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Introduction

Currently, there are different types of host-parasite models, this is because many
important diseases for both humans and animals that affect the abundance of in-
dividuals in the population arise from parasitism, which makes parasitism a fun-
damental characteristic of life. Diseases caused by the presence of parasites in an
organism are infections that can be caused by intragenomic parasites or genetic par-
asites, microparasites, macroparasites or metazoans organism [1-3]. In this thesis
we focus on studying macroparasites, of which, a majority of them belong to the
helminth and arthropod groups, that include flukes, tapeworms, nematodes, lice,

fleas and ticks. Table 1 shows some examples of helminthic macroparasites that can

be studied with the models presented in this thesis.

Class Parasite Infection

Filarial nematodes Brugia malayi Lymphatic filariasis
Dracunculus medinensis Dracunculiasis
Onchocerca volvulus Onchocerciasis

Flukes

Intestinal nematodes

Tapeworms

Wuchereria bancrofti

Fasciola hepatica
Opisthorchis sinensis
Paragonimus westermans
Schistosoma haematobium
Schistosoma japonicum

Ancylostoma duodenale
Ascaris lumbricoides
Enterobius vermicularis
Necator americanus
Trichuris trichiura

Echinococcus granulosus
Taenia saginata
Taenia solium

Lymphatic filariasis

Fascioliasis

Clonorchiasis
Paragonimiasis

Urogenital schistosomiasis
Intestinal schistosomiasis

Ancylostomiasis
Ascariasis
Enterobiasis
Necatoriasis
Trichuriasis

Cystic echinococcosis
Taeniasis
Cysticercosis

TABLE 1: The major helminth infections of humans (see [3]).
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An important characteristic of macroparasites is that these types of organisms
tend to have much longer generation times than microparasites, and usually have
complex life cycles that may involve more than one host species. This because
macroparasites undergo different metamorphosis during its life cycle. Each of these
metamorphosis occur within individuals of at least one specific host species, which
they colonize after spending a period in free life or, alternatively, by the trophic or
non-trophic interaction of an individual of this host species with a host of another
species infected with the parasite in its previous life-stage, until reaching its adult
stage where typically a macroparasite is able to reproduce. Also, even if reproduc-
tion of parasites occurs within the definitive or final host, the eggs produced by the
adult parasites are expelled from the hosts, so the larvae are born in free life, and
may undergo different metamorphoses before colonizing a host for the first time.

Figure 1 shows an example of a macroparasite life cycle with these characteristics.
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FIGURE 1: Diphyllobothrium latum life cycle. Credit: Image by Gino Barzizza [4].
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Since the parasite larvae are born in free life, and the parasitic transmission
does not necessarily occur by the direct contact between hosts, there are free-living
stages in the life cycle of any macroparasite species. However, for the stages that
occur within a host, we define the parasite at each stage as a specialist if it can
inhabit individuals of a single host species during that stage, and generalist if that

metamorphosis occurs within individuals of at least two different host species.
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FIGURE 2: Representation of the topologies of macroparasite’s transmission net-

works. The number of sequential hosts is indicated with the number of levels,

and at each level there are two conditions; be a specialist parasite (one node) or

generalist parasite (two nodes). Credit: Image courtesy of Dr. Pablo A. Marquet
(personal communication).
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Figure 2 shows a representation of all possible topologies of the transmission
networks generated when considering the host species and the different parasitic
stages that occur within these communities. These topologies can also be viewed
as the food webs of a macroparasite species [5], since the food web of a parasite is
formed by all the hosts in which it enters, where the parasite feeds on the nutrients

provided by each host.

As we mentioned before, many macroparasite species colonize more than one
host species during its life cycle, as in the example shown in Figure 1, however,
many of the host-parasite models are limited to studying communities with a single
host species that do not allow analyzing communities with parasite species that
have a complex life cycle. Therefore, throughout this thesis, we study host-parasite
models based on the interactions of host and parasite populations structured by
its transmission networks, this because the objectives of this thesis are: develop a
general model that allows studying the population dynamics of a community with
multiple host species that may or may not interact with each other, and a parasite
species that passes different stages of its life cycle in individuals of the different host
species in the system, by considering the possible parasitic transmission networks
in the system. We also want to give concepts or results that allow the study of
this model, in order to determine sufficient conditions for an equilibrium point with
a biological meaning to exist, where none of the populations becomes extinct. In
particular, we want to give generalizations of the concepts of basic reproductive
number and threshold host density for multi-host-parasite models, based on the
topology of the parasite transmission network in the system. Finally, we want
to see if it is possible to mathematically determine the possible topologies of the
transmission network of a parasite species if initially only the number of host species
in the system and the number of stages of the parasite life cycle that occur within

the hosts are known.

To study the interactions of host and macroparasite populations, it is important
to clarify that many of the host-parasite models are epidemiological models, focused
on how the infection spreads over the individuals of the host population and de-
termine the necessary conditions for the infection to disappear or persist without
extinguishing the community of hosts. However, macroparasites are parasites vis-
ible to the naked eye, allowing counting the number of macroparasites on a single
host, so we can study the spread of these parasites in a host community instead of

the spread of infection caused by these organisms, in order to determine under what
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conditions the host and parasitic populations remain in the environment. This be-
cause, unlike what happens with other types of parasites, the infectivity of the hosts
depends on the number of macroparasites it contains. The models addressed in this
dissertation allow simulating the dynamics of a community of hosts, assuming that
in the absence of parasitism might grow in an uncontrolled way in the environment
in which they are found, that is, these models are used to determine the necessary
conditions to regulate the growth of populations of different host species through

an infection caused by a parasite species.

One of the first population models for the dynamics between a host community
and a parasite population was studied and formulated in 1978 by Robert M. May and
Roy M. Anderson in their work Regulation and Stability of Host-Parasite Population
Interactions [6, 7]. This model is introduced in the first chapter of this thesis, and is
used as a reference for the analysis of different models generated from it, developed
and studied by Andrew P. Dobson, M. G. Roberts and Peter J. Hudson during the
years 1992-1995 (see [8-10]).

From the previous models, in Chapter 2 we propose a new model for a multi-
host system by considering different types of parasitic transmission between the
host species and the topologies of the possible parasitic transmission networks in

the system.

In the third chapter, we also define the basic reproductive number for population
models of multi-host-parasite systems [11], and present a way to calculate its value,
in particular, we determined an expression for the value of Ry in the multi-host
model we proposed. Additionally, we present a definition of the threshold host
density for host-parasite models with a single host species previously considered
[11], similar to the definition of this concept in epidemiological models, and give a
generalization of this concept that we use in the multi-host model proposed in this

thesis.

The last chapter shows an analysis of the models corresponding to the possible
transmission networks for macroparasitic organisms in a community with a fixed
number of host species, generated by taking particular conditions for the parameters
in the multi-host model that we study in this thesis. We also present some simulation
for the host and parasitic populations in these systems, to show how the growth of
the host populations is regulated and, at the same time, how it regulates the growth

of the parasitic population.
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Finally, we present some conclusions of the results obtained from this study, and
we add appendices with the necessary concepts to justify some of the hypotheses

and results used in the development and study of the models presented.



Chapter 1

Single Host Macroparasite Models

This thesis comprises the situation in which there is a community of m host species
that would grow exponentially in the absence of parasitism, and a parasite species,
with n stages in its life cycle, that may regulate the growth of each host species. This
chapter presents models showing the basic components of macroparasite systems
that we will use as a basis to develop a more sophisticated model for a multi-host

community system.

We will first introduce the model for the interactions between a single host and
parasite species developed by Anderson and May in 1978 [6, 7], that has been taken
as a starting point for the study and development of models for the interactions
between a host species and a community of parasitic species. Later, we will present a
model for the population dynamics of a host species that interacts with a community
of parasitic species, published by Dobson and Roberts in 1995 [8]. This model will
help us to introduce a model for the interactions between a host species and a stage-
structured parasite species with two stages in its life cycle, developed by Dobson
and Hudson in 1992 [9, 10].

1.1 Anderson and May Model

This section presents a model for the host-macroparasite interactions developed and
studied by Anderson and May [6, 7], and its generalization published by Dobson
and Roberts [8].
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1.1.1 Basic Model

Anderson and May demonstrated with the aid of a simple differential equation
model that a parasite species could regulate the size of a host population that
would otherwise grow exponentially. To introduce this model, it is necessary to
make some additional biological assumptions. The first is that the basic model is
for a parasite species that may or may not reproduce directly within its definitive
or final host, however, the parasite begins its life cycle in free life, possibly after
offspring were expelled from the host where they were produced. This implies
that the parasite has transmission stages such as eggs, spores or cysts that, as a
developmental necessity, leave the host, that is, it has a free-living stage in its life
cycle, before entering a host and reach its adult stage. This type of parasite life
cycle is shown by helminth and arthropod species. The second is that the parasites
present an aggregated distribution among the individuals of the host population,
best described by the negative binomial distribution [12, 13]. Finally, we assume
that parasite load induce an increase in the mortality rate of the host species and
thus may regulate its growth. Figure 1.1 shows a schematic representation of the

interaction between the host and the parasite, based on these biological assumptions.

pEm==== 4HDSL deaths
Host births

Host population (H)

Parasite-induced
host mortality

o Adult parasite
= deaths

Adult parasites (F)

Parasite infections Farasite hirths

“———1 Freediving stages (%) |€—————

Free-living
stages deaths

FIGURE 1.1: Schematic representation of a direct one-host, one-parasite life-
cycle, illustrating the different birth, death and transmission rates [14].



Single Host Macroparasite Models 9

To develop the equations, we define H(t), P(t) and W (t) as the size of the host,
adult parasite within the host and free-living larvae populations, respectively, at

time ¢. In addition, we use the parameters shown in Table 1.1.

Parameter Description

a Instantaneous birth rate of host.

b Instantaneous intrinsic death rate of host due to natural causes.

« Instantaneous additional death rate of host induced by the parasite
load.

A Instantaneous hatching rate of parasite eggs.

1 Instantaneous death rate of adult parasites within the hosts.

vy Instantaneous death rate of parasite eggs and larvae in free life.

15} Instantaneous rate of ingestion of parasite infective stages.

TABLE 1.1: Description of the population parameters used in the A&M model.

Host population dynamics
We assume that the net growth of the host population is determined by the natural
intrinsic rate of increase in the absence of parasitism minus the host death rate

induced by parasites.

Based on the previous assumption, and considering that the host population
would grow exponentially in the absence of parasitism, it follows that if we exclude
the limitations to the growth of the host population imposed by the environment,
the natural intrinsic rate of increase in the absence of parasites depends only on the
difference between the host reproductive rate a and the natural host mortality rate
b (deaths due to all causes except the parasite). Therefore, the natural intrinsic

rate of increase in the absence of parasites is given by (a — b) H ().

On the other hand, this model assumes that the parasites have a negative bino-
mial distribution within the host population, so if we define p(i) as the probability
that a given host contains ¢ parasites, then the probability generating function for

this distribution is given by

G(m,k,z) = [1—1— %(1 —2) _k7

were m and k are the mean of the distribution and a parameter that varies in-
versely with the the degree of aggregation of parasites within the host population
respectively (see Appendix A). So, assuming that the increase in the host death rate
induced by the parasites is linearly proportional to the number of parasites that a

host harbors, the total rate of loss of hosts at time ¢ induced by the parasites is
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aH () Z ip(i) = aH(t)m = (m{(t)m = aP(t),

1=0
this because, the mean of a probability distribution is »_.°,ip(i) = m, that in this
model is the expected number of parasites per host, given by P(t)/H (t).

Free-living parasite population dynamics

Next, we analyze the growth of the number of individuals in free life, that will help
us to develop an equation for the dynamics of the population size of adult parasites.
Let W (t) be the number of larvae in free life at time ¢. Note that because parasite
offspring leave the host, parasite reproduction does not increase its density within
the host. Therefore, all newborn parasites, given by AP(t), belong to the free-living
stage. Now, the number of larvae in free life is reduced by the number of individuals
who die in free life YW (t), further, free-living parasites are removed by attaching
to a host, given by W (t)H(t). Therefore, the growth of the population in the
free-living stage is: T

e AP — W — BWH

(for parameters definitions see Table 1.1).

Adult parasite population dynamics

To develop the equation of the adult parasite population size it is necessary to con-
sider the proportion of free-living parasites that reach the adult stage, the intrinsic
natural mortality of the parasites within the host, the number of adult parasite
deaths due to death of the host they are attached to, both natural and parasite-

induced.

Based on the previous discussion of the larvae population in free life W (¢), and
assuming that every parasite ingested by a host reaches its adult stage, the number
of free-living parasites that reach the adult stage is given by SW (t)H (t). Moreover,
we can approximate the number of new adult parasites by the product of the number
of new individuals in the free-living stage AP(¢) and the transmission factor (see
[15]), given by the ratio of the rate of free-living parasites ingested by the host
S H(t) and the rate of decrease in the population of parasites in free life v+ SH (),
that is, SAP(t)H (t)/(y + SH). This approximation can also be obtained from the
value of SW (t)H(t) if we consider W (t) as the expected value of the proportion
of parasites in free life that survives the necessary time to enter a host, given by

the product of the number of offspring AP(t) and its life expectancy outside a host
1/ (v + BH()).
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The above implies that only the equations for dP/dt and dH/dt are needed to

model the dynamics of the size of the host and parasite total populations.

The intrinsic natural mortality of the parasites within the host is uP(t), whereas

the number of deaths of adult parasites due to the natural death of the hosts is

bH (t) Zip(i) = bH(t)m = bH(t)m = bP(t).

Finally, the number of adult parasite deaths due to the death of hosts induced
by parasites is given by

oH (t) Z Pp(i) = aH(t)E (i?) = aH(t) [E (i) — m?® + m?]

— (1) (% +m?) = a () (2 ¢ m)

k
k+1 [/ P@t)\> P
ZOéH(t) T (m) +m
k+1P(t)?
& H@p TP

since the per capita host loss rate induced by the parasites is «i, and, by definition,

the second moment of the distribution is
E (%) =) i°p(i).
i=0

This expression may be estimated as o? + m?, with m = P(¢)/H(t) and o* =

(k + 1)m?/k +m — m? (see Appendix A), implying that

o k+1 _k+1(P®H\*  P(t)
E(z)—Tm +m= ’ (H(t)) + .

With the previous analysis Anderson and May showed that it is possible to model
the dynamics of the host population size H(t) and the total population size of the
parasite within the hosts P(t) using the differential equations

dH
— =(a—b)H — aP,

dP  \PH o+ +a)P_oz(1+k;)P_2 :
dt  H+ H, H ko
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1.1.2 Multi-Parasite Model

A generalized version of the A&M model (1.1), that considers a host species that
would grow exponentially in the absence of parasitism, and a community of n par-
asite species that may regulate this growth, was developed by Dobson and Roberts
[8]. Those authors assume that the distribution of the individuals of the n species
of parasites among the host population is described by a negative multinomial dis-
tribution [16], and thus each parasitic species is distributed in the host population
through a negative binomial distribution. Also, it is necessary to assume that adult
parasites of each species may induce an increase in the mortality rate of the host
species to regulate their growth, and each parasite species has a free-living stage in

its life cycle.

To develop the equations that model the dynamics in this system, define H(t),
P;(t) and W;(t) as the sizes of the host, j-th parasite species within the host and
the j-th free-living parasite species populations, respectively, at time ¢. In this case
it is not necessary to specify the generating function for the negative multinomial
distribution of the parasites since we only need to assume that if the mean of the
negative binomial distribution of each parasite species P; is m;, then the variances
of each parasitic species P; is given by m;(1 4+ m;/k;), and the covariance between

the species P, and P; is given as m;m;/l;;, for all 4,5 =1,...,n, i # j.

The parameters for the model are presented in Table 1.2.

Parameter Description

a Instantaneous birth rate of host.

b Instantaneous intrinsic death rate of host due to natural causes.

a; Instantaneous additional death rate of host due to parasite load of
the P; population.

Aj Instantaneous birth rate of the j-th parasite species eggs.

Lbi Death rate of the j-th parasites species within the hosts.

V; Instantaneous death rate of the j-th free-living parasites.

B Instantaneous rate of ingestion of the W; population.

k; Parameter of the negative binomial distribution of the adult para-
site population P;.

li Parameter of the negative multinomial distribution of all the para-

site species related to the covariance of P; and P;.

TABLE 1.2: Description of the parameters used in the Dobson and Roberts model.
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As in the previous model, the dynamics of the size of the host population is
determined by the natural rate of increase in the absence of parasitism minus the

host death rate induced by each of the parasitic species:

n

9] I SPEN I SISO SIEIOLETE B oTE
Jj=1 i j=1 j=1 j=1
where p;(i) is the probability that a given host contains ¢ parasites of the j-th

parasitic species and no parasites of any other species.

To develop the equations to model the dynamics of the population of the each
parasite species in its free-living stage we follow the analysis conducted for the
previous model. Therefore, the growth of the population W; is

aw,

o = Nl =W = BiWiH,

for each parasite species j = 1,...,n.

From the above, we have that the number of new individuals in each population
P; is given by \;P;H/(H + Hy;), with Hy; = ~;/5;. To further simplify the model,
Dobson and Roberts assumed that Hy, = Hy; = Hp for all 1 <4,7 <n.

Similarly, it can be shown that the intrinsic natural mortality of the parasites
species within the host are p; P;j(t), and the number of deaths of the individuals of
P; due to the natural death of the hosts is given by bP;(¢), for each j =1,...,n.

Finally, we must consider the number of adult parasite deaths of the j-th parasitic
species induced by host deaths from infection. To do this, we will separately analyze
the deaths of individuals in the adult parasite population of a focal species 7, due to
its own the effect on the host they are attached to, and the effect of other parasite

species ¢ within the same host.

of the j-th species due to the death of hosts induced by parasites of the same
species, and the deaths of individuals in the P; population due to the death of the
hosts induced by the parasites of the P; population.

As in the previous model, the number of parasite deaths in the P; population
due to the death of hosts induced by parasites of the same species is given by
. k+1 aj(kj + 1) P(t)?
a;H(t)Y i’pi(i) = a;H(1) (Tm§ + mj) = ]ij i ol a; Py (t).

=0
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Now, if we define p; ;(k, ) as the probability that a given host contains k parasites
of the i-th parasitic species, r parasites of the j-th parasitic species, the number of
parasite deaths of species ¢ due to host deaths induced by parasites of species j, can

be calculated as

(t) Z krp; j(k,r) = a; H(t) <Z krp; ;(k,r) —m;m; + mimj>

k,r=0 k,r=0

= a;H(t) [Cov(R, Pj) + mimy]
il +1)

= ———H(t)m;m;
li;

ai(liy + 1) Bi(8) P (¢)
lij H(t)

As conclusion, Dobson and Roberts showed that the following system of ordinary
differential equations models the dynamics of the host population and n populations

of different parasitic species

dH (a —b)H — ZO‘Z S

dt
ap; A PH — (b4 p; + .)p._aj(lJr/fj)sz_zn:ai(lJrlij)Pin (1-2)
dt ~ H+ H, Ha ) ko H &~ 1, H

i#]

1.2 Dobson and Hudson Model

In 1992, Andrew P. Dobson and Peter J. Hudson developed and studied a model for
the dynamics of a community of Trichostrongylus tenuis in a red grouse population
[9, 10], that turned out to be a modification of the n-dimensional version of the
Anderson and May model (1.2) published a couple of years later, described in the
previous section. The purpose of this model was to simulate the dynamics of a
host population that would grow exponentially in the absence of parasitism, and a
parasitic population that has three stages in its life cycle, the first in free life, by
the hypothesis that offspring does not remain within the host, while the second and
third stage of its life cycle occur within a single individual of the host population,

first as a larva and then as an adult parasite.
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Another biological assumption here is that, unlike in the previous models, para-
sites, in addition to inducing an increase in the mortality rate of individuals in the
host population, also reduce the fertility rate of hosts, thus regulating its growth.
In addition, typically the arrested larvae (parasites in its pre-adult stage inside the
hosts) have a significantly lower effect on the growth rate of hosts than adult para-
sites, so, to simplify the model, we assume that the parasite larvae inside the hosts
does not have a perceptible effect on the survival or fertility of the host and that its
intrinsic mortality rate is extremely low. Finally, we assume that the distribution
of the individuals of each stage of the parasite life cycle among the individuals of

the host population is described by a negative multinomial distribution.

Figure 1.2 shows a schematic representation of the interactions between the host

species and parasites at each stage of its life cycle, based on previous biological

assumptions.
X Y
I Parasite-induced
Host births | reductions in host
1 fecundity
;
1
1
Host population (H) : —
I
1
P > Arrested larvae (A) » Adult parasites (F) y
:
Arrested larvae I Adult parasite
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Parasite deaths 'y Host deathel == = = - ) y deaths Parasite
infections oSt geaths Parasite-induced births
host mortality
Y,

Free-living stages (W) [

Free-living
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FIGURE 1.2: Schematic representation of the life cycle of the parasite illustrating
the different birth, death and transmission rates occurring in the life cycle [10].
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From the above it follows that this system of equations can be obtained from
(1.2), used by Dobson and Roberts for the multi-parasite version of the Anderson
and May model, studying the parasite populations at different stages of its life cycle
similarly to the populations of different parasitic species in (1.2), and modifying the
equations of each of these based on their relations with the populations of the other
stages. To start doing this, we define H(t), A(t), P(t) and W (t) as the size of the
host, arrested larvae within the host, adult parasite within the host, and free-living

parasite (eggs and larvae) populations, respectively, at time t.

The parameters used in this models are shown in Table 1.3.

Parameter Description

Instantaneous birth rate of host.

Instantaneous intrinsic death rate of host due to natural causes.
Instantaneous death rate of host induced by adult parasite load.
Instantaneous reduction in host fertility due to adult parasite load.
Instantaneous birth rate of parasite eggs.

Instantaneous death rate of arrested parasite.

Instantaneous death rate of adult parasite.

Instantaneous death rate of eggs and larvae in free life.
Instantaneous rate of ingestion of parasite infective stages.

Rate at wich arrested larvae develop into adult parasite.
Parameter of the negative binomial distribution of the adult para-
site population within the hosts.

Toem2 S F > =0

TABLE 1.3: Description of the parameters used in the Dobson and Hudson model.

From the equation for the dynamics of the host population (1.2), and considering
the hypothesis that the population of arrested larvae does not affect the mortality
and fertility rates of the hosts, while adult parasites do affect both rates, the dy-

namics of the host population is governed by the equation

dH

— =(a—b)H — (a+9) P,

dt
because the dynamics of the host population can be determined by subtracting the
total decrease in the number of newborn hosts induced by adult parasites to the

dynamics of the host population used in the model (1.2), given by

SH(t) Z ips(i) = 6H (t)mp = (SH(ze)m = §P(t),
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with py(i) define as the probability that a given host contains ¢ adult parasites and
ms as the expected value of po(i), which is P(t)/H (t).

Before analyzing the population dynamics of the different stages of the parasite’s
life cycle, it is important to clarify that one assumption in this model is that there is
no intraspecific competition in the system, that is, parasites of the same species does
not attack each other. Thus, the competition between parasites at different stages
of its life cycle occurs indirectly, by exploiting the resources that the individuals at
each parasitic stage need to survive within the same host [17, 18]. Since competition
occurs indirectly, there is no correlation between the populations of the different
stages of the parasite’s life cycle within the hosts, implying that the covariance
between the variables corresponding to these populations is zero [19]. Therefore,
assuming that the covariance between A(t) and P(t) is given by mamp/lap, with

mamp > 0, we pose that, necessarily, l4p — 00, so (1 +lap)/lap = 1.

For the dynamics of parasite larvae within the host, in addition to the terms
related to the number of new larvae arrested and the number of natural and induced
deaths of individuals in this population, it is necessary to consider the number of

larvae that become adult parasites within the same host, which can be calculated

OH (t) Z ip1(i) = OH (t)my = HH(t)% = 0A(t),

considering p; (i) to be the probability that a given host contains i parasite larvae,

and my4 as the expected value of py (i), given by A(t)/H(t).

From the above, and based on the hypothesis that only adult parasites affect
the number of host deaths, the equation that models the dynamics of the arrested
larvae population is

dA APH PA
E—m—(ﬂA-l—b—f-@)A—aF.

Finally, the dynamics of the adult parasites population can be modeled by mod-
ifying the equation for the population of parasitic species used in (1.2). One hy-
pothesis in this model is that the hosts ingest only larvae that enter in the arrested
larvae population A(t), implying that the number of new adult parasites is given
only by the number of arrested larvae that become adult parasites, given by 0 A(t).

Thus, the growth in the number of individuals in the population of adult parasites
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is governed by the equation

dP
dt

E+1

HA—(up+b+a)P—a<T>

P2
ﬁ.

The previous analysis is a way to justify the model published by Dobson and

Hudson, which consists of the following system of ordinary differential equations

dH

dA APH PA

o Hm, MathrA—aTs (1.3)
P k+1\ P

where H(t), A(t) and P(t) are the number of the hosts, arrested larvae and adult
parasites in the system at time ¢, respectively, used to model the dynamics of a
host population and the population of a single parasite species that undergoes two

transformations within the same host after a period of free life.



Chapter 2

Modeling Multi-Host

Communities

This chapter introduces a model for the population dynamics of a community with
m host species that interacts with a single parasite that undergoes n different stages

within different hosts.

We consider several biological assumptions for this system. The first is that, as
in the previous models, there is a host population that would grow exponentially
in the absence of parasitism (there is no carrying capacity in the system), and the
distribution of the parasites at different stages of its life cycle within the individuals
of a host population is described by a negative multinomial distribution, for each
host species. We also assume that individuals of any parasitic stage can affect the
mortality and fertility rates of host populations, and, as in the previous models, the
parasitic species produce offspring in its definitive or final host, but the offspring
is released into the environment, so there is at least one free-living stage in the life

cycle of the parasite.

Before continuing, it is necessary to determine the type of parasitic transmission
that may occur between different hosts in relation to the developmental stages
experienced by parasites. For this, we consider only the transmission where the
parasite advances to the next developmental stage when passing from one host
to another, that is, we ignore transmission events occurring at the same stage of
the parasite’s life cycle. This is because transmissions at the same stage of the
parasite’s life cycle can be considered as transmissions at different parasitic stages

through a vector, possibly transport hosts (hosts that carries parasites between

19



Modeling Multi-Host Communities 20

successive hosts; while in the transport host, the parasite does not develop further
[20]). Another reason to ignore these types of transmissions is that one of the
objectives in developing this model is to analyze the population dynamics of the
system in relation to the parasitic transmission network, which does not relate hosts

at the same level of the parasite’s life cycle.

We consider that vector transmission between two hosts can be modeled simi-
larly to the transmission given by the direct interaction of both hosts. Therefore,
we consider three types of parasitic transmission: the first is by predation, if the
hosts are trophically related. The second occurs when two hosts of different species,
not trophically related, have contact, either physical (direct) or indirect through a
vector, this is because, it is not necessary to consider contact transmissions between
hosts of the same species, since we can simply assume that the parasite metamor-
phosis occurs within the same host. The last type of parasitic transmission occurs
when a parasite leaves a host and remains for a period of time in free life until it
colonizes another host. However, the transmission of parasites in the j-th stage of
its life cycle can be by physical interaction between hosts (direct) or transmissions

that depend on a period of free life (indirect), but not both, this for all j = 1,...,n.

Next, to introduce the equations of this model for a parasite with n stages in
its life cycle within the individuals of a community with m host species, we define
H;(t) as the number of hosts of the i-th species at time ¢, W,_;(¢) as the number of
parasites in free life that will reach the j-th stage of their life cycle when introduced
into a host at time ¢, and P,;(t) as the size of the parasite population at the j-th stage
of its life cycle within the hosts of the i-th species at time ¢, for all+ = 1,...,m and
j =1,...,n. With this notation, the transition of parasites between the different

stages of its life cycle is given as in Figure 2.1.

b)
Parasite Parasite
a) population Fj population Pyg.1)
Parasite > Parasite
population Fj population Pyj.1) ]‘
Parasite
> population 14

FIGURE 2.1: Schematic representation of the possible types of transmission of
parasite in the j-th stage of its life cycle, direct (a) and indirect (b), from an
individual of the i-th host species to an individual of the k-th host species, that
allow transmitted parasites to reach the next departmental stage of its life cycle.
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Parameters needed to model the dynamics of this system are presented in Ta-

ble 2.1.
Parameter Description

a; Instantaneous birth rate of individuals of the i-th species of hosts.

b; Instantaneous intrinsic death rate of individuals of the i-th species
of hosts due to natural causes.

Q;j Instantaneous death rate of the individuals of the i-th species of
hosts due to j-th stage parasite load.

dij Instantaneous reduction in the fecundity of the individuals in the
i-th host population due to j-th stage parasite load.

Nir Increase in the growth of the individuals of the r-th host species
due predation upon individuals of the i-th host species.

Wiy Instantaneous death rate of the individuals of the i-th host species
due to predation by a single individual of the r-th host species.

A Instantaneous birth rate of parasite eggs.

€ij Rate at which the parasites in the j-th stage of their life cycle lea-
ve a host of the i-th species.

V; Instantaneous death rate of the free-living parasites in the W; po-
pulation.

Bij Instantaneous rate of ingestion of free-living parasites parasites of
population W, by an individual from the host population belonging
to the i-th species.

Lij Instantaneous death rate of parasites in the j-th stage of their life
cycle within a host of the population H;.

0, Rate at which the parasites in j-th stage of its life cycle reach the
stage j + 1 when transmitted directly from population H; to popu-
lation H,.

ki Parameter of the negative binomial distribution of the parasite po-

pulation P;; within the individuals of the host population H;.

Regarding Table 2.1, it is important to clarify that w; # 0 implies n,; = 0

TABLE 2.1: Description of the parameters used in this model.

because there is no increase in the growth rate of the prey population. Also, n; =

w;; = 0 forall e = 1,...,m, because, although it is possible that some host species,

not all, may be regulated by another host species in the absence of parasitism, we

assume that there is not predation among individuals of the same host species. In

addition, since not all host species can be regulated by another host species in the

absence of parasitism, there are i, € {1,...,m} such that n;, = w,; = 0, that is,

H; and H, are not trophically related.

Since the parasitic transmission in the system is caused by predation, non-trophic

interaction of hosts or due to the ingestion of a parasite in free life, to simplify the
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model we assume that if there are i € {1,...,m}, j € {1,...,n} such that ¢; > 0,
then 67, = w; = 0 for all r,s € {1,...,m}. Also, if there are 7,s € {1,...,m},
j € {1,...,n} such that 67, > 0, then w,, = ¢; = 0 for all i = 1,...,m. Finally,
if there are r,s € {1,...,m} such that w,s > 0, then wy = 67, = B;; = 0 for all
7 =1,...,n. In other words, to simplify the model we consider that all parasitic
transmission between two consecutive parasite stages are restricted to one and only
one type of parasitic transmission (direct or indirect, see Figure 2.1), and if the s-th
host species preys on the r-th host species, then there is no parasitic transmission

from individuals in H, to individuals in H, at any parasitic stage.

The last assumption in this model related to the parameters in Table 2.1 is that
if there are r,s € {1,...,m} such that §,_1) # 0 or ¢/ # 0, then ¢,; # 0 or

0j+1

.~ # 0 for some 1 <7 < m, respectively, for all j = 1,...,n — 1. This because

the parasites should be able to leave any intermediate host (hosts that supports the
immature or non-reproductive forms of a parasite [20]) in order to colonize another

host species where can be further developed.

Through a similar analysis to that of Dobson and Hudson, and since the effect in
the growth rate of the H; population caused by trophic interaction with individuals
of the H, population is given by (9,; —w;, ) H; H, for all i,7 € {1,...,m} [21], we have

that the equation that reflects the population size dynamics of each host species is

dH;

o (a; — b;)H; + Z(Um‘ — wir)H H, — Z (cvir + i) P,

r=1 =1

r#£i

forall2=1,...,m. Note that the dynamics of each host population is given by the
increase in the absence of parasitism minus the decrease in the fecundity of each

host and the deaths induced by the parasites in any of its stages.

The dynamics of the population of newborn parasites in free life can be deter-
mined in a similar way to the previous models, because the increase in the number
of individuals in this population depends on the number of newly born larvae minus
the total amount of larvae that enter a host or die in free life. Thus, the dynamics

of the Wy(t) population is described by

dW[) m m
7 = )\; P —0Wo — ;5r0HrW0~ (2-1)
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Similarly, we can determine the equation for the growth of the population size
of free-living parasites in the j-th stage of their life cycle as the difference between
the number of parasites in this stage that leave a host and the total number of
individuals in this population who die in free life or enter a host, given by the

following equation:

dW; < -
d_tj = Z €jBrj — W5 — > BryHWj, (2.2)
r=1 r=1
for all j = 1,...,n such that the transmission of parasites in stage 7 does not occur

due to the interaction between hosts.

Since the entry and exit of individuals to the different parasitic stages within the
hosts does not occur in the same way, we proceed to analyze these populations sep-
arately. First, the increase in the number of newly born larvae or free-living larvae
that are introduced for the first time into a host in population H; is given by the
proportion of the transmission factor (see [15]) that considers only the introduction
of parasites to the population H;, which, by the same analysis performed in An-
derson and May (1.1), can be estimated as 5,0 H; W, where Wy is the equilibrium
point of the equation (2.1). Therefore, the number of new individuals in the Pj

population is given by
)\/BZOHl Z:«n:l Prn
Yo + 2:31:1 BTOHT’

foralle=1,...,m.

On the other hand, the factors that influence the decrease of this population are
the parasitic transmission that furthers a developmental stage in the parasites and
the death of individuals within the hosts, either by the intrinsic mortality rate of
the parasite due to the host or by the deaths of hosts in this population, natural or

induced by individuals of the different parasitic stages.

Since there is more than one way in which a parasite can be transmitted between
two hosts, although no all types of parasitic transmission can occur, we consider that
the parasites can leave this population through any type of parasitic transmission.
The restrictions about what types of transmissions can occur in a row, given by the
relationships between €;;, 67, and w,, will determine the real loss of individuals in

the population.
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The first transmission that we analyze is when the parasites enter in a free-living
stage before colonizing another host. The parasites that leave the P;; population

can be modeled with the term

where p;;(k) is the probability that a host in the population H; contains k parasites
in the first stage of their life cycle within a host, and P;;/H; as the expected value
of this probability function.

For the parasitic transmission by any type interaction between hosts (trophic or
non-trophic, direct or indirect through a vector), it is necessary to analyze separately
the case in which the parasite undergoes a transformation within the same type
of host and the case where this transformation occurs when passing to a host of
different species. In the same way as was done in Dobson and Hudson (1.3), we can
model the case where the parasite does not need to change of host species to reach
the next stage of its life cycle with the term
P

. = ezlzpzla

05 H: > kpa(k) = 0}, H;
k=0

while the case in which parasitic metamorphosis depends on switching to a different
species of hosts is modeled using the next term:

N P

k=0 v

- eyierT‘PZ‘l7

for all r € {1,...,m}, r #1i.

To model parasite deaths, either intrinsic, within a given host, or extrinsic, that
is caused by host death (natural or parasite-induced), it is sufficient to note that it
is possible to calculate the number of dead individuals in the parasitic population
in the same way as in the Dobson and Roberts model (1.2), assuming that the type
of competition between parasites within the same host is by exploitation, as in the
Dobson and Hudson model (1.3), since all the parasites in the model are individuals

of the same parasitic species. Therefore, deaths in this population are given by

n

an (1+ ki) P2 n Z PPy

i1+ b; i) P i )
(i +b; + @) Py + ot 22 Qy 22
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and then, the dynamics of the population P;; is governed by the equation

dPil o /\5101'[@ Z:l:l Prn .
dt Yo + Z;nzl /BTOHT

i1 + b; + €1 + ajn + 9111 + Z engr P
r=1
r#i

n

a1 (1+ ki) P_fl B o PPy
kn  H “H;

=2

foralle=1,...,m.

Given the hypotheses of this system, the dynamics of the parasite populations
at a more developed stage of its life cycle within the same host species is similar
to the dynamics of the first stages, except for the number of new parasites in the
population. This is because the number of new individuals in the Pj; population,
with 7 > 1, depends on the number of parasites that were at the stage j — 1 of
its life cycle and advanced to the next developmental stage, that could happen
either within the same host type in which they were or in a different host species
to which they were introduced by any type of parasitic transmissions considered in
this model. The number of parasites transmitted when leaving a host and entering
another after spending a period of time in free life is given by 5;;_1)H;W}_;, where
W, is the equilibrium point of the equation (2.2). Thus, the number of parasites

that enter the population P;; due to this type of transmission is

Bi—1yHi D200y €ri-1) Pri-1)
Vi-1 Tt Z:«n:l ﬂr(j—l)Hr

On the other hand, the number of new parasites in F;; given by the interaction

(trophic or non-trophic) of the H; population with other host species populations is

m ' 0 m ) Pr . m .

D OLHH Y kpyoay(k) = 60 HH; ;][ =N H Py,
r=1 k=0 r=1 r r=1

r#£i r#£i r#i

while the number of parasites that reach the j-th stage of its life cycle while re-

maining at the same host species is

Py =
# = ‘gzj'i Pi(j—l)'

1

04 H Y ki (k) = 0% H;
k=0
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Therefore, the number of new individuals in the P;; population is given by

Big— 1H'ZT16T(J 1)P
7] 1+Er 157‘] 1

- 1)"‘9] 1P(J 1) +29] 1HPJ 1)
r;éz

forall j=2,....n

Since the number of parasites that leave the P;; population is similarly found for
all j =1,...,n—1, using the same analysis done to determine how many parasites
leave the P;; population, and changing the parameters to those corresponding to
stages j = 2,...,n—1 of the parasite’s life cycle, the dynamics of the P;; population

is given by the equation

dp; _ﬁzy D Hi D ey -
dt /7] 1+Zr 157"] 1)H

+ 65 Py +Zeﬂ YH, P
r;éz

uw+b+ew+aw+9i+29ﬂf[ P, ]k—jjﬁj
7“767,

l#]

foralle=1,...,m

Finally, since adult parasites do not leave their final host, the equations of the
P, populations do not show loss of individuals due to parasitic transmissions. Only

the number adult parasites deaths

decreases the size of the P, population. Thus, the equation that reflects the dy-

namics of the adult parasites population P, is

dpzn 5z(n—1)Hz ZT:l E7"(71—1)-[—:)7"(71—1)

rso A 05 Pin— O Hi Py
dt Tn—1 r=1 ﬁr(nfl) r (n—1) Z 1)
7"7&1
(0779 ( - kln) P: 2 n! Pln Pil
(,uzn bz Oém) n km l oy _i ,

foralle=1,...,m
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Based on the previous analysis, it is possible to model the dynamics of the host
populations and the populations of the different parasitic stages inside individuals

of each host species with the following system of ordinary differential equations:

P (a; — b;)H; + Z(TM — wir) H;H, — Z (vt + 0ar) P,
=1 =1
r#i

dljil AﬁzOHz mel Prn 1
= = — | g +bi+e i+ 0 0 Hy | Pi
B et ST B, | bt eatoat +Z !

r;éz
i (1+ kiy) P3 = Py Py
ko H, ; “TH
dPij 5@(3 1) H; Zm 1 6r(i— 1)P (-1 1 1
= L + 9] P + 9] H,P.
dt ’Yj 1+Zr 1ﬂr]1 -1 Z U=t
e (2.3)

MZ]+b +€z]+az]+9“+20]H P w#

r;éz
l#]
dPin ﬁz(n 1)H Z 1 €r(n— 1)Pr 1
— + 0 P + 0" H Py
dt Tn—1 + Zr 1 ﬂr (n— 1 Hn=1) Z (D)

r;éz
Uin (1 + kln) P2 — Pian'l
— (fin + bi + ain) Py — —————>—1 — i ;
(,u + + ) k}m HZ Z (0%)] Hz

=1

foralli=1,...,m,j=2,...,n.
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Chapter 3

Basic Reproductive Number

One of the main challenges of studying models of macroparasitic populations in
communities with multiple host species, either with an epidemiological approach
focuses on modeling the infection or with an eco-epidemiological approach focused
on the size of the populations involved, is to determine the necessary conditions
that guarantee the persistence of the parasites and host populations [22]. Typi-
cally, in parasitic models with a single host species these conditions are defined
by determining the basic reproductive number and threshold host density of the

system.

In this chapter we define the concepts of basic reproductive number and host
threshold density for macroparasitic populations. We also determine and analyze
an explicit expression of these concepts for the models presented in the previous

chapters, particularly for the model proposed in (2.3).

3.1 Definition

In epidemiology, the basic reproductive number, denoted by Ry, is a threshold
quantity that determines under what conditions there is an epidemic or not [23],
more precisely, for compartmental models Ry represents the average number of
secondary infections produced when a single infected individual is introduced into a
population full of susceptible individuals during his infectious period [24, 25]. This
definition of Ry is applicable for those models used to simulate the presence of an

infection in a susceptible population, as in the case of host-microparasite models.
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For host-macroparasite models the idea of the basic reproductive number is anal-
ogous. In these models, Ry it is a threshold parameter that determines under what
conditions a macro-parasitic species might persist in a host community [23], but its

formal definition and how it is calculated are different.

The reason that Ry is defined differently is that in the case of epidemiological
models, particularly microparasite models, the basic reproductive number allows
characterizing the ability of a microparasitory species to invade individuals from
a susceptible host population in which it was not present before, however, in the
macroparasite population models, the actual number of parasites per host is of inter-
est, rather than hosting parasites or not. Therefore, for macroparasitic populations
Ry is defined as the average number of established, reproductively mature offspring
produced by a mature parasite throughout its life in a population of uninfected
hosts [28].

3.2 Computation of the Basic Reproductive Num-
ber

The basic reproductive number is one of the most important concepts in many
epidemiological studies because it allows to determine under what conditions the
infectious disease persists. This is because if Ry < 1, then, on average, an infected
individual produces less than one new infected individual during its infectious pe-
riod, implying that infection cannot grow. On the other hand, if Ry > 1, each
infected individual, on average, infects more than one susceptible individual, so

that the disease can invade the population [25].

The same is true for macroparasite populations, if Ry < 1, then, on average, less
than one new adult parasite is produced from a mature parasite during its period
of reproductive life, implying that new generations of mature parasites cannot be
bigger than their predecessors, so the parasite population cannot grow when it
is first introduced into the host population. Conversely, if Ry > 1, each adult
parasite produces, on average, more than one new adult parasite over the course
of its reproductive life, therefore, the parasite population can increase in its next

generations.
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For each model, Ry can be obtained by calculating the average number of off-
spring (or female offspring in the case of a dioecious species) produced during the
reproductive life of a mature parasite (or mature female parasite), and determining
how much of the offspring is established in the host population, reaching reproduc-
tive maturity as an adult parasite. Since the basic reproductive number is defined
in a population of uninfected hosts, Ry is calculated when the parasite species is
first introduced into host populations; at this time pathogenicity and other density-

dependent constraints are effectively trivial.

In order to find an expression of Ry for the model we proposed in (2.3), we first
consider the case where there is only one host species and only the adult stage of
the parasite enters the hosts, that is, the Anderson and May model (1.1). For this
model, the number of offspring produced by an adult parasite, in the absence of
density-dependent constraints acting anywhere in the life cycle of the parasite, is
given by the product of the per capita reproduction rate of the parasite and the
life expectancy of the parasite in its adult stage, since only adult parasites are able
to reproduce [26]. Thus, since the per capita reproduction rate of the parasite is
A and the life expectancy of an adult parasite in the absence of density-dependent
restrictions is 1/(b+ p + «), the number of offspring produced by an adult parasite

in this model is given by \

m. (3.1)
This expression accounts only for new individuals in the W population. However,
since not all parasites at this stage reach their adult stage, and APH/(H + H,)
models the number of parasites in free life that become adults when entering a
host, the Ry of (1.1) that incorporates the dynamics of all stages of the life cycle
of the parasite population can be calculated as the product of the rate at which
new adult parasites are generated from an adult parasite A\H/(H + Hy) and the life

expectancy of an adult parasite 1/(b+ u + «), that is,

ANH

Bo= (H+ Hoy)(b+ pu + )

(3.2)

(see [10]).

Something important about the value of Ry given by (3.2) is that if Ry > 1, then
the value of (3.1) is greater than one, and particularly Ry — A\/(b + u + «) when
v — 0, implying that, the greater the life expectancy of parasites in free life, given

by 1/, a greater number of parasites reach reproductive maturity when colonizing
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a host. Figure 3.1 shows how the value of Ry, given by (3.2), is affected by the life

expectancy of the free-living larvae.

42 43 44

Basic reproductive number
4.1

I I R N
0 10 20 30 40 50

Survival of free-living larvae (weeks)

FiGure 3.1: Effect of changes in life expectancy of larvae in free life on the
basic reproductive number of the A&M model with parameter values b = 1.05,
a=3x10"% =01, p=12k=0.1, A =10.

Now, in the Dobson and Hudson model (1.3) with a single host species and
two stages of the parasite’s life cycle within the hosts, the number of offspring
produced by an adult parasite when there are no density-dependent constraints
acting anywhere in the life cycle of the parasite can also be calculated as (3.1).
However, as in the previous case, this expression does not consider the number
of parasites that do not reach its adult stage. Therefore, taking into account the
number of parasites that pass through each stage of its life cycle until become adult
parasites, an expression for Ry that incorporates the dynamics of the parasitic
population at any stage of its life cycle is given by the product of the transition
rates between the different stages of the parasite’s life cycle and the life expectancy

of a parasite in each of these stages [10], that is,

ONH
B = o T o) + Ho) (a1 61 0) (33)

Figure 3.2 shows the changes generated in the value of Ry of this model by varying
the life expectancy of the free-living larvae. We can also analyze the effect of adding
a second parasitic stage in the hosts on the value of Ry when comparing with the

values in Figure 3.1, since the parametric values are the same.
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FiGURE 3.2: Effect of changes in life expectancy of larvae in free life on the
basic reproductive number of the D&H model with parameter values b = 1.05,
a=3x10"%3=0.1,0=3, usg =0.5, up = 1.2, k= 0.1, A = 10.

From the above, it follows that the Ry for model (2.3) when there is a single host

species and n parasitic stages, using the corresponding notation, is given by

1

ABioH, 1
(t1n + b1 + a1n) (BroH1 + 70)

J
01

" (g + b+ agy + 6,)

Ry = (3.4)

J

For multi-host models, finding the expression for the reproductive number is not
simple. In these models we can calculate a threshold quantity equivalent to a partial
basic reproductive number for parasites within the same host species, denoted R, ;
for each host species H;, and the total basic reproductive number of the parasite
within all host species, denoted Ry (or Ro ) [29, 30]. As in models with a single
host species, we define Ry; as the average number of parasite offspring that reach
its adult stage in a host of the population H;, and Ry as the average number of

offspring that reach the adult stage in any host. Therefore, Ry = >"1" | Ry.

From the definition of Ry it follows that if ?y; > 1 then the number of parasites
with a definitive host in the population H; increases after parasites are introduced
into the host community, implying that it is possible that the parasitic population
can be maintained in each host species H; such that Ry; > 1. The same is true for
the basic reproductive number over all host species, Ry > 1 implies that it is possible
that the parasite population remains in the host community. Since Ry = >\ Ry,
if Ry; > 1 for some 1 < i < m, then Ry > 1, but the reciprocal is not necessarily

true, that is, it is possible that Ry > 1 and Ry; < 1 for all 1 < ¢ < m, this case
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implies that the parasite population needs all the host species to survive. Since we
are interested in determine the necessary conditions for the parasite population to

remain in the different host species, we focus on studying Rj.

As in the previous models, to determine Ry we need to determine the number
of parasites that pass from one stage of its life cycle to the next. To do this, it is
necessary to calculate the average number of parasites in the j-th stage of its life
cycle that are within a host of the i-th species and, after spending a period of time
in that host, reach the next stage of its life cycle, not necessarily in the same host,
forall1<i<m,1<j5<n.

Since the number of parasites entering and leaving different populations F;;
changes according to the stage of the life cycle that corresponds to the value of
j, we first analyze the dynamics of the populations P;;. In the absence of density-
dependent constraints acting anywhere in the parasite’s life cycle, we can estimate
the number of parasites that survive in P;; until reaching the next stage of its life
cycle as the quotient of the number of parasites that enter P;; and the number of

parasites that leave P;, given by

AB’LOHZ Z:«n:l Prn
(70 + Zjnnzl /BT‘OHT) (ﬂzl + b + €1 + 0731 + ‘9” + Er 1 (9 H )

for all = 1,..., m. Therefore, the average number of parasite offspring produced
by a mature parasite, with a definitive host in the H, population, that colonize the

P;; population and reach the second stage of its life cycle is given by
AﬁiOHqun

(o + >ty BroH,y) (le +bi+ €1+ aq + 0], + Zr ! 6l H )

Now, for the P;; population, the number of parasites that enter and leave this
population is given in a similar way for all 1 < 7 < n. Thus, using the same analysis
we performed previously, the number of parasites within a host in the H; population

that pass from the j-th stage of its life cycle to the next is

Bi—1yHi D770y €n—1) Pr(i—1)
Vi1 + 2oy Br-ny H,

(W+b+%+%+%+ZM9H)P

+ 6017 Py +Z7‘ 19j;1HiPr(j—1)
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for all j = 2,...,n — 1, implying that the average number of parasites that leave
the hosts in H, to enter the P;; population, and after spending time in the F;

population passes to the next stage of its life cycle, is given by
BiG- 1Hf«jnfhj1

V-1 + 2 Br-n H.
(Mf+b+f”+QU+9i+2}1w T)Bj

1p
9] q(3—1)

if ¢ =1, and
Bii-1) Hi€q(i-1) Pai-1) O H PG
7] 1 +Er 157"3 1
@WM+%+%+%+ZH0H>P
if g # 1.

Finally, since at the last level of the parasite’s life cycle parasites cannot leave
the population, the total number of parasites that reach its adult stage in a host in

H;, and from which new offspring will be produced, can be calculated as

5i(n—1)Hi 2:1:1 Er(n—l)Pr(n—
Yn—1 + 2:1:1 ﬁr(nfl)H
(:uin + bz + O‘in) Pm

20 Py + Sy 00 HiPry

Therefore, the average number of adult parasites in a host in population H; that
came from a host in population H,, that will produce offspring by staying in these

hosts during the rest of its life, is given by

Bitn—1)Hi€r(n—1)Py(n—
Fn— 1+Z 167"(71 1)H
(,uzn + bz + azn) Pm

+0n IPn 1

Y

if ¢ =1, and
i(n— H'rn Pn
Bitn—1)Hi€r(n—1)Pytn-1) O HL Py
Yn— 1+ZT 167’(711
(ﬂzn+bz+a1n) P’m ,
if g # 1.

For the above, denoting by H the set {H;}!",, and considering F; ;_;, and G;;
functions of H that represent the rate of parasite entry to the F;; population from
the P,;_1) population if j > 1 or P, population if j = 1, and the rate of exit

of parasites from the P;; population in absence of density-dependent constraints,
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respectively, given by

( ABioH,;
Yo + 271:1 BT’OHT
Big—1Hi€qj-1)

if j =1,

Fij14(H) = i+ B H, + 95;1 if 7>1andi=gq, (3.5)
\ ’leﬂfggfggnnH + 0 Hi if j>1andi# g
and
Win + b; + qup, if j=n,
GiglH) = (3.6)

pij + b + €5 + iy + 0“ + Z - QJ H, otherwise,

forall 1 <7< mand 1< j <n, we can express the average number of parasites
that enter the Pj; population when leaving the F,;_;) population if j > 1 or P,
population if 5 = 1, that remain in these populations during the life expectancy of

individuals in the j-th stage of the parasite’s life cycle, as

Fij14(H) Py
Gij(H)P;

),

(3.7)

Before determining the value of Ry for the general model (2.3), it is important
to note that, if F;; 1 ,(H) # 0 for all ,¢q =1,...,m and j = 1,...,n, then this
model simulates a system where the parasite’s transmission network covers the m
different host species at each parasitic stage. This transmission network can be
represented by a digraph whose nodes represent the P;; populations, connected by
arcs that represent the parasitic transmission between these populations. From
the digraph that represents the parasite’s transmission network, it follows that, to
calculate Ry it is necessary to consider only the product of the number of parasites
that pass through the Pj; populations that are on the same directed path that
begins at the node of a P;; population and ends at the node a P,, population,
with i,7 € {1,...,m}. Therefore, since (3.7) is the number of parasites that pass
through the P;; populations, the total reproduction number is given by

[ Fiy i (H)P, ot F ”1@ (H)P, ;1)
R — 1,Y,tn+1 n+1 7. j—1 i—10J
’ Z Giy 1 (H) P 112 (H)P,

(i15esinying 1) €{1,.ym}nt1 Gl &2

_ Z Fi1,0,in+1 H>Pln+1n ﬁ ij,j—1,05— I(H)
G' (H)Plnn 74] 1,J— 1( )

in,n

(21, instng1)E{L,...om}ntl L Jj=2
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Figure 3.3 shows an example of the digraph that represent the transmission
network of a parasite that has three stages in its life cycle within individuals of

three host species, and whose Ry is given by (3.8).

-ﬂ"\_l
P3z |

" N N
| P11 | | P2y | | P3r |
N o N

FIGURE 3.3: Complete transmission network of a system with 3 host species and
3 stages in the parasite’s life cycle, where P;; are the parasites in the j-th stage
of its life cycle within a host of H;.

3.3 Threshold Host Density

We previously defined the concept of basic reproductive number for host-parasite
models as the average number of offspring produced by an adult parasite, this in or-
der to obtain an estimate of the rate of parasite transmission in a host community
that allows determining under what conditions the parasitic population persists.
The threshold host density, denoted Hy, is a quantity related to the basic repro-
ductive number that requires that the host population density is large enough to
accommodate a persisting parasite population [10, 11], that is, Hpy is a quantity

related to the parasitic transmission rate of the system.

For host-parasite models with a single host species the value of Ry is given as a
function of H, therefore, since the threshold host density is the value of H such that
the parasitic population persist, Hr is the size of the host population that satisfies
Ry =1.
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With the above definition, we can determine the value of Hr for the Anderson and
May model (1.1) considering Ry = 1, with Ry given by (3.2). Thus, the threshold
host density for this model is

Ho(b+ﬂ+04)

H:
" AX=(b+p+a)

if A > b+ p+ «a, otherwise, the parasitic population goes to extinction.

Since the life expectancy of larvae in free life affect the value of Ry, Figure 3.4
shows how the value of the threshold host density varies in relation to life expectancy

of the free-living larvae in the Anderson and May model.

=
o

=
o4

Threshold host density
1.0
|

0.0
|

1 T T T 1
0 10 20 30 40 30

Survival of free-living larvae (weeks)

FIGURE 3.4: Effect of changes in life expectancy of larvae in free life on the
threshold host density in the A&M model with parameter values b = 1.05, o =
3x1074, 3=0.1, u=1.2,k=0.1, A = 10.

In this model, an initial value of H greater than Hy guarantees Ry > 1, and thus,
in addition to proving that the population persists, it can be proved that there is a
stable equilibrium point in the system where the parasite population prevails over

the host population (see Section 4.1).

Following a similar analysis, we can calculate Hp for the Dobson and Hudson
model (1.3), where Ry is given by (3.3). In this model, the threshold host density

is given by

Ho(pp + b+ a)(pa +b+0)
HT: 5
ON — (up +b+a)(pa+b+0)

when OA > (up + b+ a)(pa +0+90).
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As with the basic reproductive numbers of the A&M and G&H models, we can
compare the changes in threshold host density of both models with the results
shown in Figure 3.4 and Figure 3.5, resulting from considering a second parasitic

stage within the hosts .

Threshold host density

1 T T T 1
0 10 20 30 40 30

Survival of free-living larvae (weeks)

FIGURE 3.5: Effect of changes in life expectancy of larvae in free life on the
threshold host density in the D&H model with parameter values b = 1.05, o =
3x107%, 8=0.1,0=3, ua =0.5, up = 1.2, k=0.1, A = 10.

The two previous models are particular cases of model (2.3) whose most obvious
generalization is to have n stages in the parasite’s life cycle and a single host species.
The basic reproductive number for this particular case is (3.4), so, regardless of the
value of n, and using the corresponding notation, we can calculate Hy for this model

as
Jo
_ Bio
A H;:ll 01) — (i + b1 + 1) H?j(ﬂlj +b oy +6])

(1n + b1 + 1) H;:f (baj + b1+ o1y + 011)

(3.9)

Hr

Now, since it is possible to determine the basic reproductive number for host-
parasite models with more than one host species, given as a function of the densities
of the different host species, we can define the threshold host density in these models

as a configuration of values of the different host densities such that Ry = 1.

For model (2.3) with more than one host species, the basic reproductive number,
given by (3.8), it is a function not only of the densities of the host populations, it
also depends on the size of the parasitic populations in its first and last stage, so,
instead of calculating the threshold host density in terms of parasitic populations,

we can find a lower bound for R, that depends only on the values of H;, so we can
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find sizes for host populations such that Ry > 1, guaranteeing that the parasite

population is able to subsist.

From the definition of Ry for this model, given by (3.8), it follows that

Ry = >

Fi1,07in+1 (H)Pin+1n - Ejvj_17ij71 (H)]

(i1 yeeyinsins1)E{L,...,m}7+1 inn(H) P ol Gij,l,j_l(H)
- Z 1170% (H) ﬁ =1 () n
(i1 seensin ) E{ Ly.ym} Gia(H) —5 G (H)
Z Fil,o,inH P n n F’Lm Lija H)] (3.10)
(i1,miin)E{ L.} Ginv”(H i Gy (H)

in+1€{1,.... m\{in}

S

(i1,00nin ) E{ Lyeecim}™

Fy 00 (H) 10 Fijj—1,4,-, (H)
Gil,l(H) j=2 G'Ljv]( )

The problem of calculating Hr as a configuration of values of H; such that Ry = 1,

is that R, consists of the sum of m"*!

terms that may depend on the product of
the quotient of different F;; populations. For this reason, in this model we define

an auxiliary value H) as any configuration of values of {H;}™, such that

Z Fy 00 (HY) v Fijiivi;0 (H7)
Gioa (Hp) 1L G (1)

(i1,ein)€{1,....m}" 1,

=1. (3.11)

Note that (3.11) consists of the sum m” terms that depend only on the host popu-
lations, and any H/. that satisfies the equation (3.11) gives Ry > 1. In particular,
H. = Hp when equality is satisfied in (3.10).

3.4 Some Conclusions on the Basic Reproductive

Number

Unlike the results on Ry in epidemiological models, the basic reproductive number
and the threshold host density in the type of host-parasite models only allow to
determine under what conditions it is possible that the parasite density increases,
or at least persist, in the host community when the parasite is first introduced into

the population, implying that it is possible that the parasite population persists as
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long as the host population does not become extinct. Therefore, for models where
it is not possible to determine analytically the existence of a non-trivial equilibrium
point, the fact that the parasite population is maintained when it is just introduced
in the hosts does not imply that the parasite population persists for all time ¢, or
does not even guarantee that the host community persists. Even if the parasites
persist in the host community for all time ¢, this does not imply that the host and

parasite populations are regulated.

An example of a model in which Ry > 1 and none of the host or parasite pop-
ulations persists is shown in Figure 3.6, where Ry ~ 2.73. This happens when the
growth rates of the parasitic populations are higher than the growth rates of the
host populations, causing both populations to grow until the induced mortality on
the hosts exceeds the natural birth rate, and thus, the host populations tend to

become extinct, implying that parasites also disappear from the system.

1I:I_
10°-
10°- variable
E H
E 2
= 10°- — A
FI
10°-
1|:| 2_
0.0 25 5.0 7.5
Time

FI1GURE 3.6: Population dynamics in the D&H model with parameter values and
initial conditions a =1.95, b =1.05, a =3 x 107%, § =8 x 1074, 3 =0.1, 0 = 3,
pa =03 up=08 k=01, A=11,v=10, H = 200, A =20, P = 10.

When Ry > 1, another possibility is that the parasite population persists in the
host community, but does not regulate its growth, that is, the host and parasite
populations grow without bounds, under the assumption that there is no carrying

capacity in the system for the host community, as in Figure 3.7, where Ry = 2.06.
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This occurs when the growth rates of the host populations are higher than the
growth rates of the parasitic populations for all time ¢, and the parasites are unable
to decrease the growth of host populations enough to cause all populations in the

system to stabilize.

1|:| o
1D2.’ .
variable

o
o 15 _ H
C 10 A
= .

107~

1|:| .

1|:| - 1 1 1 1 1 1

0 100 200 300 400 500
Time

FIGURE 3.7: Population dynamics in the D&H model with parameter values and
initial conditions a =1.95, b =1.05, a=1x10"% §=1x10"% 8=0.1,6 = 3,
ua =07 up=12k=0.1, A\=11,v =10, H = 200, A = 20, P = 10.

Finally, it is possible that the introduction of the parasitic species into the host
community regulates the host populations, but not stabilize them to a non-trivial
equilibrium in the system. This is possible when all the populations in the system

oscillate with some period of time 7.

Something important about Ry is that it is possible to slightly modify the condi-
tions in a model, so that even the value of Ry can be preserved, but that it changes
if the populations stabilize or not. Figure 3.8 shows an example of this, stabilizing
the populations in the model of Figure 3.7, and maintaining the value of Ry, by
adding the induced mortality rates and the decrease in the fertility rate over the
hosts due to arrested larvae, with values at least thirty times lower than those of
adult parasites, and maintaining the same value for the rest of the parameters and
initial conditions in the system. This particular example occurs when the parasite

populations are big enough so that the overall effect of all parasites that have not
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reached reproductive maturity reduce the growth of host and parasitic populations

until they tend to stabilize.

m-:_ \
10°- |
variable
T 407 | H
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FIGURE 3.8: Population dynamics in the D&H model with parameter values and

initial conditions @ = 1.95, b = 1.05, a4 = 3x107%, ap = 1x107%, 64 =3x 1076,

Sp=1x10"%8=01,0=3, ua =07, up = 1.2, ka = 0.1, kp = 0.1, A = 11,
v =10, H =200, A =20, P = 10.

In addition to the above, in the model with a single host species and n parasitic
stages the value of Ry, given by (3.4), decreases for all ¢ > 0 as the value of n
increases if the parameter values used in the equations are equal, as in the examples
in Figure 3.1 and Figure 3.2. This because increasing the value of n decreases the
value of H;:ll 07,/ (p1j + b1 + aj + 6],)], since 8],/ (pu1; + by + auj + 64;) < 1 for
all j = 1,...,n — 1. This result reflects the additional mortality added by each
parasitic stage in the model, since R, represents the average number of parasite
offspring that reach reproductive maturity in its adult stage. This is also true for

the general case in (2.3) with basic reproductive number (3.8). Since

Ry — Z Fi1,07in+1(H)Pin+1n E Fij,jflyijfl(H)
’ (H)Pin G,y (H) |7

(i15emsin i 1)E€{L,..,m}nH1 Tt j=2



Basic Reproductive Number 44

so, from the definition of Fj, ;_1;,_,(H) and G;,_, ;_1(H), given by (3.5) and (3.6)

respectively, it follows that

Fy g1, (H) 1
Gijflyjfl (H)

for all 4;_;, with j = 2,...n. Thus,

1 Fi v, (H) - 1 £ (H)
Gi, g1 (H) — 25 Gy (H)

J=2

if n; < neo, proving that the value of Ry in these models, decreases for all ¢ > 0 as

the value of n increases if the parametric values used in the equations are equal.

An opposite result is true for threshold host density in communities with a single
host species. The value of Hrp, given by (3.9), increases as the value of n increases
if the parameter values used in the equations are equal, as in the examples in

Figure 3.4 and Figure 3.5. This because,

6 ” = (pan + by + o) T2 (g + by + ay + 8,)
HT n— n— i\’
M L0y — (i + b1+ o) Hj:ll(:ulj + b1 +a; +64y)

so, if n; < ng, then
no—1 ni—1 no—1 .
)\HQ <)\(H0 ) H (paj + by + gy + 61y),
j=1 j=n1
implying that
no—1

no—1
A H 0{1 - (,uln + bl + aln) H (Nlj + bl + a1 + 9{1)
5 o

is smaller than

ni—1 ni—1 no—1
MI 6= Gan + b0+ ) [ s+ 01+ n + 60 | [] (s + b1 + a0 +67,),
= j=1 j=n1
and hence
70 ni—1 J
B0 (Mln + b + Oéln) Hj:1 (Hlj +0 + aq; + 911)

A Hnl ' 93 — (H1n + b1 + a1p) Hm l(ﬂlj + b +ay; + 911)
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that can be written as

ntb DT (g + b 40 na— :
510(u1 o) T oy bt oy + 1) [ 1M1j+bl+061j+8{1

AT 00— (pan 4 0r + ) T (g + by 4 o +6011) o g + b+ aay + 64,

is bigger than

5 (,um + b1 + ain) H?iil(uu + b1+ + 60])
10

AT 00— (pan + b+ ) T2 (g 4 b1+ o + 641)

This result shows that to compensate for the decrease in the average number of
parasite offspring that reach its adult stage, that is, the decrease of Ry, it is necessary
to increase the number of hosts in the system so that the parasite population can

persist.
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Chapter 4

Model Analysis

In the previous chapter we concluded that the basic reproductive number and the
threshold host density allow us to determine under what conditions the parasitic
population is able to maintain or increase in the host community, however, these
conditions do not necessarily guarantee that there is a non-trivial equilibrium point
where the host and parasite populations are regulated. For this reason, when it
is possible, the equilibrium point of the system of equations is calculated for each

host-parasite model, if it exists.

Before attempting to calculate the equilibrium points of the system (2.3) it is
necessary to remember that we model a system where there is a community of m
different host species and a parasite species with n stages in its life cycle, whose
transmission network can be represented with a digraph as explained in Section 3.2.
However, most parasite’s transmission networks do not satisfy that all the parasitic
stages are present in each host species as in Figure 3.3, so, one of the problems is

that it is necessary to elucidate the parasitic transmission network.

The life cycle of many parasitic species has been studied, and their the transmis-
sion network determined. An example of these studies is shown in the representation
of the Carpinteria database, presented in Appendix C. This database shows that
most parasite species satisfy that the stages of its life cycle occur within different
communities of host species, implying that m > n, and more important, without

loss of generality, the equations of (2.3) in these cases can be written as

47



Model Analysis 48

dH;
dt

(a; — bi)H; — (aiL(i) + 5iL(i)) Py + Z (Mri — wir) HiH,,
{T ‘ Nri —UJ”-#O}

dP; ABioH; Y v L(r)y=n} Ern
1 {r|L(r)=n} 1hi1 + bZ + €1+ a1 + Z Qierr R

dt Yo + Z{T|L(7~):1} BroH: {r|L(r)=2}
S Sl Ve L(z)=1
@ Vi€ {L() =1},
dPy _ Big-0Hi 2 =1y -0 Pr- T
_ BiGi-1) Z{ | L(r)=j—1} r( DH(J b + Z 0’ 1H1-P7~(j—1)
dt Vj—1 + Z{ML(T):j} Bri-1) Hy {r|L(r)=j—1}
ij + b + €5 + iy + Z 05, H, | Py — ]T]]FZ

{r| L(r)=j+1}

Vie {L(i) =j, 1<j<n},
Py _ Bi-)Hi 24y | 1) =01y Ertn-1) Prin—1) P eoHp
dt Tt 22 )=} Brin-1) Ho {r| L(r)=n—1} ey

Qin (1 + ki) Pgw

Vi e {L(i) =n},

— (fin + bi + i) Pin —
(4.1)

where L(r) is given by

L(r) { j if thereisi € {1,...,m} such that max {5r(j_1),9§;1} # 0,
)=

0 otherwise.

Therefore, in systems without predation, the equilibrium point in these cases

satisfies ;
a. — .

= — {7, 4.2

i) Qirgy + 0in) (4.2

Thus, defining A;zq) = (a; — b;) /(@) + dine)) and

air@) (1 + Kiru e
. Airgy | Mina) + bi + €y + qure) + © EC‘L@) o) Airay | if L(i) <n,
iL(i) =
i) (1 + ki . .
Ain {Mm +b; + ain + ) { ' >Am} if L(i) = n,
(4.3)

since H} # 0 for all 1 <14 < m, replacing Pl in dPi*L(i) = 0 we obtain the following

equations
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T r)=n )\Bl ATHH:
Biy = 2o 2y =np M0 . Z Anbl H (4.4)
%0+ 2 L=ty Pro 7

{r|L(r)=2}
for all i € {i | L(i) = 1},
r r)=j— Bz j—1)€r(j— Ar j— H: "
B, :Z{ | L(r)=5—1} Pi(G—1)r(j—-1) (}{1) n Z 9] 1A W
Vi1 L 1=y Pri-n {r|L(n=j-1} (4.5)

- ) AyOLH!

{riL(r)=j+1}

for all i such that L(i) = j, with 1 < j < n, and

m

> (| Liry=n—1} Bitn—1)Er(n—1) Ar(n—1) H'
+ )
V-1 + Z{r | L(r)=n} BT(N_I)H

Bm = 9:};1147"(”_1)[‘[: (46)

{r| L(r)=n—1}

for all i that satisfies L(i) = n. Hence, to calculate the equilibrium point, if it
exists, it is only necessary to solve (4.2), (4.4), (4.5) and (4.6), for all i = 1,...,m,

7=1,....n

We can not follow a similar method to try to determine the equilibrium point
when there are trophic interactions between the hosts, because the equilibrium point

in these systems must satisfy

a; —b; Nri —
1L(3) i
Q5L (4) + 52L(7, {T | mri—win 20} QL (4) + 51L

if iz + diry # 0, and

> (i —wi) HY = bi —

{r | nri—wir#0}

when ;7,402 # 0. In these cases it is not possible to give a method to determine

the equilibrium point.

In cases where there are parasite species that remain in the same host species for
more than one stage of its life cycle, it is also not possible to give a general method
to calculate its equilibrium points, since in these cases the model cannot be written
as in (4.1).

For a better understanding of the above, we analyze some particular cases of the

model when initially we only know the values of m and n.
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4.1 Case m=1, n=1

This case coincides with the Anderson and May model when 6;; = 0. Thus, to
simplify the notation in this particular case, and in order to show a complete analysis
of the Anderson and May model, we use the same notation as in (1.1). Since ¢ does
not directly affect the dynamics of the parasitic population, and since the effect of
this parameter on the growth rate of the host population is relatively small, we only
consider the case where 6 = 0. Hence, the model in this case is exactly the same as
in (1.1):

dH
E:(a—b)H—aP,

dP  \PH (1 + k) P?
ar _ APH p_al+m
i mym etetal K H

Since the model has the form (4.1), without predation between hosts, from (4.4)

it follows that the equilibrium point satisfies

Aa —b)H*
a(H* 4+ Hy)

with B defined as in (4.3):

B= (a;b) {b—k,uvLoz—l—(l;:k)(a—b)

Therefore, B
Q 0
H* =
Ma —b) — aB’
and from (4.2)
pr — B(CL — b)Hg
~ AMa—1b)—aB’

Thus, for the equilibrium point to exist and make biological sense, it is necessary
that A > aB/(a —b), that is, A\ > b+ pu+a+ (1 + k)(a — b)/k.

To determine the stability of the equilibrium point (H*, P*) we analyze the eigen-
values of the linearized system H(t) = H*+x(t), P(t) = P*+y(t), calculated using
the characteristic polynomial of the Jacobian matrix of the system (1.1) at (H*, P*),
that is
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P( ) det ( a—b-—c — )
c) = de
AP*H, Ot(l+k‘) (P*)2 \NH* a(1+k) p=
oy T e wm — Ot a) 225 .

a(l+k)P* AH
oty (a—b
PR T e A )]C
AH* a(l+k) P
#a=0) [~ o) 2 O

=+ [(b+u+a)+2

N AP*H, a(l + k) (P*)?
(H* + Hy)? ko (H*)?
5, a—b o«
=c" 4+ ? c—}—B(/\ a—bB>’

and since (a —b)/(k) > 0 and B]A—aB/(a—b)] > 0 as long as H* > 0 and P* > 0,
the eigenvalues of the linearized system have a negative real part (see Appendix B),

so (H*, P*) is locally stable.

This model can be applied to all parasitic species that enter a single host species
during its adult stage, for example, Nerocila californica, Baylisascaris procyonis,
FEugregarine, etc. Figure 4.1 shows a simulation of the system where the conditions

for the existence and stability of the equilibrium point are satisfied.

.‘H:Ii_ N

1D:'_
L 107" -
5 variable
c H
:: =]
< 10°- — F

,.II:IE_

10~ "

0 10 20 30
Time

FIGURE 4.1: Population dynamics in the A&M model with parameter values
a=14,b=105 a=3x10"% 8=0.1, u =05, k=0.1, A= 10, v = 10, and
initial conditions H = 200, P = 10.



Model Analysis 52

4.2 Case m=2, n=1

Given the structure of the model, in this case we consider a community with two
host species, that the parasite only colonizes them during its adult stage. The

equations for population dynamics in this case are given by

dH
_dtl = (al — bl)Hl — (Olll + 511)P117
dH.

dPyi ABioHi (P + Pa) 1+ kn P (47)

— (p11 + b1+ a11)Pip — aqq

dt o+ BioHi + BaoHa ki Hy’
dPoy ABaHa(Pry + Pyy) 1+ ko P221
— — b Py — —=
dt Yo + BroH1 + PaoHo (21 4 bz 4 ) Por = am ko1 Ho

As in the previous case, this system is also a particular case of (4.1) where there

are no trophic interactions between the hosts, so, from (4.4) it follows that

)\@o( @ — by HY + as — by H*)

an+01 | o+ 0y _ B (4.8)
Yo + ol + s '
where B;, defined as in (4.3), is
ai—bi 1+k‘21 ai—bi
By = ————— |pin + b + i1 — ; 4.9
a1 + 051 {M ! ! ! ki <ai1 + 51'1)} (4.9)

for ¢ = 1,2. Thus, the equations in (4.8) imply that

al—bl (lg—bg
AGjpg————— — B | Hf + [ \jg———— — B; | H; = B;vo, 4.10
( ﬁ0a11+611 Bio > 1 < 50a21+521 Bao ) 2 Y0 ( )

for i = 1,2. Assuming that (a1 — b1)/(aq1 + 011) # (ag — ba) /(21 + d21), Bro # Poo
and By # By, the solution of (4.10) is given by

~ a9 — bQ
)——————
HY = Qo1 + 521
1 B a; — bl Qa9 — bg ’
20 - M10
aiy + 0 Qo1 + 021
Sl
HY — "au1 +0u
2 a9 — b2 a] — bl '
1o

— D20
Qo1 + 021 agp + 01
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Since Bag(a; —b1) /(a1 +011) # Bro(as —bg) /(a1 +d91), the above implies that there
is no biologically feasible equilibrium point in the system, because either H; < 0 or
Hj < 0 depending on whether Ba9(a; — b1) /(a1 + 011) — Bro(az — b2)/(ag1 + d91) is
negative or positive. Hence, a parasitic species cannot regulate the growth of two
distinct host species if the intrinsic growth rates of each species and the effect of the
parasites on both are not equal. In these systems one of the host populations tends
to become extinct, allowing the other population to be regulated if it satisfies the
conditions established in the Anderson and May model, as in Figure 4.2, assuming

that parasitism regulates at least one of the host populations.

,.II:I.‘:_
10°- variable
o H1
] 4
£ — H2
-
Z 10°- - — P11
P21
,.II:I.'_

Time

FIGURE 4.2: Population dynamics of the model (2.3) with m = 2, n = 1, pa-

rameter values a1 = 1.4, ao = 1.6, by = by = 1.05, a1 = as; = 3 X 10_4,

(511 = 521 =1x 1074, 510 = ﬁQO = 0.1, M1l = (21 = 1.2, ]{311 = ]{321 = 0.1, A = 10,
Y0 = 10, and initial conditions H; = 200, Hy = 800, P;; = 10, P»; = 50.

Now, we need to analyze the case where the two host species in the system have
the same growth rate in the absence of parasitism and the parameters correspond-
ing to the interaction of parasites with both host species are equal. Under these

conditions, system (4.7) can be written as
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dH
d—tl = (a—b)H, — (a+ 0) Py,
dH.
d—t? = (a — b)Hy — (ot + 0) Py,

dPll . )\ﬁHl(Pl]_ + PQ]_) 1 + k,P_121 (411)

—(p+b+a)Py—a

dt v+ B(H + Hy) E H’
APy, ABHy(Pyy + Pa) 1+I<;P221

= —(u+b+ )Py — —==.
T Y AR )P —a— =g

Following the same analysis, the equations (4.10) are expressed by the equation

a—>b . a—1>b .
(/\ﬁa+5 —BB) Hi + (/\ﬁa+5 —BB) H5 = B, (4.12)

where B = By = Bs defined in (4.9), that is,

B_a—b +b—|—a—a1+k a—>b
“a+o M k a+d)|’

Since we look for positive values of H} and Hj, there is ¢ > 0 such that Hj = cH;.

Thus, the equation (4.12) allows to determine the value of Hj, given by
By

(14¢) (ABG—:L; - 53)

«

Hi =

and, from (4.2) it follows that the values Hj, P;; and Py, are

H; - = 7
1+ c) ()\Ba—_b - 53)
( o+
Pl*l = (a — b)Ba,y_ b )
(a+6)(1+c) (waM —33)
P = c(a —b)By b ‘
(a+8)(1 +¢) (ABZL; —53)

Therefore, for the existence of a biologically acceptable equilibrium point is nec-
essary that the intrinsic growth rates for both host species are equal, just as it is

necessary that the parasitic species have the same effect on both host species.

Since in a neighborhood of (HY, Hj, Pjy, Py;) it is satisfied that Hy ~ ¢H; and

Py = cPi;, we have that
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dH
d_tl = (a — b)Hl — (CY"—(S)PH,

dP,, M3H, Py 1+ k P}
p— —_ b —_— N ——
o T (L+b+a)P —« ,

where 5 = B(1+ c¢), so, from the previous section it follows that (Hy,Py;) is locally
stable whenever H; > 0 and P;; > 0, what happens if and only if A > b+ p +
a+ (1+k)(a—"0)/k. The same is true for (H;,Py;) in the system dHy ~ d(cH;),
dPy; =~ d(cPyy). Therefore, in a neighborhood of (H;,Hj,Py,Ps,) the system (4.11)
is stable, and the value of ¢ is given by ¢ = Hy(0)/H,(0).

From the above we conclude that it is possible to mathematically determine if a
parasite can colonize two different host species, depending on the intrinsic growth
rates of both species and the effect that the parasite would have on the hosts.
Figure 4.3 shows a simulation of the system (4.11) where the conditions for the

existence and stability of the equilibrium point are satisfied.

1D.’~._
i
10°- rr
f variable
5 . H1
810 |
g r - H2
z — P11
10 P21
107" |
10' "
0 10 20 30
Time

FIGURE 4.3: Population dynamics of the model (2.3) with m = 2, n = 1, pa-

rameter values a = 1.4, b=1.05,a =3 x 107, §=1x 1074 3=0.1, p = 1.2,

k= 0.1, A = 10, v = 10, and initial conditions H; = 800, Hy = 300, P;; = 50,
Py = 10.

Following the same analysis, we obtain the same results for the generalization

of this case where only adult parasites can colonize individuals from a community
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with m host species where there is no predation, for any m > 2. This because, an

equilibrium point of the system

dH;
dt = (a; — bi))H; — (an + 1) Py,

dPy _ MioH; Y| P
dt Yo+ Y oney BroH,

Ltk PR (4.13)

ka  H;'

— (o + b + ) P — aqn

must satisfy (4.4)
a, — b,

ABio D H;

=1 Q1 + 67"1 "
Yo + Zjﬂnzl /6TOH:

where B;, defined as (4.3), are

B a; —b; l b4 1+ki1<ai_bi )]
I e i T Q1 — QG
Qi1 + 0 it ' Yk Qi1 + 01

= Bia

for all = 1,..., m, from what follows

Aﬁi() ik Qr — br * = *
Bi Z (6751 + 57‘1 HT B fyo + ;6T0HT,

r=1

for all i = 1,...,m. Hence, if B;,0/Bi, # Pi0/Bi, for any iy,i5 € {1,...,m}, then

H'=0

r
1 78] 57"1
r—=

Aﬁilo _ )\5120 = a, — by
B B

i1 12

implies that

" a.—b
Py ;)
— (8751 + 67'1
r=1
and, since (a, — b.)/(a,1 + 6,1) is positive for all » = 1,... m, then H¥ < 0 for
some 1 < r < m. For the above, a necessary condition for a biologically acceptable
equilibrium point to exist is that the intrinsic growth rates of all host species are

equal and that the parasites have the same effect on all host species.

Now, if we define ¢,...,¢p,—1 such that H' = ¢;_1Hf for all + = 2,...,m,
where (Hy,...,H},) are the sizes of the host populations at the equilibrium point
of (4.13),if it exists, then, from (4.4), it follows

a—>b N B a—>b .
VB = (AﬂaJr(s—ﬁB);Hr - <1+;cr_1> <)\ﬁ&+5—ﬁB> H},
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where B, defined as (4.3), is

po =t {/L—i—b—l—a—aﬂ (a_bﬂ
a+o k a+0
for all e = 1,...,m. Therefore, the equilibrium point is given by
Hi = B — . H*=c¢, H' and P = Z—J_FZH:’
(1+>" 1) ()\ﬁa 5 53)
for all » = 2,...,m. Thus, for the equilibrium point to exist, it is necessary that

A>b+pu+a+ (1+k)(a—>b)/k. This condition, as in the A&M model, also

guarantees the local stability of the system.

Figure 4.4 shows a simulation of a system with five host species that satisfy the

conditions for existence and stability of the equilibrium point.

variable

— H1
— H2
— H3
— H4

— H5
— P11
— P21
— PH
— P41
— P51

0 10 20 30
Time

FIGURE 4.4: Population dynamics of the model (2.3) with m = 5, n = 1, pa-

rameter values ¢ = 1.6, b= 1.05, a =5 x 1074, § =8 x 107%, = 0.01, . = 1.6,

k =0.1, A = 6, v = 10, and initial conditions H; = 200, Hy, = 400, H3 = 600,
H4 =800, H; = 1000, P11 = 10, Py = 20, P3; = 30, Py = 40, P51 = 50.
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4.3 Case m=1, n=2

When there is a single host species in the system, biologically it makes sense to
assume that the parasite reaches its reproductive maturity within the same host
colonized in the first stage of its life cycle when it undergoes a metamorphosis,

instead of changing the stage of its life cycle leaving one host and colonizing another.

To simplify the model, we only consider the effect of adult parasites on the
fertility and mortality of the hosts, this under the assumption that individuals of
the parasitic stages that occur before reproductive maturity have a significantly
lower effect on the hosts than the effect of adult parasites, so this consideration
does not really affect the model most of the time. Only in cases where the host
and parasite populations grow without regulation is it necessary to consider the
effect of all parasitic stages on each host species. Similarly, in multi-host models
we consider only the effect of the most developed parasitic population within the
same host species. With this assumption, the model coincides with the Dobson and

Hudson model, so, using the same notation as in (1.3), we have

dH

%:(a—b)H—(a—i—(S)P,

dA APH PA

P — _ A—ao—
G mam, MatttOA-ags,
dP E+1\ P?

Taking H' = A’ = P’ = 0 we obtain that the equilibrium point must satisfy

(a —b)H* ala—b)(k+1)
—Oz+5 = 0 wp+b+a+ (@t o)k 0

= A" - B P"=0
. Blp* N Bl(a—b)H*

A* =
- 0 0(a +0)
NOH* ala —b)
- (At b+ - ——Z =0
Bi(H* + Hy) (14 )=t
B1B>H,
o= 12200
- N — BBy’
_ 2
A* _ (CL b)BleHO (414)

0(& + 5)()\0 — BlBg)7
. (a — b)BlBQHO
" (a+8)(M — B By)’




Model Analysis 59

where

_ 1 _
(a—b)(k+1) and B2:MA+b+9+a(a b)

(0
Bi=pp+b ala=b)
A g S a+o

Therefore, the necessary condition for a non-trivial equilibrium point with positive

population sizes to exist is A0 > B Bs.

As with the Anderson and May model we analyzed in the case m =n = 1, we
consider the eigenvalues of the linearized system to determine if (H*, A*, P*) is a

stable equilibrium point. For this, we calculate the characteristic polynomial P(c)

as follows
a—b—c 0 —(a+9)
AP* H, aA* P aP* AH* aA*
det (H*+H(()))2 + (H*)2 _(/'LA_’_b—i_e)_F_c H*+Hy T H*
*)2 *
nER O ; ~(up -+ bt ) 205
what is equal to
a—b—c 0 —(a+9)
(a—b)B1 B2(\0—B1 B2) a(a—b)2B BB aBi(a—b)
det oot “ateps B2 T THard) =
a(k+1)(a—b)2 a(k+1)(a—b)
 k(a+0)? 0 —Bi - T Rate) €
SO
— dk)(a —b) (a —b)[(a — 0k)By — 0k By]
P(e) = - — | By + By + @ 2 _
(c)=—c e (a+0)k
(G — b)BlBg()\H — Ble>
— Ap.

A0

Considering — P(c) instead of P(c), the Routh-Hurwitz stability criterion require

((l — b)BlBQ(/\H — B1B2>

Y, =
(v — 0k)(a —b)
Bi+ By + k(OJ—i—(S) >0,
(v —0k)(a—0b)](a —b)[(v — 0k)By — 0kBy1] _ (a — b)B1B2(A\ — By Bs)
Bt B+ (a1 o)k ” 6 !

(4.15)

so that the eigenvalues of the linearized system have a negative real part, implying
that (H*, A*, P*) is locally stable.
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A sufficient condition for inequality By + By + (o — 0k)(a — b) /k(a 4+ 6) > 0 to
be true is that o > dk.

Now, since A0 > BB, is a necessary condition for the equilibrium point to exist,
the inequality (@ — b)B1By(A0 — B1Bs)/A\0 > 0 is always true.

Finally, a necessary condition for the third inequality in (4.15) to be true is that
(v — 0k)By > dkB;. However, this inequality cannot be easily simplified, so we
consider that the conditions for the existence of a stable equilibrium point in the

system are o > 0k, A0 > B; B, and

(Oé — 5]{3)((1 — b) (le — (5]€>Bz — (SkBl BlBg(AH — BlB2>
k(o +0) CET 0

By + By +

Figure 4.5 shows the dynamics of the host and parasite populations in a system
where the conditions for the existence and stability of the equilibrium point are
satisfied, using parameter values within the ranges established in [6, 10, 31] for the
Trichostrongylus tenuis and red grouse populations, and initial conditions H = 200,
A =30, P=10.

1D5:_
variable
a H
£ =
= 10 L
Fl
,“:I.Z_

0 10 20 a0
Time

FIGURE 4.5: Population dynamics of the D&H model with parameter values
a=18b=105a=3x10"%6=5x10"% =0.1,0=3, ug = 0.5, up = 1,
k=0.1, A\ =11, v = 10, and initial conditions H = 200, A = 30, P = 10.
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Following the same analysis performed previously, we can determine the equi-
librium point of the generalization of this case, with a single host species and n
parasitic stages within the hosts, obtained by taking m = 1 in (2.3), and assum-
ing the same hypothesis formulated in the Dobson and Hudson model that only
the population of adult parasites affects guests, since the populations of parasites
that do not yet reach its reproductive maturity have a very small effect on guests

compared to the effect caused by adult parasites.
Simplifying the notation, the equilibrium point (H*, Py, ..., P¥) satisfies

0=(a—bH*— (a+90) P,

ANH*P* PrP*
_ 7 n 0 P* _ 1 n
0 o+ Hy (,u1—|-b—|— 1) 1 ozH* ,
. . P
026]»,1Pj,1 — (:LLJ +b+¢9J)PJ — 7L ,
) . a(l+k)(Py)?
0= b aPiy — (i + b+ Py = TLER B
and in consequence
(a—b)H" J
P = P, = P oj=2
Oé+(5 = j—1 93_1 7o ) 1,
where B; is defined as
—b
uj+b+9j+% ifl1<j<n-1,
B, =
J ala—b)(1+k) ., .
i +b+a+ (ot )k if j =n.
Therefore,
g AHTT;=) 0,
Py = 2 p = Ll - B =0
JHQ B; ! (H*+Ho) [l B;
= H* = n{[f L= Bn] :
A Hj:l Qj - Hj:l Bj
I Gt L (RN R )

C (IS ) (o) (VT 6 - T By )

Hence, it is necessary that A H;:ll 0; > 1, B; for the non-trivial equilibrium point

to exist.
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We can determine the conditions for the equilibrium point to be stable using the
Routh-Hurwitz stability criterion (see Appendix B) in the characteristic polynomial

of the Jacobian matrix of the system at the equilibrium point, denoted J, given by

a—2b 0 0 0 0 _(a + (5)
s+ s —B 00 0 _any
Oéﬁfﬁ ¢ —-By 0 0 _ﬁ
J = 0%% 0 02 —Bs 0 —O‘HJT
S 0 0 0 .. B, -
MI:EZ—)E;:)Q 0 0 o ... 6,. -B,— %

The above allows to study any system where a parasite colonizes individuals from
a community with a single host species. Figure 4.6 shows an example of a stable
system where there is a parasitic species with more than two stages of its life cycle

within the same host.

variable
— H

— P1
— P2
— P3
— P4
— P5

0 50 100 150
Time

FIGURE 4.6: Population dynamics of the model (2.3) with m = 1, n = 5, param-

eter values a = 1.3, b=1.1,a=3x 1074, 6§ =5x 1074, =0.1, 0, =4, O, = 4,

93 = 3, 94 = 3, H1 = 0.2, Mo = 0.2, Hn3 = 0.3, H1 = 0.3, s = 0.6, k= 0.1, A= 12,

v = 10, and initial conditions H = 300, P, = 50, P, = 40, P3 = 30, P, = 20,
Ps = 10.
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4.4 Case m=2, n=2

In the previous models there was a single possible parasitic transmission network,
however, for cases where there are m > 1 different host species in the system and the
parasite life cycle consists of more than one stage within the hosts, it is necessary
to analyze the possible transmission networks with different topologies in order to

determine the model that best fits to the conditions of the system.

Figure 4.7 shows the possible topologically distinct parasitic transmission net-
works in a system with m = 2, n = 2, assuming that there must be individuals of

at least one parasitic stage in the population of each host species.

a) b) c)

o
DDEE
Do

g

FIGURE 4.7: Topologically distinct parasitic transmission networks in (2.3) with
m=n=2.

Since there are only two host species, given the hypothesis that at least one host
species grows exponentially in the absence of parasitism, we consider that there are

no trophic interactions in any of the transmission networks shown in Figure 4.7.

Case a)

There are two different models for the case where the stages of the parasite’s life
cycle occur within individuals of different host species: one considering that parasitic
transmission between hosts occurs by non-trophic contact and the other when the
parasite remains in free life between both stages of its life cycle. When parasites

are transmitted directly between non-trophic related hosts, model (2.3) looks like
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dH
dH.

kn  Hy’

APy ABioHi P

dt o+ P
d P
dt

- (M11 +01 + i + Gizﬂz) Py —an

1+ koy P3y
k22 H2’

= 9%2H2P11 — (22 + by + (9) Pag — a9

while, for the case where the parasite remains in free life between one parasitic stage

and the next, the system of equations is

dH
d_tl = (a1 — by)Hy — (o1 + 611) Pra,

dH
d_t2 = (ag — bo) Hy — ((va2 + 092) Paa,

4.17)
APy ApoH, P Lka Py
— — b Py — i}

7 ~o + BioH, (11 + b1+ a1 +€11) Py — aqq ey Hy
dPss 611521H2P11 1+ koo P222

dt  + o1 Hy (f22 + by + vo2) Pog — aigo ly T,

These systems have the form (4.1), so, (4.4) and (4.6) imply that an equilibrium
point of (4.16) must satisfy

)\510 ( as — by ) 1 ap — by
By = H — 0, H ——,
H Yo + BroH; \ aaa + 022 2 272 00 + 0
a, — b1
By = 01, Hf ——————
- 2oy 60
where
B a; —b; bt Ltk (ai—b
i — i i T Oy T Ol )
Qi + 04 : Kii Qi + 0y

for « = 1,2. Since H; # 0 and H; # 0, the above implies that

_ By(an +611)

Hf = ,
! 9%2(31 — b1)
H* — Bll
? ABiob1z (a1 — b1) < as — by ) _ gt < a; — b ) 7
709%2(% —by) + ﬁloBm(Oén + 511) Qoo + 099 a1 + 011
and then
" Bas
P11 =

= -,
912
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a9 — bg
B 272
H (0422 + 522)
)\ﬁmG%Z(al — bl) ( a9 — b2 ) _ 01 ( a; — bl ) .
Y0015(ar — b1) + ProBaa(air + 011) \ a2 + 22 2 \ag + 60

Therefore, for there to be a biological acceptable equilibrium point in (4.16), it is

*_
P22_

necessary that

a9 — bg 1 ap — b1
A — ) >l ——— | 4 B10B92.
Bro < T ) B0I%D) (Ozu i 611) BroDBa2

As in the previous cases, we analyze the eigenvalues of the linearized system to
determine the stability of the equilibrium point. We first calculate the characteristic

polynomial P(c) of the Jacobian matrix of the system at the point (H;, H;, P}, Ps),

given by
J11 —C 0 J13 0
0 Jog — 0 J
P(c) = det 2= C 24
J31 Jzp  Jay—c Iy
0 Ja2 Jiz Ju—c
with
Jii=a; — by,

Jog = ag — ba,
Jis = — (a1 + 1),
Joy = — (g + d22),

AB1o70 Psy 1+ ki (Pf)?
Y +an %\2
(70 + BroH7) ki (HY)
Js2 = =01, P,

—~

J31 =

) 1+ kyy P
J33 = — (#11 + by + ayy + 01, H + 200, L 11) ;

kv Hf
_ ABuoHy
Sy = ————rr,
Yo + BroH}
1+ Koy (P3,)?

J — 91 P* 22

42 124771 + Q22 koo (HD)?'
Juz = 9%2[_[;7

1+ Koy Py

Jag = — (M22 + by + a2 + 20099 = 23) )
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so, calculating the determinant, we have that P(c) = ¢* + Azc® + Asc® + Ajc+ Ao,

where

Ao =Ji1Jaa 33 Jas + Jiz a1 Joadae + JinJaadsaJuy — JiidazJaaJaz — JagJua 1z s
— Ji1J33J24J42,
Ay =Jndaadss + JzgJoadao + JooJi3 31 + JoadsaJus + JiiJsadas + JuaJi3 I
— JiJaadss — JagJsoJus — Ji1Jaodas — Jao sz Jus — J11J33 a4,
Ay =J11Joe + Jindss + JinJaa + JaoJss + JaoJaa + JzgJaa — JisJs1 — JaaJag — Jaadus,
As = — Ji1 — Jag — Js3 — Jua.

Using the Routh-Hurwitz stability criterion presented in Appendix B we have
that the necessary conditions for (Hy, H;, Py, Ps,) to be stable are Ay > 0, A3 > 0,
A2A3 — Al > 0 and (AzAg — Al)Al — A[)A?)’ > 0.

On the other hand, using (4.4) and (4.6) in the system (4.17) we obtain the

following equations

A —b
510 *(az Q)H;:Bu,
Yo + BroHT \ g + 022
611521 ay — by )
H'=18B
Y+ Bor H3 (%1 + 011 ! 2

with By; and By defined as in (4.3), that is,

a; —b 1+k a;—b
B11—;{M11+b1+a11+611+a11 11( ! 1)}7

ag1 + 011 ks aq1 + 011
ag—bg 1+k’22 ag—bz
By = ——— by + .
> Q99 + 022 [MQQ i a2z (Oé2z + 090

Therefore,

A as — by ) 0
Hf = Hy, — —,
' Bn (0422+522 2 B1o
€11 a; — by N
Hy = Hf — —,
> By <Oé11 +511> ! Ba1

from what follows that the equilibrium point is given by
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A —b
24! (GQ 2)_1_&

H* — B11821 \ a2z + 022 B1o
! /\611 (al—bl)(ag—bz)_l’
B11Bay \ a11 + 011 Qg + 022
€117 ( a; — by )-I—l
H — B9 \ 11 + 011 Ba1
2 \ert (al—bl)(ag—bg)_l’
B11By \ aq1 + 011 Qg2 + 022
a; — by [ A (a2—52>+ﬁ]
pr _ o + 011 [ B11fa1 \ 2 + 02 Bro
1 e (al—bl)(aQ—bg)_l’
B11By \ a1 + 011 Qrgg + 022
as — by {61170 <a1—b1>+l}
pro— 22 + 092 | B2aB1o \ 11 + 011 Ba1
22

ey ( a; — by ) ( as — by ) _1'
BBy \ a1 + 011 Q99 + 022
Therefore, the necessary condition for a biologically acceptable equilibrium point of
(4.17) to exist is

ay —b1 a9 —bg
A > Bi1Bas.
u <0411+511) <Oé22+522> Hee

The stability conditions for this case are obtained by analyzing the eigenvalues

of the characteristic polynomial P(c), given by

J11 — C 0 J13 0
Jog — 0 J-
P(c) = det 2 e o
J31 0 Jaz—c I3y
O J42 J43 J44 —C
where
Jii =a; — by,

Jog = agy — bo,
Jiz = — (a1 + dn1),
Jog = —(cvag + d22),
ABr070 P 1+ ku (P)°

J31 = +an g
(y0 + /610Hf)2 ki (Hf)?
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14+ &k P
J33 = — <M11 + b1+ aq1 + e + 204 = 11) )

kll Hf
_ ABwoH{
J3y = ———,
Yo + BioH}
Pt 1+ koo (P,)?
Ty = €1182171 1*1 -+ o + koo ( 23)27
(m + BuH3) kyo  (Hj)
611521[{;
Jpg = ———F—,
Y1+ Par H;

1+ koo P
Jig = — <M22 + by 4+ agg + 20099 22£> .

ks M

Calculating the determinant, we have that P(c) = ¢ + Azc® + Ayc® + Ajc + Ay
where Ay, A;, A and Aj are

Ao =J11J2933Jas + J13Js1J2a4 a0 + —J11 oo J3a sz — JooJya i3 51 — Ji1 33024 4,
Ay =JuJasdas + JsgJosdas + JaaJi3 a1 + Jaadsadus + Jiidzadas + JusJiz s
— Ji1Jaodss — JinJaadus — JaoJs3 s — J11J33 44,
Ay =J11J2 + Jindss + JinJaa + Jaodss + JaoJua + JzzJaa — JisJs1 — Jaa g — J34dus,
Ay =—Jin — Jao — J33 — Ju.

Therefore, from the Routh-Hurwitz stability criterion presented in Appendix B it
follows that the necessary conditions for the equilibrium point (H;, Hj, Py, Psy) to
be locally stable are AO > O, Ag > 0, A2A3 —Al > (0 and (A2A3 —Al)Al —A()Ag > 0.

A numerical analysis of the conditions of existence and stability of the equilib-
rium point in the two possible systems of equations with this parasitic transmission
network, suggests that for any combination of biologically feasible parameter values
(non-negative or positive values, depending on the biological interpretation of each
parameter) the equilibrium points of both systems are unstable or not biologically
acceptable. However, it is possible to find parametric values such that the size of
each of the populations at the equilibrium point is a number greater than one, and
that satisfies that the host and parasitic populations are regulated for a relatively

large period of time.

Figure 4.8 shows the simulation in different time periods of the populations in
(4.17), with theoretical parametric values and initial conditions, found using the
Tabu search algorithm (see [32, 33]) and the threshold host density of the system,
which satisfy that host populations, that in the absence of parasitism would grow

exponentially, are regulated for a period of time due to the introduction of a parasitic
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species into the system, even more, for a period of time the host species remains

almost stable due to the presence of parasites.

————

107~
variable
5 — H1
]
E — H2
z
- P11
_1[]2.5_
- PZ2
10°- s o
0 100 200 300
Time
_1[]3.5_
107" variable
:ﬁ II — HA1
£ — H2
5107
Z — P11
, — P22
10~
1[]1.5_
0 1000 2000 3000
Time

FIGURE 4.8: Population dynamics of the model (4.17) with parameter values
al = 1.41, as = 1.05018, bl = 1.4, b2 = 1.05006, 1] = 3 X 10_5, Q99 — 1x 10_5,
611 = 4.5x1073, 699 = 5x 1074, Bip = 1.211x1072, B = 9x 1075, py1 = 1x107L,
poo =1 x 1075, kjp =1 x 1071, koo = 1, A = 2.5 x 102, v9 = 10%, 41 = 10, and

initial conditions Hy; = 1000, Hy = 500, P;1 = 1500, P»; = 100.
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Case b)

As in the previous section, we assume that, in the models where more than one
parasitic stage occurs within the same host species, the parasitic transmission is
given by contact between hosts. We make this assumption for all models with the
same conditions. With this assumption, in the case where there are two host species
that do not interact trophically, and the parasite can only enter one host species

before reaching its adult stage in both host species, the model (2.3) has the form

% = (a1 — by)Hy — (12 + 812) Pro,

% = (ag — bo) Hy — (crog + 092) Pao,

df;;l _ )\51[?;[:5];1120;‘[11322) _ (,u11 + by + 01, + Q%QHQ) Py — aq P1;I]13127 (4.18)
% = 01, Py — (pa2 + by 4 c12) Pra — Oélzl —]:1512%1212=

df;;z = 01y Ho P11 — (f22 + b + ia2) Pag — g ! 22]:22 2_2222

If there is an equilibrium point in (4.18), then

for i = 1,2. Replacing P}, and P, in dPyy = dPy = 0 we obtain that

0= (01, P}, — Bi2HY) Hj,
0= (‘9%2]31*1 - 322) Hék?

where

B ai—bl- —|—b—|— 4 1+I€22 ai—bi
2 = < |Hi i T Qg T QY
? Qo + 040 Hiz ? ? Eio Qo + 0o

for ¢ = 1,2. Therefore, H{, P}, and Py, are given by

9%1322 BQQ

_ pro_ 011 Ba2(ay — by)
— nl ) 11 — 1
015 B12 015

01, B1a(a1g + 012)

Hy and P, =

Replacing HY, Py, P}, and Py, = (as — ba)Hj /(a2 + d22) in dH; = 0 it turns out
that
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A 8%1322 ( eilng(al — bl) Qa9 — b2 H*)
510 1 1 2
015812 \ 015 Bia(ai2 + 012)  gg + 622 * _
0B — ByyHy — By =0,
Yo + Bro1 =
01512

where By is defined as follows

B22

By =
2

a; — by }
aip+ 012

|:,U11 + bl + 911 —+ 19

so, the values of Hj and P, are

—b 0. B 1 1B
)\510 ! (H 22) — B (70‘*‘510 22)

I — Qi + 012 \ 015812 61, B1o
2 LB 0L Boy [ az—by \
By 01, Bas Y 1122 2 2
(’Yo + Bio 0%2312 Bio 9%2312 s+ O
as —b ap — by (0% Bay )\’ 0. B
2 2 )\510 1 1 ( 11 22) N Bll ('YO "’610 11 22)
P Qg + 022 gz + 012 \ 015812 015812
22 —
B 0 BQQ a9 — b2
B )\ 11
<% o 9%2312) Pro 01,B12 (azz + 522)

Thus, the necessary conditions for the existence of a biologically acceptable equi-

librium point are

A a; —b 0. B 1 1Ba2 01 as — b
Bﬁlo ( . : ) < 11 22) ’Yo—i‘ﬁw 1 > ABiozg ( 2 2 )
11 \ a2 + 012 015,812 019812 015812 \ (oo + 090

or

A a; — b 0+ B 1, B o1 as — b
510 ( 1 1 ) ( }1 22) ,}/0 + 610 L )\510 : 11 ( 2 2 ) .
By \ gz + 012 019812 012812 013812 \ a2 + 22

In this case the characteristic polynomial of the linearized system around the

equilibrium of the system is given by

Ji—c 0 0 J14 0
0 Jog — C 0 0 Jos
P(c) = det J31 J32 Jsz—c I J35
Ju 0 Jis  Ju—c 0
0 J50 J53 0 Js5 — ¢

with
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Ji =a; — by,
Jia = — (12 + d12),
Joz = az — ba,
Jos = — (a2 + 6a2),
_ ABiovo(Pfy + Pzz*2> 011 P1*1P1*27
(70 + BroH7) (H7)?
Jaz = =01, Py,

* P*
J33 = — (,Ull + b1+ aqy + eiQHQ + a2 12) )

Hy
ABroH{ P
Jyy = ——— — —
34 ~ +510Hf 5P Hf
Jee — ABroHY
35 = a0
Yo + BioH;
1+ ko (Py)°
Ji =
41 = Q2 ke (HD)?
Jus = 01y,

1+ ko P
Jug = — (Mu + b1 + g2 + 209 2 i) ;

ko HY
1+ ks (Pp)

Jso = 01, PF, + ,
52 124 11 22 k22 (H§)2

Js3 = 01,15,

Js5 = — (Mm + bo + agg + 2099 Ton  Hi

Therefore, the coefficients of P(c) = —c® + Ayc? + Aszc® + Ayc® + Ajc+ Ay are given
by

Ao =JnJr sz Jaadss + JindosJseJuadss + JinJosJsaJaz Ise + JiadaoJs31 a3 55
+ JiaJos 33 Ja1 Is50 + JiaJaa 35 Ju1 Js53 — Ji1Jaa 35 Jua 53 — Ji1JasJ33 44 50
— JudaaJsaJazIss — Jiadas a1 Jaz T2 — Jiadas Jzadan Jsz — Jiadaz Jzz a1 s,
Ay =JnJssJaadss + Ji1Jss JugIss + Jiadss S Jss + JoodssJaadss + JaoJsaJuzIss
+ Ji1JosJuadse + JosJsgJaadse + JiaJoa S Jss + Ji1Jos 33050 + Ji1Jo2 S35 053
+ JiaJooJs3Ja1 + JiiJaadsadaz — JasJsaJasIsa — JosJzoJuaJss — Ji1J33Jaa 55
— J1ad35Ja1 53 — JinJoaJuaJss — Jao 33 JaaSs5 — Jrads1JuzIss — Ji1Jos S0 53
— JiaJoaJs1J43 — J11 20 33 44,
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Ay =J11J2 53 + Ji1Jaeas + J11Js3Jus + J11 22 dss5 + Ji1Js3 55 + Ji1Jaadss
+ JaodszJas + JaodszJss + Jaodaadss + JszJaadss + Jas s sz + JiadsiJas
— Jsa sz I5s — JinJss sz — Jradan Jss — JaadsaJus — Ji1Jsadas — Jiadszs I
— Jas sz 5o — Jundasse — JaodssJsz — JasJuadse — Jiadandu — JssJaadss,
As =J1adn + Jsadus + JosIso + S35 53 — Ji1dea — Jiidss — JiiJaa — Ji1Jss
— Jadss — JaoJua — JaoJss — J3zJaa — J33 55 — JaaJss,
Ay =J11 + Jag + J3z + Jag + Jss.

Using the Routh-Hurwitz stability criterion we have that all the roots of P(c)
have a negative real part if and only if Ay, Ay, (A3As — As)Ay — (A1 Ay — Ag)Ay
and [(AsAy — Ay)As — (A1 Ay — Ap) Ag)(A1 Ay — Ag) — (A3Ay — As) A are negative,
while A3 Ay — A, is positive. These conditions also imply that the equilibrium point
(Hy, H;, Py, P}y, Py,) is stable.

Case ¢)
When the second stage of the parasite’s life cycle occurs within hosts of one of the
two species in which its first parasitic stage occurs, the equations for the growth of

host and parasitic populations look like

dH
d_tl = (a1 — by)Hy — (o1 + 611) Pra,
dH
d_t2 = (ag — ba)Hy — (a2 + 092) Paa,
APy ABioHy Py ) 1+ kn Ph
= - b 6, Hy) Py — - -
dt Yo + BroH1 + BaoHo (MH o an o 2) o an ki Hy’
dPoy ABaoHo Poy 1 Py Py
= — + by 4 059) Po1 — :
dt Yo + BioH1 + BaoH: <M21 ? 22) 2 2 H,
dP. 1+ koo P2
2 _ 6’%2H2P11 + 952P21 — (22 + by + qi99) Pag — aino 2222
dt koo Ho

From taking dH} = dH; = 0 it turns out that

a1 — bl
P, = ———H? and
N
—b
=" g

= 2
Qg + 022

Thus, defining By, Bs; and Bgs as follows



Model Analysis 74

a; — b Ltk ((a—b \*
B = b SR
1= (i + by +an) (au + 511) o k11 <O‘11 + 511) 7

as; — b
Boy = o1 +b2+9%2+0422 (#)7

Q99 + 022
as — by Lt ko (a2 —by 7
Boy = b PN
22 = (tz2 + b2 + az2) (0422 + 522) e k2o (0‘22 +02/)

we conclude that B o ;
P*: ﬁ_ﬁ(al_ 1)H*:|H*,
2t { 03, 035 \ a1+ 01 ! 2

and consequently

)\510 (a2—62> 1(a1—b1) }
0= H -0l (=% g — By | 1Y
[’Yo + o7 + PaoHs \ aag + 092 2 2\ a4+ o1 2 ]
0:[ )\520 ( as — by )H* 4 3219}2 < a; — by >H* _ 321322} H
Yo + BroHT + PaoHs \ oo + 092 2 63, aq1 + 013 ! 6, 2

Therefore,

a; —b
—5209}2 <1—1> H3 — ByB11 =

5103219%2 ( ap — by ) H — 510321322
a1 + o1

1 1 1 )

so H3 is given by

ProBa1 Bz BioBa16iy ( @ = b ) HY — B30 B

e O 03 o1 + 01
2 Bao] (—al b ) |
202 a1y + 011
and then
Co(H})* + C1H} + Cy = 0, (4.19)
where

+ B20B11 821 Bas

a; —b By By B2
Co = M3y Ba0B11 + Y0015 B21 Bos ( L ) + Hr0B12 821 By

11 + 511 952

— AB10B21Bas,
a;—b
Cy = {520912311321 + )\5103219%2 + /3109%2321322 - 70321(%2)2 (;)

aqr + on

_25109%2332322} ( ap — b )
039 o1 +611 )’

_ B1oB3,(015)% — Bro03, B (01,)* ( a, — by )2

- ‘9%2 a1 + o011 ’

Cy

Since By, > 62,, we have that Cy > 0, so it is necessary that C? — 4C,Cy > 0 for
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H{ not to be a complex number, and min{Cy, C;} < 0 so that there is at least one

positive value of H.

Therefore, the necessary conditions for there to be at least one biologically accept-
able equilibrium point (H, H}, P}y, Py, Pyy) are C? —4C,Cy > 0, min{Cp, C; } < 0

and

( a; — by ) HY < min { 31227 B10B21 B2 1— B2003, B11 } ,
agp + 011 1o B10012B21

considering Hy as the lowest positive root of (4.19).

Now, as in the previous cases, to analyze the stability of the equilibrium point,
we need to calculate characteristic polynomial of the linearized system around the

equilibrium point, given by

Jii—c 0 J13 0 0
0 J22 —C 0 0 J25
P(c) = det J31 J32 J3z — ¢ 0 J35
Jn Ja2 0 Ju —c Jus5
0 J52 J53 Jsa  Jss—c
where
Jii=a — bl;

Jag = ag — ba,
Jis = —(a11 + 1),
Jos = — (g + d22),

g ABio(Y0 + Bao Hy ) Py 1+ ki (Pr)?
31 = " 2 (0551 2
(Yo + BroHT + BaH3) ki (HY)
A H: P
Jyp = - 0PIl g pe

(70 + BioH + 520H§)2

J33 = — (#11 + by + aqy + 01, H; + 200,

1+k11i)

ki1 Hf
T — ABioHY
35 — * * )
Yo + ProHT + BaoH;
L MBuBwH3 Py
41 = —

(70 + BroH + 520]‘15)27
AB2o (Y0 + BroHT) Py,
(70 + ProHT + 520H§)2’
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Jag = — (,u21 + by + 035 + %2%3) ;
2

B B2 Hj Py

Yo+ BoHf + BH;

1 + ko (P5y)°

koo (H3)?'

Jus

J52 == 9%2P1*1 + 929

Js3 = 01,13,

. nl
J5a4 = 0Oy,

1+ koo Ps
Jss = — (M22 + by + g9 + 2099 2 22) .

k22 Hg

Therefore, we have that P(c) = —c® + Ayc' + Asc® + Asc? + Ajc + Ay, where the

coefficients Ay are given by

Ao =Jn1J2JssJaadss + JindoesJss Jaodsa + JinJosJseJuadss + Ji3JosJ31 Jaa 50
+ JisJos JsaJur Jsa + JisJoads1Jus Jsa — Ji1Joa sz Jus Jsa — Ji1 25 S35 aa 50
— JisJos a1 JaaJsa — JisJazJs1Jaass — JindazJss Jaadss — JisJazJzs Ja1 Jsa,
Ay =J11Jeadss 53 + Ji1Jeadus Jsa + JinJas Juadse + Ji1 33 a5 Jsa + J11 35 a4 53
+ JooJs3 Jus J5a + Jiz oo ds1 Js5 + Ji1JosJszTse + Jas 33 Jaadsa + JooJs5JuaJ53
+ JisJaoJs3Jus + Ji3Jss a1 Isa + JisJs1Juadss — JasJssJanss — JosJs2Jua 53
— JisJs1JupIsa — Ji1Jas Jaadsa — JinJao Jaadss — Jaa sz Juadss — JizJosJs1 o
— JinJs3Jaadss — Ji1JasJsadss — JinJae sz 55 — Ji1JaeJs3 aa,
Ay =J11J2dss + Ji1Jaedaa + Ji1Joadss + Ji1 s Jaa + Ji1Jss3 55 + Ji1Jaadss
+ JaodszJus + Jaodss3Jss + Jaodaass + JszJaadss + JasJaoJsa 4 JasJsa 53
— JondisJsa — JasJszTse — Judasdsa — JazJss sz — JindssJsz — JizJs1Jaa
— JisJs1dss — JasJaadss — JudasTsa — JasJaadse — Jisdaa s — J33as s,
As =J13J31 + JusJsa + JosIse + S35 53 — Ji1dos — Jiidss — JiiJua — Ji1ss
— Jaodss — JaoJua — JaoJss — Sz Jaa — J33Js5 — JaaJss,
Ay =J1 + Jog + J33 + Jag + 55,

The Routh-Hurwitz stability criterion implies that for the equilibrium point to
be locally stable it is necessary that Ay < 0, (A3Ay — Ag) Ay — (A1 A4 — Ag) Ay <0,
Ay <0, [(A3Ay — Ag)As — (A1 Ay — Ap) Ayl (A1 Ay — Ap) — (A3Ay — Ay)Ap < 0 and
AsAy — Ay > 0.
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Case d)

Since there is no predation between hosts, systems with this transmission network

are particular cases of system (4.20), considering 63, that we analyze next.

Case e)

Finally, when all host species contain parasites at each stage of their life cycle, the

assumption that only adult stages actually affect host species makes the system of

equations (2.3) looks like

dH
d_tl = (a1 — by)Hy — (a2 + 012) Pio,
dH
d_t2 = (ag — by) Hy — (o + 022) Pao,
dPpy AB1oH1(Pra + Py2) 1 1 P11 Py
= — by +0 01, Hs) Py —
dt Yo + BioH1 + PaoHo ('LLH Tt T 2) nooe iy (4.20)
dPoy ABooHa(Pro + Pao) 1 1 Py Py '
= - by + 05, Hy + 05,) Py —
dt Yo + BroH 1 + BaoHo (M21 HECREC 22) 2T A H, ’
dP12 1 1 1 + ]{,‘12 P122
—= =0;,P 05, Hi Pyy — b Py — —=
at 1P+ 05 HiPyy — (a2 + by + aga) Pra — o g
dP. 1+ koo P2
2 _ 9%2H2P11 + 952P21 — (22 + by + qa) Pag — o 2222
dt koo Ho

dH; and dH, are the same as in case b), so in this case it is also true that

N a; — by * " as — by

H;,
19 + 010 2

which allows to rewrite the equations dF;; = 0 as follows

where

—b —b
/\510Hik( (3] 51 f a2 2 H;)
0= Q2 + 012 Qg + 022 — (Bu + 0L, Hy) Py
Yo + BroH1 + BaoHo 12 H
a;—b as — b
ABao 3 (a1+51 i a2—|—62 Hg)
0= 12 12 22 + 022 — (By + 9%1H1)P2*1,

Yo + BioHy + BanHs
0= 9%1131*1 + 9%1HTP2*1 - Bl2Hik»
0= 9%2H;P1*1 + 952P2*1 - B22H;»

a; — bz
By = pin +b; + 91'11 + Qjg————,
Qo — 0j2

a; — b 1+ k; a; — b
Big = ———— |2 + bi + iz + 2 2( >]>
iz + 0jn
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for 1 = 1, 2. Therefore,

By — 0, P} Byy — 01, P}

* 21+ 21 * * 12+ 11 g7*
11 22

what is satisfied if and only if

032812 — 03 Boo Hy
01,035 — 01565,

(9%1322 612B12H

1 H*
9%1 622 6%26%1

* o
Pll_

HY and Pj, =

Thus, using this expression for P}, in dP;; = 0, we obtain the following equations

—-b —-b
)\610( ai 1 Hf—i— as 2

g2 + 012 e )

Yo + BroHT + PaoH

011035 — 01205,

0= — (B + 01, H3)

so we can express H{ as a function of H; as follows

" " 91 Blg — 01 BQQH b2 *
(V0 + B20H3)(Bi1 + 01, H3) 2201 01 —2011 01 510 ; H;
. 11V22 = V1o 22 "’ 22
= i . . (4.21)
Buo { ADT0 g g ) D O Bt
Q12 + 012 e 01,039 — 01505,

and substituting F5; in dFPj; it turns out that Hj must be the solution of the

following equation

a; — b a9 — bg
A S gy 22
Po (0412 Oa ' Qg+ O

Yo + BroH{ + PanH;

011022 — 01505,

0= — (Ba1+03, HY)

(4.22)

with H given by (4.21). However, solving (4.22) is equivalent to solving a fifth-
degree polynomial whose coefficients are not easy to simplify, so we do not calculate

the explicit value of Hj.

The characteristic polynomial of the linearized system around the non-trivial

equilibrium point is given by

Jll —C 0 0 0 J15 0
0 J22 —C 0 0 0 J26

J. J: Jog — 0 J: J:
P(c) _ 31 32 22 — C 35 36
Jn Ja2 0 Jug —c Jus Jue

JI51 0 J53 Jsa  Jss —c 0

0 J62 Jo3 Joa 0 Jog — ¢
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where

Jii =a; — by,
Jis = —(a12 + d12),
Jag = as — 52,

Jog = — (g + 22),
_ ABio(0 + BaoH3) (Pry + P5)) Py Py

J: « ,
o (Yo + BroHT + BaoH3)? 2 (HY)?
Ty = — ABroBao Hi (Pry + P3y)
(Yo + BroH{ + P H3)?
P*
J33 = — (,Un + by + 9}1 + eigHék + a2 };3> )
1
, N P
35 — ” x  Qi2—/—,
Yo + BroHT + BanH; Hj
Ao HY
J36 = * )
Yo + ProHT + BaoH;
Ji— - ABroBaoH3 (Pry + P3)
(o + BroH{ + P H3)?
_ ABro(vo + BioHT) (Pl + Pyy) P\ Py,
J42 - * *)2 + Qoo *)2
(Yo + BroHT + B2 H3) (H3)
P*
T == (s + a4 O 7+ 0+ a2,
2
ABao H
J45 = * )
Yo + ProHT + BaoH;
ABao H P
T — BaoH3 b

Yo+ BwH; + BaHs 22?5’
1+ ko (P)°
ki (H{P)?

J51 = 9%1]32*1 + 12

J53 = 6%17
Jsq = 0y HY,

1+ ks P
Jss = — (Mw + b1 4+ ag2 + 202 2 ﬁ) ;

ko Hf
14 kgg (Psy)?

— 91 P* ’
Jo2 12471 + Qa2 koo (H3)?

Jo3 = 01,3,

_nl
J64 - 0227

1+ koo P
Jo6 = — (M22 + by + g + 20099 22 ﬁ) .

]{?22 H;

Therefore, P(c) = ® + Asc® + Ay + Azc® + Asc® + Ajc+ A, with A; given by
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Ao = JudazdszJaadss Jse — Ji1J2adss Jus Jsades + Ji5J22J33 a1 J54d66
+ JisJaz2J31Jaa 53066 — Ji5 S22 33 0451 J66 — J11J22J33 46 I55 6a
+ Ji1Jos Sz a2 55 J6a — JisJaaJ51 Jas I3 ea — Ji1Jaa 36 a5 53 J6a
+ JinJaeSs2 a5 Js3Jea + Ji5J26 31 a2 53 64 + Ji5 S22 36 Ja1J53J64
— Ji5Jos Jsa a1 Js3Jes + Jis 20 33 a6 I51J6a — J15J06 33 a2 T51 Jga
— Ji1JoadseJuaJs5 063 + Ji1 o6 S32 Juads5 Jes + Ji5J20J31 Jas T4 d63
+ Ji1JoaJs6 a5 Jsades — Ji1 2652 a5 I5a 63 — JisJosI31 a2 S50 63
— Ji5Joads6Ja1 Jsades + Ji5 o6 I32 a1 Jsades + Ji5J2e 36 Jaa 51 J63
— Ji5Jos JsaJuaJ51 Js — Ji1J26S33 Jaa 55 62 + J11J26 33 J5 T54 62
— JisJagSs3Ja1 Jsader — Ji5J26 31 Jua 53 62 + Jis a6 S33Jaa 51 Jee,

A = JaaduadszJse S35 + JinJaadss Jec Jss + Ji1Ja2S53J66 35 — Jazas S5z Sea s
— Jidae I3 oS35 + Ja6JazS53Jea S35 + JaoJagIsade3 S35 + Ji1Jas JsaJes 35
— JasJazJ5aJe3 S35 — Ja6Jaa 53 Je2 S35 — Ji1Jae T3 62 35 + Ji1JazJaads3 35
— Jao sz JuadssJee — Ji1Js3aadss J66 — Ji1Ja2Jaadss Jos — Ji1Ja2 33055 Jes
+ JooJs3Jus IsaJes + Ji1 33 a5 IsaJes + Ji1JaaJas IsaJes — Ji5 3300154 66
— JisJaadnJsades — JisJs1Jaads3J66 — JisJaz2 3153 J66 + J15 33 4451 J66
+ JisJoaJuas1Jes + JisJaa 3351 Je6 — Ji1Joa 33 uades + Jaz 3304605564
+ J11Js3 a6 55064 + J11JoaJas Is5Jea — Jag 33 Jan Iss5Jea — J11 26 Ja2 55064
+ JisJs1 a6 53 Jea + Joo 36 Jas Is3 e + J11J36Jus I53S64 — Ja6S32 4553 64
— Ji5Js6Ju1 53064 — J15 33 4651 J64 — J15 S22 a6 51 Jea + J15J26Ja2 51 Jea
+ JinJadssJaeJoa — Ji1J26 S35 a2 J6a + Jaa 36 JaaS55 63 + J11J36JaaS55J63
— JasJs2Juads5J63 + JinJazJs6 55 Joz — Ji1JasSs2 55 J63 — Ji5 31 16 S50 J63
— JondseJusJsades — Ji1JseJus JsaJes + Jae Sz Jas Jsa ez + JisJz6Ja1J5a 63
— JisJs6Jaads1Je3 — Ji5 o236 5163 + JisJas S32 51 63 + Ji1Jaads6JuaJe3
— JiJas 3o JuaJe3z + JogJ33Jua 55 62 + Ji1Jas Juadss Je2 + Ji1JasJ33055 62
— Jag 33 Jus IsaJe2 — Ji1Jas JusIsader + JisJas Ja1JsaJer + JisJo6 315362
— JisJasJuads1 o2 — Ji5 o6 I35 5162 + Ji1Ja6J33JaaJe2 — Ji1 o233 44 55
+ Ji1JoadsgJus Jsa — JisJoadss a1 Jss — JisJoods1 Juadss + Jis o33 Jaa 51,
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Ay = —JaaJs3J66 T35 — Jaz sz Jo6 S35 — Ji1ds3Jec a5 + JaeSs3SeaS35 — JasSsa ez Jss
+ JasIs3Jeass — JaaJaadsz Sz — JiidaadssJss — JinJaedszJss + JzzJaadss Jee
+ JoaJuaJs5Je6 + J11Jaads5Je6 + Jaz sz 55 Jes + Ji1dss 55 J66 + J11J02 5566
— Js3JusIsados — JaodasSsades — JindasIsadse + JisJa1Jsades + JisJz153 066
— JisJuaJs1Je6 — Ji5 3351 J66 — Ji5 2251 J66 + Jaz2 sz aades + J11J33 446
+ JuJandaades + Ji1JozJssJee — JazJasSs5Jea — J2n a6 Ts5J6a — J11Ja6 5564
+ JasJaa 55 J6a — J36Ja5T53Jea + Jisas I51Ja — Jaz2 33 a6 Jea — J11 53 a6J64
— JinJonJusJea + Jag sz Jaodes + Ji1JosJazJea — Jz6Jaads5 063 — Jaz 3655063
— JudseJs5Jes + JasJ32 55063 + Ja6Jus Jzades + 153651063 — Ja2J36Ja4T63
— Ji1Js6Jaades + Jos I3 uaJes — J11 2236 63 + Ji1Jas Ss2des — Jo6Jua S5 62
— JaJS33 55 Je2 — Ju1Ja6S55J62 + Ja6Jas Ssa e + JisJasS51Je2 — Ja6S33 4062
— JudasJuader — Ji1J26 33 62 + J2a 33 0455 + Ji1 33 Jaa 55 + JinJazJaadss
+ Ji1Joadss 55 — JaoJs3JusJsa — Ji1Js3 a5 Isa — JinJasJus Isa + Jis 33 Ja1 54
+ JisJoodnJsa + Jis 31 Jaadss + JisJoads1 Jss — Jis s Juads1 — Jis o Jsa s
— Ji5Jo0 33051 + J11 2233 a4,

Az = JsadesSas + JuadszJss + Jaadsaas + Ji1s3 S35 — JaadssJes — J33J55J66
— JaaJs5Jec — J11dssJe6 + JusSsadoe + JisS51d66 — Ja3Jaades — J2aJaaJse
— Ji1dudes — JaoJ33Jes — Ji1J33Je6 — J11J22J66 + JusTs5 061 + J33 a6 T64
+ JozJugJos + J11JasJea — JasJaaJos + J36S55J63 + J36JaaJes + JazJz6 063
+ Ju1Js6J63 — JasS32J63 + JagSs5J62 + JosJuadea + JasS33Je2 + Ji1Jos 62
— Js3Jaadss — Jaoduudss — Jundaadss — JaaJszJss — Jindss sz — JiidazJss
+ Js3JusJsa + JooJus Isa + J11dasIsa — JisJarJsa — Ji5 51053 + JisJaa s
+ Jis 3351 + JisJaods1 — Jaodsg Sy — JinJs3Jas — Ji1JoaJus — Ji1JaaJss,

Ay = Issdo6 — Js3 35 + Jaados + Ja3Jee + J2aJes + J11de6 — JasJea — J36J63
— JagJe2 + Juadss + J3zJss + Jaodss + Ji1dss — Jusdsa — Jis s 4 J33Jua
+ JooJys + Ji1das + Joodss + Ji1Jss + Ji1Joea,

As = —Jgs — Js5 — Jua — J33 — Joo — J11.

Thus, knowing the size of the populations at the non-trivial equilibrium point, the
Routh-Hurwitz stability criterion implies that the equilibrium point is locally stable
if Ao, A5, A4A5 — A3, (A4A5 — Ag)Ag — <A2A5 — Al)A5, Dl and El are positive,
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with

Dy = [(A4As — A3) A5 — (A2 A5 — A1) As|(A245 — Ay)
— [(AgA5 — Ag) Ay — AgAZ)(AsAs — As),

Ey = [(A4As — A3) Az — (A As — A As][(AgAs — A3) Ay — AUAg](AQAg, — Ay)
— [(A4A5 — Ag) Ay — AgAZ)[(AsAs — A3) Ay — AgAZ](A4As — As)
— [(A4As — A3)As — (A A5 — Aq)As| A

(see Appendix B).



Conclusions

From the work done in this thesis we can conclude that model (2.3) is a reason-
able generalization of pre-existing models for the interaction of host and parasitic
populations presented in Chapter 1, since it allows studying the dynamics between
the parasite population and a host community during each of the stages of the par-
asite’s life cycle, in addition to allowing an intuitive generalization for multi-host
models of the basic reproductive number and threshold host density, based on the

transmission network of the parasite population.

We also present a reasonable generalization of the basic reproductive number
and threshold host density for models with more than a single host species, that
allows to find under what conditions a parasitic population that is introduced to a
community of host species is able to persist, and as we mentioned in the conclusions
of Chapter 3, this does not guarantee that the populations are regulated, but it
allows to start analyzing the dynamics of populations in systems where it is not
possible to determine analytically if there is a biologically acceptable equilibrium

point.

In Chapter 3 we also show that the effect of non-adult parasites on the growth
rates of the host populations, however small it is, and even if this does not affect the
values of the basic reproductive number or the threshold host density, can regulate
the growth of a host population, as shown in the simulations shown in Figure 3.7
and Figure 3.8. This supports that it is not necessary that a host population, that
would grow exponentially in the absence of parasitism, needs to be colonized by
adult individuals of a parasitic species to regulate its growth. Therefore, given a
community with different host species, it is reasonable to study the systems of equa-
tions that model all possible topologically distinct parasitic transmission networks,

as in the examples presented in Chapter 4.
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One of the conclusions reached is that it is possible to mathematically determine
the possible transmission networks of a parasitic species in a host community, as
in the example analyzed in Section 4.2. This also allows to determine the different
numbers of host species that are needed in the system so that a parasitic species

has a specific transmission network.

As we can see in the representation of the Carpinteria database shown in Ap-
pendix C, many parasitic species pass each stage of their life cycle in hosts of
different species, so in those cases the equations in (2.3) looks like (4.1), and this
system, as we can see in the examples analyzed in Chapter 4, it is the easiest to
determine the conditions of existence and stability of the equilibrium point. There-
fore, given a community of m host species and a parasitic species with n stages of
its life cycle, if we do not know exactly what the parasite’s transmission network
is, before considering the complete system (2.3), we can try model the dynamics of

populations with systems of form (4.1).

One of the purposes of the model is to regulate the growth of a host community
through the introduction of a parasitic species. To guarantee that at least one
host species grows exponentially in the absence of parasitism, one hypothesis of the
model is that at least one host species is not trophically related to the other host
species of the system, however, this is not entirely necessary. With the equations
for the dynamics of the host and parasitic populations, presented in (2.3), we can
also analyze the effect of a parasitic species in a community where all host species
regulate their growth due to trophic interaction with other hosts, or the effect of
introducing parasites into a community where there is predation among all the host
species of the system, and at least one host species grows exponentially or becomes

extinct in the absence of parasitism.

Although in this thesis we focus on analyzing sufficient conditions for there to
be coexistence between the species parasites and a host community, when studying
parasites whose hosts are human, usually it is desired to determine conditions for
the extinction of the parasite species. In particular, this case can also be analyzed
with the model (2.3), if we assume that host populations regulate their growth in

the absence of parasitism.

Finally, one hypothesis of this model is that the potency between parasites of

the same species is by exploitation, however, this is not the case for all parasite
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species. For parasite species where there is intraspecific competition, further analy-
sis is necessary, similar to the analysis done in (1.2), since the covariances between
the populations F;; and P;, are not necessarily trivial and finding the probability
generating function for the distribution of parasites in host populations in these

cases is more complicated.

Since it is possible to study the previous all the previous cases with small modi-
fications in the growth rates of the host populations, and therefore in the mortality
of the parasitic stages related to the natural mortality of the hosts, or by taking
particular values for the parameters in (2.3), this is one reason why model (2.3) is

a reasonable model for multi-host-parasite systems.



Conclusions

86




Appendix A

Probability Generating Function

This appendix shows the results related to the probability generating functions
of the negative binomial distribution and the negative multinomial distribution
obtained from [8, 16, 34], used in the development of the models in Chapter 1 and
Chapter 2.

By definition, the probability generating function of a discrete random variable X
that takes values in the set of non-negative integers, with probability mass function

p(z), is given by N
G(z) =E (%) = Zp(x)z:”,

so, the mean and the variance of p(x) are given by

p=EX) =Y ap(e) = lim Y- apla)(1 -2 = (mezx) = G(1),
and
o’ =E(X?) - E(X)’ = Y 2"p(z) - [G' ()

=0
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From the above, and given that the negative binomial distribution can be char-
acterized through its probability generating function by two parameters, referred to
as m and k in this thesis, where m is the mean of this probability distribution, that
in the models considered in this thesis is the average number of parasites per host
for each time ¢, and k is a parameter that varies inversely with the the degree of
aggregation of parasites within the host population, we can calculate the variance
and the second moment of this distribution if we know the values of m and k. This

characterization is given by the probability generating function:

c%mwﬁg:[y+%u—¢)%. (A.1)

If we know the total number of hosts H and parasites P in the system, and the
value of k, we are able to calculate the average number of parasites per host for

each time t as follows

—. . _ P@)
m = zgzp(z) = m

)

The variance is given by

o® = G"(m, k,1) + G (m, k,1) — [G'(m, k, 1))’

_%m2+m—m2—m(l+%>—%(l+£{—%>,

and the second moment, defined as E(P?) = 0% + m?, is

5 o k+1 k+1Pt) Pt
Zz2p(2)=—m2 m = ()+ ()
, k k H2(t) H(t)
=0
The definition of probability generating function is not restricted to the univariate
case, for the multivariate case where X = (X7, ..., X,,) is a discrete random variable
that takes values in the set of non-negative integers, with probability mass function

p(z1,...,z,), the probability generating function of X is defined as

G(z) =G(z1,...,2,) = E (szxl) = Z <p(a:1, . ,xn)Hzf) :

x1,...,Tn=0 =1

From the previous definition, and since a distribution of n variables is a negative
binomial distribution if and only if the univariate marginals are negative binomials

distribution, a candidate for the probability generation function for the negative
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multinomial distribution, also called multivariate negative binomial distribution,
used in models with more than one parasite species, is the function G, (m,k,l, ),

given by

n n g
Gn(m, k1, z) = HG<mi>ki,Zi) + E G(m“kﬁzz)]['l G(my, ky, )]

i=1 j=2 i=1

lij ’
(A.2)
where G(m;, k;, z;) is define as the probability generating function of the negative
binomial distribution of the i-th parasitic species, given by (A.1), m = (my,...,m,)
with m; defined as the expected value of the probability distribution of i-th parasitic
species population for all i = 1,...,n, k = (ky,..., k,) with ki,..., k, parameters
of the negative binomial distributions of the population of each parasitic species,

[ = <l12, .. '7l1nal237 e 7l2n7 e >l(n—1)n>7 and z = (Zl, . '7Zn)'

For G,, to be a probability generating function it is necessary that G,, = 1 when
z; =1,forallt=1,... n, and that the coefficients of the Taylor expansion of GG,, in
z are positive. The first condition is satisfied because G(m;, k;, z;) is a probability
generating function, implying that G(m;, k;,1) = 1, for all i = 1, ... ,n. The second

condition is not satisfied for all values of [;;, it is necessary to determine the values of

IR
l;; that do satisfy this condition for each vector pair m and k. However, if 1/1;; =0
for all 1 <1 < j < mn, it can be verified that G,, = [[\_, G(m;, k;, z;) satisfies this

condition since each function G(m;, k;, 1) satisfies it.

For the values of m;, k; and [;; that satisfy that the function G, is a probability
generating function of a negative multinomial distribution, the mean and variance
of the univariate marginal distribution P; are m; and m;(1 + m;/k;), respectively,
for all « = 1,...,n, and the covariance between P; and P;, that can be calculated

as

Cov(F;, P;) = E([F; — E(P)][F; — E(F)])

forall 4,5 =1,...,n, is given by m;m;/l;;.

The model of interest in this thesis satisfies that competition between individ-

uals at different stages of the parasite’s life cycle is by exploitation, implying that
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1/l;; = 0, so the probability generating function used in this thesis is the func-
tion (A.2) without the term corresponding to the correlation of the different stages,
i.e., the product of the probability generating functions of the negative binomial
distributions of the population corresponding to each stage of the parasite’s life

cycle.



Appendix B

Routh-Hurwitz Stability Criterion

The Routh-Hurwitz stability criterion is a mathematical proof that provides a nec-
essary and sufficient condition for the stability of an equilibrium point in a system
of linear equations, based on the characteristic polynomial of the system and the

Routh-Hurwitz theorem [35]. Given a linear system of form

dx

— = Ax, B.1

pn (B.1)
where x € R" and A € M, (R) is the matrix of the linearized nonlinear interaction
terms in a not necessarily linear system, that is, A is the Jacobian matrix at the
equilibrium point of the original system. The solutions the system (B.1) have the
form

X = Xoe)\t,

where xq is a constant vector in R™ and A is an eigenvalue of A, i.e., A is a root of
the characteristic polynomial of A, denoted P(X) = det |A — AI|, with I the identity

matrix in M, x,(R). Thus, considering
PA) = A"+ ap X"+ ard + ao, (B.2)

the solution x = 0 is stable if all roots A of the characteristic polynomial P(A) lie in
the left side of the complex plane, that is, if Re(A) < 0 for all A such that P(\) = 0.

To determine if all roots of P(A) have a negative real part, we first consider when

P() is a second or third degree polynomial.
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If P(\) is a second degree polynomial, then P(\) = A\? 4+ ay A + ag has both roots

on the left half of the complex plane if and only if a; and as are positive.

On the other hand, if P()\) is a third degree polynomial, then all the roots of
P(\) = A%+ asA\? + a1 A + ap lie in the left-hand complex plane if and only if ag and

as are positive, and ajas > ay.

When P() is a characteristic polynomial of a higher order, a tabular method
can be used to determine the stability when the roots of P(\) are difficult to obtain.

This method is given for polynomials with the form

n

PN = ap\".

k=0

First we consider the following table:

Qp, Ap—2 | Ap—4 | Gp—g6
Qp—1 | Ap—3 | Qp—5 | Ap—7
by | by | by | b
a1 C2 C3 C4

dy dy ds dy

TABLE B.1: Coefficients used in the Routh-Hurwitz stability criterion.

where b, and ¢, can be computed as follows:

Ap—1Qn—2k — Anlp—(2k+1)

bk - )
Qp—1
blan—(Qk—H) — p—1bp41
Cr = b )
1
c1br1 — bicrya
d = .

C1

When completed, the number of sign changes in the first column is the number

roots of P(A) with non-negative real part.

Therefore, since a,, = (—1)" in the characteristic polynomial P()), to guaran-
tee the stability of the equilibrium point of a linearized system with characteristic
polynomial of degree greater than three, it is necessary that all the coefficients of

the first column in Table B.1 be positive if n is even or negative if n is odd.

For example, for P(\) = M + azA\3 + asA? + a1\ + ag the Table B.1 is given by
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1 QAo | Qg
as aq 0
ao03 — A1
_ ap | 0
as
2
(agas — ay)a; — apaj 0| o
G203 — a3
ao 0 0

Therefore, for the roots of P(A) to have a negative real part, it is necessary that

az > 0, azaz — a; > 0, (azaz — ar)a; — apaz > 0 and ag > 0.

On the other hand, for P(\) = A\° 4+ ayA* + az\® + axA? + a1\ + ao the Table B.1

looks like

1 as ay
Q4 a2 ao
asa, — a9 ajay, — Qo 0

a4 Qay4

(azay — ag)as — (ajaq — ag)ay
ao 0
a3a4 — A2
[(a3a4 — CLQ)CLQ - (CLICL4 — CLO)CL4](CL1G4 - (10) - (CL36L4 — ag)ao 0 0
[(azaq — ag)as — (a1a4 — ag)aglay

0 0

Qo

Hence, the roots of P(\) have negative real part if (agzay — asg)as — (ayaq4 — ag)ay,

[(azay — az)as — (ara4 — ag)ag|(aray — ag) — (asay — az)ag, azay — as, ay and ay are

positive.

For P(\) = A5 + a5\ + ayA* + az\® + aoA\? + ay A + ag the Table B.1 is

1 a4 | Q2 | Qo
as | az | ay 0
by | by | D3| O
C1 Co 0 0
dy|dy| 0|0
er | 0100
hAlolo]o

where

bl _ a4as5 — CL3,

as
62 _ Ao205 — CL1,

as
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(CL4CL5 — (13)0,3 — (CLQCL5 — (ll)ag,

= )
asas — as

(@405 — ag)ay — aga?

Co = )
a4 — a3
g — [(asas — az)az — (azas — ay)as)(agas — ar) — [(agas — az)ay — apa?](asas — as)
| =
[(asa5 — az)az — (azas — ay)as)as ’

dy = ao,

e1 = [[(asas — az)as — (azas — ay)as|(azas — ay) — [(asas — az)ay — apa?](asas — as)]x

[(asas — az)a; — apa?] — [(agas — az)az — (azas — a1)aslag
( )

[(agas — az)az — (azas — a1)as)(asas — ay) — [(asas — az)ay — aga](asas — az)x
(asas — a3)

flza()-

Therefore, the roots of P(A) have negative real part if aq, as, by, ¢1, di and e; are

positive.



Appendix C

Carpinteria Data from NCEAS

The Carpinteria database obtained in a study conducted at Carpinteria Salt Marsh
Reserve, Carpinteria, Santa Barbara County, California, consists of four subnets
given by predator-prey, parasite-host, predator-parasite and parasite-parasite inter-
actions. The complete database contains 128 animal species classified as predatory,

host and parasite species, of which, 120 correspond to host or parasitic species.

This appendix shows a representation of the life cycles of the parasite species
found in the host species, considering only the parasite-host relationships between
the 75 host species and 45 parasitic species in the database. The following table
shows a description of the symbols used in the representation of the parasitic stages
of each parasite species found in the host species, and the symbols used to represent
the possible host species in which a parasitic species could enter during some stage

of its life cycle, but nevertheless, were not found during the study.

Symbol Description
. First intermediate host.
. First and second intermediate host.
First and second intermediate host, excysts outside second
intermediate host.

. Second intermediate host.

. Second intermediate host external (non-trophic) cyst.
Final host

. Proposed/presumed first intermediate host.

* Proposed/presumed second intermediate host.

Proposed /presumed final host.

TABLE C.1: Description of the symbols used in the life cycles representation.
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Representation of the parasite life cycles in the Carpinteria database
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The complete list of animal species studied in this database is given in two parts,

the first part consists of the 75 host species in the system, and the second part

contains the 45 parasitic species observed. The first part of the list, with all the

host species, is as follows:

Z,
e

0 3O Ul W N

Species
Oligochaete.
Capitella capitata.
Phoronid.
Spionidae.

Eteone lightii.
Turkey vulture.
Corophium sp.
Harpacticoid.
Ostracods.

Anisogammarus confervicolus.

Traskorchestia.

Uca crenulata.
Neotrypaea.
Upogebia.

Atherinops affinis.
Mugil cephalus.
Cerithidea californica.
Acteocina inculcata.
Melampus.
Assiminea.
Trichocorixia.
Ephydra larva.
Mosquito larva.
Ephydra adult.
Macoma nasuta.
Protothaca.

Tagelus spp.
Cryptomya.

Mytilus galloprovincialis.
Geonemertes.
American coot.
Mallard.

Killdeer.
Green-winged teal.
Cleavlandia ios.
Semipalmated plover.
Greater Yellowlegs.
Hemigrapsus oregonensis.

No.

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
%)
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

Species

Fundulus parvipinnis.
Western sandpiper.
Dunlin.

Least sandpiper.
Forster’s tern.
Dowitcher.

Green heron.

Belted kingfisher.
American avocet.
Pachygrapsus crassipes.
Willet.

Black-bellied plover.
California gull.
Whimbrel.

Mew gull.

Marbled godwit.
Ring-billed gull.
Western gull.
Bonaparte’s gull.
Long-billed curlew.
Surf scoter.
Buffiehead.

Clapper rail.
Cooper’s hawk.
Northern harrier.
Leptocottus armatus.
Gillycthys mirabilis.
Urolophus halleri.
Procyon locator.
Great blue heron.
Snowy egret.
Black-crowned night heron.
Double crested cormorant.
Great egret.

Pied billed grebe.
Osprey.

Triakis semifasciata.
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On the other hand, the rest of the list, with all parasitic species, is given by

No.

76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

Species

Portunion conformis.
Picornavirus.

Nerocila californica.
Orthione.

Ergasilus auritious.
Aedes taeniorhynchus.
Culex tarsalis.

Leech (glossiphonidae).
Proleptus.
Carcinonemertes.
Gyrodactylus.
Trichodina.
Eugregarine.
Fugregarine.
Plasmodium.
Nematode in tagelus.
Spirocamellanus perarai.
Baylisascaris procyonis.

Acanthocephalan in gillichthys.

Euhaplorchis californiensis.
Himasthla rhigedana.
Probolocoryphe uca.
Himasthla species B.

No.
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

Species

Renicola buchanani.
Acanthoparyphium sp.
Catatropis johnstoni.
Large xiphideocercaria.
Parorchis acanthus.
Austrobiharzia.
Cloacitrema michiganensis.
Phocitremoides ovale.
Renicola cerithidicola.
Small cyathocotylid.
Stictodora hancocki.
Mesostephanus appendiculatoides.
Pygidiopsoides spindalis.
Microphallid 1.
Hysterolecitha.
Parvatrema.
Microphallid 2.
Galactosomum.
Tetraphyllidean.
Tetraphyllid fish.
Trypanorynch.
Dilepidid.
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Appendix D

R Codes

This appendix contains the R codes used to perform the simulations present in this
thesis. The first code presented here was used to simulate population dynamics in

the Anderson and May model (1.1) presented in Figure 4.1.

rm{1ist=15())
Tibrary(desolve)
library(reshape2)
Tibrary(ggplot2)
library(scales)

- anderson and May Mode] ——————————————mmmmmmmm—
HP_ode=function(times,init,parms){
with{as. Tist{c{parms,init)), {
# ODEs
dH=(a-b)*H-(alphal*P
dp=(Tambda*P*H)/(H+gamma, /beta) - (mu+alpha+b)*P-(alpha* ((P~2) /H)* ((k+1) /k))
Tist(c(dH,dP))
9]

L
J

Parameters

H: Number of hosts

P: Number of parasites

a: Host birth rate

b: Host death rate

alpha: Parasite impact on host mortality

beta: Rate of ingestion of parasite infective stages
mu: Parasite death rate

k: Aggregation parameter

Tambda: Parasite fertility

gamma: Death rate of free-living stages
parms=c{a=1.4,b=1.05,alpha=0.0003,beta=0.1,mu=0.5,k=0.1,Tambda=10,gamma=10)
init=c(H=200,P=10)

d4e 4k e e e G GE HE de He Ghe

times=seq(0, 20, length. out=3000)
HP_out=1soda(init,times,HP_ode,parms)
HP_out_long=melt({as.data.frame(HP_out), "time")

# visualisation
ggplot (HP_out_long, aes (x=time,y=value,colour=variable,group=variable))+
geom_line(lwd=1)+x1ab("Time" )+ylab("Number ")+
scale_y_loglO(breaks=trans_breaks("logl0",function(x) 10/x),
labels=trans_format("logl0",math_format (10~ x)))

99
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The next code was used for the simulation of the model (2.3) shown in Figure 4.3,
where there are two host species and only the adult parasites enter in the individuals

of any host species.

rm{1ist=15())
Tibrary(desolve)
library(reshape2)
Tibrary(ggplot2)
library(scales)

HP_ode=function(times,init,parms){
with{as. Tist{c{parms,init)), {

# ODEs

dHl=(a-b)*H1-(alpha+delta)“pPll

dH2=(a-b)*H2-(alpha+delta) P21

dPll=(lambda“beta” (P11+P21)"H1) /(beta*Hl+beta“H2+gamma) - (mu+b+alpha) P11l
-(alpha® ((P1142) /H1) = ((k+1)/k)D

dP21=(lambda“beta” (P11+P21)"H2) /(beta*Hl+beta*H2+gamma) - (mu+b+alpha) *P21
-(alpha~ ((P2142) /H2) = ((k+1)/k)D

Tist(c(dHl,dH2,dPll,dP21))

()

Parameters

Hi: Number of hosts of the i-th species

Pil: Number of adult parasites in a host of th i-th species

a: Host birth rates

b: Host death rates

alpha: Parasite impact on host mortalities

delta: Parasite impact on host fertilities

beta: Rates of ingestion of parasite infective stages of both host species
mu: Adult parasite death rate within any host

k: Aggregation parameter

Tambda: Parasite fertility

gamma: Death rate of free-living stages
parms=c({a=1.4,b=1.05,alpha=0.0003,delta=0.0001,beta=0.1,mu=1.2,k=0.1,Tambda=10,gamma=10)
init=c(H1=800,H2=300,P11=50,P21=10)

RE CEE R CEE CRE R R R

times=seq(0, 20, length. out=2000)
HP_out=1soda(init,times,HP_ode,parms)
HP_out_long=melt({as.data.frame(HP_out), "time")

# visualisation
ggplot (HP_out_long, aes (x=time,y=value,colour=variable,group=variable))+
geom_line(lwd=1)+x1ab("Time" )+ylab("Number ")+
scale_y_loglO(breaks=trans_breaks("logl0",function(x) 10/x),
labels=trans_format (" logl0",math_format (104.x)))
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This is the code used to simulate population dynamics in a system with five host
species that only adult parasites can colonize, presented in Figure 4.4.

rm{1ist=1s())
library(desolve)
Tibrary(reshape2)
library(ggplot2)
Tibrary(scales)

HP_ode=function(times,init,parms){
with(as.list(c(parms,init)), {

# ODEs

dH1=(a-b)*Hl-(alpha+delta) P11l

dH2=(a-b)*H2-(alpha+delta) P21

dH3=(a-b)*H3-(alpha+delta)*P31

dH4=(a-b)“H4-(alpha+delta) “P41l

dH5=(a-b)*H5-(alpha+delta)*P51

dPll=(lambda“beta” (P11+P21+P31+P41+P51)"“H1) /(beta” (H1+H2+H3+H4+H5)+gamma)
-(mu+b+alpha) *P11-(alpha* ((P1142) /H1)* ((k+1)/k))

dP21=(lambda“beta” (P11+P21+P31+P41+P51)"“H2) /(beta” (H1+H2+H3+H4+H5)+gamma)
-(mu+b+alpha) *P21-(alpha* ((P2142) /H2)* ((k+1)/k))

dP31=(lambda“beta” (P11+P21+P31+P41+P51)"“H3) /(beta” (H1+H2+H3+H4+H5)+gamma)
-(mu+b+alpha)*P31-(alpha* ((P3142) /H3)* ((k+1)/k))

dP41=(lambda“beta” (P11+P21+P31+P41+P51) “H4) /(beta” (H1+H2+H3+H4+H5)+gamma)
-(mu+b+alpha) “P41-(alpha* ((P4142) /H4) = ((k+1) /k))

dP51=(lambda“beta” (P11+P21+P31+P41+P51)*H5)/(beta” (H1+H2+H3+H4+H5)+gamma)
-(mu+b+alpha) *P51-(alpha* ((P5142) /H5)* ((k+1)/k))

Tist(c(dHl,dH2,dH3,dH4 ,dH5,dP1l,dP21,dP31,dP41l,dP51))

()

Parameters

Hi: Number of hosts of the i-th species

Pil: Number of adult parasites in a host of th i-th species

a: Host birth rates

b: Host death rates

alpha: Parasite impact on host mortalities

delta: Parasite impact on host fertilities

beta: Rates of ingestion of parasite infective stages of both host species
mu: Adult parasite death rate within any host

k: Aggregation parameter

lambda: Parasite fertility

gamma: Death rate of free-living stages
parms=c{a=1.6,b=1.05,alpha=0.0005,delta=0.0008,beta=0.01,mu=1.6,k=0.1,1ambda=6,gamma=10)
init=c(H1=200,H2=400,H3=600,H4=800,H5=1000,P11=10,P21=20,P31=30,P41=40,P51=50)

EEE R CRE CRE CRE IR R U

times=seq(0, 30, length. out=2000)
HP_out=1soda(init,times,HP_ode,parms)
HP_out_long=melt{as.data.frame(HP_out),"time")

# Visualisation
ggplot (HP_out_long, aes(x=time,y=value,colour=variable,group=variable) )+
geom_line(Twd=1)+xTab("Time" )+ylab("Number")+
scale_y_loglO(breaks=trans_breaks("logl0",function(x) 10~x),
Tabels=trans_format("logl0",math_format (10~.x)))



[Ce s - T = I S WR R N

R codes 102

The following code was used to simulate population dynamics in the Dobson and
Hudson model (1.3) in the Figure 4.5.

rm{1ist=1s())
library(desolve)
Tibrary(reshape2)
library(ggplot2)
Tibrary(scales)

e ponson and Hudson Model —---—---mmmmmm e
HAP_ode=function(times,init,parms){
with(as.list(c(parms,init)), {

# ODEs
dH=(a-b)*H-(alpha+tdelta) P
da=(lambda*P*H) /(H+gamma,/beta) - (mu_A+b+theta) “A-alpha“aA*P/H
dp=theta*a- (mu_P+alpha+b)*P-(alpha* ((P~2) /H)*((k+1)/k))
Tisti(c(dH,dAa,dr))

)

4
Parameters
H: Number of hosts
A: Number of arrested larvae
P: Number of adult parasites
a: Host birth rate
b: Host death rate

alpha: Parasite impact on host mortality

delta: Parasite impact on host fertility

beta: Rate of ingestion of parasite infective stages

theta: Rate at wich arrested larvae develop into adult parasites

mu_a: Arrested larvae death rate

mu_B: Adult parasite death rate

k: Aggregation parameter

Tambda: Parasite fertility

gamma: Death rate of free-living stages

parms=c({a=1.8,b=1.05,alpha=0.0003,delta=0.0005,beta=0.1,theta=3,mu_A=0.5,mu_P=1,
k=0.1,lambda=11,gamma=10)

init=c(H=200,A=30,P=10)

H4e 4k e e e e R e e e e e R e e

times=seq(0, 30, length. out=2000)
HAP_out=1soda(init,times,HAP_ode,parms)
HAP_out_long=melt(as.data.frame(HAP_out), "time")

# Visualisation .
ggplot (HAP_out_long, aes(x=time,y=value,colour=variable,group=variable) )+
geom_line(Twd=1)+xTab("Time" )+ylab("Number")+
scale_y_loglO(breaks=trans_breaks("logl0",function(x) 10~x),
Tabels=trans_format("logl0",math_format (10~.x)))
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Below is the code used for the simulations in Figure 4.6.

rm(Tist=1s())

Tibrary({desolve)

Tibrary({reshape2)

library({ggplot2)

Tibrary(scales)

HAP_ode=function{times,init,parms){

-

ECIE I TR R R TR R T O

parms=c{a=1.3,b=1.1,beta=0.1,alpha=0.0003,delta=0.0005,theta_1=4,theta_2=4,theta_3=3,

with(as. Tist{c(parms,init)), {

# ODEs

dH=(a-b) “H-(alpha+delta) “P5
drPl={1ambda*“P5“H) /(H+gamma / beta) - (mu_l+b+theta_1)*Pl-alpha*P1*P5/H

dr2=theta_1°
dp3=theta_2

drPa=theta_3"
dps=theta_4°

“Pl-(mu_2+b+theta_2)*P2-alpha“pP2*P5/H
“P2-(mu_3+b+theta_3)*P3-alpha*P3*P5/H
“P3-(mu_4+b+theta_4) P4-alpha“pP4*P5/H
“Pd-(mu_5+b+alpha)“pP5-{alpha* ((P5/2) /H)*((k+1)/k))

Tist(c(dH,drl,drP2,dr3,dr4,drP5))

Parameters

H: Number of hosts

Pi: Number of
a: Host bhirth
b: Host death
alpha: Impact
delta: Impact
beta: rRate of
theta_i: Rate

parasites at stage i

rate

rate

on host mortality caused by adult parasites

on host fertility caused by adult parasites

ingestion of parasite infective stages

at wich parasite at stage i develop into parasites of the next stage

of its Tife cycle
mu_i: Death rate of parasites at stage i
k: aggregation parameter
lambda: Parasite fertility
gamma: Death rate of free-living stages

theta_4=3,mu_1=0.2,mu_2=0.2,mu_3=0. 3,mu_4=0. 3,mu_5=0.6,k=0.1,lambda=12,gamma=10)
init=c{H=300,P1=50,P2=40,P3=30,P4=20,P5=10)

times=seq(0,150, length. out=2000)
HAP_out=Tsoda(init,times,HAP_ode,parms)
HAP_out_long=melt{as.data.frame(HAP out), "time")

#

visualisation

ggplot (HAP_out_Tlong, aes (x=time,y=value,colour=variable,group=variable))+

geom_1line{lwd=

1)+x1ab("Time" )+ylab("Number™ )+

scale_y_loglO{breaks=trans_breaks("Togl0",function(x) 10/x),

labels=trans_format{"logl0",math_format{10~.x)))
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The next code was used for the simulations presented in Figure 3.6, Figure 3.7
and Figure 3.8.

rm{1ist=1s())
library(desolve)
Tibrary(reshape2)
library(ggplot2)
Tibrary(scales)

HAP_ode=function(times,init,parms){
with(as.list(c(parms,init)), {
# ODEs
dH=(a-b)*H-(alpha_a+delta_a)“A-(alpha_p+delta_p)*P
da=(lambda*P*H) /(H+gamma /beta) - (mu_a+b+theta+alpha_a)“aA
-(alpha_a® ((ar2) /H)* ((k_a+1) /k_a))-alpha_p*A*P/H
dP=theta”A- (mu_p+alpha_p+b)*P-alpha_a*aA*P/H-(alpha_p* ((P~2) /H)* ((k_p+1) /k_p))
Tist{c(dH,dA,dr))

D

J
Parameters
H: Number of hosts
A: Number of arrested larvae
P: Number of adult parasites
a: Host birth rate
b: Host death rate

alpha: Parasite impact on host mortality

delta: Parasite impact on host fertility

beta: Rate of ingestion of parasite infective stages

theta: Rate at wich arrested larvae develop into adult parasites

mu_aA: Arrested Tlarvae death rate

mu_B: Adult parasite death rate

k: Aggregation parameter

Tambda: Parasite fertility

gamma: Death rate of free-living stages

parmsl=c(a=1.95,b=1.05,alpha_a=0,alpha_p=0.0001,delta_a=0,delta_p=0.0001,
beta=0.1,theta=3,mu_a=0.7 ,mu_p=1.2,k_a=0.1,k_p=0.1,lambda=11,gamma=10)

parms2=c({a=1.95,b=1.05,alpha_a=0. 000003, alpha_p=0.0001,delta_a=0.000003,delta_p=0.0001,
beta=0.1,theta=3,mu_a=0.7 ,mu_p=1.2,k_a=0.1,k_p=0.1,lambda=11,gamma=10)

parms3=c(a=1.95,b=1.05,alpha_a=0,alpha_p=0.0003,delta_a=0,delta_p=0.0008,
beta=0.1,theta=3,mu_a=0.3,mu_p=0.8,k_a=0.1,k_p=0.1,lambda=11,gamma=10)

init=c(H=200,4=20,P=10)

LI S A

timesl=seq(0, 600, length. out=2000)
times2=seq(0,8.82, length. out=200)
HAP_outl=Tsoda(init,timesl,HAP_ode,parmsl)
HAP_out_longl=melt(as.data.frame(HAP_outl), "time")
HAP_out2=Tsoda(init,timesl,HAP_ode,parms2)
HAP_out_long2=melt(as.data.frame(HAP_out2),"time")
HAP_out3=Tsoda(init,times2,HAP_ode,parms3)
HAP_out_long3=melt(as.data.frame(HAP_out3)," "time")

# visualisation
ggplot (HAP_out_Tlongl, aes (x=time,y=value,colour=variable,group=variable))+
geom_line(lwd=1)+x1ab("Time" )+ylab("Number ")+
scale_y_loglO(breaks=trans_breaks("logl0",function(x) 10/x),
labels=trans_format (" logl0",math_format (104.x)))
ggplot (HAP_out_long2, aes(x=time,y=value,colour=variable,group=variable) )+
geom_line(Twd=1)+xTab("Time" )+ylab("Number")+
scale_y_loglO(breaks=trans_breaks("logl0",function(x) 10~x),
Tabels=trans_format("logl0",math_format (10~.x)))
ggplot (HAP_out_long3, aes(x=time,y=value,colour=variable,group=variable) )+
geom_line(Twd=1)+xTab("Time" )+ylab("Number")+
scale_y_loglO(breaks=trans_breaks("logl0",function(x) 10~x),
Tabels=trans_format("logl0",math_format (10~.x)))
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rm(1ist=1s5(})
Tibrary(desolve)
Tibrary({reshape2)
Tibrary({ggplot2)
library(scales)

HP_ode=function(times,init,parms){
with({as. list{c(parms,init)), 1
# 0DEs
dHl={al-bl)*H1-(alpha_11l+delta_11)"pP11l
dH2=(a2-b2)*H2-(alpha_22+delta_22)"pP22

dpll=_(lambda*beta _10*pP22*HL) /(beta_10*Hl+gamma_0)-(mu_1ll+bl+epsilon_ll+alpha_11)*pPll

-(alpha_11*((P112) /H1) " (k_11+1) /k_11)
drp22=(epsilon_11"beta_21*P11*H2)/(beta_21"H2+gamma_1)-(mu_22+b2+alpha_22)"p22
-(alpha_22=((P22/2) /H2) " (k_22+1) /k_22)
Tist(c(dHl,dH2,dPll,dP22))

)

# Parameters

# Hi: Number of hosts of the i-th species

# Pij: Mumber of parasites at the j-th stage of its 1ife cycle within a host
# in Hi

# ai: Birth rate of host in Hi

# bi: Death rate of host in Hi

# alpha_ij: Impact on Hi mortality rate caused by Pij

# delta_ij: Impact on Hi fertility rate caused by Pij

# beta_i(j-1): Rate of ingestion of parasite that enter in Pij by host in Hi
# epsilon_ij: Rate at wich parasites in Pij leave a host in Hi

# mu_ij: Death rate of parasites in Pij

# k_ij: Aggregation parameter

# Tlambda: Parasite fertility

# gamma_(j-1): peath rate of free-living stages

parms=c{al=1.41,b1=1.4,a2=1.05018,b2=1.05006,alpha_11=0.00003,alpha_22=0. 00001,
delta_11=0.0045,delta_22=0.0005,beta_10=0.01211,beta_21=0.00009,mu_11=0.1,
mu_22=0.00001,k_11=0.1,k_22=1,Tambda=2500,gamma_0=100,gamma_1=10,
epsilon_11=9.951)

initl=c(H1=1000,H2=500,P11=1500,P22=100)

init2=c(H1=1000,H2=500,pP11=0,P22=0)

timesl=seq(0,300, length. out=600)
times2=seq(0,3000,length. out=6000)
HP_outl=1soda{initl,timesl,HP_ode,parms)
HP_out_longl=melt(as.data.frame(HP_outl), "time")
HP_out2=1sodalinitl,times2,HP_ode,parms)
HP_out_longZ2=melt(as.data.frame(HP_out2), "time")
HP_out3=1sodalinit2,timesl,HP_ode,parms)
HP_out_long3=melt(as.data.frame(HP_out3), "time")

# Visualisation
ggplot{HP_out_longl,aes{x=time,y=value,colour=variable,group=variable))+
geom_line(lwd=1)+xT1ab("Time" )+ylab{"Number" )+
scale_y_logl0{breaks=trans_breaks({"logl0",function{x) 10/x),
Tabels=trans_format("Togl0",math_format (10~.x)))
ggplot{HP_out_long2,aes{x=time,y=value,colour=variable,group=variable))+
geom_line(lwd=1)+xT1ab("Time" )+ylab{"Number" )+
scale_y_logl0{breaks=trans_breaks({"logl0",function{x) 10/x),
Tabels=trans_format("Togl0",math_format (10~.x)))
ggplot{HP_out_long3,aes{x=time,y=value,colour=variable,group=variable))+
geom_line(lwd=1)+xT1ab("Time" )+ylab{"Number" )+
scale_y_logl0{breaks=trans_breaks({"logl0",function{x) 10/x),
Tabels=trans_format("Togl0",math_format (10~.x)))
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Tabu search algorithm [32, 33] used to find feasible parametric values in (4.17).

=function(P){

D_1=(P[1]-P[31)/(P[5]1+P[7]1)

D_2=(P[2]-P[4])/(P[6]+P[E])

B_11=D_1*(P[3]+P[5]+P[9]+P[1B]+P[5]*((1+P[11]1)/P[11])*D_1)

B_22=D_2*(P[4]+P[6]+P[10]+P[6]* ({1+P[12])/P[12])*D_2)

H1=((P[16]*P[17]/(B_11*P[14]))*D_2+P[15]/P[13])/((P[17]*P[18]/(B_11%B_22))*D_1*D_2-1)

H2=((P[15]*P[18]/(B_22*P[13]))*D_1+P[16]/P[14])/((P[17]*P[18]/(B_11*B_22))*D_1*D_2-1)

P11=H1*D_1

P22=H2"D_2

J11=P[1]-P[3]

122=P[2]-P[4]

313=-(P[5]+P[7]1)

124=-(P[6]+P[B])

3131=P[13]1*P[15]1*P[17]*P22/((P[15]+P[13]*H1)**2)+P[5]*((1+P[11])/P[11])*D_1%*2

133=-(P[3]+P[5]+P[O]+P[AB]+2*P[5]* ((1+P[11])/P[11])*D_1)

134=P[13]*P[17]*H1/(P[15]+P[13]*H1)

142=p[14]*P[16]*P[18]*P22,/((P[16]+P[14]*H1)**2)+P[6]*((1+P[12])/P[12])*D_1%*2

143=P[14]*P[18]*H2/(P[16]+P[14]*H2)

J44=-(p[4]+P[6]+P[10]+2*P[6]*((1+P[12])/P[12])%D_2)

A0=311%322%333%344+313%331%324%3142-311%322%134%343-122%344%313%331-311%333%324%342

Al=111%224%1342+133%2247342+122%313%131+122*23347143+111%2334"343+144%313%331-111%222%133
-J11%322%344-322%333%344-311%333%144

AZ=111%222+311%133+211%344+122%1333+122%144+333%144-113%331-124%142-134%143

A3=-311-122-333-144

B=P[17]*P[18]*D _1*D_2-B_11"B_22

return{min(A0,A3,A2%A3-A1, (A2¥A3-A1) *A1-A0*(A3%%2),B))

pP=(a_1l,a_2,b_1,b_2,alpha_11,alpha_22,delta_11,delta_22,mu_11,mu_22,k_11,k_22,beta_10,
beta_21,gamma_0,gamma_1,lambda,epsilon_11)
=c(1.5,1.4,1.1,1.05,0.0003,0.0003,0.0005,0.0005,0.1,0.4,0.1,0.1,0.01,0.1,100,10,2000,10)

iflc(P)<0){

n=10000000
for{i in 1:n){
L=P
for(j in 1:2)1{
A=P
A[jl=A[j]+0. 00001
if{c(A)=C(L)) L=A
if(P[jl==P[j+2]+0.00001){
A=P
A[jl=A[j]1-0.00001
if{c(A)=C(L)) L=A
A=P
A[j+2]1=A[j+2]+0. 00001
if(c(a)=ci{L)) L=A

if(P[j+2]>=0.00001){
A=P
A[j+2]=a[f+2]1-0. 00001
iFCC(A)=C(L)) L=A

1
¥

for(k in 5:18){

A=P

Alk]=A[k]+0. 00001

if(c(a)=ci{L)) L=A

if(P[k]=>=0.00001){
A=P
Alk]=A[k]-0.00001
if(c(a)=ci{L)) L=A

-

ci(p)=001{
print(pP)
j=n+1
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