

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

FACULTAD DE QUÍMICA

ESTUDIO ESTRUCTURAL EN DISOLUCIÓN Y ESTADO SÓLIDO DE COMPLEJOS DEL TIPO $[Pt(\kappa^2-N,N'-1,10-fen)(SAr_F)_2]$

TESIS

QUE PARA OBTENER EL TÍTULO DE

QUÍMICA

PRESENTA

GERALDINE BACKMAN BLANCO

CDMX

2020

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO:

PRESIDENTE:	M. en C. José Manuel Méndez Stivalet
VOCAL:	M. en C. Jorge Luis López Zepeda
SECRETARIO:	Dr. David Morales Morales
1er. SUPLENTE:	Dr. Juan Manuel German Acacio
2do. SUPLENTE:	Dra. Carmela Crisóstomo Lucas

SITIO DONDE SE DESARROLLÓ EL TEMA:

Laboratorio 3, Departamento de Química Inorgánica. Instituto de Química, Universidad Nacional Autónoma de México.

ASESOR DEL TEMA:

Dr. David Morales Morales

SUPERVISOR TÉCNICO:

Dr. Hugo Christian Valdés Rivas

SUSTENTANTE:

Geraldine Backman Blanco

Quiero agradecer a todos los técnicos del Instituto de Química de la UNAM por su apoyo técnico y el apoyo financiero de este proyecto realizado por PAPIIT-DGAPA-UNAM (PAPIIT IN207317) y CONACyT A1-S-33933. Finalmente se agradece a CONACyT por el estímulo otorgado de ayudante de investigador (EXP. AYTE. 17082).

Índice

Índice	I
Índice de figuras	III
Índice de esquemas	VII
Índice de tablas	VII
Índice de gráficas	VIII
Abreviaturas	IX
Compuestos del tipo [Pt(k ² -N,N'-1,10-fen)(SAr _F) ₂]	X
Capítulo 1	1
1.1 Introducción	1
1.2 Objetivos	2
1.3 Hipótesis	2
1.4 Referencias	3
Capítulo 2. Antecedentes	4
2.1 Química supramolecular	4
2.2 Reconocimiento y ensamblaje molecular	5
2.3 Interacciones no covalentes	7
2.3.1 Puente de hidrógeno	8
2.3.2 Interacciones π-π	11
2.3.3 Enlace de halógeno	13
2.4 Metales en química supramolecular y complejos aromáticos	14
2.4.1 Ligante 1,10-fenantrolina (fen)	15
2.4.2 Ligantes tiofenolato fluorados	17
2.5 Referencias	19

Capítulo 3. Discusión de resultados	22
3.1 Síntesis de los complejos del tipo [Pt(κ^2 -N,N'-1,10-fen)(SAr _F) ₂]	22
3.2 Espectroscopía de resonancia magnética nuclear	23
3.2.1 Espectros de RMN ¹ H	23
3.2.2 Espectros de RMN ¹³ C{ ¹ H}	25
3.2.3 Espectros de RMN de ¹⁹ F{ ¹ H}	27
3.3 Espectrometría de masas	29
3.4 Análisis elemental	33
Capítulo 4. Análisis por difracción de rayos X	34
4.1 Análisis supramolecular del compuesto 1	36
4.2 Análisis supramolecular del compuesto 2	39
4.3 Análisis supramolecular del compuesto 3	43
4.4 Referencias	45
Capítulo 5. Actividad biológica de los compuestos del tipo [Pt(κ^2 -N,N'-1,10-fe	n)(SAr _F) ₂]
	46
5.1 Evaluación citotóxica	46
5.2 IC ₅₀ de los complejos del tipo [Pt(κ ² -N,N'-1,10-fen)(SAr _F) ₂]	47
5.3 Referencias	48
Capítulo 6. Conclusiones	49
6.1 Conclusiones	49
Capítulo 7. Sección experimental	50
7.1 Reactivos	50
7.2 Técnicas Analíticas	50
7.2.1 Resonancia magnética nuclear (RMN)	50
7.2.2 Espectrometría de masas por técnica MALDI-TOF	50

7.2.3 Análisis elemental	50
7.2.4 Puntos de fusión	51
7.2.5 Análisis cristalográfico	51
7.3 Síntesis general de los compuestos del tipo [Pt(κ^2 -N,N'-1,10-fen)(SAr _F) ₂] _	51
7.3.1 Síntesis del compuesto 1	52
7.3.2 Síntesis del compuesto 2	52
7.3.3 Síntesis del compuesto 3	53
7.4 Evaluación citotóxica y determinación del IC ₅₀	53
7.5 Referencias	54
Anexos	55
Anexo 1. Espectros de RMN	55
A1.1 Espectros de RMN del compuesto 1	55
A1.2 Espectros de RMN del compuesto 2	59
A1.3 Espectros de RMN del compuesto 3	63
Anexo 2. Datos cristalográficos	67
A2.1 Datos cristalográficos del compuesto 1	67
A2.2 Datos cristalográficos del compuesto 2	73
A2.3 Datos cristalográficos del compuesto 3	81

Índice de figuras

Figura 1. Síntesis de supermoléculas: (a) anfitrión-huésped y (b) autoensamblaje, a partir	
de bloques de construcción	5
Figura 2. Reconocimiento molecular entre amonio de prilocaína y CB6 por medio de	
puentes de hidrógeno	6

Figura 3. Autoensamblaje molecular de bases nitrogenadas para generar la doble hélice del
ADN
Figura 4. Representación de la interacción puente de hidrógeno entre un grupo donador (D)
y uno aceptor (A)
Figura 5. Diferentes tipos de geometrías de puentes de hidrógeno: (a) lineal, (b)
flexionado, (c) bifurcado-donador, (d)bifurcado-aceptor, (e) trifurcado, (f) bifurcado tres-
centros y (g) interacciones secundarias proporcionando atracciones entre grupos vecinos9
Figura 6. Cuatro tipos posibles de sintones supramoleculares para la interacción C–H…F–
C
Figura 7. Representación de interacciones de tipo π - π con benceno y sus mapas de
potencial electrostático. a) Apilamiento cara-cara, b) Apilamiento cara-cara desfasado y c)
Borde-cara
Figura 8. Mapa de potencial electrostático del benceno y hexafluorobenceno12
Figura 9. Representación esquemática de la distribución anisotrópica de la carga alrededor
del átomo de halógeno, en una interacción no covalente de halógeno con un electrófilo o un
nucleófilo13
Figura 10. Agentes anticancerígenos utilizados clínicamente
Figura 11. Estructura de la 1,10-fenantrolina15
Figura 12. Intercalación del ligante fen entre bases nitrogenadas16
Figura 13. Interacción del compuesto [Pt(κ^2 -N,N'-1,10-fen)Cl ₂] con el péptido A β 17
Figura 14. Estructura general de tiofenolatos fluorados
Figura 15. Espectros de RMN de ¹ H de los compuestos a) 1, b) 2 y c) 3. Frecuencia:
500MHz. Disolvente: acetona-d ₆ . Temperatura: 25°C24
Figura 16. Espectros de RMN de ${}^{13}C{}^{1}H$ de los compuestos a) 1, b) 2 y c) 3. Frecuencia:
126 MHz. Disolvente: acetona-d ₆ . Temperatura: 25°C
1
Figura 17. Espectros de RMN de ${}^{19}F{}^{1}H$ de los compuestos a) 1 , b) 2 y c) 3 . Frecuencia:
Figura 17. Espectros de RMN de ${}^{19}F{}^{1}H$ de los compuestos a) 1 , b) 2 y c) 3 . Frecuencia: 471 MHz. Disolvente: acetona-d ₆ . Temperatura: 25°C28
Figura 17. Espectros de RMN de ${}^{19}F{}^{1}H$ de los compuestos a) 1 , b) 2 y c) 3 . Frecuencia: 471 MHz. Disolvente: acetona-d ₆ . Temperatura: 25°C
Figura 17. Espectros de RMN de ${}^{19}F{}^{1}H{}$ de los compuestos a) 1, b) 2 y c) 3. Frecuencia:471 MHz. Disolvente: acetona-d ₆ . Temperatura: 25°C.28Figura 18. Espectro de masas MALDI-TOF del compuesto 1.30Figura 19. Espectro de masas MALDI-TOF del compuesto 2.31

Figura 21. Estructura molecular de los compuestos 1, 2 y 3. Los átomos de hidrógeno
fueron omitidos para mayor claridad. Los elipsoides se muestran al 35 % de probabilidad.
Figura 22. (a) Celda unitaria del compuesto 1, donde los átomos de hidrógeno fueron
omitidos para mayor claridad, y (b) interacción de tipo π - π entre anillos laterales de los
ligantes fen. Los elipsoides se muestran al 35 % de probabilidad
Figura 23. Interacción de tipo π - π entre anillo lateral del ligante fen y anillo aromático del
ligante tiofenolato fluorado que contiene al azufre S1. Los elipsoides se muestran al 35 %
de probabilidad
Figura 24. Motivo que se forma en el plano que corta los ejes a y c de la celda unitaria. Los
elipsoides se muestran al 35 % de probabilidad
Figura 25. (a) Interacción de tipo π - π entre ambos anillos laterales de ligantes fen y (b)
interacción entre los anillos aromáticos de ligantes tiofenolato fluorados que contiene el
azufre S2, motivo que se repite a lo largo del eje b de la celda unitaria. Los elipsoides se
muestran al 35 % de probabilidad
Figura 26. Celda unitaria del compuesto 2, donde los átomos de hidrógeno fueron omitidos
para mayor claridad. Los elipsoides se muestran al 35 % de probabilidad
Figura 27. (a) Interacción de tipo π - π entre anillos laterales del ligante fen, (b) interacción
entre anillos de los ligantes tiofenolato fluorados, motivo de autoensamblaje a lo largo del
eje b de la celda unitaria y (c) motivo que se repite a lo largo del eje b. Los elipsoides se
muestran al 35 % de probabilidad40
Figura 28. Interacción puente de hidrógeno y enlace de halógeno. Los elipsoides se
muestran al 35 % de probabilidad41
Figura 29. Interacciones de tipo π - π entre ligantes fen de la molécula 2b . Los elipsoides se
muestran al 35 % de probabilidad42
Figura 30. Interacción entre ligante fen de la molécula 2a y el anillo aromático fluorado de
la molécula 2b . Los elipsoides se muestran al 35 % de probabilidad
Figura 31. Celda unitaria del compuesto 3, donde los átomos de hidrógeno fueron omitidos
para mayor claridad. Los elipsoides se muestran al 35 % de probabilidad43
Figura 32. Interacciones de tipo π - π entre ligantes fen y enlace de halógeno. Los elipsoides
se muestran al 35 % de probabilidad44

Figura 33. Interacciones de tipo π - π entre anillos fluorados. Los elipsoides se muestran al
35 % de probabilidad45
Figura 34. Espectro de RMN de ¹ H del compuesto 1. Frecuencia: 500 MHz. Disolvente:
acetona-d ₆ . Temperatura: 25°C55
Figura 35. Espectro de RMN de ${}^{13}C{}^{1}H$ del compuesto 1 . Frecuencia: 126 MHz.
Disolvente: acetona-d ₆ . Temperatura: 25°C56
Figura 36. Espectro de RMN de ${}^{19}F{}^{1}H$ del compuesto 1. Frecuencia: 471 MHz.
Disolvente: acetona-d ₆ . Temperatura: 25°C56
Figura 37. Espectro de RMN COSY del compuesto 1. Disolvente: acetona-d ₆ .
Temperatura: 25°C
Figura 38. Espectro de RMN HSQC del compuesto 1. Disolvente: acetona-d ₆ .
Temperatura: 25°C
Figura 39. Espectro de RMN HMBC del compuesto 1. Disolvente: acetona-d ₆ .
Temperatura: 25°C
Figura 40. Espectro de RMN de ¹ H del compuesto 2. Frecuencia: 500 MHz. Disolvente:
acetona-d ₆ . Temperatura: 25°C
Figura 41. Espectro de RMN de ${}^{13}C{}^{1}H$ del compuesto 2 . Frecuencia: 126 MHz.
Disolvente: acetona-d ₆ . Temperatura: 25°C60
Figura 42. Espectro de RMN de ${}^{19}F{}^{1}H$ del compuesto 2. Frecuencia: 471 MHz.
Disolvente: acetona-d ₆ . Temperatura: 25°C60
Figura 43. Espectro de RMN COSY del compuesto 2. Disolvente: acetona-d ₆ .
Temperatura: 25°C
Figura 44. Espectro de RMN HSQC del compuesto 2. Disolvente: acetona-d ₆ .
Temperatura: 25°C
Figura 45. Espectro de RMN HMBC del compuesto 2. Disolvente: acetona-d ₆ .
Temperatura: 25°C
Figura 46. Espectro de RMN de ¹ H del compuesto 3. Frecuencia: 500 MHz. Disolvente:
acetona-d ₆ . Temperatura: 25°C63
Figura 47. Espectro de RMN de ${}^{13}C{}^{1}H$ del compuesto 3 . Frecuencia: 126 MHz.
Disolvente: acetona-d ₆ . Temperatura: 25°C64

Figura 48. Espectro de RMN de ${}^{19}F{}^{1}H{}$ del compuesto 3. Frecuencia: 471 MHz.	
Disolvente: acetona-d ₆ . Temperatura: 25°C	64
Figura 49. Espectro de RMN COSY del compuesto 3. Disolvente: acetona- d_6 .	
Temperatura: 25°C.	65
Figura 50. Espectro de RMN HSQC del compuesto 3 . Disolvente: acetona-d ₆ .	
Temperatura: 25°C	65
Figura 51. Espectro de RMN HMBC del compuesto 3. Disolvente: acetona-d ₆ .	
Temperatura: 25°C.	66

Índice de esquemas

Esquema 1. Síntesis general de los compuestos del tipo $[Pt(\kappa^2-N,N'-1,10-fen)(SAr_F)_2]...22$

Índice de tablas

Tabla 1. Distancias (Å) y ángulos (°) de los compuestos 1, 2 y 335
Tabla 2. Datos cristalográficos y refinamiento de estructura del compuesto 1
Tabla 3. Coordenadas atómicas (x10 ⁴) y parámetros de desplazamiento isotrópico
equivalentes (Å $\times 10^3$) del compuesto 1 . U(eq) se define como 1/3 de la traza del tensor de
U _{IJ} ortogonalizado
Tabla 4. Parámetros de desplazamiento anisotrópico ($Å^2 \times 10^3$) del compuesto 1 . El
exponente del factor de desplazamiento anisotrópico toma la forma: -
$2\pi 2[h2a*2U11+2hka*b*U12+]$
Tabla 5. Coordenadas de los átomos de hidrógeno ($Å \times 10^4$) y parámetros isotrópicos de
desplazamiento (Å ² ×10 ³) del compuesto 170
Tabla 6. Longitudes de enlace del compuesto 170
Tabla 7. Ángulos de enlace del compuesto 1. 71
Tabla 8. Ángulos de torsión del compuesto 1
Tabla 9. Datos cristalográficos y refinamiento de estructura del compuesto 2

Índice de gráficas

Gráfica 1. Actividad citotóxica de los compuestos del tipo [Pt(κ^2 -N,N'-1,10-fen)(SAr _F) ₂].
Gráfica 2. Evaluación del IC ₅₀ de los compuestos del tipo [Pt(κ^2 -N,N'-1,10-fen)(SAr _F) ₂].

Abreviaturas

A	Aceptor
ADN	Ácido desoxirribonucleico
CB[n]	Cucurbiturilos
COSY	Correlación espectroscópica
D	Donador
dcc	distancia centroide-centroide
DCE	1,2-dicloroetano
DIT	Ditranol
DMSO	Dimetil sulfóxido
dpp	distancia plano-plano
fen	1,10-fenantrolina
g	Gramo
h	Hora
HMBC	Conectividad heteronuclear a enlaces múltiples
HSQC	Correlación cuántica única heteronuclear
IC ₅₀	Concentración media mínima inhibitoria
K	Grados Kelvin
MALDI-TOF	Desorción/ionización con láser asistida por matriz,
	acoplada a un analizador de tiempo de vuelo
MHz	Megahertz
MLCT	Metal to Ligand Charge Transfer (Transferencia de carga
	de metal a ligante)
mL	Mililitro
mg	Miligramo
mm	Milímetro
mmol	Milimol
μM	Micromolar
m/z	Relación masa-carga
OLED	Organic Light-Emitting Diodes (Diodos orgánicos de
	emisores de luz)
ppm	partes por millón
RMN	Resonancia Magnética Nuclear
SAr _F	Tiofenolatos fluorados
sat	Satélites
uma	Unidad de masa atómica
X	Halógeno
Å	Angstroms
°C	Grados Celsius
¹ H	Isótopo de hidrógeno 1
¹³ C	Isótopo de carbono 13
¹⁹ F	Isótopo de flúor 19
	I

1

2

3

Capítulo 1

1.1 Introducción

Los compuestos de coordinación han sido ampliamente utilizados a lo largo de la historia y han mejorado de manera significativa diferentes aspectos de la vida cotidiana. Entre sus aplicaciones más notables se encuentran su uso como pigmentos,¹ catalizadores,² OLEDs (por sus siglas en inglés Organic Light-Emitting Diodes)³ y agentes medicinales.⁴ Particularmente, esta última aplicación ha sido de gran importancia, siendo uno de los ejemplos más trascendentes el descubrimiento del cisplatino, el cual es utilizado como agente antitumoral en aproximadamente 50% de los tratamientos de cáncer hoy en día.⁵ Sin embargo, éste presenta efectos secundarios indeseables como: ototoxicidad, neurotoxicidad, toxicidad renal y hepática.⁶ Se ha visto que estos efectos se relacionan con su modo de acción, el cual se basa en la coordinación del Pt al ADN.^{7,8}

El éxito del cisplatino como agente anticancerígeno, así como el interés por reducir sus efectos secundarios, impulsó el diseño y desarrollo de nuevos complejos con mayor actividad y menos efectos secundarios.⁹ Esto se ha logrado al introducir ligantes heterocíclicos rígidos, como la 1,10-fenantrolina (fen), en sistemas cuadrados planos,¹⁰ ya que promueven la intercalación de los complejos con el ADN mediante interacciones no covalentes,¹¹ particularmente del tipo π - π .^{12,13}

Por otro lado, los compuestos arílicos fluorados han sido ampliamente utilizados para el diseño de estructuras supramoleculares, ya que facilitan las interacciones del tipo π - π , por lo que su incorporación en un compuesto que contenga un fragmento poliaromático como la fen puede resultar de gran interés desde el punto de vista supramolecular y medicinal.

Con base en lo anterior y siguiendo el interés del grupo de investigación en el desarrollo de nuevos complejos de Pt(II), este trabajo describe la síntesis y estudio estructural de una serie de complejos del tipo [Pt(κ^2 -N,N'-1,10-fenantrolina)(SAr_F)₂], donde SAr_F corresponde a distintos tiofenolatos fluorados, con el fin de modular las propiedades estéricas y electrónicas de los complejos por la introducción de átomos de flúor. ¹⁴

1.2 Objetivos

- Sintetizar una serie de complejos de Pt(II) usando como ligantes 1,10-fenantrolina y diferentes tiofenolatos fluorados.
- Caracterizar los compuestos con fórmula general $[Pt(\kappa^2-N,N'-1,10-fen)(SAr_F)_2]$ mediante RMN de ¹H, ¹³C{¹H} y ¹⁹F{¹H}, espectroscopía de masas y análisis elemental.
- Determinar la estructura molecular de los complejos mediante difracción de rayos-X de monocristal.
- Estudiar el efecto de la presencia de átomos de flúor en los sustituyentes tiofenolato, sobre las interacciones supramoleculares en estado sólido de los complejos de Pt(II).
- Evaluar la actividad citotóxica y determinar el IC₅₀ de los complejos de Pt(II) frente a seis líneas celulares cancerosas humanas: U251 (Glía del sistema nervioso central), PC-3 (Próstata), K562 (Leucemia), HCT-15 (Colon), MCF-7 (Mama) y SKLU-1 (Pulmón), y una línea celular no cancerosa COS-7 (Riñón de mono).

1.3 Hipótesis

Se espera que los compuestos del tipo $[Pt(\kappa^2-N,N'-1,10-fen)(SAr_F)_2]$ en estado sólido, presenten interacciones no covalentes de tipo puente de hidrógeno y π – π aromáticas, debido a la presencia de los ligantes con anillos aromáticos, y que este tipo de interacciones se favorezcan con la variación de átomos de flúor en los anillos aromáticos de los ligantes tiolatos. Además, se espera que los compuestos presenten actividad citotóxica frente a líneas celulares cancerígenas de alta incidencia en México.

1.4 Referencias

- 1 G. L. Miessler, P. J. Fischer, D. A. Tarr, *Inorganic chemistry*, 5a ed., Pearson, 2014.
- 2 E. Loukopoulos, G. E. Kostakis, J. Coord. Chem. 2018, 71, 371-410.
- J. Gareth Williams, S. Develay, D. L. Rochester, L. Murphy, *Coord. Chem. Rev.* 2008, 252, 2596-2611.
- 4 P. C. Bruijnincx, P. J. Sadler, Curr. Opin. Chem. Biol. 2008, 12, 197-206.
- 5 S. Ghosh, *Bioorg. Chem.* **2019**, 88, 102925.
- 6 N. J. Wheate, S. Walker, G. E. Craig, R. Oun, *Dalton Trans* **2010**, *39*, 8113-8127.
- 7 G. Natile, L. G. Marzilli, *Coord. Chem. Rev.* **2006**, *250*, 1315-1331.
- 8 V. X. Jin, J. D. Ranford, *Inorg. Chim. Acta* **2000**, *304*, 38-44.
- 9 A. Erxleben, *Chimia (Aarau)* **2017**, *71*, 102-111.
- 10 M. Cusumano, M. L. Di Pietro, A. Giannetto, F. Nicolò, E. Rotondo, *Inorg. Chem.* **1998**, *37*, 563-568.
- 11 D. Jaramillo, D. P. Buck, J. G. Collins, R. R. Fenton, F. H. Stootman, N. J. Wheate, J. R. Aldrich-Wright, *Eur. J. Inorg. Chem.* **2006**, 839-849.
- 12 K. J. Barnham, V. B. Kenche, G. D. Ciccotosto, D. P. Smith, D. J. Tew, X. Liu, K. Perez, G. A. Cranston, T. J. Johanssen, I. Volitakis, A. I. Bush, C. L. Masters, A. R. White, J. P. Smith, R. A. Cherny, R. Cappai, *PNAS* 2008, *105*, 6813-6818.
- 13 M. Cusumano, M. L. Di Pietro, A. Giannetto, *Inorg. Chem.* 2006, 45, 230-235.
- 14 D. Morales-Morales, Y. Zheng, J. R. Dilworth, R. Rendón, H. Torrens, *Inorg. Chim. Acta* **2001**, *314*, 37-41.

Hasta hace algunas décadas el diseño y desarrollo de una amplia gama de materiales se llevaba a cabo mediante la química molecular. Ésta se basa en la formación o ruptura de enlaces covalentes interatómicos de forma controlada y precisa para generar nuevas moléculas.¹ No obstante, en la naturaleza existen sistemas más complejos en forma de agregados moleculares que se comportan como una entidad química. Estos sistemas participan en procesos importantes como: la unión de un sustrato a una proteína receptora, reacciones enzimáticas, transcripción del código genético, reconocimiento celular entre otros.² Dado que la química no se limita a sistemas biológicos, hoy en día se ha generado gran interés por estudiar, diseñar y desarrollar sistemas moleculares cuyas propiedades y funciones novedosas pueden contribuir a resolver problemáticas en diversas áreas.³

2.1 Química supramolecular

La química supramolecular o química más allá de la molécula es un campo de investigación interdisciplinario, asociado a los ensamblajes moleculares.⁴ Éste se originó a finales de la década de 1960, por los investigadores y ganadores del Premio Nobel Jean-Marie Lehn, Donald Cram y Charles Pedersen.⁵ Sin embargo, fue hasta 1978 que Lehn acuñó el término "Química supramolecular", al cual definió como el campo de la química que estudia las características químicas, físicas y biológicas de los ensamblajes moleculares o "supermoléculas", las cuales resultan de la asociación de moléculas a través de interacciones intermoleculares de tipo no covalente. Entre las interacciones no covalentes más importantes se encuentran: puentes de hidrógeno, interacciones de tipo π - π , fuerzas de van der Waals y efectos hidrofóbicos, las cuales frecuentemente se comportan de manera cooperativa en el arreglo supramolecular.⁶ La construcción de una supermolécula implica dos procesos: reconocimiento molecular y autoensamblaje.⁷

2.2 Reconocimiento y ensamblaje molecular

Las estructuras de los arreglos supramoleculares varían desde dimensiones moleculares hasta macroscópicas. Esto se ve estrechamente relacionado con su síntesis, la cual puede regirse por dos principios: reconocimiento y ensamblaje molecular,⁸ como se ve en la **Figura 1**.

Figura 1. Síntesis de supermoléculas: (a) anfitrión-huésped y (b) autoensamblaje, a partir de bloques de construcción.

El reconocimiento molecular es un proceso selectivo por el cual, una molécula pequeña o *huésped* se inserta en una molécula de mayor tamaño llamada *anfitrión*. El lugar de inserción se denomina *sitio de unión* y este debe tener la geometría, tamaño y ambiente químico adecuados para que el huésped se pueda unir al anfitrión *vía* interacciones de tipo no covalentes.⁷ Este proceso se basa en el modelo de *llave-cerradura* propuesto por Emil Fischer en 1894, el cual, describe de manera simplista que las enzimas que actúan como receptores, representan las cerraduras, mientras que los sustratos las llaves.⁹

Debido a su estructura, los complejos de tipo anfitrión-huésped han sido ampliamente estudiados como sistemas de liberación de fármacos.¹⁰ De manera particular, los sistemas

macrocíclicos han sido sobresalientes, debido a su capacidad de encapsular huéspedes biológicos relevantes y actuar como portadores, solubilizadores o estabilizadores de fármacos.¹¹ Entre las especies más prometedoras se encuentran los cucurbiturilos (CB[n]), los cuales han podido albergar moléculas de importancia biológica, como anestésicos (**Figura 2**)^{12,13} y complejos anticancerígenos de Pt(II).¹⁴

Figura 2. Reconocimiento molecular entre amonio de prilocaína y CB6 por medio de puentes de hidrógeno.

El segundo proceso fundamental para generar estructuras supramoleculares es el ensamblaje molecular; éste se considera como el proceso por el cual se generan agregados definidos y estructuralmente estables que se encuentran unidos mediante enlaces no covalentes, a partir de la asociación de moléculas con tamaños parecidos y que se encuentran en condiciones de equilibrio.¹⁵ Este proceso generalmente es espontáneo, pero puede ser promovido por efectos de solvatación, o en el caso de los sólidos por procesos de nucleación y cristalización.⁵ Un ejemplo interesante es nuestro código genético. El ADN está formado por cuatro bases nitrogenadas: adenina (A), timina (T), guanina (G) y citosina (C), las cuales unen, por medio de puentes de hidrógeno, dos cadenas de nucleótidos complementarias, generando la doble hélice característica del ADN (**Figura 3**). Esta estructura, además, se encuentra estabilizada por interacciones de tipo π - π y efectos hidrofóbicos.¹⁶

Figura 3. Autoensamblaje molecular de bases nitrogenadas para generar la doble hélice del ADN.

2.3 Interacciones no covalentes

Las interacciones no covalentes se pueden clasificar en cinco: puentes de hidrógeno, interacciones de tipo π - π , interacciones electrostáticas, fuerzas de van der Waals y efectos hidrofóbicos. Todas se distinguen por tener cierta direccionalidad, y la participación de ciertos tipos de átomos; asimismo no involucran un intercambio electrónico en el contacto atómico o molecular, por lo que su energía de enlace es menor en comparación con la del enlace covalente (es decir, <100kJ/mol).¹⁷ Aunque se consideran interacciones débiles, éstas actúan de forma cooperativa al construir ensamblajes supramoleculares. Esto significa que las energías de estabilización se suman dando como resultado una energía de enlace significativa, y por lo tanto estabilidad al compuesto. Del mismo modo, las interacciones no covalentes se caracterizan por actuar a distancias interatómicas largas (entre 2 y 4 Å). Sin embargo, esta distancia generalmente es menor en comparación con la suma de los radios de van de Waals.¹⁸ Este capítulo abordará solamente las interacciones: puente de hidrógeno, interacciones aromáticas de tipo π - π e interacciones de halógenos, ya que son las interacciones que predominan en el trabajo de investigación realizado.

2.3.1 Puente de hidrógeno

Las interacciones de puente de hidrógeno son, sin lugar a duda, las interacciones no covalentes de mayor importancia debido a su fuerza y alto grado de direccionalidad. Estas participan en una gran cantidad de procesos biológicos, así como en el ensamblaje de supermoléculas.¹⁹ Otras aplicaciones importantes de los puentes de hidrógeno son: su uso como patrones de reconocimiento molecular o sintones en el diseño y construcción de estructuras cristalinas con propiedades deseadas en el área de ingeniería de cristales.²⁰

Los puentes de hidrógeno se consideran un tipo especial de dipolo – dipolo, y ocurren cuando un átomo de hidrógeno (H) se encuentra enlazado covalentemente a un átomo electronegativo (D); generalmente halógenos, O, N o S. Esto genera una polarización del enlace D-H (grupo donador de protón), volviendo al átomo de hidrógeno electropositivo, el cual interacciona fuertemente con otros átomos ricos en electrones o grupos aceptores (A) como se muestra en la **Figura 4**. Típicamente, la fuerza de los puentes de hidrógeno es entre 4 y 120 kJ mol⁻¹ y está determinada por factores como su ambiente químico y geometría.

Figura 4. Representación de la interacción puente de hidrógeno entre un grupo donador (D) y uno aceptor (A).

Para que un grupo D-H pueda formar puentes de hidrógeno, D no tiene que ser necesariamente un átomo muy electronegativo, basta con que el enlace covalente D-H sea ligeramente polar como en los casos de C-H y P-H. La distancia entre la interacción H···A no siempre es más corta que la suma de los radios de van der Waals; algunos autores coinciden que se pueden generar puentes de hidrógeno con distancias de hasta 3.2 Å entre los átomos H y A.²¹

Dentro de las características más distinguibles de los puentes de hidrógeno, se encuentra su direccionalidad. Usualmente estas interacciones presentan arreglos lineales con ángulos entre 110 y 180° (algunos autores consideran ángulos hasta de 90°). Dependiendo del tipo de interacción, pueden ser clasificados en primarios y secundarios. Se consideran primarias a las interacciones directas entre grupos donadores y aceptores. En este tipo de interacciones un grupo donador puede interactuar con uno hasta tres átomos aceptores, exhibiendo diferentes geometrías (**Figura 5**). En cambio, en los puentes de hidrógeno secundarios las interacciones se establecen con grupos vecinos como se ve en la **Figura 5g**.⁵

Figura 5. Diferentes tipos de geometrías de puentes de hidrógeno: (a) lineal, (b) flexionado, (c) bifurcadodonador, (d)bifurcado-aceptor, (e) trifurcado, (f) bifurcado tres-centros y (g) interacciones secundarias proporcionando atracciones entre grupos vecinos.

Una forma particular de los puentes de hidrógeno es la interacción C-F…H-C, las cuales se consideran puentes de hidrógeno débiles. El grupo C-F conocido como "flúor orgánico" se comporta como un aceptor débil de puentes de hidrógeno, y no puede competir favorablemente con átomos de O y N que se comportan como aceptores de enlaces de hidrógeno, presentes en la misma estructura cristalina. Asimismo, en presencia de grupos O/N-H, el grupo C-F rara vez forma puentes de hidrógeno, ya que este grupo posee una baja afinidad a protones.²² Sin embargo, se ha visto que fragmentos que sólo contienen átomos de C, H y F, favorecen los puentes de hidrógeno de la forma C-H…F-C.²³ A su vez, la presencia de este tipo de puentes de hidrógeno se ha relacionado con la estabilidad energética de ciertos compuestos. De acuerdo con cálculos teóricos, que incluyen optimización geométrica, se ha establecido que las distancias F...H son menores que la suma de los radios de van der Waals, siendo aproximadamente de 2.6 Å.²⁴ En un estudio realizado por Desiraju y colaboradores,²⁵ sobre las interacciones de tipo C-H…F-C en estructuras cristalinas de fluorobencenos, se concluyó, con base en las gráficas de correlación de distancia-ángulo (d/ θ), que dichas interacciones presentan características de puentes de hidrógenos débiles. De igual forma, los sintones supramoleculares de las interacciones $C-H\cdots F$ (Figura 6), resultaron ser topológicamente similares a los sintones de C-H···O y C-H···N, por lo que también pueden ser utilizados en el diseño de cristales novedosos con funciones específicas.

Figura 6. Cuatro tipos posibles de sintones supramoleculares para la interacción C-H···F-C.

2.3.2 Interacciones π - π

Las interacciones no covalentes de tipo π - π (π - π aromáticas o interacciones de apilamiento) entre anillos aromáticos conjugados, son de gran importancia en procesos químicos y biológicos. Se sabe que estas interacciones contribuyen en la intercalación de fármacos en el ADN, plegamiento de proteínas, reconocimiento molecular, además de jugar un papel importante en la modulación del empaquetamiento cristalino de compuestos aromáticos, así como en sus propiedades físicas.²⁶ El término apilamiento π - π , se usa para las interacciones que conducen a la formación de arreglos moleculares paralelos de moléculas aromáticas planas.²⁷ De acuerdo con el modelo de Hunter,²⁸ las interacciones π - π entre dos sistemas aromáticos son en esencia interacciones atractivas entre cuadrupolos eléctricos. Estas ocurren cuando las interacciones atractivas entre la nube π negativa de un sistema aromático y el sistema α cargado positivamente del segundo sistema aromático, superan a las fuerzas de repulsión del sistema π .

En general las interacciones de tipo π - π pueden presentar dos tipos de arreglos: apilamientos paralelos o arreglos en forma de T (**Figura 7**). Los apilamientos paralelos se pueden dar de dos formas. La primera, donde dos anillos aromáticos se apilan cara a cara (**Figura 7a**), el cual se conoce como arreglo eclipsado y es la menos favorecida, debido a que, en este tipo de arreglo, los sistemas que interactúan son ricos en electrones, no tienen grupos atractores y las nubes π quedan paralelas, favoreciendo la repulsión entre los anillos. La segunda es cuando los anillos aromáticos se apilan de manera desfasada (**Figura 7b**). Esta interacción se ve muy favorecida debido a que la nube π de uno de los anillos interacciona con los hidrógenos parcialmente positivos del otro sistema aromático. De manera similar, la interacción en forma T se da cuando un anillo aromático interacciona de forma perpendicular, por medio de sus hidrógenos con carga parcial positiva, con la nube π de otro sistema aromático (**Figura 7c**). Las interacciones π - π de apilamiento desfasado, así como la de forma T, se consideran ligeramente positivas, ya que la atracción α - π es más fuerte que la repulsión π - π .²⁹ Las distancias observadas para dichas interacciones son >3.8 Å entre centroides y >3.5 Å entre planos.²⁷

Figura 7. Representación de interacciones de tipo π - π con benceno y sus mapas de potencial electrostático. a) Apilamiento cara-cara, b) Apilamiento cara-cara desfasado y c) Borde-cara.

La geometría de las interacciones aromáticas también depende de los grupos enlazados a los anillos aromáticos. En muchas ocasiones uno de los miembros del par de anillos aromáticos posee grupos fuertemente atractores de electrones, que polarizan la densidad electrónica π lejos del núcleo aromático, e incluso provocan una inversión total del momento cuadrupolo, lo que resulta en una carga parcial positiva en el área central del anillo y una carga parcial negativa en la periferia. Un caso representativo de la inversión de cargas es el hexafluorobenceno, como se ve en la **Figura 8**. Este compuesto tiene la densidad electrónica acumulada en los átomos de flúor, dejando así, al anillo aromático con una carga parcial positiva.³⁰ La deslocalización de la densidad electrónica, favorece la intercalación de los anillos ricos en electrones con anillos deficientes de electrones.

Figura 8. Mapa de potencial electrostático del benceno y hexafluorobenceno.

2.3.3 Enlace de halógeno

La primera explicación del enlace de halógeno fue hecha por Brinck, Murray y P. Politzer, en donde, establecieron que el enlace de halógeno es una interacción no covalente, entre un átomo de halógeno X y un sitio negativo como una base de Lewis.³¹ Los halógenos enlazados covalentemente presentan una distribución anisotrópica de su densidad electrónica, donde el par solitario de electrones forma un potencial electrostático negativo perpendicular al enlace covalente, produciendo así un potencial electrostático positivo en la parte más exterior del átomo, región conocida como el hueco- σ (**Figura 9**).³² La polarización entre el potencial electrostático positivo y negativo, explica la fuerza de las interacciones, la cual incrementa de la siguiente manera: F < Cl < Br < I. Asimismo, estas interacciones presentan un alto grado de direccionalidad, ya que el valor del ángulo R-X…Y se aproxima a 180° y sus características tanto electrofílicas como nucleofílicas siguen la dirección R-X y dirección perpendicular a R-X, respectivamente.^{33, 34}

Figura 9. Representación esquemática de la distribución anisotrópica de la carga alrededor del átomo de halógeno, en una interacción no covalente de halógeno con un electrófilo o un nucleófilo.

En el caso del flúor, éste interacciona de manera diferente a los otros halógenos; algunos autores consideran que este átomo no forma interacciones de tipo halógeno, ya que en sus mapas de potenciales electrostáticos no presenta el hueco- σ . Sin embargo, recientemente estudios teóricos han mostrado que el flúor tiene la capacidad de formar interacciones no covalentes con donadores de electrones, si R (en el enlace R-F) es suficientemente electroatractor.^{35, 36}

2.4 Metales en química supramolecular y complejos aromáticos

En los inicios de la química supramolecular, la utilización de metales era únicamente como moléculas huésped en estructuras de reconocimiento molecular. Éstos no se consideraron componentes esenciales para la construcción de superestructuras, hasta que se reconoció que los enlaces de coordinación podían servir para la regulación geométrica y modulación de ligantes, además de que el ensamblaje supramolecular dirigido por metales puede verse favorecido por los efectos de quelación.³⁷ Por lo que hoy en día, la participación de metales de transición y química de coordinación para la formación de estructuras supramoleculares, se ha convertido en una de las estrategias más utilizadas.³⁸ El diseño y desarrollo de sistemas supramoleculares con metales de transición, ha resultado en una basta y fascinante colección de estructuras con propiedades y aplicaciones muy diversas,^{39, 40} entre las que se encuentra la química bioinorgánica; la cual, busca desarrollar sistemas que puedan tener aplicaciones biológicas, principalmente en el área de terapia y/o diagnóstico de enfermedades como cáncer⁴¹ y más recientemente Alzheimer.⁴²

Los compuestos de platino han destacado por su actividad farmacológica como buenos agentes anticancerígenos; los más usados en terapia son: cisplatino, carboplatino y oxaliplatino (**Figura 10**).⁴³ No obstante, presentan efectos tóxicos y resistencia celular, los cuales se relacionan con su modo de acción que se basa en la coordinación del Pt al ADN.⁴⁴ La búsqueda de nuevos complejos de Pt(II) con un modo de acción distinto a la del cisplatino, y que además presenten mayor actividad anticancerígena con menos efectos secundarios, ha sido un reto constante para la comunidad científica.⁴⁵ Como se mencionó anteriormente, los ligantes son una parte fundamental en las propiedades químicas y físicas de los compuestos de coordinación, y determinan su modo de acción. Recientemente, se ha descrito que ligantes del tipo N-donador, al igual que ligantes heterocíclicos rígidos, exhiben una actividad biológica elevada, junto con una baja toxicidad y pueden actuar mediante interacciones no covalentes. Ejemplos de ligantes con estas características son la 1,10-fenantrolina (fen) al igual que los tiofenolatos fluorados.^{46, 47}

Figura 10. Agentes anticancerígenos utilizados clínicamente.

2.4.1 Ligante 1,10-fenantrolina (fen)

La 1,10-fenantrolina (fen) es un sistema heteroaromático deficiente de electrones con estructura plana rígida (**Figura 11**), debido a la presencia del anillo aromático que une a los dos grupos piridilos, así como a la posición yuxtapuesta de los átomos de nitrógeno donadores.⁴⁸ Todo esto hace que la fen sea entrópicamente un buen agente quelante bidentado,⁴⁹ capaz de coordinarse a centros metálicos a través de sus átomos de nitrógeno, formando anillos de cinco miembros que dan estabilidad adicional a los compuestos.⁵⁰ Las posiciones más activas de la fen hacia reactivos nucleofílicos, son 2, 9 y 4, 7; mientras que las posiciones 5, 6 y 3, 8 son propensas a ataques electrofílicos, debido a que la densidad electrónica en esas posiciones es mayor.⁵¹

Figura 11. Estructura de la 1,10-fenantrolina.

Debido a su propiedades físicas y químicas, la fen ha sido utilizada como ligante en complejos que contienen metales del bloque d y f. En muchas ocasiones, dichos complejos exhiben propiedades luminiscentes interesantes, debido a la formación de estados electrónicos de transferencia de baja energía, MLCT (por sus siglas en inglés metal-to-ligand-charge-transfer). La luminiscencia se observa sobre todo, cuando los estados MLCT son los más bajos disponibles, lo cual sucede principalmente en los complejos de Cu(I), Ru(II) y Os(II).⁵⁰ Sin embargo, el estudio de esta propiedad se ha extendido a metales como Rh(III), Pd(II) y Pt(II). Los complejos metálicos luminiscentes son materiales clave para varias aplicaciones, como iluminación, sondas analíticas, láser y OLEDs.⁵² Otra aplicación de los complejos con el ligante fen en el área de materiales luminiscentes,⁵³ ha sido el diseño y síntesis de compuestos supramoleculares. Esto se debe a que comúnmente el ligante fen forma apilamientos eclipsados, así como apilamientos desfasados.⁵⁴

Por otro lado, el ligante fen ha jugado un rol muy importante en la síntesis de compuestos con aplicaciones biológicas. Recientemente, se han descrito compuestos de Ag(I) y Cu(II) coordinados a derivados de fen, que presentaron actividad antimicrobiana.⁵⁵ Otro ejemplo, es la síntesis exitosa de un sensor fluorescente para amoxicilina, a partir de un complejo de Rh(II) coordinado a fen; la relevancia de este compuesto es su efectividad en la detección y cuantificación de amoxicilina en formulaciones farmacéuticas.⁵⁶ Asimismo, se ha visto que la fen es un excelente agente intercalante (**Figura 12**).⁴⁸ Sin embargo, es altamente tóxico debido a la inhibición de metaloenzimas a través de sus átomos de nitrógeno coordinantes.⁵⁷ Este inconveniente se ha podido evitar al coordinar dichos átomos con metales de transición, principalmente platino debido a su gran actividad biológica.⁵⁸

Figura 12. Intercalación del ligante fen entre bases nitrogenadas.

Debido a la capacidad intercalante del ligante fen y a la actividad biológica que presentan los compuestos de platino, se han hecho estudios para su aplicación en el tratamiento de otras enfermedades como cáncer y Alzheimer. En 2008 Barnham y colaboradores encontraron que tres complejos de platino coordinados a fen, o sus derivados, inhibieron la actividad citotóxica del péptido A β al coordinarse con los residuos de histidina 6 y 14.⁵⁹ Además, se observó que la fen interacciona de manera no covalente con los anillos aromáticos de la fenilalanina y tirosina (Phe-4, Tir-10 y Phe-19) como se muestra en la **Figura 13**; dichas interacciones mostraron ser fundamentales para la coordinación del platino con el péptido.⁶⁰

Figura 13. Interacción del compuesto [Pt(κ^2 -N,N'-1,10-fen)Cl₂] con el péptido A β .

2.4.2 Ligantes tiofenolato fluorados

Los tioles son compuestos análogos a los alcoholes, y al desprotonarse forman aniones tiolato (RS⁻), los cuales son un tipo de ligante fundamental en la química de coordinación. Hoy en día sus aplicaciones más notables han sido en catálisis, ingeniería de cristales y química bioinorgánica.^{61, 62} Debido a su naturaleza, los tioles se han clasificado como pseudohalógenos y al tener un sustituyente R, sus propiedades estéricas y electrónicas se pueden ajustar a conveniencia, haciéndolos atractivos para el diseño de nuevas moléculas.⁶³

La incorporación de átomos de flúor en fragmentos orgánicos ha sido de gran interés en áreas biológicas, ya que los átomos de flúor inducen cambios importantes en las propiedades físicas, reactividad química, así como la actividad biológica.^{64, 65} Cerca del 20% de los productos farmacéuticos y 30% de agroquímicos poseen átomos de flúor, y se prevé que el número de agentes medicinales con átomos de flúor siga creciendo.⁶⁶

En el área biológica se ha visto que a pesar de que el hidrógeno y el flúor tienen tamaños parecidos, este último tiene una gran influencia en las propiedades electrónicas, así como en la estabilidad de los compuestos; esto resulta en una mayor resistencia hacia la degradación metabólica.⁶⁷ O'Hagan y colaboradores, estudiaron el remplazo de átomos de hidrógeno por átomos de flúor en reacciones enzimáticas, y concluyeron que la influencia esteroelectrónica del flúor puede controlar completamente, o influir parcialmente, el resultado estereoquímico de dichas reacciones.⁶⁸

Particularmente, los ligantes tiofenolato fluorados (**Figura 14**), han sido de gran interés, ya que pueden tener aplicaciones en el área tanto medicinal como supramolecular. Debido a la presencia del anillo aromático, éstos pueden promover las interacciones no covalentes de tipo π - π . La incorporación de sustituyentes fluoruro en el anillo, modifica las propiedades electrónicas de las moléculas y estabiliza las interacciones intermoleculares.⁶²

Figura 14. Estructura general de tiofenolatos fluorados.

2.5 Referencias

- 1 J.-M. Lehn, Chem. Soc. Rev. 2007, 36, 151-160.
- 2 J.-M. Lehn, *Supermolecular chemistry concepts and perspectives*, VCH, Weinheim, Alemania, **1995**.
- 3 U. Lüning, Angew. Chem. Int. Ed. 2013, 52, 4724-4724.
- 4 J.-M. Lehn, Angew. Chem. Int. Ed. 1988, 27, 89-112.
- 5 J. Steed, D. Turner, K. Wallace, *Core Concepts in Supramolecular Chemistry and Nanochemistry*, Wiley, Chichester, Inglaterra, **2007**.
- 6 J.-M. Lehn, Angew. Chem. Int. Ed. **1990**, 29, 1304-1319.
- 7 R. G. Chapman, J. C. Sherman, *Tetrahedron* **1997**, *53*, 15911-15945.
- 8 J. F. Stoddart, H. R. Tseng, Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 4797-4800.
- 9 D. E. Koshland, Angew. Chem. Int. Ed. 1995, 33, 2375-2378.
- 10 K. Ariga, *Supermolecules* (Ed.: M. Ebara), William Andrew, Kidlington, Inglaterra, **2016**, pp. 25-40.
- 11 V. D. Uzunova, C. Cullinane, K. Brix, W. M. Nau, A. I. Day, *Org. Biomol. Chem.* **2010**, *8*, 2037-2042.
- 12 I. W. Wyman, D. H. Macartney, Org. Biomol. Chem. 2010, 8, 247-252.
- 13 O. Danylyuk, H. Butkiewicz, A. W. Coleman, K. Suwinska, J. Mol. Struct. 2017, 1150, 28-36.
- 14 N. J. Wheate, D. P. Buck, A. I. Day, J. G. Collins, *Dalton Trans* **2006**, 451-458.
- 15 G. M. Whitesides, J. P. Mathias, C. T. Seto, *Science* **1991**, *254*, 1312-1319.
- 16 S. Sivakova, S. J. Rowan, *Chem. Soc. Rev.* **2005**, *34*, 9-21.
- 17 *Non-covalent interactions in the synthesis and design of new compounds* (Ed.: A. M. Maharramov, K. T. Mahmudov, M. N. Kopylovich, A. J. L. Pombeiro, Wiley, Hoboken, Estados Unidos, **2016**.
- 18 L. Barrientos, S. Miranda-Rojas, F. Mendizabal, *Int. J. Quantum Chem.* **2018**, *119*, e25675.
- 19 C. Sandorfy, *Anesthesiology* **2004**, *101*, 1225-1227.
- 20 G. R. Desiraju, J. Am. Chem. Soc. 2013, 135, 9952-9967.
- 21 T. Steiner, Angew. Chem. Int. Ed. 2002, 41, 48-76.
- 22 J. D. Dunitz, R. Taylor, *Chem. Eur. J.* **1997**, *3*, 89-98.
- 23 V. R. Thalladi, H.-C. Weiss, D. Bläser, R. Boese, A. Nangia, G. R. Desiraju, J. Am. Chem. Soc. **1998**, 120, 8702-8710.
- 24 P. Panini, D. Chopra, *Understanding of Noncovalent Interactions Involving Organic Fluorine* (Ed.: L.-Z. W. Zhan-Ting Li), Springer Berlin, Alemania, **2015**, pp. 37-67.
- 25 T. V. Rybalova, I. Y. Bagryanskaya, J. Struct. Chem. 2009, 50, 741-753.
- 26 J. Hermann, D. Alfe, A. Tkatchenko, *Nat. Commun* **2017**, *8*, 14052.
- 27 R. R. Choudhury, R. Chitra, *CrystEngComm* **2010**, *12*, 2113-2121.
- 28 C. A. Hunter, J. K. M. Sanders, J. Am. Chem. Soc. 1990, 112, 5525-5534.
- 29 K. Molcanov, B. Kojic-Prodic, *IUCrJ* **2019**, *6*, 156-166.
- 30 C. R. Martinez, B. L. Iverson, *Chem. Sci.* **2012**, *3*, 2191-2201.
- 31 T. Clark, M. Hennemann, J. S. Murray, P. Politzer, J. Mol. Model. 2007, 13, 291-296.
- 32 G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi, G. Resnati, G. Terraneo, *Chem. Rev.* **2016**, *116*, 2478-2601.
- 33 K. Eskandari, H. Zariny, *Chem. Phys. Lett.* **2010**, *492*, 9-13.

- 34 L. C. Gilday, S. W. Robinson, T. A. Barendt, M. J. Langton, B. R. Mullaney, P. D. Beer, *Chem. Rev.* **2015**, *115*, 7118-7195.
- 35 K. Eskandari, M. Lesani, *Chem. Eur. J.* **2015**, *21*, 4739-4746.
- 36 P. Metrangolo, J. S. Murray, T. Pilati, P. Politzer, G. Resnati, G. Terraneo, *Cryst. Growth Des.* **2011**, *11*, 4238-4246.
- 37 B. J. Holliday, C. A. Mirkin, Angew. Chem. Int. Ed. 2001, 40, 2022-2043.
- 38 F. A. Cotton, J. Chem. Soc., Dalton Trans. 2000, 1961-1968.
- 39 A. Ahmedova, *Front. Chem.* **2018**, *6*, 620.
- 40 R. L. M. Freire, M. B. d. F. Marques, E. M. d. Souza-Fagundes, R. B. d. Oliveira, R. J. Alves, *Braz. J. Pharm. Sci.* **2017**, *53*, e15235.
- 41 M. Cusumano, M. L. Di Pietro, A. Giannetto, *Inorg. Chem.* 2006, 45, 230-235.
- 42 F. Collin, I. Sasaki, H. Eury, P. Faller, C. Hureau, *Chem. Commun. (Camb.)* **2013**, *49*, 2130-2132.
- 43 C. Bazzicalupi, A. Bianchi, E. García-España, E. Delgado-Pinar, *Inorg. Chim. Acta* 2014, *417*, 3-26.
- 44 N. J. Wheate, S. Walker, G. E. Craig, R. Oun, *Dalton Trans* **2010**, *39*, 8113-8127.
- 45 A. Erxleben, *Chimia (Aarau)* **2017**, *71*, 102-111.
- 46 N. D. Al-Khathami, K. S. Al-Rashdi, B. A. Babgi, M. A. Hussien, M. Nadeem Arshad, N. E. Eltayeb, S. E. Elsilk, J. Lasri, A. S. Basaleh, M. Al-Jahdali, *J. Saudi Chem. Soc.* **2019**, *23*, 903-915.
- 47 D. Jaramillo, D. P. Buck, J. G. Collins, R. R. Fenton, F. H. Stootman, N. J. Wheate, J. R. Aldrich-Wright, *Eur. J. Inorg. Chem.* **2006**, 839-849.
- 48 P. G. Sammes, G. Yahioglu, *Chem. Soc. Rev.* **1994**, *23*, 327-334.
- 49 S. Swavey, K. J. Brewer, *Polyatomic Bridging Ligands*, 2nd ed. (Ed.: T. J. M. Jon A. McCleverty), Elsevier Science, **2003**, pp. 135-157.
- 50 G. Accorsi, A. Listorti, K. Yoosaf, N. Armaroli, *Chem. Soc. Rev.* **2009**, *38*, 1690-1700.
- 51 P. Alreja, N. Kaur, *RSC Advances* **2016**, *6*, 23169-23217.
- 52 A. Barbieri, G. Accorsi, N. Armaroli, *Chem. Commun.* 2008, 2185-2193.
- 53 S. C. Manna, S. Mistri, A. D. Jana, *CrystEngComm* **2012**, *14*, 7415-7422.
- 54 V. Russell, M. Scudder, I. Dance, J. Chem. Soc., Dalton Trans. 2001, 789-799.
- 55 L. Viganor, A. C. Galdino, A. P. Nunes, K. R. Santos, M. H. Branquinha, M. Devereux, A. Kellett, M. McCann, A. L. Santos, *J. Antimicrob. Chemother.* **2016**, *71*, 128-134.
- 56 M. R. Shah, M. Hassan, S. Nadeem, M. I. Bhanger, *Supramol. Chem.* **2014**, *26*, 777-782.
- 57 A. Abebe, M. Atlabachew, M. Liyew, E. Ferede, S. C. Rasmussen, *Cogent. Eng.* 2018, 4, 1476077.
- 58 A. Gil, M. Melle-Franco, V. Branchadell, M. J. Calhorda, *J. Chem. Theory Comput.* **2015**, *11*, 2714-2728.
- 59 J. Hardy, D. J. Selkoe, *Science* **2002**, *297*, 353-356.
- 60 D. Valensin, C. Gabbiani, L. Messori, *Coord. Chem. Rev.* 2012, 256, 2357-2366.
- 61 O. Baldovino-Pantaleón, S. Hernández-Ortega, D. Morales-Morales, *Inorg. Chem. Commun.* **2005**, *8*, 955-959.
- 62 R. Berger, G. Resnati, P. Metrangolo, E. Weber, J. Hulliger, *Chem. Soc. Rev.* 2011, 40, 3496-3508.
- 63 T. Ahrens, J. Kohlmann, M. Ahrens, T. Braun, *Chem. Rev.* **2015**, *115*, 931-972.

- 64 D. Morales-Morales, Y. Zheng, J. R. Dilworth, R. Rendón, H. Torrens, *Inorg. Chim. Acta* **2001**, *314*, 37-41.
- 65 I. G. Dance, *Polyhedron* **1986**, *5*, 1037-1104.
- 66 J. Wang, M. Sanchez-Rosello, J. L. Acena, C. del Pozo, A. E. Sorochinsky, S. Fustero, V. A. Soloshonok, H. Liu, *Chem. Rev.* **2014**, *114*, 2432-2506.
- 67 H. J. Bohm, D. Banner, S. Bendels, M. Kansy, B. Kuhn, K. Muller, U. Obst-Sander, M. Stahl, *ChemBioChem* **2004**, *5*, 637-643.
- 68 D. O'Hagan, Chem. Soc. Rev. 2008, 37, 308-319.

El éxito en el diseño de nuevos complejos con propiedades específicas se basa en relacionar las estructuras de los compuestos con dichas propiedades, por lo que la síntesis y la elucidación estructural son disciplinas que dependen una de la otra y son parte fundamental en el desarrollo de la química. Es por esto que los complejos sintetizados se caracterizaron mediante espectroscopía de resonancia magnética nuclear (RMN), espectrometría de masas, análisis elemental y cristalografía de rayos-X.

3.1 Síntesis de los complejos del tipo [Pt(κ^2 -*N*,*N*'-1,10-fen)(SAr_F)₂]

La síntesis de los compuestos **1**, **2** y **3** se realizó mediante reacciones de metátesis, al hacer reaccionar el compuesto $[Pt(\kappa^2-N,N'-1,10-fen)Cl_2]$ con $[Pb(SAr_F)_2]$ correspondiente, en una relación estequiométrica 1:1 (**Esquema 1**). Las mezclas de los respectivos compuestos se calentaron a reflujo por 24 h. En cada una de las mezclas se observó un cambio de color amarillo a naranja o rojo, al igual que la formación de un precipitado de color blanco ([PbCl₂]), el cual se removió al filtrar las disoluciones a través de celita®. Después, todos los volátiles fueron removidos al vacío, hasta obtener los compuestos en estado sólido, que posteriormente se lavaron con éter. Los rendimientos de los compuestos fueron de 84, 92 y 93% para **1**, **2** y **3**, respectivamente.

Esquema 1. Síntesis general de los compuestos del tipo [Pt(κ^2 -N,N'-1,10-fen)(SAr_F)₂].
3.2 Espectroscopía de resonancia magnética nuclear

Todos los experimentos de RMN de ¹H, ¹³C{¹H}y ¹⁹F{¹H} se realizaron empleando acetona deuterada, en el equipo VARIAN, Unity Inova de 500 MHz y a 25°C. A continuación se describen los espectros para cada uno de los complejos preparados de Pt(II).

3.2.1 Espectros de RMN ¹H

Los espectros de RMN de ¹H de los complejos 1, 2 y 3 son muy similares entre sí, ya que los tres compuestos tienen una estructura molecular muy semejante. Todos ellos contienen fragmentos aromáticos, motivo por el cual en la Figura 15 se muestra la región típica de hidrógenos aromáticos que va de δ 6.7 a 10.3 ppm en el espectro de RMN de ¹H. Como era de esperar en los tres espectros se observan 4 señales ubicadas entre δ 8.2 y 10.1 ppm; éstas señales son asignadas a los átomos de hidrógeno del ligante fen, lo cual confirma el modo simétrico de quelación N,N'. De este grupo de señales, la más característica es la asignada a H5, ya que es la más desplazada hacia campo bajo. Se encuentra en ~ 10.0 ppm, debido a la desprotección producida por la presencia de los átomos de nitrógeno. Asimismo, su relativa cercanía con el átomo de ¹⁹⁵Pt, produce que esta señal se muestre como un doble de dobles (dd, ${}^{3,4}J_{H-H}$ = 5.3, 1.4 Hz, J_{H-Pt} = 30 Hz sat). Los espectros de los compuestos 1 y 2, además muestran señales correspondientes a los hidrógenos de sus respectivos ligantes tiofenolatos fluorados. En el espectro del compuesto 2 (Figura 15b), se observa una señal alrededor de δ 7.0 ppm, la cual corresponde al H10, que se encuentra en posición *para* al azufre. Mientras que en el espectro correspondiente al compuesto 1 (Figura 15a), se pueden observar tres señales adicionales, donde las señales de 7.48 ppm y 6.82 a 6.87 ppm pertenecen a los hidrógenos en posición orto al azufre, designados como H8 y H12, respectivamente, mientras que el multiplete en 7.29 a 7.36 ppm fue asignado al H11 posicionado *meta* al azufre. Todo lo anterior es congruente con las estructuras propuestas. En el Anexo I se muestran los espectros completos de todos los complejos.

Figura 15. Espectros de RMN de ¹H de los compuestos a) 1, b) 2 y c) 3. Frecuencia: 500MHz. Disolvente: acetona-d₆. Temperatura: 25°C.

3.2.2 Espectros de RMN ¹³C{¹H}

Los espectros de RMN de ¹³C{¹H} de los compuestos **1**, **2** y **3** se presentan de manera conjunta en la **Figura 16**. Debido a la similitud entre sus estructuras, solo se observaron señales en la región de los carbonos aromáticos, que va de 100 a 150 ppm. En los espectros de los tres compuestos, se muestran claramente seis señales para el ligante fen (C1-C6). Sin embargo, las señales de C-F de los ligantes tiofenolatos fluorados se observan como señales múltiples de muy baja intensidad; esto último se debe a que los átomos de carbono se acoplan con los átomos de flúor. En el caso del complejo **3**, las señales C-F se observan como dos grupos de señales entre 146 – 150 ppm y 135 – 140 ppm, mientras que en el complejo **2** solo hay uno entre 146-150 ppm. En el espectro de este mismo compuesto, la señal C-H del ligante tiofenolato se observa como un triplete en 101.7 ppm (t, *J* = 23.9 Hz). Para el caso del compuesto **1**, las señales de C-H del ligante tiofenolato fluorado se muestran en 120.7 ppm (d, *J* = 17.6 Hz) para C8, en 116.4 ppm (d, *J* = 17.2 Hz) para C12 y en 128.5 ppm para C11. Particularmente esta última señal se encuentra más desplazada a campo bajo, debido a que el carbono se ve afectado por el azufre, mientras que las señales C-F no se logran distinguir.

Figura 16. Espectros de RMN de ¹³C{¹H} de los compuestos a) 1, b) 2 y c) 3. Frecuencia: 126 MHz. Disolvente: acetona-d₆. Temperatura: 25°C.

3.2.3 Espectros de RMN de ¹⁹F{¹H}

Con la finalidad de corroborar la presencia de los ligantes tiofenolatos fluorados, se realizaron los experimentos de RMN de ¹⁹F{¹H} para todos los compuestos. En la **Figura 17** se muestran los espectros para los complejos **1**, **2** y **3**. En los espectros de los complejos **2** y **3**, las señales más desplazadas hacia campo bajo son las que corresponden a los átomos de flúor en la posición *meta* al azufre, debido al efecto inductivo de éste. La **Figura 17c** muestra el espectro del compuesto **3**, en el cual se pueden observar **3** señales, que concuerdan con las posiciones *orto, meta* y *para* de los átomos de flúor al azufre. Las **Figuras 17b** y **17a** muestran los espectros de los compuestos **2** y **1**, respectivamente, en cada uno se pueden ver dos señales que, si se comparan con las del espectro del compuesto **3**, coinciden con los desplazamientos químicos de las posiciones *orto* y *meta* al azufre en el caso del compuesto **2** y *meta* y *para* al azufre en el caso del compuesto **1**.

Figura 17. Espectros de RMN de ¹⁹F{¹H} de los compuestos a) 1, b) 2 y c) 3. Frecuencia: 471 MHz. Disolvente: acetona-d₆. Temperatura: 25°C.

3.3 Espectrometría de masas

Todos los compuestos fueron analizados mediante la técnica MALDI-TOF, utilizando DIT como matriz en relación 2/5 (muestra/matriz). Los datos de los espectros se adquirieron en modo reflector, el cual permite una mayor precisión y resolución en la medición de la masa de los compuestos. Los espectros mostrados, representan el promedio de 500 disparos de láser; la intensidad de éste, se mantuvo lo suficientemente baja para evitar la degradación de la matriz.

La **Figura 18** muestra el espectro del compuesto **1**, en el cual el ion molecular $[M]^+$ se observa en 664.940 m/z, con una distribución isotópica similar a la calculada con el programa "Isotope Distribution Calculator and Mass Spec Plotter". El pico base se encuentra en 1185.187 m/z y concuerda con el fragmento $[2M-SAr_F+H]^+$. Además, se observa una señal en 520.789 m/z, la cual corresponde al fragmento $[M-SAr_F+H]^+$.

Las **Figuras 19** y **20** muestran los espectros de los compuestos **2** y **3**. Estos poseen un patrón de fragmentación similar. El pico base corresponde al ion molecular $[M+H]^+$, observándose en 737.956 y 773.926 m/z para **2** y **3**, respectivamente. Para ambos compuestos se observa la señal del fragmento correspondiente a $[2M-SAr_F+H]^+$ ubicadas en 1293.109 m/z para **2** y 1347.003 m/z para **3**. Asimismo, ambos espectros muestran la señal del fragmento [M-SAr_F+H]⁺ en 556.809 m/z para **2** y en 573.794 m/z para **3**, respectivamente.

Figura 18. Espectro de masas MALDI-TOF del compuesto 1.

Figura 19. Espectro de masas MALDI-TOF del compuesto 2.

Figura 20. Espectro de masas MALDI-TOF del compuesto 3.

3.4 Análisis elemental

De manera complementaria, se determinaron las composiciones porcentuales de las masas de los átomos de N, C e H de todos los compuestos. Del compuesto **1** se obtuvieron los siguientes valores experimentales: N = 3.94, C = 42.07, H = 2.45%; éstos coinciden con los valores teóricos calculados con la presencia de una molécula de agua (C₂₄H₁₄F₄N₂PtS₂•H₂O), dichos valores son: N = 4.10, C = 42.17, H = 2.36%. Los valores experimentales obtenidos tanto para el compuesto **2** (C₂₄H₁₀F₈N₂PtS₂) como para el compuesto **3** (C₂₄H₈F₁₀N₂PtS₂) coincidieron con los valores teóricos calculados. Valores experimentales de **2**: N = 3.78, C = 38.97, H = 1.21%; valores teóricos de **2**: N = 3.80, C = 39.08, H = 1.37%. Valores experimentales de **3**: N = 3.58, C = 36.99, H = 0.93%; valores teóricos de **3**: N = 3.62, C = 37.27, H = 1.04%.

Capítulo 4. Análisis por difracción de rayos X

Todos los compuestos fueron recristalizados mediante difusión lenta de hexano, en una disolución concentrada del complejo correspondiente en acetona/1,2-dicloroetano (1:1). Los cristales obtenidos fueron adecuados para su análisis por difracción de rayos X de monocristal. En la **Figura 21** se muestran las estructuras moleculares de los compuestos **1**, **2** y **3**; es importante resaltar que la estructura del complejo **2** contiene dos moléculas en su unidad asimétrica: **2a** y **2b**. Los datos cristalográficos completos de cada complejo se encuentran en el **Anexo II**.

Figura 21. Estructura molecular de los compuestos 1, 2 y 3. Los átomos de hidrógeno fueron omitidos para mayor claridad. Los elipsoides se muestran al 35 % de probabilidad.

Como se puede ver en la **Figura 21** los compuestos son isoestructurales entre sí. El fragmento fen actúa como ligante bidentado coordinándose al átomo de platino por medio de los átomos de nitrógeno, formando así un anillo quelato de 5 miembros, el cual proporciona estabilidad estructural. Asimismo, dos ligantes tiofenolato fluorados completan la esfera de coordinación. La geometría alrededor del átomo de platino es cuadrada plana ligeramente distorsionada; esto se puede corroborar con los ángulos que se forman entre el átomo de platino y los átomos de nitrógeno del ligante fen (N1-Pt-N2), los cuales son aproximadamente de 79.86 a 80.43°. Por otra parte, los ángulos entre el átomo de platino y los átomos de azufre de los ligantes tiofenolato fluorados (S1-Pt-S2), son aproximadamente de 90.31 a 95.11°. Las distancias y ángulos más representativos se muestran en la **Tabla 1.** Debido a que los arreglos cristalinos de todos los complejos mostraron numerosas interacciones supramoleculares, a continuación, se detallan dichas interacciones para cada uno de los compuestos.

	Compuestos			
	1	2a	2b	3
Átomos	Distancias (Å)			
N1-Pt	2.068	2.073	2.069	2.068
N2-Pt	2.071	2.060	2.052	2.085
S1-Pt	2.291	2.273	2.276	2.278
S2-Pt	2.284	2.292	2.302	2.300
	Ángulos (°)			
N1-Pt-S1	93.76	90.72	91.37	92.24
N2-Pt-S2	95.62	93.73	94.53	94.76
N1-Pt-N2	79.99	80.43	79.86	80.09
S1-Pt-S2	90.31	95.11	93.72	92.69

Tabla 1. Distancias (Å) y ángulos (°) de los compuestos **1**, **2** y **3**.

4.1 Análisis supramolecular del compuesto 1

El compuesto **1** presentó un sistema cristalino monoclínico con grupo espacial P2₁/n. En la **Figura 22a** se muestra la celda unitaria del compuesto, la cual se compone por cuatro moléculas, en donde las dos moléculas posicionadas en el centro de la celda forman una interacción antiparalela de tipo π - π , entre los anillos laterales de los ligantes fen que contienen al átomo de nitrógeno N1 (**Figura 22b**); la distancia centroide-centroide (dcc) es de 3.715 Å y la distancia plano-plano (dpp) de 3.262 Å.

Figura 22. (a) Celda unitaria del compuesto **1**, donde los átomos de hidrógeno fueron omitidos para mayor claridad, y (b) interacción de tipo π - π entre anillos laterales de los ligantes fen. Los elipsoides se muestran al 35 % de probabilidad.

Un análisis más detallado de dicha interacción, mostró la participación de una tercera molécula, la cual interacciona por medio del anillo aromático del ligante tiofenolato fluorado unido al átomo de azufre S1 con el anillo lateral del ligante fen que contiene el átomo N12 como se muestra en la **Figura 23**, con dcc de 3.726 Å y dpp de 3.600 Å; estos valores se encuentran en el límite que describe Janiak para considerar esta interacción de tipo π - π .¹ Asimismo, la posición en la que queda el ligante tiofenolato fluorado, se favorece por medio

de los átomos de flúor F4 y F3, con la formación de dos interacciones de tipo puente de hidrógeno con los átomos H2 y H3 respectivamente, de su molécula vecina, como se muestra en la **Figura 24**. La distancia entre H2 y F4 es de 2.586 Å, mientras que la de H3 y F3 es de 2.498 Å. Este arreglo forma un motivo que se repite a lo largo del plano que corta los ejes c y a de la celda unitaria.

Figura 23. Interacción de tipo π - π entre anillo lateral del ligante fen y anillo aromático del ligante tiofenolato fluorado que contiene al azufre S1. Los elipsoides se muestran al 35 % de probabilidad.

Figura 24. Motivo que se forma en el plano que corta los ejes a y c de la celda unitaria. Los elipsoides se muestran al 35 % de probabilidad.

Asimismo, se observa otra interacción de tipo π - π entre pares moleculares (**Figura 25a**). Dicha interacción se da como un apilamiento desfasado entre los anillos laterales de los ligantes fen, con distancia entre centroides de 3.590 Å; la distancia interplanar no se tomó en cuenta debido a que los planos de los anillos no se encuentran paralelos entre sí. Además, el anillo fluorado unido al átomo de azufre S2 en ambas moléculas, interacciona de forma π - π con su análogo en posición antiparalela, con dcc de 3.775 Å y dpp de 3.498 Å, formando así un motivo que se repite en el eje b de la celda unitaria como se muestra en la **Figura 25b**.

Figura 25. (a) Interacción de tipo π - π entre ambos anillos laterales de ligantes fen y (b) interacción entre los anillos aromáticos de ligantes tiofenolato fluorados que contiene el azufre S2, motivo que se repite a lo largo del eje b de la celda unitaria. Los elipsoides se muestran al 35 % de probabilidad.

4.2 Análisis supramolecular del compuesto 2

La estructura cristalina del compuesto 2 mostró ser un sistema monoclínico con grupo espacial P2₁/n. En la **Figura 26** se muestra la celda unitaria, la cual consta de 8 moléculas; como se mencionó anteriormente la unidad asimétrica contiene dos moléculas (**2a y 2b**). Como era de esperarse ambas moléculas tienen distancias y ángulos muy perecidos entre el metal y los ligantes (**Tabla 1**). Al igual que el compuesto **1**, el compuesto **2** presentó de manera predominante interacciones de tipo π - π .

Figura 26. Celda unitaria del compuesto 2, donde los átomos de hidrógeno fueron omitidos para mayor claridad. Los elipsoides se muestran al 35 % de probabilidad.

La formación de apilamientos desfasados entre ligantes fen se observó tanto en la molécula **2a** como en **2b**. Particularmente, la molécula **2a** presentó solamente una forma de apilamiento desfasado entre este tipo de ligante. Dicha interacción se da entre los anillos laterales que contienen al átomo de nitrógeno N1, como se muestra en la **Figura 27a**; la dcc es de 3.496 Å y la dpp de 3.384 Å. La interacción anterior es, además, un motivo, que forma un apilamiento desfasado entre el anillo aromático fluorado unido al átomo de azufre S1 y el anillo aromático fluorado unido al átomo de azufre S2 de su análogo continuo (**Figura 27b**), con dcc de 3.554 Å. Este motivo, a su vez, genera un arreglo de autoensamblaje a lo largo del eje b de la celda unitaria, como se ve en la **Figura 27c**.

(a)

(b)

Figura 27. (a) Interacción de tipo π - π entre anillos laterales del ligante fen, (b) interacción entre anillos de los ligantes tiofenolato fluorados, motivo de autoensamblaje a lo largo del eje b de la celda unitaria y (c) motivo que se repite a lo largo del eje b. Los elipsoides se muestran al 35 % de probabilidad.

Además de las interacciones de tipo π - π , se observó la formación de una interacción de tipo puente de hidrógeno al igual que un enlace de halógeno (**Figura 28**). El puente de hidrógeno se da entre el átomo de flúor F5 y el átomo de hidrógeno H18; esta interacción posee un ángulo C-H-F de 156.08° y una distancia interatómica de 2.460 Å. La interacción F…F se da entre los átomos de flúor F6 y F2 de los ligantes tiofenolato fluorados respectivos a cada molécula, con ángulo C23-F6-F2 de 132.26° y distancia interatómica de 2.905 Å; esta última corrobora la interacción entre los átomos de flúor ya que es menor a la suma de los radios de van der Waals (<2.94 Å). Estas dos últimas interacciones permiten la formación de un arreglo de autoensamblaje a lo largo del plano que corta los ejes a y b de la celda unitaria.

Figura 28. Interacción puente de hidrógeno y enlace de halógeno. Los elipsoides se muestran al 35 % de probabilidad.

En el caso de la molécula **2b**, se pudieron observar dos formas de apilamientos desfasados los cuales se muestran en la **Figura 29**. Las moléculas marcadas como **I** y **II** forman un motivo que se observa en el centro de la celda unitaria, el cual genera un sistema de autoensamblaje a lo largo del eje b de la celda unitaria. Las interacciones que participan en dicho motivo se dan entre el anillo central y el anillo lateral que contiene al átomo de nitrógeno N31 en cada molécula, con dcc de 3.656 Å y dpp de 3.618 Å. Tanto **I** como **II** forman interacciones con sus análogos para generar el sistema de autoensamblaje; estas interacciones se dan entre ambos anillos laterales de cada molécula con dcc de 3.728 Å. Debido a que los planos no son paralelos no se reporta la dpp.

Figura 29. Interacciones de tipo π - π entre ligantes fen de la molécula **2b**. Los elipsoides se muestran al 35 % de probabilidad.

La última interacción observada del compuesto **2** se muestra en la **Figura 30**. Ésta se da entre el ligante fen de la molécula **2a** y el anillo aromático fluorado unido al átomo de azufre S3 de la molécula **2b**, con dcc de 3.502 Å. Asimismo, los anillos aromáticos fluorados de la molécula **2b** forman una interacción intramolecular de tipo π - π , con dcc de 3.529 Å.

Figura 30. Interacción entre ligante fen de la molécula 2a y el anillo aromático fluorado de la molécula 2b. Los elipsoides se muestran al 35 % de probabilidad.

4.3 Análisis supramolecular del compuesto 3

A diferencia de los compuestos **1** y **2** que cristalizaron en sistemas monoclínicos, el compuesto **3** cristalizó en un sistema triclínico con grupo espacial P-1. Como se puede observar en la **Figura 31** la celda unitaria contiene 2 moléculas, las cuales no interaccionan entre sí.

Figura 31. Celda unitaria del compuesto 3, donde los átomos de hidrógeno fueron omitidos para mayor claridad. Los elipsoides se muestran al 35 % de probabilidad.

El análisis de la estructura cristalina reveló, que este compuesto sólo forma dos interacciones de tipo π - π . La primera, es un apilamiento desfasado de ligantes fen (**Figura 32**), la cual ocurre entre el anillo lateral que contiene al átomo de nitrógeno N10 y el anillo central de ambas moléculas; la dcc es de 3.603 Å. Esta interacción genera un motivo que se repite a lo largo del eje a de la celda unitaria. Asimismo, cada motivo forma un enlace de halógeno entre los átomos de flúor F6 y F9, con ángulo C21-F9-F6 de 160.39° y distancia F-F de 2.848 Å; tanto el ángulo C21-F9-F6, como la distancia que es menor a la suma de los radios de van der Waals (<2.94 Å), son características muy específicas para interacciones F…F.

Figura 32. Interacciones de tipo π - π entre ligantes fen y enlace de halógeno. Los elipsoides se muestran al 35 % de probabilidad.

La segunda interacción de tipo π - π , se observó entre los anillos aromáticos de los ligantes tiofenolato fluorados (**Figura 33**), en donde la dcc es de 3.990 Å y la dcc de los anillos de una misma molécula es de 3.600 Å; este arreglo se repite a lo largo de los ejes b y c de la celda unitaria.

Figura 33. Interacciones de tipo π - π entre anillos fluorados. Los elipsoides se muestran al 35 % de probabilidad.

4.4 Referencias

1 C. Janiak, J. Chem. Soc., Dalton Trans. 2000, 3885-3896.

Capítulo 5. Actividad biológica de los compuestos del tipo [Pt(κ^2 -N,N'-1,10-fen)(SAr_F)₂]

El crecimiento acelerado de células anormales, conocido como cáncer, es una enfermedad que puede afectar casi a cualquier órgano o tejido del cuerpo humano, y es la segunda causa de muerte a nivel mundial. De acuerdo con las estadísticas más recientes proporcionadas por la Organización Mundial de la Salud (OMS), en 2018 se registraron 9.6 millones de muertes relacionadas con dicha enfermedad.¹ El cáncer de pulmón, próstata, colorrectal, estómago e hígado son los tipos más comunes de cáncer en hombres, mientras que el cáncer de mama, colorrectal, pulmón, cuello uterino y tiroides son los más comunes entre mujeres. Considerando esta problemática y con base en el potencial que tienen los complejos de platino como agentes anticancerígenos, se decidió evaluar la actividad citotóxica y determinar el IC₅₀ de los tres complejos sintetizados.

5.1 Evaluación citotóxica

La evaluación citotóxica de los compuestos **1**, **2** y **3** se llevó a cabo mediante un screening primario, utilizando una concentración de 25 μ M y DMSO como vehículo. El porcentaje de inhibición de crecimiento celular se evaluó en seis líneas celulares cancerosas humanas: U251 (Glía del sistema nervioso central), PC-3 (Próstata), K562 (Leucemia), HCT-15 (Colon), MCF-7 (Mama) y SKLU-1 (Pulmón); con fines comparativos se incluyó la línea celular no cancerosa COS-7 (Riñón de mono). Los resultados se muestran en la **Gráfica 1**.

Como era de esperarse los tres compuestos de Pt(II) mostraron actividad citotóxica. El compuesto **1** resultó ser el más activo, presentando más del 87% de inhibición en todas las líneas celulares evaluadas, incluida COS-7. El compuesto **2** presentó un 100% de inhibición contra PC-3, mientras que en las demás líneas su actividad fue baja. Finalmente, el complejo **3** presentó porcentajes de inhibición mayores al 31%, salvo por la línea celular PC-3 en la

cual mostró ser no activo. La mayor actividad citotóxica de los complejos **1** y **3**, se puede deber a la presencia de los átomos de flúor en posición *para* al azufre en los ligantes tiofenolatos fluorados de ambos compuestos.

Lineus contaites

Gráfica 1. Actividad citotóxica de los compuestos del tipo $[Pt(\kappa^2-N,N'-1,10-fen)(SAr_F)_2]$.

5.2 IC₅₀ de los complejos del tipo [Pt(*k*²-*N*,*N*'-1,10-fen)(SAr_F)₂]

Para complementar el estudio se decidió determinar la concentración mínima a la que los compuestos reducen la viabilidad de las células en un 50% (IC₅₀). Ésta se determinó siguiendo el protocolo de sulforodamina B descrito por el Instituto Nacional de Cáncer de los Estados Unidos.² Como vehículo se utilizó DMSO, y se evaluaron tres líneas celulares cancerosas humanas: U251 (Glía del sistema nervioso central), HCT-15 (Colon) y SKLU (Pulmón); y la línea celular no cancerosa COS-7 (Riñón de mono).

Los resultados obtenidos de IC₅₀ de los compuestos (**Gráfica 2**) muestran la misma tendencia que los resultados de citotoxicidad; los compuestos **1** y **3** poseen una potencia de inhibición elevada y moderada, respectivamente. El compuesto **1** mostró valores de IC₅₀ de entre 4.56

a 4.78 μ M para líneas celulares cancerosas (U-251, HCT-15 y SKLU-1), mientras que para células sanas (COS-7) el valor fue de 14.48 ± 0.5 μ M. El compuesto **3** mostró su mayor actividad hacia la línea celular cancerosa HCT-15 con valor de IC₅₀ de 32.01 ± 0.6 μ M. Finalmente, el complejo **2** mostró valores de IC₅₀ > 100 μ M en las líneas celulares evaluadas.

Gráfica 2. Evaluación del IC₅₀ de los compuestos del tipo [Pt(κ^2 -*N*,*N*'-1,10-fen)(SAr_F)₂].

5.3 Referencias

- 1 F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, A. Jemal, *CA Cancer J. Clin.* **2018**, *68*, 394-424.
- 2 V. Vichai, K. Kirtikara, *Nat. Protoc.* **2006**, *1*, 1112-1116.

Capítulo 6. Conclusiones

6.1 Conclusiones

- Se sintetizó una serie de complejos de Pt(II) usando como ligantes 1,10-fenantrolina y los tiofenolatos sustituidos con 2, 4 y 5 átomos de flúor. Los tres compuestos con fórmula general [Pt(κ^2 -*N*,*N*'-1,10-fen)(SAr_F)₂] se caracterizaron mediante RMN de ¹H, ¹³C{¹H} y ¹⁹F{¹H}, espectrometría de masas y análisis elemental. Las estructuras moleculares de los complejos **1**, **2** y **3**, se determinaron mediante difracción de rayos-X de monocristal; estas mostraron que en cada uno de los complejos el ligante fen se coordina de forma bidentada al átomo de platino y dos ligantes tiofenolato fluorados completan la esfera de coordinación, generando una geometría cuadrada plana ligeramente distorsionada. En el estudio cristalográfico se observó que los compuestos **1** y **2** presentaron puentes de hidrógeno, mientras que los compuestos **2** y **3** exhibieron la formación de un enlace de halógeno.
- La actividad citotóxica de los tres complejos se evaluó frente a seis líneas celulares cancerosas humanas y una línea no cancerosa (riñón de mono). El compuesto 1, el cual contiene la menor cantidad de átomos de flúor, presentó el mayor porcentaje de inhibición celular, siendo mayor al 87% en todas las líneas evaluadas, incluyendo la línea celular sana. El compuesto 2, mostró un alto porcentaje de inhibición hacia la línea celular PC-3 (próstata), en contraste, el compuesto 3 exhibió una actividad de moderada a alta en todas las líneas celulares. Además, se determinaron los valores de IC₅₀ para los tres compuestos en tres líneas celulares cancerosas humanas y una línea celular no cancerosa (riñón de mono). Los valores de IC₅₀ del compuesto 1 se obtuvieron en una escala micromolar, siendo de alrededor de 4.6 μM para células cancerígenas mientras que, en la línea celular sana, fue de 14.48 ±0.5 μM. Por lo que es un buen candidato para seguirse estudiando. Sin embargo, los valores para los compuestos 2 y 3 fueron muy elevados.

7.1 Reactivos

Todos los reactivos y disolventes se utilizaron como se recibieron, sin purificación previa, y fueron comprados de las compañías Sigma-Aldrich y Pressure Chemical. Los disolventes deuterados fueron adquiridos en Cambridge Isotope Laboratories, Inc. Las síntesis de los compuestos [$Pt(\kappa^2-N,N'-1,10-fen)Cl_2$] y [$Pb(SAr_F)_2$], se llevaron acabo de acuerdo a lo descrito en la literatura.^{1,2}

7.2 Técnicas Analíticas

7.2.1 Resonancia magnética nuclear (RMN)

Los experimentos de RMN de ¹H, ¹³C{¹H} y ¹⁹F{¹H}, se realizaron en el equipo VARIAN, Unity Inova de 500 MHz, a 25°C.

7.2.2 Espectrometría de masas por técnica MALDI-TOF

El análisis espectrométrico de masas, se llevó a cabo mediante la técnica de desorción/ionización con láser asistida por matriz, acoplada a un analizador de tiempo de vuelo (MALDI-TOF). La técnica se realizó en el equipo BRUKER DALTONICS, modelo FLEX-PC de tipo microflex. Se utilizó DIT como matriz en relación 2/5 (muestra/matriz).

7.2.3 Análisis elemental

El análisis elemental por combustión de muestra se realizó con el analizador elemental Thermo Scientific, modelo Flash 2000, a temperatura de horno de 950 °C. Se utilizó el material de referencia metionina como estándar de verificación, marca Thermo Scientific con número de certificado 237031. Los valores certificados son: N = 9.35 %, C = 40.25 % y H = 7.43 %.

7.2.4 Puntos de fusión

Los puntos de fusión se determinaron en tubos capilares en un medidor digital de punto de fusión, Electrothermal 9000.

7.2.5 Análisis cristalográfico

El análisis cristalográfico se realizó mediante la técnica de difracción de rayos X de monocristal, utilizando el difractómetro de marca BRUKER, modelo Smart Apex. Los datos obtenidos fueron analizados en los programas Olex2-1.2 y Mercury-3.10.2.

7.3 Síntesis general de los compuestos del tipo [Pt(κ^2 -*N*,*N*'-1,10-fen)(SAr_F)₂]

Las síntesis de los complejos del tipo [Pt(κ^2 -*N*,*N*'-1,10-fen)(SAr_F)₂], donde SAr_F corresponde a distintos tiolatos fluorados, se realizaron mediante reacciones de metátesis. En una mezcla 1:1 de acetona/1,2-dicloroetano (25mL), se disolvieron 30.0 mg (0.067 mmol) de [Pt(κ^2 -*N*,*N*'-1,10-fen)Cl₂]; a esta disolución se agregó gota a gota una disolución de [Pb(SAr_F)₂] (0.067 mmol), en 1:1 de acetona/1,2-dicloroetano (25mL). La mezcla de reacción resultante se calentó a reflujo durante 24 h. Al cabo de este tiempo, la mezcla se dejó enfriar a temperatura ambiente y se filtró a través de celita®, para remover el [PbCl₂] precipitado. La disolución resultante se evaporó al vacío hasta obtener sólidos de color naranja a rojos.

7.3.1 Síntesis del compuesto 1

Se preparó a partir de [Pt(κ^2 -*N*,*N*'-1,10-fen)Cl₂] (0.10 g, 0.22 mmol) y [Pb(SC₆H₃-3,4-F₂)₂] (0.11g, 0.22 mmol). Se obtuvo un sólido color rojo granate, con un rendimiento del 84% (0.13g, 0.19 mmol). Punto de fusión >250°C. ¹H RMN (500 MHz, Acetona-d₆) δ 10.00 (dd, ^{3,4}*J*_{*H*-*H*} = 5.3, 1.4 Hz, *J*_{*H*-*P*t} = 30 Hz sat, 2H), 9.04 (dd, ^{3,4}*J*_{*H*-*H*} = 8.2, 1.3 Hz, 2H), 8.34 (s, 2H), 8.21 (dd, ³*J*_{*H*-*H*} = 8.2, 5.3 Hz, 2H),

7.48 (ddd, ${}^{3,4}J_{H-F} = 12.1$, 7.8, ${}^{5}J_{H-H} = 2.2$ Hz, 2H), 7.36 – 7.29 (m, 2H), 6.87 – 6.82 (m, 2H). ${}^{13}C{}^{1}H{}$ RMN (126 MHz, Acetona-d₆) δ 149.7, 148.5, 140.1, 137.9, 132.1, 128.7, 128.5, 127.1, 120.7 (d, J = 17.6 Hz), 116.4 (d, J = 17.2 Hz), 71.4. ${}^{19}F{}^{1}H{}$ RMN (471 MHz, Acetona-d₆) δ -142.0 – -142.1 (m), -149.1 – -149.3 (m). MALDI-TOF MS (m/z): 664.940 [M]⁺, 1185.187 [2M-SAr_F+H]⁺. Análisis Elemental para C₂₄H₁₄F₄N₂PtS₂•H₂O (683.03 g/mol), Valores teóricos: C, 42.17; H, 2.36; N, 4.10%. Experimental: C, 42.07; H, 2.45; N, 3.94%.

7.3.2 Síntesis del compuesto 2

Se preparó a partir de $[Pt(\kappa^2-N,N'-1,10-fen)Cl_2]$ (0.10 g, 0.22 mmol) y $[Pb(SC_6F_4-4H)_2]$ (0.13g, 0.22 mmol). Se obtuvo un sólido color naranja, con rendimiento del 92% (0.15 g, 0.21 mmol). Punto de fusión >250°C. ¹H RMN (500 MHz, Acetonad₆) δ 10.03 (dd, ^{3,4}*J*_{*H*-*H*} = 5.3, 1.3 Hz, *J*_{*H*-*Pt*} = 31.1 Hz sat, 2H), 9.08 (dd, ^{3,4}*J*_{*H*-*H*} = 8.2, 1.3 Hz, 2H), 8.35 (s, 2H), 8.26 (dd, ³*J*_{*H*-*H*}

= 8.2, 5.3 Hz, 2H), 7.02 (tt, ${}^{3,4}J_{H-F}$ = 10.3, 7.2 Hz, 2H). ${}^{13}C{}^{1}H$ RMN (126 MHz, Acetonad₆) δ 149.1, 148.3, 147.4 (d, *J* = 12.8 Hz), 145.6, 140.4, 132.1, 128.8, 127.1, 123.4, 101.7 (t, *J* = 23.9 Hz). ${}^{19}F{}^{1}H$ RMN (471 MHz, Acetona-d₆) δ -133.9 - -134.1 (m), -143.5 (qd, ${}^{3,5}J_{F-}$ *F* = 13.1, 3.0 Hz). MALDI-TOF MS (m/z): 737.956 [M+H]⁺, 1293.109 [2M-SAr_F+H]⁺. Análisis Elemental para C₂₄H₁₀F₈N₂PtS₂ (736.98 g/mol), Valores teóricos: C, 39.08; H, 1.37; N, 3.80%. Experimental: C, 38.97; H, 1.21; N, 3.78%.

7.3.3 Síntesis del compuesto 3

Se preparó a partir de [Pt(κ^2 -*N*,*N*'-1,10-fen)Cl₂] (0.10g, 0.22 mmol) y [Pb(SC₆F₅)₂] (0.13g, 0.22 mmol). Se obtuvo un sólido color naranja, con rendimiento del 93% (0.16 g, 0.21 mmol). Punto de fusión >250°C. ¹H NMR (500 MHz, Acetona-d₆) δ 10.02 (dd, ^{3,4}*J*_{*H*-*H*} = 5.3, 1.3 Hz, *J*_{*H*-*Pt*} = 30 Hz sat, 2H), 9.10 (dd, ^{3,4}*J*_{*H*-*H*} = 8.2, 1.3 Hz, 2H), 8.38 (s, 2H), 8.28 (dd, ³*J*_{*H*-*H*} = 8.2, 5.3 Hz, 2H). ¹³C{¹H}

RMN (126 MHz, Acetona-d₆) δ 149.0, 148.3, 140.6, 132.2, 128.9, 127.1. ¹⁹F{¹H} RMN (471 MHz, Acetona-d₆) δ -133.4 - -133.6 (m), -164.5 (t, ³*J*_{*F*-*F*} = 20.5 Hz), -167.1 - -167.4 (m). MALDI-TOF MS (m/z): 773.926 [M+H]⁺, 1347.003 [2M-SAr_F+H]⁺. Análisis Elemental para C₂₄H₈F₁₀N₂PtS₂ (772.96 g/mol), Valores teóricos: C, 37.27; H, 1.04; N, 3.62%. Experimental: C, 36.99; H, 0.93; N, 3.58%.

7.4 Evaluación citotóxica y determinación del IC50

La evaluación citotóxica y la concentración inhibitoria media máxima (IC₅₀) de los compuestos **1**, **2** y **3**, se llevó acabo *in vitro* en líneas celulares de cáncer, suministradas por el Instituto Nacional de Cancerología (USA). Se ocuparon siete líneas celulares para la evaluación citotóxica y cuatro para la determinación del IC₅₀ (COS-7: línea celular de riñón de mono (no cancerosa), U251: glía de sistema nervioso central, PC-3: próstata, K562: leucemia, HCT-15: colon, MCF-7: mama, SKLU-1: pulmón); se siguió el protocolo establecido por el NCI (por sus siglas en inglés National Cancer Institute) empleando el bioensayo colorimétrico de sulforodamina B.³

Las líneas celulares U251 (glioblastoma humano), PC-3 (adenocarcinoma prostático humano), K256 (leucemia mielógena crónica humana), HTC-15 (adenocarcinoma colorrectal humano), MCF-7 (adenocarcinoma mamario humano) y SKLU-1 (adenocarcinoma de pulmón humano), fueron cultivadas en RPMI-1640, suplementadas con suero de feto bovino al 10%, 2 mM de L-glutamina, 10000 unidades/mL de penicilina G de sodio, 10000 μ g/mL de sulfato de estreptomicina, 25 μ g/mL de anfotericina B (Gibco) y 1% de aminoácidos no esenciales (Gibco), en condiciones de una atmósfera humidificada, con CO₂ al 5% a 37°C.

7.5 Referencias

- 1 M. E. Peach, Can. J. Chem. 1968, 46, 2699-2706.
- 2 P. Umapathy, R. A. Harnesswala, *Polyhedron* **1983**, *2*, 129-136.
- 3 V. Vichai, K. Kirtikara, *Nat. Protoc.* **2006**, *1*, 1112-1116.

Anexos

Anexo 1. Espectros de RMN

A1.1 Espectros de RMN del compuesto 1

Figura 34. Espectro de RMN de ¹H del compuesto 1. Frecuencia: 500 MHz. Disolvente: acetona-d₆. Temperatura: 25°C.

Figura 35. Espectro de RMN de ¹³C{¹H} del compuesto 1. Frecuencia: 126 MHz. Disolvente: acetona-d₆. Temperatura: 25°C.

Figura 36. Espectro de RMN de ¹⁹F{¹H} del compuesto 1. Frecuencia: 471 MHz. Disolvente: acetona-d₆. Temperatura: 25°C.

Figura 37. Espectro de RMN COSY del compuesto 1. Disolvente: acetona-d₆. Temperatura: 25°C.

Figura 38. Espectro de RMN HSQC del compuesto 1. Disolvente: acetona-d₆. Temperatura: 25°C.

Figura 39. Espectro de RMN HMBC del compuesto 1. Disolvente: acetona-d₆. Temperatura: 25°C.
A1.2 Espectros de RMN del compuesto 2

Figura 40. Espectro de RMN de ¹H del compuesto 2. Frecuencia: 500 MHz. Disolvente: acetona-d₆. Temperatura: 25°C.

Figura 41. Espectro de RMN de ¹³C{¹H} del compuesto 2. Frecuencia: 126 MHz. Disolvente: acetona-d₆. Temperatura: 25°C.

Figura 42. Espectro de RMN de ¹⁹F{¹H} del compuesto 2. Frecuencia: 471 MHz. Disolvente: acetona-d₆. Temperatura: 25°C.

Figura 43. Espectro de RMN COSY del compuesto 2. Disolvente: acetona-d₆. Temperatura: 25°C.

Figura 44. Espectro de RMN HSQC del compuesto 2. Disolvente: acetona-d₆. Temperatura: 25°C.

Figura 45. Espectro de RMN HMBC del compuesto 2. Disolvente: acetona-d₆. Temperatura: 25°C.

A1.3 Espectros de RMN del compuesto 3

Figura 46. Espectro de RMN de ¹H del compuesto 3. Frecuencia: 500 MHz. Disolvente: acetona-d₆. Temperatura: 25°C.

Figura 47. Espectro de RMN de ¹³C{¹H} del compuesto 3. Frecuencia: 126 MHz. Disolvente: acetona-d₆. Temperatura: 25°C.

Figura 48. Espectro de RMN de ¹⁹F{¹H} del compuesto 3. Frecuencia: 471 MHz. Disolvente: acetona-d₆. Temperatura: 25°C.

Figura 49. Espectro de RMN COSY del compuesto 3. Disolvente: acetona-d₆. Temperatura: 25°C.

Figura 50. Espectro de RMN HSQC del compuesto 3. Disolvente: acetona-d₆. Temperatura: 25°C.

Figura 51. Espectro de RMN HMBC del compuesto 3. Disolvente: acetona-d₆. Temperatura: 25°C.

Anexo 2. Datos cristalográficos

A2.1 Datos cristalográficos del compuesto 1

 Tabla 2. Datos cristalográficos y refinamiento de estructura del compuesto 1.

Código de identificación	2F	
Fórmula empírica	$C_{24}H_{14}N_2F_4S_2Pt$	
Peso molecular (uma)	665.58	
Temperatura (K)	298(2)	
Sistema cristalino	monoclínico	
Grupo espacial	P21/n	
	a/Å = 8.1059(3)	$\alpha/^{\circ} = 90$
Dimensiones de la celda unitaria	b/Å = 15.3627(4)	$\beta^{\circ} = 102.0034(10)$
	c/Å = 17.5463(5)	$\gamma/^{\circ} = 2137.24(11)$
Volumen (Å ³)	2137.24(11)	
Z	4	
$\rho_{\text{calc}}(g/cm^3)$	2.069	
Coeficiente de absorción (μ/mm^{-1})	6.811	
F(000)	1272.0	
Tamaño del cristal (mm ³)	$0.318 \times 0.287 \times 0.132$	
Radiación	MoKa ($\lambda = 0.71073$)	
Rango 2 O para colección de datos (°)	4.746 to 50.758	
Rangos de los índices	$ -9 \le h \le 9, -18 \le k \le 17, -21 \le l \le$	21
Reflexiones colectadas	17612	
Reflexiones independientes	3920 [$R_{int} = 0.0563, R_{sigma} = 0.0563$]	.0447]
Datos/Restricciones/Parámetros	3920/0/298	
F^2	1.075	
Índices R finales [I>=2σ (I)]	$R_1 = 0.0357, wR_2 = 0.0767$	
Índices T	$R_1 = 0.0457, wR_2 = 0.0816$	
Diferencia mayor pico/hueco (e Å ⁻³)	1.59/-1.29	

Tabla 3. Coordenadas atómicas ($x10^4$) y parámetros de desplazamiento isotrópico
equivalentes (Å $\times 10^3$) del compuesto 1 . U(eq) se define como 1/3 de la traza del tensor de
U_{IJ} ortogonalizado.

Átomo	x	у	z	U(eq)
Pt1	1924.0(3)	3492.0(2)	5782.2(2)	35.45(10)
S1	3662(3)	3791.1(12)	6958.7(10)	54.6(5)
S2	890(2)	2301.7(11)	6307.6(9)	49.1(4)
F1	3411(6)	450(3)	4373(3)	80.6(14)
F2	2818(7)	-1031(3)	5066(3)	86.3(15)
F3	8858(8)	2607(4)	8758(3)	121(2)
F4	9161(6)	1253(4)	7880(3)	90.8(16)
N1	2534(6)	4626(3)	5269(3)	36.7(11)
C2	3573(8)	5259(4)	5581(4)	45.9(16)
C3	3830(9)	6002(4)	5170(4)	55.0(18)
C4	3023(9)	6087(5)	4413(4)	55.4(19)
C5	1908(9)	5435(4)	4056(4)	46.3(16)
C6	972(10)	5465(5)	3272(4)	60(2)
C7	-117(10)	4833(5)	2978(4)	58(2)
C8	-395(9)	4101(4)	3436(3)	44.8(16)
C9	-1548(9)	3437(5)	3182(4)	53.1(19)
C10	-1742(9)	2776(5)	3674(4)	55.3(19)
C11	-768(9)	2762(4)	4431(4)	47.6(16)
N12	352(6)	3379(3)	4694(3)	37.0(12)
C13	549(8)	4044(4)	4209(3)	36.6(14)
C14	1705(7)	4715(4)	4512(3)	36.4(14)
C15	5280(8)	3015(4)	7188(3)	43.3(15)
C16	6470(9)	3130(5)	7879(4)	53.5(18)
C17	7729(9)	2530(6)	8087(4)	62(2)
C18	7879(10)	1818(6)	7640(5)	63(2)
C19	6761(10)	1674(5)	6951(4)	62(2)
C20	5451(8)	2288(4)	6730(4)	46.5(16)
C21	1476(9)	1336(4)	5894(4)	45.2(16)
C22	2269(9)	1290(4)	5259(4)	50.1(17)
C23	2684(9)	493(5)	4998(4)	53.1(17)
C24	2373(10)	-256(4)	5355(5)	57.4(19)
C25	1609(10)	-245(5)	5965(4)	60(2)
C26	1135(9)	550(4)	6237(4)	53.2(17)

Tabla 4. Parámetros de desplazamiento anisotrópico ($Å^2 \times 10^3$) del compuesto **1**. El

exponente del factor de desplazamiento anisotrópico toma la forma: -

Átomo Dí 1	U11	U22	U 33	U23	U 13	U12
PtI	36.77(17)	37.30(15)	29.99(14)	-1.74(9)	1.69(10)	5.02(10)
51	01.0(12)	53.9(10)	39.4(9)	-1.2(1)	-9.8(8)	12.7(9)
52 E1	60.3(12)	47.0(9)	41.5(9)	4.9(7)	14.2(8)	3.0(8)
	94(4)	77(3)	/0(3)	-5(2)	29(3)	9(3)
Г <i>2</i> F2	96(4)	52(3)	111(4)	-19(3)	21(3)	1(3)
ГЭ Б4	96(4)	152(6)	96(4)	-11(4)	-26(3)	37(4) 44(2)
ľ4 N1	63(3)	113(4)	94(4)	23(3)	9(3)	44(3)
	36(3)	34(3)	41(3)	-2(2)	10(2)	4(2)
C2	39(4)	41(4)	60(4) 74(5)	-11(3)	15(3)	1(3)
C3	51(5)	45(4)	74(5)	-14(4)	25(4)	-4(3)
C4	59(5)	42(4)	74(5)	5(3)	34(4)	/(3)
C5	50(4)	42(4)	54(4)	2(3)	25(3)	11(3)
C6	/8(6)	59(5)	45(4)	16(4)	20(4)	18(4)
C7	71(5)	71(5)	32(3)	5(3)	7(3)	29(4)
C8	48(4)	52(4)	32(3)	-7(3)	2(3)	16(3)
C9	50(5)	69(5)	34(3)	-12(3)	-7(3)	24(4)
C10	50(5)	52(4)	58(4)	-21(4)	-3(3)	6(3)
C11	45(4)	45(4)	49(4)	-8(3)	4(3)	4(3)
N12	37(3)	38(3)	35(3)	-4(2)	4(2)	4(2)
C13	38(4)	41(3)	31(3)	-3(3)	6(3)	11(3)
C14	31(3)	41(3)	40(3)	3(3)	12(3)	12(3)
C15	40(4)	54(4)	33(3)	13(3)	2(3)	1(3)
C16	51(5)	68(5)	38(4)	2(3)	0(3)	5(4)
C17	39(4)	98(6)	46(4)	18(4)	-2(3)	8(4)
C18	53(5)	73(5)	66(5)	22(4)	18(4)	20(4)
C19	48(5)	86(6)	54(4)	30(4)	12(4)	0(4)
C20	44(4)	52(4)	41(3)	3(3)	3(3)	2(3)
C21	43(4)	46(4)	42(4)	5(3)	-1(3)	2(3)
C22	50(5)	51(4)	46(4)	6(3)	4(3)	2(3)
C23	52(5)	60(5)	47(4)	-6(3)	9(3)	2(4)
C24	58(5)	39(4)	68(5)	-8(3)	-4(4)	-1(3)
C25	59(5)	49(4)	65(5)	9(4)	-2(4)	-11(4)
C26	55(5)	51(4)	51(4)	5(3)	6(3)	-10(4)

 $2\pi 2[h2a*2U11+2hka*b*U12+...].$

Átomo	x	у		z		U(eq)	
H2	4151	5	5203		6095		55
H3	4550	6	5437		5411		66
H4	3208	6	577		4131		66
H6	1120	5	5934		2958		72
H7	-704	4	873		2464		70
H9	-2186	3	3444		2676		64
H10	-2522	2	2337		3507		66
H11	-909	2	2306		4761		57
H16	6407	3	610		8195		64
H19	6859	1	193		6643		75
H20	4675	2	206		6265		56
H21	2514	1	796		5015		60
H25	1398		762		6203		72
H26	586	5	59		6653		64

Tabla 5. Coordenadas de los átomos de hidrógeno (Å×10⁴) y parámetros isotrópicos de
desplazamiento (Ų×10³) del compuesto 1.

Tabla 6. Longitudes de enlace del compuesto 1.

Átomo	Átomo	Distancia (Å)	Átomo	Átomo	Distancia (Å)
Pt1	N1	2.067(5)	C8	C9	1.393(10)
Pt1	N12	2.071(5)	C8	C13	1.415(8)
Pt1	S2	2.2842(17)	C9	C10	1.362(10)
Pt1	S1	2.2906(17)	C10	C11	1.397(9)
S1	C15	1.757(7)	C11	N12	1.328(8)
S2	C21	1.761(7)	N12	C13	1.359(7)
F1	C23	1.350(8)	C13	C14	1.420(8)
F2	C24	1.372(8)	C15	C16	1.395(9)
F3	C17	1.336(8)	C15	C20	1.398(9)
F4	C18	1.353(8)	C16	C17	1.368(10)
N1	C2	1.328(8)	C17	C18	1.367(11)
N1	C14	1.364(7)	C18	C19	1.369(11)
C2	C3	1.387(9)	C19	C20	1.412(10)
C3	C4	1.359(10)	C21	C22	1.399(10)
C4	C5	1.405(10)	C21	C26	1.402(9)
C5	C14	1.396(8)	C22	C23	1.372(9)

C5	C6	1.427(10)	C23	C24	1.359(10)
C6	C7	1.342(11)	C24	C25	1.343(11)
C7	C8	1.427(10)	C25	C26	1.394(10)

Tabla 7. Ángulos de enlace del compuesto 1.

Átomo	Átomo	Átomo	Ángulo (°)	Átomo	Átomo	Átomo	Ángulo (°)
N1	Pt1	N12	79.96(19)	N12	C13	C14	117.7(5)
N1	Pt1	S2	172.44(14)	C8	C13	C14	119.9(6)
N12	Pt1	S2	95.64(14)	N1	C14	C5	123.0(6)
N1	Pt1	S1	93.77(14)	N1	C14	C13	116.5(5)
N12	Pt1	S1	173.18(13)	C5	C14	C13	120.5(5)
S2	Pt1	S1	90.31(7)	C16	C15	C20	117.9(6)
C15	S1	Pt1	111.1(2)	C16	C15	S1	117.4(5)
C21	S2	Pt1	110.8(2)	C20	C15	S1	124.7(5)
C2	N1	C14	118.0(5)	C17	C16	C15	119.3(7)
C2	N1	Pt1	128.8(4)	F3	C17	C18	116.7(7)
C14	N1	Pt1	113.2(4)	F3	C17	C16	120.8(8)
N1	C2	C3	122.6(7)	C18	C17	C16	122.4(7)
C4	C3	C2	119.5(7)	F4	C18	C17	119.3(7)
C3	C4	C5	120.0(7)	F4	C18	C19	119.7(8)
C14	C5	C4	116.8(6)	C17	C18	C19	121.0(7)
C14	C5	C6	118.4(6)	C18	C19	C20	117.2(8)
C4	C5	C6	124.8(6)	C15	C20	C19	122.2(6)
C7	C6	C5	121.6(6)	C22	C21	C26	117.6(6)
C6	C7	C8	121.5(6)	C22	C21	S2	125.4(5)
C9	C8	C13	117.0(6)	C26	C21	S2	117.0(5)
C9	C8	C7	124.9(6)	C23	C22	C21	119.7(6)
C13	C8	C7	118.1(6)	F1	C23	C24	119.1(7)
C10	C9	C8	120.1(6)	F1	C23	C22	119.6(6)
C9	C10	C11	119.8(7)	C24	C23	C22	121.3(7)
N12	C11	C10	121.9(6)	C25	C24	C23	121.1(7)
C11	N12	C13	118.8(5)	C25	C24	F2	120.5(7)
C11	N12	Pt1	128.6(4)	C23	C24	F2	118.4(7)
C13	N12	Pt1	112.6(4)	C24	C25	C26	119.4(7)
N12	C13	C8	122.4(6)	C25	C26	C21	120.9(7)

Tabla 8. Ángulos de torsión del compuesto 1.

A B C D	Ángulo (°)	A B C D	Ángulo (°)
C14 N1 C2 C3	0.5(9)	C8 C13 C14 N1	178.3(5)
Pt1 N1 C2 C3	-178.2(5)	N12 C13 C14 C5	-177.0(5)
N1 C2 C3 C4	-1.3(10)	C8 C13 C14 C5	0.7(8)
C2 C3 C4 C5	1.4(10)	Pt1 S1 C15 C16	178.0(5)
C3 C4 C5 C14	-0.6(9)	Pt1 S1 C15 C20	-2.5(6)
C3 C4 C5 C6	178.7(7)	C20 C15 C16 C17	-0.9(10)
C14 C5 C6 C7	1.8(10)	S1 C15 C16 C17	178.6(6)
C4 C5 C6 C7	-177.6(7)	C15 C16 C17 F3	-177.9(7)
C5 C6 C7 C8	0.2(11)	C15 C16 C17 C18	0.5(12)
C6 C7 C8 C9	177.4(7)	F3 C17 C18 F4	-1.9(12)
C6 C7 C8 C13	-1.7(10)	C16 C17 C18 F4	179.7(7)
C13 C8 C9 C10	0.7(9)	F3 C17 C18 C19	178.6(7)
C7 C8 C9 C10	-178.4(7)	C16 C17 C18 C19	0.2(12)
C8 C9 C10 C11	-0.7(10)	F4 C18 C19 C20	-179.8(7)
C9 C10 C11 N12	0.3(10)	C17 C18 C19 C20	-0.4(11)
C10 C11 N12 C13	0.1(9)	C16 C15 C20 C19	0.8(10)
C10 C11 N12 Pt1	-179.9(5)	S1 C15 C20 C19	-178.7(5)
C11 N12 C13 C8	-0.1(8)	C18 C19 C20 C15	-0.1(10)
Pt1 N12 C13 C8	179.9(4)	Pt1 S2 C21 C22	-7.9(7)
C11 N12 C13 C14	177.6(5)	Pt1 S2 C21 C26	171.2(5)
Pt1 N12 C13 C14	-2.4(6)	C26 C21 C22 C23	-0.1(10)
C9 C8 C13 N12	-0.3(9)	S2 C21 C22 C23	179.0(5)
C7 C8 C13 N12	178.9(6)	C21 C22 C23 F1	178.3(6)
C9 C8 C13 C14	-177.9(6)	C21 C22 C23 C24	-1.5(11)
C7 C8 C13 C14	1.3(9)	F1 C23 C24 C25	-178.1(7)
C2 N1 C14 C5	0.3(8)	C22 C23 C24 C25	1.7(12)
Pt1 N1 C14 C5	179.1(4)	F1 C23 C24 F2	0.2(10)
C2 N1 C14 C13	-177.2(5)	C22 C23 C24 F2	-180.0(7)
Pt1 N1 C14 C13	1.6(6)	C23 C24 C25 C26	-0.3(12)
C4 C5 C14 N1	-0.2(9)	F2 C24 C25 C26	-178.6(6)
C6 C5 C14 N1	-179.6(6)	C24 C25 C26 C21	-1.3(11)
C4 C5 C14 C13	177.2(5)	C22 C21 C26 C25	1.4(10)
C6 C5 C14 C13	-2.2(9)	S2 C21 C26 C25	-177.7(5)
N12 C13 C14 N1	0.6(8)		

A2.2 Datos cristalográficos del compuesto 2

Código de identificación	4F	
Fórmula empírica	$C_{24}H_{10}N_2F_8S_2Pt$	
Peso molecular (uma)	737.55	
Temperatura (K)	298(2)	
Sistema cristalino	monoclínico	
Grupo espacial	P21/n	
	a/Å = 21.733(4)	$\alpha/^{\circ} = 90$
Dimensiones de la celda unitaria	b/Å = 7.7696(14)	$\beta^{\circ} = 104.649(6)$
	c/Å = 27.177(5)	$\gamma/^\circ = 90$
Volumen (Å ³)	4439.9(14)	
Z	8	
$\rho_{calc}(g/cm^3)$	2.207	
Coeficiente de absorción (μ/mm^{-1})	6.594	
F(000)	2800.0	
Tamaño del cristal (mm ³)	$0.382 \times 0.076 \times 0.060$	
Radiación	MoKα (λ = 0.71073)	
Rango 2 O para colección de datos (°)	4.56 to 52.744	
Rangos de los índices	$ -27 \le h \le 27, -9 \le k \le 9, -33 \le$	$l \leq 33$
Reflexiones colectadas	75118	
Reflexiones independientes	9072 [$R_{int} = 0.1842, R_{sigma} =$	0.1070]
Datos/Restricciones/Parámetros	9072/0/667	
F^2	1.008	
Índices R finales [I>=2σ (I)]	$R_1 = 0.0491, wR_2 = 0.0476$	
Índices T	$R_1 = 0.1188, wR_2 = 0.0582$	
Diferencia mayor pico/hueco (e Å ⁻³)	0.80/-0.77g	

 Tabla 9. Datos cristalográficos y refinamiento de estructura del compuesto 2.

Tabla 10. Coordenadas atómicas (x10⁴) y parámetros de desplazamiento isotrópicoequivalentes (Å ×10³) del compuesto 2. U(eq) se define como 1/3 de la traza del tensor de U_{IJ} ortogonalizado.

Átomo	x	у	z	U(eq)
Pt1	1473.5(2)	9490.0(4)	4643.0(2)	32.05(8)
S1	1266.1(11)	12038(2)	4222.8(7)	54.8(6)
S2	2084.8(8)	8414(2)	4139.6(7)	37.5(5)
F1	2381.4(19)	13876(5)	4016.3(16)	59.3(13)
F2	2728(2)	14060(5)	3145.4(18)	74.0(15)
F3	1029(2)	10463(6)	2357.4(16)	73.7(14)
F4	647.6(19)	10327(5)	3217.8(15)	55.9(12)
F5	2299.6(19)	8087(5)	3124.9(15)	56.4(12)
F6	1595(2)	6517(6)	2300.8(15)	72.9(14)
F7	120.9(18)	4893(5)	3219.7(15)	56.4(12)
F8	816.3(17)	6394(5)	4042.9(14)	45.0(10)
N1	969(2)	10270(7)	5157.3(19)	31.7(14)
C2	653(3)	11722(9)	5174(3)	40.4(19)
C3	307(3)	12027(9)	5530(3)	42(2)
C4	280(3)	10791(10)	5880(3)	44(2)
C5	602(3)	7847(10)	6219(3)	48(2)
C6	919(4)	6373(10)	6196(3)	52(2)
C7	1620(3)	4662(10)	5786(3)	48(2)
C8	1921(3)	4522(9)	5409(3)	46(2)
С9	1897(3)	5891(9)	5069(3)	39.5(19)
N10	1583(3)	7333(7)	5098(2)	36.7(15)
C11	949(3)	9046(9)	5510(2)	32.2(18)
C12	604(3)	9253(10)	5882(3)	37.2(19)
C13	1277(3)	6152(10)	5830(3)	42(2)
C14	1282(3)	7466(9)	5484(3)	35.5(18)
C15	1511(3)	12058(8)	3652(3)	32.4(18)
C16	2038(3)	12994(9)	3608(3)	37.4(19)
C17	2220(4)	13084(9)	3161(3)	44(2)
C18	1888(4)	12233(9)	2735(3)	47(2)
C19	1361(4)	11324(9)	2767(3)	45(2)
C20	1176(3)	11240(9)	3212(3)	39.6(19)
C21	1580(3)	7368(8)	3618(2)	27.2(17)
C22	1754(3)	7316(8)	3153(3)	33.2(17)
C23	1388(4)	6523(10)	2726(3)	45(2)
C24	836(4)	5704(9)	2738(3)	42.5(19)
C25	662(3)	5715(9)	3187(3)	34.7(18)

C26	1022(3)	6505(9)	3613(3)	32.9(17)
Pt2	5684.2(2)	1568.3(4)	4322.7(2)	39.58(9)
S3	6764.4(10)	1550(3)	4486.5(8)	71.6(7)
S4	5547.6(10)	138(2)	3561.0(7)	51.1(6)
F9	6692(2)	4750(6)	3849.3(18)	77.5(15)
F10	7201(3)	5301(8)	3075(2)	110(2)
F11	7925(3)	-414(8)	3182(2)	136(2)
F12	7434(3)	-957(7)	3965(2)	99.1(19)
F13	5113(2)	3877(5)	3379.2(16)	66.9(14)
F14	5373(2)	6057(6)	2705.0(19)	94.3(18)
F15	6384(2)	1625(7)	2034.3(17)	99.7(18)
F16	6179(2)	-520(6)	2729.9(16)	72.5(14)
N31	5722(3)	2630(7)	5028(2)	34.5(15)
C32	6223(4)	3198(9)	5375(3)	48(2)
C33	6181(4)	3819(9)	5850(3)	57(2)
C34	5605(4)	3876(9)	5955(3)	51(2)
C35	4441(4)	3327(10)	5680(3)	55(2)
C36	3942(4)	2729(9)	5329(3)	55(2)
C37	3510(4)	1433(9)	4462(3)	53(2)
C38	3629(4)	888(9)	4021(3)	55(2)
C39	4247(4)	951(9)	3953(3)	49(2)
N40	4737(3)	1527(7)	4312(2)	37.3(15)
C41	5137(3)	2687(8)	5133(3)	34.1(18)
C42	5063(4)	3327(9)	5601(3)	45(2)
C43	4005(4)	2100(9)	4848(3)	44(2)
C44	4618(3)	2090(8)	4757(3)	35.8(19)
C45	7031(3)	1852(11)	3933(3)	43(2)
C46	6992(3)	3441(12)	3696(3)	51(2)
C47	7252(4)	3715(14)	3289(4)	64(3)
C48	7563(4)	2443(17)	3108(3)	79(3)
C49	7619(4)	886(16)	3344(4)	78(3)
C50	7358(4)	591(12)	3751(3)	55(2)
C51	5659(3)	1606(10)	3100(2)	40.5(19)
C52	5448(3)	3288(11)	3059(3)	44(2)
C53	5560(4)	4419(12)	2703(3)	57(2)
C54	5879(4)	3887(13)	2360(3)	68(3)
C55	6066(4)	2224(14)	2368(3)	61(3)
C56	5969(4)	1091(11)	2730(3)	50(2)

Tabla 11. Parámetros de desplazamiento anisotrópico ($Å^2 \times 10^3$) del compuesto **2**. El

exponente del factor de desplazamiento anisotrópico toma la forma: -

Átomo	U11	U22	U33	U23	U13	U12
Pt1	32.23(17)	38.85(17)	27.01(16)	-3.43(15)	11.09(13)	-1.29(16)
S1	84.9(17)	46.3(13)	45.0(13)	6.1(10)	38.2(12)	17.6(12)
S2	33.3(11)	46.3(11)	36.0(11)	-5.0(10)	14.3(9)	-0.7(10)
F1	55(3)	57(3)	60(3)	-14(2)	5(2)	-5(2)
F2	58(3)	77(4)	100(4)	-6(3)	44(3)	-21(3)
F3	82(4)	89(3)	48(3)	-15(3)	12(3)	-11(3)
F4	46(3)	61(3)	63(3)	-1(2)	18(2)	-12(2)
F5	52(3)	74(3)	52(3)	-14(2)	31(2)	-17(3)
F6	89(4)	102(4)	38(3)	-12(3)	35(3)	-17(3)
F7	40(3)	69(3)	59(3)	-4(2)	10(2)	-15(2)
F8	47(3)	54(3)	41(3)	-3(2)	25(2)	-8(2)
N1	29(4)	43(4)	27(3)	0(3)	13(3)	-8(3)
C2	45(5)	40(5)	38(5)	-4(4)	13(4)	1(4)
C3	34(5)	51(5)	45(5)	-11(4)	16(4)	0(4)
C4	39(5)	65(6)	29(5)	-9(4)	10(4)	-7(4)
C5	43(5)	66(6)	40(5)	0(5)	21(4)	-15(5)
C6	57(6)	51(6)	51(6)	9(5)	19(5)	-14(5)
C7	47(5)	55(5)	35(5)	7(5)	-1(4)	-11(5)
C8	52(5)	40(5)	40(5)	1(4)	1(4)	4(4)
C9	29(5)	52(5)	38(5)	-6(4)	8(4)	1(4)
N10	32(4)	45(4)	30(4)	-6(3)	3(3)	-6(3)
C11	27(4)	44(5)	24(4)	-4(4)	3(3)	-5(4)
C12	26(4)	55(5)	31(4)	-2(4)	8(4)	-9(4)
C13	39(5)	59(6)	32(5)	1(4)	15(4)	-17(4)
C14	32(5)	49(5)	25(5)	-3(4)	8(4)	-8(4)
C15	39(5)	31(4)	31(5)	4(3)	17(4)	9(4)
C16	35(5)	37(5)	42(5)	-4(4)	14(4)	6(4)
C17	41(5)	36(5)	63(6)	7(4)	27(5)	4(4)
C18	61(6)	47(5)	44(5)	4(4)	34(5)	3(5)
C19	57(6)	45(5)	33(5)	-6(4)	10(4)	-3(4)
C20	36(5)	35(5)	46(5)	5(4)	7(4)	4(4)
C21	24(4)	30(4)	32(4)	2(3)	16(3)	3(3)
C22	24(4)	36(4)	42(5)	-4(4)	13(4)	-2(4)
C23	54(6)	53(5)	30(5)	1(4)	15(4)	3(5)
C24	50(5)	46(5)	27(5)	-5(4)	1(4)	-2(4)
C25	24(4)	40(5)	41(5)	4(4)	9(4)	0(4)

$2\pi 2[h2a*2U11+2hka*b*U12+...].$

C26	40(5)	36(4)	26(4)	5(4)	15(4)	8(4)
Pt2	37.45(19)	50.9(2)	30.73(18)	2.14(16)	9.20(14)	-2.64(17)
S 3	42.8(14)	134(2)	39.3(13)	-2.4(14)	12.7(11)	-7.5(14)
S4	60.5(15)	54.8(14)	39.3(12)	-3.8(10)	15.1(11)	-6.9(11)
F9 E10	61(3)	79(4)	87(4)	-24(3)	8(3)	9(3)
F 10 F11	107(5)	120(5)	91(4) 118(5)	24(4) 70(5)	1(4)	-44(4) 48(5)
F11 F12	108(5)	180(0) 81(4)	99(4)	-1(3)	9(4)	40(3) 27(3)
F13	67(3)	80(4)	55(3)	-5(3)	18(3)	24(3)
F14	99(4)	70(4)	99(4)	19(3)	-4(3)	-3(3)
F15	117(5)	140(5)	63(3)	-35(3)	62(3)	-53(4)
F16	83(4)	72(3)	75(3)	-31(3)	42(3)	-11(3)
N31	27(4)	41(4)	33(4)	2(3)	2(3)	-5(3)
C32	42(5)	57(5)	47(5)	1(5)	14(4)	-14(4)
C33	59(6)	60(6)	43(6)	-14(4)	-3(5)	-4(5)
C34	70(7)	48(6)	38(5)	-5(4)	17(5)	4(5)
C35	60(7)	58(5)	55(6)	-2(5)	28(5)	4(5)
C36	42(6)	61(6)	73(7)	9(5)	34(5)	9(5)
C37	35(5)	58(6)	64(6)	13(5)	12(5)	4(4)
C38	37(6)	66(6)	54(6)	1(5)	-1(5)	-11(4)
C39	44(6)	61(6)	38(5)	9(4)	6(4)	-4(4)
N40	40(4)	41(4)	28(4)	7(3)	5(3)	-3(3)
C41	37(5)	32(4)	35(5)	9(4)	14(4)	5(4)
C42	60(6)	34(5)	43(5)	6(4)	15(5)	6(5)
C43	39(5)	42(5)	50(6)	17(4)	9(5)	-2(4)
C44	33(5)	29(5)	43(5)	14(4)	5(4)	4(4)
C45	28(5)	65(6)	35(5)	-15(5)	3(4)	-8(4)
C46	32(5)	74(7)	46(6)	-28(5)	9(4)	3(5)
C47	52(6)	83(8)	49(6)	-1(6)	0(5)	-23(6)
C48	47(7)	147(11)	46(7)	-16(7)	20(5)	-25(7)
C49	52(7)	128(11)	55(7)	-34(7)	13(6)	11(7)
C50	44(6)	62(6)	54(6)	-7(6)	4(5)	10(5)
C51	35(5)	61(5)	24(4)	-6(4)	4(4)	-6(4)
C52	36(5)	58(6)	36(5)	2(5)	4(4)	-7(5)
C53	61(6)	55(6)	48(6)	-6(6)	2(5)	-8(5)
C54	72(7)	86(8)	36(6)	5(5)	-3(5)	-29(6)
C55	57(6)	104(8)	30(5)	-21(6)	23(5)	-38(6)

C56	53(6)	54(6)	43(5)	-21(5)	12(5)	-8(5)
-----	-------	-------	-------	--------	-------	-------

Tabla 12.	Longitudes	de enlace	del	compuesto 2.

Átomo	Átomo	Distancia (Å)	Átomo	Átomo	Distancia (Å)
Pt1	N10	2.060(5)	Pt2	N40	2.052(6)
Pt1	N1	2.074(5)	Pt2	N31	2.070(5)
Pt1	S1	2.2727(19)	Pt2	S3	2.276(2)
Pt1	S2	2.2924(18)	Pt2	S4	2.3016(19)
S1	C15	1.763(7)	S3	C45	1.760(8)
S2	C21	1.758(7)	S4	C51	1.756(7)
F1	C16	1.357(7)	F9	C46	1.331(8)
F2	C17	1.349(8)	F10	C47	1.356(9)
F3	C19	1.343(7)	F11	C49	1.344(10)
F4	C20	1.353(7)	F12	C50	1.328(9)
F5	C22	1.349(7)	F13	C52	1.349(8)
F6	C23	1.342(7)	F14	C53	1.337(9)
F7	C25	1.360(7)	F15	C55	1.355(9)
F8	C26	1.354(7)	F16	C56	1.333(8)
N1	C2	1.327(7)	N31	C32	1.323(8)
N1	C11	1.358(7)	N31	C41	1.371(8)
C2	C3	1.387(8)	C32	C33	1.402(9)
C3	C4	1.362(9)	C33	C34	1.352(10)
C4	C12	1.386(9)	C34	C42	1.386(9)
C5	C6	1.347(9)	C35	C36	1.333(9)
C5	C12	1.425(9)	C35	C42	1.422(10)
C6	C13	1.418(9)	C36	C43	1.432(9)
C7	C8	1.350(9)	C37	C38	1.357(9)
C7	C13	1.398(9)	C37	C43	1.400(9)
C8	C9	1.402(9)	C38	C39	1.402(9)
C9	N10	1.324(7)	C39	N40	1.326(8)
N10	C14	1.374(8)	N40	C44	1.371(8)
C11	C12	1.413(8)	C41	C44	1.396(9)
C11	C14	1.436(8)	C41	C42	1.414(9)
C13	C14	1.390(9)	C43	C44	1.415(9)
C15	C20	1.386(9)	C45	C50	1.373(10)
C15	C16	1.388(9)	C45	C46	1.384(10)
C16	C17	1.371(9)	C46	C47	1.380(11)
C17	C18	1.369(9)	C47	C48	1.358(12)

C18	C19	1.368(9)	C48	C49	1.360(12)
C19	C20	1.369(9)	C49	C50	1.384(11)
C21	C26	1.383(8)	C51	C52	1.381(9)
C21	C22	1.407(8)	C51	C56	1.402(9)
C22	C23	1.374(9)	C52	C53	1.373(10)
C23	C24	1.366(9)	C53	C54	1.360(11)
C24	C25	1.367(9)	C54	C55	1.353(11)
C25	C26	1.368(8)	C55	C56	1.375(10)

Tabla 13. Ángulos de enlace del compuesto 2.

Átomo	Átomo	Átomo	Ángulo (°)	Átomo	Átomo	Átomo	Ángulo (°)
N10	Pt1	N1	80.4(2)	N40	Pt2	N31	79.8(2)
N10	Pt1	S1	171.18(17)	N40	Pt2	S3	169.79(16)
N1	Pt1	S1	90.73(16)	N31	Pt2	S3	91.38(17)
N10	Pt1	S2	93.71(17)	N40	Pt2	S4	94.54(17)
N1	Pt1	S2	173.77(16)	N31	Pt2	S4	172.52(16)
S1	Pt1	S2	95.10(7)	S3	Pt2	S4	93.72(8)
C15	S1	Pt1	112.6(2)	C45	S3	Pt2	112.2(2)
C21	S2	Pt1	108.2(2)	C51	S4	Pt2	108.6(3)
C2	N1	C11	117.5(6)	C32	N31	C41	118.7(6)
C2	N1	Pt1	129.7(5)	C32	N31	Pt2	128.7(5)
C11	N1	Pt1	112.8(5)	C41	N31	Pt2	112.5(5)
N1	C2	C3	123.0(7)	N31	C32	C33	122.5(7)
C4	C3	C2	119.5(7)	C34	C33	C32	119.0(7)
C3	C4	C12	120.0(7)	C33	C34	C42	120.8(8)
C6	C5	C12	122.5(7)	C36	C35	C42	121.7(8)
C5	C6	C13	120.9(7)	C35	C36	C43	121.6(8)
C8	C7	C13	120.2(7)	C38	C37	C43	119.7(8)
C7	C8	C9	119.6(7)	C37	C38	C39	120.6(7)
N10	C9	C8	122.5(7)	N40	C39	C38	122.2(7)
C9	N10	C14	117.4(6)	C39	N40	C44	117.5(6)
C9	N10	Pt1	129.5(5)	C39	N40	Pt2	129.1(5)
C14	N10	Pt1	113.1(5)	C44	N40	Pt2	113.3(5)
N1	C11	C12	122.9(6)	N31	C41	C44	117.3(7)
N1	C11	C14	117.3(6)	N31	C41	C42	121.3(7)
C12	C11	C14	119.8(6)	C44	C41	C42	121.4(7)
C4	C12	C11	117.1(7)	C34	C42	C41	117.6(8)
C4	C12	C5	125.5(7)	C34	C42	C35	124.8(8)
C11	C12	C5	117.4(7)	C41	C42	C35	117.6(7)

C14	C13	C7	117.0(7)	C37	C43	C44	116.5(8)
C14	C13	C6	119.0(8)	C37	C43	C36	125.4(8)
C7	C13	C6	124.0(7)	C44	C43	C36	118.1(7)
N10	C14	C13	123.3(7)	N40	C44	C41	116.9(7)
N10	C14	C11	116.4(6)	N40	C44	C43	123.5(7)
C13	C14	C11	120.3(7)	C41	C44	C43	119.6(7)
C20	C15	C16	115.5(7)	C50	C45	C46	116.5(8)
C20	C15	S1	123.0(6)	C50	C45	S3	121.6(7)
C16	C15	S1	121.3(6)	C46	C45	S3	121.4(6)
F1	C16	C17	118.5(7)	F9	C46	C47	117.7(10)
FI	C16	C15	119.3(7)	F9 047	C46	C45	121.0(8)
CI7	C16	C15	122.2(7)	C47	C46	C45	121.3(8)
Г2 Г2	C17		120.4(7)	F 10 E10	C47	C48	120.0(10) 118.7(10)
Г <i>2</i> С18	C17	C10 C16	110.3(7) 121.1(7)	Г 10 С48	C47	C40 C46	110.7(10) 121.4(10)
C10	C17	C10 C17	121.1(7) 117.7(7)	C40 C47	C47 C48	C40 C49	121.4(10) 118.0(10)
F3	C10 C19	C18	117.7(7) 119.1(7)	F11	C40 C49	C49 C48	120.0(10)
F3	C19	C20	119.5(7)	F11	C49	C50	118.3(11)
C18	C19	C20	121.3(7)	C48	C49	C50	121.2(10)
F4	C20	C19	118.3(7)	F12	C50	C45	120.6(9)
F4	C20	C15	119.5(7)	F12	C50	C49	117.9(9)
C19	C20	C15	122.2(7)	C45	C50	C49	121.5(9)
C26	C21	C22	114.3(6)	C52	C51	C56	115.0(7)
C26	C21	S2	126.7(5)	C52	C51	S4	124.7(6)
C22	C21	S2	118.9(5)	C56	C51	S4	120.3(7)
F5	C22	C23	118.7(7)	F13	C52	C53	117.3(8)
F5	C22	C21	118.6(6)	F13	C52	C51	119.5(7)
C23	C22	C21	122.8(7)	C53	C52	C51	123.2(8)
F6	C23	C24	120.4(7)	F14	C53	C54	120.0(9)
F6	C23	C22	118.8(7)	F14	C53	C52	119.9(9)
C24	C23	C22	120.8(7)	C54	C53	C52	120.1(9)
C23	C24	C25	117.5(7)	C55	C54	C53	118.8(9)
F7	C25	C24	119.6(7)	C54	C55	F15	121.2(9)
F7	C25	C26	118.3(6)	C54	C55	C56	121.6(8)
C24	C25	C26	122.0(7)	F15	C55	C56	117.1(9)
F8	C26	C25	117.3(6)	F16	C56	C55	119.2(8)
F8	C26	C21	120.2(6)	F16	C56	C51	119.6(8)
C25	C26	C21	122.5(6)	C55	C56	C51	121.2(8)

A2.3 Datos cristalográficos del compuesto 3

Código de identificación	5F	
Fórmula empírica	$C_{24}H_8N_2F_{10}S_2Pt$	
Peso molecular (uma)	773.53	
Temperatura (K)	298(2)	
Sistema cristalino	triclínico	
Grupo espacial	P-1	
	a/Å = 8.150(3)	$\alpha/^{\circ} = 63.783(15)$
Dimensiones de la celda unitaria	b/Å = 12.558(7)	$\beta/^{\circ} = 89.130(11)$
	c/Å = 13.093(7)	$\gamma/^{\circ} = 85.350(11)$
Volumen (Å ³)	1197.9(10)	
Z	2	
$\rho_{\text{calc}}(g/\text{cm}^3)$	2.145	
Coeficiente de absorción (μ/mm^{-1})	6.127	
F(000)	732.0	
Tamaño del cristal (mm ³)	$0.406 \times 0.086 \times 0.041$	
Radiación	MoKa ($\lambda = 0.71073$)	
Rango 2 O para colección de datos (°)	5.016 to 50.716	
Rangos de los índices	$-8 \le h \le 9, -15 \le k \le 15, -15 \le$	$l \leq 15$
Reflexiones colectadas	19262	
Reflexiones independientes	4369 [R _{int} = 0.0296, R _{sigma}	= 0.0281]
Datos/Restricciones/Parámetros	4369/0/352	
F^2	1.135	
Índices R finales [I>=2σ (I)]	$R_1 = 0.0347, wR_2 = 0.0624$	
Índices T	$R_1 = 0.0467, wR_2 = 0.0661$	
Diferencia mayor pico/hueco (e Å-3)	1.02/-0.42	

 Tabla 14. Datos cristalográficos y refinamiento de estructura del compuesto 3.

Tabla 15. Coordenadas atómicas (x10⁴) y parámetros de desplazamiento isotrópicoequivalentes (Å ×10³) del compuesto **3**. U(eq) se define como 1/3 de la traza del tensor de U_{IJ} ortogonalizado.

Átomo	x	у	Ζ	U(eq)
Pt1	5961.0(2)	5766.1(2)	6302.3(2)	60.13(10)
S1	4646(2)	7620.4(14)	5362.6(13)	82.9(4)
S2	4864.1(18)	5502.7(13)	8019.2(12)	71.3(4)
F1	1983(5)	8630(5)	6362(4)	133.8(16)
F2	2316(7)	10002(5)	7429(5)	171(2)
F3	5320(8)	10554(4)	7785(4)	156(2)
F4	8042(6)	9720(4)	7054(4)	140.3(17)
F5	7742(5)	8376(4)	5977(4)	108.3(12)
F6	3680(4)	6961(3)	9192(3)	90.3(10)
F7	5417(6)	8053(4)	10093(3)	117.8(13)
F8	8759(6)	7848(5)	10071(4)	146.3(18)
F9	10330(5)	6494(5)	9130(4)	141.1(17)
F10	8620(4)	5390(4)	8242(3)	108.4(12)
N1	7195(5)	4071(4)	6942(4)	64.9(11)
N10	6856(5)	5788(4)	4807(3)	63.9(11)
C2	7344(8)	3239(5)	8011(5)	78.7(16)
C3	8229(8)	2141(6)	8301(6)	90.0(19)
C4	8982(8)	1903(6)	7474(7)	89.1(19)
C5	9605(8)	2622(7)	5408(7)	92(2)
C4A	8856(7)	2765(6)	6334(6)	76.4(16)
C6	9427(8)	3471(7)	4339(7)	91(2)
C7	8249(8)	5523(7)	2972(6)	87.0(19)
C6A	8499(7)	4580(6)	4070(5)	76.1(16)
C8	7352(8)	6525(7)	2826(5)	86.3(18)
С9	6649(7)	6655(6)	3749(5)	76.9(16)
C10A	7748(6)	4747(5)	4977(5)	63.8(14)
C10B	7932(6)	3834(5)	6102(5)	65.7(14)
C11	4843(7)	8439(5)	6137(4)	69.1(14)
C12	3506(8)	8884(6)	6521(6)	90.2(19)
C13	3643(11)	9603(7)	7070(6)	105(2)
C14	5180(13)	9854(6)	7251(6)	102(2)
C15	6525(10)	9444(6)	6878(6)	91.5(19)
C16	6364(8)	8769(5)	6330(5)	76.9(16)
C17	6078(7)	6164(5)	8629(4)	64.2(13)
C18	5335(7)	6831(5)	9148(4)	68.8(14)
C19	6236(9)	7384(6)	9630(5)	83.2(17)

C20	7904(9)	7279(7)	9628(5)	92(2)
C21	8680(9)	6622(7)	9134(6)	96(2)
C22	7785(7)	6069(6)	8682(5)	78.6(16)

Tabla 16. Parámetros de desplazamiento anisotrópico ($Å^2 \times 10^3$) del compuesto **3**. El

exponente del factor de desplazamiento anisotrópico toma la forma: -

 $2\pi 2[h2a*2U11+2hka*b*U12+...].$

Átomo	U 11	U22	U33	U23	U13	U12
Pt1	60.86(14)	69.95(15)	56.33(14)	-31.84(10)	4.30(9)	-19.3(1)
S1	95.3(12)	84.5(10)	69.8(9)	-36.2(8)	-17.1(8)	3.3(8)
S2	70.6(9)	86.9(10)	64.3(8)	-38.1(7)	14.8(7)	-24.5(7)
F1	72(3)	179(4)	165(4)	-92(4)	-8(3)	11(3)
F2	163(5)	193(5)	180(5)	-115(4)	8(4)	65(4)
F3	249(6)	108(3)	132(4)	-77(3)	-36(4)	13(3)
F4	149(4)	128(3)	155(4)	-66(3)	-27(3)	-48(3)
F5	81(3)	127(3)	126(3)	-63(3)	15(2)	-17(2)
F6	71(2)	117(3)	90(2)	-53(2)	12.4(17)	-8.5(19)
F7	147(4)	133(3)	100(3)	-73(3)	18(3)	-28(3)
F8	145(4)	218(5)	116(3)	-99(4)	6(3)	-84(4)
F9	64(3)	230(5)	134(4)	-82(4)	-4(2)	-30(3)
F10	72(2)	154(3)	112(3)	-72(3)	7(2)	3(2)
N1	66(3)	71(3)	67(3)	-38(3)	11(2)	-20(2)
N10	64(3)	82(3)	55(3)	-36(2)	2(2)	-23(2)
C2	90(4)	75(4)	71(4)	-31(3)	6(3)	-16(3)
C3	101(5)	72(4)	88(5)	-27(4)	-7(4)	-10(4)
C4	81(4)	73(4)	123(6)	-51(4)	-1(4)	-9(3)
C5	67(4)	109(5)	133(6)	-82(5)	8(4)	-11(4)
C4A	67(4)	80(4)	99(5)	-54(4)	2(3)	-17(3)
C6	74(4)	125(6)	111(6)	-82(5)	18(4)	-24(4)
C7	68(4)	144(6)	76(4)	-68(5)	13(3)	-34(4)
C6A	56(3)	113(5)	88(5)	-67(4)	12(3)	-31(3)
C8	83(4)	125(6)	59(4)	-44(4)	5(3)	-31(4)
C9	81(4)	92(4)	66(4)	-39(3)	1(3)	-24(3)
C10A	52(3)	84(4)	73(4)	-47(3)	3(3)	-26(3)
C10B	55(3)	78(4)	79(4)	-45(3)	6(3)	-23(3)
C11	69(4)	66(3)	63(3)	-20(3)	-9(3)	-3(3)
C12	73(5)	97(5)	94(5)	-38(4)	-9(4)	10(4)
C13	116(7)	94(5)	102(5)	-47(4)	-2(5)	31(5)
C14	153(8)	72(4)	86(5)	-42(4)	-20(5)	8(5)

C15	109(6)	72(4)	92(5)	-33(4)	-11(4)	-15(4)
C16	88(5)	72(4)	67(4)	-28(3)	1(3)	-8(3)
C17	65(4)	74(3)	48(3)	-22(3)	8(2)	-8(3)
C18	65(4)	81(4)	54(3)	-23(3)	5(3)	-17(3)
C19	113(6)	88(4)	56(3)	-38(3)	14(3)	-18(4)
C20	86(5)	124(6)	65(4)	-35(4)	-3(3)	-43(4)
C21	77(5)	146(6)	72(4)	-51(4)	7(3)	-37(4)
C22	65(4)	107(5)	66(4)	-41(3)	8(3)	-5(3)

Tabla 17. Coordenadas de los átomos de hidrógeno (Å×10⁴) y parámetros isotrópicos de
desplazamiento (Ų×10³) del compuesto **3**.

Átomo	x	у	Z.	U(eq)
H2	6845	3390	8583	94
H3	8308	1571	9057	108
H4	9573	1172	7666	107
H5	10237	1918	5553	111
H6	9918	3337	3755	109
H7	8706	5452	2348	104
H8	7194	7145	2097	104
H9	6027	7357	3623	92

Átomo	Átomo	Distancia (Å)	Átomo	Átomo	Distancia (Å)
Pt1	N10	2.068(4)	C4	C4A	1.403(9)
Pt1	N1	2.085(5)	C5	C6	1.334(9)
Pt1	S1	2.2779(19)	C5	C4A	1.424(9)
Pt1	S2	2.3004(17)	C4A	C10B	1.394(8)
S1	C11	1.750(6)	C6	C6A	1.429(9)
S2	C17	1.745(6)	C7	C8	1.340(9)
F1	C12	1.347(8)	C7	C6A	1.405(9)
F2	C13	1.321(8)	C6A	C10A	1.417(8)
F3	C14	1.355(8)	C8	C9	1.398(8)
F4	C15	1.360(8)	C10A	C10B	1.411(8)
F5	C16	1.347(7)	C11	C12	1.374(8)
F6	C18	1.349(6)	C11	C16	1.399(8)
F7	C19	1.367(7)	C12	C13	1.392(10)
F8	C20	1.339(7)	C13	C14	1.365(11)
F9	C21	1.342(8)	C14	C15	1.349(10)
F10	C22	1.360(7)	C15	C16	1.345(9)

N1	C2	1.326(7)	C17	C22	1.387(8)
N1	C10B	1.378(7)	C17	C18	1.393(7)
N10	С9	1.333(7)	C18	C19	1.379(8)
N10	C10A	1.372(7)	C19	C20	1.355(9)
C2	C3	1.396(8)	C20	C21	1.370(10)
C3	C4	1.370(9)	C21	C22	1.349(9)

Tabla 19. Ángulos de enlace del compuesto 3.

Átomo	Átomo	Átomo	Ángulo (°)	Átomo	Átomo	Átomo	Ángulo(°)
N10	Pt1	N1	80.10(18)	C12	C11	S1	122.4(5)
N10	Pt1	S1	92.24(14)	C16	C11	S1	122.4(5)
N1	Pt1	S1	172.10(12)	F1	C12	C11	119.6(7)
N10	Pt1	S2	172.64(12)	F1	C12	C13	117.6(7)
N1	Pt1	S2	94.75(13)	C11	C12	C13	122.9(7)
S1	Pt1	S2	92.69(6)	F2	C13	C14	121.4(8)
C11	S1	Pt1	110.24(18)	F2	C13	C12	120.4(9)
C17	S2	Pt1	108.57(18)	C14	C13	C12	118.2(7)
C2	N1	C10B	118.6(5)	C15	C14	F3	120.7(9)
C2	N1	Pt1	128.8(4)	C15	C14	C13	120.8(7)
C10B	N1	Pt1	112.6(4)	F3	C14	C13	118.4(9)
C9	N10	C10A	118.8(5)	C16	C15	C14	120.0(7)
C9	N10	Pt1	128.4(4)	C16	C15	F4	120.2(7)
C10A	N10	Pt1	112.7(3)	C14	C15	F4	119.8(7)
N1	C2	C3	121.7(6)	C15	C16	F5	117.9(6)
C4	C3	C2	120.1(6)	C15	C16	C11	123.0(6)
C3	C4	C4A	119.7(6)	F5	C16	C11	119.0(6)
C6	C5	C4A	121.9(7)	C22	C17	C18	114.1(5)
C10B	C4A	C4	117.2(6)	C22	C17	S2	125.9(5)
C10B	C4A	C5	118.2(6)	C18	C17	S2	119.9(4)
C4	C4A	C5	124.6(6)	F6	C18	C19	117.4(5)
C5	C6	C6A	121.5(6)	F6	C18	C17	120.3(5)
C8	C7	C6A	120.0(6)	C19	C18	C17	122.3(6)
C7	C6A	C10A	116.9(6)	C20	C19	F7	120.6(6)
C7	C6A	C6	125.4(6)	C20	C19	C18	120.5(6)
C10A	C6A	C6	117.7(6)	F7	C19	C18	118.9(6)
C7	C8	C9	121.2(6)	F8	C20	C19	119.8(7)
N10	C9	C8	121.1(6)	F8	C20	C21	121.3(7)
N10	C10A	C10B	117.9(5)	C19	C20	C21	118.9(6)
N10	C10A	C6A	122.0(5)	F9	C21	C22	119.9(7)

C10B	C10A C6A	120.1(6)	F9	C21	C20	120.2(6)
N1	C10B C4A	122.6(5)	C22	C21	C20	119.9(6)
N1	C10B C10A	116.7(5)	C21	C22	F10	117.5(6)
C4A	C10B C10A	120.6(5)	C21	C22	C17	124.1(6)
C12	C11 C16	115.0(6)	F10	C22	C17	118.4(5)

Tabla 20. Ángulos de torsión del compuesto 3.

Α	B	С	D	Ángulo (°)	A B C D	Ángulo (°)
C10B	N1	C2	C3	0.4(8)	F1 C12 C13 C14	179.1(6)
Pt1	N1	C2	C3	-179.6(4)	C11 C12 C13 C14	-1.2(11)
N1	C2	C3	C4	0.4(10)	F2 C13 C14 C15	-179.8(7)
C2	C3	C4	C4A	-0.1(10)	C12 C13 C14 C15	1.9(11)
C3	C4	C4A	C10B	-0.9(9)	F2 C13 C14 F3	-1.8(11)
C3	C4	C4A	C5	179.0(6)	C12 C13 C14 F3	179.9(6)
C6	C5	C4A	C10B	-0.9(9)	F3 C14 C15 C16	-178.7(6)
C6	C5	C4A	C4	179.3(6)	C13 C14 C15 C16	-0.6(11)
C4A	C5	C6	C6A	1.3(10)	F3 C14 C15 F4	1.0(10)
C8	C7	C6A	C10A	0.8(8)	C13 C14 C15 F4	179.0(6)
C8	C7	C6A	C6	-180.0(6)	C14 C15 C16 F5	-179.7(6)
C5	C6	C6A	C7	179.8(6)	F4 C15 C16 F5	0.6(9)
C5	C6	C6A	C10A	-0.9(9)	C14 C15 C16 C11	-1.3(10)
C6A	C7	C8	C9	-0.1(9)	F4 C15 C16 C11	179.0(5)
C10A	N10	C9	C8	-1.3(8)	C12 C11 C16 C15	1.9(8)
Pt1	N10	C9	C8	179.7(4)	S1 C11 C16 C15	176.9(5)
C7	C8	C9	N10	0.3(9)	C12 C11 C16 F5	-179.8(5)
C9	N10	C10A	C10B	-179.1(4)	S1 C11 C16 F5	-4.8(7)
Pt1	N10	C10A	C10B	0.0(5)	Pt1 S2 C17 C22	-44.3(5)
C9	N10	C10A	C6A	2.1(7)	Pt1 S2 C17 C18	137.5(4)
Pt1	N10	C10A	C6A	-178.8(4)	C22 C17 C18 F6	-177.8(5)
C7	C6A	C10A	N10	-1.8(7)	S2 C17 C18 F6	0.6(7)
C6	C6A	C10A	N10	178.9(5)	C22 C17 C18 C19	2.4(8)
C7	C6A	C10A	C10B	179.4(5)	S2 C17 C18 C19	-179.2(4)
C6	C6A	C10A	C10B	0.1(7)	F6 C18 C19 C20	179.2(5)
C2	N1	C10B	C4A	-1.4(7)	C17 C18 C19 C20	-1.0(9)
Pt1	N1	C10B	C4A	178.6(4)	F6 C18 C19 F7	-1.8(8)
C2	N1	C10B	C10A	-179.8(5)	C17 C18 C19 F7	178.0(5)
Pt1	N1	C10B	C10A	0.2(5)	F7 C19 C20 F8	-0.9(9)
C4	C4A	C10B	N1	1.6(8)	C18 C19 C20 F8	178.1(5)
C5	C4A	C10B	N1	-178.2(5)	F7 C19 C20 C21	-178.6(6)
C4	C4A	C10B	C10A	180.0(5)	C18 C19 C20 C21	0.4(9)

C5	C4A	C10B	C10A	0.1(8)	F8 C20 C21 F9	3.0(10)
N10	C10	C10B	N1	-0.1(6)	C19 C20 C21 F9	-179.4(6)
C6A	C10	C10B	N1	178.7(4)	F8 C20 C21 C22	-179.2(6)
N10	C10	C10B	C4A	-178.6(4)	C19 C20 C21 C22	-1.6(10)
C6A	C10	C10B	C4A	0.3(7)	F9 C21 C22 F10	0.4(9)
Pt1	S1	C11	C12	-120.1(5)	C20 C21 C22 F10	-177.5(6)
Pt1	S1	C11	C16	65.3(5)	F9 C21 C22 C17	-178.8(6)
C16	C11	C12	F1	179.1(5)	C20 C21 C22 C17	3.4(10)
S1	C11	C12	F1	4.1(8)	C18 C17 C22 C21	-3.6(9)
C16	C11	C12	C13	-0.6(9)	S2 C17 C22 C21	178.1(5)
S1	C11	C12	C13	-175.5(5)	C18 C17 C22 F10	177.2(5)
F1	C12	C13	F2	0.7(10)	S2 C17 C22 F10	-1.1(8)
C11	C12	C13	F2	-179.6(6)		