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Statement of originality

Original results of this Thesis are:

• Incorporation of the non-conservative viscous stress tensor in the variation of
external forces in the Minimal Action’s Principle in Eqs. (3.1) and (3.22).

• Obtention of the coupled dynamic equations of motion, for the fluid and the
oscillating tube, in Eqs. (3.36) and (3.37). These ones constitute the departing
point of our proposed Continum Mechanics approach to the problem.

• Obtention of relevant equations of motion in three special regimes: the fully
decoupled limit, the limit where tube dynamics is influenced by the fluid and
the limit in which fluid dynamics is influenced by the tube. Considerations
are explained in Chapter 4, and the physical conditions of validity, and the
equations pertaining the different regimes, are summed up in Fig. 4.1.

• Analytical exact expression for the flow velocity in the limit of fluid dynamics
influenced by tube vibration, for a general form of tube vibration and no-slip
boundary condition (Eq. 4.24).

• Proposal to determine the fluid velocity from the tube vibration spectrum.
Presented in Chapter 5 and published in Physics of Fluids 2018. This has
established a theoretical framework to determine flow velocities within elastic
nanotubes, and potentially other fluid properties, from their vibration frequen-
cies.

• Analytical approximated expressions for the flow/frequency relation in the limit
of tube dynamics influenced by fluid flow, for each set of boundary conditions.
These ones are presented in Appendix A.7.

• Analytical approximated expression of flow velocity for a single-mode tube vi-
bration, in the limit of fluid dynamics influenced by tube vibration (Eqs. 6.6-6.9
or 6.19-6.22, with parameters for the different boundary conditions given in Ap-
pendix A.9). This is presented in Chapter 6 and constitutes the core of a paper
to be submitted to a high impact Fluid Mechanics journal. Our results es-
tablish, theoretically, a way to generate high frequency fluid flow oscillations,
with a non-negligible finite amplitude, via the external control of single-mode
vibrations on the tube.
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a) Experimental setting, consisting of an AFM probe immersed in a
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fect of temperature in the probability of tube vertical displacement.
Details of the obtention of these curves are given in Appendix A.1. . . 11

1.6 Elastic tube deflections from nano to macroscales. Color spectrum
corresponds to Young moduli ranging from 1 MPa (red) to 1 TPa
(blue). a) Effect of tube size on the force required to deflect the tube
center by 1% of the tube’s length, as illustrated in Fig 1.4. b) Effect
of tube size on the vibration frequency of a tube filled with a stagnant
fluid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 a) Anomalous density of water in the proximity of a CNT wall, com-
puted by MD simulations, taken from [4]. b) Helicoidal structure of
water molecules inside a single-walled carbon nanotube, taken from [5] 15
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2.2 Schematic representation of the stream lines of a fluid moving inside a
bent static tube, according to the macroscopic stable helicoidal solution
developed by Talbot. Left figure indicates that far from the elbow, flow
is parallel to the tube; middle figure indicates that as flow approaches
an elbow, an helical pattern is developed in the center of the tube;
figure at the right indicates that as flow advances further, the helical
flow pattern extends outwards. The development of such a helicoidal
3D pattern depends on local bending curvature and tube radius. Taken
from [6]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Capabilities of simulations performed with hybrid models. Simulation
of flow across an array of parallel tubes [7]. Tubes’ length is close
to the one of typical tubes in carbon nanotube membranes fabricated
experimentally [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Hybrid models. a) Thompson model, with a single transition zone,
taken from [8]. b) Flekkoy model, where the transition region has been
split into three subregions, taken from [9]. . . . . . . . . . . . . . . . 19

3.1 Illustration of the system that consists of an elastic tube, described by
its vertical displacement, u(z, t), conveying a fluid described by an ax-
ial flow, v(r′, θ′, z′, t), according to a cylindrical coordinate framework
located in the tube center as it moves. The z axis coincides with the
center of the tube when this one is undeformed. . . . . . . . . . . . . 23

3.2 The non-inertial frame of reference, that moves with the tube as it
vibrates. The defined transformation works fine for low values of y’;
however, when the magnitude of y’ is larger than the local radius of
curvature, the transformation leads to an anomalous behavior and is
no longer valid for the theoretical treatment desired. . . . . . . . . . . 25

3.3 Illustration of the possible boundary conditions used for the tube edges.
These ones reflect the way in which the tube edges are supported in
experimental settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Effect of the amplitude of tube and fluid motion in the coupling pre-
dicted in this model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Effect of the tube motion on the fluid dynamics. As tube moves, it
develops a motion that can be locally simplified in two components:
a rotational and a translational motion. Both affect the fluid motion
since the tube pushes the fluid normally to the local axial direction,
leading to a net axial force that pushes the fluid. . . . . . . . . . . . . 48

5.1 Effect of flow in the fundamental frequency mode of the tube oscilla-
tions, for two sets of boundary conditions. Solid lines correspond to
the real part of the frequency and dashed lines to its imaginary part.
A typical value of the thickness ratio times the fluid-structure factor
αβ = 0.6 is used in the calculations. . . . . . . . . . . . . . . . . . . . 55
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5.2 Effect of the radial flow profile in the flow/frequency relation for the
fundamental mode of a tube that is pinned at both edges. Each color
represents a value of the structure factor, β, that corresponds to a
specific rheological behavior. The real component of frequency is shown
with continuous lines, whereas the imaginary component is plotted
with dashed lines. Top: Global view. Middle: Zoom-in at the buckling
regime. Bottom: Zoom-in at the fluttering regime. . . . . . . . . . . . 58

5.3 (a) Comparison between the approximated analytical expressions and
the exact numerical solution for the flow velocity as a function of the
fundamental frequency for the pinned-pinned case. As expected, in-
corporation of more terms in the Taylor expansion for v2, leads to an
increase in accuracy and the range of applicability of the analytical
expressions for higher flows. (b) Percentage error in the velocity as
a function of the flow velocity. A typical value of the thickness ratio
α = 0.6 is used in the calculations. . . . . . . . . . . . . . . . . . . . 61

5.4 Initial condition imposed for the simulations of the tube dynamics. . 63
5.5 Simulation of the tube dynamics with different boundary conditions at

their edges. For each set of boundary conditions, the tube displace-
ments at the middle of the tube (z = 0.5) are plotted as a function
of time; left column, when the tube is filled with a stagnant fluid;
middle column, when the tube is filled with a fluid with flow velocity
v = 0.5m/s. The right column shows the frequency spectrum of both
cases illustrating clearly that the fundamental mode is smaller when
the fluid is being transported with a finite velocity than when the fluid
is stagnant within the tube. It also shows that the fundamental mode
occurs at different values for each set of boundary conditions. Calcu-
lations were done for a nanotube with inner and outer tube radius of
8 and 15 nm, respectively. . . . . . . . . . . . . . . . . . . . . . . . . 64

5.6 Example of a minimal experimental setting to indirectly determine flow
velocities by means of recording the tube displacements in time. The
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5.7 Effect of the main experimental parameters on the uncertainty in flow
determination. (a) Expected uncertainty in the flow velocity as a func-
tion of the magnitude of the flow velocity for different tube lengths,
with an initial amplitude of 5 nm. The time resolution of 0.05 µs de-
termines an upper bound for the range of detectable frequencies. Such
limit -given by the Nyquist frequency- is shown in the red dashed line.
(b) Expected uncertainty in the flow velocity as a function of the sam-
pling time for different amplitudes of the initial condition, with a tube
length of 20 µm and a magnitude of flow velocity of 0.5 m

s
. Calculations

were done for a nanotube with pinned edges and the following physical
parameters: inner and outer tube radius of 8 and 15 nm, respectively,
water and carbon densities of 1000 and 2300 kg/m3, respectively, un-
certainty in radius of 0.1 nm, and uncertainty in densities of 0.1 kg/m3. 70

6.1 Local forces on the tube. First row shows three different sets of bound-
ary conditions: pinned-pinned, pinned-clamped and pinned-free. Their
vibration is represented with evanescent gray lines to emphasize the po-
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(red line) and tube acceleration (green line). The third row shows the
local value of gL(z, t) (blue line) and hL(z, t) (red line). . . . . . . . . 77

6.2 Effect of the magnitude of the pressure gradient and the frequency of
tube oscillation in amplitude of the oscillatory flow induced within a
pinned-free tube vibrating at its fundamental mode. Each continu-
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values of the dimensionless pressure gradient, F . Also, the individual
contributions to the flow amplitude are shown, namely, the effective
pushing contribution (red dashed line) and the Coriolis contributions
(dashed lines in other colors). . . . . . . . . . . . . . . . . . . . . . . 83

A.1 Effect of flow in the fundamental frequency of the tube oscillations for
the different sets of boundary conditions described in this work. Solid
lines correspond to the real part of the frequency and dashed lines to
its imaginary part. A typical value of the thickness ratio α = 0.6 is
used in the calculations. . . . . . . . . . . . . . . . . . . . . . . . . . 127

A.2 Comparison between approximated analytical expressions and the ex-
act numerical relation for flow and frequency. As expected, incorpora-
tion of more terms in the Taylor expansion leads to an increase in the
accuracy and flow range of applicability of the analytical expressions.
However, in the pinned-free and clamped-free cases, there is an alter-
nating degree of precision with the order of truncation of the Taylor
expansion. This is not an issue for the purpose of this treatment, since
all the analytical expressions approximate very well the exact results
obtained by numerical means. A typical value of the thickness ratio
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A.3 Comparison between the analytical expression of the 8th truncation
order and the exact numerical relation for flow and frequency. Two
messages are to be taken from this figure. First, a single analytical
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General introduction

Fluid dynamics under nanometric confinement is an area of great importance for

the development of basic and applied sciences. The nanoscale world offers insights

into chemical and physical concepts that could not have been experimentally proven

for centuries. Ideas such as the slippage and friction at a solid/liquid interface, the

role of intermolecular interactions in the rheological response of fluids, the relation

between tube rugosity and fluid arrangement in the formation of a hydrodynamic

boundary layer, have been corroborated and observed in recent years, thanks to novel

methodologies to design micro and nanofluidic systems, along with the development

of techniques and strategies to control and measure flow velocity at those scales.

Physical and chemical behavior of several nanofluidic systems have challenged the

classical picture of the tube/fluid interaction, requiring a revision of the assump-

tions and considerations that support our understanding of liquids and solids at non-

equilibrium situations.

In some cases, nanoscale systems demand a more complicated description than

macroscopic systems, and require a physicochemical picture accounting for the for-

mation of complex molecular aggregates and structures, never found in bulk and

macroscopical flow systems. Most of the theoretical efforts to improve the existing

physicochemical models to describe nanoscale flow systems have followed this ap-

proach.

In some other cases, the characteristics of the nanoscopic world allows for assump-

1



1 General introduction 2

tions that have not been suitable in the theoretical modelling of macroscopic systems.

Surprisingly, some of these considerations lead to rather simplified equations that gov-

ern the nanofluidic systems, in comparison with their macroscopic equivalents. This is

possible because the nanoscopic scale is a unique one, where two physical peculiarities

convey:

• The amount of molecules is large enough to make a mechanical description of

the flow system in terms of continuum properties and descriptors.

• The confinement size is small enough, so features that arise when fluids at

macroscales are subject to complex stresses -such as secondary flows and 3-D

flow patterns- are not possible at nanoscales, because these phenomena require

a minimal space to develop.

In the rest of the Introduction, we present the phenomenology of nanoscale flow

systems.

1.1 Importance of micro and nanometric flow systems

The physics of flow across nanometric channels plays an important role in the design

of chemical and biomedical technological devices. Several technological developments

have arisen to assist the chemical processes in aspects where the conventional tech-

niques are limited. Most of these limitations are related to waste generation and

process efficiency [14, 15].

In such aspects, micro and nanofluidic devices constitute promising substrates.

Miniaturization of processes implies a considerable reduction of the amount of re-

actants and chemical residues. Besides, diffusion control is enhanced in micro and

nanoscale channels, since convective effects such as flow instabilities, and vortex for-

mation are almost completely inexistent at such confinement scales. It is therefore

possible to generate flow systems where conditions for fluid mixing and stable fluid-

fluid interfaces, are perfectly controlled. Under such conditions, the efficiency of
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Figure 1.1: The capability to control and manipulate chemical species at the nanoscale is illustrated
in: a) where water molecules are flowing across an aquaporin (Image is a still from the movie
published at www.ks.uiuc.edu); b) where a nanofluidic device for separation of DNA fragments, via
their controlled stretching and unfolding, is shown. Taken from [1].

chemical processes increases considerably [16]. Moreover, it is possible to manipulate

chemical species at a level of precision that was never expected within the conven-

tional methods (see Fig. 1.1).

Nanofluidic devices have allowed for the creation of novel instruments that span

through a wide range of applications, from nanometric biosensors for cancer detection

[17, 18, 19] to ultrafast filtration membranes [20, 21, 22, 2, 10, 23, 24].

Most of the current applications of nanofluidic devices are inspired in the mimeti-

zation of biological channels [25] by synthesizing nanostructures of similar size and ge-

ometry [26, 27, 28]. As a consequence, considerable efforts have been made to expand

the spectrum of nanostructures capable to convey fluid flow. Nowadays, nanoflu-

idic systems are composed of a diversity of materials and arrangements of channels

[29, 30, 31], whose size ranges from a few nanometers to tenths of micrometers, both

in radius and length [32, 33, 34]. However, understanding the physics underlying

water flow across nanostructures is still a challenge for flow magnitude prediction and

control. Such a gap has limited, to some extent, the implementation of nanofluidic

devices into chemical technology and manufacturing processes [35, 36, 37, 38].
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1.2 Experimental evidence of anomalous behavior

The first approaches towards the design of nanofluidic flow devices consisted of an

extrapolation of the models used to describe macroscopic systems to explore the con-

sequences of a change in scale in the classical picture of flow systems [39, 40]. However,

the experimental evidence soon demonstrated the limitations of such a strategy. For

the case of nanotubes conveying fluid, the most interesting and surprising phenomena

can be separated in two groups:

• The enhancement of flow velocity inside non-polar nanotubes.

• The rheological properties developed by simple fluids at nanoscales confined in

polar substrates.

A description of the effects of flow in non-polar and in polar substrates at nanoscales

is presented in the following two subsections.

1.2.1 Flow enhancement in carbon nanotube membranes

Most of the experimental work regarding water flow in nanostructures is focused

on flow across carbon nanotube membranes. Such devices are built departing from

carbon nanotubes synthesized in a bundle-like array [41, 15]. In such an arrangement,

the carbon nanotubes are aligned to each other as illustrated in Fig. 1.2, so it is

possible to apply polystyrene on both edges. Afterwards, the nanotube pores are

recovered by chemical etching on both surfaces. This procedure is validated to ensure

that the polymer has completely covered the interspace between tubes. By surface

measurement techniques, it is possible to detect cracking and leakage in the polymer

coating, allowing one to ensure that the pores of such a membrane are given by the

cylindrical hollows of the carbon nanotubes [10]. Afterwards, the performance of the

membrane is tested and its potential use in ultrafiltration technology is evaluated.

This strategy has allowed for the preparation of CNT membranes in a wide range

of tube sizes and surface areas [42, 38, 43, 44, 45, 46, 47]. However, the reproducibility
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a) b) 

Figure 1.2: Carbon nanotube membranes as a tool for ultrafiltration technology. a) SEM image of
the synthethized nanotube bundles. Taken from [2]. b) After polystyrene coating, the nanotube
bundles behave like a membrane where flow only occurs across the cylindrical hollows of carbon
nanotubes, without leakage.

and transferability of the observed flow rates are aspects of their performance that

still demand considerable efforts. The most impressive result concerning such a sys-

tem arises when the experimental results are compared with theoretical data for the

classical theory of porous media, where each tube is considered independent. Inside

each tube, a Hagen Poiseuille profile is assumed to be completely developed, with the

condition of no slip at the fluid/wall interface [10]. It turns out that the permeability

of the membrane is three or four orders of magnitude larger than the one predicted

by theoretical means (see Table 1.1).

From a technological point of view, the high performance of CNT membranes con-

veys an enormous reduction of the energetic cost required to exploit them for water fil-

tration. From a physical point of view, the flow enhancement implies that the classical

description is no longer valid to understand flow across channels of such scales. Both

perspectives have inspired considerable efforts to improve even further the efficiency

of CNT membranes. Particularly, the weak interaction and low rugosity between wa-

ter and carbon-based nanotubes has shown to be responsible for the low-friction flow

observed in experiments with membranes [2, 10, 23, 48, 49, 50]. As a consequence,

chemical functionalization of the tube has shown to allow for tuning of the magnitude
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Liquid Experimental flow Predicted flow Fitted slip

velocity (cm/s) velocity (cm/s) length (µm)

Water 9.5 0.00015 39

Ethanol 4.5 0.00014 28

Iso-Propanol 1.12 0.00077 13

Hexane 5.6 0.00052 9.5

Decane 0.67 0.00017 3.4

Table 1.1: Comparison of observed flow velocities with theoretical Poiseuille-like flow predictions
for flow across the CNT membranes schematized in Fig. 1.2. Average tube diameter is 7 nm, tube
density is 5× 1010 pores per cm2, pressure difference across membrane is 0.8 bar and tube length is
126 micron. Taken from [10]

.

of friction at the tube/fluid interface [42, 43, 44, 45, 46, 51, 47]. Besides, the sensitivity

of flow permeability to changes in tube rugosity has been verified from observations

in several types of nanopipes and nanochannels [2, 52, 53, 54, 36, 55, 56, 57]. Under-

standing these phenomena has also allowed for the incorporation of electrochemical

and electrosmotic flow-control parts [52, 58]; however, the capability to functional-

ize the tube surface and modify its rugosity is limited [59, 60, 61]. Novel strategies

to push such limits are continuously being developed. The progress expected due

to the implementation of CNT membranes in fields of chemical technology, such as

purification and separation techniques, will rely on the better understanding of the

nanotube/fluid interactions.

1.2.2 Rheological properties of nano-confined water

While it has been observed that nanoscale flow is enhanced when fluids are confined

within non-polar smooth surfaces, a different approach has been employed for the

study of fluid dynamics confined in between polar rough surfaces.

Particularly, the response of water has been tested in a nano-rheometer, composed
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of a fluid droplet confined between mica surfaces. One surface remains static, while

the other one is an AFM tip, that exerts an oscillatory shear stress on the droplet

[3, 62, 63, 64, 65]. Such experiment is of great importance, because it allows both, to

measure the time-changing stress exerted on the droplet, and to have an instantaneous

measurement of the fluid velocity, since this one is given by the time derivative of the

tip displacement.

Since both the exerted stress and the fluid motion are oscillatory in the experimen-

tal arrangement - illustrated in Fig. 1.3a-, the analysis of the flow velocity oscillation

amplitude and its phase difference with stress, conveys the information of the rhe-

ological fluid response. Moreover, such an experimental setting allows for changing

the wall-to-wall distance, enabling the control of the confinement size from 0.1 nm to

20 nm.

This apparatus is used to measure the drag force per unit area at the tip -caused

by the confined fluid- and the one exerted along the whole immersed probe -caused

by the bulk water-. They define F as the bulk drag force per unit area and δF as

the difference between the confined and bulk drag forces per unit area. The ratio

between the force at the tip and the one along the probe, is plotted in Fig. 1.3b. A

change in such ratio can be related with a reduction or increase of the viscosity, as

follows. When the confined water presents the same behavior than the bulk, δF = 0.

Positive values are associated with an increase of the apparent confined viscosity, i.e.,

shear thickening, whereas negative values are associated with shear thinning.

Under such conditions, water exhibits a size-dependent viscosity. This result is

summarized in Fig. 1.3. At relatively large confinement -which is still nanometric-,

water behaves as a typical viscous fluid; when the confinement goes lower than 7 nm,

the viscosity increases slightly. In such a regime, the tube/fluid interaction causes

the arrangement of water molecules, decreasing their mobility and increasing their

apparent viscosity. When the confinement size goes below 2 nm, δF/F diminishes to

negative values, showing a shear-thinning behavior. This regime is associated with the
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Figure 1.3: Arising of viscoelastic and shear-thinning behavior in confined water. a) Experimental
setting, consisting of an AFM probe immersed in a fluid, whose tip is located very close to the flask’s
bottom, creating a nanoconfinement space between the tip and the mica flask surface. b) Relative
difference between the drag force exerted by confined water and the bulk water. c) Relaxation time
of water as a function of confinement size. Taken from [3].

remotion of water layers and the reduction of water density. In a molecular picture,

these regimes are understood because the solid/fluid interface has two effects, namely,

the interaction arranges the water molecules in ordered layers, at the same time that

repels them from the immediate viccinity of the wall, causing a small empty space.

Besides, when the confinement decreases up to a threshold of approximately 5 nm,

confined water presents another abnormality: an elastic behavior (see Fig. 1.3c), that

is typically associated with structured fluids. In this case, related with the formation

of ordered water-molecule layers, enhancing the global strength of the hydrogen bonds

network [66, 67, 68]. Moreover, the relaxation time, that is characteristic of such

an elastic response, tends to increase when the experiment is performed at lower

confinement sizes.

The size-dependent rheological behavior described above, has been understood in

terms of the structural response of water at small confinement scales, where the effect

of wall/fluid interaction is dominant.
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1.3 Effect of nanometric confinement in tube/fluid sys-

tems

The role of wall/fluid interaction in flow systems was first studied in microfluidics.

Since then, it has been clear that the reduction of the confinement size is key to study

the fluid-substrate interaction.

The previous works have demonstrated that such a statement is valid for the

nanoscale fluids. The fluid-substrate interaction is not only relevant but dominant

in the physical description of fluid dynamics at such confinement sizes. However,

there is one fundamental difference between micro and nanoscale confinement: the

static picture of the confining media. In most cases, a microfluidic substrate is rigid;

in some other cases, the walls exhibit an elastic behavior, allowing for small radial

tube deformations in response to relatively large forces. In contrast, typical nanoscale

substrates offer a wide spectrum of phenomena related to their elastic response.

In this section, an overview of the current physical picture of the tube dynamics

is presented to establish a departing point for the study of the system that concerns

us.

1.3.1 Temperature, energy and elastic vibrations

There are some aspects of the physics of nanofluidic systems that have not been

addressed in complete detail in the literature. Numerous techniques and materials

have been developed for the preparation of nanostructures for fluid transport, such as

solid-state pores [69, 70, 71, 72, 73] nanochannels,[27, 26, 74, 75, 76, 77], nanotubes

[10, 23, 78], nanopipes [2, 52, 53, 54, 36, 55, 56] and protein-based nanopores [79, 80,

81]. Most of this nanostructures share one property: they have an elastic response to

small mechanical deformations [11, 82, 83, 84, 85, 86].

The different types of deformations exerted on a tube, allow for different strategies

of mechanical manipulation. The role of radial expansion and compression, which
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Figure 1.4: Flexural deflections in elastic tubes. The maximum tube displacement and tube length
are exemplified.

is very small in nanotubes, has been studied and compared with previously-known

results in micro and macrofluidic devices [87, 88, 89]. Moreover, the role of size in

the dynamics of elastic nanotubes is particularly important in a very specific type of

elastic deformation: flexural bending (see Fig. 1.4). This is because the aspect ratio

length/radius is generally very large in nanotubes. At nanoscales, axial deflection

provides two interesting and useful qualities, namely, they require very small external

forces, from several pN to nN, -which are considerably smaller than the ones involved

in radial expansion/compression [90]-, and are so low that are of the order of thermal

fluctuations (see Fig. 1.5). Also, they have a high frequency response, from several

kHz up to few GHz [91, 92, 93, 94] (see Table 1.3.1 and Fig. 1.6).

The capability to generate high frequency vibrations by mechanical manipulation

at a small energetic cost opens a landscape of possibilities that deserve further ex-

ploration, and could be of potential use to improve the understanding and control

of fluid dynamics at nanoscales. Elastic vibrations offer new possibilities for the de-

velopment of nanofluidic devices and technology to measure, control and manipulate

flow at such scales.
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Tube material Diameter Length Thickness Fundamental

nm µm nm frequency (MHz)

Graphene 1-200 0.1-10 1-40 10-1000

Boron nitride 5-50 0.1-10 3-50 10-1000

Titania 30-80 0.2-1 10-20 100-10000

Silicon 10-100 0.1-10 5-30 100-1000

Gallium nitride 30-200 2-5 5-50 10-100

Steel 5-500 ×107 1-10 ×106 2-25 ×106 1-100 ×10−6

PVC 5-200 ×107 0.1-10 ×106 2-10 ×106 1-10 ×10−6

Table 1.2: Elastic behavior of different types of tubes. Typical values of physical properties are
taken from [11, 12, 13].
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Figure 1.5: Role of thermal energy in the excitation of the fundamental vibration mode of an elastic
bended tube. The probability of spontaneous deflection is plotted for different temperatures and
tube diameter. a) Effect of tube radius in the probability of tube vertical displacement. b) Effect
of temperature in the probability of tube vertical displacement. Details of the obtention of these
curves are given in Appendix A.1.
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Figure 1.6: Elastic tube deflections from nano to macroscales. Color spectrum corresponds to Young
moduli ranging from 1 MPa (red) to 1 TPa (blue). a) Effect of tube size on the force required to
deflect the tube center by 1% of the tube’s length, as illustrated in Fig 1.4. b) Effect of tube size on
the vibration frequency of a tube filled with a stagnant fluid.
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Background

Theoretical approaches to study nanotube/fluid systems can be classified in three

categories:

• Molecular Dynamics (MD)

• Continuum Mechanics (CM)

• Hybrid Models

The most important difference consists of the use of a discrete or a continuum

description of the system. Both, MD and CM approaches have been proved to be

useful under different approximations and physical situations.

2.1 Discrete model: Molecular Dynamics

MD simulations are specially useful to account for tubes of small radii, where strong

density gradients are present and a discrete description of matter is needed, due to

regimes such as single-file ballistic flow, where molecules are in a one-dimensional

arrangement, moving one behind the other as in a queue, or the so called Knudsen-

flow regime, dominated by collisions and the interaction of particles of the fluid with

particles of the wall [95, 35].

MD simulations have also been fundamental to understand density fluctuations of

water in the proximity of tube walls (see Fig. 2.1a); also, they have demonstrated

13
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that water molecules arrange in complex equilibrium structures never found in bulk

systems, when confined within very small carbon nanotubes (see Fig. 2.1b). Such

results have served to establish a theoretical framework of the tube/fluid interaction

and its influence on the deviation of continuum properties at nanoscales [96, 66, 97].

However, simulation of long tubes and long sampling times are not attainable

within such calculations due to the computational expense they demand. Moreover,

the force field parameters used in MD simulations are different depending on the

experimental arrangement they intend to reproduce [98, 99, 100]. In general, force

field parameters are specially adapted to simulate electro-osmotic flow [58], formation

of anomalous radius-dependent water aggregates and structures [5, 101, 102, 103, 104],

diffusion-driven flow [105] and proton transport [106], among others. Such limitations

have been an obstacle to establish general qualitative and quantitative trends in the

behavior of nanoconfined flows.

In other words, the comprehension of the underlying physical principles is a chal-

lenge in MD frameworks, because there is no simple procedure to reduce the com-

plexity of the fluid/fluid and fluid/tube dynamic interactions into global simplified

expressions that generalize the behavior of nanotubes conveying flow. Every achieve-

ment reached to understand the tube/fluid systems at nanoscales in a MD framework

is dependent on the force field parameters used, the chemical composition of tube

and fluid and on practical details of the simulation such as the arrangement and

artificial constraints over the atoms. The establishment of generalizations concern-

ing the behavior of fluid/tube systems at nanoscales, is lacking in such theoretical

frameworks.

2.2 Continuum Mechanics

In contrast to atomistic simulations, CM has been useful to simulate relatively large

tubes at any time scale [2, 107, 108, 109, 110, 111]. The CM approach allows for an
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Figure 2.1: a) Anomalous density of water in the proximity of a CNT wall, computed by MD
simulations, taken from [4]. b) Helicoidal structure of water molecules inside a single-walled carbon
nanotube, taken from [5]

understanding of the complex tube/fluid interaction, via a mean description of the

interaction.

In the literature, CM studies of nanostructures conveying fluids started by consid-

ering static rigid tubes. In such simulations, the tube/fluid interaction was incorpo-

rated by the slippage of the fluid at the tube/fluid interface [2, 10]. Also, studies on

fluid dynamics across static deflected tubes gave analytical solutions that exhibited

a complex flow, consisting of a primary flow, parallel to the tube, and a secondary

ellyptical flow, forming a helical 3D flow pattern that does not exhibit turbulent in-

stabilities [6, 112]. Such a result appears only for tubes deflected with a large local

curvature, which is related to a large value of the Dean dimensionless number (see

Fig. 2.2).

The incorporation of tube vibrations in the description of nanoscale flows has only

been addressed for plug-like flows regardless of the causes, profile or dynamics of flow

velocity across the tube, i.e., in these models, flow velocity is a constant parameter

of the model [107, 108, 109, 113, 114]. A CM model incorporating both, the effect of

fluid motion on tube dynamics, along with a description of fluid dynamics when the

confining tube is oscillating is missing in the literature.

As a first approximation, the interaction between an oscillating elastic confining
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Figure 2.2: Schematic representation of the stream lines of a fluid moving inside a bent static tube,
according to the macroscopic stable helicoidal solution developed by Talbot. Left figure indicates
that far from the elbow, flow is parallel to the tube; middle figure indicates that as flow approaches
an elbow, an helical pattern is developed in the center of the tube; figure at the right indicates that
as flow advances further, the helical flow pattern extends outwards. The development of such a
helicoidal 3D pattern depends on local bending curvature and tube radius. Taken from [6].

tube and a confined fluid subject to external driving forces could be approximated by

simple physical and geometrical constraints, via a formulation based on the Minimal

Action’s Principle [115, 116, 117, 118, 119, 120, 121], as has been done for others

systems to study flow in complex geometries [122, 117, 123, 120]. Such an approach

has been useful, for example, to study flow inside compressible nanobubbles [124] and

to study systems subject to very complicated physical interactions, like magnetorrhe-

ological fluids [125].

2.3 Hybrid models

The desire to account for both levels of physical description has inspired the devel-

opment of hydrid approaches [7, 126, 127, 128]. The first attempts to conceal the

atomistic and the continuum pictures of nanoscale flow phenomena, were developed

with the purpose of simulating NEMS and MEMS, that incorporate large fluidic

systems where macro, micro and nanometric channels are embedded in intrincated

networks and patterns.

Such arrays incorporate bifurcations, elbows and curved channels where multi-

scale flow transitions occur. This multi-scale phenomena could also be observed in

tubes whose radius lies in the nanoscale, and whose lengths are close to the micro
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L ≤ 1 mm 

D ≈ 2 nm 

Figure 2.3: Capabilities of simulations performed with hybrid models. Simulation of flow across an
array of parallel tubes [7]. Tubes’ length is close to the one of typical tubes in carbon nanotube
membranes fabricated experimentally [2].
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or macroscales (see Fig. 2.3). Under such conditions, these theoretical approaches

combine the advantages of a nano and a macroscopic understanding of flow, without

the computational expenses required to perform a full MD simulation. Despite of

the computational and conceptual conveniences of such strategy, the construction of

a hybrid model has to deal with a challenge, namely, the consistent and accurate

description of the continuum-to-subcontinuum transition region. Such consistency

is related to the continuity of the flow velocity and spatial density profiles, along

with other thermodynamic and transport properties. This is achieved by spliting the

simulation into three different regions:

• An atomistic region, governed by Newton’s second law for the whole set of

interacting particles.

• A continuum region, governed by Navier Stokes equations.

• A transition region, where both theoretical treatments should converge.

In general, each hybrid model provides a particular strategy to describe the tran-

sition region (see Fig. 2.4a).

The first strategy of hybrid approaches considered the transition region as a por-

tion of the simulation where both the CM and the MD stress tensor computations

have the same value [8]. This is possible by computing the CM stress tensor and

then, performing a MD dynamics where an additional damping force is exerted on

fluid particles in order to relax their momentum to the one obtained within the con-

tinuum computation. Afterwards, such treatment was improved by allowing different

time scales in the computation of the continuum and discrete regions, enhancing the

computational efficiency [129]. Later on, work has been done in order to improve

the computation of the thermodynamic properties obtained from MD, along with

better representations of the damping force that couples MD and CM computations

[130, 131].
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Figure 2.4: Hybrid models. a) Thompson model, with a single transition zone, taken from [8]. b)
Flekkoy model, where the transition region has been split into three subregions, taken from [9].

Besides the previous approaches, another strategy was proposed, where the cou-

pling could be obtained with MD simulations, without imposing artificial constrains

on the particles, but where a definition of consecutive subregions within the transition

zone, called cells [9], was necessary. In this strategy, the cells of the transition zone

are given by:

• An atomistic-to-continuum cell (in contact with the atomistic region) where the

momentum flux exerted on fluid particles is computed purely by MD means.

• A continuum-to-atomistic cell (in contact with the continuum region) where the

momentum flux exerted of fluid particles is computed purely by CM means.

• An intermediate, buffer cell, located between the two previous cells, where par-

ticles are subject to a damping force that allows for a smooth transition between

the velocity computed in the adjacent cells, to avoid particle stacking.

The coupling between cells takes into account mass conservation, so, any particle

leaving one cell, flows into the next one. Such a model is represented in Fig. 2.4b.

More sophisticated hybrid methodologies are developed continuously. They have

been useful to profit from the advantages of two complimentary descriptions in the
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same system. They have pushed the boundaries of the results obtained merely by

MD means, by expanding the system size by several orders of magnitude, and by

enhancing the complexity of the systems geometries. Also, in other areas of Soft

Matter and Materials Science, such as modelling of heterogeneous porous media and

liquid crystals with impurities, there is an alternative hybrid approach that involves

MD simulation of coarse-grain particles that take advantage of simplified models

of single atoms, molecules, protein fragments, clusters and nanoparticles, spreading

different physical, chemical and biological scales.

Despite the advances achieved when atomic and molecular details are fully ac-

counted in the description of nanoscale flow systems, the comprehension of the un-

derlying physical principles presents the same challenge in hybrid frameworks as in

MD approaches. That is, there is no simple procedure to reduce the complexity of the

fluid/fluid and fluid/tube interactions into global simplified expressions. Moreover,

studies of fluid/confining media systems using hybrid methods are dependent on the

particular values of the parameters used.

2.4 Remarks on theoretical approaches

It is convenient to remark that the problems associated to MD and hybrid approaches

that were previously mentioned, lead to the impossibility to summarize and conden-

sate the existing results in literature, in order to obtain general trends. Advances in

MD simulation of nanotubes conveying flow are always restricted to particular fluids,

tube dimensions, and fluid-wall interactions; such limitations are not present in CM

approaches. In CM frameworks, modelling the complex fluid/tube interactions can

be at once done for many fluids, many tube dimensions, and many confining media,

via a mean description of the interactions.

In this work, a CM theoretical framework is therefore proposed to study fluids con-

fined within oscillating deflected nanotubes. Given the physical assumptions made,
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this scheme allows us to study the system dynamics by means of an analytical treat-

ment, both, for the establishment of the equations of motion, as well as for their

solution.



3

Modelling the tube/fluid interaction

In this work, a continuum mechanics theoretical framework is proposed for the study

of fluids confined within oscillating deflecting nanotubes. One fundamental physical

consideration is assumed, namely, that the fluid can only move parallel to the tube.

This assumption is justified because of the impossibility of fluids to develop secondary

flows at nano-confinement scales. It turned out to be very convenient mathematically,

since it allowed us to study analytically the system dynamics, both in the establish-

ment of the equations of motion, as well as in their solution.

3.1 The principle of minimal action

Our approach is based on the Minimal Action’s Principle, which has successfully been

used to establish the Navier Stokes dynamics when a fluid is subject to a wide range

of forces and restrictions [115, 122, 116, 117, 118, 119, 123, 120]. Such methodology

is particularly useful when constrains are imposed on a physical system, since it

is capable to account for the restrictions in the resulting equation of motion in a

straightforward and consistent manner [124, 121, 115].

The principle of minimal action for an open system, at constant temperature, is

given by

δS + δW + δC = 0 (3.1)

22
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u(z0,t)

z0 z

y

r'

θʹ

z'

Figure 3.1: Illustration of the system that consists of an elastic tube, described by its vertical
displacement, u(z, t), conveying a fluid described by an axial flow, v(r′, θ′, z′, t), according to a
cylindrical coordinate framework located in the tube center as it moves. The z axis coincides with
the center of the tube when this one is undeformed.

where S, is the action of the system given in terms of the Lagrangian, L = T − V , as

S =

∫

t

Ldt , (3.2)

where T is the kinetic energy of the system, and V its potential energy; W accounts

for the external and the non-conservative work, applied on the system; and C accounts

for the constrains. δS, δW , and δC, denote the variation of those quantities. In what

follows, we define the system of study and the physical assumptions considered.

3.2 Theoretical construction of the Minimal action’s prin-

ciple for the tube/fluid system

We model a tube/fluid system via two dynamic variables: the vertical tube position,

u, and the flow velocity, v. The physical system is illustrated in Fig. 3.1.

Two natural frames of reference arise in the study of a fluid confined within an

oscillating tube: a static inertial frame, for which rectangular coordinates (x, y, z) are

used to describe the tube motion; and a moving frame, which is a non-inertial frame

and is used to describe the fluid motion, for which primed cylindrical coordinates
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(r′, θ′, z′) or equivalently, primed rectangular coordinates (x′, y′, z′) are used, in such

a way that the z’-axis is located at the center of tube as it moves.

In Cartesian coordinates, the relation between the inertial and non-inertial frames

of reference is given by

x = x′ , (3.3)

y = u(z′, t) +
y′√

1 +
(
∂u
∂z

(z′, t)
)2 , (3.4)

z = z′ − y′ ∂u
∂z

(z′, t)√
1 +

(
∂u
∂z

(z′, t)
)2 . (3.5)

Geometrical details and limitations of the coordinates transformation in Eqs. (3.3)-

(3.5) are presented in Fig. 3.2. The most important limitation is that the tube radius

cannot be arbitrarily large, but it has to be smaller than the maximum local radius of

curvature of u(z, t). Typical nanotube dimensions and amplitude of bending motion

are in agreement with this consideration.

Since the equation of fluid motion will be given in the non-inertial frame, the spatial

derivatives of vector functions -typically, the fluid velocity- need to be incorporated

in such a framework. These ones will be computed when required in the derivation.

Along with it, the small-deformation limit will allow us to simplify their expressions.

In order to use the Minimal Action’s Principle, the comparison field for tube and

fluid displacement are denoted by uvar and vvar, respectively, and defined as follows:

uvar(z, t, α) = uvar(z, t, 0) + αη(z, t) (3.6)

zvarfluid(r
′, z′, t, β) = vvar(r′, z′, t, 0) + βε(r′, z′, t) (3.7)

and the variations δu and δv are defined as

δu = αη(z, t) , (3.8)

δzfluid = βε(r′, z′, t) . (3.9)
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Figure 3.2: The non-inertial frame of reference, that moves with the tube as it vibrates. The defined
transformation works fine for low values of y’; however, when the magnitude of y’ is larger than the
local radius of curvature, the transformation leads to an anomalous behavior and is no longer valid
for the theoretical treatment desired.
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Arbitrary path functions η(z, t) and ε(r′, z′, t) are subject to the following restrictions:

η

∣∣∣∣
z=0

= 0, η

∣∣∣∣
z=L

= 0,
∂η

∂z

∣∣∣∣
z=0

= 0,
∂η

∂z

∣∣∣∣
z=L

= 0 (3.10)

η

∣∣∣∣
t=t1

= 0, η

∣∣∣∣
t=t2

= 0, (3.11)

r′ε

∣∣∣∣
r′=0

= 0, r′ε

∣∣∣∣
r′=R

= 0, (3.12)

ε

∣∣∣∣
z′=0

= 0, ε

∣∣∣∣
z′=L

= 0, ε

∣∣∣∣
t=t1

= 0, ε

∣∣∣∣
t=t2

= 0. (3.13)

In the rest of the treatment, we will consider spatial integrals over the tube and

fluid subsystems. The tube volume is denoted by V1, and defined as

V1 =
{

(r′, θ′, z′)
∣∣ R ≤ r′ ≤ Ro, 0 ≤ θ′ ≤ 2π, 0 ≤ z′ ≤ L

}
, (3.14)

the fluid volume is denoted by V2, and defined as

V2 =
{

(r′, θ′, z′)
∣∣ 0 ≤ r′ ≤ R, 0 ≤ θ′ ≤ 2π, 0 ≤ z′ ≤ L

}
, (3.15)

whereas the surfaces that surround such volumes are denoted by S1 and S2, respec-

tively.

We consider that the tube is an Euler-Bernoulli elastic cylindrical shell subject

to small deformations and no axial tension. Also, the tube radius is much smaller

than its length, and much smaller that the radius of curvature of the tube at its

maximum deflection. The tube is filled with a Newtonian incompressible fluid, since

this work is focused on the effect of tube motion in fluid dynamics that is independent

on the anomalous rheological behavior of fluids encountered in some experiments, as

explained in Section 1.2.2. The system is kept at constant temperature.

The action, S, is given in terms of the Lagrangian of the tube/fluid system, L, as

S =

∫

t

(Tt + Tf − Vt − Vf − Vt/f ) dt . (3.16)
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where Tt, Tf , Vt and Vf , denote the kinetic and potential energies of the tube and the

fluid, given in terms of the vertical displacement of the tube, u, and the fluid velocity

vector, ~vfluid; and Vt/f is the interaction potential between tube and fluid. 1

We consider that fluid motion occurs parallel to the tube at any time; this sim-

plifies the treatment of the flow velocity vector in the dynamic framework; it also

implies a geometrical restriction that appears as a force in the equations of motion,

one that couples the tube and the fluid dynamics. As a consequence of the tube/fluid

coupling, that prevents the formation of an angular-dependent helical flow, the an-

gular dependence of fluid velocity is neglected. With these considerations, terms in

Eq.(3.16) are given by:

Tt =

∫

V1

1

2
ρt |~vtube|2 dV , (3.17)

Tf =

∫

V2

1

2
ρ |~vfluid|2 dV , (3.18)

Vt =

∫

V1

1

2
ρt et

(
∂u

∂z
,
∂2u

∂z2

)
dV and (3.19)

Vf =

∫

V2

ρ e

(
ρ,
∂~rfluid
∂x′

,
∂~rfluid
∂y′

,
∂~rfluid
∂z′

)
dV . (3.20)

Here et and e are local potential energies per unit mass, for the tube and the fluid,

respectively.

The potential energy of the tube is given by the bending energy of an Euler-

Bernoulli cylindrical shell, which is a widely used model to study the properties of

a bent tube [132, 108, 94, 133]. Despite typical macroscopic tubes consider a me-

chanical axial load applied on the tube edges, most of experimental settings involving

nanotubes does not exert an external axial tension. However, some tension could

arise form changes in length during tube deflection; such a change in length is neg-

ligible for deformations of small amplitude. Thus, when there is no axial tension,

1The study can be applied to any elastic hollowed nanostructure, regardless of the specific geometry

of its cross section.
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Euler-Bernoulli potential energy leads to the following expression:

Vt =

∫

V1

1

2
y2E

(
∂2u

∂z2

)2

dV . (3.21)

The potential energy of the fluid arises from the interaction between its particles.

In a CM approach, the interaction potential between particles responds to changes

in the bulk density, ρ, and the strain,
∂~rfluid
∂x′i

. For this reason, the potential energy

is given in terms of a local potential energy per unit mass, e, that depends on those

quantities in Eq. (3.20). The potential energy of incompressible fluids with no elastic

properties is considered as a constant [115]. Incompressibility is considered as a

constrain in fluid dynamics in the theoretical treatment, as described later.

3.2.1 Modelling non-conservative forces: the role of external work

The pressure and the viscosity of the fluid are considered through the term W in

Eq. (3.1). The viscous forces are excluded from the potential energy because they are

dissipative. From a mathematical point of view, dissipative forces have a functional

dependence on fluid velocity and its spatial derivatives, rather than on fluid position.

For an incompressible fluid that moves along the z′-direction subject to a stress given

by pressure p and the axial component of the viscous shear stress, τ ,

δW =

∫

t

∫

S2

~Fext · δ~rfluid dS dt =

∫

S2

∫

t

(−p1 + τ) · n̂ · δ~rfluid dS dt .

=

∫

t

∫ r′=R

r′=0

∫ θ′=2π

θ′=0

∫

t

(−p+ τr′z′)δzfluid dθ
′ dr′ dt

∣∣∣∣
z′=L

−
∫

t

∫ r′=R

r′=0

∫ θ′=2π

θ′=0

∫

t

(−p+ τr′z′)δzfluid dθ
′ dr′ dt

∣∣∣∣
z′=0

(3.22)

where n̂ denotes a vector normal to the surface at which the force is exerted.

3.2.2 Modelling the tube/fluid coupling: Restrictions

Finally, constraints should be incorporated.

As previously discussed, in MD simulations, the interaction between tube and

fluid is not clearly established in the literature, because the nature of the interaction
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forces between water molecules and graphene-like structures has shown to be strongly

dependent on the value of the parameters used in the different force fields [23, 35, 37,

48, 49, 61, 46, 98]. The choice of an appropriate force field is always dependent on

the type of property desired to simulate computationally [99, 100], rather than on the

accurate description of the chemical interaction. In contrast, there are strategies to

overcome such difficulty in CM frameworks. In particular, the analytical mechanics

approach allows one to account for the interaction between tube and fluid by means

of a constraint that couples their motion. In this work, we consider that the tube

exerts a force on the fluid that restricts it to move parallel to it. This assumption

is characteristic of tubes conveying flow at nanoscales, because the influence of the

tube affects all of the confined fluid, not only the water molecules in the tube surface

vicinity. For macroscopic tubes, in contrast, the wall only interacts with a thin,

infinitesimal layer of fluid, and affects fluid equations as boundary conditions.

The first constraint in our system is therefore, very specific to the system of study:

It allows us to incorporate the coupling between tube and fluid dynamics. As the tube

oscillates, its direction is time dependent. Our assumption implies that the relative

velocity between fluid and tube is always parallel to the tube direction. Mathemati-

cally, this is expressed as follows:

~vfluid = ~vtube + v(r′, t)~qtan , (3.23)

where the relative flow velocity ~vrelfluid = v(r′, t)~qtan, whereas ~qtan is a unitary vector

that points in the direction of the tube, defined in agreement with the contour lines

which are locally transversal to the tube, as were presented in Fig. 3.2b. In Cartesian

coordinates, ~vtube and ~qtan are given by

~vtube =

(
0,
∂u

∂t
, 0

)
, (3.24)
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~qtan(z′, t) =


0,

∂u
∂z

(z′, t)√
1 +

(
∂u
∂z

(z′, t)
)2 ,

1√
1 +

(
∂u
∂z

(z′, t)
)2




≈
(

0,
∂u

∂z
(z′, t), 1

)
(3.25)

Since Eq. (3.23) is sufficient to account for the tube/fluid interaction, the interac-

tion potential between the tube and the fluid is considered null, i.e., Vtube/fluid = 0.

1

The second constraint is the conservation of fluid mass for an incompressible fluid,

given by ∫

V2

∇ · ~vfluid dV = 0 . (3.26)

Eq. (3.26) is stated for the entire volume of fluid; also, it is important to remark that

it holds for an arbitrary volume enclosing fluid, so mass conservation is also valid in

its local differential form, as ∇ · ~vfluid = 0. From Eq. (3.23) we have

∇ · ~vfluid =
1 +

(
∂u
∂z

)2
(

1 +
(
∂u
∂z

)2) 3
2 − r′ sin(θ′)∂

2u
∂z2

∂v

∂z′
. (3.27)

An approximated expression for the prefactor is given as follows. In the small defor-

mation limit, the numerator can be approximated as the unit. Also, if the tube radius

is much smaller than the radius of curvature of the tube at its maximum deflection

(proportional to 1/∂
2u
∂z2

, then the denominator can also be approximated as the unit.

Hence, the mass conservation of fluid is simplified as

∂v

∂z′
= 0 (3.28)

Without loss of generality, it is possible to rewrite Eq. (3.28) in terms of the fluid

displacement, zfluid, which is related to fluid velocity by v =
∂zfluid
∂t

-. Thus, integration

in time of the restriction in Eq. (3.28) leads to

∂zfluid
∂z′

= 0 , (3.29)

1An alternative formulation could be proposed in order to account for this restriction through an

interaction potential.
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and the restriction C incorporated in the minimal action’s principle is given by

C =

∫

t

∫

V2

Λ(z′, t)
∂zfluid
∂z′

dV dt , (3.30)

where Λ(z′, t) is a Lagrange multiplier. Eq. (3.30) has been typically used in the

context of deformable media rather than in the field of fluid mechanics, and it is

useful since it simplifies the mathematical treatment [115, 134, 135].

3.3 Obtention of equations of motion

The variation of the restriction given by Eq. (3.30), leads to

δC =

∫

S2

Λδzfluid dS −
∫

V2

(∇ · Λ) · n̂δzfluid dV . (3.31)

When the surface integral in Eq. (3.31) is incorporated along with the term δW

given in Eq. (3.22), into the minimal action’s principle in Eq. (3.1), it becomes clear

the physical meaning of the Lagrange multiplier, Λ, since it turns out to be a com-

ponent the Cauchy’s stress tensor, given by

Λ = (−p1 + τ) · n̂ (3.32)

However, another component of the stress tensor is not included in Λ, which accounts

for the change in flow velocity direction as it goes through a bended oscillating tube.

Such a term will be given by the other restriction.

Also, it is possible to see that the volume integral in δC in Eq. (3.31) incorporates

a force in the equation of motion, given by the divergence of Λ, as follows:

(∇ · Λ) · n̂ = − ∂p
∂z′

+
(
∇ · τ

)
· n̂ , (3.33)

where the stress tensor of a Newtonian fluid and its divergence must be given in terms
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of the dynamic coordinates (r′, θ′, z′), leading to the following expression:

(
∇ · τ

)
· n̂ =

∂2v

∂r′2
+

1

r′
∂v

∂r′
+

1

r′2
∂2v

∂θ′2
−

∂2u
∂z′2

(
sin(θ′) ∂v

∂r′
+ cos(θ′)

r′
∂v
∂θ′

)

(
1 +

(
∂u
∂z

)2)3/2 − r′ sin(θ′)∂
2u
∂z2

−

(
∂2u
∂z2

)2
v

((
1 +

(
∂u
∂z

)2)3/2 − r′ sin(θ′)∂
2u
∂z2

)2 (3.34)

When the small deformation limit is considered in the divergence of stress tensor

in Eq. (3.34), and the angular dependence of the flow velocity is neglected, the last

three terms in Eq. (3.34) vanish, leading to the following approximated expression:

(
∇ · τ

)
· n̂ =

∂2v

∂r′2
+

1

r′
∂v

∂r′
(3.35)

The prime notation in (x′, y′, z′) or (r′, θ′, z′) will be omitted in the rest of the

theoretical treatment, it is implicitly understood that the fluid velocity is studied in

the dynamic coordinate framework, whereas the tube position is studied in the static

framework. Including all the results from Eqs. (3.16-3.35) into Hamilton’s Principle

(Eq. (3.1)), two coupled equations of motion are obtained, for the dynamics of the

tube displacement u(z, t) and the fluid velocity v(r, t). These are:

(ρAf + ρtAt)
∂2u

∂t2
+EI

∂4u

∂z4
+ ρAf〈v2〉

∂2u

∂z2
+ 2ρAf〈v〉

∂2u

∂z∂t
+ ρAf

∂u

∂z

∂〈v〉
∂t

= 0 (3.36)

ρ
∂v

∂t
+
∂p

∂z
− µ

(
∂2v

∂r2
+

1

r

∂v

∂r

)
+ ρg(t)v + ρh(t) = 0 , (3.37)

Af and At are the cross sectional areas of fluid and tube, respectively, I is the second

moment of inertia of a cylindrical hollowed tube, given by

I =

∫

A

y2dA =
π

4

(
R4
o −R4

)
(3.38)

where Ro and R are the tube’s outer an inner radii, respectively. 〈v〉, 〈v2〉, are averages

of the velocity and the squared velocity over the cross sectional area, and are given

by

〈v〉 =

∫ R
0

2πrv(r, t) dr

Af
, (3.39)
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〈v2〉 =

∫ R
0

2πr(v(r, t))2 dr

Af
, (3.40)

and g(t) and h(t) have been defined as

g(t) =
2

L

∫ L

0

∂u

∂z

∂2u

∂z∂t
dz , (3.41)

h(t) =
1

L

∫ L

0

(
∂u

∂t

∂2u

∂z∂t
+
∂u

∂z

∂2u

∂t2

)
dz , (3.42)

where L is the tube length.

It is useful to give a name to the terms involved in Eq. 3.37 The term −ρg(t)v

in Eq. (3.37) is the Coriolis force. The term −ρh(t) —that we call effective pushing

force— is the sum of two contributions: the centrifugal force, given by −ρ∂u
∂t

∂2u
∂z∂t

and

the pushing force exerted on the fluid, given by −∂u
∂z

∂2u
∂t2

. Their interpretation will be

established later in this work. Accordingly, in Eq. (3.36), the term −ρAf〈v2〉∂
2u
∂z2

is

called the centrifugal force; the term −2ρAf〈v〉 ∂
2u

∂z∂t
is the Coriolis force; and the term

−ρAf ∂u∂z
∂〈v〉
∂t

is the fluid pushing force. More mathematical details on the derivation

of Eqs. (3.36) and (3.37) are included in Appendix A.2.

Eqs. (3.36) and (3.37) are two coupled integro-differential equations for the dy-

namics of the tube displacement u(z, t) and the fluid velocity v(r, t). They constitute

the theoretical framework that we will use to study fluid dynamics in oscillating nan-

otubes, which is the central topic of this Thesis. They will also be useful to study the

tube dynamics when it is influenced by the fluid motion and to propose alternative

experiments to determine flow in nanotubes that might eventually change the current

paradigma of flow enhancement.

3.3.1 Boundary conditions

In order to get a complete theoretical framework to study the coupled tube/fluid dy-

namics, it is necessary to incorporate boundary conditions at the tube-fluid interface

and at the tube extremes, to solve the equations of motion 3.36 and 3.37.
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In the literature, boundary conditions for the flow velocity at the tube walls ac-

count for the polarity of the tube/fluid interaction via a slip length. From a mathe-

matical point of view, the slip length is related to the flow velocity at the fluid/wall

interface. From a physical perspective, it is related to the friction exerted by the

tube wall on the fluid particles. However, there is no clear agreement on the realistic

functional form that slip velocity should have as a function of the flow velocity spatial

derivatives. In this work, we desire to establish the features that arise in the fluid

dynamics, due to the tube vibrations, regardless of the fluid slippage. For this reason,

we consider no slip at the tube/fluid interface.1 This, is expressed as follows:

v(r = 0, t) = finite and v(r = R, t) = 0 (3.43)

The boundary conditions on the tube extremes depend on the experimental ar-

rangement employed in a particular nanofluidic system. They reflect the way in which

tube edges are constrained. The most common boundary conditions exerted on the

tube edges are:

• Pinned edge. It consists of an edge, whose position is fixed with no stress

exerted to deflect the tube. Therefore, there is no bending at the tube extreme.

Mathematically, a tube pinned at position z = z0 is described by

u(z0, t) = 0 and
∂2u

∂z2
(z0, t) = 0 . (3.44)

• Clamped edge. It consists of an edge where the position is fixed and a stress

is exerted on the tube to keep it aligned horizontally. Mathematically, a tube

clamped at position z = z0 is given by

u(z0, t) = 0 and
∂u

∂z
(z0, t) = 0 (3.45)

1This condition can be easily changed, for instance by a Navier hypothesis for the slip velocity.
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Clamped Free Pinned 

Figure 3.3: Illustration of the possible boundary conditions used for the tube edges. These ones
reflect the way in which the tube edges are supported in experimental settings.

• Free edge. It consists of an edge where no restriction is imposed regarding its

position or inclination. Therefore, the tube edge is relaxed with no deflection,

so there is no bending moment nor shear force exerted on such edge. Bending

moment is related to the local tube curvature, whereas shear force is related to

the spatial derivative of tube curvature. Mathematically, this is expressed as

∂2u

∂z2
(z0, t) = 0 and

∂3u

∂z3
(z0, t) = 0 (3.46)

These conditions are depicted in Fig. 3.3. Since a tube has two edges and each edge

can be subject to any of the three conditions described above, there are six possible

combinations of boundary conditions: pinned-pinned, pinned–clamped, pinned-free,

etc, etc.).

Among these possibilities, one is rather atypical: a free-free tube. The other 5

conditions enclose a big spectrum of experimental arrangements and situations. In

this work, our main focus is to establish general trends shared by all sets of boundary

conditions for the tube extremes.



4

General notions on the tube/fluid interaction

The theoretical treatment described in Chapter 3 allowed us to construct a set of

equations of motion that couple the tube and the fluid dynamics.

In order to obtain any relevant result from such equations, it is necessary to have a

strategy for their solution. The typical procedure in the literature to deal with com-

plex non-linear systems of integro-differential equations, consists of the numerical

integration of the equations following several numerical methods. Such strategy leads

to an exact description of the time evolution of tube and fluid motion when the value

of every physical parameter is provided. The computational expense demanded for

such calculations is high, and practical mathematical details of the solution depend

on an analysis of the magnitude of the physical parameters involved in the system;

otherwise, the computations may diverge or lead to spurious results. However, the

most important limitation of the numerical solutions relies on the amount of simu-

lations required to obtain a qualitative trend among the results, since this approach

requires performing a large number of calculations spanning the whole spectrum of

values of each physical parameter.

In contrast, the analytical solutions convey significant convenience for further anal-

ysis. First, an analytical treatment allows one to identify and understand the role of

the different physical parameters and forces in the final solution for fluid and tube

dynamics. Also, the computation of asymptotic limits is usually attainable, where

the theoretical model developed can be tested when compared with previous results

36
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from the literature.

The obtention of analytical solutions usually comes along with approximations and

simplifications that lead to a deviation from the exact solution. Depending on the

complexity of the equations and their solutions, the analytical approximated solutions

may keep the qualitative features of the exact solution and differ only in quantitative

aspects. However, in some other cases, the approximated results ignore qualitative

characteristics of the physics underlying the theoretical model.

In general, the choice between approximated analytical results and exact numerical

ones is specific to the area of study, and for the desired applications of the results.

Sometimes the decision is limited by the difficulty to obtain approximations that

allow for analytical solutions that still contain relevant information of the system.

In this work, a theoretical treatment is carried out to derive analytical expressions

for the solution of the system of coupled equations. First, the system of coupled

equations is expressed in terms of dimensionless parameters that allow us to compare

systematically the influence of one of the dependent dynamic variables on the other

one. In other words, it is possible to quantify the influence of fluid motion on the

tube dynamics and vice versa.

Such analysis allows one to establish regimes in which one part of the system -for

instance, the tube- can be considered independent of the other one -for instance, the

fluid-, but with an equation for the fluid dynamics dependent on tube parameters.

To this regime we refer to as the one in which the tube influences the fluid. The

complementary case would be given when the fluid equation is independent on the

tube vibrations, but the tube dynamics depends on the way that the fluid is flowing

within the tube. To this regime we refer to as the one in which the fluid influences

the tube. Clearly, there is also the fully decoupled case, in which non of the system

parts influences the other one.
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Figure 4.1: Effect of the amplitude of tube and fluid motion in the coupling predicted in this model.

4.1 Decoupling the tube and fluid motion

The fully decoupled set of equations is:

EI
∂4u

∂z4
+
(
ρAf + ρtAt

)∂2u
∂t2

= 0 , (4.1)

∂v

∂t
+

1

ρ

∂p

∂z
− µ

ρ

(
∂2v

∂r2
+

1

r

∂v

∂r

)
= 0 . (4.2)

Equation (4.1) is, the Euler-Bernoulli model for an elastic cylindrical shell filled with

a stagnant fluid. Equation (4.2) is the Navier-Stokes equation of uniaxial flow moving

inside a cylindrical static tube.

Comparing Eqs. (3.36) and (3.37) with Eqs. (4.1) and (4.2), we can realize that

the decoupled equations are particular cases of the coupled ones. Equation (4.1) is

a particular case of Eq. (3.36) when the flow velocity is null (v(r, t) = 0). In turn,

equation (4.2) is a particular case of Eq. (3.37) when the amplitude of tube motion

is null (u(z, t) = 0).
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Because of this totally decoupled limit, we think of Eq. (3.36) as the equation

that describes the tube dynamics, since it is basically a modified Euler-Bernoulli

equation [133]; whereas we think of Eq. (3.37) as the one describing the fluid dynamics,

as it is basically a modification of Navier-Stokes equation. In other words, the vertical

oscillation of the tube is affected by fluid motion; and the dynamics of the fluid is

affected by tube vibrations.

In general, the solution of Eqs. (3.36) and (3.37) is not possible by analytical

means, because it is not possible to separate the tube displacement, u(z, t), and the

fluid flow, v(r, t), variables. It is necessary to solve both integro-differential equations

simultaneously. However, it is possible to establish additional physical considerations

that make possible an analytical solution, and the clue is to look for conditions for

which one of the dynamic variables is weakly dependent on the other one. These

considerations lead to analytical solutions for tube and fluid dynamics in two regimes:

• When the amplitude of the tube vibration is very small, so the fluid dynamics

is not affected by tube oscillation, but the tube equations keeps the parameters

from fluid flow.

• When the flow magnitude is small, so the tube dynamics is not affected by fluid

motion, but the flow equation contain terms from the tube dynamics.

Such regimes are discussed at length in the following two sections.

Fig. 4.1 summarizes four dynamic regimes. Equations in the upper-left quadrant in

Fig. 4.1 (high flow magnitude and low tube oscillation amplitude) allow one to study

the influence of fluid motion on tube dynamics. In contrast, the lower-right quadrant

(low flow magnitude and high tube oscillation amplitude) establish a framework to

explore the influence of tube vibration on the fluid dynamics. The upper-right quad-

rant corresponds to a case where both fluid and tube motion are of a high magnitude,

so none of the terms in Eqs. (3.36) and (3.37) can be neglected. Finally, the lower-left
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quadrant shows the equations of the case were tube and fluid dynamics that are fully

decoupled and the dynamics of each element is “blind” to the motion of the other

one, except at the fluid-tube boundary conditions.

4.2 Tube dynamics influenced by fluid motion

The limit that concerns this section corresponds to the regime of the upper left frame

in Fig. 4.1 and is described by Eqs. (3.36) and (4.2).

To derive such a limit, it is necessary to explore the role of the amplitude of the

tube deformation on the modified Navier Stokes equation. An inspection of Eq. (3.37)

shows that the amplitude of tube deformation was incorporated in the Coriolis and

effective pushing terms, via the functions g(t) and h(t), respectively, as defined in

Eqs. (3.41) and (3.42).

Regardless of the specific details of the tube dynamics, we could say that the tube

oscillates around its equilibrium position (which is u(z, t) = 0), with a maximum

amplitude given by

Max (u(z, t)) = U0 . (4.3)

For a tube of length L, its maximum deformation can be estimated as

Max

(
∂u

∂z

)
≈ U0

L
(4.4)

whereas the maximum tube vertical velocity can be estimated as

Max

(
∂u

∂t

)
≈ ν0U0 ≈

(
1

L2

√
EI

ρAf + ρtAt

)
U0 (4.5)

where ν0 is the characteristic frequency of motion of an elastic tube of length L.

Eq.(4.4) is necessary to estimate the order of magnitude of the Coriolis and effective

pushing forces, namely, ρg(t)v and ρh(t). In order to compare these tube-induced

forces with the pressure difference to which the fluid is subject to, we write forces

times the tube length and incorporate typical values of the physical parameters, of

different materials and tube geometries, from Table 1.3.1, to obtain:
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|ρg(t)vL| ≈
√
E ρv2max

Ro

L

U2
0

L2
≈ U2

0

L2

[
104 − 106

]
Pa , (4.6)

|ρh(t)L| ≈ E
R2

0

L2

U2
0

L2
≈ U2

0

L2

[
104 − 106

]
Pa , (4.7)

The sum of the pressure gradient, Coriolis and effective pushing forces is rewritten

in Eq. (3.37), as follows:

ρ
∂v

∂t
− µ

(
∂2v

∂r2
+

1

r

∂v

∂r

)
+ fglobal = 0 , (4.8)

where the global driving force fglobal is given by

fglobal =
∂p

∂z
+ ρg(t)v + ρh(t) , (4.9)

When Eqs. (4.6) and (4.7) are compared with typical pressure drops along a tube,

which are in the range of [105 − 107] Pa, the role of the maximum tube deformation

becomes clear in the global driving force in Eq. (4.9). Roughly-speaking, U2
0/L

2

quantifies the weight of pressure drop and the tube-induced forces (multiplied by

tube length) in Eq. 3.37. For example, a relative amplitude of tube oscillation of 1%

(U0/L = 0.01) implies that a typical pressure drop is greater than the tube-induced

forces (multiplied by tube length) by five orders of magnitude.

Therefore, the regime in which fluid dynamics does not depend on tube motion,

corresponds to the one for which the amplitude of tube oscillations is small. In this

work, we take a threshold of U0/L = 10−4 to consider the fluid motion independent

of the tube dynamics. In other words, we neglect the tube-induced forces on the fluid

(multiplied by tube length) when there are approximately nine orders of magnitude

smaller than typical values of the pressure drop exerted on the fluid.

In this regime, Eq. (3.37) reduces to the classical Navier-Stokes equation given by

Eq. (4.2). The solution of Eq. (4.2) is independent of the tube motion. Once flow

velocity is determined for a specific driving force, it is incorporated into the tube

dynamics, in Eq. 3.36, via the functions 〈v〉 and 〈v2〉 .
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Regardless of the specific driving force exerted on the fluid, one can establish gen-

eral features of the influence of fluid motion on tube dynamics. For the subsequent

discussion, the average flow velocity and the average squared flow velocity, are in-

corporated in the tube dynamics by defining two parameters to describe fluid flow

velocity,

vrms ≡
√
〈v2〉 , β ≡ 〈v〉√

〈v2〉
. (4.10)

The definitions of vrms and β allow to write Eq. (3.36) as:

(ρAf + ρtAt)
∂2u

∂t2
+ EI

∂4u

∂z4
+ ρAfv

2
rms

∂2u

∂z2
+ 2ρAfβvrms

∂2u

∂z∂t
+ ρAfβ

∂u

∂z

∂vrms
∂t

= 0

(4.11)

Equation (4.11) is a fourth-order linear partial differential equation for the tube

vertical displacement u(z, t). Its solution is the superposition of planar waves of

complex frequency that depend on the flow velocity via vrms and β and lead to

unstable tube motion in some cases. The consequences of this result deserve further

study, and could be of great importance for technological purposes, in order to design

strategies for indirect measurement of flow velocity in nanotubes and nanostructures.

This will be exploited and described in Chapter 5.

4.3 Fluid dynamics influenced by tube vibrations

The limit that concerns this section corresponds to the regime of the lower right frame

in Fig. 4.1 and is described by Eqs. (3.37) and (4.1).

The key point to establish the equations governing this regime is to look at the

relative value of the fluid-induced forces in Eq. (3.36) relative to the elastic force,

which causes the propagation of elastic waves along the tube.

Eq. (3.36) states that in the absence of fluid motion, the tube dynamics is only

given by the elastic bending force, leading to the Euler Bernoulli model given by

Eq. (4.1). Solutions of Eq. (4.1) are plane waves of the form

u(z, t) = U0e
i(kz−ωt) , (4.12)
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where U0 is the amplitude, k the wavenumber and ω corresponds to the frequency;

frequency and wavenumber are related by a dispersion relation, through

ω = ±k2
√

EI

ρAf + ρtAt
. (4.13)

where sign of frequency indicates the direction of the travelling wave, since a plane

wave can be rewritten as

u(z, t) = U0e
i k(z−vpropt) , (4.14)

where the phase velocity of propagation of the plane wave is given by

vprop =
∣∣∣ω
k

∣∣∣ = k

√
EI

ρAf + ρtAt
. (4.15)

For a tube of finite length L, the wavenumber is proportional to 1/L, and we can

estimate the velocity of propagation of the elastic waves along the tube as

vprop ≈
1

L

√
EI

ρAf + ρtAt
. (4.16)

Then, Eq. (3.36) is rewritten in terms of the velocity of propagation, as follows:

EI
∂4u

∂z4
+ ρAf

1

L2

(
EI

ρAf + ρtAt

) 〈v2〉
v2prop

∂2u

∂z2
+

2ρAf
L

√
EI

ρAf + ρtAt

〈v〉
vprop

∂2u

∂z∂t

+
ρAf
L

√
EI

ρAf + ρtAt

∂u

∂z

∂

∂t

( 〈v〉
vprop

)
+ (ρAf + ρtAt)

∂2u

∂t2
= 0 (4.17)

In order to estimate the order of magnitude of each term in Eq. (4.17), it is nec-

essary to estimate the derivatives of u and v. Spatial derivatives can be estimated in

terms of the characteristic tube length L, shereas the derivatives in time are estimated

as

∂〈v〉
∂t
≈ νµvmax ≈

(
µ

ρR2

)
v (4.18)

where νµ is the characteristic frequency of a confined Newtonian fluid and µ is the

fluid viscosity.
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Incorporating Eqs. (4.5) and (4.18) into Eq. (4.17), it is possible to estimate the

fluid-induced forces that affect the tube motion in Eq. (3.36) and compare them with

the elastic term Fela = EI ∂
4u
∂z4

. Using typical parameters from Table 1.3.1, each force

in Eq. (reftube reescaled freq) divided by the amplitude of tube displacement, U0, is

given by

FCent/U0 ≈
(
EI

L4

)
ρAf

ρAf + ρtAt

v2

v2prop
≈
(
100 − 102 Pa

) v2

v2prop
, (4.19)

FCor/U0 ≈
(
EI

L4

)
2ρAf

ρAf + ρtAt

v

vprop
≈
(
100 − 102 Pa

) v

vprop
, (4.20)

Fpush/U0 ≈
(√

EI

L4

√
νµ(ρAf + ρtAt)

)
2ρAf

ρAf + ρtAt

v

vprop
≈
(
10−2 − 100 Pa

) v

vprop
.

(4.21)

Then, magnitude of the fluid-induced forces is compared with the typical values

of the elastic bending force, given by

Felastic/U0 ≈
EI

L4
≈ 100 − 102 Pa . (4.22)

Such analysis allows one to consider that the velocity ratio v/vprop quantifies the

relative dominance of the Coriolis force and the pushing force respect to the elastic

force, whereas the ratio v2/v2prop plays the same role for the Centrifugal force.

For nanotubes of typical lengths (between 10µm and 1mm) and Young moduli

(between 0.1TPa and 1TPa) [107, 47], the velocity of propagation of elastic waves

lies between 10 and 100 m/s.1 In comparison, flow velocities measured across such

nanotubes are about 0.1m/s and lower, when driving forces of low to medium magni-

tude are exerted on such confined fluids [35, 2, 38]. Thus, in the low pressure gradient

regime, v/vprop < 0.01 and it the fluid-induced forces turn out to be 2 or more orders

of magnitude lower than the elastic force. Summarizing, if low pressure gradients are

exerted on the fluid, it is possible to describe the tube dynamics independently of the

fluid motion; however, the fluid dynamics will be modified by the tube oscillations.

1A bent tube is a dispersive media for elastic waves, their phase velocity is strongly dependent on

their wavenumber.
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In other words, Eq. (4.1) is solved for the tube displacement u(z, t) considering

initial and boundary conditions that account for the specific experimental setting in-

tended to study; the solution is incorporated into Eq. (3.37) via the auxiliar functions

g(t) and h(t). Finally, Eq. (3.37) should be solved for the flow velocity v(r, t).

A solution for the flow velocity accounting for the no-slip boundary condition

at the tube walls -as stated in Eq. (3.43)-, can be obtained without considering an

explicit form of the functions g(t) and h(t). This solution is given by

v(r, t) =
e
−

∫ t
t0
g(t′)dt′

2π
(4.23)

×
∫ ∞

−∞

1

iρλ


1−

J0

√
iρλr2

µ

J0

√
iρλR2

µ



∫ ∞

−∞

(
∂p

∂z
+ ρ h(t′)

)
e
∫ t′
t0
g(t′′)dt′′

e−iλt
′
dt′eiλtdλ

where J0 is the zero-order Bessel function. An explicit solution of v(r, t) is given when

a specific form for the tube motion u(z, t) is incorporated via the functions g(t) and

h(t). Details of the derivation of the solution for v(r, t) in Eq. (4.24) are presented in

Appendix A.3.

In general terms, an inspection of the analytical solution in Eq. (4.24) allows one to

explain the influence of tube vibrations on fluid dynamics, via the functions g(t) and

h(t). Particularly, h(t) plays a role similar to the pressure gradient, since both appear

as quantities added up in the term (∂p
∂z

+ ρh(t)). In other words, the tube motion

induces a second driving force on the fluid that, in general, is oscillating -since the

tube position is also oscillating-.

In contrast, g(t) has a complex role in the solution, because it is incorporated as

the argument of an exponential function, and then multiplied by other driving forces.

This occurs because of the specific form of the term, ρg(t)v, where the overall flow

velocity (which will be time dependent due to the tube vibrations) is multiplied by the

oscillatory function g(t). In the absence of g(t), the influence of tube on fluid motion

could be explained in a simple statement: it adds a second oscillatory driving force,

so the overall flow velocity is simply a sum of the contributions of each frequency
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peak, as described in the classical theory of pulsatile flow [136]. However, the Coriolis

force modifies qualitatively the response of the fluid to the driving forces, because the

product of oscillatory functions usually has a more complex frequency spectrum than

the one of the original factors.

The peculiar phenomena arising from Eq. (4.24) deserve a deeper and systematic

study. This will be the subject of the last chapter in this Thesis where the fluid

dynamics is studied, when it is influenced by representative cases of tube motion.

4.4 Understanding the dynamic tube/fluid coupling

The equations of motion that described the coupled tube/fluid dynamics can be seen

as a variation of the Euler-Bernoulli equation for bending mechanics subject to the

effect of fluid motion inside the tube [Eq. (3.36)] and a variation of the Navier-Stokes

equation for a viscous fluid subject to the effect of tube motion inside the tube

[Eq. (3.37)]. The modification done in tube dynamics has already been explored in

literature [132]. However, in the case of the tube forces acting on the fluid, it is

necessary to do the first steps towards the comprehension of the effect of the tube

motion on fluid dynamics.

The theoretical treatment proposed in this work has incorporated the condition

of parallelism between the tube and the fluid motion and, as a consequence, coupled

forces have appeared in the fluid dynamics. When the fluid is restricted to move

along the tube axis, it implies that a force will be exerted by the tube on the fluid,

such that any force that tends to avoid such parallel motion, will be cancelled. In

order to know which forces are present when a fluid is confined in an oscillating tube,

it is easier to ask what happens to a free fluid particle which is initially moving in an

static tube, when such tube starts developing an oscillatory motion.

For macroscopic tubes conveying flow, the answer is interesting: nothing happens

to the fluid in the bulk located far from the walls; however, at the tube/wall bound-



4 General notions on the tube/fluid interaction 47

aries, the fluid must exactly follow the tube motion. This leads to complicated free

boundary conditions on the Navier Stokes three-dimensional equations. In turn, such

boundaries induce a complicated helical pattern on the fluid stream lines, that have

extensively been discussed in the literature to model fluid dynamics in macroscopic

bent tubes [6].

However, from the point of view of the tube framework, fluid particles are affected

by the tube motion, because a coordinate framework located at the tube is no longer

inertial. In a non-inertial framework, three fictitious forces arise. Their expressions

in the static framework (x, y, z) are shown below:

• A fictitious acceleration given if the entire tube is translating. Such force per

unit volume of fluid is given by:

~Fpush = −ρ~atrans,tube

=

(
0, − ρ∂

2u
∂t2

1 +
(
∂u
∂z

)2 ,
ρ∂

2u
∂t2

∂u
∂z

1 +
(
∂u
∂z

)2

)
(4.24)

• The Coriolis force, given by the effect of the local rotational motion of the tube,

expressed as follows:

~FCor = −2ρ ~Ω× ~vfluid

=


0, − 2ρv ∂2u

∂t∂z√
1 +

(
∂u
∂z

)2 ,
2ρv ∂2u

∂t∂z
∂u
∂z√

1 +
(
∂u
∂z

)2


 (4.25)

• The centrifugal force, given by the effect of rotational motion, as

~Fcent = −ρ~Ω× (~Ω× ~r)

=

(
0,

ρ ∂2u
∂t∂z

∂u
∂t

∂u
∂z

1 +
(
∂u
∂z

)2 ,
ρ ∂2u
∂t∂z

∂u
∂t

1 +
(
∂u
∂z

)2

)
(4.26)

In general, these forces lie all along the Y Z plane as illustrated in Fig. 4.2. The

fictitious forces arise as an effect of the observation of fluid motion within the tube

framework. In the absence of tube forces, a free fluid particle, in the absence of
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Figure 4.2: Effect of the tube motion on the fluid dynamics. As tube moves, it develops a motion
that can be locally simplified in two components: a rotational and a translational motion. Both
affect the fluid motion since the tube pushes the fluid normally to the local axial direction, leading
to a net axial force that pushes the fluid.

external non-fictitious forces, tends to follow its original horizontal motion. However,

within the tube framework, such horizontal motion is not so, fluid is observed moving

in a very complicated fashion. Thus, the fictitious forces in Eqs. (4.24)-(4.26) cause

the fluid motion to be non-parallel from the point of view of the tube.

When the constraint is imposed, tube and fluid are required to interact in such

a way that these fictitious forces are no longer detected, and fluid moves parallel to

the oscillating tube. This means that the tube should exert a force on the fluid such

that it cancels the fictitious forces. As a result, from the point of view of an static

external framework, the tube pushes the fluid with a force which is opposite to the

ones defined in Eqs. (4.24)-(4.26). Particularly, the z-component of such tube/fluid

forces turns out to be the only relevant to modify Navier Stokes equation.

The horizontal z-component of the tube forces are summarized below:

F hor
acc = −ρ∂

2u

∂t2

∂u
∂z

1 +
(
∂u
∂z

)2 (4.27)
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F hor
Cor = −2ρ v

∂2u

∂z∂t

∂u
∂z√

1 +
(
∂u
∂z

)2 (4.28)

F hor
cent = −ρ∂u

∂t

∂2u

∂z∂t

1

1 +
(
∂u
∂z

)2 (4.29)

The axial components of such forces turn out to be identical to the coupled terms

involved in our theoretical treatment, except for the factor 1/
√

1 + (∂u/∂z)2. The

reason for that discrepancy is the small deformation approximation that we have

considered. According to this analysis, we conclude that the tube-induced forces

which are incorporated into the Navier-Stokes equations are exerted on the fluid

to cancel the fictitious forces generated by the tube vibration. This explanation is

summarized in Fig. 4.2.



5

Tube dynamics influenced by flow velocity

Despite all of the experimental advances and theoretical efforts towards the compre-

hension of enhanced water flow within nanostructures, there are current limitations,

both, experimental and theoretical ones, regarding the precision with which flow is

determined. Moreover, flow enhancement differs by orders of magnitude among the

different experimental works in the literature [35, 36, 37, 38]. The main experimental

difficulties in the determination of flow, are related to the uncertainty in the cross

sectional area available for flow in carbon nanotube membranes. These ones lead to

uncertainties of over 50% in flow measurements [23, 10, 48]. Techniques used to de-

termine porosity in materials, such as the BET isotherm and impedance spectroscopy

[137, 138], lead to huge errors in pore density and cross-sectional areas that in turn

affect the precision in the determination of flow velocity. Moreover, at nanoscales, it

is not clear that the pore surface, that is determined by nitrogen adsorption, is the

same as the effective cross-sectional area available for water flow. This is because re-

pulsion might lead to empty spaces between the tube and the fluid that diminish the

effective area for flow. Alternative ways to measure flow velocities within nanotubes

seem to be necessary.

In this chapter, we study the influence of fluid motion on tube dynamics that was

developed in Chapter 4 and is summarized in Eqs. (3.36) and (4.2). Particularly,

we found that the frequency of tube vibration is considerably modified by the flow

velocity developed within. The consequences of such effect could be exploited to

50
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determine flow velocities based on knowledge of the vibration frequency spectrum of

a single nanotube. This methodology could be applied to different sets of boundary

conditions at the nanotube edges. Our approach proposes to record the nanotube

displacement as a function of time (for example by AFM measurements); to use this

information to determine the relevant frequencies associated to the tube dynamics

via Fourier Analysis; and finally, to determine the magnitude of flow velocity inside a

nanostructure, through the analytical relations between frequency and flow velocity

obtained in this work.

We obtain analytical expressions for the fluid velocity as a function of the natu-

ral frequencies of the nanotube deflection, that allow for an easy error propagation

analysis of the uncertainties involved in each of the system parameters. Our ex-

pressions allow us to establish the framework for indirect determination of flow, via

experimental measurements of the nanotube oscillatory bending motion. Our analysis

indicates that the experimental uncertainties in the flow magnitude, could be dramat-

ically reduced in wide ranges of tube sizes and flow velocities, by using the proposed

methodology. These uncertainties allow one to know under which circumstances the

proposed framework to measure flow velocities would lead to accurate results.

5.1 Characteristic scale for flow velocity and tube vibra-

tion frequency

A visual inspection of Eq. (4.11) allows one to find a characteristic frequency of the

system, ωc, in the absence of flow, when v = 0. That is, a frequency characteristic of

a tube of length L with a stagnant fluid inside it:

ωc =
1

L2

√
EI

ρtAt + ρfAf
. (5.1)

It also allows us to find a characteristic flow velocity for a steady tube in the absence

of vibrations, vc, when the partial derivatives in time of the tube displacement are
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zero:

vc =
1

L

√
EI

ρfAf
. (5.2)

These characteristic quantities allow us to rewrite Eq. (4.11) in terms of the di-

mensionless variables, z̃ = z
L

, t̃ = ωct, and ṽ = vrms

vc
as

∂4u

∂z̃4
+ ṽ2

∂2u

∂z̃2
+ 2αβṽ

∂2u

∂z̃∂t̃
+ αβ

∂ṽ

∂t̃

∂u

∂z̃
+
∂2u

∂t̃2
= 0 , (5.3)

where the quantity α, that we name thickness ratio, has been defined as

α2 ≡ 1

1 + ρtAt

ρfAf

. (5.4)

Such thickness ratio, α, might take values between 0 and 1. It decreases when the

tube thickness increases, because of the ratio of cross-sectional areas, of tube and

fluid, in the denominator of Eq. (5.4). In order to have a simple notation, we will

omit tildes from this point until the end of this Chapter, but, z, t, and v refer to

non-dimensional variables.

The dimensionless equation for the tube displacement [Eq. (5.3)], is a differential

equation in space and time, which depends explicitly on only three physical parame-

ters, namely,

• The dimensionless flow velocity, v, that has been normalized with the flow in a

steady tube.

• The thickness ratio, α, which depends only on the ratio of tube and fluid den-

sities, and the ratio of tube and fluid cross-sectional areas.

• The structure factor, β, which depends only on the specific form of the radial

profile.

The solution of [Eq. (5.3)] will allow for the establishment of a relation between

flow magnitude and tube frequency.
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5.2 Relation between flow magnitude and tube frequency

The solution of Eq. (5.3) incorporates the physical and geometrical characteristics

of tube, along with the fluid motion given by the solution of Eq. (4.2). In order to

focus on the role of flow velocity on the tube vibration described in Eq. (5.3), it will

be considered that a constant flow velocity is developed within the tube, and the

parameters α and β are fixed and known for the rest of the derivation carried out in

this section. The role of β will be discussed afterwards.

The Fourier Transform in time of Eq. (5.3) when a steady flow velocity is consid-

ered, leads to

d4û

dz4
+ v2

d2û

dz2
− 2iωαβv

dû

dz
− ω2û = 0 (5.5)

where û(z, ω) denotes the displacement in frequency domain. As this is a linear fourth-

order differential equation for û with constant coefficients, the solution of Eq. (5.5) is

the superposition of four terms, resulting in a general form given by

û(z, ω) = C1e
ik1z + C2e

ik2z + C3e
ik3z + C4e

ik4z, (5.6)

where k1, k2, k3 and k4 are wavenumbers, and are functions of v, ω and α. For a given

tube and fluid, the latter one is a constant. The wavenumbers are given as follows:

k1 = −a− b; k2 = −a+ b;

k3 = a− b; k4 = a+ b, (5.7)

where a and b are given by

a =
1

2

√
2v2

3
+

2
1
3 (v4 − 12ω2)

3q
1
3

+
q

1
3

3(2)
1
3

(5.8)

b2 =
v2

3
− 2

1
3

(
v4 − 12ω2

)

12q
1
3

− q
1
3

12(2)
1
3

− vαβω√
2v2

3
+

2
1
3

(
v4−12ω2

)

3q
1
3

+ q
1
3

3(2)
1
3

(5.9)
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and q is given by

q = −2v6 − 72v2ω2 + 108v2α2β2ω2 +
√
s (5.10)

where s is

s =
(
2v6 + 72v2ω2 − 108v2α2β2ω2

)2

−4
(
v4 − 12ω2

)3
(5.11)

When a set of boundary conditions at the tube edges is chosen, one obtains a

linear homogeneous 4× 4 system of algebraic equations for the coefficients Cn. Such

a system allows for a non-trivial solution, only if the determinant, D, vanishes. This

discretizes the allowed values of the wavenumbers, and therefore the allowed values

of the frequency, ω, giving rise to the different vibration frequency modes of the

tube, ωn. General details of the dispersion relation are included in Appendix A.4.

Moreover, such determinant is different for each set of boundary conditions. As an

example, for a pinned-pinned tube, the determinant, DPP , is given by

DPP (v, ω) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1

−k21 −k22 −k23 −k24
eik1 eik2 eik3 eik4

−k21eik1 −k22eik2 −k23eik3 −k24eik4

∣∣∣∣∣∣∣∣∣∣∣∣∣

(5.12)

Explicit expressions for the determinants for the other sets of boundary conditions

are given in Appendix A.5.

As stated above, the condition for non-trivial solutions of the tube dynamics is

achieved when

D(v, ωn) = 0 . (5.13)

From Eq. (5.13), it is possible to know the relation between the frequency of a

tube oscillating in any of its vibration modes, ωn, and the flow velocity, v, inside it.

From this point, we use two different approaches in order to obtain the flow/frequency

relations from Eq. (5.13). An analytical approach, which will be discussed in the fol-

lowing sections, and a numerical approach, that we implement in order to determine
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Figure 5.1: Effect of flow in the fundamental frequency mode of the tube oscillations, for two sets
of boundary conditions. Solid lines correspond to the real part of the frequency and dashed lines to
its imaginary part. A typical value of the thickness ratio times the fluid-structure factor αβ = 0.6
is used in the calculations.
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the range of validity of our analytical solutions. The latter one consists of the numer-

ical obtention of the frequency of every vibration mode, ωn, given a known value of

the flow velocity. This treatment is useful when the tube starts in an initial deformed

condition with a known flow velocity induced inside it, and allows for a determination

of the tube dynamics. The frequency of each mode is obtained with any degree of

precision, so it can be considered as the exact solution of ωn(v). We solved Eq. (5.13)

by a Newton-Raphson method using Wolfram Mathematica 11. The effect of a spe-

cific set of boundary conditions in the fundamental frequency vs. flow diagram is

illustrated in Fig. 5.1 for the pinned-pinned and clamped-clamped cases. The quali-

tative behavior of the curves in Fig. 5.1 has been studied in the literature [139, 140],

by numerical solution of models similar to Eq. (5.3), with the purpose of identifying

the flow conditions that induce unstable tube motion. For the lowest flow velocities,

a purely real frequency is obtained, which leads to stable oscillatory motion of the

tube. On the other hand, when the frequency is purely imaginary, the dynamics leads

to buckling, or when it is complex, with non-zero real and imaginary parts, it leads

to fluttering [141, 108, 142, 143].

In Fig. 5.1, a decrease of the fundamental mode, ω1, with increasing flow veloc-

ity in the stable motion zone can be observed, this implies that the larger the flow

velocity, the smaller the fundamental frequency is; when flow increases above a cer-

tain threshold that depends on the set of boundary conditions, an unstable behavior

emerges -indicated by a non-zero imaginary part of the frequency-. For the other sets

of boundary conditions, equivalent figures are included in Appendix A.6.

5.3 Role of flow structure: Disentangling the flow magni-

tude and the radial profile

The previous discussion has been centered on the role of the magnitude of flow ve-

locity on the frequency of tube vibration. Our model recovers the flow/frequency
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Type of fluid β

Plug flow 1.0

Newtonian fluid 0.866

Pseudoplastic fluid 0.94

Dilatant fluid 0.84

Newtonian fluid with slip 0.99

Table 5.1: Radial structure factor, β, of fluids with different rheological behavior and boundary
conditions.

relation developed previously in the literature, but it also accounts for the effect of

the radial velocity profile in the tube dynamics via the structure factor, β. Partic-

ularly, Eq. (4.11) is reduced to the one developed by Paidoussis [132], and used by

Wang to study fluid flow within nanotubes [108] for plug-like flows, for which β = 1.

For a fluid subject to a constant pressure gradient and no-slip boundary condi-

tions, the steady flow velocity is given by the parabolic Poiseuille profile. When

Poiseuille profile is incorporated into Eqs. (3.39) and (3.40), the following expressions

are obtained:

〈v〉 = −R
2

8µ

∂p

∂z
, 〈v2〉 =

R4

48µ2

(
∂p

∂z

)2

(5.14)

which in turn, using Eq. 4.10, lead to β =
√

3/2 ≈ 0.867, that can be incorporated

into Eq. (4.11) or, equivalently, in Eq. (5.3).

Keeping the conditions established in this limit —i.e., when the fluid motion is in-

dependent of the tube vibration—, it would be possible to explore the flow/frequency

relation of different types of fluids subject to a constant driving force. To do so, the

rheological behavior of the fluid in question would be incorporated in an equation of

motion analogous to Eq. (4.2) and solved independently of the tube dynamics. After-

wards, the complex velocity profile for this fluid would be incorporated in the tube

dynamics by computing its corresponding structure factor, β. The same procedure

could be carried out for a simple fluid subject to complex boundary conditions, such
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as an effective slippage at tube walls. Structure factors, β, for typical fluids and con-

ditions encountered in the literature, that turn out to be independent of the applied

pressure gradient, have been summarized in Table 5.1. A change in the value of β

modifies quantitatively the flow/frequency relationship observed for the tube vibra-

tion, particularly in the buckling and fluttering regimes. This is observed in a global

view of the flow/frequency relation for different fluid profiles, shown in Fig. 5.2a. In

order to emphasize such effect, the plot has been zoomed-in at the buckling regime

(see Fig. 5.2b) and at the fluttering regime (see Fig. 5.2c).

The effect of β on the flow-frequency relationship can be used as a tool to analyze

velocity profiles within nanostructures.

5.4 Analytical approach

An alternative approach to solve Eq. (5.13) that is key to the proposed framework for

flow determination, consists of obtaining analytical expressions for the flow velocity

as a function of the tube oscillation modes, v(ωn). The purpose of this is to determine

the flow magnitude inside a tube when the frequency spectrum of tube bending motion

is known. Such strategy is based on the assumption that experimentally-attainable

flows are small in comparison to the critical flow velocity of the first mode, given

by the characteristic flow velocity in Eq. (5.2). This assumption is supported by the

typical flow velocities measured within carbon nanotubes [2]. With this consideration,

it is possible to perform a Taylor expansion, around small flow velocities, of the

determinant, D, in Eq. (5.13), as follows:

D(v, ω) = D

∣∣∣∣
v=0

+
∞∑

n=1

∂nD

∂vn

∣∣∣∣
v=0

vn

n!
. (5.15)

It turns out that, for several sets of boundary conditions (P-P, C-C, F-F, and P-C),

the odd derivatives of the determinant vanish. For these cases, a truncation to order

m in Eq. (5.15), leads to an algebraic equation of order m
2

for v2(ω). Since analytic

solutions of polynomial equations are known up to quartic order, we have obtained
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analytic approximations of Eq. (5.15) for v2, for truncation orders m = 2, 4, 6 and 8.

As an example, a second-order truncation of the determinant in Eq. (5.15) for the

pinned-pinned case is

vP−P (ω, α) =

√
APP
BPP

(5.16)

where APP and BPP are given by

APP = 8ω sin(
√
ω) sinh(

√
ω) (5.17)

BPP = 4α2β2 − cosh(
√
ω)GPP −

√
ω sinh(

√
ω)HPP (5.18)

and GPP and HPP are given by

GPP = 4α2β2 cos(
√
ω) + (α2β2 − 2)

√
ω sin(

√
ω) (5.19)

HPP = (2− α2β2) cos(
√
ω) . (5.20)

A comparison of the analytical expression in Eq. (5.16) (and equivalent expressions

to higher truncation orders) with the exact numerical solutions, is shown in Fig. 5.3a,

in order to exhibit the range of velocities in which each of the approximations is

adequate. Fig. 5.3b shows the percentage error between the different analytical

approximations and the exact numerical solution. We can observe that there is a

wide range of flow velocities in which the analytical approximations differ no more

than few percentage points from the exact solution. For excited modes (not shown in

Fig. 5.3), the analytical approximations are valid for wider velocity ranges than the

fundamental mode.

For the two sets of boundary conditions for which odd derivatives of the deter-

minant do not vanish (P-F and C-F), algebraic equations for v (and not for v2) can

be obtained up to quartic order. Analytic expressions for higher truncation orders

(needed for higher flow velocities) and for the other sets of boundary conditions,

as well as figures comparing analytical expressions of the fundamental mode with

numerical solutions are included in Appendix A.7.
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Contrary to exact solutions that are multivalued, our analytical solutions for the

first degree of truncation, give expressions for v(ωn) such that for each value of ω only

one value of the velocity could be obtained Moreover, the expression for the velocity is

exactly the same one for each of the tube vibration modes in the spectrum. Therefore,

if the frequency spectrum of the tube dynamics were available, any of the frequencies

composing it, could be in principle used in Eq. (5.16), and the same flow velocity

would be obtained. This, together with the knowledge of the range of flow velocities

in which the approximation is valid (for example, from Fig. 5.3) gives an important

advantage of our analytical approach over numerical schemes [139, 140]. This fact

could be useful in real experiments, where different sources of uncertainty may induce

noise and spurious peaks in the frequency spectra, because every physical peak must

be related to the same flow velocity. For higher truncation orders of the determinant

in Eq. (5.15), the analytical solution will give several values for the flow velocity,

however, careful analysis would allow to distinguish which is the physical solution,

because this one should give a real value for the velocity (see for example, Table I in

Appendix A.7). The physical solution will also comply with the fact that any of the

frequencies in the spectrum will be associated to a single value of the fluid velocity

(see for example Fig. 3 in Appendix A.7 for the fourth truncation order for v2).

5.5 Simulation of the tube dynamics

An illustrative example of our proposal consists of the theoretical solution of a tube

with an initial condition that imitates a possible deformation induced by AFM, this

one is given by

u(z, t = 0) = 256
(
z4 − 4z5 + 6z6 − 4z7 + z8

)

and u̇(z, t = 0) = 0 . (5.21)

Geometrical details of the tube used in this example and its initial condition are

illustrated in Fig. 5.4. A polynomial function was chosen in order to satisfy any of
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10 nm

20 μm

Figure 5.4: Initial condition imposed for the simulations of the tube dynamics.

the sets of boundary conditions in the tube extremes.

This example allows one to see how boundary conditions influence the tube dy-

namics and could potentially allow experimentalists to understand to which of the

idealized sets of boundary conditions their specific experiment belongs.

Simulations of the tube dynamics are illustrated in Fig. 5.5 for the pinned-pinned,

clamped-clamped and pinned-clamped cases. For each set of boundary conditions,

the tube displacements at the middle of the tube (z = 0.5) are plotted as a function of

time, when the tube is filled with a stagnant fluid (first column) and when the tube is

filled with a fluid with a flow velocity v = 0.5m/s (second column). The third column

shows the frequency spectrum of both cases illustrating clearly that the fundamental

frequency is smaller when the fluid is being transported with a finite velocity than

when the fluid is stagnant within the tube. It also shows that the fundamental mode

occurs at different frequency values for each set of boundary conditions.

The complete derivation of the solution of the tube dynamics [Eq. (4.11)] with

initial and boundary conditions is given in Appendix A.8.

5.6 Experimental feasibility

We analyze the feasibility of a potential experiment according to the state of the art

of experimental apparatus. Most of the experiments in the detection of motion and

mechanical response of carbon nanotubes can be classified in two big groups: deter-

mination of the force exerted on a tube due to an imposed static deflection by means
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Figure 5.5: Simulation of the tube dynamics with different boundary conditions at their edges. For
each set of boundary conditions, the tube displacements at the middle of the tube (z = 0.5) are
plotted as a function of time; left column, when the tube is filled with a stagnant fluid; middle
column, when the tube is filled with a fluid with flow velocity v = 0.5m/s. The right column shows
the frequency spectrum of both cases illustrating clearly that the fundamental mode is smaller when
the fluid is being transported with a finite velocity than when the fluid is stagnant within the tube. It
also shows that the fundamental mode occurs at different values for each set of boundary conditions.
Calculations were done for a nanotube with inner and outer tube radius of 8 and 15 nm, respectively.
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of AFM, where the determination relies on a single measurement, and has a consider-

able amount of error [144, 145, 146, 147, 148]; and tests of the nanotubes proficiency

as resonators in response to external steady oscillatory perturbations produced by

piezoelectric actuators [149, 150, 151, 152, 153]. A different strategy is conceived

here. If a certain amount of data, that account for the time evolution of the tube

motion, is registered and subsequently treated by Fourier analysis, the uncertainty

in the peaks of the frequency spectrum will depend on the apparatus resolution to

measure distances and time, and importantly, on the sampling time [154, 155].

The minimal elements that an experiment should have in order to determine flow

using our analytical framework, are three: 1) an external driving force allowing for

fluid flow inside the nanotube, 2) a device allowing for an initial perturbation of the

tube, and 3) a transducer device allowing for the detection and registration of the

tube motion.

The incorporation of two closed reservoirs at the tube edges and the induction

of a pressure difference by mechanical means, -a syringe or a piston- is not suitable

at nanoscales, since the imperfections of the junctions between the reservoirs and

tube extremes would cause water leaking. A better strategy could be to induce an

electrophoretic flow by a voltage difference across the tube as done by Qin [78]. A

steady flow would be obtained shortly after the tube is full of water.

An initial perturbation could be induced, for example, by pushing the tube with

the tip of an AFM [144, 156], by direct mechanical coupling of a piezoelectric mate-

rial pulsed by an AC electric source [149, 157, 158], or by indirect excitation of the

nanotube by acoustic means [159, 160, 161, 162].

In general, four detection ways seem to be suitable for accurate measurements with

a sub-nm resolution and within the range of a few nm in the vertical displacement

of a nanotube: field-effect transistors [163, 164, 165, 166, 167], piezo-resistive effect

[153, 149], capacitive response [152] and optical interferometry [168, 169].

The space of a nanodevice does not allow for an easy incorporation of multiple
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Detection laser

Difracted modes

Flow
Driving force

Figure 5.6: Example of a minimal experimental setting to indirectly determine flow velocities by
means of recording the tube displacements in time. The setting includes an electrophoretic driving
force for fluid flow, while the tube deformation and detection are both done by means of an AFM
with interdigitated prints that allow for accurate detection via interferometry.

instruments or the aligning of a microdevice with external components and probes.

The most suitable device would be the one that allows for the simplest setting that

incorporates an actuator, a detector and a driving force for fluid flow.

A possible minimal setting, compatible with the simulation of the tube dynamics

of the previous section, is illustrated in Fig. 5.6. This one would include an elec-

trophoretic driving force for the fluid, while the tube deformation and the detection

could be both done by means of an AFM with interdigitated prints, that allow for

accurate detection via interferometry, as developed by Manalis [170, 171]. The ar-

rangement of tube and AFM tip could be as the one in the work of Salvetat [144].

Frequently, the actuation or detection of the tube motion will involve external

forces that should be incorporated into the model. Moreover, depending on the envi-

ronmental conditions of the experiment, a damping force could affect the experimental

results. However, all these external forces can be incorporated into equation (4.11)

in a straightforward manner. The theoretical treatment provided in this work (and

fully explained in Appendix A.7) can incorporate such external forces, allowing the

obtention of analytical expressions for the specific experiment developed. However,
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in general, these external forces exert only slight modifications to the flow/frequency

relations shown in Fig. 5.3, because in most cases, the large Young Moduli of CNTs

would cause the elastic force to be the dominant force of the system.

5.7 Considerations on the uncertainty and sensibility of

the method

The flow/frequency relation in Eq. (5.16) -and the equivalent relations for other B.C.-

associates dimensionless flow and dimensionless frequency. A suitable manner to use

such relation is by performing two experiments, one at finite flow velocity and another

one at zero flow and to record the fundamental frequency for both experiments.

The dimensional frequency obtained by a measurement at a given flow velocity v

will be denoted by ωBCv , where BC reminds that the fundamental frequency depends

on the specific set of boundary conditions. The frequency of a tube filled with a

stagnant fluid, ωBC0 , can be related to the characteristic frequency ωc in Eq. (5.1) by

the following relation:

ωBC0 = aωc , (5.22)

where the value of a depends on the boundary conditions. For a pinned-pinned tube,

a = 1, for a clamped-clamped and a free-free tube, a = 9/4, for a pinned-clamped

and a free-free tube, a = 25/16 and for a clamped-free tube, a = 1/4.

Therefore, the ratio of both dimensional measured frequencies ωBCv and ωBC0 leads

to the following result:

ωBCv
ωBC0

=
1

a

ωBCv
ωc

=
1

a
ω , (5.23)

which allows one to compute the dimensionless frequency, ω, directly from two exper-

iments, without the need to determine directly ωc by means of the Young modulus of

the tube.
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Doing so would be useful for the reduction of uncertainty, because in this way

the relative uncertainty of flow is computable directly from the dimensionless equa-

tion (5.16) or equivalent expressions for other boundary conditions11]By using a single

frequency measurement, it would be necessary to account for the uncertainty in the

characteristic flow velocity shown in Eq. (5.1), which implies to account for the high

uncertainty involved in the determination of the Young modulus. In turn, a two-

frequencies measurement scheme has a much smaller flow magnitude uncertainty..

First, the dimensional uncertainty of both frequency measurements is incorporated

in the uncertainty of the dimensionless frequency, ω, as:

∆ω2 =

(
∂ω

∂ωBCv

)2 (
∆ωBCv

)2
+

(
∂ω

∂ωBC0

)2 (
∆ωBC0

)2

=
a2

(ωBCv )2
(
∆ωBCv

)2
+ a2

(ωBCv )2

(ωBC0 )4
(
∆ωBC0

)2
(5.24)

And then, the uncertainty in the dimensionless frequency, ω, is incorporated in the

uncertainty of the dimensionless flow velocity, v(ω, α), given by Eq. (5.16) -or equiv-

alent expressions for the other boundary conditions- as

∆v =

√(
∂v

∂ω

)2

(∆ω)2 +

(
∂v

∂α

)2

(∆α)2 , (5.25)

where the uncertainty ∆α can be computed from the uncertainty in densities, outer

and inner tube radii. Therefore, from Eqs. (5.24) and (5.25), it is possible to establish

that uncertainty on flow depends essentially on the dimensional uncertainty of both

frequency measurements, on the dimensional uncertainty of densities and radii and

on the slope of the dimensionless flow/frequency function, ∂v/∂ω and the slope of

the dimensionless flow/thickness ratio function, ∂v/∂α.

Among all of the factors that affect the flow velocity uncertainty, the most impor-

tant one is the slope of flow velocity/frequency function, because it depends drastically

on the magnitude of the flow velocity itself, and it diverges for flow velocities close to

1[
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zero. This result is presented in Fig. 5.7(a), where it is possible to see that for large

tubes and intermediate flow velocities, the uncertainty reaches an asymptotic lower

value, which is given by the uncertainty of the thickness ratio, α.

According to our analysis, we consider that our method could be implemented in

typical carbon nanotubes between 10 and 100 µm in length, with initial amplitudes

between 1 and 50 nm. Our calculations predict that a tube of these dimensions will

have natural frequencies on the range of kHz−MHz. After a literature review on the

spatial and time resolution of AFM, a resolution of 0.1 nm in the measurement of the

vertical displacement of the tube [172, 173] and a time resolution of 0.05 µs would

be possible [174, 175, 176]. For shorter tubes (between 1 − 10 µm in length), the

Experimental Setting in Fig. 5.6 would not be suitable, since would not be capable

of detecting MHz-GHz frequencies.

Uncertainty in Fig. 5.7 would change slightly if different actuators or sensors are

considered. However, the qualitative behavior would remain the same, since its origin

is the slope of the flow/frequency relation.

Such calculations were done by considering a simple treatment for the uncertainty

in frequency by using a discrete Fourier transform of a one-mode sinusoidal signal

plus white noise [177, 155, 154]. For this, we have that

∆ωBCv =
∆u

U0T

√
24

N
, (5.26)

where N is the number of measurements in time, T is the total sampling time, U0 is

the amplitude of the sinusoidal mode, and ∆u is the uncertainty in the tube vertical

position in time domain.

Fig. 5.7(b) shows that the uncertainty in flow velocity is not significantly dimin-

ished by an increase on the amplitude of the initial condition, so an initial amplitude

of about 5-10 nm can be enough to carry out the experiment. In contrast, uncertainty

is strongly dependent of sampling time, because it affects directly the uncertainty in

frequency determination.
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Figure 5.7: Effect of the main experimental parameters on the uncertainty in flow determination.
(a) Expected uncertainty in the flow velocity as a function of the magnitude of the flow velocity for
different tube lengths, with an initial amplitude of 5 nm. The time resolution of 0.05 µs determines
an upper bound for the range of detectable frequencies. Such limit -given by the Nyquist frequency-
is shown in the red dashed line. (b) Expected uncertainty in the flow velocity as a function of the
sampling time for different amplitudes of the initial condition, with a tube length of 20 µm and a
magnitude of flow velocity of 0.5 m

s . Calculations were done for a nanotube with pinned edges and
the following physical parameters: inner and outer tube radius of 8 and 15 nm, respectively, water
and carbon densities of 1000 and 2300 kg/m3, respectively, uncertainty in radius of 0.1 nm, and
uncertainty in densities of 0.1 kg/m3.
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Boundary condition Range of frequency Range of flow velocity

(MHz) (m/s)

Pinned-pinned 0.58-0.9 0.3-40

Clamped-clamped 1.03-1.35 0.7-90

Pinned-clamped 0.64-0.9 0.3-60

Free-free 1.03-1.35 0.7-90

Pinned-free 0.64-0.9 0.5-60

Clamped-free 0.13-0.23 0.5-60

Table 5.2: Approximated range of suitability for a tube of 20 µm of length, subject to differ-
ent boundary conditions. The range of flow magnitudes and frequencies is given in terms of the
accurately-measurable flows and fundamental frequencies, i.e., the ones that reach an uncertainty of
5 % or lower in flow determination.

In general, flow determination is better for intermediate flow velocities, as the mag-

nitude of the slope of the flow velocity/frequency function decreases with increasing

flow magnitude. However, the range of such intermediate flow velocities, which are

ideal for measurements, depends on the boundary conditions imposed on the specific

experiment. This is illustrated in Table 5.2.

According to this, the best boundary condition will depend on the specific lim-

itations of the actuators and sensors of a particular experimental setting. For the

cases where the experimental time resolution is limited, the fundamental frequency

of a clamped-free tube is the lowest and allows for an easier detection. Besides, if

the driving pressure gradient is limited and only low flows could be generated, then

pinned-pinned would be the preferred setting.

5.8 Final remarks

A theoretical framework to indirectly measure flow velocities within nanotubes has

been developed. This one would give smaller uncertainties in flow velocities than

conventional methodologies -that determine flow magnitude in systems of nanotubes



5 Tube dynamics influenced by flow velocity 72

embedded in membranes-, because of the fact that it is limited by frequency mea-

surements, and not by knowledge of the effective area to flow.

Our strategy does not assume a particular interaction between water and graphene,

so it could be used regardless of the natural degree of hydrophobicity of the interac-

tion, and it could also be used for functionalized nanotubes.

In our model, the average flow velocity, v, determines the bending frequency spec-

trum of the tube regardless of the presence or absence of slip in the system. Once v

is experimentally determined, analytical expressions for steady state flow in the pres-

ence of slip, considering for example the Navier hypothesis for the slip velocity, could

be used to determine slip lengths. These ones might differ from the ones currently

reported in the literature.

However, such strategy can go further, by knowing not only the magnitude of the

flow inside a nanotube but some characteristics of its radial profile. This might help

to partially clarify the existing controversy concerning the real velocity profile inside

carbon nanotubes, in order to quantify slip lengths [35, 36, 37, 38]. Also, it might shed

light onto the discussion regarding the effects of shear thinning and viscoelasticity in

mica channels [3, 178, 62].

Our work might constitute the basis to propose a wide range of experiments of

flow across nanostructures in different experimental situations focusing on frequency

measurements. It also constitutes a basic framework that could be extended to deter-

mine other structural and rheological fluid properties by means of indirect frequency

measurements rather than by conventional methods.



6

Fluid dynamics influenced by simple tube motion

In Chapter 4, the physical interpretation of the modified Navier-Stokes equation was

given in terms of the role of tube/fluid interactions that tend to cancel the forces that

arise in a non-inertial frame of reference in order to allow the fluid to flow parallel to

the walls.

In order to complete the physical picture of the fluid dynamics influenced by

tube vibration, a deeper insight is needed. A comprehensive and quantitative study

requires to impose a specific condition for the tube dynamics and, subsequently,

analyse the phenomenology that arises under such condition.

To do so, the fluid dynamics is studied for a tube that moves in a single vibration

mode. It is the simplest motion of tube dynamics and it gives a simple expression for

the tube/fluid forces ρg(t)v and ρh(t). It constitutes the natural departing point to

establish the consequences of tube/fluid coupling into the fluid dynamics.

As an example of the different phenomena that our methodology allows to unveil,

we report a new phenomenon in the limit in which the tube modifies the dynamics

of the fluid, i.e., it gives a modified Navier-Stokes equation, accounting for the tube

effect on the fluid motion. We predict an oscillatory velocity of the fluid, that persists

at high frequencies, even for a fluid externally driven by a constant pressure drop.

73
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6.1 Establishment of simple tube vibration

In contrast to the dynamics presented in Chapter 5, where the result can be compared

immediately with previous results in the literature [108], this is the first time, to the

best of our knowledge, that flow velocity is solved analytically in this type of system.

Since the tube dynamics is solved independently of the fluid motion, a particular

solution for tube dynamics is obtained first. Then, the tube dynamics is incorporated

into the fluid dynamics equation, via the functions g(t) and h(t). This implies that a

specific form of u(z, t), determines the features of fluid motion.

In general, u(z, t) is obtained by solving Eq. (4.1) accounting for boundary and

initial conditions, with solutions of the form:

u(z, t) =
∞∑

m=1

Cmfm(z) cos(ωmt+ ϕm) . (6.1)

A set of boundary conditions is chosen among the five different combinations

detailed in Chapter 3, which are a consequence of the experimental setting intended to

model, related to the way in which the tube edges are fixed. The chosen set (pinned-

pinned, clamped-clamped, etc.) determines the shape of the vibration modes, i.e.,

the modulation function fm(z) and frequency spectrum ωm. The initial condition

accounts for the initial deformation exerted on the tube, in order to start its vibration.

This one determines the number of modes excited at once, through the amplitude of

each vibration mode, Cm, and its corresponding phase, ϕm. The frequency spectrum

of each set of boundary conditions is summarized in Table 6.1. Analytical expressions

for fm(z) are given in Appendix A.9.

The simplest way to induce tube vibrations consists of the excitation of a single

mode. Regardless of the specific set of boundary conditions, the tube dynamics of a

tube excited only in its n-th vibration mode, is given by

u(z, t) = U0fn(z) cos(ωnt) , (6.2)
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Boundary conditions Frequency spectrum ωn

Pinned-pinned n2ω0

Clamped-clamped
(
n+ 1

2

)2
ω0

Pinned-clamped
(
n+ 1

4

)2
ω0

Pinned-free
(
n+ 1

4

)2
ω0

Clamped-free
(
n− 1

2

)2
ω0

Table 6.1: Frequency spectrum for each set of boundary conditions. Each frequency is expressed in

terms of a reference frequency ω0 defined as ω0 = π2

L2

√
EI

ρAf+ρtAt
.

where U0 corresponds to the Cn coefficient, and the phase is set to ϕn = 0.

6.2 Tube-induced forces for a one-mode vibration: local

vs global behavior

When the tube displacement in Eq. (6.2) is incorporated into Eqs. (3.41)-(3.42),

expressions for the terms g(t) and h(t) are obtained:

g(t) =
ωnAU

2
0

L2
sin(2ωnt) , (6.3)

h(t) =
ω2
nBU

2
0

L
cos(2ωnt) , (6.4)

where A and B are geometrical factors, different for each set of boundary conditions

at the tube extremes. Their analytical expressions are included in Appendix A.9.

Geometrical factors A and B convey information of the local behavior of tube

motion, characteristic of the spatial modulation of each vibration mode. Particularly,

it turns out that B = 0 for all sets of boundary conditions, except for the ones

where one edge is free. In physical terms, it means that the effective pushing force is

cancelled when integrated along the tube for tubes with fixed edges.

Such a trend can be understood by inspection of the integrand of g(t) and h(t) in

Eqs. (3.41)-(3.42). Both integrands are of the form gL(z, t) and hL(z, t). They give the
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local behavior of the system. It is necessary to recall that g(t) and h(t) incorporate

the tube motion into Navier-Stokes equation. For compressible fluids, such local

forces would cause axial profiles of the fluid velocity; however, for incompressible

fluids subject to uniaxial flow, as the one considered in the present study, only the

integral contributions of the tube-induced forces have an effect on the fluid. Thus, an

insight into the local behavior of gL(z, t) and hL(z, t) is useful.

The most important difference between the local gL(z, t) and hL(z, t) can be un-

derstood in terms of cooperative and competing effects (see integrands in Eqs. (3.41)-

(3.42)). Since the angular velocity, ∂2u
∂z∂t

, and the tube slope, ∂u
∂z

, change sign at the

same points in the tube for all sets of boundary conditions, with at least one fixed

edge (see Figs. 6.1a-6.1f), the Coriolis term, gL(z, t), drives the fluid in the same

direction at every region within the tube (see Figs. 6.1g-6.1i). Therefore, the local

effect on the fluid is determined by two cooperating effects, which has the same sign

all along the tube.

In contrast, the sign of the local force hL(z, t), is subject to competing effects,

since the tube vertical acceleration, ∂2u
∂t2

, only changes sign at the nodes of the tube

displacement, which in general, are located at different points than the ones where

the slope changes sign. For tubes with fixed edges, the spatial contributions to h(t)

are cancelled along the tube in between nodes; whereas the tubes with a free edge

exhibit an additional contribution, where there is no node at the tube extreme. The

region from the last node to the free edge, is called the free region (see Fig. 6.1f).

The force at this region is responsible for the special features in tubes with one free

edge.

6.3 Analytical solution of flow velocity

The expressions for g(t) and h(t) in Eqs. (6.3) and (6.4) are incorporated into the so-

lution for v(r, t) given in Eq. (4.24). An analytical solution for the one-mode vibration
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Figure 6.1: Local forces on the tube. First row shows three different sets of boundary conditions:
pinned-pinned, pinned-clamped and pinned-free. Their vibration is represented with evanescent gray
lines to emphasize the position of the tube nodes (regions with no displacement). The second row
shows the value of the local angular velocity (blue line), tube slope (red line) and tube acceleration
(green line). The third row shows the local value of gL(z, t) (blue line) and hL(z, t) (red line).

tube will be obtained afterwards. As Eq. (4.24) shows, it is necessary to compute

the Fourier transform of both, ∂p
∂z
e
∫ t
t0
g(t)dt

and ρh(t)e
∫ t
t0
g(t)dt

, which is not possible

by analytical means.1 However, it is possible to approximate such computation by

expressing e
∫ t
0 g(t)dt as

e
∫ t
t0
g(t)dt

= e
AU2

0
2L2 (1−cos(2ωnt)) (6.5)

= e
AU2

0
2L2

∞∑

m=0

1

m!

(
−AU

2
0

2L2
cos(2ωnt)

)m
.

The series defined in Eq. (6.6) is absolutely convergent because each term’s ampli-

tude depends on successive powers of U2
0/L

2, which is equal or lower than 10−4, for

the purpose of this work, within the small deformation limit. Also, such expansion

is useful because the Fourier Transform of each term can be computed by analytical

means.

After the computation of the integrals in Eq. (4.24) and an expansion to fourth

order in the relative deformation ε, defined as ε = U0/L, the following expression is

1The lower limit in such integrals is an arbitrary time t0. For practical purposes, we perform com-

putations considering t0 = 0.
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obtained for the radially-averaged flow velocity, 〈v〉, as

〈v〉 = K0 +Kc
2ω cos(2ωnt) +Ks

2ω sin(2ωnt) (6.6)

where K0, K
c
2ω and Ks

2ω are given, respectively, by

K0 = −∂p
∂z

R2

8µ
+

(
−∂p
∂z

A2ε4R2

64µ
+
ρω2

nLABε
4R2

32µ

)(
1 + <fbes

(
2ρωnR

2

µ

))
, (6.7)

Kc
2ω = −∂p

∂z

Aε2R2

16µ
+

(
−∂p
∂z

Aε2R2

16µ
+
ρω2

nLBε
2R2

8µ

)
<fbes

(
2ρωnR

2

µ

)
, (6.8)

Ks
2ω =

(
−∂p
∂z

Aε2R2

16µ
+
ρω2

nLBε
2R2

8µ

)
=fbes

(
2ρωnR

2

µ

)
, (6.9)

with fbes given by

fbes(x) =
8

ix

(
1− 2J1

√
ix√

ix J0
√
ix

)
, (6.10)

and <fbes and =fbes account for its real and imaginary parts, respectively.

6.4 Qualitative analysis of the results

Two main consequences arise from Eq. (6.6).

First, the Coriolis term, g(t), proportional to Aε2, is capable to induce a change

in the net flow by itself or by its interaction with the tube effective pushing h(t).

This phenomenon can be appreciated by inspection of K0 in Eq. (6.7), where the

zero-frequency flow caused by the constant driving force, namely, −∂p
∂z

R2

8µ
, is modified

by two terms that depend on the square amplitude of g(t), namely, A2ε4; and the

amplitude of g(t)h(t), namely, ABε4. These terms have an overall dependence on

ε4. Thus, even for relative large values of the tube deformation (around ε ≈ 10−2),

all the terms proportional to ε4 cause a change in net flow which is eight-orders of

magnitude lower than the flow exerted by the constant pressure gradient. In other

words, a tube vibrating in a single mode is able to produce a net flow enhancement,

however, such an enhancement is negligible for all practical purposes.

The second consequence is that the tube oscillation is capable to induce oscillations

in the flow velocity. This can be appreciated by observing the oscillatory terms in
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Eq. (6.6). It is interesting to note that the amplitude of the oscillatory component

of flow, computed as vosc =
√

(K2ω,c)
2 + (K2ω,s)

2, varies with ε2, which leads to an

amplitude of the oscillation small but non negligible. Therefore, the tube vibration

provides a mechanism to induce oscillatory flow within elastic nanostructures.

In general, this type of system tends to couple all the characteristic times that

are present in the driving force. For a given driving force with two characteristic fre-

quencies, namely, ωn and ωm, the final response incorporates a term with a frequency

ωn + ωm and another with a frequency ωn − ωm.

Inspection of Eq. (6.6) allows one to understand that the oscillatory flow velocity

developed within an oscillating tube, is caused by two contributions:

• The interaction between the constant pressure gradient and the Coriolis force,

that corresponds to the terms proportional to Aε2 in Eqs. (6.8)-(6.9).

• The pulsatile driving force exerted by the tube pushing, given by the term

−ρh(t), that corresponds to the terms proportional to Bε2 in Eqs. (6.8)-(6.9).

An interesting manner to study such oscillatory flow is by comparing it with the

classical mechanism to generate pulsatile flow via an oscillatory pressure gradient of

the form ∂p
∂z

= ∂p0
∂z

cos(2ωnt). That is, a one-mode oscillatory pressure gradient of

amplitude −∂p0
∂z

and frequency 2ωn. The flow velocity, vpress, is given by [179, 136]:

vpress = −

∣∣∣∣∣∣
1

2iρωn


1−

2J1

√
2iρωnR2

µ√
2iρωnR2

µ
J0

√
2iρωnR2

µ



∣∣∣∣∣∣
∂p0
∂z

cos(2ωnt+ ϕ), (6.11)

where ϕ, is the phase between velocity and pressure gradient.

The first contribution to pulsatile flow in our model is given by the tube pushing,

when no external pressure gradient is exerted on the fluid, that is, when ∂p
∂z

= 0 in

Eq. (4.24). In this case, Eq. (6.6) leads to an expression of the form:

vh =

∣∣∣∣∣∣
1

2iρωn


1−

2J1

√
2iρωnR2

µ√
2iρωnR2

µ
J0

√
2iρωnR2

µ



∣∣∣∣∣∣
ρω2

nBLε
2 cos(2ωnt+ ϕ) (6.12)
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Comparison of Eqs. 6.11 and 6.12 allows one to think of a pulsatile flow caused

by an oscillatory driving force, of frequency 2ωn and amplitude ρω2
nBLε

2, which, in

turn, is the amplitude of ρh(t) in Eq. (6.4). In other words, the tube pushing force

plays a similar role than an oscillatory pressure gradient, and leads to the classical

response of a pulsatile newtonian fluid.

Moreover, we can compare the pulsatile pressure gradient scheme, with the second

contribution to pulsatile flow in our model, when our system is studied in the absence

of tube pushing, that is h(t) = 0 in Eq. (4.24).1 In such case, the oscillatory flow

velocity is given only by the interaction between the Coriolis force and the constant

pressure gradient, as

vg = −Aε
2R2

16µ

∂p

∂z
cos(2ωnt)−

Aε2

2

∣∣∣∣∣∣
1

2iωnρ


1−

2J1

√
3iρωnR2

µ√
2iρωnR2

µ
J0

√
2iρωnR2

µ



∣∣∣∣∣∣
∂p

∂z
cos(2ωnt+ϕ) ,

(6.13)

In contrast to the previous expressions for pulsatile flow, vg exhibits an anomalous

behavior. vg can be understood as the sum of two components: the first one is always

in phase with the Coriolis force and has an amplitude independent of the vibration

frequency; the second one, is the typical response of a pulsatile flow with frequency

2ω and an oscillating driving force of amplitude −∂p
∂z

Aε2

2
.

The peculiar behavior of vg is more evident when compared with vpress in the zero-

frequency and infinite-frequency limits. At low frequencies, the amplitude of flow

velocity vpress is finite, and given by −R2

8µ
∂p0
∂z

. In contrast, vg leads to

lim
ωn→0

vg = −∂p
∂z

Aε2R2

16µ
+
∂p

∂z

Aε2

2

(
R2

8µ

)
= 0 . (6.14)

Eq. (6.14) shows that both terms cancel each other in the zero frequency limit.

On the other hand, in the infinite-frequency limit, the amplitude of flow velocity of

vpress tends to zero. In contrast, the first term in vg oscillates with constant amplitude,

1Such condition is achieved for tubes with both edges fixed, as previously stated in this Chapter.
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whereas the second term vanishes, leading to the following result:

lim
ωn→∞

|vg| = −∂p
∂z

Aε2R2

16µ
. (6.15)

Finally, it is possible to compare the pulsatile pressure scheme with ours, for the

case of a tube subject to both, tube pushing and a constant pressure gradient. The

cooperative role between the pressure-Coriolis and the tube pushing effects lead to

very interesting results. This case will be studied in the following section.

6.5 Quantitative behavior of oscillatory flow velocity via

dimensionless parameters

To achieve a simple and complete description of such conditions, it is useful to define

three dimensionless parameters, that summarize the physics described in the previous

analysis.

First the separation between low and high frequencies can be stated in terms of

the ratio between the tube vibration frequency and the viscous frequency, ωµ = µ
ρR2 ,

given by the Womersley number, Wo, as

Wo ≡ ωn
ωµ

(6.16)

Second, the relative dominance between pressure gradient and tube effective push-

ing is quantified by defining the dimensionless pressure gradient F , as

F ≡ −
∂p
∂z

ρω2L
= −∂p

∂z

1

ρLWo2ω2
µ

. (6.17)

Finally, flow velocity is reescaled in a way as to have the ratio of velocity and

driving force, to coincide with the classical description of flow driven by a pulsatile

pressure gradient in a rigid tube, when the Coriolis force is irrelevant. In other

words, when the contribution given by Eq. (6.13) is negligible when compared to the

one given by Eq. (6.12). Such a reescaled flow velocity, v∗, is defined as
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v∗ ≡ 〈v〉
vcharact

=
8

L

〈v〉
Wo2ωµ

(6.18)

In terms of Wo, F , and v∗, flow velocity in Eq. (6.6) is rewritten as

v∗ = K∗0 +K∗2ω,c cos(2Woωµt) +K∗2ω,s sin(2Woωµt) (6.19)

where K∗0 , K∗2ω,c and K∗2ω,s, in Eqs.(6.7-6.9) are given, respectively, by

K∗0 = F +

(
FA2ε4

8
+
ABε4

4

)
(1 + <fbes(2Wo)) , (6.20)

K∗2ω,c =
FAε2

2
+

(
FAε2

2
+Bε2

)
<fbes(2Wo) , (6.21)

K∗2ω,s =

(
FAε2

2
+Bε2

)
=fbes(2Wo) , (6.22)

whereas the amplitude of the oscillatory component of flow velocity, is

v∗osc =

√(
K∗2ω,c

)2
+
(
K∗2ω,s

)2
. (6.23)

v∗osc is plotted, with continuos lines, as a function of the dimensionless frequency,

Wo, for different values of the dimensionless driving force, F , in Fig. 6.2. It can be

understood in terms of the relative contributions of the terms containing FA, and the

terms containing B, to the oscillatory flow velocity, which are additive, in Eqs. (6.21

and 6.22). One contribution, given by FA = 0, corresponding to the pushing case of

the previous section, (included as a monotonically decreasing dashed red line in Fig.

6.2); and another one, when B = 0, corresponding to the Coriolis regime (included as

monotonically increasing dashed lines in Fig. 6.2), for a given A and various values

of F .

At zero or low values of F (up to 10−1 in the picture) and low Wo (up to 1 in

the picture), the effective pushing is orders of magnitude larger that the Coriolis

force. Therefore, the amplitude of the velocity as a function of frequency exhibits

the typical behavior of the one of an oscillating driving force acting on the confined

fluid, namely, at low frequencies, there is a plateau in a log-log scale. For higher
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Figure 6.2: Effect of the magnitude of the pressure gradient and the frequency of tube oscillation
in amplitude of the oscillatory flow induced within a pinned-free tube vibrating at its fundamental
mode. Each continuous curve represents the amplitude/frequency relationship for different values of
the dimensionless pressure gradient, F . Also, the individual contributions to the flow amplitude are
shown, namely, the effective pushing contribution (red dashed line) and the Coriolis contributions
(dashed lines in other colors).
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values of Wo, (above 1 in the picture) the shorter the forcing period, the smaller the

amplitude of fluid motion. That is, there is a frequency region where the classical

monotonic decrease of flow amplitude can be appreciated for any value of F , on the

range that is being discussed. On the other hand, from the different dashed lines

with a monotonic increase with Wo, it is clear that the Coriolis force, increases with

increasing value of Wo. This happens up to a critical value of Wo, different for

each value of F , where the Coriolis force is of the same magnitude than the pushing

force. This can be appreciated when the different Coriolis contributions, given by the

monotonically increasing dashed lines, cross the monotonically decreasing dashed red

line, that gives the pushing contribution to the velocity. After the crossing, for larger

values of Wo, the dominant force of the system is the Coriolis force. This one causes

the flow velocity to reach a constant amplitude.

In contrast, at high values of the dimensionless driving force F (for instance see

F = 10 in the picture), such panorama changes. This is the case of having a much

larger pressure gradient than the forcing caused by pushing, for any frequency. As can

be appreciated in the figure, the crossover between the Coriolis force and the effective

pushing (dashed red line) occurs at much lower values of Wo, in the region where the

pushing force still has a low-frequency plateau, in a log-log scale. This leads to an

atypical flow magnitude/frequency relationship, that, for low values of Wo, increases

as a function of Wo. Such regime, characterized by a positive flow/frequency slope,

ends up when the pulsation frequency reaches the viscous frequency, that is Wo=1,

and the flow velocity amplitude reaches an asymptotic value, which in turn, is the

same than the discussed for low-pressure gradients in Eq. (6.25).

The transition between the low and high driving forces regimes, occurs at

Ftransition =
2B

A
. (6.24)

For values of F smaller than Ftransition, the high-frequency plateau is below the one

of low frequency. For values of F larger than Ftransition, the high-frequency plateau is
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above the one of low frequency.

The asymptotic value of flow amplitude at large frequencies is given by

lim
Wo→∞

v∗osc =
FAε2

2
. (6.25)

In terms of dimensional variables it gives an assymptotic value only dependent on the

magnitude of the pressure gradient, showing clearly that a finite pressure gradient is

needed in order for the Coriolis force to modify flow due to tube vibrations.

lim
ω→∞

vosc = −Aε
2R2

16µ

∂p

∂z
. (6.26)

This asymptotic behavior is determined by the amplitude of the first term in

Eq. (6.13), when the inertial and viscous forces have produced the decaying regime,

both, in the second term of Eq. (6.13), and on Eq. (6.12).

6.6 Final remarks

Results of our model imply that generating tube vibrations constitute a potential

strategy to experimentally induce oscillatory flow within nanostructures. Specially,

this could be exploited for high frequencies, where the conventional mechanisms to

induce flow oscillation have been demonstrated to be very limited. Our strategy would

allow one to overcome high-frequency limitations, because of the non-linear nature

of the Coriolis force, which guarantees an asymptotic amplitude for oscillatory flow

at high frequencies, as long as a Hagen-Pouiseuille profile is developed by a constant

pressure gradient to which the Coriolis force is coupled.

It is worth noticing that this behavior could be sustained as long as the oscillatory

tube deformation exists. So, one can say that in order to generate high frequency

oscillatory flows experimentally, our methodology predicts that a hardly achievable

effect, namely, producing oscillatory flow by means of pulsatile pressure gradients, has

been replaced by the problem of sustaining tube vibrations [144, 163, 180]. Since for

many carbon nanotubes, deformations require very little energy, in fact, as little as
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room temperature thermal energies, as discussed previously, our results indicate that

a hardly achievable effect by conventional means, has become an easily achievable

effect.

It would be necessary to deepen on this study in order to have a comprehensive

picture of the role of Coriolis force in flow within nanostructures, when the tube

dynamics is subject to a more complex deformation than the one analyzed in this

work. The coupling of the tube and pressure gradient could be exploited in the

future as a strategy to control flow within nanostructures by different mechanisms

involving the capabilities of modern devices to perform nanometric manipulation of

tubes conveying flow.



7

Conclusions and perspectives

Nanoscopic systems offer a surprising world of possibilities. In this work, we have

explored a specific set of nanostructures: nanotubes conveying flow, capable to sustain

bending motion because of their elasticity.

The intricate nature of the coupling between tube and fluid motion has been

studied from two completely different points of view:

On the one hand, it is possible to detect and determine properties of flow velocity

by detection of anomalies on the tube vibration spectrum. In other words, since fluid

flow affects tube motion, a change in tube vibration could be related to properties

of flow velocity. On the other hand, it is possible to modify the flow velocity inside

nanotubes by externally and periodically bending the tube.

Despite the fact that the high amplitude flow detected in CNT membranes cannot

be explained in terms of tube vibrations, both approaches have given us new insights

on the capabilities to detect and control flow at nanoscales.

From the point of view of the author, there are two main perspectives from the

theoretical work developed in this thesis, from a conceptual point of view:

First, the design of better strategies for indirect detection of complex properties

of fluids confined inside nanotubes. Just as certain details of flow velocity and radial

profile can be determined in this framework, it could be possible to go further, in order

to detect more fluid flow details and rheological properties, that have been predicted

by theoretical means in the literature, but have not been measured experimentally

87
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due to the limitations of direct flow measurements at nanoscales.

Finally, the design of better strategies to control flow across nanotubes, by taking

advantage of its coupling with tube vibrations. In this work, the simplest type of tube

vibration was studied. It would be natural to go further and explore more complex

schemes to generate and control tube vibrations, with a consequent improvement

in the capabilities to generate sophisticated fluid responses. Here, we have shown

that a simple single-mode vibration was able to induce oscillatory flows that do not

vanish at ultra-high frequencies. What could be obtained, when more vibration modes

and characteristic times are involved, is not intuitive and not obvious but it might

eventually lead to produce a tailored fluid dynamics by mechanical means.

In the future, the capabilities to control flow across nanostructures via tube vibra-

tions could offer an alternative to the current paradigm of chemical functionalization

to optimize the permeability of nanoscale-pore membranes. In other words, the me-

chanical manipulation of nanostructures could therefore constitute an alternative way,

much simpler and, perhaps, more efficient, to optimize flow in nanoscopic pores, filters

and sieves.
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Abstract in Spanish

Dinámica de fluidos en nanotubos oscilantes:

Un estudio de medios continuos.

Introducción

La dinámica de fluidos sujetos a confinamiento nanométrico, es un área de gran im-

portancia para el desarrollo de la ciencia básica y aplicada. El mundo de la nanoescala

ofrece una ventana para la observación de conceptos f́ısicos y qúımicos que no pudieron

ser probados experimentalmente por siglos. Ideas tales como el resbalamiento y la

fricción en la interfase sólido/ĺıquido, el rol de las interacciones intermoleculares en

la respuesta reológica de los fluidos, la relación entre la rugosidad de un tubo y la

estructura del fluido —en la proximidad de la pared— en la formación de la capa

ĺımite hidrodinámica, han sido corroboradas y observadas en años recientes, gracias

a las nuevas metodoloǵıas para diseñar dispositivos micro y nanoflúıdicos, junto con

el desarrollo de técnicas y estrategias para controlar y medir la velocidad de flujo en

esas escalas.

El comportamiento f́ısico y qúımico de algunos dispositivos nanoflúıdicos ha de-

safiado la concepción clásica de la interacción tubo/fluido, de manera que ha sido

necesario revisar las suposiciones y consideraciones que sustentan nuestra comprensión

de los ĺıquidos y sólidos interactuando en situaciones fuera del equilibrio.

89
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En algunos casos, los sistemas nanométricos de flujo exigen una descripción f́ısica

más compleja que los sistemas macroscópicos, requieren una visión fisicoqúımica que

tome en cuenta la formación de agregados y estructuras moleculares complejas que no

se encuentran en sistemas macroscópicos. La mayoŕıa de los esfuerzos teóricos que se

realizan para mejorar los modelos fisicoqúımicos que describen sistemas nanoscópicos

de flujo, han seguido este enfoque.

En algunos otros casos, las caracteŕısticas del mundo nanoscópico permiten re-

alizar suposiciones que resultan inadecuadas para el modelado teórico de sistemas

macroscópicos. Sorprendentemente, algunas de estas consideraciones dan lugar a una

simplificación de las ecuaciones que determinan la dinámica de sistemas nanoflúıdicos,

en comparación con las ecuaciones que modelan sistemas macroscópicos análogos.

Esto es posible porque el mundo nanoscópico ofrece una escala única en su tipo,

donde convergen dos situaciones f́ısicas singulares: la cantidad de moléculas es su-

ficientemente grande para llevar a cabo una descripción del sistema en términos de

propiedades y descriptores continuos; y el tamaño del confinamiento es suficiente-

mente pequeño, de manera que no pueden desarrollarse algunos fenómenos que se

manifiestan en sistemas de flujo macroscópicos sujetos a esfuerzos complejos, tales

como flujo secundario y patrones tridimensionales de flujo. Tales fenómenos requieren

un espacio mı́nimo para formarse y desarrollarse.

Los artefactos micro y nanoflúıdicos constituyen sustratos prometedores. La minia-

turización de los procesos implica una reducción considerable de la cantidad de re-

activos y residuos qúımicos involucrados. Al mismo tiempo, el control de fenómenos

difusivos mejora significativamente en canales en la micro y nanoescala, debido a

que efectos convectivos tales como la inestabilidad de flujo, la formación de vórtices

y turbulencia, son prácticamente inexistentes en esta escala de confinamiento. Por

lo tanto, es posible fabricar sistemas de flujo donde las condiciones del mezclado de

fluidos y la estabilidad de interfaces fluido/fluido sean controladas perfectamente.

La mayoŕıa de las aplicaciones actuales de los dispositivos nanoflúıdicos están inspi-
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radas en la mimetización de canales biológicos [25], con nanoestructuras de tamaños

y geometŕıas similares [26, 27, 28]. Como consecuencia, se ha ampliado el espectro

de las nanoestructuras existentes para transportar fluido en su interior. Hoy en d́ıa,

los sistemas nanoflúıdicos están hechos de una diversidad de materiales y arreglos

de canales [29, 30, 31], cuyo tamaño va de unos pocos nanómetros hasta cientos de

micras, tanto en longitud como en radio [32, 33, 34]. Sin embargo, entender la f́ısica

subyacente en el flujo de fluidos a través de nanoestructuras sigue siendo un reto en

cuanto a la predicción del orden de magnitud del flujo y su control.

Antecedentes

Los enfoques teóricos existentes para el estudio de sistemas nanotubo/fluido pueden

clasificarse en tres grandes grupos: modelos atomı́sticos de dinámica molecular; mo-

delos basados en la mecánica de medios continuos; y, finalmente, modelos h́ıbridos de

los dos anteriores.

Ambos tipos de enfoques, discreto o continuo, han resultado de utilidad bajo

diferentes situaciones f́ısicas.

Las simulaciones de dinámica molecular son particularmente útiles en el estudio

de los nanotubos de radios más pequeños, donde se presentan fuertes fluctuaciones en

la densidad de los fluidos y una descripción discreta es indispensable para entender

reǵımenes de flujo tales como el flujo baĺıstico en el que las moléculas de agua forman

un arreglo unidimensional, o en el denominado flujo de Knudsen, en el que la dinámica

del flujo se encuentra dominada por las colisiones e interacciones de moléculas aisladas

de fluido con la pared [95, 35].

Las simulaciones de dinámica molecular han sido fundamentales para entender las

fluctuaciones de la densidad del agua en la proximidad de las paredes de un tubo;

asimismo, se ha demostrado que las moléculas de agua al interior de nanotubos de

carbono muy pequeños, se relajan formando estructuras complejas que no tienen
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equivalente en las fases macroscópicas conocidas. Estos resultados han permitido

establecer un marco teórico de las interacciones tubo/fluido y su influencia en la

desviación de las propiedades continuas en la nanoescala. Sin embargo, la simulación

de tubos largos o de tiempos de simulación relativamente altos, no es posible en

este tipo de simulaciones, debido a su alto costo computacional. Aunado a esto,

los parámetros de los campos de fuerza utilizado en las simulaciones de dinámica

molecular deben ajustarse de acuerdo con el arreglo experimental que se desea simular

[98, 99, 100]. Estas limitaciones han sido un obstáculo para establecer tendencias

generales en el comportamiento de fluidos nanoconfinados.

A diferencia de los modelos atomı́sticos, la mecánica de medios continuos ha resul-

tado de utilidad para simular tubos relativamente grandes, en prácticamente cualquier

escala temporal [2, 107, 108, 109, 110, 111]. Un modelo continuo ofrece una com-

prensión de la compleja interacción tubo/fluido, a través de una descripción promedio

de la misma.

En la literatura, los estudios de medios continuos en nanoestructuras que trans-

portan fluido, comenzó considerando tubos ŕıgidos estáticos. En tales simulaciones, la

interacción tubo/fluido se incorpora mediante el resbalamiento de fluido en la inter-

face fluido/pared [2, 10]. Asimismo, los estudios en la dinámica de fluidos a través de

tubos doblados han arrojado resultados anaĺıticos en los que el fluido exhibe un flujo

complejo que consiste de un flujo primario, paralelo al tubo, y un flujo secundario que

forma un patrón helicoide tridimensional en las ĺıneas de corriente [6]. A diferencia

de los patrones obtenidos en otras geometŕıas, estas ĺıneas de flujo no presentan una

inestabilidad turbulenta [112]. Este resultado aparece solamente para tubos doblados

con una curvatura local relativamente alta.

La incorporación de la vibración del tubo a la descripción de flujo nanoscópico,

se ha llevado a cabo únicamente para flujos tipo tapón, sin tomar en consideración

las peculiaridades de la respuesta del fluido a la fuerza motriz, ni información de la

dinámica y perfiles espaciales del flujo; es decir, en esos modelos, la velocidad del
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fluido es un parámetro constante dentro del modelo [107, 108, 109, 113, 114]. Un

modelo continuo que incorpore tanto el efecto del fluido en la dinámica del tubo,

como la descripción de la dinámica del fluido influida por las oscilaciones del tubo, se

encuentra ausente en la literatura.

El interés por tomar en cuenta ambos niveles de descripción f́ısica del sistema de

flujo, ha inspirado el desarrollo de modelos h́ıbridos [7, 126, 127, 128]. Los primeros

intentos de conjuntar la visión continua y atomı́stica de estos sistemas, se desarro-

llaron con el propósito de simular sistemas electromecánicos micro y nanoscópicos,

llamados MEMS y NEMS, que incorporan sistemas flúıdicos complejos en los cuales

canales macro, micro y nanoscópicos se embeben en redes y geometŕıas intrincadas.

Es conveniente recalcar que los problemas asociados a los modelos atomistas per-

sisten en los modelos h́ıbridos, en lo concerniente a la imposibilidad de establecer

tendencias generales, dado que los resultados obtenidos son particulares del fluido, de

las dimensiones y de la representación f́ısica de la interacción fluido/pared.

Modelando la interacción tubo/fluido en situaciones dinámicas

En este trabajo, se propone un marco teórico dentro de la mecánica de medios con-

tinuos, con el fin de estudiar fluidos confinados al interior de nanotubos oscilantes

doblados. Para ello, se propone una consideración f́ısica fundamental: el fluido sólo

puede moverse paralelamente al tubo.

Esta suposición se justifica debido a la imposibilidad de los fluidos de desarrollar un

flujo secundario a escalas nanométricas. Esto resulta muy conveniente en un sentido

matemático, porque permite un estudio anaĺıtico de este sistema dinámico, tanto en

lo concerniente a la obtención de las ecuaciones que rigen su dinámica, como para su

solución.

Nuestro tratamiento se basa en el Principio de Mı́nima Acción, el cual ha sido

utilizado de manera exitosa para establecer la dinámica de Navier Stokes cuando un
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fluido está sujeto a un amplio rango de fuerzas y restricciones f́ısicas [115, 122, 116,

117, 118, 119, 123, 120]. Tal metodoloǵıa resulta especialmente útil cuando existen

restricciones impuestas en el sistema f́ısico, ya que es posible incorporar tales consi-

deraciones en la ecuación de movimiento resultante, de una manera clara, intuitiva y

consistente [124, 121, 115]. El principio de mı́nima acción para un sistema abierto a

temperatura constante, está dado por

δS + δW + δC = 0 , (8.1)

donde S es la acción del Sistema, dada a partir del lagrangiano, L = T − V .

Se modela un sistema tubo/fluido a través de dos variables dinámicas: el desplaza-

miento vertical del tubo, u, y la velocidad del fluido, v. Para hacerlo, se modela al

tubo como una cilindro hueco elástico de Euler-Bernoulli, sujeto a deformaciones

pequeñas, en ausencia de tensión axial. Asimismo, se considera que el radio del tubo

es mucho más pequeño que su longitud y que el radio de curvatura que alcanza el

tubo en su punto de máxima deflexión. El interior del tubo se encuentra lleno de un

fluido newtoniano incompresible. El sistema se mantiene en condiciones isotérmicas.

La acción, S, se expresa en términos del lagrangiano del sistema tubo/fluido, L,

como sigue:

L = Tt + Tf − Vt − Vf − Vt/f , (8.2)

donde Tt, Tf , Vt y Vf denotan la enerǵıa cinética y potencial del tubo y fluido,

respectivamente; Vt/f es la enerǵıa potencial de interacción entre el tubo y el fluido.

La enerǵıa potencial del tubo está dado por la enerǵıa elástica, como

Vt =

∫

V

1

2
EI

(
∂2u

∂z2

)2

dV . (8.3)

La enerǵıa potencial del fluido refleja la interacción que existe entre las part́ıculas

de fluido. En el marco de medios continuos, esta enerǵıa responde a cambios en la

densidad del fluido, ρ, aśı como a la deformación
∂~rfluid
∂r

. Por esta razón, la enerǵıa
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potencial de fluidos incompresibles que no presentan propiedades elásticas se considera

constante.

La presión y la viscosidad del fluido son considerados mediante el término W en la

ecuación (8.1). Las fuerzas viscosas fueron excluidas del término de enerǵıa potencial,

porque son disipativas. En estos términos, el trabajo W se expresa como

δW =

∫

t

∫

S

(−p+ τrz)δzfluid dS dt . (8.4)

La primera restricción considerada en el sistema permite incorporar el acoplamiento

entre la dinámica del tubo y del fluido. Mientras el tubo oscila, su dirección también

cambia con el tiempo. Nuestra suposición establece que la velocidad relativa entre el

fluido y el tubo es siempre paralela a la dirección del tubo. Matemáticamente, esto

se expresa como

~vfluid = ~vtube + v(r, t)~qtan , (8.5)

en donde ~qtan es un vector unitario que apunta en la dirección del tubo.

La ecuación (8.5) es suficiente para tomar en cuenta la interacción tubo/fluido;

por ello, la enerǵıa potencial de interacción entre el tubo y el fluido se considera nula,

es decir, Vtube/fluid = 0. La segunda restricción es la conservación de masa del fluido,

dada por ∫

V

∂zfluid
∂z

dV = 0 . (8.6)

Al incorporar todos los términos de las ecuaciones (8.3), (8.4), (8.5) y (8.6) en el

Principio de Hamilton (Ec. (8.1)), se obtienen dos ecuaciones de movimiento, que

acoplan el desplazamiento del tubo, u(z; t) y la velocidad del fluido v(r; t), como se

expresa a continuación:

EI
∂4u

∂z4
+ ρAf〈v2〉

∂2u

∂z2
+ 2ρAf〈v〉

∂2u

∂z∂t
+ ρAf

∂u

∂z

∂〈v〉
∂t

+
(
ρAf + ρtAt

)∂2u
∂t2

= 0 , (8.7)

ρ
∂v

∂t
+ ρg(t)v + ρh(t) +

∂p

∂z
− µ

(
∂2v

∂r2
+

1

r

∂v

∂r

)
= 0 . (8.8)

Resulta de utilidad darle un nombre a los términos involucrados en la Ecuación

(8.8). El término ρg(t)v es la fuerza de Coriolis; el término ρh(t), que denominamos
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la fuerza efectiva de empuje del tubo, es la suma de dos contribuciones: la fuerza

centŕıfuga, dada por ∂u

∂z∂t
∂u
∂t

, y la fuerza de empuje que ejerce el tubo sobre el fluido,

dada por ∂u

∂t2
∂u
∂z

. De manera análoga, en la ecuación (8.7), el término ρAfv
2 ∂2u
∂z2

se

llama fuerza centŕıfuga; el término 2ρAfv
∂2u
∂z∂t

es la fuerza de Coriolis; y el término

ρAf
∂v
∂t
∂u
∂z

es la fuerza de empuje del fluido en el tubo.

A fin de tener un marco teórico completo para estudiar la dinámica acoplada del

tubo y fluido, es necesario incorporar condiciones de frontera, tanto en la interfase

fluido/pared como en los extremos del tubo. En este trabajo, se desea establecer los

cambios que suceden en la dinámica del fluido como consecuencia de las vibraciones

del tubo y que no involucren el resbalamiento del fluido en la pared. Por esta razón,

se considera una condición de no resbalamiento en la interfase fluido/pared.

Por otro lado, las condiciones de frontera en los extremos del tubo reflejan el

arreglo experimental que se utiliza en el sistema de estudio, pues reflejan la manera

en que se fijan los extremos del tubo. T́ıpicamente, un extremo puede estar clavado,

anclado o libre. Todos esos casos son explorados en este trabajo.

Generalidades sobre la interacción tubo/fluido en situaciones

dinámicas

A fin de extraer resultados relevantes de las ecuaciones de movimiento obtenidas,

es necesario definir una estrategia para su solución. El procedimiento t́ıpico para

abordar sistemas complejos no lineales de ecuaciones integro-diferenciales, consiste

en la integración numérica de las ecuaciones a través de diversos métodos numéricos.

Por otro lado, las soluciones anaĺıticas son útiles para el análisis posterior. En

primer lugar, el tratamiento anaĺıtico permite identificar y entender el rol de cada

parámetro f́ısico y fuerza en la solución final para la dinámica del tubo y fluido.

Además, el cálculo de casos ĺımite y de resultados asintóticos es relativamente sen-

cillo, de modo que el modelo teórico desarrollado puede ser puesto a prueba y com-
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parado con resultados previos existentes en la literatura. Sin embargo, la obtención

de soluciones anaĺıticas usualmente conlleva aproximaciones y simplificaciones que la

hacen diferir de la solución exacta.

En este trabajo, se desarrolla un tratamiento teórico para derivar expresiones

anaĺıticas de la solución del sistema de ecuaciones acopladas (3.36) y (3.37). En primer

lugar, el sistema de ecuaciones se expresa en términos de parámetros adimensionales,

que permiten comparar la influencia de una de las variables respecto a la otra de una

manera sistemática. Tales parámetros resultan la amplitud del desplazamiento del

tubo, respecto a su longitud, dado por U0/L, y la velocidad del fluido respecto a la

velocidad de propagación de ondas elásticas en el tubo, dado por v/vprop.

El sistema completamente desacoplado asociado a las ecuaciones (3.36) y (3.37)

está dado por

EI
∂4u

∂z4
+
(
ρAf + ρtAt

)∂2u
∂t2

= 0 , (8.9)

ρ
∂v

∂t
+
∂p

∂z
− µ

(
∂2v

∂r2
+

1

r

∂v

∂r

)
= 0 . (8.10)

La ecuación (8.9) corresponde al modelo de Euler-Bernoulli de un cilindro elástico

hueco, lleno de un fluido estancado. La ecuación (8.10) es la ecuación de Navier-Stokes

para un flujo uniaxial que se desarrolla al interior de un cilindro estático. Al comparar

las ecuaciones (8.7) y (8.8) con las ecuaciones (8.9) y (8.10), es posible pensar en las

ecuaciones desacopladas como un caso particular de las ecuaciones acopladas. Es

decir, la ecuación (8.9) puede verse como un caso particular de la ecuación (8.7) en

el que la velocidad del fluido es nula (v(r; t) = 0). Del mismo modo, la ecuación

(8.10) es un caso particular de la ecuación (8.8) en el cual la amplitud de movimiento

del tubo es nula (u(z; t) = 0). Por tanto, la ecuación (8.7) es la ecuación de Euler-

Bernoulli modificada por efecto del tubo, mientras que la ecuación (8.8) es la ecuación

de Navier-Stokes, modificada por la vibración del tubo.
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Dinámica del tubo bajo la influencia del flujo de fluido

Cuando la amplitud del movimiento del tubo es muy pequeña (del orden de 10−4

o menor), es posible considerar que el fluido se mueve de manera independiente del

tubo. De este modo, se puede modelar al sistema con las ecuaciones (8.7) y (8.10),

para centrar nuestra atención en la influencia del fluido en la dinámica del tubo.

La consecuencia más importante de tal influencia, radica en que el flujo del fluido

es capaz de modificar la frecuencia con la que el tubo oscila. Tal relación entre fre-

cuencia y magnitud del flujo, puede ser aprovechada para determinar la velocidad del

fluido, si se determina el espectro de vibración de un tubo. Nuestro tratamiento pro-

pone registrar el desplazamiento del nanotubo como función del tiempo (por ejemplo,

mediante mediciones de microscoṕıa de fuerza atómica); luego, usar esta información

para determinar las frecuencias caracteŕısticas del movimiento del tubo mediante el

análisis de Fourier; y, finalmente, determinar la magnitud de la velocidad de fluido

al interior del nanotubo, a través de la relación anaĺıtica entre la frecuencia y la

velocidad de flujo, desarrollada en este trabajo.

La estrategia desarrollada puede utilizarse sin importar el grado de hidrofobicidad

de la interacción fluido/pared; es decir, que sin importar la presencia de resbalamiento

del fluido en la pared, este tratamiento permite determinar la magnitud de la veloci-

dad y permite, además, estimar la longitud de resbalamiento. Esto puede resultar

de utilidad para contribuir a esclarecer el debate concerniente a la longitud de res-

balamiento en estos sistemas, pues los resultados en la literatura no presentan un

acuerdo común. Esta estrategia puede llevarse más allá, para conocer otros detalles

estructurales del fluido, reflejados en el perfil radial de la velocidad de flujo.

En suma, esta propuesta podŕıa dar un marco conceptual para proponer un amplio

rango de experimentos de flujo al interior de nanoestructuras en diferentes situaciones

experimentales, centrados en la medición del espectro de frecuencias de vibración del

tubo. Tales mediciones indirectas, podŕıan arrojar información estructural y reológica
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dif́ıcil de determinar por métodos convencionales de medición directa de velocidades

de flujo.

Dinámica del fluido bajo la influencia de la vibración del

tubo

Cuando la velocidad del fluido es muy pequeña en comparación con la velocidad

de propagación de las ondas elásticas en el tubo, es posible considerar que el tubo

se mueve de manera independiente del fluido. De este modo, se puede modelar al

sistema con las ecuaciones (8.9) y (8.8), para centrar nuestra atención en la influencia

de la vibración del tubo en la dinámica del fluido.

En contraste con el resultado presentado en la sección previa, que puede ser com-

parado inmediatamente con trabajos previos en la literatura [108], esta es la primera

vez, hasta donde sabemos, que la velocidad de flujo es determinada anaĺıticamente

en este tipo de sistema.

Primero, se resuelve la dinámica del tubo para condiciones particulares. A conti-

nuación, se incorpora a través de las funciones auxiliares g(t) y h(t), en la solución

del fluido, que está dada por

v(r, t) =
e
−

∫ t
t0
g(t′)dt′

2π
(8.11)

×
∫ ∞

−∞

1

iρλ


1−

J0

√
iρλr2

µ

J0

√
iρλR2

µ



∫ ∞

−∞

(
∂p

∂z
+ ρ h(t′)

)
e
∫ t′
t0
g(t′′)dt′′

e−iλt
′
dt′eiλtdλ

Esto implica que la forma espećıfica de u(z, t) estudiada, determina los fenómenos

observados en el movimiento del fluido. A fin de establecer un punto de partida en

este estudio, se propone el movimiento del tubo más simple posible, que corresponde

a un tubo excitado en uno solo de sus modos de vibración.

La principal consecuencia del estudio de la influencia de la vibración del tubo en

la dinámica de un fluido sujeto a un gradiente de presión constante, consiste en la
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generación de un flujo de fluido oscilatorio de una frecuencia igual al doble de la del

tubo. Este resultado constituye una estrategia para generar flujos oscilatorios al in-

terior de nanotubos, mediante la vibración del tubo. Esto podŕıa ser especialmente

útil a altas frecuencias, debido a que los medios convencionales para inducir flujo

oscilante presentan muchas limitaciones para generar flujos de amplitud significativa

a alta frecuencia. Esto se debe a la baja permeabilidad de un nanotubo estático ante

gradientes de presión pulsados. En contraste, nuestra estrategia permite superar esas

limitaciones, debido a la naturaleza no lineal de la fuerza de Coriolis y a su depen-

dencia con la frecuencia, lo cual ocasiona que el flujo oscilatorio a frecuencias altas

alcance un valor asintótico, que además es proporcional a la magnitud del gradiente

de presión constante utilizado.

Con el fin de aprovechar de manera óptima este acoplamiento entre tubo y fluido, es

necesario profundizar este estudio en el futuro, y explorar el efecto que tiene un tubo

que vibra con múltiples modos excitados. El acoplamiento entre el tubo y el gradiente

de presión podŕıa ser utilizado en el futuro, como una estrategia para controlar flujo

al interior de nanoestructuras empleando diferentes tipos de actuadores involucrados

en los dispositivos modernos para la manipulación mecánica a nivel nanométrico

[144, 163, 180].

Conclusiones y perspectivas

Los sistemas nanoscópicos ofrecen un espectro de posibilidades sorprendente. En

este trabajo, hemos explorado un tipo espećıfico de nanoestructuras: nanotubos que

transportan fluido, capaces de sostener vibración en respuesta a una deflección, debido

a sus propiedades elásticas.

El acoplamiento entre el movimiento de tubo y fluido ha sido estudiado en este

trabajo, desde dos enfoques complementarios. Por un lado, es posible detectar y

determinar propiedades de la velocidad del fluido al interior del nanotubo, al detectar
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anormalidades en el espectro de vibración del tubo. Por otro lado, es posible modificar

el flujo producido al interior de un nanotubo, por medio de una perturbación oscilante

que doble periódicamente al tubo.

Desde el punto de vista del autor, existen dos perspectivas principales que se

desprenden de este trabajo. Primero, el diseño de mejores estrategias para la detección

indirecta de propiedades complejas que surgen en fluidos confinados al interior de

nanotubos. De la misma manera que algunos detalles de la velocidad de flujo y

del perfil radial de velocidades fueron determinados en el marco de este trabajo, se

podŕıa ir más allá, con miras a la detección de propiedades reológicas de los fluidos,

las cuales han sido predichas en trabajos teóricos en la literatura, pero que no han sido

encontradas experimentalmente debido a las limitaciones en las mediciones directas

de flujo en sistemas nanométricos.

Finalmente, el diseño de mejores estrategias para controlar el flujo a través de nan-

otubos, al aprovechar el acoplamiento del flujo con las vibraciones del tubo. En este

trabajo, se estudió el tipo más simple de vibración. El siguiente paso seŕıa explorar

esquemas más complejos para generar y controlar la vibración de un nanotubo, con

una inminente mejora en la capacidad de generar una respuesta compleja en el fluido.

En este trabajo se mostró que un tubo que vibra en una sola frecuencia es capaz de

inducir flujos oscilatorios que no disminuyen a ultra alta frecuencia. Lo que podŕıa

obtenerse al involucrar más modos de vibración y tiempos caracteŕısticos merece una

exploración profunda, ya que podŕıa conducir al diseño de flujos nanométricos a la

medida, para una aplicación ambiental, industrial o médica, mediante manipulación

mecánica de los nanotubos.

En el futuro, la capacidad de controlar el flujo al interior de nanoestructuras me-

diante vibración podŕıa ofrecer una alternativa al paradigma actual de la optimización

de la permeabilidad de membranas de nanotubos mediante la funcionalización qúımica

de los poros. En otras palabras, la manipulación mecánica de nanoestructures podŕıa

constituir una alternativa más simple y, tal vez, más eficiente de optimizar el flujo en
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sistemas nanométricos de filtración y purificación.



Appendices

A.1 Debye model for an oscillating deflected tube at ther-

mal equilibrium

Previous work on literature has demonstrated the effect of temperature on the de-

scription of tube oscillatory motion.

In order to understand such effects, an analysis of the studied system within sta-

tistical mechanics is done by considering an ensemble of vibrating nanotubes as an

ideal gas of non-interacting fonons.

The classical comprehension of this physical model of a tube oscillating in thermal

equilibrium consist in considering the vibrations in our tube as a ensemble of harmonic

oscillators, whose energy is quantized for each vibration mode. Quantized energy for

the j-th mode, denoted as Ej, is given by

Ej = nj~ωj , (A.1)

where nj is the total number of excited j-th mode fonons.

Therefore, the state of the system of fonons is described by the occupation vector

nj. The total energy of the set of a micro-state of fonons with a determined occupation

vector, is expressed as

E{nj} =
∞∑

j=1

nj~ωj . (A.2)

Thus, a statistical analysis of such a system requires to consider a canonical en-

semble of fonons at a constant temperature, volume and number of fonons. Each

subsystem has a fluctuating energy, which is actually given by the fluctuations in the

occupation vector nj.

103
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Canonical partition function of such a system is given as

Z(T, V ) =
∑

nj

e−
E{nj}

kT =
∞∏

j=1

(1− e−
~ωj
kT )−1 . (A.3)

From Eq. (A.3), it is possible to get the average occupation number of each vibra-

tion mode, denoted by 〈nj〉 as follows:

〈nj〉 = −kT ∂lnZ

∂(~ωj)
=

1

e
~ωj
kT

, (A.4)

and the average energy, as

〈E〉 = − ∂lnZ
∂( 1

kT
)

=
∞∑

j=1

~ωj
e

~ωj
kT − 1

=
∞∑

j=1

~ωj〈nj〉 . (A.5)

From this point, it is possible to determine the value of all the thermodynamic

properties of this model of a vibrating carbon nanotube. However, a very important

property required to understand the nature and amplitude of oscillations in thermal

equilibrium, is the average probability amplitude of a tube oscillating in a single

mode, which is given by by 〈Pj(y)〉, i.e., the statistical thermodynamic average of the

probability to find the nanotube oscillating between the position y and y + dy when

it is vibrating in its j-th mode.

The classical expression for Pj(y) for a single harmonic oscillator, is derived as

follows. We start from the equation of motion of an oscillator, given by

y = uj cos(ωjt) , (A.6)

where uj is the oscillation amplitude and depends on the oscillator energy. Then,

differentiation of Eq. (A.6) leads to

dy = −ujωj sin(ωt)dt (A.7)

and afterwards, dt is computed as follows:

dt = − dy

ω
√
u2j − y2

;−uj ≤ y ≤ un . (A.8)
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Finally, the last consideration required to obtain Pj(y) is to consider that proba-

bility of a particle to be in a portion of space is proportional to the time spent within

that region, and thus, P(y)dy is proportional to the magnitude of dt. Therefore, Pj(y)

is obtained simply given by normalization of dt in Eq. (A.8), as

Pj(y) =





1
π

√
u2j − y2, if |y| ≤ uj

0, if |y| ≥ uj

(A.9)

Now, it is possible to compute the average probability 〈Pj(y)〉 as follows:

〈Pi(y)〉 =
1

Z

∑

nj

Pi(y)e−
E{nj}

kT =
∞∏

j=1

(1− e−
~ωj
kT )

∑

nj

Pi(y)e−
E{nj}

kT . (A.10)

This set of sums is simplified as summands sweep over one single mode, thus it is

possible to distinguish this sum respect to the others and separate them, as follows:

〈Pi(y)〉 =
1

Z

∞∑

n1=1

∞∑

n2=1

...
∞∑

ni=1

Pi(y)e−
E{nj},j 6=i

kT e−
Ei
kT =

1

Z

∑

{nj},j 6=i

e−
E{nj},j 6=i

kT

∞∑

ni=1

Pi(y)e−
Ei
kT .

(A.11)

Analogous to the deduction of partition function, sum over all modes and occupa-

tions except for the i-th, is given as the product of geometric series for each mode, as

follows:

〈Pi(y)〉 =
1

Z

∞∏

j=1,j 6=i

(1− e−
~ωj
kT )−1

∞∑

ni=1

Pi(y)e−
Ei
kT , (A.12)

and Z can be expressed in terms of products, as

〈Pi(y)〉 =
∞∏

r=1

(1− e− ~ωr
kT )

∞∏

j=1,j 6=i

(1− e−
~ωj
kT )−1

∞∑

ni=1

Pi(y)e−
Ei
kT . (A.13)

Factors inside the product over j cancel all the factors inside product over r but

the i-th factor. Thus, products are simplified to

〈Pi(y)〉 = (1− e−
~ωi
kT )

∞∑

ni=1

Pi(y)e−
Ei
kT . (A.14)

In order to solve the sum over all the possible occupation numbers of the i-th

mode, the continuum limit is taken, so sum is approximated by an integral, by the

following procedure.
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First, Eq. (A.10) is given in terms of the occupation number (as ni is the explicit

variable of sum) as it has been established that

Ei = ni~ωi (A.15)

and

Pi(y) =
1

π
√
u2i − y2

. (A.16)

Amplitude ui is related to the total energy of every vibration mode. If we consider

a pinned-pinned tube as an example of such dependence, within slow deformation

approximation, the tube motion is given by

wi(z, t) = ui cos(ωit) sin(
iπz

L
) (A.17)

and total energy of such a tube is given by

Ei =

∫ z=L

z=0

(
1

2
EI

(
∂2wi
∂z

)2

+
1

2
(ρAf + ρtAt)

(
∂wi
∂t

)2
)
dz . (A.18)

Total energy is conserved at all times. However, in order to evaluate integral in

Eq. (A.18), a specific time tr is chosen, in which tube is completely flat, given by

tr =
π

2ωi
(A.19)

such as, at time t = tr, derivatives are simplified as follows:

wi(z, tr) = 0 , (A.20)

∂wi
∂t

(z, tr) = −uiωi sin(
iπz

L
) , (A.21)

∂wi
∂z

(z, tr) = 0 , (A.22)

and total energy in Eq. (A.18) is thus simplified to

Ei =

∫ z=L

z=0

(1

2

(
ρfAf + ρtAt

)(∂wi
∂t

)2
+

1

2
ρfAfv

2
)
dz . (A.23)

Computation of Ei leads the following result:

Ei =
u2i i

4π4EI

4L3
. (A.24)
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Eq. (A.24) can be expressed as the energy of a harmonic oscillator with an effective

spring constant given by ci, as shown below:

Ei(y) =
1

2
ciu

2
i , (A.25)

where ci is given by

ci =
EI i4π4

2L3
. (A.26)

Eqs. (A.15), (A.16) and (A.25) are substituted into Eq. (A.10) to express the

average probability in terms of the occupation number as follows:

〈Pi(y)〉 = (1− e−
~ωi
kT )

∞∑

ni=1

1

π
√

2ni~ωi

ci
− y2

(y)e−
ni~ωi
kT . (A.27)

Now, each factor is multiplied by the following unitary number:

∆ni ≡ (ni + 1)− ni = 1 . (A.28)

Therefore, sum in A.10 is given by

〈Pi(y)〉 = (1− e−
~ωi
kT )

∞∑

ni=1

1

π
√

2ni~ωi

ci
− y2

(y)e−
ni~ωi
kT ∆ni . (A.29)

In the continuum limit, sum is expressed as an integral and ∆ni tends to dni,

leading to

〈Pi(y)〉 = (1− e−
~ωi
kT )

∫ ∞

ni=1

1

π
√

2ni~ωi

ci
− y2

(y)e−
ni~ωi
kT dni . (A.30)

Afterwards, the integral in Eq. (A.30) is expressed in terms of energy, by the

following change of variable:

Ei(ni) = ni~ωi , (A.31)

dEi(ni) = ~ωi dni , (A.32)

in order to get the following integral in terms of the energy and the constrain between

y and the energy of system as shown below:

〈Pi(y)〉 =

∫ Ei=∞

Ei=
y2ci
2

(
1− e− ~ωi

kT

)
e−

Ei
kT

π~ωi
√

2Ei

ci
− y2

dEi . (A.33)
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The following change of variable is done on energy:

x ≡
√

2Ei
ci
− y2 , (A.34)

which leads to the following expression for Ei and dEi:

Ei =
ci
2

(
x2 + y2

)
, (A.35)

dEi = cixdx . (A.36)

Substituting Ei and dEi in Eq. (A.33), gives the following expression:

〈Pi(y)〉 =
ci

π~ωi
(
1− e−

~ωi
kT

)
e−

ciy
2

2kT

∫ x=∞

x=0

e−
cix

2

2kT dx =
1

~ωi

√
cikT

2π

(
1− e−

~ωi
kT

)
e−

ciy
2

2kT .

(A.37)

Eq. (A.10) states that probability density of finding a tube within y and y + dy

has a Gaussian form whose variance is given by

σj =
kT

cj
(A.38)

A nanotube in thermal equilibrium is oscillating in all the possible vibration modes

and, as fonons are independent, their probabilities add decoherently. Therefore, the

average probability of motion in all the vibration modes is equal to the probability

density of the sum of the random variable for each vibration mode, that is,

〈Pglobal(y)〉 = P

(
y =

∞∑

j=1

yj

)
= lim

N→∞

∫ y1=∞

y1=−∞

∫ y2=∞

y2=−∞
(A.39)

...

∫ yN−1=∞

yN−1=−∞
P1(y1)P2(y2 − y1)...PN−1(yN−1 − yN−2)PN(y − yN−1) .

When this is applied to our single-mode probability density functions, the following

global probability density is found:

〈Pglobal(y)〉 =
e
− y2

2kT
∑∞

j=1
1
cj

√
2πkT

∑∞
j=1

1
cj

∞∏

j=1

kT

~ωj

(
1− e−

~ωj
kT

)
. (A.40)
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The most important feature arising is that variance of the global density is equal

to the sum of the variance of each single-mode probability density, as stated below:

σ2
global =

∞∑

j=1

σ2
j . (A.41)

Eqs. (A.40) provides a manner to determine the elastic properties of nanotubes

from direct observation of the tube vibration via TEM, as has benn effectively proofed

in literature [93].
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A.2 Derivation of coupled equations of motion

The Hamilton’s Principle for an open system at constant temperature, is rewritten

as follows:

δS + δW + δC = 0 . (A.42)

The application of the variation of each term is given in the following section.

Variation of the kinetic energy of the fluid

It is given by

δ

∫

t

Tfdt = δ

∫

t

∫

V

1

2
ρ |~vfluid|2 dV dt . (A.43)

In Cartesian coordinates, fluid velocity vector ~vfluid is given as follows:

~vfluid =


0,

∂u

∂t
+ v

∂u
∂z√

1 +
(
∂u
∂z

)2 , v
1√

1 +
(
∂u
∂z

)2


 . (A.44)

In the small deformation limit, it is possible to expand the term 1√
1+( ∂u

∂z )
2 , as

follows:

1√
1 +

(
∂u
∂z

)2 = 1− 1

2

(
∂u

∂z

)2

+
3

8

(
∂u

∂z

)4

+ ... ≈ 1 (A.45)

and, subsequently, fluid velocity vector is simplified to

~vfluid ≈
(

0,
∂u

∂t
+ v

∂u

∂z
, v

)
(A.46)

and, accordingly, the magnitude of ~vfluid is given by

|~vfluid|2 = v2 +

(
∂u

∂t

)2

+ 2v
∂u

∂t

∂u

∂z
+ v2

(
∂u

∂z

)2

. (A.47)

Afterwards, |~vfluid| from Eq. (A.47) is incorporated into the Kinetic Energy in

Eq. (A.44). The variation of the kinetic energy of the fluid leads to the following

expression:

δ

∫

t

Tfdt =

∫

t

∫

V

(
−ρ∂

2u

∂t2
− ρv2∂

2u

∂z2
− 2ρv

∂2u

∂t∂z
− ρ∂v

∂t

∂u

∂z
− ρ∂v

∂z

∂u

∂t

)
δu (A.48)

+

(
−ρ∂v

∂t

(
1 +

(
∂u

∂z

)2
)
− 2ρv

∂u

∂z

∂2u

∂z∂t
− ρ

(
∂2u

∂t2
∂u

∂z
+
∂u

∂t

∂2u

∂z∂t

))
δzfluid dV dt .
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Variation of the kinetic energy of the tube

It is given by

δ

∫

t

Ttdt = δ

∫

t

∫

V1

1

2
ρ |~vtube|2 dV dt . (A.49)

In Cartesian coordinates,

~vtube =


0,

∂u

∂t
+ v

∂u
∂z√

1 +
(
∂u
∂z

)2 , v
1√

1 +
(
∂u
∂z

)2


 (A.50)

and the magnitude of tube velocity vector is given by

|~vtube|2 =

(
∂u

∂t

)2

. (A.51)

Subsequently, substituting the magnitude of tube velocity from Eq. (A.51) into

the kinetic energy of tube in Eq. (A.50). The computation of the variation leads to

the following expression:

δ

∫

t

Ttdt =

∫

t

∫

V1

(
−ρt

∂2u

∂t2

)
δu dV dt . (A.52)

Variation of the potential energy of the tube

It is given by the following expression:

δ

∫

t

V1dt = δ

∫

t

∫

V1

1

2
Ey2

(
∂2u

∂z2

)2

dV dt , (A.53)

and its variation is computed as follows:

δ

∫

t

V1dt = δ

∫

t

∫

V1

Ey2
∂4u

∂z4
δu dV dt . (A.54)

Variation of the external work

It is given as the expression previously stated in Chapter 3, as

δWext =

∫

t

∫

S2

~Fext · δ~r dS dt =

∫

t

∫

S2

(−p+ τz)δzfluid dS dt . (A.55)
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Variation of the constrains

The conservation of fluid mass has been incorporated as a restriction in the following

form:

δC = δ

∫

t

∫

V2

Λ∇ · ~rfluiddV dt . (A.56)

From the properties of the differential operators, it is obtained that

∇ · Λ~rfluid = ~rfluid · ∇Λ + Λ∇ · ~rfluid (A.57)

and, by a rearrangement, the following expression is obtained:

Λ∇ · ~rfluid = ∇ · Λ~rfluid − ~rfluid · ∇Λ . (A.58)

Substituting Eq. (A.58) into Eq. (A.56), leads to

∫

V2

Λ∇ · ~rfluiddV =

∫

V2

∇ · Λ~rfluiddV −
∫

V

~rfluid · ∇ΛdV . (A.59)

By the divergence theorem, the following expression is obtained:

∫

V2

∇ · Λ~rfluid dV =

∫

S2

Λ~rfluid · ~n dS , (A.60)

which is incorporated in the constrain, as follows:

∫

V2

Λ∇ · ~rfluiddV =

∫

S2

Λ~rfluid · ~n dS −
∫

V2

~rfluid · ∇ΛdV . (A.61)

By considering that the fluid motion only occurs along the axial direction of the

tube as stated in the main body, is given as below:

~rfluid = ~rtube + zfluid~qtan , (A.62)

which corresponds to the statement in the body of the article, as

~vfluid = ~vtube + v~qtan . (A.63)

Within the limit of small deformation, the differential operators are simplified to

the following expressions:

∇ · ~rfluid =
∂zfluid
∂z

, (A.64)
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~rfluid · ~n = zfluid , (A.65)

~rfluid · ∇Λ = zfluid
∂Λ

∂z
. (A.66)

Afterwards, the considerations in Eqs. (A.61), (A.64) and (A.65) are incorporated

in the constrain in Eq. (A.56), and the variation is computed, leading to the following

result:

δC =

∫

t

∫

S2

Λδzfluid dS dt−
∫

t

∫

V2

∂Λ

∂z
δzfluid dV dt . (A.67)

Finally, the expressions in Eqs. (A.49), (A.52), (A.54), (A.55) and (A.67) are

incorporated in the Hamilton’s principle stated in Eq. (A.42), the following expression

is obtained:

∫

t

∫

V

(
−(ρ+ ρt)

∂2u

∂t2
− ρv2∂

2u

∂z2
− 2ρv

∂2u

∂t∂z
− ρ∂v

∂t

∂u

∂z
− ρ∂v

∂z

∂u

∂t
− Ey2∂

4u

∂z4

)
δu dV dt

+

∫

t

∫

V

(
−ρ∂v

∂t
− 2ρv

∂u

∂z

∂2u

∂z∂t
− ρ

(
∂2u

∂t2
∂u

∂z
+
∂u

∂t

∂2u

∂z∂t

)
− ∂Λ

∂z

)
δzfluid dV dt

+

∫

t

∫

S

(−p+ τz + Λ) δzfluid dS dt = 0 , (A.68)

where the sub-indexes in volume regions V1, V2 and the surfaces S1, S2 where omitted

for the sake of simplicity in the expression; however, each term in the integrals should

be performed on its corresponding region. Equation (A.68) leads to one equation of

motion for the variation of each of the field variables (which are u and zfluid).

For the variation of tube displacement, δu, it is obtained the following expression:

∫

V

(
−ρ∂

2u

∂t2
− ρv2∂

2u

∂z2
− 2ρv

∂2u

∂t∂z
− ρ∂v

∂t

∂u

∂z
− ρ∂v

∂z

∂u

∂t
− ρt

∂2u

∂t2
− Ey2∂

4u

∂z4

)
dV = 0 .

(A.69)

For the variation of of fluid displacement δzfluid, it is obtained the following ex-

pression:

∫

V

(
−ρ∂v

∂t

(
1 +

(
∂u

∂z

)2
)
− 2ρv

∂u

∂z

∂2u

∂z∂t
− ρ

(
∂2u

∂t2
∂u

∂z
+
∂u

∂t

∂2u

∂z∂t

)
− ∂Λ

∂z

)
dV

+

∫

S

(−p+ τz + Λ) dS = 0 . (A.70)
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Integrals in Eq. A.70 are applied on different integration regions: first one is a

volumetric integral, whereas the second one is a surface integral. Therefore, each

integral vanishes independently, leading to the following expression for the volume

integral:

∫

V

(
−ρ∂v

∂t

(
1 +

(
∂u

∂z

)2
)
− 2ρv

∂u

∂z

∂2u

∂z∂t
− ρ

(
∂2u

∂t2
∂u

∂z
+
∂u

∂t

∂2u

∂z∂t

)
− ∂Λ

∂z

)
dV = 0 ,

(A.71)

and this is the expression given for the surface integral:

∫

S2

(−p+ τrz + Λ) dS = 0 . (A.72)

From Eq. (A.72), it is possible to obtain the value of the Lagrangian multiplier Λ,

as

Λ = p− τrz . (A.73)

Therefore, the physical meaning of the Lagrangian multiplier Λ is the net stress

applied along the plane in which fluid flow occurs. Incorporating Λ from Eq. (A.73)

into Eq. (A.71), the following expression is obtained:

∫

V

(
−ρ∂v

∂t
− 2ρv

∂u

∂z

∂2u

∂z∂t
− ρ

(
∂2u

∂t2
∂u

∂z
+
∂u

∂t

∂2u

∂z∂t

)
− ∂p

∂z
+
∂τz
∂z

)
dV = 0 . (A.74)
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A.3 Solution of flow velocity influenced by tube vibration

For the case of small flow velocity respect to the velocity of propagation of elastic

waves along the tube, the equations of motion are rewritten below:

EI
∂4u

∂z4
+
(
ρAf + ρtAt

)∂2u
∂t2

= 0 (A.75)

ρ
∂v

∂t
+ ρg(t)v + ρh(t) +

∂p

∂z
− µ

(
∂2v

∂r2
+

1

r

∂v

∂r

)
= 0 (A.76)

where E corresponds to Young modulus of the tube, I is the second moment of inertia,

which for a cylindrical shell is given by

I =
π

4

(
R4
o −R4

)
(A.77)

where Ro and R are the outer and inner radius, respectively.

Eq. (A.75) is solved when initial and boundary conditions are given, and leads to

a solution of the form

u(z, t) =
N∑

n=1

An sin(knz − ωnt) , (A.78)

where An is the amplitude of each plane wave, kn is the spatial modulation and ωn is

the corresponding frequency, which is obtained by the dispersion relation associated

to Eq. (A.75), as

ω(k) = ±k2
√

EI

ρAf + ρtAt
. (A.79)

Then, the solution u(z, t) is incorporated in g(t) and h(t). In the following treat-

ment, the solution of Eq. (A.76) for flow velocity is provided for arbitrary functions

g(t) and h(t).

Eq. (A.76) is a linear non-homogeneous partial differential equation with time-

dependent coefficients -particularly, g(t)-. The non-homogeneous term is only depen-

dent on time as well -h(t)-. Therefore, it is possible to write the general solution of

such differential equation in the following form:

v(r, t) = vhomo(r, t) + vpart(t) (A.80)
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where vhomo(r, t) is the solution of the associated homogeneous differential equation,

whereas vpart(t) is a particular solution of the inhomogeneous term. Equation for

vhomo(r, t) is

∂vhomo
∂t

+ g(t)vhomo −
µ

ρ

(
∂2vhomo
∂r2

+
1

r

∂vhomo
∂r

)
= 0 . (A.81)

By performing separation of variables, vhomog(r, t) = R(r)T (t) and substituting in

Eq. (A.81), we have

1

T

∂T

∂t
+ g(t) =

1

R

µ

ρ

(
∂2R

∂r2
+

1

r

∂R

∂r

)
= −iλ (A.82)

where −iλ is the constant of separation, it has been expressed in such a way in

order to simplify further treatment. In all the integrals involved, we will omit the

primed indexes for integration over time, for the sake of simplicity during the deriva-

tion. Separation of variables allows one to solve two independent ordinary differential

equations from Eq. (A.82). First, the equation for T (t) results:

dT

dt
+ (iλ+ g(t))T = 0 , (A.83)

whose solution is given by

T = T0e
−iλte

−
∫ t
t0
g(t)dt

. (A.84)

The equation for R(r) is given as

r2
d2R

dr2
+ r

dR

dr
+
iλρ

µ
r2R = 0 (A.85)

with the following solution:

R(r) = R1J0

(√
iλρ

µ
r

)
+R2Y0

(
−
√
iλρ

µ
r

)
. (A.86)

Incorporating expressions from Eqs. (A.84) and (A.86) in vhomo and after renaming

the constant coefficients, the solution of Eq. (A.81) is given by

vhomo(r, t) =

[
C1J0

(√
λρ

µ
r

)
+ C2Y0

(
−
√
λρ

µ
r

)]
e−iλte−

∫ t
0 g(t)dt . (A.87)
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Afterwards, differential equation for vpart(t) is

dvpart
dt

+ g(t)vpart +
1

ρ

∂p

∂z
+ h(t) = 0 . (A.88)

Eq. A.88 is a first-order ordinary differential equation; hence, it is possible to

rewrite Eq. A.88 as a differential form, as follows:

M(vpart, t)dvpart +N(vpart, t)dt = 0 , (A.89)

with

M(vpart, t) = 1 , (A.90)

and

N(vpart, t) = g(t)vpart +
1

ρ

∂p

∂z
+ h(t) . (A.91)

An exact differential form for the function F (vpart, t) is given by

dF =
∂F

∂vpart
dvpart +

∂F

∂t
dt (A.92)

with equal cross derivatives, as stated below:

∂M

∂vpart
=
∂N

∂t
. (A.93)

However, Eq. (A.90) is not an exact differential form, because the cross derivatives

are unequal, as

∂M

∂t
= 0 , (A.94)

and

∂N

∂vpart
= g(t) . (A.95)

An integrand factor µ(t) is incorporated in differential form (A.90), to obtain the

following exact differential form:

dF = µ(t) [M(v, t)dv +N(v, t)dt] = 0 , (A.96)
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where µ(t) is given by

µ(t) = exp

(∫ ∂N
∂vpart

− ∂M
∂t

M
dt

)

= exp

(∫
g(t)dt

)
. (A.97)

The solution of the differential form is given by

F (v, t) = constant , (A.98)

where the partial derivatives of F (v, t) correspond to

∂F

∂vpart
= e

∫
g(t)dt (A.99)

and

∂F

∂t
= e

∫
g(t)dt

(
g(t)vpart +

1

ρ

∂p

∂z
+ h(t)

)
. (A.100)

By partial integration of Eqs. (A.99) and (A.100), the solution of Eq. (A.88) is

shown below:

F = vpart(t)e
∫
g(t)dt +

∫
e
∫
g(t)dt

(
1

ρ

∂p

∂z
+ h(t)

)
dt = C0 . (A.101)

A rearrangement of terms allows one to obtain the following explicit expression

for vpart, as

vpart(t) = e−
∫
g(t)dt

(
C0 −

∫
e
∫
g(t)dt

(
1

ρ

∂p

∂z
+ h(t)

)
dt

)
. (A.102)

The expressions for vhomog in Eq. (A.87) and vpart in Eq. (A.102) are incorporated

in Eq. (A.76), leading to

v(r, t) = e
−

∫ t
t0
g(t)dt

(
C0 + e−iλtC1J0

(√
iλρ

µ
r

)
+ e−iλtC2Y0

(
−
√
iλρ

µ
r

)

−
∫ t

t0

e
∫ t
0 g(t)dt

(
1

ρ

∂p

∂z
+ h(t)

)
dt

)
. (A.103)

where t0 is an arbitrary lower time for integration. For practical purposes, we will

compute such integrals by considering t0 = 0.
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Equation (A.103) is not general in the sense that considers that a single value of

λ has been provided. However, some boundary conditions require several values of

the eigenvalue. Thus, a general solution of Eq. (A.76) can be expressed as a linear

combination of expressions like the one in Eq. (A.103). Moreover, the eigenvalue λ

can spread any real value, i. e., λε(−∞,∞), so the linear combination is generalized

to an integral, as follows:

v(r, t) = e
−

∫ t
t0
g(t)dt

( ∫ ∞

−∞
e−iλt

(
C1(λ)J0

(√
iλρ

µ
r

)
+ C2(λ)Y0

(
−
√
iλρ

µ
r

))
dλ

−
∫
e
∫ t
t0
g(t)dt

(
1

ρ

∂p

∂z
+ h(t)

)
dt

)
. (A.104)

where the term C0 has been omitted since it is incorporated in C1(λ) as

C1(λ)e−iλtJ0

(√
iλρ

µ
r

)∣∣∣∣∣
λ=0

= C0 . (A.105)

Eq. (A.104) is capable to account for any boundary condition. Particularly, it is

desired to study the classical conditions of Hagen-Poiseuille flow, i. e., finite flow in

the center of the tube, given by;

v(r, t)

∣∣∣∣
r=0

= finite . (A.106)

and the no-slip condition at the tube walls, which is given by

v(r, t)

∣∣∣∣
r=R

= 0 . (A.107)

Incorporation of finite flow stated in Eq. (A.106) leads to the following result:

C2 = 0 , (A.108)

since the Neumann function diverges at r = 0. Besides, the no-slip condition stated

in Eq. (A.107) is substituted into Eq. (A.104), and leads to the following:

e
−

∫ t
t0
g(t)dt

(∫ ∞

−∞
e−iλtC1(λ)J0

(√
iλρ

µ
R

)
dλ−

∫ t

0

e
∫ t
t0
g(t)dt

(
1

ρ

∂p

∂z
+ h(t)

)
dt

)
= 0

(A.109)
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In order to solve Eq. (A.109) for the coefficients C1(λ), it is necessary to rewrite

the time-dependent integral in terms of the Fourier identity, as follows:

∫ t

t0

e
∫ t
t0
g(t)dt

(
1

ρ

∂p

∂z
+ h(t)

)
dt

=
1

2π

∫ ∞

−∞

∫ ∞

−∞

(∫ t

0

e
∫ t
t0
g(t)dt

(
1

ρ

∂p

∂z
+ h(t)

)
dt

)
eiλtdt e−iλtdλ

= − 1

2π

∫ ∞

−∞

1

iλ

∫ ∞

−∞
e
∫ t
t0
g(t)dt

(
1

ρ

∂p

∂z
+ h(t)

)
eiλtdt e−iλtdλ (A.110)

Substituting Eq. (A.110) into the no-slip condition in Eq. A.107, it is obtained

the following expression:

∫ ∞

−∞
e−iλtC1(λ)J0

(√
iλρ

µ
R

)
dλ

+
1

2π

∫ ∞

−∞

1

iλ

∫ ∞

−∞
e
∫ t
t0
g(t)dt

(
1

ρ

∂p

∂z
+ h(t)

)
eiλtdt e−iλtdλ = 0 (A.111)

Integral on λ can be reagruped in Eq. A.111, leading to the following:

∫ ∞

−∞

(
C1(λ)J0

(√
iλρ

µ
R

)
+

1

2πiλ

∫ ∞

−∞
e
∫ t
t0
g(t)dt

(
1

ρ

∂p

∂z
+ h(t)

)
eiλtdt

)
e−iλtdλ = 0

(A.112)

The integrand on Eq. (A.112) must vanish, leading to the following expression for

C1(λ):

C1(λ) = − 1

2πiλJ0

(√
iλρ
µ
R
)
∫ ∞

−∞
e
∫ t
t0
g(t)dt

(
1

ρ

∂p

∂z
+ h(t)

)
eiλtdt (A.113)

Finally, incorporating C1(λ) in Eq. (A.113) and C2(λ) in Eq. (A.108) in the general

solution (A.104), the following result is obtained for the no-slip flow velocity:

v(r, t) =
e
−

∫ t
t0
g(t)dt

2π

∫ ∞

−∞

1

iρλ


1−

J0

(√
iλρ
µ
r
)

J0

(√
iλρ
µ
R
)




∫ ∞

−∞
e
∫ t
t0
g(t)dt

(
∂p

∂z
+ ρ h(t)

)
eiλtdt e−iλtdλ (A.114)
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A.4 General notions of the dispersion relation of tubes

conveying flow

Derivation of the range of each dispersive regime

From the dimensionless dispersion relation, given by

ω = αβkv ±
√
k4 − k2v2 (1− α2β2) , (A.115)

which, for simplicity, will be rewritten in terms of each branch of the squared-root,

as

ω+ = αβkv +
√
k4 − k2v2 (1− α2β2) , (A.116)

ω− = αβkv −
√
k4 − k2v2 (1− α2β2) . (A.117)

We desire to determine the range of values of k and v which lead to each dispersive

regime of the three ones described in the main paper. Every regime developed in the

dispersion relation is described in terms of the behavior of its frequency. Hence, the

first step is to express each regime in a mathematical expression for ω, as follows.

The two-ways regime is accomplished by the following condition:

<(ω+) > 0, <(ω−) < 0 and =(ω±) = 0 . (A.118)

Last condition in Eq. (A.118) is accomplished if the argument of square root in

Eqs. (A.116) and (A.117) has a positive value, i. e.,

k4 − k2v2
(
1− α2β2

)
≥ 0 . (A.119)

As a wavenumber k is defined to be a positive real number, inequality (A.119) is

simplified to

k ≥ v
√

1− α2β2 . (A.120)

Besides, the first condition in Eq. (A.118) is given by the following inequality:

αβkv +
√
k4 − k2v2 (1− α2β2) ≥ 0 . (A.121)
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The first term in the left-hand side of inequality (A.121) is positive because α,

β, k and v are all positive quantities. The second term is positive because of the

constrain given in the first condition, established in Ineq. (A.120). Therefore, expres-

sion (A.120) accomplishes the first and third conditions in Eq. (A.118). The only

condition remaining is the second one in Eq. (A.118), which is expressed as

αβkv −
√
k4 − k2v2 (1− α2β2) ≤ 0 , (A.122)

and it is rearranged to give

αβkv ≤
√
k4 − k2v2 (1− α2β2) . (A.123)

At both sides of Ineq. (A.123), the condition

α2β2k2v2 ≤ k4 − k2v2
(
1− α2β2

)
(A.124)

should be satisfied. An algebraic manipulation of Ineq. (A.124) leads to the following

result:

0 ≤ k4 − k2v2 . (A.125)

As wavenumber and flow velocity are positively defined, Ineq. (A.125) leads to

k ≥ v . (A.126)

Thus, conditions for the two way regime are obtained if expressions (A.120) and

(A.126) are both accomplished. However, as 0 < α < 1 and 0 < β < 1, it leads to

v2 > v2 (1− α2β2). The consequence of this is that condition A.126 encloses condition

A.120. Therefore, the only condition required to allow for the two-ways regime, is

k ≥ v . (A.127)

The one-way regime is accomplished by the following condition:

<(ω+) > 0, <(ω−) > 0 and =(ω±) = 0 . (A.128)
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The first and third conditions in Eq. (A.128) are exactly the same than the ones in

the two-ways regime, leading to Eq. (A.120). The second condition in (A.128) leads

to the following expression:

αβkv −
√
k4 − k2v2 (1− α2β2) ≥ 0 , (A.129)

and, by the same manipulation than the one performed for the two-ways regime, we

obtain

k ≤ v . (A.130)

Both conditions, (A.120) and (A.130), must be accomplished in the one-way

regime, leading to a single condition for the arising of the one-way regime, as stated

below:

v
√

1− α2β2 ≤ k ≤ v . (A.131)

The no-transmission regime is accomplished by the following condition:

=(ω±) 6= 0 , (A.132)

which leads to

k4 − k2v2
(
1− α2β2

)
< 0 . (A.133)

Considering a positive value of the wavenumber, expression (A.133) is simplified

to

k < v
√

1− α2β2 . (A.134)

Dispersion relation in Infinite tube simulation

The target is to solve the following dimensionless equation:

∂4u

∂z4
+ v2

∂2u

∂z2
+ 2αβv

∂2u

∂z∂t
+
∂2u

∂t2
= 0 , (A.135)

subject to the imposition of an initial perturbation, given by a harmonic spatial wave

with wavenumber k0. Such physical condition is shown below:

u(z, t = 0) = A0 sin(k0z) (A.136)
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and

∂u

∂t
(z, t = 0) = 0 . (A.137)

We perform the Fourier transform in space of Eq. (A.135), in order to obtain the

following result:

k4û(k, t)− π2v2k2û(k, t)− 2iπ3αβvk
dû(k, t)

dt
+ π4d

2û(k, t)

dt2
= 0 . (A.138)

Eq. (A.138) is a linear ordinary differential equation for û(t), whose general solution

is given by

û(t) = C1e
itω+(k) + C2e

itω−(k) . (A.139)

We then perform the Fourier transform in space of the initial condition of tube,

given in Eqs. (A.136) and (A.137), as follows:

û(k, t = 0) =
A0

2i
(δ(k − k0)− δ(k + k0)) (A.140)

and

dû

dt
(k, t = 0) = 0 . (A.141)

The particular solution of Eq. (A.138) with initial conditions (A.140) and (A.141)

is given below:

u(z, t) =
ω−(k0)

ω+(k0)− ω−(k0)
sin(k0z − ω+(k0)t)

− ω+(k0)

ω+(k0)− ω−(k0)
sin(k0z − ω−(k0)t) (A.142)
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A.5 Expression of the determinant associated to each set

of boundary conditions

For each set of boundary conditions considered in this work, the expression for the

determinant is shown below. It is important to recall that k1, k2, k3 and k4 are

functions of ω, α and β as stated in Eq. (5.7).

• Pinned-pinned

DPP =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1

−k21 −k22 −k23 −k24
eik1 eik2 eik3 eik4

−k21eik1 −k22eik2 −k23eik3 −k24eik4

∣∣∣∣∣∣∣∣∣∣∣∣∣

(A.143)

• Clamped-clamped

DCC =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1

ik1 ik2 ik3 ik4

eik1 eik2 eik3 eik4

ik1e
ik1 ik2e

ik2 ik3e
ik3 ik4e

ik4

∣∣∣∣∣∣∣∣∣∣∣∣∣

(A.144)

• Pinned-clamped

DPC =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1

ik1 ik2 ik3 ik4

eik1 eik2 eik3 eik4

−k21eik1 −k22eik2 −k23eik3 −k24eik4

∣∣∣∣∣∣∣∣∣∣∣∣∣

(A.145)

• Pinned-free

DFP =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1

−k21 −k22 −k23 −k24
−k21eik1 −k22eik2 −k23eik3 −k24eik4

−ik31eik1 −ik32eik2 −ik33eik3 −ik34eik4

∣∣∣∣∣∣∣∣∣∣∣∣∣

(A.146)



A Appendices 126

• Clamped-free

DFC =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1

ik1 ik2 ik3 ik4

−k21eik1 −k22eik2 −k23eik3 −k24eik4

−ik31eik1 −ik32eik2 −ik33eik3 −ik34eik4

∣∣∣∣∣∣∣∣∣∣∣∣∣

(A.147)
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A.6 Flow/frequency relation for each set of boundary con-

ditions

The flow frequency relations of the fundamental mode for the different sets of bound-

ary conditions are given in Fig. A.1.
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Figure A.1: Effect of flow in the fundamental frequency of the tube oscillations for the different
sets of boundary conditions described in this work. Solid lines correspond to the real part of the
frequency and dashed lines to its imaginary part. A typical value of the thickness ratio α = 0.6 is
used in the calculations.



A Appendices 128

A.7 Analytical expressions for flow as a function of fre-

quency

The expressions of the determinants for the different sets of boundary conditions, as

given in Eqs. (A.229)-(A.233) should satisfy

D(v, α, β, ω) = 0 . (A.148)

The second-order Taylor expansion of D(v, α, β, ω) around v = 0 is given by

D(v, α, β, ω)) ≈ D

∣∣∣∣
v=0

+
∂D

∂v

∣∣∣∣
v=0

v +
1

2

∂2D

∂v2

∣∣∣∣
v=0

v2 . (A.149)

An explicit expression for v is given by solving the second-order algebraic equation,

as

v =
−∂D

∂v

∣∣
v=0
±
√(

∂D
∂v

∣∣
v=0

)2 − 2∂
2D
∂v2

∣∣
v=0

D
∣∣
v=0

∂2D
∂v2

∣∣
v=0

. (A.150)

Expressions for the first and second derivatives of the determinant respect to flow

evaluated at zero flow are required.

The first derivative of a 4× 4 determinant is given by

∂D

∂v
=

∂

∂v

∣∣∣∣∣∣∣∣∣∣∣∣∣

d11 d21 d31 d41

d12 d22 d32 d42

d13 d23 d33 d43

d14 d24 d34 d44

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂d11
∂v

d21 d31 d41

∂d12
∂v

d22 d32 d42

∂d13
∂v

d23 d33 d43

∂d14
∂v

d24 d34 d44

∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣

d11
∂d21
∂v

d31 d41

d12
∂d22
∂v

d32 d42

d13
∂d23
∂v

d33 d43

d14
∂d24
∂v

d34 d44

∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣

d11 d21
∂d31
∂v

d41

d12 d22
∂d32
∂v

d42

d13 d23
∂d33
∂v

d43

d14 d24
∂d34
∂v

d44

∣∣∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣∣∣

d11 d21 d31
∂d41
∂v

d12 d22 d32
∂d42
∂v

d13 d23 d33
∂d43
∂v

d14 d24 d34
∂d44
∂v

∣∣∣∣∣∣∣∣∣∣∣∣∣

and, subsequently, the second derivative of a determinant is the sum of 16 determi-

nants. This result is applied for all the sets of boundary conditions. The following

step is to evaluate such derivatives for a stagnant fluid, v = 0. However, it is easier
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to do the derivative in the 4 × 4 matrices and afterwards evaluate the determinant

of such expressions. This strategy is useful as the analytical expressions of the de-

terminants before evaluation are enormous. The terms involved in these calculations

are:

k1

∣∣∣∣
v=0

= i
√
ω, k2

∣∣∣∣
v=0

= ik1

∣∣∣∣
v=0

, k3

∣∣∣∣
v=0

= −ik1
∣∣∣∣
v=0

, k4

∣∣∣∣
v=0

= −k1
∣∣∣∣
v=0

(A.151)

∂k2
∂v

∣∣∣∣
v=0

= −∂k1
∂v

∣∣∣∣
v=0

,
∂k3
∂v

∣∣∣∣
v=0

= −∂k1
∂v

∣∣∣∣
v=0

,
∂k4
∂v

∣∣∣∣
v=0

=
∂k1
∂v

∣∣∣∣
v=0

,

where
∂k1
∂v

∣∣∣∣
v=0

=
α

2
, (A.152)

∂2k2
∂v2

∣∣∣∣
v=0

= −i∂
2k1
∂v2

∣∣∣∣
v=0

,
∂2k3
∂v2

∣∣∣∣
v=0

= i
∂2k1
∂v2

∣∣∣∣
v=0

,
∂2k4
∂v2

∣∣∣∣
v=0

= −∂
2k1
∂v2

∣∣∣∣
v=0

,

where
∂2k1
∂v2

∣∣∣∣
v=0

=
(α2 − 2)i

4
√
ω

, (A.153)

By expressing the Taylor expansion in terms of Eqs. (A.151)-(A.153), it is possible

to compute the determinant and its first and second derivatives in order to incorporate

them into the Taylor Expansion in Eq. (A.150), and finally, to solve such equation

for v, leading to the following expressions:

• Pinned-pinned

vP−P (ω, α) =

√
APP
BPP

(A.154)

where APP and BPP are given by

APP = 8ω sin(
√
ω) sinh(

√
ω) (A.155)

BPP = 4α2 − cosh(
√
ω)GPP −

√
ω sinh(

√
ω)HPP (A.156)

and GPP and HPP are given by

GPP = 4α2 cos(
√
ω) + (α2 − 2)

√
ω sin(

√
ω) (A.157)

HPP = (2− α2) cos(
√
ω) (A.158)
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• Clamped-clamped

vC−C(ω, α) =

√
ACC
BCC

(A.159)

where ACC and BCC are given by

ACC = 8ω
(
cos(
√
ω) cosh(

√
ω)− 1

)
(A.160)

BCC = + sinh(
√
ω)
(√

ω(2− α2) cos(
√
ω) + 2(3α2 − 2) sin(

√
ω)
)

−4α2ω + (2− α2)
√
ω cosh(

√
ω) sin(

√
ω) (A.161)

• Pinned-clamped

vPC(ω, α) =

√
APC
BPC

(A.162)

where APC and BPC are given by

APC = (4 + 4i)ω
(
sin((1 + i)

√
ω)− sinh((1 + i)

√
ω)
)

(A.163)

BPC = cosh(
√
ω)
(
2
√
ω(α2 − 2) cos(

√
ω) + (2− 5α2) sin(

√
ω)
)

+8α2
√
ω + (2− 5α2) cos(

√
ω) sinh(

√
ω) (A.164)

• Pinned-free

vPF (ω, α) =
8iα
√
ω sin(

√
ω) sinh(

√
ω)−

√
−4(1 + i)ωAPF

BPF

(A.165)

where APF and BPF are given by

APF = 8(1− i)α2sin2(
√
ω)sinh2(

√
ω) +GPFHPF (A.166)

BPF = cosh(
√
ω)
(
2(α2 − 2)

√
ω cos(

√
ω) + (2 + 3α2) sin(

√
ω)
)

−8α2
√
ω + (2 + 3α2) cos(

√
ω) sinh(

√
ω) (A.167)
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where GPF and HPF are given by

GPF = sin((1 + i)
√
ω)− sinh((1 + i)

√
ω) (A.168)

HPF = − cosh(
√
ω)
(
2(α2 − 2)

√
ω cos(

√
ω) + (2 + 3α2) sin(

√
ω)
)

8α2
√
ω − (2 + 3α2) cos(

√
ω) sinh(

√
ω) (A.169)

• Clamped-free

vCF (ω, α) =
2α
√
ω(1− i) (sin((1 + i)

√
ω)− sinh((1 + i)

√
ω))−√−8ωACF

BCF

(A.170)

where ACF and BCF are given by

ACF = iα2
(
sin((1 + i)

√
ω)− sinh((1 + i)

√
ω)
)2

−(cos(
√
ω) cosh(

√
ω) + 1)GCF (A.171)

BCF =
(
(2− α2)

√
ω cos(

√
ω)− 2(α2 + 2) sin(

√
ω)
)

sinh(
√
ω)

+4α2ω + (2− α2)
√
ω cosh(

√
ω) sin(

√
ω) (A.172)

where GCF is given by

GCF = −
(
(α2 − 2)

√
ω cos(

√
ω) + 2(2 + α2) sin(

√
ω)
)

sinh(
√
ω)

+4α2ω + (2− α2)
√
ω cosh(

√
ω) sin(

√
ω) (A.173)

These expressions are given for a second-order expansion around zero flow and,

therefore, are accurate for low flow velocities. In order to numerically determine

the range of accuracy of the approximations, it is necessary to compare the exact

numerical solution of the flow/frequency relation for each set of boundary conditions,

with the analytical approximated results.



A Appendices 132

To obtain flow-frequency relations for low and medium flows, higher-order Taylor

expansions are necessary. High order derivatives of k1, k2, k3, k4 are given by

∂3k1
∂v3

∣∣∣∣
v=0

= 0,
∂3k2
∂v3

∣∣∣∣
v=0

= 0,
∂3k3
∂v3

∣∣∣∣
v=0

= 0,
∂3k4
∂v3

∣∣∣∣
v=0

= 0 (A.174)

∂4k2
∂v4

∣∣∣∣
v=0

= i
∂4k1
∂v4

∣∣∣∣
v=0

,
∂4k3
∂v4

∣∣∣∣
v=0

= −i∂
4k1
∂v4

∣∣∣∣
v=0

,
∂4k4
∂v4

∣∣∣∣
v=0

= −∂
4k1
∂v4

∣∣∣∣
v=0

,

where
∂4k1
∂v4

∣∣∣∣
v=0

=
3i(7α4 − 12α2 + 4)

16ω
3
2

, (A.175)

∂5k2
∂v5

∣∣∣∣
v=0

= −∂
5k1
∂v5

∣∣∣∣
v=0

,
∂5k3
∂v5

∣∣∣∣
v=0

= −∂
5k1
∂v5

∣∣∣∣
v=0

,
∂5k4
∂v5

∣∣∣∣
v=0

=
∂5k1
∂v5

∣∣∣∣
v=0

,

where
∂5k1
∂v5

∣∣∣∣
v=0

= −15α(α2 − 1)2

2ω2
, (A.176)

∂6k2
∂v6

∣∣∣∣
v=0

= −i∂
6k1
∂v6

∣∣∣∣
v=0

,
∂6k3
∂v6

∣∣∣∣
v=0

= i
∂6k1
∂v6

∣∣∣∣
v=0

,
∂6k4
∂v6

∣∣∣∣
v=0

= −∂
6k1
∂v6

∣∣∣∣
v=0

,

where
∂6k1
∂v6

∣∣∣∣
v=0

= −45i(39α6 − 90α4 + 60α2 − 8)

64ω
5
2

, (A.177)

∂7k1
∂v7

∣∣∣∣
v=0

= 0,
∂7k2
∂v7

∣∣∣∣
v=0

= 0,
∂7k3
∂v7

∣∣∣∣
v=0

= 0,
∂7k4
∂v7

∣∣∣∣
v=0

= 0 (A.178)

∂8k2
∂v8

∣∣∣∣
v=0

= i
∂8k1
∂v8

∣∣∣∣
v=0

,
∂8k3
∂v8

∣∣∣∣
v=0

= −i∂
8k1
∂v8

∣∣∣∣
v=0

,
∂8k4
∂v8

∣∣∣∣
v=0

= −∂
8k1
∂v8

∣∣∣∣
v=0

,

where
∂8k1
∂v8

∣∣∣∣
v=0

= −1575i(209α8 − 616α6 + 616α4 − 224α2 + 16)

256ω
7
2

, (A.179)

Expressions in Eqs. (A.174)-(A.179) are incorporated into the derivatives of the

determinants of Eqs. (A.229)-(A.233), in order to obtain the Taylor coefficients of the

expansion and, subsequently, solve such truncated polynomials for the flow velocity.

As mentioned in Chapter 5, odd-order derivatives of the determinants are zero for

the pinned-pinned, clamped-clamped and pinned-clamped cases. As a consequence,

it is possible to obtain algebraic equations for the square of the flow magnitude, v2,

up to the 4th truncation order. The solution for the flow velocity for each truncation

order -where the notation An = 1
n!
∂nD
∂vn

is used- is given by



A Appendices 133

• First-order truncation

v2 = −A0

A2

(A.180)

• Second-order truncation

v2 =
−A2 +

√
A2

2 − 4A0A4

2A4

(A.181)

• Third-order truncation

v2 = − A4

3A6

+
(1− i

√
3)(3A2A6 − A2

4)

3(2
2
3 )A6Q

1
3

− 1 + i
√

3

6(2
1
3 )A6

Q
1
3 (A.182)

with

Q = −2A3
4 + 9A2A4A6 − 27A0A

2
6

+

√
4 (3A2A6 − A2

4)
3 + (−2A3

4 + 9A2A4A6 − 27A0A2
6)

2
(A.183)

• Fourth-order truncation

v2 = − A6

4A8

+
1

2

√
A2

6

4A2
8

− 2A4

3A8

+R

−1

2

√√√√√ A2
6

2A2
8

− 4A4

3A8

−R +
−A3

6

A3
8

+ 4A4A6

A2
8
− 8A2

A8

4
√

A2
6

4A2
8
− 2A4

3A8
+R

(A.184)

where

R =
2

1
3 (A2

4 − 3A2A6 + 12A0A8)

3A8S
1
3

+
S

1
3

3(2
1
3 )A8

(A.185)

S = 2A3
4 − 9A2A4A6 + 27A0A

2
6 + 27A2

2A8 − 72A0A4A8 + T (A.186)

and T is given by

T 2 =
(
2A3

4 − 9A2A4A6 + 27A0A
2
6 + 27A2

2A8 − 72A0A4A8

)2

−4
(
A2

4 − 3A2A6 + 12A0A8

)3
(A.187)

For pinned-free and clamped-free cases, all derivatives are non-zero and therefore,

it is only possible to obtain analytical solutions for v (not for v2) up to 4th truncation



A Appendices 134

Table A.1: Example of the computation of more than one solution for v2 for the algebraic equation
obtained with the 8th truncation order for a pinned-pinned tube. The physical solution is printed
in bold characters

Frequency First solution Second solution Third Solution Fourth solution

0.8573 -6.8265 0.25002 2.0434-0.9894i 2.0434+0.9894i

3.8829 -31.8472 0.24999 4.5815-2.5189i 4.5815+2.5189i

8.8889 -66.6262 0.24999 6.8837-3.8981i 6.8837+3.8981i

15.8918 -108.7703 0.24999 9.2119-5.2630i 9.2119+5.2630i

order, leading to completely analogous expressions to Eqs. (A.180)-(A.184), when

replacing the left hand side (v2) in Eqs. (A.180)-(A.184) by v and doing the following

replacements in the right side of the equations: A2 → A1, A4 → A2, A6 → A3 and

A8 → A4.

A comparison of the error for each truncation level is shown in Fig. A.2. The

purpose of this one is to choose the most suitable expression according to the range

of flows and accuracy required in a specific experiment. In general, for low flow

magnitude measurements (about v < 0.1), a first or second order-truncated expression

might be enough, but for intermediate flows (0.1 < v < 0.6) a higher order truncation

might be required.

As stated in Chapter 5, the analytical expressions only depend on the boundary

conditions and not on the number of the vibration mode. The fact that all the

different frequencies ωn lead to the same flow is illustrated in Fig. A.3.

For higher truncation orders, the solution of the algebraic equations lead to more

than one solution for v (or v2). However, the choice of the correct solution is not

a problem, since the non-physical solutions lead to complex or non-plausible values.

See for example Table A.1.
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A.8 Mathematical details of the tube dynamics simulation

with initial and boundary conditions at the extremes

In order to simulate the tube dynamics, it is necessary to provide the following infor-

mation:

• The flow velocity, v.

• The inner and outer tube radii, in order to compute the thickness ratio, α.

• The flow radial profile, in order to compute the fluid structure factor, β.

• The boundary conditions at the tube edges.

• The vertical displacement and velocity of the tube at a given time (i.e., an initial

condition).

When the boundary conditions at the tube edges are known, it is possible to incor-

porate them in the general solution (Eq. (5.6) in Chapter 5). From this, an algebraic

system of 4 equations for the coefficients C1, C2, C3, C4 is obtained. This strategy,

in principle, would allow one to obtain the values of all the coefficients. However,

the system of equations produced by the boundary conditions is homogeneous and,

therefore, it leads to the trivial solution C1 = C2 = C3 = C4 = 0. In order to obtain a

non-trivial solution, it is necessary that the determinant of the matrix of coefficients

of the system vanishes (Eq. (A.229) in Chapter 5). This in turn causes one of the

4 equations for the coefficients, to be a linear combination of the other three, which

leaves one of the coefficients as a free parameter, for instance C1, and the others

coefficients as functions of this one.

When the fluid velocity and thickness ratio are known, it is possible to incorporate

them into Eq. (5.6) in Chapter 5. Such equation turns out to be an algebraic equation

for the frequency, ω. Moreover, the solution of Eq. (5.6) leads to an infinite set of
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discretized values of ω, denoted by ωn, where n is an integer number. Because of the

complexity of this equation, the solution, in general, is given via numerical methods to

solve algebraic equations. For the purpose of this work, the Newton-Raphson method

was used within Wolfram Mathematica utilities.

Each one of the discretized frequencies, ωn, is related to a given vibration mode.

Therefore, when all the vibration modes are known, it is possible to express any

solution of the tube dynamics as a linear combination of all the vibration modes.

The coefficients of such combination are given by the initial conditions of the tube.

This constitutes the general outline of the simulation of the tube dynamics.

A possible solution, considering C1 as a the free parameter, is given below for the

different sets of boundary conditions. It is necessary to recall that k1, k2, k3 and k4

are given by the Eqs. (5.8) and ((5.9)) in Chapter 5, and depend on ωn.

• Pinned-pinned

C2 = −C1

(
eik3 − eik4

)
(k21 − k24)−

(
eik1 − eik4

)
(k23 − k24)

(eik3 − eik4) (k22 − k24)− (eik2 − eik4) (k23 − k24)
(A.188)

C3 = C1
eik4 (k22 − k21) + eik2 (k21 − k24) + eik1 (k24 − k22)

eik4 (k23 − k22) + eik3 (k22 − k24) + eik2 (k24 − k23)
(A.189)

C4 = C1
eik3 (k22 − k21) + eik2 (k21 − k23) + eik1 (k23 − k22)

eik4 (k22 − k23) + eik2 (k23 − k24) + eik3 (k24 − k22)
(A.190)

• Clamped-clamped

C2 = C1
eik4 (k3 − k1) + eik3 (k1 − k4) + eik1 (k4 − k3)
eik4 (k2 − k3) + eik2 (k3 − k4) + eik3 (k4 − k2)

(A.191)

C3 = C1
eik4 (k2 − k1) + eik2 (k1 − k4) + eik1 (k4 − k2)
eik4 (k3 − k2) + eik3 (k2 − k4) + eik2 (k4 − k3)

(A.192)

C4 = C1
eik3 (k2 − k1) + eik2 (k1 − k3) + eik1 (k3 − k2)
eik4 (k2 − k3) + eik2 (k3 − k4) + eik3 (k4 − k2)

(A.193)

• Pinned-clamped

C2 = −C1

(
eik3 − eik4

)
(k21 − k24)−

(
eik1 − eik4

)
(k23 − k24)

(eik3 − eik4) (k22 − k24)− (eik2 − eik4) (k23 − k24)
(A.194)
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C3 = C1
eik4 (k22 − k21) + eik2 (k21 − k24) + eik1 (k24 − k22)

eik4 (k23 − k22) + eik3 (k22 − k24) + eik2 (k24 − k23)
(A.195)

C4 = C1
eik3 (k22 − k21) + eik2 (k21 − k23) + eik1 (k23 − k22)

eik4 (k22 − k23) + eik2 (k23 − k24) + eik3 (k24 − k22)
(A.196)

• Pinned-free

C2 = C1
eik4k24 (k21 − k23) + eik3k23 (k24 − k21) + eik1k21 (k23 − k24)

eik4k24 (k23 − k22) + eik3k23 (k22 − k24) + eik2k22 (k24 − k23)
(A.197)

C3 = C1
eik4k24 (k21 − k22) + eik2k22 (k24 − k21) + eik1k21 (k22 − k24)

eik4k24 (k22 − k23) + eik3k23 (k24 − k22) + eik2k22 (k23 − k24)
(A.198)

C4 = C1
eik3k23 (k21 − k22) + eik2k22 (k23 − k21) + eik1k21 (k22 − k23)

eik4k24 (k23 − k22) + eik3k23 (k22 − k23) + eik2k22 (k24 − k23)
(A.199)

• Clamped-free

C2 = C1
eik3k23 (k1 − k4) + eik1k21 (k4 − k3) + eik4k24 (k3 − k1)
eik3k23 (k4 − k2) + eik2k22 (k3 − k4) + eik4k24 (k2 − k3)

(A.200)

C3 = C1
eik2k22 (k1 − k4) + eik1k21 (k4 − k2) + eik4k24 (k2 − k1)
eik3k23 (k2 − k4) + eik2k22 (k4 − k3) + eik4k24 (k3 − k2)

(A.201)

C4 = C1
eik2k22 (k1 − k3) + eik1k21 (k3 − k2) + eik3k23 (k2 − k1)
eik3k23 (k4 − k2) + eik2k22 (k3 − k4) + eik4k24 (k2 − k3)

(A.202)

The expressions for the coefficients C1, C2, C3 and C4 from Eqs. (A.188)-(A.202)

are incorporated into the general solution (Eq. (5.6) in Chapter 5), to give each of

the vibration modes as follows:

φn ≡ ûn(z, ωn) = C1e
ik1(ωn)z + C2(ωn)eik2(ωn)z + C3(ωn)eik3(ωn)z + C4(ωn)eik4(ωn)z

(A.203)

these ones are denoted by φn, and are normalized for the sake of simplicity in the rest

of analytical and numerical treatment -this is possible by an adequate choice of the

value of C1-. Each φn is associated with an ωn and, in general, are complex functions

in the frequency domain.

For didactic purposes, it is worth pointing out that for simple models of elastic

materials, such as an elastic string, each normal mode is given by simple expressions
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like sin(nπz) or cos(nπz). However, the vibration modes for a tube conveying fluid,

φn, are not expressed in such simple terms because of the symmetry breaking produced

by the flow direction of the fluid inside the elastic tube.

Eq. (A.203) is only valid for the discretized values of ωn. In order to do the inverse

Fourier transform, it is necessary to extend ûn to a continuous domain in ω. This

leads to the following expression:

ûn(z, ω) = φn(z, ω)δ(ω − ωn) , (A.204)

which in time domain is:

un(z, t) = φn(z, ωn)e−iωnt . (A.205)

A general solution in time domain is a linear combination of all the normal modes

satisfying the given set of boundary conditions,

u(z, t) =
∞∑

n=−∞

Anφn(z, ωn)e−iωnt . (A.206)

Since the equation of the tube motion is a second order differential equation in

time, two conditions in time are required. In most of experimental situations, it is

possible to establish these conditions as the initial position and velocity of the tube.

These conditions are expressed as:

u

∣∣∣∣
t=0

= g(z) (A.207)

∂u

∂t

∣∣∣∣
t=0

= h(z) (A.208)

where g(z) corresponds to the position profile and h(z) to the velocity profile of the

tube at t = 0.

Substituting (A.207) and (A.208) into Eq. (A.206), gives the following expressions

for g(z) and h(z) in terms of the normal modes:

g(z) =
∞∑

n=−∞

Anφn(z, ωn) (A.209)
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h(z) = −i
∞∑

n=−∞

ωnAnφn(z, ωn) . (A.210)

The coefficients An should be found in order to satisfy (A.209) and (A.210). How-

ever, this is not a straightforward procedure, because this set of functions is complete

but not orthogonal.

In order to overcome this difficulty and obtain the target values An, it is necessary

to express the functions g(z), h(z) and φn in terms of an orthogonal set of functions.

The choice made in our treatment is the set {sin(nπz)}, where n is a positive integer

number. By considering this, Eqs. (A.209) and (A.210) are rewritten as:

∞∑

m=1

gm sin(mπz) =
∞∑

n=−∞

An

∞∑

m=1

αn,m sin(mπz) (A.211)

∞∑

m=1

hm sin(mπz) = −i
∞∑

n=−∞

ωnAn

∞∑

m=1

αn,m sin(mπz) (A.212)

where the coefficients of each Fourier series are given by

gm = 2

∫ z=1

z=0

g(z) sin(mπz) dz (A.213)

hm = 2

∫ z=1

z=0

h(z) sin(mπz) dz (A.214)

αn,m = 2

∫ z=1

z=0

φn(z, ωn) sin(mπz) dz (A.215)

The coefficients gm, hm and αn,m can be computed from the initial condition

and the normal vibration modes φn. Therefore, the only unknown quantities in

equations (A.211) and (A.212) are the coefficients An. These ones are compute by the

following procedure. First, Eqs. (A.211) and (A.212) are rearranged in the following

form:
∞∑

m=1

(
gm −

∞∑

n=−∞

Anαn,m

)
sin(mπz) = 0 (A.216)

∞∑

m=1

(
hm + i

∞∑

n=−∞

ωnAnαn,m

)
sin(mπz) = 0 (A.217)
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Each coefficient of the Fourier series in Eqs. (A.216) and (A.217) must vanish,

leading to the following system of algebraic equations for An:

gm =
∞∑

n=−∞

Anαn,m, m = 1, 2, 3, ... (A.218)

hm = −i
∞∑

n=−∞

ωnAnαn,m, m = 1, 2, 3, ... (A.219)

For a numerical simulation, it is necessary to truncate the series in Eqs. (A.218)

and (A.219) up to an Nmax term, leading to the following expression:

gm =
Nmax∑

n=−Nmax

Anαn,m, for m = 1, 2, ..., Nmax (A.220)

hm = −i
Nmax∑

n=−Nmax

ωnAnαn,m, for m = 1, 2, ..., Nmax (A.221)

Such truncation implies that the infinite set of linear algebraic equations has been

truncated to a linear algebraic system with 2Nmax algebraic equations. In order to

obtain a consistent system of equations with a unique solution, it is necessary to also

truncate the values of m up to Nmax. By solving the 2Nmax× 2Nmax system of linear

algebraic equations, the coefficients An are obtained and are incorporated into the

particular solution given in Eq. (A.206), which in turn contains all the information

to simulate the tube dynamics.
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A.9 Details of the solution of fluid dynamics influenced by

a tube moving in a single vibration mode

Eq. (A.114) allows one to solve fluid dynamics if the condition of tube motion is

previously given and computed in g(t) and h(t), as defined in the body of article.

Tube dynamics, as stated in Eq. (3.36) is solved along with boundary conditions,

which are shown below.

A specific experimental setting of the tube would determine the way in which edges

are fixed in an experiment [181]. Experimental literature on elastic nano-tubes shows

three common geometrical conditions for the tube edges [93]:

• Pinned edge. It means that the displacement of the tube edge is zero, and that

there is no curvature at that point. Physically, this implies that no elastic strain

is imposed at the tube edge. Mathematically, for a tube edge located at z = z0,

this is written as:

u

∣∣∣∣
z=z0

= 0 and
∂2u

∂z2

∣∣∣∣
z=z0

= 0 (A.222)

• Clamped edge. It means that the displacement of the tube edge is zero, and

that the tube at that point is constrained to be horizontal. Mathematically, for

a tube edge located at z = z0, this is written as:

u

∣∣∣∣
z=z0

= 0 and
∂u

∂z

∣∣∣∣
z=z0

= 0 (A.223)

• Free edge. It means that the displacement of the tube edge is not fixed, the only

constrain is that there is no curvature at that point and on its neighborhood.

Mathematically, for a tube edge located at z = z0, this is written in the following

way:

∂2u

∂z2

∣∣∣∣
z=z0

= 0 and
∂3u

∂z3

∣∣∣∣
z=z0

= 0 (A.224)
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For a finite-size tube, which has two edges, any combination of these three possi-

bilities should be, in principle, experimentally possible. This gives 6 sets of boundary

conditions that discretize differently the dispersion relation, namely, pinned-pinned,

clamped-clamped, pinned-clamped, pinned-free and clamped-free. Each of these sets

imply four conditions on u and/or its spatial derivatives and leads to different vibra-

tion modes.

Fourier transform of Eq. (3.36) leads to

EI
d4û

dz4
− (ρAf + ρtAt)ω

2û = 0 (A.225)

where û(z, ω) denotes the Fourier transform of u(z, t).

The general solution of Eq. A.225 is given by

û(z, ω) = C1e
ikz + C2e

−ikz + C3e
kz + C4e

−kz (A.226)

where k is given by

k =

(
(ρAf + ρtAt)ω

2

EI

) 1
4

. (A.227)

In order to know the particular solution of Eq. (A.225) for each set of boundary con-

ditions, Eqs. (A.222)-(A.224) are incorporated in the general solution in Eq. (A.226),

leading to a 4× 4 system of algebraic homogeneous equations for C1, C2, C3 and C4.

An homogeneous system leads to non-trivial solutions only if the determinant of its

coefficients vanishes, as stated below:

DBC = 0 (A.228)

where the suffix BC accounts for each set of boundary conditions. For such case, the

expression of the determinant is given below:
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• Pinned-pinned

DPP =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1

−k2 −k2 k2 k2

eikL e−ikL ekL e−kL

−k2eikL −k2e−ikL k2ekL k2e−kL

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 16ik4 sin(kL) sinh(kL)

(A.229)

• Clamped-clamped

DCC =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1

ik −ik k −k
eikL e−ikL ekL e−kL

ikeikL −ike−ikL kekL −ke−kL

∣∣∣∣∣∣∣∣∣∣∣∣∣

= 8ik2(cos(kL) cosh(kL)− 1)

(A.230)

• Pinned-clamped

DPC =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1

ik −ik k −k
eikL e−ikL ekL e−kL

−k2eikL −k2e−ikL k2ekL k2e−kL

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 8ik3(cosh(kL) sin(kL)− cos(kL) sinh(kL)) (A.231)

• Pinned-free

DPF =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1

−k2 −k2 k2 k2

−k2eikL −k2e−ikL k2ekL k2e−kL

−ik3eikL ik3e−ikL k3ekL −k3e−kL

∣∣∣∣∣∣∣∣∣∣∣∣∣
= −8ik7(cosh(kL) sin(kL)− cos(kL) sinh(kL)) (A.232)
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• Clamped-free

DFC =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1 1

ik −ik k −k
−k2eikL −k2e−ikL k2ekL k2e−kL

−ik3eikL ik3e−ikL k3ekL −k3e−kL

∣∣∣∣∣∣∣∣∣∣∣∣∣

= −8ik6(cos(kL) cosh(kL) + 1)

(A.233)

The condition for non-trivial solutions, as stated in Eqs. (A.229)-(A.233), is only

accomplished for certain values of k, leading to discretized values kn, which are sum-

marized in Table (A.2).

Table A.2: Discretization of k = kn induced by the different sets of boundary conditions. Values
shown for kn are asymptotic approximated solutions for Eqs. A.229-A.233.

Set of boundary conditions kn

Pinned-pinned nπ
L

Clamped-clamped
(
n+ 1

2

)
π
L

Free-free
(
n+ 1

2

)
π
L

Pinned-clamped
(
n+ 1

4

)
π
L

Pinned-free
(
n+ 1

4

)
π
L

Clamped-free
(
n− 1

2

)
π
L

The discretization of k = kn implies also the discretization of the frequency ω = ωn,

since k and ω are related by Eq. (A.227).

After discretization of kn and ωn, each 4× 4 system of equations is simplified to a

4× 3 system of equations in which one of the variables is left as a degree of freedom.

Such treatment leads to a non-trivial solution of the following form:

ûn(z, ω) = fn(z) (C1,nδ(ω − ωn) +D1,nδ(ω + ωn)) (A.234)

where f(z) is a spatial function obtained for each set of B.C. By performing the inverse

Fourier transform of Eq. (A.234), the following expression is obtained for un(z, t), as
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follows:

un(z, t) = U0fn(z) sin(ωnt+ ϕ) (A.235)

The explicit expression for fn(z) for the different sets of boundary conditions is

provided below:

• Pinned-pinned

fn(z) = sin(knz) (A.236)

• Clamped-clamped

fn(z) = sin(knz)− sinh(knz) +
(−1)n − sinh(knL)

cosh(knL)
(cos(knz)− cosh(knz))

(A.237)

• Pinned-clamped

fn(z) = sin(knz)− (−1)n√
2

sinh(knz)

sinh(knL)
(A.238)

• Pinned-free

fn(z) = sin(knz) +
(−1)n√

2

sinh(knz)

sinh(knL)
(A.239)

• Clamped-free

fn(z) = sin(knz)− sinh(knz) +
(−1)n − sinh(knL)

cosh(knL)
(cos(knz)− cosh(knz))

(A.240)

The solution un(z, t) from Eq. (A.235) is incorporated into the Coriolis and pulling

forces denoted by g(t) and h(t). The phase φ = 0 is considered for simplicity, leading

to the following result:

g(t) =
U2
0Aω

L2
sin(2ωt) (A.241)

h(t) =
U2
0Bω

2

L
cos(2ωt) (A.242)
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where A and B are factors that depend on the specific boundary conditions, as shown

below:

• Pinned-pinned

A =
n2π2

2
(A.243)

B = 0 (A.244)

• Clamped-clamped

A =
2βnπ (4(−1)n cosh(βnπ) + 2βnπ(cosh(2βnπ) + 1)− 4 sinh(2βnπ))

8(cosh(βnπ))2

(A.245)

B = 0 (A.246)

• Pinned-clamped

A =
πβn(2 + (4βnπ − 2) cosh(2πβn)− 2 sinh(2πβn))

16(sinh(βnπ))2
(A.247)

B = 0 (A.248)

• Pinned-free

A =
πβn((6 + 4πβn) cosh(2πβn) + 6(sinh(2πβn)− 1))

16(sinh(πβn))2
(A.249)

B = 1 (A.250)

• Clamped-free

A = −2πβn(sinh(πβn)− 3(−1)n)

4 cosh(πβn)
− πβn(−1)n(1 + i) cosh((2in− βn)π)

4 cosh2(πβn)

+
πβn(1− i)(−1)n cosh(πβn(1 + 2i))

4 cosh2(πβn)
− 2π2β2

n

4 cosh2(πβn)

+
πβn(βnπ cosh(2πβn) + 5 sinh(2πβn))

4 cosh2(πβn)
(A.251)

B = 2 (A.252)
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Figure A.2: Comparison between approximated analytical expressions and the exact numerical rela-
tion for flow and frequency. As expected, incorporation of more terms in the Taylor expansion leads
to an increase in the accuracy and flow range of applicability of the analytical expressions. However,
in the pinned-free and clamped-free cases, there is an alternating degree of precision with the order
of truncation of the Taylor expansion. This is not an issue for the purpose of this treatment, since
all the analytical expressions approximate very well the exact results obtained by numerical means.
A typical value of the thickness ratio α = 0.6 is used in the calculations.
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Figure A.3: Comparison between the analytical expression of the 8th truncation order and the exact
numerical relation for flow and frequency. Two messages are to be taken from this figure. First, a
single analytical expression is capable to approximate for the flow/frequency relation for each of the
vibration modes. Second, the range in which the analytical solution is valid is wider for high-order
vibration modes.
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1Departamento de Fı́sica y Quı́mica Teórica, Facultad de Quı́mica, Universidad Nacional Autónoma de México,
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We develop a theoretical framework to determine fluid velocities within nanotubes. We demonstrate
that the fluid/tube dynamic coupling could be exploited to determine flow velocities based on knowl-
edge of the bending frequency spectrum of a single nanotube. We develop an analytical methodology
that allows one to associate any of the frequencies in the spectrum with a single value of the fluid
velocity. We discuss the feasibility of experiments by state-of-the-art atomic force microscopy and
perform numerical simulations to determine uncertainties in fluid velocities. These are below 5% for
common nanotube sizes, which are considerably smaller than the ones reported in the literature for
conventional methods. Published by AIP Publishing. https://doi.org/10.1063/1.5050998

I. INTRODUCTION

Understanding water flow within nanostructures is
promising for the design of ultrafast water filters and nanoscale
fluid components within microdevices. Most of the experimen-
tal work regarding water flow in nanostructures is focused on
carbon nanotubes embedded like pores within polymer mem-
branes, subject to a pressure difference across them.1 It has
been found that flow velocities are several orders of magni-
tude higher than the ones predicted by the classical Poiseuille
flow of Continuum Mechanics (CM), with no-slip boundary
conditions in rigid tubes. Currently, the best explanation for
this flow enhancement is given in terms of the frictionless
transport due to the repulsive interactions between a non-
polar wall and water that cause huge slip lengths.2–7 This has
been corroborated via Molecular Dynamics (MD) simulations,
in which it is demonstrated that small changes in the repul-
sion term of a force field—used to model the water/graphene
interaction—have a strong effect on flow, and leads to flow
enhancement inside nanotubes.8–10 Such flow enhancement is
more pronounced in tubes of very small radii.11–14 The forma-
tion of different ordered structures of water molecules is also
predicted.15–19 The relation between some of these water struc-
tures and transport properties has allowed to understand, for
instance, the mechanism of enhanced ion transport in carbon
nanotubes.20

Despite all of the experimental advances and theoret-
ical efforts toward the comprehension of enhanced water
flow within nanostructures, there are current limitations, both,
experimental and theoretical ones, regarding the precision with
which flow is determined. Moreover, flow enhancement dif-
fers by orders of magnitude among the different experimental
studies in the literature.21–24 The main experimental difficul-
ties in the determination of flow are related to the uncertainty
in the cross-sectional area available for flow in carbon nan-
otube membranes. These lead to uncertainties of over 50% in

flow measurements.2–4 Techniques used to determine poros-
ity in materials, such as the BET isotherm and impedance
spectroscopy,25,26 lead to huge errors in pore density and cross-
sectional areas that in turn affect the precision in the determi-
nation of flow velocity. Moreover, at nanoscales, it is not clear
that the pore surface, which is determined by nitrogen adsorp-
tion, is the same as the effective cross-sectional area available
for water flow. This is because repulsion might lead to empty
spaces between the tube and the fluid that diminish the effec-
tive area for flow. Alternative ways to measure flow velocities
within nanotubes seem to be necessary. On the theoretical side,
most of the efforts toward the understanding of enhanced flow
in nanotubes are performed using MD simulations.8,19,27 The
enormous computational cost that such simulations demand
limits the system sizes to a few thousand atoms. Typical sizes
of tubes studied by MD lie between 1 and 10 nm in diameter
and 10-100 nm in length, while typical sizes of real nanotubes
are in the range of up to tenths of nanometers in radius and
hundreds of microns in length. In turn, simulation times are
limited to a few nanoseconds. This implies that MD simula-
tions allow for a systematic theoretical study of the transient
oscillatory tube dynamics but cannot reach the appearance of
steady deflective vibrations observed in experiments,28 and it
is currently an insufficient tool for understanding the effect
of fluid motion in the mechanical stability or instability of
nanotubes.

In turn, CM to study flow within nanotubes is espe-
cially useful to study system sizes above several nanometers
in radius29–32 and it is appropriate to study any time scale
of the vibration dynamics. Typical sizes of nanotubes lie on
the boundary of the capabilities of MD and CM approaches.
Both methodologies provide complementary and necessary
information to understand these systems. Theoretical efforts
to study flow in carbon nanotubes using CM have considered
slip but have neglected the oscillatory dynamics of the tube and
its coupling to the fluid.1–6 Such coupling is necessary since
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there are important elastic responses of the nanotubes when
subject to different types of deformations.33,34 Other CM mod-
els that do consider the coupling between tube motion and the
fluid velocity have not addressed the problem of flow determi-
nation, not to mention the explanation of flow enhancement.
Such models include the study of non-viscous flow within
an oscillating elastic single-walled carbon nanotube,35 mod-
els that incorporate their concentric multi-layered structure,
and models that consider the elastic and viscous forces act-
ing on the tube.36–38 More sophisticated models consider the
effect of a non-local tube elasticity.39,40 All of these models
are focused on the effect that a given flow velocity has on the
natural oscillation frequencies of the tube, subject to particular
boundary conditions at its edges. They propose equations that
are solved numerically for the specific boundary conditions
studied. The potential of such approaches to propose alterna-
tive ways to determine the magnitude of flow velocity has been
overlooked.

In this work, we develop a theoretical framework to
demonstrate that a CM approach, taking into account the
coupling between the fluid and the tube dynamics, could be
exploited to determine flow velocities based on knowledge
of the vibration frequency spectrum of a single nanotube.
This methodology could be applied to different sets of bound-
ary conditions at the nanotube edges. We obtain analytical
expressions for the fluid velocity as a function of the natu-
ral frequencies of the nanotube deflection, which allow for an
easy error propagation analysis of the uncertainties involved
in each of the system parameters. Our expressions allow us
to establish the framework for indirect determination of flow,
via experimental measurements of the nanotube oscillatory
bending motion. Our analysis indicates that the experimen-
tal uncertainties in the flow magnitude could be dramatically
reduced in wide ranges of tube sizes and flow velocities, by
using the proposed methodology. Our approach proposes to
record the nanotube displacement as a function of time (for
example, by AFM measurements), to use this information to
determine the relevant frequencies associated with the tube
dynamics via Fourier Analysis, and finally, to determine the
magnitude of flow velocity inside a nanostructure, through
the analytical relations between frequency and flow velocity
obtained in this work.

This paper is structured as follows: first, a physical model
is presented that incorporates the interaction between an elas-
tic tube and the fluid transported inside it. From this, we
obtain relations between flow velocity and the natural vibra-
tion frequencies of the nanotube. These would allow for the
determination of the flow velocity, if the frequency spec-
trum of a nanotube were known in two situations: with the
fluid flowing within the nanotube with an unknown velocity—
to be determined—and also with a stagnant fluid inside it.
The experimental feasibility is discussed based on the state-
of-the-art capabilities of atomic force microscopy (AFM).
Finally, we perform numerical simulations for different sets
of boundary conditions, which might approximate differ-
ent experimental settings, and determine flow uncertainties
that depend on sampling times, as well as on the spatial
and time resolution of the apparatus. These uncertainties
allow one to know under which circumstances the proposed

framework to measure flow velocities would lead to accurate
results.

II. MODEL

We consider a nanotube as an elastic cylindrical hollow,
conveying flow, subject to small deformations. The equation
of motion for the tube displacement, u(z, t), contains the
fluid velocity along the tube, v , as a parameter,35,41 and is
written as

EI
∂4u

∂z4
+ (ρf Af v

2 − T )
∂2u

∂z2
+ 2ρf Af v

∂2u
∂t∂z

+
(
ρtAt + ρf Af

) ∂2u

∂t2
= 0. (1)

In this equation, ρf is the density of the fluid, ρt is the density of
the tube, At and Af are the tube and fluid cross-sectional areas,
respectively; T is the tension along the tube, E is the Young
Modulus of the tube, I is the second moment of inertia of the
cylindrical tube, z is a spatial coordinate that coincides with an
undeformed tube, and t is time. The model tube and the defini-
tion of the vertical displacement, u, are illustrated in Fig. 1. For
nanotubes in typical experimental conditions, there is normally
no tension,42,43 so we consider T = 0. Equation (1) is nothing
but Newton’s second law for the forces acting on the tube per
unit length. The term

(
ρtAt + ρf Af

) ∂2u
∂t2 is the mass times the

acceleration; −EI ∂
4u
∂z4 is the elastic force; −ρf Af v

2 ∂2u
∂z2 is the

centrifugal force; and −2ρf Af v
∂2u
∂z∂t is the Coriolis force. Con-

sideration of small deformations is necessary in order to have
a linear equation that allows for analytical solutions, which in
turn allow for an analytical error propagation analysis.

It is important to remark that in this model, the average
flow velocity, v , appearing in Eq. (1), could come from differ-
ent velocity profiles and flows with different slip velocities. It
is only the average flow velocity that matters as far as the tube
dynamics is concerned.

A visual inspection of Eq. (1) allows one to find, from
the first and fourth terms, a characteristic frequency of the
system, ωc, in the absence of flow, when v = 0. That is, a fre-
quency characteristic of a tube of length L with a stagnant fluid
inside it,

ωc =
1

L2

√
EI

ρtAt + ρf Af
. (2)

FIG. 1. Representation of a nanotube portion. Its dynamics is described by
an equation for the tube displacement, u(z, t), illustrated in the figure, where
z is the coordinate along the undeformed nanotube, t is time, and y is the
coordinate in which the tube displacement occurs.
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It also allows us to find, from the first and second terms, a
characteristic flow velocity for a steady tube in the absence of
vibrations, vc, when the partial derivatives in time of the tube
displacement are zero,

vc =
1
L

√
EI
ρf Af

. (3)

These characteristic quantities allow us to rewrite Eq. (1)
in terms of the dimensionless variables, z̃ = z

L , t̃ = ωct, and
ṽ = v

vc
as

∂4u

∂z̃4
+ ṽ2 ∂

2u

∂z̃2
+ 2αṽ

∂2u
∂z̃∂ t̃

+
∂2u

∂ t̃2
= 0, (4)

where the quantity α, which we name the thickness ratio, has
been defined as

α2 ≡
1

1 + ρtAt
ρf Af

. (5)

Such a thickness ratio, α, might take values between 0 and 1.
It decreases when the tube thickness increases because of the
ratio of cross-sectional areas, of tube and fluid, in the denomi-
nator of Eq. (5). In order to have a simple notation, we will omit
tildes from this point, but z, t, and v refer to non-dimensional
variables.

The dimensionless equation for the tube displacement
[Eq. (4)] is a differential equation in space and time, which
depends explicitly on only two physical parameters, namely:

• The dimensionless flow velocity, v , that has been
normalized with the flow in a steady tube.

• The thickness ratio, α, which depends only on the ratio
of tube and fluid densities, and the ratio of tube and
fluid cross-sectional areas.

III. BOUNDARY CONDITIONS

In an infinite tube, in principle, a wave of any wavelength
can be transmitted. However, when the finite size of a system is
considered, the dispersion relation has to satisfy certain condi-
tions, according to the way in which the tube edges are fixed.
This results in the discretization of the allowed frequencies
and wavelengths.

A specific experimental setting of the tube would deter-
mine the way in which edges are fixed.39 The experimental lit-
erature on elastic nanotubes shows three common geometrical
conditions for the tube edges:28

• Pinned edge. It means that the displacement of the tube
edge is zero and that there is no curvature at that point.
Physically, this implies that no elastic strain is imposed
at the tube edge. Mathematically, for a tube edge located
at z = z0, this is written as

u
����z=z0

= 0 and
∂2u

∂z2

����z=z0

= 0. (6)

• Clamped edge. It means that the displacement of the
tube edge is zero and that the tube at that point is con-
strained to be horizontal. Mathematically, for a tube
edge located at z = z0, this is written as

u
����z=z0

= 0 and
∂u
∂z

����z=z0

= 0. (7)

• Free edge. It means that the displacement of the tube
edge is not fixed, and the only constrain is that there
is no curvature at that point and on its neighborhood.
Mathematically, for a tube edge located at z = z0, this
is written in the following way:

∂2u

∂z2

����z=z0

= 0 and
∂3u

∂z3

����z=z0

= 0. (8)

For a finite-size tube, which has two edges, any
combination of these three possibilities should be,
in principle, experimentally possible. This gives 6
sets of boundary conditions that discretize differently
the dispersion relation, namely, pinned-pinned (P-P),
clamped-clamped (C-C), free-free (F-F), pinned-
clamped (P-C), pinned-free (P-F), and clamped-free
(C-F). Each of these sets implies four conditions on
u and/or its spatial derivatives.

IV. RELATION BETWEEN FLOW MAGNITUDE
AND TUBE FREQUENCY

The Fourier Transform in time of Eq. (4) leads to

d4û

dz4
+ v2 d2û

dz2
− 2iωαv

dû
dz
− ω2û = 0, (9)

where û(z, ω) denotes the displacement in frequency domain.
As this is a linear fourth-order differential equation for û(z,ω)
with constant coefficients, the solution of Eq. (9) is the super-
position of four terms, resulting in a general form given
by

û(z,ω) = C1eik1z + C2eik2z + C3eik3z + C4eik4z, (10)

where k1, k2, k3, and k4 are wavenumbers and are functions of
v , ω and α. For a given tube and fluid, the latter is a constant.
The wavenumbers are given as follows:

k1 = −a− b; k2 = −a + b; k3 = a− b; k4 = a + b, (11)

where a and b are given by

a =
1
2

√√
2v2

3
+

2
1
3
(
v4 − 12ω2)

3q
1
3

+
q

1
3

3(2)
1
3

, (12)

b2 =
v2

3
−

2
1
3
(
v4 − 12ω2)
12q

1
3

−
q

1
3

12(2)
1
3

−
vαω√

2v2

3 +
2

1
3
(
v4−12ω2

)
3q

1
3

+ q
1
3

3(2)
1
3

(13)

and q is given by

q = −2v6 − 72v2ω2 + 108v2α2ω2 +
√

s, (14)

where s is

s =
(
2v6 + 72v2ω2 − 108v2α2ω2

)2
− 4

(
v4 − 12ω2

)3
.

(15)

When a set of boundary conditions at the tube edges is
chosen, one obtains a linear homogeneous 4 × 4 system of
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algebraic equations for the coefficients Cn. Such a system
allows for a non-trivial solution, only if the determinant, D,
vanishes. This discretizes the allowed values of the wavenum-
bers and therefore the allowed values of the frequency, ω,
giving rise to the different vibration frequency modes of the
tube, ωn. Moreover, such determinant is different for each set
of boundary conditions. As an example, for a pinned-pinned
tube, the determinant, DPP, is given by

DPP(v ,ω) =

�������������

1 1 1 1

−k2
1 −k2

2 −k2
3 −k2

4

eik1 eik2 eik3 eik4

−k2
1eik1 −k2

2eik2 −k2
3eik3 −k2

4eik4

�������������

. (16)

Explicit expressions for the determinants for the other sets of
boundary conditions are given in Sec. A of the supplementary
material.

As stated above, the condition for non-trivial solutions of
the tube dynamics is achieved when

D(v ,ωn) = 0. (17)

From Eq. (17), it is possible to know the relation between
the frequency of a tube oscillating in any of its vibration modes,
ωn, and the flow velocity, v , inside it.

From this point, we use two different approaches in order
to obtain the flow/frequency relations from Eq. (17): an ana-
lytical approach, which will be discussed in Sec. V, and a
numerical approach, which we implement in order to deter-
mine the range of validity of our analytical solutions. The latter
consists of the numerical obtention of the frequency of every
vibration mode, ωn, given a known value of the flow veloc-
ity. This treatment is useful when the tube starts in an initial
deformed condition with a known flow velocity induced inside
it and allows for a determination of the tube dynamics. The fre-
quency of each mode is obtained with any degree of precision,
so it can be considered as the exact solution ofωn(v). We solved
Eq. (17) by a Newton-Raphson method using Wolfram Math-
ematica 11. The effect of a specific set of boundary conditions
in the fundamental frequency vs. flow diagram is illustrated
in Fig. 2 for the pinned-pinned and clamped-clamped cases.
The qualitative behavior of the curves in Fig. 2 has been stud-
ied in the literature,44,45 by the numerical solution of Eq. (1),
with the purpose of identifying the flow conditions that induce
unstable tube motion. For the lowest flow velocities, a purely
real frequency is obtained, which leads to stable oscillatory
motion of the tube. On the other hand, when the frequency is
purely imaginary, the dynamics leads to buckling, or when it
is complex, with non-zero real and imaginary parts, it leads to
fluttering.35–38

In Fig. 2, a decrease in the fundamental mode, ω1, with
increasing flow velocity in the stable motion zone can be
observed; this implies that the larger the flow velocity is, the
smaller the fundamental frequency is; when flow increases
above a certain threshold that depends on the set of bound-
ary conditions, an unstable behavior emerges—indicated by a
non-zero imaginary part of the frequency. For the other sets of
boundary conditions, equivalent figures are included in Sec. B
of the supplementary material.

FIG. 2. Effect of flow in the fundamental frequency mode of the tube oscil-
lations, for two sets of boundary conditions. Solid lines correspond to the real
part of the frequency and dashed lines to its imaginary part. A typical value
of the thickness ratio α = 0.6 is used in the calculations. (a) Pinned-pinned.
(b) Clamped-clamped.

V. ANALYTICAL APPROACH

An alternative approach to solve Eq. (17) that is key to
the proposed framework for flow determination consists of
obtaining analytical expressions for the flow velocity as a func-
tion of the tube oscillation modes, v(ωn). The purpose of this
is to determine the flow magnitude inside a tube when the
frequency spectrum of tube bending motion is known. Such
strategy is based on the assumption that experimentally attain-
able flows are small in comparison to the critical flow velocity
of the first mode, given by the characteristic flow velocity
in Eq. (3). This assumption is supported by the typical flow
velocities measured within carbon nanotubes.1 With this con-
sideration, it is possible to perform a Taylor expansion, around
small flow velocities, of the determinant, D, in Eq. (17), as
follows:

D(v ,ω) = D
����v=0

+
∞∑

n=1

∂nD
∂vn

����v=0

vn

n!
. (18)

It turns out that, for several sets of boundary conditions
(P-P, C-C, F-F, and P-C), the odd derivatives of the determinant
vanish. For these cases, a truncation to order m in Eq. (18) leads
to an algebraic equation of order m

2 for v2(ω). Since analytic
solutions of polynomial equations are known up to quartic
order, we have obtained analytic approximations of Eq. (18)
for v2, for truncation orders m = 2, 4, 6, and 8. As an example,
a second-order truncation of the determinant in Eq. (18) for
the pinned-pinned case is
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vP−P(ω, α) =

√
APP

BPP
, (19)

where APP and BPP are given by

APP = 8ω sin(
√
ω) sinh(

√
ω), (20)

BPP = 4α2 − cosh(
√
ω)GPP −

√
ω sinh(

√
ω)HPP (21)

and GPP and HPP are given by

GPP = 4α2 cos(
√
ω) + (α2 − 2)

√
ω sin(

√
ω), (22)

HPP = (2 − α2) cos(
√
ω). (23)

A comparison of the analytical expression in Eq. (19) (and
equivalent expressions to higher truncation orders) with the
exact numerical solutions is shown in Fig. 3(a), in order to
exhibit the range of velocities in which each of the approxi-
mations is adequate. Figure 3(b) shows the percentage error
between the different analytical approximations and the exact
numerical solution. We can observe that there is a wide range of
flow velocities in which the analytical approximations differ no
more than few percentage points from the exact solution. For
excited modes (not shown in Fig. 3), the analytical approxima-
tions are valid for wider velocity ranges than the fundamental
mode.

For the two sets of boundary conditions for which odd
derivatives of the determinant do not vanish (P-F and C-F),
algebraic equations for v (and not for v2) can be obtained up
to quartic order. Analytic expressions for higher truncation

FIG. 3. (a) Comparison between the approximated analytical expressions and
the exact numerical solution for the flow velocity as a function of the funda-
mental frequency for the pinned-pinned case. As expected, incorporation of
more terms in the Taylor expansion for v2 leads to an increase in accuracy and
the range of applicability of the analytical expressions for higher flows. (b)
Percentage error in the velocity as a function of the flow velocity. A typical
value of the thickness ratio α = 0.6 is used in the calculations.

orders (needed for higher flow velocities) and for the other
sets of boundary conditions, as well as figures comparing
analytical expressions of the fundamental mode with numer-
ical solutions, are included in Sec. C of the supplementary
material.

Contrary to exact solutions that are multivalued, our ana-
lytical solutions for the first degree of truncation give expres-
sions for v(ωn) such that for each value ofω only one value of
the velocity could be obtained. Moreover, the expression for
the velocity is exactly the same for each of the tube vibration
modes in the spectrum. Therefore, if the frequency spectrum of
the tube dynamics were available, any of the frequencies com-
posing it could be in principle used in Eq. (19), and the same
flow velocity would be obtained. This together with the knowl-
edge of the range of flow velocities in which the approximation
is valid (for example, from Fig. 3) gives an important advan-
tage of our analytical approach over numerical schemes.44,45

This fact could be useful in real experiments, where different
sources of uncertainty may induce noise and spurious peaks
in the frequency spectra because every physical peak must be
related to the same flow velocity. For higher truncation orders
of the determinant in Eq. (18), the analytical solution will give
several values for the flow velocity; however, careful analy-
sis would allow to distinguish which is the physical solution
because this should give a real value for the velocity (see, for
example, Table I in Sec. C of the supplementary material). The
physical solution will also comply with the fact that any of the
frequencies in the spectrum will be associated with a single
value of the fluid velocity (see, for example, Fig. 3 in Sec. C
of the supplementary material for the fourth truncation order
for v2).

VI. SIMULATION OF THE TUBE DYNAMICS

An illustrative example of our proposal consists of the the-
oretical solution of a tube with an initial condition that imitates
a possible deformation induced by AFM; this is given by

u(z, t = 0) = 256
(
z4 − 4z5 + 6z6 − 4z7 + z8

)
and

u̇(z, t = 0) = 0. (24)

Geometrical details of the tube used in this example and its
initial condition are illustrated in Fig. 4. A polynomial function
was chosen in order to satisfy any of the sets of boundary
conditions in the tube extremes.

This example allows one to see how boundary conditions
influence the tube dynamics and could potentially allow exper-
imentalists to understand that to which of the idealized sets of
boundary conditions their specific experiment belongs.

FIG. 4. Initial condition imposed for the simulations of the tube dynamics.
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FIG. 5. Simulation of the tube dynam-
ics with different boundary conditions
at their edges. For each set of boundary
conditions, the tube displacements at the
middle of the tube (z = 0.5) are plot-
ted as a function of time; left column,
when the tube is filled with a stagnant
fluid; middle column, when the tube is
filled with a fluid with flow velocity
v = 0.5 m/s. The right column shows
the frequency spectrum of both cases
illustrating clearly that the fundamen-
tal mode is smaller when the fluid is
being transported with a finite velocity
than when the fluid is stagnant within the
tube. It also shows that the fundamental
mode occurs at different values for each
set of boundary conditions. Calculations
were performed for a nanotube with
inner and outer tube radii of 8 and 15
nm, respectively. (a) Pinned-pinned. (b)
Clamped-clamped. (c) Pinned-clamped.

Simulations of the tube dynamics are illustrated in Fig. 5
for the pinned-pinned, clamped-clamped, and pinned-clamped
cases. For each set of boundary conditions, the tube displace-
ments at the middle of the tube (z = 0.5) are plotted as a function
of time, when the tube is filled with a stagnant fluid (first
column) and when the tube is filled with a fluid with a flow
velocity v = 0.5 m/s (second column). The third column shows
the frequency spectrum of both cases illustrating clearly that
the fundamental frequency is smaller when the fluid is being
transported with a finite velocity than when the fluid is stag-
nant within the tube. It also shows that the fundamental mode
occurs at different frequency values for each set of boundary
conditions.

The complete derivation of the solution of the tube dynam-
ics [Eq. (1)] with initial and boundary conditions is given in
Sec. D of the supplementary material.

VII. EXPERIMENTAL FEASIBILITY

We analyze the feasibility of a potential experiment
according to the state of the art of the experimental appa-
ratus. Most of the experiments in the detection of motion
and mechanical response of carbon nanotubes can be clas-
sified into two big groups: determination of the force exerted
on a tube due to an imposed static deflection by means of
AFM, where the determination relies on a single measure-
ment and has a considerable amount of error,46–50 and tests of
the nanotubes’ proficiency as resonators in response to exter-
nal steady oscillatory perturbations produced by piezoelectric
actuators.42,43,51–53 A different strategy is conceived here. If a
certain amount of data, which account for the time evolution
of the tube motion, are registered and subsequently treated

by Fourier analysis, the uncertainty in the peaks of the fre-
quency spectrum will depend on the apparatus resolution to
measure distances and time and, importantly, on the sampling
time.54,55

The minimal elements that an experiment should have in
order to determine flow using our analytical framework are
three: (1) an external driving force allowing for fluid flow
inside the nanotube, (2) a device allowing for an initial pertur-
bation of the tube, and (3) a transducer device allowing for the
detection and registration of the tube motion.

The incorporation of two closed reservoirs at the tube
edges and the induction of a pressure difference by mechanical
means—a syringe or a piston—are not suitable at nanoscales
since the imperfections of the junctions between the reser-
voirs and tube extremes would cause water leaking. A bet-
ter strategy could be to induce an electrophoretic flow by a
voltage difference across the tube as performed by Qin.13 A
steady flow would be obtained shortly after the tube is full of
water.

An initial perturbation could be induced, for example, by
pushing the tube with the tip of an AFM,48,56 by direct mechan-
ical coupling of a piezoelectric material pulsed by an AC
electric source,53,57,58 or by indirect excitation of the nanotube
by acoustic means.59–62

In general, four detection ways seem to be suitable for
accurate measurements with a sub-nm resolution and within
the range of a few nm in the vertical displacement of a nan-
otube: field-effect transistors,63–67 piezo-resistive effect,51,53

capacitive response,52 and optical interferometry.68,69

The space of a nanodevice does not allow for an easy
incorporation of multiple instruments or the aligning of a
microdevice with external components and probes. The most
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FIG. 6. An example of a minimal experimental setting to indirectly determine
flow velocities by means of recording the tube displacements in time. The
setting includes an electrophoretic driving force for fluid flow, while the tube
deformation and detection are both performed by means of an AFM with
interdigitated prints that allow for accurate detection via interferometry.

suitable device would be the one that allows for the simplest
setting that incorporates an actuator, a detector, and a driving
force for fluid flow.

A possible minimal setting, compatible with the simula-
tion of the tube dynamics of Sec. VI, is illustrated in Fig. 6.
This would include an electrophoretic driving force for the
fluid, while the tube deformation and the detection could be
both performed by means of an AFM with interdigitated prints,
which allow for accurate detection via interferometry, as devel-
oped by Manalis.70,71 The arrangement of the tube and AFM
tip could be as the one in the work of Salvetat.48

Frequently, the actuation or detection of the tube motion
will involve external forces that should be incorporated into
the model. Moreover, depending on the environmental con-
ditions of the experiment, a damping force could affect the
experimental results. However, all these external forces can be
incorporated into Eq. (1) in a straightforward manner. The the-
oretical treatment provided in this work (and fully explained
in Sec. C of the supplementary material) can incorporate such
external forces, allowing the obtention of analytical expres-
sions for the specific experiment developed. However, in gen-
eral, these external forces exert only slight modifications to
the flow/frequency relations shown in Fig. 3 because in most
cases, the large Young Moduli of CNTs would cause the elastic
force to be the dominant force of the system.

VIII. CONSIDERATIONS ON THE UNCERTAINTY
AND SENSIBILITY OF THE METHOD

The flow/frequency relation in Eq. (19) and the equivalent
relations for other B.C. relate dimensionless flow and dimen-
sionless frequency. A suitable manner to use such a relation is
by performing two experiments, one at finite flow velocity and
the other at zero flow, and to record the fundamental frequency
for both experiments.

The dimensional frequency obtained by a measurement
at a given flow velocity v will be denoted by ωBC

v , where BC
reminds that the fundamental frequency depends on the spe-
cific set of boundary conditions. The frequency of a tube filled
with a stagnant fluid, ωBC

0 , can be related to the characteristic

frequency ωc in Eq. (2) by the following relation:

ωBC
0 = aωc, (25)

where the value of a depends on the boundary conditions. For
a pinned-pinned tube, a = 1; for a clamped-clamped and a free-
free tube, a = 9/4; for a pinned-clamped and a free-free tube,
a = 25/16; and for a clamped-free tube, a = 1/4.

Therefore, the ratio of both dimensional measured fre-
quencies ωBC

v and ωBC
0 leads to the following result:

ωBC
v

ωBC
0

=
1
a

ωBC
v

ωc
=

1
a
ω, (26)

which allows one to compute the dimensionless frequency,
ω, directly from the two experiments, without the need to
determine directly ωc by means of the Young modulus of the
tube.

Doing so would be useful for the reduction of uncer-
tainty because in this way the relative uncertainty of flow
is computable directly from the dimensionless equation (19)
or equivalent expressions for other boundary conditions.78

First, the dimensional uncertainty of both frequency measure-
ments is incorporated in the uncertainty of the dimensionless
frequency, ω, as

∆ω2 =

(
∂ω

∂ωBC
v

)2 (
∆ωBC

v

)2
+ *

,

∂ω

∂ωBC
0

+
-

2 (
∆ωBC

0

)2

=
a2(

ωBC
v

)2

(
∆ωBC

v

)2
+ a2

(
ωBC
v

)2(
ωBC

0

)4

(
∆ωBC

0

)2
. (27)

And then, the uncertainty in the dimensionless frequency, ω,
is incorporated in the uncertainty of the dimensionless flow
velocity, v(ω, α), given by Eq. (19)—or equivalent expressions
for the other boundary conditions—as

∆v =

√(
∂v

∂ω

)2

(∆ω)2 +

(
∂v

∂α

)2

(∆α)2, (28)

where the uncertainty ∆α can be computed from the uncer-
tainty in densities and outer and inner tube radii. Therefore,
from Eqs. (27) and (28), it is possible to establish that uncer-
tainty on flow depends essentially on the dimensional uncer-
tainty of both frequency measurements, on the dimensional
uncertainty of densities and radii, and on the slope of the
dimensionless flow/frequency function, ∂v/∂ω, and the slope
of the dimensionless flow/thickness ratio function, ∂v/∂α.

Among all the factors that affect the flow velocity uncer-
tainty, the most important one is the slope of flow veloc-
ity/frequency function because it depends drastically on the
magnitude of the flow velocity itself and it diverges for flow
velocities close to zero. This result is presented in Fig. 7(a),
where it is possible to see that for large tubes and interme-
diate flow velocities, the uncertainty reaches an asymptotic
lower value, which is given by the uncertainty of the thickness
ratio, α.

According to our analysis, we consider that our method
could be implemented in typical carbon nanotubes between 10
and 100 µm in length, with initial amplitudes between 1 and
50 nm. Our calculations predict that a tube of these dimen-
sions will have natural frequencies on the range of kHz–MHz.
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FIG. 7. Effect of the main experimental parameters on the uncertainty in flow
determination. (a) Expected uncertainty in the flow velocity as a function of
the magnitude of the flow velocity for different tube lengths, with an initial
amplitude of 5 nm. The time resolution of 0.05 µs determines an upper bound
for the range of detectable frequencies. Such a limit—given by the Nyquist
frequency—is shown in the red dashed line. (b) Expected uncertainty in the
flow velocity as a function of the sampling time for different amplitudes of
the initial condition, with a tube length of 20 µm and a magnitude of flow
velocity of 0.5 m/s. Calculations were performed for a nanotube with pinned
edges and the following physical parameters: inner and outer tube radii of 8
and 15 nm, respectively; water and carbon densities of 1000 and 2300 kg/m3,
respectively; uncertainty in radius of 0.1 nm; and uncertainty in densities of
0.1 kg/m3.

After a literature review on the spatial and time resolution of
AFM, a resolution of 0.1 nm in the measurement of the ver-
tical displacement of the tube72,73 and a time resolution of
0.05 µs would be possible.74–76 For shorter tubes (between 1
and 10 µm in length), the experimental setting in Fig. 6 would
not be suitable since it is incapable of detecting MHz-GHz
frequencies.

Uncertainty in Fig. 7 would change slightly if different
actuators or sensors are considered. However, the qualitative
behavior would remain the same since its origin is the slope
of the flow/frequency relation.

Such calculations were performed by considering a simple
treatment for the uncertainty in frequency by using a discrete
Fourier transform of a one-mode sinusoidal signal plus white
noise.54,55,77 For this, we have that

∆ωBC
v =

∆u
aT

√
24
N

, (29)

where N is the number of measurements in time, T is the
total sampling time, a is the amplitude of the sinusoidal mode,
and ∆u is the uncertainty in the tube vertical position in time
domain.

Figure 7(b) shows that the uncertainty in flow velocity is
not significantly diminished by an increase in the amplitude of

TABLE I. Approximated range of suitability for a tube of 20 µm of length,
subject to different boundary conditions. The range of flow magnitudes and
frequencies is given in terms of the accurately measurable flows and funda-
mental frequencies, i.e., the ones that reach an uncertainty of 5% or lower in
flow determination.

Range of frequency Range of flow velocity
Boundary condition (MHz) (m/s)

Pinned-pinned 0.58-0.9 0.3-40
Clamped-clamped 1.03-1.35 0.7-90
Pinned-clamped 0.64-0.9 0.3-60
Free-free 1.03-1.35 0.7-90
Pinned-free 0.64-0.9 0.5-60
Clamped-free 0.13-0.23 0.5-60

the initial condition, so an initial amplitude of about 5-10 nm
can be enough to carry out the experiment. By contrast, uncer-
tainty is strongly dependent on sampling time because it affects
directly the uncertainty in frequency determination.

In general, flow determination is better for intermediate
flow velocities, as the magnitude of the slope of the flow veloc-
ity/frequency function decreases with increasing flow magni-
tude. However, the range of such intermediate flow velocities,
which are ideal for measurements, depends on the bound-
ary conditions imposed on the specific experiment. This is
illustrated in Table I.

According to this, the best boundary condition will depend
on the specific limitations of the actuators and sensors of a
particular experimental setting. For the cases where the exper-
imental time resolution is limited, the fundamental frequency
of a clamped-free tube is the lowest and allows for an easier
detection. Besides, if the driving pressure gradient is limited
and only low flows could be generated, then pinned-pinned
would be the preferred setting.

IX. CONCLUSIONS

A theoretical framework to indirectly measure flow veloc-
ities within nanotubes has been developed. This would give
smaller uncertainties in flow velocities than conventional
methodologies—which determine the flow magnitude in sys-
tems of nanotubes embedded in membranes—because of the
fact that it is limited by frequency measurements and not by
knowledge of the effective area to flow.

Our strategy does not assume a particular interaction
between water and graphene, so it could be used regardless
of the natural degree of hydrophobicity of the interaction, and
it could also be used for functionalized nanotubes.

In our model, the average flow velocity, v , determines
the bending frequency spectrum of the tube regardless of the
presence or absence of slip in the system. Once v is experimen-
tally determined, analytical expressions for steady state flow
in the presence of slip, considering, for example, the Navier
hypothesis for the slip velocity, could be used to determine
slip lengths. These might differ from those currently reported
in the literature.

Our work might constitute the basis to propose a wide
range of experiments of flow across nanostructures in different
experimental situations focusing on frequency measurements.
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It also constitutes a basic framework that could be extended
to determine other structural and rheological fluid properties
by means of indirect frequency measurements rather than by
conventional methods.

SUPPLEMENTARY MATERIAL

Further details are provided in supplementary material,
organized in four sections, as follows:

• Section A. Expressions of the determinant for the
different sets of boundary conditions.

• Section B. Flow/frequency relation for the different sets
of boundary conditions.

• Section C. Derivation of the analytical expressions for
flow as a function of frequency.

• Section D. Simulation of the tube dynamics.
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A. EXPRESSIONS OF THE DETERMINANT FOR THE DIFFERENT SETS OF
BOUNDARY CONDITIONS

For each set of boundary conditions considered in this work, the expression for the determinant is shown
below. It is important to recall that k1, k2, k3 and k4 are functions of ω and α as stated in Eq.(10) of the
main article.

• Pinned-pinned

DPP =

∣∣∣∣∣∣∣∣

1 1 1 1
−k21 −k22 −k23 −k24
eik1 eik2 eik3 eik4
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(A.1)

• Clamped-clamped

DCC =

∣∣∣∣∣∣∣∣

1 1 1 1
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(A.2)

• Free-free

DFF =
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DPC =

∣∣∣∣∣∣∣∣

1 1 1 1
ik1 ik2 ik3 ik4
eik1 eik2 eik3 eik4

−k21eik1 −k22eik2 −k23eik3 −k24eik4

∣∣∣∣∣∣∣∣
(A.4)

• Pinned-free
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• Clamped-free

DFC =
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B. FLOW/FREQUENCY RELATION FOR THE DIFFERENT SETS OF BOUNDARY
CONDITIONS

The flow frequency relations of the fundamental mode for the different sets of boundary conditions are
given in Fig. 1.
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FIG. 1. Effect of flow in the fundamental frequency of the tube oscillations for the different sets of boundary
conditions described in this work. Solid lines correspond to the real part of the frequency and dashed lines to its
imaginary part. A typical value of the thickness ratio α = 0.6 is used in the calculations.

C. DERIVATION OF THE ANALYTICAL EXPRESSIONS FOR FLOW AS A FUNCTION
OF FREQUENCY

The expressions of the determinants for the different sets of boundary conditions, as given in Eqs. (A.1)-
(A.6) should satisfy:

D(v, α, ω) = 0 . (C.1)

The second-order Taylor expansion of D(v, α, ω) around v = 0 is given by:

D(v, α, ω)) ≈ D
∣∣∣∣
v=0

+
∂D

∂v

∣∣∣∣
v=0

v +
1

2

∂2D

∂v2

∣∣∣∣
v=0

v2 . (C.2)

An explicit expression for v is given by solving the second-order algebraic equation, as:

v =
−∂D

∂v

∣∣
v=0
±
√(

∂D
∂v

∣∣
v=0

)2 − 2∂2D
∂v2

∣∣
v=0

D
∣∣
v=0

∂2D
∂v2

∣∣
v=0

. (C.3)

Expressions for the first and second derivatives of the determinant respect to flow evaluated at zero flow
are required.
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The first derivative of a 4× 4 determinant is given by:

∂D
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and, subsequently, the second derivative of a determinant is the sum of 16 determinants. This result
is applied for all the sets of boundary conditions. The following step is to evaluate such derivatives for
a stagnant fluid, v = 0. However, it is easier to do the derivative in the 4 × 4 matrices and afterwards
evaluate the determinant of such expressions. This strategy is useful as the analytical expressions of the
determinants before evaluation are enormous. The terms involved in these calculations are:

k1

∣∣∣∣
v=0

= i
√
ω, k2
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v=0

= ik1
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(C.5)
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By expressing the Taylor expansion in terms of Eqs. (C.5)-(C.7), it is possible to compute the deter-
minant and its first and second derivatives in order to incorporate them into the Taylor Expansion in
Eq. (C.3), and finally, to solve such equation for v, leading to the following expressions:

• Pinned-pinned

vP−P (ω, α) =

√
APP

BPP
(C.8)

where APP and BPP are given by

APP = 8ω sin(
√
ω) sinh(

√
ω) (C.9)

BPP = 4α2 − cosh(
√
ω)GPP −

√
ω sinh(

√
ω)HPP (C.10)

and GPP and HPP are given by

GPP = 4α2 cos(
√
ω) + (α2 − 2)

√
ω sin(

√
ω) (C.11)

HPP = (2− α2) cos(
√
ω) (C.12)
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• Clamped-clamped

vC−C(ω, α) =

√
ACC

BCC
(C.13)

where ACC and BCC are given by

ACC = 8ω
(
cos(
√
ω) cosh(

√
ω)− 1

)
(C.14)

BCC =−4α2ω + (2− α2)
√
ω cosh(

√
ω) sin(

√
ω)

+ sinh(
√
ω)
(√
ω(2− α2) cos(

√
ω) + 2(3α2 − 2) sin(

√
ω)
)

(C.15)

• Free-free

vFF (ω, α) =

√
AFF

BFF
(C.16)

where AFF and BFF are given by

AFF = 8ω
(
cos(
√
ω) cosh(

√
ω)− 1

)
(C.17)

BFF =−4α2ω + (2− α2)
√
ω cosh(

√
ω) sin(

√
ω)

+ sinh(
√
ω)
(√
ω(2− α2) cos(

√
ω) + 2(3α2 − 2) sin(

√
ω)
)

(C.18)

• Pinned-clamped

vPC(ω, α) =

√
APC

BPC
(C.19)

where APC and BPC are given by

APC = (4 + 4i)ω
(
sin((1 + i)

√
ω)− sinh((1 + i)

√
ω)
)

(C.20)

BPC =8α2
√
ω + (2− 5α2) cos(

√
ω) sinh(

√
ω)

+ cosh(
√
ω)
(
2
√
ω(α2 − 2) cos(

√
ω) + (2− 5α2) sin(

√
ω)
)

(C.21)

• Pinned-free

vPF (ω, α) =
8iα
√
ω sin(

√
ω) sinh(

√
ω)−

√
−4(1 + i)ωAPF

BPF
(C.22)

where APF and BPF are given by

APF = 8(1− i)α2sin2(
√
ω)sinh2(

√
ω) +GPFHPF (C.23)

BPF =−8α2
√
ω + (2 + 3α2) cos(

√
ω) sinh(

√
ω)

+ cosh(
√
ω)
(
2(α2 − 2)

√
ω cos(

√
ω) + (2 + 3α2) sin(

√
ω)
)

(C.24)

where GPF and HPF are given by

GPF = sin((1 + i)
√
ω)− sinh((1 + i)

√
ω) (C.25)

HPF =8α2
√
ω − (2 + 3α2) cos(

√
ω) sinh(

√
ω)

− cosh(
√
ω)
(
2(α2 − 2)

√
ω cos(

√
ω) + (2 + 3α2) sin(

√
ω)
)

(C.26)
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• Clamped-free

vCF (ω, α) =
2α
√
ω(1− i) (sin((1 + i)

√
ω)− sinh((1 + i)

√
ω))−√−8ωACF

BCF
(C.27)

where ACF and BCF are given by

ACF =iα2
(
sin((1 + i)

√
ω)− sinh((1 + i)

√
ω)
)2

−(cos(
√
ω) cosh(

√
ω) + 1)GCF (C.28)

BCF =4α2ω + (2− α2)
√
ω cosh(

√
ω) sin(

√
ω)

+
(
(2− α2)

√
ω cos(

√
ω)− 2(α2 + 2) sin(

√
ω)
)

sinh(
√
ω) (C.29)

where GCF is given by

GCF =4α2ω + (2− α2)
√
ω cosh(

√
ω) sin(

√
ω)

−
(
(α2 − 2)

√
ω cos(

√
ω) + 2(2 + α2) sin(

√
ω)
)

sinh(
√
ω) (C.30)

These expressions are given for a second-order expansion around zero flow and, therefore, are accurate
for low flow velocities. In order to numerically determine the range of accuracy of the approximations, it is
necessary to compare the exact numerical solution of the flow-frequency relation for each set of boundary
conditions, with the analytical approximated results.

To obtain flow-frequency relations for low and medium flows, higher-order Taylor expansions are neces-
sary. High order derivatives of k1, k2, k3, k4 are given by

∂3k1
∂v3

∣∣∣∣
v=0

= 0,
∂3k2
∂v3

∣∣∣∣
v=0

= 0,
∂3k3
∂v3

∣∣∣∣
v=0

= 0,
∂3k4
∂v3

∣∣∣∣
v=0

= 0 (C.31)

∂4k2
∂v4

∣∣∣∣
v=0

= i
∂4k1
∂v4

∣∣∣∣
v=0

,
∂4k3
∂v4

∣∣∣∣
v=0

= −i∂
4k1
∂v4

∣∣∣∣
v=0

,
∂4k4
∂v4

∣∣∣∣
v=0

= −∂
4k1
∂v4

∣∣∣∣
v=0

,

where
∂4k1
∂v4

∣∣∣∣
v=0

=
3i(7α4 − 12α2 + 4)

16ω
3
2

, (C.32)

∂5k2
∂v5

∣∣∣∣
v=0

= −∂
5k1
∂v5

∣∣∣∣
v=0

,
∂5k3
∂v5

∣∣∣∣
v=0

= −∂
5k1
∂v5

∣∣∣∣
v=0

,
∂5k4
∂v5

∣∣∣∣
v=0

=
∂5k1
∂v5

∣∣∣∣
v=0

,

where
∂5k1
∂v5

∣∣∣∣
v=0

= −15α(α2 − 1)2

2ω2
, (C.33)

∂6k2
∂v6

∣∣∣∣
v=0

= −i∂
6k1
∂v6

∣∣∣∣
v=0

,
∂6k3
∂v6

∣∣∣∣
v=0

= i
∂6k1
∂v6

∣∣∣∣
v=0

,
∂6k4
∂v6

∣∣∣∣
v=0

= −∂
6k1
∂v6

∣∣∣∣
v=0

,

where
∂6k1
∂v6

∣∣∣∣
v=0

= −45i(39α6 − 90α4 + 60α2 − 8)

64ω
5
2

, (C.34)

∂7k1
∂v7

∣∣∣∣
v=0

= 0,
∂7k2
∂v7

∣∣∣∣
v=0

= 0,
∂7k3
∂v7

∣∣∣∣
v=0

= 0,
∂7k4
∂v7

∣∣∣∣
v=0

= 0 (C.35)

∂8k2
∂v8

∣∣∣∣
v=0

= i
∂8k1
∂v8

∣∣∣∣
v=0

,
∂8k3
∂v8

∣∣∣∣
v=0

= −i∂
8k1
∂v8

∣∣∣∣
v=0

,
∂8k4
∂v8

∣∣∣∣
v=0

= −∂
8k1
∂v8

∣∣∣∣
v=0

,

where
∂8k1
∂v8

∣∣∣∣
v=0

= −1575i(209α8 − 616α6 + 616α4 − 224α2 + 16)

256ω
7
2

, (C.36)
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Expressions in Eqs. (C.31)-(C.36) are incorporated into the derivatives of the determinants of Eqs. (A.1)-
(A.6), in order to obtain the Taylor coefficients of the expansion and, subsequently, solve such truncated
polynomials for the flow velocity.

As mentioned in the main manuscript, odd-order derivatives of the determinants are zero for the pinned-
pinned, clamped-clamped, pinned-clamped and free-free cases. As a consequence, it is possible to obtain
algebraic equations for the square of the flow magnitude, v2, up to the 4th truncation order. The solution
for the flow velocity for each truncation order -where the notation An = 1

n!
∂nD
∂vn is used- is given by

• First-order truncation

v2 = −A0

A2
(C.37)

• Second-order truncation

v2 =
−A2 +

√
A2

2 − 4A0A4

2A4
(C.38)

• Third-order truncation

v2 = − A4

3A6
+

(1− i
√

3)(3A2A6 −A2
4)

3(2
2
3 )A6Q

1
3

− 1 + i
√

3

6(2
1
3 )A6

Q
1
3 (C.39)

with

Q =−2A3
4 + 9A2A4A6 − 27A0A

2
6

+

√
4 (3A2A6 −A2

4)3 + (−2A3
4 + 9A2A4A6 − 27A0A2

6)
2

(C.40)

• Fourth-order truncation

v2 =− A6

4A8
+

1

2

√
A2

6

4A2
8

− 2A4

3A8
+R

−1

2

√√√√√ A2
6

2A2
8

− 4A4

3A8
−R+

−A3
6

A3
8

+ 4A4A6

A2
8
− 8A2

A8

4
√

A2
6

4A2
8
− 2A4

3A8
+R

(C.41)

where

R =
2

1
3 (A2

4 − 3A2A6 + 12A0A8)

3A8S
1
3

+
S

1
3

3(2
1
3 )A8

(C.42)

S = 2A3
4 − 9A2A4A6 + 27A0A

2
6 + 27A2

2A8 − 72A0A4A8 + T (C.43)

and T is given by

T 2 =
(
2A3

4 − 9A2A4A6 + 27A0A
2
6 + 27A2

2A8 − 72A0A4A8

)2

−4
(
A2

4 − 3A2A6 + 12A0A8

)3
(C.44)
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TABLE I. Example of the computation of more than one solution for v2 for the algebraic equation obtained with
the 8th truncation order for a pinned-pinned tube. The physical solution is printed in bold characters

Frequency First solution Second solution Third Solution Fourth solution
0.8573 -6.8265 0.25002 2.0434-0.9894i 2.0434+0.9894i
3.8829 -31.8472 0.24999 4.5815-2.5189i 4.5815+2.5189i
8.8889 -66.6262 0.24999 6.8837-3.8981i 6.8837+3.8981i
15.8918 -108.7703 0.24999 9.2119-5.2630i 9.2119+5.2630i

For pinned-free and clamped-free cases, all derivatives are non-zero and therefore, it is only possible to
obtain analytical solutions for v (not for v2) up to 4th truncation order, leading to completely analogous
expressions to Eqs. (C.37)-(C.41), when replacing the left hand side (v2) in Eqs. (C.37)-(C.41) by v and
doing the following replacements in the right side of the equations: A2 → A1, A4 → A2, A6 → A3 and
A8 → A4.

A comparison of the error for each truncation level is shown in Fig. 2. The purpose of this one is to
choose the most suitable expression according to the range of flows and accuracy required in a specific
experiment. In general, for low flow magnitude measurements (about v < 0.1), a first or second order-
truncated expression might be enough, but for intermediate flows (0.1 < v < 0.6) a higher order truncation
might be required.

As stated in the main article, the analytical expressions only depend on the boundary conditions and
not on the number of the vibration mode. The fact that all the different frequencies ωn lead to the same
flow is illustrated in Fig. 3.

For higher truncation orders, the solution of the algebraic equations lead to more than one solution for
v (or v2). However, the choice of the correct solution is not a problem, since the non-physical solutions
lead to complex or non-plausible values. See for example Table I.

D. SIMULATION OF THE TUBE DYNAMICS

In order to simulate the tube dynamics, it is necessary to provide the following information:

• The flow velocity, v.

• The inner and outer tube radii, in order to compute the thickness ratio, α.

• The boundary conditions at the tube edges.

• The vertical displacement and velocity of the tube at a given time (i.e., an initial condition).

When the boundary conditions at the tube edges are known, it is possible to incorporate them in the
general solution (Eq. (10) of the main article). From this, an algebraic system of 4 equations for the
coefficients C1, C2, C3, C4 is obtained. This strategy, in principle, would allow one to obtain the values of
all the coefficients. However, the system of equations produced by the boundary conditions is homogeneous
and, therefore, it leads to the trivial solution C1 = C2 = C3 = C4 = 0. In order to obtain a non-trivial
solution, it is necessary that the determinant of the matrix of coefficients of the system vanishes (Eq. (17) of
the main article). This in turn causes one of the 4 equations for the coefficients, to be a linear combination
of the other three, which leaves one of the coefficients as a free parameter, for instance C1, and the others
coefficients as functions of this one.

When the fluid velocity and thickness ratio are known, it is possible to incorporate them into Eq. (17)
of the main article. Such equation turns out to be an algebraic equation for the frequency, ω. Moreover,
the solution of Eq. (17) leads to an infinite set of discretized values of ω, denoted by ωn, where n is an
integer number. Because of the complexity of this equation, the solution, in general, is given via numerical
methods to solve algebraic equations. For the purpose of this work, the Newton-Raphson method was
used within Wolfram Mathematica utilities.

Each one of the discretized frequencies, ωn, is related to a given vibration mode. Therefore, when all
the vibration modes are known, it is possible to express any solution of the tube dynamics as a linear
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FIG. 2. Comparison between approximated analytical expressions and the exact numerical relation for flow and
frequency. As expected, incorporation of more terms in the Taylor expansion leads to an increase in the accuracy
and flow range of applicability of the analytical expressions. However, in the pinned-free and clamped-free cases,
there is an alternating degree of precision with the order of truncation of the Taylor expansion. This is not an
issue for the purpose of this treatment, since all the analytical expressions approximate very well the exact results
obtained by numerical means. A typical value of the thickness ratio α = 0.6 is used in the calculations.

combination of all the vibration modes. The coefficients of such combination are given by the initial
conditions of the tube. This constitutes the general outline of the simulation of the tube dynamics.

A possible solution, considering C1 as a the free parameter, is given below for the different sets of
boundary conditions. It is necessary to recall that k1, k2, k3 and k4 are given by the Eq. (11) of the main
article, and depend on ωn.

• Pinned-pinned

C2 = −C1

(
eik3 − eik4

) (
k21 − k24

)
−
(
eik1 − eik4

) (
k23 − k24

)

(eik3 − eik4) (k22 − k24)− (eik2 − eik4) (k23 − k24)
(D.1)
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FIG. 3. Comparison between the analytical expression of the 8th truncation order and the exact numerical relation
for flow and frequency. Two messages are to be taken from this figure. First, a single analytical expression is
capable to approximate for the flow/frequency relation for each of the vibration modes. Second, the range in which
the analytical solution is valid is wider for high-order vibration modes.

C3 = C1

eik4
(
k22 − k21

)
+ eik2

(
k21 − k24

)
+ eik1

(
k24 − k22

)

eik4 (k23 − k22) + eik3 (k22 − k24) + eik2 (k24 − k23)
(D.2)

C4 = C1

eik3
(
k22 − k21

)
+ eik2

(
k21 − k23

)
+ eik1

(
k23 − k22

)

eik4 (k22 − k23) + eik2 (k23 − k24) + eik3 (k24 − k22)
(D.3)

• Clamped-clamped

C2 = C1
eik4 (k3 − k1) + eik3 (k1 − k4) + eik1 (k4 − k3)

eik4 (k2 − k3) + eik2 (k3 − k4) + eik3 (k4 − k2)
(D.4)

C3 = C1
eik4 (k2 − k1) + eik2 (k1 − k4) + eik1 (k4 − k2)

eik4 (k3 − k2) + eik3 (k2 − k4) + eik2 (k4 − k3)
(D.5)

C4 = C1
eik3 (k2 − k1) + eik2 (k1 − k3) + eik1 (k3 − k2)

eik4 (k2 − k3) + eik2 (k3 − k4) + eik3 (k4 − k2)
(D.6)

• Pinned-clamped

C2 = −C1

(
eik3 − eik4

) (
k21 − k24

)
−
(
eik1 − eik4

) (
k23 − k24

)

(eik3 − eik4) (k22 − k24)− (eik2 − eik4) (k23 − k24)
(D.7)
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C3 = C1

eik4
(
k22 − k21

)
+ eik2

(
k21 − k24

)
+ eik1

(
k24 − k22

)

eik4 (k23 − k22) + eik3 (k22 − k24) + eik2 (k24 − k23)
(D.8)

C4 = C1

eik3
(
k22 − k21

)
+ eik2

(
k21 − k23

)
+ eik1

(
k23 − k22

)

eik4 (k22 − k23) + eik2 (k23 − k24) + eik3 (k24 − k22)
(D.9)

• Free-free

C2 = C1
k21
k22

eik4 (k3 − k1) + eik3 (k1 − k4) + eik1 (k4 − k3)

eik4 (k2 − k3) + eik2 (k3 − k4) + eik3 (k4 − k2)
(D.10)

C3 = C1
k21
k23

eik4 (k2 − k1) + eik2 (k1 − k4) + eik1 (k4 − k2)

eik4 (k3 − k2) + eik3 (k2 − k4) + eik2 (k4 − k3)
(D.11)

C4 = C1
k21
k24

eik3 (k2 − k1) + eik2 (k1 − k3) + eik1 (k3 − k2)

eik4 (k2 − k3) + eik2 (k3 − k4) + eik3 (k4 − k2)
(D.12)

• Pinned-free

C2 = C1

eik4k24
(
k21 − k23

)
+ eik3k23

(
k24 − k21

)
+ eik1k21

(
k23 − k24

)

eik4k24 (k23 − k22) + eik3k23 (k22 − k24) + eik2k22 (k24 − k23)
(D.13)

C3 = C1

eik4k24
(
k21 − k22

)
+ eik2k22

(
k24 − k21

)
+ eik1k21

(
k22 − k24

)

eik4k24 (k22 − k23) + eik3k23 (k24 − k22) + eik2k22 (k23 − k24)
(D.14)

C4 = C1

eik3k23
(
k21 − k22

)
+ eik2k22

(
k23 − k21

)
+ eik1k21

(
k22 − k23

)

eik4k24 (k23 − k22) + eik3k23 (k22 − k23) + eik2k22 (k24 − k23)
(D.15)

• Clamped-free

C2 = C1
eik3k23 (k1 − k4) + eik1k21 (k4 − k3) + eik4k24 (k3 − k1)

eik3k23 (k4 − k2) + eik2k22 (k3 − k4) + eik4k24 (k2 − k3)
(D.16)

C3 = C1
eik2k22 (k1 − k4) + eik1k21 (k4 − k2) + eik4k24 (k2 − k1)

eik3k23 (k2 − k4) + eik2k22 (k4 − k3) + eik4k24 (k3 − k2)
(D.17)

C4 = C1
eik2k22 (k1 − k3) + eik1k21 (k3 − k2) + eik3k23 (k2 − k1)

eik3k23 (k4 − k2) + eik2k22 (k3 − k4) + eik4k24 (k2 − k3)
(D.18)

The expressions for the coefficients C1, C2, C3 and C4 from Eqs. (D.1)-(D.18) are incorporated into the
general solution (Eq. (10) of the main article), to give each of the vibration modes as follows:

φn ≡ ûn(z, ωn) = C1e
ik1(ωn)z + C2(ωn)eik2(ωn)z + C3(ωn)eik3(ωn)z + C4(ωn)eik4(ωn)z (D.19)
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these ones are denoted by φn, and are normalized for the sake of simplicity in the rest of analytical and
numerical treatment -this is possible by an adequate choice of the value of C1-. Each φn is associated with
an ωn and, in general, are complex functions in the frequency domain.

For didactic purposes, it is worth pointing out that for simple models of elastic materials, such as an
elastic string, each normal mode is given by simple expressions like sin(nπz) or cos(nπz). However, the
vibration modes for a tube conveying fluid, φn, are not expressed in such simple terms because of the
symmetry breaking produced by the flow direction of the fluid inside the elastic tube.

Eq. (D.19) is only valid for the discretized values of ωn. In order to do the inverse Fourier transform, it
is necessary to extend ûn to a continuous domain in ω. This leads to the following expression:

ûn(z, ω) = φn(z, ω)δ(ω − ωn) , (D.20)

which in time domain is:

un(z, t) = φn(z, ωn)e−iωnt . (D.21)

A general solution in time domain is a linear combination of all the normal modes satisfying the given
set of boundary conditions,

u(z, t) =
∞∑

n=−∞
Anφn(z, ωn)e−iωnt . (D.22)

Since the equation of the tube motion is a second order differential equation in time, two conditions in
time are required. In most of experimental situations, it is possible to establish these conditions as the
initial position and velocity of the tube. These conditions are expressed as:

u

∣∣∣∣
t=0

= g(z) (D.23)

∂u

∂t

∣∣∣∣
t=0

= h(z) (D.24)

where g(z) corresponds to the position profile and h(z) to the velocity profile of the tube at t = 0.
Substituting (D.23) and (D.24) into Eq. (D.22), gives the following expressions for g(z) and h(z) in

terms of the normal modes:

g(z) =
∞∑

n=−∞
Anφn(z, ωn) (D.25)

h(z) = −i
∞∑

n=−∞
ωnAnφn(z, ωn) . (D.26)

The coefficients An should be found in order to satisfy (D.25) and (D.26). However, this is not a
straightforward procedure, because this set of functions is complete but not orthogonal.

In order to overcome this difficulty and obtain the target values An, it is necessary to express the
functions g(z), h(z) and φn in terms of an orthogonal set of functions. The choice made in our treatment
is the set {sin(nπz)}, where n is a positive integer number. By considering this, Eqs. (D.25) and (D.26)
are rewritten as:

∞∑

m=1

gm sin(mπz) =

∞∑

n=−∞
An

∞∑

m=1

αn,m sin(mπz) (D.27)

∞∑

m=1

hm sin(mπz) = −i
∞∑

n=−∞
ωnAn

∞∑

m=1

αn,m sin(mπz) (D.28)
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where the coefficients of each Fourier series are given by

gm = 2

∫ z=1

z=0

g(z) sin(mπz) dz (D.29)

hm = 2

∫ z=1

z=0

h(z) sin(mπz) dz (D.30)

αn,m = 2

∫ z=1

z=0

φn(z, ωn) sin(mπz) dz (D.31)

The coefficients gm, hm and αn,m can be computed from the initial condition and the normal vibration
modes φn. Therefore, the only unknown quantities in equations (D.27) and (D.28) are the coefficients An.
These ones are compute by the following procedure. First, Eqs. (D.27) and (D.28) are rearranged in the
following form:

∞∑

m=1

(
gm −

∞∑

n=−∞
Anαn,m

)
sin(mπz) = 0 (D.32)

∞∑

m=1

(
hm + i

∞∑

n=−∞
ωnAnαn,m

)
sin(mπz) = 0 (D.33)

Each coefficient of the Fourier series in Eqs. (D.32) and (D.33) must vanish, leading to the following
system of algebraic equations for An:

gm =

∞∑

n=−∞
Anαn,m, m = 1, 2, 3, ... (D.34)

hm = −i
∞∑

n=−∞
ωnAnαn,m, m = 1, 2, 3, ... (D.35)

For a numerical simulation, it is necessary to truncate the series in Eqs. (D.34) and (D.35) up to an
Nmax term, leading to the following expression:

gm =

Nmax∑

n=−Nmax

Anαn,m, for m = 1, 2, ..., Nmax (D.36)

hm = −i
Nmax∑

n=−Nmax

ωnAnαn,m, for m = 1, 2, ..., Nmax (D.37)

Such truncation implies that the infinite set of linear algebraic equations has been truncated to a linear
algebraic system with 2Nmax algebraic equations. In order to obtain a consistent system of equations
with a unique solution, it is necessary to also truncate the values of m up to Nmax. By solving the
2Nmax×2Nmax system of linear algebraic equations, the coefficients An are obtained and are incorporated
into the particular solution given in Eq. (D.22), which in turn contains all the information to simulate the
tube dynamics.
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