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Agust́ın Ávila, José Luis Cisneros, Ricardo Guzmán, Apolo Dı́az, and Alfredo Huicochea,

thanks to all of you for always being there by my side and never letting me brake down.

Also thanks to all my no-blood family in the eternal spring city, you know who you are,

thanks for your sincere friendship.

Thanks to my family and friends in my city-born, for always sending me hope, love, and

courage, even in the distance, to finish this project.

To all the staff in the UCIM: Carolina, Ricarda, Paty, Deli, Don Memo, Olga, Edgardo,
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Introducción

El estudio del comportamiento dinámico de grupos discretos de transformaciones de

Möbius actuando en la esfera de Riemann tiene sus orginenes a finales del siglo XIX,

como se muestra en el trabajo de H. Poincaré sobre grupos fuchsianos y kleinianos en

[23]. Desde entonces, esta área de las matemáticas ha sido muy fruct́ıfera.

Existen dos generalizaciones del concepto de grupo kleiniano en dimensiónes altas. La

primera de ellas fue dada por M.V. Nori en [22]. En ese trabajo, M.V. Nori construyó

una nueva familia de variedades complejas compactas y dió la definición de los gru-

pos kleinianos en dimensiones altas. Por otro lado, en [25], J. Seade y A. Verjovsky

extendieron la dinámica de los grupos kleinianos a dimensiones complejas mayores a

dos, y dieron la definición de los grupos kleinianos complejos actuando en el espacio

proyectivo complejo PnC.

Nosotros trabajamos con la definición de grupo kleiniano complejo dada por J. Seade y

A. Verjovsky, que es la siguiente:

Definición 0.1. Un subgrupo Γ de PSL(n+ 1,C) es un grupo kleiniano complejo si Γ

actúa propia y discontinuamente en un conjunto abierto no vaćıo Γ-invariante de PnC.

La tesis está separada en dos partes. En la primera parte estudiamos las acciones de los

grupos de Schottky como subgrupos de PU(k, l) o como subgrupos de PSL(2n+ 1,C),

acuando en el espacio complejo anti-de Sitter y actuando en P2n
C , respectivamente.

Los grupos de Schottky clásicos son subgrupos kleinianos libres generados por inver-

siones en esferas. A pesar de que los grupos de Schotty no son complicados, son muy

importantes en Teoŕıa de superficies de Riemann, ya que por el Teorema de Retrosección

de Koebe, el grupo fundamental de toda superficie de Riemann compacta admite una

representación como un grupo de Schottky.

La noción de grupo de Schottky en dimensiones altas fue dada por M.V. Nori en [22].

Después, J. Seade y A. Verjovsky, en [24], desarrollaron el concepto de grupos de Schot-

tky para transformaciones proyectivas complejas, ambas definiciones fueron dadas de
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Introducción iv

forma constructiva. Finalmente, en [8], A. Cano dió la definición abstracta de un grupo

de Schottky complejo como subgrupo de PSL(n+ 1,C), y es la siguiente:

Definición 0.2. Un grupo de Schottky con g generadores que actúa en PnC, es un

subgrupo de PSL(n+ 1,C) que satisface las siguientes propiedades:

• Para todo g ≥ 2, existen 2g conjuntos abiertos R1, ..., Rg, S1, ..., Sg tales que:

i) Cada uno de los abiertos es el interior de su cerradura.

ii) La cerradura de los 2g conjuntos abiertos es disjunta a pares.

• El grupo es generado por el conjunto {γ1, ..., γg}, donde para toda 1 ≤ j ≤ g,

γi(Rj) = PnC \ S̄j .

Y fue en este mismo trabajo, [8], que A. Cano demostró que si un subgrupo Γ de

PSL(2n + 1,C) con g generadores actúa como grupo de Schottky en PnC, entonces es

un grupo libre de torsión, puramente loxodrómico y con g generadores. Esté resultado

motivó la siguiente pregunta que fue realizada por J. Parker en el año 2010:

Pregunta 1. Considerando la Definicón 0.2, ¿existen grupos de Schottky complejos que

estén en PU(1, n)?

La respuesta es no, y es uno de los resultados obtenidos en el trabajo conjunto realizado

con A. Cano, C. Cabrera y M. Méndez, veáse [2]:

Teorema 0.1. Si Γ ⊂ PSL(n + 1,C) es un grupo de Shcottky complejo actuando en

PnC, entonces Γ no puede ser conjugado a un subrupo de PU(1, n).

Además del resultado anterior, en [2] dimos respuesta a otras dos preguntas. La primera

de ellas relaciona la dinámica de un grupo de Schottky con la estructura algebráica del

espacio donde el grupo actúa:

Pregunta 2. Dado un grupo de Schottky Γ actuando en C(k,l), ¿bajo que condiciones Γ

actúa como grupo de Shottky complejo en P(k,l)
C ?

A esta pregunta dimos la siguiente respuesta parcial:

Teorema 0.2. Sea Γ un subgrupo de PU(k, l) discreto, libre y puramente loxodómico y

supongamos que Γ tiene un levantamiento Γ̃ que actúa en C(k,l) como grupo de Schottky.

Entonces, Γ actúa como grupo de Schottky complejo en P(k,l)
C si la signatura del espacio

satisface que k = l.

A diferencia del caso clásico, en dimensiones altas existen distintas nociones del conjunto

ĺımite de un grupo. La tercera pregunta relaciona las siguientes dos nociones de conjunto

ĺımite:
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1. El conjunto ĺımite de Kulkarni es la unión ΛKul(Γ) = L0(Γ) ∪ L1(Γ) ∪ L2(Γ),

donde L0(Γ) es la cerradura de los puntos en P2
C con grupo de isotroṕıa infinito,

L1(C) es la cerradura de los puntos de acumulación de las órbitas Γz para todo

z ∈ P2
C \L0(Γ), y L2(Γ) es la cerradura de los puntos de acumulación de las órbitas

ΓK para todo conjunto compacto K en PnC \ (L0(Γ) ∪ L1(Γ)).

2. El conjunto ĺımite de Schottky ΛPA(Γ) es el complemento de la región de discon-

tinuidad de Γ, es decir, ΛPA(Γ) = PnC \ ΩΓ.

La construcción y las definiciones completas de estos dos conjuntos se encuentran en [16]

y [8], respectivamente.

Pregunta 3. ¿Existe algún grupo de Schottky complejo, satisfaciendo las hipótesis de

la Pregunta 2, cuyos conjuntos ĺımites de Kulkarni y de Schottky sean distintos?

La respuesta es si, y está plasmada en la siguiente proposición:

Proposición 0.3. Existen grupos de Schottky complejos tales

ΛPA(Γ) ( ΛKul(Γ).

Otro resultado que A. Cano dió en [8], fue que no existen acciones de grupos de Schottky

complejos en espacios proyectivos de dimensión par. En [1], damos una prueba alterna-

tiva a este resultado. Las técnicas que utilizamos en [1] son geométricas y basadas en

las técnicas que se utilizaron en [2]. Mientras que las técnicas utilizadas por A. Cano

en [8] son algebráicas y dinámicas. Con la presentación de este resultado damos por

terminada la primera parte de la tesis.

En la segunda parte de la tesis trabajamos teoremas de combinación de subgrupos

kleinianos complejos del grupo de Heisenberg Heis3(C).

En 1930, H. Weyl introdujo el concepto de grupo de Heisenberg como un caso especial

de una extención central de un grupo abeliano, desde el contexto de la mecánica clásica,

véase [29]. Como R. Howe dijo en [14], el grupo de Heisenberg tiene distintas repre-

sentaciones según el área de investigación desde la cual se estudie, las cuales pueden ser,

por ejemplo, mecánica cuántica, álgebra homológica y teŕıa ergódica, entre otras.

En nuestro caso, estudiamos los subgrupos kleinianos complejos del grupo de Heisenberg.

De forma precisa, estudiamos el grupo de Heisenberg como subgrupo de PSL(3,C)

actuando en P2
C.

En [4], W. Barrera, A. Cano, J. P. Navarrete y J. Seade, dieron una clasificación com-

pleta de los subgrupos kleinianos complejos sin elementos loxodómicos de PSL(3,C).
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Espećıficamente, estudiaron los grupos kleinianos complejos puramente parabólicos de

PSL(3,C). En particular, los autores de ese trabajo estudiaron el grupo de Heisen-

berg complejo Heis3(C), dando una clasificación de los subgrupos kleinianos complejos

de Heis3(C) estudiando el comportamiento dinámico de los grupos a través de los con-

juntos de puntos de acumulación de los grupos y las regiones donde los grupos actúan

propia y discontinuamente. De la clasificación dada en [4], una pregunta natural que

surgió fue la siguiente:

Pregunta 4. ¿Cuándo dos subgrupos kleinianos complejos de Heis3(C) generan otro

subgrupo kleiniano complejo?

En otras palabras, dados dos subgrupos kleinianos complejos Γ1,Γ2 ∈ Heis3(C), si con-

sideramos el grupo generado por Γ1 y Γ2

H := 〈Γ1,Γ2〉 = {γ = γ1 ◦ γ2 ◦ · · · ◦ γt | γi ∈ Γ1 γi−1, γi+1 ∈ Γ2}. (1)

¿Cuándo es H un subgrupo kleiniano complejo de Heis3(C)?

En esta tesis abordamos esta pregunta en dos enfoques diferentes, el real y el complejo.

En el caso real, primero damos una descripción algebráica de los subgrupos kleinianos

complejos de Heis3(R) distinta de la dada en [4], la cual nos permite dar condiciones

necesarias a Γ1 y Γ2 de tal forma que H sea un grupo kleiniano complejo.

Para el caso complejo damos también una descripción algebráica de los subgrupos kleini-

anos complejos de Heis3(C). Luego de esto, damos una respuesta parcial a la Pregunta

4, estableciendo condiciones necesarias bajo las cuales H es un grupo discreto.

El contenido de la tesis está distribuido de la siguiente forma. La primera parte está

desarrollada en los primeros tres caṕıtulos. En el Caṕıtulo 1, damos una introducción a

las propiedades básicas de los grupos kleinianos y los grupos de Schottky para el caso

clásico y el caso complejo. En el Caṕıtulo 2, presentamos los resultados obtenidos para

los grupos de Schottky complejos como subgrupos de PU(k, l), [2]. Luego en el Caṕıtulo

3, presentamos los resultados obtenidos para los grupos de Schottky complejos como

subgrupos de PSL(2n+ 1,C), [1].

La segunda parte de la tesis se desarrolla también en tres caṕıtulos. En el caṕıtulo

4 damos los preliminares necesarios y también presentamos la clasificación de los sub-

grupos discretos de Heis3(C) dada en [2]. Además damos una presentación del grupo

de Heisenberg como un producto semidirecto, lo cual nos permite estudiar propiedades

geométricas y algebraicas de Heis3(C). En el Caṕıtulo 5 respondemos a la Pregunta

4 desde el enfoque real. Y finalmente, en el Caṕıtulo 6, damos respuesta parcial a la

Pregunta 4, separando las posibilidades de combinación en tres partes, en la primera
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consideramos a Γ1 y Γ2 grupos abelianos, en la segunda ambos no lo son y en la tercera

sólo uno de los dos grupos es abeliano.



Introduction

The study of the dynamics of the discrete groups of Möbius transformations acting on

the Riemann sphere begins at the end of the XIX century, as we can see in the work

of H. Poincaré about Fuchsian and Kleinian groups in [23]. Since then, this area of

mathematics has been very fruitful.

There exist two generalizations about the concept of Kleinian group in higher dimensions.

The first was given by M.V. Nori in [22]. In his work, Nori worked on the construction

of a new family of compact complex varieties, and gave the definition of Kleinian groups

in higher dimensions. Later, J. Seade and A.Verjovsky in [25], extended the dynamics

of Kleinian groups to higher dimensions, and gave the definition of complex Kleinian

groups acting on the complex projective space PnC.

We will work with complex Kleinian groups as defined by J. Seade and A. Verjovsky;

that is:

Definition 0.4. A subgroup Γ of PSL(n+ 1,C) is a complex Kleinian group if Γ acts

properly discontinuously in some non-empty open set of PnC.

The thesis is separated into two parts. The first part is dedicated to the study of actions

of complex Schottky groups as subgroups of either PU(k, l) or PSL(2n + 1,C) acting

on either the complex anti-de Sitter space or on P2n
C , respectively, for more details see

[2] and [1].

Classical Schottky groups are free Kleinian subgroups generated by inversions on spheres.

Despite Schottky groups are not so complicated they are relevant in the theory of Rie-

mann surfaces since by Koebe’s Retrosection Theorem every fundamental group of a

compact Riemann surface admits a representation as a Schottky group.

The notion of Schottky group in higher dimensions was given by M.V. Nori in [22].

Later, J. Seade and A. Verjovsky, in [26], developed the concept of Schottky groups of

complex projective transformations. Finally, in [8], A. Cano gives the following abstract

definition of complex Schottky group as subgroup of PSL(n+ 1,C):

viii
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Definition 0.5. A Complex Schottky group with g generators is a subgruop Γ of

PSL(n+ 1,C) acting on PnC such that:

• For g ≥ 2, there are 2g open sets R1, . . . , Rg, S1, . . . , Sg satisfying the following:

i) Each of these open sets is the interior of its closure.

ii) The closures of the 2g open sets are pairwise disjoint.

• The group has a generating set {γ1, . . . , γg} such that γj(Rj) = PnC \Sj for each j.

In [8], A. Cano shows that a subgroup Γ of PSL(2n + 1,C) acts as a Schottky group

with g generators on PnC, then it is a purely loxodromic free group with g generators.

This result motivated the following question posed in 2010 by J. Parker:

Question 1: Given the Definition 0.5, are there complex Schottky groups in PU(1, n)?

The answer is no, and is part of a joint work with A. Cano, C. Cabrera and M. Méndez,

[2]:

Theorem 0.6. Let Γ ⊂ PSL(n+1,C) be a complex Schottky group acting on PnC, then

Γ can not be conjugated to a subgroup of PU(1, n).

Furthermore, in [2] we answer another two questions, the first relates the dynamics of a

complex Schottky group with the algebraic structure of the space Pk+l−1
C :

Question 2: Let Γ be a Schottky group acting on Ck,l, under which conditions Γ acts

as a Complex Schottky group in Pk+l−1
C ?

We partially answered the previous question with the following:

Theorem 0.7. Let Γ be a purely loxodromic free discrete subgroup of PU(k, l). Suppose

that a lift of Γ acts as a Schottky group in Ck,l. Then Γ acts as a Complex Schottky

group in Pk+l−1
C only if the signature satisfies k = l.

Unlike the classic case, in higher dimensions there are many different notions of limit

sets, the third question that we address is related to two of these notions which are:

1. The Kulkarni limit set is the union ΛKul(Γ) = L0(Γ)∪L1(Γ)∪L2(Γ), where L0(Γ)

is the closure of the points in P2
C with infinite isotropy group, L1(Γ) is the closure

of the cluster points of the orbits Γz where z runs over PnC\L0(Γ), and L2(Γ) is the

closure of the cluster points of the orbits ΓK where K runs over all the compact

sets in PnC \ (L0(Γ) ∪ L1(Γ)).
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2. The Schottky limit set ΛPA(Γ) is the complement of the region of discontinuity of

Γ, i.e., ΛPA(Γ) = PnC \ ΩΓ.

For the complete definitions see [16] and [8], respectively.

Question 3: Is there a Complex Schottky group, as in Question 2, for which its Kulkarni

and Schottky limit sets are different?

The answer is yes, and it is stated in the following proposition:

Proposition 0.8. There exist complex Schottky groups Γ such that

ΛPA(Γ) ( ΛKul(Γ).

In [8], A. Cano states that there are no actions of complex Schottky groups on projective

spaces of even dimensions. In [1], we present an alternative proof of this result. Our

techniques are geometric and based on the technique used in [2], whereas the techniques

used by A. Cano are algebraic and dynamical. This result concludes the first part of the

thesis.

The second part of the thesis is about combination theorems of complex Kleinian sub-

groups of the Heisenberg group Heis3(C).

In 1930, H. Weyl introduced the concept of Heisenberg group as a special kind of a

central extension of an abelian group, in the context of quantum mechanics, see [29].

As R. Howe said in [14], the Heisenberg group represents distinct objects depending on

the area of research and appears in different contexts: quantum mechanics, homological

algebra and ergodic theory, among others.

In our case, we study complex Kleinian subgroups of the Heisenberg group. More specif-

ically, we regard the Heisenberg group as a subgroup of PSL(3,C) acting on P2
C.

In [4], W. Barrera, A. Cano, J. P. Navarrete, and J. Seade, classified the complex

Kleinian subgroups of PSL(3,C) without loxodromic elements. Concretely, they study

the purely parabolic complex Kleinian groups of PSL(3,C). In particular, they classified

the complex Kleinian subgroups of the Heisenberg group Heis3(C). They made this

classification based upon the dynamical behavior of the groups, that is, by studying

objects as the accumulation set of point or the region where the groups act properly

discontinuously. From the classification given in [4], a natural question is:

Question 4: When does the combination of two complex Kleinian subgroups of Heis3(C)

generate another complex Kleinian subgroup?
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In other words, given two complex Kleinian groups Γ1,Γ2 ∈ Heis3(C) consider the

generated group by Γ1 and Γ2

H := 〈Γ1,Γ2〉 = {γ = γ1 ◦ γ2 ◦ · · · ◦ γt | γi ∈ Γ1 γi−1, γi+1 ∈ Γ2}. (2)

When is H a complex Kleinian subgroup of Heis3(C)?

We aboard this question in two different settings, the real and the complex.

In the real case, first we algebraically describe the Kleinian subgroups of Heis3(R). This

description is different to the given in [4], and allows us to get necessary conditions for

Γ1 and Γ2 under which H is a complex Kleinian group.

In the complex case, we also give an algebraic description of the complex Kleinian

subgroups of Heis3(C). After that, we partially answer Question 4, giving necessary

conditions on Γ1 and Γ2 such that H is discrete.

The thesis is organized in the following way. Part I consists of three chapters. In

Chapter 1, we give a brief introduction of the basic properties of Kleinian and Schottky

groups, both in the classical and complex sense. We also establish the necessary material

for the remaining two chapters. In Chapter 2, we present some results about complex

Schottky groups as subgroups of PU(k, l), [2]. And in Chapter 3 some results about

complex Schottky groups as subgroups of PSL(2n+ 1,C), [1].

Part II of the thesis also consists of three chapters. In Chapter 4, we briefly review

the necessary material and the presentation of the classification of the complex Kleinian

subgroups of Heis3(C) given in [4]. Also, we present Heis3(C) as a semidirect product

which reflects geometric and algebraic properties Heis3(C). In Chapter 5 we answer

Question 4 in the real case. In Chapter 6, we give the partial answer to Question 4,

separating in three subcases depending on whether Γ1 and Γ2 are both abelian, both

non-abelian, and when Γ1 is abelian, but Γ2 is not.
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Chapter 1

Preliminaries

The goals of this part of the thesis are to study the actions of complex Schottky groups

as subgroups of PU(k, l) and PSL(2n + 1,C). The first section of this part of the

thesis is dedicated to present the results obtained for subgroups of PU(k, l) given in

[2], and the second section, is dedicated to present the results obtained for subgroups of

PSL(2n+ 1,C) given in [1].

First, we give a brief introduction to the basic properties of Kleinian groups and Schottky

groups, in the classical and complex sense, as well as the necessary material for the

development of following sections.

1.1 Classical Kleinian groups

In this section, we give a exposition of Classical Kleinian groups, definitions and some

properties of the automorphism group PSL(2,C). The content presented here is based

on [17].

Let Ĉ be the extended complex plane, or the Riemann sphere, C ∪ {∞}. The group of

automorphisms preserving orientation on Ĉ is the group of fractional linear transforma-

tions, defined for all z ∈ Ĉ, as

M =

{
g(z)

∣∣∣∣ g(z) =
az + b

cz + d
, ad− bc = 1

}
,

with a, b, c, d ∈ C. The group M is also known as the group of Möbius transformations.

Let PSL(2,C) be the projectivized group of non-singular 2 × 2 matrices with complex

entries. Consider the projective map [[ ]] : SL(2,C) → PSL(2,C), we say that an

element M̃ ∈ SL(2,C) is a lift of an element M ∈ PSL(2,C), whenever [[M̃ ]] = M .

2
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There is an isomorphism between M and PSL(2,C) as follow

g(z) =
az + b

cz + d
7→ M̃ =

(
a b

c d

)
,

where M̃ is a lift of M ∈ PSL(2,C). In this way, we identify the group of automorphisms

preserving orientation on Ĉ with PSL(2,C).

Observe that we can endow PSL(2,C) with a topology in the next fashion. A sequence

of distinct elements (Mn) in PSL(2,C) converges to an element M ∈ PSL(2,C) if

there exists a sequence of lifts (M̃n), corresponding to (Mn), on SL(2,C) such that M̃n

converges to some lift M̃ of M on SL(2,C) where the convergence of matrices is given

coordinatewise.

Let Γ be a subgroup of PSL(2,C). We say that Γ is a non-discrete group if there is a

sequence of distinct elements of Γ converging to the identity.

Definition 1.1. We say that a group Γ of PSL(2, C) that acts on the Riemann sphere

Ĉ is a Kleinian group if Γ is a discrete group.

1.2 Classical Schottky groups

An important class of a Kleinian groups are Schottky groups. These groups have been of

great interest in the study of Riemann surfaces. One reason is the Koebe’s Retrosection

Theorem, which states that every compact Riemann surface is isomorphic to the orbit

space Ω/Γ, where Ω is an open set on the Riemann sphere Ĉ and Γ is a Schottky group.

The definition of a Schottky group acting on the Riemann sphere is the following:

Definition 1.2. A Schottky group of genus g is a Kleinian group generated by g Möbius

transformations α1, ..., αg ∈ PSL(2,C) with g ≥ 1 such that:

1. There exist 2g open regions r1, s1, ..., rg, sg pairwise disjoint in Ĉ each one with

boundary a Jordan curve and a domain Ω bounded by the 2g closures in Ĉ.

2. And it is satisfied that αj(∂rj) = ∂sj and αj(Ω) ∩Ω = ∅ for all j = 1, ..., g, where

∂rj denotes the boundary of rj .

1.3 Complex projective geometry

In this section we move on to higher dimensions and present some definitions, tools, and

notations, used throughout the thesis.
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1.3.1 Projective Geometry on PnC

Let PnC be the complex projective space. To define subspaces of PnC consider the quotient

map

[ ] : Cn+1 \ {0} → PnC.

A non-empty set H ⊂ PnC is said to be a projective subspace of dimension k of PnC, if

there is a C-linear subspace H̃ of dimension k+ 1 in Cn+1 \{0} such that [H̃ \{0}] = H.

Given a projective subspace P ⊂ PnC, we define:

P⊥ = [{w ∈ Cn+1 | 〈w, v〉 = 0 for all [v] ∈ P} \ {0}].

Let S be a set of points in PnC. The space generated by S is defined as:

Span(S) =
⋂
{P ⊂ PnC | P is a projective subspace containing S}.

Clearly, Span(S) is a projective subspace of PnC.

From now on, the set {e1, . . . , e2n+1} will denote the standard basis for C2n+1.

1.3.2 Projective and Pseudo-projective Transformations

Every linear isomorphism of Cn+1 defines a holomorphic automorphism of PnC. Also, it

is well-known that every holomorphic automorphism of PnC arises in this way. The group

of projective automorphisms of PnC is defined by:

PSL(n+ 1,C) := SL(n+ 1,C)/C∗,

where C∗ = C \ {0} acts by the usual scalar multiplication. The group PSL(n+ 1,C) is

a Lie group whose elements are called projective transformations.

As before, denote by [[ ]] : SL(n + 1,C) → PSL(n + 1,C) the quotient map. Given

γ ∈ PSL(n+ 1,C), we say that γ̃ ∈ SL(n+ 1,C) is a lift of γ whenever [[γ̃]] = γ.

An important tool to work with elements of SL(2n+ 1,C) is the Polar Decomposition,

or equivalent, the Singular Value Decomposition.

Following the notation used in [27], we denote by HPD(n) the group of positive defined

Hermitian matrices and by U(n) the group of unitary matrices, both in GL(n,C).
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Theorem 1.3 (Polar Decomposition). Given a matrix M ∈ GL(n,C) there exist a

unique pair

(H,Q) ∈ HPD(n)× U(n)

such that M = HQ.

The map M 7→ (H,Q) is called the Polar Decomposition of M and it is a homeomorphism

between GL(n,C) and HPD(n)× U(n).

From the fact that for every positive defined matrix H there exist a positive defined

matrix h such that h2 = H, we have that starting with the Polar Decomposition of a

matrix M we can obtain the Singular Value Decomposition given in the next Theorem.

Theorem 1.4 (Singular Value Decomposition). Given a matrix M ∈ GL(n,C) there

are two unitary matrices U, V ∈ U(n) and a diagonal matrix

D(M) =


λ1

. . .

λn

 ,

such that M = UD(M)V and where λ1, ..., λn ∈ (0,+∞). The λ′is are called the

singular values of M , they are the square roots of the eigenvalues of the matrix H given

in Theorem 1.3 and they are uniquely defined up to permutation.

Actually we can order the λ′is such that λ1 ≥ λ2 ≥ . . . ≥ λn > 0.

The last decomposition works even for non-square matrices.

The space of linear transformations from Cn+1 to Cn+1, denoted by M(n + 1,C), is a

linear complex space of dimension (n + 1)2. Note that GL(n + 1,C) is an open dense

set of M(n + 1,C). Hence, PSL(n + 1,C) is an open dense set in QP (n + 1,C) =

(M(n+ 1,C) \ {0})/C∗, the latter is called the space of pseudo-projective maps, see [9].

Let M̃ : Cn+1 → Cn+1 be a non-zero linear transformation and Ker(M̃) be its kernel.

We denote by Ker([[M̃ ]]) the respective projectivization. Then M̃ induces a well defined

map [[M̃ ]] : PnC \Ker([[M̃ ]])→ PnC given by

[[M̃ ]]([v]) = [M̃(v)] .

The following proposition shows that we can find sequences in QP (n+1,C) such that the

convergence as a sequence of points in a projective space coincides with the convergence

as a sequence of functions on QP (n+ 1,C).
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Proposition 1.5 (See [9]). Let (γm) ⊂ PSL(n+1,C) be a sequence of distinct elements,

then

1. There is a subsequence (τm) ⊂ (γm) and τ0 ∈ M(n + 1,C) \ {0} such that

τm m→∞
// τ0 as points in QP (n+ 1,C).

2. If (τm) is the sequence given by the previous part of this Lemma, then

τm m→∞
// τ0 as functions uniformly on compact sets of PnC \Ker(τ0).

For further details of the proof of the following Lemma see [10].

Lemma 1.6. Let (γm), (τm) ⊂ PSL(n+ 1,C) be sequences such that γm m→∞
// γ0 and

τm m→∞
// τ0. If Im(τ) ∩Ker(γ) 6= ∅, then

γmτm m→∞
// γ0τ0.

The following Definition presents the classification of the projective transformations on

PSL(n+ 1,C), (see [12]):

Definition 1.7. Let γ ∈ PSL(n+ 1,C), then γ is said to be:

1. Loxodromic if γ has a lift γ̃ ∈ SL(n+ 1,C) such that γ̃ has at least one eigenvalue

outside the unit circle.

2. Elliptic if γ has a lift γ̃ ∈ SL(n+ 1,C) such that γ̃ is diagonalizable and all of its

eigenvalues are in the unit circle.

3. Parabolic if γ has a lift γ̃ ∈ SL(n+ 1,C) such that γ̃ is non-diagonalizable and all

of its eigenvalues are in the unit circle.

Definition 1.8. Given Γ ⊂ PSL(n + 1,C), we will say that Γ is purely loxodromic

(elliptic or parabolic), if Γ only contains loxodromic (elliptic or parabolic) elements,

respectively.

1.3.3 The Grassmanians and the Plücker embedding

The convergence of projective spaces on PnC is better understood using the Grassmannian

manifolds of PnC.

Let 0 ≤ k < n. The Grassmanian Gr(k, n) is the space of all k-dimensional projective

subspaces of PnC endowed with the Hausdorff topology. The space Gr(k, n) is a compact

connected complex manifold of dimension k(n− k).
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The Grassmanian Gr(k, n) can be realized as non-singular subvarieties of a projective

space. A way to do this is by the Plücker embedding given by

ι : Gr(k, n)→ P

(
k+1∧

Cn+1

)
ι(V ) 7→ [v1 ∧ · · · ∧ vk+1],

with P

(
k+1∧

Cn+1

)
the (k+1)-th exterior power of Cn+1 and Span({v1, · · · , vk+1}) = V .

The group PSL(n+ 1,C) acts on Gr(k, n) and P

(
k+1∧

Cn+1

)
as follows:

Let [[T ]] ∈ PSL(n + 1,C), W = Span({w1, . . . , wk+1}) ∈ Gr(k + 1, n + 1) and a point

w = [w1 ∧ · · · ∧ wk+1] ∈ P

(
k+1∧

Cn+1

)
. Now set

T (W ) = Span([[T ]](w1), . . . , [[T ]](wk+1))

and
k+1∧

T (w) = [T (w1) ∧ · · · ∧ T (wk+1)]

then we have the following commutative diagram:

Gr(k, n)

ι��

T // Gr(k, n)

ι��

P

(
k+1∧

Cn+1

) k+1∧
T
// P

(
k+1∧

Cn+1

) . (1.1)

1.4 Complex Kleinian groups

In [24], J. Seade and A. Verjovsky gave a generalization of the concept of a Kleinian

group as subgroups of PSL(n+ 1,C) acting on PnC, they called them complex Kleinian

groups in higher dimensions.

To present Seade-Verjovsky’s construction, we need the following.

Definition 1.9. Let Γ be a group acting by diffeomorphisms on a variety M . We say

that Γ acts properly discontinuously on M if for each non-empty compact set K ⊂ M

the set

{γ ∈ Γ|γK ∩K 6= ∅},
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is finite.

Now, the definition of complex Kleinian group is the following:

Definition 1.10. We say that a group Γ of PSL(n+ 1,C) is a complex Kleinian group

if Γ acts properly discontinuously in some non-empty Γ-invariant open set of PnC.

1.4.1 The Limit Set and the Kulkarni Limit Set

In the classical case n = 1, the limit set of a Kleinian group has several definitions, all

of them equivalent to each other. Nevertheless, for complex Kleinian groups, there are

several not necessarily equivalent notations of limit set.

The first proposal of the limit set of a group Γ, arises from having a proper and discon-

tinuous action on an open set, as expressed in the following:

Definition 1.11. The ordinary set Ω := Ω(Γ) ⊂ Ĉ of a Kleinian group Γ ⊂ PSL(2,C)

is the maximal open set in Ĉ on which Γ acts properly discontinuously. The limit set of

Γ in Ĉ is the set Λ := Λ(Γ) = Ĉ \ Ω(Γ).

The set Ω is also called regular set or domain of discontinuity.

Another common notion of the limit set of a complex Kleinian group is the so-called

Kulkarni limit set, whose definition is the following, (see [16]):

Definition 1.12. Let Γ ⊂ PSL(n+ 1,C) be a subgroup. We define:

1. The set L0(Γ) as the closure of the points of PnC with infinite isotropy group.

2. The set L1(Γ) as the closure of the set of cluster points of Γz, where z runs over

PnC \ L0(Γ).

3. The set Λ(Γ) = L0(Γ) ∪ L1(Γ).

4. The set L2(Γ) as the closure of cluster points of ΓK, where K runs over all the

compact sets in PnC \ Λ(Γ).

5. The Kulkarni limit set of Γ as:

ΛKul(Γ) = Λ(Γ) ∪ L2(Γ).

6. The Kulkarni region of discontinuity of Γ as:

ΩKul(Γ) = PnC \ ΛKul(Γ).
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For a more detailed discussion on this topic in the 2-dimensional setting, see [10]. The

Kulkarni limit set has the following properties, see [9, 10, 16].

Proposition 1.13. Let Γ be a complex Kleinian group. Then:

1. The sets ΛKul(Γ), Λ(Γ) and L2(Γ) are Γ-invariant and closed.

2. The group Γ acts properly discontinuously on ΩKul(Γ).

3. Let C ⊂ PnC be a closed Γ-invariant set such that for every compact set

K ⊂ PnC \ C. The set of cluster points of ΓK is contained in Λ(Γ) ∩ C, then

ΛKul(Γ) ⊂ C.

4. The equicontinuity set of Γ is contained in ΩKul(Γ).

1.4.2 The λ-Lemma

Given a group Γ acting on projective subspaces of PnC, the λ-Lemma is a tool that allows

a better understanding of the accumulation points of sequences of projective spaces of

PnC.

The λ-Lemma has been used in distinct contexts. For example: Frances in [13] for the

group O(n), J.P. Navarrete [20] for PU(2, 1), A.Cano- B.Liu- M. Lopez for the group

PU(1, n) [11] and M. Méndez [18] for the group PU(k, l). In this Section we present a

version for the group SL(2n+ 1,C), see [1].

A virtue of the λ-Lemma is that, even if we change the context in which we are working,

the proof of the Lemma is essentially the same for all the groups.

Let us first give an intuitive idea of how the λ-Lemma works. Consider an action of a

divergent sequence (γm) of different elements in PSL(2n + 1,C) on P2n
C and take the

Singular Value Decomposition of (γm) for all m. The λ-Lemma gives us a partition of

P2n
C into projective subspaces, along with an understanding of the set of accumulation

points for the action of the sequence (γm).

Before we state the λ-Lemma, we give a series of auxiliary Lemmas and Definitions

for the convergence of sequences of distinct elements of PSL(2n + 1,C) acting on the

projective space P2n
C .

Lemma 1.14 (see [12]). Let γ ∈ PSL(n,C) be a non-elliptic element. If there is a

sequence (nm) ⊂ Z of distinct elements such that there is a point p and a hyperplane H
satisfying γnm

m→∞
// p uniformly on compact sets of Pn−1

C \ H, then p is a fixed point

of γ.
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Based in the previous framework, we proved the following auxiliary Lemma.

Lemma 1.15 (see [2]). Let ([[Tm]]) be a sequence of different elements of PSL(k +

l,C) such that there is a point p = [w1 ∧ · · · ∧ wk] and a hyperplane H satisfying

[[∧kTm]] m→∞
// p uniformly on compact sets of P(∧k(Ck+l)) \ H. Then for all U ∈

Gr(k, k+ l) \ ι−1(H) we have that Tm(U) converges to W = Span(w1, ..., wk) in Pk+l
C in

the Hausdorff topology.

Proof. To prove this Lemma observe that the Plücker embedding restricted to the Grass-

manian Gr(k, k+ l) is an isomorphism. Then by the Commutative Diagram 1.1, we have

that for every U = Span({u1, ..., uk}) ∈ Gr(k, k + l) \ ι−1H the sequence (Tm(U)) con-

verges to W = Span({w1, ..., wk}) as points in Gr(k− 1, k+ l). Thus (Tm(U)) converges

to W as closed sets of Pk+l
C , in the Hausdorff topology.

Definition 1.16. Let (γm) be a sequence in a topological space X, we say that (γm) is

a divergent sequence if (γm) leaves every compact set of X.

The following definition tells us when a sequence converges simply to infinity and it will

be useful to prove the Lemma 1.19.

Definition 1.17. Let (γm) ⊂ PSL(2n+ 1,C) be a divergent sequence and consider the

Singular Value Decomposition of each γm. We say that (γm) converges simply to infinity

if the following conditions are satisfied:

1. The compact factors in the Singular Value Decomposition Um and Vm converge to

some U and V in U(2n+ 1), respectively.

2. There exist t natural numbers k1, ..., kt ∈ N such that k1 + · · · + kt = 2n + 1, t

sequences (λ1m), ..., (λtm) ⊂ R and t block matrices D1m ∈ SL(k1,R), ..., Dtm in

SL(kt,R), satisfying:

Dm(γm) =


λ1mD1m

. . .

λtmDtm

 ,

for each m, where the rates λim/λjm → ∞ when m → ∞, for all i > j, and the

block matrices Dim converge to some Di ∈ SL(ki,R) as m→∞.

Definition 1.18. Let x ∈ P2n
C and (γm) be a divergent sequence of different elements in

PSL(2n+1,C), we define D(γm)(x) as the set of all the accumulation points of sequences

of the form (γm(xm)), where (xm) is a sequence that converges to x in P2n
C .
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Lemma 1.19 (λ-Lemma). Let (γm) ⊂ SL(2n + 1,C) be a sequence tending simply to

infinity, then there exist:

• t natural numbers k1, ..., kt ∈ N,

• (2t) pairs of projective subspaces P+
1 , ..., P

+
t , P

−
1 , ..., P

−
t ,

• a set of projective transformations γi : P−i → P+
i , and

• a pseudo-projective transformation γ ∈ QP (2n+ 1,C)

such that:

1. Im(γ) = P+
1 and Ker(γ) = Span

(
t⋃
i=2

P−i

)
.

2. dim

(
Span

(
t⋃
i=1

P±i

))
= t+

t∑
i=1

dim(P±i ) = 2n+ 1.

3. One of the following holds:

(a) If x ∈ P2n
C \Ker(γ), then (γm)→ γ as m→∞ and

D(γm)(x) = γ(x).

(b) If j ∈ {2, t− 1}, y ∈ P−j and

x ∈ Span

{y},
 t⋃
i=j+1

P−i

 \
 t⋃
i=j+1

P−i

,
then

D(γm)(x) = Span

(
{γj(y)},

(
j−1⋃
i=1

P+
i

))
.

(c) If x ∈ P−t , then

D(γm)(x) = Span

(
{γt(y)},

(
t−1⋃
i=1

P+
i

))
.

Observe that we can also consider the λ-Lemma for γ−m, using the fact that D(γm) is

diagonal and invertible.
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1.5 Complex Schottky Groups

In [8], A. Cano extended the definition of complex Schottky groups, given in Section

1.2, to higher dimensions. Compare with definitions given in [13, 17, 18, 22, 24].

Definition 1.20 (See [8]). Let Γ ⊂ PSL(n+ 1,C), we say that Γ is a complex Schottky

group acting on PnC with g generators if

1. For g ≥ 2, there are 2g open sets R1, . . . , Rg, S1, . . . , Sg satisfying the following

properties:

(a) Each of these open sets is the interior of its closure.

(b) The closures of the 2g open sets are pairwise disjoint.

2. The group has a generating set {γ1, . . . , γg} with the property γj(Rj) = PnC \ Sj
for each j.

A Theorem that characterizes the Complex Schottky groups, proved by A. Cano, is the

following:

Theorem 1.21 (See [8]). Let Γ ⊂ PSL(n + 1,C) be a complex Schottky group with

g generators, then Γ is a purely loxodromic free group with g generators. If D =⋂g
j=1 PnC \ (Rj ∪ Sj), then ΩΓ = ΓD is a Γ-invariant open set where Γ acts properly

discontinuously. Moreover, ΩΓ has compact quotient and the limit set ΛS(Γ) = PnC \ΩΓ

is disconnected.

The set ΛS(Γ) is called the Schottky limit set of Γ.



Chapter 2

Complex Schottky groups as

subgroups of PU(k, l)

The work presented in this Chapter is the result of a joint work with A. Cano, C.

Cabrera, and M. Méndez.

We can construct complex Schottky groups acting on projective spaces. For example,

C. Frances in [13], constructed Lorentzian Schottky groups, that are free groups of

PO(2, n), acting on PR(n + 1). On the other hand, M. Méndez constructed complex

Schottky groups acting on P3
C that admit representations on PU(2, 2), see [18], [19].

Hence a natural question is:

Under which conditions a discrete group Γ of PU(k, l) is a complex Schottky group acting

on PnC?

To answer this question and throughout this work we will be interested in studying those

subgroups of PSL(n + 1,C) that preserves the pseudo-unitary complex ball Hk,l
C , that

we will discuss in the following section.

We will be focusing our attention to those groups Γ ∈ PU(k, l) that preserve the bound-

ary of the pseudo-unitary complex ball, and through them, we extend the action of

complex Schottky groups to the complex projective space.

2.1 The pseudo-unitary complex ball and the complex anti-

de Sitter space

Let us start by constructing the pseudo-unitary complex ball Hk,l
C and its boundary,

which we called the complex anti-de Sitter space.

13
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Consider the following Hermitian matrix:

H =



1

. .
.

1

Idl−k

1

. .
.

1


where Idl−k denotes the identity matrix of size (l − k) × (l − k) and the off-diagonal

blocks in the upper right and the lower left are of size k × k. Set,

U(k, l) = {g ∈ GL(k + l,C) : gHg∗ = H}

and denote by 〈, 〉 : Cn+1 → C the Hermitian form induced by H. Clearly, 〈, 〉 has

signature (k, l) and U(k, l) is the group preserving 〈, 〉, see [21].

Let PU(k, l) be the projectivization of U(k, l). Then, we have that PU(k, l) preserves

the set:

Hk,l
C = {[w] ∈ PnC | 〈w,w〉 < 0},

which is the pseudo-unitary complex ball. We call the boundary, ∂Hk,l
C := {[w] ∈ PnC |

〈w,w〉 = 0}, the complex anti-de Sitter space.

Given a projective subspace P ⊂ PnC we define

P⊥ = [{w ∈ Cn+1 | 〈w, v〉 = 0 for all [v] ∈ P} \ {0}].

An important tool in this work is the following result, see [15, 21].

Theorem 2.1 (Cartan Decomposition). For every γ ∈ PU(k, l) there are elements

k1, k2 ∈ PU(n + 1) ∩ PU(k, l) and a unique µ(γ) ∈ PU(k, l), such that γ = k1µ(γ)k2
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and µ(γ) have a lift in SL(n+ 1,C) given by

eλ1(γ)

. . .

eλk(γ)

1

. . .

1

e−λk(γ)

. . .

e−λ1(γ)



, (2.1)

where λ1(γ) ≥ λ2(γ) ≥ . . . ≥ λk(γ) ≥ 0.

2.2 Results

In the following Theorem we give a necessary condition under which a discrete group Γ

of PU(k, l) is a complex Schottky group.

Theorem 2.2. If a purely loxodromic free discrete subgroup of PU(k, l) is a complex

Schottky group, then k = l.

Proof. Let us proceed by contradiction. Suppose that k < l and let Γ ⊂ PU(k, l) as in

the hypothesis. Take a generator γ ∈ Γ and let γ̃ ∈ U(k, l) be a lift of γ. Consider the

Cartan Decomposition of γ̃m, then we obtain sequences (cm) and (c̄m) in K and (Am)

in U(k + l) satisfying γ̃m = cmAmc̄m.

Since (cm) and (c̄m) lie in a compact set, there is a subsequence (ms) ⊂ (m) and elements

C and C̄ in K such that cms converges to C and c̄ms converges to C̄. Clearly, we can

assume that (γms) tends simply to infinity and in the following we will assume that

(γms) tends strongly to infinity. The proof of the other case is similar. We claim that

there exist projective subspaces P and Q, satisfying the following properties:

1. The dimensions satisfy dimP = dimQ = k − 1.

2. The spaces P,Q are invariant under the action of γ. Moreover, P is attracting and

Q is repelling.

3. If Rγ , Sγ are the disjoint open sets associated to γ given in the definition of a

complex Schottky group, then either P ⊂ Rγ and Q ⊂ Sγ , or Q ⊂ Rγ and P ⊂ Sγ .
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In particular, it follows that P and Q are also disjoint and lie in distinct connected

components of ΛAP (Γ).

4. We have P⊥ * ΛAP (Γ) and Q⊥ * ΛAP (Γ).

Set P the projectivization of the space P ′ = C(Span({e1, ..., ek})) and Q the projec-

tivization of the space Q′ = C̄−1(Span({el+1, ..., ek+l})). The first part of the claim

follows by construction. Let us show part (2), consider the action of ∧kAnm on ∧kCk+l,

then a straightforward calculation shows the matrix of ∧kAnm with respect the standard

ordered basis β of ∧kCk+l is given by:

Am =


θ1

θ2

. . .

θ(k
n)

 ,

where θi is the product of k elements taken from the set {eλi,m(γnm )} and ordered in the

lexicographical order in (i,m). In fact θ1 > θ2 > ... > θ(k
n). Hence [[Am]] converges to

x = [e1 ∧ · · · ∧ ek] uniformly on compact sets of P(∧k(Ck+l)) \ Span(β \ {x}). Therefore

by Lemma 1.6, we conclude that [[∧kγ̃ms ]] converges to the point [[∧kC]][e1 ∧ · · · ∧
ek] uniformly on compact sets of P(∧k(Ck+l)) \ [∧kC̄−1] Span(β \ {x}). Finally, from

Lemma 1.14 we conclude that x is a fixed point of [[∧kγ̃ms ]], in consequence P =

[C] Span({[e1], . . . , [ek]}) is attracting and invariant under γ. In a similar way, we can

prove that Q is repelling and invariant.

Part (3). On the contrary, assume that there is x ∈ P ∩ Pk+l−1
C \ (Rγ ∪ Sγ) 6= ∅, then

there exists an open set U such that x ∈ U ⊂ Pk+l−1
C \ ΛPA(Γ). By the λ-Lemma, we

conclude

Q⊥ ⊂ D(γnm )(x) ⊂
⋂
m∈N

γmSγ ⊂ Sγ .

Let γ1 ∈ Γ be a generator of Γ distinct from γ. Define Q1 = γ−1γ1Q
⊥ and observe that

Q1 ⊂ Rγ . As the dimensions of Q1 and Q⊥ are l−k, we have that Q1∩Q⊥ is not empty,

which leads to a contradiction, because Rγ ∩ Sγ = ∅.

Part (4). Assume that P⊥ ⊂ ΛΓ. By the previous part, we can assume that P ⊂ Sγ .

Let γ1 ∈ Γ be a generator of Γ distinct from γ. By Lemma 1.15 we conclude that

γ−ms(γ1(P )) converges to Q, therefore γ−ms
1 (γ(P⊥)) converges to Q⊥. Hence Q⊥ ⊂ ΛΓ.

As P ⊂ P⊥, Q ⊂ Q⊥ and P⊥ ∩ Q⊥ 6= ∅ and all of these spaces are path connected,

which lead us to a contradiction.
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To conclude the proof, let p ∈ P⊥ ∩ ΩΓ and q ∈ Q⊥ ∩ ΩΓ. Clearly, we can assume

that p ∈ P⊥ \ P and q ∈ P⊥ \ Q. By λ-Lemma there exist a, b ∈ P⊥ ∩ Q⊥ such

that Span(a, P ) ∪ Span(b,Q) ⊂ ΛΓ. But Span(a, P ), Span(b,Q) and P⊥ ∩Q⊥ are path

connected. Then we can construct a path in ΛΓ, passing along a and b through W and

connecting P with Q, which leads to a contradiction.

The main results presented in [2] are the following.

Theorem 2.1. If a purely loxodromic free discrete subgroup of PU(k, l) acting as a

complex Schottky group on Pk+l−1
C , then k = l. Moreover in this case

1. The group Γ acts as a complex Schottky group on the complex anti-de Sitter space.

2. The limit set ΛPA(Γ) is contained in the complex anti-de Sitter space and it is

homeomorphic to a product C × Pk−1
C , where C is the triadic Cantor set.

The limit set ΛPA(Γ) was defined in Theorem 1.21.

And as a partial reciprocal of the previous theorem we have:

Theorem 2.2. Let Γ ⊂ PU(k, k) be a group acting as a complex Schottky group on the

complex anti-de Sitter space. If Γ is generated by γ1, . . . , γn then there is N ∈ N such

that ΓN = 〈〈γN1 , . . . , γNn 〉〉 acts as a complex Schottky group on P2k−1
C .



Chapter 3

Complex Schottky groups as

subgroups of PSL(n,C)

In [8], A. Cano proved that there are no actions of complex Schottky groups on projective

spaces of even dimensions. It means, if a group Γ ⊂ PSL(n + 1,C) acts on PnC as a

complex Schottky group, then n must be odd. The techniques used in [8] to prove this

theorem were based on algebraic and dynamical properties of Γ.

Here the author gives an alternative proof of the results obtained by A. Cano but using

the geometric techniques of the Theorem 2.2 from in Section 2.2.

3.1 The λ-Lemma for SL(2n+ 1,C)

In this Section, we give a series of definitions that allow us to understand the convergence

of sequences of distinct elements of PSL(2n+ 1,C) acting on the projective space P2n
C .

Definition 3.1. Let (γm) be a sequence in a topological space X, we say that (γm) is

a divergent sequence if (γm) leaves every compact set of X.

Definition 3.2. Let x ∈ P2n
C and (γm) be a divergent sequence of different elements in

PSL(2n+1,C), we define D(γm)(x) as the set of all the accumulation points of sequences

of the form (γm(xm)), where (xm) is a sequence that converge to x in P2n
C .

Now we give a version of the λ-Lemma adapted for the group SL(2n + 1,C). Here we

give the key parts of the proof and refer to [11], [18] or [2] for details.

Lemma 3.3 (λ-Lemma). Let (γm) ⊂ SL(2n + 1,C) be a sequence tending simply to

infinity, then there exist:

18
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• t pairs of natural numbers k1, ..., kt ∈ N,

• (2t) pairs of projective subespaces P−1 , P
+
1 , P

−
2 , P

+
2 , ..., P

−
t , P

+
t ,

• a set of projective transformations γi : P−i → P+
i , and

• a pseudo-projective transformation γ ∈ QP (2n+ 1,C)

such that:

1. Im(γ) = P+
1 and Ker(γ) = Span

(
t⋃
i=2

P−i

)
.

2. dim

(
Span

(
t⋃
i=1

P±i

))
= t+

t∑
i=1

dim(P±i ) = 2n+ 1.

3. One of the following holds:

(a) If x ∈ P2n
C \Ker(γ), then (γm)→ γ as m→∞ and

D(γm)(x) = γ(x).

(b) If j ∈ {2, t − 1}, y ∈ P−j and x ∈ Span

{y},
 t⋃
i=j+1

P−i

 \
 t⋃
i=j+1

P−i


then,

D(γm)(x) = Span

(
{γj(y)},

(
j−1⋃
i=1

P+
i

))
.

(c) If x ∈ P−t , then

D(γm)(x) = Span

(
{γt(y)},

(
t−1⋃
i=1

P+
i

))
.

Observe that we can also consider the λ-Lemma for γ−m, using the fact that D(γm) is

diagonal and invertible.

Proof. Let (γm) be a divergent sequence of different elements of PSL(2n + 1,C). By

the Singular Value Decomposition we have that for each m exist Um, Vm ∈ U(2n + 1)

such that:

γm = Um


λ1mD1m

. . .

λtmDtm

Vm.
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Following the notation given in Theorem 1.4, define the projective subspaces:

Pj = Span{e∑j−1
1 kj+1

, ..., e∑j
1 kj
},

with 1 ≤ j ≤ t. Let us define P+
j = [UPj ] and P−j = [V −1Pj ].

The projective transformations γj are defined as translations given by U and V , where

the last tow are the limits of the sequences Um and Vm, respectively. Also we can define

the pseudo-projective transformation γ as the projective transformation whose image is

the projective subspace P+
1 . Which prove the first part of the lemma. The second part

of the proof is a straightforward computation about the dimensions of the subspaces.

The third part, follows by the convergence of γm, which depends on the values in the

diagonal of D(γm), and by the construction of the projective spaces P+
j and P−j .

3.2 Results

Now we give a different proof of Cano’s Theorem 1 in [8]. Here the author shows the

geometric aspects of the obstructions involved.

Theorem 3.4. Let Γ be a discrete subgroup of PSL(2n+ 1,C), then Γ can not act as

a complex Schottky group on P2n
C .

Proof. Let us proceed by contradiction. Suppose that Γ ⊂ PSL(2n + 1,C) acts as a

complex Schottky group in P2n
C . Take a generator γ ∈ Γ and let γ̃ ∈ SL(2n+1,C) be a lift

of γ. Consider the Singular Value Decomposition of γ̃m, then we obtain sequences (Um)

and (Vm) in U(2n+1) and (Dm(γm)) in SL(2n+1,C) satisfying γ̃m = Um(Dm(γm))Vm.

Since (Um) and (Vm) lie in a compact set, there is a subsequence (ms) ⊂ (m) and

elements Ū and V̄ in U(2n+ 1) such that Ums converges to Ū and Vms converges to V̄ .

Now, for each m consider the block decomposition of (Dm(γm)) as in the definition 1.17,

Dm(γm) =


λ1mD1m

. . .

λtmDtm

 ,

in this way we have that λ1m > ... > λtm > 0.

Clearly, we can assume that (γm) tends simply to infinity.

We claim that there are projective subspaces P and Q satisfying the following properties:
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1. The spaces P,Q are invariant under the action of γ. Moreover, P is attracting and

Q is repelling.

2. If Rγ , Sγ are the disjoint open sets associated to γ, as in the definition of a complex

Schottky group, then either P ⊂ Rγ and Q ⊂ Sγ , or Q ⊂ Rγ and P ⊂ Sγ . In

particular, it follows that P and Q are also disjoint and lie in distinct connected

components of ΛS(Γ).

3. The dimensions satisfy dimP < n and dimQ < n.

4. If we define P̂ as the complementary space of Q and Q̂ as the complementary space

of P , we have that P̂ * ΛS(Γ) and Q̂ * ΛS(Γ).

Set P and Q the projectivizations of the spaces, P ′ = Û(Span({e1, ..., ek1})) and Q′ =

V̄ −1(Span({e((2n+1)−kt+1), ..., e2n+1})), respectively.

Let us show the first part (1), consider the action of ∧k1D(γm) on ∧k1C2n+1. A straight-

forward calculation shows that the matrix of ∧k1D(γm) with respect the standard or-

dered basis β of ∧k1C2n+1 is given by:

Am =


θ1

θ2

. . .

θ(k
n)

 ,

where θi is the product of ki elements taken from the set {eλi,m(γnm )} and ordered in the

lexicographical order in (i,m). In fact θ1 > θ2 > ... > θ( k1
2n+1)

. Hence [[D(γm)]] converges

to x = [e1 ∧ · · · ∧ ek1 ] uniformly on compact sets of P(∧k1(C2n+1)) \ Span(β \ {x}).

Therefore, by Lemma 1.6, we conclude that [[∧k1 γ̃m]] converges to the point [[∧kU ]][e1∧
· · · ∧ ek1 ] uniformly on compact sets of P(∧k1(C2n+1)) \ [∧k1V −1] Span(β \ {x}). Finally,

from Lemma 1.14 we conclude that x is a fixed point of [[∧k1 γ̃ms ]]. In consequence,

P = [C] Span({[e1], . . . , [ek1 ]}) is attracting and invariant under γ. In a similar way, we

can prove that Q is repelling and invariant.

Part (2). On the contrary, suppose there exist x ∈ P ∩ (P2n
C \ (Rγ ∪ Sγ)) 6= ∅. Because

of (1) we have that x is an attracting point, then for some z ∈ P2n
C \ (Rγ ∪ Sγ) we have

that γm(z) converges to x as m tends to∞, but in the other hand by the dynamics of Γ

as a complex Schottky group we have that γ(z) ∈ Sγ and also γm(z) ∈ Sγ , then x ∈ Sγ
which is a contradiction.

Part (3), suppose that dimP = n and take γ1, γ2 ∈ Γ generators of Γ and let Ri and

Si be the open set associated to γi with i = 1, 2 and suppose that P ⊂ R2. Observe
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that P ′ = γ−1
2 γ1(P ) ⊂ S2, dimP = dimP ′ = n and P ∩ P ′ = ∅, then P ⊕ P ′ = P2n

C .

Now if we take the liftings of P and P ′ we have that P + P ′ is a subspace of C2n+1 but

dim(P + P ′) = 2n+ 2 which is a contradiction. Then the dimension of P has to be less

than n, this is also true for Q.

Part (4). Assume that P̂ ⊂ ΛS(Γ). By the previous part, we can assume that P ⊂ Sγ .

Let γ1 ∈ Γ be a generator of Γ distinct from γ. By Lemma 1.15 we conclude that

γ−m(γ1(P )) converges to Q, therefore γ−m1 (γ(P̂ )) converges to Q̂. Hence Q̂ ⊂ ΛS(Γ).

Then we have that P ⊂ P̂ , Q ⊂ Q̂ and P̂ ∩ Q̂ 6= ∅ and all of these spaces are path

connected, which lead us to a contradiction of (2).

Now, take the block Dj such that the vector en+1 ∈ Dj , and call L the space generated

by the eigenvectors associated to the eigenvalue in Dj . Observe that L ⊂ P̂ ∩ Q̂, then

by (4) L * ΛS(Γ), its means that L ⊂ ΩΓ.

Now consider the space of lines between P and the spaces generated by the eigenvectors

associated to the blocksD2, ..., Dj−1 and call it A, also consider the space of lines between

Q and the spaces generated by the eigenvectors associated to the blocks Dj+1, ..., Dt and

call it B. Notice that A and B are connected.

To conclude the proof, by the λ-Lemma, we have that if we take p, q ∈ L ⊂ ΩΓ and

a ∈ Span ({p}, A) \A and b ∈ Span ({q}, B) \B, we have that Span(p̂, P )∪Span(q̂, Q) ⊂
ΛΓ, for some p̂, q̂ ∈ L. But Span(p̂, P ), Span(q̂, Q) and L are path connected. Then we

can construct a path in ΛΓ, passing along p̂ and q̂ through L and connecting P with Q,

which contradicts (2) and that concludes the proof of the Theorem.



Part II

Discrete subgroups of Complex

Heisenberg group
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Preliminaries

Now we will study combination theorems of the subgroups of the Heisenberg group

Heis3(C).

In [4], W. Barrera, A. Cano, J.P. Navarrete, and J. Seade classified the complex Kleinian

subgroups of PSL(3,C) without loxodromic elements. In particular, they classified the

discrete subgroups of Heis3(C).

From the classification given in [4], a natural question is when can two complex Kleinian

subgroups generate another complex Kleinian group of Heis3(C)?

In other words, given two complex Kleinian groups Γ1,Γ2 ∈ Heis3(C) consider the group

generated by Γ1 and Γ2

H := 〈Γ1,Γ2〉 = {γ = γ1 ◦ γ2 ◦ · · · ◦ γt | γi ∈ Γ1 γi−1, γi+1 ∈ Γ2}. (4.1)

When is H a complex Kleinian group?

The goal of this part of the thesis is to give an answer to the previous question.

The definitions, lemmas, and theorems below are presented without going deeply into

the details and all the references are given to the reader. The intention is to give the

necessary material that will be used throughout the work.

4.1 Metabelian groups

We will start by some basic definitions about groups, then we will provide the necessary

tools in next sections about metabelian groups. For more details see [5].

24
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Let Γ be a group. The center of Γ is the subgroup defined as Z(Γ) = {g ∈ Γ|gx =

xg ∀x ∈ Γ}. The commutator subgroup of Γ, also called the first derived group of Γ,

is defined by Γ′ = [Γ,Γ] = {[x, y] = x−1y−1xy | x, y ∈ Γ}. Observe that if we take Γ′

instead of Γ we obtain Γ′′ = [Γ′,Γ′], which is called the second derived group of Γ. If we

continue in this way we get Γ(n) = [Γ(n−1),Γ(n−1)], the n-th derived group of Γ. Then,

we obtain the following sequence of non-increasing subgroups of Γ:

Γ = Γ(0) ≥ Γ′ ≥ · · · ≥ Γ(n) ≥ · · · , (4.2)

which is called the derived series of Γ.

A group Γ is solvable if for some positive integer l the equation Γ(l) = IdΓ is satisfied.

The least of such l is called the solvability length of Γ. Also, subgroups and quotients

groups of a solvable group Γ are solvable and of solvability length not exceeding that of

Γ.

Lemma 4.1. Let κ = R,C, and denote T (n, κ) as the group of upper triangular matrices

with entries in κ. If Γ ⊂ T (n, κ), then Γ is a solvable group with solvability length at

most n− 1.

Proof. Let Γ ⊂ T (n, κ), M ∈ Γ, and denote by di the upper subdiagonals of M, with

1 ≤ i ≤ n− 1.

Simple computation shows that M (r) = [M (r−1),M (r−1)] has zero in all the entries of

each di with 1 ≤ i ≤ r. Thus, M (n−1) = IdΓ for all M ∈ Γ. Then the length of

solvability of Γ is at most n− 1.

We say that a group Γ is finitely generated if there is a set, S = {g1, g2, ..., gn}, that

generates Γ where n <∞. The rank of a group Γ is the smallest n such that S generates

Γ, and is denoted by Rank(Γ).

If a solvable group Γ is discrete, then we have the following result:

Theorem 4.2. [Auslander,[3]] Let Γ ⊂ GL(n,R) be a discrete solvable subgroup, then

Γ is finitely generated.

A special case of solvable groups are the ones that have solvability length at most 2,

these groups give place to the following definition.

Definition 4.3. The groups of solvability length at most 2 are called metabelian groups.

Example 4.4. Let κ = R,C and M(3, k) the group of all invertible 3× 3 matrices with

entries in κ, and take Γ = T (3, κ) ⊂M(3, κ), the subgroup of upper triangular matrices.
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Simple computation shows that Γ′ = Z(Γ), and by Lemma 4.1, Γ′′ = IdΓ. Therefore, Γ

has solvability length 2. Thus, Γ is a metabelian group.

Another important property of a group is to be finitely presented. Given a group Γ with

S a generating set of Γ, and R a set of relations on the elements of S, we say that Γ has a

finite presentation, or that Γ is finitely presented, if there is a presentation of Γ = 〈S|R〉
with S and R finite.

Theorem 4.5. [Baumslag,[5]] If G is a finitely generated metabelian group, then G can

be embedded in a finitely presented metabelian group.

Now we introduce the definition of an HNN-extension. The name of the extension is

attributed to the mathematicians G. Higman, B.H. Neumann, and H. Neuman.

Definition 4.6. Let Γ be a group and Γ̄ a subgroup. An HNN-extension of Γ̄ is the

group

Γ∗ = 〈Γ̄, t|tht−1 = φ(h),∀h ∈ H〉, (4.3)

where φ : H → K, with H and K isomorphic subgroups of Γ̄, and t a formal symbol,

which could be an element of Γ or not, called the stable letter.

We say that an HNN-extension is ascending if H = Γ̄ or K = Γ̄.

Basing in the previous definition we present the following,

Lemma 4.7. Let Γ ∼= Zk, with k = 1, 2. There exists a subgroup Γ̃ ⊂ Γ, and a formal

symbol t, such that Γ is an ascending HNN -extension of Γ̃ with stable letter t.

Proof. We have two cases, Rank(Γ) = 1 or Rank(Γ) = 2. For the first case, and following

the notation given in Definition 4.6, if we take Γ̄ = H = K = 2Z, φ = Id and t = 1,

the ascending HNN-extension of Γ̄ is given by Γ∗ = 〈Γ̄, B|BAB−1 = A〉 where Γ∗ is

isomorphic to Γ.

Now, if Rank(Γ) = 2, take Γ = 〈A,B|[A,B] = Id〉 and define Γ̄ as 〈A〉. Take Γ̄ =

H = K, t = B, and φ = Id. Then, the ascending HNN-extension of Γ̄ is given by

Γ∗ = 〈Γ̄, B|BAB−1 = A〉, where Γ∗ is isomorphic to Γ.

In both cases we have that Γ is an HNN -extension of a finitely generated group.

Theorem 4.8. [Bieri-Strebel,[5]] Let G be an infinite, finitely presented solvable group.

Then G contains a subgroup of finite index which is an ascending HNN-extension of a

finitely generated solvable group.
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4.2 The dimensional obstructor Obdim(Γ)

In [6] the authors give a lower bound to the dimension of a contractible manifold in

which a given group Γ acts properly discontinuously. The bound was given using a

dimensional obstructor called obstructor dimension, denoted by Obdim(Γ). The formal

definition of Obdim(Γ) involves the theory of embeddings of n-complexes into R2n. This

theory was developed by van Kampen in [28].

The complete background for the understanding of the dimensional obstructor Obdim(Γ),

given in [6], is not necessary for this work. Our interest is on the properties of the

obstructor Obdim(Γ), which will allow us to give bounds on the dimension of the con-

tractible manifold and to the ranks of the groups we are working with. Here is a simple

presentation about the obstructor Obdim(Γ). For more details see [6] and [28].

Given a finitely generated group Γ equipped with the word-metric with respect to some

finite generating set, we have the following definitions:

Definition 4.9. The obstructor dimension Obdim(Γ) is defined to be 0 for finite groups,

1 for 2-ended groups, and otherwise m+ 2 where m is the largest integer such that for

some m-obstructor complex K and some triangulation of the open cone cone(K) of K

there exists a proper Lipschitz expanding map f : cone(K)(0) → Γ. If no maximal m

exists we set Obdim(Γ) =∞.

Definition 4.10. The action dimension Actdim(Γ) is the smallest integer n such that

Γ admits a properly discontinuous action on a contractible n-manifold. If no such n

exist, then Actdim(Γ) =∞.

Theorem 4.11. Let Γ a torsion free group, then

Obdim(Γ) ≤ Actdim(Γ).

Observe that if we have a torsion free group Γ that acts proper and discontinuously in

a contractible manifold of dimension m, by Definition 4.10 and Theorem 4.11, we have

Obdim(Γ) ≤ m.

Theorem 4.12. [Bestvina-Kapovich-Kleiner,[6]] If Obdim(Γ) ≥ m, then Γ can not acts

properly discontinuously on a contractible manifold of dimension < m.

The last theorem gives a lower bound of the dimension of the manifolds where Γ acts

properly discontinuously.

Also, in [6], the authors gave properties of Obdim(Γ) in the cases when Γ is either a

direct product or is a semi-direct product of two groups.
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Lemma 4.13. Let Γ = Γ1 × Γ2, then we have that

Obdim(Γ1 × Γ2) ≥ Obdim(Γ1) + Obdim(Γ2), (4.4)

while

Actdim(Γ1 × Γ2) ≤ Actdim(Γ1) + Actdim(Γ2). (4.5)

The following definition is needed for the case when Γ is the semi-direct product of two

subgroups.

Definition 4.14. We say that a finitely generated group Γ is weakly convex if there

is a collection of discontinuous paths {φz,w : [0, 1] → Γ}z,w∈Γ and a constant M > 0

satisfying the following properties:

1. φz,w(0) = z and φz,w(1) = w.

2. There is a function γ : [0,∞)→ [0,∞) such that

d(z, w) ≤ R =⇒ diam(Im(φz,w)) ≤ γ(R).

3. For all z, w ∈ Γ there is ε > 0 such that φz,w sends subintervals of length < ε to

sets of diameter < M .

4. If d(z, z′) ≤ 1 and d(w,w′) ≤ 1 then for all t ∈ [0, 1],

d(φz,w(t), φz′,w′(t)) ≤M.

Examples of weakly convex groups are hyperbolic groups and semi-hyperbolic groups.

See [6].

Corollary 4.15. If Γ = H oQ with H and Q finitely generated and H weakly convex,

then

Obdim(Γ) ≥ Obdim(H) + Obdim(Q). (4.6)

From the previous framework we give some results about the dimensional obstructor to

the groups Zk and Zk o Z.

Lemma 4.16. Obdim(Zk) = k.

Proof. By induction over k.

As Z is a 2-ended group, by the definition of Obdim(Γ), we have that Obdim(Z) = 1.
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Now, suppose that Obdim(Zk) = k, then by Lemma 4.13 we have that

Obdim(Zk+1) = Obdim(Zk × Z) ≥ Obdim(Zk) + Obdim(Z).

Thus, by the proof of induction, we have that Obdim(Zk+1) ≥ k + 1.

On the other hand, we have that Zk acts properly discontinuously on Rk by translations

for all natural numbers k. Then, Actdim(Zk+1) ≤ k+ 1, and thus, by Theorem 4.11, we

have that Obdim(Zk+1) ≤ Actdim(Zk+1) ≤ k + 1. Then Obdim(Zk+1) = k + 1.

In the preliminaries, we defined the rank of a group Γ as the smallest integer n such that

Γ is generated by a set of n elements. Thus, we have,

Corollary 4.17. Obdim(Zk) = Rank(Zk)

Proof. As the rank of Zk, for all natural number k, is k by Lemma 4.16, we are done.

Lemma 4.18. Obdim(Zk o Z) = k + 1.

Proof. Define the product in Zk o Z as:

(b1, b2, ..., bk, a1) ∗ (c1, c2, ..., ck, a2) 7→ (b1 + c1 + a2 · a1, b2 + c2, ..., bk + ck, a1 + a2),

and take the action of Zk o Z on Rk+1 given by

(b1, b2, ..., bk, a) ∗ (x1, x2, ..., xk+1) 7→ (b1 + x1 + a · xk+1, b2 + x2, ..., bk + xk, a+ xk+1).

This action is proper and discontinuous. By Definition 4.10, Actdim(Zk o Z) ≤ k + 1.

Then, by Theorem 4.11, Obdim(Zk o Z) ≤ Actdim(Zk o Z) ≤ k + 1.

On the other hand, as Zk is a weakly convex group, by Corollary 4.15 we have Obdim(Zko
Z) ≥ Obdim(Zk) + ObdimZ = k + 1, which concludes the proof.

4.3 Lattices and Z-modules

In this section we give a brief presentation about two algebraic structures: lattices and

Z-modules.

There is no canonical way to give a systems of generators to a group of the size of the

rank. However, the groups we are dealing with have the structure of a Z-module. Hence

it is easier to give a system of generators to these groups.
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Moreover, these groups have a lattice structure. In this way, we will be able to give

a minimal set of generators of the groups and thus compute the rank. This section is

based in [7].

We will start with the definition of a module.

Definition 4.19. Let κ be an algebraic number field and let k1, ..., km be an arbitrary

finite set of elements of κ. The set M of all the linear combinations,

{n1k1 + · · ·+ nmkm|ni ∈ Z},

is called a module in κ, and the elements k1, ..., km are called generators for the module

M .

From the previous definition we can observe that a module is in fact an additive group.

Definition 4.20. A system of generators of a module M is called a basis for M if it is

linearly independent over the ring of integers.

The following theorem gives a condition for an abelian group to have a basis.

Theorem 4.21. If an abelian group without finite order elements possesses a finite

system of generators, then it possesses a basis.

Corollary 4.22. Any subgroup N of a module M , is a also a module.

Now we proceed to present the definition of a lattice.

Definition 4.23. Let l1, ..., lm, m ≤ n, be a linearly independent set of vectors in R.

The set L of all vectors of the form

{r1l1 + · · ·+ rmlm|ri ∈ Z},

is called the m-dimensional lattice in Rn, and the vectors l1, ..., lm are called a basis for

L. If m = n, the lattice is called full ; otherwise is called non-full.

The following two lemmas relate the properties of discrete additive subgroups and lat-

tices.

Lemma 4.24. The set of points of any lattice L in Rn is discrete.

Lemma 4.25. A discrete additive subgroup of Rn is a lattice.

From this background, we give a necessary result that we use in the following sections.
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Lemma 4.26. If W = {u1, ..., uk} is an R-linearly independent set of vectors in Rn,

then SpanZ(W ) ∼= Zk. In particular, SpanZ(W ) is discrete.

Proof. We have that SpanZ(W ) = {α1u1 + · · · + αkuk|αi ∈ Z}. If we take the map

θ : SpanZ(W )→ Zk, such that θ(w) = (α1, ..., αk) for all w ∈W , we have that θ defined

an isomophism between SpanZ(W ) and Zk.

4.4 Classification of complex Kleinian subgroups of Heis3(C)

In [4], the authors gave a complete list of the discrete subgroups of the 3-dimensional

complex Heisenberg group, Heis3(C), based in dynamical aspects of the subgroups as

the Kulkarni’s limit set and the equicontinuity region of them.

The complex Heisenberg group is defined in [4] as:

Heis3(C) =




1 x y

0 1 z

0 0 1


∣∣∣∣∣∣∣∣x, y, z ∈ C

 . (4.7)

The authors of [4] also introduce the concept of control group for the discrete subgroups

of Heis3(C). With this concept they study some dynamical properties of the groups.

The following is a brief description of a control group.

Let Γ ⊂ PSL(3,C) be a subgroup acting on P2
C with a point p fixed by Γ, γ ∈ Γ and l

a line in P2
C \ {p}. Then consider the following projection:

πp,l : P2
C \ {l} → l

πp,l(x) =←→p, x ∩ l

The point p is called the vanishing point and the line l is called the horizon. The

projection πp,l allow us to define the group homomorphism:

Π := Πp,l,Γ : Γ→ Biholo(l) ∼= PSL(2,C)

Π(γ)(x) = πp,l(γ(x)).
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We say that Γ is a weakly semi-controllable group if it acts with a fix point in P2
C. Here

l determines the control group Π(Γ) ⊂ PSL(2,C) which is well defined and independent

of the choose of l, up to an automorphism of PSL(2,C).

The classification of the complex Kleinian subgroups of Heis3(C) is the following:

Theorem 4.27. [W. Barrera, A. Cano, J.P. Navarrete, J. Seade, [4]] Let Γ0 ⊂ PSL(3,C)

be a complex Kleinian group without loxodromic elements, then there is a subgroup

Γ ⊂ Γ0 of finite index such that Γ is conjugated to one of the following groups:

1. The group

Wη =




η(w)−2 0 0

0 η(w) η(w)w

0 0 η(w)


∣∣∣∣∣∣∣∣w ∈W

 ,

where W ⊂ C is a discrete additive subgroup and η : W → (C,+) is a group

morphism.

2. The group

P1 =




1 0 x

0 1 y

0 0 1


∣∣∣∣∣∣∣∣(x, y) ∈ SpanZ(W )

 ,

where W ⊂ C2 is a R-linearly independent set of points.

3. The group

Lw =




1 x L(x) + 2−1x2 + w

0 1 x

0 0 1


∣∣∣∣∣∣∣∣w ∈W1, x ∈W2

 ,

where W1 ⊂ C is a discrete additive subgroup and W2 ⊂ C such that L : W2 → C
is an additive function that satifies:

(a) if W2 is discrete, then rank(W1) + rank(W2) ≤ 4 and

Γ ∼= Zrank(W1) ⊕ Zrank(W2).

(b) if W2 is non-discrete, then rank(W1) + rank(W2) ≤ 4 and

lim
n→∞

L(xn) + wn =∞

for all sequence (wn) ⊂ W1 and every sequences (xn) ⊂ W2 converging to 0.

In this case Γ ∼= Z⊕ Z⊕ Z⊕ Z.
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4. The group P2 =




1 a b

0 1 0

0 0 1


∣∣∣∣∣∣∣∣(a, b) ∈ SpanZ(W )

 ,

where W ⊂ C2 is a discrete additive R-linearly independent set.

5. The group Γw =




1 k + lc+mx ld+m(k + lc) +
(
m
2

)
x+my

0 1 m

0 0 1


∣∣∣∣∣∣∣∣k, l,m ∈ Z

 ,

where w = (x, y, p, q, r) with x, y ∈ C, p, q, r ∈ Z such that p, q are co-primes, q2

divides r, c = pq−1 and d = r−1.

6. The groupWa,b,c =


 1 0 w

0 1 0

0 0 1

 1 1 0

0 1 1

0 0 1

n 1 a+ c b

0 1 c

0 0 1

m∣∣∣∣∣∣n,m ∈ Z, w ∈W

,
where W ⊂ C is a discrete additive subgroup and a, b, c ∈ C are such that:

(a) {1, c} is an R−linearly dependent set but Z−linearly independent set and

a ∈W \ {0},

(b) {1, c} is an R−linearly independent set and a ∈W \ {0}.

Also, in [4], the authors proved that the Kulkarni’s limit set of the discrete subgroups

of Heis3(C) is either a line or is a pencil of lines over a circle in P2
C.

If X is one of the families of groups of the previous theorem and Γ is a subgroup of

Heis3(C), we will say that Γ is of type X if Γ is conjugate to some element in X.

In this work the author introduces a presentation of the complex Heisenberg group as

a semi-direct product. This presentation simplifies the notation and gives algebraic

properties of the subgroups of Heis3(C).

First we remember the definition of the external semi-direct product of two groups. Take

two groups, Ñ and H̃, a group homomorphism φ : H̃ → Aut(Ñ), and consider the set

G = {(n, h)|n ∈ Ñ , h ∈ H̃} together with the binary operation ∗ : G × G → G defined

as (n, g) ∗ (m,h) = (mφh(n), gh). Then we have:

1. With the product ∗ the set G is a group.

2. The group N ∼= Ñ × {1H̃} is a normal subgroup of G.

3. The group H ∼= {1Ñ} × H̃ is a subgroup of G.

4. The groups N and H intersect trivially.
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Definition 4.28. The group G constructed above is called the external semi-direct

product of N and H, and it is denoted by N oφ H, or simply N oH when the group

homomorphism φ is fixed.

The internal semi-direct product is constructed when G has two subgroups satisfying

the above conditions 1-4. If H is also normal, then G is the direct product of N and H,

denoted by, G = N ×H.

To see that Heis3(C) is isomorphic to the semi-direct product C2 oφ C, fix the following

group automorphism:

φ : C→ Aut(C2) (4.8)

c 7→ φc(a, b) = (a, b+ a · c), (4.9)

and construct the semi-direct product C2 oφC as in Definition 4.28. The multiplication

for any two elements in C2 oφ C is given by,

((a, b), c)oφ ((x, y), z) := (((x, y) +φz(a, b)), c+ z) = ((a+x, b+y+a · z), c+ z). (4.10)

Via the next isomorphism ϕ, we have that Heis3(C) is isomorphic to C2 oφ C,

ϕ : Heis3(C)→ C2 oφ C (4.11)
1 a b

0 1 c

0 0 1

 7→ ((a, b), c), (4.12)

Observe that, via ϕ, the multiplication 4.10 coincides with the following multiplication

of two elements in Heis3(C),
1 a b

0 1 c

0 0 1




1 x y

0 1 z

0 0 1

 =


1 a+ x b+ y + a · z
0 1 c+ z

0 0 1

 . (4.13)

To simplify, when we multiply elements in Heis3(C) we will use the following notation

(x1, x2, x3) ∗ (y1, y2, y3) = (x1 + y1, x2 + y2 + x1 · y3, x3 + y3). (4.14)

Some auxiliary mappings that we will be using are the projections pj , with j = 1, 2, 3,

defined as follows,

pj : C2 oφ C→ C (4.15)
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pj(x1, x2, x3) 7→ xj . (4.16)

In the subsequent, we will work with the following definition of Heis3(C).

Definition 4.29. The 3-dimensional complex Heisenberg group is the group given as,

Heis3(C) := {(a, b, c) ∈ C2 oφ C|φ : C→ Aut(C2), φc(a, b) = (a, b+ a · c)},

where for any two elements in Heis3(C), the product is given by equation 4.14.

From now on, we will work with the subgroups of Heis3(C) as subgroups in C2 oφ C.

Observe that under this notation, the control group Π(Γ) of a group Γ ⊂ Heis3(C), will

be p3(Γ) := Im(p3|Γ).



Chapter 5

Constructing Kleinian subgroups

of Heis3(R)

In this chapter, we use the classification given in section 4.4 of the complex Kleinian

subgroups of Heis3(C) to study the properties of the Kleinian subgroups of Heis3(R),

which is natural contained in Heis3(C).

We start presenting the n-dimensional discrete Heisenberg group Heisn(Z) as a semi-

direct product. This allows us to give a bound to the Obdim(Heisn(Z)), which will be

useful in next sections.

Then, we give a characterization of the Kleinian subgroups of Heis3(R) focused on the

algebraic structure of them.

Given two Kleinian subgroups Γ1,Γ2 ⊂ Heis3(R), the group H generated by these two

groups is:

H := 〈Γ1,Γ2〉 = {γ = γ1 ◦ γ2 ◦ · · · ◦ γt | if γi ∈ Γ1 then, γi−1, γi+1 ∈ Γ2}. (5.1)

We finish this chapter characterizing when H is a Kleinian group.

5.1 Properties of Heisn(Z)

We start with the definition of the Heisenberg group, with entries in a ring or in a field,

extended to dimension n.

Definition 5.1. Let R be Z, R or C. The n-dimensional Heisenberg group Heisn(R)

with entries in R, is defined as:

36
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Heisn(R) :=





1 x1 x2 · · · xn−3 xn−2 xn−1

0 1 0 · · · 0 0 xn

0 0 1
. . .

...
... xn+1

...
...

...
. . . 0

...
...

0 0 0 1 0 x2n−3

0 0 0 0 1 x2n−4

0 0 0 0 0 1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xi ∈ R



. (5.2)

Based on the Definitions 4.28 and 5.1, we give in the following a presentation to the

group Heisn(Z) as a semi-direct product of two subgroups of it.

Lemma 5.2. For R = Z,

Heisn(Z) ∼= Zn−1 o Zn−2.

Proof. Consider the following subgroups of Heisn(Z):

N =





1 x1 x2 · · · xn−3 xn−2 xn−1

0 1 0 · · · 0 0 0

0 0 1
. . .

...
... 0

...
...

...
. . . 0

...
...

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xi ∈ Z



,

H =





1 0 0 · · · 0 0 0

0 1 0 · · · 0 0 xn

0 0 1
. . .

...
... xn+1

...
...

...
. . . 0

...
...

0 0 0 1 0 x2n−3

0 0 0 0 1 x2n−4

0 0 0 0 0 1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

xi ∈ Z



.

Then, N ∼= Zn−1 and H ∼= Zn−2. A straightforward computation shows that N /

Heisn(Z), and also N ∩H = Idn. Hence, Heisn(Z) ∼= N oH.

Remark 5.3. The last lemma is still valid when R = R or R = C.
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As a consequence of the previous lemma, we give the relation that exists between

Obdim(Heis3(Z)) and the rank of Heisn(Z), giving with this a useful bound for the

following sections.

Lemma 5.4. Let Γ be a group. If Γ ∼= Zn−1 o Zn−2, then Obdim(Γ) ≥ Rank(Γ).

Proof. Since Rank(Γ1 oΓ2) ≤ Rank(Γ1) + Rank(Γ2), for any groups Γ1 and Γ2, we have

that Rank(Zn−1 o Zn−2) ≤ 2n− 3.

On the other hand, by Corollary 4.15 and Lemma 4.16, it is satisfied

Obdim(Zn−1 o Zn−2) ≥ Obdim(Zn−1) + Obdim(Zn−2)

= (n− 1) + (n− 2) = 2n− 3,
(5.3)

then, Obdim(Γ) ≥ Rank(Γ).

From Lemma 5.2 and Lemma 5.4 follows,

Corollary 5.5. The following inequality holds,

Rank(Heis3(Z)) ≤ Obdim(Heis3(Z)).

5.2 Kleinian subgroups of Heis3(R)

In this section we present an algebraic description of the Kleinian subgroups of Heis3(R).

The following definition and lemma allow us to use the classification of complex Kleinian

subgroups of Heis3(C) given in section 4.4.

Definition 5.6. Let Γ be a discrete subgroup of Heis3(R) acting on P2
R, and let ΛKul(Γ)

be the Kulkarni’s limit set of Γ. We say that Γ is a Kleinian group acting on P2
R, if

ΩKul(Γ) = P2
R \ ΛKul(Γ) is non-empty. In this case ΩKul(Γ) is a Γ-invariant non-empty

open set of P2
R on which Γ acts properly and dicontinuosly.

The natural embedding of Heis3(R) in Heis3(C), allow us to extend in a natural way the

action of Heis3(R) to P2
C. Indeed, the action is extended as complex Kleinian group.

Let Γ be a Kleinian subgroup of Heis3(R) acting on P2
R. To prove that Γ is a complex

Kleinian group acting on P2
C, we work with the Kulkarni’s limit set ΛKul(Γ) instead of

ΩKul(Γ), which it is equivalent, and easy to work.

By Definition 1.12,

ΛKul(Γ)R = L0 ∪ L1 ∪ L2,
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and

ΛKul(Γ)C = L̃0 ∪ L̃1 ∪ L̃2,

as the Kulkarni’s limit sets of Γ acting on P2
R, and P2

C, respectively. Then we have the

following lemmas:

Lemma 5.7. Let Γ ⊂ Heis3(R) be a Kleinian group acting on P2
R, and let L0 and L̃0

the subsets of ΛKul(Γ)R and ΛKul(Γ)C, respectively. Then L0 = L̃0 ∩ P2
R .

Proof. Observe that if x ∈ L0, then x is a point in P2
R with infinite isotropy group, as

P2
R ⊂ P2

C, thus x is a point in P2
C with infinite isotropy group, hence x ∈ L̃0 ∩ P2

R.

In the other direction, we define S0 := {x ∈ P2
C|x has infinite isotropy group} as the set

of points with infinite isotropy group in P2
C. By definition the closure of S0 is L̃0.

Let x̃0 be a point in L̃0∩P2
R, then there are two cases x̃0 ∈ S0∩P2

R or x̃0 ∈ (L̃0 \S0)∩P2
R.

If x̃0 ∈ S0 ∩ P2
R, then x̃0 is a point with infinite isotropy group and belong to P2

R, which

implies that x ∈ L0.

In the other hand, if x̃0 ∈ (L̃0 \S0)∩P2
R, then there exist a sequence of distinct elements

x̃n in S0 such that x̃0 = lim
n→∞

x̃n.

Let xn be a lifting of x̃n in C3 such that xn ∈ S5, and let x0 be a lifting of x̃0 in S5.

Then there exist λ ∈ C∗ such that

x0 = λ lim
n→∞

xn = lim
n→∞

λxn.

Observe that we can take the sequences in the sphere by a normalization. The condition

of belong to S5 assure the convergence in C3 because S5 is a compact, metric space.

Define yn := <(λxn) and zn := =(λxn). As x0 is in S5 we have

lim
n→∞

yn = <(x0) = x0,

and

lim
n→∞

zn = =(x0) = 0.

If we take [yn] as the projectivization of yn in P2
C, we have that {[yn]}n is in particular a

sequence in P2
R. Moreover, as the action of the group is lineal on the complex numbers,

every element in the sequence {[yn]}n has infinite isotropy group. Hence lim
n→∞

{[yn]}n =

x̃0. Thus x̃0 ∈ L0.
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Lemma 5.8. Let Γ ⊂ Heis3(R) be a Kleinian group acting on P2
R, and let L1 and L̃1

the subsets of ΛKul(Γ)R and ΛKul(Γ)C, respectively. Then the following are satisfied:

1. L1 ⊂ L̃1 ∩ P2
R.

2. L̃1 ∩ P2
R ⊂ L0 ∪ L1.

Proof. To prove the first part, take x ∈ L1, then there exist γn ∈ Γ and z ∈ P2
R \ L0,

such that x = lim
n→∞

γn(z). As P2
R ⊂ P2

C and L0 = L̃0 ∩ P2
R, we have

z ∈ P2
R \ L0 ⊂ P2

C \ (L̃0 ∩ P2
R) = (P2

C \ L̃0) ∪ (P2
C \ P2

R),

as z ∈ P2
R, thus z ∈ P2

C \ L̃0. Therefore x is an accumulation point in P2
C \ L̃0, hence

x ∈ L̃1 ∩ P2
R.

For the second part, let

S1 =
⋃
{γ(x) ∈ P2

C|γ ∈ Γ and, x ∈ P2
C \ L̃0}′,

be the union of accumulation points sets of the point orbits in P2
C \ L̃0. Then, by

definition, the closure of S1 is L̃1.

If x̃0 ∈ L̃1 ∩ P2
R, then there are two cases, either x̃0 ∈ S1 ∩ P2

R or x̃0 ∈ (L̃1 \ S1) ∩ P2
R.

Let x̃0 be a point in S1 ∩ P2
R. Then for all n ∈ N there exist a sequence of distinct

elements γn in Γ and a sequence x̃n in S1 such that x̃0 = lim
n→∞

γn(x̃n).

Fix x0 ∈ R3 a lifting of x̃0 such that x0 ∈ S5. And for each n, take γn(xn) a lifting of

γn(x̃n) also in S5. Then there exist λ ∈ C∗ such that

x0 = λ lim
n→∞

γn(x̃n) = lim
n→∞

λγn(xn) = lim
n→∞

γn(λxn).

If we take the real parts of both sides in the previous equality, we obtain

x0 = <(x0) = <( lim
n→∞

γn(λxn)) = lim
n→∞

γn(<(λxn)).

Define yn := <(λxn). For each n, take the projectivization [yn] of yn in P2
C. Hence

x̃0 = [x0] = lim
n→∞

γn([yn]).

We have two cases for the elements of the sequence {[yn]}n. The first is that each element

in [yn] has a finite isotropy group, except for a finite number of them. In this case, we

have that x̃0 is an accumulation point of points in P2
R \  L0, therefore x̃0 ∈ L1.
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In the other hand, if there exist a subsequence {[yj ]}j of {[yn]}n with infinite isotropy

group for each j, then x̃0 belongs to the closure of accumulation points with infinite

isotropy group, it means x̃0 belongs to L0. Thus, x̃0 ∈ L0 ∪ L1.

Now, if x̃0 ∈ (L̃1 \S1)∩P2
R, then for all n ∈ N there exist a sequence of distinct elements

γn ∈ Γ and a sequence of accumulation points x̃n ∈ S1 such that x̃0 = lim
n→∞

γn(x̃n).

As each x̃n is an accumulation point of point orbits in P2
C \ L̃0, we can construct a

sequence x̃nn ∈ B(γn(x̃n), 1/n) in P2
C \ L̃0, such that x̃0 = lim

n→∞
x̃nj . From here on the

proof follows as in the previous case. Concluding that x̃0 belongs to L0 ∪ L1. Thus

L̃1 ∩ P2
R ⊂ L0 ∪ L1.

By the previous lemmas follows

Corollary 5.9. Let Γ ⊂ Heis3(R) be a Kleinian group acting on P2
R, and let L0, L1 and

L̃0, L̃1 the subsets of ΛKul(Γ)R and ΛKul(Γ)C, respectively. Then

L0 ∪ L1 = (L̃0 ∪ L̃1) ∩ P2
R.

Lemma 5.10. Let Γ ⊂ Heis3(R) be a Kleinian group acting on P2
R, and let L2 and L̃2

the subsets of ΛKul(Γ)R and ΛKul(Γ)C, respectively. Then the following are satisfied:

1. L2 ⊂ L̃2 ∩ P2
R.

2. L̃2 ∩ P2
R ⊂ L0 ∪ L1 ∪ L2.

Proof. Let x ∈ L2, then there exist a sequence of distinct elements γn in Γ and a compact

set K in P2
R \ (L0 ∪ L1) such that x = lim

n→∞
γn(K). In this case, we have

K ⊂ P2
R \ (L0 ∪ L1) ⊂ P2

C \ [(L̃0 ∪ L̃1) ∩ P2
R] = P2

C \ (L̃0 ∪ L̃1) ∩ (P2
C \ P2

R).

As K ⊂ P2
R, thus K ⊂ P2

C \ (L̃0 ∪ L̃1), therefore x ∈ L̃2 ∩ P2
R.

For the second part, let

S2 =
⋃
{γ(K) ⊂ P2

C|γ ∈ Γ and, K ⊂ P2
C \ (L̃0 ∪ L̃1) is a compact set}′,

be the union of accumulation points sets of orbits of compact sets in P2
C \ (L̃0 ∪ L̃1).

Then, by definition, the closure of S2 is L̃2.

Let x̃0 ∈ L̃2 ∩ P2
R, then we have two cases, either x̃0 ∈ S2 ∩ P2

R or x̃0 ∈ (L̃2 \ S2) ∩ P2
R.
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Suppose that x̃0 ∈ S2 ∩ P2
R. Then, for all n ∈ N there exist a sequence of distinct

elements γn ∈ Γ, a sequence of compact sets Kn ⊂ P2
C \ (L̃0 ∪ L̃1), and a sequence of

points γn(x̃n) ∈ B(x̃0, 1/n) ∩ γn(Kn) such that x̃0 = lim
n→∞

γn(x̃n).

Fix x0 ∈ R3 a lift of x̃0, and let γn(xn) be lifts of γn(x̃n), such that x0 and γn(x̃n) belong

to S5 for all n. Then, there exists λ ∈ C∗ such that

x0 = λ lim
n→∞

γn(xn) = lim
n→∞

γn(λxn).

If we take the real parts of both sides on the last equality, we obtain

x0 = <(x0) = <( lim
n→∞

γn(λxn)) = lim
n→∞

γn(<(λxn)).

Denote by yn := <(λxn). Take the projectivizations [x0] and [yn], of x0 and yn in P2
R.

Then, we have that x̃0 = [x0] = lim
n→∞

{[yn]}n in P2
R.

If there exist a subsequence {[yj ]}j of {[yn]}n such that {[yj ]}j ∈ (L0 ∪ L1), then x̃0 =

lim
n→∞

{[yj ]}j in P2
R, hence x̃0 belong to L0 ∪ L1.

Now, assume that {[yn]}n /∈ (L0 ∪ L1), except for a finite number of elements in the

sequence. As every element in the sequence {[yn]}n is a compact set, then {[yn]}n ∈
P2
R \ (L0 ∪ L1), hence x̃0 ∈ L2. Therefore, x̃0 ∈ L0 ∪ L1 ∪ L2.

On the other hand, if x̃0 ∈ (L̃2 \ S2) ∩ P2
R. Then for all n ∈ N, there exist a sequence

γn ∈ Γ, and a sequence of points x̃n ∈ S2, such that x̃0 = lim
n→∞

γn(x̃n).

Construct a sequence x̃nj ∈ B(x̃n, 1/n) ∩Kn, with Kn ∈ P2
C \ (L̃0 ∩ L̃1). Then we have

that x̃0 = lim
n→∞

γn(x̃nj ). Now the proof follows as in the previous case. Concluding that

x̃0 ∈ L0 ∪ L1 ∪ L2.

By Corollary 5.9 and Lemma 5.10, we have the following

Corollary 5.11. Let Γ ⊂ Heis3(R) be a Kleinian group acting on P2
R and extend the

action of Γ to P2
C, then

ΛKul(Γ)R = ΛKul(Γ)C ∩ P2
R.

Proof.

ΛKul(Γ)R = L0 ∪ L1 ∪ L2 = (L̃0 ∪ L̃1 ∪ L̃2) ∩ P2
R = ΛKul(Γ)C ∩ P2

R
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Thus we have the following proposition:

Proposition 5.12. Let Γ ⊂ Heis3(R) be a Kleinian group acting on P2
R, then Γ is a

complex Kleinian subgroup of Heis3(C).

Proof. First we show that Γ is discrete as a subgroup of Heis3(C). As Γ is discrete in

Heis3(R), and Heis3(R) ⊂ Heis3(C), then Γ is discrete in Heis3(C).

By Corollary 5.11, ΛKul(Γ)R = ΛKul(Γ)C∩P2
R. Therefore, if we consider the correspond-

ing regions of discontinuity of the Kulkarni’s limits sets, we have

ΩKul(Γ)R = P2
R \ ΛKul(Γ)R ⊂ P2

C \ (ΛKul(Γ)C ∩ P2
R) = (P2

C \ ΛKul(Γ)C) ∪ (P2
C \ P2

R),

as ΩKul(Γ)R ⊂ P2
R, we have ΩKul(Γ)R ⊂ P2

C\ΛKul(Γ)C = ΩKul(Γ)C. Finally, as ΩKul(Γ)R

is a non-empty open set where Γ acts properly discontinuosly, then ΩKul(Γ)C is so.

Therefore Γ is a complex Kleinian group of Heis3(C).

5.2.1 Description of Kleinian subgroups of Heis3(R)

Now we present an auxiliary lemma that gives an upper bound to the rank of a Kleinian

group acting on P2
R.

Lemma 5.13. If Γ is a discrete subgroup of PSL(3,R) acting on P2
R such that Γ ∼= Zk

and the Kulkarni’s limit set of Γ, ΛKul(Γ), is a line l in P2
R, then Rank(Γ) ≤ 2.

Proof. As ΛKul(Γ) = l, we have that Γ acts properly discontinuously on ΩKul(Γ) =

P2
R \ l. By Definition 4.10, Actdim(Γ) ≤ 2. Hence by Theorem 4.11, we have that

Obdim(Γ) ≤ Actdim(Γ) ≤ 2.

By hypothesis Γ ∼= Zk, by Corollary 4.17, we have that Obdim(Γ) = Rank(Γ). Therefore,

by Lemma 4.16, Rank(Γ) ≤ 2, which concludes the proof.

Using the the classification given in Section 4.4, see [4], and the previous results, we give

a description of the Kleinian subgroups of Heis3(R).

Theorem 5.14. Let Γ ⊂ Heis3(R) be an abelian Kleinian subgroup, then:

1. The group Γ is finitely generated.

2. The group Γ is finitely presented.
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3. The group Γ is conjugate to one of the following groups:

(a) P1 = {( 0, a, b )|(a, b) ∈ SpanZ(W )} ,

where W ⊂ R2 is a discrete R-linearly independent set with cardinality at

most 2.

(b) Lw =
{

(x, L(x) + x2

2 + w, x)
∣∣∣x ∈ SpanZ(W1), w ∈ SpanZ(W2)

}
,

where W1,W2 ⊂ R are additive subgroups such that

Rank(W1) + Rank(W2) ≤ 2

and L : SpanZ(W1)→ R is an additive function.

4. The group Γ is a Z-module and the rank of Γ is at most 2. Moreover, if the rank

of Γ is 2, we have:

(a) A presentation for P1 is:

P1 = 〈C,D|[C,D] = Id〉,

where

C = (0, nu1, nu2) , D = (0,mv1,mv2) ,

with W = {(u1, u2), (v1, v2)} and n,m ∈ Z.

(b) A presentation for Lw is:

Lw = 〈E,F |[E,F ] = Id〉,

where

E =

(
nu, L(nu)− (nu)2

2
, nu

)
, F = (0,mv, 0) ,

with W1 = {u} ⊂ R, W2 = {v} ⊂ R, and m,n ∈ Z.

5. The group Γ can be expressed as an HNN-extension.

Proof. By Lemma 4.1, Γ is a solvable group, with solvability length 2, thus Γ is a

metabelian group. By Theorem 4.2, we conclude that Γ is finitely generated. Which

proves Part 1.

Since, Γ is a finitely generated metabelian group, by Theorem 4.5, Γ is a finitely presented

group, proving then Part 2.
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To prove Part 3, observe that we can use the classification given in Theorem 4.27, since

Γ ⊂ Heis3(R) ⊂ Heis3(C).

By hypothesis, Γ is an abelian group.

From the classification given in Theorem 6.6, Γ could be of the types P1, P2, Γη or Lw.

We claim that Γ is neither of the type Wη nor P2. First, let us check that Γ cannot be of

the type Wη. This is because all of the eigenvalues of Wη are distinct to 1, whereas all

the eigenvalues of Γ are 1, but eigenvalues are preserved by conjugation. Now, Γ is not

of the type P2, because for every Γ̃ of the type P2 the Kulkarni’s limit set ΛKul(Γ̃) = P2
R,

hence ΩKul(Γ̃) = ∅, but this contradicts that Γ is a Kleinian group.

For groups of the types P1 and Lw the Kulkarni’s limit set is a line in P2
R, therefore

ΩKul(Γ) 6= ∅. Moreover, the eigenvalues of elements of type P1 and Lw are 1, the same

of the eigenvalues of Γ. Then, the type of Γ is either P1 or Lw.

Now we will prove that Γ is a Z-module and that the rank of Γ is at most 2.

a) Let Γ of type P1.

Let W be as in the hypothesis, and observe that P1
∼= SpanZ(W ) ∼= Zk1 , where k1

is the rank of W . To do so, consider the group isomorphism θ : P1 → SpanZ(W )

given by:

(0, a, b) 7→ (a, b).

Now, SpanZ(W ) is a Z-module, then Γ is a Z-module. As ΛKul(Γ) = l ∈ P2
R, by

Lemma 5.13, we conclude Rank(Γ) = Rank(SpanZ(W )) ≤ 2.

b) Let Γ of type Lw.

Let k2 = Rank(W1)+Rank(W2), then we have that Lw ∼= SpanZ(W1)×SpanZ(W2) ∼=
Zk2 . In this case, the group isomorphism θ : L → SpanZ(W1)×SpanZ(W2) is given

by: (
x, L(x)− x2

2
+ w, x

)
7→ (x,w).

Then, as the direct product of Z-modules is a Z-module, we have that Γ is a

Z-module. As ΛKul(Γ) = l ∈ P2
R, by Lemma 5.13, we conclude that Rank(Γ) ≤ 2.

In each case, Γ ∼= Zk, where k is either k1 or k2. Thus Γ has the same presentation as

that of Zk.

Part 5 follows by Lemma 4.7.
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Remark 5.15. We do not have non-abelian Kleinian subgroups of Heis3(R).

The non-abelian types groups, given in Theorem 6.6, are Γw and Wa,b,c.

If Γ is of type Γw, the Kulkarni’s limit set fills all of P2
R, which implies that ΩKul(Γ) = ∅,

thus Γ cannot be a Kleinian subgroup of Heis3(R).

The remaining case is when Γ is of type Wa,b,c. In this case, the Kulkarni’s limit set is

just a line in P2
R, but the values of the entries in this type of groups involve non-real

complex numbers, whereby Γ cannot be a discrete subgroup of Heis3(R).

Therefore, if a subgroup Γ of Heis3(R) acts properly discontinuously on P2
R, then Γ is

abelian.

5.3 Product of Kleinian subgroups of Heis3(R)

In this section, we have two goals: the first is to construct a group H of Heis3(R) from

the subgroups given in Theorem 5.14, and the second is to give necessary conditions

over the generators of H that hold whenever H is a Kleinian subgroup of Heis3(R).

Given two Kleinian subgroups, Γ1 and Γ2, of Heis3(R), the group H generated by Γ1

and Γ2 is:

H := 〈Γ1,Γ2〉 = {γ = γ1 ◦ γ2 ◦ · · · ◦ γt | if γi ∈ Γ1, then γi−1, γi+1 ∈ Γ2, t <∞}. (5.4)

Theorem 5.16. Let Γ1, Γ2 be Kleinian subgroups of Heis3(R) and H as in equation

5.4. If the groups Γ1 and Γ2 are of the same type and Rank(Γ1) ·Rank(Γ2) ≤ 2, then H

is a Kleinian subgroup of Heis3(R) acting over P2
R.

By Theorem 5.14, the options for Γ1 and Γ2 are P1 y Lw.

Proof. We will prove the first part by contradiction, suppose that Γ1 is type P1 and that

Γ2 is type Lw.

If we take γ1 ∈ Γ1 and γ2 ∈ Γ2, a direct computation shows that γ1γ2 6= γ2γ1, hence H

is not an abelian subgroup of Heis3(R), but by Remark 5.15, there are no non-abelian

Kleinian subgroups of Heis3(R).

Taking Γ1 and Γ2 as abelian subgroups of the same type, then H is also abelian. Addi-

tionally, as Γ1 and Γ2 are Z-modules, we have that H is a Z-module, and thus a discrete

group.
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Now, for i, j ∈ {1, 2}, i 6= j, if Γi ⊂ Γj , then H = Γj . If not, Γ1
∼= Zt1 and Γ2

∼= Zt2 ,

with t1, t2 ≤ 2, see Theorem 5.14. Then Γ1 ∩ Γ2 = Id, therefore H is the direct product

Γ1×Γ2
∼= Zt1×Zt2 ∼= Zt, where by hypothesis, t = t1 ·t2 ≤ 2. Thus H is isomorphic to Z

or to Z2, in both cases, H act properly discontinuously by translations in P2
R. Therefore,

H is a Kleinian group.



Chapter 6

Constructing discrete subgroups

of Heis3(C)

Motivated by the last chapter, the intention of the present chapter is to extend the

results obtained for Heis3(R) to Heis3(C).

In the real case, we gave conditions under which the combination of two Kleinian sub-

groups of Heis3(R) generate another Kleinian subgroup of Heis3(R). In the complex

case, we will give conditions about the discreteness of the combination of two complex

Kleinian groups in Heis3(C).

We start by giving an algebraic description of the complex Kleinian subgroups of Heis3(C).

This description is based upon the classification given in [4], which we presented in the

preliminaries of Section 4.4.

In the last section, through a series of propositions and examples, we study all the

possible cases of combinations that appear in the complex case, and give conditions

under which the generated group of two complex Kleinian subgroups generates a discrete

subgroup of Heis3(C).

6.1 Description of complex Kleinian subgroup of Heis3(C)

The purpose of this section is to give an algebraic description analogous to the one given

for the Kleinian subgroups of the real Heisenberg group (see Theorem 5.14) for complex

Kleinian subgroups of Heis3(C).

Before stating the main theorem of this section, we will prove the following auxiliary

lemma.

48
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Lemma 6.1. If Γ ⊂ PSL(3, C) is a group acting properly discontinuously in a no-empty

open set of P2
C and Γ ∼= Zk, then Rank(Γ) ≤ 2.

Proof. By Definition 4.10, we have that Actdim(Γ) ≤ 2, then Theorem 4.11 implies that,

Obdim(Γ) ≤ 2.

Now by hypothesis Γ ∼= Zk, then by Lemma 4.16 we can conclude that

Rank(Γ) = Rank(Zk) = Obdim(Zk) = Obdim(Γ) ≤ 2,

which finishes the proof.

Due to the extensive descriptions, we divided the presentation into two propositions,

first we present the description for the abelian subgroups of Heis3(C), and then for the

non-abelian subgroups of Heis3(C).

Proposition 6.2. Let Γ be a discrete subgroup of Heis3(C) acting properly discontin-

uously on a non-empty open set of P2
C, then Γ is a finitely generated, finitely presented

group and virtually an ascending HNN -extension of a finitely generated solvable group.

Proof. First observe that, Γ ∈ Heis3(C) ⊂ T (3, C), then by Lemma 4.1, the length of

solvability of Γ is at most 2, then by definition 4.3, we have that Γ is a metabelian group.

By Theorem 4.2, we have that Γ is a finitely generated group. Thus, Γ is a metabelian,

finitely generated group, hence by Theorem 4.5, we have that Γ is a finitely presented

group.

Now, by Theorem 4.8, the group Γ contains a group of finite index which is an ascending

HNN -extension of a finitely solvable group. Nevertheless, we have that Γ is itself an

ascending HNN -extension of a finitely solvable group. From the Definition 4.6, take

Γ̄ = G = 〈S,R〉, where S is the set of generators of G, R is the set of the relations in G,

and t = B. If we consider the homomorphism φ from the Definition 4.28, then Γ can be

expressed as an ascending HHN -extension of G as follows:

Γ = 〈S, t|R, tAt−1 = φ(A) ∀ A ∈ S〉 = Γ∗.

Theorem 6.3. Let Γ be a discrete, abelian subgroup of Heis3(C) acting properly dis-

continuously on a non-empty open set of P2
C, then Γ must to be one of the following

types:
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1. P1 = {(0, a, b)|(a, b) ∈ SpanZ(W )} ,

where W ⊂ C2 is a discrete additive R-linearly independent set with cardinality

at most 2, also:

(a) The group Γ is isomorphic to Zk, with k = 1, 2.

(b) The rank of Γ is at most 2.

(c) If k = 2, the group Γ has a presentation given by

〈A1, A2|[A1, A2] = Id〉.

2. P2 = {(a, b, 0)|(a, b) ∈ SpanZ(W )} , where W ⊂ C2 is a discrete additive or rank

at most two. Also:

(a) The group Γ is isomorphic to Zk, with k = 1, 2.

(b) The rank of Γ is at most 2.

(c) If k = 2, the group Γ has a presentation given by

〈A1, A2|[A1, A2] = Id〉.

3. Lw =
{(
x, L(x) + x2

2 + w, x
)∣∣∣w ∈W1, x ∈W2

}
, where W1 ⊂ C is a discrete ad-

ditive subgroup and W2 ⊂ C such that L : W2 → C is an additive function that

satifies:

(a) If W2 is discrete, then Rank(W1) + Rank(W2) ≤ 4 and

Γ ∼= ZRank(W1) ⊕ ZRank(W2).

(b) If W2 is non-discrete, then Rank(W1) + Rank(W2) ≤ 4. Moreover, for all

sequences (wn) ⊂W1, and any sequence (xn) ⊂W2 converging to 0,

lim
n→∞

L(xn) + wn =∞.

In this case Γ ∼= Z⊕ Z⊕ Z⊕ Z.

In both cases, Γ is an abelian group and has a presentation given by

〈
A1, A2, A3, A4

∣∣∣∣∣∣
⋃
i 6=j
{[Ai, Aj ] = Id}

〉
.

Proof. From the classification given in Theorem 4.27, we discard that Γ could be of the

abelian type Wη. That is because, by conjugation the eigenvalues are preserved, but
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all the eiganvalues of Γ are equal to 1 and all the eigenvalues of Wη are different to 1,

concluding that Γ cannot be of the type Wη.

Then, the abelian types left, from Theorem 4.27, to which Γ can be are P1, P2 or Lw.

Now we will describe what happens in each case.

1) The group Γ of type P1.

i) By Lemma 4.26, we have that SpanZ(W ) ∼= Zk, with k = Rank(W ). Now

consider the group isomorphism θ1 : Γ→ SpanZ(W ) given by:

(0, a, b) 7→ (a, b).

Thus, we have that Γ ∼= SpanZ(W ), hence Γ ∼= Zk, with k = 1, 2.

ii) The proof that Rank(Γ) ≤ 2, follows from Lemma 6.1.

iii) To give a presentation for Γ, we will use the fact that Γ ∼= Zk. Then if k = 1,

a presentation for Γ is given by the presentation of Z:

〈A|∅〉.

If k = 2, a presentation for Γ is given by the presentation of Z2:

〈A1, A2|[A1, A2] = Id〉.

Now in the following two cases, parts (ii) and (iii) are proven exactly in the same

way as in last case, so we just give the proofs of parts (i) in each one.

2) The group Γ of type P2.

i) By Lemma 4.26, we have SpanZ(W ) ∼= Zk. Now, by the group isomophism

θ2 : Γ→ SpanZ(W ) given by

(a, b, 0) 7→ (a, b),

we have Γ ∼= SpanZ(W ). Hence Γ ∼= Zk.

3) The group Γ of type Lw.

i) By the group isomorphism θ3 : Γ→ SpanZ(W1 ×W2) defined by(
x, L(x) +

x2

2
+ w, x

)
7→ (x,w),

we have Γ ∼= SpanZ(W1 ×W2).
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We continue with the case when Γ is of the type of a non-abelian group of Heis3(C).

Theorem 6.4. Let Γ be a discrete, non-abelian subgroup of Heis3(C) acting properly

discontinuously on a non-empty open set of P2
C, then Γ must be one of the following

types:

1. Γw =
{(
k + lc+mx, ld+m(k + lc) +

(
m
2

)
x+my,m

)∣∣k, l,m ∈ Z
}
, where w =

(x, y, p, q, r), and x, y ∈ C, p, q, r ∈ Z such that p, q are co-primes, q2 divides

r, c = pq−1 and d = r−1. Also:

(a) The group Γ is isomorphic to the semi-direct product Z2 o Z.

(b) The group Γ has rank 3.

(c) Γ has a presentation given by,

〈A1, A2, A3|[A1, A2] = Id, [[A2, A3], A1] = Id〉. (6.1)

2. Wa,b,c = {(0, w, 0) (1, 0, 1)n (a+ c, b, c)m|n,m ∈ Z, w ∈W} , where W ⊂ C is a

discrete additive subgroup and a, b, c ∈ C are such that:

(a) {1, c} is a R-linearly dependent set but Z-linearly independent set and a ∈
W \ {0},

(b) {1, c} is a R-linearly independent set and a ∈W \ {0}.

Furthermore,

i) If rank of W is one, the group Γ is isomorphic to Z2 o Z, the rank of Γ is

three and Γ has a presentation given by:

〈A,B,C|[A,B] = [A,C] = Id, [[B,C], B] = Id, [[B,C], C] = Id〉.

ii) If the rank of W is two, the group Γ is isomorphic to Z3 o Z, the rank of Γ

is four and Γ has a presentation given by:

〈A1, A2, B,C|R1, R2〉.

where R1 is the relation [A1, A2] = [Ai, B] = [Ai, C] = Id with i = 1, 2, and

R2 is the relation [[B,C], B] = [[B,C], C] = Id.

Proof. The non-abelian possibilities left from Theorem 4.27 are when Γ is of the type

Γw or Wa,b,c.
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a) The group Γ of the type Γw.

i) To prove that Γ is isomorphic to the semi-direct product Z2 oZ consider the

following groups:

M = {(k, 0, 0)|k ∈ Z} ,

N = {(lc, ld, 0)|l ∈ Z} , and

R =

{(
mx,

(
m

2

)
x+my,m

)∣∣∣∣m ∈ Z
}
,

where c, d, x and y are fixed complex numbers and
(
m
2

)
is the binomial coeffi-

cient. Simple computation shows that (k, 0, 0) = (1, 0, 0)k, it means, (k, 0, 0)

is the k-th iteration of (1, 0, 0). In the same way (lc, ld, 0) = (c, d, 0)l and(
mx,

(
m
2

)
x+my,m

)
= (x, y, 1)m. Thus, M , N and R are isomorphic to Z

via the isomorphisms:

(1, 0, 0)k 7→ k,

(c, d, 0)l 7→ l,

(x, y, 1)m 7→ m,

(6.2)

respectively.

Now, if we take G = M ×N , then

G = {(k + lc, ld, 0)|k, l ∈ Z, w ∈W} ,

a simple computation shows that G is an abelian group. This implies that G

is a normal subgroup of Γ, moreover, if k 6= 0 and l 6= 0, G is isomorphic to

Z2. The group R is an abelian subgroup of Γ isomorphic to Z. In fact the

intersection G∩R is trivial, indeed if we suppose that there exist (x1, x2, x3)

in G ∩R, the condition (x1, x2, x3) ∈ G, implies x3 = 0. But (x1, x2, x3) ∈ R
implies x3 = m 6= 0 ∈ Z, which is a contradiction. Finally, we can write every

element in Γ as a product of an element in G by an element in R. Therefore,

Γ = GoR = Z2 o Z.

ii) We claim that the set,

{(1, 0, 0) , (c, d, 0) , (x, y, 1)},

is a generating set for Γ with minimal cardinality. Thus Rank(Γ) = 3.

As in the previous part, Γ = GR, where G = SpanZ{(1, 0, 0), (c, d, 0)} and

R = SpanZ{(x, y, 1)}, so the set {(1, 0, 0) , (c, d, 0) , (x, y, 1)} generates Γ.

As Γ is a non-abelian group, Rank(Γ) ≥ 1. Let us show that there is no

set with two elements generating Γ. By contradiction, suppose that there is
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a two elements set, {B1, B2}, that generates Γ, where B1 = (z1, z2, z3) and

B2 = (w1, w2, w3).

Then, there exist r1, r2, r3, s1, s2, s3 ∈ Z such that,

(1, 0, 0) = Br1
1 oBs1

2

(c, d, 0) = Br2
1 oBs2

2

(x, y, 1) = Br3
1 oBs3

2 .

(6.3)

From these equations, we obtain the following systems of equations,

r1z1 + s1w1 = 1,

r2z1 + s2w1 = c,

r3z1 + s3w1 = x,

(6.4)

r1z3 + s1w3 = 0,

r2z3 + s2w3 = 0,

r3z3 + s3w3 = 1.

(6.5)

From the first equation of system 6.5 we get z3 = −s1w3
r1

, substituting in the

second and third equations of this system we obtain

w3(r1s2 − r2s1) = 0,

w3(r1s3 − r3s1) = 1.
(6.6)

Now, w3 6= 0, because if w3 = 0, then z3 = 0 which is not possible, because

r3z3 + s3w3 = 1. Thus

r1s2 − r2s1 = 0. (6.7)

Now, from the first equation of system 6.4, we get z1 = 1−s1w1
r1

, substituting

in the second equation of the same system we obtain w1(r1s2− r2s1) = c− r2

and r2 = c, by equation 6.7. As {1, c} is Z-linearly independent set, and

r2 ∈ Z, we have a contradiction.

Then, Rank(Γ) = 3.

iii) Let us A1 = (1, 0, 0), A2 = (c, d, 0) and A3 = (x, y, 1). A presentation for Γw

is given by

〈(1, 0, 0), (c, d, 0), (x, y, 1)|R〉,

where R is the following set of relations,

[A1, A2] = [[A1, A3], A1] = [[A1, A3], A3]

= [[A2, A3], A2] = [[A2, A3], A3] = Id.
(6.8)
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b) The group Γ of the type Wa,b,c.

i) To prove that Γ is isomorphic to the semi-direct product ZkoZ with k = 2, 3,

consider the following groups:

M = {(0, w, 0)|w ∈W} ,

N =

{(
n,

(
n

2

)
, n

)∣∣∣∣n ∈ Z
}
,

and,

R = {(a+ c, b, c)m|m ∈ Z} ,

where a, b and c are fixed complex numbers,
(
n
2

)
is the binomial coefficient.

Direct computation shows that (n,
(
n
2

)
, n) = (1, 0, 1)n.

Now, M ∼= W , via the isomorphism (0, w, 0) 7→ w. As W is a discrete additive

subgroup of C, the group W is isomorphic to Z or Z2. Thus M is isomorphic

to Z or Z2.

On the other hand, N and R are both isomorphic to Z via the isomorphisms,

(1, 0, 1)n 7→ n,

(a+ c, b, c)m 7→ m,
(6.9)

respectively.

Now, take G = M ×N as

G =

{(
n,

(
n

2

)
+ w, n

)∣∣∣∣n ∈ Z, w ∈W
}
.

Hence we have that G is an abelian group, which implies that G is a normal

subgroup of Γ.

Then, if W ∼= Z, G is isomorphic to Z2, and if W ∼= Z2, G is isomorphic to

Z3. Observe that the intersection G ∩N is trivial, that is because if we take

(x1, x2, x3) ∈ G ∩N , then

(x1, x2, x3) =

(
n,

(
n

2

)
+ w, n

)
=

(
m(a+ c),mb+

(
m

2

)
c(a+ c),mc

)
,

(6.10)

which implies n = m(a + c) and n = mc, by hypothesis a ∈ W \ {0}, thus

m = 0, concluding that (x1, x2, x3) = (0, 0, 0).

In addition, it is satisfied that Γ = GN . Therefore, Γ = G o N = Zk o Z,

with k = 2, 3.
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ii) Let Rank(W ) = 2, and take w1, w2 ∈W such that W = 〈w1, w2〉. For i = 1, 2

consider

Ai = (0, wi, 0), B =

(
n,

(
n

2

)
, n

)
and C = (a+ c, b, c)m. (6.11)

Observe that the set

{A1, A2, B,C|W = 〈w1, w2〉, n,m ∈ Z},

is a minimal generating set for Γ.

Corollary 6.5. If Γ is an abelian complex Kleinian subgroup of Heis3(C), then Γ is a

Z-module.

Proof. By the proof of the last theorem, if Γ is of type P1 or P2, then Γ is isomorphic

to Zk with k ≤ 4, and thus Γ is a Z-module. If Γ is of type Lw, then Γ is isomorphic to

SpanZ(Wx ×Ww), which is a Z-module.

Putting together Proposition 6.2, Theorem 6.3 and Theorem 6.4 we get the main theorem

of this section.

Theorem 6.6. Let Γ be a discrete subgroup of Heis3(C) acting properly discontinuously

on a non-empty open set of P2
C, then Γ is finitely generated, finitely presented and is

virtually an ascending HNN -extension of a finitely generated solvable group.

Moreover, we have that:

1. If Γ is an abelian subgroup, then Γ is of the type P1, P2 or Lw, described as in

Proposition 6.3.

2. If Γ is a non-abelian subgroup, then Γ is of the type Γw or Wa,b,c, described as in

Proposition 6.4.

6.2 Products of complex Kleinian subgroups of Heis3(C)

In this section, we give the main result of this chapter: for Γ1 and Γ2 complex Kleinian

subgroups of Heis3(C), we give conditions under which the generated group H = 〈Γ1,Γ2〉
is a discrete group.
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We divide the results in three parts, first the case when Γ1 and Γ2 are abelian, the

second case is when one of the groups is abelian but the other is not, and the last case

is when both are non-abelian. For each case we give suitable examples.

Notice that for the real case, every Kleinian subgroup and every product of subgroups

of Heis3(R) are abelian.

We will start by given some auxiliary results and notation. Given a group Γ, we denote

by SΓ the minimal set of generators of Γ. In this way, the rank of Γ is the number of

elements in SΓ. Now, given two groups Γ1 and Γ2, we denote by SΓ1 ∗SΓ2 , the set of all

the products of all the elements in SΓ1 by all the elements of SΓ2 .

The following lemma gives a necessary and sufficient condition for an additive subgroup

of Rn to be discrete. This condition is an algebraic obstruction. See [7].

Lemma 6.7. An additive subgroup Λ of Rn is discrete if and only if Λ is a lattice, that

is, there exists an R-linearly independent subset W ⊂ Λ such that Λ = SpanZ(W ).

As a consequence, we proved the following corollary.

Corollary 6.8. Let W be a set of m vectors of Rn. Then, SpanZ(W ) is a discrete group

if and only if

dimQ(W ) = dimR(W ). (6.12)

Proof. If SpanZ(W ) is discrete, by Lemma 6.7, there exists an R-linearly independent

set W ′ of W such that SpanZ(W ′) = SpanZ(W ). Then,

dimQ(W ) = dimQ(W ′)

= dimR(W ′)

≤ dimR(W ).

(6.13)

Since for any set of vectors W̃ of Rn, it is satisfied that dimQ(W̃ ) ≥ dimR(W̃ ), then

dimQ(W ) = dimR(W ).

Now, for the reciprocal, if W̃ is an R-linearly independent set, then dimQ(W̃ ) =

dimR(W̃ ) ≤ n. Suppose that SpanZ(W ) is not discrete, we claim that dimQ(W ) >

dimR(W ).

As SpanZ(W ) is not discrete, by Lemma 6.7, we have that there is no R-linearly inde-

pendent subset W ′ of W such that SpanZ(W ′) = SpanZ(W ).
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Suppose that m = dimR(W ) ≤ n, and take w1 ∈ W . As {w1} is an R-linearly inde-

pendent subset of W , SpanZ({w1}) 6= SpanZ(W ). Then, take w2 ∈ SpanZ(W ) such

that w2 6∈ SpanR({w1}), as {w1, w2} is an R-linearly independent subset of W , we

have that SpanZ({w1, w2}) 6= SpanZ(W ). Observe that in particular {w1, w2} is an

Q-linearly independent set. Following in this way, we can take wm ∈ SpanZ(W ) such

that wm 6∈ SpanR({w1, ..., wm−1}), then {w1, ..., wm} is an R-linearly independent sub-

set of W , such that SpanZ({w1, ..., wm}) 6= SpanZ(W ), in particular, {w1, ..., wm} is an

Q-linearly independent set of W . As SpanZ({w1, ..., wm}) 6= SpanZ(W ), there exists

wm+1 ∈ SpanZ(W ) \ SpanZ({w1, ..., wm}) such that the set {w1, ..., wm+1} is R-linearly

dependent but Z-linearly independent subset of W . Thus, {w1, ..., wn+1} is Q-linearly

independent set of W , and dimQ({w1, ..., wm+1}) is greater that m. Hence, if W ′ is a

subset of W such that SpanZ(W ′) = SpanZ(W ), then dimQ(W ) = dimQ(W ′) > m. This

concludes the proof.

We now give some properties about the group p3(Γ) := Im(p3|Γ), introduced in the

preliminares.

Lemma 6.9. Let Γ1 and Γ2 be subgroups of Heis3(C) and H be the generated group

〈Γ1,Γ2〉, and consider the projections pj : H → C, with j = 1, 2, 3, defined as pj(x1, x2, x3) =

xj . Then, pj(H) ⊂ SpanZ(Mj), where Mj is a subset of C given by:

M1 = {Sp1(Γ1), Sp1(Γ2)},

M2 =
⋃

s∈{1,2}

{Sp2(Γs), Sp1(Γs) ∗ Sp3(Γs)}
⋃

s,t∈{1,2}

{Sp1(Γs) ∗ Sp3(Γt)}s 6=t,

M3 = {Sp3(Γ1), Sp3(Γ2)}.

(6.14)

Proof. To prove this lemma, is enough to compute the product of any four elements

between Γ1 and Γ2.

Let take γ ∈ H and suppose that γ = γrγr+1γr+2γr+3 where γr, γr+2 ∈ Γ1, γr+1, γr+3 ∈
Γ2 and γk = (xk, yk, zk) for each r ≤ k ≤ r + 3. Then, a simple calculation shows that

γ := γjγj+1γj+2γj+3 = (w1, w2, w3) where:

w1 = (xj + xj+2) + (xj+1 + xj+3),

w2 = (yj + yj+2) + (yj+1 + yj+3) + zj+1xj + zj+3xj+2 + (zj+2 + zj+3)(xj + xj+1),

w3 = (zj + zj+2) + (zj+1 + zj+3).

(6.15)

By Equation 6.15, wj ∈ SpanZ(Mj).
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To conclude the proof, observe that multiplying γ by the left by γ′ ∈ Γ2, does not change

the sets Wj ’s.

γ′γ = (x′, y′, z′)(w1, w2, w3),

= (x′ + w1, y
′ + w2 + w3x

′, z′ + w3).
(6.16)

Which satisfy that pj(γ
′γ) ∈ SpanZ(Mj). Similarly, the right multiplication of γ by

γ̃ ∈ Γ1, does not change the sets Mj ’s either.

Lemma 6.10. Let Γ1 and Γ2 be subgroups of Heis3(C) and H be the generated group

〈Γ1,Γ2〉. Then, the group p3(H) = SpanZ({Sp3(Γ1), Sp3(Γ2)}). Moreover, p3(H) is dis-

crete if and only if

dimQ({Sp3(Γ1), Sp3(Γ2)}) = dimR({Sp3(Γ1), Sp3(Γ2)}) ≤ 2. (6.17)

Proof. By Lemma 6.9, p3(H) ⊂ SpanZ({Sp3(Γ1), Sp3(Γ2)}). Then, we will prove that

given an element x ∈ SpanZ({Sp3(Γ1), Sp3(Γ2)}), there exist an element γ ∈ H such that

p3(γ) = x.

If x ∈ SpanZ({Sp3(Γ1), Sp3(Γ2)}), we can write x as the sum

x =
∑

αrxr +
∑

βtxt,

where αr, βt ∈ Z, xr ∈ Sp3(Γ1) and xt ∈ Sp3(Γ2).

Now, for each xr there exist a γr ∈ Γ1 such that p3(γr) = xr. As Γ1 is a group, γαr
r ∈ Γ1,

and thus, the product
∏
γαr
r belongs to Γ1. By the product defined in Equation 4.14, the

third coordinate is additive, so p3(
∏
γαr
r ) =

∑
αrxr. Analogous, there exist

∏
γβtt ∈ Γ2

satisfying p3(
∏
γβtt ) =

∑
βtxt. If we define γ as the product

∏
γαr
r ·
∏
γαt
t , we are done,

since γ ∈ H and p3(γ) = x.

Then, the group p3(H) is discrete if and only if SpanZ({Sp3(Γ1), Sp3(Γ2)}) is discrete. By

Corollary 6.8, SpanZ({Sp3(Γ1), Sp3(Γ2)}) is a discrete group if and only if

dimQ({Sp3(Γ1), Sp3(Γ2)}) = dimR({Sp3(Γ1), Sp3(Γ2)}) ≤ 2. (6.18)

6.2.1 The abelian case

In this section, given Γ1 and Γ2 two abelian complex Kleinian subgroups of Heis3(C) and

the generated group H = 〈Γ1,Γ2〉, we characterize and give restrictions to the groups

p3(H) and Ker(p3|H), to make H discrete.
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Recall that the abelian types of complex Kleinian subgroups of Heis3 C are:

P1 = {(0, a, b)|(a, b) ∈ SpanZW1}, (6.19)

with W1 ⊂ C2 set of R-linearly independent points.

P2 = {(a, b, 0)|(a, b) ∈ SpanZW2}, (6.20)

with W2 ⊂ C2 additive discrete subgroup with rank at most 2.

Lw = {(x, L(x) +
x2

2
+ w, x)|x ∈ SpanZWx, w ∈ SpanZWw}, (6.21)

with Ww ⊂ C an additive discrete subgroup and Wx ⊂ C an additive group and L :

SpanZ(Wx)→ C an additive function, subject to the following conditions:

1. if Wx is discrete, then rank(Ww) + rank(Wx) ≤ 4.

2. If Wx is not discrete, then rank(Ww) ≤ 1, rank(Ww) + rank(Wx) ≤ 4 and

lim
n→∞

L(xn) + wn =∞ (6.22)

for every sequence (wn) ⊂Ww and any sequence (xn) ⊂Wx convergent to 0.

Proposition 6.11. Let Γ1 and Γ2 be abelian complex Kleinian groups of Heis3(C) and

H the generated group 〈Γ1,Γ2〉. If Γ1 is of type P2 and Γ2 is of type P1 or type Lw,

then we have:

1. If K(H) := Ker(p3|H), then

K(H) = 〈{K(Γ1)} ∪ {K(Γ2)} ∪
{
γjγiγ

−1
j |γi ∈ Γ1, γj ∈ Γ2

}
〉. (6.23)

2. Given the set M = {Sp2(Γ1), Sp2(Γ2), Sp1(Γ1) ∗ Sp3(Γ2), Sp1(Γ2) ∗ Sp3(Γ2)}, if the equa-

tions

dimQ(Sp1(Γ1)) = dimR(Sp1(Γ1)) ≤ 2, (6.24)

and

dimQ(M) = dimR(M) ≤ 2, (6.25)

are satisfied, then K(H) is a discrete group.

3. The group p3(H) is discrete if and only if

dimQ(Sp3(Γ2)) = dimR(Sp3(Γ2)) ≤ 2. (6.26)
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4. If K(H) and p3(H) are discrete groups then the group H is discrete.

5. Let Γ2 be of type P1. If H is a discrete group, then K(H) and p3(H) are discrete.

Proof. [Part 1] Observe that γ ∈ K(Γ1) ∪ K(Γ2), implies p3(γ) = 0. Now, if γ ∈{
γjγiγ

−1
j |γi ∈ Γ1, γj ∈ Γ2

}
, such that γ = γjγiγ

−1
j , we have

p3(γ) =p3(γjγiγ
−1
j ) = p3(γj) + p3(γi) + p3(γ−1

j )

=p3(γj) + p3(γi)− p3(γj) = p3(γi) = 0.
(6.27)

Hence, for γ ∈
〈
{K(Γ1)} ∪ {K(Γ2)} ∪

{
γjγiγ

−1
j |γi ∈ Γ1, γj ∈ Γ2

}〉
, is satisfied p3(γ) =

0 and thus γ ∈ K(H).

For the proof in the other direction. Let γ ∈ K(H), such that γ = γ1γ2 · · · γn with γi ∈
Γ1 for all i even and γj ∈ Γ2 for all j odd, and suppose γn ∈ Γ2. We will show that we can

express γ as a product of elements inK(Γ1) and elements in
〈{
γjγiγ

−1
j |γi ∈ Γ1, γj ∈ Γ2

}〉
.

As γ ∈ K(H), we have that p3(γ) = 0, furthermore p3(γi) = 0 for all γi ∈ Γ1. Then:

p3(γ) =p3(γ1γ2 · · · γn)

=p3(γ1) + p3(γ2) + · · ·+ p3(γn)

=p3(γ1) + p3(γ3) + · · ·+ p3(γn) = 0.

(6.28)

On the other hand, we can rewrite γ as follows:

γ = γ1γ2γ3γ4γ5γ6 · · · γn
= γ1γ2(γ−1

1 γ1)γ3γ4γ5γ6 · · · γn
= (γ1γ2γ

−1
1 )γ1γ3γ4γ5γ6 · · · γn

= (γ1γ2γ
−1
1 )(γ1γ3)γ4(γ1γ3)−1(γ1γ3)γ5γ6 · · · γn

= (γ1γ2γ
−1
1 )(γ1γ3)γ4(γ1γ3)−1(γ1γ3γ5)γ6 · · · γn

...
...

= [γ1γ2γ
−1
1 ][(γ1γ3)γ4(γ1γ3)−1][(γ1γ3γ5)γ6(γ1γ3γ5)−1] · · · [γ1γ3 · · · γn]

(6.29)

Observe that the last element, γ1γ3 · · · γn, in the Equation 6.29, belongs to Γ2. Morover,

by Equation 6.28, p3(γ1γ3 · · · γn) = p3(γ1) + p3(γ3) + · · ·+ p3(γn) = 0, then the product

γ1γ3 · · · γn belongs to K(Γ2). Thus, we have managed to write γ in the desired form.

If we take γ in K(H), starting or ending with an element of Γ1, we can repeat the

previous process in the second element of the decomposition of γ, that belongs to Γ2,
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until the last one that belong to Γ2. As K(Γ1) = Γ1, we have written any element of

K(H) as a product of elements in K(Γ1), K(Γ2) and 〈
{
γjγiγ

−1
j |γi ∈ Γ1, γj ∈ Γ2

}
〉.

[Part 2] By the last item K(H) = 〈K(Γ1) ∪ K(Γ2) ∪
{
γjγiγ

−1
j |γi ∈ Γ1, γj ∈ Γ2

}
〉. On

the other hand, K(Γ1) = Γ1, K(Γ2) = SpanZ(Ww), and if we take γ̃ = γjγiγ
−1
j , then

p1(γ̃) ∈ SpanZ(Sp1(Γ1)) and p2(γ̃) ∈ SpanZ(M). Therefore, if γ ∈ K(H), we have

p1(γ) ∈ SpanZ(Sp1(Γ1)) and p2(γ) ∈ SpanZ(M), thus if p1(K(H)) and p2(K(H)) are

discrete, then K(H) is discrete. If Equations 6.24 and 6.25 are satisfied, SpanZ(Sp1(Γ1))

and SpanZ(M) are discrete, and then K(H) is discrete.

[Part 3] As Sp3(Γ1) = {0}, by Lemma 6.10, the group p3(H) is discrete if and only if

equation 6.26 is satisfied.

[Part 4] By contradiction. Suppose H is not a discrete group and that K(H) and p3(H)

are discrete subgroups. As K(H) / H, by the First Isomorphism Theorem we have

H/K(H) ∼= p3(H). (6.30)

Since H is not discrete, then there is an infinite sequence of distinct elements (γn) ⊂ H,

such that γn → (0, 0, 0) as n → ∞. Observe that only a finite number of the elements

of (γn) could belong to K(H), otherwise K(H) would not be discrete. Now, consider

the projection p3|H : Heis3(C)→ p3(H). As p3|H is a continuous group homomorphism,

p3(γn) is a sequence of distinct elements in p3(H) such that p3(γn) → 0 as n → ∞,

which is a contradiction because p3(H) is discrete. Then H is discrete.

[Part 5] Let Γ2 be of type P1, and suppose H discrete. As K(H) ⊂ H, the group K(H)

is discrete. Now, as p3(H) = SpanZ(Sp3(Γ2)) = p3(Γ2), and p3(Γ2), by definition, is

discrete, then p3(H) is discrete.

Observation 6.12. Note that Item 5 in Proposition 6.11 is just a partial converse of

Item 4, because we are not considering the case when Γ2 is type Lw. That is because,

in this case, the reciprocal is not always satisfied, as we see in the following example.

Example 6.13. Let us consider Γ1 = {(a, b, 0)|(a, b) ∈ SpanZ(W1)}, where W1 ⊂ C2

is a set of R-linearly independent vectors, so Γ1 is of type P2. And let Γ2 = {(x, x22 +

w(x), x)|x ∈ SpanZ(Wx), w(x) ∈ SpanZ(Ww)} where Wx = {1, i, i
√

2,
√

2} and Ww =

{1, i}, so Γ2 is of type Lw, and define w(x) by the map w : SpanZWx → SpanzWw, such

that for some a, b, c, d ∈ Z, w maps x = a+ bi+ ci
√

2 + d
√

2 to (a− d) + i(b− c), for all

x ∈ SpanZ(Wx), .
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As dimQ(Ww) = dimR(Ww) = 2, by Corollary 6.8, SpanZ(Ww) is discrete. Thus the

image Im(w) ⊂ SpanZ(Ww) is a discrete set of points.

Under these conditions we claim:

1. The group H is a discrete group.

Let us prove that by contradiction. Suppose H is not a discrete group, then there

is a sequence of distinct elements (hn) of H, such that (hn)→ (0, 0, 0) as n→∞.

As (hn) converges pointwise, we have p2(hn) is a sequence of distinct elements of

p2(H) such that p2(hn) → 0 as n → ∞. Observe that p2(hn) = ζ(xn) + w(xn),

where ζ(xn) is a sequence obtained by the multiplication rule and ζ(xn)→ 0, but

in particular the sequence of distinct elements (w(xn)) converge to 0 in =(w), but

this contradicts the fact that Im(w) is discrete. Then H is a discrete group.

2. The group p3(H) is not discrete.

Observe that p3(H) = SpanZ({1, i, i
√

2,
√

2}). As dimQ〈Wx〉 = 4 is different from

dimR〈Wx〉 = 2, by Corollary 6.8, the group p3(H) is not discrete.

Thus H is a discrete group, but p3(H) is not.

Proposition 6.14. Let Γ1 and Γ2 be abelian Complex Kleinian groups of Heis3(C) and

H be the generated group 〈Γ1,Γ2〉. If Γ1 is of type P1 and Γ2 is of type Lw, then we

have:

1. Let K(H) := Ker(p3|H), N := p3(Γ1) ∩ p3(Γ2), γ ∈ K(H) and p3(γ) ∈ N . Then

we have two options for K(H):

a) If N is trivial, then:

K(H) ⊂
〈{{

γjγiγ
−1
j |γi ∈ Γ1, γj ∈ Γ2

}
∪ {K(Γ1)} ∪ {K(Γ2)}

}〉
. (6.31)

b) If N is non-trivial, then N is a torsion free, additive group with Rank(N) less

than or equal to 4. In this case,

K(H) ⊂
〈{
{p−1

3 (N)} ∪ {K(Γ1)} ∪ {K(Γ2)}
} 〉
. (6.32)

2. Let us M be the set {Sp2(Γ1), Sp2(Γ2), Sp1(Γ2) ∗ Sp3(Γ1), Sp1(Γ2) ∗ Sp3(Γ2)}. If the

equation

dimQ(M) = dimR(M) ≤ 2, (6.33)

is satified, then the group K(H) is discrete.
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3. The group p3(H) is discrete if and only if

dimQ({Sp3(Γ1), Sp3(Γ2)}) = dimR({Sp3(Γ1), Sp3(Γ2)}) ≤ 2. (6.34)

4. If K(H) and p3(H) are discrete groups, then the group H is discrete.

Proof. [Part 1a] Let γ ∈ K(H), and suppose that γ = γ1γ2 · · · γt, with γi ∈ Γ1 for all i

even and γj ∈ Γ2 for all j odd. Proceeding as in Equation 6.29, we obtain:

γ = γ1γ2 · · · γt
= [(γ1γ2γ

−1
1 )][(γ1γ3)γ4(γ1γ3)−1][(γ1γ3γ5)γ6(γ1γ3γ5)−1] · · · [(γ1γ3 · · · γr)].

(6.35)

As, γ1 ∈ Γ2, from the previous Equation 6.35, we have γr is the last element in the

decomposition of γ that belongs to Γ2, and thus γ1γ3 · · · γr ∈ Γ2.

To end the proof, it is enough to verify that γ1γ3 · · · γr belongs to K(Γ2).

If we apply p3 in both sides of Equation 6.35 we obtain:

p3(γ) = p3(γ1γ2 · · · γt)
= p3((γ1γ2γ

−1
1 )(γ1γ3)γ4(γ1γ3)−1(γ1γ3γ5)γ6(γ1γ3γ5)−1 · · · (γ1γ3 · · · γt))

= p3((γ1γ2γ
−1
1 )) + p3((γ1γ3)γ4(γ1γ3)−1) + p3((γ1γ3γ5)γ6(γ1γ3γ5)−1)+

· · ·+ p3((γ1γ3 · · · γr)))
= [p3(γ2) + p3(γ4) + · · ·+ p3(γs)] + [p3(γ1) + p3(γ3) + · · ·+ p3(γr)],

(6.36)

where γs is the last element in the decomposition of γ that belongs to Γ1.

As γ ∈ K(H),

0 = [p3(γ2) + p3(γ4) + · · ·+ p3(γs)] + [p3(γ1) + p3(γ3) + · · ·+ p3(γr)], (6.37)

then,

[p3(γ2) + p3(γ4) + · · ·+ p3(γs)] = −[p3(γ1) + p3(γ3) + · · ·+ p3(γr)]. (6.38)

Observe that as the left side of Equation 6.38 belongs to p3(Γ2) and the right side of

Equation 6.38 belongs to p3(Γ1), we have p3(γ) ∈ N , which by hypothesis is trivial.

Thus, p3(γ1γ3 · · · γr) = p3(γ1) + p3(γ3) + · · ·+ p3(γr) = 0, therefore γ1γ3 · · · γr ∈ K(Γ2).
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[Part 1b] Suppose now that N is non-trivial. As Γ1 and Γ2 are abelian and torsion free

groups, isomorphic to Zk where 1 ≤ k ≤ 4, see Theorem 6.3, and N ⊂ Γi, i = 1, 2, then

N is also an abelian torsion free group. Therefore, Γ1, Γ2 and N are Z-modules.

As Rank p3(Γi) ≤ 4, i = 1, 2, andN ⊂ p3(Γi) as Z-modules, thus RankN ≤ Rank p3(Γi) ≤
4. If γ ∈ K(H), form Equation 6.37, we claim that there are elements in the first sum

canceled by elements in the second sum. Observe that both sums can not be zero at the

same time, because N is non-trivial. Then, N is the set of elements that are canceled

in the previous way. Thus, the product of the preimages of the p3(γi) in Equation 6.37

belong to p−1
3 (N). Therefore,

K(H) ⊂ 〈{p−1
3 (N) ∪K(Γ1) ∪K(Γ2)}〉.

[Part 2] As Sp1(Γ1) = {0}, by Lemma 6.9, p2(H) ⊂ SpanZ(M2) where

M2 = {Sp2(Γ1), Sp2(Γ2), Sp1(Γ2) ∗ Sp3(Γ1), Sp1(Γ2) ∗ Sp3(Γ2)}.

The proof follows by Corollary 6.8.

[Part 3] As Sp3(H) = {Sp3(Γ1), Sp3(Γ2)}, by Lemma 6.10, we are done.

[Part 4] This proof follows as the proof of Item 4 of Proposition 6.11.

By the proofs of Proposition 6.11 and Proposition 6.14, we obtain the following lemmas,

which will be useful hereinafter.

Lemma 6.15. Let Γ1 and Γ2 be complex Kleinian subgroups of Heis3(C), and H be

the generated group 〈Γ1,Γ2〉, then we have:

1. If p3(Γi) = {0}, for i = 1 or i = 2, then

K(H) = 〈{K(Γ1)} ∪ {K(Γ2)} ∪
{
γjγiγ

−1
j |γi ∈ Γ1, γj ∈ Γ2

}
〉. (6.39)

2. If p3(Γi) 6= {0} for all i, let us consider N := p3(Γ1) ∩ p3(Γ2), γ ∈ K(H), and

p3(γ) ∈ N then

a) If N is trivial, then

K(H) ⊂
〈{{

γjγiγ
−1
j |γi ∈ Γ1, γj ∈ Γ2

}
∪ {K(Γ1)} ∪ {K(Γ2)}

}〉
. (6.40)
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b) If N is non-trivial, then N is a torsion free, additive group with Rank(N) less

than or equal to 4. In this case

K(H) ⊂
〈{
{p−1

3 (N)} ∪ {K(Γ1)} ∪ {K(Γ2)}
} 〉
, (6.41)

For the following lemma see the proof of part 2 of Proposition 6.11.

Lemma 6.16. If p1(H) and p2(H) are discrete, then K(H) is discrete.

The following lemma follows by the proof of the fourth part of Proposition 6.11.

Lemma 6.17. If the groups K(H) and p3(H) are discrete, then H is discrete.

Lemma 6.18. If the groups H, p3(Γ1), and p3(Γ2) are discrete, then K(H) and p3(H)

are discrete.

Observation 6.19. Notice that the condition that Γ2 is type Lw, gives a partial converse

of Item 4 of the Proposition 6.14.

We now give an example where H is a discrete group with Γ1 type P1, and Γ2 type Lw,

such that p3(H) is not.

Example 6.20. Let us consider,

Γ1 = {(0, a, b)|(a, b) ∈ SpanZ(W2)},

where W2 is an additive discrete subgroup of C with rank at most 2, so Γ1 is of type P1.

And let

Γ2 = {(x, x
2

2
+ w(x), x)|x ∈ SpanZ(Wx), w(x) ∈ SpanZ(Ww)},

where Wx = {1, i, i
√

2,
√

2} and Ww = {1, i}, so Γ2 is of type Lw. To define w(x)

consider the map w : SpanZWx → SpanzWw, such that w maps x = a+bi+ci
√

2+d
√

2

to (a− d) + i(b− c), for all x ∈ SpanZ(Wx) and a, b, c, d ∈ Z.

Observe that Im(w) ⊂ SpanZ(Ww) is a discrete set because, by Corollary 6.8, SpanZ(Ww)

is discrete.

Under these conditions we have:

1. The group H is discrete.

Let us prove this by contradiction. Suppose that H is not a discrete group, then

there exist a sequence of different elements (fn) of H, such that fn → (0, 0, 0) as

n→∞. As (fn) converges pointwise, we have that p2(fn) is a sequence of distinct
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elements of p2(H) such that p2(fn) → 0 as n → ∞. As p2(hn) = η(xn) + wxn ,

where η(xn) is a sequence obtained by the multiplication rule and η(xn)→ 0, and

in particular, (w(xn)) is a sequence of distinct elements in Im(w) that converge

to 0 as n→∞, but this contradict the fact that Im(w) is a discrete set. Then H

is a discrete group.

2. The group p3(H) is not discrete.

Observe that p3(H) = SpanZ({Sp3(P1), Sp3(Lw)}). Then, by Corollary 6.8, p3(H)

is not discrete, because dimQ〈{Sp3(P1), Sp3(Lw)}〉 ≥ 4, and on the other hand,

dimR〈{Sp3(P1), Sp3(Lw)}〉 = 2.

Then H is a discrete group, but p3(H) is not.

The following proposition is a consequence of Proposition 6.11 and Proposition 6.14.

Proposition 6.21. Let Γ1 and Γ2 be abelian complex Kleinian groups of Heis3(C) both

of type P1, and consider the group H = 〈Γ1,Γ2〉 generated by Γ1 and Γ2, then we have

that:

1. If K(H) := Ker(p3|H), N := p3(Γ1)∩ p3(Γ2) and γ ∈ K(H) with p3(γ) ∈ N , then

we have two options for K(H):

i) If N is trivial, then:

K(H) ⊂
〈{{

γjγjγ
−1
i |γi ∈ Γi, γj ∈ Γj

}
∪ {K(Γ1)} ∪ {K(Γ2)}

}〉
. (6.42)

ii) If N is non-trivial, then N is a torsion free, additive group with Rank(N) less

than or equal to 4. And,

K(H) ⊂
〈{
{p−1

3 (N)} ∪ {K(Γ1)} ∪ {K(Γ2)}
} 〉
. (6.43)

2. The group K(H) is discrete if and only if

dimQ〈{Sp2(Γ1), Sp2(Γ2)}〉 = dimR〈{Sp2(Γ1), Sp2(Γ2)}〉 ≤ 2. (6.44)

3. The group p3(H) is a discrete group if and only if the equation

dimQ〈{Sp3(Γ1), Sp3(Γ2)}〉 = dimR〈{Sp3(Γ1), Sp3(Γ2)}〉 ≤ 2, (6.45)

is satisfied.

4. If K(H) and p3(H) are discrete, then H is discrete.
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Observation 6.22. Notice that Item 4 is a partial converse. Although p3(Γ1) and

p3(Γ2) are discrete subgroups of C, it is possible that p3(H) is not discrete, as we will

observe in the following example.

Example 6.23. Let Γ1 and Γ2 be discrete groups of the type P1 given by Γ1 =

SpanZ{(0, 1, 1)} and Γ2 = SpanZ{(0, 1,
√

2)}. As {(0, 1, 1), (0, 1,
√

2)} is a R-linearly

independent set, the group H = SpanZ({(0, 1, 1), (0, 1,
√

2)}) is discrete, but p3(H) =

SpanZ{Sp3(Γ1), Sp3(Γ2)} = SpanZ{1,
√

2}, by Lemma 6.8, is not.

Proposition 6.24. Let Γ1 and Γ2 be abelian complex Kleinian groups of Heis3(C) both

type P2, and H the generated group 〈Γ1,Γ2〉, then:

1. The group H is exactly K(H).

2. Furthermore, if

dimQ({Sp1(Γ1), Sp1(Γ2)}) = dimR({Sp1(Γ1), Sp1(Γ2)}) ≤ 2, (6.46)

and,

dimQ({Sp2(Γ1), Sp2(Γ2)}) = dimR({Sp2(Γ1), Sp2(Γ2)}) ≤ 2, (6.47)

are satisfied, then H = K(H) is discrete.

3. The group p3(H) is discrete.

Proof. As K(H) ⊂ H, we need to prove that H ⊂ K(H). For all γ ∈ H, p3(γ) = 0,

then γ ∈ K(H). Thus, K(H) = H.

To prove that H is discrete, observe that, by the multiplication rule, in this case, the first

and the second entries are additive and independent. Thus we claim: if p1(H) and p2(H)

are discrete, then H is discrete. As pi(H) is discrete, for i = 1, 2, the set {0} is open

in pi(H), for i = 1, 2. As the projections are continuous maps, p−1
i {0} is open in H, by

the product topology p−1
1 {0} ∩ p

−1
2 {0} is open in H, and as p−1

1 {0} ∩ p
−1
2 {0} = (0, 0, 0),

{(0, 0, 0)} is open in H, therefore H is discrete.

By Lemma 6.9 and Corollary 6.8, if Equation 6.46 and Equation 6.47 are satisfied p1(H)

and p2(H) are discrete, and in consequence H is discrete.

To end the proof, observe that p3(H) = 0, which is discrete.

The next example shows that the reciprocal of Part 2 in the previous theorem is not

always satisfied.
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Example 6.25. Let Γ1 and Γ2 be discrete groups of the type P2 given by Γ1 =

SpanZ{(1, 1, 0)} and Γ2 = SpanZ{(1,
√

2, 0)}.

Then H = 〈Γ1,Γ2〉 = SpanZ({(1, 1, 0), (1,
√

2, 0)}). As {(1, 1, 0), (1,
√

2, 0)} is an R-

linearly independent set, dimQ{(1, 1, 0), (1,
√

2, 0)} = dimR{(1, 1, 0), (1,
√

2, 0)}, by Corol-

lary 6.8, H is discrete. But

p2(H) = SpanZ{Sp2(Γ1), Sp2(Γ2)} = SpanZ{1,
√

2},

is not discrete.

Proposition 6.26. Let Γ1 and Γ2 be abelian complex Kleinian groups of Heis3(C) both

type Lw, and let H be the generated group 〈Γ1,Γ2〉, then:

1. If K(H) := Ker(p3|H), N := p3(Γ1)∩p3(Γ2) and γ ∈ K(H) with p3(γ) ∈ N , then:

i) If N is trivial, then:

K(H) ⊂
〈{{

γjγiγ
−1
j |γi ∈ Γ1, γj ∈ Γ2

}
∪ {K(Γ1)} ∪ {K(Γ2)}

}〉
. (6.48)

ii) If N is non-trivial, then N is a torsion free, additive, finitely generated group

with Rank(N) less than or equal to 4. And in this case,

K(H) ⊂
〈{
{p−1

3 (N)} ∪ {K(Γ1)} ∪ {K(Γ2)}
} 〉
. (6.49)

2. Let M = {Sp2(Γ1), Sp2(Γ2), Sp1(Γ2) ∗ Sp3(Γ1), Sp1(Γ1) ∗ Sp3(Γ1), Sp1(Γ2) ∗ Sp3(Γ2)}. If

dimQ〈{M}〉Q = dimR〈{M}〉R ≤ 2, (6.50)

is satisfied, then the group K(H) is a discrete group.

3. If K(H) is discrete, then H is discrete.

Proof. Observe that in this case p3(Γi) = SpanZ(Wxi), with i = 1, 2, is not necessary a

discrete group. Then if γ ∈ K(H), we can make the decomposition of γ as in Equation

6.29. Thus, if N is trivial,

γ ∈
〈{{

γjγiγ
−1
j |γi ∈ Γ1, γj ∈ Γ2

}
∪ {K(Γ1)} ∪ {K(Γ2)}

}〉
.

Let us suppose that N is non-trivial and prove that Rank(N) ≤ 4. Observe that

p3(Γi) = SpanZ{Wxi}, then Rank(p3(Γi)) = Rank(Wxi). As N ⊂ p3(Γi), for i = 1, 2

and Rank(Wxi) ≤ 4, then Rank(N) ≤ 4.
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For groups Γ of type Lw, the groups p1(Γ) and p3(Γ) are both the additive group

SpanZ(Wx) which could be no discrete. Hence, the discreteness of the group Γ depends

on the discreteness of p2(Γ). By Lemma 6.9 and Corollary 6.8, K(H) is discrete if

equation 6.50 is satisfied.

Now if we suppose that H is not discrete, then there is a sequence of distinct elements

(ln) = (xn + yn, L(xn + yn) + (xn+yn)2

2 +wxn +wyn, xn + yn) in H that converges to 0 as

n converges to∞. As the convergence is pointwise, the sequences p1(ln) = (xn+yn) and

p2(ln) = (L(xn) + (xn)2

2 + wn) converge to 0 as n converges to ∞, but this contradicts

the fact that lim
n→∞

L(xn) + wn =∞ for all (xn)→ 0. Thus, H is discrete.

The following example exhibits a generated group H of two subgroups of type Lw, where

H is a discrete group but the group p3(H) is not.

Example 6.27. Let H = 〈Lw1 ,Lw2〉 be group generated by the following groups:

Take Lw1 as,

Lw1 =

{(
x,
x2

2
+ w1(x), x

)
|x ∈ SpanZ(Wx), w1(x) ∈ SpanZ(Ww)

}
,

where Wx1 = {1, i, i
√

2,
√

2}, Ww = {1, i} and w̄1(x) is the image of x ∈ SpanZ(Wx)

under the map w1 : SpanZWx → SpanzWw, defined by

a+ bi+ ci
√

2 + d
√

2 7→ (a− d) + i(b− c),

for some a, b, c, d ∈ Z.

Now, let define Lw2 as,

Lw2 =

{(
y,
y2

2
+ w2(y), y

)
|y ∈ SpanZ(Wy), w2(y) ∈ SpanZ(Ww)

}
,

where Wy = {1, ν} is a R-linearly dependent set, Ww is the same as before, and for all

y ∈ SpanZ(Wx2) the map w̄2 : SpanZWx2 → SpanzWw, is defined as

m+ νn 7→ m+ in,

for some m,n ∈ Z.

In both cases, SpanZ(Ww), by Corollary 6.8, is a discrete set. Thus the image Im(wi),

for i = 1, 2, is a discrete set of points in C.

Under these conditions we claim:
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1. The group H is a discrete group.

Let us prove this by contradiction. Suppose that H is not a discrete group, then

there is a sequence of distinct elements (fn) of H, such that (fn)→ (0, 0, 0) as n→
∞. As (fn) converge pointwise, we have that p2(fn) = (xn+yn)2

2 + w̄1(xn) + w̄1(yn)

is a sequence of distinct elements of p2(H) such that p2(fn) → 0 as n → ∞, in

particular, the sequence (w1(xn) + w2(yn)) ∈ SpanZ(Ww) is such that (w1(xn) +

w2(yn))→ 0, but this contradict that Im(wi) ⊂ SpanZ(Ww) is a discrete set. Then

H is a discrete group.

2. Now, observe that, p3(H) = SpanZ{Sp3(Lw1 ), Sp3(Lw2 )} = SpanZ{1, i, ν,
√

2}. Now

if {ν,
√

2} is Q-linearly dependent, dimQ({1, i, ν,
√

2}) = 3, and if {ν,
√

2} is Q-

linearly independent, dimQ({1, i, ν,
√

2}) = 4. In either case, by Corollary 6.8,

p3(H) is not discrete, because dimR({1, i, ν,
√

2}) = 2.

Then H is a discrete group, but p3(H) is not.

6.2.2 The non-abelian case

So far we have constructed the generated group H using abelian complex Kleinian

subgroups of Heis3(C). In this section, we consider also the non-abelian types. We

combine an abelian group with a non-abelian group to generate H.

From the classification given in Section 6.1, we have two types of non-abelian subgroups

of Heis3(C):

Γw := {(1, 0, 0)k(c, d, 0)l(x, y, 1)m|k, l,m ∈ Z},

where w = (x, y, p, q, r) with x, y ∈ C, p, q, r ∈ Z are such that p and q are co-primes, q2

divides r, c = pq−1 and d = r−1. Observe that if m = 0, being type Γw is the same as

being of type P2, so we will ask to have m distinct to 0.

The second non-abelian type is

Wa,b,c := {(0, w, 0)(1, 0, 1)n(a+ c, b, c)m|m,n ∈ Z, w ∈W},

where W ⊂ C is a discrete additive subgroup and a, b, c ∈ C are subject to one of the

following conditions:

1. The set {1, c} is a R-linearly dependent set but Z-linearly independent set and

a ∈W \ {0}.

2. The set {1, c} is a R-linearly independent and a ∈W \ {0}.
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In this case, if m = 0, being type Wa,b,c is the same as being of type Lw, so we will ask

to have m distinct to 0.

The next lemma is auxiliary to prove the propositions given in this section.

Lemma 6.28. Let Γ be a non-abelian discrete subgroup of Heis3(C). Then p3(Γ) is

a Z-module. Moreover, if Γ is of type Γw, Rank(Γ) = 1, and if Γ is of type Wa,b,c,

Rank(Γ) = 2.

Proof. Let Γ be a non-abelian discrete subgroup of Heis3(C), by the previous definitions,

if Γ is of type Γw, then p3(Γ) = SpanZ({1}) = Z, thus a Z-module and Rank(Γ) = 1. If

Γ is of type Wa,b,c, then p3(Wa,b,c) = SpanZ({1, c}), then a Z-module. By the definition

of Wa,b,c, the set {1, c} is either Z-linearly independent or R-linearly independent set, so

c 6= 0, thus Rank(Γ) = 2.

Proposition 6.29. Let Γ1 and Γ2 complex Kleinian subgroups of Heis3(C) such that

Γ1 is of type P2 and Γ2 be non-abelian, its means Γ2 is of type Γw or is of type Wa,b,c,

and consider H the generated group 〈Γ1,Γ2〉. Then we have:

1. If K(Γ) := Ker(p3|Γ), then

K(H) = 〈{Γ1} ∪ {K(Γ2)} ∪
{
γjγiγ

−1
j |γi ∈ Γ1, γj ∈ Γ2

}
〉. (6.51)

2. LetM be the set {Sp2(Γ1), Sp2(Γ2), Sp1(Γ1)∗Sp3(Γ2), Sp1(Γ2)∗Sp3(Γ2)}. If the equalities:

dimQ〈{Sp1(Γ1), Sp1(Γ2)}〉 = dimR〈{Sp1(Γ1), Sp1(Γ2)}〉 ≤ 2, (6.52)

and

dimQ〈{M}〉 = dimR〈{M}〉 ≤ 2, (6.53)

are satisfied, then the group K(H) is discrete.

3. The group p3(H) is discrete if and only if

dimQ〈{Sp3(Γ1), Sp3(Γ2)}〉 = dimR〈{Sp3(Γ1), Sp3(Γ2)}〉 ≤ 2. (6.54)

4. If K(H) and p3(H) are discrete groups, then the group H is discrete.

5. For Γ2 of type Γw or Γ of type Wa,b,c with {1, c} being an R-linearly independent

set, if H is a discrete group, then K(H) and p3(H) are discrete groups.
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Proof. The first and second parts follows by Lemmas 6.15 and 6.16.

For the third part observe that Sp3(Γ1) = {0}, then p3(H) = SpanZ(Sp3(Γ2)). If Γ2 is of

type Γw, then p3(H) = SpanZ 1 = Z, which is discrete. If Γ2 is of type Wa,b,c with {1, c}
as an R-linearly independent set, by Corollary 6.8, p3(H) = SpanZ{1, c}, is discrete,

otherwise is not true.

The fourth part follows by Lemma 6.17, and the fifth Part follows by Lemma 6.18.

Proposition 6.30. Let Γ1 and Γ2 be complex Kleinian subgroups of Heis3(C) such that

Γ1 is an abelian subgroup of Heis3 C of type P1 or is of type Lw, and Γ2 is non-abelian,

it means, Γ2 is of type Γw or is of type Wa,b,c. Consider H the generated group 〈Γ1,Γ2〉.
Then we have:

1. If K(H) := Ker(p3|H), N := p3(Γ1)∩p3(Γ2) and γ ∈ K(H) with p3(γ) ∈ N , then:

i) If N is trivial, then:

K(H) ⊂
〈{{

γjγiγ
−1
j |γi ∈ Γ1, γj ∈ Γ2

}
∪ {K(Γ1)} ∪ {K(Γ2)}

}〉
. (6.55)

ii) If N is non-trivial, then N is a torsion free, additive, finitely generated group,

with RankN ≤ min{Rank p3(Γ1),Rank p3(Γ2)}. And in this case,

K(H) ⊂
〈{
{p−1

3 (N)} ∪ {K(Γ1)} ∪ {K(Γ2)}
} 〉
. (6.56)

2. Let M be the set {Sp2(Γ1), Sp2(Γ2), Sp1(Γ2) ∗ Sp3(Γ1), Sp1(Γ2) ∗ Sp3(Γ2)}, if

dimQ〈{Sp1(Γ1), Sp1(Γ2)}〉 = dimR〈{Sp1(Γ1), Sp1(Γ2)}〉 ≤ 2, (6.57)

and

dimQ〈{M}〉 = dimR〈{M}〉 ≤ 2, (6.58)

then the group K(H) is discrete.

3. The group p3(H) is discrete if and only if

dimQ〈{Sp3(Γ1), Sp3(Γ2)}〉 = dimR〈{Sp3(Γ1), Sp3(Γ2)}〉 ≤ 2. (6.59)

4. If K(H) and p3(H) are discrete groups, then the group H is discrete.

Proof. The first Part follows by Lemma 6.15.

For the second part, we will prove RankN ≤ min{Rank p3(Γ1),Rank p3(Γ2)} when N

is no trivial. The other part of the proof follows by Lemmma 6.15. Then, as N ⊂ p3(Γ1)



Chapter 6. Constructing discrete subgroups of Heis3(C) 74

and N ⊂ p3(Γ2) and p3(Γ1) and p3(Γ2) are Z-modules, thus N is also a Z-module.

Therefore, RankN ≤ Rank p3(Γ1) and RankN ≤ Rank p3(Γ2). Hence, RankN ≤
min{Rank p3(Γ1),Rank p3(Γ2)}.

The second part follows by Lemma 6.16, and third Part follows by Corollary 6.10. The

last Part follows by Lemma 6.17.

The next example exhibits a group H that is discrete, but p3(H) is not. Showing that

the converse of Part 4 of the previous Proposition is not true.

Example 6.31. Let H = 〈Γ1,Γ2〉, where

Γ1 = {(x, x
2

2
+ w(x), x)|x ∈ SpanZ(Wx), w(y) ∈ SpanZ(Ww)},

so Γ1 is of type Lw, where Wx = {1,
√

2} is a R-linearly dependent set, Ww = {1, i},
and w(x) the image of x ∈ SpanZ(Wx) under the map w : SpanZ(Wx) → Spanz(Ww),

defined as

x = m+ n
√

2 7→ a+ bi,

for some m,n ∈ Z. And,

Γ2 =
{

(0, w, 0)(1, 0, 1)n(1 +
√

2, i,
√

2)m|m,n ∈ Z, w ∈ SpanZ({i})
}
,

thus Γ2 is of typeWa,b,c with {1, c} as an R-linearly dependent but Z-linearly independent

set.

We claim that H is discrete. Otherwise there exists a sequence of distinct elements

(hn) in H, such that (hn) → ∞. As (hn) converges pointwise, the sequence p2(hn) =

ηn + w(xn) will converges to zero as n → ∞, but this contradicts that SpanZ(Ww) is

discrete.

On the other hand, p3(H) = SpanZ({1,
√

2}) which, by Corollary 6.8, is not discrete.

Proposition 6.32. Let Γ1 and Γ2 be non-abelian complex Kleinian subgroups of Heis3(C)

of type Γw, and consider H the generated group 〈Γ1,Γ2〉. Then we have:

1. If K(H) := Ker(p3|H), N := p3(Γ1)∩p3(Γ2) and γ ∈ K(H) with p3(γ) ∈ N . Then

the set N is a non-trivial, free, additive, finitely generated group, with RankN = 1

and,

K(H) ⊂
〈{
{p−1

3 (N)} ∪ {K(Γ1)} ∪ {K(Γ2)}
} 〉
. (6.60)
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2. Let M the set

{Sp2(Γ1), Sp2(Γ2), Sp1(Γ1) ∗Sp3(Γ2), Sp1(Γ1) ∗Sp1(Γ2), Sp1(Γ1) ∗Sp3(Γ1), Sp1(Γ2) ∗Sp3(Γ2)},

if the equalities

dimQ〈{M}〉 = dimR〈{M}〉 ≤ 2, (6.61)

and

dimQ〈{Sp1(Γ1), Sp1(Γ2)}〉 = dimR〈{M}〉 ≤ 2, (6.62)

are satisfied, then the group K(H) is discrete.

3. The group p3(H) is discrete.

4. The group H is discrete if and only if K(H) and p3(H) are discrete.

Proof. As in the definition of the groups of type Γw we ask to have m 6= 0, then the

group N cannot be trivial. Thus, the first part follows by Lemma 6.15. The second part

follows by Lemma 6.16.

The group p3(H), by Corollary 6.9, is exactly the group SpanZ(Sp3(Γ1), Sp3(Γ2)) =

SpanZ({1}) = Z, which proves the third part.

For the last part, if H is discrete, as K(H) ⊂ H, then K(H) is discrete. By the last

item, p3(H) is discrete. The reciprocal follows by Lemma 6.17.

The last case is when the two subgroups of Heis3(C) are of type Wa,b,c, which is the

following proposition. The proof follows by Lemmas 6.15, 6.16, 6.10 and 6.17.

Proposition 6.33. Let Γ1 and Γ2 be non-abelian complex Kleinian subgroups of Heis3(C)

of type Wa,b,c, and consider H the generated group 〈Γ1,Γ2〉. Then:

1. If K(H) := Ker(p3|H), N := p3(Γ1)∩p3(Γ2) and γ ∈ K(H) with p3(γ) ∈ N , then:

i) If the set N is trivial:

K(H) ⊂
〈{{

γjγjγ
−1
i |γi ∈ Γi, γj ∈ Γj

}
∪ {K(Γ1)} ∪ {K(Γ2)}

}〉
. (6.63)

ii) If the set N is non-trivial, then N is a torsion free, additive, finitely generated

group, with RankN ≤ min{Rank p3(Γ1),Rank p3(Γ2)}. And,

K(H) ⊂
〈{
{p−1

3 (N)} ∪ {K(Γ1)} ∪ {K(Γ2)}
} 〉
. (6.64)
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2. Let M be the set

{Sp2(Γ1), Sp2(Γ2), Sp1(Γ1) ∗Sp3(Γ2), Sp1(Γ1) ∗Sp1(Γ2), Sp1(Γ1) ∗Sp3(Γ1), Sp1(Γ2) ∗Sp3(Γ2)},

if the equalities

dimQ〈{M}〉 = dimR〈{M}〉 ≤ 2, (6.65)

and

dimQ〈{Sp1(Γ1), Sp1(Γ2)}〉 = dimR〈{M}〉 ≤ 2, (6.66)

are satisfied, then the group H is discrete.

3. The group p3(H) is discrete if and only if

dimQ〈{Sp3(Γ1), Sp3(Γ2)}〉 = dimR〈{Sp3(Γ1), Sp3(Γ2)}〉 ≤ 2. (6.67)

4. If K(H) and p3(H) are discrete groups, then H is a discrete group.

After the review of all the possible combinations of two complex Kleinian subgroups Γ1

and Γ2 of Heis3(C) to generate a new group 〈Γ1,Γ2〉, we present the main result of this

chapter. The proof follows from propositions 6.11, 6.14, 6.21, 6.24, 6.26, 6.29, 6.30, 6.32

and 6.33.

Theorem 6.34. Let Γ1 and Γ2 be complex Kleinian subgroups of Heis3C, and H be

the generated group 〈Γ1,Γ2〉, then:

1. If K(H) := Ker(p3|H), N := p3(Γ1) ∩ p3(Γ2) and γ ∈ K(H) with p3(γ) ∈ N .

Then:

i) If N is trivial:

K(H) ⊂
〈{{

γjγjγ
−1
i |γi ∈ Γi, γj ∈ Γj

}
∪ {K(Γ1)} ∪ {K(Γ2)}

}〉
. (6.68)

ii) If N is non-trivial, then N is a torsion free, additive, finitely generated group,

with RankN ≤ min{Rank p3(Γ1),Rank p3(Γ2)}. And,

K(H) ⊂
〈{
{p−1

3 (N)} ∪ {K(Γ1)} ∪ {K(Γ2)}
} 〉
. (6.69)

2. Let M be the set,

{Sp2(Γ1), Sp2(Γ2), Sp1(Γ1) ∗Sp3(Γ2), Sp1(Γ1) ∗Sp1(Γ2), Sp1(Γ1) ∗Sp3(Γ1), Sp1(Γ2) ∗Sp3(Γ2)},
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if the equalities

dimQ〈{M}〉 = dimR〈{M}〉 ≤ 2, (6.70)

and

dimQ〈{Sp1(Γ1), Sp1(Γ2)}〉 = dimR〈{Sp1(Γ1), Sp1(Γ2)}〉 ≤ 2. (6.71)

are satisfied, then the group K(H) is discrete.

3. The group p3(H) is discrete if and only if

dimQ〈{Sp3(Γ1), Sp3(Γ2)}〉 = dimR〈{Sp3(Γ1), Sp3(Γ2)}〉 ≤ 2. (6.72)

4. If K(H) and p3(H) are discrete groups, then H is a discrete group.
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burg, (9):72–78 and 152–153, 1933.

[29] H. Weil. The theory of groups and quantum mechanics. Dover Publications, INC.,

weil, 1950. ISBN 9780486602691.


	Portada
	Acknowledgements
	Introducción
	Contents
	Part I. Complex Schottky Groups Actingon PnC
	Chapter 1. Preliminaries
	Chapter 2. Complex Schottky Groups Assubgroups of PU(k, l)
	Chapter 3. Complex Schottky Groups Assubgroups of PSL(n, C)
	Part II. Discrete Subgroups of Complex Heisenberg Group
	Chapter 4. Preliminaries
	Chapter 5. Constructing Kleinian Subgroups of Heis3(R)
	Chapter 6. Constructing Discrete Subgroups of Heis3(C)
	Bibliography



