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Resumen

Además de portar material genético en el cromosoma, algunas bacterias pueden
contar con pequeñas moléculas de DNA adicional, físicamente separadas del genoma, las
cuales se replican de manera independiente. Dichas moléculas se denominan plásmidos
y pueden contener genes que codifican para funciones que permiten a las bacterias
sobrevivir a ambientes hostiles, como metales pesados o antibióticos.

Típicamente, los plásmidos presentan múltiples copias por célula, variando desde 1
o 2 para plásmidos grandes, hasta 200 o más en plásmidos pequeños (Smillie et al. 2010;
Münch et al. 2019). Los plásmidos grandes suelen codificar mecanismos para asegurar
su permanencia en la población, como partición activa, sistemas toxina-antitoxina o
conjugación, siendo esta última de gran interés ya que también promueve la transfe-
rencia horizontal de genes y estabiliza a los plásmidos en la población (Stewart and
Levin 1977). A su vez, los plásmidos pequeños dependen de su alto número copias para
asegurar que ambas bacterias hijas hereden plásmidos al momento de división.

Los plásmidos han sido objeto de estudio no sólo por interferir en las dinámicas
de evolución de genes sino también han sido altamente utilizados como vectores de
clonación con fines tanto biotecnológicos como de ingeniería genética en el laboratorio
(Ensley 1986). Además de esto, debido a la capacidad de transferir horizontalmente
genes de resistencia, los plásmidos son parcialmente responsables de la alta prevalencia
de aislados clínicos resistentes a antibióticos (San Millan 2018). Por lo anterior, es
fundamental entender la dinámica poblacional que emerge de la dinámica de replicación
y segregación de plásmidos presentados por cada célula.

En este trabajo presentamos un esfuerzo multidisciplinario, que combina enfoques
teóricos y experimentales, tanto en células individuales como a nivel de poblaciones,
para analizar distintos procesos evolutivos que pueden ocurrir con plásmidos multi-
copia. Para esto, utilizamos un plásmido tipo ColE1, que es no conjugativo ni posee
mecanismos de partición activa, que autoregula su número de copias con un mecanismo
ruidoso y que porta un gen de resistencia a antibióticos y un gen reportero inducible.

En la Figura 1 se muestran los fenómenos relacionados a los plásmidos multicopia
abordados en proyectos independientes y compilados como capítulos en esta tesis. En
el capítulo 2 discutimos distintos enfoques de modelación de aspectos de la dinámica
de plásmidos; desde modelos de replicación y control de número de copias, hasta la
dinámica eco-evolutiva de comunidades microbianas. Esta revisión de la literatura fue
resultado directo de una actividad académica realizada durante mi posgrado. Posterior-
mente, en el capítulo 3, utilizamos un modelo de genética de poblaciones para analizar
la estabilidad de plásmidos e identificar las condiciones que evitan que un plásmido se
pierda en una población.

En el capítulo 4 consideramos que el mecanismo de control de número de copias
produce variabilidad de número copias y, por lo tanto, heterogeneidad de fenotipos
asociados a los genes portados en los plásmidos. Combinando enfoques de células in-
dividuales y a nivel de poblaciones, investigamos las ventajas adaptativas de dicha
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Figura 1: Distintos escenarios de procesos asociados a plásmidos multicopia. A) Estabilidad
de plásmidos: dinámica de prevalencia o pérdida de plásmidos en una población. Una de las
bacterias hijas puede quedar sin plásmidos durante la división celular. B) Heteroplasmia:
coexistencia de múltiples tipos (o versiones) de plásmidos en una sola célula. Durante la
replicación pueden ocurrir mutaciones en una de las copias del plásmido C) Variabilidad
de número de copias: distintas bacterias de la misma población portan distinto número de
copias del plásmido. Ruido en el mecanismo de control de número de copias puede generar
diversidad de número de copias

variabilidad en comparación con poblaciones que no presentan variabilidad, es decir,
que portan el gen de interés en el cromosoma.

En el capítulo 5 consideramos que durante la replicación de plásmidos pueden
ocurrir mutaciones en genes que éste porta y, por lo tanto, producir un plásmido mu-
tante. En plásmidos multicopia, una consecuencia de la replicación y segregación de
plásmidos, es que el alelo mutante se propaga verticalmente en la población permitien-
do la coexistencia transiente entre plásmidos mutantes y ancestrales a nivel celular, un
fenómeno conocido como heteroplasmia. La heterocigosis plasmídica es inherentemen-
te inestable, por lo que utilizamos técnicas de modelación y experimentación que nos
permitieron estudiar meticulosamente la dinámica de plásmidos en células individuales
con una alta resolución temporal. Este enfoque multi-escalas nos permitió, además, es-
tudiar el efecto que tienen las presiones selectivas específicas a cada alelo en la dinámica
de plásmidos subyaciente.

Finalmente, en el capítulo 6 utilizamos un enfoque a nivel de poblaciones para ex-
plorar las ventajas evolutivas de la heterocigosis mediada por plásmidos, enfocándonos
en las consecuencias del aumento en la diversidad alélica intracelular, lo cual produce
redundancia genética y permite aliviar compromisos evolutivos.



Summary

In addition to carrying genetic material in the chromosome, some bacteria may
have small extra DNA molecules, physically separated from the genome, which replicate
independently. Such molecules are called plasmids and can contain genes that encode
for functions that allow bacteria to survive harsh environments, such as heavy metals
or antibiotics.

Typically, plasmids are present in multiple copies per cell, ranging from 1 or 2
for large plasmids, to 200 or more for small plasmids (Smillie et al. 2010; Münch et al.
2019). Large plasmids usually encode for mechanisms to ensure their permanence in the
population, such as active partition, toxin-antitoxin systems or conjugation, the latter
being of great interest since it also promotes horizontal gene transfer and stabilizes
plasmids in the population (Stewart and Levin 1977). In turn, small plasmids depend
on their high copy number to ensure that both daughter bacteria inherit plasmids at
the moment of division.

Plasmids have been object of study not only because they interfere in the dynamics
of gene evolution, but they have also been widely used as cloning vectors for both
biotechnological and genetic engineering purposes in the laboratory (Ensley 1986). In
addition to this, due to the ability to horizontally transfer resistance genes, plasmids are
partially responsible for the high prevalence of clinical isolates resistant to antibiotics
(San Millan 2018). Therefore, it is essential to understand the population dynamics
that emerge from the dynamics of replication and segregation of plasmids presented by
each cell.

In this work, we present a multidisciplinary effort which combines theoretical and
experimental approaches, both in individual cells and at the population level, to analyze
different evolutionary processes that can occur with multicopy plasmids. To do so, we
used a ColE1-like plasmid, which is neither conjugative nor does it possess an active
partitioning system, that self-regulates its copy number with a noisy mechanism and
which carries an antibiotic resistance gene and an inducible reporter gene.

Figure 2 shows different scenarios related to multicopy plasmids addressed in in-
dependent projects and compiled as chapters in this thesis. In Chapter 2 we discuss
different approaches to modeling aspects of plasmid dynamics; from replication models
and control of copy number, to the eco-evolutionary dynamics of microbial communi-
ties. This review of the literature was the direct result of an academic activity carried
out during my graduate studies. Later, in Chapter 3, we used a population genetics
model to analyze plasmid stability and identify conditions that prevent a plasmid from
being lost in a population.

In Chapter 4 we considered that the copy number control mechanism produces
copy number variability and, therefore, heterogeneity of phenotypes associated with
genes carried in plasmids. By combining single cell and population-level approaches, we
investigated the adaptive advantages of such variability compared to populations that
do not exhibit variability, that is, that carry the gene of interest on the chromosome.
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Figura 2: Different process scenarios associated with multicopy plasmids. A) Plasmid stabi-
lity: dynamics of prevalence or loss of plasmids in a population. One of the daughter bacteria
can be left without plasmids during cell division. B) Heteroplasmy: coexistence of multiple
types (or versions) of plasmids in a single cell. During replication, mutations can occur in one
of the plasmid copies. C) Copy number variability: different bacteria in the same population
carry different numbers of copies of the plasmid. Noise in the copy number control mechanism
can lead to copy number diversity.

In Chapter 5 we considered that during plasmid replication, mutations can occur
in genes that it carries and, therefore, produce a mutant plasmid. In multicopy plas-
mids, a consequence of plasmid replication and segregation is that the mutant allele
spreads vertically in the population, allowing transient coexistence between mutant and
ancestral plasmids at the cellular level, a phenomenon known as heteroplasmy. Plas-
mid heterozygosity is inherently unstable, so we used modeling and experimentation
techniques that allowed us to meticulously study plasmid dynamics in individual cells
with high temporal resolution. This multi-scale approach also allowed us to study the
effect that allele-specific selective pressures have on the underlying plasmid dynamics.

Finally, in Chapter 6 we used a population-level approach to explore the evolu-
tionary advantages of plasmid-mediated heterozygosity, focusing on the consequences
of increased intracellular allelic diversity, which produces genetic redundancy and alle-
viates evolutionary trade-offs.
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Capítulo 1

Introducción general

Existen distintos mecanismos que permiten a una población de bacterias adaptar-
se a condiciones ambientales hostiles, por ejemplo la acción de sustancias antimicro-
bianas. Mutación y regulación son dos mecanismos adaptativos muy bien estudiados
(Andersson 2005). Por otro lado, los recientes desarrollos tecnológicos en microscopía
de fluorescencia, procesamiento de imágenes y microfluídica nos han permitido estudiar
comunidades de bacterias a nivel de células individuales (Balaban et al. 2004; Elowitz
et al. 2002), demostrando que la premisa de que una población genéticamente idéntica
en un medio ambiente homogéneo tiene un comportamiento uniforme, es falsa. Este
fenómeno se conoce como heterogeneidad fenotípica y permite a poblaciones isogénicas
de bacterias implementar estrategias colectivas en donde, a pesar de estar asociadas a
un costo individual, ciertos comportamientos cooperativos les pueden ofrecer beneficios
funcionales a la comunidad (Ackermann 2015).

La variabilidad fenotípica puede tener implicaciones en procesos de infección. Por
ejemplo, en comunidades de patógenos se han observado estrategias cooperativas de
división del trabajo tales como el comportamiento autodestructivo (Ackermann et al.
2008) y de formación de biopelículas (Chai et al. 2008); estrategias de apuesta-cobertura
como la presencia de subpoblaciones que arrestan su metabolismo aumentando la tole-
rancia de la población a ciertos fármacos y permitiendo infecciones recurrentes (Balaban
et al. 2004; Arnoldini et al. 2014), así como estrategias cooperativas de bienes públi-
cos, en donde una subpoblación resistente permite a células susceptibles sobrevivir en
ambientes con antibióticos (Lee et al. 2010).

En general, estas estrategias colectivas pueden producir variabilidad en los pa-
trones de susceptibilidad a antibióticos, lo cual puede representar un problema para
el diseño de estrategias óptimas de utilización de fármacos, puesto que el problema
de optimización resultante es multiobjetivo: la estrategia óptima para eliminar a las
poblaciones susceptibles (usar el antibiótico a dosis altas) difiere diametralmente de la
estrategia óptima para minimizar la presión selectiva en favor de patógenos resistentes
(no usar antibióticos). Estudios clínicos recientes han identificado que la heterogenei-
dad en la susceptibilidad a antibióticos puede resultar en la falla de tratamientos de
antibióticos, un fenómeno conocido como heterorresistencia (Lázár and Kishony 2019;
Andersson et al. 2019; Nicoloff et al. 2019).

Entonces, ¿cuál es la estrategia óptima de utilización de antibióticos para combatir
una población heterogénea de patógenos? Esta pregunta es, por supuesto, muy difícil
de responder, pero una que es interesante y fundamental en la búsqueda de soluciones
sustentables al problema de resistencia a antibióticos. En este sentido, el objetivo de
este proyecto es estudiar el beneficio funcional que ofrece un perfil heterogéneo de re-
sistencia a antibióticos en la capacidad de una comunidad bacteriana para sobrevivir a
medios ambientes hostiles e impredecibles. En particular, nos enfocaremos en estudiar
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un mecanismo generador de heterogeneidad fenotípica muy bien caracterizado desde
el punto de vista molecular (Cesareni et al. 1991), pero sorprendentemente poco estu-
diado en el efecto que tiene sobre la dinámica adaptativa: la variabilidad genética -y
fenotípica- producida por plásmidos multicopia no conjugativos que contienen un gen
de resistencia a antibióticos de relevancia clínica.

Los plásmidos son moléculas extracromosomales de DNA circular que replican in-
dependientemente del genoma bacteriano. Los plásmidos portan genes accesorios que
proporcionan a su hospedero una ventaja, como la capacidad de sobrevivir en entornos
atípicos y hostiles. Ejemplos típicos de esto son la resistencia a las sustancias anti-
microbianas, la tolerancia a metales pesados y la fijación de nitrógeno. La estructura
de los plásmidos se puede describir en dos categorías: 1) el esqueleto, que lleva genes
que codifican las funciones básicas del plásmido, como la replicación, segregación y
conjugación, 2) los genes accesorios que codifican rasgos que son beneficiosos para el
huésped (Harrison and Brockhurst 2012). Otra funciones codificadas en el esqueleto
son las estrategias específicas de cada plásmido para mantenimiento o prevención de
pérdidas, como los sistemas de partición activa, la destrucción postsegregacional (PSK)
y el mecanismo de control del número de copias.

El número de copias de plásmidos por célula depende del origen de la replicación y
puede variar desde 2 copias para plásmidos de copia baja hasta 50 a 800 para plásmidos
de copia alta (Münch et al. 2019). El número de copias del plásmido se correlaciona
inversamente con su tamaño (y número de funciones). Por esta razón, los plásmidos se
clasifican por su tamaño y capacidades generales, particularmente de movimiento. En
general, los plásmidos grandes tienen la capacidad de copiarse a otra bacteria a través
de la conjugación, mientras que los plásmidos pequeños pueden ser movilizados por
los primeros, carecen de la maquinaria para transferirse por sí mismos. Los llamados
plásmidos no movilizables son generalmente pequeños, pero un gran porcentaje de ellos
son casi tan grandes como plásmidos conjugativos (Smillie et al. 2010).

El estudio de plásmidos ha sido de gran interés en la comunidad científica por in-
tereses biotecnológicos, de estudio de resistencia a antibióticos, o por razones ecológico-
evolutivas, ya que algunos son capaces de conjugar, promoviendo la transferencia ho-
rizontal de genes (THG) entre especies. Por otro lado, cuando una célula que porta un
plásmido multicopia se divide, cada copia se segrega al azar a las células hijas. Esto
puede generar que alguna de las bacterias no herede plásmidos, produciendo una bac-
teria segregante. Las células libres de plásmidos tienen una mayor adecuación dado que
portar plásmidos está asociado a un costo metabólico (Baltrus 2013; San Millan et al.
2014), por lo que en ausencia de una presión de selección a favor de genes portados
en el plásmido, los plásmidos pueden extinguirse de la población. A este proceso de
pérdida o prevalencia de plásmidos nos referiremos como su estabilidad.

Para el estudio de la estabilidad y transferencia horizontal de plásmidos se han
utilizado una combinación de sistemas experimentales y modelos matemáticos con gran
diversidad de enfoques de modelación. En el Capítulo 2 discutimos una revisión de la
literatura sobre modelación de dinámicas ecológicas y evolutivas de plásmidos, una
publicación que fue el resultado del trabajo realizado como actividad académica.



En el Capítulo 3, para estudiar el efecto que tiene la interacción entre el número
de copias y el medio ambiente en la estabilidad de plásmidos, postulamos un modelo
de genética de poblaciones. Con este modelo, argumentamos que la probabilidad de
pérdida depende del número de copias y un compromiso entre el costo del plásmido y la
frecuencia de selección positiva. Para validar nuestros resultados teóricos, utilizamos un
modelo experimental que consisten en Escherichia coli MG1655 portando un plásmido
tipo ColE1 (previamente caracterizado por San Millan et al. (2016)), no conjugativo,
sin mecanismo de partición activa, que en promedio tiene 19 copias por célula. El
plásmido porta un gen que codifica para proteína verde fluorescente (GFP) y el gen
de resistencia blaTEM-1, el cual codifica para la variante TEM-1 de la β-lactamasa que
degrada ampicilina y otros antibióticos β-lactámicos (Salverda et al. 2010; Mira et al.
2015)

A este plásmido lo denotaremos por pBGT y, dado que es de tipo ColE1, auto-
regula su número de copias por medio de dos RNAs (RNAI y RNAII) que actúan,
respectivamente, como represor y activador de la maquinaria de replicación (Lin-Chao
and Bremer 1987). Este sistema de replicación es intrínsecamente ruidoso, por lo que
dos células que heredan el mismo número de copias pueden presentar distinto número
de copias al momento de división y, consecuentemente, exhibir variabilidad en el nú-
mero de copias en la población. En el Capítulo 4, exploramos las ventajas adaptativas
de presentar poblaciones heterogéneas en la distribución de número de copias de un
gen portado en pBGT y demostramos, mediante experimentos a nivel de poblaciones
y de células individuales, que esta variabilidad puede producir heteroresistencia en la
población.

Por otro lado, en un estudio publicado por nuestros colaboradores en el Instituto
Ramón y Cajal de Investigación Sanitaria en Madrid (San Millan et al. 2016), some-
tieron a un población de E. coli portadora de pBGT a un experimento de diluciones
seriales con un gradiente de ceftazidime, un antibiótico β-lactámico para el cual el gen
de resistencia portado en el plásmido (blaTEM-1) no confiere resistencia. Al final del
experimento, se encontraron mutaciones específicas en el gen de resistencia (las cuales
le conferían resistencia al nuevo antibiótico), pero también en el mecanismo de replica-
ción (las cuales aumentaban el número de copias y, por consiguiente, la dosis génica).
Para estudiar esta dinámica evolutiva, postulamos un modelo de agentes individuales
donde cada célula se representa mediante un objeto computacional con característi-
cas específicas y con reglas de actualización que dependen de su estado y del medio
ambiente. Este modelo computacional nos permitió realizar simulaciones estocásticas
que reprodujeron la dinámica adaptativa observada experimentalmente, pero además
identificamos un período donde ambas versiones del gen de resistencia coexisten a nivel
intracelular y, por consiguiente, en la población.

Es decir, cuando una mutación ocurre en un gen del plásmido, la naturaleza multi-
copia del plásmido permite que ambas versiones del gen coexistan a nivel celular. Sin
embargo, conforme el plásmido con el alelo mutante se esparce en la población me-
diante los procesos de segregación y replicación, surge una subpoblación de bacterias
heterocigotas. A este proceso nos referiremos como heterocigosis mediada por plás-



midos (PMH, por sus siglas en inglés), un caso particular de heteroplasmia (Novick
and Hoppensteadt 1978). La heterocigosis plásmidica es un fenómeno inherentemen-
te inestable, ya que la ausencia de selección por uno de los plásmidos resultaría en
su extinción debido a la deriva segregacional (Ilhan et al. 2019). Para estudiar PMH
modificamos el plásmido pBGT intercambiando del gen de resistencia blaTEM-1 por la
variante blaTEM-12 que confiere resistencia a ceftazidima (CAZ) y el gen de gfp por el
gen dsRED de la proteína roja fluorescente DsRed, llamamos a este nuevo plásmido
pBRT12 y renombraremos al ancestral como pBGT1 (para identificar la variante del
gen bla). Con pBRT12 tenemos tres cepas distintas: la que solo porta el plásmido ori-
ginal (G1), otra que solo porta el plásmido modificado (R12) y una heterocigota que
porta ambos plásmidos (HT).

B)A)

G1 HT R12

Figura 1.1: Sistema experimental PMH. A) Diagrama de plásmidos. B) Cepas construidas:
G1 denota la cepa homocigota de plásmidos que sólo porta el plásmido pBGT1, R12 la
homocigota que porta pBRT12 y HT la heterocigota que porta ambos.

En el Capítulo 5, utilizamos una serie de herramientas bioinformáticas para el
análisis de datos de microscopía y citometría para cuantificar la dinámica de plásmidos,
tanto a nivel intracelular como a nivel de poblaciones. El objetivo de nuestro estudio
era evaluar cómo el efecto de distintas presiones de selección a favor de uno u otro
plásmido modulan la distribución de alelos y, de esta forma, determinar las condiciones
necesarias para estabilizar la PMH (Hernandez-Beltran et al. 2020).

En el Capítulo 6 exploramos las ventajas evolutivas asociadas a presentar la PMH
mediante experimentos y modelado a nivel de poblaciones. El resultado principal de este
estudio, publicado en Nature Ecology and Evolution (Rodriguez-Beltran et al. 2018),
fue demostrar que presentar diversidad genética intracelular aumenta la plasticidad



fenotípica y la evolucionabilidad de la población. Asimismo, encontramos que presentar
diversidad alélica a nivel intracelular resulta benéfico para una población respecto a
presentar diversidad alélica a través de poblaciones mixtas compuestas por células
homocigotas. Esto debido a que la PMH es capaz de mantener la diversidad alélica
durante largos periodos de tiempo, permitiendo a la población contender con ambientes
fluctuantes y promoviendo la redundancia genética necesaria para resolver compromisos
evolutivos.



Capítulo 2

Modelación matemática de la ecología y evo-

lución de plásmidos

2.1 Introducción

Los plásmidos han sido ampliamente estudiados debido a su capacidad de transferir
genes horizontalmente, inclusive entre células de distinta especie. La conjugación, junto
con la transducción (por bacteriófagos) y la transformación (incorporación de ADN
desnudo del entorno), son los procesos a partir de los cuales los procariontes adquieren
genes de forma horizontal (Rankin et al. 2012). A pesar del evidente beneficio asociado
a transferir información genética horizontalmente, en ausencia de genes seleccionados
positivamente, portar un plásmido implica una carga para su hospedero en términos
de costo de adecuación con respecto a una bacteria libre de plásmidos. Esta carga se
debe al mantenimiento del ADN plasmídico y a la expresión de proteínas codificadas
en el plásmido y pueden resultar en la inestabilidad del plásmido en la población.

Por otro lado, aunque los plásmidos sean seleccionados positivamente, a largo
plazo, los genes accesorios podrían incorporarse al cromosoma bacteriano. También
existen plásmidos crípticos que no cuentan con ningún gen beneficioso para el huésped.
En cualquier caso, pareciera que los plásmidos podrían ser redudantes y, al ser costosos
metabólicamente, susceptibles a perderse de la población mediante selección purifica-
dora. Por esta razón, los biólogos se preguntan: ¿cómo se mantienen los plásmidos en
la naturaleza y en tanta diversidad?

Elucidar la paradoja de plásmidos representa un desafío para la teoría evolutiva
y, por esta razón, muchos investigadores se han centrado en estudiar las condiciones
ambientales y genéticas que garantizan la estabilidad de plásmidos en la población.
Cabe señalar que este no es exclusivamente un problema importante para la biología
evolutiva, sino también es relevante para la industria biotecnológica, debido a que los
plásmidos son utilizados cotidianamente como vectores para introducir un gen en una
bacteria para la biosíntesis de un producto específico. Otro motor para el estudio del
comportamiento de los plásmidos en una población ha sido la aparición y propaga-
ción de la resistencia a los antibióticos, en el que los plásmidos juegan un papel clave
transfiriendo genes de resistencia a cepas patógenas.

En las últimas décadas, se ha demostrado que el modelado matemático es una
herramienta útil en el estudio de la dinámica de plásmidos en una población. La im-
portancia de los modelos no sólo depende de su ayuda para comprender un proceso en
particular; para que un modelo funcione, el modelo debe reproducir un comportamien-
to o ajustarse a un conjunto de datos experimentales. En este esfuerzo, se deben hacer
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abstracciones y generalizaciones que puedan ayudar a explicar cómo está ocurriendo
un proceso en particular. Pero la mayor contribución de los modelos es que pueden
usarse para hacer predicciones que podrían probarse en condiciones de laboratorio u
obtener datos biológicos o muestras que son difíciles o inclusive imposibles de obtener.

Los orígenes de la modelación de plásmidos se remontan al trabajo de (Stewart
and Levin 1977), donde estudiaron la estabilidad de plásmidos conjugativos a través
de un modelo de dinámica de poblaciones. Este modelo es utilizado para establecer
condiciones suficientes para la estabilidad de plásmidos: la tasa de transferencia hori-
zontal tiene que compensar por la pérdida segregacional y el costo asociado a portar el
plásmido. En un trabajo posterior (Levin et al. 1979), el modelo es extendido para con-
siderar plásmidos no-conjugativos, postulando que es necesaria una presión selectiva
en favor de los plásmidos para asegurar su permanencia en la población.

Este modelo consiste en ecuaciones diferenciales ordinarias (EDO) que describen
la dinámica poblacional que emerge entre subpoblaciones portadoras de plásmidos y
subpoblaciones de células segregantes. La popularidad de estos modelos no sólo recae en
su simplicidad, sino también a la diversidad de herramientas matemáticas que permiten
encontrar soluciones analíticas y, por lo tanto, permiten caracterizar las propiedades
dinámicas del sistema. También son relativamente simples de implementar computacio-
nalmente y de esta forma obtener soluciones numéricas. Pero su mayor ventaja, es que
se basan en la ley de acción de masas, lo cual permite a los modeladores simplificar los
procesos biológicos y consecuentemente las ecuaciones.

Los modelos dinámicos que suponen la acción de masas son aptos para explicar
experimentos en condiciones de laboratorio, por ejemplo en quimiostatos donde el me-
dio está "bien mezclado". Sin embargo, esta suposición no necesariamente es válida en
ambientes naturales, donde a menudo encontramos estructura espacial. Para modelar
estos escenarios, se debe tener en cuenta la componente espacial del sistema y postular
ecuaciones diferenciales parciales, las cuales son difíciles de analizar analíticamente y
resolver numéricamente. Por esta razón, en escenarios con estructura espacial, las in-
teracciones ecológicas entre poblaciones podrían entenderse mejor utilizando modelos
basados en agentes individuales (Sørensen et al. 2005).

Este enfoque de modelación permite integrar características específicas individua-
les y, a medida que aumenta el número de procesos involucrados, también lo hace la
complejidad computacional y de programación. No obstante, este enfoque se vuelve
muy útil para estudiar interacciones ecológicas de comunidades espacialmente estruc-
turadas. La ventaja de estos modelos es que pueden capturar de manera eficiente diná-
micas poblacionales a partir de las interacciones de los individuos. Estas interacciones
están definidas por propiedades que podrían variar o no entre individuos del mismo
tipo, facilitando así la incorporación de ruido biológico como diferentes estados del ciclo
celular o variaciones metabólicas.

Otra fuente de complejidad emerge a partir del ruido inherente a los sistemas
de replicación y segregación de plásmidos. Por ejemplo, (Ponciano et al. 2007) utiliza
modelos estocásticos para describir la dinámica de plásmidos a partir de implementar
estrategias que incorporan ruido proveniente de los datos observados experimentalmen-
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te. Esto promueve la expectativa de que este tipo de modelos se ajusten mejor para
estudiar plásmidos cuando no se conoce mucho de su biología.

Es claro que el proceso de diseminación de plásmidos con genes de resistencia es
altamente complejo ya que involucra distintas escalas temporales y espaciales, por lo
que han surgido algunos nuevos enfoques de modelación que son capaces de integrar
dichas escalas. En cada una de estas escalas podrían involucrar variables sociales in-
controlables o procesos difíciles de implementar computacionalmente. Una alternativa
para estudiar estos procesos multiescala es el uso aprendizaje de máquina donde los
algoritmos computacionales optimizan modelos estadísticos entrenados una gran canti-
dad de datos bajo un objetivo específico. Con estos nuevos métodos se podrían discernir
cuáles variables son de mayor relevancia, por ejemplo, en un brote infeccioso y plantear
estrategias específicas (o generales) para controlarlos. Este enfoque de modelación ha
sido utilizado para evaluar brotes de bacterias patógenas en ambientes clínicos, pos-
tulando modelos matemáticos y estadísticos que permiten la identificación de orígenes
de las epidemias, así como de eventos de transferencia horizontal.

Este capítulo es resultado de la revisión bibliográfica (realizada durante una actividad académica
del posgrado). El manuscrito se encuentra en revisión en la revista Frontiers in Microbiology.
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Abstract 
Mobile genetic elements - and in particular plasmids - have a profound effect on the ecology and 
evolution of microbial populations and therefore have been an important area of research in 
microbiology. From the onset, mathematical models of plasmid population dynamics have been used 
in combination with experimental microbiology to increase our understanding of the conditions 
enhancing plasmid stability, but also providing testable experimental predictions on the complex 
interaction between plasmids, bacterial hosts, and the environment. With plasmid-driven antibiotic 
resistance thriving and threatening to become a serious public health problem, it is necessary to 
make a critical assessment of the existing models describing the spread and maintenance of 
plasmids in bacterial populations, as well as to evaluate the strengths and limitations of different 
modeling approaches in the context of recent empirical evidence. In this review, we discuss 
theoretical models of plasmid dynamics that span from the molecular mechanisms of plasmid 
replication and segregation occurring in individual cells to their consequences in the ecological and 
evolutionary dynamics of complex microbial communities. 

Introduction 
Plasmids are self-replicating, extra-chromosomal DNA molecules widely distributed across bacteria. 
Plasmids regulate their own replication and copy number in the host cell, propagating vertically within 
the bacterial population. In addition, plasmids are also able to spread horizontally between different 
bacterial cells. There are different mechanisms available for the horizontal transfer of plasmids, but 
conjugation -plasmid transfer between a donor and a recipient cell through a conjugative pilus- is 
arguably the best-studied and most relevant one (Smillie et al. 2010). Crucially, conjugative plasmids 
encode all the information required to promote their self-transmission, being able to readily spread 
across bacterial populations. 

Plasmids play a key role in bacterial ecology and evolution because they encode multiple accessory 
genes that help bacteria to adapt to new environments and stressful conditions (Norman et al. 2009). 
The repertoire of plasmid-encoded adaptive genes is extremely diverse, ranging for genes allowing 
bacteria to decontaminate heavy-metal polluted environments to others promoting the establishment of 
symbiotic relationships between bacteria and plants (Hall et al. 2015; Wang et al. 2018). From a human 
perspective, plasmids represent a concern for public health, because they encode important traits for 
pathogenic bacteria, such as virulence factors or antibiotic resistance determinants (Pilla and Tang 
2018; Partridge et al. 2018). In fact, plasmids are the main drivers of the spread of antibiotic resistance 
genes among clinically relevant bacteria, and they have played a fundamental part in the evolution of 
the current global antibiotic resistance crisis (San Millan 2018).  

The relevance of plasmids for bacterial biology and infectious diseases, coupled with the extensive use 
of plasmid-derived vectors for biotechnological and industrial purposes, have promoted the in-depth 
study of the molecular mechanisms controlling plasmids life cycle (del Solar and Espinosa 2000; Baxter 
and Funnell 2014; Ebersbach and Gerdes 2005). This body of work has been paralleled by the 
development of a wealth of mathematical models aimed at capturing the dynamics of plasmid biology. 
Mathematical models on plasmid biology are diverse and explore the different processes involved in the 



life cycle of plasmids. These models have been fundamental for our understanding of different aspects 
of plasmid population biology such as, for example, how plasmids are stably maintained in bacterial 
populations. In this review, we explore the different models available in the field, and we discuss 
potential future directions for this exciting research topic.  
 
Modelling plasmid replication  
Although plasmids can be categorized by their physical structure or their functional properties, their 
main classification is based on their replication mechanism, as this defines the host range, its 
compatibility with other plasmids and the number of copies carried by each cell. But plasmid replication 
and copy-number control are complex processes and, therefore, modeling the molecular mechanisms 
that control plasmid copy numbers (PCN) within a cell has been an active area of research for decades. 
In particular for pSC101 and ColE1 plasmids, partly because of the relevance of different PCN in the 
dosage and stability of cloning vectors used for bioengineering.  
 
Plasmid copy-number control 

In 1980, (Nordström et al. 1980) assumed that n plasmids were produced in each cell cycle, regardless 
of the plasmid copy-number of the dividing cell. However, plasmid replication is a tightly regulated 
process (see (del Solar and Espinosa 2000) for a review on the biology of plasmid replication). For 
example, some ColE1 plasmids encode for a Rom/Rop (RNA one inhibition modulator/repressor of the 
primer) small protein dimer that promotes the formation of the kissing complex, thus controlling the 
upper plasmid copy-number limit. The same year, (Polisky et al. 1980) posed a model for ColE1 
plasmid replication based on a control mechanism that recognizes the plasmid content of the cell and 
halts replication when a maximum plasmid copy-number is achieved, independently of the number of 
plasmids at birth.  
 
Although precisely regulated, plasmid replication is also a stochastic process with events randomly 
distributed in time, and therefore can be modeled as a multitype branching process (Seneta and Tavaré 
1983; Seneta and Tavaré 1982). (Nordström et al. 1984) introduced a Poisson distributed number of 
replications with average n in each cell cycle, while (Nordström and Aagaard-Hansen 1984) assumed 
that the probability of replication per unit time is constant throughout the cell cycle and independent of 
the number of plasmids. In (Bremer and Lin-Chao 1986), the authors modeled copy-number control of 
ColE1-type plasmids in terms of rate equations depending on cell mass, the replication inhibitor and a 
plasmid synthesis rate, while (Ataai and Shulert 1987) used an experimental system with different 
plasmid mutants to parametrize a model and evaluate numerically the average copy number presented 
by different populations. (Keasling and Palsson 1989) and (Keasling and Palsson 1989) proposed to 
study intracellular plasmid copy-number as a dynamical system, while (Brendel and Perelson 1993) 
viewed the copy-number control problem as an optimization process. 
 
Different control mechanisms, hyperbolic and exponential, were analyzed by (Ehrenberg and Sverredal 
1995) and formulated in terms of the master equation. In follow-up studies, Ehrenberg and colleagues 
evaluated the sensitivity of the control mechanism to the transcription frequency of the replication 
inhibitor (Ehrenberg 1996), as well as its half-life (Paulsson and Ehrenberg 1998) and regulatory 
efficiency (Paulsson and Ehrenberg 2001). A similar modelling approach based on using stochastic 
Petri nets to numerically approximate the solution of the master equation was followed by (Goss and 
Peccoud 1998). By combining Monte Carlo simulations with experimental data, (Kuo and Keasling 
1996) explored the interaction between plasmid replication and cell cycle. More recently, (Münch et al. 



2019) modeled plasmid replication with a saturating logistic function, while (Rodriguez-Beltran et al. 
2019) considered that the probability of plasmid replication at a given time-point in the cell cycle can be 
expressed in terms of the current number of copies of the plasmid and a parameter representing the 
maximum number of plasmids cells can carry.  
 
Other studies have studied the controllability and stability of plasmid copy-numbers to extrinsic and 
intrinsic perturbations. For instance, (Werbowy et al. 2017) studied fluctuations of the plasmid copy 
number within a population of cells and (Watve et al. 2010) showed that plasmid copy-numbers could 
be stabilized through population cycles between mutants with low, intermediate and high copy 
numbers. In (Kentzoglanakis et al. 2013), the authors argued that plasmid copy number control of R1 
and ColE1 plasmids are controlled by two processes: a plasmid-borne antisense RNA acting as a 
policing agent, and the binding affinity of plasmid targets to those inhibitors, a term referred to as 
obedience. Plasmid replication rate was then modeled by an equation that incorporates a basal 
replication rate as a function of the concentration and affinity of the transacting replication inhibitor. 
Plasmid replication has also been shown to be temperature-sensitive through thermal denaturation of a 
repressor (Leipold et al. 1994). Using a temperature-dependant plasmid replication model, the authors 
showed that a low-copy plasmid (5-6 copies per cell) can be up-regulated to over 1,000 copies per cell 
through temperature shifts. 
 
Dimer catastrophe 

Another source of complexity of plasmid replication is the production of multimers through homologous 
recombination in high-copy plasmids, a process referred to as ‘dimer catastrophe’ (Summers 1991; 
Summers et al. 1993). In (Field and Summers 2011), the authors used numerical simulations of a 
stochastic model of plasmid replication that considered copy-number variability to show that dimers 
over-replicate compared to monomers in ColE1 plasmids. In consequence, dimers impose a high 
metabolic cost to the host cell and therefore predicted that multimers should be observed in the 
population in reduced frequency, an observation validated with experimental data.  
 
Multimerization can also enhance plasmid loss by reducing the units of inheritable plasmids. The 
formation of dimers was studied by (Paulsson and Ehrenberg 1998) using a mathematical model of 
ColE1 plasmid replication to argue that copy number variation in ColE1 plasmids is a consequence of 
the degradation rate of free RNA I, as well as the transcription frequencies of RNA II and RNA I. In 
consequence, segregational instability of high copy-number plasmids can be reduced by increasing the 
average copy number or improving replication control (and thereby reducing copy-number variation). In 
a follow-up paper (Paulsson and Ehrenberg 2001), the authors studied random fluctuations and 
regulatory efficiency in an inhibitor-dilution copy number control model of the bacterial plasmids ColE1 
and R1, concluding that an increased sensitivity amplification due to inhibitor noise can reduce 
variability in plasmid copy number.  
 
Despite the inherent complexity of copy-number control mechanisms, it is generally assumed by 
population dynamic models that plasmid replication occurs instantly and therefore the number of 
plasmids per cell is assumed to be in equilibrium (Bergstrom et al. 2000; San Millan et al. 2014; Cooper 
et al. 1987; Stephanopoulos and Lapudis 1988; Hsu and Tzeng 2002). This assumption implies that, at 
the moment of division, all cells in the population exhibit, on average, a fixed number of plasmid copies. 
In consequence, population-level models based on ordinary differential equations (ODEs) usually 
describe plasmid loss via segregation as a transition between plasmid-bearing and plasmid-free 



compartments occurring at a rate determined by the mean plasmid copy-number of the population. This 
is, of course, a simplification, but one that is compatible with the resolution of experimental protocols 
designed to estimate mean plasmid copy-numbers in bacterial populations, either based on flow 
cytometry (Bahl et al. 2004) or quantitative PCR (Lee et al. 2006).  
 
Plasmid incompatibility 

Plasmid incompatibility (also known as plasmid speciation) results from the inability of a plasmid 
replication mechanism to maintain enough copies to ensure its stability in the presence of other 
plasmids. In a seminal study, (Novick and Hoppensteadt 1978) proposed a model for the stability of two 
incompatible plasmids and compared regular replication (for each type of plasmid) with random 
replication (from a common pool), finding that incompatibility is inevitable and that segregational loss 
occurs faster when replicating from the random pool. The model was then used to explore the genetic 
mechanisms that determine plasmid incompatibility, namely the recognition specificity of the origins of 
replication and partitioning systems, as well as the specificity of the copy-number control mechanism.  
 
Incompatibility was believed to be related to the replication mechanism until (Novick and Schwesinger 
1976) showed, using a simple combinatorial model of the plasmid partition process, that other genetic 
mechanisms could also drive incompatibility between autonomous plasmids. (Ishii et al. 1978) explored 
this hypothesis using a model for two related plasmids that replicate from a common pool with equal but 
random segregation, concluding that the number of copies carried by each cell determines the number 
of generations required to generate single-plasmid strains from a heterozygote parental cell. Later, 
using a simple model for the probability of plasmid loss, (Nordstrom and Austin 1989) showed that the 
stability of plasmids can be reduced through plasmid clustering and dimer formation, although it can 
also be enhanced through active partitioning systems that ensure symmetric partition of plasmids upon 
division. Plasmid incompatibility was also studied by (Sýkora 1992), modeling the formation of 
cointegrates to show that selection is relaxed on one rep gene, promoting the generation of a new rep 
version with new incompatibility specificity. Other mechanisms involving partition systems that lead to 
incompatibility are discussed in a mini-review (Bouet et al. 2007), with an emphasis in plasmids sharing 
the same centromere and when one (or both) plasmids partition randomly or form clusters.  
 
In (Hyland et al. 2014), the authors evaluated two related plasmid par systems to show that 
cross-interactions between them can produce incompatibility. Their experimental system consisted of a 
resident (low-copy) and a challenging (high-copy) plasmid, and used a first-order kinetics-based model 
to study the parC-ParR association and dissociation reactions for each and cross plasmids elements. 
The authors then performed stochastic simulations using a Gillespie algorithm to show that plasmids 
are compatible only when one of the plasmids is Par-. This study also showed that molecular 
cross-interaction between ParR and parC can result in inaccurate plasmid segregation. More recently, 
(Gama et al. 2020) adapted the models postulated in (Stewart and Levin 1977), (Levin et al. 1979), and 
(Simonsen 1991) (discussed below) to incorporate multiple interacting plasmids in order to evaluate 
how the interaction between plasmids impacts the plasmid persistence in bacterial communities. The 
main result of this study is to postulate a hierarchy in the interaction variables, arguing that epistatic 
interactions between plasmids produce a stronger impact on plasmid maintenance than other 
parameters influencing conjugation and plasmid loss.  



Modelling plasmid segregation 
A consequence of segregational loss is that plasmids do not always persist in bacterial populations in 
the absence of selection for the traits they encode. Indeed, if the plasmid carries a beneficial gene, then 
plasmids can be stably maintained in the population through positive selection, although there exists a 
probability higher than zero that plasmids can be lost at the moment of division. So, if plasmid-free cells 
have a competitive advantage over plasmid-bearing cells, then the previous increase in frequency in 
the population and render the plasmid susceptible to being lost through purifying selection. 
 
Molecular mechanisms enhancing plasmid stability 

A number of mechanisms are known to circumvent segregational instability in plasmids under 
non-selective conditions (Salje 2010). Of note, active partition mechanisms, whereby a plasmid-specific 
DNA sequence segregates plasmid symmetrically upon division, and post-segregational killing (PSK) 
mechanisms based on toxin-antitoxin systems (TA) that prevent the emergence of plasmid-free cells 
through the production of a long-lasting toxin and a shorter-lived antitoxin, both encoded on the 
plasmid. Therefore, if the cell carries the plasmid, antitoxin is produced and the toxin is neutralized, but 
if a plasmid-free cell emerges in the population, the antitoxin is degraded rapidly and the toxin kills the 
cell, thus producing a population composed exclusively of plasmid-bearing cells. The evolution of PSK 
mechanisms appears to be paradoxical because of the detrimental effect they produce on host-cell 
populations, although theoretical models have shown that PSK can be advantageous for conjugative 
plasmids (Mongold 1992) or in the presence of competing for genetic elements in spatially structured 
environments (Mochizuki et al. 2006). 
 
In general, models that include PSK mechanisms consider that segregant cells simply do not produce 
viable plasmid-free cells (Bergstrom et al. 2000), although a few studies have explicitly modeled 
plasmid addiction systems. For instance, (Fedorec et al. 2019) extended a plasmid-loss model (Boe et 
al. 1987) to include PSK by a TA system and evaluate the stability of plasmids as a function of PSK 
efficacy and the metabolic burden associated with encoding PSK mechanisms. The authors also model 
another PSK mechanism: the production of bacteriocins that kill plasmid-free populations at a constant 
rate, instead of exclusively killing segregant cells that have recently lost the plasmid through 
segregation and, by using Bayesian inference, estimate parameters for PSK efficacy, plasmid loss 
rates and growth rate differences between plasmid-free and plasmid-bearing strains. Similarly, 
(Loftie-Eaton et al. 2016) used a Bayesian Information Criterium applied to a population dynamics 
model to evaluate plasmid loss and fitness costs associated with specific mutations on a putative 
toxin-antitoxin and a cointegrate resolution system identified after evolving Pseudomonas sp. for 1,000 
generations in the absence of selection. Interestingly, as evolved plasmids were able to persist for 
longer in multiple bacterial hosts, mutations in the TA system also resulted in an expanded plasmid 
host range. 
 
Random segregation of multicopy plasmids 

Plasmid addiction systems and the molecular machinery necessary for conjugation are 
backbone-encoded functions that require several genes and therefore are mostly found in large 
plasmids (>25 kb) present in low copy-numbers (1-20 copies per cell) (Smillie et al. 2010). As a result, 
small plasmids lacking active partitioning and post-segregational killing mechanisms can only be 



maintained in the population by being present in a large number of copies in each cell, therefore 
reducing the probability of producing plasmid-free cells when segregating plasmids during cell division.  
 
To model plasmid segregation, (Nordström et al. 1984; Seo and Bailey 1985; Boe et al. 1987) assumed 
that plasmids are distributed to daughter cells randomly at cell division and that all cells contain N  
plasmids at division. In contrast, (Müller et al. 1991) posed a Markov chain model whereby segregation 
and replication of plasmids were modeled as stochastic processes. In general, it is assumed that 
random segregation of plasmids upon division can be described with a binomial distribution, ,(n, )B p  
where  is a variable denoting plasmid copy-number of the mother cell and  the probability ofn p  
success. If we assume there is an equal probability for each plasmid to be inherited to each daughter 
cell we obtain  and, therefore, the probability of producing a plasmid-free cell is 2(1-n) (Summers.5p = 0  
1991; Greenhalf et al. 1989). This is a convenient simplifying assumption that enables population 
dynamic models to describe the segregational loss in terms of a constant rate that depends on the 
density of plasmid-bearing cells and the mean plasmid copy number in the population (Stewart and 
Levin 1977; Cooper et al. 1987; Bergstrom et al. 2000; Paulsson and Ehrenberg 2001; De Gelder et al. 
2004; Ponciano et al. 2007; San Millan et al. 2014).  
 
Asymmetric partitioning 

High-resolution microscopy studies have shown that high-copy plasmids are mainly found in the poles 
due to displacement by the nucleoid, but migrate inside the cell throughout the cell cycle and therefore 
segregate randomly upon division (Reyes-Lamothe et al. 2014), a feature consistent with the 
assumption that multi-copy plasmid segregation can be described as a Poisson process. However, 
(Hsu and Chang 2019) showed that plasmids can be localized in spatial clusters inside the cell and 
therefore segregation of plasmids between daughter cells can be asymmetric ( ). The authors= .5p / 0  
posed an impeded segregation model whereby plasmids are spatially confined in the intracellular 
environment, with the aim of showing that segregation in high copy-number plasmids can deviate from 
the standard random segregation model.  
 
There are other mechanisms that can result in the asymmetric segregation of plasmids (Million-Weaver 
and Camps 2014). As previously discussed, plasmids do not always replicate as monomers, so the 
probability of producing a plasmid-free cell also depends on the degree of multimerization of the 
plasmid (Summers 1991). (Ayala-Sanmartín and Gómez-Eichelmann ...) showed that ColE1-like 
plasmids that are present in the population mainly as dimers present greater stability than predicted by 
a random partitioning model of monomers. More recently, (Münch et al. 2019) argued that, while 
low-copy plasmid bacteria exhibit symmetric segregation, in high copy plasmids one of the daughter 
cells receives more plasmids, resulting in unequal segregation. By maximizing the average fitness of 
the population, the authors argued that asymmetric segregation of plasmids could result in an 
evolutionary stable strategy. 

Modelling plasmid cost and segregational instability 
Despite the potential benefits associated with plasmid-bearing, mobile genetic elements can also be 
associated with a fitness burden in the absence of positive selection for plasmid-encoded genes. For 
instance, if the plasmid encodes for genes that increase the probability of survival in stressful 
environments (e.g. antibiotics or heavy metals), then carrying plasmids can be detrimental for the host if 
the stressor is removed. There are a variety of reasons why plasmids can generate a high physiological 



burden on the host cell (San Millan and MacLean 2017), for instance, plasmid gene products can inhibit 
cell division until sufficient plasmid copies are available (Nordström 1985), or drain the cell's resources 
through replicating additional DNA (Glick 1995) and increasing protein synthesis (Rozkov et al. 2004). 
 
Most population-dynamic models express the fitness burden of carrying plasmids in terms of the 
relative growth difference between plasmid-free and plasmid-bearing sub-populations. For instance, as 
a constant rate that multiplies the growth function of the sub-population carrying the plasmid by a factor 
less than one (Simonsen et al. 1990; Baker et al. 2016) or, if bacterial growth is modelled as hyperbolic 
growth function, by appropriately selecting the parameters of the Monod-type growth function (Levin et 
al. 1979; San Millan et al. 2014; Stephanopoulos and Lapudis 1988; Alonso-del Valle et al. 2020). 
Another possibility is to consider that, from one generation to the next, the number of plasmid-carrying 
cells doubles from the previous generation (minus the fraction lost through segregation), so the growth 
rate of the plasmid-free sub-population can be modelled as , where  denotes the fitness21+σ σ  
advantage of not carrying the plasmid (De Gelder et al. 2004; Joyce et al. 2005; Ponciano et al. 2007). 
In (Lau et al. 2013), the authors propose an age-structured model and use it to propose a method for 
accurate estimation of plasmid-free frequencies based on the probability of plasmid loss per cell and 
division as well as the subsequent growth of segregant cells. Recently, (Reding 2020) argued that the 
cost of plasmid-bearing can also be expressed in terms of an increase in lag-phase, with significant 
differences in the resulting population dynamics.  
 
In any case, plasmid costs are usually considered to be fixed values inherent to each plasmid-host 
association. However, (Ganusov and Brilkov 2002) argued that a constant reduction in growth rate is 
not realistic when modelling continuous culture devices, as the selection coefficient is a dynamic 
property of the system with changes in substrate concentration resulting from diluting plasmid-bearing 
cells from the system. Similarly, (Ponciano et al. 2007) showed that environmental variability results in 
a dynamic plasmid burden. By representing the growth rate of the plasmid-free subpopulation as a 
random variable, the authors were able to capture experimental time-series of plasmid frequencies with 
higher accuracy than when considering that fitness cost is constant throughout the experiment.  
 
This complex interaction between plasmids, hosts and the environment produces a distribution of 
fitness effects that can result in increased stability of plasmids in polyclonal microbial communities. In a 
recent manuscript, (Alonso-del Valle et al. 2020) compared computer simulations of a population 
dynamics model with pair-wise competition experiments between plasmid-bearing and plasmid-free 
isolates obtained from clinical samples. Both computational and experimental data presented a wide 
distribution of fitness effects characterized by mostly neutral effects, but with a right-hand tail expanding 
towards positive fitness effects.  
 
Population dynamics of plasmid-free and plasmid-bearing populations 

In a seminal study (Stewart and Levin 1977), the authors posed a simple ODE model to study the 
population dynamics of two sub-populations: plasmid-free and plasmid-bearing. The main contribution 
of this work was to identify a broad range of parametric conditions whereby plasmid-bearing 
populations can be maintained in the population at high frequencies, even in the absence of selection 
favoring the genes they carry. Moreover, the authors derived an expression - now referred to in the 
literature as the Stewart-Levin criterion - that determines the equilibrium frequencies of plasmid-bearing 
cells in terms of key modeling parameters: population growth, conjugational transfer, and segregation 
rate. In a follow-up study (Levin and Stewart 1980), this model was extended to consider 



non-conjugative plasmids and found that the range of conditions that stabilize plasmids are more 
stringent, therefore concluding that periods of positive selection would be necessary for maintaining 
costly, non-conjugative plasmids in a population, a result that was later formalized in (Macken et al. 
1994). 
 
These results were then followed by two theoretical studies published the same year (Lenski and 
Bouma 1987) and (Cooper et al. 1987), with both models also based on a system of ordinary 
differential equations describing changes in the frequency of plasmid-bearing cells from the rate of 
segregational loss and the selective disadvantage of carrying plasmids. (Cooper et al. 1987) showed 
that the frequency of unstable microbial populations (in this case, plasmid-bearing cells) decreases 
exponentially in the absence of selection, while (Lenski and Bouma 1987) obtained an expression that 
establishes that the effect of selection is higher when the initial plasmid frequency in the population is 
low. By comparing their model predictions with an experimentally-determined time-series of plasmid 
frequencies, the authors showed that segregation and selection should be considered simultaneously 
when addressing the causes of plasmid instability.  
 
In another important study, (Stephanopoulos and Lapudis 1988) analyzed the stability of 
plasmid-bearing cells growing in a chemostat using the index theory of a singular point in systems of 
ODEs. The model is constructed under the following assumptions: a mixed population consisting of 
parental (plasmid-bearing) and negative (plasmid-free) cells, with parental cells producing negative cell 
variants at a constant rate, while negative variants cannot revert to produce parental cells. An important 
feature of this model is that the system of ODEs contains an expression for substrate concentration 
present in the environment, allowing the authors to perform stability analysis and demonstrate the 
existence of a range of substrate concentrations that allow the co-existence of both sub-populations. 
 
More recently, (Yurtsev et al. 2013) explored theoretically and experimentally the population dynamics 
of a co-culture of bacteria composed of plasmid-free cells and cells bearing a multicopy plasmid 
encoding for a drug-resistance gene. By measuring changes in the fraction of resistant and sensitive 
bacteria in a one-day growth cycle exposed to a lethal dose of antibiotics, the authors showed that the 
relative fraction between plasmid-free and plasmid-bearing subpopulations reaches an equilibrium. A 
mathematical model based on difference equations showed that the equilibrium-resistant fraction 
depends exclusively on the initial cell density and the antibiotic concentration. As expected, the fraction 
of plasmid-bearing populations increased proportionally to the strength of the selective pressure.  
 
Altogether, these population dynamic studies highlight the existence of two important physiological 
parameters involved in the generation of plasmid-free cells in a population that composed initially of 
cells carrying plasmids: growth rate differences between both sub-populations, and the rate at which 
plasmid-free cells are generated from plasmid-bearing cells. As the previous depends on the 
environmental conditions, it is theoretically possible to find selective regimes whereby plasmid-bearing 
cells grow faster than plasmid-free cells, thus stably maintaining plasmids in the population.  
 
There is, however, an apparent paradox associated with frequently beneficial genes: if a plasmid 
carries genes that confer a benefit for the host, the cell could, in principle, integrate these genes into 
the chromosome, thus rendering the costly plasmid redundant and susceptible to be lost through 
segregation. As a result, (Bergstrom et al. 2000) argued that plasmids cannot persist exclusively by 
carrying genes that are beneficial to their hosts and postulated that plasmids can only persist 
indefinitely through a series of selective sweeps resulting from transferring to locally adapted 



populations with higher fitness, a process termed as the ‘hitchhiking hypothesis’. However, a detailed 
analysis of this model showed that the conditions for a parasitic plasmid to persist are less stringent 
than originally thought, showing that plasmids can be maintained indefinitely through oscillations 
between plasmid-free and plasmid-bearing populations (Lili et al. 2007).  
 
Plasmid stability in fluctuating environments 

In any constant environment, the Stewart and Levin criterion states that high rates of horizontal gene 
transfer (HGT) can maintain plasmids in the population, even when bearing them is associated with a 
significant fitness cost. But an exhaustive analysis of genomic sequences showed that a large fraction 
of plasmids found in nature is not mobilizable (Smillie et al. 2010). If plasmids cannot transmit 
horizontally and the environment does not select for genes encoded in the plasmid, then they can only 
be maintained in the population by compensating plasmid costs, reducing segregational loss (e.g. 
increasing plasmid copy-numbers or through plasmid addiction systems) or through sporadic intervals 
of positive selection.  
 
To study the environmental conditions that maintain plasmids in the population, a series of articles have 
used ODEs to describe the population dynamics model of plasmid-free and plasmid-bearing cells 
competing for resources in fluctuating environments. For instance, (Song et al. 2006) proposed a 
within-host population dynamics model of plasmid-bearing and plasmid-free subpopulations competing 
for resources in the presence of an inhibitor, while (Svara and Rankin 2011) explored the range of 
selective pressures that favor plasmid-carried antibiotic resistance genes, focusing on evaluating the 
effect of different antibiotic doses and the interval between treatments has on plasmid dynamics.  
 
Also, (Yuan et al. 2011) evaluated plasmid stability in a competition model growing in a chemostat in 
the presence of a substrate and an inhibitor deployed in periodic pulses, showing that the dilution rate 
and the periodicity of drug input are critical to conditions for the stable coexistence of both 
sub-populations. More recently, (Rodriguez-Beltran et al. 2018) used stochastic simulations to show 
that a high rate of environmental fluctuations was correlated with an increase of intracellular genetic 
diversity, a prediction that was subsequently validated using an experimental model system showing 
that stochastic environments balance selection for both ancestral and evolved alleles, therefore 
increasing the probability of survival in environments that alternate selection for both alleles.  

Modelling horizontal transmission of plasmids 
Although intermittent intervals of positive selection, either in space or in time, could result in enhanced 
stability of plasmids (Eberhard 1990), selection itself is not sufficient to explain the abundance of 
plasmids in natural environments. For instance, as an extreme case, cryptic plasmids are ubiquitous in 
nature although they carry no beneficial genes and thus are never positively selected for. Therefore, 
another strategy to increase plasmid stability is to overcome the negative demographic effects of 
segregation and purifying selection by transmitting horizontally into neighbouring plasmid-free hosts. 
This represents an important problem for the dissemination of antibiotic resistance genes and therefore 
has been of interest for clinicians (Carattoli 2013) and mathematical modelers (Leclerc et al. 2019). 
 
Horizontal transmission of mobile genetic elements is mediated either via conjugation, transformation or 
transduction (Smillie et al. 2010), and therefore plasmids can be classified as conjugative (when 
encoding mechanisms for self-transfer) or non-conjugative (if they are incapable of initiating conjugation 
for self-transmission). As with other forms of horizontal gene transfer, conjugation has been associated 



with promoting evolutionary and ecological innovation, by conferring new phenotypic traits and access 
to novel ecological niches (Wiedenbeck and Cohan 2011), although it can also be detrimental when 
selfishly replicating mobile genetic elements do not carry beneficial genes (Vogan and Higgs 2011). 
Crucially, conjugation can occur between taxonomically distinct bacterial lineages (Fernandez-Lopez et 
al. 2017), thus confounding phylogenetic relationships and rapidly spreading beneficial genes between 
members of microbial communities. 
 
Mass action assumption 

It has been established that the dynamics of horizontal transfer differ between populations on surfaces 
and in liquids (Molin and Tolker-Nielsen 2003) but, as most articles studying theoretical population 
dynamics of plasmids focus on either chemostats or batch culture experiments (i.e. dense cultures in 
well-mixed environments), conjugative plasmid transfer between donor and recipient cells is generally 
assumed to occur randomly at a frequency that is jointly proportional to their respective densities 
(Freter et al. 1983; Stewart and Levin 1977; Simonsen et al. 1990; Clewlow et al. 1990; Macdonald et 
al. 1992; Smets et al. 1993; Bergstrom et al. 2000; Imran et al. 2005; Svara and Rankin 2011; 
Peña-Miller et al. 2015; Lehtinen et al. 2020). Indeed, as conjugative transfer imposes a cost to 
bacterial hosts, the rate of vertical transmission decreases and therefore a trade-off between horizontal 
and vertical transmission is produced, resulting in higher rates of HGT when plasmid-free cells are 
present in abundance (Turner et al. 1998). 
 
A consequence of assuming mass action kinetics in the horizontal transmission of plasmids is that HGT 
only depends on the densities of donor and recipient cells, with conjugation events occurring at a 
constant rate. However, (Lundquist and Levin 1986) showed that newly formed transconjugants can 
transiently promote conjugative pili synthesis, resulting in an increased rate of horizontal transfer, while 
(Levin et al. 1979) fitted a mass action model to experimental data and observed that a constant rate of 
transmission was only appropriate in stationary phase, thus concluding that plasmid transmission is 
accelerated during lag phase. (Simonsen et al. 1990) found that the initial donor/recipient ratio and the 
occurrence of a lag phase have no appreciable influence in the estimation of transfer rates, thus 
arguing that the rate of horizontal transmission remains constant throughout an experiment.  
 
In contrast, (Ponciano et al. 2007; De Gelder et al. 2007) considered that, as HGT depends on the 
fraction of donor cells, therefore conjugation rate initially increases steeply as a function of the available 
recipient and donor cells but subsequently levels off to a saturation limit. Similarly, (Volkova et al. 2012) 
argued that the rate of conjugation is frequency-dependent and (Philipsen et al. 2010) used stochastic 
differential equations and a maximum likelihood method to argue that conjugation rates are 
substrate-dependent that can be described by a sigmoidal function. Transmission rates of some 
plasmids can also be affected by cell density through quorum-sensing signals (Miller and Bassler 
2001), but also by external cues, such as antimicrobial substances (Beaber et al. 2004). However, 
(Lopatkin et al. 2016) combined a plasmid transmission model with single-cell observations to show 
that sublethal concentrations of antibiotics do not significantly increase the conjugation efficiency and 
therefore the contribution of antibiotics to the promotion of HGT may have been previously 
overestimated. 
 
The interaction between the intensity of positive selection with the rate of environmental change and of 
horizontal transmission was studied in (Peña-Miller et al. 2015), using computer simulations to show 
that conditions for the maintenance of a non-transmissible plasmid would be very stringent, therefore 



suggesting that apparently non-transmissible plasmids may still experience episodes of horizontal 
transmission occurring at very low frequencies and that these scattered transmission events are 
sufficient to stabilize parasitic plasmids in the population. Moreover, for conjugative plasmids, (Lopatkin 
et al. 2017) showed that plasmids can transfer at sufficiently high rates to be maintained in the absence 
of antibiotics, thus concluding that reducing antibiotic use alone would not reverse resistance from the 
population.  
 
For conjugation to occur in well-mixed environments, the plasmid-bearing and plasmid-free cells first 
need to collide, then attach, and then successfully conjugate before detachment occurs. The 
mass-action kinetic assumption of most mathematical models of plasmid transfer combine these 
processes into a single conjugation rate, implicitly ignoring the physiological state of donor and recipient 
cells and considering that horizontal transmission of plasmids is an instantaneous process. To 
overcome these limitations, (Massoudieh et al. 2007) proposed a model for conjugative plasmid that 
included time lags resulting from reversible attachment–detachment of bacteria in a one-dimensional 
porous environment. Similarly, (Zhong et al. 2010) postulated an ODE model that explicitly considered 
attachment and detachment dynamics of neighbouring cells, assuming that conjugation can only occur 
between attached cells. This assumption allowed the authors to explore the differences in the dynamics 
of plasmid transfer between spatially structured and well-mixed environments.  
 
Stochastic models of horizontal gene transfer 

Although mass-action models have been very useful to study the spread and persistence of conjugative 
plasmids in well-mixed environments (e.g. liquid cultures), the implicit limitations resulting from using 
ordinary differential equations limits the study of the stochastic interactions between plasmid-bearing 
and plasmid-free cells. In (Novozhilov et al. 2005), the authors posed a stochastic model to show that 
horizontally-acquired plasmids can be maintained for long intervals of time in populations when 
horizontal transmission is comparable to segregational loss, even when the acquired genes are neutral 
or deleterious. Similarly, (Ponciano et al. 2007) used a stochastic model to argue that relative fitness of 
plasmid-free cells is considered a random variable and thus changes in plasmid frequency can be 
understood as a Markovian process, an approach also followed by (Ledda et al. 2020) to study the 
spread of OXA-48, a plasmid responsible for hospital outbreaks of carbapenem-resistant 
Enterobacteriales. 
 
Other modeling approaches have also been proposed. For instance, (Tazzyman and Bonhoeffer 2013) 
studied the fixation probability of a gene that can be horizontally transferred using two modeling 
approaches: a branching process and a diffusion approximation. By considering a fixed population size 
and a low initial frequency of mutants, the model predicts a trade-off between horizontal and vertical 
transmission that results in deleterious alleles having a non-zero probability of fixation, even in the 
absence of positive selection. In (Billiard et al. 2016), the authors considered two clonal populations of 
haploid individuals each carrying a different ‘trait', which can be interpreted as a conjugative plasmid. 
By modeling horizontal transfer as a stochastic process, the authors demonstrated stable coexistence 
of the traits and then evaluated the magnitude of the fluctuations around the deterministic solution by 
constructing an Ornstein-Uhlenbeck process to which solution is a stochastic differential equation with 
Brownian motions related to the birth-death processes of each population and to the horizontal transfer. 
 
 



Individual-based models of plasmid transmission 

As plasmid transfer by conjugation requires physical contact between donor and recipient cells, spatial 
structure plays an especially important role for the dynamics of horizontal gene transfer (see (Slater et 
al. 2008) for a review on spatial factors modulating plasmid transmission). However, most studies focus 
on well-mixed environments and ignore the spatial component of the system. To overcome this 
limitation, (Beaudoin et al. 1998) posed a model based on partial differential equations (PDE) to study 
plasmid mobilization in a 1-D biofilm (spatial structure is expressed in terms of the depth of the biofilm). 
In principle, this PDE approach could be extended to two- or three- dimensional domains, although it 
would be very difficult to analyze and, as a result, individual-based models (IBM) have been used by 
multiple studies to study the conjugative transfer of plasmids in spatially-explicit environments.  
 
In short, IBMs assume that each individual is described by a vector of state variables that is updated in 
response to rules based on local environmental conditions and the state of neighboring cells. This 
framework has been used successfully to study competitive and cooperative microbial interactions in 
space and time (Hellweger et al. 2016; Kreft 2014). In the context of HGT, (Lagido et al. 2003) 
proposed a simple kinetic model of plasmid transfer within microcolonies growing in solid surfaces that 
assumed that cells are inoculated randomly in a 2-D domain, thus producing circular colonies with a 
radius that increase exponentially in time until resources are locally exhausted. If a colony of 
plasmid-bearing cells encounters a colony of plasmid-free cells, the model considers that conjugation 
occurs and all cells in the recipient colony become transconjugant. 
 
Another IBM used to study the transmission of mobile genetic elements is known as COSMIC (Gregory 
et al. 2008). The aim of this model was to simulate bacterial evolution in a multi-scale perspective in the 
sense of incorporating genes, gene products, and their interaction with the environment. This approach 
is based on HERBY (Devine and Paton 1997), a discrete grid-based environment of plants with 
herbivores populating the grid, but can also be applied asexual populations. An extension of this model, 
RUBAM (Vlachos et al. 2004), was developed to simulate adaptive behavior using grid-based 
environments with nutrient and antibiotic gradients. By integrating COSMIC and RUBAM, (Gregory et 
al. 2006) proposed COSMIC-Rules, a computer program that works at three organizational levels: 
genes, cells, and environment, and that can be used to study the transmission of plasmids in a bacterial 
population. COSMIC-Rules was used by (Gregory et al. 2008) to model conjugational transfer based on 
the proximity between donors and recipient cells (both moving as a weighted random walk) and their 
metabolic state (expressed by considering that transconjugant cells have a waiting time before they can 
act as plasmid donors). Using this approach, the authors showed that plasmid incompatibility is a 
limiting factor for the spread of plasmids, while compatible plasmids can spread throughout the 
population and be maintained even in the absence of selection.  
 
Another approach that has been used to study plasmid transfer and persistence in spatially structured 
bacterial populations is based on discrete-space continuous-time stochastic models (also known as 
interacting particle systems). Of note, (Krone et al. 2007) used a 2-D square lattice with periodic 
boundaries, whereby each location of the lattice can contain nutrients, as well as recipient, donor or 
transconjugant cells. Growth of each cell depends on the concentration of resources in the 
neighbourhood, while conjugation events occur only between neighbouring donor (or transconjugant) 
and recipient cells. Using computer simulations, the authors showed that the resulting spatial patterns 
of plasmid loss and horizontal transfer are consistent with those observed experimentally. Similarly, in 
(Merkey et al. 2011), an IBM that explicitly considers cells, plasmids and extracellular polymeric 



substances was to study plasmid transmission in bacterial biofilms. In this model, segregation and 
fitness costs, but also conjugation parameters (for example, lag times and pilus reach distance and 
scan speed) are considered to be dependent on the growth rate of the donor cell. The authors used 
sensitivity analysis to show that timing and distance between neighbors are important drivers of 
conjugal plasmid transfer in biofilms, while segregational loss rate and growth rate of the receiver 
subpopulation are not so relevant.  
 
More recently, (Werisch et al. 2017) evaluated the difference between non-transmissible and 
transmissible plasmids in biofilms modeled using a lattice-based IBM. In this computational model, 
conjugation occurs randomly between neighboring cells, while segregational loss and incompatibility 
occur when both types of plasmids are present in the same cell (incompatible plasmids are unable to 
persist in the same cell due to cross-reactions between replication control mechanisms). The main 
conclusion of this study is that non-transmissible plasmids that provide no advantage to the host can 
still be maintained in the population in co-occurrence with incompatible conjugative plasmids. In (van 
Dijk et al. 2020), the authors used an IBM to study a population of bacterial cells carrying (or not) a 
slightly beneficial gene, with the aim of showing that HGT can only evolve if horizontal transmission 
occurs within spatially localized populations, instead of under well-mixed conditions.  

Modelling evolutionary dynamics of plasmid-bearing bacterial populations 
As plasmids encode for genes that control their own replication and transmission, it has been argued 
that they should be viewed as evolving agents subject to natural selection in their own right, with fitness 
interests that are not necessarily aligned with those of their bacterial host (Harrison and Brockhurst 
2012). As a result, the evolutionary dynamics of plasmid-host associations can be understood as a 
co-evolutionary process, where both conflict and collaboration between bacteria and plasmids can 
occur. Indeed, it was recently shown that co-evolution between plasmids and hosts promoted the 
stability of such plasmids by reducing fitness costs associated with plasmid-bearing (Jordt et al. 2020). 
Interestingly, computational experiments performed using a Gillespie algorithm to simulate a 
population-dynamics model suggested that compensatory mutations that increase plasmid persistence 
in one host simultaneously improved plasmid stability in a different host, thus maintaining multidrug 
resistance for a longer duration if plasmid-host coevolution had occurred. Moreover, (Loftie-Eaton et al. 
2016) used experimental evolution and population dynamics modelling to show that evolved plasmids 
were more stable in their co-evolved hosts than in the ancestral strain due to epistatic interactions that 
emerged during plasmid-host coevolution. 
 
Fitness cost compensation 

Theoretical studies discussed so far suggest there are two key evolutionary routes to increase plasmid 
stability in the long-term: (1) the evolution of high conjugation rates that allow plasmids to be 
maintained through horizontal transmission, and (2) compensatory evolution that reduce the cost of 
plasmid carriage and therefore weakens selection against plasmids. Indeed, experimental evolution 
studies have shown that selection for horizontal transmission can lead to the evolution of increased 
conjugation rate in plasmids (De Gelder et al. 2008), but also to the amelioration of plasmid burden 
(San Millan et al. 2014), with both strategies resulting in an enhancement of the ecological conditions 
favoring plasmid persistence.  
 
To contrast these evolutionary strategies, (Harrison et al. 2016) used an individual-based model to 
simulate the evolutionary dynamics of a very costly mega-plasmid with a mercury resistance cassette 



carried on a transposon. The model explicitly considers the appearance of compensatory mutations 
and the transposition of the resistance gene into the chromosome, with numerical simulations showing 
that plasmid cost compensation can enhance plasmid stability, but also promote the fixation of 
accessory traits on the bacterial chromosome. In a follow-up study (Hall et al. 2017), the authors used 
this individual-based model to argue that, due to the inherent costs of increasing conjugation rate, 
amelioration of plasmid costs is the most likely long-term solution to evolving stable bacteria-plasmid 
associations. 
 
This result is consistent with a previous study evaluating the effect of compensatory mutations in the 
stability of plasmids of a costly non-conjugative plasmid (San Millan et al. 2014). By performing a serial 
dilution stability assay in the absence of selection, the authors found that, after an initial period of 
exponential decay, the plasmid appeared to stabilize at a low frequency. Competition experiments 
between the evolved and ancestral strains showed that the cost associated with plasmid-bearing had 
been substantially reduced in the evolved strains, a feature thereafter included into a population 
dynamics model to describe the emergence of a sub-population with a reduced fitness cost. In this 
case, whole-genome sequencing of both plasmids and bacterial hosts confirmed that compensatory 
mutations were present exclusively in the chromosome (San Millan et al. 2015). 
 
In (De Gelder et al. 2007; Ponciano et al. 2007), the authors compared two models, one with a constant 
fitness cost and another with a selection coefficient represented as a random variable sampled at every 
time point from a Normal distribution. The latter model was subsequently used to evaluate if the stability 
of a self-transmissible plasmid was due to changes in conjugation rate, segregation rate, or plasmid 
cost. By jointly estimating these parameters and analyzing data from plasmid persistence and 
competition experiments, (Loftie-Eaton et al. 2016) concluded that plasmid maintenance was improved 
by the appearance of chromosomal mutations that turned a plasmid cost into a benefit, a theoretical 
result that was subsequently validated by sequencing the evolved strains.  
 
Another aspect influenced by compensatory chromosomal mutations are pleiotropic effects between 
different plasmids. Using a combination of mathematical modelling and experimental evolution, 
(Loftie-Eaton et al. 2017) showed that co-evolution between plasmid and their hosts also not only 
increased plasmid stability but also enabled mutant cells to retain different plasmids, a feature referred 
to as plasmid permissiveness. To further evaluate the consequences of genome localization of 
compensatory mutations in the resulting plasmid dynamics, (Zwanzig et al. 2019) analyzed an ODE 
model to argue that compensatory mutations occurring in plasmids (spreading both vertically and 
horizontally) can promote plasmid persistence even when the amelioration effect is less compared to 
the produced by compensatory mutations found in chromosomes (only inherited vertically).  
 
Plasmid copy-number as an evolvable trait 

Another possible strategy to stabilize plasmids is to reduce the probability of plasmid loss by increasing 
the number of copies carried in each cell. But large numbers of plasmids may seriously affect the 
growth rate of their bacterial hosts, suggesting the existence of an optimal plasmid copy number 
susceptible to be tuned by evolution. Based on a model of transcription and translation of repressor and 
initiator proteins necessary for plasmid replication, (Lee and Bailey, 1984) explicitly evaluated the effect 
of genetic alterations in regulatory elements controlling copy-number control and, using computer 
simulations, identified parameter values for the strength of promoters and termination efficiencies 



required for the stable maintenance of plasmids, a condition that was achieved by balancing the risk of 
segregational loss and the cost associated with increasing plasmid content (Lee' and Bailey~ 1984).  
 
More recently, (Mei et al. 2019) combined experiments and mathematical modelling to argue there is a 
strong selection against increasing the number of plasmids carried in each cell. In their experimental 
system, the plasmid encodes for a drug-resistance gene and, although an increase in copy-number 
was associated with an increased level of resistance, the authors found that mutations in the RNA I 
gene producing an increased plasmid copy-number were only fixed at high antibiotic concentrations, 
therefore suggesting that the number of copies carried by each cell is robust to fluctuations and a highly 
optimized evolutionary trait. This result is consistent with another experimental evolution study (San 
Millan et al. 2016), whereby a plasmid-bearing population was exposed to increasing concentrations of 
antibiotics, selecting for mutations both in the target resistance gene but also in the RNA I gene 
controlling plasmid copy-number, with the latter only observed at detectable frequencies at very high 
drug concentrations. 
 
Another important aspect of plasmid evolutionary dynamics is the interaction between plasmid 
copy-number and evolvability. Indeed, in a plasmid-encoded gene, the mutational target size is 
amplified by the number of copies of the plasmid, therefore producing a positive correlation between 
plasmid copy-number and the probability of mutation (San Millan et al. 2016; Dimitriu et al. 2020). 
However, mutations on plasmid-encoded genes can be cleared from the population through 
segregational drift, resulting in a long time to fixation for high-copy number plasmids and a reduced 
allele frequency of mutations occurring in plasmids compared to those encoded in the chromosome 
(Ilhan et al. 2019). This complex interaction between plasmid copy-number and random genetic drift 
(Gillespie 2010) was studied by Ilhan and co-authors using a combination of experimental evolution and 
a population genetics model based on a standard haploid version of the Wright-Fisher model that 
incorporates plasmid evolution following an approach previously used to study mitochondrial evolution 
(Peng and Kimmel 2005).  
 
Besides an increased gene dosage and mutation rate, multi-copy plasmids can also produce genetic 
redundancy. That is, when a mutation randomly appears in a plasmid-encoded gene, different versions 
of this gene transiently co-exist in the same cell. This has been termed plasmid-mediated heteroplasmy 
and was shown to have important consequences in the evolutionary dynamics of bacterial populations 
(Novick and Hoppensteadt 1978) , for instance by allowing heterozygous cells to evade evolutionary 
trade-offs and promote evolutionary innovation (Rodriguez-Beltran et al. 2018). Moreover, a 
consequence of presenting intracellular genetic diversity is that mutations occurring in plasmid-encoded 
genes can enable evolutionary rescue (Alexander et al. 2014). By modelling plasmid dynamics using a 
multi-type branching process, (Santer and Uecker 2019) showed that the probability of evolutionary 
rescue depends on the number of plasmid copies and the degree of dominance of such mutations.  

Modelling plasmid-host associations: which genes are carried in plasmids? 
Despite the constant gene flow between plasmids and chromosomes, the distribution of genes between 
them is not random. While certain genes encoding for specific functions are usually present on 
plasmids rather than chromosomes, others are usually chromosomally-encoded. For instance, plasmids 
tend to carry genes necessary to catabolize rare substrates or associated with drug resistance and the 
expression of virulence factors, as well as the production of bacteriocins that kill bacterial competitors, 
enzymes that detoxify the environment or signalling molecules that nodulate plant roots fix atmospheric 



nitrogen. In contrast, genes for most of the cell's structural proteins and fundamental metabolic 
processes (sometimes referred to as housekeeping genes) are underrepresented on plasmids and 
usually found in chromosomes. 
 
To explain the over-representation of certain characters encoded in plasmids, several hypotheses have 
been postulated, with their causes and implications analyzed theoretically. For instance, the local 
adaptation hypothesis states that many of the characters that tend to be present on plasmids are 
adaptations to local variations in environmental conditions that occur only sporadically in time or in 
space (i.e. genes are only useful in certain environments or at certain times). This theory was proposed 
by (Eberhard 1990) and is based on the observation that sometimes-useful genes linked to horizontally 
transmissible elements out-compete non-mobile versions of the same genes by associating with 
bacterial genotypes with increased fitness. 
 
In (van Dijk et al. 2020), the authors used an ODE model of a bacterial population undergoing uptake of 
genes from a shared DNA pool to evaluate the benefit of HGT based on distinct gene classes of slightly 
beneficial genes: indispensable (where HGT is not required and does not provide a benefit for the 
host), enrichable (maintained without HGT, although with increased fitness when acquired horizontally), 
rescuable (cleared from the population without HGT), unrescuable (also maintained only through 
horizontal transmission, but presenting reduced fitness in the presence of HGT) and selfish elements 
(only persisting at high rates of HGT and always decreasing growth of the population). Based on this 
classification, the authors showed that HGT can be an evolutionarily stable strategy for enrichable and 
rescuable genes, although the absence of gene-carrying donor cells renders HGT evolutionary 
inaccessible for rescuable genes. Moreover, using an individual-based model, the authors showed that 
spatial structure constrains the maintenance of slightly beneficial genes and that, once stable 
communities have evolved, selfish genetic elements can be stably maintained in the population. 
 
The repertoire of genes carried in plasmids also depends on their degree of dominance, as discussed 
in a recent manuscript (Rodriguez-Beltran et al. 2019). By combining experiments with stochastic 
simulations of a fluctuation assay, the authors found a positive correlation between PCN and the 
frequency of phenotypic mutants for mutations of high dominance, and a negative association for 
mutations of low dominance. A conclusion of this study is that the repertoire of genes carried in 
plasmids is determined by the degree of dominance of the genes it carries. Interestingly, the degree of 
dominance of plasmid-carried alleles has been shown to depend on gene dosage and the environment, 
with important consequences in the adaptive evolution of bacterial populations carrying 
non-transmissible multi-copy plasmids (Santer and Uecker 2019). 
 
The role of plasmids in social evolution 

Plasmids have been shown to carry a disproportionate amount of genes involved in bacterial virulence 
and cooperation, suggesting a key role for plasmids in bacterial social evolution. This hypothesis was 
explored by (Smith 2001) using a within-host mathematical model to argue that mobility is beneficial 
because it enforces cooperation between neighbouring cells. As secreted proteins are costly to produce 
(the authors focus on virulence factors, but this argument could also be applied to nitrogen fixation, 
micro-environment detoxification and other proteins secreted to the extracellular environment), then a 
microbial community would be susceptible to the invasion of cheaters that fail to produce the public 
good (and therefore avoid the metabolic cost associated with the production), but still obtain the benefit 
resulting from other members of the community producing and exporting the public good. As a result, 



cheaters would increase in frequency and render the cooperative behaviour unstable. In theory, HGT 
could force cheaters to produce the virulence factor, resulting in a stable cooperative behaviour. 
 
This hypothesis addresses a fundamental problem in sociobiology: how can cooperation persist? In 
(Nogueira et al. 2009), the authors studied the interaction between cooperation and mobile plasmids 
and showed that, when the production of public goods is costly, HGT via plasmids increases local 
relatedness by infecting previously unrelated neighbours, therefore promoting cooperation. The model 
used to support this argument is based on a standard recursion equation for relatedness in a 
patch-structured population to describe horizontal gene transfer and gene loss occurring at a constant 
rate. The main result of this study is that invasion of cheaters in a population of cooperators could be 
prevented if the social trait was encoded in a conjugative plasmid, through the re-acquisition of the 
cooperative trait. Indeed, as relatedness increases through horizontal transmission, the authors 
suggest that, in theory, cooperative traits (e.g. secreted and outer membrane proteins) should be 
preferably encoded in mobilizable regions of genomes (Rankin et al. 2011). However, (Giraud and 
Shykoff 2011) argued that local transmission of uninfected cells would be enough to maintain the 
production of public goods, without the need for invoking kin selection. 
 
The interaction between plasmid compatibility and the benefit of carrying public-good genes was 
studied by (Mc Ginty et al. 2011), showing that invasion by non-producers is prevented when 
competing (incompatible) plasmids arise in a population that does not carry the gene for production of 
the public good. Furthermore, (Mc Ginty and Rankin 2012) used a neighbor-modulated fitness 
approach that extends the Price equation (Price 1970) to describe changes in gene frequency in terms 
of both selection and transmission, with the aim of evaluating the interaction between relatedness 
(measured at the locus of interest) and horizontal gene transfer in the evolution of plasmid-borne 
cooperative traits. This model considers that segregation is negligible and concludes that when a 
plasmid carries genes involved in cooperation, there is the potential for genomic conflict between the 
plasmid and the host chromosome. A similar population genetics approach that includes horizontal 
transfer between local hosts was used to evaluate the effect of both transmission and relatedness as 
factors in the evolution of plasmid-borne public goods production (Mc Ginty et al. 2013). In this study, 
the authors showed the existence of a positive feedback between transmission and relatedness: if 
individuals are less related in a patch, there would be an increase in available cells to infect, resulting in 
an increase in overall transmission and therefore increasing relatedness. 
 
The social aspect of plasmid-mediated antibiotic resistance (e.g. cross-protection) was also studied by 
(Yurtsev et al. 2013). In this manuscript, the authors postulated a simple population-dynamics model to 
show that the cooperative nature of antibiotic inactivation enables co-existence between sensitive and 
resistant cells, even in the absence of spatial structure. More recently, (Lehtinen et al. 2020) used a 
competition model between resistant and sensitive bacteria (with resistance carried either in a plasmid 
or in the chromosome) to show the existence of positive frequency-dependent selection on gene 
location, a property that emerges from considering that having both chromosomal and plasmid-borne 
copies of the gene provides no additional benefit than carrying a single copy of the gene (i.e. the 
increase in resistance resulting from carrying a second copy of the gene is less than the cost of 
carrying it).  
 
Plasmids host-range 



In a mini-review on broad-host-range plasmid replication, (del Solar et al. 1996) discussed that plasmid 
promiscuity is increased by two factors (initiation independence and versatile communication between 
plasmid and host initiation factors), and that versatility is constrained by host-specific adaptation. The 
relevance and interaction between these factors, however, remains an open question. (Tokuda et al. 
2020) argued that plasmids are likely to have similar oligonucleotide (k-mer) composition to their host, 
and that this distance could be used to evaluate a plasmid’s host-range. Using this approach, the 
authors predicted the host-range of the novel plasmid isolated from cow manure and found that, as 
expected, it is more similar to transconjugant hosts than those from other genera. In (Beaudoin et al. 
1998), the authors studied the transference of a broad-host-range plasmid pDLB101, transferring from 
Pseudomonas putida into a Bacillus azotoformans biofilm. Species invasion to an established biofilm 
and the spatial distribution of each species was simulated by modifying a biofilm simulation program 
based on partial differential equations (AQUASIM) to incorporate plasmid transmission (modeled as a 
function of a limiting resource). 
 
(De Gelder et al. 2007) analyzed the stability of another broad-host-range IncP-1 plasmid by 
experimentally introducing the plasmid to 19 species from the Alpha-, Beta- or Gammaproteobacteria 
and evaluating its stability under non-selective conditions. Interestingly, the authors found a great 
diversity of generation times to plasmid loss and, using a difference equation model, argued that this 
variation could be due to compensatory mutations, with stability patterns resulting from considering 
different replication and segregational loss rates, as well as plasmid costs and plasmid reuptake. In a 
follow-up study, (De Gelder et al. 2008) considered the two strains for which the plasmid was less 
stable and evaluated plasmid adaptation using experimental evolution, either in a single species or 
when alternating hosts. The experimental results were consistent with those predicted by the 
mathematical model, namely that horizontal transfer between unfavorable hosts can hamper plasmid 
adaptation. Finally, (Loftie-Eaton et al. 2016) combined a discrete plasmid population dynamics model 
with experimental evolution to show that the acquisition of a TA system can expand the long-term range 
of a plasmid in a single step. 

Modelling plasmid dynamics in natural environments 
Most of the theoretical studies discussed so far have focused on analyzing plasmid dynamics on novel 
host–plasmid combinations under controlled laboratory conditions, whereas in nature HGT occurs in 
much more complex environmental and community contexts, for instance in the soil or in the 
mammalian gut. However, studying MGEs in multi-species microbial communities is a difficult and 
ongoing problem that spans multiple levels of complexity and presents intrinsic limitations associated 
with obtaining data (most microbial species cannot even be grown in laboratory conditions). Another 
difficulty arises when trying to estimate prokaryotic diversity in natural microbial populations or to infer 
phylogenetic relationships between species. Actually, plasmids are at the core of this complexity, as 
they can obscure taxonomic classifications and diffuse the boundaries between bacterial species 
(Doolittle and Zhaxybayeva 2009). Altogether, these limitations have hindered the application of classic 
ecological theory to study microorganisms (Prosser et al. 2007), although a few studies have tried to 
extend simple population dynamic models to study plasmid transmission in complex ecological settings. 
 
Plasmid transfer in the gut microbiota 

An important issue driving plasmid-mediated dissemination of antibiotic resistance is that commensal 
bacteria can harbor resistance genes that can be potentially transferred to pathogenic bacteria. A 
theoretical study focusing on the role of antibiotic resistance in the microbiome was published by 



Tepekule and co-authors (Tepekule et al. 2019). This model consists of a system of ordinary differential 
equations that describes the rate of change of different species over time and was used to argue that 
treatment history has a significant impact on the prevalence of resistance.  
 
In order to study how antibiotic resistance is influenced by the presence of other species, (Klümper et 
al. 2019) postulated a discrete-time mathematical model in the presence (or absence) of a natural gut 
microbial community. In particular, the authors evaluated the interaction between E. coli and a pig-gut 
microbiota and showed that selection against resistance occurs at higher antibiotic concentrations 
when in the presence of other strains. Similarly, (Freter et al. 1983) postulated a dynamical model of 
plasmid transfer in a mouse intestine, and (Ahmad et al. 2015) studied the effect of different antibiotic 
regimes and composition of the gut microbiota in the levels of resistance observed in a pig gut.  
 
While most studies focusing on the kinetics of plasmid transfer in the animal gut consider that the 
intestine can be approximated by a continuous-culture device (ignoring the spatial structure and 
assuming perfect mixing of donor and recipient cells), (Licht et al. 1999) considered 
compartmentalization of the intestinal environment. Likewise, (Grover and Wang 2019) evaluated the 
environmental dynamics of a gut colonized by two bacterial populations, each carrying a 
non-conjugative plasmid with a TA system, competing in a spatially extended habitat referred to as a 
flow reactor. Using numerical simulations of a system of partial differential equations, the authors 
explored the conditions that allowed for co-existence between plasmid-bearing and plasmid-free 
subpopulations, concluding that segregation rate and fitness cost of plasmid carriage must be relatively 
low for both strains to co-exist. 
 
Plasmid transmission in the environment 

It has been argued that the environment may be a source of resistance genes and, therefore, a series 
of articles have focused on transmission and maintenance of plasmids in bacterial populations living in 
the gastrointestinal tract of livestock or their associated farm environment, as well as to perform risk 
assessments on genetically engineered organisms released into the environment (Landis et al. 2000). 
Pharmacokinetic–pharmacodynamic models have also been used to study the dissemination of 
antimicrobial resistance genes at the farm level (Lanzas et al. 2011) and to estimate the length of a 
drug withdrawal period before slaughter, with the aim of reducing resistance levels before meat 
consumption (Cazer et al. 2018).  
 
(Baker et al. 2016) used a simple mathematical model to evaluate the spread and selection of 
antimicrobial resistant bacteria in a slurry tank of a dairy farm. This model is based on (Volkova et al. 
2012) and uses ODEs to describe growth of each subpopulation and the inflow of fresh slurry, 
containing both sensitive and resistant bacteria, as well as gene transfer and selection for 
plasmid-encoded resistance genes. By performing a global sensitivity analysis and numerical 
simulations, the authors showed that the rate of horizontal transmission and the length of time that 
slurry is stored in the slurry tank (without outflow and therefore considering the tank increases in 
volume) are the most significant parameters driving plasmid maintenance and therefore good targets 
for preventing antimicrobial resistant pathogens entering the human food and water supply chains. 
 
Epidemiology of plasmids 

The epidemiological dynamics of infectious diseases can be described mathematically, either using 
within-host models to study the evolution of resistance within a treated host, or between-hosts models 



to describe the spread of resistance in a community of hosts (Blanquart 2019). Between-host 
epidemiological models of antibiotic resistance are usually based on simple compartmental models 
whereby individuals can be susceptible, recovered or colonized by drug-sensitive or drug-resistant 
bacteria, with transitions between these compartments resulting from transmission events or as a 
consequence of drug treatment. Although only a few epidemiological studies have explicitly focused on 
plasmid-bourne resistance, a few have evaluated the role of horizontal transmission in the emergence 
and maintenance of drug resistance. For instance, (Levin et al. 2014) postulated an epidemiological 
model to argue that the frequency of resistance is maintained due to the presence of plasmids, 
although it can also be reduced by decreasing antibiotic use, constraining the development of 
resistance during treatment or by restricting invasion of resistant pathogens into the community. 
 
In (de Been et al. 2014), the authors studied extended-spectrum beta-lactamase resistance in E. coli 
strains isolated from humans and retail chicken meat. A statistical predictive model found significant 
similarities between human and chicken isolates, therefore concluding that chicken is a significant 
contributor to drug resistance in human infections. Similarly, (Jiang et al. 2020) used statistical models 
to analyze the prevalence of colistin resistance gene mcr-1 found in clinical isolates of E. coli. This 
study concludes that the outbreak was not a consequence of clone dissemination, but that conjugative 
plasmids were likely to have played a critical role in mcr-1 transmission.  
 
Other studies have also combined high-throughput data and statistical models to study dissemination 
routes in hospital settings. In (Leon-Sampedro et al. 2020), the authors analyzed epidemiological data 
from 9,000 patients and whole genome sequencing data from 250 enterobacteria clones to study the 
spread of a carbapenemase-encoding plasmid (pOXA-48) in a hospital over a two-year period. A model 
selection approach based on a case-specific probabilistic model that implements a Hamiltonian Markov 
chain Monte Carlo algorithm was used to make inferences about the dissemination routes observed in 
the data. The source of the outbreak was identified using SCOTTI, a structured coalescent-based tool 
for reconstructing bacterial transmission. pOXA-48 also produced a hospital outbreak of 
carbapenem-resistant Enterobacteriales in the United Kingdom, which was studied by (Ledda et al. 
2020) using a mathematical model for conjugation (modeled as a homogeneous Markov process 
between bacterial hosts). This modeling approach allowed the authors to identify the founder strain 
responsible for the outbreak and to calculate the number of conjugation events that occurred during the 
outbreak.  
 
Although the aforementioned studies focus on localized outbreaks, more general models have also 
been proposed to study plasmid-driven dissemination of antibiotic resistance genes. For instance, 
(Ledda and Ferretti 2014) proposed a model for plasmid fitness depending on its length, arguing that 
the use of antibiotics can increase both the length of plasmids and the number of antibiotic resistance 
genes carried by each plasmid. Another modeling approach (referred to as membrane computing) was 
recently used to simulate dynamics of antibiotic resistance at multiple complexity levels: genes, 
phenotypes, cells, populations, communities, and ecosystems. In short, this computational approach 
consists of a multi-scale individual-based system where individuals are confined within membranes, 
which in turn are organized in compartments in tree-like structures. In (Campos et al. 2019), the authors 
used membrane computing to simulate multiple study cases, including the introduction of a resistance 
plasmid and a conjugative element (which transfers a resistance gene into the chromosome) into a 
hospital community compartment. This study concluded that, in the long-term, dissemination of traits 
would be more effective if they are encoded in plasmids rather than in the chromosome.  



 

Plasmid dynamics in polymicrobial synthetic communities 

To overcome the complexities associated with studying plasmid ecology and evolution in natural 
environments, a few studies have used in vitro model systems consisting of synthetic communities 
composed of multiple species co-existing in controlled environmental conditions. For instance, (Jordt et 
al. 2020) studied the co-evolution of host-plasmid pairs in a mixed-species culture of Klebsiella 
pneumoniae and Escherichia coli, showing that pleiotropy enhances plasmid stability in microbial 
populations when the plasmid had previously co-evolved with one of the members of the community. 
Similarly, (Alonso-del Valle et al. 2020) studied the distribution of fitness effects of a clinically-relevant 
plasmid in different Klebsiella and E. coli isolates obtained from clinical samples. Using a 
population-dynamics model, the authors showed that variability in the cost of plasmid-bearing between 
different hosts can stabilize plasmids in polymicrobial communities and reduce the critical conjugation 
rate necessary to maintain plasmids in the population. Moreover, using computer simulations, it was 
shown that plasmid frequency is a decreasing function of community complexity when plasmid-bearing 
is associated with a constant fitness cost, but an increasing function of the number strains in the 
community when the distribution of fitness effects presents a large variance. 
 
In (Lehtinen et al. 2020), the authors postulate a stochastic model of resistance acquisition and transfer 
in a bacterial community that considers that a beneficial gene is transferable between  possiblen  
bacterial species, either through transformation (horizontal transfer between species of chromosomal 
resistance) or through conjugation (resistance transfer between species). The main result of this study 
is that the probability of finding genes on plasmids increases with higher rates of inter-species plasmid 
transfer and with a higher number of species between which the gene can be shared. The 
consequence of this frequency-dependence is that moderately beneficial genes can be maintained on 
plasmids, despite segregation loss, if they are present at a higher frequency. 
 
Finally, an aspect that is usually overlooked is the influence of viruses in the ecology and evolution of 
plasmid-bearing populations. (Dionisio 2005) proposed a chemostat model whereby a male-specific 
phages that can only infect only donor cells and showed that heterogeneity in the rate of transfer is a 
critical parameter influencing the stability of conjugative plasmids in bacterial communities when 
conjugative plasmid–dependent phages are present. Also, by combining experimental observations 
with mathematical modeling and computer simulations of an individual-based model, (Harrison et al. 
2015) studied the interaction between lytic bacteriophages and the persistence of conjugative plasmids 
and showed that the population is under strong indirect selection pressure from lytic bacteriophages, 
therefore limiting the ecological conditions whereby plasmids can persist. 

Discussion 
Plasmids, along with other mobile genetic elements like conjugative transposons, bacteriophages, and 
integrative conjugative elements, are important drivers of the ecological and evolutionary dynamics of 
bacterial populations (Slater et al. 2008). In particular, as plasmids can be viewed as self-replicating 
units of selection, understanding the impact of different plasmid replication and segregation dynamics 
have on the population dynamics has been an active area of research for several decades. In this 
context, mathematical models and computer simulations have proved to be important tools to unravel 
the interplay between replication, segregation, and horizontal transmission, as well as to evaluate the 
role that different selective pressures have on the stability of plasmids.  



 
Notably, mathematical modeling has played a critical role addressing the plasmid paradox, by 
establishing sufficient conditions for the maintenance of plasmids in populations, namely that the rate of 
horizontal transmission had to be large enough to compensate for segregational loss and fitness costs. 
The relevance of theoretical models, however, was also evident in later theoretical studies aiming at 
understanding the limits of the Levin and Stewart criterion and also to propose other possible 
mechanisms that increase plasmid stability, from spatial structure and fitness-cost compensation to 
plasmid-host coevolution and complex ecological interactions. 
 
Most of these studies, however, consider simple experimental microcosms, like batch cultures or 
chemostats, thus allowing mathematical modelers to parametrise their models and to contrast 
predictions emanating from these models with experimental data obtained in vitro, but also for modeling 
convenience (e.g. limited sub-populations interacting at high densities in homogeneous environments). 
However, recent advances in genomic technologies and bioinformatic algorithms are beginning to shed 
light on the influence of plasmids and other MGEs in natural environments (Smalla et al. 2015; Li et al. 
2020), a progress that contrasts with the scarcity of theoretical models aimed at providing a 
mechanistic understanding of the role of plasmids in polyclonal populations.  
 
This is, of course, a very difficult problem, partly because it spans multiple levels of complexity 
(Paulsson 2002). Indeed, W. Eberhardt stated more than thirty years ago: “As already noted by other 
authors (Hardy 1975; Dawkins 2016; Broda 1979), analyses of plasmid evolution entail simultaneous 
consideration of selection acting at several different levels of reproduction, including genes, 
transposons, plasmids, chromosomes, cells, and clones” (Eberhard 1990). Decades later, many 
conceptual advances have been made, including the realization of the importance of another level of 
selection: plasmids as ecological drivers of mixed bacterial populations and as promoters of 
community-level evolution (Doulcier et al. 2020; van Vliet and Doebeli 2019). 
 
Plasmid segregation and replication are inherently stochastic processes, so another fundamental 
problem in plasmid biology is to understand how noise resulting from the stochastic segregation and 
replication of plasmids drives the evolutionary dynamics of bacterial populations? Interestingly, most of 
the studies discussed in this review focus on mechanisms that reduce noise in PCN (therefore 
increasing the stability of plasmids, a useful feature of genetic circuits and cloning vectors used in 
bioengineering). However, the high-frequency of plasmid-bourne resistance genes found in 
heterorresistant clinical isolates (Andersson et al. 2019; Lázár and Kishony 2019) suggests that 
plasmids could be providing a platform that produces gene copy-number variability and heterogeneity in 
cellular responses to multiple antibiotics, therefore increasing the probability of treatment failure.  
 
Furthermore, as recent in vivo studies are beginning to track evolution in real-time inside complex 
communities (Ramiro et al. 2020) and to identify DNA transmission events directly from the microbiota 
(Munck et al. 2020), then another challenge for the future is to produce data-driven models that 
incorporate high-throughput data obtained with high temporal and spatial resolution into predictive 
models of plasmid evolution. We believe that the mathematical and computational tools necessary to 
include this data are yet to be developed, but most likely will not result from scaling-up systems of 
ordinary differential equations to consider thousands of equations with millions of parameters. The 
reason most studies discussed in this review have restricted to study simple model systems is not 
because of lack of interest or computational power, but because, independently of the modeling 
framework used, it is unrealistic to estimate kinetic parameter values for individual strains within 



polymicrobial communities, in part because of empirical constraints (bacteria are not culturable, 
metabolic interactions are complex and distributions of fitness effects are heterogeneous), as well as 
due to theoretical limitations (interactions are highly non-linear and parameters have identifiability 
issues).  
 
Finally, as discussed previously, the introduction of mobile elements encoding for drug resistance 
genes into clinical environments can produce plasmid-related outbreaks of antimicrobial-resistant 
pathogens (Mayer 1988). In this scenario, it could be argued that the responsibility for the outbreak lies 
not on a particular bacterial strain but on a plasmid that is shared between different hosts, even from 
different species. In consequence, it has been suggested that, in order to control the spread and 
evolution of resistant pathogens, it is necessary to view the problem from a plasmid-centric perspective. 
We believe that mathematical modeling and computer simulations provide powerful tools to address 
this challenge and, in the future, maybe even to propose new therapeutic avenues that control 
plasmid-driven antibiotic resistance. 

Acknowledgements 
We thank Ben Cooper, Craig MacLean and Jerónimo Rodríguez-Beltrán for useful discussions and 
David Romero for suggestions on a previous version of this manuscript. JCRH is a doctoral student in 
Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, and 
received fellowship 59691 from CONACYT. AFH was supported by PAPIIT-UNAM (grant IA201418) 
and ASM by a Miguel Servet Fellowship (MS15-00012). RPM was supported by PAPIIT-UNAM (grant 
IN209419) and by CONACYT Ciencia Básica (grant A1-S-32164).  

References 
Ahmad, A., Græsbøll, K., Christiansen, L. E., Toft, N., Matthews, L., & Nielsen, S. S. (2015). 
Pharmacokinetic-pharmacodynamic model to evaluate intramuscular tetracycline treatment protocols to prevent 
antimicrobial resistance in pigs. Antimicrobial Agents and Chemotherapy, 59(3), 1634–1642. 
 
Alexander, H. K., Martin, G., Martin, O. Y., & Bonhoeffer, S. (2014). Evolutionary rescue: linking theory for 
conservation and medicine. Evolutionary Applications, 7(10), 1161–1179. 
 
Alonso-del Valle, A., & León-Sampedro, R. (2020). The distribution of plasmid fitness effects explains plasmid 
persistence in bacterial communities. bioRxiv. 
 
Andersson, D. I., Nicoloff, H., & Hjort, K. (2019). Mechanisms and clinical relevance of bacterial heteroresistance. 
Nature Reviews. Microbiology, 17(8), 479–496. 
 
Ataai, M. M., & Shulert, M. L. (1987). Stability in Escherichia coli. Biotechnology and Bioengineering, Vol. XXX, 
Pp., 38, 9–397. 
 
Ayala-Sanmartín, J., & Gómez-Eichelmann, M. C. (1989). Stability of ColE1-like and pBR322-like plasmids in 
Escherichia coli. Molecular Microbiology, 3(12), 1745–1752. 
 
Bahl, M. I., Sørensen, S. J., & Hestbjerg Hansen, L. (2004). Quantification of plasmid loss in Escherichia coli cells 
by use of flow cytometry. FEMS Microbiology Letters, 232(1), 45–49. 
 
Baker, M., Hobman, J. L., Dodd, C. E. R., Ramsden, S. J., & Stekel, D. J. (2016). Mathematical modelling of 
antimicrobial resistance in agricultural waste highlights the importance of gene transfer rate. FEMS Microbiology 
Ecology, 92(4), fiw040. 
 
Baxter, J. C., & Funnell, B. E. (2014). Plasmid Partition Mechanisms. Microbiol Spectr, 2(6). 



 
Beaber, J. W., Hochhut, B., & Waldor, M. K. (2004). SOS response promotes horizontal dissemination of antibiotic 
resistance genes. Nature, 427(6969), 72–74. 
 
Beaudoin, D. L., Bryers, J. D., Cunningham, A. B., & Peretti, S. W. (1998). Mobilization of broad host range 
plasmid from Pseudomonas putida to established biofilm of Bacillus azotoformans. II. Modeling. Biotechnology 
and Bioengineering, 57(3), 280–286. 
 
Bergstrom, C. T., Lipsitch, M., & Levin, B. R. (2000). Natural selection, infectious transfer and the existence 
conditions for bacterial plasmids. Genetics, 155(4), 1505–1519. 
 
Billiard, S., Collet, P., Ferrière, R., Méléard, S., & Tran, V. C. (2016). The effect of competition and horizontal trait 
inheritance on invasion, fixation, and polymorphism. Journal of Theoretical Biology, 411, 48–58. 
 
Blanquart, F. (2019). Evolutionary epidemiology models to predict the dynamics of antibiotic resistance. 
Evolutionary Applications, 12(3), 365–383. 
 
Boe, L., Gerdes, K., & Molin, S. (1987). Effects of genes exerting growth inhibition and plasmid stability on 
plasmid maintenance. Journal of Bacteriology, 169(10), 4646–4650. 
 
Boe, L., & Rasmussen, K. V. (1996). Suggestions as to quantitative measurements of plasmid loss. Plasmid, 
36(3), 153–159. 
 
Bouet, J.-Y., Nordström, K., & Lane, D. (2007). Plasmid partition and incompatibility--the focus shifts. Molecular 
Microbiology, 65(6), 1405–1414. 
 
Bremer, H., & Lin-Chao, S. (1986). Analysis of the physiological control of replication of ColE1-type plasmids. 
Journal of Theoretical Biology, 123(4), 453–470. 
 
Brendel, V., & Perelson, A. S. (1993). Quantitative model of ColE1 plasmid copy number control. Journal of 
Molecular Biology, 229(4), 860–872. 
 
Broda, P. (1979). Plasmids (W. H. Freeman (ed.)). 
 
Campos, M., Capilla, R., Naya, F., Futami, R., Coque, T., Moya, A., Fernandez-Lanza, V., Cantón, R., Sempere, 
J. M., Llorens, C., & Baquero, F. (2019). Simulating Multilevel Dynamics of Antimicrobial Resistance in a 
Membrane Computing Model. mBio, 10(1). 
 
Carattoli, A. (2013). Plasmids and the spread of resistance. International Journal of Medical Microbiology: IJMM, 
303(6-7), 298–304. 
 
Cazer, C. L., Ducrot, L., Volkova, V. V., & Gröhn, Y. T. (2018a). Corrigendum: Monte Carlo Simulations Suggest 
Current Chlortetracycline Drug-Residue Based Withdrawal Periods Would Not Control Antimicrobial Resistance 
Dissemination from Feedlot to Slaughterhouse. Frontiers in Microbiology, 9, 949. 
 
Cazer, C. L., Ducrot, L., Volkova, V. V., & Gröhn, Y. T. (2018b). Monte Carlo Simulations Suggest Current 
Chlortetracycline Drug-Residue Based Withdrawal Periods Would Not Control Antimicrobial Resistance 
Dissemination from Feedlot to Slaughterhouse. Frontiers in Microbiology, 9, 949. 
 
Clewlow, L. J., Cresswell, 1. N., & Wellington, E. M. H. (n.d.). Streptomycetes in Soil Microcosms. 
 
Clewlow, L. J., Cresswell, N., & Wellington, E. M. (1990). Mathematical Model of Plasmid Transfer between 
Strains of Streptomycetes in Soil Microcosms. Applied and Environmental Microbiology, 56(10), 3139–3145. 
 
Cooper, N. S., Brown, M. E., & Caulcott, C. A. (1987). A Mathematical Method for Analysing Plasmid Stability in 
Micro-organisms. Journal of General Microbiology, 133, 1871–1880. 
 
Dawkins, R. (2016). The Selfish Gene. Oxford University Press. 



 
de Been, M., Lanza, V. F., de Toro, M., Scharringa, J., Dohmen, W., Du, Y., Hu, J., Lei, Y., Li, N., 
Tooming-Klunderud, A., Heederik, D. J. J., Fluit, A. C., Bonten, M. J. M., Willems, R. J. L., de la Cruz, F., & van 
Schaik, W. (2014). Dissemination of cephalosporin resistance genes between Escherichia coli strains from farm 
animals and humans by specific plasmid lineages. PLoS Genetics, 10(12), e1004776. 
 
De Gelder, L., Ponciano, J. M., Abdo, Z., Joyce, P., Forney, L. J., & Top, E. M. (2004). Combining mathematical 
models and statistical methods to understand and predict the dynamics of antibiotic-sensitive mutants in a 
population of resistant bacteria during experimental evolution. Genetics, 168(3), 1131–1144. 
 
De Gelder, L., Ponciano, J. M., Joyce, P., & Top, E. M. (2007). Stability of a promiscuous plasmid in different 
hosts: no guarantee for a long-term relationship. Microbiology, 153(Pt 2), 452–463. 
 
De Gelder, L., Williams, J. J., Ponciano, J. M., Sota, M., & Top, E. M. (2008). Adaptive plasmid evolution results in 
host-range expansion of a broad-host-range plasmid. Genetics, 178(4), 2179–2190. 
 
del Solar, G., Alonso, J. C., Espinosa, M., & Díaz-Orejas, R. (1996). Broad-host-range plasmid replication: an 
open question. Molecular Microbiology, 21(4), 661–666. 
 
del Solar, G., & Espinosa, M. (2000). Plasmid copy number control: an ever-growing story. Molecular 
Microbiology, 37(3), 492–500. 
 
Devine, P., & Paton, R. (1997). Biologically inspired computational ecologies: A case study. Evolutionary 
Computing, 11–29. 
 
Dimitriu, T., Matthews, A., & Buckling, A. (2020). Increased copy number couples the evolution of plasmid 
horizontal transmission and antibiotic resistance. 
 
Dionisio, F. (2005). Plasmids survive despite their cost and male-specific phages due to heterogeneity of bacterial 
populations. Evolutionary Ecology Research, 7(8), 1089–1107. 
 
Doulcier, G., Lambert, A., De Monte, S., & Rainey, P. B. (2020). Eco-evolutionary dynamics of nested Darwinian 
populations and the emergence of community-level heredity. eLife, 9. 
 
Eberhard, W. G. (1990). Evolution in bacterial plasmids and levels of selection. The Quarterly Review of Biology, 
65(1), 3–22. 
 
Ebersbach, G., & Gerdes, K. (2005). Plasmid segregation mechanisms. Annual Review of Genetics, 39, 453–479. 
 
Ehrenberg, M. (1996). Hypothesis: hypersensitive plasmid copy number control for ColE1. Biophysical Journal, 
70(1), 135–145. 
 
Ehrenberg, M., & Sverredal, A. (1995). A model for copy number control of the plasmid R1. Journal of Molecular 
Biology, 246(4), 472–485. 
 
Erwin, S., Foster, D. M., Jacob, M. E., Papich, M. G., & Lanzas, C. (2020). The effect of enrofloxacin on enteric 
Escherichia coli: Fitting a mathematical model to in vivo data. PloS One, 15(1), e0228138. 
 
Fedorec, A. J. H., Ozdemir, T., Doshi, A., Ho, Y.-K., Rosa, L., Rutter, J., Velazquez, O., Pinheiro, V. B., Danino, 
T., & Barnes, C. P. (2019). Two New Plasmid Post-segregational Killing Mechanisms for the Implementation of 
Synthetic Gene Networks in Escherichia coli. iScience, 14, 323–334. 
 
Field, C. M., & Summers, D. K. (2011). Multicopy plasmid stability: revisiting the dimer catastrophe. Journal of 
Theoretical Biology, 291, 119–127. 
 
Freter, R., Freter, R. R., & Brickner, H. (1983). Experimental and mathematical models of Escherichia coli plasmid 
transfer in vitro and in vivo. Infection and Immunity, 39(1), 60–84. 
 



Gama, J. A., Zilhão, R., & Dionisio, F. (2020). Plasmid interactions can improve plasmid persistence in bacterial 
populations. Frontiers in Microbiology, 11, 2033. 
 
Ganusov, V. V., & Brilkov, A. V. (2002). Estimating the instability parameters of plasmid-bearing cells. I. 
Chemostat culture. Journal of Theoretical Biology, 219(2), 193–205. 
 
Gillespie, J. H. (2010). Population genetics: a concise guide. 19--84. Baltimore, Md. 
 
Giraud, T., & Shykoff, J. A. (2011). Bacterial cooperation controlled by mobile elements: kin selection versus 
infectivity. Heredity, 107(3), 277–278. 
 
Glick, B. R. (1995). Metabolic load and heterologous gene expression. Biotechnology Advances, 13(2), 247–261. 
 
Goss, P. J., & Peccoud, J. (1998). Quantitative modeling of stochastic systems in molecular biology by using 
stochastic Petri nets. Proceedings of the National Academy of Sciences of the United States of America, 95(12), 
6750–6755. 
 
Greenhalf, W., Gardner, D. C. J., & Oliver, S. G. (1989). A mathematical model for plasmid replication and 
distribution in microbial populations. Biotechnology Letters, 11(2), 93–98. 
 
Gregory, R., Saunders, J. R., & Saunders, V. A. (2006). The Paton individual-based model legacy. Bio Systems, 
85(1), 46–54. 
 
Gregory, R., Saunders, J. R., & Saunders, V. A. (2008). Rule-based modelling of conjugative plasmid transfer and 
incompatibility. Bio Systems, 91(1), 201–215. 
 
Grover, J. P., & Wang, F.-B. (2019). Parasitic plasmid-host dynamics and host competition in flowing habitats. 
Mathematical Biosciences, 311, 109–124. 
 
Hall, J. P. J., Brockhurst, M. A., Dytham, C., & Harrison, E. (2017). The evolution of plasmid stability: Are 
infectious transmission and compensatory evolution competing evolutionary trajectories? Plasmid, 91, 90–95. 
 
Hall, J. P. J., Harrison, E., Lilley, A. K., Paterson, S., Spiers, A. J., & Brockhurst, M. A. (2015). Environmentally 
co-occurring mercury resistance plasmids are genetically and phenotypically diverse and confer variable 
context-dependent fitness effects. Environmental Microbiology, 17(12), 5008–5022. 
 
Hardy, K. G. (1975). Colicinogeny and related phenomena. Bacteriological Reviews, 39(4), 464–515. 
 
Harrison, E., & Brockhurst, M. A. (2012). Plasmid-mediated horizontal gene transfer is a coevolutionary process. 
Trends in Microbiology, 20(6), 262–267. 
 
Harrison, E., Dytham, C., Hall, J. P. J., Guymer, D., Spiers, A. J., Paterson, S., & Brockhurst, M. A. (2016). Rapid 
compensatory evolution promotes the survival of conjugative plasmids. Mobile Genetic Elements, 6(3), e1179074. 
 
Harrison, E., Wood, A. J., Dytham, C., Pitchford, J. W., Truman, J., Spiers, A., Paterson, S., & Brockhurst, M. A. 
(2015). Bacteriophages limit the existence conditions for conjugative plasmids. mBio, 6(3), e00586. 
 
Hellweger, F. L., Clegg, R. J., Clark, J. R., Plugge, C. M., & Kreft, J.-U. (2016). Advancing microbial sciences by 
individual-based modelling. Nature Reviews. Microbiology, 14(7), 461–471. 
 
Hsu, S.-B., & Tzeng, Y.-H. (2002). Plasmid-bearing, plasmid-free organisms competing for two complementary 
nutrients in a chemostat. Mathematical Biosciences, 179(2), 183–206. 
 
Hsu, T.-M., & Chang, Y.-R. (2019). High-Copy-Number Plasmid Segregation---Single-Molecule Dynamics in 
Single Cells. Biophysical Journal, 116(5), 772–780. 
 
Hyland, E. M., Wallace, E. W. J., & Murray, A. W. (2014). A model for the evolution of biological specificity: a 
cross-reacting DNA-binding protein causes plasmid incompatibility. Journal of Bacteriology, 196(16), 3002–3011. 



 
Ilhan, J., Kupczok, A., Woehle, C., Wein, T., Hülter, N. F., Rosenstiel, P., Landan, G., Mizrahi, I., & Dagan, T. 
(2019). Segregational Drift and the Interplay between Plasmid Copy Number and Evolvability. Molecular Biology 
and Evolution, 36(3), 472–486. 
 
Imran, M., Jones, D., & Smith, H. (2005). Biofilms and the plasmid maintenance question. In Mathematical 
Biosciences (Vol. 193, Issue 2, pp. 183–204). 
 
Ishii, K., Hashimoto-Gotoh, T., & Matsubara, K. (1978). Random replication and random assortment model for 
plasmid incompatibility in bacteria. Plasmid, 1(4), 435–445. 
 
Jiang, Y., Zhang, Y., Lu, J., Wang, Q., Cui, Y., Wang, Y., Quan, J., Zhao, D., Du, X., Liu, H., Li, X., Wu, X., Hua, 
X., Feng, Y., & Yu, Y. (2020). Clinical relevance and plasmid dynamics of mcr-1-positive Escherichia coli in China: 
a multicentre case-control and molecular epidemiological study. The Lancet Microbe, 1(1), e24–e33. 
 
Jordt, H., Stalder, T., Kosterlitz, O., Ponciano, J. M., Top, E. M., & Kerr, B. (2020). Coevolution of host--plasmid 
pairs facilitates the emergence of novel multidrug resistance. In Nature Ecology & Evolution. 
 
Joyce, P., Abdo, Z., Ponciano, J. M., De Gelder, L., Forney, L. J., & Top, E. M. (2005). Modeling the impact of 
periodic bottlenecks, unidirectional mutation, and observational error in experimental evolution. Journal of 
Mathematical Biology, 50(6), 645–662. 
 
Keasling, J. D., & Palsson, B. O. (1989a). On the kinetics of plasmid replication. Journal of Theoretical Biology, 
136(4), 487–492. 
 
Keasling, J. D., & Palsson, B. O. (1989b). ColE1 plasmid replication: a simple kinetic description from a structured 
model. Journal of Theoretical Biology, 141(4), 447–461. 
 
Kentzoglanakis, K., García López, D., Brown, S. P., & Goldstein, R. A. (2013). The evolution of collective restraint: 
policing and obedience among non-conjugative plasmids. PLoS Computational Biology, 9(4), e1003036. 
 
Klümper, U., Recker, M., Zhang, L., Yin, X., Zhang, T., Buckling, A., & Gaze, W. H. (2019). Selection for 
antimicrobial resistance is reduced when embedded in a natural microbial community. The ISME Journal, 13(12), 
2927–2937. 
 
Kreft, J.-U. (2014). Mathematical Modeling of Plasmid Dynamics. In E. Bell (Ed.), Molecular Life Sciences: An 
Encyclopedic Reference (pp. 1–6). Springer New York. 
 
Krone, S. M., Lu, R., Fox, R., Suzuki, H., & Top, E. M. (2007). Modelling the spatial dynamics of plasmid transfer 
and persistence. Microbiology, 153(Pt 8), 2803–2816. 
 
Kuo, H., & Keasling, J. D. (1996). A Monte Carlo simulation of plasmid replication during the bacterial division 
cycle. Biotechnology and Bioengineering, 52(6), 633–647. 
 
Lagido, C., Wilson, I. J., Glover, L. A., & Prosser, J. I. (2003). A model for bacterial conjugal gene transfer on solid 
surfaces. FEMS Microbiology Ecology, 44(1), 67–78. 
 
Landis, W. G., Lenart, L. A., & Spromberg, J. A. (2000). Dynamics of Horizontal Gene Transfer and the Ecological 
Risk Assessment of Genetically Engineered Organisms. Human and Ecological Risk Assessment, 6(5), 875–899. 
 
Lanzas, C., Lu, Z., & Gröhn, Y. T. (2011). Mathematical modeling of the transmission and control of foodborne 
pathogens and antimicrobial resistance at preharvest. Foodborne Pathogens and Disease, 8(1), 1–10. 
 
Lau, B. T. C., Malkus, P., & Paulsson, J. (2013). New quantitative methods for measuring plasmid loss rates 
reveal unexpected stability. Plasmid, 70(3), 353–361. 
 
Lázár, V., & Kishony, R. (2019). Transient antibiotic resistance calls for attention. Nat Microbiol, 4(10), 
1606–1607. 



 
Leclerc, Q. J., Lindsay, J. A., & Knight, G. M. (2019). Mathematical modelling to study the horizontal transfer of 
antimicrobial resistance genes in bacteria: current state of the field and recommendations. Journal of the Royal 
Society, Interface / the Royal Society, 16(157), 20190260. 
 
Ledda, A., Cummins, M., Shaw, L. P., Jauneikaite, E., Cole, K., Lasalle, F., Barry, D., Rosmarin, C., Anaraki, S., 
Wareham, D., Stoesser, N., Paul, J., Manuel, R., Cherian, B. P., & Didelot, X. (2020). Hospital outbreak of 
carbapenem-resistant Enterobacteriales associated with an OXA-48 plasmid carried mostly by Escherichia coli 
ST399. 
 
Ledda, A., & Ferretti, L. (2014). A simple model for the distribution of plasmid lengths. arXiv [q-bio.PE]. arXiv. 
http://arxiv.org/abs/1411.0297 
 
Lee, C., Kim, J., Shin, S. G., & Hwang, S. (2006). Absolute and relative QPCR quantification of plasmid copy 
number in Escherichia coli. Journal of Biotechnology, 123(3), 273–280. 
 
Lee’, S. B., & Bailey, J. E. (1984a). A Mathematical Model for Xdv Plasmid Replication: Analysis of Copy Number 
Mutants. Plasmid, 11, 166–177. 
 
Lee’, S. B., & Bailey, J. E. (1984b). A Mathematical Model for Xdv Plasmid Replication: Analysis of Wild-Type 
Plasmid. Plasmid, 11, 151–165. 
 
Lehtinen, S., Huisman, J. S., & Bonhoeffer, S. (2020). Evolutionary mechanisms that determine which bacterial 
genes are carried on plasmids. bioRxiv 2020.08.04.236455. 
 
Leipold, R. J., Krewson, C. E., & Dhurjati, P. (1994). Mathematical model of temperature-sensitive plasmid 
replication. Plasmid, 32(2), 131–167. 
 
Lenski, R. E., & Bouma, J. E. (1987). Effects of segregation and selection on instability of plasmid pACYC184 in 
Escherichia coli B. Journal of Bacteriology, 169(11), 5314–5316. 
 
Leon-Sampedro, R., DelaFuente, J., & Diaz-Agero, C. (2020). Dissemination routes of the carbapenem resistance 
plasmid pOXA-48 in a hospital setting. bioRxiv. 
 
Levin, B. R., Baquero, F., & Johnsen, P. J. (2014). A model-guided analysis and perspective on the evolution and 
epidemiology of antibiotic resistance and its future. Current Opinion in Microbiology, 19, 83–89. 
 
Levin, B. R., & Stewart, F. M. (1980). The population biology of bacterial plasmids: a priori conditions for the 
existence of mobilizable nonconjugative factors. Genetics, 94(2), 425–443. 
 
Levin, B. R., Stewart, F. M., & Rice, V. A. (1979). The kinetics of conjugative plasmid transmission: fit of a simple 
mass action model. Plasmid, 2(2), 247–260. 
 
Li, L., Dechesne, A., Madsen, J. S., Nesme, J., Sørensen, S. J., & Smets, B. F. (2020). Plasmids persist in a 
microbial community by providing fitness benefit to multiple phylotypes. The ISME Journal, 14(5), 1170–1181. 
 
Licht, T. R., Christensen, B. B., Krogfelt, K. A., & Molin, S. (1999). Plasmid transfer in the animal intestine and 
other dynamic bacterial populations: the role of community structure and environment. Microbiology, 145 ( Pt 9), 
2615–2622. 
 
Lili, L. N., Britton, N. F., & Feil, E. J. (2007). The persistence of parasitic plasmids. Genetics, 177(1), 399–405. 
 
Loftie-Eaton, W., Bashford, K., Quinn, H., Dong, K., Millstein, J., Hunter, S., Thomason, M. K., Merrikh, H., 
Ponciano, J. M., & Top, E. M. (2017). Compensatory mutations improve general permissiveness to antibiotic 
resistance plasmids. Nat Ecol Evol, 1(9), 1354–1363. 
 



Loftie-Eaton, W., Yano, H., Burleigh, S., Simmons, R. S., Hughes, J. M., Rogers, L. M., Hunter, S. S., Settles, M. 
L., Forney, L. J., Ponciano, J. M., & Top, E. M. (2016). Evolutionary Paths That Expand Plasmid Host-Range: 
Implications for Spread of Antibiotic Resistance. Molecular Biology and Evolution, 33(4), 885–897. 
 
Lopatkin, A. J., Huang, S., Smith, R. P., Srimani, J. K., Sysoeva, T. A., Bewick, S., Karig, D. K., & You, L. (2016). 
Antibiotics as a selective driver for conjugation dynamics. Nat Microbiol, 1(6), 16044. 
 
Lopatkin, A. J., Meredith, H. R., Srimani, J. K., Pfeiffer, C., Durrett, R., & You, L. (2017). Persistence and reversal 
of plasmid-mediated antibiotic resistance. Nature Communications, 8(1), 1689. 
 
Lundquist, P. D., & Levin, B. R. (1986). Transitory derepression and the maintenance of conjugative plasmids. 
Genetics, 113(3), 483–497. 
 
Macdonald, J., Smets, B., & Rittmann, B. (1992). The effects of energy availability on the conjugative-transfer 
kinetics of plasmid RP4. In Water Research (Vol. 26, Issue 4, pp. 461–468). 
 
Macken, C. A., Levin, S. A., & Waldstätter, R. (1994). The dynamics of bacteria-plasmid systems. Journal of 
Mathematical Biology, 32(2), 123–145. 
 
MacLean, R. C., & San Millan, A. (2015). Microbial Evolution: Towards Resolving the Plasmid Paradox. Current 
Biology: CB, 25(17), R764–R767. 
 
Massoudieh, A., Mathew, A., Lambertini, E., Nelson, K. E., & Ginn, T. R. (2007). Horizontal Gene Transfer on 
Surfaces in Natural Porous Media: Conjugation and Kinetics. Vadose Zone Journal: VZJ, 6(2), 306–315. 
 
Mayer, L. W. (1988). Use of plasmid profiles in epidemiologic surveillance of disease outbreaks and in tracing the 
transmission of antibiotic resistance. Clinical Microbiology Reviews, 1(2), 228–243. 
 
Mc Ginty, S. É., Lehmann, L., Brown, S. P., & Rankin, D. J. (2013). The interplay between relatedness and 
horizontal gene transfer drives the evolution of plasmid-carried public goods. Proceedings. Biological Sciences / 
The Royal Society, 280(1761), 20130400. 
 
Mc Ginty, S. É., & Rankin, D. J. (2012). The evolution of conflict resolution between plasmids and their bacterial 
hosts. Evolution; International Journal of Organic Evolution, 66(5), 1662–1670. 
 
Mc Ginty, S. E., Rankin, D. J., & Brown, S. P. (2011). Horizontal gene transfer and the evolution of bacterial 
cooperation. Evolution; International Journal of Organic Evolution, 65(1), 21–32. 
 
Mei, H., Arbeithuber, B., Cremona, M. A., DeGiorgio, M., & Nekrutenko, A. (2019). A High-Resolution View of 
Adaptive Event Dynamics in a Plasmid. Genome Biology and Evolution, 11(10), 3022–3034. 
 
Merkey, B. V., Lardon, L. A., Seoane, J. M., Kreft, J.-U., & Smets, B. F. (2011). Growth dependence of 
conjugation explains limited plasmid invasion in biofilms: an individual-based modelling study. Environmental 
Microbiology, 13(9), 2435–2452. 
 
Miller, M. B., & Bassler, B. L. (2001). Quorum sensing in bacteria. Annual Review of Microbiology, 55, 165–199. 
 
Million-Weaver, S., & Camps, M. (2014). Mechanisms of plasmid segregation: have multicopy plasmids been 
overlooked? Plasmid, 75, 27–36. 
 
Mochizuki, A., Yahara, K., Kobayashi, I., & Iwasa, Y. (2006). Genetic addiction: selfish gene’s strategy for 
symbiosis in the genome. Genetics, 172(2), 1309–1323. 
 
Molin, S., & Tolker-Nielsen, T. (2003). Gene transfer occurs with enhanced efficiency in biofilms and induces 
enhanced stabilisation of the biofilm structure. Current Opinion in Biotechnology, 14(3), 255–261. 
 
Mongold, J. A. (1992). Theoretical Implications for the Evolution of Postsegregational Killing by Bacterial 
Plasmids. The American Naturalist, 139(4), 677–689. 



 
Moser, H. (1958). The dynamics of bacterial populations maintained in the chemostat. The Dynamics of Bacterial 
Populations Maintained in the Chemostat. 
 
Müller, G., Stock, A., Löbus, J.-U., & Roth, M. (1991). Mathematical Models of Plasmid Partitioning in Unicellular 
Bacteria and in Streptomycetes. In S. Baumberg, H. Krügel, & D. Noack (Eds.), Genetics and Product Formation 
in Streptomyces (pp. 315–320). Springer US. 
 
Münch, K., Münch, R., Biedendieck, R., Jahn, D., & Müller, J. (2019). Evolutionary model for the unequal 
segregation of high copy plasmids. PLoS Computational Biology, 15(3), e1006724. 
 
Munck, C., Sheth, R. U., Freedberg, D. E., & Wang, H. H. (2020). Recording mobile DNA in the gut microbiota 
using an Escherichia coli CRISPR-Cas spacer acquisition platform. Nature Communications, 11(1), 95. 
 
Nogueira, T., Rankin, D. J., Touchon, M., Taddei, F., Brown, S. P., & Rocha, E. P. C. (2009). Horizontal gene 
transfer of the secretome drives the evolution of bacterial cooperation and virulence. Current Biology: CB, 19(20), 
1683–1691. 
 
Nordström, K. (1985). Control of plasmid replication: theoretical considerations and practical solutions. Basic Life 
Sciences, 30, 189–214. 
 
Nordström, K., & Aagaard-Hansen, H. (1984). Maintenance of bacterial plasmids: comparison of theoretical 
calculations and experiments with plasmid R1 in Escherichia coli. Molecular & General Genetics: MGG, 197(1), 
1–7. 
 
Nordstrom, K., & Austin, S. J. (1989). Mechanisms that Contribute to the Stable Segregation of Plasmids. In 
Annual Review of Genetics (Vol. 23, Issue 1, pp. 37–69). 
 
Nordström, K., Molin, S., & Aagaard-Hansen, H. (1980). Partitioning of plasmid R1 in Escherichia coli. II. 
Incompatibility properties of the partitioning system. Plasmid, 4(3), 332–339. 
 
Nordström, K., Molin, S., & Light, J. (1984). Control of replication of bacterial plasmids: genetics, molecular 
biology, and physiology of the plasmid R1 system. Plasmid, 12(2), 71–90. 
 
Norman, A., Hansen, L. H., & Sørensen, S. J. (2009). Conjugative plasmids: vessels of the communal gene pool. 
Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 364(1527), 2275–2289. 
 
Novick, R. P., & Hoppensteadt, F. C. (1978). On plasmid incompatibility. Plasmid, 1(4), 421–434. 
 
Novick, R. P., & Schwesinger, M. (1976). Independence of plasmid incompatibility and replication control 
functions in Staphylococcus aureus. Nature, 262(5569), 623–626. 
 
Novozhilov, A. S., Karev, G. P., & Koonin, E. V. (2005). Mathematical modeling of evolution of horizontally 
transferred genes. Molecular Biology and Evolution, 22(8), 1721–1732. 
 
Partridge, S. R., Kwong, S. M., Firth, N., & Jensen, S. O. (2018). Mobile Genetic Elements Associated with 
Antimicrobial Resistance. In Clinical Microbiology Reviews (Vol. 31, Issue 4). 
 
Paulsson, J. (2002). Multileveled selection on plasmid replication. Genetics, 161(4), 1373–1384. 
 
Paulsson, J., & Ehrenberg, M. (1998). Trade-off between segregational stability and metabolic burden: a 
mathematical model of plasmid ColE1 replication control. Journal of Molecular Biology, 279(1), 73–88. 
 
Paulsson, J., & Ehrenberg, M. (2001). Noise in a minimal regulatory network: plasmid copy number control. 
Quarterly Reviews of Biophysics, 34(1), 1–59. 
 



Peña-Miller, R., Rodríguez-González, R., MacLean, R. C., & San Millan, A. (2015). Evaluating the effect of 
horizontal transmission on the stability of plasmids under different selection regimes. Mobile Genetic Elements, 
5(3), 1–5. 
 
Peng, B., & Kimmel, M. (2005). simuPOP: a forward-time population genetics simulation environment. 
Bioinformatics , 21(18), 3686–3687. 
 
Philipsen, K. R., Christiansen, L. E., Hasman, H., & Madsen, H. (2010). Modelling conjugation with stochastic 
differential equations. Journal of Theoretical Biology, 263(1), 134–142. 
 
Pilla, G., & Tang, C. M. (2018). Going around in circles: virulence plasmids in enteric pathogens. Nature Reviews. 
Microbiology, 16(8), 484–495. 
 
Polisky, B., Gelfand, D., & Michael Shepard, H. (1980). ColEl plasmid replication control. Plasmids and 
Transposons, 313–323. 
 
Ponciano, J. M., De Gelder, L., Top, E. M., & Joyce, P. (2007). The population biology of bacterial plasmids: a 
hidden Markov model approach. Genetics, 176(2), 957–968. 
 
Price, G. R. (1970). Selection and covariance. Nature, 227(5257), 520–521. 
 
Ramiro, R. S., Durão, P., Bank, C., & Gordo, I. (2020). Low mutational load and high mutation rate variation in gut 
commensal bacteria. PLoS Biology, 18(3), e3000617. 
 
Rankin, D. J., Ginty, S. E. M., Nogueira, T., Touchon, M., Taddei, F., Rocha, E. P. C., & Brown, S. P. (2011). 
Bacterial cooperation controlled by mobile elements: kin selection and infectivity are part of the same process. 
Heredity, 107(3), 279–281. 
 
Rankin, D. J., Rocha, E. P. C., & Brown, S. P. (2011). What traits are carried on mobile genetic elements, and 
why? Heredity, 106(1), 1–10. 
 
Reding, R. C. (2020). Asymmetric costs benefit the carriage of non-tranmissible plasmids. bioRxiv,  810259. 
 
Reyes-Lamothe, R., Tran, T., Meas, D., Lee, L., Li, A. M., Sherratt, D. J., & Tolmasky, M. E. (2014). High-copy 
bacterial plasmids diffuse in the nucleoid-free space, replicate stochastically and are randomly partitioned at cell 
division. Nucleic Acids Research, 42(2), 1042–1051. 
 
Rodriguez-Beltran, J., Hernandez-Beltran, J. C. R., DelaFuente, J., Escudero, J. A., Fuentes-Hernandez, A., 
MacLean, R. C., Peña-Miller, R., & San Millan, A. (2018). Multicopy plasmids allow bacteria to escape from fitness 
trade-offs during evolutionary innovation. Nat Ecol Evol, 2(5), 873–881. 
 
Rodriguez-Beltran, J., Sørum, V., Toll-Riera, M., de la Vega, C., Peña-Miller, R., & San Millan, A. (2019). Genetic 
dominance governs the evolution and spread of mobile genetic elements in bacteria. bioRxiv, 863472. 
 
Rozkov, A., Avignone-Rossa, C. A., Ertl, P. F., Jones, P., O’Kennedy, R. D., Smith, J. J., Dale, J. W., & Bushell, 
M. E. (2004). Characterization of the metabolic burden on Escherichia coli DH1 cells imposed by the presence of 
a plasmid containing a gene therapy sequence. Biotechnology and Bioengineering, 88(7), 909–915. 
 
Salje, J. (2010). Plasmid segregation: how to survive as an extra piece of DNA. Critical Reviews in Biochemistry 
and Molecular Biology, 45(4), 296–317. 
 
San Millan, A. (2018). Evolution of Plasmid-Mediated Antibiotic Resistance in the Clinical Context. Trends in 
Microbiology, 26(12), 978–985. 
 
San Millan, A., Escudero, J. A., Gifford, D. R., Mazel, D., & MacLean, R. C. (2016). Multicopy plasmids potentiate 
the evolution of antibiotic resistance in bacteria. Nat Ecol Evol, 1(1), 10. 
 



San Millan, A., & MacLean, R. C. (2017). Fitness Costs of Plasmids: a Limit to Plasmid Transmission. Microbiol 
Spectr, 5(5). 
 
San Millan, A., Peña-Miller, R., Toll-Riera, M., Halbert, Z. V., McLean, A. R., Cooper, B. S., & MacLean, R. C. 
(2014). Positive selection and compensatory adaptation interact to stabilize non-transmissible plasmids. Nature 
Communications, 5, 5208. 
 
San Millan, A., Toll-Riera, M., Qi, Q., & MacLean, R. C. (2015). Interactions between horizontally acquired genes 
create a fitness cost in Pseudomonas aeruginosa. Nature Communications, 6, 6845. 
 
Santer, M., & Uecker, H. (2020). Evolutionary Rescue and Drug Resistance on Multicopy Plasmids. Genetics, 
215(3), 847–868. 
 
Seneta, E., & Tavaré, S. (1983). Some stochastic models for plasmid copy number. Theoretical Population 
Biology, 23(2), 241–256. 
 
Seneta, E., & TavarÈ, S. (1982). Stochastic models for plasmid copy number. First Rocky Mountain Regional 
Conference on Medical Applications of Statistics. University of Colorado Health Sciences Center, Denver, 27–33. 
 
Seo, J. H., & Bailey, J. E. (1985). A segregated model for plasmid content and product synthesis in unstable 
binary fission recombinant organisms. Biotechnology and Bioengineering, 27(2), 156–166. 
 
Simonsen, L. (1991). The existence conditions for bacterial plasmids: Theory and reality. Microbial Ecology, 22(1), 
187–205. 
 
Simonsen, L., Gordon, D. M., Stewart, F. M., & Levin, B. R. (1990). Estimating the rate of plasmid transfer: an 
end-point method. Journal of General Microbiology, 136(11), 2319–2325. 
 
Slater, F. R., Bailey, M. J., Tett, A. J., & Turner, S. L. (2008). Progress towards understanding the fate of plasmids 
in bacterial communities. FEMS Microbiology Ecology, 66(1), 3–13. 
 
Smalla, K., Jechalke, S., & Top, E. M. (2015). Plasmid Detection, Characterization, and Ecology. In M. E. 
Tolmasky & J. C. Alonso (Eds.), Plasmids (Vol. 65, pp. 445–458). ASM Press. 
 
Smets, B. F., Rittmann, B. E., & Stahl, D. A. (1993). The specific growth rate of Pseudomonas putida PAW1 
influences the conjugal transfer rate of the TOL plasmid. Applied and Environmental Microbiology, 59(10), 
3430–3437. 
 
Smillie, C., Garcillán-Barcia, M. P., Francia, M. V., Rocha, E. P. C., & de la Cruz, F. (2010). Mobility of plasmids. 
Microbiology and Molecular Biology Reviews: MMBR, 74(3), 434–452. 
 
Smith, J. (2001). The social evolution of bacterial pathogenesis. Proceedings. Biological Sciences / The Royal 
Society, 268(1462), 61–69. 
 
Song, H.-X., Peng, Y.-Y., & Zhu, Z.-F. (2006). Competition between plasmid-bearing and plasmid-free organisms 
in the host: population dynamics and antibiotic resistance. Medical Principles and Practice: International Journal 
of the Kuwait University, Health Science Centre, 15(6), 436–442. 
 
Stephanopoulos, G., & Lapudis, G. R. (1988). Chemostat dynamics of plasmid-bearing, plasmid-free mixed 
recombinant cultures. In Chemical Engineering Science (Vol. 43, Issue 1, pp. 49–57). 
 
Stewart, F. M., & Levin, B. R. (1977). The Population Biology of Bacterial Plasmids: A PRIORI Conditions for the 
Existence of Conjugationally Transmitted Factors. Genetics, 87(2), 209–228. 
 
Summers, D. K. (1991). The kinetics of plasmid loss. Trends in Biotechnology, 9(8), 273–278. 
 
Summers, D. K., Beton, C. W., & Withers, H. L. (1993). Multicopy plasmid instability: the dimer catastrophe 
hypothesis. Molecular Microbiology, 8(6), 1031–1038. 



 
Svara, F., & Rankin, D. J. (2011). The evolution of plasmid-carried antibiotic resistance. BMC Evolutionary 
Biology, 11, 130. 
 
Sýkora, P. (1992). Macroevolution of plasmids: a model for plasmid speciation. Journal of Theoretical Biology, 
159(1), 53–65. 
 
Tazzyman, S. J., & Bonhoeffer, S. (2013). Fixation probability of mobile genetic elements such as plasmids. 
Theoretical Population Biology, 90, 49–55. 
 
Tepekule, B., zur Wiesch, P. A., Kouyos, R. D., & Bonhoeffer, S. (2019). Quantifying the impact of treatment 
history on plasmid-mediated resistance evolution in human gut microbiota. In Proceedings of the National 
Academy of Sciences (Vol. 116, Issue 46, pp. 23106–23116). 
 
The Population Biology of Bacterial Plasmids: A PRIORI Conditions for the Existence of Conjugationally 
Transmitted Factors. (n.d.). 
 
Tokuda, M., Suzuki, H., Yanagiya, K., Yuki, M., Inoue, K., Ohkuma, M., Kimbara, K., & Shintani, M. (2020). 
Determination of Plasmid pSN1216-29 Host Range and the Similarity in Oligonucleotide Composition Between 
Plasmid and Host Chromosomes. Frontiers in Microbiology, 11, 1187. 
 
Turner, P. E., Cooper, V. S., & Lenski, R. E. (1998). TRADEOFF BETWEEN HORIZONTAL AND VERTICAL 
MODES OF TRANSMISSION IN BACTERIAL PLASMIDS. Evolution; International Journal of Organic Evolution, 
52(2), 315–329. 
 
van Dijk, B., Hogeweg, P., Doekes, H. M., & Takeuchi, N. (2020). Slightly beneficial genes are retained by 
bacteria evolving DNA uptake despite selfish elements. eLife, 9. 
 
van Vliet, S., & Doebeli, M. (2019). The role of multilevel selection in host microbiome evolution. Proceedings of 
the National Academy of Sciences of the United States of America, 116(41), 20591–20597. 
 
Vlachos, C., Gregory, R., Paton, R. C., Saunders, J. R., & Wu, Q. H. (2004). Individual-based modelling of 
bacterial ecologies and evolution. Comparative and Functional Genomics, 5(1), 100–104. 
 
Vogan, A. A., & Higgs, P. G. (2011). The advantages and disadvantages of horizontal gene transfer and the 
emergence of the first species. Biology Direct, 6, 1. 
 
Volkova, V. V., Lanzas, C., Lu, Z., & Gröhn, Y. T. (2012). Mathematical model of plasmid-mediated resistance to 
ceftiofur in commensal enteric Escherichia coli of cattle. PloS One, 7(5), e36738. 
 
Wang, X., Zhao, L., Zhang, L., Wu, Y., Chou, M., & Wei, G. (2018). Comparative symbiotic plasmid analysis 
indicates that symbiosis gene ancestor type affects plasmid genetic evolution. Letters in Applied Microbiology, 
67(1), 22–31. 
 
Watve, M. M., Dahanukar, N., & Watve, M. G. (2010). Sociobiological control of plasmid copy number in bacteria. 
PloS One, 5(2), e9328. 
 
Wein, T., Hülter, N. F., Mizrahi, I., & Dagan, T. (2019). Emergence of plasmid stability under non-selective 
conditions maintains antibiotic resistance. Nature Communications, 10(1), 2595. 
 
Werbowy, O., Werbowy, S., & Kaczorowski, T. (2017). Plasmid stability analysis based on a new theoretical 
model employing stochastic simulations. PloS One, 12(8), e0183512. 
 
Werisch, M., Berger, U., & Berendonk, T. U. (2017). Conjugative plasmids enable the maintenance of low cost 
non-transmissible plasmids. Plasmid, 91, 96–104. 
 
Wiedenbeck, J., & Cohan, F. M. (2011). Origins of bacterial diversity through horizontal genetic transfer and 
adaptation to new ecological niches. FEMS Microbiology Reviews, 35(5), 957–976. 



 
Yuan, S., Zhang, W., & Zhao, Y. (2011). Bifurcation analysis of a model of plasmid-bearing, plasmid-free 
competition in a pulsed chemostat with an internal inhibitor. IMA Journal of Applied Mathematics , 76(2), 277–297. 
 
Yurtsev, E. A., Chao, H. X., Datta, M. S., Artemova, T., & Gore, J. (2013). Bacterial cheating drives the population 
dynamics of cooperative antibiotic resistance plasmids. Molecular Systems Biology, 9, 683. 
 
Zhong, X., Krol, J. E., Top, E. M., & Krone, S. M. (2010). Accounting for mating pair formation in plasmid 
population dynamics. Journal of Theoretical Biology, 262(4), 711–719. 
 
Zwanzig, M., Harrison, E., Brockhurst, M. A., Hall, J. P. J., Berendonk, T. U., & Berger, U. (2019). Mobile 
Compensatory Mutations Promote Plasmid Survival. mSystems, 4(1). 
 



Capítulo 3

Estabilidad de plásmidos multicopia: un mo-

delo de genética de poblaciones

3.1 Introducción

En la revisión previa hemos analizado una gran cantidad de trabajos sobre mo-
delación de plásmidos. Los enfoques de modelación, así como sus objetivos son muy
amplios; desde reproducir y entender experimentos de laboratorio, optimizar produc-
ción de proteínas recombinantes, atacar problemas asociados a resistencia a antibióticos
o entender procesos evolutivos. En este último caso, la coexistencia de subpoblaciones
con plásmidos y libres de plásmidos puede ser entendida como una estrategia evolutiva
conocida como apuesta-cobertura (Bayramoglu et al. 2017), ya que la subpoblación que
porta plásmidos paga un costo con el fin de contender a futuros ambientes hostiles. Sin
embargo, bajo la luz de la evolución, el fenómeno más intrigante, quizá, es la parado-
ja de plásmidos, ya que su elucidación implica múltiples procesos y sus consecuencias
tienen aplicaciones en biotecnología y salud.

En este capítulo nos enfocaremos a estudiar la estabilidad de plásmidos mediante
un modelo de genética de poblaciones, una aproximación que sorprendentemente no se
ha utilizado para estudiar este problema. En particular nos centraremos en estudiar la
estabilidad de plásmidos multicopia, utilizando como modelo experimental un plásmido
previamente caracterizado (San Millan et al. 2016). Este plásmido, pBGT, es de tipo
ColE1, por lo que replica por medio de RNAI y RNAII y, al no poseer mecanismos de
muerte post-segregación ni de partición activa, es segregado al azar.

El modelo postulado es resultado de una colaboración con colegas matemáticos del
Instituto de Matemáticas y del Instituto de Investigaciones en Matemáticas Aplicadas y
Sistemas de la UNAM. Dicho modelo nos permitió encontrar condiciones específicas que
permiten aumentar la estabilidad de los plásmidos a largo plazo, por ejemplo el rango de
números de copias que para plásmidos con un costo especifico maximiza su permanencia
en ambientes sin selección. De igual manera, se propone una estrategia para optimizar
regímenes de selección que garanticen que un plásmido con características específicas
no se extinga la población, o bien, encontrar la dosis de antibiótico que mantiene a una
población en determinada proporción de plásmidos.

Nota: este trabajo está en progreso. Hace falta realizar un análisis profundo de la exploración de
parámetros.
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ABSTRACT
Multicopy antibiotic resistance plasmids can confer some selective advantage to bacteria carrying them but are costly to
maintain. We consider a type of plasmids without horizontal transfer, for which the number of copies per cell is very
well conserved. Here we use a population genetics model to argue that the probability of plasmid loss depends on its
copy number and a trade-off between the plasmid cost and the frequency of positive selection. Moreover, our model
provides into how antibiotics have to be administrated in order to promote plasmid maintenance or loss. We show some
experimental results that allow us to validate our model.

KEYWORDS Multicopy plasmids, Wright-Fisher model, Experimental microbiology

Introduction

Prokaryotes transfer DNA at high rates within microbial communities through mobile genetic elements
such as bacteriophages (Chen et al. 2018), transposons (Chen and Dubnau 2004) or extra-chromosomal
DNA molecules known as plasmids (Funnell and Phillips 2004). Crucially, plasmids have core genes
that allow them to replicate independently of the cellular chromosome but also encode for accessory
genes that provide their bacterial hosts with new functions and increased fitness in novel or stressful
environmental conditions (Groisman and Ochman 1996). In particular, as plasmids often carry antibiotic-
resistance genes, they have been identified as significant factors contributing to the current global health
crisis that represents drug resistance of clinically-relevant pathogens (San Millan 2018).

It is generally assumed that, in the absence of selection for plasmid-encoded genes, most plasmids
represent a burden for their bacterial hosts (San Millan and Maclean 2017). As a result, plasmid-bearing
populations have a competitive disadvantage against plasmid-free cells, thus threatening plasmids to
be cleared from the population through purifying selection (Vogwill and MacLean 2015; Baltrus 2013).
To avoid extinction, some plasmids overcome segregational instability by transmitting horizontally to
lineages with increased fitness. Previous theoretical results have established sufficient conditions for
plasmid maintenance, namely that the rate of horizontal transmission has to be larger than the combined
effect of segregational loss and fitness cost (Stewart and Levin 1977; Bergstrom et al. 2000). Also, some
plasmids encode molecular mechanisms that increase their stability, for instance, toxin-antitoxin systems
that kill plasmid-free cells (Mochizuki et al. 2006), or active partitioning mechanisms that ensure the
symmetric segregation of plasmids upon division (Salje 2010).

However, active partitioning and post-segregational killing mechanisms, and in particular the molecu-
lar machinery necessary to conjugate, require many genes and therefore are only found in large plasmids
(>20Kb). For small plasmids to be maintained in the population, they tend to be present in many
copies per cell, therefore decreasing the probability of producing a plasmid-free cell when randomly
segregating plasmids at the moment of division. But this reduced rate of segregational loss is not
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sufficient to explain the stable persistence of costly plasmids in the population, and therefore previous
theoretical and experimental studies have argued that persistence of non-conjugative plasmids can also
be explained with intermittent periods of positive selection (Stevenson et al. 2018; Wein et al. 2020) or
through compensatory mutations that ameliorate the fitness cost (San Millan et al. 2014; Harrison et al.
2012). Interestingly, these small, multi-copy plasmids represent a large fraction of all plasmids identified
in genomic sequences (Smillie et al. 2010), suggesting they must provide an evolutionary benefit for
bacterial communities, even if they are not mobilizable.

Indeed, recent studies have shown that multi-copy plasmids can also have important consequences in
the evolutionary dynamics of bacterial populations. For instance, as multi-copy plasmids are present in
10-100 copies per cell, the mutational target is increased several orders of magnitude. Moreover, once a
beneficial mutation appears, multi-copy plasmids can subsequently amplify its expression, resulting in
an accelerated rate of adaptation to adverse environmental conditions (San Millan 2018) and promoting
evolutionary rescue (Santer and Uecker 2020). Also, multi-copy plasmids increase the genetic diversity of
the population, thus enhancing survival in fluctuating environments and allowing bacterial populations
to circumvent evolutionary trade-offs (Rodriguez-Beltran et al. 2018). Furthermore, random segregation
and replication of plasmids produce a complex interaction between plasmid copy-number, genetic
dominance, and segregational drift, with important consequences in the fixation probability of beneficial
mutations (Ilhan et al. 2019) and the repertoire of genes that can be carried in mobile genetic elements
(Rodriguez-Beltran et al. 2019).

While the benefits of carrying plasmids may be clear under certain circumstances, it is also patent that
their maintenance can be associated with a considerable energetic cost. For instance, increasing plasmid
copy-number can be associated with an increase in fitness and a reduced probability of segregational
loss, but can also be associated with a larger fitness cost in the absence of selection for plasmid-encoded
genes. This trade-off poses the following fundamental questions: when is it evolutionary optimal
for cells to carry plasmids? What is the optimal copy-number? To address these questions, we will
use population genetics approach to evaluate the stability of multi-copy plasmids as a function of the
strength and duration of selection in favour of the plasmids. In particular, our model is based on a classic
Wright-Fisher approach with two cell types: plasmid-bearing (type 1) and plasmid-free cells (type 0).

To determine environmental conditions that stabilize plasmids in populations, we will consider that
plasmids encode for a drug resistance gene that allows bacteria to survive exposure to an otherwise
lethal concentration of bactericidal antibiotic. We then consider intermittent periods of positive selection
where every T generations type 0 individuals are killed with probability p ∈ (0, 1]. Our main result
is that, when the frequency of antibiotic exposure is high, type 1 individuals will prevail and thus the
plasmid is stabilized in the population. To validate our theoretical results, we will use an experimental
model system consisting on Escherichia coli with a multi-copy plasmid (∼ 19 copies per cell) encoding a
GFP fluorescent marker and blaTEM-1, a drug-resistance gene that produces a β-lactamase that degrades
ampicillin and other β-lactam antibiotics (Salverda et al. 2010; San Millan 2018). By using population-
level measurements, we obtain fluorescence intensity data on the fraction of plasmid-bearing cells
present in the population after exposure to a range of selective pressures.

We conclude by arguing that, as the existence of plasmids in natural environments requires intermit-
tent periods of positive selection, the presence of plasmids contains information on the environment on
which a population has evolved. Indeed, the number of copies n associates the frequency of selection
with the energetic costs of plasmid maintenance. That is, there is a minimum frequency of drug exposure
that allows multiple copies to persist in the population, and, for each environmental regime, there is an
optimal number of plasmid copies.
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A Wright-Fisher model for multi-copy plasmid dynamics

We consider a discrete-time Wright-Fisher process to model the evolution of a population with fixed
population size N. There are 2 types of individuals. Type 1 individuals contain n copies of the plasmid.
Type 0 individuals contain no plasmids. Let us denote the number of plasmids carried by a type 1 cell
as n and argue that this is an important parameter; in one hand, the selective disadvantage of type 1
individuals due to the costs of carrying plasmids is assumed to be a constant multiplied by the number
of copies of plasmids. On the other hand, the number of copies determines the heritability of type 1
individuals.

Moreover, we will consider that, at the moment of division, each copy of the plasmid is randomly
segregated into one of the two new cells, and, once in the new host, the plasmids replicate until reaching
n copies. If, however, one of the two new cells have all the n copies, the other one will become type 0,
meaning that it will not carry any copy of the plasmids. This means that the daughter of a type 1 cell
is type 1 with probability 1− 2−n. As a result, plasmids are readily cleared from the population when
the number of copies is low, with the probability of transmitting this trait to their progeny increases
exponentially with n. We model the fitness cost associated with carrying plasmids by considering that
type 0 individuals have a selective advantage in T − 1 generations out of T. This, together with the loss
of plasmids during cell division, results in type 1 individuals driven to extinction in the population.

Let X(N)
i be the proportion of type 1 individuals at generation i. This type of individuals has some

selective disadvantage κN,n due to the cost of the plasmid maintenance. This means that each individual
at generation i + 1 chooses a type 1 parent with probability

(1− κN,n)X(N)
i

(1− κN,n)X(N)
i + 1− X(N)

i

.

We assume that κN,n is proportional to n. At the moment of a cell division, we suppose that plasmids
of the mother are uniformly spread between the two daughters. Of course, if a new born individual
receives no plasmid from her type 1 mother, she switches to type 0. This can be modeled as a mutation
from type 1 to type 0, occurring with probability µN,n = 2−n.

To see the accumulated effects of the selection, the "mutation" and the genetic drift, we need κN,n and
µN,n to be of order 1/N.The first condition is fulfilled if the cost per plasmid is very low, for example
when κN,n = κn/N. The second one stands if n is of order log2(N), which is the case, for example, if
n = 20 and N = 106, or if n = 15 and N = 105. In that case we set µ = N2−n. Under this setting, when
time is accelerated by N, the frequency process of individuals with plasmids can be approximated by
the solution of the stochastic differential equation (SDE)

dXt = −µXtdt− κXt(1− Xt)dt +
√

Xt(1− Xt)dBt. (0.1)

This is known as the Wright-Fisher diffusion with mutation and selection.

When the cost of plasmid does not scale with N, i.e. κN,n = κn, we are in the case of strong selection.
The frequency process of type 1 individuals converges, when N → ∞, to a discrete time deterministic
sequence defined in a recursive way as

Xi+1 = f (Xi) :=
(1− κn)Xi

(1− κn)Xi + 1− Xi
(1− µn), i ≥ 1,

where µn = 2−n. Observe that this approximation does not require any time rescaling.
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Modeling the introduction of antibiotics

Additionally, the population is treated with antibiotic pulses. Individuals with no plasmids are more
exposed to this treatment and at each pulse we observe an increment of the relative frequency of the
type 1 population. To model this phenomenon, we assume that, in the presence of antibiotic, type 0
individuals have some selective disadvantage αn ∈ [0, 1]. Let T, 2T, . . . be the times of the pulses (in the
rescaled time). At time kT, only a fraction

(1− αn)(1− XkT−)
(1− αn)(1− XkT−) + XkT−

of type 0 individuals survives. Then (0.1) modifies to

dXt = ∑
k≥1

αnXkT−(1− XkT−)
1− αn(1− XkT−)

1kT≤t − µXtdt− κXt(1− Xt)dt +
√

Xt(1− Xt)dBt (0.2)

In the strong selection case, if the antibiotic pulse occurs at generation i, type 0 individuals die with
probability αn so that the fraction of type 1 individuals becomes

g(Xi) :=
Xi

Xi + (1− αn)(1− Xi)
.

Then, after reproduction, the frequency of type 1 individuals at the next generation is

Xi+1 = f (g(Xi)).

Finally, considering that the pulses occur at generations T, 2T, . . . , the frequency process becomes

Xi+1 =





f (g(Xi)) =
(1−κn)Xi

1−αn+Xi(αn−κn)
(1− µn) if i = kT, k = 1, 2 · · ·

f (Xi) =
(1−κn)Xi

(1−κn)Xi+1−Xi
(1− µn) otherwise.

(0.3)

Serial dilution protocol

Following the set up of Casanova et al. (2016), we consider that each generation in the Wright-Fisher
model corresponds to one day in the experiments. We also refer the reader to Baake et al. (2019) and
Chevin (2011). We now detail how this correspondence is made.

Intraday dynamics Day i starts with N founder individuals (N ∼ 105 in the experiment) and repro-
duction stops when saturation is reached, which corresponds to a population size of γN (γN ∼ 107 in
the experiment). Among the founder individuals, a fraction x is of type 1. We assume that, in the absence
of antibiotic, the population evolves as a continuous time multi-type branching process Zt = (Z0

t , Z1
t )

where the reproduction rate (or Malthusian fitness) of type 1 (resp. type 0) individuals is r (resp. r + ρ),
with ρ > 0 (since type 1 individuals have some disadvantage due to the cost of plasmid maintenance).

Following Casanova et al. (2016), we assume that ρ ∼ N−b for some b ∈ (0, 1/2) (this regime is known
as moderate-strong selection). In every branching event, an individual splits in two. Type 0 individuals
only split in two type 0 individuals. Type 1 individuals can split in one type 0 individual and one type
1 individual with probability 2−n (if all the plasmids go to one of them) or they can split in two type
1 individuals with probability 1− 2−n. Let M(t) = {Mi,j(t) : i, j = 0, 1} be the mean matrix given by

Mi,j(t) = Eei(Zj
t), the average size of the type j population at time t if we start with a type i individual.

According to Athreya and Ney (Athreya 2006, Section V.7.2), M(t) can be calculated as an exponential
matrix

M(t) = etA where A =


 r + ρ 0

r2−n r(1− 2−n)


 .
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More precisely,

M(t) =


 e(r+ρ)t 0

r2−n

r2−n+ρ (e
(r+ρ)t − er(1−2−n)t) er(1−2−n)t


 .

Let σ be the duration of the growth phase. Since N is very large, one can assume that reproduction is
stopped when the expectation of the number of descendants reaches γN, i.e. that σ satisfies

γN =(1− x)N(M0,0(σ) + M0,1(σ)) + xN(M1,0(σ) + M1,1(σ))

=Nerσ

(
eρσ + ρx

e−r2−nσ − eρσ

r2−n + ρ

)
.

Since ρ ∼ N−b, we have for large enough N that

σ ' log γ

r
.

Interday dynamics. We consider a discrete time model, with fixed population size N, in which
generation i corresponds to the founder individuals of day i. Suppose that the frequency of type
1 individuals in generation i is x. To form generation i + 1 we sample N individuals from the γN
individuals present at the end of day i . Since γ is large enough, we can assume that individuals are
sampled with replacement. The probability that an individual in the sample is of type 1 is equal to

xM1,1(σ)

(1− x)(M0,0(σ) + M0,1(σ)) + x(M1,0(σ) + M1,1(σ))
=

xe−(r2−n+ρ)σ

(1− x) + x r2−n+ρe−(r2−n+ρ)σ

r2−n+ρ

(0.4)

This is equal to the probability of choosing a type 1 parent in the Wright-Fisher model introduced in teh
previous section, with

κn =
ρ(1− e−(r2−n+ρ)σ)

r2−n + ρ
and µn = 1− r2−n + ρ

r2−ne(r2−n+ρ)σ + ρ
.

Model parametrization

In order to parametrize our model and validate its predictions, we used Escherichia coli MG1655 carrying,
pBGT, a well-characterized multi-copy plasmid (San Millan et al. 2016). pBGT is a ColE-1 like plasmid
with ∼19 plasmid copies per cell, lacking the necessary machinery to perform conjugation or any other
strategy to enhance stability or symmetric segregation of plasmids. As a result, each plasmid is inherited
to a daughter bacteria randomly upon division with probability 1/2, therefore producing a plasmid-free
cell with probability 1/219. This plasmid also carries a GFP reporter under an arabinose inducible
promoter and blaTEM-1, a a gene that encodes a β-lactamse that efficiently degrades β-lactam antibiotics,
particularly ampicillin (AMP). The minimum inhibitory concentration (MIC) of the plasmid-bearing
population is 8,192 mg/l, while the plasmid-free strain (WT) has an MIC of 4 mg/l.

It is generally assumed that plasmids entail a metabolic burden in the absence of selection for plasmid-
encoded genes(Andersson and Levin 1999; San Millan and MacLean 2019). As a result, plasmid-free
bacteria present competitive advantage with respect to cells carrying plasmids in the absence of selection
against genes carried in the plasmid. In contrast, in the presence of antibiotics, plasmid-free cells are
cleared from the system and the frequency of plasmid-bearing cells increases. To measure the plasmid
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cost we performed growth kinetics experiment in titration plates for the two strains growing in lysogeny
broth (LB) rich media and measured the growth rate following the protocol in (Hall et al. 2014), with
results summarized in table 1.

We found that the selective disadvantage of the plasmid bearing strain, κn, to be 0.272. We also
measured this cost directly by comparing maximum growth rates and found that the metabolic burden
entailed by the plasmid is 0.108± 0.067. This difference in values may come by the fact that the growth
rate is only one component of fitness Vasi et al. (1994). Yet our model allowed us to estimate fitness cost
more accurately than from simple growth dynamics.

Segregational instability in the absence of selection

Although, as expected, in the absence of selection plasmids are always cleared from the population, the
loss rates shown in Figure 1-A is considerably smaller than Figure 1-B showing the selective disadvantage
of the plasmid bearing strain is due to the metabolic cost. Now, Figure 1-A shows the dynamics for
plasmid loss for strains that would carry a pBGT-like plasmid with different plasmid copy numbers.

For all copy numbers, plasmids are lost (the plasmid frequency tends to 0) but at different rates. We
can notice that the loss rate does not correlate linearly with the copy number, which is the case if the
plasmid does not entail a burden as shown in Figure 1-B.

Taken together, these observations indicate the existence of a non-linear relationship between the
plasmid copy number, the rate for generation segregant cells and the plasmid cost. This suggests that,
in drug-free environments, there must be an optimal plasmid copy number that maximizes plasmid
maintenance.

We then numerically explored this relationship in order to determine the time to plasmid loss for a
range of plasmid costs. Figure 1-C shows that, if plasmid cost is large, plasmid loss is fast regardless of
the plasmid copy number. However, we can surprisingly notice that there is a short range of plasmid
copy numbers that for different costs ensures the persistence of plasmids for long periods of time.

Figure 1 Simulations without antibiotics, n represents the plasmid copy number. A Times for plasmid loss for
strains carrying different copies of the same plasmid. B Time for plasmids loss considering only plasmid loss by
segregation. C Time for plasmids loss considering different plasmid copy numbers with multiple plasmid costs.
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Evaluating the role of selection in plasmid maintenance

It is clear that selective pressure in favor of plasmid encoded genes is needed for plasmid maintenance,
which is often the case of antibiotic resistance and our study plasmid. In our experimental system we
will use ampicillin to kill plasmid-free bacteria and fix the plasmid in the population. Once the antibiotic
clears from the environment plasmid-free bacteria begin to appear and increase in fraction, and if enough
time passes without antibiotic, plasmids may be completely depleted from the population.

Before plasmid extinction, we could find a populations on all the range of subpoplations fractions.
With the aim to address how the strength of selection affects this fractions we used the model defined by
equation (0.3) and made some simulations starting from different population fractions to explore the
effects of multiple selection strengths, αs, in the dynamics of fractions over time. Figure 2 shows the
fixation dynamics over time for αs 0, κn/2, κn, 0.25, 1.5κn, and 1 using κn measured in the previous section
and applying selection everyday, we can notice that regardless the initial fraction for α>κn plasmid
population always fixes (the plasmid frequency tends to 1) and that the rate of fixation is proportional to
value of α. Similarly, for α < κn the plasmid population always extinguishes meaning that there is an
effective antibiotic dose required to maintain the plasmid. Mathematically this critical dose is reached
when α = κn, and as shown in the simulations in Figure 2, this α stabilizes the plasmid frequency. In
fact, this finding is proven in the functional analysis section of the appendix

Figure 2 Simulations showing the effect of selection strength. We fixed κn with value measured experimentally
and varied the parameter α for different initial fractions applying selection everyday (T=1). Note that for α>κn
plasmid population always fixes and the rate of fixation is proportional to value of α. For α < κn the plasmid
population always extinguishes. For α = κn the plasmid frequency stabilizes.

In the laboratory, we could perform an stability experiment starting with a plasmid-bearing strain,
make serial dilution transfers and measure the fraction changes every day, and at a given moment
(specific fraction) submit the population to an antibiotic peak which, depending on the dose and the
previous fraction, would end differently. However, experimental evolution produces changes such
as compensatory mutations (Peña-Miller et al. 2015) or plasmid genes integration to the chromosome,
to avoid this traits, we design the a one-day experiment using a difference equation map system.
To estimate the dynamics of plasmid loss and recovery of the plasmid-bearing subpopulation, we
constructed mixed populations of bacteria with different fractions of plasmid-bearing and plasmid-free
strains, and exposed them to a range of antibiotic concentrations.

As the plasmid used in this study encodes for a GFP protein, this allows us to use a spectrophotometer
to distinguish between our two strains and to determine the fractions of each subpopulation (see
Methods). With this approach we in fact, found a linear correlation between plasmid fraction and
fluorescence intensity (R2=0.995).

Figure 3 shows growth dynamics of populations composed of different initial frequencies of plasmid-
bearing cells. For antibiotic concentrations below the plasmid-free MIC, curves are below the identity
line, indicating a decrease in frequency of plasmid-bearing strain. As antibiotic concentration increases
the plasmid-free strain is eliminated from the population and curves move above the identity line
indicating antibiotic indeed increases the proportion the plasmid bearing strain

Population genetics of multicopy plasmids 7



Figure 3 Gradient of antibiotic concentration is presented in columns. Blue lines indicates the mean normal-
ized data from 4 replicates, while the yellow line represents the projections of our parameterized model.

Note that for small antibiotic doses (1 and 2 mg/l) the curves moves farther down from the identity
than the antibiotic-free curve. This could be due an Eagle effect Eagle et al. (1948) on the plasmid-free
strain or augmented OD from the non-fluorescent strain derived from elongation. This paradoxical
effect yield us negative α for this concentrations.

Plasmid stability in fluctuating environments

In the previous section we have stated how the antibiotic dosage affects the population plasmid fraction.
Now need to understand how often the antibiotic shocks are needed to avoid plasmid loss and how this
periodicity is affected by the antibiotic dose.

Similarly than the simulations before, we performed simulations using the plasmid bearing strain
measured parameters but instead applying antibiotics daily, we varied the frequency of the antibiotic
peaks to see whether the plasmids are fixed in the population or not. In Figure 4-B, we fixed α = 0.99
and varied the frequency of the antibiotic peaks. We observe that for T ≤ T∗ = 15 the plasmids are
maintained whereas for T > T∗ the plasmids are lost . In Figure 4-A we fixed α = 0.5 and found that for
this mild selection the plasmid was lost every time unless antibiotics are used at least every two days.

Figure 4 Simulations with multiple antibiotic peaks. A Mild selection α = 0.5 ≈ 2κn. B Strong selection,
α = 0.99. Period, T, is the time period between two antibiotic peaks. Observe that for mild selection, rapid
plasmid rescue is needed whereas with strong selection stability can endure longer periods.

Now we wanted to simulate the utopian experiment proposed so we made use of the experimental
frequency changes maps and performed a parameter fitting using our model. We first estimated the
κn using the function f (Xi) from equation 0.3 from the antibiotic-free experiment. Once we had this
κn=0.215, we proceeded to estimate the corresponding α for each antibiotic concentration using function
f (g(Xi)). Allowing us to predict the dynamics of the populations during several days under distinct
fluctuating regimens.
Figure 5 shows estimated dynamics of plasmid stability under different antibiotic concentrations during
a serial dilutions experiment. Note that in Figure 5-A for small antibiotic dose plasmids are loss around
day 100. For concentrations higher than 3 mg/l plasmids are preserved within a range of periods
without seeing antibiotics and after periods of 50 days stability begins to decay. This results are expected
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taking into account the results shown in figure 3.
The matrix rows for concentrations 1,2, and 2.5 showing less stability than the are a consequence of
negative αs caused by the Eagle effect discussed above.

Figure 5 Stability experiment predictions A Simulations using experiment αs. B Sample trajectories using ex-
periment αs. C Simulations plasmid stability using abstract αs. Colormap indicate the duration of the stability,
dark blue color indicate period-α combinations that lasted 500 days or more and light-green color present the
base time to plasmid loss.

Adding antibiotics should imply positive αs, we then disregarded the αs estimated from our experi-
ment and performed simulations using the pBGT plasmid cost and its copy-number for a range of αs and
periods. As expected, we found a strong correlation between the periodicity of the antibiotic pulses and
the killing rate. 5-C shows the times to plasmid loss of our simulations using multiple combinations of
periods and αs, dark-blue zones represents combinations that showed greater stability while light-green
color indicates the time to plasmid loss of the plasmid population under a no-selection regime. Stability
areas indicate that for small antibiotic doses is required rapid plasmid recovery. Conversely, for strong
doses the plasmid is stable for longer periods without antibiotic exposure.

Plasmid copy-number and stability

In the fitness cost section, we found that there is an optimal range plasmid copy-numbers that enhance
stability without selection, and that this property is not linear with respect to the copy-number. In
this section, by means of our model, we will explore how plasmid copy-number affects stability under
selective regimes.
First, we analyzed the effect of the selection strength over plasmid copy-number. We assumed that
κn = 0.215 is proportional to n and that the number of plasmids per cell in the experiment was 35, so
that the cost of the plasmid (measured) is 0.00615× n. We then made simple simulations varying the
number of plasmids n for daily mild and strong selection treatments.

In Figure 6-A and 6-B we added antibiotic peaks daily with different strengths (αn = α = 0.5 or 0.99).
We observed that, if the peaks are not very strong (α = 0.5), the plasmids are only maintained for values
of n (<=81) that yields a total cost less than the α used, as we have previously stated. Now note that
if n is too low they are not completely lost but the mutation rate is so high that maintains the plasmid
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Figure 6 Simulations for multiple PCNs with antibiotic peaks very day A Mild selection α = 0.5, n =
2, 3, 4, 5, 10, 81, 82, 100. Dashed lines indicates copy-numbers where the total cost is less or greater than α show-
ing the fixation or loss of plasmids. When n = 2, the probability of losing a plasmid in a reproduction even
is so high that the plasmid fraction stays low. B Simulations with antibiotic killing peaks every day α = 0.99,
n = 2, 3, 5, 10, 100. The plasmid is never lost and the dynamics fixes quickly to a fraction ruled by the segrega-
tional rate.

is low frequency and if n is too high they are lost because of the cost is too high regardless of a low
segregational rate, µn. However, if the antibiotic peaks are very strong (α = 0.99), the plasmids are
maintained and the dynamics stabilizes quickly to a fraction govern by both the plasmid segregational
rate and selection strength.

Then we look for joint effect on stability of plasmid copy-number, selection strength, periodicity of
peaks, and costs. We performed simulations using 100 values for each the parameters (n, T ∈ [0, 100],
α ∈ [0, 1], and κ ∈ [0, 0.05]) and look for the time it took for the plasmid bearing population to extinct.
For convenience, we limited simulations to 500 days and set the time to plasmid loss to -1 when plasmids
total cost was greater or equal to 1, because it does not have biological meaning. We focused in three
interesting cases:

1) We fixed the cost per plasmid of pBGT (κ = 0.011) and explored the parameter space for range of
values of alphas, plasmid copy number and periods. Simulations results are summarized in Figure 7-A,
as expected, the simulations that showed major stability, the upper dark-blue zone, are those with strong
antibiotic dosage and short periods without antibiotics diminish only for low plasmid copy numbers.
Additionally, another zone of stability is reached for high copy numbers for a range of αs and periods
until the total cost is too high and the model does not cope, this zone es marked by the lower-right little
red triangle.

2) In simulations of 7-B we applied daily antibiotic peaks and varied plasmid copy-number, selection
strength and the cost per plasmid. We observe a great area of stability that propagates from high values
of αs and low costs (upper corner) to low α values with low costs and high copy-numbers (lower right
corner). It also propagates to high cost values with low copy-numbers and low α values but with less
time to plasmid loss.

3) We fixed α = 0.99 and explored stability for a multiple copy-numbers, costs and periods, Figure
7-C We can see three zones of high stability at the three corners joined by another high stability zone for
high copy-numbers, low costs and all range of periods. We can also notice a medium stability zone for
copy-number less than 10, and equally than the case 2, the red zone only indicates the region discarded
by cost.

Finally, we performed exhaustive simulations to analyze all the parameters combinations using the
parameters ranges described in the example cases simulations above. The overall results are shown in
Figure 8-A, but let us first analyze the sample heatmap in 8-B resulting from fixing period to 25 and
α to 0.3. The region covering low copy-numbers and high cost (lower-left corner) is showing stability
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Figure 7 Multiple parameters simulations. Color indicate the time required to lose the plasmid. To improve
visualization times are shown in log scale and in the cases when total cost is greater than 1, times are set to -1. A
Simulations using pBGT cost per plasmid. B Simulations using daily peaks. C Simulations using an antibiotic
killing dose. Dark-blue areas represent simulations reaching maximum stability (500 days), red zones indicate
total costs greater than 1.

accompanied by a small region of smaller copy-numbers values for low costs. The red area on the region
for high copy-numbers and high cost on the lower-right corner indicates that the total cost of the plasmid
is greater than 1 and finally the for high copy-numbers and low costs we can observe the plasmids are
lost. Another remark that can be seen in Figure 8-B is that when dealing with really low costs stability
increases with the cost regardless of the copy number. Now if sum up the effects of fluctuating selection
and the selection strength, we can notably see how frequent antibiotic peaks and high doses stabilizes
most of copy-number and cost relations, as shown in the sub-figures on the lower-left corner of Figure
8-A. In fact, only is this zone the sub-corners for high copy-number and low cost are stabilized. If we
look the individual effects of selection strength or frequency of peaks, columns and rows in Figure 8-A
respectively, we can clearly notice that the strength of selection, as well as frequent antibiotic peaks
increases stability for some the copy-number and cost combinations.

Figure 8 A Matrix of heatmaps for all parameter combinations A Sample heatmap from A for α = 0.3 and
period period T = 25. Color indicate the time required to lose the plasmid. To improve visualization times
are shown in log scale and in the cases when total cost is greater than 1, times are set to -1. Dark-blue areas
represent simulations reaching maximum stability (500 days), red zones indicate total costs greater than 1.
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Discussion

In this work we have used a novel approach to study multi-copy plasmids stability, a population genetics
Wright-Fisher model. This a 2-types model were types whether carry plasmids or not. To properly
asset our goal, we consider biological implications: 1) Plasmids encode for accessory genes that confer
an advantage in harsh environments, for instance antibiotic resistance genes. 2) Bearing plasmids is
associated with a fitness cost in absence of selection. 3) Each plasmid is segregated randomly to a
daughter cell upon division. Thus, 4) plasmid bearing bacteria can produce plasmid-free cells with a
probability of 1/2n, were n is the plasmid copy number. 5) Selection kills plasmid-free bacteria with a
variable rate.

We validated our model using a well characterized model plasmid used in (San Millan et al. 2016;
Rodriguez-Beltran et al. 2018; Hernandez-Beltran et al. 2020). By analyzing growth kinetics of the
plasmids-bearing and the plasmids-free strains we estimated our model parameters and calculated a
fitness cost which differed from the typically calculated from growth rates. This issue could be due to the
fact that growth rates is only one component of fitness. By performing simulations without selection we
found that for a given cost per plasmid there is a range of plasmid copy numbers that enhance plasmid
maintenance.

We also performed simulations with different antibiotics concentrations found that selection is always
necessary to stabilize the plasmid for long periods, and that the strength of selection is highly correlated
with the final fraction of plasmids in the entire population. Consequently, we also found that there is a
trade-off between selection strength and plasmid cost, i.e. the cost per plasmid and the plasmid copy
number.

Our approach also allows for seasonal treatments, a situation more likely to occur in natural environ-
ments. By performing simulations we found that foretold trade-off can be ameliorated by the frequency
on the antibiotic peaks.

Whether plasmids are maintained or lost in the long term is a complex interplay between the plasmid
copy number, the cost per plasmid, the intensity, and frequency of the antibiotic peaks. This relationships
are not necessarily linear, as seen in the exhaustive simulations exploring a wide-range of parameters
combinations. We argue then that this model could be easily applied to make informed decisions for a
specific plasmid maintenance, for instance in biotechnology whereabouts.
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Appendix

Function analysis

Let f = f ◦ g. We want to analyse the behaviour of f in terms of κn and αn. Observe that f is increasing
since

f
′
(x) =

(1− κn)(1− αn)

(1− αn + x(αn − κn))2 (1− µn) > 0.

If αn = κn, then f (x) = x. If αn 6= κn, then

f
′′
(x) =

−2(1− κn)(1− αn)(αn − κn)

(1− αn + x(αn − κn))3 (1− µn).

Since x ∈ [0, 1], we have that 1− αn + x(αn − κn) > 0. Therefore, if αn > κn then f is concave and if
αn < κn, f is convex.

Bacterial strains and media

For plasmid free strain we used E. coli K12 MG1655 and for plasmid bearing strain we used the strain
MG/pBGT (San Millan et al. 2016) carrying the multicopy plasmid pBGT with the β-lactamase blaTEM-1
which confers resistance to ampicillin and the fluorescent protein GFP under an arabinose inducible
promoter.

Overnight cultures were grown in flask with 20 ml of lysogeny broth (LB) (Sigma L3022) with 0.5
% w/v L-(+)-Arabinose (Sigma A91906) for fluorescence induction, in a shaker-incubator at 220 RPM.
and 37 deg C, for plasmid bearing strain, 25 mg/l of ampicillin (Sigma A0166) were added to eliminate
segregants. Ampicillin stock solutions were prepared at 100 mg/ml directly in LB and sterilized by 0.22
µm (Merck Millipore/Millex-GS SLGS033SB) filtering. Arabinose stock solutions were prepared at 20%
w/v in DD water and sterilized by filtration.

To construct our inoculation plate, overnight cultures of the parental strain and the pBGT plasmid
bearing strain were adjust to 1 OD (630 nm) using a BioTek ELx808 Absorbance Microplate Reader
diluted with fresh ice cooled LB. Appropriate volumes were mixed to make co-cultures at fractions 0,
0.1, 0.2, ..., 1 and set column-wise on a 96 well plate (Corning/costar CLS3370) .
Competition experiments were performed using 96 well plates with 200 µl of LB with 0.5% w/v arabi-
nose, and respective ampicillin concentrations: 0, 1, 2, 2.5, 3, 3.5, 4, and 6 mg/l was implemented by
plate rows. Antibiotic plates were inoculated using a 96 Pin microplate replicator (Boekel 140500), flame
sterilization was made before each inoculation. Four replicates plates were grown in static incubator at
37 deg C. After 24 hours growth, plates were read in a fluorescence microplate reader (BioTek Synergy
H1) using OD (630 nm) and eGFP (479,520 nm) after 1 minute shaking. Growth kinetics measurements
were performed in the same media conditions, plates were sealed using X-Pierce film (Sigma Z722529),
each well seal film was pierced in the middle with a sterile needle to avoid condensation. Plates were
grown at 37 deg C and reading for OD and fluorescence were made every 20 minutes after 30 seconds
linear shaking.

Model kinetics parameters were estimated using the R R Core Team (2020) package growthrates
Petzoldt (2019). Exponential phase duration,σ, was calculated by finding lag phase duration using the
linear model and the time to reach carrying capacity, found using the non-linear growth model Baranyi.
Maximum growth rates, r and r + ρ, were estimated using the smooth spline method.
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Plasmid fraction determination

To calculate fluorescence intensity values, we first subtracted the background signal of LB for fluo-
rescence and OD respectively, then the debackgrounded fluorescence signal was scaled dividing by
the debackgrounded OD. The measurements for our inoculation plate showed a strong linear corre-
lation (R2 = 0.995) between co-cultures fractions and fluorescence intensity. This allowed to directly
approximate the populations plasmid fractions from the readings of our competition experiments. We
normalized the data independently for each antibiotic concentration taking the average measurements
of the 4 replicates. Plasmid fractions, PF, were inferred by normalizing the mean fluorescence intensity
for each well, fi, to the interval [0,1] using the following formula: PFi = fi − fmin/( fmax − fmin) were
fmax and fmin are the mean fluorescence intensities of the fractions 1 and 0 respectively.

Tables

Parameter Measured value Formula Estimated value Description

r 0.43543 NA NA plasmid strain growth rate

ρ 0.05233 ρ = (1− kn)/(eσ) 0.05397 WT growth rate advantage

σ 6.07408 σ = log(γ)/r 6.07408 exponential phase duration

γ 100 γ = erσ 14.08165 population growth factor

µn x µn = 1− (1− 2−n)d 1.267208e-05 1-day fraction of segregants

kn 0.10888 kn = (ρ(1− e−(r2−n+ρ)σ))/(ρ + r2−n) 0.27231 fistness cost

d x d=log(γ)/log(2) 6.64385 number of divisons per unit of time

n 19 NA NA plasmid copy number

Table 1 Model kinetic parameters

Amp gamma alpha

0.0 0.21515091329917516 0.0

1.0 0.21515091329917516 -0.4859447524378162

2.0 0.21515091329917516 -0.437254204890177

2.5 0.21515091329917516 -0.1415237417290935

3.0 0.21515091329917516 0.9923556690497974

3.5 0.21515091329917516 0.9785392221689677

4.0 0.21515091329917516 0.9914541602258449

6.0 0.21515091329917516 0.9932394293058193

Table 2 Selection parameters
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Capítulo 4

Heterogeneidad fenotípica producida por plás-

midos multicopia

4.1 Introducción

En el capítulo anterior hemos abordado teóricamente el problema de estabilidad
de plásmidos multicopia. Establecimos que, la naturaleza multi-copia de los plásmidos
pequeños puede producir, bacterias segregantes a través de ruido en el proceso de
segregación de plásmidos.

Por otro lado, si centramos nuestra atención en el proceso de replicación, éste no
sólo es responsable de mantener bajo control el número de copias por célula, sino tam-
bién es una fuente generadora de ruido, probablemente de mayor relevancia para la
dinámica adaptativa. Este ruido proviene del hecho que el mecanismo de control (auto-
regulación por RNAI y RNAII) no es preciso y, por ejemplo, dos bacterias que heredan
el mismo número de plásmidos pueden terminar con distintas copias. Si extrapolamos
estos dos procesos a una población, encontramos que existe una gran variabilidad entre
número de copias entre distintas células. Si un plásmido de este tipo porta un gen be-
néfico, entonces distintas células portarán distinto número copias del gen y por lo tanto
presentarán distintos fenotipos. Debido a que el modelo de estudio utiliza un plásmido
multicopia con un gen de resistencia a antibióticos, esto podría resultar en heterogenei-
dad en los perfiles de resistencia de las células que componen una población. En este
capítulo nos enfocamos en estudiar la dinámica de plásmidos en la población, con el
objetivo de explorar las ventajas ecológico-adaptativas que esta variabilidad conlleva.

El enfoque de este capítulo es multiescala. A nivel de poblaciones, realizamos expe-
rimentos evolutivos donde expusimos a antibióticos a distintas poblaciones de bacterias
portando un gen de resistencia, tanto en un plásmido multicopia como en el cromosoma.

Utilizando citometría de flujo pudimos evaluar cómo los antibióticos modulan la
distribución de plásmidos que presentan distintas poblaciones. A nivel de células in-
dividuales, utilizamos un sistema experimental de microfluidos que nos permite con-
trolar las condiciones ambientales y realizar observaciones en tiempo real mediante
microscopia de fluorescencia. Este enfoque experimental se complementa con un mode-
lo estocástico de agentes individuales, donde simulamos computacionalmente cambios
temporales en la distribución de plásmidos en una población ante pulsos de antibióticos.

En específico, evaluamos explícitamente las ventajas adaptativas de que una pobla-
ción presente variabilidad de número de copias en comparacación con poblaciones que
no presentan variabilidad, concluyendo que los plásmidos pueden actuar como vehícu-
los que facilitan la rápida adaptación a ambientes hostiles al aumentar la plasticidad
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fenotípica de la población. Conjuntamente, los resultados teóricos y experimentales
nos permiten concluir que, al ser portado en un plásmido multicopia, la variabilidad en
número de copias del gen de resistencia se encuentra correlacionada con la resiliencia
de la población a cambios ambientales súbitos.

4.2 Modelo de agentes individuales

Este es un modelo mecanístico con el cual simulamos bacterias como un objeto
computacional. Estas bacterias cuentan con distintas propiedades como un identifi-
cador, nivel de energía, parámetros metabólicos, y tres genotipos, contamos con el
silvestre, una que porta el gen de resistencia en cromosoma y una que porta el gen de
resistencia en un plásmido multicopia. El número de copias asociado a cada bacteria
se obtiene a partir de una distribución normal con media µ y desviación estándar σ,
asociadas a la población en general.

Para modelar el crecimiento poblacional, consideramos un recurso limitante am-
biental R y cada bacteria incorpora recursos considerando parámetros metabólicos
individuales. La incorporación de recursos sigue una dinámica tipo Michaelis-Menten
mediante una función de crecimiento G(R) = c·u(R) donde c representa la eficiencia de
conversión de recursos y está asociada al número de copias de cada bacteria, y u(R) es la
función de incorporación de recurso general y tiene la forma u(R) = (Vmax·R)/(Km+R)
con Vmax representando la máxima tasa de incorporación y Km la constante de satu-
ración media.

Para tomar en cuenta la acción del antibiótico, consideramos el perfil de resistencia
de las cepas que portan el plásmido; así como también los perfiles de resistencia de las
cepas que portan el gen de resistencia en cromosoma y para la cepa silvestre. Con
esta información asociamos el número de copias de cada gen a su nivel de resistencia
mediante una regresión lineal. Así, calculamos el perfil de susceptibilidad/resistencia
considerando el número de plásmidos que cada bacteria porta.

Con estos supuestos, una realización del modelo consiste en la siguiente heurística:
las bacterias incorporan recursos hasta que alcanzan un nivel de energía crítico (cATP),
cuando éste es alcanzado entran en un proceso de división el cual consiste en dividir su
energía inequitativamente entre la célula madre y la hija, repartir los plásmidos entre la
célula madre y la hija, tomando en cuenta que cada plásmido se segrega al azar con una
probabilidad de 0.5; después entrar en un proceso de replicación de plásmidos donde
para cada una de las bacterias, se calcula el número final de plásmidos obteniendo un
número al azar de la distribución Normal(µ, σ).

Como los antibióticos son β-lactámicos, consideramos que estos tendrían más efec-
to en bacterias que crecen con una mayor velocidad. Para ello establecimos otro umbral
para el máximo ATP ganado el cual se modifica con ruido. Entonces consideramos la
concentración de antibióticos en el ambiente y el perfil de resistencia descrito anterior-
mente para decidir si la bacteria sobrevive o muere, también con otro nivel de ruido.
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También tomamos en cuenta que las bacterias tienen la capacidad de degradar el an-
tibiótico a nivel intracelular y mediante esta degradación reducir la concentración de
los antibióticos en el ambiente.

Iteramos este proceso para cada bacteria en la población en cada momento del
tiempo. Usualmente cada realización consta de 24 horas y con esto somos capaces de
realizar experimentos evolutivos donde cada día tomamos una muestra de la de la
realización anterior y la sometemos a una nueva concentración de antibióticos.

B)A)

C)

Figura 4.1: Modelo de agentes individuales de plásmidos multicopia. A) Diagrama de flujo de
la heurística del modelo. Los rombos (amarillo) indican toma de decisiones, los rectángulos
(rosa) indican procesos, los paralelogramos (azul) indican entrada y salida de datos, y los
óvalos indican inicios y términos. B) Simulación de crecimiento poblacional. Simulación con
un recurso limitante y sin antibióticos, con una población inicial de 1 000 bacterias, al cabo de
7 horas la población deja de crecer alcanzando 1 289 163 células. C) Distribución del número
de copias del plásmido en la población. En la simulación se considera una media poblacional
de 19 copias con un coeficiente de variación de 0.05.

En la Figura 4.1-A se muestra el diagrama de flujo de la heurística del modelo, la
Figura 4.1-B muestra el crecimiento poblacional que llega a fase estacionaria dado que
consideramos un recuerso limitante. En la Figura 4.1-C podemos observar la variabili-
dad de número de copias en la población, para estas simulaciones hemos utilizado una
µ = 19 y coeficiente de variación de 0.05 (σ = 0,95)

Nota: este trabajo está en progreso. Falta realizar un mayor análisis de los experimentos de
microfluídica.
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ABSTRACT11

Bacterial communities implement different strategies to survive in unpredictable and hostile environments.
Sensing the surroundings and triggering stress response mechanisms to regulate the metabolic machinery
accordingly is a pervasive strategy that increases microbial survival in dynamic environmental conditions. But
precise responsive regulation may not be optimal if environmental perturbations are frequent or environmental
cues are unreliable. Indeed, if the environment rapidly turns for the worse, persistence of the bacterial
community may rely on the preexisting diversity of the population. Here we argue that heteroresistance in
plasmid-bearing populations is a consequence of the stable co-existence of cells with high- and low-plasmid-
copy numbers that emerge from the underlying replication and segregation dynamics of multicopy plasmids.
By using a combination of stochastic simulations of a computational model with high-throughput single-cell
measurements of blaTEM-1 expression, we show that multicopy plasmids can provide Escherichia coli MG1655
with transient resistance to a lethal concentration of β -lactam antibiotics. Using fluorescence microscopy,
single-cell microfluidics, and image analysis, we demonstrate that cell-to-cell differences in the expression of
blaTEM-1 produce an asynchronous stress response that increases survival of plasmid-bearing populations to
fluctuating environmental conditions. Our results provide further support to the tenet that plasmids are more
than simple vehicles for horizontal transmission of genetic information between cells, as they can also drive
bacterial adaptation in dynamic environments by providing a platform for rapid gene amplification that can lead
to treatment failure in the clinic.

12
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Introduction14

The evolution and spread of antimicrobial resistance in clinical pathogens represent a major public15

health problem that threatens to become a global crisis.1 In general, drug resistance is considered to be16

the consequence of stable genetic mutations? or antibiotic resistance genes acquired through horizontal17

gene transfer.2 But treatment failure can also result from a sub-population with an increased level of18

resistance compared with the mean resistance of the population.3 This is known as heteroresistance4, 5
19

and has been identified in different bacterial species and to a wide range of antimicrobial classes.6–8
20

Multiple genetic and metabolic mechanisms can produce heterogeneous resistance levels in the popula-21

tion. For instance, increased tolerance to bactericidal molecules can be achieved through a subset of22

dormant cells, known as persisters, that survive drug exposure and resume growth once the antibiotic is23

withdrawn.9 It has also been reported that cooperative resistance mechanisms, for example based on the24

production of drug-degrading enzymes8 or signaling molecules,10 can generate multiple sub-populations25

with varying degrees of resistance. Also, genes that encode for intrinsic antibiotic-resistance mech-26

anisms, for example efflux pumps, can be stochastically expressed and yield phenotypically-diverse27

populations.11, 12
28

Previous laboratory studies8, 13, 14 have demonstrated that rapid adaptation to antibiotics can be achieved29

through genomic duplications that increase dosage of known drug-resistance genes, for example efflux30

pump operons15, 16 or genes encoding for drug-modifying enzymes.17, 18 Genomic amplifications31

are known to scale-up with the strength of the selective pressure13 and are unstable in the absence32

of selection due to the fitness burden associated with the duplication of large-scale chromosomic33

regions.13, 19, 20 So, at least in laboratory conditions, rapid amplification and attenuation of gene34

copy-number provides an effective strategy to increase adaptation in fluctuating environments.35

In the clinic, heterorresistance due to spontaneous tandem gene amplifications has been proposed as36

a plausible cause for treatment failure,21 with incidences most likely underestimated due to intrinsic37

limitations of standard microbiology assays.5 A recent large-scale analysis of heteroresistant clinical38

isolates found a high incidence of genomic amplifications that increased resistance to multiple antibi-39

otics.22 Interestingly, whole genome sequencing revealed that, while some duplications were found in40

large chromosomal regions containing known drug resistance genes, a considerable fraction of sequence41

amplifications were found in extrachromosomal DNA. This observation is consistent with experimental42

evolution studies that have suggested that plasmids can enhance genetic diversity in the population23
43

and accelerate bacterial adaptation by increasing the probability of appearance of beneficial mutations44

and subsequently amplifying their expression.24
45

Here we show that cell-to-cell differences in plasmid copy number can promote heterorresistance in a46

population of Escherichia coli MG1655 carrying a non-conjugative, multicopy plasmid with a fluores-47

cent reporter and blaTEM-1, a gene that confers resistance to ampicillin and other β -lactam antibiotics.48

Using a combination of computer simulations with single-cell and population-level experiments, we49

will argue that plasmid-driven phenotypic noise can increase adaptation of bacterial populations to50

stringent and rapidly changing environmental conditions, like those imposed by antimicrobial treatment.51
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Results52

Plasmid segregation and replication dynamics produce heterogeneous populations53

Plasmids are extra-chromosomal DNA molecules that replicate independently of the bacterial genome54

and can harbor drug resistance and virulence genes and, as a result, are considered significant drivers of55

the evolutionary dynamics of antibiotic resistance.25 As illustrated in Figure Figure 1A, the number of56

plasmid copies carried by each cell is controlled by an inherently stochastic process with two main57

sources of intrinsic noise: plasmid replication and plasmid segregation.58

Plasmid replicate in discrete events that occur throughout the cell cycle, until reaching an upper limit59

that varies from a few copies to several hundred for high copy-number plasmids. While large plasmids60

(20-500kB) contain the molecular machinery necessary to conjugate, small plasmids (1-10kB) tend61

to be non-mobilizable and present in multiple copies.26 We therefore assume that the probability of62

plasmid replication decreases as plasmids accumulate inside the cell.63

Although plasmids are excluded from the nucleoid and tend to accumulate at the poles, single-molecule64

microscopy studies have shown they can travel across the cell body and segregate randomly upon divi-65

sion.27, 28 As a result, in plasmids lacking active partitioning or post-segregational killing mechanisms,66

the probability that a plasmid is inherited to a given cell can be seen as a random process that follows a67

binomial distribution (although for very high-copy plasmids, the resulting asymptotic copy-number68

distribution can be bimodal29).69

We used a multi-scale computational model that couples the intracellular plasmid dynamics of individual70

cells with the extracellular drug concentration to obtain a population-level PCN distributions in71

response to environmental perturbations of different duration and intensity. A description of the72

model and numerical implementation can be found in the Methods, but, in short, is an agent-based73

model that implements explicitly cellular processes and their interaction with the environment: cell74

duplication, resource-dependent growth, antimicrobial-induced death, as well as plasmid replication and75

segregation. Propensities of each process are determined from the concentrations of limiting resource76

and a bactericidal antibiotic present in a homogeneous environment (see Supp Fig: Diagram-ABM).77

Figure 1B shows numerical realizations of the agent-based model, simulating an exponentially-growing78

population of cells from a single mother cell (black line). Parameter values were determined from79

experimental data and reported in Table 2. Note how, as the cell grows and divides, plasmids replicate80

and segregate randomly, producing a heterogeneous distribution of plasmids in the population. Figure81

1C shows the PCN distribution obtained after growth is approximated by a Normal distribution.82

Furthermore, we estimated the coefficient of variation of the synthetic data as a function of the83

maximum number of plasmids per cell and observed that mean and variance of the PCN distribution84

are correlated, resulting in a constant coefficient of variation.85

Now, if we consider that the plasmid carries a drug-resistance gene, then a consequence of presenting a86

heterogeneous PCN distribution is the existence of different subpopulations composed of cells with a87

range of resistance levels. In the simplest case, we could consider a linear relationship between gene88

dosage and level of resistance, as observed in genes encoding for drug-modifying enzymes and efflux89

proteins.8, 30–32 In this case, the likelihood of death of each cell can be estimated from the cumulative90
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distribution function of the PCN distribution and the extracellular concentration of antibiotic.91

For instance, if we assume that every individual in a clonal population is phenotypically identical, then92

there exists a drug dose, referred to as the Minimum Inhibitory Concentration (MIC), that would kill all93

cells simultaneously. Therefore the survival probability function of a homogeneous population would94

be a step-wise function that switches from 1 to 0 at the MIC (black dotted line in Figure 1E). However,95

if we consider a heterogeneous population characterized by a PCN distribution with large variance, then96

the population would contain cells with fewer or more gene copies than the expected value (blue lines97

in Figure 1D). As a result, the survival probability of the plasmid-bearing population should be lower98

than the expected for sub-MIC concentrations, and larger for high drug concentrations, as illustrated in99

Figure 1E.100
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Figure 1. A) Plasmid replication and segregation dynamics diagram. B) 1-day realizations of the model, with
color-coded variance of the ensemble of trajectories. C) population-level distribution after T units of time. D)
Probability density functions of Normal distributions with a fixed mean (µ̂) and increasing standard deviations
(σ̂ ). E) Probability of survival as a function of the antibiotic concentration obtained from the cumulative density
function of the PCN distribution.

Selection modulates plasmid copy-number distributions in bacterial populations101

The simple model described in the previous section predicts that the stochastic nature of the underlying102

segregation and replication dynamics of multicopy plasmids produces heterogeneous populations103

composed of cells exhibiting a range of drug-resistance levels. To test this prediction, we used an104

experimental model system that consists on Escherichia coli MG1655 carrying a non-conjugative,105

multicopy plasmid containing a GFP fluorescent marker (GFPmut2) and blaTEM-1, a gene that encodes106

for β -lactamase, an enzyme that inactivates β -lactam antibiotics by hydrolyzing the β -lactam ring.33
107

We will denote this strain MG:pBGT (average copy-number=19.12, s.d.=1.53, n=324) and, as a control,108
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we used a fluorescently-tagged chromosomally-encoded blaTEM-1 that we represent as MG/GT.109

We used a micro-chemostat microfluidic device to expose a population of MG:pBGT to a lethal dose of110

ampicillin (see Methods). We let cells grow in antibiotic-free rich media (LB) then we switched growing111

media to LB with a lethal concentration of ampicillin and the red fluorescent marker, rhodamine. With112

this fashion, bacterial cell-wall is compromised by the action of ampicillin allowing rhodamine to enter113

the cell and functions as death-marker. Figure 2A shows a montage of green and red channels overlayed.114

Note that cells that are killed turn from green to red, consistent with a loss of cell-wall integrity.115

First note in Figure 2A (top) that some cells have higher GFP intensity than others. In contrast, this116

cell-to-cell heterogeneity is not observed in MG/GT, suggesting that this variation comes indeed from117

cell-to-cell differences in PCN.118

Also note in Figure 2A how cells that survive for longer are those that present high levels of fluorescence119

previous to antibiotic exposure, suggesting that fluorescence and β -lactamase are correlated. This is120

expected, as the plasmid encodes for both GFPmut2 and blaTEM-1 and therefore the concentration of121

GFP and β -lactamase molecules depends on the number of plasmid copies carried in the cell.8, 31
122

To further validate this association, we used a library of strains obtained in a previous experimental evo-123

lution study whereby MG:pBGT was transferred daily to environments that doubled the concentration124

of a β -lactam antibiotic, ceftazidime.24 Whole genome sequencing revealed mutations in the origin125

of replication, two G to U changes at positions 54 and 55 of RNAI placed in the loop of the central126

hairpin affecting the RNAI-RNAII kissing complex and, resulting in a high mean plasmid copy-number127

and increased hydrolase production.128

Figure 2B) shows a positive correlation between plasmid copy-number (measured using qPCR34)129

and fluorescent intensity (quantified using a fluorescence plate reader). Of course, there are caveats130

associated with inferring gene copy-number from fluorescent intensity; maturation times of fluorescent131

proteins,35 phenotypic delays,36 phototoxicity and photobleaching,37 to mention a few. So, to further132

validate the PCN-GFP correlation and use fluorescent intensity as proxy for PCN, we used a cell sorter133

to group the population of plasmid-bearing cells based on their fluorescent intensity. In particular, we134

partitioned the population into clusters with low-, medium- and high- fluorescence and estimated the135

mean PCN of each subpopulation. As expected, we found a positive correlation between fluorescence136

and PCN.137

As the plasmid also encodes for blaTEM-1, then the concentration of β -lactamase molecules depends138

on the number of plasmid copies carried in the cell.8, 31 We measured the Minimum Inhibitory139

Concentration (MIC) of different plasmid-bearing strains and validated previous data showing that140

PCN and resistance are indeed correlated. Altogether,we conclude that PCN is positively correlated141

with GFP fluorescence and drug resistance (Figure 2C).142

Now, the segregation-replication model described previously predicts that plasmid-bearing populations143

should produce GFP distributions with a higher mean than the strain with chromosomally-encoded144

GFPmut2. Indeed, fluorescent intensity histograms obtained using flow cytometry show that GFP145

intensity increases proportionally to the mean PCN. Also, as predicted by the theoretical model, Supp146

Figure 2 shows how mean and variance of the distribution of GFP intensities for different strains147
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Figure 2. A) Microscopy time-lapse image of an AMP shock experiment. B) Boxpolot of GFP fluorescent
intensity obtained for strains with different mean copy numbers. C) Mean fluorescence, mean plasmid copy
number and antibiotic resistance are positively correlated in plasmid-bearing populations. D) Coefficient of
variation of PCN distributions decreases as the strength of the selective pressure increases. D) Normalized? GFP
distributions of MG:pBGT under different antibiotic concentrations. Note that as antibiotic concentration
increases, fluorescence distributions skews to the right and CoV is reduced, meaning that antibiotics selects for
cells having higher PCN.

are positively correlated, resulting in a constant coefficient in strains with different mean plasmid148

copy-number.149

To evaluate the effect of selection on the shape of the PCN distribution, we exposed MG:pBGT to150

a range of antibiotic concentrations and used flow cytometry to obtain GFP distributions after 24151

hours of drug exposure. Figure 2E shows how as the strength of selection increases, GFP distributions152

shift towards higher fluorescent values. This is expected, as we have established that resistance and153

fluorescence are correlated and, as argued using the replication-segregation model, the probability154

of survival of each cell can be derived from the cumulative density function of the PCN distribution.155

Also, the coefficient of variation decreases as a function of drug concentration Figure 2D. As a control,156

we repeated the experiment with MG/GT and observed that mean fluorescence remained constant,157

independently of the concentration of ampicillin.158
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Phenotypic noise increases resilience of the population to intermittent drug exposure159

We exposed MG:pBGT to a range of ampicillin concentrations (Figure 3A, green line) and, after 12160

hours of drug exposure, transferred a sample of each population into a drug-free environment (black161

line). As expected, at sub-MIC concentrations both strains recovered growth, while at high drug162

concentrations the population was driven to extinction. Crucially, one of the replicates in MG:pBGT163

(out of 88) presented growth (i.e. we have heteroresistance).164

After growing 88 populations overnight, we transferred them into microtiter plates with a lethal dose165

of ampicillin. After 30 minutes, we sampled each well using a 96-well pin replicator into a new plate166

with LB and incubated for 24 hours. We repeated this sampling process every 30 minutes. For each167

time-point, we counted how many populations were able to survive treatment and recover growth168

(measured using optical density at 630nm and validated by plating and counting CFUs in drug-free169

media).170

Figure 3B presents Kaplan-Meier plots showing that, as predicted by the model, MG:pBGT exhibits171

increased resilience to fluctuating environments than MG/GT. We then tested MG:G54U and MG:G55U,172

also resulting in higher survival rates than MG/GT. We performed a pair-wise Log-rank tests and found173

significant differences between all plasmid bearing strains and MG/GT, p-value < 0.005. Additionally174

we only found a significant difference between G54U and G55U.175
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Figure 3. A) Re-growth at lethal doses of antibiotics, 12h experiment. B) Kaplan-Meier: plasmid encoded vs
chromosomal encoded resistance.

Now, it is known that plasmid-bearing can be associated with a reduction in growth rate and therefore176

result in a competitive disadvantage with respect to plasmid-free bacteria.38–40 To confirm that the177

increased survival rate in plasmid-bearing populations was not a consequence of the decrease growth178

rate associated to the inherent metabolic burden of carrying plasmids (instead of resulting from selection179

in favor of a subpopulation with more copies of blaTEM-1), we repeated the survival experiment for180

MG:pBGT under the MG/GT amp MIC in the presence of 256 µg/mL of sulbactam, a β -lactamase181

inhibitor. As expected, cells were unable to survive antibiotic exposure and fluorescence remained182

constant independently of the concentration of ampicillin.183

Based on these results, we conclude that plasmid-driven blaTEM-1 variability increases resilience of the184

population to intermittent ampicillin exposure. But we have not identified the mechanism yet. There are185

two possibilities for the observed patterns of heterorresistance, first, pre-existing genetic diversity in the186

7/17



population, or, second, a heterogeneous response to stress consequence of cell-to-cell heterogeneities.187

Note that we cannot use population-level experiments to contrast both options so, in the next section,188

we will use single-cell microfluidics to study the response of individual cells to an antibiotic pulse189

when blaTEM-1 is located in the chromosome or in a multi-copy plasmid.190

Heterogeneity in blaTEM-1 expression generates an asynchronous stress response191

We have shown that plasmid-bearing populations present heterogeneity in the expression of blaTEM-1192

and that selection imposed by antibiotics modulate the shape of the PCN distribution, suggesting the193

existence of cells producing β -lactamase at a higher rate and hence presenting increased tolerance194

to the antibiotic. Therefore, even if all cells are exposed to the same environmental concentration of195

antibiotics, we would still expect heterogeneity in the intracellular concentration of ampicillin between196

different cells, producing variability in peptidoglycan damage and, therefore, responding to the stress197

differently. To test this, we used single-cell microfluidics and fluorescent microscopy to measure the198

level of expression of blaTEM-1 in individual cells (see Methods).199
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Figure 4. Microscopy montage: cell length vs. time. A) blaTEM-1 carried in a multicopy plasmid (MG:pBGT).
B) chromosomally encoded blaTEM-1. C) Cell length as a function of time for MG/GT. D) Cell length as a
function of time for MG:pBGT. E) Fraction of dead (black) and live (frey) cells after intermittent antibiotic
exposure. Purple area represents the fraction of cells that produced bacterial filaments and survived drug
exposure. F) Time elapsed between introduction of the antibiotic and cell elongation. Note how MG:pBGT has a
higher variance than MG/GT.

First, note that, similar to our flow cytometry data, distributions of fluorescent intensity obtained using200

a fluorescent microscopy in plasmid-bearing strains present increased mean and variance compared to201

MG/GT.202

After growing in exponential phase for 8 hours, we introduced a short pulse of a lethal concentration203
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of ampicillin into the device. Critical concentrations of antibiotics used were determined using dose-204

response experiments, 32 mg/mL for MG:pBGT and 2 mg/mL for MG.205

Figure 4-D illustrate an experiment where a population of MG/GT cells produced filaments simultane-206

ously in response to the presence of ampicillin. Note how, as the antibiotic is introduced, bacterial cells207

stop dividing but continue growing, thus producing elongated cells. Drug-induced filamentation is a208

consequence of a general stress response that regulates the expression of over 50 genes,41 including209

genes directly involved DNA repair, DNA damage tolerance or the induction of a DNA damage check-210

point that transiently suppresses cell division. This stress response mechanism is known as the SOS211

system and is known to increase resistance to heavy metals42, 43 and antimicrobial substances,44, 45 as212

well as to increase genetic variation46 by promoting bacterial mutagenesis47 and enabling the horizontal213

transmission of virulence factors48 and antibiotic resistance genes.49
214

In particular, binding of β -lactamase molecules to the penicillin-binding protein 3 (PBP3) can trigger215

the SOS response system through DpiBA, a two-component signal transduction system50 that induces216

sulA, which in turn inhibits septation by blocking FtsZ polymerization. As a result, cell division is217

suppressed and bacterial filaments are produced.51, 52 These bacterial filaments are known to increase218

tolerance to cell wall damage produced by the antibiotics we use in this study.53 Crucially, once the219

antibiotic is removed, filamented cells reorganize the FtsZ ring, divide and resume normal growth,54 as220

can be seen in Figure 4D right side.221

Using image processing algorithms (see Methods), we also obtained time-series of cell length as a222

function of time. This allowed us to estimate the time elapsed since the introduction of the antibiotic223

and the formation of filaments (see Figure 4C,D . This data is consistent with previous studies reporting224

that the temporal expression of genes in the SOS system is tightly regulated55
225

However, MG:pBGT produces a very heterogeneous response: some cells die, some produce filaments226

and others continue to grow and divide (Figure 4E). Moreover, from the fraction of cells that produced227

filaments, the timing of SOS activation varied considerably (Figure 4F).228

Discussion229

Recent studies have argued that presenting heterogeneity can provide functional benefits for bacterial230

communities in fluctuating environments,56 with examples including asynchronous sporulation,57
231

metabolic diversification58, 59 and increased tolerance to adverse conditions imposed by phages60
232

or antimicrobial substances.61 Moreover, phenotypic heterogeneity also enables isogenic popula-233

tions to perform complex tasks through division of labour, with examples ranging from metabolic234

cooperation62, 63 and biofilm production64 to virulence65 and drug resistance.10
235

While the benefits of phenotypic noise may be clear, the underlying molecular mechanisms that stably236

maintain heterogeneous populations are not. Previous studies have shown that transitions between237

multiple phenotypic states can be driven by noise in promoters,66 asymmetry in the cell division238

process67 or stochastic fluctuations in the concentrations of proteins and mRNAs present at low-copy239

numbers in the cell.68, 69 Similarly, stochastic70, 71 and deterministic72, 73 features of gene regulatory240

networks can also produce phenotypically-diverse populations.241
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Here we have shown that , even without genetic mutations, multicopy plasmids can generate heteroresis-242

tant populations composed at all times of susceptible and resistant cells, therefore increasing tolerance243

of the population to a sudden increase in drug concentration and recovering fitness once it has been244

withdrawn.245

Materials and Methods246

Bacterial strains and culture conditions247

In this study we used an Escherichia coli MG1655 bearing different versions of the pBGT plasmid. This248

versions differ on point mutations on the RNAI leading to different plasmid copy numbers. Plasmids249

and strains were previously characterized on.24 The plasmid encodes for the β -lactamase resistant gene250

blaTEM-1 that confers resistance to ampicillin and GFP gene under an arabinose inducible promoter and251

the araC repressor. Plasmid bearing strains average copy numbers are 19, 44 and 88 for pBGT, G54U252

and G55U respectively. We also used a strain that has one copy of the same gene, fluorescently tag, but253

in the chromosome, MGGT.254

All experiments were conducted in Lysogeny Broth - Lenox (LB) (Sigma-L3022) supplemented255

with arabinose 0.5% w/v, antibiotics were supplemented as specified in each experiment. Stocks256

solutions at 20% of Arabinose (Sigma-A91906) were prepared by diluting 2g of arabinose in 10ml DD257

water sterilized by filtration. AMP stock solutions (100mg/ml) were prepared by diluting ampicillin258

(Sigma-A0166) directly in LB and adding arabinose (0.5% w/v)259

Antibiotic susceptibility determination260

Standard dose-response curves were used to determine each strain minimum inhibitory concentration261

(MIC). Ampicillin MICs were 2,000, 32,000, 43,000, and 46,000 µg/l for strains MGGT, pBGT,262

G54U, and G55U strains respectively. Dose-response curve were performed in 96-well plated (Costar263

CLS3370), plates were sealed using X-Pierce film (Sigma Z722529), each well seal film was pierced in264

the middle with a sterile needle to avoid condensation. Plates were grown at 37degC and reading for265

OD (630 nm) and fluorescence for eGFP (479,520 nm), were made every 20 minutes after 30 seconds266

linear shaking using a fluorescence microplate reader (BioTek Synergy H1).267

β -lactamase inhibitor experiment268

We used Sulbactam (Sigma-S9701-10MG) for β -lactamase inhibition. For this experiment we fixed269

ampicillin concentration equal to the MIC of the MGGT strain, that is 2,000 µg/l. And then performed270

a sulbactam dose-respose curve for the pBGT strain and found total growth inhibition with 256 µg/l.271

Dose-response was performed in 96-well plates We used this concentration to perform the serial dilution272

experiment of LB-LB+AMP+Sulbactam-LB. Samples of four experiment replicates were used for flow273

cytometry and, independently another four replicate samples we used for plasmid quantification.274

Plasmid copy-number determination275

Sample preparation were performed following the protocol in.74 100 µl culture samples were cen-276

trifuged at 16,000 g for 60”, the supernatant was removed and the pellet was resuspended in an equal277

volume of milliQ water. Then, samples were boiled at 95 ◦C during 10’ using a thermoblock.278
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Plasmid copy-number were determined by qPCR using the ∆∆CT method following the protocol in.24
279

We used the chromosomal monocopy gene dxs as reference and specific primers for the blaTEM-1 gene280

were used as plasmid targets. qPCR reactions were performed using SYBR Select Master Mix (Applied281

biosystems - 4472908) in a Bio-Rad CFX Real-Time PCR Detection System.282

Flow cytometry283

Population-level experiment measurements were performed by sampling 1ml of overnight culture284

and measured their fluorescence using an imaging flow cytometer (Amnis ImageStream Mark II by285

Luminex). INSPIRE software was used to acquire data discriminating by area, aspect ratio, focus, and286

side scatter features. GFP fluorescence was excited at 488 nm with 25 mv intensity. Populations data287

files were processed using IDEAS 6.2 software and feature values were exported and analyzed using288

bespoke scripts implemented in Python programming language and MATLAB.289

Plasmids costs determinations290

Growth rates analysis was made using the R package GrowthRates using non parametric smoothing291

splines fit. Strains were grown in 96-well plates in LB supplemented with arabinose 0.5% w/v. Growth292

kinetics were done at 37degC for 24 h, reading every 20 min after 30 s shaking in a Synergy H1293

microplate reader.294

Single-cell microfluidics295

We used a microfluidic device built-in PDMS (polydimethylsiloxane) from molds manufactured using296

soft photolithography (SU-8 2000.5). In particular, we used a micro-chemostat (adapted from?) that297

contains two media inputs and 48 rectangular chambers (40x50x0.95µm3). Each confinement chamber298

traps approximately 500 cells in the same focal plane, enabling us to use time-lapse microscopy to299

follow in time thousands of individual cells.300

Drug was introduced into the microfluidic device using a dynamic pressure control system developed301

with a signal generator and robotic linear actuators.75 Media inputs are mixed at different proportions302

using a red fluorescent dye (rhodamine) diluted in one of the media inputs. Growth media was loaded303

into 60ml-syringes connected to the PDMS chip through Tygon tubes and assorted Luer connectors.304

The pressure inside the chip is controlled with vertical linear actuators and a digital signal generator305

that controls the height of each syringe. Initial inoculates of cells were grown overnight in the presence306

25 µg/l for palsmid maintenance. A sample was then transferred to 200ml of fresh LB and grown at307

30◦C until reaching an OD600 = 0.3. After centrifuging, cells were re-suspended in 5ml of LB, and308

this dense culture was used to inoculate the microfluidic chip. For all microfluidics experiments, we309

used LB media supplemented with arabinose at 0.5% and Tween20 (Sigma-P2287) at 0.075%. In all310

cases, cells were allowed to grow and divide multiple cell cycles in a drug-free environment, allowing311

us to determine the baseline fluorescent intensity of the population. We later use this value to normalize312

our data and compare fluorescent intensities during the experiments.313

Image analysis314

Microscopy time-lapse movies were analyzed using a semi-automated ImageJ? analysis pipeline315

that implements a deep-learning algorithm for image segmentation.76 Cell tracking and lineage316
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reconstruction were performed in Python using standard numerical and geometric libraries (NumPy,317

Shapely, Pandas, Scipy, Matplotlib). Data and code are openly distributed and available for download318

at https://github.com/ccg-esb-lab/uJ.319

In short, the image processing pipeline consists on 1) organizing TIF files generated by NIS Elements,320

2) aligning traps and using rigid motion transformation to correct for x-y drift in time-lapse images,321

3) using Parallel Interactive Deconvolution with a theoretical point spread function generated with322

PSF Generator to produce a segmentable image, 4) using DeepCell76 to segment images and obtain323

binary masks, 5) cell detection and automatic correction of ROIs, 6) manual correction of a binary324

mask, 7) data acquisition by overlapping masks in different fluorescent and bright field channels, 9) cell325

tracking using a feature-aided nearest-neighbor algorithm and lineage reconstruction and, finally, 10)326

data analysis and visualization. The goal of this image bioinformatics pipeline is to acquire time-series327

of fluorescent intensity and other morphological properties of individual cells, as well as to obtain328

population-level statistics to estimate, for instance, the mean cell duplication rate of the population or329

changes in the shape of the fluorescence distribution.330

Computational model331

We developed a stochastic individual based model were individual cells are modelled as computational332

objects. Each cell may have specific plasmid copy-number derived from a Normal distributions with a333

specific mean and standard deviation. Cells growth incorporating a limiting Resource with a Michaelis-334

Menten function, this functions takes into account the remaining common resource and the cost entailed335

by the number of plasmids. Cells divide when they reach a threshold of ”ATP” and upon division,336

plasmids are segregated randomly to the daughter cells, which began to replicate plasmids following337

a probability determined by 1− µi(t)/µ̂ , where µi(t) denotes the number of copies of a plasmid of338

type i at time t, and µ̂ the cell-specific maximum plasmid copy number. The action of the antibiotic is339

implemented using individual resistance/susceptibility profile derived from a linear approximation of340

the population MIC and population copy-number, determined experimentally.341
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Capítulo 5

Heterocigosis Mediada por Plásmidos

En un estudio previo realizado por nuestros colaboradores en el Departamento
de Microbiología del Hospital Universitario Ramón y Cajal en España (San Millan
et al. 2016) se realizó un experimento evolutivo en el cual se sometieron 48 poblaciones
de la cepas MG/pBGT (portadora del plásmido), MG:blaTEM1 (que porta el gen de
resistencia integrado en el cromosoma) y MG1655 (silvestre) ante otro antibiótico β-
lactámico para el cual el gen blaTEM-1 no confiere resistencia, ceftazidime (Caz). El
experimento se realizó durante 16 días, iniciando con 1/4 de la respectiva CMI de cada
cepa y cada día se duplicó la concentración de Caz con el fin de ejercer una presión
selectiva fuerte y analizar el porcentaje de supervivencia por día.

Se encontró que la cepa que porta el gen de resistencia en el plásmido fue capaz
de sobrevivir por mucho más tiempo en el experimento como se muestra en la Figu-
ra 5.1-A. El número de copias del plásmido se incrementa significativamente ante la
presión selectiva, esto es debido a que ocurren mutaciones en el mecanismo de con-
trol de número de copias, además de eso, para que las poblaciones puedan sobrevivir
ante presiones selectivas tan altas es necesario que ocurran mutaciones en el gen de
resistencia. Se secuenciaron aislados de cada uno de los días y se encontraró que las
mutaciones causantes del aumento de número de copias, así como la mutación en el
gen de resistencia son mutaciones puntuales, siendo esta última la variante blaTEM-12
que proporciona resistencia a Caz (Mira et al. 2015).

A partir de este experimento, postulamos un modelo de agentes individuales y
realizamos simulaciones in silico del experimento. Este modelo capturó con precisión
cuantitativa los comportamientos poblacionales de las distintas cepas (como se muestra
en la Figura 5.1-B), pero también nos permitió analizar el perfil de mutaciones que con-
fieren un mayor número de copias de plásmidos, así como las dinámicas poblacionales
de mutaciones en el gen de resistencia (Figura 5.1-C,D).

Interesantemente, el modelo teórico predice que los plásmidos multicopia producen
periodos en los cuales el alelo ancestral coexiste con el alelo mutante. Esta coexisten-
cia de alelos ocurre, no solamente entre subpoblaciones portadoras de un solo alelo,
sino también a nivel intracelular, debido a que los alelos en cuestión son portados en
plásmidos multicopia.

Estas células portadoras de ambos alelos, son en sí, heterocigotas. La coexistencia
de plásmidos distintos dentro de una misma bacteria ha sido descrita con anterioridad,
se le conoce como heteroplasmia y ha sido estudiada con el objetivo de analizar la
compatibilidad de plásmidos, una característica que ha servido para clasificarlos. La
coexistencia de distintas versiones del mismo plásmido podría entenderse como un
caso particular de heteroplasmia pero no había sido descrito con anterioridad por lo
que nombramos a este fenómeno, heterocigosis mediada por plásmidos. Así como para
mantener un plásmido con genes no esenciales es necesario mantener una selección
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Figura 5.1: Experimento de supervivencia en una rampa de antibióticos. A) Resultados Ex-
perimentales. La población que porta el plásmido es capaz de sobrevivir por mucho más
timepo al tratamiento. B) Simulaciones con un modelo de agentes individuales. Observamos
el mismo comportamiento introduciendo mutaciones que aumentan el número de copias y
mutaciones en el gen de resistencia C) Dinámica incremento de número de copias del plás-
mido de una población que subsistió hasta el final del experimento. Observe cómo surgen
poblaciones dominantes cada vez con mayor número de copias. D) Dinámica de frecuencia
de alelos mutantes de la misma población. Note que antes de que el alelo mutante (rojo)
se fije en la población existe un periodo considerable donde ambos alelos coexisten, además
esta coexistencia de alelos se da mayoritariamente a nivel intracelular (zona en amarillo).
Note también que la zona amarilla es en realidad un gradiente de color correspondiente a
subpoblaciones con distintas proporciones de ambos alelos. Al final del experimento sólo las
poblaciones que acumularon las mutaciones necesarias sobreviven al tratamiento.

positiva (Peña-Miller et al. 2015), mantener la heterocigosis mediada por plásmidos
requiere también de una presión selectiva, y se requiere que esta presión sea dinámica.

En ese capítulo, suponemos que los comportamientos observados a nivel de po-
blaciones son consecuencia de la dinámica de plásmidos a nivel intracelular (enten-



Modelo de agentes individuales para PMH

diendo como dinámica de plásmidos el producto de los procesos replicación, muta-
ción, división celular, segregación, costo metabólico, adecuación, etc). El análisis de
células individuales lo realizamos mediante experimentos de microfluídica similares al
protocolo descrito por Mather et al. (2010). Estos experimentos producen series de
tiempo en imágenes que resultan espectaculares al ojo humano, pero que además per-
miten obtener datos temporales de intensidad de fluorescencia en células individuales,
por lo que fue necesario crear herramientas computacionales de análisis y procesa-
miento de imágenes que nos ayudaran en la tarea. En particular, desarrollamos µJ
(https://github.com/ccg-esb-lab/uJ), un pipeline de análisis de imágenes con el
cual analizamos las imágenes de microscopía para obtener información sobre el com-
portamiento de las bacterias en los distintos ambientes de selección y, de esta forma,
discernir las dinámicas de plásmidos a nivel intracelular y con alta resolución temporal.

5.1 Modelo de agentes individuales para PMH

Este modelo es una extensión del modelo descrito en el capítulo anterior en el cual
integramos otro plásmido con consideraciones apropiadas.

Primero añadimos mutaciones tanto en el gen de resistencia, consideramos que
estas mutaciones pueden ocurrir con cierta probabilidad εP durante la replicación de
cada plásmido. Luego incluimos mutaciones en el mecanismo de control de número de
copias que ocurren con probabilidad εC y que cuando una bacteria adquiere una de
estas, todos sus plásmidos aumentan en número. Estas mutaciones son acumulables y
cada una duplica el número de copias. También consideramos que las ambas mutaciones
pueden ser reversible y las tasas de mutación son ajustadas a los tamaños poblacionales
de las simulaciones.

Los antibióticos son considerados conjuntamente tomando en cuenta los perfiles
resistencia de las cepas homocigotas y calculamos el perfil de susceptibilidad/resistencia
considerando el número de plásmidos de cada tipo que cada bacteria porta.

Tomando en cuenta estas modificaciones, las realizaciones del modelo se realizan
de la misma manera que la versión anterior.

Nota: Este trabajo fue publicado en la revista Plasmid

https://github.com/ccg-esb-lab/uJ
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A B S T R A C T

Multicopy plasmids play an important role in bacterial ecology and evolution by accelerating the rate of
adaptation and providing a platform for rapid gene amplification and evolutionary rescue. Despite the relevance
of plasmids in bacterial evolutionary dynamics, evaluating the population-level consequences of randomly
segregating and replicating plasmids in individual cells remains a challenging problem, both in theory and
experimentally. In recent years, technological advances in fluorescence microscopy and microfluidics have al-
lowed studying temporal changes in gene expression by quantifying the fluorescent intensity of individual cells
under controlled environmental conditions. In this paper, we will describe the manufacture, experimental setup,
and data analysis pipeline of different microfluidic systems that can be used to study plasmid dynamics, both in
single-cells and in populations. To illustrate the benefits and limitations of microfluidics to study multicopy
plasmid dynamics, we will use an experimental model system consisting on Escherichia coli K12 carrying non-
conjugative, multicopy plasmids (19 copies per cell, in average) encoding different fluorescent markers and β-
lactam resistance genes. First, we will use an image-based flow cytometer to estimate changes in the allele
distribution of a heterogeneous population under different selection regimes. Then we will use a mothermachine
microfluidic device to obtain time-series of fluorescent intensity of individual cells to argue that plasmid seg-
regation and replication dynamics are inherently stochastic processes. Finally, using a microchemostat, we track
thousands of cells in time to reconstruct bacterial lineages and evaluate the allele frequency distributions that
emerge in response to a range of selective pressures.

1. Introduction

Plasmids are significant drivers of microbial ecology and evolution
by horizontally transmitting beneficial genes and providing recipient
cells with access to novel ecological niches (Wiedenbeck and Cohan,
2011). But the contribution of plasmids to bacterial evolutionary dy-
namics is not reduced to merely acting as vehicles for the horizontal
dissemination of genetic information between strains and species. Re-
cent studies have enlisted a series of benefits associated with carrying
genes in plasmids, as opposed to encoding them in the chromosome.

The fixation probability of beneficial mutations and the rate of
segregational loss are determined by the number of plasmid copies
carried by each cell (Stewart and Levin, 1977) and, therefore, copy
number control, as well as timing and mode of plasmid segregation, are
important factors influencing the population genetics of plasmid-
bearing populations (Paulsson, 2002; Rodriguez-Beltran et al., 2019;

Ilhan et al., 2019). As a result, the stochastic nature of replication and
segregation of multi-copy plasmids has been studied extensively, both
in theory (Ishii et al., 1978; Nordström, 1984; Keasling and Palsson,
1989; Paulsson and Ehrenberg, 2001) and in laboratory conditions
(Nordström et al., 1984; Novick, 1987; Del Solar and Espinosa, 2000),
showing that copy-number control is a noisy process with events ran-
domly distributed in time (Seneta and Tavaré, 1983) and, therefore,
intracellular fluctuations in copy numbers can be seen as a stochastic
dynamical system (Keasling and Palsson, 1989).

Similarly, plasmid partition is a random process such that, in the
absence of plasmid addiction systems (Mochizuki et al., 2006; Baxter
and Funnell, 2015), results in an equal chance for each plasmid to be
inherited to each daughter cell and, therefore, in a binomial probability
of producing a plasmid-free cell upon division. Of course, this is a
simplification, as high-copy plasmids can produce dimers through
homologous recombination (Summers, 1991) and intracellular spatial
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structure can result in the asymmetric segregation of plasmids upon
division (Wang et al., 2016). Also, low-copy plasmids tend to have
active partitioning mechanisms that organize plasmids around a cen-
tromere-like site to segregate plasmids symmetrically between daughter
cells at division (Salje, 2010). In contrast, plasmids that do not encode
partition systems decrease the probability of segregational loss by being
present in high-copy-numbers.

But carrying multiple plasmid copies not only increases plasmid
stability but can also have important consequences in the adaptive
dynamics of plasmid-bearing populations, for instance increasing the
rate of fixation of beneficial mutations (Galitski et al., 1995) and ac-
celerating the rate of adaptation to deteriorating environmental con-
ditions (San Millan et al., 2016). Furthermore, once a beneficial mu-
tation appears in a plasmid-borne gene, multicopy plasmids can provide
a platform for rapid gene amplification (Nicoloff et al., 2019). By in-
creasing gene dosage, bacterial cells have been reported to transiently
enhancing the level of resistance to antibiotics (Santos-Lopez et al.,
2017), allowing the population to increase in size and, as a result, in-
creasing the probability of appearance of secondary drug-resistant
mutations (Sun et al., 2018).

Moreover, multicopy plasmids produce genomic regions of local
polyploidy that can generate heterozygous cells where different alleles
coexist at a cellular level, a phenomenon also referred to as hetero-
plasmy (Novick, 1987). As a result, individual cells can increase their
genetic diversity and enable populations to circumvent evolutionary
trade-offs (Rodriguez-Beltran et al., 2018). It has also been reported
that the multicopy plasmids can increase standing genetic variation in
the population, thus enabling bacterial populations to escape extinction
following a sudden environmental change (Santer and Uecker, 2019).
In the absence of selection, however, random genetic drift of multicopy
plasmids during cell division (also known as segregational drift (Ilhan
et al., 2019)) can reduce the rate of adaptation, despite high-copy
plasmids having increased mutational supply.

By focusing on large population sizes, laboratory studies have been
able to characterize the interaction between genetic dominance and
strength of selection, and correlate these traits with the probability of
fixation of mutant alleles and the horizontal transmission of plasmid-
borne genes (Rodriguez-Beltran et al., 2019). Other plasmid evolution
studies have focused on compensatory adaptation (San Millan et al.,
2014; Wein et al., 2019; Hall et al., 2020), horizontal transmission
(Lopatkin et al., 2017) and co-evolution between hosts and plasmids
(Harrison et al., 2015). Altogether, these results highlight the complex
interaction between the intracellular plasmid dynamics and the evolu-
tionary dynamics of bacterial populations.

1.1. Single-cell microfluidics

In the past decades, biology and medicine have been rapidly evol-
ving towards using quantitative tools to study complex biological sys-
tems. Interdisciplinary studies use statistical, mathematical, and com-
putational tools, combined with experimental and molecular biology, to
understand the behavior of individual cells within a population
(Artemova et al., 2015) and to predict their response to environmental
change (El Meouche and Dunlop, 2018). The benefit of implementing a
bottom-up approach is that we can follow the life history of individual
cells, instead of averaging large populations and making inferences
about cellular processes from population-level observations.

Fluorescence microscopy has been previously used to estimate
plasmid copy-numbers (Ng et al., 2010; Løbner-Olesen, 1999), as well
as to visualize conjugation (Babić et al., 2008), to study horizontal
transmission of plasmids (del Campo et al., 2012) and to explore the
range of different plasmid-host associations (Shintani et al., 2014). It
has also been used to evaluate in situ conjugation in bacterial plant
endosymbionts (Bañuelos-Vazquez et al., 2019) and horizontal gene
transfer in microbiomes (Pinilla-Redondo et al., 2018). Moreover, with
the use of fluorescent probes, microscopy studies have been able to

study with great detail the spatio-temporal distribution of plasmids
inside a cell, as well as the segregation dynamics occurring upon divi-
sion (Wang et al., 2016; Reyes-Lamothe et al., 2013; Hsu and Chang,
2019). These single-molecule studies, however, only consider a small
set of cells and are constrained to short-term experiments in constant
environments.

On the other hand, microfluidic devices have been used in combi-
nation with fluorescence to obtain time-series of gene expression of
individual cells (Young et al., 2012; Tomanek et al., 2020). Microfluidic
devices can be fabricated using soft lithography (Zhang et al., 2012; Pan
et al., 2011), micro-droplets (Boedicker et al., 2009) and protein-based
micro-3D printing (Connell et al., 2014). In general, the goal of these
devices is to restrict the movement of bacterial cells to observe them for
long time intervals with the aim of studying, for instance, gene ex-
pression dynamic (Young et al., 2012; Baumgart et al., 2017; Bennett
and Hasty, 2009; Locke and Elowitz, 2009), as well as to evaluate the
consequences of asymmetric division and cell-to-cell variability of key
cellular processes (El Meouche and Dunlop, 2018; Mosheiff et al., 2017;
Bergmiller et al., 2017). A brief overview of different microfluidic de-
vices and their uses can be found in (Bennett and Hasty, 2009; Potvin-
Trottier et al., 2018).

A myriad of computer vision algorithms have been developed to
analyze time-lapse movies acquired using a fluorescent microscope
(Young et al., 2012; Van Valen et al., 2016; Berg et al., 2019a;
Balomenos et al., 2017; Arnoldini et al., 2014; Sachs et al., 2016;
Lugagne et al., 2019; Kamentsky et al., 2011). Of note, Schnitzcell
(Young et al., 2012) was designed to study colonies of rod-shaped
bacteria (e.g. Escherichia coli and Bacillus subtilis) growing in agar pads,
although it is not longer maintained. Recently, novel computational
techniques based on machine learning have been successfully in-
corporated into bio-image analysis pipelines. For example, DeLTA
(Lugagne et al., 2019) and DeepCell (Van Valen et al., 2016) implement
deep convolutional neural networks to perform accurate segmentation
and lineage reconstruction, while Ilastik (Berg et al., 2019b) provides a
user-friendly suite for image segmentation and cell tracking.

Besides quantifying single-cell fluorescent intensity, imaging algo-
rithms can also be used to record division events and to estimate du-
plication and elongation rates of individual bacterial cells. In con-
sequence, microfluidics have been used to study cell growth and
homeostasis (Wallden et al., 2016), senescence (Ackermann et al.,
2003; Lindner et al., 2008) and bacterial adaptation to stress (Łapińska
et al., 2019; Mathis and Ackermann, 2016; Patange et al., 2018). By
correlating physiological and morphological properties of individual
cells with the level of expression of a gene of interest, previous studies
have shown that phenotypic heterogeneity can provide functional
benefits for bacterial populations, for instance allowing the im-
plementation of division of labor strategies or increasing survival of the
population to fluctuating environmental conditions (Ackermann,
2015). Another benefit of single-cell microfluidics is that it allows us to
estimate growth rate differences and survival rates in response to en-
vironmental change. Therefore microfluidics has been proposed as a
strategy for rapid antimicrobial susceptibility determination (Baltekin
et al., 2017; Aroonnual et al., 2017) and to study gene regulatory
changes that emerge in response to genetic and environmental pertur-
bations (Rochman et al., 2016; Chait et al., 2017)..

In this paper, we combine microfluidics, fluorescent microscopy,
and computer vision algorithms to study the interaction between mul-
ticopy plasmids and bacterial fitness in dynamic environments. To
achieve this goal, we use a previously characterized experimental
system consisting of plasmid-mediated β-lactam resistance evolution in
Escherichia coli (Rodriguez-Beltran et al., 2018). The objective of this
manuscript is to describe the use of fluorescence and multiple image-
based technologies to identify the source of noise in the replication and
segregation dynamics of multicopy plasmids, as well as to evaluate the
effect of selection imposed by antimicrobial substances on the dis-
tribution of plasmids exhibited by single-cells and bacterial
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populations.

2. Material and methods

2.1. Bacterial strains and plasmids

In this study, we use derivatives of Escherichia coli MG1655 strains
previously published (San Millan et al., 2016; Rodriguez-Beltran et al.,
2018). In short, a β-lactamase gene blaTEM−1 that confers resistance to
ampicillin (AMP) was inserted into a small non-transmissible multi-
copy plasmid p3655 derived from pSU18T and pBADgfp2, with a
ColE1-like (p15a) origin of replication (Le Roux et al., 2007), a plasmid
referred to in this study as pBGT-1. This plasmid also contains an eGFP
gene under an arabinose promoter with an araC repressor. Another
plasmid, pBRT, was derived from pBGT by replacing the blaTEM−1 gene
with blaTEM−12, a TEM variant that confers resistance to ceftazidime
(CAZ) and mild resistance to ampicillin (AMP). Also, eGFP was replaced
by a DsRed gene, and the native cat resistance gene was knocked-out. In
this study, we refer to heterozygous cells simultaneously carrying both
plasmids as HT, while G1 and R12 denote homozygous cells bearing
pBGT-1 and pBRT-12, respectively (see Fig. 1A for maps of these
plasmids). It is important to emphasize that pBGT-1 and pBRT-12 share
an origin of replication and only differ in the fluorescent marker and the
TEM variant carried. Therefore the plasmid copy-number control

mechanism regulates the maximum number of plasmids carried in each
cell, independently of the plasmid type.

2.2. Media and growth conditions

Experiments were performed using Lysogeny Broth- Lenox (LB)
(Sigma-L3022) supplemented with arabinose (0.5% w/v). Antibiotic
minimum inhibitory concentrations (MIC) were calculated using stan-
dard dose-response curves. To balance HT cells, we prepared the
overnight culture using LB media supplemented with 15 mg/l of
chloramphenicol and 0.5 mg/l ceftazidime. Stocks solutions at 20% of
Arabinose (Sigma-A91906) were prepared by diluting 2 g of arabinose
in 10 ml DD water sterilized by filtration. AMP stock solutions (100 mg/
ml) were prepared by diluting ampicillin (Sigma-A0166) directly in LB
and adding arabinose (0.5%). Stock solutions of ceftazidime (Sigma-
A6987) were diluted in water at 10 mg/ml and sterilized by filtering.
Chloramphenicol (Sigma-C0378) stock solutions were prepared at
50 mg/ml in ethanol (97%). Population-level experiments were per-
formed using 20 ml of LB media in 125 ml titration flasks. Three re-
plicates of HT cells cultures were grown in balancing media for 24 h in a
shaker incubator at 37 °C and 200 rpm.

Fig. 1. A) Maps of plasmids used in this study. Composite microscopy image shows a heterogeneous E. coli population composed of cells carrying only pBRT-12
(denoted as R12, in magenta), pBGT (G1, in green) and a combination of both plasmids (HT). B) Diagram illustrating a polar representation of multi-channel
fluorescent data. After normalizing fluorescence intensities obtained in GFP and DsRed channels, each cell can be represented as a point in a two-dimensional polar
coordinate system, where the relative fluorescence between DsRed and GFP channels can be approximated by an angle and the absolute fluorescence intensity from
its distance to the origin. We argue that absolute fluorescence is correlated with plasmid copy-number (PCN) and relative fluorescence to the plasmid fraction (PF). C)
Raw cytometry data of a heterogeneous population illustrates that a flow cytometer can be used to identify different subpopulations, namely R12, G1 and HT. D-F)
Polar representations of different plasmid-bearing populations n drug-free media: D) cells carrying only pBRT-12, E) a heterozygous population where both plasmids
co-exist at a cellular level, and F) homozygous cells with only pBGT-1. Black dotes denote the expected value of the corresponding plasmid copy-number distribution.
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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2.3. Imaging flow cytometry

Population-level experiment measurements were performed by
sampling 1 ml of overnight culture and measured their fluorescence
using an imaging flow cytometer (Amnis ImageStream Mark II by
Luminex). INSPIRE software was used to acquire data discriminating by
area, aspect ratio, focus, and side scatter features. GFP fluorescence was
excited at 488 nm with 25 mv intensity, and DsRed fluorescence was
excited at 561 nm with 200 mv intensity. Populations data files were
processed using IDEAS 6.2 software and feature values were exported
and analyzed using bespoke scripts implemented in Python program-
ming language.

2.4. Microfluidic devices

We used PDMS (polydimethylsiloxane) microfluidic chips obtained
from wafers manufactured using soft photolithography (SU-82000.5,
micro resist technology GmbH). In particular, we used a micro-che-
mostat (Mondragón-Palomino et al., 2011) that contains multiple in-
puts (a cell-loading input, a shunt, and two for different growth media),
as well as two waste outputs. Media inputs are mixed at different
proportions using a red fluorescent dye (rhodamine) diluted in one of
the media inputs. This device contains 48 chambers of 40x50x.95 μm,
capable of trapping approximately 500 bacterial cells in the same focal
plane. Each chamber is open to a big channel on two sides and, when
chambers are filled, bacteria in the edges are pushed out of the chamber
and washed away. We used this device to obtain high-throughput po-
pulation-level data derived from single-cell measurements at different
time-points. We also used a dual-input mother-machine (Kaiser et al.,
2018) device in which bacteria are trapped in a comb-like channels
architecture. Mother cells restrained at the bottom of each channel and,
as they grow and divide, daughter cells are pushed downwards to a
larger channel and washed away. We used this microfluidic chip to
keep track of mother cells for very long periods of time, while quanti-
fying fluorescence and other morphological attributes.

2.5. Cell loading and environmental control

Growth media was loaded into 60 ml-syringes connected to the
PDMS chip through Tygon tubes and assorted Luer connectors. The
pressure inside the chip is controlled with vertical linear actuators and a
digital signal generator that controls the height of each syringe. This
Dial-A-Wave (DAW) system (Ferry et al., 2011) enables precise control
over the extracellular environmental conditions. For the purpose of this
paper, we use this DAW to introduce antibiotics into the chip gradually,
until reaching a maximum dose that is then maintained until all cells
are killed, a protocol we refer to as a ramp experiment. Later we will
introduce antibiotics following a sinusoidal signal to alternate selective
pressures periodically.

Initial inoculates of HT cells were grown overnight in the presence
of sub-lethal doses of chloramphenicol and ceftazidime, in order to
clear homozygous cells from the culture and obtain a well-balanced HT
culture. A sample was then transferred to 200ml of fresh LB and grown
at 30 °C until reaching an OD600 = 0.3. After centrifuging, cells were re-
suspended in 5 ml of LB, and this dense culture was used to inoculate
the microfluidic chip. For all microfluidics experiments, we used LB
media supplemented with arabinose at 0.5% and Tween20 (Sigma-
P2287) at 0.075%. In all cases, cells were allowed to grow and divide
multiple cell cycles in a drug-free environment, allowing us to de-
termine the baseline fluorescent intensity of the population. We later
use this value to normalize our data and compare fluorescent intensities
obtained for different channels.

2.6. Microscopy and image acquisition

Time-lapse images of microfluidic experiments were acquired using

a Nikon Eclipse Ti-E epifluorescence microscope equipped with differ-
ential interface contrast (DIC), a motorized stage and a perfect focus
system that allows us to obtain long-time time-lapses. The microscope
was controlled by the Nikon NIS-Elements AR 4.20 program and is
equiped with a Lexan Enclosure Unit with Oko-touch temperature
control that allows us to incubate the microfluidic chips. The experi-
ments are conducted at 30 °C. For all experiments, time-lapse movies
were acquired with a 100× Plan APO objective without analog gain
and with field and aperture diaphragms as closed as possible to avoid
photobleaching. DIC images were taken at 9v DIA-lamp intensity with
exposure of 200 ms, DsRed channel (excitation from 540 to 580 nm,
emission from 600 to 660 nm filter) with exposure of 600 ms, GFP
channel (excitation from 455 to 485 nm, emission from 500 to 545 nm)
with 300 ms exposure. Images were taken every 5 or 10 min, depending
on the experiment.

2.7. Image processing and analysis

Microscopy time-lapse movies were analyzed using a semi-auto-
mated ImageJ (Schneider et al., 2012) analysis pipeline that imple-
ments a deep-learning algorithm for image segmentation (Van Valen
et al., 2016). Cell tracking and lineage reconstruction were performed
in Python using standard numerical and geometric libraries (NumPy,
Shapely, Pandas, Scipy, Matplotlib). Data and code are openly dis-
tributed and available for download at https://github.com/ccg-esb-lab/
uJ.

In short, the image processing pipeline consists on 1) organizing TIF
files generated by NIS Elements, 2) aligning traps and using rigid mo-
tion transformation to correct for x-y drift in time-lapse images, 3) using
Parallel Interactive Deconvolution with a theoretical point spread func-
tion generated with PSF Generator to produce a segmentable image, 4)
using DeepCell (Van Valen et al., 2016) to segment images and obtain
binary masks, 5) cell detection and automatic correction of ROIs, 6)
manual correction of a binary mask, 7) data acquisition by overlapping
masks in different fluorescent and bright field channels, 9) cell tracking
using a feature-aided nearest-neighbor algorithm and lineage re-
construction and, finally, 10) data analysis and visualization. The goal
of this image bioinformatics pipeline is to acquire time-series of fluor-
escent intensity and other morphological properties of individual cells,
as well as to obtain population-level statistics to estimate, for instance,
the mean cell duplication rate of the population or changes in the shape
of the fluorescence distribution.

2.8. Estimation of plasmid copy-number and plasmid frequency

There are two quantities we estimate from fluorescent data: plasmid
copy-number (PCN) and plasmid frequency (PF). Previous studies have
established that gene copy-number and fluorescent intensity are posi-
tively correlated, both when carried in chromosomes (Bergmiller et al.,
2017) or in plasmids (Rodriguez-Beltran et al., 2018; Ghozzi et al.,
2010). Therefore we will use flow cytometry and fluorescent micro-
scopy to determine the relative intensity of individual cells with respect
to the population-level mean (it was previously determined that the
plasmids used in this study are carried, on average, ~19 copies of the
plasmid per cell) (San Millan et al., 2016).

Also, we estimate the proportion of each plasmid type carried in
each cell from the relative fluorescent intensity measured on different
channels. Let us define Φg and Φr the fluorescent intensity of cell i
measured in the green and red channels, respectively. As fluorescent
proteins have different maturation times and intrinsic brightness
(Balleza et al., 2018), we normalized the data by dividing every channel
measurements by the maximum intensity and obtained relative in-
tensity values for each channel, quantities that we will denote as Φg and
Φr .

We argue that, in this case, a polar representation of fluorescent
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data is more appropriate, as illustrated in the diagram shown in Fig. 1B.
That is, to estimate plasmid fraction from flow cytometry or micro-
fluidic data we will transform the Φ /Φg r  ratio into polar coordinates:≔PF θ~ arctan(Φ /Φ ).r g 

This expression allows us to estimate the fraction of plasmids (PF),
pBGT-1 plasmid with respect to the pBRT-12 plasmid, a quantity we
refer to as relative fluorescent intensity and denote as θ. Similarly, we can
use r to approximate the absolute plasmid copy number (PCN) by as-
suming that fluorescent intensity is proportional to the number of co-
pies of the gene carried by each cell,≔ +PCN r~ Φ Φ .g r

2 2 

However, the assumption of a linear relationship between PCN and
absolute fluorescent intensity does not always hold and, as discussed
extensively in (Tal and Paulsson, 2012), prevents from using absolute
fluorescent intensities as a proxy for plasmid copy number. For this
reason, in this paper we will restrict our analysis to using θ to evaluate
changes in the relative abundances of each allele (i.e. the plasmid
fraction) in response to different environmental conditions.

3. Results

3.1. Using flow cytometry to study population dynamics of heterogeneous
populations

A fundamental problem in plasmid biology is to determine en-
vironmental conditions that enable costly plasmids to be stably main-
tained in bacterial populations (Harrison et al., 2015; Loftie-Eaton
et al., 2016; Porse et al., 2016), This problem is of particular interest for
bioengineers and synthetic biologists, as genetic manipulations of mi-
croorganisms generally use plasmids as cloning vectors, despite being
metabolically costly and, therefore, susceptible to be lost through
purifying selection. In contrast, as drug-resistant genes tend to be car-
ried in plasmids (Alekshun and Levy, 2007; San Millan, 2018), it is also
a problem of interest for biomedical scientists to determine conditions
that cure drug-resistant plasmids of pathogenic populations (Boucher
et al., 2009) and to evaluate the probability of fixation of drug-re-
sistance mutations (Ilhan et al., 2019; Rodriguez-Beltran et al., 2018).

Independently of the motivation, experimental studies routinely
estimate the fraction of plasmid-bearing cells within a bacterial popu-
lation by replicating bacterial colonies from non-selective agar plates
onto plasmid-selective and non-selective media. In recent years, other
studies have used a combination of flow cytometry (FCM) and real-time
quantitative PCR (qPCR) to estimate the mean plasmid copy number of
the population (Ng et al., 2010) and to determine the relative abun-
dance of plasmid-bearing cells (Bahl et al., 2004). The benefit of the
FCM and qPCR is that both are cultivation-independent and provide
precise estimations about the mean plasmid copy number of the po-
pulation.

Here we use an image-based FCM (see Methods) to study the re-
sulting PCN distribution that emerges from exposing genetically-diverse
populations to different selection regimes. We focus on a well-char-
acterized experimental system of drug resistance evolution: plasmid-
mediated TEM-1 evolution towards ceftazidime resistance in Escherichia
coli. The numerous ways in which TEM has evolved suggests that it can
respond very specifically to each β-lactam, and therefore has been used
extensively to study the molecular evolution in response to different
selection regimes, both when TEM is encoded in the chromosome
(Barlow and Hall, 2002; Barlow and Hall, 2003) or in plasmids (Santos-
Lopez et al., 2017; Rodriguez-Beltran et al., 2018). Indeed, nearly every
β-lactamase that has been identified as a resistance determinant among
clinical bacteria has experienced molecular evolution in response to the
use of different β-lactam antibiotics, with over 215 variant TEM β-lac-
tamases identified with differences in amino acid sequence and

susceptibility to β-lactam antibiotics (Barlow and Hall, 2002).

3.1.1. Relative allele frequencies are modulated by selection and
segregational drift

Our experimental systems consists of a bacterial population con-
taining small (5.3Kb), non-conjugative, multicopy plasmids (pBGT-1
with mean PCN=19.12 ± 1.56, and pBRT-12 with 21.1 ± 0.85
plasmids in average (San Millan et al., 2016)), different fluorescent
markers (GFP and DsRed respectively, both under the araC promoter)
and TEM genes that produce different variants of β-lactamase, an en-
zyme that hydrolyzes the active portion of β-lactam antibiotics (Knox,
1995).

It has been established there is a fitness cost associated with syn-
thesizing fluorophores, in this case, expressed in terms of a reduced
growth rate in the presence of arabinose with respect to the same strain
growing in arabinose-free environments (two-tailed t-test, p-value<
0.05, N = 4). For this reason, all experiments described in this study
were performed in the presence of arabinose. Crucially, both fluor-
escent proteins impose a similar fitness burden and therefore no sig-
nificant differences in growth rate were observed in populations pro-
ducing either GFP or DsRed proteins (two-tailed t-test, p-value=0.512,
N = 6) (San Millan et al., 2014), therefore allowing us to associate
changes in fluorescent intensity to differences in fitness of the corre-
sponding TEM alleles, and not due to differential cost of producing
fluorescent proteins.

Fig. 1A displays a composite microscopy image showing that a po-
pulation of HT cells presents high levels of heterogeneity; while some
cells are only detected in DsRed or GFP channels (corresponding to cells
with high proportions of either plasmid), other cells exhibit analogous
levels of fluorescence in both channels (corresponding to heterozygous
cells bearing both pBGT-1 and pBRT-12, mean PCN=22.3 ± 4.7).
Fig. 1C shows raw fluorescent intensity determined with flow cyto-
metry of cells in a heterozygous population, revealing the existence of
three main clusters, corresponding to homozygous cells (R12 and G1)
and the heterozygous population (HT). All flow cytometry experiments
were performed in triplicate, with fluorescence distributions obtained
by sampling 20,000 cells from the corresponding population.

Fig. 1D and F show that clonal populations of G1 and R12 are only
present in the corresponding region of the polar coordinate system
when measured after 24 h of growth. In contrast, HT cells carry both
plasmids and are therefore scattered throughout the polar plane. This
large dispersion in PCN and PF has been predicted by theoretical
models of multicopy plasmid dynamics (Peña-Miller et al., 2015;
Münch et al., 2019), suggesting that populations bearing multicopy
plasmids can present cell-to-cell differences in total plasmid copy-
number and in plasmid frequency. Indeed, recent clinical studies have
suggested that gene amplification and copy-number variability in drug-
resistance genes yield heteroresistant populations (Andersson et al.,
2019), potentially leading to treatment failure in clinical settings
(Nicoloff et al., 2019; Wang et al., 2014; Band and Weiss, 2019).

A consequence of bearing plasmids with different variants of TEM is
that heterozygous populations exhibit heterogeneous profiles of re-
sistance. In this case, blaTEM−1 provides resistance to ampicillin (AMP),
while blaTEM−12 to ceftazidime (CAZ) and partially to AMP (Rodriguez-
Beltran et al., 2018; Mroczkowska and Barlow, 2008). So, to determine
how different environments modulate the distribution of plasmids, we
inoculated a population of HT cells in drug-free media and, after 24 h,
used a flow cytometer to obtain the distribution illustrated in Fig. 1E.
Similarly, we exposed a heterozygous population to a sub-lethal con-
centration of ampicillin (8 mg/ml) and estimated the resulting plasmid
distribution after 24 h (see Fig. 2A). We then repeated this assay with
ceftazidime (8 μg/ml) and, analogous to AMP, HT cells exhibited large
dispersion, while R12 and G1 showed variability in PCN, but not in PF.

We then clustered the population based on their relative fluorescent
intensities and counted the number of cells in each group. The relative
abundances of each subpopulation are illustrated in Fig. 2E. Note how,
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in drug-free media, segregational instability produces homozygous
subpopulations, either carrying blaTEM−1 or blaTEM−12. As blaTEM−1 is
susceptible to ceftazidime, we did not observe any G1 cells when HT
was exposed to CAZ (left bar in Fig. 2E). The absence of cells with
relative fluorescent intensity values in the range corresponding to G1
cells can also be seen in Fig. 2A and C (arrow in 2C shows the location
of the G1 subpopulation). In contrast, as blaTEM−12 confers resistance to
CAZ, then R12 increased in abundance relative to G1 when exposed to
ceftazidime.

Similarly, in environments that positively select for cells carrying
plasmids encoding blaTEM−1, the resulting distribution shows an in-
crease in the relative abundance of G1 (right bars in Fig. 2E). Note that,
in this case, R12 cells were able to survive treatment with ampicillin, a
consequence of a previously reported cross-resistance to both AMP and
CAZ provided by the blaTEM−12 gene (Rodriguez-Beltran et al., 2018;
Salverda et al., 2010). We also performed statistical tests to analyze the
PF distributions of the populations under each selective regime and

found that they are significantly different (Kruskal-Wallis H sta-
tistic=649.6, p-value< 0.001). Similarly, pair-wise Kolmogorov-
Smirnov tests demonstrated significant differences when performing
direct comparisons between AMP-CAZ, AMP-LB, and CAZ-LB distribu-
tions (p-values< 0.001).

Based on the relative abundances of each strain, we estimated the
relative fitness of G1 with respect to R12 under different selection re-
gimes. Fig. 2F shows that using ampicillin increases the relative fre-
quency of G1 and, as a result, produces an increase in the relative fit-
ness of G1 compared to R12. Conversely, CAZ positively selects for R12,
and therefore G1 was suppressed in the population.

Altogether, by analyzing the distribution of fluorescent intensities in
different environments, we conclude that selection imposed by anti-
biotics modifies the relative frequency of different alleles in the popu-
lation. There are, however, two possible explanations for this behavior:
selection acting on populations (this would mean that population-level
dynamics is a consequence of changes in the relative abundances of

Fig. 2. Polar representation of fluorescent intensities obtained using flow cytometry of HT populations exposed to A) ceftazidime, and B) ampicillin. Distributions
were obtained by sampling 60,000 cells from three independent biological replicates. C-D) Histograms of relative intensity for both selection regimes, CAZ and AMP,
respectively. Note how AMP maintains a subpopulation of G1 cells, while in CAZ, only HT and R12 cells are present at the end of the experiment (the arrow in C
points towards relative intensity values that correspond to G1). This is a consequence of R12 cells being resistant to both antibiotics and G1 only resistant to AMP. In
drug-free media, both homozygous populations are present, resulting from the segregation of HT cells into G1 or R12. E) The relative density of each subpopulation
under different environmental conditions, determined by clustering cells according to their relative fluorescent intensity. Each bar corresponds to a replicate
experiment in each environment (N = 3). F) Relative fitness of G1 with respect to R12, after 24 h of growing under different environmental conditions (N = 3). As
expected, AMP provides a fitness benefit for G1, while CAZ positively selects for R12.
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different subpopulations) or at a level of single-cells (implying that
segregation and replication may not be completely stochastic). Using a
flow cytometer does not help us differentiate between these possibi-
lities, so, in the remainder of this paper, we will use microfluidic de-
vices that allow us to correlate selection with changes in allele fre-
quency, both at a level of single-cells and in bacterial populations.

3.2. Using microfluidics to analyze plasmid dynamics of individual cells

We have shown that flow cytometry can be used to evaluate the
effect of selection in the frequency of heterozygous cells in the popu-
lation. However, flow cytometry data does not provide time-resolved
information about the rate of fixation of different alleles or about the
stochastic nature of segregation and replication of plasmids. To over-
come these limitations, we used microfluidics to perform long-term
observations of individual cells and, with the aid of fluorescent mi-
croscopy and image processing algorithms, quantified segregational
drift in heterozygous populations.

In particular, we will use a microfluidic device known as a dual-
input mother-machine, designed to precisely control the environmental
conditions while trapping individual cells in narrow channels under
controlled environmental conditions. As cells grow and divide,
daughter bacterial cells are pushed downwards to the channel opening
and washed away of the device. We will use this microfluidic chip to
perform long-term observations of single-cells and quantify temporal
changes in the fraction of pBRT-12 and pBGT-1 plasmid, with the aim of
studying segregational drift resulting from the stochastic segregation
and replication of multi-copy plasmids.

3.2.1. Intracellular plasmid dynamics is stochastic and not influenced by
antibiotic selection

The benefit of mother-machine microfluidic devices is that they
allow us to culture individual cells for hundreds of generations under
the microscope, in contrast to microscope culture protocols which do
not actively remove progeny during growth and therefore get rapidly
saturated. Multiple mother-machine devices have been proposed
(Taheri-Araghi and Jun, 2015; Long et al., 2013), but we will we use a
dual-input mother machine (Kaiser et al., 2018), as it allows us to
precisely control the concentration of antibiotic inside the microfluidic
chip.

First, we performed a long-term experiment consistent on introdu-
cing HT cells into the device and observing them for a period of 72 h.
We observed four device positions with ~13 microchannels per field of
view, leading to 244,249 single-cell measurements, with mean fluor-
escent intensities of 212 ± 81 for GFP and 155 ± 51 in DsRed,
normalized relative intensity of 1.42 ± 0.53, and normalized absolute
intensity of 0.46 ± 0.14. By acquiring images in multiple channels
(GFP represented in green and DsRed in magenta) we can follow
changes in fluorescence intensity between division events. Fig. 3A
shows a montage of mother cells at specific time-points, with their
corresponding time-series represented in Fig. 3B (black line corre-
sponding to the cell illustrated in Fig. 3A, while grey lines show the
relative intensity time-series obtained for other representative cells in
the device).

It is important to highlight that time-series shown in Fig. 3B are very
long time-series (72 h, up to 99 cell cycles), allowing us to quantify the
difference in relative fluorescent exhibited by each cell at the moment
of division and to estimate the difference in fluorescence between
consecutive cell cycles, a quantity we refer to as Δ relative intensity.
Fig. 3E shows how the time-series of Δ relative intensity produces in-
creases in one fluorescent channel as frequently as increases in the
other direction. As a result, the difference between relative intensity
values estimated in consecutive time-points is approximated by a
Normal distribution with μ = 0.00057 a σ2 = 0.0092 (see Fig. 3D).

Fig. 3F shows the partial autocorrelation function obtained for time-
series of relative intensity in a drug-free environment. Note lags> 0 are

within the 95% confidence interval, suggesting that changes in plasmid
frequency are generated by an auto regressive process of first order,
consistent with the tenet that random segregation and replication of
plasmids are inherently stochastic processes. Another interesting fea-
ture of our data is that intracellular plasmid diversity can be maintained
for many generations in individual bacterial cells. Of course, pheno-
typic delay (Sun et al., 2018) and fluorescent protein stability (Balleza
et al., 2018) could also stabilize fluorescence, but only for a few cell
cycles.

However, a consequence of the random segregation of plasmids is
that there is a probability larger than zero of segregating plasmids
unevenly between mother and daughter cells. In our experimental
system, this would be reflected as large jumps in Δ relative intensity.
Fig. 3C shows a kymograph obtained from a time-lapse movie (Sup-
plementary Movie S1), whereby the cell in the top of the channel
(marked with a black triangle) corresponds to the time-series shown in
Fig. 3B. Top and middle images correspond to GFP and DsRed channels,
while the bottom image illustrates masks obtained after image seg-
mentation, colour-coded to represent the relative intensity value ob-
tained after normalizing both fluorescent channels. Note how, in gen-
eral, fluorescence between mother and daughter cells appears to be
correlated but, occasionally, a mother cell segregates plasmids un-
evenly upon division, producing daughter cells with different plasmid
configurations (for example the magenta lineage in the kymograph). In
the extreme scenario, HT inherits only plasmid of one type to the
daughter cell, producing R12 or G1 cells with a probability that can be
estimated from a binomial distribution.

In summary, we have established that, as generally assumed by
theoretical models of plasmid dynamics (Ilhan et al., 2019; Rodriguez-
Beltran et al., 2018; Santer and Uecker, 2019; San Millan et al., 2014)
segregation and replication of multicopy plasmids are noise-driven
stochastic processes. Now we would like to evaluate if plasmid fre-
quencies are under selection at the level of single cells. To precisely
control the concentration of antibiotics inside the microfluidic chip, we
developed an automated pressure control system (Ferry et al., 2011)
that allows us to introduce different antibiotics into the device and
quantify changes in intracellular plasmid frequency in response to en-
vironmental change. So we introduced HT cells into the device and
observed them for 15 h previous to the introduction to the antibiotic
following a ramp protocol: linearly increasing the concentration of
antibiotic until reaching a lethal dose and maintaining that con-
centration constant until all cells are dead.

When introducing ampicillin, we found that the distribution of Δ
relative intensity remained symmetric with respect to zero, implying
that AMP is not selecting for pBGT-1 plasmids at the level of individual
cells. We repeated this microfluidic experiment, now introducing CAZ
to select for pBRT-12 plasmids, and confirmed that the shape of the
resulting distribution of Δ relative intensity was not skewed towards
DsRed. Fig. 3G illustrates violin plots of Δ relative intensity for different
selective pressures. Note that, independently of the environmental
condition, the shape of the distributions is qualitatively the same (for
AMP a Normal distribution with μ = − 0.00073, σ2 = 0.0129, and for
CAZ with μ = 0.01298, σ2 = 0.0098). We performed a non-parametric
Kolmogorov-Smirnov normality test comparing each distribution
against a theoretical Normal distribution with the corresponding μ and
σ2 (H0: the distribution is not Normal, p-values=
(0.527, 0.493, 0.8017) for LB, AMP, and CAZ respectively). In con-
clusion, regardless the selection regime, the distribution of Δ relative
intensities follows a Normal distribution, indicating that changes in
relative abundances of different plasmids in single-cells are driven by
random noise and not by selection.

3.3. Using microchemostats to study plasmid dynamics in bacterial colonies

We have established that selection can modulate plasmid frequency
distributions of heterozygous bacterial populations, and also that
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intracellular plasmid dynamics is a noise-driven process that does not
seem to be affected by selection. Therefore we argue that the shift in
fluorescence observed at a population-level must be a consequence of
antibiotics selecting for subpopulations with different plasmid config-
urations. To evaluate this hypothesis and to study the effect on selection
in heterozygous populations, we used a different microfluidic device
that provides high-throughput time-resolved information about thou-
sands of individual cells simultaneously.

Microchemostats are designed to cultivate bacterial colonies for
long periods of time in controlled and well-mixed environments
(Mondragón-Palomino et al., 2011; Moffitt et al., 2012; Lopatkin et al.,
2016; Li et al., 2019). In particular, here we use a microchemostat
adapted from (Mondragón-Palomino et al., 2011) that consists of two
parts: the signal generator and the cell confinement region. In the
confinement section there are 48 rectangular chambers distributed in
four rows. Each containment chamber measures 40 × 50 × 0.95 μm3,
with two sides open to a large channel where media is introduced and
cells are washed out of the device. Since E. coli cells are approximately 1
μm in diameter, confining them in these microfluidic traps allows the

simultaneous observation of a colony of approximately 500 cells in the
same focal plane. Furthermore, as with the dual-input mother machine,
we can use a signal generator to dynamically control the extracellular
concentration of antibiotics.

3.3.1. Heteroplasmy is unstable in environments with constant selection
Fig. 4 illustrates an experiment where a population of HT cells was

cultured in drug-free media for 6 h, followed by the introduction of
antibiotics using a linear ramp. When drug concentration reached a
lethal dose (4 mg/ml for AMP and 8 μg/ml for CAZ), the concentration
of antibiotics was maintained constant until all cells were dead (see
Supplementary Movies S2 and S3). Fig. 4C shows montages of selected
traps at different time-points (CAZ in the top and AMP at the bottom).

We used our image processing pipeline to analyze all traps con-
taining cells growing exponentially after growing overnight inside the
device. As in the flow cytometry data, we measured the relative and
absolute intensity of each individual cell but, as opposed to flow cy-
tometry data, our microchemostat allows us to track cells in time and
perform lineage reconstruction. In particular, we obtained 557 lineages,

Fig. 3. A) Mother cells at different time-points. Note how the intensity in GFP and DsRed channels changes in time. B) Time-series of relative intensity for individual
cells in a long-term experiment. In black data obtained from the mother cell illustrated in A), while 4 other cells are shown in grey. Circles represent division events.
C) Kymograph showing the progeny of the mother cell shown in A). From the images obtained in GFP (top) and DsRed (middle), we can use image processing to
estimate the relative intensity of each cell (bottom). D) Probability density function of the difference in relative fluorescence of an individual cell between consecutive
frames. This distribution can be approximated by a Normal distribution with mean near zero and σ2 = 0.096. E) Δ relative intensity as a function of time for cells
shown in B). F) Partial autocorrelation function of Δ relative intensity. G) Distributions of Δ relative intensity are normally distributed. A symmetric distribution
suggests a random walk that is not correlated with the selective pressure imposed by the environment (left: ceftazidime, middle: drug-free, and right: ampicillin).
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corresponding to 5,870 cells in the CAZ experiment and 498 lineages of
5,754 cells for AMP. Of course, as the colony is growing exponentially,
most cells are pushed out of the trap and washed out of the device, so
only a few lineages were observed from start to end of the experiment.
We recovered 48 complete lineages for CAZ and 46 for AMP and,
consistent with the results shown in Fig. 3G, the resulting time-series
were not correlated with the selective pressure imposed by the en-
vironment.

Now, by clustering the population according to their relative
fluorescent intensity, we determined the fraction of cells with different
plasmid frequencies. As illustrated in Fig. 4A, exposing a population of
HT cells to CAZ produces an increase in the fraction of cells with high
levels of DsRed and low intensity values of GFP, implying that selection
favours cells with a higher proportion of pBRT-12 plasmids. The black
arrow in the polar distributions shown in Fig. 4B denotes changes in the
mean relative intensity of the population after 6 h of exposure to CAZ
and, as expected, points towards R12. In contrast, when introducing
AMP into the device, the fluorescent intensity distribution appeared to
be shifted towards GFP, consequence of G1 cells being positively se-
lected for, a feature that can be seen in Fig. 4D and in the polar

distribution shown in Fig. 4E.
Notably, the shift is larger when using CAZ than in the presence of

AMP. This is explained by blaTEM−1 providing partial resistance to AMP
and therefore the relative fitness (and thus the rate of fixation) is larger
for R12 in ceftazidime than G1 in ampicillin. In any case, HT cells re-
duced in frequency and are destined to be outcompeted by homozygous
subpopulations: R12 if using CAZ or G1 in an AMP environment. This is
consistent with previous studies showing that heteroplasmy is unstable
in constant environmental conditions (Rodriguez-Beltran et al., 2018).
It has also been reported that fluctuating environments can stably
maintain intracellular genetic diversity for long-time intervals, so in the
following section we will evaluate this hypothesis using microchemo-
stats.

3.3.2. Fluctuating environments stabilize genetic diversity
By alternating both antibiotics periodically, we experimentally ex-

plored if fluctuating environmental conditions can stabilize plasmid-
mediated heterozygosis. Specifically, we introduced HT cells into the
device and observed them in LB for about 3 h before introducing an-
tibiotics. To implement a fluctuating selection regime, we generated a

Fig. 4. A) Plasmid fraction as a function of time for a population of HT cells exposed to a ramp of CAZ. B) Polar distribution of cells at the end of the experiment. The
black arrow represents changes in the mean plasmid frequency of the population, before and after antibiotic exposure. C) Montage of microscopy images (GFP
channel in green, and DsRed in magenta, with both channels overlaid). D) Fraction of cells with a higher proportion of pBGT-1 plasmids is increased when AMP is
introduced into the device. E-F) Population-level distribution at the end of the experiment. Note how the black arrow points towards higher values of GFP, suggesting
that the mean plasmid frequency of the population moved towards cells carrying relatively more copies of pBGT-1. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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sinusoidal signal of period 2 h such that, when CAZ concentration is at
100%, then AMP is at 0%, and vice versa, as illustrated in Fig. 5C (in
green the concentration of AMP and in magenta of CAZ, both normal-
ized to the same critical concentrations used before). We diluted a
fluorescent dye to one of the antibiotic inputs to calibrate the height of
the syringes, but this also allowed us to use the fluorescent microscope
to validate that cells are exposed to the expected proportion between
both antibiotics. Magenta dots represent DsRed measurements in a cell-

free area of the device and correspond very precisely with the drug-
deployment protocol sent by the signal generator.

Fig. 5B shows a lineage reconstruction where the black line corre-
sponds to an individual cell observed for the complete duration of the
experiment, while other cells in the lineage are illustrated in cyan. Note
how, as previously shown in the mother-machine, the intracellular
plasmid dynamics appears to be random and is not correlated with the
environmental signal. A consequence of the random segregation and

Fig. 5. A) Oscillatory drug deployment protocol consisting on CAZ (magenta) and AMP (green) being alternated every two hours. Magenta circles correspond to
measured values of fluorescent dye also introduced into the device together with CAZ. B) Black line represents a single-cell lineage obtained from a time-lapse movie
of a microchemostat. Black circles represent division events and relative fluorescence of daughter cells is illustrated in cyan. C) Relative fluorescent distribution
obtained after 18 h of exposure to fluctuating CAZ and AMP selective pressures. D) Population-level relative intensity distributions at different time-points. A
consequence of alternating selection for both alleles is that intermediate values of relative fluorescence are maintained for long time periods, suggesting that genetic
diversity can be stabilized in fluctuating environmental conditions. E) Microscopy images at the beginning (left) and at the end (right) of the experiment. Note how,
after 18 h of fluctuating selection, the resulting population is composed of R12 and G1 cells, but also of HT cells. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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replication of plasmids is that, after only a few generations, the dis-
tribution of alleles in the population presents a large variance, as shown
in Fig. 5C.

As we have previously argued, we cannot make inferences about the
stability of plasmid-mediated heterozygosis from single-cell data. So we
included the remaining cells to our analysis and estimated relative in-
tensity distributions at different time-points. Fig. 5D shows violin plots
representing the distribution estimated every hour. As opposed to the
constant drug environment discussed previously, in the alternating se-
lection regime, the mean relative intensity is centered around HT
throughout the duration of the experiment (although the variance in-
creases in time). Fig. 5E and F show composite images at t = 0 and at
t = 18 h, extracted from Supplementary Movie S4, revealing the pre-
sence of G1 and R12 cells at the end of the experiment and, crucially, of
cells still bearing both plasmids.

4. Discussion

The rate at which pathogenic bacteria evolve resistance to anti-
biotics is dramatically decreasing the efficacy of current antimicrobial
treatments. It may seem a surprising statement but, after more than a
century of using antimicrobials in the clinic, some of the evolutionary
forces that drive the emergence and spread of drug resistance in pa-
thogenic bacteria are still poorly understood. For instance, most of our
understanding of drug resistance adaptation assumes that clonal po-
pulations growing in constant environments present similar suscept-
ibility and resistance profiles to antibiotics, while actually clinical iso-
lates can present a high degree of heterorresistance generated, in many
cases, by heterogeneous expression of plasmid-borne resistance genes
(Andersson et al., 2019).

In a previous paper (Rodriguez-Beltran et al., 2018), we used
mathematical modelling and experimental evolution to argue that
multi-copy plasmids can provide a platform to increase intracellular
genetic diversity and, in consequence, enhance the probability of sur-
vival to dynamic environmental conditions. Here we used microfluidics
and fluorescence microscopy to study, with single-cell resolution, the
effect of selection in the relative abundance of incompatible plasmids
carrying different versions of an antibiotic resistance gene and a
fluorescent marker. As expected, in the absence of selection, the sto-
chastic nature of plasmid replication and segregation renders plasmids
unstable and decreases allele frequency in the population. In contrast,
positive selection for plasmid-encoded genes stabilizes plasmids at high
copy-numbers, increasing the frequency of the corresponding allele and
promoting resistance to the antibiotics used.

Of course, natural environments are not constant but alternate se-
lection between subpopulations with different genetic configurations.
Therefore, in dynamic environments, it may be optimal for bacterial
populations to present genetic heterogeneity, thus increasing the
probability that some individuals are pre-adapted to future environ-
mental conditions (Ackermann, 2015). Indeed, in agreement with pre-
vious laboratory studies (Rodriguez-Beltran et al., 2018), we showed
that fluctuating selection - in this case, alternating the extracellular
concentration of different β-lactam antibiotics - maintained in-
tracellular genetic diversity in the population for longer than constant
environmental regimes.

Although previous studies have successfully deployed a combina-
tion of experimental evolution (MacLean and San Millan, 2015;
Harrison and Brockhurst, 2012; Holloway et al., 2007), genome se-
quencing (San Millan et al., 2014; Harrison et al., 2015; Porse et al.,
2016) and mathematical modeling (Stewart and Levin, 1977; Santer
and Uecker, 2019; San Millan et al., 2014; Wein et al., 2019; Yurtsev
et al., 2013) to evaluate the population dynamics that emerge in re-
sponse to different environmental conditions, the intrinsic resolution of
flow cytometers and qPCR machines do not allow us to dissect sto-
chastic plasmid dynamics (generated by randomly replicating and
partitioning plasmids) from deterministic population-level effects (e.g.

differences in relative fitness associated with expressing multiple al-
leles). So, in this paper, we used single-cell microfluidics to generate
high-throughput fluorescent intensity data of heterozygous bacterial
populations exposed to a range of selective regimes.

In particular, we used computer vision algorithms to analyze time-
lapse movies acquired in multiple fluorescence channels, allowing us to
characterize the allele distribution in the population in terms of the
relative and absolute fluorescent intensities of its constituent cells. This
allowed us to evaluate directly the contribution of selection and
random genetic drift in the rate of fixation and extinction of different
plasmid variants. We showed, using a mother-machine to restrain in-
dividual cells and follow them for very long periods, that changes in
plasmid frequency are the consequence of a noise-driven process that is
not correlated with the direction and strength of selection imposed by
the environment.

We conclude by arguing that imaging and microfluidics can provide
a potentially useful approach to study the interaction between in-
tracellular plasmid dynamics and selection imposed by the environ-
ment, and therefore could be used to increase our understanding of the
complex interaction between mobile genetic elements, their bacterial
hosts, and the environment.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.plasmid.2020.102517.
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Capítulo 6

Dinámica Evolutiva de Heterocigosis Me-

diada por Plásmidos

6.1 Introducción

En los capítulos anteriores observamos que portar genes en plásmidos multicopia
puede producir heterogeneidad fenotípica, confiriendo la capacidad de implementar una
estrategia de apuesta-cobertura a partir de mantener subpoblaciones con menor y con
mayor número de copias del plásmido y, por consiguiente, con menor o mayor tolerancia
a antibiótico. En este capítulo indagaremos las ventajas evolutivas que la heterocigosis
mediada por plásmidos le confieren a las poblaciones de bacterias.

Resulta evidente que portar genes benéficos en plásmidos multicopias incrementa
la dosis génica; diversos estudios han demostrado que las amplificaciones genéticas y sus
modificaciones juegan un papel esencial en la evolución de nuevos fenotipos bacterianos
(Ochman et al. 2000; Näsvall et al. 2012; Andersson and Hughes 2009). Entonces portar
genes benéficos en plásmidos multicopia podría ayudar a la bacteria a producir nuevos
fenotipos a través de generar variantes alélicas en copias que no están bajo selección.
En el contexto de plásmidos, esto podría generar una gran diversidad de polimorfismos
y por lo tanto de fenotipos.

En este capítulo nos limitaremos a estudiar dos variantes alélicas de genes portados
en plásmidos utilizando el sistema experimental presentado en el capítulo anterior.
Hemos establecido que aún con dos variantes alélicas distintas células pueden tener
diferentes proporciones de plásmidos y, por lo tanto, generar un rango de fenotipos.
Mediante experimentos a nivel de poblaciones comparamos poblaciones que portan
ambos plásmidos dentro de una misma célula con poblaciones que cuentan con la misma
diversidad celular pero mediante subpoblaciones que portan un solo tipo de plásmido.
Encontramos que las poblaciones con diversidad intracelular son capaces de mantener
la diversidad genética por largos periodos aún ante selección negativa, produciendo
poblaciones más resilientes ante cambios de ambientes hostiles.

Tomando en cuenta estas características, postulamos un modelo de dinámica de
poblaciones fundamentado en ecuaciones diferenciales ordinarias para corroborar nues-
tros resultados y realizar experimentos insilico para explorar los regímenes de selección
que mantengan PMH.
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Modelo de dinámica de poblaciones

6.2 Modelo de dinámica de poblaciones

El objetivo del modelo es estudiar poblaciones en respuesta a diferentes condiciones
ambientales, (recurso limitante y antibióticos). Por ello se considera que la población
está compuesta de una subpoblación libre de plásmidos con densidad al tiempo t deno-
tada por BPF (t), una subpoblación heterocigota con densidad BHT (t) y subpoblaciones
homocigotas G1 y R12 representadas por BG1(t) y BR12(t), respectivamente.

Se considera que el crecimiento de cada población depende de la concentración
del recurso limitante ambiental R(t), por lo que podemos modelar el crecimiento de
una subpoblación i como Gi(R) = riUi(R), donde ρi es un parámetro constante y
Ui(R) = V i

maxR/(Ki
m + R) una función de incorporación de recursos con parámetros

V i
max y Ki

m que denotan respectivamente la máxima tasa de crecimiento y la constante
de saturación de la subpoblación i. Para tomar en cuenta la acción de los antibióticos
(Amp y Caz) representados por DA y DC respectivamente, consideramos el perfil de
susceptibilidad de la cepa Bi a Amp y Caz por un término lineal con un parámetro de
inhibición kAi y kCi respectivamente. También δAi y δCi denota la tasa de degradación
de DA y DC respectivamente para la cepa Bi.

Como estos plásmidos se segregan al azar, la probabilidad de que una célula que
porta plásmidos produzca una célula libre de plásmidos es un proceso de Poisson que
depende del promedio de número de plásmidos, esto es Σ = 21−µ donde µ denota el
promedio de número de plásmidos en la población (San Millan et al. 2014). De igual
manera, la probabilidad de que una célula heterocigota produzca una homocigota,
asumiendo que HT tiene la misma proporción de plásmidos, puede ser estimada por
σ = 21−µ/2 . En nuestro sistema experimental el promedio de número de copias del
plásmido es 19 y por ello la tasa de pérdida de heterocigosis es 1/362 mientras que la
tasa de pérdida de plásmidos es considerablemente menor, 1/524,288. Finalmente la
dinámica evolutiva del sistema considera que la transición de BG1 y BR12 a BHT ocurre
con una tasa ε >0, representando la tasa de mutación puntual en los alelos blaTEM-1 o
blaTEM-12. En resumen, el sistema de ecuaciones diferenciales ordinarias que describe la
dinámica de plásmidos a nivel de poblaciones, puede escribirse de la siguiente manera:
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d

dt
R = − (UPF (R)BPF + UG1(R)BG1 + UHT (R)BHT + UR12(R)BR12)

d

dt
DA = −DA

(
δAPFBPF + δAG1BG1 + δAHTBHT + δAR12BR12

)
d

dt
DC = −DC

(
δCPFBPF + δCG1BG1 + δCHTBHT + δCR12BR12

)
d

dt
BPF = GPF (R)BPF + Σ(GG1(R)BG1 +GHT (R)BHT +GR12(R)BR12) −BPF (κAPFDA + κCPFD

C)

d

dt
BG1 = (1 − ε− Σ)GG1(R)BG1 + σGHT (R)BHT −BG1(κAG1D

A + κCG1D
C)

d

dt
BHT = (1 − Σ)GHT (R)BHT + ε(GG1(R)BG1 +GR12(R)BR12) −BHT (κAHTDA + κCHTD

C)

d

dt
BR12 = (1 − ε− Σ)GR12(R)BR12 + σGHTBHT −BR12(κAR12D

A + κCR12D
C)

(6.2.1)

Con parámetros estimados utilizando un método de parametrización bayesiano que
implementa un método Monte Carlo de Cadenas de Markov con muestreo Metropolis-
Hastings. Este método es similar al publicado por San Millan et al. (2014). Los pará-
metros estimados y mayores detalles pueden encontrarse en el material suplementario
del trabajo presentado por Rodriguez-Beltran et al. (2018).
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The ability of a species to expand its ecological niche and 
thrive in new environments depends directly on the devel-
opment of novel adaptive traits through evolutionary inno-

vation. Evolutionary innovation, in turn, relies on the repurposing 
of old traits to serve new roles1,2. Examples of this process are 
abundant and include the development of important traits such 
as new metabolic capabilities3, the control of bacterial division4, 
and the evolution of multicellularity5. However, mutations pro-
viding a new role are usually detrimental to native gene function. 
These negative correlations between ancestral and evolved traits 
are called trade-offs. Trade-offs are common during evolutionary 
innovation and have been identified in a plethora of natural and 
experimental settings2. Crucially, the interplay between trade-
offs and selective pressures for the ancestral and new activities 
determines the fate of innovative mutations. For instance, strong 
selection to maintain the native activity leads to the purging of 
variants with adaptive potential, hampering innovative evolu-
tion6,7. Hence, trade-offs are arguably one of the major constraints 
on evolutionary innovation.

Several models have been proposed to explain the ready occur-
rence of innovation despite the restraints imposed by trade-offs. 
Most of these models are based on the emergence of genetic amplifi-
cations that provide genetic redundancy1,8–11. Amplifications, such as 
duplications, alleviate trade-offs because they allow the coexistence 
of different alleles of the same gene. In this way, extra gene copies 
might acquire new functions while others retain their original role8. 
However, genetic amplifications might be unstable as they are usu-
ally a target for homologous recombination, resulting in the dele-
tion of one of the duplicated regions10,12. Furthermore, the majority 
of amplifications have been found to be neutral or deleterious in the 
absence of selection13. Nevertheless, stable amplifications have been 
reported for genes involved in antibiotic resistance14, metabolism15 
or encoding weak secondary functions11,16.

Among the most paradigmatic examples of genetic mechanisms 
providing genetic redundancy in prokaryotes are multicopy plas-
mids (MCPs): small and highly prevalent genetic elements in bacte-
ria17, that typically range from 10 to 30 copies per cell and lack active 
segregation and partition systems18. Therefore, MCPs maintain a 
population of the same genes within a cell, and thus can be regarded 
as an extreme example of stable genetic amplification. Here, we pro-
pose that MCPs could alleviate trade-offs during the evolution of 
innovation. This hypothesis is based on two predictions. First, the 
multicopy nature of these plasmids allows different versions of the 
gene (alleles) to coexist in the same cell under heterozygosity, and 
this coexistence will alleviate fitness trade-offs. Second, once the 
evolved allele appears, plasmid segregation and replication dynam-
ics will maintain heterozygosity at the cellular and population 
level for a prolonged period of time, even under strong selection 
for one of the alleles (Fig. 1a). To test these predictions, we used a 
well-characterized model of antibiotic resistance evolution in which 
trade-offs have profound effects on adaptive trajectories7,19,20. By 
combining simple mathematical models with experimental work, 
we demonstrate that MCPs promote the maintenance of genetic 
diversity against strong selection, alleviating trade-offs and promot-
ing evolutionary innovation.

Results
Experimental system. TEM-1 is a β -lactamase that confers high-
level resistance to penicillins such as ampicillin (Amp) but neg-
ligible resistance to third generation cephalosporins such as 
ceftazidime (Caz). The evolution of TEM-1 toward conferring Caz 
resistance has been shown in laboratory and natural settings to 
occur predominantly via a single mutation (Arg164Ser) that gives 
rise to TEM-1219,21. The evolved allele (blaTEM-12) confers high-level 
resistance to Caz at the expense of a reduced activity against Amp 
compared with the ancestral allele (blaTEM-1), thus demonstrating a 

Multicopy plasmids allow bacteria to escape from 
fitness trade-offs during evolutionary innovation
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Ayari Fuentes-Hernandez2, R. Craig MacLean   4, Rafael Peña-Miller2 and Alvaro San Millan   1,5*

Understanding the mechanisms governing innovation is a central element of evolutionary theory. Novel traits usually arise 
through mutations in existing genes, but trade-offs between new and ancestral protein functions are pervasive and constrain 
the evolution of innovation. Classical models posit that evolutionary innovation circumvents the constraints imposed by trade-
offs through genetic amplifications, which provide functional redundancy. Bacterial multicopy plasmids provide a paradigmatic 
example of genetic amplification, yet their role in evolutionary innovation remains largely unexplored. Here, we reconstructed 
the evolution of a new trait encoded in a multicopy plasmid using TEM-1 β -lactamase as a model system. Through a combina-
tion of theory and experimentation, we show that multicopy plasmids promote the coexistence of ancestral and novel traits 
for dozens of generations, allowing bacteria to escape the evolutionary constraints imposed by trade-offs. Our results suggest 
that multicopy plasmids are excellent platforms for evolutionary innovation, contributing to explain their extreme abundance 
in bacteria.
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trade-off between Amp and Caz resistance19,21. In a recent study, we 
detected TEM-12 mutation arising in response to Caz pressure in 
an experimental model using plasmid pBGT-1; an MCP carrying 
blaTEM-1 (ref. 21). Crucially, sequencing of evolved clones revealed 
pBGT-1 plasmid variants differing only in the TEM Arg164 residue 
coexisting under heterozygosity (see supplementary file 2 of ref. 21). 
To test the ability of MCPs to alleviate trade-offs, we reproduced the 
TEM-1 evolutionary scenario using a traceable MCP system. We 
developed two plasmids coding TEM-1 or TEM-12. As the ancestral 
allele carrier we used plasmid pBGT-1, which occurs at ~19 cop-
ies per bacterium and includes a blaTEM-1 gene and a tightly con-
trolled gfp gene21. In parallel, we constructed the pBRT-12 plasmid 
by replacing blaTEM-1 with blaTEM-12 and the gfp gene with dsRED to 
allow plasmid identification by fluorescence (Fig. 1b). We also con-
structed plasmids with interchanged fluorescent markers (pBGT-
12 and pBRT-1; Supplementary Fig. 1) and used them to show that 
the reporter genes did not influence the results obtained hereafter 
(Supplementary Table 1, Supplementary Figs. 2–4). We transformed 
Escherichia coli MG1655 with the pBGT1 and pBRT12 plasmids 
individually, respectively generating the G1 and R12 strains, and 
also together to generate a heterozygote strain (HT) carrying both 
plasmids (Supplementary Table 1). Direct observation of cells under 

confocal microscopy (Fig. 1c) and whole-genome sequencing of the 
genomes of all strains confirmed their isogenic nature and the pres-
ence of the different plasmids.

Multicopy plasmid-mediated heterozygosity alleviates trade-offs. 
It is reasonable to expect that, by maintaining copies of the ancestral 
and the evolved alleles within individual cells, MCPs would allevi-
ate trade-offs emerging during evolutionary innovation. To test this 
possibility, we measured the ability of the G1, R12 and HT strains 
to colonize an array of 48 liquid environments containing varying 
concentrations of Caz or Amp alone or in combination (Fig. 2a). 
We also included a 1:1 mixed population of the G1 and R12 homo-
zygotes as a control. The G1 and R12 strains were unable to grow 
at high concentrations of Caz or Amp, respectively, demonstrating 
the anticipated trade-off (Fig. 2a). By contrast, both the HT and 
the mixed population colonized a significantly higher number of 
antibiotic environments than the ancestral (G1) and evolved (R12) 
strains (Fig. 2b; one-way ANOVA F =  290.7, d.f. =  3, P <  0.001 fol-
lowed by Tukey’s multiple comparison of means P <  0.001). This 
result indicated that the presence of both alleles, either at the popu-
lation level (the mixed population) or at the cellular level (the HT 
strain), allowed bacterial populations to persist in the presence of 
Caz and Amp.

Because the plasmids used in this study were engineered to 
carry distinguishable fluorescence reporters (Fig. 1b), we were able 
to estimate the relative abundance of blaTEM-1 and blaTEM-12 alleles 
by simply measuring the GFP/RFP ratio in each environment 
(Methods and Supplementary Fig. 5). As expected, both the HT 
and the mixed populations—but not the homozygotes—showed 
variation in the plasmid proportions in every environment in 
response to different antibiotic combinations (Fig. 2c). In general, 
higher concentrations of Caz selected for higher proportions of 
pBRT12, biasing fluorescence toward red (Spearman’s rho − 0.58 
and − 0.71 for Mix and HT, respectively; P <  0.01). Higher Amp 
concentrations selected for pBGT1, and therefore produced a 
higher GFP/RFP ratio (Spearman’s rho 0.92 and 0.69 for Mix and 
HT, respectively; P <  0.03).

To quantify allelic richness across environments, we counted 
the environments that contained both plasmids at detectable levels 
(that is, environments with fluorescence ratios between those of the 
homozygote populations; shaded region on Fig. 2d). Although the 
HT and Mix populations were able to colonize the same number of 
environments, HT maintained both alleles to a greater extent than 
the mixed population (45% [38/84] versus 23% [18/78] of the colo-
nized environments, respectively; χ2 =  7.8293, d.f. =  1, P <  0.01).

Multicopy plasmids maintain genetic diversity against selection. 
Our second prediction was that once an adaptive mutation appears 
in an MCP, random plasmid segregation will maintain heterozygos-
ity at the cellular level (and consequently at the population level) 
for a prolonged period, even under strong selection for one of 
the alleles. To study the fixation dynamics of the innovative allele 
blaTEM-12 under strong Caz selective pressure, we performed inva-
sion experiments in which a small (~1%) HT population invades 
a G1 population. As a control, we performed the same experiment 
with R12, instead of HT, invading the G1 population (Fig. 3). The 
experiment, which ran for eight days with four replicates per treat-
ment, started with the minimal selective concentration22 of Caz for 
the blaTEM-12 allele (0.0625 mg l–1; Supplementary Fig. 4). Every day, 
0.1% of each population was transferred to fresh medium contain-
ing double the Caz concentration of the preceding day. The relative 
abundance of each genotype was tracked by selective plating, and 
the frequency of the blaTEM-1 and blaTEM-12 alleles in every population 
was determined by qPCR.

The results showed that the G1 strain was rapidly outcompeted 
both by the R12 and HT strains at the same Caz concentration (25% 
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of the G1 minimal inhibitory concentration; MIC). In the control 
invasions this meant the rapid fixation of the R12 genotype. However, 
in the HT invasions, the HT strain displaced G1 but never reached 
fixation as it was gradually replaced by R12 cells that emerged as  
segregants through intracellular fixation of pBRT-12. Even so, HT 
cells were still detectable at the end of the experiment (mean 14.8%; 
range 0.005–37.9%) after approximately 77 bacterial generations 
under increasing selective pressure for the blaTEM-12 allele. qPCR 
results confirmed that blaTEM-1 is maintained throughout the experi-
ment when HT is invading. Interestingly, these results showed that 

HT cells are able to maintain blaTEM-1 in the population well above 
the MIC of Caz conferred by this allele, increasing the allelic diver-
sity of these populations throughout the experiment. This result is 
demonstrated by the fact that the Simpson diversity index calculated 
from qPCR data over the experiment is significantly higher when 
the invading strain is HT than when it is R12 (repeated-measures  
ANOVA invading genotype by time interaction F7,21 =  4.767, 
P <  0.003). Taken together, these results demonstrate that by slow-
ing down the fixation of beneficial mutations multicopy plasmids 
preserve genetic diversity against strong selective pressures.
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Multicopy plasmids promote adaptation under constant and 
fluctuating selective pressures. We have shown that MCPs allow 
populations to invade new environmental conditions and main-
tain genetic diversity over time in bacterial populations. These 
results suggest that MCPs may provide an important evolutionary 
advantage by alleviating trade-offs over time and promoting adap-
tation in bacterial populations under strong selective pressures. 
To test this possibility, we designed a short-term selection experi-
ment in which we propagated G1, R12, HT and mixed populations 
(G1 +  R12) under constant or fluctuating strong selective pressure 
with Amp (4,096 mg l–1) and Caz (16 mg l–1) over a period of two 
days (Fig. 4a). Although below the MIC, these concentrations are 
the highest at which growth of any of the genotypes was observed 
and therefore imposed an extremely stringent selective pressure for 
the blaTEM alleles. This approach led to four possible antibiotic treat-
ment routes that can be grouped into two constant selection regimes 
(Amp →  Amp and Caz →  Caz) and two fluctuating selection regimes 
(Amp →  Caz and Caz →  Amp). Every day, the populations able to 
survive the antibiotic treatments were inoculated into a fresh com-
plete array of 48 Caz/Amp environments. With this experiment, we 
were able to measure two adaptive traits for each genotype: (i) sur-
vival under strong selective pressure and (ii) the ability to grow in 48 
Caz/Amp environments after selection. We predicted that the HT 

population would be able to escape trade-offs over time better that 
any other genotype, leading both to higher survival and to better 
colonization of Caz/Amp environments after the antibiotic treat-
ments, especially under fluctuating selection regimes.

These predictions were confirmed with four experimental repli-
cates for each genotype and treatment (Fig. 4b and Supplementary 
Data 1). The extinction patterns showed that although the HT strain 
was relatively insensitive to the antibiotic treatment, the homozy-
gotes and the mixed populations faced massive extinctions. This pat-
tern was especially true under fluctuating selection regimes, where 
all G1 replicates became extinct and only 2 of 8 replicate lines of 
the R12 homozygote population and 2 of 8 of the mixed population 
survived; in contrast, 7 of 8 HT strain replicates survived (HT versus 
Mix, HT versus R12 and HT versus G1; Fisher exact test P <  0.04). 
In addition, the surviving HT populations were able to colonize 
more environments at the end of the experiment than those from 
the homozygote and mixed populations regardless of the treatment 
(Tukey HSD P <  0.00005 after ANOVA effect of genotype on the 
number of colonized environments, F =  25.116, d.f. =  3, P <  0.001).

Given the short duration of the selection experiment, new anti-
biotic resistance mutations arising in the populations are unlikely. 
Hence, our results strongly suggest that the better survival of the 
HT strain and its markedly improved ability to thrive in the range of 
environments after selection are a consequence of the preservation 
of allelic richness by MCPs. Consistent with this view, we found that 
the HT strain maintained both alleles in a significantly higher num-
ber of environments than the mixed populations, both in constant 
regimes (35/181 versus 6/118 of colonized environments, respec-
tively; χ2 =  11.088, d.f. =  1, P <  0.001) and in fluctuating regimes 
(57/167 versus 1/35; χ2 =  12.341, d.f. =  1, P <  0.001). Collectively, 
these results show that the maintenance of genetic diversity pro-
moted by multicopy plasmids provides an evolutionary advantage 
in the colonization of new environments, especially when selective 
pressures rapidly shift.

Exploring the maintenance of plasmid-mediated heterozygosity 
under different selection regimes. A question that arises from our 
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proportions. The HT cells are produced by single-point mutation (occurring 
at a rate ε) in either G1 or R12 strains.

NAtuRE ECoLogy & EvoLutioN | www.nature.com/natecolevol



© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. © 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

ArticlesNaTUrE ECOlOgy & EvOlUTiON

work is to what extent plasmid-mediated heterozygosity (PMH) can 
be maintained in bacterial populations. As the homozygotes or plas-
mid-free cells will eventually replace the HT strain in any possible 
constant environment, PMH is inherently unstable. However, PMH 
may be stabilized in dynamic environments that alternately select 
for each allele, as in drug cycling protocols23,24.

To test this possibility, we developed a simple compartmental 
population-dynamics model (Fig. 5) with parameter values obtained 
from experimental data (Methods and Supplementary Table 3). 
Our model accurately reproduces the evolutionary dynamics that 
emerge from the interaction between heterozygote and homozy-
gote populations competing for limiting resources and exposed to 
the action of Caz and Amp (Supplementary Figs. 6,7). By system-
atically exploring a range of fluctuating environmental regimes, we 
obtained relevant statistics about the population dynamics that arise 
as a consequence of different patterns of selection.

First, we considered treatments that alternate periodically 
between Caz and Amp at normalized drug dosages (by adjusting 
the concentration of each drug so that they achieve equal inhibi-
tory effect). We simulated a range of concentrations and periods of 
cycling and computed, for each selection regime, the time elapsed 
until the density of HT cells is less than the initial bacterial density, 
a value we refer to as duration of heterozygosity. The realizations of 
the model showed that PMH can last for hundreds of days under 

regimes that present high frequencies of environmental switching 
and moderate drug concentrations (relative to the MIC of G1; Fig. 6).

However, fluctuations in nature are expected to be not periodic, 
but stochastic. To assess if the increased stability of PMH observed 
in periodic regimes is also present in stochastically switching envi-
ronments, we generated N =  10,000 environmental regimes consist-
ing of random sequences of both antibiotics. Each environmental 
regime is numerically generated by considering that the distribution 
of elapsed times between environmental switches follows an expo-
nential distribution (see Methods). We also evaluated environmental 
regimes that randomly switched between three discrete states (Caz, 
Amp and a drug-free environment) and obtained qualitatively the 
same results. The Shannon entropy25, H, of each previously deter-
mined environmental regime was used to quantify the uncertainty 
and stochasticity of each sequential treatment protocol. As shown in 
Fig. 6, environments with H« 1 have large single-drug time intervals 
that select for one of the homozygote strains and thus render PMH 
unstable. Conversely, duration of heterozygosity is maximized when 
exposed to selection regimes associated with high entropy values 
and moderate selective pressures (Supplementary Fig. 8).

Together, our computational study predicts that heterozygosity 
can be stabilized for relatively long periods of time in fluctuating 
environments with high temporal heterogeneity and intermediate 
selective pressures.
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Discussion
In this study, we investigated the role of MCPs in the alleviation 
of trade-offs during evolutionary innovation in bacteria. We devel-
oped a traceable model system using plasmid-mediated blaTEM genes 
that reproduces the evolutionary dynamics toward Caz resistance21. 
Our results demonstrate that the intrinsic properties of replication 
and segregation dynamics of MCPs allow bacterial populations to 
escape the restraints imposed by trade-offs on the colonization of 
new environments by facilitating the co-existence of the ancestral 
and evolved alleles within the same cell (Fig. 2). Critically, this co-
existence was maintained over tens of generations in the presence of 
increasingly strong pressures for the evolved allele (Fig. 3), suggest-
ing that MCPs are able to delay the loss of non-adaptive allelic vari-
ants and preserve allelic richness for generations. Allelic richness, in 
turn, translates into increased phenotypic robustness to withstand 
stringent fluctuating selective pressures (Fig. 4). Collectively, our 
experimental and theoretical models establish that when the evolu-
tion of the plasmid resident loci is constrained by fitness trade-offs, 
the heterozygote has an advantage compared to the homozygotes. 
Hence, the population is under balancing selection for the main-
tenance of both ancestral and evolved alleles, especially when the 
environments fluctuate26. Although examples of selection favouring 
heterozygotes are abundant27,28, it comes as no surprise that these 
examples refer to polyploid eukaryotic organisms, in which new 
mutations are always heterozygous. In bacteria, MCP are able to 
provide heterozygote advantage because they represent an island of 
polyploidy in an otherwise haploid genome.

Previous studies have addressed the importance of MCPs in the 
evolution of new functions21,29,30, and the co-existence of mutant and 
ancestral allele variants encoded in the same plasmid has recently 
been demonstrated in laboratory evolution experiments21,31 and 
clinical settings32. However, the prevalence of plasmid-mediated 
heterozygosity in nature remains largely unknown. At least three 
arguments support the idea that plasmid-mediated heterozygosity 
could be pervasive in bacterial populations. First, natural MCPs 
encode important genes for bacterial physiology that are under 
strong selective forces such as antibiotic resistance genes33, deter-
minants of ecological interactions such as colicins34, and even indis-
pensable metabolic genes as in the aphid endosymbiont Buchnera 
aphidicola35. Second, MCPs are excellent platforms for the gen-
eration of genetic variation. Their multicopy nature increases the 
mutational supply and hence the chance of the resident loci acquir-
ing mutations21. Additionally, this genetic variation can be further 
enriched by horizontal gene transfer18 and inter- and intraplasmid 
recombination36,37. Third, MCPs are also excellent platforms for the 
preservation of genetic diversity. Our experimental results show 
that allelic richness can be maintained in the face of increasingly 
strong selective pressures for more than 75 bacterial generations, 
and our theoretical model indicates that it could be maintained 
for much longer periods under a range of conditions (Fig. 6 and 
Supplementary Fig. 10). Considering that natural E. coli popula-
tions are estimated to undergo 100–300 generations per year38,39, 
we propose that the maintenance of genetic diversity by MCPs will 
persist long enough to profoundly affect bacterial evolvability. In 
view of these arguments, we predict that deep sequencing of bac-
terial clones (not populations) and careful examination of plasmid 
sequences from genomic data will increase the number of exam-
ples of plasmid-mediated heterozygosity in both experimental and  
natural scenarios.

Most plasmids cause a fitness cost to their host that should, in 
theory, constrain plasmid existence to very particular situations40,41. 
However, plasmids are extremely abundant in natural bacterial 
populations. This ‘plasmid paradox’ is particularly challenging in 
MCPs, as they lack mechanisms to increase their frequency such as 
active transfer or partitioning systems42. Several studies have offered 
compelling explanations for plasmid maintenance. For instance, 

epistatic interactions have been shown to buffer plasmid cost43,44. 
Moreover, this cost can be ameliorated by compensatory mutations 
in either the plasmid or the bacterial chromosome45–48. Other pos-
sible explanations involve the increase in gene copies for the resi-
dent loci, which in turn translates into increased gene expression 
that could be beneficial under certain circumstances21,35. Our results 
raise the possibility that MCPs, as promoters of bacterial evolu-
tion, could be maintained by second-order selection, a process by 
which evolution indirectly selects for the systems that create adap-
tive mutations49. We propose that although the conditions for the 
maintenance of plasmids by second-order selection will be strin-
gent, they are plausible in bacterial populations49.

In conclusion, the ability of MCP-encoded genes to overcome the 
constraints imposed by trade-offs during evolutionary innovation 
could play a key role in the evolution of novel traits in bacterial pop-
ulations and in the colonization of new environments. Additionally, 
our results may have implications for antibiotic therapies designed 
to slow the evolution of resistance by taking advantage of resistance 
trade-offs, such as drug cycling24 or the exploitation of collateral 
sensitivity networks50. Future work will be needed to test the extent 
to which MCPs can jeopardize the success of these promising anti-
microbial strategies.

Methods
Strains, media and plasmid construction. The plasmids used in this study 
(Supplementary Table 1) are derivatives of the pBGT and pBGT R164S plasmids 
that were previously used to reconstruct the plasmid-mediated evolution of Caz 
resistance21. For the sake of clarity, these plasmids were named pBGT-1 and  
pBGT-12 after the blaTEM allele present. These plasmids also carry a gfp gene under 
the control of an l-arabinose inducible promoter, the gene coding for the repressor 
of this promoter araC, and a chloramphenicol (Chl) resistance acetyltransferase 
gene, cat. Variants of both plasmids in which the gfp gene was precisely replaced  
by the dsRED gene, encoding a red fluorescent protein, were generated by the 
Gibson assembly method51 using the primers listed in Supplementary Table 2.  
To allow appropriate selection of heterozygote cells, a selective marker was 
needed to distinguish between plasmids. To this end, cat gene of the plasmids 
encoding blaTEM-12 was inactivated by creating an in-frame deletion (Δ 574–591 in 
cat open reading frame) by site-directed mutagenesis using the primers CatSDMF 
and CatSDMR (Supplementary Table 2) and the Q5 Site-Directed Mutagenesis 
Kit (New England Biolabs) following manufacturer instructions. This deletion 
completely abolishes cat function by eliminating six essential amino acids52 and 
renders the cells Chl sensitive. All possible combinations of the two blaTEM alleles 
with both fluorescent markers were generated. All plasmids were introduced by 
transformation into chemically competent MG1655 cells giving rise to the strains 
shown in Supplementary Table 1. Transformants were selected in Chl (15 mg l–1) or 
Caz (1 mg l–1) for plasmids carrying blaTEM-1 and blaTEM-12, respectively. To generate 
the heterozygote strains, two plasmids were simultaneously co-transformed and 
selected in both antibiotics. Transformants were checked by PCR using the primers 
listed in Supplementary Table 2 and examined by confocal microscopy (Leica TCS 
SP5 multispectral confocal system) after induction of the fluorescent reporters  
by incubating the samples in Lysogeny broth (LB) supplemented with 0.1%  
l-arabinose for 4 h. All strains were routinely grown in LB medium supplemented 
with the appropriate antibiotics at 37 °C.

In agreement with previous reports21, all plasmid carriers showed a reduced 
growth rate compared with the plasmid-free strain although there were no 
significant differences among plasmid-bearing strains (Tukey’s multiple 
comparison of means P >  0.27; see Supplementary Table 1). No significant 
differences in plasmid copy number (estimated by qPCR, see below) were 
found in the new constructs compared to G1 (Multiple comparisons of means, 
P >  0.05), discarding any confounding effect in the interpretation of the data. 
Furthermore, genomic DNA of all the strains was isolated using the Wizard 
genomic DNA purification kit (Promega), following the manufacturer’s 
instructions. Whole genome sequencing was conducted at the Wellcome Trust 
Centre for Human Genetics using the Illumina HiSeq4000 platform. Possible 
mutations were predicted using the breseq 0.30.0 pipeline53 and using MG1655 
genome (NC_000913.3) and plasmid sequences as references. Whole genome 
sequencing discarded the presence of unexpected mutations in coding regions of 
the chromosome or the plasmids in all the strains used in this study.

Antibiotic array. The antibiotic array was prepared in 96 well flat-bottom plates 
(Falcon) using the checkerboard technique54. To diminish inter-plate variability, 
all plates were prepared in the same day from a single stock solution using a 
Liquidator 96 manual pipetting system (Mettler Toledo) and stored at − 20 °C prior 
to use. All plates were used within a week and appropriate controls were included 
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to check antibiotic stability over time. Bacteria were inoculated at a final dilution 
of 1:2,000 and incubated for 20 h at 37 °C. After incubation, optical density at 
600 nm (OD600) was determined after strong shaking in a Synergy HTX microplate 
reader (Biotek). We interpreted that a particular environment of the array was 
colonized if, after incubation, OD600 was greater than 0.1. Appropriate samples 
were then collected to inoculate the next day’s plate. At the end of the experiment, 
plasmid DNA from samples of the surviving populations was extracted (Accuprep 
plasmid mini extraction kit; Bioneer) and the possible presence of plasmid hybrids 
containing both blaTEM alleles was discarded by gel electrophoresis of undigested 
and PvuI (New England Biolabs) digested plasmid extractions. To determine the 
fluorescence ratio (GFP/RFP), l-arabinose to a final concentration of 0.1% was 
added to each well to induce the expression of the fluorescent reporters present on 
the plasmids. After 4 h of incubation at 37 °C to allow protein expression, the plates 
were further incubated for 18 h at 4 °C. This step favours dsRED maturation, which 
is slower than that of GFP55. The GFP/RFP ratio was calculated by dividing green 
fluorescence (485/528 nm) over red fluorescence (540/590 nm) signals in a Synergy 
HTX microplate reader (Biotek). After collection of all data, the GFP/RFP ratio 
was rescaled between 0.01 and 1 to make the results more amenable  
to interpretation.

Competition and invasion experiments. Minimal inhibitory concentrations 
(MIC) of Caz and Amp were determined for every strain by the microdilution 
method following CLSI guidelines56 (Supplementary Table 1). Pairwise 
competitions between strains carrying blaTEM-1 and blaTEM-12 alleles were performed 
in media containing sub-inhibitory Caz concentrations and without antibiotics. 
Briefly, overnight cultures were mixed 1:1 and diluted 1:2,000 in fresh media. 
After 20 h of incubation at 37 °C with shaking every 15 minutes in a Synergy HTX 
Multimode Reader (Biotek), appropriate dilutions were plated in LB agar plates 
containing Chl (15 mg l–1) to select G1 and R1 strains or Caz (1 mg l–1) to select 
G12 and R12 strains. The fitness of strains carrying blaTEM-12 relative to the strains 
carrying blaTEM-1 was determined using the formula:

=
∕
∕-

- -

- -

W
N N

N N

ln( )

ln( )bla
bla bla

bla bla

final; initial;

final; initial;
TEM 12

TEM 12 TEM 12

TEM 1 TEM 1

where -
WblaTEM 12 is the relative fitness of the blaTEM-12 bearing clone; 

-
N blainitial; TEM 12

 
and -

N blafinal; TEM 12 are the numbers of blaTEM-12 cells before and after the 
competition, and -

N blainitial; TEM 1 and -
N blafinal; TEM 1 are the numbers of cells carrying 

blaTEM-1 plasmids before and after the competition. The minimal selective 
concentration (MSC) of Caz, defined as the minimal antibiotic concentration that 
produces a detectable fitness benefit for the blaTEM-12 carrying strains22, was used as 
starting concentration for the invasion experiments.

Invasion experiments were started by mixing overnight cultures of either HT 
or R12 and G1 strains at a 1:100 proportion in fresh LB. Immediately, the mixes 
were diluted 1:2,000 into 96-well flat-bottom plates (Falcon) containing 0.2 ml of 
fresh media supplemented with the MSC of Caz. A checkerboard pattern was used 
to avoid cross-well contamination. After 20 h of growth at 37 °C (approximately 
11 bacterial generations per day), the cultures were further diluted 1:2,000 and 
inoculated into fresh media containing doubled antibiotic concentrations. Samples 
were plated in LB agar supplemented with either Caz (1 mg l–1), Chl (15 mg l–1) or 
Caz +  Chl (1 mg l–1 +  15 mg l–1) to quantify the number of cells corresponding to 
each genotype in the competitions. To verify that the selective plating procedure 
was specific and to discard the presence of new mutations in the blaTEM-1 gene, we 
sequenced the blaTEM allele of four independent clones per replicate obtained on 
Caz +  Chl plates at day five using the primers shown in Supplementary Table 2. All 
chromatograms consistently showed a double peak (C +  A) at the nucleotide 484 of 
the blaTEM open reading frame assessing the presence of both blaTEM-1 and blaTEM-12 
alleles in these clones. No other mutations were found. We additionally ruled out 
the possible presence of plasmid hybrids containing both blaTEM alleles by digestion 
as described above. To assess allelic proportion, samples were also stored at − 20 °C 
for subsequent qPCR analysis.

Quantification of plasmid copy number and allele frequencies. Quantitative 
polymerase chain reaction (qPCR) was used to determine relative plasmid copy 
number and allele frequency using an Applied Biosystems 7300 Real-Time PCR 
System and SYBR select master mix (Applied Biosystems). Specific primers 
for the pBGT plasmid backbone and the dxs chromosomal gene were used as 
previously described21. Additionally, specific primers for the gfp and dsRED genes 
were developed. All primer sequences can be found in Supplementary Table 2. 
Samples were prepared as previously described57. Briefly, bacterial cultures were 
pelleted (9,000g, 1 min), resuspended in molecular biology grade water and boiled 
(95 °C, 10 min). After brief centrifugation to spin down cellular debris, samples of 
the supernatant were diluted and subsequently used as template. Amplification 
conditions were as follows: initial denaturation for 2 min at 95 °C, followed by 
40 cycles of denaturation for 15 s at 95 °C, annealing and extension for 1 min at 
60 °C. After the amplification was completed and to control for the specificity of 
the reaction, a melting curve analysis was performed by cooling the reaction to 
60 °C and then heating slowly to 95 °C. Inter-run calibration samples were used to 
normalize the results from different plates of each qPCR. Relative copy number was 

calculated using the Δ Δ CT method as previously described58. All reactions showed 
similar efficiency values (92.7–93.8%, R2 >  0.998) and produced amplicons of similar 
size (112–114 b.p.). Control reactions were carried out to ensure that relative plasmid 
copy number was comparable when using pBGT or GFP and RFP targeting primers.

Calculation of Simpson’s diversity index. When the relative abundance of 
each allele could be quantified by qPCR, Simpson’s diversity index was used. 
Simpson’s index gives the probability that two randomly selected alleles from 
the population are equal and can be calculated as ∑ +

- -
P P( )bla bla

2 2
TEMTEM 1 12  were 

Pi represents the relative proportion of each alelle59. Simpson’s diversity index 
is an integrative measure that takes into account both population richness and 
evenness. In preliminary experiments, the GFP/RFP fluorescence ratio was found 
to strongly correlate with the allelic ratio estimated by qPCR (Pearson’s product-
moment correlation t =  26.103, d.f. =  16, R2 =  0.977, P <  10−13; Supplementary 
Fig. 5), demonstrating that it can be used as a proxy to assess the proportion of 
each allele. However, direct interpolation of allelic proportions from fluorescence 
data demonstrated to be unreliable. Instead, we used a more conservative 
approach in which the presence of both alleles in a particular environment was 
assessed by simply determining if the GFP/RFP ratio was comprised between 
that of the homozygotes. In this way, allelic richness of an environment can be 
confidently determined. We note, however, that this method underestimates 
the real environmental richness as populations carrying a small number of one 
plasmid type would show undetectable levels of fluorescence. In that sense, for 
an environment to be classified as having both alleles, it must have substantial 
amounts of both plasmids. We argue that this is indeed a strength of this approach, 
because an environment must show some extent of allelic evenness to be cataloged 
as rich by our method.

Population-level plasmid dynamics model. The objective of our model is to 
study the population dynamics that emerge in response to different environmental 
concentrations of resource and multiple bactericidal antibiotics. First, we will 
assume that the bacterial population is composed of a plasmid-free subpopulation 
(with density at time t denoted by BPF(t)), a subpopulation of heterozygote cells 
(with density represented by BHT(t)) and homozygote subpopulations G1 and 
R12 (with densities represented with BG1(t) and BR12(t), respectively). We will 
consider that growth of each subpopulation depends on the environmental 
concentration of a limiting resource, R(t), and therefore we can model growth rate 
of subpopulation i with a standard Monod term, ρ=G R t U R t( ( )) ( ( ))i i i , where ρi is 
the metabolic efficiency of the cell and = ∕ +U R VR K R( ) ( )i i i  a sigmoidal resource 
uptake function characterized by parameters Vi and Ki denoting, respectively, the 
maximum growth rate and half-saturation constants of bacterial type i. In order to 
model the action of antibiotics (in this case drugs Amp and Caz, with an additive 
interaction and concentration represented by D A and DC respectively) we consider 
that the susceptibility of strain Bi to Amp and Caz can be modelled with killing 
rates κi

A and κi
C. Conversely, δi

A and δi
C denote the rates of drug inactivation by the 

degrading enzyme produced by bacterial type i.
Note that the plasmids used in this study replicate as monomers and do not 

possess any molecular mechanisms that increase its stability (for example, active 
partitioning or post-segregational killing mechanisms). Therefore, we can assume 
that plasmids are uniformly distributed in the cell at the moment of division and, 
as a result, the probability of a plasmid-bearing cell producing a plasmid-free cell 
through segregation can be described by a Poisson process and thus the rate of 
plasmid loss via segregation is approximated by Σ = μ−21 , where μ denotes the 
mean plasmid copy number in the population47,60. Similarly, the probability of a 
heterozygote cell giving rise to a homozygote cell can be estimated by assuming 
that, in average, HT cells have equal fractions of both plasmids and thus the rate 
of heterozygosity loss can be written as σ = μ− ∕21 2. Therefore, our model makes 
the critical assumption that HT cells carry equal proportions of each plasmid. 
Although this simplification may underestimate the complex distribution of 
intracellular allele frequencies, our model accurately reproduces the experimental 
results (Supplementary Figs. 6,7). In our experimental system, the mean per-cell 
plasmid copy number is 19 and therefore the rate of heterozygosity loss is 1/362 
while the rate of plasmid loss is considerably lower, at 1/524,288. Finally, the 
evolutionary dynamics of the system considers that the transition from BG1 and 
BR12 into BHT  occurs at a rate ε > 0 representing the probability of a single-point 
mutation in the blaTEM-1 or blaTEM-12 locus.

In summary, the system of ordinary differential equations that describe the 
plasmid dynamics at a population-level can be written as:

= − + + +
t

R U R B U R B U R B U R Bd
d

( ( ) ( ) ( ) ( ) ) (1)PF PF G1 G1 HT HT R12 R12

δ δ δ δ= − + + +
t

D D B B B Bd
d

( ) (2)A A A A A A
PF PF G1 G1 HT HT R12 R12

δ δ δ δ= − + + +
t

D D B B B Bd
d

( ) (3)C C C C C C
PF PF G1 G1 HT HT R12 R12
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with parameters values estimated using a parametrization approach that implements 
a Markov Chain Monte Carlo (MCMC) method with Metropolis–Hastings 
sampling. A similar Bayesian approach was published previously47 and allows 
us to obtain maximum likelihood estimates for the specific affinity ∕V Ki i and 
the resource conversion rate, ρi, from experimental growth curves of each strain 
grown in isolation (Supplementary Fig. 9 shows the MCMC diagnostics plots). The 
inhibition parameters of each strain were estimated using single-drug dose–response 
experiments. Numerical solutions of the system of equations (1)–(7) were obtained 
using standard ODE solvers in Matlab, with parameter values summarized in 
Supplementary Table 3.

Computational experiments in fluctuating environments. In order to 
numerically simulate an N-day experimental serial dilution protocol, we 
considered that each day ( ≤ <n N0 ) resources are replenished at the beginning 
of each season, that is =R R(0)n 0. The initial bacterial density on the first 
day ( =n 0) can be written as ΓB0 , where = ×B 1 100

6 denotes the total initial 
bacterial density and Γ γ γ γ γ= ( , , , )PF G1 HT R12  a vector containing the initial relative 
frequencies of each strain and thus γ γ γ γ+ + + = 1PF G1 HT R12 . For subsequent 
seasons, >n 1, we consider the initial population density of each subpopulation 
to be a function of the terminal condition of the previous season, that is 
η B T B T B T B T( ( ), ( ), ( ), ( ))PF G1 HT R12 , whereby η = .0 01 denotes the dilution 
parameter and =T 24 the duration of each season.

To quantify the stability of single-cell genetic diversity, we use the duration 
of heterozygosity, τ, defined as the time elapsed until the density of BHT is 
below an extinction threshold, that is τ > 0 such that τ < = ×B B( ) 1 10HT ext

6 
and ≥B t B( )HT ext for all τ∈t [0, ). In particular, we considered fluctuating 
environmental regimes that alternate selection between both drugs, so if �D

A 
and �D

C, represent the concentrations of each drug normalized to achieve 
equal inhibitory effect then on day n we can represent the treatment used 
as ϕ ϕ= + −� �D D D(1 )n n

A
n

C
 . Here, we used ϕ = 0n  or ϕ = 1n  and therefore the 

environmental regime could be represented as a random sequence of N bits, 
allowing us to compute the information entropy (Shannon–Wiener Index) 
associated with each environmental sequence using the following expression: 

= − ∑H P Plog ( )2  where P represents the proportion of days where each drug was 
used. Note that low-values of H correspond to constant, predictable environments, 
whereas high entropy values are associated with unpredictable, rapidly switching 
environmental conditions.

The blaTEM-1/blaTEM-12 trade-off explored in this work can be considered 
‘weak’ in the sense that the gain in the new function is big (64-fold increase in 
Caz MIC), whereas the loss in the ancestral function is small (twofold reduction 
in Amp MIC). In natural and laboratory evolution most trade-offs are weak2 
(> 10-fold gain in new function versus loss of the existing one) and hence the 
trade-off of TEM evolution used in this work can be deemed representative. 
Nevertheless, we decided to theoretically explore various trade-off strengths to 
extend our computational analysis to other possible scenarios. As can be seen in 
Supplementary Fig. 10, stronger trade-offs increase the range of fluctuations and 
antibiotic pressures that render PMH stable. In contrast weaker trade-offs render 
PMH unstable in most conditions, as the acquisition of a new genetic activity 
barely involves any loss in the ancestral function.

Statistical analysis. Analyses were performed using R (v. 3.4.2)61. One way 
ANOVA and Tukey’s multiple comparison of means were used to assess differences 
in colonization in the antibiotic array. Spearman’s rank correlation coefficient was 
used to assess the monotonic relationship between antibiotic concentrations and 
the GFP/RFP ratio. A chi-squared (χ²) test was used to analyse the frequency of 
populations conserving both alleles after growth in the antibiotic array. Repeated-
measures ANOVA was used to ascertain the variation of Simpson’s allelic diversity 
index over time in the invasion experiments. Fisher’s exact test was used to analyse 
the differences in survival in the short-term selection experiment. A two-tailed 
two-sample t-test with Bonferroni correction was used to compare fitness data. 

Pearson’s product-moment correlation was used to assess the linear relationship 
between fluorescence and plasmid proportion determined by qPCR.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability. The sequence data that support the findings of this study have been 
deposited in the European Nucleotide Archive with the accession code PRJEB25055.
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Capítulo 7

Conclusión general

En este trabajo hemos analizado a los plásmidos multicopia como un sistema
generador de heterogeneidad fenotípica. Esta variabilidad fenotípica es generada pri-
mordialmente por la naturaleza estocástica de los procesos de replicación y segregación
que presentan los plásmidos multicopia. El objetivo de la tesis fue abordar, a través de
múltiples niveles de complejidad, los fenómenos que dichos procesos pueden generar,
así como las consecuencias que tienen en la dinámica evolutiva.

Primero estudiamos la estabilidad de nuestro plásmido modelo con un enfoque de
genética de poblaciones utilizando un modelo Wright-Fisher multi-tipo. Las aporta-
ciones de este proyecto no recaen plenamente en los resultados encontrados sobre las
relaciones de factores que afectan la estabilidad de estos plásmidos (número de copias,
costo, frecuencia y fuerza de selección), sino en el enfoque matemático utilizado; a pesar
de que la genética de poblaciones y el estudio de plásmidos tienen una gran tradición,
nunca se habían conjuntado.

También exploramos las consecuencias adaptativas de que las distintas bacterias
de una población que porta plásmidos multicopia tengan distinto número de copias.
Este simple hecho le confiere a la población una gran resiliencia ante pulsos de anti-
bióticos. Este mecanismo de resistencia transiente sugiere un mecanismo generador de
heteroresistencia, que no sólo es un problema en el tratamiento de infecciones, sino que
también puede ayudar a explicar la prevalencia de plásmidos con genes de resistencia
a antibióticos en ambientes sin selección.

Otro hecho relevante qué resaltar de este trabajo, es el uso de modelos para ayu-
darnos en la comprensión y diseño de experimentos. Nuestro modelo de agentes indivi-
duales jugó un papel crucial en la identificación del periodo de heterocigosis, mediante
éste fuimos capaces de visualizar y comprender que antes de que el alelo mutante bajo
selección se fije, coexisten subpoblaciones de bacterias con distintas fracciones de plás-
midos ancestrales y mutantes. Dejando por demás claro, que los plásmidos mutantes y
ancestrales pueden cohabitar dentro de una misma célula por largos periodos.

Aunque podemos decir que PMH es un caso particular de heteroplasmia, la visión
de utilizar este sistema experimental como un mecanismo generador de variabilidad
genética resulta novedoso. Mediante una perspectivas de células individuales y el uso
de un innovador sistema de cuantificación de plásmidos fuimos capaces de observar y
cuantificar por primera vez la deriva segregacional, es decir, las dinámicas intracelulares
de plásmidos.

Estas dinámicas intracelulares repercuten en los comportamientos generales de la
población, que son los hechos de relevancia ecológica. En el último proyecto aquí mos-
trado, realizamos experimentos a nivel de poblaciones para explorar las posibles con-
secuencias evolutivas de PMH y encontramos que resulta ventajosa en varios aspectos:
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permitiendo la redundancia genética (lo cual permite evitar compromisos evolutivos)
y manteniendo la diversidad genética en la población (y por ende la posibilidad con-
tender con nuevas adversidades). Estos resultados fueron corroborados con un modelo
de dinámica de poblaciones y realizamos exploraciones acerca de la duración de la he-
terocigosis en ambientes estocásticos. Los resultados obtenidos nos dan nociones sobre
las condiciones requeridas para mantener la heterocigosis, pero así mismo de cómo
perderla, información que podría ser de gran utilidad, en el futuro, para el diseño de
tratamientos antibacterianos en la clínica.



Capítulo 8

Perspectivas

8.1 Exploración exhaustiva del modelo de agentes individuales

Hemos visto que nuestro modelo de agentes individuales es capaz de capturar
efectivamente los comportamientos poblacionales pero por cuestiones relacionadas a
los tiempos y enfoques de las publicaciones, no se ha incluido en ninguna publicación.
Contamos ya con una gran cantidad de simulaciones de los experimentos realizados
en los proyectos de heterocigosis que podrían incluirse y extenderse para producir una
artículo completamente computacional.

8.2 Un modelo de agentes individuales con conjugación

Una perspectiva natural de nuestro enfoque es introducir el fenómeno de conjuga-
ción en a nuestro sistema, ya sea mediante la introducción de otro plásmido conjugativo
que sea capaz de movilizar a los plásmidos aquí utilizados o modificar estos plásmidos
para introducir los genes requeridos para expresar la maquinaria de conjugación. El
estudio de los efectos del proceso de conjugación en la dinámica y estabilidad de plás-
midos se vuelve aún más interesante cuando el enfoque incluye estructura espacial. Los
modelos de agentes individuales son convenientes para implementar esta característica
a través de matrices en dos o tres dimensiones.

8.3 Un modelo de agentes individuales para estudiar dinámicas de fijación

de variantes alélicas de la β-lactamasa TEM portada en plásmidos

En los distintos proyectos hemos utilizado nuestro modelo de agentes individuales
para estudiar la variabilidad fenotípica generada por los plásmidos multicopia. Se ha
propuesto que la variabilidad en número de copias puede establecer una estrategia de
heteroresistencia, por otra parte, hemos visto que los plásmidos ayudan a contender con
los compromisos evolutivos, para ello utilizamos un modelo de dos variantes alélicas del
gen blaTEM. Ahora, podemos postular una extensión del modelo de agentes individua-
les a un modelo multi-alélico, el cuál se pueda equiparar con todos los polimorfismos
de la β-lactamasa. En trabajos previos se han explorado los caminos evolutivos entre
estos polimorfismos (Mira et al. 2015), con el modelo propuesto se podrían explorar
las dinámicas de fijación en ambientes libres de antibióticos. Si además integramos
las propiedades fenotípicas de dichos polimorfismos, es decir, los niveles de resistencia
asociados a los múltiples antibióticos β-lactámicos, se podría establecer la correlación
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Efectos del retardo fenotípico en rescate evolutivo

entre un antibiótico y la diversidad alélica, y así encontrar alelos óptimos en ambien-
tes complejos (cócteles de antibióticos o ciclos) y proponer terapias específicas o más
efectivas.

8.4 Efectos del retardo fenotípico en rescate evolutivo

Hemos explorado las consecuencias en las dinámicas evolutivas y adaptativas que
conlleva el hecho de que ocurran mutaciones en genes portados en plásmidos multicopia.
En esta visión se ha asumido una relación casi directa entre el genotipo y el fenotipo,
pero sabemos que esto no es necesariamente correcto, es decir, por ejemplo si una célula
heterocigota se vuelve homocigota, ¿Qué tanto tiempo ocurre en que la descendencia
de esa célula continúe teniendo proteínas del gen perdido? En la figura 8.1 se muestran
simulaciones de una célula que porta dos plásmidos y uno de estos es perdido por
deriva segregacional. Observe que hay un tiempo diferencial entre el evento de pérdida
del gen y la perdida total de proteínas. Más aún, la presión selectiva actúa sobre los
fenotipos, si pudiéramos alterar estos retardos fenotípicos, ¿cuál sería el efecto de este
retardo fenotípico en la dinámica de supervivencia de la población y sobre todo en las
dinámica de plásmidos en ambientes fluctuantes?
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B)

A)

C)

D)

Figura 8.1: Simulación multiescala de retardo fenotípico. En la figura se ejemplifica la di-
námica de 2 variantes de plásmidos durante crecimiento y división de una sola célula. Los
plásmidos aumentan en ńumero (C) conforme la célula aumenta en volumen (D). Las caí-
das en volumen (D) representan eventos de división y en (C) podemos observar el número
de plásmidos con los que se quedó la célula en el mismo momento. En (B) observamos la
concentración correspondiente de mRNA al número de alelos en el momento, la correlación
es casi directa dado a las altas tasas de degradación y producción. En (A) observamos la
correspondiente proporción de proteínas. Observe que los cambios en frecuencia de alelos es-
tán amortiguados por la lenta degradación de proteínas. La concentración de proteínas está
mayormente es afectada por dilución entre divisiones.
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