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MIEMBROS DEL COMITÉ TUTORIAL:
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Abstract

We explore three-wave mixing phenomena such as the second harmonic (SHG), sum frequency
(SFG), and difference frequency (DFG) generation from nanostructures and nanowires with non-
centrosymmetric geometry made up of a centrosymmetric material. We perform both a numerical
analysis and an approximate analytical calculation of the response tensors. First, we obtain and
evaluate approximate analytical formulas for the SH, DF and SF hyperpolarizability tensors of an
isolated infinite cylinder with a cross section that is slightly deformed away from a circle with three
protuberances separated by an angle of 120◦ in the plane and with its nominal radius much smaller
than the wavelength of light. We perform calculations in 2D owing to the translational symmetry
along the axis of the cylinder. We utilize a perturbative method, with the deformation as the
perturbation parameter, to find approximate expressions for the self-consistent linear and nonlinear
fields. We evaluate the nonlinear dipolar and quadrupolar SH, DF, and SF hyperpolarizability, and
analyze their spectra for metallic and dielectric cylinders. We discuss the nature of the SH fields
radiated at various input frequencies; we find that dominant contribution may arise from either
the dipolar or the quadrupolar nonlinear response and they may also compete with each other to
produce non-symmetric radiation patterns. In addition to SH radiated fields, we compute the fields
radiated at the DF and SF frequencies and determine the efficiency of the DFG/SFG from the
nanowire.

Next, we consider a nanostructure formed of an array of the non-centrosymmetric cylinders and
explore its SH response. To this end, we apply an efficient homogenization scheme to obtain the
macroscopic quadratic SH response. This scheme was developed by our group, implemented in a
programming package called Photonic, to calculate the macroscopic linear and nonlinear response of
metamaterials. The program is based on an implementation of the dipolium model to calculate the
second order polarization and susceptibility. In this work, an exhaustive testing of the previously
developed modules for the computation of the nonlinear response is performed and its limitations
identified. The problems discovered are corrected and validated against the analytical results. We
make the area of each unit cell relatively large, in order to separate each element of the array, so
that the interaction between them is negligible. This permits us to calibrate and assess the results
of our numerical analysis by comparing it to the analytical expressions. We obtain good agreement
between both the results for small deformations; thus verifying the results of our numerical approach.
Furthermore, we perform computations for larger deformations, a regime where the perturbative
analytical formulas fail, to investigate the evolution of the response as the deformation is increased.
This yields the limit up to which our analytical expressions are valid.



Resumen

En esta tesis, investigamos fenómenos que involucran el mezclado de tres ondas como generación
de segundo armónico (GSA), de suma de frecuencias (GSF) y de diferencia de frecuencias (GDF)
por nanoestructuras y metamateriales con geometŕıa no centrosimétricas formadas por materiales
centrosimétricos, realizando nuestros estudios numéricamente y anaĺıticamente. En la primera parte
del trabajo calculamos anaĺıticamente la respuesta no lineal, tanto de GSA como de GDF y GSF,
de una part́ıcula bidimensional y aislada en forma de un cilindro infinito con una sección transversal
ligeramente deformada con respeto a un ćırculo. Obtuvimos expresiones anaĺıticas para las hiper-
polarizabilidades del cilindro no centrosimétrico en términos de respuestas lineales del sistema y
algunos parámetros que caracterizan las distintas contribuciones del sistema a la polarización no
lineal. Suponiendo que el sistema tiene simetŕıa translacional a lo largo del eje del cilindro, hicimos
nuestros cálculos en 2D. Además, escogimos al radio del ćırculo mucho mas pequeño que la longitud
de onda para hacer nuestros cálculos dentro del régimen donde la aproximación de longitud de onda
larga es válida. Utilizamos un método perturbativo eligiendo la deformación como un parámetro
perturbativo y obtuvimos expresiones aproximadas hasta el orden lineal en la deformación para los
campos lineales y no lineales inducidos en el sistema. Usando los campos inducidos y los resultados
del modelo de dipolium, evaluamos las contribuciones del bulto y superficie a la polarización no lin-
eal inducida en el cilindro. Obtuvimos expresiones para las hiperpolarizabilidades de tipo SA, SF y
DF incluyendo las contribuciones dipolar y cuadrupolar, y analizamos sus caracteŕısticas espectrales
para cilindros metálicos y dieléctricos. También calculamos los campos SA en la zona de radiación y
discutimos las caracteŕısticas de los patrones de radiación para SA con distintas frecuencias para la
luz incidente. Encontramos que dependiendo de la frecuencia de la luz, las contribuciones dipolar o
cuadrupolar compiten entre śı y en algunos casos domina una sobre la otra. El patrón de radiación
muestra formas no simétricas para los casos donde ambas contribuciones son comparables. Además,
evaluamos los campos DF y SF radiados para investigar la eficiencia del proceso del GDF y GSF.

La segunda parte del trabajo involucra el estudio numérico de la GSA desde un metamaterial bi-
nario formado por una red de inclusiones, cada una de las cuales tiene la misma geometŕıa que la
de nuestra part́ıcula aislada. El código que empleamos es parte del paquete Photonic desarrollado
por nuestro grupo, el cual nos permite calcular eficientemente campos locales de metamateriales
binarios. El paquete tiene incorporado el modelo de dipolium, lo cual nos permite calcular la polar-
ización y la susceptibilidad no lineal a partir de los campos microscópicos locales. En este trabajo,
realizamos pruebas exhaustivas de los módulos que calculan la respuesta no lineal e identificamos
imprecisiones, las cuales fueron corregidas y verificadas contrastándo los resultados numéricos con
los resultados anaĺıticos. Elegimos las celdas unitarias con tamaños relativamente grandes, lo cual
permite despreciar las interacciones entre las pequeñas inclusiones. Eso nos permite comparar los
resultados numéricos con los anaĺıticos y validar nuestros códigos. Encontramos un buen acuerdo
entre los resultados de ambos cálculos para deformaciones pequeñas. Después de validar los resul-
tados de los códigos, realizamos cálculos para deformaciones grandes, en un régimen en el cual las
expresiones anaĺıticas no son válidas, para estudiar el efecto de la deformación y la evolución de la
respuesta conforme la deformación crece. Encontramos aśı los limites de validez de nuestra teoŕıa
perturbativa y anaĺıtica.
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Introduction

Nonlinear nanophotonics, a sub branch of nanoscience, is an emerging field of research offering

multifaceted opportunities for the manipulation and control of light at the nanometer scale. It

primarily focuses on the sub-wavelength behavior of light and its interaction with nanostructured

materials in order to engineer highly efficient and ultrafast novel nanophotonic devices. Rapid

advances in this discipline is the result of a multitude of applications it promises in the fields of

science, engineering, and medicine; nonlinear nanoantennas, nanophotonic circuits for nanoscale

electronics, light sources, biosensing, targeted drug delivery systems, medical implants, to name

a few. For application purposes, most of the important nonlinear optical effects take place at the

second or third order; namely three- and four-wave mixing effects (TWM and FWM) such as second-

and third-harmonic generation (SHG and THG), optical Kerr effect, self-phase modulation (SPM),

and stimulated Raman scattering (SRS). Nanophotonic devices fabricated from metallic, metal-

dielectric, and all dielectric materials have been reported in the form of diverse types of structures

such as metamaterials, metasurfaces, nanoparticles and their arrays [1–7]. This work is dedicated

to the investigation of second order nonlinear optical response, such as second harmonic generation

(SHG), and sum and difference frequency generation (SFG/DFG) from an isolated nanowire and

also SHG from a nanostructure formed by a periodic array of such nanowires.

Long before we started to develop artificial photonic nanostructures, nature had perfected this

art as many organisms have been found to possess and exploit nanophotonic structures to exhibit

extraordinary optical effects [8]. For example, the impressive blue colored iridescent pattern of the

Morpho butterflies is the result of interference effects within the photonic microstructures formed by

its multiple layers of cuticle and air [Fig. 1]. The evolution of these colored patterns has been thought

to be driven by diverse reasons such as mate attraction, camouflage, mimicry, etc. Another example

is the structure of the arm ossicles from light-sensitive species of the brittle-star, Ophiocoma wendtii

[8]. They possess arrays of inorganic microstructures composed of anisotropic calcite microlenses

with a design to detect incoming light from a particular direction [Fig. 2]. This sensitivity to light

1
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Figure 1: Photographs of the left wings of three species of Morpho Butterflies (a, d, g) along with
the bright-field (b, e, h) and dark-field (c, f, i) micrographs of a small area of the wings [9].

warns them of the presence of any predators. The history behind the development of man-made

nanophotonic structures is a long one with various origins. Investigations into historical artworks

have revealed that the artisans, unknowingly, practised a primitive form of nanotechnology by

incorporating metallic nanoparticles as colorants. The Roman Lycurgus cup [Fig. 3] with its unusual

display of optical effects is one of the exceptional achievements of the ancient glass industry [11].

Other notable examples include stained glass windows [12,13], medieval pottery and ceramics [14,15],

etc.

Present day nanophotonics is the result of decades long research and investigation into various

sub-fields of science and engineering integrated together leading to interdisciplinary fields such as

photonics, nonlinear optics, laser science, nanofabrication techniques, plasmonics, etc. The effi-

ciency of nanophotonic devices rely on strong light matter interaction and large effective nonlinear-

ities of the nanostructure which is achieved by the confinement of light in sub-wavelength regimes.

Engineering of artificial materials began with structures of micrometer-scale dimensions, however,

gradual improvement in the novel nanofabrication techniques over the past few decades have per-
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Figure 2: (a) Light-indifferent species Ophiocoma pumila. (b) Light-sensitive species O. wendtii.
(c) Scanning electron micrograph (SEM) of a dorsal arm plate (DAP) of O. wendtii. (d) SEM of
the cross-section of a fractured DAP from O. wendtii. (e) SEM of the peripheral layer of a DAP
of O. pumila. (f) SEM of the peripheral layer of a DAP from O. wendtii with lens structures. (g)
Highly magnified SEM of the cross-section of an individual lens in O. wendtii [10].
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Figure 3: The Lycurgus Cup. It appears opaque with a greenish-yellow color tone in reflected light
(a), and turns to a translucent ruby color in transmitted light (b) [11].

mitted the fabrication of nanoscale structures with exceptional control over confinement of light

at the nanoscale dimensions. Developments of techniques such as electron or focused ion beam

lithography, electrically induced nanopatterning, etc., made such small structures possible that can

be precisely engineered to exhibit unique nonlinear optical properties with unprecedented control

over its response.

The extraordinary performance of metallic or metal-dielectric nanostructures are due to the enhance-

ment of local fields achieved through plasmonic effects or the resonant excitation of surface plasmon

polaritons (SPPs) [2, 16, 17]. The effective nonlinear response of such structures gain a significant

boost because of the presence of strong local fields at the SPP resonances; in contrast to the macro-

scopic bulk media where the efficiency depends on their intrinsic nonlinear susceptibility and phase

matching conditions. Years of investigations have revealed that the properties of light can be easily

modified and controlled at wavelength or sub-wavelength scales by controlling the physical or struc-

tural nature of these nanostructures. Nanostructures such as nanoparticles and nanoclusters or ar-

rays of such nanoparticles forming metasurfaces or metamaterials made up of noble metals or metal-

dielectric combined materials have been fabricated and studied for diverse applications [16, 18, 19].

In addition to the enhancement of the near field due to plasmonic effects, geometrical resonances can

also be controlled by the design of the nanostructures [20–22]. Experimental investigations into ef-

ficient nonlinear response from nanostructures backed by numerical computations have been widely

reported [16, 23]. In particular, SHG from metasurfaces [24], nanoparticles [20, 21, 25], nanostruc-

tures [26] have been extensively studied experimentally [16, 20, 25, 27, 28] and by diverse numerical
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methods such as the finite difference in the time domain method (FDTD) [29, 30], the surface in-

tegral equation (SIE) method [31–33], the finite element (FEM) [21] technique, the discrete dipole

approximation (DDA) [34], etc.

Although plasmonic structures possess large optical nonlinearities and have exhibited tremendous

potential in various applications, they suffer from large ohmic losses and are not always com-

patible for integration with complementary metal-oxide-semiconductor (CMOS) circuits. Hence,

the need for low-loss plasmonic materials arises which remains a growing area of interest. In-

vestigating nonlinear properties of structures made of heavily doped semiconductors and loss-less

dielectric materials have become a promising sub-field of nonlinear nanophotonics. Recently, nanos-

tructures fabricated from all-dielectric materials have been reported to exhibit extraordinary ef-

ficiencies [35–37]. Low absorption in a large domain of the electromagnetic spectrum coupled to

Mie type localized resonances, ability to support both electric and magnetic resonances, and low

ohmic losses make these high-refractive index dielectric nanostructures highly suitable for nonlin-

ear nanophotonic applications. Various groups investigated enhanced SHG from gallium arsenide

(GaAs) nanoresonator arrays [38] and indium gallium nitride/gallium nitride (InGaN/GaN) multi-

ple quantum well [39] metasurfaces, aluminium gallium arsenide (AlGaAs) nanoantennas [40, 41],

barium titanate (BaTiO3) nanoparticles [42], etc. An experimental investigation with supporting

numerical computations for sub-wavelength AlGaAs particles excited by doughnut shaped cylin-

drical vector beams was reported recently [43]. A theoretical investigation employing multipolar

analysis for exploring SHG from 2D dielectric particles was also reported [44]. These III-V semicon-

ductors with efficient second order nonlinearities have noncentrosymmetric crystal structure, and

possess non-zero intrinsic second order susceptibilities. SHG induced by the presence of extremely

high electric field of a terahertz (THz) pulse from centrosymmetric silicon was reported [45]. Strain

induced breaking of the centrosymmetry in silicon waveguides leading to SHG was investigated in

detail by Castellan et. al [46]. Most recently, efficient SHG from a silicon based microresonator by

uniting photo-induced second-order nonlinearity with resonant enhancement [47]. Besides silicon,

graphene has also emerged as a promising candidate for SHG [26,48].

SHG is one of the most common nonlinear optical phenomena investigated due to the wide range of

applications it offers. Over the years, many theoretical models and calculations have been reported

to explore SH radiation (scattered and reflected, coherent and incoherent) and the efficiency of the

conversion process. Here, we will briefly review some of them which will help the readers appreciate

the present work. Nonlinear Rayleigh type scattering from small nanospheres perturbed by plane

electromagnetic waves was investigated by Dadap et al. [49]. They provided explicit expressions

for the scattered second harmonic (SH) light in the small particle limit. An approach to explore

the nonlinear Mie scattering from spheres of arbitrary sizes was presented by Beer et al. [50]; they

used their model to calculate the SHG and sum frequency generation (SFG) patterns from water

droplets in air. Both of these works demonstrated calculations and results for scattered incoherent

light. Coherent SHG from an isolated spherical particle illuminated by an inhomogeneous external
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field with explicit expressions of its SH response was reported by Brudny et al. [51]. In their work,

they calculated contributions from dipolar and quadrupolar moments induced in the spherical par-

ticle due to gradients in the external field and presented the spectral response of the SH response

tensor, in contrast to the work by Dadap [49] where they used arbitrary values for the second order

response and discussed how they could be obtained from experimental measurements. Few years

later, Mochán et al. [52] presented their calculation of the SH response for a single nanosphere and

a composite constructed from an array of nanospheres perturbed by an inhomogeneous transverse

and/or longitudinal fields. A theoretical calculation of the total and angular resolved SH power ra-

diated from an infinitely long cylinder was presented by Valencia et al. [53] and from a finite cylinder

by Dadap [54]. It must be pointed out that all of these theoretical models are for symmetrically

shaped particles. Second order response, particularly SHG, from metamaterials or nanoparticles

with noncentrosymmetric geometry has gained attention over the last decade and has been studied

extensively by employing various numerical techniques and in experiments. A comprehensive theo-

retical study of SHG in metamaterials made up of a distribution of centrosymmetric nanowires was

proposed by Biris and Panoiu [55]. Bachelier et al. [21] explored multipolar SHG from noble metal

particles. They investigated the effects of the noncentrosymmetric shape and interference between

different multipolar contributions using FEM. In another study, a numerical approach using FDTD

to study SHG from noncentrosymmetric nanoholes in metal was published by Zhou et al [30].

Although SHG has been more commonly studied, many research groups have reported SFG or

DFG from nanostructures. An experimental work to study the vibrational resonance of thiophenol

molecule adsorbed on gold nanoparticles using SFG and DFG was published by Pluchery et al.

[56]. Mid-infrared generation from DFG in self-assembled gallium arsenide/aluminium arsenide

(GaAs/AlAs) near Au nanoparticles was explored numerically by Yan et al. [57]. They discussed

effects of the interparticle distance on the efficiency of the nonlinear process and found an optimal

distance for enhanced signal generation. A design of an optical frequency mixer using plasmonic

nanoantennas resonant at the difference frequency (DF) in the optical or tera-hertz (THz) regime

was investigated through full wave numerical simulations employing the FEM method by Chettiar

et al. [58]. Enhancement of the nonlinear optical response of plasmonic nanoparticle arrays due to

surface lattice resonances was investigated by Huttunen et al. [59]. They used the DDA to explore

different nonlinear properties of nanoparticle arrays with emphasis on SFG, DFG and THG. Luca

et al. [60] presented a parameter-free hydrodynamic approach to theoretically investigate DFG

from plasmonic nanostructures. They used the results of their numerical model to predict the

DFG efficiency of doubly resonant gold nanoantennas. Most recently, a theoretical investigation

to explore optical rectification from an asymmetric GaAs/AlAs quantum dot coupled to a Au

nanosphere illuminated by a strong electromagnetic field was reported [61]. The author discusses

how decreasing the distance between the nanosphere and the quantum dot leads to an enhancement

of nonlinear optical rectification from the quantum dot when the incident field is polarized along

the interparticle separation and observed the opposite effect for light polarized in the perpendicular

direction.
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It must, however, be remarked that most of the calculations for the different models to study the

nonlinear response of nanostructures with noncentrosymmetric geometries are performed numer-

ically. Investigation into analytical theories have not received similar attention and are still few

in number, with many being for symmetrical geometries where an exact solution of the problem

is possible [49, 51, 53]. Some of the works published on analytical theories of SHG from arbitrary

nanoparticles or nanostructures are rough and approximate, calculating the scattering coefficients

but taking the nonlinear response as a given input [62]. Last year, selection rules for SHG from

nanoparticles made up of noncentrosymmetric crystal structure but with arbitrary shapes was re-

ported by Frizyuk [63]. To the best of our knowledge, analytical calculations of the second order

response of a non-symmetrical nanostructure made up of a centrosymmetric material has not been

reported. The importance of having analytical calculations resides in the fact that they can be

used as standards to test and calibrate numerical methods in simple systems, so they can later

be employed confidently to model any complex system. This would greatly simplify and aid the

design process of nanostructures with novel geometrical forms. Also, once verified and calibrated,

the numerical methods become more trustworthy for other kinds of systems for which no analytic

solutions are possible. Numerical results from these verified theories would be valuable before any

experimental fabrication of a nanostructure is attempted, thus reducing the cost and time for the

development of newer structures. The purpose of the presented work is related to this idea. We

begin with a simple nanowire with nonsymmetrical geometry and develop a theoretical method to

analytically obtain its SH, DF, and SF response. Later, we design a metamaterial formed of a peri-

odic array of these nanowires and calculate its SH response numerically employing a computational

package called Photonic [64], written in the programming language Perl and its extension Perl

Data Language, to compare with the analytical results. The program is a free software available

on the Comprehensive Perl Archive Network (CPAN). This package was developed by our group to

investigate the linear properties of metamaterials and photonic structures by employing an efficient

homogenization scheme [65–67] and has been used to study various metamaterial systems [68–70].

The package also includes some modules that implement the calculation of the SH response of binary

metamaterials; these modules were applied recently to study the SH response of a nanostructured

metamaterial [71]. This work is devoted to the testing and calibration of these modules by compari-

son with analytical results. During the process of comparison between the numerical and analytical

results, we discovered the different shortcomings within the modules which sometimes lead to errors

for the SH response. Rectifying and updating the corresponding parts of the modules producing the

errors was a part of my doctoral research investigation. The updated package will soon be available

on the public platform.
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Thesis outline

Chapter 1 introduces the field of nonlinear optics, discusses different second order nonlinear process,

and reviews their applications. Chapter 2 presents the theory of the dipolium model which we

have employed in our calculations; both analytical and numerical. It also introduces the jellium

model with comments on the comparison between the two models and their applicability. Chapter 3

demonstrates our analytical theory to obtain the SH response from an isolated nanowire respectively,

providing a detailed description of our calculations, discussion of results, and conclusions from each

work. In Chapter 4, we generalize our theory to describe any three wave-mixing process with

an emphasis on DFG from the nanowire. The numerical method of homogenization to obtain

effective medium response of the metamaterial is introduced and explained in Chapter 5, with a

detailed account of the method to calculate the SH response of the metamaterial. We also provide

a discussion of the numerical results and their comparison with those of the analytical case. After

a detailed discussion of the origin of some discrepancies, we describe some strategies for improving

the numerical calculations and report on the advances of their implementation. Finally, we present

our conclusions in Chapter 6.



1
Nonlinear optics

Nonlinear optics is a branch of science that deals with phenomena emerging from the interaction

between a strong beam of light and a material medium [72]. The effects of this interaction include

both modifications in the optical properties of the nonlinear medium and in the behavior of the

light beam within the medium. At low illumination power, the properties of the medium remain

independent of the magnitude of the electromagnetic fields. In this regime, the superposition

principle holds true allowing light beams of different frequencies to pass through or get reflected from

the medium without interacting with each other. However, the superposition principle is no longer

valid for highly potent beams which can modify the optical properties of the medium. In such a

situation, multiple beams traversing the medium interact with each other by exchanging energy and

momentum through the medium, thus generating waves with new frequencies. For such processes

to be efficient, beams with sufficiently high intensity are required, like those provided by laser light

sources only. That is why these effects were unobserved until the development of the laser [73]

allowed the first measurement of second harmonic generation [74]. From then on there has been

continuing interest in the field with extensive research leading to significant developments. This

opened the door to investigations in diverse sub-fields such as parametric amplification [75–79], phase

modulation [80–84], harmonic generation [71,79,85,86], four wave mixing [87–90], pulse compression

[91–93] and generation of super continuum [94–96]. Aside from the fundamental research on these

light-matter interaction processes, nonlinear optics also paved the way for novel photonic devices

[1, 97] with applications in various fields of science and engineering [98,99].

Optical processes are usually described in terms of the response of a medium to an external elec-

tromagnetic field, the polarization P induced in the system due to electronic motion. To include

the nonlinear effects produced by an intense perturbing field, the induced polarization in the media

is expressed as a power series in the external electric field E,

P = χ(1)E + χ(2)EE + χ(3)EEE + . . . , (1.1)

9
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where χ(n) is the nth order susceptibility tensor. We must point out that the above expression is

valid only within the electric dipole approximation, i.e. when the polarization is described by dipole

driven transitions only. However, the contributions of higher order multipolar transitions, such as

the quadrupolar transitions, may not be negligible and add correction terms to the net polarization

induced in the medium, i.e., to Eq. (1.1). A component of the second order polarization induced

due to an electric quadrupolar transition leading to a nonlinear dipole moment would have the form

χ
(2)
ijklEj∂kEl. The presence of spatial derivatives indicate that the response of the medium at a point

in the medium not only depends on the external field at that point but also on the variations in the

field around it. This response of the medium is termed non-local, in contrast to the local response

which is dependent only on the value of the field at the same point.

The first term in Eq. (1.1) describes the linear response of the material, which has found applications

in conventional optical devices such as lenses, mirrors, diffraction gratings, etc. As the intensity

of the incident electromagnetic (EM) field increases, for example, when a strongly focused laser

beam is incident on the media, the linear term alone is not sufficient to explain the observed optical

properties. The higher order terms must be taken into consideration to understand the origin of

the nonlinear effects. We must point out that in certain circumstances a nonlinear effect may

appear with low intensity of illumination due to a cumulative effect of many individual processes,

for example in photochromic glasses or phase conjugated mirrors. The quantities χ(2) and χ(3) in

Eq. (1.1) are the second- and the third- order nonlinear susceptibility tensors respectively. Both of

these nonlinear terms are explored more often than others, being important for most applications.

A simple order of magnitude analysis of the size of the nonlinear quantities can be done in the

following manner. The lowest order correction P (2) would be comparable to the linear polarization

P (1) when the external perturbing field Eex is of the order of the internal atomic field Eat. With

χ(1) being of the order of unity, it is appropriate to expect that the quadratic susceptibility χ(2)

will be of the order of χ(1)/Eat ∼ 1/Eat. Similarly χ(3) will be of the order of χ(2)/Eat ∼ χ(1)/E2
at.

Thus, each term in Eq. (1.1) is of the order of (Eex/Eat)
n−1 which is typically much smaller than

unity for any n > 1. This allows one to terminate the series after the lowest order relevant nonzero

nonlinear correction in order to explore and analyze a given nonlinear optical process. The internal

atomic fields are of the order of Eat = e/a2b where ab is the Bohr radius. This makes the second

order susceptibility of the order of

χ(2) ∼ a2b/e ∼ 1/neab (1.2)

where we have used n = 1/a3b as an estimate for the number density.

The type of nonlinear response exhibited by a material is strongly determined by the presence

of different symmetry properties. Materials can be broadly classified into two groups; those that

possess a center of inversion, called centrosymmetric materials, and those that do not called non-

centrosymmetric materials. Fig. 1.1 illustrates these two crystal structures. For a centrosymmetric

crystal [Fig. 1.1 (b)], all even order terms in the expansion [Eq. (1.1)], related to the even order



11

χ(2n) 6= 0 χ(2n) = 0

Wikipedia T. Husband, ChemMatters 5 (2014)

(a) (b)

Figure 1.1: Crystal structure of (a) KTP (noncentrosymmetric), (b) α−quartz (Centrosymmetric)

nonlinear effects vanish. This is because applying an inversion operator would leave both the even

order products of the electric field and the nonlinear susceptibility invariant, but change the sign

of the induced electric dipole moment per unit volume, i.e. the polarization. This is illustrated by

the following simple relation,

−P (2n) = χ
(2n)
I (−E)2n = χ

(2n)
I E2n = χ(2n)E2n =⇒ χ(2n) = 0 ∀n. (1.3)

where the subscript I is used to denote the inversion operation and the relation χ
(2n)
I = χ(2n) holds

true due to centrosymmetry in the material. We remark that Eq. (1.3) also holds true only under

the dipolar approximation. A dipolar SH signal may still be obtained from the surface of such

systems where the inversion symmetry is locally lost. Hence, these processes serve as important

probes for surface imaging and spectroscopy [100–102]. Note that the bulk signal vanishes only in

the dipolar approximation; there may be a second order response from the centrosymmetric bulk

due to the excitation of electric quadrupolar or magnetic dipolar moments. Artificial materials, such

as nanoparticles, constructed from centrosymmetric materials may exhibit second order response

controlled by their geometry. Hence, exploring the possibility of efficient second order conversion

processes producing an SH, SF, or DF signal simply by arranging their geometry would be in-

teresting and useful. On the other hand, materials with a non centrosymmetric crystal structure

[Fig. 1.1 (a)] do not possess such symmetry properties and thus, within them, the even order non-

linear processes are allowed. For example, Lithium Niobate (LiBNO3) has a non-zero χ(2) and is

most commonly used by the laser industry to produce green (0.53µ) laser by doubling the output

frequency of a Nd:YAG laser [103]. In this work, we restrict ourselves to the discussion of only the

second order nonlinear properties of nanostructures made up of centrosymmetric materials. Our

interest in exploring the second order properties of centrosymmetric materials stems from the fact

that metals and many dielectric materials, such as Silicon which forms an integral part of countless

nonlinear photonic devices possesses a centrosymmetric crystal structure. They have received in-

creasing attention over the years due to their extraordinary performance and potential for different

application purposes.
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Figure 1.2: Energy level diagrams to illustrate different second order nonlinear processes. Horizontal
solid lines indicate the real ground states of the system while the dashed represents the excited states
to which virtual transitions occur, indicated by vertical arrows.

1.1 Second order nonlinear processes

We begin by considering two monochromatic laser beams with frequencies ω1 and ω2 incident on

a nonlinear material with nonzero second order susceptibility χ(2). The total external electric field

can be represented as

E(t) = E1e
−iω1t +E2e

−iω2t + c.c. (1.4)

where c.c. stands for complex conjugate. We substitute Eq. (1.4) into Eq. (1.1) and write down the

second order term corresponding to the quadratic polarization P (2). We obtain,

P (2)(t) = χ(2)[E1E1e
−i2ω1t +E2E2e

−i2ω2t + 2E1E2e
−i(ω1+ω2)t + 2E1E

∗
2e
−i(ω1−ω2)t + c.c.

+ 2{E1E
∗
1 +E2E

∗
2}]. (1.5)

Each term in the expansion [Eq. (1.5)] describes a different second order process and the resulting

nonlinear polarization generates an outgoing radiative field with distinct frequency components.

The second order nonlinear processes take into account those photon-photon interactions within

materials that lead to various wave-mixing effects such as the generation of the sum (SFG) (ω+ =

ω1 + ω2) or the difference (DFG) (ω− = ω1 − ω2) of the two incident frequencies ω1 and ω2, or

the conversion of each of these input signals into their second harmonics (SH) 2ω1 or 2ω2 and their

complex conjugate terms. Fig. 1.2 illustrates the energy level diagram for these processes. The last

two terms correspond to a quadratic process where no electromagnetic radiation field is generated

but only a quasi-static nonlinear polarization. This process is known as optical rectification (OR).

It must be pointed out that for simplicity we have written the χ tensor independent of frequencies,

however, it does depend on the process and the frequencies of the electromagnetic waves involved

in it.
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Sum/Difference Frequency Generation

In SFG process, two incoming photons are destroyed to create a new photon with a frequency

equal to the sum of the incoming photons, satisfying the energy conservation principle. Fig. 1.2

(left panel) illustrates the energy level diagram for the process. When a material is illuminated by

an electromagnetic source, photons are absorbed to create electron-hole pairs within the medium

which then recombine to emit photons with the same energy. However, in certain situations, the

excited electron may interact with another photon and get excited to a higher energy level before

recombination occurs. In such cases, the new photon generated will have energy different from

the two initial photons. Note that such processes take place in general as a result of nonresonant

virtual transitions, as the incident photon energy is not sufficient for an absorption process to occur.

Hence, a nonlinear virtual transition, disobeying the law of energy conservation occurs, until a new

photon is emitted with a frequency equal to the sum of the incident frequencies. This violation of

the conservation of energy is allowed by the Heisenberg uncertainty principle, but only for a short

time interval. Hence, these virtual transitions are very short-lived, making the nonlinear transitions

essentially instantaneous and the process coherent. It must be pointed out that in the overall process

of the annihilation of the incoming photons and the generation of the new photon, the total energy

is conserved; the energy conservation is violated only in the transient intermediate transitions.

Difference frequency generation (DFG) is the second order process where the output photon has a

frequency equal to the difference of two interacting photons (center panel of Fig. 1.2). Although,

DFG seems similar to SFG, both processes are quite different. Note that in order to create a

photon of the difference frequency (DF), ω− = ω1 − ω2, a photon of higher frequency ω1 must

be destroyed and that of ω2 generated. Hence, the lower frequency source gets amplified in the

process of difference frequency generation. In this process, a photon with frequency ω1 is absorbed

populating an excited state of the system through virtual transitions, which then decays generating

two photons with frequency ω2 and ω− in the presence of an incoming wave of frequency ω2.

Typical applications of both of these processes include generation of intense light sources by mixing

of frequencies from existing lasers, spectroscopy and imaging [100, 104]. Sum frequency generation

is commonly used in the generation of UV-Vis light sources [105–107]. Difference frequency gen-

eration (DFG) finds applications in the generation of mid-infrared sources which are essential for

spectroscopic studies of gases [108–110] and to generate terahertz radiation [111,112]. In addition to

the generation of different light sources at varied frequency regimes, both of these processes serve as

excellent probes for studying surfaces and interfaces [113–117]. Being second order processes, they

are prohibited in the bulk of centrosymmetric media with only a response sensitive to surface from

such materials. We reemphasize that this is valid only within the electric dipole approximation and

that bulk contributions from higher multipoles may be present. Conversion of optical oscillations

to radio frequencies have been done for quite some time and by employing the technique of fem-

tosecond laser frequency combs an optical clock based on DFG in a Ti:sapphire ring laser has been
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demonstrated by Ref. [118].

Second Harmonic Generation and Optical Rectification

Second harmonic generation is a process akin to SFG except for the fact that both the incoming

photons have the same frequency. Thus, two photons of equal frequency get annihilated to create a

new photon with double the frequency in a single coherent chain of quantum processes. A schematic

energy level diagram to illustrate the transition is shown in the right panel of Fig. 1.2. As in SFG, two

incoming photons interact with the electrons of the system to populate higher energy states through

an extremely fast virtual transition followed by a similar recombination process to generate a photon

with double the incident frequency. SHG in turn has similar applications as SFG in the generation

of new frequencies, spectroscopy of surfaces and interfaces, and imaging [101,106,116,117,119].

Optical rectification (OR) is a process in which a steady nonlinear polarization is induced, which can

be imagined as a special case of DFG where the difference frequency of some light wave interacting

with itself is generated. This zero frequency component causes a non-zero time averaged value

resulting in a static nonlinear polarization and fields or a DC current. Like DFG, optical rectification

is also employed in the generation of terahertz radiation [120, 121]. To this end, when a laser with

femtosecond pulse width is made incident on a nonlinear system, the different frequency components

of the same pulse interact with each other to produce a beating polarization. This leads to emission

of electromagnetic fields in the terahertz (THz) regime [121,122]. Another way to understand this is

that an optical rectification of the central frequency of the pulse occurs during the short duration of

the pulse, and then nothing, i.e., a time dependent optical rectification takes place which oscillates

in the THz frequency.



2
Theoretical models

Second harmonic generation (SHG) from calcite, a centrosymmetric crystal, was first observed by

Terhune et al. [123]; one year after the experimental discovery of SHG in 1961 by Franken et

al. [74]. Ever since, investigation of second order nonlinearities of centrosymmetric media have

drawn much attention. The interest in the field has increased rapidly in the last few decades

due to the commercialization of numerous applications. The earliest theoretical models to explore

SHG and other second order effects from centrosymmetric media were developed concurrently with

the first reports of the experimental studies. Most of the initial studies were oriented towards

qualitative estimates of the contribution of various mechanisms to the second order response of

centrosymmetric media. Decades of rigorous research by various groups has led to systematic and

sophisticated computations and development of theoretical models allowing us to investigate the

second order response of not only simple systems but also complex nanostructures. Section 2.1 of

this chapter reviews various theoretical models that have been reported over the years to calculate

the second order response of the bulk and planar interfaces of centrosymmetric media.

The analytical and numerical calculations in this work employs the dipolium model which was devel-

oped by Mendoza and Mochán [124]. In ref. [124], they calculate the components of the surface and

the bulk second harmonic (SH) susceptibility tensor of semi-infinite homogeneous centrosymmetric

systems. The theory was developed initially for dielectric materials. This was followed by a work by

Maytorena et al. [125] where the theory was extended to include the sum frequency (SF) response.

Section 2.2 provides an elaborated discussion about the dipolium model explicitly calculating the

difference frequency (DF) response. Section 2.3 briefly describes how the sum frequency (SF) and

the SH response can be identified from the DF response. In ref. [125], it was shown that the results

of the model are applicable to metallic systems through a comparison with a calculation done with a

hydrodynamic model. We will not indulge into a detailed discussion about it here, but for the sake

of completeness of this work, a brief description of the said hydrodynamic model and a discussion

on the comparison between both models is given in Sec. 2.4.

15
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2.1 Theoretical models for second order response from planar sur-

face

The pioneering work of Pershan [126] in 1963 paved the way for the development of different theories

and models to study SHG from centrosymmetric media. He derived the linear and nonlinear macro-

scopic electromagnetic equations for non-dissipative media using a time averaged energy function.

From them, he predicted the order of magnitude of several nonlinear effects. A few years later,

Bloembergen et al. [127] gave a theoretical calculation of SHG from media with inversion symmetry

considering only a quadrupolar contribution. They also performed experiments on semiconductors

and noble metals. Rudnick and Stern [128] presented a work in 1971 which had a paramount effect

on research in SHG from the surface. They stressed the significance of a systematic and careful

analysis of various contributions of nonlinear currents induced in the system. They presented a

calculation of the nonlinear susceptibility and the radiated fields at the SH from a metal surface

describing in detail the origins and effects of different bulk and surface currents. They further

parameterized the nonlinear susceptibility components using frequency dependent dimensionless

parameters. These parameters were later verified using different techniques and a confirmation of

the estimate of these parameters was published by Sipe et al [129]. They formulated a hydrody-

namic theory to calculate SHG from a metal surface by dividing the metal in to bulk and selvedge

(signifying a very thin region at the surface) regions. Generalizing their basic equations, Corvi

and Schaich [130] evaluated and presented in detail a numerical solution for the SHG efficiency. A

phenomenological method for treating the surface SHG was presented by Mizrahi and Sipe [131].

To calculate SHG they considered a dipole sheet as a model to describe the surface. They consid-

ered different experimental geometries and presented expressions for the SH radiation power with

their dependence on polarization and angle of incidence. They also included contributions from

the bulk to the SH radiation. However, most of these calculations were not sufficient to explain all

the different components correctly. These results could be applied easily to metals and extended in

some cases to semiconductors.

A microscopic theory for SHG from crystals was given by Schaich and Mendoza [132] in which the

material is assumed to be an array of point dipolar polarizable entities called dipolium. Their work

proved an essential step towards a different approach from the existing models and was applied to

semiconductors and noble metals. However, their results were only qualitative and needed further

development to apply to a realistic material. Another model based on the similar dipolium was

developed by Mendoza and Mochán [124]. The model calculates the second order response and

nonlinear reflectance of a semi-infinite, isotropic, and centrosymmetric system in terms of its linear

response. This simple model yields analytical expressions for the second order nonlinear susceptibil-

ity and efficiency of SHG from the system by assuming a harmonic-oscillator-like response of each

polarizable entity to an inhomogeneous local field. These results were written in terms of the linear

response of the system, and thus, they might be used for obtaining the spectra of the second order
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response of arbitrary centrosymmetric systems whose linear response is known from experiments

or from linear response theories. Since the effects of crystal structure have not been considered in

the calculation of the response, the results would lack any related features. This is in contrast to

some of the earliest measurements of SHG which were performed with a fixed frequency laser and

for which the effects of polarization and orientation on SHG were studied [127]; in them, the crystal

symmetries were emphasized but the spectral dependence was disregarded. We will use the results

of the dipolium model for our calculations, the details of which will be described in the following

section.

Although, SHG have been studied more extensively, theoretical investigation into SFG and DFG

from centrosymmetric semi-infinite isotropic media have not been neglected. Sum frequency gener-

ation spectroscopy was first observed and reported by Shen et al. [133]. A theoretical investigation

of SFG and DFG from isotropic surfaces with a discussion on the properties of the surface non-

linear susceptibility was reported [134]. Petukhov proposed a systematic theoretical investigation

of SFG in reflection geometry from a centrosymmetric material surface [135]. He presented a phe-

nomenological theory of SFG and provided the expressions for the radiated SFG field in terms

of the surface and bulk responses for isotropic metallic surfaces within the jellium model. Later,

Petukhov and Rasing [136] published their work on the calculation of quadrupolar contribution to

the infrared-visible SFG from noble metals taking the effects of crystallinity into consideration. The

energy exchange between the three waves using Manley Rowe relations within a centrosymmetric

medium was also reported [137]. A simple model for SFG from isotropic centrosymmetric surfaces

considering the jellium and the dipolium model was reported by Maytorena et al. [125]. They con-

trasted the results of both the models and found an agreement between them. They also compared

their results to the work of Petukhov [135] and discussed the differences in the bulk contributions.

They, later, extended this work to include the effects of non-locality by choosing a nonlocal jellium

system [138]. The basic theory for SFG, both reflected and transmitted, from an interface between

two semi-infinite centrosymmetric system was also reported [139]. Wang et al. [140] reported a

theoretical investigation of SFG from a thin metal-film in the Kretschmann configuration.

2.2 Dipolium model : DF response

In this section we describe a simple model which permits the calculation of the components of the

surface and the bulk quadratic susceptibility tensors of a centro-symmetric, semi-infinite system.

Within the model, the system is represented by a semi-infinite dipolium [124], a homogeneous

array of polarizable entities which respond harmonically to an external perturbing field [Fig. 2.1].

The model was originally developed to obtain analytical expressions for the surface and bulk SH

response and the efficiency of SHG [124]. The frequency dependent SH response tensors of the

system were obtained in terms of its linear response functions. Ref. [124] was among the first few

spectral calculations; it was only later that other theories were put forward. A few years later, the
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ẑ

x̂

z=0

E

(a) (b)

z → −∞z →∞ z = 0

n = 0

n = nB

Bulk Vacuum

Selvedge

(c)

Figure 2.1: A schematic illustration of the Dipolium model. (a) Homogeneous semi-infinite system,
(b) model harmonic entity which is polarized by a non homogeneous field, (c) number density profile
for the polarizable entities.

theory presented in ref. [124] was extended to include the non-degenerate case of SFG [125]. The

theoretical approach to calculate the components of the response tensors for both of these second

order processes is essentially the same except for some additional terms that do not contribute

in the degenerate, SH case. The DF response can be obtained from the SF response by making

appropriate changes to the nonlinear equations and choosing the corresponding conjugated linear

response. Since the analytical expressions of the components of the DF susceptibility tensor have

not been published explicitly, we will illustrate the methodology of the dipolium model through their

calculation. We will begin with a description of the model and its basic assumptions before going

into a detailed discussion of the procedure to obtain the analytical expressions for the quadratic

response. As mentioned in the previous paragraph, the model represents the medium as a semi-

infinite array of harmonic polarizable entities. The dipole number density n of this distribution

is assumed to have a constant value nB in the bulk and zero in the vacuum, and to vary rapidly

between these two in a thin selvedge region across the surface [Fig. 2.1]. We would like to remark
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that we choose this transition in the density across the surface to interpolate continuously between

its two asymptotic values to avoid an inherent ambiguity present in models with abrupt interfaces,

namely, some field components are discontinuous and their gradients are singular precisely at the

discontinuity, so the nonlinear response at the surface would not be well defined. Nevertheless, by

obtaining the response corresponding to a continuous one we can unambiguously take afterwards the

limit of an abrupt interface. We also assume that the response of all the particles to the polarizing

field are identical. Although harmonic systems are considered to respond linearly to a driving field,

they do respond non-linearly to spatially inhomogeneous fields. The field inhomogeneity yields a

small contribution of order ad/λ in the bulk of the media, where ad is the size of the dipole and λ

is the wavelength of the incident light. The normal component of the linear electric field exhibits

a rapid variation across the surface reminiscent of the discontinuity it suffers at an abrupt surface.

The corresponding large gradient in the perturbing field results in a large surface contribution to

the nonlinear response of the system. We will calculate the quadratic electric dipole, quadrupole

moment, and magnetic dipole moment induced in the bulk and the surface of the system to get

a generalized polarization. From it we will obtain a bulk nonlinear susceptibility and, integrating

across the selvedge, we will identify the surface nonlinear polarization. From them we will obtain

the susceptibility corresponding to the DFG process.

Each polarizable entity is represented by an electron of charge −e and mass m at a distance x from

its equilibrium position r0 to which it is bound by a harmonic force with resonant frequency ω0.

The equation of motion of each of these electrons under the influence of a spatially varying external

electromagnetic field is given by,

mẍ = −mω2
0x−

m

τ
ẋ− eE(r, t)− e

c
ẋ×B(r, t), (2.1)

where we have included a dissipative term with τ as the corresponding lifetime parameter. It is to

be noted that the actual position of the electron is r = r0 + x and the field must be evaluated at

this position and not at the equilibrium position r0. Assuming the displacement x of the electrons

to be smaller than the scale of variation in the perturbing field, we can expand the polarizing field

as a Taylor series,

E(r0 + x, t) ≈ E(r0, t) + x · ∇E(r0, t) + · · · . (2.2)

Substituting Eq. (2.2) in the equation of motion [Eq. (2.1)], we get

mẍ = −mω2
0x−

m

τ
ẋ− eE(r0, t)− ex · ∇E(r0, t) + e ẋ×

∫ t

dt′∇×E(r0, t
′) + · · · , (2.3)

where we have used the relation B(r, t) = −c
∫ t
dt′∇×E(r, t′) for the magnetic field. This equation

resembles that of a forced damped parametric harmonic oscillator with ω0 equal to its natural

resonant frequency. Notice that the second term is related to the damping in the system and the

last three terms correspond to the driving forces. It must be pointed out that the coefficients of x

and ẋ in the last two terms are not constant but dependent on the field gradients. The presence of
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these terms modulate the restoring force, the stiffness of the oscillator varies in time, thus making

Eq. (2.3) analogous to that of a parametric oscillator. Hence, even though the harmonic oscillator

is a linear system, the spatial variations of the perturbing fields, in this case, have led to a nonlinear

system.

We now choose two different sources of electromagnetic waves oscillating at frequencies ω1 and ω2

to drive the system. The total external field is given by

E(r, t) = E1(r)e−iω1t +E2(r)e−iω2t + c.c., (2.4)

where E1(r) and E2(r) are the complex amplitudes of the field components and c.c. stands for

the complex conjugate terms. Since the incident optical fields are usually much smaller than the

microscopic atomic fields, we employ a perturbative approach to solve Eq. (2.3) by expanding the

solution in powers of E,

x(t) = x(1)(t) + x(2)(t) + · · · . (2.5)

The linear solution x(1)(t) =
∑

g x
(1)
g e−iωgt+c.c., like the perturbing electric field, is a superposition

of two oscillations with amplitudes x
(1)
1 and x

(1)
2 corresponding to the incident frequencies ω1 and

ω2 respectively, both obeying the equation of a forced linear harmonic oscillator given by

−mω2
gx

(1)
g = −mω2

0x
(1)
g + im

ωg
τ
x(1)
g − eEg(r0, t), (2.6)

with g = 1, 2. We can utilize this linear solution to calculate the induced linear dipole moment,

defined as p
(1)
g = −ex(1)

g . After substituting the linear solution x
(1)
g of Eq. (2.6), we obtain p

(1)
g =

αgEg where αg is the linear polarizability at frequency ωg,

αg =
e2/m

Dg
, (2.7)

with the denominator being

Dg = ω2
0 − ω2

g − iωg/τ, (2.8)

for g = 1, 2.

We now proceed to find the solution of Eq. (2.3) at the second order, the equation for which is

mẍ(2)(t) =−mω2
0x

(2)(t)− m

τ
ẋ(2)(t)− ex(1)(t) · ∇E(r0, t)

+ eẋ(1)(t)×
∫ t

dt′∇×E(r0, t
′). (2.9)

Notice that once the solution for x(1) obtained from Eq. (2.6) is substituted, the driving terms in

this equation will become quadratic in E with the following frequency components: DC, second

harmonics of both incident frequencies (2ω1 and 2ω2), the sum frequency (ω+ ≡ ω1 + ω2), and
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the difference frequency (ω− ≡ ω1 − ω2). Our interest is to find the solution to the above equation

corresponding to the difference frequency (DF) component, with amplitude x
(2)
− , where ω− = ω1−ω2,

and which obeys

ω2
− x

(2)
− =ω2

0x
(2)
− − i

ω−
τ
x
(2)
− +

e

m

(
x
(1)
1 · ∇E∗2 + x

(1)∗
2 · ∇E1

)
+

e

m

[(
ω1

ω2

)
x
(1)
1 ×∇×E∗2 +

(
ω2

ω1

)
x
(1)∗
2 ×∇×E1

]
, (2.10)

where the superscript (∗) on any quantity signifies its complex conjugate. Notice that in writing

the previous equation, the explicit time dependence has been left out and only complex amplitude

is written. Henceforth, we will use this notation for all equations and drop the explicit time depen-

dence. Using the solution of Eq. (2.10), the quadratic DF dipole moment induced within the bulk

of the media p
(2)
− = −ex(2)

− can be written as,

p
(2)
− = −1

e
α−

[
α1

(
E1 · ∇E∗2 +

ω1

ω2
E1 × (∇×E∗2)

)

+ α∗2

(
E∗2 · ∇E1 +

ω2

ω1
E∗2 × (∇×E1)

)]
. (2.11)

It has been shown [125] that apart from the nonlinear electric dipole moment, there are two other

moments of the second order induced in the system which can significantly contribute to the macro-

scopic nonlinear polarization: the electric quadrupole moment and the magnetic dipole moment.

The quadratic electric quadrupole moment is given by Q
(2)
− = −ex

(1)
1 x

(1)∗
2 − ex

(1)∗
2 x

(1)
1 . Notice that

for convenience our definition differs from the usual one, which is made traceless by subtracting the

trace of the tensor and includes a numerical prefactor of 3. Substituting the linear solution, we

obtain

Q
(2)
− = −1

e
α1α

∗
2(E1E

∗
2 +E∗2E1). (2.12)

The quadratic magnetic dipole is given by

µ
(2)
− = (−e/2mc){x(1)

1 ×mẋ
(1)∗
2 + x

(1)∗
2 ×mẋ(1)

1 }, (2.13)

which becomes

µ
(2)
− = − i

2ce
α1α

∗
2 (ω1 + ω2) (E1 ×E∗2), (2.14)

after the substitution of the linear solution. Taking into consideration the contribution of these

three second order moments, the position dependent macroscopic nonlinear polarization induced in

the system can be defined in the following way,

P−(z) = n(z)p
(2)
− −

1

2
∇ · n(z)Q

(2)
− +

ic

ω−
∇× n(z)µ

(2)
− , (2.15)

Note that the above expression has an additional term related to the quadratic magnetic moment.
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E1

E2

Nonlinear
response P

(2)
− E−

Linear
response

Figure 2.2: A schematic diagram to illustrate the two incident fields oscillating at frequency ω1 and
ω2, the DF polarization (ω−) induced by the nonlinear response, the resulting DF field oscillating
at ω− and its linear response to the DF field.

This relation would yield the same induced current and is more convenient than keeping only the

first two terms in Eq. (2.15) but adding a nonlinear magnetization in the system. In Eq. (2.15),

n(z) is the number density of the polarizable entities which make up the semi-infinite system, with

its value changing rapidly albeit continuously across the surface (located at z = 0), from its bulk

asymptotic value n(z → ∞) = nB to the value n(z → −∞) = 0 in the vacuum [Fig. 2.1 (c)]. As

we have assumed all entities to be identical to each other, effects such as those arising from the

surface electronic structure or any other microscopic crystalline effects do not contribute to the

nonlinear response of the system within our model. We must remark that in a real system these

additional effects may not be negligible. However, we will only focus on the effect of the spatial

variation of the field on the second order response. The nonlinear polarization induced in the system

results in nonlinear sources oscillating at the difference frequency generating an oscillating DF field.

The linear response of the system to this DF field must be taken into consideration to obtain

appropriately screened self-consistent nonlinear polarization and fields. This response is illustrated

schematically in Fig. 2.2. Taking it into consideration and substituting Eqs. (2.11), (2.12) and (2.14)

into Eq. (2.15), we get

P−(z) =n(z)α−E− −
n(z)

e
α−

[
α1

(
E1 · ∇E∗2 +

ω1

ω2
E1 × (∇×E∗2)

)

+ α∗2

(
E∗2 · ∇E1 +

ω2

ω1
E∗2 × (∇×E1)

)]
+

1

2e
α1α

∗
2∇ · n(z)(E1E

∗
2 +E∗2E1)

+
1

2e
α1α

∗
2

(
ω1 + ω2

ω−

)
∇× n(z)(E1 ×E∗2). (2.16)

In order to find the surface response of the medium, we will only be interested in the thin selvedge

region whose thickness is much smaller than the wavelength and thus the effects of retardation can

be safely ignored. To this end, we drop the ∇×E terms and ignore the slow spatial variations of
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the field along the surface. Although the ∇×E terms are negligible, the curl of the cross products

may not be insignificant and hence have not been left out.

As the ẑ axis is normal to the surface [see Fig. 2.1(a)], the normal component of the macroscopic

polarization is

P−,z(z) =n(z)α−E−,z −
n(z)

e
α−

(
α1E1z

∂

∂z
E∗2z + α∗2E

∗
2z

∂

∂z
E1z

)
+

1

2e
α1α

∗
2

∂

∂z
n(z)(E1zE

∗
2z + E∗2zE1z). (2.17)

Since we concentrate our attention in the long-wavelength regime, the fields at the selvedge are

essentially longitudinal. In the medium, we have ∇ ·E = 4πρtot = −4π∇ ·P . At the surface, both

E and P have rapid variations in the z direction. Thus ∇·E = ∂Ez/∂z and ∇·P = ∂Pz/∂z which

after integration yields Ez = −4πPz. There is a small correction term present which integrates to

zero across the selvedge in the limit of zero width. Substituting this for the electric field at ω− in

the previous equation and combining the term with L.H.S., we get,

P−,z(z){1 + 4πn(z)α−} =− n(z)

e
α−

(
α1E1z

∂

∂z
E∗2z + α∗2E

∗
2z

∂

∂z
E1z

)
+

1

2e
α1α

∗
2

∂

∂z
n(z)(E1zE

∗
2z + E∗2zE1z). (2.18)

Using the relation Ejz = Djz/εg(z) for the linear fields with

εg(z) = 1 + 4πn(z)αg, (2.19)

for g = 1, 2, ω− or ω+ as the case may be in Eq. (2.18), we write the normal component of the DF

polarization as,

P−,z(z) =
1

eε−(z)

[
− n(z)α−

(
α1

1

ε1(z)

∂

∂z

1

ε∗2(z)
+ α∗2

1

ε∗2(z)
∂

∂z

1

ε1(z)

)

+ α1α
∗
2

∂

∂z
n(z)

1

ε1(z)

1

ε∗2(z)

]
D1zD

∗
2z + 1↔ 2. (2.20)

Note that in Eq. (2.20), we have used the long wavelength approximation (LWA) to assume that

the linear displacement fields Dgz for (g = 1, 2) are constant across the selvedge. Here, we have also

ignored the effects of spatial dispersion and surface induced corrections to the local field. Thus, the

resulting normal component of the DF polarization will depend on z through the density profile

n(z) and its spatial derivatives.

The DF polarization calculated above [Eq. (2.20)] thus exists only in the thin selvedge region at

the surface where the linear response has a large gradient and vanishes in the bulk and in vacuum.
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Hence, we can define the surface polarization as,

P s
− =

∫ ∞
−∞

dzP−(z). (2.21)

The components of DF quadratic surface susceptibility tensor may be defined as,

P s−,i =
∑
jk

[
χsijk(ω1, ω2) + χsikj(ω2, ω1)

]
F1jF

∗
2k, (2.22)

where the indices i, j, and k represent the different Cartesian directions and the symbol ω2 is used to

denote the negative frequency −ω2. F in Eq. (2.22) is a field whose components are the components

of D or E that are continuous across the surface, to avoid the ambiguity about the position in the

selvedge where the fields are to be calculated. Note that j and k are dummy indices and thus can be

interchanged. Also, the nonlinear susceptibility possesses an intrinsic permutation symmetry which

makes, χsijk(ω1, ω2) = χsikj(ω2, ω1). We must point out that the product of fields in Eq. (2.22) is

symmetric and the summation implies a full contraction with the χ tensor which in turn requires

the susceptibility tensor to be symmetric under permutation of indices j, k when the frequencies are

interchanged simultaneously.

We now integrate Eq. (2.20) by substituting it in Eq. (2.21). The integral to be evaluated is of the

form
∫
dzf(n(z))dg(n(z))/dz, where f and g are rational functions of n(z). The integration can be

divided into different intervals where n varies monotonically, which allows us to change integration

variable z → n. As the integrands are rational functions of n, they may be integrated analytically

for any density profile n(z) to obtain the normal component of the nonlinear surface polarization

P s−,z,

P s−,z = χszzz(ω1, ω2)D1zD
∗
2z + 1↔ 2, (2.23)

where the χszzz component of the nonlinear susceptibility is given by

χs−,zzz = −a(ω1, ω2)

64π2nBe

(
ε1 − 1

ε1

)(
ε∗2 − 1

ε∗2

)
, (2.24)

where a(ω1, ω2) is a dimensionless function to parameterize the normal component of the nonlinear

surface polarization [128], given in this case by

a(ω1, ω2) = −2

[
1 +

(
1− ε−

)
ε1ε
∗
2

(
ε∗2 log(ε−/ε1) + c.p.

)(
ε1 − ε∗2

) (
ε∗2 − ε−

) (
ε− − ε1

) ]
, (2.25)

where c.p. denotes cyclic permutation of the indices 1, 2, and −.

In Fig. 2.3 we illustrate the behavior of the real and imaginary parts of a(ω1, ω2). To that end,

we consider a dispersive harmonic solid whose dielectric function has a single Lorentzian resonance
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Figure 2.3: Imaginary (left panel) and real (right panel) part of the function a(ω1, ω2) for a harmonic
solid as function of ωg/ωT for g = 1, 2. The relation between the longitudinal and transverse optical
mode frequencies is ωL =

√
2ωT. The lifetime parameter τ = 20/ωT.

given by [141]

εd(ω) =
ω2
L − ω2 − iω/τ

ω2
T − ω2 − iω/τ (2.26)

where ωL and ωT are the frequencies of the longitudinal and transverse optical modes respectively

and we included a small dissipation characterized by τ . We choose ωL =
√

2ωT and τ = 20/ωT. The

dielectric function has a pole at ωT and crosses zero at ωL. Between these two values, it is negative

and the logarithm in Eq. (2.25) becomes large. Hence, we expect the real and imaginary part of a

to exhibit some spectral feature in this region. Fig. 2.3 demonstrates peaks and valleys, for both the

real and imaginary part of a, whenever either of the input frequency falls in this region. A broad

valley along the diagonal is observed in the region where both the input frequencies lie between ωT

and ωL with the difference frequency close to zero. The parameter a reaches its asymptotic value

equal to −2 in the low frequency limit, illustrated by the real part of a in the right panel of the

figure.

We follow a similar procedure to that shown above for the parallel component of the nonlinear

polarization. Using Eq. (2.16), we find an expression analogous to Eq. (2.20) for the parallel

component,

P−,‖(z) =
1

2e
α1α

∗
2

[
E1‖

∂

∂z

n(z)

ε∗2(z)
D∗2z +E∗2‖

∂

∂z

n(z)

ε1(z)
D1z

+

(
ω1 + ω2

ω−

)(
∂

∂z

n(z)

ε∗2(z)
D∗2zE1‖ −

∂

∂z

n(z)

ε1(z)
D1zE

∗
2‖

)]
. (2.27)

The above equation can be simply integrated across the selvedge, yielding the nonlinear tangential
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surface polarization

P s
−,‖ =

∫ ∞
−∞

dzP−,‖(z)

=
1

2e
α1α

∗
2

[
nB
ε∗2

(
1 +

ω1 + ω2

ω−

)
E1‖D

∗
2z +

nB
ε1

(
1− ω1 + ω2

ω−

)
D1zE

∗
2‖

]
= χs−,‖‖z(ω1, ω2)E1‖D

∗
2z + χs−,‖z‖(ω1, ω2)D1zE

∗
2‖ + 1↔ 2, (2.28)

where the surface susceptibility is parameterized as

χs−,‖‖z(ω1, ω2) = χs−,‖z‖(ω2, ω1) = − 1

32π2nBe

(ε1 − 1)(ε∗2 − 1)

ε∗2

ω1

ω−
b(ω1, ω2), (2.29)

χs−,‖‖z(ω2, ω1) = χs−,‖z‖(ω1, ω2) =
1

32π2nBe

(ε1 − 1)(ε∗2 − 1)

ε1

ω2

ω−
b(ω2, ω1), (2.30)

with

b(ω1, ω2) = b(ω2, ω1) = −1. (2.31)

There is another component of the surface susceptibility tensor, χsz‖‖ allowed by the in-plane isotropy

at the surface, but it is null within this model. By definition, our results are primarily applicable to

dielectric materials, however it has been shown that the results are equivalent to those of the local

jellium model [125] for metals.

We now focus on the bulk nonlinear response of the system. The quadratic polarization induced

within the bulk is evaluated by substituting Eqs. (2.11), (2.12) and (2.14) in Eq. (2.15) and assuming

that the fundamental fields propagate as plane waves Eg(r) = Ege
iqg ·r with the bulk wave vectors

given by qg = {qj‖, qjz} for (g = 1, 2). We get

PB
− (r) = iei(q1+q2)·r[D1q1(E1 ·E∗2) +D1(q1 ·E∗2)E1 +D∗2 q

∗
2(E∗2 ·E2) +D

∗
2(q
∗
2 ·E1)E

∗
2 ], (2.32)

where the number density of the polarizable entities is equal to the constant value nB in the bulk.

The wave vectors projection onto the surface qj‖ are determined by Snell’s law, qj‖ = (ωg/c) sin θg,

where θg is the angle of incidence of the beam, and qiz is obtained from the bulk dispersion relation,

q2iz = (ωg/c)
2εg − q2j‖ for both incident beams, i.e., g = 1, 2. The bulk nonlinear polarization in

Eq. (2.32) is characterized by the parameters Dg and Dg given by

Dg =
1

16π2nBe
(ε∗2 − 1)(ε1 − 1)δgdg, (2.33)

Dg =
1

16π2nBe
(ε∗2 − 1)(ε1 − 1)δgdg, (2.34)
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for g = 1, 2 and with the bulk parameter, δ as

δ1 = −
(
ε− − 1

ε1 − 1

)
ω2

ω1
, (2.35)

δ1 =
ω1

ω−
−
(
ε− − 1

ε1 − 1

)
ω−
ω1
, (2.36)

δ2 = −
(
ε− − 1

ε∗2 − 1

)
ω1

ω2
, (2.37)

δ2 = − ω2

ω−
+

(
ε− − 1

ε∗2 − 1

)
ω−
ω2
, (2.38)

and d1 = d2 = d1 = d2 = 1. Note that PB− plays the role of an external source for the DF field in

the bulk. The total bulk polarization contains also an additional polarization linearly induced in

response to the self-consistent DF field, as shown in Eq. (2.16). To obtain the self-consistent DF

field Maxwell’s equations with sources should be solved with appropriate boundary conditions.

2.3 Dipolium model : SF and SH response

The sum frequency (SF) response for the semi-infinite homogeneous system described by the

dipolium model (introduced in Sec. 2.2) has been reported in [125] by Maytorena et al. The SF

response can be easily obtained by changing the sign of ω2 in the expressions for the DF response

evaluated in the previous section and using the relation ε(−ω2) = ε∗(ω2). In the next sub-section,

explicit expressions for SF macroscopic polarization, the different components of the surface po-

larization and susceptibility tensors are provided. They are identical to the results of ref. [125].

Afterwards, we will consider the degenerate second harmonic (SH) response by choosing the same

frequency for both input fields, ω1 = ω2 and write down the explicit analytical formulas for the

nonlinear response functions. The results for SH are important for this work, as they are employed

to calculate the response of the bidimensional system in Chapter 3.

Dipolium model : SF response

The quadratic SF moments, macroscopic SF polarization and susceptibility induced in the system

can be obtained from the expressions of the DF case by changing the sign of the frequency ω2 → −ω2

and using ε(−ω2) = ε(ω2)
∗. We also use the SF, ω+ = ω1 + ω2, in the expressions instead of the

DF, ω− = ω1 − ω2.

The quadratic SF dipole moment induced within the bulk of the media, can be written directly
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from Eq. (2.11) by making the change of frequency. We get,

p
(2)
+ = −1

e
α+

[
α1

(
E1 · ∇E2 −

ω1

ω2
E1 × (∇×E2)

)

+ α2

(
E2 · ∇E1 −

ω2

ω1
E2 × (∇×E1)

)]
. (2.39)

The quadratic DF electric quadrupole moment given by Eq. (2.12), for the SF case becomes,

Q
(2)
+ = −1

e
α1α2(E1E2 +E2E1), (2.40)

and the quadratic magnetic dipole, of Eq. (2.14),

µ
(2)
+ = − i

2ce
α1α2 (ω1 − ω2) (E1 ×E2). (2.41)

The macroscopic SF polarization can be obtained by substituting these second order moments into

Eq. (2.15) and using the same arguments as those to obtain the DF macroscopic polarization given

by Eq. (2.16). We get,

P+(z) =n(z)α+E+ −
n(z)

e
α+

[
α1

(
E1 · ∇E2 −

ω1

ω2
E1 × (∇×E2)

)

+ α2

(
E2 · ∇E1 −

ω2

ω1
E2 × (∇×E1)

)]
+

1

2e
α1α2∇ · n(z)(E1E2 +E2E1)

+
1

2e
α1α2

(
ω1 − ω2

ω+

)
∇× n(z)(E1 ×E2). (2.42)

Following the same procedure as illustrated by Eqs. (2.17) to (2.21), an equation analogous to

Eq. (2.23) for the normal component of the SF surface polarization can be evaluated. It is given by

P s+,z = χs+,zzz(ω1, ω2)D1zD2z + 1↔ 2, (2.43)

where χs+,zzz(ω1, ω2) is the normal component of the SF susceptibility. Similar to Eq. (2.24), the

SF surface susceptibility can be written in terms of the dimensionless parameter a(ω1, ω2) [128] as

χs+,zzz = −a(ω1, ω2)

64π2nBe

(
ε1 − 1

ε1

)(
ε2 − 1

ε2

)
, (2.44)

where

a(ω1, ω2) = −2

[
1 +

(
1− ε+

)
ε1ε2

(
ε2 log(ε+/ε1) + c.p.

)
(ε1 − ε2) (ε2 − ε+) (ε+ − ε1)

]
, (2.45)

where c.p. denotes cyclic permutation of the indices 1, 2, and ω+.
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The tangential component of the SF surface nonlinear polarization (analogous to Eq. (2.28)) will

then be given by

P s
+,‖ = χs+,‖‖z(ω1, ω2)E1‖D2z + χs+,‖z‖(ω1, ω2)D1zE2‖ + 1↔ 2, (2.46)

where the surface susceptibility can be parameterized as

χs+,‖‖z(ω1, ω2) = χs+,‖z‖(ω2, ω1) = − 1

32π2nBe

(ε1 − 1)(ε2 − 1)

ε2

ω1

ω+
b(ω1, ω2), (2.47)

χs+,‖‖z(ω2, ω1) = χs+,‖z‖(ω1, ω2) = − 1

32π2nBe

(ε1 − 1)(ε2 − 1)

ε1

ω2

ω+
b(ω2, ω1), (2.48)

with

b(ω1, ω2) = b(ω2, ω1) = −1. (2.49)

The χ+,z‖‖ component of the surface SF susceptibility tensor is found to be equal to zero in this

model. Other components are null due to the isotropy of the surface.

Dipolium model : SH response

The second harmonic (SH) response is simply the degenerate case of the SF response with ω1 =

ω2 = ω where two incoming photons with equal energies interact to produce an outgoing photon

with double the energy (ωsh = 2ω). To study the SH response, we choose a monochromatic external

field oscillating with frequency ω incident on the material producing a SH field at ωsh = 2ω. Hence

substituting this limit in the expressions of the previous section, the SH response of the semi-infinite

system can be obtained.

Substituting the condition of the equality of frequency and choosing only one incident field in

Eqs. (2.39) and (2.40), the microscopic SH dipole moment induced is obtained to

p
(2)
sh = − 1

2e
αωαsh[∇E2

ω − 4Eω × (∇×Eω)], (2.50)

and the quadrupole moment as

q
(2)
sh = −1

e
α2
ωEωEω. (2.51)

Notice that imposing this limit to Eq. (2.41), the nonlinear magnetic dipole in the system, gives

zero and does not contribute to the SH polarization. The subscript sh denotes quantities at the SH

frequency and ω at the fundamental frequency.

Substituting Eqs. (2.50) and (2.51) in Eq. (2.15) for the SH case, we obtain for the macroscopic SH



30 Chapter 2. Theoretical models

polarization,

Psh(z) =n(z)αshEsh −
n(z)

2e
αω αsh[∇E2

ω − 4Eω × (∇×Eω)]

+
1

2e
α2
ω∇ · (n(z)EωEω). (2.52)

Using a procedure identical to the one discussed above for DF or SF case, the components of the

SH surface polarization can be obtained from Eq. (2.52). Eq. (2.43) for the normal component of

the surface SF polarization in the limit of a single incident field with frequency ω for the SH case

is thus reduced to

P ssh,z = χssh,zzz(ω)D2
ω, (2.53)

where the normal component of the SH susceptibility χssh,zzz(ω) will be given by

χssh,zzz(ω) = − a(ω)

64π2nBe

(
εω − 1

εω

)2

, (2.54)

where

a(ω) = 2

(
εsh − εω

) (
2εω − εsh − εωεsh

)
+ ε2ω

(
1− εsh

)
log
(
εω/εsh

)(
εsh − εω

)2 , (2.55)

Eqs. (2.54) and (2.55) can be directly written down from Eqs. (2.44) and (2.45) by using the

condition of equality of the frequency of the input frequencies.

The tangential component of the SH surface nonlinear polarization can be similarly obtained from

Eq. (2.46). We get,

P s
sh,‖ = χs‖‖z(ω)Eω,‖Dω,z, (2.56)

with the tangential component of the surface SH susceptibility given by

χs‖‖z(ω) = χs‖z‖(ω) = − 1

32π2nBe

(εω − 1)2

εω
b(ω), (2.57)

where

b(ω) = −1. (2.58)

Eqs. (2.57) and (2.58) can also be directly obtained from Eqs. (2.47) and (2.49) by employing the

condition of equality of the incident frequencies.

Similar to the DF and SF case, the other component of the surface SH susceptibility tensor χsh,z‖‖,

although permitted by the isotropy of the surface, is zero within this model.
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2.4 Jellium : The Hydrodynamic Model

The jellium or hydrodynamic model, applicable to metallic systems, represents a conductor as a

semi-infinite electron gas with an equilibrium density interpolating smoothly between vacuum and

an asymptotic bulk value. The Euler’s hydrodynamic equation of motion describing the motion of

the charged fluid, ignoring the pressure term is given by,

mn

(
∂

∂t
+

1

τ

)
u+mn(u · ∇)u = −enE − e

c
nu×B, (2.59)

where m, −e, and n(r, t) are the mass, the charge and the density at point r and time t of the

electron, respectively, u(r, t) is the velocity field, and E(r, t) and B(r, t) are the electric and

magnetic fields respectively. The term proportional to ∇p with pressure p, which we didn’t include

in the equation above, adds a nonlocal correction to the polarization which may affect the linear

response of the system and nonlinear response, especially at the surface [142], but this surface

correction would depend on the detailed shape of surface density profile and is thus beyond the scope

of this work. Here, the nonlinearity of the system arises due to the presence of the convective time

derivative u ·∇u and the magnetic Lorentz force term evident from Eq. (2.59). The aforementioned

equation can be solved by considering two incident electromagnetic fields oscillating at frequencies ω1

and ω2 and writing down the time varying quantities as a superposition of different monochromatic

waves with frequencies ω1, ω2, 2ω1, 2ω2, ω1 ± ω2, and 0 = (ω1 − ω1 or, ω2 − ω2)

h(r, t) = h0(r) + [h(r, ω1)e
−iω1t + h(r, ω2)e

−iω2t + h(r, 2ω1)e
−i2ω1t + h(r, 2ω2)e

−i2ω2t

+h(r, ω1 − ω2)e
−i(ω2−ω1)t + · · ·+ c.c.], (2.60)

where h stands for either n, u, E, or B. The nonlinear current induced in the system can be

obtained from the solution of Eq. (2.59). Using the nonlinear current, the nonlinear polarization

induced in the metal can be calculated and the nonlinear bulk and surface susceptibilities can

be extracted from it. Ref. [125] reports explicit expressions for SF response from which the DF

response can be obtained by changing ω2 → −ω2 and using the fact that the field amplitudes such

as E(ω2) and the complex response functions like ε(ω2) become their conjugates when the sign of

their frequency argument is inverted. The results from both the models are identical. This could be

understood by regarding a local metal within the jellium model as a harmonic dipolium for which

the restoring force is set equal to zero. For a detailed analysis on the comparison, Ref. [125] can

be followed. We mention this model simply to show that the results of the dipolium model may be

used to analyze metallic systems.
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Second harmonic generation (SHG) from the bulk of centrosymmetric materials, such as metals,

is strongly suppressed and is actually null within the electric dipolar approximation. There may

be excitation of higher multipoles such as an electric quadrupole or a magnetic dipole within the

bulk contributing to SHG. This may prove to be useful for studying electric-dipole forbidden tran-

sitions [143, 144]. The dipolar second harmonic (SH) response from centrosymmetric systems is

observed only at their surface where the inversion symmetry is locally lost. This selection rule

is also applicable to nanoparticles made up of centrosymmetric materials, with a nonlinear dipo-

lar contribution to the SH surface response which is comparable to its volumetric bulk response.

However, if the nanoparticle has a symmetrical shape, there is an exact cancellation of the locally

induced dipolar surface nonlinear polarization from opposite points of the surface, thus integrating

to a null total response. For particles with size comparable to the wavelength of light, quadrupolar

or higher multipoles may contribute towards the generation of a SH response owing to the presence

of retardation effects [50, 145]. In order to extract a non-zero electric dipolar contribution to the

surface SH response of nanoparticles made up of centrosymmetric materials, one of the following

conditions must be met to break the symmetry: either an inhomogeneous field across the particle or

nonsymmetric shape of the particle. Nanoparticles with symmetrical shapes, such as a sphere, when

subjected to an inhomogeneous perturbing field generate a net SH response due to the contribution

arising from the non-local excitation of dipole moments [51, 54, 55, 146, 147]. The reason behind

this non-vanishing dipolar SH response is that the quadratic dipole moment density is induced

with unequal magnitudes at different regions of the surface, which when integrated over the surface

might yield a non-zero response. Another approach is to make the geometry of the nanoparticles

noncentrosymmetric. In this scenario too, the quadratic dipolar SH response induced at different

points on the surface when integrated over the entire nanoparticle results in a non-zero nonlinear

dipolar response [20, 27, 30–32]. The importance of investigating distinct approaches to achieve

highly efficient SHG from centrosymmetric materials, especially metals, is to take advantage of the

plasmon resonances for local field enhancement resulting in stronger SH signals and higher efficiency

for the conversion process [2]. SHG from nanoparticles, arrays of nanoparticles, and nanostructured

33
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materials with a variety of geometries have been studied extensively under different experimental

conditions [24,27,28,148]. Many numerical studies employing various techniques such as finite dif-

ferences in the time domain (FDTD) [29, 30], the finite element method (FEM) [21], the discrete

dipole approximation (DDA) [34], and the surface integral method [31–33] have also been reported.

To the best of our knowledge, there have been no reports of analytical calculations to study the

SH response of nanostructures made up of centrosymmetric materials with a noncentrosymmetric

geometry. Here, we develop a theory that allows the analytical calculation of the nonlinear response

corresponding to SHG from a nanowire made up of a centrosymmetric material with small devia-

tions from a symmetrical circular cross-section, placed in vacuum and subjected to a homogeneous

external field. We obtain the nonlinear polarization, the nonlinear susceptibility and its spectra,

and discuss the results [22]. The geometry is made noncentrosymmetric by introducing a param-

eter which characterizes the extent of deformation away from a circular cross-section. We restrict

ourselves to studying small deformations, as that permits us to employ a perturbative approach in

order to analytically solve the field equations for the linear and SH induced fields within and beyond

the surface of the nanowire. The resultant induced fields would be in the form of a series in powers

of the deformation parameter which we terminate after the linear order term, the corrections due to

the higher order terms being negligible for small enough deformations. The nonlinear polarization

and charges induced in the system are calculated using the results of the dipolium model [124],

and they play the role of the external sources for the SH fields. Having obtained the SH fields,

we evaluate the quadratic dipolar and quadrupolar hyperpolarizabilities of the wire, thus obtaining

analytical expressions for them in terms of the linear response at the fundamental and SH frequency,

geometrical parameters of the nanowire, and some dimensionless parameters that characterize the

nonlinear response. We analyze the resonant structure of their spectra, and identify the different

contributions to it for a nanowire made up of any general metal or a dielectric material. We also

study the relations between different components of the response tensor arising from the symmetry

of our system. Our calculation, being performed within the long wavelength approximation, yields

the near fields only. The calculated SH near fields are then utilized to calculate the electromagnetic

fields in the radiation zone, which are further used to obtain and discuss the nature of the 2D SH

radiation pattern. We also illustrate the ratio of the total SH power emitted as the dipolar and

quadrupolar fields.

The structure of this chapter is the following. In Section 3.1, we describe our theory to analytically

investigate SHG from a deformed infinite thin cylinder, obtaining expressions for the nonlinear

dipolar and quadrupolar hyperpolarizabilities. We discuss the effect of symmetry of our system on

the results in Section 3.2 and the SH radiation patterns Section 3.3. In Section 3.4, we illustrate

our results for deformed cylinders made up of a Drude metal and a resonant dispersive dielectric,

and discuss them in detail. Finally, we present some conclusions in Section 3.5.
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3.1 Nonlinear response of the nanowire

The nanowire is modeled by choosing an isolated, infinitely long cylinder placed in vacuum with

translational symmetry along its axis which is aligned with the ẑ direction. We consider the simplest

geometry for its cross-section that lacks inversion symmetry, a slight deformation from a circular

shape with three protruding lobes having a threefold symmetry. The transverse cross-section in the

x− y plane is defined in polar (r, θ) coordinates by the following condition,

rs(θ) = r0(1 + ξ cos 3θ), (3.1)

where r0 is the radius of a symmetric nominal circular cylinder and ξ is a small deformation pa-

rameter (See Fig. 3.1). It must be pointed out that the cos 3θ term is used to modify the transverse

cross-section as its the simplest term possible to make it noncentrosymmetric. If a cos θ term were

used instead, the cross-section would still remain circular with its origin shifted by a distance equal

to ξ; if instead a cos 2θ term were used, then the cross-section would have the form of an ellipse which

is centrosymmetric. We would like to emphasize that, besides its translational symmetry along z,

our system belongs to the D3h group possessing a vertical mirror plane (x − z) and a three-fold

rotational symmetry around the z axis and a horizontal mirror plane x− y. The calculations have

been performed in 2D owing to the translational symmetry along the axis of the cylinder. Also, the

radius r0 of the nominal circular cylinder to which the deformation is applied is considered to be

much smaller than the wavelength of the incident electromagnetic field, which allows us to ignore

the effects of retardation. We choose an external field that propagates along the 2D plane and thus

has no variations along the ẑ direction. We remark that in an experimental setup, the nanowire

would certainly be of a finite length with our results being applicable only when the length of the

nanowire l is much larger than the radius of its cross-section r0. For a detailed discussion on the

effect of finiteness of the nanowire on our results, see Sec. 3.4.

If the polarization of the incident field were along the ẑ direction, the χ⊥‖‖ component of the

nonlinear surface susceptibility, Eq. (3.19), would couple the linear fields to the surface nonlinear

polarization, but within our model it is zero. The derivatives of the nonretarded field in x−y plane

would also be zero producing no bulk contribution. Thus, this case is not interesting as it does would

not produce any SH signal. It has been shown that even for larger particles, the SH signal produced

by incident fields polarized along z axis is much smaller than those polarized in the plane of the

cross-section. Thus, we subject the nanowire to an external electric field Eex oscillating within the

x− y plane. We explore the nonlinear dipolar p and quadrupolar Q moments per unit wire length

induced in our system. We neglect the spatial variation of the external field across the narrow

particle. Since the cylinder is made of a centrosymmetric material and present under the influence

of a homogeneous field, the quadratic dipole moment p does not have a nonlocal contribution arising

from the spatial variation of the external field. However, owing to the overall non-centrosymmetry

of the geometry of the particle, p is expected to have a local contribution proportional to EexEex,
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y

x

rs(θ) = r0(1 + ξ cos 3θ)

ξ = 0

ξ = 0.2

Figure 3.1: Cross-section of a deformed cylinder described by Eq. (3.1) for various values of the
deformation parameter ξ = 0.0 . . . 0.2.

whose components pi we write as

pi = γdijkE
ex
j E

ex
k , (3.2)

where γdijk is the dipolar hyperpolarizability, a third rank tensor symmetric in the last two indices

jk, and we use Einstein summation convention. Similarly, the components of the induced quadratic

2D quadrupole moment, which we define as

Qij =

∫
d2r ρ(r)(2rirj − r2δij), (3.3)

(notice the difference with the usual 3D definition) is given by

Qij = γQijklE
ex
k E

ex
l , (3.4)

where γQijkl is the quadrupolar hyperpolarizability, a rank four tensor symmetric in the first ij and

last kl pairs of indices. Here, ρ(r) is the charge density. The above definitions for the response

tensors γd and γQ are used for any general hyperpolarizability and we will use (γd
sh,γ

Q
sh) for the SH

response [Chapter 3], (γd
−,γ

Q
−) for the difference frequency (DF) response [Chapter 4] and (γd

+,γ
Q
+)

for the sum frequency (SF) response [Chapter 4] respectively.

For simplicity, we first assume that the external field is a monochromatic wave oscillating at fre-

quency ω1 and polarized along the x̂ direction, Eex = E0x̂. Given the direction of the external field

and the symmetries in the system, inversion (y → −y) and the three-fold rotation (120◦ in x − y
plane) symmetry, the only nonzero component of the nonlinear dipole moment induced in this case
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is px, which we write as

px = γdshE
2
0 , (3.5)

and the nonlinear quadrupole moment has only two nonzero components, given by

Qxx = −Qyy = γQshE
2
0 , (3.6)

where the quadratic moments have been written in terms of nonlinear dipolar γdsh and quadrupolar

γQsh scalar response functions, related to the full dipolar γdsh,ijk and quadrupolar γQsh,ijkl hyperpolar-

izabilities respectively. The non-zero components of p and Q tensor are directly related to those of

γdsh and γQsh respectively. A detailed description about the effect of the symmetries of the system

and their implications for the components of the response tensors is provided in Sec. 3.2. In what

follows, we will calculate analytical expressions for γdsh and γQsh.

In the nonretarded regime, the linear self-consistent near field may be obtained by solving Laplace’s

equation beyond and within and beyond the particle,

∇2φω = 0, (3.7)

where the subscript ω corresponds to the fundamental frequency. The following boundary conditions

should hold at the interface [150],

φω(r−S ) = φω(r+S ) (3.8)

−εωn̂ · ∇φω(r−S ) = −n̂ · ∇φω(r+S ). (3.9)

where (r−S ), and (r+S ) indicate the position just inside and outside the surface of the deformed

cylinder respectively, n̂ is the unit vector normal to the surface pointing outwards, given by

n̂ = r̂ + 3ξ sin 3θ θ̂, (3.10)

to first order in ξ, and εg is the dielectric response of the particle at g-th harmonic frequency,

g = ω, sh for the fundamental and the second harmonic respectively. We start with the general

solution of Laplace’s equation outside

φoutω = φex +

∞∑
l=0

r−l(sl cos lθ + tl sin lθ) (3.11a)

and within

φinω =

∞∑
l=0

rl(ul cos lθ + vl sin lθ), (3.11b)

the particle, where the external scalar potential is given by φex = −E0r cos θ and we imposed
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regularity conditions at the origin and at infinity. We expand the multipolar coefficients ζl as a

power series on the deformation parameter ξ

ζl =
∞∑
n=0

ζ
(n)
l ξn, (3.12)

where the generic coefficients ζl stand for any of sl, tl, ul or vl. As mentioned previously, we restrict

ourselves to small deformations, and we consider terms up to linear order in ξ only. Using the trial

solution given by Eq. (3.11) and imposing the boundary conditions [Eqs. (3.8) and (3.9)], we obtain

the self-consistent linear potential,

φoutω

E0
= −r cos θ − 1− εω

1 + εω

r20
r

cos θ + ξ

[(
1− εω
1 + εω

)2 r30
r2

cos 2θ − 1− εω
1 + εω

r50
r4

cos 4θ

]
, (3.13a)

φinω
E0

= − 2

1 + εω
r cos θ + 2ξ

1− εω
(1 + εω)2

r2

r0
cos 2θ, (3.13b)

The linear self-consistent electric field Eω can then be obtained by evaluating Eω = −∇φω. Note

that the zeroth order terms are the well known solutions for an infinite circular cylinder [53]. It

must be pointed out here that even though the external field is homogeneous, the self-consistent

induced field within and beyond the particle is not. The spatial variation of the self-consistent field

within the particle induces a nonlinear polarization [150] defined by,

P
(2)
sh = np

(2)
sh −

1

2
∇ · n q(2)sh , (3.14)

where we have included the contributions from the nonlinear dipole pnl and quadrupole qnl moments

of each microscopic polarizable entity within the material, whose number density n is assumed to be

constant within the wire. Note that here qnl is just the second moment tensor of the charge density

and may have a finite trace. The dipole and the quadrupole moments induced within the bulk of

the nanowire can be calculated by substituting the self consistent linear fields inside the nanowire

in Eqs. (2.50) and (2.51) respectively. Note that the terms corresponding to the curl of the fields in

Eq. (2.50) would be negligible near the nanowire in the long wavelength approximation. Thus, the

polarization obtained from Eq. (3.14) due to its spatial variations yields a nonlinear bulk charge

density given by

ρ
(2)
sh = −∇ · P (2)

sh , (3.15)

which evaluates to zero up to linear order in ξ, though it would be nonzero at higher orders.

The termination of this nonlinear bulk polarization at the surface of the particle induces a bulk-

originated nonlinear surface charge with density σbsh = P
(2)
sh (r−s ) · n̂. We employ the super-index b

to denote the bulk origin of this surface charge. Using Eqs. (2.50), (2.51), (3.13) and (3.14) and the
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relation defining σbsh, we get

σbsh = 4ξ
n

er0

(1− εω)

(1 + εω)3
αω(2αsh − αω) cos θE2

0 . (3.16)

Beyond the bulk quadratic polarization, the total nonlinear polarization induced in the system

contains a contribution from the surface. This response of the system is due to the lack of local

inversion symmetry at the thin selvedge region near the surface. We will assume that the thickness

of the selvedge region is much smaller than the radius of the cylinder and thus, the surface is

considered to be locally flat. We will further assume local invariance under rotations around the

surface normal. The normal and the tangential components of the nonlinear surface polarization

will be given by Eqs. (2.53) and (2.56) respectively with the corresponding susceptibilities given

by Eqs. (2.54) and (2.57). Eqs. (2.53) and (2.56) can be combined to obtain, a relation similar to

Eq. (2.22), the quadratic SH polarization,

P ssh,i = χssh,ijk(ω)Fω,jFω,k, (3.17)

where the field F , as discussed in Sec. 2.2, is defined in terms of quantities that are continuous

across the surface to avoid the ambiguity about the position in the selvedge where the fields are

to be calculated; F is made up of the normal projection of the displacement field and the parallel

projection of the electric field evaluated at the surface rs(θ). Thus,

Fω(rs) = Eω(r+s ) = εωE
⊥
ω (r−s ) +E‖ω(r−s ), (3.18)

where Eω(r−s ) = −∇φinω (rs) and Eω(r+s ) = −∇φoutω (r+s ) and ⊥ and ‖ denote the projections normal

and parallel to the surface. The nonlinear surface susceptibility in Eq. (3.17) is obtained by using

Eqs. (2.54) and (2.57), and including the component χsh,⊥‖‖ (zero within the scope of the model

employed here). We get,

χssh,ijk =
(εω − 1)2

64π2ne

(
δi⊥δj⊥δk⊥

a

ε2ω
+ [(1− δi⊥)(1− δj⊥)δk⊥

+ (1− δi⊥)δj⊥(1− δk⊥)]
b

εω
+ δi⊥(1− δj⊥)(1− δk⊥)f

)
, (3.19)

in a local reference frame where one of the Cartesian directions is perpendicular and the others

are parallel to the surface. Here, the dimensionless parameters a and b are functions of ω used to

parameterize the response of the surface; they are given by Eqs. (2.55) and (2.58) of Sec. 2.3. The

third parameter, f , corresponding to the component χsh,⊥‖‖ is zero.

The nonlinear polarization induced on the surface of the cylinder is obtained by substituting

Eqs. (3.18) and (3.19) in Eq. (3.17), with the fields in Eq. (3.18) obtained by taking the gradi-
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ent of the scalar potential given by Eq. (3.13). Its perpendicular component is

P ssh,⊥ =
1

32π2ne

(
1− εω
1 + εω

)2{
(a+ f) + (a− f) cos 2θ

− ξ
[(

4
1− εω
1 + εω

(a+ f) + 3(a− f)

)
cos θ + 4

1− εω
1 + εω

(a− f) cos 3θ − 3(a− f) cos 5θ

]}
E2

0 ,

(3.20)

and the tangential component is

P ssh,‖ =
b

16π2ne

(
1− εω
1 + εω

)2{
− sin 2θ + ξ

[
4

(
1− εω
1 + εω

)
sin 3θ − 3 sin θ − 3 sin 5θ

]}
E2

0 . (3.21)

The terms in the above expressions, Eqs. (3.20) and (3.21), independent of the deformation ξ are

the components of the local surface nonlinear polarization for a circular cylinder. We can integrate

this quadratic polarization over the boundary of the surface to obtain the net quadratic surface

dipole moment per unit length for the circular cylinder pscirc. We write,

pscirc =

∫ 2π

0
(P ssh,⊥(ξ = 0) r̂ + P ssh,‖(ξ = 0) θ̂) r0 dθ, (3.22)

where r̂ is the unit vector normal and θ̂ is the unit vector tangential to the circular surface respec-

tively. The integral in Eq. (3.22) after substituting the unit vectors and the ξ independent terms

of Eqs. (3.20) and (3.21), evaluates to zero. Thus, even though a nonlinear polarization is induced

locally at each point of the surface of the circular cylinder, it sums to zero due to the symmetrical

form.

The variation of the tangential component P ssh,‖ along the surface yields a surface-originated con-

tribution to the surface charge σssh beyond that due to the termination of the bulk nonlinear polar-

ization σbsh, where we use the superscript s to denote its surface origin. It is given by

σssh = −∇‖ · P s
sh,‖, (3.23)

where∇‖ is the gradient operator projected along the surface. Multiplying the tangential component

of the surface polarization [Eq. (3.21)] with the unit vector tangential to the surface, given by

t̂ = θ̂ − 3ξ sin 3θ r̂, (3.24)

and substituting it in Eq. (3.23), we obtain

σssh =
b

8π2ner0

(
1− εω
1 + εω

)2 [
cos 2θ + ξ

(
cos θ − 6

1− εω
1 + εω

cos 3θ + 7 cos 5θ

)]
E2

0 . (3.25)

The screened scalar potential φsh induced at the SH frequency has ρ
(2)
sh (= 0) as an external bulk
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source and the total nonlinear charges induced at the surface σbsh and σssh as external surface sources,

together with the normal polarization P s⊥, which are accounted for through the boundary conditions.

The external sources have to be screened by the linear response εsh of the particle at the SH

frequency. Thus the equation to be solved for the quadratic scalar potential is

∇2φsh =

0, (outside)

−4πρ
(2)
sh /εsh = 0, (inside)

(3.26)

subjected to the boundary conditions

n̂ · ∇φsh(r+s )− εshn̂ · ∇φsh(r−s ) = −4π(σbsh + σssh) (3.27)

and

φsh(r+s )− φsh(r−s ) = 4πP s⊥ (3.28)

Eq. (3.27) is the discontinuity of the normal component of the displacement field due to the presence

of the nonlinear surface charge. Eq. (3.28) is the discontinuity of the scalar potential due to the

presence of the normal nonlinear surface polarization P s⊥, which is a dipole layer across the selvedge

of the particle. Using a trial solution similar to Eqs. (3.11a) and (3.11b) along with the boundary

conditions Eqs. (3.27) and (3.28), we solve Eq. (3.26) to obtain the self-consistent scalar potential

at the SH frequency with terms up to linear order in ξ. We obtain,

φoutsh

E2
0

=
ξ

4πne

(1− εω)2

(1 + εsh)(1 + εω)2

(
4
εω − 2εsh + 1

1 + εω
+ 2b

1 + 3εsh
1 + εsh

+
εsh
2

(εsh − 3)(a− f)

1 + εsh

+
εsh
2

(7εω − 1)f + (εω − 7)a

1 + εω

)
r0
r

cos θ

+
1

8πne

(
1− εω
1 + εω

)2 εsh(a− f) + 2b

1 + εsh

r20
r2

cos 2θ + . . . (3.29)

on the outside, where we only kept the dipolar and quadrupolar contributions, and neglected higher

multipoles, all of which are at least of order ξ, and their contribution to the radiation fields would

be insignificant for small particles, at least by a factor of order r0/λ, with λ the wavelength.

The general expression of the 2D scalar potential in polar coordinates, after taking into account

the symmetry properties of our system can be written as

φout = 2px
cos θ

r
+Qxx

cos 2θ

r2
+ . . . (3.30)

Finally, comparing Eq. (3.29) and Eq. (3.30) we identify the corresponding components of the
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multipolar moments px and Qxx, and from Eqs. (3.5) and (3.6) we obtain the dipolar

γdsh =
ξr0

8πne

(1− εω)2

(1 + εsh)(1 + εω)2

[
4
εω − 2εsh + 1

1 + εω

+2b
1 + 3εsh
1 + εsh

+
εsh
2

(εsh − 3)(a− f)

1 + εsh
+
εsh
2

(7εω − 1)f + (εω − 7)a

1 + εω

]
(3.31)

and quadrupolar

γQsh =
r20

8πne

(
1− εω
1 + εω

)2 [εsh(a− f) + 2b

1 + εsh

]
(3.32)

nonlinear response functions.

To the lowest order in the deformation parameter, γdsh is proportional to ξ, and thus, as expected,

the dipolar response would disappear for a centrosymmetric circular cross-section. On the other

hand, γQsh is independent of ξ, and therefore is the nonlinear response for a symmetric circular

cylinder.

There are previous calculations of the nonlinear response of a circular cylinder. An analytical

calculation in the retarded regime of the fields radiated at the SH frequency by an infinite circular

cylinder can been found in the work by Valencia et al. [53]. However, their results cannot be directly

compared with Eq. (3.32) as their calculation was performed for a radius comparable with the

wavelength, they took the nonlinear bulk and surface response as parameters and their calculation

is not self-consistent in the SH frequency.

From Eqs. (3.31) and (3.32) we can easily identify the contributions arising from the bulk and the

surface to the nonlinear hyperpolarizabilities as the latter are proportional to the surface param-

eters a, b, and f . Thus, γdsh has both surface and bulk contributions, while γQsh has only surface

contributions. Both γdsh and γQsh inherit the spectral structure of the surface parameters, namely,

of a(ω), and also exhibit additional resonances corresponding to the excitation of surface plasmons

or surface plasmon-polaritons at the fundamental and the second harmonic frequencies, given by

εω = −1 and εsh = −1 respectively.

3.2 Influence of system symmetry on the SH response

In Sec. 3.1, we have explicitly shown the calculation of the nonlinear response of the infinite cylinder

with the external electromagnetic field polarized in the x̂ direction. The response of the particle

to a perturbing field pointing in any other direction can be evaluated following the procedure

demonstrated in the previous section. Thus, the process can be repeated to obtain the different

components of the response tensor. It is, however, not necessary to perform such calculations as

the presence of different symmetries in the system reduces the number of independent components

of the tensor. Our system possesses a mirror symmetry with x− z as the plane of inversion and a



3.2. Influence of system symmetry on the SH response 43

three-fold rotational symmetry in the x− y plane. Taking advantage of the symmetries present in

the system, we can calculate the non-zero components of the response tensors and the dependence

among them.

We first consider the SH dipolar hyperpolarizability tensor γd
sh. The intrinsic permutation symmetry

of the SH response tensor ensures that the components of the tensor are equal when the last two

Cartesian indices are interchanged, i.e. γdsh,ijk = γdsh,ikj . The inversion symmetry present in our

system can be expressed by the following inversion operator

Iy =

(
1 0

0 −1

)
. (3.33)

Applying this symmetry to the different components of the γd
sh tensor,

γdsh,ijk =
∑
l,m,n

IilIjmIknγdsh,klm, (3.34)

we obtain the relation

γdsh,xxy = γdsh,xyx = γdsh,yxx = γdsh,yyy = 0 (3.35)

Next, we employ the rotational symmetry present in the system to find the relation between the

remaining non-zero components. The matrix representing a 120◦ rotation around the ẑ axis is given

by

R2π/3 =

(
−1/2 −

√
3/2√

3/2 −1/2

)
. (3.36)

We apply this symmetry to γd
sh,

γdsh,ijk =
∑
l,m,n

RilRjmRknγdsh,klm. (3.37)

This leads to the following relation between the non-zero components of the dipolar hyperpolariz-

ability tensor

γdsh,xyy = γdsh,yxy = γdsh,yyx = −γdsh,xxx = −γdsh, (3.38)

with all the other in-plane components being zero. We verified these results by repeating the

calculations presented in Sec. 3.1 for external electric fields pointing along different directions. It

turns out that given these symmetry related relations, the nonlinear dipole moment induced in

the deformed cylinder rotates clockwise by an angle 2θ when the external electric field is rotated

anticlockwise by θ (see Fig. 3.2). Choosing the perturbing field as Eex = Eex(cos θ, sin θ), the local

quadratic dipole moment induced in the infinite cylinder is p = p(cos 2θ,− sin 2θ) with p = γdE2
ex.
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Figure 3.2: Direction of the quadratic dipole moment induced in a deformed cylinder by an external
field with different directions with respect to the horizontal. As the field rotates counterclockwise
by an angle θ the dipole rotates clockwise by 2θ (color online).

Next, we consider the symmetric, traceless tensor Q

Q =

(
Qxx Qxy

Qyx Qyy

)
, (3.39)

with Qxy = Qyx and Qxx+Qyy = 0. Thus, Qxy and Qxx−Qyy are the only independent components

of the tensor. Q is proportional to EE which is also a symmetric matrix but with 3 independent

components ExEy, E
2
x − E2

y and E2
x + E2

y = E2. The components of Q can be written as

Qxx −Qyy =u(E2
x − E2

y) + v(E2
x + E2

y) + w(ExEy) (3.40)

Qxy =a(E2
x − E2

y) + b(E2
x + E2

y) + c(ExEy) (3.41)

Applying the inversion symmetry operation, Iy [Eq. (3.33)], Qxx − Qyy should remain unchanged

and also (E2
x−E2

y) and (E2
x+E2

y) terms in Eq. (3.40), but ExEy changes sign and hence we conclude

w = 0. Similarly, applying the inversion symmetry operation to Eq. (3.41), we find that a = b = 0

as they remain the same even though Qxy must change its sign. Next applying the rotational

symmetry operation given by matrix R2π/3 [Eq. (3.36)] to Q, we get

Q′xx −Q′yy =− 1

2
(Qxx −Qyy) +

√
3Qxy, (3.42)

Q′xy =−
√

3

4
(Qxx −Qyy)−

1

2
Qxy, (3.43)
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while by rotating the electric fields we get

Q′xx −Q′yy =− u

2
(E2

x − E2
y) +

√
3uExEy + vE2, (3.44)

Q′xy =−
√

3

4
c(E2

x − E2
y)− 1

2
cExEy. (3.45)

Comparing Eqs. (3.42) and (3.44) and using Eqs. (3.40) and (3.41) we obtain u = u, v = 0, and

c = v and comparing Eqs. (3.43) and (3.45) we obtain c = v and c = c. Thus, there remains

only one independent component of Q which is (Qxx − Qyy) ∝ (E2
x − E2

y). Hence, the symmetry

in our system leads to an isotropic quadrupolar response given by Qij = γQsh(2EiEj − E2δij). The

quadratic quadrupolar moment has a principal axis along the external field and the only non-null

components of the quadrupolar hyperpolarizability are,

γQsh,xxxx = −γQsh,xxyy = −γQsh,yyxx = γQsh,yyyy = γQsh,xyxy = γQsh,yxxy = γQsh,xyyx = γQsh,yxyx = γQsh. (3.46)

Thus, for this system our calculations of γdsh and γQsh using an external field along x̂ are sufficient

to obtain the full response of the particle.

The symmetry in our system also ensures that no nonlinear magnetic dipole is induced in our

nanowire in the nonretarded regime. We write the magnetic dipole as a response function mz =

χmzijEiEj where m is a pseudovector and E is a vector, so χmzij is a pseudotensor; it is symmetric in

the indices i, j. Applying the rotation operation given by Eq. (3.36) to the tensor, we obtain χmzij
proportional to δij and then using the inversion operation, Eq. (3.33), gives χmzij = 0. Hence, it is

not included in our work. The calculation to explicitly show the relations between the components

of the quadratic magnetic susceptibility tensor is not presented here, but could be done in a similar

fashion following the procedure for the electric dipolar hyperpolarizability in Eqs. (3.34) and (3.37).

However, we should comment that as the particle size increases and the effects of retardation become

important, the external field perturbing the system cannot be treated as homogeneous and its spatial

variations must be taken into consideration. Some nonlinear response terms would require additional

nonlocal contributions to the quadratic electric dipolar response. A nonzero nonlinear magnetic

dipole may also be induced in such a situation. For larger particles, the magnetic contribution

to the SH response may prove to be dominant over others. It has, however, been reported that

excitation of this quadratic magnetic dipole from infinite cylinders with arbitrary shape of the cross-

section is absent for cases where the cross-section is symmetric about an axis along the direction

of incidence [44]. Klein et al. [5] demonstrated SHG from different metamaterials formed of arrays

of split ring resonators SRRs, T shaped inclusions, and straight wires fragments; they found that

the SHG for the SRR structure was largely dominated by a magnetic dipole resonance, but not for

the straight wires fragments nor the T shaped structures. However, it was later reported otherwise

in ref. [151]. They presented a theoretical calculation of SHG using the hydrodynamic model and

showed that nonlinear optical properties of SRRs could be explained solely by contributions of

electric origin.
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3.3 SH radiation

We now turn our attention towards the calculation of the SH angular radiation pattern. Following

a procedure similar to the 3D case, one can write down the expressions for the radiated electro-

magnetic fields in 2D due to localized distributions of charges and currents. Appendix A provides

a detailed account of the theory of electromagnetic radiation in 2D and illustrates explicitly the

derivation of the fields in the radiation zone.

In our case, the electric dipole and the electric quadrupole are the dominant contributions to the

radiation fields as the other higher order terms are negligible in comparison. The quadrupolar

contribution is usually smaller than the dipolar by r0/λ, with r0 the size of the particle. However,

in our case the quadrupole is independent of the deformation while the dipole is null for zero

deformation. Thus, both contributions to the radiated SH fields may be comparable. Adding the

expressions for the B field from Eq. (A.20) and Eq. (A.38) [see Appendix (A)], the total B field

radiated from the cylinder is

B = (1 + i)k3/2
(

(r̂ × p)− i

4
k(r̂ × (Q · r̂))

)
eikr
√
π

r
, (3.47)

where k is the wavenumber and r̂ is the unit vector in the direction of observation. The E field can

be calculated from Eq. (3.47) by using

E = B × r̂, (3.48)

The time averaged power radiated per unit angle θ due to these radiated electromagnetic fields is

given by
dP

dθ
=
rc

2π
Re[E ×B∗] · r̂. (3.49)

Substituting Eqs. (3.47) and (3.48) in Eq. (3.49), and using the relations for the induced quadratic

dipolar and quadrupolar moments in terms of the respective hyperpolarizabilities using Eqs. (3.2)

and (3.4) to (3.6), we obtain

dP

dθ
=
cE4

0k
3

4

(
4|γdsh|2 sin2 θ − 4k Im(γdshγ

Q∗
sh ) sin2 θ cos θ

+ k2|γQsh|2 sin2 θ cos2 θ
)
. (3.50)

The first and last terms correspond to dipolar and quadrupolar radiation, while the middle term

corresponds to their interference.
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Figure 3.3: Normalized absolute value (solid) and phase (dashed) of the dipolar (left panel) and
quadrupolar (right panel) nonlinear response functions γdsh and γQsh for a cylinder with deformation
parameter ξ = 0.01 made of a Drude metal as a function of the normalized frequency ω/ωp. The
irrelevant abrupt 2π phase jumps are indicated with dotted vertical lines.

3.4 Results and Discussions

We consider an infinite cylinder made up of a Drude metal characterized by its bulk plasma frequency

ωp and electronic relaxation time τ , with dielectric function [141]

εm(ω) = 1− ω2
p/(ω

2 + iω/τ). (3.51)

We consider a small deformation ξ = 0.01 and chose a small dissipation factor 1/ωpτ = 0.01. The

cylinder is illuminated by a TM electromagnetic wave propagating along the y axis with an electric

field pointing along the x axis. We chose a nominal radius r0 = c/4ωp. Note that the frequencies

we have chosen are of the order ωp, which makes λ of the order of 2πc/ωp, so r0/λ is of the order

of 1/8π ≈ 4%, the radius is small compared to the wavelength and we may assume the incoming

field to be constant within the particle and use the expressions obtained in the previous section

corresponding to a homogeneous external field. We reiterate that while the nonlinear dipolium

model [124] was originally developed for insulating materials, as it corresponds to a continuous

distribution of small polarizable entities around which the electrons are localized, its results agree

with those of a nonlinear hydrodynamical calculation [125] on a local jellium model of a conducting

electronic fluid as has been discussed in Chapter 2. Thus, the results of the dipolium model may

as well be applied to metals as to semiconductors and insulators as long as the results are written

in terms of the linear dielectric response evaluated at the fundamental and SH frequencies, though

there may be corrections arising from the spatial dispersion of the electron gas [152].

In Fig. 3.3 we show the absolute values and phases of the nonlinear dipolar and quadrupolar response

functions γdsh and γQsh [Eqs. (3.31) and (3.32)]. Notice that both display very large resonant peaks

corresponding to the surface plasmon resonance of the cylinder ωsp = ωp/
√

2 and its sub-harmonic.

Beyond abrupt changes at these resonances, the phase of γdsh shifts away from 0 in a wide region
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Figure 3.4: Normalized absolute value (solid) and phase (dashed) of the dipolar (left panel) and
quadrupolar (right panel) nonlinear response functions γdsh and γQsh for a cylinder made of a dispersive
dielectric with a Lorentzian resonance characterized by a longitudinal ωL and a transverse ωT

frequency with ωL =
√

2ωT, a lifetime τ = 100/ωT, and a deformation parameter ξ = 0.01, as a
function of the normalized frequency ω/ωT. The irrelevant abrupt 2π phase jumps are indicated
with dotted vertical lines.

that spans from ωp/2 up to ωp. This is due to the logarithm term in Eq. (2.55), whose argument

changes sign as ω or 2ω sweeps across the plasma frequency [124]. The phase of γQsh also displays a

smooth variation of around 2π in the same region.

In Fig. 3.4 we show the absolute values and phases of γdsh and γQsh for a similar deformed cylinder

but made up of a dispersive insulator with a dielectric function which we assume has a single

Lorentzian resonance and of the form given by Eq. (2.26) with the frequencies of its longitudinal ωL

and transvers ωT optical modes related by ω2
L = 2ω2

T and dissipation τ = 100/ωT. The dielectric

function crosses zero at ωL and has a pole at ωT. Both γdsh and γQsh show strong resonant peaks

corresponding to the excitation of the surface plasmon-polariton, which for our choice of parameters

lies at ω = ωspp = ωT

√
3/2, and its sub-harmonic. The phase of both γdsh and γQsh grows smoothly

between ωT/2 and ωL/2, and between ωT and ωL, save for abrupt jumps at ωspp/2, ωT and ωspp,

and remain constant otherwise. Some features in the phase of γdsh and γQsh are inherited from those of

the parameter a [124]. We remark that close to a simple resonance, a Lorentzian response displays

a rapid change of phase of π due to the change of sign of its real part across a pole. For a double

or triple resonance the corresponding change in phase would be 2π or 3π. We note that in our

expressions for γdsh and γQsh [Eqs. (3.31) and (3.32)] there are different terms displaying resonances

of order 1, 2 and 3 and hence the total phase across a resonance depends on the competition

between them. A logarithmic contribution to the phase is also present due to the contribution of

the parameter a to some terms. The above leads to distinct changes of the phase across the different

resonance peaks in Figs. 3.3 and 3.4, with a magnitude that depends on which term dominates.

On the other hand, the vertical −2π abrupt jumps are irrelevant as they arise trivially from the

fact that the phase is defined modulo 2π. Note that at resonance, the dipolar hyperpolarizability

(per unit length) is an order of magnitude larger than r0/ne, where r0 is the nominal radius of the
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Figure 3.5: Angular radiation pattern for a deformed metallic cylinder with deformation parameter
ξ = 0.01 described by a Drude response for frequencies ω approaching ωsp or to its sub-harmonic:
ω < ωsp/2 (upper left), ωsp/2 < ω (upper right), ω < ωsp (bottom left), and ωsp < ω (bottom
right). As ω approaches a resonance the total radiated power increases

infinite cylinder, n is the polarizable entity or the electronic number density and e is the electronic

charge (see Figs. 3.3 and 3.4). Thus, we expect that the dipolar nonlinear susceptibility of a

metamaterial made up of these particles to be atleast an order of magnitude larger than 1/ner0.

We assume the area of the unit cell of the metamaterial to be of the order r20 and divide the dipolar

hyperpolarizability by the area of the unit cell to obtain the dipolar nonlinear susceptibility of the

metamaterial. The typical susceptibility of noncentrosymmetric materials is given by Eq. (1.2),

of order 1/neab. A metamaterial made of centrosymmetric materials with a noncentrosymmetric

geometry, thus, may be a competitive source of SH provided ab/r0 is not too small.

In Fig. 3.5 we show a polar plot of the angular radiation pattern dP/dθ vs. the polar angle θ

corresponding to a deformed metallic cylinder as the one in Fig. 3.3. Notice there is a competition

between the dipolar and quadrupolar contributions to the radiation, and that their relative strength

varies as the frequency increases. We remark that the SH dipole would be zero for the non-deformed

cylinder, but for deformations as small as 1% its contribution to the radiation is comparable to the

quadrupolar contribution. Fig. 3.5 shows that for low frequencies, ω < ωsp/2 displayed in the top

left panel, the radiation is completely dominated by the dipolar term and it displays the typical
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Figure 3.6: Angular radiation pattern for a deformed dielectric cylinder with deformation parameter
ξ = 0.01 described by a simple Lorentzian response with negligible dissipation for frequencies ω close
to ωspp or its sub-harmonic: ω < ωspp/2 (upper left), ωspp/2 < ω (upper right), ω < ωspp (bottom
left), and ωspp < ω (bottom right). As ω approaches a resonance the total radiated power increases.

pattern consisting of two symmetrical lobes. As the frequency moves towards the resonance the

total radiated power increases, hence, the outermost curve in the top left panel corresponds to a

frequency slightly below the resonance at ωsp/2. For higher frequencies the pattern becomes largely

quadrupolar. The top right panel corresponds to ω > ωsp/2 for which the quadrupolar contribution

overshadows the dipolar contribution and a four lobed pattern emerges. It is somewhat asymmetrical

due to the interference with the dipolar field. Also note the shift in the size of the lobes from left to

right as one moves away from the resonance at ωsp/2. The bottom left panel illustrates the radiation

pattern for frequencies approaching ωsp from below and is predominantly dipolar with an influence

of the quadrupolar contribution which makes it asymmetrical. Radiation at frequencies above that

of the surface plasmon ω > ωsp is shown in the bottom right panel. In this region too, the pattern

is mostly quadrupolar displaying four lobes which are asymmetrical due to the interference with

the dipolar contribution to the radiation.

In Fig. 3.6 we show the SH angular radiation pattern as in Fig. 3.5 but corresponding to a dielectric

particle as in Fig. 3.4. Here, we also see the competition between the dipolar and the quadrupolar

radiation with the variation in frequency and the asymmetry in the different lobes of the quadrupolar
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pattern arising due to the phase difference between the two terms. Similar to Fig. 3.5, as the

frequency approaches a resonance the total radiated power increases. However, the quadrupolar

contribution to the radiation is stronger at lower frequencies in this case unlike the metallic case

(Fig. 3.5). In the top left panel we plot the patterns for ω < ωspp/2 where the quadrupolar

contribution to the radiation dominates the dipolar one and is therefore almost symmetric. The top

right panel illustrates the radiation for frequencies ω > ωspp/2. The outermost curve, closest and

slightly above the resonance at ωspp/2 displays a slightly distorted dipolar pattern. Moving away

from the resonance, the quadrupolar term gets relatively stronger and the competition between the

two terms gives rise to an asymmetry in the pattern. The bottom left panel shows the pattern

for ω < ωspp and it shows asymmetrical quadrupolar patterns. The bottom right panel shows

the radiation at higher frequencies ω > ωspp which is also symmetric and almost quadrupolar like

radiation.

As demonstrated in Sec. 3.2, the dipolar and the quadrupolar response remains of the same size

as the polarization direction of the incoming light rotates. However, as already discussed, as the

polarization of the incoming field rotates away by an angle θ away from the x axis, the induced

quadratic dipolar moment rotates by twice the angle in the opposite direction, while the axes of

the quadrupole moment rotate with the external field (see Sec. 3.2). The effect of these rotations is

illustrated in Fig. 3.7 where the radiation patterns for various directions of the external field have

been plotted for the same cylinder as in Fig. 3.6. We remark that the dipole changes sign with

a 180 rotation and the quadrupole with a 90 degrees rotation. Hence, when the polarization of

the incident light is rotated by an angle of 90 degrees anticlockwise, the quadratic dipole moment

changes sign and the quadrupole interchanges its principal axes, so the radiation patterns for the

external field polarized at 0 degrees (Fig. 3.6) and 90 degrees (bottom right panel of Fig. 3.7)

look identical, though the overall phase of the radiated fields is reversed. The radiation pattern

for the incident field after a counterclockwise rotation by an angle of 30 degrees (top left panel of

Fig. 3.7) is also identical to the one with 0 degrees, except for being rotated anticlockwise in the

x− y plane by an angle of 120 degrees; and accompanied with a change of sign in the overall phase.

Notice, that every 30 degrees rotation of the polarization is equivalent to a 120 degrees rotation

of the radiation pattern in the same clock direction with an overall inversion in the sign of the

phase. Thus, when the polarization is rotated by 60 degrees counterclockwise (bottom left panel of

Fig. 3.7), the radiation pattern rotates by 240 degrees with no change in the form of the pattern

and the sign of the phase compared to that of 0 degrees (Fig. 3.6). The 45 degrees (top right panel

of Fig. 3.7) case is different than the others, as it does not mimic any of the symmetry condition of

the original case, thus producing not just a rotation in the patterns but also a considerable change

in its shape. The effect of the polarization of light on the efficiency of SHG has been demonstrated

experimentally by Czaplicki et al. [20]. They studied arrays of noncentrosymmetric nanoparticles

with the form of letter T and L to illustrate the effect on geometry combined with polarization on

the efficiency of the SH conversion process.
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Figure 3.7: Angular radiation pattern of the same deformed dielectric cylinder as in Fig. 3.6 for
different frequencies below, between, and above the resonances at the fundamental and SH frequency
for various external polarization. The curves for different frequencies follow the same pattern as in
Fig. 3.6 The angle φ formed between the external electric field and the x̂-axis for each figure are
30◦(top left panel), 45◦(top right panel), 60◦(bottom left panel), and 90◦(bottom right panel).
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Figure 3.8: Ratio of the total power emitted as dipolar radiation to quadrupolar radiation for the
same deformed dielectric cylinder as in Fig. 3.6.

Integrating the expression for the angular radiation pattern we may obtain the total power radiated.

In Fig. 3.8 we show the ratio between the total power emitted as by the SH dipole and quadrupole

moments for the same dielectric particle as in Fig. 3.6. The peak total power emitted as dipolar

radiation is two orders of magnitude higher than the quadrupole at the subharmonic of the surface

plasmon polariton, of the same order at the fundamental resonant frequency. We recall that this

calculation corresponds to a small deformation ξ = 0.01, so it is clear that the dipolar response is

essential even for very small deformations. Similar to that of the dielectric cylinder [Fig. 3.8], the

ratio between the dipolar and quadrupolar contribution to total SH power for the same metallic

deformed cylinder as in Fig. 3.3 is shown in Fig. 3.9. Resembling the dielectric case, the peak power

emitted as the dipolar radiation is higher than the quadrupolar at the sub-harmonic of the surface

plasmon polariton. Notice, for both metallic and dielectric cylinders, that out of resonance the

quadrupole may reach values up to four orders of magnitude higher than the dipole.

Finally, we emphasize that our results above are applicable to systems strictly in 2D, while experi-

mental realizations would most certainly be 3D, and we expect any nanowire to be of finite length.

Nevertheless, our results may still be partially applicable for finite cylinders. Our calculation of the

dipolar and quadrupolar nonlinear hyperpolarizabilities will hold true as long as the length l of the

finite cylindrical nanowire is much larger than its nominal radius r0, a condition which is mostly

obeyed in the experimental realization of nanowires. The 2D electromagnetic radiation in the plane

of the cross-section of the infinite cylinder was obtained in the radiation zone, where we assumed the

distance r to the axis of the cylinder to be much larger than the wavelength. However, it must hold
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Figure 3.9: Ratio of the total power emitted as dipolar radiation to quadrupolar radiation for the
same deformed metallic cylinder as in Fig. 3.5.

that this distance is smaller than the length of the cylinder. Thus, our calculated patterns would

only be observable where the condition r0 � λ � r � l may be satisfied. Farther away, the 3D

nature of the radiation pattern ought to be accounted for, and it might be calculated using antenna

theory. Nevertheless, we emphasize that we expect that the relative magnitude between the dipolar

and quadrupolar contributions to the radiation will remain as calculated above. A discussion of the

effect of the finite length of the cylinder can be found in the work by Dadap [54].

3.5 Conclusions

An analytical perturbative formalism to study the SH response of an isolated particle made of

centrosymmetric material with a cross-section slightly deformed away from that of a symmetrical

geometry was developed. The exact solution for a perfect cylinder being known, choosing the extent

of this deformation as a smallness parameter permits the development of a perturbative approach

to find approximate solutions for the noncentrosymmetric system. Closed form expressions for the

self-consistent near fields induced at the fundamental and SH frequency within and beyond the

cylinder were thus obtained. The linear fields within and near the surface of the particle were

employed to calculate the nonlinear polarization induced within the bulk and on the surface of

the particle by using the results of the dipolium model [124]. The induced nonlinear polarization

was then utilized to calculate the self consistent SH fields and the nonlinear hyperpolarizabilities.

The zeroth order term in their expansion in powers of the deformation parameter corresponds to
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the case of a symmetric cylinder yielding no SH dipole but a nonzero quadrupolar response. At

first order in the deformation, the existence of a small deviation from centrosymmetrical geometry

yields a dipolar contribution which increases linearly with the deformation and competes with that

of the quadrupole already for very slightly deformations in metallic and dielectric particles. There

are higher order multipoles, but they were found to generate a much weaker signal and were hence

ignored in our analysis. The quadratic hyperpolarizabilities obtained are written in terms of the

linear dielectric response of the material at the fundamental and SH frequencies and were found to

have resonant structures corresponding to the poles and zeroes of the dielectric function, and to the

surface plasmon or surface plasmon-polariton frequencies of the undeformed particle, and to their

sub-harmonics, as well as additional structure due to the normal nonlinear surface parameter a.

Finally, the radiated SH fields were also evaluated to illustrate the 2D angular radiation patterns

and we showed that the dipolar SH radiation is comparable and may overshadow the quadrupolar

contribution for deformations as small as 1%.

We remark that our calculation of the nonlinear response of a particle showed that there are some

subtleties that have to be accounted for: bulk contributions, bulk induced surface charges, surface

originated surface charges and surface dipolar layers. All of these have to be appropriately screened

to get consistent expressions for the hyperpolarizabilities and have not received the required at-

tention previously. We must point out that we expect our calculation to fail to describe spectral

features in the nonlinear response arising from intrinsic surface effects such as those due to transi-

tions to and from the surface states, surface reconstruction and relaxation etc., as these effects are

ignored in the dipolium model. Local field effects and crystal structure have also not been accounted

for. However, the comparison of our calculation with experimental results may allow us to identify

the importance of those contributions we left out.

One of the purposes of this analytical calculation on the simplest possible noncentrosymmetric

system is to establish a testing framework for different numerical methods employed to analyze SH

response. One can compare and calibrate the numerical calculations by comparing their results to

these expressions, and if proved correct, apply them to the analysis of a larger class of systems. One

such attempt has been performed by us and the results are presented in Chapter 5 of this thesis.
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4
Three wave mixing in a nanowire

Not only second harmonic generation (SHG) (see Chapter 3), but all second order processes, such as

sum frequency generation (SFG), difference frequency generation (DFG), and optical rectification

(OR), are null in the bulk of centrosymmetric system within the dipolar approximation. Multi-

polar excitations may produce a second order response from the bulk of such systems together

with a dipolar contribution arising only from their surface where the inversion symmetry is locally

lost. As previously discussed, in Chapter 3 for SHG, the symmetry reduction also governs the

dipolar SF/DF response from nanoparticles and nanostructures made up of centrosymmetric ma-

terials. DFG from a monolayer of MoS2, which is centrosymmetric, has been observed by Wang

et. al [153]. To obtain a dipolar SF/DF response from nanoparticles made of centrosymmetric

materials it is necessary to destroy their overall symmetry either by applying external fields, or

by using a noncentrosymmetric geometry. Efficient SHG and SFG from a silicon metasurface have

been demonstrated experimentally [154]. Plasmonic noncentrosymmetric structures might offer an

advantage due to their enhancement of local fields, yielding higher nonlinear conversion efficien-

cies. Theoretical calculation of the DF response from arbitrary plasmonic systems by solving the

hydrodynamic equations have been reported [60]. The authors employed their theory to solve the

equations using the COMSOL Multiphysics commercial computational system to study the DFG

efficiency from noncentrosymmetric gold nanoantennas. Generation of terahertz (THz) radiation,

as discussed in Sec. 1.1, is an important application of DFG and OR processes and has been ex-

tensively studied [59, 155, 156]. Surface Lattice Resonances (SLRs) for enhancing DFG processes

leading to both optical rectification (OR) and Terahertz (THz) generation from equilateral trian-

gular gold nanoprisms has been theoretically investigated using the Discrete Dipole Approximation

(DDA) by Huttunen et. al [59]. A finite difference time domain (FDTD) calculation based on

the Maxwell-hydrodynamic model to theoretically investigate THz generation as a result of DFG

process from a plasmonic metasurface has been published by Fang et. al [155].

Here, we present a theory to analytically compute the second order susceptibility of an isolated

nanowire made up of a centrosymmetric material with a noncentrosymmetric geometry, with em-

57
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phasis on difference frequency (DF) response. We chose the same shape same as in Chapter 3.

To be able to find an approximate analytical solution to the problem, the perturbative technique

employed in the previous chapter is used. The linear and nonlinear self-consistent induced fields

within and beyond the nanowire are calculated; they are then used to evaluate the nonlinear po-

larization which acts as a source for the DF fields. We identify the DF response from the obtained

near DF fields. Once the DF hyperpolarizability is obtained, the sign of one of the input frequencies

is reversed and the complex conjugate of the corresponding dielectric permittivity is substituted in

the equations to obtain the SF hyperpolarizabilities. The degenerate SH hyperpolarizabilities are

simply found by adding the condition of equality of the input frequencies in the SF response. We

unite the SF and the DF response, and discuss their spectral features. Furthermore, we employ the

near fields to calculate the far fields and find the SF/DF angular radiation pattern and the radiated

SF/DF power from which we evaluate the efficiency of the SF/DF nonlinear conversion process. To

calculate the nonlinear surface and bulk polarization, we use the dipolium model [124] discussed

in Sec. 2.2. We also discuss the viability of utilizing this structure for the generation of Terahertz

(THz) radiation.

We devote Sec. 4.1 to demonstrate a detailed derivation of the DF dipolar and quadrupolar hyper-

polarizability of the thin deformed infinitely long cylinder following the methodology developed in

Sec. 3.1. The SF response is then identified from the DF response. We present the calculation of

the efficiency of the SFG/DFG process from the cylinder in Sec. 4.2. We illustrate and discuss our

results for a dielectric and a metallic cylinder in Sec. 4.3. We summarize our findings in Sec. 4.4.

4.1 Three wave mixing in the isolated infinite cylinder

We choose a single infinitely long isolated cylinder made of a centrosymmetrical material placed

in vacuum, identical to the one whose SH response was calculated in Chapter 3. The cylinder

possesses translational symmetry along its axis (ẑ direction), allowing us to perform all calculations

in 2D. The transverse cross-section of the cylinder in the x − y plane is given by Eq. (3.1) [See

Fig. 3.1]. We perturb the system by two monochromatic beams of light oscillating at frequencies

ω1 and ω2. We choose both the incident beams to be polarized in the plane of the cross-section and

perpendicular to each other. Our choice stems from the fact that efficient SHG of the quadrupolar

type from isotropic media has been reported previously for crossed polarizations [157]. The total

external field is

Eext(t) = E1e
−iω1tx̂+ E2e

−iω2tŷ + c.c., (4.1)

where E1 and E2 are the constant complex amplitudes of the two fields polarized along x̂ and ŷ

directions oscillating with frequencies ω1 and ω2 respectively. Following the perturbative approach

introduced in the previous chapter and choosing the trial solution Eqs. (3.11) and (3.12), we solve

the Laplace’s equation independently for both frequencies to obtain the corresponding self consistent
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linear scalar potentials. The external potentials are φext1 = −E1r cos θ and φext2 = −E2r sin θ. The

boundary conditions obeyed by the fields at the interface of the cylinder are identical to Eqs. (3.8)

and (3.9) with a set for each of the incident fields. We evaluate the self consistent linear potential

for fields oscillating at frequency ω1 and ω2 to linear order in the deformation ξ and obtain

φout1

E1
= −r cos θ − 1− ε1

1 + ε1

r20
r

cos θ + ξ

[(
1− ε1
1 + ε1

)2 r30
r2

cos 2θ − 1− ε1
1 + ε1

r50
r4

cos 4θ

]
, (4.2a)

φin1
E1

= − 2

1 + ε1
r cos θ + 2ξ

1− ε1
(1 + ε1)2

r2

r0
cos 2θ, (4.2b)

φout2

E2
= −r sin θ − 1− ε2

1 + ε2

r20
r

sin θ − ξ
[(

1− ε2
1 + ε2

)2 r30
r2

sin 2θ +
1− ε2
1 + ε2

r50
r4

sin 4θ

]
, (4.2c)

φin2
E2

= − 2

1 + ε2
r sin θ − 2ξ

1− ε2
(1 + ε2)2

r2

r0
sin 2θ, (4.2d)

where εg ≡ ε(ωg) is the dielectric permittivity at the frequencies ωg, g = 1, 2. Throughout this

chapter we will employ the abbreviated notation, fg ≡ f(ωg), for any function f dependent on

frequency. We must remark that in an experimental setup, the system would not be excited by

homogeneous fields, but monochromatic laser beams. This, however, would not invalidate our

calculations as we concentrate our attention on the fields not far from the wire, and we restrict

ourselves to the long wavelength approximation.

Using the potentials [Eq. (4.2)], we can evaluate the linear self-consistent fields Eg = −∇φg,

Ein
1 = −∇φin1 =

{
2E1

(ε1 + 1)
cos θ − 4E1ξ

(1− ε1
(1 + ε1)2

r

r0
cos 2θ

}
r̂

+

{
− 2E1

(ε1 + 1)
sin θ + 4E1ξ

(1− ε1)
(1 + ε1)2

r

r0
sin 2θ

}
θ̂, (4.3)

Ein
2 = −∇φin2 =

{
2E2

(ε2 + 1)
sin θ + 4E2ξ

(1− ε2
(1 + ε2)2

r

r0
sin 2θ

}
r̂

+

{
2E2

(ε2 + 1)
cos θ + 4E2ξ

(1− ε2)
(1 + ε2)2

r

r0
cos 2θ

}
θ̂. (4.4)

The spatial variations of the linear self-consistent fields [Eqs. (4.3) and (4.4)] induce a macroscopic

nonlinear polarization within the bulk of the cylinder given by

P− = np
(2)
− −

1

2
n∇ ·Q(2)

− +
ic

ω−
n∇× µ(2)

− (4.5)

where the subscript − signifies the macroscopic nonlinear polarization and the quadratic moments

are evaluated at the DF frequency ω− = ω1 − ω2. Eq. (4.5) corresponds to Eq. (2.15) but with

a position independent density n of polarizable entities within the homogeneous cylinder. The
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quadratic electric dipole p
(2)
− , quadrupole Q

(2)
− , and magnetic dipole µ

(2)
− moments induced in the

cylinder are given by Eqs. (2.11), (2.12) and (2.14), yielding

P− =−n
e
α− [α1 (E1.∇)E∗2 + α∗2 (E∗2 .∇)E1]︸ ︷︷ ︸

Electric dipolar term

+
n

2e
α1α

∗
2∇ · (E1E

∗
2 +E∗2E1)︸ ︷︷ ︸

Electric quadrupolar term

+
n

2e
α1α

∗
2

(
ω1 + ω2

ω−

)
∇× (E1 ×E∗2)︸ ︷︷ ︸

Magnetic dipolar term

, (4.6)

The induced fields from Eqs. (4.3) and (4.4) are then substituted in Eq. (4.6) to obtain the nonlinear

bulk nonlinear polarization induced in the cylinder. To calculate the electric quadrupolar term, the

vector identity ∇ · (AB) = (∇ ·A)B + (A · ∇)B is used. Note that ∇ ·E1 and ∇ ·E2 are zero as

there are no external charges. Thus, we get,

P− =
E1E

∗
2ξ

2π2ner0

(1− ε1)(1− ε∗2)
(1 + ε1)2(1 + ε∗2)

2

[
− (1− ε−)(2 + ε1 + ε∗2) + (1− ε1ε∗2)

+

(
ω1 + ω2

ω−

)
(ε∗2 − ε1)

]{
sin θ r̂ + cos θ θ̂

}
. (4.7)

The spatial variations in the nonlinear bulk polarization induces a bulk nonlinear charge within the

cylinder, given by

ρnl− = −∇ · P−. (4.8)

Up to linear order in the deformation parameter, ξ, this is equal to zero. The termination of the

bulk polarization at the surface of the cylinder induces a bulk originated surface nonlinear charge,

σb− = P− · n̂ where n̂ is the unit normal to the surface pointing outwards given by Eq. (3.10).

Substituting Eq. (4.7) we obtain

σb− =
E1E

∗
2ξ

2π2ner0

(1− ε1)(1− ε∗2)
(1 + ε1)2(1 + ε∗2)

2

[
− (1− ε−)(2 + ε1 + ε∗2) + (1− ε1ε∗2)

+

(
ω1 + ω2

ω−

)
(ε∗2 − ε1)

]
sin θ. (4.9)

We now turn our attention towards the surface of the cylinder and calculate its nonlinear surface

polarization. The expressions for the normal and tangential component of the nonlinear surface DF

polarization are given by Eqs. (2.23) and (2.28). Both of these expressions were however written

down for a semi-infinite surface lying at z = 0 with the positive ẑ direction pointing out of the

material. In order to apply it for the curved cylindrical surface, we assume the thickness of the

selvedge to be much smaller than the nominal radius r0 of the cylinder. This permits us to assume,

as in Chapter 3, that the surface is locally flat so the results of the dipolium model described in
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Sec. 2.2 become applicable. We also assume a local Cartesian system on the surface with ⊥ pointing

along the outwards pointing normal ‖ as the direction tangential to the surface. The components

of the nonlinear surface polarization induced at each point on the surface can then be written as,

P si = χsijkFjFk where χsijk are the components of the local nonlinear surface susceptibility and F is

made up of the normal projection of the displacement field and the parallel projection of the electric

field evaluated at the surface rs(θ),

Fg(rs) = Eg(r
+
s ) = εgE

⊥
g (r−s ) +E‖g (r−s ), (4.10)

Notice that the fields Fg for g = 1, 2 are continuous across the surface. Thus, rotating Eq. (2.23) to

the local frame and substituting Eq. (2.24) we find the normal component of the nonlinear surface

polarization,

P s−,⊥ =
(1− ε1)(1− ε∗2)

64π2ne

[
aE1,⊥E

∗
2,⊥ + fE1,‖E

∗
2,‖
]
, (4.11)

where the parameter a is given by Eq. (2.25) and f=0. Following a similar approach but using

Eqs. (2.28) to (2.30) and (4.10) we can find the tangential component of the nonlinear surface

polarization. We get,

P s−,‖ =
(1− ε1)(1− ε∗2)

64π2ne
2b

[
ω1

ω−
E1,‖E

∗
2,⊥ −

ω2

ω−
E1,⊥E

∗
2,‖

]
, (4.12)

with b = −1. Using the fields Eqs. (4.3) and (4.4), the normal and tangential unit vectors Eqs. (3.10)

and (3.24), Eq. (4.11) and Eq. (4.12) yield

P s−,⊥ =
E1E

∗
2

64π2ne

(1− ε1)(1− ε∗2)
(1 + ε1)(1 + ε∗2)

[
2(a− f) sin 2θ + 6ξ(a− f)(sin θ + sin 5θ)

+8ξ(a− f) sin 3θ

{
ε1 − ε∗2

(1 + ε1)(1 + ε∗2)

}
+ 8ξ(a+ f) sin θ

{
1− ε1ε∗2

(1 + ε1)(1 + ε∗2)

}]
. (4.13)

and

P s−,‖ =
E1E

∗
2

32π2ne
b

(1− ε1)(1− ε∗2)
(1 + ε1)(1 + ε∗2)

[
− 2

ω1 + ω2

ω−
+ 2 cos 2θ + 6ξ(cos 5θ − cos θ)

+8ξ
ε∗2 − ε1

(1 + ε1)(1 + ε∗2)

{
ω1 + ω2

ω−
cos θ − cos 3θ

}]
. (4.14)

The spatial variations in the tangential component of the induced surface nonlinear polarization

gives rise to a surface originated nonlinear surface charge σs− = −∇ · P s
−,‖ given by

σs− =
E1E

∗
2

32π2ner0
b

(1− ε1)(1− ε∗2)
(1 + ε1)(1 + ε∗2)

[
4 sin 2θ − 4ξ sin θ + 28ξ sin 5θ

+8ξ
ε∗2 − ε1

(1 + ε1)(1 + ε∗2)

{
ω1 + ω2

ω−
sin θ − 3 sin 3θ

}]
. (4.15)
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Now that we have calculated its external sources, we can calculate the DF field in a way similar to

how we calculated the SH field Sec. 3.1. The screened DF scalar potential φ− has ρnl− = 0 as an

external bulk source and the total nonlinear charges induced at the surface σb− and σs− as external

surface sources, together with the normal component of the surface polarization P s−,⊥, all of which

are accounted through the boundary conditions. The external sources have to be screened by the

linear response ε− of the particle at the DF frequency. Thus, we need to solve the following equation

to obtain the quadratic self-consistent scalar potential,

∇2φ− =

0, (outside)

−4πρnl/ε− = 0, (inside)
(4.16)

subjected to the boundary conditions

φ−(r+s )− φ−(r−s ) = 4πP s−,⊥, (4.17)

and

n̂ · ∇φ−(r+s )− ε−n̂ · ∇φ−(r−s ) = −4π(σb− + σs−). (4.18)

Eq. (4.17) is the discontinuity of the scalar potential due to the presence of the normal nonlinear

surface polarization P s−,⊥ which is a dipole layer across the selvedge of the particle. Eq. (4.18)

is the discontinuity of the normal component of the displacement field due to the presence of the

nonlinear surface charge. We solve Eq. (4.16) perturbatively using Eqs. (3.11) and (3.12) to obtain

the self-consistent scalar potential at the DF frequency with terms up to linear order in ξ. Outside

the cylinder the DF self consistent scalar potential is

φout−
E1E∗2

=
ξ

πne

(1− ε1)(1− ε∗2)
(1 + ε1)(1 + ε∗2)(1 + ε−)

[
1

(1 + ε1)(1 + ε∗2)

{
− (1− ε−)(2 + ε1 + ε∗2) + (1− ε1ε∗2)

+(ε∗2 − ε1)
(
ω1 + ω2

ω−

)}
− b

2

1 + 3ε−
1 + ε−

+ b
ε∗2 − ε1

(1 + ε1)(1 + ε∗2)

(
ω1 + ω2

ω−

)
+
ε−
8

(3− ε−)(a− f)

1 + ε−

+
ε−
8

{
3(a− f) +

4(a+ f)(1− ε1ε∗2)
(1 + ε1)(1 + ε∗2)

}]
r0
r

sin θ

+
1

8πne

(1− ε1)(1− ε∗2)
(1 + ε1)(1 + ε∗2)(1 + ε−)

[ε−(a− f) + 2b]
r20
r2

sin 2θ + . . . . (4.19)

Now, we compare Eq. (4.19) with the general expression of the 2D scalar potential

φout = 2py
sin θ

r
+Qxy

sin 2θ

r2
+ . . . . (4.20)

to obtain the DF dipole and quadrupole moment per unit length from the θ dependence of the po-

tential. The quadratic dipole py contributes only for a non-zero deformation ξ while the quadrupolar

response Qxy is independent of ξ, i.e. it would exist for a circular cylinder. We must point out the

difference with Eq. (3.30) which was written for the case when the external field was polarized only
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along the x̂ direction. Using Eq. (4.20) and the definitions given by Eqs. (3.2) and (3.4) we write

the DF moments, py and Qxy, as

py =[γd−,yxy(ω1, ω2) + γd−,yyx(ω2, ω1)]E1,xE
∗
2,y = γd−(ω1, ω2)E1,xE

∗
2,y, (4.21)

Qxy =[γQ−,xyxy(ω1, ω2) + γQ−,xyyx(ω2, ω1)]E1,xE
∗
2,y = γQ−(ω1, ω2)E1,xE

∗
2,y. (4.22)

We define for the dipolar hyperpolarizability

γd−(ω1, ω2) = γd−,yxy(ω1, ω2) + γd−,yyx(ω2, ω1) = 2γd−,yxy(ω1, ω2) = 2γd−,yyx(ω2, ω1) (4.23)

where we used the relation γd−,yxy(ω1, ω2) = γd−,yyx(ω2, ω1) between the components. Similarly, for

the quadrupolar hyperpolarizability

γQ−(ω1, ω2) = γQ−,xyxy(ω1, ω2) + γQ−,xyyx(ω2, ω1) = 2γQ−,xyxy(ω1, ω2) = 2γQ−,xyyx(ω2, ω1) (4.24)

with γQ−,xyxy(ω1, ω2) = γQ−,xyyx(ω2, ω1) relating the different components. The equality among the

components of the hyperpolarizabilities is due to their intrinsic permutation symmetry which states

that an interchange of the last two Cartesian indices along with the input frequencies leaves the

component unchanged. Comparing Eqs. (4.21) and (4.22) with Eqs. (4.19) and (4.20), we identify

the DF response tensors. The dipolar hyperpolarizability is

γd−(ω1, ω2) =
ξr0

2πne

(1− ε1)(1− ε∗2)
(1 + ε1)(1 + ε∗2)(1 + ε−)

[
1

(1 + ε1)(1 + ε∗2)

{
− (1− ε−)(2 + ε1 + ε∗2) + (1− ε1ε∗2)

+(ε∗2 − ε1)
(
ω1 + ω2

ω−

)}
− b

2

1 + 3ε−
1 + ε−

+ b
ε∗2 − ε1

(1 + ε1)(1 + ε∗2)

(
ω1 + ω2

ω−

)
+
ε−
8

(3− ε−)(a− f)

1 + ε−

+
ε−
8

{
3(a− f) +

4(a+ f)(1− ε1ε∗2)
(1 + ε1)(1 + ε∗2)

}]
, (4.25)

and the quadrupolar hyperpolarizability is

γQ−(ω1, ω2) =
r20

8πne

(1− ε1)(1− ε∗2)
(1 + ε1)(1 + ε∗2)(1 + ε−)

[ε−(a− f) + 2b]. (4.26)

The SF, ω+ = ω1 + ω2, hyperpolarizability of the infinite cylinder can be easily extracted from

Eqs. (4.25) and (4.26) by substituting ω2 ← −ω2, ε− by ε+, and taking the complex conjugate of

the permittivity ε2 ← ε∗2. The dipolar SF hyperpolarizability is,

γd+(ω1, ω2) =
ξr0

2πne

(1− ε1)(1− ε2)
(1 + ε1)(1 + ε2)(1 + ε+)

[
1

(1 + ε1)(1 + ε2)

{
− (1− ε+)(2 + ε1 + ε2) + (1− ε1ε2)

+(ε2 − ε1)
(
ω1 − ω2

ω+

)}
− b

2

1 + 3ε+
1 + ε+

+ b
ε2 − ε1

(1 + ε1)(1 + ε2)

(
ω1 − ω2

ω+

)
+
ε+
8

(3− ε+)(a− f)

1 + ε+

+
ε+
8

{
3(a− f) +

4(a+ f)(1− ε1ε2)
(1 + ε1)(1 + ε2)

}]
, (4.27)
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and the quadrupolar SF hyperpolarizability is

γQ+(ω1, ω2) =
r20

8πne

(1− ε1)(1− ε2)
(1 + ε1)(1 + ε2)(1 + ε+)

[ε+(a− f) + 2b]. (4.28)

The degenerate SH case can be obtained from Eqs. (4.27) and (4.28) when the input frequencies

are equal, i.e. ω2 = ω1. We verified that using this condition in the expressions for the SF dipolar

and quadrupolar hyperpolarizabilities we do obtain the SH response tensor given by Eqs. (3.31)

and (3.32).

4.2 SF/DF efficiency

We now focus towards the calculation of the electromagnetic fields in the radiation zone and the

efficiency of DFG/SFG from the nanowire. The DF/SF electric and magnetic fields in the radia-

tion zone can be calculated from Eqs. (3.47) and (3.48) by substituting the nonlinear dipole and

quadrupolar moments given by Eqs. (3.2) and (3.4) and using the DF/SF dipolar and quadrupolar

hyperpolarizabilities given by Eq. (4.25) or Eq. (4.27) and Eq. (4.26) or Eq. (4.28) respectively.

Substituting these DF/SF fields in Eq. (3.49), the angular distribution of the DF/SF power per

unit length can be calculated. We obtain,

dP±
dθ

= ck3±(E1E
∗
2)2
[
|γd±|2 cos2 θ +

k2±
16
|γQ± |2 cos2 2θ − k±

2
Im(γd±γ

Q∗
± ) cos θ cos 2θ

]
, (4.29)

where k± is the wave number at the SF (+) or DF (−) frequency. Integrating Eq. (4.29), the total

DF/SF power radiated per unit length from the nanowire is,

P± = πck3±(E1E
∗
2)2
[
|γd±|2 +

k2±
16
|γQ± |2

]
. (4.30)

The efficiency of the SFG/DFG process from the nanowire is defined by

R± =
P±
I1I2

, (4.31)

where Ig (g = 1, 2) is the intensity of the incident radiation given by Ig = (c/2π)|Eg|2.

Substituting the relation for the intensities of illumination and Eq. (4.29) in Eq. (4.31) we get

R± =
π3

1024

k3±
c

[
|γd±|2 +

k2±
16
|γQ± |2

]
. (4.32)
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4.3 Results and discussions

Fig. 4.1 illustrates the absolute value of the dipolar γd (top panels) and the quadrupolar γQ (bottom

panels) hyperpolarizabilities, given by Eqs. (4.25) to (4.28) respectively, for a deformed cylinder

made up of an insulator with its dielectric permittivity given by Eq. (2.26). We choose the relation

between the frequencies of the longitudinal and transverse modes to be ωL =
√

2ωT and the lifetime

parameter τ = 20/ωT. These are the same material parameters that were employed to illustrate

the normal component of the DF response of a planar dielectric surface through the dimensionless

function a(ω1, ω2) in Fig. 2.3 given by Eq. (2.25). We allow both the input frequencies to vary

between negative and positive values to demonstrate all of the three wave mixing processes, namely,

SFG, DFG, SHG, OR and their complex conjugates, by identifying γd(ω1, ω2) = γd+(ω1, ω2) when

both frequencies are positive, γd(ω1, ω2) = γd−(ω1,−ω2) when ω1 > 0 and ω2 < 0, γd(ω1, ω2) =

(γd(−ω1,−ω2))
∗ for the other cases, with similar relations for γQ. We show low resolution 3D

surface plots (left panels) to illustrate the nature of peaks and also the more accurate 2D color

maps (right panels) with higher resolution to display the normalized values. Both γd and γQ show

strong resonant ridges when either input frequency, positive or negative, is equal to the frequency at

which the surface plasmon polariton (SPP) is excited, ωspp =
√

3/2ωT. The intense diagonal ridges

in the first and third quadrants of the figures occur when the sum of the two incident frequencies

resonates with the SPP. There are further peaks when two ridges meet, for which both the resonant

conditions are fulfilled jointly. The first quadrant is associated with the SFG process, the fourth with

the DFG process; the third and the second quadrants, respectively, replicate these processes as the

overall sign of the incident frequencies are inverted. The large peak observed in the fourth quadrant

corresponds to the particular case of DFG where both the incident frequencies are simultaneously

SPP resonant. The response along the diagonal ω1 = ω2 corresponds to the SH process. Notice

that in this case we cross a diagonal ridge when the fundamental frequency is the subharmonic of

the SPP resonance and meet a peak when the fundamental reaches the resonance condition. To

enumerate, the main peaks of the response functions are located at the following positions: larger

ones at (ω1 = ωspp, ω2 = 0) and (ω1 = ωspp, ω2 = −ωspp), and smaller peak at (ω1 = ω2 = ωspp),

at the permutations of the input frequencies, and an overall change of sign. Both contributions,

dipolar and quadrupolar, illustrate that the DF response is much stronger than the SF response

and of similar order to the SH response. The horizontal, vertical, and diagonal ridges are much

weaker than the main peaks for the quadrupolar response as compared to the dipolar case. We

have also explored the absolute values of γd and γQ for two different lifetime parameters, namely,

τ = 50/ωT and τ = 100/ωT. As expected, we obtain a similar structure but the peaks and ridges

become narrower and sharper with increasing lifetimes. In Fig. 4.2, we show a closeup of the map

of γd in a region around the peak at ω1 = −ω2 = ωspp, corresponding to DFG process with a small

difference frequency. Notice that when the two input frequencies are exactly equal and opposite,

i.e. zero DF frequency, the second order response is about an order of magnitude lower than the

neighboring points, when δω → 0. Thus, the response of the system for OR is smaller than the DF
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Figure 4.1: Normalized absolute value of the dipolar γd (top panels) and the quadrupolar (bottom
panels) γQ hyperpolarizabilities for an infinitely long dielectric cylinder whose permittivity is given
by Eq. (2.26) as a function of the normalized incident frequency ωg/ωT for g = 1, 2. The relation
between the longitudinal and the transverse optical mode frequencies is ωL =

√
2ωT and the lifetime

parameter is τ = 20/ωT. The deformation is equal to ξ = 0.01. 3D surface plots (low resolution)
of both are displayed in the left panels and the respective 2D color maps (high resolution) in the
right panels. The regions where both frequencies have the same signs correspond to SFG and those
with opposite signs to DFG.
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Figure 4.2: High resolution 2D color map of the normalized dipolar hyperpolarizability |γd|, shown
in Fig. 4.1, close to the resonance around the region ω1 ≈ ω2 ≈ ωspp, with ω2 negative.

response. No such structure was observed for the quadrupolar hyperpolarizability.

In Fig. 4.3, the absolute value of the dipolar γd (top panels) and the quadrupolar γQ (bottom

panels) hyperpolarizabilities, given by Eqs. (4.25) to (4.28) respectively, for a deformed metallic

cylinder with a Drude type permittivity given by Eq. (3.51) is plotted. Both low resolution 3D

surface plots (left panels) and higher resolution 2D color maps (right panels) are shown. Similar

to the dielectric case, both hyperpolarizabilities exhibit strong peaks when the surface plasmon

(SP), ωsp =
√

1/2ωp, is excited at either or both the input frequencies or at the sum frequency.

The dielectric permittivity of the metal has a pole at zero frequency resulting in a singularity

demonstrated by a sharp peak when both input frequencies are zero. The diagonal ridges in the

first and third quadrants represent the resonance in the SF response when the surface plasmon

is excited at the sum frequency. When both input frequencies are equal to the SP resonance

frequency, a peak corresponding to the SH response is observed. The fourth quadrant (ω1 positive

and ω2 negative) corresponds to the DF response and exhibits a resonance, smaller than for the

SH response, when both the frequencies are equal to ωsp. As previously mentioned, the second

and the third quadrants display the complex conjugates of the responses in the fourth and the first

quadrants respectively. Similar to the dielectric case, horizontal and vertical ridges when either

input frequency is SP resonant are also observed.

The efficiency of the DFG/SFG processes is given by Eq. (4.32), which we can write in the following
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Figure 4.3: Normalized absolute value of the dipolar γd (top panels) and the quadrupolar (bottom
panels) γQ hyperpolarizabilities for an infinitely long metallic cylinder whose permittivity is given
by Eq. (3.51) as a function of the normalized incident frequency ωg/ωp for g = 1, 2 and the lifetime
parameter is τ = 100/ωp. The deformation is equal to ξ = 0.01. 3D surface plots (low resolution)
of both are displayed in the left panels and respective 2D color maps (high resolution) in the right
panels.
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Figure 4.4: Normalized efficiency for the three wave mixing process for the same dielectric cylinder
as in Fig. 4.1 as function of normalized input frequencies ωg/ωT for g = 1, 2 for deformation ξ = 0.01.
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Figure 4.5: Normalized efficiency for the three wave mixing process for the same metallic cylinder as
in Fig. 4.3 as function of normalized input frequencies ωg/ωp for g = 1, 2 for deformation ξ = 0.01.
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Figure 4.6: Normalized 2D angular radiation patterns for the same dielectric cylinder as in Fig. 4.4
for different input frequencies ω1 and ω2. Each set of pattern corresponds to the region around the
points marked in Fig. 4.4; from left to right a-d (top row), and e-h (bottow row). For the patterns a-f
we choose ω1 at a constant value at the resonance with varying ω2, i.e. we traverse along the vertical
line at resonance. We choose both the input frequencies to vary along the diagonal resonance for
regions g and h.

form,

R± =
1

cr0

1

(ne)2
R′± (4.33)

where R′± is a dimensionless efficiency. We present the dimensionless efficiencies corresponding to

the dielectric and metallic cylinders of Fig. 4.3 and Fig. 4.1 in Figs. 4.4 and 4.5 respectively. For the

dielectric case, Fig. 4.4, the first quadrant illustrates the efficiency of the SFG process with a ridge

along the diagonal where the sum of the two input frequencies is SPP resonant. The mid point of

the diagonal corresponds to SH when the fundamental frequencies are the subharmonic of the SPP

resonance. A peak is observed when both the fundamental frequencies are SPP resonant, associ-

ated with a SH process. The fourth quadrant, where ω1 is positive and ω2 negative, displays the

efficiency of the DFG from the cylinder with a resonance in the region where both input frequencies

are equal to ωspp. The second and the third quadrants, as previously mentioned for the hyper-

polarizabilities, denote complex conjugates of the processes in the fourth and the first quadrants

respectively. Exactly similar horizontal, vertical, and diagonal ridges and peaks at the resonances of

either or both input frequencies are observed for the metallic cylinder, shown in Fig. 4.5. Since, the

dielectric permittivity of the metal has a singularity for ω = 0, an additional resonance is observed

when both the input frequencies are close to zero. Note, the SHG efficiency is much larger than the

SFG or the DFG process for the dielectric cylinder, and of comparable magnitudes for the metallic

case. Substantially large efficiency exhibited by both graphs corresponding to the DFG process

with ∆ω → 0 indicate a possible application towards the generation of THz radiation from the

nanowire.
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In Fig. 4.6, we plot the normalized 2D angular radiation pattern of the same dielectric cylinder

as in Fig. 4.4 in the vicinity of resonances corresponding to the regions marked in Fig. 4.4. Even

for a small deformation, ξ = 0.01, we observe strong competition between the dipolar and the

quadrupolar contributions, with the dipolar response dominating over the quadrupolar response for

certain frequencies. We also explored the radiation patterns, in the vicinity of resonances, for a

metallic cylinder, identical to Fig. 4.5, and found the patterns to be completely dominated by the

dipolar response; the effect of the quadrupolar contributions appearing only when farther from the

resonance.

4.4 Conclusions

We extended our analytical perturbative formalism to study the SH response, introduced in Chap-

ter 3, of an isolated infinitely long noncentrosymmetric cylinder to include all second order, particu-

larly the SF and the DF, responses. We demonstrate our derivation by evaluating the approximate

expressions for the DF response of the deformed isolated cylinder whose noncentrosymmetric cross-

section displays three protuberances separated by an angle of 120◦ in the plane. Like the SH case,

we performed our calculations in 2D given the translational symmetry along the axis of the cylin-

der, and we used the long wavelength limit by assuming the nominal radius of the cylinder to be

much smaller than the wavelength of light. We employed our perturbative theory to obtain self

consistent fields induced within and beyond the cylinder illuminated by two plane monochromatic

waves polarized in the plane of the cross-section but perpendicular to each other up to linear order

in the deformation parameter. We further employed the dipolium model, developed in Chapter 2,

for the DF response to compute the bulk and surface contributions to the DF polarization. This

DF polarization induces nonlinear charges in the bulk and on the surface of the cylinder. We

again solve perturbatively for self-consistent DF fields from which we identify the DF dipolar and

quadrupolar hyperpolarizability of the cylinder. As expected, we obtained the quadrupolar DF

hyperpolarizability to be independent of the deformation and the dipolar hyperpolarizability to be

linear dependent on it. Once the DF response is calculated, we reverted the sign of one of the input

frequencies to obtain the SF response and fields, and then inserted the degeneracy condition for the

two frequency to obtain the SH results of Chapter 3. The near SF/DF fields were then employed

using the theory of electromagnetic radiation in 2D, to obtain the SF/DF far-fields in the plane

from which the angular power radiated, per unit length of the cylinder, in the plane is extracted.

We finally computed the conversion efficiency of the SFG/DFG process.

We illustrated our results for the SF/DF hyperpolarizabilities and efficiencies of a metallic and

a dielectric deformed cylinder. We plotted their spectral features, analyzed them, identified the

frequency regions corresponding to the SF, DF, SH, and OR type response and their corresponding

resonances. We observed resonances when either input frequency or both were close to the SPP or

SP resonances of the dielectric or the metallic cylinder respectively. We noted efficient SFG and
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SHG near the resonances for both systems. The resonant peaks in the region δω → 0, corresponding

to DF response, was found to be comparable to or of larger magnitude than the SH response. The

nonlinear DF response for δω → 0 with both input frequencies close to ωspp was found to be larger

by an order of magnitude than the OR process (δω = 0). This predicts the possibility of the

generation of radiation in the THz frequency gap form our system.

Thus, we have successfully developed an approximate analytical technique to explore any three-wave

mixing process from our simple 2D noncentrosymmetric nanocylinders made up of centrosymmetric

materials. As previously mentioned, the nonlinear responses estimated from our theory does not

taking into account effects, similar to those ignored in the dipolium model, such as crystallinity,

surface states and relaxation. Our calculation of the SF/DF response can be simply extended for

incident waves polarized with any angles between them.



5
Numerical methods

Nonlinear optical properties of arrays of nanoparticles and metamaterials or metasurfaces designed

by periodically arranging meta-atoms have been studied extensively by both experimental and nu-

merical means [16, 24, 30, 33, 71, 158]. Diverse kinds of systems have been explored with various

component materials or geometric configurations. Similar to bulk materials or single nanoparti-

cles, metamaterials made up of centrosymmetric materials generate a dipole originated SH signal

only at the interfaces between the inclusions and their host where the inversion symmetry is lo-

cally lost, though it can be globally restored if the geometry itself is centrosymmetric. Hence, for

efficient nonlinear conversion to take place at metamaterials, it must have a noncentrosymmetric

geometry. Otherwise, a multipolar originated signal may be produced, for example, when strongly

focused beams with large field inhomogeneities are employed. Novel fabrication technique permit

production of metamaterials with diverse geometrical configurations and hence SHG from meta-

materials or metasurfaces constructed from centrosymmetric materials, with arbitrary geometry,

have been explored. Different numerical techniques have been employed to study SHG from such

nanostructures, such as the Surface Integral Equation (SIE) [33], Finite Differences in the Time

Domain (FDTD) [16, 30, 159], Finite Element Method (FEM) [30], and others. The field enhance-

ment at resonant plasmonic nanostructues and metamaterials offer some advantages for efficient

SHG [24,160], although it is somewhat hampered by dissipation. Recently, SHG from metasurfaces

fabricated from high-refractive index dielectrics, supporting Mie resonances with low ohmic losses

has been also explored [39,161].

Here, we study the SH response of a binary metamaterial composed of an array of noncentrosymmet-

ric nanowires made up of centrosymmetric materials. To that end, we take advantage of an efficient

homogenization procedure [66] to calculate the macroscopic response of the nanostructured system.

In this scheme, the macroscopic electromagnetic fields or the response of the artificial material is

computed by averaging the microscopic fields, obtained through a solution of full-wave Maxwell’s

equations. Different theories have been reported over the years for homogenization methods to

calculate the macroscopic fields and optical properties of nanostructures [162–164]. A program-

73
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ming package, named Photonic, using the homogenization technique presented in ref. [66], has

been developed by Mochán et. al [64]. The package is written in the programming language Perl

and its extension Perl-Data Language PDL for scientific computing. The program implements the

Haydock’s recursive scheme [165] for efficient computation of the macroscopic response. Linear

optical properties of 2D [166] and 3D [66] periodic arrays have been obtained using this package.

In one work, Haydock’s recursive scheme was employed to investigate from a macroscopic perspec-

tive the photonic bands of 2D photonic crystals made of a periodic arrays of holes in a dielectric

medium [167]. It was later realized that the same Haydock scheme could also be employed to obtain

the microscopic fields, and from them, the nonlinear response. Thus, the package has been com-

plemented with modules to evaluate the microscopic linear fields, and the nonlinear polarization

and SH response utilizing the dipolium [Sec. 2.2] model [124]. They have recently been used to

calculate the second harmonic (SH) response of an array of cross shaped holes in a Ag matrix [71].

Recently, the package was also applied to study the linear optical response of multi-component

nanostructures [70].

A detailed derivation of the homogenization scheme and the recursive Haydock’s method employed

to evaluate the macroscopic response of the system was presented in the doctoral thesis of Dr.

Samuel Pérez [168]. We will not delve into the intricacies of the methodology here. However,

for the sake of completeness, we briefly outline the technique in the subsequent sections. In the

present work, we intend to compute the SH response of an array of bidimensional nanocylinders

with noncentrosymmetric cross-section, as shown in Fig. 3.1, made up of a centrosymmetric material

and to compare the results with those of the approximate analytical calculations of Chapter 3.

The chapter begins with an introduction to the homogenization scheme, Sec. 5.1, followed by a

description of the Haydock’s recursive methodology in Sec. 5.2 for the calculation of the macroscopic

response and the microscopic linear fields. In Sec. 5.3 we compare the numerically computed fields to

the analytical ones. We found some problems and limitations in the nonlinear modules of Photonic,

which we describe in Sec. 5.4, together with a proposed solution and its implementation. Our

primary results, the validation of our numerical results by a comparison between the numerical

and the analytical SH susceptibility for dielectric systems are presented in Sec. 5.5. Finally, the

conclusions of our work are presented Sec. 5.6.

5.1 Homogenization

We consider a binary periodic array formed of nanometer sized arbitrarily shaped inclusions embed-

ded in a matrix. We divide the space into two regions; those occupied by the inclusions, denoted

by b, and the rest of the space in the matrix, denoted by a. The space in the matrix can either

be empty, i.e. vacuum, or a homogeneous material into which the inclusions are embedded. We

assume that each inclusion is large enough to possess a well-defined macroscopic response, either
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εa or εb, but much smaller than the free space wavelength of light so we can use a nonretarded

approximation. The microscopic response of the system is given by

ε(r) = εa − εabB(r)

=
εa
u

(u−B(r)), (5.1)

where εab = εa − εb and we introduced the spectral variable u = 1/(1 − εb/εa). B(r) is the

characteristic function for region b and takes the value 0 within a and 1 within b. The characteristic

function is periodic, B(r) = B(r + R), where {R} is the Bravais lattice of the periodic system.

In the present work, we will designate such artificial periodic arrangement of two materials as a

metamaterial.

The constitutive equation D(r) = ε(r)E(r) is written in the reciprocal space for a Bloch’s wave

with Bloch’s vector q as

DG(q) =
∑
G′

εGG′EG′(q), (5.2)

where {G} is the reciprocal lattice. DG and EG are the Fourier coefficients of the displacement

D(r) and the electric E(r) fields respectively with wavevector q + G, and εGG′ is the Fourier

coefficient of ε(r) with wavevector (G − G′) . We choose a longitudinal external field given by

Eex(r) = −∇φex and neglect the effects of retardation within a unit cell. Thus, we take the electric

field as longitudinal,

E = EL
G = ĜĜ ·EG, (5.3)

where we have used the simplified notation (q + G)/|q + G| = Ĝ. For all non-null G’s, q � G

within the long-wavelength approximation, so that Ĝ ≈ G/G, while 0̂ = q̂/q. For longitudinal

fields, ∇ × Eex = ∇ ×DL = 0 and ∇ · Eex = ∇ ·DL = 4πρex; hence we identify Eex with DL,

which therefore has no spatial fluctuations originated in the texture of the metamaterial. From

the constitutive equation we obtain DL = εLLEL where εLL is the longitudinal projection of the

dielectric response. After solving for the electric field in terms of the external field and averaging

the result we obtain EL
a = (εLL)−1aaD

L
a , where we denote with the subscript a the action of the

averaging projector Pa which acts on a field by removing its short-lengthscale, large-wavevector

spatial fluctuations. We identify the averaged fields with the macroscopic fields, EL
a = EL

M and

DL
a = DL

M; the superscript M denotes macroscopic. From the macroscopic constitutive equation

EL
M = (εLLM )−1DL

M we identify the macroscopic linear response [169]

(εLLM )−1 = (εLL)−1aa . (5.4)

Hence, in the long-wavelength approximation, the inverse of the longitudinal projection of the macro-

scopic dielectric function is equal to the inverse of the longitudinal projection of the microscopic

dielectric function averaged.
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Going back to reciprocal space, we substitute Eq. (5.3) into Eq. (5.2) and take the longitudinal

projection to find the electric field

EL
G = Ĝ [Ĝ · (εG00̂)]−10̂ ·DL

0 = Ĝ η−1G00̂ ·DL
0 , (5.5)

where we defined

ηGG′ = Ĝ · (εGG′Ĝ′). (5.6)

The macroscopic longitudinal field is obtained by spatially averaging the microscopic field, thus

eliminating the small-scale spatial fluctuations from EL; hence we identify the macroscopic fields

with their G = 0 Fourier components, EL
M = EL

0 and DL
M = DL

0 . Thus, Eq. (5.5) yields

EL
M = q̂ η−100 q̂ ·DL

M, (5.7)

from which we identify the macroscopic linear dielectric response given by

(εLLM )−1 = q̂ η−100 q̂. (5.8)

The above result was first reported by Mochán et. al [169] where an elaborate derivation of the

methodology can be found.

5.2 Haydock’s Recursive Method

The macroscopic response [Eq. (5.8)] is computed efficiently by taking advantage of the Haydock’s

recursive scheme [165]. We begin by taking the Fourier transform of Eq. (5.1),

εGG′ =
εa
u

(uδGG′ −BGG′), (5.9)

where the characteristic function in reciprocal space is

BGG′ ≡ BG−G′ =
1

Ω

∫
v
d3rei(G−G′).r, (5.10)

with v the region occupied by the inclusions inside the unit cell of volume Ω. Using Eq. (5.6) we

may write

η−1GG′ =
1

εab
(uδGG′ −BLL

GG′)−1 =
1

εab
GGG′ (5.11)

where GGG′ are the matrix elements of an operator G = (u−BLL)−1 which plays the role of a Green’s

operator, analogous to (E −H)−1 in ordinary quantum mechanics, with energy E and Hamiltonian

H. In the Haydock’s scheme, the role of energy is played by the spectral variable E → u and that

of the Hamiltonian by the longitudinal projection of the characteristic function H → BLL. The
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matrix elements of the Hamiltonian in the reciprocal space are

HGG′ = BLL
GG′ = Ĝ · (BGG′Ĝ′). (5.12)

The hamiltonian is a Hermitian operator which can be represented as a tridiagonal matrix with

diagonal elements an, n = 0, 1, 2 . . . and sub-diagonal and supra-diagonal elements bn, n = 1, 2 . . .

in a basis of Haydock states |n〉, n = 0, 1, 2 . . ., where an and bn are the Haydock’s coefficients. To

obtain these states and coefficients, we begin with an initial state |0〉 and apply the Hamiltonian H
recursively to find all the other Haydock states through

|ñ〉 ≡ H|n− 1〉 = bn−1|n− 2〉+ an−1|n− 1〉+ bn|n〉. (5.13)

The Haydock coefficients an−1 and bn are obtained by requiring the basis states |n〉 to be orthogonal

and normalized, i.e. 〈n|m〉 = δnm; yielding an−1 = 〈n − 1|ñ〉 = 〈n − 1|Ĥ|n − 1〉 and b2n = 〈ñ|ñ〉 −
a2n−1 − b2n−1.

The macroscopic response function is given by only one element, G00, of the Green’s operator, which

can written as a continued fraction in terms of the Haydock coefficients and the spectral variable,

from which we can write

εLLM =
εa
u

u− a0 −
b21

u− a1 − b22

u−a2−
b23

...

 . (5.14)

Note that the Haydock’s coefficients an and bn are dependent only on the geometry of the system

through the characteristic function B. Hence, for a given structure, different material compositions

can be explored without recalculating the Haydock’s coefficients. This is one of the reasons for

the high efficiency of this method for the calculation of the response of binary metamaterials. A

detailed account of the methodology to obtain Eq. (5.14) can be found in ref. [168].

5.3 Photonic: Microscopic Linear Fields

We now consider a metamaterial formed of an array of infinitely long cylinders made up of a

centrosymmetric material in vacuum. We choose the transverse cross-section of the cylinders to have

a slight deformation away from a perfect circle, identical to the isolated cylinder of Fig. 3.1. The

geometry of the periodic structure is determined in Photonic [64] through the characteristic function

in a unit cell, represented by a 2D matrix of binary pixels that can take values equal to either 0 or 1.

For our 2D system, we create a unit cell with the cross-section of the noncentrosymmetric cylinder

given by Eq. (3.1) by choosing the values of all pixels lying within the material to be equal to 1 and
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in vacuum to 0. Fig. 5.1 displays a schematic diagram for the geometry of our metamaterial. We

must point out that the curved boundary of the surface is not properly represented by the pixelated

matrix as it has steps and thus is rough, instead of being smooth [Fig. 5.1]. These steps may play

an important role in systems where the surface contribution is important, as they may modify its

response due to the presence of sharp corners, particularly for metals. Inclusions with a rectangular

form or those resembling shapes of the alphabets such as T , L, or E etc., with only horizontal and

vertical borders, would have smooth boundaries and their properties would not be influenced by

these steps.

Figure 5.1: Cross-section of the cylindrical meta-atoms of the array in vacuum described by Eq. (3.1)
with ξ = 0.1. Unit cell with one inclusion (top left panel), a zoomed in view of the surface (top
right panel), a 2× 2 region cut out of the infinite metamaterial (bottom center). Pixels with value
1 and 0 are indicated by the colors yellow and black respectively.

The programming package Photonic [64] includes modules to evaluate the microscopic fields induced

in the metamaterial, in addition to those that calculate the macroscopic linear response using

the efficient homogenization approach discussed in Secs. 5.1 and 5.2 and Eq. (5.5). We will now

compare these numerically computed self consistent microscopic fields for the metamaterial to those

calculated analytically for the isolated cylinder [Eq. (3.13)]. We choose a unit cell with (2N + 1)×
(2N+1) = 401×401 pixels and evaluate 150 Haydock’s coefficients to obtain well converged results.

We consider an array of dielectric or metallic cylinders periodically arranged in a 2D square lattice
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Figure 5.2: Absolute value of the self consistent linear electric field for deformed cylindrical metallic
nanowires with dielectric function given by Eq. (3.51) with lifetime τ = 100/ωp evaluated at the
frequency ω = 0.5ωp. The ratio between the nominal radius r0 and the lattice parameter L is
r0/L ∼ 1/10 and the deformation parameter is ξ = 0.1. The analytical field for an isolated metallic
cylinder is shown at the top and the numerical microscopic field within a metamaterial made of a
square lattice of the such cylinders at the bottom. For the numerical calculation we employed a
unit cell with (2N + 1) × (2N + 1) = 401 × 401 pixels. We show the field obtained numerically
without further processing (bottom left panel) and after applying a Gaussian filter in reciprocal
space (bottom right panel).

in vacuum with their transverse cross section described by Eq. (3.1) to demonstrate and discuss our

observations.

Fig. 5.2 shows the self-consistent field obtained from our perturbative analytical method [Eq. (3.13)]

for the isolated metallic cylinder (top) and the numerically computed microscopic field within a

metamaterial formed of an array of such cylinders (bottom). The permittivity of the metal is

assumed to be of the Drude type given by Eq. (3.51) with only one pole at ω = 0 and its value

being positive above the plasmon frequency ωp and negative below it. The results are calculated

for a deformation ξ = 0.1, a nominal radius r0 corresponding to 40 pixels, a lattice parameter L

corresponding to 2N + 1 = 401 pixels, and at the frequency ω = 0.5ωp. Note that the dielectric
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permittivity of the metal is negative at this frequency. The numerical microscopic field [bottom left

panel of Fig. 5.2] is very large right at the surface; almost an order of magnitude larger than the

analytical field. These large values originate in the field singularities expected at sharp corners of a

metallic particle below its plasma frequency and they are absent for particles with positive dielectric

functions. However, the sharp corners are not real, but an artifact due to the approximation of

a curved boundary by a pixelated array [top left panel of Fig. 5.1]. To overcome this problem,

we smooth out the estimated field by filtering it in reciprocal space using a low pass filter with a

Gaussian kernel using a cutoff equal to N/4 in a unit cell of (2N + 1) × (2N + 1) pixels [bottom

right panel of Fig. 5.2]. The smoothed out field has a structure qualitatively very similar to that

of the analytical case and closely agrees quantitatively with it except in the immediate vicinity

of the surface, where it still shows some small residual fluctuations. Notice that we choose a

small ratio of the radius of the inclusion to the lattice parameter r0/L ∼ 1/10, so that the inter-

inclusion separation is relatively large and we may expect the interaction between the inclusions

in the metamaterial to be small. Hence, the agreement with the analytical calculation. For larger

cylinders, their mutual interactions are expected to become important, thus invalidating the isolated

single cylinder approximation made in our analytical calculation. To illustrate this, we plot the

self consistent induced linear fields for two different radii. Fig. 5.3 shows a 2 × 2 region of the

metamaterial formed of the same inclusions as in Fig. 5.2 for r0/L ∼ 1/10 (left panel) and ∼ 1/4

(right panel). For smaller cylinders or larger inter-inclusion distances (left panel), the absolute

values of the induced fields between two inclusions reaches zero. Hence, an interaction between the

inclusions, in this case, may not occur. However, for larger radius (right panel), the inter-inclusion

distance is reduced and the interaction between the cylinders becomes important. In this regimen,

the absolute values of the induced fields in the interstitial region is never null. In this regime, the

analytical results do not apply. Hence, to validate our numerical computation against the analytical

results for the SH response of the metamaterial we choose the smaller radius.

Fig. 5.4 demonstrates the field determined analytically and numerically for the same system as

in Fig. 5.2 but made up of a dielectric material with a Lorentzian dielectric permittivity given by

Eq. (2.26), with a transverse and longitudinal optical mode frequencies related by ωL =
√

2ωT. The

permittivity of the material has a pole at ωT; is zero at ωL, negative between the two frequencies

and positive otherwise. The fields, both numerical and analytical, are calculated for the normalized

frequency ω = 0.5ωT where the dielectric permittivity is positive. Unlike the metallic case, there

are no large fluctuations near the surface in the microscopic fields (left panel) for the dielectric

cylinders. We remove the small fluctuations as in the metallic case, by applying the same Gaussian

filter, as previously mentioned for the metallic case, in the reciprocal space. The filtered field (right

panel) is found to be almost identical to the analytical field. As we did for the metallic case, in

Fig. 5.5 we show the induced fields for different nominal radii of the cylinders. For larger radius,

the inter-inclusion distance becomes small and the interaction between neighbor cylinders becomes

evident.
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Figure 5.3: Microscopic induced field numerically calculated for a metamaterial made of a square
lattice of deformed cylinders as in Fig. 5.2 but of different nominal radii r0. We show a region with
2 × 2 unit cells. We choose the ratio r0/L ∼ 1/10 (left) and r0/L ∼ 1/4 (right). The unit cell has
(2N + 1)× (2N + 1) = 401× 401 pixels.

5.4 Photonic: SH response

The package Photonic also has modules to evaluate the nonlinear SH polarization and the suscep-

tibility tensor of a binary metamaterial using the dipolium model [124]. The computation of the

second order response begins with the calculation of the microscopic nonlinear dipole and quadrupole

moments described by Eqs. (2.50) and (2.51) induced within the metamaterial. The modules are

restricted to the long wavelength approximation and hence the term corresponding to the curl of

the field in Eq. (2.50) is ignored. These moments are then used to calculate the total nonlinear

polarization, given by Eq. (2.52). The depolarizing field at the SH is then utilized to obtain the

screened self consistent nonlinear polarization; the process is illustrated in Fig. 2.2. Finally, this self

consistent microscopic nonlinear polarization is averaged to obtain the macroscopic SH polarization

from which the SH susceptibility tensor of the metamaterial is extracted.

We now explore the SH response from our deformed cylinders obtained using the SH modules of

Photonic. Our analysis of the microscopic linear fields hints that the presence of steps with corners

at the interface makes the fields near the surface to be poorly approximated exhibiting singularities

and/or artificial oscillations. Hence, we anticipate that the nonlinear polarization computed by the

package may give erroneous results in the vicinity of a surface with steps, but it may give appropriate

results in the vicinity of a flat horizontal or vertical surfaces oriented with the pixelated sides. An

investigation into the SH response from an array of cross shaped holes in Silver (Ag) using Photonic

have been recently reported [71] where the use of horizontal and vertical surfaces of the inclusions

helped avoid the problems that arise due to the presence of the steps.

The numerically computed SH susceptibility tensor of a square array of deformed cylinders with

an abrupt interface and the analytical dipolar hyperpolarizability given by Eq. (3.31) normalized
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Figure 5.4: Absolute value of the self consistent field calculated analytically for an isolated dielectric
cylinder with the same geometry as in Fig. 5.1 (top) calculated numerically within a metamaterial
made of a square array of such cylinders (bottom). We show results obtained numerically without
further processing (bottom left) and after applying a Gaussian filter in reciprocal space (bottom
right). The dielectric function of the material is given by Eq. (2.26) with ωL =

√
2ωT, and τ =

100/ωT and we chose ω = 0.5ωT.
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Figure 5.5: Absolute value of the induced fields for a metamaterial made of a square lattice of
deformed dielectric cylinders as in Fig. 5.1 with parameters corresponding to those in Fig. 5.4 but
of different nominal radii. We show a region with 2 × 2 unit cells. We choose r0/L ∼ 1/10 (left)
and r0/L ∼ 1/4 (right).

to the area of the unit cell are shown in Fig. 5.6. Additionally, the susceptibility being defined in

terms of the response to the macroscopic field, is divided by ε2M , to compare it to the polarizability

defined in terms of the response to the external field. The dielectric permittivity of the material is

chosen to be given by Eq. (2.26) with the relation between the longitudinal and transverse optical

mode frequencies ωL =
√

2ωT and lifetime parameter τ = 10/ωT. A rough resemblance in the

overall spectral shape can be observed, with the numerical results closely following the analytical

curves. The peaks at the surface plasmon polariton (SPP) resonance, ωspp =
√

3/2ωT, and its

subharmonic in the numerical χxxx (left panel) have some discrepancies with the analytical one:

a red shift of the SPP peak and a blue shift at the subharmonic of the SPP resonance, smaller

peak values and somewhat differing lineshapes. In addition to this, our numerical results do not

satisfy the relation between different components of the χ tensor (right panel) arising due to the

symmetry [Eq. (3.38)]. We must point out that as the metamaterial is designed in the form of a

square array of the cylinders, the rotational symmetry of the isolated cylinder, Eq. (3.38), is lost

indicating that the susceptibility tensor χ must possess more independent components. However, as

the inter-inclusion distance is large and the intercylinder interactions are expected to be negligible,

we do expect the suceptibility components to comply approximately with the symmetries of the

isolated cylinder. Thus, our calculation of the nonlinear polarization and the SH susceptibility of

the deformed cylinders displays erroneous results which might arise from the presence of steps in

the pixelated approximation to the curved boundary.

Planar Surface

We now turn our attention to the calculation of the nonlinear polarization calculated by the Pho-

tonic package for a planar surface which we might expect to be more precise. In order to validate
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Figure 5.6: Numerically and analytically computed real part of the SH susceptibility tensor compo-
nent χxxx (left panel), as a function of the normalized frequency ω/ωT, for a deformed cylinder with
an abrupt interface, such as the one in Fig. 5.1, with r0/L ∼ 1/10 and deformation ξ = 0.1. The
cylinder is made up of a dielectric material whose permittivity is given by Eq. (2.26) with the life-
time parameter τ = 10/ωT. Real part of the different components of the second order susceptibility
χ computed numerically.
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Figure 5.7: Unit cell of 1D layered structure used to study the properties of an infinite planar
surface. Yellow regions indicate the material and black denotes vacuum. Abrupt surface (left panel)
and a thick surface (right panel). The different colors between yellow and black in the figure on
the right indicates a continuous variation in density of particles when going from the homogeneous
medium to vacuum, whose value have been normalized to one for simplicity. The dashed rectangle
qualitatively illustrates the mask used to isolate the surface response.
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the nonlinear response in the close vicinity of a planar surface, we investigate a semi-infinite ho-

mogeneous system, identical to that used to calculate the surface response within the dipolium

model. However, the package Photonic can only be applied to periodic systems. Thus, we consider

the geometrical configuration shown in the left panel of Fig. 5.7 which essentially is a 1D layered

structure with alternating centrosymmetric materials. The nonretarded, nonlinear polarization in

this system would be zero everywhere except at the interfaces where the normal field has a large

gradient. Nevertheless, the layered geometry of Fig. 5.7 is centrosymmetric and would yield a null

total nonlinear polarization when the contributions of the two interfaces within a unit cell are added.

Hence, to obtain the SH response of the planar interface, we select a thin region around one interface

using a mask, illustrated by the dashed rectangle in Fig. 5.7, and add up only the contributions

within the masked region. The normal component of this nonlinear surface polarization, related

to the dimensionless parameter a(ω), is thus calculated numerically. We compare the spectra of

the numerically computed a(ω) with the analytical expression Eq. (2.55). We choose the system to

be made up of the same insulator of which the dielectric cylinder of Fig. 5.6 was composed. The

top panels of Fig. 5.8 shows the real (left) and imaginary (right) parts of the function a(ω) for an

abrupt surface as function of ω/ωT for the dielectric planar surface. The numerically evaluated a

does not compare well with the analytical one except at very low and high frequencies. Hence, our

assumption that the nonlinear polarization evaluated for horizontal or vertical surface by the SH

modules of the package are precise turns out not to be entirely true. The steps, arising when curved

boundaries are modelled by an array of pixels, contributing to inaccuracies due to the sharp corners

is only a part of the whole story.

A tentative explanation for the discrepancy between the analytical and numerical calculation even

for a flat surface is the following. The normal component of the electric field is discontinuous

exactly at the interface possessing an infinite gradient. The numerical calculation, being discrete

approximates the surface with just one pixel exactly where the discontinuity in the field resides. The

gradient of the field appears as a singularity at the surface and leads to inaccurate estimation of the

nonlinear response by our program. To solve this, we can replace the sharp interfaces by continuous

density profiles. Thus, we spread the interface over a few pixels instead of abruptly changing from

vacuum to the medium in just one pixel. To verify this assumption, we consider the same 1D layered

structure as above, but with a thick interface, 10 pixels wide with the density linearly interpolating

between the medium and the vacuum, as illustrated by the right panel of Fig. 5.7. We show the real

(left) and imaginary (right) parts of the dimensionless function a(ω), calculated by both numerical

and analytical means, in the bottom panels of Fig. 5.8. An excellent agreement between the two is

observed except between the frequencies ωT and ωL where the numerical curves exhibits oscillations.

This is the regimen where the dielectric permittivity εd within the material is negative. We must

point out that within this frequency region, the dielectric permittivity, for a continuously varying

particle density that interpolates between vacuum and bulk across the thick surface, would go from

a value 1 in vacuum to a negative value within the medium, necessarily crossing zero somewhere

in between. As the normal component of the displacement field is nearly constant across the thick
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Figure 5.8: Real (left panels) and Imaginary (right panels) of the dimensionless function a(ω) of the
SH type given by Eq. (2.55) for an infinite planar abrupt (top panels) and a thick (bottom panels)
surface, similar to Fig. 5.7, with the dielectric permittivity of the material given by Eq. (2.26) with
τ = 10/ωT.

interface, the electric field i.e. E⊥ = D⊥/ε, would have a pole at some position within across the

widened surface. Since, ε is frequency dependent, the position of this singularity would dependend

on frequency. We don’t expect a pixelated representation of the system to permit an accurate

description of this localized singularity. Furthermore, as the frequency varies, the position of the

singularity may hit one or another of the pixels. This manifest itself as an oscillatory behavior

in the nonlinear response when the permittivity of the material is negative, with the number of

oscillations dependent on the number of pixels across the selvedge, as we have verified by repeating

the calculation with different widths. This brings us to the conclusion that while a thick surface

may help in avoiding the problems due to the discontinuity of the fields, the inaccuracies in our

numerical calculations arising for negative permittivities demands a solution.

Periodic array of noncentrosymmetric cylinders with thick interfaces

Notwithstanding the last remarks of the previous subsection, we now choose a metamaterial formed

of a periodic array of infinite noncentrosymmetric dielectric cylinders [Fig. 5.1] but instead of making

their interfaces abrupt, we assume a thick selvedge where the density of polarizable entities inter-
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Figure 5.9: Unit cell (left panel) of a periodically array of the deformed cylinders with thick surface
and a zoomed in view of the surface (right panel). The color yellow and black represents the two
homogeneous materials of the inclusions and the host respectively, with the continuously varying
density demonstrated by the different colors in between.

polates from vacuum to their bulk value within the material. Fig. 5.9 illustrates the unit cell and a

zoomed in view of the surface for such a metamaterial. The dimension and the material parameters

for these cylinders are chosen identical to those in Fig. 5.6 but with a thicker selvedge formulated

using a 2D Gaussian function spread over 20 × 20 pixels. The left panel of the figure Fig. 5.10

shows the real part of the SH susceptibility tensor component χxxx obtained both numerically and

analytically [from Eq. (3.31)]. As mentioned previously, the susceptibility is defined in terms of the

response to the macroscopic field, and the polarizability is defined in terms of the response to the

external field, hence we divided the numerically obtained susceptibility by ε2M . As in Fig. 5.6, the

numerical and analytical curves show some resemblance in their overall spectra with differing values

of peaks at the SPP and its sub-harmonic. Note, that for the thick cylinder, the numerical curve is

more than an order of magnitude smaller than the analytical result. However, the peak positions

for the numerical curve appear to have shifted back and have a better agreement with those of the

analytical results, though the latter are much sharper and narrower than the former. To illustrate

this in Fig. 5.11 we plot χxxx obtained analytically and numerically for both an abrupt and a thick

selvedge. Notice the shift in the peaks between both the numerical curves (black and blue).

From Fig. 5.11, we can conclude that our pretension of resolving the inaccuracies in Photonic using

a thick selvedge, i.e. a continuous interpolation of density between the two media, is not sufficient.

The right panel of Fig. 5.10 displays the different components of the susceptibility tensor for the

thick cylinder. In this case, the symmetry relation, Eq. (3.38), between the components is satisfied.

Thus, tweaking the manner in which the geometry of the system is described in Photonic, we were

able to capture the fundamental effects of the structure and symmetries of the system, although

failing to estimate precise values.
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Figure 5.10: Real part of the SH susceptibility tensor component χxxx (left panel) calculated
numerically for a deformed cylinder with a thick selvedge and analytically for the corresponding
cylinder with abrupt interfaces, as function of the normalized frequency ω/ωT. The cylinder havethe
same geometry as in Fig. 5.9 and identical material parameters as in Fig. 5.6. Real parts of the
different components of χ tensor calculated numerically are shown in the right panel.
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Nonlinear surface response of deformed cylinders

Observing the results presented in Fig. 5.10, as concluded in the previous paragraph, Photonic

reproduces the nature of the spectra and the symmetry of the analytical SH response tensor but

doesn’t yield the correct values close to the resonances. We believe that this happens because of

the inconsistencies that arise when the response and the induced fields are computed at the surface.

Our analysis of the linear microscopic fields [Sec. 5.3] showed spurious large fluctuations of the

microscopic fields at the surface originated in its steps. Furthermore, our results for the normal

component of the nonlinear polarization at the planar surface, characterized through the parameter

a(ω), exhibited how the discontinuity and singularity of the field at a surface where the permittivity

changes sign are the reasons for this inaccurate evaluation. To test this diagnosis, we single out the

contributions to the nonlinear polarization coming from the surface of the inclusions, integrate it

across the surface and compare the numerical and the analytical calculations. The normal P ssh,⊥ and

the tangential P ssh,‖ components of the nonlinear surface polarization at any point on the surface

calculated analytically is given by Eqs. (3.20) and (3.21) respectively. The nonlinear surface dipole

moment per unit area length is then computed by integrating these local contributions to the surface

nonlinear polarization utilizing an equation similar to Eq. (3.22) which we may write as

psdef =

∫ 2π

0
(P ssh,⊥ n̂+ P ssh,‖ t̂) r0(1 + ξ cos 3θ) dθ, (5.15)

where the unit vectors normal n̂ and tangential t̂ to the surface are given by Eqs. (3.10) and (3.24).

To compute the surface nonlinear polarization numerically, we first evaluate the microscopic self

consistent linear fields induced within the metamaterial, average them using a kernel to eliminate

their singular behavior at the surface, and then substitute them in Eqs. (3.17) to (3.19). It is then

summed over the entire boundary to obtain the quadratic surface dipole moment per unit length. For

both the numerical and analytical calculations, we normalize our results to the factor ne appearing

in Eqs. (3.19) to (3.21). The self-consistent fields obtained numerically have been normalized using

the macroscopic permittivity of the metmaterial, so that they can interpreted as the response to

the external, not the macroscopic field, as for the analytical response. The absolute value of the

x component of this nonlinear surface dipole moment per unit length is shown in Fig. 5.12 for the

same dielectric deformed cylinder as in Fig. 5.6, for the case of an abrupt interface, and for two

different lifetime parameters τ = 10/ωT (left panel) and τ = 100/ωT (right panel). Notice that the

numerical curve overlaps the analytical one completely when the absorption in the material is large,

corresponding to a relatively small τ , differing slightly only at the SPP peak. For low absorption,

corresponding to a relatively large τ , the numerical curve mimics the nature of the spectra of the

analytically evaluated quadratic surface dipole moment except at the SPP resonance where it splits

into two smaller peaks, one located below and the other above the nominal resonance. It is also

two orders of magnitude smaller than the analytical case. We believe that this splitting might be

due to the fact that for the undeformed cylinder, all the multipolar resonances are degenerate and
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Figure 5.12: Normalized absolute value of the x− component of the nonlinear surface dipole moment
per unit length of the same deformed cylinder as in Fig. 5.6 with an abrupt interface as a function
of the normalized frequency ω/ωT for two different lifetimes τ = 10/ωT (left panel) and τ = 100/ωT

(right panel).

have the same frequency. Thus, any interaction between different multipoles, such as those due to a

deformed shape or due to the interaction among different particles may break the degeneracy, and

this would be more noticeable when the absorption in the medium is low and the resonances are

larger and narrower. As our perturbative analytical theory did not account for this degeneracy, it

doesn’t show this splitting. Additional small structures are visible for the numerical results at ωT

and ωL for the case of low absorption.

5.5 Results: Analytical vs Numerical SH response

We now turn our attention towards the resolution of the problems we discussed in the previous sec-

tions by updating the SH code of Photonic with a new formulation for the calculation of the surface

nonlinear polarization. To this end, we separate the bulk and surface regions, shown in Fig. 5.13,

and use a hybrid technique to determine the total nonlinear polarization including well defined

surface and bulk contributions. We describe our procedure using the metamaterial illustrated in

Fig. 5.1.

1. We begin with the calculation of the self consistent microscopic fields within the metamaterial

using the respective Photonic modules.

2. Next, we compute the external (unscreened) nonlinear polarization source induced at all the

points of the matematerial using the existing modules of Photonic.

3. We construct a mask to identify the pixels corresponding to the interfaces. To that end, we use

the numerically calculated gradient ∇B of the characteristic function (Fig. 5.1) which is zero

everywhere in the metamaterial except at the interfaces where its value of the pixel changes
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Figure 5.13: A schematic representation of the separation of the inclusion into bulk and selvedge
regions for the hybrid calculation. Unit cell with a single inclusion (left panel). Inclusion divided
into bulk and selvedge regions (center panel). Setting the selvedge in vacuum with self consistent
polarization P ssh obtained from the semi-infinite dipolium model and the bulk with numerical external
polarization P exsh (right panel).

between 0 and 1. We evaluate this gradient using centered differences. The segregated bulk

and surface regions are illustrated in the center panel of Fig. 5.13.

4. We select the surface region of the inclusions using this mask and we replace its nonlinear

polarization by the self-consistent surface polarization P s
sh with parallel and perpendicular

components given by Eqs. (2.53) and (2.56) using the numerically computed microscopic

averaged linear fields. The averaging is performed by applying a convolution using a small

2D kernel in real space eliminate spurious surface fluctuations yielding smoother fields. That

is, we replace, in the surface region, P ex
sh by P s|∇B|, as |∇B| is a numerical approximation

to a Dirac’s delta function at the interface. Thus, the surface response is evaluated using the

analytical results of the dipolium model but using the smoothed numerical linear fields.

5. We use the same surface mask to change the composition corresponding to those pixels at the

surface, removing their material and replacing it by vacuum. This way, we avoid screening the

already selfconsistent response at the surface region in the following steps. Thus, we shrink the

inclusions by a small distance, corresponding to the selvedge region (right panel of Fig. 5.13).

6. We set the external polarization P exsh of the shrinked inclusions to that calculated in step 2

(right panel of Fig. 5.13).

7. At this point we have at our disposal, the building blocks for our new hybrid SH calculation;

the external bulk polarization within the bulk of the inclusions and the self consistent surface

polarization at the selvedge region which we situate in vacuum. Finally, we combine them to

obtain the total nonlinear polarization which is then screened appropriately to evaluate the

self consistent quadratic polarization from which the SH susceptibility tensor components are

identified.
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We must point out that the selvedge region with the contribution of the nonlinear surface polariza-

tion, calculated analytically using the dipolium model, being already self-consistent is deliberately

set in vacuum so as to not screen it again.

Fig. 5.14 demonstrates the normalized real values of the SH susceptibility tensor component χxxx of

a metamaterial made of a square array of deformed cylindrical inclusions with an abrupt interface

with the same material parameters as in Fig. 5.6. The numerical results have been compared against

the analytical ones for different deformation parameters and for r0/L ∼ 1/10 in vacuum. We find

that for deformation parameter ξ = 0.1 (top right panel), the numerical results agree reasonably

well with the analytical ones with almost an identical structure (a maxima followed by a minima)

at the subharmonic of the SPP resonance, ωspp =
√

3/2ωT, and with a similar lineshape of the

resonant response (a minima followed by a maxima and another minima) at the fundamental SPP

resonance, albeit slightly red shifted. In addition to these, the numerical curve also exhibits an

additional structure in the form of a small maxima followed by minima, absent from the analytical

result, at the frequency ω ≈ 1.3ωT. We suspect that this minima is related to the splitting of the

SPP resonances that are degenerate for the unperturbed circular cylinder, as shown in theright panel

of Fig. 5.12 . At very small deformations, the geometry of the curved boundary of the inclusions

is not well described by a pixelated array, and thus the numerical calculation of the SH response

might loose precision; we verified this by calculating the results for a smaller deformation ξ = 0.05

(top left panel). The structure at the SPP resonance displays a more pronounced red shift and

the additional minima at ω = 1.3ωT is larger in size and comparable to the size of the primary

minima at SPP. The structure at the subharmonic, however, compares well with the analytical

results. On the other hand, for large deformations our approximate analytical theory is not valid

and may not compare with the numerically obtained results where no such perturbative theory is

applied. We demonstrate this by plotting the results for ξ = 0.2 (bottom left panel) and ξ = 0.25

(bottom right panel). Notice that, for ξ = 0.2 the red shift in the primary resonance structure at

frequency ωspp, computed numerically, with respect to the analytical curve is considerably large

and the adjoining minima has grown to become comparable to the primary minima at the SPP

resonance. The numerical curve also exhibits a small variation at the subharmonic resonance, with

a broader and smaller structure. For even larger deformations, ξ = 0.25, the spectral dependence of

the numerical result near the SPP resonance differs considerably from the analytical result, while

the one at its subharmonic is still similar albeit broader and smaller, as in the case of ξ = 0.2. Note,

that the second minima overshoots the primary becoming dominant over it.

In Fig. 5.15, we plot the normalized absolute values of the SH susceptibility tensor component χxxx,

calculated numerically, for the same metamaterial as in Fig. 5.14 for different deformations. The

curves display peaks at the excitation of the SPP and its sub-harmonic with an additional peak

at ω = 1.3ωT near the main peak at the SPP frequency. For small deformations, the peaks grow

linearly, as could be expected from our perturbative analytical theory. For larger deformations,

however, the main and the additional peak to its right compete with each other, and for large
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Figure 5.14: Real part of the χxxx component of the SH susceptibility tensor, as a function of the
normalized frequency ω/ωT, for the same dielectric cylinder as in Fig. 5.6 with an abrupt interface,
for different deformations. Both analytical results and the numerical one computed using our hybrid
implementation are shown. The different deformation parameters are ξ = 0.05 (top left), ξ = 0.1
(top right), ξ = 0.2 (bottom left), and ξ = 0.25 (bottom right).
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Figure 5.16: Normalized absolute value of the main peak near the SPP resonance of the SH
susceptibility tensor component χxxx, shown in Fig. 5.15, as a function of the deformation parameter
ξ.

enough deformations the main peak diminishes and the additional peak increases in height with

increasing deformation. The variation of the peak value of the main peak at the SPP resonance

as a function of the deformation is plotted in Fig. 5.16; the peak increases up to about 15% of

deformation and decreases beyond this value.

5.6 Conclusions

A numerical calculation, based on an efficient homogenization technique, of the SH susceptibility

tensor of a binary metamaterial formed of a periodic array of noncentrosymmetric infinitely long

cylinders in vacuum was performed. The results of the computation were compared to those of the

analytical approach described in Chapter 3. First, the existing modules of Photonic were analyzed

and assessed by comparison with the analytical results for the linear microscopic fields and SH

polarization and susceptibility. We identified discrepancies between the numerical and analytical

calculations and we explored their origin. We found that the pixel array representation of the

geometry causes deviations for curved boundaries due to the formation of steps with sharp corners

at which the electric field is amplified for negative permittivities. The numerically computed linear

fields could be corrected by a simple averaging procedure. Not so the SH susceptibility. Thus, we

explored the SH nonlinear response of a plane surface with no steps and calculated the dimensionless

parameter a which characterizes the normal component of the nonlinear surface polarization. We

obtained an excellent agreement with the analytical results except in the frequency regime where

the permittivity of the material is negative. Assuming that the discrepancies arose due to the
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deficient representation of discontinuous fields within the numerical formalism we smoothed out the

discontinuities by replacing the density of polarizable entities of the dipolium model by a slowly

varying function. This attempt was succesful for frequencies for which the permittivity of the

particles is positive, but failed, yielding large oscillations when it is negative, due to local singularities

at the selvedge, as expected, for the electric field.

Having identified the various effects which produce discrepancies between the numerical and analyt-

ical nonlinear calculations, a novel solution was proposed, applied and validated. We used a hybrid

formulation in which the spurious surface response is eliminated from the numeric calculation and

replaced by its analytical counterpart, evaluated by substituting the numerically estimated linear

fields in the analytical expression of the nonlinear surface polarization. We observed an outstanding

improvement in the numerically estimated susceptibility, thus validating our approach. We studied

the SH susceptibility tensor for a metamaterial composed of noncentrosymmetric infinitely long

dielectric cylinders periodically arranged in a square lattice. We obtained, analyzed, and discussed

the spectral response of the SH tensor of the metamaterial. We find remarkable agreement with the

analytical results for small deformations. Deformations larger than 15% produced discrepancies, as

they are beyond the validity range of our perturbative analytical calculation. On the other hand,

deformations smaller than ∼ 5% also yielded discrepancies, as they are too small for an accurate

pixelated representation of the slightly noncentrosymmetric geometry. Thus, in the region where

the geometry is well represented and the perturbation is not too large, we found agreement between

the analytical and the new numerical calculation, thus validating it. Furthermore, the numerical

method we developed is not restricted to 2D systems nor to slightly deformed cylinders in the

nonretarded regime; it can be easily applied to 3D structures, and as the package Photonic also

has modules for incorporating the effects of retardation, our technique can be simply extended to

include systems with size comparable to the wavelength of light.

Through our study of a simple system, we accomplished our objective of validating and ensuring the

reliability of a numerical technique to explore SHG from metamaterials, which can now be utilized

for a vast class of systems and structures for which analytical calculations are unavailable. Other

numerical techniques, such as FDTD, FEM, SIE etc., commonly employed to study the responses

of nanostructures and metamaterials can now be contrasted against our method. Our analytical

and numerical calculations incorporate some subtle effects, such as the screening of the the SH

fields at the surface and within the particles, required to obtain a self-consistent response. Hence a

comparison of our results to those of other computational techniques should prove useful to validate

them or to exhibit their shortcomings. Since our numerical calculation was based in the dipolium

model, it does suffers from its limitations at surface, such as its neglect of surface states, surface

relaxation, and the change of crystal symmetry at crystalline surfaces. However, as the input

to our hybrid numerical method is the nonlinear surface susceptibility, which may obtained from

experiments with well characterized flat surfaces or from microscopic theories. Thus, our approach

is more flexible than the previous implementation of SH calculations within the package Photonic,
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as it allows going beyond the dipolium or the local jellium models for describing the interfacial

response.



6
Conclusions

An investigation into the second order optical properties of nanowires and metamaterials made up

of centrosymmetric materials with a simple noncentrosymmetric geometry was presented. First,

an approximate analytical theory was developed to study the generation of second harmonic (SH),

difference (DF) and sum (SF) frequency signals from an isolated infinitely long cylinder made of a

centrosymmetric material with a noncentrosymmetric cross-section consisting of a small circle with

three small protuberances separated by an angle of 120◦. This is one of the most simple geometry

that lacks centrosymmetry and thus can support ordinary three wave mixing processes. We assumed

the nominal radius small enough so that the long wavelength approximation could be applied.

Analytical expressions for the SH, SF and DF hyperpolarizabilities of dipolar and quadrupolar

types were derived perturbatively using the deformation from the circle as a small perturbative

parameter. We used the dipolium model, which assumes that the material is a continuum made

up of harmonic polarizable entities that nevertheless become nonlinear when account is taken of

the spatial variations of the driving field. The spectral features of the hyperpolarizabilities were

identified and discussed for metallic and dielectric systems. The hyperpolarizabilities were written

in terms of the geometry characterized the deformation parameter, and the linear response functions

of the material at each of the frequencies involved, i.e., those of the incoming waves, their harmonics,

and their sum and difference.

We also performed a derivation of the electromagnetic radiation in 2D and utilized the results to

evaluate the SH, SF and DF radiated fields. The angular radiation patterns and the total power

emitted were obtained and analyzed. We found that even for very small deformations the dipolar

contribution, absent for circular cross sections, competes with the quadrupolar, and one or the

other might dominate, depending on the frequency of the incoming light, yielding a rich variety of

radiation patterns that depend on frequency and on the polarization of the incident light.

This was followed by a numerical computation of the SH response of a binary metamaterial formed

of a square array of deformed cylinders as those discussed above within vacuum. We used an efficient

homogenization scheme, developed by our group, to calculate the macroscopic linear response, the

97
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microscopic fields, the nonlinear SH polarization source and the self consistent nonlinear fields and

polarizations. The numerically evaluated SH susceptibility tensor was compared with the analytical

one for small deformations and was found to agree well with each other for some frequency ranges

but not for others. We identified the sources of the discrepancies and proposed and implemented a

novel numerical scheme to overcome them. We verified the new procedures by comparing the results

to those of the analytic theory in its region of validity. We were then able to perform and analyze

the case of large deformations, beyond the reach of our analytical perturbative analysis. We have,

thus, successfully validated our numerical technique which can now be applied to a wider category

of systems. For example, 3D nanoparticle array with an arbitrary geometry for which analytical

solutions are not available. Furthermore, the numerical calculations can be extended beyond the

long wavelength approximation.

Our analytical and numerical results were based on the continuous isotropic dipolium, which is a

convenient model that yields the local surface and bulk nonlinear susceptibilities of centrosymmetric

materials in terms of their frequency dependent complex linear response. Thus, it allows readily

the calculation and interpretation of the nonlinear spectral features. However, this model has some

shortcomings, as it does not incorporate microscopic effects such as transitions to and from surface

states, the bulk crystalline structure, the reduction of crystalline symmetry at the surfaces, surface

relaxation and reconstruction. Nevertheless, our results may be simply generalized and applied to

systems made of materials whose bulk and surface susceptibilities are known, having being obtained

from microscopic calculations or from experiment.

In summary, we developed the theory of optical three wave mixing processes (SFG, DFG, and its

limiting cases SHG and OR) from nanoparticles made of centrosymmetric materials but with a

noncentrosymmetric geometry, we obtained analytical expressions for the corresponding response

functions and radiated fields of particles with a particularly simple geometry, and we applied our

results to calculate three wave mixing phenomena from particles made of metallic and dielectric

materials. On the other hand, we tested a numerical procedure for the calculation of SHG from

metamaterials through comparison with the analytical results, found its flaws and proposed, im-

plemented and validated a novel computational scheme that overcomes them and that may be

generalized to particles of arbitrary composition, size and shape. Thus, we believe that our research

will prove useful for advancing the currently very active field of nonlinear nanophotonics.
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Appendix

Electromagnetic radiation in 2D

Most textbooks on electromagnetism discusses the theory of radiation from localized distribution of

oscillating charges or current densities in 3D, hardly mentioning the 2D case. Many systems such as

ours possesses translational symmetry along one axis, thus reducing it to 2D. These systems radiate

electromagnetic fields confined to a plane with nature distinct from their 3D counterpart. This

appendix is dedicated to the discussion of the theory behind the calculation of the electromagnetic

fields radiated due to oscillating charges ρ and current densities J in 2D varying sinusoidally in

time,

J(r, t) = J(r)e−iωt, (A.1)

ρ(r, t) = ρ(r)e−iωt, (A.2)

where r is the 2D position vector. We restrict ourselves to small radiating systems and demonstrate

the contributions to the radiated fields only from the first multipoles, namely, the electric dipole,

magnetic dipole, and electric quadrupole. The treatment is predominantly similar to that of 3D;

the essential difference between them being in the Green’s function for the wave equation.

In the Lorentz gauge, the vector potential is also monochromatic and obeys the wave equation

∇2A− 1

c2
∂2

∂t2
A = ∇2A+ k2A =− 4π

c
J , (A.3)

where k = ω/c. Once the above equation is solved to obtain the vector potential for a certain
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current distribution, the electromagnetic fields in the radiation zone are then given by

B =∇×A, (A.4)

E =
i

k
∇×B. (A.5)

To solve Equation (A.3) we first find its corresponding Green’s function in 2D G(r, r′) = G(r−r′),
which obeys

(∇2 + k2)G(r) = −4πδ(r), (A.6)

where we assumed translational symmetry. As space is isotropic, we impose isotropic outgoing

boundary conditions and assume that the Green’s function depends only on distance and not on

direction. Thus, we write G(r) = R(kr) and look for the radial function R(kr). For r 6= 0, the

above equation can be written in termos of the dimensionless variable s ≡ kr as

s2
d2

ds2
R(s) + s

d

ds
R(s) + s2R(s) = 0, (A.7)

whose outoing solution is proportional to the Hankel function H
(1)
0 (s) = J

(1)
0 (s) + iY

(1)
0 (s), which

in the near zone, (s→ 0), takes the form

lim
s→0

H
(1)
0 (s) = 2i ln(s)/π. (A.8)

As the nonretarded Green’s function in 2D is G = −2 ln(r) + constant, i.e., the scalar potential of

a line with unit charge per unit length, a comparison with Eq. (A.8) yields

G(r) = iπH
(1)
0 (kr). (A.9)

Thus, using the asymptotic expression for the Hankel’s function for large arguments, we obtain

G(r) = eiπ/4
√

2π

kr
eikr, (A.10)

in the radiation zone (kr →∞), where the retarded vector potential becomes

A(r) =
1

c

∫
d2r′G(r − r′)J(r′) =

1

c

∫
d2r′ eiπ/4

√
2π

k|r − r′|e
ik|r−r′|J(r′). (A.11)

Note, that in the radiation zone (kr >> 1) the exponential within the integral of Eq. (A.11) oscillates

rapidly. For a localized source we may assume r � r′ and in the long-wavelength approximatino

kr′ � 1 we can further approximate Eq. (A.11) by

lim
kr→∞

A(r) =
1

c

√
2π

kr
eiπ/4eikr

∫
d2r′J(r′)e−ik n̂·r

′
, (A.12)
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where n̂ is the unit vector in the direction of r. Here, we have used the approximation |r−r′| ∼= r−
n̂ ·r′ in the exponential, while we replaced |r−r′| by r in the relatively slowly varying denominator.

We further Taylor expand the exponential within the integral, yielding a multipolar series, each of

whose terms may be integrated separately to obtain different multipolar contributions to radiation,

in analogy to the 3D case. Thus, Eq. (A.12) is written as

lim
kr→∞

A(r) =
1

c

√
2π

kr
eiπ/4eikr

∫
d2r′J(r′)

∑
m=0

(−ik)m

m!
(n̂ · r′)m. (A.13)

Electric Dipole Radiation

Considering the first term (m = 0) in the series (Eq. (A.13)),

A(0)(r) =
1

c

√
2π

kr
eiπ/4eikr

∫
d2r′J(r′), (A.14)

one can obtain the dipolar contribution to the vector potential. The integration in Eq. (A.14) can

be performed by using the following tricks as illustrated for its x−th component,∫
d2r′Jx(r′) =

∫
d2r′J(r′) · x̂′, (A.15a)

=

∫
d2r′J(r′) · ∇′x′, (A.15b)

=

∫
d2r′{[∇′ · J(r′)x′]− [∇′ · J(r′)]x′}, (A.15c)

=

∮
ds′ J(r′) · n̂′ x′ −

∫
d2r′[∇′ · J(r′)]x′, (A.15d)

where we used the divergence theorem in Eq. (A.15d). Since no current passes through the surface

bounding the entire source, its first term integrates to zero. Using the continuity equation ∇ ·
J(r, t) = −∂ρ(r, t)/∂t and Eq. (A.2) for its second term, we get∫

d2r′Jx(r′) =

∫
d2r′

∂ρ(r′, t)
∂t

x′ = −iω
∫

d2r′ρ(r′)x′. (A.16)

Hence, ∫
d2r′J(r′) = −iω

∫
d2r′ρ(r′) r′. (A.17)

Identifying the amplitude of the dipole moment per unit length p =
∫
d2rρ(r)r, we get∫

d2rJ(r) = −iωp. (A.18)
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Finally, substituting Eq. (A.18) in Eq. (A.14) we obtain the vector potential radiated by an oscil-

lating dipole,

A(0)(r) = (−ieiπ/4)
√

2π

√
k

r
eikrp. (A.19)

Using Eqs. (A.4), (A.5) and (A.19), the expressions for the electromagnetic fields radiated by a

dipole are,

B(r) =(
√

2πeiπ/4)
k3/2√
r
eikr(n̂× p), (A.20)

E(r) =(
√

2πeiπ/4)
k3/2√
r
eikr[(n̂× p)× n̂]. (A.21)

We must point out that we used the relation, ∇ → ikn̂, to calculate the fields. This relation holds

true in the radiation zone.

Electric Quadrupole Radiation

The next order of approximation corresponds to the second term in the expansion in Eq. (A.13)

A(1)(r) =
1

c

√
2π

kr
eiπ/4eikr(−ik)

∫
d2r′J(r′)(n̂ · r′). (A.22)

The integrand in the above equation can be written as the sum of a symmetric and an antisymmetric

part

A(1)(r) =
1

c

√
2π

kr
eiπ/4eikr×

(−ik)

∫
d2r′

1

2
[J(r′)(n̂ · r′) + r′(n̂ · J(r′))︸ ︷︷ ︸

Symmetric

+ J(r′)(n̂ · r′)− r′(n̂ · J(r′))︸ ︷︷ ︸
Anti-symmetric

]. (A.23)

We begin by choosing the x component of the first term of the symmetric part,∫
d2r′Jx(r′)(n̂ · r̂′) =

∫
d2r′(n̂ · r̂′)J(r′) · x̂′, (A.24)

=

∫
d2r′(n̂ · r̂′)J(r′) · ∇′ x′, (A.25)

=

∫
d2r′∇′ · {(n̂ · r̂′)J(r′)x′} −

∫
d2r′x′∇′ · {(n̂ · r̂′)J(r′)}, (A.26)

=−
∫

d2r′x′∇′ · {(n̂ · r̂′)J(r′)}, (A.27)

where the first term in Eq. (A.26) integrates to zero using the divergence theorem, as discussed
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above. We continue from Eq. (A.27),∫
d2r′Jx(r′)(n̂ · r̂′) =−

∫
d2r′x′ (∇′ · J(r′))(n̂ · r̂′)−

∫
d2r′x′ J(r′) · ∇′(n̂ · r̂′), (A.28)

=−
∫

d2r′x′ (∇′ · J(r′))(n̂ · r̂′)−
∫

d2r′x′ J(r′) · n̂. (A.29)

Thus, ∫
d2r′Jx(r′)(n̂ · r̂′) +

∫
d2r′x′ J(r′) · n̂ = −

∫
d2r′x′ (∇′ · J(r′))(n̂ · r̂′), (A.30)

Eq. (A.30) represents the x component of the symmetric part of the integral of Eq. (A.23). Hence

the full vector form can be written as∫
d2r′J(r′)(n̂ · r̂′) +

∫
d2r′r′ (J(r′) · n̂) = −

∫
d2r′r′ (∇′ · J(r′))(n̂ · r̂′). (A.31)

Substituting the equation of continuity in Eq. (A.31) and using Eq. (A.2), we get∫
d2r′J(r′)(n̂ · r̂′) +

∫
d2r′r′ (J(r′) · n̂) = +

∫
d2r′r′

∂ρ(r′, t)
∂t

(n̂ · r̂′), (A.32)∫
d2r′J(r′)(n̂ · r̂′) +

∫
d2r′r′ (J(r′) · n̂) = −iω

∫
d2r′r′ ρ(r′)(n̂ · r̂′), (A.33)

Subsituting Eq. (A.33) in Eq. (A.23) and writting only the symmetric part, we obtain

A(1)
s (r) = −(

√
2πeiπ/4)

eikr

2
√
r
k3/2

∫
d2r′r′(n̂ · r′)ρ(r′). (A.34)

Since we defined the quadrupole moment in 2D by

Q =

∫
d2r′ρ(r′)(2r′r′ − r′2), (A.35)

we rewrite the integral in Eq. (A.34) as∫
d2r′r′(n̂ · r′)ρ(r′) =

1

2

∫
d2r′ρ(r′)(2r′(n̂ · r′)− n̂r′2 + n̂r′2), (A.36)

where we identify the quadrupolar tensor to write

A(1)
s (r) = −(

√
2πeiπ/4)

eikr

2
√
r
k3/2

{
Q(n̂) +

1

2

∫
d2r′ρ(r′) n̂ r′2

}
, (A.37)

where Q(n̂) = Q · n̂ is a vector related to the quadrupole moment Q of the charge distribution.

The additional term in Eq. (A.37) is radial and thus doesn’t contribute to the transverse radiated
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fields and may be safely ignored. The B field due to the vector potential in Eq. (A.37) is given by

B(r) = (−i
√

2πeiπ/4)
eikr

4
√
r
k5/2{n̂×Q(n̂)} (A.38)

and the E by

E(r) = (−i
√

2πeiπ/4)
eikr

4
√
r
k5/2[{n̂×Q(n̂)} × n̂]. (A.39)

We reiterate that we used the relation ∇ → ikn̂ to calculate the fields in the radiation zone as

discussed in the dipolar case.

Magnetic Dipole Radiation

Choosing the anti-symmetric part of Eq. (A.23), we have

A(1)
as (r) =

1

c

√
2π

kr
eiπ/4eikr(−ik)

1

2

∫
d2r′{J(r′)(n̂ · r′)− r′(n̂ · J(r′)}), (A.40)

which can be written as

A(1)
as (r) =

1

c

√
2π

kr
eiπ/4eikr(−ik)n̂×

∫
d2r′

1

2
[J(r′)× r′]. (A.41)

The magnetic dipole moment m is defined as,

m =
1

2c

∫
d2r′{r′ × J(r′)}. (A.42)

Substituting Eq. (A.42) in Eq. (A.41), we get

A(1)
as (r) =

√
2π

kr
eiπ/4eikr(ik)[n̂×m]. (A.43)

The electromagnetic fields radiated by a magnetic dipole are then evaluated following the same

procedure as of the electric dipole or electric quadrupole. We obtain

B(r) =− (
√

2πeiπ/4)
k3/2√
r
eikr[n̂× (n̂×m)], (A.44)

E(r) =− (
√

2πeiπ/4)
k3/2√
r
eikr[n̂×m]. (A.45)
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[13] Sof́ıa Pérez-Villar, Juan Rubio, and Jose Luis Oteo. Study of color and structural changes in

silver painted medieval glasses. Journal of Non-Crystalline Solids, 354(17):1833 – 1844, 2008.

[14] Philippe Sciau. Nanoparticles in ancient materials: The metallic lustre decorations of me-

dieval ceramics. In Abbass A. Hashim, editor, The Delivery of Nanoparticles, chapter 25.

IntechOpen, Rijeka, 2012.

[15] Philip Ball. Renaissance potters were nanotechnologists. Nature, 2003.

[16] Sinjeung Park, Jae W. Hahn, and Jae Yong Lee. Doubly resonant metallic nanostructure for

high conversion efficiency of second harmonic generation. Opt. Express, 20(5):4856–4870, Feb

2012.
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Photonic. Comprehensive Perl Archive Network (CPAN), 2016. Perl package for calculations

on metamaterials and photonic structures.

[65] Guillermo P. Ortiz, Brenda E. Mart́ınez-Zérega, Bernardo S. Mendoza, and W. Luis Mochán.
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[97] Francesco Monticone and Andrea Alù. Metamaterial, plasmonic and nanophotonic devices.

Reports on Progress in Physics, 80(3):036401, feb 2017.

[98] Pieter Dumon, Gino Priem, Luis Romeu Nunes, Wim Bogaerts, Dries Van Thourhout, Peter

Bienstman, Tak Keung Liang, Masahiro Tsuchiya, Patrick Jaenen, Stephan Beckx, Johan

Wouters, and Roel Baets. Linear and nonlinear nanophotonic devices based on silicon-on-

insulator wire waveguides. Japanese Journal of Applied Physics, 45(8B):6589–6602, aug 2006.



BIBLIOGRAPHY 113

[99] Tyler W. Hughes, Momchil Minkov, Ian A. D. Williamson, and Shanhui Fan. Adjoint method

and inverse design for nonlinear nanophotonic devices. ACS Photonics, 5(12):4781–4787, Dec

2018.

[100] Aleksandr A. Pikalov, Dien Ngo, Han Ju Lee, T. Randall Lee, and Steven Baldelli. Sum

frequency generation imaging microscopy of self-assembled monolayers on metal surfaces:

Factor analysis of mixed monolayers. Analytical Chemistry, 91(2):1269–1276, 2019.

[101] L. Moreaux, O. Sandre, and J. Mertz. Membrane imaging by second-harmonic generation

microscopy. J. Opt. Soc. Am. B, 17(10):1685–1694, Oct 2000.

[102] Y. R. Shen. Nonlinear optical studies of surfaces. Applied Physics A Solids and Surfaces,

59(5):541–543, 1994.

[103] W. J. Kozlovsky, C. D. Nabors, and R. L. Byer. Efficient second harmonic generation of

a diode-laser-pumped cw nd:yag laser using monolithic mgo:linbo/sub 3/ external resonant

cavities. IEEE Journal of Quantum Electronics, 24(6):913–919, June 1988.

[104] Na Ji, Kai Zhang, Haw Yang, and Yuen-Ron Shen. Three-dimensional chiral imaging by sum-

frequency generation. Journal of the American Chemical Society, 128(11):3482–3483, 2006.

PMID: 16536497.

[105] R. Scheps and J. F. Myers. Dual-wavelength coupled-cavity ti:sapphire laser with active

mirror for enhanced red operation and efficient intracavity sum frequency generation at 459

nm. IEEE Journal of Quantum Electronics, 30(4):1050–1057, April 1994.

[106] S. Blit, E. G. Weaver, T. A. Rabson, and F. K. Tittel. Continuous wave uv radiation tunable

from 285 nm to 400 nm by harmonic and sum frequency generation. Appl. Opt., 17(5):721–723,

Mar 1978.
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[169] W. Luis Mochán and Rubén G. Barrera. Electromagnetic response of systems with spatial

fluctuations. i. general formalism. Phys. Rev. B, 32:4984–4988, Oct 1985.


	Portada 


	Resumen 
	Contents
	Introduction 
	1. Nonlinear Optics 


	2. Theoretical Models 


	3. SH Response of a Nanowire: Analytical Calculation 


	4. Three Wave Mixing in a Nanowire 


	5. Numerical Methods 


	6. Conclusions 


	Appendix  


	Bibliography







