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Abstract
An experimental and theoretical study of electromagnetically driven laminar vortical flows at a millimetric scale in
a shallow layer of electrolyte is presented. The force that sets the electrolyte in motion is the Lorentz force, which
is generated by the interaction of applied direct electric currents and the magnetic field distribution due to one
and several dipolar permanent magnets. The flow is analyzed inside a region of approximately 10 mm × 10 mm.
Velocity fields are obtained at the free surface using particle image velocimetry in a planar configuration parallel
to the bottom wall. Streamlines are obtained experimentally by tracking particles at the free surface through long
exposure photographs. The experimental results are qualitatively compared with a two dimensional (2D) numerical
simulation which for simplicity ignores the friction from the bottom wall in the small depth (1 mm) electrolyte
layer, and to an analytical solution derived from an asymptotic expansion that uses a point dipole expression to
replicate the magnetic field distribution. The numerical simulation uses an analytical expression to replicate the
non–uniformity of the experimental magnetic field distribution, resulting in accurate comparisons. The aspect ratio
of the horizontal extent of the electrolyte layer to its vertical depth is large, which justifies the 2D model and allows
for a reasonable approach. On the other hand, the point dipole expression limits the capacity of the analytical
solution to completely replicate vortex interactions. However, it is able to capture the main characteristics of the
experimental results such as the distribution of the vortices with respect to the magnetic field source. The numerical
results show a good qualitative agreement with the experimental observations.

Vorticity fields are obtained, which reveal strong velocity gradients over millimetric length scales. The
electromagnetic interactions owing to complicated magnetic field distributions produce symmetrically intriguing
and interesting flow patterns whose dynamics cannot be easily anticipated. Contrarily, simpler structured magnetic
field distributions generate symmetrical flow patterns whose flow field can be quickly predicted. Owing to
the weak strength of the Lorentz force and to the millimetric confinement of the shallow electrolyte layer, the
time–independent laminar flow under study is characterized by a small Reynolds number.
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Resumen
Se presenta un estudio experimental y teórico de flujos de vórtices forzados electromagnéticamente en una escala
milimétrica en una capa delgada de electrolito. La fuerza que genera movimiento en el electrolito es la fuerza
de Lorentz, la cual es generada por la interacción de corriente directa impuesta, con la distribución del campo
magnético debido a uno y varios imanes dipolares permanentes. El flujo es analizado dentro de una región de 10
mm × 10 mm aproximadamente. Se obtienen campos de velocidad en la superficie libre utilizando velocimetría
de imágenes por partículas en una configuración cuyo plano es paralelo a la pared del fondo. Se obtienen líneas
de corriente experimentalmente mediante el trazado de partículas en la superificie libre utilizando fotografía de
larga exposición. Los resultados experimentales se comparan cualitativamente con una simulación numérica
bidimensional (2D), que por simplicidad ignora la fricción de la pared del fondo en la capa de electrolito de baja
profundidad (1 mm). También se comparan con una solución analítica derivada de una expansión asintótica que
utiliza una expresión de dipolo puntual para replicar la distribución del campo magnético. La simulación numérica
utiliza una expresión analítica para replicar la distribución no–uniforme del campo magnético experimental, lo cual
resulta en comparaciones precisas. La razón de aspecto es grande respecto a la dimensión horizontal de la capa de
electrolito sobre la profundidad vertical, lo que justifica el modelo 2D y da lugar a una aproximación razonable.
Por otro lado, la capacidad de la solución analítica para replicar completamente la interacción de los vórtices se ve
limitada por la expresión del dipolo puntual. Aun así, logra capturar las características principales de los resultados
experimentales, tal como la distribución de los vórtices con respecto al origen del campomagnético. Los resultados
numéricos demuestran una comparación cualitativamente aceptable con las observaciones experimentales.

Se obtienen campos de vorticidad donde se revelan fuertes gradientes de velocidad a lo largo de distancias
milimétricas. Las interacciones electromagnéticas producidas por distribuciones complicadas de campomagnético,
generan patrones de flujos simétricos intrigantes, e interesantes cuya dinámica no puede ser fácilmente anticipada.
Por el contrario, distribuciones de campomagnéticomás simples, generan patrones de flujos simétricos cuyo campo
de flujo puede ser rápidamente predicho. Debido a la intensidad débil de la fuerza de Lorentz y al confinamiento
milimétrico de la capa delgada de electrolito, el flujo independiente del tiempo bajo estudio se caracteriza por un
número bajo de Reynolds.
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Chapter 1

Introduction
Magnetohydrodynamics (MHD) is the field of physics and engineering that studies the coupling between fluid
dynamics and electromagnetism. The coupling of these two concepts describes the interaction of electrically
conducting (non–magnetizable) fluids and magnetic fields, where the fluids concerned can be plasmas, liquid
metals, or electrolytes.

In geophysical and astrophysical phenomena a magnetic field arises naturally, as occurs in Earth’s molten core
which originates what is known as the geodynamo. The dynamo theory of the earth argues that convective and
buoyancy motions in the liquid core induce electrical currents that consequently create an induced magnetic field.
In the solar context, on the other hand, sunspots and solar flares are a manifestation of the solar magnetic field.

Artificial magnetic fields generated by means of an electromagnet or a permanent magnet find a wide spectrum
of applications for the use of conducting fluids in laboratory and industry. Industrial applications of MHD include,
for instance, the heating, stirring, mixing, and pumping of conducting liquids, among other processes. Common
practices in metallurgy involve the use of magnetic fields to transport molten metal through conveyor belts; the
use of induced currents for magnetic damping of jets and vortices; and the use of rotating magnetic fields to
homogenize casts, with the ultimate goal of getting high quality products of fine grain and very little or no porosity
at all. In nuclear fusion, MHD has a prominent role in plasma confinement using superconducting magnets, as
well as in the heat extraction based in liquid metal blankets (Bühler 2007). The chemical industry uses MHD
for electrochemical processing of materials and to study transport phenomena of chemical species. The field of
microfluidics has also benefited in the past decades by several MHD applications (Qian et al. 2002), some of which
have been of interest to the biomedical community such as actuation devices, micromixers and sensors (Stanley
et al. 2016). These are particularly useful in applications suited for Lab–On–A–Chip (LOC) technology, which
requires the least amount of working parts for highly specialized processes such as cell sorting and point–of–care
diagnostics (Khoshmanesh et al. 2017).

Electromagnetic forces have been extensively used to generate vorticity, which is fundamental in many transport
processes over a wide range of scales, and can take place in natural phenomena and technological applications.
The generation of vorticity is diverse, it can be due to natural agents such as the wind, marine currents, or Earth’s
rotation. On the other hand, artificially generated vorticity with different mechanisms is common in several
industrial applications. On the geophysical scale, where most events are related to a turbulent regime, ocean
vortices, which are a fundamental ingredient for the continuity of life, are found dispersed throughout the world.
These vortices can develop radiuses on the hundreds of kilometers and can last for days, months or even years.
Among their vital functions, one of their main purposes is to transport heat throughout Earth’s oceans. They also
distribute salt, nutrients, chemicals and other biological substances and, to some degree, determine our climate and
sustain worldwide ocean circulation (Thompson & Robb McDonald 1999). However, vortices can be troublesome
at times. This is the case of tornadoes and hurricanes which can have disastrous consequences while their full
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understanding is still an open scientific challenge. On the other hand, airplanes produce long–lived wake vortices at
take off and landing. These trailing wakes span for hundreds of meters and are dangerous for airplanes behind them.
This means pilots have to distance themselves substantially in order to avoid the turbulence and destabilization,
which in turn hinders the growth of air traffic (Schöll et al. 2010). On a much smaller scale, at a creeping flow
regime that is frequently related to highly viscous flows, vortex formations are also common in the biological
context. Rossen et al. (2014) reported experimental and numerical vorticity patterns, which were the result of
long–range interactions in tissue flows owing to the process of endothelial cell division. Vortical structures are
ubiquitous in nature and many present a high degree of complexity. In fact, looking at a coffee cup with a drop of
milk while it is stirred will reveal how intricate vortices can be.

It is important to clarify that stirring and mixing are related operations but they are not the same. Stirring can be
understood as an induced circulating motion of a fluid without diffusion. On the other hand, mixing is concerned
with concentration gradients. According to Villermaux (2019), mixing is the operation by which a system evolves
from the initial segregation of the constituents to their complete uniformity. Thus, mixing affects concentration
homogeneity at a molecular scale. Although mixing can be reached without stirring, say a in a quiescent fluid, it
is through stirring that a mixture can reach a higher level of homogeneity faster. Stirring can be handled in such a
way that a reversible process can be achieved (see figure 1.1), whereas mixing is considered to be an irreversible
phenomena (Villermaux 2019).

(a) (b) (c) (d)

Figure 1.1: Laminar flow between axially concentric cylinders. In (a) the gap is filled with glycerol and the colored drops
are colored tracers; (b) a very slow clockwise turning of the inner cylinder forms the drops into laminar layers; (c) the inner
cylinder is cranked counterclockwise with the same amount of turns; (d) although slightly deformed, the drops recover their initial
shape. The snapshots were taken from a YouTube video of the University of New Mexico’s Physics and Astronomy Department:
https://www.youtube.com/watch?v=p08_KlTKP50

Electromagnetic forces, originated from the interaction of electric currents andmagnetic fields, can be efficiently
used to generate motion in electrolytes and liquid metals. Owing to their non–intrusive nature, these rotational
forces, usually known as Lorentz forces, are able to produce stirring and consequently to generate vorticity in
electrically conducting fluids without mechanical parts in contact with the working fluid. Electromagnetic forcing
has been used experimentally in shallow layers of liquid metal to produce mixing (Sommeria 1988). Stirring
has been produced experimentally using eccentric cylinders with two pairs of circular electrodes under an axial
magnetic field (Yi et al. 2002). More recently, electromagnetic forcing has been applied to shallow layers of
electrolyte in two–layer configurations to study free surface flows and three–dimensional effects (Martell et al.
2019; Tithof et al. 2018).

In the present work, electromagnetic stirring is used to produce vorticity patterns in shallow electrolyte layers
with very low Reynolds numbers using different magnet configurations in a cell with millimetric dimensions. Low
Reynolds numbers are associated to laminar flows, for this reason, the electrolyte is forced in a small scale cell
with characteristics that confine the flow to a narrow region, and the injected current is limited to an intensity that

https://www.youtube.com/watch?v=p08_KlTKP50
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is in accordance with the low Reynolds number character of the flow (see figure 1.2).

Magnet

Plexiglass

Glass slide
Copper electrodes

Figure 1.2: MHD cell. The millimetric–scale graph allows to visualize the size of the magnet and cell. In the actual
experiment, the lower bottom of the glass slide was painted with a coat of mate black paint to enhance contrast.

A rectangular cell of 60 × 25 mm and 3 mm height made of glass was used with two copper electrodes 65 mm
long placed in the longer side. The electrolyte is a mixture of water and sodium bicarbonate at 8.6% in weight.
Permanent dipole magnets of 1.5 mm diameter made of a neodymium alloy were used. The magnets are axially
polarized, thus their main component is on the vertical axis. The magnets are configured into geometrical shapes
and positioned underneath. The uniform current is regulated using a DC constant voltage source and flows through
the electrolyte from one electrode to the other. The visualizations are performed using topside illumination only
with LED lamps, and the camera is positioned atop the cell. The flow is tracked using hollow glass spheres of
∼ 10 µm diameter. The tracers are recorded using a digital camera and a lens with a focal length of 105 mm
to get a naturally narrow field of view of the experiment. The experimental results are obtained using Particle
Image Velocimetry and long exposure photography. Two main drawbacks of this configuration were the effect
of electrolysis owing to the use of a DC source, and particle aggregation due to particle interactions at the free
surface. However, as will be shown, the results were satisfactory. It is expected that in further experiments, the
results can be compared quantitatively, and that the experiments can be realized using a constant current source.

The aim of this thesis is to explore electromagnetically driven low Reynolds number flows at millimetric
scale and to qualitatively compare time–independent experimental flows with results from a numerical simulation
and analytical solutions. While in the experiment a cylindrical magnet is used, the simulation makes use of an
expression implemented for magnetized square surfaces, and the analytical solution uses an expression for a point
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dipole magnet. The latter has certain limitations which lead to a coarse representation of the general flow. On the
other hand, the experiment and the simulation deliver favorable results that are in very good qualitative agreement.
One of the characteristics of the flows explored in the present work is the great symmetry in the vorticity patterns
that are obtained (see figure 1.3).

Figure 1.3: Streamlines generated by six magnets arranged in the shape of a hexagon.

Experimental velocity fields as well as velocity and vorticity maps were comparedwith numerical and analytical
results. The velocity maps help to identify useful regions for a wide range of applications. In fact, the velocity
fields give account of magnet misalignments which introduced asymmetry into the results, also appreciated in the
velocity maps. In addition, interesting features can be observed through the study of vorticity maps. In our case,



5

the voltage is kept low so that temporal dependent flows can be discarded. As is expected, a single magnet produces
a dipolar vortex; on the other hand, multiple magnets produce complicated dynamics but interesting flow patterns.

The work is structured as follows. In Chapter 2, the mathematical formulation of the thesis is described.
The equations of viscous flow are coupled with the Lorentz force term to derive the system of equations used to
describe the MHD flow. The non–dimensionalization and the main assumptions are also presented. In Chapter 3,
the experimental procedures are detailed. Then, in Chapter 4 the analytical solutions to the MHD problem are
obtained for the multiple magnet configurations. Finally, a purely two–dimensional numerical model is derived
using a second order finite differences method. This model ignores the friction from bottom wall. The results are
presented in Chapter 5 offering an explanation and highlighting some relevant experimental observations. As will
be seen, the comparisons are satisfactory in qualitative terms. Finally, the conclusions and future work are shown
in Chapter 6.
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Chapter 2

Problem formulation
This chapter includes three sections in which the physical principles and the mathematical equations used to
describe the physics of the experiments in this thesis are presented. The first section introduces the Navier-Stokes
equation and the continuity equation which are used to describe the flow of viscous fluids. The second section
presents the equations of MHD, emphasizing on the Lorentz force ®� = ®� × ®�, which is the source term that
generates motion of the fluid under study. Then, the equations of viscous flow and the Lorentz force are coupled to
describe the flow dynamics of an electrically conducting fluid subjected to electromagnetic interaction. In the third
section, the equations that govern the low Reynolds number flows of electrically conducting fluids are introduced
in non–dimensional form. Moreover, the low magnetic–Reynolds number approximation ('< � 1) is satisfied
because the conductivity of most electrolytes is very weak compared to that of liquid metals, making all induced
effects owing to the motion of the electrolyte under the applied magnetic negligible.

2.1 Equations of viscous flow
When the volume of a fluid remains unchanged, the fluid is said to be incompressible, and thus its density can
be considered constant. The electrolyte used in this work is assumed to be of constant density, and therefore, the
equation of continuity is simply

∇ · ®D = 0, (2.1)
where ®D is the velocity field vector, which is in general a spatiotemporal dependent vector.

For a Newtonian fluid, like most electrolytes and liquid metals are, the fluid is governed by the Navier–Stokes
equation, that is,

m ®D
mC
+ ( ®D · ∇) ®D = − 1

d
∇% + a∇2 ®D + 1

d
®5 , (2.2)

where d is the density of the fluid, % is the pressure field, a is the kinematic viscosity of the fluid, and ®5 is a vector
representing any body force that acts upon the fluid.

The motion of the fluid considered in this work is produced by electromagnetic stirring, that is, due to a force
created by the interaction of an applied electric current and an imposed magnetic field, which we call the Lorentz
force.

2.2 Ohm’s lawand theLorentz force in a continuousmedium
The field of electrodynamics has an extensive theory and numerous applications, particularly those related with the
interaction of electrically conducting fluids and electromagnetic fields. In this section, we summarize the physical
laws that lead to the derivation of the Lorentz force in a continuous conducting medium.

7



2.3. EQUATIONS OF MAGNETOHYDRODYNAMICS 8

A charged particle @ moving with velocity ®D inside a magnetic field ®�, will be, in general, subject to three
electromagnetic forces ®5 = @( ®�B + ®�8 + ®D × ®�). The first term @ ®�B , is the electrostatic force that arises from the
mutual repulsion or attraction of electric charges. In the second term, @ ®�8 is the force experienced by the charged
particle in the presence of a time varying magnetic field, where ®�8 is the induced electric field due to the changing
magnetic field. The third term @( ®D × ®�) is the magnetic force, which arises from the movement of the charged
particle inside a magnetic field ®�. For convenience, the total electric field shall be defined as ®� = ®�B + ®�8 , and ®5
can be rewritten as

®5 = @( ®� + ®D × ®�), (2.3)

which is conventionally referred to as the Lorentz force that acts on a charged particle moving through a magnetic
field (Davidson 2017).

In the case of a stationary electrical conductor, the current density ®� will be proportional to the force experienced
by the free charges, and this can be expressed through Ohm’s law as

®� = f ®�, (2.4)

where f is the electrical conductivity of the material and ®� is the electric field in a fixed frame of reference, that
is, a frame in which the charges are instantaneously at rest. For the case of a fluid moving with velocity ®D with
respect to the laboratory frame, Ohm’s law takes the form

®� = f( ®� + ®D × ®�), (2.5)

where the fields in the fixed and laboratory frames are related by

®�∗ = ®� + ®D × ®�. (2.6)

Magnetohydrodynamics is primarily concerned with the bulk force acting on the continuous medium, rather than
the forces affecting individual charges. Taking the sum over a unit volume of the conductor from equation (2.3),∑
@ becomes the charge density d4,

∑
@ ®D becomes the current density ®�, and equation (2.3) now becomes the

volumetric Lorentz force
®� = d4 ®� + ®� × ®�, (2.7)

where ®� is the electromagnetic force per unit volume acting on the conductor. However, when working with fluids
such as electrolytes driven by the interaction of electric currents and applied magnetic fields, the first term of
equation (2.7) is negligible (Figueroa et al. 2009), hence the force takes the simplified form

®� = ®� × ®�, (2.8)

which is generally known as the Lorentz force.

2.3 Equations of magnetohydrodynamics
The motion of liquid metals and other working fluids of high electrical conductivity under the interaction of
strong magnetic fields will give rise to induced electrical currents that in turn modify the applied magnetic field.
Then, the total current density, ®�, and the total magnetic field, ®�, will be the sum of the applied plus the induced
contributions, that is, ®� = ®90 + ®9 8 , and ®� = ®�0 + ®1 respectively, where ®90 and ®�0 are the applied current density
and magnetic field, while ®9 8 and ®1 are the induced contributions. However, when working with electrolytes whose
electrical conductivity is very small compared to that of liquid metals, all induced effects related to the motion of
the conducting fluid under an applied magnetic field are negligible (Figueroa et al. 2009). There are two important
dimensionless parameters that play an important role in MHD, the Hartmann number and the magnetic Reynolds
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number. The Hartman number, defined as �0 = 3�0

√
f/da, estimates the ratio of the magnetic forces and the

viscous forces, while the magnetic Reynolds number, '< = `0f*03, estimates the ratio of the magnetic field
induced by the electric currents and the applied magnetic field, where 3 is a characteristic length of the flow. In our
experimental problem, due to the small scale and the low electrical conductivity of the electrolyte, both parameters
are much less than unity. It can be shown (Figueroa et al. 2009) that under these conditions all induced effects can
be neglected, therefore, it is not necessary to consider the whole set of electromagnetic equations coupled with the
fluid dynamic equations.

In problems where electrolytes are driven by Lorentz forces created by the interaction of injected electric
currents and applied magnetic fields, as it is the case in the present study, it is sufficient to include this force in the
equations of motion to consider the full electromagnetic interaction. In fact, this force is completely known since
both the injected electric current and the applied magnetic field are given from the beginning.

In order to describe the flow of an electrolyte, the last right hand term of equation (2.2) must be substituted
with the Lorentz force in the form of equation (2.8) to take into account the effects of the applied body force. As
follows, the Navier–Stokes equation becomes

m ®D
mC
+ ( ®D · ∇) ®D = − 1

d
∇% + a∇2 ®D + 1

d
( ®� × ®�), (2.9)

which must be complemented by the continuity equation (2.1).

2.3.1 Non–dimensionalization
We now proceed to express in dimensionless terms the governing equations of motion, assuming that the properties
of the electrolyte such as the density, viscosity and electrical conductivity are constant and known for the working
fluid. In addition, the injected current density ®90 and the applied magnetic field, ®�0, are parameters controlled
externally that modify the outcome of the experiment. With this premise, a dimensional analysis using the following
variables was performed, where subscript ()0 in the variables represents a characteristic value and superscript ()∗
denotes a dimensionless variable:

®D∗ = ®D
D0
, %∗ =

%

dD20
, ®G∗ = ®G

3
, C∗ =

C

32/a , D0 =
a

3
, ∇∗ = ∇3, ®�∗ =

®�
�0
, ®�0 =

®�
�0
.

The characteristic magnetic field �0 is generally depicted as �< which represents the maximum magnetic field
intensity offered by the permanent magnet used. The characteristic length of the system is 3, which in our case is
the size of the magnet and D0 = a/3 is a viscous velocity.

By substituting the non–dimensional variables in equations (2.1) and (2.9), and dropping the asterisk notation
()∗ for simplicity, the following system of non–dimensional equations is obtained:

∇ · ®D = 0, (2.10)

m ®D
mC
+ ( ®D · ∇) ®D = −∇% + ∇2 ®D + '4( ®�0 × ®�0), (2.11)

∇ · ®�0 = 0, (2.12)

∇ × ®�0 = 0. (2.13)

Equation (2.10) expresses the conservation of mass; equation (2.11) describes the balance of momentum with the
Lorentz force as the main body force; equation (2.12) expresses the solenoidal nature of the applied magnetic field;
and equation (2.13) depicts the irrotational character of the applied magnetic field.



2.3. EQUATIONS OF MAGNETOHYDRODYNAMICS 10

The Reynolds number, '4 = *03/a, in equation (2.11) estimates the ratio of convective forces to viscous
forces. It is important to recall that in equation (2.9), the balance of viscous and electromagnetic forces results in
|a∇2 ®D | ∼ |( ®� × ®�)/d |. From this balance, the order of magnitude relation a*0/32 ∼ �0�0/d is obtained, which
results in *0 = �0�03

2/da, where *0 is the characteristic velocity that results from the balance of viscous and
Lorentz forces.

2.3.2 Two–dimensional (2D) approximation
There are a number of reasons as to why a fluid dynamics experiment can be studied using a 2D approach in a
3D world. For a homogeneous fluid under angular rotation, motions parallel to the axis of rotation (out–of–plane)
are suppressed by the constraint of the rotating motion. When the fluid is stratified under a gravitational field,
fluid motions will be inhibited due to the work that must be done to overcome the force of gravity (Veronis 1970).
Additionally, in liquid metal flows, imposed magnetic fields tend to destroy gradients of velocity ®D parallel to ®�.
This happens when fluid motion across magnetic field lines induces a current, leading to a rise in thermal energy
owing to Joule dissipation, which in turn causes the extinction of mechanical energy (Davidson 2017). In the case
of the experiments in the present work, the aspect ratio of the horizontal extent to the vertical depth is large, which
makes two–dimensionality a reasonable approach.

Taking these considerations into account, a 2Dmodel was chosen which ignores any dependence on the vertical
I coordinate, so the velocity field is now ®D = [D(G, H, C), E(G, H, C), 0]. The applied magnetic field is also assumed
to be independent of the I coordinate, making ®� = [0, 0, �0

I (G, H)]. The applied current that flows across the G
coordinate is uniform, which in dimensionless terms is taken as 90G = 1. Therefore, under this approximation, the
system of equations that governs the motion of the electrolyte acted by the applied Lorentz force is the following:

mD

mG
+ mE
mH

= 0, (2.14)

mD

mC
+ D mD

mG
+ E mD

mH
= −m%

mG
+ m

2D

mG2
+ m

2D

mH2
, (2.15)

mE

mC
+ D mE

mG
+ E mE

mH
= −m%

mG
+ m

2E

mG2
+ m

2E

mH2
− '4�0

I . (2.16)

This system of equations will be used in Chapter 4 to obtain approximate analytical and numerical solutions of the
electromagnetically driven flow of interest.



Chapter 3

Experimental
methodology
In this chapter, the characteristics of the experimental setup and methodology are described. The experiment was
designed to stir an electrolyte at a millimetric scale using the Lorentz force, which was generated by the interaction
of an electric current and the magnetic field created by one or more permanent magnets. The first section offers a
general introduction of the experimental stage. The second section describes the characteristics of the experimental
cell and the essential components involved in the experiments, such as the magnets and the composition of the
electrolyte. Finally, the last sections describe the particle image velocimetry procedure, which is used to obtain
velocity fields by tracking particle tracers in the flow, and the long exposure photography procedure, which is used
to capture the streamlines traced by the particle tracers.

3.1 Introduction

Both theoretical and laboratory groundwork regarding electromagnetically driven vortices of electrolyte in shallow
layers were initially performed twenty years ago by Salas et al. (2001) in the fluid mechanics group at the Centro
de Investigación en Energía (CIE) [IER in the present time]. In their experiment, black and white photographs
(see figure 3.1(a)) were captured of the flow pattern developed after applying a steady electrical current inside a
40 cm × 20 cm × 2 cm plexiglass box. Further experiments and numerical simulations for similar configurations
were carried out by Figueroa et al. (2009) (see figure 3.1(b)), where a 28 cm × 36 cm × 1.6 cm plexiglass and
glass box was built in order to analyze depth-dependent velocity profiles using particle image velocimetry. Both
configurations involved a permanent magnet of about 2.5 cm of diameter under the bottom wall.

In order to compare the theoretical and experimental results, several parameters are needed, mainly a charac-
teristic length 3 (typically the diameter of the magnet), the depth of the electrolyte layer ℎ, the applied electric
current in mA, the Re number and the volume of fluid in cm3. In the present study, the size of experimental setup
was lowered in an order of magnitude with respect to previous experimental analyses. A magnet of 1.5 mm in
diameter was used, and the domain of the flow under observation was drastically reduced to a millimetric scale in
order to visualize flow patterns inside a 10 mm × 10 mm region. This information is summarized in table 3.1.

11
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(a) (b)

Figure 3.1: (a) Dipolar flow pattern obtained by Salas et al. (2001) using DC current. (b) Experimental dye visualization of
a steady dipolar vortical structure generated with DC current by Figueroa et al. (2009).

Table 3.1: Experimental parameters† from previous works.

d [cm] h [cm] domain size [cm] mA Re cm3

Salas et al. (2001) 2 0.6 40×20×2 40 to 150 10 480

Figueroa et al. (2009) 1.9 0.4 28×36×1.6 10 to 100 100∗ 400

This work 0.15 0.1 5.4×1.9×0.1 1 to 10 4 1
All experiments were performed using an electrolytic solution of water and sodium bicarbonate. †Units correspond to those
reported in the papers. ∗Approximate value.

The reduction of the domain introduces important effects on the overall experimental conditions, particularly
on the Reynolds number Re, the main parameter which controls the global flow. In fact, note that the last right hand
term of equation (2.11) is proportional to Re = *03/a. Macroscopic experiments in the laboratory will typically
result in values of Re ∼ 103, whereas industrial scale experiments and natural phenomena will result in values of
Re ∼ 106, or even higher for geophysical and astrophysical events. For these reasons, the value of Re deserves
special attention when performing numerical simulations, because very high values will lead to instabilities or
even turbulence. On the other hand, in our normalization the condition Re = 0 corresponds to the absence of the
Lorentz force in equation (2.11) and, therefore, to the absence of motion.

Additional considerations can arise when the domain of the experiment is altered. When working with shallow
layers of electrolyte in a laboratory, the condition of a horizontal extent that largely exceeds the vertical extent must
be satisfied so that a two dimensional approximation can be safely assumed. When the layer is too thick, three
dimensional (3D) effects become relevant and different approaches are needed to describe the dynamics of the
flow. When the layer is shallow, viscous effects from the bottom wall are significant, and these effects will become
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more important as the thickness of the layer decreases.
In spite of this, due to physical conditions, a two dimensional approach will always be exclusively theoretical

as 3D effects are intrinsic to real flow structures (Akkermans et al. 2008; Martell et al. 2019). In the present study,
an electrolyte composed of water and NaHCO3 is used as the working fluid. This solution is characterized by
having low electrical conductivity compared to that of liquid metals and common copper conductors. Therefore,
when applying an electric current, care must be taken to avoid overloading the electrolyte, because one or more
of the following issues may occur: a) direct current flowing across copper electrodes will create an oxidation
byproduct which will detach from the cathode into the electrolyte, turning it into a light green–blue color. In large
cells this will not be an immediate problem, but small cells will quickly saturate with the byproduct, complicating
the visualization and compromising the performance of the experiment. This phenomenon can be lessened using
chromed electrodes (Salas et al. 2001), or by reducing the intensity of the current; b) Joule heating, the phenomenon
through which thermal energy is produced as a result of current flow, will occur (on a much smaller scale) in the
electrolyte; resulting in an electrical conductivity decrease proportional to the Ohmic losses. This phenomenon
may also affect the hardware, for example, steady current sources fix their output by increasing or decreasing the
voltage according to the resistance, as stated by Ohm’s law. In the electrolyte, resistance build–up is expected as
the experiment is in progress, so if the source is unable to sustain the desired output due to insufficient voltage,
then a source with higher capacity will be required, and these are very expensive; c) Working with shallow layers
is commonly associated with laminar flow, and very high currents can lead to destabilization of the flow, making
the flows time–dependent, which can lead to chaos, thereby making experiments non–reproducible, as well as no
longer valid on a purely two–dimensional approach due to the appearance of 3D effects (Kelley & Ouellette 2011).

On the other hand, on a shallow layer, even in the smallest cell, if the input current is too low, the Lorentz
force will be very weak and unable to overcome viscous friction, in turn forcing effects or any flow patterns will
be imperceptible.

3.2 Cell characteristics
A small cell was designed and built in order to visualize flow patterns confined to a region ofmillimetric dimensions.
The cell was an ensemble of magnets, glass, plexiglass and copper (see figure 3.2(a)). The main components of
the cell and a representation of the flow visualization region are shown in figure 3.2(b). The magnets are HKCM®

grade N48 permanent dipolar magnets, made of a neodymium–iron–boron (NdFeB) alloy with a nickel coating
that makes them resistant to humidity. The magnets have a cylindrical shape and are axially polarized, with 1.5
mm diameter and 0.5 mm height. As all magnetic dipoles, the magnets produce a field which decays across the
axial distance from the geometrical center of the magnet to its border circumference.

The glass component is a standard 75 mm × 25 mm × 1 mm microscope glass slide. The brown colored
components are electrodes, 60 mm × 5 mm length and width, and approximately 0.3 mm in height, with 20 mm in
exceeding length on one of the sides to allow the connection between a DC voltage source and the experimental
cell. The top component is a rectangular plexiglass enclosing designed to confine the electrolyte in a pool–like
configuration with a maximum vertical depth of 1 mm, making this the height of the electrolyte layer (see figure
3.2(c)). The dimensions of the pool are then 54 mm × 19 mm × 1 mm.

The electrodes were glued directly on top of the glass slide using Resistol® 911 Flex Gel1 and the plexiglass
confinement sat on top of the electrodes. The electrodes are originally 5 mm wide but only 2 mm came in direct
contact with the electrolyte. This specification originated from the effect of electrolysis: a larger contact area
allowed for more copper oxide production, whereas a smaller contact area helped to reduce this effect. This,
however, did not compromise the experiment due to the low input current.

1After intensive experimentation with many products such as modeling clay, hot glue, UHU®, and Kola Loka® both in its solid and
liquid forms; Resistol® 911 Flex Gel presented impermeability, great resistance to electrochemical wear, and exceptional tolerance to constant
shearing stress induced by wiping and sanding.
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Figure 3.2: Experimental set up†. (a) perspective view of the experimental cell connected to the DC source (not drawn to
scale). The black dashed lines correspond to (b) a representation of the visualization area where the gray dashed lines indicate
an approximate region where the main flow occurs. (c) front view indicating the free surface of the electrolyte layer. The applied
electrical current and magnetic field are denoted by j0 and B0, respectively. The Lorentz force is denoted by F0, where the blue
and red arrows indicate positive and negative polarization of the magnet, respectively. †Refer to appendix A for an annotated
illustration of the experimental cell.

The electrolyte is a solution of water and sodium bicarbonate (NaHCO3) at 8.6% in weight. The components
were placed on a 200 ml beaker and permanently agitated on an electromagnetic stirrer at low speed to prevent
crystallization.

Geometrical magnet arrangements have been previously studied for alternating current on larger cells and
with the objective of visualizing time dependent flows (Figueroa et al. 2011; Figueroa et al. 2014). The present
experiment focused on visualizing the steady state flow. A velocity field for each geometrical arrangement was
obtained by averaging multiple frames per second of footage, and the path of the tracers was captured using long
exposure photography. Experimental results were ultimately compared with analytical and numerical solutions.
The different magnet arrangements are shown in figure 3.3.

(a) (b) (c) (d)
Figure 3.3: Geometrical shapes used to arrange the magnets. (a) center, (b) square, (c) hexagon, and (d) checkerboard–
magnet arrangement. Blue and red represent north and south poles of the magnet, respectively.
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3.3 Particle image velocimetry
Experimental observations using particle image velocimetry, commonly referred to as PIV, can be performed in
multiple ways according to the purpose of the study; in this case we observe the cell only from above in a planar
configuration. Laser light sheets are frequently used to illuminate the desired plane of view. However, given
the experimental characteristics of the small cell in the present study, topside illumination using LED lamps was
adequate.

The LED lamps were supported by laboratory stands, placed along an imaginary axis perpendicular to the
lens with the diameter of the lens acting as the distance separating each lamp. The lamps were placed ad-
jacent to the filter thread, across from each other at a 45° and 135° inclination angle with respect to the
imaginary axis, so that the light beams intersected at a 90° angle directly below the lens (see figure 3.4).
Luminous intensity and light scattering due to the proximity of the lamps with the lens were addressed prag-
matically by dimming the lamps with with white paper sheets. To enhance the contrast of the particles, the
bottom of the glass slide was coated in a uniform layer of mate black paint and the footage was recorded
in an otherwise dark space in order to avoid dispersed light and reflections from the ceiling lamps. Top-
side illumination is adequate in our experimental setup since the area of interest is solely on the free surface.

Lamp Lamp
Lens

Paint coat
Cell

Supports

Stand

Figure 3.4: Lighting setup. The paint coat was overly de-
picted to highlight its place in the experimental setup; its thick-
ness was not determined but was still much thinner than the
height of the magnet (0.5 mm). Given that the glass slide is com-
pletely flat and magnets are glued to the bottom, supports were
placed to guarantee horizontal evenness of the shallow layer.

The flow footage was captured with an HDSLR
type Nikon® D7100 camera which was mounted on a
tripod 12 cm above the fluid layer. Due to the slow
velocity of the flows under study there was no need
for excessive temporal detail, therefore the camera was
adjusted to film at a progressive frame rate of 30 fps
with a resolution of (1920 × 1080) pixels (px). An
AF-S VR Micro-Nikkor 105mm ƒ/2.8G IF-ED lens
was used, where the long focal length was helpful in
obtaining a naturally narrow field of view of the 10
mm × 10 mm region. The aperture of the lens was
fixed at ƒ/5.6 to dim incoming light from the lamps and
to enhance the contrast of the reflected light from the
particles. The depth of field was not determined since
the specific objective of the experiment was placed on
capturing the flow dynamics exclusively at the surface
of the cell, however it is expected to be very shallow,
around an estimated 0.5 mm to 1 mm.

The electrolyte layer was seeded with Dantec
Dynamics® HGS–10 particles, which are hollow

borosilicate glass spheres with a mean particle diameter of 10 µm. The ratio of particles to the volume of
fluid (1 cm3) could not be quantified, therefore, the particles were manually added to the fluid trying to be as
consistent as possible in all the experiments.

Dry particles were seeded to the electrolyte and the tip of a syringe was used to agitate the particles. Then, the
fluid was left still to let it reach a state of rest which happened in about 10 seconds due the high viscous coupling
from the bottom. The relaxation period was also used to let denser particles sediment, which lasted a minute or
more, in an effort to remove them and avoid visual interferences when filming. This strategy also consisted in
suctioning the sedimented particles from the glass floor using the syringe; but the micrometric size of the particles
made it very difficult and the millimetric thickness of the layer immediately decreased while pulling on the plunger.
The sedimentation step of this strategy was ultimately eliminated and instead, the camera was focused exclusively
on the particles at the free surface. At this point, it was noticed that in the short relaxation time of 10 seconds,
particles were forming clusters, and the density of the clusters increased with time. This effect also intensified as
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the electric current was driven through the fluid (see §5.6). It can be hypothesized that particle clusterings were
being caused by surface–tension–driven interactions (Vella & Mahadevan 2005). Although surface tension affects
flow motion at any extent, its effects can be more meaningful at small scales.

For the velocimetry procedure, videos of up to one or more minutes of continuous forcing were recorded and
the camera was controlled electronically through tethered shooting software2. The footage was analyzed on the
computer and 10 seconds were selected for the velocimetry analysis. The first seconds of the transitory phase to
steady flow in the videos were discarded. The time after the 10 seconds intervals were also eliminated from the
analysis because electrochemical effects began to take over the flow and no more movement could be appreciated
(see §5.6).

For each magnet arrangement, 300 image pairs were extracted and were processed with the PIVLab3 toolbox
fromMATLAB®. Four passes were used on all image pairs to ensure maximum precision. The interrogation areas
(IA) were selected in function of the particle density making sure that the recommended 5 to 20 particles were
inside the IAs at all times. Due to the augmented size of the particles, we were able to safely use a fourth pass
without introducing high noise levels and erroneous correlations. The slow flow also played an important role in
harvesting high resolution results given the slow spatiotemporal deformation of the grid used in the velocimetry
analysis. High Reynolds number flows and turbulent flows tend to yield plenty of spurious vectors, also known as
outliers, that have to be dealt with using additional tools such as smoothing or manual removal. In our case, a very
low yield of outliers was addressed through an outlier detection test based on Westerweel and Scarano (2005) that
is readily implemented in the PIVLab toolbox.

The regions of interest (ROI) were selected accordingly with the magnetic distribution under study. Regions
where flow patterns were distinguishable were selected as ROI to speed up computation time, and most importantly,
because flow velocities tend to zero outwards from the center of themagnet and drop to zero at the plexiglass borders
satisfying the no–slip condition. For all image pairs analyzed and in accordance with experimental parameters, the
calibration values were the same characteristic length 3 = 1.5 mm, as well as the time step ΔC = 33 ms, being this
the elapsed time in between frames.

3.4 Long exposure photography
There are three widely known experimental approaches to visualize a flow patterns: streaklines, pathlines, and
streamlines. A streakline is a line that joins particles which pass through a particular point in the fluid; this is
commonly realized by continuously injecting a fluid tracer on a fixed point of the domain. The fluid tracer can
be an organic colorant like food dye, or other substances that are non–intrusive to the flow. A pathline is the
locus of points that a particle outlines as it moves with the flow. One way to visualize pathlines is by seeding
particle tracers to the fluid and following them as they drift with the flow. A streamline is a curve tangential to
instantaneous velocity vectors in the flow, thus its concept is fundamentally mathematical in nature (Kline 1969).
However, streamlines can be observed by following particles of a seeded fluid as they wander with the flow, where
the streamlines will be the curves traced by the particles during a specific time interval.

For steady flows, all three flow lines are equivalent since the velocity field does not change with time, hence
the results will be identical. In the case of a time dependent flow, all the three flow lines will differ as a result of a
constantly changing velocity field. However, for such case, streamlines can be obtained by capturing particles along
short time intervals and recovering their trajectories over multiple exposures. On the other hand, the pathlines can
be obtained through the same procedure but with longer exposure times. This can be cumbersome for turbulent
flows, therefore different approaches should be taken.

2The software is digiCamControl, a free, open–source application that runs on Windows and works for taking pictures and recording video.
Refer to http://digicamcontrol.com/ for more information.

3Refer to Thielicke (2014), Thielicke and J. Stamhuis (2019), and Thielicke and Stamhuis (2014) for information on the toolbox and the
download link.
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Another frequented method for the case of steady flows is the injection of hydrogen bubbles resulting from
electrolysis of a very thin wire placed inside the fluid. This method is effective because bubbles are very small,
therefore, intrusive effects can be safely neglected. When using particle tracers, like in the present work, care
should be taken to avoid inertial movement of the particles relative to the flow by using particles small enough so
that these can be transported accurately by the carrier flow.

For our experiments, the cell depicted in figure 3.2 with the lighting setup depicted in figure 3.4 was used, with
the slight modification that the lens was placed 4 cm above the cell. The same hollow glass spherical particles
were used on a slightly lower proportion.

The same digital camera was used with an AF-S Micro-Nikkor 60mm ƒ/2.8G ED lens, where the short focal
length allowed to capture a larger field of view of the flow region, which remained under 1.5 cm2. The lens aperture
was fixed at ƒ/10.0 to minimize light reflections as much as possible, and the sensitivity of the image sensor to
light was set at the recommended ISO 100 to achieve a finer grain in the results. The exposure times were selected
at 8 and 10 seconds, and the photographs had a resolution of 6000 px × 4000 px. Ultimately, all the photographs
were digitally edited to eliminate unintended noise and to enhance contrast and definition.
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Chapter 4

Theoretical model
In the first section of this chapter, a mathematical model is developed to solve equation (2.11) using a 2D approach.
The equations are linearized with an asymptotic expansion on the Re number, which is known as the perturbations
method, and then, Green’s function method is used to obtain a solution to the equations. It can be shown that
second and higher order terms in the asymptotic expansion can be neglected due to their very small contribution
(Figueroa 2006), therefore, the solutions presented here are truncated to a first order approximation. The second
section addresses the finite difference method which was used for the numerical simulation.

4.1 Analytical solutions for the low Reynolds number ap-
proximation

We start by presenting a first approach to the determination of the flow field in a thin layer of electrolyte produced
by the Lorentz force created by the interaction of a uniform constant electric current and a dipolar magnetic field.
With the aim of getting an analytical solution, we assume that the flow is purely two–dimensional, so that the
interaction with the bottom confining wall and the top free surface is neglected. Under the conditions, the equations
governing the flow are precisely the ones presented at the end of Chapter 2. Refer to figure 4.1 for an illustration
of the theoretical model which helps to set up the analytical solution.

By taking the curl of the Navier–Stokes equations (2.15) and (2.16), the vorticity transport equation is obtained,
namely,

ml

mC
+ D mlI

mG
+ E mlI

mH
=
m2lI

mG2
+ m

2lI

mH2
− '4

m�0
I

mG
, (4.1)

where lI =
mE
mG
− mD

mH
is the only vorticity component. Equation (4.1) can be rewritten in a compact form using

vector notation
mlI

mC
+ ( ®D · ∇)lI = ∇2lI − '4

m�0
I

mG
. (4.2)

In equation (4.2), the first term in the left–hand side represents the temporal dependence of vorticity. The second
term expresses vorticity advection by the flow, while the first term on the right–hand side expresses the viscous
diffusion of vorticity. In turn, the second term of the right–hand side represents the action of external forces, which
in this case corresponds to the electromagnetic source (curl of the Lorentz force) that produces vorticity in the flow.

For the sake of simplicity, we assume that the applied magnetic field is given by a magnetic point dipole
for which an analytical expression exists. The analytical expression for the magnetic field is taken from Good
and Nelson (1971), and since the modeling is tailored for a 2D approach, only the component along the normal
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Figure 4.1: Theoretical model. The applied electric current and magnetic field are denoted by J0x and B0
z , respectively.

I–coordinate is taken. This results in a magnetic dipole whose magnetic momentm = <:̂ points normal to the GH
plane, and whose normal component in dimensional terms is expressed as

�0
I (G, H) =

`0

2c

<

G2 + H2 + `0<X(G)X(H). (4.3)

The first term on the right hand side of equation (4.3) estimates the magnetic field everywhere outside of the origin
(G2 + H2 ≠ 0), while the second term accounts for the singularity of the field and is represented by the Dirac delta
function, which estimates the value of the magnetic field at all places where the function is valued at zero. To
non–dimensionalize the expression for the magnetic field, �0

I can be normalized with �< = `0</!2, where the
characteristic length ! can be chosen as ! = √`0< so that the normalization constant `0</!2 takes a value of 1
(Cuevas et al. 2006a). The dimensionless expression for the magnetic field is then

�0
I (G, H) =

1

2c

1

G2 + H2 + X(G)X(H). (4.4)

It is worthwhile noting that the full 3D expression of the magnetic field satisfies magnetostatic equations (2.12) and
(2.13), and since equation (4.4) losses its irrotational nature, the magnetostatic equations will not be completely
satisfied. However, the expression provides a proper description of the magnetic field given that the contributions of
the field are very small along G and H. For magnets that are distributed outside the origin, the following expression
can be used

�0
I (G, H) =

1

2c

1

(G − G0)2 + (H − H0)2
+ X(G − G0)X(H − H0), (4.5)

where (G0, H0) are the coordinates of the position of the magnet.

4.1.1 Boundary conditions and initial conditions
The solution assumes that the fluid is at rest as initial condition. Owing to the small magnet size and the large
extent of the electrolyte layer, the boundary conditions for the single magnet and the magnet superposition have
been selected as if it were the case of an infinite domain and have been chosen as follows. At the origin of the
magnet, the velocity field and the pressure field must take a finite value. The magnetic field decays outwards from
the origin of the magnetic field, therefore at a distance far enough from the magnet, the Lorentz force term will
decrease proportionally, resulting in a very small (negligible) contribution. For the case of magnet superposition,
the conditions state that the velocity in the neighborhood of the magnets must take a finite value. On the other
hand, at a distance ' far enough from the center of the magnets, the velocity can be assumed to be zero, where the
distance from the center of the magnets to a given point in space is calculated as A =

√
G2 + H2.
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Single magnet

D → finite
E → finite
%→ finite

 G, H → 0,

D → 0

E → 0

%→ const.

 G, H → ±∞,
D = E = 0

%→ const.

}
C = 0. (4.6)

Magnet superposition

D → finite
E → finite
%→ finite

 A → 0,

D → 0

E → 0

%→ const.

 A → ',

D = E = 0

%→ const.

}
C = 0. (4.7)

4.1.2 Solution by perturbations method
Taking into account the main assumption of the Reynolds number being very small, a perturbations method has
been used searching for a solution as a power series expanded on the small parameter Re, where the superscript in
the variables indicates the order of approximation,

lI = l
(0)
I + '4l (1)I + '42l (2)I +O('43),

D = D (0) + '4D (1) + '42D (2) +O('43),
E = E (0) + '4E (1) + '42E (2) +O('43). (4.8)

Zeroth–order approximation

The vorticity equation approximated to zeroth–order O(Re0) reduces to
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whose solution is
l
(0)
I = D (0) = E (0) = 0, (4.10)

due to the absence of a source term generating motion in the fluid.

First–order approximation

To a first order approximation, the vorticity equation satisfies
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where equation (4.11) takes the form of a diffusion equation with an external source, which comes from the Lorentz
force term. The Green’s function method (Hahn & Özişik 2012) was used to solve equation (4.11) on an infinite
domain −∞ < G < ∞,−∞ < H < ∞ for all C > 0, along with the initial condition l (1)I = 0 for C = 0. It turns
that the Dirac delta term in equation (4.4) is the only term whose contribution to the solution is greater than zero.
Finally, the first order time–dependent solution is

l
(1)
I = − 1

2c

G

G2 + H2 4
−
(
G2+H2

4C

)
. (4.12)
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The steady state solution can be obtained by evaluating equation (4.12) in the limit when C → 0, which results in

l
(1)
I = − 1

2c

G

G2 + H2 . (4.13)

It can been seen from equations (4.12) and (4.13) that the solution will diverge at the origin, which is mainly due
to the magnetic field expression which also diverges at the origin. Regardless of this, the results in Chapter 5
show that for both a single magnet and the superposition of magnets, the behavior of the results is qualitatively
acceptable.

Once the vorticity is known, the stream function k is calculated by solving the equation

∇2k = −lI , (4.14)

where
D =

mk

mH
, and E = −mk

mG
. (4.15)

By considering a similar series expansion for the stream function

k = k (0) + '4k (1) + '42k (2) +O('4 (3) ), (4.16)

at first order of approximation, the stream function satisfies the equation

m2k (1)

mG2
+ m

2k (1)

mH2
= −l (1)I . (4.17)

The solution of equation (4.17) will be the sum of the homogeneous solution plus the particular solution, which
can be solved by using polar coordinates assuming the solution is a product of functions: k(A, \) = 5 (A) cos (\).
This makes equation (4.17) to take the form

1

A

m

mA

(
A
mk(A, \)
mA

)
+ 1

A2
m2k(A, \)

m\
= − 1

2c

A cos (\)
A2

, (4.18)

and the final solution is found to be

k (1) (A, \) = A cos (\)
8c

[1 − log (A2)] + �1

A
cos (\) + �2A cos (\), (4.19)

k (1) (G, H) = G

8c
[1 − log (G2 + H2)] + �1

G

G2 + H2 + �2G, (4.20)

where equations (4.19) and (4.20) are the solutions in polar and Cartesian coordinates, respectively. The same
solution is used for the case of a single magnet and for the superposition of magnets, however, each case will be
solved individually in the sections below.

4.1.3 Flow generated by a single magnet
Boundary conditions for the single magnet case (equations (4.6)) require that constants of integration �1 and �2

in equation (4.20) to be zero, which results in

k (1) (G, H) = G

8c
[1 − log (G2 + H2)] . (4.21)

Using equation (4.15), the velocity components result in

D (1) = − 1

4c

GH

G2 + H2 ,

E (1) =
1

8c

(
log (G2 + H2) + 2G2

G2 + H2 − 1
)
. (4.22)
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4.1.4 Flow generated by the superposition of two or more magnets
Owing to the linearity of the problem under the low Reynolds number approximation, the solution for a single
magnet can be superposed accordingly with the number of magnets desired; though, as will be shown, the
interactions are not completely well replicated owing to the magnetic dipole expression. Still, the resultant velocity
field is qualitatively acceptable and can be used as a first approximation.

Constants �1 and �2 in equation (4.20) are found by applying the boundary conditions from equations (4.7) to
obtain

k (1) (G, H) = G

8c

[
1 + log

(
'2

G2 + H2

)
− '2

G2 + H2

]
. (4.23)

Using equation (4.15), the velocity components result in

D (1) =
GH

4c(G2 + H2)

[
'2

(G2 + H2) − 1
]
,

E (1) =
1

8c

[
2G2

G2 + H2 + log
(

'2

(G2 + H2)

)
− '

2 (G2 − H2)
(G2 + H2)2 − 1

]
. (4.24)

The resulting superposition of magnets can be found analytically by specifying the coordinates of each magnet, for
instance, in the case of a magnet located at (G0, H0), the velocity component D (1) takes the form

D (1) (G, H) = (G − G0) (H − H0)
4c((G − G0)2 + (H − H0)2)

[
(G0 + H0)2

((G − G0)2 + (H − H0)2)
− 1

]
. (4.25)

As mentioned above, the superposition is expressed as

k (1) (G, H) =
∞∑
=

k (1) (G=, H=), (4.26)

where (G=, H=) represent the coordinates of the magnets.
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4.2 Two dimensional numerical simulation
In the previous section, the analytical solutions pointed out to divergences originated from the singularities owing
to the point dipole expression, which limits the capacity of the analytical solution to accurately replicate the
experimental flow field. For such reason, a numerical solution is described in this section, which is performed by
discretizing equation (2.11) using a finite differences method. This allows to take into account both the convective
and diffusive terms. It is also designed to simulate a purely two–dimensional flow, thus ignoring the friction from
the bottom wall. Some of the main advantages of the numerical solution are that it allows to analyze non–linear
effects that appear at higher Reynolds numbers, as well as considering a realistic expression for the appliedmagnetic
field.

4.2.1 Non–uniform applied magnetic field
The analytical solution is based on the assumption that the applied magnetic field is produced by an idealized
magnetic point dipole. To improve this consideration, the numerical solution makes use of an analytical expression
presented by McCaig (1977) to implement a non–uniform magnetic field of dipolar origin, where owing to the 2D
approximation, only the normal–z component is considered. The analytical expression reproduces the field created
by a magnetized rectangular plate uniformly polarized in the normal direction. The dimensions of the plate are 20
and 21 (taken as 0 = 1 for practical purposes). Placing the coordinate system at the origin of the top surface of the
magnet, the normal component of the magnetic field at a height I0, created by a single magnetized plate is given
by

�0
I (G, H) = b�<

[
tan−1

(
(G + 0) (H + 1)

I0

√
(G + 0)2 + (H + 1)2 + I20

)

+ tan−1
(

(G − 0) (H − 1)

I0

√
(G − 0)2 + (H − 1)2 + I20

)

− tan−1
(

(G + 0) (H − 1)

I0

√
(G + 0)2 + (H − 1)2 + I20

)

− tan−1
(

(G − 0) (H + 1)

I0

√
(G − 0)2 + (H + 1)2 + I20

)]
, (4.27)

where b is a normalization parameter calculated from the maximum magnetic field intensity. Equation (4.27)
approximates a symmetric distribution of the magnetic field whose maximum value is at the geometrical center of
the plate. The intensity of the magnetic field decays outwards from the center of the plate.

For the numerical implementation, the magnetic field has been considered as the superposition of two parallel
magnetized plates with opposing polarization separated by a distance ℓ. In this way, each plate represents the north
and south poles of the permanent magnet (Figueroa et al. 2009). To find the field generated by the superposition of
the plates, equation (4.27) can be calculated by using two distances denoted by I0i, where index i = 1, 2 is assigned
to the lower and upper plates, respectively. The total field is then found by superposing equation (4.27) as

�0
Ii (G, H) = �

0
I1 (G, H) − �0

I2 (G, H). (4.28)

The numerical approximation for the applied magnetic field described by equation (4.28), is able to replicate a
localized field, that is, a magnetic field with high intensity close to the center of the magnet and a fast decay as the
distance increases outwards from the center. This approximation allows to consider a magnetic field whose only
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contribution points normal to the velocity field and has shown reasonable results as will be seen in the following
chapter.

Figure 4.2 shows the magnetic field generated by two magnetized plates of dimensionless units 0 = 0.5 and
1 = 0.5 that were used to replicate a single magnet at the origin of the system. The vertical component of the field
is prominent at the center of the plates and its intensity decreases outwards very quickly, thus its contribution at
points far from the origin is very small.
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Figure 4.2: Applied magnetic field produced by two magnetized square surfaces.

4.2.2 Boundary conditions and initial conditions
Even though the experiment was realized on a cell of rectangular characteristics, for the sake of simplicity, the
simulation was tailored to assume a square domain. As will be seen, this approach proved reasonable and good
comparisons were achieved. This selection was originated from the small size of the magnet and the large distance
of the plexiglass walls to the region of more intense flow. Hence, the flow was simulated on a square domain, and
the no–slip condition was imposed at the four boundaries that confined the electrolyte, that is,

D = 0,

E = 0.
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Figure 4.3: Numerical surface.

Figure 4.3 illustrates the domain, where ( repre-
sents the surface bounding the domain of integration.

The initial conditions were selected as follows:

D = 0

E = 0

}
for all C = 0,

meaning that the fluid is initially at rest.
The conditions on the four walls of figure 4.3 are

commonly known as Dirichlet boundary conditions or
first–type boundary conditions.

4.2.3 Numerical method
The numerical procedure was based on the finite differ-
ence method described by Griebel et al. (1998). The
procedure was extended to simulate MHD flows by
taking into account the Lorentz force (Cuevas et al.
2006b). Second order finite difference discretizations
were applied on the spatial terms of equations (2.14),
(2.15) and (2.16). On the other hand, the temporal

terms were discretized using first order Euler’s method. The procedure consisted of a structured grid where the
velocity components D and E were solved at the horizontal and vertical intersecting points of the grid respectively,
while the pressure was solved at the center of the cells. The discretization of the diffusive terms was based on
central differences, whereas the convective terms were discretized using a mixture of central differences and a
donor–cell method (see Griebel et al. (1998, pp. 24–29)).

Time discretizations of mD/mC and mE/mC using Euler’s method are implemented as[
mD

mC

] (=+1)
=
D (=+1) − D (=)

ΔC
,

[
mE

mC

] (=+1)
=
E (=+1) − E (=)

ΔC
, (4.29)

where superscript (=) represents the derivative at a point = in time C.
The discretization of equations (2.15) and (2.16) then follows

D (=+1) = D (=) + ΔC
[(
m2D

mG2
+ m

2D

mH2

)
− m (D

2)
mG
− m (DE)

mH
− m%
mG

]
,

E (=+1) = E (=) + ΔC
[(
m2E

mG2
+ m

2E

mH2

)
− m (DE)

mG
− m (E

2)
mH
− '4 90G�0

I −
m%

mH

]
, (4.30)

where all values at a point = in time C are known and are referred to as explicit, whereas all values at a time (= + 1)
still have to be determined and are referred to as implicit.

By denoting

� (=) = D (=) + ΔC
[(
m2D

mG2
+ m

2D

mH2

)
− m (D

2)
mG
− m (DE)

mH

]
,

� (=) = E (=) + ΔC
[(
m2E

mG2
+ m

2E

mH2

)
− m (DE)

mG
− m (E

2)
mH
− '4 90G�0

I

]
, (4.31)
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equation (4.31) can be expressed as

D (=+1) = � (=) − ΔC m%
(=+1)

mG
, and E (=+1) = � (=) − ΔC m%

(=+1)

mH
. (4.32)

The numerical implementation considered that the value of the applied current was 90G = 1 in dimensionless
terms.

Using this discretization allows to compute the velocity field at time step (= + 1) once the pressure field has
been solved. Substituting equation (4.32) in the continuity equation (2.10) results in a Poisson equation for the
pressure

m2% (=+1)

mG2
+ m

2% (=+1)

mH2
=

1

ΔC

(
m� (=)

mG
+ m�

(=)

mH

)
, (4.33)

where the pressure corresponds to a time step (= + 1). Note that equation (4.33) requires boundary conditions to
be solved.

The pseudo–code to implement the numerical procedure consists of the following:

Algorithm 1 Discretized Navier–Stokes procedure
1: Declare variables and values: '4, =G, =H...
2: Compute magnetic field �0

I (G, H) from Eq.(4.28)
3: =← 0
4: D (=) ← 0, E (=) ← 0 and % (=) ← 0
5: for C ← 1 to C<0G do
6: Declare boundary conditions from Fig. (4.3)
7: Compute � (=) and � (=) from Eq. (4.31)
8: Compute % (=+1) from Eq. (4.33)
9: Obtain new velocity field D (=+1) and E (=+1) using Eq. (4.32)
10: =← = + 1
11: end for

4.2.4 Parameters of the grid, time step and procedure
The numerical solution was simulated inside a dimensionless domain of 30 × 30. The origin of the magnetic field
was axially aligned with the origin of the domain. This was the same case for the superposition of the magnets,
the shape was distributed around the origin for a symmetric arrangement, and then aligned with the center of
the domain. Using this setup was helpful to simulate a decaying magnetic field from the center outwards. The
resolution of the grid was selected at 210×210 in G and H respectively and the time step was given by ΔC = 2×10−5.
With these characteristics, the algorithm successfully represented a steady state flow.
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Chapter 5

Results
The results of the experimental methodology are shown in this chapter. The experimental velocity fields and
streamlines are the result of the PIV analyses and the long exposure photographs, respectively. The numerical
and analytical results are qualitatively compared to the experimental results in order to determine if the numerical
method and the analytical solution can describe the flow with a good approximation. The results in this section will
help to improve the assumptions of the algorithm and the mathematical modeling for a more detailed and accurate
description of the experiment.

5.1 Center–magnet arrangement
The results for the center–magnet arrangement are shown in figure 5.1. Particle tracers were added before filming
to a considerable uniform density. The main IA was 86 px × 43 px with a 50% offset, and three subsequent IAs
were proportional to a 20 px decrease from the previous one (this IA setting was used on all experiments). The
velocity field was ultimately obtained from a square ROI of 850 px × 850 px. The PIV software was capable of
detecting velocities in the order of 1× 10−11 m/s, but these values were ignored for practical purposes. From these
parameters it was estimated that 1 px ≈ 1×10−5 mm, so a dimensional visualization region of 3.4 mm × 3.4 mm
was obtained.

In figure 5.1(a), two vortices span symmetrically to each side from the center of the magnet. The footprints of
the magnets are true in dimension and position in the experimental results which correspond to (a) and (b) in all
figures, where blue and red indicate positive and negative polarization, respectively. In the remaining figures, only
the origin of the magnetic field is indicated. The left and right vortices rotate counterclockwise and clockwise,
respectively. The highest velocity is located on positive H, but remains concentrated inside the diameter of the
magnet. The upward displacement of the vortices obeys the direction of the Lorentz force. It is noticed that
the displacement is small, which is indicative of the proportional magnitude of the Lorentz force. Nevertheless,
the very small displacement of the vortex cores, on the order of ∼ 0.2 mm, is due to convective effects of the
electromagnetic forcing. On the other hand, there is horizontal asymmetry in the alignment of the vortex cores with
respect to each other. Recalling that the forcing strength is small, this issue may be attributed to a phenomenon
of particle aggregation. The dipolar flow pattern is characteristic of electromagnetic forcing using one magnet
and perpendicular current injection. However, when the magnetic field is generated using two or more magnets,
the spatial distribution of the magnets will generate more complex flow patterns that will be characterized by the
interaction of multiple vortices. Consequently, the asymmetry in the vortex core alignment could not have been
the result of magnetic field interactions.

Based on experimental observations, it is arguable that a case of particle aggregation was present in the core
region of the right vortex. Particles must fulfill the conditions of being very small, spherical and neutrally buoyant

29
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Figure 5.1: Center–magnet arrangement. Left column shows velocity fields, right column shows the streamlines. Top row
(a), (b) experimental results for Re = 4. Middle row (c), (d) numerical simulation for Re = 5. Bottom row (e), (f) analytical solution
for Re ≈ 0.1. Axes units for (a) and (b) correspond to mm. For (c)–(f), axes units correspond to dimensionless units.

so they can behave approximately as passive fluid elements. If these conditions are not satisfied, particles will
display an inertial behavior relative to the flow by aggregating in regions of high strain, making them take longer
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to respond to changes in the flow (Ouellette et al. 2008). Once particles aggregate, they form large and heavy
structures which are unable to track the flow precisely. If these structures cannot be expelled from the vortex cores,
or on the other hand, are expelled and delay incoming particles, then, unsatisfactory samplings will be collected
from those sluggish regions. Some techniques, such as two–layer configurations using miscible and immiscible
fluids have been used over the years to address the issue of particle clustering (Martell et al. 2019; Ouellette
et al. 2008; Tithof et al. 2018). To some extent, the particle aggregation phenomena can be used to justify the
misalignment of the vortex cores.

The streamlines shown in figure 5.1(b) are the result of 10 seconds of exposure. Notice how the vortex cores
are horizontally aligned with respect to each other. The deformed streamlines close to G = −1.5 can be attributed
to erratic particles that were unable to follow the flow path faithfully due to particle interactions and effects due
to electrolysis (see §5.6) . Unlike the velocimetry results which are averaged, the streamlines correspond to the
instantaneous motion of the flow, causing every particle interaction to be reflected in the trajectories of the particles,
as can be seen in the exposure. An elliptical deformation of the counter–rotating vortices is clearly appreciated.
The deformation is due to the strain field (Huang 2005), which consequently increases the strain inside the vortex
structures (Leweke et al. 2016). Interesting phenomena can be obtained from these results. Notice for example the
white smudge at the top right corner, this is a particle clump being transported very slowly relative to the rest of
the particles. Similarly, the right vortex core displays thicker streamlines; presumably, this is also a large particle
clump.

Figures 5.1(c) and 5.1(d) are the velocity field and the streamlines of the numerical simulation, respectively.
The red circle indicates the position of the magnet but does not physically represent its dimensions. In figure
5.1(c), the highest magnitude of the velocity is well represented since it stays within the diameter of the magnet and
follows the direction of the Lorentz force. However, the distance separating the vortex cores is greater than that of
the experiment. This can be attributed to the purely 2D approximation where the viscous coupling from the bottom
is not taken into account. The displacement of the vortices in the positive H direction represents the effect of the
inertial terms, and as is expected, the small displacement is proportional to the magnitude of the Lorentz force.
The magnitude of the velocity is also replicated in figure 5.1(d), which can be appreciated from the intensification
of the vortex lines close to the origin. Unlike the experiment, the inclination of the vortices is augmented in the
simulation, which is better appreciated in the streamlines. Overall, the elliptical shape of the streamlines indicates
that the height to width ratio of the vortices is in agreement with the experiment.

Figures 5.1(e) and 5.1(f), are the velocity field and streamlines of the analytical solution for a single magnet,
respectively. In both cases, the red circle indicates where the point dipole is located. The highest velocity is exactly
on the origin, which coincides with the point of maximum magnetic field intensity. The direction of the velocity
obeys the direction of the Lorentz force. Due to the analytical expression, it is visible that the velocity is infinite on
the origin of the dipole. This is noticed from figure 5.1(e), at G = 0 and H = 0where vectors have an unusually high
value due to the indeterminacy. The result is symmetric in figure 5.1(f) with respect to both axes. Such symmetry
indicates that the diffusive terms dominate since for this solution convective effects are neglected.

In summary, the elongation of the vortices is aligned with the direction of the force, which in turn drags the
recirculation structures in the same direction. Overall, figure 5.1 can be considered as showing great similarity in
all the results in terms of a qualitative description.

5.2 Square–magnet arrangement
Electromagnetic forcing to generate vorticity in shallow layers of electrolyte with magnets distributed on the
vertices of a square has been previously performed numerically and experimentally. Figueroa (2010) created the
magnetic field inside a region of 12 cm × 12 cm, by placing two positively polarized magnets in the top corners
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and two negatively polarized magnets in the bottom corners of a 4 cm × 4 cm square. An AC current was applied
with multiple forcing frequencies. This configuration, in contrast with figure 5.2(a), resulted in a symmetrical flow
pattern characterized by eight vortices and one additional hyperbolic point at the origin. The eight vortices were the
result of having magnet pairs of same polarity, which impeded the vortices in between each magnet pair to merge.
Similarly, the third hyperbolic point at the origin was caused by the multiple jet collisions. Mixing properties of
the quadrilateral magnet arrangement were also determined experimentally and numerically by Figueroa (2010)
for the same setup.

In turn, Lara (2013) reported a magnetic field distribution identical to that of figure 5.2(a). The experiment
consisted of a 28 cm × 36 cm × 1.3 cm box, with a maximum electrolyte layer height of 0.4 cm. The magnets
were distributed inside a square circumscribed in a circle of 8.5 cm diameter, and the forcing was generated with
10 mA of DC current. Analytical streamlines were compared to experimental streamlines observed with colored
water (food dye). The analytical solution resulted in symmetrical streamlines similar to those in figure 5.2(f),
however, owing to the intensity of the current, the experimental streamlines were not symmetric with respect to
the vertical axis. Moreover, it is valuable to mention that DC current was used with intensities ranging from 3 mA
to 10 mA for the study of time–independent flows, and 50 mA to 200 mA which resulted in time–dependent flows.
In the case of the present work, the applied current is estimated to be 1 mA, which is under the lower threshold for
time–independent flows.

In what follows, our results for the square–magnet arrangement are shown in figure 5.2. The particle density
was uniform throughout the electrolyte layer before applying the current. The flow pattern was analyzed in a
dimensional visualization region of 12 mm × 10 mm. Four magnets of alternate polarity were used, vertically and
horizontally spaced by 4 mm, which are shown in figure 5.2(a) and have been labeled from � to � in each quadrant.
Since the cell was assembled manually, the magnets were misaligned with respect to each other and did not form
a perfect square. From figure 5.2(c), it can be seen that the flow is symmetric with respect to G and H, which is not
the case for figure 5.2(a) due to the misalignment of the magnets. The misalignment offset the magnets from the
vertices of the square by a factor of approximately 0.5 mm, so to devise the effect of the misalignment on the flow,
the circumferences of ���� have been drawn at a 1:1 scale over the position of the real magnets.

Figures 5.2(a) and 5.2(b) show the experimental velocity field and streamlines, respectively. In figure 5.2(a),
it is due to the opposite polarization of the magnet pairs that the co–rotating vortices inside �� and �� merge
at startup to form a single vortex of larger magnitude. Therefore, it is visible that the flow is characterized by
six vortices. The vortex merging mechanism has been studied extensively (Brandt & Nomura 2006; Cerretelli
& Williamson 2003; Huang 2005) and a simplified explanation is convenient. Assuming that two vortices rotate
in the same direction a distance from each other, the cores of the vortices will grow to a certain distance 0, and
the distance separating the cores will reach a value 1. When the ratio (0/1) reaches a critical value (0/1)2 the
co–rotating vortices will merge and form a single vortex core of superior magnitude than those in isolated rotation.

In a strict sense, the experimental configuration generates a symmetrical flow with respect to both axes.
However, owing to the misalignment of the magnets, the flow looses symmetry with respect to G = 0 in the top
quadrants. Non–linear effects can be appreciated from the displacement of the cores of the main vortices in the
direction of the Lorentz force. High velocities concentrate over the magnets and in the region where the main
counter–rotating vortices meet.

The streamlines in figure 5.2(b) display an overall symmetry with respect to both axes. However, the outer
vortices remain aligned with the magnets, unlike the cores of the main vortices which are displaced toward the
direction of the Lorentz force. The flow pattern shows six elliptic points in total which are embedded in each
vortex, and two saddle points where the jets converge.
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Figure 5.2: Square–magnet arrangement. Left column shows velocity fields, right column shows the streamlines. Top row
(a), (b) experimental results for Re = 4. Middle row (c), (d) numerical simulation for Re = 5. Bottom row (e), (f) analytical solution
for Re ≈ 0.1. Axes units for (a) and (b) correspond to mm. For (c)–(f), axes units correspond to dimensionless units.

Figures 5.2(c) and 5.2(d) show the numerical velocity field and streamlines, respectively. A notable feature
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in figure 5.2(c) is the somewhat coordinated displacement of all the vortices in the direction of the Lorentz force.
Notice, however, an apparent tilting of the main vortical structures which could be attributed to the opposite
directions of the Lorentz force in each of the magnets, and to the 2D approximation that does not consider the
friction from the bottom wall. The symmetry of the flow pattern can be observed, and the magnitude of the velocity
is in agreement with the experimental observation, especially the patch of highest velocity in the central region.

The streamlines in figure 5.2(d) replicate the experimental result very closely. The numerical simulation for
the same configuration from Lara (2013), shows that the cores of the main vortices are actually composed of two
vortices joined by the outer streamlines, which is due to the separation of the magnets. In our case, the main
vortices only show a single core whose vortex lines intensify over the magnets and in the central region of the
square. Additionally, the off–center position of the vortex cores shows a great comparison with the experimental
result.

Figures 5.2(e) and 5.2(f) show the velocity field and streamlines of the analytical solution, respectively. It is
important to recall that a cylindrical magnet was used in the experiments, magnetized square plates were replicated
in the numerical simulations, and a point dipole was modeled with a Dirac delta function for the analytical solution.
This means that for the analytical solution, the effect of the magnetic field will only be significant at the origin.
Consequently, the flow field will be characterized by the multiple vortex interactions, but to a great extent, the point
dipole will limit the formation of the intricate flow patterns previously described by the numerical and experimental
results.

The vectors have been normalized in figure 5.2(e) (as well as in all results where two or more point dipoles were
used) to account for the singularity and avoid erroneous values. The main elements of the flow field are clearly
defined, specifically the two main vortices, the four outer vortices, and the direction of the vectors. The streamlines
in figure 5.2(f) show that the main vortices are composed of two vortices which cannot merge completely. This
describes the effect of the point dipole much better.

In summary, figure 5.2 shows great similarity in the experimental and numerical results in terms of a qualitative
description. On the other hand, the analytical solution shows that the point dipole approximation has certain
limitations, where the main one lies in accurately replicating vortex interactions. It is, however, precise in
capturing the hyperbolic and elliptic points, which are the descriptive properties appreciated in the experimental
and numerical results.

5.3 Hexagon–magnet arrangement
Figure 5.3 shows the result for the hexagon–magnet arrangement. Figure 5.3(a) corresponds to the experimental
velocity field, where six magnets of alternate polarity were arranged geometrically into a hexagon, and the flow
pattern was analyzed in a dimensional visualization region of 11 mm × 11 mm. The flow is characterized by two
main vortices rotating in the same direction between �� and �� . Due to the short distance between the magnets,
these two vortices are well defined and have the highest velocity, whereas the remaining flow field is determined
by low velocity vortices. Owing to the distribution of the magnetic field, the flow pattern should be symmetric
with respect to both axes. However, it can be seen that the misalignment of the magnets creates asymmetry mainly
with respect to the vertical axis.

The streamlines in figure 5.3(b) reveal that the vortex interactions create complicated flow patters and the
merging mechanism cannot be easily predicted due to the intricate distribution of the magnetic field. In turn, the
flow is now characterized by the main vortices on top and bottom, and the two auricle shaped figures on left and
right with three vortices embedded inside them.
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Figure 5.3: Hexagon–magnet arrangement. Left column shows velocity fields, right column shows the streamlines. Top
row (a), (b) experimental results for Re = 4. Middle row (c), (d) numerical simulation for Re = 5. Bottom row (e), (f) analytical
solution for Re ≈ 0.1. Axes units for (a) and (b) correspond to mm. For (c)–(f), axes units correspond to dimensionless units.

Figures 5.3(c) and 5.3(d) show the numerical velocity field and streamlines, respectively. In figure 5.3(c), the
vectors obey the direction of the Lorentz force, and the main vortex cores are displaced outwards from the center.
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In figure 5.3(d), the streamlines intensify over the magnets and a hyperbolic point is clearly defined in the origin.
In contrast with figure 5.3(b), the numerical simulation shows that the vortices on left and right are horizontally
elongated, which can be attributed to the strict 2D model that does not consider the friction produced by the bottom
wall.

Figures 5.3(e) and 5.3(f) show the result of the analytical solution for the velocity field and streamlines,
respectively. In comparison with the previous results, figure 5.3(d) does not accurately replicate the flow pattern.
However, outside of the hexagon it does replicate the direction of the vectors and the general description of their
position with respect to the origin of the magnetic field. Inside the hexagon, the flow field looses symmetry owing
to the difficulty of the solution in replicating vortex interactions.

The streamlines in figure 5.3(f) resemble the experimental and numerical results in general, but the comparison
is merely descriptive because the characteristic patterns are not completely defined. However, it provides a rough
description of how multiple elements are connected throughout the flow field.

In summary, figure 5.3 provides insight into interesting stirring patterns. The experimental and numerical
results show great resemblance and useful information can be extracted from the observed phenomena. To some
extent, the velocity field of the analytical solution, being merely descriptive, manages to replicate vortex mergers
thus providing a good initial approximation to comprehend the actual flow field.

5.4 Checkerboard–magnet arrangement
Figure 5.4 shows the result for the checkerboard–magnet arrangement. Twelve magnets of alternate polarity were
distributed on a rectangular lattice with 3 mm of vertical and horizontal spacing between them. A dimensional
visualization region of 14 × 10 mm was ultimately obtained. Figures 5.4(a) and 5.4(b) show the experimental
velocity field and streamlines, respectively. A lot of symmetry is observed in figure 5.4(a) with respect to both
axes, where multiple vortices and stagnation points are clearly defined. It is arguable that the confinement of the
cell and the lattice configuration promotes symmetry in the flow, making the effect of the magnet misalignment
be irrelevant to some extent. On the other hand, the misalignment has effect on the velocity distribution, as will
be seen later. The streamlines shown in figure 5.4(b) demonstrate the symmetry generated by the lattice and
the confinement. This effect can be observed by the well defined elliptic and hyperbolic points. The deformed
streamlines on top and bottom are due to the closeness of the magnets with the border of the cell and effects due
to electrolysis from the electrodes. The magnetic distribution in this case allows for simpler vortex interactions
which leads to predictable flow patterns.

Figures 5.4(c) and 5.4(d) show the numerical velocity field and streamlines, respectively. The result in figure
5.4(c) differs with the experimental field mainly in the distribution of the main vortices, which may be the result
of the confinement. However, the rotation of the vortices and the direction of the vectors are in agreement with
the Lorentz force. In fact, the highest velocities are located above the magnets. The streamlines in figures 5.4(d)
intensify outside of the lattice, which is in fact the opposite effect in comparison with the experimental result. The
result is also able to indicate the location of the critical points.

Figures 5.4(e) and 5.4(f) show the analytical solution for the velocity field and streamlines, respectively. The
result in figure 5.4(e) shows that most of the flow field cannot be fully described inside the lattice due to the
limitations in replicating vortex interactions. Some of the elements in figure 5.4(f) resemble the experimental
results closely. For example, the streamlines on the left and right have the same characteristic elongated shape and
connect the flow generated by the magnets.

Overall, the results in figure 5.4 help to understand vortex interactions inside a magnetic lattice. The experi-
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mental and numerical results closely resemble each other, whereas the analytical solution serves as a decent first
approximation.
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Figure 5.4: Checkerboard–magnet arrangement. Left column shows velocity fields, right column shows the streamlines.
Top row (a), (b) experimental results for Re = 4. Middle row (c), (d) numerical simulation for Re = 5. Bottom row (e), (f) analytical
solution for Re ≈ 0.1. Axes units for (a) and (b) correspond to mm. For (c)–(f), axes units correspond to dimensionless units.
Note that the orientation of the figures has been inverted by 90° for presentation purposes.
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To summarize, in all the experiments the flow starts by developing a transient regime, then a well-defined vortex
pattern is produced, which is determined by the vortex interactions resulting from the distribution of the magnetic
field. The resulting flow patterns can be considered symmetric, which is confirmed by the numerical simulations.
The asymmetries in the experimental results are caused by physical situations that could not be completely
controlled. Three principal situations were electrolytic effects, particle aggregation, and magnet misalignment.
The first two introduce errors into the samplings and this is reflected in the resultant velocity fields. The third was
due to the manual assembly of the cell.

The flow is mainly defined by diffusive effects, therefore inertial effects can be assumed negligible. Owing to
the no-slip condition at the bottom wall, the highest velocities are found at the free surface in a region bounding
the diameter of the magnet. Based on experimental observations, the multipolar magnet configurations generated
stronger electromagnetic interactions whose strength depends on the distance separating the magnetic poles. The
experimental and numerical streamlines were satisfactorily compared, where in all cases, the streamline density
intensified as it approached the diameter of the magnet, and reached the highest density over the surface of the
magnet.

5.5 Velocity and vorticity maps
The results from the numerical method and the analytical solution were developed in order to have a qualitative
point of comparison with the experimental results. However, certain properties of interest such as the velocity
magnitude and the vorticity can be extracted from the experimental data. These properties are useful to study the
interaction dynamics of the vortices generated by the electromagnetic forcing. In what follows, the velocity and
vorticity maps for all the experiments were determined from the experimental data, and are shown in this section.

5.5.1 Velocity maps

As is well known, a velocity map shows the absolute maximums and minimums of the velocity field through the
magnitude of the velocity. Such property is a scalar, and can be calculated by taking the square root of the velocity
field squared

√
®D2, which in the case of a 2D field reduces to

√
D2 + E2. The results are useful for the design of

particular applications.

In the previous sections, areas of higher intensity were identified based exclusively on observations. From
figure 5.5(a), which corresponds to the single–magnet case, it can be observed that the highest velocity, about 1.2
mm/s, is distributed vertically over the center of the magnet. Acceleration regions of proportional value are visible
at the entrance and exit of the magnet. These regions at the top and bottom are in accordance with the direction of
the Lorentz force. The centers of the vortices can be assumed to posses no velocity at all, whereas the surrounding
region has very low velocity, around 0.4 mm/s. A barely distinguishable perimeter of low velocity, about 0.1 mm/s,
surrounds the active flow region. This region corresponds to the weak inertial movement of the particles whose
energy decreases very quickly in response the viscous flow.

Figure 5.5(b) shows an asymmetric velocity distribution for the square–magnet arrangement, where the highest
velocity is dominant over the positively polarized magnets. However, the velocity is vertically elongated in all four
magnets, which corresponds to the direction of the Lorentz force. The patch of high velocity in the center of the
square corresponds to the place where the counter–rotating vortices meet.

Figure 5.5(c), that corresponds to the hexagon–magnet configuration, shows that the velocity follows the
curvature of the vortices and is concentrated on the top and bottom magnet pairs. In fact, the top and bottom pairs
are separated by 2 mm, which is the smallest separation distance in all the experiments. The stagnation point in the
middle is the meeting point of the co–rotating vortices. In addition, the velocity patches look like pairs of lungs
that stem from the center of the hexagon.
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Figure 5.5(d) displays a lattice of velocity regions that obey the checkerboard–magnet distribution. The velocity
regions at H = −3, 0, 3 correspond to horizontal velocity, and it is also where the magnets are placed. The velocity
regions at G = −3, 0, 3 correspond to vertical velocity. The elongation of the patches is indistinguishable due to the
square shape of the figure, however, the horizontal and vertical elongation can be deduced from figure 5.4(a). It is
arguable that the lattice configuration homogenizes the velocity distribution, mainly inside the lattice.
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Figure 5.5: Experimental velocity maps for the (a) center, (b) square, (c) hexagon, and (d) checkerboard–magnet arrange-
ments. Axes units correspond to mm.
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5.5.2 Vorticity maps

Figure 5.6 shows the vorticity maps of the explored experimental configurations. It is well known that this property
quantifies the local spinning motion of the fluid and is related to the velocity gradients. The highest velocity
gradients can be seen in the centers of the vortices where the velocities decrease over very short length scales.
The vorticity field can be computed from the experimental information using a discretized vorticity (Griebel et al.
1998) making use of the definition

lI =
mD

mH
− mE
mG
, (5.1)

where the derivatives of the velocity with respect to position in equation (5.1) measure the rate of change of
velocity. Equation (5.1) is ultimately discretized as

lI (8, 9) =
D(8, 9 + 1) − D(8, 9)

ΔH
− E(8 + 1, 9) − E(8, 9)

ΔG
. (5.2)

For the case of the experimental vorticity map, ΔG and ΔH in equation (5.2) correspond to the time step between
sequential frames, which is the same time step for the PIV analysis.

From figure 5.6(a) it is clear that the vorticity in the single–magnet case is most intense inside the diameter of
the magnet where the velocity gradient is high within a very short distance.

Figure 5.6(b) shows that vorticity in the square–magnet arrangement is overall weak. The strength of the
vorticity is almost equal between the merged and single vortices. This can be attributed to the large distance
separating the magnets, approximately 4 mm. Additionally, it is noticeable that the merged vortices look like two
individual vorticity patches very close to each other. Reducing the distance between the magnets could help in
strengthening the interaction force between the magnetic fields while keeping the applied current at a low level.

Intense vorticity can be appreciated in figure 5.6(c) in the main vortices on top and bottom of the hexagonal–
magnet arrangement. This is due to the distance separating the magnets (2 mm), which is the shortest distance
in all the geometrical shapes, and results in a very strong electromagnetic interaction. The negative vorticity
appears to be distributed from top to bottom inside the magnet arrangement. This, however, only corresponds to
the resolution of the grid since there are actually three vortices inside each patch. The vortices to the left and right
are very weak because the highly viscous nature of the shallow layer quickly dampens the velocity, resulting in a
very weak velocity gradient.

Figure 5.6(d) shows a symmetric vorticity distribution in the checkerboard–magnet arrangement with respect
to both axes. The highest velocity gradients can be observed inside the lattice which span over very short length
scales, on the order of 1 to 1.5 mm, and correspond to the merged vortices. The vorticity is weak outside of the
lattice which can be attributed to the effect of viscosity from the low depth of the layer.

Overall, it can be observed that vorticity is higher in regions in between magnets, which can be attributed
to a stronger electromagnetic interaction of the electrolyte and the magnetic field produced by a magnet and its
neighboring magnet (Pérez-Barrera 2013). This is better observed in figures 5.6(b) and 5.6(c). From a qualitative
perspective, the strength of the interaction decreases as the distance increases, and increases as the distance
decreases.
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5.6 Experimental observations
5.6.1 Particle aggregation

Based on the phenomena observed in figure 5.1(a) where the vortex centroids are offset with respect to each
other, some conclusions can be made regarding particle aggregation. Surface tension plays a crucial role in
particle aggregation when the particles are at a liquid–gas interface. Surface tension deforms the interface, and
the deformation induces a mutual attraction of the floating particles. The multiple interactions eventually motivate
the formation of particle clusters (Vella & Mahadevan 2005). The implications of this phenomenon were only
captured in the single magnet experiment, however, all experiments were influenced by the deformation of the
interface, and many particle clusters were found before and after applying the current.

(a)

(b)

Figure 5.7: Particle aggregation patterns after more than
one and half minutes of continuous electromagnetic forcing.

One of the main complications owing to this phe-
nomenon is that the particle count is reduced. This
effect, along with resistance build up, constrained the
footage to 10 seconds of useful material. Nevertheless,
the laminar nature of the flow and the very low forcing
intensity, allowed to eliminate temporal variations of
the flow. In consequence, 10 seconds were satisfactory
to confirm that the flow had reached the steady state. A
second complication owing to particle aggregation was
the slightly less faithful tracking of the flow. To some
degree, the particles were larger and some had aban-
doned regions of the fluid completely (see figure 5.7).
The regions without particles were not the main prob-
lem because the active flow area remained close to the
geometrical center of the cell. However, the larger par-
ticles did introduce errors, because these were detected
by the PIV software, and in turn, the results yielded
many anomalies. This was addressed by constraining
the footage to the 10 second period, which was enough
time before the problem became significant. Unsatis-
factory sampling of sluggish regions owing to particle
clusterings has been reported (Kelley&Ouellette 2011;
Martell et al. 2019).

Lastly, a curious behavior was observed as a conse-
quence of the particle aggregations. Figure 5.7 shows
distinctive particle aggregation patterns that were ob-

served after the current was interrupted. Notice the two regions completely void of particles in figure 5.7(a). The
blob of particles seems to fill the cell in an otherwise vertical direction, which means that the particles favored an
alignment parallel to the direction of the current flow. On the other hand, in figure 5.7(b), a clear strip of particles
is formed along the horizontal axis, which is perpendicular to the current flow. It was observed that the effect of
electrolysis also contributed to the cluster forming when particle clusters attached to the floating crystals. Over
time, this has been avoided by designing electrolyte containers with a trench in the place where the electrodes
are positioned. The electrodes are submerged in the trench, which acts like a sewer, and the oxidation byproduct
collects in it and prevents it from floating into the electrolyte. Additionally, the use of AC currents has also
been reported to prevent electrolytic reactions (Lemoff & Lee 2000). These kind of reactions cause evaporation,
bubbling on the electrodes, and in our case, copper oxide, all of which introduce perturbations into the flow.

Certainly, the build up of resistance to current flow heavily influenced the outcome of the experiment. This
was due to the DC voltage source that was used. For all the experiments, the source was initialized with a default
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value of 5.5 V. Using a multimeter, a reading of ∼10 mA was obtained; however, this value decreased very quickly
over a very short period. Therefore, the voltage was manually regulated to maintain a somewhat steady current of
1 mA. Nevertheless, fluctuations were inevitable.

5.6.2 Reynolds number
Variations of the Reynolds number affect the flow in several ways. If '4 is increased, the effect is interpreted as an
intensification of the convective or inertial forces. On the other hand, if '4 is decreased, the effect is expressed as
an intensification of the diffusive forces. In our case, diffusive forces were dominant. For a determined magnetic
field, the value of '4 increases as the value of the applied current is increased. In consequence, the Lorentz force
intensifies proportionally and generates stronger vorticity. For this work, the '4 number was estimated to be 4
in all experiments. In turn, the value of '4 for the numerical simulation was 5 to account for fluctuations of the
applied current.

However, due to radial decay of the magnetic field, it was observed that inertial effects are more intense in
regions where the magnetic field is stronger. This was visible in the displacement of the vortex cores along the
direction of the force, which is a non–linear effect and a clear manifestation of the inertial forces.
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Chapter 6

Conclusions
We have studied electromagnetically driven vorticity in time–independent flows of shallow electrolyte layers at a
millimetric scale through an experimental and theoretical analysis. Direct current was injected perpendicular to
the magnetic field created by four geometrical magnet arrangements to generate the Lorentz force, which in turn
produced motion in the fluid. The theoretical analysis consisted of an analytical solution and a numerical model.
For the experimental analysis, millimetric magnets were used and the flow had place within a 10 mm × 10 mm
region.

The analytical solution was obtained using the perturbations method, which allowed to obtain an approximate
solution for the low Reynolds number flow. A general solution was obtained for the flow generated by a single
magnet, and subsequently this solution was superposed to approximate the flow created by multiple magnets.
The assumptions for the boundary conditions were drawn from the experimental parameters. The superposition
solution is valid when non–linear effects, manifesting themselves as convective terms, are negligible and the flow is
strictly diffusive. Even though a qualitative description is reasonable in terms of an overall description of the flow,
several limitations were noticed owing to the use of a magnetic point dipole to model the applied field. Mainly, that
the solution struggles to faithfully replicate the interaction of multiple vortices; unlike a single magnet which is
otherwise well described. Regardless, the velocity fields and the streamlines obtained with the analytical solution
are useful to illustrate and anticipate the behavior of the flow. The limitations motivated a more detailed solution,
for which, a numerical simulation was developed.

The numerical method allowed to carry out a more exhaustive analysis. One of the primary features of the
numerical method is that the convective terms were fully considered, and that it was designed to replicate a
steady state flow. The value of '4 was 5, which was higher than the experimentally calculated value because, as
mentioned, this served as a tolerance that took into account the fluctuation of the electric current. Higher currents
can destabilize the flow and lead to a flow whose regime becomes time dependent. Owing to the very small depth
of the electrolyte layer, in this first approach the numerical simulation did not consider the effect of the bottom
friction. The simulation yielded great results, from which two highlights can be mentioned. The principal is that
the displacement of the vortex cores in the direction of the Lorentz force was successfully replicated. The second
is that the spatial symmetry of the flows with respect to both axes was well defined. Ultimately, the intensification
of the inertial effects on the region where the magnetic is most intense was also well represented. To summarize,
the results presented here were in good qualitative agreement with the experiments.

The experimental methodology served as the reference point for all the comparisons. One of the main
shortcomings of the cell design was the closeness of the borders to the flow region. In what follows, a second
version of the experiment has been designed, which uses a larger cell of square dimensions with electrode trenches
and CNC milled holes, so that misalignment errors and electrolytic effects can be minimized. Owing to the small
volume of electrolyte, time dependency could not be observed because electrolytic effects appeared very quickly
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when high currents were used. Nevertheless, the experimental flows were, to a great extent, stationary, which
guarantees that the comparisons coincide satisfactorily with the numerical predictions, at least on a qualitative
description.

Much work is left for the future to better characterize the present study. The experimental stage revealed
many aspects of the nature of the flow at the millimeter scale that cause great interest. It is urgent to include in
the numerical simulation the effect of the bottom friction so that a quantitative comparison can be made. It is
also desirable to numerically incorporate elements such as electrochemical effects, changes in temperature and
composition of the medium for a more accurate description of the flow. Additionally, a Lagrangian particle tracking
analysis could be useful for the prediction of mixing properties. It is well known that the confinement of the flow
and the viscous coupling of the bottom dissipate and stabilize the flow, therefore, a study leading to a periodic
or a chaotic flow regime could result in intriguing phenomena. It is of particular interest to apply the theory and
experiments on a smaller scale that could eventually lead to the study of microfluidic applications.
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Appendix A

Experimental cell
dimensions
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Figure A.1: (a) Top view. The components are drawn at a 1:1.3 scale (except for the magnet) for presentation purposes.
(b) Side view. The width of the components is drawn out of scale to visualize their dimensions and place. Units correspond to
mm.

51


	Portada 


	Resumen 
	Contents
	Chapter 1. Introduction 


	Chapter 2. Problem Formulation
	Chapter 3. Experimental Methodology 
	Chapter 4. Theoretical Model 


	Chapter 5. Results 


	Chapter 6. Conclusions 


	Bibliography 


	Appendix 




