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Resumen

Problemas de transmisión para el sistema de Maxwell de tiempo harmónico, el op-
erador de Helmholtz y el operador perturbado de Dirac, son formulados usando
álgebras de Clifford, en dominios Lipschitz de Rm con m ≥ 3. Se muestra cómo
el problema de Dirac se descompone en varios problemas de Maxwell y Helmholtz.
En cada caso se dan condiciones necesarias y suficientes para el buen planteamiento
de los problemas y para la equivalencia de un problema de Dirac con uno o varios
problemas de Maxwell independientes.1

Abstract

Transmission boundary value problems for the time-harmonic Maxwell system, the
Helmholtz operator, and the perturbed Dirac operator are formulated, using Clif-
ford algebras, on bounded Lipschitz domains of Rm with m ≥ 3. It is shown how
the Dirac problem decouples into several Maxwell and Helmholtz problems. Neces-
sary and sufficient conditions are provided for well-posedness in each case, and for
the Dirac problem to be equivalent to one or several independent Maxwell problems.1

Keywords

Transmission boundary value problems; Lipschitz domains; Dirac operator; Maxwell
system; Helmholtz operator; Clifford analysis.

1The main results of the thesis were published on [1]
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Chapter 1

Introduction and theoretical
framework

1.1 Description of the boundary value problems

We study transmission boundary value problems for perturbed Dirac operators on
bounded Lipschitz domains of the m-dimensional (m ≥ 3) Euclidean space, and its
relation with the corresponding transmission problems for the Helmholtz operator
and the time-harmonic Maxwell system. Some applications are devised from this
relationship (listed at the end of this section). Our work generalizes results in [2],
where a similar analysis is carried out in the three-dimensional setting. The trans-
mission problems are formulated using Clifford algebras, an appropriate language to
approach these problems in arbitrary dimension (see [3]). Then singular boundary
integral operators of Cauchy type are used to solve them.

Early treatments of boundary value problems (BVP’s) in electromagnetism, as
shown in [4, 5, 6] and [7], permitted the use of compactness arguments and the
Fredholm theory, because the domains involved were smooth enough to allow the as-
sociated boundary integral operators to be only mildly singular. The same techniques
were extended to the context of Lipschitz domains thanks to the work of Calderón
[8], and R. Coifman, A. McIntosh and Y. Meyer [9], concerning the Lp-boundedness
of Cauchy integral operators on Lipschitz curves.

The BVP dealing with the time-harmonic Maxwell system on bounded Lipschitz
domains remained open until the early 1990’s, as stated in [10]. It was addressed
by M. Mitrea in [11] for dimension m = 3, with data in certain Lp, Sobolev-like,
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boundary smoothness spaces. Shortly thereafter, in [3], the same approach was
extended to the higher-dimensional setting. In both cases p is restricted to the in-
terval (2 − ε, 2 + ε), where ε is a (typically small) positive constant depending on
the Lipschitz character of the domain. As conjectured in [11], the condition on p
was later improved for the three-dimensional case, to the interval (1, 2+ ε) (see [12]).
This is a sharp result also, as proved in [12]. Identifying the optimal range of p’s
for which the Maxwell transmission problem is well-posed in dimension m > 3, is
still an open problem. In most of our results it is used the restriction p ∈ (2−ε, 2+ε).

Given a couple of C1 complex valued fields E,H defined in a domain Ω ⊂ R3, we
call (E,H) an electromagnetic wave if it satisfies the time-harmonic Maxwell system:

curlE − ikH = 0, curlH + ikE = 0, (1.1)

where the parameter k ∈ C is called the wave number.

In what follows, the domain Ω will always be considered bounded and Lipschitz,
n will denote its outward unit normal vector, and σ the surface measure in ∂Ω. A
classical theorem of Rademacher (see [13]) guarantees the existence of n almost ev-
erywhere in ∂Ω. We will use the notation Ω+ and Ω− for the interior and exterior of
Ω respectively. Finally, the wave number k satisfies Im k ≥ 0, and will be the same
for all the BVP’s treated.

The 3-dimensional Maxwell transmission problem is, given f, g ∈ Lp(∂Ω,C3), to
find complex valued, C1 fields E±, H± defined on Ω±, such that

(MT P3)



curlE± − ikH± = 0, in Ω±,

curlH± + ikE± = 0, in Ω±,

n×H+ − µn×H− = f,

n× E+ − n× E− = g,

N (E±),N (H±) ∈ Lp(∂Ω),

E−, H− satisfy the SMRC.

Let us explain the notation used in the formulation of the problem. For this and
all the BVP’s that follow, µ ∈ (0, 1) will be the same, it is called the transmission
parameter and is determined by characteristics of the media occupying Ω±. To the
reader interested in the physical motivation for the BVP’s treated here, we recom-
mend the introductory chapter in [14]. SMRC stands for Silver-Müller radiation
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condition, which is given by

x×H + |x|E = o(1), as |x| → ∞.

For x ∈ ∂Ω, we denote the sets {y ∈ Ω± : |x− y| ≤ κ dist(y, ∂Ω)} as Γ±(x). Note
they are interior and exterior “cones” with vertex in x, and fixed aperture κ > 0.
The value of κ is not relevant in the theory that follows, as explained in Section 2.1
of [15]. For (possibly vector valued) functions u± defined on Ω± respectively, the
nontangential maximal operator N is defined as

Nu±(x) := sup{|u±(y)| : y ∈ Γ±}.

The nontangential boundary trace of u± is taken to be

u±
∣∣
∂Ω

(x) := lim
Γ±(x)3 y→x

u±(y) (1.2)

whenever the limit exist. If u is defined both in Ω+ and Ω−, and we want to specify
a particular nontangential boundary trace, we use the notation u|∂Ω+ or u|∂Ω− . In
the boundary conditions ofMT P3, by n×H+ we mean n× (H+|∂Ω), and the same
holds for n×H− and n×E± (such convention will be used implicitly in what follows,
except in situations where clarification is needed). It is known, see Lemma 3.3 in [3]
for example, that the existence of the nontangential boundary traces for E± and H±

almost everywhere on ∂Ω is guaranteed by the rest of the conditions inMT P3, and
the same holds in higher dimensions.

As for the Helmholtz operator ∆ +k2, its corresponding transmission problem is,
given φ, ψ ∈ Lp(∂Ω), to find C2 complex valued functions w±, defined on Ω±, such
that

(HT P3)



(∆ + k2)w± = 0, in Ω±,

w+|∂Ω − µ w−|∂Ω = φ,

∂nw
+ − ∂nw− = ψ,

N (w±),N (∇w±) ∈ Lp(∂Ω),

w− satisfies the SRC.

Here ∂n denotes the normal derivative. As in the MT P3, the other conditions
imply the existence of nontangential boundary traces almost everywhere. SRC stands
for Sommerfeld radiation condition, which is

〈∇w−(x), x〉 − ik |x|w−(x) = o(1), as |x| → ∞.
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The structure of the thesis is as follows. The rest of Chapter 1 introduces the
problems of interest and the necessary theoretical framework. In Section 1.2 we de-
fine Lipschitz domains and the corresponding surface integrals. In Section 1.3 we
present the language of the Clifford calculus (i.e., calculus for Clifford algebra val-
ued functions), which will be used to formulate the Maxwell transmission problem
in higher dimensions. In Section 1.4 we introduce the Sobolev-like boundary spaces
that correspond to the formulation of our problems. This is, the boundary spaces for
which they have solution. In Section 1.5 we present the boundary integral operators
used to solve our BVP’s. Section 1.6 contains a summary of the results in [2], which
inspired this work, and Section 1.7 gives a formal presentation of the problems we
are solving in the thesis.

Chapter 2 contains our main results. In Section 2.1 we provide spectral properties
of some of the boundary operators from Section 1.5(see theorems 2.1.4 and 2.1.6).
In Section 2.2 we prove several theorems about our transmission problems, which we
summarize as follows. Theorem 2.2.1 gives necessary and sufficient conditions for the
Dirac transmission problem to be well posed. Theorem 2.2.6 describes how the Dirac
problem decouples into several Maxwell and Helmholtz problems. Theorems 2.2.9
and 2.2.12 provide necessary and sufficient conditions for a Dirac transmission prob-
lem to be equivalent to one, or several independent Maxwell problems respectively.
Theorem 2.2.7 and Corollary 2.2.10 provide necessary and sufficient conditions for
the Helmholtz and Maxwell problems respectively, to be well posed.

1.2 Lipschitz domains

We call a domain Ω in Rm a Lipschitz domain, if locally the boundary ∂Ω is the
graph of a Lipschitz function. In this section we provide an (slightly different) equiv-
alent definition, more suitable to our purposes. We later use partitions of unity to
define integration in ∂Ω with respect to the surface measure. This integration is
fundamental for the construction of spaces of boundary conditions, and solutions for
the BVPs we are interested in.

Definition 1.2.1. A bounded domain Ω in Rm is Lipschitz if there exist a finite
number of balls Bj in Rm−1, cylinders Cj = Bj× (−hj, hj) in Rm, proper rigid trans-
formations of Rm (composition of a rotation with a translation) Rj, and Lipschitz
functions φj : Bj → R with |φj| < hj, such that the cylinders Uj = Rj(Cj) form an
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open cover of ∂Ω, and satisfy

Ω ∩ Uj = {Rj(x̃, t) : x̃ ∈ Bj, t > φj(x̃)},
∂Ω ∩ Uj = {Rj(x̃, φj(x̃)) : x̃ ∈ Bj}.

We call {(Uj, φj)} a local coordinate system of ∂Ω.

We should note that in problems MT P3 and HT P3, it was implicitly assumed
the existence a.e. of a normal unitary vector n to the boundary of the Lipschitz do-
main Ω. Such assumption is justified by the following argument. From Rademacher’s
theorem (see [13]) we have that φj is differentiable at almost every point of Bj. With
this at hand, it is possible to construct the outward unit normal vector n(y) for every
y ∈ ∂Ω such that y = Rj(x̃, φj(x̃)) and ∇φj(x̃) exist. This is achieved by applying
the rotation corresponding to Rj to the vector (∇φj(x̃),−1), and then re-scaling
(multiplying by 1√

1+|∇φj(x̃)|2
) to obtain a unitary vector.

Before defining integration in the surface ∂Ω, we must explain the concept of par-
tition of unity. Given a compact set K in Rm and a finite number of open domains
Uj such that K ⊂

⋃
j Uj, there exist functions ψj ∈ C∞ with suppψj ⊂ Uj, such that∑

j ψj(y) = 1 for all y ∈ K. We call the set of pairs (Uj, ψj), a partition of unity onK.

Let Ω be a Lipschitz domain and {(Uj, φj)} a local coordinate system of ∂Ω with
the corresponding transformations Rj. Let {(Uj, ψj)} be a partition of unity on ∂Ω.
Then we can define∫

∂Ω

fds :=
∑
j

∫
∂Ω∩Uj

ψjf ds =
∑
j

∫
∂Ω∩Uj

fj ds, (1.3)

where fj = ψjf has support in ∂Ω ∩ Uj, and the integrals over the patches ∂Ω ∩ Uj
are given by ∫

∂Ω∩Uj
fj ds :=

∫
Bj

fj(Rj(x̃, φj(x̃)))
√

1 + |∇φj(x̃)|2 dx̃. (1.4)

It should be standard to prove that this integration gives place to a surface
measure σ on ∂Ω, which is independent of the local coordinate system and the
corresponding partition of unity selected. This is an exercise usually avoided in
textbooks.
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1.3 Clifford calculus

We will make extensive use in our work of the Clifford algebra C`m with m genera-
tors {ei}mi=1. The relevance of the Clifford algebra framework to study the Maxwell
system will be illustrated in the last two sections of this chapter. As our review of
the Clifford calculus cannot be comprehensive, the interested reader is referred to the
monographs [16, 17, 18, 19] and [20]. All lemmas in this section have straightforward
proofs.

Definition 1.3.1. The Clifford algebra C`m associated with Rm, endowed with the
usual Euclidean metric, is the extension of Rm to a unitary, associative algebra over
C such that

1. x2 = −|x|2 for any x ∈ Rm,

2. C`m is generated (as an algebra) by Rm,

3. C`m is not generated (as an algebra) by any proper subset of Rm.

From polarization identities and (1), for x, y ∈ Rm, we have

xy + yx = −2〈x, y〉,

where 〈·, ·〉 stands for the usual inner product in Rm. In particular, if {ei}mi=1 is an
orthonormal base of Rm, then eiej = −ejei for i 6= j, and e2

i = −1.
Given a multiindex I = (i1, i2, ..., il), we define eI := ei1ei2 ...eil and e0 := 1. The

notation ei1,i2,...,il := ei1ei2 . . . eil is also valid. A basis for the algebra C`m will be

e0; e1, e2, . . . , em; e1,2, . . . , em−1,m; . . . ; e1,2,...,m. (1.5)

Therefore, every element u ∈ C`m can be uniquely expressed as
∑

I uIeI where
uI ∈ C, and the sum runs over all the increasingly ordered multiindexes I deter-
mined by subsets of {1, 2, ...,m}. From now on, unless indicated otherwise, all sums∑

I will be considered in this way.

Vectors x = (xi)
m
i=1 in the Euclidean space Rm will be naturally identified with

elements x =
∑m

i=1 xiei in the algebra C`m (which are, justifiably, also called vectors).
We will use the bilinear form

〈u, v〉 :=
∑
I

uIvI for u =
∑
I

uIeI , v =
∑
I

vIeI .
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Clifford conjugation, denoted by ‘bar’, is defined as the unique complex-linear in-
volution on C`m for which eIeI = eIeI = 1, for any multiindex I. We also define
complex conjugation of u =

∑
I uIeI , as uc :=

∑
I uIeI (the bar over a scalar denotes

the usual complex conjugation), and the absolute value |u| :=
√
〈u, uc〉.

Let πl for 0 ≤ l ≤ m, be the projection onto the l-homogeneous part of C`m, i.e.,

πl(u) :=
∑
|I|=l

uIeI , for all u ∈ C`m,

where |l| is the order of the multiindex I. We denote the range of πl by Λl. The
following decomposition will be useful,

C`m = Λ0 ⊕ Λ1 ⊕ . . .⊕ Λm. (1.6)

The interior ∨ and exterior ∧ products are defined, for a fixed vector a ∈ Λ1, as

a ∨ u := −πl−1(au) and a ∧ u := πl+1(au)

for all u ∈ Λl. Then extend ∨ and ∧ linearly to all u ∈ C`m. Note that

au = a ∧ u− a ∨ u. (1.7)

A useful linear mapping on C`m will be the Hodge star operator, which we de-
fine for u ∈ C`m, as ∗u := ue12...m. It is worth noting that ∗ : Λl → Λm−l and
eI(∗eI) = e1,2,...,m.

The Dirac operator associated with C`m is defined as D :=
∑m

i=1 ei∂i, i.e.,

Du =
∑
I

m∑
i=1

(∂iuI)eieI , for u =
∑
I

uIeI , and uI ∈ C1(Rm,C).

Note that the Dirac operator in C`m can be applied to differentiable functions
with values in different (bigger) Clifford algebras, so we can define a perturbed Dirac
operator as Dk := D+ kem+1 for C`m+1-valued functions. The reason for such defini-
tions will become apparent latter (see, for example, (1.9)). Functions in the kernels
of D or Dk are called monogenic or k-monogenic respectively. Throughout this work
we shall consider the natural embeddings

Rm ↪→ C`m ↪→ C`m+1.
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In the same spirit of the Dirac operator, we define the exterior and interior
derivatives as d :=

∑m
i=1 ei ∧ ∂i and δ := −

∑m
i=1 ei ∨ ∂i, respectively. Note that

D = d+ δ, d2 = δ2 = 0, δd+ dδ = −∆, (1.8)

where ∆ is the Laplace operator
∑m

i=1 ∂
2
i . From (1.8) easily follows

D2 = −∆ and D2
k = −(∆ + k2). (1.9)

The next two lemmas summarize the properties of Clifford calculus which are
most relevant to our purposes.

Lemma 1.3.2. Let a, b be vectors in C`m, u ∈ Λl and v ∈ Λm−l, for some l ∈
{0, 1, ...,m}. Then the following identities hold

(1) a ∧ (a ∧ u) = a ∨ (a ∨ u) = 0.

(2) ∗ ∗ u = (−1)l(m−l)u.

(3) 〈u, ∗v〉 = (−1)l(m−l)〈∗u, v〉.

(4) ∗(a ∧ u) = (−1)la ∨ (∗u).

(5) ∗(a ∨ u) = (−1)l−1a ∧ (∗u).

(6) a ∧ (b ∨ u) + b ∨ (a ∧ u) = 〈a, b〉u.

(7) 〈a ∧ u, v〉 = 〈u, a ∨ v〉.

Note that parts (1) and (6) in Lemma 1.3.2 are valid for all u ∈ C`m, and (7) is
valid for all u, v ∈ C`m. Also, the second and third identities in (1.8) are analogues
of (1) and (6) respectively, by replacing a and b with the Dirac operator. Analogues
to the parts (4) and (5) of Lemma 1.3.2 are also valid (replacing again a with the
Dirac operator). Let us expand the last observation into the following lemma.

Lemma 1.3.3. Let u be a Λl-valued C1 function, for 0 ≤ l ≤ m. Then it holds

(i) ∗(du) = (−1)l+1δ(∗u),

(ii) ∗(δu) = (−1)ld(∗u),

(iii) ∗(d(∗u)) = (−1)m(l+1)+1δu.

Part (iii) is the result of applying the Hodge operator to (ii) and then use (2) from
Lemma 1.3.2.

An interesting particular case of (6) in Lemma 1.3.2, is the one with b = a and
|a| = 1, which gives us the decomposition

u = a ∧ (a ∨ u) + a ∨ (a ∧ u). (1.10)
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When Ω ⊂ Rm, a = n is the normal vector to ∂Ω, and u is an algebra valued
function defined on ∂Ω, the first and second terms in the right hand of (1.10) are
called the normal and tangential components of u respectively (denoted by un and
ut). Note that, if u is also a vector, its normal and tangential components are the
usual ones (in the Euclidean geometry of Rm). In this case, function u is called
normal if n∧ u = 0, and tangential if n∨ u = 0. Equivalently, u is normal if ut = 0,
and tangential if un = 0. Note that normal and tangential functions are mutually
orthogonal with respect to 〈· , ·〉.

The following lemma gives some useful relations between the 3-dimensional vec-
tor calculus and the Clifford algebra operators introduced before.

Lemma 1.3.4. Let u, v be C1 vector fields in a domain in R3. If we consider them
also as C`3-valued functions, then

divu = −δu, 〈u, v〉 = u ∨ v,
curlu = ∗du, u× v = ∗(u ∧ v).

We call (E,H), where E,H are C1 and C`m-valued functions, an electromagnetic
wave in Rm, if

δE − ikH = 0, dH + ikE = 0. (1.11)

Note that, from Lemma 1.3.4, (1.11) is a generalization of (1.1) to higher dimensions.

1.4 Boundary spaces

For the boundary spaces, we turn to the idea of weak derivatives, which justifies
the term “Sobolev-like” used in the introduction. For a start, we need the following
spaces of p-integrable normal and tangential functions on ∂Ω

Lpt (∂Ω, C`m) := {f ∈ Lp(∂Ω, C`m) : fn = 0},
Lpn(∂Ω, C`m) := {f ∈ Lp(∂Ω, C`m) : ft = 0}.

Here ft and fn are the tangential and normal components of f , as defined after (1.10).

We say that u ∈ Lpt (∂Ω, C`m) has a boundary interior derivative δ∂ in Lp(∂Ω, C`m),
if there exist a function δ∂u ∈ Lp(∂Ω, C`m) such that∫

∂Ω

〈δ∂u, ϕ〉dσ =

∫
∂Ω

〈u, dϕ〉dσ, ∀ϕ ∈ C∞0 (Rm, C`m).
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Where C∞0 (Rm, C`m) is the space of compactly supported smooth C`m-valued func-
tions in Rm. Define Lp,δt (∂Ω, C`m) as the subspace of functions in Lpt (∂Ω, C`m) that
have boundary interior derivatives in Lp(∂Ω, C`m).

Analogously, u ∈ Lpn(∂Ω, C`m) has a boundary exterior derivative d∂ in Lp(∂Ω, C`m),
if there exist a function d∂u ∈ Lp(∂Ω, C`m) such that∫

∂Ω

〈d∂u, ϕ〉dσ =

∫
∂Ω

〈u, δϕ〉dσ, ∀ϕ ∈ C∞0 (Rm, C`m).

And define Lp,dn (∂Ω, C`m) as the Sobolev space of functions in Lpn(∂Ω, C`m) with
boundary exterior derivatives in Lp(∂Ω, C`m).

In both cases we obtain Banach spaces, if we equip them with the norms

||f ||Lp,δt (∂Ω,C`m) := ||f ||Lp(∂Ω,C`m) + ||δ∂f ||Lp(∂Ω,C`m),

||f ||Lp,dn (∂Ω,C`m) := ||f ||Lp(∂Ω,C`m) + ||d∂f ||Lp(∂Ω,C`m).

Related to this spaces is the following lemma, which provide an special class of
functions with boundary interior or exterior derivatives (see Lemma 4.1 in [3]).

Lemma 1.4.1. Let u ∈ C1(Ω, C`m+1) be such that u, δu have nontangential boundary
trace a.e. on ∂Ω, and N (u),N (δu) ∈ Lp(∂Ω) . Then

n ∨ u ∈ Lp,δt (∂Ω, C`m+1) and δ∂(n ∨ u) = −n ∨ δu.

Analogously, if u ∈ C1(Ω, C`m+1) is such that u, du have nontangential boundary
trace a.e. on ∂Ω and N (u),N (du) ∈ Lp(∂Ω), then

n ∧ u ∈ Lp,dn (∂Ω, C`m+1) and d∂(n ∧ u) = −n ∨ du.

We use also the subspaces Lp,δt (∂Ω,Λl) and Lp,dn (∂Ω,Λl), of Λl valued functions
in Lp,δt (∂Ω, C`m) and Lp,dn (∂Ω, C`m) respectively.

Finally, a Sobolev space we will need later is Lp1(∂Ω), defined as the space of
functions f ∈ Lp(∂Ω) with a weak tangential derivative ∇t in Lpt (∂Ω,Λ1), i.e., those
f for which there exist a function ∇tf ∈ Lpt (∂Ω,Λ1), such that∫

∂Ω

(∇tf)h dσ =

∫
∂Ω

f (∇th) dσ, ∀h ∈ C∞0 (Rm).
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Where ∇th is the projection of ∇h into the tangential space of ∂Ω. Note that, being
Ω a Lipschitz domain, it has tangent space in almost every point of ∂Ω, so ∇th is
defined a.e. on ∂Ω.

Lp1(∂Ω) is also a Banach space if we use the norm

||f ||Lp1(∂Ω) := ||f ||Lp(∂Ω) + ||∇tf ||Lp(∂Ω,Λ1).

1.5 Boundary integral operators

If we want to apply integral equation methods to solve the DT Pm (formally defined
in 1.49), we need an integral operator defined by a kernel in the null space of Dk.
The equation (1.9) gives us a hint about where to look for. Hence we start with the
fundamental solution Φk for the Helmholtz operator. This can be defined in Rm, for
m ≥ 2 and Im k ≥ 0, as

Φk(x) :=
1

4i

(
k

2π|x|

)(m−2)/2

H
(1)
(m−2)/2(k|x|), x ∈ Rm\{0},

where H
(1)
µ is the Hankel function of the first kind with index µ (cf. [21]). For a

more detailed discussion of this function and some of its properties see [22].

From D2
kΦk = 0, we conclude that Ek := DkΦk will be a fundamental solution for

Dk. Define the Cauchy-Clifford operator as

Ckf(x) :=

∫
∂Ω

Ek(x− y)f(y) dσy, x ∈ Rm\∂Ω,

Note that Ck maps Clifford algebra valued functions defined in ∂Ω, to k-monogenic
functions outside of ∂Ω.

A principal-value boundary version of Ck can be defined as

Ckf(x) := p.v.

∫
∂Ω

Ek(x− y)f(y) dσy

:= lim
ε→0+

∫
|x−y|>ε
y ∈ ∂Ω

Ek(x− y)f(y) dσy, x ∈ ∂Ω. (1.12)
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It is not trivial that Ck is well defined and bounded in Lp(∂Ω, C`m). This result comes
from the (by now classical) Calderón-Zygmund theory. Specifically, the application
of Calderón’s techniques to some singular integrals in general Lipschitz domains, is
due to improvements made in [9] to the C-Z theory.

The following representation theorem illustrates the utility of the Cauchy-Clifford
operator when we study BVP’s for the Dirac operator on Lipschitz domains. The
case with m = 3 is formulated in [2], and the generalization is trivial (the same will
apply in each case in which we use results from [2]).

Theorem 1.5.1. Let Ω be a bounded Lipschitz domain in Rm, with exterior Ω− and
outward pointing normal vector n on ∂Ω. If p ∈ (1,∞), and k ∈ C\{0} is such that
Im k ≥ 0, the following equivalence holds:

u is k-monogenic in Ω−, N (u) ∈ Lp(∂Ω) and u satisfies the MMRC

if and only if

u|∂Ω exist, belongs to Lp(∂Ω, C`m) and u = Ck(nu|∂Ω) in Ω−.

An interior version (i.e., removing the radiation condition and considering u as k-
monogenic in Ω) is also valid.

Where MMRC denotes a radiation condition, defined later in 1.48. The inter-
ested reader in the development and motivation for such radiation condition may
consult [23].

(1− ie4x̂)u(x) = o(|x|−2), as |x| → ∞.

Also of interest for us is the single layer operator, defined by

Skf(x) :=

∫
∂Ω

Φk(x− y)f(y) dσy, x ∈ Rm\∂Ω,

with it’s corresponding boundary version

Skf(x) :=

∫
∂Ω

Φk(x− y)f(y) dσy, x ∈ ∂Ω.

Unlike Ek, kernel Φk defines a weakly singular operator. Therefore the boundary
version Sk of the single layer, is compact in Lp(∂Ω).

16



The principal-value boundary versions of the interior and exterior derivatives of
the single layer are

δSkf(x) := p.v.

∫
∂Ω

δx

[
Φk(x− y)f(y)

]
dσy, x ∈ ∂Ω, (1.13)

dSkf(x) := p.v.

∫
∂Ω

dx

[
Φk(x− y)f(y)

]
dσy, x ∈ ∂Ω. (1.14)

Note that dSk is just a notation for an operator, it does not mean that we are apply-
ing Sk and later d (which would not make sense). Finally, we define Mk := n ∨ dSk
and Nk := n∧ δSk (remember n is the outward unitary normal vector to the surface
∂Ω). All of the previous p.v. integral operators are well defined and bounded in
Lp(∂Ω, C`m) (again, from the work in [9] and the C-Z theory).

Having defined the integral operators Ck and Sk, our next step is to know how
their images behave as they approach the surface ∂Ω in a nontangential way (see
(1.2)). This is achieved in the next lemma, from [3].

Lemma 1.5.2. Let Ω be a bounded Lipschitz domain, and f ∈ Lp(∂Ω, C`m). Then
the nontangential boundary traces Skf |∂Ω±, δSkf |∂Ω±, and dSkf |∂Ω± exist almost
everywhere in ∂Ω, and satisfy

Skf |∂Ω± = Skf,

δSkf |∂Ω± = ±1

2
n ∨ f + δSkf,

dSkf |∂Ω± = ∓1

2
n ∧ f + dSkf.

Moreover,

||N (Skf)||Lp(∂Ω) + ||N (δSkf)||Lp(∂Ω) + ||N (dSkf)||Lp(∂Ω) � ||f ||Lp(∂Ω),

and Skf , dSkf and δSkf , restricted to Rm\Ω, satisfy the SMRC.

With Lemma 1.5.2 we can easily find the boundary traces of Ck.

Theorem 1.5.3. Let Ω be a bounded Lipschitz domain. For any f ∈ Lp(∂Ω, C`m),

Ckf |∂Ω± = (∓1
2
nI + Ck)f, (1.15)

where I denotes the identity operator. As a consequence,

n ∨ (Ckf)|∂Ω± = ∓1
2
ft + n ∨ Ckf, (1.16)

n ∧ (Ckf)|∂Ω± = ±1
2
fn + n ∧ Ckf. (1.17)
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Where fn and ft are the normal and tangential parts of f , as defined after (1.10).

The following lemma explain the interaction between δ, δ∂, d and d∂, when applied
to single layers.

Lemma 1.5.4. Let Ω be a bounded Lipschitz domain in Rm, p ∈ (1,∞) and k ∈ C.
For g ∈ Lp,δt (∂Ω, C`m) and f ∈ Lp,dn (∂Ω, C`m), it holds

δSkg = Skδ∂g, dSkf = Skd∂f. (1.18)

Which has a valid boundary version

δSkg = Skδ∂g, dSkf = Skd∂f.

Proof. We provide a proof for the first equality in (1.18), the others are similar.
Consider c a fixed element in the canonical basis (1.5) of C`m.

〈δSkg(x), c〉 =

∫
∂Ω

〈−∇xΦk(x− y) ∨ g(y), c〉 dσy

=

∫
∂Ω

〈g(y),−∇xΦk(x− y) ∧ c〉 dσy

=

∫
∂Ω

〈g(y),∇yΦk(x− y) ∧ c〉 dσy

=

∫
∂Ω

〈g(y), dy(Φk(x− y)c)〉 dσy

=

∫
∂Ω

〈Φk(x− y)δ∂g(y), c〉 dσy

= 〈Skδ∂g(x), c〉.

Note, by the definitions of δSk, dSk and Ck, that Ck = δSk + dSk + kem+1Sk.
Then Lemma 1.5.4 implies, for g ∈ Lp,δt (∂Ω, C`m) and f ∈ Lp,dn (∂Ω, C`m), that

n ∨ Ckg = n ∨ Sk(δ∂g) +Mkg − kem+1n ∨ Skg,
n ∧ Ckf = n ∧ Sk(d∂f) +Nkf − kem+1n ∧ Skf.

(1.19)

This relations will be of use later on.
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1.6 Transmission problems in R3

The object of this section is to present some results of [2]. The principal one is
the well-posedness, under some sufficient conditions, of the DT P3. This problem
is later deconstructed into several Maxwell and Helmholtz transmission problems.
As a corollary, the well-posedness of HT P3 is also established. Finally, necessary
and sufficient conditions are given for the decoupling of one DT P3, into two or one
MT P3 problems.

Given a domain Ω, we retrain here the same meaning for Ω± as in the previous
sections. The first theorem from [2] we want to state is the following:

Theorem 1.6.1. Let Ω be a bounded Lipschitz domain in R3. Then there exist ε > 0
and an at most countable set {kj}j ⊂ R which depend exclusively on the boundary
∂Ω, such that, if p ∈ (1, 2 + ε), µ ∈ (0, 1), and k /∈ {kj}j has Im k ≥ 0, the problem

Dku
± = 0 on Ω±,

n ∨ u+ − n ∨ u− = g̃,

n ∧ u+ − µn ∧ u− = f̃ ,

u− satisfies the MMRC 1,

N (u±),N (du±),N (δu±) ∈ Lp(∂Ω).

(1.20)

has a solution if and only if

f̃ ∈ Lp,dn (∂Ω, C`4) and g̃ ∈ Lp,δt (∂Ω, C`4). (1.21)

Furthermore, the solution u± is unique and satisfies the estimate

||N (u±)||Lp(∂Ω) + ||N (du±)||Lp(∂Ω) + ||N (δu±)||Lp(∂Ω)

� ||N (f̃)||Lp,dn (∂Ω,C`4) + ||N (g̃)||Lp,δt (∂Ω,C`4).
(1.22)

The key ingredient in the proof of Theorem 1.6.1 is the fact that operators
λI + n ∧ Ck and λI + n ∨ Ck with λ ∈ R and |λ| ≥ 1/2, are isomorphisms of
Lp,dn (∂Ω, C`4) and Lp,δt (∂Ω, C`4) respectively. This is actually the fundamental result
in [2]. Here Ck is the principal-value boundary version of Ck, as defined in (1.12).

With Theorem 1.6.1 at hand, the next step is to deconstruct (1.20) in such a
way that u± is represented, using the Hodge operator, only through scalar and vec-
tor components. We will see that these components satisfy several Maxwell and

1MMRC denotes a radiation condition, defined later in 1.48. See also [23]
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Helmholtz transmission problems.

It is easy to check that u± can be canonically written as

u± = H± − ie4E
±, (1.23)

where H±, E± ∈ C1(Ω±, C`3). We now define H±i := πi(H
±), E±i := πi(E

±) for
i ∈ {0, 1, 2, 3}; and H ′±i := ∗H±3−i, E ′±i := ∗E±3−i, for i ∈ {0, 1}. So we get the
representations

H± = H±0 +H±1 + ∗H ′±1 + ∗H ′±0 , (1.24)

E± = E±0 + E±1 + ∗E ′±1 + ∗E ′±0 . (1.25)

Note that H±i , E
±
i , H

′±
i , E

′±
i in the previous decomposition are all scalars or vectors.

The idea is then, if we consider u± a solution to (1.20), to determine what trans-
mission problems its components satisfy. Before we can do that, it is necessary to
establish a suitable decomposition for the boundary conditions in (1.20).

Theorem 1.6.2. For Ω a bounded Lipschitz domain in R3 with normal exterior
vector n and p ∈ (1,∞), it holds

Lp,dn (∂Ω, C`3) = nLp1(∂Ω)⊕ ∗Lp,Div
t (∂Ω)⊕ ∗Lp(∂Ω), (1.26)

Lp,δt (∂Ω, C`3) = Lp(∂Ω)⊕ Lp,Div
t (∂Ω)⊕ ∗(nLp1(∂Ω)). (1.27)

Furthermore, there are norm estimates naturally accompanying such a decomposition.

Now it is possible to decompose f̃ ∈ Lp,dn (∂Ω, C`4) and g̃ ∈ Lp,δt (∂Ω, C`4) in the
form

f̃ = F + ie4F̃ with F, F̃ ∈ Lp,dn (∂Ω, C`3), (1.28)

g̃ = G+ ie4G̃ with G, G̃ ∈ Lp,δt (∂Ω, C`3), (1.29)

F = nF0 + ∗F1 + ∗F ′0, F̃ = nF̃0 + ∗F̃1 + ∗F̃ ′0, (1.30)

G = G0 +G1 + ∗(nG′0), G̃ = G̃0 + G̃1 + ∗(nG̃′0) (1.31)

with

F0, F̃ , G
′
0, G̃

′
0 ∈ L

p
1(∂Ω), F1, F̃1, G1, G̃1 ∈ Lp,Div

t (∂Ω), andF ′0, F̃
′
0, G0, G̃0 ∈ Lp(∂Ω).

We are ready now to enunciate the deconstruction of (1.20).
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Theorem 1.6.3. Suppose that Ω is a bounded Lipschitz domain in R3, and fix
µ ∈ (0, 1), k ∈ C and p ∈ (1,∞). Also, assume that u± ∈ C1(Ω±, C`4) solves
the transmission boundary value problem for the perturbed Dirac operator (1.20).
Finally, decompose u± as in (1.23)-(1.25), and also decompose the boundary data
f̃ , g̃ as in (1.28)-(1.31). Then the components of these functions satisfy the two
inhomogeneous Maxwell transmission problems:

curlE±1 − ikH′±1 = ∇E′±0 , on Ω±,

curlH′±1 + ikE±1 = −∇H±0 , on Ω±,

n× E+
1 − µn× E−1 = F̃1, on ∂Ω,

n×H′+1 − n×H′−1 = −G1, on ∂Ω,

H′−1 , E−1 satisfy the SMRC,

N (H′±1 ),N (E±1 ) ∈ Lp(∂Ω).

(1.32)



curlE′±1 − ikH±1 = ∇E±0 , on Ω±,

curlH±1 + ikE′±1 = −∇H′±0 , on Ω±,

n×H+
1 − µn×H−1 = F1, on ∂Ω,

n× E′+1 − n× E′−1 = −G̃1, on ∂Ω,

H−1 , E′−1 satisfy the SMRC,

N (H±1 ),N (E′±1 ) ∈ Lp(∂Ω).

(1.33)

and the four HT P3: 

(∆ + k2)H±0 = 0, on Ω±,

H+
0 − µ H−0 = F0,

∂nH
+
0 − ∂nH−0 = −ik G̃0 −DivG1,

H−0 satisfies the SRC,

N (H±0 ),N (∇H±0 ) ∈ Lp(∂Ω).

(1.34)



(∆ + k2)E±0 = 0, on Ω±,

H+
0 − µ E−0 = F̃0,

∂nE
+
0 − ∂nE−0 = −ik G0 −Div G̃1,

E−0 satisfies the SRC,

N (E±0 ),N (∇E±0 ) ∈ Lp(∂Ω).

(1.35)
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(∆ + k2)H′±0 = 0, on Ω±,

H+
0 − µ H′−0 = G′0,

∂nH′+0 − ∂nH−0 = −ik F̃ ′0 −DivF1,

H′−0 satisfies the SRC,

N (H′±0 ),N (∇H′±0 ) ∈ Lp(∂Ω).

(1.36)



(∆ + k2)E′±0 = 0, on Ω±,

H+
0 − µ E′−0 = G̃′0,

∂nE′+0 − ∂nE′−0 = −ik F ′0 −Div F̃1,

E′−0 satisfies the SRC,

N (E′±0 ),N (∇E′±0 ) ∈ Lp(∂Ω).

(1.37)

The reader will notice later that problems (1.32)-(1.33) are in fact formulations,
with m = 3 and l = 1, of the Maxwell transmission problem defined below in (1.45).
This is a simple consequence of lemmas 1.3.3 and 1.3.4.

Using theorems 1.6.1 and 1.6.3, we can prove the following corollary:

Corollary 1.6.4. Let Ω be a bounded Lipschitz domain in R3. There exist ε > 0 and
an at most countable set {kj}j ⊂ R which depend exclusively on the boundary ∂Ω,
such that, if p ∈ (1, 2 + ε), µ ∈ (0, 1), and k /∈ {kj}j has Im k ≥ 0, then the HT P3

is well-posed.

To obtain an analogous to Corollary 1.6.4 in the case of theMT P3, it is necessary
to deal first with the non-homogeneity of problems (1.32)-(1.33). The following
theorem shows that there exist certain restrictions on the boundary conditions f̃ and
g̃, which allows one to equivalently decouple (1.20) into two independent MT P3.

Theorem 1.6.5. Let Ω be a bounded Lipschitz domain in R3. Then there exist ε > 0
and an at most countable set {kj}j ⊂ R which depend exclusively on the boundary
∂Ω, such that, if p ∈ (1, 2 + ε), µ ∈ (0, 1), and k /∈ {kj}j has Im k ≥ 0, the problem
(1.20) with u± as in (1.23)-(1.25) and f̃ , g̃ as in (1.28)-(1.31), decouples into the
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following two independent MT P3:

curlE±1 − ikH ′±1 = 0, on Ω±,

curlH ′±1 + ikE±1 = 0, on Ω±,

n× E+
1 − µn× E−1 = F̃1, on ∂Ω,

n×H ′+1 − n×H ′−1 = −G1, on ∂Ω,

H ′−1 , E−1 satisfy the SMRC,

N (H ′±1 ),N (E±1 ) ∈ Lp(∂Ω),

(1.38)

and 

curlE ′±1 − ikH±1 = 0, on Ω±,

curlH±1 + ikE ′±1 = 0, on Ω±,

n× E ′+1 − µn× E ′−1 = F1, on ∂Ω,

n×H+
1 − n×H−1 = −G̃1, on ∂Ω,

H−1 , E
′−
1 satisfy the SMRC,

N (H±1 ),N (E ′±1 ) ∈ Lp(∂Ω),

(1.39)

if and only if

d∂ f̃ + ke4 f̃ is
(
Λ2 ⊕ (e4 Λ2)

)
-valued and

δ∂ g̃ + ke4 g̃ is
(
Λ1 ⊕ (e4 Λ1)

)
-valued.

(1.40)

Furthermore, if (1.40) holds, the following relations are valid:

∗(d∂ f̃ + ke4 f̃) = −ikF̃1 + ke4F1,

δ∂ g̃ + ke4 g̃ = −ikG̃1 + ke4G1.
(1.41)

f̃ = ∗F1 + ik−1 ∗ (Div F̃1) + ie4(∗F̃1 − ik−1 ∗ (DivF1)),

g̃ = −ik−1 ∗ (Div G̃1) +G1 + ie4(ik−1(DivG1) + G̃1).
(1.42)

Corollary 1.6.6. In the context of Theorem 1.6.5, the transmission boundary value
problem (1.20) reduces to just one MT P3 if and only if the boundary data f̃ , g̃ are
(Λ3 ⊕ (e4 Λ2))-valued and (Λ1 ⊕ (e4 Λ0))-valued, respectively, and satisfy

d∂ f̃ − ke4 ∧ f̃ = 0 = δ∂ g̃ − ke4 ∨ g̃. (1.43)
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Furthermore, (1.43) is equivalent to

f̃ = ik−1 ∗ (Div F̃1) + ie4(∗F̃1),

g̃ = G1 − k−1e4(DivG1).
(1.44)

1.7 Higher dimensional transmission problems

Using lemmas 1.3.2, 1.3.3 and 1.3.4 we can formulate the analogous of MT P3 in
dimension m > 3. Remember that Ω ⊂ Rm is always considered a bounded and
Lipschitz domain.

The problem is, given g ∈ Lp(∂Ω,Λl), f ∈ Lp(∂Ω,Λl+1), to find Λl+1-valued
functions E±, and Λl-valued functions H±, which are C1 in Ω± respectively, and
such that

(MT Pm)



δE± − ikH± = 0, in Ω±,

dH± + ikE± = 0, in Ω±,

n ∨ E+ − n ∨ E− = g,

n ∧H+ − µn ∧H− = f,

E−, H− satisfy the SMRC,

N (E±),N (H±) ∈ Lp(∂Ω).

(1.45)

Here we use the m-dimensional SMRC, which is given for E− (the case H− is anal-
ogous) by

x̂ ∨ (dE−)(x) + x̂ ∧ (δE−)(x)− ikE−(x) = o(|x|−(m−1)/2), as |x| → ∞,

where x̂ := x
|x| .

As for the Helmholtz transmission problem, this is, given φ, ψ ∈ Lp(∂Ω), to find
two scalar-valued functions w±, C2 in Ω± respectively, which satisfy

(HT Pm)



(∆ + k2)w± = 0, in Ω±,

w+|∂Ω − µ w−|∂Ω = φ,

∂nw
+ − ∂nw− = ψ,

w− satisfies the SRC,

N (w±),N (∇w±) ∈ Lp(∂Ω).

(1.46)

Where we use the higher dimensional version of the Sommerfeld radiation condition:

〈∇w−(x), x̂〉 − ik w−(x) = o(|x|−(m−1)/2), as |x| → ∞.
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Lemma 1.7.1. Let u := H − iem+1 E, with E,H being C`m-valued C1 functions.
Then

Dku = 0 ⇐⇒

{
δE + dE − ik H = 0,

δH + dH + ik E = 0.
(1.47)

Lemma 1.7.1 gives a link between k-monogenic functions and electromagnetic
waves that will be exploited later to relate the corresponding transmission problems.
First we need a suitable radiation condition, which is devised in [23], and we will
call it here the McIntosh-Mitrea radiation condition (MMRC). For a C`m+1 valued
function u defined in a neighborhood of infinity, the condition reads

(1− iem+1x̂)u(x) = o(|x|−(m+1)/2), as |x| → ∞. (1.48)

The Dirac transmission problem is then, given g̃, f̃ ∈ Lp(∂Ω, C`m+1), to find C`m+1-
valued functions u±, C1 in Ω± respectively, and such that

(DT Pm)



Dku
± = 0 in Ω±,

n ∨ u+ − n ∨ u− = g̃,

n ∧ u+ − µn ∧ u− = f̃ ,

u− satisfies the MMRC,

N (u±),N (du±),N (δu±) ∈ Lp(∂Ω).

(1.49)
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Chapter 2

Main Results

2.1 Invertibility theorems

The general idea behind the integral methods to solve the DT Pm (which in turn,
as we will see in Section 2.2, can be used latter to solve the HT Pm and MT Pm),
is as follows. With the Cauchy-Clifford operator, we construct an educated guess of
the solution to the DT Pm. Then we calculate the nontangential boundary traces of
our guess, and try to match them with the boundary conditions of the transmission
problem. From the previous step, we conclude that our success is tied to the spectral
properties of certain boundary integral operators (especially the Mk and Nk defined
in Section 1.5). In other words, the key in the solution of our transmission problems
is the invertibility of certain singular boundary integral operators. We handle this
with theorems 2.1.4 and 2.1.6.

Lemma 2.1.1. Let Ω be a bounded Lipschitz domain in Rm. For all F,G ∈ C1(Ω, C`m)
with nontangential boundary traces and nontangential maximal functions in L2(∂Ω)
and |dG||F |, |G||δF | ∈ L1(Ω), it holds the integration by parts formula∫∫

Ω

〈dG, F 〉 dx−
∫∫

Ω

〈G, δF 〉 dx =

∫
∂Ω

〈n ∧G,F 〉 dσ (2.1)

An exterior version of formula (2.1), for Ω−, is obtained by demanding also that
|G||F | = o(|x|1−m).

Proof. Suppose first that F,G ∈ C1(Ω, C`m) and Ω is a C2 bounded domain in Rm.
If we consider the canonical representations

G =
∑

gIeI , F =
∑

fIeI ,
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then (2.1) is equivalent to

∑
I,J

m∑
i=1

[∫∫
Ω

〈∂igIei ∧ eJ , fJeJ〉dx+

∫∫
Ω

〈gIeI , ∂ifJei ∨ eJ〉 dx

]

=
∑
I,J

m∑
i=1

∫
∂Ω

〈gIniei ∧ eI , fJeJ〉 dσ.

Note that the only nonzero terms can be those with eJ = ±eieI for i /∈ I. It is
enough then to prove, for such values of i, I and J , that∫∫

Ω

(∂igI)fJ dx+

∫∫
Ω

gI ∂ifJ dx =

∫
∂Ω

gInifJ dσ.

And this is a trivial consequence of the Gauss theorem.
It is possible now to use an approximation scheme as the one described in [24] to

obtain the first part of the lemma (here is where we use the nontangential properties
of F and G). Suppose Ωj ↑ Ω+ is a smooth approximation of Ω+ from the inside,
with nj the outward unitary normal vector corresponding to Ωj, and σj the surface
measure in ∂Ωj. The properties of such approximation are listed in Theorem 1.12
in [24] (the reader may consult this source if he or she is interested in the technical
details), and will be used implicitly in what follows. Their main utility here is the
implication of point convergence of the integral argument in the right side of the
equation bellow, by translating each integral in ∂Ωj to a similar one in ∂Ω. From
the assumptions on F and G we have N (〈n ∧ G,F 〉) ∈ L1(∂Ω). The previous ob-
servation and |dG||F |, |G||δF | ∈ L1(Ω) imply that we can pass, using the dominated
convergence theorem, from∫∫

Ωj

〈dG, F 〉 dx−
∫∫

Ωj

〈G, δF 〉 dx =

∫
∂Ωj

〈nj ∧G,F 〉 dσj,

to the limit when j →∞. This will give us the first part of the lemma.

The second part follows by applying the first one on the domain BR\Ω, where
BR = {x ∈ Rm : |x| < R}, and letting R tend to infinity. The surface integral on
∂BR will vanish because |G||F | = o(|x|1−m).

Lemma 2.1.2. If λ ∈ R with |λ| ≥ 1
2
, and k ∈ C with Im k > 0, then λI −Mk is an

injective operator in L2,δ
t (∂Ω, C`m).
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Proof. Let g ∈ L2,δ
t (∂Ω, C`m) be a nonzero element in Ker (λI −Mk), with λ and k

as in the lemma. Suppose Ω±j ↑ Ω± are smooth domains approximating Ω± from the
inside, as in the proof of Lemma 2.1.1, with outward unitary normal vectors n±j and
surface measures σ±j . Consider E± := dSkg on Ω±, and note that E−, δE− decay
exponentially as |x| → ∞. Therefore we can apply the integration by parts formula
(2.1) on Ω±j , with δE± and (E±)c in the place of G and F , to obtain∫∫

Ω±j

(k2|E±|2 − |δE±|2) dx =

∫
∂Ω±j

〈δE±, n±j ∨ (E±)c〉 dσ±j . (2.2)

That N (|δE±||(E±)c|) ∈ L1(∂Ω) follows from Lemma 1.5.2 and the Holder in-
equality. The previous observation, properties of the approximations Ω±j ↑ Ω± given
in [24], and the dominated convergence theorem allow us to pass to the limit when
j →∞ on the right side of (2.2). Thus the left side of (2.2) has a (finite) limit when
j →∞, which, together with Im k > 0, imply |E±|2, |δE±|2 ∈ L1(Ω±). Hence, either
using Lemma 2.1.1 on Ω±, or passing to the limit in (2.2), we obtain∫∫

Ω±
(k2|E±|2 − |δE±|2) dx = ±

∫
∂Ω

〈δE±, n ∨ (E±)c〉 dσ. (2.3)

Denote µ± the left side of (2.3). From Im k > 0, we have Im k2 6= 0 or k2 < 0. In
either case, µ± = 0 iff E± = 0. Using Lemma 1.5.2 we calculate

δE±
∣∣
∂Ω

= ±1

2
n ∧ δ∂g − dSk(δ∂g) + k2Skg. (2.4)

Therefore δE+|∂Ω and δE−|∂Ω have the same tangential component on ∂Ω. The
previous observations and (2.3) give us

E+ = 0 ⇒ (δE+
∣∣
∂Ω

)t = (δE−
∣∣
∂Ω

)t = 0 ⇒ µ− = 0 ⇒ E− = 0.

By the jump formulas in Lemma 1.5.2, this leads to g = 0, a contradiction. An
analogous reasoning shows that it is not possible to have E− = 0. Hence E± 6= 0,
and consequently µ± 6= 0.

We use the jump formulas again to obtain

n ∨ E±
∣∣
∂Ω

= ∓1

2
g +Mkg = (λ∓ 1

2
)g. (2.5)

From (2.5) and (2.4) substituted on (2.3), we get

µ± = ±(λ∓ 1

2
)c, for some c ∈ C\{0}. (2.6)
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Note that |λ| > 1
2

implies that λ ∓ 1
2

have the same sign. If k2 < 0 then
µ+, µ− ∈ R−, which contradicts (2.6). Finally, if Im k2 6= 0, then (2.3) implies
sign(Imµ+) = sign(Imµ−), which again contradicts (2.6).

We will use the following quite general version of the analytic Fredholm alterna-
tive (from Proposition 4.1.4 in [25]).

Theorem 2.1.3 (Analytic Fredholm alternative). Let X be a Banach space and
F (X) the set of bounded Fredholm operators on X. If D is a domain in C and
A : D → F (X) is an analytic function, then either

(i) A(z) is not invertible for any z ∈ D.

(ii) There exist a discrete set S ⊂ D such that A(z) is invertible for all z ∈ D\S.

We have the elements now to prove the following theorem.

Theorem 2.1.4. Given λ ∈ R with |λ| ≥ 1
2
, there exist ε > 0 and an at most discrete

set {kj}j ⊂ R containing 0, both depending on λ and ∂Ω, such that λI −Mk and

λI −Nk are invertible operators in Lp,δt (∂Ω, C`m) and Lp,dn (∂Ω, C`m) respectively, for
all 2− ε < p < 2 + ε and k ∈ C\{kj}j with Im k ≥ 0.

Proof. Let k0 ∈ C be fixed, with Im k0 > |Re k0|. From Theorem 7.4 in [3] and
“good λ-inequality” techniques due to Dahlberg and Kenig [26], we have the exis-
tence of ε > 0 such that λI−Mk0 is invertible in Lp,δt (∂Ω, C`m) for all 2−ε < p < 2+ε.

We consider now, for any k ∈ C, the decomposition

λI −Mk = λI −Mk0 + (Mk0 −M0) + (M0 −Mk). (2.7)

From Lemma 4.1 in [2] follows that the operators in parentheses in (2.7) are weakly
singular, and therefore compact in Lp,δt (∂Ω, C`m). Hence λI −Mk is Fredholm with
index zero in Lp,δt (∂Ω, C`m) for 2− ε < p < 2 + ε.

From the definition of Mk and properties of its kernel, k → λI −Mk is an an-
alytic mapping. Then Lemma 2.1.2 and the analytic Fredholm alternative imply
the existence of an at most discrete set {kj}j ∈ R (we can assume, without loss of

generality, that 0 ∈ {kj}j), such that λI −Mk is invertible on L2,δ
t (∂Ω, C`m) for all

k ∈ C\{kj}j with Im k ≥ 0.
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Consider now that

L2,δ
t (∂Ω, C`m) ↪→ Lp,δt (∂Ω, C`m) for p < 2,

Lp,δt (∂Ω, C`m) ↪→ L2,δ
t (∂Ω, C`m) for p > 2,

are both inclusions with dense ranges. It follows that, for k as above, λI −Mk is
injective in Lp,δt (∂Ω, C`m) for p > 2, and has dense range in Lp,δt (∂Ω, C`m) for p < 2.
From this observation and the Fredholmness of λI −Mk follows the invertibility of
λI − Mk when 2 − ε < p < 2 + ε and k ∈ C\{kj}j with Im k ≥ 0. The case of
operator λI −Nk is analogous, but with a possibly different value of ε and different
set {kj}j. The theorem follows from intercepting the corresponding ε-intervals for p,
and uniting the corresponding sets {kj}j.

An analogous theorem for the operators λI+n∨Ck and λI+n∧Ck is also valid.
For the proof we need first the following lemma (from lemmas 5.5 and 5.6 in [2]).

Lemma 2.1.5. The operators n ∨ Sk and n ∨ Skδ∂ are compact in Lp,δt (∂Ω, C`m).
The same holds for n ∧ Sk and n ∧ Skd∂ in Lp,dn (∂Ω, C`m).

Theorem 2.1.6. Given λ ∈ R with |λ| ≥ 1
2
, there exist ε > 0 and an at most discrete

set {kj}j ⊂ R containing 0, both depending on λ and ∂Ω, such that λI + n∨Ck and

λI + n∧Ck are invertible operators in Lp,δt (∂Ω, C`m) and Lp,dn (∂Ω, C`m) respectively,
for all 2− ε < p < 2 + ε and k ∈ C\{kj}j with Im k ≥ 0.

Proof. There is only one step in the proof of the 3-dimensional version of this theo-
rem, given in [2] (there it is proved the result for λI+n∧Ck, the case of λI+n∨Ck is
analogous), that actually depends on the dimension. It is the one providing an ε > 0
such that λI+n∨Ck and λI+n∧Ck are Fredholm with index zero in Lp,δt (∂Ω, C`m)
and Lp,dn (∂Ω, C`m) respectively, for all k ∈ C and p in an interval depending on ε.
We can achieve this using the following consequence of (1.19),

λI + n ∨ Ck = −(−λI −Mk) + n ∨ Skδ∂ − kem+1n ∨ Sk,
λI + n ∧ Ck = −(−λI −Nk) + n ∧ Skd∂ − kem+1n ∧ Sk.

Note that, because of Lemma 2.1.5, the problem is reduced to provide, for the oper-
ators λI −Mk and λI −Nk, an ε with the property described before. Such property,
for ε as in Theorem 2.1.4 and 2−ε < p < 2+ε, is contained in the reasoning following
(2.7).
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It is convenient now to define the following Hardy spaces

H p
k (Ω+) := {u ∈ C1(Ω+, C`m+1) : Dku = 0 in Ω+, and N (u), N (δu), N (du) ∈ Lp(∂Ω)},

H p
k (Ω−) := {u ∈ C1(Ω−, C`m+1) : Dku = 0 in Ω−,N (u), N (δu), N (du) ∈ Lp(∂Ω), and

u satisfies the MMRC}.

The next result follows easily from Lemma 1.4.1.

Lemma 2.1.7. For any k ∈ C with Im k ≥ 0, and p ∈ (1,∞) we have

u± ∈H p
k (Ω±) =⇒

{
n ∨ u± ∈ Lp,δt (∂Ω, C`m+1)

n ∧ u± ∈ Lp,dn (∂Ω, C`m+1)

We conclude this section with a couple of theorems whose proof is just as in the
3-dimensional case (given in [2]).

Theorem 2.1.8. In the same context of Theorem 2.1.6, if u± ∈H p
k (Ω±), then

u± = Ck

[
(∓1

2
I + n ∨ Ck)−1(n ∨ u±)

]
,

u± = Ck

[
(±1

2
I + n ∧ Ck)−1(n ∧ u±)

]
.

Theorem 2.1.9. In the same context of Theorem 2.1.6, the following operators are
isomorphisms,

n ∨ Ck : Lp,dn (∂Ω, C`m+1)→ Lp,δt (∂Ω, C`m+1),

n ∧ Ck : Lp,δt (∂Ω, C`m+1)→ Lp,dn (∂Ω, C`m+1).

2.2 Well-posedness and relations between the trans-

mission BVP’s

The following theorem gives necessary and sufficient conditions (under some restric-
tions on p and the wave number k) for the DT Pm to be well-posed.

Theorem 2.2.1. There exist ε > 0 and an at most discrete set {kj}j ⊂ R containing
0, both depending on µ and ∂Ω, such that, if 2− ε < p < 2 + ε and k ∈ C\{kj}j with
Im k ≥ 0, then the Dirac transmission problem

u± ∈H p
k (Ω±),

n ∨ u+ − n ∨ u− = g̃,

n ∧ u+ − µn ∧ u− = f̃ ,

(2.8)
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has a solution if and only if

f̃ ∈ Lp,dn (∂Ω, C`m+1) and g̃ ∈ Lp,δt (∂Ω, C`m+1). (2.9)

Furthermore, the solution is unique and has the form u± = Ckh
±, with{

µ(h−)t = (h+)t = µ
µ−1

(λI + n ∨ Ck)−1g̃,

(h−)n = (h+)n = 1
1−µ(λI + n ∧ Ck)−1f̃ ,

(2.10)

where λ := 1
2

1+µ
1−µ . In particular, u± depends continuously on the boundary data, i.e.,

||N (u±)||Lp(∂Ω) + ||N (du±)||Lp(∂Ω) + ||N (δu±)||Lp(∂Ω)

� ||g̃||Lp,δt (∂Ω,C`m+1) + ||f̃ ||Lp,dn (∂Ω,C`m+1).

Remark 2.2.2. Note that, though the solution u± is unique, the corresponding h±

in its representation is not, because the Cauchy-Clifford operator is not injective.

Proof. The necessity of (2.9) follows from Lemma 2.1.7. Suppose now that (2.9) is
true, ε and p are as in Theorem 2.1.6, and u± = Ckh

± with h± as in (2.10). Note
that µ ∈ (0, 1) implies λ > 1

2
, so Theorem 2.1.6 guarantees the existence of such h±.

From theorems 1.5.1 and 1.5.3 we conclude that u± ∈H p
k (Ω±).

Using the jump formulas (1.16)-(1.17) and substituting later (h+)t = µ(h−)t and
(h−)n = (h+)n we get

n ∨ u+ − n ∨ u− =
[
− 1

2
(1 + µ)I + (µ− 1)n ∨ Ck

]
(h−)t

= (µ− 1)
(
λI + n ∨ Ck

)
(h−)t,

n ∧ u+ − µn ∧ u− =
[1

2
(1 + µ)I + (1− µ)n ∧ Ck

]
(h+)n

= (1− µ)
(
λI + n ∧ Ck

)
(h+)n.

(2.11)

And from (2.10) follows that u± satisfy the boundary conditions in (2.8). Now, using
(2.10), Theorem 1.5.3 and Lemma 1.5.2, we get the continuous dependence of the
solution u± on the boundary data g̃, f̃ .

It remains to be proved the unicity of the solution. Suppose u± solves the ho-
mogeneous version of (2.8), and call n ∨ u+ = n ∨ u− = g ∈ Lp,δt (∂Ω, C`m+1). From
Theorem 2.1.8 we have the representation

u± = Ck

[
(∓1

2
I + n ∨ Ck)−1g

]
. (2.12)
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Thus, because of (2.12) and (1.17), the second boundary condition in (the homoge-
neous version of) (2.8) is equivalent to

−1

2
(A−1g)n + n ∧ Ck(A−1g) = µ

[1

2
(B−1g)n + n ∧ Ck(B−1g)

]
, (2.13)

where A = −1
2
I + n ∨ Ck and B = 1

2
I + n ∨ Ck. Note that (A−1g)n = (B−1g)n = 0,

so (2.13) becomes

n ∧ Ck(A−1g)− µn ∧ Ck(B−1g) = 0.

Then Theorem 2.1.9 implies A−1g − µB−1g = 0. From the identities

A−1 − µB−1 = µA−1(µ−1B − A)B−1,

µ−1B − A =
1− µ
µ

(λI + n ∨ Ck),

follows that

(1− µ)A−1(λI + n ∨ Ck)B−1g = 0.

Finally, Theorem 2.1.6 implies g = 0, and from (2.12), u± = 0.

Remark 2.2.3. It is worth noting, because Theorem 2.1.6 only requires |λ| > 1
2
,

that Theorem 2.2.1 is also valid for µ > 1 (therefore λ < −1
2
). The same applies to

the rest of the theorems in this section. As mentioned in the introduction, after the
definition of MT P3, the restriction µ ∈ (0, 1) is due to physical reasons.

Let us consider now the following decomposition for C`m+1 valued functions u±

that solve the DT Pm.

u± = H± − iem+1E
±, with H,E ∈ C`m. (2.14)

H± = H±0 +H±1 + . . .+H±m,

E± = E±0 + E±1 + . . .+ E±m.
(2.15)

Where the decomposition for H± and E± is the one given in (1.6). A similar approach
is adopted for the boundary conditions f̃ , g̃.

f̃ = F + iem+1F̃ with F, F̃ ∈ Lp,dn (∂Ω, C`m),

g̃ = G+ iem+1G̃ with G, G̃ ∈ Lp,δt (∂Ω, C`m).
(2.16)
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F = F0 + F1 + . . .+ Fm, F̃ = F̃0 + F̃1 + . . .+ F̃m,

G = G0 +G1 + . . .+Gm, G̃ = G̃0 + G̃1 + . . .+ G̃m.
(2.17)

Note that Fl, F̃l ∈ Lp,dn (∂Ω,Λl) and Gl, G̃l ∈ Lp,δt (∂Ω,Λl), for l ∈ {0, 1, . . . ,m}.

The following lemma provides a useful link between Lp,dn (∂Ω,Λ1) and Lp1(∂Ω).

Lemma 2.2.4. Given f ∈ Lpn(∂Ω,Λ1), the following equivalence holds: f ∈ Lp,dn (∂Ω,Λ1)
if and only if there exist φ ∈ Lp1(∂Ω) such that f = nφ.

Proof. Suppose first that φ ∈ Lp1(∂Ω) has an extension (denoted also by φ) in
C∞0 (Rm). From Lemma 1.4.1 and (1.10) we have

d∂(nφ) = d∂(n ∧ φ) = −n ∧ (dφ) = −n ∧ (∇tφ),

which is equivalent to∫
∂Ω

〈nφ, δϕ〉 dσ = −
∫
∂Ω

〈n ∧ (∇tφ), ϕ〉 dσ ∀ϕ ∈ C∞0 (Rm,Λ2). (2.18)

The second implication in the lemma will follow from the density of the inclusion

{φ|∂Ω : φ ∈ C∞0 (Rm)} ↪→ Lp1(∂Ω),

(see, for example, [15]). Indeed, consider now φ ∈ Lp1(∂Ω) and {φj}∞j=1 a sequence in
C∞0 (Rm) such that φj|∂Ω → φ in Lp1(∂Ω). Then (2.18) is the consequence of taking
the limit, when j →∞, on∫

∂Ω

〈nφj, δϕ〉 dσ = −
∫
∂Ω

〈n ∧ (∇tφj), ϕ〉 dσ ∀ ϕ ∈ C∞0 (Rm,Λ2).

As for the first implication, suppose that f ∈ Lp,dn (∂Ω,Λ1). Then we have

f = fn = n ∧ (n ∨ f) = n(n ∨ f) = nφ, with φ := n ∨ f.

Therefore, we need to prove φ ∈ Lp1(∂Ω), i.e., that there exist g ∈ Lpt (∂Ω,Λ1) such
that ∫

∂Ω

φ∇tϕ dσ =

∫
∂Ω

gϕ dσ ∀ ϕ ∈ C∞0 (Rm). (2.19)
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Suppose again Ω±j ↑ Ω± are smooth approximations, as in the proof of Lemma
2.1.2. From Lemma 1.5.2 we know

φ = δSkf |∂Ω+︸ ︷︷ ︸
=:µ+

− δSkf |∂Ω−︸ ︷︷ ︸
=:µ−

,

and

||N (δSkf)||Lp(∂Ω) ≤ ||f ||Lp(∂Ω), for δSkf on both Ω+ and Ω−. (2.20)

Moreover, for each j,∫
∂Ω+

j

(δSkf)∇tϕ dσ
+
j = −

∫
∂Ω+

j

∇t(δSkf)ϕ dσ+
j ∀ ϕ ∈ C∞0 (Rm), (2.21)

where ∇t is taken on ∂Ωj. Using (2.20), properties of the approximation Ω+
j ↑ Ω+,

and the dominated convergence theorem we get∫
∂Ω+

j

(δSkf)∇tϕ dσ
+
j −−−→

j→∞

∫
∂Ω

µ+∇tϕ dσ. (2.22)

We would like to do the same with the integral in the right side of (2.21), so we
look for the boundary trace and an analogous of (2.20) for ∇(δSkf). From (1.8),
f ∈ Lp,dn (∂Ω,Λ1), and Lemma 1.5.4, follows

∇(δSkf) = dδSkf = −δSk(d∂f) + k2Skf on Ω±.

Now, Lemma 1.5.2 and the fact that ∂Ω+
j “converges nicely” to ∂Ω+ (see Theorem

1.12 in [24] for the technical details), guarantee the existence of the nontangential
boundary trace [

∇(δSkf)
]∣∣∣
∂Ω+
∈ Lp(∂Ω,Λ1). (2.23)

Define g+ :=
([
∇(δSkf)

]∣∣∣
∂Ω+

)
t
. The precise value of g+ as a function of f could

be calculated, but it is not relevant in our argument. Also by Lemma 1.5.2,

||N (∇(δSkf))||Lp(∂Ω) <∞ on Ω+.

Then, as in (2.22), we have∫
∂Ω+

j

(∇t(δSkf)ϕ dσ+
j −−−→

j→∞

∫
∂Ω

g+ϕ dσ.
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Thus, g+ satisfies∫
∂Ω

µ+∇tϕ dσ = −
∫
∂Ω

g+ϕ dσ ∀ ϕ ∈ C∞0 (Rm).

Analogously, we can obtain a g− ∈ Lpt (∂Ω,Λ1) such that∫
∂Ω

µ−∇tϕ dσ = −
∫
∂Ω

g−ϕ dσ ∀ ϕ ∈ C∞0 (Rm).

Finally, g := g− − g+ satisfies (2.19).

The relationship between the radiation conditions for u− and its components, is
described in the following lemma (constructed from several results in [27]).

Lemma 2.2.5. Let u be a k-monogenic function and (E,H) an electromagnetic wave
(in the sense of (1.11)), both in an Rm-neighborhood of infinity. Then u satisfies
the MMRC iff each of its scalar components satisfies the SRC. And E,H satisfy the
SMRC iff each of its scalar components satisfies the SRC.

We proceed now to decouple (2.8) into several Maxwell and Helmholtz transmis-
sion BVP’s.

Theorem 2.2.6. Let Ω be a bounded Lipschitz domain in Rm, µ ∈ (0, 1), k ∈ C
and p ∈ (1,∞). Assume that u± ∈ C1(Ω±, C`m+1) solves the transmission boundary
value problem for the perturbed Dirac operator (2.8). Finally, decompose u± as in
(2.14), and the boundary data f̃ , g̃ as in (2.16)-(2.17). Then the components of these
functions satisfy the inhomogeneous Maxwell transmission problems:

δE±l+1 − ik H
±
l = −dE±l−1,

dH±l + ik E±l+1 = −δH±l+2,

n ∨ E+
l+1 − n ∨ E

−
l+1 = G̃l,

n ∧H+
l − µn ∧H

−
l = Fl+1,

E−l+1, H
−
l have components that satisfy the SRC 1,

N (E±l+1),N (H±l ) ∈ Lp(∂Ω).

(2.24)



δH±l+1 − ik (−E±l ) = −dH±l−1,

d(−E±l ) + ik H±l+1 = δE±l+2,

n ∨H+
l+1 − n ∨H

−
l+1 = Gl,

n ∧ (−E+
l )− µn ∧ (−E−l ) = −F̃l+1,

H−l+1, E
−
l have components that satisfy the SRC 2,

N (−E±l ),N (H±l+1) ∈ Lp(∂Ω).

(2.25)
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for l = 1, 3, ...,m−2 if m is odd, or l = 1, 3, ...,m−1 if m is even; and the HT Pm’s:



(∆ + k2)E±0 = 0,

E+
0 − µE−0 = n ∨ F̃1,

∂nE
+
0 − ∂nE−0 = ik G0 + δ∂G̃1,

E−0 satisfy the SRC,

N (E±0 ),N (∇E±0 ) ∈ Lp(∂Ω).

(2.26)

(∆ + k2)(∗E±m) = 0,

(∗E+
m)− (∗E−m) = ∗(n ∧ G̃m−1),

∂n(∗E+
m)− µ ∂n(∗E−m) =

− ∗ (ik Fm + δ∂F̃m−1),

(∗E−m) satisfy the SRC,

N (∗E±m),N (∇ ∗ E±m) ∈ Lp(∂Ω).

(2.28)



(∆ + k2)H±0 = 0,

H+
0 − µH−0 = n ∨ F1,

∂nH
+
0 − ∂nH−0 = ik G̃0 + δ∂G1,

E−0 satisfy the SRC,

N (H±0 ),N (∇H±0 ) ∈ Lp(∂Ω).

(2.27)

(∆ + k2)(∗H±m) = 0,

(∗H+
m)− (∗H−m) = ∗(n ∧Gm−1),

∂n(∗H+
m)− µ ∂n(∗H−m) =

− ∗ (ik F̃m + δ∂Fm−1),

(∗H−m) satisfy the SRC,

N (∗H±m),N (∇ ∗H±m) ∈ Lp(∂Ω).

(2.29)

Where n ∨ F̃1, n ∨ F1, ∗(n ∧ G̃m−1), ∗(n ∧Gm−1) ∈ Lp1(∂Ω).

Proof. The conditions on the nontangential maximal functions in (2.8) imply the cor-
responding conditions in (2.24)-(2.29). Applying decompositions (2.14) and (2.16),
boundary conditions in (2.8) become

g̃ = n ∨ u+ − n ∨ u− = n ∨H+ − n ∨H−︸ ︷︷ ︸
G

+iem+1 (n ∨ E+ − n ∨ E−)︸ ︷︷ ︸
G̃

(2.30)

f̃ = n ∧ u+ − n ∧ u− = n ∧H+ − n ∧H−︸ ︷︷ ︸
F

+iem+1 (n ∧ E+ − n ∧ E−)︸ ︷︷ ︸
F̃

(2.31)

Grouping conveniently the πl and πl+1 projections applied to the identities indi-
cated with braces in (2.30)-(2.31), we have the boundary conditions in the problems
on (2.24). The differential equations in (2.24)-(2.29) follow again from a convenient
grouping of the πl and πl+1 projections, applied this time to the right hand of (1.47).

1If (E−
l+1, H

−
l ) is also an electromagnetic wave, then it satisfies the SMRC.

2If (H−
l+1, E

−
l ) is also an electromagnetic wave, then it satisfies the SMRC.
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And the radiation conditions in (2.24)-(2.29) follow easily from Lemma 2.2.5.

Let us prove now the validity of the boundary conditions in problems (2.26)-
(2.29). To this end we calculate

∂nE
+
0 + ∂nE

−
0 = n ∨ dE+

0 − n ∨ dE−0 . (2.32)

And using dE±0 = ikH±1 − δE±2 on Ω±, (2.32) becomes

∂nE
+
0 + ∂nE

−
0 = ik(n ∨H+

1 − n ∨H−1 )− (n ∨ δE+
2 − n ∨ δE−2 )

= ikG0 − δ∂(n ∨ E+
2 − n ∨ E−2 )

= ikG0 − δ∂G̃1.

(2.33)

Where, on the second equality, we used Lemma 1.4.1. This gives the second boundary
condition in (2.26). As for the first one, it is enough to note that

n ∧ E+
0 − µn ∧ E−0 = F̃1 =⇒ E+

0 − µE−0 = n ∨ F̃1.

Problem (2.27) is analogous. In a similar way we treat the case of problem (2.28),
and (2.29) will be analogous.

∂n(∗E+
m) + µ∂n(∗E−m) = n ∨ d(∗E+

m)− µn ∨ d(∗E−m)

= (−1)m
[
ik
(
n ∨ (∗H+

m−1)− µn ∨ (∗H+
m−1)

)
−
(
n ∨ (∗dE+

m−2)− µn ∨ (∗dE−m−2)
) ]

= (−1)m+(m−1)
[
ik ∗ (n ∧H+

m−1 − µn ∧H+
m−1)

− ∗(n ∧ dE+
m−2 − µn ∧ dE−m−2)

]
= −ik ∗ Fm − ∗

[
d∂(n ∧ E+

m−2)− µd∂(n ∧ E−m−2)
]

= −ik ∗ Fm − ∗d∂F̃m−1

= − ∗ (ik Fm + δ∂F̃m−1).

(2.34)

Where we have used d(∗E±m) = (−1)m ∗ δE±m = (−1)m ∗
[
ikH±m−1 − dE±m−2

]
on Ω±,

properties of the Hodge star operator in lemmas 1.3.2 and 1.3.3, and Lemma 1.4.1.
From (2.34) we have the second boundary condition in (2.28). The first one follows
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from

∗(n ∨ E+
m − n ∨ E−m) = ∗G̃m−1

(−1)m−1
[
n ∧ (∗E+

m)− n ∧ (∗E−m)
]

= ∗G̃m−1

∗E+
m − ∗E−m = (−1)m−1n ∨ (∗G̃m−1)

∗E+
m − ∗E−m = ∗(n ∧ G̃m−1).

The last statement in the theorem is a direct consequence of Lemma 2.2.4.

Under the same restrictions as in Theorem 2.2.1, the following theorem gives
necessary and sufficient conditions for the HT Pm (given in (1.46)) to be well-posed.

Theorem 2.2.7. There exist ε > 0 and an at most discrete set {kj}j ⊂ R containing
0, both depending on µ and ∂Ω, such that, if 2− ε < p < 2 + ε and k ∈ C\{kj}j with
Im k ≥ 0, then the HT Pm has a solution if and only if φ ∈ Lp1(∂Ω). Furthermore,
the solution is unique and depends continuously on the boundary data, i.e.,

||N (w±)||Lp(∂Ω) + ||N (∇w±)||Lp(∂Ω) � ||φ||Lp1(∂Ω) + ||ψ||Lp(∂Ω). (2.35)

Proof. Suppose first that φ ∈ Lp1(∂Ω), and define f̃ := φn and g̃ := 1
ik
ψ. Lemma

2.2.4 implies f̃ ∈ Lp,dn (∂Ω,Λ1). Moreover, it is easy to verify that δ∂ g̃ = 0 and
g̃ ∈ Lp,δt (∂Ω,Λ0). Let us consider then, using Theorem 2.2.1, the solution u± to the
DT Pm with boundary data g̃, f̃ , decomposed as in (2.14), i.e., u± = H±− iem+1E

±.
From Theorem 2.2.6, the scalar components E±0 of E±, constitute a solution to (1.46).
Furthermore, (2.35) follows from the corresponding estimates for u±.

Suppose now E± solves (1.46). Note that

nφ = n(E+ − µE−) = n ∧ E+ − µn ∧ E−,

and by Lemma 1.4.1, n∧E+−µn∧E− has boundary exterior derivative in Lp(∂Ω,Λ2).
Therefore nφ ∈ Lp,dn (∂Ω,Λ1), and Lemma 2.2.4 implies φ ∈ Lp1(∂Ω).

Let us prove now the unicity of the solution to (1.46). Suppose E± solves the
homogeneous version of (1.46), and define

u± := H± − iem+1E
± with H± :=

1

ik
dE±.
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Then, on Ω±, we have the identitiesδH
± + dH± = 1

ik
(−dδE±︸ ︷︷ ︸

= 0

+k2E±) + 1
ik
d2E±︸ ︷︷ ︸

= 0

= −ikE±

δE± + dE± = dE± = ikH±

Thus, from Lemma 1.7.1, u± is k-monogenic on Ω±. Furthermore, Lemma 2.2.5
implies that u− satisfies the MMRC. Hence u± solves the DT Pm with boundary
conditions

g̃ = (n ∨H+ − n ∨H−) + iem+1(n ∨ E+ − n ∨ E−)

=
1

ik
(n ∨ dE+ − n ∨ dE−) + iem+1(− 1

ik
)(n ∨ δH+ − n ∨ δH−)

=
1

ik
(∂nE

+ − ∂nE−︸ ︷︷ ︸
= 0

) +
1

k
em+1δ∂(n ∨H+ − n ∨H−︸ ︷︷ ︸

= 0

) = 0,

and

f̃ = (n ∧H+ − µn ∧H−) + iem+1(n ∧ E+ − µn ∧ E−)

=
1

ik
(n ∧ dE+ − µn ∧ dE−) + iem+1(− 1

ik
)n(E+ − µE−︸ ︷︷ ︸

= 0

)

= − 1

ik
d∂(n ∧ E+ − µn ∧ E−) = 0.

Where we have used Lemma 1.7.1, Lemma 1.4.1, and the boundary conditions in the
homogeneous version of (1.46). Unicity on Theorem 2.2.1 implies E± = 0.

Suppose E,H are C1 functions defined in a domain of Rm, Λl+1,Λl valued re-
spectively, and u := H − iem+1E. Then Lemma 1.7.1 provides the equivalence

Dku = 0 ⇐⇒

{
δE − ik H = 0,

dH + ik E = 0.
(2.36)

This motivates, when we think about the corresponding transmission problems, the
following definition.

Definition 2.2.8. We call a MT Pm and a DT Pm equivalent, when{
E±, H± solves the MT Pm
with boundary data g, f

⇐⇒

{
u± := H± − iem+1E

± solves the DT Pm
with boundary data g̃, f̃
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Considering E±, H± as Λl+1,Λl valued respectively, using decompositions (2.16)-
(2.17), and Theorem 2.2.6, we conclude that{

g̃ = Gl−1 + iem+1G̃l,

f̃ = Fl+1 + iem+1F̃l+2,
with

{
g = G̃l,

f = Fl+1,

are clearly necessary conditions for the equivalence in Definition 2.2.8. The following
theorem gives necessary and sufficient conditions (on the boundary data) for the
equivalence to hold.

Theorem 2.2.9. There exist ε > 0 and an at most discrete set {kj}j ⊂ R containing
0, both depending on µ and ∂Ω, such that, if 2− ε < p < 2 + ε and k ∈ C\{kj}j with
Im k ≥ 0, then the MT Pm and the DT Pm are equivalent if and only if{

g̃ = − 1
ik
δ∂g + iem+1g,

f̃ = f + iem+1( 1
ik
d∂f).

(2.37)

Furthermore, (2.37) is equivalent to{
g̃ ∈ Lp,δt (∂Ω,Λl−1 ⊕ em+1Λl) and δ∂ g̃ + kem+1 ∧ g̃ = 0,

f̃ ∈ Lp,dn (∂Ω,Λl+1 ⊕ em+1Λl+2) and d∂ f̃ + kem+1 ∨ f̃ = 0,
(2.38)

in the sense that (2.38) holds if and only if there exist g ∈ Lp,δt (∂Ω,Λl) and f ∈
Lp,dn (∂Ω,Λl+1) satisfying (2.37).

Proof. Suppose first that the transmission problems are equivalent. From u = H±−
iem+1 E

±, we obtain the boundary data in the Dirac problem as a function of E±, H±,

g̃ = n ∨H+ − n ∨H−︸ ︷︷ ︸
Gl−1

+iem+1(n ∨ E+ − n ∨ E−︸ ︷︷ ︸
g

),

f̃ = n ∧H+ − µn ∧H−︸ ︷︷ ︸
f

+iem+1(n ∧ E+ − µn ∧ E−︸ ︷︷ ︸
F̃l+2

).
(2.39)

Then, after using H± = 1
ik
δE±, E± = − 1

ik
dH±, and Lemma 1.4.1, we get

Gl−1 =
1

ik
(n ∨ δE+ − n ∨ δE−) = − 1

ik
δ∂(n ∨ E+ − n ∨ E−) = − 1

ik
δ∂g,

F̃l+2 = − 1

ik
(n ∧ dH+ − µn ∧ dH−) =

1

ik
d∂(n ∧H+ − µn ∧H−) =

1

ik
d∂f,

(2.40)
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which proves (2.37). Let us proceed now to prove the equivalence of the transmission
problems, considering (2.37) to be true.

On the one hand, suppose that E±, H± solves the MT Pm. Then define u± :=
H± − iem+1E

±. Note that (2.36) implies that u± is k-monogenic on Ω±. The
condition on the nontangential maximal functions for u± follows easily from the
corresponding one for E±, H±. And Lemma 2.2.5 implies u− satisfies the MMRC.
Therefore u± solves the DT Pm with boundary data

n ∨ u+ − n ∨ u− = n ∨H+ − n ∨H− + iem+1(n ∨ E+ − n ∨ E−),

n ∧ u+ − µn ∧ u− = n ∧H+ − µn ∧H− + iem+1(n ∧ E+ − µn ∧ E−).

Now the boundary conditions in theMT Pm, (2.37) and the same reasoning that led
to (2.40) prove that this boundary data is precisely g̃, f̃ .

On the other hand, suppose u± solves the DT Pm with boundary data g̃, f̃ , and
consider the decomposition (2.14) for u±. This case is not so easy because, a pri-
ori, we cannot guarantee that E±, H± are even Λl+1,Λl valued respectively. But we
know that, under certain conditions, the solution to the Dirac transmission problem
is unique and can be represented through the Cauchy-Clifford operator (Theorem
2.2.1). So, if λ := 1

2
1+µ
1−µ , and ε, p and k are as in Theorem 2.1.4 (which are the same

conditions for Theorem 2.2.1), then u± is the image, under Ck, of some function in
Lp,δt (∂Ω, C`m) + Lp,dn (∂Ω, C`m). Instead of using directly the candidate provided by
(2.10), we find more natural in this case to proceed as follows.

Consider v± := Ckh
± = H′± − iem+1E′±. Where

h± = h±1 + em+1h
±
2 , with h±1 , h

±
2 ∈ L

p,δ
t (∂Ω, C`m) + Lp,dn (∂Ω, C`m),

and

n ∨ v+ − n ∨ v− = g̃′, n ∧ v+ − µn ∧ v− = f̃ ′.

Then

v± = DSkh
±
1 + kem+1Skh1 ±−em+1DSkh2 ±−kSkh2±

= DSkh
±
1 − kSkh2±︸ ︷︷ ︸
H′±

−iem+1
1

i
(DSkh2 ±−kSkh1±)︸ ︷︷ ︸

E′±

.
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If we impose the restrictions

(h±1 )n ∈ Lp,dn (∂Ω,Λl+1) and (h±2 )n =
1

k
d∂(h

±
1 )n,

(h±2 )t ∈ Lp,δt (∂Ω,Λl) and (h±1 )t =
1

k
δ∂(h

±
2 )t,

(2.41)

then

H′± =
1

k
dSkδ∂(h

±
2 )t + δSk(h

±
1 )n − kSk(h

±
2 )t,

iE′± =
1

k
δSkd∂(h

±
1 )n + dSk(h

±
2 )t − kSk(h

±
1 )n,

(2.42)

and E′, H′ are Λl+1,Λl valued respectively. Therefore, from (2.36), (E′, H′) is an
electromagnetic wave in Rm. Under restrictions (2.41), after using (2.42) and Lemma
1.5.2, we pass from

g̃′ = (n ∨H′+ − n ∨H′−) + iem+1(n ∨ E′+ − n ∨ E′−),

f̃ ′ = (n ∧H′+ − µn ∧H′−) + iem+1(n ∧ E′+ − µn ∧ E′−),

to

g̃′ = −1

2

[1

k
δ∂a+ em+1a

]
+ n ∨ Ck

[1

k
δ∂b+ c+ em+1(b+

1

k
d∂c)

]
,

f̃ ′ =
1

2

[
a′ +

1

k
em+1d∂a

′
]

+ n ∧ Ck
[
b′ +

1

k
δ∂c
′ + em+1(c′ +

1

k
d∂b
′)
]
.

(2.43)

Were we have made the substitutions

a = (h+
2 + h−2 )t, b = (h+

2 − h−2 )t, c = (h+
1 − h−1 )n,

a′ = (h+
1 + µh−1 )n, b′ = (h+

1 − µh−1 )n, c′ = (h+
2 − µh−2 )t.

We now expand (2.43) using (1.19), to obtain (after simplifying and organizing the
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terms conveniently)

g̃′ = − 1

2k
δ∂a+

1

k
Mkδ∂b+Nkc− kn ∨ Skb︸ ︷︷ ︸

G′l−1

+ iem+1
1

i

[
− 1

2
a+Mkb+

1

k
n ∨ δSk(d∂c)− kn ∨ Skc

]
︸ ︷︷ ︸

G̃′l

,

f̃ ′ =
1

2
a′ +Nkb

′ +
1

k
n ∧ dSk(δ∂c′)− kn ∧ Skc′︸ ︷︷ ︸

F ′l+1

+ iem+1
1

i

[ 1

2k
d∂a

′ +
1

k
Nk(d∂b

′)− kn ∧ Skb′ + n ∧ dSkc′
]

︸ ︷︷ ︸
F̃ ′l+2

.

(2.44)

Where the functions under the braces are the ones associated to g̃′, f̃ ′ through de-
compositions (2.16)-(2.17) . Equation (2.44) motivates the new restrictions (h−1 )n =
(h+

1 )n and (h−2 )t = 1
µ
(h+

2 )t, which translate into

c = c′ = 0, b = −1− µ
1 + µ

a = − 1

2λ
a, b′ =

1− µ
1 + µ

a′ =
1

2λ
a′.

Thus

G̃′l =
1

2iλ
(−λI +Mk)a, F ′l+1 =

1

2λ
(λI +Nk)a

′.

Moreover, λ ∈ (1
2
,∞) because µ ∈ (0, 1). Hence, using Theorem 2.1.4, we can make

a = 2iλ(−λI +Mk)
−1g, a′ = 2λ(λI +Nk)

−1f,

To obtain G̃′l = g and F ′l+1 = f . Our next step is to calculate δ∂g and d∂f . First
note, from Lemma 1.5.2, that

dSka =
1

2

[
(dSka)|∂Ω+ + (dSka)|∂Ω−

]
,

therefore, using Lemma 1.4.1, (1.8) and Lemma 1.5.4, we have

δ∂(n∨ dSka) =
1

2

[
n∨ (δdSka)|∂Ω+ +n∨ (δdSka)|∂Ω−

]
= −n∨ dSk(δ∂a) + k2n∨Ska.

(2.45)
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Now we use (2.45) to calculate

δ∂g = − 1

2iλ

[
λδ∂a− δ∂(n∨dSka)

]
= − 1

2iλ

[
λδ∂a−Mk(δ∂a) +k2n∨Ska

]
= −ikG′l−1.

We can prove, analogously, that d∂f = ikF̃ ′l+2. From (2.37) we conclude g̃′ = g̃ and

f̃ ′ = f̃ . Finally, from the unicity in Theorem 2.2.1, we have v± = u±, and Theorem
2.2.6 implies that E±, H± solves the MT Pm with boundary data g, f .

It remains to be proved the equivalence between (2.37) and (2.38). Implication
(⇒) is trivial. Suppose (2.38) is true, and use the decomposition g̃ = g1 + em+1g2

with g1 ∈ Lp,δt (∂Ω,Λl−1) and g2 ∈ Lp,dn (∂Ω,Λl). Then

δ∂ g̃ = δ∂g1 − em+1δ∂g2,

and from (2.38),
δ∂ g̃ = −kem+1 ∧ g̃ = −kem+1g1.

Therefore δ∂g1 − em+1δ∂g2 = −kem+1g1, and because δ∂g1, δ∂g2, g1 are C`m valued
functions, we conclude g1 = 1

k
δ∂g2. Thus g = 1

i
g2 satisfies the first equality in (2.37).

The case for f̃ and the second in equality in (2.37) is analogous.

Under the same restrictions as in Theorem 2.2.1, the following corollary gives
necessary and sufficient conditions for theMT Pm (given in (1.45)) to be well-posed.

Corollary 2.2.10. There exist ε > 0 and an at most discrete set {kj}j ⊂ R contain-
ing 0, both depending on µ and ∂Ω, such that, if 2− ε < p < 2 + ε and k ∈ C\{kj}j
with Im k ≥ 0, then the MT Pm has a solution if and only if

g ∈ Lp,δt (∂Ω,Λl) and f ∈ Lp,dn (∂Ω,Λl+1).

Furthermore, the solution is unique and depends continuously on the boundary
data, i.e.,

||N (E±)||Lp(∂Ω) + ||N (H±)||Lp(∂Ω) � ||g||Lp,δt (∂Ω,Λl) + ||f ||Lp,dn (∂Ω,Λl+1). (2.46)

Proof. The first implication follows easily from Lemma 1.4.1. The second implica-
tion, unicity of the solution, and estimate (2.46), are straightforward consequences
of theorems 2.2.9 and 2.2.1.

The following theorem can be proved analogously to Theorem 2.2.9.
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Theorem 2.2.11. Under the same premises of Theorem 2.2.9, suppose H±, E± are
Λl+1,Λl valued respectively, and define u± := H± − iem+1E

±. Then the equivalence

δH± − ik (−E±) = 0,

d(−E±) + ik H± = 0

n ∨H+ − n ∨H− = g,

n ∧ (−E+)− µn ∧ (−E−) = f,

H−, E− satisfy the SMRC,

⇐⇒

{
u± solves the DT Pm
with boundary data g̃, f̃

holds if and only if {
g̃ = g + iem+1( 1

ik
δ∂g),

f̃ = 1
ik
d∂f + iem+1(−f).

Our final observation is that in Theorem 2.2.6, taking the homogeneous version
of the transmission problems in (2.24) for all possible values of l, we obtain indepen-
dent Maxwell transmission problems. Therefore, we can combine theorems 2.2.9 and
2.2.11 to obtain a variant of Theorem 2.2.6 which provides necessary and sufficient
conditions for the equivalence of several MT Pm’s (between 1 and m − 1 or m, de-
pending on the parity of m), with one DT Pm.

Theorem 2.2.12. There exist ε > 0 and an at most discrete set {kj}j ⊂ R contain-
ing 0, both depending on µ and ∂Ω, such that, if 2− ε < p < 2 + ε and k ∈ C\{kj}j
with Im k ≥ 0, then for u± := H± − iem+1 E

±, the equivalence



δE±l+1 − ik H
±
l = 0,

dH±l + ik E±l+1 = 0,

n ∨ E+
l+1 − n ∨ E

−
l+1 = gl,

n ∧H+
l − µn ∧H

−
l = fl+1,

E−l+1, H
−
l satisfy the SMRC,



δH±l+1 − ik (−E±l ) = 0,

d(−E±l ) + ik H±l+1 = 0,

n ∨H+
l+1 − n ∨H

−
l+1 = g′l,

n ∧ (−E+
l )− µn ∧ (−E−l ) = f ′l+1,

H−l+1, E
−
l satisfy the SMRC,

for l = 1, 3, ...,m− 2 if m is odd, and l = 1, 3, ...,m− 1 if m is even.

m{
u± solves the DT Pm
with boundary data g̃, f̃ ,
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holds if and only ifg̃ =
∑[
− 1

ik
δ∂gl + g′l + iem+1(gl + 1

ik
δ∂g
′
l)
]
,

f̃ =
∑[

fl+1 + 1
ik
d∂f

′
l+1 + +iem+1( 1

ik
d∂fl+1 − f ′l+1)

]
.

(2.47)

Where the sums are taken over l ∈ {1, 3, ...,m−2}, if m is odd, or l ∈ {1, 3, ...,m−1},
if m is even. Furthermore, (2.47) is equivalent (if we consider decompositions (2.16)-
(2.17) for g̃, f̃) to {

Gl−1 = − 1
ik
δ∂G̃l, G̃l−1 = 1

ik
δ∂Gl,

Fl+2 = − 1
ik
d∂F̃l+1, F̃l+2 = 1

ik
d∂Fl+1,

(2.48)

in the sense that (2.48) holds if and only if there exist gl, g
′
l ∈ Lp,δt (∂Ω,Λl) and

fl+1, f
′
l+1 ∈ Lp,dn (∂Ω,Λl+1) satisfying (2.47).

Remark 2.2.13. Note that, by making gl = fl+1 = 0 or g′l = f ′l+1 = 0, the cor-
responding MT Pm is “eliminated” from the equivalence in Theorem 2.2.12. This
justifies the claim that this theorem provides conditions for a DT Pm to be equivalent
to anything between 1 and m− 1 or m (depending on the parity of m) MT Pm’s.
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