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Resumen

Lattice QCD (LQCD) ofrece un marco de trabajo no perturbativo que permite el estudio de
sistemas hadrónicos mediante el uso de herramientas computacionales. La mayoŕıa de estados
hadrónicos decaen fuertemente a estados de multipart́ıculas, es decir, son estados resonantes. Con
el propósito de extender las aplicaciones de las teoŕıas cuánticas de campo en la red, el formalismo
Briceño-Hansen establece una relación entre los elementos de matriz de corrientes externas, los
cuales se obtienen a través de la red, con las correspondientes amplitudes de transición de estados
de dos part́ıculas en un volumen infinito. En el campo de f́ısica nuclear, este formalismo daŕıa pie
al análisis de estructuras de estados hadrónicos de dos part́ıculas por medio de LQCD. Esto incluye
estados resonantes, como glueballs y pentaquarks, y estados ligados, como el deuteron. Debido a
que los estudios en LQCD requieren una gran cantidad de tiempo y recursos computacionales, en
esta tesis exploramos la aplicación del formalismo Briceño-Hansen para un modelo de dos modelos
de Ising acoplados. Observamos que es posible definir una corriente de transición en términos de
los operadores del modelo para extraer los elementos de matriz de estados de una part́ıcula. El paso
siguiente será extraer los elementos de matriz de estados de dos part́ıculas, lo cual proporcionaŕıa
las piezas necesarias para probar el formalismo Briceño-Hansen en una teoŕıa de campos en el
lattice.



Abstract

Lattice QCD (LQCD) offers a non-perturbative scheme that enables the analysis of hadronic
systems using computational methods. Most of the hadronic states decay strongly into multiparticle
states, i.e. they are resonant states. Aiming to extend the applications of lattice field theories,
the Briceño-Hansen formalism establishes a relation between the finite volume matrix elements
of external currents, which are computed on the lattice, and the corresponding infinite volume
transition amplitudes between two particle states. In nuclear physics, this formalism will allow the
analysis of hadronic structures for two particle states using LQCD. This includes resonant states,
like glueballs and pentaquarks, as well as bound states, like the deuteron. Since LQCD studies
require plenty of time and computational resources, in this thesis we explore the application of the
Briceño-Hansen formalism in a model consisting of two coupled Ising models. We observe that
it is possible to extract the matrix elements for one-particle states. The following step will be to
extract the matrix elements for two-particle states, which will provide all the necessary ingredients
for testing the Briceño-Hansen formalism in a lattice field theory for the first time.



Contents

1 Introduction 1

I Lattice field theories 4

2 Scalar fields on the lattice 5
2.1 Scalar fields in 1+1D Minkowski-type space . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Scalar fields in 2D Euclidean lattice . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Scaling limit of a λφ4 theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

II Evaluating a field theory on a lattice 8

3 The Gattringer-Lang model 9
3.1 Two coupled scalar fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Dispersive representation of the Euclidean correlator . . . . . . . . . . . . . . . . . 10
3.3 Momentum operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Simulation algorithm 13
4.1 Updating the heavy field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2 Updating the ϕ field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5 Analysis of correlation functions 17
5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.2 One-particle sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.3 Two-particle sector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

III Scattering amplitudes and form factors 26

6 Infinite volume elastic scattering 27
6.1 Irreducible diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.2 The one-loop term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6.3 All orders perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
6.4 Implications of the unitarity of the S-matrix . . . . . . . . . . . . . . . . . . . . . 31
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CHAPTER 1

Introduction

Around the globe, numerous groups of theoretical nuclear and particle physicists are continuously
advancing in the comprehension of the spectrum and structure of hadrons. For the former, the
hadronic states are extracted directly from Quantum Chromodynamics (QCD), while for the
latter the arrangement of quarks and gluons inside the hadrons is studied. It is expected that,
by understanding the spectrum of the theory, as well as its relation to the structure of the states,
it could be possible to shed some light on the mechanism that confines quarks and gluons into
hadrons, one of the unanswered questions of QCD. This has in part motivated searches of exotic
configurations of QCD like glueballs, tetraquarks, pentaquarks, molecules, etc. (see Refs. [Lebed
et al., 2017,Guo et al., 2018,Briceño et al., 2016,Chen et al., 2016,Liu, 2014] for recent reviews on
these topics).

The determination of the hadronic spectrum from QCD has two major obstacles. First, the
non-perturbative nature of QCD at low energies prohibits the use of standard perturbative methods
when studying nuclear phenomena. Secondly, the fact that most of the hadrons decay strongly
into multi-particle states, characterizing them as resonances. As a consequence, the identification
of resonant states requires knowledge of the scattering amplitude of its decay products. Both
of these difficulties can be circumvented through the numerical technique known as lattice field
theories.

Lattice field theories provide a non-perturbative scheme to study quantum field theories, like
QCD, by truncating and discretizing spacetime with imaginary time, i.e. by evaluating field theories
in a Euclidean lattice. As we will see later in this thesis, there is a direct relation between two-point
correlation functions and the spectrum of the theory. However, truncation of spacetime comes at
a cost of losing a rigorous definition of asymptotic states, a necessary prerequisite for defining
scattering amplitudes. Therefore, the study of resonances on the lattice is a non-trivial task. As
first pointed out by [Lüscher, 1991], there exists a relationship between the finite-volume spectrum
of two particles and their infinite volume scattering amplitude. The key point was the construction
of non-perturbative relations between finite- and infinite-volume observables. This has proven to
be remarkably useful and has since been generalized and successfully implemented for a variety of
observables (for a recent review [Briceño et al., 2018]).

1
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Figure 1.1: This flowchart displays the main components of the Lüscher and
Briceño-Hansen formalism for the structure of two-paricle states, adapted from [Baroni
et al., 2019].

Although the determination of the hadronic spectrum, including resonant states, through
Lattice QCD (LQCD) is a valuable piece in the puzzle of the strong interaction, it would be
desirable to have access to a broader type of phenomena. In particular, we wish to be able to
access their structural information. Just as with stable hadrons, one can access their structure by
probing them with external currents. It was proposed in Refs. [Briceño and Hansen, 2016,Baroni
et al., 2019] that the structure of resonances and bound states may be determined from transition
amplitudes between two-particle states mediated by a single current insertion, and this proposal is
the main focus of this work. The Briceño-Hansen formalism, schematically outlined in Figure 1.1,
provides a non-perturbative relationship between the finite-volume matrix elements of two-particles
and the previously-mentioned amplitudes.

Even though some important formal checks have been carried out [Briceño et al., 2019,Baroni
et al., 2019], this formalism has not been implemented in lattice calculation to date. This is because
the non-perturbative mapping requires a variety of non-trivial pieces which must be determined
in a lattice calculation:

• the finite-volume spectrum of one-particle states,

• the finite-volume spectrum of two-particle states,

• the finite-volume matrix elements of one-particle states,

• the finite-volume matrix elements of two-particle states.

In this work we present results of the first three bullet points for a toy resonant scalar field
theory in 1+1D. The primary reason for carrying out this exploratory calculation in a toy scalar
field theory is that these are computationally and conceptually far cheaper than their QCD
counterparts. Thereby, one can test the formalism and the subsequent analysis with minimal
resources. This has motivated previous studies of two-body scattering using this model, first
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by [Gattringer and Lang, 1993] in 1+1D, later by [Rummukainen and Gottlieb, 1995] in 3+1D,
and more recently by [Guo, 2013], with two coupling channels, and in [Guo and Gasparian, 2018]
considering three-body scattering observables.

This work is organized as follows. In Part I, we review the field theory considered here. We
start by presenting it as a continuum theory in 1+1D Minkowski-type space and show how it can
be discretized in a 2-dimensional Euclidean lattice. In Part II we discuss the toy model used to
explore the Lüscher and Briceño-Hansen formalism, which we will refer to as the “Gattringer-Lang
model”. First, we review the general properties of the model, which consists of two real scalar fields
sharing a coupling channel. Then we present the multi-cluster algorithm implemented by Gattringer
and Lang for their study and in the end we reproduce the spectrum of the theory as obtained
in [Gattringer and Lang, 1993]. This part emphasizes the relation between the two-point Euclidean
correlation functions and the spectrum of the theory. Finally, in Part III we present our results. First
we rederive the main results for two-particle scattering of a λφ4 theory in 1 + 1D Minkowski-type
space. Then we review the Lüscher formalism in 1+1D finite volume following the same analysis
by [Kim et al., 2005]. At this point the relation between the two-particle spectrum and the
scattering phase-shift will be evident. The scattering phase-shift was also obtained in [Gattringer
and Lang, 1993]. Finally we discuss the Briceño-Hansen formalism in 1 + 1D and present the
matrix elements for one-particle states coupling to a smeared current, an analysis that has not
been previously performed for the Gattringer-Lang model. The results presented here are relevant
since they provide three out of four necessary pieces for testing the Briceño-Hansen formalism in
a lattice field theory.



Part I

Lattice field theories

4
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Scalar fields on the lattice

The Euclidean lattice regularization provides a non-perturbative framework for the evaluation
of field theories. Lattice field theories require going from a continuous and infinite volume to a
discretized and finite volume, where the field theory can be studied through computer simulations.
In this chapter we review the lattice formulation of a scalar field theory following [Gattringer and
Lang, 2010]. In particular, we are interested in considering the case of a λφ4 theory in the so called
scaling limit.

2.1 Scalar fields in 1+1D Minkowski-type space

The path integral representation for the correlator of two operators, say O1 and O2, in a scalar
field theory in 1+1 dimensional Minkowski-type space is given by

〈Ô2(x0)Ô†1(0)〉 =

∫
DφO2[φ(x0, .)]O†1[φ(0, .)]eiS[φ]∫

DφeiS[φ]
. (2.1.1)

Here x0 denotes real time and the notation [φ(x0, .)] indicates evaluation over all possible classical
configurations of the field at a the correlation time x0. Therefore, the quantitiesO[φ(x0, .)] represent
functionals of the classical field variables rather than operators.

The action of a real scalar field is an integral over space and time of the Lagrangian density

S[φ] =

∫
dx0dx1L(φ(x0, x1), ∂µφ(x0, x1)). (2.1.2)

For an interacting potential depending only on φ(x), the Lagrangian density reads

L(φ(x0, x1), ∂µφ(x0, x1)) =
1

2
(∂µφ)(∂µφ)− m2

2
φ2 − V (φ),

=
1

2

∂2φ

∂x2
0

− 1

2

∂2φ

∂x2
1

− m2

2
φ2 − V (φ), (2.1.3)

where we use the convention gµν = diag{1,−1}.

5



CHAPTER 2. SCALAR FIELDS ON THE LATTICE 6

2.2 Scalar fields in 2D Euclidean lattice

First we perform a Wick rotation to imaginary time, t = ix0, so the relative sign between the
space and time derivatives in (2.1.3) is removed. Thus we have gone from the Minkowski-type 1+1
dimensional space with metric gµν = diag{1,−1} (where µ, ν = 0, 1) to the 2D Euclidean space
with metric gµν = diag{1, 1} = δµν (where µ, ν = 1, 2). As a result, the action is given by

iS[φ] = −
∫
dx1dt

{
1

2

∂2φ

∂t2
+

1

2

∂2φ

∂x2
1

+
m2

2
φ2 + V (φ)

}
. (2.2.1)

This leads us to identify the Euclidean action as

SE[φ] =

∫
dx1dt

{
1

2

∂2φ

∂x2
1

+
1

2

∂2φ

∂t2
+
m2

2
φ2 + V (φ)

}
, (2.2.2)

and the path integral representation of the Euclidean correlator as

〈Ô2(t)Ô1(0)〉E =

∫
DφO2[φ(., t)]O1[φ(., 0)]e−SE [φ]∫

Dφe−SE [φ]
. (2.2.3)

Now we introduce the 2D lattice

Λ ≡ {n = (n1, n2) | n1 = 0, 1, . . . L− 1 and n2 = 0, 1, . . . T − 1}, (2.2.4)

where L and T are the number of sites in the space and time direction, respectively. This way, the
fields exist only at the points

x = (n1, n2), x ∈ Λ. (2.2.5)

We consider an isotropic lattice with unit separation between the lattice sites n. Then, the integrals
and derivatives can be replaced by the discrete sums and differences∫

dx1dt →
L−1∑
n1=0

T−1∑
n2=0

and ∂µφ(x) → φ(x+ µ̂)− φ(x), |µ̂| = 1. (2.2.6)

Here µ̂ denotes a unit vector along either, the space (µ = 1) or time (µ = 2) direction.

Therefore, the Euclidean action on a L× T lattice reads

SE[φ] =
∑
x∈Λ

{
1

2

∑
µ=1,2

[φ(x+ µ̂)− φ(x)]2 +
m2

2
φ(x)2 + V (φ(x))

}
, (2.2.7)

where x ∈ Λ indicates that the sum is performed over all the lattice sites. We impose periodic
boundary conditions by identifying

φ(L, t) = φ(0, t) and φ(x1, T ) = φ(x1, 0). (2.2.8)
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2.3 Scaling limit of a λφ4 theory

Inserting a potential proportional to φ4, the Euclidean action (2.2.2) reads

SE[φ] =

∫
dx1dt

{
1

2

∂2φ

∂x2
1

+
1

2

∂2φ

∂t2
+
m2

2
φ2 +

λ0

4!
φ4

}
, (2.3.1)

which taken to the grid becomes

SE[φ] =
∑
x

{
1

2

∑
µ

[φ(x+ µ̂)− φ(x)]2 +
m2

2
φ2(x) +

λ0

4!
φ4(x)

}
. (2.3.2)

By rescaling the field and performing the substitutions

φ(x) =
√

2κϕ(x), m2 =
1− 2λ

κ
− 4, λ0 =

6λ

κ2
, (2.3.3)

the Euclidean action can be written as

SE[ϕ] =
∑
x

{
−2κ

∑
µ

ϕ(x+ µ̂)ϕ(x) + ϕ2(x) + λ
[
ϕ2(x)− 1

]2 − λ} , (2.3.4)

where the last term constitutes a constant that can be neglected.

In the limit λ → ∞ at fixed κ, which the literature refers to as the “scaling limit”, only the
ϕ2(x) = 1 configurations contribute to the action since the third term would diverge otherwise.
Thus, in this limit, the second term becomes yet another constant and the third term is cancelled
out, simplifying the Euclidean action to

SE[φ] = −2κ
∑
x,µ

ϕ(x+ µ̂)ϕ(x), ϕ(x) = ±1. (2.3.5)

The form above for the Euclidean action of a λφ4 theory resembles a well known and highly
investigated system in physics. An arrangement of spins σ(x) = ±1 at the sites of the lattice and
whose Hamilton function (in absence of an external field) involves interactions between nearest
neighbors only, is known as the Ising model. By defining J as the nearest neighbor coupling, the
Hamilton function for the Ising model can be written as

H = −J
∑
x,µ

σ(x+ µ̂)σ(x), σ(x) = ±1. (2.3.6)

Scaling this by the inverse temperature leads to the Euclidean action (2.3.5).

In general, the properties of the Ising model can be studied statistically through the generation
of a large number of spins configurations and the analysis of its correlation functions. In this work,
following the analyses performed by [Gattringer and Lang, 1993] and [Guo, 2013] described in the
next part, we implement a Swendsen-Wang multicluster algorithm. We then proceed to evaluate
and analyze two- and three-point correlation functions for this theory. These steps are described
in the subsequent parts.



Part II

Evaluating a field theory on a lattice

8



CHAPTER 3

The Gattringer-Lang model

In the first part of this thesis we reviewed how a real scalar field can be taken to the Euclidean
lattice and that the scaling limit of this field theory under a λφ4 interaction is the Ising model.
Based on the latter, a two-dimensional system with resonant scattering between two scalar fields
was purposed by [Gattringer and Lang, 1993]. That model has been generalized to four-dimensional
Euclidean lattices [Rummukainen and Gottlieb, 1995] and to include more than two scalar fields
[Guo, 2013]. Chapter 4 is dedicated to describe the sampling algorithm. Chapter 5 presents
the analysis of two-point correlators in the one- and two-particle sector. In the present chapter
we review the general properties of the Gattringer-Lang model (GL model) and introduce the
dispersive representation of the two-point Euclidean correlator which, as we will see, is related to
the spectrum of the theory.

3.1 Two coupled scalar fields

The 2D GL model consists of two spin fields coupled through a cubic term

SE[ϕ, ρ] = −κϕ
∑
x,µ

ϕ(x)ϕ(x+ µ̂)− κρ
∑
x,µ

ρ(x)ρ(x+ µ̂)

+
g

2

∑
x,µ

ρ(x)ϕ(x) [ϕ(x+ µ̂) + ϕ(x− µ̂)] , (3.1.1)

where, compared to equation (2.3.5), the factor of 2 from the Ising models has been absorbed into
the hopping parameters κϕ, κρ, and g is a coupling constant.

In the decoupling limit, g = 0, each field behaves as an independent Ising model and thus
the mass of each interacting boson can be determined from its corresponding hopping parameter
[Itzykson and Drouffe, 1989]

m = − ln(tanhκ)− 2κ. (3.1.2)

In the coupled case, g > 0, the masses of the fields are determined by the parameters κϕ and κρ
as well as the value of the coupling constant.

9
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Provided that the coupling constant g is small, in the scaling limit, the GL model (3.1.1) is
expected to resemble the field theory of two real scalar fields under fourth-power self-interactions
with a coupling channel

SE[φ, η] =

∫
d2x

{
1

2
∂µφ∂µφ+

m2
φ

2
φ2 +

λφ
4!
φ4

}
+

∫
d2x

{
1

2
∂µη∂µη +

m2
η

2
η2 +

λη
4!
η4

}
+G

∫
d2xηφ2. (3.1.3)

Here, according to the substitutions (2.3.3), φ and η represent the rescaled fields corresponding to
ϕ and ρ, respectively, and the rescaled coupling constant G is proportional to g

G ∼ g
1

κϕ
√
κρ
. (3.1.4)

The coupling term in (3.1.1) and (3.1.3) arranges for the interaction between both types of
fields. By adjusting the hopping parameters, the corresponding masses of the rescaled fields ϕ and
ρ can be fixed. As we will see in Chapter 5, the mass of the ρ and ϕ fields can be chosen in such
a way that

2mϕ < mρ < 4mϕ. (3.1.5)

By considering the range of energies 2mϕ < E < 4mϕ, we necessarily have elastic scattering since
the model does not allow for processes where an even number of particles couple to an odd number
of particles (e.g. 2ϕ→ 3ϕ). Furthermore, since we have tuned the masses of the theory to satisfy
(3.1.5), we assure that we obtain a resonant amplitude in the elastic two-particle ϕ scattering
amplitude.

In Chapter 6 we will see that (3.1.5) sets the condition for elastic scattering since the mass of
the heavier field (ρ) lies within the range of energies where two particles of the lighter field (ϕ) can
go on-shell. Then, when g 6= 0, the coupling term gives rise to a resonant behavior for the heavy
field in a two-particle channel ρ → ϕϕ. In what follows, we restrict our attention to kinematics
where states with more than two particles cannot go on-shell.

3.2 Dispersive representation of the Euclidean correlator

In order to derive the dispersive representation of the Euclidean correlator, we begin by reviewing
the normalization of the eigenstates for the Hamilton operator, which pose a complete basis.
Within a one-dimensional infinite volume the standard relativistic normalization for single-particle
states is given by

〈p|q〉 = 2π2E(p)δ(q − p). (3.2.1)

Moving to a one-dimensional finite volume of size L, momentum is quantized so the Dirac δ in
(3.2.1) is changed for a Kronecker δ. In what follows, it is convenient to introduce an integer `
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that enumerates all possible discrete states in a finite volume. With this, we define finite-volume
states to be normalized to

〈`; pn|`′; pn′〉 = 2E`(pn)δ``′Lδnn′ , (3.2.2)

which allows us to write the identity in terms of a sum discrete states with fixed momentum

1 =
∞∑
`=0

1

2LE`(pn)
|`; pn〉〈`; pn|, pn =

2πn

L
, (3.2.3)

where n = L/2, L/2 − 1, . . . ,−L/2 + 1. This is the completeness relation in a one-dimensional
finite volume.

Working in a Hilbert space with imaginary time t of finite extent T , for any two operators the
Euclidean correlator is

〈Ô2(t)Ô†1(0)〉T ≡
1

ZT
tr{e−TĤÔ2(t)Ô†1(0)}, ZT ≡ tr

{
e−TĤ

}
,

=

∑
`〈`|e−TĤÔ2(t)Ô†1(0)|`〉∑

`〈`|e−TĤ |`〉
. (3.2.4)

Now, making use of the completeness relation (3.2.3) and the time evolution of Heisenberg operators
in Euclidean space

Ô(t) = etĤÔ(0)e−tĤ , (3.2.5)

the correlator can be expanded as

〈Ô2(t)Ô†1(0)〉T =

∑
`,`′

1
2LE`′

e−(T−t)E`〈`|Ô2|`′〉e−tE`′ 〈`′|Ô†1|`〉∑
` e
−TE`

=

∑
`,`′

1
2LE`′

e−(T−t)∆E`e−t∆E`′ 〈`|Ô2|`′〉〈`′|Ô†1|`〉
1 + e−T∆E1 + . . .

, (3.2.6)

where, in the last step, we have factorized the ground state weight factor exp{−TE0} from all the
terms in both the numerator and the denominator, so ∆E` = E`−E0. In the limit T →∞, all the
terms with ` 6= 0 vanish and we are left with the expectation values of operators evaluated with
respect of the vacuum only

lim
T→∞
〈Ô2(t)Ô†1(0)〉T =

∑
`′>0

1

2LE`′
e−tE`′ 〈0|Ô2|`′〉〈`′|Ô†1|0〉, (3.2.7)

where we have set E0 = 0.

In summary, the energy eigenstates constitute a normalized basis allowing us to study Euclidean
correlators on the lattice. In this way, the two-point correlation function (3.2.4) can be expressed
as the spectral decomposition (3.2.7) in the limit when the extension of the Euclidean imaginary
time T goes to infinity. Then, since the Euclidean correlator displays a direct relation with the
spectrum of the theory, we can exploit this fact with the right choice of operators to be evaluated
in the two-point function.
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3.3 Momentum operators

In general, the operators appearing in the Euclidean correlator (3.2.7) can be built from field
operators defined on the lattice sites or, through a Fourier transform from their corresponding
states with definite momentum. In a finite volume of size L the momentum p of a particle is
discretized and the states with definite momentum are given by

ϕ̃(n, t) =
∑
x1

ϕ(x1, t)e
ix1pn . (3.3.1)

Here the sum is carried out over all the spatial positions of the lattice at time-slice t. The
corresponding inverse transform reads

ϕ(x1, t) =
1

L

∑
n

ϕ̃(n, t)e−ix1pn . (3.3.2)

Operators (3.3.1) and (3.3.2) correspond to the one-particle states of the theory. Two-particle
states with total momentum zero can be built out of single particle operators with relative
momentum 2pn

ϕ̃(2)
n (0, t) = ϕ̃(n, t)ϕ̃(−n, t) =

∑
x1,y1∈Λt

ϕ(x1, t)ϕ(y1, t)e
i(x1−y1)pn . (3.3.3)

However, due to the condition of elastic scattering (3.1.5) and the coupling channel ρ→ ϕϕ, these
operators can also mix with the interpolating operators of the ρ field with zero momentum

ρ̃(0, t) =
∑
x1∈Λt

ρ(x1, t), (3.3.4)

since it shares the quantum numbers of ϕ̃(2). In fact, it is empirically well known from lattice
calculations, that in order to reliably extract the spectrum of resonant systems it is necessary to
accommodate the mixing of these operators and diagonalize correlation functions appropriately.
The standard technique used for effectively diagonalizing correlation functions involves solving the
generalized eigenvalue problem (GEVP), which we review in Section 5.3 (see [Briceño et al., 2018]
for a pedagogical introduction).

In Chapter 5 we will show how the spectrum of the one- and two-particle sector of the theory
can be constructed by evaluating the two-point correlation functions (3.2.4) of the corresponding
momentum operators in a large ensemble of field configurations. The generating algorithm for the
field configurations, presented in the next chapter, enables the extraction of the spectrum.



CHAPTER 4

Simulation algorithm

In order to evaluate Euclidean correlators on the lattice, we need a large number of configurations
for the ϕ and ρ fields. A modified version of the Swendsen-Wang (SW) algorithm was adapted
by [Gattringer and Lang, 1993], which we review here. In this chapter we address their generating
algorithm. A typical configuration of the fields can be imaged as the one displayed on Figure 4.1,
where red and blue can represent −1 and +1 valued fields, respectively. As we will see, each field
is updated alternately following a SW routine adapted to take into account the coupling g in the
Euclidean action (3.1.1). In Chapter 5 we will see that, for the selected values of κρ and κϕ, the
mass of the ρ field is larger than the mass of the ϕ field. Therefore, we refer to the former as the
heavy field and the latter as the light field.

Figure 4.1: A possible initial configuration of the fields.

13
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4.1 Updating the heavy field

As a starting point we consider any given configuration of the ρ and ϕ fields, e.g. Figure 4.1. From
here, each Ising model is updated alternately. This means that when one of the fields is being
updated (for example ρ → ρ′) the other field remains the same (thus ϕ → ϕ); then the former
field remains the same (ρ′ → ρ′) while the latter is updated (ϕ→ ϕ′). Below, we describe how the
configurations of the ρ and ϕ fields are generated.

Figure 4.2: Possible bonds between neighboring
spins with equal sign of the heavy field.

First, a bond can exist between
any two neighboring spins with equal
sign. In Figure 4.2 the dashed lines
show every possible bond in the initial
configuration of Figure 4.1. A bond
between the spin at site x and its
neighbor in the µ̂ direction is set with
probability1

Pbond(ρ;x, µ) = 1− e−2κρ . (4.1.1)

It is important to notice that, since
the lattice has periodic boundary
conditions, bonds can be established
across the boundaries.

Second, a cluster is formed by all
spins connected by bonds, as shown
in Figure 4.3. After all bonds of the
configuration have been established and
the clusters have been formed, the sign
of all the spins within a given cluster
are flipped with probability

Pflip(ρ, ϕ;C) =
1

1 + e−2α(C)
. (4.1.2)

Here C represents any cluster of the ρ
configuration and α(C) is a sum of the
three-point term evaluated over all the
sites in the cluster

Figure 4.3: Clusters resulting from the
activated bonds of the ρ field.

α(C) =
g

2

∑
x∈C

∑
µ=1,2

ρ(x)ϕ(x) [ϕ(x− µ̂) + ϕ(x+ µ̂)] . (4.1.3)

1In general terms, the exponent represents the change in the action contribution of two neighboring spins when
the sign of either of them is flipped, see [Swendsen and Wang, 1987] for details.
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This can be seen as the background of the ϕ field during the process of generating a new
configuration for the ρ field. This behavior is displayed in Figure 4.4 where the yellow area
represents a cluster of the ρ field and the green area represents the spins of the ϕ field playing a
role on whether or not the cluster is flipped. Finally, after the clusters have been flipped according
to probability (4.1.2), a new configuration of the ρ field has been generated, see Figure 4.5.

Figure 4.4: Representation of the
relation between the fields while
updating a cluster of the heavy field.

Figure 4.5: New configuration of the heavy
field, the light field remains unchanged.

4.2 Updating the ϕ field

Figure 4.6: Possible bonds between neighboring
spins with equal sign of the light field.

After having modified the ρ field,
now we turn to the ϕ field. Again,
bonds are possible between equally
signed neighboring spins of the
configuration, see Figure 4.6. In
this case, the bonds are set with
probability

Pbond(ϕ;x, µ) = 1− e−2ω(x,µ),
(4.2.1)

where

ω(x, µ) = κϕ −
g

2
[ρ(x) + ρ(x+ µ̂)] .

Notice that now the ρ field influences
the way bonds are formed within the
ϕ field, see Figure 4.7.
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Figure 4.7: Influence of the ρ field on
the ϕ bonds.

The clusters formed by the activated bonds
(Figure 4.8) are simply flipped with probability

Pflip(ϕ) =
1

2
. (4.2.2)

Finally, after the clusters of the ϕ field have been
updated, a new configuration of the GL model
has been generated, see Figure 4.9. Our code for
the simulation algorithm has been written in C++
and can be generalized to consider a larger number
of fields.

Figure 4.8: Cluster formation. Figure 4.9: New configuration of the model.

Throughout our simulations we work with a lattice of size L×T , where the spatial length ranges
from L = 12 to L = 60 and the time extension is kept fixed at T = 100. The cluster algorithm
was used to generate 106 configurations for each case. However, these configurations are not taken
one after another but separated by 20 multi-cluster updates in order to diminish autocorrelation
between measurements. We thermalize the system with 106 multi-cluster updates before starting
to save the configurations. The Euclidean correlators can then be evaluated following the methods
discussed in the next chapter.



CHAPTER 5

Analysis of correlation functions

In previous chapters we reviewed the two-point Euclidean correlation function (3.2.7) and the
sampling algorithm for the GL model. Provided with a large number of configurations, it is possible
to study two-point functions of states with definite momentum, see Section 3.3. In this chapter
we describe our algorithm for evaluating the correlators of the one- and two-particle sector and,
ultimately, to obtain the spectrum of the GL model. These methods have been applied analogously
to other lattice field theories where different types of operators are evaluated on the grid [Lüscher
and Wolff, 1990,Dudek et al., 2008]. Our analysis procedure has two parts: first the measurement
of the correlators through large number of field configurations and then the fitting routine to
extract the energy levels. The former was implemented using C++ while the latter was performed
in Python2.7.

5.1 Setup

In [Gattringer and Lang, 1993] three scenarios for the model (3.1.1) are considered. For our study,
the following combinations of parameters are useful since they enable a comparison between a
resonant and a non-resonant scattering, which is shown in Section 5.3. The values in Table 5.1
were established by Gattringer and Lang so that the ϕ particle and the ρ particle have masses
of approximately 0.2 and 0.5 in lattice units, respectively. Reproducing cases I and II, as studied
in [Gattringer and Lang, 1993], allows us to test our algorithms.

Case I II
g 0. 0.02
κϕ 0.3948 0.3897
κρ 0.3268 0.3323

Table 5.1: Coupling constant and hopping parameters for two scenarios. Cases
I and II corresponds to non-resonant and resonant scattering, respectively.

17
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5.2 One-particle sector

For the ϕ field, the Euclidean correlator of one-particle states with momentum pn is given by the
expectation value in the vacuum for the corresponding momentum operators (3.3.1) evaluated at
a final time t and initial time set to zero

Cn(t) = 〈Ω| ˆ̃ϕ(n, t) ˆ̃ϕ†(n, 0)|Ω〉

=
∑
`

e−E`(pn)t

2LE`(pn)
〈Ω| ˆ̃ϕ(n, 0)|`; pn〉〈`; pn| ˆ̃ϕ†(n, 0)|Ω〉, (5.2.1)

where we have changed the vacuum to be represented by |Ω〉, thus representing the empty space,
in order to distinguish it from the ground state of the one-particle states |0; pn〉, representing the
existence of a single particle in its lowest energy state. Due to the λφ4 interaction, there is an
infinite number of states sharing the quantum numbers of a single ϕ particle, with ϕ̃(n, t) denoting
the operator that interpolates the lowest-lying state.

It is insightful to split the spectral decomposition of the correlator into

Cn(t) =
Z(0)∗
n Z(0)

n

2LE0(pn)
e−E0(pn)t +

∑
`≥1

Z(`)∗
n Z(`)

n

2LE`(pn)
e−E`(pn)t

=
|Z(0)

n |2

2LE0(pn)
e−E0(pn)t

[
1 +O

(
e−∆E(pn)t

)]
, (5.2.2)

with Z(`)
n = 〈`; pn| ˆ̃ϕ†(pn, 0)|Ω〉, where we have factored out the contribution of the ground state

from those coming from the excited states. Thus, the energy gap ∆E(pn) represents the smallest of
the differences between the ground state E0 and the excited states E`>0 with momentum pn. The
energy gaps between the excited states and the ground state are positive, so the contributions from
excited states are expected to be negligible at large correlation times. We will use this property in
our advantage while analyzing the correlation functions.

Figure 5.1: A ϕ sample configuration.

The following example illustrates how the
simplest one-particle correlator is evaluated on
the lattice for a given configuration and a single
correlation time. That process is repeated for
all the considered values of momenta and all the
available correlation times for each configuration
of our generated ensemble.

Example 5.1. For the configuration shown in
Figure 5.1 the value of the correlator is given by
the product of momentum operators evaluated on
the grid. For n = 0 and t = 5 we have

C0(5) = ϕ̃(0, 5)ϕ̃(0, 0),

= (2)(−2) = −4.
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Based on a large number, M , of configurations, we can generate an ensemble of correlators for
each value of the momentum pn and correlation time t. We represent these lists of values as

{Cn(t)}M = {ϕ̃(n, t)ϕ̃(−n, 0)}M .

Throughout our analysis we worked with M = 106. To further simplify the analysis, first we bin
the results to ensembles of a lesser number of elements N � M . The resulting ensembles of N
elements are analyzed using the jackknife resampling method (see Appendix A). This two-step
procedure can bed summarized as

{Cn(t)}M
binning−−−−→ {Cn(t)}N

jackknife−−−−−→ {Cn(t)}JKN .

For convenience, we refer to the final ensembles as the “JK-ensembles”.

The two-point correlation function of single particle states is constructed from the corresponding
JK-ensembles. Figure 5.2 shows the Euclidean correlators extracted from an L = 60 lattice for n
from 0 to 5. The plot also displays fitted exponentials of the form

Cfit
n (t) = Ane−Ent. (5.2.3)

Comparing (5.2.3) with (5.2.2), we can identify

An →
Z(0)∗
n Z(0)

n

2LE0(pn)
and En → E0(pn). (5.2.4)

Figure 5.2: Correlators obtained from a 100× 60 lattice in the decoupled scenario g = 0
(Case I in Table 5.1).
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5.3 Two-particle sector

First of all, for the two-particle states the quantum number of momenta is set to zero. In the
decoupled case, g = 0 , the ρ state does not interact with the two-particle ϕ states. Therefore, in
this case, the energy eigenstates of the two-particle sector can be represented as superpositions of
momentum eigenstates of two ϕ particles with total momenta equal to zero but relative momenta
2pn. Additionally, due to the elastic scattering condition (3.1.5), the ρ particle exists as a stable
state in the same region of energies.

For the coupled case, accessing two-particle states is notoriously more challenging [Briceño
et al., 2018]. First, the gap between states is increasingly small. Second, the relative momentum
between two particles is not a fixed quantity. Instead, as we will see in Section 6.5, this is fixed by
the dynamics of the system, which is exactly what one wishes to determine from lattice calculations.
As a result, the optimal interpolating operator for a given ground state is not known. Lastly, as
is the case in the GL model, two-particle ϕ operators can mix strongly with the ρ interpolating
operators.

A practical solution to this problem was proposed in [Lüscher and Wolff, 1990], which we follow.
The idea is to construct a base of interpolating operators, evaluate all possible correlations between
them, and diagonalize the correlation matrix in this basis. This has proven to be successful in fairly
complicated resonant and non-resonant systems [Briceño et al., 2018]. In the following example
we illustrate how the cross-correlator between the ρ state and a two-particle ϕ state is evaluated
on a given configuration.

Example 5.2: Figure 5.3 shows a sample configuration of the GL model where we can
evaluate crossed correlation functions. Let us consider the case when the ρ field couples
to a two-particle ϕ state with zero relative momentum. Their cross-correlator is

Cϕ0ρ(t) = ϕ̃
(2)
0 (0, 6)ρ̃†(0, 0).

For correlation time t = 6, the evaluation of the correlator on the given configuration
yields the value

Cϕ0ρ(6) = ρ̃(0, 6)ϕ̃
(2)†
0 (0, 0) = (−2) (0) = 0.

To eliminate disconnected contributions to the correlation functions, we take the connected
correlation function by subtracting [Forcrand et al., 2004]

Cconn
ij (t) = CJK

ij (t)− CJK
ij (t+ 1).

Thus, from a JK-ensemble of Euclidean correlators we obtain a JK-ensemble of connected correlators

{Cij(t)}JKN −→
{
Cconn
ij (t)

}JK
N

.
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Figure 5.3: Sample configuration of the model on a 6× 8 lattice.

More explicitly, for the k-th field configuration in the JK-ensemble we define the correlation
matrices as

C(0, t)(k) =


Cρρ(0, t)

(k) Cρϕ0(0, t)
(k) Cρϕ1(0, t)

(k) . . .
Cϕ0ρ(0, t)

(k) Cϕ0ϕ0(0, t)
(k) Cϕ0ϕ1(0, t)

(k) . . .
Cϕ1ρ(0, t)

(k) Cϕ1ϕ0(0, t)
(k) Cϕ1ϕ1(0, t)

(k) . . .
...

...
...

 . (5.3.1)

In principle, since in the continuum limit there is an infinite number of momentum states
available, the correlation matrix is infinite in size. By discretizing spacetime, one has introduced
an ultra-violet cutoff and consequently limited the number of states. However, this number is far
more than one can in practice constrain from any correlation function. The number of states is
primarily limited by the size of the interpolating basis used. This can be illustrated by reviewing
the spectral decomposition of the Euclidean correlator (3.2.7)

〈Ô2(t)Ô†1(0)〉 =
∑
`

Z`∗2 Z`1
2E`

e−E`t

=

[
A∑
`=0

+
r∑

`=A+1

+
∞∑

`=r+1

]
Z`∗2 Z`1
2E`

e−E`t. (5.3.2)

In this expression it is assumed that the time extent of the lattice is large enough to be considered
infinite and that the energy values are ordered in such a way that E0 < E1 < E2 < . . . . The sums
within the square brackets have been split into three contributions

1. The states with energies ranging from E0 to EA, whose values are within the elastic scattering
regime 2mϕ < E` < 4mϕ.

2. The states with energies ranging from EA+1 to Er, where |r〉 would represent the state with
the highest energy available on a given lattice.

3. The remaining inaccessible states of the model, with Er < E`≥r+1.
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For our analysis we considered up to 6 operators from the two-particle sector, see Section 3.3.
These include

ρ̃(0, t) =
∑
x1

ρ(x1, t), ϕ̃(2)(0, t) =
∑
x1,y1

ϕ(x1, t)ϕ(y1, t),

ϕ̃(2)(1, t) =
∑
x1,y1

ϕ(x1, t)ϕ(y1, t)e
i(x1−y1)p1 , ϕ̃(2)(2, t) =

∑
x1,y1

ϕ(x1, t)ϕ(y1, t)e
i(x1−y1)p2 ,

ϕ̃(2)(3, t) =
∑
x1,y1

ϕ(x1, t)ϕ(y1, t)e
i(x1−y1)p3 , ϕ̃(2)(4, t) =

∑
x1,y1

ϕ(x1, t)ϕ(y1, t)e
i(x1−y1)p4 .

Thus, we work with the basis {
ρ̃0, ϕ̃

(2)
0 , ϕ̃

(2)
1 , ϕ̃

(2)
2 , ϕ̃

(2)
3 , ϕ̃

(2)
4

}
, (5.3.3)

so have correlation matrices of size 6× 6.

A Lemma by [Lüscher and Wolff, 1990] states that, provided that the eigenvalues λ` of the
correlation matrix are ordered such that λ0 ≥ λ1 ≥ · · · ≥ λr, then as t→∞ the eigenvalues have
the form

λ`(t) = C`e
−E`t

[
1 +O

(
e−|∆E`|t

)]
, C` > 0, (5.3.4)

for all ` ∈ [0, A]. Here ∆E` represents the smallest of the differences between E` and other
eigenenergies.

From the functional form of the eigenvalues, a naive way to find the energy levels of the
two-particle sector would be by solving the standard eigenvalue problem

C(t)~u`(t) = λ`(t)~u`(t). (5.3.5)

However, the correction in (5.3.4) may not be negligible due to the noise at large correlation times.
One way to circumvent this obstacle is to consider the generalized eigenvalue problem (GEVP)

C(t)~v`(t) = λ`(t, t0)C(t0)~v`(t), λ(t, t0) = e−E`(t−t0)
[
1 +O

(
e−|∆E`|(t−t0)

)]
, (5.3.6)

where t > t0 and C(t0) represents a metric that arises by choosing a reference time t0 with the
property that the generalized eigenvectors are orthonormal

~vα(t)†C(t0)~vβ(t) = δαβ, (5.3.7)

or equivalently

V †(t)C(t0)V (t) = I, (5.3.8)

with V (t) representing the eigenvector matrix.
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The GEVP analysis is highly exploited in lattice studies and has a well established and
documented solution procedure, see e.g. [Dudek et al., 2008, Gattringer and Lang, 2010]. In the
GEVP, the eigenvectors are enforced to be orthogonal on the reference metric, provided that C(t)
is saturated by the lowest energy states. This occurs at late reference times t where the higher
excited states have decayed. Then, through a Cholesky decomposition [Dudek et al., 2008], the
GEVP can be transformed into another standard eigenvalue problem of the form

L(t0)−1C(t)L†(t0)−1 ~w`(t, t0) = λ`(t, t0)~w`(t, t0), with L(t0)L†(t0) = C(t0). (5.3.9)

The eigenvalues above have the same form as in (5.3.6) and its eigenvectors are given by

~w`(t, t0) = L†(t0)~v`(t). (5.3.10)

Thus, it is straightforward to recover the generalized eigenvectors ~v`, whose components indicate
the optimal combination of the basis (5.3.3) resembling the energy eigenstates.

By fixing the reference time t0 and solving the eigenvalue problem posed in (5.3.9) for a range of
times t0 < t < tmax, we acquire knowledge of the time-evolution for the proper values of the model,
also known as the principal correlators. All the eigenenergies can then be fitted simultaneously by
minimizing the quantity

χ2(E0, . . . , E`max) =
`max∑
`,`′

tmax∑
t,t′=t0+1

[f(E`, t)− λ`(t, t0)] [f(E`′ , t
′)− λ`′(t′, t0)]

∆(`, t; `′, t′)
, (5.3.11)

where the principal correlators λ` have been extracted by solving (5.3.9)N times for each correlation
time. ∆ is the correlation matrix computed through JK-statistics, and the parametrizing function
is

f(En, t) = e−En(t−t0). (5.3.12)

In this two-particle scenario the spectrum reveals one of the characteristic marks of a resonant
scattering: as a function of the lattice length, L, in the decoupled limit, the energy levels can cross
in certain regions coinciding with the mass of the heavier field while, in the coupled case, such
level-crossing is avoided. This behavior can be observed in Figure 5.5, corresponding to g = 0,
and Figure 5.6, corresponding to g = 0.02. The fitted principal correlators for the coupled case
are depicted in Figure ??. The two-particle spectrum ultimately gives us access to the resonance
parameters through the phase-shift. This will be reviewed in the next part, along with a review
of the Lüscher finite-volume formalism.



CHAPTER 5. ANALYSIS OF CORRELATION FUNCTIONS 24

Figure 5.4: Solutions of the GEVP with an exponential fit. Here we consider
g = 0.02, κϕ = 0.3897, and κρ = 0.3323 in order to reproduce the results
in [Gattringer and Lang, 1993].

1.0 • + Ea ~ 0.5005(18) • + Ea ~ 0.4932(18) 

+ El ~ 0 .6611(21) + El ~ 0 .5365(17) 

0.8 

0.6 
o 

+ L = 12, X'2/d. o. f. = 0.85 + L = 18, X'2/d. o. f. = 1.26 
+ 

..; + 

~ 
0.4 

+ + 
+ 

+ 
0.2 + ; 

+ + ; 

0.0 

+ + • ¡ ; • + + ; ; ; • t 1 * 
1.0 • + Ea ~ 0.4830(29) • + Ea ~ 0.4631(17) 

+ El ~ 0.5251(26) + El ~ 0 .5067(18) 

0.8 + E, ~ 1.0165(71) + E, ~ 0.8733(31) 

0.6 
o t L = 20, X2/d. o. f. = 1.19 + L = 24, X2/d. o. f. = 0.98 + 

..; 

~ 0.4 

0.2 

0.0 

~ 
+ + 

+ + 

+ 
+ 

+ ; 
+ ; • ~ .. 

I + t + , • f • + • f I • 
1.0 • + Ea ~ 0.4357(28) • + Ea ~ 0.4225(18) 

+ El ~ 0.5091(38) + El ~ 0 .5025(21) 

0.8 + E, ~ 0.7197(64) + E, ~ 0.6557(23) 

0.6 
o 1 L = 30, X2/d. o. f. = 0.58 • L = 36, X2/d. o. f. = 0.91 + 

..; + 

~ 0.4 
+ 

• • 

0.2 

0.0 

~ 
+ ~ 

~~ + ~ *- ¡ + • • • 1 + • • f :¡: • ; 
* 

t 

1.0 • + Ea ~ 0.4136(21) • + Ea ~ 0.4048(18) 

+ El ~ 0.5036(28) + El ~ 0 .5001(29) 

0.8 + E, ~ 0 .5943(22) + E, ~ 0 .5545(24) 

0.6 
• • 
+ L = 42, X2/d. o. f. = 0.78 • L = 48, X2/d. o. f. = 1.68 

o 
..; 

~ 
0.4 

0.2 

0.0 

:~ • ~ • ~ +~ 
~. • le + 

f + 
* 

; + 
t * • • ¡ • 

O 2 4 6 8 10 O 2 4 6 8 10 



CHAPTER 5. ANALYSIS OF CORRELATION FUNCTIONS 25

Figure 5.5: Two-particle spectrum for non-resonant scattering. Case I in Table 5.1.

Figure 5.6: Two-particle spectrum for resonant scattering. Case II in Table 5.1.



Part III

Scattering amplitudes and form factors
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CHAPTER 6

Infinite volume elastic scattering

In the second part of this thesis we have presented the GL model, as well as reproduced the
spectrum of the one- and two-particle sector reported in [Gattringer and Lang, 1993]. In the final
part we discuss the outstanding steps towards extracting scattering amplitudes of two-particle
states coupling to an external current as proposed by [Briceño and Hansen, 2016], which we review
and adapt for 1+1 dimensions in Section 7.1. As a preliminary step we must first extract scattering
amplitudes for two-particle states without current insertions. Therefore, we focus on this point in
the following sections.

As a step in this direction, in this chapter we go back to the 1+1D Minkowski-type space
to review the one- and two-particle propagators of a λϕ4 theory, as well as the relation between
the scattering amplitude for two-particle states and the phase-shift. In Section 6.5 we review the
scattering problem in finite 2-dimensional spacetime and revisit the finite volume effects with
its infinite volume counterpart. Finally, in Chapter 7 with explore a method to extract matrix
elements for transition currents between one-particle states.

6.1 Irreducible diagrams

For a λφ4 field theory the one particle propagator is given as a series of all possible Feynman
diagrams with two external legs. Such a series can be written down in terms of the one-particle
irreducible (1PI) diagram

, (6.1.1)

The fully dressed one-particle propagator can be expressed as the sum to all orders of amputated
1PI diagrams with two external legs

. (6.1.2)

Similarly, when considering two-particle scattering amplitudes, it is convenient to introduce
the sum to all orders of s-channel two-particle irreducible (2PI) diagrams, also known as the

27



CHAPTER 6. INFINITE VOLUME ELASTIC SCATTERING 28

Bethe-Salpeter kernel,

. (6.1.3)

By construction, this is a smooth function in the elastic two-particle region. There can be singularities
above the three or four particle thresholds.

6.2 The one-loop term

Here and in Section 6.5, we follow the key steps presented in [Kim et al., 2005] modified to 1+1D.
The two-particle scattering amplitude can be expressed as an infinite sum of all 2→ 2 amputated
diagrams, and in terms of the Bethe-Salpeter kernel it can be written as

. (6.2.1)

The loops are formed by connecting two kernels through the fully dressed propagator, which now
is drawn simply as a solid line.

The first non-trivial contribution to the scattering amplitude is the one-loop diagram which
represents an integral that we denote as I. In order to evaluate the imaginary part of this integral,
let us define

f(P − k, k) = (iB(P − k, k))2 , (6.2.2)

where B is the Bethe-Salpeter kernel. In the kinematic region under consideration (2mϕ < E <
4mϕ) (6.2.2) is a smooth function of its variables. Thus, we can write down the loop integral as

I ≡
∫
dk1

2π

∫
dk0

2π

i2f(P − k, k)

[k2 −m2 + iε] [(P − k)2 −m2 + iε]
. (6.2.3)

The k0 integral can by solved by taking it to the complex plane, see Figure 6.1.

Figure 6.1: The k0 complex plane. In
our case we have decided to close a
contour from below.

The poles of the propagators can be
expressed in terms of the quantities

ωk =
√
k2

1 +m2, and

ωPk =
√

(P1 − k1)2 +m2. (6.2.4)

Therefore, solving the k0 integral is a
straightforward application of the Residue
Theorem. Now the integral over k1 has two
contributions
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I = i

∫
dk1

2π

{
f(ωk, k1)

2ωk [(P0 − ωk)2 − ω2
Pk + iε]

+
f(P0 + ωk, k1)

2ωPk [(P0 + ωPk)2 − ω2
k + iε]

}
. (6.2.5)

At this point it is easier to continue our analysis in the center-of-mass frame, where the
coordinates

k? = (ω?k, k
?
1), P0 → E? = ω?k + ω?Pk,

(P − k)? = (ω?Pk,−k?1), ω?2k = k?21 +m2 = ω?2Pk,
(6.2.6)

are related to the lab-frame through the transformations

k?1 = γ(k1 − βωk) and ω?k = γ(ωk − βk1), (6.2.7)

with γ = E?/P0 and β = P1/P0. The loop integral (6.2.5) takes the form

I = I1 + I2 =

∫
dk?1
2π

ωk
ω?k

{
f ?(k?)

2ωkE?(E? − 2ω?k + iε)
+

f ?(k?)

2ωPkE?(E? + 2ω?Pk)

}
= i

∫
dk?1
2π

ωk
ω?k

{
E? + 2ω?k
4ωk2E?

f ?(k?)

q?2 − k?21 + iε
+

f ?(k?)

2ωPkE?(E? + 2ω?Pk)

}
, (6.2.8)

where q?
2

= E?2/4−m2. In the last step we have omitted an iε term in the second integral because
in the elastic scattering region 2m . E? . 3m, the denominator does not vanish. Therefore, we
can focus our attention on the first integral

I1 = i

∫
dk?1
2π

E? + 2ω?k
4ω?k2E

?

f ?(k?)

q?2 − k?21 + iε
. (6.2.9)

Finally we can use the fact that the iε regulated propagator can be written as a sum over a
Dirac δ-function plus the principal-value piece, whose contribution we denote as I1,PV

I1 = i(−iπ)

∫
dk?1
2π

E? + 2ω?k
4ω?k2E

?

f ?(k?)δ(q? − k?1)

q2? + k2?
1

+ I1,PV

= [iL?(q?)]∗
1

8E?q?
[iR?(q?)] + I1,PV. (6.2.10)

We have split the function carrying the energy-momentum dependence into the contributions from
the left and right ends of the loop

f ?(q?) = [iL?(q?)]∗ [iR?(q?)] , (6.2.11)

and we can identify the (one-dimensional) phase-space as

ρphase−space(q
?) ≡ 1

8E?q?
. (6.2.12)

Although not written explicitly, back in (6.2.8) we had switched to the principal value prescription
of the second integral, therefore our result for the one-loop diagram can be written as

I = IPV + [iL?(q?)]∗ ρphase−space(q
?) [iR?(q?)] , (6.2.13)

where the IPV term includes the principal value arising from both poles.
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6.3 All orders perturbation theory

The result for the single-loop integral can also be written diagrammatically as

, (6.3.1)

where the dashed diagram should be interpreted as taking the adjacent legs, amputating them,
placing them on-shell and multiplying both vertices by the introduced phase-space. This scheme
can be applied to the all-orders expansion of the scattering amplitude (6.2.1)

. (6.3.2)

The series resulting from contracting the diagrams in the second equality of (6.3.2) can be rearranged
as the sum of all possible diagrams containing 0, 1, 2, . . . , on-shell cuts

(6.3.3)

By factorizing everything appearing to the left, in the middle, or to the right of any number of
on-shell cuts a recurring pattern can be identified

(6.3.4)

Defining the first series (the one without loops) as the K-matrix,

, (6.3.5)
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the scattering amplitude can be represented more concisely as

. (6.3.6)

Finally, turning to the matrix representation of (6.3.6), it can be represented as

iM = iK + iKρiK + iKρiKρiK + · · · = i
1

K−1 − iρ
, (6.3.7)

where we have ultimately used the geometric series to simplify the form of the scattering amplitude.

6.4 Implications of the unitarity of the S-matrix

Unitarity and angular-momentum conservation require the S-matrix to be a diagonal matrix in
angular momentum space and can be expressed in terms of a single real phase as,

S(`) = ei2δ` , (6.4.1)

where δ` is the energy dependent phase shift. At the same time, from its relation with the scattering
amplitude, for some initial and final states we have

S(`)(n→ m) = 1 + i2ρ̃M(`)(n→ m), (6.4.2)

where ρ̄ is a proportionality constant. Using eqs. (6.4.1) and (6.4.2) we find

M(`) =
1

ρ̄

ei2δ` − 1

2i
=

1

ρ̄ cot δ` − iρ̄
. (6.4.3)

Comparing the last equality to our result from summation of all-orders Feynman diagrams of
the scattering matrix (6.3.7), we are able to identify

ρ̄ = ρ and K−1 = ρ cot δ`. (6.4.4)

In (6.4.3) we have found a relation between the scattering amplitude and the scattering phase-shift.
In a free theory we would expect δ` = 0 while, as a consequence of an interaction, the phase-shift
becomes non-trivial.
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6.5 Lüscher formalism in 1+1D

Here we rederive the Lüscher formula, which relates the finite-volume spectrum of two particles
to their infinite-volume scattering phase shift. As in the previous section, we follow the steps of
Ref. [Kim et al., 2005] with the slight modification that this is being done in 1+1 dimensions. The
key difference from the analysis of the previous section is that when placed in a finite volume,
momentum is discrete. As a result, loops lead to sums rather than integrals. It is our task to
identify the dominant difference between finite- and infinite-volume loops. To do this, we will
make use of the Poisson summation formula.

The Poisson summation formula relates discrete summations of a function f(k), with k =
(k0, k1), to its Fourier transform,

1

L

∑
k1

f(k) =
∑
l

∫
dk1

2π
eiLlk1f(k), l ∈ Z. (6.5.1)

If f(k) is non-singular along the real axis, then the terms l 6= 0 decay exponentially as |k1| → ∞
and may be neglected. Thus the Poisson summation is reduced to [Lüscher, 1986]

1

L

∑
k1

f(k) =

∫
dk1

2π
f(k) +O(e−L/r), (6.5.2)

where r is a scale depending on the exact form of f(k) satisfying L/r � 0. For kinematics
where only one-particle states may go on-shell (i.e. E < 2mϕ) the argument of all the loops
present in the correlation functions are non-singular on the real axis. Consequently, from the
Poisson summation formula, one can conclude that the corresponding finite-volume corrections
are exponentially suppressed [Kim et al., 2005].

If one considers energy above the two-particle threshold (i.e. E ≥ 2mϕ), which is the case in
our study, then we have singularities associated with intermediate particles going on-shell. In a
finite-volume, these singularities lead to power-law finite-volume effects, and are associated with
s-channel two-particle loops [Kim et al., 2005],

. (6.5.3)

Here, V is the finite-volume analogue of the loop defined in (6.2.3) where there are no end-caps
present, and F labels the difference between these two and encodes all the power-law finite-volume
effects. Given that the singular piece is only the first term in (6.2.5), it is straightforward to see
that this is defined as

F =
1

2

[
1

L

∑
k1

−
∫
dk1

2π

]
1

2ωk

1

(P − k)2 −m2 + iε
. (6.5.4)
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It is convenient to use the Poisson summation formula to rewrite (6.5.4) as

F = −iρ
∑
n6=0

eiq|n|L +O(e−mL). (6.5.5)

The O(e−mL) corrections can be safely ignored if mL � 1, which is a necessary requirement for
single-particle states. Following the steps laid out in detail in [Kim et al., 2005], the insertion of
(6.5.3) in the finite-volume correlator in momentum space has a singular structure of the form

C2,L ∼
1

K−1 − iρ
∑

n6=0 e
iq|n|L

=
1

ρ

(
1

cot δ + cot(qL/2)

)
. (6.5.6)

We have used the results from the infinite-volume analysis of the scattering amplitude (6.4.4) and
the fact that ∑

n 6=0

eiq|n|L = i cot(qL/2)− 1. (6.5.7)

Finally we find that the poles of the finite-volume correlation function and, consequently, the
finite-volume spectra satisfy

qL/2 = −δ + πn, (6.5.8)

which is the standard result for 1+1D quantum-mechanical systems.

Figure 6.2 displays the phase-shift of the GL model obtained from the two-particle spectrum
shown in Figure 5.6 (with g = 0.02) through the quantization condition (6.5.8). Although the
analysis of phase-shift is still preliminary, the data obtained are consistent with those obtained
by [Gattringer and Lang, 1993,Guo, 2013]. At this point, the quantization condition (6.5.8) shows
that, by knowing the finite-volume spectrum of the two-particle sector, we can inquire on the
phase-shift of the process and thus on the infinite-volume scattering amplitude.
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Figure 6.2: Phase-shift of the two-particle scattering in the GL model as obtained
from the quantization condition (6.5.8). The length L of the lattice goes from 12 to
48, and we use the parameters from Case II in 5.1.



CHAPTER 7

Finite-volume matrix elements of scalar currents

In this chapter we turn our attention to the main goal of this work, which is to determine the
scattering amplitude of two particles coupled to an external current. These amplitudes were first
introduced in [Briceño and Hansen, 2016] and were labeled as Wdf , where the subscripts stands
for “divergence free”. This emphasizes the fact that these amplitudes are defined as the sum
over all diagrams that couple two-particle states with a single current insertion where the poles
associated with a single-particle going on-shell have been removed. As discussed in Chapter 1,
these amplitudes would allow for the determination of structural information of such states. Here
we briefly review the necessary formalism for determining those amplitudes. This formalism, which
is schematically depicted by Figure 1.1, was developed in [Briceño and Hansen, 2016,Baroni et al.,
2019] for 3+1 dimensional systems.

7.1 Briceño-Hansen formalism in 1+1D

Just as it was the case for the Lüscher formalism discussed in the Section 6.5, it is straightforward
to rewrite the formalism of Refs. [Briceño and Hansen, 2016, Baroni et al., 2019] in 1+1D by
replacing L3 → L1 and substituting all 3D spatial vectors by 1D spatial vectors. All steps in the
derivation are independent of the dimensions. To simplify the discussion further, we assume that
the initial and final states are identical and composed of two-particles. Given these simplifications,
one finds that the finite-volume matrix elements of a scalar current J is related to Wdf via∣∣∣〈P,L|J (0)|P,L〉

∣∣∣ =
R(P )

L

∣∣∣Wdf(P
2) + F(0)

(
M(P 2)

)2
G(P,L)

∣∣∣, (7.1.1)

where R is the Lellouch-Lüscher factor [Lellouch and Lüscher, 2001,Briceño et al., 2015], which is
related to the derivative of M and F ,

R(P ) ≡ lim
E→En

[
E − En

F−1(P,L) +M(P 2)

]
, (7.1.2)

G is a new finite-volume function that is closely related to the F function,

G(P,L) ≡
[

1

L

∑
n

−
∫
dk1

2π

]
1

2ωk

(
1

(P − k)2 −m2 + iε

)2

, (7.1.3)
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and finally F is the one-particle form factor. This is in general a function of the virtuality, Q2, of
the current. Because in (7.1.1) we have focused our attention on the case where the current carries
no virtuality, the argument of the form factor is zero.

In summary, (7.1.1) tells us that given the pieces itemized in the introduction, Chapter 1,
one can obtain the desired Wdf function. In the previous chapter we have demonstrated that
the spectrum is accessible from the two-point Euclidean correlators. We performed calculations
of these correlators for the GL model in Chapter 5. In the remainder of this chapter we review
how the single particle form factors can be extracted from three-point correlation functions. We
carry out an exploratory study of possible choices for scalar currents to consider, and we present
preliminary results for the single particle form factors for these choices. Just as is the case for the
spectrum, the finite-volume errors for the single particle matrix elements scale as O(e−mL) and
will be neglected in what follows.

7.2 Three-point correlators of one-particle states

In Section 3.2 we reviewed how the two-point correlation functions can be expressed as the spectral
decomposition of the vacuum. A similar analysis allows us to study the three-point correlators for
a transition current J ,

C3pt
fi (tf , tc, ti) = 〈Ω|Õ(f, tf )J̃ (q, tc)Õ†(i, ti)|Ω〉

=
∑
nf ,ni

e−Enf (pf )(tf−tc)Z(nf )∗
f

2LEnf (pf )

e−Eni (pi)(tc−ti)Z(ni)
i

2LEni(pi)
〈nf ; pf |J̃ (q, 0)|ni; pi〉, (7.2.1)

where ni, nf ∈ Z and J̃ is the Fourier transform of J , defined as

J̃ (q, t) =
∑
x1

J (x1, t)e
ix1q. (7.2.2)

Here we can identify the overlaps and the energy levels from the one-particle sector as seen in
Section 5.2. Therefore, the acquired knowledge from the one-particle states, i.e. the parameters
A in (5.2.4) obtained from fitting the one-particle correlators, allows us to study the transition
matrix elements of a given current

C3pt
fi (tf , tc, 0) =

e−E0f
(pf )(tf−tc)√Af√
2LE0f (pf )

e−E0i
(pi)(tc)

√
Ai√

2LE0i(pi)
〈1; pf |J̃ (q, 0)|1; pi〉, (7.2.3)

where we are considering the contributions from excited states to be negligible, and set ti = 0.

Now, through its inverse Fourier transform, the matrix element of J̃ (q, 0) can be expressed as

〈1; pf |J̃ (q, 0)|1; pi〉 = LF(Q2)δnq ,nf−ni , with F(Q2) ≡ 〈1; pf |J (0, 0)|1; pi〉, (7.2.4)
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where F(Q2) is defined as a form factor and Q2 = p2
i − p2

f . Substituting this result in (7.2.3) and
solving for the form factor, we obtain

F(Q2) =

√
2E0f (pf )

Af

√
2E0i(pi)

Ai
eE0f

(pf )(tf−tc)eE0i
(pi)(tc)C3pt

fi (tf , tc, 0). (7.2.5)

It should be noticed that, while the three-point correlator C3pt
fi is a new quantity to be evaluated

on the lattice, everything else on the right-hand side of (7.2.5) can be extracted from an analysis
of the one-particle sector along the lines of Section 5.2. Also, since F does not depend on time, the
exponential factors on the right-hand side must cancel with the time dependence of the three-point
correlators.

7.3 Smeared operators

In order to explore transitions between one-particle states in the GL model, it is necessary to
extract matrix elements for the possible currents. The simplest options of currents for one-to-one
transitions are

ϕ+ ρ→ ϕ′ and ϕ+ ϕ2 → ϕ′′. (7.3.1)

However, the latter would seem to be a rather trivial current since ϕ2 = 1 in the GL model. Also
ρ only takes the values ±1 values. Such limitation may be circumvented by means of smeared
operators. In fact, in the action of the GL model (3.1.1), one of the ϕ fields was smeared as the
average of the nearest neighbors of the ϕ field on the lattice site x

gρ(x)ϕ(x)ϕ(x) =
g

2
ρ(x)ϕ(x)

∑
µ

[ϕ(x+ µ̂)− ϕ(x− µ̂)] , (7.3.2)

otherwise the action would not be sensible to the interactions between the two types of fields.

A Gaussian smearing with truncated boundary conditions

ϕσ(x1, t) =
∑
y1

ϕ(y1, t)e
−(x1−y1)2/2σ2

, (7.3.3)

offers a more sophisticated approach for our study of transition matrix elements since it allows us
to consider couplings with fields in a broader region around the lattice site x. The parameter σ is
fixed and it controls the number of sites for which the coupling is more intense. In Figure 7.1 we
illustrate how a smeared operator is evaluated on a sample configuration.
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Figure 7.1: Gaussian distribution centered at x1, with unit σ. Thus, the n-th
order neighbors are located at a distance n from x1.

7.4 Matrix elements

In terms of the smeared operator, the ϕ2 transition current has the form

Jσ(x) = ϕ(x)ϕσ(x), (7.4.1)

and the corresponding Fourier transform reads

J̃σ(n, t) =
∑
x1

Jσ(x1, t)e
ix1pn . (7.4.2)

The three-point correlators for one-to-one matrix elements are evaluated on the lattice analogously
to the two-point correlators. The difference is that now we have an operator representing the
transition current which is evaluated at an interaction time such that 0 < tc < tf . For a given
configuration the three-point Euclidean correlator reads

C3pt
fi (tf , tc, 0) = ϕ̃(f, tf )J̃σ(nq, tc)ϕ̃(i, 0). (7.4.3)

Thus the first and third factors correspond to one-particle momentum operators at the tf -th and
0-th correlation time, respectively, while the second factor, thus the current, is given by (7.4.2)
with nq = f − i.

The three-point correlator for this one-to-one current can be evaluated on the lattice using
the same operators as in the one- and two-particle sector for the initial and final states, and
the smeared current (7.4.1), respectively. Then, from (7.2.5), we can extract the matrix element
of the transition current for given initial and final states with momenta pi and pf , respectively.
Ultimately, the form factor for this current can be constructed as a function of the virtuality

Q2 = −q2 =
4π2

L2
(nf − ni)2 − (Ef − Ei)2 (7.4.4)

Again, from evaluating all of the available configurations it is possible to obtain a JK-ensemble
of three-point correlators {

C3pt
fi (tf , tc, 0)

}JK
N
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which is related to the transition current matrix elements through (7.2.5) and (7.2.4), thus{
C3pt
fi

}JK
N
→
{
F(Q2)

}JK
N

.

In Figure 7.2, we show plots of preliminary results for the form factors of the currents considered
here. In each panel, we show the form factor obtained for different combinations of the initial
and final state momentum. The form factors are normalized by fixing the mean value of the
matrix elements of the lowest-lying state to be 1. These are plotted as functions of the current
insertion time and for two choices of the final state time, convincingly showing that excited state
contaminations are statistically negligible.

In the different graphs, we consider different possibilities of the smearing width. As one would
expect, by taking the smearing to zero, we recover the diagonal behavior of the form factors in
momentum space. It is evident that by choosing a larger smearing width, one obtains non-zero
values of the form factors for non-zero virtuality of the current. We cannot ascertain if this behavior
will affect the two-particle matrix elements. Therefore, if the effect of the off-diagonal matrix
elements in the one-particle sector is relevant for the two-particle sector, right now the only way
we can account for this possibility is through our smeared current. Then we would have to explore
the limit when the smearing goes to zero in the two-particle sector. As a result, we conclude that
this is a promising direction for performing exploratory calculations of currents in this scalar field
theory.
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Figure 7.2: Matrix elements for smeared ϕ2 currents in the GL model for separation times
∆t = 10 (in blue) and ∆t = 12 (in green). Top to bottom σ = 1.5, 1, 0.5, L = 42 with the
parameters used in the coupled scenario, Case II in Table 5.1.
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CHAPTER 8

Conclusion

The purpose of this thesis has been to explore the applicability of the Briceño-Hansen formalism in
a lattice field theory, see Chapter 1. The formalism presented in [Briceño and Hansen, 2016,Baroni
et al., 2019] describes the relation between finite-volume two-particle matrix elements and the
transition amplitudes between two-particle states coupled to an external current. In Section 7.1
we have presented the Briceño-Hansen formalism in 1 + 1D, see (7.1.1). The application of this
formalism to the model considered here requires four pieces to be determined from the lattice: 1)
the spectrum of one-particle states, 2) the spectrum of two-particle states, 3) the matrix elements
of one-particle states, and 4) the matrix elements of two-particle states, cf. 1.

For the first two points we have reproduced some of the results reported by [Gattringer and
Lang, 1993]. In Chapter 5, we have extracted the spectrum for one- and two-particle states from
the analysis of correlation functions. In Section 6.5 we obtained the scattering phase-shift following
the Lüscher formalism [Lüscher and Wolff, 1990]. At this point we could be confident that the
simulation algorithm and the analysis of correlation functions were implemented correctly.

As for the third point, in Section 7.4 we were able to obtain matrix elements for one-particle
states. To achieve this, we defined a current Jσ that can account for the transition between
one-particle states with different momenta. This required the use of the smeared operators defined
in (7.4.1). As σ → 0 the diagonal behavior of the currents is recovered. The immediate step is to
determine the form factors for a range of virtualities using different boosts and volumes. Then we
would be able to proceed to study two-particle matrix elements. For this, we would need to evaluate
the corresponding three-point correlation functions using the interpolators for two-particle states
obtained in Section 5.3.

Finally, upon calculation of the Lellouch-Lücher factor (7.1.2) and the G function (7.1.3), we
will have all the necessary pieces to implement the Briceño-Hansen formalism in a lattice field
theory for the first time. In this way, we will be able to access the infinite-volume transition
amplitude for two-particle ϕ states, which automatically allows us to know about the structure of
the resonant state labeled here as ρ. This will be useful for future QCD studies since it will provide
an empirical confirmation of a formalism with the capability of extracting structural information
of multi-particle hadronic states via lattice QCD.
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APPENDIX A

Jackknife statistics

The jackknife resampling method avoids the difficulties arising from Gaussian error propagation
while providing a more convenient and realistic method for error estimation.

Table A.1: A list of 15 values divided into 5 bins. From left to right, the highlighted values
are averaged to compute the first, second and third elements of the JK-ensemble.

A.1 Bins, jackknife ensembles and errors

Let A represent an ordered list of m values

A = {a1, a2, . . . , am} . (A.1.1)

This list can be divided into n bins, denoting the i-th bin as X(i), with m/n values each, provided
that the total number of values can be exactly divided by n. Then the initial list (A.1.1) can be
resampled into a jackknife ensemble (JK-ensemble) whose elements are given by the average of all
values, excluding those values contained within a bin of the original ensemble,

AJK =
{
AJK1 , AJK2 , . . . , AJKn

}
, with AJKi =

n

m(n− 1)

∑
j /∈X(i)

aj. (A.1.2)

Table A.1 illustrates this procedure with a list of 15 values divided into 5 bins.
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Let A be the mean value of the entire set. The variance of the JK-ensemble is computed as

σ2
A ≡

n− 1

n

n∑
i=1

(
AJKi − A

)2
. (A.1.3)

The square root of this quantity gives an estimate for the error of the mean value of list (A.1.1).
One can finally quote the expected value for the observable to be determined from list (A.1.1) as

〈A〉 = A± σA. (A.1.4)

A.2 Observables and covariance

In practice, the observables to be determined are not only averages but functions of their mean
values. In such cases the jackknife method can still be used to determine the errors of those
observables. Consider a parameter given as a function of the expected value of list (A.1.1), F (〈A〉).
Knowing the function we can generate a JK-ensemble for the observable F

F JK =
{
F JK

1 , F JK
2 , . . . , F JK

n

}
with F JK

i = F (AJKi ). (A.2.1)

Then eqs. (A.1.3) to (A.1.4) allow us to know the expected value of F and its uncertainty without
resorting to Gaussian error propagation.

Furthermore, in many cases we have to perform fits over quantities like 〈A〉 or 〈F 〉 which may
be correlated to each other. In order to take correlation effects into account, knowledge of the
covariance between the variables is necessary. For example, let B and C be variables determined
from lists of data; the covariance between these variables can be obtained from their respective
JK-ensembles. Thus, provided BJK and CJK , the covariance coefficient between these variables is
given by

σBσC =
n− 1

n

[
n∑
i=1

(
BJK
i −B

)] [ n∑
i=1

(
CJK
i − C

)]
. (A.2.2)

Ultimately, the covariance coefficients between all of the considered variables form a matrix that
can be considered in fitting methods such as the χ2-regression.
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