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ABSTRACT 

Seismic events like the earthquakes of Mexico in 1985 and recently in 2017, as well as several 
analytical studies, have proven the ill seismic performance of buildings with an asymmetric 
distribution of mass and/or lateral load resisting elements. The building codes’ criterion for 
ultimate limit state design of irregular buildings consists on limiting the ductility demand 
through penalization of the seismic reduction factor, in accordance with the level of structural 
irregularity. However, this simple criterion, although practical, does not allow a rational 
control of the structural response under severe seismic demands, which might be significantly 
different between structures with different types and levels of irregularity. 

Given the limitations of current design criteria for structures with in-plan asymmetry, this 
dissertation presents the results of a parametric analysis of the non-linear dynamic response 
of plan-asymmetric one-story buildings, with different levels of irregularity, subjected to 
bidirectional seismic loads, obtained from real seismic events’ records from the Valley of 
Mexico, for both subduction and intraplate seismic sources. Specifically, the following 
demands were obtained: 

 The displacement amplification of the flexible side of the structure, with respect to 
the displacement of the center of mass. 

 The ductility demand at the center of mass 

 The combination factor of the orthogonal base shear and displacement demands. 

A non-linear regression analysis was carried out, from which equations were obtained that 
allow to approximate such seismic demands as a function of the parameters that define the 
level of irregularity of a building.  

The results attained from this investigation allow to define rational seismic design demands, 
for its use in the design of in-plan irregular buildings with different levels of inelastic 
behavior, particularly, for its use with displacement-based design methods, which provide 
better control of seismic performance than the traditional force-based design methods of most 
building codes. 
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RESUMEN 

Eventos símicos como los de México en 1985 y recientemente en 2017, así como diversos 
estudios analíticos, han demostrado el comportamiento sísmico inadecuado de edificios con 
una distribución asimétrica de masas y/o elementos resistentes a fuerzas laterales. El criterio 
reglamentario para el diseño de edificios irregulares para el estado límite último, consiste en 
limitar la demanda de ductilidad a través de la penalización del factor de reducción sísmica, 
de acuerdo con el nivel de irregularidad. Sin embargo, este criterio, si bien simple y práctico, 
no permite un control racional de la respuesta sísmica ante demandas intensas, el cual puede 
resultar muy distinto para estructuras con diferentes tipos y niveles de irregularidad. 

Dadas las limitaciones de los criterios de diseño para estructuras con asimetría en planta, el 
presente trabajo presenta un análisis paramétrico de la respuesta no lineal de edificios de un 
nivel con asimetría en planta, con diferentes niveles de irregularidad, sujetos a cargas 
sísmicas bidireccionales, obtenidas de registros de eventos sísmicos reales del Valle de 
México, tanto para fuentes sísmicas de subducción como de intraplaca. De los resultados del 
análisis paramétrico, se obtuvieron las siguientes demandas: 

 La amplificación del desplazamiento del lado flexible de la estructura, con respecto 
al desplazamiento del centro de masas. 

 La ductilidad desarrollada en el centro de masas. 

 El factor de combinación de las demandas ortogonales. 

A partir de tales parámetros de demanda obtenidos del análisis, se realizó un ajuste de 
regresión no lineal, del cual se obtuvieron ecuaciones que permiten aproximar las demandas 
sísmicas como una función de los parámetros que definen el grado de irregularidad de una 
estructura. Con estas ecuaciones es posible calcular las demandas sísmicas inelásticas de 
cualquier edificio con asimetría en planta, utilizando propiedades básicas que son fácilmente 
obtenibles en el proceso de diseño. 

Los resultados obtenidos en esta investigación permitirán definir demandas sísmicas de 
diseño razonables, para su uso en el diseño de edificios con irregularidad en planta con 
diferentes niveles de comportamiento inelástico, particularmente, para su uso en métodos de 
diseño basados en desplazamientos, los cuales permiten un mejor control del desempeño 
estructural que los métodos tradicionales basados en fuerzas de la mayoría de los 
reglamentos. 
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Chapter 1. INTRODUCTION 

1.1. Background 

Seismic events such as Kanto, Japan in 1923; the 1971 San Fernando, California earthquake; the 
1985 Algarrobo, Chile earthquake; and particularly the earthquakes in Mexico in 1985 and more 
recently in 2017, have proven the ill performance of buildings with a plan-asymmetric distribution 
of mass and/or lateral load resisting elements. This type of structures exhibits significant in-plane 
torsional response when subjected to seismic ground motions, due to the offset between the 
resultants of the inertial and stiffness forces. This offset is known as stiffness eccentricity and its 
magnitude is an indicator of the level of irregularity of the building  

Several analytical studies also show the vulnerability of buildings with in-plan asymmetry, which 
is a consequence of inelastic demand concentrations in its flexible side, which may lead to local 
collapse (Anagnostopoulos et al., 2010; De Stefano and Rutenberg, 1999; Lucchini et al., 2011; 
Ruiz et al., 1989; Rutenberg and De Stefano, 1997). Likewise, experimental studies have shown 
such trend, both in-plan and in elevation (De Stefano et al., 2013; Jeong and Elnashai, 2004; 
Moehle, 1984). 

The seismic performance of buildings with in-plane torsion depends on several parameters relative 
to its geometry and its distribution of mass and/or resisting elements, particularly, stiffness 
eccentricity and rotational stiffness, and it has been the subject of several analytical studies with 
different levels of detail in the numerical modeling, from simplified one-story monosymmetric 
buildings (Bensalah et al., 2012; De Stefano and Rutenberg, 1999; Ghersi and Rossi, 2000; 
Myslimaj and Tso, 2002), one-story buildings with two-way eccentricity (Lucchini et al., 2011; 
Stathopoulos and Anagnostopoulos, 2007), or multi-story buildings modeled with plastic hinges 
(Anagnostopoulos et al., 2010). Even though it has been well-recognized that in-plan asymmetric 
buildings will likely exhibit inadequate seismic performance and, thus, it has been recommended 
to avoid such structural configurations (Bazán and Meli, 1985), they are still a common feature in 
modern architectonic projects. 

Although, the response of in-plan irregular multistory buildings is much more complex than that 
of one-story buildings, the response of the former can be studied via simplified one-story models 
with similar dynamic properties (Anagnostopoulos et al., 2008). For this reason, there have been 
several analytical studies that use such approach. However, the number of different models and 
assumptions used on the analysis of irregular buildings have derived in conclusions that, although 
correct for the model used, have been generalized and contradict the conclusions obtained from 
different models and hypothesis (Anagnostopoulos et al., 2015). 

Particularly, the problem of inelastic behavior of buildings with in-plan torsion is quite complex, 
as the dynamic properties of the system vary through the different damage states attained during 
seismic response. Moreover, as in any dynamic problem, seismic response of a system depends 
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significantly on the characteristics of the ground motion, e.g. frequency content, phase angle and 
intensity, which makes the design and evaluation of the seismic behavior of in-plan irregular 
buildings an even more challenging task. 

The criterion for the design of irregular buildings given in most design building codes, e.g., 
Complementary Technical Norms for Earthquake Resistant Design of the Mexico City Building 
Code 2017, NTC-DS (2017b), for the ultimate limit state, ULS, consists on limiting the ductility 
demand through the penalization of the seismic reduction factor, Q’, in accordance with the level 
of structural irregularity. However, this simple criterion, although practical, does not allow a 
rational control of the seismic response under severe seismic demands, in accordance with the 
current performance-based earthquake engineering approach. This is due to the fact that the 
ductility demand of the structure is unclear, as it may be significantly different between structures 
with different types and levels of irregularity. Moreover, the distribution of force and deformation 
demands may be significantly different in the inelastic range of behavior, aspect that cannot be 
adequately accounted for in an explicit manner by means of modal spectral analysis of elastic 
models. 

As an alternative to the traditional design methods, displacement-based methods have been 
developed, which allow to use clearer criterion for the consideration of the effect of torsion, e.g. 
the extended N2 method (Fajfar et al., 2005), which considers the effect of torsion through the 
superposition of the displacement of the center of mass obtained from an static non-linear analysis 
and the plan-displacement obtained from an elastic modal analysis. 

Although the response of torsionally irregular buildings has been investigated since the emergence 
of earthquake engineering, as pointed out by Anagnostopoulos et al. (2015), seismic design of this 
type of buildings is still an open area of research  

1.2. Objectives of this investigation 

Given the limitations of the current design criteria given in building codes for structures with in-
plan asymmetry, the objective of this investigation is to provide more rational design demands for 
irregular structures as a function of the parameters that define the level of irregularity, e.g. the 
stiffness eccentricity, the rotational stiffness and the fundamental period of the structure, in order 
to develop criteria for the consideration of the effects of seismic torsion, which can be incorporated 
in seismic design methods, particularly displacement-based design methods. 

In this study, a parametric analysis of the seismic response of one-story in-plan irregular buildings 
with 3 degrees of freedom, 3DOF, two translational displacements and a floor rotation, subjected 
to bidirectional seismic accelerations characteristic of soft soils of the Valley of Mexico was 
carried out. The parametric analysis was performed using as seismic intensity measure the spectral 
pseudo-acceleration corresponding to the fundamental period, Tn, of the larger horizontal 
component. 



 

3 

Chapter 1 Introduction 

 From the results of the parametric analysis, the following demands were obtained: 

 The displacement amplification of the flexible side of the structure, with respect to the 
displacement of the center of mass. 

 The ductility demand developed at the center of mass. 

 The combination factor of the orthogonal demands. 

Furthermore, non-linear regression analysis was used to define equations that allow the calculation 
of inelastic seismic demands of in-plan asymmetric building considering the essential structural 
parameters that may be defined in practical design applications. 

1.3. Outline 

The background and objectives of this investigation were given in the current chapter. In the 
second chapter, the effect of seismic torsion on asymmetric buildings is reviewed, with emphasis 
on the seismic behavior of plan-irregular buildings. Subsequently, a summary of the current design 
methods of irregular buildings, for both force-based and displacement-based methods, is 
presented. 

The third chapter present the parametric analysis of the seismic response o monosymmetric 
buildings. First, the study cases are presented along with the model specifications. Subsequently, 
the seismic ground motions used for the analysis are listed, along with its characteristics and the 
intensity measure considered in the parametric analysis. Finally, the modelling and analysis of the 
case studies is described. 

The fourth and fifth chapters present the seismic demands obtained from the parametric analysis, 
for structures of moderate to high rotational stiffness (M-System) and structures with extremely 
high rotational stiffness (X-System). For both analysis of results the trends of the obtained seismic 
demands are identified, along with the discussion of the influence of the parameters considered in 
the analysis. 

Chapter 6 presents equations, obtained from a non-linear regression analysis, which allow to 
calculate seismic demands as a function of the parameters that define the level of irregularity of a 
building. The main conclusions of this investigation are presented in Chapter 7Chapter 6, where a 
discussion of the results attained is given. 

Finally, the expressions used to obtain the dimensions of the resisting elements, as a function of 
the parameters used in this work, are presented in Appendix A. 
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Chapter 2. SEISMIC TORSION ON ASYMMETRIC BUILDINGS 

2.1. Basic concepts of torsional response 

When a building is subjected to seismic loads, inertial and stiffness force generate on the floor and 
lateral load resisting elements, respectively. Generally, the in-plane stiffness of the floor systems 
is large, hence, they can be modelled as a rigid diaphragm. The point of the floor where the 
resultant of the inertial forces is located is known as center of mass, Cm, and the location of the 
resultant of the stiffness forces is known as center of stiffness, Cs. If the distribution of lateral load 
resisting elements is asymmetric an offset exists between the center of mass and stiffness, which 
generates a torsional moment that produce floor rotation, thus, the displacements in one edge of 
the plan are greater than the displacement of the center of mass and smaller on the opposite edge. 
The edges where the maximum displacements are generated is known as flexible side and where 
the minimum displacements are generated is known as rigid side (Fig. 2.1). 

Under the hypothesis of rigid diaphragm, the displacements in every point in the floor-plan can be 
calculated as the sum of the displacements due to translation and torsion, hence, the relation 
between the translational and rotational stiffness and, consequently, the corresponding periods, are 
of great importance in the analysis of seismic torsion. Several studies show that the most important 
parameter that defines floor rotation of a building is the uncoupled translational to rotational 
frequency ratio, known as rotational stiffness factor, Ω (Anastassiadis et al., 1998). Ω < 1.0 denotes 
a torsionally flexible structure and Ω ≥ 1.0 denotes a torsionally stiff structure. Since Ω depends 
on the rotational stiffness of the structure, its value is a function of several parameters like the plan 
aspect ratio (B/L), the uncoupled translational periods ratio (RT) and the resisting elements 
distribution. 

The offset between the center of mass and the center of stiffness of a structure is known as stiffness 
eccentricity, es, and its magnitude is an indicator of the level of irregularity of the structure, which 
will present a higher level of seismic torsion as the stiffness eccentricity is larger. However, in the 
non-linear range of behavior, the torsional response depends more on the strength eccentricity, er, 
which is the distance between the center of mass and the point where the resultant of the yield 
resisting forces of the elements is located, i.e., the center of strength, Cr, (Paulay, 2001). Hence, 
the yield force distribution is also an important factor in the torsional response, which depends on 
the distribution of the resisting elements and the shear design forces, obtained from a modal-
spectral analysis using a design spectrum affected by a seismic reduction factor, Q’. 
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Table 2.1. Parameters associated to the seismic torsion effect, symbology and formulas.  

(De Stefano and Pintucchi, 2010) 

Parameter Symbology 

Mass polar moment of inertia 
2 2

12mI
B L

 . 

Mass radius of gyration mI

m
   

Total lateral stiffness along y- and x-direction 
1 1

;
N N

y yi x xi
i i

K k K k
 

    

Rotational stiffness, computed with respect to Cs    2 2

1

, ,
N

yi i s xi i s
i

K k x C k y C


     

Uncoupled translational and rotational periods 2; ;2 2y x

y x

mT
Im m

T
K K K

T


      

Uncoupled translational periods ratio 
y

T

x

T
R

T
  

Stiffness eccentricity along x- and y-direction, 
non-dimensionalized with respect to parallel 

plan dimension 

1 11 1
;

N N

yi i xi ii i
sx sy

y x

k x k y
e e

L K B K
   

 

Total system lateral strength 
1 1

;
N N

y yi x xi
i i

V V V V
 

     

Strength eccentricity along x- and y-direction, 
non-dimensionalized with respect to parallel 

plan dimension 

1 11 1
;

N N

yi i xi ii i
rx ry

y x

V x V y
e e

L V B V
   

 

Torsional flexibility ratio ;y x
y x

T T

T T 

     
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Fig. 2.1. One-story in-plan asymmetric building model 

a) terminology associated with seismic torsion and b) deformed shape of an in-plan asymmetric building. 

(Anagnostopoulos et al., 2015) 

2.2. Modern building codes torsional provisions 

The most common approach followed in force-based design procedures, contained in building 
codes, relies on an elastic modal-spectral analysis, where the lateral seismic forces are obtained 
from a pseudo-acceleration design spectrum, reduced by a seismic reduction factor, Q’. The 
analysis of the structure, from which the shears and moments used for design are obtained, is 
performed considering two horizontal orthogonal components, 100% in on direction and β% in the 
other. This combination factor, β, was derived from analysis of elastic systems of 2 DOF, e.g. 
Rosenblueth and Contreras (1977), implicitly accepting that the combination between the 
maximum responses in the linear range of behavior and the ones in the non-linear range are similar. 
However, the use of this combination factor may lead to underestimated design forces for certain 
elements, particularly on buildings with torsional behavior (Wilson et al., 1995) 

The analysis method used for the obtention of the design values depends on the level of irregularity 
of the building. For structures with none to low irregularity an equivalent static analysis is allowed, 
where lateral loads are a function of the weight and height of the building. On the other hand, for 
structures with moderate irregularity, the lateral loads are obtained from a modal-spectral analysis, 
and for structures with high irregularity, a non-linear dynamic analysis is required. The torsional 
provisions of different building codes from Mexico (NTC-DS, 2017b), Europe (EN 1998-1, 2004), 
USA (ASCE 7-16, 2016) and Chile (NCh 433-12, 2012), are presented in table 2.2. 

The building codes’ provisions for the design of irregular buildings, for the ultimate limit state 
(ULS), consists on limiting the ductility demand through the penalization of the seismic reduction 
factor, Q’, in accordance to the level of structural irregularity. Additionally, different codes 
prescribe a value of accidental eccentricity, eacc, to consider the uncertainty of the locations of the 
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center of mass and stiffness. However, this simple criterion, although practical, does not allow a 
rational control of the seismic response under severe seismic intensities, in accordance to the 
current seismic engineering performance-based approach, since the ductility demand that the 
structure develops is unclear, which might result very different between structures with different 
types and levels of irregularity. Furthermore, the in-plan distribution of forces and deformations is 
different for elastic and inelastic systems for distinct levels of ductility. 

Table 2.2 Torsional provisions of modern codes 

Torsion Related 
Causes 

Code 
Mexico 

NTC-DS 2017 
Europe 

EN-8 2004 
USA 

ASCE7 2016 
Chile 

NCh 433 2012 
Regularity 

Criteria 
Geometric and 

Structural 
Geometric and 

Structural 
Geometric and 

Structural 
Geometric and 

Structural 

Accidental 
Eccentricity 

1
0.05 0.05

1 i

i
b

n

    
 ±0.05bi 

±0.05biAx 

 

Ax=(δmax/1.2δavg)2 

1) ±0.05bi 
Or 

2) ±0.10bi hi/H 

Torsional effects 
Apply static moment 
M0i = ± (Mai – Ma(i+1)) 

Mai = eacciVi 

Move masses by 
± eacc or 

combine with 
static moment 
Mi = eaccFi or 
move static 

forces by ± eacc 

Apply static 
moment 

Mta = ± eaccFi 

1) Move center of 
mass ± eacc 

Or 
2) Apply static 

moment 
Mi = ± eaccFi 

2.3. Displacement-based design methods for asymmetric buildings 

As an alternative to the traditional force-based design method prescribed in building codes, 
displacement-based methods have been developed, which allow to use a more rational criterion 
for the consideration of the effects of seismic torsion (Moehle, 1992; Priestley et al., 2007). In 
such types of methods, the design demands are defined considering in an improved manner the 
displacement profile of the structures under inelastic response, from which a better estimation of 
design demands is attained than that achieved with the force-based design procedure.  Two of the 
most widely known displacement-based design methods are the direct displacement-based design 
method (DDBD) proposed by Priestly et al (Priestley, 2003) and the extended N2 method proposed 
by Fajfar et al (2005). Such methods shall be described in the following. 

2.3.1. Direct Displacement-Based Design Method 

The direct displacement-based design method, DDBD (Priestley, 2003), is based on the 
assumption that structures must be designed to achieve a certain performance objective, defined 
by displacement or drift limits. The DDBD method considers an SDOF representation of the 
building (Fig. 2.2a), characterized by a secant stiffness Ke at maximum displacement Δd, and an 
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equivalent viscous damping ξ, representative of the combined elastic damping and the hysteretic 
energy absorbed during the inelastic response, which is a function of the level of ductility demand 
and the structural system type.  

The design displacement of the structure depends on the displacement or drift limit state of the 
most critical element of the story. If the displacement shape is assumed to be equal to the shape of 
the fundamental mode of vibration, which is a reasonable simplification for low and medium rise 
buildings, the design displacement is given by the following expression: 

 
 

 

2

1

1

n

i i
i

d n

i i
i

m

m













  2.1 

where mi and Δi are the masses and displacements of the n stories of the building. 

From the assumption that the substitute SDOF structure is representative of the fundamental mode 
of vibration, the effective mass and height of the structure are obtained from the following 
equations: 

 ( )
1

n

e i i d
i

m m
=

= ∆ ∆∑   2.2 

 ( ) ( )
1 1

n n

e i i i i i
i i

H m H m
= =

= ∆ ∆∑ ∑   2.3 

The ductility demand can be defined assuming that the yield drift depends only on the geometry 
of the structural elements. Priestley (2003) proposes the following expression to obtain the yield 
rotation for concrete or steel frame buildings. 

 
2

b

y y

b

L
C

h
θ ε=   2.4 

where: 

2
C  is a factor equal to factor equal to 0.50 and 0.65 for concrete and steel frames, 

respectively. 

y
ε  is the yield strain of steel reinforcement. 

 y h
b b
L  are the beam’s length and depth, respectively. 
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The yield displacement and the expected ductility demand of the system are obtained from the 
following expressions: 

 d

y y e

y

Hθ µ
∆

∆ = =
∆

  2.5 

From the design displacement and the equivalent viscous damping associated with the expected 
ductility demand (Fig. 2.2c), the effective period Te at the maximum displacement response, 
associated with the effective height He, can be obtained from a set of displacement spectra with 
different damping ratios (Fig. 2.2d).  

The secant stiffness Ke of the substitute structure at maximum displacement can be estimated in a 
straightforward manner via the following equation: 

 2
2

4 e
e

e

m
K

T
   2.6 

 

Fig. 2.2 Fundamentals of Direct Displacement-Based Design (Priestley et al., 2007) 

2.3.1.1. Direct displacement of the method to account for torsion 

In plan-asymmetric buildings, the flexible side of the plan shall exhibit the largest inelastic seismic 
displacements due to the combined effect of translational and rotational motion. Hence, the drift 
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of the flexible side of the building governs the design (Fig. 2.3). The displacements of the flexible 
side can be obtained with the following expressions: 

 
( )

j

j j rx

j CM

x e



 

 










 2.7 

where ΔCM and Δθj are the displacements due to translation and torsion, respectively, θ is the floor 
rotation and xj is the distance of the element to the center of stiffness. Considering this, the design 
displacement at the building center of mass used in the SDOF substitute structure, obtained with 
eq. 2.1, needs to be reduced in proportion to the torsional displacements: 

  ,d CM d j rxx e       2.8 

 

Fig. 2.3 Plan displacement shape of an asymmetric building 

It is also possible, particularly for low-rise wall buildings, that the displacement of the rigid side 
may govern the design. In this case the design displacement at the center of mass will be larger 
than the displacement of the critical element. For those cases a slight modification of eq. 2.8 should 
be used: 

  ,d CM d i rxx e      2.9 

In general, it will be necessary to adopt an iterative approach to determine the design displacement 
when torsional effects are significant, since θ depends on Kθ, es and er which in turn depend on the 
relative strengths and stiffnesses of the lateral force-resisting elements in both orthogonal 
directions, and the ductility of the system. 
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2.3.2. Extended N2 method 

The Extended N2 method (Fajfar et al., 2005) is based on the definition of an equivalent SDOF 
system to determine the seismic demand of an MDOF system. The properties of the former are 
attained from pushover analysis from which the capacity curve is defined. Such curve is then 
simplified as an elastic perfectly plastic idealization of the force-displacement relationship, based 
on the equal energy principle, where the yield displacement is given by: 

 2 m
dy dm

ay

E
S S

S

 
   

 
 2.10 

Where Sdm is the displacement when a plastic mechanism occurs and Em is the actual energy 
deformation up to the formation of the plastic mechanism. 

 

Fig. 2.4. Capacity Curve of the MDOF system (EN 1998-1, 2004) 

The displacement and force of the equivalent SDOF system Sd* and F* are defined as: 

 * *;d t a
d a

S S
S S 

 
  2.11 

Where Sdt is the top displacement of the MDOF system, Sa is the pseudo-acceleration of the MDOF 
system in the direction of ground motion and Γ is the modal participation factor. The elastic period 
of the idealized bilinear system T* can be determined using the yield force and displacement: 

 
*

*
* 2 dy

ay

S
T

S
   2.12 
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The inelastic ductility and displacement of the SDOF system are determined from the following 
expressions (EN 1998-1, 2004): 
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  2.14 

where Rμ is the reduction factor due to ductility, which is equivalent to the seismic reduction factor 
Q’ used in the Mexican Building Code (NTC-DS, 2017a); and TC is the characteristic period of the 
ground motion, typically defined as the transition period where the constant acceleration segment 
of the design spectrum ends. As it can be seen in eqs. 2.13 and 2.14, for periods greater than TC, 
the equal displacement rule applies, i.e., the displacement of the inelastic system is equal to the 
displacement of the corresponding elastic system with the same period. 

  

Fig. 2.5. Elastic and inelastic demand spectra vs. capacity curve (Fajfar et al., 2005) 

Using the displacement of the SDOF system, the displacement demand at the center of mass of the 
MDOF system, Sdm, is obtained from the eq. 2.11. The displacements of the flexible and rigid sides 
of the building are obtained from a pushover analysis, taking Sdm as the ultimate displacement. It 
is assumed that the distribution of deformations throughout the height of the building in the 
pushover analysis approximates the one that would be obtained from non-linear dynamic analysis, 
However, the transformation of the MDOF structure to an equivalent SDOF system assumes a 
time-invariant displacement shape, this assumption is appropriate for planar structural models only 
where the influence of higher modes is negligible. 
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For the case of asymmetric buildings, where higher modes contribute substantially to the response, 
the results obtained by pushover analysis of a 3D structural model must be combined with the 
results of a linear modal-spectral analysis, where the former results control the target 
displacements and the distribution of deformations along the height of the building, whereas the 
latter results define the torsional amplifications (Fajfar et al., 2005). Specifically, correction 
factors, CF, are defined as the ratio between the normalized roof displacements obtained from 
elastic modal analysis and those attained via pushover analysis. The normalized roof displacement 
is the roof displacement at an arbitrary location divided by the roof displacement at the center of 
mass. If the normalized roof displacement obtained by the elastic modal analysis is smaller than 
1.0, the value 1.0 is used. 

 
,

,

,

;

1.0;

di
d CM di

d CM

d CM di

S
S S

SCF

S S

 
 
 

 2.15 

The aforementioned approach is based on the results of parametric studies that show that in the 
majority of cases an upper limit for torsional effects can be estimated by a linear dynamic analysis 
(Marusic and Fajfar, 2005). However, De Stefano and Pintucchi (2010) suggest that the use of the 
elastic deformed shape to predict the inelastic torsional amplifications is not always conservative, 
particularly for structures with high torsional stiffness. 
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Chapter 3. METHODOLOGY USED FOR THE PARAMETRIC 

ANALYSIS OF SEISMIC RESPONSE OF ASYMMETRIC BUILDINGS 

As it was shown in the preceding chapter, for any of the aforementioned seismic assessment and 
design methods it is necessary to consider robust estimations of torsional demands of in-plan 
asymmetric structures that allow an appropriate estimation of its maximum seismic response for 
assessment and design purposes. For this reason, in this study, a full-scale parametric analysis of 
one-story buildings with one- and two-way in plan-asymmetry subjected to ground motions 
corresponding to soft soil sites at the Valley of Mexico, with fundamental soil periods between 
0.5 s and 2.5 s, was carried out. This type of ground motion was chosen in this study as they exhibit 
unique characteristics with respect to other ground motions due to large site effects, hence, being 
the reason behind the severe damage occurred at soft soil sites of Mexico City caused by the 1985 
Michoacán Earthquake and the 2017 Puebla Earthquake. 

3.1. Description of the case studies 

The case studies considered were one-story buildings with rigid diaphragm and plan dimensions 
B x L. The strength eccentricity was considered the same as the stiffness eccentricity, i.e., the 
center of strength coincides with the center of stiffness, which is representative of existing 
buildings (De Stefano and Pintucchi, 2010). The parametric analysis was carried out considering 
the parameters described in table 2.1, varying their values as follows: 

 Plan aspect ratio /B L was varied between 0.25 and 1.00, in increments of 0.25. 

 Uncoupled translational period yT  was varied between 0.50 and 3.00 s, in increments of 

0.50 s. 

 Uncoupled translational periods ratio /T y xR T T  with values of 1.0, 1.5 and 2.0. 

 Stiffness/strength eccentricity along the x-direction 
sxe  with values of 0.1, 0.2 and 0.3. 

 Stiffness/strength eccentricity along the y-direction sye  with a value of 0, i.e. the analyzed 

structures are monosymmetric. 

 Lateral strength associated with seismic reduction factors, Q’, between 1.0 and 7.0, a range 
that is consistent with ductility values from 2.0 to 4.0 in soft soil types of the Valley of 
Mexico (Ruiz-Garcia and Miranda, 2004). 

Two main types of case studies were considered as a function of its rotational stiffness: buildings 
composed by moment resisting frames, denoted as M – System, which possess a moderate to large 
rotational stiffness; and buildings with perimetral shear walls, denoted as X – System, which in 
many cases possess an extremely large rotational stiffness and, thus, exhibit different behavior 
trends than those less torsionally rigid systems. 
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3.1.1. Moderate to large torsionally stiff system 

The M – System, Fig. 3.1a, presents six vertical resisting elements, which are rectangular column-
type elements, with h/b ratio equal to RT, distributed along the perimeter of the building, with each 
pair of vertical elements aligned in the y-direction having the same dimensions, and stiffness. The 
vertical resisting elements present a stiffness ratio equal to kxi / kyi = (RT)2. 

The sizing and distribution of elements was performed in such a way that the parameters es, Ω, Ty 
and RT, matched the values considered (see Appendix A). Ω is independent of es and its value is 
limited by the combination of different parameters (table 3.1). It is also worth noting that the range 
of Ω for a combination of parameters narrows as es, RT and B/L are larger. 

3.1.2. Highly torsionally stiff system 

The X – System, Fig. 3.1b, presents four vertical resisting elements, which are wall-type elements, 
with t/Lm ratio equal to 0.1, where t is the wall thickness and Lm is the wall length, distributed along 
the perimeter of the building. The out-of-plane stiffness of the elements is equal to 0.001 of its in-
plane stiffness. 

This specific number and distribution of elements represent a special case in which Ω is dependent 
of es, B/L and RT, i.e. a single value of Ω correspond to a combination set of parameters (see 
Appendix A). In table 3.2 the values of Ω for different combinations of parameters is presented. It 
can be observed that this value of Ω is slightly higher than the maximum limit of its corresponding 
for the M – System, which confirms that the X – System is significantly more torsionally rigid. 

 

Fig. 3.1. Model representation of one-story 3 DOF one-way asymmetric building with 

a) Moderate to large rotational stiffness and b) Extremely large rotational stiffness. 
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Table 3.1. M – System: Ωy range of values for different combinations of es, B/L and RT. 

 
B/L 

0.50 0.75 1.00 

        RT 

  esx 
1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.5 2.0 

-0.1 
1.0 
1.7 

1.4 
1.9 

1.7 
2.1 

1.2 
1.7 

1.7 
2.0 

2.2 
2.4 

1.4 
1.7 

2.0 
2.1 

2.5 
2.7 

-0.2 
1.1 
1.6 

1.4 
1.8 

1.8 
2.1 

1.3 
1.6 

1.8 
2.0 

2.2 
2.4 

1.4 
1.6 

2.0 
2.1 

2.6 

-0.3 
1.1 
1.4 

1.4 
1.6 

1.8 
1.9 

1.3 
1.5 

1.8 
1.9 

2.2 
2.3 

1.4 
1.5 

2.0 2.6 

 

Table 3.2. X – System: Ωy values for different combinations of es, B/L and RT. 

 
B/L 

0.50 0.75 1.00 

        RT 

  esx 
1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.5 2.0 

-0.1 1.70 1.90 2.15 1.70 2.05 2.46 1.70 2.18 2.71 

-0.2 1.61 1.82 2.08 1.63 2.00 2.42 1.65 2.14 2.68 

-0.3 1.45 1.68 1.96 1.51 1.90 2.34 1.56 2.07 2.62 

 

3.2. Seismic ground motions 

A set of earthquake ground motions corresponding to soft soil sites was selected from the 
earthquake record database of the UNAM Institute of Engineering (RAII-UNAM, 2018). The 
selection was carried out considering records of subduction and intraplate earthquake events with 
predominant periods, Ts, in their velocity spectrum between 1.5 s and 2.5 s, as such periods are 
similar to the fundamental period of soft soil sites at the Valley of Mexico. Detailed information 
of the selected records is given in table 3.3. 
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Table 3.3. Input ground motions, main characteristics and properties 

Record Station Magnitude 

PGA NS PGA EW 

Source 
[g] [g] 

SCT190985dat SCT B-1 8.1 0.096 0.165 subduction 

AL250489dat ALAMEDA 6.9 0.047 0.038 subduction 

AL140995dat ALAMEDA 7.2 0.042 0.036 subduction 

TL250489dat TLATELOLCO 6.9 0.046 0.032 subduction 

CJ140995dat C.U. JUAREZ 7.2 0.025 0.027 subduction 

CUPJ140995dat CUPJ 7.3 0.025 0.028 subduction 

CO140995dat CORDOBA 7.3 0.045 0.046 subduction 

TL140995_2dat TLATELOLCO 7.2 0.031 0.020 subduction 

GA140995dat GARIBALDI 7.3 0.031 0.027 subduction 

TL140995dat TLATELOLCO 7.3 0.027 0.029 subduction 

SCT241093dat SCT B-1 6.6 0.011 0.011 subduction 

SCT101294dat SCT B-1 6.3 0.011 0.014 subduction 

TL101294dat TLATELOLCO 6.3 0.015 0.015 subduction 

SCT21709191 SCT B-2. 7.1 0.092 0.093 intraplate 

CI0520170919181440 CIBELES 7.1 0.116 0.116 intraplate 

GA6220170919181440 ESC. SEC. TÉC. NO. 2 7.1 0.099 0.086 intraplate 

CJ0320170919181440 
CENTRO URBANO 

JUÁREZ 
7.1 0.114 0.100 intraplate 

PE1020170919181440 
ESC. PRIM. 

"PLUTARCO ELÍAS 
CALLES" 

7.1 0.103 0.127 intraplate 

AL0120170919181440 ALAMEDA 7.1 0.119 0.111 intraplate 

VG0920170919181440 VALLE GÓMEZ 7.1 0.122 0.104 intraplate 

BL4520170919181440 BALDERAS 7.1 0.104 0.117 intraplate 

TL0820170919181440 
DEPORTIVO 

"ANTONIO CASO T-II" 
7.1 0.084 0.083 intraplate 

HJ7220170919181440 HOSPITAL JUÁREZ 7.1 0.092 0.098 intraplate 

TL5520170919181440 TLATELOLCO 7.1 0.084 0.071 intraplate 
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The reference seismic intensities considered in this study were defined from the design pseudo-
acceleration spectrum (5% viscous damping ratio) of the seismological station of the Secretaria de 
Comunicaciones y Transportes, SCT, whose site period is Ts = 1.73 s. The intensity measure (IM) 
considered in the parametric analyses was the larger value of pseudo-acceleration of the two 
horizontal components, Sam, at the fundamental period of the structure, Tn. Therefore, the ground 
motions used in the analyses were scaled so that the larger pseudo-acceleration of the horizontal 
components at Tn, matched the corresponding of the reference design spectrum, Sad. 

The pseudo-acceleration response spectra of the scaled ground motions are shown in Fig. 3.2a, for 
values of Tn = 0.50, 1.5 and 3.0 s. As can be observed in such figure, the spectral ordinates are 
equal to the target Sad for T = Tn. Fig. 3.2b depicts the comparison between the average intensity 

measure, IM , and the target spectrum. 

3.3. Modeling and analysis of the case studies 

The parametric analysis was performed using the OpenSees software (McKenna et al., 2016). The 
case studies were modeled as generic one-story buildings with rigid diaphragm and 3DOF, two 
translational displacements and a floor rotation. The center of mass was located at the geometric 
center and the center of stiffness at a known distance from the center of mass. The buildings were 
modeled as shear buildings, columns with infinitely rigid beams, hence, the lateral stiffness of the 
frame is provided entirely by the columns. 

Modal analysis of elastic models of the case studies was carried out to obtain their coupled periods 
and modal participation factors. Subsequently, modal-spectral analysis of the elastic models was 
performed using the reference design spectrum reduced by seismic reduction factors Q’ between 
1.0 and 7.0, to define the strength of the structural elements for the purpose of assessing the seismic 
response of the structures for different levels of inelastic action. Since it was considered that the 
center of strength of the case studies was located at the same point as their center of stiffness, i.e. 
es = er, the strength of the structural elements was distributed in proportion to its stiffness. 

Non-linear static analysis were performed to define the yield displacement of the buildings and 
their ductility under monotonic loading in order to serve as a reference to the dynamic response of 
the case studies. Non-linear dynamic analysis were carried out using both horizontal components 
of the earthquake records selected to assess the seismic response of the case studies.  

For such analyses, the vertical resisting elements were modeled as elastic elements with plastic 
hinges at both ends considering an elastoplastic behavior model. The flexural-compression 
interaction in the non-linear range of behavior was modelled using an ellipsoidal moment 
interaction surface (De Stefano and Pintucchi, 2002), whose limits are the yield moments along 
the x- and y-axes. For the column-type elements of the M – System, the yield moments were 
determined through the Bresler equation for biaxial flexion (Bresler, 1960). On the other hand, the 
wall-type elements were modeled as in-plane uniaxial flexural elements since their out-of-plane 
strength is not significant. 
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a)          b) 

Fig. 3.2. Scaling of ground motions with respect to the design elastic spectrum 

a) Intensity Measure spectra; b) Average Intensity Measure spectrum 
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Fig. 3.3 Elastoplastic behavior model and yield interaction surface (De Stefano and Pintucchi, 2002). 

The solution of the dynamic equilibrium equation was attained via Newmark’s average constant 
acceleration method (Newmark, 1959), in conjunction with the Newton-Raphson method. The 
damping of the system was considered by means of a Rayleigh’s damping model, with a damping 
of 5% for the first two modes of vibration.  

3.4. Analysis of results 

Since multiple non-linear dynamic analyses were performed for each structure, a large data set was 
obtained for each combination of parameters. In order to have a single value associated with each 
structure, the median of its corresponding data set was considered as the reference seismic demand, 
as the median is less affected by skewed data, i.e. extremely large or small values, and is a better 
measure of central tendency when the distribution is not symmetrical. The dispersion of the seismic 
response of the case studies was measured in terms of the median absolute deviation (MAD), 
normalized by the median. From the analyses carried out, the following seismic demands 
parameters were obtained: 

3.4.1. Displacement amplification due to torsional effects, δF/δCM. 

As mentioned earlier, the extended N2 method uses a correction factor of the displacement at the 
flexible and rigid sides, which is equal to the ratio of the displacement of the respective side and 
the displacement of the center of mass, obtained from an elastic modal analysis. However, the use 
of the elastic deformed shape to estimate the inelastic torsional amplifications is not always 
conservative, particularly for structures with high torsional stiffness (De Stefano and Pintucchi, 
2010). 

Therefore, the displacement amplification of the flexible side with respect to the center of mass 
was obtained, δF/δCM, using the maximum displacements of non-linear dynamic analysis (Fig. 3.4) 
in order to identify the influence of the torsional stiffness, the fundamental period and the 
eccentricity on the torsional response. Additionally, the results were compared with the 
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displacement amplification obtained from a linear dynamic analysis to evaluate the use of the 
elastic deformed shape to estimate the inelastic torsional amplifications. 

  

Fig. 3.4 Time history displacement in the y-direction of the center of mass (left) and the flexible side 

(right) 

3.4.2. Ductility demand, µ. 

As the ductility demand of an irregular structure is unclear, due to the uncertainties of the seismic 
response of structures with different types and levels of irregularity, the ductility demand 
developed at the center of mass of the 3DOF structure was calculated, considering the yield 
displacement obtained from the bilinear idealization of the capacity curve (Fig. 3.5). For the 
bilinearization of the capacity curve it is considered that the plastic mechanism is formed at the 
maximum displacement of the non-linear dynamic analysis, δu, therefore, the energy deformation 
is the area below the capacity curve from 0.0 to δu. 

 

Fig. 3.5 Capacity curve of the 3DOF structure and bilinear idealization. 

As the bilinear idealization of the capacity curve is considered to have a residual stiffness, a slight 
modification of the eq. 2.10 is used to obtain the yield displacement: 
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3.4.3. Combination factor of orthogonal demands, β. 

A combination factor, β, of orthogonal demands in the X- and Y-directions was derived as a 
fraction of the root mean pseudo-acceleration spectrum of both components (eq. 3.2). It was 
defined in such a way that the use of such spectrum at its natural scale as demand in the critical 
direction and the same spectrum scaled by β% in the horizontal orthogonal direction in 
conventional modal-spectral analysis provides approximately the same base shear demands as 
those obtained from non-linear dynamic analysis (eq. 3.3). 

      2 2

x ya T a T a T   3.2 

 max cr

ncr

V V

V



  3.3 

where, Vmax is the maximum base shear demand obtained from the non-linear dynamic analysis, 
Vcr and Vncr are the base shear obtained from a modal spectral analysis, using the spectrum obtained 
from eq. 3.2, in the critical and the non-critical directions, respectively. 

Additionally, the combination factor obtained from the non-linear dynamic analysis was compared 
with β = 0.3, which is the combination factor stablished on the Mexico’s Building Code (NTC-DS, 
2017a). 

The results attained from the non-linear analyses and behavioral trends of the M-system and the 
X- systems regarding the aforementioned response parameters are shown and discussed in detail 
in the subsequent chapters. 
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4.1. Displacement amplification due to torsional effects, δF/δCM 

4.1.1. Median response 

Figs. 4.1 and 4.2 show the relation between Ω and the displacement amplification for structures, 
with B/L = 0.50 and 1.0, respectively, for various values of uncoupled period, Ty. It can be observed 
that, in general, the amplification is larger for structures with a smaller rotational stiffness, and it 
decreases as the rotational stiffness is larger, for all RT and B/L values shown. This agrees with the 
rigid diaphragm hypothesis, since having a higher rotational stiffness the floor rotation decreases 
and, hence, the edges of the plan tend to have equal displacements. For rectangular-plan buildings, 
B/L=0.75, the decrease of δF/δCM with respect to Ω tends to be linear except for Ty > 2.5 s, where 
in fact there is an increase of amplification for systems with Q’ > 3, which may be attributed to 
dynamic effects. For square-plan buildings B/L=1.0, the decrease of δF/δCM as a function of the 
period is smoother than for buildings with B/L=0.50 and is virtually independent of Ω, particularly 
for inelastic systems. 

Furthermore, as expected in a dynamic system, there is dependency between the response 
parameter δF/δCM and the period Ty. In particular, the displacement amplification trends, regarding 
the level of inelasticity, vary significantly for different values of Q’, especially for B/L=0.50. As 
can be observed in Fig. 4.1, for B/L=0.50, Ty < 1.0 s and Ω < 1.3, δF/δCM is similar for elastic and 
moderately inelastic structures, i.e. 1.0 < Q’ < 3.0, and their values are higher than those 
corresponding to larger values of Q’. Conversely, for B/L=0.5 and Ty=1.0 s and Ω > 1.3, δF/δCM 
for moderately inelastic systems tends to be larger than those of elastic systems and more ductile 
structures. For B/L=0.5 and the period range 1.5 s < Ty < 2.0 s, δF/δCM, is about the same or slightly 
larger for systems with 1.0 < Q’ < 4.0, than for higher values of Q’ for Ω < 1.3, whereas δF/δCM 
tends to be smaller for elastic systems than that of inelastic systems for Ω > 1.3. As Ty increases, 
the amplification of elastic systems tends to be larger than that of inelastic systems with respect to 
Ω. For B/L=0.5 and Ty=2.5 s, δF/δCM for elastic systems is larger than that of inelastic systems for 
Ω < 1.3, however, for Ω > 1.3 the amplification of inelastic systems tends to be slightly larger than 
that of elastic structures as Ω increases. However, for Ty=3.0 s, δF/δCM is larger for elastic systems 
than inelastic ones for all Ω values.  
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Fig. 4.1. Flexible side displacement amplification, δF/δCM, as a function of Ω, for B/L = 0.50 

The displacement amplification trends for systems with B/L=0.5 (Fig. 4.2) with respect to period 
are similar than those for B/L=0.5, although with some notable differences. For Ty < 1.0 s and Ω < 
1.5, δF/δCM is similar for elastic and moderately inelastic structures, i.e. 1.0 < Q’ < 3.0, and their 
values are higher than those corresponding to larger values of Q’. For the period range 
1.5 s < Ty < 2.0 s, δF/δCM of elastic systems is smaller than that of inelastic systems for all values 
of Ω. For Ty=2.5 s, δF/δCM is larger for elastic and moderately inelastic systems than for more 
ductile structures for Ω < 1.5, while for Ω > 1.5, δF/δCM tends to be smaller for elastic systems as 
Ω increases. 
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Fig. 4.2. Flexible side displacement amplification, δF/δCM, as a function of Ω, for B/L = 1.00 

For the purpose of further identifying the displacement amplification trends with respect to period, 
Figs. 4.3 and 4.4 depict the relationships between δF/δCM and uncoupled translational period, Ty, 
for Ω=1.1, 1.3, 1.5 and 1.6. The first two values of Ω correspond to structures with moderate 
rotational stiffness and the others to systems with high rotational stiffness. It can be observed in 
such figures that elastic systems follow a different trend than inelastic systems. The former exhibit 
larger displacement amplification as the period increases and Ω < 1.3, whereas such amplification 
tends to be constant with respect to the period for larger values of Ω. In contrast, δF/δCM of inelastic 
systems exhibit an increasing relation with the period for Ty < 1.5 s, reach a maximum value that 
remains approximately constant in the range 1.5 s <Ty < 2.0 s, and decreases at larger periods. It 
should be noted that this plateau of the Ty vs δF/δCM plot coincides with the characteristic periods 
of the design spectrum.  
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For B/L=0.50 (Fig. 4.3), δF/δCM of elastic systems is larger as the period increases up to Ty=2.5 s 
and decreases after such period, for both Ω =1.1 and 1.3. However, for the former value, δF/δCM of 
elastic systems is larger than those of inelastic systems in the entire period range while for Ω =1.3, 
δF/δCM of elastic structures is smaller than for most inelastic systems in the period range 
1.0 s < Ty < 2.0 s and is larger than inelastic structures for Ty > 2.5 s. For B/L=0.50 and Ω > 1.5, 
displacement amplification is larger for elastic structures than for moderately inelastic structures 
for Ty < 1.0 s, while for δF/δCM of inelastic structures is larger than that of elastic structures in the 
period range 1.5 s < Ty < 2.5 s. For B/L=0.50 and Ty > 2.5 s, δF/δCM of elastic structures is larger 
than that of inelastic structures regardless of the period. 

For B/L=1.0 (Fig. 4.4) the trends observed are similar to those of B/L=0.5, however, the differences 
between amplification values of all systems are narrower and, as previously identified in Fig. 4.2, 
δF/δCM is practically invariant with respect to Ω. 

 

 

Fig. 4.3. Flexible side displacement amplification, δF/δCM, as a function of Ty, for B/L = 0.50 
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Fig. 4.4. Flexible side displacement amplification, δF/δCM, as a function of Ty, for B/L = 1.00 

The influence of the stiffness eccentricity on the displacement amplification is shown in Figs. 4.5 
to 4.8 for moderately torsionally rigid (Ω = 1.2) and high torsionally rigid structures (Ω = 1.6), 
respectively. It can be observed in such figures that as the eccentricity value is larger, the torsional 
moment and, consequently, the floor rotation increase, hence, the displacement on the flexible side 
is larger in all cases. Furthermore, it can be identified that the relation tends to be linear or bilinear 
depending on the combination of B/L, Ω and Q’. 

For B/L= 0.50 and Ω=1.2 (Fig 4.5), δF/δCM of systems with Q’ < 2 follows a linear increasing 
relation with respect to eccentricity up to esx=0.2 and is approximately constant for larger 
eccentricity values, except for period Ty =3 s, where the relationship tends to be linear in all the 
eccentricity range. On the other hand, the relationship between esx and δF/δCM of inelastic systems 
is different for distinct period values. For structures with Ty < 1 s and Q’< 3, δF/δCM follows an 
increasing linear variation with respect to eccentricity, however, the slope reduces for esx > 0.3. 
Moreover, for such periods, δF/δCM increases linearly for systems with Q’ > 3, although for Ty=1.0 
s and Q´=7 the slope decreases for esx > 0.2. Furthermore, it can be observed that δF/δCM is larger 
for systems with Q’< 3 than that corresponding to other values of Q’. It should be also noted that 
δF/δCM of elastic systems may be smaller than those corresponding to Q’ values of 2 or 3. For 
systems with 1.5 s <Ty < 2 s, the variation of δF/δCM with respect to esx is approximately bilinear 
with a slope reduction in esx=0.2, although for Q´ < 3 the second branch is horizontal, hence, the 
displacement amplification for elastic and moderately inelastic is virtually independent of esx. It is 
also observed that displacement amplification of elastic and moderately inelastic structures is 
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larger than that of highly inelastic systems for esx < 0.2; for esx > 0.20 the amplification is 
approximately the same for elastic and all inelastic systems in most cases. On the other hand, in 
the period range 1.5 s <Ty < 2 s, the relation between esx and δF/δCM shifts from slightly bilinear to 
linear as Q´ increases and displacement amplification decreases as Q’ is larger. 

 

 

 

Fig. 4.5. Flexible side displacement amplification, δF/δCM, as a function of esx, for B/L = 0.50 and Ω = 1.2 

A different trend of behavior can be seen for B/L= 0.50 and Ω=1.6 (Fig. 4.6), i.e., rectangular-plan 
systems with extremely high torsional stiffness, δF/δCM shows a clear linear relation with respect 
to esx in the entire range considered. For Ty < 1.0 s, systems with 2 ≤ Q’ ≤ 4 exhibit the larger 
displacement amplifications while structures with Q’ > 4 present the lowest. A similar trend is 
identified in the period range 1.5 s < Ty < 2.5 s; δF/δCM is larger for systems with 2 ≤ Q’ ≤ 4, 
however, displacement amplification of elastic systems is lower than that of inelastic ones for all 
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eccentricity values. For Ty = 3 s, the trend is significantly different than the former, as δF/δCM is 
larger for 1 ≤ Q’ ≤ 3 than that of systems with higher values of Q’. 

 

 

Fig. 4.6 Flexible side displacement amplification, δF/δCM, as a function of esx, for B/L = 0.50 and Ω = 1.6 

For B/L= 1.0 and Ω=1.4 (Fig. 4.7), i.e., square-plan structures with high torsional stiffness, δF/δCM 

of systems with Q’ < 2 follow very similar trends to that of B/L= 0.50 and Ω=1.2 (Fig. 4.5), 
although the amplification level is lower for the former, which may be attributed to the fact that Ω 
is larger. In addition, the difference of displacement amplification between all systems appears to 
be narrower for B/L=1.0. It should be noted that it was not possible to compare the displacement 
amplification between systems with B/L=1.0 and 0.50 as the minimum possible value of Ω for a 
square building is 1.4. 

For B/L=1.0 and Ω=1.6 (Fig. 4.8), i.e., square-plan structures with extremely high torsional 
stiffness, the trends are also very similar to those for systems with B/L=0.50 and Ω=1.6 (Fig. 4.6), 
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however, δF/δCM is larger for the squared-building, even though both types share the same torsional 
stiffness values. 

 

 

 

Fig. 4.7. Flexible side displacement amplification, δF/δCM, as a function of esx, for B/L = 1.00 Ω = 1.4 
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Fig. 4.8. Flexible side displacement amplification, δF/δCM, as a function of esx, for B/L = 1.00 Ω = 1.6 

4.1.2. Dispersion of results 

Figs. 4.9 and 4.10 show the normalized median absolute deviation of δF/δCM with respect to the 
median, denoted as CVmed – δF/δCM, for structures with B/L = 0.5 and 1.0 respectively, where it 
can be identified that the dispersion is significantly low. For B/L=0.5 (Fig. 4.9), CVmed - δF/δCM is 
smaller than 0.2 for all values of Ty. Particularly, for Ty < 2.5 s. the value of CVmed – δF/δCM appears 
to be approximately constant and for Ty ≥ 2.5 s. CVmed – δF/δCM presents an ascending trend with 
respect to Ty; the largest CVmed – δF/δCM values occur at Ty = 3.0 s regardless of Ω. Similar trend 
can also be observed for structures with B/L = 1.0 (Fig. 4.10). 
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Fig. 4.9 Normalized median absolute deviation of δf/δCM, as a function of Ty, for B/L = 0.50 

 

 

 

Fig. 4.10 Normalized median absolute deviation of δf/δCM, as a function of Ty, for B/L = 1.00 



 

35 

Chapter 4 Seismic response of M-System 

4.1.3. Comparison between elastic and inelastic displacement amplification 

As mentioned earlier, the extended N2 method (Fajfar et al., 2005) considers the torsional 
amplifications due to the dynamic load with a correction factor defined by the δF/δCM obtained 
from elastic modal analysis (eq. 2.15). However, the displacement amplification of the flexible 
side of asymmetric-plan buildings obtained from a non-linear dynamic analysis, with different 
levels of inelasticity, is not always smaller than the amplification of elastic structures with the 
same torsional parameters, hence, the use of the elastic deformed shape to estimate the maximum 
inelastic response of the flexible side may not provide conservative results in many cases. 

The comparison of the values of δF/δCM obtained with a Q’ = 1.0 and the one obtained with 
Q’ ≠ 1.0, in terms of the relative error of the inelastic δF/δCM to the elastic δF/δCM, is shown in Fig. 
4.11. According to eq. 4.1 a positive relative error indicates that the use of the elastic displacement 
amplification is conservative, conversely, a negative relative error indicates that the use of the 
elastic displacement amplification is non-conservative. As can be observed in Fig. 4.11, only 40% 
of the structures present a conservative result with respect to the elastic deformed shape, however, 
the M-System includes both moderate and high torsionally stiff structures. 
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Fig. 4.11 Histogram of relative errors between elastic and inelastic δF/δCM 

Fig. 4.12 shows the relative error of the inelastic δF/δCM with respect to the elastic δF/δCM for 
moderately and highly rotational stiff structures, i.e. with Ω < 1.4 and Ω > 1.4, respectively. For 
the case of moderately rotational stiff structures, 63% of the cases present a conservative result 
with respect to the inelastic deformed shape, conversely, for the case of highly rotational stiff 
structures only a 35% percent of the cases present a conservative result. This agrees with the 
conclusions made by De Stefano and Pintucchi (2010), however, this does not only depends on 
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the rotational stiffness, as the displacement amplification is also greatly affected by the period of 
the structure and the stiffness eccentricity. 

  

Fig. 4.12 Histogram of relative errors of inelastic to elastic δF/δCM for moderate and high rotationally 

stiff structures 

4.2. Ductility demand 

4.2.1. Median response 

The ductility demand, µ, of the case studies was calculated as the ratio of the maximum 
displacement of the center of mass, obtained from the non-linear dynamic analyses, to the yield 
displacement at the same location defined from a bilinearized capacity curve attained from non-
linear static analysis. Fig. 4.13 depict the relationship between µ and Tn for elastic and inelastic 
systems with moderately high and extremely high rotational stiffness, B/L=0.5 and B/L=1.0 and 
esx=0.20. These plots are shown in terms of the actual fundamental period of the system, Tn, instead 
of the uncoupled period, Ty, as shown for the other response parameters, for the purpose of 
comparing in a consistent manner the ductility demands of the 3DOF systems to those of SDOF 
systems.  

As it can be identified in such, the ductility demand at the center of mass is a function of Tn and is 
virtually independent of B/L and Ω. Furthermore, it can be observed that ductility demand is 
significantly large for structures with short periods and is lower as the period decreases up to 
Tn = 2.0 s, from which it remains practically constant. The difference between ductility demands 
associated to different Q’ values is significant for Tn< 1.0 s and reduces as the period is larger; for 
Tn > 2.0 s the difference in ductility demands amongst all elastic and inelastic systems is 
significantly smaller than for short periods. In fact, this trend is the same as that of SDOF systems 
in the entire period range considered. Fig. 4.14 shows the plot of Tn vs µ of SDOF systems with 
the same Q’ values, where it can be identified that both 3DOF systems and SDOF systems follow 
identical trends. 
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Fig. 4.13. Ductility demand, μ, as a function of Tn 

 

 

Fig. 4.14. Ductility demand, μ, as a function of Tn for SDOF systems 

Nonetheless, although the trend of both 3DOF and SDOF systems are the same, their ductility 
demands differ in value. Fig. 4.15 depicts the ratio of ductility demand of 3DOF systems to that 
of SDOF systems, µ3DOF/ µSDOF, for the same parameters of Fig. 4.13, where it can be observed 
that, in general, such ratio is larger as the period is lower. Elastic structures exhibit the largest 
µ3DOF/µSDOF, about 1.5 at Tn = 0.5 s for both the moderately and extremely torsionally stiff cases; 
the ratio decreases down to 1.0 at Tn = 2.0 s and remains constant for larger periods. In contrast, 
µ3DOF/ µSDOF of inelastic systems decrease with period in the entire range. The maximum and 
minimum values of µ3DOF/µSDOF of inelastic structures at 0.5 s and 3 s, respectively, and the values 
of such ratio are higher as ductility is lower. For inelastic systems with B/L=0.50 and Ω=1.1, the 



 

38 

Chapter 4 Seismic response of M-System 

maximum ductility value, corresponding to Q’ of 2.0 and 3.0, is approximately 1.3 and the lowest 
is 0.5 for Q’> 5; for all the other combinations of B/L and Ω, µ3DOF/µSDOF varies between 1.0 and 
0.5. 

The differences in value of the ratio µ3DOF/ µSDOF can be attributed to the fact that SDOF systems 
are subjected to unidirectional loading whereas asymmetric 3DOF systems are subjected to 
bidirectional loading which induces additional lateral force demands that are not present in SDOF 
systems. Furthermore, the elements of 3DOF systems exhibit biaxial flexural interaction that also 
has an influence in their inelastic seismic response. These results suggest that the definition of 
ductility demands of asymmetric buildings comprised of moment-resisting frames (MRF) from 
SDOF systems may provide conservative results in most cases, except for the case of rectangular 
structures with B/L=0.5 and Tn < 1.0 s. Conversely, for inelastic structures, either square or 
rectangular in plan, with Tn > 2.0 s the results may be significantly conservative.  

  

  

 

Fig. 4.15. Ductility demand ratio, μ, as a function of Tn for an SDOF system 

 

Figs. 4.16 and 4.17 present the plots of µ vs esx for systems with different Ty values and B/L=0.5 
and 1.0, respectively, for several values of Q’. As it can be observed in such figures, there is a 
certain degree of dependency between µ and esx, particularly for systems with high Q’ values, 
which can also be attributed to the fact that 3DOF system is subjected to bidirectional demands 
while SDOF systems only to unidirectional demands; for distinct levels of eccentricity the 
demands of the structure differ. For B/L=0.5 (Fig. 4.16), µ for structures with 1.0 ≤ Ty ≤ 1.5 s 
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follows an increasing trend for values of Q’ ≤ 3.0 and a decreasing trend for values of Q’ > 3.0. 
For structures with Ty > 2.0 s. µ is larger as the eccentricity increases, with the exception of 
structures with Q’ ≤ 3.0, where the ductility demand remains approximately constant with respect 
to eccentricity. These same trends can be observed for B/L=1.0 (Fig. 4.17), however, for such 
structures the influence of esx on µ is less significant; µ can be considered constant for most values 
of Q’ and Ty. 

 

  

  

  

 

Fig. 4.16. Ductility demand, μ, as a function of esx, for B/L = 0.50 and Ω = 1.2 
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Fig. 4.17. Ductility demand, μ, as a function of esx, for B/L = 1.00 and Ω = 1.4 

4.2.2. Dispersion of results 

Figs. 4.18 and 4.19 show the normalized median absolute deviation of μ, denoted as CVmed – μ,  of 
structures with B/L = 0.50 and 1.0, respectively. As can be seen in Fig. 4.18 the value of CVmed - 
μ present a decreasing trend with respect to Ty, where the data present a larger variability for stiffer 
structures, i.e. Ty ≤ 1.0 s. With respect to the inelastic behavior, the data presents the largest 
variability for Q’ = 2.0 and Ty ≤ 1.0 s and decreases for larger values of Q’; conversely for Ty > 1.0 
s. the variability is smaller for Q’ = 2.0 and increases as Q’ is larger. A similar trend is found for 
structures with B/L = 1.0 (Fig. 4.19), however, the variability of the data increases slightly for Ty 

= 0.5 s, compared to that of structures with B/L = 0.50. 
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Fig. 4.18 Normalized median absolute deviation of μ, as a function of Ty, for B/L = 0.50 

  

 

 

Fig. 4.19 Normalized median absolute deviation of μ, as a function of Ty, for B/L = 1.00 
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4.3. Combination factor of orthogonal demands 

4.3.1. Median response 

Figs. 4.20 and 4.21 show the plots of β vs Ω or esx=0.20 and several period values of systems with 
B/L=0.50 and 1.0, respectively. For B/L=0.5 (Fig. 4.20), elastic structures show the maximum β 
values among the whole set and exhibit different trends for different periods. For Ty < 1.5 s, β is 
approximately 0.17 in the entire range of Ω. In the period range 2.0 s < Ty < 2.5 s, β values are 
maximum for low Ω values, around 0.5 and 0.6, and decrease as Ω is larger; for Ty = 2.0 s and 2.5 
s, respectively, the minimum β values are 0.18 and 0.30. On the other hand, β is virtually constant 
for inelastic systems except for Ty= 1.5 s and Q’ > 3 and Ty= 2.0 s and Q’ = 2. Furthermore, β for 
inelastic systems is larger as Q’ increases and the differences between their values reduces as 
period is larger; for Ty = 3.0 s, β is approximately 0.20 for all inelastic systems. 

 

 

Fig. 4.20. Combination factor, β, as a function of Ω, for B/L = 0.50 
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Structures with B/L=1.0 (Fig. 4.21) exhibit β values which are virtually invariant with respect to 
period. Elastic systems exhibit the lowest combination factors among all structures, approximately 
0.10, for Ty < 1.5 s, while for larger periods β of elastic systems is the largest, approximately 0.30. 
β for inelastic systems is larger as Q’ increases for Ty < 1.5 and, as in rectangular structures, the 
differences between their values reduces as period is larger; for Ty = 2.5 s and 3 s, β is 
approximately 0.25 and 0.20 for all inelastic systems.  

 

 

Fig. 4.21. Combination factor, β, as a function of Ω, for B/L = 1.00 

Figs. 4.22 and 4.23 depict the relationship between the combination factor and Ty for esx = 0.20 
and moderately and extremely torsionally stiff structures. In general, β values are larger for 
inelastic systems than elastic systems for Ty < 2 s; in such period range β increases as Q’ is larger. 
For larger periods β is higher for elastic systems than inelastic ones. Furthermore, it can be 
identified that β is smaller for moderately torsionally stiff systems than less flexible ones. 
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For B/L=0.50 (Fig. 4.22), elastic systems show the larger variations of β with respect to period. 
For moderately torsional structures with Ty < 1.5 s, β is approximately constant and it increases up 
to its maximum value, 0.6 at Ty = 2 s and 0.5 s for Ω=1.1 at Ty = 2.5 Ω = 1.3, respectively. From 
such maximum values, β decreases to a value close to 0.2 at Ty = 3 s. Elastic systems with extremely 
high torsional stiffness exhibit a similar trend, however, β is about 0.10 up to Ty = 2.5 s, increases 
to values around 0.35 at Ty = 2.5 s and decreases to approximately 0.20. Structures with B/L = 0.50 
with Q’ = 2 follow the same trend than elastic systems although the maximum amplification is 
approximately 0.35. Furthermore, β of moderately torsionally stiff systems with B/L = 0.50 is 
approximately constant for all Q’ values and Ty < 1.0 s, from which it increases to its maximum 
value, 0.55 and 0.35 for Ω=1.1 and 1.3, respectively, at Ty=1.5 s From such period, β decreases to 
approximately 0.2 at Ty = 2.0 s and remains approximately constant. For extremely torsionally stiff 
inelastic systems with B/L = 0.50, β remains approximately constant for all Q’ values in the entire 
period range with values between 0.15 and 0.30. 

 

 

Fig. 4.22. Combination factor, β, as a function of Ty, for B/L = 0.50 

Squared buildings, B/L = 1.0 (Fig. 4.23), exhibit similar trends than those previously described for 
rectangular structures, however, β values are smaller and their relationship with Ty is smoother. 
Moreover, the differences between β values for the distinct Q’ values are smaller than those 
corresponding to B/L=0.5. β varies approximately from 0.1 to 0.3 for elastic systems and from 0.10 
to 0.30 for inelastic systems. 
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Fig. 4.23. Combination factor, β, as a function of Ty, for B/L = 1.00 

Figs. 4.24 and 4.25 depict plots of β vs esx for several periods and B/L = 0.5 and 1.0, respectively, 
where it can be observed that β of elastic structures follow an irregular trend with respect to period. 
For B/L=0.5 (Fig. 4.24), elastic systems with Ty < 1.5 s exhibit an approximately linear or bilinear 
trend with respect to esx, being smoother as the period is larger; β varies from about 0.05 at esx = 0.1 
to about 0.2 at esx = 0.30. For 1.5 s < Ty > 2.5 s it follows a significantly different trend, as β varies 
from about 0.10 to 0.75. However, for Ty = 3.0 s the variation smoothens, β is approximately 0.10 
at esx=0.1 and increases up to 0.25 at esx=0.3. On the contrary, for inelastic systems β does not vary 
significantly, in fact it is approximately constant for most period values. For Ty < 1.5 s, β is larger 
as Q’ increases and its values range from 0.20 for 0.30. For Ty = 2.0 s, β is constant, approximately 
0.2 for Q’ > 2 up to esx = 0.2, point from which it shows an increasing relation with esx being the 
less ductile systems the ones that exhibit the larger β values; β of systems with Ty = 2.0 s and 
Q’=2.0 follow an increasing relation with respect to esx similar to that of elastic systems with the 
same period; β is about 0.15 at esx = 0.10 and increases up to 0.6 at esx = 0.30. For Ty = 2.5 s, β of 
inelastic structures is slightly linear for Q’> 3, being larger as Q’ increases; the range of β values 
is about 0.20 to 0.30 for Ty = 2.5 s. For systems with such period and Q’= 2, β is approximately 
0.25 up to esx = 0.2 and increases again to 0.5 at esx = 0.3. Inelastic structures with Ty = 3.0 s exhibit 
practically the same β value, 0.2, regardless of esx. 

In structures with B/L = 1.0 the relationship between β and esx is smoother and less complex than 
that of systems with B/L = 0.50 for all Q’ values, as can be observed in Fig. 4.25. β is approximately 
constant for all eccentricity values for Ty < 1.5 with values ranging from 0.10 to 0.15, and its values 
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are smaller than those of inelastic systems. For 2.0 s < Ty < 2.5 s, β shows and increase as 
eccentricity is larger, with values varying between 0.10 and 0.35 for Ty=2.0 s, and 0.2 to 0.55 for 
Ty = 2.5 s. For elastic structures with Ty=3.0 s, β exhibits a constant value of 0.2 and is very similar 
to that of inelastic systems in all the eccentricity range considered. On the other hand, β of inelastic 
systems with B/L = 1.0 exhibit small variations with respect to eccentricity value. For Ty < 2.0 s, β 
follows a slightly linear trend, and in some cases virtually constant, for all Q’ values with values 
between 0.15 and 0.4, being larger as Q’ increases. However, the difference of β values reduces as 
the period is larger. For Ty = 2.5 s β increases linearly with respect to esx; the values range between 
0.10 to 0.25 for systems with Q’> 3.0 and vary from 0.2 to 0.35 for systems with Q’=2.0; for the 
latter, the trend is similar to that to the elastic system. Furthermore, for this period, β is larger for 
the less ductile systems. On the contrary, for Ty = 3.0 s β decreases slightly with respect to 
eccentricity with values ranging between 0.15 and 0.25 for al Q’ values. 

 

 

Fig. 4.24. Combination factor, β, as a function of esx, for B/L = 0.50 and Ω = 1.2 
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Fig. 4.25. Combination factor, β, as a function of esx, for B/L = 1.00 and Ω = 1.4 

4.3.2. Dispersion of results 

Figs. 4.26 and 4.27 show the normalized median absolute deviation with respect to median of β, 
CVmed – β, of structures with B/L = 0.50 and 1.0 respectively. As can be seen in such figures, the 
dispersions are extremely high in elastic systems and moderate to small in inelastic systems. For 
systems with B/L=0.50 (Fig. 4.26), CVmed - β presents an increasing trend for a moderately 
torsionally stiff structure, i.e. Ω ≤ 1.3, and Q’ ≥ 3.0, conversely, for structures with Ω > 1.3 the 
CVmed – β appears to remain approximately constant for all values of Ty. For Q’ ≤ 2.0 the variability 
of the data is higher than the one obtained for Q’ > 2.0. A similar trend can be observed in structures 
with B/L = 1.0 (Fig. 4.27). 
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Fig. 4.26 Normalized median absolute deviation of β, as a function of Ty, for B/L = 0.50 

 

  

 

 

Fig. 4.27 Normalized median absolute deviation of β, as a function of Ty, for B/L = 1.00 
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4.3.3. Comparison with the Mexico City’s Building Code combination factor 

The comparison between the values of β obtained from the non-linear dynamic analysis and the 
combination factor prescribed on the Mexico City’s Building Code (NTC-DS, 2017a), βnorm = 0.3, 
in terms of the relative error of β to the value of βnorm, is shown in Fig. 4.28. According to eq. 4.2, 
a positive relative error indicates that the calculated β is smaller than βnorm, conversely a negative 
relative error indicates that the calculated β is larger than the normative βnorm. 

As can be observed in Fig. 4.28a, 76% of the cases present a value of β that is larger than βnorm. 
This implies that for these cases, the forces in the orthogonal direction, and consequently the 
displacements, are being underestimated. 
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Fig. 4.28 Histogram of relative error of β to βnorm 
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5.1. Displacement amplification due to torsional effects, δF/δCM 

5.1.1. Median response 

Figs. 5.10 and 5.20 shows the groups of plots of δF/δCM vs Ω for different Ty and Q´ values and 
B/L=0.50 and 1.00, respectively. It should be noted that for X-System esx is not independent from 
Ω, hence, the points of the curves correspond to structures with different eccentricity values. As 
can be observed in such figures for X-System the displacement amplification is larger as omega 
decreases for every period value, as it is expected in structures with rigid diaphragm. However, as 
shown in Chapter 3, flexible M systems with Ty > 2.5 s, particularly inelastic ones, exhibited an 
increasing relation of δF/δCM with respect to Ω. Furthermore, the behavioral trends of δF/δCM of 
X-System do not change as significantly as for M-System. These differences in trends can be 
attributed to the fact that the elements of such M-System are subjected to bidirectional flexural 
demands which may lead to a more complex dynamic behavior as the stiffness of the elements is 
affected by the bidirectional loading. On the contrary, X-System are comprised of uniaxial 
elements, hence, the behavior is less complex.  

δF/δCM of rectangular structures with B/L=0.5 (Fig. 5.1) exhibit a bilinear trend with respect to Ω, 
regardless of the period; the change in slope occurs at Ω=1.6 for all cases. For Ty < 2.0 s the 
amplification is about the same for all elastic systems; approximately 1.75 at Ω=1.45 from which 
it decreases to 1.6 at Ω=1.6 and to 1.3 at Ω=1.7. Furthermore, δF/δCM of elastic systems is smaller 
than that of inelastic systems for 1.0 s < Ty < 2.0 s for all Ω values considered. For Ty = 0.5 s the 
larger δF/δCM values correspond to systems with Q’=2 and 3; approximately 1.95 at Ω=1.45 from 
which it decreases to 1.75 at Ω=1.6 and to 1.45 at Ω=1.7. The smallest amplifications are 
associated with Q´ = 7 for which δF/δCM is about 1.8 at Ω=1.45 from which it decreases to 1.6 at 
Ω=1.6 and to 1.3 at Ω=1.7. For the period range 1.0 s < Ty < 2.5 s the largest amplifications occur 
for Q´=7.0 for almost all Ω values. For Ty = 2.5 s. the largest δF/δCM values are associated also with 
systems with Q’=3 and the smaller for Q´ = 7 in a similar fashion to systems with Ty = 0.5 s. For 
Ty = 3.0 s, δF/δCM of elastic systems are the largest in the entire Ω range considered, about 1.9 at 
Ω=1.45 and 1.37 at Ω=1.7, while the smaller amplifications are those of systems with Q’=1.7, 
about 1.23 for all Ω values. 
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Fig. 5.1. Flexible side displacement amplification, δF/δCM, as a function of Ω, for B/L = 0.50 

For square-plan buildings B/L=1.0, the decrease of δF/δCM as a function of the period is smoother 
than for buildings with B/L=0.5 and is virtually is in many cases virtually bilinear since the change 
in slope at Ω=1.6 is not as pronounced. Furthermore, the differences between the δF/δCM values 
between the different ductility values and periods is not as different as in the rectangular plan case 
studies. For Ty < 2.0 s the amplification is about the same for all elastic systems; approximately 
1.4 at Ω=1.56 from which it decreases to 1.15 at Ω=1.8. Furthermore, for Ty < 2.5 s the largest 
δF/δCM values correspond to systems with Q´ = 3 in most cases. 
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Fig. 5.2. Flexible side displacement amplification, δF/δCM, as a function of Ω, for B/L = 0.50 

The relationship between the displacement amplification factor and Ty is shown in Figs. 5.3 and 
5.4. As can be observed in such figures, δF/δCM of elastic structures does not vary significantly 
with respect to period. On the contrary, δF/δCM of inelastic systems follows an increasing trend for 
Ty < 1.0 s, it is virtually invariant from such point up to Ty=2.5 s and decreases for larger periods. 
Furthermore, δF/δCM of elastic structures is smaller than that of inelastic systems for most period 
values, trend that coincides with those identified in De Stefano and Pintucchi (2010) for structures 
with high rotational stiffness.  

For B/L=0.5 (Fig. 5.3), δF/δCM of elastic structures is approximately 1.6, 1.2 in the entire period 
range for Ω=1.61 and 1.7, respectively, while for Ω=1.45 is approximately 1.75 up to Ty = 2.0 s 
and it increases to about 1.9 at Ty = 3.0 s. For the same aspect ratio, the largest amplification values 
correspond to inelastic structures with Q’=3.0 and 4.0, approximately, 1.95, 1.85 and 1.55, for Ω 
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values of 1.45, 1.61 and 1.7, respectively. The smallest values of δF/δCM are associated to inelastic 
structures with Ty = 3.0 s and Q’=7; δF/δCM is around 1.2 for Ω=1.56 and 1.65 and 1.71. 

For systems with B/L=1.0 (Fig. 5.4) the trends are similar to those of structures with B/L=0.50, 
however, the curves of  δF/δCM  vs Ty are smoother and the differences amongst the δF/δCM values 
corresponding to the different Q’ values considered are smaller. δF/δCM of elastic structures with 
Ω=1.56 is about 1.45 up to Ty = 2.0 s and increases to 1.6 at Ty = 3 s, whereas for Ω=1.56 δF/δCM 
is about 1.3 up to Ty = 2.0 s and increases to 1.45 at Ty = 3 s; δF/δCM elastic structures with Ω=1.56 
is about 1.2 for all period values. The largest amplification values correspond to inelastic structures 
with Q’=5 and 6; δF/δCM is approximately, 1.65, 1.45 and 1.25, for Ω values of 1.56, 1.65 and 1.71, 
respectively. The smallest values of δF/δCM are associated to inelastic structures with Ty = 3.0 s and 
Q’=7; δF/δCM is around 1.2 for Ω=1.56 and 1.65 and 1.1 for Ω=1.71. 

 

 

 

 

Fig. 5.3. Flexible side displacement amplification, δF/δCM, as a function of Ty, for B/L = 0.50 
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Fig. 5.4. Flexible side displacement amplification, δF/δCM, as a function of Ty, for B/L = 1.00 

Figs. 5.5 and 5.6 shows the curves of δF/δCM vs esx. where it is observed that the amplification 
factor has an increasing linear or bilinear relationship with esx. This trend is evident since the 
stiffness eccentricity is larger as the floor rotation increase. For B/L= 0.50 (Fig. 5.5), δF/δCM of 
systems with Q’ < 2 follows a bilinear increasing relation with respect to eccentricity with a change 
in slope at esx=0.2, except elastic systems with periods 2.0 s < Ty < 3.0 s, where the relationship 
tends to be linear in all the eccentricity range. For structures with Ty < 1.0 s, δF/δCM is larger for 
moderately inelastic systems (Q’ = 2 and 3) than that corresponding to other values of Q’; δF/δCM 
varies from 1.45 to 1.9 and 1.55 to 1.95 for Ty = 0.50 s and 1.0 s, respectively. For systems with 
1.5 s < Ty < 2.0 s, the largest δF/δCM values correspond to Q´ > 5; the range of values are 1.6 to 
1.95 and 1.4 to 1.9 for Ty = 1.5 s and 2.0 s, respectively. For inelastic systems with Ty ≥ 2.5 s, the 
largest δF/δCM values are those of Q’ = 2.0 and 3.0, about 1.4 to 1.9 in the entire range of 
eccentricity values considered. Furthermore, for inelastic systems with Ty ≥ 2.5 s and Q’ ≥ 5, δF/δCM 
is virtually constant for esx > 0.20. 

For rectangular-plan systems with B/L=1.0 (Fig. 5.6), as was the case for M-System the relation 
between δF/δCM and eccentricity is similar but smoother than for squared-plan buildings. δF/δCM of 
systems with Q’ < 2 is virtually linear with respect to eccentricity while inelastic systems with 
larger Q’ values exhibit a bilinear relationship. For Ty < 1.0 s, δF/δCM is larger for moderately 
inelastic systems (Q’ = 2 and 3) than that corresponding to other values of Q’; δF/δCM varies from 
approximately 1.2 to 1.55. The exception to this trend are systems with Q’ > 5 with esx=0.3 for 
whom δF/δCM is larger than for the other systems as its value is about 1.65. For systems with 
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1.5 s < Ty < 2.0 s, the largest δF/δCM values correspond to Q´ > 5; about 1.2 to 1.6. For systems 
with Ty = 2.5 s, the largest δF/δCM values are those of Q’ = 2 and 3, approximately 1.2 to 1.6 in the 
entire range of eccentricity values considered. For Ty = 3.0 s, the largest δF/δCM values of Ty = 3.0 s 
correspond to elastic structures, about 1.2 to 1.6. 

 

 

Fig. 5.5. Flexible side displacement amplification, δF/δCM, as a function of esx, for B/L = 0.50 
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Fig. 5.6. Flexible side displacement amplification, δF/δCM, as a function of esx, for B/L = 1.00 

5.1.2. Dispersion of results 

Figs. 5.7 and 5.8 show the normalized median absolute deviation of δF/δCM, CVmed – δF/δCM, of 
structures with B/L = 0.50 and 1.0 respectively. As can be seen in both figures the variation of the 
data is very small for all periods, having a slight increase for Ty ≥ 2.0 s. Comparing with the results 
obtained with the M-System (Figs. 4.9 and 4.10), it can be observed that the variability for the X-
System is lower, particularly for short periods (Ty ≤ 2.0 s), this can be attributed to the fact that the 
torsional effects for this system are smaller due to its high rotational stiffness. 
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Fig. 5.7 Normalized median absolute deviation of δF/δCM, as a function of Ty, for B/L = 0.50 

 

 

 

Fig. 5.8 Normalized median absolute deviation of δF/δCM, as a function of Ty, for B/L = 1.00 
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5.1.3. Comparison between elastic and inelastic torsional effects 

The comparison of the values of δF/δCM obtained with a Q’ = 1.0 and the one obtained with 
Q’ ≠ 1.0, in terms of the relative error of the inelastic δF/δCM to the elastic δF/δCM, is shown in Fig. 
5.9. According to eq. 5.1 a positive relative error indicates that the elastic amplification is larger 
than the inelastic, conversely, a negative relative error indicates that the elastic displacement 
amplification is smaller than the inelastic. 
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As can be observed in Fig. 5.9, for 25% of the structures the use of the elastic floor displacement 
shape to estimate the inelastic maximum displacement of the flexible side would provide a 
conservative result with respect to the elastic deformed shape. This is consistent with the results 
obtained for M-System with high rotational stiffness (Fig. 4.12), as it is expected that most of the 
X-System present a non-conservative result with respect to the elastic deformed shape due to its 
inherent significantly high rotational stiffness, once again confirming the conclusions made by De 
Stefano and Pintucchi (2010). Nonetheless, other parameters such as Ty have an effect on the 
displacement amplification of the structure; it can be observed in Figs. 5.3 and 5.4 that elastic 
systems that exhibit larger flexible side amplification than inelastic systems are those with 

Ty > 2.5 s. 

 

 

Fig. 5.9 Histogram of relative errors of inelastic to elastic δF/δCM  

5.2. Ductility demand 

5.2.1. Median response 

Fig. 5.10 depicts the relationship between µ and Tn for elastic and inelastic systems with 
moderately high and extremely high rotational stiffness and B/L=0.5 and B/L=1.0. As it can be 
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observed in such figure, the ductility demand at the center of mass is a function of Tn and exhibits 
some level of dependency on esx, which, as explained in the preceding chapter, can be attributed 
to the fact that the demands of a structure are different for distinct esx values. 

The trends of ductility demand with respect to period are the same as for M-System and SDOF 
systems. µ is significantly large for structures with short periods and is lower as the period 
decreases up to Tn = 2.0 s, from which it remains practically constant. µ corresponding to distinct 
Q’ values are significantly different for Tn < 1.0 s, however, such difference reduces as the period 
increases. For Tn > 2.0 s, the differences between the µ values of the distinct systems are not as 
pronounced.  

 

 

 

Fig. 5.10. Ductility demand, μ, as a function of Tn for B/L = 0.50 

Fig. 5.11 depicts the ratio of ductility demand of 3DOF systems to that of SDOF systems, 
µ3DOF/µSDOF, for the same parameters of Fig. 5.10, where it can be observed that, as for M-System, 
the demands of X-System are different than those of 3DOF structures, however, the trends are 
different. Elastic structures with B/L = 0.5 exhibit the largest µ3DOF/ µSDOF, about 2.3 for esx = 0.30, 
from which it decreases to about 1.5 at Tn = 2.0 s and remains constant for the larger periods. For 
elastic systems with B/L = 0.5 and esx=0.10, µ3DOF/ µSDOF is 2.0 and decreases to approximately 
1.75 at Tn = 1.5 s and fluctuates around that value for larger periods. For B/L = 1.0 and esx = 0.30, 
µ3DOF/µSDOF of elastic structures is about 1.75 for Tn = 0.5 s and 1.0 s and decreases to 
approximately 1.5 at Tn = 2.0 s and remains constant for the larger periods. For elastic systems 
B/L = 1.0 and esx = 0.10, µ3DOF/ µSDOF fluctuates around a value of 1.75 in the period range shown.  
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For inelastic systems, µ3DOF/ µSDOF does not vary significantly with respect to Tn and its values 
decrease as Q’ increases, hence, the larger values are associated with Q’=2 and the smaller to 
Q’ = 7. Furthermore, µ3DOF/ µSDOF of the distinct Q’ values are not significantly different. For 
B/L = 0.5 and esx = 0.30, µ3DOF/µSDOF of structures with Q’ = 2 is 2 at Tn = 0.5 s and decreases to 
approximately 1.5 at Tn = 2.5 s, point from which it remains constant; µ3DOF/ µSDOF of structures 
with Q’ = 7 fluctuates around a value of 1.0 in the entire period range. For B/L = 0.5 and esx = 0.10, 
µ3DOF/µSDOF of structures with Q’ = 2 fluctuates around 1.05 in the entire period range, while for 
Q’ = 7.0, µ3DOF/ µSDOF is about 0.8 for all periods. For systems with B/L = 1.0 and esx = 0.30, µ3DOF/ 

µSDOF associated to Q’ = 2.0 is about 1.10 at Tn = 0.5 s, point from which it increases up to 
approximately 1.25 at Tn = 1.7 and decreases up to 1.10 at Tn = 3.4 s.; for Q’=7.0, µ3DOF/ µSDOF 
decreases from 0.90 at Tn = 0.5 s to approximately 0.80 at Tn = 3.4 s. For systems with B/L = 1.0 
and esx = 0.10, µ3DOF/ µSDOF fluctuates in the entire period range around values of 1.0 and 0.85, for 
Q’ values of 2 and 7, respectively.  

 

 

Fig. 5.11. Ductility ratio, μ3DOF/, μ3DOF, as a function of Tn 

As previously discussed for M-System, the differences in value between the ductility demands of 
3DOF systems and SDOF system arise from the fact that the former are subjected to bidirectional 
demand, however, such differences are smaller for X-System than those of M-System. 
Furthermore, the µ3DOF/ µSDOF vs Tn plots also show that the ductility demand at the center of mass, 
µ, depends of esx, as discussed in a preceding paragraph. 

Figs. 5.12 and 5.13 present the plots of µ vs esx for systems with different ratios and B/L = 0.5 and 
1.0, respectively, for systems with distinct values of Ty and Q’. In all cases structures with Q’ = 1.0 
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exhibit constant ductility demands slightly larger than 1.0, which is due to the fact of the difference 
between demands of SDOF systems and MDOF systems. For B/L = 0.5 (Fig. 5.12), µ of inelastic 
structures with 0.5 s ≤ Ty ≤ 1.5 s follows an increasing linear or bilinear trend for values of Q’ ≤ 3 
and a decreasing trend for values of Q’ > 3. For structures with Ty > 2.0 s. µ is larger as the 
eccentricity increases. These same trends can be observed for B/L = 1.0 (Fig. 5.13), with the 
exception that the constant values for structures with Q’ ≤ 4 is present for all values of Ty. 

  

  

  

 

Fig. 5.12. Ductility demand, μ, as a function of esx, for B/L = 0.50 
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Fig. 5.13. Ductility demand, μ, as a function of esx, for B/L = 1.00 

5.2.2. Dispersion of results 

Figs. 5.14 and 5.15 show the normalized median absolute deviation of μ, CVmed – μ, of structures 
with B/L = 0.50 and 1.0 respectively. In general, the dispersion of μ is moderate to low for all 
cases. For B/L = 0.50 (Fig. 5.14), the value of CVmed - μ present a decreasing trend with respect to 
Ty, where the data exhibits a higher variability for stiffer structures, i.e. Ty ≤ 1.0 s. For inelastic 
systems with the same B/L value, the data presents the largest variability for Q’ = 2 and Ty ≤ 1.0 s 
and decreases for larger values of Q’; conversely, for Ty > 1.0 s the variability is smaller for Q’ = 2 
and increases as Q’ is larger. A similar trend is found for structures with B/L = 1.0 (Fig. 5.15), 
however, the variability of the data increases for Ty = 0.5 s, compared to that of structures with B/L 
= 0.50. 
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Fig. 5.14 Normalized median absolute deviation of μ, as a function of Ty, for B/L = 0.50 

 

 

 

Fig. 5.15 Normalized median absolute deviation of μ, as a function of Ty, for B/L = 1.00 



 

65 

Chapter 5 Seismic behavior of X-System 

 

5.3. Combination factor of orthogonal demands 

5.3.1. Median response 

The combination factors, β, of X-System were calculated in the same manner as for M-System. 
Figs. 5.16 and 5.17 present the plots of combination factor, β vs Ω, for systems with different Ty 
and Q´ values and B/L=0.5 and 1.0, respectively. As can be seen in such figures, the β values 
attained for X-System are considerable lower than those of M-System (see Figs. 4.20 and 4.21), 
Furthermore, β is larger as Q´ increases and, consequently, the largest values correspond to 
structures with Q’ > 5 and the smaller values to elastic systems.  

For B/L=0.5 (Fig. 5.16), the trends of β with respect to Ω change for different periods. For 
Ty < 1.0 s, β of elastic systems follows an approximately linear behavior with respect to Ω, with 
values around 0.05 and 0.10, while for inelastic systems β is virtually constant in the entire omega 
range considered and does not show a significant variation between the different levels of 
inelasticity; their values are around 0.20 and 0.10, for Ty = 0.5 s and 1.0 s, respectively. For 
Ty = 1.5 s, β of elastic systems increases linearly from 0.05 at Ω=1.45 to 0.10 at Ω=1.7. For 
Ty = 2.0 s, β of elastic structures decreases as Ω increases, it varies from 0.2 at Ω=1.45 to 0.05 at 
Ω=1.7. In the period range 2.0 s < Ty < 2.5 s, β of elastic systems decreases bilinearly, from about 
0.2 to 0.05 and 0.35 to 0.10, for Ω =2.0 s and 2.5 s, respectively. For Ty = 3.0 s, elastic structures 
exhibit a constant β value of about 0.2 in the entire range of Ω values considered. β of inelastic 
structures with Ty < 1.0 is approximately constant for all Ω values shown and the difference 
between the values corresponding to the different Q’ values is small; their values are 
approximately 0.2 for Ty = 0.5 s and 0.10 for Ty = 1.0 s. For Ty = 1.5 s, β of inelastic structures 
decrease linearly in the Ω range shown; the largest values correspond to Q’=7, which vary from 
about 0.3 at Ω=1.45 and 0.10 at Ω=1.7. In the period range 2.0 s < Ty < 2.5 s, β of inelastic structures 
follow a bilinear decreasing relation with respect to Ω, where the largest values are also those 
associated with Q’=7. Such values vary in the entire Ω range shown from about 0.50 to 0.05 for 
Ty = 2.0 s, 0.45 to 0.10 for Ty = 2.5 s and 0.55 to 0.10. 
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Fig. 5.16. Combination factor, β, as a function of Ω, for B/L = 0.50 

For squared-plan structures, B/L = 1.0 (Fig. 5.17) the relationship between β and Ω is smoother 
than for systems with B/L = 1.0. In the period range Ty < 1.5, β of elastic structures is virtually 
independent from Ω, approximately 0.10, 0.05 and 0.05 for Ty = 0.5 s, 1.0 s and 1.5 s, respectively. 
For 2.0 s < Ty < 2.5 s, β of elastic systems decreases bilinearly from 0.10 to 0.05 for Ty=2.0 s and 
from 0.2 to 0.10 for Ty = 2.5 s in the range of Ω shown. For Ty = 3.0 s, elastic structures exhibit a 
practically constant value of 0.20 for all Ω values. For inelastic structures, the largest β values are 
associated with Q’=7, although there is not much difference with the values corresponding to the 
other systems. For Ty < 1.0 and Q’ = 7 β is virtually constant for all Ω values, about 0.2 and 0.10 
for Ty = 0.5 s and 1.0 s, respectively. For Ty = 1.5 s and Q’ = 7, β of inelastic structures decreases 
linearly from 0.2 to about 0.05 in the range of Ω shown. For Ty > 2.0 s and Q’ = 7, β decreases 
bilinearly with a change in slope around Ω = 1.64, their values vary from about 0.3 to 0.05, 0.4 to 
0.1 and 0.45 to 0.2 in the Ω range shown for Ty = 2.0 s, 2.5 s and 3.0 s, respectively. 
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Fig. 5.17. Combination factor, β, as a function of Ω, for B/L = 1.0 

Figs. 5.18 and 5.19 show the plots of β vs Ty for several Ω and Q’ values of systems with B/L=0.50 
and 1.0, respectively. X-System exhibit smoother and more regular trends of β with respect to 
period than M-System, particularly, the curves of β vs Ty of elastic systems are similar (see Figs. 
4.22 and 4.23) to those of inelastic systems. Moreover, it can also be identified in such figures that 
the smallest β values are associated with elastic systems. Furthermore, β increases as Q’ is larger, 
hence, the largest values correspond to structures with Q’=7.  

For B/L=0.5 (Fig. 5.18), the difference between β values of elastic and inelastic systems decreases 
as Ω increases. For Ω = 1.45, β of elastic structures is approximately constant, 0.05, up to Ty = 1.5 s 
and increases to about 0.35 at Ty = 2.5 s, point from which it decreases to about 0.20; β of systems 
with Q’=7 and the same Ω value is 0.2 at Ty = 0.5 s, point from which it decreases to approximately 
0.10 at Ty = 1.0 s, from where it increases to about 0.55 at Ty = 3.0 s. For Ω=1.61, elastic systems 
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with Ty ≤ 2 s present a constant β value with respect to period of 0.10 s, point from which it 
increases to 0.2 at Ty = 3 s. β of inelastic systems with Ω=1.61 and Q’=7 fluctuates around a value 
of 0.2 for Ty < 2.0 s, point from which it increases up to 0.4 at Ty = 3.0 s. For structures with Ω=1.7, 
β of elastic and inelastic systems are similar; for Q’=7, β decreases from about 0.12 at Ty = 0.5 s 
to 0.05 at Ty = 2.0 s, from which it increases to 0.2 at Ty = 3.0 s. 

 

 

Fig. 5.18. Combination factor, β, as a function of Ty, for B/L = 0.50 

Structures with B/L=1.0 (Fig. 5.19), exhibit the same trends as those with B/L=0.5, although the 
relationships between β and Ty are smoother. For Ω=1.56, β of elastic systems fluctuates around 
0.10 for Ty < 2.0 s, and increases up to 0.2 at Ty =2.5, whereas for inelastic systems with Q’=7, β 
is 0.2 at Ty =0.5 s, decreases to about 0.10 at Ty =1.5 s and increases to 0.4 at Ty =2.5 s. For Ω=1.65, 
elastic systems exhibit a β that fluctuates around 0.05 for Ty < 2.0 s and it increases up to about 
0.22 at Ty = 3.0 s, while for structures with Q’=7 β is approximately constant, 0.15, for Ty < 2.0 s 
and it increases to about 0.30 at Ty = 3.0 s. For Ω=1.71, β of elastic and inelastic systems fluctuate 
around 0.10 for Ty < 2.0 s and increases up to about 0.2 at Ty = 3.0 s. 
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Fig. 5.19. Combination factor, β, as a function of Ty, for B/L = 1.00 

 

Figs. 5.20 and 5.21, depict the plots of β vs esx of systems with B/L=0.5 and 1.0, respectively, for 
different values of Ty and Q’. As for M-System the relationship between β and esx in X-System is 
linear or bilinear in most cases for both elastic and inelastic system, being constant in some cases. 
Moreover, the smallest β values correspond to elastic systems for practically all esx values and the 
largest values are associated with inelastic structures Q’=7. 

For B/L=0.5 (Fig. 5.20), elastic systems with Ty = 0.5 s present β values that decrease from about 
0.10 at esx = 0.10 to 0.02 at esx = 0.05. For Ty = 1.0 s and 1.5 s, β of elastic systems fluctuates 
around values of 0.05 for all eccentricity values. Elastic systems with Ty = 2.0 s and 2.5 s exhibit 
an increasing bilinear relationship with respect to esx ranging from about 0.05 to 0.2 and 0.10 to 
0.3, respectively. For Ty = 3.0 s, β is virtually constant, 0.2, in the entire esx range shown. For 
inelastic structures with Q’=7 and 0.5 < Ty < 1.0 s, β fluctuates around constant values of 0.15 and 
0.10 for Ty =0.5 s and 1.0 s, respectively. For Ty =1.5 s, β of systems with Q’ = 7 increases linearly 
from about 0.05 to 0.3 in the esx range shown. For systems with Q’ = 7 and 2.0 s < Ty < 3.0 s, β 
follows an increasing bilinear relation with respect to esx, with values ranging from about 0.05 to 
0.45, 0.15 to 0.4 and 0.2 to 0.55, for Ty = 2.0 s, 2.5 s and 3.0 s, respectively, in the esx range shown. 

The same trends are identified for B/L=1.0 (Fig. 5.21), although the relationship between β and esx 
is smoother and the values of the former are smaller than those of B/L=0.05. For Ty < 1.5 s, β of 
elastic systems is virtually constant, about 0.10, 0.02 and 0.05, for Ty values of 0.5 s and 1.0 s, 
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respectively, in the esx range shown. For Ty = 2.0 s and 2.5 s, β of elastic systems increases 
bilinearly from about 0.05 to 0.10 and 0.10 to 0.20, respectively. Elastic systems with Ty = 3.0 s 
exhibit an approximately constant value of 0.2. For inelastic systems with Ty < 1.0 s β fluctuates 
around a constant value in the esx range shown; for Q’=7, β is around 0.15 and 0.10 for Ty = 0.5 s 
and 1.0 s, respectively. For inelastic structures with Ty = 1.5 s, β increases linearly with respect to 
esx; for Q’=7, its values range between about 0.05 to 0.2 in the esx range shown. β of inelastic 
systems with Ty > 2.0 s increase bilinearly with respect to esx; for Q’=7, its values range from about 
0.05 to 0.3, 0.10 to 0.4 and 0.2 to 0.45, for Ty = 2.0 s, 2.5 s and 3.0 s, respectively. 

 

 

Fig. 5.20. Combination factor, β, as a function of esx, for B/L = 0.50 
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Fig. 5.21. Combination factor, β, as a function of esx, for B/L = 1.00 

5.3.2. Dispersion of results 

Figs. 5.22 and 5.23 depict the normalized median absolute deviation of β, CVmed - β, of structures 
with B/L = 0.50 and 1.0, respectively. It can be observed that the dispersion is significantly high 
for several case studies, particularly for elastic systems. For B/L=0.5 (Fig. 5.22), CVmed - β presents 
an increasing trend for a moderately torsionally stiff structure, i.e. Ω ≤ 1.3, and Q’ ≥ 3.0, 
conversely, for structures with Ω > 1.3, CVmed - β appears to remain approximately constant for 
all values of Ty. For Q’ ≤ 2.0 the variability of the data is higher than the one obtained for Q’ > 
2.0, especially the variation of elastic structures. A similar trend is found for structures with 
B/L = 1.0 (Fig. 5.23). 
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Fig. 5.22 Normalized median absolute deviation of β, as a function of Ty, for B/L = 0.50 

 

 

 

Fig. 5.23 Normalized median absolute deviation of β, as a function of Ty, for B/L = 1.00 
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5.3.3. Comparison with the Mexico City’s Building Code combination factor 

The comparison of the values of β obtained from the non-linear dynamic analysis and the 
combination factor prescribed by the Mexico City’s Building Code (NTC-DS, 2017a), βnorm = 0.3, 
in terms of the relative error of β to the value of βnorm, is shown in Fig. 5.24. According to eq. 5.2, 
a positive relative error indicates that the calculated β is smaller than βnorm, conversely, a negative 
relative error indicates that the calculated β is greater than βnorm. 

As can be observed in Fig. 5.24, 65% of the cases present a value of β that is smaller than βnorm. 
This implies that for the X-System, the forces in the orthogonal direction are being overestimated 
in most of the cases. 

 
3

0.3
%
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
  5.2 

 

Fig. 5.24 Histogram of relative error of β ton βnorm 
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PARAMETERS 

To estimate rational seismic demands for design and assessment of asymmetric-plan buildings, a 
set of equations dependent on the structural parameters involved in torsional response were derived 
from regression analyses of the median demands attained from non-linear dynamic analyses. The 
regression analysis was performed via the artificial neural fitting network programmed in the 
software MATLAB (The Mathworks, 2019). Such neural network consists of a two-layer 
feedforward network (Fig. 6.1), with a logarithmic sigmoid transfer function in the hidden layer 
and a linear function in the output layer. The neural network training was done using 70% of the 
results obtained from the parametric analysis, in which a Levenberg-Marquardt backpropagation 
function was used as training function; 15% were used for the validation of the neural network, 
where the mean squared error was used for the validation of performance; and the remaining 15% 
were used for testing the neural network. 

In order to have a good approximation of the data, the size of the hidden layer was set so that the 
coefficient of determination, R2, of the linear regression between the target values and the outputs 
of the neural network, was greater or equal to 90%. The parameters used as the input layer of the 
neural network were chosen in accordance to their influence in each of the seismic demands 
considered in this work. 

 

Fig. 6.1 Artificial neural network architecture (Sim Vui et al., 2013) 
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6.1. Flexible side displacement amplification 

The fitting of the displacement amplification factor, δF/δCM, was performed using as input 
parameters the plan aspect ratio, B/L; the stiffness eccentricity, esx; the rotational stiffness factor, 
Ω; the seismic reduction factor, Q’; and the fundamental period of the structure, Tn. The equation 
derived from this non-linear regression is the following: 
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 6.1 

The displacement amplification of the flexible side was calculated using eq. 6.1, for all the case 
studies and was compared to the actual one. Fig. 6.2 shows such comparison. The coefficient of 
determination of eq. 6.1. is R2 = 0.94, which indicates a good approximation to the actual 
displacement amplification of the flexible side. 

 

Fig. 6.2 Regression adjustment of δF/δCM 

Additionally, the cumulative probability of error of eq. 6.1, was obtained to further assess its 
goodness of fit. As can be observed in Fig. 6.3, for 30% of the cases the value of δF/δCM obtained 
with eq. 6.1 is equal or greater than the real seismic demand, which implies that using this equation 
will give conservative results for these cases. For the non-conservative results, it can be observed 
that the largest relative error is about 10%, hence, this indicates that the δF/δCM obtained with eq. 
6.1 provides a good estimation of the seismic response. 
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Fig. 6.3 Histogram of relative error and cumulative probability of error for δF/δCM 

6.2. Ductility demand 

Regression analysis of the ductility demand, μ, was carried out using as input parameters the plan 
aspect ratio, B/L; the seismic reduction factor, Q’; and the fundamental period of the structure, Tn. 
The equation derived is the following: 
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Fig. 6.2 shows the relationship between the actual μ and that calculated with eq. 6.3. The 
coefficient of determination obtained from the fitting is R2 = 0.97, which indicates a good 
approximation of the real demands. However, it can be observed that the results obtained via such 
equation may provide significant differences in some cases. 

 

Fig. 6.4 Regression adjustment of μ 

Fig. 6.5 presents the histogram and cumulative probability of error of eq. 6.3. As can be observed 
in such figure, for almost 60% of the cases the value of μ obtained with eq. 6.3 is equal to or greater 
than the actual ductility demand, thus, the equation provides conservative results. Conversely, for 
the other 40% of the data the estimated ductility is smaller than the actual ductility developed by 
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the structure, hence, the inelastic displacement of the structure would be underestimated. For these 
non-conservative cases, it can be observed in Fig. 6.5, that 75% of the cases present a relative error 
that is smaller than 20%, hence, eq. 6.3provides results that are conservative or with a low relative 
error for most cases. 
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
   6.4 

 

  

Fig. 6.5 Histogram of relative error and cumulative probability of error for μ 

6.3. Combination factor of orthogonal demands 

Regression analysis for the combination factor, β, was carried out using as input parameters the 
uncoupled translational periods ratio, RT = Ty/Tx; the plan aspect ratio, B/L; the seismic reduction 
factor, Q’; and the fundamental period of the structure, Tn. The equation derived is the following: 
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 6.5 

Fig. 6.6 shows the relationship between the real β and that obtained with eq. 6.5. The coefficient 
of determination of the equation is R2 = 0.90. It can be observed in this figure that eq. 6.5 provides 
a good approximation of β, however for values of β > 1.5 eq. 6.5 does not give a good 
approximation, however, β values given by building codes are less than one, thus eq. 6.5 may be 
used for design purposes. 
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Fig. 6.6 Regression adjustment of β 

As can be observed in Fig. 6.7, for 40% of the cases the value of β obtained with eq. 6.5 is equal 
or lower than the combination factor, which implies that using this equation will provide 
non-conservative forces when considered in a modal-spectral analysis, however, 90% of the cases 
present a relative error that is smaller than 10%, hence, eq. 6.5 provides results that are 
conservative or with a low relative error for most cases. 

  

Fig. 6.7 Histogram of relative error and cumulative probability of error for β 
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Chapter 7. CONCLUSIONS 

In this study, a parametric analysis was performed to assess the inelastic response of 
plan-asymmetric buildings subjected to seismic excitations at soft soil sites of the Valley of 
Mexico. The torsional parameters of the buildings considered in this study were the uncoupled 
period, Ty, the stiffness eccentricity, es; the rotational stiffness factor, Ω; the seismic reduction 
factor, Q’; the plan-aspect ratio, B/L; and the uncoupled translational periods ratio, Ty/Tx. Three  
demand parameters that are essential in the seismic design of plan asymmetric buildings were 
obtained from the parametric analysis and assessed in detail: 1) displacement amplification factor 
of the flexible side of the plan with respect to the center of mass; 2) ductility demand developed 
in the center of mass and 3) combination factor, β, of the bidirectional demands in terms of the 
design spectrum. Furthermore, equations to estimate such demand parameters that may be used in 
seismic assessment and design applications were derived from regression analysis. From the 
results of this study, the following conclusions are withdrawn. 

7.1. Displacement amplification due to torsional effects 

The rotational stiffness factor, Ω, and the seismic reduction factor, Q’, have a significant influence 
in the displacement demand of the flexible side. The displacement amplification factor obtained 
for inelastic structures was compared with that of elastic structures, with the same dynamic 
properties. It was observed that, in most cases, in structures with moderate rotational stiffness, the 
displacement amplification of the flexible side is larger for elastic systems than inelastic ones. 
Conversely, for structures with a high rotational stiffness, most of the cases present smaller 
displacement amplification in the elastic range. 

This implies that the use of modal response spectrum analysis to estimate the maximum  inelastic 
response of plan-asymmetric buildings built at soft soil sites, which is the common approach used 
in modern building codes and displacement-based design methods, e.g. the N2 extended method 
(Fajfar et al., 2005); may provide unconservative results, particularly for structures with high 
rotational stiffness. For this reason, the seismic design provisions for such type of buildings should 
consider the effect of both rotational stiffness and the level of inelastic behavior, in terms of Q’, in 
the estimation of displacement demands of the flexible side of the plan. The equation proposed in 
this study  provides a reasonable approximation of a median displacement amplification of the 
flexible side of plan-asymmetric buildings built at soft soil sites of the Valley of Mexico as a 
function of their plan aspect ratio, the stiffness eccentricity, the rotational stiffness factor, the 
seismic reduction factor and the fundamental period of the structure. 



 

82 

Chapter 7 Conclusions 

7.2. Ductility demand 

The ductility demand developed at the center of mass, μ, was obtained considering the maximum 
displacement of the non-linear dynamic analysis and the yield displacement obtained from a non-
linear static analysis. It was observed that the ductility demand is mainly affected by the 
fundamental period of the structure, Tn, and the seismic reduction factor, Q’. As for the stiffness 
eccentricity, esx, and the rotational stiffness factor, Ω, it was observed that their influence can be 
neglected, as the ductility demand remains nearly constant with respect to these two parameters. 

As modern building codes consider a ductility demand derived from SDOF systems, a comparison 
was carried out between the ductility demand obtained from an SDOF system and the one obtained 
from a non-linear dynamic analysis of a 3DOF structure. It was observed that for short period 
structures, i.e. Tn < 1.0 s, the ductility demand of the 3DOF system is approximately equal to the 
ductility of an SDOF system. However, for structures with larger periods, particularly for 
structures with a moderate rotational stiffness, i.e. Ω < 1.3, the ductility developed for a 3DOF 
system is 20% to 50% smaller than the ductility developed by an SDOF structure. Thus, a 
correction factor of the ductility demand should be considered for the design of buildings, 
particularly for flexible buildings with a moderate rotational stiffness. For this reason, an equation 
that provides a reasonable estimation of a median design ductility demand for buildings located at 
soft soil sites at the Mexico Valley is proposed in this study. Such equation is a function of the 
plan aspect ratio, the seismic reduction factor, and the natural period. 

7.3. Combination factor of orthogonal demands 

The combination factor of the orthogonal demands, β, was defined in this study as that for which 
the seismic base shear obtained from modal-spectral analysis using the given design spectrum in 
its natural scale in the critical direction with the same spectrum scaled by β in the horizontal 
orthogonal direction, provides a reasonable approximation of the base shear demands attained from 
non-linear dynamic analysis of the set of records considered. The design spectra employed was the 
median response spectrum of such set. From the results attained from these analyses, it was 
observed that the combination factor is strongly correlated to the seismic behavior factor, Q’, and 
the fundamental period of the structure, Tn. Moreover, it is observed that β is virtually independent 
of esx, except for structures with periods 1.5 s < Ty ≤ 2.5 s. 

Furthermore, a comparison was carried out between the combination factor (median value) 
obtained in this study via non-linear dynamic analyses and the combination factor stipulated in 
most modern building codes, β = 0.3. It was observed that for most cases the median combination 
factor is larger than such value, which implies that the design forces obtained from applications of 
the conventional design method may be unconservative for buildings located at soft soil sites. 
Therefore, in this study, an equation is proposed which allows a reasonable estimation of a median 
combination factor for use in the seismic design of plan- asymmetric buildings built at soft soil 
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sites of the Mexico Valley, in terms of the uncoupled translational period ratio, the plan aspect 
ratio, the seismic reduction factor, and the fundamental period of the structure. 
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DIMENSIONS 

The dimensions of the vertical resisting elements were changed, in order to obtain the desired 
mechanic and dynamic properties for the parametric analysis. The following expressions were 
used to determine the dimensions of the resisting elements, as a function of the different parameters 
used in this work, for each case study described in Chapter 3. 

A.1  Moderate to large torsionally stiff system 

The M-system’s vertical resisting elements are column-type elements, with ratio / Th b R . The 

height of the elements has been normalized with respect to the height of the element C1, which is 
the upper left element as shown in Fig. A.1. The height of each column, which is the dimension 
along the x-direction, can be obtained with the equations A.1 to A.3 for the elements C1 to C3, 

respectively. The width of each column is obtained from the element dimensions ratio, /i i Tb h R  

 

Fig. A.1. M-System, element distribution and dimensions 
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where: 

 *
ih  is the dimension along the x-direction of Ci, normalized with respect to 1h . 

*
ib  is the dimension along the y-direction of Ci, normalized with respect to 1h . 

TR  is the uncoupled periods ratio. /T y xR T T   

/B L  is the plan dimensions ratio. 

sxe  is the stiffness eccentricity along the x-direction, normalized with respect to L. 

  is the factor of rotational stiffness. 

  is the mass radius, normalized with respect to L. 
 2

/ 1

12 T

B L

m



   

H  is the height of the structure. 

Tm  is the total mass of the structure. 

E  is the modulus of elasticity of the resisting element’s material. 

A.2  Highly torsionally stiff system 

The X-system’s vertical resisting elements are wall-type elements, with ratio / 0.1mt L  . The in-

plane dimension of the elements has been normalized with respect to the dimension of the element 
M1, which is the left element as shown in Fig. A.2. The in-plane dimension of the elements are 
obtained through equations A.4 to A.7. The out-of-plane dimension is obtained from the element 

dimensions ratio, 0.1i mit L . 

 

Fig. A.2. X-System, element distribution and dimensions 
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where: 

 *
iL  is the in-plane dimension of Mi, normalized with respect to 1L . 

The distribution of the vertical resisting elements in this system represent a special case, in which 

de stiffness radii of the system is dependent of the value of xe , and has a value of: 
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