecha de escurrimiento de composición principalmente andesítica y en parte dacitica, con textura porfídica variable de gruesa a mediana y estructura que varia de masiva a bien foliada; contiene algunos interestratos de material to- báceo y lahárico; las capas basales tobáceas y detritos volcánicos más gruesos miden hasta 120 m de espesor total.
	Formación Tezuantia	0-150	+++++++ ++++++++++++++++++++++++++++++	Corrientes riolíticas y riodaciticas, con textura medianamente porfídica y estructura fuertemente foliada.
	Formación Cerezo	0-220	# #	Corrientes y bracha de escurrimiento ríolíticas y riodacíticas, con textura medianamente porfídica y localmente esferultica, estructura fuertemente foliada, las capas baseles tobá- ceas tienen hasta 10 m de espesor; aparecen en la parte suroriental del distrito rocas voi- cabras estrutificadas enclásticas, de cárda enuivalente x v.con basta. 10 m, de espesor.
Oligoceno Mioceno	DISCORDANCIA ANGULAR — - Formación Vízcaina	0-600		Corrientes lávicas y menor cantidad de brecha de escurrimiento de composición andesitica y dacítica; tienen textura medianamente porfídica y estructura variable de fuerte a moderadamente foliada, con arrugamientos intensos locales; amigidalas aparecen localmente en la parte inferior; capas basales prominentes de arenisca y brecha tobáceas varian en espesor hasta 40 m en total; lentes tobáceas más delgadas aparecen localmente en horizontes superiores.
	Formación u Santa Gertrudis	0-350		Corrientes lávicas y pequeñas cantidades de brecha de escurrimiento de composición andestica y dactica, con textura fuertemente porfídica y estructura variable de masiva a ligeramente foliada; abundantes inclusiones caracterizan las corrientes; capas tobáceas basales son discontinuas y varian en espesor hasta un máximo de varios metros.
	Formación Santa Real del Monte	0-350		Brecha de escurrimiento y menor cantidad de corrientes lávicas sólidas de composición andesítica y dacítica, con textura de variable de fuerte a medianamente porfidica y estructura ligeramente foliada; capas tobáceas basales tienen hasta 5 m de espesor; lentes de arenisca y brechas tobáceas y de conglomerado volcánico se presentan en horizontes superiores.
	Formación Pachuca	110-620		Corrintes lávicas y brecha de escurrimiento en capas alternadas de composición principalmente andesitica y en parte dacítica, con textura variable de fina a medianamente porfídica y estructura que varia de masiva a moderamente foilada; capas basales de arenisca y brechas tobáceas varian en espesor hasta un máximo a 20 m; capas margosas fosilíferas se presentan cerca de la base de la formación a lo largo del Rio Amajac a una distancia de 8 km al norte del ditrito de Pachuca.
	DISCORDANCIA EROSIONAL — — Formación Corteza	50-300		Corrientes andesiticas, con textura variable de no porfídica a finamente porfídica y parcial-mente amigdaloide, con estructura ligeramente foliada; capas basales de arenisca y brecha, tobáceas tienen hasta 20 m de espesor máximo.
	Formación Santiago	480 +		Corrientes lávicas de composición principalmente rielítica y dacitica y en parte andesitica, con textura moderadamente porfidica y estructura fuertemente folada, inclusive una ondulación fluidal amplia; fuertemente esferuilitica en la parte superior de la formación; localmente contienen lentes tobáceas y brechoides intercaladas de la misma composición; lo abase de la formación no está expuesta en el distrito minero, pero se presume que la unidad yace encima del Grupo El Morro o de rocas más antiguas.
ceno	DISCORDANCIA ANGULAR	0-200	A A A 	Principalmente conglomerado no marino compuesto por fragmentos erosionados de caliza y dolomita con menores cantidades de rocas clásticas del Cretácico Superior; localmente contiene capas de limo, arena y arcilla, así como capas tobáceas, material volcánico detritico y aun corrientes lávicas: notabilemente de color moizo, pero
Cretácico tardío E o	DISCORDANCIA ANGULAR Formación Mexcala - Méndez	0-500 +		localmente parduzco. Arenisca, limolita y lutita marinas de color gris, en capas variables de delgadas a medianas, que se convierten en colores amarilientos y parduzcos a la intemperie; se incluyen cantidades menores de conglomerado de grano fino en la parte superior de la formación y de capas altamente calcáreas en la parte inferior; las capas más inferiores localmente consisten en caliza arcillosa en capas delgadas, llamada Formación Soviata], o bien en caliza casi pura en capas gruesas, llamada Formación Caustía; su edad varia del Turoniano tardío, localmente, quizás hasta el Maestrichtiano temprano (Cretácico Tardío); fuertemente plegada y norfundamente erosionada antes de que se depositaran las primeras rocas no marinas det Terciario.
Cretácico Temprano	DISCORDANCIA EROSIONAL	100-1000 +		Caliza marina variable de gris claro a gris oscuro en capas que varían de delgadas a gruesas; compuestas principalmente de calcarenita de grano fino con cantidades menores de calcilutta y aún menores de calcirutata; algunas capas están parcialimente o totalimente dolomitizadas, en la parte superior de la formación son abundantes los foraminiferos grandes de la familia Miliolidae, junto numerosos gasterópodos y abundantes pelecípodos aberrantes llamados rudistas; principalmente de edad ablinana cenomaniana temprana Cretácico Temprano tardio); localmente contiene abundantes nódulos, lentes y particulas irregulares de pedernal.

Figura 2.3 Columna estratigráfica del distrito Minero de Pachuca-Real del Monte (modificada de Geyne et al., 1963).

2.3 Fallas importantes de la zona de estudio.

En la zona de estudio (de Santa Rosa y San José Tepenené), y de acuerdo con Sánchez-Rojas *et al.* (1998), que son autores de la carta geológico-minera del Servicio Geológico Mexicano (SGM) con clave F14D81 Pachuca, sobre la zona de estudio las principales fallas son: Capula Arévalo - Poniente, La Trinidad, parte oriente de la falla Cimbrones y la falla Zumbimblia que rebasan en longitud los 4 km de extensión.

Falla Capula – Arévalo Poniente

Se localiza en la parte Sur de Los Frailes - El Águila, presenta una longitud de casi 4.5 km, desde la mina Samaria, pasa por la comunidad Capula, llega hasta la parte NE del poblado Mineral El Chico, en algunos sectores, albergan diques mineralizados. A lo largo de su rumbo se localizan las minas de La Samaria, La Soledad, San Eugenio, La Preciosa y San Pedro, con orientación N79°-83 ° W y echados de 81°-83° al SW.

Falla La Trinidad

Esta falla corta a rocas que forman al cerro El conejo y al cerro de Los frailes, tiene rumbo preferencial E -W y una longitud de un poco más de 5 km desde el cerro Los crestones por la barranca Peña blanca hasta la parte oriente del poblado de Santa Inés.

Falla Cimbrones

El rumbo que exhibe esta falla en la carta geológica minera F14D81 es E – W, sobre la zona de estudio tiene una longitud de aproximadamente 2 km, se extiende de forma paralela y al sur del río Cimbrones, también interceptando el río los toros.

Falla Zumbimblia

La falla Zumbimblia también conocida como falla Santa Cruz-Zumbiblia, tiene una longitud de 4.5 km, con rumbo preferencial NW-SE.

Existen otras fallas de menor longitud de acuerdo con la carta geológico-minera de Pachuca (Sánchez-Rojas *et al.*, 1998) como son: Santa Cruz, Santo Niño, San José y San Felipe. Estas fallas presentan longitudes menores y encajonan vetas epitermales.

2.4 Vetas

De acuerdo con la cartografía geológico-minera del Servicio Geológico Mexicano (SGM) y reportes técnicos (Valverde-Ramírez *et al.*, 1977; Orozco-Sánchez, 1979; De Léon-Chávez, 1982; González-Gallardo *et al.*, 1987; García-Castro, 1987; García-Castro *et al.*, 1988, 1988(a), 1988(b); Dueñas-García, 1989; De los Santos-Montaño, J., 1996). La zona de estudio está dentro de la zona mineralizada de Capula-Arévalo y Santa Rosa. En esta zona se han reconocido diques mineralizados de 50 m a 4000 m con espesores que varían de 0.4 m a 3.0 m. Las vetas que se han mapeado en trabajos antiguos del Consejo de Recursos Minerales (hoy Servicio Geológico Mexicano) son las vetas Reforma, La Trinidad, La Cruz, Reyper, Lupita, El Escribano, Arévalo poniente y la veta Bilbao. De acuerdo con Sánchez-Rojas *et al.* (1998), en la veta La Trinidad se reportan valores promedio de 69 g/Ton Ag y 0.29 g/Ton Au. En la mina Samaria a lo largo de la veta del mismo nombre se reportan valores 13 g/Ton Ag y 0.08 g/Ton Au. En la veta-falla Capula-Arévalo Poniente 90 g/Ton Ag y 0.42 g/Ton Au.

En el área de Santa Rosa Sánchez-Rojas *et al.* (1998) reportan estructuras mineralizadas que varían en longitud de 1500 m a 6000 m y espesores de 1.8 m a 50 m con direcciones NW-SE y que son cortadas por fracturas NE-SW. En la obra minera de Santa Rosa se calculó una ley promedio de 39 g/Ton Ag con 0.14 g/Ton Au; en la mina San Felipe se calcularon en ley promedio 60 g/Ton Ag y 0.29 g/Ton Au y en la mina Zumbimblia 37 g/Ton Ag y 0.3 g/Ton Au. Muchos de estos datos de leyes de Au y Ag, son datos compilados por Sánchez-Rojas *et al.* (1998) de los archivos técnicos del Consejo de Recursos Minerales (hoy Servicio Geológico Mexicano, SGM).

2.5 Depósitos Epitermales de Intermedia y baja sulfuración

El DMP-RM es considerado un yacimiento de vetas tipo epitermal de baja sulfuración (Bonham, 1986; Heald *et al.*, 1987; y White y Hedenquist 1990; o sulfuración intermedia por Hedenquist *et al.*, 2000 en Camprubí *et al.*, 2018). Este tipo de yacimiento puede alcanzar entre 2 km a 1 km de profundidad, los controles de emplazamiento pueden ser fallas o zonas de fracturas relacionadas a zonas volcánicas, el rango de temperaturas de formación es de 100 a 320 °C (en casos excepcionales pueden superarse, aunque generalmente se forman de 150° a 230°C). La mineralización se da a través de fluidos hidrotermales que contienen salinidad baja entre 0–15% en peso de NaCl eq. y compuestos volátiles. La precipitación de minerales a partir de fluidos hidrotermales se puede producir a partir de fenómenos tales como ebullición, enfriamiento, mezclas entre diversos fluidos, o reacción entre los fluidos y las rocas circundantes (Camprubí *et al.*, 2018).

A este tipo de yacimientos se les asocia una alteración sericítica \rightarrow argílica está última es dominante conforme disminuye la temperatura, también es común encontrar clorita. Como minerales de ganga se tiene principalmente el cuarzo y la calcedonia (generalmente en bandas), otros minerales que pueden aparecer son carbonatos como la calcita y rodocrosita, adularia diseminada y en vetas, alunita y pirofilita (escasas), barita y/o fluorita (localmente), barita comúnmente por encima de la mena y la illita (figura 2.4).

Figura 2.4 Esquema zoneamiento típico de alteración para los depósitos de baja e intermedia sulfuración (modificado de Buchanan, 1981 tomado de González Pena, 2010).

Capítulo 3 Metodología

En el presente trabajo para resolver el problema planteado y lograr los objetivos, se emplearon varias metodologías. Las metodologías son una serie de pasos ordenados o conjunto de procedimientos para obtener los resultados o el conocimiento deseado según los objetivos que han sido planteados. Las metodologías empleadas en este trabajo fueron: investigación documental, cartografía geológica y geológico-minera, geología de campo, geología estructural, análisis estructural e integración (Figura 3.1). Cada una de estas metodologías empleadas se basan en el método científico, así como la disciplina de la geología en que se ha apoyado este trabajo principalmente, la geología estructural.

Figura 3.1 Esquema metodológico del trabajo desarrollado.

Metodología

3.1 Investigación documental

Es la búsqueda y análisis previo de información relacionado al tema para argumentar y/o apoyar la hipótesis propuesta y la realización de nuevas teorías (referencia). Para este estudio han sido utilizados archivos técnicos de SGM (antes llamado Consejo de Recursos Naturales No Renovables), tesis, materiales de enseñanza de geología estructural, cartas geológicas y geológicas mineras de SGM y cartografía de INEGI.

3.2 Cartografía geológica y geología de campo

La cartografía geológica, como abstracción espacio-temporal de las rocas, es en sí un recurso didáctico esencial para la formación de los geocientíficos (Baker *et al.*, 2012), herramienta que logra plasmar a través de sus resultados los datos e información obtenidos por su creador como en este caso lo es el mapa que se presenta.

Para la realización del mapa geológico se utilizó la escala 1: 10 000 y geología de campo para recabar los datos cualitativos y cuantitativos geológicos como:–fracturas y fallas, identificación de las litologías, minerales y tipos de alteraciones. La obtención de estos datos en afloramientos se realizó de manera sistemática y ordenada.

En campo sobre cada afloramiento se ubicó el punto empleando un receptor GPS esto para controlar el mapeo de los datos, posteriormente se realizó un croquis orientado y escalado, posteriormente se definieron los materiales litológicos del lugar y al final se registraban los rumbos y echados (actitud estructural) y estrías de falla de las estructuras de deformación sobresalientes, para posteriormente ser mapeados en las hojas de herculene de tamaño carta dividida en cuadros de 5 cm por 5 cm cada uno y con las coordenadas en sistema UTM—Norte y Este en metros. Los datos de los rasgos estructurales han sido plasmados a escala 1:10000. Posteriormente se pasaron los datos a un pliego de papel herculene para escanearlo y digitalizarlo.

Metodología

3.3 Geología estructural

La geología estructural es el estudio de la geometría, cinemática y dinámica de las estructuras de deformación que se presentan en las rocas de la corteza terrestre. Se entiende como estructuras de deformación a las estructuras planares, lineales y con curvatura en las rocas como: foliaciones, lineaciones, pliegues, fallas y fracturas. En este trabajo se trabajó con estructuras de deformación en un régimen frágil-quebradizo como fallas y fracturas que se formaron en la corteza superior y que algunas contienen vetas de cuarzo y alteraciones hidrotermales.

Los datos estructurales se colectaron en campo con el empleo de la brújula tipo Brunton y regletas de escala (rumberas). Los datos que se colectaron fueron actitudes estructurales (rumbo y echado) así como el ángulo de pitch de cada superficie de falla que presentaba estrías. Estos datos se vaciaron a hojas de datos en excel, ordenando los datos con sus coordenadas respectivas y valores estructurales de su orientación.

3.4 Análisis estructural

Los datos estructurales ordenados en excel se trabajaron con el software stereonet y FaultKin, para realizar un análisis en gabinete y después integrar estos resultados con las relaciones de corte entre estructuras de deformación que se obtuvieron en campo.

Los resultados de cartografía geológica y geología de campo se integraron con los datos del análisis estructural para determinar las relaciones geométricas en las estructuras de deformación y establecer una secuencia de formación de estructuras, así como posibles relaciones de la deformación de las rocas con las estructuras de mineralización y las alteraciones hidrotermales.

Capítulo 4 Estratigrafía

En la zona de estudio afloran rocas volcánicas y subvolcánicas del Cenozoico algunas de estas rocas son de tipo andesitas, riodacitas y volcaniclásticos principalmente. En este trabajo se identificaron 4 unidades entre ellas dos formaciones previamente identificadas en otras áreas de la Sierra de Pachuca por Geyne *et al.* (1963) y dos unidades de rocas que se proponen por vez primera en este trabajo, descartando los depósitos aluviales y fluviales que cubren a estas unidades en el área (figuras 4.1 y 4.2). Las unidades que se describen son la Formación Vizcaína, unidad San José, Formación Zumate y la unidad Santa María. Se describen a continuación de la más antigua a la más joven.

Mapa estructural de la Región de Actopan y Santa Rosa

Figura 4.1 Mapa geológico estructural del área de San José Tepenené y Santa Rosa

COLUMNA ESTRATIGRÁFICA

DESCRIPCIÓN LITOLÓGICA

(Q-df)	Depósitos aluviales y fluviales de arenas, limos y gravas
UNIDAD SANTA MARIA (Q-sm)	Basaltos y autobrechas basálticas, depósitos piroclásticos andesítico - basálticos (Conos cineríticos)
FORMACIÓN ZUMATE (PI-fz)	Flujos de lava andesitas y dacitas, aglomerados dacítico y volcanoclástico
UNIDAD SAN JOSÉ (M-sj)	Domos riodacíticos, diques riodacíticos y riolíticos. Depósitos piroclásticos riodaciticos
FORMACIÓN VIZCAINA (M-fv)	Flujos lavicos andesíticos y dacíticos, volcanoclasticos, andesíticos y dacíticos. Diques andesíticos. Texturas Porfídicas

Figura 4.2 Columna estratigráfica esquemática del área de estudio

Estratigrafía

4.1 Formación Vizcaína

La Formación Vizcaína fue definida por Geyne *et al.* (1963) en el área de Pachuca y Real del Monte, como una secuencia de derrames de lava y brechas volcánicas de composición andesítica y dacítica con texturas porfídicas con planos de diaclasas y algunos dobleces de la lava; estos derrames estratificados con algunas capas de tobas, areniscas y brechas tobáceas. Las mediciones de secciones estratigráficas en secciones transversales de Geyne *et al.* (1963) muestran que en las áreas circundantes donde se conserva el espesor original completo de la Formación Vizcaína, tiene entre 500 y 600 m de espesor y está localmente cubierto por restos erosivos, de 20 a 200 m de espesor, de riolita y rocas sedimentarias volcánicas de la secuencia superior.

En este trabajo la Formación Vizcaína se reconoció en las áreas mineras de Arévalo, Santa Rosa, San José Tepenené y Puerto del Oro (ver mapa geológico figura 4.1 y columna de la figura 4.2). La unidad está compuesta de flujos lávicos andesíticos y dacíticos, rocas volcanoclásticas andesíticas y dacíticas. Así como diques andesíticos (figura 4.3).

Las andesitas presentan texturas porfídicas con fenocristales de plagioclasas en una matriz afanítica de color verde. Los derrames de andesita presentan en ocasiones estructura de foliación de flujo, así como diaclasas de enfriamiento que son paralelas a las estructuras de flujo. En ocasiones no se presentan las estructuras de flujo y se presentan con una estructura masiva. En algunos sectores se pueden distinguir autoclastos de la misma composición andesítica con texturas porfídicas.

Los derrames dacíticos están estratificados con los derrames andesíticos, y las rocas dacíticas presentan texturas porfídicas con una matriz afanítica de color gris claro. En ocasiones no es fácil distinguir los derrames andesíticos de los dacíticos, a menos que se vean con detalle en la presencia y proporción de fenocristales de cuarzo.

Los diques andesíticos aparecen cortando a los derrames andesíticos y a veces a los derrames dacíticos. Las texturas de los diques varían de afanítica a porfídica, y presentan un borde quemado en ocasiones en relación con la roca que intrusionan. Se presentan en varias orientaciones, desde verticales a subhorizontales y no es fácil distinguirlos de los derrames andesíticos a menos que se ponga cuidado en los cambios texturales de la roca.

Las rocas volcaniclásticas andesíticas y dacíticas se presentan con estructura de flujo, tienen texturas porfídicas a afaníticas y se observa muchos clastos subangulosos a subredondeados de clastos de roca volcánica andesítica con texturas porfídicas. Estas rocas volcaniclásticas aparecen estratificadas con los derrames lávicos y parecen haberse formado simultánea o cercanamente en el tiempo de emplazamiento.

Las rocas volcánicas de la unidad se encuentran basculadas hacia el norte con un ángulo que varía de 10° a 20°, este basculamiento está relacionado con fallamiento y se observó en las cercanías de la mina La Trinidad. Las rocas también están afectadas por fracturamiento y fallamiento, así como por alteraciones hidrotermales. Estas características se describirán en capítulos siguientes.

Figura 4.3 Afloramientos de la Formación Vizcaína en el área de Actopan, San José Tepenené y Santa Rosa. A, Unidades de derrames andesíticos separados por superficies de enfriamiento, se encuentran basculadas hacia el Norte y afectadas por fallas normales, área de La Trinidad. B, Flujos de andesitas con abundantes autoclastos andesíticos porfídicos, área de Capula-Arévalo. C, capas de depósitos piroclásticos andesíticos con variación textural y tamaño de grano. D, andesitas con alteración propilítica afectados por fallas con alteración argílica. E, diques y diquestratos andesíticos con textura afanítica afectan a andesitas. F, brechas volcánicas andesíticas intercaladas con derrames lávicos andesíticos.
Estratigrafía

4.2 Unidad San José

La unidad San José aflora en varias partes del área de estudio. Está presente en las zonas mineras Santa Lucía-San José Tepenené, zona minera Santa Ana-Capula, zona minera Santa Rosa y zona minera Puerto del Oro (ver mapa geológico figura 4.1). Esta unidad no se había reconocido en antiguos trabajos mineros y de geología en la región. La unidad San José toma el nombre de San José Tepenené ya que ahí aflora un domo riodacítico que es claro en su expresión morfológica. Esta unidad está compuesta de domos riodacíticos, diques riodacíticos y riolíticos, así como depósitos piroclásticos riodacíticos.

Los domos riodacíticos con forma morfológica dómica, se componen de roca de tipo riodacítica presentan bandeamiento de flujo y pliegues de flujo. La roca riodacítica presenta una textura porfídica con fenocristales de cuarzo y feldespato en una matriz afanítica de vidrio volcánico. Los tipos de domos volcánicos son exo-domos y de criptodomos por lo que se observó en el campo, ya que algunos domos solo afloran parcialmente. Los domos cortan a las rocas andesíticas y dacíticas de la Formación Vizcaína, esto se aprecia muy bien en la zona minera de San José Tepenené en la parte Sur de las peñas Los Frailes y en el área de Santa Rosa y Puerto del Oro. De los domos se desprenden diques riodacíticos con estructura bandeada a veces ondulada con pliegues de flujo.

Los diques son comunes en el área de estudio y su composición varía de riolítica a riodacítica. Algunos diques tienen amplia longitud y otros se presentan con longitudes más cortas en superficie. Los diques de lo cartografiado en campo e integrado tienen longitudes que varían de 3 km de longitud a 0.5 km. Los espesores de los diques son variables, en el campo se observaron espesores de 3 m a 0.3 m. La geometría de los diques es ondulada tanto vertical y horizontalmente algunos diques están conectados o enlazados formando estructuras ígneas ramaleadas de diques conectados. Los diques presentan varias orientaciones que son: WNW-SSE y E-W. Los diques más importantes en la zona son el dique Arévalo y dique Santo Niño (Figura 4.1).

Los diques se emplazaron en fracturas y fallas ya que la orientación de las fracturas coincide con muchos diques de la unidad San José. Algunos diques muestran alteración hidrotermal y otros no.

Figura 4.4 Afloramientos con estructuras magmáticas de la unidad San José. A, Domo riodacítico entre las Peñas Los Frailes y San José Tepenené, corta a andesitas de la Formación Vizcaína. B, foliación de flujo y pliegues de flujo en dique riodacítico enfrente de las Peñas Los Frailes. C, pliegues de flujo en dique riolítico a lo largo del camino San José Tepenené a San Jerónimo. D, diques riolíticos que cortan a andesita de la Formación Vizcaína, en área minera de Santa Lucía-San José Tepenené. E, acercamiento de contacto dique riolítico con andesita del punto D. F, pliegues de flujo en riolitas en domo riolítico en Puerto del Oro.

Estratigrafía

Los diques que muestran alteración hidrotermal están cortados por vetillas y vetas de cuarzo epitermales y algunos presentan estructura brechada por fallamiento (Figura 4.4).

La unidad San José se correlaciona en características litológicas y edad relativa por posición estratigráfica con la Formación Cerezo que fue definida por Geyne *et al*. (1963) en la zona minera de Pachuca y Mineral del Monte.

4.3 Formación Zumate

La Formación Zumate fue definida por Geyne *et al.* (1959) en Geyne *et al.* (1963) como una secuencia de derrames, brechas de derrame, aglomerados y rocas volcánicas epiclásticas de composición dacítica y su nombre lo toma de la peña del Zumate, pueblo del mismo nombre, propuesto por Geyne *et al.*, 1959. Geyne *et al.* (1963) las describe con estructura foliada y masiva con texturas porfídicas, con capas estratificadas de material tobáceo y lahárico con capas basales tobáceas y de detritos volcánicos de hasta 20 m de espesor. El espesor máximo para esta unidad es de 360 m de acuerdo con lo descrito por Geyne *et al.* (1963).

En este trabajo la Formación Zumate aflora en los alrededores de las Peñas Los Frailes. La formación presenta una secuencia de derrames lávicos que varían de andesíticos a dacíticos estratificados con flujos de brechas volcánicas y volcaniclásticos de la misma composición (figura 4.5). En la base de los Frailes aparece un nivel basal con espesor mínimo de 10 m que está marcado por la presencia de capas de rocas piroclásticas dacíticas de color verde y que presentan líticos de rocas andesitas, dacitas y basalto. Las capas de rocas de la Formación El Zumate no presentan tanta inclinación como las rocas de la Formación Vizcaína y esto define una discordancia angular entre las dos formaciones. Los diques riodacíticos de la unidad San José intrusionan a la parte basal piroclástica de la Formación El Zumate (figura 4.5). Esto se observó enfrente de las Peñas Los Frailes en el camino de terracería que va de San José Tepenené al poblado de San Jerónimo.

Figura 4.5 Afloramientos de la Formación Zumate en el área de estudio. A y B Afloramiento de la formación Zumate donde se observa los flujos lávicos en capas casi horizontales. C, Diques riodacíticos de la unidad San José intrusionan a la parte basal piroclástica de la Formación El Zumate.

Estratigrafía

4.4 Unidad Santa María

La unidad Santa María se define en este trabajo por vez primera. Esta unidad aflora en la parte sur del área de estudio en las cercanías de Puerto La Palma y tiene una amplia extensión hacia las poblaciones de San Juan Solís y Santa María.

La unidad se compone de derrames basálticos con flujos de brechas volcánicas y autobrechas de composición andesítico basálticas y depósitos piroclásticos. Estas rocas extruyeron de conos cineríticos y piroclásticos. Los derrames basálticos presentan texturas masivas y a veces vesiculadas con algunos fenocristales de plagioclasas, piroxenos y a veces olivino. Los derrames en ocasiones cubren depósitos piroclásticos con granulometría de lapilli y bloques. Los depósitos piroclásticos son lapilli y bloques andesítico-basálticos, cenizas volcánicas y escorias basálticas rojas y negras. Cenizas volcánicas básicas e intermedias son comunes en esta unidad.

La unidad cubre discordantemente a la Formación Vizcaína en la parte sur del área de estudio. Esto se observa en el Sur-Poniente del poblado de Puerto La Palma y al norte de San Juan Tilcuautla (figura 4.6).

Figura 4.6 Afloramientos de la unidad Santa María. A, vista al Sur desde las peñas Los Frailes, se observa discordancia entre la unidad Santa María y rocas volcánicas del Grupo Pachuca. B, cono piroclástico con depósitos de escoria basáltica y piroclásticos, conos cineríticos entre San Juan Solís y Santa María.

La edad de esta unidad se interpreta del Cuaternario. Ya que en la región y en la parte Sur-Poniente afloran abundantes conos cineríticos basálticos con escoria y tezontle (carta geológico-minera Pachuca de SGM, Sánchez-Rojas *et al.*, 1998). Estos conos están alineados con fracturas NE-SW y fracturas E-W.

La unidad Santa María se correlaciona con la Formación San Cristóbal que es descrita en la carta geológico-minera del SGM (Sánchez-Rojas *et al.*, 1998) y por Geyne *et al.*, (1963) como una secuencia de derrames de lava, capas clásticas con bloques y bombas y escorias; de edad del Plio-Cuaternario.

Capítulo 5

Geología Estructural

En este capítulo se describen las fracturas, fallas y vetas-falla de las diferentes zonas mineras del área de estudio (figura 5.1) y se presentan las rosetas y estereogramas realizados a partir de los datos tomados en las salidas a campo.

5.1 Zona minera Santa Ana-Capula

En esta zona las estructuras principales son las fallas Capula-Arévalo y la falla El Tepozán. Los datos estructurales de las fracturas y fallas de esta zona minera se muestran en los estereogramas de la figura 5.2 y datos numéricos en tablas de anexos.

Veta-falla Capula-Arévalo

La falla Capula-Arevalo es descrita en trabajos geológicos-mineros del SGM (Sánchez-Rojas *et al.,* 1998) como veta que tiene asociado un dique riodacítico y que tiene una longitud de más de 6 km llegando a extenderse hasta la población de Capula.

En este trabajo, esta estructura se cartografió a lo largo de su rumbo con una extensión de cerca 2.6 km desde la mina La Preciosa, hasta cerca del tiro Pelayos. Es una zona de falla con fracturas que tiene un dique riodacítico a lo largo de la estructura y presenta vetas ramaleadas epitermales siguiendo el rumbo de la zona de falla. Presenta un rumbo N80°W a E-W con echado que varía de 60° a 75° al SW y Sur. De acuerdo con los indicadores cinemáticos y estrías de fallas es una falla de tipo normal y contiene rocas de falla de tipo brechas de falla con zonas de salbanda de falla, el ancho de la zona núcleo de la falla no es claro, pero se observó un ancho mínimo de 0.4 m, pero en algunos lugares se observaron anchos de 1.5 m. La falla afecta a andesitas de la Formación Vizcaína y parece también afectar al dique riodacítico de Arévalo.

La falla no parece estar cubierta por otros depósitos volcánicos. La falla se correlaciona por orientación y longitud con las fallas que contienen vetas importantes en el distrito minero como la veta Vizcaína.

Veta-falla El Tepozán

La falla El Tepozán contiene una veta epitermal. Esta estructura se ubica hacia el norte de la veta-falla Capula-Arévalo y tiene un rumbo que varía de E-W a N80°W con echado de 70° al Sur. A lo largo de esta veta-falla se ubican las obras mineras tiro El Tepozán y Socavón Santa Isabel. La veta-falla corta a rocas volcánicas de la Formación Vizcaína.

Mapa estructural de la Región de Actopan y Santa Rosa

UTM - WGS84

Figura 5.2 Estereograma y roseta de todas las fallas obtenidas en campo de la Zona minera de Santa Ana - Capula a partir de 3 datos, ver tabla A1 en anexo

5.2 Zona minera Santa Rosa

En la zona minera Santa Rosa aparecen una serie de grupos de fallas (ver mapa geológicoestructural figura 5.1) que se describen a continuación y que fueron representadas en estereogramas (figura 5.3).

5.2.1 Fallas San Felipe

Las fallas San Felipe se localizan entre la veta Bilbao y la veta-falla Arévalo. Tienen una longitud variable de 300 m a 700 m con una orientación que varía de N40°E a N60°E y echado de algunas fallas de 70° a 80° al Noroeste (NW) y Oeste (W). Algunas de estas fallas contienen mineralización en forma de veta mientras otras fracturas o fallas no contienen. A lo largo de algunas fallas se localizan las obras mineras: Josefina, La Torre, El Volador y el socavón San Felipe (ver mapa geológico, figura 4.1). La cinemática no se pudo definir. Las rocas de falla que se presentan son brechas de falla y afecta a rocas riodacíticas y andesíticas de la unidad San José y Formación Vizcaína.

Este conjunto de fallas y vetas-falla San Felipe parecen no cortar a la veta-falla Capula-Arévalo y sugiere una formación simultánea de estas fallas.

Geología Estructural

5.2.2 Fallas y vetas-falla La Cruz

Las fallas y vetas-falla La Cruz se ubican en la parte Norte del poblado minero antiguo de Santa Rosa a unos 700 m de distancia al NW. La longitud que alcanzan estas fallas va de 300 m a 2 km. A lo largo de estas fallas se localizan las obras mineras La Cruz, Bilbao, Los Pilares y San Luis de Las Flores. Estas estructuras comprenden fracturas y fallas con dirección N85°W a N55°W con echados variables de 50° a 70° al Sur y otro conjunto de fracturas con direcciones NE-SW aunque son las menores en cantidad. Muchas de estas estructuras son fallas de tipo normal y afectan a rocas volcánicas de la Formación Vizcaína y rocas riodacíticas de la unidad San José.

Las fallas más importantes son aquellas que contienen a las vetas La Cruz y veta La Nueva. En el interior del socavón La Cruz se observa a la veta La Cruz y veta Bilbao que corta a brechas de fallas y salbanda de la zona núcleo de falla.

5.2.3 Fallas y vetas-falla Santa Rosa

Las fallas y vetas-falla Santa Rosa están localizadas en la zona del poblado antiguo de Santa Rosa y se ubican por los alrededores de la iglesia de Santa Rosa. Las fallas tienen longitudes variables de 0.6 km a 4.5 km. Se presentan tres orientaciones de fracturas y fallas, unas con actitud estructural que varía de E-W a N70°E y echados de 50° a 80° al Sur, otras con orientación N-S, y otras con N60°W a N40°W. Las más abundantes son las del primer grupo E-W (figura 5.3). La cinemática es variable a veces con comportamiento de tipo normal y otras de fallas oblicuas. Las rocas de falla se presentan mejor definidas en las estructuras más importantes que contienen vetas de cuarzo y son brechas de falla y salbanda, como lo observado en el interior del socavón de La Esmeralda. Las brechas de falla y salbanda son rodeadas por una zona de daño compuesta de fracturas.

Las rocas afectadas por estas fallas son las andesitas de la Formación Vizcaína pero también a las rocas riodacíticas de la unidad San José.

32

Figura 5.3 Estereograma y roseta de todas las fallas obtenidas en campo de la Zona minera de Santa Rosa a partir de 68 datos, ver tabla A2 en anexos.

5.3 Zona minera Santa Lucía-San José Tepenené

La zona minera Santa Lucía-San José Tepenené contiene varias fallas y vetas-falla como son las vetas-falla del área de La Trinidad, vetas-falla del área Samaria, y vetas-falla y fracturas localizadas al pie de las Peñas Los Frailes. Estas estructuras se muestran en el mapa geológico-estructural de la figura 5.1 y están representadas sus orientaciones en el estereograma de la figura 5.6.

5.3.1 Vetas-falla del área La Trinidad

Las vetas - falla del área La Trinidad se encuentran entre la veta El Escribano y la veta Reforma poseen longitudes variables de 0.3 km a 1.4 km para la veta Trinidad, cuentan con una orientación NE – SW y otra NW - SE con echados de 74° SE y 68°-70° SW respectivamente. Esta falla se considera como veta ya que se encuentra mineralizada, aunque las fracturas de esta zona no se encontraban mineralizadas. Cerca de esta área se localiza la obra minera socavón Trinidad cercana también un pozo y un tiro, a 600 m aproximadamente en dirección al SE se encuentra el socavón Santa Lucía. Esta veta-falla corta a diques riodacíticos que pueden formar parte del dique Santo niño. Las fallas a las que se les pudo definir su cinemática resultaron del tipo de falla normal.

5.3.2 Vetas-falla del área Samaría

Estas vetas se localizan entre la veta Reforma y la veta Reyper, entre estas dos vetas se encuentra la falla y la mina Samaria. Las fallas encontradas en este trabajo cuentan con longitudes variables de 0.2 km a 0.6 km con una orientación principalmente S35°E – S80°E y echados entre 60°-82° SW. La cinemática para estas fallas es del tipo normal derecha e izquierda. Las rocas de falla son brechas que afectan a riodacitas de la formación el Zumate y la Unidad San José.

5.3.3 Vetas-falla y fracturas enfrente de Los Frailes

Estas vetas-falla se encuentran alrededor de las vetas de los frailes cercanas al camino que va al poblado de San Jerónimo. Aquellas que se encuentran sobre la formación El Zumate tienen una longitud variable de 0.1 km a 0.3 km con notable orientación NW-SE y echados de 50°-81° NE (figura 5.4).

Figura 5.4 Estereograma y roseta de todas las fallas obtenidas en campo de la Zona minera de Santa Lucía - San José Tepenené obtenidos a partir de 48 datos (datos estructurales en tabla A3 en los anexos).

Cerca de estas estructuras se encuentran las minas Los Frailes y mina La Ruina, así como las obra minera del socavón Verdum.

La cinemática de estas fallas es de tipo normal (Figura 5.5). Las rocas de falla de esta área son brechas de falla. Las fallas se encuentran afectando a rocas andesíticas y dacíticas de la formación El Zumate y no cortan al dique riodacítico que se encuentra al sur de la mina Los Frailes.

Figura 5.5 Estrías en los afloramientos de rocas ígneas ácidas con alteración argílica y limonitas cercanos a las peñas de Los Frailes.

Geología Estructural

5.4 Zona minera Puerto del Oro-Ernestina

En esta zona minera se presentan varios grupos de fracturas y fallas los cuales presentan orientaciones NE-SW, NW-SE, WNW-ESE y en menor cantidad N-S (Figuras 5.6). A continuación, se describen los grupos de fallas NE-SW y NW-SE.

5.4.1 Fallas NE-SW

Estas fallas de orientación NE-SW predominan cercanas a las obras mineras de Puerto del Oro y Picacho. Las fallas cuentan con una longitud que alcanza los 10 km. La orientación predominante NE-SE tiene echados 60°-70° NW y existen también algunas fracturas alrededor de orientación oblicua a estas fallas. La cinemática de las fallas cartografiadas es de tipo normal predominantemente. Las rocas de falla son brechas que afectan a las riodacitas de la unidad San Juan.

5.4.2 Fallas NW-SE

Las fallas NW-SE de la zona minera Puerto del Oro-Ernestina fueron mapeadas en el camino de la barranca Honda al oeste de la falla San José y la falla Ernestina (ver mapa geológico, Figura 4.1). Las fallas de esta zona tienen longitudes que van de 0.1 km a los 0.6 km. Dentro del área se encuentra el tiro San Juan. Las fallas NW-SE (figura 5.6) cuentan con echados de 83° SW y 89° NW. La cinemática es de tipo normal con componentes derecha o izquierda en algunos casos. Las rocas de falla son brechas de falla que afectan a los flujos andesíticos de la zona.

Figura 5.6 Estereograma y roseta de todas las fallas obtenidas en campo de la Zona minera Puerto del Oro-Ernestina obtenidos a partir de 78 datos (datos numéricos en anexos en tabla A4).

36

Capítulo 6

Estructuras, texturas de mineralización y alteraciones hidrotermales

6.1 Estructuras de mineralización

6.1.1 Tipos de vetas epitermales

Las vetas epitermales en el área de estudio tienen estructuras variables que se presentan como vetas ramaleadas, en stockwork, vetas subparalelas y vetas de una sola estructura (figura 6.1).

Las vetas ramaleadas presentan geometrías ramificadas y desprendimientos. La mineralogía que presentan es cuarzo, calcita, limonitas y óxidos de manganeso. Las limonitas y óxidos de manganeso son por general minerales supergénicos.

El stockwork que se observó dentro del área de estudio, comprende a una serie de vetillas que varían su espesor de escala de centímetros a decímetros. Las texturas en cada una de las vetillas de cuarzo que se observó son texturas de peine y bandeamiento con algunas drusas de cuarzo pequeñas.

Las vetas comúnmente cortan a las rocas andesíticas de la Formación Vizcaína y las riodacítas de la unidad San José. Las vetas se emplazan en fallas y fracturas que se presentan en las áreas mineralizadas descritas anteriormente. En algunas obras mineras como en el socavón La Cruz (figura 6.1), la mina La Trinidad (figura 6.1), socavón La Esmeralda y La Preciosa, se observaron a las vetas cortando a brechas y salbandas de falla, sin embargo, en otras ocasiones se observaron siendo afectadas por fallamiento ya que se presentaban brechados los fragmentos de cuarzo epitermal.

Figura 6.1. Tipos de estructuras en vetas epitermales en el área de estudio. A, rebaje de la veta Trinidad. B, rebaje de la veta La Cruz. C, vetas ramaleadas con texturas de cuarzo drúsico y estructura brechada en socavón La Cruz. D y E, veta de cuarzo drúsico y coloforme con limonitas indígenas encajonada en andesitas fracturadas, área de Santa Rosa. F, veta de cuarzo con estructura brechada y fracturada con jarosita y arcillas blancas de alteración; socavón de la obra La Esmeralda.

6.2 Alteraciones hidrotermales

La alteración hidrotermal en los yacimientos minerales se debe a la circulación de fluidos hidrotermales, ya sea agua caliente, vapor o gas, produciendo un cambio físico-químico en las rocas a través de las cuales circulan. Esta circulación involucra volúmenes relativamente grandes de fluidos calientes que atraviesan rocas permeables debido a la presencia de fisuras o poros interconectados que enfocan las soluciones a un sitio de precipitación. Un sistema hidrotermal consta de dos componentes esenciales: una fuente de calor que proporciona la energía necesaria (magmática, gradiente geotérmico, decaimiento radiogénico, metamorfismo) y una fase fluida, que incluye soluciones derivadas de fluidos magmáticos / juveniles, fluidos metamórficos, aguas connatas o agua de mar.

6.3 Clasificación de las alteraciones hidrotermales.

Las alteraciones hidrotermales reflejan la interacción del fluido (comúnmente dominado por H_2O) con la roca, a temperaturas que varían de menos de 100° C a más de 700° C. La alteración es un rasgo ubicuo en y alrededor de los depósitos hidrotermales, que frecuentemente se dispone en halos mucho más grandes que los depósitos que encierran. En términos generales, la distribución y mineralogía de estas alteraciones se relaciona directamente al ambiente hidrotermal y, por consiguiente, al tipo de yacimiento mineral. La mineralogía, y en algunos ambientes la composición química de la alteración, aportan evidencias acerca de la proximidad de la mineralización o en el caso ideal, pueden definir un vector o vectores hacia el cuerpo.

6.4 Alteraciones relacionadas a la actividad magmática somera

Un gran número de enfoques se han utilizado para la clasificación de las alteraciones hidrotermales. Es patente que la terminología ha sido fuertemente influenciada por el ambiente de formación y por consecuencia, las clasificaciones tienden a reflejar tipos específicos de depósitos.

Por ejemplo, las clásicas alteraciones hipogénicas que se distribuyen en torno de los pórfidos cupríferos (Lowell y Guilbert, 1970, figura 6.2) o las alteraciones observadas en los yacimientos epitermales descritas por Hendenquist *et al.*, 2000 (figura 6.3).

Figura 6.2- Modelo de Lowell y Guilbert (1970) para el depósito de San Manuel-Kalamazoo, Arizona, mostrando el zoneamiento vertical y lateral de la alteración y la mineralización típico de los pórfidos de cobre.

Figura 6.3- Sección esquemática de los patrones de alteración en sistemas de epitermales de baja sulfuración, (modificado de Hedenquist et al., 2000).

- Potásica rica en biotita o de silicato de K o biotítica.

Paragénesis: Biotita (flogopita)-feldespato potásico (ortoclasa)-magnetita, cuarzo, anhidrita, albita, actinolita, rutilo, apatita, sericita, clorita, epidota.

Ambiente de formación: Generalmente se encuentra en el núcleo de los depósitos porfídicos, particularmente aquellos hospedados por intrusiones más máficas, como dioritas, monzonitas o granodioritas, o bien, por rocas volcánicas y/o volcanoclásticas de naturaleza máfica a intermedia. Puede formar una gran zona de alteración periférica en las rocas encajonantes (sin feldespato potásico), más grande que las zonas externas de alteración propilítica.

- Potásica o de silicato de K.

Paragénesis: Feldespato potásico (ortoclasa o microclina), cuarzo, albita, moscovita, anhidrita, epidota.

Ambiente de formación: Se encuentra en el núcleo de los sistemas porfídicos, particularmente hospedada por intrusiones félsicas (granodiorita-cuarzomonzonita, granito, sienita).

- Sódica o sódico-cálcica.

Paragénesis: albita, actinolita, clinopiroxeno (diópsida), cuarzo, magnetita, titanita, clorita, epidota, escapolita.

Ambiente de formación: Ocurre con poca mineralización en las partes profundas y en algunos casos periférica, de algunos sistemas porfídicos y hospeda mineralización en depósitos porfídicos asociados con intrusiones alcalinas.

- Fílica o sericitica.

Paragénesis: Sericita (moscovita-illita), cuarzo, pirita, clorita, hematita, anhidrita. Ambiente de formación: Forma con mucha frecuencia, un halo que bordea al núcleo de los depósitos porfídicos; hospeda substancial mineralización y puede estar sobreimpuesta a la alteración potásica temprana.

Argílica intermedia o alteración de sericita-clorita-minerales arcillosos (SCA) o simplemente argílica.

Paragénesis: Sericita (illita-esmectita), clorita, caolinita (dickita), montmorillonita, calcita, epidota, pirita.

Ambiente de formación: Su distribución por lo general, manifiesta fuerte control estructural y está ampliamente sobreimpuesta a otros tipos de alteración (potásica) en numerosos sistemas porfídicos; sin embargo, las texturas originales son comúnmente preservadas. El término argílica es frecuentemente utilizado para describir alteración destructiva que presenta una mineralogía similar rica en arcillas y que ocurre en y alrededor de estructuras, en las partes superiores de los sistemas porfídicos y más comúnmente en los yacimientos epitermales de baja sulfuración.

- Argílica avanzada.

Paragénesis: Pirofilita, cuarzo, sericita, andalucita, diásporo, corundo, alunita, topacio, turmalina, dumortierita, pirita, hematita.

42

Ambiente de formación: Alteración intensa que frecuentemente ocurre en la parte superior de los sistemas porfídicos y presentes en los yacimientos epitermales de alta sulfuración. También se presenta alrededor de vetas ricas en pirita que cortan otros tipos de alteración.

- Propilítica.

Paragénesis: Clorita, epidota, albita, calcita, actinolita, sericita, minerales arcillosos, pirita. Ambiente de formación: Por lo general forma la zona de alteración más externa, en los niveles intermedios y profundos de los sistemas tipo pórfido. En algunos sistemas, esta alteración muestra zoneamiento mineralógico: rica en actinolita en la zona interna que es bordeada por una zona externa rica en epidota.

6.5 Alteraciones hidrotermales en el área de estudio

Las alteraciones hidrotermales que se presentan son silicificación, argilización, propilítica y clorítica. En ocasiones aparecía en sectores discretos y reemplazando a los feldespatos la sericita. Estas alteraciones se observaron dentro de estructuras de fracturas y fallas (figura 6.4).

La silicificación comprende a la presencia de sílice en forma de relleno de cavidades o como reemplazamiento de las paredes de la roca por la cual atravesó el fluido hidrotermal.

La argilización comprende minerales arcillosos que de acuerdo con la distribución de los minerales de alteración podrían ser esmectita y en algunas zonas la presencia de la mezcla illita-dickita. Es probable que en donde se presenten las arcillas hidrotermales se tenga la presencia de caolinita supergénica.

La alteración propilítica está definida en los bordes de las vetas-falla y tiene una amplia distribución en las rocas encajonantes. La alteración está definida por la presencia en la

43

matriz de la roca de clorita, epidota, pirita y calcita. Cuando aparecía esta alteración se presentan vetillas de calcita.

La cloritización es muy abundante y en ocasiones no se observa epidota, pero se ven vetillas de calcita con trazas de pirita en fracturas.

La silicificación y la argilización se observaron en los núcleos de las fallas en donde se presentan vetas con calcita, cuarzo y jarosita (figura 6.4). La silicificación y argilización denotan la presencia de vetas de cuarzo. La silicificación cuando se presenta está asociada con pirita diseminada en la roca encajonante que fue afectada por la alteración hidrotermal.

Figura 6.4. Tipos de alteraciones hidrotermales en el área de estudio. A, andesita silicificada al alto de la veta falla Capula-Arévalo con vetillas-fractura con jarosita y cuarzo. B, vetillas fractura con jarosita (pirita) y goethita supergénica. C, alteración argílica con sericita y vetillas de jarosita (derivada de pirita) en la veta-falla Reforma con dique riolítico. D, veta Reforma con alteración argílica y limonitas supergénicas. E, vetillas en stockwork de jarosita con texturas de lisigan de las limonitas en riodacítica con alteración argílica, en el área de la veta La Cruz. F, fallas y fracturas con alteración argílica con limonitas rodeadas de roca andesítica con alteración propilítica.

Capítulo 7

Discusión: Análisis estructural (deformación)

7.1 Análisis de orientación de fallas y fracturas

En el capítulo 5 se describieron los rasgos estructurales más sobresalientes observados en el campo, este capítulo presenta los estereogramas y rosetas de fallas (figura 7.1) y fracturas (figura 7.2) de una manera integrada por zonas mineras y empleando datos estructurales mostrados en las tablas del Anexo 1.

A partir de los resultados de orientaciones de fallas (figura 7.1) es posible observar que las fallas de la zona de estudio de este trabajo tienen cuatro direcciones como son E-W (WNW-ESE), NW-SE, NE-SW y N-S. Las fallas que predominan son las de orientación al NW-SE-y E-W. Las estructuras de falla concuerdan con la tendencia que se ha reportado en la carta geológica – minera de Pachuca (F14D81). Las fallas NE-SW también están presentes y son abundantes, aunque aparentemente en menor cantidad a las fallas E-W y las NW-SE, estas fallas son más frecuentes encontrarlas en las zonas mineras de Santa Rosa y Ernestina-Puerto del Oro lo que puede sugerir una relación con la mineralización ya que estas fracturas se presentan en donde se encuentran las principales obras mineras. Estas fallas NE-SW están subordinadas a las fallas de mayor longitud E-W y WNW-ESE lo que parecería como que las fallas NE-SW son una respuesta geométrica a la deformación principal de acuerdo con las orientaciones y sugiere un desplazamiento oblicuo de las fallas.

En cuanto a las fracturas presentan cinco grupos con base en sus orientaciones E-W, WNW-ESE, NW-SE, NE-SW y N-S. Estas orientaciones son similares a las fallas lo que sugiere una relación muy cercana de fallas y fracturas en la zona de estudio. Las que aparecen en mayor cantidad son los grupos E-W y WNW-ESE en los diagramas de rosetas (figura 7.2).

La presencia de cinco orientaciones de fallas y fracturas en el área de estudio sugiere la posible reactivación de antiguas fracturas pre-existentes y la presencia de varias generaciones de fracturas. En el distrito Minero de Pachuca-Real del Monte (zona de Real del Monte) aparecen las fallas y vetas-fallas WNW-ESE como las principales y las que presentan la mineralización y los diques ígneos de mayor longitud en afloramiento siguen estas orientaciones. En Real del Monte existen fallas N-S y NE-SW pero son subordinadas en orientación al mayor sistema WNW-ESE. En el área de estudio (Actopan, El Arenal, Santa Rosa) de este trabajo de tesis estas orientaciones también se presentan y está presente las orientaciones WNW-ESE así como las N-S y las NE-SW en esta parte se parece mucho a Real del Monte y Pachuca, y además estas orientaciones coinciden con la orientación WNW-ESE de la Sierra de Pachuca, sin embargo se notan orientaciones abundantes E-W y NW-SE que sugieren que puede haber otros eventos de deformación que generaron fracturas y fallas en la zona de este trabajo adicional a los eventos de Real del Monte y Pachuca.

Figura 7.1 Estereogramas y rosetas de las fallas mapeadas en la zona de estudio. A, Zona minera de Santa Ana -Capula. B, Zona minera Santa Rosa. C, Zona minera de Santa Lucía – San José Tepenené. D, Zona minera Ernestina – Puerto del Oro.

Figura 7.2 Estereogramas y rosetas de las fracturas mapeadas en la zona de estudio. A, Zona minera de Santa Ana - Capula. B, Zona minera Santa Rosa. C, Zona minera de Santa Lucía – San José Tepenené. D, Zona minera Ernestina – Puerto del Oro.

7.2 Análisis de Deformación

En este capítulo se presenta el análisis de la deformación referente a las direcciones de extensión principales con apoyo de estereogramas realizados en el software Faultkin con datos de fallas que resaltan las direcciones de extensión. Para este análisis los datos de las fallas se seleccionaron cuidando su cercanía para que el comportamiento no fuera afectado por datos de fallas más lejanas por lo que veremos disminuida la cantidad de fallas graficadas por estereograma. Las fallas de Santa Ana – Capula se excluyen de este análisis por tener datos sin estrías.

Fallas Santa Rosa

Figura 7.3 Estereograma de deformación para la Zona minera de Santa Rosa.

De la figura 7.3, en la zona de Santa Rosa se puede ver que la dirección de extensión principal para las fallas E-W y NW-SE son Norte-Sur. Las Fallas NW-SE se comportaron como fallas oblicuas con cinemática de fallas normales. Las fallas NE-SW se comportaron como fallas laterales, lo que es concordante con una extensión N-S principal.

En las fallas E-W y algunas WNW-ESE existe otro movimiento de fallas laterales que no es compatible con la dirección de extensión N-S y sugiere que existió otra dirección de

extensión WNW-ESE que provocó que las fallas E-W y WNW-ESE tuvieran una cinemática lateral y oblicua en su movimiento.

Fallas Santa Lucía – San José Tepenené.

Figura 7.4 Estereograma de fallas que muestra direcciones de extensión principal para las fallas de la zona de Santa Lucía-San José Tepenené.

A partir del resultado de la figura 7.4 las fallas de la zona de Santa Lucía-San José Tepenené la dirección de extensión principal es NW-SE y NE-SW. La extensión NW-SE está presente en las fallas E-W, WNW-ESE y algunas NE-SW. Otro evento de extensión NE-SW es registrado donde las fallas tienen direcciones NE-SW. Para el evento de extensión NW-SE las fallas que se formaron son de tipo normal y en el evento de extensión NE-SW son fallas laterales y oblicuas.

Debido a la que no existe una compatibilidad cinemática entre las direcciones de extensión NW-SE y las NE-SW existen fallas que son de episodios de deformación distintos.

Fallas Ernestina – Puerto del Oro

Norte

Figura 7.5 Estereograma de fallas que muestra direcciones de extensión principal para las fallas de la zona mineralizada Ernestina-Puerto del Oro.

En la zona mineralizada de Ernestina-Puerto del Oro, las fallas y vetas-falla de esta zona como se muestra en la figura 7.5 existen fallas que son compatibles cinemáticamente con una dirección de extensión Norte-Sur, así como fallas también compatibles con dirección de extensión NW-SE y otras NE-SW. En la dirección de extensión NW-SE existen fallas que se comportaron como fallas oblicuas y laterales y sugiere la existencia de fracturas preexistentes un poco antes de que ocurriera la extensión NW-SE.

En la dirección de extensión N-S también aparecen fallas normales y laterales, las fallas normales tienen orientaciones E-W y WNW-ESE, y las fallas N-S se comportan como fallas laterales, esto sugiere también la presencia de fracturas pre-existentes antes de la extensión N-S.

Al considerar en toda la zona de estudio los resultados de las orientaciones y las direcciones de extensión. En cuanto a las direcciones de extensión, se puede decir que existen tres direcciones de extensión principales que son NW-SE, N-S y NE-SW. Estas direcciones de extensión formaron fallas y fracturas nuevas, pero también reactivaron a fracturas pre-existentes ya sea como fallas laterales, normales o fallas oblicuas. Las direcciones de extensión NW-SE y NE-SW podrían estar relacionadas a una deformación tridimensional, pero esto aún no es concluyente, ya que faltaría un mayor análisis de la deformación por ejemplo utilizando esfuerzos y otras relaciones geológico-estructurales de campo que en este trabajo no se realizó.

Las direcciones de extensión NE-SW y la presencia de fallas laterales E-W puede sugerir que existe un movimiento trans-tensional derecho, es decir un fallamiento lateral derecho y que sería compatible la presencia de fallas normales NE-SW y fallas laterales E-W, así como la presencia de fallas oblicuas.

7.3 Controles estructurales

En este trabajo con base en los resultados geológico-estructurales y de sus relaciones con las vetas epitermales y alteraciones hidrotermales asociadas se proponen tres eventos de deformación (E1, E2 y E3) basados en las extensiones principales y cinemática (figura 7.5). Para que se hayan emplazado los diques y domos riolíticos y riodacíticos de la unidad San José debió haber existido fracturas o fallas pre-existentes ya que de acuerdo a los resultados de la deformación existieron fracturas pre-existentes antes del evento del emplazamiento de estos diques y domos. Este sería un evento de deformación anterior (E1) al evento trans-tensional propuesto para la mineralización (E2).

Durante este evento extensional de deformación E1 se emplazaron los centros volcánicos andesíticos que dieron origen a la Formación Vizcaína. La dirección de extensión principal para este evento y tomando en consideración a la orientación de la Sierra de Pachuca WNW-ESE pudo haber sido NNE-SSW formando fallas normales. Este evento E1 provoco la rotación de las capas volcaniclásticas andesíticas y derrames de la Formación Vizcaína.

Las vetas de cuarzo que contienen la mineralización están relacionadas espacialmente con los diques riolíticos y riodacíticos de la unidad San José ya que presentan orientaciones WNW-ESE y E-W. Las orientaciones de los diques y los domos riodacíticos sugieren direcciones de extensión NNE-SSW, NE-SW y N-S. Entonces se puede relacionar la extensión N-S, NNE-SSW o NE-SW con el emplazamiento de los diques y domos riolíticos de la unidad San José, así como la presencia de fallas oblicuas y laterales E-W. Esto implicaría un evento de trans-tensión lateral derecho (E2) que pudo haber originado a los domos riodacíticos y la mineralización en la zona de estudio.

Los fluidos hidrotermales con Oro y Plata se formaron posteriormente al emplazamiento de los diques y domos riodacíticos y riolíticos, pero fueron controlados por las mismas fallas y fracturas del evento del evento trans-tensional E2.

Existió otro evento extensional N-S que formó diques andesítico-basálticos y reactivo las fallas y fracturas de los anteriores eventos de extensión (E1 y E2). Este evento es más evidente hacia el Puerto La Palma en el límite Sur del área de estudio. Este evento está relacionado con la formación de conos cineríticos que extruyeron derrames andesíticos y basálticos y con vulcanismo fisural entre Santa María y San Juan Solís, y que corresponde a la Formación San Cristóbal. Este evento representa a la actual Faja Volcánica Transmexicana.

53

-				
Edad	Evento de deformación (extensión)	Eventos geológicos e hidrotermales	Unidad geológica	Descripción
Cuaternario	E3	Fallas extensionales normales. Extensión N-S.	Unidad Santa María	Conos cineríticos, depósitos piroclásticos basálticos
Mioceno-Plioceno	E2	Fallamiento	Vetas epitermales oro y plata	Vetas epitermales de cuarzo con oro y plata emplazadas en fracturas Riedel.
			Unidad San José	Emplazamiento de criptodomos, domos, diques riolíticos y riodacíticos.
			Formación Zumate	Emplazamiento de flujos volcaniclásticos y rocas piroclás- ticas dacíticas y andesíticas.
goceno-Mioceno	E1	fallamiento extensional	Formación Vizcaína	Vulcanismo fisural y dómico con diques andesítico-dacítico con flujos volcaniclásticos, piroclásticos y derrames lávicos andesíticos.
Oliç				

Figura 7.6 Esquema que muestra las relaciones entre los eventos de extensión, la mineralización y la formación de unidades geológicas para el área de estudio.

7.4 Modelo conceptual

En este trabajo se propone que la mineralización de oro y plata para la zona de estudio entre Actopan y Santa Rosa fue controlada por fallas y fracturas formadas durante un evento extensional E1 y un evento trans-tensional (E2). Los diques y domos riolíticos y riodacíticos de la unidad San José que es equivalente a la Formación El Cerezo para la zona de Real del Monte fueron necesarios en la mineralización ya que fueron generadores de fluidos hidrotermales y proporcionaron el calor térmico necesario en un sistema epitermal (Figura 7.6). La falta de continuidad de los emplazamientos de magma riolítico a lo largo del rumbo de las fallas y fracturas y en la superficie sugiere un emplazamiento vertical de las intrusiones y que pudo haber controlado la dirección de un fluido hidrotermal ascendente vertical, así como la geometría de las celdas convectivas de calor. Esto indica también que existen criptodomos riodacíticos y riolíticos que controlaron la distribución de la mineralización en la Sierra de Pachuca. Las alteraciones hidrotermales en su distribución espacial estuvieron controladas por un fluido hidrotermal que fue canalizado a lo largo de las zonas de mayor permeabilidad como las fallas y fracturas de un primer evento extensional E1 que controlo el vulcanismo en la Sierra de Pachuca y también hubo controles estratigráficos en el fluido hidrotermal a lo largo de contactos litológicos entre rocas volcaniclásticas y derrames lávicos dentro de la Formación Vizcaína. La amplia distribución de alteración clorítica y propilítica se puede explicar por el grado intenso de fracturamiento y que el magma riodacítico y riolítico tuvo favorables condiciones de permeabilidad de manera ascendente vertical y con cuerpos ígneos subvolcánicos estacionados no profundos y a veces ocultos como criptodomos encajonados en andesitas de la Formación Vizcaína.

La presencia de vetas epitermales angostas en su espesor en el área de estudio puede explicarse porque el fallamiento estuvo relacionado a un evento trans-tensional (E2) con presencia de fallas laterales y oblicuas, y no meramente extensional con fallas normales.

Figura 7.7 Esquema que muestra un modelo conceptual propuesto para la integración de litología, domos ígneos, mineralización y estructuras de deformación para el área de estudio.

Conclusiones

Conclusiones

En este trabajo se elaboró la cartografía geológica y geológico estructural del sector poniente de la Sierra de Pachuca, área mineralizada de Actopan, San José Tepenené, Santa Rosa y Puerto La Palma. Se caracterizó geológicamente a la Formación Vizcaína, Unidad San José, Formación El Zumate y la unidad Santa María.

Se caracterizó estructuralmente la zona de estudio en sus fracturas, fallas y vetas-falla determinando varias direcciones de extensión N-S, NW-SE NE-SW. Se analizó estas deformaciones determinando que existieron tres eventos de extensión principales denominados E1, E2, y E3. El evento de deformación E1 controlo la distribución de los centros de emisión volcánica de la Sierra de Pachuca en este sector de estudio de esta tesis y por los cuales se emplazó las rocas de la Formación Vizcaína. El evento E2 fue un evento trans-tensional que implicó fallas laterales y normales formadas al mismo tiempo y que controlaron la distribución espacial de los diques y domos riodacíticos y riolíticos de la unidad San José, así como la formación de las vetas epitermales y la mayoría de la distribución de las alteraciones hidrotermales. El evento de deformación (extensión) E3 fue un evento de extensión N-S que controló diques andesíticos y basálticos y conos cineríticos de la Faja Volcánica Transmexicana, esto más evidente en Puerto La Palma.

Los domos riolíticos y riodacíticos de la unidad San José se emplazaron verticalmente y algunos domos no extruyeron se mantuvieron ocultos debajo de la superficie como criptodomos. Estos se pueden considerar guías de mineralización hacia partes profundas de la Sierra de Pachuca y relacionados a la mineralización epitermal de Oro y Plata.

La geometría de fallas y fracturas del evento trans-tensional (evento E2) se puede considerar como una guía en la exploración mineral al tener en cuenta el comportamiento cinemático de las fallas que se formaron y que forma estructuras tipo Riedel en sus fracturas.

Referencias

Referencias

Alaniz-Álvarez, S. A., Nieto-Samaniego, Á. F., Orozco-Esquivel, M. T., Vasallo-Morales, L. F., y Xu, S. S., 2002, El sistema de Fallas Taxco-San Miguel de Allende: implicaciones en la deformación post-Eocénica del centro de México: Boletín de la Sociedad Geológica Mexicana, 55(1), 12-29.

Azpeitia, C., 2007, Minerales de los distritos mineros metálicos Zimapán, Pachuca – Real del Monte, Molango y su Aplicación didáctica (tesis de licenciatura). Universidad Nacional Autónoma de México, México.

BAKER, K.M., PETCOVIC, H., WISNIEWSKA, M., & LIBARKIN, J., 2012, SPATIAL SIGNATURES OF MAPPING EXPERTISE AMONG FIELD GEOLOGISTS. CARTOGRAPHY AND GEOGRAPHIC INFORMATION SCIENCE, 39(3): p. 119-132.

BASTIN, E.S., 1948, MINERAL RELATIONSHIPS IN THE ORES OF PACHUCA AND REAL DEL MONTE , MEXICO: ECONOMIC GEOLOGY, v.43, No.1, p. 53-65.

BUCHANAN, L.J., 1981, PRECIOUS METAL DEPOSITS ASSOCIATED WITH VOLCANIC ENVIRONMENTS IN THE SOUTHWEST: ARIZONA GEOLOGICAL SOCIETY DIGEST, 14, 237–262.

CAMPRUBÍ, A., 2018, UNA EXCEPCIONAL ACUMULACIÓN DE PLATA. LOS YACIMIENTOS EPITERMALES DE PACHUCA-REAL DEL MONTE, HIDALGO EN GUÍA DE CAMPO DEL GEOPARQUE DE LA COMARCA MINERA, EDITOR CANET MIGUEL, CARLES. INSTITUTO DE GEOFÍSICA, UNAM.

CAMPRUBÍ, A., ALBINSON, T., 2006, DEPÓSITOS EPITERMALES EN MÉXICO: ACTUALIZACIÓN DE SU CONOCIMIENTO Y RECLASIFICACIÓN EMPÍRICA. BOLETÍN DE LA SOCIEDAD GEOLÓGICA MEXICANA. VOLUMEN CONMEMORATIVO DEL CENTENARIO. REVISIÓN DE ALGUNAS TIPOLOGÍAS DE DEPÓSITOS MINERALES DE MÉXICO. TOMO LVIII, NÚM. 1. P. 27-81.

DE LÉON-CHÁVEZ, J.L., 1982, INFORME GEOLÓGICO DE LA VISITA PRELIMINAR REALIZADA AL LOTE MINERO "LA PRECIOSA", MPIO. EL ARENAL, EDO. DE HIDALGO. INFORME TÉCNICO. CONSEJO DE RECURSOS MINERALES. SUBGERENCIA ZONA CENTRO. PP.11.

DE LOS SANTOS-MONTAÑO, J., 1996, INFORME DE GEOLOGÍA A SEMIDETALLE-DETALLE, REALIZADA EN EL PROYECTO DE "SANTA ANA", LOCALIZADO DENTRO DE LA ZONA DE RESERVA MINERA NACIONAL "PACHUCA TRES", MUNICIPIO EL ARENAL, ESTADO DE HIDALGO. INFORME TÉCNICO, CONSEJO DE RECURSOS MINERALES. PP.35.

Referencias

DUEÑAS-GARCÍA, J.C., 1989, INFORME DE ACTIVIDADES REALIZADAS EN CONTRATO "SAMARÍA" Y VISITAS DE RECONOCIMIENTO DURANTE 1989. INFORME TÉCNICO. CONSEJO DE RECURSOS MINERALES.

Edwards, J. D., 1955, Studies of some early Tertiary red conglomerates of central México. U. S. Geological Survey, Professional Paper 264-H, p. 153-185.

FRIES, CARL, JR., 1960, GEOLOGÍA DEL ESTADO DE MORELOS Y DE PARTES ADYACENTES DE MÉXICO Y GUERRERO, REGIÓN CENTRAL MERIDIONAL DE MÉXICO. UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO, INSTITUTO DE GEOLOGÍA, BOL. 60, 236 P.

García-Castro, P., 1987, Visita de reconocimiento Fundos "Samaria" y "Ampliación Samaria", Municipio de El Arenal, Hgo. Informe Técnico. Consejo de Recursos Minerales. Subgerencia zona Centro. Pp.14.

García-Castro, P., Sánchez-Martínez, A., Álvarez-Salinas, E., y Dueñas-García, J.C., 1988(b), Informe Técnico de Exploración Minera a Semidetalle-detalle del proyecto Santa Lucía Tepenené. Informe Técnico. Consejo de Recursos Minerales. Subgerencia zona Centro. Residencia Hidalgo. Pp. 39.

GARCÍA-CASTRO, P., SÁNCHEZ-MARTÍNEZ, A., Y DUEÑAS-GARCÍA, J.C., 1988(A), INFORME GEOLÓGICO REGIONAL DEL PROYECTO SANTA LUCÍA TEPENENÉ. INFORME TÉCNICO. CONSEJO DE RECURSOS MINERALES. SUBGERENCIA ZONA CENTRO. PP. 19.

GARCÍA-CASTRO, P., SÁNCHEZ-MARTÍNEZ, A., Y FRIAS-GONZÁLEZ, M.A., 1988, INFORME GEOLÓGICO REGIONAL DEL PROYECTO SANTA LUCÍA TEPENENÉ. INFORME TÉCNICO. CONSEJO DE RECURSOS MINERALES. SUBGERENCIA ZONA CENTRO. PP. 34.

GEYNE, A.R., FRIES, C., JR., SEGERSTROM, K., BLACK, R.F., & WILSON, I.F., 1963, GEOLOGÍA Y YACIMIENTOS MINERALES DEL DISTRITO DE PACHUCA-REAL DEL MONTE, ESTADO DE HIDALGO, MÉXICO: CONSEJO DE RECURSOS NATURALES NO RENOVABLES.

GÓMEZ-TUENA, A., OROZCO-ESQUIVEL, M. T., Y FERRARI, L., 2005, PETROGÉNESIS DE LA FAJA VOLCÁNICA TRANSMEXICANA: BOLETÍN DE LA SOCIEDAD GEOLÓGICA MEXICANA, VOLUMEN CONMEMORATIVO DEL CENTENARIO, 57 (3). P. 227-283.

González-Gallardo, J.A., Patiño-Hidalgo, J.A., Rodriguez-Castro, D., Sánchez-Martínez, A., y Valverde-Ramírez, J., 1987, Informe sobre las alteraciones existentes en las inmediaciones de la mina "La Trinidad" proyecto Santa Lucía Tepenené. Informe Técnico. Consejo de Recursos Minerales. Subgerencia zona Centro. Residencia Hidalgo. Pp. 23.
Referencias

GONZÁLEZ-PEÑA, O.A., 2010, CARACTERÍSTICAS PRINCIPALES DE LOS DEPÓSITOS EPITERMALES EN EL NOROESTE DE MÉXICO, UN ANÁLISIS Y COMPARACIÓN (TESIS DE LICENCIATURA). UNIVERSIDAD AUTÓNOMA DE SONORA. PP. 25.

HEDENQUIST, JEFFREY., ARRIBAS, ANTONIO., & GONZALEZ-URIEN, E., 2000, EXPLORATION FOR EPITHERMAL GOLD DEPOSITS. REVIEWS IN ECONOMIC GEOLOGY, V 13, P. 245-277.

JICA, 1980, REPORT ON GEOLOGICAL SURVEY OF THE PACHUCA-ZIMAPÁN AREA, CENTRAL MEXICO: FOTOGEOLOGICAL INTERPRETATION GEOLOGICAL SURVEY (PHASE L). METAL MINING AGENCY OF JAPAN-CONSEJO DE RECURSOS MINERALES, MÉXICO, 109 P., 15 ANEXOS, 4 MAPAS.

LOWELL, J. D., AND GUILBERT, J. M., 1970, LATERAL AND VERTICAL ALTERATION-MINERALIZATION ZONING IN PORPHYRY COPPER ORE DEPOSITS: ECONOMIC GEOLOGY, V. 65, PP. 373-408.

MCKEE, E.H., DREIER, J.E., AND NOBLE, D.C., 1992, EARLY MIOCENE HYDROTHERMAL ACTIVITY AT PACHUCA – REAL DEL MONTE, MEXICO: AN EXAMPLE OF SPACE TIME ASSOCIATION OF VOLCANISM AND EPITHERMAL AG-AU VEIN MINERALIZATION. ECONOMIC GEOLOGY, V.87, P. 1635-1637.

Orozco-Sánchez, M., 1979, Informe de la Visita de Reconocimiento al Lote Minero de Samaria, MPIO. El Arenal, EDO. de Hidalgo. Informe Técnico. Consejo de Recursos Minerales. Subgerencia zona Centro. Residencia Hidalgo. Pp. 4.

Oviedo-Gámez, B., Hernández-Badillo, M.A., 2012. Mina La Dificultad. Museo de Sitio y Centro de Interpretación. Archivo Histórico y Museo de Minería A.C. Pp. 203.

Río-Torres, M., 2009, Distrito Pachuca-Real del Monte, Estado de Hidalgo. Compañía Real del Monte y Pachuca en Clark, K.F., Salas-Pizá, G.A., Cubillas-Estrada, R., 2009, Geología Económica de México. Segunda edición 2009. Asociación de Ingenieros de Minas, Metalurgistas y Geólogos de México, A.C., y Servicio Geológico Mexicano. P. 667-673.

Sánchez-Rojas, L.E., Arredondo-Mendoza, J.A., Cardoso-Vázquez, E.A., 1998, Carta Geológico-Minera escala 1:50 000, Clave Pachuca F14D81. Servicio Geológico Mexicano. Segunda edición.

SEGERSTROM, K., 1961, GEOLOGÍA DEL SUROESTE DEL ESTADO DE HIDALGO Y DEL NOROESTE DEL ESTADO DE MÉXICO: BOL. ASOC. MEX. DE GEOL. PETROL., XIIL, 3 Y 4.

SIMONS F. MAPES E., 1957, GEOLOGÍA Y YACIMIENTOS MINERALES DEL DISTRITO MINERO DE ZIMAPÁN, HGO. INSTITUTO NACIONAL DE INVESTIGACIONES DE RECURSOS MINERALES. BOL. 40, 270 P.

59

THORNBURG, C.L., 1952, SURFACE EXPRESSION OF VEINS IN THE PACHUCA SILVER DISTRICT OF MEXICO: MINING ENGINEERING, JUNE, P. 594-600.

Valverde-Ramírez, J., Alba-Solís, L., Guereca-Meza, R., Saldaña-Saucedo, Gutberto., Mendoza-Urrea, J.F., 1977. Programa de Exploración área Santa Lucía (Tepenené) Municipio de El Arenal, Hgo. Informe Técnico. Consejo de Recursos Minerales. Subgerencia zona Centro. Residencia Hidalgo. Pp. 41.

WISSER, E., 1951, TECTONIC ANALYSIS OF A MINING DISTRICT: PACHUCA, MEXICO: ECONOMIC GEOLOGY, v.46, No. 5, p. 459-477.

10. Anexos

Anexo 1 Datos utilizados en estereogramas y rosetas (Fallas, vetas, fracturas y diques).

Zona minera Santa Ana-Capula Fallas

Tabla A1. Datos de fallas para los estereogramas y rosetas de la zona minera Santa Ana-Capula

Secuencia	Echado	Dip Direction	Coord. mN	Coord. mE
1	72	185	2,236,420	516,750
2	17	96	2,235,132	518,132
3	73	342	2,236,086	518,113

Vetas

Tabla B1. Datos de vetas para los estereogramas y rosetas de la zona minera Santa Ana-Capula

Secuencia	Echado	Dip Direction	Coord. mN	Coord. mE
1	71	200	2,236,180	517,810
2	65	190	2,236,180	517,810
3	70	205	2,236,420	518,390
4	74	42	2,235,132	518,132
5	73	342	2,236,086	518,113
6	87	342	2,236,039	518,125

Fracturas

Tabla C1. Datos de fracturas para los estereogramas y rosetas de la zona minera Santa Ana-Capula.

Secuencia	Echado	Dip Direction	Coord. mN	Coord. mE
1	90	270	2,235,132	518,132
2	83	347	2,235,132	518,132
3	88	15	2,236,066	518,120
4	83	176	2,236,066	518,120
5	80	356	2,236,066	518,120
6	81	22	2,236,066	518,120
7	68	192	2,236,066	518,120
8	58	128	2,236,039	518,125
9	78	10	2,236,039	518,125

Diques

Tabla D1. Datos de diques para los estereogramas y rosetas de la zona minera Santa Ana-Capula

Secuencia	Echado	Dip Direction	Coord. mN	Coord. mE
1	68	20	2,236,066	518,120
2	69	346	2,236,066	518,120
3	61	195	2,235,954	518,093

Zona Minera de Santa Lucía - San José Tepenené Fallas

Tabla A2. Datos de fallas para los estereogramas y rosetas de la zona minera Santa Lucía – San José Tepenené.

Secuencia	Echado	Dip Direction	Coord. mN	Coord. mE	Secuencia	Echado	Dip Direction	Coord. mN	Coord. mE
1	75	245	2,235,963	515,809	25	74	210	2,236,434	513,904
2	62	180	2,235,974	515,965	26	82	228	2,236,434	513,904
3	70	330	2,235,913	515,966	27	65	190	2,236,434	513,904
4	70	135	2,235,644	515,914	28	65	194	2,236,434	513,904
5	66	164	2,235,644	515,914	29	70	235	2,236,426	513,859
6	76	15	2,235,644	515,914	30	72	234	2,236,426	513,859
7	75	150	2,235,503	515,688	31	66	220	2,236,426	513,859
8	81	72	2,236,236	515,417	32	60	190	2,236,426	513,859
9	80	90	2,236,236	515,417	33	60	190	2,236,426	513,859
10	60	140	2,236,371	515,074	34	60	190	2,236,426	513,859
11	62	210	2,236,371	515,074	35	80	60	2,236,295	513,616
12	65	195	2,236,450	514,816	36	90	51	2,236,295	513,616
13	82	87	2,236,450	514,816	37	63	105	2,236,344	513,540
14	70	257	2,236,447	514,778	38	60	180	2,236,344	513,540
15	59	200	2,236,470	514,659	39	72	177	2,236,344	513,540
16	67	205	2,236,470	514,659	40	65	202	2,236,344	513,540
17	52	340	2,236,470	514,659	41	72	350	2,236,235	513,583
18	61	10	2,236,575	514,234	42	74	145	2,236,100	513,572
19	75	365	2,236,575	514,234	43	48	210	2,236,148	513,352
20	66	205	2,236,428	514,042	44	84	15	2,236,401	513,388
21	53	198	2,236,428	514,042	45	84	22	2,236,401	513,388
22	53	198	2,236,428	514,042	46	82	23	2,236,401	513,388
23	75	208	2,236,434	513,904	47	78	30	2,236,401	513,388
24	78	210	2,236,434	513,904	48	84	190	2,236,401	513,388

Vetas

Tabla B2. Datos de veta para los estereogramas y rosetas de la zona minera Santa Lucía – San José Tepenené.

Secuencia	Echado	Dip Direction	Coord. mN	Coord. mE
1	85	18	2,236,401	513,388

Fracturas

Tabla C2. Datos de fracturas para los estereogramas y rosetas de la zona minera Santa Lucía – San José Tepenené.

Secuencia	Echado	Dip Direction	Coord. mN	Coord. mE	Secuencia	Echado	Dip Direction	Coord. mN	Coord. mE
1	61	192	2,236,089	515,409	32	64	190	2,236,470	514,659
2	65	177	2,236,089	515,409	33	63	189	2,236,470	514,659
3	56	197	2,236,089	515,409	34	70	67	2,236,575	514,234
4	77	195	2,235,913	515,966	35	66	205	2,236,428	514,042
5	67	210	2,235,913	515,966	36	85	300	2,236,347	513,867
6	82	248	2,235,913	515,966	37	80	335	2,236,347	513,867
7	70	210	2,235,740	516,013	38	57	20	2,236,347	513,867
8	72	208	2,235,740	516,013	39	42	284	2,236,338	513,816
9	90	193	2,235,740	516,013	40	50	251	2,236,338	513,816
10	67	185	2,235,655	516,086	41	58	261	2,236,338	513,816
11	73	180	2,235,655	516,086	42	82	230	2,236,338	513,816
12	63	182	2,235,655	516,086	43	87	227	2,236,338	513,816
13	70	184	2,235,655	516,086	44	85	78	2,236,357	513,655
14	65	182	2,235,655	516,086	45	62	248	2,236,344	513,540
15	74	95	2,235,644	515,914	46	62	220	2,236,344	513,540
16	72	110	2,235,644	515,914	47	75	240	2,236,344	513,540
17	49	178	2,235,637	515,750	48	75	175	2,236,344	513,540
18	90	359	2,235,644	515,914	49	72	330	2,236,235	513,583
19	62	126	2,235,503	515,688	50	88	209	2,236,139	513,500
20	60	94	2,235,503	515,688	51	90	204	2,236,139	513,500
21	54	25	2,236,236	515,417	52	62	140	2,236,139	513,500
22	80	12	2,236,236	515,417	53	82	20	2,236,100	513,572
23	46	357	2,236,236	515,417	54	72	190	2,236,100	513,572
24	57	70	2,236,236	515,417	55	58	170	2,236,100	513,572
25	52	70	2,236,236	515,417	56	17	199	2,236,148	513,352
26	62	69	2,236,236	515,417	57	78	27	2,236,148	513,352
27	52	140	2,236,236	515,417	58	68	18	2,236,306	513,349
28	81	185	2,236,450	514,816	59	63	355	2,236,306	513,349
29	89	178	2,236,450	514,816	60	60	189	2,236,306	513,349
30	82	244	2,236,450	514,816	61	60	195	2,236,426	513,263
31	90	69	2,236,470	514,659	62	60	165	2,235,326	512,812

Diques

Tabla D2. Datos de diques para los estereogramas y rosetas de la zona minera Santa Lucía – San José Tepenené.

Secuencia	Echado	Dip Direction	Coord. mN	Coord. mE
1	90	163	2,235,963	515,809
2	87	265	2,236,447	514,778
3	64	190	2,236,357	513,655
4	40	182	2,236,295	513,616
5	68	198	2,236,235	513,583
6	62	200	2,236,347	513,335
7	90	10	2,236,533	513,217
8	90	212	2,236,056	513,233

Zona minera Santa Rosa Fallas

Secuencia	Echado	Dip Direction	Coord. mN	Coord. mE	Secuencia	Echado	Dip Direction	Coord. mN	Coord. mE
1	72	180	2,235,138	515,553	37	57	155	2,234,061	516,655
2	63	170	2,235,138	515,553	38	69	180	2,234,061	516,655
3	73	180	2,235,138	515,553	39	67	180	2,234,061	516,655
4	75	75	2,234,422	515,534	40	73	192	2,234,061	516,655
5	88	103	2,243,050	515,181	41	77	90	2,233,879	516,669
6	70	185	2,243,050	515,181	42	75	210	2,233,762	516,630
7	76	53	2,234,118	515,200	43	83	230	2,233,762	516,630
8	89	15	2,234,118	515,200	44	88	130	2,233,762	516,630
9	90	278	2,233,603	515,220	45	77	224	2,233,762	516,630
10	85	290	2,235,651	517,841	46	90	310	2,233,762	516,630
11	85	120	al w 30 m de	e B9	47	78	310	2,233,762	516,630
12	64	212	2,234,964	517,137	48	85	30	2,233,762	516,630
13	74	195	2,234,964	517,137	49	87	80	2,233,576	516,371
14	47	138	2,234,964	517,137	50	80	75	2,233,576	516,371
15	40	330	2,233,981	517,094	51	79	348	2,233,576	516,371
16	54	8	2,233,988	517,058	52	83	350	2,233,576	516,371
17	60	10	2,234,128	517,218	53	67	332	2,233,576	516,371
18	53	162	2,234,256	517,295	54	72	330	2,233,576	516,371
19	54	162	2,234,268	517,441	55	75	313	2,233,576	516,371
20	60	180	2,234,283	517,363	56	72	334	2,233,576	516,371
21	80	185	2,234,283	517,363	57	64	200	2,235,220	516,357
22	72	187	2,234,359	517,360	58	74	208	a 50 m de	la entrada
23	72	187	2,234,359	517,360	59	72	95		
24	60	311	2,233,476	515,425	60	52	188	a 80 m de la	entrada de
25	90	158	2,233,476	515,425	61	60	220	mina La Cr	uz al NE 30
26	82	114	2,233,476	515,425	62	28	252		
27	90	70	2,233,476	515,425	63	55	230	a 110 m de l	a entrada de
28	72	50	2,234,184	516,850	64	73	180	mina La Cr	uz al NE 30
29	57	327	2,234,184	516,850	65	63	195	2,235,197	516,293
30	67	225	2,234,106	516,756	66	57	210	2,235,288	516,345
31	78	180	2,234,106	516,756	67	45	183	2,235,310	516,419
32	62	220	2,234,106	516,756	68	86	190	2,235,329	516,527

Tabla A3. Datos de fallas para los estereogramas y rosetas de la zona minera Santa Rosa

Vetas

Tabla B3. Datos de vetas para los estereogramas y rosetas de la zona minera Santa Rosa

Secuencia	Echado	Dip Direction	Coord. mN	Coord. mE
1	74	240	2,235,009	517,311
2	86	225	2,234,361	516,932
3	60	198	2,234,361	516,932
4	88	38	2,234,361	516,932
5	53	162	2,234,256	517,295
6	72	187	2,234,359	517,360
7	72	187	2,234,359	517,360
8	82	342	2,234,295	517,278
9	67	184	2,234,061	516,655
10	52	180	a 20 m de la entrada	a de mina La Cruz al NE 30
11	82	227	a 130 m de la entrac	la de mina La Cruz al NE 30
12	73	195	a 130 m de la entrac	la de mina La Cruz al NE 30
13	80	168	a 110 m de la entra	da mina La Cruz al NE 30
14	71	208	a 110 m de la entra	da mina La Cruz al NE 30
15	58	220	a 110 m de la entra	da mina La Cruz al NE 30
16	73	194	2,235,344	516,538
17	48	183	2,235,315	516,886
18	70	208	2,235,187	517,174
19	62	223	2,235,044	517,103

Fracturas

Tabla C3. Datos de fracturas para los estereogramas y rosetas de la zona minera Santa Rosa (continúa en la siguiente página)

Secuencia	Echado	Dip Direction	Coord. mN	Coord. mE	Secuencia	Echado	Dip Direction	Coord. mN	Coord. mE
1	74	190	2,235,340	515,552	61	88	310	2,235,626	517,635
2	80	184	2,235,340	515,552	62	78	322	2,235,626	517,635
3	88	80	2,235,138	515,553	63	85	235	2,235,626	517,635
4	85	79	2,235,138	515,553	64	55	8	2,235,626	517,635
5	88	82	2,235,138	515,553	65	35	125	2,235,138	517,582
6	68	180	2,235,138	515,553	66	90	178	2,235,138	517,582
7	72	170	2,235,138	515,553	67	50	118	2,235,118	517,469
8	60	190	2,235,138	515,553	68	70	220	2,235,118	517,469
9	82	180	2,234,975	515,599	69	35	210	2,235,118	517,469
10	62	80	2,234,975	515,599	70	78	160	2,235,030	517,348
11	58	72	2,234,975	515,599	71	85	165	2,234,964	517,137
12	85	78	2,234,975	515,599	72	74	184	2,234,964	517,137
13	72	238	2,234,975	515,599	73	66	180	2,234,964	517,137
14	82	88	2,234,975	515,599	74	88	122	2,234,964	517,137
15	76	355	2,234,975	515,599	75	82	168	2,234,964	517,137
16	50	360	2,234,642	515,652	76	81	270	2,234,964	517,137
17	70	322	2,234,642	515,652	77	80	212	2,234,964	517,137
18	89	150	2,234,525	515,632	78	70	217	2,234,964	517,137
19	80	205	2,234,525	515,632	79	78	228	2,234,964	517,137
20	88	65	2.234.525	515.632	80	81	273	2.234.964	517.137
21	90	65	2.234.525	515.632	81	62	173	2.234.964	517.137
22	82	158	2.234.525	515.632	82	90	50	2.234.964	517.137
23	83	250	2.234.422	515.534	83	68	182	2.234.964	517.137
24	90	170	2,234,422	515,534	84	80	160	2,234,964	517,137
25	90	80	2,234,422	515,534	85	89	77	2,235,009	517,311
26	76	355	2,234,422	515,534	86	80	380	2,233,361	516,932
27	80	170	2,234,422	515,534	87	50	305	2,234,361	516,932
28	78	174	2,234,283	515,401	88	55	155	2,234,361	516,932
29	90	168	2 234 283	515 401	89	82	18	2,231,301	516 932
30	77	112	2,231,200	515,101	90	70	294	2 234 316	516 927
31	8/	98	2,243,050	515,181	91	67	110	2,234,310	516 927
32	58	220	2,243,050	515,181	92	60	90	2,234,310	516 927
32	80	220	2,243,050	515,181	03	65	90	2,234,310	516 927
3/	80	90	2,243,050	515,181	94	70	110	2,234,310	516 927
35	78	152	2,243,030	515,101	95	67	170	2,234,310	517 360
36	68	130	2,234,110	515,200	96	57	155	2,234,355	517,360
37	68	258	2,234,110	515,200	97	67	212	2,234,355	517,360
38	60	258	2,333,399	515 305	97	87	105	2,234,333	517,300
20	62	200	2,333,399	515,305	98	52	215	2,234,333	517,300
40	88	200	2,353,355	0 de E21	100	63	210	2,234,231	517,008
40 //1	80	200	30 m al SE 5	0 de F21	100	83	55	2,234,231	517,008
42	62	200	30 m al SE 50	0 de F21	101	55	108	2,234,231	517 220
42	70	200	30 m al SE 50	0 de F21	102	72	202	2,204,200	517 229
43	70	200	2 225 007	518 020	103	70	252	2,204,200	517 229
44	65	200	2,233,507	510,030	104	20	3.12	2,234,200	517 220
45	70	1209	2,233,907	510,050	105	60	102	2,234,200	517 220
40	75 05	200	2,233,038	510,010	100	70	202	2,234,200	517,529
47	65 E0	290	2,235,656	518,010	107	62	320	2,254,200	517,529
40	55	201	2,200,/0/	517,909	100	203	21E	2,234,208	517,329
49	62	125	2,200,/0/	517,909	110	73	515	2,234,208	517,329
50	75	130	2,235,757	517,909	110	70	/ð /2	2,234,208	515 105
51	/5	130	יguai que B4	t F17.000	111	50	42	2,253,470	515,425
52	80	128	2,235,757	517,969	112	DI CA	58	2,233,476	515,425
53	80	110	2,235,757	517,969	113	64 F0	302	2,233,476	515,425
54	88	115	2,235,757	517,969	114	50	25	2,233,476	515,425
55	50	162	2,235,651	517,841	115	50	354	2,233,470	515,425
50	58	100	2,235,651	517,841	110	51	359	2,233,476	515,425
57	/8	85	2,235,605	517,738	117	60	52	2,234,184	510,850
50	50	242	2,235,435	517,053	118	<u>ک</u> ل	5	2,234,184	516,050
59	5	243	2,235,435	51/,653	119	/3	80	2,234,184	516,850
60	70	330	2,235,626	517,635	120	80	245	2,234,184	516,850

Tabla C3. Datos de fracturas para los estereogramas y rosetas de la zona minera Santa Rosa (continuación)

Secuencia	Echado	Dip Direction	Coord. mN	Coord. mE
121	55	305	2,234,184	516,850
122	66	40	2,234,184	516,850
123	64	60	2,234,184	516,850
124	74	66	2,234,184	516,850
125	90	70	2,234,184	516,850
126	78	30	2,234,106	516,756
127	68	80	2,234,106	516,756
128	82	5	2,234,106	516,756
129	70	309	2,234,106	516,756
130	60	55	2,234,106	516,756
131	90	180	2,234,106	516,756
132	55	62	2,234,106	516,756
133	90	79	2,234,106	516,756
134	84	160	2,234,106	516,756
135	80	311	2,234,106	516,756
136	44	201	2,234,106	516,756
137	88	213	2,234,106	516,756
138	45	205	2,234,106	516,756
139	90	158	2,234,106	516,756
140	60	194	2,234,061	516,655
141	50	107	2,234,061	516,655
142	82	70	2,234,061	516,655
143	41	209	2,234,061	516,655
144	25	260	2,234,061	516,655
145	84	130	2,234,061	516,655
146	80	191	2,234,061	516,655
147	55	20	2,234,061	516,655
148	81	180	2,234,061	516,655
149	55	28	2,233,879	516,669
150	54	338	2,233,879	516,669
151	50	41	2,233,879	516,669
152	56	10	2,233,879	516,669
153	31	326	2,233,879	516,669
154	80	150	2,233,879	516,669
155	54	342	2,233,879	516,669
156	78	323	2,233,879	516,669
157	65	258	2,233,879	516,669
158	88	279	2,233,879	516,669
159	65	210	2,233,762	516,630
160	58	183	2,233,762	516,630
161	53	220	2,235,055	516,628
162	44	235	2,235,055	516,628
163	82	352	2,235,055	516,628
164	50	160	2,235,250	516,350
165	75	223	2,235,197	516,293

Diques

Tabla D3. Datos de diques para los estereogramas y rosetas de la zona minera Santa Rosa

Secuencia	Echado	Dip direction	Coord. mN	Coord. mE
1	84	90	2,234,283	515,401

Zona minera Ernestina – Puerto del Oro Fallas

Tabla A4. Datos de fallas para los estereogramas y rosetas de la zona minera Ernestina – Puerto del Oro

Secuencia	Echado	Dip Direction	Coord. mN	Coord. mE	Secuencia	Echado	Dip Direction	Coord. mN	Coord. mE
1	63	158	2,230,848	515,455	46	70	163	2,233,506	516,419
2	82	265	2,232,738	517,226	47	52	341	2,233,293	516,299
3	62	233	2,232,738	517,226	48	69	305	2,232,826	516,463
4	63	335	2,232,647	515,394	49	90	30	2,232,420	516,435
5	72	320	2,232,647	515,394	50	85	355	2,232,420	516,435
6	88	155	2,232,327	515,590	51	80	205	2,232,420	516,435
7	88	202	2,232,327	515,590	52	88	62	2,232,298	516,595
8	75	48	2,232,327	515,590	53	90	168	2,232,293	516,558
9	90	300	2,232,327	515,590	54	60	4	2,232,293	516,558
10	49	70	2,232,327	515,590	55	51	35	2,232,218	516,613
11	60	328	2,232,264	515,555	56	84	21	2,232,218	516,613
12	76	218	2,232,194	515,635	57	70	155	2,232,218	516,613
13	67	256	2,232,194	515,635	58	75	67	2,232,099	516,646
14	89	70	2,232,194	515,635	59	78	205	2,231,932	516,701
15	64	22	2,231,329	515,679	60	82	65	2,231,437	516,705
16	70	8	2,231,329	515,679	61	78	15	2,231,362	516,734
17	84	75	2,231,329	515,679	62	75	158	2,231,187	516,734
18	62	76	2,231,329	515,679	63	28	355	2,231,445	516,734
19	57	318	2,231,329	515,679	64	85	200	2,232,159	516,617
20	65	313	2,231,329	515,679	65	71	247	2,232,159	516,705
21	64	303	2,231,329	515,679	66	68	350	2,233,060	516,705
22	76	330	2,231,329	515,679	67	72	163	2,233,060	516,705
23	60	25	2,231,329	515,679	68	70	360	2,232,883	516,441
24	86	352	2,231,329	515,679	69	22	118	2,232,883	516,441
25	88	85	2,231,329	515,679	70	75	25	2,232,418	516,441
26	77	222	2,231,329	515,679	71	90	255	2,232,418	516,441
27	68	9	2,231,329	515,679	72	82	275	2,232,418	516,441
28	61	14	2,231,329	515,679	73	70	330	2,232,418	516,441
29	82	247	2,231,114	515,502	74	67	20	2,232,094	516,439
30	80	315	2,231,114	515,502	75	74	325	2,232,094	516,480
31	64	350	2,231,114	515,502	76	34	90	2,231,435	516,480
32	64	350	2,231,114	515,502	77	83	200	2,231,435	516,480
33	65	305	2,231,114	515,502	78	82	20	2,231,435	516,645
34	68	35	2,231,114	515,502	79	33	18	2,231,435	516,645
35	78	35	2,231,114	515,502	80	60	175	2,231,435	516,645
36	83	292	2,231,114	515,502	81	60	190	2,231,435	516,678
37	84	23	2,231,114	515,502	82	63	195	2,231,435	516,708
38	80	280	2,231,114	515,502	83	78	5	2,231,435	516,708
39	80	280	2,231,114	515,502	84	83	225	2,231,435	516,708
40	83	300	2,231,114	515,502	85	60	145	2,231,435	516,708
41	82	360	2,231,114	515,502	86	80	18	2,231,435	516,708
42	50	327	2,231,114	515,502	87	45	175	2,231,435	516,708
43	83	358	2,231,114	515,502	88	73	35	2,231,037	516,708
44	90	335	2,231,114	515,502	89	78	355	2,231,037	516,708
45	78	205	2,231,114	515,502					

Vetas

Tabla B4. Datos de vetas para los estereogramas y rosetas de la zona minera Ernestina – Puerto del Oro

Secuencia	Echado	Dip Direction	Coord. mN	Coord. mE
1	56	329	2,233,206	516,377
2	80	359	2,232,884	516,440

Fracturas

Tabla C4. Datos de fracturas para los estereogramas y rosetas de la zona minera Ernestina – Puerto del Oro.

Secuencia	Echado	Dip Direction	Coord. mN	Coord. mE	Secuencia	Echado	Dip Direction	Coord. mN	Coord. mE
1	90	295	2,232,742	515,228	51	82	350	2,232,738	517,226
2	70	28	2,232,742	515,228	52	73	86	2,232,738	517,226
3	68	52	2,232,742	515,228	53	86	70	2,232,738	517,226
4	90	185	2,232,687	515,266	54	85	250	2,232,738	517,226
5	85	290	2,232,638	515,403	55	38	355	2,232,647	515,394
6	72	322	2,232,638	515,403	56	72	357	2,232,647	515,394
7	60	360	2,232,638	515,403	57	70	48	2,232,327	515,590
8	70	330	2,232,638	515,403	58	63	51	2,232,327	515,590
9	75	258	2,232,633	515,472	59	90	39	2,232,327	515,590
10	72	258	2,232,633	515,472	60	69	10	2,232,327	515,590
11	78	270	2,232,344	515,618	61	77	35	2,232,327	515,590
12	80	80	2,232,344	515,618	62	82	340	2,232,327	515,590
13	80	12	2,232,344	515,618	63	70	41	2,232,327	515,590
14	84	10	2,232,277	515,549	64	88	39	2,232,327	515,590
15	69	222	2,232,277	515,549	65	78	37	2,232,327	515,590
16	72	10	2,231,836	515,789	66	73	25	2,232,264	515,555
17	75	35	2,231,836	515,789	67	81	244	2,232,264	515,555
18	62	25	2,231,836	515,789	68	81	350	2,232,194	515,635
19	28	330	2,231,836	515,789	69	70	5	2,232,194	515,635
20	75	42	2,231,836	515,789	70	90	274	2,232,194	515,635
21	78	258	2,231,836	515,789	71	76	258	2,232,194	515,635
22	52	352	2,231,836	515,789	72	79	187	2,232,194	515,635
23	89	20	2,231,836	515,789	73	56	50	2,231,329	515,679
24	81	26	2,231,836	515,789	74	70	5	2,231,329	515,679
25	58	100	2,231,111	515,505	75	68	20	2,231,329	515,679
26	76	15	2,231,086	515,514	76	67	40	2,231,329	515,679
27	80	34	2,231,086	515,514	77	62	8	2,231,329	515,679
28	80	30	2,231,086	515,514	78	65	356	2,231,329	515,679
29	80	190	2,231,086	515,514	79	78	81	2,231,329	515,679
30	85	13	2,231,086	515,514	80	77	34	2,231,114	515,502
31	72	272	2,230,848	515,455	81	90	218	2,231,114	515,502
32	64	210	2.230.848	515.455	82	90	222	2.231.114	515.502
33	89	135	2.230.787	515.580	83	82	48	2.231.114	515.502
34	85	250	2.230.716	515.203	84	58	348	2.231.114	515.502
35	82	237	2,230,716	515,203	85	84	297	2,231,114	515,502
36	85	245	2,230,716	515,203	86	77	5	2,231,114	515,502
37	62	228	2,230,716	515,203	87	68	215	2,231,114	515,502
38	90	60	2.230.764	515,918	88	78	206	2.231.114	515.502
39	82	213	2,230,764	515,918	89	80	218	2,231,114	515,502
40	81	51	2.232.738	517.226	90	51	308	2.231.114	515.502
41	90	98	2.232.738	517.226	91	82	37	2.231.114	515.502
42	88	288	2.232.738	517.226	92	89	10	2.231.114	515.502
43	88	278	2,232.738	517.226	93	80	77	2.233.629	516.406
44	62	2	2,232.738	517.226	94	88	70	2,233.629	516.406
45	90	260	2,232,738	517.226	95	80	8	2,233.506	516.419
46	58	317	2.232.738	517.226	96	89	15	2.233.506	516.419
47	77	164	2,232.738	517.226	97	89	220	2,233.506	516.419
48	78	85	2,232,738	517,226	98	59	202	2,233,506	516,419
49	63	180	2.232.738	517.226	99	81	189	2.233.506	516.419
50	74	88	2,232,738	517,226	100	80	1	2,233,506	516,419

Diques

Tabla D4. Datos de diques para los estereogramas y rosetas de la zona minera Ernestina – Puerto del Oro

Secuencia	Echado	Dip Direction	Coord. mN	Coord. mE
1	74	360	2,231,114	515,502
2	73	320	2,231,114	515,502
3	70	163	2,233,506	516,419

Anexo 2 Tablas de datos utilizados para el análisis en FaultKin

Zona Minera de Santa Rosa

Secuencia	Pto de obser	Rumbo Az	Echado	Dip Direction	Pitch	Dirección pitch	Bloque	Trend	Plunge	Cinemática	Coord. mN	Coord. mE
1	B6	200	85	290	23	SW	BB	202	23	NL	2,235,651	517,841
2	B10	30	85	120	13	SW	BB	209	13	TL	al w 30 m d	e B9
3	B16	122	64	212	0	E	BB	122	0	L	2,234,964	517,137
4	B16	105	74	195	18	E	BB	110	17	NL	2,234,964	517,137
5	B21	278	54	8	90	N	BB	8	54	Ν	2,233,988	517,058
6	B22	78	58	168	50	SW	BB	226	41	NR	2,233,988	517,058
7	B22	78	58	168	80	SW	BB	186	57	N	2,233,988	517,058
8	B23	280	78	10	90	N	BB	78	10	N	2,234,101	517,164
9	B23	7	26	97	40	SW	BB	150	16	NR	2,234,101	517,164
10	B24	280	60	10	85	NW	BB	0	60	Ν	2,234,128	517,218
11	B25	92	53	182	78	NE	BB	163	51	Ν	2,234,256	517,295
12	B26	72	54	162	70	SW	BB	194	49	Ν	2,234,268	517,441
13	B27	90	60	180	89	SW	BB	182	60	Ν	2,234,283	517,363
14	B27	95	80	185	35	SE	BB	102	34	NL	2,234,283	517,363
15	B28	97	72	187	0	E	BB	97	0	L	2,234,359	517,360
16	B28	97	72	187	90	S	BB	187	72	N	2,234,359	517,360

Tabla A5. Datos de Fallas de la Zona Minera de Santa Rosa utilizados para el análisis en FaultKin.

Secuencia	Pto de obser	Rumbo Az	Echado	Dip Direction	Pitch	Dirección pitch	Bloque	Trend	Plunge	Cinemática	Coord. mN	Coord. mE
1	T1	342	81	72	80	SE	BA	120	77	Ν	2,236,236	515,417
2	T1	0	80	90	90	E	BB	90	80	N	2,236,236	515,417
3	T3	230	60	320	90	Ν	BB	320	60	Ν	2,236,371	515,074
4	T3	120	62	210	90	S	BB	210	62	N	2,236,371	515,074
5	T4	154	82	244	85	SE	BB	212	81	N	2,236,450	514,816
6	T4	105	65	195	85	NW	BB	207	65	N	2,236,450	514,816
7	T4	177	82	267	80	SE	BB	215	77	N	2,236,450	514,816
8	T5	167	70	257	90	S	BB	257	70	N	2,236,447	514,778
9	Т6	290	59	20	65	NW	BB	338	51	N	2,236,470	514,659
10	T6	115	67	205	60	NW	BB	261	53	N	2,236,470	514,659
11	T6	250	52	340	90	N	BB	340	52	N	2,236,470	514,659
12	T10	100	61	190	70	NW	BB	227	55	N	2,236,575	514,234
13	T10	275	75	5	90	N	BB	5	75	N	2,236,575	514,234
14	T11	115	66	205	55	SE	BB	145	48	N	2,236,428	514,042
15	T11	108	53	198	40	SE	BB	135	31	NL	2,236,428	514,042
16	T11	108	53	198	55	NW	BB	247	41	N	2,236,428	514,042
17	T12	118	75	208	5	SE	BB	119	5	N	2,236,434	513,904
18	T12	120	78	210	30	SE	BB	127	29	N	2,236,434	513,904
19	T12	120	74	210	58	SE	BB	144	55	N	2,236,434	513,904
20	T12	138	82	228	65	SE	BB	155	64	NL	2,236,434	513,904
21	T12	100	65	190	90	S	BB	190	65	N	2,236,434	513,904
22	T12	104	65	194	75	NW	BB	226	61	N	2,236,434	513,904
23	T13	145	70	235	30	NW	BB	314	28	NR	2,236,426	513,859
24	T13	144	72	234	15	NW	BB	319	14	NR	2,236,426	513,859
25	T13	130	66	220	55	NW	BB	280	48	NR	2,236,426	513,859
26	T13	100	60	190	50	NW	BB	249	42	NR	2,236,426	513,859
27	T13	100	60	190	30	SE	BB	116	26	NL	2,236,426	513,859
28	T13	100	60	190	90	S	BB	190	60	N	2,236,426	513,859
29	T17	330	80	60	70	NW	BA	356	68	N	2,236,295	513,616
30	T17	321	90	51	60	NW	BA	321	60	N	2,236,295	513,616
31	T18	15	63	105	55	NE	BB	48	47	N	2,236,344	513,540
32	T18	90	60	180	50	W	BB	239	42	NR	2,236,344	513,540
33	T18	87	72	177	65	NW	BB	233	60	NR	2,236,344	513,540
34	T18	112	65	202	70	NW	BB	243	58	NR	2,236,344	513,540
35	T19	260	72	350	60	W	BB	288	55	NL	2,236,235	513,583
36	T21	55	74	145	80	NE	BB	112	71	N	2,236,100	513,572
37	T22	120	48	210	70	SE	BB	181	44	N	2,236,148	513,352
38	T28	285	84	15	35	NW	BB	289	35	NL	2,236,401	513,388
39	T28	292	84	22	25	NW	BB	295	25	NL	2,236,401	513,388
40	T28	293	82	23	70	NW	BA	314	69	N	2,236,401	513,388
41	T28	300	78	30	70	NW	BB	330	67	N	2,236,401	513,388
42	T29	100	84	190	57	NW	BB	271	57	NR	2,236,401	513,388

Tabla A6. Datos de Fallas de la Zona Minera Santa Lucía – San José Tepenené utilizados para el análisis en FaultKin.

Zona Minera de Ernestina Puerto del oro

Secuencia	Pto de obser	Rumbo Az	Echado	Dip Direction	Pitch)irección pitc	Bloque	Trend	Plunge	Cinemática	Coord. mN	Coord. mE
257	R1	221	60	311	55	NE	BA	5	45	Т	2233476	515425
258	R1	68	90	158	80	SW	BA	248	80	Ν	2233476	515425
259	R1	204	82	114	90	Ν	BB	114	82	Ν	2233476	515425
260	R1	340	90	70	90	Ν	BB	70	90	Ν	2233476	515425
276	R2	175	82	265	67	Ν	BB	337	66	Ν	2232738	517226
277	R2	143	62	233	60	NW	BB	284	50	Ν	2232738	517226
278	R3-F26	245	63	335	75	SW	BB	304	59	Ν	2232647	515394
281	R3	230	72	320	90	Ν	BB	320	72	Ν	2232647	515394
282	R3	265	38	355	90	Ν	BB	355	38	Ν	2232647	515394
283	R3	267	72	357	90	N	BB	357	72	N	2232647	515394
285	R4	65	88	155	85	NE	BB	87	85	Ν	2232327	515590
292	R4	112	88	202	90	S	BA	202	88	Ν	2232327	515590
293	R4	318	75	48	60	SE	BA	114	57	Ν	2232327	515590
294	R4	210	90	300	75	NE	BB	30	75	Ν	2232327	515590
298	R4	340	49	70	75	NW	BB	48	47	Ν	2232327	515590
302	R5	238	60	328	46	E	BB	31	39	Ν	2232264	515555
303	R6- F30	128	76	218	80	NW	BA	254	73	Ν	2232194	515635
310	R6	166	67	256	70	NW	BA	299	60	Ν	2232194	515635
311	R6	340	89	70	50	NW	BB	341	50	Ν	2232194	515635
313	R8	292	64	22	78	SE	BB	48	62	Ν	2231329	515679
314	R8	98	70	188	70	SE	BB	141	62	N	2231329	515679
320	R8	228	57	318	38	NE	BB	25	31	NR	2231329	515679
321	R8	223	65	313	42	NE	BB	22	37	NR	2231329	515679
322	R8	213	64	303	0	E	BB	33	0	L	2231329	515679
324	R8	240	76	330	35	NE	BB	50	34	NR	2231329	515679
325	R8	295	60	25	65	SE	BB	68	52	Ν	2231329	515679
326	R8	262	86	352	83	NE	BB	52	82	Ν	2231329	515679
327	R8	355	88	85	90	N	BA	85	88	N	2231329	515679
328	R8	132	77	222	77	SE	BA	176	72	N	2231329	515679
332	R8	279	68	9	90	N	BB	9	68	Ν	2231329	515679
333	R8	284	61	14	70	SE	BB	51	55	N	2231329	515679

Tabla A7. Datos de Fallas de Zona Minera de Ernestina Puerto del oro utilizados para el análisis en FaultKin.