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Abstract

In my thesis we investigate, both analytically and numerically, the generation of turbulence
during the prestellar stages of the gravitational collapse of a turbulent spherical core, in order
to determine the fraction of the infall motions that goes into turbulent motions. To do this, we
define the ratio g ≡ σ1D/vg, where σ1D is the one-dimensional turbulent velocity dispersion, and
vg is the gravitational velocity. We then analytically estimate the ratio g under the assumptions
of a) equipartition or virial equilibrium between the gravitational (Eg) and turbulent kinetic
(Eturb) energies and b) stationarity of the transfer from gravitational to turbulent energy, or,
equivalently, stationarity of the ratio Eturb/Eg. In the energy equipartition and virial cases, we
find g =

√
1/3 ≈ 0.58 and g =

√
1/6 ≈ 0.41, respectively, while in the stationary case we find

g = 〈vrad〉Ld/(4π
√

3ηRvg), where η is an efficiency factor in the energy dissipation rate, Ld is
the energy injection scale of the turbulence, and R is the core’s radius.

Next, we perform adaptive mesh refinement simulations to follow the prestellar collapse of
an isothermal, turbulent core, with an initial turbulent Mach numberMs ≈ 0.8 at two different
resolutions, to test for convergence. We also perform a non-turbulent control simulation. We
find that the turbulent simulations collapse at the same rate as the non-turbulent run, so that the
turbulence generation does not significantly slow down the collapse for these initial conditions
during the prestellar stage. We also measure the ratio h2 ≡ σ2

1D/〈v2
rad〉 of the turbulent velocity

dispersion to the total radial velocity dispersion, which we assume consists of the summation in
quadrature of the gravitational and turbulent components. In the simulations, we find that this
ratio first decreases, but later approaches a constant value, implying an approximation to near
balance between the rates of energy injection from the collapse and of turbulence dissipation.
We also find a value of g ≈ 0.395±0.035, close to the “virial” value, and that the injection scale is
Ld . R. Finally, we find that the “turbulent pressure” ρσ2

1D scales with density as ∼ ρ1.64, thus
having an apparently adiabatic polytropic exponent, in spite of the fact that the collapse is not
delayed by the turbulence. We propose that both the apparently adiabatic polytropic exponent
of the turbulent pressure and the nearly virial values of the turbulent velocity dispersion may
be reconciled with the non-delayed collapse rate if the turbulence is dissipated as soon as it
is generated, and conclude that the “heating” of turbulence by the collapse is extremely lossy,



iii

rather than adiabatic.
I want to point out that this thesis is partially based on a paper recently submitted for

review.
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Chapter 1

Molecular Clouds

1.1 Motions in MCs: thermal and non-thermal

The Star Formation (SF) within the galaxies occurs in the densest regions of Giant Molecular
Clouds (GMC). From the emission of certain molecules of dense gas, it is possible to know some
physical parameters of the clouds like the temperature, the optical depth, the column density,
and the cloud mass (see, e.g. Estalella and Anglada, 1999).

The first observation of Molecular Clouds (MCs) led us to the knowledge that they are as-
sociated with supersonic motions (Wilson et al., 1970). The linewidth allows us to estimate the
total velocity dispersion (thermal and non-thermal). If we subtract the contribution due the
temperature, we can obtain the non-thermal velocity dispersion, which corresponds to macro-
scopic motions inside the clouds.

To obtain the total component of the linewidth, we must take into account that the velocities
are Gaussians and can be expressed as (see e.g. eq. (1) of Keto et al., 2008)

u2
tot = u2

nt + u2
th (1.1)

The non-thermal motions can be defined as the macroscopic motions within the clouds, these
can be produced by rotation, collapse, expansion, and turbulence.

1.2 Molecular Line Observations: Moments

The line emission or absorption of various molecular species provides abundant information
about the kinematics of MCs. We can obtain spectra at multiple positions to cover the projected
area of the object, this “spectroscopic mapping” generates three-dimensional data cubes of the
line intensity at different position and frequencies or velocities known as position-position-

1
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velocity (PPV) cubes.
The H2 is a homonuclear molecule, and for this reason its dipole moment is zero, thus just

can produce quadrupolar and superior order emission (very weak) at the temperature of MCs.
For this, it is necessary to search for the emission of dust grains or other molecules that can be
found in the same sites as H2.

The next most abundant molecule in MCs after H2 is 12CO, but the high abundance of this
tracer makes it often optically thick and cannot trace the properties of the turbulence in the
deeper regions of a cloud. Studies of the properties of the turbulence within MCs often focus
on less abundant isotopologues as 13CO or C18O. To trace the properties of the turbulence in
MCs, different tracers are required.

Abundant kinematic information about MCs can be obtained from the moments of the line
profiles in a PPV cube. These are obtained by treating the line profile at each position in the
map as a distribution. The zeroeth moment, defined as

M0 =

∫
Iνdv, (1.2)

is the integrated intensity of the spectrum , where Iν is the instensity of the emission at a certain
frequency and v is the velocity channel. The first moment, defined as

M1 =

∫
Iνvdv

M0

, (1.3)

is the intensity-weighted mean radial velocity along the line of sight, or velocity centroid, and
the second moment,

M2 =

√∫
Iν(v −M1)2dv

M0

, (1.4)

is the intensity-weighted velocity dispersion. In summary, the moments of a molecular line
map can give us information on the mean line-of-sight velocity and the linewidth of a spatially
resolved object, and there are certain signatures that can give us an idea of whether the system
is collapsing, expanding, or rotating.

1.3 Components of non-thermal Motions

When we observe non-thermal motions within MCs we are not able to distinguish between the
different components as turbulence, infall, rotation or expansion, because the information comes
to us along the line-of-sight. Even so, theoretically, we can decompose them in their different
parts.
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The two main large-scale motions within young MCs (which have not yet formed pre-stellar
objects) are turbulence and collapse/accretion due to gravitational potential (see e.g. Lada
et al., 1974; Bonazzola et al., 1987). These can be separated with the same method as we did
for the thermal and non-thermal motions in Sec 1.1, a cuadratic sum

v2
nt = v2

t + v2
g . (1.5)

From this, we can estimate the amount of kinetic energy associated with each component, the
turbulent energy and the infall energy. And as described above, we can add more components
increasing the terms in the sum, but making more difficult to estimate the fraction of each
component (as outflows/winds, etc.).

1.4 Collapse and Star Formation in MCs

1.4.1 Gravitational Collapse

For this analysis we assume a parcel of gas in the Interstellar Medium (ISM) in an equilibrium
state between the thermal pressure gradient and its self-gravity, as originally done by Jeans
(1902). To determine whether this equilibrium is a stable or this is an unstable state, we
consider the evolution of a linear perturbation (see e.g. Ho and Cao, 1991, for the study of
perturbation analysis).

For this it is necessary to use the fluid dynamics equations without viscosity, the Euler
equations. First, the continuity equation is a statement of conservation of mass at any point

∂ρ

∂t
+∇ · (ρv) = 0. (1.6)

Integrating this equation over any small volume V surrounding the point x and applying the
divergence theorem to the second term, this equation just says that the rate of change of

∫
V
ρdV ,

the total mass within V , is equal to
∮
S
ρv · dS, the rate at which mass flows outward across the

surface of V .
The second fundamental equation is the Euler equation, which is just the fluid equivalent of

Newton’s second law
∂v

∂t
+ (v · ∇)v +

1

ρ
∇P +∇ϕ = 0. (1.7)

Both the first and second term are the acceleration of the fluid. The third term is the pressure
gradient, the force per unit volume on the fluid, divided by the density, the mass per unit
volume. The last term is the force caused by the gravitational potential, where the gravitational
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acceleration is a = −∇ϕ and the gravitational potential satisfies the Poisson’s equation

∇2ϕ = 4πGρ, (1.8)

where ρ is the density, v is the velocity, P is the pressure, and ϕ is the gravitational potential.
Also, P and ρ are related by the ideal-gas equation of state

P = nkT. (1.9)

We take the equilibrium solution given by ρ = ρ0 = cst, P = P0 = cst, and v = 0. The
perturbation is denoted by the subscript 1 as ρ = ρ0 +ρ1, P = P0 +P1, v = v1, and ϕ = ϕ0 +ϕ1.
And the adiabatic sound speed can be approximated by

c2
s ≡

(
∂P

∂ρ

)
s

≈ γP0

ρ0

≈ P1

ρ1

, (1.10)

making a first order expansion of the adiabatic law P/P0 = (ρ/ρ0)γ. Then we introduce the
perturbations into equations 1.6, 1.7 and 1.8. We obtain perturbed equations at first order of
the form

∂

∂t
ρ1 + ρ0∇ · v1 = 0 (1.11)

∂

∂t
v1 +

c2
s

ρ0

∇ρ1 +∇ϕ1 = 0 (1.12)

∇2ϕ1 = 4πGρ1 (1.13)

if we combine them, we obtain

∂2ρ1

∂t2
− c2

s∇2ρ1 = 4πGρ0ρ1 (1.14)

which is a wave equation with an additional term due to self-gravity. Assuming a wave-like
solution of the form

ρ1(r, t) = Aρ0e
i(ωt−k·r), (1.15)

the dispersion equation results as
ω2 = c2

sk − 4πGρ0. (1.16)

From this we can see that ω can be real or imaginary, the real one has a wave behavior and the
imaginary solution has an exponential behavior in time, the limit case is when

k >

(
4πGρ0

c2
s

)1/2

(1.17)
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and if we consider k = 2π/λ, we can obtain

λ <

(
πc2

s

Gρ0

)1/2

≡ LJ (1.18)

where LJ is defined as the Jeans length. Therefore, for a perturbation smaller than LJ, the sonic
crossing time (∼ 1/(csk)) is smaller than the free-fall time (∼ 1/

√
4πGρ0) and the perturbation

can be restored before the collapse. In the other case, for λ larger than LJ, the opposite happens.
The mass corresponding to LJ can be estimated by assuming a sphere of uniform density

with diameter LJ, to obtain the maximum mass that can be supported by thermal pressure
against its self-gravity, known as the Jeans mass

MJ ≡
π5/2

6

c3
s

G3/2ρ
1/2
0

∝ ρ
−1/2
0 . (1.19)

We are simplifying this analysis by considering just the thermal pressure, the self-gravity, and
spherical geometry. In conclusion, if the mass within a region is larger than the Jeans mass, the
region proceeds to collapse.

1.4.2 Star Formation

MCs are the regions of Star Formation in the Galaxy. This is due to their low temperature and
high density (T ∼ 10−20 K, n ∼ 102−106 cm−3, Ferrière, 2001) which causes the Jeans mass to
be low (MJ ∼ 3− 150 M�). The MCs have density structures that are hierarchically organized.
At a larger scale we have the Giant Molecular Clouds (GMC) with sizes of tens of parsecs and
densities of n ∼ 103 cm−3, passing through clumps, filaments, unto small dense cores with sizes
of ∼ 0.1 pc and densities of n ∼ 105 cm−3 (Larson, 1981, shown in Fig. 1.1).

A pre-stellar core is a density structure generated by turbulent shock compressions and local
reduction in Jeans mass (Mac Low and Klessen, 2004). As we saw in the last section (Sec.
1.4.1), if the mass within a volume is enough, then proceeds to collapse; otherwise, reexpands.
The density and velocity profiles of collapsing cores display characteristic features. In the inner
part the density is flat and the velocity increases linearly with the radius, at the envelope the
density decreases as r−2 and the velocity becomes constant (see e.g. Whitworth and Summers,
1985; Naranjo-Romero et al., 2015). Also this structures often exhibit trans- or even sub-sonic
non-thermal linewidths (Jijina et al., 1999; Tafalla et al., 2004).

The general belief since the 1980’s (standard model, Shu et al., 1987) was that prestellar
cores in low-mass-star-forming regions evolve quasi-statically in magnetically subcritical clouds,
when the magnetic energyM is larger than the gravitational energyW (see Sec. 2.2.2 for further
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Figure 1.1: Cartoon of the hierarchical stucture of a MC that shows the different density
structures (not scaled) as clumps, filaments, cores, etc. Taken from Pokhrel et al. (2018).

explanation). The fact that most cloud cores are magnetically supercritical (W >M, Crutcher
et al., 1999) motivated a shift towards considering supersonic turbulence as one of the primary
agents supporting the clouds and regulating the stellar birth to set the Star Formation Rate
(SFR) and Star Formation Efficiency (SFE) observed, for example, in the Galaxy (2 M� yr−1

and ∼ 5%, respectively, Chomiuk and Povich, 2011; Gao and Solomon, 2004).
For star cluster formation it is believed that the gravitational energy must dominate the

energy budget of massive cloud cores, meaning that the entire region is contracting (Klessen,
2011). The supersonic turbulence produces a high degree of internal sub-structure with large
density contrasts (Klessen and Glover, 2016). Some of these density fluctuations are gravita-
tionally unstable and have shorter free-fall times than the entire cloud as the free-fall time scales
with the density as tff ∝ ρ−1/2 (Vázquez-Semadeni et al., 2019).

The densest regions collapse before other regions. These are statistically located in the
deepest gravitational potential well (mass segregation, Elmegreen et al., 2006) and can accrete
more mass than those that form later and are located at the external parts of the core, and
can only primarly accrete from its local potential well (competitive accretion, Bonnell et al.,
2001, as shown in Fig. 1.2). Once the massive stars cease to accrete and begin to ionize their
environment, they create bubbles of hot ionized gas which expand and enclose the stellar cluster.
The global effect is that the MCs disperse and no new stars can form and stellar birth comes to
an end. But it was also found that locally, this ionized and shocked fronts from stellar feedback
can sweep and collect the material to enhance sequential star formation (Elmegreen and Lada,
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1977).

Figure 1.2: Cartoon of Competitive Accretion showing a larger accretion rate for the (proto)
stars located in the deepest potential well. Taken from Wright (2015).



Chapter 2

Turbulence in MCs

2.1 Turbulence

Turbulence is a regime of flow disordered in space and time that occurs in fluids when the ratio
of the magnitude of the advection term (momentum transport) is sufficiently larger than the
viscous term (damping force, see e.g. Ch. 1 of Lesieur, 2008). This ratio is known as the
Reynolds number

Re ≡ |u · ∇u|
|ν∇2u|

. (2.1)

A turbulent flow is characterized by the following features:

• The system is unpredictable and chaotic, so that is impossible to make an exact prediction
of its evolution.

• It involves a wide range of spatial scales, described by degrees of freedom or modes of a
Fourier decomposition.

• These modes are able to nonlinearly exchange energy. This implies that the flow exhibits
the property of “mixing”, so that the values of its physical properties (density, velocity,
temperature, magnetic field strength) are transported (“advected”) by the fluid motions.

2.1.1 Turbulence Scales and Energy Spectrum

Kolmogorov (1941) developed a theory for homogeneous incompressible turbulence based on
the following assumptions:

• A very large range of scales are active in the flow.

• Energy is injected at large scales and dissipated at small scales.

8
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• Energy can be transferred among the scales, or modes.

• The system is in a stationary state.

Then, considering that the energy transfer rate for eddies (vortices) of scale size ` can be
written as ε̇ ∼ u2

`/τ`, where u` is the characteristic velocity of the eddy, and τ` = `/u` is the
eddy turnover time at scale `. Thus, the velocity can be expressed as

u` = (ε̇`)1/3. (2.2)

Now, we can relate the characteristic velocity at scale ` with the rms specific kinetic energy
given by the energy spectrum

u2 = 2

∫ ∞
2π/`

E(k)dk, (2.3)

assuming that the total energy at scale ` is the energy contained within that scale and lower
scales. Assuming a power-law dependence on wavenumber for the spectrum of the form E(k) ∝
k−n, and substituiting the scaling relation 2.2, we obtain

`2/3 ∝
∫ ∞

2π/`

k−ndk ∝ `n−1, (2.4)

resulting in n = 5/3.
This theory involves fundamental concepts: a k−5/3 energy spectrum, an energy cascade

from large to small scales, and the highest amount of energy is contained in the largest scales
(shown in fig. 2.1). It is important to note that the MCs are a compressible fluid so, turbulence
in MCs is not necessarily characterized by these properties and inverse cascades can occur.

2.1.2 Injection and Dissiaption of Turbulence

To compute the total rate of change of the specific kinetic energy in a volume V of the flow,
we take the dot product of the momentum equation per-unit-mass with the velocity vector to
obtain

u
du

dt
= −u∇P

ρ
+
µ

ρ
u · ∇2u + u · ∇ϕ, (2.5)

taking the gravitational potential as the generator of the driving force. To bring the velocities
inside the spatial derivatives, this equation can be rewritten as

1

2

du2

dt
= −1

ρ
∇ · (uP ) +

µ

ρ
u · ∇2u + u · ∇ϕ. (2.6)

Then we integrate over all space and apply Gauss’ theorem, to get
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Figure 2.1: Cartoon of the turbulent energy spectrum. The energy is injected a large scales and
dissipated at small scales developing a −5/3 slope among a wide range of spatial scales. Taken
from Klessen (2011).

dEtot

dt
≡ 1

2

du2

dt
= −1

ρ

∮
Pu · dS

+

∫
V

µ

ρ
u · ∇2udV +

∫
V

u · ∇ϕdV,
(2.7)

where S is the surface enclosing the volume V, and Etot is the total kinetic energy per unit mass
in the volume. Letting V → ∞ and assuming that the pressure vanish at infinity, the surface
term vanish and we get

dEtot

dt
=

∫
V

νu · ∇2udV +

∫
V

u · ∇ϕdV, (2.8)

where ν = µ/ρ is the kinematic viscosity. This implies that the total rate of change of the
specific energy is given by the injection from the work done by gravity minus the dissipation
caused by viscosity. If we now consider a stationary regime, in which the kinetic energy remains
constant, the left hand side of the eq. 2.8 vanishes, and we can write∫

V

u · ∇ϕdV =

∫
V

νu · ∇2udV, (2.9)

which means that, in a stationary regime, the kinetic energy injected by the self-gravity must be
dissipated by viscosity. Also we can see that the dissipation rate depends only on the injection
rate. This reflects the well-known fact that the dissipation rate in fully developed turbulence
does not depend on the specific value of the viscosity coefficient, but only on the injection rate,
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because the former rate adjusts itself to the latter by occurring on scales sufficiently small for
the viscous term to be important.

2.2 Virial Theorem

The Virial Theorem (VT) is an expression of the energy balance of a certain region in a fluid,
representing the change in the kinetic energy and mass distribution within the parcel as a
consequence of the work done by all the forces acting in the region. It is obtained from the
momentum equation,

du

dt
= −∇P

ρ
−∇ϕ+

1

4πρ
(∇×B)×B, (2.10)

where u is the velocity, P is the pressure, ρ is the density, ϕ is the gravitational potential, and
B is the magnetic field, multipliying it by the position vector x, and integrating over a fixed
volume V

∫
V

ρx · du
dt
dV = −

∫
V

x · ∇PdV −
∫
V

ρx · ∇ϕdV +
1

4π

∫
V

x · (∇×B)×BdV. (2.11)

Considering that, d/dt = ∂/∂t+ u · ∇, we can rewrite the left hand side as∫
V

ρx · du
dt
dV =

1

2

∫
d2x2

dt2
dm−

∫
V

ρu2dV, (2.12)

the first term is similar to the inertia tensor, I, which describes the distribution of the mass in
the space, and the second term is twice the kinetic energy. Following with the right hand side,
we can rewrite the gravitational term using the Poisson’s equation

W =

∫
V

ρ(x)x · ∇ϕdV = −G
∫
V

∫
∞

ρ(x)ρ(x′)x · (x− x′)

|x− x′|3
dV ′dV. (2.13)

Noting that the integrand is nearly symmetric with respect to the primed and unprimed vari-
ables, we can replace x by (x− x′)/2 and write

W = −1

2
G

∫
V

∫
∞

ρ(x)ρ(x′)

|x− x′|
dV dV ′. (2.14)

Then, the thermal and magnetic terms can be dealt using the Gauss’s divergence theorem and
the fact that ∇ · x = 3 and that ∂xi/∂xj = δij. Also, for the magnetic term, is better to work
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with the Maxwell’s magnetic stress tensor T ≡ Tij ≡ BiBj/4π − |B|2δij/8π. Thus we obtain

1

2

∫
d2x2

dt2
ρdV −

∫
V

ρu2dV =

(
3

∫
PdV −

∮
S

Px · dS
)

+

(
1

8π

∫
B2dV +

∮
S

x ·T · dS
)

− 1

2
G

∫
V

∫
∞

ρ(x)ρ(x′)

|x− x′|
dV dV ′.

(2.15)

This equation can be written as

1

2

∫
d2x2

dt2
ρdV − 2K =

(
2U −

∮
S

Px · dS
)

+

(
M+

∮
S

x ·T · dS
)

+W, (2.16)

where S is the surface enclosing V , and K, U M, W are the kinetic, internal, magnetic and
gravitational energies, respectively, and T is the Maxwell stress tensor. The system is said to
be in virial equilibrium if this is equal to zero.

2.2.1 Hydrostatic Equilibrium and Turbulent Support

Taking the VT for an unmagnetized cloud at rest, so that B = u = 0, neglecting external
pressure, the virial equilibrium condition reduces to

W = −2U, (2.17)

where W is the gravitational energy and U is the internal energy. This implies hydrostatic
equilibrium between the pressure gradient and the gravitational energy. If we also include a
turbulent velocity field we obtain

W = −2(U +K), (2.18)

where K is the kinetic energy of the turbulent field. We can extrapolate the hydrostatic equilib-
rium with this case assuming that the velocity field is displayed by micro turbulence (small-scale
turbulence that does not destroy density structures) and this additional term can provide ad-
ditional support against gravity, which supplements that provided by the thermal pressure
gradient.

In the case when the external pressure is not negligible we can obtain

Pext =
2U +W

3V
, (2.19)

where Pext is the external pressure, and V is the volume of the region.
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2.2.2 Magnetic Support

If we assume now a uniform-density, isolated spherical cloud of fixed mass M , radius R, per-
meated by a uniform magnetic field B = B0êx inside and a vanishing field outside, and with
u = P = 0. In this case, the gravitational energy can be computed as

W = −G
∫
M(r)

r
dM(r) = −3

5

GM2

R
, (2.20)

where M(r) is the mass interior to radius r. The magnetic energy is

M =
B2

0R
3

6
≡ φ2

6π2R
, (2.21)

where φ is the magnetic flux, which, according to the flux-freezing condition, is conserved in
the absence of magnetic dissipation. Since φ is constant, both W and M scale as R−1 upon
contraction, and the ratio W/M is constant. This implies that there is a critical mass-to-flux
ratio (

M

φ

)
crit

≡
(

5

18

)1/2(
1

π2G

)1/2

, (2.22)

below which a cloud cannot collapse gravitationally since, for masses smaller than that, the
magnetic energy M is larger than the gravitational energy W (Mestel and Spitzer, 1956). If
this ratio for an specific cloud is larger than the critical value, the cloud is said to be magnet-
ically supercritical, and it cannot be supported by the magnetic field. Otherwise, it is called
magnetically subcritical.

2.3 Support Against Gravity?

Shortly after supersonic motions within MCs were first observed (Wilson et al., 1970), Goldre-
ich and Kwan (1974) proposed global gravitational contraction, and these velocities could be
explained as being produced by the cloud’s own gravitational potential. However, Zuckerman
and Evans (1974) argued that a MC dominated by global collapse should exhibit a systematic
Doppler shift between emission lines coming from the back of the cloud and absorption lines pro-
duced at its front part, due to the velocity difference between these different parts of the cloud
(see Fig. 2.2). Since such shifts were not observed at the time, they instead proposed that these
supersonic linewidths could be primarily dominated by local motions, therefore constituting
micro-turbulence.

The turbulent support model is derived from the fact that the clouds exhibit a near equipar-
tition state between the non-thermal kinetic and the gravitational energies (Larson, 1981; Heyer
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Figure 2.2: Schematic figure of the signature of collapse line profile, generated escencially by
the density and velocity profiles. Taken from Loughnane et al. (2018).

et al., 2009). This is often intrerpreted as an evidence of virial equilibrium between turbulence
and self-gravity.

As seen before, the turbulence contains a large number of excited scales and this property
implies a modern version of turbulent support in which turbulence plays a dual role (Vázquez-
Semadeni et al., 2003; Mac Low and Klessen, 2004): For a certain density structure of a typical
size scale `, the turbulent velocity modes of size scale `t smaller than the density structure
`t < `, are believed to provide support against self-gravity through their turbulent pressure ρσ2

t .
But turbulent velocity modes larger than the density structure (`t > `), are believed to form or
destroy these density fluctuations through shocks and shearing, respectively.

In this model, the clouds are thought to be strongly supersonic turbulent so that the turbu-
lence is capable of creating turbulent density fluctuations, but also prevent the global collapse
with the kinetic energy associated. On the other hand, the local compressions caused by the
turbulence undergo a decrease of the Jeans mass and proceed to collapse if the local Jeans mass
becomes smaller than the clump/core mass.
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2.4 Turbulence Driven by Gravitational Collapse

As discussed in Sec. 2.1.2, an important property of turbulence is that it is a highly dissipative
phenomenon, and numerical simulations show that it dissipates roughly in a crossing time
(Stone et al., 1998; Mac Low, 1999; Avila-Reese and Vázquez-Semadeni, 2001; Lemaster and
Stone, 2009), so that maintaining the observed kinetic energy in MCs requires a continuous
driving mechanism. There is a large number of physical processes that could drive the observed
turbulence in MCs, such as:

1. Magnetorotational instabilities that generate Maxwell stresses that transfer energy from
shear into turbulent motions (Balbus and Hawley, 1991).

2. Stellar feedback processes that act as sources of turbulence. From their birth to their
death, stars interact with their environment through jets and outflows (Lada, 1985), stel-
lar winds (Norman and Silk, 1980), ionizing radiation (McKee, 1989) and supernova ex-
plosions (McKee and Ostriker, 1977; Spitzer, 1978).

3. Accretion. This is a universal process driven by gravity, implying that all structures in the
Interstellar Medium appear to accrete from their parent structures, transferring kinetic
energy from the parent to the daughter structures (Field et al., 2008; Vázquez-Semadeni
et al., 2009; Klessen and Hennebelle, 2010; Vázquez-Semadeni et al., 2019). Klessen and
Hennebelle (2010) have shown that only about 1-10% of the infall energy from the parent
scale is needed to explain the turbulent energy in the daughter scale.

Also, there is a “heating” mechanism that results from the gravitational contraction of a
turbulent fluid (Robertson and Goldreich, 2012), in which the turbulent eddies are amplified as a
consequence of gravitational contraction. This turbulence reaches a level similar to equipartition
(Robertson and Goldreich, 2012) or virialization, and it is suggested that this is enough to delay
the collapse (Murray and Chang, 2015; Li, 2018; Xu and Lazarian, 2020).

We investigate the gravitational contraction mechanism in detail both analyt-
ically and numerically. We start by writing expressions for the expected levels
of turbulence generated during gravitational collapse under the conditions of en-
ergy equipartition between kinetic turbulent energy and gravitational energy, virial
equilibrium, and equality of the injection and dissipation rates. We then perform
numerical simulations and measure the corresponding energies, to determine the
situation that occurs in the simulations.



Chapter 3

Analytical Estimates

3.1 Definitions

In this section, we investigate the generation of turbulence during spherical gravitational collapse
analytically (Murray and Chang, 2015; Li, 2018; Xu and Lazarian, 2020), assuming that the
interplay between injection and dissipation rates achieves a stationary regime. Specifically, we
present an analytical estimation of the expected value of the ratio g ≡ σ1D/vg of the one-
dimensional turbulent velocity dispersion, σ1D, to the gravitational velocity given by

vg =

√
2βGM

R
, (3.1)

of a spherical cloud of fixed mass M and radius R. Here, β is a geometrical factor of order
unity (for a sphere of uniform density β = 5/3). We perform the estimate under two alternative
reasonable assumptions: i) that the system approaches equipartition or virial balance between
the gravitational (Eg) and the turbulent kinetic energy (Eturb), or ii) that the system attains an
arbitrary, yet self-consistent, stationary value of the ratio of the two energies, where the energy
injection rate balances the dissipation rate.

We start by decomposing the total velocity in spherical coordinates into its radial and
tangential components, vrad and vtan, where we define

〈v2
tan〉1D =

〈v2
θ〉+ 〈v2

ϕ〉
2

≡ σ2
1D. (3.2)

The last equality states that we identify 〈v2
tan〉

1/2
1D with the one-dimensional velocity dispersion of

the turbulence, averaging the variance of the angular components for better precision. For sim-

16
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plicity, in what follows we drop the subindex 1D from 〈v2
tan〉

1/2
1D . a We use this definition instead

of the usual definition σ2
1D =

(
〈v2

rad〉+ 〈v2
ϕ〉+ 〈v2

θ〉
)
/3, which implies isotropy in the turbulence,

because vrad contains a possibly dominant contribution from infall rather than from turbulence
just after the initial times when the collapse begins to be important. On the other hand, note
that 〈v2

rad〉1/2 is expected to contain contributions from both the turbulent fluctuations and the
infall speed, so that

〈v2
rad〉 = σ2

1D + v2
g. (3.3)

We thus define the ratio
f 2 ≡ 〈v

2
rad〉
v2

g

(3.4)

as a measure of the excess kinetic energy in the collapse due to the turbulence.
The main quantity we are interested in is the ratio of the one-dimensional turbulent velocity

dispersion σ1D to the gravitational speed,

g2 ≡ σ2
1D

v2
g

, (3.5)

which determines the fraction of energy going from the gravitational contraction to the turbulent
motions.

From eqs. (3.4) and (3.5), we also obtain

σ2
1D

〈v2
rad〉

=
g2

f 2
≡ h2, (3.6)

which is another quantity we will measure directly from our numerical simulations, in order to
obtain g.

3.2 Energy equipartition and virialization

We now estimate the value of the ratio g in the case that the infall kinetic energy attains equipar-
tition or virial equilibrium with the gravitational energy. First, assuming that the turbulence is
isotropic, we write the turbulent kinetic energy as

Eturb ≈
1

2
σ2

3DM =
3

2
σ2

1DM. (3.7)

a Note that, strictly speaking, the total tangential velocity dispersion is 〈v2tan〉1/2 = 〈v2θ〉+ 〈v2ϕ〉, but here we
directly identify this symbol with the one-dimensional dispersion in the tangential directions.
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Inserting eq. (3.5) in (3.7), we thus find

Eturb =
3

2
g2v2

gM. (3.8)

On the other hand, we have, for the gravitational energy,

Eg = −βGM
2

R
= −1

2
v2

gM. (3.9)

using the definition for the gravitational velocity as in eq. (3.1). Therefore, in the case of
equipartition, where Eturb = |Eg|, we find

geq =

√
1

3
≈ 0.58. (3.10)

where we have denoted by geq the value of g corresponding to equipartition.
In the case of virial equilibrium, in which 2Eturb = |Eg|, we obtain

gvir =

√
1

6
≈ 0.41. (3.11)

3.3 Self-consistent stationary regime

We now consider the possibly more realistic situation that the system adjusts itself to a sta-
tionary regime in which the rate of energy injection into the turbulence due to the release of
gravitational energy balances the dissipation rate of the turbulence by viscosity. We write this
condition as

Ėturb = Ėg. (3.12)

This condition has been investigated by Li (2018), although this author made some ad hoc
assumptions about the parameters entering the above rates, while instead here we leave them
open, to be determined from the results of our numerical simulations.

To compute the energy injection rate from the release of gravitational energy, we differentiate
the gravitational energy given by eqs. (3.1) and (3.9)

Ėg =
d

dt

(
−βGM

2

R

)
≈ βGM2〈vrad〉

R2

= −〈vrad〉
vg

(
2|Eg|3

MR2

)1/2

, (3.13)

where in the first equality we have written Ṙ ≈ 〈vrad〉, with the average computed over a
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spherical shell of radius R (implying that the average can be a function of R) , and in the
second equality we have introduced the velocity vg as defined by eq. (3.1). Note that the ratio
〈vrad〉/vg is not the same as the ratio f defined in eq. (3.4), which involves the variance of vrad,
while 〈vrad〉/vg involves the mean value of vrad.

On the other hand, for the kinetic energy dissipation rate, we use the expression provided
by Mac Low (1999, hereafter, ML99):

Ėturb = −2πηMLMσ3
3D

Ld

, (3.14)

whereM is the mass of the system, Ld is the energy-injection scale of the turbulence, and ηML ≈
0.21/π ≈ 0.067 is a constant he determined from numerical simulation of driven isothermal
turbulence in a periodic box. We refer in general to the proportionality constant, η, as the
dissipation efficiency, and allow for the possibility that it differs in our problem from the value
found by ML99, ηML, due to the different nature of the energy injection (using Fourier driving),
physical problem (stationary driven turbulence) and injection scale (at the largest scales) used
by ML99, so we drop the subindex “ML”. Thus, inserting eq. (3.7) into eq. (3.14), we obtain

Ėturb = −2πη

(
23E3

turb

ML2
d

)1/2

. (3.15)

We can now compute the derivative of the ratio of the two energies (in absolute value, since we
equate the turbulent dissipation rate to the gravitational injection rate), and set it to zero to
demand stationarity:

d

dt

(
Eturb

|Eg|

)
=
|Eg||Ėturb| − |Eturb||Ėg|

E2
g

= 0.

This condition is satisfied when

4πη
|Eg|E3/2

turb

Ld

=
〈vrad〉
vg

Eturb|Eg|3/2

R
,

which implies

Eturb =

(
1

4πη

〈vrad〉
vg

Ld

R

)2

|Eg|. (3.16)

This implies that the velocity ratio g in the stationary regime is

gst =
1

4π
√

3

〈vrad〉
vg

Ld

ηR
. (3.17)
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If we adopt the value of η found by ML99, we find

gst,ML ≈ 0.687
〈vrad〉
vg

Ld

R
. (3.18)

In the next section, we will estimate the ratio 〈vrad〉/vg from our numerical simulations. This
will allow the calculation of the ratio of the driving scale to the core’s radius, provided we
assume η = ηML. Otherwise, eq. (3.17) shows that there is an unresolvable degeneracy between
the dissipation efficiency and the ratio of the driving scale to the radius of the sphere, which in
our case is not known. It can be assumed that it is the radius or the diameter of the core (as
done by Li, 2018), but our numerical experiments will not allow us to resolve this degeneracy.
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Numerical Simulations

We use the Eulerian adaptive mesh refinement (AMR) code FLASH2.5 (Fryxell et al., 2000)
to perform two 3D numerical simulations of the gravitational collapse of a dense core in pres-
ence of a turbulent velocity field, to determine the transfer of energy from the gravitational
to the turbulent motions. These two turbulent simulations differ in the maximum resolution
and refinement criterion, to test for convergence. We also consider a reference non-turbulent
simulation.

We consider a numerical box filled with isothermal molecular gas, so that the simulation is
scale-free. The sound speed and the mean density are set so that the box size is Lb ≈ 2.48LJ,
where LJ = (πc2

s/G〈ρ〉)1/2 is the Jeans length, and 〈ρ〉 is the mean density. The boundary
conditions are periodic for the hydrodynamics, and isolated for the self-gravity.

The simulations are initiated with a uniform density ρ0, on top of which a spherically sym-
metric Gaussian density profile, centered at the center of the numerical box, is added. This
Gaussian profile has a peak value of ρmax = 2.5ρ0 and a width σρ = 0.25Lb. Therefore, the
maximum density within the box is ρmax = 3.5ρ0. The mean density is 〈ρ〉 = 1.535ρ0. The
physical values for this variables are n0 = 4.86× 105 part cm−3, cs = 0.21 km s−1, and Lb = 0.1

pc.
We start the simulations with a turbulent driver to stir the gas, using the prescription of

Price and Federrath (2010), over roughly one crossing time. We then turn off the driving and
turn on self-gravity, so that the gas begins to collapse, and the turbulence drains energy from the
collapse motions. The initial turbulent velocity dispersion is σ3D ≈ 0.8cs. The energy is injected
in a range of scales between Lb/8 and Lb/32, so that the fluctuations fit within the Gaussian
peak. The driving is fully solenoidal. We do not include magnetic fields in our simulation. Table
4.1 gives a summary of the parameters of the simulations. Figure 4.1 shows one cross section
of the turbulent core at time t ≈ tff . Note that, as pointed out by Larson (1969), the actual
collapse time of the simulation is longer than tff because at the early stages of the collapse, the

21
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Table 4.1: Run parameters.
Run Effective refinement (pc) Cells / Jeans length σ3D/cs
no turb 9.76× 10−5 12 0.0
turb 08 9.76× 10−5 12 0.8
turb 10 2.44× 10−5 24 0.8

thermal pressure gradient is not negligible.
We note that, according to the standard Jeans criterion (Truelove et al., 1997), the local

Jeans length should be resolved by at least 4 cells. Actually, we resolve it with a significantly
larger number of cells, in order to avoid excessive dissipation within the core. This is because,
as is well known (e.g., Whitworth and Summers, 1985; Keto and Caselli, 2010), the inner part
of a prestellar core, in which the density is roughly flat and the infall speed increases linearly
with radius, has a radius of roughly one Jeans length of the central density. Therefore, the
resolution applied to the Jeans length is equivalent to that applied to the central part of the
core, which we want to be sufficiently resolved as to avoid excessive numerical dissipation of the
turbulence within the core. We thus use 12 cells per Jeans length in the low-resolution run and
24 in the high-resolution one.
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Figure 4.1: A cross section of the core through its central (x, y) plane at t ≈ tff , showing the
velocity vectors.
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Results

5.1 Measurements

The presence of the initial Gaussian density profile with the maximum at the center of the
simulation box causes the collapse to focus onto this point, and also causes the collapse to
adopt an approximately spherical symmetry. In what follows, we analyze only the central part
of the core, where the density is nearly flat, and the inwards radial velocity increases linearly
with the radius (e.g., Whitworth and Summers, 1985; Naranjo-Romero et al., 2015). Beyond
this radius, the velocity begins to decrease again, as also observed in Keto and Caselli (2010)
and Naranjo-Romero et al. (2015).

Note that in this section we will consider the infall speed of the non-turbulent run as the
effective value of vg, the gravitational velocity, rather than the value given by eq. (3.1). This
is because, in practice, a marginally unstable isothermal sphere collapses at a rate significantly
lower than the free-fall rate, since the thermal pressure is never negligible (see Appendix C
of Larson, 1969), and so the actual infall speed is lower than the free fall value. Thus, in
what follows, we will refer to the infall speed of the non-turbulent run simply as the infall (or
gravitational) speed denoted by vg,sim.

To separate the infall component from the turbulent components, we follow the procedure
used by Vázquez-Semadeni et al. (1998), and convert the grid from Cartesian to spherical
coordinates to separate the radial (vrad) and the tangential components (vϕ and vθ), which we
will assume represents only the turbulent velocity. Then, the tangential velocity satisfies eq.
(3.2), and we assume that it represents the one-dimensional turbulent velocity dispersion; i.e.,
that

σ2
1D ≡ 〈v2

tan〉. (5.1)

We then average the density as well as the radial and tangential velocity components over

24
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spherical shells of width equal to one cell, and compute these averages as a function of the
radial distance from the center of the collapse.

Figure 5.1 shows the radial profile of the infall velocity at various times for the fiducial
turbulent run (turb 08) and for the non-turbulent one. The inner region where the inwards
velocity is approximately linear with radius (Whitworth and Summers, 1985) is clearly seen,
and is seen to become smaller as time progresses. As shown by those authors, the density profile
is nearly flat over this region, whose extent is approximately one Jeans length of the central
density (Keto and Caselli, 2010). The infall speed is thus maximum at the edge of the central
flat region. In what follows, we consider the infall speeds of the simulations at half the radius
of this central, flat-density region. In the turbulent simulations, its extent is determined by
angle-averaging the radial velocity at each radius. This procedure averages out the turbulent
component, and thus only the infall component remains.

To avoid contamination from the boundary conditions, we only consider the radial depen-
dence of the velocities within this region, which radius is resolved at all times by 12 or 24 cells
during the contraction, as required by the refinement criterion in the low- and high-resolution
simulations, respectively.

An important point to note from Fig. 5.1 is that the radial velocity profile of the turbulent
run at each timestep is very similar to that of the nonturbulent run, implying that the collapse
in the presence of turbulence occurs at the same rate as in the nonturbulent case. We discuss
the implications of this result in Sec. 6.1.

Figure 5.2 shows the evolution of the ratio of the average of the radial velocity dispersion
〈v2

rad(r1/2)〉1/2 at half the radius of the flat-density region in the turbulent runs to the infall speed
vg at the same position in the non-turbulent run. We observe that, at early times, the ratio is
rather large, because the turbulent velocity dispersion is largest, while the infall speed is very
small. On the other hand, at larger times, the ratio appears to saturate at a value f ≈ 1.062.

Fig. 5.3 shows the evolution of the ratio h2
sim = 〈v2

tan〉/〈v2
rad〉 of the square of the tangential

velocity to the square of the radial velocity in the simulation, or, equivalently, the ratio of the
1D turbulent velocity dispersion to the total inwards kinetic energy, σ2

1D/〈v2
rad〉, both measured

at half the radius of the flat-density region. It is seen that this ratio first decreases, and then
apparently tends to approach stationarity at a value h2

sim ≈ 0.164. This apparent stationarity
is observed in proto-stellar analytical and numerical studies (Murray and Chang, 2015; Murray
et al., 2017).

The evolution of this ratio can be understood considering that the tangential velocity dis-
persion contains only the turbulent contribution, while the radial velocity dispersion contains
this contribution plus that from infall. At the initial condition (not shown in Fig. 5.3), the
gravitational velocity is zero, so that 〈v2

rad〉 = σ2
1D, and thus h2

sim = 1. After that, the initial
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Figure 5.1: Radial velocity profiles of run turb 08 (black lines) and of the non-turbulent run
(blue lines) at different times. Except for the random fluctuations in the turbulent case, the
two simulations are seen to have the same mean radial velocity at all times.

decrease of this ratio indicates that the gravitational speed increases faster than the turbulent
velocity dispersion.

On the other hand, the final, apparent nearly stationary value of the ratio h2
sim ≈ 0.164 in

Fig. 5.3 indicates that, at that level, the energy injection from the infall into the turbulence
balances the turbulent dissipation, as considered in Sec. 3.3.

From these measurements, we can estimate g in two different ways. On one hand, from the
second equality in eq. (3.6), we have

gsim,1 =
√
f 2

simh
2
sim ≈ 1.062 (0.164)1/2 ≈ 0.43, (5.2)
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Figure 5.2: Evolution of the ratio of the radial velocity dispersion (i.e., the average of the squared
radial component of the velocity) at half the radius of the flat-density region in the turbulent
runs to the dispersion of the infall speed at the same radial position in the non-turbulent run.

on the other hand, we can also determine gsim by dividing eq. (3.3) by 〈v2
rad〉 to obtain

1 = h2 +
1

f 2
sim

=
g2 + 1

f 2
,

so that
gsim,2 =

√
f 2

sim − 1 ≈ 0.36. (5.3)

We see that the values of gsim given by eqs. (5.2) and (5.3) are similar but not equal. This
is probably an indication that our working hypotheses, for example, eqs. (3.2) and (3.3), apply
only approximately. In this case, we can interpret the difference between the two estimates as
giving the range of uncertainty of our measurements, and so we write

gsim = 0.395± 0.035, (5.4)
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Figure 5.3: Evolution of the ratio of the 1D turbulent velocity dispersion squared to the angle-
averaged radial velocity squared, both measured at half the radius where the maximum infall
velocity occurs, for the two turbulent simulations. The ratio first decreases as a power law of
time with slope ∼ −1, and then it is seen to approach a stationary value v2

tan/v
2
rad ≈ 0.164 by

t ≈ tff (as shown in Fig. 5.4).

It is noteworthy that this value is very similar to that expected in virial equilibrium (cf. eq.
[3.11]), in spite of the fact that our core is collapsing essentially at the speed of the non-turbulent
run. That is, there is no slowing down of the collapse by the turbulence generated, in spite of it
being nearly at the virial value. We discuss the possible interpretation of this result in Sec. 6.1.

In addition, since the energy ratio attains a nearly stationary value, we can use eq. (3.17)
to estimate Ld/(ηR) ≈ 9.85 for our system. According to Fig. 5.1, 〈vrad〉/vg ≈ 1 by the end of
the simulation, and so eq. (3.17) reduces to

Ld

ηR
≈ 4π

√
3 gsim ≈ 8.60± 0.76. (5.5)

We discuss the implications and possible interpretations of this result in Sec. 6.1.1.
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5.1.1 Convergence study
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Figure 5.4: Zoom of the h2 ratio for the final times. The solid line represents the run with a
maximum refinement level of 8, the dashed line represent the run with a maximum refinement
level of 10, and the blue line show the final value.

In order to test the reliability of our results upon changes in resolution, we performed an
additional simulation “turb 10”, in which we increased the maximum refinement level two levels
above the fiducial run “turb 8” (cf. Table 4.1), and the number of cells per Jeans length in the
refinement criterion is doubled to 24. The dashed line in Fig. 5.2 shows the evolution of the ratio
of the root mean square radial velocity 〈v2

rad〉 at the radius where the infall speed is maximum
in the high-resolution turbulent run to the same quantity in the non-turbulent simulation. It
is seen that this ratio remains within 1% of the value obtained for the low-resolution run (solid
line), implying that our results are very well converged, and that the collapse time is real, rather
than an artifact of numerical dissipation.



Chapter 6

Discussion

6.1 Implications

6.1.1 The injection scale and the dissipation efficiency

The analytical study of Sec. 3 provided us with a range of expected values for the velocity ratio g
in the cases of energy equipartition (eq. [3.10]), virial balance (eq. [3.11]), and a self-consistent
stationary state (eq. [3.17]). In particular, equating eq. (3.17) to the value obtained in our
simulation, eq. (5.4), and recalling that 〈vrad〉/vg ≈ 1 in our simulation, we find

Ld

R
≈ 0.395× 4

√
3πη ≈ 8.60η. (6.1)

This equation can be interpreted in various ways. We can either assume that η = ηML

and determine the implied ratio of Ld/R, or else we can assume that Ld = R and infer the
corresponding value of η for our problem. A third option is to assume neither one of the
previous possibilities, and take eq. (6.1) as the final result from our study. For the first two
cases, we find:

Case I: η = ηML. In this case, we obtain

Ld ≈ 0.57R, (6.2)

implying that the driving scale is even smaller than the radius, contrary to the assumption made
by Li (2018), that Ld ∼ 2R.

Case II: Ld = R. In this case, we obtain

ηsim ≈ 0.12, (6.3)

30
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within a factor of 2 with respect to that reported by ML99, ηML ≈ 0.067 (cf. Sec. 3.3).
It is not obvious which one of these two possible interpretations may be more realistic. On

the one hand, it is reasonable to assume that the energy injection scale is of the order of the
radius, but somewhat smaller, since all points in the core will traverse a distance equal to their
respective radial positions by the end of the collapse, and these distances are equal or smaller
than the radius of the entire core. On the other hand, it is also reasonable to assume that the
dissipation efficiency will be of the order of that found by ML99, but not quite equal, since the
nature of the driving mechanism, the geometry, and the numerical codes are different. All in
all, probably the most appropriate conclusion is that the injection scale is of the order of the
radius, and that the dissipation efficiency is of the same order as that reported by ML99.

6.1.2 The non-adiabatic nature of the turbulence driving by collapse

The generation of turbulence by gravitational collapse is often referred to as an “adiabatic
heating” of the turbulence (e.g., Robertson and Goldreich, 2012; Murray and Chang, 2015; Li,
2018; Xu and Lazarian, 2020; Mandal et al., 2020). Although this terminology arises from the
fact that, in the First Law of Thermodynamics (dU = dQ − dW ), the P dV work corresponds
to an adiabatic heating process (dQ = 0, then dU = −P dV ), it is important to keep in mind
that turbulence is inherently a dissipative process, and so the net driving (or “heating”) of the
turbulence is far from being adiabatic, a term which, by definition, implies that no loss of heat
or mass occurs during the process. Instead, in the case of turbulence, the dissipative loss of
turbulent kinetic energy is unavoidable since, contrary to the case of microscopic molecular
motions, in which particle collisions are ellastic, the “collision” of gas streams produce vortices
and shocks where the kinetic energy is intrinsically converted to heat. This is in fact at the
heart of the theory of Kolmogorov (1941), in which the slope of the turbulent energy spectrum
is determined by the condition that the dissipation rate equals the injection rate and the energy
transfer rate among scales.

The non-adiabatic nature of the turbulence generation by the collapse is manifested by the
fact that the collapse does not appear to be significantly delayed by the turbulence, even though
a nearly virial turbulent level is attained during the collapse. This can only be understood if
the turbulent energy is dissipated as quickly as it is produced by the gravitational contraction,
preventing it from delaying the collapse, contrary to the case of truly nearly adiabatic heating
of a collapsing protostellar object when it becomes optically thick, trapping the heat, and
producing a first hydrostatic core. Instead, our simulations suggest that no such halting, or
even delaying, of the collapse is accomplished by the turbulence even when it appears virialized,
fed by the collapse itself. This further implies that, in particular, when writing the virial theorem
for a collapsing object including a nonthermal kinetic energy term (e.g., McKee and Zweibel,
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1992; Ballesteros-Paredes et al., 1999; Ballesteros-Paredes, 2006; McKee and Ostriker, 2007),
an additional term must be included to represent viscous dissipation of the turbulent energy.
We plan to investigate this issue in the future.

The lossy character of the turbulent “heating” can also be seen in the effective polytropic
exponent displayed by the turbulent and infall ram pressures, respectively defined as Pt ≡ ρσ2

1D

and Pr ≡ ρv2
rad. The solid and dashed lines in Fig. 6.1 show these pressures, averaged over

spherical shells, versus the corresponding average density in the shells. The blue line shows a
slope of γe ∼ 1.64. This result is consistent with the study by Vázquez-Semadeni et al. (1998)
who, using a spectral code to simulate a turbulent gravitational collapse, found values of the
polytropic exponent γe ≈ 3/2 for nonmagnetic and rapidly collapsing magnetized cases, and
γe ≈ 2 for slowly collapsing, strongly magnetized cases.

Also, it is noteworthy that this slope is very similar to the value of the polytropic exponent
corresponding to an adiabatic process in a monoatomic gas, γ = 5/3, which in particular is
larger than the well known critical value of 4/3 required for the internal thermal energy to be
capable of halting gravitational collapse (e.g., Chandrasekhar, 1961; Vazquez-Semadeni et al.,
1996). Nevertheless, the turbulence turns out to be incapable of storing the energy
of the collapse and thus delaying it to any significant extent. The solution lies in the
observation that the ram pressure is always larger than the turbulent one, showing that the
turbulent energy, although continuously increasing, is always lagging behind the infall kinetic
energy, a result which can only be attributed to the rapid dissipation and to the establishment
of equality between the rates of collapse and of turbulent energy transfer. The fact that the
result is preserved at higher resolution suggests that this is a real effect and not just an effect
of excessive numerical dissipation.

6.1.3 Comparison with previous work

The problem of turbulence driving (“heating”) by gravitational collapse has been addressed by
a number of authors using both analytical and numerical approaches. Numerically, Vázquez-
Semadeni et al. (1998) used a very similar approach to the one used here, except with a fixed-
grid spectral code, to investigate the effective equation of state of the turbulence. In particular,
Vázquez-Semadeni et al. (1998) were searching for a “logatropic” behavior (Lizano and Shu,
1989) of the turbulent pressure upon the compression produced by the collapse, but instead
found a polytropic behavior with an effective exponent in the range 3/2–2 depending on the
collapse regime. The exponent we find here (Fig. 6.1) is within the range determined by those
authors.

More recently, other studies (Robertson and Goldreich, 2012; Mandal et al., 2020) have used
numerical simulations of turbulent boxes using shrinking comoving coordinates, to investigate
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Figure 6.1: The solid line represents the ram pressure, the dashed line represents the turbulent
pressure, and the blue line is a power law with a slope of 1.64.

the rate of turbulent generation during contraction. However, since in these simulations the
contraction rate is a fixed parameter, they do not allow to self-consistently determine whether
the collapse can be delayed or not by the turbulent pressure. Instead, assuming an isothermal
gas, and considering also a model equation for the energy injection and dissipation balance,
Robertson and Goldreich (2012) concluded that regardless of whether the turbulent transfer
rate is initially larger or smaller than the contraction rate, the former approaches the latter.
Our result that the turbulence approaches a “virial” value is in qualitative agreement with theirs.
Similarly, using a thermally bistable gas, Mandal et al. (2020) found that the physical properties
of the dense clouds in their simulations best matched those of real molecular clouds when the
two rates are equal, again pointing towards a balance between the two rates in molecular clouds,
in agreement with our results here.

From the analytical standpoint, various works have considered an energy balance equation
for the energy injection from the contraction and the turbulent energy dissipation to compute
the turbulent velocity dispersion, and from there compute a turbulent pressure which is added
to the regular thermal pressure in the momentum equation for the infall speed (Robertson
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and Goldreich, 2012; Murray and Chang, 2015; Li, 2018; Xu and Lazarian, 2020), with various
results. As mentioned above, Robertson and Goldreich (2012) concluded that the turbulent
transfer rate must approach the contraction rate. On the other hand, Murray and Chang (2015)
consider a protostellar (or post-singularity) core, in which a central star or cluster has already
formed, and define two distinct radial regions, separated by the radius that demarks the sphere
of influence of the mass accreted onto the central object. They then conclude that “turbulent
pressure” is important at all radii, and that the infall speed is smaller (resp. comparable) than
the turbulent velocity outside (resp. inside) that radius. Since our simulations are restricted
to the prestellar stage (i.e., pre-singularity), we cannot assess whether our simulations support
their analytical result.

In addition, Xu and Lazarian (2020, hereafter XL20) have performed a similarity analysis
of the “inside-out” collapse problem (Shu, 1977), in which they consider a fixed ratio C of the
turbulent velocity (equivalent to our vtan and σ1D) to the total radial velocity (equivalent to our
vrad), so their C is equivalent to our h. Under the assumption of a constant C, XL20 consider
cases with different initial values of the ratio of the infall speed to the sound speed, and find
that, when this ratio is initially large, significant (supersonic) turbulent energy is generated
by the collapse, and that this turbulence has the effect of modifying the radial density and
velocity profiles. The resulting infall velocity is uniform at large radii, it decreases inwards
at intermediate radii, and then increases inwards at small radii. This infall velocity profile is
actually somewhat similar to the classical prestellar profile, which has uniform velocity at large
radii, and a linearly decreasing velocity at small radii (Whitworth and Summers, 1985, see also
Fig. 5.1), with the difference that the velocity increases at small distance from the center. From
these results, XL20 conclude that the turbulent pressure can slow down the collapse in the case
of an initially large infall speed.

However, the general approach of considering the generation and dissipation of turbulence by
the collapse and then feeding it back via a turbulent pressure term in the momentum equation
has a number of important caveats, as we now discuss.

First, this approach implicitly assumes that the turbulent motions occur at such a small scale
that they can be considered analogous to the thermal velocity dispersion of the gas molecules,
neglecting the fact that the largest turbulent speeds occur at the largest scales within the system.
Therefore, the effect of the turbulence is not to act as an isotropic pressure, but rather as a
distorting agent for the density structures (Ballesteros-Paredes et al., 1999). As a consequence,
rather than slowing down a monolithic collapse, large turbulent velocities (larger than the infall
speed) are expected to cause fragmentation, shearing or compression of the collapsing core.
XL20 explicitly state that, contrary to the case of turbulence driven by external compressions,
for collapse-generated turbulence, the driving scale Ld is small. However, our result that Ld . R
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implies that it is still of the order of the radius of the collapsing core itself, so it is not small
compared to the system size. On the other hand, it is not as large as the core’s diameter, in
contradiction to the ad hoc assumption of Li (2018), which was important for the conclusion by
this author that the collapse can be retarded by the turbulence.

Within the framework of turbulent pressure support, both Murray and Chang (2015) and
XL20 argue that its effect is to modify the velocity dispersion-size relation from the standard
Larson (1981) form, σ ∝ R1/2, to scalings with significantly smaller exponents ∼ 0.2 – 0.3.
Both groups propose this as an explanation of the observation that dense massive cores often
exhibit flatter scalings than Larson’s (e.g., Caselli and Myers, 1995; Plume et al., 1997; Shirley
et al., 2003; Gibson et al., 2009; Wu et al., 2010, as plotted by Ballesteros-Paredes et al. 2011).
However, both Murray and Chang (2015) and XL20 have neglected the fact that those massive
cores do follow the appropriate gravitational scaling once the additional dependence on the
column density (σ ∝

√
ΣR; Keto and Myers, 1986; Heyer et al., 2009), is taken into account,

as shown by Ballesteros-Paredes et al. (2011, see also Camacho et al. 2016; Ballesteros-Paredes
et al. 2018). Those, the apparent deviations from Larson’s linewidth-size relation can be fully
accounted for by gravitational contraction when the column density dependence is included,
with no need for turbulent support.

Second, in the similarity studies, the ratio of the contraction rate to the turbulent transfer
rate is a parameter defined as an initial condition, because, by their very nature, similarity
methods may not be consistent with the initial and boundary conditions of the problem (e.g.,
Shu, 1992, Ch. 17), and the solutions only apply once the initial transients have passed. However,
it is precisely those initial transients that determine in a self-consistent manner the parameters
of the similarity treatments. In this sense, our numerical simulations do evolve self-consistently
from a much earlier stage than those considered by Shu (1977), Murray and Chang (2015) and
XL20. In particular, it covers the period during which XL20’s C parameter is not constant,
and evolves toward its stationary value. Indeed, our turbulent simulations suggest a evolution
towards a constant value of C (our h), ∼

√
0.164 ≈ 0.405 (cf. Sec. 5.1), in agreement with

XL20’s assumption for the late-time evolution. At those late stages of our prestellar collapse,
the infall speed is large compared to the sound speed (cf. Fig. 5.1) and there has been significant
turbulent generation (as indicated by its nearly virial value; cf. eq. [5.4] and the subsequent
discussion), also in agreement with Case 2 of XL20. Nevertheless, we do not observe any
significant retardation of the collapse at any time nor radius. We speculate this is because our
simulation evolves towards equality of the injection and dissipation rates, in which case XL20
find that the infall is undisturbed.
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6.2 Caveats

Our work is certainly limited by some caveats. First, we have chosen to use an adaptive-mesh
scheme in order to self-consistently be able to follow the collapse, in particular whether it is
delayed by the turbulence generated. This cannot be accomplished using a fixed-resolution
box with shrinking coordinates, as done by Robertson and Goldreich (2012) and Mandal et al.
(2020), since in that case, the contraction rate is imposed as an external parameter. However,
our choice implies that, at late stages, our core is only moderately resolved, possibly generating
excessive numerical dissipation. Our high-resolution simulation, with twice the resolution in the
core, still collapses in essentially the same time, and converges to nearly the same values of the
velocity ratios, suggesting our result is robust. Nevertheless, it would be desirable to perform a
test at much higher resolution, which we will attempt in a future study.

Second, we have chosen to use a very low level of initial turbulence in order to avoid the
destruction of the core by the initial turbulence and thus approximately maintain the global
spherical symmetry. It could be argued that this is the reason the collapse is not delayed.
However, the fact that by the end of the turbulent simulations the turbulence has reached a
nearly virial value, suggests that at those late stages the turbulence should be able to slow down
the collapse. The fact that is does not strongly indicates that it is dissipated as rapidly as it
is generated, which is in fact what we observe: a tendency to approach a stationary balance
between injection and dissipation.

Third, we are not taking into account the role of the magnetic field. The role of the magnetic
field in the collapsing core problem is likely to be important in the efficiency of turbulence driving
by the collapse, although it may not be the dominant component, since it is now established
that most molecular clouds and their cores are magnetically supercritical (Crutcher, 2012). But
even in this case, magnetic fields may have two opposite effects in the efficiency of turbulence
generation. On the one hand, the magnetic field could propagate the fluctuations via Alfvén
waves, aiding the transfer of turbulent kinetic energy throughout the core. On the other hand, if
the magnetic field is strong enough, it may restrict the velocity field to be oriented preferentially
along field lines, inhibiting transverse motions. Since the collapse causes an hourglass (nearly
radial) morphology of the field lines, the tangential motions in our core might be inhibited, thus
inhibiting the transfer of energy from the radial collapse direction to the random turbulence.
We plan to investigate the competition between these effects in a forthcoming study.

Finally, our simulations have been limited to the prestellar (pre-singularity formation) stage
of the collapse, and so they are not directly comparable to some of the studies presented by
some other groups, which consider the protostellar stage, with a finite-mass central point object
already present (e.g., Murray and Chang, 2015). However, since the prestellar stage sets the
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initial conditions for the formation of a protostar, we consider that understanding this stage
is of utmost importance. In any case, in a future study we will attempt to follow the entire
evolution from the prestellar to the protostellar stage.



Chapter 7

Summary and Concusions

In the present thesis, we have performed some simple analytical calculations predicting the ratio
g of the one-dimensional turbulent velocity dispersion σ1D to the gravitational velocity vg under
the conditions of free-fall (or energy equipartition, Eturb = |Eg|), virial balance (2Eturb = |Eg|)
and a stationary balance between energy injection by the collapse and energy dissipation by
viscosity. We then performed a suite of three numerical simulations of spherical collapse, two
in the presence of initial turbulence at different resolutions, and one with no initial turbulence.
We decomposed the velocity in radial and tangential components, identifying the latter with
the purely turbulent one dimensional velocity dispersion σ1D. We then measured the ratio f
as well as the ratio h of σ1D to the mean square radial velocity 〈v2

rad〉1/2, and from there, we
inferred the ratio g in the turbulent simulations by two different means.

In spite of our turbulence having a very small initial amplitude, we found that, before one
free-fall time, the ratio g = σ1D/vg has reached a nearly virial value gsim = 0.395 ± 0.035.
Nevertheless, we also found that σ1D approaches a fixed fraction of the mean squared radial
velocity, indicating a stationary balance between injection and dissipation. From here, we
inferred the value of the dissipation efficiency η or the ratio of the energy injection scale Ld

to the core’s radius, finding that η is within 70% of the value reported by ML99, and that
Ld . R. Finally, we measured the effective polytropic exponent of the turbulent “pressure”,
finding a value γe ≈ 1.64, which, at face value, would suggest a nearly adiabatic character of
the turbulent pressure upon compression.

Most important, however, is the fact that we did not find any significant slowing down of
the collapse in neither of the turbulent simulations, compared to that of the non-turbulent
simulation, in spite of σ1D having a nearly virial value, and γe being larger than the critical
value of 4/3, above which a polytropic gas is capable of halting the collapse. This led us to
conclude that the turbulence generated by the collapse is dissipated so rapidly (independently
of resolution) that it is unable to delay the collapse at any significant rate. This implies that

38
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neither the critical value γe = 4/3 nor the presence of a nearly virial velocity dispersion can
be taken as indicative of delay or halting of the collapse in the presence of strong dissipation,
which is equivalent to a loss of heat in a thermodynamic system. Therefore, the “heating” of
turbulence by gravitational collapse is lossy rather than adiabatic, and that the dissipation of
turbulence occurs at the same rate as the injection, implying that it cannot be stored in the
system to slow down the collapse.



Chapter 8

Future Work

8.1 Gravitational Collapse Including Sink Particles

Thinking of continuing with this project, this can be improved by adding sink particles in the
simulations, this is because numerical simulations of gravitational collapse with Eulerian codes,
have the issue that at some point there is a large amount of fluid within a few cells, and this
situation leads to numerical errors and the simulation can stop shortly after reaching free fall
time.

In this process, an amount of gas above a certain density can convert into a singular point
with the mass of the gas converted and can accrete material of the surroundings.

Also, we can run a set of numerical simulations changing the initial rms turbulence to test
if this setup with a different kinetic energy acts in a similar way of stabilization between the
injection and dissipations rates of the turbulence and near-virialization behave between the
turbulent kinetic and the gravitational energy.

8.2 Virial Theorem Including Dissipation

In the Sec. 2.2 we take the Virial Theroem and solve it for an specific case of hydrostatic
equilibrium where the internal energy provides support against self-gravity and a case with a
turbulent velocity field that acts providing additional support in a similar way. But, in this last
case, the kinetic energy of the turbulence is not constant in time if we take into account that
the turbulence dissipates in roughly a crossing time (see e.g. Mac Low, 1999; Avila-Reese and
Vázquez-Semadeni, 2001), so we need to consider a dissipation term by adding the viscosity of
the fluid.

40
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8.3 Signature of Collapse in Synthetic Spectral Lines

We made an analysis of the numerical simulations using the radiative transfer code RADMC-3D
(Dullemond et al., 2012) following similar conditions to those used by Loughnane et al. (2018).

In this analysis, we extracted spectral lines of optically thin (N2H+) and thick (HCO+)
molecules at the J = 3 − 2 transition assuming a constant abundance and taking the density
and velocity profiles to find the assymetry of this molecular lines due to the gravitational collapse
described and obtained in observations and numerical simulations (see e.g. Mardones et al., 1997;
Smith et al., 2013; Loughnane et al., 2018).

We want to continue this analysis to compare our with the results of Loughnane et al. (2018)
that used the simulations of Naranjo-Romero et al. (2015), with the main difference that their
simulations do not have an initial turbulent field like our simulations, and to see the contribution
of this ingredient.
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