
Universidad Nacional Autónoma de México

Centro de Nanociencias y Nanotecnología

Theoretical studies of ternary

transition metal chalcogenides

based on Density Functional

Theory

T E S I S

QUE PARA OBTENER EL TÍTULO DE:

Licenciado en Nanotecnología

P R E S E N T A :

Etienne Israel Palos

TUTOR

Dr. Jonathan Guerrero Sánchez
CNyN - UNAM, Ensenada. B.C., 2020



 

UNAM – Dirección General de Bibliotecas 

Tesis Digitales 

Restricciones de uso 
  

DERECHOS RESERVADOS © 

PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL 
  

Todo el material contenido en esta tesis esta protegido por la Ley Federal 
del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México). 

El uso de imágenes, fragmentos de videos, y demás material que sea 
objeto de protección de los derechos de autor, será exclusivamente para 
fines educativos e informativos y deberá citar la fuente donde la obtuvo 
mencionando el autor o autores. Cualquier uso distinto como el lucro, 
reproducción, edición o modificación, será perseguido y sancionado por el 
respectivo titular de los Derechos de Autor. 

 

  

 



Theoretical Studies of Ternary Transition Metal Chalcogenides Based on Density Func-

tional Theory

Hago constar que el trabajo que presento es de mi autoría y que todas las ideas, citas textuales,

datos, ilustraciones, gráficas, etc. sacados de cualquier obra o debidas al trabajo de terceros, han

sido debidamente identificados y citados en el cuerpo del texto y en la bibliografía y acepto que en

caso de no respetar lo anterior puedo ser sujeto de sanciones universitarias.

Afirmo que el material presentado no viola ningún tipo de derechos de autor y me hago respon-

sable de cualquier reclamo relacionado relacionado con ello.

————————————————

Etienne Israel Palos

1



To Lucie, Aislynn and Mayela.



Acknowledgements

This thesis is the product of a collective continuous effort by a great deal of people who have

demonstrated to care for me. They have proved to be genuinely interested in my success and well-

being. Without their support, this work would not exist and I would have not survived in Ensenada.

Let it be known that my gratitude towards each and every one of you cannot be expressed writing.

I will forever be in debt for all that my family, friends, mentors and life itself have given me.

First off, I would like to begin by acknowledging Jonathan Guerrero Sánchez, my academic

advisor, collaborator and friend that I could have asked for. Thank you for mentoring me and at

the same time allowing me to explore my interests and lead my research projects in such a bold and

independent manner. I am a stubborn pupil, but it means quite a lot to me that you encourage me

to dive deeper into electronic structure theory and predict the physical properties of increasingly

complex materials. This being said, thank you for not scolding me for spending more time than

necessary on my numerical "experiments". Moreover, thank you for celebrating with me not only

my academic successes, but my personal achievements as well. It doesn’t go unnoticed that before

we discuss science, you take the time to always make sure Lucie and Aislynn are alright and you

never miss a chance to offer your hand if anything is needed. Without your support, I would not

have been able to acquire my current knowledge and skills in materials modeling, developed the

ideas presented in this thesis, and have presented some of our work at the national meeting of the

American Chemical Society (ACS) last year. As a consequence, I would not be preparing my bags to

embark on a doctoral program in Theoretical and Computational Chemistry at the very university

where Density Functional Theory was born!

Next, I want to express my gratitude toward Donald H. Galván, who took a chance on me

when I was only a sophomore, who had failed classical mechanics, but was very curious about

quantum chemistry. Professor Galván, you took time out of your busiest days, to share inspir-

3



ing anecdotes about theoretical molecular physics, solid-state physics and computational quantum

chemistry. You witnessed the birth of computational materials science. You taught me why their

differences shouldn’t matter or whether you were educated as a physicist or chemist (or neither as

is my case), and what the theory and computation can teach us about our material world. You

encouraged me to dream big and aspire to become a key player in theoretical chemistry, and to be

bold like the great Roald Hoffmann. You lent me your books on molecular and solid-state physics,

taught me fundamental quantum chemistry one-on-one and guided me through my first publication.

I will forever be grateful for your teachings.

This brings me to Armando Reyes Serrato. You have believed in me since I first enrolled at

UNAM. Above my academic successes or failures, you have gone out of your way to support me

in my studies. I will never forget everything you have done for me, and to say that without your

support I would not be graduating is an understatement. Quite frankly, without your continuous

efforts, I would not have been able to continue obtaining a college education after my first semester.

Last year, you once again demonstrated your confidence in my potential and work and funded my

trip to the ACS meeting. That meeting changed my life and the life of my family forever. When we

first met, five years ago, you asked me: "so you’re the kid who wants to theory?"

Gabriel Alonso Nuñez, the experimentalist who bet on me as a theoretician. For two years,

you supported me through a SNI III Research Assistant CONACyT scholarship and gave me the

liberty to focus on the computational modeling and prediction of materials that could potentially

be interesting in your field. Here, I disclose that without your support, surviving in Ensenada these

past two years would have been impossible. Thanks to you believing in my ideas, I was able to keep

a roof over my head and graduate.

I want to thank the professors who were always there for me, to discuss science or talk about

the mysteries of life and share a laugh. In this sense, I am especially grateful to Catalina López

Bastidas and Carlos Iván Ochoa Guerrero. Aside from discussing solid state theory, parenthood and

drinking coffee, Catalina and Carlos have been consistent advocates for me.

To Joel Yuen-Zhou, for being my scientific role model and for supporting me to pursue a graduate

degree in theoretical and computational chemistry. To Adrian Jinich and Miguel Magaña Fuentes for

inspiring me to become a scientist, and for mentoring me from early on, supporting me to kick-start

my way into theoretical chemistry.

Every achievement and dream of mine belongs to each person who has contributed to seeing that

4



I make it here. At this point, I thank Sra. Angélica Chimal and Don Abel Zaldivar for providing me

with a roof over my head when my pockets were empty. To Jesús Ruiz Mata, a Mexican American

mathematician who sponsored my return to UNAM in 2016. It will soon be my turn to help a

student facing similar circumstances, and I looking forward to it! I thank Armando Reyes Serrato,

Arturo Gamietea and Matematiké A.C. for letting me work as a tutor for three semesters in order

to support myself. I also want to thank Laura Viana Castrillón for everything she has done for me.

Without her support, survival would have also been a bit more difficult. Also, I want to thank her

for a wonderful course in Statistical Physics.

Un saludito especial to all the homies out there. I want to thank Genaro Soto-Valle Angulo,

Daniel Maldonado López, Axel Gaona Carranza, Luis Ricardo Rodríguez Marino, Christian López

Ángeles and Alejandro Noguerón Arámburu, and everybody else for their support and the good

times. To all the great people I met at CNyN-UNAM, CICESE, and CHIZA. Saludos al Mochis,

Chaneli, April-May-June and Moño.

Axel, thank you for literally becoming a part of this journey into the world of materials theory.

Danny, thank you giving me shelter in my last semester, for listening to my melt-downs and

helping me see the bigger picture when I lose my mind over the nano-details, and for getting me

out of work-mode on occasions to keep me sane. Also, thanks for the programming + death metal

sessions. Most importantly, thank you for always giving me that extra push!

Alejandro, thank you for believing in me from early on. I felt lost in college at the beginning but

you always pushed me to keep moving forward and to stay true to my convictions. Moreover, you

always encouraged me to work as hard as I possibly could to become a true theorist. Thank you for

all the stimulating conversations about scientific research and research ethics, within and beyond

Mexico.

I want to thank my hermano, carnal and compadre, Óscar Andrés Ramírez Ramírez (OARR),

for showing me that I was not alone at UNAM. I thank OARR for every conversation, for not

one was dull. For the countless hours of watching psychological dramas (not thrillers), true crime

documentaries, rap battles in English, Spanish, or Spanglish, ritualistic trips to Carls Jr., El Trailero

or with "el Sammy" for some tacos, LATEX all-nighters, unhealthy amounts of coffee or cup ramen, and

for making every moment memorable. I am convinced that our friendship revived and strengthened

our confidence in ourselves and each other, as scientists and well-intended human beings.

Lastly, I want to thank my familia on both sides of the US-MX border. To my Nana Mina, my

5



Tio Manuel and Tia Rosa, Tia Tere and Tio Víctor, and the primos. Also, thanks to my abuelito

Oscar.

To Oscar and Aaron, my brothers and dearest fiends. Though thick and thin, my unconditional

homies. Together, we’re sticks and stones. To my father, Oscar Ernesto Rubí, who taught me

everything I know about life. If you want something, or care about something, work hard and work

tirelessly for it. To my mother, Mayela Guadalupe González, who has showed me that true love is

worthy of any sacrifice.

I want to thank my daughter, Lucie Anne Palos, and her mother, Aislynn Elizabeth Silva Reyna,

for giving me the strength to complete this thesis. Your love fuels everything I do.

Technical Acknowledgements

The projects presented in this thesis, due to their nature and scope, are collaborative. Therefore, I

acknowledge the following researchers for their participation, guidance and/or comments along the

way: Axel Gaona Carranza, Armando Reyes Serrato, Gabriel Alonso Nuñez, and my advisor.

The research was partially funded by DGAPA-UNAM projects IN101019, IA100920, and Cona-

cyt grant A1-S-9070 of the Call of Proposals for Basic Scientific Research 2017-2018. The DFT

computations were carried out in the DGCTIC-UNAM Supercomputing Center, under projects

LANCAD-UNAM-DGTIC-051 and LANCAD-UNAM-DGTIC368. Additionally, JGS acknowledges

THUBAT KAAL IPICYT supercomputing center for computational resources. The authors would

like to thank A. Rodriguez Guerrero for technical assistance and useful discussions.

Chapter 3 in full is a reprint of the publication titled "Modeling the ternary chalcogenide Na2MoSe4

from first-principles", published in Journal of Physics: Condensed Matter. The article may be cited

as "Palos et al 2020 J. Phys.: Condens. Matter 10.10881364-648X/abaf91". An open-access version

of the manuscript has been made available in the form of a preprint on ChemRxiv.

The author of this thesis is the principal investigator of this project and the first and correspond-

ing author of the publication. Chapters 4 and 5 contain material to be published in two independent

articles, currently in preparation. EIP is the principal and corresponding author in these.

6

https://doi.org/10.1088/1361-648X/abaf91
https://doi.org/10.26434/chemrxiv.12593381.v3


Abstract

Understanding and exploiting the properties of interacting quantum particles is central to condensed

matter physics, physical chemistry and materials science. Computational quantum mechanics has

enabled the design of technologically relevant materials from a minimal set of parameters, such as

the number of quantum particles conforming a given system and their positions. One methodology

in particular, Kohn-Sham Density Functional Theory (DFT), has become the work-horse of theo-

reticians for its accuracy in describing the ground state properties of systems. In this thesis, we

present a series of computational electronic structure studies in which we discuss the ground state

properties of sixteen different compounds within the context of solid-state physics. Particularly, we

employ DFT to the modeling of ternary transition metal chalcogenides, a class of materials receiving

an increasing amount of attention within the physics, chemistry and materials science communities

for their high stability and properties suitable for solid-state devices.

We determine the equilibrium structure and electronic properties of Na2MoSe4. By combin-

ing DFT with a crystal structure prediction method, we identify the stable phase of the selenide,

demonstrating that it has a simple orthorhombic (oP ) lattice. Moreover, we show that it is a direct

bandgap semiconductor with potential applications in high-speed optoelectronics.

Next, we extend our investigation to a family of alkali-ion transition metal chalcogenides. We

theoretically investigate twelve systems with with oP symmetry and formula A2MX4, where A =

K+, Rb+, Cs+ ; M = Mo, W and X = S−, Se−. We model the band structures of nine experimentally

known compounds, and predict the ground state properties of three new materials. We show that

A2MX4 is a family of direct bandgap semiconductors with a range of bandgap values that show

potential for applications in optoelectronics and photovoltaics.

Finally, we discuss the physical properties of three new two-dimensional materials and their

potential for quantum device applications. Using first-principles calculations, we model three ternary
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niobium tellurides NbMTe2, where M = Fe, Co, Ni, as monolayers. We show that a monolayer may

be obtained for each material via exfoliation, and that they are energetically stable. Furthermore,

we demonstrate that NbFeTe2 is predicted to be robustly ferromagnetic with a Curie temperature

of 205 K. The band structure of non-magnetic NbNiTe2 shows an interesting anti-crossing exactly

at the Fermi level, making it a potential topological material. Overall, our results classify these 2D

ternary niobium tellurides as true quantum materials with potential applications in next-generation

devices, motivating future theoretical and experimental studies.

The chemistry of transition metal chalcogenides provides a platform to rationalize compounds

with diverse and complex electronic structures. Here, a first-principles treatment was applied to the

investigation of sixteen different compounds. Of the sixteen materials discussed, four are predicted

bulk semiconductors, nine are known, and three are predicted 2D quantum materials. To the best

of our knowledge, these are the first theoretical reports of the ground state properties of all of these

systems.
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Resumen

El poder comprender y explotar las propiedades de las partículas cuánticas que interactúan es fun-

damental para la física de la materia condensada, la química física y la ciencia de los materiales. La

mecánica cuántica computacional ha facilitado el diseño de materiales tecnológicamente relevantes

a partir de un conjunto mínimo de parámetros, como el número de partículas cuánticas que confor-

man un sistema dado y sus posiciones. Una metodología en particular, la Teoría del Funcional de

la Densidad de Kohn-Sham (DFT), se ha convertido en el caballo de batalla de los teóricos por su

precisión en la descripción de las propiedades del estado fundamental de los sistemas. En esta tesis,

presentamos una serie de estudios computacionales de estructura electrónica en los que discutimos

las propiedades del estado fundamental de dieciséis compuestos diferentes dentro del contexto de la

física del estado sólido. En particular, empleamos DFT para el modelado de calcogenuros de metales

de transición ternarios, una clase de materiales que reciben una atención cada vez mayor dentro de

las comunidades de física, química y ciencia de los materiales por su alta estabilidad y propiedades

adecuadas para dispositivos de estado sólido.

Determinamos la estructura de equilibrio y las propiedades electrónicas de Na2MoSe4 combinando

DFT con un método de predicción de la estructura cristalina. Determinamos la fase estable del

seleniuro, demostrando que tiene una red ortorrómbica simple (oP ). Además, mostramos que es un

semiconductor de banda prohibida directa con aplicaciones potenciales en optoelectrónica de alta

velocidad.

A continuación, ampliamos nuestra investigación a una familia de calcogenuros de metales de

transición de iones alcalinos. Teóricamente investigamos doce sistemas con simetría oP y fórmula

A2MX4, donde A = K+, Rb+, Cs+; M = Mo, W y X = S−, Se−. Modelamos las estructuras de

bandas de nueve compuestos conocidos experimentalmente y predecimos las propiedades del estado

fundamental de tres nuevos materiales. Mostramos que A2MX4 es una familia de semiconductores
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de banda prohibida directa con un rango de valores de banda prohibida que muestran potencial para

aplicaciones en optoelectrónica y fotovoltaica.

Finalmente, discutimos las propiedades físicas de tres nuevos materiales bidimensionales y su

potencial para aplicaciones en dispositivos espintrónicos. Usando cálculos de primeros principios,

modelamos tres teluros de niobio ternarios 2D NbMTe2, donde M = Fe, Co, Ni. Demostramos que

se puede obtener una monocapa para cada material mediante exfoliación, y que son energéticamente

estables. Además, se predice que NbFeTe2 será robustamente ferromagnético con una temperatura de

Curie de 205 K. La estructura de bandas de NbNiTe2 no magnético muestra un anti-cruce interesante

exactamente en el nivel de Fermi, lo que lo hace un material topológico potencial. En general,

nuestros resultados clasifican estos telururos de niobio ternarios 2D como verdaderos materiales

cuánticos con aplicaciones potenciales en dispositivos de próxima generación, lo que motiva futuros

estudios teóricos y experimentales.

La química de los calcogenuros de metales de transición proporciona una plataforma para racionalizar

compuestos con estructuras electrónicas diversas y complejas. Aquí, se aplicó un tratamiento ab-

initio a la investigación de dieciséis compuestos. De estos, cuatro son semiconductores, nueve son

conocidos y tres son materiales cuánticos 2D predichos. Hasta donde sabemos, estos son los primeros

informes teóricos de las propiedades del estado fundamental de todos estos sistemas.
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Chapter 1

Introduction

"Knowing without seeing is at the heart of Chemistry"

- Roald Hoffmann

Quantum mechanics is undeniably the responsible for the reconciliation of physics and chemistry

in the XX century. The theory provides a complete guide to understand the fundamental properties

of quantum systems. Thus, the Shrödinger equation can yield useful information about the funda-

mental properties of quantum particles, atoms, molecules, and without hyperbole, everything in the

material world. Alas, there is no way to solve this equation analytically for systems with complexity

higher than that of a Hydrogen atom. The theory was developed, but it’s limitations quickly became

clear.

Paul Adrien Maurice Dirac, one of the fathers of quantum mechanics and a visionaries of the XX

century, had foreseen the course that Quantum Mechanics would undertake; developing methods to

numerically approximate the Schrödinger equation for complex systems. He stated this explicitly in

his seminal work "Quantum mechanics of many-electron systems" [1]. We quote:

"The general theory of quantum mechanics is now almost complete, the imperfections that still

remain being in connection with the exact fitting in of the theory with relativity ideas. These give
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rise to difficulties only when high-speed particles are involved, and are therefore of no importance

in the consideration of atomic and molecular structure and ordinary chemical reactions, in which

it is, indeed, usually sufficiently accurate if one neglects relativity variation of mass with velocity

and assumes only Coulomb forces between the various electrons and atomic nuclei.The underlying

physical laws necessary for the mathematical theory of a large part of physics and the whole of

chemistry are thus completely known, and the difficulty is only that the exact application of these

laws leads to equations much too complicated to be soluble. It therefore becomes desirable that

approximate practical methods of applying quantum mechanics should be developed, which can lead

to an explanation of the main features of complex atomic systems without too much computation."

-P.A.M. Dirac (1929)

Today, these approximate and practical methods are used by scientists to study atomic sys-

tems, molecules, materials and complex chemical processes. The development and practice of these

methods is what we refer here as Computational Quantum Mechanics (CQM).

The practical common ground for physics and chemistry is found in condensed phases, where

the solid state is the protagonist. There, the two sciences join forces on a mission to unravel

the microscopic nature of materials and how they provide an understanding of their fundamental

macroscopic properties. By microscopic nature, what is referred to is the physical phenomena that

occurs within the atomic and molecular length-scales, governed of course by the laws of quantum

mechanics. Given the appropriate conditions, atoms, molecules and ions interact in such a way that

they form periodic arrangements through space while their physics and chemistry remain invariant.

In solid state physics, the minimal arrangement of atoms, molecules or ions that posses the necessary

symmetry to build the lattice by its repetition through all of space, is called the unit cell.

The advancement of quantum chemistry, solid state physics and the emergence of computer

science gave rise to the ab-initio era in the late XX century. This refers to a scientific renaissance

in which ab-initio (first-principles) methods and high-performance computing are used jointly for

the modeling of materials (or molecules) based on a minimal amount of physical parameters (with
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no need for adjustable or empirical parameters!), and prediction (or postdiction) of their properties.

Hence, using first-principles computational techniques, it is possible to design functional materials

before they are synthesized in the laboratory and guide experimental colleagues.

Using quantum chemical methods and computation, it is possible to tackle a variety of problems

in materials science, such as:

(i) What are the ground state properties a given material A?

(ii) How will A behave outside equilibrium?

(iii) How does A respond to an external electric fieldE ?

(iv) How does A respond to an external magnetic field H?

(v) How does A respond to heat, i.e. Q?

(vi) What is needed to modify material A with property x to A′ with x′?

(vii) If material A has properties x1, x2, ..., xn, what other materials B,C, ..., N exist with similar

properties?

(viii) If materials A and B have properties x and y respectively, then what properties will charac-

terize C if C = A+B?

Alternatively, rational design of materials can be achieved by intentionally controlling the compo-

sition and structure of a material as a function of the desired property. Without hyperbole, we state

that computational simulations and chemical/materials informatics are the pillars of the "materials

by design" paradigm. With first-principles methods, it is feasible to part from chemical induction

and use physical rigor to make knowledgeable predictions (or postdictions) of a given system’s funda-

mental properties and therefore its applications. A variety of such techniques exist, however in this

thesis we will focus our attention on the application of the many-body theory known as Kohn-Sham

Density Functional Theory (DFT) for the quantum mechanical modeling of solid-state materials. It

is difficult to overemphasize the importance and power of Kohn-Sham DFT, as it is currently the

most accepted and used theory in theoretical materials science. Here, we will use DFT to model
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and characterize a selection of ternary transition metal chalcogenides in two and three dimensions.

In particular, we employ DFT to (i) theoretically characterize a family of bulk compounds referred

to as Alkali-Ion Transition-Metal Chalcogenides and (ii) propose the two-dimensional (monolayer)

models of a family of known Niobium Tellurides with first-row magnetic transition-metals.

1.1 Transition metal chalcogenides

Transition metal "chalcogenides" are materials composed of two species of more: transition metals

(groups IB-VIIIB) and from the VIA group. Particularly, the group VIA elements considered are S,

Se and Te (i.e. O is excluded). Transition metal chalcogenides are therefore the sulfides, selenides

and tellurides of transition metals with general formula MXn (M = transition metal , X = chalcogen

atom, n is an integer). It is important to note that chalcogenides of transition metals are distinct from

oxides due to differences between O and the S,Se,Te atoms themselves [2]. The main distinctions

between MO and MX systems are that:

(i) The chalcogen atoms are heavier than oxygen.

(ii) The chalcogen atoms are less electronegative than oxygen.

(iii) The chalcogen atoms have ergetically accesible d orbitals (S [3d], Se [4d], Te [5d]) while oxygen

does not.

(iv) As a consequence of (ii) and (iii), M-X bonds are largely covalent.

(v) As a consequence of (i) and (iii), chalcogen atoms are more polarizable than oxygen.

The atomic differences between O and the X atoms have deep implications in what defines

chalcogenide chemistry. Particularly, whether O or an X atom reacts with M can radically define

the composition, structure, chemical and physical properties of the material. For instance, (ii) implies

that X atoms covalently bonded to a transition metal may be in oxidation state X−1, while O will

be in O−2. In point (iv), it was stated that MX bonds are usually covalent. The origin of covalency

here is resides in the strong s, p orbital mixing of the chalcogen (e.g. 3s/3p for S, etc.) with the
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outer s, p orbitals of the metal (e.g. 4s/4p for d transition and post-transition elements, such as Mo

[4d].). In many MX systems, this gives rize to a broad valence band (VB) and a broad conduction

band (CB), where the VB and CB bands are composed of chalcogen bonding and transition-metal

antibonding states respectively. Thus, given the composition of the valence and conduction bands,

there usually exists an energy gap (bandgap) between the two. In summary, they are generally

semiconducting materials.

Recall point (ii); in general, the bandgap in transition-metal chalcogenides is narrower than in

oxides. This is due to the fact that since O is more electronegative, the valence band maximum

(VBM) lies at a lower energy than in chalcogenides (the CB is usually unaffected, as it is composed

of antibonding states). Hence, it is also generalized that the bandgap will decrease as electroneg-

ativity decreases. According to the Pauling scale: O (χ = 3.44), S (χ = 2.58), Se (χ = 2.55),

Te (χ = 2.1) [3]. Thus, larger bandgaps are to be expected from sulphides, followed by selenides

and then tellurides, which in cases lead to metallicity [2]. Transition-metal chalcogenides provide a

large chemical space to explore, containing binary, ternary, quaternary materials with remarkable

properties. One interesting trend in transition metal chalcogenides, is the favored crystallization

of the compounds in low-dimensional structures. These systems form networks or lattices (sublat-

tices in ternary and quaternary compounds) of MX coordination polyhedra, where the polyhedra

edges(faces) are fomred(connected) by X-X bonds. In AMX systems, for instance, the A ions may

be situated between infinite quasi-one(two) dimensional chains(sheets) of MX polyhedra. These

materials may be understood as A(MX) structures.

In layered two-dimensional transition-metal chalcogenides, particularly in transition-metal dichalco-

genides MX2 (X-M-X sandwich), the difference in oxidation states between the metal and chalcogen

(+4 and -2 respectively) lead to strong ionic bonds. This favors the stability of the monolayered

structure, which can be exfoliated due to the weak long-range interactions between layers, van der

Waals forces [4].

Essentially, three types of ternary transition metal chalcogenides exist. The first, which will not
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be discussed in this thesis, is the system composed of one transition metal, and two chalcogen species

(e.g. MoSeS). Although this type of chalcogenide is beyond the scope of this thesis, we refer the

reader to refernces [5, 6].

Second, is the AMX system where A is a main-group element, or a post-transition element. In

this category, we will study alkali-metal/transition-metal selenides and sulfides. These are bulk

structures hypothesized to be semiconductors, with potential applications in optoelectronics and

energy storage devices.

The last type of ternary transition-metal chalcogenide is a metal-rich system, composed of two

transition metals and one chalcogen (e.g. Ag2WSe4) [7]. By controlling the chemical composition of

our bimetallic system, it is possible to engineer quantum materials. For instance, first-row transition

metals such as V, Cr, Fe, Co and Ni may give rise to chalcogenides with magnetic properties. Here,

we aim to model three 2D bimetallic chalcogenides with potential applications in spintronics.

Let us briefly define ferromagnetic, antiferromagnetic and ferrigmagnetic materials. Ferromagen-

tic materials are defined as crystalline systems that undergo spontaenous magnetization resulting

from the alignment (parallel) of uncanceled magnetic moments in absence of an external magnetic

field H. Materials in which the magnetic moments form two equivalent but oppositely oriented

(antiparallel) magnetic sublattices are deemed antiferromagnetic. Lastly, if the magnetic moments

forming the magnetic sublattice are antiparallel but inequivalent, spontaneous magnetization occurs

and the material is ferrimagnetic [8, 9].

Therefore as part of this thesis, we theoretically model potentially magnetic two-dimensional

niobium tellurides.

1.2 Objectives

In this thesis we aim to employ quantum chemical computations based on Density Functional Theory

to predict the physical properties of different sets of bulk and two-dimensional ternary transition
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model chalcogenides.

First, we will employ a materials informatics approach combined with quantum-chemical compu-

tations to determine the stable phase and electronic structure of the sodium molybdenum selenide

Na2MoSe4.

Second, we will apply Density Functional approximations to comprehensively study the general

electronic structure of the A2MX4 family of compounds, where A is an alkali cation (K+, Rb+,

Cs+), M is a transition metal (Mo or W) and X is a chalcogen anion (S− or Se−).

Finally, we propose three new two-dimensional materials, NbMTe2, where M is Fe, Co or Ni.

Using Density Functional Theory, we will identify their ground-state structures, asses their stability,

and model their electronic structure and magnetic properties.

1.3 Outline

In Chapter 2, the theoretical methods used in this work are outlined. Hence, a description of relevant

basic topics in quantum chemistry are provided as well as the development and fundamentals of

Density Functional Theory. A few technical concepts are also introduced, such as the form of the

exchange-correlation functional, pseudo-potentials, and the loop for self-consistency. Any further and

project-specific methods and concepts crucial to the description of the materials will be introduced

as deemed necessary throughout this text.

This thesis can be discussed in two parts. In the first, we are concerned with bulk materials;

alkali-metal transition metal chalcogenides.

In Chapter 3, the crystal structure, thermodynamics and electronic properties of Na2MoSe4

are investigated. The crystal structure of this compound was not known, for which a materials-

informatics approach was used to generate and then evaluate chemically sound hypothetical struc-

tures. Specifically, we perform first-principles computations on four likely candidates predicted by

data-mining combined with ionic substitution. Structural optimization, formation enthalpies, band
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structure and density of states are discussed for the candidates.

In Chapter 4, a comprehensive theoretical study was carried out to generalize the physics learnt

from Na2MoSe4 to the vast A2MX4 family. Here, A is a group I element (K+, Rb+, Cs+), M is

a transition metal (Mo, W) and X is a chalcogen anion (S− or Se−). We discuss the equilibrium

geometries and electronic band structures of twelve compounds, of which nine are reported in the

ICSD and three are predicted in this work.

In the second part of this thesis, we focus our attention to beyond-graphene two-dimensional

materials. Inspired by the recent discovery of ferromagnetism in van der Waals layered materials

such as CrGeTe3, and, the increasing interest in topological materials such as NbTe2, we psopsoe a

new family of 2D quantum materials.

In Chapter 5, we use DFT to model the monolayers of a family of ternary niobium tellurides,

MNbTe2 (M=Fe,Co,Ni). We investigate their relative stability by means of thermodynamics, elec-

tronic and magnetic properties and elaborate on their potential applications in spintronic devices.

This is the first investigation of MNbTe2 strictly as two-dimensional materials.

Finally, in chapter 6, we present a summary of the systems studied, their discovered properties

and potential applications. We also provide perspective to guide future investigations, and we

conclude this thesis.
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Chapter 2

Theoretical Methods

2.1 Quantum Chemistry

2.1.1 The Many-Body Schrödinger Equation

The central focus of quantum chemistry, is to find approximate solutions to the many-body Schrödinger

equation. The many-body Hamiltonian operator H for a system of N particles, nuclei and electrons

at given positions rj and rk respectively, is given by

H = −
N∑
k=1

1
2∇

2
k −

M∑
j

1
2Mj

∇2
j −

N∑
k=1

M∑
j

Zj
rkj

+
N∑
k=1

N∑
q>k

1
rkk′

+
M∑
j=1

M∑
j′>j

ZjZj′

Rjj′
. (2.1)

Here, in Eq. 2.1 the many-body Schrödinger is written in atomic units for convention (~ = m = e =

1). Note that Mj is the nucleus(j)-electron mass ratio and Zj is the atomic number for nucleus (j).

The quantities rkk′ and rjj′ represent electron-electron and nucelus-nucleus distances respectively.

This seemingly intimidating and analytically unsolvable equation can be broken down in the following

terms: the first operator term describes the kinetic energy of electrons, followed by the kinetic energy

operator for the nuclei, the nucleus-electron Coulomb interaction potential (attraction), and finally
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the repulsive electron-electron and nucleus-nucleus Coulomb interaction potentials, as under-braced

in Eq. 2.2

H = −
N∑
k=1

1
2∇

2
k︸ ︷︷ ︸

TN

−
M∑
j

1
2Mj

∇2
j︸ ︷︷ ︸

TM

−
N∑
k=1

M∑
j

Zj
rkj︸ ︷︷ ︸

UNe

+
N∑
k=1

N∑
q>k

1
rkk′︸ ︷︷ ︸

Uee

+
M∑
j=1

M∑
j′>j

ZjZj′

Rjj′︸ ︷︷ ︸
UNN

. (2.2)

This many-body Hamiltonian can be re-written in condensed form as a sum of its constituent

operators.

2.1.2 The Born-Oppenheimer approximation

Fortunately for us, nuclei are significantly more massive than electrons. Hence, it is possible to treat

electron dynamics as if they were independent or separable to nuclear dynamics, i.e. it is possible

to treat electrons orbiting around a fixed nucleus. This leads us to neglect terms in equation 2.2,

yielding an electronic Hamiltonian Helec, acting on the electronic wave-function Ψelec.

Helec = −
N∑
k=1

1
2∇

2
k −

N∑
k=1

M∑
j

Zj
rkj

+
N∑
k=1

N∑
q>k

1
rkk′

. (2.3)

In our electronic Hamiltonian 2.3, we describe the motion of N electrons under the effects of a field

of M fixed point charges. It is worth noting that the second term in Helec that includes electron-

nuclei interaction, is usually expressed as an external potential Vext(rk). Following the same line of

thought, it is possible to formulate a nuclear Hamiltonian operator Hnuc and solve for the motion of

the nuclei. In conclusion, the Born-Oppenheimer approximation represents a milestone in quantum

mechanics and lies at the heart of quantum chemistry.

2.1.3 The Hartree-Fock Approximation

Hartree-Fock (HF) theory is one of the main pillars upon electronic structure theory and computa-

tional quantum chemistry are built [10]. It is the basis for Molecular Orbital (MO) theory, and lay
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the foundations for CQM methods known as post-HF theories. These include molecular methods

such as many-body perturbation theory (MBPT), configuration interaction (CI), and the method

we focus on in our thesis, DFT.

At a glance, HF theory parts from the idea of the Hartree product (HP), which states that a

many-body wavefunction ΨHP can be seen as the product of the constituent electron wavefuntions

ψi(ri). An important approximation in the HP is that electrons are independent particles, meaning

that they do not interact with each other . As a consequence, the HP fails to satisfy the principle

of antisymmetry, also known as the Pauli exclusion principle. The Pauli exclusion principle states

that the electronic wave functions must be antisymmetric with respect to the interchange of space

coordinates xi and spin coordinates χj of any two electrons. In other words, two electrons occupying

the same orbital must have opposite spins (↑, ↓).

The solution that Hartree and Fock proposed was to construct the many-body wavefunction in

such a manner that the antisymmetry principle is satisfied. This was achieved using an antisym-

metrized product, or a Slater Determinant, as shown in2.4,

ΨHF (r1, r2, ..., rN ) = 1√
N !



χ1(1) χ2(1) χ3(1) . . . χN (1)

χ1(2) χ2(2) χ3(2) . . . χN (2)
... . . .

χ1(N) χ2(N) χ3(N) . . . χN (N)


(2.4)

where ΨHF (r1, r2, ..., rN ) is N particle antisymmetric wave function. The fact that we can write

our N particle wave function in the form of a Slater determinant has severe implications. One

is that this form satisfies the requirement of electron indistinguishibility - meaning that from a

reference of measurement, one electron is indistinguishible from another. This means that every

electron is associated with every spin orbital χi. Additionally, writing our wave-function in Slater

determinant form is also equivalent to saying that the motion of electron i is independent of the

motion of electron j and k. Hence, electron i only feels Coulomb repulsion and undergoes an due
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to the average positions of the other N − 1 electrons. Also, the electrons experience an "exchange"

interaction due to antisymmetrization. For this reason, it is said that HF theory is an independent

particle model. It is also considered a mean-field theory or as we know it in quantum chemistry and

physics, self consistent field theory.

Another important concept in quantum chemistry and HF theory is the variational principle.

According to the variational principle, we can approximate the ground state energy (lowest energy

accessible to the system) E0 of an N particle system by systematically varying the spin orbitals χa

(as long as they satisfy the orthonormality condition), 〈χa〉χb = δab. The equation that leads us to

the set of χa that in return yield E0, is the HF equation

−
N∑
k=1

1
2∇

2
k −

N∑
k=1

M∑
j

Zj
rkj︸ ︷︷ ︸

Helec

+
∑
b6=a

[∫
dx2χb(2)2

r−1
12

]
χa(1)

−
∑
b 6=a

[∫
dx2χ

∗
b(2)χa(2)r−1

12

]
χb(1). (2.5)

For the sake of brevity, we limit our further discussion of HF theory and the derivation of the HF

equations. However, it is important to highlight the importance of the HF equation. Equation

2.5 can be expressed in terms of a set of operators, including Helec, the Coulomb operator Jb, the

exchange operator Kb, and the Fock operator F . We write the F as

F = Helec +
∑
b

Jb(1)−Kb(1)︸ ︷︷ ︸
UHF

(2.6)

where one can easily see that Jb and Kb correspond by the second and third terms of Eq.2.6. Their

sum is known as the HF potential UHF .

Equation 2.6 can now be re-written as a pseudo-eigenvalue problem,

F(x)1χ(x)1 = εiχi(x)i. (2.7)
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From here, the next step is to introduce basis set, which acts on the HF equations and transforms

them into the Roothan equations. Through some cumbersome algebra that is definitely outside the

scope of this thesis, we highlight that they can be simplified into an eigenvalue-type equation of the

form

FC = SCεi (2.8)

where F is the Fock matrix, C is a k × k matrix of the basis expansion coefficients and S is the

overlap matrix. An orthogonalization of the basis will cause S to vanish. Also, note that we have

not explicitly written F, but The procedure to solve equation 2.8 must be iterative, as F must be

solved through the orbitals.

With the provided information, one can now discuss the Self Consistent Field (SCF) workflow

for HF. The SCF workflow is also used in Density Functional Theory.

2.2 Density Functional Theory (DFT)

Until now, quantum chemistry has been treated in terms of quantum particle wavefunctions Ψ.

Although wavefunction methods yield information closer to the true solution of the Schrodinger

equation, Ψ depends on 3N variables, while ρ(r), the electronic density, is only spatially dependent.

This electron density for a normalized wavefunction Ψ is

ρ(r) = N

∫
d3r· · ·

∫
d3rNΨ∗(r, r2, . . . , rN )Ψ(r, r2, . . . , rN ). (2.9)

The electronic density ρ(r) represents the probability of finding any of the N electrons within

the enclosed volume, while the other N − 1 electrons have arbitrary positions. For a normalized

wavefunction,
∫
dr3ρ(r) = N . Note that by depending on only 3 coordinates versus the 3N in

HF, ρ(r) is more computationally efficient than Ψ. Furthermore, what makes using ρ(r) all more

appealing to use as our basic variable is that it is a physical observable. This is, ρ(r) may be
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determined experimentally via X-Ray Diffraction (XRD).

It is worth mentioning that the first approach to develop a theoretical framework to study the

electronic structure of many-body systems in terms of the electron density ρ(r) was developed by

Llewellyn Thomas and Enrico Fermi. The Thomas-Fermi (TF) theory was derived semiclassically,

and it used a density functional of the form E[ρ] to approximated the kinetic energy through the

idealization of a uniform electron gas of non-interacting electrons with equal density at any given

point. With the crude approximation of a homogeneous ρ(r) at any point in space and the failure

to take into account for electron exchange and correlation, the TF failed to capture the physics

of realistic systems. Paul Dirac incorporated electron exchange into the TF method, yielding the

Thomas-Fermi-Dirac functional. However, this was not enough to perfect the semiclassicaly derived

TF model, and defeat the purpose of a wavefunction-free electronic structure theory as the need to

account for 3N variables re-emerged. Hence, the TFD approach was not physically feasible - but it

lays the foundations for Kohn-Sham Density Functional Theory.

Towards a more accurate approach to DFT, Hohenberg and Kohn derive a purely quantum

mechanical theory of many-body systems in terms of ρ(r) . Hence, they present a DFT that can

be applied to systems of interacting particles moving through an external potential Vext. Moreover,

Kohn and Sham developed the self-consistent equations that account for exchange and correlation.

Today, the robust Kohn-Sham DFT holds its position as the most widely used and accepted

electronic structure theory in condensed matter and materials physics. It provides sufficient accuracy

and computational feasibility to treat extended systems through quantum mechanics. In this section,

an introductory description of Kohn-Sham DFT is provided to lay the foundations upon this work

was realized [11, 12, 13].

2.2.1 The Hohenberg-Kohn Theorems

In 1964, Pierre Hohenberg and Walter Kohn began the derivations that would be the bedrock of

modern materials physics. They derived an exact many-body theory to determine the ground state
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of an interacting electron gas described by the Hamiltonian H = T + U + V, using the electronic

density as their basic variable. In H, the first two terms are the general kinetic energy and Coulomb

interaction terms, and V depends on an external potential Uext(r).

Theorem I: For any system of interacting particles in an external potential Uext(r), the potential

is determined uniquely by the ground state electronic density ρ(r) = ρ0, except for a constant. This

constant can be the difference ∆U = Uext−U ′ext of two particles trapped in potentials Uext and U ′ext

respectively.

Corollary: This implies that H is now fully determined, except for a constant shift of the energy.

Hence, the Uext and all of the ground state properties of the system, including the many-body

wavefunction Ψ0 are determined by ρ0. Concretely, the expectation value of any observable Ô is a

unique functional of ρ0 :

O0 = O[ρ0] = 〈Ψ[ρ0]| Ô |Ψ[ρ0]〉 (2.10)

The importance of this theorem cannot be overemphasized. What Hohenberg and Kohn demon-

strated, is that there is a unique correspondence between an N -body system’s Ψ0, ρ0 and Uext. The

theoreticians demostrated that for non-degenerate ground states, if we know the form of Uext, we

therefore know ρ0, and vice versa. This is because the one-to-one correspondence Uext ⇔ ρ0 indi-

cates that the system’s Hamiltonian is now fully known and therefore may be solved for all quantum

states (ground and excited), causing the system to be fully characterized, as illustrated by by Eq.

2.10.

In the seminal paper, "Inhomogenous Electron Gas"[14], the authors provided a simple proof

preceeded by reductio ad adsurdum. They define an additional system, with ground state Ψ′ and

U ′ext(r), and that Ψ → ρ0(r) and Ψ′ → ρ0(r) (i.e. they both yield the same density). Note that

unless Uext − U ′ext is a constant, Ψ 6= Ψ′.

The Schrödinger equations for our two systems are HΨ = EΨ and H′Ψ′ = E′Ψ′. Since E and E′

are the ground state energies of H and H′ respectively, they must satisfy the variational principle,
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E = 〈Ψ|H |Ψ〉 < 〈Ψ′|H |Ψ′〉 , (2.11)

E′ = 〈Ψ′|H′ |Ψ′〉 < 〈Ψ|H′ |Ψ〉 . (2.12)

Such that

E < 〈Ψ′|H |Ψ〉 = E′ +
∫

∆Uρ0(r)dr, (2.13)

E′ < 〈Ψ|H′ |Ψ〉 = E +
∫

∆Uρ0(r)dr. (2.14)

It is said that the proof is done by reductio ad adsurdum, since the sum of the two previous

expressions yields a contradiction,

E + E′ < E′ + E. (2.15)

Therefore, it is shown that two potentials that differ by more than an additive constant cannot

and will not yield the same electronic density. It is unique.

Theorem II: For an N particle system acted on by a potential Uext, it is possible to construct an

exact functional for the total energy in terms of the electron density ρ(r), yielding E[ρ]. Particularly,

for a given potential Uext, the global minimum of E[ρ] is the ground state energy E0 corresponding

to and only to the exact ground state density ρ0.

The universal Hohenberg-Kohn functional, F [ρ], is expressed as

F [ρ] = Ti[ρ] + U [ρ]. (2.16)

For an N particle system and a given potential Uext, a F [ρ] exists such that

E(Uext,N)[ρ] = F [ρ] +
∫
d3rUext(r)ρ(r). (2.17)
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The ground state energy E0 of the system can be obtained variationally, this is,

E0 = min
ρ→N

E[ρ] (2.18)

from the minimizing ρ(r), which is in turn, ρ0. Therefore,

δE[ρ]
δρ

= 0. (2.19)

The second Hohenberg-Kohn theorem has two very important points. First, that F [ρ] is universal,

meaning it is valid for (or independent of) any Uext. This means that, in principle, there exists an

F [ρ] valid for any system regardless of its size. Furthermore, DFT is a computationally efficient (3

spatial coordinates) framework that minizes ρ(r), minimizing E[ρ].

2.2.2 The Kohn-Sham equations

The Hohenberg-Kohn theorems by themselves do not provide insight into how to solve for E0. Walter

Kohn and Lu Jeu Sham reformulated the many-body problem of Eq. 2.1 as a set of many single-

particle problems that are solvable1. This is, they take us from an N -particle Schrödinger equation

to N one-electron Schrödinger-like equations that may be solved self-consistently [15].

First, let us retake the concept behind equation Eq. 2.17 and apply that to an arbitrary energy

E[ρ];

E[ρ] = 〈Ψ[ρ]| T + Ueff |Ψ[ρ]〉 (2.20)

where as a reminder, T and Ueff are the kinetic energy and effective potential in which the particles

are moving, respectively. If we wish to decompose Ueff as a sum of potentials Uk, we rewrite E[ρ]
1Fun fact: The Kohn-Sham equations were derived in La Jolla, CA! Hopefully, the author of this thesis will also

derive new many-body models at UC San Diego.
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as:

E[ρ] = T [ρ] + UH [ρ] + UNe[ρ] + UNN [ρ] + Uxc[ρ] (2.21)

where UH [ρ] is the Hartree component of the electron-electron interaction energy, given by

UH [ρ] = 1
2

∫
d3rd3r′ ρ(r)ρ(r′)

|r− r′| . (2.22)

The first two terms of E[ρ] are universal as they are valid for any N particle system composed of

electrons and nuclei, while there is no exact form of the fifth term, the exchange-correlation potential

Uxc[ρ]. From here, it is possible to solve for the single particle Schrödinger-like equations, called the

Kohn-Sham equations, given by

(
1
2∇

2 + Ue{{(r)
)
φi(r) = εiφi(r). (2.23)

As seen in equation 2.23, solving the Kohn-Sham equations for the non-ineracting system yields

orbitals φi which can reproduce ρ of the original N -particle system. As usual, there is a variational

relationship between Uxc[ρ] and Exc[ρ], given by

Uxc(r) = δExc[ρ]
δρ(r) . (2.24)

2.2.3 Exchange and correlation functionals

Density Functional Theory is a rigorous and precise theory for ground state quantum mechanics.

However, since we do not know the exact form of Uxc, we are obliged to approach it through

approximations, known as Density Functional Approximations (DFAs). Keeping this in mind, the

accuracy of our ground state is determined by the accuracy of our DFA. Fortunately, Exc represents

only a fraction of E[ρ], making Kohn-Sham DFT an overall robust theory. The most common

formulations of Uxc[ρ] are defined below.
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Local Density Approximation (LDA)

The simplest formulation of Uxc[ρ] is the Local Density Approximation (LDA), written as

ULDAxc [ρ] =
∫
d3rρ(r)Exc(ρ(∇)). (2.25)

Within the LDA, the exchange and correlation energy Exc(ρ(r)) is approximated as a local function

of the spatially-dependent density that reproduces the known exchange-correlation energy per elec-

tron in a uniform or homogeneous electron gas (HEG). As a result of the simplicity of the LDA,

irregularities caused by neighboring particle interactions are neglected.

Built upon the local density approximation, is the local spin-density approximation (LSDA). It

is used to model spin-polarized systems.

ULSDAxc [ρ↑, ρ↓] =
∫
d3rρ(r)Exc(ρ↑, ρ↓) (2.26)

A note: in the LDA, Exc is approximated as Exc = Ex + Ec, where Ex and Ec are the exchange

and correlation energies respectively. This is important, as these quantities are usually missed by

the LDA due to the definition of ρ as a constant throughout every point in space. Particularly,

LDA underestimates Ex and overestimates Ec. This systemic error can be overcome by the General

Gradient Approximation.

General Gradient Approximation (GGA)

As mentioned above, the LDA fails to quantify Exc due to its treatment of ρ as that of a uniform

electron gas. In order to account for the inhomogenities of a more realistic electron density, the

gradient of the density ∇ρ is expanded at each point, yielding:

UGGAxc [ρ↑, ρ↓] =
∫
d3rρ(r)Exc(ρ↑, ρ↓,∇ρ↑,∇ρ↓, ). (2.27)
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This approximation is known as the General Gradient Approximation (GGA), and is widely used

due to its proven capabilities of yielding accurate lattice constants and ground state energies when

compared to experiments. Today, the GGA remains the work-horse approximation for DFT-based

condensed matter physics. Although GGA is widely used in modeling periodic systems, it is often

convenient to incorporate potentials to numerically correct for exchange, correlation (meta-GGA,

GGA+U) or both (hybrid functionals).

2.3 Periodic Density Functional Theory

In the previous section, we have layed out the fundamental concepts in Density Functional Theory.

Here, we briefly explain how DFT is used to describe the physics of a system containing an infinite

number of atoms, ions or molecules, and in principle, an infinite number of electrons. The main

distinction between molecular (finite) and solid-state DFT, is that here we use periodic boundary

conditions and a planewave basis set. First, let us turn to the central concept of the quantum theory

of solids: the problem of a periodic potential.

2.3.1 Bloch’s theorem

Here, it is necessary to turn to the Bloch theorem, which states that the crystal momentum k is a

conserved quantum number and provides the boundary condition V (r) = V(r + T) for the single

particle wavefunction φk. This is, the single particle wavefunctions satisfy periodicity as does the

crystal lattice itself [16]. Hence,

φnk(r + T) = exp [ik ·T]φk(r) (2.28)
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where T is a direct lattice translation vector. The general solution for φk(r) that satisfies the

boundary condition reads

φnk(r) = exp [ik · r]
∑
G

cnk(G) exp[i(k + G) · r]︸ ︷︷ ︸
U(k,r)

(2.29)

Here, n is the band-index, and G are reciprocal lattice vectors from which the periodic function

U(k, r) may be infinitely through k. The reciprocal lattice vectors G are defined as

G = m1b1 +m2b2 +m3b3. (2.30)

In essence, equation 2.29 expresses the Bloch theorem, and φnk(r) is called a Bloch function.

Theorem: The eigenvalues of the wave equation for a periodic potential are the product of

a plane wave exp[i(k + G)] times a function U(k, r) which contains the periodicity of the crystal

lattice.

The Bloch theorem allows us to take advantage of the periodicity and avoid the explicit calcu-

lation of an infinite amount of wavefunctions for an infinite amount of electrons (in an infinitely

extended structure). As lower-order kinetic energy terms will have greater influence on the calcula-

tion of φk, we determine a cut-off for the expansion (i.e. define a finite set of plane-waves).

2.3.2 The Pseudopotential Approximation

Solids are made up of electrons and nuclei interacting strongly through the Coulomb potential. How-

ever, we distinguish between two types of electrons in electronic structure calculations; the valence

and core electrons. In most cases, the core electrons are strongly bound and are essentially fixed

with respect to the (exterior) valence electrons. Furthermore, these core electrons due not in general

participate in bonding, and are energetically positioned at deep levels i.e. E << EF , where EF is

the Fermi energy (the highest occupied state at zero temperature). Hence, it is reasonable to replace
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the strong core potential Ze2/r with a pseudopotential V PS , whose ground state wavefunction φPS

mimics the all electron valence wavefunction beyond a determined core-radius rc.

The use of V PS rather than the actual crystal potential is called the pseudopotential approxi-

mation, or the frozen-core approximation, as the core states are fixed in an atomic reference config-

uration [17].

Norm-Conserving Pseudopotentials (NCPP)

The development of pseudopotential methods, and pseudopotentials themselves was fueld by three

criteria:

• Softness: Soft pseudopotentials were desirable, as this would allow using as few planewaves as

possible (i.e. low kinetic energy cutoff).

• Transferability: The pseudopotentials should be as transferable as possible. This refers to (i)

that a pseudopotential generated at a given atomic configuration should reproduce others at

reasonable accuracy and (ii) that a pseudopotential for element A in the solid state should be

valid in other chemical environments, such as AB, AC, ABC, etc.

• Accuracy: The pseudo-charge density should reproduce the valence charge density as accurately

as possible.

In norm-conserving pseudopotentials, introduced by G. B. Bachelet, D. R. Hamann, and M. Schlüter,

these criteria are (to an extent) met [18] The norm-conserving pseudopotentials are generated in

such a way that the pseudo- wavefunctions are equal to the all-electron wavefunctions outside rc.

Inside the core radius, the pseudo-wavefunctions may differ from the all-electron wavefunctions, as

long as the norm is constrained to remain unchanged. textcolorredNorm-conserving pseudopotentials

are often called semi-local potentials, similar to that of the Augmented Planewave (APW) method.,

tambien esta de mas eliminar
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Ultrasoft Pseudopotentials (USP)

Ultrasoft pseudopotentials, introduced by D. Vanderbilt [18], posed a radical departure from the

concept of norm-conservation. As with norm-conserving pseudopotentials, ultrasoft pseudopotentials

must satisfy the condition that for r > rc, the pseudo-wavefunctions must be equal to the all-electron

wavefunction. However, for r < rc, the constraint of norm-conservation is removed, thus the pseudo-

wavefunctions are allowed to be "as soft as possible". In this scheme, it is possible to use large

values of rc, leading to a dramatic decrease in the required planewaves cutoff. Although ultrasoft

pseudopotentials may represent faster convergence, removal of norm-conservation introduces some

complications and can lead to poor transferability. Additionally, a larger kinetic energy cutoff

for charge density is needed with respect to the kinetic energy cutoff for the wavefunctions, when

compared to norm-conserving pseudopotentials. This is, the charge-density:wavefunction cutoff ratio

is larger for ultrasoft pseudopotentials.

2.4 Relativistic Density Functional Theory

As we have discussed, in Kohn-Sham Density Functional Theory we do not solve for the ground

state wavefunction ψ0, but rather the ground state charge density ρ0. Furthermore, let us recall

that Kohn-Sham Density Functional Theory is an ab-initio theory for determining the ground state

properties of non-relativistic many-particle systems. However, relativistic effects can be determining

factor for much of the physics of high Z. Therefore, a relativistic formulation of DFT is required for

such systems that can only be treated by relativistic quantum mechanics (RQM).

Relativistic Effects

Relativity can play an important role in the electronic structure of a many-body system composed

of atoms with high Z. These differences due to relativistic effects are:

• Differences in the electron dynamics due to the velocity-dependence of the electron mass me.
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• Magnetic interactions in the Hamiltonian operator due to the electron spin.

• By introducing relativistic terms in our Hamiltonian, we also introduce a "small" component

of the wavefunction, which leads to a change in the shape of the orbitals.

• Modification of the potential operator due to c, which is finite.

The Dirac equation

The central theme in relativity is that c, the speed of light, is constant in all inertia frames. Addi-

tionally, the requirement that physical laws be identical in such frames, has as a consequence that

space and time coordinates become "equivalent". A relativistic description of a particle requires,

therefore, four coordinates.

For a free electron, Dirac proposed that the time-dependent Shcrödinger equation should be

replaced by (
cα · p + βmc2

)
Ψ = i

∂Ψ
∂t

(2.31)

where cα · p + βmc2 is the Dirac Hamiltonian, α and β are 4 × 4 matrices, cα is the relativistic

velocity operator and α can be written in terms of the three Pauli spin matrices, and β in terms of

the unit matrix I. This is,

α =

 0 σx,y,z

σx,y,z 0

 , β =

I 0

0 −I



σx =

0 1

1 0

 , σy =

0 −i

i 0

 , σz =

1 0

0 −1

 , I =

1 0

0 1


(2.32)
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Dirac-Kohn-Sham Equations

Relativistic Density Functional Theory (RDFT) is the formulation of DFT in which relativistic

effects are taken into account via the Dirac equation shown in Eq 2.32. The central equations in

RDFT are known as the Relativistic Kohn-Sham (RKS) or Dirac-Kohn-Sham equations [19],

(
icα+ βmc2 + αµν

µ
s (r)

)
φk(r) = Ekφk(r). (2.33)

Here, the multiplicative KS potential νµs consisting of the sum V µ, the Hartree potential ννH and the

xc-potential νµxc are

νµs (r) = eV µ(r) + vµH(r) + vµxc(r)

νµH(r) = e2
∫
d3r′

jµ(r′)
|r′ − r′|

νµxc(r) = δExc[j]
δjµ(r) . (2.34)

The resemblance with the nonrelativistic KS equations is easy to see, however the derivations of

the RKS equations is far but trivial. The extension of the HK theorem was achieved by Ragagopal

and Callaway using Quantum Electrodynamics (QED). The authors used a QED-based Hamiltonian

and the four-component density current j, and applied the reductio ad absurdum of the original HK

theorem to demonstrate that the E0 is a unique functional of the ground state four current density j0

(i.e. E[j]). Aside from this, a rigorous treatment and renormalization is required to ensure that E[j]

contains the physics of QED. Like in DFT, The relativistic variant of the HK theorem guarantees

the formal existence of a density functional description of relativistic systems but does not give any

hint how to construct the crucial functional E[j]. Following the reasoning behind the derivation of

the KS equations, and with the appropriate treatment, RDFT is constructed for the local density

approximation of a relativistic non-interacting electron gas. In RDFT, the exchange-correlation

functional is strictly defined by the four-component current-density jµ dependence. Lastly, this
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formulation is also used to generate j-dependent pseudopotentials, which we call "fully relativistic

pseudopotentials" in planewave (or periodic) DFT [20, 21] (thanks to this, we can model accurate

band structues and study magnetic materials!).

2.4.1 Self-consistency in DFT

At this point, we shall focus on how we determine the ground states of materials using DFT, in

practice. We describe what is known as the Self-consistent field (SCF) computation (also called

SCF-cycle). Let us recall that the problem at hand is to solve the Kohn-Sham equations 2.23.

The KS equations are solved iterative, beginning with an initial "guess" electron density ρi(r),

constructed from N and the spatial occupancies of the involved particles. This density is used then

to construct Ueff (also known as the Kohn-Sham potential VKS). Once the Kohn-Sham potential

is constructed, the single-particle Kohn-Sham equations 2.23 are solved. Their solutions yield the

Kohn-Sham orbitals φi(r), which are in turn summed through
∑N

φiniφ∗i to obtain ρf (r), the final

electron density. Finally, if ρf − ρi does not satisfy a given threshold, the two densities are mixed to

create a new ρi , constructing a new Ueff and solve the KS equations. This process is repeated until

ρf − ρi ≤ q, where q is the SCF threshold. Once ρf − ρi ≤ q is met, the calcuation has converged

and the ground state has been determined. We provide a schematic of the SCF cycle in Figure 2.1.

The typical default value for q is 1 × 10−6 for ground state calculations. Also, depending on

the nature of a computation, the flowchart may be more complex. For example, for structural

optimization, ions may be displaced and lattice vectors may change in magnitude at the end of each

SCF cycle until the n and n − 1 structures meet a given threshold. In this case, the total energy

as well as the forces acting upon the atoms are calculated. The forces are calculated through the

Hellman-Feynman theorem.
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Figure 2.1: Schematic flow-chart for self-consistent density functional computations. Image credit:
A. Rubí-González
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Chapter 3

Modeling the ternary chalcogenide

Na2MoSe4 from first-principles

3.1 Introduction

In recent years, a class of ternary chalcogenides known as alkali-metal(ion) transition-metal (and

post transition metal) chalcogenides have presented a new landscape of opportunities in solid-state

physics and chemistry. These materials, with general composition AMXn where A is an alkali metal,

can be obtained by facile solid-state reactions or by intercalation of a A+ in a MXn lattice [22].

This, and the fact that they are well known ionic conductors, make them an attractive class of

inorganic compounds [23, 24]. In this scene, Kanatzadis and coworkers have shone light on the

fundamental chemistry of these compounds, discovering systems as different as semi- and supercon-

ductors [25, 26]. Regarding alkali metal transition selenides, partirularly, we highlight the discovery

of the layered metal NaCu6Se4 with mixed valency [27], the mixed-valent two-dimensional metal

NaCu4Se3 [28] and the two-dimensional metal NaCu4Se4, which presents high hole mobility and

giant magnetoresistence [29].
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On another note, AMXn semiconductors are also gaining traction. In 2018, Z. Xia et al [30]

have discussed the chemistry of a new alakali-transition metal chalcogenide, CsCu5Se3. This cae-

sium copper selenide, grown via the solvothermal method, is a pseudo-direct bandgap semiconductor

with a bandgap of 1 eV. It crystallizes in the oP lattice, space group Pmma (No. 51). Authors also

explored the complete family of materials by synthesizing and characterizing CsCu5S3 and proposing

CsCu5Te3. Since then, α-CsCu5Se3 has been achieved and proposed as a high-performance ther-

moelectric [31] and an ab-initio study treats the defect physics in CsCu5Se3 and its potential in

optoelectronics [32]. In a recent review on chalcogenides for photovoltaic applications, CsCu5Se3

and other new chalcogenides are compared to their oxide analogs [33], to highlight opportunities for

new materials.

Recent advances worth highlighting the emergence of a new class of transition metal chalcogenide

pervoksites. The interplay between alkali-metal (A+) and MX chemistry promises solar-cell ab-

sorbers with electronic properties on a par with those of Hybrid perovskites [34, 35, 36]. One of

the major advantages of TMC perovskites is its high resistance to decomposition [37, 38, 39], as

well as their malleable compositional, structural and electrical and optical properties.

Here, we aim to model Na2MoSe4 (See Fig. S1), a molecule chemically analogous to the well known

sodium molybdate (Na2MoO4) [40], in the solid state. The following question arises: what will

be the crystal structure of Na2MoSe4? The answer is not obvious, as molecular Na2MoSe4 is as

related to Na2MoO4 as it is to Cs2WS4 [41]. Upon modeling Na2MoSe4, we will gain insight into

the physics of its crystalline relatives. To this end, we employ a crystal structure (CS) prediction

method combined with Kohn-Sham Density Functional Theory (DFT) to determine the ground state

properties of this alkali metal transition metal chalcogenide. Our CS prediction is based on the gen-

eration of hypothetical candidates through the ionic substitution of experimentally known analogs

of Na-Mo-Se compounds. We demonstrate that Na2MoSe4 is a direct bandgap semiconductor with

simple orthorhombic (oP ) CS, Pnma space group.
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Figure 3.1: Illustration of the Na2MoSe4 molecule. Image generated with MolView.

3.2 Objectives

• Generate a set of hypothetical crystal structures (candidates) based on compounds chemically

analogous to Na2MoSe4 registered in the ICSD.

• Approximate the ground state volume of the selected candidates through isotropic expan-

sion(compression).

• Identify the energetically favored crystal structure for Na2MoSe4 through DFT-based thermo-

dynamics.

• Model the electronic band structure of Na2MoSe4 at a predictive level.

3.3 Computational Methods

3.3.1 Crystal Structure Prediction

To address the issue of structure determination, we followed the crystal structure prediction method

of Hautier et al [42, 43] based on data mined ionic substitutions. It has been demonstrated that

the method of data mined ionic substitutions can generate likely crystal structures at a fraction of

the computational cost of evolutionary algorithms [44], due to the fact that the substitutions are
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generated posterior to the analysis of existing crystal structures listed in the ICSD. Here, we briefly

summarize the DM+IS methodology:

(i) In Eq. (3.1) systems of ions Xi (i = 1, 2, 3, ..., n) are represented as a component vectors of n

elements,

X = (X1, X2, X3, ..., Xn). (3.1)

(ii) Once a given number of candidate structures is generated, the probability function Pn for two

compounds existing in the same crystal structure is expressed as

Pn(X,X’) = Pn(X1, ..., X
′
1, ..., X

′
n). (3.2)

(iii) pn is approximated by using the feature function f(X, X’), as shown in Eq. (3.2)

Pn(X, X’) ≈ exp[
∑
i λifi(X,X’)]

Ξ (3.3)

(iv) In Eq. (3.3), Ξ is analogous to a partition function that ensures normalization of Pn, and λi is

the weight corresponding to fi(X,X’). It is noteworthy that only binary feature functions fi(X,X’)

are assigned to pairs of ions (α, β),

fα,βk (X,X’) =


1, Xk = α,X ′k = β.

0, else.

(3.4)

(v) The likelihood of the binary α to β substitution is determined by λi, obtained from ionic

compounds in the ICSD. For a detailed description of DM+IS method and its reach, we refer the

reader to the paper by Ceder and coworkers [42].

Our DM+IS search generated over sixty-five hypothetical sodium molybdenum selenide struc-

tures, of which twenty-one present our hypothesized stoichiometry. The list of Na2MoSe4 candidates
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is found in Table S1 along with other hypothetical Na-Mo-Se structures have been made public in

the Materials Project Database [45] and can be downloaded directly from our repository [46]. Here,

we focus our attention to the four candidates with highest likelihood of existing in their predicted

space groups.

3.3.2 Density Functional Theory Computations

Our first-principles computations based on Kohn-Sham Density Functional Theory (DFT) were

carried out in the Quantum ESPRESSO package [47, 48]. We employ the Generalized Gradi-

ent Approximation (GGA) functional with corrected-for-solids Perdew-Burke-Ernzerhof (PBEsol)

parametrization for the exchange-correlation interactions [49]. It has been shown that the PBEsol

is better suited to approximate lattice constants and surface energies when compared to PBE and

LDA [50, 51, 52]. The ground state structures were determined by varying the volume isotropi-

cally, to control symmetry while fully relaxing atomic positions under a tolerance of 13.605× 10−5

eV/atom for total energy and net forces of 0.025 eV·Å−1 per atom. These computations were per-

formed using ultrasoft pseudopotentials (USP)[53] with a plane-wave kinetic energy cutoff of 40

Ry (544 eV), charge density cutoff of 320 Ry (4,354 eV) and a convergence threshold of 1 × 10−8

eV for self-consistency. Longe-range Grimme D2 Van der Waals interactions were included [54].

Monkhorst-Pack Γ-centered integration grids were used to sample the first Brillouin Zone [55]. For

structural optimization computations of the cF , oF , oP andmC phases, integration grids of 6×6×4,

8 × 6 × 5, 6 × 8 × 4, 5 × 5 × 4 were used, respectively. To model the electronic structure we then

increased the density of the k-points integration grids to 24 × 28 × 20 (cF ), 32 × 24 × 20 (oF ),

24× 32× 18 (oP ) and 30× 30× 24 (mC). The USP used in all pw-DFT computations were gener-

ated with the following valence configurations: Na (2s1, 3s2, 2p2), Mo (4s1, 5s2, 5p2, 4d5) and Se

(4s1, 4p2, 3d3).

The Generalized Gradient Approximation fails to predict the fundamental bandgap of semicon-

ductors. Therefore, we then model the electronic band structure of the favored phase by performing
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meta GGA calculations using the Trahn-Blaha modified Becke-Johnson (TB-mBJ) exchange poten-

tial [56, 57, 58]. In order to obtain optimal results, our TB-mBJ computations were carried out in

the framework of the Augmetnted Planewave plus Local Orbital (APW+lo) method as implemented

in the all-electron code Wien2k [58]. The TB-mBJ exchange potential reads

vTB−mBJx,σ (r) = cvBRx,σ (r) + (3c− 2) 1
π

√
5
12

√
2tσ(r)
ρσ(r) (3.5)

where ρσ is the electronic density, tσ is the kinetic energy density and vBRx,σ (r) is the Becke-Roussel

potential.

3.4 Results

3.4.1 Candidate structures

Table 3.1: Predicted and optimized lattice parameters for the Na2MoSe4 candidate structures
computed at the GGA-(PBEsol) level of theory.
System a (Å) b (Å) c (Å) V (Å3) α β γ

cF: Fd-3m (227)
DM+IS 6.44 6.44 9.11 188.89 45 45 90
This work 8.14 8.14 11.51 238.76 45 45 90
oF: Fddd (70)
DM+IS 6.31 8.39 10.85 223.77 130 149 56
This work 7.71 10.24 13.26 273.38 130 149 56
oP: Pnma (62)
DM+IS 9.32 6.84 12.08 770.49 90 90 90
This work 9.12 6.69 11.81 753.92 90 90 90
mC: C2/m (12)
DM+IS 6.88 6.08 7.54 254.92 90 67 63
This work 7.78 6.88 8.52 368.58 90 67 63

The structures considered in detail are: a face centered cubic (cF ) phase with space group Fd-

3m (227), a face centered orthorhombic (oF ) with space group Fddd (70), a primitive orthorhombic

(oP ) with space group Pnma (62) and a base centered monoclinic (mC) with space group C2/m

(12). The unit cells are sketched in Fig. 3.2 (a)-(d). The structural details for the evaluated

systems are shown in Table 3.1, which includes the raw (generated) DM+IS and the computed
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Figure 3.2: Sketch of the candidate structure unit cells under this study for Na2MoSe4. The
candidates are labeled by their lattice type (a) face centered cubic cF , (b) face centered orthorhombic
oF , (c) simple orthorhombic oP and (d) base centered monoclinic mC. The colors corresponding to
Na, Mo and Se are grey, green and orange respectively.

(equilibrium) parameters. From the obtained results it is clear that the equilibrium volume changes

significantly with respect to the DM+IS volume, with the exception of the oP structure. For

example, ∆V oP = 2% versus ∆V cF = 26%. Since we have unit cells with different number of atoms,

to formally asses which of the candidates is the favored ground state phase of Na2MoSe4, we proceed

to calculate the formation enthalpy ∆Hs
f(AMX) . Thus, Eq. (3.6) reads

∆Hs
f(AMX) = Us(AMX) −

3∑
i

Niµ
s
i , (3.6)

where Us(AMX) is the total energy of our ternary compound, Ni is the number of atoms of a con-

stituent i with chemical potential µi in solid phase.
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Explicitly for Na2MoSe4, this is:

∆Hs
f(Na2MoSe4) = Us(Na2MoSe4) −

(
2µNa + µMo + 4µSe

)
(3.7)

The chemical potentials µ for the constituent species were calculated based on DFT energies of

their equilibrium crystal structures under the same relaxation criteria and convergence thresholds as

the Na2MoSe4 candidates. Additionally, analysis was cross-checked by fully relaxing all candidate

structures at the PBE level. No significant changes on the lattice parameters were found. The

values for ∆Hs
f(AMX) are shown in Table 3.2. Note that oP is the favored phase of the selenide

with ∆Hs
f values of -5.14 (PBEsol) and -5.11 (PBE) eV per formula unit (eV/f.u.). We find these

relative formation enthalpies to be in good agreement, as the relative error between the PBE/PBEsol

calculations is less than 2% for all phases with the exception of the least stable cF , in which a larger

discrepancy is observed. This is reminiscent of the Cs pervoskite CsPbBr3, where through cooling,

it undergoes a transition from a cubic to an orthorhombic lattice [59]. We encourage further studies

to calculate the phonon band structure for the meta-stable phases, as we recognize the importance

of these calculations to assess its dynamical stability. Here, our scope is to determine the most

energetically stable structure for the already synthesized Na2MoSe4 compound [60], and calculate

its electronic properties. Once the most stable phase is determined, we focus our attention only

to the oP phase with Pnma space group. To further cross check the ground state of the Pnma

candidate, we take the initial (DM+IS) structure and optimize it at the APW+lo/PBEsol level of

theory.

The calculated lattice parameter is a = 9.21 Å, which is in agreement with our pseudopotential

computed lattice constant a = 9.12, with an absolute error ea =≤ 1%. At V0, the bulk modulus for

Na2MoSe4 is B0 = 56.07 GPa with a numerical derivative of B′0 = 4.41.

Due to the fact that the hypothetical crystal structures were generated from chemical analogs,

it is reasonable to infer that the true equilibrium structure of our material (oP ) should result
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Table 3.2: Formation enthalpies ∆Hf for Na2MoSe4 candidate structures calculated from
GGA(PBEsol) and GGA(PBE) computations. ∆Hf si shown in eV per formula unit (eV/f.u.)
and eV/atom.

System ∆Hf (eV/f.u.) ∆Hf (eV/atom)
cF
PBEsol -4.39 -0.63
PBE -4.02 -0.57
oF
PBEsol -4.90 -0.70
PBE -4.83 -0.69
oP
PBEsol -5.14 -0.73
PBE -5.11 -0.73
mC
PBEsol -5.03 -0.72
PBE -4.91 -0.70

isostructural to other materials governed by same chemical principles (e.g. valency, electronegativity,

position within the periodic table etc.). Furthermore, it is inferred that compounds governed by

the same chemical principles as Na2MoSe4 will also be favored in the oP lattice. This is in fact

the reasoning and strength behind probabilistic models for crystal structure prediction [61, 62, 63].

Therefore, the probability P of a material to exist in a specific crystal system (e.g. oP (Pnma)) will

be influenced by the size of the known isostructural family [64, 65, 66, 67, 68, 69]. We match our

evaluated structures to their analogs. First, we found our least stable candidate cF (Fd− 3m) to be

isostructural to the stable phase of Na2MoO4 [ICSD No. 44523]. The metastable phase of Na2MoO4

[ICSD No. 151971] is characterized by the Fddd space group and isotructural to our oF candidate.

The mC candidate is isostructural to the molecular crystal K2MoO4 [ICSD No. 16154]. Lastly,

our most stable oP phase is isostructural to (or based on) K2MoS4 [ICSD No. 409563]. Notably,

the following isostructures have been synthesized: Na2MoSe4 with oP (Pnma) symmetry: K2MoS4,

Cs2MoSe4, Rb2MoSe4, Cs2MoS4, Rb2MoS4, K2WSe4 and Rb2WS4 [64, 65, 66, 67, 68, 69] and

could potentially be intrinsic semiconductors. Additionally, hybrid organic/inorganic members of

the family R2MX4 (e.g. R = CH3NH3 ; M = Mo,W ; X = S, Se) have also been reported [68,

69]. Note, throughout the A2/R2MX4 family, X is either S or Se. To the best of our knowledge, no
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theoretical studies of these materials are available in the literature. Given the electronic structure

of Na2MoSe4 and τ4 (see section VI), it results of interest to the broader community to understand

the physics and chemistry of the oP A/R2MX4 compounds and their potential applications. Hence,

we intend for our work to serve as a premier for future theoretical and experimental studies on the

structural and electronic properties of both the inorganic and hybrid organic-inorganic analogs of

Na2MoSe4. With respect to the question posed in the introduction; in the solid-state, the stable

phase of Na2MoSe4 is isostructural to Cs2WS4 (oP ) and not Na2MoO4 (cF ).

3.4.2 Structure and symmetry of orthorhombic sodium molybdenum

selenide

The disodium molybdenum tetraselenide, which can be written as Na[MoSe4], is a molecular crystal

favored to grow in the simple orthorhombic (oP ) crystal system with space group Pnma (No. 62),

as shown in Fig. 3.3. It has inversion symmetry, with eight symmetry operations. In Figure 2-a,

an illustration of the frontal and isometric views are shown. The Na2MoSe4 structure is three-

dimensional, (i.e. there are no van der Waals gaps) with two equivalent Na1+ sites. Note that Mo6+

is in tetrahedral coordination τ4 (i.e. τ4 = 1), bonded to four Se2−atoms at each vertex. There

is no Mo-Na bond, and the Na cations are intercalated throughout the lattice. This promotes the

one-dimensional (directional) growth of the [MoSe4]− tetrahedrons. Hence, MoSe4-terminated slabs

can be achieved for Na conduction. Additionally, the electronic charge of Na induces a distortion in

the tetrahedron (distortion index t′

4 = 0.006) yielding a slightly elongated Mo-Se bond (d = 2.33 Å)

versus the other three (d = 2.30 Å), and a broadening of Se-Mo-Se bond angle φ from φ = 109.55◦

to φ = 115◦ as shown in Figure 2-b. The average Mo-Se bond length is l = 2.31 Å. This distortion

is caused by electronic charge effects of a Na1+ atom in proximity to one Se vertex (r = 2.98 Å).

The distortion can be also measured by the tetrahedron edges, conformed by Se-Se inter-atomic

distances. The tetrahedron edge lengths are l = 3.778, 3.576 and 3.793 Å respectively. The omitted

length values are redundant in nature. A spread of Na-Se bond distances can be found in the two Na
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Figure 3.3: Illustration of (a) isometric and front views of oP (Pnma) phase of Na2MoSe4 and (b)
the [MoSe4]− tetrahedron with a schematic illustration of the tetrahedral crystal field that splits the
Mo 4d5 orbitals into two groups, namely t2 and e. As seen in (a) Na+ ions are intercalated through
the MoSe4 tetrahedral layers.

sites, with values ranging between 2.98 – 3.48 Å. In one Na1+ site, Na1+ is bonded in a 8-coordinate

geometry to eight Se2− atoms. In the other, our sodium cation is bonded in a 9-coordinate geometry

to 9 Se anions. There are three nonequivalent Se2− sites. In the first Se site, Se2− is bonded in a

single coordinate geometry to four Na1+ and one Mo6+ atom. In the second site, Se2− is bonded in a

6-coordinate geometry to five Na1+ and one Mo6+ atom. In the third Se site, Se2− is bonded in a 5-

coordinate geometry to four Na1+ and one Mo6+ atom. Our structural analysis is in agreement with

the available information for its reported analogs [64, 65, 66, 67, 68, 69]. Note, the intercalation

of Na atoms could favor an energetically low-cost substitution (or displacement) of cations, enabling

the tunability of these materials’ properties. Lastly, due to the structure of Na+[MoSe4]−, it can be
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safely inferred that the crystal is a typical ionic conductor [65].

3.4.3 Electronic structure

Figure 3.4: The electronic band structure and total density of states is shown for the (a) cF , (b)
oF , (c) oP and (d) mC candidate phases of Na2MoSe4. The Fermi energy EF is set to 0.

The electronic structure of all candidates was investigated. Fig. 3.4 depicts the electronic band

structure of the candidate phases of Na2MoSe4. Conventional k paths were used [70, 71]. In all

plots, the Fermi energy (EF ) is set to zero. From the band structure plots, it is clear that one of four

phases is semi-metallic; cF (Figure 3(a)), where the valence band slightly crosses the Fermi level.

The remaining three are intrinsic semiconductors. The oF phase is a direct bandgap semicondutor

(Figure 3 (b)), with a bandgap Eg = 0.62 eV at Γ, while the mC phase is an indirect bandgap

(A − Γ) semiconductor with Eg = 0.45 eV (Figure 3(d)). Lastly, our GGA calculations show that

oP Na2MoSe4, the stable phase, has a fundamental bandgap of EGGAg = 0.24 eV at Γ (Figure 3 (c)).

A summary of the electronic properties computed at the GGA level is displayed in table 3.3

Since the oP structure is energetically favored, we focus only on this phase from here in and shall
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Table 3.3: Band structure summary with Eg values at the GGA level of theory. To classify
the phases, metals are identified by M , while D and I are employed to label direct and indirect
semidoncutors. The labels kc and kv correspond to the points at the CBM and CVM respectively.

System EGGAg (eV) Eg Type kc − kv
cF 0.00 M −−−
oF 0.62 D Γ− Γ
oP 0.24 D Γ− Γ
mC 0.45 I A− Γ

refer to this phase simply as "Na2MoSe4".

In order to better understand the electronic band structure of Na2MoSe4, we adopt an alternative

k path from the work of Xia et al[30] on oP CsCu5Se3. Note that its band dispersion is highly

isotropic with clear parabolic topology at the VBM and CBM around the Γ point. Moreover, as an

ionic conductor [23], it can be considered as a mixed conductor.

At this point, we analyze the nature of the Na2MoSe4 band structure. Let us recall that the

Mo [d5] is in coordination τ4 with Se [4s24p4] atoms at each vertex. Given the electronic nature of

our species, it is inferred that the valence bands that contribute to the EF are composed of Se p

orbitals, with mild hybridization with the Mo d orbitals. The s, p hybridization of the Mo-Se bond

is common in high-spin τ4 compounds (see Fig. 3.3. Therefore, it can be said that the electronic

(semiconducting) properties of the material arise mainly from the [MoSe4] sub-unit and that the

effects of Na s, p electrons are negligible. However, although Na doesn’t influence the band structure

of the selenide, it is reasonable to believe that the displacement of Na throughout the lattice or

its substitution by another ion (or molecule) could have an effect on the value of Eg. We further

investigate the τ4 sub-unit by treating the Se atoms as point charges around the Mo central ion,

to study their bonding strength in terms of Coulombic interactions. In this sense, Crystal Field

Theory (CFT) qualitatively predicts how the electrons in the Mo 4d orbitals respond to the effective

electrostatic potential imposed by its neighboring Se atoms. In τ4, the initial five-fold degeneracy

of the 4d orbitals will break. This will give rise to the the orbital groups t2 orbitals (dxy, dyz, dyz)

and the e orbitals (dx2−y2 , dz2). A schematic illustration of an idealized τ4 CF is shown in the right
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Figure 3.5: Electronic band structure is shown in (a) modeled at the GGA (black - solid) and
GGA+SOC (green - dashed) levels with Eg = 0.24 eV. The irreducible Brillouin zone and k-path for
the oP lattice is shown in (b). The CVM-VBM region is shown along the U −Γ−Y path computed
with the TB-mBJ potential in (c). Note that at the TB-mBJ level, Eg = 0.53eV .

hand side of Figure 2(b). The qualitative CFT analysis indicates that spin orbit coupling (SOC)

effects in Na2MoSe4 are weak [72].

Considering the electronic configuration of Mo ([Kr]4d55s1), there is only one unpaired electron

occupying each d orbital. As a consequence, this along with weak overlap between the Mo d and

Se p orbitals leads to high-spin behaviour. We then perform full-relativistic calculations to model

the band structure. To see effects of SOC effect on the band structure, we adopt an alternative

path of integration along the FBZ. The band structure of Na2MoSe4 with and without SOC Γ →

X → U → Γ → Y → T → Γ → Z → S → R k-path (Figure 3.5). The FBZ is shown in Figure 4
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Figure 3.6: Illustration of the Brillouin zone of the oP lattice.

Figure 3.7: Total density of states of oP Na2MoSe4 near the Fermi level; EF is set to zero.

(b). As expected, no change was observed in Eg upon calculating the band structure confirming the

weak (essentially null) SOC effect. As we have seen, Na2MoSe4 has relatives where the A+ cation is

either Rb or Cs. Therefore, although SOC is weak in the Na member of the family, it is necessary

to account for relativistic effects when modeling the band structure [59].

For completeness, we also plot the band structure by introducing an empirical Hubbard potential

(GGA+U ; U = Ueff = 3.5 eV [73]) to test for Coulomb effects in Mo d electrons (see Supplementary

Information, Fig. S3.). No significant change was found as well, so there is not an apparent strong

electronic correlation in the Na2MoSe4 structure.
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Figure 3.8: Projected density of states of oP Na2MoSe4 decomposed into Mo d orbitals and Se
p orbitals. From the figure, it is clear that p states (bonding states) compose the majority of the
valence band while the d (antibonding) states compose the conduction band. EF is set to zero.

In Fig. 3.8, the projected DOS (PDOS) is shown for the Mo d, Se p and Na s electrons. Clearly

the Na s states do not contribute near the Fermi level. The hybridized d/p orbitals; Mo d states

(note 0 ≤ EF ≤ 2 eV) and the Se p states are the ones dominating the contributions around the

Fermi level. In other words, in the vicinity of EF , the orbital composition of the conduction bands

are Mo d while the valence bands are Se p. Note that higher PDOS is observed above the Fermi

level, due to the unoccupied states in the shells. A decomposition of the summed Mo d orbitals can

be found in the supplemental material.

Although ground state GGA computations can provide a reasonable first approximation to model

the electronic structure of a material, they systemically fail to predict the fundamental value of Eg.

Hence, a precise approach such as the use of meta-GGA, hybrid functionals or the many-body

perturbation theory method GW is desired. To achieve a predictive level, we have opted for the

Meta-GGA, Trahn-Blaha modified version of the Becke-Johnson potential (TB-mBJ), designed and

proven to yield robust results comparable to experimental results [56, 74, 75, 76, 77]. In the

present scenario, the use of TB-mBJ is considered adequate as no further corrections for correlation

or spin-orbit coupling are are needed (since the band topology and Eg do not change).

The band structure of oP Na2MoSe4 calculated with the semilocal potential TB-mBJ is shown
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Figure 3.9: Electronic band structure of Na2MoSe4 modeled with TB-mBJ. Band composition is
distinguished between Se p bands (valence) and Mo d bands (conduction) by point-size. Note that
the band-topology is preserved with respect to GGA.

in Fig. 3.9. Note that the band topology is invariant and located at Γ (Figure 3.5), but a widening

of the bandgap is observed. When modeling the electronic band structure of Na2MoSe4 with the

modified Becke-Johnson potential through an all-electron treatment, ETB−mBJg = 0.53 eV at Γ. The

CBs are composed mainly of Mo d states whereas the Se p states dominate the VB contributions,

in agreement with the pDOS in Figure 3.8.

Note that the topology of the bands near the CBM and VBM is clearly parabolic (e.g. U → Γ→

Y ) E(k). This indicates that there could potentially be high carrier mobility, with constant effective

electron and hole masses, m∗e and m∗h, respectively. Therefore, near the CVM / VBM, the dispersion
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relation is of quadratic form, i.e. E = ~vFq +O[(q/k2)], where q = Γ− k (finite displacement near

Γ) and vF corresponds to dE/dk, i.e. the Fermi velocity. The effective mass can thus be determined

by the second derivative, as

m∗−1
ij = 1

~
∂2E(k)
∂kikj

(3.8)

in units of electron mass m0. Here, in order to gain insight into the potential transport properties of

Na2MoSe4, we calculate the electron and hole masses, m∗e and m∗h, along the Γ→ X (m∗xx), Γ→ Y

(m∗yy) and Γ→ Z (m∗zz) directions. The direction-dependent values are summarized in 3.4.

Table 3.4: Carrier effective masses m∗e and m∗h for Na2MoSe4 along Γ → X, Γ → X and Γ → X
ortientations. Calculated from TB-mBJ band structure. Units are per electron mass m0.

Direction (q) m∗
e (m0) m∗

h (m0)
Γ→ X 0.92 0.63
Γ→ Y 0.16 0.17
Γ→ Z 0.41 1.32

The expected values for the effective masses are m∗e = 0.50m0 and m∗h = 0.71m0, where m0 is

the mass of an electron in SI units, 9.11 × 10−31 kg. In Na2MoSe4, highFor your info, the console

log starts with:er electron mobility is to be expeceted rather than hole mobility, as evident by the

mean effective masses. Also note that the effective masses are anisotropic, with ligther and faster

electron quasi-particles moving along the the y direction resulting from the high curvature of the

band in this direction. Here, the electron-hole ratio is approximately 1:1, with m∗e:yy = 0.16m0 and

m∗h:yy = 0.17m0. Hence, carrier mobility is favored along the y direction. This indicates p-type

doping in Na2MoSe4 could promote hole mobility along y. Similar electronic anisotropy has been

observed in other oP chalcogenides, such as CsCu5Se3 [27].

It is important to point out that TB-mBJ semilocal potential enables the modeling the electronic

structures of large and chemically complex semiconducting materials as well as insulators with

predictive accuracy [78, 79], and is currently considered the most accurate semilocal potential for

semiconductor modeling [80, 81].

Although the bandgap isn’t yet "ideal" for applications in traditional optoelectronic devices or
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photovoltaics, Na2MoSe4 with an intrinsic direct bandgap of 0.53 eV holds potential for applications

in infrared optoelectronics and high-speed electronic heterostructures and devices. Since the bandgap

is tunable via ionic displacement and/or substitution, a natural interest in studying these effects

throughout the lattice rises. More importantly, it will be interesting to build upon the work presented

and investigate the interplay between chemical composition, thermodynamic stability and electronic

structure in the inorganic and hybrid relatives of Na2MoSe4. Expanding on the physics studied here

to related systems will be the subject of a forthcoming publication.

3.5 Conclusions

We have presented a theoretical investigation on the alkali-ion transition metal chalcogenide Na2MoSe4.

First-principles computations based on periodic Density Functional Theory were systematically per-

formed on a set of data-mined hypothetical crystal structures to determine their stability and model

their electronic properties. The face centered cubic, face centered orthorhombic, simple orthorhom-

bic and base centered monoclinic phases were studied in detail. The stability analysis reveals that

the simple orthorhombic is the favored phase, with space group Pnma, therefore Na2MoSe4 is

isostructural to Cs2WS4 and (CH3NH3)2MoS4.

Additionally, electronic structure calculations reveal the semiconducting behaviour for three can-

didates, while the cubic phase is semi-metallic. The band structure of orthorhombic Na2MoSe4 is

modeled at the Meta-GGA level of theory with the Trahn-Blaha modified Becke-Johnson exchange,

yielding a direct fundamental bandgap of 0.53 eV at Γ. This bandgap makes Na2MoSe4 suitable

for applications in infrared optoelectronics and high speed electronics, with anisotropic electron

mobility in the y direction. Our analysis indicates that the qualitative physics of Na2MoSe4 may

be transferable to oP chemical analogs, and raises questions regarding the interplay between the

composition, energetics and band structure of similar compounds.
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Chapter 4

On the band structures of

alkali-ion transition metal

chalcogenides with oP symmetry

4.1 Introduction

Alkali-ion transition-metal chalcogenides are a class of ionic conductors [22, 23] that have recently

been classified as suitable candidates for a variety of solid-state devices, both for their physicochem-

cial properties and their high synthesizability [21, 22, 23]. The work of Kanatzadis and coworkers

in this scence has accelerated the field through the discoveries of Rb+ and Cs+ transition and post-

trantision metal chalcogenide semi- and superconductors [24, 25]. Additionally, Na+ metal-rich

chalcogenides such as NaCu6Se4 [26], NaCu4Se3 [27] and NaCu4Se4 [28] have been obtained and

characterized. In 2019, Chen et al report that two-dimensional NaCu4Se4 presents high hole mobility

and giant magnetoresistence [28].

On par, alkali-ion transition metal chalcogenides have been proposed for applications in optoelec-
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tronics, photovoltaics and thermoelectrics. In 2018, Z. Xia et al [29] have discussed the chemistry

of a new alakali-transition metal chalcogenide, CsCu5Se3. This caesium copper selenide, grown via

the solvothermal method, is a pseudo-direct bandgap semiconductor with a bandgap of 1 eV. It

crystallizes in the oP lattice, space group Pmma (No. 51). The authors went beyond the charac-

terization of CsCu5Se3 and by studying the "missing members" of the family, synthesizing CsCu5S3

and modeling CsCu5Te3 using periodic Density Functional Theory. Shortly after, the α-CsCu5Se3

was proposed as a high-performance thermoelectric material [30] and a theoretical study provides

insight into the tunability of the optoelectronic response of CsCu5Se3 through defect physics [31].

In a recent review on chalcogenides for photovoltaic applications, there is substantial discussion on

the lessons that can be learned and directions that can be sought in the study of chalcogenides like

CsCu5Se3 based on their analogs [32].

In our preceding work [82], we drew inspiration from the sodiummolybdate compound (Na2MoO4)

and systematically studied it’s Selenide analog Na2MoSe4. Parting from the Na+
2 (MoSe4)− building

block, we combined the data-mining ioinic substitution method (DM+IS) with periodic Density

Functional Theory (DFT) to determine it’s ground state crystal structure and model it’s electronic

properties. To our surprise, we learned that in the solid state, Na2MoSe4 is not isostructural to

sodium molybdate which is a face-centered cubic but instead is isostructural to Cs2WS4, with a

simple orthorhombic structure and Pnma space group. By employing the modified version of the

Becke-Johnson exchange potential introduced by Tran and Blaha [56, 81], we demonstrated that

Na2MoSe4 has a direct bandgap of 0.53 eV at Γ. Upon the realization that multiple inorganic

compounds of the A2MX4 family (A = K+, Rb+, Cs+ ; M = Mo, W ; X = S, Se) and hybrid

organic/inorganic (A = CH3NH3) crystals have been synthesized and deposited in the ICSD, we

became motivated to understand at a theoretical level their fundamental physical properties.

We present a systematic theoretical study of the inorganic members of the A2MX4 family. By

using first-principles computations based on DFT, we aim to assess the theoretical requirements to

accurately reproduce the experimental structures. Additionally, we analyze in detail the interplay
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between the chemical composition, stability, band structure and relativistic effects in the compounds.

+ + +

Alkali-ion
Transition Metal
Chalcogenides

K
Potassium

Rb
Rubidium

Cs
Caesium

Figure 4.1: Schematics concept map of the alkali-ion transition metal chalcogenides with oP
symmetry and general composition A2MX4. Image credit: A. Rubí-González.

4.2 Objectives

• Identify a suitable theoretical approximation to reproduce the experimental structures of the

inorganic A2MX4 compounds, then complete the family by predicting the structures of new

compounds.

• Model the band structures of the twelve A2MX4 compounds.
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4.3 Computational Methods

Our computations were carried out within the framework of Kohn-Sham DFT. For our structural

analysis, we employ different density functional and pseudopotential approximations. The Local

Density Approximation (LDA) and General Gradient Approximation (GGA) functionals were em-

ployed. In the case of GGA, the PBE and PBEsol functionals were assessed. These computations

were performed using scalar-relativistic (SR) and full-relativistic (FR) optimized norm-conserving

Vanderbilt pseudopotentials (ONCVPSP) [83, 84] with a plane-wave kinetic energy cutoff of 90 Ry

(≈ 1225 eV), charge density cutoff of 360 Ry (≈ 4900 eV) and a convergence threshold of 1× 10−8

eV for self-consistency. Long-range Van der Waals interactions were included with the Grimme-D2

method [54, 85]. All computations were carried out in Quantum ESPRESSO [47, 48]. The ground

state structures were determined by varying the volume isotropically and atomic positions were re-

laxed under a tolerance of 13.605 × 10−5 eV/atom for total energy and net forces of 0.025 eV·Å−1

per atom. Additionally, an alternative approach was taken for structural optimization. Using ultra-

soft pseudopotentials (USP) [53] to optimize geometries through full-dimensional variation of lattice

constants and atomic positions. For these computations, the kinetic energy cutoff was set to 40 Ry

(≈ 544 eV). All other parameters remained unchanged. Monkhorst-Pack (MP) k-point integration

grids with the origin a Γ were used to sample the first Brillouin Zone [55]. The dimensions of the

MP integration grids used were 6 × 8 × 4 and 18 × 24 × 12, for geometry optimization and band

structure computations respectively.

4.4 Structure and symmetry of alkali-ion transition metal

chalcogenides

In general, the A2MX4 compounds crystallize in the primitive orthorhombic lattice, with Pnma (62)

space group. The generic structure is three-dimensional, with two inequivalent A1+ sites, coordinated
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to nine and eight X2− sites, respectively. The transition metal is in oxidation state M6+, and is

bonded in a tetrahedral geometry to four X2− atoms (τ = 4). The A2MX4 compound can be seen

as two sub-lattices, the main one formed by chains of [MX4] tetrahedra, with intercalated A atoms.

As we have seen with Na2MoSe4, there is no direct AM bond, and therefore the [MX4] sub-unit

contributes dominantly to the electronic structure of A2MX4. The crystal structure of Cs2MoS4 is

presented in 4.2 as a prototype of the Pnma A2MX4.

Figure 4.2: Illustration of front view of the extended crystal structure of Cs2MoS4 and the oP
(Pnma) A2MX4 compounds. The transition metal (navy blue) is in tetrahedral coordination with
chalcogen anions at each vertex (pale green). The alkali ion (teal) is in a 10-coordinate geometry
with chalcogen. Unit cells are illustrated by a solid black, bonds are indicated by white dotted lines.

The space group Pnma is defined by eight general symmetry operations. The corresponding

Brillouin zone for the oP lattice is shown in 4.3.

4.5 Results

In this work, we employ DFT to compute the electronic structure of the A2MX4 compounds, sum-

marized in figure 4.1. In order to characterize the ground state properties of a dozen compounds,

standardization of simulation conditions is necessary while guaranteeing that each material is being
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Figure 4.3: Brillouin zone of the oP lattice, with irreducible volume shaded in blue with high
symmetry points at each vertex. The origin is taken at Γ.

properly modeled. As High-Throughput studies rise in popularity, physical rigor and precision is

often sacrificed to compensate (lower) computational cost. One of the most common computational

tasks that is often discussed is geometry optimization. In an ideal case, the lattice constants as

well as the atomic positions of a system are optimized - i.e. varied in an iterative manner until

a global energy and force minima are reached. This task alone can be computationally expensive.

Also, taking into account that there is no "perfect" or universal functional, and recalling that DFT

computations are athermal (i.e. at T = 0 K) and in a vacuum environment, the theoretical ground

state may differ from the experimental data.

Table 4.1: Lattice constants for the known A2MX4 compounds. The computed structures were
obtained by varying the volume isotropically using ONCVPSP for LDA, PBE, PBEsol, PBE-D2 and
PBE-D2-SO. We also performed a full-dimensional optimization for PBE-D2 using USP.
Compound ICSD No. a (Å) a (Å) a (Å) a (Å) a (Å) a (Å) a (Å)

Exp. LDA PBE PBEsol PBE-D2 PBE-D2-SO PBE-D2/USP
K2MoS4 409563 9.32 9.22 9.39 9.38 9.44 9.27 9.28
K2WSe4 59242 9.73 9.83 10.09 9.80 9.88 9.84 9.68
Rb2MoS4 644177 9.72 9.59 9.79 9.51 9.58 9.56 9.68
Rb2MoSe4 644182 9.86 9.26 9.49 9.21 9.38 9.36 9.99
Rb2WS4 281586 9.62 9.22 9.79 9.51 9.60 9.80 9.71
Rb2WSe4 650057 10.10 9.80 10.09 9.80 9.82 9.97 10.10
Cs2MoS4 402076 10.04 10.14 9.56 9.51 9.912 9.90 10.12
Cs2MoSe4 627043 10.33 9.93 10.40 10.40 10.21 10.20 10.42
Cs2WS4 249347 10.05 9.85 9.81 9.80 9.52 9.81 9.59

Furthermore, let us recall that the computed properties are a local minimum in the potential
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energy surface at the level of theory used. This strictly dictates that, within a theoretical approx-

imation, the properties should be computed for the geometries equilibrated within that level of

theory. However, if this theoretical ground state differs from the experimental data, depending on

a given interest, this problem may be overcome by restricting certain degrees of freedom. One par-

ticular example of this, which is of interest to us, is in band gap calculations. It is quite common in

the literature for theoreticians to use experimentally determined crystal structures without further

relaxation [85], allowing the use of more accurate approximations for a given property.

We are not advertising for or against any of the multiple available approximations for first-

principles materials modeling. Here, we aim to determine the most appropriate conditions to model

and compute the physical properties of the A2MX4 compounds and relatives. First, we evaluate

whether a standardized-condition approach (similar to those employed in high-throughput studies)

is suitable for the modeling of the compounds.

Here, we took on the following approach. First, the atomic positions within the experimental

volume were fully relaxed. These are our reference structures for our band structure calculations.

On par, as we seek to determine the most appropriate conditions for posterior simulations of these

materials - we perform an assessment of different density functional approximations to reproduce

the experimental structure. For this, convergence tests were performed for the minimal amount

of materials that covered all involved species (K, Rb, Cs, Mo, W, S, Se), with the LDA, PBE,

PBEsol exchange-correlation functionals. Additionally, the effect of long-range interactions was

probed through the Grimme-D2 (DFT-D2) with PBE. Finally, as chemical complexity increases,

i.e. the number of electrons involved, relativistic effects may pose an effect on the accuracy of our

simulations. Hence, we also perform structural optimization including spin-orbit coupling (SOC) for

the known compounds.

As mentioned above, different density functional approximations were used to determine the

theoretical ground state structures. Within the approximations, the kinetic energy cutoff was stan-

dardized.
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First, following the methodology for the optimization of Na2MoSe4, we varied the volume isotrop-

ically (i.e. we varied a, and fixed b = b/|a|, c = c/|a|) for the nine compounds and identified the

theoretical minimum within the LDA, PBE, PBEsol, PBE-D2 and PBE-SOC levels of theory. The

obtained values are summarized in Table 4.1. Independently, a full-dimensional optimization was

performed (i.e. varying a, b, c and atomic positions) at the PBE-D2 level of theory. These values are

summarized in in table 4.1.

We compare our dual approach to the experimental values graphically in Fig 4.4. In the left

panel, we compare the equilibrium volumes obtained through an isotropic variation in the volumes,

maintaining fractional atomic positions fixed within the unit cell. A computationally cheap approx-

imation associated with a high price in accuracy. Note that, for compounds with small volumes, the

results are fairly comparable to the experiment. However, as volume increases, so does our error.

This indicates that our computations have clearly led us to reach false ground states, and that such

an approximation (variation of volume, atomic positions fixed) is inappropriate for such materials.

The emergence of these false ground states can be understood from the following perspective.

First, these computations were performed using ONCVPSP. Planewave DFT computations on pe-

riodic systems be performed on a complete basis set, this is, the basis set should contain all plane

waves with energies below the kinetic energy cutoff (In reciprocal space, this corresponds to all points

on the lattice that lie within a sphere of radius rc, as mentioned in chapter 2). During geometry

optimization, varying the volume while fixing atomic positions will have an impact on the size and

shape of the basis set, causing the sphere to "deform" into an ellipsoid. If this occurs, it is said that

the basis set is incomplete. This results in the errors in the diagonal elements of the Jacobian matrix

during self-consistent calculations, which physically is the stress tensor. These errors, correspond to

resulting stress between particles known as Pulay stress σP .

Pulay stress typically affects total energy calculations in such a manner that it typically leads to

an underestimation of the equilibrium volume. Without going into further detail regarding Pulay

stress and forces, we mention the possible solutions.
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Figure 4.4: Computed versus experimental values in Å3. The computed equilibrium volumes were
obtained through a full-dimensional optimization (blue), varying lattice constants as well as atomic
positions. We compare the Full-dimensional PBE-D2/USP with the isotropic PBE-D2/ONCVPSP
volumes (grey).

First, if the basis set is incomplete, a logical solution would be to add more planewaves - this is,

increase the kinetic energy cutoff. This is the most straightforward solution, and can often be the

cheapest. Alternatively, if the used energy cuttoff was deemed appropriate for the system, another

possible solution would be to use different integration grids ; add more k-points or use larger FFT

(Fast Fourier Transform) grids. When a basis set is incomplete and Pulay forces are present, the

E(V ) curve is somewhat "jagged", as the total energy integrations are non-continuous. Increasing

the dimensions of the integration grids will therefore smoothen the E(V ) curve.

However, let us recall that these computations were performed using ONCVPSP with a kinetic

energy cutoff of 90 Ry, and medium-sized k-point and FFT grids. Increasing the energy cutoff for

close to a dozen materials defeats the purpose of our approximations, and using stringent k-point grid

for geometry optimization is outweighed by the increase in computer time. An ideal solution would

be to use a complete basis set while at the same time, reducing computer resource consumption.
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At this point, we take on a second approach to finding the equilibrium geometries. This time,

we replace the ONCVPSP for USP (ultrasoft pseudopotentials), with an optimized energy cutoff

of 40 Ry. Additionally, to further mitigate the effects of Pulay forces, we remove all restrictions

imposed on the degrees of freedom in our previous approximation. Essentially, this means that

we performed a full-dimensional optimization of the structures, varying lattice vectors and atomic

positions in an iterative manner until the theoretical global minimum was reached. For the full-

dimensional optimization, only the PBE-D2 approximation was probed. As seen in the right side of

4.4, the accuracy increases dramatically. The full-dimensional PBE-D2 data points are plotted in

blue points, which are clearly in general closer to the experimental volumes (R2 = 0.10) than the

false equilibrium volumes obtained through the isotropic PBE-D2 approximation, depicted by dark

grey points (R2 = 0.29).

4.5.1 Band structures

For our preliminary electronic structure investigation, we limit our scope to the GGA level of theory.

As mentioned above, we take the fully relaxed experimental structures as our control set. This is

justified and motivated by (i) band structures are generally insensitive to small variations in the

volume, which account for the possibility of not being at the global minimum, (ii) in order to truly

understand the electronic properties of these Pnma alkali-ion transition metal chalcogenides, we

must forcibly go beyond the GGA and employ predictive methods. Hence, as a preliminary analysis,

these band structures will provide insight into the qualitative electronic structure of the compounds.

One note to keep in mind is that the obtained values for the bandgap, Eg, will be underestimated.

In figure 4.5, we show the electronic band structures for the nine experimentally known com-

pounds. These band structures were computed using the PBE-D2 computed structures with k-point

grids of dimensions 18× 24× 12, and an energy tolerance of 1× 10−6 eV. From our previous work

on Na2MoSe4 [82], we learnt that the general electronic structure of the A2MX4 system is governed

by the MX chemistry. The partial hybridization between valence shells of the M and X species gives
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Figure 4.5: Electronic band structure of the known alkali-ion metal chalcogenides A2MX4 com-
puted with PBE exchange-correlation. The EF is located at the highest occupied valence band and
indicated by a red line.
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Figure 4.6: Electronic band structures of the known alkali-ion metal chalcogenides obtained via
PBE. Energy is shown between E = −1 and E = 2.5 eV, to better visualize the bandgap.
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rise to an energy gap between the valence and conduction bands, which are composed primarily of

X p and M d orbitals, respectively. Since the protoypical structure and symmetry is unchanged, a

similar band topology is to be expected. Here, the open question is how the changes in composition

will affect the electronic structure of the AMX compounds. Particularly, will the transition from

VBM→CBM remain direct, will it change, and how will the Fermi energy change as a function of

composition?

As expected, the electronic band topology is similar and consistent throughout the family of

compounds and resembles that of their sodium relative. Note, in all nine compounds, there exists a

direct gap exactly at Γ. This is seen in Figure 4.5.

The band gap values are varied, within 0.6 ≤ Eg2.1 eV, as illustrated in Figure 4.6. The smallest

computed value of Eg is 0.68 eV, and corresponds to Rb2MoSe4. According to this gap value, the

rubidium molybdenum selenide is a medium-gap semiconductor. On the other limit, the largest

value of Eg obtained is equal to 2.06 eV, making Cs2WS4 a wide-gap semiconductor. Given that

these values of Eg are underestimated due to systemic pitfalls of GGA, with a well-documented

mean error of 30% ≤ e ≤ 40%, we expect these two bandgaps to incease to the orders of 1 and 3

eV respectively. Although the gap for Cs2WS4 is wide, it is not expected that the material is an

insulator, but rather a wide-gap semiconductor. Proportional increase should be seen for the rest

of the compounds as well. Thus, it is reasonable to expect that the compounds could be suitable

for applications in high-voltage or high-temperature optoelectronics. In this case, it would be the

materials with smaller bandgaps that would be potential candidates for photovoltaic applications.

By means of ionic substitution and full-dimensional dispersion-corrected optimization, we have

determined for the first time the crystal structures of the three missing (i.e. not yet synthesized)

compounds. These are namely, K2MoSe4, K2WS4, and Cs2WSe4. As expected, these are semicon-

ductors with Eg at Γ, with Eg values of approximately 1, 1.8 and 1.55 eV.

To better illustrate the general electronic properties of the A2MX4 family and to validate our

computations to Eg values recently obtained by high-throughput PBE(PAW) computations, we
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Table 4.2: Electronic bandgaps computed at the PBE level using the PBE-computed geometries.
We compare our obtained values for Eg with those predicted by the Materials Project database
(MP).
Compound Bandgap type ki − ki′ Eg (eV) This work Eg (eV) MP
K2MoS4 D Γ 1.28 1.43
K2WSe4 D Γ 1.28 1.43
Rb2MoS4 D Γ 1.63 1.58
Rb2MoSe4 D Γ 0.68 1.03
Rb2WS4 D Γ 2.00 1.99
Rb2WSe4 D Γ 1.31 1.49
Cs2MoS4 D Γ 1.72 1.77
Cs2MoSe4 D Γ 1.22 1.22
Cs2WS4 D Γ 2.06 2.15

Table 4.3: Predicted and optimized lattice parameters for the missing A2MX4 compounds com-
puted at the PBE-D2(USP) level of theory.
Compound a (Å) b (Å) c (Å) V (Å3) Eg

K2MoSe4 9.627 7.089 12.449 847.79 1.0
K2WS4 9.32 6.96 12.22 792.53 1.8
Cs2WSe4 9.84 7.09 12.63 880.59 1.5

include Table 4.2. Note that a general agreement if observed between our PBE(USP) and the

reference PBE(PAW) data, including the gap being at Γ. However, a significant difference in the

Eg values is seen for Rb2MoSe4, where the MP predicts a gap of 1.03, counter to our value of 0.68.

One possible explanation for the differences in bandgap values is that while our computations were

carried out with a high number of k-points, the reference data was obtained with a loose k-point

mesh of dimensions 3×2×2, which is typically not stringent enough to yield predictive results. The

use of such a loose k-point grid, as mentioned before, can also lead to false equilibrium volumes which

in turn yield false computed properties. It should be noted, that while our equilibrated geometries

were approximated with including long-range dispersion, the MP volumes are overestimated (often

times exceeding a tolerance of 5%) as they are obtained with PBE with no further corrections.

Chalcogenide chemistry can influence on the value of the bandgap. In Fig4.8, we directly compare

the computed bandgaps of twelve A2MX4 compounds. The compounds are numbered such that we

increase the number of complexity beginning with the chalcogenide anion, then the transition metal

and finally, the alkali-metal. Therefore, K2MoS4 = 1 on the x axis, K2MoSe4 = 2, K2WS4=3, ... ,

Cs2WSe4 = 12 on the x-axis. By this logic, we also note that all sulfides correspond to odd numbers
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Figure 4.7: Electronic band structures of the predicted or "missing" alkali-ion metal chalcogenides
obtained via PBE. Energy is shown between E = −2.5 and E = 2.5 eV.

(teal) while selenides are evens (blue). Note that., Sulfides have larger bandgaps.

In order to better understand the electronic structure of the presented alkali-ion transition metal

chalcogenides, beyond-GGA calculations must be carried out to obtain predictive values of Eg.

Within the APW+lo approximation, the TB09 MGGA functional has been known to yield Eg val-

ues comparable to those of HSE06 [78, 79, 80, 81] GW . These calculations are currently under

preparation. Additionally, partial density of states (PDOS) should be computed in order to under-

stand the VBM band shifts as a function of orbital hybridization, individually for each compound.

Finally, electron localization functions may be determined to gain insight into the indirect interac-

tions between the A and M species, or the A cations with the MX tetrahedra, as this can have an

effect on structural properties and charge density.

4.6 Conclusions

We have presented a theoretical investigation of twelve alkali-ion transition metal chalcogenides with

oP symmetry, and general formula A2MX4. Computations based on Density Functional Theory were

systematically performed on nine known and three proposed materials to model their equilibrium

geometries and electronic band structures. We have discovered that the entirety of the A2MX4
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Figure 4.8: Bandgaps versus composition is shown for the twelve compounds studied. Note that
the Eg for sulfides (teal) are greater than those of selenides (blue) in all cases.

compounds are semiconductors, with a direct bandgap at Γ. Preliminary GGA computations reveal

that these materials have medium to wide bandgaps, ranging between the orders of 0.7 and 2.0 eV.

While GGA underestimates the bandgap, these results are promising as they provide qualitative

insight into the materials’ physics. Furthermore, we note that all sulfides have larger bandgaps

than the selenides in the family. Currently, all-electron meta-GGA calculations are being prepared

to obtain bandgaps with predictive accuracy. Based on their electronic structure, these alkali-ion

metal chalcogenides show potential for applications in optoelectronic, photovoltaic, high-power and

high-temperature devices.
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Chapter 5

Quantum-mechanical modeling of

two-dimensional ternary niobium

tellurides

5.1 Introduction

Harnessing the power of quantum materials is one of the core interests of condensed matter and

materials physics. Understanding the origin of genuinely quantum phenomena in these materials at

a fundamental level will play a crucial role in the development of next-generation technologies, such

as quantum information, spin electronics (spintronics), magnonics and spin-orbitronics [85, 86, 87,

88, 89]. The discovery of graphene [90], a one-atom-thick allotrope of carbon, was a welcoming

to novel and exciting physics in the following years. Notable members of the 2D materials realm

are other allotropes such as phosphorene [91] and silicene [92, 93], among others [94, 95, 96, 97],

and transition metal dichalcogenides (TMDs) [98, 99, 100, 101, 102] such as NbTe2 [102, 103] a

large family of monolayers with a wide spectrum of properties and applications. In a general sense,
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the ever growing catalog of predicted and discovered 2D materials includes metals, semiconductors,

superconductors, photo-catalysts, topological insulators, Mott insulators, Weyl semimetals [104,

105] and the recently incorporated (and long awaited) family of magnetic 2D materials. In 2017,

ferromagnetism - a pure and genuine quantum effect [106] - was discovered in ultrathin layers of

vdW crystals CrI3 [107] and CrGeTe3 [108]. Huang and colleagues demonstrate that the magnetic

chromium triiodide can be well descibed with the two-dimensional Ising model, with magentic mo-

ments (spins) lying perpendicular to the lattice-plane. Regarding the vdW chromium germaniun

telluride CrGeTe3, Gong and colleagues show that the magnetic nature of the material is consistent

with the Heisenberg model, this is, with magnetic moments oriented without restriction [106, 107,

108]. This breakthough catalyzed an intensive increase in experimental and theoretical research,

quickly followed by the discovery of ferromagnetism in monolayer VSe2 [109]. Although the vdW

tri-telluride CrGeTe3 had been investigated in the past [110, 111, 112, 113, 114], it wasn’t until

2014 that it was predicted to be ferromagnetic as a 2D crystal along with CrSiTe3 by Li and Yang

in 2014 [110]. Shortly after, CrSnTe3 is predicted to be a ferromagnetic semiconductor as a single

layer, and with a higher Curie temperature Tc than its -Ge- and -Si- siblings[111]. Both the CrI3

and CrGeTe3 systems have been studied extensively. Another interesting 2D ferromagnet is the the

metallic Fe3GeTe2 [111, 112, 113, 114, 115], in which the strong spin-orbit coupling effects result

in perpendicular magneto-crystalline anisotropy [102]. Interest in magnetic 2D vdW materials re-

lies on the desire to build feasible next-generation spintronic devices, as summarized in two recent

reviews Gong and Xiang, and the other by K.S. Novoselov and co-workers [89, 116]. In figure 5.1,

we display a tabular summary of the state of the art of 2D magnetism. The table summarizes the

materials known up until late 2019. As the field is currently growing, the literature is being updated

nearly on a daily basis.

As mentioned above, transition metal chalcogenides are well known quantum materials. It has

been shown that layered MXn systems where M is a first row transition metal, can lead to charge

density waves (CDW) and superconductivity [117], magnetic and topological properties [102, 103].
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Figure 5.1: Table summary of the current status (2019) of reported 2D magentic materials. Color
code: Green, bulk ferromagnetic vdW crystals; orange, bulk antiferromagnets; yellow, bulk multifer-
roics; gray, theoretically predicted vdW ferromagnets (left), half metals (center), and multiferroics
(right), which have not yet been experimentally confirmed. Image taken from [89].

Tellurides in particular have drawn interest for the exotic physical phenomena they display. For

example, WTe2 and MoTe2 show non-trivial topology both in the bulk and as monolayers. Recently,

experimental evidence demonstrates that NbTe2 is a topological superconductor [103].

On another note, ternary niobium tellurides have been gaining attention due to their proper-

ties originated from quantum confinement. Many of these materials are being "revisited", such as

Nb3SiTe6, whose structure was determined via XRD in 1991 [118], it’s quantum properties (electron

- phonon coupling, magnetotransport) were not determined until 2015, published in Nature Physics

[119].

Motivated by the re-emergence of metal-rich layered transition metal chalcogenides into the spot-

light of condensed matter physics, we investigate three compounds as new 2D materials : NbMTe2,

where M is a magnetic element Fe, Co, or Ni. These materials’ bulk structures were determined in

the late 90’s [120], and recent studies have revealed their quantum properties. Particularly, we high-

light that NbFeTe2 is the first vdW material to be observed with intrinsic magnetoresistence [121].

Additionally, NbNiTe2 was recently used as a prototype to model how phonon-induced transitions

can lead to topological quantum states [122]. In search for these properties, a high-temperature

phase transitions was reported in 2019 [123]. These materials display remarkable properties, but

are yet to be analyzed as isolated monolayers.
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5.2 Objectives

• Model and determine the ground state structures for monolayers of NbMTe2, where M = Fe,

Co or Ni.

• Evaluate the stability of the three monolayers of the NbMTe2 family.

• Investigate the quantum-mechanical (electronic and magnetic) properties of the three two-

dimensional materials.

5.3 Computational Methods

We performed first-principles calculations based on Kohn-Sham Density Functional Theory (DFT)

within the general gradient approximation (GGA), employing the Perdew-Burke-Ernzerhof (PBE)

functional for exchange-correlation as implemented in Quantum ESPRESSO [47, 48]. The bulk and

monolayer structures were fully relaxed using scalar-relativistic ultra-soft pseudo-potentials, with a

kinetic energy cutoff of 40 Ry to expand the Khon-Sham states in plane waves and a charge density

cutoff of 320 Ry. Structure optimization calculations were performed with a convergence threshold

for self-consistency of 1 × 10−6 Ry. To model the 2D structures, a vacuum of 15 Å was used to

simulate surface effects and to avoid any inter-layer interactions, and a Monkhorst-Pack k-point

mesh of 4× 1× 6 centered on Γ was used to sample the firsFigure 5.1: Monolayer figt Brillouin zone

(FBZ). The electronic structure calculations were performed using a Γ-centered 20× 1× 30 k-point

mesh to sample the FBZ.

The effect of spin-orbit coupling on band structure was computed by employing a fully-relativistic

pseudopotentials.
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5.4 Results

We have carried out a DFT-based investigation on three compounds, namely, iron-, cobalt-, and

nickel- niubium tellurides. The three tellurides are layered compounds, making them ideal to study

as free-standing monolayers. In the bulk, NbFeTe2 and NbNiTe2 crystallize in the orthorhombic

Pmna space group, and NbCoTe2 crystallizes in the orthorhombic Cmce space group. All three

compounds hold two-dimensional structures and consisting of NbMTe2 sheets oriented in the (0,

1, 0) direction. Nb2+ are bonded in a 4-coordinate geometry to four Te2− atoms. The transition

metal is in its M2+ state, in tetrahedral coordination with Te2− atoms, and bonds with its nearest

M atom.

Figure 5.2: Prototypical crystal structure of NbMTe2 (M = Fe, Co, Ni). The unit cell of the layered
(bulk) structure is shown in (a), a top view is shown in (b), a side view in (c) and a perspective of the
nanosheet is shown in (d). The grey, cyan and red balls represent Nb, M and Te atoms respectively.

A perspective frontal view of the prototypical crystal structure of bulk NbMTe2 is shown in

Figure 5.2 (a). In Figure 5.2 (b) and (c), we show the top and side views of the monolayer, and an

86



extended (super-cell) view of the two-dimensional structure is shown in Figure 5.2 (d).

To demonstrate that these materials could be treated as single-layer systems, we simulated

exfoliation by investigating the change in the system’s energy ∆E = E − E0 as a function of inter-

layer distance ∆d = d− d0 (Å), where E0 is the energy of the ground state structure, at ∆d = 0. In

5.3, we show that as ∆d increases, the system is taken out of equilibrium. The energy dispersion of

Figure 5.3: Here, the change in energy ∆E = E0 is plotted as a function of cleavage, i.e. as
∆d = d− d0 (Å) increases. The units shown are electron-volt per atom (eV/N).

the simulation box adopts the form of an asymptote, a limit at which the system’s energy becomes

independent of increases ∆d, and long-range attraction vanishes. For all three compounds, this

inter-layer interaction tends to vanish at ∆d5 Å, and at this point we consider them monolayer

structures. To further guarantee null interaction between layers, our computations from this point

forward were performed in a 15 Åvacuum along the b vector.

The ground state structures were determined by investigating the change in the monolayers’

energy as a function of lattice constants, a and c, while simultaneously relaxing atomic position.
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The obtained lattice constants were a = 8.072, c = 6.343 for M = Fe ; a = 7.940, c = 6.237 for M =

Co; and a = 8.023, c = 6.306 M = Ni. Note that the a is smaller for NbCoTe2 than it is for NbFeTe2,

although ZCo > ZFe. This can be understood through the effect that spin-states and coordination

environments have on effective ionic radii in halides and chalcogenides, leading to a highly reduced

ionic radius for Co2+ [124].

Furthermore, the magnetic ground state was determined by computing the system’s total energy

as a function of the magnetic ordering. Each unit cell contains four M2+ atoms, and each spin can

be in either of two states, 〈↑| |↓〉. Therefore, there are a total of 16 possible spin-states, which can

be reduced to 8 computations due to their symmetry. The initial spin-states and final energies are

listed in Table 6.3, in Appendix B.

According to our computations, two of our three systems have notable magnetic properties as

two-dimensional materials. First, let us note that in the bulk, NbFeTe2 is ferrimagnetic (FiM),

NbCoTe2 is ferromagnetic (FM) and NbNiTe2 is non-magnetic (NM). Reducing dimensionality does

not only affect the layer’s equilibrium geometries, but also their equilibium spin-states. Of the

magnetic orderings probed, what is observed for NbFeTe2 is that it transitions from FiM to FM.

This can be explained by inter-layer interactons (or the lack of) in the compound. In the bulk,

intra-layer ineteractions are strongly FM while there is antiferromagnetic (AFM) coupling between

layers. Upon exfoliation, inter-layer coupling vanishes and FM coupling dominates. However, 2D-

NbCoTe2 is most stable in an antiferromagentic state, (↑↑↓↓), AFM4 in our list. From the magnetic

standpoint, NbNiTe2 is not interesting as it is non-magnetic. As a matter of fact, the initial FM

configuration leads to a peak in total energy (the system is taken far out of equilibrium), and all

other states are degenerate. In all cases, the final magnetic moment is zero. For support, we provide

a plot E versus magnetic ordering in Apprendix B "Supplemental information for Chapter 5".

The final magnetic moments, along with the other important physical quantities, including those

relevant for stability are summarized in Table 5.1.

The relative stability was assessed by calculating the formation enthalpy of the monolayers, this
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Table 5.1: Summary of structural and physical properties of NbMTe2 structures in the bulk and
as monolayers.
System a (Å) b (Å) c (Å) M.O. M (µB / N) Hf (eV/atom)
NbFeTe2
Bulk 6.243 7.239 7.922 FiM 0.344
Monolayer 8.072 — 6.343 FM 2.02 0.343
NbCoTe2
Bulk 6.237 7.840 8.212 FM 0.297
Monolayer 7.940 — 6.237 FiM 0.80 0.295
NbNiTe2
Bulk 6.258 7.202 7.955 NM 0.437
Monolayer 8.023 — 6.306 NM 0.00 0.436

is, difference between the energy per atom of the conforming species (reactants), and the total energy

of the system of interest (product). The formation enthalpy energy Hf per atom was calculated as

Hf = 1
N

( k∑
i

αiµi − U
)

(5.1)

where N is the number of atoms within the conventional unit cell, α is the number of atoms of

constituent element i with chemical potential µi in the solid phase (µi = Ui/Ni), and k is the

number of species involved in the reaction. Lastly, E is simply the total energy of the ternary

compound monolayer. Thus, the formation enthalpy for a NbMTe2 monolayer is explicitly given as

H2D
f (NbMTe2) = 1

16

(
4µNb + 4µM + 8µTe − U2D

NbMTe2

)
. (5.2)

Here, we define our formation enthalpy in such a way that a positive value for H2D
f is an indicator

of stability. This is simply taken as a convention in the literature. For comparison, we also calculate

the true Hf , for the compound as

Hbk
f (NbMTe2) = 1

N
(µNb + µM + 2µTe − U bkNbMTe2

), (5.3)

where N = 16 when M = Fe, Ni, and N = 32 in the case of M = Co. All total energies used

in Hf calculations were obtained self-consistently. As seen in Table 5.1, the formation of all three
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compounds are favored with respect to their separated reactants in the solid state.

To further understand the quantum-mechanical properties of the NbMTe2 monolayers, we turn

our attention to their electronic structures. For these computations, stringent integration grids were

used. For k-points, we used MP grids of dimensions of 24×1×18 for scalar-relativistic computations,

and 18× 1× 12 for full-relativistic computations.

First, we compute orbital-projected density of states (PDOS) for the three monolayers at their

total equilibrium (i.e. structural and magnetic ground states). In 5.4, we plot PDOS as a function

of E for values −4 : 4 eV, with the Fermi level set at 0. Note in 5.4 (a), higher DOS is observed

for Fe atoms. Thus, the iron contributions to the electronic structure are dominant. It is here

where we want to focus, on the Fe d electrons. Remarkably, clear FM behaviour is illustrated by

the asymmetry of occupied in the spin-state ↑ (Fe d α) at −4 ≤ E ≤ −1 eV, and ↓ (Fe d β), which

dominate between −1 ≤ E ≤ −2 eV. Lesser contributions cab be noticed from the Nb d electrons.

The highest occupied valence electrons are in spin-down, with a magnetic moment M of 2.02 µB

per Fe atom.

Next, we focus on the Co and Ni structures. Note that in our Cobalt monolayer, we have a more

symmetric PDOS versus E plot, with minuscule - but noticeable local asymmetries near the Fermi

level. Particularly, in 5.4 (b) it can be seen that spin-down states are dominant near EF . The final

contribution per Co atom is of 0.80 µB . In 5.4 (c), we can see that there is complete cancellation of

the atomic magnetic moments, i.e. each Ni atom contributes with 0 µB .

Now, let us focus on the electronic properties of the materials. For these calculations, we consider

a two-dimensional integration path within the oP Brillouin (same BZ as in Chapters 3 and 4). Since

the materials are periodic in the xz-plane, we integrate along Γ(0, 0, 0), X(1/2, 0, 0), U(1/2, 0, 1/2),

Z(0, 0, 1/2) and Γ(0, 0, 0), scaled in units of 2π/|a|. In Fig 5.5, we show the band structure of

NbMTe2 with and without spin-orbit coupling. To better appreciate the effect of spin-orbit coupling

on E(k), we plot scalar-relativistic and full-relativistic bands in the second and third rows. The

band structures are consistent with the clear metallic character displayed in Fig 5.4, even when
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Figure 5.4: Atomic orbital projected density of states (PDOS) of the NbMTe2 compounds. The
iron, cobalt and nickel compounds are shown in (a), (b), and (c) respectively. As in the total DOS
plots, spin-up is designated by α, spin-down states are β. The Fermi level is set to zero.
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Figure 5.5: Electronic band structures of the NbMTe2 (M = Fe, Co, Ni) monolayers. In the top row,
bands are shown with and without spin-orbit coupling effects, in solid red and dashed black lines
respectively. The GGA and GGA+SOC bands are plotted separately rows 2 and three, respectively.
The Fermi energy EF is set to zero in all cases.
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Figure 5.6: Amplified full-relativistic band structure of the 2D NbNiTe2. Energy is plotted between
−0.25 ≤ E ≤ −0.25 eV. The full path is shown in the left panel, center and right panels illustrate
the X − U and Z − Γ avoided band crossings, respectively.

relativistic effects are included. The band topology is similar throughout the three compounds, and

they all are characteristic of metals.

Interestingly, there are three noticeable E(k) anti-crossings near the Fermi level. These avoided

(or anti) crossings resemble Dirac Cones, characteristic of so-called quantum materials with massless

fermions and ultra-high conductivity. This conductivity can be expected due to the linear E(k)

dispersion between regions Γ → X, X → U , and Z → Γ. The most "pronounced" and prototypical

potential Dirac Cone is that found from Z → Γ, however, in all cases it is energetically shifted

upward with respect to EF . Hence, band-structure engineering may be a route worth entailing, via

disorder of defect engineering. Also, these band structures reanimate the potential of NbNiTe2 as a

quantum material. Although it has been determined to be non-magnetic, it is the only of the three

to have the anti-crossed bands exactly at the Fermi level. Here, we see that NbNiTe2 has an avoided

crossing at X → U , and the Z → Γ is at a lower energy, i.e. closer to EF than in its relatives. While

it does not seem like an ideal Dirac Cone, this anti-crossing can be identified in Fig 5.4 (c), where

there is a "dip" of occupied states near EF .

Note also that for NbNiTe2 the fully relativistic band structure essentially reproduces the scalar-
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relativistic one, maintaining the Dirac-point at EF between X → U . In Fig 5.6, we show an

amplification of the band structure of NbNiTe2 in range −0.25 ≤ E ≤ −0.25 eV. Note that SOC

splits the bands, producing two "peaks" or VBM-CBM pairs, illustrated in the center panel in

X − U − Z. Along G − Z, note that although there is an avoided crossing, one band runs from

the valence to the conduction states. This may be due to the bi-metallic nature of the behaviour,

dominated by Nb d electrons, which in essence are interacting with Ni d electrons near EF . The

values for ESOCg (k1k2) are ESOCg (XZ) = 6.6 meV and ESOCg (ZΓ) = 0.0927 eV (92.7 meV). The

band structure of NbNiTe2, and it’s non-magnetic nature makes it a potential Topological Insulator.

Although we do not in this study infer or conclude that NbNiTe2 is a topological material, there

is a clear resemblence with the bulk band structures shown in [122, 123], especially the emergence

of exactly two band anti-crossings near the Fermi level (See regions Y − Γ and T − Z). In this

study, we have limited ourselves to the isolated monolayer and it ’s fundamental band structure.

However, various reports can be found in the literature in which the Dirac cone of graphene or

silicene is demonstrated to be tunable via intercalation between layers [125, 126, 127], or doping

[128]. Furthermore, the bi-metallic nature of these materials are reason enough to encourage future

studies involving electron-correlation effects.

Although electronic structure computations reveal the magnetic ground state properties of a

given material, there is much more to be investigated to conclusively determine whether these

materials could be suitable for quantum devices. One key property to consider in the design of 2D

Ferromagnets, is the Curie temperature TC . Here, we take on a phenomenological approximation to

calculate TC for NbFeTe2, using Weiss Mean Field Theory (MFT), also known as Molecular Field

Theory. In the MFT model, TC is calculated as

TC = 1
3kB

[
2zJS(S + 1)

]
(5.4)

where z is the number of nearest neighbor Fe atoms to a given Fe atom in the unit cell (z = 1),
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S is the spin of each Fe atom, which is in our case the spin of Fe2+ (High-Spin) and kB is the

Bolztmann constant. To obtain S, we simply apply Hund’s rules, recalling that the spin multiplicity

of Fe is ne + 1 where ne is the number of unoccupied electrons in the outermost shell. This is also

equal to defining spin multiplicity as 2S+1, where S =
∑
i Si, the sum of the spin magnetic moment

of every electron in an orbital shell, with values Si = ± 1
2 . Iron has an electron configuration 3d64s2.

Since the 4s shell is filled, it is lower in energy than the 3d shells, of which one sub-shell is filled,

and we are left with ne = 4 (i.e. four electrons in spin ↑). Therefore, the spin multiplicity is 5 and

finally S = 2. This value of S is consistent with the magnetic moment of M = 2.02µB per Fe atom

in Table 5.1.

Next, we need to find J . Following the MFT methodlody in refs [111] and [128], and caculate

the exchange energy between the Fe atoms a unit cell of NbFeTe2 as

Eex = −2zJS2. (5.5)

The energies of 2D-NbFeTe2 in FM and AFM configurations read EFM/AFM = E0 ± Eex, where

E0 is the total energy of the system independent of the magnetic ordering, and Eex is the exchange

energy. One can easily see that EFM − EAFM = 2Eex. At this point, we can solve for J and

estimate TC . As a result, we obtain J = 4.4 meV and TC = 205 K. According to our prediction,

NbFeTe2 has a TC comparable to that of bulk Fe3GeTe2, which was measured to be 205 K in [129].

The monolyer on the other hand, has a TC of 20 K, but it was demonstrated increase up to room

temperature by placing the Fe3GeTe2 nano-slakes in ionic gates. Our findings are comparable to the

Curie temperatures of other 2D chalcogenides predicted by MFT, such as CrSiTe3, CrSnTe3, MnS2

and MnSe2, with TC values of 294, 330, 253, and 286 K respectively. In these studies, it was shown

that the level of DFT may influence in the predicted TC .

It should be noted, however, that MFT is coarsely approximate and could yield TC values that

deviate from the experiment. We are very much aware of the limitations of our study, and there-
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fore deeply encourage further investigation combining Monte Carlo simulations with the 2D Ising

Hamiltonian, H = −2J
∑
i>j SizSjz where the spins are aligned in the z axis and Siz = ±1/2. This

method has proved to yield more accurate exchange integrals and Curie temperatures. In our esti-

mation,
∑
j Jij is simplified to zJ , for short-range interactions among first neighbors. In summary,

NbFeTe2 is a 2D metal with intrinsic ferromagnetism, with a reasonably high Curie temperature.

Our results will serve as a foundation for future theoretical studies of this low-dimensional system

and its relatives.

5.5 Conclusions

In summary, we have employed first-principles computations to predict the ground state electronic

and magnetic properties of three new two-dimensional materials. The equilibrium structures, forma-

tion energies, magnetic ground states and electronic band structures are discussed for iron, cobalt

and nickel niobium telluride monolayers NbMTe2 (M = Fe, Co, Ni). We have demonstrated that

monolayer structures may be obtained from the bulk through exfoliation, and that van der Waals

interactions vanish for layers separated by a distance greater than 5 Å. Furthermore, we predict

through DFT-based thermodynamics that that the three monolayers are stable. The three 2D ma-

terials are metallic in nature with notable spin-orbit coupling contributions. Avoided band crossings

are observed near the Fermi level in the iron and cobalt compounds, and one anti-crossing exactly

at EF is seen in NbNiTe2. The band structure of the materials indicates a possibility of Dirac-cone

tuning via defect physics, and in this spirit we encourage future studies to investigate these materi-

als through the lens of topological quantum chemistry, particularly NbNiTe2, as it is non-magnetic.

On another note, we demonstrate that that NbFeTe2 is a robust ferromagnet, with a net magnetic

moment of 2.02 µB per Fe(II) atom, and Curie temperature of 205 K predicted by Weiss Mean Field

Theory. The central physical properties of these materials are quantum-mechanical in nature, mak-

ing them potential candidates for next-generation technologies. This is the first theoretical study
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of these three compounds as purely 2D materials, and is aimed to serve as a reference point for

future studies focusing on the topological, electronic and magnetic properties of the monolayers or

in heterostructures.
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Chapter 6

Conclusions and Future Directions

In this thesis we have explored how computational quantum mechanics may be employed to pre-

dict the physical properties of functional materials. Particularly, this work has been dedicated to

employing Kohn-Sham Density Functional Theory (DFT) for modeling materials that are of core

interest in condensed matter physics, chemistry and materials science. We present computational

studies of different ternary transition metal chalcogenides with potential applications in solid-state

devices. Concretely, we studied a family of bulk chalcogenide semiconductors, with promising prop-

erties for optoelectronic and photovoltaics, and we provided a theoretical perspective on the physics

of a family of niobium telluride monolayers with potential applications in quantum devices.

We began with a systematic investigation of the sodium molybdenum selenide, Na2MoSe4. At the

molecular level, Na2MoSe4 is isotypical to the well-known compound sodium molybdate (Na2MoO4),

however it’s extended structure remained undisclosed. Through the joint use of DFT with the data-

mining + ionic substitution method, we identified the energetically stable phase of the compound

in the solid state. At equilibrium, Na2MoSe4 crystallizes in a primitive orthorhombic lattice (oP )

and satisfies the symmetry of the Pnma space group. This is evidenced by thermodynamics based

on DFT total energies, which further reveals that crystalline Na2MoSe4 is isotructural to a dozen

chemically analogous compounds that have been experiemtally realized. Furthermore, we demon-
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strated through the performance of Meta-GGA calculations that Na2MoSe4 is a direct bandgap

semiconuctor, with an Eg of 0.53 eV located exactly at Γ. Additional to it’s moderately narrow

bandgap, the effective masses for the electron quasi-particles around Γ indicate that it is a suitable

candidate for infrared or high-speed optoelectronics. Finally, Na2MoSe4 can be seen as a protoypical

A2MX4 material, meaning that the fundamental properties of the sodium compound can provide

qualitative insight into the general electronic structure of it’s inorganic isostructures.

Being ours the first report on the ground state properties of Na2MoSe4, we highlight some

opportunities for future research. First, Density Functional Perturbation Theory may be used to

characterize the semiconductor’s vibrational spectra, such as Raman or Infrared. Furthermore,

finite-temperature simulations of Na2MoSe4 via ab-initio Molecular Dynamics could provide insight

into the compound’s ionic-transport properties as well as it’s thermal stability.

To further understand the ground state properties of alkali-ion transition metal chalcogenides,

we go beyond the case of Na2MoSe4 and begin a preliminary theoretical investigation of related

materials. From a first-principles standpoint, we investigate the ground state properties of a family

of inorganic compounds with oP (Pnma) symmetry and formula A2MX4, where A = K+, Rb+,

Mo+ ; M = Mo, W ; and X = S−, Se−. We study a total of a dozen compounds, of which nine

have been synthesized and three are predicted in this work. Here, our objectives were to determine

suitable simulation conditions as well as disclosing their electronic properties. First, we discussed

why standardizing simulation conditions is challenging for sets of different compounds, and how

imposing a "one size fits all" approximation will have a significant effect in the rigor and accuracy

of the calculated properties. Particularly, this can lead to false theoretical ground states, which can

be identified by volumes that deviate from the experimental values. We have determined that the

PBE-D2 approximation using ultra-soft pseudopotentials is reasonably successful at reproducing the

experimental volumes of the nine synthesized compounds.

Second and most importantly, we demonstrate that A2MX4 is a family of direct bandgap semi-

conductors, with values of Eg suitable for applications in photovoltaics and optoelectronics. The
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predicted bandgaps at the GGA level of theory are between the orders of 0.7 ≤ Eg ≤ 2 eV, meaning

that the compounds have moderate to wide bandgaps. It is important to realize that the values for

Eg presented here are underestimated, for which Meta-GGA computations are in preparation to ob-

tain predictive values. Also, we encourage further studies to investigate thermal stability by means

of AIMD and compute the absorbance coefficients. Our work is intended to serve as a catalogue for

experimentalists who may find these compounds interesting, and a starting point for future studies

focused on defect physics.

On the other limit, we have taken a predictive approach to propose novel two-dimensional materi-

als for potential applications in quantum devices. Inspired by the recent emergence of 2D magnetism

and the increasing attention to Dirac materials, we combine chemical induction with physical rigor

to model NbMTe2 monolayers, where M is a magnetic element - Fe, Co or Ni. Starting with the

experimental bulk structures, we simulate the effect of mechanical exfoliation by studying the change

in energy as a function of interlayer distance. We discover that van der Waals inter-layer attraction

vanishes for separations larger than 5 Å. The formation of the three monolayers is energetically

favored, with formation enthalpies comparable to those of their bulk structures. Furthermore, a

combinatorial investigation of spin-states reveals that 2D-NbFeTe2 is a identified as a robust ferro-

magnet, with a magnetic moment of 2 µB per Fe atom and a Curie temperature of 205 K as predicted

by mean field calculations. The three materials are 2D metals with significant spin-orbit coupling,

with NbNiTe2 having a particularly interesting electronic structure as it shows a band anti-crossing

exactly at the Fermi level, and one in its vicinity, which may possibly be tuned via defect physics.

The gap at this so-called Dirac cone is of 6.6 meV. The band structure and non-magnetic nature

of Nickel Niobium Telluride makes it a potential Topological material. In the future, we aim to

investigate the materials through the lens of topological quantum chemistry. Additionally, we rec-

ognize that relative stability is not sufficient to argue that a material is absolutely stable, therefore

dynamical stability is currently being studied within the framework of Density Functional Pertur-

bation Theory. Additionally, Coulomb correlation effects are being investigated via DFT+U , where
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U is a Hubbard-like potential. To truly characterize the magnetic properties of these materials and

obtain predictive values for TC , we aim to perform Monte Carlo simulations of the 2D Ising model

on NbFeTe2.
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A : Supplemental information for

Chapter 3

A.1: Hypothetical structures of Na2MoSe4

Table 6.1: The 21 candidate have been made publicly available on the https://materialsproject.org/.
This table includes the numBer of candidate, structure predictor ID (SP-ID), the predicted Space
Group and the number of sites within the unit cell.
No. SP-ID Space Group Sites
1 851288 Fd− 3m 14
2 851289 Fddd 14
3 851293 Pnma 28
4 851302 C2/m 14
5 851313 R− 3 42
6 851319 P32 126
7 851324 C2/m 14
8 851349 C2/c 14
9 851350 I41/amd 56
10 851351 R− 3 42
11 851354 C2/m 14
12 851355 Cmcm 14
13 851356 Pnma 28
14 851360 Cmmm 7
15 851361 Pccn 28
16 851362 Fmmm 7
17 851363 Pbam 14
18 851364 Pbca 28
19 851368 Pbcn 28
20 851369 P21/c 56
21 851376 Pnma 28
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A.3: Optimized atomic positions of oP Na2MoSe4

Table 6.2: Atomic positions in crystal(fractional) coordinates of optimized Na2MoSe4 with lattice
vectors: a = 9.1199998856x̂, b = 6.6931681633ŷ, c = 11.8195199966ẑ. These values are taken from
the Quantum ESPRESSO input file.
Atom x y z

Na1 0.938425369 0.250000000 0.861179401
Na2 0.061574638 0.749999982 0.138820589
Na3 0.561574631 0.749999982 0.361179361
Na4 0.438425290 0.250000000 0.638820599
Na5 0.646825796 0.250000000 0.120218676
Na6 0.353174204 0.749999982 0.879781324
Na7 0.853174204 0.749999982 0.620218676
Na8 0.146825796 0.250000000 0.379781324
Mo1 0.238271427 0.250000000 0.057999873
Mo2 0.761728600 0.749999982 0.942000127
Mo3 0.261728573 0.749999982 0.557999833
Mo4 0.738271400 0.250000000 0.442000127
Se1 0.996194296 0.250000000 0.122790474
Se2 0.003805779 0.749999982 0.877209526
Se3 0.503805757 0.749999982 0.622790474
Se4 0.496194191 0.250000000 0.377209526
Se5 0.362791152 0.982838354 0.133865255
Se6 0.637208796 0.017161668 0.866134755
Se7 0.137208848 0.017161668 0.633865245
Se8 0.862791204 0.982838354 0.366134755
Se9 0.637208796 0.482838390 0.866134755
Se10 0.362791152 0.517161681 0.133865255
Se11 0.862791204 0.517161681 0.366134755
Se12 0.137208848 0.482838390 0.633865245
Se13 0.265255025 0.250000000 0.862531221
Se14 0.734744949 0.749999982 0.137468820
Se15 0.234744975 0.749999982 0.362531180
Se16 0.765255051 0.250000000 0.637468820
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A.4: Additional band structures

Figure 6.1: Electronic band structure of Na2MoSe4. Comparison between PBE, PBEsol, PBE+SOC
and PBE+U in (a), separated intro PBE/PBEsol in (b) and PBEsol/PBEsol+U in (c).
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Appendix B: Supplemental

information for Chapter 5

B.1: Determination of magnetic ground states

Figure 6.2: Cartoon top-view of NbMTe2. We identify the M atoms I, II, III, and IV corresponding
to the probed spin-state.

As mentioned in Chapter 5, multiple spin-states were studied to determine the magnetic ground

state of the NbMTe2 monolayers. In total, there exist sixteen (16) possible spin-states, but due

to periodicity these can be reduced to eight unique spin-states or magnetic orderings. For the

8 magnetic orderings, we performed SCF total-energy calculations with the convergence criteria

mentioned in the computational details section of Chapter 5.

The total energies in the former table 6.3 are in Rydberg constant units [Ry]. Here, in Figure

6.3, we explicitly show the system’s E as a function of the spin-states in eV.
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Table 6.3: Initial magnetic orderings (M.O.) probed used in total energy computations for each
NbMTe2 to determine the magnetic ground state. Total energies are truncated to the third significant
digit, and are listed un Rydberg constants [Ry].

No. M.O. Label E(NbFeTe2) [Ry] E(NbCoTe2) [Ry] E(NbNiTe2) [Ry]
1 ↑↑↑↑ FM -2129.610 -2276.847 -1514.861
2 ↑↑↑↓ AFM1 -2129.578 -2276.847 -1514.861
3 ↑↑↓↑ AFM2 -2129.579 -2276.839 -1514.861
4 ↑↑↓↓ AFM3 -2129.590 -2276.848 -1514.861
5 ↑↓↑↑ AFM4 -2129.590 -2276.848 -1514.861
6 ↑↓↑↓ AFM5 -2129.590 -2276.848 -1514.861
7 ↑↓↓↑ AFM6 -2129.590 -2276.848 -1514.861
8 ↑↓↓↑ AFM7 -2129.577 -2276.840 -1514.861

B.2: Mean field calculation of Curie temperature

Physical constants: 1 Ry = 13.605 eV (let ε = 13.605)kB = 8.617× 10−5eV ·K−1

First, we obtain the FM and AFM energies from DFT in eV per formula unit [eV/f.u.]:

EFM = E0 + Eex = (−2129.61082946/4)× ε (6.1)

EAFM = E0 + Eex = (−2129.59000762/4)× ε (6.2)

(6.3)

Then,

∆E = EFM − EAFM , (6.4)

such that Eex = 1/2(EFM − EAFM ) =-0.03541 eV , while

Eex = −2zJS2 (6.5)

where we define z and S as 1 and 2, respectively. Therefore, we solve for J as

J = − Eex
2zS2 . (6.6)
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Figure 6.3: Total energy in eV per formula unit (f.u.) as a function of the magnetic configuration
of the NbMTe2 compunds. The iron, cobalt and nickel compounds are shown in (a), (b), and (c)
respectively. The magnetic configurations are labeled according to Table 5.1.

Once we have J , (J = 0.0044 eV), we simply compute TC via the equation

TC = 2zJ [S(S + 1)]
3kB

(6.7)

yielding a value of 205 K. The raw computations can be found in the python notebook uploaded

to the author’s github repository in [46].
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