UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO
PROGRAMA DE MAESTRIA Y DOCTORADO EN CIENCIAS MATEMATICAS Y DE LA
ESPECIALIZACION EN ESTADISTICA APLICADA

ACTIONS OF COMPLEX SCHOTTKY GROUPS ON CP(k,1), AND COMBINATION OF
COMPLEX KLEINTAN SUBGROUPS OF HEIS;5(C).

TESIS QUE PARA OPTAR POR EL GRADO DE:
DOCTORA EN CIENCIAS

PRESENTA:
VANESSA ALDERETE ACOSTA

TUTORES PRINCIPALES:
DR. JOSE ANTONIO SEADE KURI, INSTITUTO DE MATEMATICAS, UNAM
DR. CARLOS ALFONSO CABRERA OCANAS, INSTITUTO DE MATEMATICAS, UNAM

COMITE TUTOR:
DR. ANGEL CANO CORDERO,INSTITUTO DE MATEMATICAS, UNAM
DR. GUILLERMO SIENRA LOERA, FACULTAD DE CIENCIAS, UNAM

UNIDAD CUERNAVACA DEL INSTITUTO DE MATEMATICAS, UNAM

CUERNAVACA, MORELOS, OCTUBRE

2020


Margarita
Texto escrito a máquina

Margarita
Texto escrito a máquina
, OCTUBRE

Margarita
Texto escrito a máquina

Margarita
Texto escrito a máquina

Margarita
Texto escrito a máquina


e e

Universidad Nacional - J ~  Biblioteca Central
Auténoma de México -

Direccion General de Bibliotecas de la UNAM
Swmie 1 Bpg L IR

UNAM - Direccion General de Bibliotecas
Tesis Digitales
Restricciones de uso

DERECHOS RESERVADQOS ©
PROHIBIDA SU REPRODUCCION TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal
del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imagenes, fragmentos de videos, y demas material que sea
objeto de proteccion de los derechos de autor, sera exclusivamente para
fines educativos e informativos y debera citar la fuente donde la obtuvo
mencionando el autor o autores. Cualquier uso distinto como el lucro,
reproduccion, edicion o modificacion, sera perseguido y sancionado por el
respectivo titular de los Derechos de Autor.



Dedicated to my family.
Especially to my Dad in heaven.



Acknowledgements

I would like to thank my advisors, Dr. Angel Cano, Dr. Carlos Cabrera and Dr. José
Seade for all your patience and all the personal support you gave me along this work,
I have no words to really thank your motivation words in all the crises that I passed

throughout this thesis, I could not be here without you.

Also, I would like to thank the professors Dr. Juan Pablo Navarrete and Dr. Waldemar
Barrera for all the help that they brought to me in my academic stay at Mérida in the
spring of 2017. As well, I would like to thank Professor J. Hubbard for inviting me to
spend a month studying Teichmiiller theory at Marseille in the spring of 2016.

Thank you to all my friends in this chapter of my life called Cuernavaca, especially to
Agustin Romano, Jests Lara, Ana Chévez, José Manuel Ugalde, Maria del Mar Diego,
Agustin Avila, José Luis Cisneros, Ricardo Guzmaéan, Apolo Diaz, and Alfredo Huicochea,
thanks to all of you for always being there by my side and never letting me brake down.
Also thanks to all my no-blood family in the eternal spring city, you know who you are,

thanks for your sincere friendship.

Thanks to my family and friends in my city-born, for always sending me hope, love, and

courage, even in the distance, to finish this project.

To all the staff in the UCIM: Carolina, Ricarda, Paty, Deli, Don Memo, Olga, Edgardo,
Jaime, the Sergio’s, Oscar, German, Claudia, Pilar, Angeles, Dofa Celial, Liz, Don
Roman, Elvira, Nelly, Karina... to all of you, thanks for making my stay at the institute

safe and comfortable.

This thesis was partially supported by CONACYT’s projects 164447, 255633, 282937,
265667.

ii



Introduccion

El estudio del comportamiento dindmico de grupos discretos de transformaciones de
Moébius actuando en la esfera de Riemann tiene sus orginenes a finales del siglo XT1X,
como se muestra en el trabajo de H. Poincaré sobre grupos fuchsianos y kleinianos en

[23]. Desde entonces, esta drea de las matematicas ha sido muy fructifera.

Existen dos generalizaciones del concepto de grupo kleiniano en dimensiénes altas. La
primera de ellas fue dada por M.V. Nori en [22]. En ese trabajo, M.V. Nori construyé
una nueva familia de variedades complejas compactas y dié la definicién de los gru-
pos kleinianos en dimensiones altas. Por otro lado, en [25], J. Seade y A. Verjovsky
extendieron la dinamica de los grupos kleinianos a dimensiones complejas mayores a
dos, y dieron la definiciéon de los grupos kleinianos complejos actuando en el espacio

proyectivo complejo Pg.

Nosotros trabajamos con la definicién de grupo kleiniano complejo dada por J. Seade y

A. Verjovsky, que es la siguiente:

Definicién 0.1. Un subgrupo I' de PSL(n + 1,C) es un grupo kleiniano complejo si I'

actia propia y discontinuamente en un conjunto abierto no vacio I'-invariante de P{.

La tesis estd separada en dos partes. En la primera parte estudiamos las acciones de los
grupos de Schottky como subgrupos de PU(k,l) o como subgrupos de PSL(2n + 1,C),

acuando en el espacio complejo anti-de Sitter y actuando en IP’(QC”, respectivamente.

Los grupos de Schottky clasicos son subgrupos kleinianos libres generados por inver-
siones en esferas. A pesar de que los grupos de Schotty no son complicados, son muy
importantes en Teoria de superficies de Riemann, ya que por el Teorema de Retroseccion
de Koebe, el grupo fundamental de toda superficie de Riemann compacta admite una

representaciéon como un grupo de Schottky.

La nocién de grupo de Schottky en dimensiones altas fue dada por M.V. Nori en [22].
Después, J. Seade y A. Verjovsky, en [24], desarrollaron el concepto de grupos de Schot-

tky para transformaciones proyectivas complejas, ambas definiciones fueron dadas de

iii



Introduccion iv

forma constructiva. Finalmente, en [8], A. Cano dié la definicién abstracta de un grupo

de Schottky complejo como subgrupo de PSL(n + 1,C), y es la siguiente:

Definicién 0.2. Un grupo de Schottky con g generadores que actia en Pf, es un

subgrupo de PSL(n + 1,C) que satisface las siguientes propiedades:

e Para todo g > 2, existen 2¢ conjuntos abiertos Ry, ..., Ry, 51, ..., Sy tales que:

i) Cada uno de los abiertos es el interior de su cerradura.

ii) La cerradura de los 2g conjuntos abiertos es disjunta a pares.

e El grupo es generado por el conjunto {v1,...,74}, donde para toda 1 < j < g,
7i(Rj) =P¢\ S

Y fue en este mismo trabajo, [8], que A. Cano demostré que si un subgrupo I' de
PSL(2n + 1,C) con g generadores actiia como grupo de Schottky en P{, entonces es
un grupo libre de torsion, puramente loxodrémico y con g generadores. Esté resultado

motivé la siguiente pregunta que fue realizada por J. Parker en el ano 2010:

Pregunta 1. Considerando la Definicon 0.2, ;existen grupos de Schottky complejos que
estén en PU(1,n)?

La respuesta es no, y es uno de los resultados obtenidos en el trabajo conjunto realizado
con A. Cano, C. Cabrera y M. Méndez, vedse [2]:

Teorema 0.1. SiI' € PSL(n + 1,C) es un grupo de Shcottky complejo actuando en

¢, entonces I' no puede ser conjugado a un subrupo de PU(1,n).

Ademis del resultado anterior, en [2] dimos respuesta a otras dos preguntas. La primera
de ellas relaciona la dindmica de un grupo de Schottky con la estructura algebréica del

espacio donde el grupo actia:

Pregunta 2. Dado un grupo de Schottky I actuando en C*Y | sbajo que condiciones T’
actia como grupo de Shottky complejo en IP’((Ck’l) ?

A esta pregunta dimos la siguiente respuesta parcial:

Teorema 0.2. Sea I' un subgrupo de PU (k, 1) discreto, libre y puramente loxodémico y
supongamos que I" tiene un levantamiento I que acttia en C*) como grupo de Schottky.

)

Entonces, I' actia como grupo de Schottky complejo en Pé:k’l si la signatura del espacio

satisface que k = [.

A diferencia del caso clédsico, en dimensiones altas existen distintas nociones del conjunto
limite de un grupo. La tercera pregunta relaciona las siguientes dos nociones de conjunto

limite:
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1. El conjunto limite de Kulkarni es la unién Ag(I') = Lo(I') U L1(I") U La(T),
donde Ly(T") es la cerradura de los puntos en IP% con grupo de isotropia infinito,
Li(C) es la cerradura de los puntos de acumulacién de las orbitas I'z para todo
z € P2\ Lo(T), y L2(T) es la cerradura de los puntos de acumulacién de las érbitas

'K para todo conjunto compacto K en P¢ \ (Lo(I") U Ly (I)).

2. El conjunto limite de Schottky Ap(I') es el complemento de la regién de discon-
tinuidad de I, es decir, Apa(I") = P¢ \ Qr.

La construccién y las definiciones completas de estos dos conjuntos se encuentran en [16]

y [8], respectivamente.

Pregunta 3. ;Existe algin grupo de Schottky complejo, satisfaciendo las hipdtesis de

la Pregunta 2, cuyos conjuntos limites de Kulkarni y de Schottky sean distintos?

La respuesta es si, y estd plasmada en la siguiente proposicién:

Proposicion 0.3. Existen grupos de Schottky complejos tales

Apa(T) C Agw(T).

Otro resultado que A. Cano di6 en [8], fue que no existen acciones de grupos de Schottky
complejos en espacios proyectivos de dimensién par. En [1], damos una prueba alterna-
tiva a este resultado. Las técnicas que utilizamos en [1] son geométricas y basadas en
las técnicas que se utilizaron en [2]. Mientras que las técnicas utilizadas por A. Cano
en [8] son algebriicas y dindmicas. Con la presentacién de este resultado damos por

terminada la primera parte de la tesis.

En la segunda parte de la tesis trabajamos teoremas de combinacién de subgrupos

kleinianos complejos del grupo de Heisenberg Heisg(C).

En 1930, H. Weyl introdujo el concepto de grupo de Heisenberg como un caso especial
de una extencién central de un grupo abeliano, desde el contexto de la mecanica clésica,
véase [29]. Como R. Howe dijo en [14], el grupo de Heisenberg tiene distintas repre-
sentaciones segun el area de investigacion desde la cual se estudie, las cuales pueden ser,

por ejemplo, mecanica cuantica, dlgebra homolégica y teria ergddica, entre otras.

En nuestro caso, estudiamos los subgrupos kleinianos complejos del grupo de Heisenberg.
De forma precisa, estudiamos el grupo de Heisenberg como subgrupo de PSL(3,C)

actuando en IP%.

En [4], W. Barrera, A. Cano, J. P. Navarrete y J. Seade, dieron una clasificacién com-

pleta de los subgrupos kleinianos complejos sin elementos loxodémicos de PSL(3,C).
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Especificamente, estudiaron los grupos kleinianos complejos puramente parabdlicos de
PSL(3,C). En particular, los autores de ese trabajo estudiaron el grupo de Heisen-
berg complejo Heis3(C), dando una clasificacién de los subgrupos kleinianos complejos
de Heis3(C) estudiando el comportamiento dindmico de los grupos a través de los con-
juntos de puntos de acumulacién de los grupos y las regiones donde los grupos actian
propia y discontinuamente. De la clasificacién dada en [4], una pregunta natural que

surgio fue la siguiente:

Pregunta 4. ;Cudndo dos subgrupos kleinianos complejos de Heiss(C) generan otro

subgrupo kleiniano complejo?

En otras palabras, dados dos subgrupos kleinianos complejos I'1, 'y € Heiss(C), si con-

sideramos el grupo generado por I'1 y 'y

H:=('1,T'y)={y=moro--oy|v el vi-1,%+1 €2} (1)

;Cuando es H un subgrupo kleiniano complejo de Heiss(C)?
En esta tesis abordamos esta pregunta en dos enfoques diferentes, el real y el complejo.

En el caso real, primero damos una descripcién algebréica de los subgrupos kleinianos
complejos de Heisz(R) distinta de la dada en [4], la cual nos permite dar condiciones

necesarias a I'1 y I's de tal forma que H sea un grupo kleiniano complejo.

Para el caso complejo damos también una descripcién algebraica de los subgrupos kleini-
anos complejos de Heisg(C). Luego de esto, damos una respuesta parcial a la Pregunta

4, estableciendo condiciones necesarias bajo las cuales H es un grupo discreto.

El contenido de la tesis estd distribuido de la siguiente forma. La primera parte esta
desarrollada en los primeros tres capitulos. En el Capitulo 1, damos una introduccién a
las propiedades béasicas de los grupos kleinianos y los grupos de Schottky para el caso
clasico y el caso complejo. En el Capitulo 2, presentamos los resultados obtenidos para
los grupos de Schottky complejos como subgrupos de PU (k, 1), [2]. Luego en el Capitulo
3, presentamos los resultados obtenidos para los grupos de Schottky complejos como
subgrupos de PSL(2n + 1,C), [1].

La segunda parte de la tesis se desarrolla también en tres capitulos. En el capitulo
4 damos los preliminares necesarios y también presentamos la clasificacién de los sub-
grupos discretos de Heis3(C) dada en [2]. Ademéds damos una presentacién del grupo
de Heisenberg como un producto semidirecto, lo cual nos permite estudiar propiedades
geométricas y algebraicas de Heis3(C). En el Capitulo 5 respondemos a la Pregunta
4 desde el enfoque real. Y finalmente, en el Capitulo 6, damos respuesta parcial a la

Pregunta 4, separando las posibilidades de combinacién en tres partes, en la primera
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consideramos a I'y y I's grupos abelianos, en la segunda ambos no lo son y en la tercera

sélo uno de los dos grupos es abeliano.



Introduction

The study of the dynamics of the discrete groups of Mobius transformations acting on
the Riemann sphere begins at the end of the XIX century, as we can see in the work
of H. Poincaré about Fuchsian and Kleinian groups in [23]. Since then, this area of

mathematics has been very fruitful.

There exist two generalizations about the concept of Kleinian group in higher dimensions.
The first was given by M.V. Nori in [22]. In his work, Nori worked on the construction
of a new family of compact complex varieties, and gave the definition of Kleinian groups
in higher dimensions. Later, J. Seade and A.Verjovsky in [25], extended the dynamics
of Kleinian groups to higher dimensions, and gave the definition of compler Kleinian

groups acting on the complex projective space P¢.

We will work with complex Kleinian groups as defined by J. Seade and A. Verjovsky;
that is:

Definition 0.4. A subgroup I' of PSL(n + 1,C) is a complex Kleinian group if " acts

properly discontinuously in some non-empty open set of Pg.

The thesis is separated into two parts. The first part is dedicated to the study of actions
of complex Schottky groups as subgroups of either PU(k,l) or PSL(2n + 1,C) acting
on either the complex anti-de Sitter space or on P2", respectively, for more details see
[2] and [1].

Classical Schottky groups are free Kleinian subgroups generated by inversions on spheres.
Despite Schottky groups are not so complicated they are relevant in the theory of Rie-
mann surfaces since by Koebe’s Retrosection Theorem every fundamental group of a

compact Riemann surface admits a representation as a Schottky group.

The notion of Schottky group in higher dimensions was given by M.V. Nori in [22].
Later, J. Seade and A. Verjovsky, in [26], developed the concept of Schottky groups of
complex projective transformations. Finally, in [8], A. Cano gives the following abstract

definition of complex Schottky group as subgroup of PSL(n + 1,C):

viii
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Definition 0.5. A Complex Schottky group with g generators is a subgruop I' of
PSL(n+1,C) acting on P{ such that:

e For g > 2, there are 2g open sets R1,..., Ry, S1,...,9, satisfying the following:

i) Each of these open sets is the interior of its closure.

ii) The closures of the 2g open sets are pairwise disjoint.

e The group has a generating set {71, ...,7,} such that v;(R;) = P&\ S; for each j.

In [8], A. Cano shows that a subgroup I' of PSL(2n + 1,C) acts as a Schottky group
with g generators on Pf, then it is a purely loxodromic free group with g generators.

This result motivated the following question posed in 2010 by J. Parker:
Question 1: Given the Definition 0.5, are there complex Schottky groups in PU(1,n)?

The answer is no, and is part of a joint work with A. Cano, C. Cabrera and M. Méndez,
[2]:

Theorem 0.6. Let I' C PSL(n+1,C) be a complex Schottky group acting on Pg, then
I" can not be conjugated to a subgroup of PU(1,n).

Furthermore, in [2] we answer another two questions, the first relates the dynamics of a

complex Schottky group with the algebraic structure of the space IP’EJFFI:

Question 2: Let T be a Schottky group acting on C*t, under which conditions T acts
as a Complex Schottky group in Pfé“fl 7

We partially answered the previous question with the following:

Theorem 0.7. Let I" be a purely loxodromic free discrete subgroup of PU(k,[). Suppose
that a lift of I acts as a Schottky group in C*!. Then T acts as a Complex Schottky

IP’(IEJFF1 only if the signature satisfies k = [.

group in
Unlike the classic case, in higher dimensions there are many different notions of limit

sets, the third question that we address is related to two of these notions which are:

1. The Kulkarni limit set is the union A (I") = Lo(T') UL (') U Lo(T'), where Lo(T")
is the closure of the points in ]P’% with infinite isotropy group, L;(I") is the closure
of the cluster points of the orbits I'z where z runs over P¢ \ Lo(I"), and La(I") is the
closure of the cluster points of the orbits 'K where K runs over all the compact
sets in PR\ (Lo(I") U L1 (I)).
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2. The Schottky limit set Ap4(T') is the complement of the region of discontinuity of
T, ie., Apa(l) =Po\ Q.

For the complete definitions see [16] and [8], respectively.

Question 3: Is there a Complex Schottky group, as in Question 2, for which its Kulkarni
and Schottky limit sets are different?

The answer is yes, and it is stated in the following proposition:

Proposition 0.8. There exist complex Schottky groups I' such that

Apa(T) C Agw(T).

In [8], A. Cano states that there are no actions of complex Schottky groups on projective
spaces of even dimensions. In [1], we present an alternative proof of this result. Our
techniques are geometric and based on the technique used in [2], whereas the techniques
used by A. Cano are algebraic and dynamical. This result concludes the first part of the

thesis.

The second part of the thesis is about combination theorems of complex Kleinian sub-

groups of the Heisenberg group Heis(C).

In 1930, H. Weyl introduced the concept of Heisenberg group as a special kind of a
central extension of an abelian group, in the context of quantum mechanics, see [29)].
As R. Howe said in [14], the Heisenberg group represents distinct objects depending on
the area of research and appears in different contexts: quantum mechanics, homological

algebra and ergodic theory, among others.

In our case, we study complex Kleinian subgroups of the Heisenberg group. More specif-

ically, we regard the Heisenberg group as a subgroup of PSL(3,C) acting on ]P’(QC.

In [4], W. Barrera, A. Cano, J. P. Navarrete, and J. Seade, classified the complex
Kleinian subgroups of PSL(3,C) without loxodromic elements. Concretely, they study
the purely parabolic complex Kleinian groups of PSL(3,C). In particular, they classified
the complex Kleinian subgroups of the Heisenberg group Heisg(C). They made this
classification based upon the dynamical behavior of the groups, that is, by studying
objects as the accumulation set of point or the region where the groups act properly

discontinuously. From the classification given in [4], a natural question is:

Question 4: When does the combination of two complex Kleinian subgroups of Heisz(C)

generate another complex Kleinian subgroup?
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In other words, given two complex Kleinian groups I';,I'y € Heis3(C) consider the

generated group by I'y and I'y

H:={I,To)={y=m0mo---oy|v el vi-1,7i+ €2} (2)

When is H a complex Kleinian subgroup of Heisz(C)?
We aboard this question in two different settings, the real and the complex.

In the real case, first we algebraically describe the Kleinian subgroups of Heisg(R). This
description is different to the given in [4], and allows us to get necessary conditions for

Iy and T’y under which H is a complex Kleinian group.

In the complex case, we also give an algebraic description of the complex Kleinian
subgroups of Heisg(C). After that, we partially answer Question 4, giving necessary

conditions on I'y and I'y such that H is discrete.

The thesis is organized in the following way. Part I consists of three chapters. In
Chapter 1, we give a brief introduction of the basic properties of Kleinian and Schottky
groups, both in the classical and complex sense. We also establish the necessary material
for the remaining two chapters. In Chapter 2, we present some results about complex
Schottky groups as subgroups of PU(k,l), [2]. And in Chapter 3 some results about
complex Schottky groups as subgroups of PSL(2n + 1,C), [1].

Part II of the thesis also consists of three chapters. In Chapter 4, we briefly review
the necessary material and the presentation of the classification of the complex Kleinian
subgroups of Heis3(C) given in [4]. Also, we present Heis3(C) as a semidirect product
which reflects geometric and algebraic properties Heisg(C). In Chapter 5 we answer
Question 4 in the real case. In Chapter 6, we give the partial answer to Question 4,
separating in three subcases depending on whether I'y and I's are both abelian, both

non-abelian, and when I'; is abelian, but I'; is not.
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Chapter 1

Preliminaries

The goals of this part of the thesis are to study the actions of complex Schottky groups
as subgroups of PU(k,l) and PSL(2n + 1,C). The first section of this part of the
thesis is dedicated to present the results obtained for subgroups of PU(k,l) given in
[2], and the second section, is dedicated to present the results obtained for subgroups of
PSL(2n+1,C) given in [1].

First, we give a brief introduction to the basic properties of Kleinian groups and Schottky
groups, in the classical and complex sense, as well as the necessary material for the

development of following sections.

1.1 Classical Kleinian groups

In this section, we give a exposition of Classical Kleinian groups, definitions and some
properties of the automorphism group PSL(2,C). The content presented here is based
on [17].

Let C be the extended complex plane, or the Riemann sphere, C U {oco}. The group of
automorphisms preserving orientation on C is the group of fractional linear transforma-

tions, defined for all z € C, as

az+b
cz+d’

M—{g(z)‘g(z)— ad—bc—l},

with a,b,¢,d € C. The group M is also known as the group of Md&bius transformations.

Let PSL(2,C) be the projectivized group of non-singular 2 x 2 matrices with complex
entries. Consider the projective map [[]] : SL(2,C) — PSL(2,C), we say that an
clement M € SL(2,C) is a lift of an element M € PSL(2,C), whenever [[M]] = M.

2



Chapter 1. Preliminaries 3

There is an isomorphism between M and PSL(2,C) as follow

az+b ~ a b
p— H \/2 p—
9(2) cz+d ( c d )7

where M is a lift of M € PSL(2,C). In this way, we identify the group of automorphisms

preserving orientation on C with PS L(2,C).

Observe that we can endow PSL(2,C) with a topology in the next fashion. A sequence
of distinct elements (M,,) in PSL(2,C) converges to an element M € PSL(2,C) if
there exists a sequence of lifts (Mn), corresponding to (M), on SL(2,C) such that M,
converges to some lift M of M on SL(2,C) where the convergence of matrices is given

coordinatewise.

Let ' be a subgroup of PSL(2,C). We say that I is a non-discrete group if there is a

sequence of distinct elements of I' converging to the identity.

Definition 1.1. We say that a group I' of PSL(2,C) that acts on the Riemann sphere

C is a Kleinian group if I is a discrete group.

1.2 Classical Schottky groups

An important class of a Kleinian groups are Schottky groups. These groups have been of
great interest in the study of Riemann surfaces. One reason is the Koebe’s Retrosection
Theorem, which states that every compact Riemann surface is isomorphic to the orbit
space /T, where € is an open set on the Riemann sphere CandTis a Schottky group.
The definition of a Schottky group acting on the Riemann sphere is the following:

Definition 1.2. A Schottky group of genus g is a Kleinian group generated by g Mobius
transformations oy, ...,y € PSL(2,C) with g > 1 such that:
1. There exist 2g open regions ri, s1,...,74, S¢ pairwise disjoint in C each one with

boundary a Jordan curve and a domain ) bounded by the 2g closures in C.

2. And it is satisfied that o;(0r;) = 0s; and o;(Q2) NQ =0 for all j =1, ..., g, where

Or; denotes the boundary of r;.

1.3 Complex projective geometry

In this section we move on to higher dimensions and present some definitions, tools, and

notations, used throughout the thesis.
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1.3.1 Projective Geometry on P{

Let PZ be the complex projective space. To define subspaces of P¢: consider the quotient

map

[]:C" 1\ {0} — PR

A non-empty set H C P is said to be a projective subspace of dimension %k of P¢, if
there is a C-linear subspace H of dimension k+1 in C"*1\ {0} such that [H \ {0}] = H.

Given a projective subspace P C PZ, we define:

Pt =[{w e C"" | (w,v) =0 for all [v] € P}\ {0}].

Let S be a set of points in P¢. The space generated by S is defined as:
Span(S) = ﬂ{P C P& | P is a projective subspace containing S'}.

Clearly, Span(S) is a projective subspace of P¢.

From now on, the set {ey,...,e2,11} will denote the standard basis for C2"+1.

1.3.2 Projective and Pseudo-projective Transformations

Every linear isomorphism of C**! defines a holomorphic automorphism of P¢. Also, it
is well-known that every holomorphic automorphism of P arises in this way. The group

of projective automorphisms of P{: is defined by:
PSL(n+1,C) := SL(n+1,C)/C*,

where C* = C\ {0} acts by the usual scalar multiplication. The group PSL(n+1,C) is

a Lie group whose elements are called projective transformations.

As before, denote by [[]] : SL(n +1,C) — PSL(n + 1,C) the quotient map. Given
v € PSL(n+1,C), we say that ¥ € SL(n + 1,C) is a lift of v whenever [[7]] = 7.

An important tool to work with elements of SL(2n 4 1,C) is the Polar Decomposition,

or equivalent, the Singular Value Decomposition.

Following the notation used in [27], we denote by HPD(n) the group of positive defined
Hermitian matrices and by U(n) the group of unitary matrices, both in GL(n, C).
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Theorem 1.3 (Polar Decomposition). Given a matrix M € GL(n,C) there exist a
unique pair
(H,Q) € HPD(n) x U(n)

such that M = HQ.

The map M — (H, Q) is called the Polar Decomposition of M and it is a homeomorphism
between GL(n,C) and HPD(n) x U(n).

From the fact that for every positive defined matrix H there exist a positive defined
matrix h such that h? = H, we have that starting with the Polar Decomposition of a

matrix M we can obtain the Singular Value Decomposition given in the next Theorem.

Theorem 1.4 (Singular Value Decomposition). Given a matrix M € GL(n,C) there

are two unitary matrices U,V € U(n) and a diagonal matrix

A1
An

such that M = UD(M)V and where Aj,...,\, € (0,+00). The Ms are called the
singular values of M, they are the square roots of the eigenvalues of the matrix H given

in Theorem 1.3 and they are uniquely defined up to permutation.

Actually we can order the )\fis such that Ay > X o> ... > A\, > 0.

The last decomposition works even for non-square matrices.

The space of linear transformations from C"*! to C"*!, denoted by M(n + 1,C), is a
linear complex space of dimension (n + 1)2. Note that GL(n + 1,C) is an open dense
set of M(n + 1,C). Hence, PSL(n + 1,C) is an open dense set in QP(n + 1,C) =
(M(n+1,C)\ {0})/C*, the latter is called the space of pseudo-projective maps, see [9].
Let M : C"*1 — C"*! be a non-zero linear transformation and K er(]TJ/ ) be its kernel.
We denote by K er([[M ]]) the respective projectivization. Then M induces a well defined

map [[M]] : P¢ \ Ker([[M]]) — P¢ given by

The following proposition shows that we can find sequences in QP(n+1, C) such that the
convergence as a sequence of points in a projective space coincides with the convergence

as a sequence of functions on QP(n + 1,C).
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Proposition 1.5 (See [9]). Let (v,,) C PSL(n+1,C) be a sequence of distinct elements,
then

1. There is a subsequence (7,,) C (Vm) and 79 € M(n + 1,C) \ {0} such that
Tm === Tp as points in QP(n + 1,C).

m—0o0
2. If (7,,) is the sequence given by the previous part of this Lemma, then

Tm == To as functions uniformly on compact sets of P¢ \ Ker(7).

For further details of the proof of the following Lemma see [10].

Lemma 1.6. Let (7,), (Tm) C PSL(n +1,C) be sequences such that v, ——= 70 and
Tm === 9. If Im(7) N Ker(y) # (), then

m— 00

TmTm mSes Y070-

The following Definition presents the classification of the projective transformations on
PSL(n+1,C), (see [12]):

Definition 1.7. Let v € PSL(n + 1,C), then ~ is said to be:

1. Lozodromic if v has a lift v € SL(n+ 1, C) such that ¥ has at least one eigenvalue

outside the unit circle.

2. Elliptic if v has a lift 7 € SL(n + 1,C) such that 7 is diagonalizable and all of its

eigenvalues are in the unit circle.

3. Parabolic if v has a lift ¥ € SL(n + 1, C) such that 7 is non-diagonalizable and all

of its eigenvalues are in the unit circle.

Definition 1.8. Given I' C PSL(n + 1,C), we will say that I" is purely lozodromic
(elliptic or parabolic), if T' only contains loxodromic (elliptic or parabolic) elements,

respectively.

1.3.3 The Grassmanians and the Pliicker embedding

The convergence of projective spaces on P{: is better understood using the Grassmannian

manifolds of PE.

Let 0 < k < n. The Grassmanian Gr(k,n) is the space of all k-dimensional projective
subspaces of Pt endowed with the Hausdorff topology. The space Gr(k,n) is a compact

connected complex manifold of dimension k(n — k).
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The Grassmanian Gr(k,n) can be realized as non-singular subvarieties of a projective

space. A way to do this is by the Pliicker embedding given by

k+1
t:Gr(k,n) —P (/\ C”H)

(V)= o1 Ao Avgaa],

k+1
with P (/\ (C”‘H> the (k+1)-th exterior power of C"*! and Span({vy,--- ,vp41}) = V.

k+1
The group PSL(n + 1,C) acts on Gr(k,n) and P </\ (C"H) as follows:

Let [[T]] € PSL(n +1,C), W = Span({w1,...,wg4+1}) € Gr(k +1,n+ 1) and a point

k+1
w=[wy A A wgy] E]P’(/\ (C"H>. Now set

T(W) = Span([[TT}(w1), .- -, [T (wk41))

and
k+1

A T(w) = [T(wi) A--- AT (wys)]

then we have the following commutative diagram:

Gr(k,n) T Gr(k,n)

lb k1 lt . (1.1)
k+1 /\ T [/k+1
b (/\ Cnﬂ> AN (/\ Cnﬂ>

1.4 Complex Kleinian groups

In [24], J. Seade and A. Verjovsky gave a generalization of the concept of a Kleinian
group as subgroups of PSL(n + 1,C) acting on P, they called them complex Kleinian

groups in higher dimensions.
To present Seade-Verjovsky’s construction, we need the following.

Definition 1.9. Let I' be a group acting by diffeomorphisms on a variety M. We say
that I' acts properly discontinuously on M if for each non-empty compact set K C M
the set

{ye 'K NK # 0},
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is finite.

Now, the definition of complex Kleinian group is the following:

Definition 1.10. We say that a group I' of PSL(n+ 1,C) is a complex Kleinian group

if I" acts properly discontinuously in some non-empty I'-invariant open set of P{.

1.4.1 The Limit Set and the Kulkarni Limit Set

In the classical case n = 1, the limit set of a Kleinian group has several definitions, all
of them equivalent to each other. Nevertheless, for complex Kleinian groups, there are

several not necessarily equivalent notations of limit set.

The first proposal of the limit set of a group I', arises from having a proper and discon-

tinuous action on an open set, as expressed in the following:

Definition 1.11. The ordinary set Q := Q(I') C C of a Kleinian group I' ¢ PSL(2,C)
is the maximal open set in C on which T acts properly discontinuously. The lzmit set of
I in C is the set A := A(T') = C\ Q(I).

The set ) is also called regular set or domain of discontinuity.

Another common notion of the limit set of a complex Kleinian group is the so-called

Kulkarni limit set, whose definition is the following, (see [16]):

Definition 1.12. Let I' € PSL(n + 1,C) be a subgroup. We define:

1. The set Lo(I") as the closure of the points of P¢ with infinite isotropy group.

2. The set L1(I") as the closure of the set of cluster points of I'z, where z runs over

P\ Lo(I).
3. The set A(T") = Lo(T") U Ly (T).

4. The set Lo(I") as the closure of cluster points of 'K, where K runs over all the
compact sets in P \ A(T).

5. The Kulkarni limit set of I" as:

Agu(T) = A(T") U Lo(T).

6. The Kulkarni region of discontinuity of I" as:

Qru () =P¢\ A (T).
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For a more detailed discussion on this topic in the 2-dimensional setting, see [10]. The

Kulkarni limit set has the following properties, see [9, 10, 16].

Proposition 1.13. Let I' be a complex Kleinian group. Then:

1. The sets A ('), A(T') and Ly(T") are I'-invariant and closed.
2. The group I acts properly discontinuously on Q. (I").

3. Let C C P¢ be a closed I'-invariant set such that for every compact set
K c Pg\ C. The set of cluster points of I'K is contained in A(I') N C, then
AKul(F) cC.

4. The equicontinuity set of I' is contained in Q. ().

1.4.2 The M-Lemma

Given a group I" acting on projective subspaces of P{, the A-Lemma is a tool that allows
a better understanding of the accumulation points of sequences of projective spaces of
]P}’Vl

C'

The A-Lemma has been used in distinct contexts. For example: Frances in [13] for the
group O(n), J.P. Navarrete [20] for PU(2,1), A.Cano- B.Liu- M. Lopez for the group
PU(1,n) [11] and M. Méndez [18] for the group PU(k,[). In this Section we present a
version for the group SL(2n + 1,C), see [1].

A virtue of the A-Lemma is that, even if we change the context in which we are working,

the proof of the Lemma is essentially the same for all the groups.

Let us first give an intuitive idea of how the A-Lemma works. Consider an action of a
divergent sequence (v,,) of different elements in PSL(2n 4+ 1,C) on PZ" and take the
Singular Value Decomposition of (7,,) for all m. The A\-Lemma gives us a partition of
IP’(QC” into projective subspaces, along with an understanding of the set of accumulation

points for the action of the sequence (7).

Before we state the A\-Lemma, we give a series of auxiliary Lemmas and Definitions
for the convergence of sequences of distinct elements of PSL(2n + 1,C) acting on the

projective space IP%”.

Lemma 1.14 (see [12]). Let v € PSL(n,C) be a non-elliptic element. If there is a
sequence (n,,) C Z of distinct elements such that there is a point p and a hyperplane H
satisfying 4" ———= p uniformly on compact sets of Pg_l \ H, then p is a fixed point

of .
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Based in the previous framework, we proved the following auxiliary Lemma.

Lemma 1.15 (see [2]). Let ([[T3]]) be a sequence of different elements of PSL(k +
[,C) such that there is a point p = [w; A -+ A wg] and a hyperplane H satisfying
[[A*T}])] —=% p uniformly on compact sets of P(AF(C*™)) \ H. Then for all U €

Gr(k,k+1)\ t=1(H) we have that T}, (U) converges to W = Span(wy, ..., wy,) in }P’(IEH in
the Hausdorff topology.

Proof. To prove this Lemma observe that the Pliicker embedding restricted to the Grass-
manian Gr(k, k+1) is an isomorphism. Then by the Commutative Diagram 1.1, we have
that for every U = Span({u1,...,ux}) € Gr(k,k +1) \ t"'H the sequence (T,,(U)) con-
verges to W = Span({ws, ..., wx}) as points in Gr(k—1,k+1). Thus (7},,(U)) converges
to W as closed sets of P(]EH, in the Hausdorff topology. O

Definition 1.16. Let (v,,,) be a sequence in a topological space X, we say that (v,,) is

a divergent sequence if (,,) leaves every compact set of X.

The following definition tells us when a sequence converges simply to infinity and it will

be useful to prove the Lemma 1.19.

Definition 1.17. Let (v,,) C PSL(2n+ 1,C) be a divergent sequence and consider the
Singular Value Decomposition of each ~,,. We say that (v,,) converges simply to infinity

if the following conditions are satisfied:

1. The compact factors in the Singular Value Decomposition U, and V,;, converge to

some U and V in U(2n + 1), respectively.

2. There exist ¢ natural numbers ki,....,k € N such that k1 +---+ k =2n+ 1, ¢t
sequences (A1,,), ..., (A,,) C R and ¢ block matrices Dy,, € SL(k1,R),..., Dy, in
SL(k,R), satisfying:

A1,
Dm (’Ym) = - 5
)‘tthm

for each m, where the rates A;,, /\j,, — 0o when m — oo, for all i > j, and the

block matrices D;,, converge to some D; € SL(k;,R) as m — oc.

Definition 1.18. Let x € PZ" and (7,,) be a divergent sequence of different elements in
PSL(2n+1,C), we define D ,, y(x) as the set of all the accumulation points of sequences

of the form (Y, (z:m)), where (z,,) is a sequence that converges to x in P2".
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Lemma 1.19 (A-Lemma). Let () C SL(2n + 1,C) be a sequence tending simply to

infinity, then there exist:

t natural numbers k1, ...,k € N,

(2t) pairs of projective subspaces P;',..., P;", Py, ..., P,

a set of projective transformations v; : P, — Pf, and

a pseudo-projective transformation v € QP(2n + 1,C)

such that:

t
1. Im(y) = P;" and Ker(y) = Span (UP;)

=2

t ¢
2. dim (Spcm (UP})) =t+ Zdzm(Pf) =2n+1.
i=1 i=1
3. One of the following holds:
(a) If x € P2\ Ker(y), then () — v as m — oo and

Dy (@) = ().

(b) If j € {2,t -1}, y € P, and

t t
veSpan [{w}, | J P )|\ U P
i=j+1 1=j+1

then
j—1
Dy, () = Span (hj(y)}, (Upfr>> :
i=1

(c) If z € P, then

t—1
Dyy,,)(x) = Span ({'Yt(y)}7 (UPZ‘+)) :

Observe that we can also consider the A\-Lemma for v~ using the fact that D(~,,) is

diagonal and invertible.
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1.5 Complex Schottky Groups

In [8], A. Cano extended the definition of complex Schottky groups, given in Section
1.2, to higher dimensions. Compare with definitions given in [13, 17, 18, 22, 24].

Definition 1.20 (See [8]). Let I' € PSL(n+ 1,C), we say that I' is a complex Schottky

group acting on P¢ with g generators if

1. For g > 2, there are 2g open sets Ry,...,Rg, Si1,...,5, satisfying the following

properties:
(a) Each of these open sets is the interior of its closure.
(b) The closures of the 2g open sets are pairwise disjoint.

2. The group has a generating set {v1,...,7,} with the property v;(R;) = P \ S,

for each j.

A Theorem that characterizes the Complex Schottky groups, proved by A. Cano, is the

following;:

Theorem 1.21 (See [8]). Let I' € PSL(n + 1,C) be a complex Schottky group with
g generators, then I' is a purely loxodromic free group with g generators. If D =

?:1 P¢\ (R; US;), then Qr = I'D is a I'-invariant open set where I' acts properly
discontinuously. Moreover, Q1 has compact quotient and the limit set Ag(I') = P¢ \ Qr

is disconnected.

The set Ag(T") is called the Schottky limit set of T.



Chapter 2

Complex Schottky groups as
subgroups of PU (k,!)

The work presented in this Chapter is the result of a joint work with A. Cano, C.
Cabrera, and M. Méndez.

We can construct complex Schottky groups acting on projective spaces. For example,
C. Frances in [13], constructed Lorentzian Schottky groups, that are free groups of
PO(2,n), acting on Pg(n + 1). On the other hand, M. Méndez constructed complex
Schottky groups acting on P2 that admit representations on PU(2,2), see [18], [19].

Hence a natural question is:

Under which conditions a discrete group T' of PU (k,1) is a complex Schottky group acting

"
on P¢?

To answer this question and throughout this work we will be interested in studying those
subgroups of PSL(n + 1,C) that preserves the pseudo-unitary complex ball Hé’l, that

we will discuss in the following section.

We will be focusing our attention to those groups I' € PU (k,[) that preserve the bound-
ary of the pseudo-unitary complex ball, and through them, we extend the action of

complex Schottky groups to the complex projective space.

2.1 The pseudo-unitary complex ball and the complex anti-

de Sitter space

Let us start by constructing the pseudo-unitary complex ball Hfé’l and its boundary,

which we called the complex anti-de Sitter space.

13
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Consider the following Hermitian matrix:

H = Id;_y

where Id;_j, denotes the identity matrix of size (I — k) x (I — k) and the off-diagonal
blocks in the upper right and the lower left are of size k x k. Set,

U(k,l) ={9 € GL(k+1,C) : gHg" = H}

and denote by (,) : C"*! — C the Hermitian form induced by H. Clearly, (,) has
signature (k,[) and U(k,[) is the group preserving (, ), see [21].

Let PU(k,l) be the projectivization of U(k,l). Then, we have that PU(k,!) preserves
the set:
HE' = {[w] € PE | (w,w) <0},

which is the pseudo-unitary complex ball. We call the boundary, 8]1-}1(]81 = {[w] € P¢ |

(w,w) = 0}, the complex anti-de Sitter space.

Given a projective subspace P C P we define

Pt =[{w e C" | (w,v) =0 for all [v] € P}\ {0}].

An important tool in this work is the following result, see [15, 21].

Theorem 2.1 (Cartan Decomposition). For every v € PU(k,l) there are elements
ki,ky € PU(n+ 1) N PU(k,l) and a unique u(y) € PU(k,l), such that v = kypu(y)ke
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and p(y) have a lift in SL(n + 1, C) given by

eM ()

eMe ()

67/\1(’7)

where A1(7) > Xa(y) > ... > Ae(y) > 0.

2.2 Results

In the following Theorem we give a necessary condition under which a discrete group I'

of PU(k,l) is a complex Schottky group.

Theorem 2.2. If a purely loxodromic free discrete subgroup of PU (k,l) is a complex

Schottky group, then k = [.

Proof. Let us proceed by contradiction. Suppose that k < [ and let I' € PU(k,l) as in
the hypothesis. Take a generator v € I' and let 4 € U(k,[) be a lift of . Consider the
Cartan Decomposition of 4™, then we obtain sequences (¢,,) and (¢,) in K and (A,,)

in U(k + 1) satisfying 4" = ¢, A Cm.-

Since (¢,) and (G, ) lie in a compact set, there is a subsequence (ms) C (m) and elements
C and C in K such that c,,, converges to C' and ¢, converges to C. Clearly, we can
assume that (™) tends simply to infinity and in the following we will assume that
(v™=) tends strongly to infinity. The proof of the other case is similar. We claim that

there exist projective subspaces P and @), satisfying the following properties:

1. The dimensions satisfy dimP = dimQ = k — 1.

2. The spaces P, () are invariant under the action of v. Moreover, P is attracting and

Q is repelling.

3. If R,,S, are the disjoint open sets associated to 7 given in the definition of a

complex Schottky group, then either P C Ry and Q C S,,or Q@ C R, and P C S,.
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In particular, it follows that P and () are also disjoint and lie in distinct connected

components of Aap(T).

4. We have P+ ¢ Ap(T') and Q+ € Aap(D).

Set P the projectivization of the space P/ = C(Span({eq,...,ex})) and @ the projec-
tivization of the space Q' = C~!(Span({e;11,...,exsi})). The first part of the claim
follows by construction. Let us show part (2), consider the action of AFA,, —on AFCFH,
then a straightforward calculation shows the matrix of A¥A,, = with respect the standard

ordered basis § of AFCFF! is given by:

02

()
where 6; is the product of k elements taken from the set {e*-m("™)} and ordered in the
lexicographical order in (i,m). In fact 6; > 6y > ... > 0(2) Hence [[A,,]] converges to
x = [e1 A -+ Aeg] uniformly on compact sets of P(AF(CF*))\ Span(8\ {z}). Therefore
by Lemma 1.6, we conclude that [[A*5™]] converges to the point [[AFCJ][e; A --- A
ex] uniformly on compact sets of P(AF(CF+)) \ [A¥C—1] Span(B \ {z}). Finally, from
Lemma 1.14 we conclude that z is a fixed point of [[AF5™:]], in consequence P =

[C] Span({[e1],..., [ex]}) is attracting and invariant under . In a similar way, we can

prove that @ is repelling and invariant.

Part (3). On the contrary, assume that there is x € PN ]P’(]grl_l \ (RyUS,) # 0, then
there exists an open set U such that z € U C }P’(’éﬂ_l \ Apa(T'). By the A-Lemma, we

conclude
Q" C Diyumy(x) € [ ™Sy C S,
meN
Let 41 € I be a generator of I' distinct from 7. Define Q; = v~ ';Q" and observe that
Q1 C Ry. As the dimensions of ()1 and Q™ are | —k, we have that Q; NQ™ is not empty,

which leads to a contradiction, because R, NS, = 0.

Part (4). Assume that P+ C Ar. By the previous part, we can assume that P C S,
Let 71 € T be a generator of I' distinct from . By Lemma 1.15 we conclude that
y~™s (41 (P)) converges to @, therefore v; ™ (v(P1)) converges to Q+. Hence Q+ C Ar.
As P C P+, Q c Q' and PN Q"' # () and all of these spaces are path connected,

which lead us to a contradiction.
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To conclude the proof, let p € PN Qp and ¢ € Q- N Qp. Clearly, we can assume
that p € PX\ P and ¢ € P+ \ Q. By A-Lemma there exist a,b € P+ N Q* such
that Span(a, P) U Span(b, Q) C Ar. But Span(a, P), Span(b, Q) and P+ N Q" are path
connected. Then we can construct a path in Ap, passing along a and b through W and

connecting P with @, which leads to a contradiction. ]
The main results presented in [2] are the following.
Theorem 2.1. If a purely loxodromic free discrete subgroup of PU(k,l) acting as a
complex Schottky group on ]P’(IEH_I, then k = 1. Moreover in this case
1. The group I' acts as a complex Schottky group on the complex anti-de Sitter space.
2. The limit set Apa(T") is contained in the complex anti-de Sitter space and it is
homeomorphic to a product C X ]P’(]E_l, where C is the triadic Cantor set.
The limit set Aps (") was defined in Theorem 1.21.
And as a partial reciprocal of the previous theorem we have:

Theorem 2.2. Let ' C PU(k,k) be a group acting as a complex Schottky group on the
complex anti-de Sitter space. If I is generated by vi,...,7vn then there is N € N such
that Ty = (MY, ...,4N)) acts as a complex Schottky group on P21,
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Complex Schottky groups as
subgroups of PSL(n,C)

In [8], A. Cano proved that there are no actions of complex Schottky groups on projective
spaces of even dimensions. It means, if a group I' C PSL(n + 1,C) acts on P¢ as a
complex Schottky group, then n must be odd. The techniques used in [8] to prove this

theorem were based on algebraic and dynamical properties of I'.

Here the author gives an alternative proof of the results obtained by A. Cano but using

the geometric techniques of the Theorem 2.2 from in Section 2.2.

3.1 The A-Lemma for SL(2n + 1,C)

In this Section, we give a series of definitions that allow us to understand the convergence

of sequences of distinct elements of PSL(2n + 1,C) acting on the projective space ]P’%”.

Definition 3.1. Let (v,,) be a sequence in a topological space X, we say that (7,,) is

a divergent sequence if (,,) leaves every compact set of X.

Definition 3.2. Let z € PZ* and (v,,) be a divergent sequence of different elements in
PSL(2n+1,C), we define ©,, () as the set of all the accumulation points of sequences

of the form (Y (zm)), where (z,,) is a sequence that converge to = in PZ".

Now we give a version of the A-Lemma adapted for the group SL(2n 4 1,C). Here we
give the key parts of the proof and refer to [11], [18] or [2] for details.

Lemma 3.3 (A-Lemma). Let (y,) C SL(2n + 1,C) be a sequence tending simply to

infinity, then there exist:

18
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e { pairs of natural numbers kq, ...,k € N,
e (2t) pairs of projective subespaces P; , P1+, Py, P2+7 P Pt+,
e a set of projective transformations ~; : P, — Pf, and

e a pseudo-projective transformation v € QP(2n + 1,C)

such that:

¢
1. Im(y) = P{” and Ker(y) = Span (UR‘)

=2
t t
2. dim <Span <UPZi>> =t+ Zdim(Pf) =2n+1.
i=1 i=1

3. One of the following holds:

(a) If 2 € P2\ Ker(y), then () — v as m — oo and

Dy, (@) = ().

t t

(b) If j € {2,t — 1}, y € P; and « € Span | {y}, U P~ \ U P~
i=j+1 i=j+1

-1
D(4,,)(x) = Span (hj(y)}, (UR*)) :
i=1

then,

(c) If z € P, then
t—1
D(y,,)(x) = Span <{%(y)}, <UPi+>> -
=1

Observe that we can also consider the A\-Lemma for v~ using the fact that D(~v,,) is

diagonal and invertible.

Proof. Let (vm,) be a divergent sequence of different elements of PSL(2n + 1,C). By
the Singular Value Decomposition we have that for each m exist Uy, Vi, € U(2n + 1)

such that:
A1, D1,
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Following the notation given in Theorem 1.4, define the projective subspaces:

pP; = Span{ezjl-_l Byt O3 kj}’
with 1 < j <t. Let us define Pj+ =[UP)] and P;” = v-1ip)].

The projective transformations «; are defined as translations given by U and V', where
the last tow are the limits of the sequences U,, and V,,, respectively. Also we can define
the pseudo-projective transformation « as the projective transformation whose image is
the projective subspace Pf . Which prove the first part of the lemma. The second part
of the proof is a straightforward computation about the dimensions of the subspaces.
The third part, follows by the convergence of ~,,, which depends on the values in the
diagonal of D(7,,), and by the construction of the projective spaces P;“ and ij. ]

3.2 Results

Now we give a different proof of Cano’s Theorem 1 in [8]. Here the author shows the

geometric aspects of the obstructions involved.

Theorem 3.4. Let I' be a discrete subgroup of PSL(2n + 1,C), then I' can not act as
a complex Schottky group on IP%".

Proof. Let us proceed by contradiction. Suppose that I' C PSL(2n + 1,C) acts as a
complex Schottky group in PZ*. Take a generator v € I and let ¥ € SL(2n+1, C) be a lift
of 7. Consider the Singular Value Decomposition of 4, then we obtain sequences (U,;,)
and (Vp,) in U(2n+1) and (D, (7)) in SL(2n+ 1, C) satisfying 3™ = U (D (Ym.)) Vin.-

Since (Up,) and (V) lie in a compact set, there is a subsequence (ms) C (m) and

elements U and V in U(2n + 1) such that U,,, converges to U and V,,_ converges to V.

Now, for each m consider the block decomposition of (Dy, (7)) as in the definition 1.17,

A1, D1,
Dy, ('7m) = - )
)\trn Dtm

in this way we have that A, > ... > A, > 0.
Clearly, we can assume that (,,) tends simply to infinity.

We claim that there are projective subspaces P and @ satisfying the following properties:
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1. The spaces P, () are invariant under the action of v. Moreover, P is attracting and

Q is repelling.

2. If R, Sy are the disjoint open sets associated to v, as in the definition of a complex
Schottky group, then either P C R, and Q C S,, or Q C R, and P C S,. In
particular, it follows that P and @ are also disjoint and lie in distinct connected

components of Ag(T").
3. The dimensions satisfy dimP < n and dimQ@ < n.

4. If we define P as the complementary space of () and Q as the complementary space
of P, we have that P ¢ Ag(T) and Q ¢ Ag(T).
Set P and @ the projectivizations of the spaces, P’ = U(Span({el, €k ) and Q' =

7t (Span({e((2n+1)—k+1)s -+ €2n+1})), TEspectively.

Let us show the first part (1), consider the action of A1 D(v,,) on AF1C2"+1, A straight-
forward calculation shows that the matrix of A1 D(y,,) with respect the standard or-
dered basis 3 of AF1C?"*! is given by:

01
02

0
()
where 6; is the product of k; elements taken from the set {e*=(""™)} and ordered in the

lexicographical order in (i, m). In fact ; > 6y > ... > 0( By Hence [[D(,)]] converges
on+1
to x = [e1 A --- A eg,] uniformly on compact sets of P(AF1(C2"*+1)) \ Span(3 \ {z}).

Therefore, by Lemma 1.6, we conclude that [[AF15™]] converges to the point [[AFU]][e1 A
-+ A e, ] uniformly on compact sets of P(A*1(C2"+1))\ [AF1V 1] Span(B\ {z}). Finally,
from Lemma 1.14 we conclude that z is a fixed point of [[A¥15™]]. In consequence,
P = [C]Span({[ei],..., [ex,]}) is attracting and invariant under 7. In a similar way, we

can prove that @) is repelling and invariant.

Part (2). On the contrary, suppose there exist z € PN (P2 \ (R, U S,)) # 0. Because
of (1) we have that z is an attracting point, then for some z € PZ"\ (R, U S,) we have
that " (z) converges to x as m tends to oo, but in the other hand by the dynamics of T’
as a complex Schottky group we have that v(z) € S, and also 4™ (z) € S, then x € S,

which is a contradiction.

Part (3), suppose that dimP = n and take 71,72 € I' generators of I' and let R; and
S; be the open set associated to ~; with ¢ = 1,2 and suppose that P C Rs. Observe
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that P’ = v, 'y (P) C Sa, dimP = dimP' = n and PN P’ = {), then P @ P’ = PZ".
Now if we take the liftings of P and P’ we have that P + P’ is a subspace of C*"*! but
dim(P + P') = 2n + 2 which is a contradiction. Then the dimension of P has to be less

than n, this is also true for Q.

Part (4). Assume that Pc As(T'). By the previous part, we can assume that P C S,,.
Let 71 € T' be a generator of I' distinct from . By Lemma 1.15 we conclude that
=™ (y1(P)) converges to @, therefore ;™ (v(P)) converges to Q. Hence Q C Ag(T).
Then we have that P C ]5, Q C Q and PN Q # () and all of these spaces are path

connected, which lead us to a contradiction of (2).

Now, take the block D; such that the vector e, 1 € Dj, and call L the space generated
by the eigenvectors associated to the eigenvalue in D;. Observe that L C Pn Q, then
by (4) L ¢ As(T), its means that L C Qr.

Now consider the space of lines between P and the spaces generated by the eigenvectors
associated to the blocks Do, ..., Dj_1 and call it A, also consider the space of lines between
@ and the spaces generated by the eigenvectors associated to the blocks Dj1, ..., D; and
call it B. Notice that A and B are connected.

To conclude the proof, by the A-Lemma, we have that if we take p,q € L C Qp and
a € Span ({p}, A) \ A and b € Span ({¢}, B) \ B, we have that Span(p, P)USpan(q, Q) C
Ar, for some p,G € L. But Span(p, P), Span(q, Q) and L are path connected. Then we
can construct a path in Ap, passing along p and ¢ through L and connecting P with Q,
which contradicts (2) and that concludes the proof of the Theorem. O



Part 11

Discrete subgroups of Complex

Heisenberg group
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Chapter 4

Preliminaries

Now we will study combination theorems of the subgroups of the Heisenberg group

Heis3(C).

In [4], W. Barrera, A. Cano, J.P. Navarrete, and J. Seade classified the complex Kleinian
subgroups of PSL(3,C) without loxodromic elements. In particular, they classified the
discrete subgroups of Heiss(C).

From the classification given in [4], a natural question is when can two complex Kleinian

subgroups generate another complex Kleinian group of Heisg(C)?

In other words, given two complex Kleinian groups I'1, 'y € Heiss(C) consider the group

generated by I'; and 'y
H:=(I';,To) ={y=mono--oy|v el vi1,7%+1 € 2}. (4.1)

When is H a complex Kleinian group?
The goal of this part of the thesis is to give an answer to the previous question.

The definitions, lemmas, and theorems below are presented without going deeply into
the details and all the references are given to the reader. The intention is to give the

necessary material that will be used throughout the work.

4.1 Metabelian groups

We will start by some basic definitions about groups, then we will provide the necessary

tools in next sections about metabelian groups. For more details see [5].

24
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Let T' be a group. The center of T is the subgroup defined as Z(I') = {g € T'|gx =
xg Yx € T'}. The commutator subgroup of T, also called the first derived group of T,
is defined by I = [[,T] = {[z,y] = v 'y lay | z,y € T'}. Observe that if we take I
instead of I we obtain I = [I, T”], which is called the second derived group of T'. If we
continue in this way we get '™ = [F(”*l), F(”*l)], the n-th derived group of I'. Then,
we obtain the following sequence of non-increasing subgroups of I':

FZF(O)>F/Z"'>F(")Z"'7 (4.2)

which is called the derived series of T'.

A group T is solvable if for some positive integer ! the equation I') = Idp is satisfied.
The least of such [ is called the solvability length of I'. Also, subgroups and quotients
groups of a solvable group I' are solvable and of solvability length not exceeding that of
T.

Lemma 4.1. Let k = R, C, and denote T'(n, k) as the group of upper triangular matrices
with entries in k. If I' C T'(n, k), then I' is a solvable group with solvability length at

most n — 1.

Proof. Let I' C T(n,k), M € I', and denote by d; the upper subdiagonals of M, with
1<i<n—1.

Simple computation shows that M) = [MT=D M=1] has zero in all the entries of
each d; with 1 < ¢ < r. Thus, M"Y = JIdp for all M € T'. Then the length of
solvability of I' is at most n — 1. O

We say that a group I is finitely generated if there is a set, S = {g1, g2, ..., gn}, that
generates I' where n < co. The rank of a group I' is the smallest n such that S generates
I', and is denoted by Rank(T").

If a solvable group I' is discrete, then we have the following result:

Theorem 4.2. [Auslander,[3]] Let I' € GL(n,R) be a discrete solvable subgroup, then
I" is finitely generated.

A special case of solvable groups are the ones that have solvability length at most 2,
these groups give place to the following definition.

Definition 4.3. The groups of solvability length at most 2 are called metabelian groups.

Example 4.4. Let k = R,C and M (3, k) the group of all invertible 3 x 3 matrices with
entries in k, and take I' = T'(3, k) C M (3, k), the subgroup of upper triangular matrices.
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Simple computation shows that I' = Z(T'), and by Lemma 4.1, I = Idp. Therefore, T’
has solvability length 2. Thus, I' is a metabelian group.

Another important property of a group is to be finitely presented. Given a group I' with
S a generating set of I', and R a set of relations on the elements of S, we say that I" has a
finite presentation, or that I" is finitely presented, if there is a presentation of I' = (S|R)
with S and R finite.

Theorem 4.5. [Baumslag,[5]] If G is a finitely generated metabelian group, then G can

be embedded in a finitely presented metabelian group.

Now we introduce the definition of an HNN-extension. The name of the extension is

attributed to the mathematicians G. Higman, B.H. Neumann, and H. Neuman.

Definition 4.6. Let I' be a group and I' a subgroup. An HNN-extension of I is the
group
T, = ([, t|tht ™t = ¢(h),Yh € H), (4.3)

where ¢ : H — K, with H and K isomorphic subgroups of I', and ¢ a formal symbol,

which could be an element of I' or not, called the stable letter.

We say that an HNN-extension is ascending if H =T or K =T,

Basing in the previous definition we present the following,

Lemma 4.7. Let I' = ZF, with k = 1,2. There exists a subgroup [ c T, and a formal
symbol ¢, such that T is an ascending H N N-extension of ' with stable letter ¢.

Proof. We have two cases, Rank(I') = 1 or Rank(I') = 2. For the first case, and following
the notation given in Definition 4.6, if we take ' = H = K = 27, ¢ = Id and t = 1,
the ascending HNN-extension of I is given by I', = (I', BIBAB™! = A) where T, is

isomorphic to I'.

Now, if Rank(T') = 2, take I' = (A, B|[A, B] = Id) and define I' as (A). Take I' =
H = K, t = B, and ¢ = Id. Then, the ascending HNN-extension of I is given by
I'. = ([, BIBAB~! = A), where T, is isomorphic to T.

In both cases we have that I' is an H N N-extension of a finitely generated group.
O

Theorem 4.8. [Bieri-Strebel,[5]] Let G be an infinite, finitely presented solvable group.
Then G contains a subgroup of finite index which is an ascending HNN-extension of a

finitely generated solvable group.
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4.2 The dimensional obstructor Obdim(I")

In [6] the authors give a lower bound to the dimension of a contractible manifold in
which a given group I' acts properly discontinuously. The bound was given using a
dimensional obstructor called obstructor dimension, denoted by Obdim(I"). The formal
definition of Obdim(I") involves the theory of embeddings of n-complexes into R?". This
theory was developed by van Kampen in [28].

The complete background for the understanding of the dimensional obstructor Obdim(T"),
given in [6], is not necessary for this work. Our interest is on the properties of the
obstructor Obdim(T"), which will allow us to give bounds on the dimension of the con-
tractible manifold and to the ranks of the groups we are working with. Here is a simple

presentation about the obstructor Obdim(I"). For more details see [6] and [28].

Given a finitely generated group I' equipped with the word-metric with respect to some

finite generating set, we have the following definitions:

Definition 4.9. The obstructor dimension Obdim(I") is defined to be 0 for finite groups,
1 for 2-ended groups, and otherwise m + 2 where m is the largest integer such that for
some m-obstructor complex K and some triangulation of the open cone cone(K) of K
there exists a proper Lipschitz expanding map f : cone(K)® — I'. If no maximal m

exists we set Obdim(I") = oo.

Definition 4.10. The action dimension Actdim(I") is the smallest integer n such that
I" admits a properly discontinuous action on a contractible n-manifold. If no such n

exist, then Actdim(I") = oco.

Theorem 4.11. Let I' a torsion free group, then

Obdim(I") < Actdim(T").

Observe that if we have a torsion free group I' that acts proper and discontinuously in
a contractible manifold of dimension m, by Definition 4.10 and Theorem 4.11, we have
Obdim(T") < m.

Theorem 4.12. [Bestvina-Kapovich-Kleiner,[6]] If Obdim(I") > m, then I" can not acts

properly discontinuously on a contractible manifold of dimension < m.

The last theorem gives a lower bound of the dimension of the manifolds where I" acts

properly discontinuously.

Also, in [6], the authors gave properties of Obdim(I") in the cases when T' is either a

direct product or is a semi-direct product of two groups.
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Lemma 4.13. Let I' =I'y x I'y, then we have that
Obdim(T'; x T'9) > Obdim(T'y) + Obdim(T'2), (4.4)

while
Actdim(T'; x T'y) < Actdim(T'1) + Actdim(Ts). (4.5)

The following definition is needed for the case when I' is the semi-direct product of two
subgroups.

Definition 4.14. We say that a finitely generated group I' is weakly convex if there
is a collection of discontinuous paths {¢. ., : [0,1] — I'}, wer and a constant M > 0

satisfying the following properties:

1. ¢,w(0) =2z and ¢, (1) = w.

2. There is a function 7 : [0, 00) — [0, 00) such that

d(z,w) <R = diam(Im(¢.,w)) < 7(R).
3. For all z,w € I there is € > 0 such that ¢, , sends subintervals of length < € to
sets of diameter < M.

4. If d(z,2") <1 and d(w,w") <1 then for all ¢ € [0, 1],

d(¢z,w (t)v ¢z/,w/ (t>) < M.
Examples of weakly convex groups are hyperbolic groups and semi-hyperbolic groups.
See [6].

Corollary 4.15. If I' = H x ) with H and @ finitely generated and H weakly convex,
then
Obdim(T") > Obdim(H) + Obdim(Q). (4.6)

From the previous framework we give some results about the dimensional obstructor to
the groups Z* and Z*F x Z.

Lemma 4.16. Obdim(Z*) = k.

Proof. By induction over k.

As Z is a 2-ended group, by the definition of Obdim(I"), we have that Obdim(Z) = 1.
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Now, suppose that Obdim(Z*) = k, then by Lemma 4.13 we have that

Obdim(ZF1) = Obdim(Z* x Z) > Obdim(Z*) + Obdim(Z).

Thus, by the proof of induction, we have that Obdim(Z**1) > k + 1.

On the other hand, we have that Z* acts properly discontinuously on R¥ by translations
for all natural numbers k. Then, Actdim(ZkH) < k+1, and thus, by Theorem 4.11, we
have that Obdim(Z**!) < Actdim(Z**') < k + 1. Then Obdim(Z**') =k + 1. O

In the preliminaries, we defined the rank of a group I' as the smallest integer n such that

I" is generated by a set of n elements. Thus, we have,

Corollary 4.17. Obdim(ZF) = Rank(Z)

Proof. As the rank of Z¥, for all natural number k, is k by Lemma 4.16, we are done. [

Lemma 4.18. Obdim(Z* x Z) = k + 1.

Proof. Define the product in Z* x Z as:
(b1,b2, ..., bg,a1) * (c1,C2,y .oy Cyaz) — (b + ¢1 +ag - a1, by + co, ..., by + cx, a1 + az),
and take the action of Z* x Z on R*+! given by
(b1,bo, ..., bg,a) * (1,22, ..., xpr1) = (b1 + 21 + a - Tgy1,b2 + T2y oy b + Tk, a + Tpg1)-

This action is proper and discontinuous. By Definition 4.10, Actdim(Z* x Z) < k + 1.
Then, by Theorem 4.11, Obdim(Z* x Z) < Actdim(ZF x Z) < k + 1.

On the other hand, as ZF is a weakly convex group, by Corollary 4.15 we have Obdim(Z* x
Z) > Obdim(Z*) + Obdim Z = k + 1, which concludes the proof. O

4.3 Lattices and Z-modules

In this section we give a brief presentation about two algebraic structures: lattices and

Z-modules.

There is no canonical way to give a systems of generators to a group of the size of the
rank. However, the groups we are dealing with have the structure of a Z-module. Hence

it is easier to give a system of generators to these groups.
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Moreover, these groups have a lattice structure. In this way, we will be able to give
a minimal set of generators of the groups and thus compute the rank. This section is
based in [7].

We will start with the definition of a module.

Definition 4.19. Let s be an algebraic number field and let k1, ..., k,;, be an arbitrary

finite set of elements of k. The set M of all the linear combinations,
{nlk‘l + -+ nmk‘mlnz € Z},

is called a module in k, and the elements k1, ..., k,,, are called generators for the module
M.

From the previous definition we can observe that a module is in fact an additive group.
Definition 4.20. A system of generators of a module M is called a basis for M if it is
linearly independent over the ring of integers.

The following theorem gives a condition for an abelian group to have a basis.

Theorem 4.21. If an abelian group without finite order elements possesses a finite

system of generators, then it possesses a basis.

Corollary 4.22. Any subgroup N of a module M, is a also a module.

Now we proceed to present the definition of a lattice.

Definition 4.23. Let [, ...,l,,, m < n, be a linearly independent set of vectors in R.

The set L of all vectors of the form
{T’lll —+ -+ Tmlm|7‘¢ S Z},

is called the m-dimensional lattice in R™, and the vectors l1, ..., [, are called a basis for

L. If m = n, the lattice is called full; otherwise is called non-full.

The following two lemmas relate the properties of discrete additive subgroups and lat-
tices.

Lemma 4.24. The set of points of any lattice L in R" is discrete.

Lemma 4.25. A discrete additive subgroup of R" is a lattice.

From this background, we give a necessary result that we use in the following sections.
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Lemma 4.26. If W = {uy,...,ux} is an R-linearly independent set of vectors in R",

then Spany (W) = Z*. In particular, Spany (W) is discrete.

Proof. We have that Spany (W) = {aqu1 + -+ + agug|a; € Z}. If we take the map
6 : Spany (W) — Z*, such that §(w) = (o, ..., ag) for all w € W, we have that 6 defined
an isomophism between Spany (W) and ZF. O

4.4 Classification of complex Kleinian subgroups of Heis;(C)

In [4], the authors gave a complete list of the discrete subgroups of the 3-dimensional
complex Heisenberg group, Heisg(C), based in dynamical aspects of the subgroups as

the Kulkarni’s limit set and the equicontinuity region of them.

The complex Heisenberg group is defined in [4] as:

Heiss(C) = z,y,z€C 5. (4.7)

o O =
S = 8
RS BN

The authors of [4] also introduce the concept of control group for the discrete subgroups
of Heis3(C). With this concept they study some dynamical properties of the groups.

The following is a brief description of a control group.

Let I' C PSL(3,C) be a subgroup acting on P4 with a point p fixed by I', v € " and !

a line in P2 \ {p}. Then consider the following projection:

o1 PEN\ {1} — 1

Tpi(x) = m Nl

The point p is called the wvanishing point and the line [ is called the horizon. The

projection m,; allow us to define the group homomorphism:

II:=1I,;r : I' = Biholo(l) = PSL(2,C)

() (2) = mpi(v(2))-
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We say that I' is a weakly semi-controllable group if it acts with a fix point in ]P’(%. Here
[ determines the control group II(T') C PSL(2,C) which is well defined and independent
of the choose of [, up to an automorphism of PSL(2,C).

The classification of the complex Kleinian subgroups of Heis3(C) is the following:

Theorem 4.27. [W. Barrera, A. Cano, J.P. Navarrete, J. Seade, [4]] Let 'y C PSL(3,C)
be a complex Kleinian group without loxodromic elements, then there is a subgroup

I' € Iy of finite index such that I' is conjugated to one of the following groups:

1. The group
n(w)=> 0 0
W, = 0 n(w) n(w)w weWw 3,
0 nw)

where W C C is a discrete additive subgroup and n : W — (C,+) is a group

morphism.

2. The group
x

0
Pl = 1 Yy (l',y) € SpanZ(W) )
0 1

o O =

where W C C? is a R-linearly independent set of points.
3. The group

L(z) + 27?2 +w

1
Lo = 0 € w e Wi,z e Wy 5,
0

oS = 8

where Wp C C is a discrete additive subgroup and Wy C C such that L : Ws — C

is an additive function that satifies:
(a) if Wy is discrete, then rank(Wi) + rank(Ws) < 4 and

T ZTank(Wl) @ Zrank(Wg)'

(b) if Wy is non-discrete, then rank(Wh) + rank(Ws) < 4 and

lim L(z") + w, = o0
n—o0

for all sequence (wy,) C Wi and every sequences (z,) C Wa converging to 0.
Inthiscase I'=Z2ZPZDZ D 7.
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1 b
4. The group Py = 0 0 |[|(a,b) € Spany (W) »,
0 1

=

where W C C? is a discrete additive R-linearly independent set.

1 k+lc+ma ld+m(k+lc)+ (3)z+my
5. The group 'y, = 0 1 m k,l,meZ,,
0 0 1
where w = (x,y,p,q,7) with z,y € C, p,q,r € Z such that p, ¢ are co-primes, ¢>

divides r, c = pg~! and d = 1.

n m
1 0 w 1 1 0 1 a+4+c b
6. The group Wy = 01 0 0 1 1 0 1 ¢ nmeZ,weW,,
0 0 1 0 0 1 0 0 1

where W C C is a discrete additive subgroup and a, b, ¢ € C are such that:

(a) {1,c} is an R—linearly dependent set but Z—linearly independent set and
a € WA {0},

(b) {1,c} is an R—linearly independent set and a € W \ {0}.

Also, in [4], the authors proved that the Kulkarni’s limit set of the discrete subgroups

of Heis3(C) is either a line or is a pencil of lines over a circle in PZ.

If X is one of the families of groups of the previous theorem and I' is a subgroup of

Heis3(C), we will say that I" is of type X if T' is conjugate to some element in X.

In this work the author introduces a presentation of the complex Heisenberg group as
a semi-direct product. This presentation simplifies the notation and gives algebraic

properties of the subgroups of Heisz(C).

First we remember the definition of the external semi-direct product of two groups. Take
two groups, N and H , @ group homomorphism ¢ : H — Aut(N ), and consider the set
G = {(n,h)|n € N,h € H} together with the binary operation  : G x G — G defined
as (n,g) *x (m,h) = (meop(n), gh). Then we have:

1. With the product * the set G is a group.

2. The group N = N x {15} is a normal subgroup of G.

3. The group H = {15} x H is a subgroup of G.

4. The groups N and H intersect trivially.
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Definition 4.28. The group G constructed above is called the external semi-direct
product of N and H, and it is denoted by N x4 H, or simply N x H when the group

homomorphism ¢ is fixed.

The internal semi-direct product is constructed when G has two subgroups satisfying
the above conditions 1-4. If H is also normal, then G is the direct product of N and H,
denoted by, G = N x H.

To see that Heis3(C) is isomorphic to the semi-direct product C? x4 C, fix the following

group automorphism:

¢ : C — Aut(C?) (4.8)
¢ ¢cla,b) = (a,b+a-c), (4.9)

and construct the semi-direct product C? x4 C as in Definition 4.28. The multiplication

for any two elements in C? x4 C is given by,
((a7 b),C) N¢((x,y),z) = (((x,y)+¢z(a, b))7c+z) = ((a+x7b+y+a'z)7c+z)’ (4‘10)

Via the next isomorphism ¢, we have that Heis3(C) is isomorphic to C2 Xy C,

¢ : Heisg(C) — C? x4 C (4.11)
1 a b
01 ¢ |+~ ((ab),c), (4.12)
0 01

Observe that, via ¢, the multiplication 4.10 coincides with the following multiplication

of two elements in Heisg(C),

1 a b 1 x vy 1 a+x b+y+a-z
01 ¢ 01 z2z|=1F60 1 c+z . (4.13)
0 0 1 0 0 1 0 0 1

To simplify, when we multiply elements in Heisg(C) we will use the following notation

(21,22, 23) * (Y1, Y2, y3) = (X1 + y1, 22 + Y2 + X1 - Y3, 23 + Y3). (4.14)

Some auxiliary mappings that we will be using are the projections p;, with j = 1,2, 3,
defined as follows,
pj:C?*x,C—C (4.15)
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pj(x1, 2, 23) — 5. (4.16)
In the subsequent, we will work with the following definition of Heisz(C).
Definition 4.29. The 3-dimensional complex Heisenberg group is the group given as,
Heis3(C) := {(a,b,¢) € C* x4 Cl¢ : C — Aut(C?), ¢.(a,b) = (a,b+a-c)},

where for any two elements in Heisz(C), the product is given by equation 4.14.

From now on, we will work with the subgroups of Heis3(C) as subgroups in C? x4 C.

Observe that under this notation, the control group II(T") of a group I" C Heis3(C), will
be p3(I) := I'm(ps|r).



Chapter 5

Constructing Kleinian subgroups
of Heiss(R)

In this chapter, we use the classification given in section 4.4 of the complex Kleinian
subgroups of Heisg(C) to study the properties of the Kleinian subgroups of Heisz(R),

which is natural contained in Heisz(C).

We start presenting the n-dimensional discrete Heisenberg group Heis, (Z) as a semi-
direct product. This allows us to give a bound to the Obdim(Heis, (Z)), which will be

useful in next sections.

Then, we give a characterization of the Kleinian subgroups of Heis3(R) focused on the

algebraic structure of them.

Given two Kleinian subgroups I'1, 'y C Heisg(R), the group H generated by these two

groups is:

H:=(I'1,T9) ={y=mongo--oy|if v €'y then, ;1,741 € I'2}. (5.1)

We finish this chapter characterizing when H is a Kleinian group.

5.1 Properties of Heis,(Z)

We start with the definition of the Heisenberg group, with entries in a ring or in a field,

extended to dimension n.

Definition 5.1. Let R be Z, R or C. The n-dimensional Heisenberg group Heis,(R)

with entries in R, is defined as:

36
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ry X2 -+ Tp-3 Tp-2 Tp-—-1
0 1 o0 0 0 Tn
o o0 1 . : : Tnt1
Heis,, (R) := Do 0 : : r, €R ). (5.2)
1 0 o3
0 Top—4
0 0 1

Based on the Definitions 4.28 and 5.1, we give in the following a presentation to the

group Heis,,(Z) as a semi-direct product of two subgroups of it.

Lemma 5.2. For R =7,
Heis, (Z) = 2" ! x 2" 2.

Proof. Consider the following subgroups of Heis,,(Z):

1 @ x2 - Zp-3 Tp-2 Tp-
o1 0 --- 0 0 0
o0 1 . : 0
0O 0 O 1 0 0
0
0 0
\ J
(
10 0 0 0
0 T
001 o : z,n
1 0 zop—3
0 1 zop_yu
0 0 1

Then, N = 7" ! and H = 7Z" 2. A straightforward computation shows that N <
Heis, (Z), and also N N H = Id,,. Hence, Heis,(Z) = N x H. O

Remark 5.3. The last lemma is still valid when R =R or R = C.
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As a consequence of the previous lemma, we give the relation that exists between
Obdim(Heis3(Z)) and the rank of Heis,(Z), giving with this a useful bound for the

following sections.

Lemma 5.4. Let I' be a group. If I' = Z"~! % Z"~2, then Obdim(T") > Rank(T).

Proof. Since Rank(I'; xI'9) < Rank(I';) 4+ Rank(I'2), for any groups I'; and I'y, we have
that Rank(Z"~! x Z"2) < 2n — 3.

On the other hand, by Corollary 4.15 and Lemma 4.16, it is satisfied

Obdim(Z" ! x z"2) > Obdim(Z"!) 4+ Obdim(Z"?)

(5.3)
= (n—1)+(n—2)=2n-3,

then, Obdim(I") > Rank(T"). O

From Lemma 5.2 and Lemma 5.4 follows,

Corollary 5.5. The following inequality holds,

Rank(Heis3(Z)) < Obdim(Heis3(Z)).

5.2 Kleinian subgroups of Heis3(R)

In this section we present an algebraic description of the Kleinian subgroups of Heisg(R).
The following definition and lemma allow us to use the classification of complex Kleinian

subgroups of Heis3(C) given in section 4.4.

Definition 5.6. Let I be a discrete subgroup of Heisg(R) acting on P%, and let A g, (I)
be the Kulkarni’s limit set of I'. We say that I' is a Kleinian group acting on ]P’]%{, if
Qru(T) = P2\ Agyu(T) is non-empty. In this case Qg (T) is a I-invariant non-empty

open set of P4 on which I' acts properly and dicontinuosly.

The natural embedding of Heisz(R) in Heisg(C), allow us to extend in a natural way the

action of Heis3(R) to P%. Indeed, the action is extended as complex Kleinian group.

Let T' be a Kleinian subgroup of Heiss(R) acting on P%. To prove that I is a complex
Kleinian group acting on P%, we work with the Kulkarni’s limit set A, (T") instead of

Qg (T), which it is equivalent, and easy to work.

By Definition 1.12,
Agu(T)r = LoU Ly U Lo,
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and
Agu(T)c = LoU Ly U Ly,

as the Kulkarni’s limit sets of I" acting on ]P’]%, and P2, respectively. Then we have the

following lemmas:

Lemma 5.7. Let I' C Heis3(R) be a Kleinian group acting on P%, and let Ly and Lo
the subsets of A (I')r and Ak (T)c, respectively. Then Ly = LoN ]P’]%{ )

Proof. Observe that if x € Lo, then x is a point in ]Pﬁ with infinite isotropy group, as

IP’?R - ]P’(%, thus z is a point in ]P’(% with infinite isotropy group, hence = € LoN IP’%&.

In the other direction, we define Sy := {x € P%|x has infinite isotropy group} as the set

of points with infinite isotropy group in ]P’(QC. By definition the closure of Sy is Lo.
Let %o be a point in LoNPZ, then there are two cases &y € So ﬂIP’f% or Ig € (EO\SO) QP%.

If g € Sy N IP’IQR, then Z( is a point with infinite isotropy group and belong to IF’%&, which
implies that x € L.

In the other hand, if T € (I;o \ So) NP, then there exist a sequence of distinct elements

T, in Sy such that g = lim Z,,.
n—oo

Let x, be a lifting of &, in C? such that z,, € S°, and let =g be a lifting of &g in S°.
Then there exist A € C* such that

o= A lim z, = lim Az,.
n—o0 n—oo

Observe that we can take the sequences in the sphere by a normalization. The condition

of belong to S assure the convergence in C? because S° is a compact, metric space.

Define y,, := R(\z,) and 2, := S(Az,,). As g is in S® we have

lim y, = R(xo) = zo,
n—oo

and

nh_{r;o zn = S(z0) = 0.
If we take [y,,] as the projectivization of y, in P%, we have that {[y,]}, is in particular a
sequence in IP’%. Moreover, as the action of the group is lineal on the complex numbers,
every element in the sequence {[y,]}, has infinite isotropy group. Hence nh_)rgo {lynl}n =
Zo. Thus zg € Ly. 0
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Lemma 5.8. Let I' C Heisg(R) be a Kleinian group acting on P%, and let L; and L
the subsets of A (I')r and Ak (T)c, respectively. Then the following are satisfied:
1. L) C I:l N [ED]%
2. L1NP% C LyU Ly.

Proof. To prove the first part, take x € L, then there exist v, € I' and z € IP’]%R \ Lo,
such that z = li_)m n(2). As IP’%g C P(QC and Lo = Lo N IP’%Q, we have
n o0

2 € PR\ Lo C PE\ (Lo NPR) = (PE \ Lo) U (PE \ PR),

as z € P%, thus z € P4\ Lo. Therefore z is an accumulation point in P2\ Lo, hence
S El N IP%&

For the second part, let
S = U{’y(:c) €PilyeT and, z € P%\ Ly},
be the union of accumulation points sets of the point orbits in ]P’(% \ Lo. Then, by
definition, the closure of Sy is El.
If 7o € L1 NP2, then there are two cases, either 7o € S1 N IP)I%Q or Ip € (El \S1)N IP’]%Q.

Let Zg be a point in S1 N IP)%{. Then for all n € N there exist a sequence of distinct

elements 7, in I' and a sequence I, in S7 such that 2o = li_>m V(T
n oo
Fix 29 € R? a lifting of %o such that zo € S>. And for each n, take v, (z,) a lifting of

Yn(Z,) also in S°. Then there exist A € C* such that

To = Anh_{go n(Zn) = nh_}rgo M) = nh_)n(f)lo Y (Azy,).

If we take the real parts of both sides in the previous equality, we obtain
Ty = §R(x()) - ER( lim ’Yn(Axn)) = lim ’Yn(ER()‘xn))
n—oo n—oo
Define y,, := R(Az,). For each n, take the projectivization [y,] of y, in PZ. Hence
Zo = [xo] = lim v, ([yn))-
n—oo

We have two cases for the elements of the sequence {[y,]},. The first is that each element
in [y,] has a finite isotropy group, except for a finite number of them. In this case, we

have that Z( is an accumulation point of points in IP]%Q \ Lo, therefore Zy € L.
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In the other hand, if there exist a subsequence {[y;|}; of {[ys]}» with infinite isotropy
group for each j, then Zy belongs to the closure of accumulation points with infinite

isotropy group, it means %y belongs to Lg. Thus, o € Lo U L.

Now, if #o € (L1 \ S1) NP%, then for all n € N there exist a sequence of distinct elements

vn € I' and a sequence of accumulation points Z,, € S; such that g = lim v, (Z,).
n—oo

As each I, is an accumulation point of point orbits in IF’?C \ E(), we can construct a
sequence Z,, € B(yn(%,),1/n) in P4\ Lo, such that Zo = nh_}ngo Tp,. From here on the
proof follows as in the previous case. Concluding that o belongs to Lo U L. Thus
LiNP2 C LoyU L. O

By the previous lemmas follows

Corollary 5.9. Let I' C Heis3(R) be a Kleinian group acting on P, and let Lo, L1 and
Lo, L the subsets of A kul(D)r and Agq(I')c, respectively. Then

LoULy = ([j()UIjl) ﬂIP’]%{

Lemma 5.10. Let I' C Heis3(R) be a Kleinian group acting on P%, and let Ly and Lo
the subsets of Agq(I')r and Ak (T)c, respectively. Then the following are satisfied:

1. Ly C EQ ﬁpﬁ

2. EQHP%CLOULlULQ.

Proof. Let © € Lo, then there exist a sequence of distinct elements ,, in I and a compact

set K in P% \ (Lo U L1) such that z = nhﬁrgo Yn(K). In this case, we have
K CPR\ (LoUL1) CPE\[(LoU L) NPR] = P&\ (Lo U L) N (PR \ PR).
As K C P%, thus K C P%\ (Lo U Ly), therefore x € Ly NPZ.
For the second part, let
Sy = U{’y(K) CPi|y el and, K C P2\ (LoU L;) is a compact set}’,

be the union of accumulation points sets of orbits of compact sets in P2 \ (Lo U Ly).

Then, by definition, the closure of Sy is Lo.

Let #p € Ly N P2, then we have two cases, either Zg € So NP% or 7 € (Eg \ S2) NPE.
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Suppose that o € So N ]P’%&. Then, for all n € N there exist a sequence of distinct
elements v, € I', a sequence of compact sets K,, C IF’(QC \ (EO U I:l), and a sequence of

points v, (%) € B(Zo,1/n) Ny, (K;,) such that g = lm 4, (Z,).
n—oo
Fix z¢ € R3 a lift of &g, and let 7, (z,,) be lifts of v,(&,), such that zq and v,(Z,) belong
to S® for all n. Then, there exists A\ € C* such that
0= Jim (o) = fi )

If we take the real parts of both sides on the last equality, we obtain

To = 8%(xO) = §R( lim ’Yn()‘l'n)) = lim ’Vn(%()‘xn))

n—o0 n—o0

Denote by y,, := R(Az,,). Take the projectivizations [zg] and [y,], of zo and y,, in P%.

Then, we have that oy = [z¢] = 1i_>m {[yn]}n in PZ.

If there exist a subsequence {[y;]}; of {[yn]}n such that {[y;]}; € (Lo U L), then ¢ =
lim {[y;]},; in P4, hence % belong to Lo U L.
n—oo

Now, assume that {[yn]}n ¢ (Lo U L1), except for a finite number of elements in the
sequence. As every element in the sequence {[y,]}, is a compact set, then {[y,]}, €

P2\ (Lo U L), hence &y € Ly. Therefore, 7o € Lo U Ly U Lo.

On the other hand, if #o € (Ly \ S2) NPZ. Then for all n € N, there exist a sequence

v, € T', and a sequence of points #,, € Sz, such that Zy = li_)rn Y (Zn).
n o

Construct a sequence I, € B(&n,1/n) N Ky, with K, € P\ (Lo N Ly). Then we have
that Zg = li_>m Y¥n(Zn;). Now the proof follows as in the previous case. Concluding that
n—oo

To € LoU Ly U Lo.

By Corollary 5.9 and Lemma 5.10, we have the following

Corollary 5.11. Let I' C Heis3(R) be a Kleinian group acting on P4 and extend the
action of I' to P2, then
Agu(Dr = Agu(T)e N PE.

Proof.

AKul(F)]R =LoULi ULy = (Eo U El U EQ) QP%Q = AKUZ(F)C ﬂ]p]%{
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Thus we have the following proposition:
Proposition 5.12. Let I' C Heisg(R) be a Kleinian group acting on Pﬁ, then T" is a
complex Kleinian subgroup of Heis3(C).
Proof. First we show that I' is discrete as a subgroup of Heisz(C). As I' is discrete in

Heiss(R), and Heisg(R) C Heisg(C), then I is discrete in Heiss(C).

By Corollary 5.11, Agyi(T)r = A (T)c OIP’]%Q. Therefore, if we consider the correspond-

ing regions of discontinuity of the Kulkarni’s limits sets, we have
Qu(D)r =P\ Axu(Dr C PE\ (Aku(D)e NPR) = (BE \ Axu(D)c) U (BE \ PR),

as QKul(F)R C ]P)]i, we have QKul(F)R C ]P%\AKM(F)(C = QKul(F)(C- Finally, as QKUZ(F)R
is a non-empty open set where I' acts properly discontinuosly, then Qp.;(I')c is so.

Therefore I" is a complex Kleinian group of Heisz(C).

5.2.1 Description of Kleinian subgroups of Heis3(R)

Now we present an auxiliary lemma that gives an upper bound to the rank of a Kleinian
group acting on ]P’%&.

Lemma 5.13. If I" is a discrete subgroup of PSL(3,R) acting on P such that I' & Z*

and the Kulkarni’s limit set of I', A (T), is a line [ in P2, then Rank(T") < 2.

Proof. As Ak (T') = I, we have that I" acts properly discontinuously on Q. (T') =
P2 \ I. By Definition 4.10, Actdim(T') < 2. Hence by Theorem 4.11, we have that
Obdim(T") < Actdim(T") < 2.

By hypothesis I 2 ZF, by Corollary 4.17, we have that Obdim(T") = Rank(I"). Therefore,
by Lemma 4.16, Rank(I") < 2, which concludes the proof. O
Using the the classification given in Section 4.4, see [4], and the previous results, we give

a description of the Kleinian subgroups of Heiss(R).

Theorem 5.14. Let I' C Heisg(R) be an abelian Kleinian subgroup, then:

1. The group T is finitely generated.

2. The group I is finitely presented.
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3. The group I is conjugate to one of the following groups:

(a) P1={(0,a,b)[(a,b) € Spang (W)},
where W C R? is a discrete R-linearly independent set with cardinality at

most 2.
(b) Lo = { (@, L(@) + 5 +w,2)|x € Spang (W1), w € Spany(Wa) },
where W1, Wy C R are additive subgroups such that

Rank(W7) + Rank(WW3) < 2

and L : Spany (W) — R is an additive function.

4. The group I is a Z-module and the rank of I" is at most 2. Moreover, if the rank

of I' is 2, we have:
(a) A presentation for Pj is:
P, = (C,D||C,D] = Id),

where

C = (0,nu1,nug), D = (0,mvi, muve),

with W = {(u1, u2), (v1,v2)} and n,m € Z.

(b) A presentation for L, is:

Ly = <E?F’[E7F] :Id>>

where
(nu)?

E = (nu,L(nu) — ,nu> , F=(0,mv,0),

with Wi = {u} C R, Wy = {v} C R, and m,n € Z.

5. The group I' can be expressed as an HNN-extension.

Proof. By Lemma 4.1, I' is a solvable group, with solvability length 2, thus I' is a
metabelian group. By Theorem 4.2, we conclude that I" is finitely generated. Which

proves Part 1.

Since, I' is a finitely generated metabelian group, by Theorem 4.5, I is a finitely presented
group, proving then Part 2.
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To prove Part 3, observe that we can use the classification given in Theorem 4.27, since

I’ C Heisg(R) C Heiss(C).
By hypothesis, I' is an abelian group.
From the classification given in Theorem 6.6, I' could be of the types Pi, P, I'; or L.

We claim that I' is neither of the type W), nor P. First, let us check that I' cannot be of
the type W,. This is because all of the eigenvalues of W), are distinct to 1, whereas all
the eigenvalues of I' are 1, but eigenvalues are preserved by conjugation. Now, I' is not
of the type Py, because for every I of the type Py the Kulkarni’s limit set A g (T') = P2,

hence Qg (T') = 0, but this contradicts that ' is a Kleinian group.

For groups of the types P, and £, the Kulkarni’s limit set is a line in IP)%K, therefore
Qxw(T) # 0. Moreover, the eigenvalues of elements of type P; and L, are 1, the same

of the eigenvalues of I'. Then, the type of I" is either Py or L.

Now we will prove that I' is a Z-module and that the rank of I' is at most 2.

a) Let I of type P;.

Let W be as in the hypothesis, and observe that P; = Spany (W) = Z* | where k;
is the rank of W. To do so, consider the group isomorphism 6 : P, — Spany (W)
given by:

(0,a,b) — (a,b).

Now, Spany (W) is a Z-module, then T is a Z-module. As Ag,(I') =1 € P, by
Lemma 5.13, we conclude Rank(I") = Rank(Spang(V)) < 2.

b) Let T of type L.

Let ky = Rank(WW7)+Rank(W3), then we have that £,, = Spany (W) xSpang (W) =
ZF2. In this case, the group isomorphism 6 : £ — Spany (W) x Spany (Ws) is given
by:

(m,L(z) = x; + w,a:) (2, w).

Then, as the direct product of Z-modules is a Z-module, we have that I' is a

Z-module. As Ag,(T) =1 € P%, by Lemma 5.13, we conclude that Rank(T") < 2.

In each case, I' = Z* where k is either k; or ky. Thus I' has the same presentation as

that of ZF.

Part 5 follows by Lemma 4.7. O
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Remark 5.15. We do not have non-abelian Kleinian subgroups of Heiss(R).
The non-abelian types groups, given in Theorem 6.6, are I'y, and W ..

If T is of type Ty, the Kulkarni’s limit set fills all of P4, which implies that Q. (I") = 0,
thus I' cannot be a Kleinian subgroup of Heis3(R).

The remaining case is when I' is of type W, .. In this case, the Kulkarni’s limit set is
just a line in Pﬁ, but the values of the entries in this type of groups involve non-real

complex numbers, whereby I' cannot be a discrete subgroup of Heisz(R).

Therefore, if a subgroup I' of Heisg(R) acts properly discontinuously on IP’]%, then I is

abelian.

5.3 Product of Kleinian subgroups of Heis3(R)

In this section, we have two goals: the first is to construct a group H of Heisz(R) from
the subgroups given in Theorem 5.14, and the second is to give necessary conditions

over the generators of H that hold whenever H is a Kleinian subgroup of Heisz(R).

Given two Kleinian subgroups, I'; and I'e, of Heis3(R), the group H generated by I'y

and I'y is:
H:=(T,Te)={y=mo0vo0---oy|if v; €1, then 1,711 € I's,t < c0}. (5.4)

Theorem 5.16. Let I';, 'y be Kleinian subgroups of Heisz(R) and H as in equation
5.4. If the groups I'; and T'y are of the same type and Rank(I';) - Rank(I'y) < 2, then H

is a Kleinian subgroup of Heisz(RR) acting over PZ.
By Theorem 5.14, the options for I'y and I's are P} v L.

Proof. We will prove the first part by contradiction, suppose that I'y is type P; and that
T’y is type Ly.

If we take ;1 € I'1 and o € I's, a direct computation shows that 19 # v9y1, hence H
is not an abelian subgroup of Heisg(R), but by Remark 5.15, there are no non-abelian

Kleinian subgroups of Heisz(R).

Taking Iy and I'y as abelian subgroups of the same type, then H is also abelian. Addi-

tionally, as I'; and I'y are Z-modules, we have that H is a Z-module, and thus a discrete

group.
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Now, for i,j € {1,2}, i # j, if I'; C T'j, then H = T';. If not, I'y & Z"* and I'y & Z"2,
with tq,to < 2, see Theorem 5.14. Then I'1 NI'y = Id, therefore H is the direct product
Iy x Ty =2 71 x 7t = 7! where by hypothesis, t = ¢ -to < 2. Thus H is isomorphic to Z
or to Z?2, in both cases, H act properly discontinuously by translations in IP)]%{. Therefore,

H is a Kleinian group. O



Chapter 6

Constructing discrete subgroups
of Heis3(C)

Motivated by the last chapter, the intention of the present chapter is to extend the
results obtained for Heis3z(R) to Heisz(C).

In the real case, we gave conditions under which the combination of two Kleinian sub-
groups of Heisg(R) generate another Kleinian subgroup of Heisg(R). In the complex
case, we will give conditions about the discreteness of the combination of two complex

Kleinian groups in Heisz(C).

We start by giving an algebraic description of the complex Kleinian subgroups of Heisz(C).
This description is based upon the classification given in [4], which we presented in the

preliminaries of Section 4.4.

In the last section, through a series of propositions and examples, we study all the
possible cases of combinations that appear in the complex case, and give conditions
under which the generated group of two complex Kleinian subgroups generates a discrete

subgroup of Heiss(C).

6.1 Description of complex Kleinian subgroup of Heis;(C)

The purpose of this section is to give an algebraic description analogous to the one given
for the Kleinian subgroups of the real Heisenberg group (see Theorem 5.14) for complex

Kleinian subgroups of Heisz(C).

Before stating the main theorem of this section, we will prove the following auxiliary

lemma.

48
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Lemma 6.1. If I' ¢ PSL(3,C) is a group acting properly discontinuously in a no-empty
open set of PZ and I' & ZF, then Rank(T) < 2.

Proof. By Definition 4.10, we have that Actdim(T") < 2, then Theorem 4.11 implies that,
Obdim(I") < 2.
Now by hypothesis I' = ZF, then by Lemma 4.16 we can conclude that
Rank(T") = Rank(Z*) = Obdim(Z*) = Obdim(T") < 2,

which finishes the proof. O

Due to the extensive descriptions, we divided the presentation into two propositions,
first we present the description for the abelian subgroups of Heis3(C), and then for the

non-abelian subgroups of Heisz(C).

Proposition 6.2. Let I' be a discrete subgroup of Heis3(C) acting properly discontin-
uously on a non-empty open set of IP’(QC, then I' is a finitely generated, finitely presented

group and virtually an ascending H N N-extension of a finitely generated solvable group.

Proof. First observe that, I' € Heis3(C) C T'(3,C), then by Lemma 4.1, the length of
solvability of I is at most 2, then by definition 4.3, we have that I" is a metabelian group.

By Theorem 4.2, we have that I' is a finitely generated group. Thus, I is a metabelian,
finitely generated group, hence by Theorem 4.5, we have that I" is a finitely presented

group.

Now, by Theorem 4.8, the group I' contains a group of finite index which is an ascending
H N N-extension of a finitely solvable group. Nevertheless, we have that I' is itself an
ascending H N N-extension of a finitely solvable group. From the Definition 4.6, take
' =G = (S, R), where S is the set of generators of G, R is the set of the relations in G,
and t = B. If we consider the homomorphism ¢ from the Definition 4.28, then I' can be

expressed as an ascending H H N-extension of G as follows:
T = (S,t|R,tAt ™' = p(A) V A€ S) =T,.

O

Theorem 6.3. Let I' be a discrete, abelian subgroup of Heisz(C) acting properly dis-

continuously on a non-empty open set of ]P’?C, then I' must to be one of the following

types:
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1. P = {(0,a,b)|(a,b) € Spang (W)},

where W C C? is a discrete additive R-linearly independent set with cardinality

at most 2, also:

(a) The group I is isomorphic to Z*, with k = 1,2.
(b) The rank of I is at most 2.

(¢) If k =2, the group I' has a presentation given by
(A1, As|[A1, Ag] = Id).
2. Py = {(a,b,0)|(a,b) € Spany (W)}, where W C C? is a discrete additive or rank
at most two. Also:

(a) The group I is isomorphic to Z*, with k = 1, 2.
(b) The rank of I is at most 2.

(c¢) If k =2, the group I' has a presentation given by
(A1, As|[A1, Ag] = Id).

3. Ly = {(m,L@) + ‘%2 +w,x) ‘w eWi,x e Wz}, where W7 C C is a discrete ad-
ditive subgroup and Wy C C such that L : Wy — C is an additive function that

satifies:

(a) If Wy is discrete, then Rank(W7) + Rank(W5) < 4 and
I =~ ZRank(Wl) ® ZRank(Wg)‘

(b) If Wy is non-discrete, then Rank(W;) + Rank(Ws) < 4. Moreover, for all

sequences (w,) C Wi, and any sequence (x,,) C Wy converging to 0,

lim L(z") + w, = co.
n— oo

In thiscase ' 2 ZPZDZ D Z.

In both cases, I' is an abelian group and has a presentation given by

<A1,A2,A3,A4 U{145, 45] = Id}> :

i#]

Proof. From the classification given in Theorem 4.27, we discard that I' could be of the

abelian type W,. That is because, by conjugation the eigenvalues are preserved, but
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all the eiganvalues of I' are equal to 1 and all the eigenvalues of W), are different to 1,

concluding that I' cannot be of the type W,.
Then, the abelian types left, from Theorem 4.27, to which I'" can be are Py, P, or L,,.

Now we will describe what happens in each case.

1) The group I of type P;.

i) By Lemma 4.26, we have that Spany (W) = ZF, with k& = Rank(WW). Now

consider the group isomorphism 6 : I' — Spany, (W) given by:
(0,a,b) — (a,b).

Thus, we have that I' = Spany (W), hence I' & Z* with k = 1, 2.
ii) The proof that Rank(I") < 2, follows from Lemma 6.1.

iii) To give a presentation for ', we will use the fact that I' = ZF. Then if k = 1,

a presentation for I' is given by the presentation of Z:
(A]D).
If k = 2, a presentation for I' is given by the presentation of Z2:
(A1, As|[A1, As] = Id).

Now in the following two cases, parts (ii) and (iii) are proven exactly in the same

way as in last case, so we just give the proofs of parts (i) in each one.
2) The group I of type Ps.

i) By Lemma 4.26, we have Spany (W) = Z*. Now, by the group isomophism
0y : T' — Spany (W) given by

(a,b,0) — (a,b),

we have T' 2 Spany (W). Hence I' = ZF.

3) The group I of type L.

i) By the group isomorphism 63 : I' — Spany, (W} x W) defined by
72
(x, L(z)+ 5 + w,x) = (2, w),

we have I & Spany, (W) x Ws).
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We continue with the case when I is of the type of a non-abelian group of Heisz(C).

Theorem 6.4. Let I' be a discrete, non-abelian subgroup of Heisz(C) acting properly
discontinuously on a non-empty open set of IP%, then I' must be one of the following

types:

1. T, = {(k+lc+mm,ld+m(/~c+lc) + (g)x—l—my,m)‘k,l,m S Z}, where w =
(z,y,p,q,7), and x,y € C, p,q,r € Z such that p,q are co-primes, ¢ divides
r,c=pq ' and d =r"1. Also:

(a) The group I is isomorphic to the semi-direct product Z? x Z.
(b) The group I" has rank 3.

(c¢) T has a presentation given by,
(A1, Ag, As|[A1, As] = 1d,[[Az, As], A1] = 1d). (6.1)
2. Wape = {(0,w,0)(1,0,1)" (a4 ¢,b,¢)"n,m € Z, we W}, where W C C is a
discrete additive subgroup and a, b, ¢ € C are such that:

(a) {1,c} is a R-linearly dependent set but Z-linearly independent set and a €
WA {0},
(b) {1,c} is a R-linearly independent set and a € W \ {0}.

Furthermore,

i) If rank of W is one, the group I' is isomorphic to Z? x Z, the rank of T' is

three and I' has a presentation given by:
(A,B,C|[A,B] =[A,C] = 1d,[[B,C|,B] = 1d,[|B,C],C] = Id).

ii) If the rank of W is two, the group I is isomorphic to Z> x Z, the rank of I'

is four and I' has a presentation given by:
(A1, A2, B,C|Ry, Ra).

where R; is the relation [A;, As] = [A4;, B] = [A;,C] = Id with i = 1,2, and
Ry is the relation [[B, C], B] = [[B,C],C] = Id.

Proof. The non-abelian possibilities left from Theorem 4.27 are when I is of the type
Iy or Wepe.
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a) The group I' of the type I'y,.

i)

i)

To prove that I' is isomorphic to the semi-direct product Z? x Z consider the

following groups:
M = {(k,0,0)|k € Z},

N ={(le,1d,0)|l € Z} ,and

i {(on (5 )2}

where ¢, d, x and y are fixed complex numbers and ("27’) is the binomial coeffi-
cient. Simple computation shows that (k,0,0) = (1,0,0), it means, (k,0,0)
is the k-th iteration of (1,0,0). In the same way (Ic,1d,0) = (¢, d,0)" and
(mx, (gl)x + my,m) = (z,y,1)™. Thus, M, N and R are isomorphic to Z
via the isomorphisms:

(1,0,0)" — &,

(c,d,0)! — 1, (6.2)

(z,y, 1) = m,

respectively.

Now, if we take G = M x N, then
G ={(k+lc1d,0)|k,l € Z,we W},

a simple computation shows that G is an abelian group. This implies that G
is a normal subgroup of I', moreover, if k # 0 and [ # 0, G is isomorphic to
Z2. The group R is an abelian subgroup of I' isomorphic to Z. In fact the
intersection G N R is trivial, indeed if we suppose that there exist (z1, z2, z3)
in G N R, the condition (x1,x9,x3) € G, implies x3 = 0. But (x1,z9,23) € R
implies x3 = m # 0 € Z, which is a contradiction. Finally, we can write every
element in I' as a product of an element in G by an element in R. Therefore,
I'=GxR=17Z>x1Z.

We claim that the set,

{(1,0,0), (¢, d,0), (2,9, 1)},

is a generating set for I' with minimal cardinality. Thus Rank(I") = 3.

As in the previous part, I' = GR, where G = Span;{(1,0,0), (¢,d,0)} and
R = Spany{(z,y,1)}, so the set {(1,0,0),(c,d,0),(x,y,1)} generates I'.

As T' is a non-abelian group, Rank(I') > 1. Let us show that there is no

set with two elements generating I'. By contradiction, suppose that there is
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iii)

a two elements set, {Bj, By}, that generates I', where By = (z1, 22, 23) and
By = (w1, w2, ws3).

Then, there exist ry, 72,73, 51, S2, 3 € Z such that,

(1,0,0) = B}' x B3
(¢,d,0) = B> x Bj? (6.3)
(x,y,1) = B}® x B3*.

From these equations, we obtain the following systems of equations,

rz1 + sqwy =1,
roz1 + Sawi = ¢, (6.4)

r321 + S3wi = x,

r123 + s1ws =0,
r2z3 + sawg = 0, (6.5)
r3z3 + Sgws = 1.

—S1ws3
ry

From the first equation of system 6.5 we get z3 = substituting in the

second and third equations of this system we obtain

w3(r182 —res1) =0,
( ) (6.6)
wg(Tlsg — 7’381) =1.

Now, ws # 0, because if wy = 0, then z3 = 0 which is not possible, because
r3zs + ssws = 1. Thus

r182 — ras1 = 0. (6.7)

1—sjwq
71 )

Now, from the first equation of system 6.4, we get z; = substituting
in the second equation of the same system we obtain wy (1152 —r281) = ¢ — 19
and ro = ¢, by equation 6.7. As {1,c} is Z-linearly independent set, and
ro € Z, we have a contradiction.

Then, Rank(I") = 3.

Let us A; = (1,0,0), Ay = (¢,d,0) and A3 = (x,y,1). A presentation for I’y
is given by
((1,0,0), (¢, d,0), (z,y,1)|R),

where R is the following set of relations,

[A1, Ao] = [[A1, As], Ai] = [[A1, As], A3 (6.8)



Chapter 6. Constructing discrete subgroups of Heiss(C) 55

b) The group I' of the type Wy p ..

i) To prove that T is isomorphic to the semi-direct product Z* x Z with k = 2, 3,

consider the following groups:

M ={(0,w,0)[w € W},
(e Cher)

R={(a+¢b,c)"ImeZ},

and,

where a,b and c are fixed complex numbers, (g) is the binomial coefficient.
Direct computation shows that (n, (g),n) = (1,0,1)™.

Now, M = W, via the isomorphism (0, w, 0) — w. As W is a discrete additive
subgroup of C, the group W is isomorphic to Z or Z2. Thus M is isomorphic
to Z or Z2.

On the other hand, V and R are both isomorphic to Z via the isomorphisms,

(a+c¢,b,c)" —m, .

respectively.

Now, take G = M x N as

o={(n(5) =0

Hence we have that G is an abelian group, which implies that G is a normal

nEZ,wEW}.

subgroup of I'.
Then, if W = Z, G is isomorphic to Z?, and if W = Z?2, G is isomorphic to
73. Observe that the intersection G N N is trivial, that is because if we take

(.%‘1,132,1‘3) € GN N, then

(71, T2, 73) = (n, (Z) +w7n>
(ot ()

which implies n = m(a + ¢) and n = me, by hypothesis a € W \ {0}, thus

(6.10)

m = 0, concluding that (x1,z2,z3) = (0,0,0).
In addition, it is satisfied that I' = GN. Therefore, I' = G x N = ZF x Z,
with k = 2, 3.
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ii) Let Rank(WW) = 2, and take w;, wy € W such that W = (wq,ws). For i =1,2

consider
A; = (0,w;,0), B = <n <’;>n> and C' = (a + ¢, b,c)™. (6.11)
Observe that the set
{41, As, B,C|W = (w1, w2),n,m € Z},

is a minimal generating set for I'.

O

Corollary 6.5. If I is an abelian complex Kleinian subgroup of Heis3(C), then T is a

Z-module.

Proof. By the proof of the last theorem, if I' is of type Py or Ps, then I' is isomorphic
to ZF with k < 4, and thus T is a Z-module. If T is of type L., then T' is isomorphic to
Spang (W, x W,,), which is a Z-module. O

Putting together Proposition 6.2, Theorem 6.3 and Theorem 6.4 we get the main theorem
of this section.

Theorem 6.6. Let I" be a discrete subgroup of Heiss(C) acting properly discontinuously
on a non-empty open set of IP’(QC, then I' is finitely generated, finitely presented and is

virtually an ascending H N N-extension of a finitely generated solvable group.
Moreover, we have that:
1. If I' is an abelian subgroup, then I' is of the type P, P or L, described as in
Proposition 6.3.

2. If ' is a non-abelian subgroup, then I is of the type Iy, or Wy, ., described as in
Proposition 6.4.

6.2 Products of complex Kleinian subgroups of Heiss(C)

In this section, we give the main result of this chapter: for I'y and I'y complex Kleinian
subgroups of Heisz(C), we give conditions under which the generated group H = (I';,I'2)

is a discrete group.
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We divide the results in three parts, first the case when I'; and I'y are abelian, the
second case is when one of the groups is abelian but the other is not, and the last case

is when both are non-abelian. For each case we give suitable examples.

Notice that for the real case, every Kleinian subgroup and every product of subgroups

of Heisg(R) are abelian.

We will start by given some auxiliary results and notation. Given a group I', we denote
by St the minimal set of generators of I'. In this way, the rank of I' is the number of
elements in Sr. Now, given two groups I'; and I's, we denote by St, * Sr,, the set of all

the products of all the elements in St, by all the elements of Sr,.

The following lemma gives a necessary and sufficient condition for an additive subgroup

of R™ to be discrete. This condition is an algebraic obstruction. See [7].

Lemma 6.7. An additive subgroup A of R" is discrete if and only if A is a lattice, that
is, there exists an R-linearly independent subset W C A such that A = Spangz(W).

As a consequence, we proved the following corollary.

Corollary 6.8. Let W be a set of m vectors of R”. Then, Spany, (W) is a discrete group
if and only if
dimg(W) = dimr(W). (6.12)

Proof. 1f Spany, (W) is discrete, by Lemma 6.7, there exists an R-linearly independent
set W’ of W such that Spany(W’) = Spany(W). Then,
dimg(W) = dimg(W')

T (6.13)
< dimg(W).

Since for any set of vectors W of R™, it is satisfied that dimg(W) > dimg (W), then

dimg(W) = dimg(W).

Now, for the reciprocal, if W is an R-linearly independent set, then dimg(W) =
dimg(W) < n. Suppose that Spang (W) is not discrete, we claim that dimg(W) >
dimg ().

As Spany (W) is not discrete, by Lemma 6.7, we have that there is no R-linearly inde-
pendent subset W’ of W such that Spany,(W’) = Span, (W).
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Suppose that m = dimg(W) < n, and take wy € W. As {w;} is an R-linearly inde-
pendent subset of W, Spany({w1}) # Spany(W). Then, take wy € Spany (W) such
that we ¢ Spang({w1}), as {wy,ws} is an R-linearly independent subset of W, we
have that Spany({wi,w2}) # Spany(W). Observe that in particular {w;, w2} is an
Q-linearly independent set. Following in this way, we can take w,, € Spany (W) such
that wy, € Spang({w1, ..., wm-1}), then {wy, ..., w,,} is an R-linearly independent sub-
set of W, such that Spany({w1, ..., wy}) # Spany (W), in particular, {wy, ..., w,,} is an
Q-linearly independent set of W. As Spany({wi,...,wy}) # Spany (W), there exists
Wm41 € Spang (W) \ Spany ({wi, ..., wn }) such that the set {wy, ..., wm41} is R-linearly
dependent but Z-linearly independent subset of W. Thus, {wi,...,wp4+1} is Q-linearly
independent set of W, and dimg({wi, ..., wm41}) is greater that m. Hence, if W’ is a
subset of W such that Spany(W’) = Spang (W), then dimg(W') = dimg(W') > m. This

concludes the proof. O

We now give some properties about the group p3(I') := Im(ps|r), introduced in the

preliminares.

Lemma 6.9. Let I'; and T’y be subgroups of Heis3(C) and H be the generated group
(I'1,I'2), and consider the projections p; : H — C, with j = 1,2, 3, defined as pj(z1, 2, 23) =
xj. Then, p;j(H) C Spang(M;), where M; is a subset of C given by:

My = {Spl(F1)7Sp1(F2)}’

My = |J {8500 S * Spsrn} U Sy * Sporn b (6.14)
s€{1,2} s,t€{1,2}

M3 = {Spg(F1)7 SPS(FQ)}'

Proof. To prove this lemma, is enough to compute the product of any four elements

between I'1 and I's.

Let take v € H and suppose that v = v yr417r+27r+3 where v, vr42 € I't, Yrg1, 743 €
Iy and v, = (zk, Yk, 2x) for each r < k < r + 3. Then, a simple calculation shows that

Y 1= YVi41Y+27+3 = (w1, wa, w3) where:

w1 = (Tj + zj42) + (Tj+1 + T543),
wy = (Y5 + Yjr2) + (Yj+1 + Yj+3) + 2j+125 + 2j43xj42 + (Zj42 + 2j43) (25 + xj41),

w3 = (25 + zj42) + (2j41 + 2j+3).-
(6.15)

By Equation 6.15, w; € Spang(M;).
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To conclude the proof, observe that multiplying v by the left by 4" € I's, does not change
the sets W;’s.
/ / / /
Yy = (l‘ Y,z )(w17w2aw3)7
(6.16)
= (2' + w1,y +wy + w3, 2+ ws).
Which satisfy that p;j(v'v) € Spang (). Similarly, the right multiplication of v by
v € I', does not change the sets M’s either. O

Lemma 6.10. Let I'; and I'y be subgroups of Heisg(C) and H be the generated group
(I'1,T2). Then, the group p3(H) = Spang({Sp,r,)s Sps(rs)}). Moreover, p3(H) is dis-

crete if and only if

dzm@({ p3(T'1)» Spg(Fg)}) - dsz({ 3(I'1)» Sps Fz)}) (617)

Proof. By Lemma 6.9, p3s(H) C Spanz({S

pa(T1)> Spa(To) })- Then, we will prove that

given an element x € Spany ({Sy,(r,), Spy(r,)}), there exist an element v € H such that

p3(y) = z.

If x € Spang ({Sp,(r,), Sps(rs)}), We can write = as the sum

T = Zarxr + Zﬁtxta

where o, 8t € Z, x, € Sp3(]_"1) and x; € Sp3(p2).

Now, for each z, there exist a v, € I'; such that p3(v,) = z,. AsT'j is a group, v € I'y,
and thus, the product [ [y~ belongs to I'y. By the product defined in Equation 4.14, the
third coordinate is additive, so p3([[75") = > ay-2r. Analogous, there exist [[7;" € I'
satisfying ps([[ /") = D>_ Brxe. If we define «y as the product [[v& - [[ ", we are done,
since v € H and p3(y) = =.

Then, the group p3(H) is discrete if and only if Spany ({.S,,r,), Sp,

(ro)}) is a discrete group if and only if

(ry)}) is discrete. By

Corollary 6.8, Spany,({.Sy,(r,), Sp,

dzm@({ p3(T1) 7Sp3(F2)}) - dsz({ 3(I'1)s Spg Fz)}) (618)

O

6.2.1 The abelian case

In this section, given I'; and I's two abelian complex Kleinian subgroups of Heis3(C) and
the generated group H = (I'1,T'2), we characterize and give restrictions to the groups

ps(H) and Ker(ps|m), to make H discrete.
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Recall that the abelian types of complex Kleinian subgroups of Heiss C are:

P, ={(0,a,b)|(a,b) € Spany W}, (6.19)
with W, C C? set of R-linearly independent points.

Py, = {(a,b,0)|(a,b) € Spany, Wy}, (6.20)

with Wy C C? additive discrete subgroup with rank at most 2.

2

Lo = {(z,L(z) + % +w, 2|z € Spany, Wy, w € Spang, Wy}, (6.21)

with W,, € C an additive discrete subgroup and W, C C an additive group and L :
Spany (W,) — C an additive function, subject to the following conditions:
1. if W, is discrete, then rank(W,,) + rank(W;) < 4.

2. If W, is not discrete, then rank(Wy,) < 1, rank(Wy,) + rank(W,) < 4 and

lim L(xy) + w, = 0o (6.22)

n—oo
for every sequence (w,) C W, and any sequence (x,) C W, convergent to 0.

Proposition 6.11. Let I'; and I'y be abelian complex Kleinian groups of Heisz(C) and
H the generated group (I'1,T's). If T'y is of type P, and T’y is of type P or type Ly,

then we have:
1. If K(H) := Ker(ps|m), then
K(H) = (K@)} UIKE}U (i e e Tup e D). (623)

2. Given the set M = {S,,(1,), Sps(Ta)> Spy (1) * Sps(Ta)> Spi (D) * Sps(12) 5 if the equa-

tions
dimQ(Spl(pl)) = dimR(Spl(pl)) < 2, (6.24)
and
dimg(M) = dimp(M) < 2, (6.25)

are satisfied, then K (H) is a discrete group.

3. The group p3(H) is discrete if and only if

dimQ(Spg(pg)) = dimR(Spg(pg)) S 2. (6.26)



Chapter 6. Constructing discrete subgroups of Heiss(C) 61

4. If K(H) and p3(H) are discrete groups then the group H is discrete.

5. Let I's be of type P;. If H is a discrete group, then K (H) and ps(H) are discrete.

Proof. [Part 1] Observe that v € K(I'1) U K(I'y), implies p3(y) = 0. Now, if v €
{’yﬂwflm €I,y € Fg}, such that v = fyﬂwj_l, we have

p3(v) =p3(vivy ) = ps(vg) +ps(i) +ps(r;) (6.27)

=p3(7j) + p3(vi) —p3(%’) =p3(vi) = 0.

Hence, for v € <{K(I‘1)} U{K([T2)} U {ijﬂflhi el'y,v € F2}>, is satisfied p3(vy) =
0 and thus v € K(H).

For the proof in the other direction. Let v € K(H), such that v = y1y2 - -+, with ; €
I’ for all ¢ even and 7; € I's for all j odd, and suppose v,, € I's. We will show that we can
express 7 as a product of elements in K (I';) and elements in <{’yj’ymj_1 |vi € T'1,75 € F2}>.

As v € K(H), we have that p3(y) = 0, furthermore p3(v;) = 0 for all v; € I';. Then:

p3(7) =p3(1172- - Yn)
=p3(71) +p3(y2) + -+ p3(m) (6.28)
=p3(71) +p3(73) + - +p3(m) =

On the other hand, we can rewrite v as follows:

Y= MYRVEVVVe e
M2 (V)35 T
(M17277 )N Y3Y4Y5%6
(my297 ) (173)71(7173) T (198) 1576 < (6.29)
= (M2 D) ra(nrs) )6

= [y ) va(ns) (s ys) v (s s) - [vavs el

Observe that the last element, 173 - - - 7y, in the Equation 6.29, belongs to I'y. Morover,

by Equation 6.28, p3(y173 -+ - n) = p3(71) + p3(73) + - -+ + p3(m) = 0, then the product
Y173 - - - Yo, belongs to K (I'g). Thus, we have managed to write 7 in the desired form.

If we take v in K(H), starting or ending with an element of I';, we can repeat the

previous process in the second element of the decomposition of ~, that belongs to I's,
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until the last one that belong to I'y. As K(I'y) = I';, we have written any element of
K(H) as a product of elements in K(I'1), K(I'2) and <{7j%'y;1|% el € F2}>.

[Part 2] By the last item K (H) = (K (I'1) U K(I's) U {yjmj—l\% €Ty, € rz}). On
the other hand, K(I'1) = I't, K(I'2) = Spang(W,,), and if we take ¥ = ’yjfyfyj_l, then
p1(7) € Spang(Sy,(r,)) and p2(7) € Spang(M). Therefore, if v € K(H), we have
p1(7) € Spang(Sp,(r,)) and p2(y) € Spang (M), thus if pi(K(H)) and pa(K(H)) are
discrete, then K (H) is discrete. If Equations 6.24 and 6.25 are satisfied, Spany (S, r,))
and Spany (M) are discrete, and then K (H) is discrete.

[Part 3] As S,,r,) = {0}, by Lemma 6.10, the group p3(H) is discrete if and only if

equation 6.26 is satisfied.

[Part 4] By contradiction. Suppose H is not a discrete group and that K(H) and p3(H)
are discrete subgroups. As K(H) < H, by the First Isomorphism Theorem we have

H/K(H) = ps(H). (6.30)

Since H is not discrete, then there is an infinite sequence of distinct elements (v,,) C H,
such that v, — (0,0,0) as n — oo. Observe that only a finite number of the elements
of () could belong to K(H), otherwise K (H) would not be discrete. Now, consider
the projection p3|g : Heiss(C) — p3(H). As p3|g is a continuous group homomorphism,
p3(vn) is a sequence of distinct elements in p3(H) such that ps(v,) — 0 as n — oo,

which is a contradiction because ps(H) is discrete. Then H is discrete.

[Part 5] Let I'y be of type Py, and suppose H discrete. As K(H) C H, the group K(H)

is discrete. Now, as p3(H) = Spanz(S

pa(T2)) = P3(l'2), and p3(I'2), by definition, is

discrete, then p3(H) is discrete.
O

Observation 6.12. Note that Item 5 in Proposition 6.11 is just a partial converse of
Item 4, because we are not considering the case when I's is type L£,,. That is because,

in this case, the reciprocal is not always satisfied, as we see in the following example.

Example 6.13. Let us consider I'y = {(a,b,0)|(a,b) € Spanz(Wi)}, where Wy C C?
is a set of R-linearly independent vectors, so I'y is of type P». And let I'y = {(=, % +
w(z),z)|r € Spany(W,),w(x) € Spany(W,)} where W, = {1,4,iv/2,+/2} and W, =
{1,1}, so I'y is of type L, and define w(z) by the map w : Span; W, — Span, W, such
that for some a,b,c,d € Z, w maps x = a + bi + ci/2 4+ dv/2 to (a — d) +i(b— c), for all
x € Spang (W), .
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As dimg(Wy) = dimr(W,,) = 2, by Corollary 6.8, Spany(W,,) is discrete. Thus the

image Im(w) C Spany(W,,) is a discrete set of points.

Under these conditions we claim:

1. The group H is a discrete group.

Let us prove that by contradiction. Suppose H is not a discrete group, then there
is a sequence of distinct elements (h,) of H, such that (hy,) — (0,0,0) as n — oco.
As (hy,) converges pointwise, we have pa(h,) is a sequence of distinct elements of
p2(H) such that pa(hy,) — 0 as n — oo. Observe that pa(hy) = ((z,) + w(zy),
where ((z,,) is a sequence obtained by the multiplication rule and {(x,) — 0, but
in particular the sequence of distinct elements (w(x,)) converge to 0 in I(w), but

this contradicts the fact that Im(w) is discrete. Then H is a discrete group.

2. The group p3(H) is not discrete.

Observe that p3(H) = Spany({1,4,iv/2,v/2}). As dimg(W,) = 4 is different from
dimg (W) = 2, by Corollary 6.8, the group p3(H) is not discrete.

Thus H is a discrete group, but ps(H) is not.

Proposition 6.14. Let I'; and I'y be abelian Complex Kleinian groups of Heis3(C) and
H be the generated group (I'1,T's). If T'; is of type Py and T’y is of type L, then we

have:
1. Let K(H) := Ker(ps|g), N := p3(I'1) Np3(T2), v € K(H) and p3(y) € N. Then
we have two options for K(H):

a) If N is trivial, then:
(i) < ({7 i € Tiy €T b ULKTD}U{ET)L} ). (631)

b) If N is non-trivial, then N is a torsion free, additive group with Rank(N) less

than or equal to 4. In this case,

K(H) € ({{p3" (M)} U{K T} U{K(T2)}} ). (6.32)

2. Let us M be the set {Sp, 1), Spo(Ta)s Spi (D) * Spa(T1)> Spi(Ts) * Spy(ra)}- If the
equation

dimg(M) = dimg (M) < 2, (6.33)

is satified, then the group K(H) is discrete.
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3. The group p3(H) is discrete if and only if
dimq({Spy(ry)s Sps(r2) }) = dimr({Spy(r1)s Sps(ra)}) < 2. (6.34)
4. If K(H) and p3(H) are discrete groups, then the group H is discrete.

Proof. [Part la] Let v € K(H), and suppose that v = y17y2 - - -y, with 7; € 'y for all ¢

even and v; € I's for all j odd. Proceeding as in Equation 6.29, we obtain:

Y= N2 N

= [(my271 D) va(nys) (ravsys)ve(vsys) - (s - )]
(6.35)

As, 71 € I'g, from the previous Equation 6.35, we have ~, is the last element in the

decomposition of v that belongs to I's, and thus y1v3--- v, € I's.
To end the proof, it is enough to verify that ;s - - -, belongs to K (I's).

If we apply ps in both sides of Equation 6.35 we obtain:

p3(v) = ps(nv2w)
p3((r1v291 ) (r1v8)va (173) (s ys)v6 (v s) Th e (s )
= p3((my2 ) + p3((ny3)7a(r173) 1) + p3((17395)v6 (M1 375) )+
A p3((rz o))
= [ps(r2) +p3(va) + - +p3(vs)] + [p3(n1) +p3(v3) + -+ p3(vr)],

(6.36)
where 5 is the last element in the decomposition of « that belongs to I';.
Asye K(H),
0 = [ps(12) +p3(ya) + - +p3(vs)] + [ps(v1) +p3(ys) + - +p3(w)),  (6.37)
then,
[p3(v2) +p3(ya) + -+ +p3(vs)] = —[ps(m) +ps(ys) +- - +ps()].  (6:38)

Observe that as the left side of Equation 6.38 belongs to p3(I'2) and the right side of
Equation 6.38 belongs to p3(I'1), we have ps(v) € N, which by hypothesis is trivial.

Thus, p3(v1y3---¥r) = p3(11) +p3(73) + - - - +p3(vr) = 0, therefore v1vy3--- v, € K(I'p).
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[Part 1b] Suppose now that N is non-trivial. As I'; and I'y are abelian and torsion free
groups, isomorphic to ZF where 1 < k < 4, see Theorem 6.3, and N C I';, i = 1,2, then

N is also an abelian torsion free group. Therefore, I'y, I's and N are Z-modules.

AsRankps(I';) <4,i=1,2,and N C p3(I';) as Z-modules, thus Rank N < Rank p3(T';) <
4. If v € K(H), form Equation 6.37, we claim that there are elements in the first sum
canceled by elements in the second sum. Observe that both sums can not be zero at the
same time, because IV is non-trivial. Then, IV is the set of elements that are canceled
in the previous way. Thus, the product of the preimages of the p3(y;) in Equation 6.37
belong to pgl(N). Therefore,

K(H) C ({p3" (N) UK(I'1) U K (T2)}).

[Part 2] As S, (r,) = {0}, by Lemma 6.9, po(H) C Spang(Ma) where

My = {Spa(01)> Spa(r2): Spu(r2) * Spa(r1)s Spr (1) * Spa(ra) -
The proof follows by Corollary 6.8.
[Part 3] As S, () = {Spy(r1)s Sps(r2)}> by Lemma 6.10, we are done.
[Part 4] This proof follows as the proof of Item 4 of Proposition 6.11.
O
By the proofs of Proposition 6.11 and Proposition 6.14, we obtain the following lemmas,
which will be useful hereinafter.

Lemma 6.15. Let I'; and I'y be complex Kleinian subgroups of Heisg(C), and H be
the generated group (I'1,T'2), then we have:

1. If p3(Ty) = {0}, for i = 1 or i = 2, then
K(H) = ({KIT)}UAK T U {n; e € Ty €T ). (6:39)

2. If p3(Ty) # {0} for all ¢, let us consider N := p3(I'1) N p3(I'2), v € K(H), and
p3(y) € N then

a) If N is trivial, then

k() < ({{rm; i € T1y € T UKD} UK} ). (6.40)
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b) If N is non-trivial, then NV is a torsion free, additive group with Rank(N) less

than or equal to 4. In this case
K(H) € ({{p3" (N} U{K T} U{K(T2)}} ), (6.41)

For the following lemma see the proof of part 2 of Proposition 6.11.

Lemma 6.16. If p;(H) and pa(H) are discrete, then K(H) is discrete.

The following lemma follows by the proof of the fourth part of Proposition 6.11.
Lemma 6.17. If the groups K(H) and p3(H) are discrete, then H is discrete.

Lemma 6.18. If the groups H, p3(I'1), and p3(I'2) are discrete, then K (H) and p3(H)

are discrete.

Observation 6.19. Notice that the condition that I's is type L., gives a partial converse
of Item 4 of the Proposition 6.14.

We now give an example where H is a discrete group with I'; type Pi, and I's type Ly,
such that p3(H) is not.

Example 6.20. Let us consider,
I't ={(0,a,b)|(a,b) € Spang(W2)},

where Ws is an additive discrete subgroup of C with rank at most 2, so I'; is of type P;.
And let )
x
Iy = {(=x, 5 + w(z),x)|x € Spany(W,),w(x) € Spany (W)},
where W, = {1,4,iv/2,v/2} and W,, = {1,i}, so I'y is of type L,. To define w(z)
consider the map w : Spany W, — Span, W,,, such that w maps x = a+bi +civ2+dv2

to (a —d) +i(b—¢), for all = € Spany(W;) and a,b,c,d € Z.

Observe that Im(w) C Spany(W,,) is a discrete set because, by Corollary 6.8, Spany (W,,)

is discrete.

Under these conditions we have:

1. The group H is discrete.

Let us prove this by contradiction. Suppose that H is not a discrete group, then
there exist a sequence of different elements (f,) of H, such that f,, — (0,0,0) as

n — oo. As (f,) converges pointwise, we have that pa(fy,) is a sequence of distinct
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elements of pa(H) such that pa(fn) — 0 as n — oo. As pa(hy) = n(z,) + wa,,
where 7(x,,) is a sequence obtained by the multiplication rule and n(z,) — 0, and
in particular, (w(zy)) is a sequence of distinct elements in Im(w) that converge
to 0 as n — oo, but this contradict the fact that Im(w) is a discrete set. Then H

is a discrete group.
2. The group p3(H) is not discrete.

Observe that p3(H) = Spany({Sy,p,), S

ps(Lw) ). Then, by Corollary 6.8, p3(H)

is not discrete, because dimq({Sp,(p,)s Sps(£.)}) = 4, and on the other hand,
dimp ({Sps(P1)> Spa (L) }) = 2-

Then H is a discrete group, but ps(H) is not.

The following proposition is a consequence of Proposition 6.11 and Proposition 6.14.

Proposition 6.21. Let I'; and I'y be abelian complex Kleinian groups of Heisz(C) both
of type Pi, and consider the group H = (I'1,I'2) generated by I'; and T'e, then we have
that:

1. If K(H) := Ker(ps|g), N :=p3(I'1) Np3(T'2) and v € K(H) with p3(y) € N, then
we have two options for K(H):

i) If N is trivial, then:
K(H) c < {7t € Ty € T} ULK (D)} U{K(T2)}} > (6.42)

ii) If N is non-trivial, then N is a torsion free, additive group with Rank(N) less
than or equal to 4. And,

) ({{ns" (V) U LK)} U{E(T)}}). (6.43)

2. The group K(H) is discrete if and only if
dzmQ<{ 2 (1) 7Sp2(F2)}> - dsz<{ 2 (1) SPQ Fz)}> (644)

3. The group ps(H) is a discrete group if and only if the equation

dlm@<{ Sp3(F2)}> = dlmR<{ 3(T'1)> Sps F2)}> 2, (6'45)

is satisfied.

4. If K(H) and p3(H) are discrete, then H is discrete.
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Observation 6.22. Notice that Item 4 is a partial converse. Although p3(I';) and
p3(T'9) are discrete subgroups of C, it is possible that ps(H) is not discrete, as we will

observe in the following example.

Example 6.23. Let I'y and I'y be discrete groups of the type P; given by I'y =
Spany{(0,1,1)} and T's = Spanz{(0,1,v/2)}. As {(0,1,1),(0,1,v/2)} is a R-linearly
independent set, the group H = Spany({(0,1,1),(0,1,v/2)}) is discrete, but p3(H) =
Spang{Sp,(r,)s Sps(rs)} = Spanz {1, v2}, by Lemma 6.8, is not.

Proposition 6.24. Let I'; and I'y be abelian complex Kleinian groups of Heisz(C) both
type Py, and H the generated group (I'1,I'9), then:

1. The group H is exactly K(H).

2. Furthermore, if

dlm@({ Sp1(F2)}) = dlmR({ 1(T1)> Sp1 FQ)}) 2, (6'46)

and,
dzm(@({ p2(T'1) >Sp2(F2)}) = dsz({ 2(T1)» Sp2 F2)}) 2, (6'47)

are satisfied, then H = K (H) is discrete.

3. The group ps(H) is discrete.

Proof. As K(H) C H, we need to prove that H C K(H). For all v € H, p3(v) = 0,
then v € K(H). Thus, K(H) = H.

To prove that H is discrete, observe that, by the multiplication rule, in this case, the first
and the second entries are additive and independent. Thus we claim: if p; (H) and po(H)
are discrete, then H is discrete. As p;(H) is discrete, for i = 1,2, the set {0} is open
in p;(H), for i = 1,2. As the projections are continuous maps, pi_l{O} is open in H, by
the product topology p; {0} Np, {0} is open in H, and as p; {0} N p; {0} = (0,0,0),
{(0,0,0)} is open in H, therefore H is discrete.

By Lemma 6.9 and Corollary 6.8, if Equation 6.46 and Equation 6.47 are satisfied p;(H)

and po(H) are discrete, and in consequence H is discrete.

To end the proof, observe that p3(H) = 0, which is discrete. O

The next example shows that the reciprocal of Part 2 in the previous theorem is not

always satisfied.
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Example 6.25. Let I';y and I'; be discrete groups of the type P, given by I'y =
Spany{(1,1,0)} and I'y = Span;{(1,v/2,0)}.

Then H = (I'1,T'9) = Spanz({(1,1,0),(1,v/2,0)}). As {(1,1,0),(1,v/2,0)} is an R-
linearly independent set, dimg{(1,1,0), (1,+/2,0)} = dimg{(1,1,0), (1,4/2,0)}, by Corol-
lary 6.8, H is discrete. But

p2(H) = Spang{S,,r,), SpQ(Fz)} = Spang{1, \/5},

is not discrete.

Proposition 6.26. Let I'; and I'y be abelian complex Kleinian groups of Heisz(C) both
type Ly, and let H be the generated group (I'y, '9), then:

1. If K(H) := Ker(ps|a), N :=p3(I'1)Nps(I'2) and v € K(H) with p3(y) € N, then:

i) If N is trivial, then:
(i) < ({75 i € Ty €T UKD} U{E T} ). (6.48)

ii) If N is non-trivial, then N is a torsion free, additive, finitely generated group

with Rank(V) less than or equal to 4. And in this case,
K(H) € ({{p3" (N)}U{K (T} U{K(T2)}} ). (6.49)
2. Let M = {Sp, 1) Spa(ra)s Spu(r2) * Spa(r1)s Spa (01) * Sps(r1) Spr(r2) * Spo(ra - I
dimg({M})q = dimp({M})r < 2, (6.50)
is satisfied, then the group K(H) is a discrete group.

3. If K(H) is discrete, then H is discrete.

Proof. Observe that in this case p3(I';) = Spany(W,,), with ¢ = 1,2, is not necessary a
discrete group. Then if v € K(H), we can make the decomposition of v as in Equation
6.29. Thus, if N is trivial,

ve ({{nm5 s €1,y € T2 f U LKD)} U{K(T2)} ).

Let us suppose that N is non-trivial and prove that Rank(N) < 4. Observe that
p3(Iy) = Spany{W,,}, then Rank(p3(I';)) = Rank(W,,). As N C p3(I';), for i = 1,2
and Rank(W,,) < 4, then Rank(V) < 4.

i
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For groups I' of type L, the groups pi(I') and p3(I") are both the additive group
Spany (W) which could be no discrete. Hence, the discreteness of the group I' depends
on the discreteness of po(I'). By Lemma 6.9 and Corollary 6.8, K(H) is discrete if
equation 6.50 is satisfied.

Now if we suppose that H is not discrete, then there is a sequence of distinct elements
2
(In) = (xn +yn, L(xpn +yn) + % + Wz + Wy, , Ty +Yn) in H that converges to 0 as

n converges to co. As the convergence is pointwise, the sequences p1(l,,) = (2, +y») and

p2(ln) = (L(zp) + % + wy,) converge to 0 as n converges to oo, but this contradicts
the fact that lim L(z),) + w, = oo for all (z,,) — 0. Thus, H is discrete. O
n—oo

The following example exhibits a generated group H of two subgroups of type L,,, where
H is a discrete group but the group ps(H) is not.

Example 6.27. Let H = (L, , Ly,) be group generated by the following groups:

Take L, as,

2
Loy, = {(3}, % + wl(x),a:> |z € Spany (W), w1 (z) € SpanZ(Ww)},

where W, = {1,i,iv/2,v/2}, W, = {1,i} and () is the image of x € Spany(W,)
under the map w; : Spany W, — Span, W,,, defined by

a+bi+civV2+dvV2 e (a—d)+i(b—¢),

for some a,b,c,d € Z.

Now, let define £,,, as,

2
Lay = { (15 + wa(0).0 ) Iy € Spanz(9,).waty) € Spanc (i)

where Wy, = {1,v} is a R-linearly dependent set, W, is the same as before, and for all

y € Spany (Wy,) the map ws : Spany W,, — Span, W,,, is defined as
m—+vn+— m-+in,

for some m,n € Z.

In both cases, Spany(W,,), by Corollary 6.8, is a discrete set. Thus the image I'm(w;),

for i = 1,2, is a discrete set of points in C.

Under these conditions we claim:
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1. The group H is a discrete group.

Let us prove this by contradiction. Suppose that H is not a discrete group, then
there is a sequence of distinct elements (f,,) of H, such that (f,) — (0,0,0) as n —
00. As (fy,) converge pointwise, we have that pa(fy,) = M + w1 (2n) + w01 (yn)
is a sequence of distinct elements of po(H) such that pa(f,) — 0 as n — oo, in
particular, the sequence (wy(xy) + wa(yn)) € Spany(W,,) is such that (w;(z,) +
wa(yn)) — 0, but this contradict that I'm(w;) C Spany(W,,) is a discrete set. Then

H is a discrete group.

2. Now, observe that, p3(H) = Spanz{Sy,(c.,,)> Sps(cuy)t = Spanz{l,i,v, v2}. Now
if {v,v/2} is Q-linearly dependent, dimg({1,4,v,v/2}) = 3, and if {v,v2} is Q-
linearly independent, dimg({1,1%,v, V2}) = 4. In either case, by Corollary 6.8,
p3(H) is not discrete, because dimg({1,14,v,v/2}) = 2.

Then H is a discrete group, but ps(H) is not.

6.2.2 The non-abelian case

So far we have constructed the generated group H using abelian complex Kleinian
subgroups of Heisg(C). In this section, we consider also the non-abelian types. We

combine an abelian group with a non-abelian group to generate H.

From the classification given in Section 6.1, we have two types of non-abelian subgroups
of Heiss(C):
Ly :={(1,0,0)*(c,d,0)"(,y, 1) |k, 1, m € Z},

where w = (x,y,p,q,r) with ,y € C, p, g, € Z are such that p and ¢ are co-primes, ¢>
divides 7, ¢ = p¢~! and d = r~!. Observe that if m = 0, being type Iy, is the same as

being of type P», so we will ask to have m distinct to 0.

The second non-abelian type is
Wape = {(0,w,0)(1,0,1)"(a + ¢,b,¢)"|m,n € Z, w e W},

where W C C is a discrete additive subgroup and a, b,c € C are subject to one of the

following conditions:

1. The set {1,c} is a R-linearly dependent set but Z-linearly independent set and
a € W\ {0}.

2. The set {1, c} is a R-linearly independent and a € W\ {0}.
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In this case, if m = 0, being type Wy . is the same as being of type L,,, so we will ask

to have m distinct to 0.
The next lemma is auxiliary to prove the propositions given in this section.

Lemma 6.28. Let I' be a non-abelian discrete subgroup of Heisg(C). Then ps(T") is
a Z-module. Moreover, if I' is of type I'y,, Rank(I') = 1, and if I" is of type Wy,
Rank(I") =

Proof. Let T' be a non-abelian discrete subgroup of Heiss(C), by the previous definitions,
if I' is of type Iy, then p3(I') = Spany({1}) = Z, thus a Z-module and Rank(I") = 1. If
I is of type Wo ¢, then p3(Wy ) = Spany ({1, c}), then a Z-module. By the definition
of Wep,e, the set {1,c} is either Z-linearly independent or R-linearly independent set, so
¢ # 0, thus Rank(I') = 2. O

Proposition 6.29. Let I'; and I'y complex Kleinian subgroups of Heisz(C) such that
I'1 is of type P» and I's be non-abelian, its means I'y is of type I'y, or is of type W c,
and consider H the generated group (I'y,I'2). Then we have:

1. If K(T') := Ker(ps|r), then

K(H) = (T} UK T} U {ppa) e Ty €T ). (651)
2. Let M be the set {.S,,(r,)s Spo(a)s Spy (1) *Sps(Ta)» Spi (Ta) ¥Sps (12) } - If the equalities:
dimg({Sp,(r1) Spi(r2) 1) = dimr{{Sp,(r1), Spirs)}) < (6.52)

and
dimg({M}) = dimp({M}) < 2, (6.53)

are satisfied, then the group K(H) is discrete.

3. The group ps(H) is discrete if and only if
dzmQ<{ p3(T'1) >Sp3(F2)}> dsz<{ 3(I'1)» Sps F2)}> (6'54)

4. If K(H) and p3(H) are discrete groups, then the group H is discrete.

5. For I'y of type I'y, or I" of type Wy . with {1, ¢} being an R-linearly independent
set, if H is a discrete group, then K (H) and p3(H) are discrete groups.
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Proof. The first and second parts follows by Lemmas 6.15 and 6.16.

For the third part observe that S, ) = {0}, then p3(H) = Spany(S,,r,)). If I's is of

type Iy, then p3(H) = Span, 1 = Z, Wthh is discrete. If T'y is of type W, . with {1, c}
as an R-linearly independent set, by Corollary 6.8, ps(H) = Spany{1,c}, is discrete,

otherwise is not true.
The fourth part follows by Lemma 6.17, and the fifth Part follows by Lemma 6.18. [

Proposition 6.30. Let I'; and I's be complex Kleinian subgroups of Heis3(C) such that
I'; is an abelian subgroup of Heiss C of type P; or is of type £,,, and I's is non-abelian,
it means, I'y is of type Iy, or is of type Wy .. Consider H the generated group (I'1,T'g).

Then we have:

1. If K(H) := Ker(ps|a), N :=p3(I'1)Nps3(I'2) and v € K(H) with p3(y) € N, then:

i) If N is trivial, then:
K(H) < ({ {75 i € Ty € T f ULECD}U (KT} ). (6.55)

ii) If N is non-trivial, then N is a torsion free, additive, finitely generated group,
with Rank N < min{Rank p3(I'1), Rank p3(I"2)}. And in this case,

) ({05 (N} U{K (1)} U{ET)}} ), (6.56)

2. Let M be the set {5, 2(T1)s Opa(T2)» Spi(T2) * Sps(T1)s Opy(Ta) * Sp (Fz)}a if

dimq({Sp, (r1)» Spy(12) }) = dimr{({ Sy, (11), Spy (1) }) < (6.57)

and

dimg({M}) = dimr({M}) < 2, (6.58)
then the group K (H) is discrete.

3. The group p3(H) is discrete if and only if
dZmQ<{ 3(I'1) ?Spg(l—‘g)}> - dZmR<{ 3(I'1)» Sp3 Fz)}> (659)

4. If K(H) and p3(H) are discrete groups, then the group H is discrete.

Proof. The first Part follows by Lemma 6.15.

For the second part, we will prove Rank N < min{Rank p3(I'1), Rank p3(I'2)} when N
is no trivial. The other part of the proof follows by Lemmma 6.15. Then, as N C p3(T'1)
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and N C p3(I'2) and p3(I'1) and p3(I'2) are Z-modules, thus N is also a Z-module.
Therefore, Rank N < Rankp3(I';) and Rank N < Rankps(I'2). Hence, Rank N <
min{Rank p3(I'1), Rank p3(T'2) }.

The second part follows by Lemma 6.16, and third Part follows by Corollary 6.10. The
last Part follows by Lemma 6.17. O

The next example exhibits a group H that is discrete, but ps(H) is not. Showing that

the converse of Part 4 of the previous Proposition is not true.

Example 6.31. Let H = (I'1,'y), where

.'L’2
I' = {(xv D) + w(x)ax”x € SpanZ(Wx)aw(y) € SpanZ(Ww)}a

so Iy is of type Ly, where W, = {1,1/2} is a R-linearly dependent set, W,, = {1,i},
and w(x) the image of z € Spany(W,) under the map w : Spany(W,) — Span,(W,,),
defined as

r=m+nV2— a+ b,

for some m,n € Z. And,
Iy = {(O,w,O)(l,O, D14+ v2,4,vV2)™m,n € Z,w € Spanz({i})} ,

thus I'y is of type Wy 5 - with {1, c} as an R-linearly dependent but Z-linearly independent

set.

We claim that H is discrete. Otherwise there exists a sequence of distinct elements
(hy) in H, such that (h,) — oo. As (hy) converges pointwise, the sequence po(hy,) =
Mn + w(xy,) will converges to zero as n — oo, but this contradicts that Spany(W,,) is

discrete.
On the other hand, p3(H) = Spany({1,+/2}) which, by Corollary 6.8, is not discrete.

Proposition 6.32. Let I'y and I's be non-abelian complex Kleinian subgroups of Heiss(C)

of type I'y, and consider H the generated group (I'1,I'2). Then we have:

1. If K(H) := Ker(ps|g), N :=p3(I'1)Np3(I'2) and v € K(H) with p3(y) € N. Then
the set N is a non-trivial, free, additive, finitely generated group, with Rank N = 1

and,
K(H) < ({3 (N)} U{K(T)} U{K(T2)}} ). (6.60)
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2. Let M the set

{SPQ(Fl)’ sz(rz)’ Sp1(r1) * SPS(F2)7 Spl(Fl) *Spl(r2)7 Spl(Fl) * SPS(F1)7 SP1(F2) * Sps(FQ)}7

if the equalities
dimg({M}) = dimr({M}) < 2, (6.61)

and
dim@<{sp1(r1)v Spl(FQ)}> - dsz<{M}> <2, (662)

are satisfied, then the group K(H) is discrete.
3. The group p3(H) is discrete.
4. The group H is discrete if and only if K(H) and p3(H) are discrete.
Proof. As in the definition of the groups of type I'y, we ask to have m # 0, then the

group N cannot be trivial. Thus, the first part follows by Lemma 6.15. The second part
follows by Lemma 6.16.

The group p3(H), by Corollary 6.9, is exactly the group Spany(Sp,r,), Spyrs)) =
Spany({1}) = Z, which proves the third part.

For the last part, if H is discrete, as K(H) C H, then K(H) is discrete. By the last
item, p3(H) is discrete. The reciprocal follows by Lemma 6.17. O
The last case is when the two subgroups of Heis3(C) are of type Woy ., which is the

following proposition. The proof follows by Lemmas 6.15, 6.16, 6.10 and 6.17.

Proposition 6.33. Let I'y and I's be non-abelian complex Kleinian subgroups of Heiss(C)

of type Wy ¢, and consider H the generated group (I'1,I'2). Then:
1. If K(H) := Ker(ps|a), N :=p3(I'1)Nps3(I'2) and v € K(H) with p3(y) € N, then:
i) If the set N is trivial:
K(H) C < {77 i € Tiyyy € T U{K (1)} U{K(T2)}} > (6.63)

ii) If the set N is non-trivial, then N is a torsion free, additive, finitely generated
group, with Rank N < min{Rank p3(I'1), Rank p3(I'2)}. And,

K(H) < { {7 (N} U LK)} U{KT)H). (6.64)
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2. Let M be the set

{SPQ(Fl)’ sz(rz)’ Sp1(r1) * SPS(F2)7 Spl(Fl) *Spl(r2)7 Spl(Fl) * SPS(F1)7 SP1(F2) * Sps(FQ)}7

if the equalities
dimg({M}) = dimr({M}) < 2, (6.65)

and

dlm@<{ p1(T'1) 7Sp1(F2)}> - dsz<{M}> <2, (666)

are satisfied, then the group H is discrete.

3. The group p3(H) is discrete if and only if
dzmQ<{ 3(I1)» Sps(Fz)}> dsz<{ 3(I'1)» Sp3 Fz)}> (667)

4. If K(H) and p3(H) are discrete groups, then H is a discrete group.

After the review of all the possible combinations of two complex Kleinian subgroups I'y
and I'y of Heis3(C) to generate a new group (I'1,'2), we present the main result of this
chapter. The proof follows from propositions 6.11, 6.14, 6.21, 6.24, 6.26, 6.29, 6.30, 6.32
and 6.33.

Theorem 6.34. Let I'1 and I's be complex Kleinian subgroups of HeissC, and H be
the generated group (I'1,T'9), then:

1. If K(H) := Ker(pslg), N := p3(I'1) N p3(I'2) and v € K(H) with p3(y) € N.
Then:

i) If N is trivial:
K(H) < ({577 i € Doy € T} U{K(T)}ULK(T2)} ) ). (6.68)

ii) If N is non-trivial, then N is a torsion free, additive, finitely generated group,
with Rank N < min{Rank p3(I'1), Rank p3(I'2)}. And,

) ({05 (N)} U{K (T} U{ET2)}} ), (6.69)

2. Let M be the set,

{SPQ(Fl)’ SPQ(F2)’ Spl (Ty) * Sps(r2)’ Spl(rl) * Spl(FQ)’ Spl(rl) * Sps(F1)7 Spl (T2) * Sps(r2)}’
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if the equalities
dimg({M}) = dimg ({M}) < 2,

and

dim@<{5p1(rl)’ Spl(r2)}> = dimR<{Sp1(F1)’ SP1(F2)}> <2

are satisfied, then the group K (H) is discrete.

3. The group ps(H) is discrete if and only if

dimqy ({Spy (1) Sps (1) 1) = dme({Spy(ry), Spy(r)}) < 2.

4. If K(H) and p3(H) are discrete groups, then H is a discrete group.

(6.70)

(6.71)

(6.72)
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