

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Facultad de Estudios Superiores Iztacala

Efecto del malatión sobre el crecimiento de Megaselia scalaris

T E S I S Que para obtener el título de

BIÓLOGO

PRESENTA

Adrián Alonso Lira Paredes

Director de tesis

María Elena Bravo Gómez

Los Reyes Iztacala, Edo. De México, 2020

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

"A menudo el sepulcro encierra, sin saberlo, dos corazones en el mismo ataúd"

Alphonse de Lamartine

iiiEres lo que tú más profundo deseo es!!! Como es tu deseo, es tu intención. Como es tu intención, es tu voluntad. Como es tu voluntad, son tus actos. Como son tus actos, es tu destino.

Upanishads

Agradecimientos

Académicamente a mi gran casa de estudios la UNAM, en especial a la Facultad de Estudios Superiores Iztacala, por enseñarme de esta gran ciencia que es la Biología.

A la Dra. María Elena Bravo Gómez, por darme la oportunidad de entrar al laboratorio de toxicología forense y enseñarme el mundo de la toxicología, por su gran paciencia y confianza.

A la Mtra. Luz Alejandra Castillo Alanis, por la gran ayuda en el laboratorio, los grandes consejos, la gran dedicación, sin ti este trabajo no hubiera concluido de esta gran forma. Gracias por enseñarme muchas cosas sobre la química analítica, y por apasionarte por la biología.

A la Mtra. Alejandra Quijano Mateos, por enseñarme toxicología, aunque a veces me daba un poco de miedo las clases. Por los grandes consejos para poder ser más ordenado (mis buenas prácticas de laboratorio) y que mi vida no fuera un caos en el laboratorio.

Con cariño a mis amigos y al mismo tiempo compañeros de laboratorio: Antonio kuri, por los grandes consejos, el ánimo para poder terminar el proyecto y la ayuda en el área de la química. Ana González por el aprendizaje mutuo en este camino nuevo para nosotros que fue la entomotoxicología, fuimos el equipo perfecto para esta área. Axel Magdaleno, por la ayuda en el trabajo de laboratorio y compartir el sufrimiento de trabajar sábados y domingos con seres tan pequeños, que a veces nos desesperaba a ambos. A todos gracias por hacer del laboratorio un lugar más agradable cada día.

Al Dr. Carlos Salvador Pedraza Lara, por el apoyo en el laboratorio de entomología forense, las técnicas de preparación del medio de cultivo, su estandarización y proveer de los organismos utilizados en el presente trabajo, que a su vez también fue gracias a la Dra. Patricia Ramos Morales, Coordinadora del banco de moscas de la Facultad de Ciencias. Así como a su alumna de tesis Gabriela López Piña, por compartir sus conocimientos con la técnica de conteo y crecimiento de las moscas en el medio de cultivo.

A mis amigos de la carrera: Itzayanna, May, Joce, Edher, Alberto Ruiz, Ari, Charly, Blas y todos los demás, gracias por hacer de la universidad un lugar más ameno y divertido. Espero algún día volvamos a estar estudiando en el mismo salón.

A los proyectos por los cuales se hizo posible este trabajo, UNAM DGAPA PAPIIT IA 206301 y IA 206917, CONACYT -CB - A1 - S - 8559.

Dedicatorias

Quiero agradecer y dedicar todo este trabajo a mi madre Enriqueta Paredes Torres, sin ti todo esto no se hubiera realizado. Gracias por siempre estar ahí para mí, por la gran paciencia que me tienes. Por enseñarme la diferencia entre el tener y el ser y saber que aunque no tenga nada y la gente siempre me quiera ver mal, siempre seré una persona capaz de salir adelante. Gracias por todo lo que me has dado en esta vida. Te amo.

Con todo mi amor, a mi segunda madre Manuela Torres Espinoza, por todo el amor que me diste, por haberme cuidado toda mi vida, por enseñarme a ser buena persona, siempre ayudar a los demás sin recibir nada a cambio. Siempre te extrañare y llevare en mi corazón.

A mis hermanos que vivieron conmigo en mi niñez, Eduardo, Luis, Liz, gracias por estar siempre conmigo en las buenas y malas.

A toda mi familia Paredes Torres, por todo el apoyo incondicional que me han demostrado a lo largo de mi vida. En especial a Patricia Paredes Torres, creo que tú hubieras ganado la apuesta de quien se titula primero, gracias por tus conocimientos en el área de las ciencias médicas, y el apoyo en ese examen de toxicología, este trabajo es de los dos. Al Igual que nuestra mamá Manuela, siempre estarás en nuestro corazón, nunca las olvidaremos.

Para mi segunda familia, Pedro, Rosa, Osmara, Wendy Juve, Chain, Adrian. Espero seguir contando con ustedes como hasta este momento y saben que también cuentan conmigo.

"No olvides que la Tierra se deleita al sentir tus pies descalzos y los vientos anhelan jugar con tu cabello"

Khalil Gibran

Índice

Resumen	1
1 Introducción	2
2 Marco teórico	4
2.1 Entomología forense	4
2.1.2 Entomología forense médico legal	4
2.1.3 Sucesión Ecológica	5
2.1.4 Intervalo postmortem	8
2.2 Entomotoxicología	9
2.3 Megaselia scalaris	11
2.3.1 Interés forense de <i>M. scalaris</i>	11
2.3.2 Morfología	11
2.3.3 Ciclo de vida	14
2.4 Plaguicidas como substancias de interés forense	17
2.4.1 Malatión	19
3 Antecedentes	20
4 Justificación	21
5 Hipótesis	21
6 Objetivos	21
6.1- Objetivo general	21
6.2 Objetivos particulares	21
7 Materiales y Método	22
7.1 Lugar de estudio	22
7.2 Mantenimiento de la colonia	22
7.3 Curva de crecimiento blanco	23
7.4 Determinación de CL ₅₀ en imagos de <i>M. scalaris</i>	24
7.4.1 Concentración mínima inhibitoria de malatión en huevos de M. sacalris	24
7.4.2 Determinación de CL ₅₀ en larvas de primer estadio de <i>M. scalaris</i>	25
7.5 Curvas de crecimiento con malatión	25
7.6 Comparación de pupas	27
7.7 Comparación morfológica de Imagos de <i>M. scalaris</i>	27
7.8 Análisis de datos	27
7.9 Extracción de malatión	28
7.10 Detección de malatión	29
8 Resultados y Discusión	30
8.1 Mediciones de longitud con vernier electrónico y los programas LAS V4.5,	
tpsUtil32, tpsDig232	30
8.2 Tasas de crecimiento de <i>M. scalaris</i> en medio de cultivo blanco	31
8.3 Detección de la concentración mínima inhibitoria de malatión en huevos de	
<i>M. scalaris</i> y detección de la CL ₅₀ del malatión en el imago (hembra, macho) y	
larvas (primer estadio).	33
8.4 Comparación de tasas de crecimiento de <i>M. scalaris</i> en medio de cultivo	
con malatión	35

8.5 Cuantificación de malatión en larvas del tercer estadio con HPLC	39
8.6 Comparación de longitud de pupas de <i>M. scalaris</i>	41
8.7 Comparación de morfología de M. scalaris	42
9 Conclusiones	45
10 Bibliografía	46
11 Anexo	53

Lista de Figuras

\triangleright	Figura 1. Sucesión ecológica de entomofauna cadavérica	6
\triangleright	Figura 2. Línea de tiempo para la estimación del IPM.	8
	Figura 3. Modelo conceptual de los procesos de absorción, distribución, metabolismo y excreción de un toxico en insectos que se alimentan de un	
	cadáver	10
\triangleright	Figura 4. Desarrollo holometábolo de <i>M. scalaris</i>	14
\triangleright	Figura 5. Estructura química general de los organofosforados	18

Lista de Cromatogramas

\triangleright	Cromatograma 1. Blanco corrida	.39
\succ	Cromatograma 2. Extracto de larvas de M. scalaris	.8

Lista de Imágenes

\triangleright	Imagen 1. Huevo de M. scalaris, parte plana	12
\triangleright	Imagen 2. Huevo M. scalaris, parte curva.	12
\triangleright	Imagen 3. Larva de M. scalaris en el tercer estadio	12
\triangleright	Imagen 4. Espiraculos de larva de M. scalaris	12
\triangleright	Imagen 5. Pupa blanquecina	13
\triangleright	Imagen 6. Pupa café	13
\triangleright	Imagen 7. <i>M. scalaris</i> Hembra	13
\triangleright	Imagen 8. M. scalaris Macho	13
\triangleright	Imagen 9. Ala de M. scalaris	13
\triangleright	Imagen 10. Estructuras químicas del malatión y malaoxon	19
\triangleright	Imagen 11. Medio de cultivo para M. scalaris.	23
\triangleright	Imagen 12. Tubos con 10ml de medio de cultivo para crecimiento de M.	
	scalaris	23
\triangleright	Imagen 13. Forma de trapecio en Ala M. scalaris	42
\triangleright	Imagen 14. Tercer par de apéndices de <i>M. scalaris</i>	42

\triangleright	Imagen 15.	Aparatos	reproductores	de <i>M.</i>	scalaris	43	3
------------------	------------	----------	---------------	--------------	----------	----	---

Lista de Graficas

	Grafica 1. Comparación de mediciones de longitud de larvas de primer estadio con vernier electrónico y programas (LAS V4.5, tpsUtil32,	
	tpsDig232)	30
	Grafica 2. Longitud media (mm) de larvas de <i>M. scalaris</i> muestreadas a lo largo del tiempo (ADH)	32
	Grafica 3. Anchura média (mm) de larvas de <i>M. scalaris</i> muestreadas a lo largo del tiempo (ADH)	32
	Grafica 4. Comparación de curvas de crecimiento de longitud media (mm) de larvas de <i>M. scalaris</i> muestreadas a lo largo del tiempo (ADH)	37
	Grafica 5. Comparación curvas de crecimiento de anchura media (mm) de larvas de <i>M. scalaris</i> muestreadas a lo largo del tiempo (ADH)	37
\triangleright	Grafica 6. Curva de calibración de malatión	40

Lista de Tablas

\triangleright	Tabla 1. Insectos con importancia forense	5
\triangleright	Tabla 2. Sucesión de entomofauna cadavérica	7
\succ	Tabla 3. Substancias de interés forense encontradas en moscas	10
\succ	Tabla 4. Cambios morfológicos presentes en la etapa larval y pupal de <i>M.</i>	
	scalaris.	16
\succ	Tabla 5. Clasificación de los plaguicidas por el grado de toxicidad aguda	17
\succ	Tabla 6. Estudios de ciclo de vida de Chrysomya megacephala intoxicada	
	con malatión	20
\triangleright	Tabla 7. CL ₅₀ de malatión en diferentes estadios de <i>M. scalaris</i>	34
\triangleright	Tabla 8. Pendientes de las tasas de crecimiento de longitud	35
\triangleright	Tabla 9. Pendientes de las tasas de crecimiento de ancho	36
\triangleright	Tabla 10. Ciclos de vida de <i>M. scalaris</i> a diferentes concentraciones de	
	malatión	38
\triangleright	Tabla 11. Concentración de malatión por gramo de larva	40
\triangleright	Tabla 12. Longitud promedio de pupas a diferentes concentraciones de	
	malatión	41
\triangleright	Tabla 13. Longitud promedio de imagos (hembra, macho) y alas de imagos	
	a diferentes concentraciones de malatión	43

Resumen

La entomología forense se encarga de estudiar la entomofauna cadavérica para entre otras cosas medir el intervalo post mortem, a través de los ciclos de vida de las especies encontradas. La entomotoxicología utiliza de insectos, en diferentes estadios de crecimiento, como fuente indirecta de evidencia toxicológica en ausencia de matrices forenses directas. *M. scalaris* es una especie de importancia forense, especialmente en casos de estimación del intervalo postmortem mínimo (IPM*min*) de muertes en interiores. El presente trabajo estudió el efecto del malatión sobre la tasa de crecimiento y desarrollo de *M. scalaris*. Se encontraron las CL_{50} de cada estadio del ciclo de vida al igual que se realizaron 7 curvas de crecimiento larval de *M. scalaris* empleando concentraciones de 0.1, 0.3, 0.5, 1, 3 y 5 µg/mL de malatión y un blanco.

Las mediciones de longitud larval (mm) en función del tiempo en horas grado acumulado (HGA) se analizaron mediante una regresión lineal, cuya pendiente refleja la tasa de crecimiento. A estos valores se les aplicó la prueba de normalidad Shapiro-Wilk (P <0.05), en caso de normalidad, los análisis estadísticos se realizaron a través de una ANOVA unidireccional, seguido de una prueba de Tukey, en caso contrario se aplicó Kruskal-Wallis seguida de Man Whitney. Los resultados reflejan que existen diferencias significativas en las tasas de crecimiento con respecto al blanco y que el malatión afecta el tiempo del estadio larval modificándolo de 24 a 72 hrs. Siendo esto un factor importante a considerar en la estimación del IPM*min* empleando esta especie.

Palabras clave: Entomotoxicología, Megaselia scalaris, Malatión, Intervalo postmortem

1. Introducción

La entomología forense médico legal es la ciencia que se encarga de estudiar la entomofauna cadavérica que está presente en el proceso de descomposición de un cadáver para poder estimar el intervalo post mortem (IPM) (Magaña, 2001). Este intervalo se puede ver afectado por varios factores, uno de los más importantes es cuando el cadáver presenta alguna substancia que pueda acelerar o retrasar los ciclos de vida de la entomofauna cadavérica (Da Silva, 2017).

La entomotoxicología es la ciencia que se encarga del uso de insectos (principalmente moscas y escarabajos) como fuente indirecta de evidencia toxicológica en ausencia de matrices forenses directas. Las larvas pueden ingerir, incorporar y bioacumular metabolitos químicos o xenobioticos del cadáver del que se alimentaron, en sus propios tejidos, esto permite que con la ayuda de métodos químicos analíticos se pueda detectar las substancias presentes en el cadáver y permite dar un dictamen sobre la causa de muerte, al igual que se puede reducir el error en el IPM (Pounder, 1991., Da Silva, 2017).

Dentro de las substancias de interés toxicológico forense se encuentran los organofosforados, estas moléculas son ésteres del ácido fosfórico, que inhiben la acetilcolinesterasa generando un síndrome colinérgico (Weselak *et al*, 2007). En México se presentan alrededor de 13,600 casos de intoxicaciones y envenenamientos causados por: medicamentos, gases tóxicos, plaguicidas, narcóticos, etc. Aunque la mortalidad por intoxicaciones recae en mayor porcentaje en la ingestión de medicamentos con un 21.6%, es la ingestión de plaguicidas el que ocasiona mayor letalidad, siendo los organofosforados el tipo de plaguicida más utilizado con un 33% (Pimentel *et al*, 2005). El malatión es un plaguicida organofosforado. Se utiliza comúnmente para el control de plagas en el hogar y en las cosechas, esta substancia es muy común, teniendo una alta tasa de intoxicaciones accidentales y muertes por suicidio, aunque no es muy tóxico para los mamíferos. Se biotransforma por medio una desulfuración oxidativa, dando como resultado el malaoxon, la cual es una substancia más toxica (Sánchez *et al*, 2005).

Megaselia scalaris es un díptero cosmopolita, se ha reportado como una mosca de importancia forense. La duración de su ciclo de vida se ha utilizado como un indicador importante para estimar el IPM, especialmente en casos donde los cadáveres se encuentran enterrados, en entornos ocultos (carro, habitación, caja), envueltos en algún material (bolsas, cobijas, mantas), ya que por su pequeño

tamaño menor a 3 mm pueden ingresar a las aberturas estrechas de este tipo de ambientes, llegando al cadáver más rápido que otras especies de moscas de interés forense. Estas características hacen que *M. scalaris* llegue a ser la única evidencia entomológica en este tipo de cadáveres (Reibe y Madea, 2010).

En el presente trabajo se determinó la dosis mínima inhibitoria de malatión para la eclosión de los huevos de M. scalaris siendo de 0.271 µg/mL, la concentración letal 50 (CL₅₀) de las larvas de primer estadio 1.993 µg/mL y los imagos (hembra 9.572 µg/mL, macho 9.016 µg/mL). Se realizaron 7 curvas de crecimiento larval de M. scalaris, utilizando un medio de cultivo modificado (agua, levadura, azúcar, harina y agar), las concentraciones utilizadas de malatión en el medio fueron 0.1, 0.3, 0.5, 1, 3 y 5 µg/mL y un blanco. El medio de cultivo con las larvas se mantuvo a una temperatura de 25°C con una humedad relativa de 50 ± 3 %, fotoperiodo de 12 h luz/obscuridad. Se sacrificaron las larvas a una temperatura de 70°C para su medición, y para la extracción del malatión, las larvas fueron sacrificadas en acetona y guardadas en un congelador a -20°C. Se obtuvieron las tasas de crecimiento de cada curva de vida a partir de la pendiente que resulto de la tasa de cambio de longitud (mm) contra el tiempo de crecimiento en horas grado acumulado (HGA). Se observó que el malatión reduce el tiempo del estadio larval de 24 a 72 hrs respecto al blanco, en cuanto al tiempo del estadio de pupa no hubo ningún cambio.

2. Marco teórico

2.1.- Entomología forense

La entomología forense es el estudio de los insectos como evidencia científica para la solución de casos relacionados al sistema judicial (Solís, 2014). Esta interacción se divide en tres grandes ramas las cuales son: Productos alimenticios, que puede aplicarse a la identificación de plagas encontradas en estos productos; Sector urbano, identificando los insectos que causan daños en hogares, edificios laborales, museos, empresas, etc; y siendo la más conocida, la rama Médico legal, ayudando a dar resolución a controversias jurídicas que involucran cadáveres de humanos o algún animal, por medio del conocimiento del ciclo de vida y comportamiento de algunos insectos (Bostock, 2015).

La primera vez que se utilizó la entomología para poder dar resolución a un caso en un tribunal fue en el año de 1850 en Francia, siendo el médico François Bergeret el responsable en proporcionar la evidencia al caso en donde se encontraron restos de un niño tras una chimenea, declarando que la muerte se produjo hacia un año aproximadamente, esto se pudo deducir gracias a las larvas encontradas en el cuerpo, siendo estas inmaduras sin haber alcanzado el estado de pupa, ayudando a deducir el tiempo (Ponce *et al*, 2014). A partir de ese momento hubo mayor interés sobre la biología de los insectos y su enfoque en la medicina forense, lo que llevo el nacimiento de la entomología forense médico legal con dos obras publicadas la primera en 1888 por Yovanovich "Aplicación de la Entomología a la Medicina Legal" y la segunda en 1894 por Mégnin titulada "La Fauna de los Cadáveres" (Magaña, 2001., Ponce *et al*, 2014).

2.1.2.- Entomología Forense Médico Legal

El hallazgo de un cadáver o restos humanos lleva consigo un número de preguntas que se formulan para saber la causa, ¿por qué murió?, el lugar ¿dónde murió?, y el tiempo de muerte, ¿cuándo murió? La entomología forense médico legal es la ciencia que se encarga de estudiar la entomofauna cadavérica que está presente durante el proceso de descomposición, ya que por medio de estos organismos se puede ayudar a responder a las preguntas del lugar y el tiempo de muerte y dar solución a casos legales y/o medico legales, en torno al cadáver (Magaña, 2001). Los métodos más utilizados en la entomología forense para responder estas preguntas son: la estimación del IPM y la sucesión ecológica de los insectos asociados al cadáver, enfocándose en el estudio de los organismos más abundantes en el cadáver, que suelen ser del orden Dipetera y Coleoptera los más estudiados. Amendt y colaboradores en el 2004 hicieron una lista de los

insectos que tienen mayor importancia en la entomología forense, mencionando que los órdenes más representativos son: Diptera, Coleoptera, Lepidoptera e Hymenoptera (Tabla 1). Debido a la gran cantidad de estos organismos que se encuentran en las fases de descomposición del cadáver, a su alta distribución geográfica y a sus hábitos alimenticios, entre los que se encuentran principalmente insectos necrófagos y necrófilos.

Orden / Familia	Géneros importantes
Coleoptera (escarabajos)	
Cleridae	Necrobia
Dermestidae	Attagenus, Dermestes
Geotrupidae	Geotrupes
Histeridae	Hister, Saprinus
Silphidae	Necrodes, Nicrophorus, Silpha
Staphylinidae	Aleochara, Creophilus
Diptera (moscas)	
Calliphoridae	Calliphora, Chrysomya, Cochliomyia, Lucilia,
	Phormia
Drosophilidae	Drosophila
Ephydridae	Discomyza
Fanniidae	Fannia
Heleomyzidae	Heleomyza, Neoleria
Muscidae	Hydrotaea, Musca, Muscina, Ophyra Conicera,
Phoridae	Megaselia
Piophilidae	Piophila, Stearibia
Sarcophagidae	Liopygia, Sarcophaga
Sepsidae	Nemopoda, Themira
Sphaeroceridae	Leptocera
Stratiomyidae	Hermetia, Sargus
Trichoceridae	Trichocera
Lepidoptera (mariposas)	
Tineidae	Tineola
Hymenoptera (avispas)	
Ichneumonidae	Alysia
Pteromalidae	Nasonia, Muscidifurax

Tabla 1. Insectos con importancia forense. Modificado de Amendt et al, 2004.

2.1.3.- Sucesión ecológica

La muerte de un ser vivo presenta transformaciones y cambios tanto físicos como químicos, también llamados efectos cadavéricos, los cuales provocan en el cuerpo

un gran ecosistema para la llegada de diferentes insectos como son: necrófagos que llegan primero atraídos rápidamente por los olores de descomposición de la materia orgánica, alimentándose de la corpulencia; necrófilos que se alimentan de los necrófagos; omnívoros, que se alimentan de la corpórea como una fauna asociada; oportunistas, que utilizan el cadáver como refugio, fuente de calor, etc; estos se van encontrando a través del tiempo dependiendo del estado de descomposición del cadáver (Figura 1) (Arnaldos *et al*, 2005).

Mégnin en 1894 había descrito esta sucesión de insectos (tabla 2) observando que los dípteros son los primeros colonizadores atraídos por el olor de la descomposición. Sin embargo, esta sucesión se puede ver afectada por el medio ambiente donde se encuentra el cuerpo, por ejemplo, cuando este ha sido enterrado o esta al aire libre, si ha sido envuelto con algún material o se encuentra aislado en un cuarto.

Ola	Fauna	Condición del	Aproximación de
		cuerpo	edad del cadáver
	Calliphora vicina (Dipt.,Calliphoridae)		
	Calliphora.vomitoria (Dipt.,Calliphoridae)	Fresco	
1	Lucilia spp. (Dipt., Calliphoridae)	(cambio con la	Primeros 3 meses
	Musca domestica (Dipt.,Muscidae)	temperatura)	
	Musca autumnalis (Dipt.,Muscidae)	, ,	
	Muscina stabulans (Dipt.,Muscidae)		
2	Sarcophaga spp. (Dipt., Sarcophagidae)	Olor	
	Cynomya spp. (Dipt., Calliphoridae)	desarrollado	
3	Dermestes spp. (Col., Dermestidae)	Rápido	
	Aglossa spp. (Lep., Pyralidae)	engrasamiento	
	<i>Piophilia casei</i> (Dipt., Piophilidae)		
	<i>Madiza glabra</i> (Dipt., Piophilidae)		
	<i>Fannia</i> spp (Dipt.,Fanniidae)		
	Drosophilidae (Dipt.)	Fermentación	
4	Sepsidae (Dipt.)	Butírica	3 a 6 meses
	Sphaeroceridae (Dipt.)		
	<i>Eristalis</i> (Dipt., Syrphidae)		
	<i>Teichomyza fusca</i> (Dipt., Ephydridae)		
	Corynetes, Necrobia (Col., Cleridae)		
	<i>Ophyra</i> spp. (Dipt., Muscidae)	Fermentación	
	Phoridae (Dipt.)	amoniacal	
	<i>Thyreophoridae</i> (Dipt.)		
	Nicrophorus spp (Col., Silphidae)	Evaporación de	
5	Silpha spp. (Col., Silphidae)	fluidos	4 a 8 meses
	<i>Hister</i> spp. (Col., Histeridae)		
	Saprinus spp. (Col., Histeridae)	Residuos de	
		fluidos	
		corporales	
		absorbidos	
6	Acari		6 a 12 meses
	Attagenus pellio (Col., Dermestidae)		
	Anthrenus museorum (Col., Dermestidae)		
7	Dermestes maculatus (Col., Dermestidae)	Completamente	1 a 3 años
	<i>Tineola biselliella</i> (Lep.,Tineidae)	Seco	
	<i>Tineola pellionella</i> (Lep.,Tineidae)		
	Monopis rusticella (Lep., Tineidae)		
8	Ptinus brunneus (Col., Ptinidae)		Mayor a 3 años
	Tenebrio obscurus (Col., Tenebrionidae)		-

Tabla 2. Sucesión de entomofauna cadavérica. Basado en Mégnin (1894) actualizado por Smith (1973). Díptera=Dipt, Coleoptera=Col, Lepidóptera=Lep.

2.1.4.- Intervalo Postmortem

El intervalo postmortem (IPM) es el tiempo transcurrido desde la muerte de una persona hasta el hallazgo de su cuerpo (Figura 2). Se puede estimar a partir de la observación y la medición de las condiciones en las que se encuentra el cuerpo, como son: la temperatura (*algor mortis*), flacidez o rigidez muscular (*rigor mortis*), tono de piel (*livor mortis*) (Byrd, 2001). Los entomólogos forenses estiman este IPM a través de los ciclos de vida de las especies encontradas y la sucesión ecológica de estos, con base en el intervalo mínimo postmortem (IPM mín) que es el periodo más temprano en el cual el cuerpo fue colonizado por insectos, hasta la recolecta de la larva más vieja del cadáver y al intervalo máximo postmortem (IPM máx) que es el tiempo desde que la persona fue vista con vida la última vez, hasta el descubrimiento de su cadáver (Villet *et al*, 2009).

Esta forma de estimar el intervalo puede ser de mucha más ayuda que los métodos que utilizan los médicos forenses que se limitan a las matrices primarias que se pueden ver afectadas o simplemente ya no están disponibles después de varios días (Arnaldos *et al*, 2005). Teniendo en cuenta que las muestras se pueden ver afectadas, el IPM también. Este se modifica por varios factores, uno de los más importantes es cuando el cadáver presenta alguna substancia que pueda acelerar o retrasar los ciclos de vida y la sucesión ecológica de la entomofauna cadavérica. Esto conlleva a la intervención de diferentes disciplinas como la toxicología para conocer si el cadáver contenía o no alguna substancia, aunque a veces estas pruebas se pueden ver limitadas por el avanzado estado de putrefacción y/o esqueletización del cuerpo, con base en estos problemas y a la

resolución de los mismos, se llegó al nacimiento de la Entomotoxicologia (Da Silva, 2017)

2.2.- Entomotoxicología

El uso de insectos como matrices biológicas alternativas, es de gran ayuda en el ámbito forense. La entomotoxicología es una disciplina que une los conocimientos de la entomología y la toxicología, utiliza tanto a los insectos como a las larvas que se han alimentado del cadáver, como una matriz indirecta ya que estos organismos son capaces de ingerir, incorporar y bioacumular metabolitos químicos o xenobióticos en sus propios tejidos, del cadáver que se alimentaron siendo esto evidencia toxicológica (cualitativa y cuantitativa) cuando las matrices primarias como la sangre, orina, tejidos, no se encuentran disponibles (Pounder, 1991., Da Silva, 2017). Los estudios de entomotoxicología empezaron a realizarse a finales de los años 1970 cuando empezaron a detectar diferentes substancias tóxicas en los insectos, principalmente metales como el mercurio (Sohal y Lamb, 1977., Nuorteva P y Nuorteva S, 1982., Liu et al, 2009). Posteriormente, se empezaron a detectar substancias como drogas y medicamentos en las larvas que se encontraban en los cadáveres con un avanzado estado de putrefacción y/o esqueletización (Tabla 3), así ayudando a resolver gran variedad de casos forenses.

Substancia	Mosca / Iarva	Referencia	
Metanfetaminas	Calliphora stygia	Mullany, 2014	
	Calliphora vicina	Sadler, 1997	
	Calliphora vomitoria	Magni, 2014	
	Sarcophaga ruficornis	Goff, 1992	
Cocaína	Calliphora vicina	Nolte, 1992	
	Chrysomya albiceps, Chrysomya	De Carvalho,	
	putoria	2012	
	Lucilia sericata	Campobasoo,	
		2004	
	Sarcophaga peregrina	Goff, 1989	
Opiáceos	Calliphora stygia	Gunn, 2006	
	Chrysomya albiceps	Fathy, 2008	
	Lucilia sericata		
	Hédouin, 2001		
Benzodiacepinas	Calliphora vicina	Wood, 2003	
	Chrysomya albiceps	Carvalho,	
		2001	

	Chrysomya megacephala	Oliveira, 2014
	Cochliomya macellaria	Baia, 2016
Plaguicidas	Chrysomya megacephala	Shi Yan-wei, 2010
	Chrysomya megacephala	Gunatilake, 1989
	Chrysomya megacephala	Bakr, 2012
	Chrysomya rufifacies	Solís, 2014

Tabla 3. Substancias de interés forense encontradas en moscas.

Los xenobióticos que se encuentran en los cadáveres de los cuales se alimentan los insectos, juegan un papel importante en su ciclo de vida, pudiendo retrasar o acelerar su crecimiento, al igual que su oviposición (Voss *et al*, 2008), ya que estos pueden acumular y metabolizar los xenobióticos que ingirieron del cadáver (Figura 3), por este motivo se puede ver afectado el cálculo del IPM.

Figura 3. Modelo conceptual de los procesos de absorción, distribución, metabolismo y excreción de un toxico en insectos que se alimentan de un cadáver. Modificado de Da Silva, 2017.

2.3.- Megaselia scalaris

*Megaselia scalaris (*loew 1866*),* es una mosca perteneciente a la familia Phoridae, que son muy comúnmente conocidas como las moscas jorobadas por su tórax que tiene una forma curva aparentando una joroba o como moscas de ataúd debido al pequeño tamaño en su estado adulto (2 a 3 mm) y a su hallazgo en varios casos de cadáveres que fueron enterrados. Esta especie presenta un desarrollo holometábolo el cual se divide en cuatro fases que son: el huevo, las larvas de primero, segundo y tercer estadio, la pupa y el imago (Bostock, 2015).

2.3.1.- Interés forense de M. scalaris

M. scalaris es una especie cosmopolita, además de ser de importancia médica por causar miasis en humanos y animales, se ha reportado como una mosca de importancia forense. La duración de su ciclo vida se ha utilizado como un indicador importante para determinar el IPM, especialmente en casos de muertes en interiores y en entornos ocultos (Reibe y Madea, 2010). Su etapa adulta que es pequeña le permite moverse de manera rápida y errática (Disney, 2008). Debido a estas características, puede ingresar a las aberturas estrechas de ambientes ocultos o enterrarse con facilidad, lo cual le da la ventaja de poder llegar al cadáver más rápido que otras especies de moscas de interés forense; puede llegar a una carroña en poco tiempo después de su exposición y depositar los huevos de inmediato. Esta especie se reproduce con frecuencia en cadáveres humanos en climas más cálidos (Campobasso et al, 2004 A). Campobasso y colaboradores en 2004 (B) describieron un caso de un hombre que fue exhumado después de un año de su muerte, el cuerpo se encontraba momificado, lleno de larvas y pupas, principalmente en las manos y los pies, reportando que las larvas y pupas solo pertenecían a una especie que era *M. scalaris*, explicando que esto se debió a que el cuerpo estaba enterrado ocasionando que se restrinja el acceso a moscas más grandes, pero no ha pequeñas como M. scalaris. Esta restricción puede provocar que M. scalaris sea la única evidencia en cadáveres que se encuentran enterrados, envueltos en algún material (bolsas, cobijas, mantas), espacios cerrado (carro, habitación, caja), etc.

2.3.2.- Morfología

El huevo tiene una longitud de 0.6 mm y un ancho de 0.2 mm, en cuanto a su estructura es ovalada (en forma de bote) la mitad del huevo es curvo y su contraparte es plana. En la parte curva presenta patrones poligonales, mientras

que la parte plana presenta crestas micropilosas (imagen 1 y 2) (Greenberg, 1998., Koller *et al*, 2003).

Las larvas presentan una forma cilíndrica que se va haciendo más pequeña hacia la parte de la cabeza, esta forma se va notando cada vez más conforme pasan de estadio larval. Presentan dos espiráculos que sobresalen en la parte dorsal-posterior de la larva, presentan espinas bilaterales en cada uno de sus segmentos del abdomen empezando a partir del tercer segmento torácico (imagen 3 y 4). Tienen un color blancuzco amarillento, aunque las larvas del primer estadio se les puede notar un poco transparentadas (Bostock, 2015)

La pupa llega a medir entre 2 y 3 mm al igual que la mosca en su estado de imago, cuando la larva empieza a pupar, la pupa es de color blanco y su consistencia es blanda, posteriormente la pupa toma un color café y la estructura es dura (imagen 5 y 6). Presenta cuernos respiratorios en la parte anterior-lateral, teniendo un patrón en forma de espiral en el ápice, también presentan espiráculos en la parte anterior y posterior (Disney, 2008., Bostock, 2015).

El imago presenta dimorfismo sexual, siendo la hembra de mayor tamaño que el macho (imagen 7 y 8). Los dos presentan un tórax con apariencia jorobada, el abdomen de los machos está más reducido que el de las hembras y no presentan la coloración blanca en la parte ventral, en la parte dorsal presentan franjas color negro y amarillo; la cabeza es pequeña, aplanada, presenta ojos compuestos de color negro; los apéndices están bastante desarrollados, fémur robusto y lateramente comprimido; las alas son grandes, presentan una costa de cilios y cerdas axilares (imagen 9) (Brown y Oliver, 2007., Disney 2008., Bostock 2015).

Imagen 7*. M. scalaris* Hembra. Creación propia

Imagen 8. *M. scalaris* Macho. Creación propia

Imagen 9. Ala de *M. scalaris*. Costa de cilios (a), Cerda axilar (b). Creación propia

2.3.3.- Ciclo de vida

El ciclo de vida de *M. scalaris* depende mucho de la temperatura, su desarrollo holometábolo se puede ver afectado o beneficiado por esta condición (Figura 4). A una temperatura de 25°C las hembras grávidas llegan a depositar los huevos después de 24 h de su apareamiento, dejando entre 1 a 100 huevos, el número de huevos depende completamente de la hembra (Macieira *et al*, 1983., Benner, 1985., Disney 2008). El periodo embrionario dura alrededor de 20 h, cuando las larvas han eclosionado del huevo tienen 3 diferentes estadios larvales, el primero dura 27.7 h, el segundo 37.5 h y el último 100 h. El periodo de pupa suele ser más corto para los machos, siendo de 11.7 días y para las hembras de 13.6 días (Koller *et al*, 2003); a esta temperatura el tiempo de vida de los imagos también difiere dependiendo el sexo, en hembras el promedio de vida es de 29.9 días y en machos de 24.8 días (Manzato y Tadei, 2004., Disney, 2008).

Figura 4. Desarrollo holometábolo de *Megaselia scalaris*. A. Huevos, B1. Larva primer estadio, B2. Larva segundo estadio, B3. Larva tercer estadio, C. Pupa, D. Imago. Creación propia Se han realizado varios estudios donde observan el ciclo de vida a diferentes temperaturas. Greenberg y Wells en 1998 demostraron que *M. scalaris* se desarrolla de huevo a adulto en 22 días a 22 ° C, en 14-16 días a 27 ° C y en 11 días a 29 ° C, proporcionando curvas de crecimiento a diferentes temperaturas constantes.

Feng y Liu En 2014 mencionaron que la etapa pupal es de suma importancia ya que dura hasta el 50% de todo el desarrollo del ciclo de vida y por lo general no se le presta demasiada atención a esta parte del ciclo. Ellos estimaron la edad pupal de *M. scalaris* a diferentes temperaturas. Dividieron estas etapas en 10 fases donde se aprecian cambios morfológicos (tabla 4), determinando que el periodo pupal dura 24 días a 18°C, 11 días a 24°C y 7 días a 33°C.

Etapa	Cambios morfológicos	Estructura
1	Huevo	0
2	Larva transparente primer estadio	Katalan Katalan
3	Larva amarillenta segundo estadio	
4	Larva con espinas bilaterales tercer estadio	
5	Formación de pre pupa blanco	
6	Protuberancia de cuernos respiratorios	B
7	Segmentación de tórax y abdomen	

8	Diferenciación del musculo dorsal del tórax y segmento del abdomen	M.
9	Ojo amarillo	N
10	Pierna café brillante	02
11	Pierna café obscuro	P2
12	Ojo marrón	
13	Ojo rojizo	R
14	Ojo negro	
15	Imago	

Tabla 4. Cambios morfológicos presentes en la etapa larval y pupal de *Megaselia scalaris*. Modificado de Feng y Liu 2014.

2.4.- Los plaguicidas como substancias de interés forense

Los plaguicidas causan un alto daño a gran variedad de especies. Entre éstas se encuentran plantas, artrópodos, mamíferos, peces, etc; esto debido a la alta toxicidad de las sustancias, que son empleadas en una variedad de formas, como en las tierras de cultivo o en el hogar con productos caseros, para poder controlar o terminar con las plagas. Estas substancias pueden llegar a ser altamente persistentes en los sistemas biológicos, es decir que permanecen y se transportan a través del ambiente aún después de su aplicación (Arellano y Rendón, 2016).

La Organización para la Agricultura y la Alimentación de las Naciones Unidas (FAO por sus siglas en inglés) define a un plaguicida, también llamado pesticida como una substancia o mezcla de substancias destinadas a prevenir, destruir o controlar cualquier plaga, incluyendo a los vectores de enfermedad humana o animal, especies indeseadas de plantas o animales capaces de causar daños o interferir de cualquier otra forma con la producción, procesamiento, almacenamiento, transporte o mercado de los alimentos, otros productos agrícolas sus derivados o alimentos animales, o que puedan administrarse a los animales para el control de insectos, u otras plagas en sus organismos.

Los plaguicidas se pueden clasificar de diferentes maneras como son (Vega, 1985., OMS, WHO, 2010):

- La función del organismo sobre el cual actúan; herbicidas, acaricidas, fungicidas, raticidas, pediculicidas, insecticidas.
- La estructura química de las sustancias; organoclorados, organofosforados, carbamatos, ácidos carboxílicos, piretroides, amidas, anilinas, derivados alquil urea, compuestos heterocíclicos con nitrógeno, fenoles, imidas, entre otros).
- El grado de toxicidad, basado en la dosis letal 50 (DL₅₀) en ratas, administrado en forma oral y dérmica (Tabla 5); extremadamente tóxico, altamente tóxico, moderadamente tóxico, ligeramente tóxico, mínimamente tóxico.

Clave	Categoría	DL ₅₀ en ratas (mg/kg)	
		Oral	Dérmica
Ia	Extremadamente tóxico	< 5	< 50
Ib	Altamente tóxico	5 - 50	50 - 200
II	Moderadamente tóxico	50 - 2000	200 - 2000
III	Ligeramente tóxico	Más de 2000	Más de 2000
U	Mínimamente tóxico	5000 o superior	5000 o superior

Tabla 5: Clasificación de los plaguicidas por el grado de toxicidad aguda (WHO, 2010).

En México, cada año las intoxicaciones y envenenamientos son causa de alrededor de 13,600 casos, de los cuales fallecen alrededor de 1,400 personas, entre estos el 87% adultos y 13% niños. El 72% de los casos son accidentales y 28% corresponden a suicidios. Las intoxicaciones ocurrieron con mayor frecuencia en hombres jóvenes que oscilaban en una edad de entre 21 a 30 años. La mortalidad que hay en adultos por intoxicaciones recae en mayor porcentaje en la ingestión de medicamentos con un 21.6%, la inhalación de gases tóxicos con un 20.4% y la exposición a plaguicidas con 13.9% (INEGI, 2017., Pimentel *et al*, 2005). Aunque la intoxicación por medicamentos es el método más usado en los intentos de suicidio (46%), el que ocasiona mayor letalidad es la ingestión de plaguicidas, siendo los organofosforados el tipo de plaguicida más utilizado con un 33%, seguido por los carbamatos con un 27% (Pimentel *et al*, 2005).

Los organofosforados son ésteres del ácido fosfórico, que tienen como mecanismo de acción la inhibición de enzimas con actividad esterasas, específicamente la A acetilcolinesterasa (AChE), provocando una acumulación de acetilcolina (ACh), generando un síndrome colinérgico (Weselak *et al*, 2007). Estos plaguicidas se empezaron a comercializar en los años de 1940, siendo Gerhard Schrader el primero en descubrir y describir las primeras fórmulas químicas en 1937 (Schrader, 1952, Rose *et al*, 1999) (Figura 5). En las cuales describía que "R1" y "R2" pueden ser grupos mercapto, alquilo, fenol, amido, ariloxi, o alcoxi y "R3" puede ser un halógeno, paranitrofenol, cianuro, fenoxi, etc Esto le llevo a crear sus primeras moléculas el Schradan y el Tetraetil pirofosfato (TEPP). Este último fue el primer organofosforado comercial.

Figura 5. Estructura química general de los organofosforados.

2.4.1.- Malatión

El malatión ó 2-[(dimetoxifosforotiol) sulfanil] butanodioato (imagen 10) es un plaguicida organofosforado que se utiliza principalmente para el control de plagas en las cosechas de frutas y verduras (Sánchez *et al*, 2005). También se utiliza muy comúnmente en el hogar para la eliminación de mosquitos, chinches y piojos, por lo cual el uso de esta substancia es muy común, teniendo una alta tasa de intoxicaciones accidentales y muertes por suicidio (Thompson *et al*, 1998).

El malatión no es muy tóxico para los mamíferos. Sus principales vías de absorción son por medio de la ingesta, la inhalación y al contacto con la piel. Es altamente liposoluble lo que le permite atravesar fácilmente las barreras biológicas (Fernández et al, 2010 A), teniendo una gran distribución en los tejidos con gran cantidad de lípidos, aunque por lo general no llegan a acumularse en las grasas del organismo gracias a que su vida media es relativamente corta y a sus rápidos procesos de biotransformación (Eddleston y Hillips, 2004). Se metaboliza por medio de una desulfuración oxidativa la cual se lleva a cabo por los citocromos CYP3A4 y CYP2D6, dando una estructura de fosfato (malaoxon), la cual es más tóxica (Alvial, 2008), provocando como síntomas principales: defecación, micción, lagrimeo, espasmos musculares, convulsiones e insuficiencia respiratoria et al, 1998). La excreción del malatión es rápida, tarda (Thompson aproximadamente dos días, esto se debe a que sus principales metabolitos que son el dimetil fosfato y el dimetiltiofosfato son altamente hidrosolubles, facilitando su eliminación por medio de la vía renal, también se llega a eliminar por heces y aire expirado (Fernández et al, 2010 A).

A diferencia de los mamíferos el malatión es más tóxico para los insectos ya que afecta de forma directa al contacto y por acción de vapor (Thompson *et al*, 1998., Pitarch, 2001).

3. Antecedentes

La primera vez que se reportó el malatión en un insecto fue en 1989, en un caso donde se encontraron restos con una descomposición avanzada, estando presente en el cuerpo *Chrysomya megacephala* y *Chrysomya rufifacies* (Gunatilake y Goff. 1989). Se han reportado pocos trabajos de investigación sobre la relación del ciclo de vida de insectos afectada con el malatión, siendo *Chrysomya megacephala* la única especie de díptero estudiada con este plaguicida. Demostrando que esta substancia causa un efecto de retraso en el crecimiento de esta mosca (tabla 6).

Mosca	Descripción	Referencia
C. megacephala	Sacrificaron con malatión a conejos (<i>Oryctolagus cuniculus L</i>), para obtener tejido muscular y hepático, dejando crecer a las moscas en ellos. Demostraron que la estimación del IPM se alteró por 36 hrs	Liu, 2009
C. megacephala	Hicieron un estudio de sucesión de insectos, con cadáver de conejo (<i>Oryctolagus</i> <i>cuniculus L)</i> , sacrificándolo con malatión. Esta mosca fue la más abundante. Observaron el crecimiento larval y pupal. Demostraron que el desarrollo larvario demoró de 12 a 36 hrs.	Shi Yan- wei, 2010
C. megacephala	Se administró malatión en diferentes concentraciones para provocar la muerte de 12 ratas. Las larvas de las moscas se dejaron crecer en el hígado de las ratas. Demostraron que el crecimiento de las larvas fue menor que el control, pero no hubo diferencias significativas en el peso de las larvas.	Rashid, 2008

Tabla 6. Estudios de ciclo de vida de *Chrysomya megacephala* intoxicada con malatión.

4. Justificación

La medición del IPM con ayuda de insectos, se puede ver afectada por diferentes factores como son los ambientales (temperatura, humedad, luz, tipo de suelo, etc) y las substancias que se llegan a almacenar en estos organismos que se han alimentado de algún cadáver; los cuales hacen que se modifique su ciclo de vida, acelerándolo o retrasándolo y dando como resultado un error a la estimación del IPMmin. Resulta, por tanto, de gran importancia conocer con exactitud los ciclos de vida de las diferentes especies de la entomofauna cadavérica y evaluar los cambios que pueda presentar el ciclo de vida del organismo al ser expuesto a alguna sustancia. Para una mejor estimación del IPM, el entomólogo forense requiere curvas de crecimiento en las se plasme el efecto que alguna sustancia presente en el cadáver y por tanto de la cual se alimentaron los organismos.

5. Hipótesis

La presencia de malatión en el medio de cultivo retrasará la tasa de crecimiento de *Megaselia scalaris*.

6. Objetivos

6.1.- Objetivo General

Estudiar el efecto del malatión sobre la tasa de crecimiento Megaselia scalaris.

6.2.- Objetivos Particulares

-Determinar la concentración mínima de malatión necesaria para inhibir la eclosión en los huevos de *M. scalaris.*

-Determinar la CL₅₀ del malatión en el primer estadio larval de *M. scalaris*

-Evaluar el crecimiento de *M. scalaris* en presencia de malatión en los diferentes estadios de su ciclo de vida (larva, pupa).

-Registrar la talla del imago de M. scalaris al emerger

-Identificar si existen cambios físicos por causa del malatión en el imago de *M. scalaris*

-Determinar la CL₅₀ del malatión en el imago de *M. scalaris*

-Identificar la presencia de malatión en el tercer estadio larval de *M. scalaris*.

-Analizar el efecto del malatión sobre la tasa de crecimiento de *M. scalaris*

7. Materiales y Métodos

7.1.- Lugar de estudio

El presente estudio se realizó en los laboratorios de Toxicología y Entomología Forense, de la licenciatura en Ciencias Forenses, de la Facultad de Medicina UNAM.

El proceso de crianza y curvas de vida se llevó a cabo en el laboratorio de Entomología Forense, ya que en él se contó con los microscopios estereoscópicos para la visualización de las larvas, al igual que la cámara climática para mantener la colonia. La parte de la extracción y detección del malatión se llevó a cabo en el laboratorio de Toxicología Forense, contando con el cromatografo de líquidos de alta eficacia acoplado a espectroscopia de masas (HPLC/MS).

7.2.- Mantenimiento de la colonia

Las moscas fueron proporcionadas por el laboratorio de Entomología Forense, siendo estas procedentes del "Banco de moscas" de la Facultad de Ciencias de la Universidad Nacional Autónoma de México. Se cultivaron en frascos de vidrio con 100 mL de un medio de cultivo que es específico para *Drosophila* pero que fue modificado y estandarizado anteriormente en el laboratorio de Entomología Forense (imagen 11) por López en el 2020. Este medio está hecho a base de azúcar, levadura, harina y agar, teniendo como conservadores nipagini y propionato de sodio (ver anexo 1 y 2). Los frascos se cubrieron con un tapón de poliuretano de baja densidad para así evitar que se contamine el medio por otras especies de moscas, que las larvas e imagos escapen y que al mismo tiempo pueda entrar aire al frasco.

Para lograr una oviposición sincronizada, es necesario contar con hembras vírgenes. Para logra esto, se monitoreó la emergencia de los imagos para separar a los machos antes de que emergieran las hembras, y así poder tener machos y hembras vírgenes, en frascos separados y posteriormente llevar a cabo el apareamiento de los imagos.

Imagen 12. Tubos con 10ml de medio de cultivo para crecimiento de *M. scalaris.*

7.3.- Curva de crecimiento blanco

Antes de evaluar el efecto de malatión sobre el crecimiento de *M. scalaris*, resulta indispensable estudiar el ciclo de vida bajo las condiciones de crianza del laboratorio de Entomología Forense para posteriormente comparar las tasas de crecimiento en medios con presencia de diferentes concentraciones de malatión.

Se realizó una curva de crecimiento blanco con tres repeticiones. Las moscas se durmieron con éter etílico para separar hembras y machos. Se colocaron 6 hembras vírgenes y 2 machos en tubos con 5mL de medio, se dejó que los imagos se aparearan, esperando 3 horas para que las hembras ovipositaran de manera sincronizada.

Los tubos se mantuvieron en una cámara climática Binder KBW 240 a una temperatura de 25°C con una humedad relativa de 50 \pm 3% y 12 h de luz/obscuridad, esto para poder asemejar un poco el ciclo de vida que lleva la mosca, ya que esta especie es activa tanto en el día como en la noche (Zulaikha y Zuha, 2016). Se monitoreo la eclosión de los huevos, para registrar como tiempo cero la eclosión de estos. Se realizaron las mediciones de las larvas cada 24 h a partir de la eclosión y hasta la pupación. Para la medición de las larvas, se extrajeron del medio de crecimiento 15 larvas, las cuales se sacrificaron sumergiéndolas por 5 segundos en agua a 80°C, para que su cuerpo se

extendiera por completo y poder medir la longitud y el ancho de cada larva (Amendt *et al*, 2007).

Las larvas se midieron con un vernier electrónico, al igual que con los programas LAS V4.5, tpsUtil32, tpsDig232 y se tomaron fotos diariamente con microscopio estereoscópico con cámara M60 APO, las larvas se guardaron en alcohol al 70%. Una vez que las larvas llegaron al estadio de pupa, se seleccionaron 15 pupas al azar, se midieron y tomaron fotografías diariamente hasta su eclosión.

7.4.- Determinación de CL₅₀ en imagos de *M. scalaris*

Para la preparación del medio, se utilizó malatión (Malathion PESTANAL ®) de Sigma-Aldrich LOTE BCBS8709V. Una vez alcanzando una temperatura de 25°C, se adicionó malatión a la preparación y con un agitador magnético se removió hasta obtener una mezcla homogénea, para que el malatión no quedara únicamente sobre la superficie. Por sus características físico-químicas y su estabilidad, es necesario adicionar el malatión en el medio en dicha temperatura (ver anexo 2).

Para determinar la CL_{50} de Malatión en el imago de *Megaselia scalaris* se prepararon medios de crecimiento a las concentraciones de 1, 2, 3, 5, 8, 9, 10, 11, 12 y 15 µg/mL de malatión. Se agregaron 10 mL de medio de cultivo con las diferentes concentraciones en los tubos de crecimiento, colocando 10 moscas hembras y 10 machos por separado, con la finalidad de identificar si existe una diferencia de la CL_{50} dependiendo del sexo. El tiempo de exposición al que se sometieron los imagos al medio con malatión fue de 24 h, colocando los tubos en una cámara climática con una temperatura de 25 °C, humedad relativa de 50 ± 3 % y fotoperiodo 12 hrs de luz/obscuridad, realizando tres repeticiones.

7.4.1.- Concentración mínima inhibitoria de malatión en huevos de *M. scalaris*.

Se necesita saber cuál es la concentración mínima inhibitoria de malatión en la que todos los huevos eclosionan para tener la certeza que todos los huevos eclosionaran sincronizados y así evitar fallas en las mediciones y poder reducir la variable del error en el tiempo.

Para estimar la concentración mínima inhibitoria en huevos se colocaron 30 huevos en cajas petri que contenía 15 g de medio de cultivo con malatión (equivalente a los 10 mL que se agregan a los tubos) con las concentraciones de 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 y 1 μ g/mL. Las cajas petri se colocaron en una cámara climática a una temperatura de 25°C, humedad relativa de 50 ± 3 % y

fotoperiodo 12 h Luz/Noche, con un tiempo de exposición en el medio de 24h. Realizando tres repeticiones.

Se escogió las cajas petri para este experimento, ya que solo era necesario observar los huevos eclosionados en el tiempo indicado, al igual que por su mayor facilidad de colocar los huevos en las cajas sin dañarlos.

7.4.2.- Determinación de CL₅₀ en larvas de primer estadio de *M. scalaris*.

Debido a que las larvas estuvieron expuestas al medio de cultivo dopado con malatión durante todo su ciclo de vida. Es necesario conocer la CL_{50} de malatión en el primer estadio larval de *M. scalaris* para poder determinar las concentraciones que se utilizaran para las curvas de crecimiento con malatión.

Se colocaron 20 larvas de primer estadio y se colocaron en cajas petri con medio de cultivo que contenía 15 g de medio de cultivo con malatión (equivalente a los 10 mL que se agregan a los tubos) con las concentraciones de 1, 2, 3, y 5 μ g/mL de malatión. Las cajas petri se colocaron en una cámara climática a una temperatura de 25°C, humedad relativa de 50 ± 3 % y fotoperiodo 12 h Luz/Obscuridad, con un tiempo de exposición en el medio de 24 h. Realizando tres repeticiones

Al igual que para la identificación de la concentración mínima inhibitoria de malatión en huevos de *M. scalaris*, se eligió utilizar las cajas petri por la facilidad de observación y manejos de las larvas del primer estadio.

7.5.- Curvas de crecimiento con malatión

Se hicieron seis curvas de crecimiento con malatión en el medio de cultivo y cada una tuvo tres repeticiones. Las condiciones que se utilizaron en la cámara climática para realizar la curva blanco se utilizaron nuevamente para las curvas de crecimiento del medio con malatión. Las concentraciones finales empleadas en el medio de cultivo fueron 0.1, 0.3, 0.5, 1, 3 y 5 μ g/mL, las cuales fueron establecidas a partir del conocimiento de la CL₅₀ del malatión en las larvas del primer estadio y la concentración mínima inhibitoria de malatión en los huevos de *M. scalaris*.

Se colocaron 6 hembras y 2 machos en tubos con medio de cultivo blanco para que se aparearan los imagos, se dejaron durante 3 h para que las hembras tuvieran una oviposición sincronizada.

Se monitorearon los huevos hasta el momento de su eclosión, posteriormente con una aguja de disección se retiraron 30 larvas recién nacidas de los tubos y se colocaron en los tubos con medio dopado de malatión en sus diferentes concentraciones. Al igual que en la curva blanco se tomó como tiempo 0 cuando eclosionaban los huevos. La medición de las larvas se realizó cada 24 h, hasta que la larva llego a su estadio de pupa. Se sacrificaron 15 larvas, sumergiéndolas durante 5 segundos en agua a 80°C, para que su cuerpo se extendiera por completo y poder medir la longitud y ancho de cada larva. Las mediciones de las larvas se hicieron con un vernier electrónico, al igual que con los programas LAS V4.5, tpsUtil32, tpsDig23, se tomaron fotos diariamente con un microscopio estereoscópico con cámara M60 APO. Las larvas se guardaron en alcohol al 70%. Para cada curva se tuvieron dos tubos por día, el primer tubo se utilizó para extraer las larvas que se utilizaron para la cuantificación del malatión y el segundo tubo se utilizó para extraer a las larvas que se utilizaron para la medición de la longitud y el ancho de la larva.

Cuando las larvas llegaron al estadio de pupa, se seleccionaron 15 pupas al azar de cada medio de cultivo con malatión. Las pupas de cada curva se midieron y tomaron fotos diariamente hasta su eclosión, los imagos que emergieron fueron sacrificados y guardados en alcohol al 70%.

A partir de las mediciones de la longitud y del ancho de las larvas tanto de la curva blanco como las curvas con diferentes concentraciones de malatión, se calculó la tasa de crecimiento como la pendiente de la longitud versus el tiempo de crecimiento en horas grado acumulado (HGA) que son la medida de la temperatura requerida para el desarrollo de insectos en patrones predecibles, que se calcula restando el umbral mínimo de desarrollo por la temperatura ambiental media para esa hora, o el umbral máximo de desarrollo si se alcanza (Greenberg, 1991).

Donde:

HGA=Tiempo (horas) x (Temperatura-Temperatura base)

Tiempo= tiempo de tiempo lleva la larva en desarrollo Temperatura= temperatura a la que se sometió a la larva (25°C) Temperatura base= es la temperatura más baja, en la cual no hay desarrollo de la larva (10°C)

Se usó, según la convencionalidad, 10°C como el límite umbral más bajo para estimar HGA debido a que no existen reporte de la temperatura más baja a la cual se desarrolla *M. scalaris*.

7.6.- Comparación de longitud de pupas

Teniendo en cuenta que el periodo pupal dura alrededor del 50% de todo el ciclo de vida, se realizó una comparación de la longitud y del tiempo que duraron en este estadio para comprobar si el malatión afecta este ciclo.

Se seleccionaron 15 pupas al azar de cada curva de crecimiento (blanco, 0.1, 0.3 y 0.5) y cada repetición; Se mantuvieron en una cámara climática Binder KBW 240 a una temperatura de 25°C con una humedad relativa de 50 \pm 3 % y 12 h de Luz/Obscuridad. La medición de las pupas se realizó diariamente hasta el momento de la emergencia de los imagos, se midieron con un vernier electrónico y se tomaron fotos diariamente con los programas utilizados para la medición de la longitud y el ancho de las larvas.

7.7.- Comparación morfológica de moscas

La identificación taxonómica se centra en las partes morfológicas de cada especie, por lo que es importante que estas estructuras se encuentren en buen estado a la hora de la identificación. Para observar y comparar si el malatión en las diferentes concentraciones que tenían los medios de cultivo había provocado algún cambio físico en los imagos que emergieron de las pupas que estuvieron expuestas en ellos, se tomaron fotos y se midieron tanto a hembras como a machos. Las partes morfológicas seleccionadas fueron: cuerpo completo (cabeza, tórax, abdomen), cuerpo vista dorsal, cabeza (ojo), y alas. Los imagos nacidos de cada curva de crecimiento fueron sacrificados y guardados en alcohol al 70%

7.8.- Análisis de datos

Se realizó una prueba de t-student entre las mediciones de la longitud de las larvas que fueron tomadas con el vernier electrónico y al mismo tiempo con los programas antes mencionados, para poder observar si existía una diferencia significativa. La prueba se realizó con el software Microsoft Excel 2007.

La identificación de la CL₅₀ para los imagos y las larvas del primer estadio se llevó a cabo mediante la relación dosis-mortalidad en un análisis Probit con el software IBM SPSS, se calculó la concentración de insecticida que provoca el 50% de mortalidad con una significancia del 95%.

En la comparación de las tasas de crecimiento de la longitud y del ancho del Blanco versus las diferentes concentraciones de malatión se realizó una prueba de normalidad observando si los datos eran normales o no, para posteriormente poder aplicar adecuadamente las pruebas de varianza necesarias para identificar si existían diferencias significativas entre los tratamientos.

Para la variable de **Ancho** en mm y tiempo de desarrollo, se realizó una prueba ANOVA de un factor con una significancia del 95% para poder descartar la hipótesis nula la cual es que todos los tratamientos con malatión y el blanco son similares entre ellos y no existe ninguna diferencia significativa, posteriormente se realizó una prueba de Tukey con una significancia de 95% para identificar la diferencia entre los tratamientos.

Para la variable de **Longitud** en mm y tiempo de desarrollo, se realizó la prueba Kruskal-Wallis para datos no paramétricos con significancia del 95%, que es equivalente a la ANOVA para poder descartar la hipótesis nula que señala que los tratamientos son similares entre sí, para identificar cuales tratamientos tienen diferencias significativas se utilizó la prueba de U de Mann Whitney con una significancia del 95%. Todos los análisis estadísticos mencionados se realizaron con el software IBM SPSS.

Para identificar si existía una diferencia significativa en la longitud de las pupas del medio estándar versus los medios adicionados con malatión se realizó una prueba de ANOVA de un factor con significancia del 95%, con el software IBM SPSS. Se realizó una prueba de ANOVA de un factor con significancia del 95% para identificar si existía alguna diferencia significativa entre las longitudes del cuerpo completo de los imagos (hembra, macho) que emergieron de los diferentes tratamientos del medio de cultivo con malatión. Se utilizó el software Microsoft Excel 2007.

7.9.- Extracción de Malatión

A diferencia de cómo se sacrificaron las larvas para su medición, para la extracción, las larvas se limpiaron con agua para no tener residuos del medio de cultivo. Se pesaron las larvas que serían analizadas. Posteriormente las larvas se sacrificaron con 100 μ L de acetona y resguardaron en un congelador a -20°C, esto se hizo para que el malatión no se perdiera antes de hacer la extracción.

Las larvas se homogeneizaron con 10 g de sulfato de sodio anhidro. Se añadió 60 mL de acetona a la muestra y se agitó durante 45 minutos y se filtró. El residuo se lavó con acetona dos veces más. Se añadieron 60mL de sulfato de sodio 20g/L y 30 mL de diclorometano. Se homogenizaron durante 2 minutos. Se recogió la fase orgánica y el residuo se volvió a extraer con 20 mL de diclorometano. Las dos porciones colectadas se mezclaron y el disolvente se concentró en un baño de agua a 60 °C (se debe tener cuidado que el baño maría no sobre pase los 60 °C
para que el malatión no se degrade). El extracto se reconstituyó con 1 mL de fase móvil y se inyectaron 10μL en el cromatógrafo de líquidos (Shi Yan-Wei, 2010).

7.10.- Detección y cuantificación de Malatión

La detección del malatión se llevó a cabo mediante el uso de Cromatografía Liquida de Alta Eficacia (HPLC) de fase inversa y detector UV (Abu-Quare, 2001). El análisis cromatográfico se realizó a temperatura ambiente, en un cromatógrafo Waters 2690, bomba Waters 600E y un detector de absorbancia dual Waters 2487. Se utilizaron una precolumna (Supelco, 2 cm × 4.0 mm, 5 µm) y una Columna C 18 (10 µm, 3.9 × 300 mm).

La fase móvil que se empleó fue H_2O : acetonitrilo 1:1 a un flujo de 1.0 mL/min en modo isocrático. Para ajustar el pH a 3.50 se utilizó ácido acético 1N. Los eluyentes se monitorearon mediante un detector de UV empleando una longitud de onda de 210 nm.

Se preparó una curva de calibración con cinco patrones de calibración a diferentes concentraciones de malatión de entre 100 y 1000 ng/ml. La curva de calibración lineal se obtuvo trazando las áreas de los picos en función de la concentración.

8. Resultados y Discusión

8.1.- Mediciones de longitud con vernier electrónico y los programas LAS V4.5, tpsUtil32, tpsDig232

Las mediciones pueden tener una diferencia significativa entre ellas, siendo unas más precisas que otras, dependiendo de las herramientas que se utilicen para realizar dicha acción. Se utilizó un vernier electrónico para medir el ancho y largo de las larvas de *M. scalaris*, al igual se utilizaron en conjunto los programas LAS V4.5 (para tomar la foto en escala con ayuda del microscopio estereoscópico), tpsUtil32 (para convertir la foto en formato especial para tpsDig232) y tpsDig232 (para medir la larva a partir de la foto tomada por LAS V4.5 y transformada por tpsDig232) para medir las mismas larvas que se midieron con el vernier electrónico.

Se realizó una prueba t-student para dos muestras suponiendo varianzas similares, con una significancia del 95%, para identificar si había alguna diferencia significativa entre la toma de mediciones de la longitud y ancho de las larvas con el vernier y los programas antes mencionados, y determinar que herramienta de medición es la más adecuada para el estudio. Se tomaron en comparación 15 larvas del primer estadio para poder llevar a cabo el análisis estadístico (gráfica 1).

El uso de él vernier y los programas para medir las larvas no tuvieron ninguna diferencia significativa entre ellas, obteniendo un valor critico de **t** de 2.1447 (ver anexo 4). Por lo cual se eligió utilizar los programas LAS V4.5, tpsUtil32, tpsDig232, debido a su mayor practicidad.

Contar con otros métodos de medición puede ser de gran ayuda para estandarizar los protocolos que se utilizan para los experimentos de entomotoxicología. Los dos métodos más comunes para la obtención de las mediciones de largo y ancho larval consisten en: realizar el sacrificio de las larvas con agua caliente y agua fría. Para que el cuerpo de la larva se extienda completamente y tener una medición precisa se recomiendo el método con agua caliente (Amendt *et al*, 2007). En cuanto al método con agua fría no es tan recomendado debido a que afecta la parte de la medición de longitud de la larva haciendo que su cuerpo se encoja. Aunque las dos mediciones se pueden realizar por separado se llega a complicar para los análisis estadísticos, debido a la falta de muestras, ocasionando que no se logren repeticiones y no tener el seguimiento de una sola población al estar sacrificando a los organismos (Da Silva, 2017), por lo que se recomiendo la utilización de este método de medición con los programas anteriormente mencionados, siendo práctico, preciso y evita el sacrificio de la larva.

8.2.- Tasas de crecimiento de *M. scalaris* en medio de cultivo blanco

La tasa de crecimiento de longitud (gráfica 2) y ancho (gráfica 3) blanco, se determinaron como la pendiente de la relación de longitud y ancho (mm) de las larvas a través del tiempo, tomando el tiempo como horas grado acumulado (HGA).

Se graficaron los promedios de las medidas de longitud y ancho de cada grupo de 15 larvas en función del tiempo, la gráfica se ajustó a un modelo lineal.

La línea de crecimiento obtenida al graficar la longitud larval en función de HGA, la ecuación de la recta fue y = 0.0021x - 0.088, teniendo una tendencia lineal, con un coeficiente de determinación $r^2 = 0.9924$.

La línea de crecimiento obtenida al graficar el ancho larval en función de HGA, la ecuación de recta fue y = 0.0005x - 0.0505, su tendencia también fue lineal, con un coeficiente de determinación $r^2 = 0.9835$.

El estadio larval de *M. scalaris* en el medio de cultivo blanco tuvo una duración de 2880 HGA que es equivalente a 192 horas días acumulado (HDA); el estadio de pupa duro 3960 HGA (264 HDA) para las pupas donde emergieron imagos hembras, mientras que las pupas donde emergieron imagos machos fue de 4320 HGA (288 HDA).

Gráfica 2. Promedio de Longitud (mm) \pm desviación estándar de larvas de *M. scalaris* muestreadas a lo largo del tiempo (ADH) en intervalos de 24 horas a una temperatura de 25°C con una humedad relativa de 50 \pm 3% y fotoperiodo de 12 hrs de luz/obscuridad.

Gráfica 3. Promedio del Ancho (mm) \pm desviación estándar de larvas de *M. scalaris* muestreadas a lo largo del tiempo (ADH) en intervalos de 24 horas a una temperatura de 25°C con una humedad relativa de 50 \pm 3% y fotoperiodo de 12 hrs de luz/obscuridad.

Los resultados de la curva blanco se asemejan a los obtenidos por Koller y colaboradores en el 2003, teniendo similitud en el tiempo total del ciclo de vida desde larva hasta la emergencia de los imagos. Durando un total de 6840 HGA desde larva hasta la emergencia del imago hembra y 7200 HDA desde larva hasta la emergencia del imago nacho. Sin embargo, el tiempo de larva y pupa reportado por ellos difiere en los resultados obtenidos. Ellos obtuvieron un estadio larval de 165.2 HDA, un estadio de pupa de 266.4 HDA para las pupas que contenían imagos hembras y un estadio de pupa de 314.4 HDA para las pupas que contenían imagos hembras. También difiere de lo reportado por Zuha y Omar en 2014, que teniendo la misma temperatura de 25°C y el mismo fotoperiodo 12hrs L/O, el ciclo de vida de larva hasta la emergencia del imago fue de 304 HDA tanto para imago hembra y macho. Las diferencias reportadas en horas pueden deberse a factores como son: el medio de cultivo utilizado para la crianza y desarrollo de las larvas, así como el porcentaje de humedad relativa.

El promedio de la longitud mínima fue de 0.8 mm y la máxima alcanzada antes de entrar al estadio de pupa fue de 6.212 mm, en cuanto al ancho el mínimo fue de 0.192 mm y el máximo fue de 1.274 mm, estas medidas están dentro del rango reportado por estudios anteriores, siendo 7 mm la longitud máxima reportada. (Zanon, 1988., Greenberg y Wells, 1998., Zuha y Omar, 2014)

8.3.- Detección de la concentración mínima inhibitoria de malatión en huevos de *M. scalaris* y detección de la CL_{50} del malatión en el imago (hembra, macho) y larvas (primer estadio).

Se determinaron las CL_{50} de las larvas del primer estadio y los imagos (hembra, macho) (tabla 7) mediante un análisis PROBIT con el software IBM SPSS. Las larvas e imagos estuvieron expuestos vía alimentaria y por contacto al medio de cultivo con las diferentes concentraciones de malatión, durante 24 h a una temperatura de 25°C. Estas mismas condiciones se utilizaron para poder determinar la concentración mínima inhibitoria de malatión en los huevos, que fue de 0.271 µg/mL (ver anexo 5).

Las CL_{50} de las larvas de primer estadio fue de 1.993 µg/mL (ver anexo 6). Para los imagos hubo diferencia entorno al sexo. Las hembras fueron más resistentes al malatión teniendo una CL_{50} de 9.572 µg/mL (ver anexo7). Los machos fueron más susceptibles teniendo una CL_{50} de 9.016 µg/mL (ver anexo 8).

No existe reporte sobre las CL₅₀ del malatión en los diferentes estadios del ciclo de vida de *M. scalaris*, por lo que se determinaron estas concentraciones en los estadios de huevo, larva de primer estadio e imagos para poder realizar posteriormente los estudios de entomotoxicología adecuado

Estadio	Rango de concentraciones de medio de cultivo con malatión (µg/mL)	CL₅₀ de malatión (µg/mL)
Huevo	0.1 – 1ª	0.824
Larva	1 – 5 ^b	1.993
Imago hembra	1 – 15 ^a	9.572
Imago macho	1 – 15 ^a	9.016

Tabla 7. CL_{50} de malatión en diferentes estadios de *M. scalaris.* a=10 concentraciones, b=4 concentraciones.

La concentración mínima inhibitoria para la eclosión de los huevos fue necesaria para determinar el experimento de colocar huevos o larvas directamente en los medios de cultivo con malatión, y poder asemejar el experimento a situaciones reales, debido a que los imagos de *M. scalaris* pueden ovipositar sobre el cadáver, a diferencia de otras especies de importancia forense que ovipositan en la superficie del suelo y las larvas recién emergidas del huevo llegan al cadáver (Smith, 1986, Bostock, 2015). Aunque la CL_{90} inhibitoria para la eclosión de los huevos es de 1.521 µg/mL (ver anexo 5), se observó que ningún huevo eclosionaba a la concentración de 1 µg/mL, por lo que se eligió colocar directamente las larvas recién emergidas del huevo en los medios de cultivo con malatión, debido a que se querían utilizar concentraciones más altas de 1 µg/mL.

Se determinó la CL₅₀ en larvas del primer estadio para conocer qué tan resistente es la larva al malatión y no mueran conforme pasan los días. Teniendo estos datos se puede estimar las concentraciones de malatión en el medio de cultivo a las cuales las larvas crecerán y completarán su ciclo de vida hasta la emergencia del imago.

Los resultados de la CL₅₀ mostraron que el malatión fue más tóxico para los machos que para las hembras, esto se puede deber al dimorfismo sexual que presenta *M. scalaris*, siendo las hembras mucho más grandes que los machos, pudiendo soportar más cantidad del insecticida. Esta relación del dimorfismo se puede comparar con el tiempo de vida a diferentes temperaturas, siendo la hembra la que soporta mayores temperaturas, viviendo más días que el macho (Disney, 2008).

8.4.- Comparación de tasas de crecimiento de *M. scalaris* en medio de cultivo con malatión.

Para cada tratamiento del medio de cultivo con malatión se determinaron las tasas de crecimiento de longitud y ancho de larvas de *M. scalaris* como la pendiente de la relación del crecimiento (mm) durante el tiempo de desarrollo HGA (tabla 8 y 9). Se graficaron los promedios de las medidas de longitud y ancho de cada grupo de 15 larvas de cada tratamiento con malatión en función del tiempo versus el blanco, las gráficas se ajustaron a un modelo lineal (grafica 4 y 5).

Los tratamientos de 0.1, 0.3 y 0.5 μ g/mL tuvieron un ciclo de vida completo desde larva hasta la eclosión de los imagos. Las larvas del tratamiento de 1 μ g/mL llegaron al estadio de pupa, los imagos de estas pupas no emergieron. En cuanto a los tratamientos de 3 y 5 μ g/mL no llegaron al estadio de pupa, las larvas vivieron solo 4 días para el tratamiento de 3 μ g/mL y un día para el tratamiento de 5 μ g/mL (tabla 10)

Tratamiento	Ecuación de la recta	Pendiente	r ²	Longitud Máxima (mm)
Blanco	Y = 0.0021x - 0.088	0.00213	0.9924	6.212 ± 0.051
0.1 µg/mL	Y = 0.0022x - 0.1185	0.00215	0.9929	6.25 ± 0.171
0.3 µg/mL	Y = 0.0021x - 0.1396	0.00210	0.9924	6.553 ± 0.227
0.5 µg/mL	Y = 0.0019x - 0.0708	0.00194	0.9850	6.622 ± 0.297
1 μg/mL	Y = 0.0016x + 0.0879	0.00157	0.9852	6.041 ± 0.274
3 μg/mL	Y = 0.0012x + 0.314	0.00115	0.8921	2.142 ± 0.137

Tabla 8. Pendientes de las tasas de crecimiento de longitud y promedio longitud máxima alcanzado ± desviación estándar, antes de entrar al estadio de pupa.

El estadio larval de *M. scalaris* tuvo diferencias significativas conforme a las dosis administradas de malatión versus el blanco. Las tasas de crecimiento de longitud de 0.1 μ g/mL y 0.3 μ g/mL no tuvieron diferencias significativas de la longitud respecto al blanco, el tratamiento de 0.3 μ g/mL retraso 24 HDA a que la larva entrara en estadio de pupa en comparación al blanco.

La tasa de crecimiento blanco fue significativamente diferente a los tratamientos de 0.5, 1 y 3 μ g/mL (ver anexo 9), disminuyendo la longitud de la larva a través del tiempo, por lo que esto retardo 48 HDA (tratamiento de 0.5 μ g/mL) y 72HDA (tratamiento 1 μ g/mL) a que llegaran al estadio de pupa.

Las tasas de crecimiento del ancho de 0.1, 0.3 y 0.5 µg/mL tuvieron diferencias significativas versus al blanco (ver anexo10). Disminuyendo la talla del ancho a través del tiempo.

En los tratamientos que contenían 3 y 5 μ g/mL de malatión las larvas no sobrevivieron más de 4 días, debido a que estas concentraciones sobrepasan la CL₅₀ de larvas del primer estadio y al estar expuestas diariamente al medio la concentración absorbida aumentaba, provocando la muerte de la larva.

Tratamiento	Ecuación de la recta	Pendiente	r ²	Ancho Máximo (mm)
Blanco	Y = 0.0005x - 0.0505	0.00045	0.9835	1.274 ± 0.067
0.1 µg/mL	Y = 0.0004x - 0.0406	0.00043	0.9799	1.19 ± 0.067
0.3 µg/mL	Y = 0.0004x - 0.0262	0.00039	0.9844	1.206 ± 0.060
0.5 µg/mL	Y = 0.0003x + 0.004	0.00034	0.9860	1.216 ± 0.076

Tabla 9. Pendientes de las tasas de crecimiento de ancho y promedio de ancho máximo alcanzado ± desviación estándar, antes de entrar al estadio de pupa.

El malatión a concentraciones de 0.3, 0.5 y 1 µg/mL retrasó el crecimiento de longitud larval, pero aumentando el tiempo de estadio larval, al igual que la longitud máxima alcanzada antes de entrar al estadio de pupa (tabla 8). Debido a que la inhibición de la acetilcolinesterasa, provoca acumulación de la acetilcolina, ocasionando el retraso en el crecimiento de longitud y al mismo tiempo prologa el tiempo del estadio larval, provocando una mayor longitud en las larvas antes de entrar al estadio de pupa a comparación del blanco, debido a que estas necesitan llegar a un tamaño adecuado y contar con cierta cantidad de nutrientes que le servirán para mantenerse en todo su estadio de pupa (Pant y Katiyar 1983., Yan wei et al, 2010). Estos resultados coinciden con los únicos tres trabajos de entomotoxicología existentes que utilizaron malatión, observando el ciclo de vida de C. megacephala alimentada con hígado y tejido muscular dopados con malatión. Yan wei y colaboradores en el 2010 utilizaron hígado y músculo de conejo al igual que Liu en 2009, observaron que el malatión retrasaba de 12 a 36 HDA el crecimiento de la longitud larval y prolongaba el tiempo de estadio larval, las concentraciones de malatión utilizadas por cada uno fueron de 815.8 ng/g en músculo, 1.61.9 ng/g en hígado (Yan wei) y 556 ng/g en músculo, 140.72 ng/g en hígado (Liu). En cuanto a Rashid y colaboradores en el 2008 demostraron que el malatión extendió el estadio larval a 10 días en comparación con 7 días del control, alimentándolas con hígado de rata con malatión a una concentración de 1.892 µg/mg.

Gráfica 4. Comparación de curvas de crecimiento de longitud media (mm) de larvas de *Megaselia scalaris* muestreadas a lo largo del tiempo (ADH) en intervalos de 24 horas. Las larvas crecieron a 50% de humedad relativa a un fotoperiodo de 12:12 (L/O).

Gráfica 5. Grafica 3. Comparación Curvas de crecimiento de Anchura media (mm) de larvas de *Megaselia scalaris* muestreadas a lo largo del tiempo (ADH) en intervalos de 24 horas. Las larvas crecieron a 50% de humedad relativa a un fotoperiodo de 12:12 (L/O).

Los datos obtenidos de las HGA de *M. scalaris* con los diferentes tratamientos con malatión pueden emplearse posteriormente en la corrección de la estimación del IPM en presencia del malatión. Las HGA es una medida térmica, siendo el producto acumulado de tiempo y temperatura requerido para que el insecto pueda completar los distintos estadios de desarrollo de su ciclo de vida (Greenberg, 1991., Rodríguez, 2016). Este método considera la variable de la temperatura, haciendo más precisa la estimación del IPM en los casos forenses. Teniendo en cuenta las tasas de crecimiento de los insectos en diferentes temperaturas se han descrito diferentes cálculos utilizados para la estimación del IPM con las HGA (Yan Wei, 2010., Zuha y Omar 2014., Rodríguez, 2016).

Estos resultados de las HGA llegan a variar, aunque se haya trabajado con la misma especie, debido a diferentes factores entre los que destacan dos que son de gran importancia: la toma adecuada de datos de temperatura (tanto en el laboratorio como en el lugar de hallazgo del cadáver) y el medio de cultivo donde se desarrolla el insecto/larva, el cual puede afectar el desarrollo, aumentando o retrasando las HGA debido a la composición del medio. Por lo que se necesita llevar a cabo estudios donde se trabaje con la misma especie a diferentes temperaturas utilizando un medio de cultivo que se pueda estandarizar (que esté libre de sustancias que pueda alterar el desarrollo) y al mismo tiempo utilizar diferentes sustancias de interés forense para observar el comportamiento del desarrollo del insecto, con el fin de poder establecer una curva de crecimiento para cada especie y tener una estimación más precisa del IPM.

Tratamiento	Estadio	Estadio Larvas		Estadio Pupas		Imago
	HGA	HDA	HGA	HDA	HGA	HDA
Blanco	2880	192	3960	264	6840	456 ♂
			4320	288	7200 🌳	480 🌳
0.1 µg/mL	2880	192	3960	264	6840 ♂	456 ♂
			4320	288	7200 🌳	480 🌳
0.3 µg/mL	3240	216	3960	264	7200 ♂	480 ♂
			4320	288	7560 🎴	504 -
0.5 µg/mL	3600	240	3960	264	7560 🖒	504 ♂
			4320	288	7920 🎴	528 -
1 µg/mL	3960	264	No viable		No emer	gieron
3 µg/mL	1440 †	96 🕇	Sin pupa		Sin im	ago
5 µg/mL	360 <mark>†</mark>	24 †	Sin	pupa	Sin im	ago

Tabla 10. Ciclos de vida de *M. scalaris* a diferentes concentraciones de malatión

 \bigcirc =macho, \bigcirc = hembra, †=muerte de larvas, HGA=horas grado acumulado, HDA=horas días acumulado

8.5.- Cuantificación de malatión en larvas del tercer estadio con HPLC

Se presenta el Cromatograma previo a la cuantificación. Se inyectan 10 μ L de blanco para garantizar que no existe la presencia de malatión previo a la determinación analítica.

Se obtuvieron perfiles cromatográficos para muestras de larvas en donde se observa el tiempo de retención del malatión en 11.5 min. Teniendo un tiempo total de elución de 15 min.

Cromatograma 2. Extracto de larvas de *M. scalaris* inyectadas en el HPLC. Se observa el pico correspondiente al malatión en 11.5 min

La curva de calibración estándar de área de pico versus a la concentración de malatión se muestra en la Grafica 6.

El método para la medición de las larvas afecta la parte del análisis toxicológico, debido a que al introducir la larva en agua caliente el tóxico de interés se puede ver afectado por la temperatura, por lo que se recomienda sacrificar a las larvas en agua fría para que no se pierda el tóxico de interés y se logre una buena extracción (Campobasso *et al*, 2004 A).

La cantidad inicial con la que fueron dopados los medios en los que crecieron las larvas fue de 0.1 μ g/mL. La cantidad de malatión detectada en las larvas se presenta en la tabla 11.

Tiempo de vida de la larvas (ADH)	Cantidad de malatión (ng/g)
360	64.74
720	75.59
1080	65.09
1440	73.27
1800	16.61
2160	12.36
2520	11.85
2880	3.98

Tabla 11. Concentración de malatión por gramo de larva (ng/g) a lo largo del tiempo. Larvas crecidas en un tratamiento de 0.1 µg/mL.

8.6.- Comparación de longitud de pupas de *M. scalaris.*

Para las mediciones de la longitud se eligieron 15 pupas al azar, sin importar el sexo del imago que contenía la pupa. El tiempo del estadio de pupa del tratamiento blanco fue diferente para las que contenían imagos machos e imagos hembras. Las pupas que contenían imagos hembras tuvieron una duración de 4320 HGA (288 HDA), para las pupas que contenían imagos machos tuvieron una duración de 3960 HGA (264 HDA) (tabla 10). La longitud de la pupa se midió cada 24 h hasta la emergencia del imago, se observó que esta medida se mantuvo constante durante todo el estadio. Su longitud promedio fue de 3.583 mm (tabla 12). Estos resultados se asemejan a los obtenidos por Zuha y Omar en el 2014 quienes obtuvieron una longitud media de pupa de 3.15 ± 0.10 mm a la temperatura de 25°C, pero difiriendo en el tiempo del estadio que fue de 205 HDA.

Tratamiento	Longitud (mm)
Blanco	3.5830 ± 0.127
0.1 µg/mL	3.4795 ± 0.113
0.3 µg/mL	3.4398 ± 0.123
0.5 μg/mL	3.4201 ± 0.145

Tabla 12. Longitud promedio de pupas expuesta a diferentes concentraciones de malatión.

La medición de las pupas de los diferentes tratamientos con malatión tuvo el mismo procedimiento que la medición del tratamiento blanco, obteniendo la longitud media y el tiempo de estadio, que varía dependiendo del sexo del imago que contenía la pupa (tabla 10 y 12).

Se realizó una prueba ANOVA para la comparación de la longitud de las pupas de los diferentes tratamientos versus el blanco (ver anexo 11). Se determinó que no existe ninguna diferencia significativa entre la longitud de las pupas de los diferentes tratamientos versus el blanco, y el tiempo del estadio duró exactamente lo mismo en los diferentes tratamientos.

Richards y colaboradores en el 2012 reportaron diferentes métodos para estimar IPM en pupas. Entre las que destacan: la medición de la longitud, el peso, el desprendimiento de la capa externa de la pupa observando su morfología. Posteriormente, Feng y Liu en el 2014, estimaron la edad pupal de *M. scalaris* a diferentes temperaturas. Utilizaron el método de desprendimiento de capa externa de la pupa, reportando marcadores morfológicos a través del tiempo de su desarrollo (tabla 4). Los resultados obtenidos en este trabajo mostraron que no existía ninguna diferencia entre la longitud, sin embargo, podría haber una diferencia en su morfología.

8.7.- Comparación de morfología de *M. scalaris.*

Fernandez y colaboradores (2010) y Disney (1989,2008) describen las características morfológicas principales para la identificación taxonómica del género *Megaselia*. Las características *son: el* fémur del tercer par de apéndices se encuentra lateralmente aplanado, todas las tibias no presentan espinas (imagen 14), laala presenta cilios en la costa, las venas subcostales junto con la costa presentan una forma de trapecio invertido (imagen 13) (Disney, 1989, 2008., Fernández *et al.* 2010 B). La identificación taxonómica para la especie de *M. scalaris* se centra principalmente en sus aparatos reproductores que se diferencian demasiado de las demás especies de *Megaselia* por su estructura en forma de plumaje, tanto para la hembra como para el macho (imagen 15), presentan cerdas en la punta del tubo anal, en machos presentan las cerdas más grandes en el epandrium, en hembras el sexto terguito se extiende lateralmente, las alas presentan una segunda vena subcostal pequeña dentro del trapecio, a la altura del término de los cilios costales (imagen 13) (Brown y Oliver, 2007., Fernández *et al.* 2010 B., Bostock, 2015).

Imagen 13. Forma de trapecio en Ala de *M. scalaris*. Costa ciliar (a), segunda vena subcostal (b). Creación propia.

Imagen 14. Tercer par de apéndices de *M. scalaris*. Fémur (a), Tibia (b). Creación propia

Imagen 15. Aparatos reproductores de *M. scalaris.* Macho (A), epandrium (a), Hembra (B), sexto terguito (b). Creación propia.

Tratamiento	Imago	Imago	Ala	Ala
	Hembra	Macho	Hembra	Macho
Blanco	2.9053 ± 0.225	2.4453 ± 0.058	2.5533 ± 0.102	1.8700 ± 0.186
0.1 µg/mL	2.8833 ± 0.247	2.4313 ± 0.057	2.5540 ± 0.106	1.8873 ± 0.116
0.3 µg/mL	2.8920 ± 0.232	2.4460 ± 0.103	2.5466 ± 0.115	1.8846 ± 0.129
0.5 µg/mL	2.8826 ± 0.242	2.4453 ± 0.091	2.5600 ± 0.098	1.8780 ± 0.140

Tabla 13. Longitud promedio de imagos (hembra, macho) y alas de imagos a diferentes concentraciones de malatión.

Las características morfológicas principales de todos los imagos (hembra, machos) que emergieron de cada tratamiento se observaron con el microscopio estereoscópico, para determinar si el malatión afecto en la morfología (ver anexo 13 y 14). Las estructuras descritas anteriormente se encontraban en todos los imagos, sin tener ninguna anomalía, ni diferencia en la morfología

De cada tratamiento se eligieron al azar 15 imagos de cada sexo para medir su longitud de cuerpo completo y alas, para observar si el malatión afecto la longitud de los imagos. Se realizó una prueba de ANOVA (ver anexo12), la cual demuestra que no existe ninguna diferencia significativa en la longitud del cuerpo ni en sus alas de los imagos de ambos sexos (Tabla 13).

La descripción morfológica es de gran importancia para la identificación taxonómica de cada especie, para el género *Megaselia* es un tanto complicado,

debido a que la mayoría de las especies, aproximadamente 1400 (Disney, 2008), presentan características similares, por lo que las claves morfológicas no describen a la mayoría y son difíciles de utilizar en las diferentes etapas de sus estadios, lo que ha llevado a los entomólogos en las últimas décadas ha implementar nuevas formas de identificación de las especies, como es la identificación de ADN y ARN mitocondrial.

El genoma de *M. scalaris* ya ha sido secuenciado (Rasmussen y Noor, 2009., Boehme *et al*, 2010., Cho *et al*, 2013) por lo que su identificación con base en estos métodos es confiable. En los resultados obtenidos no se observó ninguna alteración para la morfología, sin embargo, cabe mencionar que puede existir la posibilidad que el malatión afecte a nivel molecular.

9. Conclusiones

El ciclo de vida de *M. scalaris* desde la eclosión del huevo hasta la emergencia de los imagos en el medio de cultivo blanco a una temperatura de 25°C, tuvo una duración de 480 HDA (imago hembra) y 456 HDA (imago macho).

La concentración mínima inhibitoria del malatión en huevos de *M. scalaris* es de $0.271 \mu g/mL$. El malatión a concentraciones mayores de $1 \mu g/mL$ no permite la eclosión de los huevos.

Las larvas del primer estadio, su CL_{50} de malatión es de 1.993 µg/mL, se observó que a concentraciones mayores a 1 µg/mL no llegan a concluir su ciclo de vida, muriendo en el estadio de larva o en el estadio de pupa.

El malatión en los imagos machos fue más tóxico teniendo una CL_{50} de 9.016 µg/mL, en cuanto las hembras, su CL_{50} fue de 9.572 µg/mL los machos.

Se demostró que el malatión retrasa la tasa de crecimiento larval, afectando tanto la longitud como el ancho de la larva. En cuanto al crecimiento de la longitud el malatión solo afecto significativamente en concentraciones de 0.5, 1 y 3 μ g/mL, a diferencia del crecimiento del ancho que fue afectado significativamente con concentraciones más bajas, las cuales fueron de 0.1, 0.3 y 0.5 μ g/mL.

El malatión no afecto el tiempo del estadio de pupa, ni la talla y morfología de los imagos que emergieron, pero el ciclo de vida total desde la eclosión del huevo hasta la emergencia de los imagos se vio afectado, retrasando de 24 a 48 h el ciclo. Por lo que se puede llegar a ver afectado la estimación del IPM si hay presencia de malatión.

10. Bibliografía

Abu-Qare, A. W., & Abou-Donia, M. B. (2001). Simultaneous determination of malathion, permethrin, DEET (N, N-diethyl-m-toluamide), and their metabolites in rat plasma and urine using high performance liquid chromatography. *Journal of Pharmaceutical and Biomedical Analysis*, *26*(2), 291-299.

Alvial Aravena, G. P. (2008). Determinación de metabolitos alquilfosfatos de pesticidas organofosforados utilizando derivatización asistida por microondas en soluciones acuosas y orina humana.

Amendt, J., Campobasso, C. P., Gaudry, E., Reiter, C., LeBlanc, H. N., & Hall, M. J. (2007). Best practice in forensic entomology—standards and guidelines. *International Journal of Legal Medicine*, *121*(2), 90-104.

Amendt, J., Krettek, R., & Zehner, R. (2004). Forensic entomology. *Naturwissenschaften*, *91*(2), 51-65.

Arellano-Aguilar, O., & Rendón, O. J. (2016). La huella de los plaguicidas en México. *E. Martínez. Greenpeace México AC Las Flores*, 35.

Arnaldos, M. I., Garcia, M. D., Romera, E., Presa, J. J., & Luna, A. (2005). Estimation of postmortem interval in real cases based on experimentally obtained entomological evidence. *Forensic Science International*, *149*(1), 57-65.

Baia, T. C., Gama, R. A., de Lima, L. A. S., & Lima, K. M. (2016). FTIR microspectroscopy coupled with variable selection methods for the identification of flunitrazepam in necrophagous flies. *Analytical Methods*, *8*(5), 968-972.

Bakr, R. N., Ramadan, R. H., El-Sawy, S., & Hussien, S. M. (2012). Ultrastructure of the midgut of the third larval instar of Chrysomya megacephala (Diptera: Calliphoridae) fed on malathion treated diet. *Egyptian Academic Journal of Biological Sciences, D. Histology & Histochemistry, 3*(1), 13-26.

Benner, D. B. (1985). Oocyte development and fecundity in Megaselia scalaris (Phoridae: Diptera). *International Journal of Entomology*, *27*(3), 280-288.

Boehme, P., Amendt, J., Disney, R. H. L., & Zehner, R. (2010). Molecular identification of carrion-breeding scuttle flies (Diptera: Phoridae) using COI barcodes. *International Journal of Legal Medicine*, *124*(6), 577-581.

Bostock, E. (2015). *Megaselia scalaris (Diptera: Phoridae), a fly of forensic interest: advances in chronobiology and biology* (Doctoral dissertation, University of Huddersfield).

Bourel, B., Tournel, G., Hedouin, V., Deveaux, M., Goff, M. L., & Gosset, D. (2001). Morphine extraction in necrophagous insects remains for determining ante-mortem opiate intoxication. *Forensic Science International*, *120*(1-2), 127-131.

Brown, B. V., & Oliver, H. (2007). First records of Megaselia scalaris (Loew) and M. spiracularis Schmitz (Diptera: Phoridae) from New Zealand, with additional information on other worldwide species. *New Zealand Entomologist*, *30*(1), 85-87.

Byrd, J. H., & Castner, J. L. (2001). Insects of forensic importance. *Forensic entomology: The Utility of Arthropods in Legal Investigations*, 43-79.

Campobasso, C. P., Gherardi, M., Caligara, M., Sironi, L., & Introna, F. (2004) (A). Drug analysis in blowfly larvae and in human tissues: a comparative study. *International Journal of Legal Medicine*, *118*(4), 210-214.

Campobasso, C. P., Henry, R., Disney, L., & Introna, F. (2004) (B). A case of Megaselia scalaris (Loew)(Dipt., Phoridae) breeding in a human corpse. *Anil Aggrawal's Internet Journal of Forensic Medicine and Toxicology*, *5*(1), 3-5.

Carvalho, L. M., Linhares, A. X., & Trigo, J. R. (2001). Determination of drug levels and the effect of diazepam on the growth of necrophagous flies of forensic importance in southeastern Brazil. *Forensic Science International*, *120*(1-2), 140-144.

Cho, S. Y., Suh, K. I., & Bae, Y. J. (2013). DNA barcode library and its efficacy for identifying food-associated insect pests in K orea. *Entomological Research*, *43*(5), 253-261.

Da Silva, E. I., Wilhelmi, B., & Villet, M. H. (2017). Forensic entomotoxicology revisited—towards professional standardisation of study designs. *International Journal of Legal Medicine*, *131*(5), 1399-1412.

De Carvalho, L. M. L., Linhares, A. X., & Palhares, F. A. B. (2012). The effect of cocaine on the development rate of immatures and adults of Chrysomya albiceps and Chrysomya putoria (Diptera: Calliphoridae) and its importance to postmortem interval estimate. *Forensic Science International*, 220(1-3), 27-32.

Disney, R. H. L. (1989). *Scuttle flies: Diptera: Phoridae: genus Megaselia* (Vol. 10, No. 8). Royal Entomological Society.

Disney, R. H. L. (2008). Natural history of the scuttle fly, Megaselia scalaris. *Annu. Rev. Entomol.*, *53*, 39-60.

Eddleston, M., & Phillips, M. R. (2004). Self poisoning with pesticides. *British Medical Journal.* 328(7430), 42-44.

Fathy, H. M., Attia, R. A., Yones, D. A., Eldeek, H. E., Tolba, M. E., & Shaheen, M. S. (2008). Effect of codeine phosphate on developmental stages of forensically important calliphoride fly: chrysomya albiceps. *Mansoura Journal of Forensic Medicine and Clinical Toxicology*, *16*(1), 41-59.

Feng, D. X., & Liu, G. C. (2014). Pupal age estimation of forensically important Megaselia scalaris (Loew)(Diptera: Phoridae). *Forensic Science International*, *236*, 133-137.

Fernández, D. G., Mancipe, L. C., & Fernández, D. C. (2010) (A). Intoxicación por organofosforados. *Revista Medicina*, *18*(1), 84-92.

Fernández, G., Álvarez, S., & Moraga, Q. (2010) (B). Primera cita de Megaselia scalaris (Loew, 1866), (Diptera: Phoridae) en Apis mellifera iberiensis. *Revista Ibero-Latinoamericana de Parasitología*, *69*(1), 72-76.

Greenberg, B. (1991). Flies as forensic indicators. *Journal of Medical Entomology*, 28(5), 565-577.

Greenberg, B., & Wells, J. D. (1998). Forensic use of Megaselia abdita and M. scalaris (Phoridae: Diptera): case studies, development rates, and egg structure. *Journal of Medical Entomology*, *35*(3), 205-209.

Goff, M. L., Brown, W. A., & Omori, A. I. (1992). Preliminary observations of the effect of methamphetamine in decomposing tissues on the development rate of Parasarcophaga ruficornis (Diptera: Sarcophagidae) and implications of this effect on the estimations of postmortem intervals. *Journal of Forensic Science*, *37*(3), 867-872.

Goff, M. L., Omori, A. I., & Goodbrod, J. R. (1989). Effect of cocaine in tissues on the development rate of Boettcherisca peregrina (Diptera: Sarcophagidae). *Journal of Medical Entomology*, *26*(2), 91-93.

Guidelines for Legislation on the Control of Pesticides. Food and Agriculture Organization of the United Nations. 1989. Recuperado de <u>http://www.fao.org/agriculture/crops/mapa-tematica-del-sitio/theme/pests/jmps/es/</u>. Fecha de consulta, 28/12/2019.

Gunatilake, K., & Goff, L. L. (1989). Detection of organophosphate poisoning in a putrefying body by analyzing arthropod larvae. *Journal of Forensic Science*, *34*(3), 714-716.

Gunn, J. A., Shelley, C., Lewis, S. W., Toop, T., & Archer, M. (2006). The determination of morphine in the larvae of Calliphora stygia using flow injection analysis and HPLC with chemiluminescence detection. *Journal of Analytical Toxicology*, *30*(8), 519-523.

Hédouin, V., Bourel, B., Bécart, A., Tournel, G., Deveaux, M., Goff, M. L., & Gosset, D. (2001). Determination of drug levels in larvae of Protophormia terraenovae and Calliphora vicina (Diptera: Calliphoridae) reared on rabbit carcasses containing morphine. *Journal of Forensic Science*, *46*(1), 12-14.

INEGI. Anuario estadístico y geográfico de la Ciudad de México 2017. 164-211

Koller, W. W., Andreotti, R., Zanon, A. M., Gomez, A., & Barros, J. C. (2003). *A mosca Megaselia scalaris (Loew)(Diptera: Phoridae), parasita do carrapato bovino Boophilus microplus (Canestrini): uma revisão*. Campo Grande: Embrapa Gado de Corte.

Liu, X., Shi, Y., Wang, H., & Zhang, R. (2009). Determination of malathion levels and its effect on the development of Chrysomya megacephala (Fabricius) in South China. *Forensic Science International*, *192*(1-3), 14-18.

López Piña, G. (2020). Detección de cocaína y su efecto en el desarrollo larval de Megaselia scalaris Loew, 1886 (Díptera: Phoridae). Tesis en proceso.

Macieira, O. J. D., Chaud-Netto, J., & Zanon, A. M. (1983). Oviposition rate and relative viability of descendants from couples of Megaselia scalaris (Diptera: Phoridae) reared in different experimental conditions. *Revista Brasileira de Biologia*. 42(2), 32-44.

Magaña, C. (2001). La entomología forense y su aplicación a la medicina legal. Data de la muerte. *Boletín de la Sociedad Entomológica Aragonesa*, *28*(49), 161.

Magni, P. A., Pacini, T., Pazzi, M., Vincenti, M., & Dadour, I. R. (2014). Development of a GC–MS method for methamphetamine detection in Calliphora vomitoria L.(Diptera: Calliphoridae). *Forensic Science International*, *241*, 96-101.

Manzato, A. J., & Tadei, W. J. (2004). Marking with pigments for identification of flies in experimental populations of Megaselia scalaris Loew. *Brazilian Journal of Biology*, *64*(2), 251-256.

Mégnin, P. (1894). La faune des cadavres: Application de l'entomologie a la médicine légale (Vol. 101). Masson & Gauthier-Villars.

Mullany, C., Keller, P. A., Nugraha, A. S., & Wallman, J. F. (2014). Effects of methamphetamine and its primary human metabolite, p-hydroxymethamphetamine, on the development of the Australian blowfly Calliphora stygia. *Forensic Science International*, *241*, 102-111.

Nolte, K. B., Pinder, R. D., & Lord, W. D. (1992). Insect larvae used to detect cocaine poisoning in a decomposed body. *Journal of Forensic Science*, *37*(4), 1179-1185.

Nuorteva, P., & Nuorteva, S. L. (1982). The fate of mercury in sarcosaprophagous flies and in insects eating them. *Ambio*, 34-37.

Oliveira, J. S., Baia, T. C., Gama, R. A., & Lima, K. M. (2014). Development of a novel non-destructive method based on spectral fingerprint for determination of abused drug in insects: An alternative entomotoxicology approach. *Microchemical Journal*, *115*, 39-46.

Pant, R., & Katiyar, S. K. (1983). Effect of malathion and acetylcholine on the developing larvae of Philosamia ricini (Lepidoptera: Saturniidae). *Journal of Biosciences*, *5*(1), 89-95.

Pimentel, L. R., Gámiz, A. W., Santamaría, R. O., & Romo, R. S. (2005). Panorama epidemiológico de las intoxicaciones en México. *Medicina Interna de México*, *21*(2), 123-132.

Pitarch Arquimbau, M. E. (2001). Desarrollo de metodología analítica para la determinación de plaguicidas organofosforados y organoclorados en muestras biológicas humanas. *Universidad Jaime I. España*, 4, 109-121.

Ponce, A. C., Morell, A. A., & Bozal, F. F. (2014). La entomología como ciencia forense: desde Sung Tz'u a las granjas de cuerpos. *Gaceta internacional de ciencias forenses*, (10), 13-28.

Pounder, D. J. (1991). Forensic entomo-toxicology. *Journal of the Forensic Science Society*, 31(4), 469-472.

Rashid, R. A., Osman, K., Ismail, M. I., Zuha, R. M., & Hassan, R. A. (2008). Determination of malathion levels and the effect of malathion on the growth of Chrysomya megacephala (Fabricius) in malathion-exposed rat carcass. *Trop. Biomedicine*, *25*(3), 184-190.

Rasmussen, D. A., & Noor, M. A. (2009). What can you do with $0.1 \times$ genome coverage? A case study based on a genome survey of the scuttle fly Megaselia scalaris (Phoridae). *Biomedicine Genomics*, *10*(1), 382.

Reibe, S., & Madea, B. (2010). Use of Megaselia scalaris (Diptera: Phoridae) for post-mortem interval estimation indoors. *Parasitology Research*, *106*(3), 637-640.

Richards, C. S., Simonsen, T. J., Abel, R. L., Hall, M. J., Schwyn, D. A., & Wicklein, M. (2012). Virtual forensic entomology: improving estimates of minimum postmortem interval with 3D micro-computed tomography. *Forensic Science International*, *220*(1-3), 251-264.

Rodríguez, J. A. N. (2016). Métodos de casos para el aprendizaje de la Entomología Forense. *Revista Científica de FAREM-Estelí*, (19), 33-45.

Rose R., Hodgson E., Roe M. 1999. Pesticides chapter in Toxicology, Marquadt Ed. 28, 663-697.

Sadler, D. W., Robertson, L., Brown, G., Fuke, C., & Pounder, D. J. (1997). Barbiturates and analgesics in Calliphora vicina larvae. *Journal of Forensic Science*, *42*(3), 481-485.

Sánchez, J., Ettiene, G., Buscema, I., & Medina, D. (2005). Persistencia de los insecticidas organofosforados malathion y chlorpiryphos en guayaba (Psidium guajava L.). *Revista de la Facultad de Agronomía*, *22*(1), 62-71.

Schrader G. 1952. Die entwicklung neuer insektizide auf grundlage von organischen fluor. Und phosphorverbindungen. Weinheim: Verlag Chemie. 60, 43-49.

Smith, K. G. (1973). Insects and other arthropods of medical importance. *Insects and Other Arthropods of Medical Importance.*

Smith, K. G. (1986). A manual of forensic entomology. Cornell Univ Pr (Feb. 1987). 205.

Sohal, R. S., & Lamb, R. E. (1977). Intracellular deposition of metals in the midgut of the adult housefly, Musca domestica. *Journal of Insect Physiology*, *23*(11-12), 1349-1354.

Solís Esquivel, E. (2014). *Estudio entomotoxicológico de paratión, carbofurano y cocaína en larvas de mosca carroñera de interés médico forense en el estado de Nuevo León* (Doctoral dissertation, Universidad Autónoma de Nuevo León).

Thompson, T. S., Treble, R. G., Magliocco, A., Roettger, J. R., & Eichhorst, J. C. (1998). Case study: fatal poisoning by malathion. *Forensic Science International*, *95*(2), 89-98.

Vega, G. (1985). Evaluación epidemiológica de riesgos causados por agentes químicos ambientales. In *Toxicología IV: Carcinogenesis química*. Organización Panamericana de la Salud. Centro Panamericano de Ecología Humana y Salud. OPS, OMS, 69.

Villet, M. H., Richards, C. S., & Midgley, J. M. (2009). Contemporary precision, bias and accuracy of minimum post-mortem intervals estimated using development of carrion-feeding insects. In *Current Concepts in Forensic Entomology*. Springer, Dordrecht. 109-137.

Voss, S. C., Forbes, S. L., & Dadour, I. R. (2008). Decomposition and insect succession on cadavers inside a vehicle environment. *Forensic Science, Medicine, and Pathology*, *4*(1), 22-32.

Weselak, M., Arbuckle, T. E., & Foster, W. (2007). Pesticide exposures and developmental outcomes: the epidemiological evidence. *Journal of Toxicology and Environmental Health, Part B*, *10*(1-2), 41-80.

Wood, M., Laloup, M., Pien, K., Samyn, N., Morris, M., Maes, R. A. A., & De Boeck, G. (2003). Development of a rapid and sensitive method for the quantitation of benzodiazepines in Calliphora vicina larvae and puparia by LC-MS-MS. *Journal of Analytical Toxicology*, *27*(7), 505-512.

World Health Organization. (2010). The WHO recommended classification of pesticides by hazard and guidelines to classification 2009.

Yan-Wei, S., Xiao-Shan, L., Hai-Yang, W., & Run-Jie, Z. (2010). Effects of malathion on the insect succession and the development of Chrysomya megacephala (Diptera: Calliphoridae) in the field and implications for estimating postmortem interval. *The American Journal of Forensic Medicine and Pathology*, *31*(1), 46-51.

Zanon, A. M. (1998). Análise morfométrica em pupas de Megaselia scalaris (Diptera, Phoridae). Ciencia e Cultura, Sao Paulo, v.40, n. 7 (supl). 785.

Zuha, R. M., & Omar, B. (2014). Developmental rate, size, and sexual dimorphism of Megaselia scalaris (Loew) (Diptera: Phoridae): its possible implications in forensic entomology. *Parasitology Research*, *113*(6), 2285-2294.

Zulaikha, A. S., & Zuha, R. M. (2016). Nocturnal oviposition of the forensic scuttle fly, Megaselia scalaris (Loew) (Diptera: Phoridae) indoors. *Egyptian Journal of Forensic Sciences*, *6*(4), 489-491.

11. Anexo

Ingredientes	Para 250 mL de agua	Para 500 mL de agua
Harina	26.4 g	52.8 g
Azúcar	33.75 g	67.5 g
Levadura	18.125 g	36.25 g
Agar	2.5 g	5 g
Nipagin 6.6x10 ⁻⁴ M	3 gotas	6 gotas
Propionato de sodio 0.008M	5 mL	10 mL

1.- Composición del medio de cultivo.

2.- Preparación del medio de cultivo utilizado para Megaselia scalaris

- El agua se pone a calentar en una parrilla a 200°C, una vez que esta tibia, se agrega la harina, azúcar, levadura y el agar.
- La mezcla se tiene que mantener todo el tiempo en movimiento ya que se puede quemar muy fácilmente y tiende a hacerse espuma.
- Cuando la mezcla se vea de una consistencia viscosa se retira de la parrilla, sin dejar de mover.
- Se agrega el propionato de sodio y el nipagini (no importa si aún está caliente la mezcla)
- Se deja solidificar por un día.
- Antes de pasar las moscas al medio, se tiene que espolvorear muy poca levadura sobre el medio.

3.- Propiedades físico-químicas del malatión

Clasificación	Organofosforado
Fórmula química	$C_{10}H_{19}O_6PS_2$
Peso molecular	330.36
Punto de fusión	2.9 °C
Punto de ebullición	156-157°C
Densidad	1,23 g/cm³ a 25°C
Solubilidad	soluble en solventes orgánicos; poco soluble en éter de petróleo y en ciertos aceites minerales
Presión de vapor	5.3 mPa
Aspecto	Líquido incoloro en estado puro o líquido color café oscuro a amarillo dependiendo su estado de pureza, con olor a derivado fosfórico

4.- Prueba t-student para dos muestras suponiendo varianzas similares entre las mediciones de longitud larval, calculado con el software Microsoft Excel.

	vernier	programas
Media	0.79733333	0.79666667
Varianza	0.00042095	0.00038095
Observaciones	15	15
Coeficiente de correlación de Pearson	0.9394117	
Diferencia hipotética de las medias	0	
Grados de libertad	14	
Estadístico t	0.36689969	
P(T<=t) una cola	0.35959001	
Valor crítico de t (una cola)	1.76131012	
P(T<=t) dos colas	0.71918001	
Valor crítico de t (dos colas)	2.14478668	

5.- Concentración mínima inhibitoria de malatión para la eclosión de huevos de *Megaselia scalaris*, calculado con el software IBM SPSS.

Probabilidad		Estimación	Límite inferior	Límite superior
PROBIT	.010	0.271	0.176	0.349
	.020	0.309	0.210	0.387
	.030	0.335	0.235	0.414
	.040	0.357	0.256	0.435
	.050	0.375	0.274	0.453
	.060	0.392	0.290	0.469
	.070	0.407	0.305	0.484
	.080	0.421	0.320	0.497
	.090	0.434	0.333	0.510
	.100	0.447	0.346	0.521
	.150	0.502	0.405	0.574
	.200	0.551	0.458	0.621
	.250	0.597	0.508	0.664
	.300	0.641	0.558	0.707
	.350	0.685	0.606	0.751
	.400	0.730	0.655	0.797
	.450	0.776	0.703	0.846
	.500	0.824	0.752	0.900
	.550	0.875	0.802	0.962
	.600	0.930	0.853	1.031
	.650	0.991	0.906	1.112
	.700	1.059	0.963	1.208
	.750	1.138	1.027	1.324
	.800	1.232	1.100	1.468
	.850	1.352	1.189	1.660
	.900	1.521	1.310	1.941
	.910	1.564	1.341	2.016
	.920	1.613	1.375	2.102
	.930	1.669	1.413	2.199

95% de límites de confianza para CL_{50} huevos

	.940	1.733	1.457	2.314
	.950	1.809	1.508	2.453
	.960	1.903	1.571	2.627
	.970	2.025	1.652	2.858
	.980	2.199	1.765	3.197
	.990	2.506	1.958	3.818

		Se ha encontrado la solución
	Número de iteraciones	óptima
PROBIT	18	Sí

						Intervalo de confianza de 95 %	
							Límite
Parámetro		Estimación	Desv. Error	Z	Sig.	Límite inferior	superior
PROBIT ^a	CL ₅₀	4.817	0.667	7.217	0.000	3.509	6.125
	huevos						
	Intersección	0.405	0.106	3.832	0.000	0.299	0.510

a. Modelo PROBIT: PROBIT(p) = Intersección + BX (Las covariables X se transforman utilizando el logaritmo 10.000 base.)

		CL ₅₀ huevos	Respuesta natural
PROBIT	CL ₅₀ huevos	0.446	0.719
	Respuesta natural	0.019	0.002

Covarianzas (abajo) y correlaciones (arriba).

Estimación de tasa de respuesta natural

	Estimación	Desv. Error
PROBIT	0.000	0.040

		Chi-cuadrado	gl ^b	Sig.
PROBIT	Prueba de bondad de ajuste de Pearson	5.901	24	1.000ª

a. Puesto que el nivel de significación es mayor que .050, no se utiliza el factor de heterogeneidad en el cálculo de los límites de confianza.

b. Las estadísticas basadas en casos individuales difieren de las estadísticas basadas en casos agregados.

6.- CL₅₀ de malatión en larvas de primer estadio de *Megaselia scalaris*, calculado con el software IBM SPSS.

	95% de límites de confianza para CL_{50} larvas de prestadio				
Probabilidad		Estimación	Límite inferior	Límite superior	
PROBIT	.010	0.167	0.049	0.319	
	.020	0.223	0.074	0.399	
	.030	0.269	0.097	0.459	
	.040	0.308	0.119	0.511	
	.050	0.345	0.140	0.557	
	.060	0.380	0.161	0.600	
	.070	0.414	0.182	0.641	
	.080	0.446	0.203	0.679	
	.090	0.478	0.224	0.716	
	.100	0.509	0.246	0.752	
	.150	0.660	0.358	0.923	
	.200	0.813	0.483	1.088	
	.250	0.971	0.622	1.256	
	.300	1.140	0.778	1.433	
	.350	1.322	0.954	1.625	
	.400	1.522	1.153	1.840	
	.450	1.744	1.375	2.088	
	.500	1.993	1.622	2.387	
	.550	2.279	1.891	2.758	
	.600	2.611	2.183	3.234	
	.650	3.006	2.505	3.856	
	.700	3.486	2.867	4.686	
	.750	4.091	3.293	5.826	
	.800	4.889	3.819	7.469	

.850	6.017	4.518	10.025
.900	7.813	5.557	14.580
.910	8.322	5.840	15.968
.920	8.912	6.162	17.630
.930	9.610	6.535	19.660
.940	10.454	6.978	22.209
.950	11.508	7.518	25.527
.960	12.882	8.204	30.070
.970	14.798	9.132	36.789
.980	17.794	10.525	48.120
.990	23.793	13.156	73.518

		Se ha encontrado la solución
	Número de iteraciones	óptima
PROBIT	11	Sí

						Intervalo de confianza de 95 %	
Parámetro		Estimación	Desv. Error	Z	Sig.	Límite inferior	Límite superior
PROBIT ^a	concentración	2.160	0.352	6.143	0.000	1.471	2.850
	Intersección	-0.647	0.150	-4.314	0.000	-0.797	-0.497

a. Modelo PROBIT: PROBIT(p) = Intersección + BX (Las covariables X se transforman utilizando el logaritmo 10.000 base.)

		Chi-cuadrado	gl ^b	Sig.
PROBIT	Prueba de bondad de ajuste de Pearson	17.214	10	.070ª

a. Puesto que el nivel de significación es mayor que .050, no se utiliza el factor de heterogeneidad en el cálculo de los límites de confianza.

b. Las estadísticas basadas en casos individuales difieren de las estadísticas basadas en casos agregados.

Recuentos de casilla y residuos

Número		concentración	Número de sujetos	Respuestas observadas	Respuestas esperadas	Residuo	Probabilidad
PROBIT	1	0.000	20	7	5.175	1.825	0.259
	2	0.000	20	7	5.175	1.825	0.259
	3	0.000	20	7	5.175	1.825	0.259
	4	0.301	20	8	10.024	-2.024	0.501
	5	0.301	20	9	10.024	-1.024	0.501
-	6	0.301	20	8	10.024	-2.024	0.501
	7	0.477	20	11	12.986	-1.986	0.649
	8	0.477	20	9	12.986	-3.986	0.649
	9	0.477	20	10	12.986	-2.986	0.649
	10	0.699	20	18	16.117	1.883	0.806
	11	0.699	20	19	16.117	2.883	0.806
	12	0.699	20	19	16.117	2.883	0.806

7.- CL₅₀ de malatión en Imago Hembra de *Megaselia scalaris,* calculado con el software IBM SPSS.

95% de límites de confianza para CL₅₀ Imago Hembra

Probabilidad		Estimación	l ímite inferior	l ímite superior
	010	E 092	4 727	6 027
FRUDIT	.010	0.002	4.737	0.927
	.020	6.414	5.122	7.215
	.030	6.634	5.382	7.405
	.040	6.805	5.586	7.551
	050	0.040	- 7-7	7.070
	.050	6.946	5.757	7.673
	060	7.070	5 007	7 770
	.000	7.070	5.907	1.110
	070	7 179	6 041	7 872
	.0.0		0.011	1.012
	.080	7.279	6.164	7.957
	.090	7.371	6.278	8.035
	.100	7.456	6.384	8.108
	450	7.004	0.044	0.400
	.150	7.821	6.841	8.420
	200	9 1 2 /	7 005	8 690
	.200	0.124	1.225	0.000

.250	8.393	7.568	8.914
.300	8.642	7.885	9.134
.350	8.879	8.187	9.348
.400	9.111	8.477	9.563
.450	9.340	8.760	9.784
.500	9.572	9.038	10.018
.550	9.809	9.311	10.272
.600	10.056	9.583	10.553
.650	10.318	9.854	10.871
.700	10.602	10.129	11.237
.750	10.917	10.416	11.668
.800	11.278	10.726	12.187
.850	11.714	11.082	12.842
.900	12.288	11.529	13.737
.910	12.430	11.637	13.966
.920	12.587	11.756	14.219
.930	12.762	11.886	14.503
.940	12.960	12.033	14.828
.950	13.189	12.202	15.209
.960	13.464	12.402	15.671
.970	13.810	12.651	16.260
.980	14.283	12.988	17.080
.990	15.063	13.533	18.462

		Se ha encontrado la solución
	Número de iteraciones	óptima
PROBIT	27	Sí

						Intervalo de confianza de 95 %	
Parámetro		Estimación	Desv. Error	Z	Sig.	Límite inferior	Límite superior
PROBIT ^a	concentración	11.814	1.968	6.003	0.000	7.957	15.671
	Intersección	-11.590	1.977	-5.863	0.000	-13.566	-9.613

a. Modelo PROBIT: PROBIT(p) = Intersección + BX (Las covariables X se transforman utilizando el logaritmo 10.000 base.)

		concentración	Respuesta natural
PROBIT	concentración	3.873	0.195
	Respuesta natural	0.007	0.000

Covarianzas (abajo) y correlaciones (arriba).

Estimación de tasa de respuesta natural

	Estimación	Desv. Error
PROBIT	0.034	0.017

		Chi-cuadrado	gl ^b	Sig.
PROBIT	Prueba de bondad de ajuste de Pearson	12.687	27	.991ª

a. Puesto que el nivel de significación es mayor que .050, no se utiliza el factor de heterogeneidad en el cálculo de los límites de confianza.

b. Las estadísticas basadas en casos individuales difieren de las estadísticas basadas en casos agregados.

Recuentos de casilla y residuos

Número		concentración	Número de sujetos	Respuestas observadas	Respuestas esperadas	Residuo	Probabilidad
PROBIT	1	0.000	10	0	0.343	-0.343	0.034
	2	0.000	10	0	0.343	-0.343	0.034
	3	0.000	10	0	0.343	-0.343	0.034
	4	0.301	10	0	0.343	-0.343	0.034
	5	0.301	10	0	0.343	-0.343	0.034
	6	0.301	10	0	0.343	-0.343	0.034
	7	0.477	10	1	0.343	0.657	0.034
	8	0.477	10	0	0.343	-0.343	0.034
	9	0.477	10	0	0.343	-0.343	0.034
	10	0.699	10	1	0.347	0.653	0.035
	11	0.699	10	1	0.347	0.653	0.035
	12	0.699	10	1	0.347	0.653	0.035
	13	0.903	10	3	2.069	0.931	0.207
	14	0.903	10	2	2.069	-0.069	0.207
	15	0.903	10	3	2.069	0.931	0.207
	16	0.954	10	4	3.974	0.026	0.397
	17	0.954	10	4	3.974	0.026	0.397

18	0.954	10	4	3.974	0.026	0.397
19	1.000	10	5	6.029	-1.029	0.603
20	1.000	10	5	6.029	-1.029	0.603
21	1.000	10	5	6.029	-1.029	0.603
22	1.041	10	7	7.704	-0.704	0.770
23	1.041	10	8	7.704	0.296	0.770
24	1.041	10	7	7.704	-0.704	0.770
25	1.079	10	9	8.812	0.188	0.881
26	1.079	10	9	8.812	0.188	0.881
27	1.079	10	10	8.812	1.188	0.881
28	1.176	10	10	9.898	0.102	0.990
29	1.176	10	10	9.898	0.102	0.990
30	1.176	10	10	9.898	0.102	0.990

8.- CL₅₀ de malatión en Imago Macho de *Megaselia scalaris,* calculado con el software IBM SPSS.

Probabilidad		Estimación	Límite inferior	Límite superior
PROBIT	.010	6.255	4.997	7.013
	.020	6.528	5.327	7.246
	.030	6.708	5.547	7.399
	.040	6.847	5.718	7.516
	.050	6.962	5.861	7.613
	.060	7.061	5.986	7.697
	.070	7.149	6.097	7.771
	.080	7.229	6.198	7.838
	.090	7.303	6.291	7.900
	.100	7.371	6.378	7.957
	.150	7.661	6.750	8.202
	.200	7.899	7.059	8.404
	.250	8.109	7.332	8.584

95% de límites de confianza para CL₅₀ Imago Macho

.300	8.303	7.584	8.752
.350	8.486	7.823	8.914
.400	8.664	8.052	9.075
.450	8.840	8.276	9.238
.500	9.016	8.497	9.408
.550	9.196	8.717	9.589
.600	9.383	8.936	9.787
.650	9.579	9.157	10.008
.700	9.791	9.382	10.262
.750	10.025	9.614	10.561
.800	10.292	9.863	10.924
.850	10.612	10.142	11.383
.900	11.029	10.484	12.011
.910	11.132	10.566	12.170
.920	11.245	10.655	12.347
.930	11.371	10.752	12.546
.940	11.513	10.862	12.772
.950	11.677	10.986	13.037
.960	11.873	11.134	13.356
.970	12.118	11.316	13.762
.980	12.452	11.560	14.322
.990	12.998	11.952	15.258

	Número de iteraciones	Se ha encontrado la solución óptima
PROBIT	26	Sí

						Intervalo de confianza de 95 %	
Parámetro		Estimación	Desv. Error	Z	Sig.	Límite inferior	Límite superior
PROBIT ^a	concentración	14.647	2.513	5.829	0.000	9.722	19.572
	Intersección	-13.988	2.475	-5.651	0.000	-16.463	-11.513
a. Modelo PROBIT: PROBIT(p) = Intersección + BX (Las covariables X se transforman utilizando el logaritmo 10.000							

a. Modelo PROBIT: PROBIT(p) = Intersección + BX (Las covariables X se transforman utilizando el logaritmo 10.000 base.)

		concentración	Respuesta natural
PROBIT	concentración	6.314	0.168
	Respuesta natural	0.010	0.001

Covarianzas (abajo) y correlaciones (arriba).

Estimación de tasa de respuesta natural^a

	Estimación	Desv. Error
PROBIT	0.068	0.023

		Chi-cuadrado	gl ^b	Sig.
PROBIT	Prueba de bondad de ajuste de Pearson	16.201	27	.949ª

a. Puesto que el nivel de significación es mayor que .050, no se utiliza el factor de heterogeneidad en el cálculo de los límites de confianza.

b. Las estadísticas basadas en casos individuales difieren de las estadísticas basadas en casos agregados.

Recuentos de casilla y residuos

Número		concentración	Número de sujetos	Respuestas observadas	Respuestas esperadas	Residuo	Probabilidad
PROBIT	1	0.000	10	0	0.683	-0.683	0.068
	2	0.000	10	0	0.683	-0.683	0.068
	3	0.000	10	0	0.683	-0.683	0.068
	4	0.301	10	0	0.683	-0.683	0.068
	5	0.301	10	0	0.683	-0.683	0.068
	6	0.301	10	0	0.683	-0.683	0.068
	7	0.477	10	1	0.683	0.317	0.068
	8	0.477	10	1	0.683	0.317	0.068
	9	0.477	10	0	0.683	-0.683	0.068
	10	0.699	10	2	0.683	1.317	0.068
11	0.699	10	2	0.683	1.317	0.068	
----	-------	----	----	-------	--------	-------	
12	0.699	10	2	0.683	1.317	0.068	
13	0.903	10	3	2.764	0.236	0.276	
14	0.903	10	3	2.764	0.236	0.276	
15	0.903	10	4	2.764	1.236	0.276	
16	0.954	10	5	5.298	-0.298	0.530	
17	0.954	10	5	5.298	-0.298	0.530	
18	0.954	10	5	5.298	-0.298	0.530	
19	1.000	10	7	7.624	-0.624	0.762	
20	1.000	10	7	7.624	-0.624	0.762	
21	1.000	10	7	7.624	-0.624	0.762	
22	1.041	10	9	9.041	-0.041	0.904	
23	1.041	10	9	9.041	-0.041	0.904	
24	1.041	10	9	9.041	-0.041	0.904	
25	1.079	10	10	9.679	0.321	0.968	
26	1.079	10	10	9.679	0.321	0.968	
27	1.079	10	10	9.679	0.321	0.968	
28	1.176	10	10	9.994	0.006	0.999	
29	1.176	10	10	9.994	0.006	0.999	
30	1.176	10	10	9.994	0.006	0.999	

9.- Pruebas estadísticas Kruskal Wallis y U de Mann Whitney aplicadas a tasas de crecimiento de Longitud, calculado con el software IBM SPSS.

	Ν	Media
Blanco	15	0.002139814814815
0.1 µg/mL	15	0.002150925925926
0.3 µg/mL	15	0.002104691358025
0.5 µg/mL	15	0.001944231200898

1.0 µg/mL	15	0.001576683501684
3 μg/mL	15	0.001153703703704
Total	90	0.001845008417509

Prueba de homogeneidad de varianzas

		Estadístico de Levene	gl1	gl2	Sig.
TASA DE CRECIMIENTO LONGITUD	Se basa en la media	5.198	5	84	0.000
	Se basa en la mediana	4.057	5	84	0.002
	Se basa en la mediana y con gl ajustado	4.057	5	33.831	0.005
	Se basa en la media recortada	5.143	5	84	0.000

Resumen de contrastes de hipótesis

	Hipótesis nula	Prueba	Sig.	Decisión
1	La distribución de TASA DE CRECIMIENTO LONGITUD es la misma entre categorías de ID.	Prueba de Kruskal-Wallis para muestras independientes	0.000	Rechace la hipótesis nula.

Se muestran significaciones asintóticas. El nivel de significación es de .050.

Prueba de Kruskal-Wallis para muestras independientes

Resumen de prueba Kruskal-Wallis de muestras independientes

N total	90
Estadístico de prueba	78.775 ^a
Grado de libertad	5
Sig. asintótica (prueba bilateral)	0.000

a. Las estadísticas de prueba se ajustan para empates.

Prueba de Kruskal-Wallis para muestras independientes

Prueba de U de Mann Whitney

	Estadístico de		Desv. Estadístico		Sig.
Sample 1-Sample 2	prueba	Desv. Error	de prueba	Sig.	ajustada ^a
3 μg/mL-1.0 μg/mL	14.867	9.539	1.558	0.119	1.000
3 μg/mL-0.5 μg/mL	29.933	9.539	3.138	0.002	0.026
3 μg/mL-0.3 μg/mL	51.867	9.539	5.437	0.000	0.000
3µ g/mL-blanco	63.233	9.539	6.629	0.000	0.000
3μ g/mL-0.1 μg/mL	64.700	9.539	6.782	0.000	0.000
1.0 μg/mL-0.5 μg/mL	15.067	9.539	1.579	0.114	1.000
1.0 μg/mL-0.3 μg/mL	37.000	9.539	3.879	0.000	0.002
1.0 µg/mL-blanco	48.367	9.539	5.070	0.000	0.000
1.0 μg/mL-0.1 μg/mL	49.833	9.539	5.224	0.000	0.000

0.5 μg/mL-0.3 μg/mL	21.933	9.539	2.299	0.021	0.322
0.5 µg/mL-blanco	33.300	9.539	3.491	0.000	0.007
0.5 μg/mL-0.1 μg/mL	34.767	9.539	3.645	0.000	0.004
0.3 µg/mL-blanco	11.367	9.539	1.192	0.233	1.000
0.3 μg/mL-0.1 μg/mL	12.833	9.539	1.345	0.179	1.000
blanco-0.1 µg/mL	-1.467	9.539	-0.154	0.878	1.000

Cada fila prueba la hipótesis nula que las distribuciones de la Muestra 1 y la Muestra 2 son iguales. Se visualizan las significaciones asintóticas (pruebas bilaterales). El nivel de significación es de .05.

10.- Pruebas estadísticas ANOVA y Tukey aplicadas a tasas de crecimiento de Ancho, calculado con el software IBM SPSS.

	Ν	Media
Blanco	15	0.000453858024692
0.1 µg/mL	15	0.000432804232805
0.3 µg/mL	15	0.000392530864198
0.5 μg/mL	15	0.000348451178452
Total	60	0.000406911075037

Prueba de homogeneidad de varianzas

		Estadístico de Levene	gl1	gl2	Sig.
TASA DE CRECIMIENTO ANCHO	Se basa en la media	2.451	3	56	0.073
	Se basa en la mediana	2.206	3	56	0.097
	Se basa en la mediana y con gl ajustado	2.206	3	46.162	0.100
	Se basa en la media recortada	2.571	3	56	0.063

ANOVA

TASA DE CRECIMIENTO ANCHO

	Suma de cuadrados	gl	Media cuadrática	F	Sig.
Entre grupos	0.000	3	0.000	89.939	0.000
Dentro de grupos	0.000	56	0.000		
Total	0.000	59			

Pruebas robustas de igualdad de medias

TASA DE CRECIMIENTO ANCHO

	Estadístico ^a	gl1	gl2	Sig.
Welch	81.316	3	29.618	0.000

a. F distribuida de forma asintótica

Variable dependiente:	TASA DE CRECIMIENTO ANCHO
HSD Tukey	

(I) Identificación		Diferencia de medias (II)	Sig
Blanco	0.1 μg/mL	.000021053791887*	0.019
	0.3 µg/mL	.000061327160494 [*]	0.000
	0.5 μg/mL	.000105406846240 [*]	0.000
0.1 µg/mL	Blanco	000021053791887 [*]	0.019
	0.3 µg/mL	.000040273368607*	0.000
	0.5 μg/mL	.000084353054353 [*]	0.000
0.3 µg/mL	Blanco	000061327160494 [*]	0.000
	0.1 µg/mL	000040273368607*	0.000
	0.5 μg/mL	.000044079685746 [*]	0.000
0.5 ug/mL	Blanco	000105406846240 [*]	0.000
	0.1 μg/mL	000084353054353 [*]	0.000
	0.3 μg/mL	000044079685746 [*]	0.000

11.- Pruebas de ANOVA y Tukey aplicada a Longitud de Pupas, calculado con el software IBM SPSS.

					95% del inte confianza med	ervalo de para la lia		
	N	Madia	Desv.		Límite	Límite	Mínimo	Máximo
FUFA	IN	Ivieula	Desviacion	Desv. EIIUI	Interior	superior	IVIIIIIIIO	IVIAXIIIIO
Blanco	15	3.4387	0.45942	0.11862	3.1842	3.6931	2.53	4.31
0.1 ug/mL	15	3.5513	0.36559	0.09439	3.3489	3.7538	2.89	4.54
0.3 ug/mL	15	3.4327	0.35294	0.09113	3.2372	3.6281	2.78	4.04
0.5 ug/mL	15	3.3853	0.40479	0.10452	3.1612	3.6095	2.27	4.03
Total	60	3.4520	0.39245	0.05066	3.3506	3.5534	2.27	4.54

Prueba de homogeneidad de varianzas

		Estadístico de Levene	gl1	gl2	Sig.
LONGITUD PUPA	Se basa en la media	0.254	3	56	0.858
	Se basa en la mediana	0.245	3	56	0.864
	Se basa en la mediana y con gl ajustado	0.245	3	51.636	0.864
	Se basa en la media recortada	0.250	3	56	0.861

ANOVA

LONGITUD PUPA					
	Suma de cuadrados	gl	Media cuadrática	F	Sig.
Entre grupos	0.223	3	0.074	0.470	0.705
Dentro de grupos	8.864	56	0.158		
Total	9.087	59			

Pruebas robustas de igualdad de medias

LONGITUD PUPA

	Estadístico ^a	gl1	gl2	Sig.
Welch	0.500	3	30.982	0.685

a. F distribuida de forma asintótica

Comparaciones múltiples

Variable	
dependiente:	
HSD Tukey	

LONGITUD PUPA

					Intervalo de 95	confianza al %
		Diferencia de			Límite	Límite
(I) Identificación		medias (I-J)	Desv. Error	Sig.	inferior	superior
Blanco	0.1 µg/mL	-0.11267	0.14527	0.865	-0.4973	0.2720
	0.3 µg/mL	0.00600	0.14527	1.000	-0.3787	0.3907
	0.5 µg/mL	0.05333	0.14527	0.983	-0.3313	0.4380
0.1 µg/mL	Blanco	0.11267	0.14527	0.865	-0.2720	0.4973
	0.3 µg/mL	0.11867	0.14527	0.846	-0.2660	0.5033
	0.5 µg/mL	0.16600	0.14527	0.665	-0.2187	0.5507
0.3 µg/mL	Blanco	-0.00600	0.14527	1.000	-0.3907	0.3787
	0.1 µg/mL	-0.11867	0.14527	0.846	-0.5033	0.2660
	0.5 µg/mL	0.04733	0.14527	0.988	-0.3373	0.4320
0.5 µg/mL	Blanco	-0.05333	0.14527	0.983	-0.4380	0.3313
	0.1 µg/mL	-0.16600	0.14527	0.665	-0.5507	0.2187
	0.3 µg/mL	-0.04733	0.14527	0.988	-0.4320	0.3373

12.- Pruebas de ANOVA aplicado a longitud de imagos (macho, hembra) y alas, calculado con el software Microsoft Excel.

Análisis de varianza de un factor
longitud de imagos machos

RESUMEN	
---------	--

Grupos	Cuenta	Suma	Promedio	Varianza
Blanco	15	36.68	2.44533333	0.00344095
0.1 μg/mL	15	36.47	2.43133333	0.02892667
0.3 μg/mL	15	36.69	2.446	0.01066857
0.5 μg/mL	15	36.68	2.44533333	0.0083981

ANÁLISIS						
Origen de		Grados				
las	Suma de	de	Promedio de los			Valor crítico
variaciones	cuadrados	libertad	cuadrados	F	Probabilidad	para F
Entre						
grupos	0.00228	3	0.00076	0.059104544	0.98096741	2.769430949
Dentro de						
los grupos	0.72008	56	0.012858571			
Total	0.72236	59				

Análisis de varianza de un factor

longitud ala machos

RESUMEN				
Grupos	Cuenta	Suma	Promedio	Varianza
Blanco	15	28.05	1.87	0.0349
0.1 μg/mL	15	28.31	1.88733333	0.01364952
0.3 μg/mL	15	28.27	1.88466667	0.01672667
0.5 μg/mL	15	28.17	1.878	0.01970286

ANÁLISIS

DE

VARIANZA						
Origen de		Grados				
las	Suma de	de	Promedio de			Valor crítico
variaciones	cuadrados	libertad	los cuadrados	F	Probabilidad	para F
Entre						
grupos	0.002693333	3	0.000897778	0.042258783	0.988310327	2.769430949
Dentro de						
los grupos	1.189706667	56	0.021244762			
Total	1 107/	50				
TOLAT	1.1924	55				

Análisis de varianza de un factor

longitud de imagos hembras

RESUMEN

Grupos	Cuenta	Suma Promedio		Varianza	
Blanco	15	43.58	2.90533333	0.05094095	
0.1 μg/mL	15	43.25	2.88333333	0.06109524	
0.3 μg/mL	15	43.38	2.892	0.05396	
0.5 μg/mL	15	43.24	2.88266667	0.0589781	

ANÁLISIS DE

Origen de		Grados				
las	Suma de	de	Promedio de			Valor crítico
variaciones	cuadrados	libertad	los cuadrados	F	Probabilidad	para F
Entre grupos Dentro de	0.005018333	3	0.001672778	0.029741671	0.993016246	2.769430949
los grupos	3.14964	56	0.056243571			
Total	3.154658333	59				

Análisis de varianza de un factor

longitud ala hembras

nempras

RESONIEN				
Grupos	Cuenta	Suma	Promedio	Varianza
Blanco	15	38.3	2.55333333	0.01040952
0.1 μg/mL	15	38.31	2.554	0.01129714
0.3 μg/mL	15	38.2	2.54666667	0.01335238
0.5 μg/mL	15	38.4	2.56	0.00965714

ANÁLISIS DE

VARIANZA						
Origen de		Grados	Promedio de			
las	Suma de	de	los			Valor crítico
variaciones	cuadrados	libertad	cuadrados	F	Probabilidad	para F
Entre grupos	0.001338333	3	0.000446111	0.039906003	0.98924911	2.769430949
Dentro de						
los grupos	0.626026667	56	0.011179048			
Total	0.627365	59				

13.- Fotos de Hembras de Megaselia scalaris. Comparación morfológica

Cuadro 1. Comparación morfológica de imago hembra blanco de *Megaselia scalaris* con imago de Hembra en medio con malatión a 0.1, 0.3 y 0.5 µg/mL. Creación propia

Cuadro 2. Comparación morfológica de tórax y abdomen de hembra blanco de *Megaselia scalaris* con torax y abdomen de hembra en medio con malatión a 0.1, 0.3 y 0. 5 μ g/mL . Creación propia.

Cuadro 3. Comparación morfológica del ojo de hembra blanco de *Megaselia scalaris* con ojo de hembra en medio con malatión a 0.1, 0.3 y 0.5 μ g/mL. Creación propia

Cuadro 4. Comparación morfológica de ala de hembra blanco de *Megaselia scalaris* con ala de hembra en medio con malatión a 0.1, 0.3 y 0. 5 µg/mL. Creación propia.

14.- Fotos de Machos de Megaselia scalaris. Comparación morfológica

Cuadro 5. Comparación morfológica de imago macho blanco de *Megaselia scalaris* con imago de macho en medio con malatión a 0.1, 0.3 y 0. 5 μ g/mL. Creación propia.

Cuadro 6. Comparación morfológica de tórax y abdomen de macho blanco de *Megaselia scalaris* con torax y abdomen de macho en medio con malatión a 0.1, 0.3 y 0. 5 μ g/mL. Creación propia

Cuadro 7. Comparación morfológica del ojo de macho blanco de *Megaselia scalaris* con ojo de macho en medio con malatión a 0.1, 0.3 y 0. 5 μ g/mL. Creación propia.

Cuadro 8. Comparación morfológica de ala de macho blanco de *Megaselia scalaris* con ala de macho en medio con malatión a 0.1, 0.3 y 0. 5 µg/mL. Creacion propia.