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Introduction

After some time of doing mathematics, you may get some strategies, techniques, and even some magical intuition
about how to solve problems or at least on how to try to solve them. Sometimes it works, sometimes it does not,
but does it really matter? I think mathematics is beautiful by itself, even when you fall in proving something, or
when a problem you thought was easy gets more and more complicated. At the end of the day, after very hard
work, you may connect the dots, and perhaps you will have done a piece of art. I had not realized this until this work.

I have to be honest, reviewing papers [9, 2, 10] and books [11, 19], was not an easy task for me at the beginning,
considering that it was my first time doing mathematical research. So I was totally lost, since all of them are very
technical. Without a proper introduction everything seemed very confusing.

Finally, when Deborah told me her ideas about how to generalize a problem in discrete geometry for higher dimen-
sions using strategies and tools that were in the papers and books that I was reading, each idea started to make
sense in my mind and I finally connected the dots. There were constantly repeating structures in all the problems
we were working on, and those structures helped us understand the behavior in higher dimensions. Those structures
are the metric polytopes.

In this thesis, we will present two discrete geometrical problems we worked on during my masters, and all the
properties that metric polytopes have.

The first one is related to bodies of constant width. The main idea was to generalize the algorithm proposed by Luis
Montejano and Edgardo Roldán in [13] to create families of bodies of constant width in R4, using metric polytopes.

The second one is related with the problem of the maximum number of diameters of a set of points in Euclidean
space. For dimensions one, two and three the vertices of metric polytopes provide as examples of maximum frequent
diameters configurations [9, 14, 11] that we call extremal configurations. In 2009, K. Swanepoel proved that for
higher dimensions [16], the set of points has to be in a strict configuration called Lenz configuration. The main goal
was to study this paper in order to verify if the vertices of metric polytopes still worked for higher dimensions as
extremal configuration families.

Therefore, the main question of this thesis is: for problems in discrete geometry, where metric polytopes are
solutions in lower dimensions, could metric polytopes help to construct families and examples in higher dimensions
as well?

This thesis is distributed in four chapters. In Chapter 1, we give all the basic tools, characterizations, proper-
ties and main definitions to understand the metric polytopes.

In Chapter 2, we will define bodies of constant width, an give little about their history and some algorithms to
create them. The main result of this thesis (Theorem 2.2.2) is in this chapter, and it is about how algorithms that
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create bodies of constant width in R2 and R3 no longer work in higher dimensions.

The third chapter is about the problem of the maximum number of diameters of a set of points in Euclidean
spaces and the fourth one contains the conclusions and possible direction of future work.
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Chapter 1

Definitions and Important Results

In this first chapter we will introduce general facts that will be needed in the rest of this thesis, such as notation,
basic definitions and results related with polytopes and convexity.

1.1 Convexity

Convexity is a mathematical notion in geometry which is strongly related with discrete geometry, graph theory,
combinatorics, analysis, etc.

Convexity has been studied for a long time. The first notions in this area appeared in Archimides’ book “On
the Sphere and Cylinder”, maybe not as convexity itself, but he uses the notions to define curves and surfaces. [11]

Nowadays, the most common definition of a convexity set is the following:

Definition 1.1.1: A set K ⊆ Rd is called a convex set if for every x, y ∈ K and t ∈ [0, 1], the point tx+(1− t) y ∈
K. The empty set is convex by vacuity.

Definition 1.1.2: Let A ⊆ Rd. The convex hull of A denoted by cc (A) is the intersection of all the convex
sets K such that A ⊆ K, i.e.

cc (A) =
⋂
K⊆A

K.

Definition 1.1.3: The vector x ∈ Rd is a convex combination of the points x1, ..., xn if there are real numbers
λ1, ..., λn satisfying

∑n
i=1 λi = 1, λi ≥ 0 and x =

∑n
i=1 λixi.

With these three main definitions, some basic properties of convexity can be proved (see [11]) .

Proposition 1.1.1: The intersection of convex sets is convex.

Proof: Let {Ki}i∈I be a family of convex sets. If ∩Ki = ∅ or |∩Ki| = 1 by vacuity the intersection is convex.
Let us say there are at least two points in ∩i∈IKi, then x, y ∈ ∩Ki. Because x, y ∈ Ki for every i ∈ I, then
tx+ (1− t) y ∈ Ki for every t ∈ [0, 1] because each Ki is convex. Therefore tx+ (1− t) y ∈ ∩Ki which implies that
∩i∈IKi is convex. p

Proposition 1.1.2: Let K ⊂ Rd be a convex set, x ∈ Rd is a convex combination of points in K if and only
if x ∈ K.
Proof: If x ∈ K, then x is a convex combination by itself. If x is convex combination we proceed by induction on
the number of vectors. If x is convex combination of just two points, by definition of convexity x is in K. Suppose
that if x is convex combination of n− 1 > 2 points then x ∈ K. If x is convex combination of n points x1, ..., xn,
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then λn 6= 1 otherwise x = xn. Thus:

x =

n∑
i=1

λixi

= (1− λn)

n−1∑
i=1

λi
1− λn

xi + λnxn

Because λi

1−λn
≥ 0 and

n−1∑
i=1

λi
1− λn

=
1

1− λn

n−1∑
i=1

λi

=
1

1− λn
(1− λn) = 1

y =
∑n−1
i=1

λi

1−λn
xi is convex combination of n − 1 points of K so by the inductive hypothesis y ∈ K. Since

x = (1− λn) y + λnxn, then x is in K by definition of convexity. p

Proposition 1.1.3: Let A and B be sets in Rd such that A ⊂ B, then cc (A) ⊂ cc (B).

Proof: Let K any convex set such that B ⊂ K, then A ⊂ K. Therefore:

cc (A) =
⋂
A⊂K K ⊂

⋂
B⊂K

K = cc (B) .p

Proposition 1.1.4: If K is a convex set, then cc (K) = K.
Proof: Let x ∈ K, so x ∈ A for all convex such that K ⊂ A, so x ∈ ∩K⊂AA = cc (K). Then K ⊂ cc (K).

Now suppose that x ∈ cc (K). Since K is convex, then cc (K) ⊂ K by definition, so x ∈ K. Therefore K = cc (K)

Corollary 1.1.1: Let A, K be subsets of Rd, K convex and A ⊂ K , then cc (A) ⊂ K.

Proof: Since A ⊂ K then cc (A) ⊂ cc (K) by proposition 1.1.3 and since K is convex, cc (K) = K by proposition
1.1.4. Therefore cc (A) ⊂ K.p

1.2 Geometric Polytopes

In order to start defining what is a metric polytope, we need to understand first what is a geometric polytope. There
are two ways to define a geometric polytope:

Definition 1.2.1: P is a V − polytope in Rd if it is the convex hull of a finite set of points in Rd.

A V − polytope is illustrated in R2 as the convex hull of the points A, B, C, D and E in Figure 1.2.1

4



A

B

C

D

E

Figure 1.2.1

Definition 1.2.2: P is an H− polytope in Rd if it is a bounded intersection of finite set of half-spaces in Rd.

A H− polytope it is illustrated in R2 as the intersection of the half-planes a, b, c, d and e in Figure 1.2.2.

Notice in Figure 1.2.1 and Figure 1.2.2 that the V − polytope and the H − polytope have the same geometric
representation. This is not a coincidence, actually, even in higher dimensions a V − polytope can be represented as
an H− polytope and vice versa. So this leads us to Theorem 1.2.1, whose proof can be found in [19].

a

b

c

d

e

Figure 1.2.1

Theorem 1.2.1 (Main theorem for geometric polytopes): A subset P ⊂ Rd is the convex hull of a finite point set
(a V − polytope) if only if it is a bounded intersection of half-spaces (an H− polytope).

So, a geometric polytope can be understood either Definition 1.2.1 or Definition 1.2.2. In other words:

Definition 1.2.3: P is a geometric polytope of dimension d or d− polytope, if it is a V − polytope or H− polytope
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in Rd that can not be embed in Rd−1.

Definition 2.1.4: H is a supporting hyperplane of a body K if K is totally contained in only one of the closed
half-spaces induced by H and H ∩ bd (K) 6= ∅

Definition 1.2.5: f is a face of a d−polytope P if f is the intersection of P and a supporting hyperplane of P.
The dimension of a face is given by the dimension of the minimal affine space containing the intersection.

We use F (P) to denote the set of faces of a P polytope, and Fd to denote the set of d − dimensional faces.
Commonly if P is a d−polytope, the (d− 1)−dimensional faces of P are called a facets of P, the d−dimensional
face is called the complete face, and F0 are the vertices of P. This last definition is based in the fact that F0 and
F1 induce a graph in the common sense and it is going to be defined in Subsection 1.6.

One topological observation is that every geometric d−polytope P is isomorphic to the d− unit ball and bd(P) is
homomorphic to Sd−1. So bd(P) can be embedded on Sd−1.

Another important observation is that since P is an intersection of finite hyperplane, P can be expressed also
as:

P =
{
x ∈ Rd | A · x ≤ 1

}
, with A an square matrix and 1 a vector of ones.

where each line of A corresponds to the equation of each hyperplane.

1.3 Abstract Polytopes

In a more general way, we may define an abstract polytope as a set which satisfies the following four properties . It
is expected that every geometric polytope is an abstract polytope.

For more details see [1, 12].

Definition 1.3.1: An abstract polytope of dimension d, or simply a d− polytope, is a partially ordered set P with
a strictly monotone rank function with range {−1, 0, ..., d} satisfying the following conditions:

1. The elements of rank j are called are called the j − faces of P, in particular we have vertices, edges, and
facets of P for j = 0, j = 1 or d− 1 respectively.

2. Each flag (maximal totally ordered subset) of P contains exactly d+2 faces, including a unique minimal face
F−1 (of rank -1) and a unique maximal face Fd (of rank d).

3. P satisfies the diamond property, namely if F is a (j − 1)-face and G a (j + 1)−face with F < G, then there
are exactly two j−faces H such that F < H < G.

4. P is strongly flag-connected meaning that any two flags Φ and Ψ of P can be joined by a sequence of flags
Φ = Φ0,Φ1, ..., Φl−1, Φl = Ψ, all containing Φ ∩ Ψ, such that Φi−1, Φi are adjacent (they differ by exactly
one face) for each i = 1, ..., l.

6
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Notice that every geometric polytope is an abstract polytope, where the faces of the geometric polytope are the
elements ordered by the inclusion. It is easy to see that this partially order set satisfies the definition of abstract
polytope definition. Let this partially order be called as the face-lattice of the polytope P and denoted it by L (P).

Although this new way of defining a polytope preserves very important combinatorial information about the ge-
ometric polytopes, we are going to lose some other important properties. For example, the face-lattice loses the
geometric symmetries, the distances, etc. of a geometric polytope.

In order to visualize of the face-lattice, we can represent it with the Hasse diagram in which by convention, faces of
equal rank are placed on the same vertical level. Each edge between faces, say F ,G, indicates an order relation <
such that F < G where F is below G in the diagram. The Hasse diagram defines the poset uniquely and therefore
fully captures the structure of the polytope.[12]

As an example, Figure 1.3.1 is the face-lattice of the tetrahedra represented by the Hasse diagram, where the
red letters represent the faces.

Figure 1.3.1

Definition 1.3.2: Two polytopes P y Q are said to be combinatorially isomorphic to each other, denoted by
P ∼= Q, if L (P) = L (P∗).

Combinatorially isomorphic polytopes give rise to isomorphic Hasse diagrams, and vice versa.

1.4 Duality

Duality of “something” is a very common definition in several fields in mathematics. There are a lot of types of
duality, even for polytopes, but the general definition is given in terms of the face lattice and is as follows:

Definition 1.4.1: P∗ is the dual of a polytope P if their face lattice are anti-isomorphic; that is, there is a
one-to-one inclusion-reversing map τ from L (P) to L (P∗).
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In geometric polytopes, the most common duality is given by the polar dual described in Definition 1.4.2. Without
loss of generality assume for the rest of this thesis that every geometric polytope P in Rd contains the origin in its
interior.

Definition 1.4.2: For a polytope P =
{
x ∈ Rd | A · x ≤ 1

}
, where A ∈ Mk×d is a real matrix, then the po-

lar dual of polytope P is given as follows:

P∗ =
{
x ∈ Rd | v · x ≤ 1, for every v ∈ V (P)

}
.

In [p59-p64, [19]], there are a lot of interesting results related polar dual polytopes. It is proved that if P∗ is a
polytope with the origin in its interior, the dual of the dual is the same polytope, i.e P = P∗∗ and most importantly
for us, the face lattice of P∗ is the opposite of the face lattice of P, i.e. L (P) ∼= L (P∗)op. This exactly Definition
1.4.1.

An example of this duality in R2 is in Figure 1.4.1, where P is the red polytope and P∗ is the green one and the
inclusion reversing map is following:

P face-lattice P∗ face-lattice
ABCDE → ∅
AB → H

BC → I

CD → J

DE → F

EA → G

P face-lattice P∗ face-lattice
A → GH

B → HI

C → IJ

D → JF

E → FG

∅ → FGHIJ

A B

C

D

E

F

G

H

I

J

Figure 1.4.1

Definition 1.4.4: If P ∼= P∗, P is said to be self-dual.

Figure 1.4.1 also shows an example of a self-dual polytope, because the red polytope lattice is isomorphic to
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the green one (both are pentagons).

P face-lattice P∗ face-lattice
ABCDE ↔ FGHIJ

AB ↔ FJ

BC ↔ FG

CD ↔ GH

DE ↔ HI

EA ↔ JI

P face-lattice P∗ face-lattice
A ↔ J

B ↔ F

C ↔ G

D ↔ H

E ↔ I

∅ ↔ ∅

The Hasse diagram of a self-dual polytope must be symmetrical about the horizontal axis half-way between the
top and bottom [17], hence, all the polytopes in R2 are self-dual because their Hasse diagrams are symmetric. In a
geometric way, P could be said to be self-dual if P∗ has the same geometric “shape” than P, not necessarily with
the same lengths.

Commonly, if P is a self-dual polytope, P and P∗ are represented with the same picture, not with two. For
example, in Figure 1.4.1 we can delete the green pentagon and just rename all the edges an vertices with “∗” as
in Figure 1.4.2. This is an easier representation to understand self-duality, because we omit one polytope and the
correspondence is clearer.

A∗

E∗

D∗

C∗

B∗

AB∗

EA∗

ED∗CD∗

CB∗

ED CD

CB

AB

AE

A
B

C

D

E

Figure 1.4.2

More examples of self-dual polytopes families are in [2], for example Figure 1.4.3, which is like a pyramid with
n levels in R3 seen from above. This polytope is called the 3-dimensional n− prismoidal with triangular base.
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Figure 1.4.3

An stronger property related with duality that we will need is the following:

Definition 1.4.5: A d−polytope P is involutory if there is a dual polar function τ such that τ2 = I, that is P∗∗ = P

Even thought we already know that polar duality induces an involutory mapping if the polytope contains the
origin, if we take any τ dual polar function this is not necessarily true. In 1962 B. Grünbaum and G.C. Shepard
[4](p729-p733) asked whether every self-dual convex polyhedron P has rank 2 or, equivalent. whether every self-dual
P admits an involutory self-duality map. In [7] (p325-p733) S. Jendrol gave a negative answer to this question by
showing an example of a polytope that is self-dual but not involutory as the one in Figure 1.4.4. A self-dual map of
P is given by the permutation (AaBb) (CcDd) (EeFf) (JjKk) (LlMm) (NnOo) . Clearly the permutation function
psatisfy p4 = p (see Figure 1.4.4).

m

M

N

h

k
e Bda

g

j

f

n

o

l

b

L G

O Jc

D E
A F

C

H

K

Figure 1.4.4

Definition 1.4.6: Let P be a d−polytope in Rd. The dual face of a face f ⊂ F (P) is f∗ = τ (f).
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1.5 Metric Polytopes

We are ready to define the polytopes we are really interested in, the metric ones!

Definition 1.5.3: The diameter of a convex set K ∈ Rd is the maximum distance between any two points in
P with the Euclidean metric. It is denoted by diam (P).

Definition 1.5.1: Let P be a self-dual polytope in Rd. The dual-diagonal of P are the segment lines that go from
any vertex v ∈ F0 (P) to any vertex w ∈ F0 (P) such that w ∈ v∗.

Definition 1.5.2: Let P be a convex self-dual d-polytope, we call P a metric polytope with length h if:

1. Every dual diagonal has length h.

2. diam (P) = h.

In other words, P is a metric polytope if all its dual-diagonals are diameters. We will denote a P metric polytope
with length h as Ph.

Examples of metric polytopes in R2 are the regular n-agons. There is a pentagon in Figure 1.5.1 to illustrate this
fact.

A∗

E∗

D∗

C∗

B∗

AB∗

EA∗

ED∗CD∗

CB∗

ED CD

CB

AB

AE

A
B

C

D

E

Figure 1.5.1

The examples in [2] can also be realized as metric polytopes. For example, in Figure 1.5.2 we have the 2-prismoidal
with triangular base and some of its diagonals which have the same length.

11

□ 



Figure 1.5.2

We believe that condition number two of Definition 1.5.2 could be removed. However, we could not do it. We
studied a lot of examples but we failed. So we decided to leave this claim as a conjecture.

Conjecture 1.5.1: If a d-polytope P has the property that every dual-diagonal has length h, then diam (P) = h.

Other way to define metric polytopes is by keeping condition 2, and requiring all the vertices to be on a sphere.
This definition has been used several times, for example in [2] where some of the vertices are required to be on a
sphere, or as in [10] where Lovász requires all the vertices to be on a sphere. For us it is enough to keep definition
we gave, because we only want to require diam (P) = h and this is less restrictive. Let us prove it

Notice the following example of a metric polytope that is not embedded on a sphere (see Figure 1.5.3). How-
ever, as we will see next, if a d−polytope has all its diagonals of length h and all its vertices are on a sphere then
it has diameter h.

Figure 1.5.3
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Lemma 1.5.1: Let v1v2w1w2 be vertices in ciclic order on a circle and d (v1, w1) = d (v1, w2) = h. Then d (v1, v2) ≤
h. (see Figure 1.5.3)
Proof: By the triangle inequality we have that:

d (w1, w2) + d (v2, w1) ≥ d (v2, w2)

⇒ 1 ≥ d (v2, w2)− d (v2, w1)

d (w1, w2)
(1)

By Ptolomeo’s theorem, we know that

d (v2, w1) · d (v1, w2) + d (v1, v2) · d (w1, w2) = d (v1, w1) · d (v2, w2)

⇒ d (v2, w1) · h+ d (v1, v2) · d (w1, w2) = h · d (v2, w2)

⇒ d (v1, v2) = h ·
(
d (v2, w2)− d (v2, w1)

d (w1, w2)

)
⇒ d (v1, v2) ≤ h by (1)p

v1

v2

w1

w2

Figure 1.5.4

As notation, Sd−1
t (v) is the (d− 1)-sphere of radius t and center in v and Sd−1

t the (d− 1)-sphere of radius t
and center in the origin.

Lemma 1.5.2: Let C ⊂ Sd−1
t be an hyper-spherical cap induced by the hyperplane H, i.e one of the subsets of

Sd−1
t left in one side by H. If v1, v2 ∈ C and the distance between v1 and every point of Sd−1

t ∩H is h (v1 is the
pole of the cap), then d (v1, v2) ≤ h.
Proof: Let w1, w2 ∈ Sd−1

t ∩H be points such that w1 and w2 are in the geodesic generated by v1 and v2, then
there is a plane P that contains v1, v2, w1, and w2 i.e, v1, v2, w1, w2 ∈

(
P ∩ Sdt

) ∼= S1
t . Therefor d (v1, v2) ≤ h by

Lemma 1.5.1 .p

Lemma 1.5.3: If P is a self-dual d-polytope with all of its dual-diagonals having length h and all its vertices in a
Sd−1
t sphere in Rd then the distance between any two vertices is less than or equal to h.

Proof: Notice that for each vertex v of P, there is a supporting hyperplane Hv such that v∗ ⊂ Hv. This hyperplane
induces two spherical caps, let Cv be the one that contains v and C∗v the other one. Furthermore, since v∗ has at

13



least d points in order to have dimension d− 1, there is only one (d− 2)-sphere S containing all the vertices of v∗,
so S = Sd−1

t ∩Hv.

Since all the dual-diagonals have length h, the sphere Sd−1
h (v) with radius h and center in v contains also all

the vertices of v∗, so the distance between v and Hv ∩ Sd−1
h (v) = Sd−1

t ∩Hv is h.

If we suppose there are v1 and v2 vertices of P such that d (v1, v2) > h, then v2 has to be in C∗v1 by Lemma
1.5.2, then Hv1 is not a supporting hyperplane because leaves v1 in one half-space and v2 in the other one, a
contradiction.p

Lemma 1.5.4: If P is a d-polytope with diameter h, then the length between x, y ∈ P is h only if both are
vertices of P.

Proof: Let x and y points in P such that x, y are the vertices of a diameter. Without loss of generality, if x is
not a vertex, then either x is intP or x is in a facet. If x ∈ intP, then we get a contradiction because there is
a x1 /∈intP such that y, x and x1 are colinear in that order, so the distance between x1 and y is greater than the
distance between x and y.

If x is in a facet, there is a segment line x1y1 := l contained in such facet, such that x ∈ int l for some x1 and
y1 ∈ P. Notice that l and xy has one angle greater than or equal to 90º, without loss of generality let x1xy be such
angle (see Figure 1.5.5). Then distance between x1 and y is greater the diameter. A contradiction.p

xy

y

xx1y1x1 y1

Figure 1.5.5
Theorem 1.5.1: Every self-dual d-polytope P with all its dual-diagonals having length h and all its vertices in a
sphere in Rd has diameter h.

Proof: By Lemma 1.5.4 we have that all the diameters have to be realized by pairs of vertices of P and by Lemma
1.5.3 the distance between any two vertices of P is less than or equal to h, so diam (P) = h.p

Corollary 1.5.1: Let P be a self dual d-polytope with all its dual-diagonals having length h and all its vertices in
a sphere. Any two vertices v1 and v2 of are at distance h if and only if v1 ∈ v∗2 .
Proof: If v1 ∈ v∗2 by definition we know they are at distance h. Now suppose that v1 and v2 are at distance h but
v1 /∈ v∗2 , since v∗2 is a d− 1 dimensional face, then there is just one d− 1 sphere containing the vertices of v∗2 and v1,
but the center of this sphere is in v2 which is a contradiction since v2 has to be in this sphere too by the hypothesis
that are the vertices of P are in a sphere .p

14



Chapter 2

Meissner Polytopes and Bodies of constant

width

An important reason to study metric polytopes is that this kind of polytopes, could work as the “structure” for
bodies of constant width, and such bodies have several interesting applications, see for instance [11] for concrete
applications. Furthermore, the study of them is very relevant in several branches of mathematics. What is a body
of constant width?

2.1 Bodies of constant width

Definition 2.1.1: Let K be a convex set in Rd. The width w (u) of K in the direction of the unitary vector u is
the length of the largest diameter of K in direction u.

Definition 2.1.2: K is said to be a body of constant width (BCW) if in every direction u, w (u) is constant.

To simplify notation, BCW means body or bodies of constant width.

It is often thought that the only BCW are the d-dimensional spheres, whose diameters are two times their radii in
any direction, but this is totally false. There are many BCW.

As an example, the triangle in Figure 2.1.1 is not a BCW because the width between the black lines is shorter than
the width between the orange lines. But in the second figure, it can be proved that in any direction the width is
constant. This figure is well known as the Reuleaux triangle, named after its creator, the scientific and engineer
Franz Reuleaux.

Figure 2.1.1
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An interesting question is, how is the Reuleaux triangle created in order to have constant width? Figure 2.1.2 shows
an equilateral triangle and arcs of circumferences though exactly two vertices, with center in the opposite vertex
and radius l (the length of the triangle side). More precisely, this construction is called the ball-polytope of the
equilateral triangle.

Figure 2.1.2

In order to prove the fact that the Reuleaux triangle is a BCW, it is necessary to mention some basic BCW’s results.
Some of them are easy to understand geometrically, but the proofs are very technical, so they will be skipped. The
proofs, details can be found in [11].

Lemma 2.1.1: Every supporting hyperplane H of a BCW Φ touches Φ at exactly one point.

Theorem 2.1.1: The line segment joining the point of contact between a BCW and two of its parallel supporting
hyperplanes is perpendicular to them.

Definition 2.1.3: A chord φ in a body C is called normal if at least one of the supporting hyperplane at the end
of the chord φ is perpendicular to φ. When both hyperplanes are perpendicular then φ is called binormal.

Theorem 2.1.2: A body Φ has constant width if and only if it has a binomial in every direction.

Theorem 2.1.3: A body Φ is of constant width if and only if each normal is a binormal.

The last two theorems are BCW characterizations that often simplify the proofs that a body is a BCW.

Notice that the Reuleaux triangle has a binormal at each direction and that each supporting line touches it in just
one point (see Figure 2.1.3), so the Reuleaux triangle is a BCW.

16
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Binormal

Suportting planes

Suportting planes

Figure 2.1.3

2.2 Constructing BCW

In some cases, creating algorithms to make families or sets with some properties is hard. This is why the main goal
of this chapter is to establish an algorithm or a parametrization to create families of BCW in higher dimensions, at
least in R4.

Are there algorithms to create families of BCW? There are different ways to construct a BCW, for example, the
solutions to a particular differential equation can be BCW [11]. Since this thesis focuses on metric polytopes prop-
erties, algorithms that do not include these polytopes will be omitted. For other kind of constructions see [11].

So, is there an algorithm to create families of BCW using metric polytopes? The answer is yes, and in order
to describe this algorithm we need the following definitions.

Definition 2.2.1: Let T ⊂ Rd be a finite set of at least d points. The ball-polytope Br (T ) associated to T

with radius r is the intersection of all the balls with center at the vertices of T and radius r, i.e.

Br (T ) =
⋂
p∈T

Br (p)

Definition 2.2.2: Let T = {p1, ..., pk} ⊂ Rd be a finite set with at least d+ 1 affinely independent points. Denote
by Sr (pi) the boundary of each Br (pi), then the ball-polytope Φ = Br (T ) has on its border bd (Φ) d types of points:

• 0-singular points, points p ∈bdΦ such that p ∈
⋂
i∈I Sr (pi), for some |I| = d

• k−singular points, which are the points p ∈ bdΦ such that p ∈
⋂
i∈I Sr (pi) for some |I| =d − k, with

k = 1, ..., d− 2.

• Regular points, which are the points p ∈ bdΦ such that p is in only one boundary sphere of a ball.
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Basically, Definition 2.2.2 says that the intersection of at least d, (d− 1)-spheres is a point which is a 0−sphere,
the intersection of k, (d− 1)-spheres is a (d− k − 1)-dimensional surface on a (d− k − 1)-sphere, because there are
tangent spheres and the regular points are in a surface of a (d− 1)-sphere by definition. So this induces a face
lattice L (Φ) by inclusion in the following way:

Definition 2.2.3: Let Φ be as in Definition 2.2.1 and let GΦ be the induced graph of Φ defined by vertices V (GΦ)

that are the 0−singular points of Φ and whose edges correspond to arcs of circles that contain only 1-singular points
and connect pairs of points of V (GΦ).

Definition 2.2.4: Let Φ = Bh (T ) be such that for every subset T ′ ( T , we have Φ 6= Bh (T ′). A supporting
sphere Sl is a sphere of dimension l, where 0 ≤ l ≤ n− 1, which can be obtained as the intersection of some of the
spheres in {Sh (x)}x∈T . We will say that Φ is standard if for any supporting sphere Sl the intersection Φ ∩ Sl is
spherical convex, this is for every two points x, y ∈ Φ∩Sl there is a geodesic joining x and y totally contained in Φ∩Sl.

Definition 2.2.5: A Reuleaux polytope is a convex set Φ ⊂ Rn satisfying the following properties:

1. There is a set of points T ⊂ Rn with Φ =
⋂
x∈T Bh (x) = Bh (T ),

2. Φ is a standard ball polytope, and

3. the set of 0-singular points of bdΦ is T .

A Reuleaux polytope is an spherical convex polytope (satisfying the conditions of an abstract polytope), the faces
of this convex polytope are as follows:

• The empty face is the empty set.

• Each 0-singular point is a 0-face.

• The closed set (this includes the 0-faces) of 1-singular points joining two 0-faces is a 1-face.

• The closed set (this includes the (k − 1)-faces) of k-singular points joining (k − 1)-faces in a spherical convex
(d− k − 1)-dimensional surface on a (d− k − 1)-sphere is a k−face.

• The closed set of regular points joining (d− 2)-faces in a spherical convex (d− 1)- dimensional surface on a
(d− 1)-sphere is a facet.

• Φ is the total face.

In the same way a start analyzing the relation between Reuleaux polytopes, BCW and metric polytopes in the
plane. Reuleaux triangle was created, we may construct others by using different 2-polytopes, or more commonly
called polygons. For example, we can create the regular Reuleaux Pentagon created by the vertices of a regular
pentagon (Figure 2.2.1).

18



Figura 2.2.1

Reuleaux polytopes in R2 are called Reuleaux polygons and all Reuleaux polygons are BCW [11], furthermore, the
vertices of a Reuleaux polygon are vertices of a regular polygon with an odd number of vertices. Now the question
is if metric polygons are related in some way to Reuleaux polygons. What we found was a very strong relation
between metric polygons and Reuleaux polygons.

Lemma 2.2.1: A set of points V induces a Reuleaux polygon if and only if V is the set of vertices of a met-
ric polygon in R2.
Proof: It is enough to prove that every metric polygon in R2 is a polygon (can be not regular) with an odd number
of vertices, because in [11] they prove that a body is a Reuleaux polygon if and only if it is induced by the vertices
of a polygon with an odd number of vertices polygon in such a way that each dual-diagonal is a diameter, which
we have for free by definition of metric polytopes.

Let V = {v1, ..., vn} be ordered by the adjacency in the metric polygon, i.e. vivi+1 is an edge for every i mod n.
Since P is metric, the line l induced by the midpoint of the edge vkvk+1 = v∗1 for some k and v1, is orthogonal
to v∗1 . Note that l leaves v2, ..., vk and vk+1, ..., vn in different open half-spaces Ak and Ak+1 respectively. Let us
notice that v∗k has to contain v1 by the inverse inclusion duality function.

If v∗k is in Ak then v∗k = v1v2, v∗2 = vkvk−1, and so on, then at the end, the edge vb k
2 cvd k

2 e is going to be a
polar edge of either vb k−1

2 c or vd k−1
2 e but this is a contradiction by the metric condition. Then v∗k has to be in

Ak+1.

Since v∗k is in Ak+1, by the inverse inclusion duality function again v∗k−1, ..., v
∗
2 have to be in Ak+1, so Ak+1

has k − 1 edges, and the only way this could happen is when Ak+1 has k − 1 vertices.

Therefore P has to have an odd number of vertices.p

Theorem 2.2.1: Let T be the set of vertices of a metric polygon Ph , then Bh (T ) is a BCW.
Proof: The result follows since we know that the vertices of Ph induce a Reuleaux polygon by Lemma 2.2.1 and
we know that every Reuleaux polygon is a BCW.p

In R3 the things are quite different. In [13] it is proved that if Φ ⊂ R3 is a Reuleaux polyhedron, then GΦ is
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a self-dual graph, where the dual function τ is given by τ (x) = S (x, h) ∩ Φ and τ is also an involution in the
sense that a vertex x belongs to the cell τ (y) if and only if the vertex y belongs to the cell τ (x). So in R3 not
all Reuleaux polyhedron come from a metric polytope, even worse, they do not necessarily comes from a polytope.
In the example in Figure 2.2.2 we can see that GΦ is not the 1-skeleton of a polytope but Φ induces a Reuleaux
polyhedron:

Figure 2.2.2, example from [13]

Figure 2.2.2 it is called the 4-hyper-wheel because its base is a quadrilateral and the parametrization of this figure
could be given in general for a 2n-hyper-wheel such that it is the 1-skeleton of a Reuleaux polyhedron. One
parametrization is: the vertices are in the n-gon with vertices v0, k

(
cos kπn , sin kπ

n , 0
)
, with k = 1, ..., 2n, the other

layer of vertices are v1, k =

(
cos
(
kπ
n + π

2

)
, sin

(
kπ
n + π

2

)
, h

√(
1− (1+cos(π/n))2

4

))
, with k = 1, ..., 2n and h is the

radius of the ball polytope, and the apex is going to be in v =
(

0, 0,
√

3h
2

)
. The edges are going to be formed by

1. v1, jv0, j , with j mod 2n.

2. v1, kv0, j+1 with j mod 2n and k = 1, ..., 2n.

3. vv1, k, with k = 1, ..., 2n.

With this parametrization we can see that GΦ is not the 1-skeleton of a polytope because in the case of Figure
2.2.2, the blue plane and the red are support planes but the edge FH is missing in the graph.

In other words what we are saying is that metric polytopes induce concrete examples of Reuleaux polyhedrons but
they do not say a lot about the whole family of Reuleaux polyhedrons.

Now, is every Reuleaux polyhedron is a BCW? It is natural to think so, since all Reuleaux polygons are BCW, but
this is not true, because if we take a Reuleaux polyhedron created by a ball-polytope of radius h in R3, its diameter
is a little bit larger than h as the following example.

20

D 



We may note that the ball-polytope of the tetrahedra with vertices a, b, c and d and radius 1 is shown in Fig-
ure 2.2.3 has arcs ab, ac, ad, bc, bd and cd. According to [11], the length of every chord from the midpoint of every
arc to the midpoint of its dual edge is

(√
3−

√
2

2

)
≈ 1.02, meanwhile the length of every chord containing a vertex

is 1. See chords d1 and d2 in Figure 2.2.3 which represent these two types of chords. Consider the chord d1 from
the midpoint of arc ab to the midpoint of the arc cd, and the chord d2 which goes from point b to the barycenter
of the face adc of the tetrahedra ball polytope. Then d1 is longer than d2. So Figure 2.2.3 is not a BCW.

Figure 2.2.3. Image extracted from [11] with the author’s consent

Since the length difference between these two types of chords is pretty small and the tetrahedron ball polytope is
“almost” a BCW, the mathematician E. Meissner proposed the very clever idea of “fixing” this figure in order to
make it with constant width, “shaving” a little bit the figure where the chords are larger than one. Loosely speaking,
this shaving consist on leaving intact one of the edges of the Reuleaux tetrahedron and shaving the corresponding
dual edge, for example, if the tetrahedron has vertices a, b, c and d, if the arc ab remain intact, then the dual arc
cd must be shaved until all chords connecting both edges (chords as d1 in Figure 2.2.3) become of length one. After
this shave operation we have what is called the Meissner tetrahedron.

As in [13], we call this “shave” a surgery. This procedure is described in Boltianski and Yaglom’s book [18] using the
tetrahedra ball polytope. Later, Luis Montejano and Edgardo Roldán generalized this procedure to any Reuleaux
polyhedron in R3 [13]. These bodies are called Meissner polyhedron (see Figure 2.2.6)

Definition 2.2.5: A Meissner polyhedron is any BCW that can be obtained from a Reuleaux polyhedron in
R3 by performing surgery over it.
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Figure 2.2.6
In other words, not all the Reuleaux polyhedron are induced by a metric polytope, but all metric polytopes induce a
Reuleaux polyhedron. With a similar procedure to that used by Meissner, it is possible to transform any Reuleaux
polyhedron into a Meissner polyhedron which is a BCW, so if we take any metric polytope, this induce a Reuleaux
polyhedron and then this induce a Meissner polyhedron. So metric polytopes, Reuleaux polyhedron and BCW are
related to each other.

One of the main goals of this work was to try to make a similar algorithm to the one defined by Montejano and
Roldán in R3 (see [13]), to create families of BCW in spaces of dimension larger than 3, because it is no such thing
in the literature. Actually, in general, we have not found examples of BCW even in R4 besides the ones that are in [2].

To understand what we wish to generalize, we now describe some ideas in the steps required to perform a surgery
in R3.

First, we have to choose a Reuleaux polyhedron. Once we have chosen a Reuleaux polyhedron Φ in R3, we
have to find a function g : F1 (Φ) → {0, 1} such that g (A) 6= g (A∗) for every edge A. This is important because
the distance between dual edges are the ones greater than h, so the surgery is applied in one edge of each pair of
dual edges, i.e. either all the edges with number 1 or all with number 0 will be modified.

In Figure 2.2.6 we can see all the pairs of dual edges painted by different colors and an example of how g could be
defined. There are two different types of Meissner polyhedron induced by this example, the Meissner polyhedron
would have a 2-face with all its edges shaved, remaining intact all edges with label 0, and if we perform surgery
over 0, the Meissner polyhedra would have a vertex with all its edges shaved and one 2-face unchanged.
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Figure 2.2.6

The next step is the surgery itself to make the width constant in every direction, for more details on how do
the surgery see [18, 13]. After the surgery we obtain a Meissner polyhedron.

Once we analyze step by step the surgery in R3, we realize that for any Φ =
⋂
x∈X Bh (x) Reuleaux polyhedron

in R4, we would want to perform surgery either one edge and leave unchanged the complete dual 2-face (this is
the 2-face together with edges) or shave a complete 2-face and leave unchanged the dual edge. This is because the
distance between the center of mass of a 2-face to its dual edge is a little bit larger than h, furthermore, the distance
between the midpoint of every edge and the midpoint of every edge of its dual 2-face is larger than h [2]. So in order
to perform surgery as in [13] the function g defined above has to be now as follows: g : F \ {F4, F3 F0, ∅} → {0, 1}
such that:

1. If C ≤ A, then g (C) = g (A).

2. If f (A) = A∗, g (A) 6= g (A∗) .

The existence of this function g is strictly necessary because either all the faces in g−1 (1) get surgery or all the
faces in g−1 (0) do, otherwise the surgery can not be performed as in [13].

We decided to work first with Reuleaux polytopes induced by metric polytopes, because they are easier to un-
derstand and we have concrete examples of metric polytopes as we saw in Section 1.5. Unfortunately, after several
attempts to define a function g over these Reuleaux polyhedrons in R4, we proved that such function does not exist,
even worse, for any n-dimensional Reuleaux polyhedron such function does not exist for n > 3. Therefore, surgery
in the sense of [13] can not be performed in any dimension larger than 3 to any Reuleaux polyhedron as we proved
in the following theorem:

Theorem 2.2.2: Let Φ be a Reuleaux polyhedron in Rn, with n > 3. There is not a function

g : F (Φ) \ {Fn, Fn−1, F0, ∅} → {0, 1}

such that for every pair of faces C,A ∈ F (Φ):

1. If C ≤ A, then g (C) = g (A).
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2. g (A) 6= g (A∗) .

Proof: Suppose there is a function g with the required properties. If e is an edge of Φ, then e∗ ∈ Fn−2, so g |F2

is onto. There is at least one vertex v in Φ with edges e1 and h1 such that g (e1) = 0 and g (h1) = 1 because Φ is
strongly connected.

Let us take two flags Ψ0, Ψ1 with the vertex v and e1 as an edge of Ψ0 and h1 as an edge of Ψ1, i.e.

Ψ0 = {∅, v, e1, e2, ..., en−1, Φ}

Ψ1 = {∅, v, h1, h2, ..., hn−1, Φ}

By the first property of g, g (ei) = 0 and g (hi) = 1 for every i = 1, ..., n− 2 .

The fourth axiom says there has to be a sequence from Ψ0 to Ψ1, changing just one face at the time. Let us say
that e1 = c1 → c2 → ...→ cm = h1 is the path of vertices to go from e1 into h1, then there has to be an i such that
g (ci) = 0 but g (ci+1) = 1. Let Ψ′0 be the last flag with ci as an edge and Ψ′1 the first flag with ci+1 as an edge in
the sequence from Ψ0 to Ψ1, so Ψ′0 is followed by Ψ′1 in this sequence.

Let s be the 2-face of Ψ′0, therefore s is also the 2 − face of Ψ′1 because there has to be just one different face
between Ψ′0 and Ψ′1, which are already the edges. So ci and ci+1 are edges of s. But this yields a contradiction
because neither g (s) = 0 is possible because g (ci+1) = 1 nor g (s) = 1 is possible because g (ci) = 0. p

Corollary 2.2.1: There are no Meissner polyhedra in Rd for d ≥ 4 in the sense of [13].
Proof: Let Φ be a Reuleaux polyhedron. For every face f1 ∈ F (Φ)\{Fn, Fn−1, F0, ∅}, the chord from any center
for mass of any sub-faces of f1 to any center for mass of any sub-faces of f∗1 is larger than one. So we have to
perform surgery either all the faces of f1 or all the faces of f∗1 .

Then we need a function g as in Theorem 2.2.2 in order to perform surgery. But this function does not exist,
so there are no Meissner polyhedra in Rd for d ≥ 4.p

An interesting question would be whether there is another construction of BCW using Reuleaux polytopes. There
is a new idea that could work to create families of BCW using surgery, but this time shaving the ball polytope
equally and avoiding the function g, or to define a symmetric transformation over Reuleaux polytopes to get BCW.
Deborah Oliveros and Isaac Arelio are currently working on this idea.

In Figure 2.2.8 [8] we can find this idea applied to Reuleaux tetrahedra by performing a Minkowski sum (mid-
dle) of the two types of Meissner’s tetrahedra described before, the MV which is the one with rounded edges
meeting in a vertex (left) and the other one with MF with rounded edges surrounding a face (right).

24

D 

□ 



Fig. 2.2.8. Extracted from [8]

In order to prove that the new figure in [8] is a BCW, let us remember some properties of the Minkowski sum.

Definition 2.2.6: The Minkowski sum of S and T is the set

S + T = {a+ b | a ∈ S, b ∈ T}

Some times it is useful to think of the Minkowski sum S + T as the union of all translated copies of T by vectors
of S. That is:

S + T =
⋃
a∈S

(a+ T )

The proves of the following statements can be found in ([11], p.20, p70)

Lemma 2.2.2: For given sets R, S, T ⊂ Rn and a real number λ ∈ R we have

• S + T = T + S,

• (S + T ) +R = S + (T +R),

• λ (S + T ) = λS + λT .

Theorem 2.2.3: A convex set Φ has constant width if and only if Φ + (−Φ) is a ball.

Corollary 2.2.2: The Minkowski sum of two BCW Φ and Ψ is a BCW

Proof: It is enough to prove that Ψ + Φ− (Ψ + Φ) is a sphere by Theorem 2.2.3. But this is true just applying the
properties of Minkowski sum in Lemma 2.2.3.

Ψ + Φ− (Ψ + Φ) = Ψ + Φ−Ψ− Φ

= Ψ−Ψ + Φ− Φ

= B1 +B2 applying Theorem 2.2.3 to Φ and Ψ

Since B1 and B2 are balls, and the sum of two balls is a ball, the result is proved.p

Although this new body is a BCW, there are several questions around this construction. How do we know that
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the Minkowski sum of MV + MF is actually a figure with symmetrical the symmetrical properties that we want?
This is not proved mathematically in [8], they just present a picture that looks similar because they were more
interested in a create a computational construction to solve some visualizations problems than to prove geometrical
properties. However, we think this fact is not very hard to prove it.

An other question would be, what do we have to sum in order to have a similar construction in higher dimen-
sions? In R4 there are not Meissner polyhedra as we said in Corollary 2.2.1.
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Chapter 3

The Frequent Large Distance Problem

Usually, one of the hardest and most interesting type of problems in mathematics involves finding maximums and
minimums, for example, in graph theory, there is a huge number of people working on extremal graph theory,
where the main goal is to find the largest graph that avoids some subgraph as a substructure. In discrete geometry,
finding Helly’s numbers, which are the minimum numbers required to have a Helly type theorem, is sometimes
hard but very interesting. Another example is to find algorithms that minimize the running time and maximize the
information about a problem. In numeric analysis, minimizing the error of the numeric methods is very important
to approximate solutions to problems (that do not have analytic solutions).

Another problem of this type in discrete geometry consists on finding the maximum number of distances in the
Euclidean space: Let V be a set of n ≥ 2 points in Euclidean d-space. The diameter of V (diamV ) is the largest
distance between points of V (note that this definition has been given in Definition 1.5.3 for polytopes). We denote
by e (V ) the number of pairs {x, y} ⊂ V such that ‖x− y‖ = diamV . Now, what arrangement of points V attains
the maximum number e (V )? We denote e (d, n) = max e (V ), with |Vn| = n, and we call V an extremal configu-
ration if e (V ) = e (d, n) for n > d . This problem was formulated originally by Erdős, and solved by Hopf and
Pannwitz [6] in dimension 2. In dimension 3 a similar problem was proposed by Vázsonyi and solved by Grünbaum
[3], Heppes [5] and Straszewicz [15], see Section 3.2.

The main goal of this chapter is to verify if the set of vertices of a metric polytope can be an extremal config-
uration in any dimension, because if not, a some interesting questions would be, what is the maximum number of
diameters that a metric polytope with n vertices can have? Does every metric polytope with n vertices reach this
number?

3.1 Extremal configuration in R2

You might be wondering, how is this problem related with polytopes? In R the problem is trivial, because e (1, n) = 1

for all n ≥ 2, but in R2 something very interesting happens, e (2, n) = n [14]. Furthermore, there is a characteri-
zation of extremal configurations in [9] that states the following: V ⊂ R2 is an extremal configuration if and only
if vertices (Φ) ⊆ V ⊆ bdΦ for some Reuleaux polygon Φ. This is amazing! We can check if V is an extremal
configuration (at least in R2) with all the characterizations we have talked about in the previous chapter about
Reuleaux polytopes.

Particularly, the vertices of a metric polygon yield an extremal configuration because they induce a Reuleaux poly-
hedron. So we have a family of extremal configurations with an odd number of points in R2.

In Figure 3.1.1 we have a heptagon as an example of a metric polygon together with its diagonals.
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Fig 3.1.1

In general, since every metric polygon with n vertices has n diagonals, the following interesting result holds and it
is equivalent to Corollary 1.5.1 for dimension 2.

Theorem 3.1.1: Two points v1 and v2 define a diameter of a metric polygon P in R2 if and only if both are
vertices of P and v1 ∈ v∗2 .

Proof: By Lemma 1.5.4 we know that the diameters are only induced by vertices of P, if there is a diameter v1v2

such that v1 /∈ v∗2 then we would have at least n+ 1 diameters because there are n dual-diagonals in P, which are
diameters by definition plus v1v2 which is not a dual diagonal. But this is not possible since n is the maximum
number of diameters in R2 for a set of n points.p

Corollary 3.1.1 Every set of vertices V of a metric polygon P in R2 is an extremal configuration.

Proof: This follows from Lemma 2.1.1 and the fact that a set V is an extremal configuration if and only if there
is Reuleaux polygon such that V (Φ) ⊆ V ⊆ bdΦ .

In summary, the vertices of every metric polygon from an extremal configuration. In other words, metric polygons
are solutions in R2. Let us jump to the next dimension!

3.2 Extremal configuration in R3

As we mentioned before, in R3 B. Grünbaum [3], A. Heppes [5] and S. Straszewicz [15] proved independently the
Vázsonyi conjecture that claimed that e (3, n) = 2n−2 (see [14] and the references therein). This equality is known
as the GHS-theorem.

Even though we know the exact number of diameters that a set of points has to have to be an extremal configuration
in R3, the extremal configurations are mostly uncharted territory. Very few families of extremal configurations have
been described in the literature. In [9] some constructions of extremal configurations using ball-polytopes are given.

A very interesting example of extremal configurations in R3 is the set of vertices of a 3-dimensional k-prismoidal
with n-gon base (described in Chapter 1, see Figure 3.1.2, is described in [2] by T. Bisztrizcky and D. Oliveros), for
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any k and any odd n. Because of this, a metric polytope reaches the bound and this creates an infinite extremal
configurations’ family.

k levels

n− agon

Figure 3.1.2

Lemma 3.2.1: In any metric polyhedron Ph, the number of edges is equal to the number of dual-diagonals.

Proof: Let v1 and v2 vertices of Ph and m the number of dual-diagonals in Ph. Observe that v1 ∈ v∗2 if and only
if v2 ∈ v∗1 , then v1 has to be exactly in the same number of facets than the number of vertices that are in v∗2 . So if
v∗2 has k vertices, then v1 has to be in exactly in k facets.

Since GPh
is a planar graph, the only way that v1 could be in k facets is when δ (v1) = k, each of the edges

splitting a facet, then the degree of v1 is k. But this exactly the number of dual-diagonals coming from v1 to v∗2 .
Let us denote diag (v) be the number of dual-diagonals coming from v, then∑

v∈V (GPh)

diag (v) =
∑

v∈V (GPh)

δ (v)

⇒ 2m = 2 |E (GPh
)|

Therefore Ph has the same number of edges and dual-diagonals.p

Theorem 3.2.1: The set of vertices of any metric polyhedron Ph is an extremal configuration.

Proof: Since Ph is self dual, then |V (GPh
)| = |F0 (Ph)| = |F2 (Ph)|, so by Euler’s formula we have that:

|F0 (Ph)|+ |F2 (Ph)| = 2 + |F1 (Ph)|

2 |F0 (Ph)| = 2 + |F (Ph)|

|F1 (Ph)| = 2 |F0 (Ph)| − 2

|E (GPh
)| = 2 |V (GPh

)| − 2
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by Lemma 3.2.1 there are 2 |V (GPh
)| − 2 dual-diagonals and since all of them are diameter then Ph is an extremal

configuration.p

Corollary 3.2.1: Two points v1 and v2 are diameters of a metric polyhedron P if and only if both are vertices of
P and v1 ∈ v∗2 .

Proof: Since the number of dual-diagonals is 2 |V (GPh
)| − 2 for every metric polyhedron, then all the diameters

are dual-diagonals.p

Theorem 3.2.1 is amazing because it give us hope to find extremal configurations via metric polytopes in higher
dimensions. If metric polytopes worked fine in R2 and R3 for this problem, we can think that they might help us
in R4 at least.

3.3 Extremal configurations in higher dimensions

So, what happens in R4?, Do the vertices of metric polytopes still work as extremal configurations?

In [16], Swanepoel defined an structured called Lenz configurations, which is the solution to this problem for
any dimension d ≥ 4 if the set of points is sufficiently large.

Definition 3.3.1: We define a Lenz configuration in dimension d to be any translate of a finite subset of
⋃p
i=1 Ci

or Σ ∪
⋃p
i=1 Ci, where:

• For d ≥ 4, d even, let p = d/2 and consider any orthogonal decomposition Rd = V1 ⊕ ...⊕ Vp, where each Vi
is 2-dimensional. In each Vi, let Ci be the circle with centre the origin o and radius ri such that r2

i + r2
j = 1

for all distinct i and j.

• For d ≥ 5 , d odd, let p = bd/2c and consider any orthogonal decomposition Rd = V1 ⊕ ... ⊕ Vp, where V1 is
a 3-dimensional space and each Vi is 2-dimensional, for i ≥ 2. Let Σ be the sphere in V1 with centre o and
radius r1 and for each i = 1, ..., p, let Ci be the circle with centre o and radius ri, such that r2

i + r2
j = 1 for

all distinct i,j.

Theorem 3.3.1: For each d ≥ 4 there exists N (d) such that all extremal sets of n ≥ N (d) points are Lenz
configurations.

The proof of this theorem is based on typical techniques in extremal graphs, hyper-graphs theory and some stability
results for sets that are close to extremal.

For now, everything looks fine. Vertices of metric polytopes can be in a Lenz configuration without any prob-
lem, but how do the faces have to look like? In order to partially answer this question, Swanepoel also gives the
exact number of diameters for higher dimensions for sufficiently large n.

Corollary 3.3.1: For sufficiently large n:

• e (4, n) =

t2 (n) +
⌈
n
2

⌉
+ 1 if n 6≡ 3 (mod 4);

t2 (n) +
⌈
n
2

⌉
if n ≡ 3 (mod 4),
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• e (5, n) = t2 (n) + n,

• e (d, n) = tp (n) + p for even d ≥ 6, where p = d/2,

• e (d, n) = tp (n) + dn/pe+ p− 1 for odd d ≥ 7, where p = bd/2c.

Where tp (n) = p−1
2p n

2 −O (1) is the Turán’s number.

After working with Lenz configurations for a while we concluded that for a sufficiently large n, there are no metric
d-polytopes in Rd whose n vertices yield Lenz extremal configurations, for all d ≥ 4. Let us suppose again without
loss of generality that the diameter is one. The details about Lenz configuration in each case are in [16].

Definition 3.3.2: Let V be a set in Lenz configuration, we call a Ci-diameter any diameter among vertices
in Ci.

Theorem 3.3.2: Besides the 4-tetrahedron, there are no 4-polytopes in R4 whose vertices conform a Lenz extremal
configuration.

Proof: We begin by noticing that the 4-tetrahedron allows a metric embedding in a Lenz configuration with the
following parametrization:

• Let r1 = 1√
3
and C1 =

{
(x, y, 0, 0) ∈ R4 : x2 + y2 = 1

3

}
, then we can embed and equilateral triangle in C1

with coordinates
(

1√
3

cos
(
π
3

)
, 1√

3
sin
(
π
3

)
, 0, 0

)
,
(

1√
3

cos
(

2π
3

)
, 1√

3
sin
(

2π
3

)
, 0, 0

)
and

(
1√
3
, 0, 0, 0

)
. Since

the edges of the equilateral triangle are length one, these edges are diameters.

• Let r2 =
√

2
3 and C2 =

{
(0, 0, x, y) ∈ R4 : x2 + y2 = 2

3

}
. Notice that the distance between the points(

0, 0,
√

6
12 ,

√
10
4

)
and

(
0, 0,

√
2
3 , 0

)
is one and both vertices are in C2.

Then the points
(

1√
3

cos
(
π
3

)
, 1√

3
sin
(
π
3

)
, 0, 0

)
,
(

1√
3

cos
(

2π
3

)
, 1√

3
sin
(

2π
3

)
, 0, 0

)
,
(

1√
3
, 0, 0, 0

)
,
(

0, 0,
√

6
12 ,

√
10
4

)
and

(
0, 0,

√
2
3 , 0

)
are in Lenz extremal configuration. Furthermore the convex hull of these five points yields a

metrical embedding of the tetrahedron p

Now assume n ≥ 5, by Theorem 3.3.1 and Corollary 3.3.1 we know that N (4) = 6, and e (4, n) = t2 (n) +
⌈
n
2

⌉
+ 1.

We proceed by contradiction. Suppose there is a metric polytope P with n ≥ 6 vertices in a Lenz extremal config-
uration. Let C1 and C2 be the orthogonal circles of Lenz configuration where all the vertices lie. Again, according
to Corollary 1, the vertices have to be split as

⌈
n
2

⌉
vertices in say C1 and

⌊
n
2

⌋
in C2.

Since C1 and C2 are orthogonal and r2
1 + r2

2 = 1, all the edges with one end in C1 and other end in C2 are at
distance one, therefore are diameters, furthermore we have t2 of them, some of which may be dual diameters or not
.Thus the

⌈
n
2

⌉
+ 1 missing diameters must be Ci−diameters for i = {1, 2}.

1. Given a vertex v ∈ Ci, for some i = 1, 2, v∗ must contain vertices in both circles C1 and C2. We observe that
if every vertex of v∗ lies only in Cj for some j ∈ {1, 2} since are coplanar, v∗ is not a facet (3-dimensional).

2. At most two vertices vi and wi in each Ci, i =1, 2 satisfy that v∗i and w∗i has three or more vertices in
Ci+1( mod 2). Assume v∗i contains three or more vertices in Ci+1( mod 2) for some i = 1, 2. Then v∗ contains
(since all are coplanar), all the vertices in Ci+1( mod 2). Since every 2-face in P is contained in exactly two
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facets then only one w∗i contains such a 2-face. Note that vi and wi may or may not exist, but if one of them
does, the corresponding wi as well.

Let
{
u1,1, u1,2, ..., u1,dn

2 e−s, v2, w2

}
vertices of C2, where r, s ∈ {0, 2} depending upon vi existing (s = r = 2) or

not (s = r = 0) for i ∈ {1, 2}.

3. Every u∗i,j have one edge in Ci (that is contained in two dual-diagonals in Ci). Sin u∗i,j contains at most two
vertices in Ci+1( mod 2), then by 1) and by the fact that u∗i,j is a 3-facet, then u∗i,j have at least two vertices
in Ci.

4. By 1) and 2), if vi and wi exist then then v∗i and w∗i have at least one edge in Ci.

Then, by 3) and 4) the graph consisting of dual-diagonals in Ci (Ci-diagonals) contains at least a path of length⌈
n
2

⌉
in C1 and a path of length

⌊
n
2

⌋
in C2 thus the total number of Ci−diagonals will be n − 2. Then this Lenz

configuration have more diagonals than the maximum number of possible diagonals in any configuration of points
n ≥ 7, yielding a contradiction.p

Theorem 3.3.3: For a sufficiently large n. There are no metric 5−polytopes in R5 whose n vertices are in a Lenz
extremal configuration.
Proof: We proceed by contradiction. Suppose there is a metric 5-polytope P for a sufficiently large n. Recall that
all Lenz extremal configurations is a translation of Σ ∪ C2. Furthermore, it is known that there are two types of
Lenz extremal configuration in R5, see ([16], p16).

The first type of Lenz extremal configuration is obtained by taking n1 := bn/2c + 1 or dn/2e + 1 vertices in Σ,
with n1 ≥ 4, n1 6= 5, the remainder of the vertices in C2, and only one C2-diameter e = {x, y} with end points in C2.

Then we will show that P is not a self-dual polytope; in particular we will show that every vertex v in C2 different
from x or y its dual facet v∗ is not fully dimensional. Let v ∈ C2, v /∈ {x, y} observe that if w is a vertex v∗

such that w ∈ C2 then e1 = {v, w} is a dual-diagonal, with e1 6= e which is a contradiction to the unicity of e.
Then there are no C2−diagonal containing v and then all vertices of v∗ lie in Σ yielding a contradiction since every
polytope with vertices in Σ is at most 3-dimensional, instead of 4-dimensional.

Then, we will show the following claim:

Claim 1: For every v ∈ Σ, v∗ has one edge in Σ and the 2-face generated by all the vertices in C2.

In order to prove such a claim we will first show that v∗ has one edge in Σ and the 2-face generated by al the
vertices in C2.

As before, for each vertex v ∈ Σ, v∗ most have vertices in Σ and in C2 in order to be 4-dimensional. We will
observe that there are exactly two vertices in v∗ ∩Σ, and at least three vertices in v∗ ∩C2. Furthermore, v has two
Σ-diameters because:

• If v does not have any Σ-diameter, then v∗ does not have vertices in Σ, yielding a contradiction,

• if v has one Σ-diameter, then v∗ is at most a 3-dimensional face, yielding a contradiction, and

• if v has more than two Σ-diameter, there is a vertex v1 ∈ Σ with at least one Σ-diameters because there are
only n1 Σ-diameters. This yields a contradiction because v∗1 would be at most a 3-dimensional face.
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Notice that if v∗ contains three or more vertices in C2 (since all are coplanar), then v∗ contains all the vertices in C2.

Since each vertex v ∈ Σ has two Σ-diameters, v∗ has at least three vertices in C2 other wise v∗ would be at most a
3-dimensional face. Then all the vertices in C2 are in the dual faces of all vertices in Σ. Let us call fC2

the 2-face
with vertices in C2.

Therefore f∗C2
, that is a 2-face, has to have all the vertices in Σ by the inverse inclusion property, which im-

plies that all the vertices in Σ are in a 2-face, i.e. all the vertices in Σ are in a circumference. Then all the vertices
of P are in two orthogonal circumferences, yielding a contradiction because P is at most a metric 4-polytopep

Theorem 3.3.4: There are not metric d-polytopes in Rd for even d ≥ 6 with their vertices in extremal config-
uration.

Proof: In [16] is proved that N (d) = d+1, so e (d, n) is exactly as in Corollary 3.1.3 for all n ≥ d+1. We proceed
by contradiction.

Suppose there is a metric polytope P with its n vertices in extremal configuration, so n ≥ d + 1, and let C1,
C2, ..., Cd/2 be the orthogonal circumferences of the Lenz configuration where all the vertices are.

Since e (d, n) can only be reached by dividing the n points as equally as possible between the d/2 circles, and
ensuring that there is going to be a Ci-diameter for each i (see [16]), there is going to be at least one vertex v in
some Ci without a Ci-diameter, so v∗ is going to be at most a d− 2 dimensional face, yielding a contradiction.p

Theorem 3.3.5: For a sufficiently large n, there are no metric d-polytopes in Rd for odd d ≥ 7 with n vertices in
extremal configuration.

Proof: Suppose there is a metric polytope P with n vertices in extremal configuration, p :=
⌊
d
2

⌋
, and let C1,

C2, ..., Cp−1 be the orthogonal circumferences and Σ the 2-sphere of Lenz configuration where all the vertices lay one .

The bound e (d, n) can only be reached satisfying all of the following conditions:

• Dividing the n ≥ d+ 1 points as equally as possible between the p− 1 circles and Σ.

• Ensuring that there is going to be a Ci-diameter for each i (see [16]).

• The number of vertices in Σ is
⌈
n
p

⌉
.

• There is going to be
⌈
n
p

⌉
− 1 Σ−diagonals.

Then, there are going to be at least three vertices in at least one Ci, so there is a vertex v in Ci without a Ci-
diameter, then v∗ is going to be at most a d− 2 dimensional face, contradiction.p

Finally, as a corollary, Theorem 3.3.2, Theorem 3.3.3, Theorem 3.3.4 and Theorem 3.3.5 we have the following
theorem:

Theorem 3.3.2: For a sufficiently large n, there are not metric d-polytopes in Rd for d ≥ 4 with their n vertices
in extremal configuration.
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Chapter 4

Conclusions and future work

As a general conclusion I can say that metric polytopes work fine in lower dimensions for several problems in discrete
geometry, but for higher dimensions they do not solve the problems studied in this thesis. Nevertheless, a lot of
questions and a conjecture can be stated about them.

For example, is the second condition about the metric polytopes definition (Definition 1.5.2) really necessary?
For several examples I did in R2 it seems that the first condition implies the second one. So at least in R2, I am
pretty sure that:

Conjecture 4.1: Every geometric self-dual polytope in R2 where all its dual-diagonals have the same length is
a metric polytope.

In Chapter 2, metric polytopes helped us a lot to understand the structure of the BCW, even when there is a better
structure to work with (Reuleaux Polytopes). Despite of that, metric polytopes gave us the main idea on how
the surgery in higher dimensions was not going to work, so they were very useful in that sense. This taught me a
lesson, always try to do specific (the easiest) cases of a huge problem, they could give you a clue about how to solve it.

Of course there is a lot of work to do in order to perform a proper surgery in a Reuleaux polytope to create BCW.
The idea exposed in Chapter 2 about performing symmetrical surgery could be a good approach in order to solve
the problem in higher dimensions.

In Chapter 3, we proved that in Rd there are no metric d-polytopes that attain the maximum number of diameters.
However, an interesting question could be, what is the maximum number of diameters of n points such that these
points induce a metric d-polytope?

Another interesting question arises from points in an extremal configurations. Can these points induce a Reuleaux
polytope? i.e. if we take the ball-polytope of a set of points in extremal configuration, is this a Reuleaux polytope?
Remember that no all the Reuleaux polytopes are induced by a metric polytope necessarily (see Figure 2.2.2), so
we think that extremal configuration in higher dimensions might induce Reuleaux polytopes, because each point
would be on the boundary. What we do not know is if all the points are 0-singular.

In a few words I could say that this thesis taught me a lot about discrete geometry. It showed me a lot of techniques
and strategies that could work in order to solve these kind of problems. Although the original ideas we had about
metric polytopes did not work, they gave me a panoramic view of the problems in the area.
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