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In human affairs of danger and delicacy successful conclusion is sharply
limited by hurry. So often men trip by being in a rush. If one were

properly to perform a difficult and subtle act, he should first inspect
the end to be achieved and then, once he had accepted the end as
desirable, he should forget it completely and concentrate solely on
the means. By this method he would not be moved to false action

by anxiety or hurry or fear. Very few people learn this.

John Steinbeck
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Abstract

In this thesis we study the impact that the geometry and topology of nano-electrodes have over the
structure of the electrical double layer, through the analytical solution of the linearized Poisson-
Boltzmann equation, with the Stern restriction (LPBS). Both, solid and hollow electrodes are con-
sidered to be in contact with a symmetric electrolyte. Here, we refer to the solid electrodes as
solid nano-electrodes and to hollow electrodes, as nano-pores. In particular, the LPBS is solved for
different electrical charges and geometrical and/or topological parameters of the nano-electrodes, in
contact with an electrolyte at different concentrations and temperatures. The differential capacitance
of such system is calculated as well. While the case of large electrodes is also studied here, the emphasis
is given to the nano-scale. Three different geometries of the nano-electrodes are considered: planar,
cylindrical and spherical, whereas for the nano-pores we consider slits, cylindrical, and spherical shells.
The three nano-pores geometries considered are topologically different among them, and with respect
to the solid nano-electrodes. The three solid nano-electrodes are, of course, topologically equivalent.
The charge fluid is an electrolyte modeled as punctual ions, in an uniform solvent, which is charac-
terized by a dielectric constant. The ions’ size is only considered on the interaction with electrodes
(Stern correction). The dielectric constants of the nano-electrodes and nano-pores are assumed to be
the same dielectric constant as that of the solvent, to avoid the image potential.

The linear Poisson-Boltzmann (LPB) equation is solved and the analytical solution of the distribu-
tion of co-ions and counter-ions (density profile), the mean electrostatic potential, the induced surface
charge density, and the differential capacitance are obtained, and calculated, for different parameters
of the systems. The LPB density profiles of the distinct nano-electrodes are compared against those
of the hypernetted-chain/mean spherical integral equations formalism, to determine the range of their
validity. Then, with the LPB, the behavior of the electrical double layer (EDL) is studied for different
values of the nano-electrodes’ radius and surface charge, and the molar concentration and temperature
of the electrolyte. The electric potential, the induced surface charge density in the fluid, ionic concen-
tration profiles as well the capacitance of these systems are calculated. An important dependence of
these quantities with the geometry and/or topology of the nano-electrodes is found.

viii



Contents

Acknowledgments vii

Abstract viii

1 Introduction 1
1.1 Electric double layer capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Historical background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2.1 Activated Carbon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2.2 Carbon nanotubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2.3 Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Electrolytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3.1 Aqueous electrolytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3.2 Organic electrolytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3.3 Ionic liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.4 Problems to overcome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Theoretical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Electric double layer capacitor principles . . . . . . . . . . . . . . . . . . . . . . 5
1.2.2 Electric double layer theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2.2.1 Helmholtz model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2.2 Gouy-Chapman model . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2.3 Stern model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.2.4 First principles method . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.2.5 Asymptotic method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2.6 Integral equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2.7 Monte Carlo methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2.2.8 Geometrical topology . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 The single electrical double layer for solid electrodes 15
2.1 The single electrical double layer of a solid planar electrode . . . . . . . . . . . . . . . 15

2.1.1 The linear PB equation for the single electrical double layer of a solid planar
electrode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.1.2 The non-linear PB equation for the single electrical double layer of a solid planar
electrode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 The single electrical double layer of a solid cylindrical electrode . . . . . . . . . . . . . 19
2.3 The single electrical double layer of a solid spherical electrode . . . . . . . . . . . . . . 21
2.4 The co-ion and counter-ion distribution functions of the single electrical double layer for

different solid electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

ix



2.4.1 The concentration profiles for the linear and non-linear PBS of a solid planar
electrode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.2 The concentration profiles for different solid electrode geometries . . . . . . . . 26

3 The electrical double layer for nano-pore electrodes 38
3.1 The electrical double layer of two parallel plates electrodes (slit-pore) . . . . . . . . . . 38

3.1.1 The electrostatics of a slit-pore in an electrolyte . . . . . . . . . . . . . . . . . . 39
3.1.2 The analytical solution of the LPBS for the electrical double layer of two parallel

plates electrodes (slit-pore) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 The electrical double layer of a cylindrical nano-pore electrode . . . . . . . . . . . . . . 45

3.2.1 The electrostatics of the cylindrical nano-pore . . . . . . . . . . . . . . . . . . . 46
3.2.2 The analytical solution of the LPBS for the electrical double layer of a cylindrical

nano-pore electrode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 The electrical double layer of a spherical nano-pore electrode . . . . . . . . . . . . . . 52

3.3.1 The electrostatics of a spherical pore . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.2 The analytical solution of the LPBS for the electrical double layer of a spherical

nano-pore electrode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4 Topological dependence of the co-ion and counter-ion distribution functions on nano-

pores’ electrodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Mean electrostatic potential, induced charge density and differential capacitance 67
4.1 The single electric double layer for solid electrodes . . . . . . . . . . . . . . . . . . . . 67

4.1.1 The mean electrostatic potentials of solid electrodes . . . . . . . . . . . . . . . 67
4.1.1.1 The linear and non-linear mean electrostatic potentials of a solid planar

electrode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.1.1.2 The mean electrostatic potentials of different geometries . . . . . . . . 69

4.1.2 The induced surface charge density of solid electrodes . . . . . . . . . . . . . . 76
4.1.2.1 The linear and non-linear induced surface charge density of a solid

planar electrode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.1.2.2 The induced surface charge density of different solid electrodes . . . . 78

4.1.3 The differential capacitance of solid electrodes . . . . . . . . . . . . . . . . . . . 84
4.2 The electrical double layer for different nano-pore electrodes geometries . . . . . . . . 87

4.2.1 The mean electrostatic potentials of nano-pore electrodes . . . . . . . . . . . . 88
4.2.2 The induced surface charge densities of nano-pore electrodes . . . . . . . . . . . 95
4.2.3 The differential capacitance of nano-pore electrodes . . . . . . . . . . . . . . . . 102

5 Conclusions 105
5.1 Interval of validity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.2 Optimal topology and geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.3 Future works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

A The single electrical double layer for different solid electrodes 110
A.1 The single electrical double layer of a solid planar electrode . . . . . . . . . . . . . . . 110

A.1.1 The solution of the linearized Poisson-Boltzmann equation . . . . . . . . . . . . 111
A.1.2 The solution of the non-linearized Poisson-Boltzmann equation . . . . . . . . . 114

A.2 The solution of the linearized Poisson-Boltzmann equation for a solid cylindrical electrode119
A.3 The solution of the linearized Poisson-Boltzmann equation for a solid spherical electrode 127

B Computer programs: Mathematica 131

x



Chapter 1

Introduction

In the development of big renewable energy projects, supercapacitors (SCs) play a relevant role. Due
to the intermittence of renewable energies, such as solar and wind energy, the electric grid cannot rely
on them as a base load. However, they are an excellent choice to keep up with the demand of the grid
in peak hours, i.e., to work as a backup energy source. Hence, highly efficient energy storage systems
are needed to stock and deliver this energy whenever the grid needs it. There are three main energy
storage systems used worldwide: batteries, capacitors, and supercapacitors. Because of the technical
requirements that the grid needs, that is to quickly deliver high quantities of energy in a rather short
time, SCs are the best way to keep up with such demand. Other applications of SCs are in hybrid
cars. They are used to boost the capabilities of batteries or fuel cells while accelerating, as well as in
regenerating braking. Hence, it is seen that SCs are widely used in applications where high specific
power and energy are needed, and that work with fluctuating loads, such as those used in construction
cranes, and electric, aero, and medical industries. Supercapacitors, also referred as electrochemical
capacitors (ECs), are divided into three main categories (electric double layer capacitors, pseudoca-
pacitors, and hybrid capacitors) depending on the passive components in which they store energy.
Electric double layer capacitors (EDLCs) store energy in the surface of an electrode-electrolyte inter-
face. Whereas, pseudocapacitors store energy by a reversible redox reaction at its surface. Meanwhile,
hybrid capacitors store energy by a combination of the two methods.

In this thesis the first results of the linear Poisson-Boltzmann equation with the Stern restriction
(LPBS) [1, 2] is obtained for hollow electrodes of different topologies, and the results of the LPBS
for solid electrodes is solved as well. The analytical results of the density profiles, and the differential
capacitance are obtained from the solutions, among other electric parameters. The thesis is divided
into five chapters. In this chapter a review of EDLCs is provided, from a quick historical background to
a revision of the components used in EDLCs, and a brief compilation of the most well known theories
that are used to describe the structure of the electrical double layer is given. In Chapters 2 and 3
the analytical solutions of the LPBS for solid and hollow electrodes are solved, respectively, and their
density profiles are shown. Meanwhile, in Chapter 4 the mean electrostatic potential, induced surface
charge density, and the differential capacitance are shown while different electrode’s and electrolyte’s
parameters are varied. Lastly, the thesis conclusions are found in Chapter 5. Furthermore, two
appendixes are included, Appendix A details the complete analytical solutions of the LPBS for solid
electrodes, and in Appendix B the ‘Mathematica’ computer code used is added.
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Electric double layer capacitors Chapter 1: Introduction

1.1 Electric double layer capacitors

A brief history of SCs is presented ahead, as well as their different components. EDLCs as other
energy storage mechanism are composed of two electrodes separated by an electrolyte, these two main
components will be the focus of our review. Furthermore, a short inspection of the current problems
that SCs face is presented.

1.1.1 Historical background

The first patent known of a capacitor based on a high surface area dates back to 1957 by Becker
when employed by General Electric [3, 4]. Thereupon, the first commercial EDLC was made and
patented by the Standard Oil of Ohio Research Center (SOHIO) in 1961. However, due to a lack
of sales, SOHIO licensed their technology to the Nippon Electric Company (NEC) in 1971 [5]. NEC
developed and marketed the first commercially successful EDLC, which they named “super capacitor”.
Meanwhile, the Matsushita Electric Industry Co. (Panasonic) in 1978 created their own “gold capac-
ito” [6]. From the 1980s to present time several other companies have started to produce their own
electrochemical capacitors, naming them differently. Hence, after the commercial success of different
EDLCs their names have started to be used as synonyms for EDLCs, such as SCs, gold capacitors,
and ultra-capacitors, among others. Nowadays, the most well known EDLCs companies are Cellergy,
Ioxus, Maxwell Technologies, Murata Manufacturing, Nanoramic Technologies, and NEC Tokin, among
others.

1.1.2 Electrodes

The principle of operation of EDLCs is based on the storage and distribution of electrolyte’s ions at
an electrode. Hence, the amount of energy stored in the electrodes is directly proportional to the
surface area of the electrode. Carbon has been utilized as a high surface area electrode material,
with a specific surface area (SSA) of up to 2500 m2g−1, ever since the development of electrochemical
capacitors began [3, 4]. Not only do carbon materials have a high surface area but they are also widely
available at a low cost, and there are plenty of production technologies established for the fabrication
of electrodes. The most common carbon-based electrodes are activated carbon, carbon nanotubes, and
graphene electrodes, which are presented ahead.

1.1.2.1 Activated Carbon

Activated carbons (ACs) are the most widely used materials for electrodes in SCs because of their high
SSA, excellent chemical and thermal stability, rather good electric properties and low price [7]. ACs
are produced by either thermal or chemical activation from carbon rich organic precursor materials
(e.g. wood, coal, nutshell, etc.) [8, 9, 10]. Physical (thermal) activation is performed at high
temperatures under an oxidizing atmosphere (e.g. CO2, H2O), while chemical activation is done on
amorphous carbons which were previously mixed with chemicals such as alkalis, carbonates chlorides
or acids (e.g.KOH, K2CO3) [9]. These activation processes result on the formation of a porous
network in the bulk of the carbon; namely micropores (< 2 nm in size), mesopores (2 nm–50 nm),
and macropores (> 50 nm). Longer activation time or higher temperatures tend to larger mean pore
size [11]. Depending on the activation process and the carbon precursor, the physicochemical properties
widely vary, Yan et al. [7] list the physicochemical properties of different carbon precursors in their work.
High SSA up to 3000 m2g−1 are achieved with a relatively small specific capacitance < 10 µFcm−2,
which indicates that not all pores are effective in charge accumulation [10]. Hence, despite the fact
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Chapter 1: Introduction Electric double layer capacitors

that the SSA is an important parameter for the performance of EDLCs, the pores size distribution,
pore shape and structure influence the electrochemical performance to a great extent.

1.1.2.2 Carbon nanotubes

Carbon nanotubes (CNTS) have been widely study due to their unique open tubular network struc-
tures, and remarkable mechanical and electrical properties. Their open ended tunnel is beneficial for
electrolyte percolation, facilitating the ion diffusion [12]. CNTs are produced by the catalytic decom-
position of hydrocarbons [9]. They are divided into single-walled carbon nanotubes (SWNTs) and
multi-walled carbon nanotubes (MWNTs), which are formed by different synthesis parameters. CNTs,
unlike other carbon based electrodes, have mesopores that are interconnected, which allow for a con-
tinuous charge distribution that utilizes nearly all the accessible surface area [8]. Even though CNTs
have a small SSA (< 600 m2g−1), their specific capacitance can reach up to 50.4 µFcm−2 [7]. This
gives the idea that if one were able to surpass this small SSA, the capacitance would follow. Coromina
et al. [13] proved this right, they chemically activated their CNT with KOH and reached SSA of up to
3000 m2g−1, achieving a specific capacitance of 172 Fg−1.

1.1.2.3 Graphene

A remarkable electrode material is the monolayer of graphite, graphene, which can be prepared by
several methods, such as mechanical exfoliation, exfoliation of graphite in organic solvents, epitax-
ial growth and chemical vapour deposition, and the exfoliation and reduction of chemically oxidized
graphite [12]. A single layer graphene sheet is basically a two dimensional hexagonal lattice of sp2

carbon atoms covalently bonded along two plane directions [14]. Graphene has outstanding proper-
ties, i.e., lightweight, high electrical and thermal conductivity, highly malleable surface charge, tena-
cious mechanical strength and mechanical stability [15]. These translates into a high theoretical SSA,
2630 m2g−1 [16, 17]. If the entire SSA of graphene would be fully utilized, inhibiting the agglomeration
of graphene sheets, it would achieve specific capacitance up to 550 Fg−1 [18, 8, 7]. Particularly, Chen
et al. [19] achieved an specific capacitance of 348 Fg−1 for a partially reduced graphene oxide in an
aqueous electrolyte.

1.1.3 Electrolytes

The performance of a SC depends not only on the electrode material but also on the selection of the
electrolyte. The breakdown voltage of the electrolyte determines the cell voltage; and both energy
and power density, which depend on the voltage [3]. The ideal electrolyte should have a wide voltage
window, excellent electrochemical stability, high conductivity, high ionic concentration, small solvated
ionic radius, low viscosity, environmental friendliness, low cost, and easy availability [10]. Accordingly,
the ability of the SC to store charge relies on the accessibility of the ions, from the electrolyte, to
the porous surface area of the electrode. Hence, the ion and pore size must be optimal, so both
electrode and electrolyte must be picked simultaneously to enhance the capacitance [3]. Generally,
the electrolytes are divided into three categories: aqueous, organic, and ionic electrolytes, they are
presented and discussed below.

1.1.3.1 Aqueous electrolytes

The most commonly used aqueous electrolytes are KOH, H2SO4, and Na2SO4, for alkaline, acidic,
and neutral solutions [7, 20]. Aqueous electrolytes present some advantages such as low cost, non-
flammability, low viscosity, and excellent safety. Furthermore, they have smaller solvated ions, higher

3



Theoretical models Chapter 1: Introduction

ionic concentration, and higher ionic conductivity (up to 1 S cm−1) than organic electrolytes [21, 7, 9].
Therefore, the aqueous electrolytes achieve a superior capacitance than organic electrolytes due to the
higher concentration and smaller ionic radius. However, they have a limited voltage window up to 1.0 V
due to the thermodynamic decomposition of water at 1.299 V, which ends up negatively impacting the
energy and power density. In addition, water corrosivity must be taken into account [20].

1.1.3.2 Organic electrolytes

Organic electrolytes consist in a conductive salt, e.g. tetraethylammonium tetrafluotoborate (com-
monly refer to TEABF4), dissolved in the acetonitrile (ACN) or in propylene carbonate (PC) sol-
vent [20, 9]. The advantage of organic electrolytes against aqueous electrolytes is the wider voltage
window, as high as 2.5 V–3.0 V, giving rise to energy densities 6–9 times higher [7]. However, these
advantages do not come freely since they are more expensive; and have a smaller specific capacitance,
and a lower conductivity than aqueous electrolytes [20]. Moreover, there are also safety concerns due
to their flammability and toxicity. In the European Union, ACN is declared highly flammable and
harmful by inhalation, and in Japan its use is prohibited due to its toxicity and low flash point [20],
whereas PC is far less toxic and poorly inflammable, but it has a higher viscosity, and a lower dielectric
constant than ACN [22, 20]. Hence, when choosing one or the other a comprehensive analysis must be
made regarding its pros and cons, when applying to EDLC, to avoid unnecessary risks while keeping
a good performance.

1.1.3.3 Ionic liquids

Ionic liquids (ILs) are also known as room temperature molten salts, with melting temperatures at
or below room temperature [7]. They are usually made up of organic bulky cations and inorganic or
organic charged localized anions, such combination contributes to a low melting point [23, 20]. ILs have
attracted much attention because of their non-flammability, negligible vapour pressure, high chemical
and thermal stability, and hydrophobicity [21]. Furthermore ILs have an electrochemical stability
window of up to 4 V–6 V. Unfortunately, ILs present some drawbacks, such as high viscosity, low ionic
conductivity and high costs [20]. Nonetheless, due to their wider voltage window and non-flammability
it is expected that many future SCs electrolytes will be ILs or IL-based.

1.1.4 Problems to overcome

Since the use and application of EDLCs is relatively new there are some issues that need to be fixed,
and probably others that still remain a mystery. These problems are presented in both theory and
experiments, as well as in the commercial applications. Vatamanu and Bedrov [24] made a brief
review on the molecular simulations of electrode-electrolyte interfaces, electric double layer structure,
differential capacitance, and the nano-confined room temperature ionic liquids (RTILs); how they work
and in which cases there is room for improvement. Whereas, Zheng et al. [25] investigated the cycling
stability and aging of a famous commercial SC (Neescap, 2.7 V/10 F) under various currents and
voltages. They found that the capacitance decreases with the increase of the current, and the pore
structures and composition diminishes. To minimize the losses of aging components and the over- and
underestimation of the electrical properties of EDLCs, works on these topics are essential. Furthermore,
works in the pairing of electrodes and electrolytes, with a sustainability approach, needs to be more
extensive and universal for comparison issues.
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1.2 Theoretical models

In this section, the general principles of capacitors, the EDL theory, and of EDLCs are presented.
Afterwards, some of the most well known theories that try to explain the charge storage mechanism
in the EDL are outlined.

1.2.1 Electric double layer capacitor principles

EDLCs or SCs are devices capable of achieving higher power rates than conventional batteries. Despite
the fact that EDLCs can provide hundred to thousand times higher power rates in the same volume,
they are unavailable to store as much energy as batteries, between three to 30 times lower. Hence,
EDLCs are suitable for applications in which power burst are needed but high energy storage capacities
are not.

Figure 1.1: Ragone plot. Shows the available energy of an energy storage device for fixed power.
Characteristic times correspond to lines with unity slopes. Data taken from Pandolfo et al [26].

The power output of EDLCs is lower than that of electrolytic capacitors, and the specific energy
is several orders of magnitude higher. EDLCs are of interest in various electric applications because
they build up the gap between electrolytic capacitors and batteries. This is graphically observed
in the Ragone plot of Fig. 1.1. Fuel cells, batteries, electrochemical capacitors, and capacitors are
located in the power-energy plane. Internal losses and/or leakages confine the reach of the regions [27].
Furthermore, the characteristic or charge/discharge time, which is the energy to power ratio (E = P t),
is shown in the diagonal lines.

Not only can EDLCs be charged in a few seconds, but they can also be discharged in the same
time. This is of great use for energy recovery systems, such as regenerative braking. In Table 1.1 a
comparison between an electrolytic capacitor, an EDLC, and a battery is made.

One of the biggest advantages of EDLCs is their life cycle. They can withstand millions of cycles due
to their storage mechanism, that does not involve faradaic reactions. EDLCs store charge physically at
the electrode-electrolyte interaction on the electric double layer. However, the main disadvantage they
affront is their low operational voltage, that needs to stay low to avoid the chemical decomposition of
electrolytes, specially for aqueous-based electrolytes. In Table 1.2 a comparison is made of the main
differences between batteries and EDLCs.
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Characteristics Capacitor EDLC Battery

Specific energy (Whkg−1) < 0.1 1-10 10-100
Specific power (Wkg−1) � 10000 500-10000 < 1000
Discharge time 10−6 to 10−3 s s to min 0.3-3 h
Charge time 10−6 to 10−3 s s to min 0.3-3 h
Coulombic efficiency (%) ∼ 100 85-98 70-85
Cycle-life (cycles) Infinite > 500000 ∼ 1000

Table 1.1: Comparison of different electrochemical energy storage technologies. Taken from Pandolfo
and Hollenkamp [28].

Property Battery EDLC

Storage mechanism Chemical Physical
Power limitation Reaction kinetics, mass

transport
Electrolytic conductivity

Energy storage High (bulk) Limited (surface area)
Charge rate Kinetically limited High, same as discharge

rate
Cycle life limitations Mechanically stability,

chemical reversibility
Side reactions

Table 1.2: Comparison of properties of batteries and EDLCs. Taken from Miller and Simon [29].

An EDLC cell is made up of two electrodes with a separator in-between them, which is soaked in
an electrolyte to prevent the electric contact between the electrodes. Moreover, the separator should
allow the ionic charge transfer, while having a high electric resistance, high ionic conductivity, and a
low thickness in order to achieve the highest performance.

As mentioned before, depending on the storage mechanism, three ECs are distinguished: EDLCs,
pseudocapacitors and hybrid capacitors. The components of EDLCs are discussed in detail in Sec-
tion 1.1. Meanwhile, pseudocapacitors are based on conducting polymers or metal oxide based elec-
trodes, and sometimes in functionalized porous carbons, that combine electrostatic and pseudocapac-
itive charge storage mechanisms, that relies on fast redox reactions occurring on the electrode surface
but not in the bulk like batteries. However, as in batteries, the redox reactions lead to mechanical
changes shrinking and swelling the electrodes, giving rise to mechanical instability. Therefore, lower
cycle lives are a major disadvantage of pseudocapacitors. Meanwhile, hybrid capacitors are conformed
of an EDLC and a pseudocapacitor electrode, leading to an electric performance that is in between
both electrochemical capacitors.

ECs are charged by applying a potential difference (voltage) across the electrodes, which causes
positive and negative charges to migrate toward the surface of opposite polarity. When charged, an EC
(as any capacitor) connected in a circuit will act as a voltage source for a short time. Its capacitance,
C, which is measured in farads, F, is the ratio of electric charge on each electrode, Q, to the potential
difference between them, ∆V , so that

C =
Q

∆V
(1.1)

Furthermore, since at a macroscopically level ECs work as regular capacitors. Their capacitance, C,
also depends on the dielectric constant of the electrolyte, εr, the effective thickness of the double layer,
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d (distance between charges), and the accessible surface area, A,

C =
εr ε0A

d
(1.2)

where ε0 is the dielectric constant of vacuum.
The energy stored in an ECs is,

E =
1

2
C V 2 (1.3)

where V is the cell voltage. As seen in Eq. (1.3), when the voltage and/or the capacitance is increased,
the energy density follows as well.

The maximum instantaneous power, Pmax, that an EC is able to deliver, depends on the voltage
and on the equivalent series resistance (ESR),

Pmax =
V 2

4ESR
(1.4)

The electric current of the EDLC is
I = C

dV

dt
(1.5)

Figure 1.2: Constant current discharge EC cell test. Taken from González et al. [9].

The main characteristics of EDLCs are obtained from constant current tests [9]. From the capaci-
tance calculation (integral of the area during the discharge), the ESR, and the equivalent distributed
resistance (EDR), which represents the ESR and the resistance in the pores are derived. They are
calculated with the notation of Fig. 1.2 as,

C =
Idis tdis
U1 − U2

(1.6)

ESR =
U4

Idis
(1.7)

EDR =
U3

Idis
(1.8)

where the subscript dis means discharge. These electric properties and others are mainly determined
by electrode materials, electrolytes, separators and current collectors.
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1.2.2 Electric double layer theories

The interaction between a solid electrolyte and a liquid electrolyte in any surface is governed by
a phenomenon called the electrical double layer. “The electrical double layer consist of a layer of
electrons, a layer of adsorbed ions, and a diffuse double layer consisting of an ionic atmosphere in
which ions of one sign are in defect. This atmosphere of abnormal concentrations of ions falls off
rapidly as one recedes from the surface, the half-thickness of the charge density being seldom over 100
Å and usually much less. Finally, there may exist at the interface a thin layer of neutral molecules
which, whether they are orientated or not, exert an influence on the thermodynamics properties of the
interface (Grahame, 1947)[30].” Therefore, the double layer is the result of an uneven distribution of
negative and positive ions or charges that are submerged in-between two layers.

Throughout the years there have been many models that have tried to numerically explain the be-
havior of the double layer. Beginning with the pioneer works of Helmholtz [31], and Gouy-Chapman [32,
33], to well founded statistical mechanical theories, such as the first principles method (FPM) and the
asymptotic method (AM). These are defined and described below.

1.2.2.1 Helmholtz model

The first model of the electric double layer was proposed by Helmholtz [31] in 1879. He considered
the ordering of positive and negative charges in a rigid fashion on both sides of the interface, with no
interactions stretching any more into the solution. He also assumed that the charge of the electrode is
neutralized by the charge of the electrolyte at an atomic distance d from the plane, so the dependence
of the mean electrostatic potential and the surface distance is considered to be linear. The model is
similar to that of a two-plate conventional electrolytic capacitor. Unfortunately, even though this is the
simplest model, two principal defects are found. Firstly, the interactions that occur further from the
electrode are neglected. Secondly, it does not take into consideration the dependence of the electrolyte
concentration. Therefore, this model catastrophically fails to explain the electrode-electrolyte interface.

1.2.2.2 Gouy-Chapman model

In contrast, the model of the diffuse layer or the Gouy[32] and Chapman[33] model, which was de-
veloped independently, considered a double layer model in which the applied potential and electrolyte
concentration was taken into account. The model originates from the assumption that the charge of
the electrode is not rigid and that the co-ions and counter-ions in the double layer are subject to an
electric and thermal field. As a result, the counter-ions tend to accumulate on the surface and once its
distribution is restored, the co-ions re-establish the homogeneity of the charge. This model is based
on the Maxwell-Boltzmann distribution and on the Poisson law, hence it is commonly referred as the
Poisson-Boltzmann model. However, the model fails since it does not consider the size of the ions in
its formulation, regarding them as point charges, and hence, allowing them to approach excessively to
the surface of the electrodes, at such degree that it is not physically possible, because of their specific
size.

1.2.2.3 Stern model

Stern [34] proposed a hybrid model, combining the Helmholtz model and the Gouy-Chapman model.
He took into consideration the ions size by recognizing two regions of ions distributions. A rigid
one, close to the electrode (also known as the compact layer of Helmholtz or the inner Helmholtz
plane (IHP)); and a diffusively spread one throughout the concentration (called the diffuse layer or
the outer Helmholtz plane (OHP)). Therefore, the capacitance at an electrode-electrolyte interface in
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the electrical double layer, Cdl, is regarded as a two component capacitance, the compact double layer
capacitance, CH , and the diffuse double layer capacitance, Cdiff . Hence, the conjugate of the overall
double-layer capacitance is the sum of the conjugate components

1

Cdl
=

1

CH
+

1

Cdiff
(1.9)

Figure 1.3: EDL models, (a) Helmholtz model, (b) Gouy-Chapman model, and (c) Stern model. Taken
from González et al. [9].

In Fig. 1.3 the models explained above are illustrated, where Ψ represents the potential, and Ψ0 is
the electrode potential. As we discuss later the Gouy-Chapman model, with the Stern correction is a
good model for some specific systems conditions.

1.2.2.4 First principles method

In the construction of statistical mechanical theories for the electrical double layer at a charged, planar
interface of infinite extension, two methods, based on the well established integral equations approach,
are commonly used. Both are based on generalizations of existing electrolyte theories [35, 36].

The first principles methods consists of the following steps:

(a) The system study is defined as a fluid formed by N charged particles, composed by n different
species, immersed in a solvent of dielectric constant ε. So they are next to a hard, charged wall
of infinite length, that is regarded as an external field.

(b) The interaction potential of the system UN is composed as

UN =

N∑
i<j

Uij +

N∑
i=1

Ui (1.10)

where Uij is the interaction potential between particles i and j and Ui is the interaction potential
between particle i and the external field.

(c) Now, following one by one all the steps employed in the derivation of a given ionic solution theory,
but applying the new potential UN , an electrical double layer theory is obtained.
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(d) Finally, the potential Ui is almost always taken as

Ui = −4π e zi σ

ε
x+A (1.11)

where e is the electronic charge, zi is the valence of ion i, σ is the charge density on the wall,
x is the perpendicular distance from the ion to the wall and A is an arbitrary constant which
depends on the choice of the zero potential.

1.2.2.5 Asymptotic method

The other method used in the derivation of the electrical double layer equations is the asymptotic
method, which consists of the following steps [35]:

(a) The system of study is thought as a fluid formed by N small, charged particles, of n different
ions species, next to a large spherical particle, which is uniformly charged on its surface. Such
that the N + 1 particles are immersed in a solvent of dielectric constant ε.

(b) The interaction potential is

UN =

N+1∑
i<j

Uij (1.12)

where Uij is the interaction potential between particles i and j

(c) Now, this electric potential UN is no different than the existing in an ionic solution. Hence, any of
the ionic solution theories can be used to study this system. Although, if the sphere is sufficiently
large, in principle it should be seen by the ions as a planar wall. Therefore, by taking the limit
of an infinite radius and zero concentration for one of the species in a given ionic solution theory,
one can obtain an electrical double layer.

1.2.2.6 Integral equations

The Poisson-Boltzmann equation (PBE) for inhomogeneous charged fluids is a charge balance. Quite
generally, in the soft condensed matter physics, different balance equations are solved to obtain the
structure of the charged fluid (electrolyte), next to an external field of a given geometry. In this thesis we
will solve the linear Poisson-Boltzmann equation, for a point ion electrolyte which is next to electrodes
of different topologies and geometries. To test the validity of our results we will compare them with
published integral equation solutions of the restricted primitive model (RPM) for an electrolyte, where
the ionic size is considered [37, 38]. Sometimes we will also compare our results with existing Monte
Carlo computer experiments.

In the RPM the particles are taken to be charged, hard spheres, with different charges. A general-
ization of this model is the primitive model (PM), where different ionic sizes are considered, and such
that one of the species is much larger than the other two, in order to model a macroions dispersion at
finite concentration [39, 40, 41, 42].

One way of calculating the structure of the ionic distribution is through the multicomponent
Ornstein-Zernike (OZ) equation. The multi-component Ornstein-Zernike (OZ) equations for a ho-
mogeneous fluid of n+ 1 species are

hij(r12
) = cij(r12) +

n+1∑
l=1

ρl

∫
V
hil(r13) cjl(r23) dr3 ,

for i, j = 1, 2, . . . , n+ 1

(1.13)
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where, ρl is the number density of species l, while, hij(r12) ≡ gij(r12) − 1 is the total correlation
function, and cij(r12), is the direct correlation function, both for particles 1 and 2, of species i and j,
with position vectors r1 and r2, respectively. And, gij(r12) is the pair correlation function, also referred
to as the radial distribution function (RDF), which gives the probability density of finding a particle
2, of species j, at the distance r12, from the central particle 1, of species i, · 3 · r12 = r2 − r1. The
OZ equation is a probability balance conservation condition, which also guaranties a constant chemical
potential in the whole system [43]. To solve Eq. (1.13), closure relations for the direct correlation
functions, cij(r12) and cjl(r23), are needed. These functions are basically approximations for a quasi-
particle, in the context of many-body theory [44]. Among others, two different closure approximations
can be employed for cij(r12), i.e, the hypernetted-chain (HNC),

cij(r12) = hij(r12) + β uij(r12)− ln(gij(r12)), (1.14)

and the mean spherical approximation (MSA),

cij(r12) = −β uij(r12). (1.15)

In particular a mixture of these two closures has been successfully used in the past [45, 46, 36], i.e.,
with the HNC approximation in the first right hand side term of Eq. (1.13), for |r12| > aij, and the
MSA in the convolution integral. In such case Eq. (1.13) is called the HNC/MSA equation. The MSA
is defined as follows, hij(r12) = −1, for |r12| < aij, and cij(r12) = −β uij(r12), |r12| > aij, where
aij ≡ (ai + aj)/2, and ai and aj are the diameters of the particles of species i and j, respectively.
In Eqs. (1.14) and (1.15), β ≡ 1/k T , being k the Boltzmann constant and T the absolute temperature.
Meanwhile, uij is the direct electrostatic potential, i.e.,

uij(r) =

{
∞ r < aij
qi qj
ε r r ≥ aij

, with i, j = 1, ..., n+ 1 (1.16)

where r is the particles’ distance. Equation (1.13), together with Eqs. (1.14) and (1.15), are the
HNC/MSA integral equations for a homogeneous fluid. Notice however, that the expression for cjl(r23),
in the convolution of Eq. (1.13), considers also the region of |r12| < aij. we will come back to this point
in a few lines. For a n + 1 species, homogeneous fluid, Eq. (1.13) become (n + 1)2 coupled integral
equations. However, taking into account that hij(r12) = hji(r21

), the total number of equations is
reduced by n(n+ 1)/2, and we end with (n+ 1)(n+ 2)/2 independent, coupled, integral equations.

Now, using the fact that particles and fields are equivalent, it has been shown [35, 47, 48, 36], that
many-body correlations, inhomogeneous fluids equations, can be obtained directly from equations for
homogeneous fluids, by simply considering one of the species in the fluid, at zero concentration, as the
source of the external field. Hence, choosing the species (n + 1), as the source of an external field,
renaming it as γ ≡ n+ 1, and taking ργ → 0, Eq. (1.13) become

hij(r12) = cij(r12) +
n∑
l=1

ρl

∫
V
hil(r13) cjl(r23) dr3 (1.17)

with i, j = 1, 2, . . . , n, γ, and where the summation over the convolution now runs only up to n, and
we have (n + 1)2 − 1 equations. However, considering the symmetry relation hij(r12) = hji(r21), the
total number of equations is reduced by n(n+ 1)/2, and we end with (n+ 1)(n+ 2)/2−1 independent,
coupled, integral equations, of which n(n+ 1)/2 equations, correspond to the bulk, i.e., away from the
external field:
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hij(r12) = cij(r12) +
n∑
l=1

ρl

∫
V
hil(r13) cjl(r23) dr3

for i, j = 1, ..., n

(1.18)

and n equations are for the inhomogeneous part, i.e., for the fluid structure close to the external field:

hγj(r12) = cγj(r12) +
n∑
l=1

ρl

∫
V
hγl(r13)cjl(r23) dr3

for j = 1, ..., n, γ

(1.19)

where it is taken into account that, at infinite dilution of the γ-species, hγγ(r12) = 0. The species γ
can be a particle/electrode of any geometry, such as a planar, cylindrical or spherical electrodes, or a
slit, cylindrical or spherical pores.

If in the bulk equations, Eq. (1.18), the MSA approximation for the direct correlation function,
cij(r21), is used in both the first term of its right hand side, and in the convolution integral, they can
be analytically solved [49, 50, 51]. For this purpose, the complete definition of the MSA is needed, as
defined above. This solution will give analytical expressions for cli(r31).

If cli(r31), inside the integral in Eq. (1.19), is taken to be given by the MSA, for which there is
an analytical solution for charged fluids [51], the HNC/MSA integral equations are obtained for an
homogeneous fluid of n-species. The use of the MSA allows to have analytical kernels in Eq. (1.19). A
detailed account of the derivation of Eq. (1.19) is given in Manzanilla-Granados and Lozada-Cassou [41].

In this thesis we will compare our Poisson-Boltzmann results with this approach. Other approx-
imations and/or combinations for cij(r12), in Eq. (1.18), are of course possible [36]. We will not
discuss them here. For the inhomogeneous equations, Eq. (1.19), the HNC closure is used, for the
cγj(r12), in the first term of its right hand side, but the MSA closure for cjl(r23), in the convolution
integral. Notice that the MSA direct correlation functions, cjl(r23), in the convolution integral of
Eq. (1.19), are obtained from Eq. (1.18), i.e., using, in Eq. (1.18), hij(r12) = −1, for |r12| < aij, and
cij(r12) = −β uij(r12), |r12| > aij. The total (n + 1)2 − 1 equations can be numerically solved with
finite elements numerical methods [52, 53]. We refer to this system of coupled, non-linear integral
equations, Eqs. (1.18) and (1.19), as the HNC/MSA inhomogeneous equations, for n-species next to
an external field, and to Eq. (1.13), together with the HNC and MSA approximations, Eqs. (1.14)
and (1.15), as the HNC/MSA homogeneous equations for (n + 1) species. The homogeneous and in-
homogeneous HNC/MSA equations have been solved in the past for homogeneous and inhomogeneous
RPM [54, 36, 55, 56] and PM [57, 58, 59] electrolyte solutions, with good agreement with computer
simulations, and for inhomogeneous [60, 61], and homogeneous [39, 40] macroions solutions at finite
concentration, as a model for colloidal dispersions.

As pointed out above, using the equivalence between particles and fields, one can readily obtain
integral equations for inhomogeneous fluids from homogeneous fluids equations, by assuming one of the
species to be at infinite dilution, and as the source of the external field. The contrary is also true, one
can derive homogeneous fluids integral equations, from inhomogeneous fluids equations, by assuming
the external field as just another particle of the fluid [35, 47, 48, 62, 36]. Using this second approach to
derive integral equations for an homogeneous colloidal suspension, the HNC/MSA integral equations
for an electrolyte next to a solid electrode or a pore of different geometries can be calculated. In this
thesis we will compare our Poisson-Boltzmann solutions with HNC/MSA results from the literature.
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1.2.2.7 Monte Carlo methods

Monte Carlo (MC) methods are a branch of mathematics concerned with experiments on random
numbers. There are of two types called probabilistic or deterministic, according to whether or not
they are directly concerned with the behaviour and outcome of random processes. The simplest MC
approach, for a probabilistic problem is to observe random numbers, chosen in such a way that they
directly simulate the physical random processes of the original problem, and to infer the desired solution
from the behavior of the random numbers. This artificial data may suit better if it is easier to amass,
or if it lets us vary the statistics to an extent that our phenomenon will not permit [63].

On the other hand, the MC approach to deterministic problems is to exploit the strength of the-
oretical mathematics while one avoids its associated weaknesses, by replacing theory by experiment
whenever the former falters. As an example, we may have a deterministic problem which can be for-
mulated in theoretical language but it cannot be solved by theoretical means. Despite the fact that
the problem has no direct association with random processes, the theory exposes its underlying struc-
ture, we may recognize that this structure or formal expressions also describe some unrelated random
process, and hence it may be solved numerically by MC simulations of this concomitant probabilistic
problem. This technique of solving a given problem by MC simulations of a different problem has
sometimes been called sophisticated MC.

It is worth noting, that MC answers are uncertain because they arise from raw observational data
consisting of random numbers but they can nevertheless be useful if we can manage to make the
uncertainty fairly negligible. Although, the basic procedure of the MC method is the manipulation of
random numbers, they should not be employed prodigally. Each random number is a potential source of
added uncertainty in the final result, and it is useful to scrutinize each component of the MC experiment
to see whether that part can or cannot be replaced by an exact theoretical analysis. Here, we will not
get into any further details of the Monte Carlo method. However, we point out that this technique
has been successfully tested, since long time ago, for charged homogeneous [64, 65] and inhomogeneous
systems [66, 67, 46], and in particular for spherical [68, 69], and cylindrical [70, 71, 72, 73] electrodes.

Of course, the accuracy of the experiment improves significantly by increasing the statistics, i.e.,
by augmenting the number of particles in the simulation, while assuring the conservation of the charge
electroneutrality of the system.

1.2.2.8 Geometrical topology

In general, the properties of the electrode-electrolyte interface strongly depend on the geometry of the
electrode, alongside other parameters of the system. This strong dependency originates from the ions’
confinement due to the electrodes topology, as an open topology do not constrain the ions as a close one
does. Therefore, all the electric parameters of an electrode-electrolyte interface are influenced by the
electrodes’ topology. In particular, the capacitance strongly depends on the shape and structure of the
electrodes. This is the case of planar, cylindrical and spherical nano-electrodes, which having different
geometries, nevertheless all are topologically equivalent. This is not the case of the slit, cylindrical
and spherical nano-pores, all of which belong to a different topology. Here we will briefly review
some concepts of geometric topology, and give a simple topological classification of the nano-electrodes
studied in this thesis.

Topology (from the Greek τ óπoς, ‘place’, and λóγoς, ‘study’) is a branch of mathematics, with
several subbranches such as differential, algebraic, combinatorial and geometric topologies. Geometric
topology must not be confused with geometry, though the two are akin to each other in many aspects.
Geometry studies the geometric properties of objects, such as lines, planes, circles, cubes, cylinders,
various types of curves and surfaces, and so on. In order to define a geometric property it is needed to
recall the concept of congruence: Two objects A and B are said to be congruent to each other if there
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exists a bijection f : A→ B which preserves all distances in the sense that d(x, y) = d(f(x), f(y)) for
all pairs {x, y} of points in A, where d is used to denote the distance between points. Such a bijection,
when it exists, is called a congruence. Therefore, a geometric property is invariant under congruence,
such as volume, area, and curvature. Meanwhile, in topology the ‘objects’, called ‘topological spaces’,
are classified by means of homeomorphism: Let A, B be subsets of euclidean spaces. A homeomorphism
from A to B is a bijection f : A → B such that both f and its inverse are continuous. When such
f exists, A and B are said to be homeomorphic to each other. Hence, a property or an attribute of
an object, which is invariant under homeomorphisms, is topological in character [74, 75]. It is now
clear that the difference between geometry and topology is wraped up to the comparison of congruence
and homeomorphism. Therefore, two straight lines of lengths 1 and 2 are homeomorphic to each
other but not congruent. Thus these two objects that look distinct for a geometer are the same for
a topologist. Loosely speaking, stretching or shrinking does not affect the topological properties of
the object although they undoubtedly change its geometric properties. However cutting or gluing
(or piercing or cutting, for higher dimensions) some portions of the original object does change its
topological properties, and therefore such object becomes different from the original one.

The word homeomorphism comes from the Greek words óµoιoς (homoios) ‘similar or same’ and
µoρφή (morphē) ‘shape or form’, was introduced to mathematics by Henri Poincaré in 1895. Other
important topological concepts are homotopic (from Greek óµóς, ‘same or similar’ and τ óπoς, ‘place’),
and genus (latin word for origin, birth).

Two functions are said to be homotopic if one can be ‘continuously deformed’ into the other. In
general, homeomorphism is a more basic topological equivalence than homotopy. Genus refers to the
number of holes in a surface, i.e., a sphere or a bowl have no holes (genus 0), a coffee cup or a
doughnut have one hole (genus 1), a pair of spectacles has two holes (genus 2), a pretzel can have
three holes (genus 3), etc. To see the difference between homeomorphism and homotopy is a bit more
mathematically elaborated. However, in general homotopy equivalence is a coarser relationship than
homeomorphism; for example the letters ‘A, R’, ‘D, O’, and ‘P, Q’ are correspondingly homeomorphic,
but the letters ‘A, R, D, O, P, Q’ are all homotopic. All these letters are genus 1, whereas, for example,
the letter ‘B’, is genus 2, and is not homeomorphic, and not homotopic to any of the letters ‘A, R, D,
O, P, Q’.

Thus, in a very simple way, topology is concerned with the properties of a geometric object that are
preserved under continuous deformations, such as stretching, twisting, crumpling and bending, but not
tearing or gluing. A topological space is a set endowed with a structure, called a topology, which allows
defining continuous deformation of subspaces, and, more generally, all kinds of continuity. Euclidean
spaces, and, more generally, metric spaces are examples of a topological space, as any distance or
metric defines a topology. The deformations that are considered in topology are homeomorphisms and
homotopies. A property that is invariant under such deformations is a topological property. Basic
examples of topological properties are: the dimension, which allows distinguishing between a line and
a surface; compactness, which allows distinguishing between a line and a circle; connectedness, which
allows distinguishing a circle from two non-intersecting circles. A topological space X is said to be
disconnected if it is the union of two disjoint non-empty open sets. Otherwise, X is said to be connected.

Hence, with these definitions, clearly, the solid planar, cylindrical and spherical nano-electrodes
are homeomorphic and homotopic, of genus 0, and thus, they are topologically equivalent, whereas the
cylindrical nanopore, the spherical nanopore and the slit, they are all topologically different among
them, and with the solid nano-electrodes. The cylindrical nanopore is genus 1, while the spherical
nanopore is a 3D annulus, i.e., one sphere, within another sphere, such that the shell is a connected
space, and the slit are two disconnected topological spaces.
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Chapter 2

The single electrical double layer for solid
electrodes

The interaction between a solid electrode and a liquid electrolyte in any surface is governed by a
phenomenon called the electrical double layer. The EDL consists of a distribution of positive and
negative charge. Next to the surface of a positively charged electrode, mainly negative charges are
adsorbed, which follows by a diffusely spread distribution of positive and negative charges. This
diffuse layer of ions are predominantly negative ions, until this distribution is symmetrical far enough
from the plane, i.e., after the electrode’s electrical field is canceled by the ionic induced charge. This
EDL generates an electric potential profile, all the way from the electrode surface up to the bulk of
the electrolyte solution. Therefore, the electrical double layer is the result of an uneven distribution
of negative and positive ions or charges that are submerged in-between two layers, i.e., between the
electrode’s surface of a given charge, and the bulk solution of zero charge.

In this chapter the linearized Poisson-Boltzmann equation with the Stern restriction (LPBS) for the
single electrical double layer (SEDL) is solved for solid planar, cylindrical and spherical electrodes, to
obtain the co-ion and counter-ions distribution functions, i.e., the positive and negative ions reduced
concentration profiles (RCP). With the RCP, the mean electrostatic potential, the surface charge
density, and the differential capacitance are obtained for different system’s parameters. In addition,
for the solid planar electrode, the non-linearized Poisson-Boltzmann equation with the Stern restriction
(nLPBS) is solved as well.

2.1 The single electrical double layer of a solid planar electrode

The SEDL for a solid planar electrode is obtained from the Poisson-Boltzmann equation with the
Stern restriction for a plane electrode (p-PBS). Its model is shown in Fig. 2.1. The p-PBS is solved
for a symmetric electrolyte by two different approaches. The linear p-PBS (p-LPBS) and non-linear
p-PBS (p-nLPBS) are solved analytically, assuming a small and any potential, respectively. The
analytical expressions of the mean electrostatic potentials, the charge densities, the co-ion and counter
ion distribution functions, and the capacitances of the p-LPBS and p-nLPBS are found, and numerically
calculated for some system’s parameters.

The Poisson-Boltzmann equation (PB-eq) is given by [2, 76]

∇2ψ(~r ) = −4π ρel(~r )

ε
(2.1)

where ψ is the mean electrostatic potential distribution [statV], ρel is the electric charge concentration
given in CGS units and ε is the dielectric constant of the medium. Equation (2.1) is a charge balance,
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The SEDL of a planar electrode Chapter 2: The SEDL for solid electrodes

i.e., it is the differential form of the Gauss’ law, where the enclosed charge, at the distance ~r away from
the electrode, is given by the Boltzmann distribution of charge, in the canonical statistical mechanics
ensemble, and gives the probability of finding the charge density at an arbitrary point, ~r.

Figure 2.1: Geometry of a solid planar electrode.

2.1.1 The linear PB equation for the single electrical double layer of a solid planar
electrode

The PB-eq can be linearized at different stages. That is, it can be linearized directly from the PB-eq
at any step when solving the equation, or from the solution itself. Here, the linearization is performed
on the formulation of the PB-eq.

By symmetry, the mean electrostatic potential that is formed in the interaction between an elec-
trolyte and a planar electrode depends only on the x axis. From the Stern restriction, the mean
electrostatic potential is divided into two intervals 0 ≤ x < a

2 and x ≥ a
2 , as seen in Fig. 2.1. The

first interval is ruled by the Laplace equation, whereas the second follows the PB-eq. Hence, the mean
electrostatic potential is characterized by,

∇2ψ(~r ) =
d2ψ

dx2
=

{
0 if 0 ≤ x < a

2

−4π ρel(x)
ε if x ≥ a

2

(2.2)

where the electric charge concentration is given by

ρel(x) = z e (n+(x)− n−(x)) (2.3)

while z is the valence of the ion, e is the electron charge, and n+(x) and n−(x) are the charge concen-
tration profiles of co-ions and counter-ions, and they are given by the Maxwell-Boltzmann distribution
by,

n−(x) = n exp(z−eψ(x)/k T )

n+(x) = n exp(−z+eψ(x)/k T )

}
(2.4)

The Maxwell-Boltzmann distribution is used in order to take into account the thermal equilibrium
of co-ions and counter-ions. By the assumption that the average concentration of co-ions and counter-
ions at a given point can be calculated by the mean electrostatic potential at the same point. In order
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to simplify the solution of the mean electrostatic potential, we will delimit our problem to symmetric
electrolytes. Hence, z = z+ = z−, and n [cm−3] = n+ = n− is the ions concentration away from the
surface, i.e., it is the salt bulk concentration, and it is given by n = ρ0 × 10−3 NA, where ρ0 is the
molar concentration of the electrolyte, and NA is the Avogadro number. Thus, Eq. (2.2) becomes

∇2ψ(~r ) =
d2ψ

dx2
=

{
0 if 0 ≤ x < a

2
8π n z e

ε sinh
(
z e
k T ψ(x)

)
if x ≥ a

2

(2.5)

In Eq. (2.5), the symmetry of the system in the y and z coordinates has been considered in the
Laplacian operator. Now, the linearization is performed by assuming that we have a mean electrostatic
potential that is small enough (z eψ(x)/k T � 1), such that Eq. (2.2) is almost equal to,

d2ψ

dx2
=

{
0 if 0 ≤ x < a

2

κ2 ψ(x) if x ≥ a
2

(2.6)

where κ [cm−1] is the inverse Debye length and it is given by

κ =

√
8π ρ0 × 10−3 NA e2 z2

ε k T
(2.7)

The four boundary conditions needed to solve Eq. (2.5) are the same for the different solid electrodes
with slight modifications, i.e.,

• The mean electrostatic potential at the surface of the electrode, x = 0, is equal to ψ0 (ψ(0) = ψ0).

• The mean electrostatic potential at the distance of maximum approach for the ions, x = a
2 , is

equal to ψH (ψ(a2 ) = ψH).

• The mean electrostatic potential at infinity is zero (ψ(∞) = 0).

• From the Gauss’ law we have that at the distance of maximum approach, x = a
2 , the derivative

of the potential against the distance is dψ
dx = −4π σM

ε . Which involves that the induced surface
charge density at such distance is equal to the surface charge density of the electrode (σ(a2 ) = σM).

Solving Eq. (2.6) with these boundary conditions we find that the mean electrostatic potential is given
by,

ψ(x) =

{
ψH

[
1 + κ(a2 − x)

]
if 0 < x ≤ a

2

ψH e
κ (a

2
−x) if x ≥ a

2

(2.8)

where ψH [statV] is given by

ψH =
4π σM
ε κ

(2.9)

Meanwhile, the surface charge density, at the distance x from the coordinates’ origin, σP (x), within
the Poisson-Boltzmann approximation is

σP (x) = −
∫ ∞
x

ρel(t) dt =
ε κ

4π
ψH e

κ (a2−x) (2.10)

Whereas, for the Laplace interval, the induced surface charge density is equal to zero due to the ion’s
size restriction. Hence, using the relation of Eq. (2.9), the induced surface charge density is

σP (x) =

{
0 if 0 ≤ x < a

2

σM e
κ (a

2
−x) if x ≥ a

2

(2.11)
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Notice that σP (x) = ςP +
∫ x
a/2 ρel(t) dt, i.e., the electrode’s surface charge, ςP , plus the induced charge,

in the surrounding electrolyte, from t = a/2 to t = x.
The co-ion and counter-ion distribution functions in the Laplace interval is equal to zero due to

the ion’s size restriction. Whereas, for x ≥ a
2 , the co-ion and counter-ion distribution functions are

obtained from the mean electrostatic potential in Eq. (2.8) by

g+(x) = exp

(
−z eψ(x)

k T

)
(2.12)

g−(x) = exp

(
z eψ(x)

k T

)
(2.13)

Hence, substituting ψ(x) and simplifying, we obtain

g+(x) =

{
0 if 0 ≤ x < a

2

exp
(
− z e
k T ψH e

κ (a
2
−x)
)

if x ≥ a
2

(2.14)

g−(x) =

{
0 if 0 ≤ x < a

2

exp
(
z e
k T ψH e

κ (a
2
−x)
)

if x ≥ a
2

(2.15)

The total differential capacitance is the sum of the differential capacitances in both intervals and
it is given by

CT =

[
4π

ε κ

(
2 +

κ a

2

)]−1
(2.16)

2.1.2 The non-linear PB equation for the single electrical double layer of a solid
planar electrode

Now, the non-linear PB-eq in Eq. (2.2), is directly solved using the boundary conditions of Section 2.1.1.
As derived in Appendix A.1, the solution of the non-linear Laplace and Poisson-Boltzmann equations
are,

ψ(x) =


2κ k T
z e sinh

(
z eψH
2 k T

)
(a2 − x) + ψH if 0 ≤ x ≤ a

2

2 k T
z e ln

((
exp
(
z e
k T

ψH
2

)
+1
)
+
(
exp
(
z e
k T

ψH
2

)
−1
)
eκ(

a
2−x)(

exp
(
z e
k T

ψH
2

)
+1
)
−
(
exp
(
z e
k T

ψH
2

)
−1
)
eκ(

a
2−x)

)
if x ≥ a

2

(2.17)

where κ [cm−1] is the inverse Debye length in Eq. (2.7), and ψH [statV] is given by

ψH =
2 k T

z e
sinh−1

(
2π z e σM
ε κ k T

)
(2.18)

Meanwhile, the surface charge density, at the distance x from the coordinates’ origin, σP (x), within
the Poisson-Boltzmann approximation is

σP (x) = −
∫ ∞
x

ρel(x) dx =
ε κ k T

π z e

(
exp
(
z e
k T ψH

)
− 1
)
eκ(

a
2
−x)(

exp
(
z e
k T

ψH
2

)
+ 1
)2
−
[(

exp
(
z e
k T

ψH
2

)
− 1
)
eκ(

a
2
−x)
]2 (2.19)
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Whereas, for the Laplace interval, the induced surface charge density is equal to zero due to the ion’s
size restriction of the Stern model. Hence, the induced surface charge density is

σP (x) =


0 if 0 ≤ x < a

2

ε κ k T
π z e

(exp( z ek T ψH)−1) eκ(
a
2−x)(

exp
(
z e
k T

ψH
2

)
+1
)2
−
[(

exp
(
z e
k T

ψH
2

)
−1
)
eκ(

a
2−x)

]2 if x ≥ a
2

(2.20)

With the mean electrostatic potential given by Eq. (2.17), in the PB interval, one can easily obtain the
co-ion and counter-ion distribution functions for x ≥ a

2 , given by Eqs. (2.12) and (2.13). Meanwhile,
for the Laplace interval, the co-ion and counter-ion distribution functions are equal to zero due to the
ion’s size restriction. Hence, substituting ψ(x) in Eqs. (2.12) and (2.13) and simplifying, we obtain

g+(x) =


0 if 0 ≤ x < a

2[(
exp
(
z e
k T

ψH
2

)
+1
)
+
(
exp
(
z e
k T

ψH
2

)
−1
)
eκ(

a
2−x)(

exp
(
z e
k T

ψH
2

)
+1
)
−
(
exp
(
z e
k T

ψH
2

)
−1
)
eκ(

a
2−x)

]−2
if x ≥ a

2

(2.21)

g−(x) =


0 if 0 ≤ x < a

2[(
exp
(
z e
k T

ψH
2

)
+1
)
+
(
exp
(
z e
k T

ψH
2

)
−1
)
eκ(

a
2−x)(

exp
(
z e
k T

ψH
2

)
+1
)
−
(
exp
(
z e
k T

ψH
2

)
−1
)
eκ(

a
2−x)

]2
if x ≥ a

2

(2.22)

While, the total differential capacitance is the sum of the differential capacitances in both intervals
and it is given by

CT =

4π

ε κ

(
2 + κ a

2

)√
1 +

(
2π z e σM
ε κ k T

)2
−1 (2.23)

2.2 The single electrical double layer of a solid cylindrical electrode

The Poisson-Boltzmann equation for an electrolyte next to a charged electrode of cylindrical geometry
is given by

∇2ψ(~r ) =
d2ψ

dr2
+

1

r

dψ

dr
=

{
0 if R ≤ r < R+ a

2

−4π ρel(r)
ε if r ≥ R+ a

2

(2.24)

where R is the cylinder radius, and in the Laplacian operator the symmetry of the system has been
taken into account. The model of the solid cylindrical electrode is shown in Fig. 2.2. The upper part of
the right-hand side of Eq. (2.24) corresponds to the Laplace equation, since due to the Stern correction,
for R ≤ r < R+ a

2 , ρel(r) = 0, whereas for r ≥ R+ a
2 , ρel(r) gives the concentration profiles. Hence, the

electrical potential of the solid cylindrical electrode is obtained by solving Eq. (2.24), for ∀ r ≥ R+ a
2 .

In this geometry, the expression for the linearization of Eq. (2.24) is the same as that for the linear
PB-eq of a plane electrode. That is, the electric charge concentration is given by

ρel(r) = −2n e2 z2

k T
ψ(r)

Hence, using the definition of κ given in Eq. (2.7), the linearized version of Eq. (2.24) becomes

∇2ψ(~r ) =
d2ψ

dr2
+

1

r

dψ

dr
=

{
0 if R ≤ r < R+ a

2

κ2 ψ(r) if r ≥ R+ a
2

(2.25)

19



The SEDL of a cylindrical electrode Chapter 2: The SEDL for solid electrodes

Figure 2.2: Geometry of a solid cylindrical electrode.

Now, the boundary conditions needed to solve Eq. (2.25) are equivalent to those of Section 2.1.1
with some slight modifications. That is

• The mean electrostatic potential at the surface of the electrode, r = R, is equal to ψR (ψ(R) =
ψR).

• The mean electrostatic potential at the distance of closest approach for the ions, r = R + a
2 , is

equal to ψH (ψ(R+ a
2 ) = ψH).

• The mean electrostatic potential at infinity is zero (ψ(∞) = 0).

• From the Gauss’ law, at the distance of closest approach (r = R + a
2 ), the derivative of the

potential with respect to the distance is dψ
dr = −4π σM

ε , i.e., the induced surface charge density
at r = R+ a

2 is σ(R+ a
2 ) ≡ σM .

Therefore, as derived in Appendix A.2, when we solve Eq. (2.25) with these boundary conditions
we find that the mean electrostatic potential is,

ψ(r) =


ψH

[
1 + κ

K1(κ(R+a
2 ))

K0(κ(R+a
2 ))

(
R+ a

2 − r
)]

if R ≤ r ≤ R+ a
2

K0(κ r)

K0(κ(R+a
2 ))

ψH if r ≥ R+ a
2

(2.26)

where K0 and K1 are the modified Bessel functions of second kind of zero order and first order, and
ψH [statV] is given by

ψR =
4π σM
ε κ

(
K0

(
κ
(
R+ a

2

))
K1

(
κ
(
R+ a

2

)) +
κ a

2

)
(2.27)

Meanwhile, the surface charge density, at the distance r from the coordinates’ origin, σC(r), within
the Poisson-Boltzmann approximation is

σC(r) = −1

r

∫ ∞
r

ρel(t) t dt =
ε κ

4π

K1(κ r)

K0

(
κ
(
R+ a

2

)) ψH (2.28)

Whereas, for the Laplace interval, the induced surface charge density is equal to zero due to the ion’s
size restriction. Hence, the induced surface charge density is
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σC(r) =

0 if R ≤ r < R+ a
2

ε κ
4π

K1(κ r)

K0(κ(R+a
2 ))

ψH if r ≥ R+ a
2

(2.29)

Notice that σC(r) = ςC +
∫ r
a/2 ρel(t) dt, i.e., the electrode’s surface charge, ςC , plus the induced charge,

in the surrounding electrolyte, from t = R+ a/2 to t = r.
The co-ion and counter-ion distribution functions in the Laplace interval are equal to zero, due to

the ion’s size restriction. However, the co-ion and counter-ion distribution functions for r ≥ R+ a
2 are

given by Eqs. (2.12) and (2.13). Hence, with the mean electrostatic potential given in Eq. (2.26), for
the PB interval, one can easily obtain the co-ion and counter-ion distribution functions

g+(r) =

0 if R ≤ r < R+ a
2

exp

(
− z e
k T

K0(κ r)

K0(κ(R+a
2 ))

ψH

)
if r ≥ R+ a

2

(2.30)

g−(r) =

0 if R ≤ r < R+ a
2

exp

(
z e
k T

K0(κ r)

K0(κ(R+a
2 ))

ψH

)
if r ≥ R+ a

2

(2.31)

In the meantime, the total differential capacitance is the sum of the differential capacitances in
both intervals and it is given by

CT =

[
4π

ε κ

(
2K0

(
κ
(
R+ a

2

))
K1

(
κ
(
R+ a

2

)) +
κ a

2

)]−1
(2.32)

2.3 The single electrical double layer of a solid spherical electrode

Figure 2.3: Geometry of a solid spherical electrode.

The linear Poisson-Boltzmann equation with the Stern correction for an electrode of spherical
geometry (s-LPBS), shown in Fig. 2.3, is obtained from Eq. (2.1), with the Laplacian in spherical
coordinates. Hence, the electric potential profile for an electrolyte around a solid spherical electrode

21



The SEDL of a spherical electrode Chapter 2: The SEDL for solid electrodes

of radius R, because of the symmetry of the system, depends only on the r-distance to the center of
the electrode. From the Stern restriction, the mean electrostatic potential is divided into two intervals,
when R ≤ r < R+ a

2 and when r ≥ R+ a
2 . The first interval is ruled by the Laplace equation, whereas

the second follows the PB-eq. Hence the mean electrostatic potential around a spherical electrode is

∇2ψ(~r ) =
d2ψ

dr2
+

2

r

dψ

dr
=

{
0 if R ≤ r < R+ a

2

−4π ρel(r)
ε if r ≥ R+ a

2

(2.33)

where the electric charge concentration is the same as the c-LPBS. Hence, Eq. (2.33) is rewritten as,

d2ψ

dr2
+

2

r

dψ

dr
=

{
0 if R ≤ r < R+ a

2

κ2 ψ(r) if r ≥ R+ a
2

(2.34)

Our boundary conditions for the spherical electrode are exactly the same as those of the cylindrical
electrode in Section 2.2. Therefore, as derived in Appendix A.3, the solution of Eq. (2.34) with those
boundary conditions yields,

ψ(r) =

ψH
[
1 +

(
κ+ 1

R+a
2

) (
R+ a

2 − r
)]

if R ≤ r ≤ R+ a
2

R+a
2

r ψH e
κ (R+a

2
−r) if r ≥ R+ a

2

(2.35)

where ψH [statV] is given by

ψH =
4π σM
ε

(
R+ a

2

1 + κ
(
R+ a

2

)) (2.36)

Meanwhile, the surface charge density, at the distance r from the coordinates’ origin, σS(r), within the
Poisson-Boltzmann approximation is

σS(r) = − 1

r2

∫ ∞
r

ρel(t) t
2 dt =

εψH
4π

(
R+

a

2

) (1 + κ r)

r2
eκ (R+a

2
−r) (2.37)

Whereas, for the Laplace interval, the induced surface charge density is equal to zero due to the ion’s
size restriction. Hence, the induced surface charge density is

σS(r) =

{
0 if R ≤ r < R+ a

2
εψH
4π

(
R+ a

2

) (1+κ r)
r2

eκ (R+a
2
−r) if r ≥ R+ a

2

(2.38)

Notice that σS(r) = ςS +
∫ r
a/2 ρel(t) dt, i.e., the electrode’s surface charge, ςS, plus the induced charge,

in the surrounding electrolyte, from t = R+ a/2 to t = r.
The co-ion and counter-ion distribution functions in the Laplace interval are equal to zero, due to

the ion’s size restriction. However, the co-ion and counter-ion distribution functions for the Poisson-
Boltzmann interval are given by Eqs. (2.12) and (2.13). Hence, with the mean electrostatic potential
given by Eq. (2.35), in such interval, one can easily obtain the co-ion and counter-ion distribution
functions.

g+(r) =

{
0 if R ≤ r < R+ a

2

exp
(
− z e
k T ψH

R+a
2

r eκ (R+a
2
−r)
)

if r ≥ R+ a
2

(2.39)

g−(r) =

{
0 if R ≤ r < R+ a

2

exp
(
z e
k T ψH

R+a
2

r eκ (R+a
2
−r)
)

if r ≥ R+ a
2

(2.40)
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In the meantime, the total differential capacitance is the sum of the differential capacitances in both
intervals and it is given by

CT =

[
4π

ε

(
2
(
R+ a

2

)
1 + κ

(
R+ a

2

) +
a

2

)]−1
(2.41)

2.4 The co-ion and counter-ion distribution functions of the single
electrical double layer for different solid electrodes

In this section, results of the co-ion and counter-ion reduced concentration distribution functions for
the different solid electrodes geometries are shown and discussed. Firstly, a comparison between the
concentration profiles of the linear and non-linear p-PBS is made. Afterwards, a comparison of the con-
centration profiles obtained with the linearized Poisson-Boltzmann equation, on cylindrical (c-LPBS),
spherical (s-LPBS), and planar (p-LPBS) electrodes is presented, for equal electrode’s electrical field
or surface charge density, which as it will be shown below are not equivalent. Lastly, the dependence
of concentration profiles on the surface charge of the electrode, σM , and the molar concentration,
ρ0, and temperature, T , of the electrolyte, are shown and discussed for the different solid electrode’s
geometries, at various radius.

2.4.1 The concentration profiles for the linear and non-linear PBS of a solid planar
electrode

The co-ion and counter-ion reduced concentration distribution functions of the p-LPBS, and the p-
nLPBS are given by Eqs. (2.14) and (2.15) and Eqs. (2.21) and (2.22), respectively. It is seen from
Eqs. (2.14), (2.15), (2.21) and (2.22) that the co-ion and counter-ion distribution functions depend
on ψH , but from the relations between σM and ψH in Eqs. (2.9) and (2.18) we can directly vary the
values of σM and consequently the value of ψH . In Fig. 2.4, the concentration profiles of the linear and
non-linear p-PBS, and the HNC/MSA integral equations theory of a plane electrode (p-HNC/MSA)
of Lozada-Cassou et al. [46] are shown for different surface charges of the electrode, σM , and for two
molar concentrations of the electrolyte.

From Fig. 2.4 it is seen that in general the p-LPBS equation is a good qualitative approximation of
the p-nLPBS equation, and is even a reasonable quantitative approximation for surface charges up to
0.015 C/m2 and 0.05 C/m2 for molar concentrations of 0.01 M and 0.1 M, respectively. Furthermore,
it is observed that the p-nLPBS case is an excellent approximation of the p-HNC/MSA equations for
all the surface charges, for both molar concentrations, as both values overlap. The approximation of
the LPBS to the nLPBS case becomes better as smaller values of the surface charges of the electrode
are used, regardless of the molar concentration. Whereas, the alikeness of the nLPBS case to the
HNC/MSA equations is constant for all the values used of the surface charge of the electrode.

As expected, it is observed that because the plate is positively charged, in all the cases considered,
the counter-ions adsorb more than the co-ions, i.e., g−(x) > g+(x), ∀x = R+ a/2. This is in complete
accordance with the Gauss’ law, equal charges repeal each other while different ones attract each
other. Furthermore, for higher values of the surface charge, σM , the intensity and thickness of the EDL
increases. There is a clear difference between the LPBS and the nLPBS; the linear case underestimates
the co-ion and overestimates the counter-ion distribution functions for the higher values of the surface
charge. Nonetheless, this overestimation depends highly on the concentrations used, as for a smaller
concentration than 0.001 M, the LPBS is a good approximation of the nLPBS, for surface charges up
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to 0.005 C/m2. Hence, for higher values of the molar concentration, a higher value of the surface charge
can be used without loosing validity between the linear case and the non-linear case.

(a) The concentration profiles for ρ0 = 0.01 M. (b) The concentration profiles for ρ0 = 0.1 M.

Figure 2.4: Co-ion, g+(x), and counter-ion, g−(x), distribution functions of the linear, and non-linear
PBS, and those of the HNC/MSA equations of a plane electrode, for different surface charges at two
molar concentrations. The p-LPB, p-nLPBS, and the p-HNC/MSA cases are represented by a solid
line, a dashed line, and dotted stars, respectively.

(a) The concentration profiles for σM = 0.015 C/m2. (b) The concentration profiles for σM = 0.05 C/m2.

Figure 2.5: The concentration profile functions of the linear and non-linear PBS of a plane electrode for
different molar concentrations, ρ0, at two surface charges of the electrode. The linear and non-linear
cases are represented by a solid and dashed lines, respectively.

Thus, as it is seen in Fig. 2.4, as a function of the electrode’s charge, the p-LPBS equation is a
good qualitative approximation of the p-nLPBS equation, for up to electrodes’ surface charge densities
of 0.015 C/m2 and 0.05 C/m2, at molar concentrations of 0.01 M and 0.1 M. Now, in order to find
the interval of validity of the p-LPBS, in terms of the molar concentrations, these surface charges
are used while varying the concentration of the electrolyte. In Fig. 2.5, we compare the p-LPBS
with the p-nLPBS, for various molar concentrations, and it is found that the linear case is a good
approximation of the non-linear case when the molar concentrations are higher or equal than, 0.01 M
and 0.1 M, for plate’s surface charge densities of 0.015 C/m2 and 0.05 C/m2, respectively. Hence, an
interesting tendency is observed, our linear solution can withstand higher surface charges for higher
molar concentrations, without loosing validity against the non-linear solution of the PBS. Moreover, it
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is seen that the EDL intensity and thickness drastically decrease as the molar concentration increases,
which is the exact opposite as what one would naively expect. However, this can be easily explained
when one remembers the concept of molar concentration. The molar concentration represents the
amount of solutes per litre of solution, so if the molarity increases, the amount of solutes increases as
well. Therefore, if the molar concentration increases there is a higher proportion between counter-ions
and co-ions, which corresponds to a higher competition between them, so the intensity and thickness
of the EDL decrease.

In Fig. 2.4, a comparison between the LPBS, nLPBS, and the HNC/MSA for a plane electrode
is made at molar concentrations of 0.01 M and 0.1 M. It was found that the LPBS case is a good
approximation of the nLPBS case for surface charges up to 0.015 C/m2 and 0.05 C/m2, respectively,
and that concurrently the nLPB case is a good approximation of the HNC/MSA, in such interval.
Furthermore, Lozada-Cassou et al. [46, 77, 73, 78] found that the nLPBS model is a valid model for
the SEDL on a plane electrode up to molar concentrations not higher than 0.5 M. This is because our
nLPBS model despite taking into account the ion’s size at the surface, it does not take it in regards for
the interactions between ions. Therefore, for low molar concentrations, the interaction between ions is
rare and consequently almost negligible. Whereas, for high molar concentrations, beyond 0.5 M, the
interactions between ions are common and cannot be neglected without jeopardizing the validity of
the results.

Figure 2.6: Reduced concentration profiles for a monovalent electrolyte of a planar electrode. The
dots are the MC results of Torrie and Valleau [67] and the broken and solid curves the nLPBS and
HNC/MSA results of Lozada-Cassou et al. [46]. “Reprinted" adapted with permission from Lozada-
Cassou et al. [46].

Figure 2.6 shows the concentration profiles, for a molar concentration of 1 M, of the nLPBS,
HNC/MSA [46], and the Monte Carlo (MC) results of Torrie and Valleau [67] for a monovalent elec-
trolyte. From Fig. 2.6, it is seen that the nLPBS model is not a good fit of the Monte Carlo results for
such a molar concentration. The MC results show an oscillation of the concentration profiles, due to
the interaction between ions, which the nLPBS model is unable to detect due to the flaws on its for-
mulation, whereas, the HNC/MSA equations closely follow the behavior of the MC results. Therefore,
as the HNC/MSA is able to predict the MC results for high molar concentrations, for lower values,
there are no doubts of its reliability. Consequently, our linear results are trustworthy in the interval of
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0.01 M–0.1 M for surface charges lower or equal to 0.015 C/m2 and 0.05 C/m2, respectively.

2.4.2 The concentration profiles for different solid electrode geometries

In order to compare the co-ion and counter-ion distribution functions for the different solid electrode
geometries, one needs first to understand how much influence does the radius have on the concentration
profiles. This influence can be analyzed for two cases: by fixing the unscreened electrode’s electrical
field or by fixing the electrode’s surface charge density.

Quite generally, by Gauss’ law, the effective or net electrical field for a charged electrode of any
geometry, E(r), at a distance r from the electrode’s surface is given by

E(r) =
4π

ε
σ(r), (2.42)

where σ(r) is the effective charge density, i.e., the electrode’s surface charge density plus the induced
charge in the electrolyte, up to the distance r, and is given by

σ(r) = −
∫ ∞
V (r)

ρel(
−→y ) d3y, (2.43)

where ρel(r), the electric charge profile in the fluid next to the electrode is given by Eq. (2.3), and
V (r) is the volume contained between the distance r, from the coordinates’ origin, to infinity. The
expressions for the net surface charge densities, at the distance r from the coordinates origin around
the different solid electrodes considered here are given by Eqs. (2.10) and (2.19), for σP (x), Eq. (2.28),
for σC(r), and Eq. (2.37), for σS(r).

In particular, in terms of surface charge density of a planar electrode, σP ≡ σM , the unscreened
or bare electrical field, as a function of the distance to the center of the coordinates system is

EuP (x) =
4π

ε
σP , (2.44)

where here x is the distance to the surface of the planar electrode, whereas, for an electrode of cylindrical
geometry with surface charge density σC , we have

EuC(r) =
4π R

ε r
σC , (2.45)

and for an electrode of spherical geometry, of surface charge density σS, this is

EuS (r) =
4π R2

ε r2
σS. (2.46)

In Eq. (2.45) and Eq. (2.46), r is the distance to the center of the cylindrical and spherical electrodes,
respectively.

In terms, now of the distance to the surface of the electrode, x, these two last expressions
become,

EuC(x) =
4π

ε (1 + x/R)
σC , (2.47)

and

EuS (x) =
4π

ε (1 + x/R)2
σS. (2.48)
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Let us here point out again that Eqs. (2.44) to (2.48), are for the unscreened electrical fields. Hence,
if the unscreened electrical fields of the different geometries are chosen to be equal at the distance of
maximum approach of the ions, i.e., at r = R + a/2 for the cylindrical and spherical electrodes, and
at x = a/2 for the planar electrode, the surface charge densities on the different electrodes geometries
must be chosen accordingly with the following relations

σC =
(

1 +
a

2R

)
σP (2.49)

and

σS =
(

1 +
a

2R

)2
σP . (2.50)

and thence Eq. (2.47) and Eq. (2.48), can be expressed in terms of the unscreened planar electrode
electrical field, ∀x, as

EuC(x) =

(
1 + a

2R

)
(1 + x/R)

EuP (x) (2.51)

and

EuS (x) =

(
1 + a

2R

)2
(1 + x/R)2

EuP (x) (2.52)

In particular,

EuS (x) =

(
1 + a

2R

)
(1 + x/R)

EuC(x). (2.53)

Thus, if we chose to compare results of a planar electrode against a cylindrical electrode, both with
the same surface electrical field, from Eq. (2.49), the surface charge density on the cylindrical electrode,
σC , must be (1 + a

2R) larger than that for the planar electrode σP , and on a spherical electrode, from
Eq. (2.50), σS must be (1 + a

2R)2 larger than σP . Of course one can make a comparison with the same
charge density on all the electrodes’ geometries. For a planar electrode, there is no difference between
results obtained at constant electrical field or surface charge density, since the bare electrical field and
thus the mean electrostatic potential at the distance of maximum approach for the ions, x = a

2 , ψH ,
do not depend on x (see Eqs. (2.2) and (2.44)).

In Fig. 2.7 the geometry’s influence on the co-ion and counter-ion distribution functions, for equal
electric fields or equal surface charge densities is shown for different spherical and cylindrical electrodes’
radii. It is observed that as the radii of the solid cylindrical and spherical electrodes increases, their
concentration profiles’ tend to the values of the planar electrodes, as it should be, i.e., expanding
Eq. (2.51) and Eq. (2.52), to first order in a Taylor series in terms of x, they become

EuC(x) =
(

1 +
a

2R

)(
1− x

R

)
EuP (x), (2.54)

and

EuC(x) =
(

1 +
a

2R

)2 (
1− 2

x

R

)
EuP (x), (2.55)

i.e., for a given value of R, the larger x, the weaker EuC(x) and EuS (x) become. However, lim
R→∞

EuC(x)→
EuP (x), and lim

R→∞
EuS (x) → EuP (x). Hence, the SEDL of the cylindrical and spherical solid electrodes

are more intense and thick as their radii increases. Also, notice the dependence of the cylindrical and
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spherical electric fields on the relation of the ionic size, a, to the radius of the electrode, R, i.e., a/R,
particularly at the electrode-ion contact, i.e., from Eqs. (2.45) and (2.46)

EuC

(
r = R+

a

2

)
=

4π R

ε
(
R+ a

2

) σC =
4π

ε
(

1 +
a

2R

) σC , (2.56)

and

EuS

(
r = R+

a

2

)
=

4π R

ε
(
R+ a

2

)2 σS =
4π

ε
(

1 +
a

2R

)2 σS. (2.57)

Thence, the larger the ionic diameter, the lower the intensity of EuC
(
r = R+ a

2

)
and EuS (r = R + a

2 ),
and in the limit of a → ∞, EuC

(
r = R+ a

2

)
and EuS

(
r = R+ a

2

)
→ 0. Consequently, the larger the

spherical or cylindrical electrodes radii, the closer become their corresponding distribution functions
to those for a charged plate, and, thus, the smaller the difference between calculations at constant
surface charge with those at constant electrical potential. In this thesis, the effect of the ionic size is
not discussed.

(a) The concentration profiles for R = 5Å ∼= 1.2 a. (b) The concentration profiles for R = 30Å ∼= 7.1 a.

(c) The concentration profiles for R = 80Å ∼= 18.8 a. (d) The concentration profiles for R = 200Å ∼= 47.1 a.

Figure 2.7: The co-ion, g+(r), and counter-ion, g−(r), distribution functions of different solid electrode
geometries with distinct radii values. The lighter and darker lines are for equal unscreened electric
fields [EuM(r = a/2) = 4π

ε σM = 2.4× 10−3 C/m2] or equal surface charges densities [σM = 0.015 C/m2],
respectively. The solid lines are for the planar electrode, since the unscreened electrical field, EuM(r) =
4π
ε σM , ∀ r.
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In Fig. 2.7 we show a comparison of the ionic distribution functions, at constant surface charge with
those for equal electrical potential, at x = a/2 for the three electrodes’ geometries considered above,
and for different radii sizes for the cylindrical and spherical nano-electrodes. Whence, accordingly
with the above discussion, it is found that the planar electrode achieves the highest contact values of
the concentration profiles, followed by the cylindrical and spherical electrodes, respectively. This is
expected, since although all electrodes have the same value of the unscreened electrical field at x = a/2,
for x > a/2 the unscreened electrical fields of the cylindrical and spherical electrodes rapidly decrease,
as 1/r and 1/r2, respectively, which, in turn, imply a smaller attraction of subsequent layers of both
counter-ions and co-ions, and therefore the net electrical fields for the three electrodes geometries satisfy
the following relation EP (x) > EC(x) > ES(x) ∀x > a/2, and as a consequence their corresponding
electrical double layers are weaker and narrower. On the other hand, the ionic distribution functions of
the cylindrical and spherical electrodes are weaker and narrower for the corresponding constant surface
charge density calculations, and this so, because by fixing the surface charge on the electrode, by fixing
the electrical field at x = 0, the unscreened electrical field weakens for x = a/2, as 1/(1 + a

2R) and
1/(1 + a

2R)2, respectively (see Eqs. (2.47) and (2.48)).

(a) The concentration profiles for σM = 0.005 C/m2. (b) The concentration profiles for σM = 0.01 C/m2.

(c) The concentration profiles for σM = 0.015 C/m2. (d) The concentration profiles for σM = 0.02 C/m2.

Figure 2.8: The concentration profile functions, gi(r), of our LPBS, and the HNC/MSA of Lozada-
Cassou for different electrode geometries. A radius of 5Å ∼= 1.2 a is used, while the electrode’s surface
charge, σM , is varied. The prefixes "p", "c", and "s", are used for the planar, cylindrical and spherical
electrodes.

To study the impact of the solid-electrode’s geometry on the structure of the electrical double
layer, the reduced co-ion and counter-ion concentration profiles were calculated for various system’s
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parameters, i.e., electrode’s surface charge density and radii, and salt concentration and temperature.
As mentioned before, as the radii of the solid cylindrical and spherical electrode increases, their con-
centration profiles’ tend to the values of the planar electrode. Therefore, as we are interested in the
geometrical impact of the electrode alongside other system parameters we will delimit the radii size
up to 80Å, as beyond this radius the geometrical impact disappears. In all the cases presented below,
the salt is a 1:1 electrolyte, with dielectric constant, ε = 78.5, and such that σP = σC = σS = σM , i.e.,
all the electrodes have the same surface charge density, σM .

In Fig. 2.8, we show concentration profiles for electrodes with a radius of R =5Å, and four values
of their surface charge density, σM , 0.005 C/m2, 0.01 C/m2, 0.015 C/m2 and 0.02 C/m2. These concen-
tration profiles were obtained with our LPBS, and the HNC/MSA of Lozada-Cassou et al [77, 73, 78],
for the solid cylindrical (c-HNC/MSA) and solid spherical (s-HNC/MSA) electrodes. The results of
the HNC/MSA of the solid planar electrode were not added to Fig. 2.8, as they have been already
discussed in the previous section. It is observed that our linear solutions, compared to the HNC/MSA
of the cylindrical and spherical electrodes, overestimate the concentration profiles, due to the entropic
effect associated to the ion’s size; the additional ion-ion, repulsion due to their size, reduces the prox-
imity among them, thus reducing the local concentration profile. Nonetheless, our LPBS results still
provide a fair quantitative approximation for surface charges lower than 0.02 C/m2, and even for up
to 0.02 C/m2, the LPBS provides a very good qualitative approximation.

(a) The concentration profiles for σM = 0.005 C/m2. (b) The concentration profiles for σM = 0.01 C/m2.

(c) The concentration profiles for σM = 0.015 C/m2. (d) The concentration profiles for σM = 0.02 C/m2.

Figure 2.9: The concentration profile functions, gi(r), of our LPBS, and the HNC/MSA of Lozada-
Cassou for different electrode geometries. A radius of 15Å ∼= 3.5 a is used, while the surface charge,
σM , is varied. The prefixes used have the same meaning as in Fig. 2.8.
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In general, our linear solution of the EDL for a solid spherical electrode is a better fit to the
corresponding EDL of the HNC/MSA equations, than that for a solid cylindrical electrode, and, in
turn, the LPBS EDL for the cylindrical electrode is a better fit to corresponding HNC/MSA, than the
analogous comparison for the planar electrode. This is because the unscreened electrical field for the
distinct electrode’s geometries, at a constant surface charge density, σM , are · 3 ·

EuS (x) =
EuP (x)

(1 + x
R)2

< EuC(x) =
EuP (x)

(1 + x
R)

< EuP (x) =
4π σM
ε

, ∀x > 0 (2.58)

i.e., the lower the electrical field, the better the linear approximation (see Eqs. (2.47) and (2.48)).
Therefore, for σM 6 0.02 C/m2 the LPBS is a good qualitative and/or quantitative approximation for
solid planar, cylindrical and spherical solid electrodes, with radius of 5Å.

In Fig. 2.9, as in Fig. 2.8, the LPBS co-ion and counter-ion distribution functions are compared
with those of the HNC/MSA, but now for a radius of 15Å, and various surface charge densities, σM .
From these figures it is seen that when the radius of the electrode increases from 5Å to 15Å, the LPBS
continues being a good quantitative approximation to the HNC/MSA results of Lozada-Cassou et al,
for surface charges smaller or equal than 0.015 C/m2, and it is a very good qualitative approximation for
0.02 C/m2. Once again, it is observed that the LPBS equation is a better fit of the HNC/MSA for the
solid spherical electrode than for the cylindrical electrode, and their concentration profile distribution

(a) The concentration profiles for σM = 0.005 C/m2. (b) The concentration profiles for σM = 0.01 C/m2.

(c) The concentration profiles for σM = 0.015 C/m2. (d) The concentration profiles for σM = 0.02 C/m2.

Figure 2.10: The concentration profile functions, gi(r), of our LPBS, and the HNC/MSA of Lozada-
Cassou for different electrode geometries. A radius of 80Å ∼= 18.8 a is used, while the electrode’s
surface charge, σM , is varied. The prefixes used have the same meaning as in Fig. 2.8.
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functions slightly exceed the HNC/MSA of Lozada-Cassou et al, ∀ r = a/2, due to x-dependence of
their corresponding unscreened electrical fields, and the consideration of the ionic size in HNC/MSA,
respectively, as discussed above. Comparatively, these overestimations are slightly smaller than those
for an electrode’s radius of 5Å, we will come back to this point bellow. Therefore, for both radii, 5Å
and 15Å, our LPBS is a good quantitative approximation of the HNC/MSA for surface charges lower
or equal than 0.015 C/m2, and a very good qualitative approximation for σM 6 0.02 C/m2.

Lastly, in Fig. 2.10 the concentration profiles of our LPBS are plotted against the HNC/MSA
results of Lozada-Cassou et al, for a radius of 80Å. It is observed that our LPBS still holds for
this radius, when σM 6 0.01 C/m2. However, it remains a very good qualitative approximation for
σM 6 0.02 C/m2. Since now, when our previously used surface charge limit is utilized, the difference
between our LPBS and the HNC/MSA of Lozada-Cassou et al becomes apparent, as our s-LPBS
overlaps to the c-HNC/MSA. Therefore, it is found that the interval of validity of the electrodes’
surface charge is consistent up to a radius of 80Å. However, it is not advisable to stay very close to
the upper limit of the surface charge for a radius of 80Å.

Equations (2.51) and (2.52) can be rewritten as

EuC(y) =
1(

1 + y
1+ a

2R

) EuP (y), (2.59)

and

EuS (y) =
1(

1 + y
1+ a

2R

)2 EuP (y), (2.60)

where y = x − a/2, i.e., the distance to the first layer of adsorbed ions to the electrodes. From these
equations, is clear that the larger the electrode’s radius, the less important is the contribution of the
ionic size on the unscreened electrical field, and, hence, the better the approximation to the HNC/MSA
results, where the ionic size is considered. However, it must be emphasized that this agreement between
the LPBS and the HNC/MSA will certainly deteriorate with increasing salt valence and concentration,
since, then, the ionic size will become very relevant.

From here forward, unless stated otherwise, only the concentration profile functions of our LPBS
will be shown. In the following figures, the plots of the concentration profile functions for our three
radii, 5Å, 15Å and 80Å, are shown, while varying the electrolyte’s molar concentration. In Fig. 2.11,
the concentration profiles functions of our three solid electrodes are shown for different molar concen-
trations, with an electrode’s surface charge density of 0.015 C/m2, and a radius of 5Å. Once again,
both cases, for equal electric fields and surface charges are shown. From it, one can observe that for the
lowest molar concentrations, the difference between the concentration profiles of the cylindrical and
spherical electrodes against the planar electrode is utterly different. Whereas, when the molar concen-
tration is increased the difference between each case is smaller. Furthermore, when equal electric fields
are used for the highest molar concentrations the difference between contact concentration profiles is
significantly smaller. Moreover, for equal electric fields and a molar concentration of 0.5 M, the solid
spherical electrode achieves the highest contact values of the concentration profile, followed by the the
solid cylindrical electrode and lastly by planar electrode. Nonetheless, these higher values are overrun
by the plane’s at a distance a from the surface of the electrode. At higher electrolyte concentration, the
electrical double layer becomes narrower, and for this point-ion model of the electrolyte, the decrement
of the electrical field become less relevant. Still, the EDL for the planar electrode is, nevertheless, wider
than those for the cylindrical electrode, and this last is wider than that for the spherical electrode,
when varying the other parameters, as before. The crossover of the planar EDL over the cylindrical and
spherical EDL’s results from the electroneutrality condition, i.e., the lower adsorption of counter-ions
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near the planar electrode, must be compensated by a wider EDL, to cancel the electrode’s electrical
field.

(a) The concentration profiles for ρ0 = 0.001 M. (b) The concentration profiles for ρ0 = 0.01 M.

(c) The concentration profiles for ρ0 = 0.1 M. (d) The concentration profiles for ρ0 = 0.5 M.

Figure 2.11: The concentration profile functions, gi(r), of our LPBS for the different electrode’s ge-
ometries, for a radius of 5Å ∼= 1.2 a, while the molar concentration, ρ0, is increased. The lighter and
darker lines represent two distinct cases, when equal electric fields and surface charges are used.

Now, in Fig. 2.12 the concentration profile functions for the different solid electrodes are plotted
for a radius of 15Å and a surface charge of 0.015 C/m2. According with our previous discussion on
the role of the electrical field, when the radius is increased from 5Å to 15Å, it is observed that the
intensity of the EDL increases for all molar concentrations, and that the difference between equal
electric fields and surface charges diminishes as well. For the highest molar concentration, when equal
electric fields are used, once again the spherical electrode achieves the highest contact values followed
by the cylindrical electrode and lastly the planar electrode. Also as discussed above, this higher values
of the concentration profiles at contact, only last there, as when the distance from the surface slightly
increases, the planar electrode overtakes the spherical and cylindrical electrodes. Furthermore, for the
highest molar concentrations it is found that the concentration profiles of the cylindrical and spherical
electrodes are almost completely identical to the planar electrode, even though the radius increment
was small. This, again, is an effect of the compactness of the EDL at high salt concentration.

Continuously, in Fig. 2.13 the concentration profiles of the different electrode’s geometries, for
a radius of 80Å, are plotted while the molar concentration is increased. Again, when the radius
grows from 15Å to 80Å the concentration profiles of the cylindrical and spherical electrodes largely
increase for all the molar concentrations. As the case of equal electric fields is given by the relation
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of Eqs. (2.49) and (2.50), when the radius is big enough, the relation by which the surface charge of

(a) The concentration profiles for ρ0 = 0.001 M. (b) The concentration profiles for ρ0 = 0.01 M.

(c) The concentration profiles for ρ0 = 0.1 M. (d) The concentration profiles for ρ0 = 0.5 M.

Figure 2.12: The concentration profile functions, gi(r), of the LPBS for the different electrode’s ge-
ometries, for a radius of 15Å ∼= 3.5 a, while the molar concentration, ρ0, is increased. The lighter and
darker lines have the same meaning as in Fig. 2.11.

(a) The concentration profiles for ρ0 = 0.001 M. (b) The concentration profiles for ρ0 = 0.01 M.

Figure 2.13: The concentration profile functions, gi(r), of LPBS for the different electrode’s geometries,
for a radius of 80Å ∼= 18.8 a, while the molar concentration, ρ0, is increased. The lighter and darker
lines have the same meaning as in Fig. 2.11.

34



Chapter 2: The SEDL for solid electrodes Concentration profiles

the planar electrode is multiplied is almost equal to unity. Therefore both cases (equal electric fields
and surface charges) are identical to each other. Furthermore, as it was seen in Fig. 2.12, when higher
molar concentrations are used, a small increment on the radius generates an exponential raise on the
concentration profiles of higher molar concentration. For this reason, the higher concentrations for
R = 80Å were not plotted, as the concentration profiles of the three electrode geometries overlap into
the concentration profiles of the planar electrode.

Figure 2.14: Ion’s distribution for the restricted primitive model of the cylindrical double layer.
“Reprinted" adapted with permission from González-Tovar et al. [73].

González-Tovar et al. [73] did a comparison of their HNC/MSA equations of the cylindrical elec-
trode against MC simulations. They found that the validity of their cylinder’s HNC/MSA equations
certainly holds for molar concentrations of 0.1 M for symmetric electrolytes (1:1), and, in fact for up to
2 M concentration for a 1:1 electrolyte, or up to a 1 M concentration for a 2:2 salt, and unsymmetrical
electrolytes. Figure 2.14 illustrates this, by showing the concentration profile for the density functional
theory (DFT), MC, non linear PB (PB), modified PB (MPB), and the HNC/MSA equations. There-

(a) Results of González-Tovar and Lozada-Cassou [78].
“Reprinted" adapted with permission from González-
Tovar and Lozada-Cassou [78].

(b) Results of Degrève et al. [68]. “Reprinted" adapted
with permission from Degrève et al. [68].

Figure 2.15: Reduced concentration profiles of a monovalent electrolyte for both various sphere radii,
and a radius of 15Å in Figs. 2.15a and 2.15b, respectively. The solid and broken curves give the
HNC/MSA, PBS, and MC results.
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fore, from their work it is found that their HNC/MSA equation for of the cylindrical electrode is a
good theory. By consequence our linear Poisson-Boltzmann model with the Stern restriction is a good
approximation as well, as proved in Figs. 2.8 to 2.10.

In addition, the work of González-Tovar and Lozada-Cassou [78] found that the validity of the
nLPBS model of the spherical electrode against the HNC/MSA equations is good for molar concentra-
tions from 0.01 M to 1 M, and for small mean electrostatic potentials. However, their work does not
compare against MC results, as the data were not available. On the other hand, Degrève et al. [68]
also performed a comparison against MC results. As seen in Fig. 2.15, the concentration profiles for a
molar concentration of 1 M are shown for both the non-linear PBS, the HNC/MSA, and MC results
of the spherical electrode. From it, it is observed that the HNC/MSA theory is a good approximation
of the MC results for ρ0 = 1 M. Furthermore, another interesting result found by González-Tovar
and Lozada-Cassou [78, 73], that we observe as well, is that the results obtained for an infinite radii’
cylindrical or spherical electrodes are almost identical to those with a radius equal to 80Å. From both
the results of Gonzaléz-Tovar and Lozada-Cassou, and Degrève et al. it is found that the HNC/MSA is
a good approximation of the EDL of the spherical electrode, and that by extension, our linear solution
of the EDL of the spherical electrode is also a good approximation.

(a) The concentration profiles for R = 5Å ∼= 1.2 a. (b) The concentration profiles for R = 15Å ∼= 3.5 a.

(c) The concentration profiles for R = 80Å ∼= 18.8 a.

Figure 2.16: The concentration profile functions, gi(r), of LPBS for the different electrode’s geometries,
for three radii, while the temperature, T , is varied.

Finally, in Fig. 2.16 the concentration profiles for three geometries of the solid electrodes, with three
radii values are plotted, while the temperature is varied. A molar concentration of 0.01 M and a surface
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charge of 0.015 C/m2 is used. For all the electrodes’ geometries it is seen that when the temperature
increases the intensity of the co-ion and counter-ion distribution functions slightly decreases, regardless
of the radius used. However, the most visible difference between temperatures is found at the contact
values for the highest radius. Moreover, it is observed that the contact value of the concentration
profiles is higher for the lower temperatures, for any geometry and radius. Quite generally, the Poisson-
Boltzmann equation (PB), for any geometry, is given by Eqs. (2.1) to (2.4), or its linear expression,
by Eqs. (2.6) and (2.7). Thus, it is clear that Poisson-Boltzmann counter-ion and co-ion distribution
functions, for any electrode’s geometry, exponentially decrease/increase, with increasing temperature,
respectively. In its linearized form these distribution functions increase/decrease inversely linear with
increasing temperature. Hence, increasing the temperature has a similar tendency but not in magnitude
to decreasing the ionic valence or the salt concentration, or the surface charge density.

On the other hand, if one looks closely to Fig. 2.16, at a distance close to 7 a, the previous tendency
is tenuously reversed. Such that, when the temperature increases beyond this point, the intensity of the
EDL subtly boosts. This increase in the counter-ion concentration profile, at 7 a, for say T = 328.15 K°
is due to the necessity of the system of maintaining electroneutrality, i.e., the lower contact value is
compensated by a thicker electrical double layer.

In general, it is found that the parameter that exerts the least influence on the EDL is, without a
doubt, the temperature, irrespective of the electrode’s geometry or radius size.
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Chapter 3

The electrical double layer for nano-pore
electrodes

In this chapter we study three distinct nano-pores electrodes: slit, cylindrical, and spherical pores,
through the analytical solution of the LPBS of the EDL. For this purpose, we first exactly solve the
Laplace and Poisson equations of the electrostatics, for these three topological different geometries, i.e.,
no approximations are involved in these derivations. In particular, the mean electrostatic potential,
the surface charge density, the co-ion and counter-ion distribution functions, and the capacitance are
obtained for the different nano-pores.

3.1 The electrical double layer of two parallel plates electrodes (slit-
pore)

Figure 3.1: The geometry of two interacting charged symmetric plates’.

The model for two interacting charged parallel plates (slit-pore) is depicted in Fig. 3.1. Both plates are
positively charged, they are separated by a distance of 2 t, and have a thickness of d. The electrolyte is
modeled as a fluid of hard spheres of diameter a, with charge in their centers. Both, the plates and the
electrolyte are assumed to have the same dielectric constant, ε, to avoid image potentials. The plates
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are permeable, so the electrolyte outside and inside the plates are at the same chemical potential. As
pointed out above, we will first solve the Laplace equation, i.e.,

∇2ψ(x) = 0, (3.1)

and the Poisson equation,

∇2ψ(x) = −4π

ε
ρel(x), (3.2)

for this model, where ρel(x) is the charge concentration distribution function, and ψ(x) is the mean
electrostatic potential. The solution of these equations for this model is presented below, and is quite
general, since no assumption is made at this point for, ρel(x), which for n species of charges, can be
expressed as

ρel(x) =

n∑
i=1

e zi ρi(x), (3.3)

where ρi(x) is the species’ spacial distribution of the charges, and zi the species’ ion valence. However,
to obtain the electrical double layer structure, the Eq. (3.2) will be solved assuming that ρel(x) is given
by the canonical Boltzmann distribution function of the ions in the electrolyte, i.e.,

ρel(x) = ρi0 exp(e zi β ψ(x)), (3.4)

where ρi0 is the bulk concentration of ions of species i, and β = 1
k T , being k, the Boltzmann constant.

Thus, Eq. (3.2) becomes the Poisson-Boltzmann equation,

∇2ψ(x) = −4π

ε

n∑
i=1

ρi0 exp(e zi β ψ(x)). (3.5)

It will be further assumed that the ions are point ions, and their size is taken into account only in their
interaction with the plates, i.e., the Stern correction. In addition, to finally obtain the EDL for the
different nano-pores, Eq. (3.5) will be linearized, and analytically solved for a two-species electrolyte.

3.1.1 The electrostatics of a slit-pore in an electrolyte

Due to the symmetry of the slit-pore, the left side and the right side of the center of the pore are
symmetrical. Hence, to solve the electrostatics, the system is divided only into five regions (see Fig. 3.1).
In regions II, III, and IV, the mean electrostatic potential is governed by Laplace equation (Eq. (3.1)),
and in regions I and V, by the Poisson equation (Eq. (3.2)).

1. Region V: x ≥ t+ d+ a
2

The boundary conditions are
lim
x→∞

ψ5(x) = 0

and

lim
x→∞

dψ5(x)

dx
= 0

Therefore, from Eq. (3.2), we find

dψ5(x)

dx
=

4π

ε

∫ ∞
x

ρel(y) dy (3.6)
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Thus,

ψ5(x) = −4π

ε

∫ ∞
x

dx′
∫ ∞
x′

ρel(y) dy

Namely,

ψ5(x) =
4π

ε

∫ ∞
x

(x− y) ρel(y) dy

For x = t+ d+ a
2

ψIV ≡ ψ5

(
t+ d+

a

2

)
=

4π

ε

∫ ∞
t+d+a

2

(
t+ d+

a

2
− y
)
ρel(y) dy (3.7)

2. Region IV: t+ d ≤ x ≤ t+ d+ a
2

If the dielectric constant, ε, of the plates and the solution are considered equal, to avoid image forces,
the boundary conditions are

ψ4

(
t+ d+

a

2

)
= ψIV (3.8)

ε

(
dψ5(x)

dx

)
t+d+a2

− ε
(

dψ4(x)

dx

)
t+d+a2

= 0 (3.9)

From Eq. (3.1),
dψ4(x) /dx = constant (3.10)

Integrating Eq. (3.10) and using Eqs. (3.6) to (3.9), we find

ψ4(x) =
4π

ε

∫ ∞
t+d+a

2

(x− y) ρel(y) dy (3.11)

In particular,

ψIII ≡ ψ4(t+ d) =
4π

ε

∫ ∞
t+d+a

2

(t+ d− y) ρel(y) dy (3.12)

3. Region III: t ≤ x ≤ t+ d

The boundary conditions are
ψ3(t+ d) = ψIII (3.13)

ε

(
dψ4(x)

dx

)
t+d

− ε
(

dψ3(x)

dx

)
t+d

= −4π σII (3.14)

From Eqs. (3.1) and (3.11) to (3.14)

ψ3(x) = −4π σII
ε

(t+ d− x) +
4π

ε

∫ ∞
t+d+a

2

(x− y) ρel(y) dy (3.15)

In particular,

ψII ≡ ψ3(t) = −4π σII
ε

d+
4π

ε

∫ ∞
t+d+a

2

(t− y) ρel(y) dy (3.16)

For two plates (slit-pore) electrodes, the electro-neutrality condition is

σI + σII = −
∫ t−a

2

0
ρel(y) dy −

∫ ∞
t+d+a

2

ρel(y) dy , (3.17)
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i.e, the total effective charge in the system must be zero. Manipulating Eqs. (3.12), (3.16) and (3.17),
we find

ψII = ψIII −
4π σII
ε

d− 4π d

ε

∫ ∞
t+d+a

2

ρel(y) dy

or

ψII = ψIII +
4π σI
ε

d+
4π d

ε

∫ t−a
2

0
ρel(y) dy

If we make ψII = ψIII then the inside part of the electrolyte cancels σI and the outside part cancels
σII , hence

σI = −
∫ t−a

2

0
ρel(y) dy

and
σII = −

∫ ∞
t+d+a

2

ρel(y) dy

4. Region II: t− a
2 ≤ x ≤ t

In this region, the boundary conditions are

ψ2(t) = ψII (3.18)

ε

(
dψ3(x)

dx

)
t

− ε
(

dψ2(x)

dx

)
t

= −4π σI (3.19)

From Eqs. (3.1), (3.15), (3.17) and (3.19)(
dψ2(x)

dx

)
t

= −4π

ε

∫ t−a
2

0
ρel(y) dy (3.20)

Integrating and using Eq. (3.18),

ψ2(x) = ψII +
4π

ε
(t− x)

∫ t−a
2

0
ρel(y) dy

In particular

ψI ≡ ψ2

(
t− a

2

)
= ψII +

2π a

ε

∫ t−a
2

0
ρel(y) dy (3.21)

If ψII = ψIII , Eq. (3.21) reduces to the familiar term

ψI = ψII −
2π a

ε
σI

5. Region I: 0 ≤ x ≤ t− a
2

Here the boundary conditions are
ψ1

(
t− a

2

)
= ψI (3.22)

and

ε

(
dψ1(x)

dx

)
t−a2

− ε
(

dψ2(x)

dx

)
t−a2

= 0 (3.23)
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Integrating Eq. (3.2) and using Eqs. (3.20) and (3.23),

dψ1(x)

dx
= −4π

ε

∫ t−a
2

0
ρel(y) dy +

4π

ε

∫ t−a
2

x
ρel(y) dy (3.24)

Integrating by parts Eq. (3.24) and using Eqs. (3.21) and (3.22)

ψ1(x) = ψII +
4π

ε
(t− x)

∫ t−a
2

0
ρel(y) dy +

4π

ε

∫ t−a
2

x
(x− y)ρel(y) dy

In particular,

ψ0 ≡ ψ1(0) = ψII +
4π

ε

∫ t−a
2

x
(x− y)ρel(y) dy

3.1.2 The analytical solution of the LPBS for the electrical double layer of two
parallel plates electrodes (slit-pore)

In order to obtain the analytical solution of the LPBS for the electrical double layer of two symmetrical
plates electrodes, one needs to solve a system of five differential equations. Regions II, III, and IV
are governed by Laplace equation in Eq. (3.1), and regions I and IV are ruled by Poisson-Boltzmann
equation in Eq. (3.2).

In Section 2.1.1 it was seen from Eq. (2.6) that the linearization of the PB-eq (Eq. (3.5)) leads to

∇2ψ(x) = κ2 ψ(x) (3.25)

Hence, the general solutions of the Laplace and Poisson-Boltzmann equations are, with their respective
derivatives

ψ(x) = A+B x
dψ

dx
= B (3.26)

ψ(x) = Aeκx +B e−κx
dψ

dx
= Aκeκx −B κe−κx (3.27)

Now, the five regions will be treated individually with their respective boundary conditions (BC). Each
region will be introduced by their interval, and with their respective solution of the mean electrostatic
potential. Furthermore, in each region two BC will be introduced in order to find the values of their
constants. This is true for all the regions, with the exception of regions V and I, where one and three
BC are used, respectively.

1. Region V: x ≥ t+ d+ a
2

Here, the solution of the PB equation is ψ5(x) = c1 e
κx + c2 e

−κx, and the BC is that, at x→∞, the
electric field is equal to zero. From the Gauss’ law, we know that the electric field is equal to minus
the divergence of the electric potential. Hence,

lim
x→∞

E(x) = 0 E(x) = −∇ · ψ(x) = −c1 κ eκx + c2 κ e
−κx

lim
x→∞

E(x) = −c1 κ eκx + c2 κ��
�*0

e−κx = 0 ∴ c1 = 0 (3.28)

Thus, the mean electrostatic potential in this interval and its derivative are

ψ5(x) = c2 e
−κx dψ5

dx
= −c2 κ e−κx
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2. Region IV: t+ d ≤ x ≤ t+ d+ a
2

Here, ψ4(x) = c3 + c4 x, and the BC is the continuity of the mean electrostatic potential between
intervals. Thus, ψ5(x) and ψ4(x) are equal at their border, t + d + a

2 . Furthermore, if the dielectric
constant of the electrodes and electrolyte are equal, the subtraction of the derivatives of the mean
electrostatic potential (ψ5(x) and ψ4(x)) is equal to zero at their border, t+ d+ a

2 . Therefore,

ψ5

(
t+ d+

a

2

)
= ψ4

(
t+ d+

a

2

)
−→ c2 e

−κ(t+d+a
2 ) = c3 + c4

(
t+ d+

a

2

)
c3 = c2 e

−κ(t+d+a
2 ) − c4

(
t+ d+

a

2

)
(3.29)

ε

(
dψ5(x)

dx

)
t+d+a2

− ε
(

dψ4(x)

dx

)
t+d+a2

= 0 −→ c4 = −c2 κ e−κ(t+d+
a
2 ) (3.30)

3. Region III: t ≤ x ≤ t+ d

Here, ψ3(x) = c5 +c6 x, and once again we have the BC of continuity, between ψ4(x) and ψ3(x) at t+d.
But, the difference between the derivative of ψ4(x) and ψ3(x) is now equal to −4π σII . Therefore,

ψ4(t+ d) = ψ3(t+ d) −→ c3 + c4(t+ d) = c5 + c6(t+ d)

c5 = c3 + (c4 − c6)(t+ d) (3.31)

ε

(
dψ4(x)

dx

)
t+d

− ε
(

dψ3(x)

dx

)
t+d

= −4π σII −→ c4 − c6 = −4π σII
ε

c6 = c4 +
4π σII
ε

(3.32)

4. Region II: t− a
2 ≤ x ≤ t

Here, ψ2(x) = c7 + c8 x, and one of our BC is the continuity, between ψ3(x) and ψ2(x) at t. Whereas,
the difference between the derivative of ψ3(x) and ψ2(x) is now equal to −4π σI . Consequently,

ψ3(t) = ψ2(t) −→ c5 + c6 t = c7 + c8 t

c7 = c5 + (c6 − c8) t (3.33)

ε

(
dψ3(x)

dx

)
t

− ε
(

dψ2(x)

dx

)
t

= −4πσI −→ c6 − c8 = −4π σI
ε

c8 = c6 +
4π σI
ε

(3.34)

5. Region I: 0 ≤ x ≤ t− a
2

Lastly, here, ψ1(x) = c9 e
κx + c10 e

−κx, and one of the final BCs is that the electric field at the center
of the plates, x = 0, is equal to zero. From the Gauss’ law, the electric field is equal to minus the
divergence of the electric potential. Therefore,

lim
x→0

E(x) = 0 E(x) = −∇ · ψ(x) = −c9 κ eκx + c10 κ e
−κx

lim
x→0

E(x) = −c9 κ���*
1

eκx + c10 κ��
�*1

e−κx = 0 ∴ c9 = c10 (3.35)
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Hence, the mean electrostatic potential in this interval and its derivative are

ψ1(x) = 2 c9 cosh(κx)
dψ1

dx
= 2κ c9 sinh(κx)

Furthermore, the last two BCs are of continuity between ψ2(x) and ψ1(x) at t − a/2, and that the
difference between the derivative of ψ2(x) and ψ1(x) is equal to zero. Hence,

ψ2

(
t− a

2

)
= ψ1

(
t− a

2

)
−→ c7 + c8

(
t− a

2

)
= 2 c9 cosh

(
κ
(
t− a

2

))
c7 = 2 c9 cosh

(
κ
(
t− a

2

))
− c8

(
t− a

2

)
(3.36)

ε

(
dψ2(x)

dx

)
t−a2

− ε
(

dψ1(x)

dx

)
t−a2

= 0 −→ c8 = 2κ c9 sinh
(
κ
(
t− a

2

))
(3.37)

Now, from Eqs. (3.28) to (3.37) we have ten linear equations with ten unknown variables.

c1 = 0

c3 = c2 e
−κ(t+d+a

2 ) − c4
(
t+ d+ a

2

)
c4 = −c2 κ e−κ(t+d+

a
2 )

c5 = c3 + (c4 − c6)(t+ d)

c6 = c4 + 4π σII
ε

c7 = c5 + (c6 − c8) t
c8 = c6 + 4π σI

ε

c9 = c10

c7 = 2 c9 cosh
(
κ
(
t− a

2

))
− c8

(
t− a

2

)
c8 = 2κ c9 sinh

(
κ
(
t− a

2

))

(3.38)

Solving Eq. (3.38), one finds the value of c2, and consequently all the other constants

c2 =

4π
ε

{
σII

[
d+ a

2 +
coth(κ(t−a2 ))

κ

]
+ σI

[
a
2 +

coth(κ(t−a2 ))
κ

]}
1 + κ (d+ a) + coth

(
κ
(
t− a

2

)) eκ(t+d+
a
2 ) (3.39)

Therefore the mean electrostatic potential is

ψ(x) =



2 c9 cosh(κx) 0 ≤ x ≤ t− a
2

c7 + c8 x t− a
2 ≤ x ≤ t

c5 + c6 x t ≤ x ≤ t+ d

c3 + c4 x t+ d ≤ x ≤ t+ d+ a
2

c2 e
−κx x ≥ t+ d+ a

2

(3.40)

Meanwhile, the induced surface charge density is given by

σ(x) = −
∫ ∞
x

ρel(x) dx =
ε

4π

∫ ∞
x

d2ψ

dx2
dx =

ε

4π

∫ x

0

d2ψ1

dx2
dx+

ε

4π

∫ ∞
x

d2ψ5

dx2
dx

=
ε

4π

(
dψ1

dx

)
x

− ε

4π

(
dψ5

dx

)
x

(3.41)
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Thence, it is divided into three intervals. After obtaining the derivatives and evaluating, we have that
the induced surface charge density is

σ(x) =


ε κ
2π c9 sinh(κx) 0 ≤ x ≤ t− a

2

0 t− a
2 < x < t+ d+ a

2
ε κ
4π c2 e

−κx x ≥ t+ d+ a
2

(3.42)

Meanwhile, the co-ion and counter-ion distribution functions are given once again by Eqs. (2.12)
and (2.13)

g+(x) =


exp
(
−2 z e

k T c9 cosh(κx)
)

0 ≤ x ≤ t− a
2

0 t− a
2 < x < t+ d+ a

2

exp
(
− z e
k T c2 e

−κx) x ≥ t+ d+ a
2

(3.43)

g−(x) =


exp
(
2 z e
k T c9 cosh(κx)

)
0 ≤ x ≤ t− a

2

0 t− a
2 < x < t+ d+ a

2

exp
(
z e
k T c2 e

−κx) x ≥ t+ d+ a
2

(3.44)

Finally, in order to obtain the total differential capacitance we must derive ψd with respect to σ. Where
σ = σI = σII and ψd is the value of ψ(x) at its’ center. Such as,

ψd ≡ lim
x→0

ψ(x) = 2 c9���
��:1

cosh(κx) = 2 c9 (3.45)

The total differential capacitance is obtained deriving Eq. (3.45) with respect to σ and using Eqs. (3.38)
and (3.39). Therefore,

CT ≡
dψd
dσ

=

8π
ε κ −

4π
ε

[
d+ a+

2 coth(κ(t−a2 ))
κ

]
sinh

(
κ
(
t− a

2

)) (3.46)

3.2 The electrical double layer of a cylindrical nano-pore electrode

A model for a cylindrical, charged nano-pore, open at both extremes, is depicted in Fig. 3.2, where
the inner radius of the pore is R and its wall thickness is d. The cylinder is permeable, so that the
electrolyte inside and outside the pore is at the same chemical potential. The electrolyte ions have a
diameter a. Other model parameters are as in Section 3.1. Due to the symmetry of the cylinder, the
electrostatics of the nano-pore is divided into the five regions shown in Fig. 3.2.
Since there is no charge in regions II, III, and IV, the mean electrostatic potential is governed by
Laplace equation, in cylindrical coordinates,

1

r

∂

∂r

(
r
∂ψ

∂r

)
= 0, (3.47)

whereas in regions I and V the PB-eq, in cylindrical coordinates, is valid

1

r

∂

∂r

(
r
∂ψ

∂r

)
= −4π

ε
ρel(r) (3.48)

where ψ(r) is the mean electrostatic potential.
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Figure 3.2: The geometry of the electrical double layer in a cylindrical nano-pore.

3.2.1 The electrostatics of the cylindrical nano-pore

1. Region V: r ≤ R+ d+ a
2

The boundary conditions are
lim
r→∞

ψ5(r) = 0

and
lim
r→∞

dψ5(r)

dr
= 0

Integrating Eq. (3.48), we get

ψ5(r) = −4π

ε

∫ ∞
r

dr′

r′

∫ ∞
r′

x ρel(x) dx

Integrating the right hand side by parts

ψ5(r) = −4π

ε

(
− ln(r)

∫ ∞
r

r′ ρel(r
′) dr′ +

∫ ∞
r

ln
(
r′
)
r′ ρel(r

′) dr′
)

ψ5(r) = −4π

ε

∫ ∞
r

ln
( r
r′

)
r′ ρel(r

′) dr′

At r = R+ d+ a
2

ψIV ≡ ψ5

(
R+ d+

a

2

)
= −4π

ε

∫ ∞
R+d+a

2

ln

(
R+ d+ a

2

r′

)
r′ ρel(r

′) dr′

2. Region IV: R+ d ≤ x ≤ R+ d+ a
2

If the dielectric constant, ε, of the electrode and electrolyte are considered equal, to avoid image forces,
the boundary conditions are

ψ4

(
R+ d+

a

2

)
= ψIV
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(
dψ5(r)

dr

)
R+d+a2

−
(

dψ4(r)

dr

)
R+d+a2

= 0

From Eq. (3.47), and integrating once gives,

ψ4(r) = c1 + c2 ln(r)

and using the boundary conditions, yields

ψ4(r) =
4π

ε

∫ ∞
R+d+a

2

ln
( r
r′

)
r′ ρel(r

′) dr′ (3.49)

In particular,

ψIII ≡ ψ4(R+ d) =
4π

ε

∫ ∞
R+d+a

2

ln

(
R+ d

r′

)
r′ ρel(r

′) dr′ (3.50)

3. Region III: R ≤ r ≤ R+ d

The boundary conditions are
ψ3(R+ d) = ψIII (3.51)

ε

(
dψ4(r)

dr

)
R+d

− ε
(

dψ3(r)

dr

)
R+d

= −4π σII (3.52)

From Eqs. (3.49) to (3.52)

ψ3(r) = ψIII +
4π σII
ε

(R+ d) ln

(
r

R+ d

)
+

4π

ε
ln

(
r

R+ d

)∫ ∞
R+d+a

2

r′ ρel(r
′) dr′

or
ψ3(r) =

4π σII
ε

(R+ d) ln

(
r

R+ d

)
+

4π

ε

∫ ∞
R+d+a

2

ln
( r
r′

)
r′ ρel(r

′) dr′ (3.53)

In particular,

ψII ≡ ψ3(R) = ψIII +
4π σII
ε

(R+ d) ln

(
R

R+ d

)
+

4π

ε
ln

(
R

R+ d

)∫ ∞
R+d+a

2

r′ ρel(r
′) dr′

or
ψII =

4π σII
ε

(R+ d) ln

(
R

R+ d

)
+

4π

ε

∫ ∞
R+d+a

2

ln

(
R

r′

)
r′ ρel(r

′) dr′

Using the electro-neutrality condition,

(R+ d)σII +RσI = −
∫ ∞
0

r′ ρel(r
′) dr′ (3.54)

it can be rewritten as

ψII = ψIII −
4π RσI

ε
ln

(
R

R+ d

)
− 4π

ε
ln

(
R

R+ d

)∫ R−a
2

0
r′ ρel(r

′) dr′

4. Region II: R− a
2 ≤ r ≤ R

In this region the boundary conditions are

ψ2(R) = ψII (3.55)
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ε

(
dψ3(r)

dr

)
R

− ε
(

dψ2(r)

dr

)
R

= −4π σI (3.56)

From Eqs. (3.53), (3.54) and (3.56) we have

R

(
dψ2(r)

dr

)
R

= −4π

ε

∫ R−a
2

0
r′ ρel(r

′) dr′

Integrating Eq. (3.47) and using Eq. (3.55),

ψ2(r) = ψII +
4π

ε
ln

(
R

r

)∫ R−a
2

0
r′ ρel(r

′) dr′

In particular,

ψI ≡ ψ2

(
R− a

2

)
= ψII +

4π

ε
ln

(
R

R− a
2

)∫ R−a
2

0
r′ ρel(r

′) dr′ (3.57)

Region I: 0 ≤ r ≤ R− a
2

Here, the boundary conditions are
ψ1

(
R− a

2

)
= ψI (3.58)(

dψ2(r)

dr

)
R−a2

−
(

dψ1(r)

dr

)
R−a2

= 0 (3.59)

Integrating Eq. (3.48) and using Eq. (3.59)

r

(
dψ1(r)

dr

)
= −4π

ε

∫ R−a
2

0
r′ ρ(r′) dr′ +

4π

ε

∫ R−a
2

r
r′ ρ(r′) dr′ (3.60)

Integrating Eq. (3.60) by parts and using Eqs. (3.57) and (3.58)

ψ1(r) = ψII +
4π

ε
ln

(
R

r

)∫ R−a
2

0
r′ ρel(r

′) dr′ +
4π

ε

∫ R−a
2

r
ln
( r
r′

)
r′ ρel(r

′) dr′

In particular,

ψ0 ≡ ψ1(0) = ψII +
4π

ε

∫ R−a
2

0
ln
( r
r′

)
r′ ρel(r

′) dr′

3.2.2 The analytical solution of the LPBS for the electrical double layer of a
cylindrical nano-pore electrode

In Section 2.2 it was seen from Eq. (2.24) that the linearization of the Laplace and Poisson-Boltzmann
equations in cylindrical coordinates are

d2ψ

dr2
+

1

r

dψ

dr
= 0 (3.61)

d2ψ

dr2
+

1

r

dψ

dr
= κ2 ψ(r) (3.62)

Hence, their general solutions, and derivatives are

ψ(r) = A+B ln(r)
dψ

dr
=
B

r
(3.63)
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ψ(r) = AI0(κ r) +BK0(κ r)
dψ

dr
= Aκ I1(κ r)−B κK1(κ r) (3.64)

where I0 and I1 are the modified Bessel functions of first kind of zero order and first order, respectively.
Now, the five regions will be treated individually with their respective BC. Each region will be intro-
duced by their interval and with their respective solutions of the mean electrostatic potential. As for
the slit-pore, in each region two BC will be introduced in order to find the values of the constants.
This is true for all the regions, with the exception of regions V and I, where one and three BC are
used, respectively.

1. Region V: r ≥ R+ d+ a
2

Here, ψ5(r) = c1 I0(κ r) + c2K0(κ r). The BC is that the electric field is equal to zero at infinity. From
the Gauss’ law, we know that the electric field is equal to minus the divergence of the electric potential.
Hence, lim

r→∞
E(r) = 0, and since E(r) = −∇ · ψ(r) = −c1 κ I1(κ r) + c2 κK1(κ r),

lim
r→∞

E(r) = −c1 κ����:
∞

I1(κ r) + c2 κ���
��:0

K1(κ r) = 0 ∴ c1 = 0 (3.65)

Thus, the mean electrostatic potential in this interval and its derivative are

ψ5(r) = c2K0(κ r)
dψ5

dr
= −c2 κK1(κ r)

2. Region IV: R+ d ≤ r ≤ R+ d+ a
2

Here, ψ4(r) = c3+c4 ln(r). The next BC is the continuity of the mean electrostatic potential. Therefore,
ψ5(r) and ψ4(r) are equal at R + d + a

2 . Furthermore, if the dielectric constant of the electrode and
electrolyte are equal, the difference between the derivatives of the mean electrostatic potential, ψ5(r)
and ψ4(r), are equal to zero at R+ d+ a

2 . Consequently,

ψ5

(
R+ d+

a

2

)
= ψ4

(
R+ d+

a

2

)
−→ c2K0

(
κ
(
R+ d+

a

2

))
= c3 + c4 ln

(
R+ d+

a

2

)
c3 = c2K0

(
κ
(
R+ d+

a

2

))
− c4 ln

(
R+ d+

a

2

)
(3.66)

ε

(
dψ5(r)

dr

)
R+d+a2

− ε
(

dψ4(r)

dr

)
R+d+a2

= 0

c4 = −c2 κ
(
R+ d+

a

2

)
K1

(
κ
(
R+ d+

a

2

))
(3.67)

3. Region III: R ≤ r ≤ R+ d

Here, ψ3(r) = c5 + c6 ln(r). Once again, we have the BC of continuity, between ψ4(r) and ψ3(r) at
R + d. However, the difference between the derivative of ψ4(r) and ψ3(r) is now equal to −4π σII .
Therefore,

ψ4(R+ d) = ψ3(R+ d) −→ c3 + c4 ln(R+ d) = c5 + c6 ln(R+ d)

c5 = c3 + (c4 − c6) ln(R+ d) (3.68)

ε

(
dψ4(r)

dr

)
R+d

− ε
(

dψ3(r)

dr

)
R+d

= −4πσII −→ c4
R+ d

− c6
R+ d

= −4π σII
ε

c6 = c4 +
4π σII
ε

(R+ d) (3.69)

4. Region II: R− a
2 ≤ r ≤ R
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Here, ψ2(r) = c7 + c8 ln(r). Again, one BC is of continuity, between ψ3(r) and ψ2(r), at R. Whereas,
the difference between the derivatives of ψ3(r) and ψ2(r) is now equal to −4π σI . Hence,

ψ3(R) = ψ2(R) −→ c5 + c6 ln(R) = c7 + c8 ln(R)

c7 = c5 + (c6 − c8) ln(R) (3.70)

ε

(
dψ3(r)

dr

)
R

− ε
(

dψ2(r)

dr

)
R

= −4πσI −→ c6
R
− c8
R

= −4π σI
ε

c8 = c6 +
4π σI
ε

R (3.71)

5. Region I: 0 ≤ r ≤ R− a
2

Lastly, here ψ1(r) = c9 I0(κ r) + c10K0(κ r), and one of the final BCs is that the electric field at the
pore’s center, r = 0, is equal to zero. From the Gauss’ law, the electric field is equal to minus the
divergence of the electric potential. Therefore,

lim
r→0

E(r) = 0 E(r) = −∇ · ψ(r) = −c9 κ I1(κ r) + c10 κK1(κ r)

lim
r→0

E(r) = −c9 κ����:
0

I1(κ r) + c10 κ���
��:∞K1(κ r) = 0 ∴ c10 = 0 (3.72)

Thus, the mean electrostatic potential in this interval and its derivative are

ψ1(r) = c9 I0(κ r)
dψ1

dr
= c9 κ I1(κ r)

Furthermore, the last two BCs are that of continuity between ψ2(r) and ψ1(r) at R − a/2, and the
difference between the derivatives of ψ2(r) and ψ1(r) is equal to zero. Therefore,

ψ2

(
R− a

2

)
= ψ1

(
R− a

2

)
−→ c7 + c8 ln

(
R− a

2

)
= c9 κ I1

(
κ
(
R− a

2

))
c7 = c9 κ I1

(
κ
(
R− a

2

))
− c8 ln

(
R− a

2

)
(3.73)

ε

(
dψ2(r)

dr

)
R−a2

− ε
(

dψ1(r)

dr

)
R−a2

= 0 −→ c8
R− a

2

= c9 κ I1

(
κ
(
R− a

2

))
c8 = c9 κ

(
R− a

2

)
I1

(
κ
(
R− a

2

))
(3.74)

Now, from Eqs. (3.65) to (3.74) we have ten linear equations with ten unknown variables.

c1 = 0

c3 = c2K0

(
κ
(
R+ d+ a

2

))
− c4 ln

(
R+ d+ a

2

)
c4 = −c2 κ

(
R+ d+ a

2

)
K1

(
κ
(
R+ d+ a

2

))
c5 = c3 + (c4 − c6) ln(R+ d)

c6 = c4 + 4π σII
ε (R+ d)

c7 = c5 + (c6 − c8) ln(R)

c8 = c6 + 4π σI
ε R

c10 = 0

c7 = c9 κ I1
(
κ
(
R− a

2

))
− c8 ln

(
R− a

2

)
c8 = c9 κ

(
R− a

2

)
I1
(
κ
(
R− a

2

))

(3.75)
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Solving Eq. (3.75), one finds the value of c2, and consequently of all constants

c2 =

4π
ε

{
σI R

[
I0(κ(R−a2 ))

κ(R−a2 ) I1(κ(R−a2 ))
− ln

(
R−a

2
R

)]
+ σII (R+ d)

[
I0(κ(R−a2 ))

κ(R−a2 ) I1(κ(R−a2 ))
− ln

(
R−a

2
R+d

)]}
K0

(
κ
(
R+ d+ a

2

))
+ κ

(
R+ d+ a

2

)
K1

(
κ
(
R+ d+ a

2

)) [ I0(κ(R−a2 ))
κ(R−a2 ) I1(κ(R−a2 ))

− ln
(

R−a
2

R+d+a
2

)]
(3.76)

Thence, the mean electrostatic potential is

ψ(r) =



c9 I0(κ r) 0 ≤ r ≤ R− a
2

c7 + c8 ln(r) R− a
2 ≤ r ≤ R

c5 + c6 ln(r) R ≤ r ≤ R+ d

c3 + c5 ln(r) R+ d ≤ r ≤ R+ d+ a
2

c2K0(κ r) r ≥ R+ d+ a
2

(3.77)

Meanwhile, the induced surface charge density is given by

σ(r) = −1

r

∫ ∞
r

ρel(t) t dt = σ(r) =
1

r

ε

4π

∫ ∞
r

1

t

d

dt

(
t
dψ

dt

)
t dt =

1

r

ε

4π

∫ ∞
r

t
dψ1

dt

+
1

r

ε

4π

∫ ∞
r

t
dψ5

dt
=

ε

4π

(
dψ1

dr

)
r

− ε

4π

(
dψ5

dr

)
r

(3.78)

whence, it is divided into three intervals. After obtaining the derivatives and evaluating, we have that
the induced surface charge density is

σ(r) =


ε κ
4π c9 I1(κ r) 0 ≤ r ≤ R− a

2

0 R− a
2 < r < R+ d+ a

2
ε κ
4π c2K1(κ r) r ≥ R+ d+ a

2

(3.79)

Meanwhile, the co-ion and counter-ion distribution functions are given by Eqs. (2.12) and (2.13)

g+(r) =


exp
(
− z e
k T c9 I0(κ r)

)
0 ≤ r ≤ R− a

2

0 R− a
2 < r < R+ d+ a

2

exp
(
− z e
k T c2K0(κ r)

)
r ≥ R+ d+ a

2

(3.80)

g−(r) =


exp
(
z e
k T c9 I0(κ r)

)
0 ≤ r ≤ R− a

2

0 R− a
2 < r < R+ d+ a

2

exp
(
z e
k T c2K0(κ r)

)
r ≥ R+ d+ a

2

(3.81)

Lastly, in order to obtain the total differential capacitance we must derive ψd with respect of σ. Where
σ = σI = σII and ψd is the value of ψ(r) at the cylinder’s center. Such as,

ψd ≡ lim
r→0

ψ(r) = c9���
�:1

I0(κ r) = c9 (3.82)

The total differential capacitance is obtained deriving Eq. (3.82) with respect of σ. Therefore, using
Eqs. (3.75) and (3.76) we find,

CT ≡
dψd
dσ

=

4π
ε

{
2R+ d−

(2R+d)
I0(κ(R−

a
2 ))

κ(R−a2 ) I1(κ(R−
a
2 ))
−R ln

(
R−a2
R

)
−(R+d) ln

(
R−a2
R+d

)
K0(κ(R+d+a2 ))

κ (R+d+a2 )K1(κ(R+d+a2 ))
+

I0(κ(R−
a
2 ))

κ(R−a2 ) I1(κ(R−
a
2 ))
−ln

(
R−a2
R+d+a2

)
}

κ
(
R− a

2

)
I1
(
κ
(
R− a

2

)) (3.83)
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3.3 The electrical double layer of a spherical nano-pore electrode

The electrical double layer of a spherical nano-pore electrode is shown in Fig. 3.3. The radius of
the sphere is R and the sphere’s wall thickness is d. The sphere is permeable, so that the chemical
potentials outside and inside the pore are equal. The ion’s size diameter is equal to a. Other model
parameters are the same as those described in Section 3.1. Due to the symmetry of this nano-pore,
the electrostatics in Fig. 3.3 is divided into five regions.

Figure 3.3: The geometry of the electrical double layer in a spherical nano-pore.

Since there is no charge in regions II, III, and IV, the mean electrostatic potential is governed by
the Laplace equation, which in spherical coordinates is,

1

r2
∂

∂r

(
r2
∂ψ(r)

∂r

)
= 0 (3.84)

whereas, in regions I and V the PB-eq, in spherical coordinates, is valid

1

r2
∂

∂r

(
r2
∂ψ(r)

∂r

)
= −4π

ε
ρel(r) (3.85)

where ψ(r) is the mean electrostatic potential

3.3.1 The electrostatics of a spherical pore

1. Region V: r ≥ R+ d+ a
2

The boundary conditions are given by
lim
r→∞

ψ5(r) = 0

lim
r→∞

dψ5(r)

dr
= 0

Integrating Eq. (3.85) yields

ψ5(r) = −4π

ε

∫ ∞
r

dr′

r′2

∫ ∞
r′

x2ρel(x) dx
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Thus,

ψ5(r) =
4π

ε r

∫ ∞
r

r′
(
r − r′

)
ρel(r

′) dr′ (3.86)

For r = R+ d+ a
2

ψIV ≡ ψ5

(
R+ d+

a

2

)
=

4π

ε
(
R+ d+ a

2

) ∫ ∞
R+d+a

2

r′
(
R+ d+

a

2
− r′

)
ρel(r

′) dr′

2. Region IV: R+ d ≤ r ≤ R+ d+ a
2

To avoid image forces we assume that the dielectric constant of the spherical pore is equal to that of
the solution. Then the boundary conditions are given by

ψ4

(
R+ d+

a

2

)
= ψIV(

dψ5(r)

dr

)
R+d+a2

−
(

dψ4(r)

dr

)
R+d+a2

= 0

Integrating Eq. (3.84) and applying the boundary conditions yields

r2
dψ4(r)

dr
=

4π

ε

∫ ∞
R+d+a

2

r2ρel(r) dr

Integrating the above and using the continuous potential boundary conditions, we find

ψ4(r) =
4π

ε r

∫ ∞
R+d+a

2

r′
(
r − r′

)
ρel(r

′) dr′ (3.87)

In particular,

ψIII ≡ ψ4 (R+ d) =
4π

ε (R+ d)

∫ ∞
R+d+a

2

r′
(
R+ d− r′

)
ρel(r

′) dr′ (3.88)

3. Region III: R ≤ r ≤ R+ d

The boundary conditions are
ψ3(R+ d) = ψIII

ε

(
dψ4(r)

dr

)
R+d

− ε
(

dψ3(r)

dr

)
R+d

= −4π σII

From Eq. (3.84) and applying the boundary conditions, we obtain

ψ3(r) = −4π (R+ d)2 σII
ε

(
1

r
− 1

R+ d

)
+

4π

ε r

∫ ∞
R+d+a

2

r′
(
r − r′

)
ρel(r

′) dr′

In particular,

ψII ≡ ψ3(R) = −4π (R+ d)2 σII
ε

(
1

R
− 1

R+ d

)
+

4π

εR

∫ ∞
R+d+a

2

r′
(
R− r′

)
ρel(r

′) dr′

From Eqs. (3.87) and (3.88) it follows that

ψII = ψIII −
(

1

R
− 1

R+ d

)[
4π (R+ d)2 σII

ε
+

4π

ε

∫ ∞
R+d+a

2

r′
(
R− r′

)
ρel(r

′) dr′

]
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4. Region II: R− a
2 ≤ r ≤ R

Here the boundary conditions are
ψ2(R) = ψII (3.89)

ε

(
dψ3(r)

dr

)
R

− ε
(

dψ2(r)

dr

)
R

= −4π σI

From Eq. (3.84) and the boundary conditions, we find

r2
dψ2(r)

dr
=

4π R2 σI
ε

+
4π (R+ d)2 σII

ε
+

4π

ε

∫ ∞
R+d+a

2

r′ 2ρel(r
′) dr′

Integrating the above and using Eq. (3.89), we obtain

ψ2(r) =
4π R2 σI

ε

(
1

R
− 1

r

)
+

4π (R+ d)2 σII
ε

(
1

R+ d
− 1

r

)
− 4π

ε r

∫ R−a
2

0
r′
(
r′ − r

)
ρel(r

′) dr′

In particular,

ψI ≡ ψ2

(
R− a

2

)
=

4π

ε
(
R− a

2

) [RσI a
2
− (R+ d)σII

(
d+

a

2

)
−
∫ R−a

2

0
r′
(
r′ −R+

a

2

)
ρel(r

′) dr′

]
5. Region I: 0 ≤ r ≤ R− a

2

The boundary conditions are the following

ψ1

(
R− a

2

)
= ψI(

dψ2(r)

dr

)
R−a2

−
(

dψ1(r)

dr

)
R−a2

= 0

Integrating Eq. (3.85) and applying the boundary conditions yields

ψ1(r) = −4π

ε r

∫ R−a
2

0
r′
(
r′ − r

)
ρ(r′) dr′ − 4π

ε r

∫ ∞
R+d+a

2

r′
(
r′ − r

)
ρ(r′) dr′

+
4π R2 σI

ε

(
1

R
− 1

r

)
+

4π (R+ d)2 σII
ε

(
1

R+ d
− 1

r

) (3.90)

3.3.2 The analytical solution of the LPBS for the electrical double layer of a
spherical nano-pore electrode

In Section 2.3 it was seen from Eq. (2.33) that the linearization of the Laplace and Poisson-Boltzmann
equations in spherical coordinates are given by

d2ψ

dr2
+

2

r

dψ

dr
= 0 (3.91)

d2ψ

dr2
+

2

r

dψ

dr
= κ2 ψ(r) (3.92)

Hence, their general solutions, and derivatives are

ψ(r) = A+
B

r

dψ

dr
= −B

r2
(3.93)
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ψ(r) = A
eκ r

r
+B

e−κ r

r

dψ

dr
=
Aeκ r(κ r + 1)−B e−κ r(κ r + 1)

r2
(3.94)

Continuously, the five regions are treated individually with their respective BCs. Each region will be
introduced through its interval and solution of the mean electrostatic potential. As for the slit-pore
or the cylindrical pore, in each region two BCs will be introduced in order to find the values of the
constants. This is true for all the regions, with the exception of regions V and I, where one and three
BC are used, respectively.

1. Region V: r ≥ R+ d+ a
2

Here, ψ5(r) = c1
eκ r

r + c2
e−κ r

r , and the first BC is that the electric field is equal to zero at infinity.
From the Gauss’ law, we know that the electric field is equal to minus the divergence of the electric
potential. Hence,

lim
r→∞

E(r) = 0 E(r) = −∇ · ψ(r) = −c1 e
κ r(κ r + 1)− c2 e−κ r(κ r + 1)

r2

lim
r→∞

E(r) = −c1��
��

���:∞eκ r(κ r + 1) − c2���
���

�: 0

e−κ r(κ r + 1)

r2
= 0 ∴ c1 = 0 (3.95)

Hence, the mean electrostatic potential in this interval and its derivative are

ψ5(r) = c2
e−κ r

r

dψ5

dr
= −c2

e−κ r(κ r + 1)

r2

2. Region IV: R+ d ≤ r ≤ R+ d+ a
2

Here, ψ4(r) = c3 + c4
r . The next BC is the continuity of the mean electrostatic potential. Hence,

ψ5(r) and ψ4(r) are equal at R + d + a
2 . Furthermore, if the dielectric constant of the electrodes and

electrolytes are equal, the difference between their derivatives, ψ5(r) and ψ4(r), is equal to zero at
R+ d+ a

2 . Hence,

ψ5

(
R+ d+

a

2

)
= ψ4

(
R+ d+

a

2

)
−→ c2

e−κ(R+d+a
2 )

R+ d+ a
2

= c3 +
c4

R+ d+ a
2

c3 =
1

R+ d+ a
2

(
c2 e
−κ(R+d+a

2 ) − c4
)

(3.96)

ε

(
dψ5(r)

dr

)
R+d+a2

− ε
(

dψ4(r)

dr

)
R+d+a2

= 0

c4 = c2 e
−κ (R+d+a

2 )
[
κ
(
R+ d+

a

2

)
+ 1
]

(3.97)

3. Region III: R ≤ r ≤ R+ d

Here, ψ3(r) = c5 + c6
r . Once again, we have the BC of continuity, between ψ4(r) and ψ3(r) at R + d.

However, the difference between the derivative of ψ4(r) and ψ3(r) is now equal to −4π σII . Therefore,

ψ4(R+ d) = ψ3(R+ d) −→ c3 +
c4

R+ d
= c5 +

c6
R+ d

c5 = c3 +
c4 − c6
R+ d

(3.98)
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ε

(
dψ4(r)

dr

)
R+d

− ε
(

dψ3(r)

dr

)
R+d

= −4π σII −→ − c4
(R+ d)2

+
c6

(R+ d)2
= −4π σII

ε

c6 = c4 −
4π σII
ε

(R+ d)2 (3.99)

4. Region II: R− a
2 ≤ r ≤ R

Here, ψ2(r) = c7 + c8
r . Again, one of the BCs is of continuity, between ψ3(r) and ψ2(r), at R. On the

other hand, the difference between the derivative of ψ3(r) and ψ2(r) is now equal to −4π σI . Therefore,

ψ3(R) = ψ2(R) −→ c5 +
c6
R

= c7 +
c8
R

c7 = c5 +
c6 − c8
R

(3.100)
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)
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dψ2(r)
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)
R

= −4πσI −→ − c6
R2

+
c8
R2

= −4π σI
ε

c8 = c6 −
4π σI
ε

R2 (3.101)

5. Region I: 0 ≤ r ≤ R− a
2

Lastly, here ψ1(r) = c9
eκ r

r + c10
e−κ r

r , and one of the final BCs is that the electric field at the pore’s
center, r = 0, is equal to zero. From the Gauss’ law, the electric field is equal to minus the divergence
of the electric potential. Therefore,

lim
r→0

E(r) = 0 E(r) = −∇ · ψ(r) = −c9 e
κ r(κ r + 1)− c10 e−κ r(κ r + 1)

r2

lim
r→0

E(r) = −c9��
���

��: 1
eκ r(κ r + 1) − c10���

��
��: 1

e−κ r(κ r + 1)

r2
= 0 ∴ c9 = −c10 (3.102)

Hence, the mean electrostatic potential in this interval and its derivative are

ψ1(r) = 2 c9
sinh(κ r)

r

dψ1

dr
= 2 c9

κ r cosh(κ r)− sinh(κ r)

r2

Furthermore, the last two BCs are of continuity between ψ2(r) and ψ1(r) at R − a/2, and that the
difference between the derivative of ψ2(r) and ψ1(r) is equal to zero. Hence,
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2
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(3.103)
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(3.104)
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Now, from Eqs. (3.95) to (3.104) we have ten linear equations with ten unknown variables.

c1 = 0

c3 = 1
R+d+a

2

(
c2 e
−κ(R+d+a

2 ) − c4
)

c4 = c2 e
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2
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+ 1
]
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c6 = c4 − 4π σII
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R
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(3.105)

Solving Eq. (3.105), one finds the value of c2 and consequently all the other constants

c2 =
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ε κ
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2
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κ
(
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(3.106)
Hence the mean electrostatic potential is

ψ(r) =



2 c9
sinh(κ r)

r 0 ≤ r ≤ R− a
2

c7 + c8
r R− a

2 ≤ r ≤ R
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r R ≤ r ≤ R+ d
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(3.107)

Meanwhile, the induced surface charge density is given by

σ(r) = − 1

r2

∫ ∞
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(3.108)

Hence, it is divided into three intervals. After obtaining the derivatives and evaluating, we have that
the induced surface charge density is

σ(r) =


ε
2π c9

κ r cosh(κ r)−sinh(κ r)
r2

0 ≤ r ≤ R− a
2

0 R− a
2 < r < R+ d+ a

2
ε
4π c2

e−κ r(κ r+1)
r2

r ≥ R+ d+ a
2

(3.109)

Further, the co-ion and counter-ion distribution functions are given by Eqs. (2.12) and (2.13)

g+(r) =
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−2 z e
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)
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(3.110)
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g−(r) =
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Finally, in order to obtain the total differential capacitance we must derive ψd with respect of σ. In
this case σ = σI = σII and ψd is the value of ψ(r) at the pore’s center. Such as,

ψd ≡ lim
r→0

ψ(r) = 2 c9
��

��
�*1

sinh(κ r)

r
= 2 c9 (3.112)

The total differential capacitance, CT , is obtained deriving Eq. (3.112) with respect of σ and using
Eqs. (3.105) and (3.106). Hence,

CT ≡
dψd
dσ

=
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3.4 Topological dependence of the co-ion and counter-ion distribution
functions on nano-pores’ electrodes

In this section a comparison between the co-ion and counter-ion distribution functions of the different
nano-pore electrodes topology is made. However, due to the complexity of our systems, in this thesis we
will limit ourselves to the case in which the inner and outer surface charges are equal [σ = σI = σII ] or
the unscreened electrical fields, are equal [Euω(r = R−a/2) = Euω (r = R+d+a/2) · 3 · ω = P,C, S],
and the wall’s thickness, d, is always fixed to d = 5Å. Therefore, here we explore only the dependence
of these density profiles on the nano-pore’s charge and size, and the electrolyte’s molar concentration,
ρ0, and temperature, T . Thus, in order to compare the co-ion and counter-ion distribution functions
among the different nano-pores, we first explore the influence that the pores’ size has on the electric
double layer. As in Section 2.4, for the solid nano-pores, the influence that the pore’s radius has on the
different pore’s topology also depends on whether the unscreened electric fields or surface charges are
fixed (see Fig. 3.4, and Eqs. (2.44) to (2.46)), i.e., in addition to studying the constant surface charge
density boundary conditions, the following boundary conditions are also considered;

EuP (r = t− a/2) = EuP (r = t+ d+ a/2)

EuC(r = R− a/2) = EuC(r = R+ d+ a/2)

EuS (r = R− a/2) = EuS (r = R+ d+ a/2)

(3.114)

From Fig. 3.4, it can be seen that, as in Section 2.4, the higher contact values of the density profiles
are obtained when equal unscreened electric fields are used. Concretely, the difference between the
constant surface charge and the constant unscreened electrical fields reduced concentration profiles is
remarkably higher for the smaller radius, as it would be expected from the relations of Eqs. (2.49)
and (2.50). As the radius increases, the difference between both cases becomes significantly smaller,
such that at a pore’s radius of 200Å, they basically overlap. It is worth noting that outside the pore,
regardless of the pore’s size, the adsorption of co-ions and counter-ions follows the same tendency, the
higher values are obtained for the slit-pore, followed by the cylindrical and spherical pores. As the
radius increases the density profiles outside the pore tend rapidly to those of the plates. However, it
is only in the limit of R→∞ that the inside and outside concentration distribution functions become
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(a) The density profiles for R = 5Å ∼= 1.2 a. (b) The density profiles for R = 30Å ∼= 7.1 a.

(c) The density profiles for R = 80Å ∼= 18.8 a. (d) The density profiles for R = 200Å ∼= 47.1 a.

Figure 3.4: The co-ion, g+(r), and counter-ion, g−(r), distribution functions of the LPBS of three
nano-pore geometries, for different pores’ sizes. The lighter and darker lines represent when equal
electric fields and surface charges are used. The vertical dashed and straight lines represent the outer
Helmholtz plane (OHP), and inner Helmholtz plane (IHP).

symmetrically equal [79], and equivalent to the solid slit nano-pore discussed in Section 2.4. In general,
the EDLs inside and outside the pores are correlated; this correlation depends on the radius, R, and
the thickness, d of the pore’s wall [80]. Notwithstanding, here we will only consider the d = 5Å case,
and leave the study of this correlation with other values of d for a future work.

For a radius of 5Å, it is observed that inside the pores, i.e., for 0 6 r 6 (R−a/2) = (5−2.125)Å u
2.35 a/2, the adsorption of co-ions and counter-ions is constant, and it is highest for the slit-pore,
followed by the cylindrical and spherical pores. At this small radius, only a little more than two ions
in straight line, can be fitted. These adsorptions are higher for the constant electrical field boundary
conditions, where E(r = R−a/2), implies a higher surface charge density, as discussed in Section 2.4.2.

When the pore’s radius is increased, the inner reduced counter-ion concentration profiles, g−(r), of
all the nano-pores, decay in the entire inner interval. The opposite is true for the co-ions concentration
profiles, g+(r), i.e., the absorption of counter-ions, inside the pores, surmount that of the co-ions, as one
could expect. For a radius of 30Å, the counter-ion concentration profile of the cylindrical pore, gc−(r),
at constant unscreened electrical field, becomes higher than those for the other two pore’s geometries.
However, for both boundary conditions, i.e., constant charge and constant unscreened electrical field,
the cylindrical, gc−(r), and spherical, gs−(r), surpass that of the slit-pore, gp−(r), at least in part of the
interval inside the pores. For a larger radius, R = 80Å, gs−(r) > gc−(r) > gp−(r), ∀ r · 3 · 0 6
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r 6 R − a/2. If the radius is increased enough, i.e., R = 200Å, the concentration profiles of all the
pores become nearly equal to that of the solid electrode discussed in Section 2.4.2, ∀ r · 3 · 0 6
r 6 R − a/2

⋃
R + d + a/2 6 r 6 ∞, as could be expected. Nevertheless, even at this large

pore radius, for 0 6 r 6 R − a/2, the counter-ion profile of the spherical pore slightly overcomes that
of the cylindrical pore, and this last surpass that of the slit-pore. Increasing R, implies augmenting
the charge on the spherical and cylindrical pores, while that of the slit is independent of inter-plate
distance t; with more charge on the spherical pore than in the cylindrical pore, for a given value of R,
of course. This explains the observed higher counter-ion contact values of the spherical and cylindrical
nano-pores, over that of the slit-pore. However, this effect can not explain, not only the lower counter-
ion contact values of all the pores, with increasing R, but also the lower counter-ion profiles of all the
nano-pores, for all r, inside and outside of the pores. This is a confinement effect, due to the need of
the systems to maintain the inner chemical potential equal to that outside the pore. External to the
pores the chemical potential is that of the bulk electrolyte, which is the same, of course, for all the
pore geometries here considered, since the bulk concentration profile is taken to be same for all the
pore geometries, i.e., ρ0 = 0.01 M. The Poisson-Boltzmann equation is basically a statistical mechanics
version of the Gauss’ law, where the charge density is taken from the canonical partition function of
the system. Hence this equation forces the conservation of charge, energy and probability in the system
where it is applied, and, therefore, guaranties a constant chemical potential throughout the system [43].

(a) The density profiles for σ = 0.005 C/m2. (b) The density profiles for σ = 0.01 C/m2.

(c) The density profiles for σ = 0.015 C/m2. (d) The density profiles for σ = 0.02 C/m2.

Figure 3.5: The density profiles, gi(r), of the LPBS for three pore geometries, while the electrodes’
surface charges, σ = σI = σII , are varied for a monovalent electrolyte, and a pore’s radius of 5Å ∼= 1.2 a.
The lighter and darker lines, and the vertical lines have the same meaning as in Fig. 3.4.
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As seen, in Fig. 3.4 if one wishes to observe the impact that the electrodes’ charge density, and
electrolytes’ molar concentration, and temperature have on the co-ion and counter-ion distribution
functions of the different pores, one needs to choose the pore’s radius. Since we are interested in small
nano-pores, we choose three pores’ radii, 5Å, 15Å and 80Å. With these radii, we will obtain the
density profiles for different parameters; the electrodes’ charge density, the electrolytes’ concentration
and temperature.

In Fig. 3.5 the density profiles are plotted for the different pore geometries, for a pores’ radius of
5Å, while the electrode’s surface charge is varied, for both the equal electric field case and surface
charge case. As expected, it is observed that for all the electrodes’ surface charges, the adsorption of
ions is higher when equal electric fields are used. Furthermore, it should also not come as a surprise,
that when the electrode’s surface charge increases, the case of equal electric fields rises more than that
of equal surface charges. Nonetheless, the equal electric fields concentration profiles of the cylindrical
and spherical pores, never reach close to that of the slit-pore, as the plates’ density profiles increase
exponentially. As in Fig. 3.4, the co-ion and counter-ion distributions remained constant through
the inside of the pore, regardless of the electrode’s surface charge. This behavior translates in that
due to the small pore’s radii, the pores are filled with counter-ions, with a very strong attraction to
counter-ions and a very strong repulsion to co-ions. If the ionic size had been considered in the ion-ion
interaction potential, the ionic size would be an additional obstacle for the co-ions to squeeze into the
pores.

(a) The density profiles for σ = 0.005 C/m2. (b) The density profiles for σ = 0.01 C/m2.

(c) The density profiles for σ = 0.015 C/m2. (d) The density profiles for σ = 0.02 C/m2.

Figure 3.6: The density profiles, gi(r), of the LPBS for three pore geometries, while the electrodes’
surface charges, σ = σI = σII , are varied for a monovalent electrolyte, and a pore’s radius of 15Å ∼=
3.5 a. The lighter and darker lines, and the vertical lines have the same meaning as in Fig. 3.4.
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In Fig. 3.6 the density profiles are plotted for the different pore geometries, for a pore’s radius of
15Å, while varying the electrodes’ surface charges, for equal electric fields and surface charges. It is
observed that when the pores’ radius increases from 5Å to 15Å, the slit-pore concentration profiles,
decrease considerably, and those for the cylindrical and spherical nano-pores density profiles become
closer to those of the plates. Furthermore, it is also observed that now, for higher radii, the inner
contact values of the density profiles, do not stay constant through all the pore. It is observed that
this value softly decays as it approaches the pore’s center. Therefore, the counter-ions are not as highly
compacted as before, since their concentration slightly decreases at the pore’s center. Moreover, when
Figs. 3.4b and 3.6 are compared, it is found out that at a radius of 15Å the pores are not large enough
for breaking down the slit-pore’ domination over the other pores’ density profiles.

(a) The density profiles for σ = 0.005 C/m2. (b) The density profiles for σ = 0.01 C/m2.

(c) The density profiles for σ = 0.015 C/m2. (d) The density profiles for σ = 0.02 C/m2.

Figure 3.7: The density profiles, gi(r), of the LPBS for three pore geometries, while the electrodes’
surface charges, σ = σI = σII , are varied for a monovalent electrolyte, and a pore’s radius of 80Å ∼=
18.8 a. The lighter and darker lines, and the vertical lines have the same meaning as in Fig. 3.4.

In Fig. 3.7 the density profiles for different pore geometries, at a pore’s radius of 80Å, are shown
for equal electric fields and surface charges. Once again, as for all the other previously shown plots, it
is observed that as the electrode’s surface charge density increases the density profiles follow. However,
now the pore’s radius is large enough such that the cases of equal electric fields and surface charges are
nearly equal. Furthermore, as the radius was increased from 15Å to 80Å it was found that the density
profiles, inside the pores, of the cylindrical and spherical pores overpass the slit-pore’. However, they
do not surmount that of the slit, outside the pores. This is a confinement effect, and as we will see in
Chapter 4, the induced charge inside the slit-pore is higher than those of the spherical and cylindrical
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pores. Moreover, it is observed that for this pore’s radius there is a significant drop of the density
profile inside the pore. Therefore, there is a higher amount of counter-ions close to the pores’ wall, and
lower on its center. If the radius is increased further, the counter-ion and co-ion distributions drop will
be nearly the same as that of a solid electrode.

(a) The density profiles for ρ0 = 0.001 M. (b) The density profiles for ρ0 = 0.01 M.

(c) The density profiles for ρ0 = 0.1 M. (d) The density profiles for ρ0 = 0.5 M.

Figure 3.8: The density profiles of the three pore geometries obtained for varied molar concentrations,
ρ0, of a monovalent electrolyte. A pore’s radius of 5Å ∼= 1.2 a is used. The lighter and darker lines,
and the vertical lines have the same meaning as in Fig. 3.4.

In Fig. 3.8 the impact that the electrolyte’s molar concentration, ρ0, has on the co-ion and counter-
ion distribution functions for a pore’s size of 5Å is shown, for an electrodes’ surface charge density
of 0.015 C/m2. The cases of equal electric fields and of equal surface charge density are presented.
It is found that the reduced concentration profiles diminish as the electrolyte’s molar concentration
increases. Furthermore, it is observed that for the lower molar concentrations, 0.001 M and 0.01 M,
the density profiles inside the pore remain constant. On the other hand, when the molar concentration
reaches values equal or higher than 0.1 M, the density profiles inside the pore start decreasing from their
inner contact value. Furthermore, it is observed that the inner density profile of the plates is overcome
by the spherical and cylindrical pores for equal electric fields and for a molar concentration of 0.1 M.
Moreover, it is also overcome for equal surface charges for a concentration of 0.5 M. Meanwhile, for
the outer pore, the concentration profiles also diminish when the concentration increases, and for the
highest bulk concentration (0.5 M), for the equal electric field cases’, the spherical and cylindrical pores’
concentration profiles overcome the contact values of the plates. Notice the ample, higher, difference
between the inner and outer contact values, implying a lower effective electric field at r = R+d+a/2,
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(a) The density profiles for ρ0 = 0.001 M. (b) The density profiles for ρ0 = 0.01 M.

(c) The density profiles for ρ0 = 0.1 M. (d) The density profiles for ρ0 = 0.5 M.

Figure 3.9: The density profiles of the three pore geometries obtained for varied molar concentrations,
ρ0, of a monovalent electrolyte. A pore’s radius of 15Å ∼= 3.5 a is used. The lighter and darker lines,
and the vertical lines have the same meaning as in Fig. 3.4.

(a) The density profiles for ρ0 = 0.001 M. (b) The density profiles for ρ0 = 0.01 M.

Figure 3.10: The density profiles of the three pore geometries obtained for varied molar concentrations,
ρ0, of a monovalent electrolyte. A pore’s radius of 80Å ∼= 18.8 a is used. The lighter and darker lines,
and the vertical lines have the same meaning as in Fig. 3.4.

as a result of the need of the systems of satisfying their general electroneutrality. This also implies
that the induced electric field produced by the confined electrolyte goes across the pore walls, hence,
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explaining in part the correlation between the inside and outside electrical double layers.
In Fig. 3.9 the impact that the molar concentration, ρ0, has on the co-ion and counter-ion distribu-

tion functions for the different nano-pore electrodes is shown, when a pore’s size of 15Å is used. The
same electrode’s surface charge density used in Fig. 3.8 is used for Fig. 3.9, and also the equal electric
fields and surface charges are shown. Therefore, when the pores’ radii is increases from 5Å to 15Å it
is found that the concentration profiles intensity decreases. Also the difference between the inner and
outer contact values decrease. These phenomena are the result of a complex combination of the need of
the systems of satisfying the chemical potential and electroneutrality. Furthermore, it is found that for
the highest molar concentrations, 0.1 M and 0.5 M, both the equal electric fields and surface charges of
the cylindrical and spherical pores overcome the density profile of the slit-pore. Moreover, it is observed
that at such concentrations the inner pore resembles more a solid electrode when compared against
their respective concentrations of Fig. 3.8. The very high values of counter-ion concentration profiles,
inside and outside the pores, seen in Figs. 3.8a and 3.9a show that at this very low concentration the
counter-ions are very highly adsorbed to the pores walls. It is tempting to adjudicate this behavior
to the fact that in this point-ion model, the ion-ion hard-core interactions are neglected. However,
if the ionic size is considered, as for example in the Restricted Primitive Model, the qualitative and
quantitative agreement with the present results is surprisingly good (not shown). However, this study

(a) The density profiles for R = 5Å ∼= 1.2 a. (b) The density profiles for R = 15Å ∼= 3.5 a.

(c) The density profiles for R = 80Å ∼= 18.8 a.

Figure 3.11: The density profile functions, gi(r), of three pore electrodes, for three radii, while the
temperature, T , is varied. The lighter and darker lines, and the vertical lines have the same meaning
as in Fig. 3.4.
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will be left to a forthcoming investigation. On the other hand, it has been shown that at very narrow
pore’s size, the non-linear Poisson-Boltzmann equation deviates from the HNC/MSA result [81], but it
has also been shown that the non-linear Poisson-Boltzmann theory has a remarkable good quantitative
and qualitative agreement with HNC/MSA, in the calculation of transport properties of confined elec-
trolytes, at very narrow pores and very low electrolyte concentration [82]. Thus, the strong increase
in the inner reduced concentration profile is basically a confinement effect. We will come back to this
point in Section 4.2.2.

In Fig. 3.10 the impact the molar concentration, ρ0, has on the co-ion and counter-ion distribution
functions for the different pores is shown, for a pore’s radius of 80Å. From Figs. 3.8 and 3.9, it
was found that when the molar concentration and the pores’ radius are increased simultaneously, the
density profiles inside and outside the pore quickly tend to that of a solid electrode. Consequently, for
a pore’s radius of 80Å we decided not to include the cases of higher molar concentration as they are
almost identical to that of a solid electrode. Nevertheless, for a low molar concentration of 0.001 M it
is found that the density profile of a cylindrical pore overruns that of the slit-pore. And for a higher
concentration, 0.01 M, the slit-pore density profiles come last, as they are overtaken by the spherical
and cylindrical pores’ density profiles.

Lastly, in Fig. 3.11 the co-ion and counter-ion distribution functions of the different nano-pores
are shown for different radii, while the temperature is increased. It is found that for the smaller radii,
5Å and 15Å, the density profiles inside the pore decrease as the temperature increases. On the other
hand, for a radius of 80Å, this behavior is only seen close to the pores’ walls (both inside and outside),
while away from the the wall, the tendency is inverted. Close to the pores’ wall when the temperature
increases, the density profiles decrease, but when the distance from the pores’ wall is long enough,
around 6 a, this tendency is inverted. Then, after a distance of 6 a from the inside wall, toward the
center of the pore, when the temperature is increased the density profiles increase as well, for any pore.
The distribution functions are given by Eq. (3.4), thus an increase in temperature, can also be seen as
a decrease of ionic valence or surface charge. The crossover of the distribution functions, for 6 a, is a
consequence of the electroneutrality condition.
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Chapter 4

Mean electrostatic potential, induced
charge density and differential capacitance

In this chapter, the results of the mean electrostatic potential, the induced surface charge density
profiles and the differential capacitance are obtained for the solid and nano-pores electrode’s geometries.
These are presented in the first and second section, respectively. The mean electrostatic potentials
and the induced surface charge density profiles are obtained for different electrodes’ radii, and surface
charge densities, and for different electrolytes molar concentration, and temperature for both solid and
nano-pore geometries. Further, the differential capacitance is calculated for different electrodes’ radii,
and for various electrolytes’ temperatures, and molar concentrations.

4.1 The single electric double layer for solid electrodes

The electrical parameters used in Chapter 2 for the different solid electrodes are merged together in the
following subsections. An analysis is performed between each geometry to find out which one performs
best.

Firstly, the mean electrostatic potential is plotted for the p-LPBS and p-nLPBS to observe how does
our linearization behave against our non-linearized solution. The same interval of validity found for
the density profiles is used. Afterwards, a comparison is made between the linear results of the mean
electrostatic potential for all the electrode geometries. Subsequently, the same comparison against
the p-LPBS and p-nLPBS is performed for the surface charge density, as well as against other solid
electrode geometries.

Secondly, the differential capacitance is calculated and compared for the different electrodes. A
comparison between the linear (independent of σM) and the non-linear (dependent on σM) capacitance
is done for the solid planar electrode, while different electrolytes’ molar concentrations and temper-
atures are used. Subsequently, a comparison between the linear differential capacitances of the solid
cylindrical and spherical electrodes is performed for different electrodes’ radii, while the electrolytes’
temperature and molar concentration are changed.

It is worth noting that we consider an aqueous symmetric electrolyte (1:1) with an electric permit-
tivity of 78.5, and an ion’s size of 4.25Å, at a room temperature of 298 K, unless stated otherwise.

4.1.1 The mean electrostatic potentials of solid electrodes

In this subsection, our results of the mean electrostatic potentials are shown for different electrode’s
geometries. Firstly, a comparison between the linear and non-linear mean electrostatic potential is made
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for a plane electrode. Secondly, we perform a comparison of the linear mean electrostatic potentials
of the different electrodes. We start by varying the electrode’s size, and afterwards its surface charge
density, whereas for the electrolyte we vary its molar concentration and temperature.

4.1.1.1 The linear and non-linear mean electrostatic potentials of a solid planar electrode

(a) ψ(x) for ρ0 = 0.01 M. (b) ψ(x) for ρ0 = 0.1 M.

Figure 4.1: The linear and non-linear mean electrostatic potential, ψ(x), of a solid planar electrode
for different electrode’s surface charge densities, σM . The linear and non-linear mean electrostatic
potentials are represented by a solid and dashed line, respectively.

In Fig. 4.1 the linear and non-linear mean electrostatic potentials of a solid planar electrode are
plotted for different electrode’s surface charge densities. It is observed that the linear approximation
is a good fit of the non-linear mean electrostatic potential for low surface charges. As it was expected,
from Section 2.4.1, our linear solutions of the mean electrostatic potentials are a good fit of the non-
linear ones for surface charge up to 0.015 C/m2 and 0.05 C/m2 for molar concentrations of 0.01 M and
0.1 M, respectively. This is due to the fact that at such limit points our non-linear mean electrostatic
potential approaches an asymptotic limit. On the other hand, the linear mean electrostatic potentials

(a) ψ(x) for σM = 0.015 C/m2. (b) ψ(x) for σM = 0.05 C/m2.

Figure 4.2: The linear and non-linear mean electrostatic potential, ψ(x), of a solid planar electrode
while the molar concentration, ρ0, is varied. The solid and a dashed lines have the same meaning as
in Fig. 4.1.
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do not, they steadily grow, surpassing this limit. Hence, it is not advisable to work for surface charge
densities higher than 0.015 C/m2 and 0.05 C/m2 for molar concentrations of 0.01 M and 0.1 M, when
considering the linear case, as it stops being an accurate representation of the non-linear case.

It was found for the plane’s linear mean electrostatic potentials in Fig. 4.1 that the upper limits
of the electrodes’ surface charge are 0.015 C/m2 and 0.05 C/m2 at molar concentrations of 0.01 M and
0.1 M. Now, in order to find the interval of validity of the molar concentrations, these surface charges
are used while the electrolyte’s molar concentration is varied, in Fig. 4.2. From this figure it is observed
that our linear mean electrostatic potential is a good approximation of the non-linear when the molar
concentrations are higher than or equal to, 0.01 M and 0.1 M, for their respective surface charge,
0.015 C/m2 and 0.05 C/m2. Therefore it is observed that our linear solution of the mean electrostatic
potential can withstand higher surface charges for higher molar concentrations, without jeopardizing
the validity of the linear mean electrostatic potential against the non-linear one. Furthermore, it is
observed that the voltage is inversely proportional to the molar concentration.

4.1.1.2 The mean electrostatic potentials of different geometries

From here forward, unless stated otherwise, only the mean electrostatic potentials of our LPBS while
be shown. Firstly, a comparison between the mean electrostatic potentials of different solid electrodes

(a) ψ(r) for R = 5Å ∼= 1.2 a. (b) ψ(r) for R = 30Å ∼= 7.1 a.

(c) ψ(r) for R = 80Å ∼= 18.8 a. (d) ψ(r) for R = 200Å ∼= 47.1 a.

Figure 4.3: The mean electrostatic potentials, ψ(r), of the different solid electrode geometries for
various radii values. The lighter and darker lines represent two distinct cases, when equal electric fields
and surface charges are used.
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is made. Because the solid cylindrical and spherical electrodes depend on their radius, their mean
electrostatic potentials are plotted for different radii in Fig. 4.3. They are plotted for the two cases
used in Chapters 2 and 3, when equal electric fields and surface charges are used. Meanwhile, the linear
mean electrostatic potential of the solid planar electrode is plotted as well for comparison purposes.

From Fig. 4.3 it is seen that the highest mean electrostatic potentials are always achieved for
the solid planar electrode. Furthermore, it is also found that when equal electric fields are used,
specially for low radii, higher values of the mean electrostatic potentials are achieved when compared
against the equal surface charge cases. Furthermore, it is seen that the mean electrostatic potentials
of the cylindrical and spherical electrodes are directly proportional to the radii size. Their mean
electrostatic potentials intensity and extension, increase when a bigger radius is used. Additionally, it
is observed that the mean electrostatic potential of the solid cylindrical electrode is always higher and
more intensive than the spherical one, for the same radii. Lastly, but not least, when the radius is large
enough, both the solid cylindrical and spherical electrodes’ mean electrostatic potentials tend to the
mean electrostatic potential of the solid planar electrode. As seen in Fig. 4.3, if one wishes to compare
the influence of the electrode’s surface charge density, and the electrolyte’s molar concentration and
temperature have on the mean electrostatic potential of different electrodes, a fixed radius must be
chosen. For this purpose, we will use three radii, 5Å, 15Å and 80Å, to see the collective impact that
the radius and other electric parameters have on the mean electrostatic potential.

(a) ψ(r) for σM = 0.005 C/m2. (b) ψ(r) for σM = 0.01 C/m2.

(c) ψ(r) for σM = 0.015 C/m2. (d) ψ(r) for σM = 0.02 C/m2.

Figure 4.4: The linear mean electrostatic potentials, ψ(r), of a solid planar, a cylindrical, and a
spherical electrodes. A radius of 5Å ∼= 1.2 a is used, while the electrodes’ surface charge, σM , is varied.
The lighter and darker lines have the same meaning as in Fig. 4.3.
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Therefore, in Fig. 4.4 the mean electrostatic potentials of the three solid electrodes are plotted for
different surface charges, with a radius of 5Å. The equal electric field case and surface charge are
shown. It is observed that as the surface charge increases, the mean electrostatic potential intensity
and extension increase steadily, regardless of whether the electric fields are equivalent or not. The
mean electrostatic potential at r = R+ a/2, ψ(r = R+ a/2) is referred to as the Helmholtz potential
or ζ-potential, and often assumed as the ion’s stagnation layer under dynamical conditions. Hence, this
potential is of a major relevance in, for example, electrophoresis studies. As expected from Eqs. (2.49)
and (2.50), the ζ-potential for the constant electric potential case overcomes that for the constant
surface charge case, for both the cylindrical and spherical electrodes. These differences increase with
increasing surface charge on the electrodes. The cylinder ζ-potentials are always higher than the
corresponding ones for the spherical electrode, expressing the fact that the amount of energy required
to bring an ion from infinity to the surface of an electrode, through a ln(r) electric potential is higher
than that through a 1/r electric potential.

(a) ψ(r) for σM = 0.005 C/m2. (b) ψ(r) for σM = 0.01 C/m2.

(c) ψ(r) for σM = 0.015 C/m2. (d) ψ(r) for σM = 0.02 C/m2.

Figure 4.5: The linear mean electrostatic potentials, ψ(r), of a solid planar, a cylindrical, and a
spherical electrodes. A radius of 15Å ∼= 3.5 a is used, while the electrodes’ surface charge, σM , is
varied. The lighter and darker lines have the same meaning as in Fig. 4.3.

Now, in Fig. 4.5 the mean electrostatic potentials of the three solid electrodes are plotted for
different surface charges, when a radius of 15Å is used. Once again, both cases of equal electric fields
and surface charges are shown. For this radius, it is clearly observed that the ζ-potentials are larger
for R = 15Å than for R = 5Å, since a larger radius implies a stronger mean electrostatic potential,
as a function of the distance to the electrode, i.e., from Eqs. (2.54) and (2.55), lim

R→∞
EuC(x)→ EuP (x),
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and the lim
R→∞

EuS (x)→ EuP (x). Hence, the mean electrostatic potentials of the cylindrical and spherical
solid electrodes are more intense and thick as their radii increase. Thus, when the radius increases
from 5Å to 15Å it is found that the mean electrostatic potential increases. However, the differences
between the cases of equal electric fields and surface charges decrease.

(a) ψ(r) for σM = 0.005 C/m2. (b) ψ(r) for σM = 0.01 C/m2.

(c) ψ(r) for σM = 0.015 C/m2. (d) ψ(r) for σM = 0.02 C/m2.

Figure 4.6: The linear mean electrostatic potentials, ψ(r), of a solid planar, a cylindrical, and a
spherical electrodes. A radius of 80Å ∼= 18.8 a is used, while the electrodes’ surface charge, σM , is
varied. The lighter and darker lines have the same meaning as in Fig. 4.3.

In Fig. 4.6 the mean electrostatic potentials of the three solid electrodes are plotted for different
surface charges, when a radius of 80Å is used. Again, the cases of equal electric fields and surface
charges are shown. It is observed, that now, the radius is large enough such that the equal electric field
and surface charges cases overlap. Furthermore, when the radius increase from 15Å to 80Å it is found
that the mean electrostatic potential of the cylindrical and spherical electrodes are almost identical to
that of the planar electrode.

To continue our analysis, the mean electrostatic potentials for our three radii, 5Å, 15Å and 80Å,
are calculated, while varying the electrolyte’s molar concentration. In Fig. 4.7 the mean electrostatic
potentials are computed for the solid planar, cylindrical, and spherical electrodes for different molar
concentrations. It is observed that for the lowest electrolyte’s molar concentration the highest mean
electrostatic potentials are achieved, while for the highest molar concentrations, the lowest mean
electrostatic potentials are obtained. Furthermore, for the highest molar concentrations the mean
electrostatic potential quickly disappears when the distance form the surface is increased. All this is a
consequence of the screening of the electrodes’ electrical field, by the induced charge on the ions, i.e.,
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(a) ψ(r) for ρ0 = 0.001 M. (b) ψ(r) for ρ0 = 0.01 M.

(c) ψ(r) for ρ0 = 0.1 M. (d) ψ(r) for ρ0 = 0.5 M.

Figure 4.7: The linear mean electrostatic potential, ψ(r), of different solid electrodes, with a radius
of 5Å ∼= 1.2Å, while the electrolytes’ molar concentration, ρ0, is varied. The lighter and darker lines
have the same meaning as in Fig. 4.3.

the higher the bulk concentration, the higher the ionic screening. Meanwhile, for the equal electric
field cases, when the molar concentration reaches 0.1 M, the ζ-potential of both, the solid cylindrical
and spherical electrodes, surpass that of the plate. This is due to a combination of induced charge
and the higher surface charge on the cylindrical and spherical electrodes, to keep the corresponding
electrical fields equal to that of the plate.

Comparatively, in Fig. 4.8 the mean electrostatic potentials of the different solid electrodes are
shown for a radius of 15Å, for the equal electric fields and surface charges cases. It can be observed
that when the radius is increased from 5Å to 15Å, the mean electrostatic potential of the equal electric
field case does not increase as much as before. Furthermore, it is observed that for the highest molar
concentration, 0.5 M, the three geometries tend to virtually the same values of the mean electrostatic
potential. Hence, it is recognized from Figs. 4.7 and 4.8, that when the molar concentration and
the radius increase simultaneously the mean electrostatic potentials from the different solid electrode
geometries tend to the values of the mean electrostatic potential of the planar electrode. For this
reason, in Fig. 4.9 we omit to show the plots of the mean electrostatic potential for higher molar
concentrations as their values completely overlap.

So, in Fig. 4.9 the mean electrostatic potentials of the different solid electrodes geometries are
shown for a radius of 80Å and a molar concentration of 0.001 M and 0.01 M. It is found that when
the radius is increased from 15Å to 80Å, the mean electrostatic potentials of the different electrode
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(a) ψ(r) for ρ0 = 0.001 M. (b) ψ(r) for ρ0 = 0.01 M.

(c) ψ(r) for ρ0 = 0.1 M. (d) ψ(r) for ρ0 = 0.5 M.

Figure 4.8: The linear mean electrostatic potential, ψ(r), of different solid electrodes, with a radius of
15Å ∼= 3.5Å, while the electrolytes’ molar concentration, ρ0, is varied. The lighter and darker lines
have the same meaning as in Fig. 4.3.

(a) ψ(r) for ρ0 = 0.001 M. (b) ψ(r) for ρ0 = 0.01 M.

Figure 4.9: The linear mean electrostatic potential, ψ(r), of different solid electrodes, with a radius of
5Å ∼= 18.8Å, while the electrolytes’ molar concentration, ρ0, is varied. The lighter and darker lines
have the same meaning as in Fig. 4.3.
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geometries increase rapidly. Therefore, from Figs. 4.7 to 4.9 we can observe two main things. The
radius’ size of the electrode is an important parameter to increase the mean electrostatic potential of
the electrodes. On the other hand, a high electrolytes’ molar concentration substantially decreases
the mean electrostatic potential. Hence if one wishes to obtain high mean electrostatic potentials it is
advisable to have a large radius and a low molar concentration.

(a) ψ(r) for R = 5Å. (b) ψ(r) for R = 15Å.

(c) ψ(r) for R = 80Å.

Figure 4.10: The mean electrostatic potentials, ψ(r), for the different geometries, for three radii, while
the temperature, T , is varied.

Finally, in Fig. 4.10 the mean electrostatic potentials of the three solid electrodes are plotted while
the temperature is varied, for our three radii. It is observed, that the mean electrostatic potential
intensity and extension are directly proportional to the electrolyte’s temperature. Nonetheless, it is
found that the effect that the temperature has on the mean electrostatic potential is highly influenced
by the value of the radius. For higher radius, the increase of the temperature has a higher impact
on the mean electrostatic potentials, whereas for lower radius the increment of the temperature has a
minimal effect on them. Therefore, it is observed that the planar electrode is the most influenced by the
temperature, followed by the cylindrical electrode and lastly the spherical electrode. Furthermore, due
to the small effect that the temperature has on the mean electrostatic potential, as seen from Eq. (2.7),
there are almost no differences between the linear and non-linear planar electrode. In addition, the
circumstances under which one would have extremely high or low temperatures are not a concern, since
the electrolyte, being of aqueous base, would break or freeze on either case. Hence, it is reasonable
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to assume that the temperature can safely be varied between over the freezing and under the boiling
temperature of water.

4.1.2 The induced surface charge density of solid electrodes

Now, the results of the induced surface charge densities are shown for the different electrode’s ge-
ometries. Firstly, we compare our linear and non-linear induced surface charge densities of a planar
electrode. Secondly, a comparison between the induced surface charge densities of all the electrodes’
geometries is performed when the radii size is varied. Finally, the influence that the electrode’s surface
charge density, and the electrolyte’s molar concentration, and temperature play on the induced surface
charge density for all the electrode’s geometries, are studied.

Let us first give a little discussion on the induced surface charge density profile, σ(r). From
Eqs. (2.42) and (2.43), it is easy to see that

σM = −
∫ ∞
V (r=R+a/2)

ρel(
−→y ) d3y = −

∫ V (r)

V (r=R+a/2)
ρel(
−→y ) d3y −

∫ ∞
V (r)

ρel(
−→y ) d3y, (4.1)

where σM is the electrode’s given surface charge. Thus,

ε

4π
E(r) = σ(r) = σM +

∫ V (r)

V (r=R+a/2)
ρel(
−→y ) d3y = −

∫ ∞
V (r)

ρel(
−→y ) d3y (4.2)

Hence, for r = R + a/2, σ(r), indeed reduces to σM . For the planar electrode Eqs. (4.1) and (4.2)
reduce to Eqs. (A.9) and (A.12), respectively.

4.1.2.1 The linear and non-linear induced surface charge density of a solid planar elec-
trode

(a) σ(x) for ρ0 = 0.01 M. (b) σ(x) for ρ0 = 0.1 M.

Figure 4.11: The linear and non-linear induced surface charge density, σ(x), of a solid electrode for
different electrode’s surface charge density, σM . The linear and non-linear induced surface charge
densities are represented by a solid and a dashed line, respectively.

The linear and non-linear induced surface charge densities of the planar electrode are plotted for
different electrode’s surface charges in Fig. 4.11. It is observed that, for both the linear and non-
linear cases, the contact value of the induced surface charge density is equal to the electrode’s surface
charge density, as it should be, according with the above discussion. Furthermore, when the linear and
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non-linear induced surface charge densities are compared it is found that our linear induced surface
charge density is a good approximation of the non-linear one up to electrodes’ surface charge densities

(a) σ(x) for σM = 0.015 C/m2. (b) σ(x) for σM = 0.05 C/m2.

Figure 4.12: The linear and non-linear induced surface charge density, σ(x), of a solid planar electrode
while the electrolyte’s molar concentration, ρ0, is varied. The solid and dashed lines have the same
meaning as in Fig. 4.11.

(a) σ(r) for R = 5Å ∼= 1.2Å. (b) σ(r) for R = 30Å ∼= 7.1Å.

(c) σ(r) for R = 80Å ∼= 18.8Å. (d) σ(r) for R = 200Å ∼= 47.1Å.

Figure 4.13: The linear induced surface charge densities, σ(r), of the solid electrodes, for different radii
values. The lighter and darker lines represent two distinct cases, when equal electric fields and surface
charges are used.
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of 0.015 C/m2 and 0.05 C/m2 at molar concentrations of 0.01 M and 0.1 M, respectively. When the
electrodes’ surface charge densities exceed these values, our linear solutions of the induced surface
charge densities overestimate σ(x).

Of course, in Fig. 4.11 the upper limits of the electrodes’ surface charge densities are 0.015 C/m2 and
0.05 C/m2 at molar concentrations of 0.01 M and 0.1 M. We now proceed to find the interval of validity
of the electrolytes’ molar concentration. Consequently, in Fig. 4.12 these electrodes’ surface charges are
used while the electrolyte’s concentration is varied. It is found that our linear induced surface charge
density is a good approximation of its non-linear counterpart for electrolytes’ molar concentrations
higher than or equal to 0.01 M and 0.1 M, for their respective electrodes’ surface charges 0.015 C/m2

and 0.05 C/m2. Therefore, it is visualized that the linear induced surface charge density can tolerate a
high electrode’s surface charge and electrolyte’s molar concentration without loosing validity against
its non-linear analogue.

4.1.2.2 The induced surface charge density of different solid electrodes

From here forward, unless stated otherwise, only the induced surface charge density of our LPBS
is shown. We start with a comparison of the induced surface charge density of the different solid
electrodes, for various radii. Therefore in Fig. 4.13 these induced surface charge densities are shown
for two different cases, when equal electric fields and surface charges are used.

(a) σ(r) for σM = 0.005 C/m2. (b) σ(r) for σM = 0.01 C/m2.

(c) σ(r) for σM = 0.015 C/m2. (d) σ(r) for σM = 0.02 C/m2.

Figure 4.14: The linear induced surface charge densities, σ(r), of solid electrodes. A radius of 5Å ∼=
1.2 a is used, while the electrode’s surface charge density, σM , is varied. The lighter and darker lines
have the same meaning as Fig. 4.13.
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In Fig. 4.13 it is observed that for all the electrodes geometries, the contact induced surface charge
density is the same value. This is true when the surface charge densities are equal between the
electrodes’ geometry, regardless of the radii used. Whereas, for the case of equal electric fields, the
spherical electrode achieves the highest contact values of the induced surface charge density, followed
by the cylindrical electrode and lastly by the planar electrode, no matter the radii used. Furthermore,
it is observed that the highest deviations of the induced surface charge density between the equal
electric field and surface charge density cases are obtained for the lowest radius, as a result of the
higher charge given to the spherical and cylindrical electrodes, in order to match the same electric
fields. For the highest radius it is found that both cases of the cylindrical and spherical electrodes tend
to the values of the induced surface charge density of the planar electrode as expected, since the higher
the radius the closer the electric field becomes to that of a plate. Even though the contact values of the
induced surface charge density of the spherical and cylindrical electrodes are higher than those of the
planar electrode, when low radii and equal electric fields are used, it is observed that the later still has
a thicker electrical double layer than their counterparts. This is due to the geometry of the spherical
and cylindrical electrodes and their size, as they are capable of gathering most of the available charge
at their small surface, so when the distance from the surface is increased there is only a small amount
of free charge. Therefore, when the radius is increased they loose the capability of gathering as much
charge, as before, close to the electrodes’ surface, and consequently they have more charge available
away from the electrode’s surface.

(a) σ(r) for σM = 0.005 C/m2. (b) σ(r) for σM = 0.01 C/m2.

(c) σ(r) for σM = 0.015 C/m2. (d) σ(r) for σM = 0.02 C/m2.

Figure 4.15: The linear induced surface charge densities, σ(r), of solid electrodes. A radius of 15Å ∼=
3.5 a is used, while the electrode’s surface charge density, σM , is varied. The lighter and darker lines
have the same meaning as Fig. 4.13.
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Whence, as seen in Fig. 4.13 if we wish to observe the influence that the electrode’s surface charge
density, and the electrolyte’s molar concentration and temperature have on the induced surface charge
density, we must choose a fixed radius. Therefore, as we are interested in small electrodes, we will
choose three different radii, 5Å, 15Å and 80Å, to observe the collective impact that the cylindrical
and spherical electrodes radius with the other parameters have on the induced surface charge density.

In Fig. 4.14 the induced surface charge density of the solid electrodes with a radius of 5Å is shown,
while the electrodes’ surface charge density is increased. These induced surface charge densities are
plotted for two cases, when equal electric fields and surface charges are used. It is found that the equal
electric field case achieves higher contact values than the equal surface charge case. And that both
induced surface charge densities are directly proportional to σM . Furthermore, it is clearly observed
that when the electrodes’ surface charge density increases so does the global extension of the induced
surface charge density regardless of the case.

Continuously, in Fig. 4.15 the induced surface charge density of the solid electrodes with a radius
of 15Å is shown, while the electrodes’ surface charge density is increased. These induced surface
charge densities are plotted for two cases, when equal electric fields and surface charges are used. It
is found that when the radius is increased from 5Å to 15Å the induced surface charge density for
equal surface charges and electric fields, increases and decreases respectively. Therefore, the biggest
differences between both cases are shown for low radii, as could be expected.

(a) σ(r) for σM = 0.005 C/m2. (b) σ(r) for σM = 0.01 C/m2.

(c) σ(r) for σM = 0.015 C/m2. (d) σ(r) for σM = 0.02 C/m2.

Figure 4.16: The linear induced surface charge densities, σ(r), of solid electrodes. A radius of 80Å ∼=
18.8 a is used, while the electrode’s surface charge density, σM , is varied. The lighter and darker lines
have the same meaning as Fig. 4.13.

In Fig. 4.16 the induced surface charge density of the solid electrodes is shown now for a radius
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of 80Å, for different electrodes’ surface charge densities. These induced surface charge densities are
plotted for two cases, when equal electric fields and surface charges are used. Again, it is found that
when the radius is increased from 15Å to 80Å the contact value of the induced surface charge density
for equal surface charges and electric fields, increases and decreases respectively. Moreover, as the
radius of 80Å is large enough, the induced surface charge of both cases tends to the same value since
the electric field influence blurs.

(a) σ(r) for ρ0 = 0.001 M. (b) σ(r) for ρ0 = 0.01 M.

(c) σ(r) for ρ0 = 0.1 M. (d) σ(r) for ρ0 = 0.5 M.

Figure 4.17: The linear induced surface charge densities, σ(r), of solid electrodes. A radius of 5Å ∼=
1.2Å is used, while the electrolyte’s molar concentration, ρ0, increases. The lighter and darker lines
have the same meaning as Fig. 4.13.

Now, in the following figures we will show the induced surface charge density of our three radii,
5Å, 15Å and 80Å, while the electrolyte’s molar concentration is increased, for our two cases, when
equal electric fields and surface charges are used. In Fig. 4.17, the induced surface charge density
of our three solid electrodes are shown for different molar concentrations, with an electrode’s surface
charge density of 0.015 C/m2, and a radius of 5Å. It is found that as the molarity is increased, the
intensity and extension of the induced surface charge density decreases, for both cases. It is also found
that for the highest electrolytes’ molar concentration, 0.5 M, the induced surface charge density of
the case of equal electric fields is not only higher at its contact value, but has even higher values
of the overall induced surface charge than the case of equal surface charges. Furthermore, it is also
observed that the induced surface charge of the planar electrode decreases more rapidly than its other
counterparts when the molar concentration is increased. For this reason, when the molar concentration
is increased, the cylindrical and spherical electrodes tend to quickly reassemble the induced surface
charge density of the planar electrode. The higher the bulk concentration, the thinner the electrical
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double layer becomes, and, in a way it is somewhat equivalent to have a larger radius for the spherical
and cylindrical electrodes.

(a) σ(r) for ρ0 = 0.001 M. (b) σ(r) for ρ0 = 0.01 M.

(c) σ(r) for ρ0 = 0.1 M. (d) σ(r) for ρ0 = 0.5 M.

Figure 4.18: The linear induced surface charge densities, σ(r), of solid electrodes. A radius of 15Å ∼=
3.5Å is used, while the electrolyte’s molar concentration, ρ0, increases. The lighter and darker lines
have the same meaning as Fig. 4.13.

(a) σ(r) for ρ0 = 0.001 M. (b) σ(r) for ρ0 = 0.01 M.

Figure 4.19: The linear induced surface charge densities, σ(r), of solid electrodes. A radius of 80Å ∼=
18.8Å is used, while the electrolyte’s molar concentration, ρ0, increases. The lighter and darker lines
have the same meaning as Fig. 4.13.
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In Fig. 4.18 the induced surface charge densities are shown for the three solid electrodes with a
radius of 15Å and an electrode’s surface charge density 0.015 C/m2. It is observed that when the
radius increases from 5Å to 15Å, as expected, the contact values of the induced surface charge density
of the cylindrical and spherical electrodes, for equal electric fields and surface charges, decrease and
increase, respectively. Furthermore, as noted before in Fig. 4.17, the values of the induced surface
charge density of the planar electrode decrease more rapidly than those of the cylindrical and spherical
electrodes, when the molar concentration increases. Therefore, for the highest molar concentrations
with equal surface charges, the induced surface charge densities tend to the planar electrodes’ results.
On the other hand, when equal electric fields are used this tendency is not as marked, as both cases
are still recognizable.

Figure 4.19 shows the induced surface charge densities for the three solid electrodes while the
molar concentration is increased, when a radius of 80Å and an electrodes’ surface charge density of
0.015 C/m2 are used. These induced surface charge densities are plotted when equal electric fields
and surface charges are used. Again, it is found that when the radius increases, now from 15Å to
80Å, the induced surface charge density of the cylindrical and spherical electrodes increases as well.
Furthermore, as it was observed from Fig. 4.18 if the molar concentration is large enough, and so is the
radius, the induced surface charge density of the cylindrical and spherical electrodes tend to the plane
electrode values, for both the equal electric fields and surface charges cases. Therefore, in Fig. 4.19

(a) σ(r) for R = 5Å ∼= 1.2 a. (b) σ(r) for R = 15Å ∼= 3.5 a.

(c) σ(r) for R = 80Å ∼= 18.8 a.

Figure 4.20: The linear induced surface charge densities, σ(r), of solid electrodes, while the electrolyte’s
temperature, T , is varied. The lighter and darker lines have the same meaning as Fig. 4.13.
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we do not include the higher molar concentrations as they overlap with the induced surface charge
densities of the planar electrode.

Finally, in Fig. 4.20 the induced surface charge densities of the three solid electrodes are plotted
while the temperature is varied, for our three radii. It is found that the extension of the induced
surface charge density is directly proportional to the electrolyte’s temperature, as the contact value
of the induced surface charge density is the same for all the geometries. However, the effect that the
temperature has on the induced surface charge density is highly influenced by the radius size. As
for low radii, the raise of the induced surface charge density when the temperature increases is not
as marked as for high radii. Moreover, it is seen that the electrolyte’s temperature is the studied
parameter with less impact on the induced surface charge density of the electrodes’ geometry.

4.1.3 The differential capacitance of solid electrodes

Lastly, the results of the differential capacitances are obtained for the different electrode’s geometries,
unless stated otherwise, they are obtained for a monovalent electrolyte (1:1) with a dielectric constant
of 78.5, a molar concentration of 0.01 M, and a temperature of 298.15 K. The linear and non-linear
differential capacitances of the solid planar electrode are calculated from Eqs. (2.16) and (2.23). The
main difference between the linear and non-linear differential capacitances is that the latter depends
on the electrode’s surface charge density, σM , whereas the other one does not. Therefore, in Table 4.1
and Fig. 4.21 the linear and non-linear differential capacitances are calculated, while the electrolyte’s
molar concentration increases. Consequently, for the linear case only the dependence on the elec-
trolyte’s molar concentration is shown, while for the non-linear one the dependence on the electrolyte’s
molar concentration and on the electrode’s surface charge are shown. From, Table 4.1 and Fig. 4.21 it is
found that the our linear differential capacitance is, in general, a very good approximation of the non-
linear one when low electrode’s surface charges are used, except for ρ0 = 0.001 M, and σM ≥ 0.005 C

m2 .

Linear
Non-linear

ρ0 [M] σM

[
C
m2

]
0.005 0.01 0.015 0.02

0.001 0.036 0.060 0.103 0.149 0.196
0.01 0.110 0.120 0.145 0.179 0.218
0.1 0.325 0.328 0.337 0.351 0.369
0.5 0.648 0.649 0.652 0.658 0.666

Table 4.1: The linear and non-linear differential capacitances, CT [F/m2], of a planar electrode for
different electrolyte’s molar concentrations, ρ0.

In Table 4.2 and Fig. 4.22 the linear and non-linear differential capacitances of a planar electrode
are calculated while the electrolyte’s temperature is varied, for a molar concentration of 0.01 M. Once
again, the non-linear dependence on the electrode’s surface charge density is shown. Therefore, from
Table 4.2 and Fig. 4.22 it is found that conversely to the mean electrostatic potentials and the induced
surface charge density, the differential capacitance is inversely proportional to the temperature. When
the temperature increases, the differential capacitance drops. However, it is observed that for the
linear differential capacitance as well as for the non-linear one with low electrode’s surface charge, the
temperature’s effect on the differential capacitance is minimal.

Therefore, from Tables 4.1 and 4.2 and Figs. 4.21 and 4.22 it is found that the only restriction that
our linear solution of the differential capacitance has against the non-linear one, is that at very low elec-
trolyte concentration, the electrode’s surface charge density should be lower or equal than 0.005 C/m2.
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Figure 4.21: The linear and non-linear differential capacitances, CT , of a planar electrode against the
electrolyte’s molar concentration, ρ0.

Linear
Non-linear

T [K] σM

[
C
m2

]
0.005 0.01 0.015 0.02

278.15 0.114 0.125 0.152 0.189 0.231
298.15 0.110 0.120 0.145 0.179 0.218
308.15 0.109 0.118 0.142 0.174 0.212
328.15 0.105 0.114 0.136 0.166 0.201

Table 4.2: The linear and non-linear differential capacitances, CT [F/m2], of a planar electrode, while
varying the electrolyte’s temperature. In all cases, ρ0 = 0.01M .

Figure 4.22: The linear and non-linear differential capacitance, CT , of a planar electrode against the
electrolyte’s temperature, T .

When this restriction is followed, our linear differential capacitance is a good approximation of the
non-linear one, regardless of the electrolyte’s molar concentration or temperature.

In Fig. 4.23 and Table 4.3 the differential capacitanes of solid cylindrical and spherical electrodes are
obtained for four radii, 5Å, 15Å, 30Å and 80Å, while varying the electrolyte’s molar concentration.
It is found that the highest differential capacitance for solid electrodes, is achieved for a small spherical
electrode, followed by a small cylindrical electrode. Furthermore, as the radius increases for both the
cylindrical and spherical electrodes, their differential capacitances become more alike. And for high a
enough radius, 80Å, both electrodes tend to the differential capacitance of the planar electrode.
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R = 5Å ∼= 1.2 a R = 15Å ∼= 3.5 a R = 30Å ∼= 7.1 a R = 80Å ∼= 18.8 a

ρ0 [M] Cylinder Sphere Cylinder Sphere Cylinder Sphere Cylinder Sphere

0.001 0.168 0.452 0.101 0.223 0.075 0.138 0.053 0.077
0.01 0.264 0.508 0.185 0.289 0.153 0.208 0.129 0.149
0.1 0.481 0.674 0.398 0.481 0.366 0.410 0.342 0.359
0.5 0.782 0.928 0.708 0.772 0.681 0.716 0.661 0.675

Table 4.3: The linear differential capacitances, CT [F/m2], of the cylindrical and spherical electrodes,
for different radii, while the electrolyte’s molar concentration, ρ0, is varied.

(a) CT for R = 5Å ∼= 1.2 a. (b) CT for R = 15Å ∼= 3.5 a.

(c) CT for R = 30Å ∼= 7.1 a. (d) CT for R = 80Å ∼= 18.8 a.

Figure 4.23: The linear differential capacitances, CT , of solid electrodes against the molar concentration,
ρ0, for four radii.

In contrast, in Fig. 4.24 and Table 4.4 the linear differential capacitance of solid cylindrical and
spherical electrodes are obtained for four radii, 5Å, 15Å, 30Å and 80Å, while the electrolyte’s tem-
perature is varied. Once again, it is found that the differential capacitance is inversely proportional to
the electrolyte’s temperature, and electrode’s size. Therefore, to enhance the differential capacitance,
the optimal geometry is a small spherical electrode at a high electrolyte’s molar concentration, and
with a low temperature.
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Figure 4.24: The linear differential capacitance, CT , of solid electrodes against the temperature, T , for
different radii.

R = 5Å ∼= 1.2 a R = 15Å ∼= 3.5 a R = 30Å ∼= 7.1 a R = 80Å ∼= 18.8 a

T [K] Cylinder Sphere Cylinder Sphere Cylinder Sphere Cylinder Sphere

278.15 0.268 0.511 0.189 0.292 0.157 0.212 0.132 0.153
298.15 0.264 0.508 0.185 0.289 0.153 0.208 0.129 0.149
308.15 0.262 0.507 0.183 0.288 0.152 0.207 0.127 0.148
328.15 0.258 0.505 0.180 0.285 0.148 0.204 0.124 0.144

Table 4.4: The linear differential capacitances, CT [F/m2], of a cylindrical and spherical electrodes for
different radii, while the electrolyte’s temperature, T , is varied.

4.2 The electrical double layer for different nano-pore electrodes ge-
ometries

In here, the electrical parameters obtained in Chapter 3 for different nano-pore electrode geometries
are merged together in the following subsections. An analysis is performed between each topology
to find out which one performs the best. This analysis is made considering that the inner and outer
electrode’s surface charge densities are the same, σ = σI = σII , and an electrode’s constant pores’
width of 5Å is kept for all cases.

Firstly, the mean electrostatic potentials are plotted for our three nano-pores. A comparison of
the mean electrostatic potential of the slit-pore, the cylindrical and spherical pores is made while the
electrode’s radii, and surface charge density, and the electrolyte’s molar concentration, and temperature
are varied. These variances are kept inside our interval of validity, found on Chapter 2.

Secondly, the induced surface charge densities are obtained for the three nano-pores. Identically, as
for the mean electrostatic potentials, the electrode’s radius, surface charge density, and the electrolyte’s
molar concentration, and temperature are given different values to observe their impact over the
induced surface charge densities.

Lastly, the differential capacitances of the three nano-pores are calculated for different electrode’s
radii. These differential capacitances, are obtained while varying the electrolyte’s molar concentration,
and temperature. An analysis is performed to find out which topology maximizes the differential
capacitance for each variable and electrode’s radius.

As for the last section, unless stated otherwise, all our charts are obtained assuming that we are
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dealing with an aqueous symmetric electrolyte (1:1) with an electric permittivity of 78.5, an ions’ size
of 4.25Å and at a room temperature of 298 K.

4.2.1 The mean electrostatic potentials of nano-pore electrodes

In this subsection, the results of our mean electrostatic potentials are shown for different nano-pore
electrode’s geometries. Firstly, a comparison on the pore’s radii influence over the mean electrostatic
potentials is made in Fig. 4.25, for equal electric fields and surface charges. From it, two different
tendencies between the cylindrical, and spherical nano-pores and the slit-pore are observed.

(a) ψ(r) for R = 5Å ∼= 1.2 a. (b) ψ(r) for R = 30Å ∼= 7.1 a.

(c) ψ(r) for R = 80Å ∼= 18.8 a. (d) ψ(r) for R = 200Å ∼= 47.1 a.

Figure 4.25: The mean electrostatic potentials, ψ(r), of the different nano-pores geometries, while the
radius, R, is varied. The lighter and darker lines represent two distinct cases, when equal electric fields
and surface charges are used. The vertical dashed and solid lines represent the OHP, and IHP.

On the one hand, for the slit-pore, the highest mean electrostatic potentials at the pore’s center,
ψd, is achieved for the lowest radius, as when the radii increases, ψd decreases. On the other hand, for
the cylindrical and spherical pores, an interesting tendency is found: ψd shows a non-linear behavior
with a increasing radius, at least in the case of constant surface charge. Therefore, both the cylindrical
and spherical pores achieve a peak value for ψd between a radius of 5Å–30Å, since at such radii the
value of ψd increases, and afterwards it decreases. Remarkably, when the radius reaches 200Å, these
different tendencies between pores overlap. At such radius, it is found that the inside and outside
pores are almost identical. Furthermore, it is observed once again that the highest values of the mean
electrostatic potentials for low radius are obtained for the case of equal electric fields. However, as the
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radius increases the differences between equal electric fields and surface charge tends to zero. Moreover,
it is observed that a radius of 200Å is big enough that the mean electrostatic potential inside the nano-
pore reassembles that of the solid electrode. Therefore, as we are interested solely on the pore we will
limit to a radii equal to or smaller than 80Å, where a couple of interesting results are found. Therefore,
from this point forward the mean electrostatic potentials of the different nano-pores will be obtained for
three radii, 5Å, 15Å and 80Å, while different electrode’s and electrolyte’s parameters are varied. This
is done in order to find the influence these parameters have and how the mean electrostatic potentials
can be maximized.

(a) ψ(r) for σM = 0.005 C/m2. (b) ψ(r) for σM = 0.01 C/m2.

(c) ψ(r) for σM = 0.015 C/m2. (d) ψ(r) for σM = 0.02 C/m2.

Figure 4.26: The mean electrostatic potentials, ψ(r), of three nano-pore electrodes. A radius of
5Å ∼= 1.2 a is used, while the electrode’s surface charges are varied. The lighter and darker lines, and
the vertical lines have the same meaning as in Fig. 4.25.

Therefore, in Fig. 4.26 the mean electrostatic potentials of the different nano-pore electrodes are
obtained for a radius of 5Å, while the electrode’s surface charge is varied. The cases for equal electric
fields and surface charge are shown. From Fig. 4.26 it is found that for all the electrode’s surface
charges, the slit-pore always has a higher overall mean electrostatic potential than their counterparts,
regardless if they have equal electric fields or surface charges. Moreover, as for solid electrodes, the
pores’ mean electrostatic potential is directly proportional to their surface charge. The equal electric
fields cases always achieve higher mean electrostatic potentials than the equal surface charge cases. At
this small pore’s size the mean electrostatic potential is maintained constant all through the pore’s
inside, and from the pore’s walls to the pore’s outside the mean electrostatic potential drops.

In Fig. 4.27 the mean electrostatic potentials of the different nano-pore electrodes are obtained for
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(a) ψ(r) for σM = 0.005 C/m2. (b) ψ(r) for σM = 0.01 C/m2.

(c) ψ(r) for σM = 0.015 C/m2. (d) ψ(r) for σM = 0.02 C/m2.

Figure 4.27: The mean electrostatic potentials, ψ(r), of three nano-pore electrodes. A radius of
15Å ∼= 3.5 a is used, while the electrode’s surface charges are varied. The lighter and darker lines, and
the vertical lines have the same meaning as in Fig. 4.25.

a radius of 15Å, while the electrode’s surface charge is varied. The cases for equal electric fields and
surface charge are shown. When the radius is increased from 5Å to 15Å it is observed that the slit-pore
mean electrostatic potentials decrease, whereas the cylindrical and spherical pores mean electrostatic
potential increases. However, this decrease or increase of the mean electrostatic potentials for the slit-
pore, and cylindrical and spherical pores do not affect the overall tendencies; as the slit-pore still has
the highest mean electrostatic potentials, followed by the cylindrical and spherical pores. Nonetheless
it is observed, that the mean electrostatic potentials of the spherical pore increase more, with increasing
radius, than the cylindrical pore, for the same electrode’s surface charge densities. Once again, it is
observed that the difference between the two cases, equal electric fields and surface charges, decreases
when the radius increases. Comparatively, now in Fig. 4.27 the pore’s size is big enough, so that there
is a potential drop inside the pore, which was not observed for a smaller radii.

Next, in Fig. 4.28 the mean electrostatic potentials of the different nano-pore electrodes are obtained
for a radius of 80Å, while the electrode’s surface charge is varied. The cases for equal electric fields
and surface charges are shown. When the radius is increased from 15Å to 80Å it is observed that
the overall mean electrostatic potentials decrease for all the pores. However, now the values of ψd
are higher for the spherical pore, followed by the cylindrical pore and lastly by the slit-pore. This is
due to the geometry, as for a sphere the confinement of the ions is greater than in the cylinder and
consequently than in the two plates, which translates on a higher ionic concentration inside the pore,
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(a) ψ(r) for σM = 0.005 C/m2. (b) ψ(r) for σM = 0.01 C/m2.

(c) ψ(r) for σM = 0.015 C/m2. (d) ψ(r) for σM = 0.02 C/m2.

Figure 4.28: The mean electrostatic potentials, ψ(r), of three nano-pore electrodes. A radius of
80Å ∼= 18.8 a is used, while the electrode’s surface charges are varied. The lighter and darker lines,
and the vertical lines have the same meaning as in Fig. 4.25.

to maintain the constant chemical potential. Moreover, as the radii increase enough, the equal electric
fields and surface charge cases of the mean electrostatic potential, become closely indistinguishable.
Meanwhile, outside the pore the mean electrostatic potentials tend to the values of the solid electrodes.

Comparatively, in the following figures the mean electrostatic potentials of our pore electrodes
are shown while the electrolyte’s molar concentration is varied for three radii, 5Å, 15Å and 80Å.
Therefore in Fig. 4.29 the mean electrostatic potentials for a pore’s size of 5Å is obtained, when
the electrolyte’s molar concentration is varied, for two different cases, when equal electric fields and
surface charge are used. It is found that the mean electrostatic potential is inversely proportional to
the electrolyte’s molar concentration. Furthermore, for ρ0 = 0.001 M it is observed that the mean
electrostatic potential inside the pore is completely constant, whereas when ρ0 = 0.01 M the mean
electrostatic potential, despite being almost constant inside the pore, has a clear maximum at the
IHP inside the pore. At higher bulk electrolyte concentrations this maximum becomes more evident,
and the mean electrostatic potential inside the pore starts dropping from its value at the pore’s wall.
Furthermore, when the molar concentration increases, the deviations between both cases increase. In
addition, when ρ0 = 0.1 M the equal electric fields cases of the cylindrical and spherical pores start
overcoming the mean electrostatic potential inside the slit-pore, and when the molar concentration
increases further, 0.5 M, both the equal electric fields and surface charge cases of the cylindrical and
spherical pores overcome the mean electrostatic potential inside the slit-pore.
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(a) ψ(r) for ρ0 = 0.001 M. (b) ψ(r) for ρ0 = 0.01 M.

(c) ψ(r) for ρ0 = 0.1 M. (d) ψ(r) for ρ0 = 0.5 M.

Figure 4.29: The mean electrostatic potentials, ψ(r), of nano-pore electrodes, with a radius of 5Å ∼=
1.2 a, while the electrolyte’s molar concentration, ρ0, is varied. The lighter and darker lines, and the
vertical lines have the same meaning as in Fig. 4.25.

In Fig. 4.30 the mean electrostatic potentials of pore electrodes are shown, for a pore’s size of 15Å,
while the electrolyte’s molar concentration is varied. The equal electric fields and surface charge cases
are shown. It is found that when the pore’s size increases from 5Å to 15Å the mean electrostatic
potential decreases. For the lowest molar concentration, 0.001 M, it is found that the mean electro-
static potential stops being constant inside the pore, but is starts to very softly dwindle from its value
on the inner pore wall. On the other hand, for the other electrolyte’s molar concentrations the mean
electrostatic potentials of the slit-pore decreases, and the cylindrical and spherical pores start increas-
ing. Such that now, for a radius of 15Å the mean electrostatic potential of the slit-pore is overcome
by that of the cylindrical and spherical pore, for both equal electric fields and surface charge, at a
molar concentration of 0.1 M. Furthermore, the increase of both the radius and molar concentration,
for 0.5 M makes the mean electrostatic potential of all the pore electrodes to compact into one single
mean electrostatic potential.

In Fig. 4.31 the mean electrostatic potentials of pore electrodes are plotted, for a pore’s size of
80Å, while the electrolyte’s molar concentration is varied. The equal electric fields and surface charge
cases are shown. From Fig. 4.30 it is observed that as the radius increases, the mean electrostatic
potentials, for high molar concentrations, 0.1 M and 0.5 M, tend to the same values as those of the slit,
for both the inside and outside of the pore. Therefore, the higher molar concentrations were not shown
for R = 80Å, as they simply are that of a slit, for the all the pores geometries. Nonetheless, when
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(a) ψ(r) for ρ0 = 0.001 M. (b) ψ(r) for ρ0 = 0.01 M.

(c) ψ(r) for ρ0 = 0.1 M. (d) ψ(r) for ρ0 = 0.5 M.

Figure 4.30: The mean electrostatic potentials, ψ(r), of nano-pore electrodes, with a radius of 15Å ∼=
3.5 a, while the electrolyte’s molar concentration, ρ0, is varied. The lighter and darker lines, and the
vertical lines have the same meaning as in Fig. 4.25.

(a) ψ(r) for ρ0 = 0.001 M. (b) ψ(r) for ρ0 = 0.01 M.

Figure 4.31: The mean electrostatic potentials, ψ(r), of nano-pore electrodes, with a radius of 80Å ∼=
18.8 a, while the electrolyte’s molar concentration, ρ0, is varied. The lighter and darker lines, and the
vertical lines have the same meaning as in Fig. 4.25.
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the radius is increased from 15Å to 80Å one can observe that for the lowest molar concentration the
slit-pore has the highest values at the inner wall of the pore, but the cylindrical pore overpasses the
values of the slit-pore’ mean electrostatic potential at the pores’ center. Moreover, the equal electric
fields and surface charge cases almost completely overlap, as we are dealing with a large enough radius
for which their differences almost disappear. In addition, for a molar concentration of 0.01 M the slit-
pore’ mean electrostatic potential is almost equal to that of a solid electrode, followed by the cylindrical
pore. On the other hand, the spherical pore’s mean electrostatic potential is the furthest to resemble
to that of a solid electrode. As discussed earlier, due to the geometry of the sphere, the electrons are
more compacted than in either the cylinder or plates. Hence, it achieves a higher mean electrostatic
potentials than either pore.

(a) ψ(r) for R = 5Å ∼= 1.2 a. (b) ψ(r) for R = 15Å ∼= 3.5 a.

(c) ψ(r) for R = 80Å ∼= 18.8 a.

Figure 4.32: The mean electrostatic potential, ψ(r), of three pore electrode, for three radii, while the
temperature, T , is varied. The lighter and darker lines, and the vertical lines have the same meaning
as in Fig. 4.25.

Lastly but not least, in Fig. 4.32 the mean electrostatic potentials of our pore electrodes are shown
for three radii, 5Å, 15Å and 80Å, while the electrolyte’s temperature is varied for two different cases,
for equal electric fields and surface charge. It is found that as the electrical potential of the solid
electrode, the pores’ mean electrostatic potential is directly proportional to the temperature. As for
higher temperatures, the mean electrostatic potential steadily grows through all the interval.

Therefore, it is found that the mean electrostatic potential can be easily boosted by regulating
its electrode size and surface charge density. Whereas, if one wishes to decrease its intensity and
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extension one should increase its electrolyte’s molar concentration. Meanwhile, if the intention is
to increase the mean electrostatic potential throughout the entire interval one needs to increase the
electrolyte’s temperature.

4.2.2 The induced surface charge densities of nano-pore electrodes

Here, the induced surface charge densities are shown for different pores’ electrodes. Firstly, the pore’s
radius influence on the induced surface charge densities for the different pores’ electrodes, when two
distinct cases are calculated for equal electric fields and surface charge, is studied in Fig. 4.33.

(a) σ(r) for R = 5Å ∼= 1.2 a. (b) σ(r) for R = 30Å ∼= 7.1 a.

(c) σ(r) for R = 80Å ∼= 18.8 a. (d) σ(r) for R = 200Å ∼= 47.1 a.

Figure 4.33: The induced surface charge densities, σ(r), of pore electrodes, while the electrode’s radius
is varied. The lighter and darker lines represent when equal electric fields and surface charge are used.
The vertical dashed and solid lines represent the OHP, and IHP.

In Fig. 4.33 it is observed that now the induced surface charge density is different from the elec-
trode’s surface charge density. In fact, the electrode’s surface charge density is uniformly distributed
inside and outside the pore. It is observed that the induced surface charge density inside the pore
increases when the radius increases, while the outside induced surface charge density decreases. This
is true up to the point when the radius is large enough so that the inner and outer induced surface
charge densities are equal. Furthermore, it is observed that the pore’s inner induced surface charge
density for the slit-pore is always higher than in the other counterparts, regardless of the radii size,
followed by the cylindrical pore and lastly the spherical pore. This is clearly a confinement effect, and
implies a violation of the local electroneutrality condition. Of course, the sum of the inner and outer
induced charge densities is equal and of opposite sign to that of σI + σII .
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(a) σ(r) for σM = 0.005 C/m2. (b) σ(r) for σM = 0.01 C/m2.

(c) σ(r) for σM = 0.015 C/m2. (d) σ(r) for σM = 0.02 C/m2.

Figure 4.34: The induced surface charge densities, σ(r), of three nano-pore electrodes. A radius of
5Å ∼= 1.2 a is used while the electrode’s surface charge density is varied. The lighter and darker lines,
and the vertical lines have the same meaning as in Fig. 4.33.

As we are studying the behavior of the induced surface charge densities for nano-pores, we will
choose three radii, 5Å, 15Å and 80Å, while varying some other electrode’s and electrolyte’s parameters.
Therefore, in Fig. 4.34 the induced surface charge density of three nano-pores, with a radius of 5Å, is
shown while the electrode’s surface charge density is varied. As expected, it is observed that when the
electrode’s surface charge density increases, the induced surface charge density follows proportionally,
to guarantee total electroneutrality. It is interesting noticing that on the pore’s inside, the induced
surface charge density is close to zero for all the pores, but in particular for the spherical and cylindrical
pores. This is due to the fact that since the space inside the pore is very small, only a few number of
counter-ions can be settled inside, making the available charge minimal. Hence, although is not clearly
seen in Fig. 4.34, inside the pores the slit-pore can store more charge than the cylindrical pore, and this
last one can store more charge than the spherical pores. Furthermore, as the induced surface charge
density inside the pore is very small the differences between the two cases of equal electric fields and
surface charge are almost identical, whereas outside the pore the induced surface charge density for
equal electric fields and equal surface charge have important differences. Also notice that for the equal
electric field case, the induced surface charge at r = R + d+ a/2 has almost the same value for three
pore geometries, and is almost identical to the induced surface charge densities of the corresponding
solid electrodes.

In Fig. 4.35 the induced surface charge density of the three nano-pore electrode’s, for a radius
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(a) σ(r) for σM = 0.005 C/m2. (b) σ(r) for σM = 0.01 C/m2.

(c) σ(r) for σM = 0.015 C/m2. (d) σ(r) for σM = 0.02 C/m2.

Figure 4.35: The induced surface charge densities, σ(r), of three nano-pore electrodes. A radius of
15Å ∼= 3.5 a is used while the electrode’s surface charge density is varied. The lighter and darker lines,
and the vertical lines have the same meaning as in Fig. 4.33.

of 15Å, is plotted for different electrode’s surface charge densities. The equal electric fields and
surface charges are shown. It is observed that when the radius increases from 5Å to 15Å the induced
surface charge inside the pore increases considerably for all the geometries. Furthermore, in the outer
pore the induce surface charge density decreases for all the pores, as could be expected if the total
electroneutrality condition of the system is satisfied. This decrement on the induced surface charge is
not equal for all the pores, as the slit-pore drops quicker. Also, the induced surface charge in the outer
wall of the pore is higher for the cylindrical pore than for the slit-pore. Moreover, it is also observed
that outside the pore the equal electric fields cases achieve a higher contact value on the outer wall of
the pore than the slit-pore. Therefore, around a radius of 15Å the induced surface charge density of
the slit-pore outside starts being overtaken by that of the cylindrical and spherical pores.

In Fig. 4.36 the induced surface charge densities of the three nano-pore electrodes, with a radius
of 80Å, is shown while the electrode’s surface charge is varied, for cases when equal electric fields and
surface charges are used. Hence, it is observed that when the radius of the pore is increased from 15Å
to 80Å the induced surface charge density inside the pore increases almost to the values of the outside
pore. Therefore, the behavior of the induced surface charge density in the inner and outer pore is that
of a solid electrode.

In the following figures the influence that the electrodes’ radius and the electrolyte’s concentration
have on the induced surface charge is compared. For this purpose we will plot the induced surface
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(a) σ(r) for σM = 0.005 C/m2. (b) σ(r) for σM = 0.01 C/m2.

(c) σ(r) for σM = 0.015 C/m2. (d) σ(r) for σM = 0.02 C/m2.

Figure 4.36: The induced surface charge densities, σ(r), of three nano-pore electrodes. A radius of
80Å ∼= 18.8 a is used while the electrode’s surface charge density is varied. The lighter and darker
lines, and the vertical lines have the same meaning as in Fig. 4.33.

charge densities for the same radii and, for the two cases as before, namely for equal electric fields
and surface charges. Therefore, in Fig. 4.37 the induced surface charge densities of the different pores
are obtained when the molar concentration is varied at a radius of 5Å. It is found that when the
molar concentration increases, the induced surface charge densities inside the pores increase, whereas
the induced surface charge densities outside the pore diminish. Therefore, when we increase the
electrolyte’s molar concentration, we obtain a similar result that when we increase the electrodes’ size,
since a higher bulk concentration reduces the thickness of the electrical double layer, and, hence, the
confinement is reduced, as when the radius of the pore is increased. Thus, both changes have similar
physical implications in the interaction between the electrodes and electrolytes. As previously, it is
observed that the difference between induced surface charge densities of the equal electric fields and
surface charge cases, for the lowest molar concentration, are almost zero. However, as the molarity
increases these differences become more apparent. For instance, for a molar concentration of 0.5 M the
cylindrical pores’ induced surface charge density of equal electric fields overlaps to the values of the
one of the slit-pore.

In Fig. 4.38 the induced surface charge densities of the different pores are computed when the
molar concentration is varied and a radius of 15Å is employed. Hence, it is observed that when the
radius size is changed from 5Å to 15Å, the induced surface charge inside and outside the pore increase
and decrease, respectively, faster when the electrolyte’s molar concentration increases. Therefore,
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(a) σ(r) for ρ0 = 0.001 M. (b) σ(r) for ρ0 = 0.01 M.

(c) σ(r) for ρ0 = 0.1 M. (d) σ(r) for ρ0 = 0.5 M.

Figure 4.37: The induced surface charge density, σ(r), of our nano-pore electrodes. A radius of
5Å ∼= 1.2 a is used while the electrolyte’s molar concentration, ρ0, is varied. The lighter and darker
lines, and the vertical lines have the same meaning as in Fig. 4.33.

the induced surface charge density is doubly influenced by the electrolyte’s molar concentration and
electrode’s surface charge densities. For a rather small pore size, 15Å, the pore’s inner induced surface
charge density for electrolytes’ molar concentration of 0.1 M and 0.5 M resemble a lot the behavior of
the induced surface charge densities of a radius of 80Å. That is, the induced surface charge density
inside and outside the pore start reassembling that of a solid electrode.

In Fig. 4.39 the induced surface charge density of the different pores, is shown with a radius of
80Å, while the molar concentration is varied for the equal electric fields and surface charge cases. Due
to the tendency discussed earlier, found from Figs. 4.37 and 4.38, the induced surface charge densities
for this radius are not calculated for the higher molar concentrations as they quickly tend to the values
of a solid electrolyte both inside and outside. Hence, in Fig. 4.39 it is observed that the induced
surface charge densities inside the pore achieve higher contact values at the inner wall for the slit-pore,
followed by the cylindrical pore and then by the spherical pore, for both molar concentrations. On the
other hand, for the induced surface charge densities outside the pore, the opposite is true, the highest
contact values at the outer wall are for the spherical pore, followed by the cylindrical pore and the
slit-pore, for both molar concentrations. Meanwhile, as the radius is large enough both cases, equal
electric fields and surface charges, overlap for all the induced surface charges.

Lastly, in Fig. 4.40 the induced surface charge densities of our different pores are shown for three
radii, 5Å, 15Å and 80Å, while the temperature is varied. Two distinct tendencies for the inner
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and outer induced surface charge densities are found. For the latter, it is observed that the induced
surface charge is directly proportional to the temperature. Whereas, the opposite is true for the inner

(a) σ(r) for ρ0 = 0.001 M. (b) σ(r) for ρ0 = 0.01 M.

(c) σ(r) for ρ0 = 0.1 M. (d) σ(r) for ρ0 = 0.5 M.

Figure 4.38: The induced surface charge density, σ(r), of our nano-pore electrodes. A radius of
15Å ∼= 3.5 a is used while the electrolyte’s molar concentration, ρ0, is varied. The lighter and darker
lines, and the vertical lines have the same meaning as in Fig. 4.33.

(a) σ(r) for ρ0 = 0.001 M. (b) σ(r) for ρ0 = 0.01 M.

Figure 4.39: The induced surface charge density, σ(r), of our nano-pore electrodes. A radius of
80Å ∼= 18.8 a is used while the electrolyte’s molar concentration, ρ0, is varied. The lighter and darker
lines, and the vertical lines have the same meaning as in Fig. 4.33.
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induce surface charge densities, there is an indirect proportionality between the induced surface charge
density and the temperature. Both of these opposite tendencies are true for all the radii. As pointed
out before, increasing the temperature is somewhat equivalent to decreasing the charge of the pore
or the ionic valence; hence, the induced charge inside the pores reduces accordingly with a higher
temperature. Then, because of the electroneutrality condition, the reverse tendency is observed in the
outside induced charges. Why is not this effect in the opposite behavior? That is, why increasing
temperature reduces the outside induced charge and inside the pores increases? The reason seems to
be because the restriction imposed to the absorption of ions inside the pores, due to the confinement.
In any case, it is clearly shown that the temperature effect on the induced surface charge density is
minimal, as the induced surface charge density barely changes.

(a) σ(r) for R = 5Å ∼= 1.2 a. (b) σ(r) for R = 15Å ∼= 3.5 a.

(c) σ(r) for R = 80Å ∼= 18.8 a.

Figure 4.40: The induced surface charge densities, σ(r), of three pore electrode, for three radii, while
the temperature, T , is varied. The lighter and darker lines, and the vertical lines have the same
meaning as in Fig. 4.33.

As a result, it is found that the induced surface charge density inside and outside the pore is directly
proportional to the electrode’s surface charge. However, the inner and outer induced surface charge
density are observed to be directly and inversely proportional to the pores’ radii and electrolyte’s
molar concentration, respectively. Therefore, if one changes these three parameters one can completely
vary the intensity and extension of the induced surface charge density. On the other hand, when the
temperature increases the inner and outer induced surface charge densities suffer a uniform decrement
or increment, respectively. Hence, varying the electrodes’ size, and surface charge density, and the
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electrolyte’s molar concentration and temperature one can force the induced surface charges to take
the values that one wishes, as long as the electroneutrality condition is not violated. Consequently, if
you want an inner induced surface charge density with a high contact value, you should either increase
the electrode’s size or the electrolyte’s molar concentration.

4.2.3 The differential capacitance of nano-pore electrodes

Lastly, the results of the differential capacitances are obtained for the different nano-pore electrodes for
a monovalent electrolyte (1:1) with a dielectric constant of 78.5, an electrolyte’s molar concentration
of 0.01 M, a temperature of 298.15 K, and a pore’s width of 5Å, unless stated otherwise. The slit-
pore, and cylindrical and spherical pores’ differential capacitances are obtained from Eqs. (3.46), (3.83)
and (3.113), respectively.

(a) CT for R = 5Å ∼= 1.2 a. (b) CT for R = 15Å ∼= 3.5 a.

(c) CT for R = 30Å ∼= 7.1 a. (d) CT for R = 80Å ∼= 18.8 a.

Figure 4.41: The differential capacitances, CT , of different nano-pore electrodes against the molar
concentration, ρ0, for four radii.

Consequently, in Fig. 4.41 and Table 4.5 the differential capacitances of the three pore electrodes
are obtained for four radii, while the electrolyte’s molar concentration is increased. Some interesting
results are found, as each pore has slightly different tendencies for different radii. Therefore, we will
first point out the common tendency that the three nano-pore electrodes have. That is, the differential
capacitance is directly proportional to the electrolyte’s molar concentration. Furthermore, if the molar
concentration is sufficiently increased, the differential capacitance of the slit-pore is always higher than
that of the other nano-pores; since, the differential capacitance values of the slit raises more rapidly
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than the one of the other nano-pores’, when the molar concentration increases. However, it is observed
that when the radii is small, 5Å, and the electrolyte’s molar concentration is lower than 0.2 M, the
highest differential capacitance is achieved for the spherical pore, followed by the cylindrical pore and
lastly by the slit-pore. Whereas, for a radius of 15Å only for molar concentrations lower than 0.03 M
do the differential capacitance of the spherical and cylindrical pores have higher values than in the
case of the slit-pore.

R = 5Å ∼= 1.2 a R = 15Å ∼= 3.5 a R = 30Å ∼= 7.1 a R = 80Å ∼= 18.8 a

ρ0 [M] P C S P C S P C S P C S

0.001 0.036 0.174 0.502 0.040 0.105 0.236 0.047 0.081 0.147 0.080 0.077 0.096
0.01 0.112 0.276 0.579 0.165 0.212 0.324 0.280 0.238 0.274 1.477 0.743 0.546
0.1 0.400 0.510 0.782 1.347 0.848 0.794 6.544 2.933 1.967 1184 327.8 138.9
0.5 1.361 0.971 1.133 16.09 6.571 4.130 526.3 156.3 71.21 6 · 107 1 · 107 NA

Table 4.5: The differential capacitances, CT [F/m2], of the slit-pore (P), and cylindrical (C) and spher-
ical (S) pores, for different radii, while the molar concentration, ρ0, is varied.

Figure 4.42: The differential capacitances, CT , of nano-pores electrodes against the temperature, T ,
for different radii.

R = 5Å ∼= 1.2 a R = 15Å ∼= 3.5 a R = 30Å ∼= 7.1 a R = 80Å ∼= 18.8 a

T [K] P C S P C S P C S P C S

278.15 0.116 0.281 0.582 0.173 0.218 0.329 0.299 0.250 0.283 1.674 0.827 0.598
298.15 0.112 0.276 0.579 0.165 0.212 0.324 0.280 0.238 0.274 1.477 0.743 0.546
308.15 0.110 0.274 0.577 0.161 0.209 0.321 0.271 0.233 0.270 1.393 0.707 0.524
328.15 0.107 0.270 0.574 0.154 0.204 0.317 0.255 0.224 0.263 1.248 0.644 0.485

Table 4.6: The differential capacitances, CT [F/m2], of different nano-pores for four radii, while the
temperature, T , is varied. The initials (P, C, S) used have the same meaning as in Table 4.5.

In contrast, in Fig. 4.42 and Table 4.6 the differential capacitances of our three pore electrodes
are obtained for four radii, while the temperature is varied. It is found that the differential capaci-
tance is inversely proportional to the temperature, for any radius. However, it is observed that this
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proportionality depends on the radius size. As for low radii, the differential capacitance drops as the
temperature increases is minimal, whereas for large radii there is a more drastic drop. Furthermore,
for a radius of 30Å it is observed that the slit-pore differential capacitance is higher than the one of
the other pores for low temperatures. However, as the temperature increases to 310 K the differential
capacitance of the spherical pore overpasses the one of the slit-pore. Hence, it is observed that the
electrolyte’s temperature has a bigger impact on the slit-pore differential capacitance than for the
spherical pore. This is further observed when a radius of 80Å is used, as the drop from the slit-pore
and the cylindrical pore are higher than the one of the spherical pore.

It was found that the spherical nano-pore of 5Å achieve the highest differential capacitances for
molar concentrations lower or equal than 0.35 M. However, if either the electrodes’ radii or the elec-
trolyte’s molar concentration is higher, the slit-pore differential capacitances are larger than the other
nano-pores’ differential capacitances. Furthermore, it was found that the differential capacitance is in-
versely proportional to the temperature. However, as the radius increases this inverse proportionality
increases, specifically for the slit-pore, followed by the cylindrical pore and lastly by the spherical pore.

An ending remark of this chapter must be made. Even though we did not make a hand to hand
comparison with other theoretical results, as in Chapter 2. As in Chapter 3, we assume that the
validity of the concentration profiles of solid electrodes in Chapter 2 equally applies for the different
electric parameters of solid, and nano-electrodes.
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Conclusions

The linearized single electrical double layer of a solid planar, cylindrical and spherical electrodes was
derived from the Poisson-Boltzmann model with the Stern restriction. Moreover, for the planar elec-
trode the non-linearized SEDL was also derived for the same model. The electric parameters of the
density profiles, mean electrostatic potentials, induced surface charge densities and the differential
capacitances were obtained for each geometry and case.

Furthermore, the first results of the linearized electrical double layer of a slit-pore, cylindrical,
and spherical pore electrodes were derived as well from the Poisson-Boltzmann model with the Stern
restriction. The density profiles, mean electrostatic potentials, induced surface charge densities and
the differential capacitances were obtained and plotted for each pore.

From the results, the interval of validity of the Poisson-Boltzmann model with the Stern restriction
is found against the HNC/MSA model and from MC results. Furthermore, a thorough study of
the impact that the electrode’s size, surface charge, and the electrolyte’s molar concentration, and
temperature have on the density profiles, mean electrostatic potential, induced surface charge and
differential capacitance was performed for nano-electrodes of different and equivalent topologies.

Lastly, we also include a brief list on possible future works that could be done as a continuation
of this thesis. These works are suggested from inconclusive works performed during the elaboration of
this thesis that were not carry out due to time concerns, and from new works concerning the topic.

5.1 Interval of validity

In Chapter 2, a comparison between our linear solutions and that of the HNC/MSA model of Lozada-
Cassou for solid electrodes was performed. It was found that our solutions work for symmetrical
electrolyte (1:1) with electrolyte’s molar concentrations in the range between 0.01 M to 0.5 M. And
for an electrode’s surface charge of 0.015 C/m2 and 0.05 C/m2 for molar concentrations of 0.01 M and
0.1 M, respectively. Furthermore, for higher molar concentration it was observed that a higher value of
the electrode’s surface charge can be used without jeopardizing the validity of our solutions. Moreover,
it was also found that our results are a good fit of the HNC/MSA model of Lozada-Cassou when the
electrodes’ radius is lower than or equal to 80Å. However, they are a better fit when the radius is
smaller. As for a radius of 80Å the allowed electrode’s surface charge density needs to be smaller,
0.01 C/m2, for an electrolyte’s molar concentration of 0.01 M, so our linear solutions are still a viable
solution of the HNC/MSA model. Meanwhile, even though the electrolyte’s temperature effect on
the electric double layer was not compared directly against the HNC/MSA model, it was found from
our solutions that the temperature effect is minimal. As we are dealing with an aqueous symmetric
electrolyte at a normal atmospheric pressure, in between freezing and boiling temperatures of water, our
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electric double layer model holds for such temperatures due to the small impact that the temperature
has.

Meanwhile, the same interval of validity found for the solid electrodes in Chapter 2 is assumed to be
the same for the nano-pore electrodes. Owing to the fact that both models are obtained equivalently,
we expect that their intervals of validity must be comparable between one and the other.

5.2 Optimal topology and geometry

It is found that the optimal topologies for the differential capacitance is that of the nano-pore electrodes,
as they continuously achieve higher values than those of the solid electrodes. Specifically, it is observed
that the higher values are achieved for the smaller radii independently of the topology. Moreover, now
each electric parameter will be analyzed on how to modify their values. In Table 5.1 the overall behavior
of the different electric parameters is shown when the electrode’s surface charge and radius increase
and when the electrolyte’s molar concentration and temperature increase for the solid electrodes (SE)
and the nano-pore electrodes (NPE). The up and down arrows represent an overall increase or decrease
of the electric parameter behavior. For the NPE, when two opposite tendencies are found inside and
outside the pore, such different tendencies are represented with two opposite arrows, were the first
and second arrow represent the electric parameter behavior in the inner and outer pore, respectively.
Furthermore, in some cases it is observed an uneven decrement inside and outside the NPE, that is
why in some cases two down arrows are presented (↓6=↓). Since, the differential capacitance shown
in Table 5.1 is linear, it does not depend on the electrode’s surface charge, so this variable is not
applicable (N/A) for CT .

gi ψ σ CT

SE NPE SE NPE SE NPE SE NPE

↑ R ↑ ↓6=↓ ↑ ↓6=↓ ↑ ↑ ↓ ↓ ↑
↑ σM ↑ ↑ ↑ ↑ ↑ ↑ N/A N/A
↑ ρ0 ↓ ↓ ↓ ↓ ↓ ↑ ↓ ↑ ↑
↑ T ↓ ↓ ↑ ↑ ↑ ↓ ↑ ↓ ↓

Table 5.1: The overall behavior of the density profiles, gi, mean electrostatic potential, ψ, induced
surface charge density, σ, and differential capacitance, CT , for solid electrodes (SE) and nano-pore
electrodes (NPE), when the electrode’s radius, R, and surface charge density, σM , and the electrolyte’s
molar concentration, ρ0, and temperature, T , are increased.

The overall behavior of the different electric parameters of the SE shown in Table 5.1 are repre-
sentative of all the solid electrodes. However, it is good to remember that the planar solid electrode
does not depend on the radius, hence the observations mark when the radius increases does not apply
to the solid planar electrode. Furthermore, the influence that the different parameters have on the
density profiles, mean electrostatic potential and induced surface charge were analyzed by fixing the
unscreened electrode’s electric field and by fixing the electrode’s surface charge density. It was found
that the unscreened electric field case achieve higher values than the equal electrode’s surface charge
case for these electric parameters, where the differences between one case and the other are higher
when small radii are used, as when the radius increases these differences disappear. Moreover, it is
found that the highest values for the density profile, mean electrostatic potential and induced surface
charge are higher for the solid planar electrode, followed by the solid cylindrical and spherical elec-
trodes. Whereas, for the differential capacitance the highest values are achieved for the solid spherical
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electrode followed by the solid cylindrical and planar electrodes.
Meanwhile, for the NPE more interesting results were found due to their two component parts, the

inner and outer pore, and because of their different topologies. It is found that the density profiles
of the NPE are directly and inversely proportional to the electrode’s surface charge density and size,
respectively. Whereas, they are inversely proportional to the electrolyte’s molar concentration. On the
other hand, they have a curious behavior when the temperature increases for large radius: as we have
an inner and outer pore, the density profiles inside the pore are directly proportional to the electrolyte’s
temperature, whereas outside they are inversely proportional. All of this is true for three nano-pore
electrodes, but the one that achieve the higher values for the same parameter is the slit-pore, followed
by the cylindrical and spherical pores.

Correspondingly, it is found that the mean electrostatic potential of NPE are inversely and directly
proportional to the electrolyte’s molar concentration and temperature, respectively. At the same time,
the mean electrostatic potentials are directly and inversely proportional to the electrodes’ surface
charge density and size. This behavior is found for all nano-pore electrodes. Nonetheless, the slit-pore
achieve the highest values of the mean electrostatic potentials, followed by the cylindrical and spherical
pores. As for the density profiles, the mean electrostatic potentials of the NPE do not decrease at the
same pace inside and outside the pore for the different NPE when the radius increases. As the slit-
pore’s density profile and mean electrostatic potential drop quicker than the cylindrical and spherical
nano-pores inside the pore.

In addition, it is recognized that the overall induced surface charge density of the NPE is directly
proportional to the electrodes’ surface charge. Meanwhile, the inside and outside parts of this overall
induced surface charge density are directly and inversely proportional, respectively, to the electrode’s
radius and the electrolyte’s molar concentration. Moreover, the induced surface charge density inside
and outside the pores are inversely and directly proportional, respectively, to the electrolyte’s tem-
perature. This is true for all the nano-pore electrodes. However, the highest induced surface charge
densities, inside and outside the pore, are obtained for the slit-pore electrode, followed by the cylindrical
and spherical nano-pore electrodes.

Lastly, the differential capacitance is observed to have some fascinating properties. Firstly, it was
found that the differential capacitance is inversely proportional to the temperature, and that this factor
has the least overall impact on the differential capacitance. Hence, in Figs. 5.1 and 5.2 the differential
capacitance is plotted as a three dimensional surface, where its value depends on the electrode’s radius
and electrolyte’s molar concentration. The difference between Figs. 5.1 and 5.2 lies in the range of
values of both the electrode’s radii and electrolyte’s molar concentration. In Fig. 5.1 the electrode’s radii
ranges from 5Å and 80Å and the electrolyte’s molar concentration achieves values up to 0.5 M, whereas
Fig. 5.2 electrode’s radii ranges from 5Å and 15Å and its electrolyte’s molar concentration achieves
values up to 0.1 M. Therefore, from Figs. 5.1 and 5.2 the differential capacitance behavior of the NPE
is observed for large and small radii, and large and small concentrations, respectively. Consequently, it
is observed that when the nano-pore electrode’s radii is increased the differential capacitance follows,
specifically the slit-pore achieve the highest differentials capacitances for larger radii. However, for
the lowest radius, 5Å, the spherical pore achieves the highest differential capacitances followed by the
cylindrical pore, when low molar concentrations are used. Therefore, the differential capacitance is
highly influenced by the electrolyte’s molar concentration and the electrode’s size.

Moreover, from the comparison between the linear and non-linear differential capacitances for solid
electrodes, it is found that the linear case is a good approximation of the non-linear one for low
electrolyte’s molar concentrations.

The main objective of this thesis was to understand the structure of the electrical double layer,
to achieve high differential capacitances. As a first main result, for this purpose, we found that the
highest possible differential capacitance depends on the specific area (m2kg−1) of the electrode. Clearly,
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(a) View 1.

������

Slit-pore Cylindrical pore Spherical pore

(b) View 2.

Figure 5.1: The differential capacitances, CT , of different nano-pore electrodes, from electrode’s radii of
5Å and 80Å and an electrolyte’s molar concentration up to 0.5 M, in 3D. The electrolyte’s temperature
is set to 298.15 K and the pore’s width to 5Å.

(a) View 1.

Slit-pore Cylindrical pore Spherical pore

(b) View 2.

Figure 5.2: The differential capacitances, CT , of different nano-pore electrodes, from electrode’s radii of
5Å and 15Å and an electrolyte’s molar concentration up to 0.1 M, in 3D. The electrolyte’s temperature
is set to 298.15 K and the pore’s width to 5Å.

the smaller the radius of the nano-electrode, the higher the specific area, and hence the higher the
differential capacitance. Consequently, the nano-pores are more effective than the solid nano-electrodes;
however, the internal radius of the nano-pore should be large enough to allow the electrolyte solution
to get into the nano-pore. Therefore, the spherical nano-pore electrode accomplish these requirements.
Moreover, such nano-pores could be connected in an electronic array, to increase the voltage and the
capacitance, in series and in parallel, respectively, in a possible supercapacitor device.

In conclusion, given the same circumstances, the nano-pore electrodes achieve the highest differen-
tial capacitance, in comparison to the solid nano-electrodes; and the spherical and cylindrical topologies
favor the capacitance, being of course the spherical nano-pore topology the most effective. Further-
more, the differential capacitance depends on the mean electrostatic potential, which in turns highly
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depends on the nano-pore surface charge and on the ionic concentration. In consequence, the higher
the molar concentration, the lower the mean electrostatic potential and the higher the differential ca-
pacitance. Lastly, even though the temperature has the least impact on the differential capacitance
(the higher the temperature, the lower the capacitance), in a large array of nano-pores, closely packed,
as components of a supercapacitor device, its temperature during operation will increase, hence de-
creasing the differential capacitance. Therefore, the temperature must be taken into account to achieve
a high differential capacitance.

5.3 Future works

It is of interest to obtain the non-linear versions of the Poisson-Boltzmann model with the Stern re-
striction of the pores and of the remaining solid electrodes. This for comparison purposes, to find
now the interval of validity of these non-linear cases. Furthermore, it is of great interest to obtain the
HNC/MSA model or Monte Carlo results for any of the pores, both inside and outside. Currently not
much works have been done considering the inside and outside pores, which should not be considered
separately. As it was observed from our simple model, the inside and outside pores are linked. Fur-
thermore, it would be of interest to find the impact that the pores’ width has on the different electric
parameters.
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The single electrical double layer for
different solid electrodes

In this appendix, the complete derivations of the single double layer for the different solid electrodes are
shown. All of them are obtained by solving the Laplace and Poisson-Boltzmann equations in different
coordinate systems. These are solved by assuming that the electric potentials are unidirectional.
Therefore, they only depend on one axis, for the Cartesian coordinate system it is taken to be x, and
for the cylindrical and spherical coordinate systems it is taken to be r axis.

A.1 The single electrical double layer of a solid planar electrode

The electric potential is obtained from the Poisson-Boltzmann equation with the Stern restriction.
The linear and non-linear models share two common factors, the solution in the Helmholtz layer is the
same, and the boundary conditions are identical. In the Laplace’s interval the boundary conditions
are ψ(0) = ψ0 and ψ(a/2) = ψH , and in the Poisson-Boltzmann’s interval ψ(a/2) = ψH and ψ(∞) = 0.
Furthermore, they also follow Gauss’ law. Therefore, the following solution of the Laplace interval is
valid for both the p-LPBS and p-nLPBS cases.

From the first interval (0 ≤ x < a
2 ) we have that the Laplace equation for a plane electrode is

∇2ψ(x) =
d2ψ

dx2
= 0

The above is an ordinary differential equation which can be easily solved. We integrate both sides and
find

dψ

dx
= C1

From the Gauss’ law, when x = a
2 , we find that the value of our first constant is

dψ

dx
= −4π σM

ε

Where σM is the electrode’s surface charge. We integrate a second time and obtain

ψ(x) = −4π σM
ε

x+ C2

From the boundary condition ψ(0) = ψ0

ψ0 = C2

110



Appendix A

ψ(x) = −4π σM
ε

x+ ψ0

Moreover, from the boundary condition ψ(a2 ) = ψH we have

ψH = −4π σM
ε

a

2
+ ψ0

Which means that electric potential between 0 ≤ x < a
2 is

ψ(x) =
4π σM
ε

(a
2
− x
)

+ ψH (A.1)

Equation (A.1) is valid for the p-LPBS and p-nLPBS cases, the difference lies in the value that σM
and ψH take for each one.

In the second interval (x ≥ a
2 ), we have the Poisson-Boltzmann equation as

∇2ψ(x) =
d2ψ

dx2
= −4π ρel(x)

ε
(A.2)

Where the electric charge density is given by

ρel(x) = z e (n+ − n−) (A.3)

where z is the ion valence, e is the electron charge, and n+ and n− are the average charge concentration
of co-ions and counter-ions, and they are given by the Maxwell-Boltzmann theorem

n− = n exp(z−eψ(x)/k T )

n+ = n exp(−z+eψ(x)/k T )

}
(A.4)

n [cm−3] is the number of ions away from the surface, and it is given by n = ρ0 × 10−3 NA, with ρ0 as
the molar concentration.

From here forward, the solution of the PB-eq is divided in two different cases; the linear case
(p-LPBS), and the non-linear case (p-nLPBS). The common constraint that both approaches use is
that a symmetric electrolyte is utilized. The p-LPBS case incorporates another assumption, that the
electric potential is very small, such that z eψ(x)/k T � 1.

A.1.1 The solution of the linearized Poisson-Boltzmann equation

For the p-LPBS, we have a symmetric electrolyte (z+ = z− = z) and a very small electric potential,
such that z eψ(x)/k T � 1, then exp(z eψ(x)/k T ) is almost equal to 1 + z eψ(x)/k T . Therefore, the
electric charge density in Eq. (A.3) is

ρel(x) = −2n e2 z2

k T
ψ(x)

Hence, the PB-eq is
d2ψ

dx2
=

8π n e2 z2

ε k T
ψ(x) = κ2 ψ(x)

with κ2 =
8π n e2 z2

ε k T

 (A.5)

In order to simplify the solution, we perform the following changes of variables.

y =
z eψ

k T
, yH =

z eψH
k T

, κ2 =
8π n e2 z2

ε k T
, ξ = κx (A.6)
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On one hand, from the change of variable of y, one realizes that it is only a function of ψ(x), and that
z e/k T is a constant. Consequently when one derives y with respect of ξ, one obtains

dy

dξ
=

d

dξ

(
z eψ

k T

)
=

z e

k T

dψ

dξ

d2y

dξ2
=

d

dξ

(
dy

dξ

)
=

d

dξ

(
z e

k T

dψ

dξ

)
=

z e

k T

d2ψ

dξ2

On the other hand, the change of variable of x is more straightforward, the derivative of x with respect
of ξ is dx

dξ = 1
κ . Through the chain rule, one finds

dψ

dξ
=

dψ

dx

dx

dξ
=

dψ

dx

1

κ
=

1

κ

dψ

dx

d2ψ

dξ2
=

d

dξ

(
dψ

dξ

)
=

d

dx

(
dψ

dξ

)
dx

dξ
=

d

dx

(
1

κ

dψ

dx

)
dx

dξ
=

1

κ

d2ψ

dx2
1

κ
=

1

κ2
d2ψ

dx2

Consequently, from our change of variables we have

d2y

dξ2
=

z e

k T

1

κ2
d2ψ

dx2
(A.7)

Substituting Eq. (A.5) in Eq. (A.7), and simplifying we obtain

d2y

dξ2
= y (A.8)

The solution of this differential equation is achieved through the following steps. We multiply Eq. (A.8)
by dy

dξ and integrate ∫
dy

dξ

d2y

dξ2
=

∫
y

dy

dξ

1

2

(
dy

dξ

)2

= c1 +
y2

2

Introducing the boundary conditions of y = y′ = 0 for ξ =∞

1

2
· 02 = c1 +

02

2
−→ c1 = 0

(
dy

dξ

)2

= y2

Since for positive values of y the derivative dy
dξ is negative, x and ξ are considered positive from the

surface towards the bulk of the solution. Hence

dy

dξ
= −

√
y2 = −y

∫
dy

y
= −

∫
dξ

ln(y) = −ξ + c2
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Applying the boundary condition of y = yH in ξ = κ a
2

ln(yH) = −κ a
2

+ c2 −→ c2 =
κ a

2
+ ln(yH)

ln(y) = −ξ +
κ a

2
+ ln(yH)

y(ξ) = yH e
−ξ eκ a/2

Substituting the values of y and yH , we obtain the solution in terms of our original variables.

ψ(x) = ψH e
κ(a2−x)

Now we find the relation between σM and ψH , in order to leave Eq. (A.1) only in terms of ψH . The
definition of σM is given by the Gauss’ law as

σM = −
∫ ∞
a/2

ρel(x) dx =
ε

4π

∫ ∞
a/2

d2ψ

dx2
dx = − ε

4π

(
dψ

dx

)
x=a

2

(A.9)

Therefore, the derivative of our linearized Poisson-Boltzmann solution is obtained, and substituted in
Eq. (A.9)

dψ

dx
= −κψH eκ (a2−x)

σM =
ε κψH

4π

Therefore, the value of ψH is

ψH =
4π σM
ε κ

(A.10)

And consequently, ψ0 is

ψ0 = ψH +
4π σM
ε

a

2
=

4π σM
ε κ

(
1 +

κ a

2

)
(A.11)

Then, the mean electrostatic potential is given by

ψ(x) =

{
ψH

[
1 + κ(a2 − x)

]
if 0 ≤ x ≤ a

2

ψH e
κ (a

2
−x) if x ≥ a

2

Meanwhile, the induced surface charge density is given by

σ(x) = −
∫ ∞
x

ρel(x) dx =
ε

4π

∫ ∞
x

d2ψ

dx2
dx = − ε

4π

(
dψ

dx

)
x

(A.12)

Hence, substituting the derivative of the mean electrostatic potential in Eq. (A.12), we obtain

σ(x) =
ε κ

4π
ψH e

κ (a2−x)

This induced surface charge density is only valid for the interval [x,∞), where x ≥ a
2 . On the other

hand, in the interval 0 ≤ x < a
2 the induced surface charge density is zero, because of the ion’s size

restriction, the ions cannot get closer to the surface than half their diameter. Using the relation found
in Eq. (A.10) the induced surface charge density can be expressed as

σ(x) =

{
0 if 0 ≤ x < a

2

σM e
κ (a

2
−x) if x ≥ a

2
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The co-ion and counter-ion distribution functions in the Laplace interval are equal to zero due
to the ion’s size restriction. However, in the Poisson-Boltzmann interval the co-ion and counter-ion
distribution functions are obtained from the electric potential by

g+(x) = exp

(
−z eψ(x)

k T

)
(A.13)

g−(x) = exp

(
z eψ(x)

k T

)
(A.14)

Hence, simplifying we have

g+(x) =

{
0 if 0 ≤ x < a

2

exp
(
− z e
k T ψH e

κ (a
2
−x)
)

if x ≥ a
2

g−(x) =

{
0 if 0 ≤ x < a

2

exp
(
z e
k T ψH e

κ (a
2
−x)
)

if x ≥ a
2

The total differential capacitance is calculated as the sum of the differential capacitances in both
intervals.

1

CT
=

1

CLap
+

1

CPB

Where the subindexes Lap and PB indicate the Laplace and Poisson-Boltzmann intervals, they are
defined as

1

CLap
=

dψ0

dσM
=

4π

ε κ

(
1 +

κ a

2

)
1

CPB
=

dψH
dσM

=
4π

ε κ

So, we find that the total differential capacitance is

1

CT
=

4π

ε κ

(
1 +

κ a

2

)
+

4π

ε κ

1

CT
=

4π

ε κ

(
2 +

κ a

2

)
CT =

[
4π

ε κ

(
2 +

κ a

2

)]−1
A.1.2 The solution of the non-linearized Poisson-Boltzmann equation

Since we are dealing with a symmetric electrolyte the valencies are equal (z+ = z− = z) and the electric
charge is given by Eq. (A.3). Hence,

ρel(x) = −2n z e sinh
( z e
k T

ψ(x)
)

Therefore, Eq. (A.2) is
d2ψ

dx2
=

8π n z e

ε
sinh

( z e
k T

ψ(x)
)

(A.15)
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In order to simplify the solution of the problem, we perform the changes of variables in Eq. (A.6).
Therefore, substituting Eq. (A.15) in Eq. (A.7), and simplifying we obtain

d2y

dξ2
= sinh(y) (A.16)

The solution of this equation is achieved through the next steps. We first rewrite the hyperbolic sine
in Eq. (A.16) on its exponential form and afterwards we multiply it by dy

dξ and integrate

2
d2y

dξ2
= ey − e−y

∫
2

d2y

dξ2
dy

dξ
=

∫ (
ey − e−y

) dy

dξ(
dy

dξ

)2

= ey − (−1) e−y + c1(
dy

dξ

)2

= ey + e−y + c1

Introducing the boundary condition of y = y′ = 0 for ξ =∞

(0)2 = e0 + e−0 + c1 =⇒ c1 = −2(
dy

dξ

)2

= ey + e−y − 2

Since for positive values of y the derivative dy
dξ is negative, x and ξ are considered positive from the

surface towards the bulk of the solution. Therefore

dy

dξ
= −

√
ey + e−y − 2

Now, since the hyperbolic cosine is equal to exp(y)+exp(−y)
2 , the above is

dy

dξ
= −

√
2 cosh(y)− 2 = −

√
2 [cosh(y)− 1]

Moreover, from the relation between sinh(u) and cosh(u), sinh2(u) = 1
2 [cosh(2u)− 1], the above is

rewritten as
dy

dξ
= −

√
2
[
2 sinh2

(y
2

)]
= −2 sinh

(y
2

)
(A.17)

Once again, we rewrite the hyperbolic sinus in Eq. (A.17) on its exponential form and perform the
change of variable, a = ey/2, with da = 1

2 e
y/2 dy, and with some manipulation

dy

dξ
= −

(
ey/2 − e−y/2

)
dy

ey/2 − e−y/2
= −dξ

dy

ey/2 − e−y/2
=

2 da

ey/2
(
ey/2 − e−y/2

) =
2 da

(ey/2)2 − 1
=

2 da

a2 − 1
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2 da

a2 − 1
=

A

a+ 1
+

B

a− 1
=
Aa−A+B a+B

a2 − 1

(A+B) a = 0

−A+B = da

}
A = −da

B = da∫ (
da

a− 1
− da

a+ 1

)
=

∫
−dξ

ln(a− 1)− ln(a+ 1) = −ξ + c2

ln

(
ey/2 − 1

ey/2 + 1

)
= −ξ + c2

Applying the boundary condition of y = yH in ξ = κ a
2

ln

(
eyH/2 − 1

eyH/2 + 1

)
= −κ a

2
+ c2 −→ c2 =

κ a

2
+ ln

(
eyH/2 − 1

eyH/2 + 1

)

Hence the solution of Eq. (A.15) in terms of our change of variables is

ln

(
ey/2 − 1

ey/2 + 1

)
= −ξ +

κ a

2
+ ln

(
eyH/2 − 1

eyH/2 + 1

)
In order to leave this equation in terms of our original variables, we first clear our equation in terms
of y and afterwards we make the change of variables.

ey/2 − 1

ey/2 + 1
=
eyH/2 − 1

eyH/2 + 1
e−ξ eκ a/2

1− 2

ey/2 + 1
=
eyH/2 − 1

eyH/2 + 1
e−ξ eκ a/2

1− eyH/2 − 1

eyH/2 + 1
e−ξ eκ a/2 =

2

ey/2 + 1(
ey/2 + 1

)[
1− eyH/2 − 1

eyH/2 + 1
e−ξ eκ a/2

]
= 2

ey/2

[
1− eyH/2 − 1

eyH/2 + 1
e−ξ eκ a/2

]
= 2− 1 +

eyH/2 − 1

eyH/2 + 1
e−ξ eκ a/2

ey/2
[(
eyH/2 + 1

)
−
(
eyH/2 − 1

)
e−ξ eκ a/2

]
=
(
eyH/2 + 1

)
+
(
eyH/2 − 1

)
e−ξ eκ a/2

ey/2 =

(
eyH/2 + 1

)
+
(
eyH/2 − 1

)
e−ξ eκ a/2(

eyH/2 + 1
)
−
(
eyH/2 − 1

)
e−ξ eκ a/2

y = 2 ln

((
eyH/2 + 1

)
+
(
eyH/2 − 1

)
e−ξ eκ a/2(

eyH/2 + 1
)
−
(
eyH/2 − 1

)
e−ξ eκ a/2

)

ψ(x) =
2 k T

z e
ln


(

exp
(
z e
k T

ψH
2

)
+ 1
)

+
(

exp
(
z e
k T

ψH
2

)
− 1
)
eκ(

a
2
−x)(

exp
(
z e
k T

ψH
2

)
+ 1
)
−
(

exp
(
z e
k T

ψH
2

)
− 1
)
eκ(

a
2
−x)
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Now we find the relation between σM and ψH , from Eq. (A.9). Therefore, the derivative of our p-nLPBS
solution must be obtained. To do so we perform three changes of variables in order to simplify the
derivation, and for clearness we use A+ = exp

(
z e
k T

ψH
2

)
+ 1 and A− = exp

(
z e
k T

ψH
2

)
− 1.

ψ(x) =
2 k T

z e
ln(u)

dψ

dx
=

2 k T

z e

1

u

du

dx

u =
v

w
=
A+ +A− eκ(

a
2
−x)

A+ −A− eκ(
a
2
−x)

d

dx

( v
w

)
=
w (dv /dx)− v (dw /dx)

w2

dv

dx
= −κA− eκ(

a
2
−x)

dw

dx
= κA− eκ(

a
2
−x)

du

dx
= −

κA− eκ(
a
2
−x)

[
A+ −A− eκ(

a
2
−x)
]

+ κA− eκ(
a
2
−x)

[
A+ +A− eκ(

a
2
−x)
]

[
A+ −A− eκ(

a
2
−x)
]2

du

dx
= − κA− eκ(

a
2
−x) [2A+][

A+ −A− eκ(
a
2
−x)
]2 = − 2κA+A− eκ(

a
2
−x)[

A+ −A− eκ(
a
2
−x)
]2

dψ

dx
= −2 k T

z e

(
A+ −A− eκ(

a
2
−x)

A+ +A− eκ(
a
2
−x)

)
2κA+A− eκ(

a
2
−x)[

A+ −A− eκ(
a
2
−x)
]2

dψ

dx
= −4κ k T

z e

A+A− eκ(
a
2
−x)(

A+ +A− eκ(
a
2
−x)
)(

A+ −A− eκ(
a
2
−x)
)

Substituting this derivative in Eq. (A.9) we obtain

σM =
ε

4π

4κ k T

z e

A+A−

(A+ +A−) (A+ −A−)

σM =
ε κ k T

π z e

A+A−(
(A+)2 − (A−)2

)
σM =

ε κ k T

π z e

(
exp
(
z e
k T

ψH
2

)
+ 1
) (

exp
(
z e
k T

ψH
2

)
− 1
)

((
exp
(
z e
k T

ψH
2

)
+ 1
)2
−
(

exp
(
z e
k T

ψH
2

)
− 1
)2)

For clearness, we now use the change of variable, yH

σM =
ε κ k T

π z e

(
eyH/2 + 1

) (
eyH/2 − 1

)((
eyH/2 + 1

)2 − (eyH/2 − 1
)2)
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σM =
ε κ k T

π z e

eyH − 1(
eyH + 2 eyH/2 + 1−

(
eyH − 2 eyH/2 + 1

))
σM =

ε κ k T

π z e

eyH − 1

4 eyH/2

σM =
ε κ k T

2π z e

eyH/2 − e−yH/2
2

σM =
ε κ k T

2π z e
sinh

(
z eψH
2 k T

)
Therefore, the value of ψH is

ψH =
2 k T

z e
sinh−1

(
2π z e σM
ε κ k T

)
(A.18)

And consequently, ψ0 is

ψ0 = ψH +
4π σM
ε

a

2
=

2 k T

z e
sinh−1

(
2π z e σM
ε κ k T

)
+

4π σM
ε

a

2
(A.19)

Then, the electric potential is given by

ψ(x) =


2κ k T
z e sinh

(
z eψH
2 k T

)
(a2 − x) + ψH if 0 ≤ x ≤ a

2

2 k T
z e ln

((
exp
(
z e
k T

ψH
2

)
+1
)
+
(
exp
(
z e
k T

ψH
2

)
−1
)
eκ(

a
2−x)(

exp
(
z e
k T

ψH
2

)
+1
)
−
(
exp
(
z e
k T

ψH
2

)
−1
)
eκ(

a
2−x)

)
if x ≥ a

2

Meanwhile, the induced surface charge density is obtained by substituting the derivative of the electric
potential in Eq. (A.12) and simplifying

σ(x) =
ε κ k T

π z e

(
exp
(
z e
k T ψH

)
− 1
)
eκ(

a
2
−x)(

exp
(
z e
k T

ψH
2

)
+ 1
)2
−
[(

exp
(
z e
k T

ψH
2

)
− 1
)
eκ(

a
2
−x)
]2

This induced surface charge density is only valid for the interval [x,∞), where x ≥ a
2 ; whereas, for

the interval 0 ≤ x < a
2 the induced surface charge density is zero, because of the ion’s size restriction,

the ions cannot get closer to the surface than half their diameter. Hence, the induced surface charge
density is

σ(x) =


0 if 0 ≤ x < a

2

ε κ k T
π z e

(exp( z ek T ψH)−1) eκ(
a
2−x)(

exp
(
z e
k T

ψH
2

)
+1
)2
−
[(

exp
(
z e
k T

ψH
2

)
−1
)
eκ(

a
2−x)

]2 if x ≥ a
2

With the electric potential in the Poisson-Boltzmann interval one obtains the co-ion and counter-ion
distribution functions by Eqs. (A.13) and (A.14). Whereas, for the Laplace interval, because of the
ion’s size restriction the co-ion and counter-ion distribution functions are equal to zero. Hence, we find

g+(x) =


0 if 0 ≤ x < a

2[(
exp
(
z e
k T

ψH
2

)
+1
)
+
(
exp
(
z e
k T

ψH
2

)
−1
)
eκ(

a
2−x)(

exp
(
z e
k T

ψH
2

)
+1
)
−
(
exp
(
z e
k T

ψH
2

)
−1
)
eκ(

a
2−x)

]−2
if x ≥ a

2
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g−(x) =


0 if 0 ≤ x < a

2[(
exp
(
z e
k T

ψH
2

)
+1
)
+
(
exp
(
z e
k T

ψH
2

)
−1
)
eκ(

a
2−x)(

exp
(
z e
k T

ψH
2

)
+1
)
−
(
exp
(
z e
k T

ψH
2

)
−1
)
eκ(

a
2−x)

]2
if x ≥ a

2

Meanwhile, the total differential capacitance is calculated as the sum of the differential capacitances
in both intervals.

1

CT
=

1

CLap
+

1

CPB

The subindexes Lap and PB indicate the Laplace and Poisson-Boltzmann intervals, they are defined
as

1

CLap
=

dψ0

dσM
=

4π

ε κ

(
1 + κ a

2

)√
1 +

(
2π z e σM
ε κ k T

)2
1

CPB
=

dψH
dσM

=
4π

ε κ

1√
1 +

(
2π z e σM
ε κ k T

)2
So, we find that the total differential capacitance is

1

CT
=

4π

ε κ

(
1 + κ a

2

)√
1 +

(
2π z e σM
ε κ k T

)2 +
4π

ε κ

1√
1 +

(
2π z e σM
ε κ k T

)2
1

CT
=

4π

ε κ

(
2 + κ a

2

)√
1 +

(
2π z e σM
ε κ k T

)2
CT =

4π

ε κ

(
2 + κ a

2

)√
1 +

(
2π z e σM
ε κ k T

)2
−1

A.2 The solution of the linearized Poisson-Boltzmann equation for a
solid cylindrical electrode

For a cylindrical electrode, the Laplacian is given by

∇2 ≡ 1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2

(
∂2

∂θ2

)
+

∂2

∂z2

For the solution of the EDL in a solid cylindrical electrode, one starts from the assumption that the
electric potential, ψ, only depends on the radius. Hence, the Laplace equation for the cylindrical
electrode is

∇2ψ =
1

r

∂

∂r

(
r
∂ψ

∂r

)
=

d2ψ

dr2
+

1

r

dψ

dr
= 0

The above is an ordinary differential equation and is solved easily by the change of variables of ϕ(r) =
dψ
dr . We rewrite the Laplace equation in terms of our new variable ϕ(r) and integrate

dϕ

dr
+
ϕ(r)

r
= 0

dϕ

dr
= −ϕ(r)

r
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∫
dϕ

ϕ
= −

∫
dr

r

ln(ϕ(r)) = − ln(r) + C1

ϕ(r) =
C1

r

Substituting our change of variable ϕ(r) = dψ
dr and from the Gauss’ law in r = R+ a

2 , we find the value
of the first constant

dψ

dr
=
C1

r
= −4π σM

ε
−→ C1 = −4π σM

ε
r

dψ

dr
= −4π σM

ε

ψ(r) = −4π σM
ε

r + C2

From our boundary condition ψ(R) = ψR

ψ(R) = −4π σM
ε

R+ C2 = ψR −→ C2 = ψR +
4π σM
ε

R

ψ(r) = ψR +
4π σM
ε

(R− r)

Meanwhile from the boundary condition, ψ(R+ a
2 ) = ψH , we have

ψ
(
R+

a

2

)
= ψR −

4π σM
ε

a

2
= ψH −→ ψR = ψH +

4π σM
ε

a

2

Hence, our solution for the Laplace interval in terms of ψH is

ψ(r) = ψH +
4π σM
ε

(
R+

a

2
− r
)

Meanwhile, for the PB interval, we have that the electric charge density is the same as the p-LPBS
equation, given by

ρel(r) = −2n e2 z2

k T
ψ(r)

Therefore, the c-LPBS given by Eq. (A.2), is

d2ψ

dr2
+

1

r

dψ

dr
=

8π n e2 z2

ε k T
ψ(r) = κ2 ψ(r)

with κ2 =
8π n e2 z2

ε k T

 (A.20)

Rewriting Eq. (A.20) one gets

d2ψ

dr2
+

1

r

dψ

dr
− κ2 ψ(r) = 0 (A.21)

Equation (A.21) is a modified Bessel equation of order zero. In order to solve it, we take the modified
Bessel equation of v order from Bowman [83], which is

x2
d2u

dx2
+ x

du

dx
−
(
x2 + v2

)
u = 0 (A.22)
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Defining that v = 0, u = ψ(r) and x = κ r, which implies that r = x
κ and dr

dx = 1
κ . With these changes

of variables in Eq. (A.22), and applying the chain rule

du

dx
=

du

dr

dr

dx
=

1

κ

du

dr

d2u

dx2
=

d

dx

(
du

dx

)
=

d

dr

(
1

κ

du

dr

)
dr

dx
=

1

κ

d2u

dr2
1

κ
=

1

κ2
d2u

dr2

Hence, from the changes of variables, Eq. (A.22) becomes

(κr)2
1

κ2
d2ψ

dr2
+ (κr)

1

κ

dψ

dr
−
[
(κr)2 + 02

]
ψ(r) = 0

r2
d2ψ

dr2
+ r

dψ

dr
− (κr)2 ψ(r) = 0 (A.23)

When Eqs. (A.21) and (A.23) are compared it is realized that they are equivalent. Therefore, it is
recognized that Eq. (A.21) is the modified Bessel equation of zero order. In order to solve this equation
it is assumed that there exists a solution in the form of a power series, such as

ψ(r) =
∞∑
n=0

an r
n+s (A.24)

To find the values of the constants, one must obtain the derivatives of Eq. (A.24) and substitute them
in Eq. (A.23)

dψ

dr
=

∞∑
n=0

an(n+ s) rn+s−1

d2ψ

dr2
=

∞∑
n=0

an(n+ s)(n+ s− 1) rn+s−2

∞∑
n=0

an(n+ s)(n+ s− 1) rn+s +
∞∑
n=0

an(n+ s) rn+s − κ2
∞∑
n=0

an r
n+s+2 = 0

Simplifying
∞∑
n=0

an(n+ s)2 rn+s − κ2
∞∑
n=0

an r
n+s+2 = 0 (A.25)

In order for Eq. (A.25) to be a solution of Eq. (A.21) it is needed that each power series of r is equal
to zero. Then

a0 s
2 = 0 (A.26)

a1(s+ 1)2 = 0 (A.27)

an(s+ n)2 − κ2 an−2 = 0 (n ≥ 2) (A.28)

Since a0 6= 0, it is found from Eq. (A.26) that s2 = 0. Therefore, there are two equal solutions
s = +0,−0. If s = 0, it is seen that the only way that Eq. (A.26) is true, is if a1 = 0. Hence, from the
recurrence relation in Eq. (A.28) it is seen that all the odd constants are defined by a1. Therefore, a
new recurrence relation is made for only the even constants, which are different from 0,

a2n =
κ2 an−2

(s+ 2)2
(n ≥ 1) (A.29)
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Substituting Eq. (A.29) in Eq. (A.24), one gets

ψ(r) = a0r
s

[
1 +

∞∑
n=1

κ2n

(s+ 2)2(s+ 4)2 · · · (s+ 2n)2
r2n

]

a) For s = +0

ψ+0(r) = a0

[
1 +

∞∑
n=1

κ2n

22 · 42 · · · · · (2n)2
r2n

]

ψ+0(r) = a0

[
1 +

∞∑
n=1

κ2n

22n(n!)2
r2n

]

ψ+0(r) = a0

∞∑
n=0

1

(n!)2

(κ r
2

)2n
(A.30)

Equation (A.30) is equal to the modified Bessel equation of zero order [84], such as

ψ+0(r) = I+0(x) =

∞∑
n=0

1

(n!)2

(x
2

)2n
with x = κ r (A.31)

b) For s = −0

ψ−0(r) = a0

[
1 +

∞∑
n=1

κ2n

22 · 42 · · · · · (2n)2
r2n

]

ψ−0(r) = a0

[
1 +

∞∑
n=1

κ2n

22n(n!)2
r2n

]

ψ−0(r) = a0

∞∑
n=0

1

(n!)2

(κ r
2

)2n
(A.32)

Equation (A.32) is the modified Bessel equation of minus zero order, such as

ψ−0(r) = I−0(x) =
∞∑
n=0

1

(n!)2

(x
2

)2n
with x = κ r (A.33)

From the cases a) and b) it is observed that

I+0(x) = I−0(x)

This is due to the fact that zero is an even number, and hence the relation I+n(x) = I−n(x) [85] applies,
when n is an even number. Therefore, the second solution of Eq. (A.21) is defined by [85]

K0(x) =
π

2

I−0(x)− I+0(x)

sin(0 · π)

Since 0 is an even number, the modified Bessel function of second order is indeterminate in 0
0 . To

avoid, said indetermination, the limit when n tends to 0 is used

K0(x) = lim
n→0

Kn(x) = lim
n→0

π

2

I−n(x)− I+n(x)

sin(nπ)
(A.34)
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The L’Hôpital rule is apllied to Eq. (A.34). Moreover, it is recognised that sin(nπ) = 0 and cos(nπ) =
(−1)n, then

K0(x) =
π

2

[
∂
∂nI−n(x)− ∂

∂nI+n(x)
]
n=0

π [cos(nπ)]n=0

K0(x) =
(−1)0

2

[
∂

∂n
I−n(x)− ∂

∂n
I+n(x)

]
n=0

K0(x) =
1

2

[
∂

∂n
I−n(x)− ∂

∂n
I+n(x)

]
n=0

(A.35)

Now, whether K0(x) is a solution of Eq. (A.21) and whether it is an independent solution of I0(x) is
verified. Firstly, it is verified if I0(x) is indeed the solution of the modified Bessel equation of zero
order.

I0(x) =
∞∑
n=0

x2n

22n(n!)2
with x = κ r

dI0
dx

=
∞∑
n=0

2nx2n−1

22n(n!)2

d2I0
dx2

=
∞∑
n=0

2n (2n− 1)x2n−2

22n(n!)2

Substituting I0(x) and its derivatives in Eq. (A.22) to verify if it is or not a solution.

∞∑
n=0

2n (2n− 1)x2n

22n(n!)2
+

∞∑
n=0

2nx2n

22n(n!)2
−
∞∑
n=0

x2n+2

22n(n!)2
= 0

∞∑
n=0

4n2 x2n

22n(n!)2
−
∞∑
n=0

2nx2n

22n(n!)2
+
∞∑
n=0

2nx2n

22n(n!)2
−
∞∑
n=0

x2n+2

22n(n!)2
= 0

∞∑
n=0

4n2x2n

22n(n!)2
−
∞∑
n=0

x2n+2

22n(n!)2
= 0

The change of variable k = n− 1 is performed in the left series, and since the factorial is not defined
for negative values, the first term when k = n− 1 is considered to be zero. Hence

∞∑
k=0

x2 k+2

22 k(k!)2
−
∞∑
n=0

x2n+2

22n(n!)2
= 0

Therefore, it has been proved that

x2
d2I0
dx2

+ x
dI0
dx
− x2 I0 = 0

which is equivalent to [
x2

d2In
dx2

+ x
dIn
dx
− x2 In = 0

]
n=0

(A.36)

Since I+n(x) = I−n(x), I−0(x) satisfies Eq. (A.22), such as[
x2

d2I−n
dx2

+ x
dI−n
dx
− x2I−n = 0

]
n=0

(A.37)
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Differentiating Eq. (A.36) and Eq. (A.37) with respect of n, one gets

x2
d2

dx2

(
∂In
∂n

)
+ x

d

dx

(
∂In
∂n

)
− x2∂In

∂n
= 0 (A.38)

x2
d2

dx2

(
∂I−n
∂n

)
+ x

d

dx

(
∂I−n
∂n

)
− x2∂I−n

∂n
= 0 (A.39)

Substrating Eq. (A.38) from Eq. (A.39) one finds

x2
d2

dx2

(
∂I−n
∂n
− ∂In
∂n

)
+ x

d

dx

(
∂I−n
∂n
− ∂In
∂n

)
− x2

(
∂I−n
∂n
− ∂In
∂n

)
= 0 (A.40)

Multiplying Eq. (A.40) by 1
2 and evaluating for n = 0

x2
d2

dx2
K0(x) + x

d

dx
K0(x)− x2K0(x) = 0 (A.41)

Therefore, it has been proven that K0(x) = K0(κ r) is indeed the second solution of Eq. (A.21) and
that it is independent of I0(κ r). Hence, the solution of Eq. (A.21) is

ψ(r) = c1I0(κ r) + c2K0(κ r) (A.42)

Applying the boundary conditions ψ(R+ a
2 ) = ψH and ψ(∞) = 0

c1I0

(
κ
(
R+

a

2

))
+ c2K0

(
κ
(
R+

a

2

))
= ψH (A.43)

lim
M→∞

[c1 I0(κM) + c2K0(κM)] = 0 (A.44)

c2 is cleared from Eq. (A.43) and introduced in Eq. (A.44)

c2 =
ψH − c1 I0

(
κ
(
R+ a

2

))
K0

(
κ
(
R+ a

2

))
lim
M→∞

[
c1 I0(κM) +

ψH − c1I0
(
κ
(
R+ a

2

))
K0

(
κ
(
R+ a

2

)) K0(κM)

]
= 0

lim
M→∞

[
c1 I0(κM) +

K0(κM)

K0

(
κ
(
R+ a

2

))ψH − c1K0(κM) I0
(
κ
(
R+ a

2

))
K0

(
κ
(
R+ a

2

)) ]
= 0

Clearing for c1

c1 =
− K0(κM)

K0(κ(R+a
2 ))

ψH

I0(κM)− K0(κM) I0(κ(R+a
2 ))

K0(κ(R+a
2 ))

(A.45)

In Fig. A.1 the functions I0(x) andK0(x) are plotted. From this figure it is seen that lim
M→∞

K0(κM) =

0 and lim
M→∞

I0(κM) =∞. Hence, evaluating the limit of Eq. (A.45)

c1 =
− 0
K0(κ(R+a

2 ))
ψH

∞− 0·I0(κ(R+a
2 ))

K0(κ(R+a
2 ))

=
0

∞− 0
=

0

∞
= 0
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Figure A.1: I0(x), I1(x), K0(x) y K1(x) for 0 ≤ x ≤ 3. Taken from NIST Handbook of Mathematical
Functions [84].

Hence, substituting the value of c1 in Eq. (A.43), c2 is found as

0 · I0
(
κ
(
R+

a

2

))
+ c2K0

(
κ
(
R+

a

2

))
= ψH −→ c2 =

ψH

K0

(
κ
(
R+ a

2

))
Hence, substituting our constants in Eq. (A.42), we found the solution of the electric potential in the
Poisson-Boltzmann interval is

ψ(r) =
K0(κ r)

K0

(
κ
(
R+ a

2

)) ψH (A.46)

Now we find the relation between σM and ψH . The definition of σM is similar to Eq. (A.9), though the
inferior limit of integration is now R+ a

2 . Since, we are working with Bessel equations, we will use the
relation K ′n(x) = n

x −Kn+1 [85]. Hence, Eq. (A.9) for the cylindrical electrode is

σM = − 1

R+ a
2

∫ ∞
R+a

2

ρel(r) r dr =
1

R+ a
2

ε

4π

∫ ∞
R+a

2

1

r

d

dr

(
r

dψ

dr

)
r dr

= − ε

4π

(
dψ

dr

)
r=R+a

2

(A.47)

dψ

dr
=

κK ′0(κ r)

K0

(
κ
(
R+ a

2

)) ψH
dψ

dr
= − κK1(κ r)

K0

(
κ
(
R+ a

2

)) ψH
σM =

ε κ

4π

K1

(
κ
(
R+ a

2

))
K0

(
κ
(
R+ a

2

)) ψH
Consequently, ψH is

ψH =
4π

ε κ

K0

(
κ
(
R+ a

2

))
K1

(
κ
(
R+ a

2

)) σM (A.48)

Hence, ψR is

ψR =
4π σM
ε κ

(
κ a

2
+
K0

(
κ
(
R+ a

2

))
K1

(
κ
(
R+ a

2

))) (A.49)
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Then, the electric potential is given by

ψ(r) =


ψH

[
1 + κ

K1(κ(R+a
2 ))

K0(κ(R+a
2 ))

(
R+ a

2 − r
)]

if R ≤ r ≤ R+ a
2

K0(κ r)

K0(κ(R+a
2 ))

ψH if r ≥ R+ a
2

Meanwhile, the induced surface charge density, σ(r), which was given by Eq. (A.12) for a plane
electrode, is the same for the cylindrical electrode, but on cylindrical coordinates. Then, the surface
charge density for the cylindrical electrode is

σ(r) = −1

r

∫ ∞
r

ρel(t) t dt =
1

r

ε

4π

∫ ∞
r

1

t

d

dt

(
t
dψ

dt

)
t dt = − ε

4π

(
dψ

dr

)
r

(A.50)

σ(r) =
ε κ

4π

K1(κ r)

K0

(
κ
(
R+ a

2

)) ψH
This induced surface charge density is only valid for the interval [r,∞), where r ≥ R + a

2 . On the
other hand, in the interval R ≤ r < R + a

2 the surface charge density is zero, because of the ion size
restriction, the ions cannot get closer to the surface than half their diameter.

σ(r) =

0 if R ≤ r < R+ a
2

ε κ
4π

K1(κ r)

K0(κ(R+a
2 ))

ψH if r ≥ R+ a
2

Now, the co-ion and counter-ion distribution functions are obtained. For the Laplace interval both
distribution functions are equal to zero due to the ion’s size restriction. Whereas, in the Poisson-
Boltzmann interval the co-ion and counter-ion distribution functions are given by Eqs. (A.13) and (A.14).
Hence, we have

g+(r) =

0 if R ≤ r < R+ a
2

exp

(
− z e
k T

K0(κ r)

K0(κ(R+a
2 ))

ψH

)
if r ≥ R+ a

2

g−(r) =

0 if R ≤ r < R+ a
2

exp

(
z e
k T

K0(κ r)

K0(κ(R+a
2 ))

ψH

)
if r ≥ R+ a

2

Meanwhile, the total differential capacitance is calculated as the sum of the differential capacitances
in both intervals.

1

CT
=

1

CLap
+

1

CPB
Where the subindexes Lap and PB indicate the interval of Laplace and Poisson-Boltzmann, they are
defined as

1

CLap
=

dψR
dσM

=
4π

ε κ

(
K0

(
κ
(
R+ a

2

))
K1

(
κ
(
R+ a

2

)) +
κ a

2

)
1

CPB
=

dψH
dσM

=
4π

ε κ

K0

(
κ
(
R+ a

2

))
K1

(
κ
(
R+ a

2

))
So, we find that the total differential capacitance is

1

CT
=

4π

ε κ

(
2K0

(
κ
(
R+ a

2

))
K1

(
κ
(
R+ a

2

)) +
κ a

2

)

CT =

[
4π

ε κ

(
2K0

(
κ
(
R+ a

2

))
K1

(
κ
(
R+ a

2

)) +
κ a

2

)]−1
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A.3 The solution of the linearized Poisson-Boltzmann equation for a
solid spherical electrode

For a spherical electrode, the Laplacian is given by

∇2 ≡ 1

r2
∂

∂r

(
r2
∂

∂r

)
+

1

r2 sin2(φ)

∂2

∂θ2
+

1

r2 sin(φ)

∂

∂φ

(
sin(φ)

∂

∂φ

)
In order to solve the electrical double layer in a spherical electrode, one starts from the assumption that
the electric potential, ψ, only depends on the radius. Hence, the Laplace equation for the spherical
electrode is

∇2ψ =
1

r2
∂

∂r

(
r2
∂ψ

∂r

)
=

d2ψ

dr2
+

2

r

dψ

dr
= 0

The above is an ordinary differential equation and is solved easily by reduction of order by the change
of variable ψ = ϕ

r . We rewrite the Laplace equation in terms of our new variable, ϕ, we obtain the
derivatives of ψ in terms of ϕ by the following steps

dψ

dr
=
r dϕ

dr − ϕ
r2

=
1

r

dϕ

dr
− 1

r2
ϕ

d2ψ

dr2
=
r d2ϕ

dr2
− dϕ

dr

r2
−
r2 dϕ

dr − 2 r ϕ

r4
=

1

r

d2ϕ

dr2
− 2

r2
dϕ

dr
+

2

r3
ϕ

Substituting this values in the original equation and simplifying

1

r

d2ϕ

dr2
− 2

r2
dϕ

dr
+

2

r3
ϕ+

2

r2
dϕ

dr
− 2

r3
ϕ =

1

r

d2ϕ

dr2
= 0

Now, this equation is easily solved by multiplying it by r and integrating on both sides

dϕ

dr
= C1 −→ ϕ(r) = C1 r + C2

Substituting this result in our original variable, we obtain

ψ(r) = C1 +
C2

r

From the Gauss’ law in r = R+ a
2 , and obtaining the derivative of the above we find the value of our

first constant
dψ

dr
= − 1

r2
C2 = −4π σM

ε
−→ C2 =

4π σM
ε

r2

dψ

dr
= −4π σM

ε

ψ(r) = C1 −
4π σM
ε

r

From our boundary condition, ψ(R) = ψR, we have

ψ(R) = C1 −
4π σM
ε

R = ψR −→ C1 = ψR +
4π σM
ε

R

ψ(r) = ψR +
4π σM
ε

(R− r)
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Meanwhile, from the boundary condition, ψ(R+ a
2 ) = ψH , it is found

ψ
(
R+

a

2

)
= ψR −

4π σM
ε

a

2
= ψH −→ ψR = ψH +

4π σM
ε

a

2

Hence, our solution for the Laplace interval in terms of ψH is

ψ(r) = ψH +
4π σM
ε

(
R+

a

2
− r
)

Meanwhile, for the PB interval, we have that the electric charge density is the same as the p-LPBS
equation, given by

ρel(r) = −2n e2 z2

k T
ψ(r)

Therefore, the s-LPBS is given by Eq. (A.2), namely

d2ψ

dr2
+

2

r

dψ

dr
=

8π n e2 z2

ε k T
ψ(r) = κ2 ψ(r)

with κ2 =
8π n e2 z2

ε k T

 (A.51)

Rewriting Eq. (A.51) one gets

d2ψ

dr2
+

2

r

dψ

dr
− κ2 ψ(r) = 0 (A.52)

From Eq. (A.52), one realizes that this differential equation is of the form d2ψ
dr2

+ f(r) dψ
dr +ψ(r) g(r) =

F (r). Hence, it can be solved by reduction of order, applying the substitution ψ(r) = exp
(
−
∫ f(r)

2 dr
)
v(r),

which is equivalent to ψ(r) = µ(r)v(r). Therefore, one obtains

µ(r) = exp

(
−
∫
f(r)

2
dr

)
= exp

(
−
∫

2/r

2
dr

)
= exp

(
−
∫

dr

r

)

µ(r) = exp[− ln(r)] = exp

[
ln

(
1

r

)]
=

1

r

The derivatives of µ(r) are obtained

µ =
1

r

dµ

dr
= − 1

r2
d2µ

dr2
=

2

r3
(A.53)

Now that µ(r) is obtained as well as its derivatives, one obtains the derivative of ψ(r)

ψ(r) = µ(r) v(r)
dψ

dr
= µ

dv

dr
+ v

dµ

dr

d2ψ

dr2
= µ

d2v

dr2
+ 2

dµ

dr

dv

dr
+ v

d2µ

dr2
(A.54)

The relations in Eqs. (A.53) and (A.54) are used in Eq. (A.52), and one finds(
1

r

d2v

dr2
− 2

r2
dv

dr
+

2

r3
v

)
+

2

r

(
1

r

dv

dr
− 1

r2
v

)
− κ2

(v
r

)
= 0

1

r

d2v

dr2
− κ2

(v
r

)
= 0 −→ d2v

dr2
− κ2v = 0 (A.55)
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Now, assuming that there is a solution of v in the form of v(r) = eλ r for a constant λ, the derivatives
of v(r) are dv

dr = λ eλ r and d2v
dr2

= λ2 eλ r. Substituting them in Eq. (A.55), one gets

λ2 eλ r − κ2 eλ r = 0 −→ λ = ±κ

v(r) = c1 e
κ r + c2 e

−κ r

From µ(r) and v(r) one obtains ψ(r)

ψ(r) =
c1 e

κ r + c2 e
−κ r

r
(A.56)

In order to find the values of the constants in Eq. (A.56), one applies the boundary condition
ψ(∞) = 0

0 =
c1 e

κ∞ + c2��
��: 0

e−κ∞

∞
=
c1 e

κ∞

∞
−→ c1 = 0

Therefore, substituting c1 in Eq. (A.56) and using the next boundary condition, ψ
(
R+ a

2

)
= ψH , one

finds the value of c2

ψH =
c2 e
−κ (R+a

2 )

R+ a
2

−→ c2 =
(
R+

a

2

)
ψH e

κ (R+a
2 )

Therefore, the solution of the electric potential for the Poisson Boltzmann interval is

ψ(r) =
R+ a

2

r
ψH e

κ (R+a
2
−r) (A.57)

Now we find the relation between σM and ψH . The definition of σM is the same as Eq. (A.47), then

σM = − 1(
R+ a

2

)2 ∫ ∞
R+a

2

ρel(r) r
2 dr =

1(
R+ a

2

)2 ε

4π

∫ ∞
R+a

2

1

r2
d

dr

(
r2

dψ

dr

)
r2 dr

= − ε

4π

(
dψ

dr

)
r=R+a

2

(A.58)

dψ

dr
= −

R+ a
2

r
κψH e

κ (R+a
2
−r) −

R+ a
2

r2
ψH e

κ (R+a
2
−r)

dψ

dr
= −ψH

(
R+

a

2

) (1 + κ r)

r2
eκ (R+a

2
−r)

σM =
ε

4π

ψH
[
1 + κ

(
R+ a

2

)]
R+ a

2

σM =
ε

4π

(
κ+

1

R+ a
2

)
ψH

Consequently, ψH is

ψH =
4π σM
ε

(
R+ a

2

1 + κ
(
R+ a

2

)) (A.59)

And therefore, ψR is

ψR =
4π σM
ε

(
R+ a

2

1 + κ
(
R+ a

2

) +
a

2

)
(A.60)
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Then, the electric potential is given by

ψ(r) =

ψH
[
1 +

(
κ+ 1

R+a
2

) (
R+ a

2 − r
)]

if R ≤ r ≤ R+ a
2

R+a
2

r ψH e
κ (R+a

2
−r) if r ≥ R+ a

2

Meanwhile, the induced surface charge density σ(r) given by Eq. (A.50) for the cylindrical electrode,
is the same for the spherical electrode.

σ(r) = − 1

r2

∫ ∞
r

ρel(t) t
2 dt =

1

r2
ε

4π

∫ ∞
r

1

t2
d

dt

(
t2

dψ

dt

)
t2 dt = − ε

4π

(
dψ

dr

)
r

(A.61)

σ(r) =
εψH
4π

(
R+

a

2

) (1 + κ r)

r2
eκ (R+a

2
−r)

This induced surface charge density is only valid for the interval [r,∞), where r ≥ R + a
2 . On the

other hand, in the interval R ≤ r < R + a
2 the surface charge density is zero, because of the ion’s size

restriction, the ions cannot get closer to the induced surface than half their diameter.

σ(r) =

{
0 if R ≤ r < R+ a

2
εψH
4π

(
R+ a

2

) (1+κ r)
r2

eκ (R+a
2
−r) if r ≥ R+ a

2

Now, the co-ion and counter-ion distribution functions are obtained. For the Laplace interval both
distributions are equal to zero due to the ion’s size restriction. Whereas, in the Poisson-Boltzmann
interval the co-ion and counter-ion distribution functions are given by Eqs. (A.13) and (A.14). Hence,
we have

g+(r) =

{
0 if R ≤ r < R+ a

2

exp
(
− z e
k T ψH

R+a
2

r eκ (R+a
2
−r)
)

if r ≥ R+ a
2

g−(r) =

{
0 if R ≤ r < R+ a

2

exp
(
z e
k T ψH

R+a
2

r eκ (R+a
2
−r)
)

if r ≥ R+ a
2

Meanwhile, the total differential capacitance is calculated as the sum of the differential capacitances
in both intervals.

1

CT
=

1

CLap
+

1

CPB

Where the subindexes Lap and PB indicate the interval of Laplace and Poisson-Boltzmann, they are
defined as

1

CLap
=

dψR
dσM

=
4π

ε

(
R+ a

2

1 + κ
(
R+ a

2

) +
a

2

)

1

CPB
=

dψH
dσM

=
4π

ε

(
R+ a

2

1 + κ
(
R+ a

2

))
So, we find that the total differential capacitance is

1

CT
=

4π

ε

(
2
(
R+ a

2

)
1 + κ

(
R+ a

2

) +
a

2

)

CT =

[
4π

ε

(
2
(
R+ a

2

)
1 + κ

(
R+ a

2

) +
a

2

)]−1
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Computer programs: Mathematica

Within the Mathematica program (Version 12.0.0.0), two subprograms, i.e. Mathematica Notebooks,
were created. In the first program “SEDL.nb” the lineal Poisson-Boltzmann equation is solved for the
single electrical double layer for solid electrodes. Meanwhile, in the second program “SNCsEDL.nb”,
with this equation, the electric double layer is calculated for the different pores. In both programs
the solutions are obtained in CGS and MKS units, and the initials of their geometry (P for the plane,
C for the cylinder, and S for the sphere) are used to differentiate between each one. In order to be
as brief as possible, for space concerns, our notebooks only displays the functions used to plot and
obtained our different electric parameters. If the reader is interested in having the full version of this
notebooks, where the user can easily plot and obtain the values of our different electric parameters feel
free to contact the author at adsic@ier.unam.mx.
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The single electrical double layer 
for solid electrodes

Preamble
In this program we solve the linearized single electrical double layer for a solid planar (P), cylindri-
cal (C), and spherical (S) electrodes in two system unit CGS (C) and MKS (M). The non-linear solu-
tion of the planar electrode (NP) is performed as well. In order, to distinguish between a mean 
electrostatic potential, ψ, from one geometry to the other (as for any other electric parameter), 
the initials of the geometry and the system unit will be used. Hence, ψNPM is the non-linearized 
mean electrostatic potential of a solid planar electrode in MKS units, whereas ψCC is the lin-
earized mean electrostatic potential of a solid cylindrical electrode in CGS units.
The first step is to clear all our variables, and to define the constants used throughout this note-
book, their units are commented for clarity.

In["]:= ClearAll["Global`*"]
kM = 1.38064852 × 10-23 (*J/K*);
kC = 1.38064852 × 10-16 (*ergs/K*);
ϵ0 = 8.85418781761 × 10-12 (*C2N m2||F/m||C/V m*);

ϵ = 78.5;
ϵR = ϵ ϵ0 (*C2N m2||F/m||C/Vm*);

c = 2.99792458 × 108(*m/s*);
z = 1;
eM = 1.60217733 × 10-19 (*C*);
eC = 10 c × eM (*esu||Fr||statC*);
NA = 6.022140857 × 1023 (*mol-1*);
a = 4.25(*Å*);

Now, a list of values of our variables is defined

In["]:= CHARGEDEN = {0.001, 0.002, 0.005, 0.01} (*Cm2*);

CONCENTRATIONS = {0.001, 0.01, 0.1, 0.5} (*M*);
TEMPERATURES = {278.15, 298.15, 308.15, 328.15} (*K*);
RADIUS = {5, 30, 80, 500} (*Å*) ;

Furthermore, the molar concentration and the debye length are defined. This functions are inde-
pendent of the geometry used.
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In["]:= nC[ρ0_] := ρ0 × 10-3 NA (*cm-3*);
nM[ρ0_] := ρ0 × 103 NA (*m-3*);

κC[ρ0_, T_] :=
8 π nC[ρ0] eC2 z2

ϵ kC T
(*cm-1*);

κM[ρ0_, T_] :=
2 nM[ρ0] eM2 z2

ϵR kM T
(*m-1*);

The mean electrostatic potential
Now, the mean electrostatic potential in the SEDL is calculated for the different geometries. 
Firstly, the mean electrostatic potential at the distance of closest approach, ψh or ψr, are defined 
from our set and unset variables. Moreover, for the non-linear case of the solid planar electrode 
the variable “Z” is define for simplicity. After defining their respective ψh, ψr, and Z, the mean 
electrostatic potential is defined in two intervals.

In["]:= ψhPC[ρ0_, T_, σm_] :=
4 π 10 c

104
σm

ϵ κC[ρ0, T]
(*statV*);

ψhPM[ρ0_, T_, σm_] := 1000
σm

ϵR κM[ρ0, T]
(*mV*);

ψhNPC[ρ0_, T_, σm_] :=
2 kC T

z eC
ArcSinh

2 π z eC 10 c
104

σm

ϵ κC[ρ0, T] kC T
 (*statV*);

ψhNPM[ρ0_, T_, σm_] := 1000
2 kM T

z eM
ArcSinh

z eM σm

2 ϵR κM[ρ0, T] kM T
 (*mV*);

ZC[ρ0_, T_, σm_] :=
z eC ψhNPC[ρ0, T, σm]

2 kC T
;

ZM[ρ0_, T_, σm_] :=
z eM ψhNPM[ρ0,T,σm]

1000

2 kM T
;

ψhCC[ρ0_, T_, σm_, R_] :=

4 π 10 c
104

σm

ϵ κC[ρ0, T]

BesselK0, κC[ρ0, T] R + a
2
 × 10-8

BesselK1, κC[ρ0, T] R + a
2
 × 10-8

(*statV*);

ψhCM[ρ0_, T_, σm_, R_] := 1000
σm

ϵR κM[ρ0, T]

BesselK0, κM[ρ0, T] R + a
2
 × 10-10

BesselK1, κM[ρ0, T] R + a
2
 × 10-10

(*mV*);
ψrCC[ρ0_, T_, σm_, R_] := ψhCC[ρ0, T, σm, R]

1 +
BesselK1, κC[ρ0, T] R + a

2
 × 10-8

BesselK0, κC[ρ0, T] R + a
2
 × 10-8

κC[ρ0, T]
a

2
× 10-8 (*statV*);

:=

;
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In["]:=

ψrCM[ρ0_, T_, σm_, R_] := ψhCM[ρ0, T, σm, R]

1 +
BesselK1, κM[ρ0, T] R + a

2
 × 10-10

BesselK0, κM[ρ0, T] R + a
2
 × 10-10

κM[ρ0, T]
a

2
× 10-10 (*mV*);

ψhSC[ρ0_, T_, σm_, R_] :=
4 π 10 c

104
σm

ϵ
κC[ρ0, T] +

1

R + a
2
 10-8

-1

(*statV*);

ψhSM[ρ0_, T_, σm_, R_] := 1000
σm

ϵR
κM[ρ0, T] +

1

R + a
2
 10-10

-1

(*mV*);

ψrSC[ρ0_, T_, σm_, R_] :=

ψhSC[ρ0, T, σm, R] 1 + κC[ρ0, T] +
1

R + a
2
 10-8

a

2
× 10-8 (*statV*);

ψrSM[ρ0_, T_, σm_, R_] := ψhSM[ρ0, T, σm, R]

1 + κM[ρ0, T] +
1

R + a
2
 10-10

a

2
× 10-10 (*mV*);

ψPC[ρ0_, T_, σm_, x_] := Piecewise

ψhPC[ρ0, T, σm] 1 + κC[ρ0, T]
a

2
- x × 10-8 , 0 ≤ x <

a

2
,

ψhPC[ρ0, T, σm] ExpκC[ρ0, T]
a

2
- x × 10-8, x ≥

a

2
 (*statV*);

ψPM[ρ0_, T_, σm_, x_] :=

PiecewiseψhPM[ρ0, T, σm] 1 + κM[ρ0, T]
a

2
- x × 10-10 , 0 ≤ x <

a

2
,

ψhPM[ρ0, T, σm] ExpκM[ρ0, T]
a

2
- x × 10-10, x ≥

a

2
 (*mV*);

ψNPC[ρ0_, T_, σm_, x_] :=

Piecewise
4 π 10 c

104
σm

ϵ

a

2
- x × 10-8 + ψhNPC[ρ0, T, σm], 0 ≤ x <

a

2
,


2 kC T

z eC
Log

Exp[ZC[ρ0, T, σm]] + 1 + (Exp[ZC[ρ0, T, σm]] - 1) ExpκC[ρ0, T]  a
2
- x × 10-8

Exp[ZC[ρ0, T, σm]] + 1 - (Exp[ZC[ρ0, T, σm]] - 1) ExpκC[ρ0, T]  a
2
- x × 10-8



, x ≥
a

2
 (*statV*);

ψNPM[ρ0_, T_, σm_, x_] :=

Piecewise1000
σm

ϵR

a

2
- x × 10-10 + ψhNPM[ρ0, T, σm] , 0 ≤ x <

a

2
,

1000
2 kM T

z eM
Log
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In["]:=

Exp[ZM[ρ0, T, σm]] + 1 + (Exp[ZM[ρ0, T, σm]] - 1) ExpκM[ρ0, T]  a
2
- x × 10-10

Exp[ZM[ρ0, T, σm]] + 1 - (Exp[ZM[ρ0, T, σm]] - 1) ExpκM[ρ0, T]  a
2
- x × 10-10



, x ≥
a

2


ψCC[ρ0_, T_, σm_, R_, r_] := PiecewiseψhCC[ρ0, T, σm, R]

1 +
BesselK1, κC[ρ0, T] R + a

2
 × 10-8

BesselK0, κC[ρ0, T] R + a
2
 × 10-8

κC[ρ0, T] R +
a

2
- r 10-8 ,

R ≤ r < R +
a

2
, 

BesselK0, κC[ρ0, T] r × 10-8

BesselK0, κC[ρ0, T] R + a
2
 × 10-8

ψhCC[ρ0, T, σm, R],

r ≥ R +
a

2
 (*statV*);

ψCM[ρ0_, T_, σm_, R_, r_] := PiecewiseψhCM[ρ0, T, σm, R]

1 +
BesselK1, κM[ρ0, T] R + a

2
 × 10-10

BesselK0, κM[ρ0, T] R + a
2
 × 10-10

κM[ρ0, T] R +
a

2
- r 10-10 ,

R ≤ r < R +
a

2
, 

BesselK0, κM[ρ0, T] r × 10-10

BesselK0, κM[ρ0, T] R + a
2
 × 10-10

ψhCM[ρ0, T, σm, R],

r ≥ R +
a

2
 (*mV*);

ψSC[ρ0_, T_, σm_, R_, r_] := Piecewise

ψhSC[ρ0, T, σm, R] 1 + κC[ρ0, T] +
1

R + a
2
 10-8

R +
a

2
- r 10-8 , R ≤ r < R +

a

2
,


R + a

2


r
ψhSC[ρ0, T, σm, R] ExpκC[ρ0, T] R +

a

2
- r 10-8 ,

r ≥ R +
a

2
 (*statV*);

ψSM[ρ0_, T_, σm_, R_, r_] := PiecewiseψhSM[ρ0, T, σm, R]

1 + κM[ρ0, T] +
1

R + a
2
 10-10

R +
a

2
- r 10-10 , R ≤ r < R +

a

2
,


R + a

2


r
ψhSM[ρ0, T, σm, R] ExpκM[ρ0, T] R +

a

2
- r 10-10, r ≥ R +

a

2
 (*mV*);

The induced surface charge density
Now, with the help of ψh, ψr, and Z, the induced surface charge density is defined for the different 
geometries. Once again, as for ψ(r), the induced surface charge density is divided in two intervals.
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σPC[ρ0_, T_, σm_, x_] := Piecewise

0, 0 ≤ x <
a

2
, 

ϵ κC[ρ0, T]

4 π
ψhPC[ρ0, T, σm] ExpκC[ρ0, T]

a

2
- x × 10-8,

x ≥
a

2
(*esucm2*);

σPM[ρ0_, T_, σm_, x_] := Piecewise0, 0 ≤ x <
a

2
, ϵR κM[ρ0, T]

ψhPM[ρ0, T, σm]

1000
ExpκM[ρ0, T]

a

2
- x × 10-10, x ≥

a

2
(*Cm2*);

σNPC[ρ0_, T_, σm_, x_] := Piecewise0, 0 ≤ x <
a

2
,


ϵ κC[ρ0, T] kC T

π z eC
(Exp[2 ZC[ρ0, T, σm]] - 1) ExpκC[ρ0, T]

a

2
- x × 10-8 

(Exp[ZC[ρ0, T, σm]] + 1)2 - (Exp[ZC[ρ0, T, σm]] - 1)

ExpκC[ρ0, T]
a

2
- x × 10-8

2
, x ≥

a

2
(*esucm2*);

σNPM[ρ0_, T_, σm_, x_] := Piecewise0, 0 ≤ x <
a

2
,


4 ϵR κM[ρ0, T] kM T

z eM
(Exp[2 ZM[ρ0, T, σm]] - 1) ExpκM[ρ0, T]

a

2
- x × 10-10 

(Exp[ZM[ρ0, T, σm]] + 1)2 - (Exp[ZM[ρ0, T, σm]] - 1)

ExpκM[ρ0, T]
a

2
- x × 10-10

2
, x ≥

a

2
(*Cm2*);

σCC[ρ0_, T_, σm_, R_, r_] := Piecewise0, R ≤ r < R +
a

2
,


ϵ κC[ρ0, T]

4 π

BesselK1, κC[ρ0, T] r × 10-8

BesselK0, κC[ρ0, T] R + a
2
 10-8

ψhCC[ρ0, T, σm, R],

r ≥ R +
a

2
(*esucm2*);

σCM[ρ0_, T_, σm_, R_, r_] := Piecewise0, R ≤ r < R +
a

2
,

ϵR κM[ρ0, T]
BesselK1, κM[ρ0, T] r × 10-10

BesselK0, κM[ρ0, T] R + a
2
 10-10

ψhCM[ρ0, T, σm, R]

1000
,

r ≥ R +
a

2
(*Cm2*);

σSC[ρ0_, T_, σm_, R_, r_] := Piecewise0, R ≤ r < R +
a

2
,


ϵ

4 π

1 + κC[ρ0, T] r × 10-8

r × 10-8

R + a
2


r
ψhSC[ρ0, T, σm, R]

,  ;
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ExpκC[ρ0, T] R +
a

2
- r 10-8, r ≥ R +

a

2
(*esucm2*);

σSM[ρ0_, T_, σm_, R_, r_] := Piecewise0, R ≤ r < R +
a

2
,

ϵR
1 + κM[ρ0, T] r × 10-10

r × 10-10

ψhSM[ρ0, T, σm, R]

1000

R + a
2


r

ExpκM[ρ0, T] R +
a

2
- r 10-10, r ≥ R +

a

2
(*Cm2*);

The concentration profiles
Now, the co-ion (p) and counter-ion (n) distribution functions are defined for the different 
geometries.
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In["]:= gpP[ρ0_, T_, σm_, x_] := Piecewise0, 0 ≤ x <
a

2
,

Exp-
z eM

kM T

ψhPM[ρ0, T, σm]

1000
ExpκM[ρ0, T]

a

2
- x × 10-10, x ≥

a

2
 ;

gnP[ρ0_, T_, σm_, x_] := Piecewise0, 0 ≤ x <
a

2
,

Exp
z eM

kM T

ψhPM[ρ0, T, σm]

1000
ExpκM[ρ0, T]

a

2
- x × 10-10, x ≥

a

2
 ;

gpNP[ρ0_, T_, σm_, x_] := Piecewise0, 0 ≤ x <
a

2
,

Exp-2 Log Exp[ZM[ρ0, T, σm]] + 1 + (Exp[ZM[ρ0, T, σm]] - 1)

ExpκM[ρ0, T]
a

2
- x × 10-10  Exp[ZM[ρ0, T, σm]] + 1 -

(Exp[ZM[ρ0, T, σm]] - 1) ExpκM[ρ0, T]
a

2
- x × 10-10 , x ≥

a

2
 ;

gnNP[ρ0_, T_, σm_, x_] := Piecewise0, 0 ≤ x <
a

2
,

Exp2 Log Exp[ZM[ρ0, T, σm]] + 1 + (Exp[ZM[ρ0, T, σm]] - 1)

ExpκM[ρ0, T]
a

2
- x × 10-10  Exp[ZM[ρ0, T, σm]] + 1 -

(Exp[ZM[ρ0, T, σm]] - 1) ExpκM[ρ0, T]
a

2
- x × 10-10 , x ≥

a

2
 ;

gpC[ρ0_, T_, σm_, R_, r_] := Piecewise0, R ≤ r < R +
a

2
, Exp

-
z eM

kM T

ψhCM[ρ0, T, σm, R]

1000

BesselK0, κM[ρ0, T] r × 10-10

BesselK0, κM[ρ0, T] R + a
2
 × 10-10

, r ≥ R +
a

2
 ;

gnC[ρ0_, T_, σm_, R_, r_] := Piecewise0, R ≤ r < R +
a

2
, Exp

z eM

kM T

ψhCM[ρ0, T, σm, R]

1000

BesselK0, κM[ρ0, T] r × 10-10

BesselK0, κM[ρ0, T] R + a
2
 × 10-10

, r ≥ R +
a

2
 ;

gpS[ρ0_, T_, σm_, R_, r_] := Piecewise0, R ≤ r < R +
a

2
, Exp-

z eM

kM T

ψhSM[ρ0, T, σm, R]

1000

R + a
2


r
ExpκM[ρ0, T] R +

a

2
- r 10-10, r ≥ R +

a

2
 ;

gnS[ρ0_, T_, σm_, R_, r_] := Piecewise0, R ≤ r < R +
a

2
, Exp

z eM

kM T

ψhSM[ρ0, T, σm, R]

1000

R + a
2


r
ExpκM[ρ0, T] R +

a

2
- r 10-10, r ≥ R +

a

2
 ;

Appendix B

138   | SEDL.nbPrinted by Wolfram Mathematica Student Edition



The differential capacitance
Finally, the differential capacitance is obtained for our different geometries.

In["]:= CdPC[ρ0_, T_] :=
4 π 2 + κC[ρ0, T]  a

2
× 10-8

ϵ κC[ρ0, T]

-1

(*cm-1||cmcm2*);

CdPM[ρ0_, T_] :=
2 + κM[ρ0, T]  a

2
× 10-10

ϵR κM[ρ0, T]

-1

(*Fm2*);

CdNPC[ρ0_, T_, σm_] :=
4 π

ϵ κC[ρ0, T]

2 + κC[ρ0, T]  a
2
× 10-8

1 +
2 π z eC 10 c

104
σm

ϵ κC[ρ0,T] kC T

2

-1

(*cm-1||cmcm2*);

CdNPM[ρ0_, T_, σm_] :=
1

ϵR κM[ρ0, T]

2 + κM[ρ0, T]  a
2
× 10-10

1 +  z eM σm
2 ϵR κM[ρ0,T] kM T


2

-1

(*Fm2*);

CdCC[ρ0_, T_, R_] :=

4 π

ϵ κC[ρ0, T]

2 BesselK0, κC[ρ0, T] R + a
2
 × 10-8

BesselK1, κC[ρ0, T] R + a
2
 × 10-8

+ κC[ρ0, T]
a

2
× 10-8

-1

(*cm-1||cmcm2*);

CdCM[ρ0_, T_, R_] :=

1

ϵR κM[ρ0, T]

2 BesselK0, κM[ρ0, T] R + a
2
 × 10-10

BesselK1, κM[ρ0, T] R + a
2
 × 10-10

+ κM[ρ0, T]
a

2
× 10-10

-1

(*F

m2*);

CdSC[ρ0_, T_, R_] :=
4 π

ϵ

2 R + a
2
 10-8

1 + κC[ρ0, T] R + a
2
 10-8

+
a

2
× 10-8

-1

(*cm-1||cmcm2*);

CdSM[ρ0_, T_, R_] :=
1

ϵR

2 R + a
2
 10-10

1 + κM[ρ0, T] R + a
2
 10-10

+
a

2
× 10-10

-1

(*Fm2*);
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The electrical double layer for nano-
pore electrodes

Preamble
In this program we solve the linearized  electrical double layer for nano-pore electrodes of differ-
ent topologies, such a slit-pore (P), a cylindrical (C), and spherical (S) pores in two system unit CGS 
(C) and MKS (M). In order, to distinguish the different electric parameters, ω, from the different 
pore topologies and unit system used their initials are used. Hence, ψPM is the linearized mean 
electrostatic potential of a slit-pore in MKS units, whereas ψCC is the linearized mean electrostatic 
potential of a cylindrical pore in CGS units.  
The first step is to clear all our variables, and to define the constants used throughout this cell, 
their units are commented for clarity.

In[#]:= ClearAll["Global`*"]
kM = 1.38064852 × 10-23 (*J/K*);
kC = 1.38064852 × 10-16 (*ergs/K*);
ϵ0 = 8.85418781761 × 10-12 (*C2N m2||F/m||C/V m*);

ϵ = 78.5;
ϵR = ϵ ϵ0 (*C2N m2||F/m||C/Vm*);

c = 2.99792458 × 108(*m/s*);
z = 1;
eM = 1.60217733 × 10-19 (*C*);
eC = 10 c × eM (*esu||Fr||statC*);
NA = 6.022140857 × 1023 (*mol-1*);
a = 4.25(*Å*);

Now, a list of values of our variables is defined

In[#]:= CHARGEDEN = {0.001, 0.002, 0.005, 0.01} (*Cm2*);

CONCENTRATIONS = {0.001, 0.01, 0.1, 0.5} (*M*);
TEMPERATURES = {278.15, 298.15, 308.15, 328.15} (*K*);
RADIUS = {5, 30, 80, 200} (*Å*) ;

Furthermore, the molar concentration and the debye length are defined. This functions are inde-
pendent of the topology used.
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In[#]:= nC[ρ0_] := ρ0 × 10-3 NA (*cm-3*);
nM[ρ0_] := ρ0 × 103 NA (*m-3*);

κC[ρ0_, T_] :=
8 π nC[ρ0] eC2 z2

ϵ kC T
(*cm-1*);

κM[ρ0_, T_] :=
2 nM[ρ0] eM2 z2

ϵR kM T
(*m-1*);

Constants
For the EDL of a pore, we solve five differential equations of second order with ten boundary 
conditions. By solving them, we find the values of the different constants  for each topology. These 
constants depend on the molar concentration, ρ0, temperature, T, inner and outer surface charge, 
σI and σII, the distance between  the pores’ center and pores’ inner surface, t or R, and the pores’ 
width, d.  With these constants  values we find the solutions of all the electric parameters.

c1PC := 0 ;
c1PM := 0 ;
c2PC[ρ0_, T_, σI_, σII_, t_, d_] :=

4 π

ϵ

10 c

104
σII d +

a

2
10-8 +

CothκC[ρ0, T] t - a
2
 10-8

κC[ρ0, T]
+

σI
a

2
10-8 +

CothκC[ρ0, T] t - a
2
 10-8

κC[ρ0, T]


1 + κC[ρ0, T] (d + a) 10-8 + CothκC[ρ0, T] t -
a

2
10-8

ExpκC[ρ0, T] t + d +
a

2
10-8(*statV*);

c2PM[ρ0_, T_, σI_, σII_, t_, d_] :=

1000
1

ϵR
σII d +

a

2
10-10 +

CothκM[ρ0, T] t - a
2
 10-10

κM[ρ0, T]
+

σI
a

2
10-10 +

CothκM[ρ0, T] t - a
2
 10-10

κM[ρ0, T]


1 + κM[ρ0, T] (d + a) 10-10 + CothκM[ρ0, T] t -
a

2
10-10

ExpκM[ρ0, T] t + d +
a

2
10-10(*mV*);

c3PC[ρ0_, T_, σI_, σII_, t_, d_] :=
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c2PC[ρ0, T, σI, σII, t, d] Exp-κC[ρ0, T] t + d +
a

2
10-8 -

c4PC[ρ0, T, σI, σII, t, d] t + d +
a

2
10-8 (*statV*);

c3PM[ρ0_, T_, σI_, σII_, t_, d_] :=

c2PM[ρ0, T, σI, σII, t, d] Exp-κM[ρ0, T] t + d +
a

2
10-10 -

c4PM[ρ0, T, σI, σII, t, d] t + d +
a

2
10-10 (*mV*);

c4PC[ρ0_, T_, σI_, σII_, t_, d_] := -c2PC[ρ0, T, σI, σII, t, d] ×

κC[ρ0, T] Exp-κC[ρ0, T] t + d +
a

2
10-8 (*statV/cm*);

c4PM[ρ0_, T_, σI_, σII_, t_, d_] := -c2PM[ρ0, T, σI, σII, t, d] ×

κM[ρ0, T] Exp-κM[ρ0, T] t + d +
a

2
10-10 (*mV/m*);

c5PC[ρ0_, T_, σI_, σII_, t_, d_] := c3PC[ρ0, T, σI, σII, t, d] +

(c4PC[ρ0, T, σI, σII, t, d] - c6PC[ρ0, T, σI, σII, t, d]) (t + d) 10-8 (*statV*);
c5PM[ρ0_, T_, σI_, σII_, t_, d_] := c3PM[ρ0, T, σI, σII, t, d] +

(c4PM[ρ0, T, σI, σII, t, d] - c6PM[ρ0, T, σI, σII, t, d]) (t + d) 10-10 (*mV*);

c6PC[ρ0_, T_, σI_, σII_, t_, d_] := c4PC[ρ0, T, σI, σII, t, d] +
4 π

ϵ

10 c

104
σII

(*statV/cm*);
c6PM[ρ0_, T_, σI_, σII_, t_, d_] :=

c4PM[ρ0, T, σI, σII, t, d] + 1000
1

ϵR
σII (*mV/m*);

c7PC[ρ0_, T_, σI_, σII_, t_, d_] := c5PC[ρ0, T, σI, σII, t, d] +

(c6PC[ρ0, T, σI, σII, t, d] - c8PC[ρ0, T, σI, σII, t, d]) (t) 10-8 (*statV*);
c7PM[ρ0_, T_, σI_, σII_, t_, d_] := c5PM[ρ0, T, σI, σII, t, d] +

(c6PM[ρ0, T, σI, σII, t, d] - c8PM[ρ0, T, σI, σII, t, d]) (t) 10-10 (*mV*);

c8PC[ρ0_, T_, σI_, σII_, t_, d_] := c6PC[ρ0, T, σI, σII, t, d] +
4 π

ϵ

10 c

104
σI

(*statV/cm*);

c8PM[ρ0_, T_, σI_, σII_, t_, d_] := c6PM[ρ0, T, σI, σII, t, d] + 1000
1

ϵR
σI

(*mV/m*);

c9PC[ρ0_, T_, σI_, σII_, t_, d_] :=
c8PC[ρ0, T, σI, σII, t, d]

2 κC[ρ0, T] SinhκC[ρ0, T] t - a
2
 10-8

(*statV*);

c9PM[ρ0_, T_, σI_, σII_, t_, d_] :=
c8PM[ρ0, T, σI, σII, t, d]

2 κM[ρ0, T] SinhκM[ρ0, T] t - a
2
 10-10

(*mV*);
c10PC[ρ0_, T_, σI_, σII_, t_, d_] := c9PC[ρ0, T, σI, σII, t, d](*statV*);
c10PM[ρ0_, T_, σI_, σII_, t_ , d_] := c9PM[ρ0, T, σI, σII, t, d](*mV*);
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c10PM[ρ0_, T_, σI_, σII_, t_ , d_] := c9PM[ρ0, T, σI, σII, t, d](*mV*);
c1CC := 0 ;
c1CM := 0 ;

c2CC[ρ0_, T_, σI_, σII_, R_, d_] :=
4 π

ϵ

10 c

104
σII (R + d) 10-8 Log

R - a
2

R + d
 -

BesselI0, κC[ρ0, T] R - a
2
 10-8

κC[ρ0, T] R - a
2
 10-8 BesselI1, κC[ρ0, T] R - a

2
 10-8

+ σI R 10-8

Log
R - a

2

R
 -

BesselI0, κC[ρ0, T] R - a
2
 10-8

κC[ρ0, T] R - a
2
 10-8 BesselI1, κC[ρ0, T] R - a

2
 10-8



κC[ρ0, T] R + d +
a

2
10-8 BesselK1, κC[ρ0, T] R + d +

a

2
10-8

Log
R - a

2

R + d + a
2

 -
BesselI0, κC[ρ0, T] R - a

2
 10-8

κC[ρ0, T] R - a
2
 10-8 BesselI1, κC[ρ0, T] R - a

2
 10-8

-

BesselK0, κC[ρ0, T] R + d +
a

2
10-8 (*statV*);

c2CM[ρ0_, T_, σI_, σII_, R_, d_] := 1000
1

ϵR
σII (R + d) 10-10

Log
R - a

2

R + d
 -

BesselI0, κM[ρ0, T] R - a
2
 10-10

κM[ρ0, T] R - a
2
 10-10 BesselI1, κM[ρ0, T] R - a

2
 10-10

+

σI R 10-10 Log
R - a

2

R
 -

BesselI0, κM[ρ0, T] R - a
2
 10-10

κM[ρ0, T] R - a
2
 10-10 BesselI1, κM[ρ0, T] R - a

2
 10-10



κM[ρ0, T] R + d +
a

2
10-10 BesselK1, κM[ρ0, T] R + d +

a

2
10-10

Log
R - a

2

R + d + a
2

 -
BesselI0, κM[ρ0, T] R - a

2
 10-10

κM[ρ0, T] R - a
2
 10-10 BesselI1, κM[ρ0, T] R - a

2
 10-10

-

BesselK0, κM[ρ0, T] R + d +
a

2
10-10 (*mV*);

c3CC[ρ0_, T_, σI_, σII_, R_, d_] := c2CC[ρ0, T, σI, σII, R, d]

BesselK0, κC[ρ0, T] R + d +
a

2
10-8 -

c4CC[ρ0, T, σI, σII, R, d] Log R + d +
a

2
10-8 (*statV*);

:=
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c3CM[ρ0_, T_, σI_, σII_, R_, d_] :=

c2CM[ρ0, T, σI, σII, R, d] BesselK0, κM[ρ0, T] R + d +
a

2
10-10 -

c4CM[ρ0, T, σI, σII, R, d] Log R + d +
a

2
10-10 (*mV*);

c4CC[ρ0_, T_, σI_, σII_, R_, d_] := -c2CC[ρ0, T, σI, σII, R, d] × κC[ρ0, T]

R + d +
a

2
10-8 BesselK1, κC[ρ0, T] R + d +

a

2
10-8(*statV/cm*);

c4CM[ρ0_, T_, σI_, σII_, R_, d_] := -c2CM[ρ0, T, σI, σII, R, d] × κM[ρ0, T]

R + d +
a

2
10-10 BesselK1, κM[ρ0, T] R + d +

a

2
10-10 (*mV/m*);

c5CC[ρ0_, T_, σI_, σII_, R_, d_] := c3CC[ρ0, T, σI, σII, R, d] +

(c4CC[ρ0, T, σI, σII, R, d] - c6CC[ρ0, T, σI, σII, R, d])
Log(R + d) 10-8 (*statV*);

c5CM[ρ0_, T_, σI_, σII_, R_, d_] := c3CM[ρ0, T, σI, σII, R, d] +

(c4CM[ρ0, T, σI, σII, R, d] - c6CM[ρ0, T, σI, σII, R, d])
Log(R + d) 10-10 (*mV*);

c6CC[ρ0_, T_, σI_, σII_, R_, d_] := c4CC[ρ0, T, σI, σII, R, d] +
4 π

ϵ

10 c

104
σII (R + d) 10-8(*statV/cm*);

c6CM[ρ0_, T_, σI_, σII_, R_, d_] := c4CM[ρ0, T, σI, σII, R, d] +

1000
1

ϵR
σII (R + d) 10-10 (*mV/m*);

c7CC[ρ0_, T_, σI_, σII_, R_, d_] := c5CC[ρ0, T, σI, σII, R, d] +

(c6CC[ρ0, T, σI, σII, R, d] - c8CC[ρ0, T, σI, σII, R, d])
Log(R) 10-8 (*statV*);

c7CM[ρ0_, T_, σI_, σII_, R_, d_] := c5CM[ρ0, T, σI, σII, R, d] +

(c6CM[ρ0, T, σI, σII, R, d] - c8CM[ρ0, T, σI, σII, R, d]) Log(R) 10-10 (*mV*);

c8CC[ρ0_, T_, σI_, σII_, R_, d_] := c6CC[ρ0, T, σI, σII, R, d] +
4 π

ϵ

10 c

104
σI (R) 10-8

(*statV/cm*);

c8CM[ρ0_, T_, σI_, σII_, R_, d_] := c6CM[ρ0, T, σI, σII, R, d] + 1000
1

ϵR
σI (R) 10-10

(*mV/m*);
c9CC[ρ0_, T_, σI_, σII_, R_, d_] :=

c8CC[ρ0, T, σI, σII, R, d]

κC[ρ0, T] R - a
2
 10-8 BesselI1, κC[ρ0, T] R - a

2
 10-8

(*statV*);

c9CM[ρ0_, T_, σI_, σII_, R_, d_] :=
c8CM[ρ0, T, σI, σII, R, d]

κM[ρ0, T] R - a
2
 10-10 BesselI1, κM[ρ0, T] R - a

2
 10-10

(*mV*);

c10CC := 0;
c10CM := 0;
c1SC := 0 ;
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c1SC := 0 ;
c1SM := 0 ;
c2SC[ρ0_, T_, σI_, σII_, R_, d_] :=

4 π

ϵ κC[ρ0]

10 c

104
σI R 10-10 TanhκC[ρ0, T] R -

a

2
10-8 + κC[ρ0, T]

a

2
10-8 +

σII (R + d) 10-8 TanhκC[ρ0, T] R -
a

2
10-8 + κC[ρ0, T] d +

a

2
10-8 

TanhκC[ρ0, T] R -
a

2
10-8 + κC[ρ0, T] (d + a ) 10-8 + 1

ExpκC[ρ0, T] R + d +
a

2
10-8 (*statV*cm*);

c2SM[ρ0_, T_, σI_, σII_, R_, d_] := 1000
1

ϵR κM[ρ0, T]

σI R 10-10 TanhκM[ρ0, T] R -
a

2
10-10 + κM[ρ0, T]

a

2
10-10 + σII

(R + d) 10-10 TanhκM[ρ0, T] R -
a

2
10-10 + κM[ρ0, T] d +

a

2
10-10 

TanhκM[ρ0, T] R -
a

2
10-10 + κM[ρ0, T] (d + a ) 10-10 + 1

ExpκM[ρ0, T] R + d +
a

2
10-10 (*mV*m*);

c3SC[ρ0_, T_, σI_, σII_, R_, d_] :=
1

R + d + a
2
 10-8

c2SC[ρ0, T, σI, σII, R, d] Exp-κC[ρ0, T] R + d +
a

2
10-8 -

c4SC[ρ0, T, σI, σII, R, d] (*statV*);

c3SM[ρ0_, T_, σI_, σII_, R_, d_] :=
1

R + d + a
2
 10-10

c2SM[ρ0, T, σI, σII, R, d] Exp-κM[ρ0, T] R + d +
a

2
10-10 -

c4SM[ρ0, T, σI, σII, R, d] (*mV*);

c4SC[ρ0_, T_, σI_, σII_, R_, d_] := c2SC[ρ0, T, σI, σII, R, d]

Exp-κC[ρ0, T] R + d +
a

2
10-8 κC[ρ0, T] R + d +

a

2
10-8 + 1 (*statV*cm*);

c4SM[ρ0_, T_, σI_, σII_, R_, d_] := c2SM[ρ0, T, σI, σII, R, d]

Exp-κM[ρ0, T] R + d +
a

2
10-10 κM[ρ0, T] R + d +

a

2
10-10 + 1 (*mV*m*);

c5SC[ρ0_, T_, σI_, σII_, R_, d_] := c3SC[ρ0, T, σI, σII, R, d] +

c4SC[ρ0, T, σI, σII, R, d] - c6SC[ρ0, T, σI, σII, R, d]

(R + d) 10-8
(*statV*);

c5SM[ρ0_, T_, σI_, σII_, R_, d_] := c3SM[ρ0, T, σI, σII, R, d] +

;
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c4SM[ρ0, T, σI, σII, R, d] - c6SM[ρ0, T, σI, σII, R, d]

(R + d) 10-10
(*mV*);

c6SC[ρ0_, T_, σI_, σII_, R_, d_] := c4SC[ρ0, T, σI, σII, R, d] -
4 π

ϵ

10 c

104
σII (R + d) 10-8

2
(*statV*cm*);

c6SM[ρ0_, T_, σI_, σII_, R_, d_] := c4SM[ρ0, T, σI, σII, R, d] -

1000
1

ϵR
σII (R + d) 10-10

2
(*mV*m*);

c7SC[ρ0_, T_, σI_, σII_, R_, d_] := c5SC[ρ0, T, σI, σII, R, d] +

c6SC[ρ0, T, σI, σII, R, d] - c8SC[ρ0, T, σI, σII, R, d]

(R) 10-8
(*statV*);

c7SM[ρ0_, T_, σI_, σII_, R_, d_] := c5SM[ρ0, T, σI, σII, R, d] +

c6SM[ρ0, T, σI, σII, R, d] - c8SM[ρ0, T, σI, σII, R, d]

(R) 10-10
(*mV*);

c8SC[ρ0_, T_, σI_, σII_, R_, d_] := c6SC[ρ0, T, σI, σII, R, d] -
4 π

ϵ

10 c

104
σI (R) 10-8

2
(*statV*cm*);

c8SM[ρ0_, T_, σI_, σII_, R_, d_] := c6SM[ρ0, T, σI, σII, R, d] -

1000
1

ϵR
σI (R) 10-10

2
(*mV*m*);

c9SC[ρ0_, T_, σI_, σII_, R_, d_] :=

-
c8SC[ρ0, T, σI, σII, R, d]

2 κC[ρ0, T] R - a
2
 10-8 CoshκC[ρ0, T] R - a

2
 10-8 - SinhκC[ρ0, T] R - a

2
 10-8

(*statV*cm*);
c9SM[ρ0_, T_, σI_, σII_, R_, d_] :=

- c8SM[ρ0, T, σI, σII, R, d]  2 κM[ρ0, T] R -
a

2
10-10 Cosh

κM[ρ0, T] R -
a

2
10-10 - SinhκM[ρ0, T] R -

a

2
10-10 (*mV*m*);

c10SC[ρ0_, T_, σI_, σII_, R_, d_] := -c9SC[ρ0, T, σI, σII, R , d](*statV*cm*);
c10SM[ρ0_, T_, σI_, σII_, R_, d_] := -c9SM[ρ0, T, σI, σII, R , d](*mV*m*);

The mean electrostatic potential
Now, with our constants, we define the mean electrostatic potential in five intervals for each 
topology as

In[#]:= ψPC[ρ0_, T_, σI_, σII_, t_, d_, x_] :=

Piecewise2 c9PC [ρ0, T, σI, σII, t, d] CoshκC[ρ0, T] (x) 10-8, 0 ≤ x ≤ t -
a

2
,

c7PC[ρ0, T, σI, σII, t, d] + c8PC[ρ0, T, σI, σII, t, d] (x) 10-8, t -
a

2
< x ≤ t,

c5PC[ρ0, T, σI, σII, t, d] + c6PC[ρ0, T, σI, σII, t, d] (x) 10-8, t ≤ x ≤ t + d,

 ,

,
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In[#]:=

c5PC[ρ0, T, σI, σII, t, d] + c6PC[ρ0, T, σI, σII, t, d] (x) 10 , t ≤ x ≤ t + d,

c3PC[ρ0, T, σI, σII, t, d] + c4PC[ρ0, T, σI, σII, t, d] (x) 10-8,

t + d ≤ x < t + d +
a

2
, c1PC ExpκC[ρ0, T] (x) 10-8 + c2PC[ρ0, T, σI, σII, t, d]

Exp-κC[ρ0, T] (x) 10-8, x ≥ t + d +
a

2
 (*statV*);

ψPM[ρ0_, T_, σI_, σII_, t_, d_, x_] := Piecewise

2 c9PM[ρ0, T, σI, σII, t, d] CoshκM[ρ0, T] (x) 10-10, 0 ≤ x ≤ t -
a

2
,

c7PM[ρ0, T, σI, σII, t, d] + c8PM[ρ0, T, σI, σII, t, d] (x) 10-10, t -
a

2
< x ≤ t,

c5PM[ρ0, T, σI, σII, t, d] + c6PM[ρ0, T, σI, σII, t, d] (x) 10-10, t ≤ x ≤ t + d,

c3PM[ρ0, T, σI, σII, t, d] + c4PM[ρ0, T, σI, σII, t, d] (x) 10-10,

t + d ≤ x < t + d +
a

2
, c1PM ExpκM[ρ0, T] (x) 10-10 +

c2PM[ρ0, T, σI, σII, t, d] Exp-κM[ρ0, T] (x) 10-10, x ≥ t + d +
a

2
 (*mV*);

ψCC[ρ0_, T_, σI_, σII_, R_, d_, r_] := Piecewise

c9CC [ρ0, T, σI, σII, R, d] BesselI0, κC[ρ0, T] (r) 10-8 +

c10CC BesselK0, κC[ρ0, T] (r) 10-8, 0 ≤ r ≤ R -
a

2
,

c7CC[ρ0, T, σI, σII, R, d] + c8CC[ρ0, T, σI, σII, R, d] Log(r) 10-8,

R -
a

2
< r ≤ R, c5CC[ρ0, T, σI, σII, R, d] +

c6CC[ρ0, T, σI, σII, R, d] Log(r) 10-8, R ≤ r ≤ R + d,

c3CC[ρ0, T, σI, σII, R, d] + c4CC[ρ0, T, σI, σII, R, d] Log(r) 10-8,

R + d ≤ r < R + d +
a

2
,

c1CC BesselI0, κC[ρ0, T] (r) 10-8 + c2CC[ρ0, T, σI, σII, R, d]

BesselK0, κC[ρ0, T] (r) 10-8, r ≥ R + d +
a

2
 (*statV*);

ψCM[ρ0_, T_, σI_, σII_, R_, d_, r_] := Piecewise

c9CM[ρ0, T, σI, σII, R, d] BesselI0, κM[ρ0, T] (r) 10-10 +

c10CM BesselK0, κM[ρ0, T] (r) 10-10, 0 ≤ r ≤ R -
a

2
,

c7CM[ρ0, T, σI, σII, R, d] + c8CM[ρ0, T, σI, σII, R, d] Log(r) 10-10,

R -
a

2
< r ≤ R, c5CM[ρ0, T, σI, σII, R, d] +

c6CM[ρ0, T, σI, σII, R, d] Log(r) 10-10, R ≤ r ≤ R + d,

c3CM[ρ0, σI, σII, R, d] + c4CM[ρ0, σI, σII, R, d] Log(r) 10-10,

R + d ≤ r < R + d +
a

2
,



,  ;
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In[#]:=

c1CM BesselI0, κM[ρ0, T] (r) 10-10 + c2CM[ρ0, T, σI, σII, R, d]

BesselK0, κM[ρ0, T] (r) 10-10, r ≥ R + d +
a

2
 (*mV*);

ψSC[ρ0_, T_, σI_, σII_, R_, d_, r_] := Piecewise


1

(r) 10-8
c9SC[ρ0, T, σI, σII, R, d] ExpκC[ρ0, T] (r) 10-8 +

c10SC[ρ0, T, σI, σII, R, d] Exp-κC[ρ0, T] (r) 10-8, 0 ≤ r ≤ R -
a

2
,

c7SC[ρ0, T, σI, σII, R, d] +
c8SC[ρ0, T, σI, σII, R, d]

(r) 10-8
, R -

a

2
< r ≤ R,

c5SC[ρ0, T, σI, σII, R, d] +
c6SC[ρ0, T, σI, σII, R, d]

(r) 10-8
, R ≤ r ≤ R + d,

c3SC[ρ0, T, σI, σII, R, d] +
c4SC[ρ0, T, σI, σII, R, d]

(r) 10-8
, R + d ≤ r < R + d +

a

2
,


1

(r) 10-8
c1SC ExpκC[ρ0, T] (r) 10-8 + c2SC[ρ0, T, σI, σII, R, d]

Exp-κC[ρ0, T] (r) 10-8, r ≥ R + d +
a

2
 (*statV*);

ψSM[ρ0_, T_, σI_, σII_, R_, d_, r_] := Piecewise


1

(r) 10-10
c9SM[ρ0, T, σI, σII, R, d] ExpκM[ρ0, T] (r) 10-10 +

c10SM[ρ0, T, σI, σII, R, d] Exp-κM[ρ0, T] (r) 10-10, 0 ≤ r ≤ R -
a

2
,

c7SM[ρ0, T, σI, σII, R, d] +
c8SM[ρ0, T, σI, σII, R, d]

(r) 10-10
, R -

a

2
< r ≤ R,

c5SM[ρ0, T, σI, σII, R, d] +
c6SM[ρ0, T, σI, σII, R, d]

(r) 10-10
, R ≤ r ≤ R + d,

c3SM[ρ0, T, σI, σII, R, d] +
c4SM[ρ0, T, σI, σII, R, d]

(r) 10-10
, R + d ≤ r < R + d +

a

2
,


1

(r) 10-10
c1SM ExpκM[ρ0, T] (r) 10-10 + c2SM[ρ0, T, σI, σII, R, d]

Exp-κM[ρ0, T] (r) 10-10 , r ≥ R + d +
a

2
 (*mV*);

The induced surface charge density
Again, with our constants, we define the induced surface charge density in three intervals, for each 
topology as

σPC[ρ0_, T_, σI_, σII_, t_, d_, x_] :=

Piecewise
10 c

104
(σI + σII) - κC[ρ0, T]

10 c

104
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σII d +
a

2
10-8 +

CothκC[ρ0, T] t - a
2
 10-8

κC[ρ0, T]
+ σI

a

2
10-8 +

CothκC[ρ0, T] t - a
2
 10-8

κC[ρ0, T]


1 + κC[ρ0, T] (d + a) 10-8 + CothκC[ρ0, T] t -
a

2
10-8 

SinhκC[ρ0, T] t -
a

2
10-8 SinhκC[ρ0, T] (x) 10-8,

0 ≤ x ≤ t -
a

2
, 0, t -

a

2
< x ≤ t + d +

a

2
,


ϵ κC[ρ0, T]

4 π
c1PC ExpκC[ρ0, T] (x) 10-8 + c2PC[ρ0, T, σI, σII, t, d]

Exp-κC[ρ0, T] (x) 10-8, x ≥ t + d +
a

2
(*esucm2*);

σPM[ρ0_, T_, σI_, σII_, t_, d_, x_] := Piecewise



(σI + σII) -
κM[ρ0,T] σII d+ a

2
 10-10+

CothκM[ρ0,T] t-
a

2
 10-10

κM[ρ0,T]
+σI 

a
2
 10-10+

CothκM[ρ0,T] t-
a

2
 10-10

κM[ρ0,T]

1+κM[ρ0,T] (d+a) 10-10+CothκM[ρ0,T] t- a
2
 10-10

SinhκM[ρ0, T] t - a
2
 10-10

SinhκM[ρ0, T] (x) 10-10, 0 ≤ x ≤ t -
a

2
, 0, t -

a

2
< x < t + d +

a

2
,


ϵR κM[ρ0, T]

1000
c1PM ExpκM[ρ0, T] (x) 10-10 + c2PM[ρ0, T, σI, σII, t, d]

Exp-κM[ρ0, T] (x) 10-10, x ≥ t + d +
a

2
(*Cm2*);

σCC[ρ0_, T_, σI_, σII_, R_, d_, r_] := Piecewise


ϵ κC[ρ0, T]

4 π
c9CC [ρ0, T, σI, σII, R, d] BesselI1, κC[ρ0, T] (r) 10-8,

0 ≤ r ≤ R -
a

2
, 0, R -

a

2
< r < R + d +

a

2
, 

ϵ κC[ρ0, T]

4 π
c2CC[ρ0, T, σI, σII, R, d]

BesselK1, κC[ρ0, T] (r) 10-8, r ≥ R + d +
a

2
(*esucm2*);

σCM[ρ0_, T_, σI_, σII_, R_, d_, r_] := Piecewise

ϵR κM[ρ0, T]
c9CM [ρ0, T, σI, σII, R, d]

1000
BesselI1, κM[ρ0, T] (r) 10-10,

0 ≤ r ≤ R -
a

2
, 0, R -

a

2
< r < R + d +

a

2
,
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ϵR κM[ρ0, T]
c2CM[ρ0, T, σI, σII, R, d]

1000
BesselK1, κM[ρ0, T] (r) 10-10,

r ≥ R + d +
a

2
(*Cm2*);

σSC[ρ0_, T_, σI_, σII_, R_, d_, r_] := Piecewise
2 ϵ

4 π
c9SC[ρ0, T, σI, σII, R, d]

κC[ρ0, T] r 10-8 CoshκC[ρ0, T] r 10-8 - SinhκC[ρ0, T] r 10-8

r 10-82
, 0 ≤ r ≤ R -

a

2
,

0, R -
a

2
< r < R + d +

a

2
, 

ϵ

4 π
c2SC[ρ0, T, σI, σII, R, d]

Exp-κC[ρ0, T] r 10-8 κC[ρ0, T] r 10-8 + 1

r × 10-82
, r ≥ R + d +

a

2
(*esucm2*);

σSM[ρ0_, T_, σI_, σII_, R_, d_, r_] := Piecewise2 ϵR
c9SM[ρ0, T, σI, σII, R, d]

1000

κM[ρ0, T] r 10-10 CoshκM[ρ0, T] r 10-10 - SinhκM[ρ0, T] r 10-10

r 10-102
,

0 ≤ r ≤ R -
a

2
, 0, R -

a

2
< r < R + d +

a

2
, ϵR

c2SM[ρ0, T, σI, σII, R, d]

1000

Exp-κM[ρ0, T] r 10-10 κM[ρ0, T] r 10-10 + 1

r × 10-102
, r ≥ R + d +

a

2
(*Cm2*);

The density profiles
Finally, with the constants the co-ion (p) and counter-ion (n) distribution functions are defined for 
the different pore topologies in three intervals.

In[#]:= gpP[ρ0_, T_, σI_, σII_, t_, d_, x_] := Piecewise

Exp-
z eM

kM T

1

1000
2 c9PM[ρ0, T, σI, σII, t, d] CoshκM[ρ0, T] (x) 10-10,

0 ≤ x ≤ t -
a

2
, 0, t -

a

2
< x < t + d +

a

2
,

Exp-
z eM

kM T

1

1000
c1PM ExpκM[ρ0, T] (x) 10-10 +

c2PM[ρ0, T, σI, σII, t, d] Exp-κM[ρ0, T] (x) 10-10, x ≥ t + d +
a

2
 ;

gnP[ρ0_, T_, σI_, σII_, t_, d_, x_] := Piecewise

Exp
z eM

kM T

1

1000
2 c9PM[ρ0, T, σI, σII, t, d] CoshκM[ρ0, T] (x) 10-10,

0 ≤ x ≤ t -
a

2
, 0, t -

a

2
< x < t + d +

a

2
,
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In[#]:=

0 ≤ x ≤ t -
2
, 0, t -

2
< x < t + d +

2
,

Exp
z eM

kM T

1

1000
c1PM ExpκM[ρ0, T] (x) 10-10 +

c2PM[ρ0, T, σI, σII, t, d] Exp-κM[ρ0, T] (x) 10-10, x ≥ t + d +
a

2
 ;

gpC[ρ0_, T_, σI_, σII_, R_, d_, r_] := Piecewise

Exp-
z eM

kM T

1

1000
c9CM[ρ0, T, σI, σII, R, d] BesselI0, κM[ρ0, T] (r) 10-10 +

c10CM BesselK0, κM[ρ0, T] (r) 10-10,

0 ≤ r ≤ R -
a

2
, 0, R -

a

2
< r < R + d +

a

2
, Exp-

z eM

kM T

1

1000
c1CM BesselI0, κM[ρ0, T] (r) 10-10 + c2CM[ρ0, T, σI, σII, R, d]

BesselK0, κM[ρ0, T] (r) 10-10, r ≥ R + d +
a

2
 ;

gnC[ρ0_, T_, σI_, σII_, R_, d_, r_] := Piecewise

Exp
z eM

kM T

1

1000
c9CM[ρ0, T, σI, σII, R, d] BesselI0, κM[ρ0, T] (r) 10-10 +

c10CM BesselK0, κM[ρ0, T] (r) 10-10,

0 ≤ r ≤ R -
a

2
, 0, R -

a

2
< r < R + d +

a

2
,

Exp
z eM

kM T

1

1000
c1CM BesselI0, κM[ρ0, T] (r) 10-10 + c2CM[ρ0, T, σI, σII, R, d]

BesselK0, κM[ρ0, T] (r) 10-10, r ≥ R + d +
a

2
 ;

gpS[ρ0_, T_, σI_, σII_, R_, d_, r_] := Piecewise

Exp-
z eM

kM T

1

1000

1

(r) 10-10
c9SM[ρ0, T, σI, σII, R, d] ExpκM[ρ0, T] (r) 10-10 +

c10SM[ρ0, T, σI, σII, R, d] Exp-κM[ρ0, T] (r) 10-10 ,

0 ≤ r ≤ R -
a

2
, 0, R -

a

2
< r < R + d +

a

2
, Exp-

z eM

kM T

1

1000
1

(r) 10-10
c1SM ExpκM[ρ0, T] (r) 10-10 + c2SM[ρ0, T, σI, σII, R, d]

Exp-κM[ρ0, T] (r) 10-10  , r ≥ R + d +
a

2
 ;

gnS[ρ0_, T_, σI_, σII_, R_, d_, r_] := Piecewise

Exp
z eM

kM T

1

1000

1

(r) 10-10
c9SM[ρ0, T, σI, σII, R, d] ExpκM[ρ0, T] (r) 10-10 +

c10SM[ρ0, T, σI, σII, R, d] Exp-κM[ρ0, T] (r) 10-10 ,

0 ≤ r ≤ R -
a

2
, 0, R -

a

2
< r < R + d +

a

2
, Exp

z eM

kM T

1

1000
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In[#]:=

1

(r) 10-10
c1SM ExpκM[ρ0, T] (r) 10-10 +

c2SM[ρ0, T, σI, σII, R, d] Exp-κM[ρ0, T] (r) 10-10  , r ≥ R + d +
a

2
;

The differential capacitance
Finally, the differential capacitance is obtained for our different pores by

In[#]:= CdPC[ρ0_, T_, t_, d_] :=
(D[Limit[ψPC[ρ0, T, σ, σ, t, d, x], x → 0, Direction → "FromAbove"], σ])-1

(*cm-1||cmcm2*);

CdPM[ρ0_, T_, t_, d_] :=

D
Limit[ψPM[ρ0, T, σ, σ, t, d, x], x → 0, Direction → "FromAbove"]

1000
, σ

-1

(*F

m2*);
CdCC[ρ0_, T_, R_, d_] :=

(D[Limit[ψCC[ρ0, T, σ, σ, R, d, r], r → 0, Direction → "FromAbove"], σ])-1

(*cm-1||cmcm2*);

CdCM[ρ0_, T_, R_, d_] :=

D
Limit[ψCM[ρ0, T, σ, σ, R, d, r], r → 0, Direction → "FromAbove"]

1000
, σ

-1

(*F

m2*);
CdSC[ρ0_, T_, R_, d_] :=

(D[Limit[ψSC[ρ0, T, σ, σ, R, d, r], r → 0, Direction → "FromAbove"], σ])-1

(*cm-1||cmcm2*);

CdSM[ρ0_, T_, R_, d_] :=

D
Limit[ψSM[ρ0, T, σ, σ, R, d, r], r → 0, Direction → "FromAbove"]

1000
, σ

-1

(*F

m2*);
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