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Abstract/Resumen

Reheating is a relevant cosmological epoch, since it connects the required
bridge between the primordial inflationary stage and the hot big bang. On one
hand, cosmological perturbations may have played an important role during the
Reheating since they provide us with a valuable number of observables that char-
acterize this stage of the Universe’s evolution. On the other hand, perturbations
could lead to gravitational collapse and, for large amplitude inhomogeneities,
form primordial black holes (PBHs).

In this thesis, we developed both analytical and numerical study of a cosmo-
logical real and complex scalar field with no self-interaction. Specifically in the
regime H � µ, when scalar field has an oscillatory behaviour and it can also be
treated as a pressure-less fluid. Afterwards we examined the case that the field
represents the dominant matter; in this context, the complex scalar field may or
may not be the inflaton itself. The homogeneous case is completely described
by Klein-Gordon equation and initial conditions inherited by the last e-folds of
inflation.

Furthermore a perturbative treatment of the scalar field fluctuations is presented
where we derived the Mukhanov-Sasaki (M-S) equation and we explored the
purely growing mode of these linear fluctuations. Subsequently, with the above
at hand we compute the Power Spectrum of the curvature perturbations and
evolve the inhomogeneities during the oscillatory phase.

We focused on constraining the abundance of PBHs formed in this period. The
goal has been to impose restrictions to the model of Reheating through con-
straints to the Curvature Power Spectrum, at scales far smaller than those probed
by cosmological observations, due to a possible overproduction of PBHs.

For instance, bounds to the PBH abundance could be employed to constrain the
Curvature Power Spectrum, and hence models of inflation which estimate a Re-
heating period similar to that studied here.

Lastly, implications of our results and extensions to the present work are dis-
cussed in the last chapter.



Reheating es una época cosmológica relevante, ya que representa el puente
requerido entre la etapa inflacionaria primordial y el hot big bang. Por un lado,
las perturbaciones cosmológicas pueden haber jugado un papel importante du-
rante el recalentamiento, ya que nos proporcionan un valioso número de observ-
ables que caracterizarían la evolución del Universo durante está época. Por otro
lado, las perturbaciones podrían conducir al colapso gravitacional y, para inho-
mogeneidades de gran amplitud, dar lugar a la formación de agujeros negros
primordiales (PBH).

En esta tesis, desarrollamos un estudio analítico y numérico de un campo escalar
cosmológico real y complejo sin autointeracción. Específicamente en el régimen
H � µ, cuando el campo escalar tiene un comportamiento oscilatorio y además
se puede tratar como un fluido sin presión. Examinamos el caso de que el campo
representa la materia dominante durante está etapa del Universo; En este con-
texto, el campo escalar puede ser o no el inflatón mismo. Este caso homogéneo
está completamente descrito por la ecuación de Klein-Gordon y las condiciones
iniciales heredadas por los últimos e-folds de inflación.

Además, se presenta un tratamiento perturbativo de las fluctuaciones del campo
escalar donde derivamos la ecuación de Mukhanov-Sasaki (M-S) y exploramos
el crecimiento puramente lineal de estas perturbaciones. Posteriormente, con lo
anterior en mano, procedemos a calcular el espectro de potencias de las pertur-
baciones de curvatura y evolucionamos las inhomogeneidades durante la fase
oscilatoria.

Nos centramos en restringir la abundancia de PBH formados en esta etapa cos-
mológica. El objetivo ha sido imponer restricciones al modelo de Reheating
mediante restricciones al espectro de curvatura, a escalas mucho más pequeña
que las probadas por las observaciones cosmológicas, debido a una posible so-
breproducción de PBH.

Las constricciones a la abundancia de PBH podrían emplearse para restringir el
espectro de potencia de curvatura y, por lo tanto, modelos de inflación que esti-
man un período de Reheating similar al estudiado aquí.

Por último, las implicaciones de nuestros resultados y extensiones al presente
trabajo se discuten en el último capítulo.
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Units

Throughout this thesis we will employ natural units, where the speed of light,
the Planck constant and the Boltzmann constant are set to unity, i.e.

c ≡ ~ ≡ kB ≡ 1.

Furthermore from Chapter 3 we will frequently make use of the reduced Planck
mass defined as

M2
Pl ≡

~c
8πG

≡ 1

8πG

with G being Newton’s constant.

Notation

We have denoted "dot" and "prime" as derivatives respect to dynamical time t,
and conformal time η, respectively.

We also denote partial derivatives as ∂µA = A,µ and ∇µA = A;µ as covariant
derivatives.

Convention

Latin subscripts label i : 3D euclidean space.
Greek subscripts label µ : 4D spacetime.

Our signs convention of the metric will be (−,+,+,+).

Conversions

Several conversions for natural units that we will often make use.

Planck Mass 1 MPl = 2.18×10−8 kg
= 2.435×1018 GeV

Planck lenght 1 `Pl = 1.616×10−35 m
Electronvolt 1 eV = 1.602×10−19 J
Parsecs 1 pc = 3.261 ly

= 3.085×1016 m
Solar Mass 1 M� = 1.989×1030 kg

Table 1: Conversions

Acronyms: GR (General Relativity), CDM (Cold Dark Matter), FLRW (Friedmann-
Lemaître-Robertson-Walker), CMB (Cosmic Microwave Background), PBHs (Pri-
mordial Black Holes), QFT (Quantum Field Theory), M-S (Mukhanov-Sasaki).



Chapter 1
Introduction

«So much Universe, and so little time»
Terry Pratchett

The Universe may have its origin driven by quantum fluctuations, since Quan-
tum Field Theory (QFT) predicts that vacuum is not empty but is a medium filled
with fluctuating quantum fields. Many of these abstract entities are modelled
through Scalar Fields, which give structure to the spacetime, whose symmetries
and invariants have been treated traditionally to predict particles. This particles
are the excitation of this field according with a certain scale of energy.

For decades cosmologists have been interested on the evolution of Scalar Field
and its possible repercussions in our Universe. Several models have been pro-
posed with one or more scalar fields associated with current paradigms in cos-
mology, for instance: Dark Matter (Scalar Field Dark Matter see e.g. [Matos
and Urena-Lopez, 2000]), Dark Energy (quintessence see [Tsujikawa, 2013] a
review), inflationary fields (inflaton), among others. The main reason is that the
centerpiece model or standard cosmological model called ΛCDM presents issues
in both fundamental to observational aspects that do not find a simple satisfac-
tory solution.

One or several scalar fields could have played an important role at early times
due to its quantum features. These fields would be strongly related with cur-
vature perturbations that may be the footprint for seeds of gravitational wells,
or as gravitational waves, or as black holes. For example, the fluctuations in
density observed in the CMB are believed to be the imprint of the inflationary
field quantum fluctuations and represent the best proof that inflation itself hap-
pened. Inflation however, requires a transition to the standard hot big bang
cosmology through a process generically dubbed Reheating. During Reheating
before radiation dominated era, the scalar field model starts to oscillate at the
inflationary potential minimum and it behaves as a pressure-less fluid. The Re-
heating epoch after inflation represents an important application of Quantum
Field Theory (QFT) because is speculated that provided a scenario for the origin
of the elementary particles. Then particles interacted with each other up to a
state of thermal equilibrium with some temperature Tr, which is called the Re-
heating temperature.

On the other hand, evidently the nature of dark matter is still undetermined at
present day, nonetheless, recently PBHs have become more popular in cosmol-
ogy due to their wide mass spectrum. PBHs are good candidates to explain the

11



12 CHAPTER 1. INTRODUCTION

dark matter as Planck relics remnants generated during Reheating.

In order to have a clear understanding of the cosmological phenomena relevant
to this thesis, in Chapter 1 we will introduce a short description of all concepts
from the General Relativity (GR) point of view which can be used as a guide.

1.1 General Relativity

The theory of General Relativity described and formulated by physicist Albert
Einstein which is one of the most successful, beautiful and extraordinary theories
in physics. Furthermore, GR achieves several predictions that have been tested
through observations, such as: the exact orbits of the planets on the solar system,
existence of compact objects currently as black holes [Akiyama et al., 2019]
and the gravitational waves, recently observed as signals from merging black
holes [Abbott et al., 2016], [Abbott et al., 2017]. More relevant to cosmology,
GR predicts the components that might make up our Universe [Aghanim et al.,
2018] and its geometrical shape.
In order to begin the description of GR, let us mention what was that drove and
motivated Einstein to generalize the concept of gravity. Einstein was looking for
a way to explain the incompatibility between Newtonian mechanics and electro-
magnetism. This led him to formulate the theory of SR which was published in
1905, where he was interested on the physical motion of a body in the absence
of gravitational forces based on his famous SR postulates,

• The laws of physics must be identical in each reference frame, regardless
of its motion.

• The speed of light will be the same in every reference frame.

Centered on this, Einstein had completely changed Newton’s notion that space
(length, width and depth) has always been static and time has always passed at
the same speed and is absolute. Nevertheless, for Einstein’s Universe, time has
always been related with the space as an extra coordinate. On this unusual 4
dimensional space or better-known as spacetime1, a point is defined as event and
is denoted as xµ and hence distance between two events is known as interval
and is given by,

ds2 = gµνdx
µdxν . (1.1)

Where gµν is metric tensor. This further describes spacetime geometry2. The
interval is in fact a relativistic invariant. This means that this quantity will have
the same magnitude in any inertial reference frame.

Einstein questioned himself about a problem where one usually associates a mass
with an object, but in fact for Einstein, the mass has 2 different interpretations:
the inertial mass (that resists acceleration) and gravitational mass (produces a
gravitational field). Then, he thought in a somewhat idealized problem which
led him to conclude that inertial mass is identical to gravitational mass that was

1Spacetime is manifold 4 dimensional (lorentzian manifold) homogeneous and rigid.
2For instance, in SR gµν = ηµν = diag(−1, 1, 1, 1) is just in case of Minkowski spacetime.
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called principle of equivalence3. Hence more generaly, principle of equivalence
stipulates so that, in a chosen locally inertia results impossible to distinguish
between physical effects due to gravity and those due to acceleration, they are
equivalent!

This was Einstein’s key insight and years later in 1915, Albert Einstein had for-
mulated and published the theory of GR [Einstein, 1915]. His ideas based on
mathematical foundations of manifolds and differential geometry and embodied
on the well-known Einstein field equations:

Gµν ≡ Rµν −
1

2
R gµν =

8πG

c4
Tµν . (1.2)

Where Gµν is the Einstein tensor which describes the curvature of spacetime
and Tµν is the Energy-Momentum tensor for which each component describes
the following,

• T 00 - Total energy density.

• T 0i - Energy flux in i-direction.

• T i0 - Momentum density.

• T ij - Momentum flux.

• isotropic pressure when i = j.

• viscous stress for i 6= j.

As we mentioned before, this theory generalizes the concept of gravity. The
single Newtonian field equation, the Poisson equation, can be recovered at the
weak field limit of the theory,

∇2Φ = 4πGρ. (1.3)

This is also called the non-relativistic limit. Einstein’s equations (1.2) are 10 par-
tial differential equations for the independent components of the 4D symmetric
metric tensor gµν . Evidently, it is not possible to find a general solution but if we
assume some symmetries equations are simplified.

On Riemannian geometry Rγσµν is the Riemann curvature tensor which is a gen-
eralization of the Gauss curvature, and also is constructed from second deriva-
tives of metric tensor gµν or from derivatives of Christoffel symbols Γλµν:

Rγσµν = ∂µΓγνσ − ∂νΓγµσ + ΓγµλΓλνσ − ΓγνλΓλµσ. (1.4)

If the covariant derivative does not have torsion contributions, then, Γλµν = Γλνµ.
Given a metric gµν defined upon a manifold M that has been chosen with a
privileged connection and without torsion such that the metric is a constant
covariant, i.e. ∇µgµν = 0, this connection is known as the Levi-Civita connection
so that Γλµν can be calculated as follows,

3In the 1950s Eötvös experiment was developed in order to measure the correlation of inertial
and gravitational mass, demonstrating the coincidence between the two concepts. See [Eötvös,
2008] for a review.
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Γλµν =
1

2
gλω (∂νgωµ + ∂µgων − ∂ωgµν) . (1.5)

This is called the affine connection prescription. The Riemann tensor (1.4) is
used to define Ricci tensor just by a contraction with metric tensor as,

Rµν = Rγσγν , (1.6)

and its trace, gives place to define Ricci scalar,

R = gµνRµν . (1.7)

One property of Riemann tensor (1.4) is that meets,

Rσµνρ,λ +Rσµλν,ρ +Rσµνλ,ν = 0, (1.8)

known as Bianchi identity. This identity implies one more important property on
GR,

Rνµ;ν = 0, (1.9)

Hence, through Einstein’s equations (1.2) we obtain,

∇νTµν = Tµν ;ν = 0, (1.10)

the conservation of the Energy-Momentum tensor.

According to the calculus of variations, finding extrema in an action which is
parameterized with respect to a affine parameter λ yields

S =

∫ √
gµν

dxµ

dλ

dxν

dλ
dλ. (1.11)

Maximizing the action one recovers the geodesic equation, which describes the
dynamics of the free particles

uµuν ;µ = 0. ⇐⇒ duµ

dτ
+ Γµαβu

αuβ = 0. (1.12)

The interesting thing about this equation is that describes trajectories of parti-
cles in free fall4, and in particular, for mass-less particles, i.e. ds2 = 0 it is only
satisfied for events with velocity c or null 4-vectors.

If the trajectories are restricted on surfaces of t = const. in such a case, it is
helpful to define the normal vector nµ proportional as:

nµ ∝ −gµν ∂η
∂xν

. (1.13)

Here η is the conformal time which will be defined later. The vector of (1.13) is
subject to the normalization constraint,

nµnµ = 1. (1.14)

Some important features of the theory of GR are,

4The concept of free fall is particles in free motion (no accelerated) or test particles in RG.
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• Spacetime is a Lorentzian manifold equipped with a Levi-Civita connec-
tion.

• Free particles will follow null geodesics (time-like geodesics).

• Energy-Momentum tensor will always be described by a symmetric tensor
such that ∇µTµν = 0.

• Curvature of the spacetime is strongly related with matter through the
Einstein’s equations (1.2).

The equations of GR allow us to study the Universe as a whole. Einstein himself
did it, he thought that Universe has always been static and eternal, but unfortu-
nately his solutions were unstable and collapsed due to gravitational interaction.

In order to achieve an unchanging Universe, Einstein introduced in his equations
a constant whose unique function was to keep and enhance his stable Universe
model according to his belief. He named it the cosmological constant.

Gµν + Λgµν = Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν . (1.15)

It was in 1927 that Georges Lemaître5 who was a pioneer in proposing the ex-
pansion of the Universe. He obtained an explanation of expansion with the
observation of redshifted galaxies. His results did not have any special impact
initially. Years later, Einstein acknowledged Lemaître’s work and said that the
cosmological constant had been the worst mistake of his whole life but perhaps
it was not a mistake after all.

Several standard textbooks on GR are [Carroll, 2004], [Poisson, 2002], [Schutz,
2009], [Hartle, 2003] and [Misner et al., 2017] in spite of this book may not
be considered the best introductory text (one may need many cups of coffee to
read it) but it has a vast content.

1.2 Scalar Fields

In QFT a scalar field φ is usually considered, for instance, as a boson with
spin equal 0 and is a quantity thoroughly defined on spacetime. In classical field
theory the scalar field is the simplest kind of matter that has the property of
invariance under rotations and Lorentz boosts.

One of the main motivations to develop QFT is to unify quantum mechanics
with SR. From the action for a canonical and relativistic form of matter which is
coupling minimally to gravity,

Sm[φ] =

∫
dx4√−gL . (1.16)

L being the Lagrangian. From action variation one would derive,

Tµν = −2
∂L
∂gµν

+ gµνL. (1.17)

5 Lemaître had proposed the known Big Bang theory, which he called hypothesis of the primal
atom as the origin of the Universe.
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The canonical Lagrangian for a scalar field is defined as,

L =
1

2
gµν∂µφ∂νφ− V (φ). (1.18)

The dynamics of the scalar field is governed by this Lagrangian. The first term
we easily identify as kinetic energy of the scalar field and second term is the in-
teraction potential. Explicitly, the Energy-Momentum tensor derived from (1.17)
with the previous Lagrangian (1.16) is,

Tµν = ∂µφ∂νφ− gµνL. (1.19)

Thus, through (1.10) we find the Klein-Gordon equation,

2φ+
dV

dφ
= 0. (1.20)

Where 2 = gµν∇µ∇ν is the d’Alembert operator6.

We are aiming for a description of a massive complex scalar field. A convenient
way to describe a complex scalar field of mass µ is by a superposition of real and
imaginary part as independent real scalar fields φa and φb of mass µ, i.e. it can
be written,

φ =
1√
2

(φa ± iφb) . (1.21)

and whose dynamic is defined by the real Lagrangian,

L = ∂αφ∂αφ
∗ − V. (1.22)

Then using (1.17), the Energy-Momentum tensor is given as,

Tµν = ∂µφ
∗∂νφ+ ∂µφ∂νφ

∗ − gµνL. (1.23)

Which satisfies the Klein–Gordon equation as well,

2φ+
dV

dφ∗
= 0. (1.24)

For our purposes it is useful to define and use the following expressions. The
scalar field density,

ρ ≡ nµnνTµν , (1.25)

where nµ has been defined in Eq (1.13) and the isotropic pressure,

P ≡ T θθ . (1.26)

Two important points to keep in mind on the scalar field are:

• These entities are not the particles. The scalar field is an abstract entity
that has the property of curving spacetime.

• Particles of this field are the quantum excitations of the scalar field.

6The Klein-Gordon equation for a massive scalar field is also the relativistic form of the
Schrödinger equation.
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The idea of QFT is adapting and describing a quantum particle as the oscillation
of an abstract field. More relevantly for our subject the scalar field has important
applications in our understanding of the Universe. In the next section we will
briefly mention a few.

1.3 Cosmology

Cosmology has been changing through the decades, as a result meticulous
examination of information about the structure, origin and evolution of the Uni-
verse provided by technological advances in telescopes and space satellites such
as COBE and WMAP, and more recently the Planck satellite, and galaxy surveys
like e-Boss and Boss. This gives way to future experiments that will be developed
in the coming years such as DESI, Euclid, Pixie, LiteBIRD and among others.
Our deepest understanding of the Universe is captured by a simple, elegant con-
cept — the standard model of cosmology often called ΛCDM, which is also the
most supported by observations. Today, we know in fact that the observations
indicate that the Universe is mainly composed just by 3 components; matter
(mostly dark matter), radiation and domination by the enigmatic dark energy
as shown in Figure 1.1. Although, our current lack of understanding about the
nature dark energy and dark matter gives room to more speculative models and
concepts that continue to attract attention in cosmologists community.

Figure 1.1: Image courtesy from [Spergel, 2015]

At the beginning of the last century, we had little idea of how the Universe was
formed or what it was made of, how it has evolved and what will be its future.
The key question has always been "How does the Universe work?".

We thought that the Universe originated in a classic big bang which stipulates
that perhaps at the origin, all matter initially was contained within a tiny space
at an extraordinarily high density and temperature.

The identification of anisotropies on the ∼ 3K microwave background, the distri-
bution of matter in the form of galaxies, and the Universe expansion are perhaps
the most successful insights of the classical theory, yet the same observations
that confirm the features of this theory, indicate the necessity of new ingredi-
ents, both inflation and the current acceleration of the Universe, these post open
questions to modern cosmology.
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Good introductory textbooks on Modern Cosmology are [Dodelson, 2003] and
[Lyth and Liddle, 2009].

Cosmic Microwave Background

Figure 1.2: The CMB anisotropies of temperature measured by Planck
with an average temperature of 2.7 K.

The Cosmic Microwave Background (CMB) is the oldest snapshot that we have
been able to observe as yet. It has the early Universe footprint, as a tenuous
radiation that fills the Universe. Such radiation reaches the Earth from every
direction with an almost uniform intensity. CMB is a relic which shows the state
of our Universe when the photons ceased scattering hydrogen atoms and were
released at the epoch of recombination when the Universe was ∼ 300, 000 years
old at a temperature of about 3, 000 K.

The residual radiation is extremely important for cosmologists in order to ana-
lyze a pattern of tiny variations on temperature that are better-known as anisotr-
opies of the CMB (see Figure 1.2). After several decades of searching, CMB
anisotropies were detected and mapped over a range of angular scales and `-
modes, so that cosmological parameters can be estimated.

Cosmological principle

The most important and fundamental assumption on Cosmology is: The Cos-
mological principle, which states that for scales sufficiently large (at least 100-
150 Mpc) the distribution of the large cosmic structure ought to be statistically
isotropic and homogeneous. Our picture of the CMB is consistent with such prin-
ciple.

In the 1920s Hubble realized that farther galaxies are moving faster and faster
away from us. During his work measuring the distances to a sample of galaxies,
he showed that the distance to a galaxy and the recessional velocity are directly
correlated and are given according with Hubble–Lemaître law,

vH = Hr, r is the physical radius. (1.27)

With H being the rate of expansion or often called as Hubble parameter. Hub-
ble estimated the value of the expansion factor, to be around 500 km/s/Mpc.
Decades later Adam Riess provided evidence that the expansion of the Universe
is accelerated7.

7Nevertheless, nowadays cosmologists are engaged in a tremendous discussion about the ex-
pansion of the Universe due to H0 value is still rather discrepancy (see [Riess, 2019] a short
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Redshift

Relativistic Doppler effect provide an important definition of distances due to
cosmic expansion. The redshift, which is the separation distance between the
observable λ0 and emitted λe wavelength is defined as,

z ≡ λ0 − λe
λe

. (1.28)

Whereas electromagnetic waves move further away from us, they elongate and
shift into lower frequencies.

1.3.1 Friedmann-Lemaître-Robertson-Walker solution

Between the years 1922 - 1924 the Friedmann-Lemaître-Robertson-Walker
(FLRW) solution to Einstein’s equations (1.2) was implemented. This exact so-
lution is built under the assumption of the Cosmological Principle. Such solution
provides descriptions of particular sets of Universes that can be governed by
several ingredients; for example, matter, dark energy, curvature or radiation.
Depending on their energy contributions, a Universe compatible with our ob-
servatons can be formulated, an analogy is like identifying a suspect with his
fingerprint.

Interestingly, the most important feature of these solutions was that a static Uni-
verse is impossible: the Universe must be on expanding or contracting depending
of what type of matter distribution conforms it, and therefore, the light from dis-
tant objects must be redshifted or blueshifted accordingly. The main assumption
for these solutions is the cosmological principle. Generally, the FLRW metric is
written in spherical coordinates as,

ds2 = −c2dt2 + a2(t)

[
dχ2

1−Kχ2
+ χ2dθ2 + χ2sin2θdϕ2

]
. (1.29)

Where a(t) is the scale factor, χ are commonly called comoving coordinates that
move along with the expansion of the Universe and K is the curvature of the
space. However, the sign of K could be positive (closed), negative (open) or
null (flat), Figure 1.3 is describing the shape of the Universe according with K
sign.

Figure 1.3: Sketch courtesy: James Schombert‘s UOregon 21st century
science.

This leads to define H in terms of the scale factor as,

review). This tension on the H0 value seems to depend on whether the measurements are based
on the early Universe or today. We just mention this tension as part of modern cosmology but we
will not go into detail because it is not related to this work.
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H ≡ ȧ

a
, (1.30)

and,

q ≡ − ä a
ȧ2
, (1.31)

the deceleration rate, today with a value of q0 ∼ 0.55. Moreover, the scale factor
can be rewritten in terms of z redshift,

a =
a0

1 + z
. (1.32)

This is a useful expression in cosmology, where a0 is the scale factor at today8.

As for the properties of components of this Universe, an isotropic perfect fluid
is often used to describe several of the constituents. The cosmological principle
forces the macroscopic velocity to be isotropic. Therefore, the 4-velocity only
has one temporal component,

uµ = (c, 0, 0, 0). (1.33)

As a result, the energy-momentum tensor for a perfect fluid is given by,

Tµν =

(
ρ+

P

c2

)
uµuν + Pgµν . (1.34)

Friedmann equations

Let us proceed to derive the Friedmann equations from Einstein’s field equations
with a cosmological constant. First of all, if we want to derive Friedmann equa-
tions, we would calculate the Christofell symbols given by (1.5) through the
metric tensor gµν of (1.29). Fortunately the metric tensor gµν is diagonal and
due to the symmetry of Christofell symbols several are null. Once obtained the
non-zero Christofell symbols, we are able to calculate the components of Ricci
tensor from (1.6). The temporal component is,

Rtt = − 3

c2

ä

a
. (1.35)

And the spatial components are,

Rχχ =
a ä

c2(1−Kχ2)
+

2ȧ2

c2(1−Kχ2)
+

2

K(1−Kχ2)
. (1.36)

Rθθ =
χ2a ä

c2
+

2χ2ȧ2

c2
+ 2Kχ2. (1.37)

Rϕϕ =
χ2a ä sin2θ

c2
+

2χ2ȧ2sin2θ

c2
+ 2Kχ2sin2θ. (1.38)

Also it can be seen that Ricci tensor is diagonal, so that we could rewrite the
spacial component as,

Rij =
gij

c2 a2

(
a ä+ 2ȧ2 + 2Kc2

)
. (1.39)

8Often is setting as a0 = 1.
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Finally, obtaining the Ricci scalar from (1.7),

R = − 6

c2

ä

a
− 6

c2

(
ȧ

a

)2

− 6
K

a2
. (1.40)

The temporal component of Einstein equations,

− 3

c2

ä

a
− 1

2

(
− 6

c2

ä

a
− 6

c2

(
ȧ

a

)2

− 6
k

a2

)
− Λ =

8πG

c4
c2ρ. (1.41)

And a single spatial component,

1

c2 a2

(
a ä+ 2ȧ2 + 2kc2

)
− 1

2

(
− 6

c2

ä

a
− 6

c2

(
ȧ

a

)2

− 6
K

a2

)
+ Λ

=
8πG

c2
P.

(1.42)

Sorting the temporal component (1.41) we arrive at,

H2 =

(
ȧ

a

)2

=
8πG

3
ρ+

Λc2

3
− Kc2

a2
. Friedmann Equation. (1.43)

while for the spatial component (1.42) we obtain,

3
ä

a
= −4πG

(
ρ+

3P

c2

)
+

Λc2

3
. Raychaudhuri Equation. (1.44)

These are the Friedmann equations in a general form for a perfect fluid. This
set of equations has often been used in cosmology to describe and forecast the
dynamics of our Universe within the context of GR. With the above at hand,
we also can combine both equations (1.43) and (1.44), and obtain the matter
conservation equation or mostly known as continuity equation,

ρ̇ = −3H

(
ρ+

P

c2

)
. (1.45)

Although, there is another way to derive the conservation equation which is by
property (1.10). In order to describe our Universe it is necessary to know its
components. One problem is that we only have two independent equations for
three variables to solve. Cosmologists often assume a perfect fluid endowed with
a barotropic state equation as,

P = P (ρ) = ω c2ρ. (1.46)

Here ω is a constant which characterizes the type of fluid/component. If we
substitute (1.46) in (1.45) and solve it, we obtain

ρ = ρ0

(
a

a0

)−3(1+ω)

. (1.47)

This expression define the evolution of cosmological components for each ω.
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1.3.2 Cosmological components in our Universe

The generally assumed energy components to describe our Universe are mat-
ter (baryons and CDM), radiation (photons, neutrinos or another relativistic par-
ticle), dark energy and curvature.
It is quite useful to define here the critical energy density ρcr, which is the density
the Universe would have in a flat space, i.e. K = 0. It is directly related to the
expansion rate of the Universe, H by one of the Friedmann equations (1.43),

ρcr ≡
3H2

8πG
. (1.48)

It is common to quote the energy density of different cosmological components
in the present relative to this critical density,

Ωi ≡
ρi
ρcr

, (1.49)

where i represents any energy component. The curvature and the dark energy
densities can also be defined as fractions of the critical density.

Matter

Considering that matter particles do not have any elastic collision, they are non-
relativistic particles and essentially pressure-less.

Pm = 0, ⇒ ω = 0. (1.50)

Therefore,

ρm = ρm,0

(
a

a0

)−3

. (1.51)

This type of matter is known as dust or pressure-less fluid. In fact, the observa-
tions and several models are suggesting that this is how dark matter behaves.

Radiation

Providing that statistical physics provides a description of a gas of photons, for
instance, as an assemble of bosons with an energy εi = ~ωi, then the state
equation for radiation fluid case can be expressed as,

Prad =
1

3
c2〈ρ〉, ⇒ ω =

1

3
. (1.52)

The density of radiation fluid hence evolves as,

ρrad = ρr,0

(
a

a0

)−4

. (1.53)

Dark energy

One of the biggest problems in contemporary cosmology is the origin of the
accelerated expansion of the Universe. This acceleration is often attributed to the
cosmological constant. It has a constant density that permeates all the Universe.

ρΛ = constant ∝ a0. (1.54)
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Then comparing with (1.47), implies that ω = −1,

PΛ = −c2ρ, ⇒ ω = −1. (1.55)

In particular this cosmological component is well-known as dark energy. How-
ever, as we mentioned before according with ΛCDM model and observational
data, they suggest that we live in a fairly flat Universe its curvature has very low
value, i.e. k ≈ 0. We would like to construct the next table which shows how
relevant quantities will evolve depending on the dominating type of energy,

c Matter Radiation Λ Curvature

ρ(t) ∼ a−3 ∼ a−4 const. ∼ a−2

a(t) ∼ t
2
3 ∼ t

1
2 ∼ exp(H0t) ∼ t

H(t)
2

3t

1

2t
H0

1

t

Table 1.1: Evolution of relevant quantities in a Universe dominated by
each of the featured cosmological components.

In order to be more accurately the standard cosmology is trying to figure out
the evolution of the Universe based upon three principal components that con-
stitutes its whole energy density. Furthermore the history of the Universe is
classified on periods at which distinct components of energy dominated the en-
ergy budget. We can distinguish at least three stages of the Universe as Figure
1.4 shows, These are dubbed as matter-dominated, radiation-dominated, and
dark energy-dominated periods.

1.3.3 Comoving coordinates

In general, the distance between any two points may be written as r = a(t)χ,
where χ is referred to as the comoving distance, r is simply the physical distance
between the two points. The comoving distance is then always equal to the
physical distance at the present moment in time. This and the conformal time
are definitions used throughout this thesis, and it is convenient to define them
before our analysis.

Conformal Time

Conformal time η, is often of practical use instead of the ordinary dynamical
time t. They are both related by,

dη ≡ dt

a(t)
. (1.56)

It allows us to define an important quantity, the conformal Hubble parameter,
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Figure 1.4: The reds lines mean the epochs of equivalence between
radiation-matter and Λ-matter respectively.

H ≡ aH. (1.57)

The we note that the spatially flat K = 0 FLRW metric, given by Eq. (1.29), can
be reexpressed in terms of conformal quantities as,

ds2 = a2(t)
(
−c2dη2 + dχ2 + χ2dΩ2

)
(1.58)

In these coordinates one may then calculate the particle horizon, which is simply
the maximum distance light could have travelled from the beginning, in other
words, considering only radial motion (so that dropping the dΩ part),

0 = −c2dη2 + dχ2. (1.59)

Then,

⇒ dH = c

∫ ηf

ηi

dη = c

∫ tf

ti

dt

a(t)
. (1.60)

Moreover, in a matter dominated era the particles horizon is,

dH ∼ 3ct, (1.61)

and is close to the Hubble radius defined as,

rH = 3
2c t. (1.62)

In this work we use this equivalence to identify scales above the Hubble radius,
such scales are described as super-horizon.
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1.4 Inflation

Inflation has been proposed as a hypothesis by the theoretical physicists Alan
Guth [Guth, 1981] and Andréi Linde [Linde, 1984] in the 80s. In accordance
with inflationary theory, the Universe was created in an unstable energy state,
which forced a rapid expansion of the Universe at its very early moments. Ac-
cording with quantum theory, there is a field interpretation of inflationary theory.
In this approach, the driving mechanism was due to a field generically known as
Inflaton. In this stage the Universe expanded at least by a factor of 1026 and the
total entropy increased likewise by a similar factor.

The inflationary theory has attempted to solve the following problems of the
standard big bang cosmology9.

1. Flatness problem: The initial value of Hubble parameter had to be adjusted
with an exceptional accuracy (fine-tuned) to produce the practically flat
Universe we observe at the present time.

2. Horizon problem: Stipulates that there are at least ∼ 1083 Universe regions
of the observed Universe distant enough that should be causally discon-
nected. This means that in one Universe region the light would take more
than the age of the Universe to being connected/released with another
region. However, they are observed to be thermally homogeneous in aver-
age.

3. Homogeneity problem: The main idea for this problem is simple: Why is
the Universe so incredibly uniform/homogeneous at large scales? This
would require some very fine-tuned initial conditions in regions which are
in principle disconnected from one another.

Inflation is a theory formulated to solve each one of these problems and more.
The problem 1 can be understood from the Friedman equation (1.43) which can
be rewritten as,

ΩT = 1 +
K

(aH)2
. (1.63)

Where ΩT is the total density parameter and K the curvature. Actually it is easy
to show that the case K = 0 is only a past attractor. For instance, considering
a radiation epoch, energy density parameter then evolves as (ΩT − 1) ∼ t. This
means the curvature in the past was even flatter than the present which is con-
strained to be smaller than ∼ 0.001.

In the inflationary theory, the Universe expanded in a way that, whatever curva-
ture the Universe had, it was erased by the accelerated expansion10.
The solution to the other problems listed here lies in the fact that the cosmo-
logical horizon remained constant during inflation, while the regions of the Uni-
verse in causal contact stretched beyond this horizon. Thus, after the accelerated
expansion, the regions out of causal contact present common properties as ob-
served today.

9Relevant textbooks are [Peter and Uzan, 2013] and Lyth and Liddle [2009], and for reviews
on inflation see [Bartolo et al., 2004], [Martin, 2004].

10A simple analogy is when someone inflate balloon, at zooming in a region it seems almost
flat.
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During inflation, it is thought that other processes took place such as (see e.g.
[Garcıa-Bellido]): Erasure of topological defects and magnetic monopoles, pro-
duction of gravitational waves, production of non-thermal particles (as the pos-
sible origin of CDM), among others.

Figure 1.5: During inflation the Hubble horizon RH = c/H remains
constant while the Universe is expanding and also the comoving scales
exit the horizon. After inflation ends, the Universe stops accelerating
and the comoving scales that were out of the horizon, begin to re-enter
the horizon gradually.

The following condition must be fulfilled in order to realize inflation,

Inflation ⇔ d

dt

(
1

aH

)
< 0 ⇔ ä > 0. (1.64)

These inequality implies that the weak energy condition11 of GR is violated,

ρ+ 3P < 0. (1.65)

Despite (1.65) requires negative pressure P < −1
3ρ, to be fulfilled, this results

too non-intuitive. Therefore proposals or candidates that might satisfy (1.65).
The scalar field φ seems an appropriate candidate which is better known as In-
flaton. Indeed there are several candidates of scalar fields on cosmology such as:
Curvaton, Dilaton, Phantom fields, K-essence, and even the Higgs field among
others12.

We have already defined the scalar field Lagrangian in Eq. (1.19). From this, the
density and pressure are derived by expressions (1.25) and (1.26) respectively
as,

ρ =
1

2
φ̇2 + V (φ) +

(∇φ)2

2a2
. (1.66)

P =
1

2
φ̇2 − V (φ)− (∇φ)2

6a2
. (1.67)

11The statement of the weak energy condition is that Tµνvµvν ≥ 0, holds for any timelike vector.
In other words, the density of matter observed by a family of observers must be non-negative.

12Also instead of scalar fields, exists alternative theories which allows to modify GR theory them
are called f(R) theories (Starobinsky models).
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Where V (φ) is the inflationary field interaction or in this case, the effective po-
tential during inflation. Whether the cosmological principle and a barotropic
state equation are assumed, i.e. φ(r, t) = φ0(t) and P = ωφρ, then we would
find that,

φ̈0
Acceleration

+ 3Hφ̇0
Friction

= −V, φ0
Force

. (1.68)

The homogeneous Klein-Gordon equation with an equation state,

ωφ =
1
2 φ̇

2
0 − V (φ0)

1
2 φ̇

2
0 + V (φ0)

. (1.69)

Hence for negative pressure it must satisfy that,

φ̇2
0 � V (φ0). (1.70)

On this condition the inflaton will slowly roll down through the effective poten-
tial. This period is called slow-roll, and the inequality above (1.70) is referred
as the slow-roll condition.

It may be convenient to define the so-called slow-roll parameters13. They have
the following expressions,

εV = −8πG

2

(
V ′

V

)
. (1.71)

This εV provides us with the slope of potential.

ηV = −V
′′

V
. (1.72)

The above is thus the curvature of potential. Additionally, εV ≈ 1 would establish
inflation ending when potential becomes too steep and the acceleration halts.

How much inflation is enough?

The well-known number of e-folds N to the end of inflation is in a sense a good
measure of the amount of inflation that has taken place from time ti to tf , and
has the following definition,

N ≡
∫ tf

ti

Hdt = d ln a. (1.73)

Supposing that inflation begins at ti and that the acceleration rate stays constant
throughout inflation, a(t) = ai exp(Hinf (t − ti)). The particle horizon (1.60)
during inflation is,

dinf = (aiHi)
−1 (1− exp[−Hinf (t− ti)]) ' (aiHi)

−1. (1.74)

13Look at [Liddle et al., 1994] for more details.
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Future observations

The polarization of the cosmic microwave background (CMB) or better-known
as B-mode provides a direct test of inflationary model. Future missions gen-
eration such as COrE [Delabrouille et al., 2018], PRISM [André et al., 2014],
liteBIRD [Hazumi et al., 2019] and PIXIE [Kogut et al., 2011] have proposed
the goal to measure B modes with an unprecedented precision.

Eventually these future measurements will determine with a precision of per-
centage level the inflationary parameters. Therefore, tight constraints on the
abundance of light elements, neutrinos, PBHs abundances and among others.

1.4.1 Reheating

After the inflationary stage, the inflaton must transfer all its energy to the
rest particles of the standard model. One of the most common models for this
process is a phase of oscillations of the field, which eventually couples with other
matter fields through parametric oscillations (preheating). In this thesis we are
concerned with the first parts of this process. This is being shown in Figure 1.6.

Figure 1.6: Inflationary stage is divided by two different stages. First,
inflation occurs within the Slow-Roll stage, when the energy of the field
is dominated by the potential V (φ), i.e, V � φ̇2.
Secondly, after the accelerated expansion the potential V (φ) draws near
to the minimum then the scalar field begins to oscillate around the min-
imum. This particular process is generically called Reheating.

At the last e-folds of inflation the scalar field was almost homogeneous and had
an amplitude of Planck mass order φ ∼ MPl. While the scalar field energy is
decaying and transferred through non-adiabatic way, resulting the emergence of
particles for any φi−fields coupled. Given that the nature of inflation is unknown
and poorly understood, this mechanism is stipulated to kickstart parametric res-
onance during oscillatory stage and lead to preheating.

Preheating is governed by non-lineal dynamics due to the coupling with other
fields14. Reheating is a consequence of the parametric resonance. The decay

14The way in which the particle production occurs in preheating is highly model-dependent.
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rate Γφ of inflation increases and eventually approaches to the expansion rate,
i.e. H ∼ Γφ. In accordance with [Kofman et al., 1994] the decay rate could be
expressed as,

Γφ = Γ(φ →
Bosons

χχ) + Γ(φ →
Fermions

ψ̄ψ). (1.75)

Where Γ(φ → ψ̄ψ) = h2µ
8π and Γ(φ → χχ) = g4σ2

8πµ with σ being the minimum
value of effective inflationary potential.

When the decay rate dominates over the expansion rate the Universe reaches
at thermal equilibrium state or state of thermalization at a certain temperature
Tr ∼

√
MplΓφ. This temperature, known as Reheating temperature is of the order

of Tr ∼ 1016 GeV . This scale sets the end of Reheating.

During Reheating several process may arise such as: Non-perturbed effects,
non-lineal interactions, processes far away from thermal equilibrium, PBH pro-
duction, relics of magnetic monopole, formation solitons, q-balls or Kugelblitz,
among others.

In this thesis we are going to take the simplification of about modelling the bot-
tom of inflationary potential as Figure 1.7 shows. Hence, our simple approach
will be an harmonic shape. We will take this setup as a scenario for the study
of perturbations during this epoch. This thesis looks at the possible collapse
of perturbations and subsequent formation of PBHs at times before the end of
Reheating.

See [Peter and Uzan, 2013] or works such as [Frolov, 2010] or [Torres-Lomas et al., 2014] for
more details about preheating.
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Figure 1.7: While there are several ways to generate the minimum in-
flationary potential, we require choosing one that is fairly consistent
with the inflationary model. This plot shows a few of the models that fit
a quadratic minimum, the blue was ideal potential that we will work-
ing throughout of this thesis, the green trigonometric form is an axion-
like potential was developed essentially as ultralight dark matter see
[Cedeño et al., 2017], while purple is a scalar field potential with a
cosh-like and self-interaction have been studied by [Matos et al., 2009]
and finally red also, mimics the harmonic potential, although we have
not found literature studying this particular realization.



Chapter 2
Cosmological Perturbation Theory

«Everything in life is vibration»
Anonymous

Until now, we have discussed a Universe statistically homogeneous and isotr-
opic on large scales, nevertheless that is not the Universe we live in.
The treatment at linear order in cosmological perturbation theory has been ex-
tremely useful to understand the anisotropies on the CMB detected in the mi-
crowave region of the electromagnetic spectrum. The typically values of tem-
perature fluctuations are in order of ∼ 10−5. On the other hand, this is not the
situation for matter perturbations, linear order is accurate on large scales be-
cause perturbations are in order of δ � 1. Once one is placed on small scales the
things are thoroughly different, linear order is not valid at all, due to δ ≈ 1. As
time goes, more and more structure begins to form, so linear order becomes less
and less accurate, but there has a large range of scales over which the matter
fluctuations are still perturbative (and so that one does not have to run expen-
sive simulations).

In cosmological perturbation theory the background spacetime is always the
FLRW Universe meanwhile the perturbed spacetime is curved, and is not empty.
This Chapter is based on the usual bibliography of perturbation theory [Malik
and Wands, 2009] and textbooks [Ellis et al., 2012] and [Lachièze-Rey, 2012]
as well as courses notes [Baumann, 2012] and [Kirklin, 2015] with all of these
adapted to our conventions and notation.

2.1 Newtonian perturbations

For now we would like to examine a fluid in equilibrium with a density
ρ without viscosity, pressure P and a velocity distribution ~v without vorticity
sources, all of this on top of an expanding background. The gravitational in-
teraction is mediated through to a gravitational potential Φ and is described by
Poisson equation (1.3), thus, our dynamical system is given by,



∂ρ

∂t
+ ρ∇ · ~v = 0, Continuity equation.

∂~v

∂t
+ (~v · ∇)~v = −∇P

ρ
−∇Φ, Euler equation.

∇2Φ = 4πGρ, Poisson equation.

(2.1)
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We now address the following question: Which are the necessary conditions for
this fluid enclosed in a cloud to collapse?

The central idea in a perturbed analysis; is to slightly modify each quantity by a
small linear quantity, this can be expressed as,

ρ = ρ0 + δρ, P = P0 + δP, ~v = ~v0 + δ~v, Φ = Φ0 + δΦ. (2.2)

Where ρ0, P0, ~v0, and Φ0 are solutions of equilibrium or better known as back-
ground solutions (of the homogeneous and isotropic spacetime) and perturba-
tions are δρ

ρ0
, δPP0

, δ~v~v0 ,
δΦ
Φ0
� 1.

Substituting (2.2) in (2.1) and reducing terms with the help of the background
solution, we may reduce them to a perturbations dynamical system,



d

dt

(
δρ

ρ0

)
+∇ · δ~v = 0,

dδ~v

dt
+ (δ~v · ∇)~v0 = −∇δP

ρ0
−∇δΦ,

∇2δΦ = 4πGδρ.

(2.3)

Since the background is uniformly expanding, it is convenient to change to co-
moving coordinates,

~r = a(t)~x, ~v =
dr

dt
= ȧ~x+ a

dx

dt
= ~v0 + δ~v. (2.4)

Furthermore setting ~u = d~x
dt , the Euler equations take the next form,

d~u

dt
+ 2

ȧ

a
~u = − 1

a2ρ0
∇cδP −

1

a2
∇cδΦ. (2.5)

Particularly the pressure and density perturbations could be related with an adi-
abatic sound speed, (

∂P

∂ρ

)
S

= c2
s. (2.6)

Continuity equation also has been rewritten into comoving coordinates as,

d

dt

(
δρ

ρ0

)
+∇c~u = 0, (2.7)

and Poisson equation too,

∇2
cδΦ = 4πGa2δρ, (2.8)

where ∇c = a∇. Afterwards we took the divergence ∇c to (2.5) and d
dt of (2.7),

and therefore both are combined and can be simplified with (2.8) to obtain,

d2δ

dt2
+ 2

ȧ

a

dδ

dt
=
c2
s

a2
∇2
cδ + 4πGρ0δ. (2.9)

Here we have defined the density contrast given by,



2.1. NEWTONIAN PERTURBATIONS 33

δ(xi, t) ≡ δρ

ρ0
=
ρ(xi, t)− ρ0

ρ0
. (2.10)

Moreover solutions of (2.9) could be expressed as a superposition of plane
waves,

δ(xi, t) =

∫
V
δk(t) exp(i~k · ~r) d3k. (2.11)

Hence,

d2δk
dt2

+ 2H
dδk
dt

= (4πGρ0 − k2c2
s)δk. (2.12)

This is called the Jeans equation. It is fundamental to describe the growth of
structure in classic perturbations.

2.1.1 Jeans criterion

On one hand, whether the pressure dominates and reaches a value that is
enough to keep supporting gravity, then density perturbations will oscillate with
a decreasing amplitude (damped), this means,

4πGρ0 − k2c2
s ≤ 0. (2.13)

On the other hand, perturbations grow exponentially when gravity pulls stronger
than pressure,

4πGρ0 − k2c2
s > 0. (2.14)

In terms of wavelengths, we must define Jeans scale as,

λJ ≡ cs
√

π

Gρ0
. (2.15)

In other words, density perturbations δk will have two different regimes sepa-
rated by a particular scale λJ ,

{
If λ > λJ Growth (instability).
If λ ≤ λJ Oscillate (Sound waves).

(2.16)

For the growing case λ � λJ , the rate of growth is given by (4πGρ0)
1
2 and this

allows us to define a characteristic time,

τ0 = (4πGρ0)−
1
2 . (2.17)

Actually this is the collapsing time of certain region with a density ρ0.

Growth of Dark Matter structure

Let us now look at how inhomogeneities evolve in a matter dominated Universe,
a topic relevant for the formation of Large Scale Structure (LSS). Note that the
Jeans scale in this case is zero because the pressure and cs are absent,

δ̈m + 2Hδ̇m − 4πGρmδm = 0. (2.18)
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Since P = 0 for a matter fluid, during the matter-dominated we have seen (see
Table 1.1) how the scale factor evolves and the Hubble parameter as well. There-
fore, substituting the Friedmann equation (1.43), so that (2.18) is modified as,

δ̈m +
4

3t
δ̇m −

2

3t2
δm = 0. (2.19)

Seeing that form of the above differential equation. We would like to suggest a
polynomial solution as δm ∼ tp. So, we found the following two solutions,

δm ∝

{
t−1 ∝ a−

3
2

t
2
3 ∝ a

(2.20)

Clearly the first solution corresponds to a decreasing mode while the second
is a growing form of the fluctuations. The presence of each depends on the
initial conditions. Since we are interested on the growing of structure, we have
dropped out the decreasing mode. Keep in mind the growing mode of dark
matter perturbation grows similar to the scale factor, δm ∝ a, during a matter-
dominated epoch. This is an important result which will be discussed in the rest
of this work.

2.2 Relativistic linear perturbations

Firstly, we may wonder, "Why is necessary a relativistic description for the
perturbations?". Well, the short answer is, the classical perturbation is inappro-
priate or inadequate describing scales larger than Hubble horizon (super-horizon
scales) and also for relativistic matter components like photons, neutrinos or an-
other relativistic particle, cannot be described in a Newtonian formalism. For a
rigorous description of this perturbation one must resort to the framework of GR.

Let us start by considering a small perturbation δgµν throughout FLRW confor-
mal metric ḡµν which represents the background1solution,

gµν = ḡµν + δgµν . (2.21)

We will not go into tedious or technical calculations because is not the aim of this
section. Directly we are going to define the most general form of line element
perturbed in linear order where every term keeps factors of order one in all
perturbative quantities as,

ds2 = a(η)2
[
−(1 + 2φ)dη2 + 2Bidx

idη + [(1− 2ψ)δij + 2Eij ] dx
idxj

]
, (2.22)

where φ, ψ are scalar functions, Bi is a 3D vector known as shift function and
Eij is symmetric tensor Eij = Eji, and trace-free δijEij = 0. The spatial term in
square brackets is the curvature perturbation.

2.2.1 Scalar, vector, tensor decomposition

The scalar-vector-tensor (SVT) decomposition is an implement extremely
powerful, what makes the SVT decomposition so successful is the fact that from

1In this section we have denoted the background of whichever quantity A with a bar Ā.
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Einstein field equations (1.2), the scalars, vectors and tensors, all can be treated
separately at linear order, a property demonstrated by the Helmholtz Theorem.
Then, the vectors are decomposed as,

Bi = ∂iB +BT
i , (2.23)

with ∂iBT
i = 0, a transverse vector. While for tensors is,

Eij = ∂〈i∂j〉E + ∂(i∂j)E + ETij . (2.24)

Where ∂〈i∂j〉E is the antisymmetrization of E given by,

∂〈i∂j〉E ≡
(
∂i∂j −

1

3
δij∇2

)
E, (2.25)

and ∂(i∂j)E is the symmetrization of E,

∂(i∂j)E ≡
1

2
(∂iEj + ∂jEi) , (2.26)

and where ETij is a transverse and traceless tensor.

2.2.2 Orthonormal frame vector

According to [Lachièze-Rey, 2012], the metric gµν defines the orthonormal
frames generated by a local basis tetrad,

gαβ = ηµν(eµ)α(eν)β. (2.27)

The (eµ)α are called the tetrad components. The timelike (e0)µ can be inter-
preted like 4-velocity of the fluid,

(e0)µ = δµ0 . (2.28)

while the spacelike is,

(ei)
µ = (0, δij). (2.29)

Since they are orthogonal, it is easy to normalize them. Hence the normalized
timelike 4-vector at linear order,

(e0)µ = a−1(1− φ)δµ0 , (2.30)

and normalized spacelike at linear order,

(ei)
µ = a−1[Biδ

µ
0 + (1 + ψ)δµi − E

i
j δ

µ
j ]. (2.31)

2.3 Linear matter perturbations

As we did before with FLRW metric. For the case of matter here we have to
perturb the Energy-Momentum tensor (1.34),

Tµν = T̄µν + δTµν , (2.32)

where the perturbation component is,

δTµν = (δρ+ δP )ūµūν + (ρ̄+ P̄ )(δuµūν + ūµδuν)− δPδµν −Πµν . (2.33)
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Herein Πµν being the anisotropic stress tensor. The spatial part can be chosen
trace-free, Πij = 0. Without loss of generality, we also can set Π00 = Π0i =
Πi0 = 0. Although we will keep it for now.

The 4-velocity is subject to the constraint,

uµu
µ = −1, (2.34)

with components at linear order as we have obtained before for time component,

u0 = −a(1 + φ), (2.35)

and spatial component

ui = a(vi +Bi). (2.36)

In our case we are employing the orthonormal frame vectors on the frame of
perturbations (2.32) as follows,

Tµν = (êα)µ(êβ)νTαβ. (2.37)

Thus, we are obtaining all components at linear order,

T 00 =
ρ̄

a2
(1 + δ − 2φ) . (2.38)

Where δ is contrast density (2.10) which has been defined previously. Moreover,

T 0i = T i0 =
1

a2

(
qi + P̄Bi

)
. (2.39)

Where qi has been defined as,

qi ≡ (ρ̄+ P̄ )vi, (2.40)

which is the peculiar velocity of matter. Finally the spatial part of the tensor is,

T ij =
1

a2

[
P̄ δij + (2P̄ψ + δP )δij − 2P̄Eij + Πij

]
. (2.41)

Nevertheless, is more frequent to work with mixed tensor components, the only
reason is that allows much easier the calculations, so that the equations switch
to the next simplest form,

T 0
0 = −ρ̄ (1 + δ) . (2.42)

T i0 = −qi. (2.43)

T 0
i = (ρ̄+ P̄ )Bi + qi. (2.44)

T ij = (P̄ + δP )δij + Πi
j . (2.45)



2.4. GAUGE TRANSFORMATION 37

2.4 Gauge transformation

In cosmology a gauge transformation2 consists of a transformation which
reflects the coordinate freedom of the mapping between a background FLRW
spacetime and the "physical" inhomogeneous spacetime,

xµ −→ x̃µ ≡ xµ + ξµ(η, xi). (2.46)

With ξ0 ≡ T and ξi ≡ Li = ∂iL + (Li)T . Hence, coordinates could be rewritten
as,

η̃ = η + T (η, xi), x̃i = xi + Li(η, xi), (2.47)

T and L are the gauge functions.

2.4.1 Gauge transformation for gµν

Following the definition, gauge transformation applied on the perturbed met-
ric (2.21) yields,

δg̃µν = g̃µν − ḡµν(η̃, x̃i). (2.48)

On the other hand, we ought take advantage of line element invariance,

ds2 = gµµdx
µdxν = g̃µνdx̃

µdx̃ν . (2.49)

Then if we just write dxα =
∂xα

∂x̃µ
dx̃µ, that allows us to obtain the following

expression,

g̃µµ =
∂xα

∂x̃µ
∂xβ

∂x̃ν
gαβ. (2.50)

So, we employ it on (2.48) and find that,

δg̃µν =
∂xα

∂x̃µ
∂xβ

∂x̃ν
gαβ − ḡµν(η̃, x̃i), (2.51)

or,

δg̃µν =
∂xα

∂x̃µ
∂xβ

∂x̃ν
[
ḡαβ(η, xi) + δgαβ

]
− ḡµν(η̃, x̃i). (2.52)

Carrying a Taylor expansion of ḡµν(η̃, x̃i) = ḡµν(η + T, xi + Li), at linear order.

δg̃µν =
∂xα

∂x̃µ
∂xβ

∂x̃ν
[
ḡαβ(η, xi) + δgαβ

]
− ḡµν(η, xi)− T ḡ′µν − Li∂i ḡµν . (2.53)

Hence, accommodating terms we finally obtain,

δg̃µν =
∂xα

∂x̃µ
∂xβ

∂x̃ν
δgαβ +

[
∂xα

∂x̃µ
∂xβ

∂x̃ν
− δαµδβν

]
ḡαβ − T ḡ′µν − Li∂i ḡµν . (2.54)

The above expression (2.54) indicates a practical method to perform a gauge
transformation of metric perturbation. The Jacobian matrix has been easily ob-
tained as,

2Here we have denoted a gauge transformation of whichever quantity A with a tilde Ã.
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∂x̃α

∂xµ
=

(
1 + T ′ ∂iT
L′ i δij + ∂jL

i

)
. (2.55)

Thus, the inverse of Jacobian matrix at linear order is,

∂xα

∂x̃µ
=

(
1− T ′ −∂iT
−L′ i δij − ∂jLi

)
. (2.56)

Where α-index runs vertically and µ-index runs horizontally. We will work out
the δg̃00 component as an example,

δg̃00 =
∂xα

∂x̃0

∂xβ

∂x̃0
δgαβ +

[
∂xα

∂x̃0

∂xβ

∂x̃0
− δα0 δ

β
0

]
ḡαβ − T ḡ′00 − Li∂i ḡ00. (2.57)

Indeed, it may be reduced with taking into consideration only linear terms.

δg̃00 = −2a2φ̃ = −2a2φ+ 2a2T ′ + 2a2TH. (2.58)

Therefore,

φ̃ = φ− T ′ −HT. (2.59)

In the same way we have derived the gauge transformation for φ, the rest of
the quantities might be obtained. Then, after several calculations to the rest of
components the transformations are found,

ψ̃ = ψ +HT +
1

3
∂iL

i. (2.60)

B̃i = Bi + ∂iT − L′i , −→
SV T

B̃ = B + T − L′. (2.61)

Ẽij = Eij − ∂〈iLj〉 , −→
SV T

Ẽ = E − L. (2.62)

2.4.2 Gauge transformation for Tµν

Likewise the geometrical perturbations, energy-momentum tensor Tµν is also
subject to gauge transformations. We will work in the mixed form obtained
before,

δT̃µν =
∂xµ

∂x̃α
∂xβ

∂x̃ν
Tαβ − T̄µν (η + T, xi + Li). (2.63)

Again doing a Taylor aproximation at 1st order,

δT̃µν =
∂xµ

∂x̃α
∂xβ

∂x̃ν
δTαβ +

[
∂xµ

∂x̃α
∂xβ

∂x̃ν
− δµαδβν

]
T̄αβ − T T̄ ′ µν − Li∂i T̄µν . (2.64)

So evaluating for each components after straightforward computation, we found,

δρ̃ = δρ− T ρ̄′. (2.65)

δP̃ = δP − T P̄ ′. (2.66)

q̃i = qi + (ρ̄+ P̄ )L′i, or ṽi = vi + L′i, −→
SV T

ṽ = v + L′. (2.67)

Π̃ij = Πij (2.68)

Thus, the anisotropic stress tensor is a gauge-invariant quantity; a concept to be
discussed further below.
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2.4.3 Gauge-invariant quantities

Gauge invariance refers to the following property of some perturbations. Any
quantity Q with a well defined and completely set gauge transformation Q→ Q̃
will be an invariant Q = Q̃. A few of them represents a physical observables
or provide us information about them. In the following we list a few relevant
gauge-invariant quantities, which will be used on the next sections.

Bardeen potentials

The original article by Bardeen [Bardeen, 1980] found a particular transforma-
tion form of perturbations,

Φ ≡ φ+H(B − Ė) + Ḃ − Ë. (2.69)

Ψ ≡ ψ −H(B − Ė) +
1

3
∇2E. (2.70)

Ψi = Ėi −Bi (2.71)

Any transformation to a different gauge of the perturbations on the right hand
side represents no change for the combination of all terms. This happens to the
scalar potentials of the perturbed metric (2.22) when the shear is absent as we
shall see below.

Adiabatic fluctuations

In adiabatic perturbations all fluid perturbations are determinated by a single
degree of freedom in the metric perturbations. Since canonical inflation is dom-
inated by a single degree of freedom, inflation naturally predicts initial fluctu-
ations which ought to be adiabatic. Energy densities of all species inherit the
single degree of freedom and therefore their difference is constant (invariant).
Thus,

δPa
ρ̄b + P̄a

− δPb
ρ̄b + P̄b

, (2.72)

is a gauge-invariant, with a and b label species. Just in case all components are
adiabatic, this equation vanishes. Otherwise, isocurvature perturbations appear
and they can be expressed as the discrepancy between different components.
From the equation above, thus we can define,

Sab ≡
δa

1 + ωb
− δa

1 + ωb
. (2.73)

Isocurvature perturbations is another gauge-invariant that corresponds to per-
turbations between different components. As stated above, if there was a single
inflation field from primordial perturbations, i.e. Sab = 0, for all types of species.
For instance, employing a barotropic fluid, (2.72) becomes,

δa
1 + ωa

=
δb

1 + ωb
. (2.74)

Whether base on the case of matter and radiation fluids, we then find δr =
4

3
δm.
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2.4.4 Relevant Gauges

Let us focus on the quantities relevant to this work. Hereafter we will neglect
vectors and tensor, therefore to set a gauge completely we must determine L and
T . Briefly, we would like to mention several different ways to fixed gauges and
implications which are relevant to this thesis. In fact, observables are physical
and do not depend on the gauge. Therefore, even if the starting point is not fully
general, the results will be. Here is a list of them,

• Newtonian or longitudinal gauge

This is the most popular gauge used in perturbation theory. It is extremely
useful on formation and growth structure. Just choosing hypersurfaces of
constant time where B̃ = 0 and also isotropic hypersurfaces, i.e. Ẽ = 0.
Then,

ds2 = a2[−(1 + 2Φ)dη2 + (1− 2Ψ)δijdx
idxj ]. (2.75)

where Φ(R, η),Ψ(R, η) are Bardeen potentials which are describing the
perturbations of spacetime (it can be shown that shear contributions are
null in this gauge). Furthermore, we can obtain explicit forms for T and L
in this gauge,

L = E, (2.76)

and

T = E′ −B, (2.77)

as long as there is absences of anisotropic stress in most of the cases Ψ = Φ.

• Uniform density gauge

The gauge freedom can be set from condition on the matter perturbations.
In the case of uniform density we choose δρ̃ = 0.

T =
δρ

ρ′
(2.78)

Although, we would need an additional condition in order to find a ex-
pression for L.

• Comoving gauge

This is a gauge where all observers move along with the expansion flux.
Only if we set vi = 0, therefore, q̃i = 0, implies from (2.44) there is null.
Then, B̃ = 0.

L = −
∫
vdη + const. (2.79)

and

T = v −B. (2.80)
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2.5 Linearised equations

Our task for now is linearise the perturbed Einstein equations,

δGµν = 8πGδTµν . (2.81)

We will work with the Newtonian gauge (2.75). Hence, the respective Christofell
symbols (1.5) computed at linear order are,

? Γ0
00 = H+ Φ′.

? Γ0
0i = Γ0

i0 = ∂iΦ.

? Γi00 = δij∂jΦ.

? Γ0
ij = Γ0

ji = Hδij − [Ψ′ + 2H(Ψ + Φ)]δij .

? Γij0 = (H−Ψ′) δij .

? Γijk = δjkδ
i`∂`Ψ− 2δi( j∂k )Ψ.

Now we can obtain Ricci tensor components at linear order,

R00 = −3H′ +∇2Φ + 3H(Ψ′ + Φ′) + 3Ψ′′. (2.82)

R0i = 2∂iΨ
′ + 2H∂iΦ. (2.83)

Rij =
[
H′ + 2H2 −Ψ′′ +∇2Ψ− 2(H′ + 2H2)(Ψ + Φ)

−HΦ′ − 5HΨ′
]
δij + ∂i∂j(Ψ− Φ). (2.84)

Also Ricci scalar at linear order,

R =− 1

a2
[−6(H′ +H2) + 2∇2Φ− 4∇2Ψ

+ 12(H′ +H2)Φ + 6Ψ′′ + 6H(Φ′ + 3Ψ′)]. (2.85)

Finally, after a several laborious calculations3, we have derived all components
of Einstein tensor (1.2) at linear order,

G00 = 3H2 + 2∇2Ψ− 6HΨ′. (2.86)

G0i = 2∂iΨ
′ + 2H∂iΦ. (2.87)

Gij =[∇2(Φ−Ψ) + 2Ψ′′ + 2(2H′ +H2)(Ψ + Φ) + 2HΦ′

+ 4HΨ′]δij + ∂i∂j(Ψ− Φ)− (2H′ +H2)δij . (2.88)

Since we have all linearised components of matter as well as geometric. We
would able to compute Einstein equations (1.2) at linear order. The 00-component
is,

∇2Ψ = 3H(Ψ′ +HΦ) + 4πGρ̄a2δ. (2.89)

3I would like to recommend an awesome mathematical software based on Python called Sage-
Math which has been used to check the results in this section, the extension SageManifolds that
helped me computing all the relevant geometrical quantities.

https://www.sagemath.org/
https://www.sagemath.org/
https://sagemanifolds.obspm.fr/index.html
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the δG0i = 8πGδT0i component is,

Ψ′ +HΦ = −4πG(ρ̄+ P̄ )v. (2.90)

Whether (2.89) and (2.90) are combined in order to get the following,

∇2Ψ = 4πGa2ρ̄∆. (2.91)

With ∆ being the comoving-gauge density perturbation defined as,

∆ ≡ δρ− 3H(ρ̄+ P̄ )(v +B)

ρ̄
= δ +

ρ̄′

ρ̄
(v +B), (2.92)

which is a gauge-invariant. For the spatial component, δGij = 8πGδTij .

[∇2(Φ−Ψ) + 2Ψ′′ + 2(2H′ +H2)(Ψ + Φ) + 2HΦ′ + 4HΨ′]δij

+ ∂i∂j(Ψ− Φ) = 8πGa2[(δP − 2P̄Ψ)δij + Πij ]. (2.93)

So, let us take the trace-free part of (2.93),

∂〈i∂j〉(Ψ− Φ) = 8πGa2Πij (2.94)

We had mentioned before without anisotropic stress contributions, Bardeen po-
tentials become the same, and the Eq. (2.94) is a completely proof of that.
Trace part become as,

Ψ′′ +
1

3
∇2(Φ−Ψ) + (2H′ +H2)Φ +HΦ′ + 2HΨ′ = 4πGa2δP. (2.95)

Futhermore we mentioned that most of cases the anisotropic stress (2.94) will
not have any contribution. We thus are allowed to fix Ψ = Φ. In consequence of
this, pertubed Einstein equations then turn into,

∇2Φ− 3H(Φ′ +HΦ) = 4πGρ̄a2δ. (2.96)

Φ′ +HΦ = −4πGa2(ρ̄+ P̄ )v (2.97)

Φ′′ + 3HΦ′ + (2H′ +H2)Φ = 4πGa2δP. (2.98)

Those are typically linearised perturbed field equations.

2.5.1 Perturbed conservation equations

In order to derive the evolution equations for perturbations, we begin by
computing the components of perturbed conservation Energy-Momentum ten-
sor,

∇µδTµν = 0. (2.99)

Through the first component µ = 0, we obtain the following equation,

δρ′ + 3H (δρ+ δP )− 3Ψ′
(
ρ̄+ P̄

)
+ ∂i q

i = 0. (2.100)

Each term of (2.100) are,

• 3H → dilution due to expansion.

• Ψ′ → density change by perturbations.
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• ∂i q
i → local fluid flux.

From definitions (2.10) and (2.40) so that the Eq. (2.100) has been rewritten
as,

δ′ +

(
1 +

P̄

ρ̄

)(
∂i v

i − 3Ψ′
)

+ 3H
(
δP

δρ
− P̄

ρ̄

)
δ = 0. (2.101)

These equations can be combined to recover the Newtonian evolution of per-
turbations only in the case of pressure-less matter (as in CDM case). With the
above at hand we can now address the evolution of a scalar field which in prin-
ciple would not be described in terms of a perfect fluid.
The Bardeen potential Ψ is only constant on super-Hubble scales.

2.6 Curvature perturbation

The next derivation has been followed from [Kirklin, 2015], however this
will be adapted according our metric convention. The induced metric, γij is just
the spatial part of the line element (2.22),

γij ≡ a2 [(1− 2ψ)δij + 2Eij ] . (2.102)

Afterwards of computed the 3-dimensional Ricci scalar4 associated with (2.102).

a2R(3) = 4∇2

(
ψ − 1

3
∇2E

)
. (2.103)

The curvature perturbation then has been defined as,

ζ ≡ ψ − 1

3
∇2E. (2.104)

Which is often named Gauge-ready form. This is equivalent to the metric per-
turbation (2.22) evaluated in the uniform δρ̃ = 0 and comoving gauge B̃ = 0
gauge as well. Unfortunately is not a gauge invariant yet. We would prefer it if
it was gauge-invariant. Under a gauge transformation into (2.104),

ζ̃ = ψ̃ − 1

3
∇2Ẽ. (2.105)

Making use of transformations previously calculated in (2.60) and (2.62). Since
we also derived (2.65) in this gauge, the Eq. (2.105) is rewritten as follows,

ζ̃ = ζ +HT = ζ +Hδρ
ρ̄′
. (2.106)

We can thus define the curvature perturbations in uniform density gauge as,

ζ ≡ ψ − 1

3
∇2E +Hδρ

ρ̄′
. (2.107)

We could equally have used B and v gauge transformations (2.61) and (2.67)
respectively as well to remove T and get,

R ≡ ψ − 1

3
∇2E −H(B + v). (2.108)

4In the same way, SageManifolds has been used.

https://sagemanifolds.obspm.fr/index.html
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This is called the comoving curvature perturbation. There are important quan-
tities which always are conserved on super-horizon scales for adiabatic fluctua-
tions. Whether we do the difference between (2.107) and (2.108),

R− ζ = Hδρ
ρ̄′

+H(B + v) = H ρ̄

ρ̄′

[
δρ

ρ̄
+
ρ̄′

ρ̄
(v +B)

]
= H ρ̄

ρ̄′
∆ (2.109)

that so is proportional to the comoving-gauge density contrast (2.92). Besides,
the Fourier transformation has been applied on (2.91),

− k2Φk =
3

2
H2∆k. (2.110)

⇒ ∆k = −2

3

(
k

H

)2

Φk. (2.111)

On k � 1 super-horizon scales, ∆k ≈ 0. Hence,

Rk ≈ ζk, in super-horizon scales. (2.112)

Furthermore, it can be proved that ζ is conserved on super-horizon. Another
useful property of this arises when writing (2.96) in Fourier space as well, it
hence can be expressed as,

− k2Φk − 3H(Φ′ +HΦ) =
3

2
H2δk. (2.113)

Then, isolating δk,

δk = −2

3

(
k2

H2
+ 3

)
Φ− 2

(
Φ′

H

)
. (2.114)

In terms of Newtonian gauge variables, the quantity defined in (2.108) is,

Rk = Φk −Hv = Φk +H
(

Φ′k +HΦk

4πGa2(ρ̄+ P̄ )

)
= Φk +

2

3

(
H−1Φ′k + Φk

1 + P̄
ρ̄

)
. (2.115)

As we saw on the previous dark matter case. Φk = Ψk = const. on super-horizon

scales. Thus, Rk ≈
5

3
Φk. Relating (2.114) and (2.115), one may express δk as a

function of Rk as follows,

δk = −2

5

(
k2

H2
+ 3

)
Rk. (2.116)

This result is extremely important because relates the perturbations with matter
perturbations.
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2.7 ADM-FLRW coordinates

In order to make contact with the quantities employed by numerical sim-
ulations of gravitational collapse (see [Torres et al., 2014]), the perturbative
FLRW metric in Newtonian gauge in spherical coordinates. In this section was
following from Nuñez et al. Private communication.

ds2 = −(1 + 2Φ)dT 2 + a(T )2(1− 2Ψ)(dR2 +R2dΩ2). (2.117)

For a perfect fluid or scalar field, there are no anisotropic stresses and the field
equations i = j ensures Φ = Ψ. The product a(T )2(1 − 2Ψ) is changed by
exp(2ψ), where ψ = ψ(R, T ), so that the line element takes the next form,

ds2 = −(1 + 2Φ)dT 2 + exp(2ψ)(dR2 +R2dΩ2). (2.118)

Using the coordinates transformation,

T → t, and R→ r exp(−ψ), (2.119)

⇒ dT = dt, and dR = exp(−ψ)(dr − rdψ)

= exp(−ψ)(dr − rψ̇dt− rψ′dr). (2.120)

The line element then is rewritten as,

ds2 = −(1 + 2Φ)dt2 + r2dΩ2 + (1− rψ′)2

(
dr − rψ̇

(1− rψ′)
dt

)2

. (2.121)

Defining the functions,

α2 = 1 + 2Φ. (2.122)

γ = 1− rψ′. (2.123)

β = −rψ̇
γ
. (2.124)

The line element takes the form of an ADM-like (Arnowitt-Deser-Misner) one
where we have defined the radial coordinate, r as the areal radius.

ds2 = −α2dt2 + γ2 (dr + βdt)2 + r2dΩ2, (2.125)

with α and β the lapse and shift functions, and γ the r − r component in the
constant time hypersurface. At this point we could continue and obtain the cor-
responding form of the Einstein equations in such coordinate system. However,
for this case was convenient go a step further and define the following functions,

ν =
β

α
. (2.126)

m =
r

2

(
1 + ν2 − γ−2

)
. (2.127)

∆ = 1− 2
m

r
+ ν2 = γ−2. (2.128)

Expanding the terms of (2.125),
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ds2 = −
(
α2 − γ2β2

)
dt2 + γ2dr2 + 2γ2βdrdt+ r2dΩ2. (2.129)

Also using the expressions (2.126), (2.127) and (2.128).

ds2 = −α
2

∆

(
∆− ν2

)
dt2 + 2

αν

∆
drdt+

dr2

∆
+ r2dΩ2. (2.130)

Finally we have obtained the ADM-FLRW metric,

ds2 = −α
2

∆

(
1− 2

m

r

)
dt2 + 2

αν

∆
drdt+

dr2

∆
+ r2dΩ2. (2.131)

Notice that temporal component has a term almost similar to that of the Schwarzschild
metric. This form of the line element implies a very simple expression for the
mixed Einstein tensor components obtained as,

Gtt = −2
m′

r2
. (2.132)

Grt = 2
ṁ

r2
. (2.133)

Gtr =
2 r2ν ν̇ − 2 r ṁ− 2αmν

r3α2 ∆
. (2.134)

Grr =
2r3 ν̇ + 2r2 ν ṁ− 4r2mν̇ − 2r αm+ 4αm2

r4α∆
. (2.135)

The final remark about this formalism: Those coordinates are certainly more
applicable in Numerical Relativity (that is the reason they are called ADM-FLRW
coordinates), but we can briefly discuss their particularities. On one hand, the
advantages being that Einstein differential equations are transforming from 2nd
order into 1st order. On the other hand, we have to be careful because there are
too many functions to determine and it is necessary to find the constraints and
extra relations between each other.



Chapter 3
Homogeneous scalar field during Reheating

«Everything we call real is made of things that cannot be regarded as real»
Niels Bohr

Since we have derived all expressions that just will need through this chapter.
At large scales according to cosmological principle the background is homoge-
neous and isotropic, which is the pure FLRW case, mathematically all the back-
ground quantities1 cannot depend on the spatial coordinates. Also that forces us
setting up Φ = Ψ = 0 from the Eq. (2.117). By now our first step is to obtain the
metric components.

ψ0 = ψ0(t) = ln(a), ⇒ H = ψ̇0. (3.1)

Actually it is easy to compute the functions (2.122), (2.123), (2.124), (2.126),
(2.127) and (2.128) for this case.

α0 = 1, (3.2)

γ0 = 1, (3.3)

β0 = −rH, (3.4)

ν0 = −rH, (3.5)

m0 =
1

2
r3H2, (3.6)

∆0 = 1. (3.7)

Reheating arose after the inflationary epoch when the scalar field goes down
to the effective potential minimum. Although, when the scalar field oscillated
over minimum potential could be modeled by different ways as we shown in
Figure 1.7, we choose an harmonic potential V = µ2|φ|2 for technical simplicity
and since formally this represents the first term in a Taylor expansion near a
potential minimum. We also did not consider self-interactions for the meantime.
The energy-momentum tensor is thus,

Tµν = ∂µφ
∗∂νφ+ ∂µφ∂νφ

∗ − gµν
(
∂αφ∂αφ

∗ + µ2φφ∗
)
. (3.8)

with µ = mc
~ being the scalar field mass on natural units. As long as isotropy

and homogeneity is preserved, the scalar field only depends of time φ(t, ~r) =
φ0(t). By now we might be able to compute the density of scalar field through

1Hereinafter the sub index 0 will represent background quantities.
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the expression (1.25) but first we need the normal vector nµ to the t =const.
surfaces which has the explicit components,

nµ = (1, r H(t), 0, 0). (3.9)

Then, the non-zero terms of energy density (1.25) are,

ρ0 = n0n0T00 + n0n1T01 + n1n0T10 + n1n1T11. (3.10)

ρ0 = Π0 Π∗0 + µ2φ0 φ
∗
0, (3.11)

and the pressure is given by the expression (1.26),

P0 = Π0 Π∗0 − µ2φ0 φ
∗
0, (3.12)

where we have defined the momentum Π0 ≡ φ̇0.
Indeed these above expressions represent constraint equations. Clearly we need
a evolution equation which has been obtained by (1.10),

Π̇0 + 3HΠ0 + µ2φ0 = 0. (3.13)

It determines the time evolution of the H and the scalar field φ0. Then,

H2 =
8πG

3

(
Π0Π∗0 + µ2φ0φ

∗
0

)
. (3.14)

Friedmann equation (1.43) has been used to close the system equations.

3.1 Analytic solution approximations to Reheating

At this point we would wish solve Eq. (3.13), unfortunately it does not
have an analytic solution. However, in this case we will concentrate oscilla-
tions around near the minimum as is shown in Figure 1.6. During Reheating
the expansion rate of the Universe is slower compared to time of oscillation of
the scalar field. In other words the scalar field oscillation is faster than Hubble
expansion, tH = (aH)−1 � (aµ)−1 = tφ, or H � µ. This inequality is always
satisfied at late times, and it is helpful to find an approximated solutions.

One important condition from the end of the inflationary epoch is ε = 1. In view
of (3.12),

P0 = 0 → Π0 Π∗0 = µ2φ0 φ
∗
0. (3.15)

The scalar field has a behavior as pressure-less “fluid", even though, in reality
it cannot be exactly dust with P = 0 but it behaves either as a “fluid" with
small pressure or as a collisionless “fluid". The density (3.11) provides the next
relation,

ρ0 = 2µ2|φ0|2. (3.16)

Since this scenario is approaching as pressure-less background, we thus already
know how the background density scales at matter epoch (1.51). Therefore we
had proposed the following Ansatz as,

φ0 ∼ a−
3
2 . (3.17)
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And we futher propose a general solution as,

φ0 = f(t) a−
3
2 . (3.18)

This give us a differential equation for f(t),

µ2 f + f̈ − 3af ä

2 a2
− 3f ȧ2

4 a2
= 0. (3.19)

Besides, due to µ� H the Eq. (3.19) would be simplified to,

f̈ + µ2 f = 0. (3.20)

This assumption drive us towards an harmonic oscillator equation! This has the
famous flat waves solution,

f(t) = C1 exp (iµt) + C2 exp (−iµt). (3.21)

Therefore to simplify the above solution, we have set another form of the solu-
tion with a constant phase ψ0,

φ0(t) = C a−
3
2 exp (i(µt+ ψ0)). (3.22)

In the simplified case of a real scalar field,

φ0(t) = Aa−
3
2 sin (µt+ θ0). (3.23)

With A and C being integration constants. The background real case has been
followed in [Alcubierre et al., 2015] and it will be discussed on Appendix A. The
background complex case in cosmological context is discussed in [Jetzer and
Scialom, 1997].

3.2 Initial conditions

Since initially the scalar field is described like a pressure-less “fluid", the
background would have had at the initial time, specifically the end of inflation
tend, the values H(tend) = Hend, a(tend) = aend and P (tend) = Pend = 0,

H2
end =

1

3M2
Pl

(
|Π|2end + µ2|φ|2end

)
. (3.24)

Here we have used the reduced Planck mass M2
Pl ≡

1

8πG
, thus,

Pend = |Π|2end − µ2|φ|2end. (3.25)

The scale factor in pressure-less or dust scenario goes like shown in Table 1.1
and making use of analytic solution (3.22) and its derivative, with conditions
(3.24) and (3.25) one would calculate the integration constant as follows,

C =


√
H2
end − κPend√

2κµ

 a
3
2
end exp(−i(µtend + ψ0)) (3.26)

Hence,
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Figure 3.1: Evolution of the conformal Hubble parameter H/µ as a
function of µη with a value of µ = 10Hend for a real/complex scalar field
oscillating around the minimum of the potential. We show the compar-
ison between the solution of standard dust with black dots, and both
analytical approximations (3.23) in red line-dots and (3.22) in magenta
tiny dots.

φ0(t) =


√
H2
end − κPend√

2κµ

 (
tend
t

exp[iµ(t− tend)]
)
. (3.27)

Then, evaluated at tend,

φend =

√
H2
end − κPend√

2κµ
. (3.28)

Interestingly the phase ψ0 does not appear on the initial condition. We also
derived (3.27) to find an expression for the momentum,

Π0(t) = iµφ0(t)− 3

2
Hφ0(t). (3.29)

Evaluated at tend, we will find the second initial condition,

Πend = iµφend −
3

2
Hend φend. (3.30)

As an example relating the scalar field φ to inflaton, one could set the initial value
of Hend at the end of inflation based on [Martin et al., 2019] being ρinf = 3H2

end

M2
Pl = 1012 M4

Pl = 2.43× 1015 GeV so that corresponds to Hend ∼ 10−6 MPl.
Even though, the condition H � µ is not met at the end of inflation see Figure
3.2. The approximation (3.22) rapidly converges towards the numerical solution
generated with the same conditions, despite the oscillations are still evident, but
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Figure 3.2: The background solution is numerically compared to ana-
lytical for both cases have a value of n = 10.

their amplitude decreases as time goes by. If we assume that µ = nHend then,
the initial condition (3.28) would be rewritten as,

φend =

√
3

2

1

n
MPl. (3.31)

The above equation, on the fast oscillations regime must meet the condition
n >> 1. Thus, it certainly is translated to find φend � MPl. In light of the
definition of the slow roll parameter (1.71), the last condition implies that the
Universe is out of the period of slow-roll. Note finally that in Figure 3.3 the
complex solution shows no oscillations for the Hubble parameter as well as for
the pressure. As seen in the Figure 3.1, this characteristic is not shared with the
real field.

In the next chapter we will analyze the behavior of small perturbations around
the homogeneous solution (3.27). Furthermore, we would like to determine the
instability band located between Hubble horizon and Jeans length which will
provide us several scales where the perturbations might grow.
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Figure 3.3: The first plot shows how the constraint Eq. (3.14) evolves
for both the real and complex scalar field compared to the solution in
standard pressure-less dust. The second plot shows that an oscillatory
solution behaves in average like a pressure-less “fluid" for the real case.
Otherwise the complex case behaves completely as pressure-less. Here
we have used a value µ = 10Hend.



Chapter 4
Evolution of perturbations during Reheating

«As usual, nature’s imagination far surpasses our own. As we have seen
from the other theories, they are really quite subtle and deep»

Richard Feynman

The aim of this chapter is to describe how the tiny fluctuations or pertur-
bations during Reheating evolved. Furthermore we focus on a complex scalar
field without a quartic self-interaction in a perturbed FLRW Universe and only
perturbations at linear order will be considered. For that reason, the scalar field
is expressed as,

φ = φ0(t) + φ1(xi, t). (4.1)

Where φ1
φ0
� 1. For our purposes it is convenient to start with the perturbed

comoving FLRW metric (1.58), in Newtonian gauge and comparable to ADM so
that the results will be transferable to initial collapse conditions of Section 2.7.

ds2 = a(η)2[−(1 + 2Φ)dη2 + (1− 2Ψ)(dR2 +R2dΩ2)]. (4.2)

Note that we are using the conformal time instead of cosmic time to express the
metric. In term of this variable, the relevant Einstein field equations are1,

(0)Gηη → H2 =
8πG

3
a2ρ0. (4.3)

(0)Grr → H′ −H2 = −4πGa2(ρ0 + P0). (4.4)

The background density (1.25) is,

ρ0 =
φ′0φ

′∗
0

a2
+ µ2φ0φ

∗
0, (4.5)

and the pressure given by (1.26) is

P0 =
φ′0φ

′∗
0

a2
− µ2φ0φ

∗
0. (4.6)

As a result of the conservation law (1.10) is the Klein-Gordon equation,

φ′′0 + 2Hφ′0 + a2µ2φ0 = 0. (4.7)

As mentioned before, these are purely background quantities. These conformal
background expressions are going to be useful in order to obtain the perturbed
equations.

1The superscript (n)G denotes the n-th order in perturbative expansion.
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Including the perturbed scalar field (4.1) on Einstein equations (1.2) at linear
order, the components (1)Gηη and (1)Grη field equations respectively are,

∆Ψ− 3H(Ψ′ +HΦ) =4πG(a2µ2φ∗0φ1 + a2µ2φ0φ
∗
1

+ φ′∗0 φ
′
1 + φ′0φ

′∗
1 − 2φ′0φ

′∗
0 Φ). (4.8)

Ψ′ +HΦ = 4πG(φ′0φ
∗
1 + φ′∗0 φ1). (4.9)

Additionally due to azimuthal symmetry (1)Gθθ and (1)Gϕϕ are the same. From
this we can show that there is no anisotropic stress tensor Πij at 1st order. The
proof comes from taking the differences between,

Grr −Gθθ = 8πG(T rr − T θθ ). (4.10)

This guarantees that,

d2 (Ψ− Φ)

dR2
− 1

R

d (Ψ− Φ)

dR
=

(
28πG

1− 2Φ

)
dφ1

dR

dφ∗1
dR

. (4.11)

The right hand side is a second order term, so we can safely neglected it at linear
order and this implies,

Φ = Ψ. ⇐⇒ Πij = 0. (4.12)

Thus, the Eq. (4.8) can be cast as,

∆

(
a2Ψ

H

)
=

4πGa2

H
(
a2µ2φ∗0φ1 + a2µ2φ0φ

∗
1 + φ′∗0 φ

′
1 + φ′0φ

′∗
1

−2φ′0φ
′∗
0 Ψ
)

+ 3a2(Ψ′ +HΨ). (4.13)

From now on, the background equations will be useful in order to reduce our
perturbative equations. For instance, we can substitute (4.3) in the above equa-
tion and find that,

∆

(
a2Ψ

H

)
=

4πGa2

H
(
a2µ2φ∗0φ1 + a2µ2φ0φ

∗
1 + φ′∗0 φ

′
1 + φ′0φ

′∗
1

)
+ 3a2Ψ′ +

8πGa4µ2

H
φ0φ

∗
0Ψ. (4.14)

The next highlighted blue terms represent numerically a factor of one derived
from the background Eq. (4.3),

∆

(
a2Ψ

H

)
=

4πGa2

H
(
a2µ2φ∗0φ1 + a2µ2φ0φ

∗
1 + φ′∗0 φ

′
1 + φ′0φ

′∗
1

)
+

8πGa4µ2

H
φ0φ

∗
0Ψ + 3a2Ψ′

[
8πG

(
φ′0φ

′∗
0 + a2µ2φ0φ

∗
0

)
3H2

]
. (4.15)

Then,

∆

(
a2Ψ

H

)
= 4πG

[
a4µ2

H
(φ∗0φ1 + φ0φ

∗
1) +

a2

H
(
φ′∗0 φ

′
1 + φ′0φ

′∗
1

)
+

2a2φ′0φ
′∗
0 Ψ′

H2

]
+

8πGa4µ2

H2
φ0φ

∗
0Ψ′ +

8πGa4µ2

H
φ0φ

∗
0Ψ. (4.16)



55

In the last two terms outside of square parenthesis, we identify our Eq. (4.9),

∆

(
a2Ψ

H

)
= 4πG

[
a4µ2

H
(φ∗0φ1 + φ0φ

∗
1) +

a2

H
(
φ′∗0 φ

′
1 + φ′0φ

′∗
1

)
+2a2φ′0φ

∗
1 − 2a2φ′0φ

∗
1 +2a2φ′∗0 φ1 − 2a2φ′∗0 φ1

+
2a2φ′0φ

′∗
0 Ψ′

H2

]
+

8πGa4µ2

H2
φ0φ

∗
0

[
4πG(φ′0φ

∗
1 + φ′∗0 φ1)

]
. (4.17)

We can complete the Klein-Gordon equation (4.7), so factorising and accommo-
dating,

∆

(
a2Ψ

H

)
= 4πG

[
a2φ′0φ

′∗
1

H
+
a2φ′∗0 φ

′
1

H
+

2a2φ′0φ
′∗
0 Ψ′

H2

+
8πGa4µ2

H2
φ0φ

∗
0

[
��
�φ′0φ
∗
1 +HHHφ′∗0 φ1

]
− a2φ∗1
H

(
−2Hφ′0 − a2µ2φ0

)
+a2φ′0φ

∗
1

[
1−

8πG
(
φ′0φ

′∗
0 +���

��a2µ2φ0φ
∗
0

)
H2

]
− a2φ1

H
(
−2Hφ′∗0

−a2µ2φ∗0
)

+a2φ′∗0 φ1

[
1−

8πG
(
φ′0φ

′∗
0 +
XXXXXa2µ2φ0φ

∗
0

)
H2

]]
. (4.18)

Actually we have rewritten the acceleration equation (4.4) as,

H′

H2
− 1 = −8πG

H2
φ′0φ

′∗
0 . (4.19)

Then rearranging,

∆

(
a2Ψ

H

)
= 4πG

[
a2φ′0φ

′∗
1

H
+
a2φ′0φ

′∗
0 Ψ′

H2
− a2φ∗1φ

′′
0

H
+ a2φ′0φ

∗
1

H′

H

+
a′aφ′0φ

∗
1

H
− a′aφ′0φ

∗
1

H
+
a2φ′∗0 φ

′
1

H
+
a2φ′0φ

′∗
0 Ψ′

H2

−a
2φ1φ

′′∗
0

H
+ a2φ′∗0 φ1

H′

H
+
a′aφ′∗0 φ1

H
− a′aφ′∗0 φ1

H

]
. (4.20)

The above equation simplifies enormously when written in terms of the Mukhanov-
Sasaki (M-S) variable. This is defined as,

u ≡ aφ1 + zΨ, where z ≡ aφ′0
H

. (4.21)

The Eq. (4.18) then takes the form,

∆

(
a2Ψ

H

)
= 4πG

[
a′zφ∗1 + azφ′∗1 + zΨ′z∗ − aφ∗1z′+zΨz′∗ − zΨz′∗

+a′z∗φ1 + az∗φ′1 + zΨ′z∗ − aφ1z
′∗+z∗Ψz′ − z∗Ψz′

]
.

(4.22)

From this final form, we can reduce the equation considerably by employing the
M-S variable, this may be expressed as,



56 CHAPTER 4. EVOLUTION OF PERTURBATIONS DURING REHEATING

∆

(
a2Ψ

H

)
= 4πG

(
u′∗z − u∗z′ + u′z∗ − uz′∗

)
. (4.23)

This first result is one of two elements necessary in order to find the evolution
equation for the M-S variable. Proceeding in the same fashion with Eq. (4.9),

a2Ψ′

H
+ a2Ψ =

4πGa2

H
(φ′0φ

∗
1 + φ′∗0 φ1). (4.24)

a2Ψ′

H
+ 2a2Ψ−a2Ψ+

8πGa2

H2
φ′0φ

′∗
0 Ψ =

+
4πGa2

H
(φ′0φ

∗
1 + φ′∗0 φ1)+

8πGa2

H2
φ′0φ

′∗
0 Ψ. (4.25)

Now we can use the expression (4.19) into (4.25),

a2Ψ′

H
+ 2a2Ψ− a2H′

H2
Ψ =

4πGa2

H

(
φ′0φ

∗
1 + φ′∗0 φ1 +

2φ′0φ
′∗
0 Ψ

H

)
. (4.26)

Again making use of the M-S variable (4.21),(
a2Ψ

H

)′
= 4πG (azφ∗1 + az∗φ1 + 2zz∗Ψ) , (4.27)

which implies,

(
a2Ψ

H

)′
= 4πG (u∗z + uz∗) . (4.28)

This formulation is particularly convenient to relate the conformal time deriva-
tive of (4.23) and the Laplacian of (4.28),(

u′∗z − u∗z′
)′

+
(
u′z∗ − uz′∗

)′ −∆ (u∗z + uz∗) = 0. (4.29)

Reducing,

u′′∗z − u∗z′′ + u′′z∗ − uz′′∗ − z∆u∗ − z∗∆u = 0, (4.30)

and accommodating terms,[
u′′∗ −∆u∗ − z′′

z
u∗
]
z +

[
u′′ −∆u− z′′∗

z∗
u

]
z∗ = 0. (4.31)

So that above equation to be fulfilled, the following must be satisfied that,

u′′∗ −∆u∗ − z′′

z
u∗ = 0, and u′′ −∆u− z′′∗

z∗
u = 0. (4.32)

Even though, in the complex case the equations are a bit more complicated than
the real case, their structure is similar.
The evolution of real scalar field fluctuations during Reheating has been studied
by several authors (see for example [Jedamzik et al., 2010], [Alcubierre et al.,
2015], [Hidalgo et al., 2017] and [Martin et al., 2019]).
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A common strategy to solve (4.32) is to write them in Fourier space. Then uk
evolves according to,

u′′∗k +

(
k2 − z′′

z

)
u∗k = 0 and u′′k +

(
k2 − z′′∗

z∗

)
uk = 0 (4.33)

Every k−mode represents a scale. Note that each equation is the conjugate of the
other. First of all, in order to solve these equations it is necessary to compute the

expression
z′′

z
. Fortunately the function z(η) depends only on the background

quantities,

z′′

z
= 2

(
H′

H

)2

− H
′′

H
− 2H′ + a′′

a
− 2H′φ′′0
Hφ′0

+
2Hφ′′0
φ′0

+
φ′′′0
φ′0
. (4.34)

Since the background complex scalar field presents no pressure at all, the above
equation can be simplified by making use of the following background equations.

H′

H2
− 1 = −4πGa2ρ0

H2
, ⇒ H′ = −1

2
H2, (4.35)

and H′′ = −HH′ = 1

2
H3. (4.36)

Then,

a′′

a
= H′ +H2 =

1

2
H2. (4.37)

If we substitute the above quantities and the Klein-Gordon equation (4.7) in the
expression (4.34), we find

z′′

z
= 2

(
1

4
H2

)
− 1

2
H2 +H2 +

1

2
H2 +

3H
φ′0

(
−2Hφ′0 − µ2a2φ0

)
+

1

φ′0

(
−2H′φ′0 − 2Hφ′′0 − µ2a2φ′0 − 2µ2aa′φ0

)
. (4.38)

Reducing terms,

z′′

z
=− 9

2
H2 − 3Hµ2a2φ0

φ′0
+

1

φ′0

[
H2φ′0 − 2H

(
−2Hφ′0 − µ2a2φ0

)
−µ2a2φ′0 − 2µ2aa′φ0

]
, (4.39)

and,

z′′

z
= −µ2a2 +

1

2
H2 − 3Hµ2a2φ0

φ′0
. (4.40)

The scale |z′′/z|
1
2 determines the Jeans wavenumber or Jeans Scale kJ . It is

important to remark that this expression is not equivalent to that in the M-S
equation in the real case. This is looked at in detail in Appendix A.
Since the background solution is approximated by φ0 ∼ a−

3
2 exp[i(µt+ ψ0)], we

may express (4.40) in analytic (approximate) form as follows,
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z′′

z
=

1

2
H2 − µ2a2

1 +
3H(

iaµ− 3

2
H
)
 . (4.41)

As long as we are in an oscillatory regime µ� H, the Eq. (4.41) can be further
reduced to,

z′′

z
= −µ2a2 + i 3µaH. (4.42)

In order to analyze this perturbed complex scalar field, we solve equations (4.33)
numerically since they do not have the complete analytic solutions. In this chap-
ter we obtain approximate analytic solutions by regimes divided by the Jeans
scale.
The first regime is when the k−modes are considerably larger in size than the
Jeans scale, i.e. k2 � z′′/z. The other extreme, when they are much smaller
than the Jeans scale, i.e. k2 � z′′/z is the oscillatory regime and this solution
has the same form as the Bunch-Davies vacuum,

uk =


C1(k)z∗ + C2(k)z∗

∫
dη

(z∗)2
, if k2 � z∗′′

z∗
.

exp (ikη)√
2k

, if k2 � z∗′′

z∗
.

(4.43)

with C1, and C2 being complex integration constants. Note additionally that,
super-horizon scales refer to wavelengths λ � (aH)−1 or k >> aH, while sub-
horizon scales refer to λ� (aH)−1 or k � aH.

4.1 Numerical results

Our task in this section is to combine the theory and cosmological param-
eters. The inflationary parameters according with [Aghanim et al., 2018] are
infered from Planck CMB observations of the power spectrum on a 68% con-
fidence intervals for the base ΛCDM model, in combination with CMB lensing
reconstruction and BAO.

ns 0.9665± 0.0038

ln (1010As) 3.047± 0.014

Table 4.1: Inflation parameters

Since we already have found particular solutions for the background and per-
turbations, there are two things to take into account. First, we must set initial
conditions for perturbations uk evaluated at the end of inflation. Second, one
could find the initial conditions for Hend and the vanishing pressure Pend = 0
with the observable curvature power spectrum Pζ(k) defined as,

Pζ(k) = As

(
k

k0

)ns−1

. (4.44)
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With the typical value of the pivot scale set to k0 = 0.05Mpc−1. In particular
we assume this is valid towards the end of inflation due to this form (4.44) is
always valid, buy only during inflation.
This represents the amplitude of the curvature perturbation on large scales k �
aH at the end of inflation (where the curvature perturbation is R ≈ −ζ on
this scales). For a canonical single field inflation this also sets a scale for the
perturbations produced,

Pζ(k) =

(
H2

2πφ̇0

)2(
k

aH

)3−2νφ

, (4.45)

with the spectral index defined as,

ns − 1 ≡
d lnPζ(k)

d ln k
= 3− 2νφ, (4.46)

where in a slow-roll regime νφ = 3
2 + 3ε− η.
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Figure 4.1: This is the comparison of both analytic (4.43) and numeri-
cal on the regime of k2 � z∗′′/z∗, where we have used a soft matching
and besides the initial conditions are chosen from the end of inflation.

The amplitude of modes at the end of inflation has been derived from [Bartolo
et al., 2004]. According with them the solution at super-horizon and sub-horizon
during inflation in terms of the M-S variable are given by,

uk =


aH√
2k3

(
k

aH

)−νφ+ 3
2

exp (ikη) if k2 � z∗′′

z∗

exp (ikη)√
2k

if k2 � z∗′′

z∗

(4.47)

The above expressions are derived assuming that the scalar field drove from
slow-roll approximation. For instance, if we evaluated in the particular case of
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k2 � z∗′′

z∗
at the end of inflation and then employing it as initial condition on

(4.43) in the same regime, we find (see Figure 4.1) that the solution is consistent
on both numerical and analytical cases at least.

Setup for numerical evolution

Actually, whether we match (4.44) and (4.45) at tend, in order to obtain a value
for Hend consistent with the observed power spectrum,

As

(
k

k0

)ns−1

=

(
H2
end

2πφ̇end

)2(
k

aendHend

)ns−1

. (4.48)

As a result of assuming a pressure-less background during Reheating, we find
that,

As

(
1

k0

)ns−1

=

(
Hend

3π

)2( 1

aendHend

)ns−1

. (4.49)

Hend = (9π2As)
1/(3−ns)

(
k0

aend

) (1−ns)
(3−ns)

. (4.50)

Using the values of Table 4.1, we have obtained a value of the order of,

Hend ∼ 10−4MPl. (4.51)

As a consequence of this, let us mention that if this value is considered, then
we are assuming that this scalar field must be the same field responsible for
inflation, i.e. the inflaton. On the other hand, if the Reheating field φ is not the
inflaton then the value of Hend is a free parameter for the initial conditions of
our numerical evolution.
After setting initial conditions, we estimate the thermalization temperature or
Reheating temperature Tr, which establishes the end of Reheating. A starting
point comes from the density during Reheating, which we assume as pressure-
less dust,

ρr =
π

30
g∗T

4
r ∝ a−3. (4.52)

Where g∗ is the degrees of freedom. While oscillatory stage has values between
100− 120,

Tr =

(
30ρend
πg∗

) 1
4

exp

(
−3N

4

)
. (4.53)

With N being the e-fold number elapsed from the end of inflation up to the end
of Reheating. The Figure 4.2 is a contour plot of (4.53).
On the other hand, we need to computed a value of ar the scale factor evaluated
at moment of thermalization to employ it numerically. Furthermore, ar must be
subjected to Tr which has to be of the order of MeV in order to rethermalize
the Universe in time for Big Bang Nucleosynthesis (BBN). However, [Kawasaki
et al., 2000] reported constraints of Tr > 4 MeV = 0.004 GeV. With this in mind,
we rescale the density from end of Reheating towards matter-radiation equality
so,
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Figure 4.2: This plot shows the parameters-space and how parameters
influence the values of the thermalization temperature Tr. So, on one
hand slow Reheating occurs when Tr reaches low values. On the other
hand the fast Reheating occurs when Tr reaches high values therefore,
the e-fold number is reduced.

ρr = ρeq

(
aeq
ar

)4

=
π

30
g∗T

4
r . (4.54)

⇒ ar =

(
30ρeq
πg∗

) 1
4
(
aeq
Tr

)
. (4.55)

Moreover after a few straightforward calculations, one could derive the next ex-

pression ρeq =
Ωm,0

a3
eq

(
3H2

0

8πG

)
. For instance, according with Planck 2018 (see

[Aghanim et al., 2018]), they inferred values of H0 = 67.5 ± 0.5 km/s/Mpc
and Ωm,0 = 0.315 ± 0.007 and zeq ≈ 3387, whose base cosmological model was
ΛCDM. Therefore, with the above at hand, we would calculate a value for (4.55).

Additionally, one look at the upper bound on the Reheating temperature Tr (see
[Kofman, 1996]) which is Tr < 109GeV . Nevertheless, Kofman argued that
result is a very small temperature, at which the standard mechanism of baryo-
genesis in the GUTs cannot work.
In principle, we can look at a variety of Reheating scenarios by choosing values
for the free parameters µ, Hend and N . For a given k-mode value and setting
the free parameters consistent with the constraints, we have evolved the M-S
variable following by (4.33) and employing (4.42).
Then we repeated this for a variety of k-modes around the instability scale (Jeans
scale) depicted in Figure 4.3. The results are written in terms of the curvature
and the matter perturbations as discussed below. In the rest of this thesis we
show that some of the parameter space of them can be constrained from the
bound to PBH abundance.
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Figure 4.3: This plot is similar to that of [Jedamzik et al., 2010]. It
shows the evolution of physical scales as function of the e-folds number
through inflation and Reheating. In our case is considered during Re-
heating and for a complex scalar field. The upper bound in blue dashed
lines is the Hubble horizon. The lower bound in blue continuous lines
is the Jeans scale. The magenta line kmin represents a scale that crosses
the Hubble horizon before the end of inflation and then reenters at the
last e-fold or where we assumed that thermalization temperature Tr is
reached. The purple line kmax is a scale that never exits the Hubble
horizon but reaches the Jeans lenght only at the last e-fold of Reheat-
ing. The green is Mathieu’s instability scale for the real case as discussed
on Appendix A. The yellow lines just are the physical scales of different
Fourier modes.
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Primordial Curvature Power Spectrum

The curvature perturbation ζk defined by (2.107) in terms of the M-S variable
takes the following form,

ζk ≡
uk
z
. (4.56)

As long as this quantity is conserved on super-horizon scales, we can relate the
power spectrum to the amplitude of the M-S variable at super-horizon scales
during Reheating.

Pζ =
k3

2π
|ζk|2. (4.57)

In this Reheating scenario, the primordial power spectrum has a cut-off on the
Planck scale2 and also an upper limit at the scales which enter the horizon after
thermalization has been reached (see Figure 4.4).
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Figure 4.4: Primordial curvature power spectrum Pζ coming from PBHs
versus wave number. For this plot we have used the inflation power
spectrum as an initial condition.

Furthermore, notice that from our results one can look at Figure 4.4 that during
inflation the curvature perturbation mode is constant on super-horizon scales
R′ ' −ζ ′ ' 0.
In [Wands et al., 2000], they derived an expression for non-adiabatic perturba-
tions given by,

ζ̇ = − H

ρ+ P
δPnad, (4.58)

only valid on the uniform-density gauge and sufficiently large scales where gra-
dient terms can be neglected. In terms of the conformal time,

2The cut-off to the power spectrum is introduced because scales below than the Planck scale
cannot be adequately treated due to the emergence of quantum gravity effects.
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ζ ′ = − H
ρ+ P

δPnad. (4.59)

As long as the pressure perturbation is completely adiabatic, implies that ζ is
must be a constant at super-horizon scales as illustrated by our example.

4.2 Growth on matter fluctuations

Now we look at the growing mode on the case when k-modes are lower than
Jeans wavenumber.

uk = C1(k)z∗ + C2(k) z∗
∫

dη

(z∗)2
. (4.60)

As a result of had a pressure-less background, it is acceptable to approximate
z(η) as z(η) ≈ a(η),

uk ≈ C1(k)a+ C2(k) a

∫
dη

a2
. (4.61)

In accordance with Table 1.1, and using the relation (1.56),

ζk = C1(k)− C2(k)

t
. (4.62)
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Figure 4.5: Shows the evolution of 16 modes chosen around the Jeans
scale. The smaller wavenumbers do not grow significantly since they
are above the horizon. they also are damped by oscillations. It is the
middle range which grows most and in a power law as δ ∼ a.

The behavior of contrast density perturbation δk defined by (2.10). Conse-
quently, we may express δk as a function of ζk in this regime according with
formula (2.116).

δk = −2

5

(
k2

a2H2
+ 3

)
ζk. (4.63)
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The Bardeen potential is related to the quantity ζk by (2.116). Then,

δk ≈ −
2

5

(
9k2t

2
3

4
+ 3

)(
C1(k)− C2(k)

t

)
. (4.64)

Therefore, in the case of large scales where k >> 1, the above expression can be
reduced to,

δk ≈ −
9

10
k2
(
C1(k)a− C2(k)a−

1
2

)
. (4.65)

We just have found that C1(k) represents the growing mode and C2(k) the decay
mode. Seeing that we are interested on the growth of perturbations, the decay
mode C2(k) is neglected.
In the work of [Ballesteros et al., 2019] is discussed this particular regime. They
agreed as well that the decay mode is determined by C2(k). As long as it decays
sufficiently fast, the solution (4.60) quickly converges to C1(k)z∗ and the ampli-
tude of C1(k) can be obtained by matching with the short wavelength solutions.
Although, this is not the way that we are assuming. This amplitude can be found
in our case from matching the inflation solutions (4.47).
Keep in mind that the first term C1(k) is known the adiabatic mode that is con-
served at super-horizon scales. On the other hand the second term C2(k) is
the decaying mode which becomes negligible within a few e-folds after horizon
crossing so that the constant mode is quickly reached.

Matter Power Spectrum

Likewise, the Power Spectrum of matter was computed, defined by,

Pδ =
k3

2π
|δk|2. (4.66)

As it was shown in Figure 4.5, when perturbations are within Jeans instability
band δk ∼ a and we then expect on particular scales,

Pδ(tr)
Pδ(tend)

=
a2
f

a2
end

= exp(2N). (4.67)

Furthermore the M-S variable can be related to the Bardeen potential. If we
apply the Fourier transform as usual on (4.23),

Ψk = −4πGH
a2k2

[
z2

(
u∗k
z

)′
+ (z∗)2

(uk
z∗

)′ ]
. (4.68)

Let us focus on first regime when uk = C1z
∗ + C2z

∗
∫

dη

(z∗)2
. Thus, the Bardeen

potential is,

Ψk = −4πGH
a2k2

[C∗2 + C2] . (4.69)

Even though, on this regime the Bardeen potential might only have contribu-
tions by decay mode, this is an interesting result.

Now that we have obtained a growth in the amplitude of matter perturbations,
we can assess the formation of PBHs and examine the cases where they are
over-produced.
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Figure 4.6: Evolution of Matter Power Spectrum during 5 e-folds. The
red line is evaluated at tr, that means the last e-fold.

4.3 PBH formation during Reheating

4.3.1 Primordial Black Holes

The simplest definition for a PBH is a peculiar type of black hole with a wide
range of masses which is not formed as a result of a collapsed massive star known
as stellar black holes, i.e. that mechanism is not subject to the well-known lower
Chandrasekhar limit of ∼ 1.4M�. For a review see [Carr, 2005].

If we compare the density of a black hole,

ρBH = 1018

(
M

M�

)−2 g

cm3
, (4.70)

and the cosmological density,

ρH = 106

(
t

s

)−2 g

cm3
. (4.71)

That means that how these perturbations could form PBHs from the direct col-
lapse of matter clumps, it would have required a huge density in order to form
small PBHs and that only could have been reached in early epochs.

Furthermore PBHs might be candidates of the black holes detected by The Laser
Interferometer Gravitational-Wave Observatory (LIGO). The signal GW170729
[Abbott et al., 2019] with an estimated of 50+16

−10 and 34+9
−10 solar masses. These

measurements do not coincide with usual stellar black holes mechanism and also
spin absence is not usual coming from stars.
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Sasaki argued in [Sasaki et al., 2018] that source of gravitational waves of bi-
naries system could have been generated by PBHs. Additionally, accretion or
merging of PBHs could explain the origin of Super Massive Black Holes with
masses of 104 − 109M� located at the center of most galaxies or a novel char-
acteristic of PBHs is that it may be the explanation of the supposed Planet 9
[Scholtz and Unwin, 2019] in our Solar System. If a black hole is ever observed
with a mass significantly smaller than < 1M� will be an unequivocal proof of
PBHs existence.

Formation criterion

In the standard mechanism, the cosmological density perturbations δ tend to
collapse and this occurs according with Carr criterion (see [Carr, 1975] and
[Harada et al., 2013]),

αλJ < Rmax < γRH . (4.72)

For some α and γ that encode the whole details of the collapse. Here RH is
Hubble horizon which encloses the density ρ0, Jeans length λJ and Rmax is the
size of the perturbation δ at the moment of a turn-around time in the spherical
collapse model of structure formation. In the same model, this constraint can be
written in terms of amplitudes of the density fluctuation δ, leading to a critical
value of collapse. If the fluid presents an equation of state (1.55), then (4.72)
can be expressed as,

ω < δmax < 1. (4.73)

Since our interest is on the collapse during a Reheating period when ω ≈ 0. The
formation of PBHs is thus not limited to the critical value δc but by the time the
spherical inhomogeneity takes to collapse. We adopt the criterion of considering
an overdensity to collapse and form a PBH when it reaches the critical value of
the spherical collapse model at δc = 1.68.
Let us now look at how to compute the abundance of PBHs in a given cosmology.
The variance σ(R) is typically the size of fluctuations and is expressed as,

σ(R)2 =

∫ ∞
0

W 2(kR)Pδ(k, tend)
dk

k
. (4.74)

The probability distribution of the smoothed density contrast and W (kR) is the
Fourier transform of the window function used to smooth the density contrast.
There is some freedom in the choice of W (kR), and for simplicity, we set W (kR)
such that a Gaussian window function, for instance W (kR) = exp(−k2R2/2).

The primordial power spectrum has been constrained by assuming that it is
scale invariant at each k, since the integral in σ(R)2 is dominated by the scale
k = 1/R. That is, for each scale k constrained by the abundance of PBHs with
mass MPBH .

According with Figure 4.7 we expected in some scales that,

Pδ(M, t) ∼ σ(M, t)2. (4.75)

The initial abudance of PBH3 with respect to the critical density is defined as,

3Some equations through this section have been taken from [Harada et al., 2016] and [Carr
et al., 2018].
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Figure 4.7: The vertical blue line represents the horizon mass evaluated
at tend.

β ≡ ρPBH
ρc

. (4.76)

Where ρPBH is density of PBHs. In accordance with Press-Schechter formalism,
the abundance β of PBHs of mass MPBH is equivalent to the probability that the
smoothed density field exceeds the threshold δc as a result of spherical collapse.
The fraction of the total energy density collapsing into PBHs of mass M is thus,

β(M) = 2

∫ ∞
δc

P(δ) dδ. (4.77)

where P(δ) is the probability distribution function (PDF) integrated with the
adopted value δc = 1.68 in a pressure-less scenario. Instead of expressing the
horizon mass MH in terms of radius R = 1/k, actually we prefer changing in
terms of k-modes, so the horizon mass is given as,

MH =
4π(aR)3ρ0

3
. (4.78)

After substituting background expressions, we obtain that,

MH =
4π

3
(aR)3ρend

(aend
a

)3
. (4.79)

Reducing terms,

MH = 4πR3H2
end a

3
end. (4.80)

Here we can rewrite as kend = aendHend and finding that,

MH =
4π

Hend

(
kend
k

)3

. (4.81)
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There are subtle assumptions that need to be taken into account. The first rel-
evant assumption is the fact that the mass of PBHs is a fraction of the horizon
mass, MPBH = γMH , being γ the efficiency factor that encodes the details of
the collapse. However, for simplicity we set γ to the unity. Second assumption
is that initial perturbations have to be Gaussian, thus, the PDF of the smoothed
density contrast is,

P(δ) =
1√

2πσ(M)
exp

(
− δ2

2σ(M)2

)
. (4.82)

Regardless of the way one choose the shape of PDF, the tail of this Gaussian
PDF is related to the probability of forming a PBH of mass > M . Hence the
assumption (4.82) allows us to change (4.77) into following formula,

β(M) = erfc
(

δc√
2 σ(M)

)
. (4.83)

4.4 Cosmological constraints on the abundance of the
PBHs

The abundance of PBHs is severely constrained by observations (see [Can-
gialosi, 2019], [Josan et al., 2009] and [Emami and Smoot, 2018]). Thus, the
primordial curvature power spectrum as well and this fact has important im-
plications on the formation of PBHs, since they could provide us with valuable
information about the possible nature of dark matter, origin of non-stellar black
holes and super massive black holes, Hawking radiation, among others. There
are several number of limits spanning a wide range of masses values on the PBH
abundance, we strongly recommend to see [Carr et al., 2010] and references
therein.

The fact that PBHs might be small inspired Stephen Hawking to study their quan-
tum features. This led to his famous discovery that black holes would thermally
radiate like a black body radiation with an associated temperature,

THw =
1

8πGM
≈ 10−7

(
M

M�

)
K. (4.84)

It is better-know as Hawking temperature. As a result of this PBHs would evapo-
rate on a timescale of,

τeva = 1.90254× 10−34

(
M

g

)3

years. (4.85)

For instance, in an ideal case (where we are not considering accretion, merging
and so forth) PBHs smaller than M ∼ 1015g will have evaporated by the present
epoch. So that means this process is too slow. This radiation has not been obser-
vationally confirmed so far.

If the black hole mass is decreasing due to Hawking radiation, thus the radius is
too, and eventually reaches values close to `Pl Planck length. At that moment is
speculated when the evaporation cease, the remanent are called a Planck relic.
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Whatever be the cause of their stability, Planck relics would be a possible cold
dark matter candidate. Indeed this leads to the Planck relics to be constrained.
In particular, such relics could be left over from Reheating. If so, then relics may
have a mass on the order of κ MPl,

β(M) < 10−27κ−1

(
M

MPl

)3/2

. (4.86)

This is only valid for PBHs within the mass range4,

1 <
M

MPl
< 1011. (4.87)

The upper mass limit arises because PBHs larger than this dominate the total
density before they evaporate. Producing a critical density of relics obviously
requires fine-tuning.
Observational constraints from (4.86) on PBHs abundance indicate that, for ex-
ample, see Figure 4.8 if β(M) < 10−20 translate into σ2(M) < 0.03333 and
therefore it might constrain the curvature power spectrum.
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Figure 4.8: Following the evolution of σ(M) evaluated at the moment
of thermalization. This is also comparated with a semi-analytic formula
β = 0.05556σ5 found by [Harada et al., 2016].

Consequently, the specific parameters employed in this thesis, there is a range
of values for which the constraint in (4.86) is violated. For example, in Figure
4.9 we show a few values of Hend that saturate the Planck relic constraint in
Eq. (4.86), after considering the ratio µ/Hend = 10 and in a period of Reheating
that lapsed for N = 5 e-foldings.
On the other hand, fixing the scale at the end of inflation Hend and varying the
e-folds number N we noticed that the constraint (4.86) is also violated from
values N > 2.8 approximately. The direct consequence of this is inconsistency

4We also have assumed that Planck relics is approximated to MPl, i.e. the value of κ is set to
unity.
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Figure 4.9: This plot was generated by setting e-fold number as N = 5
and varying the parameter Hend with a value of µ/Hend = 10. The
red-shaded region represents the values beyond the constraint given by
Planck relics. Note that several models for the Reheating period violate
the constraint on PBH abundance discussed in the text.

between the inhomogeneities produced during Reheating and the dark matter
density observed if it was constituted by Planck-mass PBHs.

10 5 10 4 10 3

M [g]
50

40

30

20

10

0

lo
g 10

(
)

N = 2.65
N = 4

Figure 4.10: In this plot we fixed the values Hend ≈ 10−6 MPl and the
ratio µ/Hend = 10, and varying values for several e-folds numbers.





Chapter 5
Conclusions and outlook

«The obvious is sometimes false; the unexpected is sometimes true»
Carl Sagan

In this thesis we discussed several features on the evolution of inhomo-
geneities of complex scalar field through harmonic potential model during Re-
heating.

Summary of results

Firstly of great relevance for our study, we found for the background that there
are differences studying the real and complex cases in the fast oscillation regime
H � µ. In spite of this, both tend to a behavior of pressure-less fluid. This
is shown in Figure A.1, even though, the biggest difference of them is the fact
that real scalar field oscillates rapidly, and on average, it effectively behaves as
pressure-less fluid, while the complex case does not present an oscillatory pres-
sure. Reason which, motivated us to study the complex scalar field.

Subsequently, thanks to the use of the Mukhanov-Sasaki variable (4.21), we go
on to find the equations that govern the perturbations of the complex scalar
field, which were quite similar to those of the real scalar field. We noticed that
expression (4.40) characterizes the Jeans scale in both cases is given purely by
background quantities. Consequently with the background, we have obtained
different analytical expressions for the real case given in (A.5) and complex in
(4.42).

In the Figure 4.3, the instability band shows an ever-increasing range of wavenum-
bers, starting at the end of inflation; from the Jeans scale to the Hubble horizon,
i.e. kH < k < kJ , we realized that while the larger the ratio µ/Hend is, then the
wider is the gap for instabilities.

After several calculations we found analytical solutions (4.43) which are valid
in two different regimes and are also consistent with the numerical solutions to
the M-S equation. Assuming that scalar field during Reheating must be the in-
flaton, we suggest initial conditions derived from the end of inflation and obey
the slow-roll regime.

We proceed to analyze the statistic of these perturbations for different modes k
defined in a range between [kmin, kmax]. We compute numerically the evolution
of Matter Power Spectrum during N = 5 e-folds, concluding that within the

73
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Jeans band there is a growth of such perturbations. As a result of the gravita-
tional collapse of a scalar field it could have generated instabilities that emerged
to form PBHs during Reheating.

Then, in order to compute the abundance of PBHs β(M) from collapse of scalar
field density perturbations, we look for initially density perturbations on certain
scales which were substantially entering towards Jeans instability band or they
already were in the band. We noticed that, at these scales, pertubations grow
as the scale factor δk ∝ a. This is the behavior we were looking for, because, is
the form of growing mode in the dust perturbations at linear order that lead to
structure formation.

Nevertheless, it is important to mention that the formation of PBHs had been
conventionally studied in the radiation-dominated epoch, considering the fact
that δc on this scenario has a threshold of δc = 0.47 until recently [Harada et al.,
2016] (see also [Niemeyer and Easther, 2019]). In this thesis the scalar field was
studied through an epoch of matter-dominated, until the end of Reheating with
a different threshold of δc = 1.68 as result of the well-known spherical collapse
by dust. Radiation-domination begins when the M mass of PBHs are formed
otherwise the β values would be too high.

One of the currently hypothesis (and perhaps the right one) is the fact that dark
matter could be composed of PBHs, based on at its low masses would behaves as
expected of other particles candidates for dark matter. Planck-mass relics could
make up the Dark Matter today, if they are stable relics. In order not to exceed
the current observed CDM density, there would be an upper limit on the abun-
dance of the PBHs.

Ultimately, another case in which this situation could occur is when φ was not
the inflaton but still can reheat the Universe, such that, initial conditions have
to be changed, constraining the free parameters of this independent Reheating
model as presented even more.

Soon the next generation of observations will have the challenge of measuring
the B modes of the CMB with higher resolution than Planck. In order to help
us scrapping out inflationary models and getting a better understanding of the
post-inflationary stage. Or perhaps provide a definitive clue or hint for the ex-
planation of the Reheating phase.

Future perspectives

To put things into perspective, the results presented might give way to obtain
analytical approaches for the growth of δ which are valid only on small scales
and therefore on power spectrum too. Also, it is possible to approximate β(M)
analytically, in order to test Reheating models analytically as well. According
with Figure 4.5 in certain regions δk ∝ a and further Figure 4.7 we may expect,

Pδ(M, t) ∝ σ(M, t)2 ∝ |δk|2 ∝ a2. (5.1)

For instance, there are scenarios that find an overproduction of PBHs. And these
could be discarded or rejected by analytical approaches.
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Possible extensions of this thesis

A few extensions to the present work are in sight, some of which are listed below:

? Consider more involved models of Reheating includying, e.g. self-interact-
ing potentials (see [Amin et al., 2015]). This would lead to a new set of
scenarios to be constrained by the abundance of PBHs produced during
this period. Another possibility is to consider more than one scalar field in
order to address phenomena arising in more realistic preheating models.

? Considering the complete inflation model (e.g. [Mishra and Sahni, 2019]),
it is possible to constrain the primordial powerspectrum with the bounds to
the PBH abundance reported here. Changing the prescriptions to the pri-
mordial powerspectrum at small scales (so far unobserved), its parameters
could be constrained with the same analysis here presented.

? With the solutions obtained at first order, it is possible to set semi-analytic
inital conditions to the non-linear gravitational collapse, and subsequent
black hole formation. It remains to look at the compatibility with linear
solutions to the ADM system in Eqs.(2.122) to (2.128), and subsequently
motivate to run simulations of PBH formation looking at critical values for
the collapse of the cosmological scalar field.
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Appendix A
Real case

On this Appendix we would like to examine and discuss the real scalar field.
As we have found in Section 3.1, for the background the solution of real case is
given by (3.23).
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Figure A.1: Numerically the pressure for both cases, as a function of
e-folds number.

Moreover indicated from previous Figure A.1 (also see [Hidalgo et al., 2017]),
when we average solution (3.23) over a single period of oscillation 1/µ, implies
that,

〈ρ〉 =
1

2
〈Π2〉+

1

2
µ2〈φ2〉 ≈ µ2〈φ2〉 ≈ µ2φ2

0

2
a−3 +O2

(
H

µ

)
. (A.1)

〈P 〉 =
1

2
〈Π2〉 − 1

2
µ2〈φ2〉 ≈ 9φ2

0H
2

16a3
≈ 0. (A.2)

As a result of this behavior, if the oscillating scalar field dominates the Universe
for sufficiently long time, it effectively behaves as pressure-less fluid.

Through of the perturbative regime on the real case, and employing the M-S
variable (4.21), leads to the following equation,

u′′k +

(
k2 − z′′

z

)
uk = 0. (A.3)
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In the case when k2 � z′′/z, the solution is,

uk = C1(k)z + C2(k) z

∫
dη

z2
. (A.4)

with C1(k) and C2(k) integration constants which must be determined, as usual,
from the Bunch-Davies vacuum solution.
Notice from Figure 3.1 and A.1 that real scalar field holds closely of standard
CDM scenario with small oscillations around it. Thus, expression (4.34) can be
simplified by making use of background equations with an explicit instability
scale in the evolution. According with [Alcubierre et al., 2015],

z′′

z
≈ −µ2a2

[
1− 6

(
H

µ

)
sin(2µt) +O2

(
H

µ

)]
. (A.5)

Where we have done a new change of variable x ≡ µt + π/4 on A.3 and one
would obtain the Mathieu equation as follow,

d2uk

dx2
+ [A(k)− 2q cos(2x)]uk = 0. (A.6)

where A(k) = 1 +
k2

µ2 a2
and q = 3

H

µ
+O2

(
H

µ

)
.

Figure A.2: The teal-shaded region is delimited by Horizon scales and
Jeans scales. Nevertheless, there are several regions which are restricted
by Mathieu’s instability scale. For example the region between Mathieu’s
and Jeans scale.

As we saw on large scales (for instance, CMB scales), the conservation of cur-
vature perturbation is sufficient to establish that the power spectrum calculated
at the end of inflation propagates through the Reheating epoch without being
distorted. Since q � 1, we are in the narrow resonance regime. According with
[Jedamzik et al., 2010] the first instability band is given by,



1− q < Ak < 1 + q, (A.7)

Therefore,

0 < k < a
√

3Hµ, (A.8)

the new characteristic spatial length given by Rc ≡ 1/
√

3Hµ, which sets the
lower bound of the instability band (see Figure (A.2)), the oscillations source
a parametric resonance. Fortunately, thanks to these oscillations (A.3) becomes
into Mathieu equation with an instability band of that equation.
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