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i

Resumen

En esta tesis discutimos el comportamiento de poĺımeros dirigidos en
un ambiente aleatorio. Para ello utilizamos la medida polimeral, la cual
es una generalización del modelo canónico. Demostramos que la medida
polimeral tiene la propiedad de Markov y calculamos sus coeficientes de tran-
sición. Posteriormente estudiamos la enerǵıa libre de Gibbs y encontramos
una cota superior para dicha enerǵıa. Aśı mismo analizamos las trayectorias
del poĺımero y mostramos que éstas se encuentran en una vecindad alrededor
de la trayectoria favorita. Finalmente, simulamos un poĺımero libre en pres-
encia de tres diferentes ambientes aleatorios (exponencial, normal y pareto)
a diferentes temperaturas. Cabe señalar que calcular la función de partición
tanto anaĺıticamente como computacionalmente es sumamente complicado
por lo que en vez de graficar la medida polimeral se graficó el orden de mag-
nitud del exponente de la medida polimeral, y encontramos que el poĺımero
se encuentra en una vecindad alrededor de la trayectoria favorita, como se
esperaba.

Abstract

In this thesis, we discuss the behavior of directed polymers in a random
environment. To do that we use the polymer measure, which is a general-
ization of the canonical model. We prove that the polymer measure has a
Markov property, and we calculate the transitions probabilities. Then we
study the free energy of the polymer, and we showed an upper bound. Then
we analyze the paths of the polymer, and we prove that they are in a neigh-
borhood of the favorite path. Finally, we simulate a free polymer in the
presence of three different environments (exponential, Gaussian, and Pareto)
at different temperatures. It should be noted that to calculate the partition
function both analytically and computationally is very difficult, so instead of
plotting the polymer measure, we plot the order of the polymer’s measure,
and we find, that they are actually in a neighborhood of the favorite path,
as expected.
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Chapter 1

Motivation

Polymers are one of the essential structures in nature; also, polymers have a
significant presence in the industry. Some examples of important polymers
are cellulose, proteins, DNA, vinyl polychloride, polystyrene, polypropylene,
among others. We present a more detailed introduction in Chapter 2. Due
to the relevance they possess, numerous studies of their properties have been
made. This thesis analyses a particular model for the behavior of the polymer
in the presence of a random potential. To motivate this study, and to make
this easy to understand, let us take a look at the next example taken from [4].

1.1 Example

Consider a hydrophilic polymer wafting in water. We suppose that the wa-
ter contains randomly placed hydrophobic molecules as impurities, which
repel the monomers of the polymer. Due to the thermal fluctuation, the
shape of the polymer could be understood as a random object1. The goal
is to describe how impurities affect the global shape of the polymer. A
model named directed polymers in a random environment was developed to
achieve this. Like all models in mathematical physics, it is complicated to
face a problem without a simplification picture of the initial problem. In this
model, the simplification goes as follows. The entanglement, U-turns, and
self-interactions of the polymer are suppressed; then the polymer is repre-
sented by a graph {(j, xj)}nj=1 in N×Zd, so the polymer is supposed to live in
(1+d)−dimensional discrete lattice and to stretch in the direction of the first

1A rigorous analysis of this system is done in [27].

1



2 CHAPTER 1. MOTIVATION

coordinate. It is assumed that the transversal motion x = {xj}nj=1 performs a
simple random walk in Zd, if the impurities are absent; this accounts for con-
secutive monomers in the chain. Now, we define {ω(n, x) : n ≥ 1, x ∈ Zd} as
a random field of independent and identically distributed random variables.
Where ω(n, x) describes the presence or the strength of an impurity at site
(n, x) when ω(n, x) is negative, and the presence of a water molecule when
ω(n, x) is positive, i.e., each time the path steps on an impurity it gets a
penalty, and every step on a water molecule brings a reward. The sum of
all penalties and rewards obtained by the random walk is known as the total
energy of the path, also known as the Hamiltonian of the system. Thus, the
typical shape {(j, xj)}nj=1 of the polymer is given by the one that maximizes
the energy. For example, suppose that ω(n, xn) takes only two different val-
ues +1 and −1, the first one to describe the presence of a water molecule
at (n, xn), and the second one to describe the presence of the hydrophobic
impurity at (n, xn). This means that the energy of the polymer is increased
(decreased) by 1 each time a monomer is in contact with a water molecule
(impurity). Therefore, the typical shape of the polymer for each given con-
figuration of ω(j, xj) is given by the one who tries to avoid the impurities as
much as possible. See figure 1.1.

As we want to study large systems, two possible scenarios appear. The
first scenario is when the dimension is large, and the temperature is high,
the impurities should be ignored, so the global shape of the polymer is not
affected. In the second scenario, the dimension is small, or the environment
is strong, then the polymer will not be able to avoid the impurities. Thus
the global shape of the polymer path changes drastically.

To make a mathematical framework of this model, we have to introduce
statistical mechanics theory, stochastic process theory, and in particular the
Gibbs measure. All of this will be done in the following chapters. We want
to emphasize that the main contents of this thesis follow the lines given on
Chapters 2 and 6 of Francis Comets [4].
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Chapter 2

Introduction

2.1 Polymers

A polymer is a large molecule built up from smaller molecules, known as
monomers ; that are tied together by chemical bonds. The polymers can
be either large units with internal structure (as the adenine-thymine which
is a base in the DNA structure) or small units (such as ethylene [CH2]2).
Polymers abound in nature because of the multivalency of atoms like carbon,
oxygen, phosphorus, and nitrogen, which are prone to concatenate into large
structures.

2.2 Polymer classification.

There are several methods of classifying polymers. One is to adopt the
approach of using their response to thermal treatment and divide them into
thermosets and thermoplastic. Thermoplastic polymers melt when heated
and resolidify when cooled. By contrast, thermosets are those who do not
melt when heated and at high temperature, decompose irreversibly.

Another classification system is based on the nature of the chemical reac-
tions during polymerization. The two principal groups are the condensation
and the addition polymers. Condensation polymers are those formed by
monomers, but the reaction is accompanied by the loss of a small molecule,
usually of water, while addition polymers are those formed by the addition
reaction of unsaturated monomers without the co-generation of other prod-
ucts.

5



6 CHAPTER 2. INTRODUCTION

In general, polymers come in two varieties: 1) Homopolymers, with all
its components being identical monomers (such as polyethylene [C2H4]n); 2)
Copolymers, with two or more different types of monomers (such as RNA).
The order of monomers in copolymers can be periodic (as Bacterial polysac-
charides) or random (as plant polysaccharides): an example for each type is
the agar and the carrageenan.

Synthetic polymers and natural polymers give another classification of
polymers important for the industry. Some examples of these both types are
in the table below.

Synthetic P. Natural P.
nylon proteins

polyethylene nucleic acids
polystyrene polysaccharides

Table 2.1: Examples of synthetic and natural polymers.

All the examples of natural polymers in the table 2.1 are organic mate-
rials1. However, there are also inorganic examples, like minerals. Synthetic
polymers typically are homopolymers, while natural polymers are usually
copolymers. An example of a copolymer is one whose monomers carry posi-
tive and negative charges, randomly arranged along the chain. Another ex-
ample of copolymers is a polymer consisting of hydrophobic and hydrophilic
monomers, such as in the example of section 1.1.

Finally, another classification of polymers is Linear and Branched. In the
former case, the monomers have one reactive group (such as CH2), leading
to a linear organization as a result of the polymerization process. In the
second group, the monomers have two or more reactive groups (such as hy-
droxy acid), leading to a network with multiple cross-connection. A lot of
natural polymers are linear like DNA and proteins. An example of branched
polymers is amylopectin. A more detailed classification can be seen in [6], [7]
and [23].

1Organic materials are defined as combinations of few lightest elements, mainly hydro-
gen, carbon, nitrogen, and oxygen.
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Now polymerization is the chemical process of building a polymer from
monomers is called polymerization. The degree of polymerization is the num-
ber of constituent monomers and may vary from 103 up to 1010. Human DNA
has 109−1010 base pairs, while polysaccharides carry 103−104 glucose units.
For more background on the structure, classification, and polymerization of
polymers see [9], [20] and [28].

The chemical bonds in a polymer are flexible so the polymer can arrange
itself in many different configurations. The longer the chain, the more in-
volved these configurations tend to be. Sometimes, the polymer can wind
around itself to form knots, or can collapse to a ball due to attractive van
der Waals forces (such as graphene-polymer nanocomposites). It can also
interact with a surface on which it may or may not be adsorbed, or it can
live in a slit between two confining surfaces.

2.3 Statistical thermodynamics

The model study in this work is based in the Gibbs measure, Thus, it is
essential to introduce some quantities related to statistical thermodynam-
ics, in particular: the partition function, the Gibbs measure, the average
Gibbs measure, the free energy, and the Gibbs entropy. Before defining each
quantity, let us introduce some basic definitions of the statistical mechanics.

2.3.1 Canonical ensemble

The canonical ensemble is a system with a specified volume V , and number
of particles N . The particles are in contact with an infinitely large heat
reservoir of constant temperature T. Similarly, in the canonical ensemble, we
expect that the energy will differ from system to system. The probability
density function this ensemble follows is given by

P (Ei) =
e−βEi

Z
, (2.1)

where β is the inverse of the product of the temperature with the Boltz-
mann’s constant i.e. β = (TkB)−1, where the Boltzmann’s constant kB is
approximately 1.38× 10−23JK−1, and Ei is the energy of the i−th state. In
this thesis, the Hamiltonian describes the total energy. Also, the constant Z,
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which is the normalization constant for this model, is known as the partition
function. It is usually denoted by “Z” and is defined as

Z :=
n∑
i=1

e−βEi , (2.2)

where the sum is over all states, the dependence of Z on T is quite appar-
ent. However, there is an essential relation between the partition function
and the total average energy, that is For a classical system with a discrete set
of microstates, if Ei is the energy of microstate i, and pi is the probability
that it occurs, one can show that:

〈E〉 :=
∑
i

Eipi = −∂ lnZ

∂β
. (2.3)

For a more in-depth description, [11], [13] and [26] can be consulted.

Now we will define a measure very similar to the canonical model, where
we will introduce a potential for interaction and, therefore, a Hamiltonian.
This measure is known as the Gibbs measure and is given by:

P (x) =
e−βHn(x)

Zn
, (2.4)

where x is a path configuration of the system, n is the length of the
system, Hn(x) the Hamiltonian of the system, which is the total energy of
the path x and the partition function Zn is given by:

Zn :=
∑
x∈X

e−βHn(x), (2.5)

where X is the set of all possible paths of length n in the system. See
[14], [15] and [21].

The Gibbs entropy is the generalization of the Boltzmann entropy2. For
a classical system with a discrete set of microstates, if Ei is the energy of
microstate i, and pi is the probability that it occurs during the system fluc-
tuations, then the entropy of the system is defined by

2Recall that the Boltzmann entropy is defined as S = kB lnW , where W denotes the
number of real microstates of a single isolated a system.
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S = −kB
∑
i

pi ln pi. (2.6)

The principal difference between the Gibbs and the Boltzmann entropy
is that the Boltzmann entropy considers that all the energy states have the
same probability, while the Gibbs measure gives each energy state a single
probability pi, see [12], [19] and [29] for a general relationship between the
Boltzmann entropy and Gibbs entropy. In the following chapters, we will
consider the Boltzmann’s constant as one i.e., kB = 1.

2.4 The free energy

The free energy is defined as

pn =
1

n
lnZn, (2.7)

when Hn assigns an attractive self-interaction to the system. It can be
proven that the partition function Zn satisfies the inequality

Zn ≥ ZmZn−m ∀ 0 ≤ m ≤ n. (2.8)

In that case the inequality follows by viewing the n−length-system as a
concatenation of two systems of length m and n−m. Applying logarithm to
(2.8) it is obtained

lnZn ≥ lnZm + lnZn−m ∀ 0 ≤ m ≤ n (2.9)

i.e., lnZn is a superadditive sequence. In terms of the pn, this last in-
equality implies

p = lim
n→∞

pn = sup
n∈N

pn exist in (−∞,∞] (2.10)

The same occurs if Hn assigns a repulsive self-interaction to the system;
in which case the inequalities in (2.8) and (2.9) are reversed, and sup in
(2.10) is replaced by inf. In the case Hn assigns both repulsive and attrac-
tive interactions, then the above argument is generally not available; thus,
to determinate the free energy, it has to be established other means. The
situation, drastically, change in the presence of a random environment ω, the
superadditivity property in (2.9), is replaced by a Markov property.
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Chapter 3

Polymer model

We present in this Chapter the model that will be studied all through this
thesis. It is defined as a particular example of a Simple Random Walk (SRW)
in a random potential. A standard reference about SRW is [25].

3.1 A model for directed polymers

Our polymers will live on the d−dimensional Euclidean lattice Zd, d ∈
{1, 2, ...}. They will be modeled as random paths on this lattice, where
the monomers are the vertices in the path.

The simple random walk satrting at x ∈ Zd, denoted by (S = {Sn}n≥0, Px)
is defined on (Ωtraj,F , Px), where Ωtraj = (Zd)N, equipped with the cylindric
σ−field F , and a probability measure Px such that, under Px, the jumps
S1 − S0, ..., Sn − Sn−1 are independent with transitions

Px(S0 = x) = 1, Px(Sn − Sn−1 = ±ej) = (2d)−1, j = 1, 2, ..., d.

where ej = (δkj)
d
k=1 is the j−th vector of the canonical basis of Zd. In the

sequel, P0 will be shortened as P , and we will refer to the tern (Ωtraj,F , Px)
as the path space. Also, we define P (·) and E(·) as the probability mea-
sure and the expectation value relating to the path space. Finally we define
P (S[1,n] = x[1,n]) as

11
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P (S[1,n] = x[1,n]) := P (Sn = xn, Sn−1 = xn−1, · · · , S1 = x1).

The random environment: ω = {ω(n, x) : n ∈ N, x ∈ Zd} is a set of
random variables defined on a probability space (Ω,G,P), which are real
valued, non-constant, and independent identically distributed (i.i.d.) such
that

E [exp βω(n, x)] <∞ for all β ∈ R. (3.1)

We define P(·) and E(·) as the probability measure and the expectation
value related to (Ω,G,P).

3.2 The polymer measure

For any n > 0, define the probability measure P βω
n on the path space starting

at the origin by

P β,ω
n (x) =

eβHn(x)

Zn(ω, β)
P (x), (3.2)

where β > 0 is the inverse of the temperature, and P (x) is a sim-
plified notation of the probability that the random walk takes the path
x = (0, x1, ..., xn) i.e., P (x) = P (S0 = 0, S1 = x1, ..., Sn = xn), also, Hn(x) is
the total energy of the path x in environment ω, which is called the Hamil-
tonian [10]. It is defined by:

Hn(x) =
∑

1≤j≤n

ω(j, xj), (3.3)

if the random environment is fixed, then we will simplify the notation as
Hn. Finally, the partition function is given by:

Zn(ω, β) = E

[
e
β

n∑
j=1

ω(j,Sj)
]
, (3.4)

As we say before, it is the normalizing constant to make P β,ω
n a probability

measure. Since the partition function is an expected value, we can rewrite
(3.4) as
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Zn(ω, β) =
∑
x∈X

(2d−n)eβHn(x),

where X is the set of the (2d)n possible paths of length n for the simple
random walk. As long as the environment and the inverse of the tempera-
ture are always a parameter to the partition function, sometimes we write Zn.

Equation (3.2) is known as the polymer measure and it is similar to the
Gibbs measure (2.4). The polymer measure is the principal object to be
analyzed in this work.

One of the principal properties of the polymer measure is that the paths
with low energy have a high probability, while paths with high energy have
a low probability, at a fixed β.

In general {P β,ω
n }n∈N is not a consistent family of probability distribu-

tions., i.e., P β,ω
n+1 is not obtained by summing out the energy of the (n+ 1)-th

monomer to P β,ω
n , this due to the partition function, would have to take into

account all the paths of length (n+1), and not all paths would end up in the
position of the monomer (n + 1). So, we have a different polymer measure,
modeling the polymer at the length (n+ 1).

It is important to point out that as the environment can take either,
positive and negative values, we say that the polymer is attracted to sites
where the random environment is positive, and repelled by sites where the
environment is negative.

The dependence on the environment ω of both Zn(β, ω) and P βω
n is evi-

dent. Then, these quantities are random variables on the probability space
(Ω,G,P), so we can calculate its probability with the product measures. by:

Pβn(ω,x) = P β,ω
n (x)P(ω),

and expected value by:

E
(
P βω
n (x)

)
=
∑
ω

P β,ω
n (x)P(ω).

This quantity is known as the average Gibbs measure. This model
is used to describe a polymer whose random environment is not frozen but
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takes part in the equilibrium.

From now onwards, we will mostly be interested in the behavior of the
polymer measure in the limits n→∞, and β →∞.
We will not consider models where the length or the configuration of the
polymer variates in time.

Before we conclude the section, it is convenient to say that another prop-
erty of the polymer measure is that this quantity maximizes the Gibbs en-
tropy (2.6), or, equivalently, it minimizes the free energy (2.7). The following
chapter presents a deeper analysis of the free energy in the presence of a ran-
dom environment.



Chapter 4

Thermodynamics and phase
transitions

Throughout this chapter, we will analyze the basic properties of the polymer
measure.to do that let us define an important quantity for this model is the
cumulant generating function λ of ω(n, x),

λ(β) = lnE [exp (βω(n, x))], (4.1)

which is finite for all β due to hypothesis (3.1). Along this thesis, we are
going to consider β as positive.

4.1 Markov property and the partition

function

This chapter introduces the Markov property of the paths and how it affects
the polymer measure and the partition function. However, before that, let
us introduce the shift operator.

Definition 4.1.1. The shift operator on the space Ω of environments, is
defined as θi,x : Ω→ Ω, with i ≥ 1, and x ∈ Zd, given by ω 7→ θi,xω,

(θi,xω)(t, y) = ω(i+ t, x+ y). (4.2)

Note: Since the environment, ω is a collection of i.i.d.r.v., the law of ω
and θi,xω is the same.

15
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For n,m ≥ 1, x ∈ Zd, the random variable

Zm(θn,x(ω), β) = E

[
exp

( ∑
1≤t≤m

βω(t+ n, St+n)

)∣∣∣∣∣Sn = x

]

= E

[
exp

( ∑
1≤t≤m

βω(t+ n, St)

)∣∣∣∣∣S0 = x

]

= Ex

[
exp

( ∑
1≤t≤m

βω(t+ n, St)

)]
, (4.3)

is the partition function of the polymer of length m starting at x at time
n. Sometimes we write Zm ◦ θn,x because the environment and the inverse of
the temperature are always a parameter to it.

Proposition 4.1.2. Since ω and its shift θn,x(ω) have the same law, then
Zm ◦ θn,x has the same law as Zm.

Proof. It is known that ω
D
= θn,xω if and only if for every continuous and

bounded function f we have E(f(ω)) = E(f(θn,x(ω))).
So define

f(q) = exp

(
β
∑

1≤t≤m

qt

)
,

where qt ∈ R for all t. Clearly f(·) is a continuous function and its bounded
by (3.1). Then

E(f(θn,xω)) = E(f(ω)),

i.e.,

E

[
exp

(
β
∑

1≤t≤m

ω(t+ n, St + x)

)]
= E

[
exp

(
β
∑

1≤t≤m

ω(t, St)

)]
.

The right hand side of the previous equality is Zm(ω) and the left hand
side is

E

[
exp

(
β
∑

1≤t≤m

ω(t+ n, St + x)

)]
= Ex

[
exp

(
β
∑

1≤t≤m

ω(t+ n, St)

)]
= Zm ◦ θn,x(ω).
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In consequence, Zm(ω) = Zm ◦ θn,x(ω) for every ω ∈ Ω. Therefore,

P(Zm ◦ θn,x ≤ x) = P(Zm ≤ x) ∀x ∈ R,

thus Zm ◦ θn,x
D
= Zm.

Note:. We can also write (4.3) in form of a conditional expectation given
Fn = σ{St, t ≤ n} as:

Zm ◦ θn,x(ω) = E
[
eβ{Hn+m(S)−Hn(S)}|Fn

]
on the event {Sn = x}. (4.4)

Proof. On the event {Sn = x} we have the equalities:

E
[
eβ{Hn+m(S)−Hn(S)}|Fn

]
=E

eβ
{ ∑
n+1≤t≤n+m

ω(t,St)

}∣∣∣∣∣Sn = x


=Ex

eβ
{ ∑

1≤t≤m
ω(t+n,St)

}
=Zm ◦ θn,x(ω).

For n,m ≥ 1, we can express the partition function of the polymer of
length n+m by conditioning:

Zn+m = E
[
eβHn+m(S)

]
= E

[
eβHn(S)eβ(Hn+m(S)−Hn(S))

]
= E

[
eβHn(S)E

(
eβ(Hn+m(S)−Hn(S))|Fn

)]
= E

[
eβHn(S) × Zm ◦ θn,Sn

]
,

where we use (4.4) in the last equality. This important identity will be
referred to as the Markov property. It can be reformulated as
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E
[
eβHn(S) × Zm ◦ θn,Sn

]
= Zn × E

[
1

Zn
eβHn(S)Zm ◦ θn,Sn

]
= Zn ×

∑
x∈X

Zm ◦ θn,Sn
1

Zn
eβHn(x)P (x)

= Zn ×
∑
x∈X

(Zm ◦ θn,Sn)P β,ω
n (x)

= Zn × Eβ,ω
n [Zm ◦ θn,Sn ],

so we have proved:

Proposition 4.1.3. Markov property: The partition function of length
n+m can be seen as the product of the partition function up to length n and
the expected value respect the polymer measure of the shift up to (n, Sn) of
the partition function of length m, i.e.

Zn+m = Zn × Eβ,ω
n [Zm ◦ θn,Sn ]. (4.5)

Now we introduce an useful version for the conditional expectancy of the
shift operator applied on the partition function, given Sn. We will show that

e
β
m∑
t=1

ω(t+n,St+x)
is a version of Zm ◦ θn,x i.e.

E [Zm ◦ θn,xISn=x] = E

(
e
β
m∑
t=1

ω(t+n,St+x)
ISn=x

)
. (4.6)

Proof. First, let us note that e
β

n∑
t=1

ω(t+n,St+x)
∈ L1.

By (4.3 ), we can directly compute:

E
[
Ex

(
e
β
m∑
t=1

ω(t+n,St)
)
ISn=x

]
= E

[
E
(
e
β
m∑
t=1

ω(t+n,St)
∣∣∣S0 = x

)
ISn=x

]
= E

[
E
(
e
β
m∑
t=1

ω(t+n,St+n)
∣∣∣Sn = x

)
ISn=x

]
= E

(
e
β
m∑
t=1

ω(t+n,St+x)
ISn=x

)
.
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4.2 The polymer measure as a Markov chain

In this section, we will discuss some basic properties of the polymer measure
P β,ω
n . Let us fix the environment ω.

Proposition 4.2.1. Under the polymer measure P β,ω
n , the path S is a Markov

chain, with transition probabilities1

P β,ω
n (Si+1 = y|Si = x) =

eβw(i+1,y)Zn−i−1 ◦ θi+1,y

Zn−i ◦ θi,x
P (Si = y|S0 = x), (4.7)

for 0 ≤ i < n, and

P β,ω
n (Si+1 = y|Si = x) = P (Si+1 = y|Si = x) for i ≥ n.

Proof. For a given path (x0 = 0, x1, ...., xn), the following product is tele-
scopic,

n−1∏
i=0

eβw(i+1,xi+1)Zn−i−1 ◦ θi+1,xi+1

Zn−i ◦ θi,xi
P (S1 = xi+1|S0 = xi).

So, let us see what happens with the terms of the form
eβw(i+1,xi+1)Zn−i−1◦θi+1,xi+1

Zn−i◦θi,xi
,

recall that Z0 = 1 and Zn ◦ θ0,x0 = Zn, because we already set all the paths
to start in x0. Then,

n−1∏
i=0

eβw(i+1,xi+1)Zn−i−1 ◦ θi+1,xi+1

Zn−i ◦ θi,xi
=

1

zn
eβw(1,x1)eβw(2,x2) · · · eβw(n−1,xn−1)eβw(n,xn)

=
1

zn
e
β

n∑
i=n

ω(i,xi)
=

1

zn
eβHn(x).

Now, we analyze the product of P (S1 = xi+1|S0 = x0). Recall that

1The step by step proof is in (B.1.1)
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P (S0 = x0) = 1. We can compute

P (S[1,n] = x[1,n]) =P (Sn = xn, Sn−1 = xn−1, · · · , S2 = x2, S1 = x1)P (S0 = x0)

=
n∏
i=1

P (Si − Si−1 = xi − xi−1)P (S0 = 0)

=
n∏
i=1

P (Si = xi|Si−1 = xi−1),

so

P (S[1,n] = x[1,n]) =
n∏
i=1

P (Si = xi|Si−1 = xi−1).

Since
1

zn
eβHn(x)P (S[1,n] = x[1,n]) = P β,ω

n (S[1,n] = x[1,n]),

We conclude

n−1∏
i=0

eβw(i+1,xi+1)Zn−i−1 ◦ θi+1,xi+1

Zn−i ◦ θi,xi
P (S1 = xi+1|S0 = xi) = P β,ω

n (S[1,n] = x[1,n]).

(4.8)
Let us define

A :=
i−2∏
k=0

eβω(k+1,xk+1)
Zn−k−1 ◦ θk+1,xk+1

Zn−k ◦ θk,xk
P (S1 = xk+1|S0 = x0),

B :=eβω(i,x)
Zn−i ◦ θi,x

Zn−i−1 ◦ θi−1,xi−1

P (S1 = x|S0 = xi−1),

C :=
n∏

k=i+1

eβω(k+1,xk+1)
Zn−k−1 ◦ θk+1,xk+1

Zn−k ◦ θk,xk
P (S1 = xk+1|S0 = x0).

Now we will calculate

P β,ω
n (Si+1 = y|S[1,i−1] = x[1,i−1], Si = x, S[i+2,n] = x[i+2,n]). (4.9)

By expressing (4.9) in its product form we have
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P β,ω
n (Si+1 = y|S[1,i−1] = x[1,i−1], Si = x, S[i+2,n] = x[i+2,n])

=
P β,ω
n (Si+1 = y, S[1,i−1] = x[1,i−1], Si = x, S[i+2,n] = x[i+2,n])

P β,ω
n (S[1,i−1] = x[1,i−1], Si = x, S[i+2,n] = x[i+2,n])

=
A ·B · eβω(i+1,y)Zn−i−1◦θi+1,y

Zn−i◦θi,x P (S1 = y|S0 = x) · C
A ·B · C

=eβω(i+1,y)Zn−i−1 ◦ θi+1,y

Zn−i ◦ θi,x
P (S1 = y|S0 = x).

After last computations, it is clear to establish the Markov property,
because we start conditioning by (S[1,i−1] = x[1,i−1], Si = x, S[i+2,n] = x[i+2,n])
and we end with only one condition (S0 = x). Finally, after identifying this
last equality with (4.8) we get:

eβω(i+1,y)Zn−i−1 ◦ θi+1,y

Zn−i ◦ θi,x
P (S1 = y|S0 = x) = P β,ω

n (Si+1 = y|Si = x).

Observation. We can re-write (4.7) as2

P β,ω
n (Si+1 = y|Si = x) = P

β,θi,xω
n−i (S1 = y − x) (4.10)

Proof. Applying (4.7) to the right-hand-size of (4.10), we get:

P β,ω
n (Si+1 = y|Si = x) =

eβω(i+1,y)zn−i−1 ◦ θi+1,y

zn−i ◦ θi,x
P (Si+1 = y|Si = x),

as eβω(i+1,y) is measurable respect to Si+1 = y we get:

2The step by step prove is in (B.1.2).



22 CHAPTER 4. THERMODYNAMICS AND PHASE TRANSITIONS

P β,ω
n (Si+1 = y|Si = x) =

E

(
eβω(i+1,y)e

β
n−i−1∑
t=1

ω(t+i+1,St+Si+1)
|Si+1 = y

)
zn−i ◦ θi,x

E(ISi+1=y
|Si = x),

we can simplify the previous equation due to the Independence respect
to Si = x, so

P β,ω
n (Si+1 = y|Si = x) =

E

(
e
β
n−i−1∑
t=0

ω(t+i+1,St+y)
ISi+1=y|Si = x

)
zn−i ◦ θi,x

=

E

(
e
β
n−i∑
t=1

ω(t+i,St+x)
ISi+1=yISi=x

)
zn−i ◦ θi,xP (Si = x)

=

E

(
e
β
n−i∑
t=1

ω(t+i,St+x)
ISi+1=y|Si = x

)
zn−i ◦ θi,x

.

Now, as e
β
n−i∑
t=1

ω(t+i,St+x)
is Si = x measurable, we obtain:

P β,ω
n (Si+1 = y|Si = x) =

e
β
n−i∑
t=1

ω(t+i,St+x)
E
(
ISi+1=y|Si = x

)
zn−i ◦ θi,x

=
e
β
n−i∑
t=1

ω(t+i,St+x)

zn−i ◦ θi,x
P (Si+1 = y|Si = x)

=
e
β
n−i∑
t=1

θi,xω(t,St)

zn−i ◦ θi,x
P (S1 = y − x) .
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Since the transition probabilities depend on the environment at the cur-
rent time, i.e., the transition probabilities at step i depend on i, the Chain is
time inhomogeneous. Since the transitions probabilities also depend on the
time horizon n, the family of measures P β,ω

n is not consistent, except for the
trivial case β = 0. A final observation is the following.

Observation. For 0 ≤ n,m.

P β,ω
m+n

(
S[1,n] = · |Sn = y

)
= P β,ω

n

(
S[1,n] = · |Sn = y

)
, (4.11)

P β,ω
m+n

(
S[n,n+m] = y + · |Sn = y

)
= P β,θn,yω

m

(
S[0,m] = ·

)
. (4.12)

Proof. To prove (4.11), recall equation (4.8), i.e.

P β,ω
m+n

(
S[1,n] = · |Sn = y

)
=

n−1∏
i=0

[
eβw(i+1,xi+1)Zn−i−1 ◦ θi+1,xi+1

Zn−i ◦ θi,xi

P (S1 = xi+1|S0 = xi, Sn = y)

]
=P β,ω

n (S[1,n] = ·|Sn = y).

Now, to prove (4.12) we will apply (4.10):

P β,ω
m+n

(
S[n,n+m] = y + · |Sn = y

)
= P β,θn,yω

m

(
S[0,m] = y + · − y

)
= P β,θn,yω

m

(
S[0,m] = ·

)
.

4.3 The free energy

In statistical mechanics, there is a quantity that encode plenty of information
about the Gibbs measure. We will refer to that quantity as the (finite volume,
specific) free energy and its expression for a polymer of length n is:

pn(ω, β) =
1

n
lnZn(ω, β). (4.13)

As the environment and the inverse of the temperature are always a pa-
rameter to the free energy, sometimes we write pn instead of pn(ω, β). Also
we can study its behavior as the polymer length tends to infinity.



24 CHAPTER 4. THERMODYNAMICS AND PHASE TRANSITIONS

Theorem 4.3.1. As n→∞,

pn(ω; β)→ p(β) = sup
n

1

n
E
[

lnZn(ω; β)
]
. (4.14)

P-a.s. and in Lp-norm, for all p ∈ [1,∞).

This theorem states that the sequence pn(ω, β) converges almost surely
(a.s.) to a limit, and the limit is deterministic. It is given as a supremum
over the polymer length. The limit p is called the (infinity volume, specific)
free energy.

Proof. First, we will prove that the expectations converge, to do this we will
consider expected values and show that

lim
n→∞

E(pn) = sup
n∈N

E(pn) <∞. (4.15)

For m,n ≥ 1, recall the Markov property (4.5), and also that Zm and
Zm ◦ θn,x have the same law. Using Jensen’s inequality, we obtain

lnZn+m = ln
(
Zn · Eβ,ω

n

[
Zm ◦ θn,x

])
= lnZn + lnEβ,ω

n

[
Zm ◦ θn,x

]
≥ lnZn + Eβ,ω

n

[
lnZm ◦ θn,x

]
= lnZn +

∑
x∈X

P β,ω
n (Sn = x) lnZm(θn,xω).

Taking expectation and using independence of the ω(i, y)′s, it follows that

E [lnZn+m] ≥E [lnZn] +
∑
x∈X

E
[
P β,ω
n (Sn = x) lnZm

]
=E [lnZn] + E [lnZm]

∑
x∈X

E
[
P β,ω
n (Sn = x)

]
=E [lnZn] + E [lnZm]E

[∑
x∈X

P β,ω
n (Sn = x)

]
=E [lnZn] + E [lnZm] , (4.16)
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i.e., E [lnZn] is super-additive. By the Kingman’s super-additive ergodic
theorem (see lemma(A.1.1) in the Appendix), we conclude that

lim
x→∞

1

n
E [lnZn] = sup

n∈N
E(lnZn).

Now, the finiteness of p follows from the annealed bound (4.19) below.

To prove the almost sure convergence, for all ε > 0, define
An = |pn − E[pn]| > ε. then by (A.2.1)

P(An) = P(|pn − E[pn]| > ε) ≤ 2e−ncε
2

=: ε(n).

Then:
∞∑
n=1

P(An) <∞,

so by Borel-Cantelli lemma,

P
(

lim sup
n→∞

|pn − E[pn]| > ε

)
= 0,

which implies that lim supn |pn − E[pn]| ≤ ε, P-a.s.. Hence,

lim sup
n→∞

|pn − E[pn]| = 0 P-a.s..

This equality together with (4.15) implies

lim
n→∞

|pn − E[pn]| = 0 P-a.s..

Now to prove Lp-convergence we will use the concentration inequality
(A.2) stated in the Appendix. we have that

E (|pn − E [pn] |p) =

∫ ∞
0

P
(
|pn − E [pn] | > r1/p

)
dr

≤ 2

∫ ∞
0

exp {−nC(r1/p ∧ r2/p)}dr by (A.2)

= 2

∫ 1

0

exp {−nCr2/p}dr + 2

∫ ∞
1

exp {−nCr1/p}dr

≤ 2

∫ ∞
0

exp {−nCr2/p}dr + 2

∫ ∞
1

exp {−nCr1/p}dr

= C ′n−p/2 +O(exp {−Cn}),
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where C ′ =
∫∞
0

exp {−Cv2/p}dv <∞. This implies Lp−convergence.

4.4 Upper bounds

Computing the value of the free energy is difficult in general. Hence it is
necessary to estimate it. In this section, we obtain an upper bound for the
free energy, and then it will be improved.

4.4.1 The annealed bound

For every path x,

E
[
eβHn(x)

]
= E

[
e
β

n∑
j=1

ω(j,xj)
]

=
(
E
[
eβω(j,xj)

])n
= expn ln

(
E
[
eβω(j,xj)

])
= expnλ(β),

Where we used the independence and identical distribution of the random
variables ω’s. Then,

E
[
eβHn(x)

]
= exp (nλ(β)), (4.17)

and by Fubini’s theorem,

E [Zn] = E
[
E
(
eβHn(x)}

)]
= E

(
E
[
eβHn(x)}

])
= E (exp {nλ(β)})
= exp (nλ(β)).

By Jensen’s inequality,
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E [pn(ω, β)] = E
[

1

n
lnZn(ω, β)

]
≤ 1

n
lnE [Zn(ω, β)]

=
1

n
ln exp (nλ(β))

= λ(β).

So

E [pn(ω, β)] ≤ λ(β). (4.18)

Hence, taking supremum over n, we conclude that

p(β) ≤ λ(β). (4.19)

4.4.2 Improving the annealed bound

To improve (4.19) we will use monotonicity properties.

Proposition 4.4.1. For all fixed ω, we have:

1. The function pn(ω, β) is convex in β, with pn(ω; 0) = 0.

2. β 7→ β−1pn(ω, β) is increasing.

3. β 7→ β−1 [pn(ω, β) + ln 2d] is decreasing.

The function p(β) also satisfies properties 1− 3.

Proof. 1. Note that β 7→ pn(ω, β) is C∞. By differentiation, one gets

d

dβ
npn =

d

dβ
lnZn(ω, β) =

d
dβ
Zn

Zn
=

d
dβ
E
[
eβHn(x)

]
Zn

=
E
[
d
dβ
eβHn(x)

]
Zn

=
E
[
Hn(x)eβHn(x)

]
Zn

=

∑
x

Hn(x)eβHn(x)P (x)

Zn
= Eβ,ω

n (Hn(x)) .
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Now we take the second derivative of npn respect β.

d2

dβ2
npn =

d

dβ

d

dβ
npn =

d

dβ

∑
x

Hn(x)eβHn(x)P (x)

Zn

=

∑
x

H2
n(x)Zne

βHn(x)P (x)−
(∑

x

Hn(x)eβHn(x)P (x)

)2

Z2
n

=

∑
x

H2
n(x)eβHn(x)P (x)

Zn
−


∑
x

Hn(x)eβHnP (x)

Zn

2

= Eβ,ωn
(
H2
n

)
−
(
Eβ,ωn (Hn)

)2
= Varβ,ωn (Hn) > 0.

We have that

pn(ω, 0) =
1

n
lnZn(ω, 0) =

1

n
ln 1 = 0.

Thus pn is convex in β, proving (1).

2. We have β−1pn(ω, β) = β−1 [pn(ω, β)− pn(ω, 0)], thus by convexity, it
is non-decreasing in β.

3. We have the identity

d

dβ

(
1

β
[pn + ln (2d)]

)
=

1

nβ
Eβ,ω
n (Hn)− pn + ln 2d

β2

=
1

nβ2

[∑
X

P β,ω
n (x)βHn −

∑
X

P β,ω
n (x) lnZn

+
∑
X

P β,ω
n (x) lnP (x)

]
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=
1

nβ2

∑
X

P β,ω
n (x)

[
ln eβHnP (x)− lnZn

]
=

1

nβ2

∑
X

P β,ω
n (x)

[
ln
eβHnP (x)

Zn

]
=

1

nβ2

∑
X

P β,ω
n (x) lnP β,ω

n (x)

=
1

nβ2
h(P β,ω

n ),

where h(ν) is the Boltzmann entropy of a probability measure ν on the
n steps path space,

h(ν) :=
∑
x

ν(x) ln ν(x). (4.20)

Finally we have that h(ν) ≤ 0 for all ν, which ends the prove3.

Now, we will derive a better upper bound for the annealed bound.

Proposition 4.4.2. We have

p(β) ≤ β inf
b∈(0,β]

λ(b) + ln (2d)

b
− ln (2d). (4.21)

Hence, under condition (T ),

(T ) : βλ′(β)− λ(β) > ln (2d), (4.22)

we have

p(β) < λ(β). (4.23)

More precisely, if there exist a positive root β1 to the equation βλ′(β) =
λ(β) + ln (2d), then for all β > β1 it holds

p(β) ≤ β

β1
[λ(β1) + ln (2d)]− ln (2d) < λ(β). (4.24)

3The step by step prove of 4.4.1-3 is in (B.1.3)
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Proof. To simplify the notation, we introduce

g(β) = βλ′(β)− λ(β), f(β) =
λ(β) + ln (2d)

β
. (4.25)

Since λ is smooth and convex,we have that

g′(β) =
d

dβ
g(β) =

d

dβ
[βλ′(β)− λ(β)]

= λ′(β) + βλ′′(β)− λ′(β) = βλ′′(β).

So g′(β) = βλ′′(β) and since λ is convex, then its second derivative is non-
negative in R+, so βλ′′(β) has the same sing of β, thus g′(β) has the same
sign of β, and g(β) is increasing on R+.

Now, we introduce the convex conjugate of λ denoted as λ∗, with

λ∗(u) = sup
β
βu− λ(β), for u ∈ R. (4.26)

We have g(β) = λ∗(u), when u = λ′(β), where β satisfy (4.26). Moreover,

f ′(β) =
d

dβ
f(β) =

βλ′(β)− λ(β)− ln (2d)

β2

=
g(β)− ln (2d)

β2
.
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So we can write

E [pn(ω, β) + ln (2d)] = β
1

β
E [pn(ω, β) + ln (2d)]

= β inf
b∈(0,β]

1

b
E [pn(ω, b) + ln (2d)] by Proposition 4.4.1.3

= β inf
b∈(0,β]

1

b
(E [pn] + ln (2d))

≤ β inf
b∈(0,β]

1

b
(λ(b) + ln (2d)) by (4.18)

= β inf
b∈(0,β]

f(b).

Letting n→∞ we obtain

lim
n→∞

E [pn(ω, β) + ln (2d)] ≤ lim
n→∞

β inf
b∈(0,β]

f(b)

E
[

lim
n→∞

pn(ω, β) + ln (2d)
]
≤ β inf

b∈(0,β]
f(b)

E [p(β) + ln (2d)] ≤ β inf
b∈(0,β]

f(b)

p(β) + ln (2d) ≤ β inf
b∈(0,β]

λ(b) + ln (2d)

b
.

therefore

p(β) ≤ β inf
b∈(0,β]

λ(b) + ln (2d)

b
− ln (2d),

so we have obtained (4.21). Now let us define β1 ∈ (0,∞] by

β1 = inf{β > 0 : g(β) ≥ ln (2d)}

allowing it to take an infinite value. Then, f reaches its minimum at β1,
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because

f ′(β) =
g(β)− ln (2d)

β2
= 0 ⇐⇒ g(β) = ln (2d) ⇐⇒ β = β1

and

f ′′(β1) =
β3
1λ
′′(β1)− 2β1(g(β1)− ln (2d))

β4
1

,

f ′′(β1) =
λ′′(β1)

β1
> 0.

This last equality is due to 1/β1 > 0 for β1 ∈ (0,∞].
To make this easier to understand, look at Figure 4.1

Figure 4.1: Constructing the upper bound of Proposition 2.2.
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f(β) =
λ(β) + ln (2d)

β
.

So f(β) is the line between the points (0,− ln (2d)) and (β, λ(β)).

While g(β) = βλ′(β)−λ(β) = 0 is the Y−axes interception of the tangent
of λ at β.

For β as in Figure 4.1, the infimum of f(β̂) is in β̂ = β1 where the tangent
to λ intercepts the vertical axis at − ln (2d).

Figure 4.2: Improved annealed bound.

If λ has a tangent at some β1 > 0 which intersects the vertical axis at
− ln (2d) the bound for p on R+ is improved for the annealed bound by that
tangent, for values β > β1.
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Summarizing, if f has its minimum at β1 we have

inf
β̂∈(0,β]

f(β̂) =

{
f(β), if β ≤ β1,

f(β1), if β ≥ β1.

Using last equality and (4.21) we have

p(β) ≤ β

β1
[λ(β1) + ln (2d)]− ln (2d)

<
β

β
[λ(β) + ln (2d)]− ln (2d) = λ(β).

This last inequality proves (4.24). Finally note that by the strict convexity
of λ the condition β > β1 is equivalent to condition (T) (4.22).

Now we are looking for conditions ensuring p(β) < λ(β), for large β, in
terms of the marginal distribution of ω(n, x).

Proposition 4.4.3. Set q(dh) = P(ω(n, x) ∈ dh) and s = sup supp[q]. If
s = +∞ or q({s}) < 1

2d
, then, there exist β1 ∈ (0,∞) such that p(β) < λ(β),

for β > β1.

Proof. Let λ∗ the Legendre transform of λ,

λ∗(u) = sup
β
{uβ − λ(β)}

then, βλ′(β)− λ(β) = λ∗(λ′(β)).

On the other hand, let us calculate E(ω(n, x)eβω(n,x)):

E(teβt) =

∫
teβtqt(dh) =

∫ s

0

teβtqt(dh).

Integrating by parts

E(teβt) =

[
teβt

β

]s
0

−
∫ s

0

eβt

β
dqt(dh)

=
seβs

β
− 1

β
E(eβt).
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So βM ′
ω(β) = βE(ωeβω) = seβs − E(eβω) = seβs −Mω(β),

where Mω(β) is the moment generating function of ω(n, x).
In the following we take the limit β →∞ in the derivative of λ(β).

Recall that

λ(β) = lnE(eβω).

Then,

λ′(β) =
d

dβ
lnE(eβω) =

E( d
dβ
eβω)

E(eβω)

=
E(ωeβω)

E(eβω)
=

E(ωeβω)

Mω(β)

=
seβs

βMω(β)
− Mω(β)

βMω(β)

=
seβs

βMω(β)
− 1

β
.

Now, taking limits in both sides of the equation we obtain:

lim
β→∞

λ′(β) = lim
β→∞

[
seβs

βMω(β)
− 1

β

]
= lim

β→∞

seβs

βMω(β)
.

By L’Hopital rule:

lim
β→∞

λ′(β) = lim
β→∞

s2eβs

Mω(β) + βM ′
ω(β)

= lim
β→∞

s2eβs

seβs

= lim
β→∞

s = s.
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Thus, λ′(β)→ sup supp q when β →∞.

Finally, we have two cases.

1. If s =∞, then βλ′(β)− λ(β)→∞, because λ(β) is finite for all β by
assumption. And (4.22) holds for large β.

2. If s <∞ and q({s}) < 1/2d, then by [8] we know that

1 lim
β→∞

λ∗(λ′(β)) = − ln q({s}) > − ln

(
1

2d

)
= ln (2d),

and (4.22) holds for large β.

Note: Easily we can find some lower bounds, but they are useless for our
analysis. Although we will show some of them using Theorem 4.3.1. For
example:

p(β) = sup
n

1

n
E [lnZn(ω; β)] ≥ E

[
lnE

(
eβω1

)]
,

which we can improve by Jensen inequality and Fubini’s theorem

p(β) ≥ E
[
lnE

(
eβω(1,S1)

)]
≥ E

(
ln eE[βω(1,S1)]

)
= E (βE [ω(1, S1)]) = βEE[ω(1, S1)]

= βEE[ω(1, S1)] = βE[ω(t, x)]. (4.27)

But all of this bounds are local optimizations.
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4.5 Monotonicity

We have seen in Proposition (4.4.1) that β 7→ pn(ω; β) is convex and differ-
entiable. So we can compute its derivative:

∂

∂β
pn(ω, β) =

1

n

∂

∂β
lnZn(ω, β) =

1

n

∂
∂β
Zn(ω, β)

Zn(ω, β)

= E

[
∂
∂β
eβHn(x)

nZn

]
= E

[
Hn(x)eβHn(x)

nZn

]
= Eβ,ω

n

[
Hn(x)

n

]
,

which is the specific (internal) energy. What this says is that βp′n is the
limiting energy per monomer under the polymer measure [7]. Let D = D(p)
be the set of β′s such that the limit p is differentiable in β. Since p is convex
we have from [2] that Dc is at most numerable. In fact, p is C1 on D, and
since p is the limit of pn(ω; β) a.s. and in L1 − norm, we deal with convex
functions that have third derivative. The next result follows from this last
fact and general results of convergence of convex functions and its derivatives
(The details can be consulted in [24]).

Proposition 4.5.1. For all β ∈ D and almost every environment ω,

lim
n→∞

Eβ,ω
n [Hn(S)/n] = lim

n→∞
E
(
Eβ,ω
n [Hn(S)/n]

)
= p′(β).

More over, for all β ∈ R+, we could write bounds involving the left and
right derivatives:

p′(β−) ≤ lim inf
n→∞

Eβ,ω
n [Hn(S)/n] ≤ lim sup

n→∞
Eβ,ω
n [Hn(S)/n] ≤ p′(β+).

The notation p′(β±) denote the limit of p′(b) when b increase (decrease)
to β in D. Finally we have

E[ω(t, x)] ≤ p′(β) ≤ λ′(β). β ≥ 0, β ∈ D.
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Proof. First we have

lim
n→∞

Eβ,ω
n [Hn(s)/n] = lim

n→∞

∂

∂β
pn(ω, β) =

∂

∂β
lim
n→∞

pn(ω, β)

=
∂

∂β
p(β) = p′(β).

We also have:

lim
n→∞

Eβ,ω
n [Hn(s)/n] = lim

n→∞

∂

∂β
pn(ω, β) =

∂

∂β
lim
n→∞

1

n
lnZn(ω, β).

Now, by (4.1) and the Kingman’s superadditive ergodic theorem (A.1),
we get:

lim
n→∞

Eβ,ω
n [Hn(s)/n] =

∂

∂β
lim
n→∞

1

n
lnZn(ω, β) =

∂

∂β
lim
n→∞

1

n
E [lnZn(ω, β)]

= lim
n→∞

1

n
E
[
∂

∂β
lnZn(ω, β)

]
= lim

n→∞
E
(
Eβ,ω
n [Hn(S)/n]

)
.

The inequalities of the second statement follow immediately from the
previous one. Finally, the last inequality comes from (4.27) and (4.29) below.

The relevance of this analysis is to show that λ − p has a remarkable
monotonicity property.

Theorem 4.5.2. The functions β 7→ λ(β)−E[pn(ω, β)] and β 7→ λ(β)−p(β)
are non-decreasing in R+, and non-increasing in R−.

Proof. First recall the notation of proposition (4.4.3) for the law of ω(t, x),
and define

ζn(S) = eβHn(S).

Let us calculate the derivative respect to β of lnZn:

∂

∂β
E [lnZn] = E

[
∂

∂β
lnZn

]
= E

[
∂
∂β
Zn

Zn

]

= E

[
E
(
Hne

βHn
)

Zn

]
= E

[
E
(
Z−1n Hnζn

)]
. (4.28)
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Now, fix a path x ∈ X. Define a probability measure as follows:

dP̂x := ζn(x)e−nλ(β)dP.
It is easy to see that enλ(β) is the normalization of ζndP. Under this

measure the r.v. ω′s are independent (though no identically distributed).
We prove this afirmation in the following.

P̂x(ω(t, xt) ∈ dA, ω(r, xr) ∈ dB) = eβ(ωt+ωr)e−2λ(β)P(ω(t, xt) ∈ dA, ω(r, xr) ∈ dB)

= eβωte−λ(β)eβωre−λ(β)P(ω(t, xt) ∈ dA)P(ω(r, xr) ∈ dB)

= eβwte−λ(β)P(ω(t, xt) ∈ dA)eβwre−λ(β)P(ω(r, xr) ∈ dB)

= P̂x(ω(t, xt) ∈ dA)P̂x(ω(r, xr) ∈ dB),

which proves the independence between the random variables. We pro-
ceed now to show that the random variables are not identically distributed.
Let us take a vertex in the path xt ∈ x, then

P̂x(ω(t, xt) ∈ dh) = eβωte−λ(β)P(ω(t, xt) ∈ dh)

= eβωt−λP(ω(t, xt) ∈ dh) = eβωt−λq(dh).

While if xt /∈ x, then its contribution to the Hamiltonian is equal to zero.
Then:

P̂x(ω(t, xt) ∈ dh) = eβωt1(xt∈x)e− lnE(eβωt1(xt∈x))P(ω(t, xt) ∈ dh)

= e0e− ln 1P(ω(t, xt) ∈ dh) = e0P(ω(t, xt) ∈ dh) = q(dh).

This shows that the distribution of ω under the measure P̂x depends on
the path.

Now, we will proof two equalities that we will use below.

λ′(β) =
∂

∂β
lnE

(
eβω
)

=
E
(
∂
∂β
eβω
)

E (eβω)

=
E
(
ωeβω

)
elnE(βω) =

E
(
ωeβω

)
eλ(β)

.

So

eλ(β)λ′(β) = E
(
ωeβω

)
.
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The second equality that we need is

nλ′(β)enλ(β) = n
E
(
ωeβω

)
eλ(β)

enλ(β) = nE
(
ωeβω

)
e(n−1)λ(β)

= E
(
nωeβω

) (
eλ(β)

)(n−1)
,

as ω′s are identically distributed,

nλ′(β)enλ(β) = E
[
eβω (ω1 + · · ·+ ωn)

] [
E
(
eβω
)](n−1)

,

by independence of the ω′s,

nλ′(β)enλ(β) =
[
E
(
eβω1ω1

)
+ · · ·+ E

[
eβωnωn

]] [
E

(∏
n−1

eβω

)]

= E
(
eβω1ω1

)
E
(
e
β

∑
n−1

ω
)

+ · · ·+ E
[
eβωnωn

]
E
(
e
β

∑
n−1

ω
)
,

if in each element of the sum we do not take the element ωi over the sum in
the exponent, we have independence. Thus

nλ′(β)enλ(β) = E
[
eβω1ω1e

β
∑

n−1 6=1
ω
]

+ · · ·+ E
[
eβωnωne

β
∑

n−1 6=n
ω
]

= E
[
ω1e

β
∑
n
ω
]

+ · · ·+ E
[
ωne

β
∑
n
ω
]

= E

[
eβHn

∑
n

ω

]
= E

[
Hne

βHn
]

= E [ζnHn] .

So

nλ′(β)enλ(β) = E [ζnHn] .

But, we also have shown that

enλ(β) = E
[
eβHn

]
= E [ζn] .

Returning to the proof, since the r.v. ω′s are independent under P̂x,
then by the Harris-FKG Theorem (A.5) we have that they are positively
associated. Note that the function Hn is increasing in ω, while (Zn)−1 is
decreasing for β ≥ 0, hence −(Zn)−1 is increasing for β ≥ 0. In such manner,
for fixed x we find
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E[−(Zn)−1Hnζn] = E[−(Zn)−1ζnζ
−1
n Hnζn]

≥ E
[
−(Zn)−1ζnζ

−1
n

]
E [Hnζn] ,

applying again (A.5), we get:

E[−(Zn)−1Hnζn] ≥ E
[
−(Zn)−1ζn

]
E
[
ζ−1n
]
E [Hnζn] ,

by Jensen’s inequality

E[−(Zn)−1Hnζn] ≥ E
[
−(Zn)−1ζn

]
(E [ζn])−1 E [Hnζn] .

Thus

E[(Zn)−1Hnζn] ≤ E
[
(Zn)−1ζn

]
(E [ζn])−1 E [Hnζn]

= E
[
ζn(Zn)−1

]
e−nλ(β)nλ′(β)enλ(β)

= E
[
ζn(Zn)−1

]
nλ′(β).

Then, if we integrate (4.28) respect to P , we obtain:

∂

∂β
EE lnZn ≤ nλ′(β)E

(
E
[
(Zn)−1ζn

])
= nλ′(β)E

(
E
[
(Zn)−1ζn

])
,

using Fubini’s Theorem

∂

∂β
EE lnZn ≤ nλ′(β)E

(
(Zn)−1E [ζn]

)
= nλ′(β)E

(
(Zn)−1Zn

)
= nλ′(β). (4.29)

Therefore

0 ≤ λ′(β)− ∂

∂β
E [pn] . (4.30)

Finally, since pn and λ are both equal to zero when β = 0 and λ(β)−E [pn]
has non-negative slope over all positive β′s we conclude that λ(β) − E [pn]
are non-decreasing on R+.
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If we take supn on (4.30), we obtain

0 ≤ λ′(β)− p′(β).

Once again, p and λ are both equal to zero when β = 0 and the slope of
λ(β)− p(β) are non-negative over all positive β′s we have that λ(β)− p(β)
are non decreasing on R+.
The second part of this Theorem is analogue.

Another important result is that the r.v.’s Zn(β, ω)e−nλ(β) are increasing
in β in the convex order.

For two integrable r.v.’s X, Y , we say that X is smaller than Y in convex
order if

E [φ(X)] ≤ E [φ(Y )] ,

for all convex φ : R 7→ R such that the expectation exist. In that case we
write X ≤cx Y .

Theorem 4.5.3. For fixed n ∈ N, the process β 7→ Zn(ω, β)e−nλ(β) is in-
creasing in the convex order.

Proof. Let φ : R 7→ R a convex function. We need to prove that the function
β 7→ E

[
φ
(
Zn(ω; β)e−nλ(β)

)]
is increasing in β. We have

∂

∂β
E
[
φ
(
Zn(ω, β)e−nλ(β)

)]
= E

[
∂

∂β
φ
(
Zn(ω, β)e−nλ(β)

)]
, (4.31)

by the chain rule, (4.31) is equal to

E
[
φ′
(
Zn(ω, β)e−nλ(β)

)(
E
[
Hn(x)eβHn(x)

]
e−nλ(β) + Zn(ω, β) (−nλ′(β)) e−nλ(β)

)]
=E
[
φ′
(
Zn(ω, β)e−nλ(β)

) (
E
[
Hn(x)eβHn(x)−nλ(β)

]
+ E

[
−nλ′(β)eβHn(x)−nλ(β)

] )]
=EE

[
φ′
(
Zn(ω, β)e−nλ(β)

)
(Hn(x)− nλ′(β)) eβHn(x)−nλ(β)

]
,

by Fubini’s Theorem:

∂

∂β
E
[
φ
(
Zn(ω, β)e−nλ(β)

)]
= EE

[
(Hn(x)− nλ′(β)) eβHn(x)−nλ(β)φ′

(
Zn(ω, β)e−nλ(β)

)]
= EÊx

[
(Hn(x)− nλ′(β))φ′

(
Zn(ω, β)e−nλ(β)

)]
.
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As we proved previously, the r.v. ω’s are independent under P̂x, then by
Harris-FKG, they are positively associated and these two following applica-
tions are increasing for β ≥ 0

ω 7→ Hn(x),

ω 7→ φ′
(
Zn(ω, β)e−nλ(β)

)
.

Since they are positively associated we have

∂

∂β
E
[
φ
(
Zn(ω, β)e−nλ(β)

)]
= EÊx

[
(Hn(x)− nλ′(β))φ′

(
Zn(ω, β)e−nλ(β)

)]
≥ EÊx [(Hn(x)− nλ′(β))]EÊx

[
φ′
(
Zn(ω, β)e−nλ(β)

)]
.

In particular

EÊx [Hn(x)− nλ′(β)] = EE
[
(Hn(x)− nλ′(β)) eβHn(x)−nλ(β)

]
= EE

[
∂

∂β
eβHn(x)−nλ(β)

]
=

∂

∂β
E
(
E
[
eβHn(x)

]
e−nλ(β)

)
=

∂

∂β
E
(
enλ(β)e−nλβ

)
= 0.

Thus
∂

∂β
E
[
φ
(
Zn(ω, β)e−nλ(β)

)]
≥ 0,

which yields the result.

This result can be generalized in classical spin glass models such as

• Sherrington-Kirkpatrick (SK) model,

• Edwards-Anderson (EA) model,

• Random field Ising (RFIM) model.

Returning to the r.v. Zn(ω, β)e−nλ(β), as they are increasing in convex
order, i.e. Zn(ω, β) ≤cv Zn(ω, β′), for some β and β′ in R, such that β ≤ β′,
and since φ(x) = x and φ(x) = −x are convex functions, then
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E
(
Zn(ω, β)e−nλ(β)

)
≤ E

(
Zn(ω, β′)e−nλ(β

′)
)
,

and also

E
(
−Zn(ω, β)e−nλ(β)

)
≤ E

(
−Zn(ω, β′)e−nλ(β

′)
)

E
(
Zn(ω, β)e−nλ(β)

)
≥ E

(
Zn(ω, β′)e−nλ(β

′)
)
.

Therefore

E
(
Zn(ω, β)e−nλ(β)

)
= E

(
Zn(ω, β′)e−nλ(β

′)
)
.

Also, since φ(x) = x2 is convex, we have

E
(
Z2
n(ω;β)e−n2λ(β)

)
≤ E

(
Z2
n(ω, β′)e−n2λ(β

′)
)

E
(
Z2
n(ω, β)e−n2λ(β)

)
− E

(
Zn(ω, β)e−nλ(β)

)2
≤ E

(
Z2
n(ω, β′)e−n2λ(β

′)
)
− E

(
Zn(ω, β′)e−nλ(β

′)
)2

V ar
(
Zn(ω, β)e−nλ(β)

)
≤ V ar

(
Zn(ω, β′)e−nλ(β

′)
)
.

Since they have the same expectation, this is a quantitative way to say
that Zn(ω, β)e−nλ(β) is less dispersed than Zn(ω, β′)e−nλ(β

′).

In our case, the process β 7→ Zn(ω, β)e−nλ(β) is increasing in the convex
order. This is a mathematical formulation of an intuitive physic property:
The fluctuations of Zn(ω, β)e−nλ(β) increase as β grows.

4.6 Phase transitions.

Theorem 4.6.1. Critical Temperature There exist βc = βc(P, d) ∈ [0,∞]
such that {

p(β) = λ(β) if 0 ≤ β ≤ βc,

p(β) < λ(β) if β > βc.

Proof. We define βc := inf{β ≥ 0 : p(β) < λ(β)}.

As we consider βc ∈ [0,∞], by Theorem (4.5.2) βc exit. Also, by propo-
sition (4.5.1), we have that β 7→ λ(β) − p(β) is non-decreasing, and λ(0) =
p(0) = 0, thus
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∀ βc > β ≥ 0 λ(β)− p(β) = 0 ⇒ λ(β) = p(β)

(otherwise, for some β ∈ [0, βc), we have λ(β) − p(β) > 0. Then λ(β) >
p(β), which contradicts the definition of βc).

Also, since λ(β)− p(β) is non-decreasing, if β > βc).

λ(β)− p(β) > λ(βc)− p(βc) > 0.

Definition 4.6.2. We call the high temperature region (or small β region)
to the set of β′s such that p = λ, and the low temperature region (or large β
region) the set of β′s such that p < λ.

Now we have some observations:

1. β = 0 is in the high temperature region.

2. Theorem (4.6.1) implies the absence of re-entrant phase transition in
the phase diagram of the model. But we can also have just one of the
two regimes of the diagram if βc = 0 or βc =∞.

3. It is natural that the polymer measure has a different behavior in these
two regions. In the high temperature region, the Gibbs measure is a
small perturbation of the random walk. In the low temperature region,
the polymer strongly feels the environment.

Now, recall that a function is analytic at point β0 in the interior of its
domain. If it is equal in a neighborhood of β0 to a power series in β − β0
with a positive radius of convergence. By definition of λ, it is analytic in R.
We also have that pn(ω; β) is C∞; since is the logarithm of a finite sum of
smooth terms. However the limit p(·) may not be analytic.
If βc is strictly positive and finite, the high and low temperature regions
have non-empty interior, so the function p(·) is non-analytic in βc. Because
p(β) = λ(β) when β ∈ [0, βc], and the analytic continuation on R is λ(β),
but by (4.6.1) we have that p(β) < λ(β) for β > βc, p(·) is non-analytic in
βc. For this reason βc is called critical (in the mathematical point of view).

The following diagram, depicts phases according to the parameter value
β, with β ∈ [0,∞). The case when β is negative could be obtained by
changing the environment ω into −ω.
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Figure 4.3: Behavior of the Free energy, Phase, and Temperature as a func-
tion of β.



Chapter 5

The localized phase

In this chapter, we will focus on the low temperature region. In this region
its known by [5], [16], [3] and [1] that the phase is localized for low dimensions
(1 + 1) and (1 + 2). Therefore we can find a corridor where the polymer is
pinned. We can build a “favorite path” (that depends on the environment
and the temperature) such that, the time that the polymer spends in the
path is positive. Moreover, the limit approximates its maximum value as the
temperature vanishes.

5.1 Path localization

Consider the Gibbs measure and a Gaussian environment.

ω(t, x) ∼ N(0, 1),

for y = (yt)t : N→ Zd and S a path, we define

Nn(S,y) =
n∑
t=1

1St=yt .

This last quantity represents the number of intersections between S and
y up to time n. Now, define the parameter region

C = {β > 0 : p is differentiable at β, p′(β) < λ′(β)}.

By convexity the set where p is non-differentiable is at most countable.
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Theorem 5.1.1. Assume that the environment is Gaussian. Then there
exist y(n) : [0, n]→ Zd, such that

lim inf
n→∞

EEβ,ω
n

[
Nn(S,y(n))

n

]
≥ 1− p′(β)

λ′(β)
> 0, (5.1)

for all β ∈ C. Moreover

lim
β→∞

lim inf
n→∞

EEβ,ω
n

[
Nn(S,y(n))

n

]
= 1 (5.2)

Proof. Since the environment is Gaussian, we can use (A.4), to get

d

dβ
E [pn(ω, β)] = EEβ,ω

n

[
Hn(S)

n

]
=

1

n

∑
t≤n

EEβ,ω
n [ω(t, x)]

=
1

n

∑
t≤n

∑
x

E
[
ω(t, x)P β,ω

n (St = x)
]

=
β

n

∑
t≤n

∑
x

E
[
P β,ω
n (St = x)− P β,ω

n (St = x)2
]

=
β

n

[∑
t≤n

E
∑
x

P β,ω
n (St = x)− E

∑
t≤n

∑
x

eβHn(S)+βHn(S̃)P (S = x)P (S̃ = x)

Z2
n

1St=S̃t

]

=
β

n

[∑
t≤n

E(1)− E
∑
x

∑
t≤n

1St=S̃t

eβHn(S)+βHn(S̃)P (S = x)P (S̃ = x)

Z2
n

]

=
β

n

(∑
t≤n

1− EP β,ω⊗2

n

[
Nn(S, S̃)

])

= β

(
1− EP β,ω⊗2

n

[
Nn(S, S̃)

n

])
.



5.1. PATH LOCALIZATION 49

So

1− 1

β

d

dβ
E [pn(ω, β)] = EP β,ω⊗2

n

[
Nn(S, S̃)

n

]
,

where P β,ω⊗2

n (·), denotes the product measure of two polymers measures,
also the coupling (S, S̃) are two independent paths over Ω. When β ∈ C,
the limit is differentiable at β, and convexity implies the existence of the
following limit:

lim inf
n→∞

EP β,ω⊗2

n

[
Nn(S, S̃)

n

]
= lim inf

n→∞
1− 1

β

d

dβ
E [pn(ω, β)]

= 1− 1

β

d

dβ
lim
n→∞

E [pn(ω, β)]

= 1− p′(β)

β
. (5.3)

By the Gaussian environment hypothesis we can compute directly

λ(β) = lnE
[
eβω(t,x)

]
= ln eβ

2/2 =
β2

2
.

Then β = λ′(β). Replacing this in (5.3) we get

lim inf
n→∞

EP β,ω⊗2

n

[
Nn(S, S̃)

n

]
= 1− p′(β)

λ′(β)
.

Now, for fixed n, β, ω we define the the “favorite path” by

y(n) = arg max
x∈ZPβ,ωn

(St = x) t = 1, 2, ..., n. (5.4)

Also, by definition,

P β,ω⊗2

n (St = S̃t) =
∑
x

1St=S̃t

eβHn(S)+βHn(S̃)P (S = x)P (S̃ = x)

Z2
n

≤ P β,ω
n (St = y(n)),

where the last inequality is due to the fact that the indicator function
reduces to a single path, and also as P β,ω⊗2

n is the product measure of P β,ω
n ,
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its value is less than or equal to the value of one of its parts; by definition it
is less than or equal to P β,ω

n

(
St = y(n)

)
. So, we obtain

EEβ,ω⊗2

n

[
Nn(S, S̃)

n

]
≤ EEβ,ω

n

[
Nn(S,y(n))

n

]
.

Thus

lim inf
n→∞

EEβ,ω
n

[
Nn(S,y(n))

n

]
≥ 1− p′(β)

λ′(β)
> 0,

which implies (5.1) (the last inequality follows from β ∈ C which implies
p′(β) < λ′(β) so 1− p′(β)/λ′(β) > 0).

Recalling the improved annealed bound (4.21), we see that β grows lin-
early. Which implies, by convexity, that p′(β) ≤ C <∞ for some C. Then

1− p′(β)

λ′(β)
≥ 1− C

β
,

and taking the limit β →∞ we get

lim
β→∞

1− p′(β)

λ′(β)
≥ 1.

Finally, since we have that Nn(S,y(n)) ≤ n, we obtain

1 ≥ lim
β→∞

lim inf
n→∞

EEβ,ω
n

[
Nn(S,y(n))

n

]
≥ 1.

So we conclude (5.2)

lim
β→∞

lim inf
n→∞

EEβ,ω
n

[
Nn(S,y(n))

n

]
= 1.
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5.2 Simulations of the localized phase

The following results come from the simulation of two polymers of length n.
The first one has a standard normal environment, and the second one has
an exponential environment with a parameter λ = 10. There is a plot for
each value of the temperature in {10, 50, 100, 1000}. The simulations are in
dimension D = 1 + 1. Therefore, by (5.1) the polymer is localized.

The first plots in each section show the localization of the favorite path
for the two environments. The subsequent plots show a map of the order of
the maximum path to each point.

5.2.1 Standard normal environment.

Figure 5.1: Localization of the favorite path for normal environment. The
jumps below to suboptimal paths at low temperatures. Jumps tend to dis-
appear as temperature grows.
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Figure 5.2: Mass of the order of the maximum at each point with temperature
T = 10. (The mass decreases from blue to withe).

Figure 5.3: Mass of the order of the maximum at each point with temperature
T = 50.
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Figure 5.4: Mass of the order of the maximum at each point with temperature
T = 100.

Figure 5.5: Mass of the order of the maximum at each point with temperature
T = 1000.
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• In the case T = 10, 50 in the normal environment, the localization is
strong, most of the time, the order of mass at each point is lower than
10. Only at the begin of the polymer, there are few locations where the
mass is not too small, and there is a sharp corridor where the polymer
tends to lie.

• When T = 100, 1000 the plots show that the mass decay slowly around
the favorite path Fig.(5.1), resulting in a broad corridor.

5.2.2 Exponential environment.

Figure 5.6: Localization of the favorite path for exponential environment
with λ = 10.

• For T = 1, points in the plot are around the favorite path, and their
mass is lower than 5. Also, jumps are due to the inner jumps in the
favorite path.

• For T = 10, unlike the normal environment, in the exponential case,
we have a corridor around the favorite path, but just in points near to
the favorite path, the order of their mass is significant. Similarly, the
mass decreases quickly as the points separate from the favorite path.
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Figure 5.7: Mass of the order of the maximum at each point with temperature
T = 1. (The mass decreases from blue to white).

Figure 5.8: Mass of the order of the maximum at each point with temperature
T = 10. (The mass decreases from blue to white).
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Figure 5.9: Mass of the order of the maximum at each point with temperature
T = 50. (The mass decreases from blue to white).

Figure 5.10: Mass of the order of the maximum at each point with temper-
ature T = 100. (The mass decreases from blue to white).
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Figure 5.11: Mass of the order of the maximum at each point with temper-
ature T = 1000. (The mass decreases from blue to white).

• For T = 50, 100 both corridors have the same shape, there are two
differences between them, the first one is that the order of the points
with t = 100 is, obviously, more prominent than the order of the points
with t = 50. The second difference is that the order of the points
decreases slowly when T = 100.

• for T = 1000, the plot shows a wide corridor, with the order of the
points bigger than 100. In this case, the maximum path is no longer
relevant. Also, the order decreases rapidly at the edge of the corridor.
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5.2.3 Pareto environment.

Figure 5.12: Localization of the favorite path for Pareto environment with
α = 10, and scale m = 200.

• For T = 1, the plot already shows a smooth corridor, and the point
mass decay slowly as they get away from the favorite path.

• For T = 10, in this case, there is a smooth corridor where the point
mass decay slowly near the favorite path, but also decay quickly in the
edge of the corridor.

• For T = 100, unlike the previous case, we have a thick central corridor,
where almost all points have the same mass (over 100), but at the edge,
there are points which masses decay very quickly.

• for T = 1000, starting from the previous case, we have almost the
same shape; the only difference is that the edge where the mass decay
is thinner than the showed in the case t = 100.
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Figure 5.13: Mass of the order of the maximum at each point with temper-
ature T = 1. (The mass decreases from blue to white).

Figure 5.14: Mass of the order of the maximum at each point with temper-
ature T = 10. (The mass decreases from blue to white).
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Figure 5.15: Mass of the order of the maximum at each point with temper-
ature T = 100. (The mass decreases from blue to white).

Figure 5.16: Mass of the order of the maximum at each point with temper-
ature T = 1000. (The mass decreases from blue to white).



Chapter 6

Conclusions.

In the theory of directed polymers in random environments, much informa-
tion is encoded in the polymer measure, the partition function, and the free
energy. The polymer measure mediates the interaction between the random
walk and the environment, when the temperature tends to zero, the polymer
measure concentrates on the favorite path. On the other hand, when the
temperature tends to infinite, the environment no longer affects the random
walk. In general, the partition function has a superadditive (subadditive)
properties if the Hamiltonian has an attractive (repulsive) self-interaction.
In the case of random environments, the partition function defined from the
polymer measure satisfies a Markov property, and the transition probabilities
can be calculated explicitly. The principal quantity related to the behavior
of the polymer is in the free energy. In this thesis, it was shown that the
free energy converges a.s. as the length of the polymer tends to infinite. Fur-
thermore, this limit is bounded by the logarithm of the moment generating
function of ω(n, x). After that, the bound was improved, and it was shown
that the free energy is a convex function on β, and it has a monotonicity
property. Due to the in-depth analysis of the free energy, it was found a
critical temperature, where the limit of the free energy is no longer analytic.
This critical temperature indicates a phase transition. Then, it was studied
the path localization, where it was shown (for the Gaussian environment)
that the polymer tends to live near to a favorite path when the temperature
tends to zero. Finally, as the phase is localized for low dimensions (d = 1, 2),
the simulations made shows the corridor where the polymer tends to live, as
predicted by theory. For low temperatures, the corridor is just a low varia-
tion of the favorite path, and as the temperature starts to grow, a corridor
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appears. The mass of the points decreases as they move away from the fa-
vorite path. The thickness and the rapidness of the mass decrease depend
on the distribution followed by the environment.



Appendix A

Complementary theory

Let us state some results that have been used in this thesis.

A.1 Kingman’s subadditive ergodic theorem.

Theorem A.1.1. Kingman’s subadditive ergodic theorem. Suppose
(Xm,n) a sequence of r.v. such that, for all 0 ≤ m ≤ n

1) X0,n ≤ X0,m +Xm,n,

2) The joint distribution of {Xm+1,m+k+1 : k ≥ 1} is the same as
{Xm,m+k, k ≥ 1} for each positive m,

3) for each k ≥ 1, the set {Xnk,(n+1)k, n ≥ 1} is a ergodic process.

Then:

X := lim
n→∞

X0,n

n
= lim

n→∞

E(X0,n)

n
= inf

n

E(X0,n)

n
(A.1)

and the limit X is a constant random variable a.s.

This result is stated by Thomas Liggett in [17].

A.2 Concentration inequality

Theorem A.2.1. General concentration inequality for the free en-
ergy: Assume that the environment has all exponential moments (3.1).
Then,
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E [|pn − E (pn) | ≥ r] ≤

{
2 exp {−nCr2} if 0 ≤ r ≤ 1,

2 exp {−nCr} if r ≥ 1.
(A.2)

for some constant C > 0.

In [18] Lui and Watbled make a rigorous proof of this theorem.

A.3 Integration by parts.

Lemma A.3.1. Integration by Part Formula If X is centered normal
random variable, and f is a smooth function which does not grow too fast at
infinity, i.e.,

lim
|x|→∞

f(x) exp−x2/(2E(X2)) = 0,

then

E(Xf(X)) = E(X2)E(f ′(X)) (A.3)

A proof of this lemma is shown in [22] Chapter 5. Using that we can
prove the proposition below.

Proposition A.3.2. If ω(t, x) is centered normal, using integration by part
formula (A.3), we get

E
[
ω(t, x)P β,ω

n (St = x)
]

= βE
[
P βω
n (St = x)− P βω

n (St = x)2
]

(A.4)

Proof.

E
[
ω(t, x)P β,ω

n (St = x)
]

= E
[
ω2(t, x)

]
E
[

∂

∂ω(t, x)
P βω
n (St = x)

]
= 1 · E

[
∂

∂ω(t, x)

(
eβ

∑
i≤n ω(i,xi)P (St = x)

Zβω
n

)]
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= E

[
βeβ

∑
i≤n ω(i,xi)P (St = x)

Zβω
n

−
eβ

∑
i≤n ω(i,xi)P (St = x)

∑
x̂∈X e

β
∑
Hn(x̂)βIω(t,x̂t)=ω(t,x)P (x̂)(

Zβω
n

)2
]

= βE

[
eβ

∑
i≤n ω(i,xi)P (St = x)

Zβω
n

− eβ
∑
i≤n ω(i,xi)P (St = x)

Zβω
n

∑
x̂∈X e

βHn(x̂)Iω(t,x̂t)=ω(t,x)P (x̂)

Zβω
n

]

= βE

[
P βω
n (St = x)− P βω

n (St = x)Eβω
n

(
Iω(t,x̂t)=ω(t,x)

) ]

= βE

[
P βω
n (St = x)− P βω

n (St = x)Eβω
n (ISt=x)

]

= βE

[
P βω
n (St = x)− P βω

n (St = x)P βω
n (St = x)

]

= βE

[
P βω
n (St = x)− P βω

n (St = x)2

]

A.4 FKG-Harris inequality

Recall that a function f : Rk → R is increasing if f(x) ≤ f(y) whenever it
xi ≤ yi ∀ i ≤ k. This is equivalent to f being coordinatewise increasing, i.e.,
f(x) ≤ f(y) for all y such that yi = xi for all i, j with i 6= j and xj < yj.

Definition A.4.1. A family X = (Xi; 1 ≤ i ≤ k) of real random variables
defined on the same probability space are called positively associated if for
any f, g : Rk → R bounded increasing function,

E [f(X)g(X)] ≥ E[f(X)]E[g(X)]. (A.5)

The inequality (A.5) is called the Fortuyn-Kasteleyn-Ginibre (FKG) in-
equality. The inequality simply means that increasing functions are positively
correlated.

Proposition A.4.2. FKG-Harris Inequality A family of independent,
real random variables is positively associated.



66 APPENDIX A. COMPLEMENTARY THEORY



Appendix B

Complete proves.

B.1

Proposition B.1.1. Step by step proof of (4.7), Under the polymer measure
P β,ω
n , the path S is a Markov chain, with transition probabilities

P β,ω
n (Si+1 = y|Si = x) =

eβw(i+1,y)Zn−i−1 ◦ θi+1,y

Zn−i ◦ θi,x
P (Si = y|S0 = x) (B.1)

for 0 ≤ i < n, and

P β,ω
n (Si+1 = y|Si = x) = P (Si+1 = y|Si = x) for i ≥ n.

Proof. For a given path (x0 = 0, x1, ...., xn), the following product is tele-
scopic,

n−1∏
i=0

eβw(i+1,xi+1)Zn−i−1 ◦ θi+1,xi+1

Zn−i ◦ θi,xi
P (S1 = xi+1|S0 = xi)

=
eβw(1,x1)Zn−1 ◦ θ1,x1

Zn ◦ θ0,x0
P (S1 = x1|S0 = x0)×

eβw(2,x2)Zn−2 ◦ θ2,x2
Zn−1 ◦ θ1,x1

P (S1 = x2|S0 = x1)

× · · · ×
eβw(n−1,xn−1)Z1 ◦ θn−1,xn−1

Z2 ◦ θn−2,xn−2

P (S1 = xn−1|S0 = xn−2)

× eβw(n,xn)Z0 ◦ θn,xn
Z1 ◦ θn−1,xn−1

P (S1 = xn|S0 = xn−1).
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First, let us see what happens with the terms of the form
eβw(i+1,xi+1)Zn−i−1◦θi+1,xi+1

Zn−i◦θi,xi
:

eβw(1,x1)Zn−1 ◦ θ1,x1
Zn ◦ θ0,x0

× eβw(2,x2)Zn−2 ◦ θ2,x2
Zn−1 ◦ θ1,x1

× · · · ×
eβw(n−1,xn−1)Z1 ◦ θn−1,xn−1

Z2 ◦ θn−2,xn−2

× eβw(n,xn)Z0 ◦ θn,xn
Z1 ◦ θn−1,xn−1

=
eβw(1,x1)���

���Zn−1 ◦ θ1,x1
Zn ◦ θ0,x0

× eβw(2,x2)���
���Zn−2 ◦ θ2,x2

���
���Zn−1 ◦ θ1,x1

× · · · ×
eβw(n−1,xn−1)

((((
(((Z1 ◦ θn−1,xn−1

((((
(((Z2 ◦ θn−2,xn−2

× eβw(n,xn)Z0 ◦ θn,xn
((((

(((Z1 ◦ θn−1,xn−1

.

We also have that Z0 = 1 and Zn ◦ θ0,x0 = Zn, because we already set all
the paths to start in x0. Then

n−1∏
i=0

eβw(i+1,xi+1)Zn−i−1 ◦ θi+1,xi+1

Zn−i ◦ θi,xi
=

1

zn
eβw(1,x1)eβw(2,x2) · · · eβw(n−1,xn−1)eβw(n,xn)

=
1

zn
e
β

n∑
i=n

ω(i,xi)
=

1

zn
eβHn(x).

Now, we analyze the product of P (S1 = xi+1|S0 = x0). Recall that
P (S0 = x0) = 1. Now we can compute

P (S[1,n] = x[1,n]) =P (Sn = xn, Sn−1 = xn−1, · · · , S2 = x2, S1 = x1)

=P (Sn = xn, Sn−1 = xn−1, · · · , S2 = x2, S1 = x1)

=P (Sn = xn, Sn−1 = xn−1, · · · , S2 = x2, S1 = x1, S0 = x0)

=P (Sn − Sn−1 = xn − xn−1, Sn−1 − Sn−2 = xn−1 − xn−2, · · ·
, S2 − S1 = x2 − x1, S1 − S0 = x1 − x0, S0 = x0)

=P (Sn − Sn−1 = xn − xn−1)P (Sn−1 − Sn−2 = xn−1 − xn−2) · · ·
P (S2 − S1 = x2 − x1)P (S1 − S0 = x1 − x0)P (S0 = x0)

=P (S1 − S0 = xn − xn−1)P (S1 − S0 = xn−1 − xn−2) · · ·
P (S1 − S0 = x2 − x1)P (S1 − S0 = x1 − x0) · 1

=P (S1 = xn|S0 = xn−1)P (S1 = xn−1|S0 = xn−2) · · ·
· · ·P (S1 = x2|S0 = x1)P (S1 = x1|S0 = x0),
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so

P (S[1,n] = x[1,n]) = P (S1 = xn|S0 = xn−1) · · ·P (S1 = x1|S0 = x0).

Since

1

zn
eβHn(x)P (S[1,n] = x[1,n]) = P β,ω

n (S[1,n] = x[1,n]),

We conclude

n−1∏
i=0

eβw(i+1,xi+1)Zn−i−1 ◦ θi+1,xi+1

Zn−i ◦ θi,xi
P (S1 = xi+1|S0 = xi) = P β,ω

n (S[1,n] = x[1,n]).

(B.2)

Let us define

A :=
i−2∏
k=0

eβω(k+1,xk+1)
Zn−k−1 ◦ θk+1,xk+1

Zn−k ◦ θk,xk
P (S1 = xk+1|S0 = x0),

B :=eβω(i,x)
Zn−i ◦ θi,x

Zn−i−1 ◦ θi−1,xi−1

P (S1 = x|S0 = xi−1),

C :=
n∏

k=i+1

eβω(k+1,xk+1)
Zn−k−1 ◦ θk+1,xk+1

Zn−k ◦ θk,xk
P (S1 = xk+1|S0 = x0).

Now we will calculate

P β,ω
n (Si+1 = y|S[1,i−1] = x[1,i−1], Si = x, S[i+2,n] = x[i+2,n]). (B.3)

By expressing (4.9) in its product form we have
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P β,ω
n (Si+1 = y|S[1,i−1] = x[1,i−1], Si = x, S[i+2,n] = x[i+2,n])

=
P β,ω
n (Si+1 = y, S[1,i−1] = x[1,i−1], Si = x, S[i+2,n] = x[i+2,n])

P β,ω
n (S[1,i−1] = x[1,i−1], Si = x, S[i+2,n] = x[i+2,n])

=
A ·B · eβω(i+1,y)Zn−i−1◦θi+1,y

Zn−i◦θi,x P (S1 = y|S0 = x) · C
A ·B · C

=eβω(i+1,y)Zn−i−1 ◦ θi+1,y

Zn−i ◦ θi,x
P (S1 = y|S0 = x).

Proposition B.1.2. Step by step proof of (4.10). The following equality
holds

P β,ω
n (Si+1 = y|Si = x) = P

β,θi,xω
n−i (S1 = y − x). (B.4)

Proof. By(4.7)

P β,ω
n (Si+1 = y|Si = x) =

eβω(i+1,y)zn−i−1 ◦ θi+1,y

zn−i ◦ θi,x
P (Si+1 = y|Si = x),

recall that eβω(t+i,y) is measurable respect to Si+1 = y:

P β,ω
n (Si+1 = y|Si = x) =

eβω(i+1,y)E

(
e
β
n−i−1∑
t=1

ω(t+i+1,St+i+1)
|Si+1 = y

)
zn−i ◦ θi,x

E(ISi+1=y
|Si = x)

=

E

(
eβω(i+1,y)e

β
n−i−1∑
t=1

ω(t+i+1,St+i+1)
|Si+1 = y

)
zn−i ◦ θi,x

E(ISi+1=y
|Si = x),

we can re-write the previous equation as
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P β,ω
n (Si+1 = y|Si = x) =

E

(
eβω(i+1,y)e

β
n−i−1∑
t=1

ω(t+i+1,St+y)

)
zn−i ◦ θi,x

E(ISi+1=y
|Si = x),

now, by independence respect to Si = x, we obtain

P β,ω
n (Si+1 = y|Si = x) =

E

(
eβω(i+1,y)e

β
n−i−1∑
t=1

ω(t+i+1,St+y)
ISi+1=y|Si = x

)
zn−i ◦ θi,x

,

finally

P β,ω
n (Si+1 = y|Si = x) =

E

(
eβω(i+1,y)e

β
n−i−1∑
t=1

ω(t+i+1,St+y)
ISi+1=y|Si = x

)
zn−i ◦ θi,x

=

E

(
eβω(i+1,y)e

β
n−i−1∑
t=1

ω(t+i+1,St+y)
ISi+1=yISi=x

)
zn−i ◦ θi,xP (Si = x)

=

E

(
e
β
n−i−1∑
t=0

ω(t+i+1,St+y)
ISi+1=yISi=x

)
zn−i ◦ θi,xP (Si = x)

=

E

(
e
β
n−i∑
t=1

ω(t+i,St+x)
ISi+1=yISi=x

)
zn−i ◦ θi,xP (Si = x)

=

E

(
e
β
n−i∑
t=1

ω(t+i,St+x)
ISi+1=y|Si = x

)
zn−i ◦ θi,xP (Si = x)

.
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Thus

P β,ω
n (Si+1 = y|Si = x) =

e
β
n−i∑
t=1

ω(t+i,St+x)
E
(
ISi+1=y|Si = x

)
zn−i ◦ θi,xP (Si = x)

=
e
β
n−i∑
t=1

ω(t+i,St+x)

zn−i ◦ θi,x
P (Si+1 = y|Si = x)

=
e
β
n−i∑
t=1

ω(t+i,St+x)

zn−i ◦ θi,x
P (Si+1 = y, Si = x)

P (Si = x)

=
e
β
n−i∑
t=1

ω(t+i,St+x)

zn−i ◦ θi,x
P (Si+1 = y, Si = x)

P (Si = x)

=
e
β
n−i∑
t=1

ω(t+i,St+x)

zn−i ◦ θi,x
P (Si+1 − Si = y − x, Si = x)

P (Si = x)

=
e
β
n−i∑
t=1

ω(t+i,St+x)

zn−i ◦ θi,x
P (Si+1 − Si = y − x)P (Si = x

P (Si = x)

=
e
β
n−i∑
t=1

θi,xω(t,St)

zn−i ◦ θi,x
P (S1 − S0 = y − x)

=
e
β
n−i∑
t=1

θi,xω(t,St)

zn−i ◦ θi,x
P (S1 = y − x)

= P
β,θi,xω
n−i (S1 = y − x).

Proposition B.1.3. Step by step proof of (4.4.1-3), the following function
is decreasing

β 7→ β−1[pn(β, ω) + ln 2d].
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Proof. We have the identity

d

dβ

(
1

β
[pn + ln (2d)]

)
=

1

nβ
Eβ,ω
n (Hn)− pn + ln 2d

β2

=
1

nβ2

[
βEβ,ω

n (Hn)− lnZn − n ln 2d
]

=
1

nβ2

[
βEβ,ω

n (Hn)− 1 · lnZn + 1 · ln (2d)−n
]

=
1

nβ2

[
β
∑
X

eβHn

Zn
HnP (x)−

∑
X

P β,ω
n (x) lnZn

+
∑
X

P β,ω
n (x) ln (2d)−n

]

=
1

nβ2

[∑
X

P β,ω
n (x)βHn −

∑
X

P β,ω
n (x) lnZn

+
∑
X

P β,ω
n (x) lnP (x)

]
=

1

nβ2

∑
X

P β,ω
n (x) [βHn + lnP (x)− lnZn]

=
1

nβ2

∑
X

P β,ω
n (x)

[
ln eβHnP (x)− lnZn

]
=

1

nβ2

∑
X

P β,ω
n (x)

[
ln
eβHnP (x)

Zn

]
=

1

nβ2

∑
X

P β,ω
n (x) lnP β,ω

n (x)

=
1

nβ2

∑
X

P β,ω
n lnP β,ω

n :=
1

nβ2
h(P β,ω

n ),

where h(ν) is the Boltzmann entropy of a probability measure ν on the
n steps path space,

h(ν) :=
∑
x

ν(x) ln ν(x). (B.5)

Finally we have that h(ν) ≤ 0 for all ν, which ends the prove.
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[29] P. Županović and D. Kuić, “Relation between boltzmann and gibbs
entropy and example with multinomial distribution,” Journal of Physics
Communications, vol. 2, no. 4, p. 045002, 2018.

https://www.math.toronto.edu/undergrad/projects-undergrad/Gauss-Intro.pdf
https://www.math.toronto.edu/undergrad/projects-undergrad/Gauss-Intro.pdf

	Portada 

	Resumen 

	Contents

	Chapter 1. Motivation 

	Chapter 2. Introduction 

	Chapter 3. Polymer Model 

	Chapter 4. Thermodynamics and Phase Transitions 

	Chapter 5. The Localized Phase 

	Chapter 6. Conclusions 

	Appendix A. Complementary Theory 

	Appendix B. Complete Proves
	Bibliography



