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Resumen

El presente documento es una recopilación del trabajo realizado por el
autor en su programa doctoral.

Dentro de la teoría de los Espacios Discretamente Generados se resuel-
ven los Problemas 3.19 y 3.3 en [41]. Problema 3.19: ¿El espacio {ξ} ∪ω
se encaja en un producto caja de rectas reales, para algún ξ ∈ βω \ ω?
Respondemos negativamente. Problema 3.3: ¿Es cualquier producto caja
de espacios primero numberables discretamente generado? Respondemos
positivamente suponiendo que los factores son regulares.

Posteriormente, probamos un resultado sobre uno de los objetos impor-
tantes de la Teoría de Conjuntos, los llamados Ψ(A) definidos a través de
una colecciónA de subconjuntos de números naturales. Se demuestra que
existen c espaciosΨ(A) no homeomorfos por pares, pero cuyas colecciones
subyascentes sí son homeomorfas por pares vistas como subespacios del
conjunto de Cantor.

Finalmente, el trabajo principal de este documento trata sobre el pro-
blema de la normalidad en los Productos Caja numerables: no se sabe si
el producto caja numerable de la sucesión convergente es normal en ZFC
o no normal en algún modelo de ZFC. Realizamos un estudio amplio de
este tema abriendo una nueva dirección de investigación que involucra la
propiedad topológica de normalidad monótona.

Palabras Clave: Normalidad monótona, Principio ∆, Ψ-espacios, Dis-
cretamente Generado, Paracompacidad





Abstract

This document collect the work done by the author in his PhD program.

In the theory of Discretely Generated Spaces are solved the Problems
3.19 and 3.3 in [41]. Problem 3.19: Does the space {ξ} ∪ ω embed into a
box product of real lines when ξ ∈ βω\ω? We answer negatively. Problem
3.3: Is any box product of first countable spaces discretely generated? We
answer positively by assuming the factors are regular.

Later, we proved a result about one of the important objects in Set
Theory, the so called Ψ(A)-spaces defined from a collection A of sub-
sets of natural numbers. It is proved that there are c-many Ψ(A)-spaces
pairwise non-homeomorphic whose underlying collections are pairwise
homeomorphic view as subspaces of the Cantor set.

Finally, the main work in this document is about the problem of normal-
ity in countable Box Products: it is unknown if the countable box product
of the convergent sequence is normal in ZFC or if it is non-normal in some
model of ZFC. We give a wide study of the topic and open a new line of
research involving the topological property of monotone normality.





Agradecimientos

¡La última y nos vamos! Sin lugar a dudas ésta es la parte más placentera
para un tesista, escribir este capítulo significa terminar completamente
de realizar correcciones o pulir últimos detalles. Y es una oportunidad
para agradecer a aquellas personas que hicieron posible un trabajo de tal
magnitud.

A mis seres más queridos María Luisa, José Alonzo, Ernesto, Eréndira,
Susana, Ernesto Alonso, Dafne Nicole y Nerón les agradezco su infinito
amor de cardinalidad no medible.

A mis amigos del basketball y compañeros del CCM, que son los
mismos, agradezco todas esas aventuras juntos: los viajes, los deportes, la
música, las noches de chocolate, y por su puesto las otras noches. Gracias
Karley, Alejandra, Sofía, Sonia, Susan, Yesenia, César, Cenobio, Toño,
Ariet, Tero, Israel, Víctor, Manuel y David. Puedo presumir que tengo a
los amigos más unidos que alguien pueda tener.

Agradezco a Ana Cristina por ser un ejemplo a seguir y haberme en-
señado a ver las matemáticas, y en general todas las cosas, desde otro
punto de vista. Agradezco a Omar, Alemán, Nadia, Tero y Jonathan por
tener el valor de la paciencia y acompañarme en uno de los momentos más
complicados de mi vida.

Agradezco enormemente al Dr. Paul Gartside por dedicarme parte de su
tiempo y energías en mi estancia en la Universidad de Pittsburgh. Aprecio
su disposición por emprender un proyecto conmigo y me hace realmente
feliz poder contar con su opinión, que siempre es sincera.

Agradezco a Israel por haber sido mi compañero organizador en las



xii Agradecimientos

LeccionesMatemáticas y editor de lasMemoriasMatemáticas en su primer
lanzamiento. Agradezco al Dr. Reynaldo Rojas, al Dr. Rodrigo Hernández
y al Dr. Arturo Martínez por iniciar proyectos conmigo y enseñarme
algunos de sus "truquillos".

Indudablemente mis mayores agradecimientos son para mi director de
tesis el Dr. Fernando Hernández, amigo y mentor, que no con otra cosa
sino con el ejemplo, me ha enseñado a descubrir continuamente una mejor
versión de mí mismo. Agradezco su insistencia y perseverancia. Y le
agradezco por adelantado, por que se que no me dejará en paz.

Quiero agradecer con especial énfasis a mis revisores de tesis por sus
valiosas correcciones y comentarios, aprendí mucho de ellas. Gracias Dr.
Vladimir Tkachuk, Dr. Michael Hrušák, Dr. Ariet Ramos y Dr. Reynaldo
Rojas. Aprecio también de manera desmedida el apoyo de la Lic. Erandi
Trigueros, la Mtra. Miriam Acosta y el Dr. Michael Hrušák por las
correcciones que realizaron a la introducción de este documento.

Finalmente, agradezco a todo el personal administrativo, a los encar-
gados del centro de cómputo y directores del CCM y el IFM por brindar
un excelente trabajo. Asimismo, agradezco el apoyo financiero por parte
de los organismos que han sustentado mi carrera. Gracias al CONACyT, a
la UMSNH, a la UNAM, al PCCM, a la Universidad de Pittsburgh y a la
National Science Foundation.

¡Gracias a todos, yo creo que nos quedó muy bonito este trabajo!



Acknowledgements

¡La última y nos vamos! Undoubtedly this is the most enjoyable part for
a thesis student, writing this chapter means completely finishing making
corrections or polishing last details. And it is an opportunity to thank those
people who made work of such magnitude possible.

To my dearest ones, María Luisa, José Alonzo, Ernesto, Eréndira,
Susana, Ernesto Alonso, Dafne Nicole and Nerón, I thank you for your
infinite love of non-measurable cardinality.

To my basketball friends and colleagues from the CCM, who are the
same, I thank all those adventures together: travel, sports, music, chocolate
nights, and of course the other nights. Thanks Karley, Alejandra, Sofía,
Sonia, Susan, Yesenia, César, Cenobio, Toño, Ariet, Tero, Israel, Víctor,
Manuel and David. I can boast that I have the closest friends anyone can
have.

I thank Ana Cristina for being an example to follow and for teaching me
to see mathematics, and in general all things, from another point of view.
I thank Omar, Alemán, Nadia, Tero and Jonathan for having the courage
to be patient and to accompany me in one of the most difficult moments of
my life.

I am extremely grateful to Dr. Paul Gartside for dedicating some of his
time and energy during and after my stay at the University of Pittsburgh. I
appreciate his willingness to undertake a project with me and I am really
happy to be able to count on his opinion, which is always sincere.

I thank Israel for having beenmy felloworganizer inLeccionesMatemáti-
cas and editor of Memorias Matemáticas on its first release. I thank Dr.



xiv Acknowledgements

Reynaldo Rojas, Dr. Rodrigo Hernández and Dr. Arturo Martínez for
starting projects with me and showing me some of their "tricks".

Undoubtedly, my greatest thanks are to my thesis director Dr. Fernando
Hernández, friend and mentor, who has taught me with nothing else but by
example, to constantly discover a better version of myself. I appreciate his
insistence and perseverance. And I thank him in advance, because I know
that he will not leave me alone.

I want to especially thank my thesis reviewers for their valuable cor-
rections and comments, I learned a lot from them. Thanks Dr. Vladimir
Tkachuk, Dr. Michael Hrušák, Dr. Ariet Ramos and Dr. Reynaldo Rojas.
I also greatly appreciate the support of Erandi Trigueros, Miriam Acosta
and Dr. Michael Hrušák for the corrections they made to the introduction
of this document.

Finally, I thank all the administrative staff, those in charge of the com-
puter center and directors of the CCM and the IFM for providing an ex-
cellent job. Also, I appreciate the financial support from the organizations
that have sustained my career. Thanks to CONACyT, UMSNH, UNAM,
PCCM, the University of Pittsburgh and the National Science Foundation.

Thank you all, I think the work we have done looks very nice!



Introduction

Topology is one of the fields that compound Mathematics. It studies
properties of spaces that are invariant under continuous deformations. Al-
though topology grew naturally out of calculus and analysis, first topo-
logical works per se date back to the early 1900’s, making Topology a
relatively new branch of Mathematics. The following are some subfields
of Topology: General Topology (or Point-Set Topology), Combinatorial
Topology, Algebraic Topology and Differential Topology. General Topolo-
gy commonly considers local properties of spaces, and it is closely related
to Analysis. The initial concepts of General Topology are the concepts of a
topological space and continuous mapping, introduced by F. Hausdorff in
1914. Although, other related concepts, such as limit point and notions of
infinity, were introduced by George Cantor (-the father of Set Theory-) in
the 1870’s. Set theory is a branch of mathematical logic that studies sets,
which informally are collections of objects. Although any type of object
can be collected into a set, set theory is applied most often to objects that
are relevant to mathematics. The language of set theory can be used to
define nearly all mathematical objects. The reader will find that the content
in this document moves from General Topology to Set theory and vice
versa; but this thesis falls mostly into the scope of General Topology.

With these concepts in hand, Hausdorff proceeded to develop the ele-
mentary theory of topological spaces (see [17]) in a form that has remained
almost unchanged up to the present. He presented the concepts of open
and closed sets, interior and boundary points, accumulation points, relative
topologies, denseness and nowhere-denseness, and connectedness just as
we understand them today.

The fast growth of General Topology led to the challenge of defining



xvi Introduction

objects in optimal ways. Sometimes it would seem easy to define an
object from intuition, but intuitive definitions are not satisfactory all the
time. For example, in terms of topological spaces, it is more intuitive to
define the box product topology rather than the Tychonoff product topology
(see Chapter 1). However, the Tychonoff product topology is preferred by
topologists given that it preserves important topological properties such as
compactness and connectedness, and this is not the case of the infinite box
product topology (see Theorem 16). Much of this is due to the fact that the
Tychonoff product is the correct definition in the sense of category theory
as a limit of a discrete diagram. Given a family of topological spaces
{Xi : i ∈ I}, the box product �i Xi, is the space with underlying set

∏
i Xi

and basis all sets of the form
∏

i Ui, where each Ui is open in Xi.

Another challenge of a growing field is the process of formulation
and solution of problems. Easy problems usually carry quick solutions.
However, not every simple formulation of a question has a trivial answer.
One of the easiest formulations withinMathematics is: given an object with
property P, do “products" of objects with property P have property P?
That is, if property P is preserved under (finite or infinite) products. In this
case, “products" means Cartesian-like products inherited with a particular
structure. Thus, the object could be a topological space, a graph, a group,
a manifold, etc.; and the property P could be normality, conectedness,
commutativity, dimension, respectively.

Large portion of this thesis is devoted to the study of preservation of
normality by box-products. It is said that a topological space is normal
if every pair of disjoint closed subsets can be separated by open sets.
Even though the notion of normality is on surface quite simple, problems
involving normality are usually quite complex. It is known that compact
Hausdorff spaces and metrizable spaces are normal. Hence, Tychonoff
products of compact Hausdorff spaces and countable Tychonoff products
of metrizable spaces are normal. Also, it is known that there are non-
normal uncountable Tychonoff products of metrizable spaces (e.g. ωω1 is
not normal). On the other hand, a result Lawrence, Theorem 63, shows
that uncountable box products of infinite compact metrizable spaces are
not normal. Nonetheless, it is unknown if every countable box product of
compact metrizable spaces is normal. This is the box products’ problem
and is treated in Chapter 4.
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Interest in box products initially came from the fact that they are a
natural construction and a useful source of counterexamples. Perhaps the
most important application of box products is the famous first example in
ZFC of a Dowker space constructed by M. E. Rudin (see [39]). Such space
is a subspace of a countable box product. As the work on box products
proceeded, a third source of interest appeared: questions about box products
with countably many factors are closely related to the combinatorics of one
of the most basic and natural set theoretic objects: The Baire space ωω.

The first version of the problem of box products was attributed to Tietze
in the 1940’s: Is�Rω normal? A second versionwas Stone’s question from
the 1950’s: Is�n∈ωXn normal if each Xn is separable metric? The fact that
these questions were initially asked for a box product with countably many
factors is probably attributable to the reasonableness of a conjecture of
“yes”, but half a century later it turned out that this restrictionwas necessary.
The following is a brief summary of results concerning countable box
products, but more details can be found in [38], [10], [24], [26], [33]:

• If even one of the factors is too far away from such variations of com-
pactness as local compactness or σ-compactness, then the countable
box product is not normal.

• Many countable box products, in which the factors are too big (in the
sense of cardinality, weight or character), are not normal.

• In fact, it’s consistent that even one factor which is too big gives a
non-normal countable box product.

• On the other hand, if all factors are compact first countable, then it’s
consistent that the countable box product is not only normal but also
paracompact.

• As the set-theoretic hypotheses are weaken, the requires properties
(e.g., compact metrizable instead of compact first countable) of the
factors are strengthened.

In Chapter 1 we introduced basic definitions, state basic facts on Topo-
logy and define the box topology. Besides the box products’ problem, in
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Chapter 2 we study the theory of discretely generated spaces introduced by
Dow, Tkachuk, Tkachenko and Wilson [12], and we solve two problems
from [41] related to box products. Problem 3.19: Does the space {ξ} ∪ ω
embed into a box product of real lines when ξ ∈ βω \ ω? We answer it
in the negative. Problem 3.3: Is any box product of first countable spaces
discretely generated? We answer this positively assuming the factors are
regular.

Another particular object in General Topology is the topological space
Ψ(A) associated to an almost disjoint family A on ω (a family of subsets
of ω in which every pair of elements have finite intersection). These
spaces are useful objects since they contain combinatorial properties and
are commonly used as counterexamples. Given an almost disjoint family
A, the spaceΨ(A) has as underlying setA∪ω and the topology is defined
as: ω is a discrete set, and neighborhoods around a point A ∈ A are of the
form {A}∪(A\F), where F ⊆ ω is finite. In Chapter 3 we study the spaces
Ψ(A) and prove that there can be c-many distinct pairwise homeomorphic
almost disjoint familiesA onω (viewed as subsets of the Cantor set) whose
associated spaces Ψ(A) are pairwise non-homeomorphic.

Finally, in Chapter 4 we study the ‘nabla products’, which quotients
of box products, and we focus on the work of Roitman in [31], [32], [33]
and [34]. Nabla products are important in this topic due to a result of
Kunen [22]: if {Xn : n ∈ ω} be a family of compact spaces, �nXn is
paracompact if and only if ∇nXn is paracompact. Althouth in ZFC it is
unknown whether �(ω + 1)ω (or ∇(ω + 1)ω) is normal or not, it is known
that it is consistently paracompact (e.g. assuming CH, b = d, or d = c),
hence normal. Roitman extracted a beautiful combinatorial principle called
∆, which is implied by the set-theoretic axioms mentioned before. The
principle ∆ implies that ∇(ω + 1)ω is paracompact. We develop a new
direction on nabla spaces by showing that ∆ holds if and only if the space
∇(ω+1)ω is monotonically normal (see Theorem 79). Monotone normality
and paracompactness are not related. We list a brief summary of results
obtained in this line of research:

• We uncover ∆ in terms of halvability, (see Lemma 78).

• Example 80 points out a gap in Roitman’s argument ‘∇∗ paracompact
implies ∇(ω + 1)ω paracompact’.
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• In the class of nabla products of metrizable factors, monotone nor-
mality implies paracompactness (see Theorem 82). We do this by
showing that stationary subsets of regular uncountable cardinals can
not be embedded as closed copies into any nabla product in this class,

• Proposition 86 and Lemma 87 show that some nabla products of
non-metrizable factors accept copies of stationary subsets of regular
uncountable cardinals.

• We define ∆-like principles for nabla products of metrizable, ordi-
nal and one-point compactification factors and state corresponding
versions of Theorem 79 for these classes.

• We give a counterexample of a result of Roitman, Theorem 105.2.
This result is derived from Theorem 105.3. We mention a gap in the
proof of Theorem 105.3.

• Corollary 107 shows that the countable nabla product of the one-point
compactification of a discrete set of size ω1 and the countable nabla
product ofω1+1 are consistently non-hereditarily normal, answering
a Roitman’s question.

• We show that an instance of ∆ is true in ZFC and it is related to
the notion of tangle-free filters introduced by Gartside (see Proposi-
tion 116).

• We state a ∆-like principle for basic paracompactness of a subspace
of ∇(ω + 1)ω (see Proposition 119).

• Variations of monotone normality such as halvability and utterly
ultra normality are related in countable nabla products of metrizable,
ordinal and one-point compactification factors (see Corollary 126).

• Section 4.9 lists some open questions for the author’s interest.

The research in previous results was done in collaboration with Profes-
sor Paul Gartside.





Chapter 1
Infinitary Combinatorics and

Topology

In this chapter we introduce fundamental tools in Topology and Set Theory
such as basic notions, some notation and well known results. Most of the
results stated in this chapter do not include a proof, instead we provide
references so the reader can verify any stated result. Most of our notation
is standard in the area and we will follow Kunen [23] and Engelking [13].
The set of natural numbers is denoted by ω and we use the symbol R for
the real line. The binary Cantor set is denoted by 2ω and the irrational
numbers by ωω. Denote by [ω]ω the set of infinite subsets of ω.

1.1 Topology

Most of the results presented in this section can be found in [13] and [24].
Definition 1. A topological space is a pair (X, τ), where X is a set and τ is
a collection of subsets of X (called topology for X) satisfying the following
properties:
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• ∅, X ∈ τ,

• ifU ⊆ τ, then
⋃
U ∈ τ, and

• ifU ⊆ τ is finite, then
⋂
U ∈ τ.

Elements of τ are called open sets and the complement of an open set
is a closed set. A subset A of a topological space X is itself a topological
space, where a set U ⊆ A is open if and only if there is an open set V of X
such that U = A ∩ V .

The examples that we are going to use in this document are mostly
subsets of the real numbers R: the topology of R is the generated by the
intervals, 2ω and ωω have the product topology, that coincides with the
topology generated by sets of the form 〈t〉 = { f : t ⊆ f } (the cone of
t), where t is a finite partial function. These topological spaces are also
examples of metric spaces.
Definition 2. A metric space is an ordered pair (X, ρ), where X is a set and
ρ : X2 → [0,∞) is a function with the following properties:

• (reflexivity) for all x, y ∈ X, ρ(x, y) = 0 if and only if x = y,

• (symmetry) for all x, y ∈ X, ρ(x, y) = ρ(y, x), and

• (triangle inequality) for all x, y, z ∈ X, ρ(x, y) + ρ(y, z) > ρ(x, z).

Given x ∈ X and ε > 0, the set B(x, ε) = {y ∈ X : ρ(x, y) < ε} is
called the ball with center x and radius ε . In a metric space, a set U is
open if for all x ∈ U there is ε > 0 such that B(x, ε) ⊆ U. It follows
that the collection of open sets of a metric space X forms a topology for
X . The euclidean metric in R, defined as ρ(x, y) = |x − y |, generates the
topology of the intervals, and the product topology is generated by the
metric ρ( f , g) = 2−∆( f ,g), where ∆( f , g) = min{k ∈ ω : f (n) , g(n)}, if
f , g and ∆( f , g) = ∞ if f = g. Main concepts we will study are the
different notions of compactness.
Definition 3. A space X is (countably) compact if every (countable) open
cover of X , i.e. a collection of open sets whose union is X , has a finite
subcover.
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There are many weaker versions of compactness, we introduce the ones
relevant for us. Let C be a collection of subsets of a topological space X .
We define the star of x with respect to C as StC(x) = {C ∈ C : x ∈ C}.
We say that C is locally finite if for any point x ∈ X , there is an open set U
containing x such that {C ∈ C : C ∩U , ∅} is finite, and C is point-finite
if for any point x ∈ X , StC(x) is finite. For two collections C and C′ of
subsets of X , we say that C′ refines C if any element in C′ is contained in
some element of C (in this case, we say that C′ is a refinement of C).
Definition 4. A space X is (countably) para[meta]{ortho}compact if every
(countable) open coverU of X has an open refinementV covering X which
is locally finite [point-finite] {for any x ∈ X ,

⋂
StV(x) is open}.

Definition 5. A space X is said to be Lindelöf if every open cover of X has
a countable subcover.

Besides compactness, other interesting topological properties are the
so called Countability Axioms and Separations Axioms Ti. A space X is
first countable if every point has a countable local basis, and X is second
countable if it has a countable base. A space X is T0 if for any x, y ∈ X
there is an open set U such that x ∈ U and y < U or vice versa; X is T1
if every singleton is closed in X; X is T2 (Hausdorff ) if for any x, y ∈ X
there there are open sets U,V such that x ∈ U, y ∈ V and U ∩ V = ∅;
X is T3 (regular) if for any x ∈ X and a closed set F ⊆ X with x < F
there are open sets U,V such that x ∈ U, F ⊆ V and U ∩ V = ∅; X is T3 1

2
(Tychonoff or completely regular) if it is T1 and for x ∈ X and closed set
F ⊆ X with x < F, they are separated by a continuous function, that is,
there is f : X → [0, 1] continuous such that f (x) = 0 and f [F] ⊆ {1};
X is T4 (normal) if it is T1 and for any disjoint closed sets F,G ⊆ X there
are open sets U,V such that F ⊆ U,G ⊆ V and U ∩ V = ∅; X is T5 if it is
hereditarily normal; X is T6 (perfectly normal) if it is T4 and every closed
set is a Gδ-set (see the Borel Hierarchy in the next section).

(Countable) compactness implies (countable) paracompactness implies
(countable) metacompactness implies (countable) orthocompactness. Any
of these properties imply its ‘countable’ version. Also, every property Tj
implies Ti, for i < j. Moreover (see [13]), a paracompact Hausdorff space
is normal; a Lindelöf space is paracompact; (Nagata-Smirnov Theorem)
a space is metrizable if and only if it is regular and has a σ-locally finite
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base.

1.2 Descriptive Topology

We will state one of the most important results in the theory of complete
metric spaces, the Baire Category Theorem. For this, we introduce some
important notions.

A topological space isPolish if it is separable and completelymetrizable.
A space is separable if it has a countable dense subset (a set intersecting
every non-empty open set). A space is completely metrizable if it admits a
metric inducing its topology such that every Cauchy sequence has a limit
point in the space.
Definition 6. Let X be a topological space. A subset N ⊆ X is nowhere
dense if for every non-empty open set U of X , there is a non-empty open
set V in X such that V ⊆ U and V ∩ N = ∅. A subset M ⊆ X is meager
if there is a countable collection {Nn : n ∈ ω} of nowhere dense sets such
that M ⊆

⋃
n∈ω Nn.

Theorem 7 (Baire Category Theorem). If X is a complete metric space or
a compact topological space, then X is not meager.

We will be interested in studying the class of definable sets of the reals.
In particular, we are interested in the structure of the Borel sets.
Definition 8. Given a topological space X , the class of the Borel sets of X
is the minimal σ-algebra (a collection of sets closed under complements
and countable unions) containing the open sets of X . We will denote this
class by Borel(X).

The class Borel(X) can be analyzed in a transfinite hierarchy of length
ω1, this transfinite hierarchy is called the Borel Hierarchy: In the lowest
level we have the open sets and the closed sets, then we have the Gδ-sets
(countable intersections of open sets) and the Fσ-sets (countable unions
of closed sets), then the Gδσ-sets (countable unions of Gδ-sets) and the
Fσδ-sets (countable intersection of Fσ-sets), and so on. In general, these
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classes are denoted by
∑0
α,

∏0
α, where

∑0
1 is the class of open sets,

∏0
1 is the

class of closed sets, and if α is such that 1 < α < ω1,
∑0
α is the collection

of countable unions of elements in
⋃
β<α

∏0
β and

∏0
α is the collection

of complements of
∑0
α. Therefore,

∑0
2 = {Fσ-sets},

∏0
2 = {Gδ-sets},∑0

3 = {Gδσ-sets} and
∏0

3 = {Fσδ-sets}. It is easy to see that Borel(X) =⋃
α<ω1

∑0
α =

⋃
α<ω1

∏0
α. Also, it is possible to show that these hierarchy

classes are different from each other (see [20]).

Another important combinatorial tool is the concept of a tree. There
are different versions for the definition of a tree. We will use the following.
Definition 9. A tree on a set X is a subset T ⊆ X<ω closed under initial
segments (i.e. if t ∈ T and s ⊆ t then s ∈ T).

The elements of a tree are called nodes. The stem of a treeT , denoted by
stem(T) is the ⊆-maximal node that is compatible with every node of T . A
node t ∈ T is a splitting node if there are different i, j such that both t_i and
t_ j are elements of T . A pruned tree is a tree without ⊆-minimal nodes.
A branch of T is an element x ∈ Xω such that, for every n ∈ ω, x � n ∈ T .
We will denote the set of all branches of T by [T]. For any set X , there
is a natural metric on Xω: if f , g ∈ Xω with f , g, then d( f , g) = 1

2∆( f ,g) ,
where ∆( f , g) = min{n ∈ ω : f (n) , g(n)}. The following proposition is
straightforward from the definition:

Proposition 10. For every pruned tree T on X , [T] is a non empty closed
set in Xω. Moreover, ifC ⊆ Xω is a non-empty closed set, there is a pruned
tree T such that C = [T].

Definition 11. A collection F of subsets of a set S is called (ultra) filter if:

• ∅ < F ,

• A ∈ F and A ⊆ B implies B ∈ F ,

• A, B ∈ F implies A ∩ B ∈ F , and

• (A ⊆ S implies A ∈ F or S \ A ∈ F ).
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1.3 The Cohen Model, b and d

In 1963, Paul Cohen (see [6] and [7]) proved the independence of the
continuum hypothesis CH and the axiom of choice AC. He did that using a
technique called forcing, which consist of adding a generic filter to a model
of set theory. The reader can consult [23] and [16] for an introduction to
this topic.

A forcing (which is also known as a separative partial order) is a partial
order (P, 6) such that for every p ∈ P there are r, s 6 p such that there is
no q ∈ P such that q is smaller than both r and s. The Cohen forcing is the
set of finite functions from ω to ω, denoted by ω<ω, ordered by inclusion,
‘larger functions are stronger’. Any countable forcing is equivalent to
Cohen’s forcing. The Cohen model is obtained by forcing with the finite
support iteration of length ω2 of the Cohen forcing.
Definition 12. Let M, N be models of set theory such that M ⊆ N . Then
x ∈ N ∩ ωω is a Cohen real over M if x is not in any meager set coded in
M .

Denote by c the cardinality |R|. Recall the bounding number b and
dominating number d satisfying b 6 d 6 c: For f , g ∈ ωω, define f 6∗ g
iff ∃n ∈ ω ∀m > n ( f (m) 6 g(m)). A family F ⊆ ωω is 6∗-bounded
if ∃g ∈ ωω ∀ f ∈ F ( f 6∗ g). A family F ⊆ ωω is 6∗-dominant if
∀g ∈ ωω ∃ f ∈ F (g 6∗ f ).

• b = min{|F | : F ⊆ ωω is not 6∗-bounded}

• d = min{|F | : F ⊆ ωω is 6∗-dominant}

Proposition 13. Let M be a model of set theory and N be the model of set
theory obtained by forcing with the Cohen forcing over M . If x ∈ N ∩ ωω
is a Cohen real over M , then x is 6∗-unbounded on M ∩ ωω.

If we iterated ω2 times the Cohen forcing over a model of ZFC in which
CH holds, we will have the following in the forcing extension: b = ω1,
d = c = ω2.



1.4 The Box Topology 7

1.4 The Box Topology

In Chapter 2 and Chapter 4 we will be studying box products. In the
following, we will assume that any box product consist of infinite factors.
We state some facts about this class of spaces.
Definition 14. Let {Xi : i ∈ I} be a family of topological spaces. A box
is a set

∏
i Ui, where each Ui is open in Xi. The box product, �i Xi, is

the space with underlying set
∏

i Xi and basis all boxes. For every j ∈ I,
denote by πi : �i Xi → X j the canonical projection defined as π j(x) = x( j),
x ∈ �i Xi.
Proposition 15. Suppose {Xi : i ∈ I} is a family of topological spaces.

• For every j ∈ I, π j is continuous and open.

•
∏

i Fi is closed (open) in �i Xi if and only if for every j ∈ I, Fj is
closed (open) in X j .

• �i Xi is Hausdorff (regular, completely regular) if and only if for every
j ∈ I, X j is Hausdorff (respectively, regular, completely regular)

Theorem 16. Infinite Box products are not any of the following: (i) locally
compact, (ii) separable, (iii) connected or locally connected, (iv) first
countable, (v) perfect (closed subspaces are Gδ).
Definition 17. A space X is a P-space if every Gδ-set is open.
Theorem 18 (Katětov). If X × Y is hereditarily normal, then either X is a
P-space or Y is perfect.
Theorem 19. If a box product �i Xi is hereditary normal, then it is a
P-space.

Proof. Fix j ∈ I and set �′ = �i, j Xi. Then associativity of box products
allow �i Xi = X j ×�′. According to Theorem 16 (v), �′ has a closed set
which is not Gδ. Now, apply Katětov’s Theorem and conclude that X j is
a P-space, for every j ∈ I. It is clear that box products of P-spaces are
P-spaces. �

Corollary 20. If Xi is compact or first countable, for i ∈ I where I is
infinite, then�i Xi has a non-normal subspace.





Chapter 2
Discretely Generated Spaces

2.1 Introduction

In this chapter we study the class of the discretely generated spaces. The
results are contained in [3]. We say that D is a discrete subset of a space
X if for every d ∈ D there is a set U open in X such that U ∩ D = {d}.
A topological space X is discretely generated if for any A ⊆ X and x ∈ A
there exists a discrete set D ⊆ A such that x ∈ D. Many results concerning
discretely generated spaces appear in [12] and [41]. We solved the Problems
3.19 and 3.3 in [41]. Problem 3.19: Does the space {ξ} ∪ ω embed into
a box product of real lines when ξ ∈ βω \ ω? Corollary 29 answers
negatively. Problem 3.3: Is any box product of first countable spaces
discretely generated? Theorem 32 answers positively by assuming the
factors are regular.

For this chapter, denote byV the countable regular maximal space due
to Eric van Douwen [11]. It was shown in [12] thatV is not discretely gen-
erated. Since �Rκ is discretely generated and this property is hereditary,
there is no embedding ofV to�Rκ. The authors of [41] asked whether if
there were more countable regular spaces (for example, {ξ} ∪ ω which is,



10 Discretely Generated Spaces

in fact, discretely generated) that do not embed into a box product of real
lines, this is the motivation of Problem 3.19 in [41]. Compare with their
Example 2.10, part b).

Tkachuk andWilson showed in [41] that if Xt is a monotonically normal
space (see Chapter 4 for this concept), then the box product �t∈T Xt is
discretely generated. Hence, the spaces�Rκ,�(ω + 1)κ and�({ξ} ∪ω)κ
are discretely generated, for any cardinal κ. There is no relation between
first countability and monotone normality. For example, {ξ} ∪ ω is a
monotonically normal non-first countable space. On the other hand, if A
is an AD family whose Ψ(A) is not normal, then Ψ(A) is a regular first
countable non-monotonically normal space. However, the space �Ψ(A)κ
is discretely generated, for any κ, by our result.

We prove Corollary 29 in Section 2.3 and Theorem 32 in Section 2.4.
In Section 2.2 we state some notations and useful tools.

2.2 Notation and Basic Facts

We use standard terminology and follow Engelking [13]. All spaces we
consider are asummed to be Hausdorff. Let X be a set, A ⊆ X κ, κ a
cardinal, S ⊆ κ and a, b ∈ X κ. We denote the domain of a ∈ X κ with
respect to b by domb(a) = {α ∈ κ : a(α) , b(α)}. The restriction of a to
S is the element a � S ∈ XS defined as (a � S)(s) = a(s), as well as AS,b =

{a ∈ A : domb(a) = S} and A � S = {a � S ∈ XS : a ∈ A}. For every
x ∈ �t∈T Xt and A ⊆ �t∈T Xt , define A∞,x = {a ∈ A : |domx(a)| = ω} and
A<∞,x = {a ∈ A : |domx(a)| < ω} =

⋃
F∈[T]<ω AF,x.

We will focus mainly on countable box products. We denote by cω the
constant ω function in �(ω + 1)ω. When we talk about the domain in
�(ω + 1)ω with respect to cω, we use dom(a) instead of domcω(a) and AS
instead of AS,cω .

Let βω denote the Stone-Čech compactification of ω. If ξ ∈ βω \ ω is
an ultrafilter on ω, then {ξ} ∪ ω inherits the subspace topology from βω.
Explicitly, every element in ω is isolated and neighborhoods around ξ are
{ξ} ∪U, where U ∈ ξ.
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Lemma 21. Suppose that Xn is first countable, n ∈ ω, x ∈ �nXn and
A ⊆ �nXn is such that |A∞,x | < b. Then x < A∞,x.

Proof. Since x has a local basis {�nBn
k : k ∈ ω} indexed by ωω, for every

a ∈ A∞,x there is fa ∈ ωω such that a < �nBn
f (n). Hence, there exists

h ∈ ωω that 6∗-dominates every fa. Now is immediate that �nBn
h(n) ∩

A∞,x = ∅. �

Denote the neighborhoods �nBn
f (n) of x by N(x, f ). Lemma 21 will

help us to isolate a set of those elements with infinity domain as long as the
size of the set is less than b. We can also isolate sets consisting of elements
with finite domain under certain conditions which we will establish in the
next lemma.

Lemma 22. Suppose that Xn is first countable, n ∈ ω, x ∈ �nXn and
A ⊆ �nXn is such that |AF,x | < ω, for every F ∈ [ω]<ω. Then x < A<∞,x.

Proof. Recall that A<∞,x =
⋃

F∈[ω]<ω AF,x. For every n ∈ ω, {F ∈ [ω]<ω :
F ⊆ n} is finite and so is

⋃
F⊆n AF . Hence, for every n ∈ ω choose h(n) ∈ ω

so Bn
h(n) ∩ πn[

⋃
F⊆n AF] = ∅, where πk : �nXn → Xk is the canonical

projection. Then h ∈ ωω satisfies�nBn
h(n) ∩ (

⋃
F∈[ω]<ω AF,x) = ∅. �

Lemma 21 and Lemma 22 try to “ward off” from x ∈ �nXn certain
type of elements in a set of small size. However, the role of the domain of
the elements is important even for small sets. The next example provides
a non-trivial countable set whose elements have finite domain and it has a
limit point in its closure. We mean “trivial” if a limit point x belongs to
AF,x, for some F ∈ [ω]<ω.
Example 23. There exists a countable set A ⊆ �(ω+ 1)ω of elements with
finite support such that cω < AF , for any F ∈ [ω]<ω, but cω ∈ A.

Proof. For every n ∈ ω, consider the set An = {a ∈ �(ω + 1)ω : a(0) =
n and dom(a) = n}. It is clear that every element in A =

⋃
n∈ω An has

domain equal n, for some n ∈ ω. Moreover, cω < An because a(0) = n, for
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a ∈ An. Now, to see that cω ∈ A consider a function h ∈ ωω. Let k ∈ ω
such that k > h(0). So, there is a ∈ Ak such that ∀i 6 k, a(i) > h(i) and
∀i > k, a(i) = ω. That is, a ∈ N(cω, h). �

Let X be a space. Given A ⊆ X , define A∗ as the set of accumulation
points of A. Observe that A∗ ⊆ A. We say that X has the property P at
(x, A) if there are disjoint sets B,C ⊆ A such that x ∈ B∗∩C∗. Also, X has
the property P+ if for every set A ⊆ X there are disjoint sets B,C ⊆ A such
that A∗ = B∗ = C∗. It is clear that property P+ is stronger than property
P and both of them are topological properties. It is worth it to mention
that the space {ξ} ∪ ω does not have the property P at any (ξ,U), with
U ∈ ξ, otherwise it contradicts ξ being ‘ultra’. This implies that if the
space {ξ} ∪ ω embeds into X via ϕ, then X does not have the property P
at (ϕ(ξ), ϕ[ω]). In the next lemma we will use this properties.

Lemma 24. Any Polish space X has the property P+.

Proof. Let A ⊆ X . Since A is a Polish space, let D ⊆ A be countable dense
in A, so in A. Also, let {Un : n ∈ ω} be a countable base for A. Note that
A = P ∪ C, where P is a perfect set (possibly empty) and C is countable.
Consider N = {n ∈ ω : Un contains an accumulating point} = {kn : n ∈
ω}. For kn ∈ N , there are d0

n, d
1
n ∈ D ∩ (Ukn \ {d

i
j : j < n, i ∈ 2}). Let

Di = {di
n : n ∈ ω} ⊆ A, i ∈ 2.

We claim that A∗ = D∗0 = D∗1: let x ∈ A∗ be an accumulating point and
U any neighborhood at x. Then there is n ∈ ω such that x ∈ Ukn . Hence,
d0

n, d
1
n ∈ U, as claimed. �

Proposition 25. Suppose A ⊆ �(ω + 1)ω and cω ∈ A∗<∞,cω . Then, �(ω +
1)ω has property P at (cω, A).

Proof. For every F ∈ [ω]<ω, AF,x is homemorphic to a subspace of (ω+1)n.
The space (ω+1)n is Polish and has property P+. Hence, there are disjoint
sets BF,CF ⊆ AF,cω so that A∗F,cω = B∗F = C∗F . The sets B =

⋃
F∈[ω]<ω BF

andC =
⋃

F∈[ω]<ω CF are disjoint since for F , F′, we have AF,cω∩AF ′,cω =
∅.
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We claim that cω ∈ B∗ ∩ C∗: let N(cω, h) be a neighborhood of cω,
for some h ∈ ωω. Since we are assuming cω ∈ A∗<∞,cω , there is F ∈
[ω]<ω such that N(cω, h) ∩ AF,cω is infinite, otherwise we would contradict
Lemma 22. The set N(cω, h)∩AF,cω being infinite and (ω+1)F compact and
0-dimensional (N(cω, h) is clopen), N(cω, h) ∩ AF,cω has an accumulating
point x in (ω + 1)F ∩ N(cω, h). Necessarily there are b ∈ BF ⊆ B and
c ∈ CF ⊆ C such that b, c ∈ N(cω, h). �

2.3 No Embeddings from {ξ} ∪ ω into Box Products

We now prove the main result of this section, Theorem 27, which solves
Problem 3.19 in [41]. In what follows, we relate in a “natural way” both
spaces�(ω + 1)ω and�nXn, where Xn is first countable and regular.

Suppose {Xn : n ∈ ω} is a family of regular first countable spaces and
fix p ∈ �nXn. For each n ∈ ω, let {Wn

k : k ∈ ω} be a countable base for
p(n) such that Wn

0 = Xn and Wn
k+1 ⊆ Wn

k , k ∈ ω. For every n ∈ ω, define
fn : Xn → ω + 1 as

fn(x) =
{

k, i f x ∈ Wn
k \Wn

k+1;
ω, i f x = p(n).

Let Φp : �nXn → �(ω + 1)ω defined as Φp(x) = 〈 fn(x(n)) : n ∈ ω〉.
Observe thatΦp is well defined,Φp(p) = cω andΦp defines the equivalence
relation on�nXn as a ∼p b iffΦp(a) = Φp(b). The next observations about
Φ are immediate, but very useful.
Remark 26. Given A ⊆ �nXn, let RA ⊆ A be a maximal set of elements
which are ∼p-representative. Then we have the following properties:

1. p ∈ A if and only if p ∈ RA,

2. p ∈ RA if and only if cω ∈ Φ[RA],

3. the restriction Φp � RA is a one-to-one mapping, and
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4. for every h ∈ ωω, Φp[�n∈ωWn
h(n)] = N(cω, h) and �n∈ωWn

h(n) =

Φ−1
p [N(cω, h)].

Theorem 27. Suppose Xn is regular first countable, n ∈ ω. Then, there is
no bijective continuous function ϕ : {ξ} ∪ ω→ �nXn,

Proof. Suppose there is such ϕ. Let A = ϕ[ω] ⊆ �nXn, p = ϕ(ξ) and
consider the partition induced by p on �nXn. Since A is countable, by
Lemma 21 and Lemma 22, we may assume that for every a ∈ A the
domp(a) is finite. Let RA ⊆ A be a maximal set of ∼p-representative
elements. Observe that ξ ∈ ϕ−1[RA] and by Remark 26, cω ∈ Φp[RA].

Now, apply Proposition 25 to find B0,C0 ⊆ Φp[RA] such that B0∩C0 = ∅

and cω ∈ B0 ∩ C0. Let B = Φ−1
p [B0] ∩ RA and C = Φ−1

p [C0] ∩ RA. It is
clear that B ∩ C = ∅. Remark 26 applies again, so p ∈ B ∩ C.

Hence, property P holds at (p, A). This contradicts the fact that {ξ}∪ω
does not have P at any pair. That is, the subsets U = ϕ−1[B] and V =
ϕ−1[C] of {ξ} ∪ω satisfy U ∩V = ∅ and ξ ∈ U ∩V , which contradicts the
property of being ‘ultra’ in ultrafilter. �

Corollary 28. Suppose κ is a cardinal and Xt is first countable, t ∈ κ.
Then, there is no embedding from {ξ} ∪ ω to�t Xt .

Proof. Suppose again that ϕ is an embedding. Let p = ϕ(ξ) and A = ϕ[ω].
Split A = A<∞ ∪ A∞, where A<∞ = {a ∈ A : |domp(a)| < ω} and
A∞ = {a ∈ A : |domp(a)| > ω}.

For every a ∈ A∞, consider a fixed countable set Sa ⊆ domp(a). Since
A∞ is countable, so is S =

⋃
a∈A∞ Sa. By Lemma 21, there is a function

h ∈ ωS such that the function on ωκ defined as h̃(t) = h(t), if t ∈ S,
h̃(t) = 0, if t < S, satisfies N(p, h) ∩ A∞ = ∅.

Thus, p ∈ A<∞. Observe that, M =
⋃

a∈A<∞ domp(a) is countable, and
hence {p} ∪ A<∞ is homeomorphic to a subspace of �t∈S Xt . Now, apply
Theorem 27 to contradict ϕ is an embedding. �

Corollary 29. For any ultrafilter ξ ∈ βω \ ω and any cardinal κ, there is
no embedding from {ξ} ∪ ω into�Rκ.
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2.4 Box Products of Regular First Countable Spaces are
Discretely Generated

Our main result in this section is Theorem 32 which solves Problem 3.3
in [41].

In a similar fashion as in Section 2.3 we can define the function Φp :
�t∈T Xt → �(ω + 1)T defined as Φp(x) = 〈 ft(x(t)) : t ∈ T〉. Denote
again by cω the constant function equal ω in every coordinate. We have
Φp(p) = cω, and a ∼p b if and only if Φp(a) = Φp(b) is an equivalence
relation. Wewill use the following important result of Tkachuk andWilson.

Theorem 30 ( [41]). If Xt is a monotonically normal space, for t ∈ T , then
the box product�t∈T Xt is discretely generated.

Definition 31. If κ is a cardinal, we define 6∗ onωκ such that for f , g ∈ ωκ,
f 6∗ g if and only if {α ∈ κ : f (α) > g(α)} is finite. We say that D ⊆ ωκ

is a 6∗-dominant family if ∀ f ∈ ωκ ∃g ∈ D ( f 6∗ g). Recall that
d(κ) = min{|D| : D ⊆ ωκ is a 6∗ -dominant family}.

If D = {gα ∈ ωκ : α < d(κ)} is a 6∗-dominant family, then D∗ = {h ∈
ωκ : |{β ∈ κ : h(β) , gα(β)}| < ω ∧ gα ∈ D} is a 6-dominant family,
with |D∗ | = κ · d(κ) and {N(cω, h) : h ∈ D∗} is a local basis of cω. By
Lemma 2.1 in [8], d(κ) = κ · d(κ). Thus, enumerating D∗ = {hα ∈ ωκ :
α ∈ d(κ)} we conclude that {N(cω, hα) : α < d(κ)} is a local basis of cω.

Theorem 32. Suppose {Xt : t ∈ T} is a family of regular first countable
spaces. Then�t∈T Xt is discretely generated.

Proof. Let A ⊆ �t∈T Xt and p ∈ A \ A. We may assume that A consists
only of ∼p-representative elements. Let E = Φp[A] ⊆ �(ω + 1)T and note
that Φp(p) = cω ∈ E . By Theorem 30, �(ω + 1)T is discretely generated,
and thus, there is a discrete D ⊆ E such that cω ∈ D. Consider a local
basis {Nhα : α < d(κ)} of cω, write Ng for N(cω, g).

Recursively construct a set Dd(κ) = {dα : α < d(κ)} ⊆ D so the
preimage underΦp is discrete and generates p as follows: take d0 ∈ Nh0∩D.
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Now, suppose constructed D<α = {dβ : β < α}. If cω ∈ D<α, we are done.
If not, there is eα ∈ ωκ such that Neα ∩ D<α = ∅. Since cω ∈ D, there is
dα ∈ Neα+2 ∩ Nhα ∩ D.

The reason to add 2 to the functions eα is to choose the elements dα
sufficiently far away from each other to assure their preimages under Φ
are still enough apart from each other, that will allow us to find a discrete
subset of A.

We may assume that the process ends until cω ∈ Dd(κ). Note that Dd(κ)

is discrete because it is contained in D. Now, let G = Φ−1
p [Dd(κ)]∩A. From

the construction of Dd(κ), we have the following: for every β < α < d(κ)
there is t ∈ domcω(dβ) with dβ(t) + 2 < dα(t).

We check that G ⊆ A is discrete and p ∈ G. It is clear that p ∈ G, since
Φp(p) = cω ∈ Dd(κ). To see that G is discrete, fix g ∈ G. Since G is a set
of ∼p-representative elements, there is α < d(κ) such that dα = Φp(g). For
every t ∈ domp(g), there is a unique kt ∈ ω such that g(t) ∈ W t

kt
\W t

kt+1.
If t ∈ domp(g), let Wt = W t

kt
\W t

kt+2; otherwise let Wt = Xt . By regularity,
for every t ∈ T , we have that g(t) ∈ W t

kt
\W t

kt+1 ⊆ Wt and Wt is open.
Then, W = (�t∈TWt) ∩ (�t∈TW t

eα(t)+2) is a neighborhood of g.

Now, suppose for a contradiction that f ∈ W∩G for some f , g. There
is β < d(κ) such that dβ = Φp( f ). Observe that domp(g) = domcω(dα),
domp( f ) = domcω(dβ) and for every t ∈ domp(g), dα(t) = kt . We have
two cases:

• if α < β, then by the property above there is t ∈ domcω(dα) such
that dα(t) + 2 < dβ(t). That is, f (t) < W t

kt
\W t

kt+2 = Wt , and this
contradicts f ∈ W .

• If β < α, by the construction we have Neα ∩ Dα = ∅. Since dβ is an
element of Dα, there exists t ∈ domcω(dβ) such that eα(t) > dβ(t).
Thus, dβ(t) < eα(t) + 2. It follows that f (t) < W t

eα(t)+2 contradicting
again the assumption f ∈ W .

This concludes the proof. �
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Question 33. Is the box product of regular Fréchet-Urysohn spaces dis-
cretely generated?





Chapter 3
c-Many Types of a Ψ-Space

3.1 Introduction

In this chapter we study the well known Ψ-spaces defined from almost
disjoint families. The results are contained in [4]. We show that there
are c-many almost disjoint families of the same (uncountable) size whose
Ψ-spaces are pairwise non-homeomorphic and they can be Luzin families
or branch families of 2ω. An almost disjoint family (AD family, for short)
of subsets of the natural numbers ω (or any other countable set) is a family
of infinite subsets of ω so that any two different elements of the family
have finite intersection. If A is an AD family on ω, define the topological
space Ψ(A) = ω ∪ A as follows: ω is a discrete subset of Ψ(A); basic
neighborhoods of a point x ∈ A are of the form {x} ∪ (x \ F), where
F ⊆ ω is finite. The Ψ-spaces have been well studied through the
years since they are candidates to give examples or counterexamples of
many topological concepts. There are nice properties Ψ-spaces satisfy:
they are Hausdorff, separable, first countable, locally compact and zero
dimensional. For topological and combinatorial aspects of Ψ-spaces see
[18] and [19], respectively.

Daniel Bernal-Santos and Salvador García-Ferreira askedwhat is the re-
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lation between Cp(Ψ(A)) and Ψ(A). Specifically, they asked if Cp(Ψ(A))

and Cp(Ψ(B))were homeomorphic wheneverA and B are homeomorphic
as subspaces (considered as sets of characteristic functions) of the Cantor
set 2ω with the usual topology. To understand better the space Cp(Ψ(A)),
in personal communications, they asked us for a more elementary question:
Question 34 (Bernal-Santos, García-Ferreira). If X,Y ⊆ 2ω are homeo-
morphic, are Ψ(AX) and Ψ(AY ) homeomorphic?

Here, AX := {{x � n : n ∈ ω} : x ∈ X} is the almost disjoint family
of branches determined by the elements of X ⊆ 2ω. It is well known
that under MA + ¬CH, every set X ⊆ 2ω of size less than the continuum
is a Q-set (recall that a separable metrizable space X is a Q-set if every
subset of X is Gδ in X), and thus, Ψ(AX) is normal. There are many
other topological properties of X ⊆ 2ω having effect on the space Ψ(AX).
One might think that MA + ¬CH is a good ingredient to conjecture that
the answer is affirmative. However, we answer negatively Question 34
since Theorem 46 shows that in ZFC there are different types of spaces
Ψ(AX),Ψ(AY ) even when X and Y are homeomorphic.

Recall that an AD family A is Luzin if it can be enumerated as A =
〈Aα : α < ω1〉 in such way that ∀α < ω1 ∀n ∈ ω (|{β < α : Aα ∩ Aβ ⊆

n}| < ω). Branch and Luzin families are in some sense “orthogonal",
precisely because the normality of their Ψ-spaces might hold in the former
and breaks down badly in the latter. We show in Theorem 45 that in ZFC
there are different types of Ψ-spaces for Luzin families.

Focusing on AD families of size ω1, Michael Hrušák formulated the
following question in a local seminar.
Question 35 (Hrušák). Is it consistent that there is an uncountable almost
disjoint family A such that Ψ(A) ' Ψ(B), whenever B ⊆ A and |A| =
|B|?

Observe that 2ω < 2ω1 (in particular CH) implies that the answer to
Question 35 is negative by the simple fact that given an AD family A of
size ω1, there are only c-many subspaces Ψ(B) for which Ψ(A) ' Ψ(B)
(there are only c-many permutations of ω), and there are 2ω1-many subsets
of A of size ω1. We believe that it is a very interesting question; we
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conjecture that the answer is negative but our methods do not work to solve
it.

3.2 Basic Facts

Our notation is standard and follows closely [18] and [19]. We use, like
them, f (A) to denote the evaluation of the function f at the point A in its
domain while f [A] denotes the image of the set A under the function f .
For sets A and B, we say that A ⊆∗ B, in words that A is almost contained
in B, if A \ B is a finite set. Likewise, A =∗ B if and only if A ⊆∗ B and
B ⊆∗ A. For a set Z and a cardinal κ, denote by [Z]κ, [Z]<κ and [Z]6κ
the families of all subsets of Z of size κ, less than κ and less or equal to κ,
respectively. If x ∈ 2ω, we denote�x ↓ n = {x � k ∈ 2<ω : n 6 k} and x̂ := �x ↓ 0.

The familiesAX defined above, where X ⊆ 2ω, are canonical AD families
on 2<ω, and they can reach any size below the continuum. Under a bijection
betweenω and 2<ωwemay consider theΨ-space associated toAX . Perhaps
the families AX were first studied by Frank Tall [40] when he showed that
if X ⊆ 2ω, then X is a Q-set if and only if Ψ(AX) is normal.

The following lemma shows how a homeomorphism between Ψ-spaces
looks like.

Lemma 36. Let A,B be AD families on ω and let H : Ψ(A) → Ψ(B) be
a bijection. Then, H is a homeomorphism if and only if H[ω] = ω and for
every x ∈ A, H[x] and H(x), as subsets of ω, are almost equal.

Proof. ⇒) Since H is bijective and must send isolated points to iso-
lated points, it is clear that H[ω] = ω, that is, H is a permutation on
ω. Now, let x ∈ A and {H(x)} ∪ (H(x) \ F) be a neighborhood of
H(x), where F ∈ [ω]<ω. By continuity, there is F′ ∈ [ω]<ω such that
H[{x} ∪ (x \ F′)] ⊆ {H(x)} ∪ (H(x) \ F). Notice that the former set
H[{x}∪(x \F′)] is the set {H(x)}∪H[x \F′]. Then H[x \F′] ⊆ H(x) \F,
and thus, H[x] ⊆∗ H(x). Use the fact that H is open and similar arguments
to get H[x] ⊇∗ H(x).
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⇐) We will see that H is continuous; to see that H is open use sim-
ilar arguments as above. Let x ∈ A and {H(x)} ∪ (H(x) \ F) be a
neighborhood of H(x), where F ∈ [ω]<ω. Since H[x] =∗ H(x), there is
F′ ∈ [ω]<ω such that H[x] \ H[F′] ⊆ H(x) \ F. Since H is a permutation
on ω, we have H[x \ F′] = H[x] \ H[F′], and then, H[{x} ∪ (x \ F′)] ⊆
{H(x)} ∪ (H(x) \ F). �

Recall that for s ∈ 2<ω, we let 〈s〉 = {t ∈ 2<ω : s ⊆ t} and [〈s〉] = {x ∈
2ω : s ⊆ x}.

Lemma 37. Let X ⊆ 2ω be a set of size κ, c f (κ) > ω. Then there are
infinitely many n ∈ ω for which there are different elements s, t ∈ 2n such
that |[〈s〉] ∩ X | = κ = |[〈t〉] ∩ X |.

Proof. Suppose for a contradiction that for every n ∈ ω there is a unique
sn ∈ 2n such that Xn := [〈sn〉] ∩ X has size κ. Let Yn = X \ Xn. Notice that
|Yn | < κ, and since c f (κ) > ω, Y =

⋃
n∈ωYn has size less than κ. This is

a contradiction because X \ Y =
⋂

n∈ω Xn has size κ and it is contained in
the set

⋂
n∈ω[〈sn〉] that has at most one element. �

Notice that by Lemma 37, one can actually get infinitely many n ∈ ω
for which there is s ∈ 2n such that |[〈s_0〉] ∩ X | = κ = |[〈s_1〉] ∩ X |.
For an AD family A on ω, we obtain the next observation by considering
{χA : A ∈ A} ⊆ 2ω, where χA is the characteristic function of A.
Remark 38. Let A be an AD family of size κ with c f (κ) > ω. Then

∀n ∈ ω ∃m > n (|{x ∈ A : m ∈ x}| = |{x ∈ A : m < x}| = κ).

Lemma 39. Let A,B be AD families of size κ with c f (κ) > ω and
h : A → B be a bijection. Then for all n ∈ ω there are x, y, z ∈ A such
that

1. max{x ∩ y} > n ∧ x ∩ y ( x ∩ z; and

2. max{h(x) ∩ h(y)} > n ∧ h(x) ∩ h(y) ( h(x) ∩ h(z).
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Proof. Fix n ∈ ω. By Remark 38, choose m0,m1 > n and A0 ∈ [A]
κ

such that for every x ∈ A0, m0 ∈ x and m1 ∈ h(x). Now, fix y ∈ A0
and apply Pigeonhole Principle to the set {x ∩ y : x ∈ A0 \ {y}}. There
are F0 ∈ [ω]

<ω and A1 ∈ [A0]
κ such that for all x ∈ A1, x ∩ y = F0.

There are also G0 ∈ [ω]
<ω and B1 ∈ [h[A1]]

κ such that for all w ∈ B1,
w ∩ h(y) = G0. Let A2 = h−1[B1].

At this point we have that for any {x, z} ∈ [A2]
2, F0 = x ∩ y = z ∩ y

and G0 = h(x) ∩ h(y) = h(z) ∩ h(y), simultaneously. This already implies
that x ∩ y ⊆ x ∩ z and h(x) ∩ h(y) ⊆ h(x) ∩ h(z). To find elements so
that the inclusions are strict, since |A2 | = κ, use again Remark 38 to get
m′0,m

′
1 > max(F0 ∪ G0 ∪ {m0,m1}) and A3 ∈ [A2]

κ such that for any
x ∈ A3, m′0 ∈ x and m′1 ∈ h(x). Now, if {x, z} ∈ [A3]

2, then x ∩ y = F0 (
F0 ∪ {m′0} ⊆ x ∩ z and h(x) ∩ h(y) = G0 ( G0 ∪ {m′1} ⊆ h(x) ∩ h(z).

It is clear that for any x ∈ A3, max{x ∩ y} > m′0 > n and max{h(x) ∩
h(y)} > m′1 > n. �

Definition 40. LetA,B be AD families on ω of size κ and h : A → B be
bijective. We say that h is of dense oscillation if for each A′ ∈ [A]κ there
are x, y, z ∈ A′ such that |x ∩ z \ x ∩ y | , |h(x) ∩ h(z) \ h(x) ∩ h(y)|.

Proposition 41. Let A,B be AD families of size κ with c f (κ) > ω and
h : A → B be of dense oscillation. Then, there is no homeomorphism
from Ψ(A) to Ψ(B) that extends h.

Proof. Suppose for a contradiction that H : Ψ(A) → Ψ(B) is a homeo-
morphism extending h. By Lemma 36, for every A ∈ A, H[A] =∗ H(A).
So, for A ∈ A, consider the finite sets FA = {n ∈ A : H(n) < H(A)} and
GA = {n ∈ H(A) : H−1(n) < A}.

There areA′ ∈ [A]κ and F,G ∈ [ω]<ω such that for all A ∈ A′, F = FA
and G = GA. If x, y, z ∈ A′ are different, then (x ∩ z \ x ∩ y) ∩ F = ∅
and (H(x) ∩ H(z) \ H(x) ∩ H(y)) ∩ G = ∅. Moreover, m ∈ x \ F implies
H(m) ∈ H(x), and H(m) ∈ H(x) \ G implies m ∈ x. From this, one can
deduce that |x ∩ z \ x ∩ y | = |H(x) ∩ H(z) \ H(x) ∩ H(y)|, contradicting
the dense oscillation property of H � A = h. �
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Given two sets A, B ⊆ ω, we say that A and B are oscillating if for
x, y ∈ A, w, z ∈ B, we have |y− x | , |z−w |. Similarly, A and B are almost
oscillating if there is n ∈ ω such that A \ n and B \ n are oscillating.

Proposition 42. There are c-many infinite subsets of ω pairwise almost
oscillating.

Proof. From ω, we first construct two oscillating sets A =
⋃

n∈ω An, B =⋃
n∈ω Bn. Fix A0 = {0}, B0 = {1}. Suppose that we constructed oscillating

sets An = {a0, . . . , an} and Bn = {b0, . . . , bn}. Let an+1 ∈ ω such that
an+1 − an > bn − b0 and bn+1 ∈ ω such that bn+1 − bn > an+1 − a0. Observe
that An+1 = An ∪ {an+1} and Bn+1 = Bn ∪ {bn+1} are oscillating, and so are
A and B.

Notice that the construction is hereditary. That is, for any X ∈ [ω]ω,
there are oscillating sets A, B ∈ [X]ω. This allows to define a Cantor
tree induced by this partitions. Each branch of the Cantor set, f ∈ 2ω,
represents a decreasing sequence 〈A f �n : n ∈ ω〉 of infinite sets of ω such
that for any other branch g ∈ 2ω, we have that A f �k, Ag�l are oscillating
whenever k, l > ∆( f , g). Now, for every sequence 〈A f �n : n ∈ ω〉, consider
a pseudointersection P f of {A f �n : n ∈ ω}. Observe that for any two
sequences 〈A f �n : n ∈ ω〉, 〈Ag�n : n ∈ ω〉, their pseudointersections P f ,
Pg are almost oscillating. �

Corollary 43. Let A,B be AD families of size κ, with c f (κ) > ω, and
h : A → B be a bijection. If A = {|x ∩ y | : x, y ∈ A} and B = {|x ∩ y | :
x, y ∈ B} are almost oscillating, then there isA′ ∈ [A]κ such that h � A′
is of dense oscillation.

Proof. Let n ∈ ω such that A \ n and B \ n are oscillating. Iterating
n + 1-many steps Remark 38, we can find a subfamily A0 ∈ [A]

κ such
that for any x, y ∈ A0, |x ∩ y | > n + 1. In the same fashion, we can find
a subfamily B1 ∈ [h[A0]]

κ such that for any w, z ∈ B1, |w ∩ z | > n + 1.
Define A1 := h−1[B1]. Note that A1 ∈ [A0]

κ and for any x, y ∈ A1,
n + 1 6 min{|x ∩ y |, |h(x) ∩ h(y)|}. We are looking for “an oscillation";
the last inequality avoids the possibility to obtain small intersections (of
size less than n).
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To see that A′ := A1 is the desired family, choose A′′ ∈ [A′]κ. Apply
Lemma 39 to n and h � A′′ : A′′ → h[A′′], and get x, y, z ∈ A′′ such
that x ∩ y ( x ∩ z, h(x) ∩ h(y) ( h(x) ∩ h(z) and n < min{max{x ∩
y},max{h(x) ∩ h(y)}}. Thus, there are a0, a1 ∈ A \ n and b0, b1 ∈ B \ n
such that |x ∩ z \ x ∩ y | = a0 − a1 , b0 − b1 = |h(x) ∩ h(z) \ h(x) ∩ h(y)|.
As desired. �

Corollary 44. Let A,B be AD families of size κ, with c f (κ) > ω, and
h : A → B be a bijection. If {|x ∩ y | : x, y ∈ A} and {|x ∩ y | : x, y ∈ B}
are almost oscillating, there is no homeomorphism from Ψ(A) to Ψ(B)
that extends h.

Proof. If H : Ψ(A) → Ψ(B) is such homeomorphism, by Corollary 43
there isA′ ∈ [A]κ such that H � A′ : A′→ H[A′] is of dense oscillation.
If A =

⋃
A′, then Z = A′ ∪ A is a subspace of Ψ(A) and H � Z is a

homeomorphism, contradicting Proposition 41. �

3.3 c-Many Pairwise Non-Homeomorphic Ψ-Spaces

Next we construct c-many AD families of the same size whose Ψ-spaces
are pairwise non-homeomorphic for each of the classes of Luzin families
and branch families of 2ω.

Theorem 45. There are c-many distinct Luzin families (of size ω1) with
non-homeomorphic Ψ-spaces.

Proof. Given L = {kn : n ∈ ω} ⊆ ω such that kn >
∑

i<n ki, construct
a Luzin family AL as follow: choose a partition {An : n ∈ ω} of ω into
infinite sets. Suppose that we constructed sets Aβ, for β < α < ω1. Let
{Bn : n ∈ ω} be an enumeration with no repetitions of {Aβ : β < α} and
for each n ∈ ω, pick an ⊆ Bn \

⋃
i<n Bi such that |(

⋃
i6n ai) ∩ Bn | = kn. Let

Aα =
⋃

n∈ω an and AL = {Aα : ω < α < ω1}. It is easy to see that AL is
a Luzin family. Observe that

∀ω < α, β < ω1 ∃n ∈ ω (|Aα ∩ Aβ | = kn). (3.1)
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This is how we construct a Luzin familyAL from a given set of natural
numbers L. All Luzin families considered in the following are constructed
from a fixed partition {An : n ∈ ω} of ω.

By Proposition 42, let {Pα : α < c} be a pairwise almost oscillating
family of sets of ω. For every α < c, let Qα = {qαn : n ∈ ω} ⊆ Pα
such that for every n ∈ ω, qαn >

∑
i<n qαi . Notice that {Qα : α < c} is

also a pairwise almost oscillating family of sets of ω. It follows from
Equation (3.1) that for any α < c, {|x ∩ y | : x, y ∈ AQα} ⊆ Qα. Since
“almost oscillating" is a hereditary property, for any ω < β, α < c, the sets
{|x ∩ y | : x, y ∈ AQα}, {|x ∩ y | : x, y ∈ AQβ} are almost oscillating. By
Corollary 44, {AQα : α < c} is the desired collection of Luzin families. �
Theorem 46. Given a cardinal κ 6 c of uncountable cofinality, there
are c-many distinct homeomorphic subsets of 2ω of size κ with non-
homeomorphic Ψ-spaces.

Proof. Given A ∈ [ω]ω, consider the tree SA ⊆ 2<ω defined by ∅ ∈ SA and
s ∈ Levn(SA) =⇒ (s_1 ∈ SA) ∧ (s_0 ∈ SA ←→ n ∈ A). Observe that
∀x, y ∈ [SA], ∆(x, y) = | x̂ ∩ ŷ | ∈ A.

Again, by Proposition 42, let {Pα : α < c} be a pairwise almost
oscillating family of sets of ω. Note that if A, B ∈ [ω]ω, then [SA] '

[SB] ' 2ω, and A ∩ B =∗ ∅ implies that |[SA] ∩ [SB]| < ω. Hence, we
can choose Xα ⊆ [SPα] of size κ such that the Xα’s are all different, but
Xα ' Xβ, whenever α, β < c. Recall that {| x̂∩ ŷ | : x, y ∈ Xα} ⊆ Pα, α < c.
Also, {| x̂ ∩ ŷ | : x, y ∈ Xα}, {| x̂ ∩ ŷ | : x, y ∈ Xβ} are almost oscillating,
β, α < c. By Corollary 44, {Xα : α < c} is the desired collection of subsets
of 2ω. �

Corollary 47. LetA be an AD family of size κ. If there areA0,A1 ∈ [A]
κ

such that {|x ∩ y | : x, y ∈ A0} and {|x ∩ y | : x, y ∈ A1} are almost
oscillating, then Ψ(A) ; Ψ(A0).

Proof. If h : A0 → A is a bijection, use Corollary 43 to find A′0 ∈
[h−1[A1]]

κ such that h �A ′0: A
′
0 → h[A′0] is of dense oscillation. Now,

it follows from Proposition 41 that there cannot exist a homeomorphism
betweenΨ(A′0) andΨ(h[A

′
0]) extending h �A ′0 . This implies that it cannot

be a homeomorphism between Ψ(A0) and Ψ(A) that extends h. �
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Motivated by Corollary 47, a positive answer to the following question
gives raise a negative answer to Question 35. However, we do not even
know if CH answers:
Question 48. LetA be an AD family on ω of size ω1. Are thereA0,A1 ∈
[A]ω1 such that {|x ∩ y | : x, y ∈ A0} and {|x ∩ y | : x, y ∈ A1} are almost
oscillating?

The arguments under CH below Question 35 say that if A is an AD
family of size ω1, then there is A0 ∈ [A]

ω1 such that Ψ(A) ; Ψ(A0). In
that case however, the sets {|x ∩ y | : x, y ∈ A0} and {|x ∩ y | : x, y ∈ A}
are far from being almost oscillating (the former is contained in the latter).





Chapter 4
Nabla Products

4.1 Introduction

This is the main chapter of the document. The work developed here in
collaborationwith Professor PaulGartside [2] is in progress to be published.
We focus on countable box and nabla products. Let {Xi : i ∈ I} be a family
of topological spaces. Recall that a box is a set

∏
i Ui, where eachUi is open

in Xi. The box product, �i Xi, is the space with underlying set
∏

i Xi and
basis all boxes. Two elements x and y of �i Xi are mod-finite equivalent,
denoted x ∼ y, if the set {i ∈ I : x(i) , y(i)} is finite. The nabla product,
∇i Xi, is the quotient space,�i Xi/∼.

It is unknown, in ZFC, whether the countable box product �[0, 1]ω, or
even its closed subspace, �(ω + 1)ω, is normal. With high probability,
this is the oldest problem in General Topology. This question was asked
(orally) for the first time by Tietze sometime in the 1940’s. A second
version is attributed to Arthur Stone in the 1950’s: Is the box product of
countably many separable metrizable spaces normal? A positive answer
to Stone’s question under CH for compact metrizable spaces was found by
Mary Ellen Rudin [37] in 1972; she actually found that the box product
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was paracompact. Thus paracompactness entered to the picture. See [36]
for a survey of the box product problem.

Central to almost all positive results on paracompactness, and hence
normality, of box products, is a connexion to the nabla product due to
Kenneth Kunen [22]: let {Xn : n ∈ ω} be a family of compact spaces, then,
�nXn is paracompact if and only if ∇nXn is paracompact. In particular,
it is now known that under certain small cardinal conditions, namely,
b = d ( [10]), or d = c ( [31], [25], [43]), the nabla product ∇(ω + 1)ω is
paracompact and so the box product �(ω + 1)ω is paracompact. Another
statement implying the paracompactness of ∇(ω+1)ω that differs from any
cardinal arithmetic is the so calledModelHypothesis [33], that follows from
d = c, and holds in any forcing extension by uncountablymany Cohen reals.
At the end of the introduction we state several important known results up
to date.

In an insightful analysis of these results, Judy Roitman [33] extracted a
combinatorial principle that she called ∆ which is a consequence of each
of the set-theoretic axioms mentioned above. She further claimed that ∆
implies the paracompactnes of ∇(ω + 1)ω. The principle ∆ is the most
recent progress concerning to the paracompactness of ∇(ω + 1)ω and it is
unknown if ¬∆ is consistent with ZFC or if ∆ true in ZFC.

This work focuses in finding topological aspects of ∆. These aspects
can be stronger or weaker versions of paracompactness and normality, such
as being pseudonormal, coleccionwise Hausdorff, colectionwise normal,
monotonically normal, paranormal, metanormal, metacompact, orthocom-
pact, etc. And ‘hereditarily’ and ‘countably’ versions. See Chapter 1 for
the definitions of this concepts. Everything started here, the moment we
found a topological characterization of ∆ (see Theorem 79): ∆ holds if and
only if ∇(ω + 1)ω is monotonically normal.

Recall that a space X with topology τ is monotonically normal if there
exists an operator G : X × τ → τ such that x ∈ G(x,U) ⊆ U; and if
G(x,U) ∩ G(y,V) , ∅, then x ∈ V or y ∈ U. We record three facts about
monotone normality that are all easy to check: (a) if B is a base for τ,
then in both domain and range of the operator G we can replace τ with B;
(b) the restriction of a monotone normality operator to a subspace yields
a monotone normality operator for the subspace, and so monotone nor-
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mality is hereditary; and (c) monotone normality implies (collectionwise)
normality.

We note that monotone normality does not transfer from ∇(ω + 1)ω to
�(ω + 1)ω. Indeed, see Corollary 20 [24], if {Xi : i ∈ I} is a family of
compact or first countable spaces, then�i Xi is not hereditarily normal. On
the other hand, Gartside proved in [15] that if a space X has monotonically
normal square, then X is hereditarily paracompact. Hence, if a nabla
space of the form ∇Xω is monotonically normal, then it is hereditarily
paracompact because it is homeomorphic to its square. What if infinitely
many factors are different? We have showed, Theorem 82, that if the
factors Xn are metrizable, then if ∇nXn is monotonically normal, it must be
hereditarily paracompact.

In Section 4.2 we introduce technical notation and prove basic facts
about nabla products. Theorem 79 and Roitman’s Theorem 73 ‘∆ im-
plies ∇(ω + 1)ω is paracompact’ are proved in Section 4.3. Theorem 82
is proved in Section 4.4 where we study embeddings into nabla products
of metrizable and non-metrizable factors. In Section 4.5 we introduce
∆-like statements concerning to nabla products of metrizable, ordinal and
one point compactification spaces. These statements play the roll of ∆ by
showing that the corresponding nabla products are monotonically normal
(see Proposition 89, Proposition 94 and Corollary 96). In Section 4.6 we
prove that some nabla products are (consistently) non hereditarily normal
solving the Roitman’s open Question 106. In Section 4.7 we study sub-
spaces of ∇(ω + 1)ω and restrictions of ∆. In particular, we mention that
an instance of ∆ is true in ZFC (this was showed by Roitman in [33]). We
relate such instance with the so called ‘tangled-free’ filters introduced by
Gartside in [15]. In Section 4.8 we study variants of monotone normal-
ity and showed these variants are equivalent for certain nabla products.
Finally, in Section 4.9 we talk about many open questions.

§ 4.1.1 Positive Results

None of the following are ZFC results.

Theorem 49 (Roitman, 1979 [31]). The box products of countably many
compact first countable spaces is paracompact if d = c or if MH holds.



32 Nabla Products

Theorem 50 (Williams, 1984 [24]). The box products of countably many
compact spaces of weight 6 ω1 is paracompact if d = ω1.
Theorem 51 (van Douwen, 1980 [10]; [42]). The box product of countably
many compact metrizable spaces is paracompact if b = d.
Theorem 52 (Kunen, 1978 [22]). The box product of countably many
compact scattered spaces is paracompact if CH holds.
Theorem 53 (Lawrence, 1988 [25]). The box product of countably many
countable metrizable spaces is paracompact if b = d or d = c.
Theorem 54 (Wingers, 1994 [43]). The box product of countably many
σ-compact 0-dimensional first countable spaces of cardinality 6 c is para-
compact if d = c.
Theorem 55 (Roitman, 2015 [36]). If ∆ holds, then �(ω + 1)ω is para-
compact.

§ 4.1.2 Not Normal

Almost all of these are ZFC results. For an ordinal α, 2αLE X is the space 2α
with the following order ≺: for f , g ∈ 2α, f ≺ g if there is β ∈ α so that
f (β) < g(β) and for γ ∈ β, f (γ) = g(γ).
Theorem 56 (van Douwen, 1980 [10]). ωω × �(ω + 1)ω is not normal;
hence�(ω + 1)ω is not hereditarily normal.

Theorem 57 (Kunen, 1978 [22]; [14]). �(2c+)ω is not normal.
Theorem 58 (Kunen, 1973 [21]; [14]). If b = d, then d ×�(ω + 1)ω is not
normal.
Theorem 59 (Kunen, Erdös, Rudin, 1973 [14]). �(2ω1+1

LE X )
ω is not normal.

Theorem 60 (van Douwen, 1977 [9]). �(2ω2)ω is not normal.
Theorem 61 (Wingers, 1995 [44]). If X is Lindelöf, not Hurewicz, with a
dense Hurewicz subspace, then X ×�(ω + 1)ω is not normal.
Theorem 62 (Wingers, 1995 [44]). Assume MA. Then, there is X ⊆ R, X
Hurewicz, X ×�(ω+ 1)ω paracompact but X2 ×�(ω+ 1)ω is not normal.
Theorem 63 (Lawrence, 1996 [27]). �(ω + 1)ω1 is not normal.
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4.2 Notation

Here we state the notation we will use throughout the chapter. Due to
Lawrence’s Theorem 63, we will focus only on countable box and nabla
products.

If x ∈ �nXn or x ∈ ∇nXn, and U = 〈Un〉n∈ω is a sequence of open
sets, where x(n) ∈ Un ⊆ Xn, define the basic neighborhood around x as
N(x,U) = �nUn ⊆ �nXn and N(x,U) = ∇nUn ⊆ ∇nXn. If the Xn’s are
first countable, a basis of x or x is codified byωω: if {Uk

n : k ∈ ω} is a base
at x(n), we will write N(x, f ) = �nU f (n)

n and N(x, f ) = ∇nU f (n)
n , where

f ∈ ωω. We will make no difference denoting the elements of �nXn and
∇nXn if there is no chance to confusion. A function F : X → τ, where τ
is the topology of X , is a neighborhood assignment if x ∈ F(x), for x ∈ X .
We will write “neighbornet” for “neighborhood assignment”.

In order to state ∆ we introduce some specific notation for �(ω + 1)ω
and ∇(ω + 1)ω. Let ω⊂ω = {x : N → ω : N ⊆ ω is infinite-coinfinite}.
For k 6 ω, denote ck be the constant k function. If x ∈ ω⊂ω, x̃ ∈ (ω+1)ω is
defined as x̃(n) = x(n) if n ∈ dom(x), and x̃(n) = ω, otherwise. If x ∈ ω⊂ω

and f ∈ ωω, we will use x, f , cω as the equivalent classes [x̃]∼, [ f ]∼, [cω]∼,
respectively, in ∇(ω + 1)ω. Let ∇∗ = {x ∈ ∇(ω + 1)ω : x ∈ ω⊂ω}. For
partial functions x, y ∈ ω⊂ω, let x \ y be the partial function defined as
x � (dom(x) \ dom(y)) onω (possibly finite); also, we say that x ⊆∗ y if for
all but finitely many n ∈ dom(x), x(n) = y(n). If x, y are almost compatible
partial functions (x � dom(x) ∩ dom(y) =∗ y � dom(x) ∩ dom(y)), then x
and y have a ⊆∗-greatest lower bound x∧ y = x � dom(x)∩ dom(y) =∗ y �
dom(x)∩dom(y) and a ⊆∗-lowest greater bound x∨y =∗ x∪y, in∇(ω+1)ω.
For x ∈ ω⊂ω ∪ ωω and h ∈ ωω we say that x >∗ h (x >∗ h) if for all but
finitelymany n ∈ dom(x), x(n) > h(n) (x(n) > h(n)). Basic neighborhoods
around cω are of the form N(cω, h) = {y ∈ ∇(ω + 1)ω : y >∗ h} and basic
neighborhoods around x are of the form N(x, h) = {y ∈ ∇(ω + 1)ω : x ⊆∗

y and y \ x >∗ h}, where h ∈ ωω. Notice that elements f , where f ∈ ωω,
are isolated points in ∇(ω + 1)ω.

If A ⊆ ∇(ω+1)ω, we denote NA(x, f ) = N(x, f )∩ A the neighborhoods
in the subspace. If A is any subset of ω⊂ω, write ∇∗(A) for the subspace
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{x : x ∈ A} of ∇(ω + 1)ω and set define ∇(A) to be ∇∗(A) ∪ ωω ∪ {cω}.
Abbreviate ∇∗(ω⊂ω) by ∇∗, and ∇(ω⊂ω) = ∇(ω + 1)ω by ∇.

§ 4.2.1 Basic Facts on ∇nXn

Lemma 64 ( [33]). Let x, y ∈ ω⊂ω, f ∈ ωω, and suppose that x ⊆∗ y. The
following are equivalent: (1) y < N(x, f ), (2) f �∗ y \ x, (3) ∀g ∈ ωω,
N(x, f ) ∩ N(y, g) = ∅.

Proof. (1) implies (2): this is definition of y not being in N(x, f ). (2)
implies (3): let N = {n ∈ ω : f (n) > y(n)}. Since every element
z ∈ N(y, g) satisfies z(n) = y(n), n ∈ dom(y), then f (n) > z(n) for n ∈ N .
Hence, z < N(x, f ). (3) implies (1): this is trivial. �

The following remark will be used in repeated occasions. It explains
how any two elements of ∇∗ look like. The proof is easily checked.
Remark 65. Given x, y ∈ ω⊂ω we have three cases: (i) x ⊆∗ y or y ⊆∗ x,
(ii) there are infinitelymany n ∈ ω, x(n) , y(n), and (iii) |x\y | = |y\x | = ω
and |{n ∈ dom(x) ∩ dom(y) : x(n) , y(n)}| < ω.
Remark 66. Let f , g ∈ ωω. Suppose x, y ∈ ω⊂ω satisfy |x\y | = |y\x | = ω
and |{n ∈ dom(x) ∩ dom(y) : x(n) , y(n)}| < ω. Then, x \ y ≯∗ g or
y \ x ≯∗ f if and only if N(x, f ) ∩ N(y, g) = ∅.

Proof. =⇒) Suppose x \ y ≯∗ g. Hence, there are infinitely many n ∈
dom(x) \ dom(y) such that x(n) < g(n). Since every z ∈ N(x, f ) satisfies
dom(x) ⊆∗ dom(z), then there are infinitely many n ∈ dom(z) \ dom(y)
such that z(n) < g(n), hence z < N(y, g).

⇐=) Suppose x \ y >∗ g and y \ x <∗ f . Modify x finitely many
coordinates so z = x ∪ y is well defined. Hence x, y ⊆∗ z and z \ x >∗ f ,
z \ y >∗ g. This is the definition of z being in both N(x, f ) and N(y, g),
contradiction. �

Proposition 67 ( [31]). 1. If F ⊆ ωω and |F | < b then F is 6∗-bounded.
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2. b = d iff there is a dominating family { fα : α < b} ⊆ ωω so that if
α < β then fα 6∗ fβ. Such a family is called a scale.

3. If G ⊆ ωω,A ⊆ P(ω) and |G|, |A| < d, then there is a function f ∈
ωω so that for any g ∈ G and a ∈ A, |{n ∈ a : f (n) > g(n)}| = ω.

Definition 68. A space is a Pκ-space if the intersection of fewer than κ-
many open sets is open- The Pω1-spaces are called P-spaces.
Definition 69. A space is κ-Lindelöf if every open cover has a subcover of
size < κ.

Proposition 70 ( [33]). 1. If each Xn is a space, ∇nXn is a P-space.

2. If each Xn is first countable, then ∇nXn is a Pb-space.

3. If each Xn is first countable, β < d and {Hα : α < β} is a collection
of closed boxes in the nabla product, then

⋃
α<β Hα is closed.

Proof. For (1), use the fact that every countable collection of functions
in ωω is 6∗-bounded. For (2), use the fact that every set of fewer than b
functions in ωω is 6∗-bounded. Observe that part (3) of Proposition 67
implies (3). �

The character of a topological space X at a point x is the cardinality
χ(x, X) of the smallest local base for x. The character of X is χ(X) =
sup{χ(x, X) : x ∈ X}. The tightness t(x, X) is the smallest cardinal number
κ such that whenever x ∈ Y for some Y ⊆ X , there exists a subset Z ⊆ Y ,
with |Z | 6 κ. The tightness of a space X is t(X) = sup{t(x, X) : x ∈ X}.

Lemma 71. Let {Xn : n ∈ ω} be a family of first countable spaces. For any
point x ∈ A \ A, where A ⊆ ∇nXn, we have the equalities t(x, A ∪ {x}) =
d = χ(x, A ∪ {x}).

Proof. Since x is a limit point of A, then for infinitely many n ∈ ω, x(n) is
non-isolated in Xn. Thus, without loss of generality wemay assume that for
all n ∈ ω, x(n) is non-isolated in Xn. Let {Bm(n) : m ∈ ω} be a decreasing
countable local basis for x(n), n ∈ ω.
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Since t(x, A ∪ {x}) 6 χ(x, A ∪ {x}) 6 χ(x,∇nXn) = d (the equality
holds because a local basis of x can be represented by a dominating family
of ωω), we only have to prove that t(x, A ∪ {x}) ≥ d.

Suppose for a contradiction that there is Z ⊆ A with |Z | < d and
x ∈ clA∪{x}(Z). For every z ∈ Z , since z , x, there is an infinite set az ⊆ ω
such that z(n) , x(n), n ∈ ω. Also, for every z ∈ Z there is a function
fz ∈ ωω such that for n ∈ az, z(n) < B fz(n)(n), and thus, z < N(x, fz).
Let G = { fz : z ∈ Z} and A = {az : z ∈ Z}. By Proposition 67, there
is f ∈ ωω diagonalizing the families G and A. Then, for any z ∈ Z ,
z < N(x, f ), contradicting that x ∈ clZ∪{x}(Z). �

4.3 Parametrizing Roitman’s Principle ∆

Here we prove the main result of this section, Theorem 79. Monotone
normality entered the picture, opening a new line of results in the following
sections.

The way Roitman proved Theorem 55 in [33] follow these steps: the
principle∆ implies∇∗ is paracompact. Also, ∇∗ is obtained from∇(ω+1)ω
by removing all isolated points and the limit point cω. Then, she thought
that ‘∇∗ is paracompact if and only if ∇(ω + 1)ω is paracompact’, but there
is a gap. We talk about this gap in Section 4.9. However, it can be proved
that ∆ implies ∇(ω + 1)ω is hereditarily basic ultraparacompact.

At the end of this section, Example 80 shows a subspace A of a space
X obtained by removing all isolated points and one limit point of X , for
which A is paracompact but X is not.
Definition 72. Let A be any subset of ω⊂ω. Then ∆(A) is the statement:
there exists F : A → ωω such that if x, y ∈ A with |x \ y | = |y \ x | = ω
and |{n ∈ dom(x) ∩ dom(y) : x(n) , y(n)}| < ω, then x \ y ≯∗ F(y) or
y \ x ≯∗ F(x).

Abbreviate ∆(ω⊂ω) to ∆, this is Roitman’s combinatorial principle in
[33] and [36]. It is known to be consistently true, but it is unknown if it can
be consistently false, or it is true in ZFC. For the sake of completeness, we
prove the following Roitman’s result in [33].
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Theorem 73 (Roitman). If ∆ holds, then ∇∗ is ultraparacompact (every
open cover has a pairwise disjoint open refinement).

Proof. Let {xα : α < c} ⊆ ω⊂ω be such that ∀x ∈ ω⊂ω∃α (x ⊆∗ xα).
Define ∇α = {x ∈ ∇∗ : α is the least with x ⊆∗ xα}. Let U be an open
cover of ∇∗. If x ∈ ∇α choose fx ∈ ω

ω such that fx > max{F(x), xα} and
N(x, fx) refines some element U ∈ U. Note thatWα = {N(x, fx) : x ∈
∇α} is pairwise disjoint.

For α < c, we will define Dα ⊆ ∇α and a clopen familyVα covering Dα

so thatV =
⋃⋃

α<cVα covers ∇∗ andV is a pairwise disjoint refinement
ofU.

Let D0 = ∇0, V0 = W0. Given Dβ,Vβ, for β < α, define Dα =
∇α \

⋃⋃
β<αVβ, and Vα = {N(x, fx) : x ∈ Dα}. To show V is pairwise

disjoint, pick N(x, fx), N(y, fy) ∈ V, x , y. If there is α with x, y ∈ Dα,
we are done, sinceWα is pairwise disjoint. The case (ii) in Remark 65
is trivial. Suppose y ∈ Dβ, x ∈ Dα and α < β. It is impossible y ⊆∗ x
by the minimality of β. So if x ⊆∗ y, then since y < N(x, fx), Lemma 64
applies, hence N(x, fx) ∩ N(y, fy) = ∅. The remaining case (case (iii) in
Remark 65) is ‘x and y are as in ∆’, in which case the property of F implies
N(x, F(x)) ∩ N(y, F(y)) = ∅. �

We will reuse this method again in next sections. So, we restate the
previous construction.

For an open cover U of ∇∗, A ⊆ ω⊂ω and F : A→ ωω a neighbornet
refiningU, we denote byV(U, A, F) the open refinement ofU constructed
as follows: let {xα : α < c} ⊆ ω⊂ω such that ∀x ∈ ω⊂ω∃α (x ⊆∗ xα).
Define ∇α = {x ∈ ∇∗ : α is least with x ⊆∗ xα}. For x ∈ ∇α, let fx =
max{xα, F(x)} be a second neighbornet. Let Aα = ∇α ∩ A and note
that Wα = {N(x, fx) : x ∈ Aα} is a discrete family. For α < c we
define Dα ⊆ Aα and a clopen family Vα covering Dα: let D0 = A0,
V0 = {N(x, fx) : x ∈ D0}. Given Dβ, Vβ for all β < α we define
Dα = Aα \

⋃⋃
β<αVβ and Vα = {N(x, fx) : x ∈ Dα}. Finally, let

V(U, A, F) =
⋃
α<cVα.
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Remark 74. IfU is an open cover of ∇∗, A ⊆ ω⊂ω and F is a neighbornet
refining U, then V(U, A, F) and Vα defined above have the following
properties.

1. For any N(x, fx) ∈ V, N(x, fx) ∩
⋃
{N(y, fy) ∈ V : y ⊆∗ x} = ∅.

2. For every α < c,Vα is pairwise disjoint.

3. V(U, A, F) covers A.

Proof. (1) follows from the minimality of ∇α and the constructions of the
Vα’s. For (2), observe thatVα ⊆ Wα. Part (3) is immediate. �

Definition 75 (Roitman). TheModel Hypothesis MH is the following state-
ment: For some κ, H(ω1) =

⋃
α<κ Hα, where each Hα is an elementary

submodel of (H(ω1), ∈) and each Hα ∩ ω
ω is not dominating.

Here H(κ) is the collection of all sets whose transitive closures have
size less than κ. In particular, both ωω,P(ω) are contained in H(ω1), and
a space of countable weight can be coded as (hence is isomorphic to) a
subset of H(ω1). See [23] for more on H(κ).

Theorem 76 (Roitman [33]). If any of b = d, d = c or MH hold, then ∆
holds. Also, ∆ holds in any forcing extension by adding cofinally many
Cohen reals.

We only know about consistent proofs for∆. However, taking the family
INC ⊆ ω⊂ω of all increasing partial functions we get a positive result in
ZFC. That is, ∆(INC) is true in ZFC as we will see in Section 4.7. In the
following we uncover the combinatorics of ∆ and we extract topological
aspects of it.
Definition 77. Let X be a space and A ⊆ X . A neighbornet T is halvable
if there is a neighbornet S for A such that: if S(x) ∩ S(y) , ∅ then x ∈ T(y)
or y ∈ T(x). Thus, we say that X is halvable if every neighbornet for X is
halvable.

Observe that if a space X is monotonically normal, then it is halvable.
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Lemma 78. Let X be a space with partial order � and neighborhood
bases, Bx, x ∈ X , such that: (1) ↓ x = {y : y � x} is open for all x, and (2)
if y ∈ B ⊆ ↓ x, where B ∈ B(x), then the interval [y, x] = {z : y � z � x}
is contained in B. Then, X is monotonically normal if and only if the
neighbornet T(x) = ↓ x is halvable.

Proof. We need to show if S halves T(x) = ↓ x, then X is monotonically
normal. For any x in B ∈ Bx, where B ⊆ ↓ x, define G(x, B) = S(x) ∩ B.
This is an operator of monotone normality for X: suppose z ∈ G(x, B) ∩
G(x′, B′). Then S(x) meets S(x′), and suppose without loss of generality
that x′ ∈ ↓ x, that is, x′ � x. As z ∈ B ⊆ ↓ x, we have z � x. Hence, [z, x]
is contained in B. But as z ∈ B′ ⊆ ↓ x′, we have z � x′. Hence x′ is in
[z, x], and so in B. �

Observe that any subspace A ⊆ ∇(ω + 1)ω with the partial order ⊆∗
and basic neighborhoods NA(x, f ) satisfies (1) and (2) of the above lemma.
Hence, we deduce that ∇(ω + 1)ω is monotonically normal if and only if
we can halve the neighbornet T(x) = N(x, c0).

Theorem 79. Let A be any subset of ω⊂ω with the property that for almost
compatible functions x, y ∈ A, x ∨ y ∈ A. Then the following are equiva-
lent: (1) ∆(A) holds, (2) ∇∗(A) is monotonically normal, and (3) ∇(A) is
monotonically normal.

Proof. Since monotone normality is hereditary, (3) implies (2). We prove,
(2) implies (1) and then (1) implies (3).

Assume that ∇∗(A) is monotonically normal. By Lemma 78, the neigh-
bornet T(x) = NA(x, c0) is halvable with witness S. For every x ∈ A, let
fx ∈ ω

ω so NA(x, fx) ⊆ S(x). We check that F(x) = fx satisfies ∆(A):
if x, y ∈ A are as in Definition 72, then x < NA(y, c0) and y < NA(x, c0),
though x ∨ y ∈ NA(x, c0) ∩ NA(y, c0). By halvability, S(x) ∩ S(y) = ∅,
hence NA(x, fx) ∩ NA(y, fy) = ∅. Hence x ∨ y is not in NA(x, fx) or
NA(y, fy), suppose not in NA(x, fx). Since x ⊆∗ x ∨ y, Lemma 64 applie so
x ∨ y < NA(x, fx) if and only if y \ x =∗ (x ∨ y) \ x ≯∗ fx, as desired.

Now assume ∆(A) holds with witness F : A → ωω. Let S(x) =
N∇(A)(x, F(x)), we check that S halves T(x) = N∇(A)(x, c0): pick x, y ∈
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∇(A). If one of x or y is cω or belongs to ωω, halvability is easily checked.
Suppose x, y ∈ ω⊂ω. If x ⊆∗ y (Remark 65 (i)), by Lemma 64 y < S(x) if
and only if S(x) ∩ S(y) = ∅. If ∃∞n ∈ dom(x) ∩ dom(y) so x(n) , y(n)
(Remark 65 (ii)), clearly S(x) ∩ S(y) = ∅. Finally, if x, y are as in ∆(A)
(Remark 65 (iii)), then x \ y ≯∗ F(y) or y \ x ≯∗ F(x). In either case,
Remark 66 indicates N(x, F(x)) ∩ N(y, F(y)) = ∅, and we are done. �

Example 80. A space X and a subspace A ⊆ X obtained from X by
removing all of its isolated points plus one limit point such that A is
paracompact, but X is not.

Proof. Consider an almost disjoint family A on ω of size c. Let X be the
space Ψ(A) = A ∩ω (see Chapter 3). The set of isolated points in X is ω
and every point in A is an accumulating point in X . Fix x ∈ A and let A
be X \ ({x} ∪ ω) = A \ {x}. Then, A is the desired subspace.

Observe that A is a closed discrete space, hence paracompact. However,
since |A| = c, X is not normal (hence, not paracompact) by the next result
known as the Jones’ Lemma. �

Lemma 81 (Jones, [13]). Let X be a separable and normal space. Then
for any set D that is a closed and discrete set in X , we have 2|D | ≤ 2ω.

4.4 Embeddings into Nabla Products

§ 4.4.1 Metrizable Factors

This section strongly involves the property of monotone normality. The
key result of this section is the following.

Theorem 82. Let {Xn : n ∈ ω} be a family of metrizable spaces. If ∇nXn
is monotonically normal then it is hereditarily paracompact.

This follows immediately from the next proposition and Balogh and
Rudin’s characterization of paracompactness in monotonically normal spa-
ces:
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Theorem 83 ( [1]). Suppose X is a monotonically normal space. Then, X
is paracompact if and only if X does not contain closed copies of stationary
subsets of regular uncountable cardinals.

Proposition 84. Let {Xn : n ∈ ω} be a family of metrizable spaces and S
a stationary subset of a regular uncountable cardinal κ. Then S doesn’t
embed into ∇nXn.

Proof. Suppose, for a contradiction, ϕ : S → ∇nXn is an embedding.
We split the proof in two cases. If κ 6 d, then any α in Lim(S) has
c f (α) , d, so S, and A = ϕ(S), have limit points but no points of character
d, contradicting Lemma 71. If κ > d, by Lemma 85 the map ϕ is eventually
constant, thus it cannot be an embedding. �

Lemma 85. Let {(Xn, dn) : n ∈ ω} be a family of metric spaces and S a
stationary subset of a regular uncountable cardinal κ > d. Then, every
continuous function ϕ : S → ∇nXn is eventually constant.

Proof. For each n ∈ ω, write Bn(a, ε) for the ε-ball around a in Xn
with respect to the metric dn. Let { fµ : µ < d} ⊆ ωω be a dominat-
ing family. Then, for every x ∈ ∇nXn and µ < d, define N(x, fµ) =
∇n∈ωBn(x(n), 1/ fµ(n)); {N(x, fµ) : µ < d} is a local basis at x.

Fix, for the moment, µ < d. For every α ∈ Lim(S), pick gµ(α) <
α, gµ(α) ∈ S, such that ϕ[(gµ(α), α]] ⊆ N(ϕ(α), 2 fµ). Then, gµ is a
regressive function and by the Pressing Down Lemma, there is an αµ in S
and stationary S′ = S′µ ⊆ S such that ∀β ∈ S′ (gµ(β) = αµ).

We claim that for all δ, γ > αµ, δ, γ ∈ S, we have ϕ(γ) ∈ N(ϕ(δ), fµ):
to see this, take any δ and γ strictly larger than αµ in S. Since S′ is sta-
tionary, there is a β in Lim(S′) with β > max{γ, δ}. Then, {ϕ(γ), ϕ(δ)} ⊆
ϕ[(gµ(β), β]] ⊆ N(ϕ(β), 2 fµ). So by definition of N(ϕ(β), 2 fµ), for all
n ∈ ω we have ϕ(γ)(n), ϕ(δ)(n) ∈ Bn(ϕ(β)(n), 1/2 fµ(n)). Then by symmetry
and the triangle inequality, for all n, we see dn(ϕ(γ)(n), ϕ(δ)(n)) < 1/ fµ(n).
Now by definition of N(ϕ(δ), fµ) we have ϕ(γ) ∈ N(ϕ(δ), fµ), as claimed.

Now, as we let µ run over all values below d, since κ > d, there is
a least upper bound α∞ of {αµ : µ < d} in S. Notice that by the claim
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above, for any µ < d and γ, δ ∈ S \ α∞, we have ϕ(γ) ∈ N(ϕ(δ), fµ), and
so ϕ(γ) = ϕ(δ). Hence ϕ is constant from α∞ on, as desired. �

§ 4.4.2 Non-Metrizable Factors

In this section we check some embeddings into nabla products of non-
metrizable factors.

Proposition 86. There is an embedding ϕ from the stationary set Eω2
ω1 =

{α ∈ ω2 : c f (α) = ω1} to∇(ω2+1)ω. Moreover, ϕ[Eω2
ω1 ] = ϕ[E

ω2
ω1 ]∪{cω2}.

Proof. Define ϕ : Eω2
ω1 → ∇(ω2 + 1)ω as ϕ(α) = cα, where cα is the

constant α function. Clearly, ϕ is injective. We will show that it is open
and continuous: for any α ∈ Eω2

ω1 and open U = (β, α] ∩ Eω2
ω1 , we see that

ϕ[U] is open in ϕ[Eω2
ω1 ]. Take cγ ∈ ϕ[U], then theV = ϕ[Eω2

ω1 ]∩∇(β, γ]
ω is

an open set in ϕ[Eω2
ω1 ] contained in ϕ[U]. Now, to see that ϕ is continuous,

let V = N(cα, f ) be a neighborhood of ϕ(α), where f ∈ αω. Since
c f (α) = ω1, there is a supremum α′ = sup{ f (n) : n ∈ ω} < α. Hence,
ϕ[(α′, α] ∩ Eω2

ω1 ] ⊆ V .

It remains to prove ϕ[Eω2
ω1 ] = ϕ[Eω2

ω1 ] ∪ {cω2}. To see cω2 ∈ ϕ[E
ω2
ω1 ]

take f ∈ ωω2 . If α
′ = sup{ f (n) : n ∈ ω}, then {cα : α > α′} ⊆ N(cω2, f ).

So, ϕ[Eω2
ω1 ] ∩ N(cω2, f ) , ∅. Now, fix x < ϕ[Eω2

ω1 ] ∪ {cω2}. We will
prove x < ϕ[Eω2

ω1 ]. There are two options for x, either x is a constant
function or not. If x is constant, then x = cβ, for some β with c f (β) < ω1.
If x is not constant, then there are disjoint infinite sets N = {nk : k ∈
ω}, M = {mk : k ∈ ω} ⊆ ω such that for n ∈ N,m ∈ M , x(n) , x(m).
For the first case, if c f (β) = 1, then x is isolated and we’re done. If
c f (β) = ω, let {γn : n ∈ ω} be cofinal in β. Define f (n) = γn and
note that cα < N(x, f ), for any α ∈ Eω2

ω1 . Assume now the second case
holds. Then, for every k ∈ ω there are αk 6 x(nk) and βk 6 x(mk) such
that (αk, x(nk)] ∩ (βk, x(nk)] = ∅. Consider f (n) = αk , if n = nk ∈ N ,
f (n) = βk , if n = mk ∈ M and f (n) = 0, otherwise. It is easy to check that
ϕ[Eω2

ω1 ] ∩ N(x, f ) = ∅. This concludes the proof. �
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If λ, κ are cardinals, denote by D(κ) the discrete space of size κ and
Lλ(κ) = D(κ) ∪ {κ}, where neighborhoods around κ have the form {κ} ∪
(D(κ) \ C) and C ⊆ D(κ) has size less < λ. Write A(κ) for Lω(κ), the
one-point compactification of D(κ), and L(κ) = Lω1(κ) for the one-point
Lindelofication of D(κ).

Lemma 87. For any n ∈ ω,

1. Lωn(ωn) embeds into ∇(ωn + 1)ω, and

2. L(ωn) embeds into ∇A(ωn)
ω.

Proof. (1) for every isolated point α ∈ ωn + 1, consider cα ∈ ∇(ωn + 1)ω
the constant α function. Note that cα is isolated. Observe that every
neighborhood N(cωn, f ), where f ∈ ωωn , contains all but < ωn many
elements cα. Hence, {cα : α is isolated in ωn} ∪ {cωn} is homeomorphic
to Lωn(ωn).

For (2), we check that {cα : α ∈ D(ωn)} ∪ {cωn} ⊆ ∇A(ωn)
ω is

homeomorphic to L(ωn). Every cα is isolated. Observe that a neighborhood
around cωn has the form N(cωn, 〈Gk〉k) = ∇k(A(ωn) \ Gk), where Gk ⊆

D(ωn) is finite. Hence, for every α outside the countable set
⋃

k∈ω Gk , it
happens cα ∈ N(cωn, 〈Gk〉k). �

4.5 ∆-like Principles

In this section we define other combinatorial statements similar to ∆ for
countable nabla products when the factors are metrizable, ordinals and one-
point compactifications of a discrete set. Hence, ∆ is the core principle
among the statements we will present. The motivation is proving that these
statements are equivalent to the monotone normality of the corresponding
nabla products. This establish a hierarchy of monotone normality on the
class of countable nabla products for certain type of factors.
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§ 4.5.1 Metrizable Factors

For this section, {(Xn, dn) : n ∈ ω} will be a family of metric spaces.
For x, y ∈ ∇nXn and f ∈ ωω, define N(x, f ) = ∇nB(x(n), 1/ f (n)) and
M(x, f ; y) = {n ∈ ω : y(n) < B(x(n), 1/ f (n))}. If x(n) is isolated, declare
1/ f (n)= 0, that is B(x(n), 1/ f (n)) = {x(n)}.
Definition 88. Let {(Xn, dn) : n ∈ ω} be a family of metric spaces and
R ⊆

∏
n Xn be a maximal family of representative elements of ∇nXn. Then

∆(Xn,dn)n is the statement: there is F : R × ωω → ωω, write fx := F(x, f ),
such that for any (x, f ), (y, g) ∈ R×ωω for which M(x, f ; y) and M(y, g; f )
are almost disjoint infinite sets, then 1/ fx(n)+

1/gy(n)< dn(x(n), y(n)) holds
for infinitely many n’s in ω.
Proposition 89. ∆(Xn,dn)n holds if and only if∇nXn is monotonically normal.

Proof. =⇒) Let F witness of ∆(Xn,dn)n and define G : ∇nXn × B → τ as
G(x, N(x, f )) = N(x,max{2 f , fx}), where B is a base for the topology τ
of ∇nXn. Here, we are assuming that for any elements a, b in the same
equivalent class of ∇nXn, fa = fb.

We prove that G is a monotone normality operator. First observe that
x ∈ N(x,max{2 f , fx}) ⊆ N(x, f ). Now, to prove the second property
of monotone normality, let x, y ∈ ∇nXn, f , g ∈ ωω and assume that
y < N(x, f ) and x < N(y, g). We have to prove that N(x,max{2 f , fx}) ∩

N(y,max{2g, gy}) = ∅. There are three cases for the sets M(x, f ; y) and
M(y, g; x):

• M(x, f ; y) or M(y, g; x) is finite: if M(x, f ; y) is finite, then by its
definition, y(n) ∈ B(x(n), f (n)) for all but finitely many n ∈ ω.
Hence, y ∈ N(x, f ) which is not possible by our assumption.

• M(x, f ; y) ∩ M(y, g; x) is infinite: let Z = M(x, f ; y) ∩ M(y, g; x).
Then y(n) < B(x(n), f (n)) and x(n) < B(y(n), g(n)), for n ∈ Z . By
triangle inequality, B(x(n), 2 f (n))∩B(y(n), 2g(n)) = ∅, n ∈ Z . Thus,
the sets N(x,max{2 f , fx}) and N(y,max{2g, gy}) are disjoint.

• M(x, f ; y), M(y, g; x) are infinite almost disjoint sets: by ∆(Xn,dn)n ,
for infinitely many n ∈ ω, 1/ fx(n)+

1/gy(n)< dn(x(n), y(n)). This implies
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that B(x(n), fx(n)) ∩ B(y(n), gy(n)) = ∅ for infinite n’s, and implies
N(x,max{2 f , fx}) ∩ N(y,max{2g, gy}) = ∅.

⇐=) Now, assume that ∇nXn is monotonically normal with operator G.
Define F : R×ωω → ωω as F(x, f ) = fx, where N(x, fx) ⊆ G(x, N(x, f )).

We prove that F witnesses ∆(Xn,dn)n . Let (x, f ), (y, g) such that the sets
M(x, f ; y) and M(y, g; f ) are infinite almost disjoint, thus, y < N(x, f ) and
x < N(y, g). SinceG is an operator of monotone normality, G(x, N(x, f ))∩
G(y, N(y, g)) = ∅, and N(x, fx) ∩ N(y, gy) = ∅. Hence, B(x(n), fx(n)) ∩
B(y(n), gy(n)) = ∅ for infinitely many n ∈ ω, and for these n’s we have the
inequality 1/ fx(n)+

1/gy(n)< dn(x(n), y(n)), as desired. �

For a sequence of metrizable spaces {Xn : n ∈ ω}, ∆(Xn)n means
‘∆(Xn,dn)n holds for some choice of compatible metrics dn’. Abbreviate
∆(X)n to ∆X . Also, for a class C of spaces, ∆C means ‘∆(Xn)n holds for any
sequence (Xn)n of spaces from C’.

WriteM for the class of all metrizable spaces,M(κ) for the class of all
metrizable spaces of cardinality ≤ κ, and SM for the class of separable
metrizable spaces. The paragraph after Definition 2.3 in [33] mention
that any metrizable separable space (second countable) is isomorphic to a
subset of H(ω1). Thus, if {Xn : n ∈ ω} is a family of separable metrizable
spaces, then ωω,∇nXn ⊆ H(ω1).

Proposition 90.

• d = b implies ∆M ,

• d = c implies ∆M(c), and

• MH implies ∆SM .

Proof. We will prove each fact separately.

For d = b: Let { fα : α < d} be an scale on ω such that fα dominates
{2 fβ : β < α}. Let ↓ fα = { f ∈ ωω : f 6∗ fα} and define the function
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F : ∇nXn × ω
ω → ωω as F(x, f ) = 2 fα if and only if α is the minimum

such that f ∈↓ fα.

Pick (x, f ), (y, g) ∈ ∇nXn × ω
ω, such that M(x, f ; y) and M(y, g; f )

are infinite almost disjoint. We may assume that f ∈↓ fα, g ∈↓ fβ, for
minimum β, α and β 6 α. Then, g 6∗ fβ 6∗ 2 fβ 6∗ fα. Now, n ∈
M(y, g; x) implies x(n) < B(y(n), g(n)) implies 1/g(n)< dn(y(n), x(n)) im-
plies 1/2g(n)+

1/2 fα(n)< dn(y(n), x(n)) implies 1/2 fβ(n)+
1/2 fα(n)< dn(y(n), x(n)).

Since M(y, g; x) is infinite, we are done.

For d = c: Since Xn is metrizable separable, then |Xn | = |∇nXn | = d.
Enumerate ∇nXn × ω

ω = {(xα, fα) : α < d}. Fix α < d and suppose
F is defined on {(xβ, fβ) : β < α} with F(xβ, fβ) >∗ 2 fβ and satisfies
∆(Xn)n . The sets F = {2 fβ : β < α} and A = {M(xβ, fβ; xα) : β < α}
have size less than d. Proposition 67 applies, so there is f ′α ∈ ω

ω such
that 2 fβ � M(xβ, fβ; xα) ≯∗ f ′α, β < α. Define F(xα, fα) = 2 max{ fα, f ′α}.
This construction defines F on ∇nXn × ω

ω. To see that F witness ∆(Xn)n

pick (xβ, fβ), (xα, fα) so M(xβ, fβ; xα) and M(xα, fα; xβ) are infinite almost
disjoint, and assume β < α. Let M = {n ∈ M(xβ, fβ; xα) : f ′α(n) > 2 fβ}.
Hence, for n ∈ M , xα(n) < B(xβ(n), 1/ fβ(n)) and f ′α(n) > 2 fβ. It is clear that
for n ∈ M , 1/F(xβ, fβ)(n)+

1/F(xα, fα)(n)< dn(xβ(n), xα(n)).

For MH: Let Hα be as in MH and fα be a witness that Hα ∩ ω
ω is

not dominant. We may assume that Hα ⊆ Hα+1 and that fα ∈ Hα+1.
Define F : ∇nXn × ω

ω → ωω as F(x, f ) = 2 fα if and only if α is the
least such that (x, f ) ∈ Hα, this is possible since ∇nXn × ω

ω ⊆ H(ω1).
Now, if (x, f ), (y, g) ∈ ∇nXn × ω

ω, then (x, f ) ∈ Hβ, (y, g) ∈ Hα, form
some β 6 α. Notice that 2g, 2 f , M(x, f ; y) and M(y, g; f ) are in Hα, and
for any h ∈ Hα ∩ ω

ω and a ∈ Hα ∩ [ω]
ω, h � a ≯∗ fα. Use similar

arguments from previous cases to conclude that for infinitely many n ∈ ω,
1/F(x, f )(n)+

1/F(y,g)(n)< dn(x(n), y(n)). �

§ 4.5.2 Ordinal Factors

Fix a limit ordinal α. For any x ∈ α we have two cases: (i) there is βx ∈ α
such that x ∈ (βx, βx +ω], in which case x is isolated or x = βx +ω, or (ii)
x is a limit of limits. If (i) holds, write Sx = (βx, βx + ω].
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Definition 91. Let α be any ordinal and x, y ∈ ∇(α + 1)ω. We say that
x, y switch if there are infinite sets Mx, My ⊆ ω such that for n ∈ My,
x(n) < y(n) ∈ Lim(α + 1), for n ∈ Mx, y(n) < x(n) ∈ Lim(α + 1), and
|{n ∈ ω : x(n), y(n) are isolated and x(n) , y(n)}| < ω.
Remark 92. If x, y ∈ ∇(α+1)ω switch, then x < N(y, c0) and y < N(x, c0),
where c0 is the constant 0 function.

Proof. For any n ∈ My, x(n) < y(n) ∈ Lim(α + 1), Then, y(n) < [0, x(n)],
n ∈ My. Hence y < N(x, c0). The other case is similar. �

Definition 93. ∆[α] is the statement: there is F : ∇(α + 1)ω → αω such
that if x, y ∈ ∇(α + 1)ω switch, then y(n) < F(x)(n) < x(n) for infinitely
many n ∈ Mx or x(n) < F(y)(n) < y(n) for infinitely many n ∈ My (the
conclusion implies that N(x, F(x)) ∩ N(y, F(y)) = ∅).

Proposition 94. The following are equivalent: (i)∆[α] holds, (2)∇(α+1)ω
is halvable, and (3) ∇(α + 1)ω is monotonically normal.

Proof. (3) implies (2) is clear. For (1) implies (3), define H : ∇(α+1)ω →
αω as H(x)(n) = x(n) if x(n) is isolated, H(x)(n) = min Sx, if x = βx +ω,
andH(x)(n) = 0, if x is a limit of limits; recall Sx = (βx, βx+ω]. Nowdefine
G : ∇(α+1)ω×αω asG(x, f ) = N(x, fx), where fx = max{ f ,H0(x), F(x)}.

We prove that the operator G is monotonically normal: pick elements
(x, f ), (y, g) ∈ ∇(α+1)ω×αω. Let N0 = {n ∈ ω : x(n) = y(n)}, N1 = {n ∈
ω : x(n) < y(n)} and N2 = {n ∈ ω : y(n) < x(n)}. There are three cases
for x and y, (i) there are infinitely many n ∈ N1 where y(n) ∈ Lim(α) and
infinitely many n ∈ N2 where x(n) ∈ Lim(α), (ii) there is N ⊆ N1 infinite
such that x(n) is isolated, or similarly for y, and (iii) N2 is empty and for
every n ∈ N1, y(n) ∈ Lim(α) or vice versa for N1, N1 and x. If (i) holds, then
x and y switch, hence ∆[α] applies and G(x, f ) ∩G(y, g) = ∅. If (ii) holds,
then for n ∈ N , [0, y(n)]∩{x(n)} = ∅, hence G(x, f )∩G(y, g) = ∅. Finally,
assume (iii). Hence, G(x, f ) ∩ G(y, g) , ∅ implies x ∈ G(y, g) ⊆ N(y, g).

For (2) implies (1), consider the neighbornet T(x) = N(x, c0). Then,
there is a neighbornet S that halves T . For x ∈ ∇(α + 1)ω, let F(x)
such that N(x, F(x)) ⊆ S(x). To see that F satisfies ∆[α], pick x, y that
switch. By Remark 92, x < N(y, c0) and y < N(x, c0), hence by halvability,
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N(x, F(x)) ∩ N(y, F(y)) = ∅. It is clear that y(n) < F(x)(n) < x(n) for
infinitely many n ∈ Mx or x(n) < F(y)(n) < y(n) for infinitely many
n ∈ My. �

§ 4.5.3 A(κ) Factors

Wemay redefine that two elements switch, now for elements x, y ∈ ∇A(κ)ω,
if x(n) ∈ D(κ), y(n) = κ and y(n) ∈ D(κ), x(n) = κ for infinitely many
n ∈ ω, and |{n ∈ ω : x(n), y(n) ∈ D(κ) and x(n) , y(n)}| < ω. Denote by
D(κ)⊂ω the set of partial functions from ω to D(κ) with infinite-coinfinite
domain.
Definition 95. ∆[A(κ)] is the statement: there is F : D(κ)⊂ω → ([κ]<ω)ω
such that for x, y ∈ D(κ)⊆ω with (i) |x \ y | = |y \ x | = ω and (ii) {n ∈
dom(x) ∩ dom(y) : x(n) , (n)} is finite, then (x \ y)(n) ∈ F(y)(n) or
(y \ x)(n) ∈ F(x)(n) for infinitely many n ∈ ω.

Let ∇∗A(κ) = {x ∈ ∇A(κ)ω : x ∈ D(κ)⊆ω}.

Corollary 96. ∆(A(κ)) holds if and only if∇A(κ)ω is monotonically normal
if and only if ∇∗A(κ) is monotonically normal.

Proof. The proof is similar to Theorem 79 and uses Lemma 78. �

Corollary 97. The following are equivalent: ∇(ω + 1)ω is monotonically
normal, ∆ holds, ∆ω+1 holds, ∆[ω] holds and ∆[A(ω)] holds.

4.6 Non-Hereditarily Normal Nabla Products

In this section we check some nabla products which are (consistently)
non-hereditarily normal. We answer Roitman’s Question 106: Is ∇A(ω1)

ω

consistently non-hereditarily normal? Also, we discuss a gap in the proof of
a result in [33], Theorem 105.3, and give a counterexample. The following
result can be found in [34], and show that ∆[A(ω2)] is false. However, we
give another proof that involves the spaces L(κ) from Section 4.4.2.

Theorem 98 (Roitman). ∇A(ω2)
ω is not hereditarily normal.
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Proof. Note that L(ω2) is embedded into ∇A(ω2)
ω and ∇A(ω2)

ω is home-
omorphic to its square. Then, Lemma 100 applies. �

Lemma 99. For any α < ω2 choose Aα ∈ [ω2]
ω. Then there is δ > ω1

such that for any α < δ, Aα ⊆ δ.

Proof. Let M ≺ H(ω3) be an elementary submodel of size ω1 such that
{Aα : α < ω2} ∈ M . Let δ = M ∩ ω2 ∈ ω2. Now, for α ∈ M , M thinks
‘Aα is contained in M’, and so does H(ω3). �

Lemma 100. L(ω2)
2 is not hereditarily normal.

Proof. We check that Y = L(ω2) × L(ω2) \ {(ω2, ω2)} is not normal. Note
that the sets H = (L(ω2) \ {ω2})× {ω2} and K = ({ω2}× L(ω2)) \ {ω2} are
disjoint and closed inY . By hypothesis, there areU,V separating H and K .
So, for every (α, ω2) ∈ H choose Aα ∈ [D(ω2)]

ω so {α}×(L(ω2)\Aα) ⊆ U,
and similarly elements (ω2, β) ∈ K are choosing sets Bβ so (L(ω2) \ Bβ) ×

{β} ⊆ V . By Lemma 99, there is δ > ω1 so for every α < δ, if (α, ω2) ∈ H,
then Aα ⊆ δ. Pick β > δ. Since δ is uncountable and Bβ countable, there
is α ∈ δ \ Bβ. Hence {α} × (L(ω2) \ Aα) ∩ (L(ω2) \ Bβ) × {β} , ∅. �

The following result shows that ∆[ω2] is false.

Theorem 101. The space ∇(ω2 + 1)ω is not hereditarily normal.

Proof. From Proposition 86, let S = Eω2
ω1 . Then, S and S = S ∪ {cω2}

embed into ∇(ω2 + 1)ω. Now, Lemma 102 applies. �

Lemma102. Let S be a stationary subset of a regular uncountable cardinal
κ. Then, S × S (as subspace of κ2) is not normal, where S = S ∪ {κ}.

Proof. Consider the diagonal H = {(α, α) : α ∈ S} and the top edge
K = {(α, κ) : α ∈ S}. Note that H and K are closed disjoint sets. Now,
if U,V are neighborhoods of H,K , respectively, let g(α) ∈ α ∩ S so that
[g(α), α] × [g(α), α] ⊆ U (whenever we write an interval [θ, λ] we mean
S ∩ [θ, λ]). Since g is a pressing down function, there is some δ ∈ S and
there is a stationary set S0 ⊆ S such that all points in S0 are mapped to δ
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by g. Specifically, for each α ∈ S0, we have [δ, α] × [δ, α] ⊂ U. Choose
β ∈ S0 \ δ an isolated point (every stationary set has isolated points). We
have (β, ω1) ∈ K ⊂ V . Choose γ > δ such that {β} × [γ, ω1] ⊂ V . Choose
α ∈ S0 such that α > max{γ, β}. We have the following set inclusions:
{β} × [γ, α] ⊂ [δ, α] × [δ, α] ⊂ U and {β} × [γ, α] ⊂ {β} × [γ, ω1] ⊂ V .
Thus U ∩ V , ∅. Hence, H and K cannot be separated by open sets. �

Definition 103. A space X is κ-metrizable if it has an open base B =
{Ux,α : α < κ, x ∈ X} so that {Ux,α : α < κ} is a neighborhood base at x,
and given two points x, y and two ordinals α 6 β < κ then (i) if y ∈ Ux,α
then Uy,β ⊆ Ux,α; and (ii) if y < Ux,α then Uy,β ∩Ux,α = ∅.
Remark 104. Suppose X is κ-metrizable with basis {Ux,α : α < κ} at x,
x ∈ X . Then for every α < κ, {Ux,α : x ∈ X} is pairwise disjoint.

A κ-metrizable space is paracompact and monotonically normal, hence
hereditarily normal. The following results are Proposition 6.3, Theorem
6.1 and Proposition 6.4 in [33].

Theorem 105 (Roitman). 1. If b = d then the nabla product of count-
ably many compact metrizable spaces is b-metrizable.

2. If b = d < ℵω and each Xn has weight 6 d then ∇nXn is b-metrizable.

3. Let κ < b = d < ℵω. If the nabla product of countably many spaces
of weight κ is b-metrizable, then the nabla product of countably many
spaces of weight κ+ is b-metrizable.

Part 3 implies part 2 of previous theorem by finite induction. However,
Roitman’s proof of part 2 contains a gap. She used part 1 to upgrade
a construction of a basis witnessing κ-metrizability, and the construction
required first countability, such thing cannot be assured in the process.

Here is a counterexample to previous theorem. The compact spaces
A(ω2) and (ω2 + 1) have weight ω2, but ∇A(ω2)

ω and ∇(ω2 + 1)ω can not
be κ-metrizable as shown in Theorem 98 and Theorem 101. This shows
that Theorem 105.2 fails (Theorem 105.3 fails as well, but Theorem 105.1
is true).
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§ 4.6.1 ∇A(ω1)
ω and ∇(ω1 + 1)ω

In this section we prove Corollary 107, which shows that ∆[A(ω1)] and
∆[ω1] are independent from ZFC. This solves the following:
Question 106 (Roitman, [34]). Is ∇A(ω1)

ω consistently non-hereditarily
normal?

Corollary 107. If b > ω1, then ∇A(ω1)
ω and ∇(ω1 + 1)ω are non heredi-

tarily normal.

Proof. The spaces L(ω1) and ∇(ω + 1)ω embed into both ∇A(ω1)
ω and

∇(ω1 + 1)ω. Hence, Theorem 108 applies. �

We weill prove Theorem 108 with help of Lemma 109. For this, we are
going to use a well known object in Descriptive Set Theory, the so called
K-Luzin sets. A subset L of ωω is a K-Luzin set if it is uncountable and
meets every infinite compact of ωω (ωω with the product topology) in a
countable set, or equivalently, for every g ∈ ωω, the set { f ∈ L : f 6∗ g}
is countable. Observe that any subspace of K-Luzin is K-Luzin, hence the
existence of a K-Luzin set is equivalent to b = ω1. Also, |L | 6 d.

Denote by X(ωω, 6∗) the subspace ωω ∪ {cω} of ∇(ω + 1)ω and write
N(cω, f ) = {g ∈ ωω : g >∗ f } ∪ {cω}, f ∈ ωω, the neighborhoods around
cω in X(ωω, 6∗).

Theorem 108. The space L(ω1) × X(ωω, 6∗) is hereditarily normal if and
only if b = ω1.

Proof. We prove the equivalence ‘L(ω1)×X(ωω, 6∗) is hereditarily normal
if and only if there is a K-Luzin set’.

For the sufficiency, let p = (ω1, cω) be the top-right corner of the
given product. In X′ = L(ω1) × X(ωω, ≤∗) \ {p} the top edge, T =
L(ω1)×{cω}\{p}, and right edge, R = {ω1}×X(ωω, ≤∗)\{p}, are disjoint
closed sets. Hence there are disjoint open U and V such that T ⊆ U and
R ⊆ V . For each α < ω1, pick fα such that {α} × N(cω, fα) ⊆ U. For each
g in ωω pick countable Cg ⊆ ω1 such that (L(ω1) \ Cg) × {g} ⊆ V .
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Let A = { fα : α < ω1}. The choice of the fα’s can be in such way
so they are all different, so the enumeration of A is injective. We check
that A is K-Luzin. Take any g in ωω, then for any α not in Cg, as U and
V are disjoint, (α, g) is not in {α} × N(cω, fα), so ¬( fα <∗ g). Hence,
{α ∈ ω1 : fα ≤∗ g} is contained in Cg, and so is countable.

Now, the necessity follows from Lemma 109 and the fact that L(ω1) ×
X(ωω, ≤∗) is regular and points in (L(ω1) \ {ω1}) × ω

ω are isolated. �

Lemma 109. Suppose A ⊆ T, B ⊆ R (T, R as in the proof of previous
theorem). If there is a K-Luzin set, then there are sets U,V open in
L(ω1) × X(ωω, ≤∗) separating A and B.

Proof. If A = {(α, cω) : α ∈ S}, for some S ⊆ ω1, is countable, the result
is clear. Hence, suppose S is uncountable. Let L = { fα : α ∈ S} ⊆ ωω

be a K-Luzin set such that the enumeration is bijective. For every g ∈ ωω,
Cg = {α ∈ S : fα 6∗ g} is countable. Hence U =

⋃
α∈S{α} × N(cω, fα)

and V =
⋃
(g,ω1)∈B(L(ω1) \ Cg) × {g} work. �

4.7 Subspaces of ∇(ω + 1)ω and Restrictions on ∆

In this section we mention some results in [32] and [33] concerning to
subspaces of ∇(ω + 1)ω and their paracompactness. We also study the
notion of tangle-free filter due to Gartside (see [15]), and we connect it to a
restriction on ∆ which is true in ZFC. Finally, we introduce the principle Λ
which is a weaker variant of∆ and characterize basic ultraparacompactness
of ∇∗. We begin stating the machinery.
Definition 110. A subspaceY of X is strongly separated if there is a discrete
open collection U = {Uy : y ∈ Y } with Y ∩ Uy = {y}. We say that U
strongly separates Y .

If x ∈ ∇∗, define x⊥(n) = x(n), if x(n) 6 x(m) for m ∈ dom(x) \ n, and
x⊥(n) = ω, otherwise. Let x0 = x⊥ and xn+1 = (x \ xn)

⊥. For n ∈ ω, let
∇n = {x ∈ ∇∗ : xn+1 = cω} and ∇ω = ∇∗ \

⋃
n ∇n. Note that ∇0 is the set

of non-decreasing partial functions in ∇∗ (x ∈ ∇0 if and only if x0 =
∗ x)

and x ∈ ∇n if and only if x =∗
⋃

i6n xi.
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Theorem 111 (Roitman, [32]). Each ∇n ⊆ ∇
∗ is discrete. The set INC =

∇0 is strongly separated.

Observe that the set INC being strongly separated implies the existence
of a function F : INC → ωω so N(x, F(x)) ∩ N(y, F(y)) = ∅, for x , y
in INC. In particular, x and y may satisfy the conditions of ∆. In other
words, ∆(INC) is true in ZFC. We show now that ∆(INC) implies another
condition on ∆.
Definition 112. The statement ∆[AD] is: there is F : ω⊂ω → ωω such that
for x, y ∈ ω⊂ω with |dom(x) ∩ dom(y)| < ω (x, y almost disjoint), then
x ≯∗ F(y) or y ≯∗ F(x).

Lemma 113. ∆(INC) implies ∆[AD].

Proof. For x ∈ ω⊂ω consider any operation converting x to a non-decreasing
partial function x′with dom(x) = dom(x′) (for example, x′(n) = (

∑
i6n x(i))

iff n ∈ dom(x)). Let F′ be a witness of ∆(INC).

Let F : ω⊂ω → ωω given by F(x) = F′(x′). Now, pick almost
disjoint x, y ∈ ω⊂ω. We claim that x ≯∗ F(y) or y ≯∗ F(x): since
dom(x)∩dom(y) is finite, dom(x′)∩dom(y′) is finite aswell. Since∆(INC)
applies, x′ =∗ x′ \ y′ ≯∗ F′(y′) = F(y) or y′ =∗ y′ \ x′ ≯∗ F′(x′) = F(x).
Also, x 6∗ x′ and y 6∗ y′. Thus, x =∗ x \ y ≯∗ F(y) or y =∗ y \ x ≯∗ F(x),
as desired. �

§ 4.7.1 Tangle Free Filters

Definition 114.We say that a filter F on a set S is tangle-free if there is
T : S → F such that for s, t ∈ S, s < T(t) or t < T(s).

In [15], Gartside related this notion about filters to the monotone nor-
mality of the square of a topological space. He also showed an interesting
example of a topological group, constructed based on a tangle-free filter, all
of whose finite powers are monotonically normal, but which is not linearly
stratifiable.
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Theorem 115 (Gartside). If a space X has monotonically normal square
then every neighborhood filter of a point x in X , considered as a free filter
on X \ {x}, is tangle free.

Gartside believed tangle-freeness has something to do with some in-
stance of ∆. Indeed, we show the following result for the neighborhood
filter Fcω = {N(cω, f ) : f ∈ ωω} of cω in ∇(ω + 1)ω.
Proposition 116. The filter Fcω is tangle-free if and only if ∆[AD] holds.

Proof. Assume that Fcω is tangle-free with witness T : S → Fcω , where
S = ∇(ω+1)ω\{cω}. Define F : ω⊂ω → ωω such thatT(x) = N(cω, F(x)).
We show F witnesses ∆[AD]: suppose x, y ∈ ω⊂ω are almost disjoint. It
is easy to see that ‘x < T(y) or y < T(x)’ if and only if ‘x < N(cω, F(y)) or
y < N(cω, F(x))’ if and only if ‘x =∗ x \ y ≯∗ F(y) or y =∗ y \ x ≯∗ F(x)’.
This prove the first implication.

Now, suppose ∆[AD] holds via F. Replace F for F′ : ω⊂ω → ωω

defined as F′(x)(n) = x(n) + 1, if n ∈ dom(x), and F′(x)(n) = F(x)(n),
otherwise. Define T : S → Fcω given by T(x) = N(cω, F′(x)), if x ∈ ω⊂ω,
and T( f ) = N(cω, f + 1), if f ∈ ωω. We show that Fcω is tangle-free via
T : take a, b ∈ S. Suppose a ∈ T(b), then we have to prove that b < T(a).
We have two cases.

• dom(a) ∩ dom(b) is finite: by ∆[AD], since a >∗ F′(b), then b =∗

b \ a ≯∗ F′(a). This implies b < N(cω, F′(a)) and b < T(a)

• dom(a) ∩ dom(b) is infinite: a ∈ T(b) = N(cω, F′(b)) implies that for
all but finitely many n ∈ dom(a) ∩ dom(b), F′(b)(n) = b(n) + 1 6
a(n) < a(n)+1 = F′(a)(n). This implies b ≯∗ F′(a), hence b < T(a).

This finishes the proof. �

§ 4.7.2 The Principle Λ

Here we present the statement Λ. It is a weaker version of ∆ motivated
by the possibility to be proved in ZFC. We know that ∆ implies that ∇∗
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is basic ultraparacompact. We characterize basic ultraparacompactness by
this Λ principle. Fix a space X and a base B for X . We say that X is (B)
ultraparacompact if every open cover of X has a pairwise disjoint open
refinement (consisting of elements in B). For a nabla product ∇Xn, we just
say that ∇Xn is basic ultraparacompact if it is B ultraparacompact, for the
canonical base B = {N(x, B) : x ∈ ∇Xn, B ∈ B}. Also, if A ⊆ X and
τ is the topology of X , we say that a neighborhnet F : A → τ is nested
over A, if for x, y ∈ A such that y ∈ F(x), then F(y) ⊆ F(x). Recall the
refinementV(U, A, F) constructed in Section 4.3, we will use this process
in the following results.

Lemma 117 (Footnote 14 in [10]). If X is paracompact regular and P-
space, then it is ultraparacompact.

Proof. A regular P-space is 0-dimensional. So, every open coverU of X
has a locally finite refinement V by clopen sets. Enumerate V = {Vα :
α < κ}. ThenW = {Vα \

⋃
β<α Vβ : α < κ} is a disjoint refinement of

V covering X . Since V consist of clopen sets and it is locally finite, the
initial unions

⋃
β<α Vβ are closed. Hence, elements inW are open andW

is the desired refinement. �

Definition 118. Λ is the statement: for every neighbornet F′ : ω⊂ω → ωω

there is A ⊆ ω⊂ω and a nested neighbornet F : A→ ωω refining F′ such
that F witnesses ∆(A) and {N(x, F(x)) : x ∈ A} covers ∇∗.

See above Remark 74 for the construction ofV(U, A, F) from a given
open cover U of ∇∗, A ⊆ ω⊂ω and a neighbornet F refining U. We will
use this construction and related elements in the following proposition.

Proposition 119. Λ holds if and only if ∇∗ is basic ultraparacompact.

Proof. =⇒) Suppose first that Λ holds. LetU be an open cover of ∇∗ and
F′ : ω⊂ω → ωω be a neighbornet refining U. There are A ⊆ ω⊂ω and a
nested neighbornet F : A→ ωω refining F′ with the properties of Λ. Let
V = V(U, A, F). To see that V covers ∇∗, fix z ∈ ∇∗. By Λ, there is
y ∈ A such that z ∈ N(y, F(y)). Now, y was either in Dα or in

⋃⋃
β<αVβ,

for some α < c. If y ∈ Dα, then N(y, F(y)) ∈ Vα and z ∈
⋃
V. If

y ∈
⋃⋃

β<αVβ, then y ∈ N(w, F(w)), for some N(w, F(w)) ∈ Vβ and
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w ∈ A. Since F is nested, z ∈ N(y, F(y)) ⊆ N(w, F(w)) and thus, z ∈
⋃
V,

as claimed.

To prove V is pairwise disjoint, suppose N(x, F(x)), N(y, F(y)) ∈ V,
x, y ∈ A, then x ∈ Dβ, y ∈ Dα, β 6 α. If β = α, we are done, since
Vα is pairwise disjoint. Suppose β < α. Note that y < N(x, F(x)) by the
construction of Vα, and also, it can not happen y ⊆∗ x by the minimality
of α. If x ⊆∗ y, Lemma 64 applies, hence N(x, F(x)) ∩ N(y, F(y)) = ∅.
The remaining case is x, y as in ∆, in which case ∆(A) implies N(x, F(x))∩
N(y, F(y)) = ∅.

⇐=) Now suppose ∇∗ is basic ultraparacompact. If F′ : ω⊂ω → ωω

is a neighbornet, consider the open cover U = {F′(x) : x ∈ ∇∗}. Then,
there is a pairwise disjoint open refinementW = {N(xα, fα) : α < κ} of
V(U, ω⊂ω, F′) by basic sets, for some κ. Let A = {xα : α < κ} ⊆ ω⊂ω

and define F : A→ ωω as F(xα) = fα.

If x, y ∈ A are as in ∆, then N(x, F(x)) ∩ N(y, F(y)) = ∅ implies
x \ y ≯∗ F(y) or y \ x ≯∗ F(x), that is, F witnesses ∆(A). Finally, F is
trivially nested over A because the N(x, F(x))’s are disjoint. �

Remark 120. If X is κ-metrizable, then there is a nested neighbornet over
X .

Proof. Let B = {Bx,α : x ∈ X, α < κ} be a basis for X witnessing that X
is κ-metrizable. For α < κ, define Fα : X → τ as Fα(x) = Bx,α. Observe
that {Fα(x) : x ∈ X} is pairwise disjoint, hence, Fα is nested, for every
α < κ. �

Lemma 121. ∇∗ does not admit nested neighbornets by sets of the form
N(x, f ) over ω⊂ω.

Proof. Split ω = P0 ∪ P1 into disjoint infinite sets. Let {Cα : α < b}

be a linearly ordered chain of infinite subsets of P0, that is, Cα ⊆ Cβ and
|Cβ \Cα | = ω iff α < β. Also, consider {Fα : α < b} an unbounded family
of increasing functions well ordered by 6∗.

Now, suppose for a contradiction that F : ω⊂ω → ωω is nested. We
will construct a compatible ⊆-chain of partial functions whose union is
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well defined: let x0 be any partial function in ωC0 ⊆ ω⊂ω. Supposed
constructed {xβ : β < α}, α < b, with the following properties: if
γ < β, then dom(xβ) = Cβ and xβ ∈ N(xγ,max{ fγ, F(xγ)}) (we can
even have the inclusion xγ ⊆ xβ). In particular, nestedness implies
N(xβ,max{ fβ, F(xβ)}) ⊆ N(xγ,max{ fγ, F(xγ)}). Since ∇∗ is a Pb-space,
consider any element xα ∈

⋂
β<α N(xβ,max{ fβ, F(xβ)}) with dom(xα) =

Cα and if Eα = Cα \
⋃
β<α Cβ is infinite, then xα � Eα >∗ fα. Again, nest-

edness implies N(xα,max{ fα, F(xα)}) ⊆ N(xβ,max{ fβ, F(xβ)}), β < α.

We have constructed a ⊆-chain {xα : α < b} of compatible partial
functions. Hence, the element x =

⋃
α<b xα is a partial function with

dom(x) =
⋃
α Cα ⊆ P0. Now, observe that there is no function g ∈ ωω so

N(x, g) is contained in
⋂
α<b N(xα,max{ fα, F(xα)}) since the family of the

fα’s is unbounded. This contradicts nestedness. �

The two previous observations show that under b = d, ∇(ω + 1)ω is
b-metrizable, but it cannot be b-metrizable by basic open sets of the form
N(x, f ). Moreover, if F is a witness of ∆, then F cannot be nested.
However, there could be subsets A ⊆ ω⊂ω that admit nested neighbornets.

4.8 Miscellaneous on ∆

§ 4.8.1 Utterly Ultra Normal Spaces

In [30], Peter Nyikos used the concept of utterly ultranormal spaces. He
showed that different variants of this notion are equivalent on trees. We
define and show that this variants are equivalent also for some countable
nabla products. For more on utterly ultranormal spaces we refer to the
reader to [5].
Definition 122. A space X is halvable (utterly halvable)[utterly ultra halv-
able] if for any neighborhood assignment U : X → τ, there is a neighbor-
hood assignment V : X → τ refining it such that if V(x) ∩ V(y) , ∅, then
x ∈ U(y) or y ∈ U(x) (x ∈ V(y) or y ∈ V(x))[x ∈ V(y) or y ∈ V(x)].
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Definition 123. A space X with topology τ is utterly monotonically normal
(utterly ultra monotonically normal) if there exists an operatorG : X×τ →
τ such that x ∈ G(x,U) ⊆ U, and ifG(x,U)∩G(y,V) , ∅, then x ∈ G(y,V)
or y ∈ G(x,U) (x ∈ G(y,V) or y ∈ G(x,U)).
Definition 124. A space X is utterly normal (UNO)[utterly ultra normal]
if X is regular and there is a base system {Ux : x ∈ X}, where Ux ⊆ Nx,
and if Ux ∩ Uy , ∅, then x ∈ Uy or y ∈ Ux (plus all members of Ux are
open)[plus all members ofUx are clopen].

Uterlly normal (UNO)[utterly ultra normal] =⇒ monotonically normal
(utterly monotonically normal)[utterly ultra monotonically normal] =⇒
halvable (utterly halvable)[utterly ultra halvable]. Also, ‘utterly ultra P’
=⇒ ‘utterly P’ =⇒ ‘P’, where P can be halvability, normality or
monotone normality.

Proposition 125. Let X be a monotonically normal space. If X is a P-
space, then it is utterly ultra normal.

Proof. Fix a monotonically normal operator G : X × τ → B, where B
is a basis for X . For point and open set (x,U), define G0(x,U) = U and
inductively Gn+1(x,U) = G(x,Gn(x,U)). Note that for every n we have
Gn+1(x,U) ⊆ Gn+1(x,U) ⊆ Gn(x,U). Since X is a P-space, Gω(x,U) =⋂

n∈ω Gn(x,U) is a clopen neighborhood of x. Observe that if A is any
infinite subset of ω then Gω(x,U) =

⋂
n∈ω Gn(x,U) =

⋂
n∈A Gn(x,U).

Declare Ux = {Ux := Gω(x,U) : x ∈ U and U is open}. Notice that
{Ux : x ∈ X} is a base system. We check that it satisfies the conditions of
‘utterly ultra normal’: suppose Gω(x,U) ∩ Gω(x′,U′) , ∅. Then for all n,
Gn+1(x,U) ∩Gn+1(x′,U′) , ∅, and so x ∈ Gn(x′,U′) or x′ ∈ Gn(x,U). Let
A = {n ∈ ω : x ∈ Gn(x′,U′)} and A′ = {n ∈ ω : x′ ∈ Gn(x,U)}. At least
one of A and A′ is infinite. Say, with no loss of generality, A is infinite.
Then, x ∈

⋂
n∈A Gn(x′,U′) = Gω(x,U′), as claimed. �

Corollary 126. Let κ be any cardinal (ordinal), and let Xn be a metrizable
space, n ∈ ω. The following are equivalent:

1. ∆[A(κ)] (∆[κ]) [∆(Xn)n] holds,
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2. ∇A(κ)ω (∇(κ + 1)ω) is halvable

3. ∇A(κ)ω (∇(κ + 1)ω) is utterly halvable

4. ∇A(κ)ω (∇(κ + 1)ω) is utterly ultra halvable,

5. ∇A(κ)ω (∇(κ + 1)ω) [∇nXn] is monotonically normal,

6. ∇A(κ)ω (∇(κ + 1)ω) [∇nXn] is uterly monotonically normal,

7. ∇A(κ)ω (∇(κ + 1)ω) [∇nXn] is utterly ultra monotonically normal,

8. ∇A(κ)ω (∇(κ + 1)ω) [∇nXn] is utterly normal,

9. ∇A(κ)ω (∇(κ + 1)ω) [∇nXn] is UNO,

10. ∇A(κ)ω (∇(κ + 1)ω) [∇nXn] is utterly ultra normal.

Proof. Use Proposition 125 and Corollary 96, Proposition 94, Proposi-
tion 89 for ∆[A(κ)], ∆[κ], ∆(Xn)n , respectively. �

§ 4.8.2 The Scope of ∆

In [34], Roitman proved another interesting result showing that ∆ implies
the nabla products of certain one point compactification factors are basic
ultraparacompact. Herewe show that∆ implies the nabla product of infinite
compact subspaces of R with finitely many limit points is monotonically
normal.

Theorem 127 (Roitman). Assume ∇(ω + 1)ω is basic ultraparacompact.
If κ < ℵω, then ∇A(κ)ω is basic ultraparacompact.

Corollary 128. If ∆ holds, then ∇A(κ)ω is normal, κ < ℵω.

Proposition 129. ∇(ω + 1)ω is monotonically normal if and only if ∇(ω ·
n + 1)ω is monotonically normal.
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Proof. One direction is immediate since monotone normality is hereditary.
For the other direction, fix n ∈ ω and define Ik = (ω · k, ω · (k + 1)], for
k < n. Also, for f ∈ ∇nω, define ∇ f = ∇k I f (k) (which is homeomorphic
to ∇(ω + 1)ω). We show that ∇ f is a clopen set: pick x ∈ ∇ f . For k ∈ ω,
let Uk = {x(k)}, if x(k) is isolated, and Uk = I f (k), otherwise. Thus, ∇kUk
is a neighborhood of x contained in ∇ f (the same argument shows that ∇ f
is closed).

Now we prove that ∇(ω ·n+1)ω is the disjoint union of ∇ f , f ∈ ∇nω, in
which case we will be done since the disjoint union of open monotonically
normal spaces is a monotonically normal space. To see

⋃
f ∈∇nω ∇ f is a

covering, pick x ∈ ∇(ω · n + 1)ω. Hence, for every k ∈ ω, x(k) ∈ I f (k),
for some f (k) ∈ ω. Then, x ∈ ∇ f . Finally, if f , g ∈ ∇nω, then there are
infinitely many k ∈ ω, f (k) , g(k). Hence for infinitely many k ∈ ω,
I f (k) ∩ Ig(k) = ∅, thus, ∇ f ∩ ∇g = ∅. �

4.9 Open Questions

The focus is on box products of compact metrizable spaces, and nabla
products of separable metrizable spaces.

§ 4.9.1 The Gap

In the second paragraph of Section 4.3, we mentioned a gap in Roitman’s
argument ‘∇∗ paracompact implies∇(ω+1)ω paracompact’. We discovered
this in personal comunications with Judy Roitman [35]. Then, she claimed
the following is still an open question.
Question 130. Is it true that ∇∗ is paracompact if and only if ∇(ω + 1)ω is
paracompact?

§ 4.9.2 Hereditary Properties of� = �(ω + 1)ω

We know that infinite box products �nXn are never hereditarily normal
(Corollary 20). Basically because if (ω+1)× X is hereditarily normal then
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X is perfect (Theorem 16).

E. van Douwen showed in [10] thatωω×� is not paranormal. Hence�
is not hereditarily paranormal (Theorem 7.2). Paranormality is implied by
normality and by countably paracompactness. So � is never hereditarily
countably paracompact. He also showed thatωω×� is not d-collectionwise
Hausdorff (Remark 12.7).
Question 131. Is� non-hereditarily collectionwise Hausdorff?

However, vanDouwen asked (Question 13.13) whetherωω×� is count-
ably orthocompact, or � is hereditarily orthocompact. Recall that meta-
compactness implies orthocompactness. So even, ‘� is not hereditarily
metacompact’ would be a new result.
Question 132. Can�nXn be hereditarily metacompact or hereditarily col-
lectionwise Hausdorff?
Question 133. For which topological property P can we show that �nXn
is never hereditarily P?
Question 134. If (ω + 1) × X is hereditarily metacompact, hereditarily
countably paracompact or hereditarily collectionwise Hausdorff, what can
we say about X?

§ 4.9.3 Relating Properties of� and ∇

How are separation and covering properties of �nXn and ∇nXn related?
When the factors Xn are compact, we know the quotient map σ : �nXn →

∇nXn is closed, open and its fibres, σ−1{y}, are σ-(compact metric). Many
covering and separation properties are preserved by closed images. Many
covering and separation properties are preserved by inverse images of
perfect maps. We recall Kunen’s Theorem:

Theorem 135. If Xn is compact, then �nXn is paracompact if and only if
∇nXn is paracompact.

Paracompactness is preserved by inverse images of maps which are
closed and have Lindelöf fibres, see [22], [28] and [29].
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Question 136. If �nXn has covering or separation property P then what
properties does ∇nXn have?
Question 137. If ∇nXn has covering or separation property P then what
properties does�nXn have?

In particular, we are interested in formulating and proving general the-
orems of the type: ‘if f : X → Y is closed (onto) with nice fibres, and Y
has property P then X has P’.

‘Nice’ fibres might be: Lindelof, σ-compact or σ-(compact metric).
Possible propertiesP: metacompactness, countably paracompactness, col-
lectionwise normality, normality, collectionwise Hausdorffness; hereditary
versions.

§ 4.9.4 ‘Basic’ Properties

Some covering and separation properties only require knowledge of basic
open sets. Most do not. For example paracompact says: ‘every cover by
open sets has a refinement by open sets’. We can replace the first ‘open’
by ‘basic open’; but not the second (that would give ‘basic paracompact-
ness’). When we try to translate a topological property of ∇(ω + 1)ω to a
combinatorial one we really need ‘basic’ properties.

So, paracompactness, metacompactness, countable paracompactness,
normality and collectionwise normality are all not basic. But monotone
normality, basic paracompactness and collectionwise Hausdorff are basic.

In addition to show that ∇(ω + 1)ω is normal (or not normal) we need
to understand the (disjoint pairs of) closed subsets of ∇(ω + 1)ω. Closed
discrete subsets are examples of closed subsets. (And any partition of a
closed discrete set gives a disjoint pair of closed sets.)
Question 138. What are the closed discrete subsets of ∇? Can they all be
separated by open sets? (So ∇(ω + 1)ω collectionwise Hausdorff.)
Question 139. Is there a combinatorial statement equivalent to ‘∇(ω+ 1)ω
is collectionwise Hausdorff’?
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Question 140. Does ultraparacompactness of ∇(ω + 1)ω implies its basic
ultraparacompactness?

§ 4.9.5 Monotone Normality of Nabla Products

There is a family of combinatorial properties ∆(Xn)n equivalent to ∇nXn
being monotonically normal.

Write ∆X for ∆(X)n . If A ⊆ X , then ∆X implies ∆A. We know that if
X is not discrete then ∆X implies ∆ω+1. Hence ∆ω+1 is the weakest ∆X
property, and ∆H , where H = [0, 1]ω is the Hilbert cube, is the strongest
among the separable metrizable spaces. We know that ∆ω+1 is equivalent
to the original ∆. Also, we have shown that ∆ implies ∆(ω·n+1), for any
n ∈ ω.
Question 141. We have a ‘formal’ hierarchy of ∆X properties. How can
we distinguish them?
Question 142. For which X does ∆ω+1 imply ∆X? Does ∆ imply ∆ω·ω+1?
Question 143. If ∇(ω + 1)ω is monotonically normal, is ∇(ω · ω + 1)ω
normal?
Question 144. If for every α < ω1, ∇(α + 1)ω is monotonically normal, is
∇(ω1 + 1)ω normal?

For ∇(ω + 1)ω we know that being monotonically normal is equivalent
to being halvable, Lemma 78. What about other ∇-products?
Question 145. If ∇nXn is halvable then is ∇nXn monotonically normal?

Orderable spaces (also called, LOTS) are monotonically normal. In
fact they are nested monotonically normal (more usually called, strongly
monotonically normal). As monotone normality and nested monotone
normality are hereditary, sub-orderable spaces (also called GO spaces) are
nested monotonically normal.
Question 146. If ∇(ω + 1)ω is monotonically normal then is it orderable
or sub-orderable?
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§ 4.9.6 Further Questions

Question 147. Does (basic) metacompactness of ∇∗ implies its (basic)
paracompactness?
Question 148. Does (basic) orthocompactness of ∇∗ implies its (basic)
metacompactness?
Question 149. If ∇(ω + 1)ω is paracompact, must it be halvable?
Question 150. Is ∇∗ countably metacompact?

Finally, the central motivation of this work.
Question 151. Is ∆ or MH true in ZFC?



Bibliography

[1] Z. Balogh and M. E. Rudin. Monotone normality. Topology and its
Applications, 47(2):115–127, 1992.

[2] H. A. Barriga-Acosta and P. M. Gartside. Normality and more on
nabla products. In progress.

[3] H. A. Barriga-Acosta and F. Hernández-Hernández. On discretely
generated box products. Topology and its Applications, 210:1–7,
2016.

[4] H. A. Barriga-Acosta and F. Hernández-Hernández. c-many types of
a Ψ-space. Topology and its Applications, 253:1–6, 2019.

[5] P. Cairns, H. Junnila, and P. J. Nyikos. An application of Mary Ellen
Rudin’s solution toNikiel’s conjecture. Topology and its Applications,
195:26–33, 2015.

[6] P. J. Cohen. The independence of the continuum hypothesis. Pro-
ceedings of the National Academy of Sciences of the United States of
America, 50(6):1143–1148, 1963.

[7] P. J. Cohen. The independence of the continuum hypothesis ii. Pro-
ceedings of the National Academy of Sciences of the United States of
America, 51(1):105–110, 1964.



66 BIBLIOGRAPHY

[8] W. W. Comfort. Cofinal families in certain function spaces. Com-
mentationes Mathematicae Universitatis Carolinae, 29(4):665–675,
1988.

[9] E. K. van Douwen. Another nonnormal box product. General Topo-
logy and its Applications, 7(1):71–76, 1977.

[10] E. K. van Douwen. Covering and separation properties of box pro-
ducts. In Surveys of General Topology, pages 55–129. Elsevier, 1980.

[11] E. K. van Douwen. Applications of maximal topologies. Topology
and its Applications, 51(2):125–139, 1993.

[12] A. Dow, M. G. Tkachenko, V. V. Tkachuk, and R. G. Wilson.
Topologies generated by discrete subspaces. Glasnik matematički,
37(1):187–210, 2002.

[13] R. Engelking. General Topology, Sigma series in pure mathematics,
vol. 6. Heldermann Verlag, Berlin, 1989.

[14] P. Erdös and M. E. Rudin. A non-normal box product. In Colloq.
Math. Soc. János Bolyai, volume 10, pages 629–631, 1973.

[15] P. M. Gartside. Monotone normality in products. Topology and its
Applications, 91(3):181–195, 1999.

[16] L. J. Halbeisen. Combinatorial Set Theory. Springer, 2012.

[17] F. Hausdorff. Grundzüge der Mengenlehre. Verlag von Veit, Leipzig,
1914.

[18] F. Hernández-Hernández and M. Hrušák. Topology of Mrówka-
Isbell spaces. In Pseudocompact Topological Spaces, pages 253–289.
Springer, 2018.

[19] M. Hrušák. Almost disjoint families and topology. InRecent Progress
in General Topology III, pages 601–638. Springer, 2014.

[20] A. Kechris. Classical Descriptive Set Theory, volume 156. Springer
Science & Business Media, 2012.



BIBLIOGRAPHY 67

[21] K. Kunen. Some comments on box products. CoIl. Math. Soc. Janos
Bolyai, 10:1011–1016, 1973.

[22] K. Kunen. Paracompactness of box products of compact spaces.
Transactions of the American Mathematical Society, 240:307–316,
1978.

[23] K. Kunen. Set Theory: an Introduction to Independence Proofs,
volume 102. Elsevier, 2014.

[24] K. Kunen and J. Vaughan. Handbook of Set-Theoretic Topology.
Elsevier, 2014.

[25] L. B. Lawrence. The box product of countably many copies of the
rationals is consistently paracompact. Transactions of the American
Mathematical Society, pages 787–796, 1988.

[26] L. B. Lawrence. Toward a theory of normality and paracompact-
ness in box products. Annals of the New York Academy of Sciences,
705(1):78–91, 1993.

[27] L. B. Lawrence. Failure of normality in the box product of uncount-
ably many real lines. Transactions of the American Mathematical
Society, 348(1):187–203, 1996.

[28] E. Michael. A note on paracompact spaces. Proceedings of the
American Mathematical Society, 4(5):831–838, 1953.

[29] E. Michael. Another note on paracompact spaces. Proceedings of the
American Mathematical Society, 8(4):822–828, 1957.

[30] P. J. Nyikos. Metrizability, monotone normality, and other strong
properties in trees. Topology and its Applications, 98(1-3):269–290,
1999.

[31] J. Roitman. More paracompact box products. Proceedings of the
American Mathematical Society, 74(1):171–176, 1979.

[32] J. Roitman. Paracompactness of box products and their subspaces. In
Topology Proc., volume 31, pages 265–281. Citeseer, 2007.



68 BIBLIOGRAPHY

[33] J. Roitman. Paracompactness and normality in box products: old and
new. In Set theory and its applications, pages 157–181, 2011.

[34] J. Roitman. Box products of one point compactifications and related
results. In Topol. Proc., volume 44, pages 197–206, 2014.

[35] J. Roitman and P. M. Gartside. Personal communication, 2019-05-17.

[36] J. Roitman and S. Williams. Paracompactness, normality, and re-
lated properties of topologies on infinite products. Topology and its
Applications, 195:79–92, 2015.

[37] M. E. Rudin. The box product of countably many compact metric
spaces. General Topology and its Applications, 2(4):293–298, 1972.

[38] M. E. Rudin. Lectures on set theoretic topology, volume 23. American
Mathematical Soc., 1975.

[39] M. E. Rudin. Dowker spaces. In Handbook of set-theoretic topology,
pages 761–780. Elsevier, 1984.

[40] F. D. Tall. Set-theoretic consistency results and topological theorems
concerning the normal moore space conjecture and related problems.
1977.

[41] V. V. Tkachuk and R. G. Wilson. Box products are often discretely
generated. Topology and its Applications, 159(1):272–278, 2012.

[42] S. Williams. Is �ω (ω+ 1) paracompact. In Topology Proceedings,
volume 1, pages 141–146, 1976.

[43] L. Wingers. Box products of σ-compact spaces. Topology and its
Applications, 56(2):185–197, 1994.

[44] L. Wingers. Box products and Hurewicz spaces. Topology and its
Applications, 64(1):9–21, 1995.



Index

A(κ), 43
D(κ)⊂ω, 48
D(κ), 43
Eω2
ω1 , 42

INC, 53
K-Luzin, 51
L(κ), 43
Lλ(κ), 43
P-space, 7
Pκ-space, 35
Q-set, 20
X(ωω, 6∗), 51
[ω]ω, 1
∆(A), 36
∆[A(κ)], 48
∆[α], 47
∆(Xn,dn)n , 44
Λ, 55
Φp, 13
Ψ(A), 19
βω, 10
d(κ), 15
κ-Lindelöf, 35
κ-metrizable, 50
〈t〉, the cone of t, 2
∇ := ∇(ω + 1)ω, 34
∇∗ := ∇∗(ω⊂ω), 34

∇∗A(κ), 48
(B) ultraparacompact, 55
(countably) compact, 2
(countably) metacompact, 3
(countably) orthocompact, 3
(countably) paracompact, 3
(ultra) filter, 5

almost compatible, 33
almost disjoint family AD, 19
almost oscillating, 24

Baire Category Theorem, 4
ball, 2
Borel Hierarchy, 4
Borel sets, 4
bounding number b, 6
box, 7, 29
box product, 7, 29
branch of T , 5

Cantor set 2ω, 1
character χ(x, X), 35
closed set, 2
Cohen forcing, 6
Cohen model, 6
Cohen real, 6
completely metrizable, 4



70 INDEX

constant κ function, cκ, 33
continuum c, 6

dense oscillation, 23
discrete, 9
discretely generated, 9
domain of a, 10
dominating number d, 6

first countable, 3
forcing, 6

halvable, 38, 57
Hausdorff T2, 3

irrational numbers ωω, 1

Lindelöf, 3
locally finite, 3
Luzin, 20

meager, 4
metric space, 2
mod-finite equivalent, 29
Model Hypothesis MH, 38
monotonically normal, 30

nabla product ∇nXn, 29
natural numbers ω, 1
neighbornet, 33
nested, 55
nodes, 5
normal T4, 3
nowhere dense, 4

open sets, 2
oscillating, 24

perfectly normal T6, 3
point-finite, 3
Polish, 4

property P, 12
property P+, 12
pruned tree, 5

real numbers R, 2
refinement, 3
refines, 3
regular T3, 3
restriction of a to S, 10

scale, 35
second countable, 3
separable, 4
splitting node, 5
star of x, StC(x), 3
stem, 5
strongly separated, 52
switch, 47

tangle-free, 53
tightness t(x, X), 35
topological space, 1
topology, 1
tree, 5
Tychonoff, completely regularT3 1

2
, 3

UNO, 58
utterly halvable, 57
utterly monotonically normal, 58
utterly normal, 58
utterly ultra halvable, 57
utterly ultra monotonically normal,

58
utterly ultra normal, 58


	Portada 


	Contents
	Resumen 
	Introduction 
	Chapter 1. Infinitary Combinatorics and Topology 


	Chapter 2. Discretely Generated Spaces 


	Chapter 3. C-Many Types of a Ψ-Space  
	Chapter 4. Nabla Products
	Bibliography
	Index 



