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PROGRAMA DE POSGRADO EN ASTROFÍSICA
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Resumen

La astrometŕıa es la ciencia que se encarga de estudiar las posiciones y los movimientos

de los objetos celestes; tiene muchas aplicaciones importantes. Por ejemplo, analizando

los movimientos aparentes en función del tiempo de un objeto, es posible conocer su

distancia. La distancia es esencial para conocer las propiedades intŕınsecas (tamaño,

luminosidad, masa, etc.) de un astro. Por lo tanto, la determinación de la distancia

siempre ha sido muy importante en la astronomı́a.

Existen varios métodos para calcular la distancia a un objeto, muchos de ellos

indirectos. Para objetos fuera del Sistema Solar, solo hay una técnica puramente

geométrica: la determinación de la paralaje trigonométrica. La paralaje se define como

el movimiento aparente de la posición de un objeto visto desde dos puntos diferentes.

La paralaje trigonométrica es el resultado del movimiento de la Tierra alrededor del

Sol a través del tiempo. Debido a este movimiento, podemos ver un desplazamiento de

la fuente en el cielo con respecto a las estrellas de fondo. El movimiento aparente de la

fuente traza un camino eĺıptico en el cielo. El eje semi-mayor de esta elipse es conocida

como el ángulo de Paralaje Trigonométrica ($). La distancia al objeto se calcula a

partir de la paralaje trigonometrica ($) con d = 1/$′′ pc.

La paralaje trigonométrica puede ser medida en el óptico para estrellas aisladas y

brillantes. Pero ésto no funciona bien para estrellas localizadas en regiones de formación

estelar. Por estar embebidas en nubes de polvo, dichas estrellas jóvenes son débiles en
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iv RESUMEN

longitudes de onda del óptico. En contraste, las nubes de polvo son prácticamente trans-

parentes en ondas de radio. Entonces, para observar estrellas en regiones de formación

estelar las observaciones en longitudes de onda en el radio son muy complementarias

de observaciones en el rango óptico.

La precisión astrométrica con un solo radiotelescopio, se limita a una fracción del

ĺımite de difracción, θ ≈ λ/D, donde λ es la longitud de onda a la que se observa, y

D es le diámetro de la antena. Aún aśı, es poco para fines de astrometŕıa. Esta pobre

resolución, se soluciona al usar interferometŕıa. Un interferómetro se conforma de dos o

más radiotelescopios, que pueden tener separaciones que van desde metros hasta miles

de kilómetros. Esta última situación se conoce como interferometŕıa de muy larga base

(VLBI, por sus siglas en inglés). La resolución angular está dada por la separación

máxima, Bmax, entre los radiotelescopios, θ ≈ λ/Bmax.

Las observaciones de paralaje con VLBI se hacen con obsevaciones multi-época.

Revisando la literatura, notamos que varios autores han usado diversas estrategias

para programar las observaciones de paralaje, particularmente en relación a la cantidad

de épocas observadas y la cadencia de éstas. Dada la diversidad de estas estrategias,

decidimos escribir un código para simular observaciones de paralaje con VLBI, y aśı

poder entender en qué difiere la precisión de la paralaje bajo diferentes opciones de

cadencia y número de observaciones. Este código utiliza un método Monte Carlo (i.e.

utiliza números aleatorios para resolver el problema). El algoritmo de esta simulación

opera de la siguiente manera: para cualquier conjunto de valores iniciales de ascensión

recta inicial (α0), declinación inicial (δ0), componentes de movimiento propio (µα y µδ) y

paralaje ($), se calcula una trayectoria teórica del objeto. De esa trayectoria, extraemos

un número dado de posiciones, con una cierta cadencia, tomando en cuenta posibles

variaciones en la cadencia alrededor de un valor medio (por ejemplo una variación de

una semana alrededor de un cadencia media de una observación cada tres meses). A
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esas posiciones extráıdas, les añadimos errores astrométricos realistas tanto en ascensión

recta (α), como en declinación (δ). Estos errores astrométricos toman en cuenta errores

sobre la posición del calibrador, la orientación de la Tierra, la posición de las antenas, aśı

como incertidumbres sobre los parámetros de la tropósfera, y se suman a las posiciones

extráıdas de la trayectoria teórica. Estas nuevas posiciones serán nuestras observaciones

simuladas u observaciones sintéticas. A partir de estas observaciones simuladas, se hace

un ajuste astrométrico que resulta de una determinación de la paralaje recuperada ($f ).

Como las observaciones simuladas incorporan un término de ruido astrométrico, la $f

será ligeramente diferente a la $ que pusimos como parámetro inicial. Este algoritmo

se repite un cierto número de realizaciones, para hacer un método Monte Carlo. En

cada realización los parámetros de ruido serán diferentes, ya que están programados

para ser valores aleatorios en cada realización. Al terminar las realizaciones, tendremos

tantos valores de $f como realizaciones hechas ($f
i ). Estos $f

i son arreglados en un

histograma, al que se le ajusta una Gaussiana para calcular el promedio de los valores

de $f
i aśı como la desviación estándar (σ) de alrededor del promedio. El valor promedio

obtenido de $f
i , es muy similar al $ de los parámetros iniciales. El valor obtenido para

σ proporciona una estimación del error en la determinación del valor de la paralaje, para

la estrategia (número y cadencia de observaciones) implementada en dicha simulación.

Al repetir simulaciones para diferentes estrategias, podemos comparar las diferentes

estrategias entre śı.

Corrimos simulaciones para casos de regiones de formación estelar ya conocidas:

Tauro (Tauro C, Tauro S y Tauro E), Ofiuco y Orión. En cada caso, se hicieron 1000

realizaciones en un método Monte Carlo para todas las combinaciones posibles entre

número de épocas y cadencia. Se simuló observar para cadencias de cada 1, 2, 3, 4, 5,

6, 8, 9, 10 y 12 meses, cada una con 6, 12, 18, 24, 30 y 36 épocas observadas. Para

cada una de éstas combinaciones, nuestra simulación permite medir el valor del error
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esperado, σ, sobre la paralaje trigonométrica medida. Hemos graficado los resultados

de dos maneras distintas: épocas vs σ y cadencia vs σ. De las primeras, se obtiene

una relación de σ ≈ 1/
√
n, donde n es el número de épocas observadas. Esto significa

que las mediciones de paralaje mejoran como la ráız cuadrada inversa del número de

observaciones. De las gráficas de cadencia vs σ, se nota una disminución en σ si se

hacen las observaciones con una cadencia de 6 meses. Esto significa que la paralaje

se ajusta mejor si se hacen las observaciones cada 6 meses. Con este trabajo queda

cuantificado cuál es la diferencia entre diversas estrategias. Se concluye que es mejor

hacer las observaciones de paralaje con VLBI cada 6 meses y la paralaje podrá ir

mejorando con la ráız cuadrada inversa del número de observaciones. Aunque este

trabajo no cambia las mediciones ya obtenidas anteriormente por otros autores, śı

servirá para perfeccionar futuras observaciones de paralaje con VLBI. La herramienta

que construimos para obtener los resultados de esta tesis podrá servir a futuros trabajos

para darse una idea del error que se esperará al programar las observaciones de cierta

manera.



Summary

Astrometry is the science that studies positions and proper motions of celestial bodies;

it has many important applications. For example, by analyzing the apparent motion

in time of an object, it is possible to know its distance. Distance is fundamental for

the estimation of the intrinsic properties of any object, such as its size, luminosity and

mass. Therefore, determining distances has always been very important in astronomy.

There are several methods to calculate distances, many of them indirect. For objects

outside the Solar System, there is only one purely geometric technique: the determi-

nation of the trigonometric parallax. Parallax is defined as the apparent displacement

of an object as seen from two different points not on a straight line with the object. In

astronomy, parallax is converted into distance by calculating the angular difference in

the position of a source observed from two different perspectives. The trigonometric

parallax is the result of the movement of the Earth around the Sun through time. Be-

cause of this movement we see a displacement of the source on the sky with respect to

the background stars. The apparent movement of the source traces an elliptical path,

and the semi-major axis of this ellipse is known as the Trigonometric Parallax ($)

angle. The distance is calculated from this trigonometric parallax ($) as d = 1/$′′ pc.

Trigonometric parallaxes can be measured at optical wavelengths for isolated bright

stars. But this does not work well for stars located in star-forming regions, where they

are embedded in dust clouds, and therefore weak at optical wavelengths. In contrast,

vii
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dust clouds are practically transparent in radio waves. Thus, observations at radio

wavelengths are complementary to optical ones for star-forming regions.

The astrometric precision using a single radio telescope is limited to some fraction of

the diffraction limit, θ ≈ λ/D, where λ is the observing wavelength and D is the antenna

diameter. This is typically insufficient for astrometry purposes; This poor resolution

is solved by using interferometry. An interferometer is made up of two or more radio

telescopes, that can have separations from meters to thousands of kilometers. This last

situation is known as very-long-baseline interferometry (VLBI). The angular resolution

is given by the maximum separation, Bmax, between the radio telescopes, θ ≈ λ/Bmax.

VLBI parallax measurements are based on multi-epoch observations. Reviewing

the literature, one finds that different authors have used different scheduling strategies,

particularly with regard to the number of observations used, and the cadence of these

observations. Given the wide variations among these strategies, we decided to develop a

computer code to simulate VLBI parallax observations. This code uses a Monte Carlo

method (i.e. it uses random numbers to solve a physical problem). The algorithm

works as follows. It takes as input a set of initial values for the astrometric parameters:

initial right ascension (α0), initial declination (δ0), components of the proper motion

(µα and µδ), and parallax ($). With those initial parameters, the theoretical trajectory

of the object is calculated. From this trajectory, we extract a given number of positions

with a certain cadence, accounting for possible variations around the mean cadence (for

instance, a variation of a week around a mean cadence of one observation every three

months). To these extracted positions we then add realistic astrometric errors, both

in right ascension (α) and declination (δ). These astrometric errors take into account

errors on the calibrator position, station coordinate, Earth orientation as well as tro-

posphere parameters uncertainties; these errors are added to the extracted positions

from the theoretical trajectory. These new positions form our simulated observations
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or synthetic observations. We then perform an astrometric fit to these simulated obser-

vations, obtaining a determination of a recovered parallax ($f ). Since the simulated

observations include noise, $f is slightly different from the $ we put as initial parame-

ter. This algorithm is repeated with a certain number of realizations, to make a Monte

Carlo method. In each realization, the noise parameters will be different, since they are

programmed to be random values in each realization. At the end of the realizations, we

will have many values of $f (one $f
i per realization). These ($f

i ) are plotted as a his-

togram and fitted with a Gaussian, which provides a determination of the mean value

and of the standard deviation (σ) around the mean. The average value obtained from

$f
i is very similar to $ from the initial parameters. The σ obtained gives an estimation

of the error in the determination of the parallax value, for the strategy (number and

cadence of observations) used in the simulation. By repeating simulations for different

strategies, we can compare the different strategies to each other.

The simulation was done with previously known star-forming regions: Taurus (Tau-

rus C, Taurus S and Taurus E), Ophiuchus and Orion. For each case, 1000 realizations

were made in a Monte Carlo method for every possible combinations between number

of epochs and cadence. We simulated cadences of 1, 2, 3, 4, 5, 6, 8, 9, 10 and 12 months,

each with 6, 12, 18, 24, 30 and 36 epochs observed. For each one of these combinations,

our simulation provides an estimate of the error, σ, expected on the parallax measure-

ment. We plotted these results in two different ways: epoch vs σ and cadence vs σ.

From the first representation, we obtained a relation σ ≈ 1/
√
n, where n is the number

of observed epochs. This means that the parallax measurements get better as the in-

verse square root of the number of observations. From the plots of cadence vs σ we find

a decrease in sigma if the observations are made every 6 months. This means that the

parallax fits are better if the observations are made with a cadence of 6 months. With

this work, we quantified the differences between different strategies. We concluded that
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it is better to make the VLBI parallax observations every 6 months, and the parallax

determination will improve as the inverse square root of the number of observations.

Even though this work does not change the measurements made previously by different

authors, it will help to improve future VLBI parallax observations. The tool we built

to obtain the results from this thesis may help future observers to predict the expected

error by scheduling the observations in a certain way.



Chapter 1

Introduction

1.1 Astrometry and Distance Measurements

Astrometry is the science that studies the positions and motions of celestial bodies; it

has many applications. For instance, and as we will see below, it is possible to know the

distance to a celestial object by analyzing its apparent position as a function of time.

In turn, distances are essential to estimate intrinsic properties, such as size, luminosity,

mass, age, etc. For example, the correct temperature and luminosity are necessary to

place stars on a Hertzsprung–Russell diagram (H-R diagram), and say something about

their mass or evolutionary status. As a consequence, the determination of distances in

the universe has always played a central role in astronomy. In particular the distance

ladder plays a very important role in astrophysics. This distance ladder goes from

the Solar System to the furthest extragalactic objects. Every step of the ladder is

calibrated from the one below. Thus, the first steps are extremely important to the

entire ladder, and distances to nearby stars are fundamental. Of course, in the era of

precise astrometry the first steps of this distance ladder will have to be reevaluated.

Different methods to calculate the distance to a celestial body have been devel-

1
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oped through time. Most of these methods are indirect and for objects outside the

Solar System there is only one purely geometric technique: the determination of the

trigonometric parallax.

Parallax is defined by the Merriam-Webster dictionary as the apparent displacement

or the difference in apparent position of an object as seen from two different points not

on a straight line with the object. In astronomy, parallaxes are converted to distances

by calculating the angular difference in the apparent position of a given source observed

from two different perspectives. The trigonometric parallax is the result of the motion

of the Earth around the Sun over time. The first attempts to measure trigonometric

parallaxes were made in order to confirm the heliocentric theory. Indeed, if the Earth

were at the center of the Solar System, distant stars would not display any trigonometric

parallax.

In the 1830s, Friedrich Bessel made the first reliable trigonometric parallax mea-

surement to the star 61 Cygni. This was shortly followed by similar measurements by

Thomas Henderson to α Centauri and Friedrich von Struve to Vega. Although the

values measured by these three astronomers were very uncertain, they showed that

even the closest stars are at considerable distances. This explained the lack of earlier

trigonometric parallax detection (Loinard, 2014). By the end of the 1990s, the Hippar-

cos space astrometry mission had measured a large number of trigonometric parallaxes

with milli-arcsecond (mas) precision, resulting in progress in astrometry. In 2013, Gaia,

a new astrometric mission, was launched. Gaia is providing positions, distances, space

motions and many physical characteristics of some one billion stars in our Galaxy and

beyond. It is a scanning satellite that will survey in a systematic way the whole sky

(Mignard, 2005). The performance of Gaia for astrometric accuracy is 4 µas at V = 10

mag, 10 µas at V = 15 mag, and 200 µas at V = 20 mag. The improvement compared

with Hipparcos is huge, Gaia is expected to observe about 10 000 times as many objects
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and to achieve 100 times higher accuracy for stars that are 100 times fainter (Lindegren

and de Bruijne, 2005). Hipparcos and Gaia observe at optical wavelengths. For stars

embedded in dusty star-forming regions, it is useful to observe at lower frequencies

where the extinction is significantly lower (as explained later in this chapter) with the

radio technique of Very-long-baseline interferometry (VLBI). With that technique, an

astrometric accuracy of 10 micro-arcsecond (µas) can be achieved (Reid and Honma,

2014).

Due to proper motion of the source and the annual rotation of the Earth around the

Sun, we can see a displacement of the source on the sky with respect to the background

stars. The proper motion traces the true displacement of the source across the sky,

and is generally be assumed to be linear and uniform. The only exception is if the

star belongs to a binary or multiple system; in that case the proper motion will not

be uniform. Because of the annual rotation of the Earth, the apparent position of the

source describes an elliptical path on the sky (see Fig. 1.1). The semi-major axis of

that ellipse is known as the Trigonometric Parallax ($). From trigonometry we can

see that

d =
1 AU

tan$
' 1

$
AU (1.1)

taking into account the small-angle aproximation1 tan$ ' $, where $ is measured in

radians. Using 1 radian = 57.2957795◦ = 206264.806′′, we obtain

d ' 206, 264

$′′
AU. (1.2)

The parsec (parallax-second, pc) is defined as the distance to a source whose parallax

is 1 arcsec. From the previous equation we see that 1 pc = 2.06264806 × 105 AU.

1tan$ ' $ is true for small angles. For instance if we assume $ = 1′′, tan$/$ = 1.00000000001,
very close to unity.
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Introducing the parsec simplifies the equation to:

d =
1

$′′
pc (1.3)

Figure 1.1: Trigonometric Parallax and Proper Motion (Torres, 2009)

1.2 Interferometry

Trigonometric parallaxes can be measured at optical wavelengths (for instance with

Gaia) for isolated and bright stars. But this can become difficult for stars located in

star-forming regions. This is because young stars in star-forming regions are embedded

in dust clouds, which makes them faint at optical wavelengths. Radio waves penetrate

many magnitudes of visual extintion (Draine, 2006). In this situation radio-wavelength

observations can be used advantageously.

The astrometric precision of a single radio telescope is limited to some fraction of

the diffraction limit, θ ≈ λ/D, where θ is the angular diameter in radians of the region

that the radio telescope “sees”, λ is the observing wavelength and D is the antenna

diameter. For example, a radio telescope of 100 m in diameter observing at a wavelength
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of 10 cm has an angular resolution of ≈ 200 arcseconds (Rodŕıguez, 1984), very poor for

astrometry purposes. This low resolution “problem” is solved by using interferometry.

An interferometer is made of two or more radio telescopes. In a typical interferom-

eter, the shortest separation between the individual telescopes is of the order of their

diameter. The longest separation, on the other hand, can be up to thousands of meters

for conventional interferometers, and up to thousands of kilometers for VLBI configu-

rations. For conventional interferometers, the signals from the individual telescopes are

combined in real time, using a correlator co-located with the antennas. The correlator

calculates the mutual coherence function of the electric field for each pair of antennas.

When expressed as a function of baseline length and orientation, this quantity is called

a visibility. The reconstruction of the image is made from the visibilities through an

inverse Fourier transform. In VLBI observations, the correlation is not made in real

time. Instead, the signals are time tagged using independent atomic clocks at each

antenna and recorded on magnetic tape, or more recently on magnetic disks. These

tapes or disks are brought to a correlator (which is usually not co-located with any of

the antennas) to be combined weeks or even months after the observations.

In an interferometer, the angular resolution, θ, is given by the maximum separation

between the radio telescopes, or the maximum baseline, Bmax.

θ ≈ λ

Bmax

. (1.4)

With radio telescopes located thousands of kilometers apart, it is possible to obtain

an angular resolution of ∼ 1 mas. The corresponding astrometric accuracy is given by

θ/SNR, where SNR is the signal-to-noise with which the source is detected (Condon,

1997). Thus, if we have a SNR of a hundred, the astrometric accuracy would be of

order of 10 µas, comparable to the accuracy of the European space astrometry mission
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Gaia (Bourda et al., 2011).

1.3 Previous Observations

VLBI parallax measurements are obtained through observations of a given source at

several epochs. Reviewing the literature, one finds that different authors have used

different scheduling strategies (for instance concerning the number of observations used,

or the cadence of these observations). For example, Loinard et al. (2007) made a

parallax measurement for the star T Tau Sb with observations scheduled every 2 months

during a total period of 2 years (between 2003 September and 2005 July), for HP

Tau/G2 Torres et al. (2009) used a total of 9 epochs between 2005 and 2007 separated

by 2 or 3 months. For sources like Hubble 4 and HDE 283572 in Torres et al. (2007), the

parallax was measured with 6 epochs (between 2004 September and 2005 December)

separated by 2 to 4 months. Menten et al. (2007) measured the trigonometric parallax

of several member stars of the Orion Nebula Cluster with observations conducted on

2005 September 25, 2006 March 02, 2006 September 09, and 2007 March 6. These

dates sample well the maximum extent of the Earth’s orbit as viewed by the source.

Reid et al. (2009b) have measured the positions of H2O masers in Sgr B2, a massive

star-forming region near the Galactic center. The positions were measured on 12 epochs

over a time span of one year.

A similar disparity is found for VLBI distance measurements to pulsars. For the dou-

ble neutron star system PSR B1913+16, Deller et al. (2018) used observations obtained

every 6 months close to the parallax extremas. On the other hand, the measurements

of nine pulsar parallaxes made by Brisken et al. (2002) used five epochs separated by

about 3 months over the course of one year.

More recently, the BeSSeL Survey (Bar and Spiral Structure Legacy Survey) was
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performed to study the spiral structure and kinematics of the Milky Way galaxy. The

target sources were methanol and water masers that are associated with young massive

stars and compact HII regions, that trace the spiral structure. Some examples of paral-

lax measurements for this survey are reported by Reid et al. (2009a). For the parallax

measurement of the methanol masers in S 252 and G232.6+1.0, they made observations

at four epochs, from 2005 October to 2007 March with a cadence of approximately 6

months. These observations sample the peaks of the sinusoidal trigonometric paral-

lax signature in right ascension. Xu et al. (2006) have measured the distance to the

massive star-forming region W3(OH) in the Perseus spiral arm of the Milky Way using

measurements at 5 epochs every 6 months approximately. Finally, we should mention

GOBELINS (The Gould’s Belt Distances Survey), a project aimed at measuring the

proper motion and trigonometric parallax of a large sample of young stars in nearby re-

gions. Ortiz-León et al. (2017) measured parallax and distance to twelve stellar systems

located in the Lynds 1688 dark cloud in the Ophiuchus region. Kounkel et al. (2017)

presented the results of young star-forming regions toward the Orion Molecular Cloud

Complex and Galli et al. (2018) presented new trigonometric parallaxes and proper mo-

tions of young stellar objects in the Taurus molecular cloud complex. Ortiz-León et al.

(2018) derived the distance and structure of the Perseus molecular cloud. All these

GOBELINS measurements use a cadence of 6 months, with a total of 5 to 8 epochs.

1.4 Motivation

Given the variety of observation strategies used in previous works, we decided to make

a simulation program in order to understand how the parallax precision differs under

different choices of cadence and number of epochs. As will be described in more details

in the next chapter, for a given set of astrometric parameters [right ascension (α0) and
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declination (δ0) at a reference epoch, components of the proper motion (µα and µδ),

and parallax ($)], we calculated the expected trajectory of the object on the plane of

the sky. From that trajectory we extracted positions at a given number of epochs with

a certain cadence (taking into account observation epochs to be within 10 days of the

expected observing date). Having these extracted positions, we now add an astrometric

error in right ascension and declination; it is calculated from Pradel et al. (2006) and

takes into account errors in calibrator position, station coordinate, Earth orientation

and troposphere parameter uncertainties. With these synthetic observations a new tra-

jectory is sampled. We then calculated the recovered parallax for this set of synthetic

measurement. Repeating this for different choices of cadence and number of observa-

tions in a Monte Carlo method, we estimate the error on the parallax measurement

associated with any specific scheduling strategy

1.4.1 Monte Carlo Method

Named after the city famous for its casinos, the Monte Carlo method is a numerical

technique that makes use of random numbers to solve statistical physics problems in

order to estimate some functions of a probability distribution. A problem that does

not have a stochastic component sometimes may also be posed as a problem with a

component that can be identified with an expectation of some function of a random

variable. The problem is then solved by estimating the expected value by the use of a

simulated sample from the distribution of the random variable (Gentle, 2010). The first

real applications of this statistical method were from Enrico Fermi, with his work on

neutron diffusion in the early 1930s, later the Monte Carlo method was used by Ulam

and Metropolis and their collaborators in the construction of the hydrogen bomb. They

were the first to propose and employ the Monte Carlo method as a viable numerical

technique for solving practical problems (Murthy, 2001). Nowadays, this method is used
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in a very large number of fields to solve all kinds of problems. To mention just a few,

in mathematics: to solve integrals with complex boundary conditions; in astronomy:

generation of initial conditions for N-body simulations, modeling light scattering by

dust grains; and for the work presented in this thesis, to estimate astrometric errors on

parallax measurement.

From these Monte Carlo simulation (explained in more details in the following chap-

ter), we will be able to determine the best way to schedule the observations of VLBI

parallax measurements. It is well known that astrometry at radio wavelengths has

made great progress over the last decade, with a positional accuracy of ≈ 10 µas for

compact sources relative to background quasars. Though this thesis will not change the

results from the previous observations, the tool (simulation program) we built will be

very useful for future parallax observations. Gaia will be covering a lot of stars in the

optical range in the Milky Way, but for stars observed at radio frequencies there is still a

lot to study. Radio astrometry continues to advance. For example, the next-generation

Very Large Array (ngVLA)2 could provide a sensitivity increase of more than an order

of magnitude. Thus, the ngVLA could achieve astrometric accuracies of ≈ 1 µas (Reid

et al., 2018). With this work, future VLBI parallax observations could be optimized by

knowing how to schedule properly the observations, and by knowing this, it will save

telescope time.

2The ngVLA is an astronomical observatory planned to operate at centimeter wavelengths (25 to
0.26 centimeters, corresponding to a frequency range extending from 1.2 GHz to 116 GHz). The
observatory will be a synthesis radio telescope constituted of approximately 214 reflector antennas
each of 18 meters diameter, operating in a phased or interferometric mode (Selina et al., 2018).





Chapter 2

Methodology

In this chapter we will describe the simulation program that we made in order to create

a series of synthetic observations. The algorithm we created is shown in Fig. 2.5, and

the code is described schematically in the appendix E. The algorithm is explained step

by step in this chapter.

2.1 Trajectory

The simulation, mentioned in the previous section, works in the following manner.

We choose a set of astrometric parameters: an initial right ascension (α0), an initial

declination (δ0), the components of the proper motion (µα and µδ) and a parallax ($).

This corresponds to the input of Astro Elements in the algorithm (Fig. 2.5). With

those initial parameters the program calculates an expected trajectory on the sky of

the object through time; this trajectory is calculated with (Seidelmann, 1992):

α(t) = α0 + µαt+$fα(t), (2.1)

δ(t) = δ0 + µδt+$fδ(t), (2.2)

11
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where fα and fδ are the projections of the parallactic ellipse over α and δ, and are given

by

fα = (X sinα− Y cosα)/ cos δ, (2.3)

fδ = X cosα sin δ + Y sinα sin δ − Z cos δ. (2.4)

Here (X, Y, Z) are the barycentric coordinates of the Earth in a specific reference

frame associated with the Solar System; these were calculated with the library NOVAS

in python (Kaplan et al., 2012). After this step, we will have a theoretical trajectory

of the aparent motion from the chosen source. This is represented by the process

Trajectory in the flux diagram (Fig. 2.5).

2.2 Epoch selection

From the theoretical trajectory of the apparent motion on the sky of a certain object,

we extract a given number N of positions (later to be named epochs) for a given cadence

M (taken to be the separation between successive epochs). In practice, observations

are never scheduled exactly as requested because of practical constraints at the obser-

vatories, or of meteorological requirements. We take this into account by choosing the

observation epochs to be within 10 days of the expected observing date. In our simula-

tions, this is achieved by choosing a random number uniformly distributed between −10

days and +10 days, using the function in the python library random.uniform. In the

program, the specific scheduling strategy is defined in the Simulation parameters

(Fig. 2.5). With these parameters we proceed to extract the positions, shown in our

flux diagram as the process of Extract positions. At this point, we have N positions

with a cadence of M months ± 10 days.
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In Fig. 2.1, we can see an example of the theoretical trajectory described before,

and the extracted positions at a certain epochs from this trajectory, in other words, we

have N positions every M months ± 10 days.

Figure 2.1: Example of the theoretical trajectory represented by
the purple line, and the extracted positions of observations are

the grey dots.

2.3 Astrometric errors

Having the positions now extracted from the theoretical trajectory, an astrometric error

will be added to both right ascension and declination. These astrometric errors were

chosen based on Pradel et al. (2006) and take into account errors on the calibrator

position, station coordinate, Earth orientation as well as troposphere parameters un-

certainties. Their simulation was performed for sources observed with the Very Long

Baseline Array (VLBA) and the European VLBI Network (EVN) at various declinations

and angular separations. From Pradel et al. (2006) we use Tables 3 and 4, which contain

VLBA rms astrometric error for a relative source separation (α − α0) cos δ0 = 1◦ and
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δ − δ0 = 1◦, respectively. Such errors were calculated for sources at declinations −25◦,

0◦, 25◦, 50◦, 75◦ and 85◦ between the target source and the calibrator; there is an as-

trometric error1 for right ascension (∆α cos δ) and declination (∆δ). We do a quadratic

sum from the astrometric errors from the Table 3 (source separation (α−α0) cos δ0 = 1◦)

with the values from the Table 4 (source separation δ − δ0 = 1◦), for every value of

∆α cos δ. and ∆δ at the given declination of source. Then, we do a polynomial curve

fitting, for right ascension and for declination, shown in Fig. 2.2. This polynomial fit

enable us to interpolate the correct value of the errors for any value of the declination

and right ascension. The random error number will be obtained from the function

random.gauss in the python library. This function creates a random number taken

from a Gaussian distribution. The value for the standard deviation (σ) required for

this Gaussian distribution will be given from the fit in Fig. 2.2. As we see in the figure,

it will depend on the declination of the source we want to simulate. We will center the

Gaussian at a mean (µ) of µ = 0 µas. As an example, for a source of 0◦ in declination,

the astrometric error added in right ascension will be a random number created with a

Gaussian distribution with σ ≈ 50 µas. Similarly, for the astrometric error in declina-

tion, will be a random number created with a Gaussian distribution with σ ≈ 100 µas.

These errors correspond to the input of Noise parameters, and then we will proceed

to add these errors to the positions extracted in the steps above. This belongs to the

process Add errors from the flux diagram (Fig. 2.5). At this stage in the simulation,

we now have our simulated, or synthetic, observations.

1The values we used are when all the error components are combined together.
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Figure 2.2: Curve fitting of values of tables 3 and 4 from Pradel
et al. (2006). The purple line represents the fit for the

astrometric error in right ascension and the blue line for
declination.

2.4 Adjust new trajectory

Once we have these new synthetic observations, an astrometric fit is made (similar to the

purple line in Fig. 2.1). The trajectory recovered from this fit yields a recovered parallax

($f ), as well as recovered values for the components of the proper motion (µfα and µfδ ),

the initial right ascension (αf0), and initial declination (δf0 ). Since these simulated

observations include added errors (Noise parameters), the recovered parameters will be

slightly different from the true ones we put in the initial values (Astro Elements). In

the algorithm in Fig. 2.5, this step is shown with the internal storage of αf0 , δ
f
0 , µ

f
α,

µfδ , $
f . For the moment we will only focus on the result from the recovered parallax

($f ).
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2.5 Monte Carlo

The steps described above, from Extract positions to the recovered $f , are repeated

i times in a Monte Carlo simulation. In each realization, the Noise parameters

and the exact choice of observing epochs will change, since they are set to be random

values. Thus, for every realization made, we will have different synthetic observations

and therefore a different value for $f . As an example, Fig. 2.3 shows a simulation with

i = 100 (i.e. 100 realizations). In the left panel we can see the synthetic observations

over the theoretical trajectory, they all pile up in every epoch. In the right panel, we see

a close up from the left panel, and we note the different positions, in right ascension and

in declination, of the simulated observations, due to the Noise Parameters. As we

said before, the simulation is run i times, and for every realization we recover a different

$f . All these values ($f
i ) are arranged in a histogram, as shown in Fig. 2.4. From

this histogram we fit a Gaussian to extract the mean parallax ($i), and the standard

deviation (σ). This corresponds to the process of Calculates $i and σ from the flux

diagram in Fig. 2.5. The mean parallax obtained from the Gaussian fit is, of course,

very similar to the input parallax from the Astro Elements. The result for σ is the

one we will be analyzing in the next chapter, it provides an estimate of the error in our

determination of the parallax value for a given simulation. It will be the final display

in the flux diagram shown in Fig. 2.5.



2.5. MONTE CARLO 17

(a) Simulated observations (grey
dots) through the theoretical

trajectory (purple line).

(b) Close up of the simulated observations, in this case
we can note different positions due to astrometric errors

for every point.

Figure 2.3: For this example the simulation was run i = 100
times.

Figure 2.4: This histogram is calculated with the same
parameters previously mentioned and for i = 100 times, so this

is for 100 different paralaxes.
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Figure 2.5: Flow diagram of the simulation.



Chapter 3

Results

Simulations were run for the well-known star-forming regions Taurus (Taurus C, Taurus

S and Taurus E), Ophiuchus and Orion. For Taurus C we use an average of the

astrometric elements of the stars V773 Tau, Hubble 4 and HDE 283572 from the dark

cloud L1495. For Taurus S, we used the values of T Tau and for Taurus E, we used the

values of HP Tau. The parameters used for the simulation are all summarized in Table

3.1. These parameters correspond to the input of Astro Elements, mentioned in the

previous chapter.

Parameters

L1495 T Tau HP Tau Ophiuchus ONC

α0 04h18m19.6s 04h21m59.42s 04h35m54.16s 16h29m30.19s 05h41m29.9s

δ0 28◦16′48.6′′ 19◦32′05.71′′ 22◦54′13.49′′ −24◦39′42.1′′ −03◦49′22.5′′

µα [mas/yr] 10.09 4.02 13.85 −6.52 0.06
µδ [mas/yr] −26.51 −1.18 −15.4 −25.05 −0.12
π [mas] 7.67 6.82 6.20 7.01 2.41

Table 3.1: Inputs for the Astro Elements used for the simulation. All the elements were
compiled from Torres et al. (2007), Torres et al. (2012), Torres et al. (2009), Loinard
et al. (2007), Ortiz-León et al. (2017), Kounkel et al. (2017).

For every case mentioned in Table 3.1, the simulation was run for a given number

19
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of epochs observed at a certain cadence. We made 1000 realizations in a Monte Carlo

method for all the possible combinations of number of epochs and cadence. We simulate

cadences of 1, 2, 3, 4, 5, 6, 8, 9, 10 and 12 months each at 6, 12, 18, 24, 30 and 36

epochs. As specified in the last chapter, the final display of the simulation will be the

standard deviation (σ), obtained from the statistics made from the recovered parallaxes

($i). For every case mentioned in Table 3.1, this σ is shown in the next Tables (from

Table 3.2 to Table 3.6).

Cadence (months)
Epochs

6 12 18 24 30 36

1 170.65 14.06 10.85 9.24 8.53 7.8
2 19.1 13.61 10.88 9.38 8.62 7.52
3 19.05 14.15 11.07 9.58 8.58 7.78
4 20.15 13.68 11.12 9.82 8.5 8.03
5 18.45 14.08 10.93 9.53 8.84 7.79
6 15.39 10.61 8.82 7.54 6.66 5.81
8 21.64 13.63 11.29 10.28 8.15 7.73
9 20.16 13.18 10.72 9.35 9.02 7.78
10 25.51 14.18 11.54 9.64 8.5 7.9
12 464.5 269.24 225.31 183.52 153.43 146.7

Table 3.2: Standard deviation (σ × 10−3 mas) for all the
combinations of cadence and epochs for L1495.

From the values obtained in the tables, we produced two types of plots: the number

of epochs vs σ, and cadence vs σ. In figures 3.1 to 3.10, we see the first type of plot

(epochs vs σ), these figures belong to the L1495 case. The plots for the T Tau, HP

Tau, Ophiuchus and ONC cases are displayed in Appendix A, B, C and D, respectively.

For each cadence we make a plot of the values of σ. Then we make a linear fit to

the points. Analyzing the latter plots we can see a trend on the slope from the linear

fit. The green line is the best fit obtained by allowing both the slope and the intercept

to vary. The black line is the best fit obtained by fixing the slope at −0.5, varying only

the intercept. A slope of −0.5 is the value expected from standard error propagation.
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Cadence (months)
Epochs

6 12 18 24 30 36

1 175.95 13.46 11.12 10.39 9.16 8.13
2 20.62 14.15 11.49 10.66 8.82 8.39
3 20.46 13.21 11.31 9.9 8.53 8.08
4 21.31 14.93 11.78 10.24 8.45 7.8
5 19.75 14.04 11.08 10.23 9.55 8.53
6 15.5 10.34 8.98 7.22 6.77 6.11
8 22.44 15.1 11.72 9.8 9.44 8.24
9 20.03 14.32 11.61 9.79 9.02 8.06
10 26.97 15.35 11.59 10.31 9.01 8.41
12 449.37 300.5 212.97 182.78 168.42 151.79

Table 3.3: Standard deviation (σ × 10−3 mas) for all the
combinations of cadence and epochs for T Tau.

Cadence (months)
Epochs

6 12 18 24 30 36

1 200.61 13.13 11.43 9.17 8.81 7.74
2 20.02 14.13 12.2 10.12 8.89 8.0
3 19.96 13.54 10.82 9.82 9.1 7.9
4 20.25 14.38 11.34 9.9 8.55 8.49
5 18.79 13.24 11.48 9.69 9.01 8.46
6 15.1 10.85 8.28 7.7 6.22 6.01
8 22.38 13.94 11.61 9.87 8.35 7.79
9 19.75 14.17 11.41 9.8 8.82 7.56
10 24.54 15.03 11.74 9.79 8.54 7.9
12 512.95 318.88 270.59 219.82 186.73 162.2

Table 3.4: Standard deviation (σ × 10−3 mas) for all the
combinations of cadence and epochs for HP Tau.



22 CHAPTER 3. RESULTS

Cadence (months)
Epochs

6 12 18 24 30 36

1 544.75 38.1 31.39 28.44 23.8 21.83
2 55.73 38.42 30.53 27.18 23.84 22.51
3 53.05 38.68 31.87 28.04 25.49 22.73
4 57.33 41.64 32.16 27.35 23.96 21.28
5 57.37 39.49 31.44 26.37 25.64 22.39
6 45.62 27.7 25.04 20.16 19.31 17.14
8 64.04 40.29 31.04 26.36 24.05 20.74
9 52.43 41.2 31.62 27.96 24.27 21.9
10 70.87 39.65 34.2 27.4 24.81 22.07
12 1359.19 859.86 684.14 591.45 466.68 445.08

Table 3.5: Standard deviation (σ × 10−3 mas) for all the
combinations of cadence and epochs for Ophiuchus.

Cadence (months)
Epochs

6 12 18 24 30 36

1 219.71 21.23 16.1 16.0 12.96 12.14
2 29.31 23.0 16.57 14.43 12.85 12.29
3 31.57 20.82 17.71 15.57 13.97 11.79
4 30.98 22.64 17.02 14.19 14.71 13.0
5 28.94 21.53 16.57 14.47 13.29 12.04
6 21.25 16.28 12.33 10.34 9.49 8.45
8 34.64 21.25 16.04 15.09 12.83 11.28
9 30.96 22.38 17.01 14.45 12.54 11.47
10 31.43 20.45 16.52 15.03 13.02 11.84
12 1368.92 806.62 628.01 542.38 512.43 462.07

Table 3.6: Standard deviation (σ × 10−3 mas) for all the
combinations of cadence and epochs for ONC.
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Note that for the plots for a cadence of 1 month (Fig. 3.1 and from the appendices Figs.

A.1, B.11, C.21, D.31) the blue point for 6 epochs was not taken into account for the

fit. It shows a higher σ since the parallactic ellipse is not complete for this particular

combination for 6 epochs of observations every month.

From the slope trend of ≈ −0.5 we can get that

log σ ≈ −0.5 log(n)

where n is the number of epochs, and now we have that

σ ≈ 1√
n
.

This means that the parallax measurements improve as the square root of the number

of observations. This is a value one would expect from standard error propagation and

indicates that our simulation is made correctly.

The other type of plots that we examined were cadence vs σ, for each case from

Table 3.1. These plots are displayed in Figures 3.11 to 3.15. For all other cases (L1495,

T Tau, HP Tau, Ophiuchus, and ONC) we can observe a similar behavior in the plots.

Analyzing these plots, we see a noticeable trend, a decrease in the value of σ for all

the data points corresponding to a cadence of 6 months. That case corresponds to

observations that systematically target close to the extremes of the parallactic trajec-

tory. Furthermore we see a peculiar point corresponding to a cadence of 1 month for

6 epochs, this point is anomalous because for this combination of cadence-epochs, the

simulation only cover a 6 month period, this means that it does not track the entire

parallactic ellipse. Thus, we will not have a good measure for the recovered $f from

the simulation, and a larger value of σ is obtained. A similar thing is happening with

the observations for a cadence of 12 months, since it is only observing once a year, the
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entire parallactic ellipse is not well computed, and the σ tends to be bigger for those

cases.

Figure 3.1: Relation of epochs and σ for cadence of 1 month, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5. Note: The blue point for 6 epochs

was not taken into account for the fit.

The results obtained here show that the best strategy to measure trigonometric

parallaxes from astrometric observations is to observe with a cadence of six months,

targeting the extremes of the parallactic ellipse. Although this result is expected,

we now can quantify how much the parallax measurements varies with the observing

strategy, as we now illustrate comparing cadences of 3 and 6 months. Comparing Fig.

3.6 with Fig. 3.3, we see that in order to get a similar value for the rms error, of

σ ≈ 10−2 mas, observing with a cadence of three months, we would need observations

at 24 epochs, whereas we would only need 12 epochs if we observed with a cadence of

6 months.
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Figure 3.2: Relation of epochs and σ for cadence of 2 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.

Figure 3.3: Relation of epochs and σ for cadence of 3 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.
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Figure 3.4: Relation of epochs and σ for cadence of 4 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.

Figure 3.5: Relation of epochs and σ for cadence of 5 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.
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Figure 3.6: Relation of epochs and σ for cadence of 6 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.

Figure 3.7: Relation of epochs and σ for cadence of 8 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.
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Figure 3.8: Relation of epochs and σ for cadence of 9 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.

Figure 3.9: Relation of epochs and σ for cadence of 10 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.
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Figure 3.10: Relation of epochs and σ for cadence of 12 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.

Figure 3.11: Cadence and Standard deviation(σ) for the L1495
case, plotted for different epochs.
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Figure 3.12: Cadence and Standard deviation(σ) for the T Tau
case, plotted for different epochs.

Figure 3.13: Cadence and Standard deviation(σ) for the HP
Tau case, plotted for different epochs.
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Figure 3.14: Cadence and Standard deviation(σ) for the
Ophiuchus case, plotted for different epochs.

Figure 3.15: Cadence and Standard deviation(σ) for the ONC
case, plotted for different epochs.





Chapter 4

Conclusions

Given the large variety of scheduling strategies used by different authors to measure

parallaxes from VLBI observations, we decided to make a simulation and see how the

quality of the parallax determination differs with different scheduling strategies. The

simulation was done in the programming language python, and works for any Astro

Elements (position, parallax, and proper motion) given as initial values. Specifically,

here we applied our code to five different cases that correspond to the star-forming

regions Taurus (Taurus C, Taurus S and Taurus E), Ophiuchus and Orion. This regions

cover ranges from ∼ −25◦ to ∼ +29◦ in declination.

The simulation calculated the parallax, i = 1000 times1 using a Monte Carlo

Method, for every combination of cadence and number of epochs. From the $i ob-

tained, we calculated the standard deviation (σ) from the mean, and used it as an

estimate of the observations errors that would be obtained for each strategy.

Then we proceeded to plot the results in two different ways: examining the relation

between σ and the number of epochs and between σ and the cadence of observation.

From the first type of plots, a relation between the number of epochs and σ was found:

1Initially, we tested the simulation for 100 realizations, then with 200, 300 and 500. We noted that
from 300, the results where the same. So we decided to do a final run with 1000 realizations.
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σ decreases with the square root the number of epochs observed, as expected from

standard error propagation. From the second type of plot we noted an important

decrease of σ by doing the observations every 6 months, and we conclude that this is

the best way to schedule parallax measurement observations.

Although this work does not change the results from the past authors, it will help for

future observations for VLBI parallax measurements. VLBI observations for parallax

are very important in astrometry, and they will remain important. For instance, the

Next Generation Very Large Array (ngVLA) is expected to reach an astrometric of 1

µas (one order of magnitude better than the GAIA satellite; Reid et al., 2018). The tool

that we have developed here, perhaps adapted to include sources of errors proper to the

ngVLA, will be very useful to prepare and schedule astrometric ngVLA observations.

More generally, our tool can help future observers decide on the best observing strategy

for astrometric observations of their source of choice. Since telescope time is very

valuable, this work will help to use it in an advantageous way.

Finally, we intend to develop our tool further to examine, for instance, the effect

of randomly loosing some observations either to bad weather conditions or because a

specific target becomes too weak to be detected at some epochs (non-thermal radio

emission from young stars tends to be highly variable, so it is common that it is only

detected at some fraction of the observed epochs). It will be worthwhile confirming

whether a cadence of six months remains the best strategy in such cases, or whether a

different strategy (for instance with some redundancy) should be adopted.
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Galli, P. A. B., Loinard, L., Ortiz-Léon, G. N., Kounkel, M., Dzib, S. A., Mioduszewski,
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A T Tau

This appendix shows the plots of epochs vs standard deviation (σ) for the T Tau case.

Figure 1: Relation of epochs and σ for cadence of 1 month, each blue point
represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5. Note: The blue point for 6 epochs

was not taken into account for the fit.
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Figure 2: Relation of epochs and σ for cadence of 2 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.

Figure 3: Relation of epochs and σ for cadence of 3 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.
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Figure 4: Relation of epochs and σ for cadence of 4 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.

Figure 5: Relation of epochs and σ for cadence of 5 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.
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Figure 6: Relation of epochs and σ for cadence of 6 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.

Figure 7: Relation of epochs and σ for cadence of 8 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.
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Figure 8: Relation of epochs and σ for cadence of 9 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.

Figure 9: Relation of epochs and σ for cadence of 10 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.
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Figure 10: Relation of epochs and σ for cadence of 12 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.



B HP Tau

This appendix shows the plots of epochs vs standard deviation (σ) for the HP Tau case.

Figure 11: Relation of epochs and σ for cadence of 1 month, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5. Note: The blue point for 6 epochs

was not taken into account for the fit.
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Figure 12: Relation of epochs and σ for cadence of 2 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.

Figure 13: Relation of epochs and σ for cadence of 3 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.
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Figure 14: Relation of epochs and σ for cadence of 4 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.

Figure 15: Relation of epochs and σ for cadence of 5 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.
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Figure 16: Relation of epochs and σ for cadence of 6 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.

Figure 17: Relation of epochs and σ for cadence of 8 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.
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Figure 18: Relation of epochs and σ for cadence of 9 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.

Figure 19: Relation of epochs and σ for cadence of 10 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.
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Figure 20: Relation of epochs and σ for cadence of 12 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.



C Ophiuchus

This appendix shows the plots of epochs vs standard deviation (σ) for the Ophiuchus

case.

Figure 21: Relation of epochs and σ for cadence of 1 month, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5. Note: The blue point for 6 epochs

was not taken into account for the fit.
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Figure 22: Relation of epochs and σ for cadence of 2 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.

Figure 23: Relation of epochs and σ for cadence of 3 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.
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Figure 24: Relation of epochs and σ for cadence of 4 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.

Figure 25: Relation of epochs and σ for cadence of 5 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.
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Figure 26: Relation of epochs and σ for cadence of 6 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.

Figure 27: Relation of epochs and σ for cadence of 8 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.
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Figure 28: Relation of epochs and σ for cadence of 9 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.

Figure 29: Relation of epochs and σ for cadence of 10 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.
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Figure 30: Relation of epochs and σ for cadence of 12 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.



D ONC

This appendix shows the plots of epochs vs standard deviation (σ) for the ONC case.

Figure 31: Relation of epochs and σ for cadence of 1 month, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5. Note: The blue point for 6 epochs

was not taken into account for the fit.
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Figure 32: Relation of epochs and σ for cadence of 2 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.

Figure 33: Relation of epochs and σ for cadence of 3 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.
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Figure 34: Relation of epochs and σ for cadence of 4 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.

Figure 35: Relation of epochs and σ for cadence of 5 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.
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Figure 36: Relation of epochs and σ for cadence of 6 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.

Figure 37: Relation of epochs and σ for cadence of 8 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.
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Figure 38: Relation of epochs and σ for cadence of 9 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.

Figure 39: Relation of epochs and σ for cadence of 10 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.
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Figure 40: Relation of epochs and σ for cadence of 12 months, each blue
point represent a value of σ, the green line is the linear adjust that passes

through the points, and the black line is the linear adjust that passes
through the points with a slope of −0.5.



E Astrometry Simulation Code

This appendix shows the code made for the simulation, is divided in two parts. The

first part is to enter the initial parameters for each case. The second part is the code

that contains all the funcionts needed to run the simulation.

First part:

import numpy as np

import astrometry1000 as ast

## Here enter user specific stuff

user = ’user_name’

months,ephFile,year = ast.load_ephem(user)

print "You are using the ephemeris file",ephFile

case = ’L1495’

if case == "ONC":

RA_0_str = ’05:41:29.9’ # HH:MM:SS.SS

Dec_0_str = ’-03:49:22.5’ # DD:MM:SS.SS

RA_0 = ast.str2decimal(RA_0_str,True)

Dec_0 = ast.str2decimal(Dec_0_str,False)

muRA = 0.06

muDec = -0.12

prlx = 2.41

if case == "Ophiuchus":

RA_0_str = ’16:29:30.19’

Dec_0_str = ’-24:39:42.1’

RA_0 = ast.str2decimal(RA_0_str,True)
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66 E ASTROMETRY SIMULATION CODE

Dec_0 = ast.str2decimal(Dec_0_str,False)

muRA = -6.5229

muDec = -25.0564

prlx = 7.01

if case == "HP_Tau":

RA_0_str = ’04:35:54.16’

Dec_0_str = ’22:54:13.49’

RA_0 = ast.str2decimal(RA_0_str,True)

Dec_0 = ast.str2decimal(Dec_0_str,False)

muRA = 13.85

muDec = -15.4

prlx = 6.20

if case == "T_Tau":

RA_0_str = ’04:21:59.42’

Dec_0_str = ’19:32:05.71’

RA_0 = ast.str2decimal(RA_0_str,True)

Dec_0 = ast.str2decimal(Dec_0_str,False)

muRA = 4.02

muDec = -1.18

prlx = 6.82

if case == "L1495":

RA_0_str = ’4:18:19.6’

Dec_0_str = ’28:16:48.6’

RA_0 = ast.str2decimal(RA_0_str,True)

Dec_0 = ast.str2decimal(Dec_0_str,False)

muRA = 10.0906666667

muDec = -26.51

prlx = 7.67

astro_elements = (RA_0,Dec_0,muRA,muDec,prlx)

results = ast.completeSimulation(user,astro_elements)

np.savetxt("results_L1495_1000.txt", results)

Second part:

from novas import compat as novas

from novas.compat import eph_manager

from novas.compat import solsys
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import numpy as np

import time

import matplotlib.pyplot as plt

import random

from scipy.optimize import curve_fit

from kapteyn import wcs

year = 365.25

def load_ephem(user):

"""Load the ephemeris file for NOVAS and run some tests on it;

also, define a python dictionary for months that will work always

(english or spanish depending on your local version of NOVAS"""

if user == ’user_name1’:

ephFile = ’/home/gely/Enthought/Canopy_64bit/User/lib/python2.7/ \

site-packages/DE405.bin’

months = {1 : ’ENE’ , 2 : ’FEB’ , 3 : ’MAR’ , 4 : ’ABR’ ,

5 : ’MAY’ , 6 : ’JUN’ , 7 : ’JUL’ , 8 : ’AGO’ ,

9 : ’SEP’ , 10 : ’OCT’ , 11 : ’NOV’ , 12 : ’DIC’}

elif user == ’user_name2’:

ephFile = ’/Users/lloinard/Library/Enthought/Canopy_64bit/User/ \

lib/python2.7/site-packages/novas_de405/DE405.bin’

months = {1 : ’JAN’ , 2 : ’FEB’ , 3 : ’MAR’ , 4 : ’APR’ ,

5 : ’MAY’ , 6 : ’JUN’ , 7 : ’JUL’ , 8 : ’AUG’ ,

9 : ’SEP’ , 10 : ’OCT’ , 11 : ’NOV’ , 12 : ’DEC’}

jd_start, jd_end, number = eph_manager.ephem_open(ephFile)

year = 365.25

return months,ephFile,year

def calc_jd(date_str):

"""Calculate the Julian and modified Julian date corresponding

to the provided date string."""

date,dtime = date_str.split(’/’)

day,month,year = date.split(’-’)

month = time.strptime(month,’%b’).tm_mon

day = int(day)

month = int(month)

year = int(year)

hour,minute,second = dtime.split(’:’)

dec_time = float(hour)+float(minute)/60.0+float(second)/3600.0
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jd = novas.julian_date(year, month, day, dec_time)

mjd = jd-2400000.5

#print jd, mjd, date_str

return jd,mjd

def make_world_gal(g_long,g_lat):

"""Takes two floats assumed to be Galactic longitude

and latitude, and transforms them into a numpy array

of world coordinates in decimal degrees."""

return np.array([g_long,g_lat])

def trans_gal2eq(world_gal):

"""Transforms the input numpy array containing Galactic

world coordinates to an output numpy array containing

equatorial world coordinates."""

trans = wcs.Transformation(wcs.gal,wcs.eq)

world_eq = trans(world_gal)

return world_eq

def str2decimal(time_str,isRA):

hour,minute,second = time_str.split(’:’)

hour = float(hour)

minute = float(minute)

second = float(second)

if hour > 0.0:

coord_dec=hour+minute/60.0+second/3600.0

else:

print hour, minute, second

coord_dec=-(-hour+minute/60.0+second/3600.0)

if isRA:

coord_dec=15*coord_dec

return coord_dec

def decimal2str(theta,isRA):

"""Converts a (rounded value of) a decimal angle given in

degrees to a string"""

if isRA:

theta = theta/15.

neg = False

if theta < 0:

neg = True

theta = -theta

deg = np.floor(theta)
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theta = 60.*(theta-deg)

amin = np.floor(theta)

theta = 60.*(theta-amin)

if isRA:

asec = np.floor(theta*100.)/100.

else:

asec = np.floor(theta*10.)/10.0

theta = deg+amin/60.+asec/3600.

theta_str = str(int(deg))+’:’+str(int(amin))+’:’+str(float(asec))

if neg:

theta_str = "-"+theta_str

if isRA:

theta = theta*15.

return theta_str,theta

def dec2format(theta):

"""Transforms a decimal angle into a formatted string

(HH:MM:SS or DD:AM:AS)"""

sign = +1

if theta < 0:

sign = -1

theta = -theta

deg,amin = divmod(theta, 1)

deg = int(deg)

amin = amin*60.

amin,asec = divmod(amin,1)

amin = int(amin)

asec = asec*60.

strAngleTruncated = str(deg)+":"+str(amin)

strAngle = strAngleTruncated+":"+str(round(asec,6))

if sign < 0:

strAngleTruncated = ’-’+strAngleTruncated

strAngle = ’-’+strAngle

return strAngle,strAngleTruncated,sign,asec

def mas2deg(mas):

"""Convert an angle given in mas to degree"""

return 0.001*mas*(1./3600.0)

def proj_prlx(x,y,z,RA_0,Dec_0):

"""Computes the RA and Dec projections of the parallax

ellipse, RA_0 and Dec_0 are in degrees"""

a_prlx = (x*np.sin(np.radians(RA_0))-y*np.cos(np.radians(RA_0)))\
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/np.cos(np.radians(Dec_0))

d_prlx = x*np.cos(np.radians(RA_0))*np.sin(np.radians(Dec_0))\

+y*np.sin(np.radians(RA_0))*np.sin(np.radians(Dec_0))\

-z*np.cos(np.radians(Dec_0))

return a_prlx,d_prlx

def proper_motion(RA_0,Dec_0,muRA,muDec,jd_i,jd_f):

"""Computes the change of position due to proper motions.

RA_0 and Dec_0 are in degrees, muRA and muDec are in mas/yr,

times are specified in Julian Days."""

d_time = (jd_f-jd_i)/year

muRA = mas2deg(muRA)

muDec = mas2deg(muDec)

Dec = Dec_0+muDec*d_time

RA = RA_0+muRA*(d_time)/np.cos(np.radians(Dec))

return RA,Dec

def parallax(RA_c,Dec_c,prlx,jd):

"""Computes the change of position due to parallax."""

posEarth,velEarth = solsys.solarsystem(jd,3,0)

x,y,z = posEarth

RA_prlx,Dec_prlx=proj_prlx(x,y,z,RA_c,Dec_c)

prlx = mas2deg(prlx)

return RA_c+prlx*RA_prlx,Dec_c+prlx*Dec_prlx

def calcErrors(Dec_0,doPlot=False):

"""Calculate the expected astrometric errors from the

theoretical predictions of Pradel et al. (A&A, 452, 1099, 2006)

for the Declination of the source."""

## Input tables 3 and 4 from Pradel+06

dec = [-25.,0.,25.,50.,75., 85.]

erra_da = [60.,36.,33.,37.,87.,227.]

errd_da = [175.,50.,32.,53.,103.,258.]

erra_dd = [84.,30.,16.,25.,81.,189.]

errd_dd = [284.,99.,42.,33.,36.,67.]

erra = [np.sqrt(x**2+y**2) for x,y in zip(erra_da,erra_dd)]

errd = [np.sqrt(x**2+y**2) for x,y in zip(errd_da,errd_dd)]

## We make high order polynomial fits

#to those data to later interpolate

coef_ra = np.polyfit(dec, erra, 9)

poly_ra = np.poly1d(coef_ra)

coef_dec = np.polyfit(dec, errd,14)

poly_dec = np.poly1d(coef_dec)
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astro_noise=(poly_ra(Dec_0)/1000,poly_dec(Dec_0)/1000)

## Stuff for the plotting of the fits

ws = np.arange(-30., 90., 0.1)

era = poly_ra(ws)

edec = poly_dec(ws)

if doPlot:

plt.close()

plt.plot(dec,erra, ’mo’,label=’Dec’)

plt.plot(ws, era,’m’,label=poly_ra)

plt.plot(dec,errd, ’bo’,label=’RA’)

plt.plot(ws, edec,’b’,label=poly_dec)

plt.axis([-30.,90.,0.,400.])

plt.grid(True)

#plt.legend(loc=1)

plt.show()

return astro_noise

def calcTrajectory(jd0,jd1,astro_elements):

"""Calculates the positions of target between jd0 and jd1,

given the provided astrometric elements."""

RA_0,Dec_0,muRA,muDec,prlx = astro_elements

jd_list = []

RA_list = []

RA_c_list = []

Dec_list = []

Dec_c_list = []

for jd in range(int(jd0),1+int(jd1)):

RA_c,Dec_c = proper_motion(RA_0,Dec_0,muRA,muDec,jd0,jd)

RA,Dec = parallax(RA_c,Dec_c,prlx,jd)

#print jd,RA_0,Dec_0,RA_c,Dec_c,RA,Dec

jd_list.append(jd)

RA_c_list.append(RA_c)

Dec_c_list.append(Dec_c)

RA_list.append(RA)

Dec_list.append(Dec)

jd_list = np.array(jd_list)

RA_c_list = np.array(RA_c_list)

Dec_c_list = np.array(Dec_c_list)

RA_list = np.array(RA_list)
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Dec_list = np.array(Dec_list)

return jd_list,RA_c_list,Dec_c_list,RA_list,Dec_list

def calcPositions(jd0,jd,astro_elements,random_astro_noise):

"""Calculates the positions of target at each of the JD

provided in jd (which is a list)"""

RA_0,Dec_0,muRA,muDec,prlx = astro_elements

RA_list = []

RA_c_list = []

Dec_list = []

Dec_c_list = []

for day in jd:

RA_c,Dec_c = proper_motion(RA_0,Dec_0,muRA,muDec,jd0,day)

RA,Dec = parallax(RA_c,Dec_c,prlx,day)

RA_error = random.gauss(0.,mas2deg(random_astro_noise[0]))

Dec_error = random.gauss(0.,mas2deg(random_astro_noise[1]))

RA_c_list.append(RA_c+RA_error)

Dec_c_list.append(Dec_c+Dec_error)

RA_list.append(RA+RA_error)

Dec_list.append(Dec+Dec_error)

RA_c_list = np.array(RA_c_list)

Dec_c_list = np.array(Dec_c_list)

RA_list = np.array(RA_list)

Dec_list = np.array(Dec_list)

return jd,RA_c_list,Dec_c_list,RA_list,Dec_list

def calcDates(sim_parameters,random_day_disp,add=0.1):

"""Given an initial equinox (equinox1) and a final

equinox (equinox2), the routine calculates and returns

the dates of each equinox in between (including

equinox1 and equinox2."""

start_date,step,n_epochs,n_per_epoch,n_skipped = sim_parameters

jd_wo_random = []

jd_w_random = []

date_str = start_date+’/12:00:00’

jd,mjd = calc_jd(date_str)

jd = jd-step
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for i in range(n_epochs):

jd = jd+step

for j in range(n_per_epoch):

jd_wo_random.append(jd)

#print "jd_wo_random:",jd_wo_random,len(jd_wo_random)

for i in range(n_skipped):

remove = random.randint(0,(len(jd_wo_random)-1))

#print remove

del jd_wo_random[remove]

#print "final jd_wo_random:",jd_wo_random,len(jd_wo_random)

for jd in jd_wo_random:

random_days = random.uniform(-random_day_disp,random_day_disp)

jd_w_random.append(jd+random_days)

#print "final jd_w_random:",jd_w_random,len(jd_wo_random)

span = jd_wo_random[len(jd_wo_random)-1]-jd_wo_random[0]

jd0 = jd_wo_random[0]-add*span

jd1 = jd_wo_random[len(jd_wo_random)-1]+add*span

return jd_wo_random,jd_w_random,jd0,jd1

def sim_one_epoch(astro_elements,sim_parameters,noise_parameters):

"""Simulation of observations around each equinox from equinox1

to equinox2. The equinoxes are specified as tupples containing

two elements: the type of equinox, and the year of that equinox.

For example (spring, 2002). The routine computes the dates

corresponding to each equinox from eq1 to eq2, adds a small

random dispersion around each equinox (specified by

random_day_disp) and calculates the trajectory of the source,

as well as simulated positions at each equinox. Astrometric

noise (specified by random_astro_noise) is added to the

simulated positions. RE-WRITE THIS DOC... """

jd_wo_random,jd_w_random,jd0,jd1 = calcDates(sim_parameters,\

noise_parameters[0])

trajectory = calcTrajectory(jd0,jd1,astro_elements)

positions = calcPositions(jd0,jd_w_random,astro_elements,\

noise_parameters[1])

#print ’jd_wo_random :’,jd_wo_random

#print ’jd_w_random :’,jd_w_random

return trajectory,positions

def matrices_woacc(julianDay,alpha,err_alpha,delta,\

err_delta,a_prlx,d_prlx):

"""Defines the A and b matrices for motion without acceleration"""

mean_jd = np.mean(julianDay)
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d_time = (julianDay-mean_jd)/year

A_alpha = []

b_alpha = []

A_delta = []

b_delta = []

for i in range(len(julianDay)):

row = (1./err_alpha[i],d_time[i]/err_alpha[i],\

a_prlx[i]/err_alpha[i])

row = np.array(row)

A_alpha.append(row)

b_alpha.append(alpha[i]/err_alpha[i])

row = (1./err_delta[i],d_time[i]/err_delta[i],\

d_prlx[i]/err_delta[i])

row = np.array(row)

A_delta.append(row)

b_delta.append(delta[i]/err_delta[i])

A_alpha = np.array(A_alpha)

b_alpha = np.array(b_alpha)

A_delta = np.array(A_delta)

b_delta = np.array(b_delta)

return A_alpha,b_alpha,A_delta,b_delta

def solveChi2(A,b,isRA,cosdelta):

"""Solves the Chi2 for the given A and b matrices"""

h = np.dot(A.T,A)

covA = np.linalg.inv(h)

dummy = np.dot(covA,A.T)

p = np.dot(dummy,b)

err = covA.diagonal()

err = np.sqrt(err)

if isRA:

prlx = (p[2]*3600*1000)

err_prlx = (err[2]*3600*1000)

muRA = (p[1]*3600*1000)*cosdelta

err_muRA = (err[1]*3600*1000)*cosdelta

RA = p[0]/15.0

err_RA = err[0]/15.0

RA,RA_trunc,sign,asec = dec2format(RA)

err_RA = err_RA*3600

else:

prlx = (p[2]*3600*1000)
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err_prlx = (err[2]*3600*1000)

muDec = (p[1]*3600*1000)

err_muDec = (err[1]*3600*1000)

Dec = p[0]

err_Dec = err[0]

Dec,Dec_trunc,sign,asec = dec2format(Dec)

err_Dec = err_Dec*3600

return p[0],p[1],prlx,err_prlx

def meanPrlx(RA_prlx,err_RA_prlx,Dec_prlx,err_Dec_prlx):

"""Averages the RA and Dec parallaxes and calculates the errors"""

RA_w = 1./err_RA_prlx**2

Dec_w = 1./err_Dec_prlx**2

mean_prlx = (RA_w*RA_prlx+Dec_w*Dec_prlx)/(RA_w+Dec_w)

err_mean_prlx = np.sqrt(1./(RA_w+Dec_w))

return mean_prlx,err_mean_prlx

def fitAstrometry(jd,RA_c,Dec_c,RA,Dec,random_astro_noise):

"""Fit an astrometric model to the data provided. Assumes that

all data points have the same astrometric error."""

err_RA = [mas2deg(random_astro_noise[0])]*len(RA)

err_Dec = [mas2deg(random_astro_noise[1])]*len(Dec)

a_prlx = []

d_prlx = []

for i,day in enumerate(jd):

posEarth,velEarth = solsys.solarsystem(day,3,0)

x,y,z = posEarth

a_prlx_tmp,d_prlx_tmp = proj_prlx(x,y,z,RA_c[i],Dec_c[i])

a_prlx.append(a_prlx_tmp)

d_prlx.append(d_prlx_tmp)

cosdelta = np.cos(np.radians(np.mean(Dec)))

A_alpha,b_alpha,A_delta,b_delta = matrices_woacc(jd,RA,err_RA,\

Dec,err_Dec,a_prlx,d_prlx)

RA_0,mu_RA,RA_prlx,err_RA_prlx = solveChi2(A_alpha,b_alpha,\

True,cosdelta)

Dec_0,mu_Dec,Dec_prlx,err_Dec_prlx = solveChi2(A_delta,b_delta,\

False,cosdelta)

mean_prlx,err_mean_prlx = meanPrlx(RA_prlx,err_RA_prlx,\

Dec_prlx,err_Dec_prlx)

return mean_prlx
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def fullSimulation(astro_elements,sim_parameters,noise_parameters,\

n_simul,plotSim=False):

"""Runs a full simulation"""

fit_prlx = []

for i in range(n_simul):

if i%10 == 0:

print i,"...",

## This runs the simulation (and plots it if you want)

trajectory,positions = sim_one_epoch(astro_elements,\

sim_parameters,noise_parameters)

jd_traj,RA_c_traj,Dec_c_traj,RA_traj,Dec_traj = trajectory

jd_pos,RA_c_pos,Dec_c_pos,RA_pos,Dec_pos = positions

if plotSim:

plotSimulation(jd_traj,RA_traj,RA_c_traj,Dec_traj,\

Dec_c_traj,jd_pos,RA_pos,Dec_pos,noise_parameters[1])

## This makes a fit to the simulated points

#(and plots the resulting histograms if you want)

tmp_prlx = fitAstrometry(jd_pos,RA_c_pos,Dec_c_pos,RA_pos,\

Dec_pos,noise_parameters[1])

fit_prlx.append(tmp_prlx)

print ’and done!!\n’

return fit_prlx

def extractOffsets(RA,RA_c,Dec,Dec_c,RA_p,Dec_p):

"""Returns the offsets from mean position of the provided

positions. The positions are passed in degrees, but the

offsets are returned in mas. It will fail (assert False)

if the declination changes signs during the experiment..."""

min_Dec = min(min(Dec),min(Dec_c))

max_Dec = max(max(Dec),max(Dec_c))

assert np.sign(min_Dec) == np.sign(max_Dec)

Dec_mean = np.mean(Dec_c)

cosdelta = np.cos(np.radians(Dec_mean))

Dec_str,Dec_mean = decimal2str(Dec_mean,False)

#print Dec_str,Dec_mean

Dec = (Dec-Dec_mean)*3600*1000.

Dec_c = (Dec_c-Dec_mean)*3600*1000.

Dec_p = (Dec_p-Dec_mean)*3600*1000.

RA_mean = np.mean(RA_c)

RA_str,RA_mean = decimal2str(RA_mean,True)

#print RA_str,RA_mean

RA = (RA-RA_mean)*3600*1000.*cosdelta
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RA_c = (RA_c-RA_mean)*3600*1000.*cosdelta

RA_p = (RA_p-RA_mean)*3600*1000.*cosdelta

return RA,RA_c,Dec,Dec_c,RA_p,Dec_p,RA_str,Dec_str

def calcLimits (pos_list,add=0.1):

"""Calculates the limits for the plots"""

x_min = np.min(pos_list)

x_max = np.max(pos_list)

x_size = (x_max-x_min)

x_min = x_min-add*x_size

x_max = x_max+add*x_size

return x_min, x_max

def plotSimulation(jd_traj,RA_traj,RA_c_traj,Dec_traj,Dec_c_traj,\

jd_pos,RA_pos,Dec_pos,random_astro_noise):

"""This plots the results of one simulation.

Don’t run if you are making 1000s of simulations...."""

RA_off_traj,RA_c_off_traj,Dec_off_traj,Dec_c_off_traj,\

RA_p_off,Dec_p_off,RA_str,Dec_str = extractOffsets(RA_traj,RA_c_traj,\

Dec_traj,Dec_c_traj,RA_pos,Dec_pos)

x_min,x_max = calcLimits(RA_off_traj)

y_min,y_max = calcLimits(Dec_off_traj)

plt.close("all")

fig1 = plt.figure(1,figsize=(16, 12))

ax1 = fig1.add_subplot(211)

ax1.plot(jd_traj, Dec_off_traj,label="w/parallax")

ax1.plot(jd_traj, Dec_c_off_traj,label="wo/parallax")

ax1.errorbar(jd_pos,Dec_p_off,yerr=random_astro_noise[1],\

fmt=’o’,label="simulations")

ax1.set_xlabel(’JD’)

ax1.set_ylabel(’Dec (mas from ’+Dec_str+’)’)

ax1.legend(loc=1)

ax1.grid(True)

ax2 = fig1.add_subplot(212)

ax2.plot(jd_traj, RA_off_traj,label="w/parallax")

ax2.plot(jd_traj, RA_c_off_traj,label="wo/parallax")

ax2.errorbar(jd_pos,RA_p_off,yerr=random_astro_noise[0],\

fmt=’o’,label="simulations")

ax2.set_xlabel(’JD’)
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ax2.set_ylabel(’RA (mas from ’+RA_str+’)’)

ax2.legend(loc=2)

ax2.grid(True)

fig2 = plt.figure(2,figsize=(16, 12))

# Plots RA - Dec (i.e. trajectory on the plane of the sky)

ax3 = fig2.add_subplot(111)

ax3.set_aspect(’equal’)

ax3.plot(RA_off_traj, Dec_off_traj,label="w/parallax")

ax3.plot(RA_c_off_traj, Dec_c_off_traj,label="wo/parallax")

ax3.errorbar(RA_p_off,Dec_p_off,xerr=random_astro_noise[0],\

yerr=random_astro_noise[1],fmt=’o’,label="simulations")

ax3.set_xlabel(’RA (mas from ’+RA_str+’)’)

ax3.set_ylabel(’Dec (mas from ’+Dec_str+’)’)

ax3.axis([x_max,x_min,y_min,y_max])

ax3.legend(loc=2)

ax3.grid(True)

plt.show()

return None

def gauss(x,a,x0,sigma):

return a*np.exp(-(x-x0)**2/(2*sigma**2))

def prlx_Histogram(fit_prlx,doPlot=False):

mean_prlx = np.mean(fit_prlx)

disp_prlx = np.std(fit_prlx)

init_stats = (mean_prlx,disp_prlx)

n_bins = len(fit_prlx)/10.

hist, bins = np.histogram(fit_prlx,n_bins)

width = 0.7 * (bins[1] - bins[0])

center = (bins[:-1] + bins[1:]) / 2

xvals = np.linspace(bins[0],bins[len(bins)-1],200)

popt,pcov = curve_fit(gauss,center,hist,p0=[1,mean_prlx,disp_prlx])

if doPlot:

plt.close("all")

plt.bar(center, hist, align=’center’, width=width)

plt.title("Histogram of fitted parallaxes")

plt.xlabel("Parallax")

plt.ylabel("Frequency")

plt.plot(xvals,gauss(xvals,*popt),’r-’)

plt.show()

return init_stats,popt
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def completeSimulation(user,astro_elements):

months,ephFile,year = load_ephem(user)

random_astro_noise = calcErrors(astro_elements[1])

start_date = ’21-’+months[3]+’-2001’

n_per_epoch = 1

n_skipped = 0

random_day_disp = 10.

n_simul = 1000

noise_parameters = (random_day_disp,random_astro_noise)

full_results = []

for n_per_year in (1.,1.2,1.3,1.5,2.,2.4,3.,4.,6.,12.):

partial_results = []

for n_epochs in (6,12,18,24,30,36):

step = year/n_per_year

sim_parameters = (start_date,step,n_epochs,\

n_per_epoch,n_skipped)

fit_prlx = fullSimulation(astro_elements,sim_parameters,\

noise_parameters,n_simul,False)

init_stats,gauss_fit = prlx_Histogram(fit_prlx,False)

print "n_per_year = ", n_per_year

print "n_epochs = ", n_epochs

partial_results.append(round(abs(gauss_fit[2]),5))

full_results.append(partial_results)

return np.array(full_results)
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