

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

POSGRADO EN CIENCIAS DE LA TIERRA CENTRO DE GEOCIENCIAS

Límite de provincias paleoproterozoicas Yavapai y Mazatzal en el noroeste de Sonora y suroeste de Arizona: Estudios de U-Pb y Hf en zircones de rocas proterozoicas y laramídicas

TESIS

QUE PARA OPTAR POR EL GRADO DE:

MAESTRO EN CIENCIAS DE LA TIERRA

PRESENTA: WALTER VLADIMIR REATEGUI PALOMINO

DIRECTOR DE TESIS

DR. ALEXANDER IRIONDO PERRÉE CENTRO DE GEOCIENCIAS - UNAM

MIEMBROS DEL COMITÉ TUTOR

DR. ROBERTO MALDONADO VILLANUEVA CENTRO DE GEOCIENCIAS – UNAM DR. LUIGI SOLARI CENTRO DE GEOCIENCIAS – UNAM DR. PETER SCHAAF INSTITUTO DE GEOFÍSICA – UNAM DR. MARTÍN VALENCIA ESTACIÓN REGIONAL DEL NOROESTE – UNAM

QUERÉTARO, MÉXICO

ENERO 2020

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

DECLARATORIA DE ETICA

Declaro conocer el Código de Ética de la Universidad Nacional Autónoma de México, plasmado en la Legislación Universitaria. Con ba se en las de finiciones de integridad y hone stidad a hí especificadas, aseguro mediante mi firma al calce que el presente es original y enteramente de mi autoría. Todas las citas de, o referencias a la obra de otros autores aparecen debida y adecuadamente señaladas, así como acreditadas mediante los recursos editoriales convencionales.

60166

AGRADECIMIENTOS

Estoy profundamente agradecido a l C entro d e Geociencias d e l a U niversidad N acional Autónoma de México por abrirme sus puertas y darme la oportunidad de crecer profesionalmente y como persona, brindándome experiencias increíbles.

Un agradecimiento importante al Consejo Nacional de Ciencia y Tecnología (CONACYT) por la beca otorgada durante año y medio de maestría y a las instituciones que otorgaron el proyecto de investigación PAPIIT/UNAM (IN-1117118/bajo la dirección de A. Iriondo).

Quiero agradecer a mi asesor de tesis, el Dr. Alexander Iriondo Perrée, por depositar su confianza e n mí, pe rmitiéndome formar parte de su proyecto y g rupo de investigación y por r asesorarme y ayudarme a concluir este trabajo. Al Dr. Carlos González León por ser parte de mi comité tutor. También agradezco el apoyo en campo al Dr. Aldo Izaguirre, Dr. Dan Mijgins, Dr. Francisco Paz, Marta Gallegos y a los MScs. Anaid Fragoso y Harim Arvizu. Un agradecimiento a Eric Alegría por permitir quedarnos en su casa por algunos días en el pueblo de Ajo.

Es importante agradecer a las personas que laboran en los parques del suroeste de Arizona y en especial al Dr. Abigail Rosenberg (Barry M. Goldwater Air Force Range), al Sr. Sid Slone y a la Sra. Mary Kralovec (Cabeza Prieta National Wildlife Refuge) y al Dr. Tim Tibbitts (Organ Pipe Cactus National Monument) que nos apoyaron con los permisos para ingresar a los parques y obtener las muestras para este estudio. También un agradecimiento al Ing. Federico Godínez Leal por el permiso otorgado para el ingreso y muestreo en la Reserva de la Biosfera El Pinacate y Gran Desierto de Altar.

Agradezco al Dr. Eduardo González Partida por todo el apoyo brindado para el desarrollo de los análisis de mis muestras y por la confianza depositada en mí para ser parte de su grupo de trabajo.

Le estoy muy agradecido al Dr. Carlos Ortega Obregón por la paciencia y la orientación a la hora de trabajar en el Laboratorio de Estudios Isotópicos (LEI) durante los fechamientos U-Pb y los estudios isotópicos de Hf. Muchas gracias mi buen!! También agradezco al Sr. Juan Vázquez Ramírez y al Sr. Oscar Aguilar Moreno por todas las láminas que prepararon para mi tesis y también por el apoyo a la hora de hacer los cortes de las probetas.

Mil gracias a m i compañera del equipo de investigación Brighith Fonseca por todas las discusiones y orientaciones acerca de este trabajo.

Gracias a 1 Dr. U we M artens que m e abrió el verdadero panorama en 1 a realización d e proyectos de tesis y artículos científicos durante el nutritivo taller de redacción técnica.

Infinitas gracias a mi familia, a mi madre, mi hermana, mis sobrinos y a mi padre, que todos a la distancia, siempre estuvieron al pendiente de mi desarrollo personal y profesional.

Estoy e normemente a gradecido a mi futura e sposa Ana Karen H ernández y a toda su espectacular familia, que me han hecho sentir parte de su familia y siempre me apoyaron en todos mis proyectos.

Quiero ex presar m i más si ncero ag radecimiento a t odos mis compañeros de l C entro de Geociencias, que desde un principio, me extendieron la mano, compartimos buenos momentos y nos apoyamos en tiempos complicados.

Aprovecho estas líneas para agradecer eternamente a mis profesores, amigos y en especial a mi tutor Franco Urbani de la Universidad Central de Venezuela, que me formaron tanto como ingeniero, geólogo y como profesional muy ético siempre. Mil gracias!

ÍNDICE	Pág.
Resumen	1
Abstract	3
Capítulo 1. Introducción	5
Capítulo 2. Antecedentes geológicos, geoquímicos e isotópicos de rocas paleoproterozoicas, mesoproterozoicas y cretácicas del suroeste de Estados Unidos de América (EUA) y noroeste de México	8
2.1 Provincias corticales paleoproterozoicas	8
2.1.1 Provincia Mojave	10
2.1.2 Provincia Yavapai	13
2.1.3 Provincia Mazatzal	16
2.2 Magmatismo Mesoproterozoico	19
2.3 Rocas laramídicas (batolito Gunnery Range)	20
Capítulo 3. Técnicas analíticas	23
3.1 Preparación de muestras, separación y caracterización de zircones	24
3.2 Caracterización de zircones por medio de imágenes de catodoluminiscencia para análisis geocronológico U-Pb	26
3.3 Geocronología U-Ph en zircones por LA-ICPMS	27
3.4 Método analítico Lu-Hf en zircones por LA-MC-ICPMS	28
Capítulo 4. Resultados petrográficos	32
4.1 Gneis granítico de biotita rico en cuarzo	33
4.2 Gneis granítico feldespático microclínico de biotita	34
4.3 Gneises monzograníticos	35
4.4 Gneises sienograníticos	37
4.5 Gneises tonalíticos	37
4.6 Monzogranitos	37
4.7 Pegmatita granítica feldespática de microclino	41
4.8 Sienogranitos	41
4.9 Tonalita de dos micas	41
Capítulo 5. Resultados geocronológicos U-Pb en zircón	44
5.1 Resultados de geocronología U-Pb de rocas paleo y	44
mesoproterozoicas	
5.1.1 Gneis monzogranítico melanocrático de biotita (QTB-3)	46
5.1.2 Sienogranito de dos micas (ADN-01)	49
5.1.3 Gneis monzogranítico de dos micas (Gila-01)	50
5.1.4 Gneis sienogranítico de biotita (Espanto-2)	51
5.1.5 Gneis sienogranítico de biotita (Welton-E)	53
5.1.6 Gneis sienogranítico melanocrático de dos micas (McDonalds)	55

5.2 Resultados de geocronología U-Pb de rocas laramídicas	57
5.2.1 Monzogranito leucocrático de biotita (Drifthills)	58
5.2.2 Gneis tonalítico anfibolítico de dos micas (Mohawk-1)	62
5.2.3 Sienogranito leucocrático de dos micas (SR-3)	64
5.2.4 Sienogranito leucocrático de dos micas (Pinta)	67
Capítulo 6. Estudios isotópicos de Lu-Hf en zircones	70
6.1 Resultados isotópicos de Hf en zircones de rocas proterozoicas	70
6.2 Resultados isotópicos de Hf en zircones de rocas laramídicas	79
Capítulo 7. Discusión de resultados	89
7.1 Características petrográficas	89
7.2 Geocronología U-Pb en zircones de rocas proterozoicas	89
7.3 Geocronología U-Pb en zircones de rocas laramídicas	90
7.4 Límite entre provincias paleoproterozoicas Mazatzal y Yavapai	91
7.5 Rocas laramídicas y sus núcleos heredados. Asimilaciones	92
corticales asociadas a dominios paleoproterozoicos	
7.6 Comparación de datos isotópicos de Hf en zircones de rocas paleo y	93
mesoproterozoicas de trabajos previos en el noroeste de Sonora	
7.7 Propuesta de límite, sutura o zona de debilidad entre los dominios	95
Mazatzal y Yavapai al noroeste de Sonora y suroeste de Arizona	
Capítulo 8. Conclusiones	99
Referencias	101
Apéndices	
Apéndice A. Geocronología U-Pb de rocas proterozoicas	113
Tabla A.1 Datos analíticos U-Th-Pb obtenidos por LA-ICPMS en	114
zircones de granitoides proterozoicos del SW de Arizona, USA	
A.2 Descripción de zircones de rocas proterozoicas	126
A.2.1 Gneis sienogranítico de biotita (Wilton-02)	126
A.2.2 Gneis granítico de biotita rico en cuarzo (Ajo-2)	128
A.2.3 Gneis tonalítico (Cooper)	131
A.2.4 Gneis tonalítico de biotita (14-1/2)	132
A.2.5 Gneis sienogranítico de biotita (QTB-6)	134
A.2.6 Gneis sienogranítico de biotita (Pilotknob)	136
A.2.7 Sienogranito leucocrático de dos micas (Aztec-02)	138
A.2.8 Gneis sienogranítico de biotita (Cabeza-11)	140
A.2.9 Gneis sienogranítico de biotita (Telegraph)	143
A.2.10 Sienogranito leucocrático de biotita (Ajo-4)	144
A.2.11 Gneis monzogranítico de biotita (Ajo-3)	146

A.2.12 Gneis monzogranítico de biotita (Cabeza-9)147A.2.13 Gneis granítico feldespático microclínico de biotita (Chpass-149

A.2.14 Gneis sienogranitico de biotita (Lewis-01)	151
A.3 Mosaicos de imágenes de catodoluminiscencia de zircones de rocas	154
proterozoicas	
Apéndice B. Geocronología U-Pb de rocas laramídicas	159
Tabla B.1 Datos analíticos U-Th-Pb obtenidos por LA-ICPMS en	160
zircones de granitoides laramídicos del NW de Sonora, México y del	
SW de Arizona, USA	
B.2 Descripción de muestras laramídicas	172
B.2.1 Tonalita de dos micas (Chop-3)	172
B.2.2 Gneis tonalítico de dos micas (Cucapah-1)	174
B.2.3 Sienogranito de biotita (Choya)	176
B.2.4 Monzogranito de biotita (QTB-1)	178
B.2.5 Sienogranito leucocrático de dos micas (SR-7)	181
B.2.6 Monzogranito de biotita (Bettylee)	184
B.2.7 Monzogranito leucocrático de biotita (Gila-2)	187
B.2.8 Monzogranito de dos micas (Mohawk-3)	190
B.2.9 Monzogranito leucocrático de dos micas (Tinajas-1)	193
B.2.10 Monzogranito de dos micas (Tinajas)	196
B.2.11 Pegmatita granítica feldespática de microclina (Tinajas-2)	199
B.2.12 Monzogranito de dos micas (Tinajas-4)	201
B.3 Mosaicos de imágenes de catodoluminiscencia de zircones de rocas	204
laramídicas	
Anéndice C. Estudios isotónicos de Lu-Hf en zircones	208

Apenaice C. Estudios isolopicos de La-11j en zircones	200
Tabla C.1 Datos isotópicos de Lu-Hf obtenidos por LA-MC-ICPMS en	209
zircones de granitoides proterozoicos del SW de Arizona y NW de Sonora	
Tabla C.2 Datos isotópicos de Lu-Hf obtenidos por LA-MC-ICPMS en	215
zircones de granitoides laramídicos del SW de Arizona y NW de Sonora	

Resumen

El basamento del suroeste de Arizona en Estados Unidos de América y noroeste de Sonora en Méx ico está ca racterizado p or rocas p roterozoicas (gneises en s u mayoría), figurando l a distribución te ntativa d e la s p rovincias p aleoproterozoicas del su roeste d e L aurencia (Mojave, Yavapai y Mazatzal), definidas por trabajos previos de isótopos de Nd en roca total y en últimos años por medio de isótopos de Lu-Hf en zircones. Dichas rocas proterozoicas colindan con rocas más j óvenes cretácicas (batolito G unnery Range), l levando c onsigo a sociaciones i sotópicas proterozoicas. Para este estudio se midieron las composiciones isotópicas de Lu-Hf en zircones de rocas graníticas de edades paleo y mesoproterozoicas, y también en zircones de rocas graníticas laramídicas, que poseen núcleos heredados proterozoicos, con el fin de obtener rangos cuantitativos de valores de ¹⁷⁶Hf/¹⁷⁷Hf, ɛHf_(t) y edades modelo a dos pasos (T_{DM2}^C). Este esfuerzo enfocado en las r ocas g raníticas p roterozoicas pretende i dentificar pr ovincias o do minios de l ba samento paleoproterozoico y para los zircones con edades de cristalización laramídicas, establecer rangos en mezclas de magmas derivados de la fusión de diversas fuentes corticales (Mojave, Yavapai o Mazatzal) que originaron a los granitoides laramídicos en conjunto con sus núcleos he redados proterozoicos.

Las rocas p roterozoicas fueron i nicialmente f echadas m ediante U -Pb en z ircones, obteniendo rangos de edades paleoproterozoicas que van de 1733 Ma a 1636 M a y ot ras dos muestras con edades mesoproterozoicas (~1.4 Ga). Estas edades de cristalización fueron utilizadas para calcular los valores de ¹⁷⁶Hf/¹⁷⁷Hf, ϵ Hf_(t) y promedios de las edades modelo T_{DM2}^C. En las relaciones isotópicas de Hf se observó un conjunto de datos relativamente agrupados en un rango de ¹⁷⁶Hf/¹⁷⁷Hf que va de 0.281912 a 0.281981, con valores de ϵ Hf_(t) que van de +9 a +5 y edades modelo T_{DM2}^C con un rango de ~1.8 a ~2.1 Ga, interpretándose como una corteza de componentes magmáticos empobrecidos que se asocian al dominio tipo Mazatzal. Por otra parte, se obtuvieron otro conjunto de datos relativamente dispersos, con relaciones ¹⁷⁶Hf/¹⁷⁷Hf que van de 0.281672 a 0.281830, con valores de ϵ Hf_(t) que van de 0 a +3 y edades modelo T_{DM2}^C con un rango de ~2.2 a 2.4 Ga, interpretándose como una corteza de componentes magmáticos menos empobrecidos que se asocian al dominio tipo T_{DM2}^C con un rango de ~2.2 a

Las rocas laramídicas presentan un rango de edades de cristalización U-Pb que van desde 96 Ma a 64 Ma, un rango de edades de núcleos heredados paleoproterozoicos que van de 1637 Ma a 1750 Ma y algunos núcleos heredados con edades mesoproterozoicas de 1493 Ma y 1444 Ma. Las edades de cristalización de las rocas laramídicas y las edades de los núcleos heredados fueron utilizadas para calcular los valores de 176 Hf/ 177 Hf, ϵ Hf_(t) y promedios de las edades modelo T_{DM2}^C. Los valores de 176 Hf/ 177 Hf y ϵ Hf_(t) de tres rocas laramídicas corresponden a la asimilación de una corteza poco evolucionada (no Mojave), y que, además, no presentan núcleos heredados. El resto de los zircones laramídicos poseen valores isotópicos de Hf más evolucionados, correspondiendo al rango de evolución del dominio tipo Mazatzal y siendo interpretados como resultado de una posible asimilación de una corteza paleoproterozoica de características isotópicas tipo Mazatzal. Por o tra p arte, se lograron cal cular medias p onderadas en los v alores de ϵ Hf_(t) de los núc leos heredados d e t res m uestras, s iendo est os d atos est adísticamente r epresentativos co mo p ara incluirlos de ntro del rango de evolución del dominio.

Estas variaciones en los valores de ¹⁷⁶Hf/¹⁷⁷Hf, ϵ Hf_(t) y edades modelo T_{DM2}^C, sugieren la fusión de dos diferentes fuentes corticales que originaron estas rocas proterozoicas; por un lado, una f uente cortical m ás p rimitiva (Mazatzal) y , por ot ra, una f uente m oderadamente más evolucionada (menos e mpobrecida que e l do minio Mazat zal) (Yavapai). En el caso d e l os granitoides la ramídicos, los va lores isotópicos sugieren la f usión de dos di ferentes f uentes corticales, una pr oducto de una a similación de una corteza poco evolucionada y ot ra correspondiendo a v alores d e m ezcla d e u na f uente d e corteza algo m ás evolucionada c on asimilación cortical del dominio tipo Mazatzal, sumando el antecedente de que estos zircones de rocas laramídicas tienen núcleos heredados paleoproterozoicos con valores de ¹⁷⁶Hf/¹⁷⁷Hf, ϵ Hf_(t) y T_{DM2}^C también correspondientes al dominio tipo Mazatzal.

Abstract

The b asement of so uthwest A rizona in the U nited S tates of A merica and n orthwest of Sonora in Mexico is characterized by Proterozoic rocks (mostly gneisses), including the tentative distribution of t he pa leoproterozoic pr ovinces of s outhwest Laurencia (Mojave, Yavapai an d Mazatzal), defined by whole rock Nd isotopes and in recent years by means of Lu-Hf isotopes in zircons. These Proterozoic rocks adjoin on younger Cretaceous rocks (Gunnery Range batolith), carrying with them protothozoic isotopic associations. For this study, the isotopic compositions of Lu-Hf were measured in zi rcons of g ranitic rocks of P aleo and Meso proterozoic ages, and in zircons of laramide granitic rocks, which possess Proterozoic inherited cores, in order to obtain quantitative r anges of 176 Hf/¹⁷⁷Hf, ϵ Hf_(t) and t wo-step m odel ag es (T_{DM2}^C) values. This effort focused on P roterozoic gr anitic rocks i s i ntended t o i dentify pr ovinces or dom ains of t he Paleoproterozoic basement and f or zircon g rains with L aramide crystallization ag es, est ablish ranges in mixtures of magmas derived from the fusion of various cortical sources (Mojave, Yavapai or Mazatzal) that originated Laramide granitoids in conjunction with their inherited Proterozoic cores.

The Proterozoic rocks were initially dated by U-Pb in zircons, obtaining paleoproterozoic ages ranging from 1733 Ma to 1636 Ma and two other samples with Mesoproterozoic ages (~ 1.4 Ga). These crystallization ages were used to calculate the values of 176 Hf/ 177 Hf, ϵ Hf(t) and T_{DM2}^C model age averages. In the isotopic relationships of Hf, a relatively grouped data set was observed in ranging from 0.281912 to 0.281981, with values of ϵ Hf(t) ranging from +9 to +5 and T_{DM2}^C model age with a range from ~ 1.8 to ~ 2.1 Ga, being interpreted as a crust of impoverished magmatic components that a re a ssociated with the Mazat zal domain. On the other hand, a nother s et o f relatively dispersed data was obtained, with 176 Hf/ 177 Hf ratios ranging from 0.281672 to 0.281830, with values of ϵ Hf(t) ranging from 0 to +3 and T_{DM2}^C model age with a range of ~ 2.2 to 2.4 Ga, being interpreted as a crust of less impoverished magmatic components that are associated with the Mazat Zal domain.

Laramide rocks have a U-Pb crystallization ages ranging from 96 Ma to 64 Ma, an ages of inherited Paleoproterozoic cores ranging from 1637 Ma to 1750 Ma and some inherited cores with Mesoproterozoic ages of 1493 Ma and 1444 Ma. The ages of crystallization of the Laramide rocks and the ages of the inherited cores were used to calculate the values of 176 Hf/ 177 Hf, ϵ Hf_(t) and T_{DM2}^C model age averages. The values of 176 Hf/ 177 Hf and ϵ Hf_(t) of three Laramide rocks correspond to the assimilation of a poorly evolved crust (not Mojave), and which also do not have inherited cores.

The rest of the Laramide zircons have more evolved isotopic Hf values, corresponding to the range of evolution of the Mazatzal type domain and being interpreted as a result of a possible assimilation of a Paleoproterozoic crust of Mazatzal isotopic characteristics. On the other hand, we were able to calculate weighted averages in the values of ϵ Hf_(t) of the inherited cores of three samples, these data being statistically representative to include them within the evolution range of the Mazatzal domain, managing to increase the range of evolution of Hf for that domain.

These v ariations in the values of 176 Hf/ 177 Hf, ϵ Hf_(t) and T_{DM2}^C model a ge, s uggest the melting of two different cortical sources that originated these Proterozoic rocks; on the one hand, a more primitive crustal source (Mazatzal) and, on the other, a moderately more evolved source (less im poverished t han the Ma zatzal d omain) (Yavapai). In the case of L aramide granitoids, isotopic values suggest the melting of two different crustal sources, a product of an assimilation of a poorly evolved crust and another, corresponding to mixing values of a somewhat more evolved crust source with crustal assimilation of the domain Mazatzal, adding the antecedent that these zircons of Laramide rocks have inherited Paleoproterozoic cores with values of 176 Hf/ 177 Hf, ϵ Hf_(t) and T_{DM2}^C also corresponding to the Mazatzal domain.

Capítulo 1. Introducción

El margen de l s uroeste de L aurencia, f ormado por r ifting c ontinental dur ante e l Neoproterozoico-Paleozoico temprano, es lógicamente uno de los márgenes más importantes en las reconstrucciones de Rodinia por considerarse Laurencia la parte central del supercontinente Rodinia. C ualquier e sfuerzo p ara r econstruir e ste m argen SW d e L aurencia r equiere d e u na caracterización p recisa de la naturaleza y t iempo d e v ulcanismo, p lutonismo, metamorfismo y deformación de las rocas proterozoicas de esta región. Esto es precisamente lo que se ha estado realizando en la geología del suroeste de Estados Unidos de América y noroeste de México.

El suroeste de los Estados Unidos de América (EUA) ha sido objeto de numerosos estudios del ba samento, que han p ermitido c aracterizar y p roponer d iversas d ivisiones d e las rocas paleoproterozoicas en el margen continental del suroeste de Laurencia en tres diferentes provincias: Mojave, Yavapai y Mazatzal, que han sido definidas principalmente por estudios geocronológicos, geoquímicos e isotópicos (Sm-Nd y L u-Hf) (Zartman, 1974; Condie, 1981; Bennet y D ePaolo, 1987; Rämö y Calzia, 1998; Wooden y Dewitt, 1991; Eisele e Isachsen, 2001; Rämö et al., 2003; Wooden et al., 2012; Holland et al., 2015; Mako et al., 2015; Chapman et al., 2018). El modelo tectónico clásico del crecimiento del margen suroeste de Laurencia durante el Proterozoico es el de la amalgama de arco de islas, que defienden Whitmeyer y Karlstrom (2007), entre otros, y lo asemejan a lo que sucede hoy en día en las Aleutianas o en las islas de Indonesia. Este modelo considera a Mojavia como un microcontinente cuyo origen pudo remontarse al Arcaico y que se encontraba a una distancia indefinida del núcleo cratónico antiguo de Norteamérica. Un complejo de arco de islas, que conformaría la provincia Yavapai, colisionó contra Mojavia hace ~ 1.7 Ga (orogenia Y avapai, t ambién l lamada I vanpah en C alifornia). N o se co noce co n cl aridad si primeramente Mojavia colisionó de forma independiente contra el cratón de Wyoming y luego lo hizo Y avapai, o s i por el c ontrario pr imero oc urrió la a malgama de a mbas provincias y posteriormente la anexión a Laurencia. De cualquier forma, tras Yavapai llegó otro complejo de arco de islas, Mazatzal, y también se acrecionó al margen suroeste de Laurencia (1.65–1.60 Ga; orogenia Mazatzal).

Al noroeste de México también diversos trabajos han permitido establecer una hipótesis sobre la distribución de las provincias paleoproterozoicas y su relación con las provincias existentes en el suroeste de EUA, enfocándose principalmente en gneises, gabros y granitoides foliados de edad Paleoproterozoica (~1.7 Ga), intrusionados por granitos de ~1.4 Ga y ~1.1 Ga (Valenzuela-Navarro *et al.*, 2003; Iriondo *et al.*, 2003; Castiñeiras *et al.*, 2004 y 2006; Iriondo *et al.*, 2004;

Farmer *et* al., 2005; Nourse *et al.*, 2005; Soto-Verdugo, 2006; Gutiérrez-Coronado *et al.*, 2008; Arvizu *et al.*, 2009; Amato *et al.*, 2009; Izaguirre, 2009; Iriondo y P remo, 2011; Iriondo *et al.*, 2013; Solari *et al.*, 2018). En la zona fronteriza entre EUA y México, al suroeste de Arizona, existen una diversidad de afloramientos proterozoicos, en forma de sierras alargadas en dirección NW-NE (Figura 1), que aún no han sido estudiados y son de importancia para reconstrucción y continuación de los basamentos paleoproterozoicos mencionados anteriormente, así como también, las rocas graníticas más jóvenes que colindan geológicamente con las rocas graníticas proterozoicas, con la finalidad d e encontrar posibles r elaciones isotópicas en tre am bos cu erpos r ocosos. Los afloramientos de rocas proterozoicas están siendo intruidas por rocas ígneas graníticas cretácicas (batolito G unnery R ange) (Shafiqullah *et al.*, 1980; Nourse *et al.*, 2005; Valencia-Moreno y Ortega-Rivera, 2011).

El objetivo de este trabajo, en primer lugar, es realizar la evaluación e integración de los análisis geocronológicos U-Pb y e studios isotópicos de Lu-Hf en zi rcones de rocas graníticas proterozoicas, con el fin de diferenciar basamentos paleoproterozoicos al suroeste de Arizona y noroeste de Sonora. En segundo lugar, se estudiarán las rocas cretácicas con el fin de establecer una d iferenciación d e f uentes litosféricas y p oder r elacionarlas co n los b asamentos paleoproterozoicos, como una herramienta en los nuevos estudios isotópicos de Hf en rocas más jóvenes.

Figura 1. Mapa litológico regional del noroeste de Sonora y suroeste de Arizona con las muestras usadas para este estudio. Tomado y modificado de Iriondo *et al.* (2005).

Capítulo 2. Marco geológico, geoquímico e isotópico de las rocas paleoproterozoicas, mesoproterozoicas y cretácicas del suroeste de Estados Unidos de América (EUA) y noroeste de México

2.1 Provincias corticales paleoproterozoicas

El basamento de la porción suroeste de Estados Unidos de América se construyó mediante la adición progresiva de una serie de arcos volcánicos y terrenos oceánicos predominantemente empobrecidos, ensamblándose a los ~1.8 Ga y conformando las provincias corticales del suroeste de Laurencia (Mojave, Yavapai y Mazatzal), que fueron definidas principalmente por estudios geocronológicos, geoquímicos e isotópicos (Sm-Nd y sus edades modelos y en los últimos años se ha t rabajado c on l os i sótopos de Lu-Hf). Cada p rovincia se p uede definir c omo un dom inio geográfico de di mensiones c ontinentales que está c onstituido por rocas pa leoproterozoicas c on características g eológicas y co n firmas g eoquímicas e i sotópicas q ue h acen p osible la discriminación en tre cada u na d e e llas. G eográficamente, en tre las p rovincias, ex isten l ímites difusos (suturas) q ue p ueden ser o casionalmente zo nas d e transición debido a su ed ad y a l a naturaleza de la formación de las mismas.

Uno de los primeros trabajos realizados c on la finalidad d e di ferenciar los ba samentos proterozoicos al oeste de los Estados Unidos de América fue el de Zartman (1974), en donde definió patrones c aracterísticos en l a co mposición i sotópica d e P b en r ocas í gneas mesozoicas y cenozoicas, dando como resultado tres áreas o provincias isotópicas; el área I, que conforma parte de los estados de Utah, Arizona, sur de Nevada y el sureste de California, se caracteriza por tener isótopos de Pb no radiogénico cuyo posible material de origen sean rocas de basamento cristalino precámbrico de la corteza inferior o del manto. El área II, que comprende la zona centro y norte de Nevada, c ontienen i sótopos de P b r adiogénico c uyo pos ible material de or igen s ean r ocas sedimentarias miogeosinclinales i sotópicamente h omogeneizadas y erosionadas d e l a corteza superior precámbrica adyacente. Por último, el área III, en el centro y norte de California, posee una composición isotópica de Pb intermedia entre el área I y II, cuyo posible material de origen sean r ocas eugeosinclinales sed imentarias, v olcánicas y p lutónicas, p osiblemente asociadas a procesos de subducción (Figura 2.1a).

Condie (1981) realizó una diferenciación d e provincias d e l a corteza precámbrica d el suroeste de los Estados Unidos de América, definidas principalmente en base a fechamientos U-Pb en zircones e isócronas de Rb-Sr en rocas supracorticales, reconociendo así, tres provincias de norte a sur: una de 1.72 a 1.80 Ga, otra de 1.65 a 1.72 Ga y una última de 1.1 a 1.2 Ga. Los datos

geoquímicos y de isótopos de Sr indican una fuente de manto superior agotada de forma variable para los basaltos y una fuente de la corteza inferior de corta duración (< 100 Ma) para granitos y magmas volcánicos félsicos (Figura 2.1a).

Posteriormente Bennet y DePaolo (1987), determinaron relaciones isotópicas iniciales de Nd y sus edades modelo en rocas ígneas y metamórficas para mapear los límites de las provincias al oeste de los Estados Unidos de América. La provincia 1 está compuesta de rocas corticales del centro de Utah y el noreste de Nevada y que se caracteriza por tener valores promedios de ϵ Nd (1.7 Ga) ~ 0 y T _{DM} ~ 2.0 - 2.3 Ga. La provincia 2 c ubre Colorado y el sur de Utah y el noroeste de Arizona y tiene valores de ϵ Nd (1.7 Ga) ~ +3 y T_{DM} ~ 1.8 - 2.0 Ga. La provincia 3, que comprende las rocas del basamento de Nuevo México y el sur de Arizona, tiene valores de ϵ Nd (1.7 Ga) ~ +5 y T_{DM} ~ 1.7 - 1.8 Ga (Figura 2.1a).

Figura 2.1a Comparación de los límites de la corteza definidos en función de las edades de cristalización (líneas discontinuas) (Condie, 1981), isótopos de Pb (líneas de puntos) (Zartman, 1974) e isótopos de Nd (líneas continuas gruesas) (Bennet y DePaolo, 1987).

Iriondo y Premo (2011) presentan una visión general sobre el significado y evolución de las provincias p aleoproterozoicas en el suroeste de Estados U nidos de A mérica y a l n oroeste de México, también s e i ntroducen algunos c onceptos ge ológicos nove dosos pa ra la geología d e Sonora, como el de la existencia de un doblez oroclinal que denominan "doblez oroclinal Caborca". También s e introduce c omo c oncepto nove doso la existencia de una zona de debilidad c ortical paleoproterozoica en dirección NW-SE, asociada espacialmente a las rocas de la provincia Yavapai mexicana, que pudo haber condicionado notablemente algunos eventos geológicos desde tiempos

proterozoicos hasta el Cuaternario y que permite conciliar muchos aspectos de la geología de Sonora (Figura 2.1b)

Figura 2.1b Distribución tentativa de las provincias paleoproterozoicas Mojave, Yavapai y Mazatzal en el suroeste de Laurencia incluyendo los a floramientos del noroeste de México (Iriondo y Premo, 2009). El rango de edades de cristalización para cada una de las provincias está basado en la recopilación de edades de Iriondo *et al.* (2004). También se presenta, de forma tentativa, la extensión de la traza de fronteras de Nd y de las series geoquímicas al internarse hacia México (Iriondo y Premo, 2009). Las abreviaciones son LA: Los Ángeles, SD: San Diego, LV: Las Vegas, PHX: Phoenix, TUC: Tucson, HER: Hermosillo.

A continuación, se presentará el estado actual del conocimiento de los aspectos geológicos, geoquímicos e i sotópicos de las provincias corticales paleoproterozoicas del suroeste de Estados Unidos de América y noroeste de México:

2.1.1 Provincia Mojave

La provincia cortical Mojave, localizada al sur de Nevada y centro-sur de California, se caracteriza por af loramientos ai slados en 1 a p rovincia d e B asin an d R ange d e g neises paleoproterozoicos (1.78 - 1.68 Ga.) con un alto grado metamórfico (anfibolita a granulita), que contienen evidencia i sotópica d e materiales corticales más antiguos (Bennett y D ePaolo, 1987; Karlstrom y Bowring, 1988, 1993; Wooden *et al.*, 1988). Se ha propuesto que la provincia Mojave se or iginó a partir d e l a r enovación de una antigua corteza c ontinental pr eexistente de edad Arqueana y/o Paleoproterozoica (~2.7 - 2.0 Ga). Se estima que algunos magmas precursores de

rocas ígneas de esta provincia posiblemente asimilaron hasta un ~40% de la corteza preexistente (Wooden y Miller, 1990; Rämö y Calzia, 1998).

Las rocas plutónicas que conforman la provincia Mojave en el suroeste de Estados Unidos de América son de composición variable (monzogranito, sienogranito, granodiorita y diorita), con edades de cristalización de ~1.6 a 1.8 Ga y características petrogenéticas generalmente asociadas a am bientes d e "i ntraplaca" (Wooden y D eWitt, 1991; Bender, 1994). E stas rocas p resentan fábricas ortognéisicas y en general un alto grado metamórfico (anfibolita a granulita) asociado a la orogenia Ivanpah (~1.7 Ga) (Young et al., 1989; Wooden y Miller, 1990; Wooden et al., 1994) Esta or ogenia de formó r ocas pr oduciendo pliegues c on e jes ve rticalizados con ve rgencia estructural NE y una foliación subvertical de intensidad variable con orientación NE (Karlstrom y Bowring, 1991). Anderson et al. (1993) y Bender (1994) destacan que la mayoría de los intrusivos pre- y sinorogénicos de la provincia Mojave son monzogranito y, en menor medida, sienogranito, granodiorita y diorita. Estos autores también destacan que los intrusivos presentan relaciones altas de Fe/Mg, valores elevados de K₂O, y e stán enriquecidos en elementos LILE (Rb, Ba, Y, Th) y tierras raras (REE). También mencionan que, para los diagramas de discriminación de ambiente tectónico de formación de granitos, de acuerdo con la clasificación de Pearce et al. (1984), la mayoría de los granitos paleoproterozoicos de la provincia Mojave presentan composiciones que caen en el campo de granitos intraplaca.

Los datos isotópicos Sm-Nd existentes para rocas ígneas paleoproterozoicas (~1.7 Ga) de la provincia Mo jave muestran v alores i niciales d e ϵ Nd de -3 a +1 (tendencias n egativas) y puntualmente entre -5 y -1.4 para rocas graníticas en la región de Death Valley (Rämö y Calzia, 1998). A sí mismo, est as rocas presentan edades modelo de Nd (T_{DM}) de ~2.0 a 2.4 G a que corresponden a un basamento definido como provincia de Nd 1 por Bennet y DePaolo (1987).

Wooden *et al.* (2012) realizaron estudios de U-Pb e isotopía en Hf en zircones de rocas de basamento al sur de California proporcionando importantes conocimientos sobre la formación de la provincia Mojave y su incorporación al suroeste de Laurencia, la cual se ensambló en un entorno de margen convergente de larga duración, caracterizado por un plutonismo de arco calco-alcalino entre 1.79 y 1.73 Ga, y continuó con un plutonismo post-Ivanpah relativamente félsico y potásico entre 1.69 y 1.64 Ga. Los valores de ϵ Hf_(t) para los zircones m agmáticos pre-orogenia y postorogenia Ivanpah pr esentan un r ango muy a mplio que va de sde +11 a -10, s ugiriendo que la provincia Mojave se formó a partir de la mezcla de componentes del manto empobrecido y manto enriquecido.

Holland *et al.* (2015) analizaron plutones de granodiorita antiguos (1.84 – 1.71 Ga) y rocas metasedimentarias antiguas (1.75 Ga esquisto Vishnu) a través de un transecto de 180 km de largo en la zona del Gran Cañón, al noroeste de Arizona, Estados Unidos de América, con la finalidad de diferenciar, mediante estudios isotópicos de Hf en circones, las provincias paleoproterozoicas de Mojave y Yavapai y esclarecer el límite de sutura que separa ambas provincias. Los plutones al este de la zona de cizalladura Crystal datan de 1.74–1.71 Ga y producen valores juveniles de ϵ Hf(t) de +5 a +12 que son característicos de la provincia de Yavapai. Los plutones al oeste de la zona de cizalla Crystal muestran granos paleoproterozoicos juveniles a evolucionados (ϵ Hf(t) de –5 a +10), así como granos de 1.85 Ga y xenocristales Arqueanos (ϵ Hf(t) de –12 a +10). Estos datos respaldan la propuesta de que la zona de cizalladura Crystal marca un límite agudo entre las provincias de la corteza de Mojave y Yavapai.

Recientemente, Chapman *et al.* (2018) realizaron estudios de U-Pb, Lu-Hf y determinación de δ^{18} O en zircones de rocas ígneas del Triásico Temprano al Mioceno, de un transecto de >1300 km a lo largo del suroeste de la Cordillera de los Estados Unidos, con el fin de probar que las composiciones i sotópicas r eflejan c ambios ge odinámicos r elacionados a múltiples e pisodios de extensión, c ontracción y m igración d el ar co magmático durante el Mesozoico al C enozoico, aprovechando que el registro magmático es casi c ontinuo durante este tiempo. Dichos zircones estudiados contienen núcleosLo heredados paleoproterozoicos que fueron asociados a la provincia Mojave por sus valores de ϵ Hf_(t) y su ubicación de muestreo: núcleos heredados asociados a la provincia Mojave con edades ~1.7 Ga y un rango de ϵ Hf_(t) que va de -1.5 a 2.

En el Complejo Bámori, al noroeste de Sonora, México, Castiñeiras *et al.* (2004) realizaron fechamientos U-Pb en zircones de granitoides félsicos, arrojando una e dad de 1770 Ma y uno s valores isotópicos de ε Nd de +0.5 a -5.0, si endo est a firma i sotópica muy relacionable con la provincia de basamento Mojave de Estados Unidos de América. Seguidamente en el resumen de Castineiras *et al.* (2006), realizaron estudios geocronológicos y de isótopos de Nd a tres complejos metamórficos al noroeste de Sonora, de este a oeste, Tecolote, Bámori y La Tortuga, cuyas edades varían de 1650 a 1800 Ma y sus valores de ε Nd oscilan entre +1.12 a -0.24 y edades modelo de Nd entre 2.08 y 2.21 Ga, indicando una contaminación de una fuente de manto agotada con una fuente cortical enriquecida más antigua, producto posiblemente de la fusión parcial directa de un manto litosférico enriquecido del Arqueano de bajo de un margen continental adelgazado de un c ratón Arqueano.

Posteriormente en la región de Caborca, se realizaron estudios geocronológicos U-Pb en zircones e isotópicos de Nd en roca total (Farmer *et al.*, 2005), en donde el paragneis del Complejo Bámori (\geq 1.7 Ga) tiene una edad modelo de Nd de 2.4 Ga y contiene zircones detríticos que varían en edad desde el Paleoproterozoico (1.75 Ga) hasta el Arqueano (3.2 Ga) y que a diferencia de la provincia Mojave e stadounidense, la corteza P recámbrica C aborca contiene granitos de 1.1 G a (Granito Aibo), que según los análisis isotópicos de Nd, es gran parte producto de la anatexis del basamento p recámbrico l ocal. Los pa ragneises con ed ad y car acterísticas i sotópicas similares ocurren en la provincia de Mojave en el sur de California y se propone que la corteza Precámbrica de Caborca es un segmento autóctono aislado de la corteza de la provincia Mojave que comparte una h istoria g eológica proterozoica s imilar, p ero n o idéntica, co n la p rovincia Mojave que se encuentra al suroeste de Estados Unidos de América.

En el área de Sierrita Prieta, que se localiza al sur de Trincheras, Sonora, Soto-Verdugo (2006) reporta rocas gnéisicas paleoproterozoicas con edades de U-Pb en zircones de ~1727 a 1733 Ma y valores de ɛNd en roca total de -1.1 a -0.5 y edades modelo de ~2.0 y 2.1 Ga, indicando que estas rocas también tienen firmas similares a las rocas presentes en la provincia paleoproterozoica Mojave.

Amato *et al.* (2009) realizaron estudios en la zona del Rancho La Lamina al noroeste de Sonora, en donde las edades de U-Pb en zircones y los valores de isótopos de Nd de las rocas Proterozoicas indican la presencia de un basamento tipo "Caborca". Los granitoides tienen edades de 1763 - 1737 Ma, con valores de ɛNd de +1.4 a -4.3, a sociándolo a la provincia de Mojave (Farmer *et al.*, 2005).

2.1.2 Provincia Yavapai

La provincia paleoproterozoica Y avapai, en sus afloramientos más representativos en la zona suroccidental y centro de Arizona, se compone de rocas plutónicas de composición variable (cuarzodiorita, tonalita, granito y granodiorita) y edades de ~1710 a 1750 Ma. A esta provincia se le aso cian rocas v olcánicas, v olcaniclásticas y r ocas d e p iso o ceánico t ales como l avas almohadilladas, así como flujos de rocas félsicas. Las características petrogenéticas de las rocas ígneas d e e sta p rovincia so n m ayoritariamente "cal cialcalinas", es d ecir, rocas f ormadas en ambiente de arco volcánico. Estas rocas sufrieron deformación penetrativa alrededor de los ~1.70 Ga durante la orogenia Yavapai (Karlstrom *et al.*, 1987; Karlstrom y Bowring, 1988; Williams, 1991; Duebendorfer *et al.*, 1998). Esta o rogenia se co rrelaciona en el tiempo con la o rogenia Ivanpah propuesta en la provincia Mojave, y está caracterizada en Arizona por foliación subvertical

de di rección N E que pudi eran r epresentar l a acreción/colisión d el a rco d e islas Y avapai, al continente norteamericano (Karlstrom y Bowring, 1991, 1993).

Otras características de las rocas ígneas presentes en la provincia Yavapai incluyen que la mayoría de las rocas tienen una composición en elementos mayores como K₂O y Na₂O y traza menos enriquecida que la de las rocas de la provincia Mojave, así como una relación Fe/Mg más baja. Las rocas de la provincia Yavapai no muestran un enriquecimiento notable en elementos de radio iónico grande (LILE), como lo son el Rb, Ba, Pb y de otros elementos traza (Y, Th); ni en tierras ra ras (R EE). El c omportamiento d e lo s elementos u sados p ara lo s d iagramas discriminatorios de ambiente de formación de granitos de Pearce *et al.* (1984) (Nb-Y y Rb-(Nb+Y)) sugiere que la gran mayoría de las rocas ígneas de la provincia Yavapai fueron formadas en un ambiente de arco volcánico (Bender, 1994).

Los datos isotópicos Sm-Nd de rocas paleoproterozoicas (~1.7 Ga) de la provincia Yavapai, en contraste con los de la provincia Mojave, muestran valores iniciales de ϵ Nd más positivos (+4.7 a +3.5) y edades modelo de ~1.65–1.85 Ga, que son más cercanas a la edad de cristalización de las rocas, y corresponden a rocas de la provincia de Nd 2 (Bennett y DePaolo, 1987). Sin embargo, autores como Wooden y Dewitt (1991) mencionan que para algunas zonas del Yavapai, como las cercanas al Gran Cañón del Colorado en Arizona, los valores de ϵ Nd varían entre +3.0 a +0.8 y con correspondientes edades modelo entre ~1.85 y 1.95 Ga.

Al suroeste de Estados Unidos de América, Chapman *et al.* (2018) realizaron estudios de U-Pb, Lu-Hf y determinación de δ^{18} O en zi rcones d e r ocas í gneas d el Triásico Temprano a l Mioceno, de un t ransecto de >1300 km a lo largo del suroeste de la Cordillera de los Estados Unidos, reportando núcleos heredados con edades ~1.7 Ga y un rango de ϵ Hf_(t) que va de 0 a +5, asociándolo a un basamento tipo Yavapai.

Hacia el noroeste de México, Valenzuela-Navarro *et al.* (2003) reportaron una edad de 1730 Ma para el granito El Crestón, ubicado en los alrededores de la mina de cobre-molibdeno El Crestón en la región de Opodepe (Sonora central). También reportaron un valor de ɛNd de +3.1 para este granito, considerándolo como basamento paleoproterozoico tipo Yavapai.

En la región de Quitovac, Iriondo *et al.* (2004) realizaron estudios de geocronología U-Pb en zi rcones e i sótopos d e N d en r oca t otal d iferenciando así d os b loques d e b asamento Paleoproterozoico: el bloque "Caborca" con granitoides de edades de 1.71 - 1.69 Ga, caracterizado por un ɛNd menos agotado (+0.6 a +2.6) y edades modelo de 2.1 - 1.9 Ga, exhibiendo una afinidad con las rocas de la provincia Yavapai o de la zona de transición Mojave-Yavapai. Por otro lado, el bloque "Norte América" posee granitoides con edades de 1.71 - 1.66 Ga, caracterizado por un εNd agotado (+3.4 a +3.9) y edades modelo de 1.8 - 1.7 Ga, asociándolo a la provincia Mazatzal o posiblemente a la provincia Yavapai en Arizona.

En la zona fronteriza al suroeste de Arizona y noroeste de Sonora, (Nourse *et al.*, 2005) diferencia dos bloques Paleoproterozoicos, un complejo oriental (1.72 - 1.69 Ga) y un complejo occidental (1.64 - 1.63 Ga), que en base a los análisis isotópicos de Nd tienen valores de ϵ Nd de +2 a +4, superponiéndose con las provincias Yavapai y Mazatzal de Arizona. El complejo oriental tiene la edad apropiada y la firma isotópica de Nd para ser parte de la provincia Mazatzal, pero registra un importante tectonismo y metamorfismo a los 1.6 Ga que es posterior a la orogenia Mazatzal.

En la región de Cerros S an Luisito, que se localiza a 10 km al o este del área Mina La Herradura, Gutiérrez-Coronado *et al.* (2008) reportan un basamento gnéisico tipo Y avapai c on edades de cristalización U-Pb de zircones de ~1676–1712 Ma y valores de ε Nd de +1.13 a +2.87 con edades modelo de ~1.76 a 1.91 Ga.

Para l a zo na d e C anteras-Puerto P eñasco, a l n oroeste de Sonora, Arvizu *et al*. (2009) realizaron fechamientos U-Pb en zircones a gneises bandeados proporcionando edades de ~1.7 Ga. También realizaron estudios isotópicos Sm-Nd en roca total presentando valores de ϵ Nd entre +1.9 a -0.6 y edades modelo Nd de 1.91-2.02 Ga. Los estudios isotópicos de Hf en zircones arrojaron valores ϵ Hf_(t) entre +1.9 a +5.1 y con correspondientes edades modelo de Hf a dos pasos (T_{DM}^C) de 2.07-2.50 Ga, concluyendo que di chos pr otolitos í gneos de e stos gne ises pudi eron ha ber s ido formados por fuentes mantélicas con algún grado de contribución cortical, similar a las rocas de la provincia Yavapai en el suroeste de Estados Unidos de América.

Las rocas gnéisicas paleoproterozoicas en el área Mina La Herradura, localizada a ~100 km al noroeste de la ciudad de Caborca, Sonora, presentan ed ades U-Pb entre ~1714 y 1683 M a y valores isotópicos ε Nd entre +1.7 y +0.5 con un rango de edades modelo de 1.86–1.92 Ga lo que sugiere que l as rocas del b asamento en e l á rea M ina L a H erradura p resentan características similares a l as de la provincia Y avapai en e l SW de Norte A mérica y so n s imilares a o tras ocurrencias de este tipo en el noroeste de Sonora (Izaguirre, 2009).

2.1.3 Provincia Mazatzal

La provincia p aleoproterozoica Ma zatzal d el s ur d e A rizona est á co mpuesta p or r ocas supracorticales de bajo grado metamórfico e intrusiones hipoabisales (1.75-1.62 Ga) con características i sotópicas j uveniles (empobrecidos); e stas r ocas fueron de formadas dur ante l a orogenia Mazatzal entre 1.67-1.62 Ga (Karlstrom *et al.*, 1987; Karlstrom y Bowring, 1988; Conway y Silver, 1989). Esta orogenia está caracterizada por fábricas de deformación variable subverticales de orientación NE y se piensa que representen la colisión de un arco de islas (arco Mazatzal) de orientación NE respecto al continente, justo al sureste del arco de islas Yavapai que ya colisionó anteriormente contra el continente durante la orogenia Yavapai (Karlstrom y Bowring, 1991).

Los datos isotópicos Sm-Nd de las rocas ígneas paleoproterozoicas (~1.7) de la provincia Mazatzal muestran v alores i niciales d e ϵ Nd e n general muy positivos (+5) que corresponden básicamente a rocas derivadas de un manto primitivo del paleoproterozoico. Las edades modelo de Nd de ~1.7 a 1.8 Ga en conjunto permiten agruparlas para formar la provincia de Nd 3 en el SW de Estados Unidos (Bennett y DePaolo, 1987).

A pe sar de que la mayoría de las rocas ígneas ex puestas en las provincias Y avapai y Mazatzal tienen las mismas ed ades de cristalización que las rocas de la provincia Mojave, los estudios isotópicos de Pb y N d sugieren que las rocas de las provincias Y avapai y Mazatzal no presentan mayor participación de material cortical neoarqueano. Los isótopos sugieren que estas provincias están compuestas de material juvenil similar al que se presenta en ambientes de arco de islas, con magmas d erivados d e u na f uente mantélica p arecida al MO RB actual, pero a lgo empobrecido en LREE (Bennett y DePaolo, 1987; Wooden y DeWitt, 1991).

Eisele e Isachsen (2001) realizaron geocronología U-Pb en zircones y estudios isotópicos de Sm-Nd en roca total a rocas metaturbidíticas basales pertenecientes al bloque Pinal y a rocas sedimentarias con componentes volcánico (cuarcitas y rocas metavolcánicas) pertenecientes al bloque Cochise, ambos bloques dentro del dominio Mazatzal y presentes al suroeste de Arizona, en los Estados Unidos de América. Al bloque Cochise se le estimaron zircones detríticos en un rango de 1630 a 1674 Ma, con valores de ϵ Nd_(t) ~+2.9 a +3.8. Al bloque Pinal se le estimaron zircones detríticos en un rango de 1678 a 1731 Ma, con valores de ϵ Nd_(t) ~+0.2 a +2.3, disminuyendo de s ureste a nor este, lo que indica l a e ntrada pr ogresiva d e material m ás evolucionado hacia el cratón.

Al norte de las montañas Burro, al suroeste de New Mexico, Rämö *et al.* (2003) realizaron fechamientos U-Pb en zircones de una diabasa toleítica que intruye la corteza tipo Mazatzal, con una edad de 1630 Ma y una firma isotópica de manto agotado de ϵ Nd de +4.2.

Hacia la parte central de Arizona, en la zona de Four Peaks, Mako *et al.* (2015) realizaron estudios en rocas asociadas a l as orogenias Mazatzal y Picuris para establecer las relaciones y restricciones de la estratigrafía y tectonismo de la provincia Mazatzal, resultando edades U-Pb de granitos paleoproterozoicos de 1.68–1.66 Ga y los estudios isotópicos de Hf en un rango de ϵ Hf(t) de +2.0 a +10.5.

Al suroeste de E stados U nidos de A mérica, Chapman *et al*. (2018) reportan núcleos heredados c on e dades ~ 1.7-1.6 G a y un rango de ϵ Hf_(t) que va de +4 a + 10, a sociándolo a un basamento tipo Mazatzal.

Hacia el noroeste de Sonora, México, Iriondo *et al.* (2013) realizaron estudios de Hf en la zona de Quitovac en rocas gneísicas y graníticas paleoproterozoicas (~1.66–1.78 Ga) definiendo al este, la provincia de Mazatzal, con un rango de ε Hf_(t) de +1.7 a +9.2 y una edad modelo de ~1.82 Ga; al oeste definieron la provincia Yavapai, con un rango de ε Hf(t) de -0.9 a +8.7 y una edad modelo pr omedio de ~2.05 G a. T ambién e studiaron r ocas pa leoproterozoicas e n l a z ona de l Bámuri, al sur de Caborca, ob teniendo un r ango de ε Hf(t) de -3.8 a +1.9 y una edad modelo promedio de ~2.20 Ga, asociando esta zona a una corteza similar a la provinci2.1 aa Mojave.

Más recientemente, Solari et al. (2017) mencionan que el basamento cristalino en Sonora está formado por diferentes componentes; al oeste, se tiene la provincia Caborca-Mojave que está caracterizada por el Complejo Bámori, con edades U-Pb de 1.70 a 1.77 Ga, valores de ϵ Hf_(t) con un r ango d e -0.2 a +3.2, s iendo m oderadamente j uveniles a l igeramente e volucionados y obteniéndose e dades modelo de 2.4–2.1 Ga. En la parte intermedia, al est e d e H ermosillo, las unidades ortogneísicas Palofierral y La Ramada tienen edades U-Pb de 1.64 Ga y 1.70 Ga, con valores de ϵ Hf_(t) de ~+8.95 y +6.43 y edades modelos de 1.79 Ga y 2.0 Ga, respectivamente. Por último, estos autores proponen que al noreste de Sonora se tiene una extensión sur de la provincia Mazatzal, representada por el esquisto Pinal, con edades U-Pb entre 1.69 a 1.67 Ga, con valores de ϵ Hf_(t) de +7.54 y +7.88 y edades modelos de 2.1 y 1.8 Ga, respectivamente.

A continuación, se presenta una tabla resumen de los valores isotópicos de Sm-Nd y Lu-Hf promedios de los basamentos paleoproterozoicos al su roeste de Estados Unidos de América y noroeste de México.

Provincia Paleoproterozoica	Edad del intrusivo (Ga)	εNd _(t)	$\varepsilon Nd_{(t)} a \varepsilon Hf_{(t)}^{*}$	$\epsilon H f_{(t)}$	T _{DM} (Ga)	Referencia	Región	
	1.7	0	+3		2.0	Bennet y DePaolo (1987)		
Mojave	1.7	-5 a +1	-1 a +4		2.0 a 2.4	Rämö y Calzia (1998)	Suroeste de EUA	
	1.79 a 1.64			-10 a +11		Wooden et al. (2012)		
	1.84 a 1.71			-5 a +10		Holland et al. (2015)		
	1.9			-12 a +10		Holland et al. (2015)		
	1.7			-2 a 2		Chapman et al. (2018)		
	1.8	-5 a +1	-1 a +4			Castiñeiras et al. (2004)		
	1.8 a 1.65	+0 a +1	+3 a +5		2.08 a 2.21	Castiñeiras et al. (2006)		
	1.7				2.4	Farmer et al. (2005)	Noroosto do Móvico	
	1.7	-1.1 a -0.5	+2		2.0 a 2.1	Soto-Verdugo (2006)	Nordeste de Miexico	
	1.7 a 1.8			-4 a +2	2.2	Iriondo et al. (2013)		
	1.8	-4.3 a +1.4	-4 a +5			Amato et al. (2009)		
	1.7	+4 a +5	+7 a +9		1.65 a 1.85	Bennet y DePaolo (1987)	Suroeste de EUA	
	1.74 a 1.71			+5 a +12		Holland et al. (2015)		
	1.7	+1 a +3	+3 a +6		1.85 a 1.95	Wooden y Dewitt (1991)		
	1.7			0 a +5		Chapman et al. (2018)		
	1.7	+3.1	+6			Valenzuela-Navarro et al. (2003)		
Yavapai	1.7	+1 a +3	+3 a +6		1.9 a 2.1	Iriondo et al. (2004)		
	1.7	+1 a +3	+3 a +6		1.76 a 1.91	Gutiérrez-Coronado et al. (2008)	Noroeste de México	
	1.7	-1 a +2	+1 a +5	+2 a +5	1.91 a 2.02 / 2.07 a 2.50	Arvizu et al. (2009)		
	1.7	+1 a +2	+3 a +5		1.86 a 1.92	Izaguirre (2009)		
	1.7 a 1.8			-1 a +9	2.1	Iriondo et al. (2013)		
	1.7			0 a +3	2.1 a 2.4	Solari et al. (2017)		
Mazatzal	1.7	+5		+9	1.7 a 1.8	Bennet y DePaolo (1987)		
	1.6 a 1.7	+3 a +4	+6 a +7			Eisele e Isachsen (2001)		
	1.7	0 a +2	+2 a +5			Eisele e Isachsen (2001)	Suroeste de EUA	
	1.6	+4.2	+8			Rämö et al. (2003)		
	1.7			+2 a +10		Mako et al. (2015)		
	1.6 a 1.7			+4 a +10		Chapman <i>et al</i> . (2018)		
	1.7 a 1.6	+2 a +4	+5 a +7			Nourse et al. (2005)		
	1.7	+3 a +4	+6 a +7		1.7 a 1.8	Iriondo et al. (2004)	Noroeste de Mévico	
	1.7 a 1.8			+1.7 a +9.2	1.8	Iriondo et al. (2013)	Nordeste de Mexico	
	1.7			+7.54 a +7.88	1.8 a 2.1	Solari et al. (2017)		

Tabla 2.1 Valores isotópicos de Sm-Nd y Lu-Hf promedios de los basamentos paleoproteorozoicos al suroeste de Estados Unidos de América y noroeste de México

*Transformación aplicada por medio de fórmula en Vervoort y Blichert-Toft (1999)

2.2 Magmatismo Mesoproterozoico

En el su roeste d e L aurencia h ay r egistro d e d os i mportantes ev entos m agmáticos mesoproterozoicos. Un primer evento a los ~1.4 Ga que corresponde al emplazamiento de granitos interpretados tradicionalmente como anorogénicos (tipo A). Esta interpretación ha sido cuestionada por Nyman *et al.* (1994), quienes en base a observaciones estructurales realizadas en plutones del suroeste de EUA concluyen que el magmatismo es sintectónico y ligado a un régimen de esfuerzos compresivo y transpresivo, y que el emplazamiento de los granitos se produjo a favor de estructuras preexistentes (zonas de cizalla y límites entre provincias). Otros autores relacionan el magmatismo de ~1.4 Ga con la coetánea provincia cortical de Granitos y Riolitas, que muchos identifican como un arco continental magmático activo entre ~1500 a 1230 Ma. Rivers y Corrigan (2000) proponen que el magmatismo de ~1.4 Ga se produjo en respuesta al rifting en el retro-arco desencadenado por el roll-back de la placa oceánica subducente hacia el oeste. Más recientemente, Bickford *et al.* (2015) asocian estos granitos a inestabilidades en la interacción litosfera-astenosfera en un margen continental activo afectado por la colisión periódica de arcos de islas marginales o exóticos.

El s egundo evento m agmático m esoproterozoico es el que d a lugar a l a su ite A MCG (anortosita-mangerita-charnockita-granito) de ~1.1 Ga de la provincia Grenville, y a los granitos anorogénicos y anortositas equivalentes en otras regiones de Laurencia. Este evento magmático ha sido r elacionado c on el c olapso or ogénico de l a c orteza s obre-engrosada d e L aurencia t ras l a orogenia Grenvilliana (McLelland *et al.*, 1996 y 2010). En Sonora aparece representado por los denominados granitos Aibó y las anortositas El Tecolote. Por relaciones de campo, se sabe que las anortositas son más tardías que los granitos (se ha podido observar esta relación en Sierrita Blanca (Enríquez-Castillo et *al.*, 2009) y Sierra Prieta (Izaguirre-Pompa, 2009). Iriondo y Premo (2011) advierten u na co rrelación esp acial en tre e l m agmatismo de 1.1 G a y l a p rovincia Y avapai, atribuyéndolo a que esta provincia en Sonora constituye una zona de debilidad cortical que facilitó la canalización de los magmas.

Bennet y D ePaolo (1987) realizaron an álisis i sotópicos d e S m-Nd en r ocas mesoproterozoicas distribuidas al sur o este de Arizona, su reste de California y sur de Nevada obteniendo datos de ɛNd en un rango de -3.9 a -1.13 asociándolas a la provincia de basamento Mojave y a una posible zona de transición entre Mojave y Yavapai.

Hacia el suroeste de Estados Unidos de América, Goodge y Vervoort (2006) realizaron estudios de isotopía en Hf en zircones de los granitos mesoproterozoicos (~1.4 Ga) que intruyen a la corteza de basamento Paleoproterozoico. Los granitos que intruyen el basamento Yavapai tienen valores más altos de ϵ Hf_(t) (+3.3 a +5.4), lo que refleja sus funten más juveniles, mientras que los granitos que intruyen el basamento Mojave muestran contribuciones de fuentes corticales más evolucionados con un rango de ϵ Hf_(t) de (-1.35 a 1.7).

Rämö *et al.* (2003) realizó fechamientos U-Pb en zircones e isotopía Sm-Nd en roca total a muestras que se encuentran en la zona de la provincia Mazatzal, granitoides con edad de 1460 Ma y un rango de ϵ Nd de +2.3 a +4.0.

Wooden *et al*. (2012) mencionan que rocas a nortosíticas y rocas intrusivas graníticas a sieníticas de edad Mesoproterozoico (1.4 a 1.2 Ga) derivan completamente del basamento de la provincia de Mojave ya que los valores de ϵ Hf_(t) (Granitos alcalinos y cuarcitas (1.4 Ga) = -6.1 a +5; Asociación AMCG (1.2 Ga = -1 a +11) reflejan fuentes de magma intracontinentales y procesos magmáticos en la parte de la provincia Mojave de Laurencia después de la formación de la corteza paleoproterozoica.

En el suroeste de Sonora, Solari *et al.* (2017) estudiaron el granito de Cananea con una edad U-Pb en zircones de ~1.4 Ga y una isotopía en Hf con un rango de +1 a +7 siendo moderadamente juveniles, mientras que el granito de San Luis, en el rancho Bámori solo está marginalmente más evolucionado con valores de ε Hf_(t) de -1 a +3. Concluyendo que dichos valores moderadamente juveniles requerirían un componente cortical primitivo con una edad comprendida entre 1.6 y 1.8 Ga.

2.3 Rocas laramídicas (batolito Gunnery Range)

Se cree que la orogenia larámide (~80–40 Ma) está relacionada con la subducción de bajo ángulo o flat-slab de la placa Farallón debajo de la placa Norteamericana (Coney y Reynolds, 1977; Saleeby, 20 03; Liu y Currie, 201 6). E sta o rogenia di o o rigen a un proceso de magmatismo relacionado al desarrollo de un arco magmático que habría migrando aparentemente hacia el este, alcanzando su máxima extensión en la región de Big Bend de Texas en USA y en la Sierra Madre Oriental en México durante el Eoceno Tardío (Fitz-Díaz *et al.*, 2018). Shafiqullah *et al.* (1980) mencionan que el afloramiento más ex tenso de es tas rocas en el sur de Arizona es el batolito Gunnery Range, expuesto en el área restringida de Yuma Gunnery Range y el noroeste de Sonora, el cual consiste en una serie de intrusiones de granitos de grano grueso, leucocráticos y que con frecuencia conteniendo dos m icas y o casionalmente g ranate. Arnold (1986) menciona que el Gunnery Range forma parte de cinco cadenas montañosas paralelas con orientación noroeste al sur del condado de Yuma y en las partes más occidentales de los condados de Pima y Maricopa y afloramientos menores se ex tienden a Sonora, México. Nourse *et al.* (2005) reportan dioritas de grano m edio, gr anodioritas d e hor nblenda-biotita y gr anitos l eucocráticos c on bi otita de e dad laramídica intruyendo a rocas del basamento proterozico en la zona fronteriza entre USA y México, al noroeste del campo volcánico de El Pinacate.

Los afloramientos de rocas ígneas laramídicas en el noroeste de México siguen también un alineamiento NW-SE, y comprenden una serie de complejos volcánicos-plutónicos que incluyen derrames de lavas, algomerados y flujos piroclásticos mayormente de composición intermedia; grandes plutones graníticos que intrusionan localmente a las rocas volcánicas comagmáticas; y finalmente, una serie de cuerpos intrusivos tardíos emplazados a diferentes profundidades, que incluyen un a va riedad de di ques d e lamprófido, a plita y pegmatita, así como t roncos s ubvolcánicos, algunos de los cuales funcionaron como centros de mineralización importante a escala regional (Valencia-Moreno y Ortega-Rivera, 2011).

Los granitos l aramídicos s on más a bundantes que l os proterozoicos y muestran una orientación e structural general noroeste-sureste aso ciados al evento e xtensional del Basin an d Range de 1 Mioceno. A 1 suroeste de A rizona e stas r ocas g raníticas l aramídicas constituyen el batolito Gunnery Range, definido por Shafiqullah et al. (1980), a partir de estudios geológicos y de f echamientos K -Ar. Este ba tolito s e f ormó por un pr oceso de pl utonismo y vul canismo relacionado con un ar co magmático migrando hacia el este (orogenia larámide), a sociado a la convergencia hacia el este de la placa oceánica Farallón debajo de la placa Norteamericana (Coney, 1976), comenzando a los 75 Ma y culminando a los 50 Ma, generando granitos de grano grueso, leucocráticos, que con frecuencia contienen dos micas y ocasionalmente granates. En el trabajo mencionado anteriormente de Fornash et al. (2013), también trabajan con intrusiones graníticas de edades laramídicas (67–73 Ma) con valores de EHf_(t) que van de -9.3 a -7.5 indicando que estos granitos probablemente se derivaron de fuentes dominadas por el granito mesoproterozoico Oracle, respaldando esta conclusión con la presencia de abundantes núcleos heredados de zircón de 1.4 Ga que producen valores de ε Hf_(t) dentro del rango observado de ε Hf_(t) para el granito Oracle. Chapman et al. (2018) sugieren que los datos isotópicos de EHf(t) en zircones de rocas ígneas del Triásico temprano al Mioceno están relacionados con la migración del magmatismo a diferentes provincias litosféricas (basamentos proterozoicos). Para rocas con edades U-Pb entre 80 a 60 Ma estos autores obtuvieron rangos de EHf_(t) que van de -10 a -14 y de -6 a -10 en la región de Arizona y que, a su vez, están relacionados con los valores de ε Hf_(t) de sus núcleos heredados por medio de líneas de evolución de Lu/Hf, u bicándolos con la fusión parcial de sus respectivas fuentes litosféricas a través del tiempo.

Al noroeste de México, al oeste de Quitovac, en Sierra Pinta, Arvizu e Iriondo (2011) en sus e studios i sotópicos de H f e n z ircones de granitoides pérmicos r eportan dos granitoides cretácicos de carácter pegmatítico con edades de 67 Ma y 68 Ma (Arvizu *et al.*, 2009; Arvizu-Gutiérrez, 2008) y un rango de ε Hf_(t) que va de -8.7 a -10.6 y -7.5 a -11.6 y edades modelos a dos pasos (T_{DM2}^C) que van de 1.40 a 1.50 Ga y 1.34 a 1.56 Ga, respectivamente. Estos autores proponen la h ipótesis s obre la m aduración-evolución d el a rco c ontinental de l s uroeste de EUA para l a generación de los magmas durante la parte superior del Fanerozoico, en la cual sugieren que la participación de la corteza disminuye en la formación de los magmas a medida que evoluciona o madura el arco y, en consecuencia, la participación mantélica aumenta con el tiempo. Esta hipótesis explicaría el aumento de los valores positivos de ε Hf_(t) y el rejuvenecimiento de las edades modelo durante la evolución del arco continental en el suroeste de EUA.

Capítulo 3. Técnicas analíticas

Para la realización de este estudio se tomaron un total de 40 muestras de rocas distribuidas desde el noroeste de Sonoyta, al noroeste de Sonora, México, siguiendo por los alrededores de la zona fronteriza y abarcando parte del suroeste del estado de Arizona, Estados Unidos de América (Tabla 3). La distribución de las muestras se hizo en base a la cantidad de afloramientos de rocas proterozoicas y en los lugares en donde autores previos no habían trabajado en dicha zona. Además, se tomaron muestras de rocas ígneas cretácicas ya que constituyen extensiones de cuerpos rocosos de i mportante e xtensión e n l a z ona de e studio. La b ase ca rtográfica g eológica u sada p ara la ubicación de las muestras en campo es la publicada en Iriondo *et al.* (2005) (Figura 3).

Tabla 3. Tabla de muestras	localidades v	coordenadas	geográficas
rabia o. rabia de maestras,	rocultudes y	coordenadas	geogrameas.

Muestra	Localidad	Lat. $(^{\circ}N)^{\dagger}$	Long. $(^{\circ}W)^{\dagger}$	
QTB-3	Quitobaquito Hills, Organ Pipe Cactus National Monument	31°59'13.7"	113°01'39.8"	
ADN-01	Agua Dulce Mountains, Cabeza Prieta Wildlife Refuge	32°06'11.9"	113°18'4.61"	
Wilton-02	Wellton Hills, Barry M. Goldwater Air Force Range	32°33'38.1"	114°07'17.2"	
Ajo-2	Little Ajo Mountains, suroeste Ajo	32°21'12.4"	112°54'46.3"	
Cooper	Cooper Mountains, Barry M. Goldwater Air Force Range	32°33'01.5"	113°57'40.4"	
14-1/2	Foothills Mountain, NE Fortuna Foothills	32°39'56.3"	114°22'53.3"	
QTB-6	Quitobaquito Hills, Organ Pipe Cactus National Monument	31°59'52.0"	113°03'08.0"	
Aztec-02	Noroeste Aztec Hills	32°47'45.7"	113°30'06.2"	
Cabeza-11	Sur de Sierra Pinta, Cabeza Prieta Wildlife Refuge	32°07'34.7"	113°24'34.3"	
Gila-01	Gila Mountains, Barry M. Goldwater Air Force Range	32°34'23.0"	114°20'52.0"	
Espanto-2	East Gila Bend, Maricopa Mountains	32°59'49.6"	112°26'11.8"	
Telegraph	Telegraph Pass Trail	32°39'36.0"	114°19'14.1"	
Ajo-4	West Ajo Peak, Ajo	32°19'40.7"	112°55'53.1"	
Ajo-3	West Ajo Peak, Ajo	32°19'40.7"	112°55'53.1"	
Cabeza-9	South Sierra Pinta, Cabeza Prieta Wildlife Refuge	32°07'22.7"	113°23'39.7"	Suroeste de Arizona,
Chpass-01	South Cholla Pass, Cabeza Prieta Wildlife Refuge	32°05'57.5"	113°10'16.5"	Estados Unidos de
Lewis-01	Arizona Prison Complex - Lewis - Buckley Unit	33°11'38.9"	112°38'57.2"	América
Welton-E	Wellton Hills, Barry M. Goldwater Air Force Range	32°34'07.9"	114°04'42.9"	
McDonalds	Cerro Restaurante McDonalds, Yuma	32°41'52.0"	114°36'31.0"	
Chop-3	Sureste San Luis Río Colorado, noroeste Reserva de la Biosfera Gran Desierto de Altar	32°21'45.0"	114°24'30.0"	
QTB-1	Quitobaquito Hills, Organ Pipe Cactus National Monument	31°57'33.8"	113°00'57.7"	
Drifthills	Cabeza Prieta Mountains, Cabeza Prieta Wilderness	32°16'38.3"	113°41'39.4"	
Bettylee	Betty Lee Mine, Copper Mountains	32°30'41.7"	113°59'16.7"	
Gila-2	Vapoki Ridge, Gila Mountains, Barry M. Goldwater Air Force Range	32°27'07.3"	114°16'52.4"	
Mohawk-1	Mohawk Mountains, San Cristobal Valley	32°42'0.10"	113°45'43.0"	
Mohawk-3	Mohawk Mountains, San Cristobal Valley	32°43'47.3"	113°44'32.0"	
Tinajas-1	Tinajas Altas Mountains, Barry M. Goldwater Air Force Range	32°26'14.5"	114°08'37.1"	
Tinajas	Tinajas Altas Mountains, Barry M. Goldwater Air Force Range	32°23'30.3"	114°06'48.5"	
Tinajas-2	Tinajas Altas Mountains, Barry M. Goldwater Air Force Range	32°23'57.5"	114°06'56.7"	
Tinajas-4	Tinajas Altas Mountains, Barry M. Goldwater Air Force Range	32°18'58.6"	114°05'07.3"	
Pinta	Sierra Pinta, Cabeza Prieta Wilderness	32°25'34.8"	113°39'26.3"	
Pilotknob	Pilot Knob, sureste de California	32°43'53.0"	114°44'43.0"	California, EUA
Choya	Puerto Peñasco	31°20'02.5"	113°37'34.4"	
SR-7	Sierra El Rosario, Sierras Sepultadas	32°04'07.5"	114°11'33.2"	
SR-3	Sierra El Rosario, Sierras Sepultadas	32°06'02.1"	114°13'47.8"	Noroeste de Sonora
Zcen09-38	Arroyo La Sangre, Sierra Los Tanques	31°53'57.7"	113°04'30.6"	Mévico
Tanw09-08	Noroeste Sierra Los Tanques	31°56'08.0"	113°09'04.0"	IVICATO
Min09-07	Mina Berrendos, NE zona axial Sierra Los Tanques	31°52'45.2"	112°59'41.7"	
GneisCen-1	Centro Sierra Los Tanques	31°48'53.0"	112°59'29.0"	
Cucapah-1	Sierra de Los Cucapahs, Baja California Norte	32°18'15.3"	115°19'33.4"	Baja California, México

Figura 3. Mapa litológico regional del noroeste de Sonora y suroeste de Arizona con las muestras usadas para este estudio. Tomado y modificado de Iriondo *et al.* (2005).

3.1 Preparación de muestras, separación y caracterización de zircones para análisis geocronológico U-Pb

La preparación de las muestras inicia en la recolección en campo, en donde se obtiene una cantidad considerable de fragmentos de roca (entre 3 a 6 cm), hasta llegar a una aproximado de ~3–4 kg con su r espectiva i dentificación. Estos f ragmentos d eben d e est ar frescos, si n meteorización ni vetillas mineralizadas para evitar cualquier tipo de alteración hidrotermal o de intemperismo que altere la composición química inicial. También se h ace la recolección de una muestra de mano representativa y o tro fragmento de roca adecuado p ara realizar una sección delgada de la muestra para su posterior estudio petrográfico. Las láminas delgadas se realizaron en

el Taller de Laminación del Centro de Geociencias (UNAM), con un total de 36 láminas delgadas utilizadas para este trabajo.

La sep aración y car acterización de l os z ircones se r ealizó en e l Laboratorio d e Caracterización Mineral del Centro de Geociencias (CarMinLab-UNAM), en donde las técnicas aplicadas s e enumerarán a c ontinuación: (1) t rituración d e l os f ragmentos d e muestra co n l a quebradora de quijadas, en donde se logra obtener dos fracciones de la muestra mediante tamizado (malla 60), una fracción granulométrica mayor a 0.250 mm y otra menor a 0.250 mm; (2) lavado con ag ua d e l a f racción que pa sa la m alla 60 (<0.250 mm) y pos terior s ecado en hor no d e laboratorio; (3) separación de minerales magnéticos, paramagnéticos y no magnéticos, mediante el separador m agnético t ipo "Frantz" modelo L B-1; (4) técnica de l íquido pe sado, e n donde l a fracción de muestra no magnética es pasada por Ioduro de Metileno (MEI: *Methylene Iodide*), cuya densidad es de ~3.33 gr/cm³, obteniendo una concentración de minerales mayores a la densidad del MEI por decantación. El zircón, con una densidad de ~4.66 gr/cm³ (Finch y Hanchar, 2003), estará contenido en dicha concentración decantada, la cual fue guardada en pequeños viales de vidrio para su posterior selección y montaje.

La caracterización de los zircones por cada muestra comienza con su selección y montaje a mano, luego de la técnica de líquido pesado (MEI). Alrededor de más de cien granos de zircón de cada muestra fueron seleccionados cuidadosamente bajo una lupa binocular, en donde se eligen varias poblaciones de zircones representativos (tamaño, forma y color), para después ser montados de f orma l ineal s obre una s uperficie a dhesiva, que pos teriormente, por m edio de un m olde cilíndrico (~2.5 cm d e d iámetro), se co loca la m ezcla d e resina ep óxica en el cu al quedarán cubiertos los zircones. Seguidamente, la probeta es d esbastada con papel de lija (#1500 y 3000) hasta ex poner l a su perfície l o m ás cer cana p osible a l a mitad ecu atorial d e los zi rcones, enfocándonos en los de menor tamaño y procurando evitar la pérdida de algún grano durante este proceso.

Se obtuvieron fotografías de luz transmitida y reflejada para cada una de las filas de zircones de cada muestra, utilizando un microscopio petrográfico convencional marca Olympus BX41-P. La finalidad de fotografiar los zircones por medio de luz transmitida es principalmente reconocer inclusiones fluidas, de apatito y/u otras fases minerales dentro de los zircones, así como también fracturas y/o alteraciones internas. Las fotografías de luz reflejada nos permiten apreciar fracturas o discontinuidades en la superficie expuesta de los zircones.

Las probetas con zircones correspondientes a cada muestra, fueron recubiertas con una película muy delgada de carbón, utilizando el equipo SANYU QUICK CARBON COATER SC-701C, con el fin de poder obtener imágenes de catodoluminiscencia por medio de un microscopio electrónico de ba rrido (SEM: *Scanning E lectron M icroscope*), de m arca H itachi y m odelo S -3100H con detector d e c atodoluminiscencia marca K E D evelopments m odelo C entaurus (300–650 nm) (imágenes SEM-CL), en el Laboratorio de Caracterización Mineral (CarMinLab) del C entro de Geociencias (UNAM).

3.2 Caracterización de zircones por medio de imágenes de catodoluminiscencia para análisis geocronológico U-Pb

Las imágenes de catodoluminiscencia se obtuvieron con la finalidad de poder caracterizar los zircones obtenidos en cada muestra. Una de las características más importantes de observar es la variación en la zonación, la cual corresponde a los dominios de crecimiento de carácter ígneo para el caso de las muestras en este estudio, así como también la presencia de núcleos heredados con evidencias de texturales de reabsorción y en otros casos, modificaciones en la zonación oscilatoria por efecto de calentamiento (metamorfismo e hidrotermalismo) posterior (e.g. Schaltegger et al. (1999)) que hayan su frido los zircones según sea el caso. En conjunto con las imágenes de luz transmitida y reflejada, se hace la elección de los sitios potenciales para los análisis de U-Pb. En el Apéndice B.3 se observan las tiras de imágenes de catodoluminiscencia correspondiente a cada muestra, en d'onde se t ienen u bicados l os puntos d e ab lación el egidos para cada secuencia d e análisis U -Pb, c omo t ambién para l a se cuencia u sada en los an álisis isotópicos e n H f. Esta información a portada por todas estas i mágenes, es u na herramienta que no so lo si rve para la elección de los puntos de ablación, sino también para la interpretación de los análisis U-Pb en la determinación de edades de cristalización de las muestras, edades de sus núcleos heredados y las edades de otros eventos magmáticos y/o metamórficos que pudieron haber afectado a las rocas bajo estudio.

La luminiscencia en minerales se debe a la excitación por electrones, iones o rayos X que inciden sobre la muestra. La catodoluminiscencia es causada por un electrón incidente que excita un electrón de la muestra a un estado de mayor energía (Marshall, 1988). Después de permanecer en ese nivel de energía más alto por un corto tiempo, el electrón vuelve a un nivel más bajo y emite la energía perdida como un fotón. Son posibles diferentes transiciones: el electrón puede volver al estado fundamental directamente o mediante niveles de energía intermedios. Marshall (1988) ha proporcionado i nformación de tallada s obre e l c omportamiento d e l os e lectrones durante l a

excitación. Tales efectos de luminiscencia son posibles solo si la configuración de los niveles de energía permite tales interacciones. Las transiciones de átomos excitados a niveles de energía más altos no son pos ibles e n materiales conductores co mo los metales, por lo que no se produce catodoluminiscencia.

La catodoluminiscencia es un caso particular de luminiscencia en que la fuente de excitación son electrones. La catodoluminiscencia se produce sólo en el caso de que la estructura cristalina afectada presente algún tipo de defecto, entre los que cabe citar alguno de los siguientes: a) no estequiometria, b) imperfecciones estructurales (desorden, destrucción por radiación, destrucción por impacto), c) impurezas substitucionales o intersticiales que distorsionen la red cristalina. Es común que los cristales naturales presenten defectos, que actuarán como zonas en que se absorbe de forma preferente la energía del haz de electrones. De ese modo, los dominios de imperfección se convierten en centros de luminiscencia (Melgarejo *et al.*, 2010).

3.3 Geocronología U-Pb en zircones por LA-ICPMS

Los análisis geocronológicos de U-Pb en zircón se realizaron mediante la técnica de ablación láser y espectrometría de masas con plasma acoplado inductivamente (LA-ICP-MS: *Laser Ablation Inductively Coupled Plasma Mass Spectrometry*), marca Thermo, modelo ICap Qc, integrado a un sistema de ablación láser de excímeros, marca ASI (antes Resonetics), modelo Resolution M050, ubicado en el Laboratorio de Estudios Isotópicos (LEI), dentro del Centro de Geociencias (CGEO), UNAM.

Previo a la medición isotópica, las muestras (probeta con zircones) se limpiaron con HNO₃ 1M con la finalidad de eliminar o minimizar cualquier posible contaminación por la presencia de Pb común en la superficie de los granos. Primeramente, el haz del láser incide sobre la superficie del cristal con una energía de ~130–140 mJ y a una tasa de repetición de 5 Hz, creando un hoyo provocado por la volatilización de un á rea del zircón (*spot* o punto de análisis) de ~23 μ m de diámetro y de ~6 a 7 μ m de profundidad para obtener un total de ~2.5 ng de masa ablacionada durante cada an álisis. La ablación se lleva a cabo por 30 s egundos con el fin de minimizar la profundidad de l hoyo de a blación y, de la misma manera, el f raccionamiento e lemental. Posteriormente, el m aterial a blacionado (v aporizado) es e vacuado de l a ce lda d e ab lación y transportado al espectrómetro de masas en un flujo de He (350 ml) y N₂ (4.5 ml) mezclado con gas Ar (flujos de gas optimizados diariamente) para después ser analizado (Solari *et al.* (2017)).

Dos zircones estándares ampliamente utilizados fueron empleados para este trabajo: 91500 (1065.4 \pm 0.6 Ma, Wiedenbeck *et al.* 1995) y Pleŝovice (337.13 \pm 0.37 Ma, Sláma *et al.* 2008). En el caso de los análisis en zircones, una secuencia típica de medición por ablación láser en el LEI inicia con el análisis de dos muestras de referencia certificada (vidrios estándar NIST SRM 610), seguido por cinco análisis de zircón estándar 91500 y tres análisis del zircón estándar Pleŝovice, para luego hacer la medición de diez análisis de zircón estándar Pleŝovice sucesivamente, finalizando con dos análisis de los zircones estándares Pleŝovice y 91500 y un análisis del vidrio estándar NIST SRM 610.

Para la reducción de los datos se u só el software de análisis de datos científicos "Igor Pro (6.37)", trabajando e n c onjunto c on l os pr ogramas "VisualAge (2013.02)" (Petrus y K amber (2012)) y "Iolite (2.5)" (Paton *et al.*, 2011). Las edades fueron calculadas y graficadas en diagramas de concordia empleando el programa computacional "Isoplot (3.0)" usado como complemento en Excel (Ludwig, 2003).

3.4 Método analítico Lu-Hf en zircón por LA-MC-ICPMS

Después de realizar los análisis isotópicos de U-Pb en los zircones elegidos de cada muestra, se realizó la selección de puntos para Hf, enfocados en los zircones que se tomaron en cuenta para el cálculo de la edad de la roca correspondiente, colocando un *spot* de 44 µm sobre el mismo punto anterior de ablación U-Pb o, si el zircón era lo suficientemente grande, y contaba con ambos bordes en punta, s e colocaba el punto de ablación para Hf en el lugar opuesto a la ablación de U-Pb, ocupando e l m ismo do minio de finido m ediante las i mágenes d e ca todoluminiscencia. Para la isotopía de Hf se utilizó un espectrómetro de masas de multicolección de plasma inductivamente acoplado, marca Thermo, modelo Neptune Plus. El análisis isotópico de Lu-Hf se realizó también en el LEI, ubicado en el CGEO de la UNAM.

Las m edidas i sotópicas d e L u-Hf de z ircones f ueron obt enidas en modo e stático e n l os detectores de Faraday obteniendo simultáneamente ¹⁷²Yb, ¹⁷³Yb, ¹⁷⁵Lu, ¹⁷⁶Lu-Hf-Yb, ¹⁷⁷Hf, ¹⁷⁸Hf, ¹⁷⁹Hf y ¹⁸⁰Hf. Cada ablación tuvo una duración de 60 segundos, empleando una tasa de repetición de 5 Hz y una fluencia o densidad de energía de 6 J/cm². Se utilizaron 350 ml de He como gas portador, a los que se agregaron 11 ml de N₂ justo después de la célula de ablación pero antes de la mezcla con gas Ar (aproximadamente 960 ml). Los blancos de gas se midieron antes de cada
análisis sin el disparo del láser y luego se restaron de la señal principal en el estadio de reducción de datos (Ortega-Obregón *et al.*, 2014).

Para los análisis de Hf, el fraccionamiento por profundidad es considerado nulo, por lo que la manera de hacer las correcciones consiste en analizar una serie de zircones sintéticos llamados MUN (Fisher *et a l.*, 2011), q ue c ontienen d iferentes can tidades co nocidas d e t ierras r aras, alternados con los zircones desconocidos para monitorear y, si es el caso, corregir el *drift* o deriva instrumental. A dicionalmente, se a nalizan est ándares secu ndarios que si rven co mo co ntrol de calidad. Posteriormente, la secuencia de análisis inicia con 2 puntos de control en el estándar 91500 seguido por 4 en el zircón artificial MUN; a continuación se analizan 15 zircones desconocidos seguidos por uno de l estándar 91500 y los cuatro MUN, y así sucesivamente hasta terminar las muestras (Juárez-Zúñiga, 2016).

Los f actores m ás i mportantes q ue deben co ntrolarse p ara obtener d atos g eológicamente significativos son la forma en que se monitorean y corrigen los fraccionamientos de masas y las interferencias. Las correcciones de interferencia son cruciales, ya que ¹⁷⁶Hf es inferido mediante ¹⁷⁶Lu y ¹⁷⁶Yb, a mbos na turalmente pr esentes en e l zircón, y s u c ontenido de be ser e valuado correctamente y t omado en cu enta. Para el Lu, l a ex istencia d e u n so lo isótopo l ibre d e interferencias isobáricas, ¹⁷⁵Lu, no permite calcular un factor de corrección de fraccionamiento de masas adecuado. En este caso, se midieron ¹⁷⁵Lu y se utilizó la relación conocida de ¹⁷⁶Lu/¹⁷⁵Lu = 0.02656 (Blichert-Toft y Albarède, 1997), junto con β Yb, asumiendo que Lu fraccione como Yb. Para Y b, ha y di sponibles t res isótopos s in interferencias, que i ncluyen, ¹⁷¹Yb, ¹⁷²Yb y ¹⁷³Yb. Medimos ¹⁷²Yb, ¹⁷³Yb, los dos isótopos más a bundantes, y utilizamos la relación conocida de ¹⁷⁶Yb/¹⁷³Yb = 0.79618 (Chu *et al.*, 2002) para estimar los otros isótopos de Hf (Ortega-Obregón *et al.*, 2014).

La constante de decaimiento de ¹⁷⁶Lu utilizada es de 1.867 x 10⁻¹¹ años⁻¹, según Scherer *et al.* (2001) y Söderlund *et a l.* (2004). Cabe señ alar que en 1a actualidad existen diversos v alores propuestos para la constante de decaimiento y sus limitaciones en las edades modelo de Hf en zircones, los cuales se explican en Arvizu e Iriondo (2011). Para este trabajo se emplean los valores del reservorio uniforme condrítico (CHUR: *Chondritic Uniform Reservoir*), ¹⁷⁶Hf/¹⁷⁷Hf = 0.282785 y ¹⁷⁶Lu/¹⁷⁷Hf = 0.0336 de Bouvier *et al.* (2008). Los valores del manto empobrecido (DM: *Depleted Mantle*) son ¹⁷⁶Hf/¹⁷⁷Hf = 0.28325 y ¹⁷⁶Lu/¹⁷⁷Hf = 0.0384 tomados de Griffin *et al.* (2000). Estos

datos fueron empleados para el cálculo de los valores de $\epsilon Hf_{(0)}$ (épsilon Hf hoy), $\epsilon Hf_{(t)}$ (épsilon Hf inicial) y edades modelos.

Las ed ades modelo so n co múnmente u sadas p ara es timar el t iempo de sep aración de u n fundido de un r eservorio d e r eferencia, es d ecir, el m anto em pobrecido (DM) o el reservorio uniforme condrítico (CHUR). Idealmente, las edades modelo Nd en roca total marcan el tiempo de separación de un fundido del reservorio del manto empobrecido. Tal "edad de formación cortical" tiene que estar relacionada a información geoquímica o geocronológica de la roca antes de que esta edad pueda ser interpretada en un contexto geológico pertinente (Nebel *et al.*, 2007).

Las edades modelo a u n paso (T_{DM}) proporcionan solo una edad mínima para la fuente del magma a partir del cual el zircón ha cristalizado. Por lo tanto, también se ha calculado, para cada zircón, una "edad modelo cortical" (edades modelos a dos pasos), la cual asume que la fuente del magma fue producida de una corteza continental promedio (máfica (T_{DM1}^C), intermedia (T_{DM2}^C) o félsica (T_{dm3}^C)) que inicialmente fue derivada del manto empobrecido. Las edades modelo de Hf a dos pasos fueron calculadas para la roca fuente del magma asumiendo valores de ¹⁷⁶Lu/¹⁷⁷Hf = 0.022 de un a corteza máfica promedio (Vervoot y P atchett, 1996), ¹⁷⁶Lu/¹⁷⁷Hf = 0.015 de una corteza intermedia promedio (Griffin *et al.*, 2002) y, por último, ¹⁷⁶Lu/¹⁷⁷Hf = 0.010 de una corteza félsica promedio (Amelin *et al.*, 1999).

Por otro lado, las edades U-Pb registran el tiempo de cristalización de un magma y eventos de metamorfismo, mientras que las edades modelo H f en zi rcones so n u na medida de la e dad de residencia cortical o e l tiempo promedio de sde que la fuente de l magma de l cu al los z ircones cristalizaron fue extraída de un reservorio mantélico específico, usualmente el manto empobrecido. De este modo, las edades U-Pb en zircones no proporcionan información evidente sobre si la nueva corteza formada en tal evento magmático es juvenil o retrabajada (Kemp *et al.*, 2006; Zheng *et al.*, 2006). Consecuentemente, al relacionar estas edades modelo H f con las edades de cristalización U-Pb permite investigar la conexión temporal entre las edades de los episodios importantes de actividad ígnea y la formación y crecimiento de nueva corteza juvenil (Zhang *et al.*, 2006), 2006c).

Para las muestras de este trabajo se realizaron análisis isotópicos de Lu-Hf enfocados en los zircones más concordantes y tomados en cuenta para el cálculo de la edad media ponderada o intersecciones superiores en los casos que apliquen. Para la selección de los puntos de ablación se prestó atención al tamaño del zircón, ya que el spot de ablación para Lu-Hf es mucho más grande

(~44 µm) que el utilizado para el análisis de U-Pb (~23 µm). Posteriormente a la obtención de las relaciones isotópicas medidas en los zircones, se calculó el ϵ Hf₍₀₎ y la edad modelo a un paso (T_{DM}) para cada zircón, para luego, calcular el ϵ Hf₍₁₎ y las edades modelos a dos pasos (T_{DM1}^C, T_{DM2}^C y T_{DM3}^C). Por último, se realizaron medias ponderadas para los valores de ¹⁷⁶Hf/¹⁷⁷Hf, ϵ Hf₍₀₎, ϵ Hf_(t) y promedios de las edades modelos T_{DM}, T_{DM2}^C, utilizando estos datos ya que uno representa la edad mínima para la fuente del magma a partir del cual el zircón ha cristalizado (T_{DM}) y el otro representa la fuente del magma que fue producida de una corteza intermedia continental promedio (T_{DM2}^C).

Capítulo 4. Resultados petrográficos

La clasificación principal realizada a las rocas utilizadas para este estudio es d e carácter textural, observando así, r ocas g néisicas y g raníticas, para posteriormente cl asificarlas petrográficamente de acuerdo a su mineralogía (minerales primarios, secundarios y accesorios), texturas ígneas y metamórficas (Tabla 4.1 y Figura 4).

Tabla 4.1. Clasifi Muestra	icacion petrografica y asociaciones minerales de rocas gran Nombre de la roca	niticas al suroeste de EUA y Minerales primarios	noroeste de México. Minerales secundarios	Minerales accesorios
Ajo-2	Gneis granítico de biotita rico en cuarzo	Qtz+PI	Bt	Ms+Chl+Min.Op.+Zrn
Chpass-01	Gneis granítico feldespático microclínico de biotita	Afs+Qtz	Bt+Ttn	Ms+Zm+Min.Op.
Ajo-3	Gneis monzogranítico de biotita	Afs+PI+Qtz	Bt+Ttn	Hbl+Ser+Zrn+Min.Op.
Cabeza-9	Gneis monzogranítico de biotita	Qtz+PI+Afs	Bt	Chl+Ms+Zrn+Min.Op.
Gila-01	Gneis monzogranítico de dos micas	Qtz+Afs+PI	Bt+Ms+Cpx	Ttn+Ser+Zrn+Min.Op.
QTB-3	Gneis monzogranítico melanocrático de biotita	Afs+PI+Qtz	Bt+Ttn+Cpx	Chl+Min.Op.+Zm
Lewis-01	Gneis sienogranitico de biotita	Afs+Qtz+PI	Bt+Ttn	Ms+Ser+Min.Op.+Zrn
Wilton-02	Gneis sienogranítico de biotita	Afs+ PI+Qtz	Bt+Ttn	Zm+Cpx+Zm+Min.Op.
QTB-6	Gneis sienogranítico de biotita	Afs+Qtz+Pl	Bt	Ms+Zm+Min.Op.
Pilotknob	Gneis sienogranítico de biotita	Afs+Qtz+PI	Bt+Ms	Min.Op.+Cal+Cpx+Ttn+Zrn
Cabeza-11	Gneis sienogranítico de biotita	Afs+Qtz+PI	Bt	Ttn+Zrn+Min.Op.
Espanto-2	Gneis sienogranítico de biotita	Afs+Qtz+PI	Bt	Ms+Zm+Min.Op.
Telegraph	Gneis sienogranítico de biotita	Afs+Qtz+Pl	Bt+Ttn+Cpx	Ap+Ser+Zrn+Min.Op.
Welton-E	Gneis sienogranítico de biotita	Afs+Qtz+PI	Bt+Chl	Zm+Min.Op.
McDonalds	Gneis sienogranítico melanocrático de dos micas	Qtz+Afs+Pl	Bt+MS	Cpx+Chl+Ttn+Ser+Ztn+Min.Op.
Cooper	Gneis tonalítico	Qtz+PI+Afs	Bt+Ms+Cpx	Ttn+Ser+Grt+Zrn+Min.Op.
Mohawk-1	Gneis tonalítico anfibolítico de dos micas	PI+Qtz	Bt+Ms+Cpx+Chl	Ser+Zm+Hbl+Ttn+Min.Op.
14-1/2	Gneis tonalítico de biotita	Qtz+Pl+Afs	Bt+Ttn	Zrn+Min.Op.
Cucapah-1	Gneis tonalítico de dos micas	PI+Qtz	Bt+Ttn+Ms	Zm+Chl+Hbl+Ser+Min.Op.
QTB-1	Monzogranito de biotita	Qtz+PI+Afs	Bt+Chl+Hbl	Ser+Zm+Ttn+Min.Op.
Bettylee	Monzogranito de biotita	Pl+Afs+Qtz	Bt+Hbl+Ttn	Ser+Zm+Ms+Min.Op.
Mohawk-3	Monzogranito de dos micas	Afs+Pl+Qtz	Bt+Ms	Ser+Zrn+Min.Op.
Tinajas	Monzogranito de dos micas	PI+Qtz+Afs	Bt+Ms	Ttn+Min.Op.+Chl+Zm
Tinajas-4	Monzogranito de dos micas	Afs+PI+Qtz	Bt+Ms	Ser+Zrn+Min.Op.
Drifthills	Monzogranito leucocrático de biotita	Qtz+PI+Afs	Bt	Ser+Zrn+Min.Op.
Gila-2	Monzogranito leucocrático de biotita	Qtz+PI+Afs	Bt+Ttn	Ser+Zm+Min.Op.
Tinajas-1	Monzogranito leucocrático de dos micas	Qtz+Afs+PI	Bt+Ms	Chl+Zm+Ttn+Min.Op.
Tinajas-2	Pegmatita granítica feldespática de microclino	Afs+Pl+Qtz	Bt+Ms	Zrn+Min.Op.
Choya	Sienogranito de biotita	P1+Qtz+Afs	Bt+Ttn	Chl+Zm+Min.Op.
ADN-01	Sienogranito de dos micas	Afs+Qtz+PI	Bt+Ttn+Ms	Min.Op.+Hbl+Cal+Zrn
Ajo-4	Sienogranito leucocrático de biotita	Afs+Qtz+PI	Bt	Chl+Min.Op.+Zm+Ttn
Aztec-02	Sienogranito leucocrático de dos micas	Afs+Qtz+PI	Ms+Bt	Ser+Zrn+Min.Op.
SR-7	Sienogranito leucocrático de dos micas	PI+Qtz+Afs	Bt+Ms	Chl+Zm+Ttn+Min.Op.
SR-3	Sienogranito leucocrático de dos micas	P1+Qtz+Afs	Bt+Ms	Chl+Zm+Ttn+Min.Op.
Pinta	Sienogranito leucocrático de dos micas	Afs+Qtz+PI	Bt+Ms	Zm+Hbl+Min.Op.
Chop-3	Tonalita de dos micas	P1+Qtz+Afs	Bt+Ttn+Ms	Chl+Cpx+Zm+Min.Op.
Abreviaciones: A) Ms = Moscovita, 1	is = Feldespato Alcalino, PI = Plagioclasa, Qtz = Cuarzo, E Ser = Sericita, Hbl = Hornblenda, Grt = Granate, Chl = Ck	Bt = Biotita, Ttn = Titanita (l orita, Ap = Apatito, Cal = Cô	Estena), Zm = Zircón, Cpx = ulcita	Clinopiroxeno, Min. Op. = Minerales
Lat. = Latitud, LA	ong. = Longitua. DATUM WU364			

Figura 4. Clasificación y nomenclatura para las rocas graníticas de este estudio de acuerdo al contenido mineral modal según IUGS utilizando el diagrama del doble triángulo QAPF basado en Streckeisen (1976). Puntos y letras de color rojo son de textura gnéisica y las de color verde son graníticas.

4.1 Gneis granítico de biotita rico en cuarzo

La muestra A jo-2 c orresponde a un gne is granítico de biotita r ico e n c uarzo c uyos componentes minerales principales son el cuarzo (52%) y la plagioclasa (23%), sin participación de feldespato alcalino en la sección. Los cristales presentan una fábrica anhedral con un tamaño que varía entre 2 a 0.5 mm. Los cristales de cuarzo presentan extinción ondulatoria y di versos cristales de plagioclasa están alterando a sericita y algunos otros conservan sus maclas tipo Albita.

La roca presenta una foliación incipiente en donde las bandas máficas más oscuras están constituidas por biotita y anfíbol como mineral accesorio (Figura 4.1A). Petrográficamente, los granos de biotita se encuentran orientados en dirección a la foliación incipiente y la plagioclasa se

encuentra alterada a sericita (Figura 4.1B). Algunos cristales de biotita se encuentran alterando a clorita.

Figura 4.1. Características representativas del gneis granítico de biotita rico en cuarzo. (A) Muestra de mano del gneis granítico de biotita rico en cuarzo. (B) Microfotografía de sección delgada de la muestra Ajo-2 en donde se muestra la abundancia de granos de cuarzo, los granos de plagioclasa alterados a sericita y los granos de biotita orientados en el sentido de la foliación incipiente en la roca.

4.2 Gneis granítico feldespático microclínico de biotita

La muestra Chpass-1 corresponde a un gneis granítico feldespático microclínico de biotita cuyos componentes minerales principales son el microclino (49%), que en muestra de mano se ven de color rosa, el cuarzo (38%) de color gris claro y la plagioclasa (5%) de color blanco con el menor porcentaje de composición. La r oca p resenta u na f oliación i ncipiente cu yas ca pas oscuras corresponden a minerales de biotita (Figura 4.2A).

Los cristales presentan una fábrica anhedral, en donde los cristales de cuarzo tienen tamaños no mayores a 0.2 mm y los cristales de plagioclasa y m icroclino s uperan los 2 mm. Algunos cristales de plagioclasa están alterando a sericita y preservan maclado tipo Albita. Los cristales de biotita se encuentran deformados (Figura 4.2B).

Figura 4.2. Características representativas del gneis granítico feldespático microclínico de biotita. (A) Muestra de mano del gneis granítico feldespático microclínico de biotita. (B) Microfotografía de sección delgada de la muestra Chpass-1 en donde se muestran los minerales de microclino y cuarzo en abundancia. La plagioclasa se encuentra ligeramente alterada a sericita.

4.3 Gneises monzograníticos

Dentro de esta clasificación petrográfica se tienen gneises monzograníticos de biotita (Ajo-3 y C abeza-9), un gneis monzogranítico d e d os micas (Gila-01) y un gne is monzogranítico melanocrático d e biotita (QTB-3). Estos g neises se ca racterizan p or p resentar b andas máficas constituidas en su mayoría por biotita y moscovita y bandas cuarzo-feldespáticas (leucocráticas). Los porcentajes modales promedio de feldespato alcalino, plagioclasa y cuarzo son de 9, 23 y 31% respectivamente.

En general las rocas presentan minerales accesorios diversos como zircón, titanita, clorita, sericita y minerales opacos. El tamaño promedio de los cristales de cuarzo, plagioclasa y biotita es 0.8 m m, mientras que 1 os cristales de feldespato a lcalino (microclino en algunos caso s) y de moscovita no superan los 0.5 m m. Los cristales de cuarzo presentan extinción ondulatoria y los cristales de plagioclasa tienen maclado tipo Albita (Figura 4.3).

Figura 4.3 Características r epresentativas de los gneises monzograníticos. (A) Afloramiento c orrespondiente a la muestra QTB-3. (B) Muestra de mano de gneis monzogranítico de biotita (Cabeza-9). (C) Muestra de mano de gneis monzogranítico de biotita (Ajo-3). (D) Microfotografía en nicoles cruzados de sección delgada de la muestra Cabeza-9 mostrando la orientación de los minerales de biotita (Bt) rodeando a los granos de feldespato alcalino alterados y cuarzo. (E) Microfotografía en nicoles cruzados de sección delgada de muestra las micas de muscovita (Ms) y biotita y un grano de plagioclasa (Pl) con maclado tipo Albita. (F) Microfotografía en nicoles cruzados de sección delgada de los granos de Ms, Bt y Pl en comparación a los granos de cuarzo (Qtz).

4.4 Gneises sienograníticos

Los gneises sienograníticos en general tienen mayor contenido de minerales félsicos (0.5 a 1 m m). P resentan b andas máficas constituidas p rincipalmente p or b iotita y minerales o pacos. Petrográficamente, las microclinas son los que poseen un mayor porcentaje modal promedio de ~45%, seguido por los cristales de cuarzo con un porcentaje modal promedio de ~24% y en menor porcentaje, los cristales de plagioclasa con ~16%. La plagioclasa se encuentra ligeramente alterada a sericita, algunas biotitas alteradas a clorita y texturas mimerquíticas, que son características en aquellas zo nas en d onde l a p lagioclasa e stá en contacto con el f eldespato a lcalino y ex iste crecimiento de cuarzo vermicular. En algunos casos se aprecian cristales de titanita fracturados (Figura 4.4).

4.5 Gneises tonalíticos

Los gne ises tonalíticos se caracterizan pe trográficamente por tener un promedio modal aproximado de ~42% de cuarzo, ~31% de plagioclasa y ~3% de feldespato alcalino, además de minerales como biotita, moscovita, clinopiroxeno y titanita en menor proporción. Los cristales de biotita se encuentran orientados en sentido de la foliación de la roca y algunos otros cristales de biotita tienen porciones alteradas a clorita y extinción ondulatoria. Los cristales de plagioclasa presentan maclado tipo Albita y Carlsbad-Albita. Los cristales de cuarzo tienen una extinción ondulatoria (Figura 4.5).

4.6 Monzogranitos

Las rocas monsograníticas en est e estudio presentan porcentajes modales promedios de plagioclasa, cuarzo y feldespato alcalino de 32, 26 y 19% respectivamente. Rocas holocristalinas, faneríticas y entre subhedrales y anhedrales, con tamaños de grano de medio a grueso (mayores a 1 mm). Lo minerales accesorios presentes en las rocas en su mayoría son titanitas, zircón, sericita y m inerales opa cos. Están c aracterizados po r su c ontenido de bi otita y en al gunos caso s d e muscovita. Los cristales de plagioclasa presentan maclado tipo Carlsbad y Albita (Figura 4.6).

Figura 4.4 Características representativas de los gneises sienograníticos. (A) Afloramiento de la muestra QTB-6 en contacto con gneis bandeado máfico. (B) Afloramiento de Augengneis de la muestra Cabeza-11. (C) Muestra de mano del gneis sienogranítico Espanto-2. (E) Microfotografía de sección delgada de la muestra Telegraph en donde se aprecia la textura mimerquítica entre granos de plagioclasa (Pl) y feldespato alcalino (Afs). (F) Microfotografía de sección delgada de la muestra Lewis-01 mostrando un cristal de titanita (Ttn) fracturado junto a cristales de biotita (Bt).

Figura 4.5. Características representativas de los gneises tonalíticos. (A) Muestra de mano del gneis tonalítico Cooper. (B) Muestra d e mano d e g neis tonalítico de dos micas (Cucapah-1). (C) Muestra d e mano d e g neis tonalítico anfibolítico de dos micas (Mohawk-1). (C) Microfotografía en nicoles cruzados de sección delgada de la muestra Mohawk-1 en donde se aprecian los cristales de biotita orientados junto con los cristales de clinopiroxeno (Cpx). (E) y (F) Microfotografía en nicoles cruzados de sección delgada de la muestra los cristales de biotita orientados y cristales de clinopiroxeno alterados.

Figura 4.6 Características representativas de las rocas monzograníticas. (A) Afloramiento de rocas monzograníticas en la Sierra Tinajas, al suroeste de Arizona. (B) Afloramiento de monzogranito en la Sierra Quitobaquito Hills (QTB-1). (C) Muestra de mano de monzogranito de dos micas (Tinajas-4). (C) Muestra de mano de monzogranito leucocrático de biotita (Drifthills). (E) Microfotografía en nicoles cruzados de sección delgada de la muestra Drifthills, en donde se aprecian c ristales d e m icroclino (Afs), cu arzo (Qtz), plagiclasa (Pl), biotita (Bt) y moscovita (Ms) l igeramente deformadas. (F) Microfotografía en nicoles cruzados de sección delgada de la muestra Gila-2, mostrando en contacto al microclino, cuarzo y plagioclasa con un maclado tipo Albita y en el centro el crecimiento de un cristal de titanita fracturado.

4.7 Pegmatita granítica feldespática de microclino

La muestra Tinajas-2 corresponde a una pegmatita granítica colectada en la Sierra Tinajas, al suroeste de Arizona. El tamaño de los granos es superior a 1 cm, holocristalinos y subhedrales. El porcentaje modal de microclino, cuarzo y plagioclasa es de 5, 30 y 10% respectivamente. Los cristales de plagioclasa presentan maclado tipo albita y textura mimerquítica (Figura 4.7).

Figura 4.7 Características representativas de la roca pegmatítica granítica feldespática de microclino. (A) Afloramiento en campo de la muestra Tinajas-2 correspondiente a un dique pegmatítico en la Sierra Tinajas, suroeste de Arizona. (B) Muestra de mano de pegmatita granítica feldespática de microclino (Tinajas-2). (C) Microfotografía en nicoles cruzados de sección delgada de la muestra Tinajas-2 en donde se aprecian, en gran tamaño, los cristales de microclino, cuarzo y plagioclasa.

4.8 Sienogranitos

Las r ocas s ienograníticas en su mayoría t ienden a ser l eucocráticas y d e d os micas, holocristalinas, faneríticas y subhedrales. Presentan cristales con un rango de tamaño entre 0.5 mm a 1 mm y con un porcentaje modal promedio de feldespato alcalino, cuarzo y plagioclasa de 43, 24 y 20% r espectivamente. Mi nerales secundarios b iotita, t itanita y muscovita y co mo minerales accesorios, clorita, zircón, clinopiroxeno y minerales opacos. Algunos cristales de cuarzo tienen extinción o ndulatoria. Los cr istales d e p lagioclasa p resentan u n m aclado p ericlina y t extura mimerquítica (Figura 4.8).

4.9 Tonalita de dos micas

La muestra Chop-3 corresponde a una tonalita de dos micas ubicado en la frontera entre EUA y México, al sureste de San Luis Río Colorado. El tamaño de los granos varía entre 0.2 mm a 2 mm, holocristalinos, faneríticos y subhedrales. El porcentaje modal de la plagioclasa, cuarzo y feldespato alcalino es 45, 30 y 5% respectivamente. Minerales secundarios como biotita, titanita y muscovita y minerales a ccesorios como clorita, clinopiroxeno, zi rcón y minerales o pacos. Los cristales de plagioclasa tienen maclado tipo Carlsbad-Albita y se encuentran ligeramente alterados a sericita (Figura 4.9).

Figura 4.8 Características representativas de las rocas sienograníticas. (A) Afloramiento en Sierra Pinta, suroeste de Arizona, EUA. (B) Muestra de mano de sienogranito leucocrático de dos micas (Pinta). (C) Muestra de mano de sienogranito leucocrático de dos micas (SR-7) localizado al noroeste de Sonora. (C) Muestra de mano de sienogranito de biotita (Choya) en la localidad de Puerto Peñasco, noroeste de Sonora. (E) Microfotografía en nicoles cruzados de sección delgada de la muestra Pinta, en donde se aprecia la alteración intragranular a minerales de biotita o muscovita. (F) Microfotografía en nicoles cruzados de sección delgada de la muestra Choya mostrando un cristal de cuarzo con extinción ondulatoria y un cristal de titanita.

Figura 4.9 Características representativas de la roca tonalítica de dos micas. (A) Muestra de mano de tonalita de dos micas (Chop-3) recolectada al sureste de San Luis Río Colorado, noroeste de Sonora. (B) Microfotografía en nicoles cruzados de sección delgada de la muestra Chop-3 en donde se aprecian los cristales de biotita, cuarzo, plagioclasa y anfíbol alterado en el centro de la imagen.

Capítulo 5. Resultados geocronológicos U-Pb en zircón

En este trabajo se realizaron estudios geocronológicos U-Pb en zircón de un total de 41 muestras. Dichos estudios fueron realizados por etapas; una primera etapa enfocada en conocer la edad de cristalización de las rocas graníticas proterozoicas; la segunda etapa consistió en obtener la edad de cristalización de rocas graníticas cretácicas; y una tercera etapa enfocada en obtener la edad de los núcleos heredados en las rocas graníticas cretácicas. Las 40 muestras incluyen, 22 muestras, en su m ayoría g neises, con e dades pa leoproterozoicas y 2 muestras c on ed ades mesoproterozoicas. Los datos ge ocronológicos de las muestras Z cen09-38 y M in09-07 fueron tomadas del trabajo de García-Flores (2017) y los datos de las muestras Tanw09-08 y GneisCen-1 fueron t omadas de l trabajo de Arvizu-Gutiérrez (2012). También se r ealizaron est udios geocronológicos U-Pb en zircón a 16 muestras de rocas graníticas cretácicas y en su mayoría con núcleos heredados de edad paleo y mesoproterozoicas.

5.1 Resultados geocronológicos U-Pb de rocas paleo y mesoproterozoicas

A continuación, se describen los datos geocronológicos U-Pb de 4 muestras con edades paleoproterozoicas y 2 muestras de edad Mesoproterozoica, siendo estas muestras representativas en los resultados obtenidos. Los datos geocronológicos, descripciones y mosaicos con imágenes de catodoluminiscencia del resto de las muestras se presentan en el Apéndice A. La descripción de los datos geocronológicos se presenta en orden cronológico, desde la edad más antigua a la más joven (Tabla 5.1). En la Figura 5.1 se aprecia la distribución de todas las muestras proterozoicas en la zona de estudio con sus respectivas edades de cristalización.

Muestra	Nombre de la roca	Edad (Ma)
Rocas paleoprote	erozoicas	
Zcen09-38	Ortogneis cuarzo feldespático	1733 ± 6 (@#
Tanw09-08	Gneis bandeado cuarzo feldespático de biotita	1726 ± 14 @@
Min09-07	Gneis cuarzo feldespático	1720 ± 9 ^{@‡}
QTB-3	Gneis monzogranítico melanocrático de biotita	1709 ± 14 *
ADN-01	Sienogranito de dos micas	1706 ± 36 *
Wilton-02	Gneis sienogranítico de biotita	1705 ± 23 *
Ajo-2	Gneis granítico de biotita rico en cuarzo	1704 ± 14 *
Cooper	Gneis tonalítico debiotita	1695 ± 28 *
14-1/2	Gneis tonalítico de biotita	1693 ± 11 *
QTB-6	Gneis sienogranítico de biotita	1693 ± 13 *
Pilotknob	Gneis sienogranítico de biotita	1692 ± 12 *
Aztec-02	Sienogranito leucocrático de dos micas	1690 ± 10 *
Cabeza-11	Gneis sienogranítico de biotita	1689 ± 25 *
GneisCen-1	Gneis bandeado cuarzo-feldespático de biotita	1682 ± 17 @@
Gila-01	Gneis monzogranítico de dos micas	1663 ± 9 *
Espanto-2	Gneis sienogranítico de biotita	1662 ± 13 *
Telegraph	Gneis sienogranítico de biotita	1658 ± 11 *
Ajo-4	Sienogranito leucocrático de biotita	1654 ± 10 *
Ajo-3	Gneis monzogranítico de biotita	1642 ± 10 *
Cabeza-9	Gneis monzogranítico de biotita	1642 ± 14 *
Chpass-01	Gneis granítico feldespático microclínico de biotita	1639 ± 15 *
Lewis-01	Gneis sienogranitico de biotita	1636 ± 10 *
Rocas mesoprote	rozoicas	
Welton-E	Gneis sienogranítico de biotita	1427 ± 22 [‡]
McDonalds	Gneis sienogranítico melanocrático de dos micas	1412 ± 9 *

Tabla 5.1 Tabla resumen de edades U-Pb de granitoides paleo y mesoproterozoicos.

[†]Lat. = Latitud, Long. = Longitud (DATUM WGS84).

^{*}Edad ²⁰⁷Pb/²⁰⁶Pb media ponderada de zircones reportada a precisión 2 sigma.

*Edad de intersección superior de zircones reportada a precisión 2 sigma.

[@]Edad obtenida de García-Flores (2017).

^{@@}Edad obtenida de Arvizu-Gutiérrez (2012).

Figura 5.1 Mapa litológico regional del noroeste de Sonora y suroeste de Arizona. Tomado y modificado de Iriondo *et al.* (2005), mostrando la ubicación y edad de las rocas proterozoicas usadas en este estudio.

5.1.1 Gneis monzogranítico melanocrático de biotita (QTB-3)

El gneis monzogranítico QTB-3 fue recolectado en los cerros de Quitobaquito Hills, en el Parque O rgan P ipe C actus N ational Mo nument a l s uroeste de A rizona (Figura 5.1). E n e l fechamiento U-Pb realizado para esta muestra se analizaron 23 zircones, involucrando puntos de ablación tanto en bordes como en algunos núcleos para determinar la edad de cristalización de la muestra. El tamaño promedio de dichos zircones es de 100 µm; morfológicamente son prismáticos y euhedrales, en ocasiones presentando fracturas en su eje mayor e inclusiones de apatito y otras fases minerales no determinadas.

En las imágenes de catodoluminiscencia de la muestra QTB-3 se aprecia que gran parte de los zircones tienen una alta catodoluminiscencia en su núcleo, debido probablemente a un efecto de recristalización, pasando a u nos bordes con zonación típica de crecimientos concéntricos de carácter ígneo. Los valores relativamente bajos en U, en las zonas con alta catodoluminiscencia, se aprecian en los zircones 12, 13 y 16 (Figura 5.1.AC) con concentraciones de 232, 198 y 375 ppm, respectivamente (Tabla A.1); en comparación con algunos valores altos de U en los zircones 18 y 21 con 1310 ppm y 746 ppm que corresponden a zonas de baja catodoluminiscencia. Todos los zircones presentan un núcleo amplio respecto al tamaño del cristal, seguido de una o varias capas de c recimientos c oncéntricos c on catodoluminiscencia va riable, p roducto de un crecimiento magmático correspondiente a la edad de cristalización o a un evento posterior.

Los datos isotópicos de U-Pb se graficaron en un diagrama de concordia tipo Wetherill (Figura 5.1.1A) en donde sepuede apreciar una agrupación de 20 análisis (elipses de color negro) de núcleos y bordes que se emplearon para calcular una edad 207 Pb/ 206 Pb media ponderada de 1709 \pm 14 Ma (2s, MSWD = 0.75) (Figura 5.1.AB), que interpretamos como la edad de cristalización del gneis monzogranítico QTB-3 recolectado en los cerros de Quitobaquito Hills.

En el d iagrama d e co ncordia t ambién se p uede ap reciar u na d ispersión d e t res d atos concordantes con edades más jóvenes (elipses de color gris) correspondientes a los zircones 11, 8 y 21 (1558 ± 63 Ma, 1510 ± 63 Ma y 1345 ± 26 Ma, respectivamente) que, en conjunto con el resto de los datos, forman una línea de discordia con una intersección inferior con la línea de concordia a los 1337 ± 220 Ma y una intersección superior de 1719 ± 59 Ma (2s, MSWD = 1.4). Estos zircones más jóvenes son concordantes y sus datos U-Pb podrían ser interpretados como probables edades de cristalización de la muestra. Sin embargo, se observa que el zircón 21 posee un valor alto de U y baja catodoluminiscencia y en los zircones 8 y 11, se aprecia que el punto de ablación en dichos zircones 11ega a p enetrar a u na zo na d e b aja catodoluminiscencia, lo cual indica que existe un aumento en la cantidad de U a profundidad (Figura 5.1.AC). Estas observaciones nos orientan a interpretar que estos tres zircones concordantes representan una tendencia de pérdida de Pb antigua y no son tomados como edades asociadas a la cristalización de la muestra. Muchas de las muestras analizadas presentan estos efectos de pérdida de Pb asociados probablemente a eventos geológicos posteriores (magmatismo, metamorfismo y/o hidrotermalismo), que modificaron la información isotópica original de algunos de los zircones de las rocas ígneas.

5.1.2 Sienogranito de dos micas (ADN-01)

El s ienogranito A DN-01 f ue r ecolectado al o este d e D avidson H ills en A gua Dulce Mountains al suroeste de Arizona (Figura 5.1). Se escogieron 24 granos de zircón para realizar estudios de ablación y así obtener edades U-Pb tanto en bordes como en los núcleos de los cristales. Los z ircones t ienen un t amaño pr omedio de 110 μ m y pr esentan u na morfología dom inante prismática, con un e xtremo en punta y otro extremo plano y/o fracturado en un su eje principal. Varios zircones presentan fracturas internas, inclusiones fluidas, apatito y otras fases minerales no determinadas.

En l a T abla A .1 se ap recia que 1 os va lores de U va rían s egún l a c antidad de catodoluminiscencia q ue t enga l a zo na ab lacionada d el z ircón. E n l as imágenes d e catodoluminiscencia se a precia q ue a lgunos z ircones t ienen un núcleo c on muy ba ja catodoluminiscencia (e.g., zircón 13) (Figura 5.1.AF), s eguido de bor des con crecimientos c on zonación oscilatoria característica de cristalización ígnea. En algunos zircones (e.g., zircones 7, 10 y 9) se aprecia un efecto incipiente de reabsorción, ya que se logra distinguir un núcleo con bordes redondeados, seguido por la continuidad de zonación paralela a los bordes del zircón. Las zonas más oscuras tienen una cantidad de U relativamente elevada (e.g., zircón 13 con 223 ppm) respecto a las zonas más catodoluminiscentes con valores bajos de U (e.g., zircón 10 con 90 ppm).

Los datos analíticos de U-Pb fueron graficados en un diagrama de concordia tipo Wetherill (Figura 5.1.1D), en donde se puede apreciar una considerable dispersión de los datos formando una línea de discordia con zircones de edades muy variables que van desde 1047 Ma hasta 1829 Ma, generando intersecciones con la línea de concordia, una inferior a 320 ± 260 Ma y otra superior de 1706 ± 36 Ma (2s, MSWD = 3.0). Los análisis más jóvenes, y al mismo tiempo más discordantes (>5% disc.) representados con elipses de color gris, exhiben una marcada tendencia de pérdida de Pb (e.g., zircón 16 con 16% disc.). También se calculó una edad 207 Pb/²⁰⁶Pb media ponderada con los datos más concordantes (elipses de color negro) dando como resultado una edad de 1690 ± 19 Ma (2s, MSWD = 1.9, n = 12) (Figura 5.1.AE). Sin embargo, para el sienogranito ADN-01 se tomará en cuenta la edad obtenida por la intersección superior de 1706 ± 36 M a como la mejor estimación de la ed ad de cr istalización, incluyendo los datos más discordantes as ociados a la tendencia de pérdida de Pb, destacando a su vez que la edad 207 Pb/²⁰⁶Pb media ponderada es igual, dentro de los límites de error, a la edad de intersección superior calculada.

5.1.3 Gneis monzogranítico de dos micas (Gila-01)

El gneis monzogranítico Gila-01 fue recolectado en los cerros de Gila Mountains, dentro de la reserva Barry M. Goldwater Air Force Range al suroeste de Arizona (Figura 5.1). Para realizar el fechamiento U-Pb se seleccionaron 25 zircones para efectuarles ablación láser enfocados tanto en bordes como en núcleos de los granos y así obtener la edad de cristalización de la muestra. El tamaño de los zircones en promedio es de 200 μ m; morfológicamente s on a largados en su eje principal y en su mayoría presentan caras bien definidas; en algunos casos se conservan ambas puntas de los zircones. Se aprecian inclusiones de apatito y otras fases minerales no determinadas.

En las imágenes de catodoluminiscencia se aprecia que todos los zircones tienen un núcleo con una a lta c atodoluminiscencia, pasando a u nos bor des con z onación t ípica d e crecimientos concéntricos d e car ácter í gneo. L as zo nas más cat odoluminiscentes co rresponden a b ajas concentraciones de U (e.g., zircón 22 con una concentración de U de 163 ppm) (Figura 5.1.BC y Tabla A .1), mientras que, o tros zircones presentan zo nas bajas en catodoluminiscencia con las correspondientes concentraciones altas de U (e.g., zircón 20 con una concentración de U de 2630 ppm). E n a lgunos c asos (zircones 4, 12, 13, 15, 20 y 24) (Figura 5.1.B C) se ap recia u na perturbación e n l a z onación que va de bor de a núc leo, s iendo e sto probablemente como consecuencia de procesos de recristalización de la roca.

Los datos isotópicos de U-Pb se g raficaron en un diagrama de concordia tipo Wetherill (Figura 1 8A) en donde se aprecia una notable dispersión de an álisis a lo largo de la línea de concordia. Los análisis graficados con elipses de color gris representan datos con un cierto grado de discordancia (>1% disc.) para edades más jóvenes, y una discordancia inversa (-1% y -3% disc.) para e dades un poc o más a ntiguas. La totalidad de los datos nos permite a justar una línea de discordia con edades de intersección inferior de 799 ± 420 M a y superior de 1672 ± 17 M a (2s, MSWD = 3.0). La edad de intersección inferior anteriormente mencionada indicaría el evento que propició la pérdida de Pb. Existen dos análisis cuyas edades son 1695 ± 17 Ma y 1697 ± 23 Ma y que son concordantes, Z-18 y Z -22, respectivamente, pero que el punto de ablación para dichos zircones fue realizado en una zona que involucra parte del borde y núcleo de los zircones. Por tal motivo, las edades tienen cierta influencia de herencia y no son tomadas en cuenta para el cálculo de la edad ²⁰⁷Pb/²⁰⁶Pb media ponderada, que arroja un valor de 1663 ± 9 Ma (2s, MSWD = 2.7, n = 13) (Figura 5.1.BB) representado por la agrupación de elipses y cuadros de color negro, siendo esta edad interpretada como la edad de cristalización del gneis monzogranítico Gila-01. La edad

de intersección superior es consistente, prácticamente igual, a la edad media ponderada calculada para esta muestra.

5.1.4 Gneis sienogranítico de biotita (Espanto-2)

La muestra de gneis sienogranítico E spanto-2 fue recolectada al este de Gila Bend, en Maricopa Mountains al suroeste de Arizona (Figura 5.1). Para realizar el fechamiento U-Pb de esta muestra se analizaron un total de 27 z ircones, involucrando puntos de ablación tanto en bordes como en núcleos para así obtener una edad de cristalización de la muestra. El tamaño promedio de dichos zircones es d e 100 μ m; morfológicamente so n primáticos, eu hedrales, con am bas car as definidas y la mayoría con bordes punteados. Algunos zircones presentan fracturas en ambos de sus ejes e inclusiones de apatito y otras fases minerales no definidas.

En las imágenes de catodoluminiscencia se aprecia que los zircones con un tamaño entre 120 µm o menor, tienden a tener una baja catodoluminiscencia y los zircones con tamaños mayores tienen u n centro m ás cat odoluminiscente. L as co ncentraciones d e U est án directamente relacionadas con la intensidad de la catodoluminiscencia, como se puede apreciar en el zircón 27 (Figura 5.1.BF), con una baja catodoluminiscencia en el punto de ablación y una concentración alta de U de 1147 ppm (Tabla A.1); en caso contrario, el zircón 4 fue ablacionado en una zona de alta catodoluminiscencia con concentración baja de U de 132 ppm.

Los análisis de U-Pb fueron graficados en un diagrama de concordia tipo Wetherill (Figura 5.1.BD), e n donde s e p uede a preciar una a lta dispersión d e l os da tos formando una línea de discordia con zircones de edades variables que van desde 1092 Ma hasta 1733 Ma. Los análisis con edades más jóvenes, y mayores discordancias (>8% disc.), exhiben una marcada tendencia de pérdida de Pb, condicionando la línea de discordia hacia una intersección inferior a los 16 ± 200 Ma, cuya edad indicaría el evento que propició la pérdida de Pb. Por otra parte, se tiene una edad de intersección superior a los 1662 ± 13 M a (2s, MSWD = 2.3) involucrando t odos los da tos obtenidos, incluidos los asociados a los análisis inversamente discordantes que van desde -3 a -5%. También se aprecia una concentración de análisis concordantes, a partir de los cuales calculamos una edad 207 Pb/²⁰⁶Pb media ponderada de 1660 ± 16 Ma (2s, MSWD = 1.2, n = 18) (Figura 5.1.BE). Para el gneis sienogranítico Espanto-2, se considera la edad de intersección superior de 1662 ± 13 Ma como la mejor aproximación a la edad de cristalización de la roca, ya que se toma en cuenta todos los análisis realizados, incluyendo los interpretados como pérdida de Pb y los que tienen una discordancia inversa.

las elipses de color gris representan los datos que fueron descartados para el cálculo de la edad media ponderada debido a que representan zircones con un cierto grado de pérdida de Pb, muy discordantes y/o herencias. (B) y (E) Diagramas de media ponderada mostrando los análisis utilizados para el cálculo de la edad media ponderada para cada una de las muestras. (C) y (F) Imágenes de cátodoluminiscencia post ablación láser de los zircones representativos de algunos de los análisis utilizados para el cálculo de la edad, donde los medios círculos amarillos corresponden al lugar de ablación con un diámetro de -23 µm. En estas imágenes, los zircones con número y edad en cursivas no fueron tomados en cuenta para el cálculo de la edad media ponderada y son mostrados para ilustrar algunos aspectos discutidos en el texto.

5.1.5 Gneis sienogranítico de biotita (Welton-E)

El gneis sienogranítico Welton-E fue colectado al sur de la localidad de Wellton (Wellton Hills), dentro de la reserva Barry M. Goldwater Air Force Range al suroeste de Arizona (Figura 5.1). D e los zi reones se parados p ara est a muestra s e se leccionaron 2 8 g ranos p ara r ealizar e l fechamiento U-Pb tomando en cuenta tanto bordes como núcleos en los puntos de ablación. La morfología de los zircones es principalmente prismática alargada, con un tamaño promedio en su eje mayor de 200 µm; caras bien definidas y ambos bordes en puntas o ligeramente redondeados en algunos casos. También se observan pequeñas fracturas internas, así como inclusiones de apatito y otras fases minerales desconocidas.

En las imágenes de catodoluminiscencia se puede apreciar que la mayoría de los zircones presentan núcleos heredados, ya sea con una zonación diferente a sus bordes, reabsorbidos, con una a lta o baja c atodoluminiscencia y/ o un núc leo c on un a t extura c ompleja, s eguido de un a zonación concéntrica de carácter ígneo. Las zonas menos catodoluminiscentes corresponden a altas concentraciones de U, como se puede apreciar en la ablación del zircón 2 (Figura 5.1.CD) que tiene una concentración elevada en U de 3460 ppm, comparado con una zona más catodoluminiscente que tienen concentraciones bajas en U (e.g., zircón 15 c on una concentración en U de 121 ppm) (Tabla A.1).

Los datos isotópicos de U-Pb fueron graficados en un diagrama de concordia tipo Wetherill (Figura 5.1.CA) en donde claramente se pueden observar dos agrupaciones importantes de análisis sobre la línea de concordia (elipses de color negro). Todas las ablaciones realizadas en los bordes de los zircones nos permitieron calcular una edad ²⁰⁷Pb/²⁰⁶Pb media ponderada de 1427 \pm 22 Ma (2s, MSWD = 0.91, n = 8) (Figura 5.1.CB) a excepción del zircón 4 que posee una alta discordancia (12% di sc.) y que lo interpretamos como parte de una tendencia de pérdida de Pb de algunos zircones mesoproterozoicos. Por otra parte, se tiene una agrupación importante de análisis cuyas ablaciones se realizaron en los núcleos de los zircones, que con los datos más concordantes (elipses de color negro), se logró calcular una edad ²⁰⁷Pb/²⁰⁶Pb media ponderada de 1684 \pm 16 M a (2s, MSWD = 0.55, n = 14) (Figura 5.1.CC), teniendo en cuenta que los análisis más discordantes y con altas concentraciones de U (elipses de color gris), representan una tendencia de pérdida de Pb para estos núcleos ablacionados (e.g., zircón 17 con 4% disc.). También se observa un análisis concordante de una edad mayor (zircón 10 con una edad de 1773 \pm 62 Ma), el cual es interpretado como un núcleo dentro de otro núcleo, como se puede apreciar en la imagen de catodoluminiscencia (Figura 5.1.CD). Cabe destacar, que algunos de los zircones ablacionados en sus núcleos, tienen

una edad paleoproterozoica (e.g., zircones 2, 8 y 20) y se interpretan como núcleos heredados de un basamento ígneo antiguo y que posteriormente sufrieron un recrecimiento motivado a un evento magmático mesoproterozoico, cuya edad de cristalización es a los 1427 ± 22 Ma, siendo ésta la edad del gneis sienogranítico Welton-E recolectado en Wellton Hills.

5.1.6 Gneis sienogranítico melanocrático de dos micas (McDonalds)

El gneis sienogranítico McDonalds fue recolectado en un pequeño cerro ubicado en la parte trasera del restaurante de comida rápida McDonalds, en la comunidad de Yuma, al suroeste de Arizona (Figura 5.1). Se utilizaron 25 zircones de los extraídos en la separación para realizar el fechamiento U-Pb, enfocando los puntos de ablación tanto en bordes como en zonas de posibles núcleos heredados. Los zircones presentan un tamaño promedio de 200 µm en su eje más alargado y 80 µm en su eje perpendicular al anterior mencionado. De forma general, los zircones presentan morfologías e uhedrales, pr ismáticos, a largados y c on bor des l igeramente r edondeadas. L os zircones son ligeramente amarillentos y la mayoría presenta pequeñas fracturas paralelas al eje mayor, inclusiones de apatito y otras fases minerales no determinadas.

Las i mágenes d e ca todoluminiscencia d e los zircones r evelan es tructuras m agmáticas típicas con zoneamientos oscilatorios y, en algunos casos, las texturas internas de los núcleos son complejas (zircón 11) (Figura 5.1.DC). Las zonas con baja catodoluminiscencia están relacionadas con al tas concentraciones en U, co mo se p uede ap reciar en la ablación de l zircón 9, c on una concentración en U de 1304 ppm (Tabla A.1). En contraste, la ablación en el zircón 21, e n una zona de baja luminiscencia, está asociado a una menor concentración en U de 203 ppm.

Los da tos i sotópicos de U-Pb se g raficaron en un diagrama de concordia tipo Wetherill (Figura 5.1.DA) en el cual se aprecia una dispersión a lo largo de la línea de concordia entre edades que va n de sde 1382 ha sta 1591 M a, c on di scordancias r elativamente ba jas (0-2% di sc.). Una agrupación de 23 análisis (elipses y cu adros d e co lor n egro) n os p ermiten cal cular u na ed ad 207Pb/206Pb media ponderada de 1412 ± 9 Ma (2s, MSWD = 0.69). También se a precian do s análisis representados con elipses y cuadros de color gris que no fueron tomados en cuenta para el cálculo de 1 a e dad m edia ponde rada, ya que uno de e stos a nálisis (zircón 14) t iene una a lta discordancia (3% disc.) y el otro (zircón 10) corresponde a una ablación en el núcleo del zircón, interpretándose como un análisis con una cierta herencia. Por tal motivo, se propone que la edad de 1412 ± 9 Ma correspondería a la edad de cristalización del gneis sienogranítico McDonalds.

5.2 Resultados de geocronología U-Pb de rocas laramídicas

A c ontinuación, s e de scriben l os da tos ge ocronológicos U -Pb de 4 muestras de e dad larámide, siendo est as muestras r epresentativas en 1 os r esultados o btenidos. L os da tos geocronológicos, descripciones y los mosaicos d e l as i mágenes d e c atodoluminiscencia d e l os zircones fechados de cada muestra, donde se observa el punto de ablación y la edad obtenida, del resto de las muestras se presentan en el Apéndice B. La descriptiva de los datos geocronológicos se presenta en orden cronológico, desde la edad más antigua a la más joven (Tabla 5.2). En la figura 5.2 se aprecia la distribución d e todas las muestras laramídicas en la zona d el trabajo con su s respectivas edades de cristalización.

Muestra	Nombre de la roca	Edad (Ma) [‡]
Chop-3	Tonalita de dos micas	95.9 ± 1.3
Cucapah-1	Gneis tonalítico de dos micas	86.8 ± 0.7
Choya	Sienogranito de biotita	$85.8~\pm~0.8$
QTB-1	Monzogranito de biotita	$75.4~\pm~0.6$
Drifthills	Monzogranito leucocrático de biotita	$69.0 ~\pm~ 0.8$
SR-7	Sienogranito leucocrático de dos micas	$68.1 ~\pm~ 0.6$
Bettylee	Monzogranito de biotita	67.9 ± 1.1
Gila-2	Monzogranito leucocrático de biotita	$67.7 ~\pm~ 0.8$
Mohawk-1	Gneis tonalítico anfibolítico de dos micas	$67.6 ~\pm~ 0.8$
Mohawk-3	Monzogranito de dos micas	$67.6~\pm~0.7$
Tinajas-1	Monzogranito leucocrático de dos micas	$66.9 ~\pm~ 0.9$
SR-3	Sienogranito leucocrático de dos micas	66.8 ± 0.4
Tinajas	Monzogranito de dos micas	$64.8 ~\pm~ 0.6$
Tinajas-2	Pegmatita granítica feldespática de microclino	$64.6 ~\pm~ 0.8$
Tinajas-4	Monzogranito de dos micas	$64.4 ~\pm~ 0.7$
Pinta	Sienogranito leucocrático de dos micas	64.0 ± 0.7

Tabla 5.2 Tabla resumen de edades U-Pb de granitoides laramídicos.

[†]Lat. = Latitud, Long. = Longitud (DATUM WGS84).

[‡]Edad ²⁰⁶Pb/²³⁸U media ponderada de zircones reportada a precisión 2 sigma.

Figura 5.2 Mapa litológico regional del NW de Sonora y SW de Arizona modificado de Iriondo *et al.* (2005), mostrando la ubicación y edad de las rocas laramídicas usadas en este estudio.

5.2.1 Monzogranito leucocrático de biotita (Drifthills)

La muestra d e monzogranito de biotita D rifthills f ue r ecolectada en C abeza Prieta Mountains, dentro d e C abeza P rieta W ilderness a l s uroeste de A rizona (Figura 5.2). P ara e l fechamiento U-Pb del monzogranito se realizaron un total de 42 ablaciones ocupando tanto bordes como núcleos en los zircones. Las primeras ablaciones se realizaron en febrero del 2014, enfocadas a obtener la edad de cristalización de la roca y la segunda sesión se realizó en junio del 2017 y se orientó en ablacionar posibles núcleos heredados. Los zircones tienen un tamaño promedio de 110 µm; presentan una morfología prismática, con ambas caras definidas y la mayoría de sus bordes están con ambas puntas y en algunos casos sólo una punta y el otro borde fracturado. Los granos presentan i nclusiones d e ap atito y/u o tras fases minerales no d eterminadas así como fracturas internas en ambos ejes.

En las imágenes de catodoluminiscencia se aprecia que la mayoría de los zircones tienen un núcleo más luminiscente, y en algunos casos con una baja catodoluminiscencia, seguidos de una zonación oscilatoria que es característica de un crecimiento concéntrico ígneo. Algunos zircones presentan un núcleo con un e fecto de reabsorción y textura compleja, sobre todo en los zircones con núcleos heredados proterozoicos (Figura 5.2.AE). La intensidad de catodoluminiscencia está directamente relacionada con las concentraciones en U de los zircones. Por ejemplo, el zircón 41 tiene u na ablación h echa en su núcleo y se aprecia que es u na zo na d e alta luminiscencia, correspondiendo a una concentración relativamente baja en U de 226 ppm (Tabla B.1). Las zonas de baja catodoluminisicencia están relacionadas con concentraciones altas en U, en donde el zircón 16, ablacionado en el borde del zircón con baja catodoluminiscencia, tiene una concentración alta en U de 6109 ppm.

Los datos isotópicos de U-Pb fueron graficados en un di agrama de concordia tipo Tera-Wasserburg (Figura 5.2.AA) en donde se puede apreciar tres diferentes agrupaciones de análisis, todos representados con elipses de color negro. El motivo del cambio del diagrama de concordia es la correcta representación de las edades más jóvenes y el uso de las edades de la relación isotópica ²⁰⁶Pb/²³⁸U. Una agrupación está caracterizada por incluir los análisis realizados en varios núcleos de los zircones, cuyas edades dieron una edad proterozoica (desde 1523 hasta 1827 Ma); otros an álisis co rresponden a zi rcones co n u na al ta d iscordancia (>17% d isc.), d os d e el los (zircones 1 5 y 29) fueron a blacionados i ncluyendo bor de y núc leo, s iendo e sto una pos ible consecuencia para tan altos valores de discordancia. El zircón 30 fue ablacionado en su núcleo con una textura interna compleja. La mayor agrupación de análisis se encuentra dentro del cuadro (Área B), en donde se puede ver un acercamiento en la Figura 5.2.AB. Los datos más jóvenes tienen una dispersión considerable cuyas edades van desde 66 Ma hasta 80 Ma. Las elipses y cuadros de color gris representan datos con altos valores de discordancia (e.g., zircón 28 con una discordancia del 14%) y también representan los zircones con un cierto grado de herencia y que fueron ablacionados en z onas que i nvolucran bor de y núc leo d el z ircón. L as e lipses y c uadros de c olor ne gro corresponden a los análisis más concordantes y que representan una menor dispersión estadística de la cual se logra calcular una edad $^{206}Pb/^{238}U$ media ponderada de 69.0 ± 0.8 Ma (2s, MSWD = 2.9, n = 15) (Figura 5.2.AC), siendo esta edad interpretada como la mejor aproximación a la edad de cristalización del monzogranito leucocrático de biotita Drifthills.

Los datos isotópicos de U-Pb también fueron graficados en un diagrama de concordia tipo Wetherill (Figura 5.2.AD), para así tener una mejor observación respecto a los núcleos de edad proterozoica y el comportamiento del resto de los análisis obtenidos. Con los análisis en núcleos heredados más concordantes se logra calcular una edad $^{207}Pb/^{206}Pb$ media ponderada de 1666 ± 37 (2s, MSWD = 2.9, n = 7), apreciándose una dispersión de los análisis, sobre todo con las edades proterozoicas que tienen una alta discordancia (>4% disc.) y que tienen concentraciones elevadas en U, definiendo una tendencia de pérdida de plomo. En conjunto, estos datos discordantes y los análisis d e edades l aramídicas, g eneran u na l ínea d e d iscordia cu ya intersección superior f ue anclada en la edad $^{207}Pb/^{206}Pb$ media ponderada paleoproterozoica, dando como resultado una edad de intersección inferior de 69.0 ± 1.4 Ma (2s, MSWD = 3.6). Esta edad es igual a la edad $^{206}Pb/^{238}U$ media p onderada c alculada p ara la ed ad d e cristalización de l m onzogranito, posiblemente representando la edad d el pulso m agmático regional que propició la pérdida de Pb en algunos zircones paleoproterozoicos de esta muestra.

de un diámetro de -23 µm. En estas imágenes, los zircones con número y edad en cursivas no fueron tomiados en cuenta para el cálculo de la edad media ponderada y son mostrados para ilustrar algunos aspectos discutidos en el texto. representan los análisis utilizados para el cálculo de la edad media ponderada, mientras que las elipses y cuadros de color gris representan los datos que fueron descartados para el cálculo de la edad debido a que representan zircones con un cierto grado de pérdida de Pb, altas discordancias y/o herencias. (C) Diagrama de media ponderada mostrando los análisis utilizados para calcular la edad media ponderada. (D) Diagrama de concordia tipo Wetherill mostrando Figura 5.2. A Gráficos de datos U-Pb obtenidos mediante la técnica de ablación láser (LA-ICP-MS) e imágenes de catodoluminiscencia de zircones de la muestra Drifthills del SW de Arizona. (A) Diagrama de concordía tipo Tera-Wasserburg mostrando todos los datos de los zircones analizados de la muestra Drifthills. (B) Acercamiento a los datos más jóvenes en donde se muestra la edad³⁰⁶Pl/²³⁴U media ponderada calculada. Las elípses y cuadros de color negro todos los datos de los zircones analizados de la muestra, con sus respectivas edades de intersección superior e inferior. (E) Imágenes de cialodoluminiscencia post ablación láser de los zircones representativos de algunos de los análisis utilizados para el cálculo de la edad media ponderada, donde los medios circulos amarillos corresponden al lugar de una primera sesión de ablación y los circulos completos a una segunda sesión; en ambos casos las ablaciones fueron

5.2.2 Gneis tonalítico anfibolítico de dos micas (Mohawk-1)

La muestra de gne is tonalítico a nfibolítico Mohawk-1 fuer ecolectada en Mohawk Mountains, cerca de San Cristobal Valley al suroeste de Arizona (Figura 5.2). Se realizaron 24 análisis de U-Pb en zircones, tanto en bor des como en algunos núcleos de los granos con el propósito de obtener la edad de cristalización y herencias de la muestra. La morfología de los zircones es representada por cristales prismáticos, con ambas punt as bi en de finidas y con un tamaño promedio de 150 μ m. Algunos zircones presentan fracturas en su eje menor e inclusiones de apatito y otras fases minerales no determinadas.

En las imágenes de catodoluminiscencia se aprecia que la mayoría de los zircones tienen una alta catodolumminiscencia en su núcleo con una zonación incipiente, seguido de una zonación oscilatoria característica d e cr ecimientos ígneos, en a lgunos caso s, el n úcleo tiene u na b aja catodoluminiscencia. Estas intensidades de catodoluminiscencia están directamente relacionadas con l as co ncentraciones en U de l zircón. E n l a F igura 5. 2.BC se ap recia que el zi rcón 1 0, ablacionado en su borde y correspondiendo a una zona de baja catodoluminiscencia, presenta una alta concentración de U de 2418 pp m. Por otra parte, el zircón 18 fue ablacionado en su núcleo correspondiendo a una zona de alta catodoluminiscencia, cuya concentración en U es relativamente baja (487 ppm) (Tabla B.1).

Los datos isotópicos de U-Pb fueron graficados en un diagrama de concordia tipo Tera-Wasserburg (Figura 5.2.BA) en donde s e a precia una agrupación de 13 a nálisis concordantes (<11% di sc.), r epresentados c on e lipses y c uadros de c olor ne gro, logrando calcular u na ed ad 206 Pb/²³⁸U media pond erada de 67.6 ± 0.8 M a (2s, M SWD = 1.5, n = 13) (Figura 5.2.B B), interpretándose d icha e dad co mo l a mejor aproximación d e la ed ad de cr istalización d el g neis tonalítico anfibolítico Mohawk-1. Los análisis representados con elipses y cuadros de color gris, no fueron tomados en cuenta para el cálculo de la edad media ponderada debido a que presentan altos valores de discordancia (>11% disc.), y en el caso del zircón 12 (78.7 ± 1.9 Ma), este análisis representa un cierto grado de herencia debido a que su punto de ablación parece involucrar dominio tanto de borde c omo de núcleo del zircón. Es de destacar que los zircones de esta muestra n o presentan núcleos heredados proterozoicos.

5.2.3 Sienogranito leucocrático de dos micas (SR-3)

El s ienogranito l eucocrático de d os m icas S R-3 fue r ecolectado en S ierra E l R osario, ubicada en la zona de Sierras Sepultadas al noroeste de Sonora dentro de la Reserva de la Biosfera El Pinacate (Figura 5.2). Para el fechamiento U-Pb del sienogranito se realizaron un total de 36 ablaciones; las primeras ablaciones se realizaron en febrero del 2013, enfocadas a obtener la edad de cristalización de la roca (Húguez-Vejar *et al.*, 2014), siendo los zircones ablacionados tanto en bordes como en algunos núcleos. Para junio del 2017 se realizó una segunda sesión de ablaciones enfocada, esta vez, en posibles núcleos heredados. Los zircones presentan un tamaño promedio de 120 μ m; morfológicamente s on prismáticos, c on ambas caras definidas y bor des en punt a, en algunos casos, un bor de se encuentra fracturado y ligeramente alargado en su eje principal, con fracturas internas, inclusiones de apatito y otras fases minerales no determinadas.

En las i mágenes d e c atodoluminiscencia se puede ap reciar que, en forma g eneral, los zircones poseen un núcleo más catodoluminiscente, seguido de una zonación oscilatoria típica de un c recimiento c oncéntrico de c arácter ígneo. En la Figura 5.2.CD s e pue de a preciar que los zircones con un núcleo heredado presentan una textura de reabsorción (e.g., zircones 39 y 35). Algunas d e l as ab laciones se r ealizaron en zo nas con b aja cat odoluminiscencia en el zi rcón, correspondiendo a concentraciones muy altas en U (e.g., zircón 11 con una concentración en U de 38,933 ppm). P or ot ro lado, también s e r ealizaron a blaciones e n z onas c on a lta catodoluminiscencia, que se asocian a dominios de zircón con concentraciones de U relativamente bajas (e.g., zircón 32 con una concentración en U de 283 ppm).

Los da tos i sotópicos d e U -Pb s e gr aficaron en un di agrama de c oncordia tipo T era-Wasserburg (Figura 5.2.C A) en d onde se ap recian v arias agrupaciones considerables d e d atos concordantes; uno con edades mesozoicas que van desde 142 Ma hasta 244 Ma (e.g., zircones 34, 32, 37 entre otros; Figura 5.2.CD). El segundo grupo es el compuesto por edades que van desde 78 Ma hasta 69 Ma, los cuales se analizarán p ara calcular la edad de cristalización d e la muestra. También se tienen dos análisis concordantes con edades proterozoicas, el zircón 39 con una edad mesoproterozoica de 1398 ± 38 Ma, que se interpreta como un núcleo heredado asociado al evento magmático intrusivo a los ~1.4 Ga, y el zircón 35 con una edad paleoproterozoica de 1745 ± 18 Ma, interpretándose como un núcleo heredado de edad asociada al basamento metaígneo presente en la región. La Figura 5.2.CB es un acercamiento a los análisis con edades más jóvenes, en donde se puede observar una dispersión considerable de los datos. Representados con elipses y cuadros de color gris se tienen varios zircones ablacionados en sus núcleos (e.g., zircones 29, 36, 31, entre
otros) correspondiendo a los análisis con cierto grado de herencia y o tros con alta discordancia (>8% disc.). Los análisis con ed ades más jóvenes (zircones 2, 13 y 20) e stán a sociados a una tendencia de pérdida de Pb debido a sus altas concentraciones en U. Un grupo de siete análisis son los más concordantes y forman una agrupación coherente que permite calcular una edad $^{206}Pb/^{238}U$ media ponderada de 66.8 ± 0.4 Ma (2s, MSWD = 2.4, n = 7) (Figura 5.2.CC) representados con elipses y c uadros de color negro, siendo esta edad tomada como la mejor a proximación para la edad de cristalización del sienogranito leucocrático de dos micas SR-3 recolectado en Sierra el Rosario.

burg mostrando todos los datos de los zircones analizados de la muestra SR-3. (B) Acercamiento a los datos más jóvenes en donde se muestra la edad 200 Ph³³⁴U media ponderada calculada. (C) Diagrama de media ponderada mostrando tan los datos que fueron descartados para el cálculo de la edad debido a que representan zircones con un cierto grado de pérdida de PP, altas discordancias y/o herencias. (D) Imágenes de cátodoluminiscencia post ablación láser de los zircones representativos de algunos de los análisis utilizados para el cálculo de la edad media ponderada, donde los medios circulos amarillos corresponden al lugar de una primera sesión de ablación y los circulos completos a una segunda sesión; en ambos casos las ablaciones úneron de un diámetro de ~23 µm. En estas imágenes, los zircones con número y edad en cursivas no fueron tomados en cuenta para el cálculo de la edad media ponderada y son mostrados los análisis utilizados para calcular la edad media ponderada. Las elipses y cuadros de color negro representan los análisis utilizados para el cálculo de la edad media ponderada, mientras que las elipses y cuadros de color gris represenpara ilustrar algunos aspectos discutidos en el texto.

5.2.4 Sienogranito leucocrático de dos micas (Pinta)

El sienogranito leucocrático de dos micas Pinta fue recolectado en la zona de Sierra Pinta, dentro d e Cabeza P rieta W ilderness al su roeste d e A rizona. P ara e l f echamiento U -Pb de l sienogranito se realizaron un total de 34 ablaciones; las primeras ablaciones se realizaron en febrero del 2013, enfocadas a obtener la edad de cristalización de la roca, siendo los granos ablacionados tanto en bordes como en algunos núcleos. Para junio del 2017, se realizó una segunda secuencia de ablaciones enfocadas e sta v ez a p osibles n úcleos h eredados o bservados en l as imágenes d e catodoluminiscencia. El tamaño promedio de los zircones es de 150 µm; su morfología consiste en cristales prismáticos, alargados en su eje principal, con ambas caras definidas, bordes en punta o algunos bordes fracturados, inclusiones de apatito y otras fases minerales no determinadas en el interior de los zircones.

En las imágenes de catodoluminiscencia se aprecia que la mayoría de los zircones tienen un núcleo con alta catodoluminiscencia, seguido de una zonación oscilatoria típica de crecimientos concéntricos de c arácter í gneo. E n otros casos, l os núc leos c on edades p roterozoicas (Figura 5.2.DE) suelen tener una textura de reabsorción (e.g., zircones 13 y 31) y en algunos casos, una textura co mpleja (e.g., zi rcón 5). L as i ntensidades d e cat odoluminiscencia est án d irectamente relacionadas con las concentraciones en U contenidas en los zircones. En esta figura también se aprecia que la ablacion en el zircón 22 fue realizada en una zona de alta catodoluminiscencia y que corresponde a u na co ncentración r elativamente baja e n U de 136 ppm (Tabla B.1). E n c aso contrario, el zircón 13 fue ablacionado en una zona de baja catodoluminiscencia, correspondiendo a una concentración relativamente alta en U de 4247 ppm.

Los datos isotópicos de U-Pb fueron graficados en un di agrama de concordia tipo Tera-Wasserburg (Figura 5.2.DA) en donde se aprecian dos agrupaciones importantes de los datos, una agrupación de edades que consideramos como jóvenes, con valores que van desde 61 Ma hasta 80 Ma; y otra agrupación de datos con edades proterozoicas. Para los análisis más jóvenes, se realizó un acercamiento ilustrado en la Figura 5.2.DB, donde se aprecia una dispersión significativa de los análisis. Los análisis graficados con elipses y cuadros de color gris no fueron tomados en cuenta para el cálculo de la edad media ponderada, debido a que, por una parte, representan análisis con cierto grado de herencia, ya que corresponden a ablaciones en los núcleos de los zircones (e.g., zircón 24) y también ablaciones que involucran tanto borde como núcleo del zircón (e.g., zircones 20 y 1) y altas discordancias (>11% disc). Por otra parte, se aprecia un análisis con una edad más joven y con una concentración alta en U, el cual pudiera explicarse como un zircón con tendencia de pérdida de Pb. Los análisis representados con el ipses y cuadros de color negro son los más concordantes y forman una agrupación coherente que permite calcular una edad 206 Pb/ 238 U media ponderada de 64.0 ± 0.7 Ma (2s, MSWD = 2.1, n = 12) (Figura 5.2.DC), la cual se interpreta como la edad de cristalización del sienogranito leucocrático de dos micas Pinta.

Para una mejor apreciación de los análisis con edades proterozoicas, se graficaron los datos isotópicos de U-Pb en un diagrama de concordia tipo Wetherill (Figura 5.2.DD), en donde se aprecian dos agrupaciones concordantes. Una agrupación corresponde a las edades más antiguas, lográndose calcular una edad 207 Pb/ 206 Pb media ponderada de 1654 ± 19 Ma (2s, MSWD = 0.54, n = 6) (elipses de color negro), siendo interpretada esta edad como la edad de cristalización de los zircones heredados. Los análisis con elipses de color gris no fueron tomadas en cuenta para el cálculo de dicha edad media ponderada debido a que representan una alta discordancia (>2% disc.) y son tomadas como una tendencia de pérdida de Pb en relación al evento magmático laramídico. Otra agrupación importante de análisis concordantes corresponden a una edad ²⁰⁷Pb/²⁰⁶Pb media ponderada de 1356 ± 17 Ma (2s, MSWD = 0.97, n = 5), siendo considerada esta edad como la edad correspondiente a zircones formados durante el evento magmático intrusivo mesoproterozoico de ~1.4 Ga. Por último, se destaca que la edad 207 Pb/ 206 Pb media ponderada de 1654 ± 19 M a es tomada en cuenta como intersección superior para generar una línea de discordia en conjunto con todos los análisis, resultando una intersección inferior a $1 \text{ os } 63 \pm 3 \text{ Ma} (2\text{ s}, \text{M SWD} = 14)$, observando que dicha edad es igual a la edad laramídica ²⁰⁶Pb/²³⁸U media ponderada calculada asociada a la edad de cristalización de la roca.

Capítulo 6. Estudios isotópicos de Lu-Hf en zircones

6.1 Resultados isotópicos de Lu-Hf en zircones de rocas proterozoicas

Las relaciones isotópicas ¹⁷⁶Hf/¹⁷⁷Hf obtenidas en los zircones de rocas paleoproterozoicas (Tabla 6.1) se graficaron en un di agrama de distribución (Figura 6.1.A) ordenado en base a sus valores de medias ponderadas de menores a mayores, en donde se logra diferenciar dos intervalos isotópicos, uno con valores de ¹⁷⁶Hf/¹⁷⁷Hf que van desde la muestra Zcen09-38 (0.281672) a la muestra Min09-07 (0.281830), cuyos valores presentan una distribución considerable en donde no se puede definir una tendencia o media ponderada entre los datos de esta sección, el cual se definirá como Dominio Yavapai. Por otra parte, el otro intervalo isotópico está definido entre las muestras 14-1/2 y G ila-01 cuyos va lores de ¹⁷⁶Hf/¹⁷⁷Hf van de 0.281912 a 0.281981, r espectivamente. Dichos valores presentan una ligera distribución entre ellos, por lo que se podría definir una cierta tendencia, el c ual s e de nomina como D ominio Mazat zal. Por úl timo, s e de fine una z ona de solapamiento entre ambos dominios paleoproterozoicos interpolando los análisis utilizados para el cálculo de sus medias ponderadas de ¹⁷⁶Hf/¹⁷⁷Hf.

Con base en los valores de ϵ Hf_(t) calculados p ara cada muestra, n uevamente se l ogra diferenciar dos intervalos isotópicos, uno con valores de ϵ Hf_(t) que van de +2.76 (Min09-07) a +0.08 (Zcen09-38) y otro intervalo con valores de ϵ Hf_(t) que van de +9.01 (Wilton-02) a +4.86 (Espanto-2). Estos intervalos se diferencian principalmente por un "salto" en los datos de ϵ Hf_(t), evidenciado entre las muestras Min09-07 y14-1/2 (Figura 6.1.B). Finalmente, también se g enera una zona de solapamiento entre ambos dominios, estableciendo valores de transición en los cuales se ven involucradas las muestras Min09-07, Ajo-4 y Espanto-2.

Para las edades modelos a d os pasos (T_{DM2}^{C}), se cal cularon promedios con base en los valores utilizados para calcular las medias ponderadas de ¹⁷⁶Hf/¹⁷⁷Hf, ϵ Hf(0) y ϵ Hf(t) (Tabla C.1 y Tabla 6.1). Para un mejor entendimiento de los datos de las edades modelos, se realizó un gráfico de di stribución de e dades en donde cada muestra presenta su ed ad d e cristalización y su ed ad modelo a dos pasos (Figura 6.1.C) en orden a sus valores de medias ponderadas de ¹⁷⁶Hf/¹⁷⁷Hf. En la figura s e logra obs ervar dos a grupaciones d e e dades modelo; una primera a grupación c uyo intervalo de edades modelos a dos pasos (T_{DM2}^{C}) va de 2242 Ma (Min09-07) a 2433 Ma (Zcen09-38). Por otra parte, se tiene una segunda agrupación cuyo intervalo de edades modelos a dos pasos (T_{DM2}^{C}) va de 1836 Ma (Wilton-02) a 2065 Ma (Espanto-2).

Tabla 6.1 Tabla resumen de datos	s isotópicos de Lu-	-Hf en zircones	de granitoides p	aleo y mesoprote	rozoicos del S	W de Arizona y	NW de Soi	nora.		
Muestra	Edad U-Pb (Ma) ⁽¹⁾	abs. err. ⁽²⁾ (2σ)	$^{176}\mathrm{Hf}/^{177}\mathrm{Hf}^{(3)}$	abs. eπ. ⁽²⁾ (±2σ)	εHf ₍₀₎ ⁽³⁾	abs. eπ. ⁽²⁾ (±2σ)	εHf ₍₁₎ ⁽³⁾	abs. err. ⁽²⁾ (±2σ)	T _{DM} (Ma) ⁽⁴⁾	T _{DM2} ^C (Ma) ⁽⁴⁾
Rocas Paleoproterozoicas Dominio Yavapai										
Zcen09-38	1733 ±	9	0.281672	0.00008	-38.47	0.29	0.08	0.29	2152	2433
Tanw09-08	1726 ±	14	0.281720	0.000010	-37.21	0.36	0.15	0.36	2147	2420
QTB-3	1709 ±	14	0.281739	0.000013	-36.52	0.47	0.31	0.51	2125	2392
GneisCen-01	1682 ±	17	0.281773	0.000010	-35.31	0.36	1.42	0.43	2057	2304
QTB-6	1693 ±	13	0.281786	0.000013	-34.85	0.45	1.70	0.43	2060	2296
Min09-07	1720 ±	6	0.281830	0.000022	-33.33	0.77	2.76	0.47	2046	2242
Dominio Mazatzal										
14-1/2	1693 ±	11	0.281912	0.00008	-30.42	0.28	6.91	0.30	1853	1962
Cabeza-11	1689 ±	25	0.281917	0.00000	-30.23	0.33	6.31	0.27	1874	1994
Ajo-4	1654 ±	10	0.281918	0.000012	-30.21	0.42	4.98	0.29	1898	2051
Espanto-2	$1660 \pm$	16	0.281919	0.000013	-30.15	0.46	4.86	0.42	1161	2065
Pilotknob	1692 ±	12	0.281925	0.000012	-29.94	0.41	6.25	0.27	1881	2002
Welton-E (núcleos heredados)	1684 ±	16	0.281928	0.000012	-29.84	0.44	7.07	0.86	1839	1942
Ajo-3	1642 ±	10	0.281932	0.000011	-29.71	0.38	5.97	0.28	1848	1983
Cabeza-9	1642 ±	14	0.281959	0.000007	-28.74	0.26	5.67	0.36	1867	2003
ADN-01	1706 ±	36	0.281961	0.000006	-28.69	0.20	7.99	0.21	1823	1899
Cooper	1695 ±	28	0.281969	0.000012	-28.39	0.43	8.41	0.35	1796	1862
Aztec-02	1690 ±	10	0.281971	0.000016	-28.34	0.57	7.55	0.31	1826	1910
Lewis-01	1636 ±	10	0.281976	0.00000	-28.16	0.31	7.15	0.28	1796	1899
Telegraph	1658 ±	11	0.281978	0.000013	-28.07	0.46	7.05	0.74	1831	1935
Wilton-02	1705 ±	23	0.281980	0.000010	-28.01	0.37	9.01	0.42	1784	1836
Gila-01	1663 ±	9	0.281981	0.000010	-27.98	0.35	7.99	0.31	1788	1868
Rocas Mesoproterozoicas										
Welton-E	1427 ±	22	0.281965	0.000011	-28.55	0.39	2.76	0.77	1787	2024
McDonalds	1412 ±	6	0.281970	0.000007	-28.38	0.25	2.07	0.34	1802	2050

(1)Edad de cristalización calculada para cada roca

⁽²⁾Incertidumbre en las proporciones corregidas y calculadas (expresadas en el intervalo de confianza del 95%)

⁽³⁾Valores obtenidos mediante media ponderada

(4) Valores obtenidos mediante el cálculo de promedio

Figura 6.1.A Diagrama de distribución de los valores de ¹⁷⁶Hf/¹⁷⁷Hf de los zircones de rocas paleoproterozoicas. En color amarillo se muestran los análisis utilizados para calcular la media ponderada para ¹⁷⁶Hf/¹⁷⁷Hf de las muestras correspondientes al dominio Yavapai. En color azul se muestran los análisis utilizados para calcular la media ponderada para ¹⁷⁶Hf/¹⁷⁷Hf de las muestras correspondientes al dominio Mazatzal. Los círculos de color rojo corresponden a las medias ponderadas de ¹⁷⁶Hf/¹⁷⁷Hf de las muestras. Los círculos de color gris son los análisis descartados para calcular la media ponderada.

Figura 6.1.B Diagrama de distribución de los valores de $eHf_{(0)}$ de los zircones de rocas paleoproterozoicas. En color amarillo se muestran los análisis utilizados para calcular la media ponderada para $eHf_{(0)}$ de las muestras correspondientes al dominio Yavapai. En color azul se muestran los análisis utilizados para calcular la media ponderada para $eHf_{(0)}$ de las muestras correspondientes al dominio Yavapai. En color rojo corresponden a las medias ponderadas de $eHf_{(0)}$ calculadas para cada muestra. Los círculos de color rojo corresponden a las medias ponderadas de $eHf_{(0)}$ calculadas para cada muestra. Los círculos de color gris son los análisis descartados para calcular la media ponderada.

Figura 6.1.C Diagrama de distribución de las edades de cristalización y edades modelo a dos pasos (T_{DM2}^{C}) de los zircones de muestras proterozoicas. Las muestras se encuentran distribuidas de izquierda a derecha según su relación isotópica ¹⁷⁶Hf/¹⁷⁷Hf.

Los rangos y valores definidos para ¹⁷⁶Hf/¹⁷⁷Hf son graficados en un diagrama de evolución (Figura 6.1. D) e n donde nuevamente se ap recia una dispersión considerable en las relaciones isotópicas de los zircones de rocas paleoproterozoicas que definimos como Dominio Yavapai. Para las relaciones isotópicas de los zircones de rocas paleoproterozoicas que definimos como Dominio Mazatzal, se aprecian dos dispersiones lineales en la figura (flechas de color gris). Los zircones con edades mesoproterozoicas presentan valores de ¹⁷⁶Hf/¹⁷⁷Hf que caen dentro del rango evolutivo de una corteza intermedia de dominio Mazatzal.

Los rangos y valores definidos para ɛHf(t) se graficaron en un diagrama de evolución de Hf (Figuras 6.1.E y 6.1.F) en donde se puede apreciar que una gran parte de los zircones de rocas paleoproterozoicas es tán en el D ominio Mazat zal, m ientras q ue otros zi rcones d e rocas paleoproterozoicas están en el Dominio Y avapai. Dentro de la zona de solapamiento de ambos dominios están zircones de rocas paleoproterozoicas asociadas tanto al Dominio Mazatzal como el Dominio Y avapai. También se g rafica las muestras con zircones de ed ades mesoproterozoicas, probablemente involucradas con el Dominio Mazatzal y la zona de solapamiento.

Figura 6.1.D Diagrama de evolución de ¹⁷⁶Hf/¹⁷⁷Hf en zircones de rocas proterozoicas del SW de Arizona y NW de Sonora. En líneas punteadas de color gris se representa la evolución de una corteza intermedia ¹⁷⁶Lu/¹⁷⁷Hf = 0.015 (Vervoort, 2014). Las flechas indican los posibles componentes magmáticos que caracterizan el dominio Maza-

Figura 6.1.E Diagrama de evolución de ε Hf en zircones de rocas proterozoicas del SW de Arizona y NW de Sonora en donde se grafican las edades de cristalización U-Pb (Ma) contra los valores de ε Hf₍₀₎ y ε Hf₍₁₎, mostrando además los dominios de basamento paleoproterozoico definidos en base a las edades modelos a dos pasos (T_{DM2}^C) calculados en los zircones de rocas paleoproterozoicas.

Figura 6.1.F Acercamiento al área B en el diagrama de evolución de ϵ Hf en zircones de rocas proterozoicas del SW de Arizona y NW de Sonora en donde se grafican las edades de cristalización U-Pb (Ma) contra los valores de ϵ Hf₍₀₎ y ϵ Hf_(i), mostrando además los dominios de basamento paleoproterozoico definidos en base a las edades modelos a dos pasos (T_{DM2}^C) calculados en los zircones de rocas paleoproterozoicas.

6.2 Resultados isotópicos de Lu-Hf en zircones de rocas laramídicas

Se realizaron análisis isotópicos de Lu-Hf a un total de 14 muestras graníticas laramídicas, enfocados en los zircones tomados en cuenta para el cálculo de la edad media ponderada ²⁰⁶Pb/²³⁸U para obtener la edad de cristalización de las muestras y también se realizaron análisis isotópicos Lu-Hf a sus núcleos heredados. Posteriormente a la obtención de las relaciones isotópicas medidas en los zircones, se calcularon las medias ponderadas para los valores de ¹⁷⁶Hf/¹⁷⁷Hf, ɛHf(0) y ɛHf(t) correspondiente a las edades de cristalización de las muestras laramídicas, así como también, los promedios para los valores de las edades modelo a u n paso (T_{DM}) y a dos pasos (T_{DM2}^C). A las muestras que contienen núcleos heredados también se les calcularon las medias ponderadas para los valores de ¹⁷⁶Hf/¹⁷⁷Hf, ɛHf(0) y ɛHf(t) correspondiente su s edades de cristalización paleo y mesoproterozoicas, calculando también los promedios de sus edades modelos a un paso (T_{DM2}^C). En algunos casos se tomaron valores de ¹⁷⁶Hf/¹⁷⁷Hf, ɛHf(0), ɛHf(t), T_{DM} y T_{DM2}^C de núcleos heredados individuales, tomando su correspondiente edad U-Pb individual calculada del núcleo heredado (e.g., SR-7, Bettylee, QTB-1, Gila-2), esto motivado a que dichos núcleos no entraban en el cálculo de la media ponderada de núcleos de la muestra pero que corresponden a zircones concordantes en la geocronología U-Pb (Tabla C.2 y Tabla 6.2).

Las rocas laramídicas son agrupadas en base a su valor isotópico de ¹⁷⁶Hf/¹⁷⁷Hf, dando como resultado una diferencia entre los intervalos de las rocas laramídicas que poseen núcleos heredados y las que no. Es decir, las rocas laramídicas con núcleos heredados presentan valores dispersos de ¹⁷⁶Hf/¹⁷⁷Hf que va n de 0.282343 (Tinajas-1) a 0.2824 63 (QTB-1) y l as rocas laramídicas sin núcleos heredados presentan valores más dispersos aún de ¹⁷⁶Hf/¹⁷⁷Hf que van de 0.282527 (Chop-3) a 0.282609 (Choya) (Figura 6.2.A). En la figura también s e colocan los dominios definidos en base a las relaciones ¹⁷⁶Hf/¹⁷⁷Hf de zircones paleoproterozoicos, con la finalidad de compararlos con las relaciones i sotópicas ¹⁷⁶Hf/¹⁷⁷Hf de los núcleos heredados paleoproterozoicos de las rocas laramídicas. Con los núcleos heredados de las muestras Drifthills, Bettylee y Pinta se lograron calcular medias ponderadas, representando valores importantes para una pos ible i ntegración e n e l dom inio pa leoproterozoico Mazatzal. E l r esto de los núc leos heredados s on a nálisis tomados pu ntualmente ya que s u e dad U -Pb cal culada e s u n v alor concordante y su relación isotópica ¹⁷⁶Hf/¹⁷⁷Hf entra en los valores paleoproterozoicos trabajados en este estudio.

	hla 6.2 Tahla recum	ten de datos is	sotónicos de Lu	-Hf en zirconec d	le oranitoides laran	nídicos v sue n	incleos heredados	s nroterozoio	os en el área de i	estudio		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Mueetra	Edad U-Pb	abs. err. ⁽²⁾	176 _{116/} 177 ₁₁₆ (3)	abs. err. ⁽²⁾	сНf (3)	abs. err. ⁽²⁾	сШ£ (3)	abs. err. ⁽²⁾	T _{DM}	T _{DM2} ^C	
cest Laramidicas cest Laramidicas dist Laramidicas <th colspan<="" th=""><th>мисона</th><th>(Ma)⁽¹⁾</th><th>(2a)</th><th>пі ли</th><th>(±2σ)</th><th>GL11(0)</th><th>(±2σ)</th><th>c111(I)</th><th>(±2σ)</th><th>(Ma)⁽⁴⁾</th><th>(Ma)⁽⁴⁾</th></th>	<th>мисона</th> <th>(Ma)⁽¹⁾</th> <th>(2a)</th> <th>пі ли</th> <th>(±2σ)</th> <th>GL11(0)</th> <th>(±2σ)</th> <th>c111(I)</th> <th>(±2σ)</th> <th>(Ma)⁽⁴⁾</th> <th>(Ma)⁽⁴⁾</th>	мисона	(Ma) ⁽¹⁾	(2a)	пі ли	(±2σ)	GL11 (0)	(±2σ)	c111(I)	(±2σ)	(Ma) ⁽⁴⁾	(Ma) ⁽⁴⁾
milling $6(5) = 0.9$ 0.283343 0.000010 -15.65 0.27 -13.73 0.27 12.90 2004 minitis $6(5) = 0.7$ 0.2833546 0.00001 -15.20 0.23 13.40 0.24 12381 1969 minitis $6(5) = 0.7$ 0.2823346 0.00001 -14.42 0.34 12.26 1983 minitis $6(5) = 0.7$ 0.2823346 0.00001 -14.42 0.34 12.28 0.32 1141 1726 minitis $6(4) = 0.7$ 0.2833396 0.00001 -14.32 0.32 1141 1726 373 $6(4) = 0.7$ 0.283436 0.00001 -114.62 0.23211191 11833 375 $6(4) = 0.7$ 0.283436 0.000001 -114.62 0.22311191 11337 375 $6(5) = 10.6$ 0.000007 -114.4 0.2560 0.00007 375 $6(5) = 10.6$ 0.000007 -114.0 0.256 <th< td=""><td>cas Laramídicas</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	cas Laramídicas											
-2 $6.7.7 + 0.8$ 0.282361 000007 -15.20 0.37 -13.37 0.37 12.64 0.28 19364 miles 6.04 ± 0.8 0.282361 000007 -14.50 0.23 12.36 0.23 12364 0.24 1281 1996 miles 6.04 ± 0.7 0.282341 000011 -14.24 0.37 12.38 0.37 1234 1234 1234 1990 miles 6.10 ± 0.7 0.282346 000001 -14.26 0.32 1191 1732 3.7 6.81 ± 0.7 0.282346 000001 -11.40 0.23 0.32 1191 1772 3.7 6.81 ± 0.7 0.282346 000001 -11.40 0.23 0.32 1191 1772 3.7 6.81 ± 0.7 0.282346 000001 -11.40 0.23 0.22 11772 3.7 6.81 ± 0.7 0.283467 0000001 -11.40	najas-1	€6.9 ±	6.0	0.282343	0.000014	-15.63	0.50	-14.20	0.51	1290	2004	
	la-2	67.7 ±	0.8	0.282355	0.000010	-15.20	0.37	-13.73	0.37	1263	1983	
inhilis 690 ± 0.8 0.282344 0.00011 -14.30 0.34 12.81 1994 hawks 676 ± 0.7 0.282334 0.00011 -14.32 0.37 0.37 12.31 1934 uylee 673 ± 1.1 0.282349 0.00012 -13.84 0.43 12.29 0.43 12.31 1934 13134 641 ± 0.7 0.282349 0.00010 -11.36 0.22 11191 1833 13134 641 ± 0.7 0.282348 0.00001 -11.40 0.23 1191 1833 233 66.8 ± 0.4 0.282346 0.000007 -11.40 0.22 0.1141 1772 235 66.8 ± 0.7 0.282372 0.000007 -11.40 0.23 0.231012 11340 0.23 11341 1772 235 66.8 ± 0.7 0.282372 0.000007 -512 0.231012 0.231012 0.231012 0.2313012 0.231012 0.231012 <td>najas</td> <td>64.8 ±</td> <td>9.0</td> <td>0.282361</td> <td>0.000007</td> <td>-15.00</td> <td>0.25</td> <td>-13.60</td> <td>0.25</td> <td>1256</td> <td>1963</td>	najas	64.8 ±	9.0	0.282361	0.000007	-15.00	0.25	-13.60	0.25	1256	1963	
	ifthills	€ 0.0 ±	- 0.8	0.282364	0.000007	-14.90	0.24	-13.44	0.24	1281	1960	
	ohawk-3	67.6 ±	: 0.7	0.282374	0.000011	-14.52	0.39	-13.07	0.40	1241	1934	
at $64,0 \pm 0,7$ 0.282399 0.00012 $13,64$ $0,43$ $12,29$ $0,43$ $12,30$ 1833 13 $68,4 \pm 0,7$ 0.282343 0.00009 $12,89$ 0.32 $11,91$ 1833 13 $66,8 \pm 0,4$ 0.282443 0.00008 $11,56$ 0.23 $11,49$ 0.23 $11,49$ 0.23 $11,49$ 0.23 $11,49$ 1772 13 $66,8 \pm 0,4$ 0.282433 0.00006 $-11,40$ 0.23 $-9,78$ 0.22 $11,41$ 1750 13 $58,8 \pm 0,8$ 0.283572 0.00007 $-9,14$ 0.22 $11,41$ 1750 13 $86,8 \pm 1,90$ 0.283572 0.00007 $-9,14$ 0.22 1149 1750 13 $86,8 \pm 1,90$ 0.283543 0.00007 $-5,14$ 0.22 1149 1750 13 $86,8 \pm 1,90$ 0.283144 0.000032 -3320 120 230 230 230 </td <td>sttylee</td> <td>£ 6.7.9 ±</td> <td>- 1.1</td> <td>0.282382</td> <td>0.000010</td> <td>-14.24</td> <td>0.34</td> <td>-12.78</td> <td>0.37</td> <td>1223</td> <td>1915</td>	sttylee	£ 6.7.9 ±	- 1.1	0.282382	0.000010	-14.24	0.34	-12.78	0.37	1223	1915	
	nta	64.0 ±	: 0.7	0.282399	0.000012	-13.64	0.43	-12.29	0.43	1230	1887	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	najas-4	64.4 ±	- 0.7	0.282421	0.00000	-12.89	0.32	-11.52	0.32	1191	1833	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	۲-7	68.1 ±	0.6	0.282446	0.000011	-12.00	0.40	-10.55	0.39	1149	1772	
	t-3	66.8 ±	: 0.4	0.282458	0.00008	-11.56	0.29	-10.15	0.29	1141	1750	
op-3 95.9 ± 1.3 0.282.57 0.00007 -9.14 0.26 -7.04 0.26 1012 1577 ciepah-1 86.8 ± 0.7 0.283.572 0.00007 -7.52 0.25 5.63 0.24 952 1478 cieos bit of \$1 0.283.572 0.00007 -7.52 0.25 5.63 0.24 952 1478 cieos bit of \$2 0.281.87 0.00003 -6.22 0.18 0.50 2.9 952 1478 cieos trait 1745 ± 18,0 0.281847 0.00002 -3.3.20 1.20 1.80 0.88 2.97 2.433 0.97 2.433 cito 1754 ± 18,0 0.281847 0.00022 -3.1.90 0.80 5.60 0.99 1937 2.073 cito 1754 ± 2.0 0.281847 0.00023 -3.3.20 1.00 7.40 1.00 1841 2.120 cito 1754 ± 18,0 0.281948 0.00023 -2.9.70 0.90 7.40 <	[B-1	75.4 ±	0.6	0.282463	0.000006	-11.40	0.23	-9.78	0.22	1119	1734	
teapah-1 8.68 ± 0.7 0.282572 0.00007 -7.52 0.25 0.24 9.2 1478 toya 8.58 ± 0.8 0.282509 0.00005 -6.22 0.18 9.93 1396 toteos heretados paleoproterozicos -7.52 0.18 0.0005 -6.22 0.18 0.02 2.485 1.20 2.188 0.70 2.18 9.33 1.396 total 1.74 ± 18.0 0.281847 0.00023 -33.20 1.20 2.07 2.485 2.073 total 1.74 ± 12.0 0.281847 0.00023 -33.20 1.20 2.07 2.123 total 1.774 ± 22.0 0.281847 0.00023 -33.20 1.00 1.96 2.073 total 1.774 ± 22.0 0.281844 0.00023 -35.00 1.09 1.861 2.003 total 1.774 ± 12.0 0.281944 0.00024 -2.870 1.00 1.33 1.76 1.33	top-3	95.9 ±	: 1.3	0.282527	0.000007	-9.14	0.26	-7.04	0.26	1012	1577	
oya 8.3 ± 0.8 0.282609 0.00005 -6.22 0.18 4.33 0.18 893 1396 ticles heredados paleoproteroxicos 1.754 ± 18.0 0.281688 0.00021 -38.80 0.70 -1.80 0.80 2150 2485 t^* 1745 ± 18.0 0.281688 0.00023 -33.20 1.20 1.78 0.70 1.78 0.70 2185 0.70 2187 2073 t^* 1774 ± 22.0 0.281882 0.00022 -31.00 8.00 1.74 2122 2123 t^* 1774 ± 22.0 0.281944 0.00025 -29.70 0.90 5.60 0.90 1861 2107 $ttothe*$ 1770 1170 1870 1200 1200 1200 $ttothe*$ 1671 ± 20.0 0.281948 0.00022 -29.20 120 120 1200 $ttothe*$ 1671 ± 20.0 0.281948 0.00022 -29.20 <t< td=""><td>icapah-1</td><td>86.8 ±</td><td>- 0.7</td><td>0.282572</td><td>0.000007</td><td>-7.52</td><td>0.25</td><td>-5.63</td><td>0.24</td><td>952</td><td>1478</td></t<>	icapah-1	86.8 ±	- 0.7	0.282572	0.000007	-7.52	0.25	-5.63	0.24	952	1478	
icleos heredados paleoproterozoicosicleos heredados paleoproterozoicosicleos heredados paleoproterozoicos c_7^* 1654 ± 19.00.2816880.000021-38.800.70-1.800.8021502485 c_3^* 1745 ± 18.00.2818470.000033-33.201.205.001.2019742122Dhawk-3*1637 ± 42.00.2818820.000025-31.900.805.600.9018612000dhawk-3*1637 ± 42.00.2818820.000025-29.501.007.201.1018991986ajas-4*1690 ± 15.00.2819580.000026-29.200.907.401.0018361928ajas-4*1671 ± 20.00.2819680.00028-28.901.007.401.0018431948ajas-4*1651 ± 24.00.2819960.00021-28.101.108.101.0018431948ajas-4*1651 ± 24.00.2819900.00021-28.101.008.101.0018431948ajas-4*1651 ± 24.00.2819900.00021-28.101.008.101.0017701847ajas-4*1651 ± 24.00.2819900.00025-29.100.901.101.0017701847ajas-4*1651 ± 24.00.2819900.00025-29.101.008.101.0017451794ajas-4*1651 ± 24.00.2819900.00025-29.100.901.101.7018471948 </td <td>loya</td> <td>85.8 ±</td> <td>: 0.8</td> <td>0.282609</td> <td>0.000005</td> <td>-6.22</td> <td>0.18</td> <td>-4.33</td> <td>0.18</td> <td>893</td> <td>1396</td>	loya	85.8 ±	: 0.8	0.282609	0.000005	-6.22	0.18	-4.33	0.18	893	1396	
	icleos heredados	paleoproter	rozoicos									
t_{-3}^{*} 1745 ± 18.0 0.281847 0.00033 -33.20 1.20 5.00 1.20 1974 2122 $TB-1^{*}$ 1724 ± 22.0 0.281882 0.00022 -31.90 0.80 5.60 0.90 1937 2073 $ohawk-3^{*}$ 1637 ± 42.0 0.281934 0.00025 -29.70 0.90 5.60 0.90 1861 2000 $stylee^{*}$ 1756 ± 37.0 0.281954 0.00025 -29.50 1.00 7.20 1.10 1899 1986 $nalss-1^{*}$ 1690 ± 15.0 0.281954 0.00026 -29.50 0.90 7.40 1.00 1836 1928 $nalss-1^{*}$ 1671 ± 20.0 0.281954 0.00026 -29.20 0.90 7.40 1.00 1843 1948 $nal1651 \pm 24.00.2819740.00028-28.101.006.801.0018431948nal1651 \pm 24.00.2819900.00028-28.101.008.101.00184319481a-2^{*}1699 \pm 31.00.2819900.00026-28.100.008.101.00177018471a-2^{*}1699 \pm 31.00.2820240.00015-28.100.001.001.00177018471a-2^{*}1699 \pm 31.00.2820240.00015-28.101.001.001.001.001.001a-2^{*}1699 \pm 31.00.282024$	٤-7*	1654 ±	: 19.0	0.281688	0.000021	-38.80	0.70	-1.80	0.80	2150	2485	
	r-3*	1745 ±	: 18.0	0.281847	0.000033	-33.20	1.20	5.00	1.20	1974	2122	
	rB-1*	1724 ±	: 22.0	0.281882	0.000022	-31.90	0.80	5.50	0.79	1937	2073	
ttylee 1750 ± 37.0 0.281951 0.00029 -29.50 1.00 7.20 1.10 1899 1986 najas-1* 1690 ± 15.0 0.281958 0.00026 -29.20 0.90 7.40 1.00 1835 1928 najas-1* 1671 ± 20.0 0.281958 0.00026 -29.20 0.90 6.80 1.00 1843 1948 najas-1* 1671 ± 20.0 0.281974 0.00028 -29.20 1.90 6.80 1.00 1843 1948 najas-4* 1651 ± 24.0 0.281990 0.00027 -28.10 1.00 6.810 1.00 1843 1948 najas-4* 1651 ± 24.0 0.281990 0.00027 -28.10 1.00 8.10 1.00 1770 1847 najas-4* 1651 ± 24.0 0.281990 0.00027 -28.10 1.00 8.10 1.00 1770 1847 najas-4* 1659 ± 31.0 0.281990 0.00027 -28.10 1.00 8.10 1.00 1770 1847 thylee 1669 ± 37.0 0.281990 0.000015 -27.11 0.51 9.00 1.00 1745 1794 thylee 1640 ± 27.0 0.282024 0.000015 -26.70 0.90 10.01 1.00 1745 1794 thylee 1640 ± 27.0 0.282030 0.000026 -26.70 0.90 1.00 1.00 1745 1794 thylee 1640 ± 27.0 0.282034 0.000025 -26.70 </td <td>ohawk-3*</td> <td>1637 ±</td> <td>: 42.0</td> <td>0.281944</td> <td>0.000025</td> <td>-29.70</td> <td>0.90</td> <td>5.60</td> <td>0.90</td> <td>1861</td> <td>2000</td>	ohawk-3*	1637 ±	: 42.0	0.281944	0.000025	-29.70	0.90	5.60	0.90	1861	2000	
najas-4* 1690 ± 15.0 0.281958 0.00026 -29.20 0.90 7.40 1.00 1836 1928 najas-1* 1671 ± 20.0 0.281968 0.00028 -28.90 1.00 6.80 1.00 1843 1948 najas-4* 1651 ± 21.0 0.281946 0.00028 -28.70 1.40 6.95 0.43 1815 1915 najas-4* 1651 ± 24.0 0.281990 0.00027 -28.10 1.00 8.10 1.00 1815 1948 najas-4* 1651 ± 24.0 0.281990 0.00027 -28.10 1.00 8.10 1.00 1770 1847 la-2* 1699 ± 31.0 0.281990 0.000017 -28.10 1.10 8.10 1.20 1816 1877 ifthills 1666 ± 37.0 0.281990 0.000015 -27.11 0.51 9.00 1.70 1847 stylee 1640 ± 27.0 0.282030 0.000015 -26.70 0.90 10.10 1745 1794 ifthills 1667 ± 9.0 0.282030 0.000026 -26.70 0.90 10.10 1.746 1745 alas* 1697 ± 9.0 0.282030 0.000026 -26.70 0.90 10.10 1.745 1794 alas* 1697 ± 9.0 0.282033 0.000026 -26.70 0.90 10.10 1.745 1794 alas* 1697 ± 9.0 0.282043 0.000026 -26.70 0.90 10.10 1.20 129 1764 </td <td>sttylee*</td> <td>1750 ±</td> <td>: 37.0</td> <td>0.281951</td> <td>0.000029</td> <td>-29.50</td> <td>1.00</td> <td>7.20</td> <td>1.10</td> <td>1899</td> <td>1986</td>	sttylee*	1750 ±	: 37.0	0.281951	0.000029	-29.50	1.00	7.20	1.10	1899	1986	
najas-1* 1671 ± 20.0 0.281968 0.00028 -28.90 1.00 6.80 1.00 1843 1948 nta 1654 ± 17.0 0.281974 0.00041 -28.70 1.40 6.95 0.43 1815 1915 najas-4* 1651 ± 24.0 0.281990 0.00027 -28.10 1.00 8.10 1.00 1770 1847 $1a-2*$ 1651 ± 24.0 0.281990 0.000027 -28.10 1.00 8.10 1.00 1770 1847 $1a-2*$ 1659 ± 31.0 0.281990 0.000027 -28.10 1.10 8.10 1.20 1816 1837 $1a-2*$ 1699 ± 31.0 0.281990 0.00015 -27.11 0.51 9.00 1.700 1745 1794 $1tylee$ 1640 ± 27.0 0.282024 0.00014 -26.92 0.50 8.40 1.40 1745 1794 $attylee$ 1640 ± 27.0 0.282030 0.000026 -26.70 0.90 10.10 1.754 1826 $attilder1647 \pm 9.00.2820340.000026-26.700.9010.101.76417541826attilder1647 \pm 9.00.2820300.000026-26.700.9010.101.7541826attilder1444 \pm 68.00.2820430.000035-32.401.20.001.20192019502240attilder1444 \pm 68.00.2820430.000025-32.40$	najas-4*	1690 ±	: 15.0	0.281958	0.000026	-29.20	0.90	7.40	1.00	1836	1928	
nta 1654 ± 17.0 0.281974 0.00041 -28.70 1.40 6.95 0.43 1815 1915 najas-4* 1651 ± 24.0 0.281990 0.000027 -28.10 1.00 8.10 1.00 1770 1847 $1a-2*$ 1699 ± 31.0 0.281990 0.000027 -28.10 1.10 8.10 1.20 1816 1887 ifthills 1666 ± 37.0 0.281990 0.000015 -27.11 0.51 9.00 1.00 1770 1847 ifthills 1666 ± 37.0 0.282018 0.000015 -27.11 0.51 9.00 1.00 1745 1794 ifthere 1640 ± 27.0 0.282024 0.000016 -26.70 0.90 1.00 1.70 1745 1826 najas* 1697 ± 9.0 0.282030 0.000026 -26.70 0.90 10.10 1.00 1733 1756 ifleeheredatos mesopreterozoicos 1493 ± 44.0 0.282043 0.000025 -32.40 1.2 0.00 1.00 1.30 1936 2740 itylee* 1444 ± 68.0 0.282043 0.000025 -32.40 0.70 5.50 0.80 1992 1892 itylee* 1444 ± 68.0 0.282043 0.000025 -32.40 1.2 0.00 1.20 1992 1892 itylee* 1444 ± 68.0 0.282043 0.000025 -32.40 0.70 5.50 0.80 1992 1892	najas-1*	1671 ±	20.0	0.281968	0.000028	-28.90	1.00	6.80	1.00	1843	1948	
najas-4* 1651 ± 24.0 0.281990 0.000027 -28.10 1.00 8.10 1.00 1770 1847 $1a-2^*$ 1699 ± 31.0 0.281990 0.00031 -28.10 1.10 8.10 1.20 1816 1887 $ithhils$ 1666 ± 37.0 0.281990 0.000015 -27.11 0.51 9.00 1.00 1745 1794 $ithered1640 \pm 27.00.2820240.000015-26.700.901.001.7451794sitylee1640 \pm 27.00.2820240.000016-26.700.901.0101.0017331756najas^*1697 \pm 9.00.2820300.000026-26.700.9010.101.0017331756najas-1^*1493 \pm 44.00.2818680.000035-32.401.20.001.3019502240sitylee^*1444 \pm 68.00.2820430.000025-32.600.705.500.801950240$	nta	1654 ±	: 17.0	0.281974	0.000041	-28.70	1.40	6.95	0.43	1815	1915	
	najas-4*	1651 ±	: 24.0	0.281990	0.000027	-28.10	1.00	8.10	1.00	1770	1847	
ifthills 1666 ± 37.0 0.282018 0.000015 -27.11 0.51 9.00 1.00 1745 1794 ittylee 1640 ± 27.0 0.282024 0.00014 -26.92 0.50 8.40 1.40 1754 1826 najas* 1697 ± 9.0 0.282030 0.000026 -26.70 0.90 10.10 1.00 1733 1756 icleos heredados mesoproterozoicos $a_{1493} \pm 44.0$ 0.281868 0.000035 -32.40 1.2 0.00 1.30 1950 2240 ityle* 1444 ± 68.0 0.282043 0.000021 -26.20 0.70 5.50 0.80 1692 1833	la-2°	1699 ±	: 31.0	0.281990	0.000031	-28.10	1.10	8.10	1.20	1816	1887	
ttylee 1640 ± 27.0 0.282024 0.000014 -26.92 0.50 8.40 1.40 1754 1826 najas* 1697 ± 9.0 0.282030 0.000026 -26.70 0.90 10.10 1.00 1733 1756 icleos heredados mesoproterozoicos 1493 ± 44.0 0.281868 0.000035 -32.40 1.2 0.00 1.30 1950 2240 style* 1444 ± 68.0 0.282043 0.000021 -26.20 0.70 5.50 0.80 1692 1833	ifthills	1666 ±	: 37.0	0.282018	0.000015	-27.11	0.51	9.00	1.00	1745	1794	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	sttylee	1640 ±	27.0	0.282024	0.000014	-26.92	0.50	8.40	1.40	1754	1826	
icleos heredados mesoproterozoicos 1^{*} 1493 ± 44.0 0.281868 0.000035 -32.40 1.2 0.00 1.30 1950 2240 ttyle [*] 1444 ± 68.0 0.282043 0.000021 -26.20 0.70 5.50 0.80 1692 1853	najas*	1697 ±	9.0	0.282030	0.000026	-26.70	0.90	10.10	1.00	1733	1756	
najas-1* 1493 ± 44.0 0.281868 0.000035 -32.40 1.2 0.00 1.30 1950 2240 sttylee* 1444 ± 68.0 0.282043 0.00021 -26.20 0.70 5.50 0.80 1692 1853	icleos heredados	mesoproter	rozoicos									
ttylee [*] 1444 ± 68.0 0.282043 0.000021 -26.20 0.70 5.50 0.80 1692 1853	najas-1*	1493 ±	: 44.0	0.281868	0.000035	-32.40	1.2	00.00	1.30	1950	2240	
	sttylee*	1444 ±	- 68.0	0.282043	0.000021	-26.20	0.70	5.50	0.80	1692	1853	

⁽²⁾Incertidumbre en las proporciones corregidas y calculadas (expresadas en el intervalo de confianza del 95%) ⁽³⁾Valores obtenidos mediante media ponderada ⁽⁴⁾Valores obtenidos mediante el cálculo de promedio

* Zircón con núcleo heredado individual

Figura 6.2.A Diagrama de distribución de los valores de ¹⁷⁶Hf/¹⁷⁷Hf de los zircones de rocas laramídicas y sus respectivos núcleos heredados paleoproterozoicos. Se muestran los dominios paleoproterozoicos definidos en base a los zircones de rocas paleoproterozoicas para correlacionarlos con los núcleos heredados paleoproterozoicos de las rocas laramídicas.

Los valores de ϵ Hf₍₀₎ y ϵ Hf_(t) de los zircones de rocas laramídicas se pueden clasificar de la siguiente manera: las rocas laramídicas sin núcleos heredados que poseen un rango de ϵ Hf₍₀₎ que va de -9.14 (Chop-3) a -6.22 (Choya) y un rango de ϵ Hf_(t) que va de -7.04 (Chop-3) a -4.33 (Choya), y l as rocas laramídicas con núcleos heredados, que poseen un rango de ϵ Hf₍₀₎ que va -15.63 (Tinajas-1) a -11.40 (QTB-1) y un rango de ϵ Hf_(t) que va de -14.20 (Tinajas-1) a -9.78 (QTB-1) (Tabla 6.2 y Figura 6.2.B). Los valores de ϵ Hf_(t) para los núcleos heredados calculados con medias ponderadas d e l as muestras D rifthills, B ettylee y P inta t ienen a finidad c on e l dom inio paleoproterozoico Mazatzal, el resto de los núcleos heredados individuales también tienen afinidad Mazatzal con excepción de la muestra SR-7 con un valor de ϵ Hf_(t) más evolucionado con afinidad al dominio Yavapai. Las muestras SR-3 y QTB-1 se encuentran en el límite inferior del dominio Mazatzal, estando muy cerca de la zona de solapamiento entre dominios.

Los valores de las relaciones isotópicas ¹⁷⁶Hf/¹⁷⁷Hf fueron graficados en un di agrama de evolución de Hf en el tiempo (Figura 6.2.C), en donde se destacan las diferencias de intervalos de ¹⁷⁶Hf/¹⁷⁷Hf para los zircones laramídicos que poseen núcleos heredados y los que no. También se puede a preciar una a grupación de l os núc leos he redados pa leoproterozoicos probablemente asociados a l as r ocas del dom inio M azatzal y un núc leo he redado i ndividual (SR-7) que probablemente se asocie al domino Yavapai.

Figura 6.2.B Diagrama de distribución de los valores de ϵ H_(i) de los zircones de rocas laramídicas y sus respectivos núcleos heredados paleoproterozoicos. Se muestran los dominios paleoproterozoicos definidos en base a los zircones de rocas paleoproterozoicas para correlacionarlos con los núcleos heredados paleoproterozoicos de las rocas laramídicas.

Figura 6.2.C Diagrama de evolución de ¹⁷⁶Hf/¹⁷⁷Hf en zircones de rocas laramídicas y sus respectivos núcleos heredados paleoproterozoicos del SW de Arizona y NW de Sonora. En líneas punteadas de color gris se representa la evolución de una corteza intermedia ¹⁷⁶Lu/¹⁷⁷Hf = 0.015 (Vervoort, 2014).

Los va lores de ϵ Hf₍₀₎ y ϵ Hf_(t) de l os zi rcones l aramídicos y s us núcleos he redados proterozoicos fueron graficados en un diagrama de evolución de Hf s obre la base de los datos isotópicos de zircones proterozoicos descritos anteriormente de rocas proterozoicas (Figura 6.2.D). Para u na m ejor v isualización de la evolución de Hf de los zi rcones laramídicos, se r ealiza el acercamiento en la Figura 6.2.E, mostrando además los dominios de basamento paleoproterozoico definidos en base a los zircones paleoproterozoicos de este estudio.

También se realizó un acercamiento para los núcleos heredados de los zircones laramídicos (Figura 6.2.F) en conjunto con los zircones proterozoicos y los dominios de basamento definidos en est e e studio. C omo se m encionó a nteriormente, s e c alcularon m edias pond eradas pa ra los valores d e ϵ Hf_(t) de l os núcleos h eredados d e l os zi rcones laramídicos las m uestras D rifthills, Bettylee y P inta. El resto d e los análisis isotópicos d e H f realizados en los núcleos h eredados, corresponden a datos individuales y puntuales, ya que no se logró calcular una media ponderada, estando gran parte de estos datos dentro del dominio Mazatzal.

Por último, se tienen dos núcleos heredados individuales con e dades mesoproterozoicas (Figura 6.2.F), uno con un valor de ϵ Hf_(t) de +5.50 (Bettylee) y otro, cuyo valor de ϵ Hf_(t) es de ±0.00 (Tinajas-1).

Figura 6.2.D Diagrama de evolución de ε Hf en zircones de rocas graníticas laramídicas del SW de Arizona y NW de Sonora en donde se grafican las edades de cristalización U-Pb (Ma) contra los valores de ε Hf₍₀₎ y ε Hf₍₁₎, mostrando además los dominios de basamento paleoproterozoico definidos en base a las edades modelos a dos pasos (T_{DM2}^C) calculadas para los zircones de rocas paleoproterozoicas.

Figura 6.2.E Acercamiento en el diagrama de evolución de ε Hf en zircones de rocas laramídicas del SW de Arizona y NW de Sonora en donde se grafican las edades de cristalización U-Pb (Ma) contra los valores de ε Hf₍₀, mostrando además los dominios de basamento paleoproterozoico definidos en base a las edades modelos a dos pasos (T_{DM2}^C) calculados en los zircones de rocas paleoproterozoicas.

Figura 6.2.F Acercamiento en el diagrama de evolución de ε Hf de núcleos heredados en zircones de rocas laramídicas del SW de Arizona y NW de Sonora en donde se grafican las edades de cristalización U-Pb (Ma) contra los valores de ε Hf_(i), mostrando además los dominios de basamento paleoproterozoico definidos en base a las edades modelos a dos pasos (T_{DM2}^C) calculados en los zircones de rocas paleoproterozoicas de este estudio.

Capítulo 7. Discusión de resultados

7.1 Características petrográficas

En base al estudio petrográfico textural de las rocas utilizadas para este estudio, se logra definir dos agrupaciones: rocas gnéisicas y rocas graníticas.

Las rocas gnéisicas (ortogneises) presentan una orientación definida en bandas, con capas alternas d e minerales cl aros (félsicos) y o scuros (máficos) y d e co mposición s ienogranítica, monzogranítica y t onalítica (Figura 4). L os cristales d e plagioclasa se encuentran al terando a sericita, los cristales de cuarzo con extinción ondulatoria y los cristales de biotita orientados en sentido a la foliación son características d e que estás rocas han su frido un evento metamórfico regional. Por ú ltimo, l os zi rcones de est as rocas g néisicas t ienen edades p aleoproterozoicas, asociándose a los basamentos de edad Paleoproterozoico Yavapai y Mazatzal.

Las rocas graníticas son holocristalinas y faneríticas, presentando minerales claros (cuarzo, feldespato alcalino y plagioclasa) y minerales oscuros (biotita, moscovita y en menor proporción clorita y hornblenda), clasificándose petrográficamente en sienogranitos y monzogranitos (Figura 4). Entre los minerales minoritarios predomina la titanita, el apatito y el zircón. La moscovitización del feldespato y la cloritización de la biotita en estas muestras sugieren alteración hidrotermal de algunos de los gr anitoides. P or ú ltimo, l os zi rcones d e es tas rocas g raníticas t ienen ed ades laramídicas y que en su mayoría presentan núcleos heredados proterozoicos, evidenciado que estos granitos están intrusionando a los cuerpos de rocas gnéisicas proterozoicas.

7.2 Geocronología U-Pb en zircones de rocas proterozoicas

Para el cá lculo de las e dades d e es tas muestras se e mpleó u na ed ad ²⁰⁷Pb/²⁰⁶Pb m edia ponderada e n e l c aso e n que los a nálisis p resentaran una a grupación m ayoritaria y un e rror estadístico adecuado (e.g., QTB-6, QTB-3, McDonals, Lewis-01). Por otra parte, se empleó la edad de intersección superior generada por una línea de discordia, en donde para estos casos, se toman en cuenta tanto los análisis más concordantes como lo más discordantes, involucrando a los análisis que presentan ed ades más j óvenes a l as ed ades p roterozoicas, co n al tas concentraciones d e U, representando así, zircones que han sufrido diferentes grados de pérdida de Pb (e.g., Wilton-02, Ajo-2, Pilotknob, Cooper, entre otros). De igual manera, en todos los análisis se presentan ambas edades y se especifica cuál fue la edad interpretada como la edad de cristalización de la roca para los posteriores análisis isotópicos de Hf. También algunos zircones presentan un cierto grado de herencia o un dominio más viejo del zi rcón, obs ervadas en ab laciones h echas e n su s n úcleos co mo l o r evelan l as i mágenes d e catodoluminiscencia (e.g., Ajo-02, QTB-6, 14-1/2) y que, por lo general, se encuentran afectados por un pr oceso de r ecristalización (crecimientos z onados de formados y c on alta catodoluminiscencia). En o tros caso s, E xiste u na co mbinación d e an álisis d e h erencia (núcleo heredado) o dominio más antiguo y bor de del zircón al momento de la ablación (e.g., Gila-01, Espanto-2), y sea p or e ste ef ecto que ex istan a nálisis co n edades l igeramente más v iejas co n respecto a los an álisis empleados p ara c alcular m edias p onderadas y q ue ad emás p resenten discordancias negativas.

La muestra W elton-E e s un e jemplo de roca mesoproterozoica que intrusionó a rocas paleoproterozoicas, y a que contiene zircones y núcleo heredados paleoproterozoicos y contiene zircones con bordes mesoproterozoicos.

7.3 Geocronología U-Pb en zircones de rocas laramídicas

Como se mencionó anteriormente, el alcance de realizar la geocronología U-Pb en zircones de muestras más jóvenes, fue la asociación geológica-estructural del batolito Gunnery Range que intrusiona a las rocas paleoproterozoicas. Por tal motivo, s e encontraron, en la mayoría de los granitoides, núcleos heredados de edad proterozoica. En las muestras SR-3 y S R-7, a demás de algunos pocos núcleos heredados proterozoicos, también se encontraron núcleos heredados de edad Mesozoico. Sólo e n t res muestras (Chop-3, C ucapah-1 y C hoya) no s e e ncontraron núcleos heredados.

Los núcleos heredados de edad Mesozoico de las muestras SR-3 y S R-7 probablemente estén relacionados a un bloque cortical perteneciente al arco magmático cordillerano (Pérmico-Jurásico?) establecido en los trabajos de Dickinson y Lawton (2001), Dickinson y Gehrels (2008), Godínez-Urban *et al.* (2011).

Existe una combinación de análisis de herencia (núcleo heredado) o dominio más antiguo y borde del zircón al momento de la ablación (e. g., Pinta, QTB-1, SR-3, entre otros), y sea por este efecto que existan análisis con edades ligeramente más viejas con respecto a los análisis empleados para calcular medias ponderadas.

7.4 Límite entre provincias paleoproterozoicas Mazatzal y Yavapai

Como se puede apreciar en las figuras 5.1, las edades de cristalización U-Pb en zircones no permitieron realizar una diferenciación de basamentos paleoproterozoicos por sí solas.

Los valores de las r elaciones i sotópicas ¹⁷⁶Hf/¹⁷⁷Hf y ɛHf_(t) en l os zi rcones d e r ocas paleoproterozoicas demuestran una diferencia de rangos considerable, en donde gran parte de las muestras distribuidas al suroeste de Arizona tienden a ser zircones producto de contaminación o fusión de una corteza con una fuente magmática empobrecida (Mazatzal) y ot ra a grupación de muestras, al noroeste del poblado de Sonoyta, en la frontera entre México y EUA, cuyos zircones son producto de una fuente magmática moderadamente evolucionada (Yavapai) (Figura 6.1.A). Por úl timo, s e de fine una z ona de s olapamiento e ntre a mbos do minios pa leoproterozoicos interpolando los análisis utilizados para el cálculo de sus medias ponderadas de ¹⁷⁶Hf/¹⁷⁷Hf y ɛHf_(t), siendo esta una zona de transición para la evolución de ambos basamentos, con la finalidad de no colocar límites estrictos entre dominios.

Un a specto nove doso, es l a diferencia d e d os p osibles co mponentes m agmáticos en la formación de los zircones del dominio Mazatzal (Figura 6.1.D) con base en los valores de las relaciones isotópicas ¹⁷⁶Hf/¹⁷⁷Hf. Estas diferenciaciones no presentan ningún arreglo geográfico respecto a la distribución de las muestras y el basamento paleoproterozoico y se podrían asociar a un cambio composicional a lo largo del arco de isla Mazatzal en el modelo tectónico propuesto en Iriondo y Premo (2011).

Estas d iferencias d e rangos en tre provincias, e n base a i sotopía e n H f, también es evidenciada hacia el norte de Arizona y sus al rededores en los trabajos previos realizados por Goodge y V ervoort (2006), Wooden *et al.* (2012), Fornash *et al.* (2013), Mako *et al.* (2015) y Chapman *et al.* (2018), y más relacionados hacia la zona de este estudio, en el noroeste de Sonora, los trabajos de Arvizu *et al.* (2009), Iriondo *et al.* (2013) y Solari *et al.* (2017) que más adelante se discutirán en un diagrama de evolución de Hf.

Para los zircones con edades mesoproterozoicas, los valores de ϵ Hf_(t) son moderadamente empobrecidos quedando dentro del campo de evolución a partir de la contaminación o de la fusión de rocas del dominio Mazatzal, interpretándose como zircones que vienen de una corteza de una fuente magmática moderadamente empobrecida con asimilación cortical del dominio Mazatzal.

Las edades modelo a d os pasos (T_{DM2}^{C}) también contribuyen a la diferenciación de los dominios paleoproterozoicos (Figura 6.1.C), en donde las rocas asociadas al dominio Mazatzal

tienen edades modelo corticales más jóvenes (1.8 a 2.1 Ga), asumiendo que la fuente del magma fue producida a partir de una corteza continental intermedia, en comparación al rango de edades modelo corticales m ás antiguas del do minio Y avapai (2.3 a 2.4 Ga), s iendo e stos r angos comparables con las edades modelos de Nd presentadas en Iriondo y Premo (2011), en donde el rango para la provincia Mazatzal es consistente con este estudio. El rango de edades modelo del domino Y avapai obtenido en este trabajo se compara con el rango de edad modelo de Nd de la provincia Mojave en USA y muy aproximado a la parte norte del llamado Bloque Caborca (Solari *et al.*, 2017).

7.5 Rocas laramídicas y sus núcleos heredados. Asimilaciones corticales asociadas a dominios paleoproterozoicos

Las rocas pr oterozoicas, gneísicas en su m ayoría, se encuentran i ntruidas p or r ocas graníticas l aramídicas, p or l o q ue t ambién se t omaron muestras para su p osterior an álisis geocronológico U-Pb, encontrándose que la mayoría de los granitos laramídicos poseen núcleos heredados proterozoicos. Por tal motivo, se decidió realizar análisis isotópicos de Hf tanto a los crecimientos magmáticos laramídicos (bordes) de los zircones como a sus núcleos heredados. Los valores de ¹⁷⁶Hf/¹⁷⁷Hf y ɛHf_(t) de tres muestras (Choya, Cucapah-1 y C hop-3) corresponden a la asimilación d e u na co rteza poco evolucionada, con un mayor c omponente pr imitivo e n comparación al resto de los zircones laramídicos y que, además, no presentan núcleos heredados, indicando que dichos zircones son posiblemente producto de la asimilación de un basamento con mayor componente primitivo "No Mojave". El resto de los zircones laramídicos poseen valores de ¹⁷⁶Hf/¹⁷⁷Hf y ɛHf_(t) más e volucionados, c orrespondiendo a l r ango de e volución d el dom inio Mazatzal y si endo i nterpretados como resultado de una pos ible a similación de una c orteza paleoproterozoica de características isotópicas tipo Mazatzal (Figura 6.2.C, 6.2.D y 6.2.E).

Los v alores d e ϵ Hf_(t) obtenidos pa ra l os núc leos he redados proterozoicos de l as rocas laramídicas fueron cuidadosamente seleccionados, debido a que diversos análisis correspondieron a una zona de mezcla en el zircón (núcleo heredado + borde magmático laramídico), alterando los valores de ϵ Hf_(t) de diversos núcleos. Para lograr un mejor control en la selección de los análisis de Hf en núcleos heredados, se tomaron en cuenta los análisis que quedaran dentro o muy cerca de los rangos de ¹⁷⁶Hf/¹⁷⁷Hf de los zircones de rocas paleoproterozoicas ya definidas. De esta manera, se lograron calcular medias ponderadas en los valores de ϵ Hf_(t) de los núcleos heredados para tres muestras (Drifthills, Bettylee y Pinta), siendo estos datos estadísticamente representativos como para incluirlos dentro del campo de evolución del domino Mazatzal, consiguiendo a umentar el

rango de evolución de Hf pa ra di cho do minio. El r esto de l os va lores de ε Hf_(t) para n úcleos heredados de r ocas laramídicas s on a nálisis individuales y p untuales, t eniendo po ca representatividad e stadística y colocándolos c omo r eferencia (Figura 6.2.F). Por úl timo, s e visualiza que los magmas precursores del batolito Gunnery Range intrusionaron en su mayoría a rocas paleoproterozoicas del dominio Mazatzal.

7.6 Comparación de datos isotópicos de Hf en zircones de rocas paleo y mesoproterozoicas de trabajos previos en el noroeste de Sonora

Los datos presentados en este estudio, y tomados de otros autores (Arvizu *et al.*, 2009, García-Flores, 2017, Solari *et al.*, 2018), fueron procesados con la misma metodología utilizada en este trabajo, es d ecir, se cal cularon medias ponderadas para los valores de ϵ Hf_(t) en base a los valores de 176 Hf/ 177 Hf estadísticamente adecuados.

Los valores de ϵ Hf_(t) calculados para dos muestras paleoproterozoicas presentadas en el trabajo de Arvizu *et al.* (2009) en la zona de Canteras, al su reste del campo vol cánico de El Pinacate, son moderadamente empobrecidos (PIN_22 y PIN_25), que graficados en el diagrama de evolución de Hf de rocas paleoproterozoicas de este estudio (Figura 7.6), se posicionan en la zona de solapamiento entre ambos do minios de basamento paleoproterozoico. Los zircones de estas rocas paleoproterozoicas p robablemente v ienen d e u na co rteza d e u na f uente magmática moderadamente empobrecida con asimilación cortical del dominio Y avapi, ya que su ubicación geográfica es muy cercano al límite de provincias propuesto que se discutirá más adelante.

Iriondo *et al.* (2013) presentan una diferenciación de basamentos paleoproterozoicos en la zona de Quitovac, al noroeste de Sonora, que se correlacionan bien con los dominios definidos en este trabajo. Al este de Quitovac se tienen muestras con los valores de ϵ Hf_(t) más empobrecidos, asociados a l dom ino M azatzal. A l oe ste de Quitovac, c on valores de ϵ Hf_(t) moderadamente empobrecidos est án l as muestras a sociadas al dominio Y avapai. P or último, l as muestras c on valores de ϵ Hf_(t) más evolucionados se encuentran al sur de Quitovac, en la región del Bámori y están relacionadas con el dominio paleoproterozoico de basamento que denominan Mojave.

En el trabajo presentado por Solari *et al.* (2018), las muestras representadas por La Ramada, El Pinal y Palofierral tienen valores de ε Hf_(t) más empobrecidos, estando asociadas al dominio Mazatzal. Las muestras paleoproterozoicas con valores de ε Hf_(t) moderadamente empobrecidas representadas por el complejo Bámori, las asocian al dominio Yavapai y que en trabajo publicado lo de finen c omo l a pa rte nor te de 11 lamado bl oque M ojave-Caborca. Las m uestras

Figura 7.6 Diagrama de evolución de Hf de zircones en rocas meso y paleoproterozoicas trabajadas en este estudio destacando los datos de trabajos previos tales como Arvizu et al. (2009), Iriondo et al. (2013) y Solari et al. (2018).

7.7 Propuesta de límite, sutura o zona de debilidad entre los dominios Mazatzal, Yavapai y un basamento con mayor componente primitivo al noroeste de Sonora y suroeste de Arizona

Con b ase en los an álisis U-Pb y H f realizados en zi rcones los de r ocas pa leo y mesoproterozoicas, laramídicas y de sus núcleos heredados, se puede proponer un arreglo en los "límites" geográficos entre los basamentos paleoproterozoicos Mazatzal y Yavapai (Figura 7.7.A), cuya traza quedaría definida al sureste de Quitovac con los análisis mostrados por Solari *et al.* (2018), continuando su traza en la zona de Quitovac este y oeste con los datos en Iriondo *et al.* (2013). El límite queda bien definido al oeste de Sonoyta, en la frontera entre México y EUA con los análisis presentados en este trabajo. Seguido hacia el oeste, rodeando el centro volcánico El Pinacate, se asume una traza del límite con dirección noroeste, rodeando los cerros de O'Neil Hills, Tinajas Altas Mountains hasta el oeste de la población de Yuma, al suroeste de Arizona. Todos los análisis r ealizados en las r ocas al su reste d e est e l ímite, est án aso ciados a la p rovincia paleoproterozoica Mazatzal.

Para definir el límite suroeste de la provincia Yavapai se toma como referencia los trabajos de Arvizu *et al.* (2009), Arvizu e Iriondo (2011) e Izaguirre (2009), para la traza al sureste del centro volcánico El Pinacate. Continuando la traza hacia Sierra El Rosario, en donde la afinidad laramídica de dichos granitos (SR-7 y SR-3) está en los límites entre el dominio Mazatzal y un basamento c on mayor c omponente pr imitivo, s in e mbargo, pos ee núc leos he redados paleoproterozoicos que tienen afinidad t anto de l dom ino Y avapai (SR-7) c omo de la z ona de solapamiento entre ambos dominios (SR-3). Debido a que estas rocas también contienen núcleos heredados de ed ad Meso zoica (Triásico Med io a C retácico I nferior), se p ueden co mparar geocronológicamente con el trabajo realizado por Arvizu-Gutiérrez (2012) sobre el magmatismo permo-triásico en el NW de Sonora en donde sugiere diferentes fuentes de fusión para la formación de l os m agmas p recursores d e estos g ranitoides, d escartando su o rigen p or una si mple diferenciación, sugiriendo la fusión parcial de diferentes protolitos corticales y subsecuentemente produciéndose una mezcla de magmas como lo muestran los estudios isotópicos de Hf asociado a un basamento paleoproterozoico tipo Yavapai.

Por último, hacia el suroeste del límite establecido para la provincia Yavapai, se tienen tres muestras l aramídicas (Choya, C ucapah-1 y C hop-3), e n d onde s us v alores i sotópicos de H f establecen una incipiente asimilación cortical evolucionada, estando por encima de los valores de Hf del resto de las muestras laramídicas en este estudio. Al no encontrarse núcleos heredados, se propone que estas tres rocas podrían estar asociadas a la participación de una fuente cortical con

mayor c omponente pr imitivo, probablemente aso ciado a una z ona d e de bilidad producto de l margen de l S W de L aurencia, f ormado por r ifting c ontinental du rante e l N eoproterozoico-Paleozoico Temprano (Whitmeyer y Karlstrom, 2007).

En la Figura 7.7.B se muestran los límites propuestos para este trabajo y también los límites de autores previos en la zona de estudio.

Los límites entre provincias mantienen una dirección estructural predominantemente NW-SE, relacionándose a l or ógeno pa leoproterozoico e n S onora, que c ontrasta bruscamente con l a orientación general NE-SW mostrada por las rocas de las provincias paleoproterozoicas del SW de EUA, en donde Iriondo y Premo (2011) proponen la existencia de un doblez oroclinal abrupto en la parte mexicana del SW de Laurencia que llaman "doblez oroclinal Caborca". Destacan también que en la zona mencionada como basamento tipo Y avapai s ea un a zo na de debilidad cortical, condicionando notablemente los eventos geológicos subsecuentes presentes en Sonora como lo son (1) e 1 alineamiento N W-SE de granitos y anortositas m esoproterozoicas (~ 1.1 G a); (2) la orientación del rifting continental durante la ruptura del supercontinente Rodinia; (3) la ubicación preferencial para el em plazamiento de l magmatismo y la formación de cuencas s edimentarias mesozoicas; (4) la zona de despegue de cabalgaduras laramídicas; (5) la canalización de fluidos metamórficos p ara l a formación d el cinturón de A u or ogénico la ramídico; (6) l a ubicación preferencial para el magmatismo terciario, principalmente vul canismo; (7) la orientación de la extensión que formó las grandes fallas normales de tipo metamorphic core complex y basin and range que, en algunos casos, pudieran ser el resultado de la reactivación de estructuras previas, más antiguas, y que controlan la topografía actual de la región; (8) la orientación de la apertura (rifting) del Golfo de California; y, quizá, (9) la presencia de magmatismo máfico cuaternario (e.g., Campo volcánico Pinacate). Dicha debilidad cortical se ve reflejada en los variados valores de isótopos de Hf y edades modelo en las muestras asociadas al basamento tipo Yavapai analizadas en este trabajo.

Figura 7.7.A Mapa litológico regional del noroeste de Sonora y suroeste de Arizona. Tomado y modificado de Iriondo *et al.* (2005), mostrando los límites propuestos entre los dominios Mazatzal, Y avapai y un basamento c on mayor componente primitivo para este trabajo.

Figura 7.7.B Mapa litológico regional del noroeste de Sonora y suroeste de Arizona. Tomado y modificado de Iriondo *et al.* (2005), mostrando los límites propuestos entre los dominios Mazatzal, Y avapai y un basamento con mayor componente primitivo para este trabajo y además los límites propuestos por autores previos. Isótopos de Nd (líneas discontinuas delgadas y de color negro) (Bennet y DePaolo, 1987). Isótopos de Nd (líneas discontinuas delgadas de color azul, amarillo y rosado) (Iriondo y Premo, 2009).

- Las rocas c on ed ades p aleoproterozoicas, con base en los da tos de ¹⁷⁶Hf/¹⁷⁷Hf y ϵ Hf_(t), permiten diferenciar dos provincias de basamento, uno en donde los zircones vienen de una fuente magmática empobrecida (Mazatzal: ϵ Hf_(t) ~+5 a +9) y otro, en donde los zircones vienen de una corteza de fuente magmática moderadamente empobrecida (Yavapai: ϵ Hf_(t) ~0 a +3). Para los zi rcones co n edades m esoproterozoicas l os valores de ϵ Hf_(t) son moderadamente empobrecidos quedando dentro del campo de evolución a partir de rocas del dominio Mazatzal, interpretándose como zircones que vienen de la fusión de una corteza moderadamente empobrecida con asimilación cortical posiblemente asociada al dominio Mazatzal.
- Un aspecto novedoso, es la diferenciación de dos posibles componentes magmáticos en los zircones d el d ominio Mazat zal c on b ase en los v alores d e l as r elaciones isotópicas ¹⁷⁶Hf/¹⁷⁷Hf medias en los zircones. E stas di ferenciaciones no pr esentan ni ngún a rreglo geográfico respecto a la distribución de las muestras y el basamento paleoproterozoico, y se podrían asociar a un cambio composicional a lo largo del arco de isla Mazatzal en el modelo tectónico propuesto en Iriondo y Premo (2011).
- Los p romedios ca lculados p ara las ed ades m odelo de Hf también c ontribuyen a l a diferenciación de ambos dominios paleoproterozoicos; para el dominio Mazatzal, el rango de edad modelo de dos pasos (T_{DM2}^C) es de 1.84–2.07 Ga. Para el dominio Y avapai, el rango de edades modelo de dos pasos (T_{DM2}^C) es de 2.24–2.43 Ga. Es importante destacar que las muestras mesoproterozoicas tienen valores de edades modelo a dos pasos (T_{DM2}^C) que poseen valores dentro del rango de las rocas del dominio Mazatzal, relacionado con la fusión cortical de rocas de dicho dominio.
- Las rocas con edades laramídicas, en base a los datos de ¹⁷⁶Hf/¹⁷⁷Hf y εHf(t), definen dos rangos, un rango que está caracterizado por zircones con valores de εHf(t) evolucionados, correspondiendo a valores de mezcla de una fuente de corteza evolucionada con asimilación cortical principalmente del dominio Mazatzal. Estos zircones poseen núcleos heredados paleoproterozoicos con valores de εHf(t) empobrecidos, entrando en el rango del dominio de e volución de una c orteza de fuente m agmática em pobrecida (Mazatzal). Para t res muestras de zircones laramídicos con núcleos heredados (Drifthills, Bettylee y Pinta) se

lograron calcular m edias p onderadas p ara su s valores d e ϵ Hf₍₁₎, de stacando una mejor probabilidad para involucrar a estos datos como parte del dominio paleoproterozoico de basamento Mazatzal. C abe d estacar que el r esto d e l os n úcleos h eredados so n an álisis puntuales e i ndividuales y s ólo s e t omaron c omo r eferencia pa ra est e est udio y a q ue estadísticamente no son representativos en comparación con el resto de los análisis. Otro rango destacado de valores de ¹⁷⁶Hf/¹⁷⁷Hf y ϵ Hf₍₁₎ de tres muestras (Choya, Cucapah-1 y Chop-3) corresponden a la asimilación de una corteza poco evolucionada, con un mayor componente primitivo en comparación al resto de los zircones laramídicos y que, además, no presentan núcleos heredados, indicando que dichos zircones son posiblemente producto de l a a similación d e un ba samento c on mayor c omponente p rimitivo " No M ojave", asociado probablemente a una zona de debilidad producto del margen del SW de Laurencia, formado p or r ifting continental dur ante e 1 N eoproterozoico-Paleozoico T emprano (Whitmeyer y Karlstrom, 2007).

- Con base en todos los an álisis realizados en este estudio en zircones de rocas paleo y mesoproterozoicas, laramídicas y de sus núcleos heredados y el aporte de algunos trabajos previos realizados en la zona y áreas adyacentes, se puede proponer un "límite" geográfico entre los basamentos paleoproterozoicos Mazatzal, Y avapai y un basamento con mayor componente primitivo en el suroeste de Arizona y nor oeste de Sonora, redefiniendo los límites ya propuestos en Iriondo y Premo (2011) en base a estudios de Sm-Nd (Figura 7.A.B).
- Por ú ltimo, cab e d estacar q ue est os av ances d el co nocimiento so bre el b asamento proterozoico del noroeste de México y suroeste de EUA permiten esclarecer el desarrollo geológico del m argen c ontinental de 1 s uroeste de L aurencia, s umando a e sto e 1 conocimiento de poder diferenciar basamentos por medio de zircones en rocas más jóvenes con núcleos heredados, en zonas en donde no afloren dichos basamentos.
- Amato, J.M., Boullion, A.O., Serna, A.M., Sanders, A.E., Farmer, G.L., Gehrels, G.E., Wooden, J.L., 2008, Evolution of the Mazatzal province and the timing of the Mazatzal orogeny: Insights from U-Pb geochronology and geochemistry of igneous and metasedimentary rocks in southern New Mexico: GSA Bulletin, 20 (3/4), 328-346.
- Amato, J.M., Lawton, T.F., Mauel, D.J., Leggett, W.J., González-León, C.M., Farmer, G.L., Wooden, J.L., 2009, T esting the Mojave-Sonora megashear hypothesis: evidence from Paleoproterozoic igneous rocks and deformed Mesozoic strata in Sonora, Mexico: Geology, 37, 75-78.
- Amelin, Y., Lee, D.C., Halliday, A.N., Pidgeon, R.T., 1999, Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons: Nature, 399, 252-255.
- Anderson, J.L., Wooden, J.L., y Bender, E.E., 1993, Mojave Province of southern California and vicinity, in Van Schmus, W.R., et al., eds., Transcontinental Proterozoic provinces, in Reed, J.C., Jr.; B ickford, M.E.; H ouston, R.S.; L ink, P.K.; R ankin, D.W.; S ims, P.K.; y V an Schmus, W.R., eds., Precambrian-conterminous U.S.: Boulder, Colo., Geological Society of America, The Geology of North America C-2, 176–188.
- Arnold, A.H., 1986, Geologic implications of a geochemical study of three two-mica granites in southern Arizona: Arizona, USA: The University of Arizona, Department of Geosciencies, Tesis de Maestría, 179 pp.
- Arvizu, H.E., Iriondo, A., 2011, Estudios isotópicos de Hf en zicornes de granitoides pérmicos en el N W d e México: ev idencia d e mezcla d e magmas g enerados a partir d e l a fusión d e múltiples fuentes corticales: Revista Mexicana de Ciencias Geologicas, 28(3), 493-518.
- Arvizu, H.E., Iriondo, A., Izaguirre, A., C hávez-Cabello, G., K amenov, G.D., F oster, D.A., Lozano-Santacruz, R., S olís-Pichardo, G., 2009, G neises bandeados paleoproterozoicos (~1.76–1.73 Ga) de 1a Zona Canteras-Puerto Peñasco: Una nueva o currencia de rocas de basamento tipo Y avapai en el NW de Sonora, México: Boletín de 1a Sociedad Geológica Mexicana, 61(3), 375-402.
- Arvizu-Gutiérrez, H.E., 2008, E 1 ba samento pa leoproterozoico Y avapai-Mazatzal en 1 os alrededores de l a S ierra Pinta, N W S onora: S u i mportancia pa ra e l e ntendimiento de l

magmatismo pérmico y el inicio del margen continental activo de Norteamérica: Universidad Autónoma de Nuevo León, Facultad de Ciencias de la Tierra, Tesis de Licenciatura, 181 pp.

- Arvizu-Gutiérrez, H.E., 2012, Magmatismo permo-triásico en el NW de Sonora, México: Inicio de la subducción y maduración de u n margen c ontinental a ctivo: U niversidad N acional Autónoma de México, Centro de Geociencias, Tesis de Maestría, 250 pp.
- Bender, E.E., 1994, Petrology of Early Proterozoic granitoids from the southwestern United States: implications f or g enesis and t ectonics of t he Mojave cr ustal P rovince: T esis Doctoral, University of Southern California, Los Angeles USA, 332 pp.
- Bennett, V.C., DePaolo, D.J., 1987, P roterozoic crustal history of the western United S tates as determined by neodymium isotopic mapping: Geological Society of America Bulletin, 99(5), 674-685.
- Bickford, M.E., va n S chmus, W.R., K arlstrom, K.E., M ueller, P.A., K amenov, G.D., 201 5, Mesoproterozoic-trans-Laurentian magmatism: a sy nthesis o f co ntinent-wide a ge distributions, new SIMS U-Pb ages, zircon saturation temperatures, and Hf and Nd isotopic compositions: Precambrian Research, 265, 286-312.
- Blichert-Toft, J., Albarède, F., 1997, The Lu-Hf isotope geochemistry of chondrites and evolution of the mantle-crust system: Earth and Planetary Science Letters, 148, 243-258.
- Bouvier, A., Vervoort, J., Patchett, J., 2008, The Lu-Hf and Sm-Nd isotopic composition of CHUR: constraints from une quilibrated c hondrites and implications for the bulk c omposition of terrestrial planets: Earth Planet Science Letters, 273, 8-57.
- Castiñeiras, P., Iriondo, A., Wooden, J.L., D órame-Navarro, M., P remo, W.R., 2004, D etrital zircon U-Pb Shrimp geochronology of Proterozoic quartzites from the Bamuri Complex, NW Sonora, Mexico: evidence for a Mojave connection, IV Reunión Nacional de Ciencias de la Tierra, Juriquilla, Querétaro, Libro de Resúmenes, p. 215 (resumen).
- Castiñeiras, P., Premo, W., Dórame-Navarro, M.A., 2006, The role of Archean Lithosphere in the origin of the Mojave crustal province: evidence from Proterozoic metamorphic complexes in Sonora (NW Mexico), Reunión Annual 2006 de la Unión Geofísica Mexicana, Libro de Resúmenes, Geos, 26 (1), p. 60 (resumen).

- Chapman, J.B., D afov, M.N., G ehrels, G.E., Ducea, M.N., V alley, J.W., I shida, A., 201 8, Lithospheric a rehitecture a nd te ctonic e volution o f th e s outhwestern U.S. C ordillera: Constraints from zircon Hf and O isotopic data: Geological Society of America Bulletin, 130(11/12), 2031-2046.
- Chu, N.C., Taylor, R.N., Chavagnac, V., Nesbitt, R.W., Boella, R.M., Milton, J.A., German, C.R., Bayon, G., Burton, K., 2002, H f i sotope r atio analysis us ing multi-collector in ductively coupled p lasma mass sp ectrometry: an ev aluation o f i sobaric interference co rrections: Journal of Analytical Atomic Spectrometry, 17, 1142-1160.
- Condie, K.C., 1982, Plate-tectonics model for Proterozoic continental accretion in the southwestern United States: Geology, 10, 37-42.
- Coney, P.J., 1976, Plate tectonics and the Laramide orogeny, *in* Woodward, L.A., Noorthrop, S.A., eds., T ectonics and m ineral r esources o f so uthwestern North A merica: N ew Mexico, Geological Society Special Publication 6, 5-10.
- Coney, P.J., Reynolds, S.J., 1977, Cordilleran Benioff zones: Nature, 270, 403-406.
- Conway, C. M, y S ilver, L. T., 1989, E arly P roterozoic rocks (1710–1615 M a) i n c entral t o southeastern Arizona, in Jenney, J.P., y Reynolds, S.J., eds., Geological evolution of Arizona: Arizona Geological Society Digest, 17, 165–186.
- Dickinson, W.R., Lawton, T.F., 2001, Carboniferous to Cretaceous assembly and fragmentation of Mexico: 171 Geological Society of America Bulletin, 113, 1,142-1,160.
- Dickinson, W.R., Gehrels, G.E., 2008, U-Pb ages of detrital zircons in relation to paleogeography: Triassic paleodrainage networks and sediment dispersal across southwest Laurentia: Journal of Sedimentary Research, 78, 745–764.
- Duebendorfer, E.M., N yman, M.W., C hamberlain, K.R., Jones, C.S., 1998, P roterozoic r ocks within t he M ojave-Yavapai bou ndary z one, N othwestern A rizona: C omparison of metamorphic a nd s tructural e volution across a m ajor lith ospheric (?) s tructure, e n Duebendorfer, E.M., ed., Geologic excursions in northern and central Arizona; Field Trip Guidebook, Geological Society of A merica R ocky M ountain S ection Meeting, F lagstaff, Arizona, USA, 127–148.

- Enríquez-Castillo, M.A., Iriondo, A., Chávez-Cabello, G., Kunk, M.J., 2009, Interacción termal entre magmas graníticos laramídicos y rocas encajonantes mesoproterozoicas: Historia de enfriamiento d e in trusivos d e la S ierrita B lanca, N W S onora: B oletín d e l a S ociedad Geológicoa Mexicana, 61(3), 451-483.
- Farmer, G. L., Bowring, S. A., M atzel, J., E spinosa-Maldonado, G., W ooden, J., 2005, Paleoproterozoic M ojave pr ovince in nor thwestern M exico? Isotopic a nd U -Pb z ircon geochronologic s tudies of P recambrian and C ambrian crystalline and sed imentary rocks, Caborca, Sonora, *in* Anderson, T.H., Nourse, J.A., McKee, J.W., and Steiner, M.B., eds., The Mojave-Sonora m egashear h ypothesis: D evelopment, assessment, and al ternatives: Geological Society of America Special Paper 393, 183-198.
- Finch, J.R., Hanchar, M.J., 2003, Structure and chemistry of zircon and zircon-group minerals, *in* Hanchar, J.M., Hoskin, P.W.O. eds., R eviews in M ineralogy and G eochemistry, Zircon: Washington D.C., Mineralogical Society of America, 53, 1-25.
- Fisher, C.M., Hanchar, J.M., Samson S.D., Dhuime, B., Blichert-Toft, J., Vervoort, J.D., Lam, R., 2011, Synthetic zircon doped with hafnium and rare earth elements: a reference material for in situ hafnium isotope analysis: Chemical Geology, 286 (1-2), 32-47.
- Fitz-Díaz, E., L awton, T.F., J uárez-Arriaga, E., Chávez-Cabello, G., 2018, T he C retaceous-Paleogene Mexican orogen: Structure, basin development, magmatism and tectonics: Earth-Science Reviews, 183, 56-84.
- Fornash, K.F., Patchett, P.J., Gehrels, G.E., Spencer, J.E., 2013, E volution of granitoids in the Catalina m etamorphic c ore c omplex, s outheastern A rizona: U -Pb, N d a nd H f i sotopic constraints: Contributions to Mineralogy and Petrology, 165, 1295-1310.
- García-Flores, J.R., 2017, C ontrol t emporal de eventos m agmáticos p resentes en S ierra Los Tanques en el NW de Sonora: Evidencia de asimilación de basamento en la generación de magmas: U niversidad Estatal d e Sonora, U nidad A cadémica H ermosillo, T esis d e Licenciatura, 151 pp.
- Godínez-Urban, A., Lawton, T.F., Molina-Garza, R.S., Iriondo, A., Weber, B., López-Martínez, M., 2011, J urassic vol canic a nd s edimentary r ocks of t he L a S illa a nd T odos S antos Formations, C hiapas: R ecord o f N azas ar c m agmatism and r ift-basin formation p rior to opening of the Gulf of Mexico: Geosphere, 7, 121-144.

- Goodge, J.W., Vervoort, J.D., 2006, Origin of Mesoproterozoic A-type granites in Laurentia: Hf isotope evidence: Earth and Planetary Science Letters, 243, 711-731.
- Grant, M.L., Wilde, S.A., Wu, F., Yang, J., 2009, The application of zircon cathodoluminescence imaging, Th-U-Pb chemistry and U-Pb ages in interpreting discrete magmatic and high-grade metamorphic e vents in the N orth C hina C raton at the Archean/Proterozoic b oundary: Chemical Geology, 261, 155-171.
- Griffin, W.L., Pearson, N.J., Belousova, E., Jackson, S.E., Achterbergh, E., O'Reilly, S.Y., Shee, S.R., 2000, The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites: Geochimica et Cosmochimica Acta, 64(1), 133-147.
- Griffin, W.L., Wang, X., Jackson, S.E., Pearson, N.J., O'Reilly, S.Y., Xu, X., Zhou, X., 2002, Zircon chemistry and magma mixing, SE China: In situ analysis of Hf isotopes, Tonglu and Pingtam igneous complexes: Lithos, 61, 237-269.
- Gutíerrez-Coronado, A., I riondo, A., Rodríguez-Castañeda, J.L., W ooden, J.L., B udahn, J.R., Lozano-Santa Cruz, R., Hernández-Treviño, T., 2008, Paleoproterozoic gneisses of the San Luisito Hills in NW Sonora: Extending the Mexican Yavapai province of SW Laurencia: Geological Society of America, Joint Meeting, Abstract with Programs, 145, 144 p.
- Holland, M.E., Karlstrom, K.E., Doe, M.F., Gehrels, G.E., Pecha, M., Shufeldt, O.P., Begg, G.,
 Griffin, W.L., B elousova, E., 2015, A n i mbricate m idcrustal suture zone: The Mojave-Yavapai P rovince boun dary i n G rand C anyon, A rizona: G eological S ociety of A merica Bulletin, 127 (9/10), 1391-1410.
- Húguez-Vejar, A., P az-Moreno, F.A., I riondo, A., He rrera-Urbina, S., I zaguirre-Pompa, A., Arvizu, H., 2014, E studio petrológico y ge ocronológico de los granitos laramídicos de la Sierra del Rosario, reserva de la biósfera de El Pinacate y Gran Desierto de Altar, NW de Sonora, M éxico: C ongreso N acional de G eoquímica, C iudad D elicias, C hihuahua, A ctas INAGEQ, 20(1), 132–133.
- Iriondo, A., 2001, Proterozoic basements and their Laramide juxtaposition in NW Sonora, Mexico: tectonic constraints on the SW margin of Laurentia. Boulder, University of Colorado, Tesis Doctoral, 222 pp.
- Iriondo, A., Martínez-Torres, L.M., Kunk, M.J., Atkinson, W.W., Jr., Premo, W.R., McIntosh, W.C., 2005, Northward Laramide thrusting in the Quitovac region, northwestern Sonora,

Mexico: Implications for the juxtaposition of P aleoproterozoic b asement b locks and the Mojave-Sonora megashear hypothesis, *in* Anderson, T.H., Nourse, J.A., McKee, J.W., and Steiner, M.B., eds., The Mojave-Sonora megashear hypothesis: Development, assessment, and alternatives: Geological Society of America Special Paper 393, 631–669.

- Iriondo, A., Premo, W.R., 2011, L as rocas cristalinas proterozoicas de Sonora y su importancia para la reconstrucción d el margen c ontinental S W d e L aurencia: L a pieza m exicana d el rompecabezas d e R odinia, *en* Calmus, T., e d., P anorama s obre l a g eología d e Sonora, México: Universidad Nacional Autónoma de México, Instituto de Geología, Boletín 118(2), 22-55.
- Iriondo, A., Premo, W.R., Martínez-Torres, L.M., Budahn, J.R., Atkinson, W.W.Jr., Siems, D.F., Guarás-González, B., 2004, I sotopic, ge ochemical, a nd t emporal characterization of Proterozoic ba sament r ocks i n the Q uitovac r egión, nor thwestern S onora, M exico: implications f or the re construction of the s outhwestern m argin of L aurentia: G eological Society of America Bulletin, 116, 154-170.
- Iriondo, A., Yang, Z., Lassiter, J.C., 2013, P aleoproterozoic gne isses from the Quitovac area in NW Mexico: Assessing magma sources along the SW margin of Laurentia using in-situ Hf zircon microanalysis: Geological Society of America Abstracts with Programs, South Central Section Meeting, Austin, Texas, 45(3), 15.
- Izaguirre-Pompa, A., 2009, El basamento paleoproterozoico (~1.71–1.68 Ga) Yavapai en el área Mina L a H erradura en el NW d e Sonora: S us implicaciones p ara el desarrollo d el ar co magmático continental Meso zoico-Cenozoico del NW d e M éxico: S onora, México, Universidad Nacional Autónoma de México, Tesis de Maestría, 203 pp.
- Juárez-Zúñiga, S., 2016, Geocronología de U-Pb e i sotopía d e H f en g ranitos d el p aleozoico inferior: implicaciones tectónicas para la evolución del océano Rheico: Ciudad de México, México, U niversidad N acional A utónoma de M éxico, F acultad de Ingeniería, T esis de Maestría, 77 pp.
- Karlstrom, K.E., and Bowring, S.A., 1988, E arly Proterozoic assembly of tectonostratigraphic terranes in southwestern North America: Journal of Geology, 96, 561-576.

- Karlstrom, K.E., y B owring, S.A., 1991, S tyles and timing of Early Proterozoic deformation in Arizona, in Karlstrom, K.E., ed., Proterozoic geology and ore deposits of Arizona: Arizona Geological Society Digest, 19, 1–10.
- Karlstrom, K.E., and Bowring, S.A., 1993, Proterozoic orogenic history in Arizona, in Reed, J.C., Jr., et al., eds., Precambrian: Conterminous U.S.: Boulder, Colorado, Geological Society of America, Geology of North America, C-2,188–211.
- Karlstrom, K.E., B owring, S .A., Conway, C .M., 1987, T ectonic s ignificance of a n E arly Proterozoic two-province boundary in c entral A rizona: G eological S ociety of A merican Bulletin, 9, 529–538.
- Kemp, A.I.S., Hawkesworth, C.J., Paterson, B.A., Kinny, P.D., 2006, E pisodic growth of the Gondwana supercontinent from hafnium and oxygen isotopes in zircon: Nature, 439, 580-583.
- Liu, S., Currie, A.C., 2016, Farallon plate dynamics prior to the Laramide or ogeny: Numerical models of flat subduction: Tectonophysics, 666, 33-47.
- Ludwig, K.R., 2003, I SOPLOT, A geochronological toolkit for Microsoft Excel, Version 3.00: Berkeley Geochronology Center Special Publication 4, 70 p.
- Mako, C.A., Williams, M.L., Karlstrom, K.E., Doe, M.F., Powicki, D., Holland, M.E., Gehrels, G.E., Pecha, M., 2015, Polyphase Proterozoic deformation in the Four Peaks area, central Arizona, and relevance for the Mazatzal orogeny: Geosphere, 11(6), 1-24.
- Marshall, D.J., 1988, Cathodoluminescence of Geological Materials: Boston, Unwin Hyman, 146 pp.
- McLelland, J., Daly, S.J., McLelland, J.M., 1996, The Grenville orogenic cycle (ca. 1350–1000 Ma): an Adirondack perspective: Tectonophysics, 265, 1-29.
- McLelland, J.M., S elleck, B.W., H amilton, M.A., B ickford, M.E., 2010, L ate-to post-tectonic setting of some major Proterozoic anorthosite-mangerite-charnockite-granite (AMCG) suite: The Canadian Mineralogist, 48(4), 729-750.
- Melgarejo, J.C., Proenza, J.A., Galí, S., Llovet, X., 2010, Técnicas de caracterización mineral y su aplicación en exploración y explotación minera, Boletín de la Sociedad Geológica Mexicana, 62(1), 1-23.

- Nebel, O., Nebel-Jacobsen, Y., Mezger, K., Berndt, J., 2007, Initial Hf isotope compositions in magmatic zircon from early Proterozoic rocks from the Gawler Craton, Australia: A test for zircon model ages: Chemical Geology, 241, 23-37.
- Nebel-Jacobsen, Y., Scherer, E.E., Munker, C., Mezger, K., 2005, Separation of U, Pb, Lu, and Hf from single zircons for combined U–Pb dating and Hf isotope measurements by TIMS and MC-ICPMS: Chemical Geology, 220(1–2), 105-120.
- Nourse, J.A., P remo, W.R., I riondo, A., S tahl, E.R., 2005, C ontrasting P roterozoic ba sement complexes near t he t runcated m argin of L aurentia, northwestern S onora-Arizona international bor der region, *in* Anderson, T.H., N ourse, J.A., M cKee, J.W., and S teiner, M.B., e ds., T he M ojave-Sonora megashear h ypothesis: Development, ass essment, and alternatives: Geological Society of America Special Paper 393, 123-182.
- Nyman, M.W., Karlstrom, K.E., Kirby, E., Graubard, C.M., 1994, Mesoproterozoic contractional orogeny in western North America: Evidence from ca. 1.4 Ga plutons: Geology, 22, 901-904.
- Ortega-Obregón, C., Solari, L., Gómez-Tuena, A., Elías-Herrera, M., Ortega-Gutiérrez, F., Macías-Romo, C., 2014, Permian-Carboniferous arc magmatism in southern Mexico: U-Pb dating, trace element and Hf isotopic evidence on zircons of subduction beneath the western margin of Gondwana: International Journal of Earth Sciences. (Geol. Rundsch), 103, 1287-1300.
- Paton, C., Hellstrom, J., P aul, B., W oodhead, J., H ergt, J., 2011, Iolite: f reeware f or t he visualisation and p rocessing o f m ass spectrometric d ata: J ournal o f A nalytical A tomic Spectrometry, 26, 2508-2518.
- Pearce, J.A., Harris, N.B., y Tindle, A.G., 1984, Trace element discrimination diagrams for the tectonic interpretation of granitic rocks: Journal of Petrology, 25, 956-983.
- Petrus, J.A., Kamber, B.S., 2012, V izualAge: a novel approach to laser ablation ICP-MS U-Pb geochronology data reduction: Geostandards and Geoanalytical Research, 36(3), 247-270.
- Rämö, O.T., Calzia, J.P., 1998, Nd isotopic composition of cratonic rocks in the southern Death Valley region: evidence for a substantial Archean source component in Mojavia: Geology, 26(10), 891-894.

- Rivers, T., C orrigan, D., 2000, Convergent margin on s outheastern L aurentia dur ing t he Mesoproterozoic: tectonic implications: Canadian Journal of Earth Sciences, 37(2-3), 359-383.
- Rodríguez-Castañeda, J.L, 1994, Geología del área El Teguachi, estado de Sonora, México: Revista Mexicana de Ciencias Geológicas, 11(1), 11-28.
- Ruiz-Segoviano, S. A., Ishiki-Pérez, N. H., I riondo, A., P az-Moreno, F. A., A rvizu, H., a nd Izaguirre, A., 2013, Brechamiento cataclástico de granitos del Cretácico Tardío (~96 Ma) en San Luis Rio Colorado, NW de Sonora: Ejemplo de metamorfismo dinamotérmicoasociado a la orogenia larámide: Unión Geofísica Mexicana Geos, A.C., Resúmenes y Programas, 33(1), 266.
- Saleeby, J., 2003, Segmentation of the Laramide slap–evidence from the southern Sierra Nevada region: Geological Society of America Bulletin, 115, 655-668.
- Schaltegger, U., Fanning, C.M., Günther, D., Maurin, J.C., Schulmann, K., Gebauer, D., 1999,
 Growth, annealind and recrystallization of zircon and preservation of monazite in high-grade
 metamorphism: c onventional a nd i n-situ U -Pb i sotope, c athodoluminescence a nd
 microchemical evidence, Contributions to Mineralogy and Petrology, 134(2-3), 186-201.
- Scherer, E., Münker, C., Mezger, K., 2001, Calibration of the lutetium-hafnium clock: Science, 293, 683-687.
- Shafiqullah, M., Damon, P.E., Lynch, D.J., Reynolds, S.J., Rehrig, W.A., Raymond, R.H., 1980, K-Ar ge ochronology and ge ologic history of s outhwestern A rizona and a djacent a reas: Arizona Geological Society Digest, XII, 201-260.
- Sláma, J., Koŝler, J., Condon, D., Crowley, J., Gerdes, A., Hanchar, J., Horstwood, M., Morris, G., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M., Whitehouse, M.J., 2008, Pleŝovice zircon – a new natural reference material for U-Pb and Hf isotopic microanalysis: Chemical Geology, 249, 1-35.
- Söderlund, U., Patchett, P., Vervoort, J., Isachsen, C., 2004, The ¹⁷⁶Lu decay constant determined by L u-Hf a nd U -Pb i sotope sy stematics o f P recambrian mafic i nstrusions: E arth a nd Planetary Science Letters, 219, 311-324.

- Solari, L.A., González-León, C.M., Ortega-Obregón, C., Valencia-Moreno, M., Rascón-Heimpel, M.A., 2017, The Proterozoic of NW Mexico revisited: U-Pb geochronology and Hf isotopes of Sonoran rocks and their tectonic implications: International Journal of Earth Sciencies, 107 (3), 845-861.
- Soto-Verdugo, L.D.C. (2006). El zócalo ígneo-metamórfico Sierrita Prieta, Sonora norte central, México—características p etrográficas, g eoquímicas y g eocronológicas. T esis d e Licenciatura, Universidad de Sonora, 115 p.
- Streckeisen, A., 1976, To each plutonic rock its proper name: Earth-Science Reviews, 12, 1-33.
- Valencia-Moreno, M., Ortega-Rivera, A., 2011, Cretácico Tardío-Eoceno Medio en el noroeste de México–evolución de l a rco magmático c ontinental y s u c ontexto ge odinámico (orogenia Laramide), *in* Calmus, T., e d., Panorama de la geología de Sonora, México: Universidad Nacional Autónoma de México, Instituto de Geología, Boletín 118, cap. 7, 201-226.
- Valenzuela-Navarro, L.C., Valencia-Moreno, M., Iriondo, A., Premo, W.R., 2003, The El Creston Granite: A new c onfirmed P aleoproterozoic l ocality i n t he O podepe a rea, north-central Sonora, Mexico: Geological Society of America Abstracts with Programs, 32(4), 83.
- Vervoort, J., 2014, Lu-Hf Dating: The Lu-Hf Isotope System, *in* Rink, W., Thompson, J., eds., Encyclopedia of Scientific Dating Methods: Dordrecht, Springer, 1-20.
- Vervoort, J.D., Patchett, P.J., 1996, Behavior of hafnium and neodymium isotopes in the crust: Constraints from Precambrian crustally derived granites: Geochimica et Cosmochimica Acta, 60(19), 3717-3733.
- Whitmeyer, S.L., Karlstrom, K.E., 2007, T ectonic model for the Proterozoic growth of N orth America: Geosphere, 3(4), 220-259.
- Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W.L., Meier, M., Oberli, F., Von Quadt, A., Roddick, J., Spiegel, W., 1995, Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses: Geostandards Newsletter, 19, 1-23.
- Williams, M.L., 1991, Early Proterozoic low-pressure high-temperature metamorphism in Arizona, in Karlstrom, K.E., ed., Proterozoic geology and ore deposits of Arizona: Arizona Geological Society Digest, v. 19, p. 11–26.

- Wooden, J.L., Barth, A.P., Mueller, P.A., 2012, Crustal growth and tectonic evolution of the Mojave crustal province: Insights from hafnium isotope systematics in zircons: Lithosphere, 5(1), 17-28.
- Wooden, J.L., D eWitt, E., 1991, Pb i sotopic e vidence f or t he bounda ry be tween t he E arly Proterozoic M ojave a nd C entral A rizona c rustal pr ovidences i n western A rizona, *in* Karlstrom, K.E., ed., Proterozoic geology and ore deposits of Arizona: Arizona Geological Society Digest, 19, 27-50.
- Wooden, J.L., Miller, D.M., 1990, C hronologic and isotopic framework for Early Proterozoic crustal evolution in the Eastern Mojave Desert region, SE California: Journal of Geophysical Research, 95, 20, 133–20, 146.
- Wooden, J.L., Nutman, A.P., Miller, D.M., Howard, K.A., Bryant, B., DeWitt, E. y Mueller, P.A., 1994, S HRIMP U -Pb z ircon evidence for L ate A rchean and Early P roterozoic c rustal evolution i n t he M ojave a nd A rizona c rustal p rovinces: G eological Society of A merica Abstracts with Programs, 26, 69 (resumen).
- Wooden, J.L., Stacey, J.S., Doe, B., Howard, K.A., and Miller, D.M., 1988, Pb isotopic evidence for the formation of Proterozoic crust in the southwestern United States, in Ernst, W.G., ed., Metamorphism and crustal evolution of the western United States: R ubey V olume VII: Englewood Cliffs, New Jersey, Prentice Hall p. 68–86.
- Yang, J.H., Wu, F.Y., Shao, J.A., Wilde, S.A., Xie, L.W., Liu, X.M., 2006, C onstraints on the timing of u plift of the Y anshan F old and Thrust B elt, N orth C hina: E arth and P lanetary Science Letters, 246, 336-352.
- Young, E.D., Anderson, J.L., Clarke, H.S., y Thomas, W.M., 1989, Petrology of biotite-cordieritegarnet gneiss of the McCullough Range, Nevada I, Evidence for Proterozoic low-pressure fluid-absent granulite-grade metamorphism in the southern Cordillera: Journal of Petrology, 30, 39–60.
- Zhang, S.B., Zheng, Y.F., Wu, Y.B., Zhao, Z.F., Gao, S., Wu, F.Y., 2006b, Zircon isotope evidence for ≥ 3.5 Ga continental crust in the Yangtze craton of China: Precambrian Research, 146, 16–34.

- Zhang, S.B., Zheng, Y.F., Wu, Y.B., Zhao, Z.F., Gao, S., Wu, F.Y., 2006c, Zircon U–Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of Archean crust in South China: Earth and Planetary Science Letters, 252, 56–71.
- Zheng, Y.F., Zhao, Z.F., Wu, Y.B., Zhang, S.B., Liu, X.M., Wu, F.Y., 2006, Zircon U–Pb age, Hf and O isotope constraints on protolith origin of ultrahigh-pressure eclogite and gneiss in the Dabie orogen: Chemical Geology, 231, 135–158.

Apéndice A. Geocronología U-Pb de rocas proterozoicas

Tabla A.1 Datos analíticos U-Th-Pb obtenidos por LA-ICPMS en zircones de granitoides proterozoicos del SW de Arizona, USA

A.2 Descripción de zircones de rocas proterozoicas
A.2.1 Gneis sienogranítico de biotita (Wilton-02)
A.2.2 Gneis granítico de biotita rico en cuarzo (Ajo-2)
A.2.3 Gneis tonalítico (Cooper)
A.2.4 Gneis tonalítico de biotita (14-1/2)
A.2.5 Gneis sienogranítico de biotita (QTB-6)
A.2.6 Gneis sienogranítico de biotita (Pilotknob)
A.2.7 Sienogranito leucocrático de dos micas (Aztec-02)
A.2.8 Gneis sienogranítico de biotita (Telegraph)
A.2.10 Sienogranito leucocrático de biotita (Ajo-4)
A.2.11 Gneis monzogranítico de biotita (Ajo-3)
A.2.12 Gneis granítico feldespático microclínico de biotita (Chpass-01)
A.2.14 Gneis sienogranitico de biotita (Lewis-01)

A.3 Mosaicos de imágenes de catodoluminiscencia de zircones de rocas proterozoicas

					0	DE	ACTONES	reotá	DICASCO	DECIL	SV				-	TA DF	aauus	FCIDA	S (Ma)			
Análisis/Zircón	Comentario	U [#] (ppm) T	(mdd) #4.	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb ⁺	err %*	²⁰⁷ Pb/ ²³⁵ U [†]	err %	²⁰⁶ Pb/ ²³⁸ U [†]	err %* 2	⁰⁸ Pb/ ²³² Th [†]	err %*	Rho** %	disc	²⁰⁶ Pb/ ²³⁸ U	±2s ^{* 21}	⁷ Pb/ ²³⁵ U	±2s [*] ²⁰	¹⁷ Pb/ ²⁰⁶ Pb	±2s [*] N	lejor edad (Ma) ± 2s	
Muestra QTB-3	Gneis monzog.	ranítico melan	ocrático	de biotita	(Quitobaqui	to Hills,	Organ Pipe	Cactus]	Vational Mo	nument,	SW Arizona)	Probet	ICGEO-8	I (Dicier	nbre 2017							
QTB-3_21	B+N, >U	746	36	0.05	0.08760	3.3	2.80000	3.9	0.23200	2.2	0.07590	35.6	0.55	1	1345	26	1355	28	1373	65	1345 ± 26	
QTB-3_8	B+N, >U	443	70	0.16	0.09430	3.4	3.45600	4.3	0.26620	2.7	0.07830	35.8	0.61	0	1521	36	1515	33	1510	63	1510 ± 63	
QTB-3_11	B+N	394	100	0.25	0.09630	3.2	3.75800	3.7	0.28220	2.2	0.08960	34.6	0.59 2 <u>2 - </u>		1602	31	1583	30	1558	8	1558 ± 63	
Q1B-3_5 OTB-3_18	B+N B+N ≥II	1310	171	0.42	0.10110	0.5 1 - 6	4.21400	4.0 7 8 7	0.30320	2.5	0.08270	35.3	15.0	7 0	1/0/	સ દ	c/91	55	1664	40 ¥	1648 ± 64 1664 ± 50	
OTB-3 13	B	198	85	0.43	0.10180	3.4	4.29400	3.7	0.30370	5.2	0.09240	34.6	0.60	~ -	1710	35	1695	30	1671	65	1671 ± 65	
QTB-3_23	z	244	146	0.60	0.10330	3.4	4.06800	3.7	0.28750	2.3	0.08510	34.1	0.62	1	1628	33	1647	31	1680	61	1680 ± 61	
QTB-3_16	В	375	160	0.43	0.10380	3.3	4.09100	3.9	0.28590	2.2	0.08590	34.9	0.55	2	1621	31	1652	31	1691	61	1691 ± 61	
QTB-3_17	B+N	205	87	0.42	0.10360	3.4	4.51300	4.0	0.31600	2.6	0.08840	35.1	0.65	-2	1773	40	1734	34	1698	65	1698 ± 65	
QTB-3_3	в	177	83	0.47	0.10350	3.6	4.09000	3.9	0.28830	2.2	0.08260	36.3	0.55	1	1633	31	1651	32	1700	67	1700 ± 67	
$QTB-3_1$	z	255	141	0.55	0.10390	3.4 4.6	4.27300	3.7	0.29980	2.1	0.08820	36.3 25 7	0.55	0 0	1690	31	1687	31	1701	62	1701 ± 62	
Q1B-3_2 OTD 2_14	B+N N	117	171	0.46	0.10450	2, 6 4, 7	4.2/000	5.1	00802.0	77	0.08960	35.5	8C.U	o -	1684	27	1600	۲ ۲	1716	5 C	1/10 ± 64 1716 ± 63	
Q1B-3_14	ZZ	167	60 67	05.0	0.10440	0 0 4 1	4.20000	, c , c	0.0842.0	1.1	0005900	C.CC	00.0		1001	15 55	1605	10 22	9121	60 9	$1/10 \pm 0.0$	
$OTB-3_20$	R+N	193	co 70	0.50	0.10560) r 1	4.31300	4 r 7 i	0.30090	1.7	07620.0	35.1	0.60	- 0	1696	7 6	2601 1695	с .	1720	61	$1/10 \pm 69$ 1720 ± 61	
OTB-3 19	N. >U	668	522	0.78	0.10540	3.2	4.25900		0.29380	2.0	0.08270	29.0	0.67	~ —	1660	32	1685	5 6	1721	6 09	1721 ± 60	
OTB-3 22	N, >U	728	589	0.81	0.10550	3.2	4.34600	3.7	0.29900	2.1	0.08967	34.6	0.56	. –	1686	31	1702	29	1724	09	1724 ± 60	
QTB-3 4	Z	162	83	0.51	0.10550	3.6	4.43500	4.1	0.30390	2.2	0.08800	35.2	0.55	0	1710	34	1717	32	1725	67	1725 ± 67	
QTB-3_15	z	164	75	0.46	0.10550	3.3	4.17300	4.1	0.29240	2.6	0.09320	35.4	0.63	1	1653	37	1669	32	1727	09	1727 ± 60	
QTB-3_9	B+N	240	130	0.54	0.10580	3.4	4.52000	3.8	0.30910	2.1	0.08500	35.3	0.56	0	1736	32	1734	31	1736	61	1736 ± 61	
QTB-3_6	B+N	359	186	0.52	0.10660	3.2	4.42100	3.6	0.30060	2.1	0.08080	35.9	0.57	1	1694	31	1716	30	1737	59	1737 ± 59	
QTB-3_12	в	232	105	0.45	0.10680	3.4	4.50400	3.8	0.30790	2.2	0.09700	35.1	0.59	0	1730	34	1731	32	1739	62	1739 ± 62	
QTB-3_7	z	187	93	0.50	0.10740	3.6	4.41500	4.1	0.29960	2.2	0.08090	35.8	0.53	-	1689	32	1714	33	1751	67	1751 ± 67	
n = 23																Edad ²	⁰⁷ Pb/ ²⁰⁶ F	b medis	a pondera	da =	1709 ± 14	
																			0	2 sigma. N	4SWD = 0.75; n = 20)	
Muestra ADN-01	Sienogranitı	o de dos micas	(Agu	a Dulce Mo	untains, Cabe:	za Prietc	ı Wildlife Rej	uge, SW	Arizona)	Probeta	ICGEO-33	(Octubre	2016)							0		
ADN-01 16	B, >U, D	850	834	0.98	0.10074	3.8	2.42500	3.5	0.17640	2.2	0.05091	4.7	0.61	16	1047	21	1249	25	1634	38	1047 ± 21	
ADN-01_2	B, >U, D	597	374	0.63	0.10104	3.9	3.04300	3.1	0.21890	1.4	0.06233	4.5	0.44	10	1277	16	1418	24	1653	34	1277 ± 16	
ADN-01_8	B, >U, D	581	421	0.72	0.10119	3.8	3.25800	3.1	0.23340	1.7	0.07040	4.7	0.54	8	1352	20	1471	25	1648	43	1352 ± 20	
ADN-01_21	B, >D	188	88	0.47	0.10220	4.1	3.29000	4.6	0.23630	3.2	0.07490	5.2	0.70	8	1366	39	1478	33	1671	45	1366 ± 39	
ADN-01_12	B, >D	204	119	0.58	0.10160	3.9	3.35200	3.6	0.24000	1.9	0.07450	5.0	0.54	۲.	1386	24	1494	27	1648	6 ;	1386 ± 24	
ADN-01_24	B, >U, D	327	218	0.67	0.10130	6.6 6	3.57700	6. 6 4. 7	0.25880	2.0	0.07550	8.4	0.61	4 \	1483	27	1545	53 53 53	1648	47	1648 ± 47	
ADN-01_6	В, >U, D	334	212	0.0 49.6	0.10180	x x	3.49100	2. c 4. c	0.25040	9. I 1. 9	0.07200	4.4	0.0	o -	1440	3 2	1524	17	1649	6	1649 ± 46	
ADN-01_23 ADN-01_15	B U ≥II D	132	90 811	0.73	0.10130	4.0 8 0	3.60200	5.5 5.7	0.28050) ; ;	0.08310	4 0 4 0	10.0	- 2	26C1 1478	47 X	1612	87 8 7	1649 1650	70	1649 ± 52 1650 ± 40	
ADN-01 1	B, >D	162	140	0.86	0.10190	4.2	3.47300	3.7	0.24820	1.9	0.07210	5.0	0.51	9	1429	24	1520	28	1661	4	1661 ± 44	
ADN-01 5	В	120	96	0.80	0.10160	4.1	3.98200	3.5	0.28500	1.6	0.08260	5.0	0.46	-	1616	23	1632	27	1662	40	1662 ± 40	
ADN-01_22	B, >U	506	392	0.77	0.10247	3.8	3.80600	3.4	0.26960	2.0	0.07920	4.8	0.58	3	1538	27	1593	29	1666	4	1666 ± 44	
ADN-01_18	в	256	218	0.85	0.10270	3.9	3.85300	3.4	0.27300	1.7	0.08110	4.9	0.51	3	1556	24	1603	27	1674	41	1674 ± 41	
ADN-01_9	B+N	119	86	0.72	0.10240	4.1	3.89600	3.6	0.27600	1.7	0.08280	4.8	0.46	2	1571	23	1611	28	1675	40	1675 ± 40	
ADN-01_7	В	66	89	0.90	0.10270	4.	3.95500	3.5	0.28010	1.8	0.08080	4.8	0.50	7	1592	25	1623	29	1675	42	1675 ± 42	
ADN-01_10	в	60	76	0.84	0.10240	4.1	4.01100	3.5	0.28450	1.9	0.09120	4.8	0.53	_	1613	26	1635	29	1676	52	1676 ± 52	
ADN-01_3	B, >D	230	186	0.81	0.10240	3.9	3.65300	3.3	0.25980	2.0	0.07590	4.9	0.60	5	1488	26	1562	27	1677	46	1677 ± 46	
ADN-01_19	e i	229	187	0.82	0.10390	4.0	4.02000	3.5	0.28070	1.4	0.08450	4.6	0.41	m 1	1595	50	1637	27	1692	37	1692 ± 37	
ADN-01_11	e i	180	146	0.81	0.10370	3.9	3.93500	3.3	0.27670	1.6	0.08160	4.7	0.47	m 1	1574	52	1622	26	1695	40	1695 ± 40	
ADN-01_17	щ	69	85	0.70	0.10430	4.5 2, 2	4.05800	3.9 	0.28480	1.8	0.08490	6.4	0.45	61 -	1615	52	1643		1704	46	1704 ± 46	
ADN-01_20	nz	144 44 60	154	0.81	0.10600	4.7 7 0 6	4.00800	0.0	0.27460	vi ,	0.06580.0	4.7	0.45 0.45	4 -	1504	17 5	1634 1673	87	1740	65 84	1740 ± 35	
ADN-01 4	r U≻ a	011	76	0.60	0.1007U	2.7 4.4	4.20200	0.0 2 X	0.26530	ن.ا ۶۶	0.08880	0.4 7 1 7	0.67	т т	1516	17	c/01	9 F	1776	0 t	1776 + 50	
ADIN-UL-4	D, ∕U	110	0/	V0.U	0.0001.0	+ +	0.404.0	0.0	NCC07.0	C.7	0.00000	1.0	0.0/	-	01/1	÷.	1071	10	1//0	nc	NC H 0//I	1
																				Continua	en la siguiente página	

Tabla A.1 (Cont.) D	atos analíticos	U-Th-Pb obi	tenidos poi	r LA-ICPM	S en zircones	de grani	itoides proter	ozoicos c	lel SW de A	rizona, U	SA.					DA DEG	ADDE	STUD	(Mo)		
Análisis/Zircón	Comentario	U [#] (ppm)	Th [#] (ppm)	Th/U	$^{207}Pb/^{206}Pb^{\dagger}$	err %*	²⁰⁷ Pb/ ²³⁵ U [†]	err %*	²⁰⁶ Pb/ ²³⁸ U [†]	err %*	⁰⁸ Pb/ ²³² Th [†]	err %	Rho**	6 disc	²⁰⁶ Pb/ ²³⁸ U	±28 [*] 207	Pb/ ²³⁵ U =	±2s [*] ²⁰⁷	(141a) •b/ ²⁰⁶ Pb ±	2s [*] Mejor	edad (Ma) ± 2s
ADN-01_14	B, >D	175	117	0.67	0.11170	4.1	4.06900	3.2	0.26780	2.2	0.09440	5.0	0.68	7	1529	30	1647	27	1829 5	52	1829 ± 52
n = 24																Edad ²⁰	¹⁷ Pb/ ²⁰⁶ Pt	media j	onderada	"	1690 ± 19
Muestra Wilton-02	Gneis sienc	ogranítico de	ș biotita	(Wellton]	Hills, Barry A	4. Goldw.	ater Air Forc	'e Range,	SW Arizom	() Pro	beta ICGEO-	33 (Ener	o 2017)						5	sigma, MS'	VD = 1.9; n = 12)
Wilton-02 15	B, >D	474	30	0.06	0.09120	2.6	2.69300	4.1	0.21420	1.5	0.06920	6.2	0.37	9	1251	17	1326	30	1448 5	50	1251 ± 17
Wilton-02_25	B, >D	613	47	0.08	0.09460	2.4	2.96700	3.7	0.22690	1.2	0.07030	5.4	0.32	9	1318	14	1399	28	1518 4	4 :	1318 ± 14
Wilton-02_6 Wilton-07 8	<u>я</u> п	377 377	107	0.20	0.10100	4.7 4 4	3.79600 4 01800	5.7 7 7	0/2/2/0	vi t	0.08280	0.0	0.40		1637	18	1961 1638	90 90 90 90	1641 4 1651 4	4 ¥	1641 ± 44 1651 + 45
Wilton-02 23	B, >D	503	60	0.12	0.10190	2.3	3.80700	3.7	0.26870	i 4.	0.07780	5.0	0.38	o 4	1534	16	1594	30 2	1658 4	2 4	1658 ± 42
Wilton-02_7	B, >D	474	182	0.38	0.10220	2.4	3.84500	3.9	0.27310	1.4	0.08040	4.7	0.35	ŝ	1557	19	1602	30	1663 4	19	1663 ± 46
Wilton-02_11	B, >U, D	2058	645	0.31	0.10229	2.2	3.56700	3.6	0.25340	1.5	0.07210	4.7	0.41	5	1458	20	1542	29	1665 3	39	$1665~\pm~39$
Wilton-02_18	в	303	109	0.36	0.10240	2.6	4.22700	3.8	0.29620	1.3	0.08400	5.4	0.35	0	1672	19	1679	31	1667 4	6†	1667 ± 49
Wilton-02_12	B, >D	393 201	37	0.09	0.10250	2.3	3.57400	3.6	0.25370	1.4	0.07850	5.6	0.38	9	1457	8 3	1545	31	1670 4	5	1670 ± 42
Wilton-02_13 Wilton-02_1	ы N + П	580 107	120	0.51	0.10220	77	4.11200	0.6 8 8	0.29160	v. 1	0.08430	/.4 / v	0.35		0001	10	1683 1683	31	1670 4	5 X	$16/8 \pm 43$ 1670 ± 10
Wilton-02 10 Wilton-02 10	n N	474	76	0.21	07601.0	t (* 7	4 11200	9.0 9.0	06162.0	<u>;</u>	0.08550	0.0 1-0	0.34		1641	2 8	1656	30	1681 4	5 2	1681 ± 45
Wilton-02 17	а	348	122	0.35	0.10340	2.3	4.13300	3.6	0.28950	1.2	0.08580	8.4	0.34		1639	18	1660	31	1684 4	2 2	1684 ± 42
Wilton-02_3	B,>U	6350	379	0.06	0.10342	2.0	4.11600	3.6	0.28870	1.4	0.08210	4.6	0.38	-	1635	20	1657	30	1685 3	38	1685 ± 38
Wilton-02_16	$\mathbf{B} + \mathbf{N}$	333	78	0.23	0.10360	2.3	4.23100	3.8	0.29620	1.3	0.08550	4.9	0.35	0	1673	19	1680	31	1687 4	13	1687 ± 43
Wilton-02_4	в	634	289	0.46	0.10370	2.3	4.16900	3.8	0.29300	1.4	0.08340	4.7	0.36	-	1656	20	1669	29	1689 4	13	1689 ± 43
Wilton-02_14	$\mathbf{B} + \mathbf{N}$	271	74	0.27	0.10350	2.5	4.28000	3.7	0.29850	1.3	0.09510	4.8	0.36	0	1684	20	1689	31	1689 4	8	1689 ± 48
Wilton-02_21	$\mathbf{B} + \mathbf{N}$	630	196	0.31	0.10377	2.2	4.41000	3.6	0.30940	1.3	0.09460	4.7	0.36	-	1739	19	1714	30	1691	9	1691 ± 40
Wilton-02_20	щ	559	135	0.24	0.10380	5.3 0	4.23200	ю. х	0.29630	4. 6	0.08630	4.9	0.37	0,	1673	21	1680	31	1692 4	2 2	1692 ± 42
Wilton- 02_{19}	щ	438	66 8	0.23	0.10380	272	4.16700	9.0 0	0.29160	1. 1.	0.08310	4.7	0.35		1651	18	1667	30	1694 4	<u>n</u> 1	1694 ± 43
Wilton-02.9	н Н	283	8/.	0.28	0.10400	2.4	4.07/100	1.5	0.28310		0.08170	5.0	0.36	7 9	1510	61	1048	02.02	1696 4	9 9	1696 ± 46
Wilton-02 33	в, >0	300	7001	07.0	0.10409	1.2	00800.4).0 7 0 7	0/505.0	0.1 2 4	0.08550	4 ∧ Ú ∠	05.0	o -	1/10	03 E	c0/1	67 68	C /601	6 01	$109/ \pm 39$
Wilton-02 24 Wilton-02 24	<u> </u>	202 428	106	0.25	0.10590	47	4.43900	0 % t	0.20580	<u>.</u>	0.08610	t r	0.34	- 0	1720	50	1719	7 10	1729 4	2 4	$1/04 \pm 49$ 1729 ± 44
Wilton-02_2	В	357	57	0.16	0.10660	2.7	4.52000	4.2	0.30980	2.0	0.08960	5.9	0.47	0	1739	30	1734	35	1740 5	11	1740 ± 51
n = 25																Edad ²⁰	¹⁷ Ph/ ²⁰⁶ PF	media 1	onderada	II	1688 ± 9
ł																			0 si	oma MSW	$D = 0.78 \cdot n = 18$
Muestra <u>Ajo-2</u> G	ineis granítico	de biotita ri	co en cuar	rzo (Littl	e Ajo Mounta	tins, SW 1	Ajo, SW Arizı	I (puc	Probeta ICG.	EO-33	(Diciembre	2017)							16 4		(0) II (0)
Ajo-2_21	B, >D	556	14	0.03	0.09740	3.2	3.36400	3.3	0.24730	1.9	0.06820	9.2	0.58	5	1424	24	1495	26	1575 6	11	1575 ± 61
Ajo-2_18	B+N, >D	630	32	0.05	0.09916	3.0	3.39200	2.9	0.24690	1.9	0.07670	9.9	0.63	5	1422	24	1502	23	1613 5	54	1613 ± 54
Ajo-2_5	B, >D	627	19	0.03	0.10160	3.1	3.39500	3.2	0.24300	1.8	0.07190	9.6 2	0.56	~ `	1402	23	1503	26	1653 5	6	1653 ± 59
Ajo-2_19	B ∩ ∧n	868	17	0.02	0.10203	2.9	3.92300	1.5	0.27100	1.8 0 c	0.08830	8.4 6.4	95 0	7 5	1546	3 5	1618	3 5	1663 5	4 C	1663 ± 54
Ajo-2.11	B, >D	1137	18	0.10	0.10257	2.9	3.85900	t 1.6	0.27230	1.8	0.08560	6.9 4.8	0.57	1 00	1553	54	1605	24	1670 5	1 12	1670 ± 54
Ajo-2_ 3	B,>U	1780	168	0.09	0.10248	2.9	4.00300	3.0	0.28170	1.7	0.08250	9.2	0.57	5	1600	24	1635	24	1671 5	55	1671 ± 55
Ajo-2_17	B+N, >D	922	24	0.03	0.10310	3.0	3.92400	3.1	0.27360	1.8	0.09390	6.8	0.59	4	1559	25	1618	25	1683 5	26	$1683~\pm~56$
Ajo-2_25	N, >U	3460	214	0.06	0.10373	2.9	4.12100	3.2	0.28820	1.9	0.08060	8.8	0.62	5	1632	28	1658	25	1684 5	33	1684 ± 53
Ajo-2_15	z	552	165	0.30	0.10330	3.1	4.39900	6. 6 4. 6	0.30510	2.0	0.09340	9.6	0.60	0 0	1716	31	11/1	28	1687 5	15	1687 ± 57
AJ0-2_2	B, >U, D B <ii< td=""><td>0401</td><td>313 274</td><td>0.20</td><td>0.10355</td><td>67</td><td>3.98800 4.72000</td><td>3.0 1 c</td><td>0.27840</td><td>7. C</td><td>0.08230</td><td>6.4 16.7</td><td>9C.U</td><td>n c</td><td>1584</td><td>2 2</td><td>1631</td><td>57 E</td><td>2 6891 2 600</td><td>4 ¥</td><td>1600 ± 54</td></ii<>	0401	313 274	0.20	0.10355	67	3.98800 4.72000	3.0 1 c	0.27840	7. C	0.08230	6.4 16.7	9C.U	n c	1584	2 2	1631	57 E	2 6891 2 600	4 ¥	1600 ± 54
Ajo-2 14	B, >U	2469	758 258	010	10 10376	6.4 0 C	4 11300	1.0	0.28870	0.7 1 8	0.08640	73	0.56		1635	67 K	1657	25	0601	2 G	1691 + 53
Aio-2 13	0<.N	943	273	0.10	0.10350	2.9	4.56200	3.1	0.31800	1.8	0.08800	6.8	0.59		1780	3 8	1742	25	1691 5	2 2	1691 ± 52
Ajo-2_8	Z	410	100	0.24	0.10320	3.0	4.30000	3.5	0.30050	2.1	0.08780	9.3	0.59	0	1694	31	1692	27	1693 5	26	1693 ± 56
Ajo-2_1	B, >D	1014	17	0.02	0.10392	2.9	4.00700	3.0	0.27970	1.8	0.09370	7.0	0.58	3	1590	25	1636	25	1697 5	54	1697 ± 54
Ajo-2_9	N, >D	504	179	0.36	0.10345	3.0	4.57800	3.3	0.31920	2.1	0.09310	8.5	0.63	-2	1785	33	1745	27	1697 5	22	1697 ± 57
Ajo-2_16	N, >U, D	1720	189	0.11	0.10463	3.0	4.02500	3.2	0.27760	1.8	0.08130	8.2	0.57	4 0	1579	25	1639	25	1699 5	55	1699 ± 55
Ajo-2_/ Ai^.2_10	N R >11	1507	202 CLC	0.18 0.18	0010400	4.0 7 0 6	4.41000	4.0 1.0	0050C.U	0.7 8 I	0.08940 0.08250	0.0 A 1	0.00 0.60	> -	1/10	UC 77	1684 1684	07 26	00/1	2 g	1700 ± 40
Ajo-2_23	, N	334		0.23	0.10440	3.2	4.39100	3.6	0.30630	2.6	0.08990	6.6	0.71		1722	39	1111	30	1700 5	2 82	1700 ± 58
																			C_{6}	ontinua en l	a siguiente página

Tabla A.1 (Cont.)	Datos analíticos	U-Th-Pb obt	enidos pc	r LA-ICPN	1S en zircones	de gran	itoides prote	ozoicos	del SW de	Arizona,	USA.											
Análisis/Zircón	Comentario	U [#] (ppm)	Th [#] (ppm) Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb [†]	kl err % [*]	ELACIONE ²⁰⁷ Pb/ ²³⁵ U [†]	s 15010 err % [*]	206Pb/238U ⁺	<u>)KKEG</u> err % [*]	DAS ²⁰⁸ Pb/ ²³² Th [†]	err %*	Rho**	% disc	²⁰⁶ Pb/ ²³⁸ U	EDADE	<u>5 COKI 7 Pb/²³⁵ U</u>	KEGIDA ±±2s [*] 2	<u> </u>	b ±2s [*]	Mejor edad (Ma) ± 2s	
; ; ;			t		0 10105		1 20000		000000	-	0.00010		5.0		- 2021	č	1001	ò	1001		1011	
Ajo-2_12 Ajo-2_74	N+9	700 712	0 / Q	0.10	0.10370	0.0 1 C	4.20000	0.0	02006.0	0.1	0.08030	1.0	0.58		1728	17 80	1719	07 50	10/1	CC LS	1703 ± 10/1	
Ajo-2 27	, z	030	369	0.40	0.10434		4 38600	10	06/06/0	0.0	0.08520	0.0 8	0.60		1706	2 2	1709	25	20/1	5	1707 + 55	
Aio-2 6	; m	703	2	0.00	0.10500	3.0	4 33200	100	0 30010) ~ -	0.09500	×	0.60		1693	, C	1699	3 2	1713	295	1713 + 56	
	2	201	2	70.0	000010	2	00707-1	200	0100000	2	00000	1.0	00.0	>	C (0 1	ĩ	101	ì		2		
n = 25																Edad	²⁰⁷ Pb/ ²⁰⁶	Pb medi	ia ponder	ada =	1699 ± 17	
:		:	į	;	:	:	р ;			,		Ę	Î							(2 sigma,	MSWD = 0.08; n = 10)	
Muestra Cooper	Gneis tonalíti	co de biotita	(Coop	er Mounta	ins, Barry M.	Goldwat	er Air Force	Range, S	W Arizona)	Prob	eta ICGEO-3.	2 (Energ	0 2017)									
Cooper_18	B, >U, D	2170	88	0.04	0.09470	2.5	2.40200	3.8	0.18520	1.6	0.04250	6.4	0.43	12	1096	17	1243	27	1520	48	1096 ± 17	
Cooper_13	N, >D	547	490	0.90	0.10020	2.4	2.93600	3.7	0.21130	1.3	0.02270	18.9	0.35	11	1236	15	1391	29	1632	47	1236 ± 15	
Cooper_5	B, >D	1258	21	0.02	0.09380	2.5	2.76700	4.0	0.21250	1.4	0.04990	9.2	0.34	8	1242	15	1349	27	1501	46	1242 ± 15	
Cooper_2	B, >U, D	3340	77	0.02	0.08892	2.1	2.67100	3.7	0.22000	1.2	0.06750	5.3	0.33	3	1282	14	1320	27	1401	41	1282 ± 14	
Cooper 22	B, >U, D	2846	450	0.16	0.09999	2.1	3.58700	3.6	0.26170	1.3	0.08740	4.6	0.36	ŝ	1499	17	1547	29	1623	40	1623 ± 40	
Cooper 9	B, >U, D	2292	58	0.03	0.10029	2.1	3.39300	3.5	0.24600	1.2	0.06950	5.0	0.33	9	1418	15	1503	28	1628	39	1628 ± 39	
Cooper 25	B, >D	1644	402	0.24	0.10158	2.2	3.69500	3.5	0.26450	1.2	0.07545	4.5	0.34	4	1513	17	1570	29	1652	40	1652 ± 40	
Cooper 16	В	753	166	0.22	0.10155	2.3	3.91600	3.8	0.28000	1.4	0.07950	4.9	0.36	2	1591	20	1617	30	1655	39	1655 ± 39	
Cooper 20	N. >D	824	394	0.48	0.10182	2.2	3.69400	3.5	0.26460	1.3	0.07830	4.6	0.37	4	1513	17	1571	31	1656	39	1656 ± 39	
Cooper 24	N. >D	574	290	0.51	0.10191	2.3	3.74300	3.7	0.26750	1.3	0.08150	4.8	0.34	ŝ	1528	17	1580	29	1657	42	1657 ± 42	
Cooper 19	B. >D	1643	274	0.17	0.10213	2.2	3.55800	3.7	0.25200	1.4	0.07850	4.7	0.38	9	1449	18	1540	30	1662	40	1662 ± 40	
Conner 14	U< B	1048	130	0.12	0.10230	2.2	3.71400	8	0.26460	12	0.07840	5.4	0.32	4	1513	16	1574	30	1665	67	1665 ± 42	
Coner 1	u ∼ U× H	1777	364	0.20	0 10260	1.0	3 72 800		0.26540	1 2	07970.0	46	25:0	· 4	1518	16	1577	60	1670	2 02	1670 ± 39	
Cooper 17	, 4 7 7 N	1127	546	0.48	0.10263	 	4 11700	9.6	01000000	; ;	0.08387	4.5	0.34		1652	2 8	1657	i e	1673	38	1673 + 38	
Cooper_17	, u	1390	515 616	0.73	0.10758	 	4 15400	9.0	0.2027.0	<u>i</u> -	0.08700	0 F F	1 3 3	~ ~	1665	21	1665	90 08	1674	37	1674 + 37	
Conner 6	рш	1001	595	0.30	0.10233		4 04100	5.0	0.28540	1 -	0.08440	4.6	0.33	> -	1619	3 2	1647	8 8	1675	50°	1675 + 30	
Cooper 31	u u	1761	458	05.0	0 10786	 	3 80100		010922.0	1 2	0.05230.0	4.6	0.30 0.32	- ~	151	91	1612	9 ç	1675	e de	1675 ± 301	
Cooper 23	D, JU	1222	120	10.0	010200	- c - c	2 82400	0.0	0.001.2.0	1 2	0.04550	0.4 7	70.22	n (1	1/01	21	7101	50	C/01	₹	14 ± 2701	
Cooper 7		C771	701	20.0	0.10200	1 C	004000 0	2.6	020200	<u>i</u> -	20190.0	0.4 7	CC.U	nc	C+C1	/1	1001		1/01	- 5	10// ± 41 1670 ± 20	
Cooper_/	D, /O	00400	100 101	00.0	00501.0	0.4 c	0000011	0.0	0001000	7 -	CU 16U.U	4.0 7	CC.U	- v	40C1	2 1	6101	67 6	16/01	00	10/0 ± 0/01	
Cooper_3	חב	1002 808	C17	07.0	02601.0	1.7	4.11900	0.0	0000000		0.08/00	0. ¢	10.0		1049	1	1660	000	1001	€ €	1001 ± 40	
Cooper_8	ממ	898	0/5	0.42	0.10337	7.7	4.11800	0.0	05682.0	Ω.	05060.0	4.4 V. r	0.50 75 0		1038	5	8001	05 05	1084	} :	1084 ± 40	
Cooper_10	ם רוי	5/6	757	0.24	0.10225	7.7	4.12200	0.0	05167.0	<u>.</u> -	0.02402	4 0 r	05.0		1048	51	8001	8	1084	4	1084 ± 41	
Cooper_11	В, >U, D	6717	1812	0.00	0.10336	1.7	5.82900).ç	010/2.0	<u>.</u> .	0.0/405	4	0.50	4 (1961	<u>s</u> i	6661	67 8	1084	66 66	1084 ± 39	
Cooper_4	В, ×U	1235	331 24	0.27	0.10343	7.7	3.91200	0.0	0.27380	1.7	0.07750	4 r V (0.34	τη c	1260	19	1616	67 8	C801	65 y	1685 ± 39	
Cooper_12	B, >D	890	94 4	0.17	0.10320	2.3	3.86200	3.0	0.7 / 280	<u>.</u> I	00//0.0	7.6	c <i>c</i> .0	γ,	6661	18	1606	67	C80 I	64	1685 ± 45	
n = 25																Edad	²⁰⁷ Pb/ ²⁰⁶	Pb medi	ia ponder	ada =	1673 ± 9	
																				(2 sigma,	MSWD = 0.31; n = 18)	
Muestra <u>14-1/2</u>	Gneis tonalítico	de biotita	(Foothills)	Mountain,	NE Fortuna 1	^c oothills	, SW Arizon	t) Pro	beta ICGE	0-35 (Diciembre 20	(21))		
14-1/2 3	B, >D	689	27	0.04	0.09542	2.9	3.33100	3.0	0.25160	1.9	0.07540	7.6	0.62	ŝ	1446	24	1488	24	1538	55	1446 ± 24	
14-1/2 15	B+N, >U	965	255	0.26	0.10240	2.9	4.11200	2.9	0.29160	1.8	0.07977	6.9	0.61	0	1650	26	1656	25	1670	54	1670 ± 54	
14-1/2_13	z	267	9	0.02	0.10230	3.1	4.13800	3.1	0.29530	1.9	0.10200	10.8	0.59	0	1668	27	1661	26	1673	57	1673 ± 57	
14-1/2 16	B, >D	585	25	0.04	0.10320	3.0	4.01300	3.0	0.27940	1.8	0.08390	6.7	09.0	3	1588	25	1637	25	1679	54	1679 ± 54	
14-1/2_10	B+N, >U	884	63	0.07	0.10324	3.0	4.16100	3.1	0.29160	1.9	0.09450	11.6	0.61	1	1649	28	1667	27	1682	55	1682 ± 55	
14-1/2_17	в	710	280	0.39	0.10323	3.0	4.25700	3.5	0.29710	2.3	0.08520	4.9	0.65	-	1676	34	1687	28	1684	55	1684 ± 55	
14-1/2_1	В	735	292	0.40	0.10373	3.0	4.45400	3.1	0.31050	1.9	0.08450	8.0	0.59	-	1743	29	1722	26	1686	55	1686 ± 55	
14-1/2_12	B	721	17	0.02	0.10370	3.3	4.40300	3.2	0.30380	2.0	0.12170	7.4	0.63	0	1710	30	1712	27	1686	[9]	1686 ± 61	
14-1/2_14	B+N, >U	829	129	0.16	0.10390	3.1	4.49000	3.3	0.30700	2.1	0.11230	9.8	0.61	0	1726	31	1729	25	1689	58	1689 ± 58	
14-1/2_20	B, >U	1017	30	0.03	0.10430	3.1	4.25300	3.1	0.29350	1.8	0.09440	8.2	0.59	-	1659	27	1684	26	1690	57	1690 ± 57	
14-1/2_24	z	379	108	0.28	0.10370	3.2	4.30700	3.5	0.29970	2.0	0.08350	0.6 2 0	0.58	0,	1690	30	1694	28	1690	59	1690 ± 59	
14-1/2_11	N+A G	421	1.5	0.0/	0.10350	3.1 2.0	4.17200	3.1 2	0/7670	7.0	0.09160	9.1 2.0	0.04		CC01	52	1668	20	1691	92 S	1691 ± 20	
14-1/2 19	9 2	563	10	0.10	0.10380	0.0	4 32900	7.0	0.20020	0.1	0.08230	0.0	06.0	7 0	1607	35	4001 8091	25	1603	90	1603 ± 501	
14-1/2 22	R+N	965	y	0.05	010370	0.6	4 18900		0200000	8 1	0.09010	6.6	0.60	o	1651	17	1672	3 2	1693	88	1693 + 55	
14-1/2 25	B+N	752	178	0.24	0.10384	3.0	4.28800	3.0	0.29820	1.8	0.09070	9.6	0.59		1682	56 26	1691	25	1693	55	1693 ± 55	
14-1/2_26	B, >U	1080	13	0.01	0.10400	3.1	4.32000	3.7	0.30180	3.1	0.09390	7.0	0.83	0	1699	46	1696	30	1694	56	1694 ± 56	
14-1/2_5	Z	216	4	0.02	0.10390	3.3	4.40000	3.2	0.30530	2.0	0.10300	17.5	0.63	0	1717	29	1712	27	1694	57	1694 ± 57	
																				Contin	ua en la siguiente págino	~

Tabla A.1 (Cont.) D	atos analíticos	U-Th-Pb ob	otenidos pc	or LA-ICF	MS en zircone	es de grai	nitoides prot	erozoicos	del SW de	Arizona,	USA.											
Análisis/Zircón	Comentario	(muu) #11	Th [#] (mmm)	(Th/I)	207ph/206ph	† orr %	ELACION 207ph/235r1	ES ISOT	OPICAS C ²⁰⁶ pb/ ²³⁸ 1 [†]	ORREG	DAS 208 ph/232 Th [†]	arr 0/5*	B ho	%, disc	206pb/2381	EDADE +2e ^{* 2(}	25 CUR	KEGIDA 1 +2e [*] 2	<u> 107 (Ma)</u> 107 ph/ ²⁰⁶ ph	*=2e*	Meior edad (Ma) ± 26	
		(mdd) o			10									2000 0/						-		
14-1/2_7	B+N	536	177	0.33	0.10360	3.0	4.15600	3.1	0.28980	1.9	0.08290	6.0	0.60	П	1640	27	1665	25	1696	58	1696 ± 5	~
14-1/2_18	z	432	6	0.02	0.10450	3.1	4.32600	3.0	0.30050	1.9	0.11100	9.9	0.63	0	1694	28	1699	25	1703	58	1703 ± 5	~
14-1/2_9	B+N, >U	830	470	0.57	0.10399	3.0	4.26300	3.0	0.29320	1.9	0.09480	10.5	0.62	7	1658	27	1686	25	1704	53	1704 ± 5	~
14-1/2_4	z	594	279	0.47	0.10460	3.2	4.37600	3.4	0.30300	2.1	0.08620	7.1	0.61	0	1706	31	1710	30	1707	58	1707 ± 5	~
14-1/2 23	z	459	10	0.02	0.10420	3.3	4.43700	3.6	0.30690	2.6	0.11200	9.8	0.73	0	1725	40	1719	29	1707	60	1707 ± 6	_
14-1/2 6	B+N	471	210	0.45	0.10460	3.1	4.35900	3.2	0.30200	1.8	0.08350	6.9	0.56	0	1701	27	1704	27	1709	56	1709 ± 5	
14-1/2 8	N. >D	209	4	0.02	0.10520	3.2	4.72500	3.4	0.32520	2.1	0.11800	12.7	0.62	ή	1815	33	1770	28	1712	59	1712 ± 51	~
14-1/2 2	Z	657	77	0.12	0.10526	2.9	4.45200	3.4	0.30640	2.5	0.09220	8.9	0.74	0	1722	37	1720	28	1716	52	1716 ± 5	
1																	900 204	:				
n = 26																Edad	bp/	Pb medi	ia ponder	ada =	1693 ± 1	
																				(2 sigma,	MSWD = 0.16; n = 23	<u>_</u>
Muestra OTB-6	Gneis sienogra	<i>mítico de b</i> iı	otita (C	Juitobaquı	ito Hills, Orga	n Pipe Ci	actus Nation	ual Monu	nent, SW Ar	izona)	Probeta ICC	EO-86	(Diciembr	e 2017)								
OTB-6 11		72.00	870	0.17	0.00500	3 0	3 04000	99	0.22500	4 3	0.06570	32.0	0.65	4	1200	53	1350	59	1537	75	1200 + 5	~
		254	101	71.0	0.00200		00210.5	5.0	0.0222.0) - -	011000	D.40	CO.0	+ 0	1246	20	0001	3	1600	2 9	12 A C + 2/21	
	7, Y	+00 2015	5 5	10.0	00501.0	7.0	00/ +7.6		02252.0	1.2	0.01100	/.+C	10.0	0 0	04071	25	1001	57	1410	8 9	1 0+01 1 - 0001	. .
0_0-diy	B, >U	C617	CC.	10.0	0.08942	7.C	00006.2	0.0	0.24290	0.7	0.07/00	0.+0 • • • •	+0.0		1402	3 2	1661	9	1410	6	1407 ± 7	<u>.</u>
Q1B-6_2	B, >U, D	3280	0/.61	0.5 0	0.10186	3.1	3.61000	9.5 2	06662.0	7.0	0.02930	37.1	0.67	4 (1489	£ ;	0001	32	1659	80	1489 ± 3	<u> </u>
$QIB-6_7$	B,>U	2297	223	0.10	0.10217	3.1	4.16200	3.6	0.29490	2.0	0.08160	35.5	0.56	0	1666	30	1666	29	1671	58	1671 ± 5	~
QTB-6_1	в	678	309	0.46	0.10290	3.2	4.32800	3.5	0.30720	2.0	0.09299	34.4	0.57	-2	1727	30	1698	29	1679	57	1679 ± 5	~
QTB-6_12	B, >U	2400	676	0.28	0.10325	3.2	4.10000	3.7	0.29020	2.0	0.07592	34.2	0.56	1	1643	30	1654	29	1682	60	1682 ± 6	_
QTB-6_19	в	1570	379	0.24	0.10321	3.2	4.18400	3.6	0.29640	2.1	0.11120	34.2	0.57	0	1673	30	1671	29	1682	58	1682 ± 51	~
QTB-6 23	B, >U	2184	649	0.30	0.10307	3.1	4.11900	3.6	0.29480	2.1	0.11590	35.4	0.59	0	1665	31	1658	30	1683	58	1683 ± 51	~
OTB-6 21	N, >U	2640	757	0.29	0.10303	3.1	4.02500	2.7	0.28820	1.5	0.11810	28.8	0.56	0	1632	24	1639	28	1683	58	1683 ± 5	~~
OTB-6 13	Z	415	255	0.61	0.10310	3.3	4.24800	3.8	0.30230	2.2	0.08220	35.3	0.60	7	1702	34	1687	31	1686	60	1686 ± 6	_
OTB-6 24	N. >U	3100	1064	0.34	0.10365	3.1	4.08700	3.7	0.29190	2.2	0.10970	35.6	0.61	0	1654	32	1653	29	1688	58	1688 ± 5	~~
OTB-6 18	В	1190	405	0 34	0 10346	5.5	4 15500	36	0.29600	21	0 1 0 8 2 0	34.7	0.58	, -	1674	31	1665	60	1689	85	1689 + 5	, ~-
OTB-6 17	n N	1365	476	0.35	0.10367	1 C C	3 05300	9 Y G	0.27840	1 0	0.10420	33.6	0.50	⁺ с	1583	5 00	1674) (1680	с с	1680 + 5	
	d v	005	300	27.0	0.10201.0	10	0000001	. r	0.24000	 	0.00160	0.00	VL O		1022	1 6	1811	12	1602	6 9	1603 + 5	
	N, VD	000	777	020	1/201-0	1 c 1 c	115 000	n v F e	023000		001600	0.40	1.0	; •	0221	3 6	1101	5	CC01	6		
QIB-0_20		0//	1	80.0	0001.0	υ, c	00801.4	0.0	0/0670	7.7	0.0011.0	2.00	0.00		10/01	75	2021	05 6	6601	60.9	C = C601	
QIB-0-8	Ξ	114/	015	0.33	0.10404	2.5 2	4.30400	7.0	0.306/0	0.7	0.08180	C.CC 2.00	0.00 02.0	- (1/24	51	CU/1	05 05	1094	<i>b</i> 3	1094 ± 5	
QIB-6_14	ות	860	7/7	0.52	0.103/0	5.2	4.43900	9.9 1	0.31250	1.2	0.08600	33./ 22.0	9C.U	7	5C/ 1	55 5	1/19	0, 5	1696	10	1090 ± 0	
QIB-6_15	я	1422	465	0.33	0.10418	3.2	4.27100	3.5	0.30180	2.0	0.001.0	35.8	0.57	-	1/00	05	1688	67	1697	28	1697 ± 5	~
QTB-6_16	B, >U	2490	409	0.16	0.10409	3.2	4.29000	3.5	0.30300	2.0	0.10750	33.5	0.58	-	1706	30	1691	29	1697	60	1697 ± 6	_
QTB-6_25	B+N	245	98	0.40	0.10380	3.4	4.45400	3.6	0.31710	2.1	0.11660	35.2	0.59	ή	1775	33	1722	31	1709	62	1709 ± 6	~
QTB-6_5	в	594	212	0.36	0.10450	3.3	4.37400	3.7	0.30510	2.1	0.08440	35.5	0.58	0	1716	33	1708	30	1710	59	1710 ± 5	~
$QTB-6_3$	в	824	276	0.33	0.10475	3.2	4.39500	3.6	0.30520	2.1	0.09260	35.6	0.58	0	1717	31	1711	30	1711	59	1711 ± 5	_
$QTB-6_4$	в	900	340	0.38	0.10485	3.1	4.36200	3.7	0.30460	2.0	0.09320	35.4	0.55	-	1714	31	1705	30	1713	59	1713 ± 50	_
$QTB-6_10$	N, >U	2778	380	0.14	0.10524	3.1	4.19400	2.9	0.29260	1.7	0.08620	29.0	0.60		1654	26	1673	29	1716	57	1716 ± 5	~
n = 25																Edad ²	107 ph/206	Ph medi	ia nonder	ada =	1403 + 1	
2ª =																			topilod in	C circus	M = 0.00 - 0.00	
Muestra Pilotknob	Gneis sieno	ogranítico de	e biotita	(Pilot K.	nob, SE Califo	rnia)	Probeta IC	3EO-40	(Enero 20	(21)										(4 aigilla,	изм <i>и</i> – 0.20, п – 13	-
Dilothach 12		1020	460	0 74	0 10160	0	4 00200	L C	0.07000	1 0	0.08010	60	<i>LL</i> 0	"	1500	36	1633	22	1657	10	1657 + 1	~
Pilotknoh 6	n < H	985	268	72.0	0 10171	6.0	3 51 300	. c	0.24900		0.07940	44	0.78	, ve	1433	61	1530	1 ¥	1654	11	1654 + 1	
Pilotknob 20	B, >U	2097	565	0.27	0.10171	0.5	3.93700	2.0	0.28030	1.5	0.08015	4.2	0.72	2	1593	21	1621	16	1656	6	1656 ± 9	
Pilotknob 21	B. >II	4330	906	0.73	0 101 78	0.6	4 02 000	2.0	0.28720	16	0.08700	4 8	0.79	-	1627	23	1638	16	1656	10	1656 + 1	~
Pilotknob 22	B. >D. U	2000	609	0.30	0.10198	0.5	4.48000	1.9	0.31740	4	0.09070	4.3	0.74	, ri	1777	22	1727	16	1659	6	1659 ± 9	
Pilotknob 19	n n	1653	271	0.16	0.10233	0.8	4.05300	3.0	0.28980	2.6	0.08500	4.6	0.89	, c	1640	38	1644	25	1666	15	1666 ± 1:	1-
Pilotknob 9	B, >D	860	227	0.26	0.10245	0.9	4.55800	2.0	0.31920	1.5	0.08640	4.4	0.72	- ei	1786	23	1741	17	1667	17	1667 ± 1^{-1}	~
Pilotknob 18	В	1732	402	0.23	0.10302	0.9	3.88500	2.0	0.27610	1.5	0.08050	4.2	0.76	2	1572	21	1610	16	1684	16	1684 ± 1	
Pilotknob 2	B,>U	2060	592	0.29	0.10366	0.6	4.34600	2.0	0.30190	1.5	0.08610	4.3	0.74	0	1701	22	1702	17	1689	11	1689 ± 1	_
Pilotknob 1	в	1268	345	0.27	0.10364	0.8	4.25700	1.9	0.29800	1.5	0.08455	4.1	0.78	0	1681	22	1685	16	1689	14	1689 ± 1	-
Pilotknob 7	N, >D	865	31	0.04	0.10380	1.0	3.63100	2.0	0.25460	1.5	0.06540	6.4	0.74	9	1462	19	1556	16	1692	19	1692 ± 1	~
Pilotknob_3	B, >D, U	4300	726	0.17	0.10382	0.5	3.89300	1.9	0.27030	1.5	0.08126	4.2	0.80	4	1542	21	1613	16	1692	6	1692 ± 9	
Pilotknob_11	в	668	278	0.42	0.10400	0.9	4.05100	2.0	0.28280	1.5	0.08300	4.2	0.73	2	1606	21	1646	17	1695	16	1695 ± 1	5
Pilotknob_14	B, >D, U	1960	544	0.28	0.10401	0.7	3.86800	2.0	0.27230	1.5	0.07919	4.2	0.77	ŝ	1552	21	1607	16	1696	12	1696 ± 1	0
																				Continu	a en la siguiente pági	a_i

	I ADIA A.I (CORL) L	Jatos analiticos	100 Q.J-UT-O	cuidos po	DT LA-ICFA	Als en zircones	de grani	I ACIONE	OZOICOS		D FCI	.Ye					DADES	LODD	CIDAS	(Ma)			
Were Norm Norm <th< th=""><th>Análisis/Zircón</th><th>Comentario</th><th>U[#] (ppm)</th><th>Th[#] (ppm</th><th>) Th/U</th><th>$^{207}Pb/^{206}Pb^{\dagger}$</th><th>err %</th><th>²⁰⁷Pb/²³⁵U[†]</th><th>err %</th><th>²⁰⁶Pb/²³⁸U[†]</th><th>err %*</th><th>²⁰⁸ Pb/²³² Th[†]</th><th>err %</th><th>Rho** %</th><th>disc ***</th><th>²⁰⁶Pb/²³⁸U</th><th>$\pm 2s^{*20}$</th><th>$Pb/^{235}U$</th><th>$\pm 2s^{*207}$</th><th>Pb/²⁰⁶Pb</th><th>±2s[*] M</th><th>ejor edad (Ma) ± 2</th><th>2s</th></th<>	Análisis/Zircón	Comentario	U [#] (ppm)	Th [#] (ppm) Th/U	$^{207}Pb/^{206}Pb^{\dagger}$	err %	²⁰⁷ Pb/ ²³⁵ U [†]	err %	²⁰⁶ Pb/ ²³⁸ U [†]	err %*	²⁰⁸ Pb/ ²³² Th [†]	err %	Rho** %	disc ***	²⁰⁶ Pb/ ²³⁸ U	$\pm 2s^{*20}$	$Pb/^{235}U$	$\pm 2s^{*207}$	Pb/ ²⁰⁶ Pb	±2s [*] M	ejor edad (Ma) ± 2	2s
Method No. No.<	Pilotknob 8	N. >U	2100	423	0.20	0.10417	0.6	4.12900	1.9	0.28660	1.5	0.08147	4.3	0.78	2	1625	22	1660	16	1698	=	1698 ±	1
Math No. No. <td>Pilotknob 16</td> <td>B, >U</td> <td>3220</td> <td>750</td> <td>0.23</td> <td>0.10418</td> <td>0.5</td> <td>4.07600</td> <td>1.9</td> <td>0.28420</td> <td>1.5</td> <td>0.07811</td> <td>4.2</td> <td>0.78</td> <td>1 7</td> <td>1613</td> <td>21</td> <td>1649</td> <td>15</td> <td>1699</td> <td>6</td> <td>1699 ±</td> <td>6</td>	Pilotknob 16	B, >U	3220	750	0.23	0.10418	0.5	4.07600	1.9	0.28420	1.5	0.07811	4.2	0.78	1 7	1613	21	1649	15	1699	6	1699 ±	6
Member 1 U, U Sign	Pilotknob 17	B, >D	643	314	0.49	0.10425	0.9	4.06400	2.1	0.28280	1.5	0.08000	4.3	0.74	3	1605	22	1648	17	1699	16	$1699 \pm$	16
Math Sid Sid <td>Pilotknob 15</td> <td>B, >D, U</td> <td>3240</td> <td>801</td> <td>0.25</td> <td>0.10472</td> <td>0.6</td> <td>3.80100</td> <td>2.0</td> <td>0.26370</td> <td>1.6</td> <td>0.06260</td> <td>6.9</td> <td>0.79</td> <td>5</td> <td>1509</td> <td>22</td> <td>1593</td> <td>16</td> <td>1708</td> <td>Ξ</td> <td>1708 ±</td> <td>Ξ</td>	Pilotknob 15	B, >D, U	3240	801	0.25	0.10472	0.6	3.80100	2.0	0.26370	1.6	0.06260	6.9	0.79	5	1509	22	1593	16	1708	Ξ	1708 ±	Ξ
Model B D <thd< th=""> D <thd< th=""> <thd< th=""></thd<></thd<></thd<>	Pilotknob 10	B, >U	4590	1605	0.35	0.10485	0.4	4.28300	1.9	0.29770	1.4	0.08246	4.1	0.76	_	1680	22	1690	16	1711	8	1711 ± 3	×
1 1	Pilotknob 4	B, >U	2066	631	0.31	0.10486	0.5	4.25800	1.9	0.29590	1.4	0.08299	4.2	0.74	-	1671	20	1685	15	1711	10	1711 ±	10
100 101 <td>Pilotknob 13</td> <td>B, >U</td> <td>2427</td> <td>572</td> <td>0.24</td> <td>0.10493</td> <td>0.7</td> <td>4.08600</td> <td>2.7</td> <td>0.28550</td> <td>2.1</td> <td>0.08097</td> <td>4.2</td> <td>0.79</td> <td>2</td> <td>1619</td> <td>31</td> <td>1651</td> <td>21</td> <td>1712</td> <td>13</td> <td>1712 ±</td> <td>13</td>	Pilotknob 13	B, >U	2427	572	0.24	0.10493	0.7	4.08600	2.7	0.28550	2.1	0.08097	4.2	0.79	2	1619	31	1651	21	1712	13	1712 ±	13
	Pilotknob_5	B+N	275	93	0.34	0.10610	1.2	4.43800	2.3	0.30510	1.5	0.09420	4.8	0.67	0	1716	23	1719	19	1732	23	1732 ± 3	23
Total Total <th< td=""><td>ĉ</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>7.00</td><td>:</td><td>-</td><td>-</td><td>011</td><td>9</td></th<>	ĉ																	7.00	:	-	-	011	9
Matrix for the properties of the properity of the properties of the properity of the properity of	77 = u																Edad	P0/ P	d media	pondera	=	I/03 #	5
The fore the form of th																					(2 sigma,	MSWD = 5.4; n =	4
Manon 21 Si-Up Monon 20 Si-Up Monon 20 Si-Up Monon 20 Si-Up Monon 20 Si-Up Si-Up </td <td>Muestra <u>Aztec-02</u></td> <td>Sienogranit</td> <td>) leucocrático</td> <td>o de dos r</td> <td>nicas (1</td> <td>VW Aztec Hills</td> <td>, SW Ari</td> <td>zona) Pi</td> <td>obeta IC</td> <td>GEO-88</td> <td>(Enero 21</td> <td>(211</td> <td></td>	Muestra <u>Aztec-02</u>	Sienogranit) leucocrático	o de dos r	nicas (1	VW Aztec Hills	, SW Ari	zona) Pi	obeta IC	GEO-88	(Enero 21	(211											
Meare Meare <th< td=""><td>Aztec-02 11</td><td>B. >U. D</td><td>10610</td><td>1670</td><td>0.16</td><td>0.10159</td><td>0.5</td><td>2.41800</td><td>2.3</td><td>0.17180</td><td>2.2</td><td>0.04670</td><td>4.7</td><td>0.95</td><td>18</td><td>1024</td><td>20</td><td>1247</td><td>16</td><td>1652</td><td>8</td><td>1024 ± 3</td><td>20</td></th<>	Aztec-02 11	B. >U. D	10610	1670	0.16	0.10159	0.5	2.41800	2.3	0.17180	2.2	0.04670	4.7	0.95	18	1024	20	1247	16	1652	8	1024 ± 3	20
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Aztec-02_23	B. >U. D	7870	888	0.11	0.10547	0.7	0.97900	5.3	0.2.0400	2.0	0.05320	43	0.85	15	1197	51	1402	18	172.1	2	1197 +	12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A 71ec -0.2 10		3590	983	22.0	0 10439	50	3 60900	10	0.25180	17	0.05300	4 5	0.83	-	1448	1 6	1551	16	1702	0	+ 8771	1 6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A max 0.0 12		0775	1001	71.0	01 CU1 0		275500		001070	21	0.06490		01.0		1513	15	1503	21	70/1	` 0		1 2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	AZICC-UZ_13	в, >U, D	0000	1601	0.10	01 CU1.U	4	00000.0	0.7	0.20400	0.1	0.00400	4. Ú.	0./0	+ ·	c1c1	17	C0C1	01	1001	0	# CICI	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Aztec-02_7	B, >U, D	4160	1430	0.34	0.10281	0.0	3.83400	7.3	0.26630	I.9	0.06860	4.	0.81	0	1524	5	1001	18	16/4	6	1524 ±	3
$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Aztec-02_4	B, >U	3900	620	0.16	0.10010	2.7	4.10000	3.9	0.28800	4.2	0.06850	5.1	1.00	1	1630	59	1651	30	1619	53	$1619 \pm $	53
$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Aztec-02_6	B, >U	3920	1120	0.29	0.10199	0.8	4.23000	3.3	0.29630	3.1	0.07090	5.4	0.94	0	1670	46	1674	28	1658	14	1658 ±	14
	Aztec-02_3	z	1094	370	0.34	0.10250	1.4	4.20500	2.2	0.29960	1.6	0.08440	4.5	0.72	÷	1689	23	1675	18	1668	25	1668 ±	25
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Aztec-02 12	B,>U	7440	1859	0.25	0.10261	0.9	3.98000	2.1	0.28470	1.9	0.06810	5.1	0.88	-	1615	27	1630	17	1671	17	1671 ±	17
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Aztec-02 9	B+N. >U	2823	1286	0.46	0.10280	0.5	4.58900	1.9	0.32160	1.4	0.09330	4.2	0.77	ή	1798	23	1747	16	1674	10	1674 ±	10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Aztec-02 1	В	1790	380	0.21	0.10285	0.6	4.25500	2.0	0.29820	1.5	0.08447	4.3	0.73	0	1682	22	1684	17	1676	11	1676 ±	Π
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Aztec-02_10	B. >U	6174	3239	0.52	0.102.96	0.6	4.22100	2.0	0.29920	1.5	0.08322	4.2	0.76	-	1687	22	1678	16	1677	12	1677 ±	12
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A Ther-0.7 8	z	453	171	0.38	0.10320		4 29500	, c	030020	16	0.08360	44	0.71	· c	1697	1 %	1692	18	1687	1 2	+ 1687	1 2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Aztec-02 14	R+N >II	5654	3520	0.62	0.10330	1.1	3 96000	3.0 %	0.28410	5.5	0.04590	16.8	0.88		1611	38	1624	27	1683	2 5	1683 +	2 2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Artec-02 2	B >11	6600	2351	70.0	0.10330	20	4 16700	5.0	0.29530	; c	0.08190	4.7	0.89		1668	30	1667	0	1683	; o	1683 +	1.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A 71ec -0.7 15	B >11	7420	4110	0.55	0.10337	40	4 00700	00	0.28140		0.0690.0	2.1	0.76	° (1508	5 10	1635	12	1684		1684 +	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			07F1	217	000	76601.0	t v	1 21400		0.20210	191	0.2600.0	0.0 7 5	07.0	1 -	1707	1 5	9091	14	1606		+ 1001	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A THEC -02 - 34	N >11	1580	030	0.50	0.10420	5 -	4 30600	0.1 C	01202.0	D-1 C	0.06920		0.07	7 -	10/1	07 07	1603	24	1698	20	1608 +	2
Maccul, is B-N, U Tot	A ztec -02 17	N >11	2600	718	0.78	0.10427	20	4 22400	0.0	0.20750	i -	0.08030	44	0.70		1679	27	1679	16	1700	2 2	+ 0021	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Aztec-02 16	R >II	2780	604	0.2.0	0 10428	. o	4 32700	0.1	021020	2 4	0.08572	10	0 77	~ ~	1703	36	1700	14	1702	10	1707 +	10
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A THEC -02 -18	B+N >II	2685	1162	0.43	0.10535	C 0	4 44700	; -	0 30680	2 4	0.08342	7.7	0.73	~ c	2011	1 2	1771	11	1719	<u> </u>	1719 +	<u>, 1</u>
$ Area - 0.2 \\ B > V \\ Area - 0.2 \\ Area - 0.2 \\ B > V \\ Area - 0.2 \\ Area - 0.2 \\ B > V \\ Area - 0.2 \\ Area - 0.2 \\ B > V \\ Area - 0.2 \\ Area - 0.2 \\ B > V \\ Area - 0.2 \\ Area - 0$		D VII D	6430	1520	010	0 106201	2.0	1 46200	1.1	0 20060	2 1	710000	1 0	0.02		1738	3 5	1778	15	1725	<u>1</u> 0	1715 + 1	2 0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			0540	0001	0.75	0.10626	0	000001.1	0 - c	002120	21	10.0004	1 - 7 -	20.0		3571	35	1721	2 5	CC/1	- 2	+ 5271	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Aztec- 02^{-20}	0 / G	0/ 07	1512	25.0	05001.0	0.0	4 24100	1.2	001020	0.1	0.00146	 	0/.0	7 0	CC/ 1	7 5	10/1	11	10/1	± -	H /C/I	<u>t</u> -
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	AZICC-02_21	0), d	0/ 64	0113	CC.0	010001	0.0	4.7500	v. c	04100.0	<u>.</u>	0.08120		C/-0		9601	18	10/1	9 2	00/1	<u>t</u> c	H 0C/I	t o
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $	AZIEC-02_21	B, ∕U	0600	OFIC	0. /4	10001.0	4.0	4.4/200	0.7	06006.0	1 .	7600.0	4.	0.12	D	07/1	77	1/20	10	1 /41	0	1/41 #	0
Mustra Cabeza-II Gais Strongramify of boils Stare final, Cabeza Prica Widlife Refug. FV Arizonu Probeta ICGEO-81 (Diciembre 2017) Cabeza-II 6 $N > V_U$ 38 0.01 0.0980 3.1 0.1090 3.0 1.9300 8.1 0.55 24 673 11 888 1848 57 38 103 38 0.01 0.0980 3.1 0.1090 3.1 0.1090 3.1 0.1090 3.1 0.1090 3.1 0.1090 3.1 0.1090 3.1 0.1090 3.1 0.1090 3.1 0.1090 3.1 0.1090 3.1 0.1090 3.1 0.0036 3.1 0.0036 3.1 0.0036 3.1 0.0036 3.1 0.0036 3.1 3.23900 3.1 0.0033 3.1 0.0036 3.1 3.0036 8.4 0.60 1.448 3.7 6 1.448 3.7 6 1.448 3.7 6 1.448 3.7 6 1.448 3.7	n = 25																Edad ²⁽	$^{7}Pb/^{206}P$	b media	pondera	da =	1681 ±	7
$ Mustra \ \ \mbox{Cabera-III} \ \ \ \ \ \ \ \ \ \ \ \ \ $																					(2 sigma, 1	MSWD = 2.7; n = 1	12)
$ \begin{array}{l l l l l l l l l l l l l l l l l l l $	Muestra Cabeza-11	Gneis sieno _s	granítico de l	biotita	(Sur de Sieı	rra Pinta, Cab	eza Priet	a Wildlife R	efuge, SI	W Arizona)	Probet	a ICGEO-81	(Dicien	ubre 2017)									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Cabeza-11_5	N, >U, D	1285	92	0.07	0.09190	3.0	1.39900	3.1	0.10995	1.7	0.03600	8.1	0.55	24	673	Π	888	18	1462	56	673 ±	Ξ
Cabeza-II_24 N,>U,D 306 523 1.71 0.10850 44 3.7700 53 0.25210 29 0.07480 96 0.54 8 1448 37 1579 38 173 76 1448 ± 37 Cabeza-II_25 B+N 137 104 0.76 0.10010 35 3.83700 36 0.25210 29 0.0561 8 1604 68 1604 ± 68 1604 ± 68 1604 ± 68 1614 ± 68 1614 ± 68 1614 ± 68 1614 ± 68 1614 ± 68 1614 ± 68 1614 ± 68 1614 ± 68 1614 ± 68 1614 ± 68 1614 ± 68 1614 ± 68 1613 ± 61 1634 ± 66 1633 ± 66 1633 ± 66 1633 ± 66 1633 ± 66 1633 ± 66 1633 ± 66 1633 ± 66 1633 ± 66 1633 ± 73 1643 ± 62 1643 ± 62 1643 ± 62 1643 ± 62 1643 ± 62 1643 ± 62 1643 ± 62 1643 ± 62 1643 ± 62 1643 ± 62 1643 ± 62 1643 ± 62 1643 ± 62 1643 ± 62 1643 ± 62 1643 ± 62 1643 ± 62 1643 ± 62	Cabeza-11_6	B, >U, D	360	38	0.11	0.09680	3.2	3.27800	3.7	0.24110	2.2	0.07310	8.3	0.60	9	1395	27	1480	28	1591	60	1395 ± 3	27
Cabeza-II 25 B+N 137 104 0.76 0.10010 35 3.89700 36 0.28100 2.1 0.08340 66 0.57 1 159 30 1612 29 1604 68 1604 68 1604 56 55 27 1615 38 1615 58 1633 87 Cabeza-II 7 0.09970 31 0.28800 20 0.08250 70 0.63 1633 70 1643 70 1643 70 1643 70 1643 <	Cabeza-11_24	N, >U, D	306	523	1.71	0.10850	4.4	3.77000	5.3	0.25210	2.9	0.07480	9.6	0.54	8	1448	37	1579	38	1743	76	1448 ±	37
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Cabeza-11_25	B+N	137	104	0.76	0.10010	3.5	3.89700	3.6	0.28100	2.1	0.08340	9.9	0.57	-	1599	30	1612	29	1604	68	1604 ±	89
Cabezarl I B 199 126 0.63 0.10020 35 4.10500 34 0.29490 20 0.08640 82 0.58 -1 1666 29 1636 66 1636 46 Cabezarl 17 B 243 130 0.53 0.10010 34 4.07600 34 0.28860 20 0.08260 76 0.66 1 1664 28 1638 70 1638 73 1643 73 1643 73 1643 73 1643 73 1643 43 1643 73 1	Cabeza-11 10	N, >U, D	236	232	0.98	0.09960	3.1	3.62900	3.3	0.26520	2.0	0.09550	8.4	0.60	ŝ	1516	28	1555	27	1615	58	1615 ±	58
Cabezall_17 B 243 130 0.53 0.10110 34 47060 34 0.28860 20 0.08260 76 0.60 1 1634 30 1649 28 1638 70 1639 76 1639 76 1639 76 1639 76 1639 76 1639 76 1639 76 1639 76 1639 76 1639 76 1639 77 1648 73 1643 73 1643 73 1643 73 164	Cabeza-11 18	В	199	126	0.63	0.10020	3.5	4.10500	3.4	0.29490	2.0	0.08640	8.2	0.58	-	1666	29	1654	29	1636	99	1636 ± 0	99
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Cabeza-11_17	в	243	130	0.53	0.10110	3.4	4.07600	3.4	0.28860	2.0	0.08260	7.6	0.60	1	1634	30	1649	28	1638	70	1638 ±	70
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Cabeza-11_12	Z	182	138	0.76	0.09970	4.1	4.03000	4.0	0.28850	2.1	0.08250	6.5	0.53	0	1634	31	1640	32	1639	76	1639 ±	76
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Cabeza-11 22	B+N	134	104	0.77	0.09930	3.3	3.92600	3.6	0.28230	1.9	0.08500	7.6	0.55	1	1603	28	1619	29	1643	62	1643 ± 0	62
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Cabeza-11 23	В	131	91	0.69	0.10090	4.0	3.82000	3.9	0.27490	2.0	0.07750	7.6	0.50	2	1565	27	1595	32	1643	73	1643 ±	73
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Cabeza-11_7	N, >U	305	194	0.64	0.10100	3.0	3.95700	3.0	0.28160	1.8	0.07950	7.5	0.61	2	1599	26	1627	25	1646	58	1646 ± 3	58
$ \begin{array}{c ccccc} Cabeza-11_{2} & B+N & 250 & 185 & 0.74 & 0.10060 & 3.4 & 3.92400 & 3.6 & 0.28270 & 1.9 & 0.08080 & 7.7 & 0.53 & 1 & 1605 & 27 & 1620 & 27 & 1648 & 63 & 1648 \pm 6.3 \\ Cabeza-11_{1} & B+N & 84 & 51 & 0.61 & 0.10130 & 3.8 & 4.14000 & 3.9 & 0.29140 & 2.0 & 0.08560 & 8.1 & 0.52 & 1 & 1648 & 30 & 1659 & 32 & 1650 & 70 & 1650 \pm 70 \\ \hline Continue not original provine provine the state of t$	Cabeza-11_11	B, >U	353	210	0.60	0.10140	3.2	3.95600	3.3	0.28070	2.1	0.08170	6.1	0.65	2	1595	30	1628	29	1646	60	1646 ±	99
Cabeza-11_1 B+N 84 51 0.61 0.10130 3.8 4.14000 3.9 0.29140 2.0 0.08560 8.1 0.52 1 1648 30 1659 32 1650 70 1650 \pm 70 $\frac{1650 \pm 70}{Continue not original provine the provine the second secon$	Cabeza-11_2	B+N	250	185	0.74	0.10060	3.4	3.92400	3.6	0.28270	1.9	0.08080	7.7	0.53	1	1605	27	1620	27	1648	63	1648 ± 0	3
	Cabeza-11_1	B+N	84	51	0.61	0.10130	3.8	4.14000	3.9	0.29140	2.0	0.08560	8.1	0.52	-	1648	30	1659	32	1650	70	1650 ±	20
																					Continua	en la sioniente nág	rina

Tabla A.1 (Cont.) D	atos analíticos	U-Th-Pb ob	enidos po	r LA-ICPM	S en zircones	de grant	toides proter	ozoicos c	el SW de A	rizona, U	SA.					Dar Line	in a con a		1.04.57			
Análisis/Zircón	Comentario	U [#] (ppm)	Th [#] (ppm)	Th/U	$^{207}Pb/^{206}Pb^{\dagger}$	err %	²⁰⁷ Pb/ ²³⁵ U [†]	err %*	²⁰⁶ Pb/ ²³⁸ U [†]	err % ²	⁰⁸ Pb/ ²³² Th [†]	err %	Rho ^{**} %	6 disc	²⁰⁶ Pb/ ²³⁸ U	$\pm 2s^{*20}$	⁷ Pb/ ²³⁵ U	$\pm 2s^{*207}$	Pb/ ²⁰⁶ Pb	±2s* MG	jor edad (Ma) ± 2s	
Caheza-11 15	B >11	358	236	0.66	0 10160	57	4 07700	37	0.29100	00	0.08580	7 1	0 63	0	1646	90	1649	96	1652	50	1657 + 50	1
Cabeza-11 16	z	110	96	0.87	0.10220	3.5	4.01200	3.5	0.28330	2.0	0.08110	6.7	0.58	5 6	1608	29	1635	29	1659	99	1659 ± 66	
Cabeza-11_20	B+N	109	79	0.72	0.10280	3.7	4.00600	3.5	0.28150	2.0	0.08510	6.7	0.58	1 0	1601	26	1634	28	1659	89	1659 ± 68	
Cabeza-11 19	B+N	127	16	0.72	0.10350	3.5	4.10900	4.6	0.28630	6.1	0.08610	8.0	0.54	- 6	1623	26	1657	28	1685	61	1685 ± 61	
Cabeza-11 8	Z	001	12	27.0	0.10390	3.6	4 16000	3.6	0.28270	01	0.08030	7.8	0.57	1 (1637	26	1664	200	1688	19	1698 + 67	
Cabeza-11_0	R >II	201	105	0.60	0.103.60	5 C	4 06000	0.6	0.78310	01	0.08480	D.1	0.61	1 (2001	2 8	1647)6 26	1680	10	1680 + 57	
Cabeza-11 3	Ż	117	100	0.03	0.10320	3.6	000000	1 0	0.20450	00	0.08630	C F	0.57	1 -	1664	20	1676	3 6	1604	5 59	1604 + 63	
$CaUCZA-11_3$		/11	101	CC-0	0/ 601.0	0.0	4.22000	0.0	007600	0.7	000000	1 T	75.0		1001	57	0/01	5 7	1001	3 5	CO H 4601	
Cabeza-11_13	в, >0, л	450	110	77.0	0.10400	1.0	004/6.6	0 C	0.00/2.0	0.1 0	0.08120	4. •	00.0 22.0	4 (1/01	98	2701	97	/601	6	10 ± 1001	
Cabeza-11_21	R+N	104	69	0.66	0.10310	5.5	4.03600	3.7	0.28180	2.1	0.08460	4.7	0.55	m 1	1600	29	1647	31	1702	65	1702 ± 65	
Cabeza-11_14	в	169	100	0.59	0.10460	4.3	4.18000	4.8	0.28940	2.3	0.08190	7.3	0.48	2	1638	33	1668	38	1704	62	1704 ± 79	
Cabeza-11_4	B+N, >D	95	99	0.69	0.10990	4.3	4.52000	4.2	0.29480	2.1	0.09850	6.5	0.50	4	1668	30	1735	35	1795	<i>LL</i>	1795 ± 77	
n = 25																Edad ²¹	⁰⁷ Pb/ ²⁰⁶ P	b media	ponderad	la =	1662 ± 14	
																				N eioma M	$SWD = 0.70 \cdot n = 2.0$	
Muestra Gila-01	Gneis monzog	ranítico de .	tos micas	(Gila N	fountains, B	arry M. C	ioldwater Ai	r Force I	ange, SW A	rizona)	Probeta IC	GEO-37	(Enero 2	(210					Ļ	0	(
Gila-01 10	Z	259	130	0.50	0.09980	1.5	3.93800	2.5	0.28510	1.9	0.08030	4.5	0.75	0	1617	27	1620	20	1621	29	1621 ± 29	
Gila_01_1	R >II	1031	90	0.03	0 10023	80	4 01 700	5 0	0.28830	0 0	0.09640	61	0.81	• c	1632	iç	1636	21	1627	i K	1627 + 15	
Gila-01_8	о, а	1001	151	0.35	0.10030	0.0	3 80000	0.4 C	0.28420	0.7 L I	0.08130	1.0	10.0		701	67 74	1615	18	102/	00	1637 ± 70	
Gila-01.6	<u>а</u> ш	- 784	140	0.50 0.50	010100	<u>, 1</u>	4 10900	1 0	0.20370	17	0/183/00	1 4 1 6	11.0 177		7101	17	2591	0 0	1644	2 6	1644 + 33	
Gila-01 15	N+R	787	61	0.50	0 10110	<u>;</u> =	4 10300	C1 C	0/0667-0	17	0.08460	0 F F	0.79		1651	3 6	1654	n ×	1644	9 C	1644 + 20	
Gila-01 3	, a	187	217	0.25	0.101.07	0.0	3 08000	100	0.28600	1.6	0.07671	7 7	0.70	~ <	1601	3 6	1630	14	1645	2 2	1645 + 18	
Gila-01 9	u a	707	1140	0.47	0 10101	0.0	3 07300	, c	0.28520	1.8	0.07337	1 4	0.80		1617	3 2	8191	18	1645	11	01 - C-01 1645 + 17	
Gila-01_1	р, д П< н	0891	195	0 10	0.10170	0.0	3 00500	1 0	0.28360	0.1	0.08360	4.8	0.69		1610	57	1632	3 2	1654	18	1 F CTOI	
Gila OI 7	с С. п.	381	167	71.0	0.101.0	21	4 11000	, c	0.20260	17	0.08480	0.4 V V	0.75		0101	22	1650	0 I	1656	21 5	01 - 201	
	9 0	100	101	‡ 7	04101.0		1 00500	0 - C	001000	1.7	0.00400	t v t v	C1.0		6001	3 8	6601	5	0001	17	17 ± 0001	
	ם ב	404 017	16	17.0	0.10101	0.1	000311	1.7	0.01.62.0	0.1	02/00/0	, t , t	0.75		1040	3 6	6001	10	/ 201	5 -	17 H / COI	
	a 11 / d	010	900	0.42	16101.0	8.0	4.10900	1.2	0.101.00	1.0	0.080//	4. r	c/ .0	0 0	C001	35	1001	16	1000	14	1000 ± 14 1661 ± 16	
	0, 'd	0/0	190	‡ 7	017010	0.0 0 0	0002201	0.7	0.20020	0.1	0000000	, c	0 77 0		1645	6 5	1640	<u>0</u>	1001	01	01 ± 1001	
	ם ק אדם	260	107	1 5 6	0102010	۲.0 د ا	4.00000	1.7	0.21500		0/70000	1.0	0.60	- °	0221	5 7	1775	1 6	7001	2 2	01 ± 7001	
Gila-01_1/		10.87	768	c0.0	0+701.0	0.0	2 03600	0 7 C	050200	1.6	0.07770.0	0.0	0.075	ç, ç	1580	07 YC	1620	07 10	1667	7 7	1000 ± 24	
		1961	2007	CT-0	12201.0	0.0	000331 1	+ + i c	004000	1.0	0/1/0/0	, t , t	C/ .0	4 6	6001	3 6	0701	5	1001	± :	100/ H 14	
	D, \0	000	111	40.0	01201.0	0.0	4.07400	1.7 2 2	0.20260	C:1	0.09660	4. 4 0. 4	0.76		7001	77	1640	10	1607	; <u>†</u>	1002 ± 14 1604 ± 33	
	5 6	007		10.0	01601.0	2	4.07100	<u>,</u>	010000	0 1	0.08500	, t	0.75		+001	2 2	1683	5	1001	70	1001 - 1021	
	ם ב	100	102	10.0	00501.0	<u>;</u>	0010714	0.7 c	0106000	1.0	0.2000.0	, 4 Ú č	21.0	o -	7001	07 2	C001	5	1601	25	C7 ± 1601	
	a d	17/	280	0.05 04 0	0.10380	ς.1 Ο Ο	4,21000	4.4	007670	x t	0.05500	v. 4 v. v	c/ .0		7001	97 2	1002	07	1691	4 5	1091 ± 24	
		410	<u></u> 2	0.42	0.10405	9.0 7 F	4.21500	0.7	071020	11	0.08020	5.4 2 7	0.80		1601	9 6	/ 601	11/	C601	12	11 ± 0.001	
Glia-01_22	D+N	01 200	70,	0.00	0.10420	<u>.</u>	4.34300	C.7	01106.0	0.1	06/20.0	0.4	0.08		/ 601	33	c0/1	<u>0</u>	/ 601	17	$c7 \pm 1601$	
Gila-01_25	B,>U	508 	180	0.22	0.10405	0.8 1	4.42600	2.0	0.30850	1.6	0.08170	5.4 	0.77	- ,	1733	54	1717	11	1699	4	1699 ± 14	
Gila-01_21	В, >U, D	11/1	5 55	0.03	0.10449	0.7	4.01100	0.2	086/2.0	ci ;	0.08400	1.0	0./0	~ (1961	77	1030	9] ;	1/04	51 S	$1/04 \pm 15$	
	U, ∕U	,40 , 00	127	00.0	0.10440	<u></u>	4.74000	7.7	0.20480	<u>.</u> .	0.08240	4. ¢ 4. o	0.07	7 -	C101	77	7071	22	1714	07	$1/00 \pm 20$	
C7 10-0110	٩	C7C	1/0	<i>cc</i> .0	01001.0	0.7	4.24000	1.0	000670	1.7	0.00200	0. t	60.0	1	0/01	10	1000	70	1/14	۔	0C = +1/1	, p
n = 25																Edad ²	⁰⁷ Pb/ ²⁰⁶ P	b media	ponderad	la =	1663 ± 9	
				- <u></u>			CUV 4	1	001 10	10 37		12100							Ŭ	(2 sigma, N	ISWD = 2.7; n = 13)	
Muestra Dana	ouals stand	gramuco ae	nona	E UIU DE	ta, maricopa	minnoin	115, 5W AFIZ	r (puo	LUDELA ICU	10-07	DICIEMBLE	(1107										
Espanto-2_3	B, >U, D	2334	766	0.43	0.10153	2.9	2.58700	3.7	0.18460	2.5	0.04800	7.3	0.69	16	1092	26	1295	27	1645	54	1092 ± 26	
Espanto-2_12	B, >D	358	186	0.52	0.09720	3.1	3.00500	3.3	0.22050	2.1	0.06270	8.0	0.65	6	1284	25	1408	25	1571	59	1284 ± 25	
Espanto-2_2	N, >U, D	1041	2250	2.16	0.10780	3.2	3.29500	3.3	0.22250	2.6	0.02550	8.6	0.78	13	1295	31	1482	26	1761	61	1295 ± 31	
$Espanto-2_7$	B,>U	918	682	0.74	0.10040	3.0	3.22500	3.1	0.23250	2.0	0.05070	6.9	0.64	8	1347	24	1462	25	1628	52	1347 ± 24	
Espanto-2_27	B,>U	1147	368	0.32	09660.0	3.0	4.01100	3.2	0.29020	2.4	0.07990	8.0	0.73	-	1647	35	1638	26	1619	54	1619 ± 54	
Espanto-2_17	в	179	100	0.56	0.10020	4.0	4.20200	3.6	0.29700	2.1	0.09110	8.3	0.58	0	1676	30	1673	30	1627	17	1627 ± 71	
Espanto-2_15	B+N	140	146	1.04	0.10070	3.3	4.05700	3.5	0.29170	2.0	0.08320	7.5	0.57	0	1650	29	1644	28	1629	61	1629 ± 61	
Espanto-2_20	B, >D	188	133	0.71	0.10020	3.2	4.39700	3.2	0.31570	1.8	0.08900	8.3	0.57	ή	1769	28	1711	27	1629	62	1629 ± 62	
Espanto-2_19	В, >IJ	248	162	0.65	0.10070	3.1	4.59600	3.7	0.33150	2.6	0.09810	9.7	0.69 0	γ·	1845	41	1749	31	1633	57	1633 ± 57	
Espanto-2_24	Р Р⊤И	007	205	0.53	0.10060	7.5 7.7	4.10200	2.5	061000	1.6	0.08000	1.1	0.62 0.57		16/U 1648	87	1620 1644	3 5	1633 1628	79 70	1633 ± 02 1638 ± 50	
Espanw-4_10		7 10	1	<i></i>	0.10000	4.0	4.0720	4.0	N71 27.0	1.0	0.000.0	<i>c</i> .,	10.0	2	0101	77	101	17	0001	22	1000 F 00	1
																				Continua e	n la siguiente página	

	~
	5
	5
•	E
	Ξ
•	4
	٥,
1	Ć
S	≥
ŝ	~
τ	1
2	
•	
	6
1	C
	2
	4
	g
	c
•	7
	ç
	N
	c
	£
	0
	5
	ç
	÷
	≏
	2
	2
	¢
1	c
•	ź
	ç
ż	ŧ
	2
	븕
	52
	t
	¢
	e.
÷	4
1	C
	ñ
	2
	4
	ç
	c
	ć
	₽
•	5
	0
	_
	÷
	¢
,	
	<u> </u>
1	s
	~
	-
ĉ	2
ļ	2
ļ	2
ļ	
í	-
í ()	A- 10
í Cr	-A-
Î, î, î,	-A-
, () , ()	r A-10 P
í () ·	Dr A-107
i China h	or A-10 P
(C)	DOF A-ICP
C F F	s por A-ICP
CCF - F	DS DOF A-1CP
100 F	los nor LA-ICP
100 · · ·	Idos nor LA-ICP
100F - F	Place nor I A-I CP
101 H	Place nor I A-IC Place
100F - F	enidos nor LA-ICP
100F F F F F F F F F F F F F F F F F F F	Tenidos nor LA-ICP
	bfenidos nor LA-ICP
	obtenidos nor LA-ICP
	obtenidos nor LA-ICP
	h obtenidos nor LA-ICP
	Ph obtenidos nor LA-ICP
	-Phohtenidos nor LA-ICP
	h-Ph obtenidos nor LA-ICP
	h-Ph obtenidos nor LA-ICP
	-Th-Ph obtenidos nor LA-ICP
	-Th-Ph obtenidos nor LA-ICP
	L-Th-Ph obtenidos nor LA-ICP
	I - I h-Ph obtenidos nor I A-ICP
	s U-Th-Ph obtenidos nor LA-ICP
	os L-Th-Ph obtenidos nor LA-ICP
	cos U-Th-Ph obtenidos nor LA-ICP
	TCOS II-Th-Ph obtenidos nor I A-IC P
	ificos I - I h-Ph obtenidos nor I A-IC P
	lificos U-Ih-Ph obtenidos por LA-ICP
	alificos U-Ih-Ph ohtenidos por LA-ICP
	nalificos II-Ih-Ph ohfenidos nor I A-IC P
	analiticos U-Ih-Ph ohtenidos nor I A-IC P
	analiticos I - I h-Ph ohtenidos por LA-ICP
	s analiticos I - I h-Ph ohtenidos por LA-ICP
	os analiticos U-Th-Ph obtenidos nor LA-ICP
	fos analiticos U - D-Ph obtenidos nor A-ICP
	atos analiticos U-Th-Ph obtenidos nor LA-ICP
	Batos analiticos U-Th-Ph ohtenidos nor LA-ICP
	Datos analiticos U-Lh-Ph ohtenidos nor LA-ICP
	1 Datos analiticos U-Th-Ph obtenidos nor LA-IC Pl
	1 Datos analiticos U-1h-Ph obtenidos nor LA-ICP
	I hatos analiticos U-lh-Ph obtenidos nor LA-ICP
	nt) Datos analiticos U-Th-Ph obtenidos nor LA-IC Pl
	Dut .) Datos analiticos U-Th-Ph obtenidos nor LA-IC Pl
	ont.) Dates analiticos U-Th-Ph obtenidos nor LA-IC P
	Cont 1 Jatos analiticos U-1 h-Ph ohtenidos nor LA-10 Pl
	(ont.) Dates analitices U-Th-Ph obtenidos por A-IC P
	(Cont.) Dates analitices U-Th-Ph obtenides nor LA-ICP
	(ont) Dates analitices U-1h-Ph obtenidos nor A-1(Pl
	A. I (Cont.) Dates analitices U-Th-Ph obtenides nor LA-ICP

דמחום איז (כטוור) .			d contra				more provide										1000				
Análisis/Zircón	Comentario	(mun) [#] (Th [#] (nnm	A Th/U	²⁰⁷ Ph/ ²⁰⁶ Ph [†]	err %	207ph/235rit	orr %*	206ph/238rit	PER %	208 ph/232 Th [†]	err %	R ho ** 0	6 dise***	²⁰⁶ Ph/ ²³⁸ I1	+2,e [*] 20	⁷ ph/ ²³⁵ 11	+2,e* 207	⁷ Ph/ ²⁰⁶ Ph	**************************************	eior edad (Ma) ± 2s
	;																				
Espanto-2_11	z	119	78	0.66	0.10140	3.4	4.03400	3.5	0.28840	2.0	0.09070	8.0	0.58	0,	1636	29	1640	28	1641	2:	1641 ± 64
Espanto-2_6	B, >U	630	383	0.61	0.10121	3.0	4.21200	3.1	0.30080	2.0	0.08500	6.5	0.66	-	1695	30	1676	25	1642	54	1642 ± 54
Espanto-2_4	z	132	142	1.08	0.09950	3.8	3.97000	3.8	0.28560	2.1	0.08480	7.3	0.55	0	1619	30	1626	31	1644	12	1644 ± 71
Espanto-2_13	z	124	Ξ	0.89	0.10170	5. 4 4. 1	4.20700	3.6	0.29760	1.9	0.08940		0.55	0,	1679	29	1674	53	1648	65	1648 ± 65
Espanto-2_14	B+N	93	68	0.74	0.10230	3.7	4.09700	3.7	0.28840	1.9	0.08450	L.L 2 L	0.53		1633	28	1652	30	1652	69 (1652 ± 69
Espanto-2_18 Femanto-2_16	B+N, >U, U R+N	C18	195	0.85	0.101.0	0.0 C C	2.8/200 4.26000		0.2720	8.1 8	0.00010	8./ 0 L	8C.U	υÇ	1001	9 5	1687	07 70	1655	00	1654 ± 50
Espanto-2 22	, u	305	163	0.54	0.10150	1 C 1 C	4 22300		0.0000.0	2.0	0.08850	7.6	0.59	1-	1687	5 C	1678	27	1656	54	1656 + 54
Espanto-2 8	N. >U. D	935	312	0.33	0.10234	2.9	3.54800		0.25080	1.9	0.06780	0.0	0.62	· •	1442	25	1539	25	1661	56	1661 ± 56
Espanto-2 21	B+N.>U	988	842	0.85	0.10239	2.9	4.02600	3.2	0.28590	2.4	0.08090	6.7	0.74	, —	1620	9 6	1638	26	1661	23	1661 ± 53
Espanto-2 25	B. >U. D	889	2.90	0.33	0.10222	2.9	3.88800	1.6	0.27380	8	0.08650	2.6	0.59	• ••	1562	25	1610	26	1661	33	1661 ± 55
Espanto-2 9	Ż	143	103	0.72	0.10210	4	4.11600	4.6	0.29420	2.0	0.08540	8.5	0.59	. 0	1662	56	1656	28	1664	3 6	1664 ± 63
Espanto-2 1	z	407	355	0.87	0.10390		4 42 900	3.7	030650	61	0.08960	9.4	0.60	0	1773	80	1718	26	1698	57	1698 + 57
Feranto-2 5	: Z	304	250	0.66	0.10200		4 34200	100	02000.0	01	0.09110	44	0.60	~ c	1704	9 C	1705	27	1708	85	1708 + 58
Espanto-2 36	; m	256	6	0.36	0.10500	, c	4 40400	100	0.30350	- C	0.08660	. r	0.67	~ ~	1708) 4 7	1111	20	1711	8	1711 + 58
Espanto-2 23	N.>D	143	140	0.98	0.10570	3.3	4.14300	3.6	0.28570	2.0	0.08660	8.7	0.56	о m	1620	5 65	1664	5 50	1733	61	1733 ± 61
																Edad 2	07 DL /206 D	di modia			91 ÷ 0991
17 - 11																Fuad			bollucra		01 ± 0001
Musetia Tologiah	Cnois ciono	aranition d.	a hiatita	(Tolome	nh Dass Trail	CIIV Ari-	Duo:	Vato ICG	LO 33 (E	10C Cape	7								0	(2 sigma, 1	ASWD = 1.2; n = 18)
Muestra Letegraph	Chers Sten	igranuico a	e protita	1 elegri	pn rass trau,	THE MC	zonaj Fro	ספומ זרתי	T) (C-01	nero 201	()										
Telegraph_9	B+N	275	146	0.53	0.10050	2.6	3.90000	3.8	0.28120	1.3	0.08390	4.8	0.33	1	1597	18	1613	32	1629	49	1629 ± 49
Telegraph_7	z	212	174	0.82	0.10080	2.7	3.99100	3.8	0.28750	1.4	0.08340	4.6	0.36	0	1631	20	1631	32	1634	50	1634 ± 50
Telegraph_5	в	134	60	0.45	0.10090	2.7	3.91800	3.8	0.28280	1.4	0.08240	4.7	0.38	-	1605	20	1618	31	1636	49	1636 ± 49
Telegraph_14	B+N	198	119	0.60	0.10080	2.4	4.02400	3.7	0.28950	1.4	0.08780	4.7	0.38	0	1639	20	1640	31	1640	45	1640 ± 45
Telegraph_19	в	214	137	0.64	0.10100	2.8	3.95000	3.8	0.28330	1.7	0.08320	4.7	0.46	-	1607	25	1623	32	1644	54	1644 ± 54
Telegraph_15	в	363	241	0.66	0.10120	2.5	3.99500	3.8	0.28710	1.3	0.08365	4.5	0.34	0	1627	18	1632	31	1646	46	1646 ± 46
Telegraph_20	B+N	137	98	0.72	0.10170	2.8	4.00400	4.0	0.28730	1.5	0.08490	4.7	0.37	0	1628	21	1636	31	1649	51	1649 ± 51
Telegraph_1	B, >U	573	80	0.14	0.10150	2.4	4.01400	3.7	0.28880	1.6	0.08290	5.3	0.43	0	1635	23	1637	31	1650	4	1650 ± 44
Telegraph_10	B+N	198	146	0.73	0.10200	2.6	4.04500	3.7	0.28710	1.3	0.08479	4.6	0.36	-	1627	19	1644	32	1656	49	1656 ± 49
Telegraph_13	в	277	162	0.59	0.10170	2.4	4.03800	3.7	0.28920	1.5	0.08460	4.7	0.39	0	1637	21	1641	31	1656	46	1656 ± 46
Telegraph_17	В	285	94 -	0.33	0.10170	2.3	3.95300	3.8	0.28350	1.3	0.08060	4.8	0.34		1609	19	1624	30	1656	41	1656 ± 41
Telegraph_11	N,>U	582	364 2	0.63	0.10200	2.3	4.05800	3.7	0.28980	1.2	0.08425	v. 4	0.32	0,	1640	17	1646	0 <u>6</u>	1659	43	1659 ± 42
I clegraph_J		507	t 012	0.44 1 0 1	0.10210	0.7 7	2 81600	9.0 0 6	0.20020	1.4 1.4	000000	4.4 v v	070	- 6	001 0151	9 6	1001	70	2991	10	1C = COOI
Telegraph_0	D+IN, ∕U, U B	100	010	0.48	0.10210	0.7 7 C	4 18500	 	0.2012.0	0.1	0.08560	4.0	0.40		7461	77	0601	31	1666	0 4 4 7 4 7	C+ ± COOI
Teleoranh 21	u - 8	176	35	0.54	0.10230	2.8	4.01900	4.0	0.28210	12	0.08520	- 7	0.31	0 0	1602	18	1639		1675	f 6	1675 ± 53
Teleoranh 8	N+R	393	353	06.0	0.10200	6	4 09100	3.7	0.28730	1 1	0.08377	5 Y	0.35	ı —	1628	61	1652	30	1681	6, 64	1681 + 43
Telegraph 2	N. >U	426	277	0.65	0.10330	2.6	4.09200	3.9	0.28830	1.5	0.08110	8.4	0.37		1633	21	1652	32	1682	84	1682 ± 48
Telegraph 4	B, >D	234	140	0.60	0.10350	2.6	3.86000	3.9	0.26970	1.5	0.07790	4.7	0.38	4	1539	20	1604	32	1683	48	1683 ± 48
Telegraph_16	B, >D, U	1026	249	0.24	0.10429	2.2	4.12600	3.6	0.28800	1.3	0.08290	4.6	0.34	2	1631	18	1659	30	1700	41	1700 ± 41
Telegraph_18	z	160	136	0.85	0.10560	2.7	4.43700	3.8	0.30570	1.7	0.08620	4.6	0.44	0	1719	25	1718	32	1720	48	1720 ± 48
Telegraph_12	B+N, >D	322	131	0.41	0.10720	2.4	4.38900	3.9	0.29750	1.3	0.08750	4.8	0.35	2	1679	20	1711	31	1750	43	1750 ± 43
n = 22																Edad ²	$^{07} Pb/^{206} P$	b media	pondera	ida =	1658 ± 11
:	•		:	1					i		í								Ŭ	(2 sigma, 1	ASWD = 0.7; n = 18)
Muestra Ajo-4	Sienogranito leu	ucocrático d	e biotita	(W Ajo F	eak, Ajo, SW	Arizona,	Probeta	ICGEO-	2 (Dicier	nbre 201	6										
Ajo-4_1	B, >U, D	714	235	0.33	0.09650	3.1	1.72400	3.7	0.13080	3.0	0.04320	6.3	0.82	22	792	22	1016	23	1557	59	792 ± 22
Ajo-4_2	N, >U, D	1133	226	0.20	0.10060	3.1	2.63000	4.9	0.18810	3.9	0.06020	6.3	0.79	15	1110	39	1304	37	1637	58	1110 ± 39
Ajo-4_7	B, >U, D	611	127	0.21	0.10000	3.1	3.03600	3.3	0.21830	2.1	0.08420	6.4	0.63	10	1273	54	1416	25	1623	58	1273 ± 24
Ajo-4_26	B, >U, D	1230	607	0.49	0.09996	2.9	3.04000	3.2	0.21990	1.9	0.07490	8.5 V	0.60	10	1281	21	1417	24	1619	55	1281 ± 21
Ajo-4_27	B, >U, D	545	389	0.71	0.09930	3.1	3.29900	ю. 1	0.24150	2.2	0.07470	9.9	0.67	9	1394	28	1482	27	1609	28	1394 ± 28
Ajo-4_15	ΖĤ	227	75	0.33	0.10050	с. С. с	3.90000	, i oc	0.28450	2.5	0.08510	6.8 6.9	0.66	0 -	1614	36	1618	0 20 20	1610	69	1610 ± 69
Ajo-4_30	B	16 260	7/	0. /9 2 65	0.00000	τ.τ υ.τ	4.0/300	ې. د د	0.29450	1.2	0/08010	6.5 1 1	/C.U		1665	15 16	164/	67 50	1625	00 %	1075 ± 50
Ajo-4 6	N. >D	284	194	0.68	0.10050	3.3	3.44800	3.2	0.24940	2.0	0.09330	10.7	00	- 5	1435	25	1515	3 2	1627	58	1627 ± 58
																				Continua	en la siguiente página

Tabla A.1 (Cont.) Datos analíticos U-Th-Ph obtenidos nor LA-ICPMS en zircones de oranitoides noterozoicos del SW de Arizona. USA.

דמחום איז (כטוור)			d sonna br		WINNING IN CIM	ur giui	month control	Y ======											1.4.4		
Análisis/Zircón	Comentario	U [#] (nom)	Th [#] (nnm) Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb ⁺	err %*	²⁰⁷ Pb/ ²³⁵ U [†]	err %	PICAS CC 206 pb/238 U [†]	err %*	DAS ²⁰⁸ pb/ ²³² Th [†]	err %	Rho ** %	6 disc***	²⁰⁶ Pb/ ²³⁸ U	±28 ^{* 20}	Pb/ ²³⁵ U	±28 [*] ²⁰⁷]	(Ma) Ph/ ²⁰⁶ Pb	±2s [*] M	ior edad (Ma) ± 2s
A: A 4	11∕ IN+d	VLV	122		000000	0,0	2 70100	<i>د د</i>	000000	10	002200	0 г	0 50	ç	1557	30	1500	зc	1 630	22	1630 + 66
AJ0-4_4	B+N, ∕U N	100	400 123	2 27	06660.0	0.0 2 8	3./8100 4.00500	7.0	056/2.0	0.1 C	0.08620	5.1	0C.U	7 0	/001	C7 C7	0001	C7 06	1627	6 89	89 + CE91
AJ0-4_6	zz	318	160	70°0 91.1	02001.0	0.0 V V	0000001	7.0	0.28060	1.7	0.08020	0.7	40.0		0591	06 6	5791	67 0C	7601	90 90	1637 ± 60
Ajo-4 9	zz	103	333 333	3.23	0.10120	р (с) 1 - 4 -	4.13500	3.6	0.29510	1.9	0.08260	7.9	0.53	0 0	1667	78	1659	29	1641	65	1641 ± 65
Ajo-4 22	z	132	177	1.34	0.10220	3.5	4.01100	3.5	0.28740	2.3	0.08220	7.8	0.66	0	1628	33	1634	30	1643	2	1643 ± 64
Ajo-4_3	z	221	145	0.65	0.10150	3.2	4.16000	3.1	0.29770	1.9	0.08870	7.8	0.60		1680	28	1665	26	1645	60	1645 ± 60
Ajo-4_5	В	210	155	0.74	0.10050	3.3	3.92200	3.3	0.28300	1.9	0.08330	7.2	0.57	1	1606	27	1619	26	1646	61	1646 ± 61
Ajo-4_13	В	289	400	1.38	0.10180	3.3	3.90100	3.3	0.27760	1.9	0.07850	7.6	0.58	7	1579	27	1613	28	1650	99	1650 ± 66
Ajo-4_21	B,>U	591 200	443	0.75	0.10070	3.1	4.10900	6. v 4. v	0.29240	5.8	0.08330	6.8	0.83	0 0	1653	41	1655	28 28	1651	28 28	1651 ± 58
AJ0-4_10	n y	607	5/2	1.75	0.10120		4.12100	4. c	0/56200	0.7	0.08230	0.8 - 0	8C.U	0 0	1660	67	3591	87	7001	60 9	1052 ± 03
AJ0-4_20	ζĤ	118	68	c/ .0	0/101.0	ν. 4. ς	4.00500	0.0 0	0.29380	0.7	0.080.0	8.1	cc.U	0 0	1600	67 00	CC01	67 56	5001	60 5	1055 ± 60
Ajo-4_14 Aio / 16	n z	195 206	228	1.04	0.101.0	2.5	4.00000	2.5	02882.0	9.1 9	0.081/0	0.0	0.60	0 -	1634	87	1634	17	1658 1658	19	10 = ccol
AJ04_10	N H	00C	000	1 20	001010	0.0	4.02200 2 04500	7.0	0200070	0.1	0.00000	0.0	10.0		C701	17	0001	17	0001	85	L9 + 0291
AJ04_20	N HQ	001	201	1.25 7.25	0710170		000001 1	0.0	0.20500	0.7	0.00200	C:/	10.0		101/	00	1701	10	1660	/0	10 ± 0001
AJ04_11	zz	62 1	100	18.0	0.10400	0 7 7 7	4 28000	7 7 7 7	0.20005.0	0.7 2 S	0.08610	0.9 5 8	0.00		1607	25	1607	17	1660	10	10 ± 0001
	ZZ	70	00	2 70	0.10780	רי ע די פ	4.02700	t v t c	02000-0	0.4	0.0601.0	0.0	05.0	ک ر	1601	n e	1601) o C	1684	00	100 ± 001
AJ04_24	ZZ	02	116 116	07.C	002010	0.0 2 2	00/ 00/ 7	0.0	06507.0	0.7	010800	1.1	10.0	1 -	1101	97	1641	0 0 7 0	1686	5 Y	1694 ± 65
	2 2	300	320	C7-1	0.10220	 	4.02800	2.6	0070710	1.1	0.08620	0.7	150		1667	07	1660	07 00	1686	3 3	0 7 7 7001 1686 ± 63
	z z	754	076 840	3 18	0.10400	1.0 7 7	3 96800	0. K	017810	0.1	0.06020	17.6	15.0	2 11	1582	17	1679	00	1696	3 6	60 ± 0001
Ajo-4 19	B B	329	391	1.19	0.10610	3.2	4.33200	3.2	0.29510	1.8	0.08700	8.2	0.56	0 0	1667	26	1699	27	1727	59	1727 ± 59
000																Edad 20	17 DL /206 D	di madia	hond and	-	1665 1 13
0С — П																EURI	101		ponuerac		
Muestra Aio-3	neis monzoor	anítico mela	nocrático	de hiotita	(W Ain Pear	t Ain S	(W Arizona)	Prohet	a ICGEO-3	4 (Em	era 2017)								2	2 sigma, M	SWD = 0.73; n = 24)
	807100	155		00 1		n ofir in		000	000000		0.00140			c		ç	0.0	2	1000	ţ	1,001
AJ0-2_2	NH	CCI	202	00.1	07660.0	0 7 c	2 02 100	0.0	02622.0		0.08190	4 4 V V	00.0		1101	61 6	101 /	10	1620	4 4	1620 ± 4/
AJ0-2_9 Aio 2_10	Ni+Q	147	C07	001	06660.0	5 t 7 i	001 06.0	0.0	0.20020	<u>.</u> 4	0.08410	, 4 0 0	CC.U		1642	02 5	1019	10 22	1621	‡ 0	+++ ± 0701
Aj0-2_17 Aj0-3_1	<u>ς</u> μ	320	288	100.1	0.10040	1 C	4 02400	7 C	00082.0	<u>;</u> ;	0.08457	0.4 7	10.33		1630	17	0001	08	1701	64	50 ± 1701
Alo-37	а m	342	300	0.88	0.10020	4.7 4.6	4.03600	1.0	0.2692.0	1 1	0.08520	4.6	0.34		1645	18	1641	31	1630	6 f	1630 ± 41
Aio-3 14	B+N	145	129	0.89	0.10060	2.5	3.95300	4.0	0.28790	1	0.08450	4.6	0.31	0 0	1631	18	1629	31	1631	47	1631 ± 47
Ajo-3 13	B, >U	414	575	1.39	0.10044	2.3	3.92100	3.8	0.28240	1.3	0.08106	4.6	0.34	~	1603	16	1617	30	1633	40	1633 ± 40
Ajo-3_4	В	343	322	0.94	0.10070	2.5	3.94800	3.8	0.28620	1.3	0.08284	4.6	0.34	0	1622	18	1623	31	1634	47	1634 ± 47
Ajo-3_8	B+N, >U	455	456	1.00	0.10070	2.4	3.92400	3.8	0.28400	1.3	0.08017	4.5	0.33	1	1611	18	1620	30	1635	4	1635 ± 44
Ajo-3_12	Z	243	183	0.75	0.10080	2.5	4.12100	3.9	0.29600	1.3	0.08796	4.5	0.33	-	1671	19	1658	31	1635	45	1635 ± 45
Ajo-3_ 3	B+N	295	366	1.24	0.10080	2.3	3.95900	3.8	0.28660	1.3	0.08192	4.5	0.34	0	1624	18	1625	30	1636	43	1636 ± 43
Ajo-3_17	Z ;	337	407	1.21	0.10070	2.3	3.93900	3.8	0.28500	1.3	0.08151	4.5	0.34	0	1616	19	1624	30	1638	1 3	1638 ± 43
Ajo-3_20	ΖĤ	128	151	1.18	0.10130	2.6	4.16700	8.6	0.29610	τ. Γ	0.08500	4.6 •	0.34	0 0	1672	6I 9	1668	31	1648	47	1648 ± 47
Ajo-5_11 Ajo-3_18	ממ	281	C/ I 813	C6.0 35 1	0.10160	7 r 7	3 06400	5.0 3.8	0182.0	<u>1 1</u>	0.08074	0.4 V V	0.33	0 -	1613	18	/ C01	30	0001	64	64 ± 0001
Ajo-3 6	а <i>с</i> с	366	417	1.14	0.10130	1 67	4.07600	3.7	0.29020	17	0.08528	, 4 , 6	0.34		1642	18	1651	90	1655	ŧ 4	1655 ± 41
Ajo-3 16	В	141	149	1.04	0.10170	2.6	4.02200	3.7	0.28770	1.4	0.08300	4.6	0.38		1630	21	1640	32	1656	50	1656 ± 50
Ajo-3_15	Z	247	244	0.99	0.10220	2.4	4.08800	3.9	0.29170	1.4	0.08500	4.7	0.35	0	1650	20	1651	31	1660	45	1660 ± 45
Ajo-3_2	в	201	170	0.85	0.10210	2.6	4.07000	3.9	0.28910	1.3	0.08260	4.6	0.33	-	1637	18	1647	31	1662	47	1662 ± 47
Ajo-3_ 21	B+N	116	Ξ	0.96	0.10240	3.1	4.25800	4.0	0.30100	1.4	0.08730	4.7	0.36	0	1696	21	1691	34	1671	55	1671 ± 55
$Ajo-3_10$	N, >U, D	513	122	0.24	0.10360	2.6	3.96800	4.0	0.27900	1.4	0.07920	5.3	0.35	ŝ	1586	20	1627	32	1687	48	1687 ± 48
n = 21																Edad ²⁴	⁷⁷ Pb/ ²⁰⁶ P.	b media	ponderad	da =	1642 ± 10
																			0	2 sigma, M	SWD = 0.62; n = 21)
Muestra Cabeza-9	Gneis mon.	zogranítico a	te biotita	(S Sierra	Pinta, Cabeza	ı Prieta V	Wildlife Refu _£	e, SWA	rizona) I	^p robeta l	CGEO-85	(Diciembre	2017)								
Cabeza-9_20	В	139	57	0.41	0.09950	4.0	3.93900	4.1	0.28450	2.5	0.08450	35.5	0.61	0	1614	36	1620	34	1596	76	1596 ± 76
$Cabeza-9_17$	B, >U, D	527	63	0.12	0.09830	3.3	3.61200	3.6	0.26740	2.1	0.07960	35.2	0.58	6	1527	28	1552	29	1598	99	1598 ± 66
Cabeza-9_I	N+8	217	181	0.83	01660.0	5.0 7 4	3.91400	4.5 2.6	0.283/0	C7	0.087/0	34.2 25 0	80.0	o -	1610	96 06	5191	c? 02	1001	89	1001 ± 68
Cabeza-2_10 Cabeza-9 2	в, с	cuc 179	00 19	0.38	09660.0	3.9 3.9	3.94000	0.0 4.3	0.28380	2.5	0.08700	35.6	رد.u 0.58		1610	36 36	1621 1621	лс 36	1002 1614	ou 73	1004 ± 00 1614 ± 73
I																				Continua	en la siguiente página
																					, ,

Tabla A.1 (Cont.) D	atos analíticos	U-Th-Pb of	btenidos p	or LA-ICP]	MS en zircone	s de gran.	itoides proter	ozoicos (del SW de A	rizona, L	JSA.					TDADF	auus	FGIDA	(Ma)		
Análisis/Zircón	Comentario	U [#] (ppm)	Th [#] (ppn	n) Th/U	$^{207}Pb/^{206}Pb^{\dagger}$	err %	²⁰⁷ Pb/ ²³⁵ U [†]	err %	²⁰⁶ Pb/ ²³⁸ U [†]	err %	²⁰⁸ Pb/ ²³² Th [†]	err %	Rho**	% disc	²⁰⁶ Pb/ ²³⁸ U	±2s ^{* 2(}	⁰⁷ Pb/ ²³⁵ U	$\pm 2s^{*20}$	¹⁷ Pb/ ²⁰⁶ Pb	±2s* N	lejor edad (Ma) ± 2s
Cabeza-9_3	в	234	103	0.44	0.10020	3.7	3.96000	3.8	0.28490	2.2	0.08880	34.9	0.58	-	1616	31	1625	32	1621	99	1621 ± 66
Cabeza-9_21	B+N	153	92	0.60	0.10040	3.8	4.07600	3.9	0.29180	2.1	0.08480	35.4	0.53	0	1650	31	1648	33	1624	71	1624 ± 71
Cabeza-9_9	B	340	63	0.19	0.10090	3.5 1	4.07000	9.6 •	0.29270	2.2	0.08100	34.6	0.55		1659	32	1648	32	1628	2	1628 ± 64
Cabeza-9_12	R+N	126	127	1.01	0.09980	3.7	4.02800	0.4.0	0.29030	2.4 7 4	0.07560	35.7	0.61	0 0	1643	35	1641 1656	5 ç	1629	89	1629 ± 68
Caheza-9_0	R+N	369	001 85	0.23	0.10030	0.0 4	3.94600		0.28310	C 7	0.08110	35.8	0.58	o -	1607	96 F	1623	cc (c	1636	00 59	1636 ± 63 1636 ± 63
Cabeza-9 15	в	284	103	0.36	0.10060	3.3	3.99300	3.8	0.28870	2.1	0.08030	34.9	0.55	. 0	1635	30	1634	30	1638	62	1638 ± 62
Cabeza-9_6	B+N	169	106	0.63	0.10150	4.7	4.06000	4.9	0.28880	2.6	0.09170	34.9	0.52	0	1635	37	1643	40	1644	87	1644 ± 87
Cabeza-9_7	B+N	189	79	0.42	0.10100	3.4	4.07800	3.7	0.29170	2.1	0.08700	34.5	0.58	0	1650	31	1649	30	1646	63	1646 ± 63
Cabeza-9_19	в	256	110	0.43	0.10190	3.4	3.94700	3.8	0.28180	2.1	0.07980	35.1	0.55	1	1600	30	1622	31	1651	63	1651 ± 63
Cabeza-9_25	B+N	553	365	0.66	0.10110	3.5	4.05700	3.7	0.28930	2.3	0.08700	34.5	0.62	0	1638	33	1645	31	1653	64	1653 ± 64
Cabeza-9_22	в	165	62	0.38	0.10200	3.5	4.08700	3.9	0.29400	2.1	0.08650	34.7	0.54	0	1662	31	1655	32	1654	67	1654 ± 67
Cabeza-9_4	В	163	41	0.25	0.10160	3.5	4.00800	3.7	0.28610	2.2	0.08860	35.0	0.60	-	1622	32	1637	30	1661	67	1661 ± 67
Cabeza-9_11	в	190	38	0.20	0.10160	3.8	4.09800	3.9	0.28910	2.3	0.07900	35.4	0.59	-	1637	33	1653	32	1663	72	1663 ± 72
Cabeza-9_13	B+N	123	49	0.52	0.10190	4.7	4.15000	4.3	0.29490	2.5	0.08090	35.8	0.59	0	1666	37	1663	36	1664	87	1664 ± 87
Cabeza-9_5	В	142	52	0.37	0.10310	3.8	4.09100	3.9	0.28810	2.2	0.09120	35.1	0.57	1	1632	32	1651	32	1678	70	1678 ± 70
Cabeza-9_14	z	485	333	0.69	0.10320	3.8	4.11600	3.9	0.29180	2.5	0.08040	31.1	0.63	0	1650	36	1657	29	1680	69	1680 ± 69
Cabeza-9_18	z	217	217	1.00	0.10360	3.5	4.26200		0.29940	2.1	0.08330	34.8	0.55	0 0	1688	31	1687	31	1683	65	1683 ± 65
Cabeza-9_24 Caheza-9_23	B, >D R+N	163 253	66 77	0.40	0.10310 0.10490	9. v 0. v	4.03400 4 31000	4.0 7	0.28480	2.7 C C	0.08480 0.08870	35.4 34.9	0.67	7 0	6191 1694	85 65	1640 1696	£ 15	1683 1714	76 58	1683 ± 76 1714 + 58
		004	5	11.0	0/101-0	5	0001011	ì	01000-0	1	0.000.0	È.	0000	>	101	10	1000	5		2	00 + + 11
n = 25																Edad	²⁰⁷ Pb/ ²⁰⁶ F	b medi	a ponderae	da =	1642 ± 14
Muestra Chpass-01	Gneis grant	tico feldesp	vático micı	roclínico de	e biotita (S	Cholla P.	ass, Cabeza	Prieta W	ildlife Refug	e, SW Ar	izona) Pro	ibeta ICGE	30-40 (F	ebrero, 201-	(4)				9	2 sigma, 1	4SWD = 0.58; n = 23)
CHPASS1-18	B.>U	198	102	0.47	0.09907	3.5	3.9221	4.2	0.28752	2.3	0.08085	5.4	0.56	-	1629	34	1618	34	1607	99	1607 ± 66
CHPASS1-13	В	151	LT	0.46	0.09926	3.6	4.0743	4.3	0.29776	2.4	0.08325	5.5	0.56	-2	1680	36	1649	36	1610	68	1610 ± 68
CHPASS1-4	в	186	92	0.45	0.09931	3.6	4.0958	4.3	0.29917	2.3	0.08376	5.5	0.54	-2	1687	34	1653	34	1611	68	1611 ± 68
CHPASS1-19	B+N,>U	193	76	0.46	0.09943	3.4	3.9969	4.2	0.29174	2.5	0.08269	5.5	0.58	-	1650	36	1634	34	1613	99	1613 ± 66
CHPASS1-17	B+N,>U	256	112	0.4	0.09959	3.5	4.0801	4.2	0.29738	2.3	0.08475	5.4	0.56	-2	1678	34	1650	34	1616	99	1616 ± 66
CHPASS1-12	В	129	61	0.43	0.10001	3.4	4.1446	4.2	0.30091	2.4	0.08439	5.5	0.57	-7	1696	36	1663	34	1624	99	1624 ± 66
CHPASS1-9	B, >U	231	112	0. 4. 2	0.10004	3.6	4.0286	4.9 6.9	0.29231	4 2	0.08200	5.6	0.55		1653	48 49	1640	34	1625	89 8	1625 ± 68
CHPASSI-II CHPASSI-14	z ¤	47 108	50 54	0.00	0.10044	4.5	4.1100 4.0155	4.4 V.6	0 29055	0.7 7 4	0.08282	1.0	0.56		1680	940	0001	94 G	1631	8/	10.01 ± 18
CHPASS1-16	Z	101	609	0.55	0.10071	3.9	4.1402	4.6	0.29845	2.5	0.08314	5.5	0.54		1684	36	1662	38	1637	22	1637 ± 72
CHPASS1-1	в	112	51	0.41	0.10089	3.7	4.0943	4.5	0.29425	2.5	0.08276	5.6	0.56	· -	1663	36	1653	36	1641	70	1641 ± 70
CHPASS1-3	B+N	151	70	0.42	0.10091	3.6	4.0312	4.3	0.29012	2.4	0.08345	5.5	0.55	0	1642	34	1641	34	1641	68	1641 ± 68
CHPASS1-7	в	147	67	0.41	0.10095	3.7	4.0518	4.4	0.29153	2.4	0.08403	5.6	0.55	0	1649	36	1645	36	1642	70	1642 ± 70
CHPASS1-8	B, >U	160	72	0.41	0.10170		4.1147	4.2	0.29370	2.3	0.08550	5.6	0.56	0	1660	34	1657	34	1655	2 (1655 ± 64
CHPASSI-10 CIDASSI 15	B+N, >U	9C1 92		0.40	0.10184	5.0 2 c	1120.4	4 2. c	0.29106	5.7 7	0.08107	0.0	4C.U	o -	164/	4 ç	1001	54 26	8601	80	1058 ± 08
CHPASS1-6	R+N	00 64	6 7 6 7 7	0C-0 9 C U	0 10726	3.7	4.0011	4 7 7	0.20953	4:7 2 2	0.08343	0.0 6 \$	0.55 0		1689	5 %	1678	96	1001	90 70	1001 ± 00 1666 + 70
CHPASS1-2	В	122	5 45	0.4	0.10238	3.9	3.9649	4.5	0.28047	4.5	0.08485	6.6	0.53	. 4	1594	34	1627	36	1668	22	1668 ± 72
CHPASS1-5	B+N	163	83	0.47	0.10503	3.7	4.3903	4.4	0.30350	2.4	0.08604	5.9	0.54	0	1709	36	1711	36	1715	70	1715 ± 70
n = 19																Edad ²	^{:07} Pb/ ²⁰⁶ P	b medi	a ponderae	da =	1639 ± 15
																			3	2 sigma, 1	4SWD = 0.60; n = 19)
Muestra Lewis-01	Gneis sieno _l	zranítico de	e biotita	(Arizona .	Prison Comple	х - Lewiz	s - Buckley U	hit, SW 2	trizona)	Probeta I	ICGEO-37 (Enero, 20,	(21								
Lewis-01_1	B, >D	284	200	0.70	0.09820	1.1	3.69700	2.1	0.27030	1.6	0.07988	4.3	0.73	2	1544	21	1572	16	1587	22	1587 ± 22
Lewis-01_24	в	134	92	0.69	0.09860	2.5	3.99000	3.3	0.28850	1.7	0.08490	4.7	0.53	0	1634	25	1631	27	1607	55	1607 ± 55
Lewis-01_25	B+N	342	181	0.53	09660.0	1.6	3.96800	2.5	0.28800	1.6	0.08860	4.5	0.63	0	1631	23	1627	20	1614	30	1614 ± 30
Lewis-01_2	N, >U	1283	296	0.23	0.09971	0.8	4.09000	2.7	0.29280	2.4	0.10130	4.8	0.89	0	1655	35	1651	21	1617	14	1617 ± 14
Lewis-01_22	B+N	287	209	0.73	0.09980	2.4 1.4	3.83000	3.1	0.28050	2.1	0.08360	4.7	0.68	0 0	1594	30	1599	26	1618	4 3	1618 ± 44
Lewis-01_21	B, >U ₽+N	6 1	121	0.37	06660.0	1.7	3.79400	4 7 7 7	0.278050	2 Y	0.08090	4. r	c/.0	0 0	1505	3 2	1601	91 C	1620	32 23	1620 ± 32
Lewis-01 6	r Z	2/1 213	256	1.20	0.10020	1.6	3.99100	2.3	0.28870	1.7	0.08360	4 4. 6.	0.77	0	1635	55	1632	18	1625	с Э	1625 ± 30
I									ı		ı									Continue	en la siguiente página

T aDIA ALI (CUIL)		00 0 I-III-0	remain by			nr gim	word contour														
Análicie/Zircán	Comentario	() #11	T. 1 [#]	Th/II	207 DL /206 DL †	K, *	207 pb/235 rt	S 15010	206pts/238rt	IKKEGI	208 pp. /232-ru†	* /0 ****	D bo ** 0	/ dice ***	206 p.b./238 T	200 LD EX	70b /23511	LUIDA: 10.* 20'	5 (MB) 7 Db /206 Db	۲. ۲	aior adad (Ma) + 3s
		(mdd) o	ndd) n r	(I	01 /01	6/ 113	0 101	C11 /0	1 10 0	C11 /0	II 101	C11 /0	NIIO	/0 msc	1 10 0	87T	0 101	877	10/ 10	- -	er = (nut) nuna tola
Lewis-01_17	B+N	200	140	0.70	0.10060	2.0	3.79500	2.6	0.27960	2.0	0.07990	4.6	0.78	0	1589	28	1591	21	1631	37	1631 ± 37
Lewis-01_19	в	342	172	0.50	0.10100	1.9	3.89800	2.8	0.28440	1.7	0.09050	4.9	0.60	0	1616	25	1615	23	1643	33	1643 ± 33
Lewis-01_3	B, >D	207	158	0.76	0.10150	1.3	3.92200	2.3	0.28010	1.6	0.08510	4.3	0.69	2	1592	22	1617	19	1649	23	1649 ± 23
Lewis-01_5	N, >U	169	718	1.04	0.10155	0.9	3.95500	2.0	0.28620	1.6	0.09090	4.4	0.81	0	1622	23	1626	17	1651	16	1651 ± 16
Lewis-01_15	в	193	150	0.78	0.10120	2.8	3.79400	2.6	0.27910	1.9	0.08140	4.4	0.71	0	1587	26	1591	22	1651	48	1651 ± 48
Lewis-01_13	В	84	54	0.64	0.10180	2.6	3.90900	3.1	0.28400	1.7	0.08190	4.6	0.55	0	1611	24	1616	24	1654	47	1654 ± 47
Lewis-01_16	B, >U	583	275	0.47	0.10183	1.0	3.97400	2.2	0.28790	1.5	0.08350	4.2	0.71	0	1631	22	1628	18	1655	18	1655 ± 18
Lewis-01_18	в	208	143	0.69	0.10190	1.7	3.97800	2.4	0.28780	1.6	0.08330	4.3	0.69	0	1630	23	1631	20	1659	31	1659 ± 31
Lewis-01_8	в	142	102	0.72	0.10210	2.0	3.85200	2.6	0.28130	1.6	0.08360	4.4	0.62	0	1598	23	1605	22	1661	36	1661 ± 36
Lewis-01_20	N, >D	332	209	0.63	0.10350	1.4	3.97000	3.0	0.27830	2.0	0.09120	4.6	0.65	ŝ	1582	28	1625	25	1683	27	1683 ± 27
Lewis-01 14	B, >D	322	164	0.51	0.10370	1.1	3.93000	2.1	0.27960	1.5	0.08300	4.3	0.74	2	1589	22	1619	17	1689	20	1689 ± 20
Lewis-01 4	B+N. >D	205	150	0.73	0.10430	1.7	4.05400	2.7	0.28360	1.6	0.08690	4.8	0.60	2	1609	23	1646	23	1696	32	1696 ± 32
Lewis-01 9	В	16	58	0.64	0.10490	3.3	4.15000	3.6	0.28910	2.0	0.08700	5.1	0.56	-	1637	29	1661	29	1701	5	1701 ± 64
Lewis-01 11	R >II D	461	266	0.58	0 10660	1 0	4 02 500	27	0.28470	16	0.08380	4 9	0.59	• •	1615	1 2	1647	00	1738	38	1738 + 38
		104	007	120	0000010		00030-6	ìc	011070	21	0010000		60.0	1 -	0101	3 6	2021	01 01	1750	8 F	00 - 00/1
Lewis-01 7	U,)√, ИТ Ш	020 070	007	10.0	06/01.0	0 1	00869.6	7.7	0.27240	0 1	0.09470	, 4 טיי	c/.0	4 -	0021	18	2701	01 02	60/1	7 6	$26 \pm 96/1$
Lewis-01_/	0, ∕u 1 ∕	202	100	0.00	0.10830	F	000000	C 7 4	0.41400) ; (0.54000	4 v 0 A	0.0/	4 0	1722	3 5	0401	Q 2	1//1	75 25	$75 \pm 1/1$
	U/ ,VI	CC1	60	C7.0	0-++/1-0	t.	00006.6	0.0	00+1+0	C-7	000+0.0	0.0	60.0	0	CC77	f	0747	40	7607	ç	CI + 76C7
n = 25																Edad ²⁽	$^{07}Pb/^{206}P$	b media	pondera	nda =	1636 ± 10
																				(2 sigma.	MSWD = 1.9; n = 15)
Muestra Bettylee ()	<u>venolito)</u> Xenc	olito o xenou	cristales e	Bozuom u.	ranito de biotii	a (B	etty Lee Min	e, Coppei	- Mountains,	SWAriz	ona) Prol	beta ICGEt	7-35 (Si	eptiembre 21	<i>102)</i>) /	
D.44-1. 1.015		0702	1000		0.070	, c	11001	, r	22010	r (EE 00 0	ų	130	. =	055	ć	1103	70	0710	20	36 1 636
Beuylee-1-015	B+N, >U, U	C07/	5007	67.0	0.0/03	4. r	1126.1	7. 5	CC21.0). , , ,	0.03770	0.0	10.0	= `	CC8	47	5011	8	649	97 8	$07 \pm 70/$
Bettylee-I-016	B+N,>U	8984	7107	0.32	0.0 / 69	4 i V	1.6661	9.8	0.1571	3.1	0.04 //2	3.0	0.45	9	966	4 3	1119	82	932	87	1119 ± 82
Bettylee-I-017	B+N, >U, D	6498	1704	0.28	0.0812	3.8	1.5512	6.2	0.1386	3.1	0.0414	3.0	0.51	12	951	38	1225	68	820	24	1225 ± 68
Bettylee-I-002	B+N, >U, D	6868	2026	0.31	0.0818	4.4	1.6651	7.1	0.1476	3.6	0.0440	3.4	0.50	11	995	4	1241	78	871	28	1241 ± 78
Bettylee-I-010	N, >U	9399	3073	0.35	0.0837	3.6	1.9546	6.3	0.1693	3.4	0.0504	3.2	0.54	8	1100	42	1286	2	993	32	1286 ± 64
Bettylee-I-014	B+N, >U, D	6722	1626	0.26	0.0850	3.2	1.8201	5.4	0.1553	3.0	0.0462	2.9	0.55	12	1053	36	1315	56	912	26	1315 ± 56
Bettylee-I-020	B+N, >U, D	10683	5143	0.51	0.0872	2.3	1.4124	3.9	0.1174	3.1	0.0326	7.1	0.80	20	894	24	1366	40	649	46	1366 ± 40
Bettylee-I-019	B+N, >U, D	4057	419	0.11	0.0874	2.7	1.7920	5.2	0.1488	3.4	0.0441	3.6	0.66	14	1043	34	1368	48	872	30	1368 ± 48
Bettylee-I-012	B+N,>U	4506	1002	0.23	0.0890	3.0	2.5377	5.7	0.2068	3.4	0.0611	3.3	0.60	9	1283	42	1404	54	1199	38	1404 ± 54
Bettylee-I-018	B, >U	5493	948	0.18	0.0894	2.6	2.0999	5.4	0.1704	3.6	0.0504	3.5	0.67	12	1149	36	1412	46	993	34	1412 ± 46
Bettylee-I-003	B, >U, D	3743	567	0.16	0.0895	2.9	2.2652	5.7	0.1837	3.7	0.0543	3.7	0.65	10	1202	40	1414	50	1068	38	1414 ± 50
Bettylee-I-007	B+N, >U, D	10212	4237	0.44	0.0898	2.3	1.7813	4.2	0.1439	3.4	0.0415	7.3	0.82	17	1039	28	1420	40	821	58	1420 ± 40
Bettylee-I-013	B+N, >U, D	7228	4759	0.70	0.0943	2.4	1.8427	4.0	0.1415	3.3	0.0338	11.5	0.81	20	1061	26	1513	40	671	76	1513 ± 40
Bettylee-I-011	N, >U	4770	1039	0.23	0.0947	2.5	3.3683	4.9	0.2581	3.1	0.0758	3.0	0.64	1	1497	38	1521	4	1477	42	1521 ± 44
Bettylee-I-006	B+N, >U	6576	1645	0.26	0.0953	2.3	3.4353	4.0	0.2612	3.3	0.0886	3.1	0.82	-	1513	32	1534	40	1716	52	1534 ± 40
Bettylee-I-004	B+N, >U, D	11811	5067	0.45	0.0963	2.5	2.2450	4.3	0.1690	3.4	0.0510	3.8	0.81	16	1195	30	1554	4	1005	36	1554 ± 44
Bettylee-I-001	B+N, >U, D	16687	11336	0.72	0.0974	2.4	2.0541	4.3	0.1531	3.6	0.0398	5.4	0.83	19	1134	30	1576	40	788	42	1576 ± 40
																2	è				
n = 17																Edad 2	Pb/200 P	b media	ı pondera	nda =	1528 ± 29
																				(2 sigma,	MSWD = 0.19; n = 2)
Muestra Welton-E	Gneis sienog	granítico de	biotita	(Wellton)	Hills, Barry M.	Goldwa	tter Air Forc	e Range,	SW Arizona,	Prob.	eta ICGEO-8	83 (Dicie	mbre 2017,								
Welton-E_4	B, >D	411	46	0.11	0.09610	3.4	2.57300	3.7	0.19400	2.2	0.06320	34.8	0.59	12	1143	24	1294	27	1563	65	1143 ± 24
Welton-E_26	В	435	96	0.22	0.08890	3.4	2.78600	3.9	0.22860	2.3	0.06740	35.6	0.59	7	1327	28	1353	28	1400	64	1400 ± 64
Welton-E_1	в	276	74	0.27	0.08910	3.4	2.86500	3.8	0.23330	2.1	0.07140	35.0	0.56	7	1352	26	1374	29	1411	65	1411 ± 65
Welton-E_21	B, >D	306	88	0.29	0.08970	3.5	2.84400	3.9	0.22870	2.2	0.06840	35.1	0.57	m	1328	26	1366	29	1418	64	1418 ± 64
Welton-E_7	В	475	111	0.23	0.09008	3.2	2.90800	3.8	0.23460	2.1	0.07120	35.1	0.55	7	1359	25	1383	28	1419	62	1419 ± 62
Welton-E_24	B, >D	378	92	0.24	0.09000	3.3	2.81100	3.9	0.22630	2.1	0.06750	35.6	0.54	m i	1315	25	1357	29	1420	4	1420 ± 64
Welton-E_16	B	268	75	0.28	0.08960	3.5	2.94700	3.7	0.23810	2.1	0.06310	34.9	0.55 21		1377	25	1393	28	1421	62	1421 ± 62
Welton-E_3	В, >U, D	105/	6 6	0.0 5	0.09000	2.5	2.73000	9.6	0.22050	2.0	0.07040	35.5	0.57	4 (1284	5 2	1337	17	1422	62	1422 ± 62
welton-E_14	E .	590	80	0.1/	0.09320	5.5 5.6	3.00100	0.0	0.24050	1.2	0.06330	34.8	9C.U	71.	1589	97 8	1424	87	1490 2021	00	1495 ± 60
Welton-E_2	N, >U	3460	586	0.17	0.10091	3.2	4.01800	3.7	0.28730	2.2	0.08610	34.8	0.59	- ,	1628	32	1637	0 <u>6</u>	1632	58	1632 ± 58
Welton-E_I2 Welton-F_38	В, >IJ N	162	97 20	0.10	0.10030	0.5	3.66/00	8.5	0.26440	7 C	051/0.0	25.U	9C.U	×0 −	7161	0. 2. C	6061 6671	51 24	1652	40 99 99	1632 ± 64 1657 ± 60
Welton-F 25	R >II	890	730	0 27 0 27	0.10180	v. c v c	4 11400	2 . t r	0.20/00/00/00/00/00/00/00/00/00/00/00/00/0	0.7 6	0.08200	25.4	16.0	- 0	0701	76	1656	t 9	7co1	40 20	05 + 1991 20 ± 7001
) 1	~~~~	1	11.0		1	201111E	2	000/700	3	~~~~~~	100	2.2	>	1000	5	1000	2	1001	5	
																				Continua	en la siguiente página

Merri II Merri III Merri II Merri II	1 adla A.1 (Cont.) L	atos analiticos	U-In-Pb oc	tenidos p	OF LA-ICP	15 cn Zircones	de gran RF	Itoldes proter	ozoicos	IEL SW de A PICAS CO 206	RREGI	DAS. DAS 208 232+	*	*	****	206	EDADES	S CORR	EGIDAS	(Ma)		
Modelli bills bil	Analisis/ Zircon	Comentario	U" (ppm)	Th' (ppn	n) Th/U	qd_m-/qd	err %	Derry PP/m	err %	Darry/qdarr	err %	HT***/dd	err %	Rho %	6 disc	nors/qdoor	±2s **	Development of the second seco	±2s *"']	qdqd	±2s M	ejor edad (Ma) ± 2s
Weiner Internet (struct) B-10 B+3 B-10 <	Welton-E_22	B, >U	3210	616	0.19	0.10264	3.1	3.94700	3.5	0.27730	2.1	0.08217	35.3	0.58	3	1578	29	1623	29	1664	58	1664 ± 58
Memerije Nevol Sig	Welton-E_17	B, >U, D	1434	300	0.21	0.10244	3.1	3.77200	3.7	0.26770	2.2	0.07030	34.1	0.58	4	1529	29	1586	31	1670	58	1670 ± 58
Mere Matrix B	Welton-E_9	B+N, >U	612	88	0.14	0.10290	3.3	3.89900	3.8	0.27800	2.3	0.07360	35.3	0.60	7	1580	32	1615	33	1674	60	1674 ± 60
Memorize No <	Welton-E_18	в	331	54	0.16	0.10230	3.6	4.13100	4.1	0.29040	2.2	0.08470	35.4	0.53	-	1643	31	1659	33	1680	67	1680 ± 67
Methell B G G G G <th>Welton-E_6</th> <td>z</td> <td>517</td> <td>256</td> <td>0.50</td> <td>0.10290</td> <td>3.2</td> <td>4.24800</td> <td>3.8</td> <td>0.29690</td> <td>2.1</td> <td>0.09280</td> <td>34.5</td> <td>0.55</td> <td>0</td> <td>1676</td> <td>31</td> <td>1683</td> <td>30</td> <td>1686</td> <td>59</td> <td>1686 ± 59</td>	Welton-E_6	z	517	256	0.50	0.10290	3.2	4.24800	3.8	0.29690	2.1	0.09280	34.5	0.55	0	1676	31	1683	30	1686	59	1686 ± 59
Menetion N<	Welton-E_11	в	369	51	0.14	0.10340	3.3	4.05300	3.7	0.28360	2.1	0.07310	35.6	0.56	2	1609	30	1644	29	1686	60	1686 ± 60
	Welton-E_8	z	134	40	0.30	0.10330	3.7	4.36400	3.9	0.30100	2.3	0.07890	35.5	0.59	1	1696	34	1705	32	1688	6	1688 ± 64
	Welton-E_13	z	234	16	0.07	0.10390	3.4	4.09700	3.7	0.28680	2.2	0.07040	35.5	0.59	2	1625	30	1655	31	1688	63	1688 ± 63
	Welton-E_19	z	180	60	0.33	0.10430	3.5	4.30000	4.7	0.30150	2.9	0.08910	34.8	0.61	0	1698	43	1693	39	1691	99	1691 ± 66
Nehreliji N	Welton-E 20	z	500	266	0.53	0.10340	3.3	4.14200	2.9	0.28980	1.8	0.08470	29.5	0.61	-	1640	27	1662	30	1694	60	1694 ± 60
Monetify N<	Welton-E 15	z	121	41	0.34	0.10430	3.7	4.17700	4.1	0.29140	2.3	0.07550	35.8	0.57	_	1648	34	1671	32	1697	69	$I697 \pm 69$
Nickene E, T N <t< td=""><th>Welton-E 5</th><td>z</td><td>283</td><td>124</td><td>0.44</td><td>0.10480</td><td>3.3</td><td>4.15600</td><td>3.8</td><td>0.28850</td><td>2.2</td><td>0.09810</td><td>34.7</td><td>0.57</td><td>2</td><td>1636</td><td>31</td><td>1666</td><td>32</td><td>1702</td><td>61</td><td>$I702 \pm 6I$</td></t<>	Welton-E 5	z	283	124	0.44	0.10480	3.3	4.15600	3.8	0.28850	2.2	0.09810	34.7	0.57	2	1636	31	1666	32	1702	61	$I702 \pm 6I$
Weiker J <th>Welton-E 27</th> <td>Z</td> <td>164</td> <td>52</td> <td>0.32</td> <td>0.10460</td> <td>3.5</td> <td>4.24300</td> <td>4.0</td> <td>0.29380</td> <td>2.1</td> <td>0.08680</td> <td>35.7</td> <td>0.54</td> <td>1</td> <td>1660</td> <td>31</td> <td>1683</td> <td>33</td> <td>1707</td> <td>65</td> <td>$I707 \pm 65$</td>	Welton-E 27	Z	164	52	0.32	0.10460	3.5	4.24300	4.0	0.29380	2.1	0.08680	35.7	0.54	1	1660	31	1683	33	1707	65	$I707 \pm 65$
Nature Nat 15 1 07 103 13 133	Welton-E_23	Z	216	50	0.23	0.10580	3.7	4.35000	3.0	0.29770	1.8	0.08990	28.9	0.62	2	1680	29	1710	31	1721	65	1721 ± 65
n = 3 <i>Terri MDmuki Construction for the manual construction for the manual f</i>	Welton-E_10	N de N	195	71	0.37	0.10820	3.4	4.59200	3.9	0.31010	2.3	0.08890	33.7	0.58	0	1741	34	1748	32	1773	62	1773 ± 62
Matrix Mathematic for intermediation of the matrix Matrix Mathematic for the matrix Mathematic for the matrix Mathematic for the matrix Matrix Mathematic for the matrix Matrix Matrix Mathematic for the matrix Matrix Matrix Matrix Mathematic for the matrix Mathematic for the matrix Mathematic for the matrix Matrix Matrix Matrix Mathematic for the matrix Mathmatrix Mathmating for the matrix Mathematic for the matrix Mathe	n = 28													Ξ	dad ²⁰⁷ Pb/ ²	³⁶ Pb medi	a ponder	ada (cris	talizació	n) =		1427 ± 22
																	_	-			C eiama	$MSWD = 0.01 \cdot n = 8)$
	Muestra <u>McDonalds</u>	Gneis sien	ogranítico	melanocr	ático de dos	: micas (Ce	rro en r	estaurante M	cDonala	s, Yuma, SW	Arizona) Probeta I	ICGEO-34	(Enero	2017)						4 Sigua	(о — п' т. с. о — п от
	McDonalde 11	N >II	484	85	0.17	0.08780	23	2 85300	3.0	0.73550	5 1	0.07510	5 5	0.30	0	1363	81	1360	00	1387	30	1387 + 30
	McDonalds 8	B >11	453	173	0.38	0.08830	4 0	2 89300	8	0.23850	21	0.06948	46	0.31	~ c	1379	2 2	1380	38	1387	54	1387 ± 45
McDonalds, T B T/V	McDonalde 10	с С	260 760	01	22.0	0.08860	- v i c	2 88100	0.0	0.23210	1 1	0.06050	0 1	12.0	~ ~	1271	2 4	1378	20	1307	9 9	1307 ± 48
	McDonalde 1	9 2	187	97	17.0	0.08880.0	9.6	2 03800	0.0	01/67.0	<u>.</u> .	05020.0	6.4 v	10.33		1/61	15	1301	67 06	2661	9 07 70	1305 ± 40
	MaDonata 17		101	0/	100	2200000	, , , ,	0000000		017670		020200	2 5	20.0	> -	2261	2 5	1001	96	2061	f ¥	24 - 2001
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	McDonalds_1/	в, <0	4 1 4	101	76.0	C/ 880.0	7 r 7 r	00600 6	0.0	01052.0	+ c	0.00/00	- + +	05.0	- 0	1110	17	1861	67 02	0661	6 1	0.001 ± 0.001
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	McDonalds 10	D, √U	/10	2,1	00.0	0.000.0	6.7 2	00200.6		0.24490	1 0	0.0/10/	4 ·	75.0	ο.	1412	<u>c</u> ;	1410	07	6661	‡ ;	44 ± 66011
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	McDonalds_25	ы л т	105	16	0.30	0.08910	C 7	2.95800	1.0	06652.0	7 .	0.0/000	0.4 v	0.52		1384	c ;	1595	67 82	1402	84 ç	1402 ± 48
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	McDonalds_9	B, >U	1304	175	c7:0	0.08918	17	3.002000	0.5	0.24430	7 .	0.07080	4 4 Ú 1	0.34	0 0	1409	<u>e</u> :	1411	87	1406	7	1406 ± 42
	McDonalds_12	n i	2/4	114	0.41	01680.0	C.2	3.02300	3.6	0.24430	1.2	0.0/220	4./	0.33	0,	1409	<u></u>	1414	78	1406	4/	1406 ± 47
Medomalds 1 B+N, -V 492 149 0.50 0.09930 22 2.29100 35 0.24500 14 0.00941 47 0.35 0.11 1360 171 1348 171 1343 28 1411 46 1411 46 Medomalds 20 Medomalds 21 B 355 132 0.37 0.08959 37 0.23470 13 0.07160 477 0.33 22 1371 15 1339 16 1379 28 1417 44 1417 446 Medomalds 21 B 203 70 137 70 137 70 1371 15 1339 16 1379 28 1417 44 1417 446 Medomalds 21 10 1311 11 11 11 11 11 11 	McDonalds_7	B	333	135	0.40	0.08940	2.5	2.94900	3.7	0.23820	1.3	0.06940	8. 4	0.36		1377	11	1394	29	1408	84	1408 ± 48
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	McDonalds_13	B+N,>U	492	149	0.30	0.08930	2.5	2.91000	8.0	0.23600	4. 6	0.06940	6. r	0.36	_ <	1366	2 !	1384	58	1410	6	1410 ± 46
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	McDonalds_22	В, >U	310	/61	00	0.08940	7.7	5.02400	0.0	0.24280	<u>.</u> 	0.0/160	- t - t	0.57	-	141/	1/	1415	87 87	1411	54 5 2	1411 ± 45
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	McDonalds_20	חנ	205	132	15.0	06680.0	7.7 7	2.95900). , ,	0.23690	71	0.068/0	4./	0.33	7 -	1/51	c 7	1395	87 02	1412	6 5	1412 ± 40
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	McDonalds_2		007	16	0.54	0.08940	0, C	0000000	0.0	0.4220		0.0/10.0	4.4 7	10.0	- (7201	9 2	6/61	67 02	1414	1	1414 ± 40
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	McDonalds_4	ממ	400 200	CCI 02	0.40	0.00000	0 F C F	0000000	0.0	0.23420	+ -	0.00000	0.0	05.0	7 -	0001	16	2/61 1405	20	1417	‡ \$	141/ ± 44
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	McDonalde 34	N vit	C07	200	0.35	080800	- r - r	2 00200	9 9 7 7	0/04270	<u>, 1</u>	0.07480	0.0 F V	25.0		1471	12	1475	e e	1410	24	710 ± 710
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	McDonalds 16	с, н	100	130	0.38	0.09010	40	2.07 LOO	5.6	0.73690	1 -	0.07000	4.7	0 32	о с	1370	2 2	1303) č	1428	4	1428 + 44
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	McDonalds 5		55C	6	0.37	010000	5 5	3 09000	3.9	0.24910	1 1	0.07820	4.9	0.34		1434	11	1431) (C	1430	40	1430 ± 49
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	McDonalds 15	B. >11	431	121	0.40	0.09040	40	2.97400	1.6	0.23830	1 1	0.07040	47	0.35	° (1378	16	1400	62	1432	4 4	1432 ± 46
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	McDonalds 23		382	138	0.36	0.09010	4.6	2.95200	3.7	0.23880	12	0.06970	4.6	0.33	. –	1381	15	1395	28	1435	46	1435 ± 46
McDonalds 6 B 183 59 0.32 0.09180 3.1 3.02000 4.0 0.23900 1.5 0.06870 5.8 0.39 2 1381 19 1412 30 1468 5.3 1418 45 1481 45 1481 45 1481 45 1481 45 1481 45 1481 45 1481 45 1481 45 1481 45 1481 45 1481 45 1481 45 1481 45 1481 45 1481 47 1591 47 1591 47 1591 47 1591 47 1591 47 1591 47 1591 47 1591 47 1591 47 1591 47 1591 47 1631 47 1591 47 1631 47 1591 47 1631 47 1591 47 1591 47 12 0.09840 2.5 3.51800 3.7 0.25810 1.4 0.07640 5.0 0.38 3 <th>McDonalds 3</th> <td></td> <td>392</td> <td>133</td> <td>0.34</td> <td>07060.0</td> <td>23</td> <td>2.99000</td> <td>3.7</td> <td>0.23940</td> <td>17</td> <td>0.07000</td> <td>4.7</td> <td>0.33</td> <td>. –</td> <td>1385</td> <td>15</td> <td>1405</td> <td>28</td> <td>1441</td> <td>45</td> <td>1441 ± 45</td>	McDonalds 3		392	133	0.34	07060.0	23	2.99000	3.7	0.23940	17	0.07000	4.7	0.33	. –	1385	15	1405	28	1441	45	1441 ± 45
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	McDonalds 6	8	183	59	0.32	0.09180	1.0	3.02000	4.0	0.23900	1.5	0.06870	5.8	0.39	2	1381	61	1412	30	1468	23	1468 ± 53
McDonalds 14 N,>U, D 526 64 0.12 0.09840 2.5 3.51800 3.7 0.25810 1.4 0.07640 5.0 0.38 3 1480 18 1531 30 1591 47 1591 ± 47 1591 ± 29 $n^{1} = 25$ $n^{1} = 25$ $n^{1} = 25$ $n^{1} = 25$ $(2 \text{sigma, MSWD} = 0.69; n = 23)$	McDonalds 10	z	365	498	1.36	0.09270	2.4	3.20000	3.8	0.25150	<u>7</u>	0.07173	4.6	0.35	ı —	1446	17	1459	29	1481	45	1481 ± 45
Edad ²⁰⁷ Pb/ ²⁰⁶ Pb media ponderada = 1412 ± 9 (2 sigma, MSWD = 0.69; n = 23)	McDonalds 14	N. >U. D	526	64	0.12	0.09840	2.5	3.51800	3.7	0.25810	1.4	0.07640	5.0	0.38	ŝ	1480	18	1531	30	1591	47	1591 ± 47
Edad ⁴⁰⁷ Pb ^{/¹⁰⁶} Pb media ponderada = 1412 ± 9 (2 sigma, MSWD = 0.69; n = 23)																	1					
(2 sigma, MSWD = 0.69; n = 23)	n = 25																Edad ²⁽	⁷⁷ Pb/ ²⁰⁶ P	b media	ponderad	a =	1412 ± 9
																				(2	sigma, N	ISWD = 0.69; n = 23)

"Las concentraciones de U y Th (ppm) fueron calculadas con relación al análisis del vidrio estandar NIST 610 para elementos traza.

Relaciones isotópicas corregidas con relación al zircón estándar de edad conocida (91500 de ~1065 Ma; Wiedenbeck et al. 19951) por el fraccionamiento de masa y deriva instrumental. Las relaciones isotópicas, edades y errores son calculados

^{*}Todos los errores en las relaciones isotópicas son en porcentaje y los de las edades en absoluto y, en ambos casos, están reportados a nivel 2 sigma, incluida la cdad²⁰⁷Pb/²⁰⁶Pb media pondenda. Estas incertidumbres a 2 sigma han sido propagadas según la metodología de Paton et *al.* (2010). ^{*} Rho es el valor de correlación de errores definido como el cociente de los errores (en porcentaje) de las relaciones isotópicas de ²⁰⁶Pb/²³⁸U y ²⁰⁷Pb/²³⁵U. El valor Rho es necesario para graficar los datos U-Th-Pb en diagramas de concordia. ^{**} Porcentaje de discordancia obtenido usando la siguiente ecuación (100*[(edad ²⁰⁷Pb/²³⁴U)/edad ²⁰⁷Pb/²³⁵U). como en Paton et al. (2010).

Valores positivos y negativos indican discordancias normales y discordancias inversas, respectivamente. Las edades individuales de cada zircón marcadas en negrita fueron usadas para calcular las edades medias ponderadas y el MSWD (Mean Square of Weigthed Deviates) usando el programa computacional Isoplot (Ludwig, 2003). Las edades ²⁰⁷Ph^{5/10}Ph medias ponderadas que no están en negritas ni en casillas de color gris es porque se tomó la edad de intersección superior como la mejor aproximación para la edad de la roca. En la muestra Welton-E las edades en eursiva y negrita fueron utilizadas para calcular la edad ²⁰⁷Ph^{5/10}Ph de zircones paleoproterozoicos (~1.6 Ga).

A.2 Descripción de zircones de rocas proterozoicas

A.2.1 Gneis sienogranítico de biotita (Wilton-02)

La muestra de gne is sienogranítico Wilton-02 fue recolectada a l sur de la localidad de Wellton (Wellton Hills), dentro de la reserva Barry M. Goldwater Air Force Range al suroeste de Arizona (Figura 1). De los zircones separados para esta muestra se seleccionaron 25 granos para realizar el fechamiento U -Pb tomando e n c uenta t anto bor des c omo nú cleos e n l os punt os de ablación. En la población de zircones se aprecian dos familias morfológicas; la primera, y más abundante corresponde a zircones prismáticos alargados con un tamaño promedio de 250 µm, y la segunda con zircones prismáticos, más cortos y an chos en sus ejes principales, con un tamaño promedio de 150 µm. Dichas morfologías no se encuentran relacionadas con diferencias en edades de los zircones. T odos l os zi rcones so n eu hedrales co n ca ras y punt as definidas, a lgunos c on fracturas, inclusiones de apatito y otras fases minerales no determinadas.

Las imágenes de catodoluminiscencia (Apéndice A.3.1) muestran que la mayoría de los zircones presentan un núcleo más catodoluminiscente (pobres en U) y a su vez tienen una banda menos catodoluminiscente hacia sus bordes (ricos en U). En los datos analíticos de U (Tabla A.1), se aprecia un incremento considerable en sus concentraciones correspondientes a zo nas menos catodoluminiscentes en los zircones (e.g., zircón 5 con 3880 ppm), y en caso contrario, las zonas más catodoluminiscentes corresponden a v alores más bajos en U (e.g., zircón 19 con 438 ppm) (Figura A.2.1C). Todos los zircones presentan una hom ogeneidad en el patrón de zonamiento ligado a crecimientos concéntricos de carácter ígneo y en algunos zircones se puede apreciar una perturbación en la zonación que generalmente va de borde a núcleo de los cristales (e.g., zircones 1, 5 y 19), perturbando la homogeneidad de l crecimiento, pr oducto qui zás de algún e fecto de magmatismo, m etamorfísmo y/o hi drotermalismo que e xperimentó la roca asociada a ev entos posteriores a su cristalización, interpretándose como un efecto de recristalización en el zircón.

Los datos analíticos fueron graficados en un diagrama de concordia tipo Wetherill (Figura A.2.1A) en donde se ve claramente una dispersión considerable de los análisis formando una línea de discordia con edades U-Pb muy variables que van desde 1251 ± 17 Ma hasta 1740 ± 51 Ma (Tabla A.1). Los análisis más discordantes (>3% disc.) están asociados a las edades más jóvenes (elipses de color gris), mostrando una marcada tendencia de pérdida de Pb. El resto de los datos son concordantes o ligeramente discordantes (1–2% disc.). La totalidad de los datos obtenidos nos permite a justar una línea de di scordia c on una i ntersección s uperior d e 1705 ± 23 M a y una

intersección inferior de 722 ± 140 Ma; esta última edad pudiera estar relacionada con un posible evento magmático, metamórfico y/o hidrotermal que proporcionó a los zircones de la muestra una tendencia de pérdida de Pb. También se calculó una edad media ponderada con los datos analíticos más concordantes (elipses negras), dando como resultado una edad 207 Pb/²⁰⁶Pb media ponderada de 1688 ± 9 Ma (2s, MSWD = 0.78, n = 18). De acuerdo a esto, se interpreta la edad de intersección superior de 1705 ± 23 Ma (2s, MSWD = 0.55, todos los análisis) como la mejor aproximación a la edad de cristalización del gneis sienogranítico Wilton-02, ya que se incluyen una mayor cantidad de análisis, tomando en cuenta también los datos más discordantes asociados a l a tendencia de pérdida de Pb. Destacar que la edad 207 Pb/²⁰⁶Pb media ponderada es igual a la edad de intersección superior dentro de los límites de error calculados.

A.2.1 Gneis granítico de biotita rico en cuarzo (Ajo-2)

El gneis granítico Ajo-2 fue recolectado en las montañas de Little Ajo Mountains (suroeste de la localidad de Ajo) en el suroeste de Arizona (Figura 1). Del separado de zircones para esta muestra se seleccionaron 25 granos en donde se colocaron puntos de ablación tanto en bordes como en a lgunos núcleos p ara r ealizar e l f echamiento U -Pb. La morfología de 1 os z ircones es tá caracterizada por cristales prismáticos, euhedrales y alargados en su eje principal, con un tamaño promedio d e 200 μ m, en s u mayoría c on a mbas c aras y punt as de finidas y e n a lgunos c asos fracturados. También se aprecian inclusiones de apatito y otras fases minerales no determinadas.

En las imágenes de catodoluminiscencia (Apéndice A.3.1) se aprecia que el 50% de los zircones pr esentan un pe queño núc leo poc o catodoluminiscente y e 1 ot ro 50% e s catodoluminiscente, continuando con un patrón de zonamiento concéntrico con diferentes grados de catoluminiscencia t ípico d e c recimientos íg neos. Las co ncentraciones d e U se v en considerablemente diferenciadas p or l as zo nas d e catodoluminiscencia, es d ecir, l as más catodoluminiscentes (e.g., zircón 9) (Figura A.2.1F) tienen una concentración de U de 504 ppm (Tabla A.1), en comparación con zonas menos catodoluminiscentes (e.g., zircón 4) que tiene un valor de U de 2100 ppm.

Los datos analíticos de U-Pb se g raficaron en un diagrama de concordia tipo Wetherill (Figura A.2.1D), en donde se puede apreciar una considerable dispersión de los datos formando una línea de discordia con zircones de edades variables, en donde la edad más joven es de 1575 \pm 61 Ma y la más antigua es de 1713 ± 56 Ma (Tabla A1). Los análisis más discordantes (elipses de color gris; >3% disc.) corresponden a los zircones más jóvenes representando una tendencia de pérdida de Pb, en donde la línea de discordia se orienta hacia una intersección inferior de $475 \pm$ 160 Ma, posiblemente relacionado a un evento geológico que produjo la pérdida de Pb en dicha roca. Así mismo, la línea de discordia también se orienta hacia una intersección superior de 1704 \pm 14 Ma, en donde se aprecian dos análisis inversamente discordantes (-2% disc.) representando ablaciones hechas en los núcleos de los zircones 9 y 13, evidenciando dominios algo más viejos de dichos zi rcones. También se cal culó u na ed ad media p onderada co n l os d atos an alíticos m ás concordantes (elipses de color negro) dando como resultado una edad ²⁰⁷Pb/²⁰⁶Pb media ponderada de 1669 ± 17 Ma (2s, MSWD = 0.08, n = 10) siendo esta edad similar a la edad de intersección superior dentro de los límites de error calculados. Sin embargo, para esta roca se tomará en cuenta la edad obtenida por la intersección superior de 1704 ± 14 M a (MSWD = 0.54) como la mejor estimación de la edad de cristalización del gneis granítico Ajo-2, involucrando así todos los análisis realizados, incluyendo los da tos r elacionados a la tendencia d e p érdida d e P b y l os d atos inversamente discordantes.

A.2.3 Gneis tonalítico (Cooper)

El gneis tonalítico Cooper fue recolectado en Cooper Mountains, al sur de la localidad de Tacna, en el suroeste de A rizona (Figura 1). Se seleccionaron 25 zi reones p ara r ealizar e l fechamiento U-Pb mediante la técnica de ablación láser, enfocando las ablaciones en bordes y en algunos núcleos de los zircones. La morfología de los zircones está caracterizada por ser alargados en su eje mayor, prismáticos, euhedrales y con ambas puntas bien de finidas. Tienen un tamaño promedio de 200 µm, amarillentos y en algunos casos con pequeñas fracturas, inclusiones fluidas, cristales de apatito y otras fases minerales no definidas.

En l as i mágenes de c atodoluminiscencia (Apéndice A .3.2) s e di stingue muy bi en l a zonificación oscilatoria de núcleo a borde, característica de un crecimiento concéntrico ígneo, en donde existe una variación en las tonalidades de grises (e.g.., zircones 1, 3, 7, entre otros) (Figura A.2.3C). Algunos zircones presentan una estructura interna (texturas) complicada en relación con un posible metamorfismo y/o hidrotermalismo (recristalización) (e.g.., zircón 24). En la Tabla A.1, las concentraciones de U tienen un promedio aproximado de ~1156 ppm, sin embargo se aprecian valores por encima del promedio, que van desde 2170 a 6480 ppm correspondiendo a zonas menos catodoluminiscentes en los zircones (e.g., zircón 7). En caso contrario, el zircón 24 representa un valor más bajo en U (574 ppm) definido por una alta catodoluminiscencia.

Los datos de U-Pb obtenidos por ablación láser se graficaron en un diagrama de concordia tipo W etherill (Figura A.2.3A), en donde se observa una considerable dispersión de los análisis formando una línea de discordia, con zircones de edades muy variables que van desde 1096 hasta 1685 Ma y generando dos intersecciones con la línea de concordia; una superior de 1695 ± 28 Ma y una inferior de 564 ± 160 M a; esta última indicaría el evento magmático, metamórfico y/o hidrotermal que propició la pérdida de Pb observada en los análisis más discordantes y graficados como elipses de color gris (>3% disc.). En el diagrama de concordia también se puede apreciar una agrupación de l 8 an álisis (elipses de color n egro) que se em plearon p ara calcular u na edad 207 Pb/²⁰⁶Pb media ponderada de 1673 ± 9 Ma (2s, MSWD = 0.31, n =18); esta edad es igual, dentro de los límites de error calculados, a la edad de intersección superior. De acu erdo a est o, se h a interpretado la edad de intersección superior de 1695 ± 28 Ma (2s, MSWD = 2.1), incluyendo los 25 análisis, como la mejor aproximación a la edad de cristalización del gne is tonalítico Cooper recolectado en Cooper Mountains.

A.2.4 Gneis tonalítico de biotita (14-1/2)

El gneis tonalítico 14-1/2 fue recolectado al noreste de la localidad de Fortuna Foothills (Foothills Mountain) al suroeste de Arizona (Figura 1). Para realizar el fechamiento U-Pb por medio de ablación láser, se seleccionaron 26 zircones colocando puntos de ablación en los bordes de los granos y en algunos de sus núcleos. La morfología de los zircones está dominada por cristales alargados en su eje principal, prismáticos, euhedrales y en su mayoría con ambas puntas definidas. Algunos zi rcones p resentan f racturas, i nclusiones d e ap atito y o tras f ases minerales n o determinadas.

En las imágenes de catodoluminiscencia (Apéndice A.3.2) se aprecia que la gran mayoría de l os zi rcones t ienen un n úcleo menos cat odoluminiscente, s eguidamente de u na z onación oscilatoria típica d e cr ecimientos co ncéntricos d e car ácter ígneo. Estas zo nas menos catodoluminiscentes corresponden a valores relativamente altos de U (e.g., zircón 20 con un valor de 1017 ppm) (F igura A.2.3F) e n comparación c on las z onas m ás cat odoluminiscentes que corresponden a valores bajos de U (e.g., zircón 8 con un valor de 209 ppm) (Tabla A.1). En algunos zircones se observan reabsorciones en sus núcleos en donde la zonación del crecimiento del cristal es interrumpida por otra zonación producto posiblemente de cambios de condiciones en la cámara magmática durante la cristalización de los zircones (e.g., zircones 5, 7, 9, 21 y 11).

Los datos isotópicos de U-Pb se graficaron en un diagrama de concordia tipo Wetherill (Figura A.2.3D), en donde se aprecian tres análisis discordantes (elipses de color gris). El análisis más joven correspondiente al zircón 3, con una edad de 1446 \pm 24 Ma y con una discordancia de 3%; es el único análisis que arrojó una edad mucho más joven al resto de los análisis que tienen edades desde 1670 Ma hasta 1716 Ma (Tabla A.1). Motivado a la alta discordancia de este análisis, y a que la zona de ablación abarca tanto núcleo y borde del zircón, no será tomado en cuenta como un posible zircón representativo a una edad de cristalización. El conjunto de todos los análisis, incluyendo los dos zircones discordantes (zircones 13 y 8, elipses grises), forman una línea de discordia con una intersección superior a 1712 \pm 17 Ma y otra intersección inferior a los 894 \pm 200 Ma (2s, MSDW = 0.72); esta última edad podría estar asociada a un evento post cristalización que propició la tendencia de pérdida de Pb. Las elipses de color negro representan los análisis más concordantes que permiten calcular una edad ²⁰⁷Pb/²⁰⁶Pb media ponderada de 1693 \pm 11 Ma (2s, MSWD = 0.16, n = 23), que consideramos como la mejor aproximación a la edad de cristalización del gneis tonalítico 14-1/2, siendo a su vez semejante a la edad de intersección superior antes citada.

A.2.5 Gneis sienogranítico de biotita (QTB-6)

El gneis QTB-6 fue recolectado en los cerros de Quitobaquito Hills, en el parque Organ Pipe Cactus National Monument, al suroeste de Arizona (Figura 1). Para esta muestra se analizaron 25 zircones para realizar el fechamiento U-Pb, seleccionando puntos de ablación tanto en bordes como en a lgunos núc leos para a sí obtener una e dad de cristalización de la muestra. Entre lo s zircones se aprecian poblaciones en función del tamaño, los granos mayores a 200 μ m y los que son menores a 100 μ m; morfológicamente ambos grupos son prismáticos, euhedrales con caras definidas y en la mayoría de los casos con puntas planas y/o fracturadas. Gran parte de los zircones presentan fracturas internas, algunas inclusiones de apatito y otras fases minerales no definidas.

En l as i mágenes de c atodoluminiscencia (Apéndice A .3.2) s e de stacan dos t ipos de catodoluminiscencia en los centros de los zircones, unos muy catodoluminiscentes (e.g., zircón 19) y otros con baja catodoluminiscencia (e.g., zircón 4) (Figura A.2.4C), seguido por una zonación concéntrica característica de un típico crecimiento ígneo. En algunos zircones como el 4, 5 y 25 (Figura A .2.4C), se o bserva una al teración en 1 a zo nación de borde a n úcleo de s u catodoluminiscencia, s iendo pos iblemente una a fectación de un evento post c ristalización. Las zonas menos catodoluminiscentes corresponden a concentraciones bajas en U, como es el caso del zircón 25 con una concentración de 245 ppm (Tabla A.1) en el punto de ablación; por otro lado, las zonas menos catodoluminiscentes, corresponden a concentraciones altas de U (e.g., zircón 24 con 3100 ppm de U).

Los datos isotópicos de U-Pb se g raficaron en un diagrama de concordia tipo W etherill (Figura A.2.4A), en donde se puede apreciar una dispersión de análisis más jóvenes y discordantes (>3% disc.) representados con elipses de color gris, que en conjunto con el resto de los datos, forman una línea de discordia con una intersección inferior a los 538 ± 250 Ma, representando una edad de un pos ible e vento m agmático, m etamórfico e /o hi drotermal (post cr istalización) que propició la pérdida de Pb y el cambio en la zonación de la catodoluminiscencia. El zircón 6 es una análisis concordante, con una edad de 1402 ± 25 Ma, que podría ser interpretado como una posible edad de cristalización de la roca, pero en la imagen de catodoluminiscencia (Figura A.2.4C) se puede apreciar que dicho zircón es muy poc o catodoluminiscente, con un valor muy alto de U (2195 ppm). Estas observaciones nos conducen a interpretar que este zircón concordante representa una tendencia de pérdida de Pb a lo largo de la línea de concordia y no lo interpretamos como una edad asociada a la cristalización de la muestra. Por otra parte, la línea de discordia también genera una edad de intersección superior a los 1661 ± 21 Ma (2s, MSWD = 3.0, todos los análisis), siendo

controlada por los zircones inversamente discordantes. Las elipses de color negro representan los datos más concordantes y los que est adísticamente nos permiten calcular u na ed ad 207 Pb/ 206 Pb media ponderada de 1693 ± 13 Ma (2s, MSWD = 0.20, n = 19), que consideramos como la mejor aproximación de la edad de cristalización del gneis sienogranítico de biotita QTB-6.

A.2.6 Gneis sienogranítico de biotita (Pilotknob)

El gneis sienogranítico Pilotknob fue recolectado en la localidad de Pilot Knob situada al sureste de California (Figura 1) cerca de la ciudad de Yuma, Arizona. Para esta roca se escogieron 24 granos de zircón para realizar estudios de ablación en bordes y núcleos de los cristales y así obtener una edad U-Pb de cristalización. Los zircones tienen un tamaño promedio de 200 µm y su morfología est á car acterizada por ser p rismáticos, eu hedrales, con a mbas car as d efinidas y extremos en punta y en algunos casos planos y fracturados. Varios zircones presentan fracturas en su eje principal, inclusiones de apatito y otras fases minerales no determinadas.

En l as i mágenes de c atodoluminiscencia (Apéndice A.3.2), se pue den obs ervar dos tendencias de catodoluminiscencia en los centros de los zircones, por una parte se tienen núcleos con alta catodoluminiscencia y por otra parte están los núcleos de baja catodoluminiscencia; ambos casos s eguidos d e u na zonación o scilatoria q ue es car acterística d e cr ecimientos concéntricos ígneos. En la Tabla A.1 se puede apreciar la variedad de concentraciones de U según la zona en donde se h aya ablacionado el zircón. Por ejemplo, el zircón 10 fue ablacionado en una zona de muy baja cat odoluminiscencia (Figura A.2.4F) correspondiéndole una concentración a lta de U (4590 ppm), y e n c aso c ontrario, e l zircón 5 f ue a blacionado en una z ona de a lta catodouminiscencia correspondiendo a una concentración relativamente baja de U (275 ppm).

Los datos analíticos de U-Pb fueron graficados en un diagrama de concordia tipo Wetherill (Figura A .2.4D) e n do nde s e pu ede a preciar una a lta d ispersión q ue c orresponde a da tos discordantes y edades variables (elipses de color gris) que van desde 1652 Ma hasta 1732 Ma. Los análisis discordantes (>3% disc.) exhiben una marcada tendencia de pérdida de Pb formando una línea de discordia con una intersección inferior de 121 ± 250 Ma, siendo esta edad la que indicaría el evento que propició la pérdida de Pb. Por otra parte, la línea de discordia calculada empleando la totalidad de los análisis proporciona una edad de intersección superior a los 1692 ± 12 Ma (2s, MSWD = 2.8). También se calculó una edad 207 Pb/²⁰⁶Pb media ponderada de 1703 \pm 19 Ma (2s, MSWD = 5.4, n = 4), sin embargo, esta edad posee una dispersión estadística muy alta y además se excluye el análisis z-5, siendo éste concordante pero que estadísticamente no ayudaría a obtener una edad m edia pond erada adecuada. P or d ichas obs ervaciones, s e c onsidera que la ed ad de intersección superior de 1692 ± 12 Ma es la mejor aproximación a la edad de cristalización del gneis sienogranítico recolectado en la localidad de Pilot Knob en el sureste de California.

A.2.7 Sienogranito leucocrático de dos micas (Aztec-02)

El s ienogranito de dos micas Aztec-02 fue r ecolectado cerca de la localidad de Aztec (noroeste de Aztec Hills) al suroeste de Arizona (Figura 1). Para esta roca se escogieron 25 granos de zircón para realizar su fechamiento U-Pb mediante ablación láser, incluyendo tanto bordes como algunos núc leos para o btener un a edad de c ristalización. Los zi rcones se ca racterizan p or se r prismáticos, en su mayoría con ambas puntas en su eje mayor, y en algunos casos con sólo una punta y otro extremo plano y/o fracturado. Aproximadamente el 80% de los cristales de zircón de esta muestra presentan fracturas y zonas oscuras en comparación al resto de los zircones que tienen una coloración amarillenta. El tamaño promedio de los zircones varía entre los 100 a 150 µm y en algunos casos se logran ver inclusiones de apatitos y otras fases minerales no definidas.

En las imágenes de catodoluminiscencia (Apéndice A.3.2) se aprecia que gran parte de los zircones tienen un núcleo amplio de baja catodoluminiscencia seguido por una zonación oscilatoria característica d e cr istalización í gnea y en al gunos caso s, el n úcleo d e l os zi rcones en muy catodoluminiscente. Las i ntensidades d e cat odoluminiscencia se e ncuentran d irectamente relacionadas a las concentraciones de U en el zircón en donde se pueden destacar claros ejemplos en el zircón 5 (Figura A.2.5C) con una alta catodoluminiscencia y una concentración de U de 724 ppm (Tabla A.1) que c onstrasta c on l a ba ja c atodoluminiscencia de l z ircón 14 c on muy alta concentración de U de 5654 ppm; este ú ltimo zircón p resenta u na estructura i nterna (textura) compleja, afectada posiblemente por algún evento metamórfico e/o hidrotermal posterior.

Los datos de U-Pb de esta muestra se graficaron en un diagrama de concordia tipo Wetherill (Figura A.2.5A), en donde se observa una considerable dispersión de los datos con edades U-Pb muy variables que van desde 1024 Ma hasta 1741 Ma. Los análisis más discordantes (>4% disc.) corresponden a los zircones con edades más jóvenes y con valores altos en U (elipses de color gris) indicando una marcada tendencia de pérdida de Pb y que a su vez condiciona a la línea de discordia hacia una intersección inferior a los 40 ± 150 Ma, siendo esta edad la que indicaría el evento que propició la pérdida de Pb. En el diagrama de concordia también se puede apreciar una agrupación de 12 análisis (elipses de color negro) que se emplearon para calcular una edad ²⁰⁷Pb/²⁰⁶Pb media ponderada de 1681 ± 7 Ma (2s, MSWD = 2.7, n = 12). También, existen al menos cuatro análisis concordantes de mayor e dad con valores que van de sde 1 702 Ma a 1 741 Ma, que no f ueron considerados en el cálculo de la edad ²⁰⁷Pb/²⁰⁶Pb media ponderada ya que son interpretados como zircones heredados de un posible basamento pre-existente. Estos zircones quizá estén relacionados con un xenolito dentro de la roca estudiada, ya que tampoco corresponden a núcleos heredados en

los z ircones ablacionados (e.g., zircones 16 y 18) (Figura A .2.5C). De acu erdo a est as observaciones, se ha considerado que la edad de intersección superior a los 1690 ± 10 Ma es la mejor aproximación de la edad de cristalización del sienogranito leucocrático de dos micas Aztec-02, aunque la dispersión sea un poc o elevada (MSWD = 4.9), ya que toma en cuenta todos los análisis obtenidos para esta muestra, siendo esta edad de intersección igual, dentro de los límites de error, a la edad 207 Pb/ 206 Pb media ponderada calculada.

A.2.8 Gneis sienogranítico de biotita (Cabeza-11)

El gneis sienogranítico Cabeza-11 fue recolectado al sur de Sierra Pinta, dentro de Cabeza Prieta Wildlife Refuge al suroeste de Arizona (Figura 1). En el fechamiento U-Pb realizado para esta muestra se an alizaron 25 zircones, involucrando puntos de ablación tanto en bordes como núcleos para obtener una edad de cristalización. La morfología de los zircones está caracterizada por cristales alargados con ambas puntas y caras definidas y otros un poco más anchos en su eje principal y con puntas planas y caras definidas. El tamaño promedio de los zircones es de 150 µm y en algunos casos están fracturados y presentan inclusiones de apatitos y otras fases minerales no definidas.

En las imágenes de catodoluminiscencia (Apéndice A.3.3) se aprecia que gran parte de los zircones tienen una alta catodoluminiscencia en sus núcleos, pasando a unos bordes con zonación típica de crecimientos concéntricos de carácter ígneo. En algunos casos el núcleo de los zircones tiene u na b aja cat odoluminiscencia. Las co ncentraciones d e U (Tabla A.1) est án d irectamente relacionadas con la intensidad de catodoluminiscencia emitida por el zircón, en este caso, se aprecia que el zircón 1 (Figura A.2.5F) tiene una alta catodoluminiscencia y una concentración de U de 84 ppm, mientras que el zircón 5 tiene una b aja cat odoluminiscencia en el 1 ugar d e la ablación, correspondiendo a una concentración relativamente alta de U de 1285 ppm, que a su vez, se puede observar u na al teración en su s zo nas cat odoluminiscentes, posiblemente debido a un efecto de recristalización p osterior, af ectando así su est ructura i nterna y r esultando un a nálisis muy discordante (24% disc.).

Los datos isotópicos de U-Pb se graficaron en un diagrama de concordia tipo Wetherill (Figura A.2.5D), en donde se puede apreciar una considerable dispersión de cuatro análisis muy discordantes que van desde 3% hasta 24% de discordancia (zircones 5, 6, 24 y 10; elipses de color gris), siendo los análisis con edades más jóvenes y al mismo tiempo con altas concentraciones de U, exhibiendo una marcada tendencia de pérdida de Pb y formando una línea de discordia orientada a una intersección inferior a los 274 ± 230 Ma. Esta edad de intersección inferior indicaría la edad del evento que propició la pérdida de Pb. Así mismo, la línea de discordia formada por todos los análisis presenta u na intersección su perior de 1689 ± 25 M a (2s, MSWD = 2.2). Los análisis graficados con elipses de color negro son los más concordantes y permitieron calcular una edad 207 Pb/²⁰⁶Pb media ponderada de 1662 ± 14 M a (2s, MSWD = 0.70, n = 20). Ambas edades son iguales de ntro de los l ímites d e er ror c alculados, si n em bargo, se co nsidera que l a ed ad d e intersección superior de 1689 ± 25 Ma es la mejor aproximación a la edad de cristalización de la

roca ya que se toman en cuentan todos los análisis, incluyendo los que indicarían la tendencia a la pérdida de Pb.

circulos amarillos corresponden al lugar de ablación con un diámetro de ~23 µm. En estas imágenes, los zircones con número y edad en cursivas no fueron tomados en cuenta para el cálculo de la edad media ponderada y son mostrados de la edad media ponderada para cada una de las muestras. (C) y (F) Imágenes de cátodoluminiscencia post ablación láser de los zircones representativos de al gunos de los análisis utilizados para el cálculo de la edad, donde los medios para ilustrar algunos aspectos discutidos en el texto.

A.2.9 Gneis sienogranítico de biotita (Telegraph)

El gneis sienogranítico Telegraph fue recolectado al oeste de Fortuna Hills en Telegraph Pass Trail, al suroeste de Arizona (Figura 1). En el fechamiento U-Pb realizado para esta muestra se a nalizaron 22 z ircones, i nvolucrando punt os de a blación t anto en bordes c omo e n a lgunos núcleos para obtener una edad de cristalización de la muestra. El tamaño de los cristales es de 150 µm en promedio; su morfología es redondeada, subeuhedral, varios presentan fracturamiento y bordes subredondeados e inclusiones de apatito y otras fases minerales no determinadas.

En las imágenes de catodoluminiscencia (Apéndice A.3.3) se aprecia que los zircones, en general, son de ba ja catodoluminiscencia y e n m uy poc os casos c on centros m ás catodoluminiscentes, pasando a unos bordes con zonación típica de crecimientos concéntricos de carácter í gneo. Las concentraciones de U (Tabla A.1) se ven de finidas por la intensidad de la catodoluminiscencia observada en las ablaciones en los zircones; por ejemplo, se destaca el zircón 3 (Figura A.2.7C) con una catodoluminiscencia un poco más al ta que el resto de los zircones, correspondiendo a una concentración baja de U de 147 pp m. Por otra parte, se puede destacar el zircón 16 ablacionado en una zona con muy baja catodoluminiscencia, correspondiendo a una concentración baja de U de 147 pp m. Por otra parte, se puede destacar el zircón 16 ablacionado en una zona con muy baja catodoluminiscencia, correspondiendo a una concentración baja de U de 147 pp m. Por otra parte, se puede destacar el zircón 16 ablacionado en una zona con muy baja catodoluminiscencia, correspondiendo a una concentración baja de U de 147 pp m. Por otra parte, se puede destacar el zircón 16 ablacionado en una zona con muy baja catodoluminiscencia, correspondiendo a una concentración alta de U de 1026 ppm. Varios zircones (e.g., zircones 1, 3, 13 y 18) presentan un pequeño bo rde m ás c atodoluminiscente p osiblemente indicando una re cristalización de l os zircones por fluidos.

Los datos isotópicos de U-Pb se g raficaron en un diagrama de concordia tipo W etherill (Figura A.2.7A), en donde claramente se puede ap reciar u na ag rupación d e an álisis (elipses y cuadros de color negro) con la cual calculó una edad ²⁰⁷Pb/²⁰⁶Pb media ponderada de 1658 \pm 11 Ma (2s, MSWD = 0.7, n = 18). El resto de los análisis (elipses y cuadros de color gris) no fueron tomados e n c uenta pa ra di cho c álculo ya que pr esentan alta discordancia (>2% di sc.), considerándolos c omo zircones con tendencia de pé rdida de P b. El z ircón 18 es un a nálisis concordante, c on una edad de 1720 \pm 48 Ma y la ablación fue realizada en parte de su núcleo, interpretándolo como un posible zircón heredado. El análisis del zircón 12 fue realizado tanto en borde como en el núcleo del zircón y a demás posee una discordancia del 2%, por lo cual no es considerado en el cálculo de la edad media ponderada. Por tales motivos, se considera la edad ²⁰⁷Pb/²⁰⁶Pb media pond erada de 1 658 \pm 11 M a como la e dad de c ristalización de l gne is sienogranítico Telegraph.

A.2.10 Sienogranito leucocrático de biotita (Ajo-4)

El sienogranito de biotita Ajo-4 fue recolectado al oeste de Ajo Peak, cerca de la localidad de Ajo, al suroeste de Arizona (Figura 1). Para r ealizar el fechamiento U-Pb de est a r oca s e analizaron 30 z ircones, s iendo a blacionados tanto e n bor des c omo e n a lgunos núcleos. L a morfología de dichos zircones está caracterizada por un tamaño promedio de 120 µm, alargados en su eje principal y otros más anchos en su eje perpendicular al principal. La mayoría presentan al menos un b orde en punta y el otro borde plano o fracturado; así mismo algunos zircones tienen inclusiones de apatito y/u otras fases minerales no determinadas.

En las imágenes de catodoluminiscencia (Apéndice A.3.4) se aprecia la zonación típica de crecimientos co ncéntricos d e ca rácter í gneo, p or l o g eneral co n una cat odoluminiscencia relativamente baja. En algunos zircones se aprecia una catodoluminiscencia más alta en sus núcleos seguidos de una z onación c on cat odoluminiscencia m ás b aja. E n l a Figura A .2.7F se p uede observar que el zircón 16 tiene un núcleo con alta catodoluminiscencia, relacionado directamente con su concentración de U, siendo relativamente más baja (93 ppm), en comparación con las zonas menos catodoluminiscentes (e.g., zircón 2) con una concentración alta de U de 1133 ppm (Tabla A.1).

Los an álisis i sotópicos de U -Pb f ueron gr aficados e n un diagrama de c oncordia tip o Wetherill (F igura A .2.7D) en donde e xiste una alta di spersión de los datos, sobre todo de los análisis más discordantes (>3% disc.) y con al tas concentraciones de U, interpretándose como tendencia de pérdida de Pb (elipses de color gris). En conjunto con el resto de los datos, se genera una línea de discordia con una intersección inferior condicionada por los análisis con tendencia de pérdida de Pb da ndo como r esultado una e dad de 151 ± 50 M a, edad que indicaría el e vento (magmático, m etamórfico o hi drotermal) que propició la pérdida de P b. T ambién l a línea d e discordia muestra una intersección superior a los 1654 ± 10 Ma (2s, MSWD = 0.99). Los análisis más concordantes muestran una agrupación (elipses de color negro) a partir de la cual calculamos una e dad 207 Pb/²⁰⁶Pb m edia ponde rada de 1655 ± 13 M a (2s, MSWD = 0.73, n = 24). P ara el sienogranito de biotita Ajo-4, se tomará la edad de intersección superior de 1654 ± 10 Ma como la edad d e cr istalización de l a muestra, y a que para su cá lculo se i nvolucran todos los a nálisis realizados, incluyendo los que generan una tendencia de pérdida de Pb. Destacar que esta edad es básicamente igual a la edad 207 Pb/²⁰⁶Pb media ponderada calculada.

A.2.11 Gneis monzogranítico de biotita (Ajo-3)

El gneis monzogranítico Ajo-3 fue recolectado al o este de Ajo P eak, al su roeste de la localidad de Ajo, suroeste de Arizona (Figura 1). Para esta muestra se eligieron 21 granos de zircón para realizar su fechamiento U-Pb enfocándonos en ablaciones en los bordes y a lgunos de los núcleos observados. Los zircones tienen un tamaño promedio de 100 μ m; morfológicamente son euhedrales, con caras definidas y en gran parte están fracturados y presentan inclusiones fluidas, apatito y otras fases minerales no determinadas. La mayoría de los zircones presentan ambas puntas en su eje mayor de cristalización.

En las imágenes de catodoluminiscencia (Apéndice A.3.4) se aprecia la zonación típica de crecimientos co ncéntricos de c arácter í gneo, por 1 o ge neral c on una c atodoluminiscencia relativamente baja. En algunos zircones se aprecia una catodoluminiscencia más alta en sus núcleos seguidos de una z onación c on c atodoluminiscencia m ás b aja. E n l a Figura A .2.8C se p uede observar que el zircón 21 tiene un núcleo con alta catodoluminiscencia, relacionado directamente con s u baja co ncentración d e U (116 p pm), e n c omparación c on l as z onas m enos catodoluminiscentes (e.g., zircón 18) con una concentración un poco más elevada de U de 384 ppm (Tabla A.1).

Los datos isotópicos de U-Pb se g raficaron en un diagrama de concordia tipo Wetherill (Figura A.2.8A) en donde se puede apreciar una ligera dispersión de los datos a lo largo de la línea de concordia, con edades variables que van desde 1609 Ma hasta 1687 Ma y c on discordancias entre -1 a 3%. Todos los datos permitieron calcular una edad 207 Pb/ 206 Pb media ponderada de 1642 \pm 10 Ma (2s, MSWD = 0.62; n = 21), que interpretamos como la mejor aproximación de la edad de cristalización del gneis monzogranítico de biotita Ajo-03.

A.2.12 Gneis monzogranítico de biotita (Cabeza-9)

El gne is monzogranítico C abeza-9 fue r ecolectado a l sur de la Sierra P inta, d entro d e Cabeza Prieta Wildlife Refuge al suroeste de Arizona (Figura 1). Para realizar el fechamiento U-Pb de esta muestra, se ablacionaron 25 z ircones enfocándonos tanto en bordes como en algunos núcleos, para así obtener la edad de cristalización de la roca. El tamaño promedio de los zircones es d e 1 10 μ m; morfológicamente e stán caracterizados p or ser ligeramente al argados en su ej e principal, con ambas caras definidas y en su mayoría, con ambos bordes en punta y algunos planos o fracturados. Se observa que algunos zircones tienen inclusiones de apatito y otras fases minerales no determinadas.

En las imágenes de catodoluminiscenia (Apéndice A.3.4) se aprecia que los zircones tienen una zo nación t ípica de cr ecimientos co ncéntricos d e car ácter í gneo y q ue ad emás l a catodoluminiscencia es r elativamente n eutra (tonos grises), y sólo en algunos casos los núcleos tienden a s er m enos o más cat odoluminiscentes. E sta d iferencia d e catodoluminiscencia es tá directamente relacionada con las concentraciones de U. Por ejemplo, el zircón 25 (Figura A.2.8F) fue ab lacionado en u na zona d e b aja cat odoluminiscencia y co rresponde a u na co ncentración relativamente alta en U de 553 ppm; mientras que, el zircón 22 fue ablacionado en una zona de alta catodoluminiscencia, correspondiendo a un valor bajo en U de 165 ppm (Tabla A.1).

Los datos isotópicos de U-Pb fueron graficados en un diagrama de concordia tipo Wetherill (Figura A.2.8D) en donde se aprecia una agrupación de análisis (elipses y cuadros de color negro) relativamente concordantes, a partir de los cuales se calculó una edad $^{207}Pb/^{206}Pb$ media ponderada de 1642 ± 14 Ma (2s, MSWD = 0.58, n = 23). Se observan dos análisis (elipses de color gris) que no fueron tomados en cuenta para el cálculo de la edad anteriormente mencionada; el zircón 17 es discordante (2% disc.) y a su vez posee un va lor algo elevado en U (527 ppm), sugiriendo que pudiera corresponder a un zircón con una tendencia de pérdida de Pb. Por otra parte, el zircón 23 es un análisis concordante y el más antiguo de la población (1714 ± 58 Ma), pero tampoco es tomado en cuenta para el cálculo de la edad media ponderada, ya que se sospecha corresponde a un zircón con cierto grado de herencia, ya que el punto de ablación involucra núcleo y borde del cristal. Por estas observaciones, se tomará en cuenta la edad de 1642 ± 14 Ma co mo la mejor aproximación a la edad de cristalización del gneis monzogranítico Cabeza-9 recolectado al sur de la Sierra Pinta.

donde los medios círculos amarillos corresponden al lugar de ablación con un diámetro de -23 µm. En estas imágenes, los zircones con número y edad en cursivas no fueron tomados en cuenta para el cálculo de la edad media ponderada y son mostrados para ilustrar algunos aspectos discutidos en el texto.

A.2.13 Gneis granítico feldespático microclínico de biotita (Chpass-01)

El gneis granítico Chpass-01 fue recolectado al sur de la localidad de Cholla Pass dentro de Cabeza Prieta Wildlife Refuge, al suroeste de Arizona (Figura 1). Para realizar el fechamiento U-Pb de esta muestra, se seleccionaron 19 zircones para realizarles ablaciones tanto en bordes como en algunos núcleos y así calcular la edad de cristalización de la muestra. El tamaño de los zircones ablacionados tienen un promedio de 180 µm; morfológicamente son alargados en su eje principal, con caras definidas y ambos extremos con puntas o en algunos casos fracturados.

En las imágenes de catodoluminiscencia (Apéndice A.3.4) se aprecia la zonación típica de crecimientos concéntricos de carácter ígneo, en donde los núcleos de los zircones tienden a ser menos cat odoluminiscentes y en al gunos cas os su elen ser m ás cat odoluminiscentes. Esta diferenciación d e c atodoluminiscencia est á relacionada con l as c oncentraciones d e U d e cada grano. Por ejemplo, en la Figura A.2.9C se observa el zircón 17 que fue ablacionado en una zona de baja catodoluminiscencia correspondiendo a una concentración relativamente alta en U de 256 ppm en comparación con la muy baja concentración en U de 42 ppm que tiene el zircón 11 en una zona de más alta catodoluminiscencia.

Los da tos i sotópicos d e U -Pb f ueron gr aficados e n una di agrama de c oncordia t ipo Wetherill (Figura A.2.9A) e n don de s e a precian da tos c oncordantes y ot ros c on una ligera discordancia inversa (de 2 a -2 % disc.) y con una variedad de edades que van desde los 1607 Ma hasta los 17 15 M a. T odos e stos da tos, en c onjunto, fueron em pleados p ara c alcular u na ed ad 207 Pb/²⁰⁶Pb media ponderada de 1639 ± 15 Ma (2s, MSWD = 0.60, n = 19), que interpretamos como la mejor aproximación a la edad de cristalización de esta muestra de gneis Chpass-01 recolectada en la localidad de Cholla Pass.

Figura A.2.9 Gráficos de datos U-Pb obtenidos mediante la técnica de ablación láser (LA-ICP-MS) e imágenes de catodoluminiscencia de los zircones de una roca paleoproterozoica del SW de Arizona . (A) Diagrama de concordia tipo Wetherill mostrando todos los datos de los zircones analizados de la muestra Chpass-01. Las elipses y cuadros de color negro representan los análisis utilizados para el cálculo de la edad media ponderada. (B) Diagrama de media ponderada mostrando los análisis utilizados para el cálculo de la edad de la roca. (D) Imágenes de cátodoluminiscencia post ablación láser de los zircones representativos de algunos de los análisis utilizados para el cálculo de la edad media ponderada, donde los medios círculos amarillos corresponden al lugar de ablación con un diámetro de ~23 µm.

A.2.14 Gneis sienogranítico de biotita (Lewis-01)

El gneis s ienogranítico de bi otita Lewis-01 fue r ecolectado al s ur de Buckeye, e n l os pequeños cerros que se encuentran a un lado de la carretera cerca del Arizona Prison Complex– Lewis–Eagle P oint Unit, al su roeste d e Arizona (Figura 1). El fechamiento U -Pb se r ealizó seleccionando 2 5 zi rcones p ara l uego ab lacionar t anto b ordes co mo al gunos n úcleos p ara a sí obtener una edad de cristalización de la muestra. Los zircones tienen un tamaño promedio de 200 µm; morfológicamente son alargados en su eje principal, y en su mayoría presentan ambos bordes en punt a y en a lgunos casos bordes planos. Algunos zi rcones est án f racturados i nternamente, presentando inclusiones de apatito y algunas fases minerales no identificadas.

Las imágenes de catodoluminiscencia (Apéndice A .3.5) muestran que la mayoría de los zircones presentan un núcleo amplio, en algunos casos con baja catodoluminiscencia y en otras ocasiones con una catodoluminiscencia un poc o más elevada, seguido de una zonación típica de crecimientos concéntricos de carácter ígneo. Las concentraciones de U varían según la zona de catodoluminiscencia ablacionada. Por ejemplo, en la Figura A.2.10D se puede apreciar el zircón 2, en donde s u a blación fue en el nú cleo que presenta una b aja catodoluminiscencia y c on una concentración a lta en U de 1283 ppm . E l z ircón 9 f ue a blacionado e n una z ona de alta catodoluminiscencia, correspondiendo a una baja concentración en U de 91 ppm. Por otra parte, en algunos zircones (e.g., zircón 2) se aprecian núcleos que aparentan ser reabsorbidos, evidenciado por la "redondez" de sus bordes seguido por la zonación oscilatoria de crecimiento ígneo. También se aprecian algunos núcleos con estructuras internas complejas, como es el caso del zircón 10.

Los datos isotópicos de U-Pb fueron graficados en un diagrama de concordia tipo Wetherill (Figura A.2.10A) en donde se aprecia una agrupación de datos aproximadamente a una edad de \sim 1600 Ma y también se tiene un a nálisis (zircón 10) con una edad de 2592 ± 75 Ma y c on una discordancia muy elevada (8% disc.). En conjunto, estos datos generan una línea de discordia con una intersección inferior sobre la agrupación de datos a los 1586 ± 20 Ma (2s, MSWD = 5.7) y una intersección superior a los 2946 ± 130 Ma, siendo esta última edad controlada por el zircón con una alta discordancia, cuya ablación fue realizada en el núcleo con una textura interna compleja como se mencionó anteriormente. Dicho zircón pudo haber sido afectado por algún evento post cristalización afectando su estructura interna. La Figura A.2.10B es un acercamiento de los datos donde se aprecia una dispersión de los mismos a lo largo de la línea de concordia. Los análisis que se en cuentran co n el ipses d e co lor g ris p oseen d iscordancias v ariables (desde 2 % hasta 4 %) afectando la dispersión de los análisis en el cálculo de la edad media ponderada y por tal motivo,

no se tomaron en cuenta para dicho cálculo. Las elipses y cuadros de color negro fueron los análisis empleados para el cálculo de la edad 207 Pb/ 206 Pb media ponderada, la cual fue de 1636 ± 10 Ma (2s, MSWD = 1.9, n = 15) y se interpreta como la edad de cristalización del gneis sienogranítico Lewis-01.

QTB-3 (ICGE0-81)

ADN-01 (ICGE0-33)

Wilton-02 (ICGEO-33)

Ajo-2 (ICGEO-33)

Cooper (ICGEO-32)

14 - 1/2 (ICGE0-35)

QTB-6 (ICGE0-86)

Pilotknob (ICGE0-40)

Aztec-2 (ICGEO-88)

Cabeza-11 (ICGE0-81)

Gila-01 (ICGEO-37)

Espanto-2 (ICGEO-37)

Telegraph (ICGE0-33)

Ajo-4 (ICGE0-32)

Ajo-03 (ICGEO-34)

Cabeza-9 (ICGE0-85)

CHPASS-01 (ICGEO-40) Intrusive Cholla Pass, SW Arizona

Lewis-01 (ICGE0-37)

Welton-E (ICGEO-83)

McDonald (ICGEO-34)

Apéndice B. Geocronología U-Pb de rocas laramídicas

Tabla B.1 Datos analíticos U-Th-Pb obtenidos por LA-ICPMS en zircones de granitoides laramídicos del NW de Sonora, México y del SW de Arizona, USA

B.2 Descripción de muestras laramídicas

- B.2.1 Tonalita de dos micas (Chop-3)
- B.2.2 Gneis tonalítico de dos micas (Cucapah-1)
- B.2.3 Sienogranito de biotita (Choya)
- B.2.4 Monzogranito de biotita (QTB-1)
- B.2.5 Sienogranito leucocrático de dos micas (SR-7)
- B.2.6 Monzogranito de biotita (Bettylee)
- B.2.7 Monzogranito leucocrático de biotita (Gila-2)
- B.2.8 Monzogranito de dos micas (Mohawk-3)
- B.2.9 Monzogranito leucocrático de dos micas (Tinajas-1)
- B.2.10 Monzogranito de dos micas (Tinajas)
- B.2.11 Pegmatita granítica feldespática de microclina (Tinajas-2)
- B.2.12 Monzogranito de dos micas (Tinajas-4)

B.3 Mosaicos de imágenes de catodoluminiscencia de zircones de rocas laramídicas

I SULIS D.I Datus at		INCOMPANY	MIDLAT		o de grannen	DE		o reorró	DICAS CO		A C	.Ho				PDA DF	aduus	CIDAS	(Ma)		
Análisis/Zircón	Comentario	U [#] (ppm)	Th [#] (ppm	() Th/U	$^{207}Pb/^{206}Pb^{\dagger}$	err %*	²⁰⁷ Pb/ ²³⁵ U [†]	err %	⁰⁶ Pb/ ²³⁸ U [†]	err % [*] 2	⁰⁸ Pb/ ²³² Th [†]	err %	Rho "	% disc	$^{206}Pb/^{238}U$	$\pm 2s^{*2}$	⁰⁷ Pb/ ²³⁵ U	±2s [*] ²⁰⁷	⁷ Pb/ ²⁰⁶ Pb	±2s [*] M	ejor edad (Ma) ± 2s
Muestra Chop-3	Tonalita de d	os micas (SE San Lu	is Río Colo	rado, NW Re:	serva de l	a Biosfera (Jran Desi	erto de Alta	, NW Soi	nora) Pro	oeta ICGE0	D-28 (S	Septiembre 2	2013 y Junic	2017)					
Chop-3-35(II)	z	353	133	0.38	0.0519	12.1	0.0980	11.2	0.0138	3.3	0.0048	13.3	0.30	7	88.4	2.9	95.1	10.0	490.0	110.0	88.4 ± 2.9
Chop-3-7	z	534	214	0.35	0.0533	10.6	0.1024	11.0	0.0140	3.0	0.0045	17.4	0.27	6	90.0	2.0	99.0	10.0	343.0	250.0	90.0 ± 2.0
Chop-3-28(II)	N, >U	623	428	0.69	0.0468	8.5	0.0917	8.1	0.0142	2.7	0.0041	6.5	0.34	7-	91.1	2.5	88.9	6.8	370.0	180.0	91.1 ± 2.5
Chop-3-31(II)	N,×U	753	308	0.41	0.0502	6.2	0.0965	5.7	0.0142	2.3	0.0045	6.0	0.41	ς	91.1	2.1	94.2	4.8	255.0	80.0	91.1 ± 2.1
Chon-3-6	B, ≥U	86C 070C	543	0.18	0.0480	1.21	0.0050	12.9 7 8	0.0144	c.7	0.0045	0.22	0.19	<u>.</u> -	0.26	0.7	0.00	10.0	-192.0	170.0	92.0 ± 0.26
Chop-3-1	, z	403	173	0.37	0.0498	13.5	0.0994	13.9	0.0144	3.0	0.0041	17.9	0.22	> 4	92.0 92.0	2.0	96.0	12.0	184.0	1/0.0 316.0	92.0 ± 2.0
Chop-3-25(II)	Z	596	247	0.41	0.0483	8.7	0.0960	11.5	0.0144	5.7	0.0041	10.9	0.50	-	92.2	5.2	93.0	10.0	111.0	50.0	92.2 ± 5.2
Chop-3-27(II)	z	435	189	0.43	0.0488	8.2	0.0993	8.0	0.0147	3.0	0.0051	10.7	0.38	2	94.0	2.8	96.0	7.2	270.0	61.0	94.0 ± 2.8
Chop-3-22(II)	z ;	562	193	0.34	0.0493	8.1	0.0987	7.8	0.0147	2.6	0.0048	7.3	0.33	- ,	94.1	2.4	95.3 25.3	7.2	273.0	49.0	94.1 ± 2.4
Chop-3-21(II)	ZZ	469	226	0.48	0.0495	8.9 7 9	0.1007	7.6	0.0148	4.1	0.0046	6.1	0.31	m z	94.5	2.2	97.2	1.1	343.0	60.0 87.0	94.5 ± 2.2
Chop-3-32(II)	z 7	067	c01 127	0.36	0.0150 0	8.6 10.0	0.1050	۲./ ۲۱	0.0140	1	00000	8.5	0.34	4 -	94.9 05.0	0.7	2.99 0 2 0	4.7	396.U	8/.U 738 0	6.0 ± 0.40
Chon-3-12 Chon-3-13	B, ≥U R ≥IT D	166	106	0.14	0.0462	10.9	0 00 00 0	7117	0.0149	4.4 7 1	0.0045	0.611	0.24	+ 1- - 1-	0.66	0.7	010	8.0 10.0	-180.0	238.U 244.0	95.0 ± 2.0
Chop-3-3	, n n	503 503	6	0.16	0.0483	12.8	0.0981	13.1	0.0149	2.8	0.0040	20.8	0.21	0	95.0	5.0	95.0	12.0	115.0	294.0	95.0 ± 2.0
Chop-3-33(II)	Z	422	165	0.39	0.0501	13.8	0.1050	10.5	0.0150	4.9	0.0050	7.6	0.46	S.	96.0	4.6	101.2	10.0	510.0	110.0	96.0 ± 4.6
Chop-3-2	B, >D	546	170	0.27	0.0557	10.2	0.1150	10.6	0.0151	2.5	0.0053	17.0	0.24	13	96.0	2.0	110.0	12.0	440.0	230.0	96.0 ± 2.0
Chop-3-20	N, >D	192	155	0.70	0.0651	15.4	0.1345	15.7	0.0151	3.2	0.0048	16.7	0.20	25	96.0	4.0	128.0	18.0	0.777	342.0	$96.0~\pm~4.0$
Chop-3-34(II)	z	370	161	0.44	0.0496	8.5	0.1037	9.2	0.0151	2.4	0.0046	<i>T.T</i>	0.26	ŝ	9.96	2.3	99.8	8.7	377.0	100.0	96.6 ± 2.3
Chop-3-26(II)	z	335	117	0.35	0.0486	11.1	0.1000	11.0	0.0152	3.2	0.0046	7.8	0.29	-	97.0	3.1	96.0	10.0	470.0	130.0	97.0 ± 3.1
Chop-3-19	z	393	138	0.30	0.0533	12.7	0.1104	13.0	0.0151	2.9	0.0041	17.9	0.22	× ·	97.0	2.0	106.0	14.0	341.0	298.0	97.0 ± 2.0
Chop-3-4	z	510	<u>4</u> 5	0.24	0.0516	11.6	0.1102	9.11 1.01	0.0153	2. X	0.0049	18.8	0.23	× Ş	98.0	2.0	106.0	12.0	266.0	276.0	98.0 ± 2.0
Chop-3-17	N, >D	090	155	0.21	0.00.0		0.1164	10.1	0.0155	0.7	cc00.0	10.7	0.26	51 -	98.0	0.2	0.211	10.0	414.0	0.822	98.0 ± 2.0
Chop-3-24(II) Chon-3-30(II)	N, NU	600	000	2C.U	0.04/4	0.0	0.1070	0.0	0.0156	0.7	10000	0./ 10.5	0.37		98.9 00.6	7 7 7 7	7 201	0.0	418.0	0.00	98.9 ± 2.4 00.6 ± 3.4
Chop-3-23(II)	ζZ	713	t 1	0.35	000000	0.0	0 1073	61	0.0156	t 4 0 0	0.0056	0.01	0.58	1 4	0.00	t v n	103.5	2.7	280.0	130.0	907 + 35
Chon-3-30(II)	z	568	276	0.49	0.0491	7.3	0.1066	6.9	0.0159	2.7	0.0051	5.5	0.39		101.9	2.8	102.7	6.8	254.0	62.0	102 ± 3
Chop-3-10	z	571	176	0.27	0.0534	10.6	0.1167	10.9	0.0160	8. 8	0.0057	16.9	0.25	. 6	102.0	2.0	112.0	12.0	347.0	250.0	102 ± 2
Chop-3-15	N, >U	1200	350	0.25	0.0491	8.2	0.1091	8.6	0.0162	2.4	0.0060	16.3	0.27	5	103.0	2.0	105.0	8.0	151.0	194.0	103 ± 2
Chop-3-18	N, >U	723	203	0.24	0.0494	8.7	0.1144	9.1	0.0168	2.6	0.0056	35.5	0.29	Э	107.0	2.0	110.0	10.0	168.0	206.0	107 ± 2
n = 30																Edad ²⁽	⁶ Pb/ ²³⁸ U	media p	onderada	Ш	95.9 ± 1.3
)	O sioma N	$4SWD = 2 3 \cdot n = 12)$
Muestra Cucapah-	L Gneis ton	ualítico de do	os micas	(Sierra de	Los Cucapah	s, Baja C	alifornia, N	W Méxic	o) Probet	a ICGEO	-83 (Octu	bre 2016 y	Junio 20	(7)						(z argund, n	(71 H C - 7 H C - 7
Cucapah-1-4	B. >D	320	50	0.16	0.0615	9.6	0.1001	9.0	0.0120	3.0	0.0071	19.7	0.33	20	76.9	2.3	96.4	8.2	680	140	76.9 ± 2.3
Cucapah-1-14	B, >D	256	21	0.08	0.0636	8.2	0.1016	7.7	0.0121	3.2	0.0098	12.2	0.42	21	77.4	2.5	98.0	7.1	689	100	77.4 ± 2.5
Cucapah-1-17	в	209	50	0.24	0.0519	10.8	0.0879	9.8	0.0125	3.7	0.0053	11.9	0.38	9	80.1	3.0	85.2	8.0	551	06	80.1 ± 3.0
Cucapah-1-23	a i	730	278	0.38	0.0502	6.4	0.0879	6.0	0.0127	2.2	0.0043	7.0	0.37	ŝ	81.3	1.8	85.5	5.0	323	72	81.3 ± 1.8
Cucapah-1-8	ЯC	104 501	55	0.20	0.034	C.21	0.000.0	11.6 5 0	0.0131	2) c 4: r	0.0035	10./ ° 1	0.30	× r	83.8	6.7	91.0	11.0	/00/	120	83.8 ± 2.9
Cucapan-1-10 Cucapah-1-36(II)	N AII	100	11 80	0.25	0.0542	0.1	0.0073	0.0 0 0	1610.0	/ 7 7 7	01000	4.0 7	0.78 90.0	7 C	04.0 81.6	7.7	1.00	0 C	410	02	04:0 ± 7.2 84.6 ± 1.0
Cucapah-1-19	B	274	41	0.15	0.0458	9.6	0.0838	8.8	0.0133	2.8	0.0048	11.2	0.32	54	84.9	2.4	81.4	6.9	440	110	84.9 ± 2.4
Cucapah-1-9	в	317	130	0.41	0.0517	9.5	0.0942	9.2	0.0133	2.9	0.0043	8.9	0.31	7	85.0	2.4	91.0	8.1	471	86	85.0 ± 2.4
Cucapah-1-20	В	570	177	0.31	0.0503	6.8	0.0931	5.8	0.0133	2.1	0.0049	7.4	0.36	9	85.3	1.8	91.1	4.8	387	86	85.3 ± 1.8
Cucapah-1-2	B,>U	1029	369	0.36	0.047/2	6.C	0.0866	4. 6	0.0134	9.1	0.0044	9.0 0	0.36	-7	85.5	1.6 0	84.2	4 v 4 v	179	2	85.5 ± 1.6
Cucapah-1-11	<u>я</u> а	20C 256	140	0.28	0.0536	6./ 9	0.0000	6.9 7	0.0134	9.7 7	0.0048	7.1	0.42	0 v	0.08	7.7	5.69 2002	5.8 2.8	364 204	0/	85.6 ± 2.2 85.7 ± 2.1
Cucapair 1-3 Cucanah-1-13	n m	000 694	191	0.28	0.0539	1.0	0.0976	t: v	0.0134	t 7	0.0050	7.6	0.36	n 0	85.9	1.2	5.0% 94.5	2.0 1.2	407	10	85.9 ± 1.8
Cucapah-1-25	n m	436	86	0.20	0.0520	6.7	0.0962	6.2	0.0134	2.2	0.0050	8.9	0.36	~ ~	86.0	1.9	93.1	5.5	382	72	86.0 ± 1.9
Cucapah-1-31(II)	N, >U	1046	726	0.69	0.0486	7.4	0.0927	8.5	0.0134	3.0	0.0042	9.2	0.35	4	86.1	2.5	90.0	7.4	254	LT TT	86.1 ± 2.5
Cucapah-1-35(II)	z	795	149	0.19	0.0494	5.3	0.0922	5.7	0.0135	2.0	0.0050	7.9	0.35	ŝ	86.6	1.7	89.4	4.9	261	56	86.6 ± 1.7
Cucapah-1-39(II)	Z Z	1166	73	0. 4. č	0.0461	13.0	0.0890	13.5	0.0136	3.5 2.5	0.0045	8.5	0.26		86.7	3.0	86.0	11.0	560	110 EE	86.7 ± 3.0
Cucapal-1-0 Cucapah-1-40(II)	N, N	371	147	0.40	0.0499	7.8	0.0940	8.2	0.0136	2.3	0.0042	6.9	0.28	- 4	87.2	2.0	90.9	7.1	313	65	87.2 ± 2.0
Cucapah-1-18	N, >U	1830	293	0.16	0.0526	5.3	0.0980	5.5	0.0136	2.3	0.0056	10.6	0.43	8	87.2	2.0	94.7	5.0	303	66	87.2 ± 2.0
																				Continua	en la siguiente página

Tabla B.1 Datos analíticos U-Po obtenidos por LA-ICPNS en zircones de granitoides laramídicos del NW de Sonora, México y SW de Arizona, USA.

Tabla B.1 (cont.) 1	Datos analiticos	U-Pb obten	1 dos por L	A-ICPMS	en zircones d	e grantioi	des laraniu	VI IDD SOD	A de Sullui	a, MEXICO	y 5W de A	nzona, USF				DELL'UN	autoo		Mal		
Análisis/Zircón	Comentario	U [#] (ppm)	Th [#] (ppn	n) Th/U	²⁰⁷ Pb/ ²⁰⁶ Pt	o⁺ err %	²⁰⁷ Pb/ ²³⁵ U [†]	err %*	²⁰⁶ Pb/ ²³⁸ U [†]	err %*	²⁰⁸ Pb/ ²³² Th [†]	err %	Rho**	% disc	²⁰⁶ Pb/ ²³⁸ U	±2s [*] 207	Pb/ ²³⁵ U =	±2s [*] ²⁰⁷ PI	b/ ²⁰⁶ Pb :	±2s* Me.	or edad (Ma) ± 2s
Cucapah-1-21	В	912	365	0.40	0.0490	5.3	0.0903	5.1	0.0136	2.2	0.0045	6.0	0.43	0	87.3	1.9	87.7	4.3 2	202	58	87.3 ± 1.9
Cucapah-1-16	В	594	298	0.50	0.0522	6.5	0.0967	5.9	0.0137	2.0	0.0045	5.8	0.35	7	87.5	1.7	93.6	5.3 3	353	57	87.5 ± 1.7
Cucapah-1-29(II)	z	546	069	1.26	0.0496	7.9	0.0931	7.1	0.0138	2.5	0.0046	7.4	0.35	3	88.0	2.2	90.3	6.1 3	333	92	88.0 ± 2.2
Cucapah-1-24	B	872	384	0.4 4	0.0501	5.0	0.0937	4. 6. 1	0.0138	1.8	0.0048	5.9	0.42	<i>ლ</i> ი	88.5	1.7	90.8	3.7	268	59	88.5 ± 1.7
Cucapah-1-34(II) Cucapah-1-37(II)	N, >U	2770 794	2830 270	1.02	0.0482	4.1 5.5	0.0930	4.7	0.0139	2.2	0.0042	6.9	0.30	€0 4	89.0 89.0	2.0	91.6 974	5.3 6.3	161 266	32 86	89.0 ± 2.0
Cucapan-1-3/(III) Cucapah-1-12	n n	978	399	0.41	0.0485	5.6	0.0930	5.1	0.0140	2.0	0.0049	 6.4	0.40	+ ~	89.4	1.8		4.2	236	88	89.4 ± 1.8
Cucapah-1-3	n m	342	77	0.23	0.0496	7.7	0.0973	7.1	0.0141	2.6	0.0047	9.5	0.36	N N	90.1	2.3	94.9	6.2	306	77	90.1 ± 2.3
Cucapah-1-22	В	572	182	0.32	0.0534	8.6	0.1005	7.5	0.0141	2.6	0.0057	8.6	0.34	7	90.2	2.3	97.0	6.9 5	570	120	90.2 ± 2.3
Cucapah-1-36(II)	Z	143	54	0.38	0.0461	11.7	0.0973	10.3	0.0143	3.8	0.0047	11.6	0.37	2	91.5	3.5	93.8	9.2 4	450	100	91.5 ± 3.5
Cucapah-1-33(II)	z	489	178	0.36	0.0491	6.5	0.0961	7.9	0.0143	2.4	0.0047	8.7	0.31	ŝ	91.5	2.2	94.2	6.8	302	74	91.5 ± 2.2
Cucapah-1-7	В	444	116	0.26	0.0538	7.8	0.1032	6.9	0.0143	2.7	0.0057	7.8	0.40	6.	91.5	2.5	100.5	6.3	467	100	91.5 ± 2.5
Cucapah-1-32(II)	N, >U	4460	4150	0.93	0.0482	20 20 20	1960.0	5.2	0.0144	0.5	0.0050	9.6	0.58	_ 、	92.0	2.7	93.1 00.0		151	30	92.0 ± 2.7
Cucapan-1-15	N AI	05C	180	0.34	81 CU.U	7.0	000000	9.0 6	0.0140	1.7	0.0050	0.9 6.8	0.30	0 -	05 /	0.7	99.8 06.6	0.0	505	8/	95.1 ± 2.0
Cucapan-1-36(II) Cucapah-1-28(II)	N, N N N	302	000 743	0.80	0.0709		0.1490	0 F	0.0153	0.7	0.000.0	0.0 6.0	0.37	- 12	98.0	е.1 Г С	20.0 141 5 1	0.0	010	120	6.1 ± 4.06
Cucapah-1-30(II)	z	611	276	0.45	0.0484	10.1	0.1033	9.7	0.0156	3.1	0.0051	10.4	0.32	, 0	100	3.1	100	9.5	100	150	99.7 ± 3.1
Cucapah-1-27(II)	Z	137	53	0.39	0.0483	12.8	0.1130	13.3	0.0164	3.7	0.0064	10.8	0.28	2	105	3.8	107 1	14.0 5	540	130	105 ± 4
n = 39																Edad ²⁰⁶	Pb/ ²³⁸ U n	nedia pon	nderada =		86.8 ± 0.7
																		•	2	2 siema. M	SWD = 2.8; $n = 26$)
Muestra Choya	Sienogranito d	e biotita	(Puerto P	eñasco, NW	V Sonora)	Probeta ∕	Mdo-4 (A	gosto 200	8 y Junio 21	017)									Ļ	0	()
Choya-7	N, >D	422	290	0.61	0.0554	7.6	0.0974	8.1	0.0125	2.7	0.0041	8.3	0.34	15	80.0	2.0	94.0	8.0	430	158	80.0 ± 2.0
Choya-17	N, >U, D	864	643	0.66	0.0562	7.4	0.0972	7.8	0.0128	2.4	0.0041	T.T	0.30	13	81.7	2.0	94.0	6.0 4	459	152	81.7 ± 2.0
Choya-4	B, >U	926	216	0.21	0.0528	12.8	0.0910	13.0	0.0128	2.3	0.0048	44.2	0.18	7	81.9	2.0	88.0 1	12.0 3	322	270	81.9 ± 2.0
Choya-3	N, >U	912	451	0.44	0.0495	7.6	0.0899	8.1	0.0129	2.8	0.0039	7.3	0.34	5	83.0	2.0	87.0	6.0 1	171	162	83.0 ± 2.0
Choya-6	B+N, >U	970	219	0.20	0.0496	9.9	0.0905	7.0	0.0131	2.1	0.0040	7.6	0.31	ŝ	84.0	1.8	88.0	6.0 1	175	142	84.0 ± 1.8
Choya-13	B+N, >U	1072	432	0.36	0.0503	6.4	0.0932	6.8	0.0132	2.4	0.0044	7.8	0.36	2	84.0	2.0	90.0	6.0	209	138	84.0 ± 2.0
Choya-26	B	558	161	0.26	0.0532	8.6	0.0952	9.1	0.0132	3.0	0.0043	12.2	0.33	6 •	84.0	2.0	92.0	8.0	336 192	184	84.0 ± 2.0
Choya-I	B+N, >U	86/ 291	C07	12.0	0.049/	7.0	0160.0	6.0 2 0	0.0131	8 F	0.0042	8.0	0.28	4 -	84.1 0	1.6	88.U 03.6	0.0	781	134	84.1 ± 1.6 84.2 ± 3.3
Choya-45(II) Choya-44(II)	zz	100	76	0.23	0.0481	7.4 10	0.0880	0.0 17.5	0.0132		9600.0 0.0046	0.7 1.71	75.0 0.33		04.7 84.3	5.5	0.00	0.0	267 250	/ 0 130	27 H 7.40
Chova-46(II)	N. >U	3450	850	0.25	0.0481	4.8	0.0874	4.6	0.0132	2.3	0.0049	11.3	0.50		84.4	1.9	85.0	3.8	184	50	84.4 ± 1.9
Choya-36	B+N, >U, D	698	159	0.20	0.0465	7.0	0.0834	7.4	0.0132	2.4	0.0040	9.0	0.33	-S	85.0	2.0	81.0	6.0	21	130	85.0 ± 2.0
Choya-8	B, >U	751	142	0.17	0.0516	8.4	0.0962	8.7	0.0133	2.4	0.0046	9.2	0.27	6	85.0	2.0	93.0	8.0 2	269	178	85.0 ± 2.0
Choya-28	N, >U	683	123	0.16	0.0574	13.2	0.1010	13.4	0.0133	2.4	0.0053	9.1	0.18	13	85.0	2.0	98.0 ì	12.0 5	505	274	85.0 ± 2.0
Choya-2	B+N, >U	861	341	0.35	0.0519	8.2	0.0956	8.4	0.0133	2.0	0.0041	7.8	0.23	~ ~	85.1	1.6	93.0	8.0	281	174	85.1 ± 1.6
Choya-20	B+N, >U	C18	477	67.0 97.0	0.0405	8.0	0060.0	8.3 6 0 7	0.0133	7 C	0.0045	9.8	0.27	νc	5.C8	0.7	88.U	0.8	151	108	0.2 ± 2.08
Choya-10 Choya-22	B, ∕U B >II D	0011	157	0.20	0.0467	6.4 6	0.0848	0.0 7.1	0.0134	7.7	0.0041	6.1 C 8	0.44	7 T-	07:0 86.0	0.7	83.0	0.0	ردا ۳۶	001	86.0 ± 2.0 86.0 ± 2.0
Choya-49(II)	Ż	94	76	0.81	0.0493	14.8	0.0880	13.6	0.0135	4.2	0.0040	10.1	0.30	. 5-	86.4	3.6	85.0 1	11.0	550	180	86.4 ± 3.6
Choya-14	N, >U	679	232	0.30	0.0537	13.0	0.0991	13.2	0.0135	2.1	0.0038	9.0	0.16	10	86.6	1.8	96.0 1	12.0 3	359	272	86.6 ± 1.8
Choya-11	в	375	58	0.14	0.0518	11.0	0.0959	11.3	0.0136	2.8	0.0054	23.9	0.25	9	87.0	2.0	93.0	10.0	274	234	87.0 ± 2.0
Choya-30	B+N, >U	975	205	0.19	0.0495	6.4	0.0926	6.8	0.0136	2.2	0.0041	7.4	0.33	ŝ	87.1	2.0	90.0	6.0	171	140	87.1 ± 2.0
Choya-51(II)	zŻ	4 4 5	27	0.62	0.0470	29.8	0.0980	29.6	0.0137	7.3	0.0044	20.2	0.25	so -	87.9	6.6 15 0	93.0	26.0	980	260	87.9 ± 6.6
Choya-48(III)	N VI	Q7	07 66	0.70	2020.0	6.4/ 6.0	0.000.0	04.0 6 0	0.0128	2 J	0.0044	4:10	07.0	- v	0.00	0.01	03.0	0.60		1200	0.01 ± 0.00
Chova-31	N N	406	707	06.0	0.050.0	10.8	0.0000	111	0.0138	2.6 2.6	0.0047	C./ 11 4	0.73	0 F	88 0	0.4	95.0 1	0.0	118	737	88.0 ± 2.0 88.0 ± 2.0
Chova-19	B+N	264	21	0.07	0.0518	12.6	0.0992	12.9	0.0137	3.1	0.0052	13.1	0.24	~ ~ ~	88.0	2.0	96.0 1	12.0	276	266 266	88.0 ± 2.0
Choya-50(II)	z	158	28	0.18	0.0479	18.0	0.0900	17.8	0.0138	4.1	0.0052	23.1	0.23	2	88.2	3.6	90.0	4.0 4	440	130	88.2 ± 3.6
Choya-47(II)	z	152	82	0.54	0.0487	18.3	0.0960	16.7	0.0138	3.8	0.0052	1.11	0.23	4	88.6	3.3	92.0 1	15.0 6	520	170	88.6 ± 3.3
Choya-35	Z	260	40	0.14	0.0516	12.6	0.0969	12.9	0.0138	2.6	0.0050	14.8	0.20	5	89.0	2.0	94.0 ì	12.0 2	266	270	89.0 ± 2.0
Choya-34	z	515	368 20	0.64	0.0544	9.6	0.1040	10.1	0.0139	2.5	0.0051	9.0	0.24	11	89.0	2.0	100	10	386	206	89.0 ± 2.0
Choya-32 Choya-32	zz	505 733	44 165	0.24	62 CN . U	0.01	0.1026	0 ت م ح	0.0145	2.0	0.0058	1.2.1	0.20	×c	91.U 01.1	2.0	. 0.99 1 0.0 1	0.0	298	214 en	91.0 ± 2.0
Choya-41(II)	ζZ	24	13	0.56	0.0490	7.1 34.7	0.0920	۶. <i>۲</i> 31.5	0.0143	v.c 8.6	0.0047	23.4	0.31	- 1	91.3 91.3	0.7 8.7	92.0 2	27.0 1	300 300	٥u 280	91.3 ± 8.7
																			1.	Continua e	n la siguiente página

Tabla B.1 (cont.) D	atos analíticos	U-Pb obtenid	los por LA	-ICPMS en	zircones de	granitoide	es laramídic	os del NV	/ de Sonora	, México	y SW de Ari	zona, USA					10000		-		
Análisis/Zircón	Comentario	U [#] (ppm)	Th [#] (ppm)	Th/U	$^{207}Pb/^{206}Pb^{\dagger}$	err %*	²⁰⁷ Pb/ ²³⁵ U [†]	err %*	PICAS CU ⁹⁶⁶ Pb/ ²³⁸ U [†]	err %	08 Pb/232 Th [†]	err %	Rho**	% disc	$^{206}\text{Pb}/^{238}\text{U}$	±DADES ±2s [*] 20	⁷ Pb/ ²³⁵ U	±2s ^{* 207} P	(MIA) b/ ²⁰⁶ Pb	±2s [*] M	ejor edad (Ma) ± 2s
Chova-15	R+N	408	70	017	0.0484	0 0	0 0936	0 4	0.0143	1 8	0.0044	8.7	0.19	-	017	16	010	8.0	120	190	917 + 16
Chova-9	z	342	67	0.17	0.0539	10.2	0.1037	10.7	0.0144		0.0049	11.0	0.31	- ×	92.0	4.0	100	10	366	214	92.0 ± 4.0
Chova-37	B+N	442	79	0.16	0.0546	10.0	0.1071	10.6	0.0144	3.5	0.0157	104.1	0.33	Ξ	92.0	4.0	103	10	398	210	92.0 ± 4.0
Choya-38	N, >U	733	116	0.14	0.0513	8.0	0.1024	8.3	0.0147	2.2	0.0047	9.3	0.26	5	94.0	2.0	99.0	8.0	254	172	94.0 ± 2.0
Choya-42(II)	Z	499	98	0.20	0.0533	7.1	0.1047	7.0	0.0147	3.2	0.0049	9.8	0.46	7	94.1	3.0	101	7	360	60	94.1 ± 3.0
Choya-43(II)	z	26	14	0.53	0.0610	36.1	0.1040	29.8	0.0149	8.1	0.0052	21.2	0.27	-	95.0	7.5	96.0	28.0	1750	320	95.0 ± 7.5
Choya-25	B+N	441	214	0.43	0.0566	10.2	0.1162	10.7	0.0153	3.1	0.0052	9.7	0.29	13	98.0	4.0	112	12	475	212	98.0 ± 4.0
Choya-52(II)	Z	362	130	0.36	0.0513	12.5	0.1080	11.1	0.0155	4.1	0.0060	11.7	0.37	4	99.4	4.1	104	11	330	94	99.4 ± 4.1
n = 42																Edad ²⁰	Pb/ ²³⁸ U	nedia po	nderada =		85.8 ± 0.8
																		•	0	Sioma. N	(SWD = 3.1: n = 2.5)
Muestra OTB-1	Monzogranito	de biotita	(Quitoba	quito Hills,	Organ Pipe (Cactus Na	ational Mon	ument, S ¹	N Arizona)	Probe	a ICGEO-80	(Octuł	ore 2016 y	Junio 2017)	_				4	r arguna, n	(cz m(r)c cmcm
OTB-1-4	B.>U	1937	834	0.43	0.0519	5.8	0.0776	5.5	0.0109	1.8	0.0036	6.4	0.33	œ	69.7	13	75.8	4.0	318	72	69.7 ± 1.3
OTB-1-7	_, >U	1900	1180	0.62	0.0490	5.1	0.0753	4.5	0.0112	2.0	0.0039	5.2	0.45	2	6.17	1.5	73.7	3.3	200	54	71.9 ± 1.5
0TB-1-9	В	1141	543	0.48	0.0494	6.7	0.0766	6.9	0.0115	2.3	0.0037	7.3	0.33	1 7	73.5	1.7	74.9	5.0	267	82	73.5 ± 1.7
QTB-1-1	B, >U	1838	945	0.51	0.0483	5.2	0.0768	4.7	0.0116	1.7	0.0037	5.4	0.37	1	74.1	1.3	75.1	3.4	170	47	74.1 ± 1.3
QTB-1-3	В	686	340	0.34	0.0487	8.2	0.0769	7.2	0.0116	2.2	0.0039	7.2	0.31	2	74.5	1.6	76.1	5.5	330	110	74.5 ± 1.6
QTB-1-15	B, >U	2031	913	0.45	0.0486	4.7	0.0776	3.7	0.0116	1.7	0.0038	5.3	0.46	2	74.6	1.3	75.8	2.8	204	57	74.6 ± 1.3
QTB-1-12	B, >U	1748	1277	0.73	0.0481	5.2	0.0766	4.6	0.0116	1.5	0.0036	5.0	0.34	0	74.6	1.1	74.9	3.3	206	53	74.6 ± 1.1
QTB-1-2	B+N, >U	2293	667	0.29	0.0487	4.7	0.0780	4.6	0.0117	1.8	0.0037	5.9	0.39	2	74.8	1.4	76.2	3.4	179	54	74.8 ± 1.4
QTB-1-16	B+N, >U	1386	969	0.50	0.0481	6.2	0.0783	5.7	0.0118	2.0	0.0036	5.2	0.34	-	75.4	1.5	76.5	4.2	264	65	75.4 ± 1.5
QTB-1-5	B, >U	1610	1300	0.81	0.0483	5.4	0.0791	4.8	0.0118	1.5	0.0038	5.3	0.32	7	75.6	1.2	77.2	3.5	211	61	75.6 ± 1.2
QTB-1-8	B, >U	2810	2111	0.75	0.0507	4.5	0.0828	3.9	0.0118	1.6	0.0038	4.8	0.42	9	75.6	1.2	80.8	3.0	232	61	75.6 ± 1.2
QTB-1-25	B+N	911	334	0.37	0.0473	5.7	0.0772	5.3	0.0119	2.1	0.0039	6.4	0.40	-	75.9	1.6	75.5	3.9	232	65	75.9 ± 1.6
QTB-1-30(II)	N, >D	772	1281	1.66	0.0544	6.4	0.0889	6.9	0.0119	2.7	0.0035	6.0	0.39	12	76.1	2.1	86.3	5.7	458	82	76.1 ± 2.1
QTB-1-11	B+N	759	246	0.32	0.0504	5.6	0.0806	5.3	0.0119	2.3	0.0038	6.9	0.43	4	76.3	1.7	79.1	3.9	298	58	76.3 ± 1.7
QTB-1-21	В	557	210	0.38	0.0471	7.9	0.0774	6.8	0.0119	2.5	0.0040	7.0	0.37	-	76.4	1.9	75.6	5.0	289	89	76.4 ± 1.9
QTB-1-37(II)	Ζ¢	675	281	0.42	0.0495	8.9	0.0814	9.1	0.0120	2.8	0.0038	L.T	0.31	ŝ	77.0	2.2	80.8	6.5	269 202	90 (77.0 ± 2.2
QTB-1-17	щ	855	337	0.39	0.0504	0.0 1	0.0832	5.6	0.0121	2.1	0.0039	5.9	0.37	4 0	2.17.5	1.6	81.1	4.4	322	69	77.5 ± 1.6
QIB-1-13	ц	603 202	195	0.46	0.0355	x .	1/80.0	7.0	0.0121	4.4	0.0039	9.0 1	0.46	×	1.1.1	8.1	84.7	4.2	345	1/	77.0 ± 1.8
QTB-1-20 OTD 1 370D	N di D	733	443 2050	0.60	0.0487	4.7	0.0826	6.7	0.0123	1.8	0.0042	5.7	0.27	67 Q	0.67	4	80.5	5.1	318	89 00	79.0 ± 1.4
OTB-1-27(II)	N,)(, N	1110	005	0.45	0.0476	0.0	2001.0	6.0 6 6	C710.0	0.1 0 6	00000	0.0	05.0	- f	0.67	+ c 	7.1 61	104	107	80	19.0 ± 1.4
OTB-1-22(II)	N.>U	2220	1120	0.50	0.0482	3.5	0.0827	4.6 9.7	0.0124	2.0 1.6	0.0041	5.2	0.35		1.67 7.67	1.3	80.7	0.4 2.5	197	34	79.7 ± 1.3
QTB-1-39(II)	N, >D	275	82	0.30	0.0604	11.3	0.1003	8.5	0.0124	4.6	0.0051	13.9	0.54	18	7.9.7	3.6	96.9	7.8	620	110	79.7 ± 3.6
QTB-1-14	B, >D	823	327	0.40	0.0573	6.3	0.0973	6.5	0.0125	2.0	0.0050	6.8	0.31	16	80.0	1.6	94.8	5.7	565	120	80.0 ± 1.6
QTB-1-35(II)	N, >U	3460	6070	1.75	0.0488	3.1	0.0835	4.2	0.0125	1.6	0.0037	5.3	0.38	1	80.2	1.3	81.4	3.3	169	31	80.2 ± 1.3
QTB-1-26(II)	N, >U	1990	940	0.47	0.0490	3.5	0.0842	4.3	0.0125	1.5	0.0041	5.6	0.35	2	80.2	1.2	82.0	3.4	228	33	80.2 ± 1.2
QTB-1-24	в;	837	392	0.47	0.0513	6.8	0.0871	6.1	0.0126	1.9	0.0042	5.7	0.31	ŝ	80.6	1.6	84.7	4.9	374	76	80.6 ± 1.6
Q1B-1-28(11)	z c	C85	183	0.48	7710 0	0.21	0.0800	11.6	0.0127	4. c v. c	0.0045	0.71	0.57	~ - ~	81.0	C.7 0 -	83.0 90.5	4.4	877	83	0.1 ± 0.18
QTB-1-19 OTB-1-36/ID	a Z	1240	500 891	0.40	0.0504		0.0870	1.0	0.0127	C.7 2 C	0.0040	2.0 2.5	0.410	- v	81.2	0.1	00.J	0.4 V 0 Y	410	ەر 110	01.1 ± 1.0 813 ± 7.8
OTB-1-30(III)	R >II	1450	001	0.48	0.0468	0.0	0.0818	46.4	0.0127	0.0 F I	0.0043	j k	17:0	, c	814	0.7	2.05	3.6	146	60	81.4 ± 0.12
OTB-1-18	, e	476	232	0.49	0.0585	11.5	0.1020	10.8	0.0130	4.4	0.0042	7.3	0.41	15	83.5	3.6	98.7	9.5	522	100	83.5 ± 3.6
QTB-1-40(II)	Z	780	387	0.50	0.0500	7.6	0.0886	7.9	0.0131	2.1	0.0044	7.1	0.27	б	84.2	1.8	87.0	6.9	298	60	84.2 ± 1.8
QTB-1-10	в	848	462	0.54	0.0507	5.1	0.0905	4.6	0.0132	1.9	0.0043	5.1	0.41	4	84.3	1.6	87.9	3.9	266	53	84.3 ± 1.6
QTB-1-33(II)	z	1180	887	0.75	0.0487	6.6	0.0890	7.0	0.0135	3.3	0.0038	7.8	0.48	0	86.6	2.9	86.5	5.8	265	71	86.6 ± 2.9
QTB-1-6	B+N, >D	601	330	0.55	0.0641	11.1	0.1290	11.6	0.0144	2.8	0.0075	10.4	0.24	24	92.4	2.6	122	13	710	140	92.4 ± 2.6
QTB-1-31(II)	N, >U	1543	287	0.19	0.0524	5.2	0.1045	5.2	0.0145	2.1	0.0052	6.7	0.41	~ ~	92.9	2.0	101	ŝ	332	80	92.9 ± 2.0
QTB-1-23	Z ;	572	346	0.60	0.0767	3.9	1.8480	3.2	0.1774	1.5	0.0541	4.6 -	0.45		1053	4	1062	21	1105	36	1053 ± 14
QTB-1-38(II)	z	199	127	0.64	0.0782	3.5	1.9170	4.6	0.1794	2.0	0.0537	5.0	0.44	7	1063	16	1085	31	140	38	1063 ± 19
QTB-1-34(II)	Z	605	320	0.53	0.1058	1.6	4.3250	3.0	0.2980	1.2	0.0842	4.5	0.40	-	1681	18	1698	26	1724	22	1724 ± 22
n = 40																Edad ²⁰	$Pb/^{238}U_{\perp}$	nedia po	nderada =	"	75.4 ± 0.6
																			(2	2 sigma, N	1SWD = 2.3; n = 15)
																			1-	Continua	en la siguiente página

Matrix	Comontonio	· #•	#	TTb /TT	207	REL	ACIONES	S ISOTÓ	PICAS CO	RREGID/	VS but 232-ru +	* / 0	** 0.	***	206 238	DADES	CORREC	GIDAS (]	Ma)	*.e.	an adad (Ma) ± 3a
Matrix Constrained Constrained <t< th=""><th>5</th><th>(udd)</th><th>Ih (ppm)</th><th></th><th>0d/0d</th><th>err %</th><th></th><th>err %</th><th></th><th>rr %</th><th>Pb/ In 6</th><th>00 TO 10</th><th>Kho %</th><th>disc 2014 T</th><th>- /q.</th><th>∓28</th><th>₽ D'/Q</th><th></th><th>∓ q,,/0</th><th>±25 Mej</th><th>or euau (Ma) ± 28</th></t<>	5	(udd)	Ih (ppm)		0d/0d	err %		err %		rr %	Pb/ In 6	00 TO 10	Kho %	disc 2014 T	- /q.	∓ 28	₽ D'/Q		∓ q ,,/0	±25 Mej	or euau (Ma) ± 28
9 15 01 03 13 03 13 03 13 03 13 03 13 03 13 03 13 03 13 03 13 03 13 03 </th <th>•</th> <th>leucocráti</th> <th>co de bioti</th> <th>ta (C</th> <th>abeza Prieta N</th> <th>Aountains,</th> <th>Cabeza P1</th> <th>rieta Wild</th> <th>erness, SW</th> <th>Arizona)</th> <th>Probeta I(</th> <th>CGEO-40</th> <th>(Febrer</th> <th>o 2014 y Jur</th> <th>iio 2017)</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	•	leucocráti	co de bioti	ta (C	abeza Prieta N	Aountains,	Cabeza P1	rieta Wild	erness, SW	Arizona)	Probeta I(CGEO-40	(Febrer	o 2014 y Jur	iio 2017)						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4049 1500	725 185	0.16	0.0481	4.3 7 1	0.0688	5.1 8.5	0.0104	2.9 4.0	0.0033	6.0	0.56	~ ~	66.6 67.0	2.0	62.0	0.4	03	96 148	66.6 ± 2.0 67.0 ± 2.0
18. 30. 0.01 5. 0.010 5. 0.010 5. 0.010 5. 0.011 5. 0.01		226	118	0.52	0.0497	14.7	0.0710	0.0 15.5	0.0105	3.9 3.9	0.0033	10.3	0.25	o m	67.0	2.6	69.4 I	0.0	061	110	67.0 ± 2.6
3 3 0 1 1 1 1 1 1		1882	293	0.14	0.0508	5.8	0.0734	6.4	0.0105	2.5	0.0032	6.3	0.39	7	67.1	1.6	72.0	0.4	32	126	67.1 ± 1.6
357 379 (1) <td></td> <td>342 460</td> <td>385</td> <td>0.27</td> <td>0.0369</td> <td>0.7</td> <td>0.0693</td> <td>8.6 7 1</td> <td>0100 00100</td> <td>2.8</td> <td>0.0033 0.0035</td> <td>3.0 6.3</td> <td>0.33 0.37</td> <td>= -</td> <td>6/.6 68 1</td> <td>1 8 0</td> <td>0.0/</td> <td>0.4</td> <td>1 403</td> <td>162 81</td> <td>67.6 ± 2.0 68.1 + 1.8</td>		342 460	385	0.27	0.0369	0.7	0.0693	8.6 7 1	0100 00100	2.8	0.0033 0.0035	3.0 6.3	0.33 0.37	= -	6/.6 68 1	1 8 0	0.0/	0.4	1 403	162 81	67.6 ± 2.0 68.1 + 1.8
The transman for the set of the set o		3426	760	0.20	0.0469	4.2	0.0692	4.8	0.0107	2.4	0.0031	5.8	0.51		68.5	1.6	68.0	0.4	45	88	68.5 ± 1.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2977 2688	344 740	0.11	0.0484	4.5	0.0712	5.2	0.0107	2.6	0.0032	7.5	0.50	- 5	68.5 69.6	1.8	20.0	0.4	16	98	68.5 ± 1.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		000 <i>c</i> 150	140	0.10	0.0540	91 5	0.0750	30.7	0.0107	4.4 7.3	0.0050 0.0050).c 26.0	0.74 0	- ~	0.00	0.1	- 0.60 - 0.77	0.4 2.0	64 (40	000	0.0 ± 1.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3706	694	0.17	0.0477	3.9	0.0706	4.5	0.0107	2.2	0.0032	5.6	0.50	. 0	68.9	1.6	1 0.69 0.69	, 0.4 0.4	98 98	86	68.9 ± 1.6
313 320 01 010		1191	122	0.09	0.0491	4.8	0.0727	5.4	0.0107	2.4	0.0042	8.2	0.45	3	68.9	1.6	71.0 4	4.0	52 1	106	68.9 ± 1.6
370 371 010 370 370 370 370 370 370 <td></td> <td>4129</td> <td>830</td> <td>0.18</td> <td>0.0475</td> <td>3.9</td> <td>0.0709</td> <td>4.5</td> <td>0.0108</td> <td>2.4</td> <td>0.0032</td> <td>5.6</td> <td>0.53</td> <td></td> <td>69.5</td> <td>1.6</td> <td>70.0</td> <td>4.0</td> <td>74</td> <td>86</td> <td>69.5 ± 1.6</td>		4129	830	0.18	0.0475	3.9	0.0709	4.5	0.0108	2.4	0.0032	5.6	0.53		69.5	1.6	70.0	4.0	74	86	69.5 ± 1.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		2823 1500	523 877	0.17	0.0477	3.9	0.0718	4.5 0 4	0.0109	4. 4 4	0.0032	5.6	0.53	0,	70.1	1.6	70.0	0.4	83	86	70.1 ± 1.6
400 67 014 008 13 0101 53 0101 53 0101 53 0101 53 0101 53 0101 50 14 1001 50 11 1001 50		00CI 6109	a// 1565	0.23 0.23	0.0490	0.4 0.0	0.0748	4.4 7.7	0.0110	2.4	0.0036	6.1 6.1	0.51	1 6	6.07	1.0	73.0	0.4	45	94 88	70.9 ± 1.6
274 67 0.06 6.0 <th6.0< th=""> <th6.0< th=""> <th6.0< th=""></th6.0<></th6.0<></th6.0<>		4020	627	0.14	0.0481	3.9	0.0737	4.5	0.0111	2.3	0.0033	5.5	0.52		71.4	1.6	72.0	4.0	04	86	71.4 ± 1.6
393 39 01 0081 33 0373 41 0111 25 033 43 71 41 70 101 30 313 413 113 413 713 41 713		2744	467	0.16	0.0495	4.5	0.0764	5.1	0.0112	2.5	0.0033	6.2	0.49	4	71.9	1.8	75.0 4	4.0	72	98	71.9 ± 1.8
32 5 10 0000 13.1 1000 10.1 5.0 0000 13.1 10.0 </td <td></td> <td>2932</td> <td>393</td> <td>0.12</td> <td>0.0481</td> <td>3.9</td> <td>0.0753</td> <td>4.6</td> <td>0.0114</td> <td>2.5</td> <td>0.0035</td> <td>5.7</td> <td>0.54</td> <td>2</td> <td>72.8</td> <td>1.8</td> <td>74.0</td> <td>4.0</td> <td>04</td> <td>86</td> <td>72.8 ± 1.8</td>		2932	393	0.12	0.0481	3.9	0.0753	4.6	0.0114	2.5	0.0035	5.7	0.54	2	72.8	1.8	74.0	4.0	04	86	72.8 ± 1.8
1 1 0		293	56	0.19	0.0503	13.3	0.0780	14.1	0.0114	5.6	0.0040	25.0	0.40	4	73.1	4.1	76.0 1	0.0	540	310	73.1 ± 4.1
2.39 30 0.040 51 0.000 53 0.001 53 0.001 53 0.001 54 0.001 54 0.001 54 0.001 54 0.011 54 0.001 54 0.001 54 0.001 54 0.001 54 0.001 54 0.001 54 0.001 54 0.001 54 0.011 54 0.011 54 0.011 54 0.01 54 0.011 54 0.011 54 0.011 54 0.011 54 0.011 54 0.011 54 0.0		158	114	0.72	0.0484	15.7	0.0780	14.1	0.0115	3.7	0.0037	8.8	0.26	Ś	73.4	2.7	77.0 1	1.0	200	140	73.4 ± 2.7
15 75		2246	386	0.16	0.04/9	4.0 6.5	0.0700	4 4	61100	4. 4. c	0.0035	8.0	0.22	0 4	74.1	× 1	14.0	0.4	94	90 60	7.1 ± 1.8
744 70 0 <td></td> <td>356</td> <td>78</td> <td>0.20</td> <td>0.0564</td> <td>9.2</td> <td>0.0896</td> <td>7.0 8.6</td> <td>0.0117</td> <td></td> <td>0.0039</td> <td>0.0 8.6</td> <td>0.33</td> <td>+ 7</td> <td>75.0</td> <td>2.0</td> <td>87.0</td> <td>0.4</td> <td>1 100</td> <td>190</td> <td>75.0 ± 2.0</td>		356	78	0.20	0.0564	9.2	0.0896	7.0 8.6	0.0117		0.0039	0.0 8.6	0.33	+ 7	75.0	2.0	87.0	0.4	1 100	190	75.0 ± 2.0
D 050 547 013 0532 36 040 37 94 003 35 76 900 35 75 76 900 35 56 300 35 36 37 36	D	2744	209	0.07	0.0501	7.3	0.0879	10.6	0.0125	7.7	0.0050	56.2	0.73	7	80.0	6.0	86.0	8.0	99	160	80.0 ± 6.0
	D	3695	547	0.13	0.0532	3.6	0.0917	4.4	0.0125	2.4	0.0032	5.6	0.55	10	80.0	2.0	7 0.68	4.0	136	76	80.0 ± 2.0
1470 130 0.00 0.070 7.8 0.010 0.070 7.8 1.010 1.01 1.010 1.010 1.017 1.010 1.017 1.010 1.017 1.010 1.017 1.010 1.017 1.010 1.017 1.010 1.017 1.010 1.017 1.010 1.017 1.010 1.017 1.010 1.017 1.011 1.010 1.011 1.010 1.011 <th1.011< th=""> <th1.011< th=""> <th1.011< th=""></th1.011<></th1.011<></th1.011<>	~	605	229	0.35	0.0700	4.3	0.4162	9.5	0.0374	8.5	0.0056	9.2	0.89	33	236	20	353	28	27	84	236 ± 20
19 7 0.00 7 0.000		1470	130	0.09	0.0799	9.6 7	1.0400	21.2	0.0820	19.5 6 E	0.0172	23.8	0.92 0.55	17	497 548	96 7	[009	10	130	120	497 ± 96
4.0 1.7 0.41 0.094 3 3.706 3.2 0.272 0.3 1.30 2.3 0.41 2.30 1.01 3.8 1.01 <th< td=""><td>2</td><td>160</td><td>27</td><td>0.12</td><td>0.0947</td><td>9.6</td><td>3.3245</td><td>4.5</td><td>0.2.548</td><td>0.0 2.4</td><td>0.0200</td><td>5.9</td><td>0.55</td><td>07 C</td><td>040 1463</td><td>t 0</td><td>1487</td><td>34 1</td><td>523</td><td>+C1 64</td><td>1523 ± 64</td></th<>	2	160	27	0.12	0.0947	9.6	3.3245	4.5	0.2.548	0.0 2.4	0.0200	5.9	0.55	07 C	040 1463	t 0	1487	34 1	523	+C1 64	1523 ± 64
286 473 015 0093 33 38316 41 02315 23 0041 54 057 161 38 161 58 1611 58 1611 58 1611 58 1611 58 1611 58 1611 58 1611 58 1611 58 1611 58 1611 58 1611 58 1611 58 1616 57 1616 57 1616 57 1616 57 163 66 44 1666 54 1666 54 1666 54 1666 54 1666 54 1666 54 1666 54 166 55 166 55 166 55 166 54 166 55 166 54 166 54 166 55 166 54 166 55 166 55 166 54 166 55 166 54 166 55 166 56 166		430	175	0.41	0.0994	3.8	3.7050	3.2	0.2729	1.5	0.0775	3.7	0.48	. –	1556	21	1572	26 1	610	45	1610 ± 45
	_	2863	473	0.15	0.0993	3.3	3.8516	4.1	0.2815	2.3	0.0742	5.4	0.57	0	1599	32	1604	32 1	611	58	<i>1611</i> ± 58
134 56 0.26 0.106 3.4 3.43.4 4.1 0.302 2.3 0.081 5.4 0.57 2 1722 3.6 1653 5.6 1653 4.60 5.8 1606 4.4 1666 4.4 1676 1676 1676 1676 1676 1676		1760	2220	1.26	0.0998	3.8	3.2320	3.7	0.2348	2.2	0.0649	5.7	0.60	7	1359	27	1465	27 1	621	41	1621 ± 41
245 530 0.88 0.1016 34 3.0163 4.0 0.88 3.0 3.0 0.0101 3.1 3.003 3.1 0.0102 3.1 3.003 3.0 0.0012 3.1 3.003 3.0 0.0102 3.1 3.003 3.0 0.003 4.1 4.000 3.0 0.0102 3.1 0.003 3.0 0.003 4.0 0.000 4.1 3.000 3.0 0.003 4.0 0.000 4.1 0.000 3.0 0.000 4.1 4.00 3.0 0.0000 4.0 0.000 4.0 0.000 5.0 0.000 5.0 1.663 3.0 1.663 4.0 1.666 4.1 1.666 4.1 1.666 4.1 1.666 4.1 1.666 4.1 1.666 4.1 1.666 4.1 1.666 4.1 1.666 4.1 1.666 4.1 1.666 4.1 1.666 4.1 1.666 4.1 1.666 4.1 1.666 4.1		1954	565	0.26	0.1009	3.3	4.2540	4.1	0.3062	2.3	0.0811	5.4	0.57	-2	1722	36	1685	34 1	640	58	1640 ± 58
430 1040 0.39 0.1012 3.1 3.666 3.4 0.2438 3.6 0.003 3.9 0.059 3.5 16.66 3.1 16.66 3.6 16.86 3.6 16.86 3.6 16.86 3.6 16.86 3.6 16.86 3.6 16.86 3.6 3.6 16.86 3.6 3.6 16.86 3.6 3.6 16.86 3.6 3.6 16.86 3.6		245	263	0.98	0.1016	4. 4.	3.9134	4.2	0.2799	2.4	0.0818	5.4	0.57	7	1591	34	1616	34 1	653	60	1653 ± 60
3.33 102 0.00 3.4 0.3210 1.1 0.003 3.4 0.3210 1.1 0.001 3.4 1.230 1.36 3.5 1.690 5.5 1.690 5.5 1.690 5.5 1.690 5.5 1.690 5.5 1.690 5.5 1.690 5.5 1.690 5.5 1.690 5.5 1.690 5.5 1.690 5.5 1.690 5.5 1.690 5.5 1.690 5.5 1.694 5.7 1.65 5.7 1.65 5.4 1.716 4.6 1.716 <th< td=""><td></td><td>4230 527</td><td>1640</td><td>0.39</td><td>0.1022</td><td>3.7</td><td>3.6960</td><td>8. c 6. c</td><td>0.2628</td><td>2.6</td><td>0.0803</td><td>3.9</td><td>0.69</td><td>4 <</td><td>1503</td><td>35</td><td>1568</td><td>31</td><td>999</td><td>44</td><td>1666 ± 44</td></th<>		4230 527	1640	0.39	0.1022	3.7	3.6960	8. c 6. c	0.2628	2.6	0.0803	3.9	0.69	4 <	1503	35	1568	31	999	44	1666 ± 44
110 0.3 0.30 </td <td></td> <td>555 LLC</td> <td>201</td> <td>05.0</td> <td>0 1022</td> <td> </td> <td>3 5680</td> <td>v. c v</td> <td>0.7480</td> <td>1./</td> <td>00200</td> <td>0 C</td> <td>0.4.0</td> <td></td> <td>0.01</td> <td>07 07</td> <td>1001</td> <td>1 1 20</td> <td>000</td> <td>25 25</td> <td>1000 ± 0001</td>		555 LLC	201	05.0	0 1022	 	3 5680	v. c v	0.7480	1./	00200	0 C	0.4.0		0.01	07 07	1001	1 1 20	000	25 25	1000 ± 0001
145 141 097 01032 4.7 4.200 3.3 0.093 4.0 0.42 0 1670 26 1677 35 1694 43 1716 4.6 262 110 0.42 0.1044 4.1 4.2950 3.5 0.3015 1.8 0.037 3.9 0.51 0 1699 2.7 1694 43 1716 46 1716 46 1716 46 1776		1520	578	0.38	0.1037	5 8 C	4.2870	1. 0. 0. 0.	0.3003	1.9	0.0851	1 8.0	0.59	~ 0	1692	20 29	1690	28 1	700	55 55	1690 ± 55
262 110 0.42 0.1044 4.1 4.2950 3.5 0.3015 1.8 0.051 5.4 0.57 2 1694 27 1716 46 1716 46 508 268 0.48 0.1117 3.3 4.8224 4.0 0.3155 2.3 0.0877 5.4 0.57 2 1758 36 1789 34 1827 5.6 1827 ± 56 508 268 0.48 0.1117 3.3 4.8224 4.0 0.3155 2.3 0.0877 5.4 0.57 2 1758 36 1827 5.6 1827 ± 56 strutule Strutule Strutule Strutule Strutule		145	141	0.97	0.1032	4.7	4.2200	4.3	0.2957	1.8	0.0899	4.0	0.42	0	1670	26	1677	35 1	694	43	1694 ± 43
508 268 048 01117 3.3 4.824 4.0 0.3135 2.3 0.0877 5.4 0.57 2 1738 36 1827 56 1827 56 1827 56 1827 56 1827 4.5 colspan="5">colspan="5">colspan="5">Colspan="5">Colspan="5">Colspan="5" 0.017 0.013 0.013 5.4 0.57 2.4 0.01 10 0.010 1.1 0.0031 3.0 0.40 -1 64.7 0.7 64.0 2.0 64.1 2.0 65.1 1.1 65.1 1.1 66.0 3.1 20.0 65.1 0.010 1.1 0.0033 5.1 0.34 1 65.1 1.1 66.1 2.0 1.1 66.1 1.1 66.1 1.1 66.1 1.1 66.1 1.1 66.1 1.1 66.1 1.1 66.1 1.1 66.1 1.1 66.1 1.1 66.1 1.1 66.1 1.1 66.1 1.1 66.1 </td <td></td> <td>262</td> <td>110</td> <td>0.42</td> <td>0.1044</td> <td>4.1</td> <td>4.2950</td> <td>3.5</td> <td>0.3015</td> <td>1.8</td> <td>0.0873</td> <td>3.9</td> <td>0.51</td> <td>0</td> <td>1699</td> <td>27</td> <td>1694</td> <td>27 1</td> <td>716</td> <td>46</td> <td>1716 ± 46</td>		262	110	0.42	0.1044	4.1	4.2950	3.5	0.3015	1.8	0.0873	3.9	0.51	0	1699	27	1694	27 1	716	46	1716 ± 46
Edad ³⁴⁶ Ph/ ³⁴⁸ U media ponderada = 690 ± 0.8 (2 sigma, MSWD=2.9; n= 15) (2 sigma, MSWD=2.9; n= 16) (2 sigma,		508	268	0.48	0.1117	3.3	4.8224	4.0	0.3135	2.3	0.0877	5.4	0.57	2	1758	36	1789	34 1	827	56	1827 ± 56
(2 sigma, MSWD = 2.9, in = 15) (2 sigma, MSWD = 2.7 3119 1206 0.31 0.0465 2.7 0.0101 1.1 0.0031 3.0 0.40 -1 64.7 0.7 64.0 2.0 43 0.51 43 65.1 1.1 66.0 3.1 203 43 65.1 1.1 66.0 3.1 203 43 65.1 41 1.7 56 65.4 0.6 64.0 2.0 65.1 1.1 66.0 3.1 203 65.1 1.1 66.1 0.3 2.0 66.1 1.7 56 65.4 1.1 66.1 1.1 66.1 1.1 66.1 1.1 66.1 1.1 66.1 1.1 66.1 1.1 66.1 1.1 66.1 1.1 66.1 1.1 66.1 1.1 66.1 1.1 66.1 67.1 <td></td> <td>Edad ²⁰⁶]</td> <td>Pb/²³⁸ U n</td> <td>iedia pon</td> <td>iderada =</td> <td></td> <td>69.0 ± 0.8</td>																Edad ²⁰⁶]	Pb/ ²³⁸ U n	iedia pon	iderada =		69.0 ± 0.8
3119 1206 0.31 0.0465 2.7 0.0101 1.1 0.0031 3.0 0.40 -1 64.7 0.7 64.0 2.0 25.0 49.0 64.7 ± 1.1 2360 628 0.27 0.0481 4.4 0.0672 4.9 0.0102 1.7 0.0033 5.1 0.34 1 65.1 1.1 66.0 3.1 203 43 65.1 ± 1.1 65.1 1.1 66.0 3.1 203 43 65.1 ± 1.1 65.1 ± 1.1 65.1 1.1 66.0 3.1 203 43 65.1 ± 1.1 65.1 ± 1.1 65.1 1.1 66.0 64.0 2.0 177 56 65.6 ± 0.6 65.6 ± 0.6 65.6 ± 0.6 65.1 ± 0.6 65.6 ± 0.6 65.1	leuce	ocrático de	dos micas	(Sien	a El Rosario.	Sierras Ser	pultadas. N	IW Sonor:	a) Probet:	a El Rosari	io-1 (Feb	rero 2013 v	Junio 201	6					(2	sigma, MS	WD = 2.9; $n = 15$)
5119 1200 0.31 0.0449 2.7 0.0049 2.7 0.0049 2.7 0.0049 2.7 0.0049 2.7 0.0049 2.7 0.0049 2.7 0.0049 2.7 0.0049 2.7 0.0049 2.7 0.0049 2.7 0.0012 1.7 0.0033 5.6 0.34 1 65.1 1.1 66.0 3.1 203 43 65.1 4.1 0.054 2.8 0.006 3.1 0.033 3.0 0.38 1 65.1 0.1 7.6 65.5 4.6 0.56 5.6 65.6		110	7001	100	0.0465		~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		010		643	r		۰ د	۲. د ر	۰ د ،	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		3119	1200	15.0	0.040	C.2	0.0640	1.7	0.0101	1.1	0.0051	3.U 7 6	0.40		/.40	/	64.0	2:0	5.U 4	49.0 ۲	04.7 ± 0.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		00.07	321	12.0	0.0464	τ. α τ. σ	7/00.0	, c	2010.0	1.0	0.0033	0.0 6 1	0.20	- 1	1.00	1.1	0.00	1.0	CO.	0 1 2	1.1 ± 1.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1637	476	17:0	0.0483	1 C	0.0682	26	0.0103	1.0	0.0033	3.0	0.38	¹ c	65.8	0.0	019		13	54	65.8 ± 0.6
1711 673 0.31 0.0488 2.8 0.0682 2.9 0.010 0.8 0.0031 3.0 0.27 1 663 0.5 67.0 2.0 101 62 663.3 6.5 67.0 2.0 101 62 663.3 6.5 67.0 2.0 101 62 663.3 6.5 67.0 2.0 101 62 663.3 6.5 67.0 2.0 101 65 3.3 6.0 9.4 1.36 0.0490 2.2.4 0.0660 19.7 0.0104 5.8 0.0033 12.0 0.29 -4 66.8 3.8 64.0 12.0 830 220 66.8 \pm 3.8 1526 418 0.22 0.0493 3.5 0.0105 1.0 0.0033 1.8 0.27 2 67.4 0.6 69.0 2.0 101 67.4 4.0 1526 418 0.27 0.0493 3.2 0.0106 0.9 0.0034 3.2 0.33 2.0 67.4 0.6 69.0 2.0 67.4 0.6 <td< td=""><td></td><td>1257</td><td>1368</td><td>0.47</td><td>0.0481</td><td>1 C</td><td>0.0683</td><td>2.6 2.6</td><td>0.0103</td><td>1 0</td><td>0.0030</td><td>3.0</td><td>0.38</td><td>ı –</td><td>6.00 666 1</td><td>0.0</td><td>01.0</td><td></td><td>6 8</td><td>1 4</td><td>66.1 ± 0.6</td></td<>		1257	1368	0.47	0.0481	1 C	0.0683	2.6 2.6	0.0103	1 0	0.0030	3.0	0.38	ı –	6.00 666 1	0.0	01.0		6 8	1 4	66.1 ± 0.6
		1771	673	0.31	0.0480	2.8	0.0682	2.9	0.0103	0.8	0.0031	3.0	0.27	. –	66.3	0.5	67.0	2.0	6 6	62	66.3 ± 0.5
1526 418 0.22 0.0483 3.2 0.0700 3.5 0.0105 1.0 0.0033 1.8 0.27 2 67.4 0.6 69.0 2.0 113 70 67.4 ± 0.6 1646 468 0.23 0.0479 2.7 0.0700 2.9 0.0106 0.9 0.034 3.2 0.33 2 67.8 0.6 69.0 2.0 96.0 67.8 40.6		69	94	1.36	0.0490	22.4	0.0660	19.7	0.0104	5.8	0.0033	12.0	0.29	4	66.8	3.8	64.0 1	2.0	30 2	220	66.8 ± 3.8
1646 468 0.23 0.0479 2.7 0.0700 2.9 0.0106 0.9 0.0034 3.2 0.33 2 67.8 0.6 69.0 2.0 96.0 59 67.8 \pm 0.6		1526	418	0.22	0.0483	3.2	0.0700	3.5	0.0105	1.0	0.0033	1.8	0.27	2	67.4	0.6	69.0	2.0 1	13	70	67.4 ± 0.6
		1646	468	0.23	0.0479	2.7	0.0700	2.9	0.0106	0.9	0.0034	3.2	0.33	2	67.8	0.6	69.0	2.0 9	6.0	59	67.8 ± 0.6

Tabla B.1 (cont.) Datos analíticos U-Pb obtenidos por LA-ICPMS en zircones de granitoides laramídicos del NW de Sonora, México y SW de Arizona, USA.

						RE	LACIONE.	S ISOTÓ	PICAS CO	RREGIL	DAS					DADES	S CORRE	GIDAS	(Ma)		
Análisis/Zircón	Comentario	U [#] (ppm)	Th [#] (ppm) Th/U	$^{207}Pb/^{206}Pb^{\dagger}$	err %	$^{207}Pb/^{235}U^{\dagger}$	err %*	²⁰⁶ Pb/ ²³⁸ U [†]	err %*	²⁰⁸ Pb/ ²³² Th [†]	err %	Rho**	% disc	$^{206}Pb/^{238}U$	$\pm 2s^{*20}$	$^{17}Pb/^{235}U$	$\pm 2s^{*}$ ²⁰⁷	Pb/ ²⁰⁶ Pb	±2s* M	ejor edad (Ma) ± 2s
CD 7 10	q	1440	190	200	0.0475	2.0	0 0609	2 7	0.0107	1 0	0.0027	2 1	0.22	-	69.2	2.0	60.0	00	72.0	62	207 289
SR-7-9	B. >11	3108	1249	0.32	0.050.0	0.0	0.0735	2.5	0.0107	0.1	0.0035	1.0	0.44 0	- 1	68.4		0.20	0.2	0. <i>C</i> /	co 15	68.4 ± 0.8
SR-7-7	, E	1546	438	0.23	0.0479	3.0	0.0707	3.2	0.0107	1.1	0.0031	3.5	0.35	0	68.7	0.8	69.0	2.0	94.0	65	68.7 ± 0.8
SR-7-12	B+N	1789	758	0.34	0.0484	2.6	0.0718	2.8	0.0107	1.0	0.0034	2.9	0.37	2	68.8	0.7	70.0	2.0	121	58	68.8 ± 0.7
SR-7-14	B, >U	2347	453	0.16	0.0467	2.6	0.0694	2.8	0.0108	0.9	0.0033	3.4	0.34	-2	69.2	0.6	68.0	2.0	35.0	52	69.2 ± 0.6
SR-7-1	B+N, >U	3253	907	0.22	0.0529	3.7	0.0812	3.9	0.0110	1.2	0.0033	3.3	0.30	Ξ	70.4	0.8	79.0	3.0	326	80	70.4 ± 0.8
SR-7-13	B+N	1118	610	0.4 4:	0.0504	4.1	0.0777	4.3	0.0112	1.3	0.0034	3.6	0.31	9 .	71.8	1.0	76.0	3.0	214	90 5	71.8 ± 1.0
SR-7-21	B+N, >U	15681	2196	0.11	0.0464	3.0	0.0719	3.2	0.0112	1.1	0.0036	3.6	0.33		72.0	0.8	71.0	2.0	21.0	58	72.0 ± 0.8
SR-7-28(II) 5B-7-40(II)	Z Z	930	200	0.22	0.0487	ۍ.د د د	0.0720	6.5 0.7	0.0112	7.8	0.0055	8./	0.45	71 6	12.0	2.0	15.2	4.4	8/7	10	72.6 ± 2.0
SK-/-40(II) SD 7 10	N	84 1750	119	1.45 0.76	0.0480	5.55 7 5	06/0.0	52.9	C110.0	8.1	0200.0	12.1	CZ-U	n n	0.57	y.c 0	0.07	24.0	120	000	9.0 ± 0.67
01-/-NC		0071 2445	104	07.0	0.0400). , ,	69/0.0 0.0012	0 V	/110.0	t. 4	7200.0	0.0	40.0 40.0	nd	0.07	0.1	0.11	0.0	000	10	0.1 ± 0.67
SIC-/-JIC	D+N, >U	7447	c/ 11	15.0	7750.0	, v t o	0.0040	0.0	0.0177	0 F	0:0000		17.0	<i>y</i> 4	0.07	0.1	0.28	0.0	667 601	11/	0.1 ± 0.67
0-/-XC	B+N, >U	1001	449	10.0	0050.0	4 c	0.0040	0.0	7710.0	· · ·	9500.0	1.2	10.0	n e	0.0/	0.1	0.26	0.4	661 104	201	10.0 ± 1.0
SK-7-16	B+N, >U	199/	806	0.39 11	0.020.0	8.8	/ 160.0	8.9	0.0154	<u>.</u>	0.0038	2. C	0.17	n i	80.0	0.1	89.U	8.U	194	180	86.0 ± 1.0
SR-7-33(II)	N,>D	0/./	501	0.14	0.1049	6.1	0.2187	0.0	0.0154	4.6	0.0263	9.1	0.91	к С	1.86	6.4	200	<i>و</i> م	16/6	100	98.7 ± 4.5
SR-7-37(II)	Z	970	356	0.37	0.0491	6.5	0.1135	7.3	0.0170	4.2	0.0105	6.1	0.57	0	109	Ś	109	×	287	55	109 ± 5
SR-7-26(II)	Z	910	394	0.43	0.0501	5.8	0.1202	7.2	0.0177	4.4	0.0083	7.4	0.61	2	113	S	115	8	199	65	113 ± 5
SR-7-4	B+N	897	367	0.33	0.0503	2.6	0.1608	2.9	0.0233	1.2	0.0080	2.9	0.42	2	148	7	151	4	207	57	148 ± 2
SR-7-30(II)	Z	467	223	0.48	0.0484	6.0	0.1630	7.4	0.0242	4.5	0.0093	6.7	0.62	Ļ	154	2	153	11	241	62	154 ± 7
SR-7-32(II)	z	207	119	0.57	0.0510	13.9	0.1760	13.1	0.0253	3.2	0.0100	11.0	0.24	2	161	5	164	20	350	140	161 ± 5
SR-7-23	N, >D	314	103	0.26	0.0611	9.9	0.2253	6.8	0.0264	1.8	0.0074	5.5	0.27	18	168	б	206	13	642	135	168 ± 3
SR-7-35(II)	z	287	249	0.87	0.0522	5.2	0.2120	8.5	0.0301	6.0	0.0100	6.0	0.70	2	191	11	194	15	376	67	191 ± 11
SR-7-27(II)	Z	1275	325	0.25	0.0506	4.3	0.2439	4.5	0.0352	2.2	0.0104	9.3	0.49	0	223	S	223	8	296	65	223 ± 5
SR-7-31(II)	Z	279	101	0.36	0.0504	6.9	0.2420	9.9	0.0352	2.2	0.0111	7.5	0.34	-2	223	5	219	13	285	61	223 ± 5
SR-7-36(II)	N, >U, D	2171	184	0.08	0.0944	1.8	0.9850	3.2	0.0754	1.5	0.0191	5.8	0.45	33	469	7	969	16	1523	17	469 ± 7
SR-7-38(II)	N, >D	565	112	0.20	0.0881	2.2	1.3200	4.2	0.1079	2.8	0.0254	6.3	0.66	23	660	18	855	24	1386	27	660 ± 18
SR-7-34(II)	Z	513	10	0.02	0.1016	1.7	3.6410	3.6	0.2628	2.7	0.0778	7.5	0.76	4	1503	36	1562	31	1654	19	1654 ± 19
n = 36																Edad ²⁰	⁶ ph/ ²³⁸ I 1 v	media no	onderada	=	68.1 + 0.6
07 II																					010 T T100
Muestra Rettvlee	Monzogranit	v de hintita	(Betty I	ee Mine C	onner Mounts	ains SW	(Arizona)	Proheta	ICGE0.45	(Inlia	2015 v Linio	2017)								(2 sigma, l	MSWD = 2.7; n = 6)
		0101		0.01	0 0010		0.0704			2	0.000	0.00		5	0.02			(-	ĉ	f	2 F - 002
BettyLee-9	B, >U, D	2101	<u>^</u>	0.01	0.0619	8.0	0.0/84	1.0	7600.0	c.7	0.0 / 08	۲0.0	9.9 4.0	57	9.9C	0.I 0	10.0	7.6	115	51	$C.1 \pm 0.8C$
BettyLee-1 Dattyl ag 11	в, >0, и в <л	197	8 8	10.0	00000	0.21	77/0.0	0.71	0.0005	0.0 4	0.0070	2.02 2.02	0.20	14 20	60.4	0.7	0.07	0.0	063	001 6	00.4 ± 2.0
DettyLec-11 DettyT as 10	u, u	104	رر 105	0.00	0.0545	1. r	1400.0	, o 1 o	0.0102	t. c	0.00.0	10.0	46.U 92.0	00	00.0 66.7	0.7	00.00	0.4	007	120	00.0 ± 7.0
Bettyl ee-20	в, 70 В >II	976	353	0.40	0.0483		0.0691	- 0 5	01010	6.7 0 C	0.0070	0.0	0.34	<u></u>	7.00 66.4	1.1	2.07	4.1 1	00t	0.61	66.4 ± 1.3
BettvI ee-19	0 ~ 8	631	62	0.13	0.0677	8.1	0.0958	2.2	0.0104	2.5	0.0068	12.7	0.34	28	66.4	1.7	92.8	6.5	910	12.0	66.4 ± 1.7
BettvLee-16	B. >D	474	80	0.17	0.0559	8.2	0.0849	10.2	0.0104	3.1	0.0050	12.2	0.30	19	66.5	2.1	82.5	8.1	540	120	66.5 ± 2.1
BettyLee-21	В	658	128	0.19	0.0481	6.2	0.0683	5.9	0.0104	2.2	0.0036	8.5	0.38	-	67.0	1.5	67.5	3.9	209	38	67.0 ± 1.5
Bettylee-32(II)	Z	124	73	0.59	0.0580	17.2	0.0830	19.3	0.0105	5.9	0.0034	15.9	0.31	16	67.2	4.0	80.0	15.0	960	210	67.2 ± 4.0
BettyLee-22	в	505	61	0.12	0.0503	11.3	0.0735	11.3	0.0105	2.5	0.0046	17.1	0.22	9	67.3	1.7	71.9	7.9	400	150	67.3 ± 1.7
BettyLee-3	в	677	228	0.34	0.0558	8.2	0.0822	7.4	0.0105	2.8	0.0033	6.7	0.37	16	67.3	1.9	80.1	5.7	430	100	67.3 ± 1.9
BettyLee-13	B, >D	371	30	0.08	0.0692	11.3	0.0980	11.2	0.0105	3.3	0.0106	12.3	0.30	28	67.4	2.2	94.0	10.0	960	130	67.4 ± 2.2
BettyLee-8	в	342	88	0.26	0.0540	20.4	0.0780	19.2	0.0105	4.1	0.0050	10.4	0.21	=	67.5	2.8	76.0	14.0	650	210	67.5 ± 2.8
Bettylee-28(II)	Z	183	96	0.52	0.0495	12.7	0.0742	10.5	0.0106	3.9	0.0036	8.4	0.37	%	67.6	2.6	73.5	7.6	632	61	67.6 ± 2.6
BettyLee-14	B B B B B B B B B B B B B B B B B B B	359	L .	0.02	0.0537	12.7	0.0777	10.4	0.0106	4.9	0.0263	16.3 2.0	0.47	= 3	67.7	9.9 1.9	75.9	7.6	570	130	67.7 ± 3.3
BettyLee-2	B, >D	665	150	0.23	0.0709	8.0	0.1007	1.1	0.0107	9.6	0.0062	8.8	0.51	52	68.6	2.7	97.3	7.2	938	82	68.6 ± 2.7
BettyLee-15	B, >D	348	31	0.09	0.0610	12.6	0.0900	1.11	0.0108	3.3 1	0.0057	21.1	0.30	21	69.0	2.3	87.4	9.8	620	180	69.0 ± 2.3
Bettylee-26(II)	N, >U	1410	CC4	16.0	0.0493	6.9	17/0.0	0.0	0.0108	1.7	0.000 0	4.4	0.00	4 6	7.60	<u>.</u>	1.0/	4.4	740	8/	CI = 7.60
Bettylee-25(II)	z e	201	- - -	0.4.0	2750.0	0.01	0//0.0	0 0 01	01100	4. c	0510.0	14.4	75.0 774	- 0	1.07	7.0	0.67	0.11	000	120	7.C = 1.U/
DettyLec-4		0101	100	010	0.0527	11 0	0.670.0	6.CI 0.9	01100	0.0 C 6	0.0026	10.0	0.26	0 -	2.0/ 2.07	C 7 C	72.4	11.0	000	170	CT = COV
Dettylee-29(III)	0, N	1910	22	01.0	10000	0 5	00000	0.7	01100	7.0 7.0	00000	1.61	00.0	t 5	0.0/	7 1	4:01	+ - 7 0	074	04	777 H 0.0/
BettyLee-/ Bettyl ac 17	B, ≥U	409	47 8	c0.0	0.0640	0.0	00000	8.1 100	0.0110	4.7 4 4	0.0027	C.21	0.36	77	1.0/	1./ 2.4	05.0	1.1	720	100	70.0 ± 2.4
Bettyl ee-5		1010	69	70.0	0.0566	5 3	0.660.0	2.01	0.0112	0 v 7 v	0.0461	16.0	07.0	14	C.01	t v	85.0	4.8	205	120	717 + 25
Bettylee-30(II)	N, >D	229	, 99	0.29	0.0642	10.7	0.1000	10.0	0.0113	3.4	0.0048	15.8	0.34	25	72.6	2.5	96.3	9.6	760	120	72.6 ± 2.5
•																			•	Continua	en la siguiente página

Tabla B.1 (cont.) L	atos analíticos	U-Pb obtenid	los por LA	-ICPMS en	zircones de	granitoide	es laramídic	os del NV	V de Sonora	, México	y SW de Ari	zona, USA	;		ĺ						
Análisis/Zircón	Comentario	U [#] (ppm)	Th [#] (ppm)	Th/U	$^{207}Pb/^{206}Pb^{\dagger}$	err % [*]	²⁰⁷ Pb/ ²³⁵ U [†]	err % [*]	00000000000000000000000000000000000000	<u>KKEGII</u> err % ^{* 2}	0AS ⁰⁸ Pb/ ²³² Th [†]	err %	Rho **	6 disc	²⁰⁶ Pb/ ²³⁸ U	±2s [*] 20 [*]	Pb/ ²³⁵ U 4	<u>E28[*] 207P</u>	Ma) b/ ²⁰⁶ Pb ±2	2s [*] Mejor	edad (Ma) ± 2s
Bettyl ee-12	N. >D	72	42	0.58	0.0770	35.1	0.1100	32.7	0.0115	5.3	0.0043	13.6	0.16	28	73.9	3.9	103	32 1	220 33	30	73.9 ± 3.9
Bettylee-33(II)	Q< 'N	99	32	0.48	0.0780	20.5	0.1390	19.4	0.0127	5.9	0.0060	12.9	0.30	36	81.5	4.8	128	24 1	460 21	10	81.5 ± 4.8
Bettylee-23(II)	N, >D	395	177	0.45	0.0617	8.9	0.1200	10.0	0.0140	3.6	0.0054	8.6	0.36	21	89.9	3.3	114		770 12	20	89.9 ± 3.3
Bettylee-34(II)	Z	162	55	0.34	0.0888	5.2	3.0670	4.2	0.2456	3.7	0.0723	7.2	0.87	-	1415	47	1423	32 1	444 6	8	$1444~\pm~68$
Bettylee-24(II)	z	557	153	0.27	0.0975	4.2	3.7900	4.7	0.2795	3.3	0.0801	6.2	0.69	0	1588	46	1589	38 1	578 5	2	1578 ± 52
BettyLee-6	z	151	89	0.59	0.0987	2.6	4.1400	3.6	0.3043	2.3	0.0805	3.9	0.64	ų	1712	35	1663	31 1	595 2	3	1595 ± 23
BettyLee-18	z	297	140	0.47	0.0998	3.8	3.7900	3.7	0.2773	1.7	0.0846	4.4	0.45	-	1578	23	1591	30 1	624 4	I.	1624 ± 41
Bettylee-31(II)	N,>U	1071	1500	1.40	0.1023	3.8	4.0870	3.4	0.2923	1.5	0.0853	3.5	0.43	0 3	1653	21	1651	27 1	663 5 i	- :	1663 ± 51
Bettylee-37(II)	N, >U, D	1164	176	0.15	0.1028		3.1160	3.2	0.2203	1.7	0.0540	4.6	0.52	= ·	1283	5 20	1436	25	671 4 201 4	4	1671 ± 44
Bettylee-27(II)		588 890	C81	0.31	0.1036	6.5 0.0	4.3490	3.2	0.3043	4 4	0.0868	5.7	0.45	- :	1713	77 7	1702	1 12	694 4	0,1	1694 ± 40
Bettylee-35(II) Bettylee-36(II)	N, >U, U N.>U	808 1630	747	0.32 0.46	0.1073	2. X 7. X	2.6900 4.4050	5.5 3.2	0.1866 0.3000	2.1 1.6	0.0855	4.1 7.4	0.60 0.49	1 -	1691	53	6261 1713	20 I 27 I	750 3	15	$1/16 \pm 4/$ 1750 ± 37
) . (. ;			2		2		1	00000			1	2				238	;	· ·		
n = 37																Edad	Pb/~~U n	nedia por	$\int \frac{\partial f}{\partial t} dt = \int \frac{\partial f}{\partial t} dt$		67.9 ± 1.1
Muestra Gila-2	Monzoeranito l	encocrático	de hiotita	(Vanol	ki Ridae Gils	Mounta	ins Barry N	Goldwi	ater Air Ford	e Range	SW Arizona	Drohe	ta ICGEO.	38 (Fehre	ro 2014 v h	100 Jul	F		(7 2)	u civi , ivi s v	(I) = 2.0; II = 11)
C1. 23	6 -	763	ç7 -	c.c.v	0.0610	4 6	0.0701	C T	00100		10000		0.01	r	640	7 1	002	,	21 070	03	210 12
Gila-2-3 Gila-2-17	ממ	0/ C	142	0.24	0100.0	C./	10/0.0	15.5	0.0100	2 t 7 i/	1500.0	7.7 7 7	10.17	~ ~ ~	04:0	0.1	1 0.07	0.0	24.2 IC	80 55	04.0 ± 1.6
Gila-2-1/	n m	537	171	0.19	0.05010	2.17	0.0712	0.01 4 A	0.0103	0 V 1 C	0.0033	. e 1	0.30	o v	64.7	1.6	20.07	209	CC CC2	2 6	01:7 + 1:0 6(6,2 + 1.6
Gila-2-14	B.>U	762	186	0.21	0.0512	5.3	0.0729	5.8	0.0103	2.1	0.0033	8.0	0.37	, r	66.2	1.4	71.0	0.4	251 12	20	66.2 ± 1.4
Gila-2-9	B, >U	827	347	0.37	0.0511	6.2	0.0731	6.5	0.0104	2.1	0.0033	7.3	0.32	7	66.8	1.4	72.0	4.0	245 14	40	66.8 ± 1.4
Gila-2-11	В	599	223	0.33	0.0527	6.0	0.0757	6.4	0.0104	2.3	0.0034	7.6	0.36	10	66.8	1.6	74.0	4.0	316 13	36	66.8 ± 1.6
Gila-2-30(II)	z	168	136	0.81	0.0510	19.6	0.0690	17.4	0.0105	5.3	0.0035	9.1	0.30	9	67.0	3.5	71.0 1	3.0	500 14	40	67.0 ± 3.5
Gila-2-2	B+N, >D	137	35	0.22	0.0613	29.0	0.0889	30.2	0.0105	5.3	0.0032	11.7	0.18	22	67.0	4.0	86.0 2	0.9	551 62	26	$67.0~\pm~4.0$
Gila-2-6	B, >D	531	106	0.18	0.0551	6.4	0.0790	6.8	0.0105	2.3	0.0036	10.6	0.34	13	67.1	1.6	77.0	, 0.9	417 14	40	67.1 ± 1.6
Gila-2-18	B,>U	726	228	0.28	0.0530	9.9	0.0765	7.0	0.0105	2.5	0.0035	6.9	0.35	10	67.4	1.6	75.0	0.0	328 14	46	67.4 ± 1.6
Gila-2-5 Cil- 2 10	B D < U	338	33	0.09	0.0526	8.6	0.0762	9.1	0.0105	5.5	0.0033	2.4	0.27	10	67.5	1.6	75.0	0.0	309 IS	46 2	67.5 ± 1.6
Gila-2-19 Gila 2-16	B, >U B+N ≤D	202	240	0.26	7950 0	0.0	0.000	4.0 4	00100	6.7 4	0.0024	C. /	02.0	0 1	1.10	1.0	0.27	0.4	21 027 170 15	50	0.1 ± 1.0
Gila-2-31(II)	N_N_N	187	f 6	0.48	0.0640	18.8	0.0900	17.8	0.0106	0.2	0.0041	12.5	0.28	22	67.9	9.1	87.0 1	2.0	4/2 10 330 20	00	67.9 ± 3.4
Gila-2-20	B+N	526	246	0.41	0.0520	6.4	0.0767	6.8	0.0107	2.3	0.0034	7.2	0.33	6	68.4	1.6	75.0	0.4	285 14	4	68.4 ± 1.6
Gila-2-8	в	424	70	0.15	0.0506	7.2	0.0750	7.8	0.0108	2.4	0.0034	2.4	0.31	9	68.9	1.6	73.0	6.0	224 16	60	68.9 ± 1.6
Gila-2- 34 (II)	N, >D	141	99	0.47	0.0680	16.2	0.1010	16.8	0.0108	3.2	0.0045	14.9	0.19	29	69.0	2.2	97.0 1	5.0 1	170 13	30	69.0 ± 2.2
Gila-2-29(II)	z	554	416	0.75	0.0495	8.1	0.0719	7.1	0.0108	2.6	0.0035	5.1	0.37	2	69.2	1.8	70.4	4.8	390 6	8	69.2 ± 1.8
Gila-2-15	B+N, >D	92	50	0.48	0.0704	19.0	0.1059	19.2	0.0109	3.1	0.0035	10.3	0.16	31	70.0	2.0	102.0 1	8.0	941 40	4	70.0 ± 2.0
Gila-2-22(II)	Ζú	379	234	0.62	0.0510	21.6 2 2	0.0760	19.7	0.0109	5.7	0.0036	10.6	0.29	γΩι	70.1	4.0	74.0 1	0.4.0	450 18	80	70.1 ± 4.0
Gila-2-10 Cila 2-13	B C N d	524	સ <u>દ</u>	0.16	CICU.U	c./	0.0772	6./	0.0109	4.7 6	0.0034	10.1	0.30	00	7.0/	1.6	0.67	0.0	262 IC	80	70.1 ± 1.6
Gila-2-12 Gila-2-33/ID	N ND	1/1	771	C0.0	0.000.0	13.1	0.1320	13.6	0.0115	6.6 4.4	00000		0.10	0¢	0.01 2.57	7 7	104.0 2		330 16	00	73.5 ± 3.3
Gila-2- 7	B+N	557	6 06	0.14	0.0521	6.0	0.0825	6.4	0.0116	+ C	0.0039	2.8	0.37	}∝	74.3	81	0.021	40.0	060 13	36	74.3 ± 1.8
Gila-2-28(II)	N, >U, D	617	107	0.17	0.0928	4.1	2.4400	7.0	0.1870	5.3	0.0548	13.1	0.77	10	1109	56	1236	54 1	487 5	8	1109 ± 56
Gila-2-25(II)	z	430	41	0.10	0.0872	6.4	2.8280	3.9	0.2350	3.7	0.0616	12.8	0.94	0	1360	45	1362	30 1	380 IC	00	1360 ± 45
Gila-2- 32 (II)	z	293	73	0.25	0.0875	4.8	2.8740	4.5	0.2368	1.6	0.0659	5.6	0.35	0	1370	20	1373	33 1	379 4	1	1370 ± 20
Gila-2-27(II)	z	161	LL	0.48	0.0887	4.2	2.8860	3.5	0.2368	1.6	0.0686	4.2	0.46	-	1370	20	1379	26 1	411 4	3	1370 ± 20
Gila-2-24(II)	N, >D	54	26	0.48	0.0941	9.0	3.5100	9.4	0.2650	4.9	0.0792	11.5	0.52	-2	1553	100	1526	77 1	544 10	00	1544 ± 100
Gila-2-13	B, >U, D	1457	92	0.06	0.0983	3.2	3.3417	3.8	0.2466	2.0	0.0582	6.5	0.52	ŝ	1421	26	1491	30	591 5	8	1591 ± 58
Gila-2-33(II)	N, >U	1250	450	0.36	0.1026	4.5 0	4.2700	4.7	0.3000	0.4	0.0863	4.2	0.85	0	1689	61	1685	38	677 6	ç.	$I677 \pm 66$
Gila-2-26(II) Cil- 2 35(II)	N,>U	1590	430	0.27	0.1038	8. v 8. v	4.2750	, 10, 1	0.2990	1.5	0.0842	3.7	0.47	0 0	1686	23	1688	27 1	695 44 741 7	9 9	1695 ± 40
Gile 2 31(II)		77C	776	1.//	8 CU 1.0	4 4 Ú 4	4.320U	4 0 4 0	0196.0	0.1 0 c	00000	4 7 0 0	150	n y	1500	57 26	1604	20 1	751 2.	0 4	1751 ± 75
(III) 17- 7-DIIO	N, /D	617	1/1	10.0	C/01-0	,	00000	<i>c</i> .c	6107.0	0.4	0000.0	0 †	10.0	D	0001	07			c 10/		$0C \pm 1C/1$
n = 34																Edad ²⁰⁶	Pb/ ²³⁸ U n	nedia por	nderada =		67.7 ± 0.8
							C			4	01001	Ę	(E100						(2 s)	igma, MSV	D = 2.3; n = 13
Muesua <u>Monawk-1</u>	Guers tonat	ILICO ALLIDOL		0S IIICAS	(MODAWK M	ountains,		al valle)	, 5 W AIIZU	13) FT		nr) 70-	(/107.0III	t	6 65	ć	c to	0	10	4	
Mohawk1-3 Моћawk1-13	В+N, >U, υ R+N >D	1139	48 47	0.25	0.06/4	14. / 18. 6	0.080.0	13.5 163	0.0100 0.0100	7 V 7 V	0.0042 0.0043	13.4	15.U 0.28	17	63.3 644	0.7 0 C	77.0 1	2 0 C	1c 020 170 37	10	03.5 ± 2.0 64.4 + 2.9
AT - TV M BILOTAL	, i	ì	ř		~~~~	2.01	~~~~~	10.7	~~~~~~	ì	2-222	Ċ	0710	2	5	ì		2.2	; ¢	0/	
																			3	ontinua en 1	a siguiente página

Tabla B.1 (cont.) D.	atos analíticos	U-Pb obteni	dos por L∕	A-ICPMS er	l zircones de	granitoid RE	es laramídic LACIONE	os del NV S ISOTÓ	/ de Sonora PICAS CC	., México IRREGII	y SW de Ar DAS	izona, US∕	÷			DADE	S CORRI	EGIDAS	S (Ma)		
Análisis/Zircón	Comentario	U [#] (ppm)	Th [#] (ppm) Th/U	$^{207}Pb/^{206}Pb^{\dagger}$	err %	$^{207}{\rm Pb}/^{235}{\rm U}^{\dagger}$	err %	$^{206}Pb/^{238}U^{\dagger}$	err %	²⁰⁸ Pb/ ²³² Th [†]	err %	Rho**	% disc	$^{206}Pb/^{238}U$	$\pm 2s^{*2}$	$^{07}Pb/^{235}U$	$\pm 2s^{*20}$	⁷ Pb/ ²⁰⁶ Pb	$\pm 2s^*$ N	lejor edad (Ma) ± 2s
Mohawk1-1	B+N, >D	93	36	0.39	0.0654	13.8	0.0920	14.1	0.0102	4.7	0.0037	15.9	0.33	28	65.5	3.1	91.0	12.0	720	290	65.5 ± 3.1
Mohawk1-19	B+N	94	35	0.38	0.0551	16.3	0.0750	16.0	0.0102	5.0	0.0044	17.0	0.31	10	65.7	3.2	73.0	11.0	480	290	65.7 ± 3.2
Mohawki-10	B+N, >U	167	3	0.22	0.0522	9.4	0.0727	9.6	0.0103	0.7	0.0039	13.1	0.27		8.00		0.17	0.0 , 7 0	320	200	65.8 ± 1.7
Mohawki-25	N+21 0	104	çq 9	0.02	0.0640	20.3	07600	19.6	0.0103	0.6 0.6	0.0037	12.3	0.18	3 <	6.60	4. r	88.0	0./1	0/5	990 240	65.9 ± 2.4
Mohawk1-4 Mohawk1-18	a 2	106	90 72	05.0	0.0406	15.5	0.0690	1.21	5010.0	0.0	0.0031	10.6	16.0		00.5 999	0.4 0	67.0	10.0	001 60	300	8 C + 2 99
Mohawk1-14	z	162	104	0.64	0.0510	12.4	0.0737	13.6	0.0104	4.6 4.7	0.0037	9.1	0.25	- 6	6.99	2.2	73.7	10.0	290	250	66.9 ± 2.2
Mohawk1-9	В	133	57	0.43	0.0549	13.8	0.0780	12.8	0.0105	3.9	0.0039	13.1	0.31	Ξ	67.0	2.6	75.3	9.9	420	250	67.0 ± 2.6
Mohawk1-17	B, >U	302	69	0.23	0.0464	10.1	0.0666	10.4	0.0105	2.9	0.0032	12.2	0.28	é	67.4	2.0	65.2	6.6	50	200	67.4 ± 2.0
Mohawk1-23	в	131	45	0.34	0.0533	11.6	0.0772	11.8	0.0105	3.4	0.0036	13.5	0.29	10	67.6	2.3	75.1	8.6	270	230	67.6 ± 2.3
Mohawk1-21	B+N, >D	94	39	0.42	0.0611	14.1	0.0870	14.9	0.0106	4.2	0.0036	17.9	0.28	19	67.7	2.8	84.0	12.0	550	290	67.7 ± 2.8
Mohawk1-24	B+N, >D	16	4	0.49	0.0583	14.9	0.0830	15.7	0.0106	4.9	0.0035	14.4	0.31	15	67.8	3.3	80.0	12.0	380	290	67.8 ± 3.3
Mohawk1-20	B, >U	226	49	0.28	0.0522	10.2	0.0745	10.9	0.0107	3.6	0.0036	12.4	0.33	5	68.4	2.4	73.7	7.4	290	210	68.4 ± 2.4
Mohawkl-11	в	152	40	0.26	0.0545	13.0	0.0780	12.8	0.0107	3.2	0.0035	14.8	0.25	6	68.4	2.2	75.5	9.8	300	260	68.4 ± 2.2
Mohawk1-22	B, >D	149	55	0.37	0.0602	13.8	0.0900	13.3	0.0108	8. e	0.0038	11.2	0.29	21	69.0 1 00	2.6	87.0	11.0	610	280	69.0 ± 2.6
Mohawk1-6	B	189	17	0.15	0.020.0	13.0	0.0740	12.7	0.0108	7.4	0.0039	21.4	0.19	- n -	1.69		71.2	x x	160	002	69.1 ± 1.7
Mohawk1-7	B+N	811	69	80.0	0.0491	13.0	0.0/40	C.51	0.0108	4. ¢	0.0035	10.7	0.33	4 5	1.60	5.1 2 2	1.27	9.6	120	760	69.1 ± 3.1
Mohawki-16	N, >U	126	25 G	0.54	0.0688	12.6	0660.0	13.1	0.0108	بې د 4.0	0.0043	14.5	0.20	17	6.60 9.03	5.7	0.66	12.0	06/	760	69.5 ± 2.3
Mohowki-2	D, d	640 0	5 5	17.0	0.0400	0.7	01/0.0	0.21	6010.0	0 0	6500.0	14.0	05.0	0 %	07.0	0.7	0.60	15.0	0/	100	0.7 ± 0.60
Mohawk1-15 Mohawk1-8	N+Q	07 133	CC 24	0.34	0.050.0	10.7	0.1070	9.01 8.11	0.0113	0 1 0	CCUU.U 7200.0	0.01 8 14 8	06.0	00	77.5	4. v 4. v	0.201	0.01	000 480	050	7.5 ± 3.5
Mohawk1-12	B+N, >U	402	136	0.34	0.0481	7.3	0.0812	8.0	0.0123	54	0.0042	9.4	0.31		78.7	0.1 9.1	79.1	6.1	70	150	78.7 ± 1.9
č																	10	;			
n = 24																Edad		media p	onderada		67.6 ± 0.8
Muestra Mohawk-3	Monzogran	ito de dos n	nicas (N	Aohawk Mc	untains. San	Cristohal	Vallev. SW	Arizona	Prohets	ICGEO-	40 (Octul	re 2016 v	Junio 2013	5					-	(2 sigma,	MSWD = 1.5; n = 13)
Mohawk-3-21	R >D	507	26	0.15	0.0582	8	0.0725	C L	0 0092	8	0.0041	13.1	0.53	, 17	58.7	"	71.0	49	580	120	587 + 22
Mohawk-3-20	u	2520	263	010	0.0480	5.0	0.0613	1.4	0.0094	61	0.0030	7.4	0.41		60.0	12	60.4	8	199	26	50.0 ± 1.2
Mohawk-3-13	B, >U	1163	315	0.27	0.0475	6.5	0.0628	5.9	0.0095	2.2	0.0031	6.5	0.38		6.09	1.51	61.8	3.5	276	20	60.9 ± 1.3
Mohawk-3-32(II)	N, >U	1470	560	0.38	0.0486	9.5	0.0697	13.1	0.0096	4.3	0.0026	15.7	0.33	9	61.7	2.6	65.3	6.4	430	140	61.7 ± 2.6
Mohawk-3-8	В	659	166	0.25	0.0494	6.9	0.0648	6.0	0.0098	1.9	0.0035	6.6	0.32	2	62.8	1.2	64.3	3.9	307	83	62.8 ± 1.2
Mohawk-3-16	B, >U	1467	203	0.14	0.0494	5.7	0.0658	5.8	0.0098	2.4	0.0031	8.0	0.42	2	63.1	1.5	64.6	3.6	266	84	63.1 ± 1.5
Mohawk-3-23	B+N	755	173	0.23	0.0529	6.4	0.0718	5.8	0.0099	2.3	0.0035	7.8	0.40	10	63.5	1.5	70.4	4.0	364	56	63.5 ± 1.5
Mohawk-3-19	B, >U	1409	421	0.30	0.0489	5.3	0.0681	4.7	0.0102	1.8	0.0031	5.7	0.38	ŝ	65.2	1.1	6.99	3.1	207	43	65.2 ± 1.1
Mohawk-3-17	E C	441	0 <u>5</u>	0.11	0.0495	×.2	0.0672	8.0	0.0102	2 x x	0.0044	13.3	0.34	- ,	65.3	1.8	65.9	5.2	369	98	65.3 ± 1.8
Mohawk-3-12 Mohawk-3-7	n z	524 234	118	0.50	0.0472	6.7 0 11	0.0674	9.1 9.8	0.0104	7.7	0.0034	C.UI 8.8	0.30	n c	00.4 66.7	8.1 C	08./ 66.9	5.8 6 1	421	06 83	00.4 ± 1.8
Mohawk-3-22	 B.>U	1156	201	0.17	0.0472	5.7	0.0673	5.1	0.0104	1.9	0.0034	7.1	0.38		66.7	1.1	66.1	3.2	210	60	66.7 ± 1.3
Mohawk-3-4	В	384	194	0.51	0.0487	9.0	0.0696	8.5	0.0104	2.7	0.0031	6.4	0.32	2	66.8	1.8	68.1	5.6	395	89	66.8 ± 1.8
Mohawk-3-3	в	006	297	0.33	0.0615	6.5	0.0846	5.9	0.0104	2.9	0.0036	8.9	0.49	19	6.99	1.9	82.4	4.7	668	100	66.9 ± 1.9
Mohawk-3-38(II)	z	354	170	0.48	0.0506	15.2	0.0720	18.1	0.0106	3.6	0.0037	11.7	0.20	ŝ	67.6	2.4	70.0	12.0	510	130	67.6 ± 2.4
Mohawk-3-18	B+N, >D	246	132	0.54	0.0588	11.2	0.0812	10.2	0.0105	с, с о	0.0037	4.0	0.32	4 .	67.6	2.2	78.9	7.8 1.8	700	120	67.6 ± 2.2
Mohawk-3-0	N I Z	1103	202 202	14.0	0.0480	о. ч ч	00/0.0	0.0	0.0106	0.7 C	0.0024	7.0	070		6.70	0 I 1	00.0).(3.6	1070	c 19	C.I ± C.10 2 I ± 0 73
Mohawk-3-37(II)	Z	136	66	0.73	0.0520	23.1	0.0710	21.1	0.0106	7.0	0.0036	19.2	0.33	-	68.2	6.4	73.0	16.0	610	140	68.2 ± 4.7
Mohawk-3-1	B, >U	1036	301	0.29	0.0473	5.9	0.0698	5.3	0.0107	1.9	0.0038	6.6	0.35	0	68.6	1.3	68.4	3.5	277	75	68.6 ± 1.3
Mohawk-3-10	В	981	109	0.11	0.0492	6.3	0.0707	5.8	0.0107	1.9	0.0039	8.3	0.32	1	68.7	1.3	69.2	3.9	265	56	68.7 ± 1.3
Mohawk-3-40(II)	N, >D	175	72	0.41	0.0534	13.7	0.0808	11.8	0.0108	4.6	0.0033	13.6	0.39	12	69.3	3.2	78.5	9.0	555	92	69.3 ± 3.2
Mohawk-3-30(II)	N, >U	1621	76	0.05	0.0498	7.2	0.0731	8.3	0.0110	3.4	0.0036	23.5	0.40	7	70.2	2.4	71.6	5.7	170	48	70.2 ± 2.4
Mohawk-3-5	B, >U, D	1290	348	0.27	0.0671	6.9	0.0961	5.4	0.0112	5.4	0.0051	6.9	1.00	. 23	71.8	3.9	93.0 20.7	4.8	780	130	71.8 ± 3.9
Mohawk-3-11 M-11- 2 2000	H N	517	188	0.24	0.0480	6.9 1 E J	0.0743	6.2	0.0112	7.4 4 4	0.0038	7.3	0.39	1 7	72.0	1.7	72.7	4.4	304	64	72.0 ± 1.7
Mohawk-5-59(II)	N, N N VI	0171	C6	0.02	7/CN/0	7.CI	0.0770	14.0 5 2	0.0118	7 C	00000	0.71	0.40	9 0	7.71	4 C	76.1	2.8	100/ 276	100	7.4 ± 7.7/
Mohawk-3-7	р, (с В	710	130	0.18	0.0490	t e S	7970.0		0.0121	- 9 C	0.0044	o./ 8 5	0.46		0.C/ 2.TT	0.7	1.07	0.0 1 1	075	, F	775 + 200
Mohawk-3-31(II)	N,>D	, 99	27	0.41	0.1380	14.5	0.2390	13.4	0.0127	5.4	0.0107	16.8	0.40	, 62	81.2	, 4 4	212	26	2180	180	81.2 ± 4.4
Mohawk-3-24	B+N	588	110	0.19	0.0865	4.2	1.1600	13.8	0.0980	12.2	0.0206	11.7	0.89	19	594	72	730	76	1344	61	594 ± 72
																				Continuc	t en la siguiente página

Tabla B.1 (cont.) I	Datos analíticos	U-Pb obteni	dos por L∧	N-ICPMS e	n zircones de	granitoid DF	es laramídico	os del NV	V de Sonora	, México	y SW de Ari:	zona, USA				FDADE	CORPL	CIDAS	(Ma)		
Análisis/Zircón	Comentario	U [#] (ppm)	Th [#] (ppm	Th/U	$^{207}\mathrm{Pb}/^{206}\mathrm{Pb}^{\dagger}$	err %	²⁰⁷ Pb/ ²³⁵ U [†]	err %	²⁰⁶ Pb/ ²³⁸ U [†]	err % 2	⁰⁸ Pb/ ²³² Th [†]	err %*	Rho**	% disc	$^{206}Pb/^{238}U$	±2s ^{* 21}	¹⁷ Pb/ ²³⁵ U	±2s ^{* 207}	Pb/ ²⁰⁶ Pb ±	±2s [*] Me	jor edad (Ma) ± 2s
Mohawk-3-29(II)	N, >U	2020	910	0.45	0.0964	3.7	3.4080	3.8	0.2575	2.4	0.0675	9.3	0.63	2	1476	32	1506	33	1553	40	1553 ± 40
Mohawk-3-9	N, >D	735	446	0.61	0.0981	3.9	3.1870	3.1	0.2344	1.5	0.0782	4.7	0.48	۲.	1357	18	1454	25	1591	58	1591 ± 58
Mohawk-3-35(II) Mohawk-3-27(II)	N >11	146 2090	187	2C.U	0.1002	4 6 V X	4.0130 3 9290		0.2884	c. 1 8	0.0766	4.0	0.53		1634	7 2	1619	51 77	161/	68 41	101 ± 80
Mohawk-3-28(II)	N >D	275	86 86	0.07	0 1009	4 0 0	3 6570	3.6	0.2620	1.6	0.0744	04	0.45	> 4	1500	9 5	1561	280	1636	40	1636 + 40
Mohawk-3-36(II)	z	390	60	0.15	0.1011	3.9	3.7790	3.4	0.2734	1.5	0.0801	4.2	0.45	. 6	1558	51	1587	27	1637	45	1637 ± 45
Mohawk-3-14	B, >U	1070	430	0.40	0.1005	3.9	3.7100	4.6	0.2690	4.1	0.0807	8.3	0.89	2	1532	56	1570	37	1637	42	1637 ± 42
Mohawk-3-26(II)	z	210	226	1.08	0.1027	4.8	4.1300	4.1	0.2924	2.3	0.0842	4.0	0.55	0	1653	33	1659	32	1656	44	1656 ± 44
Mohawk-3- 33 (II) Mohawk-3- 34 (II)	N N	373	100	0.27	0.1039	4. 4 9. 9	4.2100	4.0	0.2968	2.8	0.0936	6.0	0.69	0 0	1675	41	1676	34 7	1712	69 40	1712 ± 69
(11) -C -C-WWDIN	N, /O	1001	107	0.10	7001.0	0.0	100001	t. n	+700.0	0.7	CK00.0	1.	00.0	0	CO/ 1	67	1 / 10	1	. 17/1	2	0+ I 17/1
n = 40																Edad ²⁰	•Pb/ ²³⁸ U	media p	onderada =		67.6 ± 0.7
Musette Tinaiae 1	Montoria	to louroomy	tion do doe	, income	Tinoios Altos	Monotoni	Dome M	Coldmon	ar Air Earon	Don co	(onorie V /II.	Dechodo	UCCEO,	35 (Eah	T v: 110 care	100 0 101	ŕ		2	sigma, N	SWD = 2.0; n = 12)
Mucsua IIIajas-I	IN OILZOGFAIL	to reacocra	inco ne nor		(1111ajas A11as	s Mountai	ns, barry M	. Goldwa		c Kange, c	o and and and a second a secon	LTODEL.		ioon) cco	ero 2014 y J	102 OIIIU	()				
Tinajas-1-21	В, >U	1425	850 251	0.26	0.0487	4 4. c	C890.0	7.0	0.0102	6.7	0.0030	4.0 4.0	05.0	7 °	65.0 65.0	0.7	6/.0	0.4	133	104 8.4	05.4 ± 2.0 25.0 ± 2.0
Tinajas-1- 14 Tinajas-1-6	в В >П	7483	615	0.70	0.0493	, x	0.000.0	4 4 8 8	0.0103	6.7 0 C	0.0032	1 K 1 K	0.61	0 4	629	0.7	0.4.0	4.0	164	40 10	65.9 ± 2.0
Tinajas-1-4	e B	1093	245	0.20	0.0511	8.0	0.0728	9.6	0.0103	2.9	0.0033	3.7	0.30		66.3	2.0	71.0	6.0	244	86	66.3 ± 2.0
Tinajas-1-16	B,>U	1793	452	0.23	0.0489	4.0	0.0699	5.0	0.0104	2.9	0.0032	3.8	0.59	4	66.4	2.0	69.0	4.0	141	96	66.4 ± 2.0
Tinajas-1-12	B, >U	2096	298	0.13	0.0489	3.5	0.0700	4.5	0.0104	2.9	0.0032	4.3	0.64	4	66.5	2.0	69.0	2.0	143	82	66.5 ± 2.0
Tinajas-1-17	B, >U	1658	147	0.08	0.0504	4.2	0.0723	5.1	0.0104	2.9	0.0034	5.3	0.57	9	66.8	2.0	71.0	4.0	214	98	66.8 ± 2.0
Tinajas-1-10	B,>U	2418	410	0.15	0.0483	3.1	0.0691	4.3	0.0104	3.1	0.0032	3.7	0.71	н	67.0	2.0	68.0	2.0	113	74	67.0 ± 2.0
Tinajas-1-8	B+N, >D	543	214	0.35	0.0578	9.9	0.0840	7.3	0.0106	3.2	0.0033	6.0	0.4 4	17	68.0	2.0	82.0	6.0	524 1	148	68.0 ± 2.0
Tinajas-1-11	В	779	346	0.40	0.0501	9.9 2.2	0.0742	7.3	0.0107	3.0	0.0034	8.6	0.41	Ś	69.0	2.0	73.0	6.0	198	156 2.1	69.0 ± 2.0
Tinajas-1-20 Tinajas 1-20	B, >U	2229 727	276	0.11	0.0488	5.5 0.11	0.0728	0.0 9.01	0.0108	5.8	0.0034	2.9 2.7 2	0.50 C20	7 1	69.3 60.5	2.0	71.0	10.0	139	84	69.3 ± 2.0
Tinajas-1-30(II) Tinajas-1-28(II)	N. >U	5570 5570	1310	0.24	0.0492	4.3	0.0729	3.8	0.0109	0.0	0.0034	C 17	0.46	2	C.60	0.4 1	71.4	2.7	179	54	69.7 ± 1.2
Tinajas-1-27(II)	z	403	200	0.50	0.0489	10.8	0.0730	9.7	0.0109	4.0	0.0039	8.7	0.41	7	69.8	2.8	71.4	6.7	440	130	69.8 ± 2.8
Tinajas-1-15	B, >U	4988	625	0.11	0.0479	2.8	0.0721	4.1	0.0109	2.9	0.0033	3.7	0.72	1	70.0	2.0	71.0	2.0	93	68	70.0 ± 2.0
Tinajas-1-13	B+N, >D	534	98	0.16	0.0540	12.0	0.0823	13.3	0.0110	3.1	0.0035	4.6	0.23	П	71.0	2.0	80.0	10.0	372 2	274	71.0 ± 2.0
Tinajas-1-32(II)	z	71	33	0.46	0.0480	22.9	0.0720	22.2	0.0111	5.0	0.0044	14.6	0.22	ς , ι	71.1	3.5	69.0	15.0	800	180	71.1 ± 3.5
Tinajas-1-9 Tinajas-1-5	B+N B+N >II	545 5104	061	0.49	0.0202	0. C	0.0808	8.3 4 1	0.0119	3.0	0.0040	1.0	0.39	0 9	0.6/	0.7	0.6/	0.0 4 0	101	8/1	760 ± 2.0
Tinajas-1-3	B. >D	946	762 62	0.07	0.0547	0.7 6	0.1305	14.0	0.0173	0.5	0.0054	8.7	0.50	n II	111	?; ∝	125	16	398	218	111 ± 8
Tinajas-1-19	B+N, >D	670	110	0.15	0.0664	4.9	0.2515	9.8	0.0239	8.4	0.0063	8.0	0.87	33	153	12	228	50	818	104	153 ± 12
Tinajas-1-2	B, >D	985	163	0.15	0.0695	3.3	0.3767	17.1	0.0324	16.8	0.0114	20.0	0.98	37	206	34	325	48	912	68	206 ± 34
Tinajas-1-22	B+N, >U, D	2168	243	0.10	0.0829	3.3	0.4633	5.7	0.0406	3.9	0.0121	4.0	0.69	34	256	10	387	18	1266	99	256 ± 10
Tinajas-1-24	B+N, >U, D	6687	081	0.06	0.0820	5.0	0007 C	1.0	0.0421	8. 2 c	0.0126	4. c	c/.0		200	10	595 2021	10 20	1245	22	266 ± 10
11пајаs-1- 3 /(ш) Tinajas-1- 18	z z	487	40	0.07	0.0033	4. - 6	2.0220	4 F	0.2020	c.7 1 c	0.0720	7./ 21	0.75	יע	C011	C7 07	120/	۶ ۶	c1 c1 1403	10	67 ± 6011
Tinajas-1-25(II)	zz	480	f 4	0.0	0.0938	5.7	3.2400	7.1	0.2589	3.7	0.1020	24.5	0.52	10	1483	64	1482	38 7	1508	72	1508 ± 72
Tinajas-1-39(II)	Z	582	217	0.37	0.0967	3.9	3.4750	3.5	0.2583	1.6	0.0815	3.6	0.46	3	1481	21	1520	27	1559	44	1559 ± 44
Tinajas-1-31(II)	N, >U	1680	342	0.20	0.1007	3.8	3.9460	3.3	0.2865	2.1	0.0880	5.0	0.65	0	1624	30	1623	27	1630	61	$I630 \pm 6I$
Tinajas-1-34(II)	z	1410	860	0.61	0.1015	3.7	3.8720	3.1	0.2783	1.5	0.0795	3.6	0.48	-	1583	21	1606	24	1647	48	1647 ± 48
Tinajas-1- 38 (II)	z ;	505	221	0.4 4 :	0.1020		4.1020	3.2	0.2924	1.4	0.0831	3.7	0.45	0	1653	21	1654	26 2.	1662	35	1662 ± 35
T Inajas-1-29(II)	z	180	24	0.13	0.1032	4 v 4 v	3.9890	 	0.2881	4.1	0.0800	13.8	0.65	0 0	1632	35	1631	31	1663	56	1663 ± 56
Tinajas-1-35(II)	z	106	96 96	16.0	0.1014	v v	4.1100	4.9 9.9	0.2948	1.7	0.0867	1.0	0.36	o -	C001	57	1004	4 ;	1000	64 4 4	C7 = C001
Tinajas-1-3 Tinajas-1-30(II)	N N	1120	120	0.30	0.1041	2.7 1 - 7	4 2080	x.x	0.2962	0.5 7 4	0.0000	0.5 7 4	6/.0		16/2	4 %	C801	78 86	1011	44 25	1099 ± 44
Tinajas-1-33(II)	B+N	149	35	0.23	0.1081	5.6	4.4000	5.5 5.5	0.3030	4.3 1.3	0.0882	6.9	0.94	0	1704	8 G	1111	38 6	1753	60 74	1753 ± 47
																E 4 - 1 20	6 m. /238 r.	-			
n = 30																Edad		media p	onderada =	; 	00.9 ± 0.9
Muestra SR-3 Si	enogranito leuc	socrático de	dos micas	s (Sien	a El Rosario.	Sierras S	epultadas. N	W Sonor	a) Probet	a El Rosa	rio-1 (Fet	orero 2013	v Junio 2	(210)					7)	sıgma, N	SWD = 1.7; $n = 10$)
SR-3-2	, В.>U	8659	3261	0.30	0.0497	3.4	0.0684	3.7	0.0100	0.8	0.0032	1.0	0.21	4	64.0	0.5	67.0	2.0	180	80	64.0 ± 0.5
SR-3-13	B, >U	4769	403	0.07	0.0492	2.0	0.0688	2.2	0.0102	0.9	0.0040	2.8	0.41	. 4	65.4	0.6	68.0	1.0	155	47	65.4 ± 0.6
																			0	Continua	en la siguiente página

1 4014 D.1 (COIIC) 1			vit ind so			DIMINI		VI IDD SU		DEFCI		0114, 0.37				2DADF6	Idduu	SCIDAS	(Mo)		
Análisis/Zircón	Comentario	U [#] (ppm)	Th [#] (ppm)	Th/U	$^{207}Pb/^{206}Pb^{\dagger}$	err %	²⁰⁷ Pb/ ²³⁵ U [†]	err %	⁰⁶ Pb/ ²³⁸ U [†]	err %*	⁰⁸ Pb/ ²³² Th ⁺ o	err %*	Rho ** 9	6 disc	²⁰⁶ Pb/ ²³⁸ U	$\pm 2s^{*20}$	⁷ Pb/ ²³⁵ U	±2s [*] ²⁰⁷	Pb/ ²⁰⁶ Pb	±2s* Me	jor edad (Ma) ± 2s
6B 3 30	6	1000	670	1.0	0 040 0	۲ ر	1020.0	36	0,010,0	00	0.0033	г с	20.05	v	2 27	20	007	00	771	57	70 + 337
SR-3-20 SR-3-6	ы Ц>Ц	4530 14530	608 803.8	0.49	0.0468	4 C	0.0666	0.7 7 4	0.0103	0.0 0 0	cc00.0	1.7	0.37 0.37	4 ر	0.00 1.99	0.0	00.U	0.7	38.0	/ C	0.0 ± 0.00 9.0 + 1.33
SR-3-77	р) (п	LL C L	407	0.31	0.0475	110	0.0681	- r - r	01010	0.1	1000.0	0.7 8 C	95.0	1 -	1.00	0.0	0.20	0.1	0.05	0 X X X	0.0 ± 1.00
SR-3-9	n m	2860	1925	0.54	0.0488	2.1	0.0698	2.3	0.0104	1.0	0.0031	2.6	0.42	- ന	66.6	0.6	69.0 69.0	2.0	136	49 49	66.6 ± 0.6
SR-3-11	B, >U	38933	16858	0.35	0.0478	2.3	0.0687	2.5	0.0104	1.0	0.0032	2.8	0.39	0	66.8	0.6	67.0	2.0	88.0	54	66.8 ± 0.6
SR-3-23	Z	1292	264	0.16	0.0505	2.5	0.0721	2.7	0.0104	1.1	0.0033	3.4	0.39	9	66.8	0.7	71.0	2.0	219	58	66.8 ± 0.7
SR-3-14	B	1490	362	0.20	0.0496	5.6 7	0.0713	3.1	0.0105	1.0	0.0033	4. c	0.31	4 -	67.0	0.6	70.0	2.0	177	68 50	67.0 ± 0.6
SR-3-21 SP-3-8	в, >0 в	82162	/ 0CU 1	0.37	0.0450	1.7	0.0670	6.7 2 F	01000	0.0 0 0	0.0033	6.7 L C	0.37 0.37		07.0	0.0	0/.0	0.2	0.06	60 74	0.0 ± 0.0 68.0 ± 0.6
SR-3-1	B,>U	13957	3925	0.23	0.0465	2.3	0.0683	2.5	0.0106	0.8	0.0033	2.8	0.34	, .	68.0	0.6	67.0	2.0	24.0	47	68.0 ± 0.6
SR-3-12	В	2103	545	0.21	0.0488	2.1	0.0715	2.3	0.0107	0.8	0.0036	2.8	0.37	5	68.5	0.6	70.0	2.0	140	50	68.5 ± 0.6
SR-3- 3	В	1342	581	0.35	0.0470	2.5	0.0694	2.7	0.0107	0.9	0.0032	2.8	0.35	-	68.6	0.6	68.0	2.0	50.0	55	68.6 ± 0.6
SR-3-27(II)	Z	755	351	0.47	0.0502	10.2	0.0740	9.7	0.0109	2.8	0.0036	6.9	0.28	4	69.69	1.9	72.4	6.8	400	110	69.6 ± 1.9
SR-3-17	N, >D	322	287	0.72	0.0570	5.8	0.0842	6.0	0.0109	1.4	0.0034	3.6	0.23	15	69.69	1.0	82.0	5.0	492	129	69.6 ± 1.0
SR-3-28(II)	z	640	152	0.24	0.0528	8.9	0.0788	9.0	0.0109	4.1	0.0040	12.1	0.46	6	70.1	2.8	76.8	6.7	459	70	70.1 ± 2.8
SR-3-7	z;	462	163	0.28	0.0515	4.4	0.0787	5.1	0.0111	1.2	0.0035	1.1	0.23	∞ •	71.0	0.8	77.0	4.0	264	109	71.0 ± 0.8
SR-3-10 SP 2 26/II)	Z Z	1026	214	0.17	0.0485	3.1 0 1 0	0.0/40	5.5 0.90	0.0112	0.1	0.0036	3.4 13 6	0.30		< 17	0.7	12.0	20.0	771	71	7.0 ± C.1/
SR-3-30(II) SR-3-30(II)	d≻ N	100	00	1 14	0.0440.0	0.10	0.1420	12.0	0.0113	1.1	/ 500.0	0.01	0.47	1	77.6	0.0 F 6	133	20:0 15	1450	160	7.5 ± 7.17
SR-3-26(II)	d × N	204	173	0.78	0.0542	5. 7	0.0849	4 7	0.0114	0.7 C	0.0036	3.6	920	5 5	0.71 0.71	60	6	94	379	102	0.0 ± 0.27
SR-3-31(II)	Z	202	125	0.62	0.0503	11.7	7670.0	11.5	0.0115	3.7	0.0039	8.8	0.32	2 5	73.6	2.6	77.3	8.6	560	120	73.6 ± 2.6
SR-3-29(II)	z	74	53	0.71	0.0486	16.3	0.0790	16.5	0.0122	4.6	0.0034	14.2	0.28	0	78.3	3.6	78.0	12.0	650	140	78.3 ± 3.6
SR-3-34(II)	Z	400	476	1.19	0.0500	5.6	0.1536	5.9	0.0223	2.1	0.0073	5.3	0.36	2	142	ю	146	8	289	59	142 ± 3
SR-3-33(II)	z	630	381	0.60	0.0515	6.4	0.1704	6.5	0.0247	4.0	0.0090	8.1	0.63	-	158	٢	159	6	316	96	158 ± 7
SR-3-19	z	265	200	0.61	0.0544	3.8	0.1921	4.2	0.0255	1.8	0.0075	2.9	0.43	6	162	ю	178	7	386	86	162 ± 3
SR-3-38(II)	Z	310	148	0.48	0.0516	11.4	0.2090	11.5	0.0296	4.1	0.0122	7.5	0.35	2	188	٢	192	20	349	64	188 ± 7
SR-3-40(II)	z	171	105	0.62	0.0529	8.3	0.2120	9.0	0.0307	5.5	0.0107	6.6	0.62	-	195	Ξ	194	15	496	84	195 ± 11
SR-3-5	z;	358	207	0.47	0.0530	3.2	0.2255	3.5	0.0307	1.5	0.0110	2.8	0.42	Ś	195	m	206	۲.	329	73	195 ± 3
SK-3-32(II) GP 3 22(II)	z	783	2 1 5	1.57	0.0504	8.9 9.0	0.24/0	8.9	0.0350	7.5	0.0112	5.0 V	0.41	o ,	522	χt	724	<u>8</u> 2	797	69	8 = C22
SK-3-20(II) CD 2 4	N D	502	052	0.00	0.0498	7.6 7.6	0.2480	C.01	005000	5.1 2.1	0.0115	0.0	0.30		C77		477	17 0	519 225	٥ <i>١</i>	$c \pm vvc$
SR-3-37(II)	N N	473	077 97	0.13	7650.0	 	0.0690	4.5 1	0.0386	91	01100	0.0	CC.0	n -	747	n 4	7C7	o 9	255	47	6 H ++2 4 + 770
SR-3-30(II)	zz	5 4 2	g v	0.09	0.020.0	0.0 7 4	0.0202.0		0.2422	3.0	0.0500	42 0	0.39		1398	+ %	1398	9	1395	è v	244 ± 38
SR-3-35(II)	z	361	152	0.42	0.1072	1.9	4.5190	3.3	0.3089	2.1	0.0888	4.7	0.63	0	1735	32	1734	28	1745	18	1745 ± 18
n = 36																Edad ²⁰	⁵ Ph/ ²³⁸ I I	media n	onderada	"	66.8 ± 0.4
20																				O cioma N	$100 = 2.4 \cdot n = 7$
Muestra Tinajas	Monzogranito	de dos mica	s (Tina	jas Altas N	Iountains, Ba	rry M. G	oldwater Ai	Force R	nge, SW A	rizona)	Probeta ICG	EO-86 (Octubre 2	016 y Junio	2017)					(z sigua, n	() — п, +:7 — гл сп
Tinaias-14	n m	623	85	014	0.0491		0 0645	67	0.0095	2 2 6	0.0035	14 4	0.41	, 4	61.0	16	634	41	970	68	610 + 16
Tinajas-18	B,>U	2041	217	0.11	0.0484	5.0	0.0640	, 4 4.	0.007	1.5	0.0032	6.3	0.35		62.1	1.0	63.0	2.7	152	47	62.1 ± 1.0
Tinajas-16	B, >D	722	31	0.04	0.0632	7.1	0.0828	6.3	0.0097	2.1	0.0116	13.8	0.33	23	62.3	1.3	80.6	4.9	704	97	62.3 ± 1.3
Tinajas-4	B, >U	1887	391	0.21	0.0485	5.6	0.0649	4.8	0.0098	1.8	0.0032	5.7	0.39	2	62.7	1.1	63.9	2.9	232	59	62.7 ± 1.1
Tinajas-15	В	634	33	0.05	0.0498	7.2	0.0677	9.9	0.0099	1.9	0.0037	16.5	0.29	4	63.6	1.2	66.4	4.3	322	67	63.6 ± 1.2
Tinajas-7	щ	640	29	0.04	0.0487	9.7	0.0673	8.9	0.0100	2.1	0.001	1.61	0.31		63.9		66.0	4 c 4 c	318	87	63.9 ± 1.3
1 Inajas- 5 Tinajas-6	n n	94/ 538	211	0.05	0.0480	0.0 1 %	0.0655	1.0	0.0100	7.7	0.0037	15.6 15.6	0.30	n c	04.2 64.4	1.4	60.4 643	5.8 4 8	339	66 98	04.2 ± 1.4 64.4 + 1.6
Tinaias-21		571	2 m	0.05	0.0506		0.0691	L.T.	0.0100	2.8	0.0040	15.3	0.36	, v	64.4	8.1	68.4	5.2	335	83	64.4 ± 1.8
Tinajas-3	в	677	48	0.06	0.0502	9.2	0.0695	8.6	0.0101	2.5	0.0050	16.1	0.29	4	64.9	1.6	67.9	5.8	375	75	64.9 ± 1.6
Tinajas-20	B,>U	1468	118	0.08	0.0488	4.9	0.0682	4.5	0.0102	1.8	0.0038	8.8	0.39	2	65.5	1.2	67.0	3.0	231	53	65.5 ± 1.2
Tinajas-9	B, >U	3860	681	0.18	0.0488	4.5	0.0677	4.1	0.0102	1.6	0.0031	5.4	0.38	5	65.5	1.0	66.5	2.6	175	99	65.5 ± 1.0
Tinajas-19	e ;	347	74	0.21	0.0505	9.5	0.0724	8.8	0.0103	3.2	0.0036	10.0	0.36		65.7	2.1	70.8	6.1	409	85	65.7 ± 2.1
Tinajas-30(II)	Z, P	6/7	700	0.95	0.020.0	0.61	0.0000	1/.4	0.0103	4 c x; r	0.0033	2.6	0.28	γ . 4	60.1 22.2	5.2	68.0	11.0	4/0	120	60.1 ± 3.2
Tinajas-25	9 22	676 141	120	cn.n	005020	0.9 11 3	0.0718	7. C	010.0	- 7 7	0.0040	C./1 4114	0.47	n vr	00.3 66.4	0.1 0 C	70.7	4.0 6.3	505 640	c/ 130	00.3 ± 1.0
Tinajas-1	B,>U	1283	148	0.12	0.0475	5.9	0.0684	5.3	0.0105	1.6	0.0039	7.8	0.31	0	67.1	11	67.2	3.4	220	12	67.1 ± 1.1
Tinajas-10	B, >U	1000	80	0.08	0.0505	6.9	0.0708	6.1	0.0106	2.1	0.0040	10.9	0.34	2	67.8	1.4	69.4	4.1	306	61	67.8 ± 1.4
																			•	Continua e	m la siguiente página

Tabla B.1 (cont.) L	atos analíticos	U-Pb obteni	dos por LA	-ICPMS en	zircones de	granitoid DF	es laramídic	os del NV	V de Sonora	, México	y SW de Ar	izona, US/				FDADF	CORRE	CIDAS	(Ma)		
Análisis/Zircón	Comentario	U [#] (ppm)	Th [#] (ppm)	Th/U	$^{207}Pb/^{206}Pb^{\dagger}$	err %	²⁰⁷ Pb/ ²³⁵ U [†]	err %	²⁰⁶ Pb/ ²³⁸ U [†]	err %	²⁰⁸ Pb/ ²³² Th [†]	err %	Rho**	% disc	$^{206}Pb/^{238}U$	$\pm 2s^{*20}$	¹⁷ Pb/ ²³⁵ U	$\pm 2s^{*}$ 207	Pb/ ²⁰⁶ Pb	±2s [*] M	ejor edad (Ma) ± 2s
Tinajas-32(II)	z	54	38	0.70	0.0710	18.3	0.0960	17.7	0.0107	5.6	0.0033	18.2	0.32	25	68.3	3.8	91.0	15.0	1160	160	68.3 ± 3.8
Tinajas-24	в	822	54	0.07	0.0457	6.1	0.0677	5.5	0.0108	2.0	0.0038	14.6	0.37	4-	69.2	1.4	66.4	3.6	195	59	69.2 ± 1.4
Tinajas-12	а;	545 545	26 5	0.05	0.0493	7.3	0.0748	6.7	0.0109	2.6	0.0048	15.1	0.39	ς, [69.69	1.8	73.1	4.7	378	63 202	69.6 ± 1.8
Tinajas-33(II) Tinajas 13	zΔ	93 600	4/	10.0	0.1230	18.7	0.1930	5.27	0.0109	0.0 0.0	0.0083	12.7	0.22 0	/0 6	60.9 60.8	9.5 0 I	163 716	50 7 2	1970 224	200	69.7 ± 3.9
Tinajas-13 Tinajas-35(II)	a z	144	00 12	0.49	0.0499	16.6	0.0770	16.9	0.0102	3.5	0.0036	17.0	0.21	о ч о	71.6	2.5	75.0).(12.0	580	رز 130	71.6 ± 2.5
Tinajas-27(II)	z	110	99	0.60	0.0520	14.0	0.0759	12.6	0.0112	4.4	0.0038	9.4	0.35	9	71.6	3.1	76.5	8.5	707	96	71.6 ± 3.1
Tinajas-38(II)	Z	180	103	0.57	0.0491	15.9	0.0750	16.0	0.0112	3.8	0.0037	10.1	0.24	2	71.8	2.7	73.0	12.0	680	150	71.8 ± 2.7
Tinajas-11	B	296	118	0.40	0.0457	9.8	0.0716	8.4	0.0116	3.9	0.0036	8.2	0.46	4	74.5	2.9	71.8	5.2	352	91	74.5 ± 2.9
Tinajas-40(II)	z	721	235	0.33	0.0476	6.7	0.0810	6.4	0.0124	4.0	0.0043	7.7	0.63	0	79.2	3.2	78.9	4.9	326	98	79.2 ± 3.2
Tinajas-17	B+N, >U	2090	435	0.21	0.0609	6. v	0.1200	9.7	0.0139	4.4	0.0047	7.5	0.51	22	88.8	4, 6	411	0 v	607	110	88.8 ± 4.1
11najas-3/(II) Tinging 30 (II)	N N	068 7530	162	0.80	11 (0.0	4 (0 (0.1200	4.4 2.7	C/10.0	۱.۲ ۲	1600.0	0.0 7	0.39	n c	112	7 6	CI 1	n v	300 167	44 7	2 = 711 2 = 7
11najas-29(11) Tinajas-26(11)	N,>U B+N ≥II D	/007	202	0.10	0.0736	7.7	0.1702	5.4 1.4	00200	4. C	C/00.0	- - - 4	0.40	96	901 877	v x	100	o <u>t</u>	1076	C7	2 ± 601 2 + 870
Tinajas-20(11) Tinajas- 33	B+N >II D	1540	305	0.78	00.000 0	4.4	0.6950	1.1 0	7640.0	10.8	0.01077	0.0	0.01	3 2	346	37	513	- - -	1436	t 7	$6 \pm 6/2$
Tinajas-22	N >11	1763	130	0.07	9060.0	t. r.	3 2690	34	10.2395	1 7	0.0733	0.61	0.50	ر م	1384	6	1473	36	1615	1 5	$16 \pm 0 \pm 0$
Tinaias-31(II)	Z	206	57	0.28	0.1016	5.0	3.9500	5.8	0.2860	3.4	0.0782	11.5	0.58	0	1621	48	1620	84	1619	63	1619 ± 63
Tinaias-36(II)	z	121	128	1.06	0.1021	4.0	3.6600	4.4	0.2584	2.5	0.0802	5.0	0.58	ŝ	1481	34	1562	34	1650	38	1650 ± 38
Tinajas-28(II)	N, >U	2460	252	0.10	0.1021	1.5	3.5820	3.6	0.2577	2.4	0.0770	6.0	0.67	4	1478	32	1544	29	1665	16	1665 ± 16
Tinajas-5	B, >U	2140	427	0.20	0.1026	3.7	3.5430	4.0	0.2534	2.6	0.0776	4.6	0.67	5	1455	34	1533	31	1673	41	1673 ± 41
Tinajas-34(II)	z	227	49	0.22	0.1035	2.3	3.6800	4.3	0.2571	2.3	0.0690	5.7	0.52	9	1474	30	1564	34	1690	23	1690 ± 23
Tinajas-39(II)	Z	1010	293	0.29	0.1033	1.9	4.1680	3.1	0.2949	1.4	0.0905	4.9	0.43	0	1666	20	1667	26	1697	6	1697 ± 9
n = 40																Edad ²⁰	⁶ Ph/ ²³⁸ I	media n	onderada :	"	64.8 + 0.6
2																	i		0	2 sigma, 1	ASWD = 1.4; n = 12)
Muestra Tinajas-2	Pegmatita gr	anítica feld	espática de	e microclin	0 (Tinaia	ts Altas N	fountains, E	arry M. C	Joldwater A	ir Force I	Aange, SW A	Vrizona)	Probeta I	CGEO-89	(Junio 201	(-					
Tinaias-2-19	B. >U. D	8000	2.6300	3.29	0.0802	6.9	0.0864	6.1	0.0079	4.6	0.0005	10.3	0.74	40	50.6	2.3	84.0	4.9	1168	96	50.6 ± 2.3
Tinajas-2-15	B, >D	4730	826	0.17	0.1019	5.2	0.1248	6.1	06000	3.0	0.0085	9.4	0.49	51	57.8	1.7	1.9.1	6.8	1651	85	57.8 ± 1.7
Tinajas-2-1	B, >U, D	7560	4630	0.61	0.0678	8.6	0.0827	7.1	0.0096	2.5	0.0015	11.2	0.35	25	61.3	1.5	81.3	5.7	790	160	61.3 ± 1.5
Tinajas-2-13	B,>U	9600	11100	1.16	0.0529	4.5	0.0683	3.8	0.0096	2.6	0.0022	12.1	0.68	8	61.6	1.6	67.1	2.5	328	88	61.6 ± 1.6
Tinajas-2-16	N, >U, D	7680	405	0.05	0.0499	4.2	0.0658	3.5	0.0096	1.5	0.0035	9.9	0.42	4	61.9	0.9	64.7	2.2	172	50	61.9 ± 0.9
Tinajas-2-25	B+N, >U, D	7930	3900	0.49	0.0586	4.6	0.0753	9. J	0.0098	- 23	0.0013	21.7	0.61	15	62.6	4. 4	73.7	2.6	527	87	62.6 ± 1.4
Tinajas-2-10 Tinajas-2-4	u,)/, vi	4610	0611	0.14	0.0539	6.4 9	0.0713	4. γ τ γ	0.0098	3.5	0.0008	12.9	0.67 0.67	1 0	670 630	0.1	0.67	3.5	407 377	00 60	62.9 ± 1.0 63.0 ± 2.2
Tinajas-2-24	B. >U. D	6770	16900	2.50	0.0569	4.7	0.0768	7.3	0.0099	4.7	0.0010	18.6	0.65	15	63.6	3.0	74.9	5.3	502	87	63.6 ± 3.0
Tinajas-2-17	В	2910	92	0.03	0.0501	4.8	0.0682	4.5	0.0100	1.7	0.0044	14.0	0.38	4	64.0	1.1	6.99	3.0	289	75	64.0 ± 1.1
Tinajas-2-14	в	5570	413	0.07	0.0496	4.2	0.0672	3.6	0.0100	1.6	0.0022	8.3	0.45	б	64.2	1.0	66.0	2.3	179	50	64.2 ± 1.0
Tinajas-2-3	В	5410	590	0.11	0.0484	4.3	0.0657	3.8	0.0100	1.6	0.0018	9.5	0.42	_	64.2	1.0	64.6	2.4	151	45	64.2 ± 1.0
Tinajas-2-23 Tinajas-2-7	<u>е</u> а	4100 3468	200	0.05	0.0489	6.4 4 4	0.0665	4.6 2 0	0.0100	1.7	0.0034	7.7 8 8	0.37	m c	64.4 65.4	= =	66.0 65 3	2:9 2 5	201	45 74	64.4 ± 1.1
Tinajas-2-10	n m	5110	330	0.06	0.0507	4.4 1.3	0.0713	3.9	0.0103	1.9	0.0034	9.3	0.49	o vo	66.2	1.3	6.69	2.6	236	55	66.2 ± 1.3
Tinajas-2-8	B, >U, D	6360	820	0.13	0.0592	4.4	0.0832	4.7	0.0104	1.7	0.0041	14.7	0.37	18	66.4	1.2	81.1	3.6	568	85	66.4 ± 1.2
Tinajas-2-2	N, >U, D	7280	5720	0.79	0.0592	4.4	0.0842	3.7	0.0104	1.6	0.0010	6.8	0.45	19	66.5	1.1	82.0	2.9	591	68	66.5 ± 1.1
Tinajas-2-22	B, >U, D	6910	5990	0.87	0.0769	5.6	0.1097	5.7	0.0104	2.0	0.0013	8.4	0.36	37	66.5	1.3	105.5	5.6	1108	110	66.5 ± 1.3
Tinajas-2-20 Tinajas-2-20	B, >D	5670	895 600	0.16	0.0549	4 7	0.0740	5.7	0.0104	8. c	0.0023	12.1	0.49	l3 •	0.00 67.7	1.2	76.2	2.8	397	65 63	66.6 ± 1.2
Tinajas-2-0 Tinajas-2-11	r U I≽ a	15700	3780	11.0	1700.0	τ. ς τ	0.1830	1 r	0.0100	0.7 2 5	0.000.0	10.0	0.37	05	1.10	+ r	C.C/	1.5	000 0000	50 120	0/./ H 1.4
Tinajas-2-5	B, >D	4700	372	0.08	0.0586	5.8	0.0939	7.7	0.0114	3.3	0.0061	10.8	0.45	20	72.9	2.4	90.7	6.6	502	98	72.9 ± 2.4
Tinajas-2-21	B+N, >U, D	7050	2760	0.39	0.0784	5.7	0.1252	6.5	0.0115	2.2	0.0031	7.0	0.34	38	73.6	1.6	119	7	1150	120	73.6 ± 1.6
Tinajas-2-9	B, >D	5180	272	0.05	0.0600	5.8	0.1060	10.4	0.0126	5.7	0.0136	20.6	0.55	20	80.5	4.6	101	10	571	110	80.5 ± 4.6
Tinajas-2- 12	B, >D	4640	500	0.11	0.1200	12.5	0.3200	20.3	0.0181	9.4	0.0358	17.3	0.46	56	115	Π	263	45	1770	220	115 ± 11
n = 25																Edad ²⁰	¹ Pp/ ²³⁸ U	media p	onderada =	Ш	64.6 ± 0.8
																			0	2 sigma,	MSWD = 2.2; n = 6)
Muestra <u>Tinajas-4</u>	Monzogram	to de dos m	icas (11	najas Altas	Mountains,	Barry M.	Goldwater	Air Force	Range, Sw	Arizona,	Probeta	ICGE0-82	(Octub)	e 2016 y Jui	10 2017)				ţ	e i	
Tinajas-4-16	B,>U	4590	1550	0.34	0.0539	5.4	0.0632	4.4	0.0087	3.7	0.0031	5.5	0.83	10	55.8	2.0	62.2	2.6	436	73	55.8 ± 2.0
																				Continua	en la siguiente página

1 4014 D.1 (CUILL) 1	and an		Ind con		~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~	Branner		ý Longo		CONVOLUTION OF THE OWNER		20114, 00.0				DA DEC	CODDE	STUAS	(Ma)		
Análisis/Zircón	Comentario	U [#] (ppm)	Th [#] (ppm) Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb [†]	err %*	²⁰⁷ Pb/ ²³⁵ U [†]	err %*	⁰⁶ Pb/ ²³⁸ U [†]	rr %* 20	⁰⁸ Pb/ ²³² Th [†]	err %*	Rho**	% disc	²⁰⁶ Pb/ ²³⁸ U	±2s [*] 201	7Pb/ ²³⁵ U	±2s [*] ²⁰⁷ F	Pb/ ²⁰⁶ Pb	±2s [*] Me	jor edad (Ma) ± 2s
Tinning 1 12	d d	653	77	010	0.0507	3 6	99200	С г.	0.0005	г с	0.0050	101	0.00	10	207	r :	072	0 2	027	00	LI - LU7
Tinajas 4 6	n, a	270	8 1	0110	0.0000	0. Y	0.0/00	0.1	2600.0	c	2000.0	10.1	40.0 25 0	- 1	61.5		(+.0	0.0	890	00 63	00./ ± 1./ 61.5 ± 1.4
Tinajas-4-11	ы В >II	2566	111	11.0	0.0482	9.9	0.0641	0.0 8 8	0.0006	0.7	0.0033	1.6	0.39	- ~	61.6	t: -	7.70	o c t e	247	88	61.6 ± 1.7
Tinajas-4-23	B, >U	2777	303	0.11	0.0479	4.6	0.0647	4.2	0.0098	1.8	0.0034	6.3	0.44	ı —	62.8	1.2	63.6	2.6	137	42	62.8 ± 1.2
Tinajas-4-3	В	1074	125	0.12	0.0520	6.0	0.0699	5.4	0.0098	2.2	0.0038	9.3	0.41	8	62.9	1.4	68.5	3.6	357	65	62.9 ± 1.4
Tinajas-4-15	B, >U	3040	276	0.09	0.0495	4.8	0.0675	4.6	0.0099	1.8	0.0034	8.0	0.40	4	63.3	1.2	66.3	2.9	243	51	63.3 ± 1.2
Tinajas-4-8	В	660	106	0.16	0.0482	<i>T.T</i>	0.0663	6.9	0.0099	2.8	0.0034	12.1	0.41	7	63.7	1.8	65.1	4.4	216	71	63.7 ± 1.8
Tinajas-4-36(II)	N,>U	3230	1410	0.44	0.0503	3.8	0.0700	4.6	0.0100	2.8	0.0026	8.5	0.62	7	63.8	1.8	68.7	3.0	237	57	63.8 ± 1.8
Tinajas-4-19	В	006	276	0.31	0.0539	6.5	0.0724	6.2	0.0101	2.3	0.0036	9.9	0.37	6	64.5	1.5	70.8	4.2	387	83	64.5 ± 1.5
Tinajas-4-10	B, >U	1740	329	0.19	0.0467	5.4	0.0653	4.6	0.0101	1.9	0.0037	7.1	0.41	-	64.8	1.2	64.2	2.9	145	48	64.8 ± 1.2
Tinajas-4-22	в	1118	124	0.11	0.0467	6.0	0.0642	5.5	0.0101	1.7	0.0037	9.3	0.31	ή	64.9	1.1	63.1	3.3	201	60	64.9 ± 1.1
Tinajas-4-14	B, >U	2260	649	0.29	0.0468	4.5	0.0653	3.8	0.0102	1.9	0.0031	5.5	0.49	-	65.2	1.2	64.3	2.4	111	42	65.2 ± 1.2
Tinajas-4-20	B, >U	1675	317	0.19	0.0508	5.7	0.0710	5.4	0.0102	1.7	0.0037	6.3	0.31	9	65.6	1.1	69.6	3.6	313	58	65.6 ± 1.1
Tinajas-4-4	в	870	137	0.16	0.0503	6.4	0.0693	5.5	0.0102	2.2	0.0037	8.2	0.39	4	65.6	1.4	68.0	3.6	257	53	65.6 ± 1.4
Tinajas-4-7	B+N, >U	4020	1119	0.28	0.0475	4.4	0.0690	3.9	0.0106	1.5	0.0031	4.8	0.39	0	67.7	1.0	67.7	2.5	123	52	67.7 ± 1.0
Tinajas-4-18	B, >D	940	61	0.07	0.0555	6.3	0.0791	5.6	0.0106	1.9	0.0067	12.3	0.34	12	68.1	1.3	77.2	4.1	478	70	68.1 ± 1.3
Tinajas-4-28(II)	N, >D	89	57	0.64	0.0605	14.4	0.0890	14.6	0.0108	4.4	0.0035	14.1	0.30	20	69.2	3.0	87.0	13.0	740	120	69.2 ± 3.0
Tinajas-4-9	B+N, >D	386	46	0.12	0.0559	7.7	0.0824	7.4	0.0109	2.7	0.0051	12.1	0.36	13	69.7	1.9	80.2	5.7	472	82	69.7 ± 1.9
Tinajas-4-34(II)	Z	70	63	0.89	0.0510	27.5	0.0760	28.9	0.0115	7.0	0.0040	10.4	0.24	-	73.5	5.1	74.0	21.0	780	180	73.5 ± 5.1
Tinaias-4-21	B+N. >U	1458	145	0.10	0.0470	4.9	0.0738	4.6	0.0115	3.0	0.0049	7.1	0.64	-2	73.8	2.1	72.2	3.2	173	54	73.8 ± 2.1
Tinajas-4-33(II)	N. >D	170	96	0.56	0.0457	14.0	0.0721	13.5	0.0115	3.4	0.0038	10.7	0.25	4	74.2	2.6	71.6	9.5	490	120	74.2 ± 2.6
Tinaias-4-12	B+N	280	126	0.45	0.0479	13.2	0.0830	13.3	0.0122		0.0035	9.1	0.23	Ś	78.3	2.4	82.0	10.0	480	120	78.3 ± 2.4
Tinajas-4-17	R >D	744	298	0.40	0.0768	67	0.3460	16.2	0.0296	13.2	0.0043	6.6	0.81	, 2	187	25	2.85	43	1080	140	187 ± 25
Tinajas-4-25	R+N >D	2.08	82	0.37	0.0991	, 4 , 6	1 4600	8 9	0.1060	2.2	0.0495	67	10.0	. 80	646	16	896	35	1611	45	646 + 53
Tinajas-4-1	E	217	89	0.31	0.0836	5.9	1.5500	20.0	0.1230	19.5	0.0375	20.3	0.98	6	720	140	790	140	1247	100	720 ± 140
Tinajas-4-5	B+N	520	146	0.28	0.0764	6.9	1.6600	19.3	0.1410	18.4	0.0395	18.5	0.96	. –	820	150	830	140	1090	130	820 ± 150
Tinaias-4-24	R >D	227	36	0.16	0.0937	4.5	2.0400	12.7	0.1530	11.8	0.0332	16.3	0.92	. "	006	100	1040	100	1528	52	900 + 100
Tinajas-4-30(II)	N, >D	294	52	0.18	0.0974	2.5	2.0600	4.5	0.1520	3.0	0.0424	10.6	0.66	19	911	25	1131	32	1565	25	911 ± 25
Tinajas-4-2	В	705	261	0.37	0.0879	4.1	2.1500	12.6	0.1760	11.4	0.0612	7.7	0.90	~	1030	110	1114	100	1382	55	1030 ± 110
Tinajas-4-31(II)	N, >U	2020	920	0.46	0.0891	1.6	2.8260	3.2	0.2289	1.5	0.0655	4.7	0.47	2	1328	18	1362	24	1407	14	1328 ± 18
Tinajas-4-27(II)	Z	220	96	0.44	0.0901	2.8	3.1640	3.8	0.2521	1.7	0.0712	5.1	0.45	0	1449	22	1446	29	1433	30	$I433 \pm 30$
Tinajas-4-35(II)	z	460	120	0.26	0.0914	2.3	3.1310	4.2	0.2510	3.0	0.0745	6.4	0.73	0	1443	39	1438	32	1448	20	$I448 \pm 20$
Tinajas-4-37(II)	N, >U	1284	361	0.28	0.0987	1.4	3.6040	3.1	0.2630	1.3	0.0762	4.5	0.41	ю	1505	17	1551	23	1603	18	1603 ± 18
Tinajas-4-29(II)	z	497	700	1.41	0.0986	2.3	3.9400	4.3	0.2855	3.5	0.0789	4.8	0.81	0	1617	51	1620	33	1604	22	1604 ± 22
Tinajas-4-38(II)	z	435	364	0.84	0.1010	1.9	3.9200	3.8	0.2843	2.5	0.0855	5.0	0.65	0	1612	35	1616	30	1641	16	1641 ± 16
Tinajas-4-26(II)	z	421	301	0.71	0.1015	2.0	4.1270	3.6	0.2937	2.1	0.0835	4.7	0.59	0	1660	31	1659	29	1651	24	1651 ± 24
Tinajas-4-32(II)	z	267	103	0.39	0.1040	2.4	4.3500	3.9	0.3035	1.9	0.0882	5.3	0.50	0	1709	29	1709	27	1690	19	$I690 \pm I9$
Tinajas-4-39(II)	z	383	212	0.55	0.1038	1.8	4.2930	3.5	0.2997	1.7	0.0872	4.7	0.48	0	1689	24	1691	28	1691	24	$I69I \pm 24$
n = 30																F.d.a.d ²⁰⁶	Dh/ ²³⁸ 11 "	on eiben	. o p a a d a	_	644 ± 0.7
сс — П																nena		nema po			10 T 110
Muestra Pinta S	ienogranito let	acocrático de	e dos mica	as (Sien	ra Pinta, Cabez	za Prieta	Wilderness,	SW Arize	na) Prob	eta ICGE	0-41 (Fe	brero 2013	V Junio 2	(11)					2	z sigilia, M	о w D – 2. /; II – II)
Pinta-21	B.>U	2563	290	0.10	0.0480	4.5	0.0632	5.2	0.0096	2.5	0.0031	16.8	0.49	. <u> </u>	61.3	1.6	62.0	4.0	0.66	98.0	61.3 ± 1.6
Pinta-4	B, >U	16297	288	0.02	0.0474	3.7	0.0636	4.4	0.0097	2.5	0.0045	16.6	0.56	-	62.4	1.6	63.0	2.0	70.0	84.0	62.4 ± 1.6
Pinta-19	В	1752	<i>LT</i>	0.04	0.0505	6.1	0.0679	6.6	0.0098	2.7	0.0036	18.3	0.40	7	62.5	1.6	67.0	4.0	216	130	62.5 ± 1.6
Pinta-6	B, >U	3352	50	0.01	0.0488	5.4	0.0660	6.7	0.0098	3.9	0.0099	17.5	0.58	3	63.0	2.0	65.0	4.0	138	124	63.0 ± 2.0
Pinta-15	B,>U	2608	692	0.24	0.0478	4.4	0.0650	5.0	0.0099	2.4	0.0031	16.6	0.48	1	63.3	1.6	64.0	4.0	88	100	63.3 ± 1.6
Pinta-8	в	2068	228	0.10	0.0480	6.0	0.0656	6.9	0.0099	2.8	0.0031	6.4	0.41	2	63.6	1.8	65.0	4.0	100	134	63.6 ± 1.8
Pinta-9	в	1535	162	0.10	0.0481	7.5	0.0659	8.4	0.0099	2.8	0.0032	10.8	0.34	2	63.7	1.8	65.0	6.0	104	164	63.7 ± 1.8
Pinta-18	в	1770	227	0.12	0.0480	5.0	0.0657	5.6	0.0100	2.4	0.0033	16.8	0.43	5	63.8	1.6	65.0	4.0	66	108	63.8 ± 1.6
Pinta-2	B, >U	5710	154	0.02	0.0482	4.1	0.0661	4 v 8 o	0.0100	2.6	0.0042	18.1	0.54	0 0	63.8 32 0	1.6	65.0	4.0	108	94	63.8 ± 1.6
Pinta-17	B, >U	2138	273	0.12	0.0487	4 4	0.0667	5.0	0.0099	2.4	0.0033	16.5	0.48	m -	63.8	1.6	66.0	4.0	131	102	63.8 ± 1.6
Pinta-14	B, >U	2693	362	0.12	0.0482	4 4 6 7	0.0675	4.9 0	0.0102	7.7 7.7	0.0034	16.7	0.48		65.1 65.5	1.6	66.0	0.4	109	98 90	65.1 ± 1.6
FIIIta-12 Dinta-37/II)	n, c n, c	7140 1640	027 730	0.076 0.76	0.0485 0.0485	t v t	0.000 U	0.0 6 8	0.0102	C.2 8 I	0.0033	10.7 6.0	1C.U	- c	00.J	0.1	0.00 0.7.0	4.U	10 180	۶۵ 81	0.1 ± C.CO
Pinta-3	B, >D	526	130	0.22	0.0547	8.5 8.5	0.0832	9.0	0.0112	3.0	0.0040	17.6	0.34	1 =	72.0	2.0	81.0	8.0	398	186	72.0 ± 2.0
																			I	Continua e	n la siguiente página

Tabla B.1 (cont.) D	atos analíticos l	U-Pb obteni	dos por LA	-ICPMS e	n zircones de g	granitoide	s laramídice	s del NW	de Sonora,	México	/ SW de Ari	zona, USA.				FDADE		CIDAS	(Ma)		
Análisis/Zircón	Comentario	U [#] (ppm)	Th [#] (ppm)	Th/U	$^{207}Pb/^{206}Pb^{\dagger}$	err %* 1	⁰⁷ Pb/ ²³⁵ U [†]	err % ^{* 2}	⁰⁶ Pb/ ²³⁸ U [†] e	rr % [*] 2	³⁸ Pb/ ²³² Th [†]	err %*	Rho**	% disc	²⁰⁶ Pb/ ²³⁸ U	±2s*	⁰⁷ Pb/ ²³⁵ U	±2.s [*] ²⁰⁷ 1	Pb/ ²⁰⁶ Pb =	±2s [*] N	ejor edad (Ma) ± 2s
Pinta-1	B+N, >U, D	5075	312	0.06	0.0575	13.3	0.0886	13.6	0.0112	2.9	0.0065	81.5	0.21	16	72.0	2.0	86.0	12.0	510	290	72.0 ± 2.0
Pinta-24(II)	Z	340	45	0.13	0.0480	18.3	0.0770	26.0	0.0114	9.6	0.0022	100.0	0.37	1	73.2	7.0	74.0	18.0	640	450	73.2 ± 7.0
Pinta-20	B+N	1658	164	0.09	0.0487	7.1	0.0824	16.7	0.0125	15.1	0.0083	63.9	0.90	0	80.0	12	80.0	12.0	133	152	80.0 ± 12
Pinta-25(II)	N, >D	470	61	0.13	0.0683	10.1	0.1710	19.3	0.0180	14.4	0.0082	35.4	0.75	28	115	17	159	28	890	160	115 ± 17
Pinta-36(II)	N, >D	712	99	0.09	0.0911	4.1	1.4740	4.2	0.1170	2.8	0.0280	11.8	0.67	22	713	19	917	26	1459	60	713 ± 19
Pinta-26(II)	z	1560	135	0.09	0.0895	3.8	2.2860	3.5	0.1854	1.6	0.0552	5.4	0.45	6	1097	16	1208	24	1423	52	1097 ± 16
Pinta-31(II)	z	800	117	0.15	0.0900	3.9	2.8820	3.4	0.2321	1.7	0.0702	4.1	0.49	7	1347	21	1379	27	1427	40	1347 ± 21
Pinta-37(II)	z	1970	52	0.03	0.0872	4.1	2.7700	5.8	0.2350	4.7	0.0694	13.5	0.81	0	1357	56	1354	40	1366	47	1357 ± 56
Pinta-13	B+N, >U	4247	1715	0.36	0.0876	3.5	2.9278	4.3	0.2424	2.4	0.0709	16.3	0.56	-	1399	30	1389	32	1374	99	1374 ± 66
Pinta-16	В	599	244	0.37	0.0885	3.7	2.9288	4.4	0.2400	2.5	0.0695	16.3	0.56	0	1387	30	1389	34	1394	68	1394 ± 68
Pinta-10	В	421	176	0.38	0.0888	3.7	2.9739	4.4	0.2431	2.5	0.0716	16.3	0.56	0	1403	32	1401	34	1400	70	1400 ± 70
Pinta-33(II)	z	203	68	0.33	0.0981	4.6	3.5900	4.5	0.2715	2.3	0.0806	4.7	0.52	0	1548	32	1551	32	1568	40	1568 ± 40
Pinta-30(II)	z	536	155	0.29	0.0985	4.0	3.5510	3.7	0.2631	1.9	0.0771	4.4	0.51	2	1505	25	1539	30	1599	56	1599 ± 56
Pinta-22	в	136	119	0.79	0.0999	3.9	3.9473	4.7	0.2871	2.6	0.0822	16.3	0.55	0	1627	36	1623	38	1622	68	$I622 \pm 68$
Pinta-35(II)	N, >U	2110	1300	0.62	0.1006	4.1	4.0100	4.5	0.2895	3.5	0.0711	11.5	0.77	0	1639	50	1635	36	1637	38	1637 ± 38
Pinta-5	N, >U	3167	401	0.11	0.1015	3.8	3.7898	4.7	0.2707	2.7	0.0803	16.2	0.58	ŝ	1544	36	1591	38	1652	70	1652 ± 70
Pinta-29(II)	z	514	375	0.73	0.1019	3.8	4.1160	3.4	0.2927	1.6	0.0816	3.7	0.46	0	1655	23	1657	27	1659	39	1659 ± 39
Pinta-27(II)	z	145	149	1.03	0.1024	4.2	4.0500	3.7	0.2896	2.8	0.0803	3.6	0.75	0	1638	39	1643	29	1664	56	1664 ± 56
Pinta-28(II)	z	303	124	0.41	0.1024	3.9	3.9300	3.3	0.2794	1.6	0.0822	3.8	0.48	7	1588	22	1619	27	1664	39	1664 ± 39
Pinta-23(II)	N, >U	2440	640	0.26	0.1026	4.2	3.7210	4.0	0.2644	1.6	0.0804	6.3	0.39	4	1512	21	1576	32	1669	48	1669 ± 48
Pinta-7	z	270	92	0.31	0.1030	3.7	4.0574	4.4	0.2856	2.4	0.0838	16.3	0.55	7	1619	34	1646	36	1679	99	1679 ± 66
Pinta-34(II)	Z	464	151	0.33	0.1032	3.8	3.6570	3.3	0.2573	1.7	0.0779	3.7	0.51	9	1476	22	1563	26	1689	32	1689 ± 32
n = 36																Edad ²	$^{06} Pb/^{238} U$	nedia po	onderada =		64.0 ± 0.7
																			(2	sigma,	MSWD = 2.1; n = 12)
Abreviaturas: $N = N_{t}$	ítcleo. B = Bord	e. B+N = B	orde+Núcle	eo.>U= a	lto Uranio, >D	i = alta Di	scordancia.														

INUCIEO, >U:

*Las concentraciones de U y Th (ppm) fueron calculadas con relación al análisis del vidrio estandar NIST 610 para elementos traza.

Relaciones isotópicas corregidas con relación al zircón estándar de edad conocida (91500 de ~1065 Ma; Wiedenbeck et al., 1995) por el fraccionamiento de masa y deriva instrumental. Las relaciones isotópicas, edades y errores son calculados

como en Paton et al. (2010).

Todos los errores en las relaciones isotópicas son en porcentaje y los de las edades en absoluto y, en ambos casos, están reportados a nivel 2 sigma, incluida la edad ²⁰⁶ Pb²³⁸U media ponderada.

Estas incertidumbres a 2 sigma han sido propagadas según la metodología de Paton et al. (2010).

**Rho es el valor de correlación de errores definido como el cociente de los errores (en porcentaje) de las relaciones isotópicas de ²⁰⁶ Pb^{/238} U y²⁰⁷ Pb^{/236} U. El valor Rho es necesario para graficar los datos U-Th-Pb en diagramas de concordia.

*** Porcentaje de discordancia obtenido usando la siguiente ecuación (100*[(edad ²⁰⁷ Pb/²³⁵ U)-(edad ²⁰⁶ Pb/²³⁸ U)]/edad ²⁰⁷ Pb/²³⁵ U).

Valores positivos y negativos indican discordancias normales y discordancias inversas, respectivamente.

Las edades individuales de cada zirrón marcadas en negrita fueron usadas para calcular las edades medias ponderadas y el MSWD (Mean Square of Weigthed Deviates) usando el programa computacional Isoplot (Ludwig, 2003). (II) Segunda sesión de ablación enfocada en determinar las edades de posibles núcleos heredados en los zircones de rocas graníticas laramídicas.

Las cadaes proterozoicas que se encuentran en negrita y cursiva corresponden a los análisis tomados en cuenta para el cálculo de una cdad $^{-20}$ Pb/²⁰⁰Pb media ponderada meso ylo paleoproterozoicas

B.2.1 Tonalita de dos micas (Chop-3)

La tonalita de dos micas Chop-3 fue recolectada al sureste de San Luis Río Colorado, en la carretera San Luis Río Colorado-Sonoyta, en el borde fronterizo con USA, al noroeste de Sonora (Figura 1). Para su fechamiento U-Pb se realizó una primera ablación en septiembre del 2013, enfocada a obtener la edad de cristalización de la roca (Ruiz-Segoviano *et al.*, 2013) y en junio del 2017 se realizó una segunda sesión enfocada a estudiar los núcleos heredados en los zircones. La morfología representativa de estos zircones tiende a ser prismática y alargada en su eje principal, con ambas puntas bien definidas en su mayoría y un tamaño promedio de 100 µm. Algunos zircones presentan fracturas e inclusiones de pequeños apatitos y otras fases minerales no determinadas.

En las imágenes de catodoluminiscencia (Apéndice B.3.1) se aprecia que los zircones tienen una zonación oscilatoria típica de crecimientos concéntricos de carácter ígneo y que, en su mayoría, los núcleos son ligeramente más o scuros con una baja catodoluminiscencia y en otros casos, el centro de los zircones es más catodoluminiscente. Estas diferencias en la catodoluminiscencia están directamente relacionadas con las concentraciones en U presente en los zircones. En la Figura B.2.1C s e aprecia que el punt o d e a blación en el z ircón 18 c orresponde a una z ona poc o catodoluminiscente, teniendo una concentración en U de 723 ppm (Tabla B.1). En caso contrario, el zircón 29 tiene una ablación en una zona de alta catodoluminiscencia, correspondiendo a un valor relativamente bajo en U (242 ppm).

Los datos isotópicos de U-Pb fueron graficados en un di agrama de concordia tipo Tera-Wasserburg (Figura B.2.1A), donde se observan algunos zircones discordantes (>5% disc.) y otros inversamente discordantes (de -2% a -15% disc.) graficados con elipses y cuadros de color gris. Algunos de estos datos corresponden a zircones con cierto grado de herencia (e.g., zircón 18 con una edad de 107 ± 2 Ma) cuyas ablaciones fueron hechas en sus núcleos. Por otra parte, se aprecian análisis con ed ades más jóvenes y discordantes (e.g., zircones 35 y 7), los cuales sugieren una tendencia de pérdida de Pb. De los 30 zircones analizados, 12 fueron considerados como los más concordantes (elipses y cuadros de color negro) y empleados para calcular la edad ²⁰⁶Pb/²³⁸U media ponderada de 95.9 ± 1.3 (2s, MSWD = 2.3, n = 12), que se interpreta como la edad de cristalización de la tonalita de dos micas. Los análisis representados con elipses y cuadros de color gris, no fueron tomados en cuenta para el cálculo de la edad media ponderada, ya que los análisis con edades más jóvenes están representando una tendencia de pérdida de Pb. Otros análisis presentan un porcentaje
de discordancia muy elevado y los análisis con edades un poco más antiguas (de 102 Ma a 107 Ma) que corresponden a análisis de los núcleos de los zircones, representando así un cierto grado de herencia en este muestra de tonalita.

B.2.2 Gneis tonalítico de dos micas (Cucapah-1)

Esta muestra de gneis tonalítico de dos micas Cucapah-1 fue recolectada al sur de Mexicali, en l a S ierra d e L os Cucapahs, B aja C alifornia, a l no roeste de M éxico (Figura 1). Para e l fechamiento U-Pb del gneis se realizaron 39 ablaciones ocupando tanto bordes como núcleos de los zircones. Las primeras ablaciones se realizaron en octubre del 2016, en focadas a obtener la edad de cristalización de la roca y la segunda sesión se realizó en junio del 2017 y se enfocó en posibles núcleos heredados. La morfología de estos zircones es alargada en su eje principal, con ambas puntas y caras bien desarrolladas, prismáticos y con un tamaño promedio de 200 μ m. La mayoría de los zircones presentan fracturas e inclusiones de apatito.

En las imágenes de catodoluminiscencia (Apéndice B.3.1) se distingue que gran parte de los zircones tienen una zonación os cilatoria típica de crecimientos ígneos. En algunos casos el núcleo d e l os zircones suele ser m ás catodoluminiscente (e.g., zircón 39 en F igura B.2.1F), correspondiendo a valores bajos de U (166 ppm) (Tabla B.1). También se tienen partes del zircón menos catodoluminiscentes (e.g., zircón 18) con una concentración alta en U de 2770 ppm.

Los datos isotópicos de U-Pb fueron graficados en un di agrama de concordia tipo Tera-Wasserburg (Figura B.2.1D), en donde se aprecia una dispersión de análisis a lo largo de la línea de concordia, con edades que van desde 76 Ma hasta 105 Ma. Algunos de estos zircones fueron ablacionados en su s núcleos, da ndo c omo r esultado e dades c on c ierto grado de he rencia (e.g., zircones 27 y 30 con edades de 105 ± 4 Ma y 99.7 ± 3.1 Ma, respectivamente. Otros zircones tienen una di scordancia m uy a lta (e.g., zircones 28, 14 y 4 c on discordancias de 31%, 21% y 20 %, respectivamente) y otros dos zircones también discordantes (5–6% disc.), y con edades un po co más j óvenes, r epresentan u na t endencia d e pérdida d e P b. T odos est os an álisis d escritos anteriormente están representados con elipses y cuadros de color gris. Una agrupación coherente de 2 6 an álisis, graficados co n elipses y cu adros d e color n egro, q ue r epresentan una m enor dispersión estadística de los datos, fueron considerados para obtener una edad 206 Pb/²³⁸U media ponderada de 86.8 ± 0.7 Ma (2s, MSWD = 2.8, n = 26), siendo ésta interpretada como la edad de cristalización del gneis tonalítico de dos micas Cucapah-1.

B.2.3 Sienogranito de biotita (Choya)

La muestra de si enogranito d e b iotita C hoya fue r ecolectada en la localidad de P uerto Peñasco, a l noroeste de S onora (Figura 1). Para su fechamiento U -Pb se realizó u na p rimera ablación en agosto del 2008, enfocada a obtener la edad de cristalización de la roca y en junio del 2017 se realizó una segunda sesión orientada a estudiar los núcleos heredados en los zircones. La morfología representativa de estos zircones es prismática y alargada en su eje principal, con ambas caras definidas y en algunos casos con ambos bordes en punta o un borde en punta y otro plano o fracturado. El tamaño promedio de los granos es de 180 µm y algunos presentan fracturas internas, inclusiones de apatito y otras fases minerales no definidas.

En las i mágenes de catodoluminiscencia (Apéndice B .3.1) se ap recia u na zonación oscilatoria c oncéntrica característica de crecimientos de carácter í gneo. V arios de los zi rcones presentan un núcleo más catodoluminiscente y en algunos casos, menos catodoluminiscentes. Estas variaciones de catodoluminiscencia están directamente relacionadas con las concentraciones de U que tiene el zircón. En la Figura B.2.2C se observa el zircón 44, en donde el punto de ablación fue realizado en u na zo na c on u na al ta catodoluminiscencia, co rrespondiendo a u na co ncentración relativamente baja en U de 322 ppm (Tabla B.1) y, en caso contrario, el zircón 46 fue ablacionado en el núcleo con una baja catodoluminiscencia, dando una concentración en U de 3450 ppm.

Los datos isotópicos de U-Pb fueron graficados en un di agrama de concordia tipo Tera-Wasserburg (Figura B.2.2A), en donde se aprecia una ligera dispersión de los datos que arrojan edades que van desde 80 a 99 Ma. Las elipses y cuadros de color gris, que tienen edades mayores a los 91 Ma, corresponden a ablaciones hechas en los núcleos de los zircones, interpretándose como análisis co n ci erto g rado d e h erencia. P or o tra p arte, se t ienen ed ades más j óvenes co n al tas discordancias (>7%) y concentraciones de U elevadas, interpretándose como indicadores de una tendencia de pérdida de Pb, también graficados con e lipses y cuadros de color gris. Existe una agrupación de 25 a nálisis graficados c on e lipses y cuadros de color n egro que presentan u na dispersión e stadística adecuada, y con l o cual se l ogró c alcular u na ed ad ²⁰⁶Pb/²³⁸U me dia ponderada de 85.8 ± 0.8 M a (2s, MSWD = 3.1, n = 25), siendo esta edad interpretada como la mejor aproximación a la edad de cristalización del sienogranito de biotita Choya.

Figura B.2.2 Gráficos de datos U-Pb obtenidos mediante la técnica de ablación láser (LA-ICP-MS) e imágenes de catodoluminiscencia de zircones de un granitoide laramídico del SW de Arizona. (A) Diagrama de concordia tipo Tera-Wasserburg mostrando todos los datos de los zircones analizados de la muestra Choya y mostrando también la edad ²⁰⁶Pb/2^{33U} media ponderada calculada. Las elipses y cuadros de color negro representan los análisis utilizados para el cáleulo de la edad media ponderada, mientras que las elipses y cuadros de color gris representan los datos que fueron descartados para el cáleulo debido a que representan zircones con un cierto grado de pérdida de Pb, muy discordantes y/o herencias. (B) Diagrama de media ponderada mostrando los análisis utilizados para el cálculo de la edad media ponderada. (C) Imágenes de cátodoluminiscencia post ablación láser de los zircones representativos de algunos de los análisis utilizados para el cálculo de la edad media ponderada, donde los medios círculos amarillos corresponden al lugar de una primera sesión de ablación y los círculos completos a una segunda sesión; en ambos casos las ablaciones fueron de un diámetro de ~23 $\mu m.$

B.2.4 Monzogranito de biotita (QTB-1)

La muestra de monzogranito de biotita QTB-1 fue recolectada en la zona de Quitobaquito Hills, dentro de Organ Pipe Cactus National Monument al suroeste de Arizona (Figura 1). Para el fechamiento U-Pb del monzogranito se realizaron un total de 40 ablaciones ocupando tanto bordes como núcleos en los zircones. Las primeras ablaciones se realizaron en octubre del 2016, enfocadas a obtener la edad de cristalización de la roca y la segunda sesión se realizó en junio del 2017 y se orientó en ablacionar posibles núcleos heredados. El tamaño promedio de los zircones es de 150 µm; su morfología generalmente es prismática, euhedral y alargada en su eje principal, con ambas caras definidas y en su mayoría con bordes en punta y algunos presentan un borde fracturado o redondeado. Fracturas i nternas, i nclusiones f luidas, apatito y d e o tras f ases m inerales n o determinadas se pueden apreciar en los zircones.

En las imágenes de catodoluminiscencia (Apéndice B.3.1) se aprecia que la mayoría de los zircones tienen un núc leo amplio, por lo general con baja catodoluminiscencia y el resto de los zircones po seen un núc leo más pe queño, c on un e fecto de reabsorción en a lgunos casos y de catodoluminiscencia más el evada. Las concentraciones en U de los zircones (Tabla B.1) varían según la intensidad de catodoluminiscencia del zircón. En la Figura B.2.3E se aprecia el zircón 38 que fue ablacionado en su núcleo correspondiendo a una zona de alta catodoluminiscencia con una concentración baja en U de 199 pp m y, por otra parte, se observa el zircón 8 ablacionado en su borde en una zona de baja catodolumniscencia, con una concentración alta en U de 2810 ppm. En esta f igura también s e puede di stinguir l a di ferencia en los núcleos d e l os z ircones q ue so n laramídicos respecto a los zircones laramídicos con núcleos heredados, cuyos núcleos presentan una textura de reabsorción seguido por una zonación de crecimiento ígneo de edad laramídica.

Los datos isotópicos de U-Pb fueron graficados en un di agrama de concordia tipo Tera-Wasserbug (Figura B.2.3A) en donde todos los datos son graficados con elipses de color negro; se aprecian los análisis realizados a los núcleos con edades proterozoicas muy próximos a la línea de concordia y, por otra parte, una nube de datos con edades laramídicas en donde es necesario realizar un acercamiento a esa área (Figura B.2.3B). En dicho acercamiento se observa que los datos tienen una di spersión considerable debido a que en algunos casos poseen di scordancias muy el evadas (e.g., zircón 23 c on 24% de di scordancia), y ot ros relativamente concordantes con e dades más antiguas (>80 M a), c orrespondiendo e n s u m ayoría a z ircones a blacionados e n s us núc leos y representando c ierto gr ado de he rencia (e.g., en l a F igura B .2.3E se ap recia el zi rcón 3 3, ablacionado en su núcleo con una edad de 86.6 ± 2.9 Ma y, a su vez, en el mismo zircón se tiene la ablación 12 realizada en el borde del grano, con una edad de 74.6 \pm 1.1 Ma. También se aprecian dos zircones (z-7 y z-4) con edades más jóvenes y altas concentraciones en U que interpretamos como una tendencia de pérdida de Pb. Todos estos datos descritos anteriormente son graficados con elipses y cuadros de color gris y no son empleados para calcular la edad de la roca. Las elipses y cuadros de color negro corresponden a los análisis más concordantes y que representan una menor dispersión estadística de la cual se logra calcular una edad ²⁰⁶Pb/²³⁸U media ponderada de 75.4 \pm 0.6 Ma (2s, MSWD = 2.3, n = 15), siendo esta edad interpretada como la mejor aproximación a la edad de cristalización del monzogranito de biotita QTB-1.

Los datos isotópicos de U-Pb también fueron graficados en una diagrama de concordia tipo Wetherill (Figura B.2.3D), para así tener una mejor observación respecto a los núcleos de edad proterozoica y el comportamiento del resto de los análisis obtenidos. El núcleo heredado más antiguo corresponde al z ircón 34 que es concordante y tiene una edad de 1724 ± 22 M a, interpretándose como una herencia de un basamento paleoproterozoico. También se obtuvieron dos núcleos heredados mesoproterozoicos (zircones 23 y 38 con edades de 1053 ± 14 Ma y 1063 ± 19 Ma, respectivamente), con los cuales se calculó una edad 207 Pb/²⁰⁶Pb media ponderada de 1056 ± 11 Ma (2s, MSWD = 0.75), siendo esta edad similar a l a de las rocas aso ciadas a un e vento magmático a los ~1.1 Ga presente en la región. Por último, se observa una línea de discordia que se ancla en la edad del zircón más antiguo de 1724 ± 22 Ma, dando como resultado una intersección inferior de 75.9 \pm 3.6 Ma, cuya edad es igual a la edad de cristalización media ponderada calculada (Figura B.2.3C), aunque con una dispersión estadística muy alta (MSWD = 34).

B.2.5 Sienogranito leucocrático de dos micas (SR-7)

El s ienogranito leucocrático de d os m icas S R-7 fue r ecolectado en S ierra E l R osario, ubicada en la región de Sierras Sepultadas al noroeste de Sonora (Figura 1). Para el fechamiento U-Pb del sienogranito se realizaron un total de 36 ablaciones; las primeras ablaciones se realizaron en febrero del 2013, enfocadas a obtener la edad de cristalización de la roca (Húguez-Vejar *et al.*, 2014), siendo los granos ablacionados tanto en bordes como en algunos núcleos. Para junio del 2017 se r ealizó u na s egunda secu encia d e ab laciones en focadas est a v ez, e n pos ibles núc leos heredados. Los z ircones pr esentan un t amaño pr omedio de 120 μ m; m orfológicamente s on prismáticos, co n am bas car as d efinidas y b ordes e n punt a. E n a lgunos c asos, l os bordes se encuentran fracturados y lig eramente a largados e n u n e je p rincipal, con f racturas in ternas, inclusiones de apatito y otras fases minerales no determinadas.

En las imágenes de catodoluminiscencia (Apéndice B.3.2) se puede apreciar que, en forma general, los zi rcones p oseen u n n úcleo m ás cat odoluminiscente, s eguido de un a z onación oscilatoria concéntrica típica de un crecimiento ígneo. En la Figura B.2.5D se puede apreciar que los zircones con un núcleo heredado presentan una textura de reabsorción (e.g., zircones 27, 38 y 34), y en otros casos, una textura compleja (e.g., zircones 18 y 36). Algunas de las ablaciones se realizaron en zonas con baja catodoluminiscencia en el zircón, correspondiendo a concentraciones altas en U (e.g., zircón 21 con una concentración en U de 15,681 ppm). Por otro lado, también se realizaron ablaciones en zonas con alta catodoluminiscencia cuya concentración en U tiende a ser relativamente baja (e.g., zircón 32 con una concentración en U de 207 ppm).

Los d atos an alíticos de U -Pb s e g raficaron e n un di agrama de c oncordia t ipo T era-Wasserburg (Figura B.2.5A) en donde se aprecia el zircón 34 que representa un núcleo heredado de edad 207 Pb/ 206 Pb de 1654 ± 19 Ma, edad muy común para el basamento metaígneo presente en la región. También se distinguen 4 análisis con altas discordancias (>18% disc.) correspondiendo a ablaciones hechas en núcleos con una textura compleja, que no s erán tomados en cuenta para ningún tipo de interpretación. Por otra parte, se tienen análisis concordantes que corresponden a ablaciones hechas en los núcleos de los zircones, resultando edades concordantes mesozoicas que van desde 109 Ma hasta 223 Ma.

Otra ag rupación d estacada d e a nálisis s e p resenta d entro d el Á rea B, r ealizando un acercamiento que se aprecia en la Figura B.2.5B, donde la dispersión de los análisis es destacable, con ed ades que v an d esde l os 64 Ma h asta 86 Ma. L as el ipses y cu adros d e co lor g ris est án

representados por los análisis con una edad mayor a los 70 M a que corresponden a ablaciones hechas en una zona de mezcla en el zircón, en donde se involucra un dominio más viejo (núcleo) y otro dominio más joven (borde), siendo por esto considerados análisis con edades ligeramente más viejas. Por otra parte, los análisis con edades menores a 66 Ma, están siendo considerados como parte de una tendencia de pérdida de Pb, como lo sugieren las altas concentraciones en U en esos zi rcones (> 3000 ppm). Los c uadros y elipses de c olor ne gro representan lo s análisis relativamente co ncordantes (<5% disc.) que fueron empleados para cal cular la edad 206 Pb/²³⁸U media ponderada de 68.1 ± 0.6 M a (2s, MSWD = 2.7, n = 6) que se interpreta como la edad de cristalización del sienogranito de dos micas SR-7 de Sierra El Rosario.

B.2.6 Monzogranito de biotita (Bettylee)

El monzogranito de biotita Bettylee fue recolectado en la mina Betty Lee, dentro de Cooper Mountains a l suroeste d e Arizona (F igura 1). Para e l fechamiento U -Pb de l m onzogranito s e realizaron u n t otal d e 3 7 ablaciones; l as p rimeras ab laciones se r ealizaron en j ulio d el 2 015, enfocadas a obtener la edad de cristalización de la roca, siendo los granos ablacionados tanto en bordes como en algunos núcleos. Para junio del 2017 se realizó una segunda sesión de ablaciones enfocada esta vez a fechar núcleos heredados. El tamaño promedio de los zircones es de 160 µm; su morfología está caracterizada p or ser granos p rismáticos, co n am bas car as d efinidas, am bos bordes en punta en su mayoría y en algunos casos un borde fracturado, muy pocas fracturas internas y varias inclusiones de apatito y otras fases minerales no definidas.

Las imágenes de catodoluminiscencia (Apéndice B.3.2) muestran una diversidad respecto a los núcleos e intensidades de catodoluminiscencia en los zircones. En forma general, se aprecian zircones con núcleos de un t amaño considerable respecto al tamaño del zircón, seguido de una zonación oscilatoria concéntrica característica de crecimientos ígneos observados en zircones de edades laramídicas (Figura B.2.6E). También se aprecian zircones que tienen núcleos con texturas complicadas y c on a parente reabsorción, s iendo ca racterístico d e n úcleos h eredados (proterozoicos), seguido de una zonación oscilatoria de carácter magmático. En la Figura B.2.6E se observa que los puntos de ablación en los zircones fueron realizados en zonas de baja y alta catodoluminiscencia, relacionados directamente con diferentes concentraciones en U. En la Tabla B.1 se p ueden ap reciar los v alores en d ichas concentraciones. P or e jemplo, e l z ircón 34 f ue ablacionado en su núcleo con una alta catodoluminiscencia, correspondiéndole una concentración relativamente baja en U de 162 ppm; el zircón 29, por su parte, fue ablacionado en su núcleo con una baja catodoluminiscencia, cuya concentración en U es relativamente alta, siendo de 1910 ppm.

Los datos isotópicos de U-Pb fueron graficados en una diagrama de concordia tipo Tera-Wasserburg (Figura B.2.6A), donde se aprecian dos agrupaciones de análisis, una correspondiente a las ablaciones realizadas a los núcleos heredados con edades proterozoicas y otras con edades mucho más jóvenes (de 59 Ma hasta 90 Ma), ambas representadas con elipses de color negro. La Figura B.2.6B es un acercamiento de la agrupación de edades más jóvenes, en donde los análisis con elipses y cuadros de color gris en parte representan zircones muy discordantes (>21% disc.) correspondientes a ablaciones hechas en el núcleo de los zircones, interpretándose como edades con cierta herencia. Por otra parte, las edades más jóvenes, y con altas concentraciones en U, están definiendo una tendencia de pérdida de Pb. Los análisis representados con elipses y cuadros de color negro son los más concordantes (<13% disc.) y permiten calcular una edad 206 Pb/ 238 U media ponderada d e 67.9 ± 1.1 M a (2s, M SWD = 2.6, n = 11), que s e interpreta como l a e dad de cristalización del monzogranito de biotita Bettylee.

Los datos isotópicos también fueron graficados en un diagrama de concordia tipo Wetherill (Figura B.2.6D), donde se logra apreciar la distribución de los análisis de núcleos heredados a lo largo de la línea de concordia, algunos presentan altas discordancias (z-35 y z-37 con discordancias de 17% y 11%, respectivamente), indicativos de una tendencia de pérdida de Pb y que, en conjunto con el resto de los datos, generan una línea de discordia cuya intersección inferior tiene una edad de 56 ± 26 Ma (2s, MSWD = 12). Esta edad es similar, dentro de los rangos de error, a la edad ²⁰⁶Pb/²³⁸U media ponderada calculada y la interpretamos como el tiempo de un pulso magmático regional que propició la pérdida de Pb en los zircones antes mencionados. La línea de discordia también generó una edad de intersección superior de 1640 ± 27 M a (2s, MSWD = 12), s iendo interpretada como la edad del basamento metaígneo intruido por el magma laramídico presente. Por último, y no menos importante, se aprecia el zircón 34 concordante (1% disc.), con una edad de 1444 ± 68 Ma, el cual se interpreta como un análisis de núcleo heredado, asociado a un pulso magmático mesoproterozoico de ~1.4 Ga, bien representado en la región.

B.2.7 Monzogranito leucocrático de biotita (Gila-2)

El monzogranito de biotita Gila-2 fue recolectado en la zona de Vapoki Ridge (Montañas Gila), al sur de Fortuna Foothills dentro de Barry M. Goldwalter Air Force Range al suroeste de Arizona (Figura 1). P ara el fechamiento U -Pb del monzogranito s e realizaron un total de 34 ablaciones; las primeras ablaciones se realizaron en febrero del 2014, enfocadas a obtener la edad de cristalización de la roca, s iendo los granos a blacionados t anto en bordes c omo e n a lgunos núcleos. Para junio del 2017, se realizó una segunda sesión de ablaciones enfocadas, esta vez, en posibles n úcleos h eredados o bservados en 1 as i mágenes de ca todoluminiscencia. El t amaño promedio de los zircones es de 150 µm; su morfología consiste en cristales prismáticos, con ambas caras definidas, bordes en punta o algunos bordes fracturados, inclusiones de apatito y otras fases minerales no determinadas en el interior de los granos.

En las imágenes de catodoluminiscencia (Apéndice B.3.2) se aprecia que la mayoría de los zircones p osee u n núcleo más catodoluminiscente, s eguido de una zonación os cilatoria que e s característico de crecimientos concéntricos ígneos. Varios de los zircones laramídicos tienen un núcleo más catodoluminiscente respecto a los núcleos proterozoicos, que también tienen un efecto de reabsorción y/o textura compleja. En la Tabla B.1 se pueden observar las concentraciones de U y éstas varían según la zona catodoluminiscente ablacionada. Por ejemplo, en la Figura B.2.7E, se aprecia el zircón 15, c on una ablación en su núcleo en una zona con alta catodoluminiscencia, correspondiendo a una concentración baja en U de 92 ppm con respecto al zircón 26, que también es ab lacionado en su núcleo p ero en u na zo na d e b aja cat odoluminiscencia, t eniendo una concentración relativamente alta en U de 1590 ppm.

Los datos isotópicos de U-Pb fueron graficados en un di agrama de concordia tipo Tera-Wasserburg (Figura B.2.7A) en donde se aprecian dos agrupaciones respecto a las edades de los análisis obtenidos. Por una parte, se tienen las edades proterozoicas que van desde 1109 Ma hasta 1751 Ma, correspondiendo a los núcleos heredados de los zircones; otra agrupación importante son los análisis correspondientes a los zircones con edades que van desde 64 Ma hasta 74 Ma, cuyo acercamiento para una mejor observación de los datos se aprecia en la Figura B.2.7B. En dicha figura s e n ota una d ispersión considerable d e l os datos. Las elipses y cu adros d e co lor gris corresponden a análisis muy discordantes (>13% disc.) y también a ablaciones realizadas en una zona de mezcla tanto de núcleo como del borde del zircón. Es por eso que se aprecian tres análisis con cierto grado de herencia (zircones 27, 12 y 23). Por otra parte, los zircones más jóvenes, con cierto au mento en su s concentraciones de U, representan una tendencia d e pérdida de Pb. Las elipses y cuadros de color negro son los análisis más concordantes y con una dispersión estadística aceptable como para permitir el cálculo de una edad 206 Pb/ 238 U media ponderada de 67.7 ± 0.8 Ma (2s, MSWD = 2.3, n = 13), interpretándose como la mejor estimación de la edad de cristalización del monzogranito de biotita Gila-2.

Para una mejor apreciación de los datos de núcleos heredados con edades proterozoicas, estos se g raficaron en un d iagrama U -Pb tipo W etherill (Figura B .2.7D), obs ervándose do s pequeñas agrupaciones s obre la línea de concordia (elipses de color negro); una corresponde a núcleos heredados con una edad ²⁰⁷Pb/²⁰⁶Pb media ponderada de 1369 ± 13 Ma (2s, MSWD = 0.09, n = 3), si endo ést os representativos d e la actividad magmática mesoproterozoica de ~1.4 Ga presente en la región. Otra agrupación de análisis de núcleos heredados permite calcular una edad ²⁰⁷Pb/²⁰⁶Pb media ponde rada de 1699 ± 31 M a (2s, MSWD = 0.87, n = 3), siendo ést a ed ad considerada como la mejor aproximación a la edad del basamento metaígneo paleoproterozoico presente en la región. Las elipses de color gris representan los análisis con discordancias elevadas (>5% disc.) y con una discordancia inversa (z-24 con -2% disc.), que en conjunto, con el resto de los análisis, se logra obtener una línea de discordia, cuya intersección superior es an clada en la edad ²⁰⁷Pb/²⁰⁶Pb media ponde rada de 1699 ± 31 M a para así obtener una edad de intersección inferior de 62.4 ± 5.7 M a (2s, MSWD = 27), la cual es igual, dentro de los límites de error, a la edad ²⁰⁶Pb/²³⁸U media ponderada de cristalización (67.7 ± 0.8 Ma) del monzogranito recolectado en las Montañas Gila.

B.2.8 Monzogranito de dos micas (Mohawk-3)

La muestra d e monzogranito M ohawk-3 f ue r ecolectada en la localidad d e Mo hawk Mountains, en San Cristobal Valley al suroeste de Arizona (Figura 1). Para el fechamiento U-Pb del monzogranito se realizaron un total de 40 ablaciones; las primeras ablaciones se realizaron en octubre de l 2016, e nfocadas a obt ener l a e dad de c ristalización de l a roca, s iendo l os gr anos ablacionados tanto en bordes como en algunos núcleos. Para junio del 2017 se realizó una segunda sesión de ablaciones en focadas esta vez, en posibles núcleos heredados. Se pueden apreciar dos familias de zircones con respecto a su tamaño. Los zircones con un tamaño promedio de 200 μ m y otros con un tamaño promedio menor de 80 μ m; morfológicamente están caracterizados por ser prismáticos, ligeramente alargados, con bordes en punta y en algunos casos planos y/o fracturados. Se observan algunas inclusiones de apatito y otras fases minerales no definidas.

En las imágenes de catodoluminiscencia (Apéndice B.3.3) se ap recia u na variedad con respecto a los núcleos de los zi rcones, en algunos caso s se tiene u n núcleo am plio co n a lta catodoluminiscencia y, en ot ros casos, núc leos pe queños con ba ja catodoluminiscencia. Los núcleos heredados en general tienden a tener u na textura interna compleja y también presentan reabsorción respecto al crecimiento posterior de edad laramídica (Figura B.2.9E). Las intensidades de catodoluminiscencia están directamente relacionadas con las concentraciones de U en el zircón. Por ejemplo, el zircón 35 fue a blacionado en su núcleo con u na al ta catodoluminiscencia y le corresponde una concentración relativamente baja en U de 146 ppm respecto al zircón 27 (Tabla B.1) que fue a blacionado en su núcleo con baja catodoluminiscencia y con una concentración relativamente alta en U de 2090 ppm.

Los datos isotópicos de U-Pb fueron graficados en un di agrama de concordia tipo Tera-Wasserburg (Figura B.2.9A), en donde se aprecian dos agrupaciones importantes de análisis; una agrupación está caracterizada por los núcleos heredados en los zircones con edades proterozoicas que van desde 1553 Ma hasta 1721 Ma; otra agrupación está localizada en análisis laramídicos con edades que van desde 58 Ma hasta 76 Ma. Existen dos análisis con discordancias muy altas, los zircones 31 y 24 con discordancias de 62% y 19%, respectivamente (Figura B.2.9A), que no serán tomados en cuenta para el cálculo de ninguna edad media ponderada. La agrupación de análisis con edades laramídicas se aprecia mucho mejor en el acercamiento de la Figura B.2.9B, allí se puede observar una dispersión considerable de los análisis, en donde las elipses y cuadros de color gris, que s e en cuentran m ás al ejados d e la línea d e co ncordia, r epresentan los d atos co n discordancias altas (>7% disc.). También se aprecian zircones concordantes con edades un poco más viejas, que fueron a blacionados en los bordes de los granos pero que seguramente ser án dominios d e zi rcón h eredado que n o se t omaron en cu enta p ara e l cá lculo d e l a ed ad de cristalización. La agrupación de datos representados con elipses y cuadros de color negro permite calcular una edad 206 Pb/ 238 U media ponderada de 67.6 ± 0.7 Ma (2s, MSWD = 2.0, n = 12), que interpretamos como la edad de cristalización del monzogranito de dos micas Mohawk-3. El resto de an álisis, con ed ades más j óvenes, y r epresentados c on e lipses y cuadros de color gr is, son considerados co mo análisis con una tendencia d e pérdida de P b, ya que también pr esentan un incremento considerable en sus concentraciones de U (1470–2520 ppm) (Tabla B.2).

Los da tos isotópicos de U-Pb t ambién se graficaron en un diagrama de concordia tipo Wetherill (Figura B.2.9D) con la finalidad de tener una mejor observación del comportamiento de las edades de los núcleos heredados en los zircones laramídicos. En este gráfico se aprecia una dispersión en los análisis representados con elipses de color gris, que corresponden a datos con altas discordancias, los cuales se asocian a una tendencia de pérdida de Pb y que al mismo tiempo, en conjunto con el resto de los análisis, generan una línea de discordia cuya intersección inferior con la línea de concordia es a 63.4 ± 2.6 Ma (2s, MSWD = 12). Esta edad es muy similar a la edad ²⁰⁶Pb/²³⁸U media ponderada calculada anteriormente (67.6 ± 0.7 Ma), pudiendo indicar el tiempo del evento m agmático q ue pudo h aber oc asionado la p érdida d e P b en l os zircones an tes mencionados. La intersección superior de la línea de discordia fue definida por los análisis más concordantes de e dad paleoproterozoica, con l os cuales se logró c alcular u na ed ad ²⁰⁷Pb/²⁰⁶Pb media ponderada de 1669 ± 58 Ma (2s, MSWD = 3.7, n = 5), siendo esta edad interpretada como la edad del basamento metaígneo que participó en la magmagénesis de los granitoides laramídica.

los análisis utilizados para el cáleculo de la edad media ponderada, donde los medios círculos amarillos corresponden al lugar de una primera sesión de ablación y los círculos completos a una segunda sesión; en ambos casos las ablaciones fueron de un diámetro de ~23 µm. En estas imágenes, los zircones con número y edad en cursivas no fueron tornados en cuenta para el cálculo de la edad media ponderada y son mostrados para ilustrar algunos aspectos discutidos en el texto.

B.2.9 Monzogranito leucocrático de dos micas (Tinajas-1)

El monzogranito leucocrático de dos micas Tinajas-1 fue recolectado en la localidad de Tinajas Altas Mountains, dentro de la reserva Barry M. Goldwater Air Force Range al suroeste de Arizona (Figura 1). Para su fechamiento U-Pb se realizaron un total de 36 ablaciones divididas en dos sesiones; las primeras ablaciones se realizaron en febrero del 2014, enfocadas a obtener la edad de cristalización de la roca. Por tal motivo, los granos fueron ablacionados principalmente en los bordes, pero puntualmente también en algunos núcleos. Para junio del 2017, se realizó una segunda sesión de ablaciones enfocadas esta vez a fechar núcleos heredados observados en las imágenes de catodoluminiscencia. El tamaño promedio de los zircones es de 120 µm; su morfología consiste en cristales p rismáticos, co n am bas c aras d efinidas, am bos bordes en punta y al gunos b ordes fracturados, inclusiones de apatito y o tras fases minerales no determinadas en el interior de los granos.

En las imágenes de catodoluminiscencia (Anexo B.3.3) se aprecia que, en forma general, la mayoría de los zircones tiene un núcleo amplio y con alta catodoluminiscencia, seguido por una zonación oscilatoria que es ca racterística de un crecimiento concéntrico ígneo. Los núcleos con edades proterozoicas t ienen u na est ructura d e crecimiento d iferente a los b ordes d el zi rcón y, además, presentan una reabsorción claramente evidenciada en las imágenes. En la Figura B.2.10E se logra v er las d iferentes i ntensidades d e cat odoluminiscencia en los zi rcones, las cu ales s e encuentran directamente relacionadas con las concentraciones en U contenidas en los granos. El zircón 35 fue ablacionado en su núcleo, correspondiendo a una zona de alta catodoluminiscencia, cuya concentración en U podemos ver en la Tabla B.1 con un valor relativamente bajo de 106 ppm; por otra parte, el zircón 24 fue ablacionado en una zona de baja catodoluminiscencia, el cual le corresponde una concentración relativamente alta en U de 2899 ppm.

Los datos isotópicos de U-Pb fueron graficados en un di agrama de concordia tipo Tera-Wasserburg (Figura B.2.10A), en donde se pueden distinguir dos agrupaciones de análisis. Una primera agrupación corresponde a los núcleos heredados de los zircones, con edades proterozoicas; una segunda agrupación es notoria en edades mucho más jóvenes que, en este caso, van desde los 76 Ma h asta l os 6 5 M a; t ambién se ap recia una d ispersión d e an álisis co n al tos v alores d e discordancia, posiblemente asociados a ablaciones hechas en zonas de mezcla entre borde y núcleo en los zircones. Para u na m ejor o bservación de l os an álisis c on ed ades m ás j óvenes, se r ealizó u n acercamiento representado en la Figura B.2.10B, en donde se aprecia una dispersión considerable de los análisis. Los análisis representados con elipses y cuadros de color gris, son análisis que tienen altas discordancias (>11% disc.) y otros corresponden a ablaciones realizadas en una zona de mezcla entre borde y núcleo del zircón (z-5 y z-9), interpretándose como núcleos concordantes con un cierto grado de herencia. Todos estos análisis no son considerados en el cálculo de la edad media ponde rada, qu e e s r ealizado con los da tos m ás c oncordantes y c on la menor dispersión posible. La edad 206 Pb/²³⁸U media ponderada calculada de 66.9 ± 0.9 Ma (2s, MSWD = 1.7, n = 10) es interpretada como la mejor a proximación de la edad de cristalización del monzogranito leuucocrático de dos micas Tinajas-1.

Los análisis isotópicos de U-Pb también fueron graficados en un di agrama de concordia tipo Wetherill (Figura B.2.10D), donde se aprecia mejor los análisis con edades proterozoicas que son núcleos heredados. En primer lugar, se puede apreciar una agrupación importante de datos representados por elipses de color negro, correspondiendo a los análisis más concordantes de los zircones heredados, resultando una edad 207 Pb/ 206 Pb media ponderada de 1671 ± 20 Ma (2s, MSWD = 1.3, n = 7); esta edad es interpretada como la edad del basamento metaígneo presente en la región. En segundo lugar, se tienen las elipses de color gris, cuyos datos no fueron tomados en cuenta para el análisis de la edad media ponderada, en donde el zircón 33, con una edad de 1753 ± 47 Ma, corresponde a una ablación he cha en un núc leo de ntro de l m ismo nú cleo de l z ircón (Figura B.2.10E), interpretándose como una herencia de un basamento algo más antiguo. Otro análisis a tomar en cuenta es el zircón 25, concordante y con una edad de 1508 ± 72 M a, interpretándose como una posible herencia correspondiente al evento magmático intrusivo mesoproterozoico de ~1.4 G a. El r esto d e los an álisis tienen al tas discordancias y v alores elevados e n U, s iendo considerados como parte de una tendencia de pérdida de Pb, y que en conjunto con la e dad ²⁰⁷Pb/²⁰⁶Pb media ponderada calculada anclada como la intersecta superior, se genera una línea de discordia cuya intersección inferior da un resultado de 66.7 ± 2.3 Ma (2s, MSWD = 8.0), siendo esta edad igual a la edad ²⁰⁶Pb/²³⁸U media ponderada calculada anteriormente e i nterpretándose como la edad del evento magmático que propició la pérdida de Pb en algunos de los zircones heredados de esta roca.

B.2.10 Monzogranito de dos micas (Tinajas)

La muestra d e monzogranito d e d os micas T inajas f ue r ecolectada en T inajas A ltas Mountains, dentro d e la reserva B arry M. Goldwater A ir F orce R ange al su roeste de A rizona (Figura 1). De los zircones separados para esta muestra, en primer lugar se seleccionaron 25 análisis para r ealizar el f echamiento U -Pb (octubre 2016), a blacionando t anto bor des c omo a lgunos núcleos, para luego seleccionar 15 análisis posteriores enfocados en núcleos heredados detectados mediante i mágenes d e cat odoluminiscencia (junio 2017). La morfología de 1 os z ircones de 1 a muestra Tinajas tienden a ser prismáticos, con ambas caras bien definidas en su mayoría, con un tamaño promedio de 120 μ m, algunos presentan fracturas e inclusiones de apatito y otras fases minerales no determinadas.

En las imágenes de catodoluminiscencia (Apéndice B.3.4) se aprecia que, en forma general, la mayoría de los zircones tiene un núcleo amplio y con alta catodoluminiscencia, seguido por una zonación o scilatoria que es car acterística de u n cr ecimiento co ncéntrico de or igen ígneo. L os núcleos con edades mesozoicas y proterozoicas tienen una estructura de crecimiento diferente a los bordes de l z ircón y, además, p resentan u na reabsorción claramente ev idenciada y algunos con texturas c omplejas (Figura B .2.12E). T ambién se l ogra v er l as d iferentes i ntensidades d e catoluminiscencia en los zi rcones, las cu ales se en cuentran d irectamente relacionadas con las concentraciones en U c ontenidas en l os gr anos. E l z ircón 34 f ue a blacionado e n s u núc leo, correspondiendo a una zona de alta catodoluminiscencia, cuya concentración en U podemos ver en la Tabla B.1 con un valor relativamente bajo de 227 ppm; por otra parte, el zircón 9 fue ablacionado en una zona de baja catodoluminiscencia, el cual le corresponde una concentración relativamente alta en U de 3860 ppm.

Los an álisis isotópicos de U-Pb se graficaron en un di agrama de concordia tipo T era-Wasserburg (Figura B.2.12A), en donde se pueden distinguir dos agrupaciones de análisis. Una primera agrupación corresponde a los núcleos heredados de los zircones, con edades proterozoicas; la segunda agrupación es notoria con edades mucho más jóvenes que en este caso van desde los 89 Ma hasta los 61 Ma; también se aprecia una dispersión de análisis con altos valores de discordancia (>26% disc.), posiblemente asociados a ablaciones hechas en zonas de mezcla entre borde y núcleo en los zircones. Por último, existen dos análisis (zircones 37 y 29), ablacionados en sus respectivos núcleos cuyas edades fueron de 112 ± 2 Ma y 159 ± 2 Ma, respectivamente. La Figura B.2.12B es un acercamiento de los análisis con edades más jóvenes, en donde se utilizaron 12 análisis (elipses y cuadrados negros) para el cálculo de la edad 206 Pb/²³⁸U media ponderada de 64.8 ± 0.6 Ma (2s, MSWD = 1.4, n = 12) (Figura B.2.12C), siendo ésta considerada como la edad de cristalización del monzogranito de dos micas Tinajas. Las el ipses y cuadrados de color gris representan los análisis no utilizados para el cálculo de la edad, ya que estos son interpretados como análisis de zircones con algún grado de herencia (e.g., zircones 17, 40 y 32) o simplemente análisis que fueron ablacionados en los núcleos de los zircones y/o en una zona donde se involucra borde y núcleo del cristal. Los análisis con edades más jóvenes, y con altas concentraciones en U, son considerados como zircones con una tendencia de pérdida de Pb.

Los análisis isotópicos de U-Pb también fueron graficados en un di agrama de concordia tipo Wetherill (Figura B.2.12D), con la finalidad de tener una mejor apreciación de los análisis con edades proterozoicas. Entre los análisis se tienen dos edades concordantes, el zircón 31 y 39 con edades de 1619 ± 63 M a y 1697 ± 9 M a, respectivamente. El resto de los análisis con edades proterozoicas tienen discordancias mayores a 4% y altas concentraciones en U, asociadas a u na tendencia de pérdida de Pb. El conjunto de todos los análisis realizados en esta muestra permite obtener una línea de discordia, dando como resultado una edad de intersección superior de 1655 ± 16 Ma y una intersecta inferior a los 68 ± 12 Ma (2s, MSWD = 45). La edad de intersección superior puede ser interpretada como la posible edad del basamento metaígneo presente en la región y que fue fuente d e co ntaminación d el m agma laramídico precursor de l monzogranito. La in tersecta inferior e s muy s imiliar a la e dad 206 Pb/²³⁸U media ponde rada c alculada, s iendo este evento magmático el posible causante de la pérdida de Pb en los zircones proterozoicos.

los análisis utilizados para el cáleculo de la edad media ponderada, donde los medios círculos amarillos corresponden al lugar de una primera sesión de ablación y los círculos completos a una segunda sesión; en ambos casos las be a chart of e la chart of e 23 µm. En estas imágenes, los zircones con número y edad en cursivas no fueron tornados en cuenta para el cálculo de la cdad media ponderada y son mostrados para ilustrar algunos aspectos discutidos en el texto.

B.2.11 Pegmatita granítica feldespática de microclina (Tinajas-2)

El intrusivo pegmatítico granítico Tinajas-2 fue recolectado en la localidad de Tinajas Altas Mountains, dentro de Barry M. Goldwater Air Force Range al suroeste de Arizona (Figura 1). Para el fechamiento U-Pb de est a muestra se r ealizaron un total de 25 ab laciones, o rientadas en su mayoría en los bordes y algunos núcleos de los zircones, enfocadas a obtener la edad de intrusión de l a p egmatita. El t amaño pr omedio de 1 os z ircones e s de 200 μ m; morfológicamente s on subhedrales, en luz trasmitida se ven oscuros y gruesos, también se observan diversas fracturas y en algunos casos son de color marrón oscuro.

En las imágenes de catodoluminiscencia (Apéndice B.3.4) se aprecia, en forma general, que los zircones presentan unas características de catodoluminiscencia muy inusuales, teniendo una textura compleja, tal vez asociadas a un fenómeno de recristalización quizá en conexión a fluidos relacionados al proceso de pegmatización. En la Figura B.2.13D se aprecian zircones con cierta zonación (e.g., zircones 15, 13 y 7), indicando un proceso de crecimiento ígneo. En la Tabla B.1 se observa que las concentraciones en U son generalmente elevadas. El zircón 13 ablacionado en una zona de baja catodolumiscencia, tiene una concentración relativamente alta en U de 9600 ppm y el zircón 7, ablacionado en una zona de mezclas de catodoluminiscencias, tiene una concentración más baja en U de 3468 ppm.

Los datos analíticos de U-Pb fueron graficados en un di agrama de tipo Tera-Wasserburg (Figura B .2.13A), en d onde se ap recian o cho análisis m uy d iscordantes (>20% d isc.) y muy dispersos, los cuales no se tomarán en cuenta para el cálculo de una edad media ponderada. Por otra parte, se observa una agrupación de análisis indicados dentro del Área B, cuyo acercamiento se grafica en la Figura B.2.13B. En el a cercamiento se a precia una di stribución i mportante de análisis (elipses y cuadros de color gris) los cuales, en parte, representan datos muy discordantes (>5% disc.), mostrando altas concentraciones en U, que para el caso de los zircones 63 y 13 nos están representando una tendencia de pérdida de Pb y el resto de los análisis un alto contenido en Pb común. Es importante mencionar que no se aprecian núcleos heredados para esta muestra. Los análisis graficados c on e lipses y cuadros de c olor ne gro s on l os m ás c oncordantes y c on concentraciones relativamente bajas en U r especto a l r esto de la población, qu e en c onjunto permiten calcular una edad ²⁰⁶Pb/²³⁸U media ponderada de 64.6 ± 0.8 Ma (2s, MSWD = 2.2, n = 6), siendo interpretada como la edad de la intrusión de esta pegmatita granítica feldespática de microclina Tinajas-2. Esta unidad parece cortar todos los granitoides de dos micas que forman el grueso de Tinajas Altas Mountains (Tinajas, Tinajas-1) y Tinajas-4).

B.2.12 Monzogranito de dos micas (Tinajas-4)

La muestra de monzogranito de dos micas Tinajas-4 fue recolectada en Tinajas Altas Mountains, dentro de la reserva Barry M. Goldwater Air Force Range al suroeste de Arizona (Figura 1). De los zircones separados para esta muestra, en primer lugar se seleccionaron 25 de ellos para realizar el fechamiento U-Pb (octubre 2016), ablacionando tanto bordes como algunos núcleos, para posteriormente seleccionar 14 zircones con núcleos heredados (junio 2017) definidos a partir de las imágenes de catodoluminiscencia. El tamaño promedio de los zircones es de 140 µm, a largados en su eje principal, prismáticos y subhedrales, c on ambos bor des en punta y e n algunos c asos, con bordes f racturados. T ambién e xisten inclusiones de ap atito y o tras f ases minerales no determinadas.

En las imágenes de catodoluminiscencia (Apéndice B.3.4) se aprecia que, en forma general, la mayoría de los zircones tienen un núcleo de alta catodoluminiscencia, cuyos tamaños varían desde a mplios, abarcando g ran p arte d el cen tro d el zircón, a tamaños p equeños y d e b aja catodoluminiscencia. P or o tra p arte, l os zircones con núcleos proterozoicos (Figura B.2.14E) suelen t ener una t extura de r eabsorción respecto a la continuidad de s u z onación más j oven. Seguido del núcleo de los zircones, se aprecia una zonación que es característica de un crecimiento concéntrico ígneo. Las intensidades de catodoluminiscencia están directamente relacionadas con las concentraciones en U de cada zircón. En la Figura B.2.14E se observa que la ablación del zircón 39 fue realizada en el centro del zircón con una alta catodoluminisicencia, correspondiendo así a una baja concentración en U de 383 ppm (Tabla B.2); en otro caso, el zircón 36 ablacionado en el centro del zircón, pero con una baja catodoluminiscencia, tiene una concentración alta en U de 3230 ppm.

Los datos isotópicos de U-Pb fueron graficados en un di agrama de concordia tipo Tera-Wasserburg (Figura B.2.14A), en donde se aprecian dos agrupaciones importantes. Una agrupación con datos de edades jóvenes, con valores que van desde 56 Ma hasta 78 Ma; y otra agrupación de datos con edades proterozoicas, incluyendo zircones concordantes y discordantes. Para los análisis más j óvenes, se r ealizó un acer camiento ilu strado en 1 a F igura B.2.14B, donde s e aprecia una dispersión significativa de los análisis. Los análisis graficados con elipses y cuadros de color gris no fueron tomados en cuenta para el cálculo de la edad media ponderada, debido a que por una parte, representan análisis con cierto grado de herencia, ya que corresponden a ablaciones en los núcleos de los zircones (e.g., z-33 y z-34) y también ablaciones que involucran tanto borde como núcleo del zircón. Por otra parte, los análisis con edades más jóvenes, con altas concentraciones en U, representan una tendencia de pérdida de Pb. Los datos graficados con elipses y cuadros de color negro, son los que presentan una mayor concordancia y menor dispersión. Por lo tanto, se calculó una edad 206 Pb/ 238 U media ponderada de 64.4 ± 0.7 Ma (2s, MSWD = 2.7, n = 11), siendo ésta interpretada como la mejor estimación de la edad de cristalización para el monzogranito de dos micas Tinajas-4.

Para una mejor apreciación de los análisis con edades proterozoicas, se graficaron los datos isotópicos de U-Pb en un diagrama de concordia tipo Wetherill (Figura B.2.14D). En este caso se pueden apreciar cinco análisis concordantes con edades que van desde 1604 Ma hasta 1691 Ma. Tomando en cuenta los análisis más antiguos, se calcula una edad ²⁰⁷Pb/²⁰⁶Pb media ponderada de 1690 ± 15 M a (2s, MSWD = 0.0043, n = 2), si endo est a ed ad interpretada como la ed ad del basamento metaígneo existente en la región. Los otros tres análisis concordantes no se tomaron en cuenta d ebido a l a d ispersión en sus ed ades, p ero q ue t ambién co rresponden a h erencias d el basamento presente en la región. Por otra parte, se tienen dos análisis concordantes cuya e dad 207 Pb/ 206 Pb media ponderada es de 1443 ± 16 Ma (2s, MSWD = 0.69, n = 2) y que se interpreta como parte de una herencia correspondiente a un evento magmático de ~1.4 Ga característico en la zona de estudio. Estos an álisis tomados en cuenta para cal cular a mbas medias ponderadas anteriormente mencionadas, están graficados con elipses de color negro. El resto de los análisis graficados con elipses de color gris, corresponden a datos con altos valores de discordancia (>9% disc.) y que, en este caso, representan una tendencia de pérdida de Pb respecto a los análisis más viejos, en donde se logra generar una línea de discordia anclada en su intersección superior por la edad media ponderada de 1690 ± 15 Ma, dando como resultado una intersección inferior a los 62 \pm 3 Ma (2s, MSWD = 18), siendo esta edad igual a la edad ²⁰⁶Pb/²³⁸U media ponderada calculada e interpretada como la edad de cristalización del monzogranito de dos micas. Cabe mencionar que para la generación de la línea de discordia se toman en cuenta todos los an álisis realizados, obteniendo una di spersión muy e levada, por 1 o que e stos datos de ed ades de intresección so n tomados como referencia para los estudios de dicha roca.

CHOP-3 (ICGEO-28)

Cucapah-1 (ICGE0-83)

Choya (ALDO-4)

QTB-1 (ICGEO-86)

DRIFTHILLS (ICGEO-40)

SR-7 (El Rosario-1)

Bettylee (ICGE0-45)

Gila-2 (ICGEO-38)

MOHAWK-1 (ICGEO-32)

MOHAWK-3 (ICGEO-40)

Tinajas-1 (ICGEO-35)

SR-3 (El Rosario-1)

Tinajas (ICGEO-86)

Tinajas-2 (ICGEO-89)

Tinajas-4 (ICGEO-82)

Pinta (ICGEO-41)

Apéndice C. Estudios isotópicos de Lu-Hf en zircones

Tabla C.1 Datos isotópicos de Lu-Hf obtenidos por LA-MC-ICPMS en zircones de granitoides proterozoicos del SW de Arizona y NW de Sonora

Tabla C.2 Datos isotópicos de Lu-Hf obtenidos por LA-MC-ICPMS en zircones de granitoides laramídicos del SW de Arizona y NW de Sonora
Tabla C.I Datos isotó Análisis	Muestra Zcen09-38	CF J11 8C 00-2	Zcen09-38_Hf_12 Zcen09-38_Hf_2	Zcen09-38_Hf_8	Zcen09-38 Hf 5	Zcen09-38_Hf_9	Zcen09-38_Hf_6	Zcen09-38_Hf_10	Zcen09-38_Hf_3	Zcen09-38 Hf 1	Zcen09-38_Hf_4			Muestra Tanw09-08	Tanw09-08_Hf_13	Tanw09-06_Hf 2	Tanw09-08 Hf 11	Tanw09-08_Hf_7	Tanw09-08_Hf_3	Tanw09-08_Hf_9	Tanw09-08 Hf 14	Tanw09-08 Hf 8	Tanw09-08_Hf_10	Tanw09-08 Hf 6	Tanw09-08_Hf_5			Muestra OTB-3 Gn	QTB-3_Hf_5	QTB-3_Hf_8	QTB-3_Hf_12 OTB-3_Hf_3	OTB-3 Hf 4	QTB-3 Hf 1	QTB-3_Hf_10	QTB-3_Hf_9	QTB-3_Hf_11 OTB 2_Hf_3	QTB-3_Hf_7	QTB-3_Hf_6			Muestra GneisCen-01	GneisCen-1_Hf_6	GneisCen-1_Hf_7	GneisCen-1_Hf_1 C-wieCon-1_Hf_4	GneisCen-1 Hf 3	GneisCen-1_Hf_11	GneisCen-1_Hf_2	GneisCen-1_Hf_12 GneisCen-1_Hf_8	GneisCen-1_Hf_5	GneisCen-1_Hf_10 GneisCen-1_Hf_9	1		
picos de Lu-F U-Pb	zircon Ortopneis (5 Z	z-20	z-3 z-12	z-22	z-13	z-25	6-z	17-7	z-11	Media pon		Gneis bana	z-22	1-Z	z-2	z-11	z-3	z-12	z-24	2-9	z-15	C-Z	9-z	Media p		eis monzogra	z-13	z-17	z-22	2-7 C1-2	z-2	z-19	z-18	z-20	z-15	z-14	Media p		Gneis bai	6-z	z-10	z-1 2.5	5 52	z-16	z-2	z-25 7-12	z1-z	z-15 z-13		Media p	
Hf obtenidos J Hf _{Haz total}	(v) Arrava La Sar	1.01	12.1 10.6	11.8	11.0	10.4	10.9	12.7	8.8	5.1	11.7	vderada ¹⁷⁶ Hf		deado cuazo-f.	10.0	14.6	12.4	10.3	10.9	1.21	12.4	15.0	11.9	11.5	13.2	onderada ¹⁷⁶ 1		anítico melam	11.6	13.4	12.3	12.0	10.8	12.1	12.3	11.8	11.1	11.1	onderada ¹⁷⁶ .		ndeado cuarzo	14.9	13.5	12.1	14.2	14.2	16.5	13.5	11.4	15.0 13.8	. 176.	oon derada	
or LA-MC-ICI ¹⁷⁶ Hf ^{/177} Hf ⁽¹⁾	nore. Sierra Los	0.001100	0.281720	0.281709	0.281699	0.281695	0.281691	0.281689	0.281686	0.281666	0.281642	/ ¹⁷⁷ Hf = 0.2816	MSWD	eldespático de t	0.2817980	0.781739	0.281738	0.281727	0.281721	0.27182.0	0.281716	0.281715	0.281715	0.281680	0.2814340	Hf ^{/177} Hf = 0.28	MSWL	ocrático de biot	0.281820	0.281794	0.281794	0.281765	0.281750	0.281746	0.281741	0.281741	0.281729	0.281710	Hf/ ¹⁷⁷ Hf = 0.28	MSM	>-feldespático a	0.281792	0.281789	0.281789	0.281782	0.281777	0.281776	0.281770	0.281763	0.281758 0.281738		Hf ^{/17} Hf = 0.28 MSWF	
MS en zircones abs. err. ⁽²⁾	Tanaues, NW	200000	0.000025 0.000031	0.000027	0.000029	0.000027	0.000029	0.000024	0.000029	0.000058	0.000026	972 ± 0.00008	= 0.99 (11 de 12	iotita (NW Sier.	0.000035	0,00000	0.000030	0.000030	0.000035	0.000030	0.000025	0.000020	0.000027	0.000031	0.000026	1720 ± 0.00001	= 1.4 (12 of 14	ita (Quitobaqui	0.000029	0.000026	0.000029	0.000020	0.000035	0.000031	0.000028	0.000028	0.000026	0.000029	1739 ± 0.0001	D = 1.2 (8 de 12	e biotita (Centr	0.000025	0.000023	0.000028	0.000022	0.000030	0.000020	0.000026	0.000024	0.000021 0.000024		1773 ± 0.00001	
de granitoides ¹⁷⁶ Lu/ ¹⁷⁷ Hf	onora) Pro	0.000440	0.000448 0.001018	0.000463	0.000301	0.000349	0.000340	0.000515	0.000349	0.000715	0.000451	-	0	a Los Tanques,	0.001295	0.001379	0.000912	0.001026	0.001176	0.000968	0.000836	0.000704	0.000729	0.001035	0.001112		÷	o Hills, Organ I	0.000693	0.001334	0.001720	0.000834	0.001153	0.001458	0.001041	0.001228	0.000877	0.001033		~	o Sierra Los Tai	0.000647	0.000623	0.001043	0.000440	0.000606	0.000717	0.000904	0.000377	0.000500 0.000903			
proterozoicos de abs. err. ⁽²⁾	beta MAEC-3	000000	0.000004 0.000016	0.000013	0.00003	0.000013	0.000001	0.000011	0.000004	0.000041	0.000031			NW Sonora)	0.000018	0.00004	0.000000	0.000007	0.000016	0.00000	0.00000	0.000010	0.00004	0.000007	0.000011			⁹ ipe Cactus Nat	0.00003	0.000069	0.000021	1000000	0.000040	0.000028	0.000010	0.000015	0.000016	0.000020			nques, NW Sono	0.00006	0.000016	0.000005	0.000011	0.000012	0.00006	0.000080	0.00001	0.00003			
I SW de Arizona ¹⁷⁶ Yb/ ¹⁷⁷ Hf	(Hf en Junio 20	0001100	0.011630	0.012260	0.0133 /0 0.008054	0.008520	0.009228	0.013220	0.008930	0.017200	0.011680			Probeta HARL	0.034790	0.021460	0.022310	0.026160	0.032080	0.0229/0	0.021660	0.016030	0.019021	0.026480	0.030670			ional Momument,	0.016380	0.034500	0.043580	0.0237.80	0.029200	0.039900	0.026170	0.033950	0.023250	0.026090			ra) Probeta	0.015200	0.015430	0.027490	0.010790	0.014610	0.016680	0.024700	0.008829	0.012378 0.022790			
y NW de Sonor abs. err. ⁽²⁾	(8)	0110000	0.000110 0.000390	0.000420	0.0000480	0.000360	0.000034	0.000310	0.000120	0.001000	0.000920			M-7 (Hf en Ju	0.000720	0.001900	0.000130	0.000120	0.000500	0.000230	0.000190	0.000270	0.000078	0.000210	0.000370			SW Arizona)	0.000100	0.002000	0.000600	0.000170	0.000950	0.000850	0.000270	0.000450	0.000360	0.000630			HARIM-7 (Hf	0.000230	0.000490	0.000100	0.000340	0.000360	0.000110	0.002400	0.000049	0.000099 0.000420			
a. 178Hf/ ¹⁷⁷ Hf		1 4/2014	1.467214 1.467212	1.467255	1.467215	1.467241	1.467201	1.467205	1.467232	1.467201	1.467229	2		io 2018)	1.467245	1.467777	1.467244	1.467242	1.467296	1.467234	1.467230	1.467206	1.467238	1.467209	1.467224	2		Probeta ICGE	1.467247	1.467257	1.467236	1 467749	1.467259	1.467243	1.467225	1.467215	1.467293	1.467192	2		en Junio 2018)	1.467232	1.467209	1.467262	1.467230	1.467256	1.467234	1.467234	1.467226	1.467246 1.467274		2	
abs. err. ⁽²⁾		1 00000	0.000035	0.000036	0.000036	0.000036	0.000037	0.000038	0.000047	0.000067	0.000036	ledia ponderada	SW		0.000035	0.000030	0.000033	0.000040	0.000036	0.000035	0.000038	0.000037	0.000033	0.000037	0.000032	ledia ponderada	1	0-81 (Hf en Jr	0.000036	0.000037	0.000032	0.000036	0.000034	0.000040	0.000034	0.000036	0.000034	0.000035	ledia ponderada			0.000036	0.000033	0.000029	0.000028	0.000031	0.000034	0.000026	0.000036	0.000032 0.000030		ledia ponderads	
6Hf ₍₀₎ 8	:		-37.7 -38.0	-38.1	-38.4	-38.5	-38.7	-38.8	-38.9	-39.6	-40.4	a EHf ₍₀₎ = -38.	SWD = 0.99 (-34.4	5.05-	-36.6	-37.0	-37.2	-37.2	-37.3	-37.4	-37.4	-38.6	47.3	a EHf ₍₀₎ = -37.	MSWD = 1.4 (unio 2018)	-33.7	-34.6	-34.6	356	-36.1	-36.3	-36.5	-36.5	-36.9	-37.6	a ɛHf ₍₀₎ = -36.	MSWD = 1.2		-34.7	-34.8	-34.8	-35.0	-35.2	-35.2	-35.4	-35.7	-35.9 -36.6		a eHf ₍₀₎ = -35. ^45WD = 1-87	
abs. err. ⁽²⁾ Ed		00	6.9 1.1	1.0	0.8	1.0	1.0	0.8	1.0	0.0 2.1	0.9	47 ± 0.29	11 de 12)		1.2	0.0		11	1.2		6.0	0.7	1.0	6.0 1:1	0.9	21 ± 0.36	(12 of 14)		1.0	0.9	1.0	0.1	1.2	1.1	1.0	1.0	0.9	1.0	52±0.47	(8 de 12)		0.9	0.8	1.0	0.8 0.8	11	0.7	0.9	0.8	0.7 0.8		31±0.36	(
lad U-Pb ab	(Ma) ^{~*/} (1733 1733	1733	1733	1733	1733	1733	1733	1733	1733				1726	07/1	1726	1726	1726	1726	1726	1726	1726	1/26	1726				1709	1709	1709	1709	1709	1709	1709	1709	1709	1709				1682	1682	1682 1487	1682	1682	1682	1682	1682	1682 1682			
s. err. ¹⁷⁶ H	±2σ) inic		6 0.2 6 0.2	6 0.2	6 0.2 6 0.2	6 0.2	6 0.2	6 0.2	6 0.2 6 0.2	6 0.2	6 0.2				14 0.2	14 0.2	14 0.2	14 0.2	14 0.2	14 0.2	14 0.2	14 0.2	14 0.2	14 0.2 14 0.2	14 0.2				14 0.2	14 0.2	14 0.2 14 0.2	14 0.2	14 0.2	14 0.2	14 0.2	14 0.2	14 0.2	14 0.2				17 0.2	17 0.2	17 0.2	17 0.2	17 0.2	17 0.2	17 0.2	17 0.2	17 0.2 17 0.2			
رالالا 174 م	ial(t) ^{\c_2} C	0 202 0	81705 0 81678 0	81694 0	81689 0 81689 0	81684 0	81680 0	81672 0	81675 0	81642 0	81627 0				81756 0	81604 0	81708 0	81693 0	81682 0	81688 0 0	81689 0	81692 0	81691 0	81646 0	81398 0				81798 0	81751 0	81738 0	81738 0	81713 0	81699 0	81707 0	81701 0	81701 0	81677 0				81771 0	81769 0	81756 0 01774 0	81768 0	81758 0	81753 0	81741 0 81720 0	81751 0	81742 0 81709 0			
HP ¹⁷⁷ Hf	HUK(I)	001100	281680 281680	281680	281680	281680	281680	281680	281680	281680	281680	Me			281685	281685	281685	281685	281685	281685	281685	281685	281685	281685	281685	Me			281696	281696	281696 281696	281696	281696	281696	281696	281696 281606	281696	.281696	Me			281713	281713	281713	281713	281713	281713	281713	281713	281713 281713		Me	
3H ⁷⁷¹ /177	DM(t)	2001000	0.281987 0.281987	0.281987	0.28198/ 0.281987	0.281987	0.281987	0.281987	0.281987	0.281987	0.281987	dia ponderad	MS		0.281992	0.281002	0.281992	0.281992	0.281992	0.281992	0.281992	0.281992	0.281992	0.281992 0.281992	0.281992	dia ponderad	Z		0.282005	0.282005	0.282005	0.282005	0.282005	0.282005	0.282005	0.282005	0.282005	0.282005	lia ponderad:	~		0.282025	0.282025	0.282025	0.282025	0.282025	0.282025	0.282025	0.282025	0.282025 0.282025		lia ponderad: M	
EHf ₍₁₎ at	:	00	6.0 1.0-	0.5	33	0.1	0.0	-0.3	-0.2	-1.3 -1.3	-1.9	a sHf _(t) = 0.(WD = 0.88 (1		2.5	6.0 E 0	8.0	0.3			0.1	0.3	0.2	4.1-	-10.2	a sHf _(i) = 0.1	SWD = 1.4 (3.6	2.0	1.5 2	17	9.0	0.1	0.4	0.2	0.2	-0.7	т ε.Hf(t) = 0.3	1SWD = 1.3 (2.1	2.0	1.5	1 07	1.6	14	1.0	970 1-1	-0.1		a sHf(t) = 1.4 evvn = 2.4 (
38. err. ⁽²⁾	0		8 II	0-1	1 60	1.0	1.0	6.0	01 0	5.1	1.0	8 ± 0.29	1 de 12)		1.3	9 0		Ξ	: 1 :	3 2	60	0.7	91 9	3 3	6.0	5 ± 0.36	12 of 14)		1.0	1.0	= =	0.1	1 1	Ξ	1.0	01 0	6.0		i1 ± 0.51	(8 de 12)		6.0	0.8	1.0	80		0.7	2 2	6.0	0.9		12 ± 0.43	(
r _{DM}	∕la) [⊛]		1117	1133	140	145	150	163	2158	205	223	T _D	T		2056	2113	8118	139	156	140	141	1138	139	205	547	T _D	T		994	064	085	1077	1115	137	121	131	128	:163	T _D	^T _D		030	:032	1055 	032	048	1055	073 003	055 1055	2068 2117		f, t	•
T _{DM1} c	(Ma)		2262 2314	2284	2295	2303	2310	2324	2320	2379	2408	_M = 2152 Ma	_{M2} ^C = 2433 M		2171	9866	2260	2287	2307	1677	2296	2290	2291	2375 2375	2836	_M = 2147 Ma	_{M2} ^C = 2420 M		2099	2186	2210	2210	2258	2284	2268	2279	2280	2325	M = 2125 Ma	_{M2} ⁻ = 2392 M		2158	2162	2187	2165	2184	2192	2215	2196 2196	2213 2274		_M = 2057 Ma ^C = 2304 M	70
T _{DM2} C	(Ma)	2000	2375 2437	2401	2412 2411	2424	2432	2450	2444	2516	2551		a		2265	2405	2373	2406	2431	2418	2417	2409	2411	2513 2513	3071		a		2182	2288	2316 2270	2317	2374	2406	2386	2400 7300	2401	2456		R		2259	2264	2295 1151	2267	2290	2301	2328	2306 2306	2326 2400			
T _{DM3} ^C	(Ma)	2646	2646 2735	2683	2698	2716	2728	2753	2745	2847	2896				2494	0407	2647	2694	2729	2710	2709	2698	2701	2845	3634				2382	2533	2573	1007	2656	2700	2673	2692	2694	2771				2504	2511	2554 7405	2515	2548	2563	2601	2570	2598 2704			

I = 1.5 Let up of the set of			I.																																																						ı
I = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =	1	T _{DM3} (Ma) [†]		2375	2525	2446	2501	2543	2546	2560	2599	2612	2640					1538	2448	C2C2	2042	2425	2501	2516	2581	2567	2002					2021	2024	2014	2052	2070	2073	2080	2007	2096	2167 2173				2047	2105	2094	2081	2107	2121	2115	2134	2147	2219			página
A list of the property of t	•	T _{DM2} ^C (Ma) [†]	~	2172	22.77	22.22	1977	2290	2292	2302	2330	2339	2358		Иа			1593	2231	4077	22.15	2215	2269	2279	2325	2315	2451 2451		Ma	I		1923	C761	1918	1945	1958	1959	1964	on 61	1976	2026 2030	_	Ма		070	1861	1973	1964	2861	1992	1988	2001	2010	2061	-	VIa	la signiente
A constrained of the proper of the proprof the proper of the proper of the proper of the prop	:	T _{DMI} ^C (Ma) [†]		2088	2175	2129	2161	2185	2187	2195	2218	2226	2242	4 = 2060 M	d2 = 2296 l			1615	2141	2115	2112	2128	2172	2181	2219	2211	2323 2323	. = 2046 M	c = 2242			1883	1800	1878	1001	1161	1913	1917	1927	1926	1967 1971	4 = 1853 M	c = 1962		1896	1929	1923	1916	1931	1939	1936	1946	1954 1971	1996	4 = 1874 M	12 c = 1994	continúa en
Alternational and the state of the		м (1) [@]		82	59	12	35	56	56	63	82	86	56	T _D	T _{DI}			42	45	60	56	23	58	65	83 6	18	18	T	Ť			31	5 2	56	43	51	22	8 1	. 5	62	55	T	, e		42	1 89	62	22 : 22	67	23 86	69	78	83 96	92	T _D	T _{DI}	l
The function of the functi		E Z	-	19	20	50	2 2	50	20	20	5	50	5 2	9	(1			16	50	07	207	20	20	20	50	5 2	21	5				18	2 2	8	18	18	81 9	2 3	81	18	81 81	•	, @		18	: 81	18	81 9	2 2	8	18	81 3	81 81	: 5	5		
A list of the part		abs. err. ^G		0.8	1.2	0.0	6.0	10	1.1	1.3	1.0	33	3 3	= 1.70 ± 0.4	.6 (11 de 12			1.2	1.5	4	1 1	Ξ	1:1	11	1.0	10	1.1	= 2.76 ± 0.4	74 (7 de 1			0.8		0.7	0.8	0.8	1.0	0.1	0.8	0.8	60 1	= 6.91 ± 0.3	5 (13 of 1		10	: 3	Ξ	1.0	69	0.8	0.8	0.8	6.0 1.0	33	= 6.31 ± 0.2	87 (12 of 12	
Image: 10 million of the problem of the proble		${}^{\epsilon Hf}_{(t)}$		3.6	1.9	2.8	77 2	11	1.7	1.5	=	2 2	0.7	a £Hf(t) =	SWD = 1			12.9	3.0	77		3.2	2.4	2.2	1.5	1.1	-0.5	a cHf(t) =	SWD = 0			7.5	4. 6	i 1	7.1	6.9	69	8.9	9.9 9	6.6	5.8	a sHf(t) -	SWD=1		17	: 3	9.9	6.8	59	13	6.4	<u>7</u> 9 (6.1	53	a £Hf(t) -	WD = 0.	
The Crack Bar interaction of the Crack Part of t		¹⁷⁶ Hf/ ¹⁷⁷ Hf DM(t)		0.282017	0.282017	0.282017	10282.0	0.282017	0.282017	0.282017	0.282017	0.282017	0.282017	edia ponderada	Μ			0.281997	0.281997	166182.0	0.281997	0.281997	0.281997	0.281997	0.281997	0.281997	0.281997	edia nonderadi	M			0.282017	/102820	0.282017	0.282017	0.282017	0.282017	0.282017	0.282017	0.282017	0.282017 0.282017	edia ponderada	M		0.282020	0.282020	0.282020	0.282020	0.282020	0.282020	0.282020	0.282020	0.282020	0.282020	edia ponderadi	W	
To C t ot the the transmission of transmiss		R(t)		706	706	706	202	706	706	706	706	706	706	Σ				689	689	680	680	689	689	689	689	689	689 689	Ν				706	90/	202	706	706	706	706	2002	706	706 706	N			708	708	708	708	20/	708	708	708	708	708	Σ		
The CF and submit we final the first fragment of the first fragme		CHU CHU		0.281	0.281	0.281	0.281	0.281	0.281	0.281	0.281	0.281	0.281					0.281	0.281	187.0	0.281	0.281	0.281	0.281	0.281	0.281	0.281					0.281	187.0	0.281	0.281	0.281	0.281	0.281	0.281	0.281	0.281				0.281	0.281	0.281	0.281	0.281	0.281	0.281	0.281	0.281	0.281			
The T of the function of the		¹⁷⁶ Hf/ ¹⁷⁷ Hf inicial(t) ⁽³⁾	4. 7	0.281807	0.281760	0.281785	/9/1870	0.281755	0.281754	0.281749	0.281737	0.281733	0.281724					0.282052	0.281773	0.251/49	0.281780	0.281780	0.281756	0.281751	0.281731	0.281735	0.281675					0.281916	C16187.0	0.281918	0.281907	0.281901	0.281900	0.281898	0.281893	0.281893	0.281871 0.281869				0.281910	0.281892	0.281895	0.281899	1681820	0.281887	0.281889	0.281883	0.281879	0.281857			
The CI and burner of the CI and		abs. err. (±2σ)		13	13	13	<u>5</u> 5	13	13	13	13	13	13					6	6 0	<i>م</i>	n 0	6	6	6	6	6 0	<i>, 0</i>					Ξ	= =	= =	11	Ξ	= :	= =	= =	11	= =				35	25	25	25	52	25	25	25	25 25	25			
The first th		iad U-Pb (Ma) ⁽⁴⁾		1693	1693	1693	1695 1693	1693	1693	1693	1693	1693	1693					1720	1720	1/20	1720	1720	1720	1720	1720	1720	1720					1693	1603	1693	1693	1693	1693	1693	1693	1693	1693 1693				1689	1689	1689	1689	1689	1689	1689	1689 • • • • •	1689 1689	1689			
Test from the first induction of 3 V 6 start. Image: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		i. err. ⁽²⁾ E		0.8	1.1	0.9	0.0 0	1.0	1.1	1.2	1.0		1.0	± 0.45	de 12)			1.1	1.3	<u>.</u> -	14	: =	1.0	1.1	1.0	1.0	1.1	± 0.77	de 12)	171 20		0.7	1.1	0.7	0.8	0.8	1.0	0.7	0.7	0.7	0.9	± 0.28	8 of 13)		10	: 3	1.0	1.0	6.0	0.8	0.8	0.8	0.8	1.1	± 0.33	2 of 12)	
The CLI call form the full filling in the CLI call filling		Hf ₍₀₎ abs		33.2	33.4	34.1	545	34.8	35.0	35.0	35.2	35.6	35.7 85.7	0) = -34.85) = 1.8 (11			23.6	32.3	4.74 2.75	12	33.6	34.1	34.2	35.0	35.5	36.3	ov = -33.33	U) = 1 9.77	2		8.63	0.00	30.1	30.2	30.3	30.5	30.5 10.5	30.6	30.7	315 315	ov = -30.42	0 = 1.4 (13		100	9.6	8.63	30.0	1.02	30.2	30.5	30.5	30.7 10.9	11	a. = -30.23	o D = 1.3 (12	
The CL (rand.) Then independent of the CL (NCL (CR) is a rand. M_{10} M		(3)		- 01	9 9	4 9	55	: 7	ч =	7	2		- 2	rada EHf	MSW]			=	9 1	2 2	2 S	9	7	6	9			rada EH£	MSM			9 0		5 4	7	7	7 2 9	5.5	2 99	2	8 a 7 7	rada sHf	MSW		5		6	а 1	× :	- 10 - 10		а: У	ອີດ ຄວ	2.9	rada EHf	MSW	
Term of the product of the pro		abs. err.	io 2018)	0.0000	0.00003	0.0000	70000.0	0.0000	0.0004	0.00003	0.00003	0.00003	000000	sdia ponde				0.0000	0.00003	0,0000	0.0000	0.00003	0.00003	0.00003	0.0000	0.00003	00000.0	dia nonde				0.0000	0.0006	0.00003	0.0000	0.00003	0.0000	0.0000	0.00000	0.0000	0.00003	dia nonde			0.0000	0.00003	0.00002	0.0000	0.0000	0.0000	0.00003	0.00003	0.0000	0.00003	sdia ponde		
$ Tab C \ [foot Data is look of (-1) and (-1) $	ra.	JH ⁷⁷⁷ Hf	(Hf en Ju	.467246	467231	467221	467250	467197	467190	.467240	467272	467213	467256	Ϋ́				467237	467246	467201	467263	467240	467239	467242	467222	467279	467255	M				.467239	107/04	467242	467199	.467239	467218	467199	467234	467221	.467257 467224	M		mio 2018)	4677.64	467243	467193	467251	467226	467246	467239	467249	467237	467237	Ϋ́		
Total classical per l'All'Clavits ar review de grantiale prenonte di ML d'and ML d'a	/ de Sono	2) 175	3EO-86	0	0				0	0	0						2018)	0				0	0	0	0						0 2018)	0			0	0				0				(Hf en Ji			0	1		, 0	0						
Interfaciency of LAI (Interfaciency of LAI (Interfaciency ID) (Interfaci	izona y NW	abs. err. ⁽	Probeta ICO	0.00016	0.00150	0.00020	0.00011	0.000320	0.00019	0.000610	0.00130	0.00021	0.00043				Hf en Junio	0.00100	0.00480	0.000140	0.0001300	0.00019	0.00088	0.00075	0.00030	0.00048	0.00270				(Hf en Juni	0.00073	0.0000	0.0000.0	0.00044	0.00080	0.00017	0.00064	0.000444	0.000810	0.00075			GEO-81	0.00073	0.00056	0.00066	70000.0	0.00000	0.00089	0.00046	0.00063	0.00020	0.00021			
Total Class is a strate dramatic protectories of the Class is a strate dramatic pro	l SW de Ari	۲۵/ ^{۱77} Hf	(zona)	017510	050900	019980	0.241.10	027550	023760	027300	034600	026940	032770				MEC-2 (041100	075700	02120	047200	033030	043650	047710	042760	026340	061800				iEO-35	011670	010000	002057	007760	026600	006100	009640	012430	010390	007200 007870			Probeta IC	030810	035460	028540	020956	102020	025880	016940	021510	021770	029840			
Table C1 (cmc) Dues isologies de La HC obtendés per LAACC (CPK) ser arizenes de granitation former c12. $Mairis Inte Inte Inte Inte Inte Inte Inte Inte$	zoicos de	2) 176.	nt, SW Ar	5 0.	4	÷.	- c	00	4	8	0.	0.0	00				^o robeta M	۶ 0.	00			0	0.	7 0.	0.						obeta ICO	.0		;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	3 0.	5 0.		5 0 2 0	00	0.	ь »			zona)	0	; ;	.0.	0.0			0	0.0		; 0			
Table 1: objects of L. MIC Alcords on the Anticov Matrix and Ma	ides protero	abs. err. ⁽	al Monume	0.0000	0.0007	0.00000	0.0000.0	0.00000	0.0000	0.00001	0.00003	0.00001	0.00002				mora)	0.00002	0.00015	c0000.0	20000.0	0.00000	0.00003	0.00001	0.00001	0.00001	0.00006				na) Pi	0.00001	100000	0.00000	0.00001	0.00002	0.00000	0.00001	0.00001	0.00002	0.00001			ige, SW Ari	0,0000	0.00001	0.00001	0.00000	1000000	0.00003	0.00001	0.00002	0.00000	0.0001			
Table T (out) Dues isologies de Lu-MC-ICPMS en zicones Antisis Und Humon Particip 2^{-1} $2^{$	de granito	$^{177}\mathrm{Hf}$	tus Nation	00785	02083	00729	00256	01007	00882	01018	01211	01025	01200				es, NW Sc	01609	02650	02072	61070	01268	01595	01618	01564	00970	02132				, SW Arizo	00433	00422	00113	00356	00406	00307	00374	00450	00377	00339 00368			ildlife Refi	01189	01341	01086	00804	86600	96600	00663	00839	00813 00882	01 104			
Table C1 (entr.) Dues isologicos de La-H dotenides per LA-MC-ICTMS et	zircones	1 ₃₆₁	Pipe Cac	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0	13	2)		Los Tanqu	0.0	0.0			0.0	0.0	0.0	0.0	0.0	0.0	22	6	ĩ	ı Foothills	0.0		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	81	3)	Prieta W	00	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	93	5)	
Table C1 (cort.) Dates isologicos de Lu-HI chernides per LAM Analists U^{-D} Hila usa U-B Hila usa Instruction per LAM Mostra QTB-6 Garts storagramme of bottm (Quinboquin) Opposition Opposition Opposition QTB-6 HE 2:rest 10.5 Garts storagramme of bottm (Quinboquin) QTB-6 HE 2:rest 12.3 0.281785 QTB-6 F.1 2:rest 12.3 0.281765 QTB-6 F.2 11.3 0.281765 0.281765 QTB-6 F.2 2:rest 0.23 0.281765 QTB-6 F.2 2:rest 0.23 0.281765 QTB-6 F.1 2:rest 0.231765 0.281765 QTB-6 F.1 2:rest 0.231765 0.281765 QTB-6 F.1 2:rest 0.281765 0.281765 QTB-6 F.1 2:rest 0.281765 0.281765 QTB-7 F.2 2:rest 0.281765 0.281765 Q	C-ICPMS er	abs. err. ⁽²⁾	Hills, Organ	0.000022	0.000031	0.000026	0.000026	0.000027	0.000030	0.000035	0.000028	0.000031	0.000029	86 ± 0.0000	1.8 (11 de 1		xial Sierra I	0.000032	0.000037	0.00000	0.000040	0.000032	0.000029	0.000031	0.000028	0.000027	0.0000444	30 ± 0.0000	= 1 9 <i>1</i> 7 de 1		NE Fortune	0.000021	1000000	0.000019	0.000022	0.000022	0.000027	0.000019	0.000021	0.000021	0.000026 0.000029	000000 ∓ 6	1.4(13 of 1	nta, Cabeza	0 000028	0.000030	0.000029	0.000029	0.000026	0.000022	0.000022	0.000023	0.000024	0.000032	0 ± 0.00000	1.3 (12 of 1	
Tabla C1 (entr) Duos isologicos de La HC obtenidos Paris Jueb Han solution (O) han fill assolution (O) has han fill as the fill assolution (O) han fill assolution (O) han fill as the fill as the fill assolution (O) han fill assolution (O) han fill as the fill as the fill as the fill as the fill han f	or LA-MG	$^{(1)}\mathrm{Hf}^{(1)}$	baquito I	1832	1827	1808	1792	1787	1782	1782	1776	1766	1763	= 0.2817	MS WD =	1	VE zona a	2105	1859	1054	1835	1821	1808	1804	1782	1767	1745	= 0.2818	MSWD		dountain,	1930	1026	1922	1918	1914	0161	1910	1907	1905	1882	0.281911	MSWD =	Sierra Pi	1948	1935	1930	1925	1922	6161	0161	016I	1905	1892	0.281917	MSWD =	
Table C1 (cont.) Datas isotypicos de Lu-Hf Table C1 (cont.) Datas isotypicos de Lu-Hf Aministis U-Ph Hfmand Muscre QTB-6 Gravit simegramic cols 127 OTD-6 Hf 1 Const simegramic cols 127 OTD-6 Hf 2 Gravit simegramic cols 123 OTD-6 Hf 1 2-1 121 OTD-6 Hf 1 2-3 111 OTD-6 Hf 2 2-3 112 OTD-6 Hf 2 2-3 113 OTD-6 Hf 3 2-14 113 OTD-6 Hf 3 2-3 133 OTD-6 Hf 1 2-3 133 Mino9-07 Hf 1 2-3 133 Mino9-07 Hf 1 2-3 133 Mino9-07 Hf 2 2-3 133 Mino9-07 Hf 2 2-3 133 Mino9-07 Hf 2 2-3 133 Mino9-07 Hf 3 2-3 133	obtenidos p	al 176 _{Hf} /	iotita (Quih	0.28	0.28	0.28	87.0	0.28	0.28	0.28	0.28	0.28	0.28	176Hf/177H			Berrendos,	0.28	0.28	97°0	0.28	0.28	0.28	0.28	0.28	0.28	0.28	176Hf/ ¹⁷⁷ H			(Foothills]	0.28	87.0	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28	Hf ¹⁷⁷ Hf=		le biotita (S	0.78	0.28	0.28	0.28	87.0	0.28	0.28	0.28	0.28	0.28	=JH ₁₂₁ /JH		
Table C.I. (cont.) Dues isolopic Auditis. Table C.I. (cont.) Dues isolopic Miserie $QTB-6$ Grass isology (TB-6 HL) Miserie $QTB-6$ Grass isology (TB-6 HL) $2-7$ QTB-6 HL) Grass isology (TB-6 HL) $2-7$ QTB-6 HL) $2-7$ $2-16$ QTB-6 HL) $2-215$ $2-215$ Minob-07 HL) $2-225$ $2-225$ Minob-07 HL) $2-225$ $2-12$ Minob-07 HL) $2-24$ $2-14$ Minob-07 H	s de Lu-Hf	Hf _{Haz tot} (V)	anítico de b	16.1	12.6	12.9	13.0	12.4	11.9	11.8	12.3	12.0	11.7	ponderada			tica (Mina .	13.5	12.5	9.8	13.8	10.9	12.7	10.1	11.5	11.2	10.6	ponderada			o de biotita	17.1	14.1	13.3	14.4	15.4	13.0	16.6	16.5	16.5	15.0	nderada ¹⁷		ogranítico i	, 13.3	10.9	13.6	13.1	13.2	14.4	15.1	13.7	14.0	11.9	nderada ¹⁷		
Tabla C.1 (cont.) D. Analisis Analisis Analisis America OTB-6 OTB-6.Hf.5 OTB-6.Hf.7 OTB-6.Hf.7 OTB-6.Hf.7 OTB-6.Hf.12 OTB-6.Hf.12 OTB-6.Hf.12 OTB-6.Hf.12 OTB-6.Hf.2 MinOP-07.Hf.3 MinOP-07.Hf.4 MinOP-07.Hf.3 MinOP-07.Hf.4 H1-12.Hf.3	ttos isotópico	U-Pb zircón	meis sienogr	L-2	z-10	z-8	2-1 2-19	z-15	z-14	z4	z-12	z-18	z-3	Media			Roca gran.	z-10	z-5	ς-2 2 τ	80-2	z-19	z4	z-1	z-2	z-30	z-12 z-20	Media			neis tonalitic	z-6	11-z	z-13	z-18	z-21	z-19	z-14	z-26	z-22	z-25 z-25	Media po		Gneis sien	7-14	z-3	z-15	z-1	12-2	z-11-z	z-17	2-8 2-1 -	z-18 z-16	z-12	Media po		
Tabla C.1 Tabla C.1 Mussing 2 Mussing 2 OTB-6-HI Min09-07-	(cont.) Da	álisis	TB-6 G	5	-	9,		1 2	6		œ_3	=, -	t [⁶]				tin 09-07	Hf_8	Hf 3	e F H	HE II	Hf 10	Hf_4	Hf_1	Hf_2	Hf_12	E_6				<u>4-1/2</u> G.		n, =		6	17	2, t	- 0	5	13	4 Z			ab eza-11	Hf 6	Hf 2	Hf 7	HC1	нг_н п 1 1	Hf 4	H 9		HT IO				
	Tabla C.1	Ar	Muestra 6	QTB-6_H	QTB-6_Hh	QTB-6_HL	UIB-0-H	OTB-6 Ht	QTB-6 Hi	QTB-6_Hi	QTB-6_Hi	QTB-6_H	QTB-6_H				Muestra A	Min09-07	Min09-07	10-60miM	Min09-07	Min09-07	Min09-07	Min09-07_	Min09-07	Min09-07	Min09-07				Muestra 1	14-1/2_Hf	14-1/2 HF	14-1/2 Hf	14-1/2_Hf	14-1/2_Hf	14-1/2_Hf	14-1/2_Hf	14-1/2 Hf	14-1/2_Hf	14-1/2_Hf 14-1/2_Hf			Muestra C	Caheza-11	Cabeza-11	Cabeza-11	Cabeza-11	Cabeza-11	Cabeza-11 Cabeza-11	Cabeza-11	Cabeza-11	Cabeza-11 Cabeza-11	Cabeza-11			

-	T _{DM3} (Ma) [†]		2205	2190	2198	2160	2197	2213	2220	2225	2291	2278	2269					2010	1717	0112	2022	2286	2022	2738	1900	1077	0/77	1+77	2293					2034	1990	2117	2061	2088	2152	2141	2122	2139	2184	2144	2166					1810	1916	2006	2035	2022	2016	0117			e página
J	T _{DM2} (Ma) [†]		2041	2030	2036	2009	2035	2046	2051	2055	2101	2092	2086	4a		Ma		10.67	10.01	20.63	2050	2100	2058	2066	20.08	06.07	7607	7/07	2104		18	5 Ma		1932	1901	1990	1951	1970	2015	2007	1994	2005	2038	2009	2025	4a	Ma			<i>CLL</i> 1	1846	1910	161	10201	19.87		1a	Ma	en la siguiente
J -	T _{DMI} (Ma) [†]		1973	1964	1969	1947	1968	1977	1982	1985	2023	2015	2010	T = 1898 N	- C - C	$T_{DM2}^{\circ} = 2051$		1020	1920	0000	1989	2022	1988	1005	1000	1707	2000	2000	2026	- 101 - E	$I_{DM} = I_{911} N$	$T_{DM2}^{C} = 2065$		1890	1864	1938	1905	1921	1958	1952	1941	1950	1977	1954	1966	T _{DM} = 1881 N	$T_{mm}^{C} = 2002$	-00- 7WG.		1757	1818	1870	1887	1004	1 894	10/1	$T_{DM} = 1839 N$	$T_{DM2}^{C} = 1942$	continúa e
e	^{Трм} (Ма) [@]		1899	1890	1890	1872	1889	1896	1897	1899	1931	1922	1915					1964	1854	1075	1907	1937	1905	1910	1033	0001	2761	2161	1933					1841	1820	1879	1851	1862	1892	1885	1876	1884	1904	1885	1893					1737	1787	1819	1837	7001	1866	10001			
	abs. err. ⁽²⁾		1.1	17	0.0	1.2	0.7	0.9	0.8	0.7	6.0	1.0	0.9	4 98 + 0 29	(T-0 + 0/-L	5 (9 de 11)		0.0	9 2	1 -	1 2	1 2	12	1 =	1 2	7 0	3:	12	101		4.86 ± 0.42	5 (12 of 12)		0.9	0.8	0.8	0.0	0.7	0.9	0.8	0.8	0.8	0.8	0.8	1.0	6.25 ± 0.27	5 (9 de 12)	(71 m () (0.0	01	80	on 11	3 3	0.1	2	7.07 ± 0.86	1.4 (4 of 6)	
	${}^{\mathrm{eHf}_{(1)}}$		5.2	53	5.2	5.6	5.2	5.1	5.0	4.9	4.2	4.4	4.5	a cHf(t) =	()	[SWD = 0.8		1.9		46	64	4	9.5	48	4	2:	4 1	<u>}</u>	t 4		a cHI(t) =	IS WD = 1.5		7.3	7.8	6.4	7.0	6.7	6.0	6.1	6.3	6.2	5.7	6.1	5.9	a sHf(t) =	SWD = 1.0			9.7	20	16	? <u>}</u>	17	17	5	a sHf(t) =	MSWD =	
106 100)H(1)/JH		0.282046	0.282046	0.282046	0.282046	0.282046	0.282046	0.282046	0.282046	0.282046	0.282046	0.282046	Media nonderad		M		1100200	0.282041	120282.0	0.282041	0.282041	0.282041	0.282041	0.282041	140707.0	0.282041	140202.0	0.282041	-	Media ponderad	2		0.282018	0.282018	0.282018	0.282018	0.282018	0.282018	0.282018	0.282018	0.282018	0.282018	0.282018	0.282018	Media nonderad		AT		0.282024	0.282024	0.282024	0.082024	4707070	0.282024	1707070	Media ponderad		
101 101	CHUR(t)		0.281731	0.281731	0.281731	0.281731	0.281731	0.281731	0.281731	0.281731	0.281731	0.281731	0.281731					2021900	721102.0	7021320	0.281727	0.281727	0.281727	0.281727	C781777	17/107/0	17/187.0	17/1070	0.281727					0.281706	0.281706	0.281706	0.281706	0.281706	0.281706	0.281706	0.281706	0.281706	0.281706	0.281706	0.281706					0.281712	0.281712	0.281712	0.281712	21/1070	0.281/12	71 (107:0			
176 177	incial(t) ⁽³⁾		0.281876	0.281881	0.281878	0.281890	0.281879	0.281874	0.281871	0.281870	0.281850	0.281854	0.281856					0.7 01 000	0.261676	021920	0.281866	0.281848	0.281867	0.781863	0.781840	0.201020	120102.0	100102.0	0.281846					0.281913	0.281926	0.281887	0.281904	0.281896	0.281876	0.281880	0.281885	0.281880	0.281866	0.281878	0.281872					0.781985	0.281952	0.781975	0.281016	016102.0	0.281801	1/01070			
	abs. err. (±2σ)		10	10	10	10	10	10	10	10	10	10	10					16	16	19	19	91	91	16	16	01	10	10	16					12	12	12	12	12	12	12	12	12	12	12	12					16	16	16	91	01	16	21			
	Edad U-Pb (Ma) ⁽⁴⁾		1654	1654	1654	1654	1654	1654	1654	1654	1654	1654	1654					1660	1660	1660	1660	1660	1660	1660	1660	1000	1000	16.60	1660					1692	1692	1692	1692	1692	1692	1692	1692	1692	1692	1692	1692					1684	1684	1684	1684	1004	1684	LOOT			
	abs. err. ⁽²⁾		1.0		0.8	1.1	0.7	0.8	0.7	0.7	6.0	1.0	0.8	21+042		'(9 de 11)		0.0	<u>-</u>	1 2	1 2	10	10	1	1 =		<u>.</u>	7.1	1 91		.15±0.46	(12 of 12)		0.8	0.7	0.7	0.9	0.6	0.8	0.8	0.8	0.7	0.8	0.8	1.0	94 ± 0.41	(0 de 12)			0.0	0.0	80			8.0		$.84 \pm 0.44$	98 (4 of 6)	
	^{EHf(0)} hoy		-28.9	-29.0	-29.7	-29.8	-29.9	-30.1	-30.5	-30.5	-30.7	-31.2	-31.5	eHf = -30	(0)	ISWD = 1.7		791	-29.0	0.02-	301	-30.1	-30.3	30.4	305	202	0.05	20.0	-31.1		09	SWD = 1.9		-28.3	-28.4	-28.9	-28.9	-29.5	-29.8	-29.9	-30.0	-30.0	-30.4	-30.5	-30.9	:Hf = -29	(a) = 1 6		io 2018)	-27.4	- 28.1	205	206	0.67-	-29.7		$eHf_{(0)} = -29$	ASWD = 0.9	
	abs. err. ⁽²⁾		0.000031	0.000043	0.000031	0.000037	0.000030	0.000028	0.000033	0.000030	0.000033	0.000031	0.000040	dia nonderada		4		0.000034	0.000037	1 200000 0	0.000034	0.000034	0.000035	0.000033	0.00003.0	0.00000.0	0.000012	0.000000	0.000029	-	sdia ponderada	M		0.000025	0.000026	0.000028	0.000028	0.000025	0.000023	0.000030	0.000029	0.000026	0.000030	0.000028	0.000027	dia nonderada		4	-83 (Hf en Jun	0.000035	0.000037	0.000034	0.00038	5 20000 0 7 20000 0	0.000037	1000000	cleos heredados	~	
Sonora.	JH ₁₂₁ /JH ₈₂₁		1.467213	1.467311	1.467267	1.467235	1.467242	1.467245	1.467259	1.467255	1.467229	1.467215	1.467244	W			(8)	1 467109	1 467205	0902/04/1	1 467255	1.4672.63	1 4672 19	1 467773	0077361	1.467120	6/1/05.1	FCZ/04-1	1.467231	:	W			1.467270	1.467235	1.467245	1.467258	1.467235	1.467244	1.467228	1.467261	1.467251	1.467232	1.467229	1.467234	W			Probeta ICGE0	1 467224	1 467201	1 467243	1 467738	9772/04-1	1.467220	077/01-1	ı ponderada núc		
rizona y NW de	abs. err. ⁽²⁾	(810	0.002000	0.001200	0.000510	0.002600	0.001100	0.002400	0.000150	0.000420	0.000330	0.001200	0.000320				(Hf en Junio 20	0,000,000	0.001000	0001000	0.00000	0.001500	0.00020	0.000470	0.001600	0.001000	0.000400	0.0000100	0.000450				(21	0.000420	0.000440	0.001300	0.000190	0.000260	0.002100	0.000320	0.000260	0.000850	0.000052	0.000420	0.000280				W Arizona)	0.0001.00	0.000910	0.000150	0990000	0.0000.0	0.000730	00000	Media		
cos del SW de A	$\mathrm{^{176}Yb}/^{177}\mathrm{Hf}$	(Hf en Junio 20	0.068400	0.064600	0.045960	0.034500	0.041800	0.041300	0.031600	0.033440	0.048190	0.032600	0.019560				eta ICGEO-37	0.054250	0.041400	0.050380	0.044960	0.061600	0.040630	0.041730	0.05000	00000000	0.036390	097050.0	0.039910				f en Octubre 20	0.052690	0.036920	0.062500	0.042070	0.036420	0.048600	0.039650	0.034830	0.037040	0.041659	0.026820	0.023250				· Force Range, 5	09/00/0	0.019520	0.008930	0.014140	0.014140	0.016820	07071000			
oides proterozoic	abs. err. ⁽²⁾	a ICGEO-32	0.000070	0.000036	0.000017	0.000099	0.000031	0.000078	0.000008	0.000011	0.00000	0.000039	0.000010				izona) Prob.	0100000	01000000	1000000	17000000	0.000056	0.000000	0.000017	0.000056	0.0000.0	0.000012	C10000.0	0.000013				GEO-40 (H	0.000026	0.000016	0.000038	0.000015	0.000015	0.000059	0.000005	0.000010	0.000034	0.000006	0.000010	0.000005				f. Goldwater Air	000000	0.000030	0.000000	0,00007	/70000.0	0.000000	0700000			
rcones de granit	$^{176}\mathrm{Lu}/^{177}\mathrm{Hf}$	ona) Probet	0.002544	0.002237	0.001683	0.001278	0.001542	0.001540	0.001198	0.001248	0.001735	0.001195	0.000759				ountains, SW Ar	0,00000	0.002000	800000	0.001768	0.002306	0.001530	0.001515	0.00100.6	0.001200.0	68/ 100.0	0.001000	0.001480) Probeta IC	0.001821	0.001366	0.002148	0.001549	0.001342	0.001682	0.001445	0.001238	0.001331	0.001461	0.000982	0.000819				on Hills, Barry A	0.000408	0.000800	0.000391	0.000578	0/C000.0	0.000035	100000			
C-ICPMS en zi	abs. err. ⁽²⁾	ak, Ajo, SW Ariz	0.000028	0.000032	0.000024	0.000031	0.000020	0.000023	0.000021	0.000019	0.000025	0.000028	0.000024	918 ± 0.000012		i = 1.7 (9 de 11)	nd. Maricopa M	700000	07000000	12000000	0.000077	0.000029	0.000029	0.000030	0.00032	70000.0	07000010	CC0000.0	0.000029	010 ± 0 000013	C10000.0 ± 616	= 1.9 (12 of 12)	ò, SE California,	0.000024	0.000021	0.000021	0.000025	0.000018	0.000023	0.000023	0.000023	0.000020	0.000022	0.000023	0.000027	925 ± 0.000012	= 1 9 (9 de 12)	(71 m () ()1 -	le biotita (Wellto	0 0000 5	0.00006	0.00003	0.000000	0.00000.0	0.000026		928 ± 0.000012	0 = 0.98 (4 of 6)	
enidos por LA-N	$^{176}\mathrm{Hf'}^{177}\mathrm{Hf'}^{(1)}$	iotita (WAjo Pe	0.281956	0.281951	0.281931	0.281930	0.281927	0.281922	0.281909	0.281909	0.281904	0.281891	0.281880	Hf^{177} Hf = 0.281		MSWL	iotita (E Gila Be	190196.0	1961970	101107-0	0.281922	0.281921	0.281915	110180	0.781900	0.0102.0	00187.0	+06107-0	0.281893	100 0-20 [[]/20	107"N=111 /111	MSWD	iotita (Pilot Kno	0.281971	0.281970	0.281956	0.281954	0.281939	0.281930	0.281926	0.281925	0.281923	0.281913	0.281910	0.281898	Hf/ ¹⁷⁷ Hf = 0.281	MSWI		sienogranítico	0 281998	0.281978	0.281937	0.281934	+C6107.0	0.281919		Hf ¹¹⁷ Hf = 0.28	MSWI	
le Lu-Hf obt	Hf ^{Haz total} (V)	ocrático de E	20.2	16.7	16.4	12.7	15.5	16.6	15.0	15.9	18.6	15.8	13.8	n derada ¹⁷⁶			anítico de b	9 01	0.71	1.11	8 01	15.0	12.9	14.8	13.4	1 1	6.4I	0.11	15.4	170 al and a	nuerada		anítico de b	17.7	19.9	19.4	16.7	21.9	19.6	20.1	18.0	19.2	19.2	16.5	15.3	n derada ¹⁷⁶			los) Gneis	11.7		13.1	0.0	7.7 2 01	01 201		onderada ^{1.6}		
atos isotópicos c	U-Pb zircón	mogramito leuce	z-3	z-10	z-11	z-30	z-22	z-8	z-15	z-16	z-17	z-21	z-24	Media po			Gneis sienogr	- 16 -	2-10	17	PC-2	z-10	2-15	2-11	-76	07-7	17-Z	57-7 71 -	z-6	Mediano	mema pu		Gneiss sienogi	z-14	z-2	z-10	z-1	z-4	z-16	z-13	z-8	z-22	z-18	z-11	z-5	Media po			núcleos heredau	7-8	2-6	C-2	2-2	97-7	z-18	(m-3	Media pc		
Tabla C.1 (cont.) Da	Análisis	Muestra Ajo-4 Sie	Ajo-4 Hf 1	Ajo-4 Hf 4	Ajo-4 Hf 5	Ajo-4 Hf 12	Ajo-4 Hf 10	Ajo-4 Hf 2	Aio-4 Hf 6	Aio-4 Hf 7	Ajo-4 Hf 8	Ajo-4 Hf 9	Ajo-4_Hf_11				Muestra Espanto-2	Fenanto-7 Hf 8	Espanto-2_Hf 3	Espanto-2 Hf 1	Espanto-2 Hf 10	Espanto-2 Hf 4	Espanto-2 Hf 7	Esnanto-2 Hf 5	Fenanto-2 Hf 11	Lapatto-2 III 11	Espanto-2_H_12	Espanto 2 HF 6	Espanto-2 Hf 3				Muestra Pilotknob	Pilotknob_9	Pilotknob 2	Pilotknob 6	Pilotknob 1	Pilotknob 3	Pilotknob 10	Pilotknob 8	Pilotknob 5	Pilotknob 12	Pilotknob 11	Pilotknob 7	Pilotknob_4				Muestra Welton-E (1)	Welton-F. Hf 4	Welton-F Hf 3	Welton-F. Hf 1	Welton-F. Hf 12	Wellour-E_II_12	Welton-E_Hf 10				

¹ DM3 (Ma) [†]		2036	2065	2059	2037	2087	2077	0107	0110	9117	2112	2134	2180	7100						1991	2058	2159	0017	2145	2020	2/07	2167	2120	2209	2205	2169	1+77				1967	1937	1967	1998	1973	1989	1955	1969	1966	2019	2047				626	1708	1746	1891	1929	1916	6161 6001	1004	1066	1966	0661 2007	7007			
¹ DM2 (Ma) [†]		1918	1939	1935	1919	1954	1947	10001	1020	19/0	1972	1988	2020	C7 07	Ma		RIVI C			1891	1934	1661	6661	1994	77 07	1948	2010	1978	2040	2037	2012	10.07	Ma	3 Ma		1889	1868	1889	1161	1893	1905	1881	1891	1888	1926	1945	Ma	9 Ma		948	1704	1730	1832	1859	0681	1846	0001	10.05	1885	1912	1914	Иа	2 Ma	
¹ DMI (Ma) [†]		1870	1887	1883	1870	1900	1894	1000	1017	141/	1914	1927	1953	9061	$T_{\rm DM} = 1848$	C	1 DM2 = 190			1847	1883	6761	1930	1932	CC 61	1894	1946	1919	1970	1968	1947	7661	$T_{DM} = 1867$	$T_{DM2}^{C} = 200$		1857	1840	1857	1875	1860	1870	1850	1858	1856	1887	1903	$T_{DM} = 1823$	$T_{DM2}^{C} = 189$		1080	1702	1724	1808	1830	1823	1281	1027	1000	1852	1800	C/ 81	$T_{DM} = 1796$	$T_{DM2}^{C} = 186$	
(Ma) [@]		1812	1825	1822	181	1832	1877	1701	1	101	1840	1850	1872	C/01						1798	1824	7921	C021	7981	7991	6781	1873	1849	1892	1889	1871	0161				1818	1804	1818	1832	1820	1828	1812	1818	1816	1841	1852				1248	1700	1716	1778	1795	68/1	1 707	1871	7701	1809	1820	1820			
abs. err. ⁽²⁾		0.9	0.8	01	8.0	1.0	10			0.0	0.7	0.8	0.1	6.0	$.97 \pm 0.28$	(01 - 1 - 0) -	(71 ap g) ;			0.9	9: :		0.1	6.		6.0	8.0	0.8	1:1	1.0	1.0	3	$.67 \pm 0.36$	(12 de 13)		0.7	0.8	0.6	0.9	0.6	0.7	0.7	0.8	0.8	0.7	0.6	.99 ± 0.21	(11 of 11)		0.7	1.0	0.8	0.8	8.0	8.0).U	c.u 9.0	0.0	9.0	0.7	0.0	$.41 \pm 0.35$	i (7 de 12)	
EHf(t) 8		6.9	6.6	67	69	6.4	29	3		0.0	6.1	5.8	33	ŝ	a ε Hf(t) = 5.		2WD = 1.02		i	4.1	6.7	8 I 1	2	5	35	3	<u>8</u>	0.0	5.0	5.1	5.5	P	a $cHf(t) = 5$.	SWD = 1.3 (8.2	8.5	8.1	7.8	8.1	7.9	8.3	8.1	8.2	7.6	7.3	a cHf(t) = 7.	WD = 0.97		22.5	10.9	10.5	8.9	\$2	9 E	- 4 9	0.0	o	8.1	7.6	0.1	a cHf(t) = 8.	4SWD = 1.3	
DM(t)		0.282055	0.282055	0.282055	0.282055	0.282055	0.282055	220002.0	CC0707.0	CC0797.0	0.282055	0.282055	0.282055	CC0797.0	Media ponderad		M			0.282055	0.282055	0.282055	CCU282.U	0.282055	220282.0	0.28202	0.282055	0.282055	0.282055	0.282055	0.282055	CC0707:0	Media ponderad	M		0.282007	0.282007	0.282007	0.282007	0.282007	0.282007	0.282007	0.282007	0.282007	0.282007	0.282007	Media ponderad	SW .		0.282015	0.282015	0.282015	0.282015	0.282015	0.282015	510686.0	0.202015 0.002015	210202.0	0.282015	0.282015	CT 02 82:0	Media ponderad	2	
CHUR(t)		0.281738	0.281738	0.781738	0.781738	0.281738	0.781738	0011070	00/1070	00/107.0	0.281738	0.281738	0.281738	00/107.0						0.281738	0.281738	0.281/38	0.251/35	0.281/38	86/187.0	0.281/38	0.281/38	0.281738	0.281738	0.281738	0.281738	00/107.0				0.281698	0.281698	0.281698	0.281698	0.281698	0.281698	0.281698	0.281698	0.281698	0.281698	0.281698				0.281705	0.281705	0.281705	0.281705	0.281705	0.281/05	0/187/0	CU/162.U	20/107:0	0.281/05	0.281/05	CU/182.0			
inicial(t) ⁽³⁾		0.281934	0.281925	0.781976	0.781933	0.281918	0.281921	1761070	106107.0	0061070	0.281910	0.281903	0.281889	0.401 000						0.281946	0.281927	0.281902	0.261898	0.281900	0.261650	0.281921	0.281893	0.281907	0.281880	0.281881	0.281892	0001070				0.281927	0.281936	0.281927	0.281918	0.281925	0.281920	0.281931	0.281926	0.281928	0.281911	0.281902				0.282339	0.282011	0.282000	0.281955	0.281943	0.281948	04610770	01251074	0.201924	0.281932	0.281920	076187.0			
(±2σ)		10	10	01	91	10	2	9	2 2	2	2	2	9 9	19						4	4	4 3	4	4	1 2	4	4 :	14	14	14	4 7	ţ				36	36	36	36	36	36	36	36	36	36	36				28	28	28	28	5 28	87	87 87	0 0 7	9 2	87	87	97			
(Ma) ⁽⁴⁾		1642	1642	1647	1642	1642	1642	7401	7401	7401	1642	1642	1642	7401						1642	1642	1042	1042	1642	7401	1042	1642	1642	1642	1642	1642	7401				1706	1706	1706	1706	1706	1706	1706	1706	1706	1706	1706				1695	1695	1695	1695	1695	C601	2691	C401	2601	C601	6691 1605	CK01			
abs. err. ⁽²⁾		0.9	0.7	0.0	8.0	0.9	2.0		0.0	0.0	0.7	0.8	1.0	0.0	29.71 ± 0.38	10101010	(21 ab 8) C.1			0.9	1.0	1.0	0.9	9.9	1.1	8.0	0.8	8.0	1.0	0.9	0.9	7.1	28.74 ± 0.26	97 (12 de 13)		0.7	0.7	0.6	0.8	0.6	0.7	0.7	0.8	0.7	0.7	0.6	28.69 ± 0.20	05 (11 of 11)		0.7	1.0	0.8	0.7	0.7	0.1	~ ~	c-n	0.0	0.0	0.0	0.0	28.39 ± 0.43	2.2 (7 de 12)	
hoy		-28.1	-28.1	- 28.7	- 28.3	-29.1	1.00	1.04	1.00	1.67-	-29.8	-30.0	-30.1	C.UC-	EHf	(1)	= UwSM			-26.9	-27.8	0.82-	C'87-	-28.0	0.62-	1.87-	-28.8	-28.9	-29.1	-29.2	-29.3	C*67-	a £Hf ₍₀₎ = .	ISWD =0.		-28.1	-28.5	-28.5	-28.5	-28.6	-28.6	-28.6	-28.8	-28.8	-28.9	-29.5	a cHf _{ov} = .	ISWD = 1.		-14.6	-26.1	-26.2	-27.9	-27.9	-28.0	1.82-	0.07-	100	-29.1	1.62-	C'K7-	a £Hf ₍₀₎ = .	MSWD =	
abs. err. ⁽²⁾		0.000035	0.000029	0 000028	0 000025	0.000028	0 00000 8	1 00000 0	1 00000 0	C70000.0	0.000028	0.000029	0.000038	0.00000.0	dia ponderada	•				0.000030	0.000030	0.000030	0.000025	0.00001	1 20000.0	0.000022	0.000032	0.000023	0.000031	0.000029	0.000030	1000000	edia ponderad:	2	(2,	0.000027	0.000021	0.000023	0.000031	0.000022	0.000027	0.000027	0.000024	0.000021	0.000026	0.000024	edia ponderad:	Ν.	2017)	0.000025	0.000044	0.000026	0.000028	0.000028	0.000024	CCUUUU.U 2.00000.0	1 200000 0	47000000	0.000025	0.00000 0	0.00004	edia ponderad:		
JH///JH _{8/1}		1.467208	1.467218	1 467232	1 467243	1.467268	1 467275	200221	CC7/04-1	107/04-1	1.467252	1.467288	1.467280	047/04-1	Me			f an Iunio 2018)		1.467245	1.467225	1.40/212	1.40/234	1.46/218	C CZ/ 04-1	1.40/25/	1.467220	1.467244	1.467213	1.467223	1.467245	1.40/2/04	M		f en Octubre 201	1.467253	1.467244	1.467269	1.467240	1.467250	1.467236	1.467231	1.467278	1.467229	1.467247	1.467246	W		(Hf en Octubre	1.467214	1.467275	1.467255	1.467226	1.467246	1.467/242	0/7/0/1 1 467750	7027/04/1 7407746-1	047/04/1	1.467248	1.467/25	1.40/228	W		
abs. err. ⁽²⁾	tbre 2017)	0.000370	0.001100	0.002100	0 0001 10	0.000730	0.0003.70	0020000	0700000	0070000	0.000120	0.000410	0.001800	0.000100				CGEO-85 CH		0.000280	0.001200	0.003400	0.001000	0.000/10	0.00000	00/100.0	0.00003	0.000810	0.001400	0.000730	0.001600	000700:0			CGE0-33 (H	0.000180	0.000170	0.000280	0.001900	0.000710	0.000250	0.000610	0.000220	0.000097	0.000820	0.001100			ta ICGEO-32	0.000200	0.001100	0.001000	0.000260	0.002600	0.000540	065000.0	0.00000	0.000050	0.00000	0.000/20	0.000.0			
176Yb/ ¹⁷⁷ Hf	(Hf en Och	0.040010	0.045900	0.0451.00	0.035470	0.029920	0.025070	0102200	000000	071770.0	0.016410	0.019440	0.028200	071170.0				n) Dvohata I		0.057260	0.051000	0.068000	008660.0	0.053650	065500.0	0.052600	0.055269	0.040480	0.059000	0.052850	0.042800	004700.0			a) Probeta I	0.041020	0.024710	0.033180	0.041600	0.032820	0.038460	0.027350	0.028340	0.025584	0.039260	0.031800			zona) Probe	0.014690	0.019000	0.026400	0.023430	0.034000	0.02/400	0.01220.0	0.02120.0	0.0142.00	0.014380	0.019/40	00+C10.0			
abs. err. ⁽²⁾	obeta ICGEO-34	0.000005	0.000038	0 000066	0.00006	0.000024	0.000012	2100000	0700000	0,00000	0.00007	0.000019	0.000054	/00000/0				fuce SW Aviron		0.00004	0.000035	011000.0	0.000033	0.000025	0.000054	0.000054	0.00003	0.000027	0.000047	0.000024	0.000056	200000.0			efuge, SW Arizon	0.000011	0.000004	0.000015	0.000051	0.000021	0.000003	0.000015	0.00003	0.00007	0.000022	0.000034			e Range, SW Ari	0.000012	0.000036	0.000035	0.00000	0.00078	0.00016	220000.0	24000000	1:000000	0.000031	0.000007	0.00000			
1. ¹⁰ Lu/ ^{11/1} Hf	4rizona) Pre	0.001428	0.001650	0.001560	0 001 244	0.001039	0.000873	21000000	0.000705	C 6/ 000 0	0.000576	0.000703	0.001026	00/0000				iata Wildlife Ba		0.002101	0.001905	0.002480	0.002145	0.002013	0.001200	0.001299	0.002085	0.001527	0.002243	0.002047	0.001625	0.04-700.0		_	rieta Wildlife Re	0.001509	0.000888	0.001173	0.001461	0.001198	0.001351	0.000967	0.001008	0.000911	0.001358	0.001129			dwater Air Forc	0.000607	0.000702	0.000968	0.000862	0.001229	0.000978	708000 0	0.000010	0.000556	0.000556	0.00010	0.00014			
abs. err. ⁽²⁾	(Ajo Peak, SW .	0.000025	0.000020	0 000076	0.00003	0.000026	0.000020	07000000	77000000	7700000	0.000019	0.000023	0.000027	+700.00.0	1932 ± 0.000011	(0) I U U I	J = 1.3 (8 dc 12,	Pinta Cahara Di		0.000025	0.000027	870000.0	9700001	0.000024	0.000000	0.000023	0.000023	0.000023	0.000029	0.000026	0.000025	CC00.00*0	593 ± 0.0000073	= 0.97 (12 de 13)	ntains, Cabeza F	0.00019	0.000021	0.00016	0.000023	0.000017	0.00019	0.00020	0.000022	0.000021	0.000019	0.000017	06±0.0000056	= 1.05 (11 of 11)	ns, Barry M. Goi	0.000019	0.000028	0.000022	0.000021	0.000021	120000.0	4 LUUUU.U	6 TUUUU 0	210000.0	100000	0.000018	\$ T00.00'0	969 ± 0.000012) = 2.2 (7 de 12)	
176Hf/ ¹⁷⁷ Hf ⁽¹⁾	vático de biotita	0.281978	0.281976	0.281975	0 281972	0.281950	0 281948	010102.0	000107-0	CC6107.0	0.281928	0.281925	0.281921	016107.0	Hf ¹⁷⁷ Hf = 0.281		IMCINI	iotita (S Siavea I		0.282011	0.281986	6/6187.0	C06187.0	0.281963	C06182.0	196187.0	0.281958	0.281955	0.281950	0.281945	0.281943	C+C10710	^{7/177} Hf = 0.28195	= OMSM	tgua Dulce Mou	0.281976	0.281965	0.281965	0.281965	0.281964	0.281964	0.281962	0.281959	0.281957	0.281955	0.281939	γ^{177} Hf = 0.28196	= QMSM	Cooper Mountain	0.282359	0.282034	0.282031	0.281983	0.281983	6/6182.0	0/6187.U	1/6107.0	026107.0	0.281950	0.281949	0.281958	$Hf'^{177}Hf = 0.281$	MSWL	
(V)	tico melano	15.0	15.1	17.9	15.4	15.4	17.6	0.11	1.11	10.1	17.9	15.3	15.5	10.0	n derada ¹⁷⁶			vanition da 1		17.0	16.9	10.1	1/1	0.01	19.0	10.0	18.9	17.1	17.2	19.1	17.3	17.0	lerada ¹⁷⁶ Hi		de biotita (2	19.4	19.9	21.8	17.1	20.7	20.5	19.0	19.6	20.0	19.5	20.6	erada ¹⁷⁶ Hi		de biotita (t	21.2	17.2	17.6	19.3	18.2	18.0	1./1	0.71 1.00	10.6	19.6	17.7	19.7	n derada ¹⁷⁴		
zircón	eis monzogranh	z-6	z-17	1-1	7-13	z-20	10-2	17-7	- 16	01-Z	z-10	z-19	z-15	21-Z	Media por			Guois montou		z-2	z-8	Z-3	Z-18	q-z	Z-1	6-Z	z-11	z-21	z-5	z-16	z-22	ŗ	Media pond		Sienogranítico	z-22	2-9	z-3	z-8	z-24	z-19	z-11	z-18	z-20	z-4	z-10	Media pond		ineis tonalitico	z-1	z-24	z-12	4 2 7	z-25	Z-3	z-17	/1-Z	77-2	z-11	Z-8 7-10	Z-10	Media po		
Análisis	Muestra Ajo-3 Gm	A jo-03 1	Ajo-03 8	Ain-03 2	A in-03 5	Aio-03_11	Aio-03 12			/ cn-o(v	Ajo-03_4	Ajo-03_10	Ajo-03_6	6_00-0[V				Musetva Cahara-0		Cabeza-9_Ht_Z	Cabeza-9_Ht_7	Cabeza-9_HL 3	Cabeza-9_HI_II	Cabeza-9_HI_0		Cabeza-9_HI_8	Cabeza-9_HI_9	Cabeza-9_Ht_12	Cabeza-9_Hf_5	Cabeza-9_Hf_10	Cabeza-9_Hf_13				Muestra ADN-01	ADN-01_11	ADN-01_6	ADN-01_2	ADN-01_4	ADN-01_12	ADN-01_8	ADN-01_5	ADN-01_10	ADN-01 9	ADN-01_3	ADN-01_7			Muestra Cooper (Cooper_1	Cooper_11	Cooper_7	Cooper 3	Cooper_12	Cooper 2		Cooper_o	Cooper_9	Cooper_0	Cooper_4	Cooper_5			

T _{DM3} ^C	(Ma) [†]		1969	2018	2075	2005	1971	2011	1944	2035	0007	C CU 2	2031	2109	2200					10201	1961	6/61	1986	19/8	1978	1997	1982	2039	2046	0107	70/07	2046	20/8					1852	7131	2181	103.6	0001	19/2	2041	2114	2049	1997	2152	2284	2307				1700	1856	1791	1883	1868	1886	1852	1970	10/0	681	2005	1965	0661				te página
TDM2	(Ma) [†]		1886	1920	1960	1161	1887	1915	1868	10.27	1020	0.61	1929	1984	2048		Ma	0 Ma		201	1905	18/0	1881	18/0	1876	1889	1879	6161	1923	194	1941	1924	1946	Ma		9 Ma		1794	1990	20.05	1854	0201	18/8	1927	1978	1932	1896	2005	2098	2114	Ma	35 Ma		1702	1811	1766	1829	1820	1832	1808	16.91	1701	18.39	1915	1887	180/	Ma	- Ma	0 [M13	en la siguien
TDMI	(Ma) [†]		1851	1880	1913	1872	1852	1876	1837	1890	1000	1000	1887	1932	1985	1.001	$I_{\rm DM} = 1826$	$T_{DM2}^{C} = 191$		1000	1625	1834	1838	1834	1834	1845	1836	1869	1873	2001	188/	1873	1881	$T_{max} = 1796$	- MU-	$T_{DM2} = 189$		1770	1932	1961	1820	10201	18.39	1880	1922	1884	1854	1944	2020	2034	$T_{DM} = 1831$	$T_{DM2}^{C} = 193$		1702	1792	1755	1808	1799	1810	1 700	0001	1015	C181	1878	1855	1839	$T_{DM} = 1784$	TC = 183	1 DM2 - 100	continúa
T _{DM}	$(Ma)^{(i)}$		1818	1840	1869	1833	1813	1830	1798	1840	0001	0001	1836	1868	1904						1//1	78/1	1785	1/87	1782	1790	1783	1809	1810		7781	1810	1824					1747	1875	1897	1777	12021	1/95	1824	1859	1826	1801	1869	1931	1933				1703	1770	1741	1781	1774	1782	1767	NCL I	17021	1786	1834	1815	7081				
1. (2)	abs. crr.		1.3	1.0	1.3	0.9	0.8	1.0	01	80			0.6	0.8	0.7		7.55 ± 0.31	17 (6 of 12)		00	0.0	8.0	8.0		0.7	0.9	0.9	0.6	8.0	900	0.8	0.7	6.0	7.15 ± 0.28	07-0 - 07-0	(12 of 12)		11	1.5	9	80	0.0	6.0	0.0	0.9	1.0	0.7	0.8	1.0	0.7	7.05 ± 0.74	.8 (8 of 12)		0.7	0.9	0.7	1.0	0.9	0.9	0.0	e e	5	0.7	1.0	0.9	6.0	9.01 ± 0.42		(71 10 11);	
σHe	(1) [11]		8.0	7.5	6.8	7.6	8.0	7.6	83		<u>;</u>	Ĵ,	7.3	6.5	5.5		da ɛHf(t) =	MSWD = 0.9		t	2	Q :	4	č	7.5	7.3	7.5	6.8	6.8	200	ŝ	6.8	6.4	da s.Hf(t) = '	- (1) TT 2 BD	MSWD = 1.5		0.0	6.0	2.2	18		1.1	7.0	6.2	6.9	7.5	5.8	4.3	4.1	da sHf(t) =	MSWD = 3		11.0	9.3	10.1	9.1	9.2	9.0	40	; ;	7.6	6.8	1.1	8.2	c.8	da sHf(t) =	() = (1/1) = 1	MS W U = 2.1	
176Hf/ ¹⁷⁷ Hf	DM(t)		0.282019	0.282019	0.282019	0.282019	0.282019	0.282019	0.282019	0.782010	0100000	610202.0	0.282019	0.282019	0.282019		Media pondera			0.000000	650282.0	0.282059	0.282059	0.28209	0.282059	0.282059	0.282059	0.282059	0.282059	02000000	60787.0	0.282059	0.282059	Media nondera				0 282043	0.282043	0 282043	0 282043	CH0202.0	0.282045	0.282043	0.282043	0.282043	0.282043	0.282043	0.282043	0.282043	Media pondera			0.282008	0.282008	0.282008	0.282008	0.282008	0.282008	0.028200	0007070	0002020	0.282008	0.282008	0.282008	0.282008	Media pondera			
JH ₂₂₂ /JH ₉₂₁	CHUR(t)		0.281708	0.281708	0.281708	0.281708	0.281708	0.281708	0.281708	0.281708	00/1070	00/1070	0.281708	0.281708	0.281708					0,5100.0	75/1970	0.281/42	0.281742	0.281/42	0.281742	0.281742	0.281742	0.281742	0.281742	010100	0.281/42	0.281742	0.281742					0.781778	0.281728	0.281728	0.781778	07/1070	0.281/28	0.281728	0.281728	0.281728	0.281728	0.281728	0.281728	0.281728				0.281698	0.281698	0.281698	0.281698	0.281698	0.281698	0.781608	0/01070	0601070	0.281698	0.281698	0.281698	0.281098				
JH ₁₂₂ /JH	inicial(t) ⁽³⁾		0.281933	0.281918	0.281901	0.281922	0.281933	0.281920	0.281941	0.781013	101020	0.201914	0.281914	0.281890	0.281862					0.001000	0061970	0.281954	0.281952	0.281954	0.281954	0.281948	0.281953	0.281935	0.781933	2001000	C76187.0	0.281933	0.281923					0.781983	0.281897	0.281882	0.781057	102102.0	0.281946	0.281925	0.281903	0.281923	0.281939	0.281891	0.281850	0.281843				0.282009	0.281962	0.281982	0.281954	0.281958	0.281952	0.781063	0.101050	1021020	0.281950	0.281916	0.281928	0.28195/				
abs. err.	(±2σ)		10	10	10	10	10	10	01	2 2	2 9	2 :	10	10	10					91	2 :	2 :	2 :	2	10	10	10	10	10	2	10	10	10					=	=	=	: =	: :	=	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ	Ξ				23	23	23	23	23	23	1 6	3 6	3 6	57	23	23	52				
Edad U-Pb	(Ma) ⁽⁴⁾		1690	1690	1690	1690	1690	1690	1690	1690	1600	0.601	1690	1690	1690					7671	0001	10.30	1636	10.30	1636	1636	1636	1636	9636	2621	10.50	1636	1636					1658	1658	1658	1658	0001	1028	1658	1658	1658	1658	1658	1658	1658				1705	1705	1705	1705	1705	1705	1705	1705	2071	C0/1	1705	1705	cu/I				
.1(2)	abs. err.		1.2	0.9	1.3	0.8	0.8	0.9	01	2.0			9.0	0.8	0.7		8.34 ± 0.57	1 (6 of 12)		t		0.7	0.8 0		0.6	0.8	0.9	0.6	8.0		0.8	0.7	0.8	8.16 ± 0.31	100 - 010	7 (12 of 12)			1.4	0.0	80	0.0	8.0	0.8	0.8	1.0	0.7	0.8	1.0	0.6	8.07 ± 0.46	.5 (8 of 12)		0.7	0.8	0.7	1.0	0.9	0.8	0.0		1.0	0.6	1.0	0.9	0.7	8.01 ± 0.37	111 of 10)	(11 0I 17)	
EHf ₍₀₎	hoy		-25.4	-26.1	-26.1	-26.2	-27.3	-27.9	-28.3	180	202	0.02-	-28.8	-30.1	-31.7		EHf ₍₀₎ = -2	MSWD = 2			017-	817-	-27.8	8.1.2-	-27.8	-28.1	-28.1	-28.2	-286	0.00	2.62-	-28.9	-29.0	$sHf_{cov} = -2$		ASWD = 1.7		596-	-2.6.9	275	976	0.17-	8.1.2-	-28.2	-28.3	-28.6	-28.8	-30.0	-30.6	-32.0	: EHf ₍₀₎ = -2	MSWD = 1		-26.6	-27.3	-27.3	-27.4	-27.8	-27.9	0.7.0	100	1.02-	-28.2	-28.7	-28.8	-25.8	$EHf_{cov} = -2$	- (n)	15 W D = 1.	
	abs. err.		0.000029	0.000031	0.000029	0.000031	0.000027	0.000026	0.000031	0.00006	07000000		0.000024	0.000030	0.000026		edia ponderada		(2)	0.00000.0	6700000	0.00002	0.000027	0.000026	0.000026	0.000025	0.000027	0.000028	0 000075	0.00000	670000.0	0.000027	0.000028	edia nonderada	כתום לימוותרו מחי	~		0.000035	0.000049	0 00003.2	9.00000	07000000	0.000051	0.000032	0.000023	0.000031	0.000032	0.000030	0.000033	0.000025	edia ponderada		e 2017).	0.000027	0.000032	0.000029	0.000029	0.000034	0.000032	0.00003.5	2000000	0.000000	0.000030	0.000033	0.000030	67000010	edia ponderada		-	
Sonora. 178	IH/IH	(2)	1.467230	1.467208	1.467247	1.4672.37	1.467268	1.467269	1 467234	1 467768	DO7/01/1	/ 07/04-1	1.467228	1.467233	1.467270	;	Ξ		f en Octubre 201	2002/1	CC7/04-1	1.40/244	1.467223	1.46/24/	1.467259	1.467248	1.467224	1.467274	1 467284	1 467707	177/04-1	1.467260	1.467246	M				1 467237	1 467317	1 467281	1 467240	055204.1	1.46/239	1.467254	1.467239	1.467194	1.467231	1.467218	1.467287	1.467255	M		(Hf en Octubr	1.467237	1.467252	1.467219	1.467259	1.467256	1.467271	1 467747	2572011	202/04/1	1.467222	1.467273	1.467239	1.46/201	N			
rizona y NW de	abs. err.	f en Octubre 20.	0.002600	0.002100	0.002200	0.001700	0.000290	0.002400	0.000240	0.000100	0001000	0000000	0.000740	0.000670	0.000130				GEO-37 (H	0.000/20	0.00000.0	0.0005/0	0.001500	0/ 1000.0	0.001100	0.000420	0.000250	0.000210	0.000620	0.000100	0510000	0.000320	0.000200				1 Octubre 2017)	0.0002.00	0.007000	0.0028.00	0.000240	0.000040	0.000840	0.000760	0.000730	0.000310	0.000066	0.000780	0.000570	0.000760			beta ICGEO-33	0.000190	0.001100	0.000440	0.000930	0.000500	0.000690	0.000330	0011000	0.001400	0.000040	0.000520	0.000110	0.000480				
208 del 5W de A 176, 11 177, 15	IH/9.X	GEO-88 (H	0.125500	0.101800	0.124700	0.102900	0.057050	0.057500	0.024780	0.048250	00101010	001040.0	0.035190	0.025030	0.011400				Probeta IC	0.000550	0000000	062620.0	0.031/00	0.028140	0.026700	0.026590	0.021260	0.034490	0.075580	0010000	09/6700	0.019320	0.026370				GEO-33 (Hfen	0.039090	0.091800	0.09560.0	0.073850	000070.0	0.0367/0	0.043640	0.061060	0.034280	0.014825	0.025850	0.047210	0.019900			rizona) Pro	0.006990	0.031600	0.013580	0.037030	0.023590	0.025100	0.015460	001810.0	000010.0	08/610.0	0.036520	0.024510	UC CCI U.U				
ides proterozoio	abs. crr.	Probeta IC	0.000086	0.000066	0.000056	0.000044	0.000007	0.000059	0.000010	0.000000	0000000	0400000	0.000037	0.000021	0.000003				iit, SW Arizona)	0.0000	2100000	0.00000/	0.000041	0.000005	0.000032	0.000010	0.000012	0.00006	0.000016	0,000,000	0.00000	0.000008	0.00001				Probeta IC	0.00006	0.000120	0.000086	0.00000	6000000	0.000052	0.000017	0.000026	0.00000	0.00004	0.000042	0.000023	0.000018			ce Range, SW A	0.000007	0.000043	0.000017	0.000036	0.000013	0.000026	0.00001	1100000	0.00004	/10000.0	0.000011	0.000001	0.000020				
cones de granite	HH	lls, SW Arizona)	0.003796	0.003639	0.004128	0.003394	0.002061	0.001950	0.000959	0.001745	1001000	+00 T00'0	0.001328	0.000958	0.000397				ewis-Buckley U	111100.0	111100.0	0.0010/5	0.001140	0.001034	0.001004	0.000965	0.000782	0.001286	0.000932	0.00100	0.001082	0.000741	0.000959				ta, SW Arizona)	0 001396	0.003650	0.003566	0.000057	000100.0	0.001295	0.001589	0.002238	0.001283	0.000615	0.001089	0.001847	0.000772			oldwater Air For	0.000298	0.001189	0.000541	0.001375	0.000900	0.000979	0.000618	0.0000667	1000000	0.000 /8 /	0.001360	0.000950	0.000010				
C-ICPMS en zu	abs. crr.	NW de Aztec Hi	0.000033	0.000026	0.000036	0.000024	0.000023	0.000025	0.000027	0.00001	17000000	6 10000.0	0.000017	0.000022	0.000019	10000 0 120	9/1 ± 0.0000 b	0 = 2.1 (6 of 12)	ison Complex-L		170000.0	170000.0	0.000022	610000	0.000018	0.000024	0.000025	0.00018	0 000022		\$700.00.0	0.000019	0.000024	56 ± 0.000088		= 1.7 (12 of 12)	Pass Trail, Yum	0.00003.0	0.000039	0.000026	0.0000.0	77000000	0.000024	0.000024	0.000024	0.000029	0.000021	0.000022	0.000027	0.000018	978 ± 0.000013	0 = 1.5 (8 of 12)	ills, Barry M. Go	0.000019	0.000024	0.000020	0.000027	0.000026	0.000024	0.0000.6	07000000	610000.0	0.00018	0.000027	0.000025	1700001	980 ± 0.000010	- 1 0.11 of 13)	(21 OI 1) (1) =	
nidos por LA-M	".JH/IH	co de dos micas	0.282055	0.282035	0.282033	0.282031	0.281999	0.281983	0.281972	0.781060	0.10100.0	70/107.0	0.281957	0.281921	0.281875	100.0 - 211 77 1/21	II/ HI = 0.281	MSWL	otita (Arizona P	100100.0		186187.0	186182.0	0.281986	0.281985	0.281978	0.281977	0.281975	0 281962	0.101050	656187.0	0.281956	0.281955	177 Hf = 0.28197		MSWD	iotita (Telegraph	0.282027	0.282012	0.281004	0 781087	106107.0	1.861.82.0	0.281975	0.281973	0.281963	0.281958	0.281925	0.281908	0.281867	$Hf^{177}Hf = 0.281$	MS WI	otita (Wellton H	0.282019	0.282000	0.281999	0.281998	0.281987	0.281984	0.781083	0.10100	6/ 6107.0	5/6182.0	0.281960	0.281959	106187.0	$Hf^{177}Hf = 0.281$	MSWD	UNCIN	
e Lu-HI obto Hf _{Haz total}	(v)	melanocráti	15.2	17.1	15.7	17.0	16.6	19.2	13.9	0.00	1 1 4	21.4	20.6	14.7	19.7	176	nderada		anítico de bi	11.0	C 01	C.01	18.4	C.61	19.7	15.6	15.7	19.6	18.0	0.51	17.9	21.0	15.9	erada ¹⁷⁶ Hf			anítico de b.	10 7	11.8	18.0	0.01	7.41	1.61	16.3	17.7	13.7	17.0	15.1	13.5	18.5	1 ⁷⁶ 1 nderada		anítico de bi	19.9	13.7	18.8	13.3	13.4	14.3	13.4	10.2	0.21	16.9	12.2	12.7	13.9	nderada ¹⁷⁶ 1			
utos isotopicos c U-Pb	zircón	Sienogranítico	z-10	z-12	24 4	2-6	z-18	7-2	8-2	0-2	111	- I-	Z-1	z-3	z-5		Media po.		Gneiss sienogry	2	C7-Z	z-1/2	z-14	77-z	z-2	z-23	z-13	z-19	7-16	22.1	17-Z	z-6	z-8	Media pond			Gneis sienogr	7=3	7-1	7-17	5.5	-70	z-19	2-9	z-5	z-10	z-13	z-12	z-8	z-16	Media por		Gneis sienogr	z-3	Z-7	z-8	4z	z-1	z-20	7-10	2.6	0-7	z-10	z-22	z-16	Z-14	Media por	•		
I abia C.1 (colu.) D	Analisis	Muestra Aztec-02	Aztec-2_9	Aztec-2_10	Aztec-2 3	Aztec-2 6	Aztec-2 12	Aztec-2 2	Aztec-2 7	Arten-2 8	Artes 11	11 ⁻²⁻¹⁰¹⁷⁴	Aztec-2_1	Aztec-2_4	Aztec-2_5				Muestra Lewis-01	1 10 11	T - 01 4	Lewis-01_4	Lewis-01_0	Lewis-UL_IU	Lewis-01_1	Lewis-01_11	Lewis-01_5	Lewis-01 8	Lewis-01 7	Tomic 01 0	TCMIS-01_9	Lewis-01_2	Lewis-01_3				Muestra Telegraph	Teleoranh 2	Telegraph 1	Telegraph 11	Telegraph 4	Tolograph 1	I elegraph_12	Telegraph_6	Telegraph_3	Telegraph_7	Telegraph 9	Telegraph 8	Telegraph 5	Telegraph_10			Muestra Wilton-02	Wilton-02 2	Wilton-02_5	Wilton-02_6	Wilton-02 3	Wilton-02 1	Wilton-02 11	Wilton-02 10	Wilton-02 4	Witten 07 7	Wilton-02_7	Wilton-02_12	Wilton-02_9	witton-07				

$ I = 1 \ (2.5) \ (2.$	Análisis	U-Pb zircón	Hf _{Haz} total (V)	$^{176}\mathrm{Hf}^{177}\mathrm{Hf}^{(1)}$	abs. err. ⁽²⁾	$^{176}\mathrm{Lu}/^{177}\mathrm{Hf}$	abs. err. ⁽²⁾	$^{176} \gamma b /^{177} Hf$	abs. err. ⁽²⁾	178Hf/177Hf	abs. err. ⁽²⁾	EHf ₍₀₎ abs hoy abs	. епт. ⁽²⁾ Еdi (Л	ad U-Pb ab Ma) ⁽⁴⁾ (E	. err. ¹⁷⁶ Hf :2σ) inicia	1177 _{Hf} 174 1(1) ⁽³⁾ C	HÉ ^{l777} Hf ¹ HUR(t)	⁷⁶ Hf/ ¹⁷⁷ Hf DM(t)	EHf _(t) a	bs. err. ⁽²⁾	T _{DM} Ma) [@]	T _{DM1} C (Ma) [†]	Γ _{DM2} C Ma) [†]	Г _{DM3} ^C (Ma) [†]
0.1 0.1 0.10 0.00 0	Muestra Gila-01 (neis monzogra	mítico de dos	micas (Gila Mor	untains, Barry M	4. Goldwater Aù	" Force Range, 2	W Arizona)	Probeta ICGEO-	37 (Hf en Octu.	bre 2017)													
	Gila-01_5	z-13	16.3	0.282018	0.000020	0.001256	0.000005	0.034080	0.000190	1.467239	0.000029	-26.7	0.7 1	1663	9 0.28	1978 0.	281725	0.282039	9.0	0.7	1748	1777	1802	1861
0.0000 0.0000<	Gila-01_4	z-12	16.8	0.282012	0.000020	0.001118	0.000038	0.030300	0.001000	1.467216	0.000027	-26.9	0.7	1663	9 0.28	1977 0	281725	0.282039	8.9	0.8	1750	1780	1805	1866
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gila-01_10 Gila-01_6	z-19 z-14	10.6	0.281988	0.000024	0.000906	0.00005 20000000	0.024520	0.000540	1.467/248	0.000029	1.12- 8.7.0-	8.0	1663	9 0.28	0 6661	281725	0.282039		6.0 8 0	5111 2173	1813	1845	1922
0.001 0.1 0.000 0	Gila-01_3	11-2	15.8	0.281982	0.000023	0.001125	0000000	0.031550	0.000280	1 4672 52	0.000077	-27.9	0.8	1663	9 0.28	1947 0	281725	0.282039	62	8.0	1792	1837	1874	1964
00000 010 0000 <th< td=""><td>Gila-01 12</td><td>z-25</td><td>15.4</td><td>0.281981</td><td>0.000025</td><td>0.001081</td><td>0.000002</td><td>0.029029</td><td>0.000000</td><td>1.467229</td><td>0.000029</td><td>-28.0</td><td>6.0</td><td>1663</td><td>9 0.28</td><td>1947 0.</td><td>281725</td><td>0.282039</td><td>67</td><td>6.0</td><td>1791</td><td>1836</td><td>1873</td><td>1963</td></th<>	Gila-01 12	z-25	15.4	0.281981	0.000025	0.001081	0.000002	0.029029	0.000000	1.467229	0.000029	-28.0	6.0	1663	9 0.28	1947 0.	281725	0.282039	67	6.0	1791	1836	1873	1963
0.001 0.00 0.000	Gila-01 1	Z-7	14.4	0.281981	0.000027	0.001211	0.000015	0.033230	0.000510	1.467252	0.000029	-28.0	1.0	1663	9 0.28.	1943 0.	281725	0.282039	7.7	1.0	1797	1844	1883	1976
$ [0,0] \ [$	Gila-01_2	z-10	16.0	0.281979	0.000022	0.000982	0.000029	0.026060	0.00030	1.467237	0.000030	-28.0	0.8	1663	9 0.28.	1948 0.	281725	0.282039	7.9	0.8	1789	1834	1871	1959
0.10 1.2 2.0 0.000 0.0000 0.0000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 <t< td=""><td>Gila-01_7</td><td>z-15</td><td>14.2</td><td>0.281976</td><td>0.000023</td><td>0.000997</td><td>0.000010</td><td>0.026730</td><td>0.000350</td><td>1.467258</td><td>0.000032</td><td>-28.1</td><td>0.8</td><td>1663</td><td>9 0.28.</td><td>1945 0.</td><td>281725</td><td>0.282039</td><td>7.8</td><td>0.8</td><td>1794</td><td>1841</td><td>1879</td><td>1971</td></t<>	Gila-01_7	z-15	14.2	0.281976	0.000023	0.000997	0.000010	0.026730	0.000350	1.467258	0.000032	-28.1	0.8	1663	9 0.28.	1945 0.	281725	0.282039	7.8	0.8	1794	1841	1879	1971
(1) (2) <td>Gila-01 11</td> <td>z-21</td> <td>22.9</td> <td>0.281975</td> <td>0.000018</td> <td>0.000778</td> <td>0.000033</td> <td>0.020420</td> <td>0.000980</td> <td>1.467265</td> <td>0.000026</td> <td>-28.2</td> <td>0.6</td> <td>1663</td> <td>9 0.28.</td> <td>1950 0.</td> <td>281725</td> <td>0.282039</td> <td>8.0</td> <td>0.7</td> <td>1785</td> <td>1830</td> <td>1865</td> <td>1952</td>	Gila-01 11	z-21	22.9	0.281975	0.000018	0.000778	0.000033	0.020420	0.000980	1.467265	0.000026	-28.2	0.6	1663	9 0.28.	1950 0.	281725	0.282039	8.0	0.7	1785	1830	1865	1952
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gila-01 9	z-18	15.8	0.281970	0.000026	0.001264	0.000010	0.034400	0.000210	1.467216	0.000026	-28.4	0.9	1663	9 0.28.	1930 0.	281725	0.282039	7.3	0.9	1815	1868	1912	2018
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Gila-01_8	z-17	17.8	0.281956	0.000021	0.000645	0.000012	0.017520	0.000380	1.467269	0.000025	-28.9	0.7	1663	9 0.28	1936 0.	281725	0.282039	7.5	0.8	1805	1858	1899	2000
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $		Media nond	'erada ¹⁷⁶ Hf/	177 Hf = 0.281980	18 ± 0.000008					Mod	ia nonderada cl	If = -27.08	+ 0.35				Med	lia nonderada	• eHf(t) = 7 (00 + 0 31	F.	= 1788 Ma		
Matrix				- CIMBIN	(C1**F11) E1							(0) - Cite						and particular interview		101 °F 11	T F	C1060 M		
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $				= MACIM	1./ (11 de al 2)						SIM	WD = 1.7 (11	de 17)					W) c.I = U.M.	11 dc 17)	-	M2 - 1000 M	_	
Modellie 1 1 0<	Muestra Welton-E	Gneis sienogri	anítico de bic	viita (Wellton Hil.	ls. Barry M. Goi	ldwater Air Forv	ce Range, SW A	izona) Prob	4a ICGE0-83	(Hf en Junio 201	(8)													
weekely beneficity 53 13 0.3390 (210) 0.0001 (210) 0.0001 0.0001 (210) 0.0	0 0 10 10 10						0						1							1				
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Welton-E_H1_8	z-21	14.5	0.282003	0.000021	0.000336	0.00004	0.007350	0.000100	1.467203	0.000033	-27.2	0.7	1427	22 0.28	1994 0	281876	0.282213	4	0.7	1721	1839	1927	2138
Mene. JII 2.5 1.1 0.3379 0.0003 0.0013 0.4739 0.0003 0.4739 0.0003 0.4739 0.0013 0.4739 0.4739 0.4739 0.4739 0.4739 0.4739 0.4739 <td>Welton-E_Hf_9</td> <td>z-24</td> <td>12.5</td> <td>0.281976</td> <td>0.000029</td> <td>0.000369</td> <td>0.00008</td> <td>0.008680</td> <td>0.000200</td> <td>1.467227</td> <td>0.000034</td> <td>-28.1</td> <td>1.0</td> <td>1427</td> <td>22 0.28</td> <td>1966 0</td> <td>281876</td> <td>0.282213</td> <td>3.2</td> <td>1.0</td> <td>1765</td> <td>1891</td> <td>1990</td> <td>2228</td>	Welton-E_Hf_9	z-24	12.5	0.281976	0.000029	0.000369	0.00008	0.008680	0.000200	1.467227	0.000034	-28.1	1.0	1427	22 0.28	1966 0	281876	0.282213	3.2	1.0	1765	1891	1990	2228
$ \begin{aligned} \text{Wene Fit} & \text{Vene Fit}$	Welton-E_Hf_II	z-26	12.1	0.281974	0.000025	0.000380	0.000003	0.008410	0.000043	1.467254	0.000033	-28.2	0.9	1427	22 0.28	1964 0	281876	0.282213	3.1	6.0	1768	1895	1995	2236
Notice International from the from	Welton-E_Hf_6	z-16	13.3	0.281970	0.000020	0.000311	0.000005	0.007070	0.000130	1.467184	0.000033	-28.4	0.7	1427	22 0.28	1962 0	281876	0.282213	F. 2	0.7	1770	1899	2000	2242
Matrix function of the	Welton-E_Hf 5	2-2 4-12	13.7	0.281945	0.00001	0.000264	0.000005	0165000	0.000100	1.46/239	0.000036	1.62-		1427	87.0 CA	1010 0	281876	0.282213	477 1 V	6) I	56/1	1934	2042	2305
Media ponderata "THU" III = 0.2519 GK = 0.00011 Media ponderata "THU" III = 0.2519 GK = 0.00011 Media ponderata IIII = 2.56 ± 0.071 Now = 176 Na Media ponderata "THU" III = 0.2519 GK = 0.00011 Media (ThE - 0.256 ± 0.01 Media (ThE - 0.2519 ± 0.01 Media (ThE - 0.2519 ± 0.01 Media (ThE - 0.2519 ± 0.00012 Media (THE - 0.25		11-2	-		1 000000	******	000000	010000	0170000		0.000000		1	i l	140			C1 440 40	1	1	0001			0.174
$\label{eq:relation} MSDmudds = 1.05 \ Ga = 0.0021 \ MSD = 0.0017 \ MSS = 0.0017 \ MSS = 0.0011 \ MSS = 0.001 $		Media po	nderada ¹⁷⁶ 1	Hf ¹⁷⁷ Hf = 0.2819	965 ± 0.000011				W	edia ponderada	cristalización ɛl	$Hf_{(0)} = -28.55$	± 0.39				Met	lia ponderada	: EHf(t) = 2.7	76 ± 0.77	Ξ.	o _M = 1787 Ma		
Material Term To the proper determinant of car mice of car mi				MSWD	= 1.08 (5 de 6)						3M	SWD = 1.08 ((5 de 6)						MSWD = 1.9) (5 de 6)	T	$M_2^{C} = 2024 M$	_	
$ \begin{aligned} \mbox Model & 2ris strengenific methancratic de do wicks (Cren Restances McDaulds, Time, SI, Arisona) \\ \mbox Model & 2ris (2) \\ \mbox Model & 2ris (2) \\ \mbox McDauld & 2ris$																								
$ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Muestra McDonalds	Gneiss sien.	ogranítico m.	elanocratico de d.	os micas (Cerro	Restaurante Mu	Conalds, Yuma	. SW Arizona)	Probeta ICGEt	7-34 (Hfen v	Octubre 2017)													
$ \ \ \mbox Model \ \ \ \ \ \ \ \ \ \ \ \ \ $	McDonald_6	z-12	16.3	0.282022	0.000024	0.001105	0.00005	0.031580	0.000310	1.467199	0.000026	-26.5	0.8	1412	9 0.28	1992 0.	281885	0.282224	3.8	0.9	1735	1847	1940	2164
MeDmald 1 = 2.3 170 0.28196 0.00019 0.000815 0.00001 0.00018 0.00010 0.46727 0.00001 0.00018 0.00011 0.00018 0.00019 0.00019 0.00018 0.00019	McDonald_8	z-17	19.4	0.282010	0.000017	0.001375	0.000017	0.037770	0.000600	1.467235	0.000021	-26.9	0.6	1412	9 0.28	1973 0.	281885	0.282224	3.1	0.6	1764	1883	1983	2225
$ \label{eq:relation} \label{eq:relation} \equival(12) = 2.5 \medskip {$12,52} \medskip {$12,5224} \medskip {$22,54} \medskip {$21,50} \medskip {$21,50} \medskip {$21,50} \medskip {$22,54} \medskip {$21,50} \medskip \medskip {$21,50} \medskip \medskip {$21,50} \medskip \medskip {$$	McDonald_2	z-3	17.0	0.282006	0.000021	0.000717	0.00004	0.018460	0.000170	1.467277	0.000028	-27.1	0.7	1412	9 0.28	1987 0	281885	0.282224	3.6	0.7	1740	1858	1953	2182
$ MeDmidl = \frac{1}{2} 516 657 0.38195 0.38195 0.28195 0$	McDonald 12	z-25	18.2	0.281998	0.000019	0.000815	0.00001	0.022810	0.000120	1.467258	0.000025	-27.4	0.7	1412	9 0.28	1976 0	281885	0.282224	3.2	0.7	1755	1878	1977	2216
$ MeDonal (1 \ 2.7 \ 158 \ 0.281976 \ 0.000020 \ 0.000020 \ 0.000021 \ 0.467199 \ 0.000020 \ 0.467199 \ 0.000020 \ 0.467199 \ 0.000020 \ 0.467199 \ 0.000020 \ 0.46710 \ 0.000020 \ 0.46719 \ 0.000020 \ 0.46719 \ 0.000020 \ 0.46719 \ 0.000020 \ 0.46719 \ 0.000020 \ 0.46719 \ 0.000020 \ 0.28199 \ 0.28199 \ 0.28198 \ 0.28214 \ 2.1 \ 0.7 \ 190 \ 1927 \ 204 \ 200 \ 201$	McDonald 9	z-16	16.7	0.281982	0.000021	0.000875	0.000002	0.024530	0.000180	1.467237	0.000031	-27.9	0.7	1412	9 0.28	1959 0	281885	0.282224	2.6	0.7	1780	11911	2017	2273
$ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	McDonald_4	L-2	15.8	0.281976	0.000020	0.000884	0.000005	0.023290	0.000210	1.467199	0.000029	-28.1	0.7	1412	9 0.28	1952 0	281885	0.282224	2.4	0.7	1789	1922	2031	2293
$ MeDonid(1 z_1) = 16 \ \ (15 0.28197 0.000019 0.00024 0.00027 0.00024 0.46775 0.00024 2.82 0.7 1412 9 0.28194 0.28188 0.28224 2.1 0.8 1802 1938 2046 200 0 MeDonid(1 z_2) 0.7 1791 1927 2046 2306 2306 2306 2306 2306 2306 2306 230$	McDonald_10	z-18	19.0	0.281974	0.000019	0.001104	0.000022	0.030790	0.000780	1.467275	0.000023	-28.2	0.7	1412	9 0.28	1945 0	281885	0.282224	2.1	0.7	1802	1937	2048	2318
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	McDonald 1	z-1	16.0	0.281974	0.000022	0.001115	0.000014	0.030770	0.000240	1.467239	0.000028	-28.2	0.8	1412	9 0.28	1944 0.	281885	0.282224	2.1	0.8	1802	1938	2049	2319
MeDonial J = 24 161 0.281971 0.000021 0.000021 0.00002410 0.0000440 1.467251 0.000027 -28.3 0.7 1412 9 0.281947 0.281885 0.282224 1.5 0.8 1796 1913 2904 2377 0.7 0.7 1412 9 0.281956 0.281856 0.282224 1.5 0.8 1329 1971 2093 2377 0.7 0.7 1412 9 0.281956 0.281856 0.282224 1.5 0.8 1329 1971 2093 2377 0.7 0.7 1412 9 0.281956 0.281856 0.282224 1.5 0.8 1329 1971 2093 2377 0.7 0.7 0.7 1412 9 0.281956 0.281856 0.282224 1.5 0.8 1829 1971 2093 2377 0.7 0.7 0.7 1412 9 0.281956 0.281856 0.282224 1.5 0.8 1829 1971 2093 2377 0.7 0.7 0.7 1412 9 0.281956 0.281856 0.282224 1.5 0.8 1829 1971 2093 2377 0.7	McDonald_11	z-20	17.5	0.281972	0.00019	0.000824	0.00001	0.022970	0.000120	1.467257	0.000024	-28.3	0.7	1412	9 0.28	1950 0.	281885	0.282224	2.3	0.7	1791	1927	2036	2300
$MeDomid[7 z_{-13}] \ \ 16.4 0.231960 0.000012 0.001267 0.000010 0.0055110 0.000150 1.467255 0.000022 -28.7 0.7 1412 9 0.281925 0.282254 1.5 0.3 1829 1970 2990 2377 2370 2080 2374 1.5 0.7 1823 1970 2090 2374 1.5 0.7 1823 1970 2088 2374 1.5 0.7 1823 1970 2088 2374 1.5 0.7 1823 1970 2088 2374 1.5 0.7 1823 1970 2088 2374 1.5 0.7 1823 1970 2088 2374 0.7 1412 9 0.281927 0.281858 0.282254 1.5 0.7 1823 1970 2088 2374 0.7 142 0.7 1823 1970 2088 2374 0.7 142 0.7 1823 0.000019 0.00002 0.024100 0.00010 0.467255 0.000028 -29.1 0.7 1412 9 0.281858 0.282224 1.5 0.7 1823 1970 2088 2374 0.7 1823 0.00010 0.0003 0.00010 0.467258 0.000010 0.28129 0.000010 0.00010 0.00010 0.467258 0.000010 0.00010 0.00010 0.000010 0.00010 0.0000010 0.000010 0.000000000 0.0000000 0$	McDonald_3	z4	16.1	0.281971	0.000021	0.000893	0.000012	0.024780	0.000440	1.467251	0.000027	-28.3	0.7	1412	9 0.28	1947 0.	281885	0.282224	2.2	0.8	1796	1932	2043	2309
McDonald [5 z-8] 16.5 = 0.281950 = 0.000019 = 0.000019 = 0.000022 = 0.024500 = 0.000110 = 1.467255 = 0.000028 = -29.1 = 0.7 = 1412 = 9 = 0.281927 = 0.281885 = 0.28224 = 1.5 = 0.7 = 1823 = 1970 = 2.038 = 2.04 = 2.04 = 0.000070 = 0.0000070 = 0.000070 = 0.000070 = 0.000070 = 0.000070 = 0.000070 = 0.000070 = 0.000070 = 0.000070 = 0.000070 = 0.000070 = 0.000070 = 0.0000070 = 0.00070 = 0.	McDonald_7	z-13	16.4	0.281960	0.000021	0.001267	0.000010	0.035110	0.000450	1.467225	0.000027	-28.7	0.7	1412	9 0.28	1926 0.	281885	0.282224	1.5	0.8	1829	1971	2090	2377
$\label{eq:model} Media pondenda ^{114} H P^{11} H - 0.281960 \pm 0.000070 \\ Ms W D = 1.05 (8 de 12) \\ Ms W D = 1.05 (8 de 12) \\ Ms W D = 1.05 (8 de 12) \\ T_{DM} ^{2} = 2050 Ma \\ Ms W D = 1.05 (8 de 12) \\ T_{DM} ^{2} = 2050 Ma \\ Ms W D = 1.05 (8 de 12) \\ T_{DM} ^{2} = 2050 Ma \\ Ms W D = 1.05 (8 de 12) \\ T_{DM} ^{2} = 2050 Ma \\ Ms W D = 1.05 (8 de 12) \\ T_{DM} ^{2} = 2050 Ma \\ T_{DM} ^{2} $	McDonald_5	z-8	16.5	0.281950	0.00019	0.000859	0.000002	0.024300	0.000110	1.467255	0.000028	-29.1	0.7	1412	9 0.28	1927 0.	281885	0.282224	1.5	0.7	1823	1970	2088	2374
$MSWD = 1.05 (8 de 12) $ $MSWD = 1.05 (8 de 12) $ $MSWD = 1.3 (8 de 12) $ $T_{DM2}^{C} = 2050 Ma$		Media pond	lerada ¹⁷⁶ Hf	177 Hf = 0.281969	$0.000000 \pm 0.00000000000000000000000000$					Med	ia ponderada sł	$Hf_{(0)} = -28.38$	± 0.25				Med	lia ponderada	: EHf(t) = 2.	07 ± 0.34	Ţ	M = 1802 Ma		
MSWD = IJO(8 de 12) MSW (21 a) $O(1 = 0.05)$ (3 de 12) MSW				CI II CI III	10201							102.00	6							101 107	F	C _ 2020.14		
				MS WD =	= 1.05 (8 de 12)						MS	WD = 1.05 (8)	de 12)					2	SWD = 1.3	(8 de 12)	Ŧ	M12 = 2000 M	-	

⁽¹⁾Relación ¹¹⁷Hf Fornegida
 ⁽²⁾Incertidumbre en las proporciones corregidas y calculadas (expresadas en el intervalo de confianza del 95%)
 ⁽²⁾Incertidumbre en las proporciones corregidas y calculadas (expresadas en el intervalo de confianza del 95%)
 ⁽²⁾Relación ¹¹⁷Hf ¹¹⁷Hf calculada para la cdad en ⁽⁴⁾
 ⁽³⁾Relación ¹¹⁸Lu¹¹⁷Hf (= 0.016 para (al cdad en ⁽⁴⁾)
 ⁽⁴⁾Relación ⁽⁵⁾Lu¹¹⁷Hf (= 0.016 para (al cdad en ⁽⁴⁾)
 ⁽⁵⁾Relación ⁽⁵⁾Lu¹¹⁷Hf (= 0.010 para una corteza fisision promedio (T_{DAL}^C, Amelin *et al.*, 1999),
 ⁽⁶⁾Etadas modelo Hf (T_{DA}) calculadas en up paso ("mos-arge model ages") usando una coteza mática promedio (T_{DAL}^C, Amelin *et al.*, 1999),
 ⁽⁶⁾Etadas modelo Hf (T_{DA}) calculadas en up paso ("mos-arge model ages") usando una coteza mática promedio (T_{DAL}^C, Varetin *et al.*, 1999),
 ⁽⁶⁾Etadas modelo Hf (T_{DA}) calculadas en do pasos ("mos-arge model ages") una coteza mática promedio (T_{DAC}^C, Varetin *et al.*, 1996), respectivamente.
 ⁽⁶⁾Etadas modelo J⁽¹⁰ (= 0.0354), ¹¹⁶Lu¹¹⁷Hf = 0.010 para una corteza intermedia promedio (T_{DAC}^C, Varetin *et al.*, 2014), ¹¹⁷Lu¹¹⁷Hf = 0.0336 y ¹¹⁶Hf¹⁰⁷Hf = 0.0336 y ¹¹⁶Hf¹⁰⁷Hf = 0.0334 y ¹¹⁶Hf¹⁰⁷Hf = 0.000)

	T _{DM3} ^C (Ma) [†]		2555	2066	2891	2864	7007	1617	2778	2757	2740	2694	2604						2205	1968	1513	1843	1301	2051	1257	1262	1275	1004	7041	2813	2797	2797	2773	2765	2/41	86/7	2710	2694						2148	178.7	1645	1509	3389	1274	3029	166	2804	2750	2745	2735	2730	2594				s página
	T _{DM2} ^C (Ma) [†]	~	2240	1948	2062	2043	10.05	1003	1981	1966	1954	1921	1858	e V			Ma		2008	1887	1584	1702	1420	1771	1390	1393	13.70	1498	2601	2002	1995	1995	1978	1972	86	0061	1948 1933	1922	el I		;	Ma	2006	2006	1756	1659	1541	2416	1377	2160	C011	1007	1961	1957	1950	1946	1850			i Ma	en la siguient
	T _{DMI} ^C (Ma) [†]		2109	1899	1716	1700	1991	1001	1649	1637	1627	1600	1547	T = 1290 A	WO.	Ţ	$T_{DM2}^{-} = 2004$		1927	1854	1614	1643	1469	1655	1444	1447	1409	14/6	3471	1670	1661	1661	1647	1642	1028	1020	1610	1600	T = 1263 N		. C	$1_{DM2}^{-} = 1983$		1948	1746	1664	1554	2010	1420	1797	1254	1663	1632	1629	1623	1620	1540	6 Jack - 11	WO.	$T_{DM2}^{C} = 1963$	continúa 4
	T _{DM} (Ma) [@]		1950	1843	1338	1310	ci ci ci	1201	1273	1249	1255	12.62	1203						1827	1816	1651	1569	1529	1516	1511	11 51	1457	1449	COCI	12.85	1270	1275	1267	1247	1245	1241	1233	1220					10.000	C/ 81	1733	1671	1569	1527	1473	1371	1500	1274	1242	1246	1270	1247	1168				
	ibs. err. ⁽²⁾		1.3	1.0	0.8	3:		6.0	0.7	0.8	1.0	0.7	0.9	12070	101-10	(8 de 10)			0.8	1.2	0.8	0.7	1.0	1.0	1.0	0.7	0.9	0.1	0.0	1 0	0.8	0.7	0.8	0.7	3	3	80	0.7	73 + 0.37	11) de 11)			0	0.0	0.0	8.0	0.6	0.4	0.7	0.6	0.8	0.6	0.5	0.5	0.6	0.6	0.0	200.0	() = 0 () = 0 ()		
	EHf(I) 8		0.0	6.8	-15.2	-14.9	- 14.0	141-	-13.9	-13.6	-13.4	-12.9	-11.9		()	WD = 2.0			4.3	8.1	13.4	6.9	15.3	2.6	15.8	15.7	14.8	10.1	11./	-14.3	-14.1	-14.1	-13.8	-13.7	4.61-	4.01-	-13.1	-12.9	f = -13 '	D = 1.9 ()			0	6.0	0.0	11.5	12.4	-20.9	15.0	-16.8	18.8	-14.2	-13.6	-13.5	-13.4	-13.4	-11.8	;	10 - 1.14	1	
	DM(t) DM(t)		0.282165	0.282033	0.283202	0.283202	202602.0	0.283202	0.283202	0.283202	0.283202	0.283202	0.283202	orietalización e H	A ISLAIL ACTON 611	MIS			0.282127	0.282012	0.281974	0.282256	0.282012	0.282447	0.282012	0.282012	0.282092	0.282256	1000000	0.283201	0.283201	0.283201	0.283201	0.283201	0.285201	102682.0	0.283201	0.283201	cristalización e H	MSW			0000000	0.282032	0.282014	0.282019	0.282075	0.283204	0.282072	0.283204	0.282058	0.283204	0.283204	0.283204	0.283204	0.283204	0.283204		MSW		
	¹⁷⁶ Hf/ ¹⁷⁷ Hf CHUR(t)		0.281835	0.281720	0.282743	0.282743	01202.0	0.282743	0.282743	0.282743	0.282743	0.282743	0.282743	dia nonderede	דיטוומן איזיטיים		12 J 00 00 mm	(1107 31000	0.281802	0.281702	0.281668	0.281915	0.281702	0.282082	0.281702	0.281702	0.281772	0.281915	C16107.0	0.282743	0.282743	0.282743	0.282743	0.282743	0.282/45	0.70241 0.70241	0.282743	0.282743	Media nonderada				0.0000	0.281/19	0.281703	0.281708	0.281756	0.282744	0.281754	0.282744	0.281 / 24	0.282744	0.282744	0.282744	0.282744	0.282744	0.282744		1 Cura pouvor aven		
	¹⁷⁶ Hf/ ¹⁷⁷ Hf inicial(t) ⁽³⁾	è	0.281836	0.281912	0.282314	0.282323	476702-0	24502.0	0.282351	0.282357	0.282363	0.282378	0.282406	-	-		and ad on an o	readaus en un	0.281923	0.281930	0.282047	0.282110	0.282134	0.282156	0.282147	0.282146	0.282189	0.282199	0.202.00	0.22202.0	0.282344	0.282344	0.282352	0.282354	0.282302	205262.0	0.282372	0.282377	-	-		1111 2012	(110-0000	0.281886	0.26102.0	0.282.033	0.282107	0.282153	0.282177	0.282270	CC2282.0	0.282343	0.282360	0.282362	0.282365	0.282367	0.282411	-			
	abs. err. (±2σ)		4	20	0.9	0.0	2.0	0.0	0.9	0.9	0.9	0.9	0.9				ad and any	INCIECTS NE	100	31	36	13	58	56	31	31	28	<u>.</u> :	3	80	0.8	0.8	0.8	0.8	8.0	0.0	0.8 0.8	0.8				oo aa sop		4	e .	, "	52	0.6	63	0.6	97	0.6	0.6	0.6	0.6	0.6	0.0				
	Edad U-Pb (Ma) ⁽⁴⁾	tbre 2016)	1493	1671	66.9	66.9	6.00	6.00	6.00	6.69	6.99	66.9	6.99				011 - 2016 - m	יוזי איזיין איזיין	1544	1699	1751	1369	1699	1109	1699	1699	1951	1369	6061	67.7	67.7	67.7	67.7	67.7	1.10	1.10	67.7	67.7				interes haved		16/3	2091	1690	1615	64.8	1619	64.8	C001	64.8	64.8	64.8	64.8	64.8	64.8 64.8				
	abs. crr. ⁽²⁾	en novien	1.2	1.0	0.8	3:	- 2	0.0	0.7	0.8	10	0.7	0.9	63 ± 0 50	101-1-07	(8 de 10)	mo hood me	en no vient	0.8	1.1	0.8	0.7	1.0	1.0	1.0	0.7	0.8	0.1	9.7	1 8	0.8	0.7	0.8	0.7	3	3	0.8	0.7	20+037	10 de 11)	Ì	2016- Hf		0.0	0.0	0.7	0.6	0.4	0.7	0.6	0.7	0.6	0.5	0.5	0.6	0.6	0.0		10 m m m m m m m m m m m m m m m m m m m	i I 2	
	EHf ₍₀₎	istalización	-32.4	-28.9	-16.6	-16.3	231	251-	-153	-15.1	-14.9	-14.3	-13.3	H 15	(0)	SWD = 1.9	at al in a di hu	21011TEGG101	-29.5	-28.1	-25.1	-23.4	-21.7	-21.5	-21.3	-20.9	-19.9	-19.6		151-	-15.6	-15.6	-15.3	-15.2	-14.9	-14.9	-14.6	-14.4	15 = -15.	WD = 1.9 (oniomheo		-30.8	1.62-	-263	-22.4	-22.3	-20.7	-18.2	-10./	-15.6	-15.0	-14.9	-14.8	-14.7	-13.4		WD = 1.19		
	abs. err. ⁽²⁾	3EO-35 (Hf ar	0.000045	0.000035	0.000028	0.000031	0000000	0.00000	0.000026	0.000026	0.000034	0.000023	0.000029	istazalioación el	134424IIVACIOI 6	M	10 36 UR	whith oc-ord	0.000023	0.000037	0.000027	0.000026	0.000034	0.000026	0.000026	0.000027	0.000034	0.000026	120000.0	0.000033	0.000032	0.000028	0.000026	0.000030	0.000020	100000.0	0.000031	0.000033	ist az alicación e f	MS		vistalinación an		0.000024	0.000020	0.000028	0.000019	0.000020	0.000026	0.000025	0.000014	0.000027	0.000022	0.000021	0.000022	0.000022	0.000024		MS	2001 (D	
	${ m JH}_{122}/{ m JH}_{821}$	Probeta ICC	1.467236	1.467253	1.467258	1.467232	CZZ/04-1	1.467241	1.467226	1.467241	1.467256	1.467280	1.467225	ia nonderada er	ום הסוותנו מתם כו		Duck and 100	110044100	1.467243	1.467275	1.467240	1.467245	1.467244	1.467253	1.467256	1.467231	1.467210	1.467252	1.40/249	1.467224	1.467250	1.467219	1.467266	1.467247	1.46/239	1.4072/04.1	1.467226	1.467249	ia nonderada cri			CEO-86 OH		1.46/265	1.467240	1.467216	1.467264	1.467230	1.467233	1.467266	1.46/258	1.4672.69	1.467223	1.467265	1.467248	1.467252	1.467228		ייז שהשימחווחל א		
NW de Sonora.	abs. err. ⁽²⁾	ge, SW Arizona)	0.000870	0.001000	0.000540	0.000280	0000000	0.00000	0.000380	0.000230	0.001200	0.000570	0.001200	Mad			o CII/ Automot	(h)107117 117 (h)	0.000660	0.002200	0.000480	0.000190	0.000540	0.001800	0.000000	0660000	0.000600	0.001300	0.000000	0.00000	0.000100	0.000320	0.000480	0.000110	0.000000	0.000042	0.000440	0.000021	Med			Dvohata II		0.002300	0/2000/0	0.000190	0.000220	0.000250	0.000150	0.000110	0.0003/0	0.000240	0.000300	0.000068	0.001500	0.000580	0.000250				
SW de Arizona y	$^{176}\mathrm{Yb}{}^{177}\mathrm{Hf}$	ar Air Force Ran	0.030390	0.046000	0.040380	0.025780	0/1020.0	0.037830	0.027690	0.012990	0.025100	0.051460	0.035900				a dia Panas Dana	Sunv an I al I al	0.026960	0.054500	0.022280	0.010770	0.029980	0.022200	0.030970	0.039250	0.024260	0.032100	0704000	0.019810	0.015130	0.018970	0.023730	0.007560	0.0137/0	147110.0	0.015660	0.010260				nao SW Avirona		00//200	0.035920	0.007120	0.040880	0.011840	0.016590	0.018540	0.048330	0.020240	0.013260	0.021360	0.051000	0.031040	0.009590				
tramídicos del S	abs. err. ⁽²⁾	rry M. Goldwate	0.000028	0.000029	0.000014	0.000011	0.000047	0.000001	0.000014	0.00008	0.000036	0.000024	0.000049				an M. Coldman	y m. oomumue	0.000022	0.000072	0.000014	0.000007	0.000030	0.000048	0.000030	0.000029	0.000026	0.000042	0.00000.0	0.000040	0.000004	0.000019	0.000013	0.000005	0.00000	0.00000	0.000017	0.000002				ar dir Force Da		0.0000/2	0.000033	0.000005	0.000010	0.000013	0.000003	0.000005	0.000005	0.00008	0.000006	0.000009	0.000047	0.000023	0.000008				
de granitoides la	${}^{176}\mathrm{Lu}/{}^{177}\mathrm{Hf}$	Mountains, Ba	0.001128	0.001776	0.001474	0.001004	721100.0	0.001388	0.001052	0.000580	0.001026	0.001902	0.001339				Mountaine Daw	Mountains, par	0.000985	0.001862	0.000854	0.000460	0.001150	0.001023	0.001141	0.001530	0.001072	0.001265	0.00000	0.000033	0.000689	0.000826	0.000917	0.000398	0.000620	68CUUU.U	0.000753	0.000548				neo M. Goldwar		576000.0	0.001306	0.00089	0.001473	0.000506	0.000717	0.000634	0.001844	0.000750	0.000492	0.000701	0.001607	0.000953	0.000348				
MS en zircones	abs. err. ⁽²⁾	(Tinajas Altas	0.000035	0.000028	0.000024	0.000028	0.0000.0	0.000024	0.000021	0.000023	0.000027	0.000019	0.000026	43 + 0 000014	01-F 870 F	= 1.9 (8 de 10)	ohi Didaa Cila	owi Mugge, Olla	0.000022	0.000031	0.000022	0.000019	0.000027	0.000027	0.000028	0.000020	0.000024	0.00002	0.000022	0.000025	0.000022	0.000020	0.000022	0.000019	0.00000	610000.0	0.000024	0.000019	355 ± 0.000010	1.9 (10 de 11)		e Mountaine Ra		0.000016	0.000056	0.000021	0.000017	0.000012	0.000020	0.000017	0.00001	0.00018	0.000015	0.000015	0.000018	0.000017	0.000012	0.4.0.00000	1 1975 de 10)		
por LA-MC-ICP	${}^{176}\mathrm{Hf}/{}^{177}\mathrm{Hf}^{(1)}$	co de dos micas	0.281868	0.281968	0.282316	0.282324	27 27 27 0	0787347	0.282352	0.282358	0.282364	0.282380	0.282408	If ^{/177} Hf = 0.282		UMSMD	la hiadisa - Man	de la minima a	0.281952	0.281990	0.282075	0.282122	0.282171	0.282177	0.282184	0.282195	0.282221	0.282232	0/7707.0	0.282340	0.282345	0.282345	0.282353	0.282355	0.282363	H0 C7 87.0	0.282373	0.282378	If ^{/177} Hf = 0.2823	- MSWD		(Tinaiae Alta		CI6182.0	0.282030	0.282042	0.282152	0.282154	0.282199	0.282271	0.282313	0.282344	0.282361	0.282363	0.282367	0.282368	0.282411	176 COC 0 - 311/21	MSWD		
Hf obtenidos j	Hf _{Haz total} (V)	ito leu cocrátic	8.4	12.4	16.8	5.51	0.11	17.1	14.6	15.0	13.2	21.8	15.5	alización ¹⁷⁶ F			I anno am dall an I	101101001001001	18.2	14.5	16.7	21.2	18.8	20.7	14.6	17.3	14.2	1.77	5 11	13.4	14.1	17.9	21.7	15.2	0.12	4.02	13.9	16.8	alización ¹⁷⁶ F.			te dos micas		24.1	14.7	17.71	31.4	32.7	18.7	22.6	1.61	20.2	29.4	29.1	25.3	28.1	26.4	and 176mer			
tópicos de Lu-i	U-Pb zircón	Monzogran	z-18	z-3	z-14	2-0	0-7	11-2	z-10	z-11-z	2.4Z	z-15	z-21	nderada crist			I of monormally	on un Sortion	z-24	z-26	z-21	z-32	z-13	z-28	z-33	z-35	z-13	57-z	17-7	67 11-2	z-8	z-18	z-20	z-5	z-10	2-0	z-14 z-1	z-10	underada cristi			Monroaranito	-	2-2 2-2	0C-2 2-30	z-34	z-22	Z-7	z-31	z-12	87-z	- -	z-15	z-3	z-8	5-6	2-19 2-19	louodo ouistali			
Tabla C.2 Datos isc	Análisis	Muestra Tinajas-1	Tinajas-1-4	Tinajas-1-12	Tinajas-1-6	Timajas-1-10	Timijas-1-9	Tinajas-1-2	Tinaias-1-8	Tinajas-1-7	Tinajas-1-11	Tinajas-1-5	Tinajas-1-1	Media no	d ump er		Mussing Cila 2	Mucon a Cutt	Gila-2-14	Gila-2-16	Gila-2-13	Gila-2-19	Gila-2-8b	Gila-2-18	Gila-2-20	Gila-2-21	Gila-2-8a	Gila-2-15	11-7-ED	Gila-2-7	Gila-2-4	Gila-2-11	Gila-2-12	Gila-2-2	GIIa-2-9	011a-2-3	Gila-2-10 Gila-2-1	Gila-2-6	Media ne			Mussiva Tinaiae		Tinajas-4	Tinajas-17	Tinaias-15	Tinajas-11	Tinajas-6	Tinajas-14	Tinajas-12	Tinajas-L3	Tinaias-3	Tinajas-9	Tinajas-2	Tinajas-7	Tinajas-5	Tinajas-8	Media nan			

ن ا	T _{DM3} (Ma) [†]		2046	8161	1995	1791	1938	1759	1766	1457	1432	1092	2907	2814	2780	2754	2754	2748	7717	21/2	2465									2155	1990	1730	1421	1556	1504	3083	983	858 2002	2774	2746	2736	2733	2708	825 7672	1192	2604	2415				0110	2087	1970	1970	1891	1853	2026	1299	912	2819	2759	2715	1000
-	T _{DM2} (Ma) [†]		1932	1843	CK81 1743	1754	1857	1731	1736	1519	1502	1265	2073	2008	1983	1965	1965	1961	1942	6661	1760		e l	Ma		/la		4 Ma		2000	1871	1712	15/1	1590	1544	2199	1189	1607	1979	1959	1952	1950	1932	10.07	1905	1858	1723	/la	;	t Ma	21042	7407 1986	1877	1872	1816	1789	1853	1401	1131	2011	1968	1937	
ں ا	T _{DMI} (Ma) [†]		1886	1812	1730	1738	1823	1720	1724	1545	1531	1335	1726	1671	1651	1636	1636	1633	101/	1101	1466		1 1871 = ^{MQ} 1	т ^С – 1060	TOME - TMO	$T_{DM} = 1745 N$	j J	$T_{DM2} = 1794$		1937	1822	1704	1537	1604	1560	1830	1274	1/41	1647	1631	1625	1623	1608	1155	1586	1547	1435	$T_{DM} = 1241 N$	с С С	$T_{DM2}^{-} = 1934$	1075	5761 1945	1831	1831	1785	1763	1781	1443	1221	1674	1638	1612	a c v a
E	¹ рм (Ма) [@]		1832	1773	1717	1719	1787	1706	1709	1576	1566	1420	1342	1332	1289	1271	1295	1271	51.21	0971	2 7									1861	1764	1695	1560	1620	1580	1413	13.73	13.05	1249	1264	1255	1252	1239	1240	1222	1183	1105				10.07	1892	1780	1784	1748	1731	1692	1495	1332	1288	1240	1251	
	abs. err. ⁽²⁾		0.9	1.0	0.8 0	0.8	1.0	1.2	1.5	1.1	0.9	1.2	0.6	1.9	0.7	0.5	1.0	0.7	1.0	1.0	9.0		44 ± 0.24	(01 IO 8)		9.0 ± 1.0	(7 de 11)			0.9	0.7	1.1	0.0	1 -	1.5	0.7	1.2	0.0	0.5	0.6	0.6	0.6	0.6	9.0 2 0	0.5 0	9.0	0.7	07 ± 0.40	(6 de 11)		0.0	0.8 1.1	80	1.1	0.8	1.0	0.8	0.6	0.8	0.9	0.5	0.5 0.5	
	$_{\rm eHf_{(i)}}$		7.0	8.4	0.0	8.6	8.2	10.1	10.0	13.4	13.7	17.3	-15.3	-14.3	-13.9	-13.6	-13.6	-13.5	-15.2	-13.1	-10.3		$EHI_{(1)} = -13.$	5WD = 0.98		dos ɛHf _(t) =	I SWD = 5.5			5.6	7.0	10.5	13.7	12.3	12.7	-17.4	18.5	9.01-	-13.8	-13.5	-13.4	-13.4	-13.1	19.4	-12.7	-11.9	-9.8	EHf ₍₁₎ = -13.	1SWD = 1.7		10	4.7 7.2	195	7.6	8.5	8.9	5.5	14.9	1.9.1	-14.3	-13.7	- 12.5	7.0 -
126	(I) MD		0.282037	0.282037	0.282037	0.282037	0.282037	0.282037	0.282037	0.282037	0.282037	0.282037	0.283201	0.283201	0.283201	0.283201	0.283201	0.283201	0.285201	0.283201	0.283201		a cristalizacion	W		núcleos hereda	~			0.282058	0.282092	0.282035	0.282035	0.282035	0.282058	0.283202	0.282035	0.782050	0.283202	0.283202	0.283202	0.283202	0.283202	07128210	0.283202	0.283202	0.283202	a cristalización	2		7500000	0CU282UD	0.282056	0.282056	0.282056	0.282056	0.282201	0.282056	0.282056	0.283201	0.283201	1020020	0.285201
221 - 221	CHUR(t)	2)	0.281723	0.281723	0.281723	0.281723	0.281723	0.281723	0.281723	0.281723	0.281723	0.281723	0.282742	0.282742	0.282742	0.282742	0.282742	0.282742	0.282/42	0.282/42	0.282742		4 edia ponderadi			ledia ponderada				0.281742	0.281772	0.281722	27/107.0	0.281722	0.281742	0.282743	0.281722	0.202/43	0.282743	0.282743	0.282743	0.282743	0.282743	16/187.0	0.282743	0.282743	0.282743	4 edia ponderad:			0.081740	0.281669	0.281740	0.281740	0.281740	0.281740	0.281867	0.281740	0.281740	0.282742	0.282/42	711707.0	0.282742
<u>77</u> 1 721	inicial(t) ⁽³⁾	octubre 201	0.281920	0.281959	0.281950	0.281998	0.281953	0.282008	0.282006	0.282101	0.282108	0.282212	0.282308	0.282338	0.282349	0.282357	0.282357	0.282359	0.282568	0.2823/1	0.282450		<			Z				0.281899	0.281970	0.282016	210282.0	0.282.069	0.282099	0.282252	0.282243	2000207.0	0.282352	0.282360	0.282364	0.282365	0.282373	0.282342	0.282385	0.282406	0.282467	~			0.101272	0.281871	0.081955	0.281955	0.281979	0.281991	0.282022	0.282160	0.282277	0.282337	0.282350	10170710	0.2873/0
	abs. err. (±2σ)	eredados en	37	37	2 / S	37	37	37	37	37	37	37	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8	0.8 0.8							12100	(/ 107 a.	42	58	89	90 85	s \$	45	0.7	58	40	0.7	0.7	0.7	0.7	0.7	96	0.7	0.7	0.7				Ľ	17	5	; 5	27	27	89	27	27	= :	33	3	_
	Edad U-Pb (Ma) ⁽⁴⁾	If nucleos h	1666	1666	1666	1666	1666	1666	1666	1666	1666	1666	69.0	69.0	69.0	69.0	69.0	69.0	0.69	0.69	0.69							1	tos en ociuo	1637	1591	1669	1660	1669	1637	67.6	1669	07/0	67.6	67.6	67.6	67.6	67.6	6001 676	67.6	67.6	67.6			12	1640	1750	1640	1640	1640	1640	1444	1640	1640	67.9	67.0	C'10	67.9
	abs. err. ⁽²⁾	nbre 2016; 1	0.9	0.1	0	0.8	0.8	1.2	1.4	1.1	0.9	1.1	0.6	6.1	0.7	0.5	9	0.7	1.0	1.0	0.8		90±0.24	(01 10 2)		11 ± 0.51	(7 de 11)		teos nereau	0.9	0.7	1.1	0.0	1 -	1.4	0.7	1.2	0.0	0.5	0.6	0.6	9.0	0.6	9.0 2 0	3	0.6	0.7	52 ± 0.39	(6 de 11)	octubre 201	90	0.5	80	3	0.7	0.9	0.7	0.6	0.7	0.9	0.5	0.0	0.5
	thi(0) hoy	n en novien	-28.4	-28.0	012-	-26.9	-26.6	-26.5	-26.4	-22.5	-22.4	-18.6	-16.8	-15.7	-15.3	-15.1	-15.0	-15.0	-14.7	-14.0	-11.8		$HI_{(0)} = -14.$	66.0 = Π.W		Hf ₍₀₎ = -27.	SWD = 1.6	110.110	10; HJ 107	-29.7	-27.1	-26.2	-73.4	-23.3	-22.7	-18.8	-17.2	1.61	-15.3	-15.0	-14.9	-14.8	-14.5	-14.2	141-	-13.4	-11.2	$Hf_{(0)} = -14.$	SWD = 1.7	redados en	1.00	-29.5	28.4	-27.4	-26.8	-26.7	-26.2	-20.8	-16.9	-15.8	-15.1	141	-14.6
	abs. err. ⁽²⁾	(Hf cristalizació	0.000030	0.000030	0.000020	0.000028	0.000029	0.000025	0.000028	0.000043	0.000027	0.000029	0.000020	0.000048	0.000018	0.000017	0.000046	0.000025	0.000025	0.000024	0.000026		Cristalizacion E	2 Mi		cos heredados s	M	<i>7</i> 6	en noviembre 20	0.000031	0.000025	0.000032	0.000035	0.000037	0.000038	0.000021	0.000039	0.000033	0.000020	0.000023	0.000022	0.000022	0.000024	0.000032	0.000019	0.000025	0.000026	istazalicación s	M	6: Hf núcleos he	0.00007	0.000025	0.00029	0.000036	0.000026	0.000028	0.000028	0.000023	0.000028	0.000034	0.000025	110000 CT20000	0.000018
sonora.	JH ₂₂₁ /JH ₈₂₁	sta ICGEO-40	1.467252	1.467242	1.467230	1.467287	1.467251	1.467255	1.467256	1.467298	1.467242	1.467279	1.467270	1.467272	1.467251	1.467236	1.467220	1.467262	1.46//25	1.467/242	1.467236	•	edia ponderada			ponderada núcl			ry cristatizacion	1.467213	1.467245	1.467275	1.467759	1.467242	1.467265	1.467263	1.467246	1.467270	1.467237	1.467249	1.467251	1.467278	1.467238	062/04/1	1467225	1.467280	1.467227	ia ponderada cı		n noviembre 201	1 467333	1.467246	1 4677 77	1.467225	1.467263	1.467241	1.467228	1.467263	1.467235	1.467256	1.467240	1.401404	1.467254
izona y NW de S	abs. err. ⁽²⁾	izona) Probe	0.001200	0.000890	0.007100.0	0.000410	0.003200	0.000640	0.001400	0.000500	0.000370	0.001800	0.000580	0.000980	0.000350	0.000480	0.000500	0.000430	0.000480	0.000350	0.003100	;	Σ			Media		, 10000 in	110000-40 (0.000410	0.001300	0.001800	0.000000	0.000890	0.000760	0.001 100	0.001400	0.000000	9600000	0.000920	0.000630	0.000440	0.000480	002000.0	0.000250	0.001500	0.000700	Med		f cristalización e	0.001.000	0.001800	0.000360	0.002000	0.000150	0.002300	0.001100	0.000680	0.000210	0.000410	0.000000	0.00010	0.000640
os del SW de Ai	$^{176}\mathrm{Yb}^{/177}\mathrm{Hf}$	ilderness, SW Ar.	0.063800	0.025860	0.066600	0.020900	0.070900	0.024760	0.027200	0.038670	0.036580	0.042600	0.043440	0.059400	0.043700	0.037460	0.049010	0.037590	0.062310	0.050480	0.049180								ona) rrooen	0.038350	0.050600	0.024600	0.014100	0.044770	0.038530	0.031800	0.040400	0.030400	0.009413	0.035830	0.030020	0.028250	0.022860	0.052880	0.025600	0.020300	0.026850			ICGE0-45 (H	0.054000	0.065900	0.024150	0.058000	0.039990	0.038200	0.022400	0.029080	0.024790	0.021440	0.012000	0.041 140.0	0.038220
itoides laramídic	abs. err. ⁽²⁾	abeza Prieta W.	0.000021	0.000032	0.000042	0.000013	0.000120	0.000019	0.000050	0.000016	0.000018	0.000068	0.000010	0.000042	0.000025	0.000007	0.000027	0.000007	0.000010	0.000005	0.000095							200	Valley, SW Ariz	0.000014	0.000029	0.000059	0.00000.0	0.000034	0.000024	0.000045	0.000064	0.0000042	0.00006	0.000025	0.000013	0.000023	0.000026	8 T00000 0	0.000000	0.000041	0.000024			a) Probeta	0.00063	0.000070	0.000013	0.000065	0.000005	0.000067	0.000042	0.000026	0.000010	0.000010	200000.0	1.000 m	0.000016
zircones de gran	¹⁷⁶ Lu/ ¹⁷⁷ Hf	ta Mountains, C	0.001956	0.001030	0.00000	0.000810	0.002490	0.000910	0.001038	0.001493	0.001352	0.001501	0.001353	0.002312	0.001489	0.001286	0.002042	0.001367	C/8100.0	0.001545	0.001450			_			_		s, san Uristopat	0.001452	0.001601	0.000853	0.000530	0.001799	0.001453	0.001102	0.001761	0.001149	0.000344	0.001224	0.001064	0.001033	0.000967	0.001387	0.000961	0.000661	0.000880	_	_	tains. SW Arizon	0.001780	0.002404	0.000011	0.001779	0.001544	0.001229	0.000786	0.001155	0.000949	0.000919	0.000465	0.00100.0	0.001234
-MC-ICPMS en	abs. err. ⁽²⁾	: (Cabeza Prie	0.000026	0.000028	0.000020	0.000020	0.000024	0.000034	0.000041	0.000031	0.000025	0.000031	0.000018	0.000054	0.000019	0.000013	0.000028	0.000021	120000-0	0.000020	0.000022		000000.0 ± / 00	= 0.99 (8 de 10		2018 ± 0.000013	D = 1.6 (7 de 11	1.	шышом моще	0.000025	0.000019	0.000030	0.000016	0.0000.0	0.000041	0.000020	0.000033	01000000	0.000014	0.000018	0.000017	0.000017	0.000016	270000.0	0.000015	0.000018	0.000019	2374 ± 0.00001	D = 1.7 (6 de 11	e. Conner Moun	0.00000	0.000029	0.00003	0.000030	0.000021	0.000026	0.000021	0.000017	0.000021	0.000025	0.000014	T ANALY	0.000015
btenidos por LA	¹⁷⁶ Hf/ ¹⁷⁷ Hf ⁽¹⁾	tico de dos mica:	0.281982	0.281992	0.0282.0	0.282024	0.282032	0.282037	0.282039	0.282148	0.282151	0.282259	0.282310	0.282341	0.282351	0.282359	0.282360	0.282361	0.2825/0	0.282375	0.282452	croc o – am ⁷⁷ hai	2707.0 HI /II	MSM	!	^a Hf/ ¹¹ Hf = 0.28	MSW		aos micas (M	0.281944	0.282018	0.282043	0.202050	0.282126	0.282144	0.282253	0.282299	0.2022020	0.282352	0.282362	0.282365	0.282366	0.282374	0.282383	0.282386	0.282407	0.282468	^a Hf ^{//1} Hf = 0.28	MSW	(Betty Lee Min	0.781023	0.281951	0.781983	0.282010	0.282027	0.282029	0.282043	0.282196	0.282307	0.282338	0.282557	00.070710	0.282372
s de Lu-Hf o	H1Haz total (V)	ito leucocrá	17.0	15.2	1.02	14.6	17.0	16.3	18.9	17.5	17.9	16.9	25.2	16.6	31.8	43.4	17.6	21.0	21.0	0.2	22.8	176	IZACION P		:	neredados '			zogranuo ae	16.0	22.0	14.4	0.72 13.8	13.6	11.4	29.4	9.5	15.0	25.2	25.0	24.7	25.4	25.2	1/.5 26.6	0.02	19.7	18.8	talización ¹		to de biotita	10.2	15.9	14.7	18.9	18.9	14.7	19.9	26.7	16.0	18.1	20.0	0.07	29.2
Datos isotópico	U-Pb zircón	Monzogran	z-5	2-40	2-20 2-8	z-35	z-32	z-31	z-43	z-33	z-42	z-34	z-6	z-2	z-27	z-21	z-13	z-19	2-16	z-17-z	2-14 2-14		nderada crista.			erada núcleos l				z-14	2-9	z-26 - 27	17-2	z-34	z-36	z-4	z-33	21-2	z-12	z-l	z-16	z-22	2-8 200	5-2	2-19	9-z	z-2	ponderada cris		Monzoeranii	9-2	0-z	LC-2	z-18	z-24	z-31	z-34	z-37	z-35	z-20	4-2 4-1-6	L1-7	z-3
Tabla C.1 (cont.)	Análisis	Muestra Drifthills	Drifthills-2	Drifthills-19	Drifthills-10	Drifthills-18	Drifthills-14	Drifthills-13	Drifthills-21	Drifthills-16	Drifthills-20	Drifthills-17	Drifthills-3	Drifthills-1	Drifthills-12	Drifthills-11	Drifthills-6	Drifthills-9	Drifthills-8	Determines 5	Drifthills-7		Menta po			Media pond		1 - 1 - 1	Muestra M ona WK	Mohawk-3-17	Mohawk-3-6	Mohawk-3-13	Mohawk-3-14	Mohawk-3-19	Mohawk-3-21	Mohawk-3-3	Mohawk-3-18	Mohawk-3-15	Mohawk-3-8	Mohawk-3-1	Mohawk-3-10	Mohawk-3-12	Mohawk-3-5	Mohawk-3-10 Mohawk-3-7	Mohawk-3-11	Mohawk-3-4	Mohawk-3-2	Media		Muestra Bettylee	Dattedar 3	Bettylee-3 Bettylee-18	Bettylee-14	Bettylee-9	Bettylee-13	Bettylee-15	Bettylee-16	Bettylee-19	Bettylee-17	Bettylee-10	Bettylee-z	Douytoo 1	Bettylee-1

1	T _{DM3} (Ma) [†]	2680 2675 2625 2554					1000	2061	2031 1985	2141	1749	1713	1638	1636	2017	1709	2152	2079	11 28	2914	2772	2713	2665	2656	2034	2107	2575	2573								9000	3924	1931	1799	1917	1530	1720	1469	2701	2637	2623	7507	2570	2558	2541	2542 2538	2504			Acriment	: pagma
1	T _{DM2} (Ma) [†]	1912 1908 1873 1822	<u>e</u> 2	e e		Ma	01.01	1940	1918 1886	1907	1716	1696	1654	1641	1820	1697	1915	1787	1260	2077	1976	1934	1900	1894	2/91	1050	1836	1834	la		Ma		la	Ma		1928	2798	1847	1752	1/ /0	1578	1603	1461	1926	1880	1870	1852	1832	1824	1812	1813	1786	Ia	Ma	Pasa - In circuitante	n la siguene
	T _{DMI} (Ma) [†]	1592 1589 1559 1517	T _{DM} = 1223 N T C_1015	T ₅₀₄ = 1754 N	WG.	$T_{DM2}^{C} = 1826$	1 000	1890	1872 1845	1811	1686	1688	1660	1644	1739	1692	1817	1666	1315	1728	1645	1610	1581	1576	COC 1	F0C1	1528	1527	$T_{\rm DM} = 1230 \text{ N}$		$T_{DM2}^{C} = 1887$		$T_{DM} = 1815 N$	$T_{mm}^{C} = 1915$	7100	1886	2327	1813	1732	1656	1598	1555	1458	1603	1565	1557	1542	1525	1518	1509	1509	1486	$T_{\rm DM} = 1191 \text{ N}$	ты, ^С = 1833	- DM2	COMINUM C
	T _{DM} (Ma) [@]	1225 1211 1188 1159					0101	1830	1816 1798	1693	1662	1680	1667	1646	1638	1686	1721	1524	1370	1355	1301	1273	1238	1215	CC71	1411	8611	1204								1836	1804	1770	1709	1642	1621	1499	1454	1246	1231	1210	1911	1184	1182	1167	1200	1149				
	abs. err. ⁽²⁾	0.7 0.4 0.5 0.6	78 ± 0.37 (7 de 10)	84+14	5 (3 de 7)			0.6	2 2	0.8		1.3	0.9	1.0	0.7	1.4	1.1	0.9	1.2	2 -	1.3	0.9	0.6	0.8	2.0	0.0	0.0 0	0.7	29 ± 0.43	(9 of 10)			95 ± 0.43	0(3 01 /)		01	0.8	1.0	1.2	0.1	0.9	1.1	0.7	0.0	0.8	0.7	0.6	0.0	0.6	0.6	0.7	0.6	5 2 ± 0.32	10 de 12)	10 up 14/	
	eHf _(i)	-12.8 -12.7 -12.1 -12.1	Hf ₍₁₎ = -12. SWD = 2.2	los eHf =	() () () () () () () () () () () () () (ţ	6.7	7.1	3.5	9.7 10.7	10.5	11.6	0.5	6.9	10.7	3.4	2.2	C11	-15.5	-13.8	-13.2	-12.6	-12.5	c.71-	1.21-	-11.6	-11.6	Hf = -12.	SWD = 2.2			$eHf_{(t)} = 6.$	SWD = 1.2		7.4	-27.1	8.1	9.5	10.4	12.8	7.9	20.5	-13.0	-12.3	-12.1	-11.8	-11.5	-11.4	-11.2	-112	-10.8	Hf = -11.	WD = 1.8 (
	DM(t)	0.283201 0.283201 0.283201 0.283201	a cristalización ε M	núcleos heredad			0.000047	0.282046	0.282046 0.282046	0.282265	0.282086	0.282046	0.282020	0.282046	0.282265	0.282035	0.282265	0.282455	0016860	0.283204	0.283204	0.283204	0.283204	0.283204	0.285204	H02682.0	0.283204	0.283204	a cristalización s	Σ			úcleos heredad os	M		0.282019	0.283204	0.282048	0.282055	0.282083	0.282019	0.282286	0.282201	0.283204	0.283204	0.283204	0.283204	0.283204	0.283204	0.283204	0.283204	0.283204	a cristalización s	MS	1	
	CHUR(t)	0.282742 0.282742 0.282742 0.282742	Media ponderada	fedia nonderada	route poinci aue		1001000	0.281731	0.281731 0.281731	0.281924	0.281767	0.281731	0.281709	0.281731	0.281924	0.281722	0.281924	0.282090	0.281924	0.282745	0.282745	0.282745	0.282745	0.282745	0.282/45	24/2270	0.282/45	0.282745	Media nonderads				dia ponderada n			0.281708	0.282745	0.281733	0.281740	0.281764	0.281708	0.281942	0.281867	0.282745	0.282745	0.282745	0.282745	0.282745	0.282745	0.282745	0.282745	0.282745	Media nonderada			
	¹⁷⁶ Hf/ ¹⁷⁷ Hf inicial(t) ⁽³⁾	0.282382 0.282383 0.282399 0.282422	E	2			100100.0	0.281921	0.281930 0.281944	0.282023	0.282040	0.282028	0.282035	0.282051	0.282062	0.282023	0.282020	0.282152	1 477 247	0.282308	0.282354	0.282373	0.282388	0.282391	0100100	CUP282.U	0.282407	0.282418	-				Mee			0 281915	0.281978	0.281962	0.282007	0.282055	0.282068	0.282165	0.282193	0.282376	0.282397	0.282401	0.282410	0.282418	0.282422	0.282428	0.282427	0.282440	~			
	abs. err. (±2σ)						ç	19	91 91	17	56	61	32	61	11	8	17	16	- 4	2-0	0.7	0.7	0.7	0.7			0.7	0.7							(210)	15	0.7	24	16	52	15	18	16	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7				
	Edad U-Pb (Ma) ⁽⁴⁾	67.9 67.9 67.9 67.9				(2	1.00	1654	1654 1654	1356	1654	1654	1689	1654	1356	1669	1356	1097	1568	64.0	64.0	64.0	64.0	64.0	04.0	04.0	64.0 64.0	64.0 64.0							en octubre	1690	64.4	1651	1641	1604	1690	1328	1443	64.4	64.4	64.4	64.4	64.4 64.4	64.4	64.4	64.4 64.4	64.4				
	abs. err. ⁽²⁾	0.7 0.4 0.5 0.6	.24 ± 0.34) (7 de 10)	92+0.50	55 (3 de 7)	octubre 201		0.5	0.1	0.8	= =	12	0.9	1.0	0.7	1.2	11	0.0	0.7	1 -	13	0.9	0.6	0.8	8.0	0.0	0 0 0	0.7	$.64 \pm 0.43$	1 (9 of 10)	6		28.7 ± 1.4	.0 () de /)	s heredado	0.0	0.8	1.0	1.2	0.1	0.8	1.0	0.7	0.0	0.8	0.7	9.0	0.6	0.6	0.6	0.7	0.6	89 ± 0.32	(10 de 12)	(10 M 17)	
	εHf ₍₀₎ hoy	-14.2 -14.2 -13.6 -12.8	E Hf₍₀₎ = −14 1SWD = 1.5	Hf = -26	ISWD = 0.5	redados en	000	-29.0	-28.7	-26.1	-25.5	-25.2	-25.0	-25.0	-24.8	-24.2	-24.0	-21.5	-13.0	-16.8	-15.2	-14.5	-14.0	-13.9	-13.0	C:C1-	0.61-	-12.9	$eHf_{av} = -13$	dSWD = 2.			$= Hf_{(0)} = -$	MSWD = 2	y Hf núcleo	-202	-28.5	-28.1	-26.1	-24.3	-23.3	-20.5	-20.0	-14.4	-13.6	-13.5	-13.2	-12.9	-12.8	-12.6	-12.6	-122	$Hf_{m} = -12$	(0)		
	abs. err. ⁽²⁾	0.000026 0.000019 0.000022 0.000028	ristazalica ción 4 M	leos heredados :		y Hf múcleos hei	0.00010	0.000019	0.000031	0.000031	0.000041	0.000033	0.000028	0.000024	0.000033	0.000058	0.000032	0.000026	0.000044	0.000034	0.000028	0.000025	0.000022	0.000031	77000010	C20000.0	0.000025	0.000020	rristazalica ción :	~			úcleos heredado		Hf cristalización	0.000032	0.000027	0.000036	0.000025	0.000028	0.000025	0.000027	0.000027	0.000020	0.000026	0.000029	0.000022	0.000025	0.000024	0.000024	0.000027	0.000025	rristazalica ción :	W		
Sonora.	$\mathrm{^{H}}_{^{177}}\mathrm{^{H}}_{^{177}}\mathrm{^{H}}_{^{1821}}$	1.467259 1.467267 1.467254 1.467263	dia ponderada c	, nonderada núc	- boundaria	Af cristalización	1 ACTOR	1.467253	1.467244 1.467252	1.467271	1.467331	1.467256	1.467219	1.467238	1.467222	1.467249	1.467207	1.467249	1.46/340	1.467240	1.467220	1.467263	1.467251	1.467218	1.46/250	CI 7/04/1	1.467279	1.467257	dia ponderada c				dia ponderada n		a ICGEO-82 (I	1 467221	1.467254	1.467214	1.467250	1.467237	1.467266	1.467259	1.467281	1.467232	1.467253	1.467255	1.467232	1.467229	1.467259	1.467261	1.467253	1.467243	dia nonderada c	- management		
rrizona y NW de	abs. err. ⁽²⁾	0.001200 0.000170 0.000280 0.000310	Me	Media		a ICGE0-41	001100	0.001400	0.000600 0.000980	0.000190	0.000320	0.000980	0.000600	0.000230	0.000310	0.006100	0.000470	0.000580	0001000	00010070	0.002000	0.001500	0.001700	0.000140	0.005.000	0100000	0.0006/0	0.003000	Me				Mee		ona) Probete	0.000760	0.000280	0.001300	0.000460	0.002200	0.001200	0.001500	0.001200	0.002.600	0.000560	0.000370	0.000130	0.000820	0.000530	0.000520	0.001300	0.001600	Me	1		
cos del SW de A	¹⁷⁶ Yb/ ¹⁷⁷ Hf	0.026700 0.011220 0.013590 0.017740				ona) Probet		0.039800	0.037200 0.049610	0.026000	0.019680	0.041910	0.036030	0.022210	0.022500	0.059600	0.099430	0.032860	0.031600	0.047710	0.058700	0.068900	0.050500	0.024430	0.070580	0.025360	0.044700	0.058300							Range, SW Ariz	0.035820	0.036390	0.022300	0.033450	0.039700	0.052600	0.041100	0.027800	0.037400	0.051550	0.036440	0.030250	0.035290	0.040300	0.032170	0.065000	0.031600				
iitoides laramídi	abs. err. ⁽²⁾	0.000033 0.000005 0.000007 0.000007				lerness, SW Ariz,	0.000014	0.000034	0.000017 0.000028	0.000005	0.000008	0.000020	0.000017	0.000007	200000.0	0.000210	0.000010	0.000017	0.000064	0.000023	0.000064	0.000055	0.000065	0.000008	0.00010	1 10000 0	0.000051	0.000100							water Air Force	0 00003	0.000011	0.000053	0.000018	0.000080	0.000035	0.000049	0.000038	0.000083	0.000021	0.000018	0.000004	0.000027	0.000018	0.000015	0.000045	0.000054				
zircones de grar	$^{176}\mathrm{Lu}/^{177}\mathrm{Hf}$	0.000932 0.000532 0.000496 0.000589	F 0	-		beza Prieta Wila	0.001450	0.001450	0.001404 0.001786	0.000963	0.000778	0.001387	0.001333	0.000855	0.000828	0.002480	0.003397	0.001211	201100.0	0.001720	0.002041	0.002033	0.001610	0.000991	0.662.00.0	29/000.0	0.001612	0.001900	2					_	Barry M. Gold	0.001341	0.001322	0.000893	0.001292	0.001437	0.001813	0.001577	0.000975	0.001344	0.001807	0.001323	0.001082	0.001274	0.001395	0.001120	0.002201	0.001105	_		_	
-MC-ICPMS en	abs. err. ⁽²⁾	0.000019 0.000012 0.000014 0.000016	823 ± 0.000009 D = 1.9 (7 de 10	2024 ± 0.00001-	D = 0.55 (3 de 7	Sierra Pinta, Ca	0 000042	0.000015	0.000028 0.000026	0.000023	0.000032	0.000035	0.000026	0.000027	0.000020	0.000033	0.000030	0.000025	0.00000	0:00030	0.000036	0.000025	0.000018	0.000024	0.000017	/10000.0	0.000057	0.000021	2399 ± 0.00001	D = 2.1 (9 de 10			1974 ± 0.00004	VD = 2.0 (3 de /	Altas Mountains,	0.00026	0.000022	0.000027	0.000033	0.000026	0.000024	0.000029	0.000019	0.000025	0.000023	0.000021	0.000016	0.000017	0.000018	0.000016	0.000020	0.000018	205 ± 0.000009	= 1 8 /10 de 12		
btenidos por LA	$^{176}\mathrm{Hf}/^{177}\mathrm{Hf}^{(1)}$	0.282383 0.282384 0.282400 0.282400	f/ ¹⁷⁷ Hf = 0.2823 MSW	¹⁷⁷ Hf = 0.28	MSW	le dos micas (0.281966	0.281974 0.282000	0.282048	0.282064	0.282071	0.282078	0.282078	0.282083	0.282101	0.282107	0.282177	1/7787.0	0.282310	0.282356	0.282375	0.282390	0.282392	0.282401	0.282404	0.282408 0.282419	0.282420	⁶ Hf ^{/177} Hf = 0.28	MSW			"Hf/"" Hf = 0.28	NSM	icas (Tinajas.	0.281958	0.281980	0.281990	0.282047	0.282099	0.282126	0.282205	0.282220	0.282378	0.282399	0.282403	0.282411	0.282420	0.282424	0.282429	0.282430	0.282441	f/ ¹⁷⁷ Hf = 0.2824	MSWE		
de Lu-Hf a	Hf _{Haz total} (V)	22.8 31.3 26.5 22.9	ización ¹⁷⁶ H	eredados ¹⁷		vcocrático v	22.0	32.0	15.2 13.5	14.2	13.9	19.3	16.5	14.0	13.9	9.9	16.9	15.2	15.5 16.6	15.0	20.9	18.9	26.9	17.6	0.07 70.0	24.0	50.4 70.7	26.1	alización ¹⁷			- -	eredados '		ito de dos m	13 3	19.2	16.6	16.3	15.5	19.2	15.2	19.4 20.4	20.9	23.4	19.3	277.7	25.5	22.7	21.9	22.7	23.4	zación ¹⁷⁶ H			
Datos isotópicos	U-Pb zircón	z-21 z-7 z-8 z-17	nderada cristali	erada núcleos ho		Sienogranito lei		z-5	z-28 z-27	z-10	z-30	L-2	z-34	z-22 - 35	z-16	z-23	z-13	z-26	z-51 7-33	z-18	6-z	z-15	z-12	z-14	1 2	17-Z	61-z	z-17 z-17	onderada crist				erada núcleos h		4 Monzograni	2-30	z-20	z-26	z-38	z-29	z-32	z-31	z-35	10-2 4-2	z-11	2-8	z-10 2-3	z-2 z-15	z-14	z-22	z-23 z-19	z-1.2	nderada cristali			
Tabla C.1 (cont.)	Análisis	Bettylee- 11 Bettylee- 4 Bettylee- 5 Bettylee- 8	Media po	Media nonde		Muestra Pinta	Dint 2	Pinta-3	Pinta-17 Pinta-15	Pinta-16	Pinta-20 Pinta-19	Pinta-4	Pinta-23	Pinta-26 Direta 24	Pinta-22	Pinta-13	Pinta-18	Pinta-14	Pinta-21	Pinta-10	Pinta-5	Pinta-7	Pinta-6	Pinta-8	Pinta-2	Finta-12 Dinta 11	Pinta-11	Pinta-9	Media			:	Media pond		Muestra Tinajas-4	Tinaias-4-21	Tinajas-4-10	Tinajas-4-13	Tinajas-4-20	Tinajas-4-14	Tinajas-4-17	Tinajas-4-16	Tinajas-4-18 Tinajae-4-19	Tinajas-4-2	Tinajas-4-6	Tinajas-4-4	Timine 4 1	Tinajas-4-8	Tinajas-4-7	Tinajas-4-11	Tinajas-4-12 Tinajas-4-9	Tinajas-4-3	Media po.	-		

	T _{DM2} T _{DM3} (Ma) [†] (Ma) [†]		2485 2836	2252 3158	1883 2040 1820 2550	1816 2545	1765 2473	1765 2473 1766 2473	1752 2454	1748 2450	1743 2442	1652 2315				5	2122 2282	1795 2516	1795 2516 1771 2482	17.11 2462 17.58 2463	1751 2454	1744 2444	1742 2441 1730 2438	1721 2411	1717 2406	1717 2406 1682 2357			la.		2073 2222 1004 2222	1672 1932	1767 2473	1747 2446	1743 2440	1744 2441 1745 2443	1741 2437	1734 2427	1721 2408 1715 2400	1707 2388	1686 2359			R	1674 2060	1579 2199	1576 2196	1577 2197	1571 2188	1559 2171	1554 2165	1454 2023 1454 2023		
U 8	T _{DMI} (Ma) [†]		2340	1874	1516	1513	1470	1470	14/1	1456	1452	1377	T - 1140 Mo	200 - 11 - WD	$T_{}C = 1773 M$	NAL - ZNU	2056	1495	1495	14.05	1458	1453	1450	1433	1430	1430 1401	T = 1141 Ma		$T_{DM2}{}^{C} = 1750 \text{ N}.$		2012	1564	1473	1460 1457	1453	1454	1452	1446	1435	1423	1406	$T_{\rm DM} = 1119 \; {\rm Ma}$	0	$T_{DM2} = 1734 N$	1358	1320	13.19	1320	1314	1304	1300	1217	$T_{DM} = 1012 Ma$	
F	$^{1}_{DM}$ (Ma) [@]		2150	1453	1181	1165	1129	1154	1142	1131	1116	1066	2				1974	1178	1180	# 11	1129	41	1140	1118	1102	1119					1937	1439	1130	1140	1120	1128	1122	1112	101	6011	1089				1041	101	1009	1016	1012	1001	766	934 944		
	abs. err. ⁽²⁾		0.8	0.8	9.0 8.0	0.7	0.8	0.7	0.7	0.8	0.9	0.7	20.00	(C 0 ± CC	Ì		1.2	0.8	0.8	0.7	0.8	0.7	0.0	0.7	0.6	0.7	15 + 0.79	(11 de 12)			0.8	0.8	0.6	0.8 1.0	0.6	0.7	0.6	0.5	0.5	0.5	0.7	78 ± 0.22	(12 of 12)		0.8	0.6	0.7	0.7	0.8	0.7	0.7	0.1 1.0	.04 ± 0.26	
	${}^{\rm EHf}_{(i)}$		-1.8	-18.2	-11.3	-11.2	-10.4	-10.4	-10.4	-10.1	-10.1	-8.6	- III-	MSWD = 1.4			5.0	-10.9	-10.9	-10.3	-10.2	-10.1	1.01-	-9.7	-9.7	-9.7 -9.1	• Uf = -10	SWD = 1.4			5.5	3.5	-10.4	-10.1	-10.0	-10.0	0.01- 0.9-	-9.8	-9.6	-9.4	-9.1	n sHf ₍₁₎ = -9	SWD = 1.3		.78	-7.1	1.7-	-7.1	-7.0	-6.8	-6.7	-5.1	a sHf ₍₁₎ = -7	;
	DM(t)		0.282046	0.283201	0.283201	0.283201	0.283201	0.283201	0.283201	0.283201	0.283201	0.283201		a cristalizacion			0.281978	0.283202	0.283202	0.283202	0.283202	0.283202	0.283202	0.283202	0.283202	0.283202 0.283202	a orietalización	M			0.281994	0.282485	0.283196	0.283196	0.283196	0.283196	0.283196	0.283196	0.283196	0.283196	0.283196	la cristalizació:	Σ		0.283181	0.283181	0.283181	0.283181	0.283181	0.283181	0.283181	0.285181 0.283181	ledia ponderad:	
176177	CHUR(t)		0.281731	0.282742	0.282/42	0.282742	0.282742	0.282742	0.282742	0.282742	0.282742	0.282742		reura ponuerau:			0.281672	0.282743	0.282743	0.282743	0.282743	0.282743	0.282/43	0.282743	0.282743	0.282743 0.282743	T wita nondered.	Tella punte au			0.281686	0.282116	0.282738	0.282738	0.282738	0.282738	0.282738	0.282738	0.282738	0.282738	0.282738	Media ponderae			0.782725	0.282725	0.282725	0.282725	0.282725	0.282725	0.282725	0.282725	M	
176 . 177	inicial(t) ⁽³⁾		0.281680	0.282227	0.282423	0.282425	0.282448	0.282448	0.282454	0.282455	0.282458	0.282499		2			0.281813	0.282435	0.282435	0.282452	0.282455	0.282458	0.282459	0.282468	0.282470	0.282470 0.282486		5		(2	0.281841	0.282215	0.282445	0.282452 0.282454	0.282456	0.282455	0.282457	0.282460	0.282466	0.282472	0.282482				0.282504	0.282524	0.282525	0.282525	0.282528	0.282533	0.282535	0.282580		
	abs. err. (±2σ)	e 2017).	61	0.6	0.0	0.6	0.6	9.0	0.0	0.6	0.6	0.6	5			tubre 2017)	18	0.4	0.4	4 0 4 7	0.4	4.0	4.0	0.4	0.4	0.4 4.0				octubre 201	52	= =	9.0	0.0	9.0	9.0	0.0 0.6	0.6	0.6	0.6	0.6				- 1	1.3	1.3	1.3	1.3	1.3	1.3	د.ا 1.3		
111 I.I.	Edad U-Pb (Ma) ⁽⁴⁾	los en octub	1654	68.1	08.1	68.1	68.1	68.1	00.1 68.1	68.1	68.1	68.1 68.1				dados en oc	1745	66.8	66.8	00.0 66.8	66.8	66.8	66.8 66.8	00.0 66.8	66.8	66.8 66.8				redados en	1724	1056	75.4	75.4	75.4	75.4	75.4	75.4	75.4	75.4	75.4				959	95.9	95.9	95.9	95.9	95.9	95.9	9.39 95.9		
	abs. err. ⁽²⁾	leos heredaa	0.7	0.8	8.0 8.0	0.7	0.8	0.7	0.7	0.8	0.9	0.7	07.0	.00 ± 0.40	Ì	nicleos here.	1.2	0.8	0.8	0.7	0.8	0.7	0.0	0.7	0.6	0.7	26+0.29	(11 de 12)		H micleos he	0.8	0.7	0.6	8.0	9.6	0.7	0.6	0.5	0.5 A 0	0.5	0.7	40 ± 0.23	(12 of 12)	2016)	0.8	0.6	0.7	0.7	0.8	0.7	0.7	0.1 1.0	.14 ± 0.26	
2110	6HI(0) hoy	916; Hf mic	-38.8	-19.7	-12.7	-12.7	-11.9	-11.8	-11.6	-11.6	-11.5	-10.1		(SWD = 1.6		e 2016; Hf	-33.2	-12.3	-12.3	071-	-11.6	-11.5	5115	ļ.	-111	-11.1		SWD = 1.4		bre 2016; H	-31.9	-19.1	-12.0	-11-0	-11.6	-11.6	-11.6	-11.5	-112	-11.0	-10.7	$Hf_{(0)} = -11$	SWD = 1.3	1 noviembre	0.0-	5 6- 2 6-	-9.2	-9.2	-9.1	6. 8-	89 f	-7.2	: EHf ₍₀₎ = -9	
	abs. err. ⁽²⁾	en noviembre 20	0.000025	0.000032	0.000032	0.000028	0.000025	0.000020	0.000029	0.000033	0.000027	0.000026				ión en noviembr	0.000029	0.000025	0.000026	0.000024	0.000028	0.000024	0.000026	0.000022	0.000024	0.000026 0.000029	- interaction of the second	M		ación en noviem	0.000028	0.000027	0.000025	0.000038	0.000024	0.000024	0.000025	0.000020	0.000024	0.000019	0.000026	l cristalización a	W	iEO-28 (Hf en	0.00008	0.000028	0.000032	0.000033	0.000030	0.000029	0.000031	0.000031	edia ponderada	
Sonora.	JH ₂₂₁ /JH ₈₂₁	Hf cristalización	1.467254	1.467243	1.467250	1.467205	1.467244	1.467239	1.467254	1.467239	1.467260	1.467225		na ponderada c		(Hf cristalizac	1.467249	1.467272	1.467234	1.467252	1.467239	1.467247	1.467/251	1.467266	1.467234	1.467225 1.467212	a eberada et	י שייש ומחוותל פוו		6 (Hf cristaliz	1.467268	1.467263	1.467215	1.467229	1.467222	1.467222	1.467265	1.467266	1.467280	1.467267	1.467217	ledia ponderada		Probeta ICC	1 467232	1.467271	1.467200	1.467235	1.467231	1.467231	1.467243	1.467242	Σ	
izona y NW de l	abs. err. ⁽²⁾	51 Rosario-1 (0.000270	0.000950	0.002400	0.002900	0.000930	0.000530	0.000330	0.000880	0.000840	0.000470		Med		ta El Rosario- l	0.000750	0.001900	0.000280	0.000840	066000'0	0.000990	0.001100	0.000550	0.000340	0.000970 0.001900	Med	-		robeta ICGEO-8	0.000450	0.000510	0.001500	0.000390	0.000640	0.000680	0.000300	0.000180	0.000870	0.000870	0.000630	ž		ar. NW Sonora)	0.000160	0.000029	0.000140	0.000210	0.000072	0.000200	0.000140	000000		
os del SW de Ai	$\mathrm{^{176}Yb}^{/177}\mathrm{Hf}$	a) Probeta I	0.006900	0.033620	0.030200	0.025800	0.020650	0.046660	0.040650	0.034170	0.020910	0.029830	0000000			nora) Probe	0.028410	0.052300	0.053940	0.052750	0.031690	0.052760	0.050200	0.039860	0.025520	0.044670 0.052500				V Arizona) P	0.032680	0.040650	0.020300	0.028540	0.023030	0.031930	0.022430	0.016880	0.021970	0.032950	0.024980			n Desierto de Alt	0.011460	0.007131	0.008530	0.013800	0.014688	0.010620	0.009480	0.001470		
toides laramídic	abs. err. ⁽²⁾	idas, NW Sonoi	0.000011	0.000030	0.000066	0.000096	0.000030	0.000016	0.0000043	0.000030	0.000029	0.000017				ultadas, NW So	0.000022	0.000061	0.000014	0.000034	0.000032	0.000038	0.000031	0.000017	0.000015	0.000027 0.000074				Momment, SN	0.000010	0.000016	0.000039	0.000017	0.000020	0.000025	0.000012	0.000010	0.000032	0.000028	0.000018			a Biosfera Gra	0.00005	0.000001	0.000005	0.00008	0.000002	0.000007	0.000005	0.00004		
ircones de grani	¹⁷⁶ Lu/ ¹⁷⁷ Hf	. Sierras Sepulto	0.000262	0.001264	0.001403	0.000937	0.000812	0.001671	0.001563	0.001251	0.000837	0.001072	2			rio, Sierras Sep	0.001026	0.001839	0.001887	0.001895	0.001122	0.001810	0.001763	0.001411	0.000925	0.001544 0.001856				Cactus National	0.001258	0.001465	0.000706	0.001494	0.000888	0.001144	0.000985	0.000776	0.000819	0.001305	0.001048			VW Reserva de 1	0 000447	0.000337	0.000346	0.000597	0.000604	0.000435	0.000394	0.000367		
AC-ICPMS en z	abs. err. ⁽²⁾	ierra El Rosario	0.000021	0.000023	0.000023	0.000019	0.000023	0.000020	0.000020	0.000023	0.000026	0.000021	446 ± 0 00011	= 1.6 (8 de 12)		(Sierra El Rosa	0.000033	0.000023	0.000024	0.000020	0.000022	0.000021	120000.0	0.000019	0.000018	0.000021 0.000019	80 ± 0.0000081	= 1.4 (11 de 12)		lls, Organ Pipe	0.000022	0.000021	0.000016	0.000027	0.000016	0.000020	0.000018	0.000015	0.000015	0.000015	0.000020	25 ± 0.000064	= 1.3 (12 de 12)	Río Colorado. 1	A 000024	0.000017	0.000019	0.000020	0.000023	0.000020	0.000020	0.000019	66 ± 0.0000074	
enidos por LA-N	$^{176}\mathrm{Hf}/^{177}\mathrm{Hf}^{(1)}$	t dos micas (Si	0.281688	0.282229	0.282425	0.282426	0.282449	0.282450	0.282456	0.282457	0.282459	0.282500	177 UE - 0.707.			o de dos micas	0.281847	0.282437	0.282437	0.282454	0.282456	0.282460	0.282461	0.282470	0.282471	0.282472 0.282488	177 Hf = 0.282453	MSWD=		Quitobaquito Hi	0.281882	0.282244	0.282446	0.282456	0.282457	0.282457	0.282458	0.282461	0.282467	0.282474	0.282483	177 Hf = 0.28246	= QMSM	i (SE San Luis)	0.282505	0.282525	0.282526	0.282526	0.282529	0.282534	0.282536	0.282582	177 Hf = 0.28252	
de Lu-Hf obl	H I Haz total (V)	icocrático de	17.7	20.5	4.CI 18.9	18.2	15.4	22.1	0.02 17.1	20.3	16.2	21.0	Location 176			oleu co crático	16.3	21.1	21.7	20.3	24.8	23.0	21.9	24.6	25.8	20.7 21.6	arión ¹⁷⁶ Hf			le biotita	15.1	15.2	22.0	14.9 12.3	24.5	23.2	20.8	29.1	27.5 24 e	25.9	13.5	ración ¹⁷⁶ Hf		ita de biotito	14.6	18.0	15.7	16.6	16.4	16.1	15.2	16.5 14.6	erada ¹⁷⁶ Hf	
Datos isotópicos	U-Pb zircón	Monzogranito let.	z-34	z-19	1-z	z-25	z-22	z-14	z-17 z-2	z-21	z-10	z-12 7-74	ondonada minta			<i>lienogranito hol</i> e	z-35	z-20	z-22	z-14 z-1	z-2	z-12 - 11	11-z	6-z	z-13	z-3 z-23	sderada cristaliz			Monzogranito	z-34 - 26	z-23 z-23	z-11	z-2 z-2	z-13	z-16	z-3	z-12	z-12 5	z-15	2-9	nderada cristali.		Metagranodio1	0 <i>C</i> =2	z-13	z-12	z-6	z-19	z-3	z-2 - 15	z-17 z-17	Media pond	
Tabla C.1 (cont.)	Análisis	Muestra SR-7	SR-7-13	SR7-7	SR 7-8	SR7-12	SR7-9	SR7-5 5D7.6	SR7-1	SR7-10	SR7-3	SR7-4 SR7-11	Media	TALCULA I		Muestra SR-3 5	SR-3-13	SR-3-9	SR-3-11 5D 2 8	SR-3-1	SR-3-2	SR-3-6	SR-3-5 SR-3-10	SR-3.4	SR-3-7	SR-3- 3 SR-3- 12	Media non			Muestra OTB-1	QTB-1-13 OTD-1-14	QTB-1-15	QTB1-7	QTB1-0 OTB1-2	QTB1-9	QTBI-II	QTB1-3	QTB1-8	QTB1-12 OTB1-4	QTB1-10	QTB1-5	Media poi		Muestra Chop-3	Chon-3-0	Chop-3-4	Chop-3-5	Chop-3-3	Chop-3-8	Chop-3-2	Chop-3-1	Chop-3-0 Chop-3-7		

Tabla C.1 (cont.) D	atos isotópico	s de Lu-Hf obt	enidos por LA-N	AC-ICPMS en 2	zircones de grani.	toides laramídice	os del SW de Ariz	ona y NW de So	nora.														
Análisis	U-Pb zircón	Hf _{Haz total} (V)	$^{176}\mathrm{Hf}/^{177}\mathrm{Hf}^{(1)}$	abs. err. ⁽²⁾	${}^{176}\mathrm{Lu}/{}^{177}\mathrm{Hf}$	abs. err. ⁽²⁾	${}^{JH}\lambda^{177} H^{777}$	abs. err. ⁽²⁾	$\mathrm{^{JH}}_{^{LLI}}/\mathrm{^{JH}}_{^{8L1}}$	abs. err. ⁽²⁾	EHf ₍₀₎ al hoy al	bs. err. ⁽²⁾ E	dad U-Pb a (Ma) ⁽⁴⁾	ss. err. ¹⁷⁽ (±2σ) in	Hf/ ^{l77} Hf icial(t) ⁽³⁾	176Htf/ ¹⁷⁷ Hf CHUR(t)	⁷⁶ Hf/ ¹⁷⁷ Hf DM(t)	єНf _(I) а	bs. err. ⁽²⁾	T _{DM} (Ma) [@]	T _{DM1} C (Ma) [†]	T _{DM2} ^C (Ma) [†]	T _{DM3} ^C (Ma) [†]
Muestra Cucapah-1	Gneis ton	alítico de bioti.	ta (Sierra de L	Los Cucapahs, L	Baja California,	NW México)	Probeta ICGEO	83 (Hf en nov	iembre 2016)														
Cucapah-1-2	6-z	22.9	0.282549	0.000016	0.000302	0.000004	0.007830	0.000170	1.467239	0.000022	-8.3	0.6	86.8	0.7 0	282549	0.282731	0.283188	-6.4	0.6	777	1279	1530	2135
Cucapah-1-10	z-21	24.0	0.282563	0.000017	0.000603	0.00004	0.015260	0.000120	1.467243	0.000020	-7.9	0.6	86.8	0.7 0	282562	0.282731	0.283188	-6.0	0.6	965	1254	1500	2092
Cucapah-1-3	z-8	23.2	0.282565	0.000013	0.000419	0.000007	0.011180	0.000240	1.467240	0.000021	-7.8	0.5	86.8	0.7 0	282564	0.282731	0.283188	-5.9	0.5	957	1250	1495	2085
Cucapah-1-6	z-12	20.7	0.282568	0.000018	0.001237	0.000024	0.032850	0.000650	1.467248	0.000027	L.T	0.6	86.8	0.7 0	282566	0.282731	0.283188	-5.8	0.6	974	1247	1491	2080
Cucapah-1-1	z-2	22.7	0.282571	0.000013	0.000567	0.000017	0.014420	0.000530	1.467227	0.000023	-7.6	0.5	86.8	0.7 0	282570	0.282731	0.283188	-5.7	0.5	953	1239	1482	2067
Cucapah-1-7	z-13	22.5	0.282573	0.000017	0.000520	0.000004	0.013760	0.000120	1.467223	0.000026	5.7-	0.6	86.8	0.7 0	282572	0.282731	0.283188	-5.6	0.6	949	1235	1478	2060
Cucapah-1-12	z-25	24.7	0.282573	0.000015	0.000824	0.000029	0.023440	0.000820	1.467253	0.000023	-7.5	0.5	86.8	0.7 0	282572	0.282731	0.283188	-5.6	0.5	956	1236	1479	2062
Cucapah-1-11	z-20	22.9	0.282574	0.000014	0.000558	0.000007	0.014900	0.000180	1.467227	0.000022	-7.5	0.5	86.8	0.7 0	282573	0.282731	0.283188	-5.6	0.5	948	1234	1475	2057
Cucapah-1-4	z-10	20.5	0.282578	0.000017	0.000656	0.000011	0.016650	0.000400	1.467226	0.000024	-7.3	0.6	86.8	0.7 0	282577	0.282731	0.283188	-5.4	0.6	945	1227	1467	2045
Cucapah-1-8	z-16	21.7	0.282579	0.000018	0.000592	0.000005	0.014636	0.000073	1.467235	0.000025	-7.3	0.6	86.8	0.7 0	282578	0.282731	0.283188	-5.4	0.6	942	1224	1464	2042
Cucapah-1-5	z-11	23.4	0.282586	0.000014	0.000469	0.000002	0.011771	0.000052	1.467243	0.000028	-7.0	0.5	86.8	0.7 0	282585	0.282731	0.283188	-5.1	0.5	930	1211	1448	2019
Cucapah-1-9	z-18	24.0	0.282595	0.000018	0.001110	0.000081	0.027600	0.001900	1.467235	0.000021	-6.7	0.6	86.8	0.7 0	282593	0.282731	0.283188	-4.9	0.6	933	1196	1431	1994
	Media por	iderada ¹⁷⁶ Hf/	¹⁷⁷ Hf = 0.282572	24 ± 0.0000070	_				Med	lia ponderada ɛł	Hf ₍₀₎ = -7.5	2 ± 0.25				Medi	a ponderada s	Hf ₍₁₎ = -5.6	3 ± 0.24	Ţ	_{DM} = 952 Ma		
			MSWD=	= 2.0 (12 de 12)						MSM	VD = 2.0(1)	2 of 12)					MSV	VD = 2.0 (12 of 12)				
																				Ţ	C = 1478 M	a	
Muestra Choya	Vien ogranito .	de biotita (Pı	ierto Peñasco, N	(W Sonora)	Probeta Aldo-4	(Hf en novien	ubre 2016)																
Choya-7	z-22	15.9	0.282600	0.000016	0.000249	0.000003	0.006219	0.000062	1.467253	0.000033	-6.5	0.6	85.8	0.8 0	282600	0.282731	0.283188	-4.7	0.6	905	1185	1417	1975
Choya-4	z-11	19.0	0.282603	0.000018	0.000290	0.000011	0.007990	0.000360	1.467253	0.000027	-6.4	0.6	85.8	0.8 0	282603	0.282731	0.283188	-4.5	0.6	902	1180	1410	1966
Choya-9	z-28	22.5	0.282604	0.000015	0.000277	0.000005	0.006160	0.000110	1.467187	0.000023	-6.4	0.5	85.8	0.8 0	282604	0.282731	0.283188	-4.5	0.5	900	1178	1408	1963
Choya-1	z-2	21.3	0.282605	0.000013	0.000392	0.000015	0.009820	0.000470	1.467264	0.000023	-6.4	0.5	85.8	0.8 0	282604	0.282731	0.283188	-4.5	0.5	106	1176	1406	1960
Choya-5	z-14	20.1	0.282608	0.000013	0.000291	0.000006	0.007670	0.000170	1.467253	0.000027	-6.3	0.5	85.8	0.8 0	282608	0.282731	0.283188	-4.4	0.5	895	1170	1399	1950
Choya-6	z-20	21.2	0.282612	0.000016	0.000292	0.000003	0.006970	0.000069	1.467252	0.000024	-6.1	0.6	8.5.8	0.8 0	282612	0.282731	0.283188	-4.2	0.6	889	1163	1390	1938
Choya-10	z-30	22.0	0.282614	0.000016	0.000351	0.000010	0.007690	0.000320	1.467254	0.000026	-6.0	0.6	85.8	0.8 0	282613	0.282731	0.283188	-4.2	0.6	888	1159	1386	1932
Choya-3	z-10	22.8	0.282616	0.000015	0.000241	0.00003	0.005870	0.000100	1.467212	0.000025	-6.0	0.5	85.8	0.8 0	282616	0.282731	0.283188	-4.1	0.5	883	1155	1381	1925
Choya-2	z-6	21.0	0.282623	0.000017	0.000209	0.00003	0.004853	0.000069	1.467246	0.000029	-5.7	0.6	85.8	0.8 0	282623	0.282731	0.283188	-3.8	0.6	872	1142	1365	1902
Choya-12	z-35	20.4	0.282637	0.000019	0.000288	0.000023	0.007020	0.000600	1.467247	0.000026	-5.2	0.7	85.8	0.8 0	282637	0.282731	0.283188	-3.3	0.7	855	1117	1334	1859
Choya-8	z-26	14.3	0.282637	0.000020	0.000479	0.000005	0.013010	0.000170	1.467236	0.000029	-5.2	0.7	85.8	0.8 0	282636	0.282731	0.283188	-3.4	0.7	859	1117	1335	1860
Choya-11	z-33	20.7	0.282639	0.000016	0.000309	0.000007	0.007310	0.000180	1.467251	0.000026	-5.2	0.6	85.8	0.8 0	282639	0.282731	0.283188	-3.3	0.6	852	1113	1330	1852
	Media por	nderada ¹⁷⁶ Hf/	177 Hf = 0.282605	91 ± 0.0000050	_				Med	lia ponderada £ł	$H_{(0)} = -6.2$	2 ± 0.18				Medi	a ponderada s	Hf ₍₁₎ = -4.3	3 ± 0.18	T	$_{\rm DM} = 893$ Ma		
			MSWD =	= 0.83 (9 de 12)	_					MSM	⁷ D = 0.83 (9 de 12)					MSM	VD = 0.84 ((9 de 12)				
																				Ţ	$DM2^{C} = 1396 M$	g	

 $^{(1)}Relación \, ^{176}\!Hf'^{177}Hf \, corregida$

⁽²⁾Incertidumbre en las proporciones corregidas y calculadas (expresadas en el intervalo de confianza del 95%) ⁽³⁾Relación ¹¹⁹H $_{\rm P}^{117}$ Hf calculada para la calad en ⁽⁴⁾ ⁽⁴⁾Edad de cristalización calculada para cada roca

[@]Edades modelo Hf (T_{nak}) calculadas en un paso ("s*ingle-stage model ages*") utilizando la relación ¹⁹⁶Lu⁰¹⁷⁴Hf del zircón ⁽⁰. [†]Edades modelo Hf (T_{nak}) calculadas en dos pasos ("*nov-stage model ages*") usando una relación ¹⁹⁶Lu⁰⁷⁷Hf = 0.010 para una corteza félsica promedio (T_{Dat} ^C, Amelin *et al.* 1999).

0.015 para una corteza intermedia promedio ($T_{
m DM2}^{
m C}$, Vervoort, 2014) y 0.022 para una corteza máfica promedio ($T_{
m DM2}^{
m C}$, Vervoort y Patchett, 1996), respectivamente.

Los parimeteros usados para los cálculos son: $\lambda = 1.867 \times 10^{-11}$ años¹⁻¹ (Sederlund *et al.*, 2014); ¹¹⁶Lu¹¹⁷Hf = 0.0336, ¹¹⁸Lu¹¹⁷Hf = 0.282785 para el reservorio uniforme condritico (CHUR) (Bouvie*e et al.*, 2008); ¹¹⁶Lu¹¹⁷Hf = 0.0384 y ¹¹⁸Hg¹¹⁷Hf = 0.28325 para el manto empóbrecido (DM) (Griffin *et al.*, 2000) Nota: Los datos en negrita fueron usados para calcular la media ponderada correspondiente a la edad de cristalización de cada muestra. Nota: Los datos en negrita y cursiva fueron usados para calcular la media ponderada correspondiente a la edad de cristalización de cada muestra.