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Resumen

La exploración del diagrama de fase de la QCD proporcionará una visión de varios

sistemas. Por ejemplo, en el universo temprano se llevaron a cabo varias transi-

siones de fase donde una de ellas fue la transición del plasma de cuarks y gluones

a la fase hadrónica. El plasma de cuarks y gluones puede también ser encontrado

en colisiones de iones pesados realizados actualmente en el CERN y el RHIC.

En el ĺımite quiral de la QCD con dos sabores de cuarks, su Lagrangiano

tiene la misma simetŕıa global O(4) que el iman de Heisenberg de cuatro compo-

nentes. Con cuarks masivos, la simetŕıa O(4) es rota expĺıcitamente. En el iman

de Heisenberg, el mismo rompimiento expĺıcito de simetŕıa se introduce con un

campo magnético externo. De esta manera, las simulaciones numéricas del modelo

σ no lineal 3 dimensional con un campo magnético externo, proveerá un panorama

del diagrama de fase de la QCD.

En este trabajo se explora el diagrama de fase de la QCD con el modelo sigma

no lineal en tres dimensiones con un campo magnético externo y usando la carga

topológica Q como el número barionico. Este modelo es usado como un modelo

efctivo que evita el problema del signo que ha prevenido simulaciones numéricas

a una alta densidad barionica.
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Abstract

The exploration of the QCD phase diagram will provide insight of various sys-

tems. For instance, the early universe underwent several phase transitions, one

of them being the transition from the quark-gluon plasma to the hadronic phase.

The quark gluon plasma can also be found in heavy ion collision in experiments

currently performed at CERN and RHIC.

In the chiral limit of QCD with 2 quark flavors, its Lagrangian has the same

global O(4) symmetry as a four component Heisenberg ferromagnet. With massive

quarks, the O(4) symmetry is explicitly broken. In the Heisenberg ferromagnet

the same explicit symmetry breaking enters as an external magnetic field. Thus,

the numerical simulation of the 3-d non-linear σ-model with an external magentic

field will provide insight into the QCD phase diagram.

In this thesis we explore the 2-flavor phase diagram of QCD with the 3-d O(4)

model with an external magnetic field and using the topological charge Q as the

baryon number. This model is used as an effective model which avoids the sign

problem which has prevented numerical simulations at high baryon density.
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Chapter 1

Theoretical Background

1.1 Path integral in Euclidean time

Feynman’s path integral or functional integral [1, 2] formalism provides an alter-

native formulation to the canonical approach of quantum mechanics and reveals

a connection between statistical mechanics and quantum theory.

We begin by defining the central quantity in statistical mechanics, the partition

function (using units where kB = 1)

Z = Tr exp(−βĤ) =

∫
dx 〈x| exp(−βĤ)|x〉, (1.1)

where β = 1/T is the inverse temperature, Ĥ is the Hamilton operator and |x〉 is

a position eigenstate. We will show that (1.1) is equivalent to a path integral in

purely imaginary time.

First, take the definition of the propagator of a particle that comes back to its

initial eigenstate |x〉,

〈x|Û(t′, t)|x〉 = 〈x| exp

(
− i
~
Ĥ (t′ − t)

)
|x〉. (1.2)

This resembles the integrand of the definition of equation (1.1), and now we can re-

late the evolution operator Û(t′, t) = exp

(
− i
~
Ĥ(t′ − t)

)
with the weight function

1



CHAPTER 1. THEORETICAL BACKGROUND

exp(−βĤ) in the partition function by

β =
i

~
(t′ − t) =

1

~
(t′E − tE). (1.3)

In the last expression we apply the transformation

tE = it, (1.4)

where tE is known as the Euclidean time, which is obtained by a rotation of π/2

of the real time t in the complex plane. This is known as the Wick rotation, which

has the benefit of getting rid of the factor i in the exponent of the path integral.

In this sense, a system at finite temperature corresponds to a periodic propagation

in Euclidean time.

If we divide the Euclidean time into N equidistant steps of length ∆tE by

letting β = N∆tE/~, and inserting a complete set of position eigenstates at all

intermediate times tEl
= tE + l∆tE, l = 1, 2, ..., N − 1, we arrive at

〈x|Û(t′E, tE)|x〉 =

∫
dx1

∫
dx2 · · ·

∫
dxN−1 〈x|Û(t′E, tEN−1

)|xN−1〉 · ··

· · ·〈x2|Û(tE2 , tE1)|x1〉〈x1|Û(tE1 , tE)|x〉.
(1.5)

Figure 1.1 illustrates this process, known as summing over paths.

Now we focus on one of these intermediate propagators. We consider a single

particle of mass M moving in a potential V (x). Its Hamilton operator reads

Ĥ =
p̂2

2M
+ V̂ (x̂). (1.6)

After some algebra, inserting a complete set of momentum eigenstates and cpom-

puting the integral over momenta, arrive at an expression for the intermediate

propagator [2]

2



1.1. PATH INTEGRAL IN EUCLIDEAN TIME

Euclidean time

space
x

tE

t′E

tE1

tE2

tEN−1

Figure 1.1: Illustration of the transition of a particle from (x, tE) to (x, t′E). Note
the periodic boundary condition |x〉 = |x′〉. The Euclidean time path integral is
obtained by integrating over all possible positions at times tE1 , tE2 , ..., tEN−1

.

〈xi+1|Û(tEi+1, tEi)|xi〉 =

(
M

2π~∆tE

)1/2

exp

(
−1

~
∆tE

[
M

2

(
xi+1 − xi

∆tE

)2

+
1

2
(V (xi) + V (xi+1))

])
. (1.7)

Inserting this into equation (1.5) and inserting it again into the definition of the

partition function (1.1) and taking the limit ∆tE → 0 we arrive at the Euclidean

time path integral

Z :=

∫
dx 〈x|Û(t′, t)|x〉 =

∫
Dx exp

(
−1

~
SE[x]

)
. (1.8)

Now the action takes the Euclidean form

SE[x] =

∫ β

0

dtE

[
M

2
(∂tEx)2 + V (x)

]
, (1.9)

and the measure reads

∫
Dx = lim

∆tE→0

(
M

2π~∆tE

)N/2 ∫
dx1

∫
dx2 · · ·

∫
dxN . (1.10)

3



CHAPTER 1. THEORETICAL BACKGROUND

As in the case of the real time path integral, the dominant contributions to the

integral are configurations where SE is minimal, but here configurations of larger

SE are exponentially suppressed.

One advantage of the Euclidean path integral is that we can evaluate thermal

expectation values. If we take an operator Ô(x̂) that is diagonal in the position

basis {|x〉}, then the thermal expectation value of Ô is

〈Ô(x̂)〉 =
1

Z
Tr
[
Ô(x̂) exp(−βĤ)

]
=

1

Z

∫
Dx O(x(0)) exp

(
−1

~
SE[x]

)
. (1.11)

In this sense, if we have a quantum system, we can often turn it into a statistical

mechanical problem by using the Euclidean time path integral and evaluate ob-

servables by computing their thermal expectation values. In order to compute a

thermal expectation value as in eq. (1.11), we need to generate a set of configura-

tions C weighted with probability distribution p[C] = 1
Z

exp(−1
~SE[C]). Therefore

the expectation values will be of the form

〈O〉 ≈ 1

# of configurations

∑
configurations

O[C]. (1.12)

In Chapter 2, we will discuss in detail how to obtain such configurations.

1.2 Non-linear σ-models

Quantum Field Theory (QFT) is the generalization of point particle quantum

mechanical systems to infinite degrees of freedom, combined with special relativity.

A classical field Φ(xµ) is a function of space-time and can be quantized by means

of the canonical quantization. On the other hand the path integral formalism

makes use of the classical field.

Systems such as ferromagnetic materials, superfluids, thin films etc. can be

described by classical spin models. Here the term spin does no refer to quantization

of angular momenta, instead classical spins are used as statistical variables defined

in a RN — can also be CN— dimensional space. We work with these classical spins

first by introducing a spatial d-dimensional lattice (in this thesis we will be working

4



1.2. NON-LINEAR σ-MODELS

with a 3-dimensional cubic structure with length L and volume V = L3). Its sites

will be labeled by the index x. The spins ~ex are described by vectors defined in

an intrinsic N -dimensional space ~ex ∈ RN , and are attached to the sites x of the

spatial d-dimensional grid. Finally, we impose the non-linear constraint |~ex| = 1.

We usually denote this condition as ~ex ∈ SN−1, meaning that the spins ~ex are

defined in the hypersphere SN−1.

Systems which are described with these classical spins with the constriction

|~ex| = 1 that have a global O(N) symmetry are known as non-linear σ-models or

O(N) models.

We can obtain the Lagrangian of a non-linear σ-model from the Lagrangian of

the linear σ-model [3, 4] which is of the form

L(~Φ, ∂µ~Φ) =
1

2
∂µ~Φ

T∂µ~Φ +
m2

2
~Φ2 +

λ

4
(~Φ2)2

=
1

2
∂µ~Φ

T∂µ~Φ +
λ

4

(
~Φ2 +

m2

λ

)2

+ const. (1.13)

If we take m2 = −λ and let λ→ +∞, we arrive at the Lagrangian of a non-linear

σ-model,

L(~e, ∂µ~e) =
1

2
∂µ~e

T∂µ~e . (1.14)

We list some spin models depending on the spin dimension:

N = 1 Ising model

It can be used to describe ferromagnetism, a lattice

gas or a first approximation to a neural network.

Spins can take two discrete values, either 1 or −1.

In d > 1 and infinite volume the model exhibits a

second order phase transition.

N = 2 XY-model
Describes aspects of superfluids, thin films, etc. The

spins live in the unit circle.

N = 3
Heisenberg

model
This is the natural way of describing ferromagnetism.

5



CHAPTER 1. THEORETICAL BACKGROUND

N = 4 This work

In chiral perturbation theory with two quark flavors

(up and down), the low energy dynamics of pions,

can be described with a 3-d O(4) model. Due to the

spontaneous symmetry breaking exhibited by the sys-

tem, three quasi Nambu-Goldstone bosons (to be de-

scribed in Section 1.5) represent the lightest particles

involved, which in this case are indeed the pions.

N =∞
Spherical

model
This limit simplifies analytical calculations.

This kind of models are characterized by a Hamilton function H, which specifies

the energy of any spin configuration. Couplings between spins are often restricted

to their nearest neighbors sites, which are denoted as 〈xy〉, including periodic

boundary conditions. The standard form of the Hamilton function reads

H[~e ] = −J
∑
〈xy〉

~ex · ~ey. (1.15)

H[~e ] is a functional of the entire spin configuration, represented by the square

brackets. J is the coupling constant, i.e. the strength of the interactions. We

can add the term −~h ·
∑

x ~ex to the Hamilton function which represents the pres-

ence of an external magnetic field ~h ∈ RN . The presence of this term gives the

spins in the lattice a preferred orientation in the direction ~h. The external field

breaks explicitly the intrinsic O(N) symmetry of the system. In fact, it breaks

the symmetry down to O(N − 1).

The partition function of a classical spin model reads

Z =

∫
D~e exp (−βH[~e ]), (1.16)

6



1.2. NON-LINEAR σ-MODELS

where the measure D~e means

D~e =
∏
x

∫ π

0

dφ1 sinN−2 φ1 · · ·
∫ π

0

dφN−2 sinφN−2

∫ 2π

0

dφN−1

=
∏
x

∫ 1

−1

de1
x · · ·

∫ 1

−1

deNx δ(|~ex| − 1) , (1.17)

where SN−1 is parametrized by the angles φ1, φ2, . . . , φN−1.

Thermal averages are computed as in equation 1.11. We list some important

quantities in spin models

energy density ε =
1

V
〈H〉 (1.18)

specific heat cv =
β2

V

(
〈H2〉 − 〈H〉2

)
(1.19)

magnetization M = |〈 ~M〉|, ~M =
∑
x

~ex (1.20)

magnetization density m =
1

V
M (1.21)

magnetic susceptibility χm =
β

V

(
〈 ~M2〉 − 〈 ~M〉2

)
(1.22)

spin-spin correlation function 〈~ex · ~ey〉 =
1

Z

∫
D~e ~ex · ~ey exp (−βH[~e ]) (1.23)

connected time layer corr. func. C(r) = 〈~sx3 · ~sx3+r〉 − 〈~sx3〉 · 〈~sx3+r〉 (1.24)

~sx3 =
1

L2

∑
x1,x2

~e(x1,x2,x3)

C(r) ∝ exp

(
−r
ξ

)

where ξ is the correlation length.

In Chapter 2 we will give different definitions for the magnetization density

and the magnetic susceptibility. This is done in order to deal with a finite system

using a computer.

In Section 1.1, we described a connection between statistical physics and quan-

tum mechanics. With classical spin models we now establish a correspondence with

some of the terminology of quantum field theory.

From now on we will work with units where ~ = 1. In a quantum mechanical

7



CHAPTER 1. THEORETICAL BACKGROUND

system the path integral (sum over paths [x])
∫
Dx is defined in a 1-dimensional

discrete Euclidean time, while in a spin model the sum over spin configurations∫
D~e is defined in a spatial d-dimensional lattice. The Euclidean action SE[x] cor-

responds to βH[~e ]. The function exp(−SE[x]) weights paths while the Boltzmann

factor exp(−βH[~e ]) weights spin configurations. A 1-point function or conden-

sate corresponds to the magnetization density m = |〈~e〉|. The 2-point function

corresponds to the spin-spin correlation function 〈~ex · ~ey〉. The inverse correlation

length 1/ξ in a spin system is equal to the energy gap ∆E between the ground

state and the first excited state in a quantum system. In particle physics this gap

is the mass of the lightest particle involved.

1.3 Phase transitions and critical phenomena

When all the physical properties of a substance are uniform we say that the system

is in a phase. For instance, water can be found in its liquid phase, the solid phase

(ice) and a gaseous one (vapour). A substance can undergo a phase transition,

which implies a drastic change of the properties of the system. This is achieved

by changing some of its thermodynamic properties such as temperature, pressure,

chemical potential etc. If we plot thermodynamic properties against one another,

we have a graph called a phase diagram. A phase diagram specifies the state of the

substance at each point. Two important features are considered, phase bound-

aries which are represented as coexistence curves of the phases, and critical points

that is where a coexistence curve ends; also, there are lines and surfaces of critical

points. Figure 1.2 shows a phase diagram of a pure substance (like water). We

observe that the red lines separate distinct phases, in particular, one line ends in

a critical point. For a detailed explanation on this subject we refer to Ref. [5].

An order parameter is a quantity that can distinguish between phases; it is

zero when the system is in one phase (normally when the temperature is above

the critical temperature Tc) and non-zero in the other. An example of an order

parameter is the magnetization in a ferromagnetic substance. The magnetization

indicates the difference between the magnetic (broken) phase T < Tc and the non-

8
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Figure 1.2: A typical p-T phase diagram of a pure substance. Red lines represent
the coexistence curves. The black points represents a triple point, where three
phases coexist, and the critical point, where a first order line ends.
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Figure 1.3: The magnetization m of a ferromagnetic material as the order param-
eter. The phase transition occurs at the critical temperature Tc.

magnetic (symmetric) phase T ≥ Tc (see figure 1.3).

Mathematically speaking, phase transitions are classified by an order n, which

determines the lowest order of a derivative of a function where the function be-

comes discontinuous. If the n-derivative of a function — in thermal systems one

usually deals with the free energy F = −T lnZ — with respect to the driving

parameter — which in this case is the temperature T — is discontinuous we say

that the phase transition is of order n. This way of defining phase transitions as

discontinuities is known as the Ehrenfest scheme. The particular case where every

n-order derivative is continuous is called an essential phase transition.

9
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1.4 Critical exponents and universality

Critical exponents characterize the behaviour of physical quantities in the vicinity

of a second order phase transition.

Let us refer to a ferromagnetic system. The magnetization M in the thermo-

dynamic limit (V →∞) takes the form

M = − ∂F

∂h

∣∣∣∣
T,h=0

. (1.25)

As we mentioned earlier, M vanishes at and above the critical temperature Tc.

First, we consider the magnetization M as T approaches Tc from below, at h =

|~h| = 0. The behaviour is characterized by

lim
T→Tc

M ∝ (Tc − T )β. (1.26)

This relation is an ansatz, which introduces β as our first critical exponent (not to

be confused with the inverse temperature). On the other hand, both the specific

heat cv and magnetic susceptibility χm diverge as T → Tc. The definition and

power laws for both read

cv =
T

V

∂S

∂h

∣∣∣∣
h=const.

=− T

V

∂2F

∂T 2

∣∣∣∣
h=const.

∝|T − Tc|−α

χm =
1

V

∂M

∂h

∣∣∣∣
h=0

=− 1

V

∂2F

∂h2

∣∣∣∣
h=0

∝|T − Tc|−γ

where S = − ∂F
∂T

∣∣
h=const.

is the entropy. The parameters α, β and γ are all critical

exponents. If these exponents are the same among different systems, we say that

they coincide within a universality class.

A crossover can be defined as a smooth transition between two phases. A

crossover cannot be associated with a change of symmetry or a discontinuity in

the free energy F , although there is a drastic change in phases. Typically it occurs

in a region of the phase diagram rather than a single point. In a crossover the

system changes from one type of critical behavior to another. We refer to [5] for

this topic.

10



1.5. SPONTANEOUS SYMMETRY BREAKING

1.5 Spontaneous Symmetry Breaking

An order parameter is often related to the spontaneous or explicit break-down

of a global symmetry, and can distinguish between the broken phase and the

unbroken symmetry phase. When the Lagrangian of a system is symmetric with

respect to a group of transformations, but the vicinities of a ground states do not

exhibit the same symmetries, we say that the system undergoes a process known

as Spontaneous Symmetry Breaking (SSB).

A process of SSB occurs in a ferromagnetic model; the system has a symmetry

under some rotations, but the ground state is not invariant under the same rota-

tions. If we deal with a classical spin model, then the Hamilton function (1.15)

has a symmetry under transformations of the group O(N), i.e. transformations

under spin rotations. For temperatures below the critical value, T < Tc, the

“magnetized” or “ordered” configurations — where spins have a tendency to be

aligned in some direction — dominate the path integral. In figure 1.4a we have a

typical magnetized configuration, for instance, where spins point upwards. Here,

the magnetization also points upwards, but after a rotation of π, the spins, and

therefore also the magnetization, now point downwards. In this case, we say that

the symmetry is broken. The alignment is destroyed by thermal fluctuations when

T ≥ Tc. Above the critical temperature, T > Tc, the non-magnetized or “disor-

dered” configurations dominate the path integral where the spins point in random

directions, there is no preferred orientation, see figure 1.4b. Here the magnetiza-

tion vanishes and after the same rotation of π, the magnetization remains zero,

such that the symmetry is restored.

SSB have numerous consequences; we list the most important in our project:

• Phase transitions1

Different phases of a system are characterized by different kinds of symmetry,

and are driven by different parameters (temperature, magnetic or electric

field etc.). If the driving parameter is temperature, at high temperature, the

1Smooth phase transitons (of order ≥ 2) are often related to SSB, but not always. In the
2-d XY-model, by the Mermim-Wagner theorem [6, 7], SSB of the global O(2) symmetry cannot
occur. However, the system exhibits an essential phase transition known as the Berezinskii-
Kosterlitz-Thouless transition.

11
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(a) Ground state, broken phase (T <
Tc). (b) Symmetric phase (T > Tc).

Figure 1.4: At low temperature (T < Tc) the spin system tends be in a phase
of broken O(N) symmetry (left), whereas at high temperature, strong thermal
fluctuations remove preferred orientations so that the symmetry is restored (right).

system takes on a “higher degree of symmetry” phase; at lower temperatures,

the phase is of a lower symmetry or “broken symmetry”.

• Nambu-Goldstone Bosons

When a system undergoes a spontaneous breakdown of a continuous global

symmetry, some excitations of a vacuum (or ground state) of the system

appear as massless particles known as Nambu-Goldstone Bosons (NGBs).

One important feature of NGBs is that they can only appear in more than

two space-time dimensions [6, 7].

1.6 The Standard Model

The building blocks of all visible matter in the universe are called elementary

particles. The Standard Model (SM) is the theory that describes the interactions

between elementary particles. However, only three of the four fundamental inter-

actions, or forces, are described by the Standard Model, namely, electromagnetism,

the weak force and the strong force 2.

The fermions is a set of particles which are characterized by a semi-integer

spin, in the case of the elementary particles is 1/2. The elementary particles that

conform fermionic matter are separated into two main subsets, the leptons and

the quarks. Each set consists of six types of particles, that at the same time are

structured into three generations.

2Unfortunately, since a quantum theory of gravitation is not well established, gravity and its
hypotetical force carrier boson particle, the graviton, is not part of the Standard Model.
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1.7. THE QCD PHASE DIAGRAM

The first generation of quarks contains the flavors up (u) and down (d), and

the first generation of leptons involves the electron (e) and the electron neutrino

(νe). The first generation consists of the lightest particles. These are the ones

— except νe — that gather together with electrons to form atoms, therefore all

observable matter. The mass of an atom consists mostly of nucleons which contain

three valence quarks, namely (udd) neutrons and (uud) protons.

The other large set corresponds to the bosons which are characterized by their

integer spin. Interactions between elementary particles are mediated by the ex-

change of gauge bosons, which have spin 1, and by Yukawa couplings. The ex-

change of photons gives rise to the electromagnetic interaction, while the exchange

of W± and Z bosons gives rise to the weak interaction. All elementary fermions

of the SM can experience both of these iteractions — except for the neutrinos,

which are electrically neutral —, since they carry electric charge weak hypercharge.

However the strong interaction, which is mediated by gluons, is only experienced

by quarks, since they are the only fermions with color charge. The last ingredient

in the Standard Model is the Higss field which is the direct responsible for the

mass of the gauge bosons Z and W±, and through Yukawa couplings gives mass

to all fermions. The remaining degree of freedom after the Higgs mechanism [8, 9]

is known as the Higgs boson, which is a scalar boson with spin 0. Figure 1.5 shows

the elementary particles in the Standard Model, along with their mass, electric

charge and spin.

The mathematical description of the Standard Model relies on group theory.

Each gauge interaction is represented by a local symmetry group, for instance,

U(1) represents the electromagnetic interaction, SU(2) the weak interaction, and

SU(3) the strong interaction. Moreover, the generators of the groups represents

the gauge bosons of each interaction. So, the whole gauge group of the Standard

Model is SU(3)⊗ SU(2)⊗ U(1).

1.7 The QCD Phase Diagram

It is known that hadronic matter undergoes a kind of phase transition from the

hadronic phase to one where quarks and gluons are deconfined, known as the

13
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Figure 1.5: Standard Model of Elementary Particles.
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quark-gluon plasma.

At low energies the SM can be described by Quantum Chromodynamics (QCD),

the SU(3) gauge theory of the SM. This is due to the fact that the inctrisct QCD

scale ΛQCD ≈ 200MeV is much more less than the vacuum expectation value of

the Higss field vHiggs ≈ 246GeV.

QCD, which is the theory of strong interactions between quarks and gluons,

with two massless quark flavors is often a reliable description of subnuclear physics

at low energies. Its Lagrangian has a global chiral flavor symmetry SU(2)L ⊗

SU(2)R which can break spontaneously down to SU(2)L=R. In this case we are

in the confined phase, where quarks and gluons form hadronic matter. At high

temperatures, chiral symmetry is restored and the system becomes a quark-gluon

plasma. The order parameter of the breakdown is the chiral condensate.

If we consider the two lightest quark flavors (up and down) as massless, it is

believed that the temperature (T ) vs. chemical potential (µB) phase diagram ends

at a particular critical point that separates a critical line of second order phase

transitions from a line of first order phase transitions. This point is known as the

Critical End Point (CEP). If we consider instead massive quarks, the critical line

of second order phase transitions turns into a crossover line.

Little progress has been achieved in the task of exploring the phase diagram at

high baryon density. Experiments at RIHC (Relativistic Heavy Ion Collider) and

at CERN (Organisation Européenne pour la Recherche Nucléaire) have observed

the quark-gluon plasma phase in heavy ion collisions, but the plasma occurs for a

short time (∼ 10−25 secs) before spontaneously condensing into hadrons [10].

A super conductor color phase [11] similar to the electrical superconductivity

is also expected in the phase diagram. At high densities quarks could condense

into Cooper pairs forming this new phase, but still breaking the chiral symmetry.

Lattice QCD is a powerful non-perturbative approach to solve QCD prob-

lems when perturbative calculations and other analytic approaches do not provide

conclusive results. However the notorious sign problem has prevented numerical

lattice QCD simulations at high baryon density. In Chapter 2 we will return to

this subject.
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Figure 1.6: Conjectured QCD phase diagram.

The QCD phase diagram is not just of theoretical interest, since this phase tran-

sition may have occurred a few moments after the big bang, approximately∼ 10−6 s

[12], and neutron stars are believed to have a high baryon density, greater than

(0.5− 1) nucleon/fm3 [13]. Figure 1.6 shows a general overview of the conjectured

QCD phase diagram with two massive quark flavors.
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Chapter 2

Monte Carlo Methods

Monte Carlo methods are a broad class of statistical methods to approximate a

quantity through random sampling processes. In particular, it is the only efficient

way to compute high dimensional integrals. In this chapter we will focus on

simulations of statistical mechanics problems.

In statistical mechanics we typically try to compute the thermal average of an

ensemble, for instance, the canonical ensemble of a quantity O,

〈O〉 =
1

Z

∑
C

O[C]e−βH[C] =

∑
C O[C]e−βH[C]∑

C e
−βH[C]

, (2.1)

where

C: configuration of the system

H[C]: energy of the system in configuration C

p[C] ≡ 1
Z
e−βH[C]: the probability of finding the system in

one of the configurations C with energy H[C].

In large systems the direct computation of 〈O〉 is not feasible, therefore we need

to generate a representative set of configurations that have dominant contributions

to the sum. The goal of our Monte Carlo method is to choose randomly a number

N of configurations {C1, C2, . . . , CN} which follow the probability density function

p[C] =
1

Z
e−βH[C] . (2.2)
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CHAPTER 2. MONTE CARLO METHODS

We define the estimator ON of 〈O〉 as

ON =
1

N

N∑
i=1

O[Ci] , (2.3)

so that in the limit N → ∞, we have ON → 〈O〉. We refer to Ref. [14] for this

topic.

The question arises, how do we generate configurations Ci such that they follow

the canonical ensemble? Commonly, Markov chains are used to generate them.

2.1 Markov chains

A stochastic process is a sequence of random events (configurations, states, etc.)

in a chain-like manner that transits from one event to another. A Markov chain

is a stochastic process where a subsequent event depends only in the current state

of the system.

For the chain to be adopted to the canonical distribution as N →∞, it has to

satisfy two conditions:

• Ergodicity: Every configuration can be reached in a finite number of steps.

In other words, there exists a path from any Ci to any Cj.

• Detailed balance: This condition involves the probability transition

W [C → C ′] of going from one configuration C to another C ′, the reverse

W [C ′ → C], and the probabilities of these configurations P [C] and P [C ′].

Detailed balance is a condition for the ratio between these quantities,

W [C → C ′]

W [C ′ → C]
=
P [C ′]

P [C]
. (2.4)

For the canonical ensemble the probability of the configuration is given by

eq. (2.2), so the detailed balance condition reads

W [C → C ′]

W [C ′ → C]
=

1
Z
e−βH[C′]

1
Z
e−βH[C]

= exp (−β∆H),

where ∆H = H[C ′]−H[C].
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2.2. THE METROPOLIS ALGORITHM

2.2 The Metropolis Algorithm

Metropolis et al. [15] proposed the following choice for the probability W [C → C ′]

for accepting the suggested configuration C ′,

W [C → C ′] = min {1, exp(−β∆H)} . (2.5)

In order to accept a change with a given probability, say W < 1, one first

generate a random number α ∈ [0, 1) which follows a uniform distribution. If

α ≤ W one accepts the change; otherwise, one retains the previous configuration.

The following algorithm describes the Monte Carlo method in a spin model

using the Metropolis algorithm for a local update with a general Hamilton function

H.

Algorithm 1. Metropolis algorithm

1. Choose a spin ~ex in the current configuration C.

2. Generate a trial configuration C ′ by performing a local transformation

~ex → ~e ′x. For the Ising model just perform the change ex → −ex,

where ex ∈ {−1, 1}.

3. Calculate ∆H = H[C ′] − H[C]. Accept the change C → C ′ with

probability

W [C → C ′] = W [~ex → ~e ′x] =

 1 if ∆H ≤ 0

exp(−β∆H) if ∆H > 0.

4. Go to step 1 using a different lattice site in order to gradually visit all

the sites in the lattice.

Let us go through each step of the algorithm. Step 1 chooses a spin in the

lattice, it can be a sequential or a random selection. Step 2 generates a candidate

for the next configuration C ′ in the Markov chain. Since this is a local updating

method, C and C ′ will just differ in the selected spin ~ex or ~e ′x. So going from C to

C ′ means transforming ~ex to ~e ′x. In the Ising model the transformation ex → e ′x
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is known as a “flip”, since this means that a given spin ↑ will flip to ↓ and vice

versa.

Step 3 refers to the physics: if the transformation decreases the energy, we will

always accept the change. One may think that despite the temperature this pro-

cedure will give the system a preferred ground state, where all spins are parallel

to each other, since these are the minimal energy configurations. The Metropo-

lis algorithm prevents this from happening by giving a non-zero probability to

transitions to configurations of higher energy, otherwise detailed balance does not

hold. If the transformation increases the energy, we do not necessarily reject it but

give it a probability of acceptance governed by the Boltzmann factor exp(−β∆H).

Here, ∆H is the energy needed to transform spin ~ex to ~e ′x. At low temperature

the Boltzmann factor is almost zero, so the probability of transformations with

∆H > 0 is very small, therefore the system will prefer to be near a ground state.

At high temperatures the Boltzmann factor is almost one, so the transition prob-

ability is large. Therefore the spins will point in random directions so the system

is in the symmetric phase.

If we go through the lattice in a lexicographic order, step 4 ensures that we

visit to all spins in the lattice. This process is known as one sweep. One can easily

check that the Metropolis algorithm satisfies ergodicity and detailed balance [15].

Local updating methods like Metropolis suffers from a problem called critical

slowing down, which means that near a critical point it becomes hard for the sim-

ulation to generate statistically independent configurations. To suppress critical

slowing down, several methods have been applied, like cluster methods such as

the Swendsen-Wang algorithm [16] and the Wolff algorithm [17].

2.3 The Wolff Algorithm

The Wolff algorithm is a non-local updating method that constructs sets of spins

or clusters in a sophisticated way, and “flips” them according to a given transfor-

mation. It exists in a single-cluster and a multi-cluster version. Let us refer in the

following algorithm to the multi-cluster version for a d-dimensional O(N) model

with the standard Hamilton function, without any additional terms.
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Algorithm 2. Wolff Algorithm

1. Generate a random unit vector ~r ∈ RN , |~r| = 1, and denote its direc-

tion as the Wolff direction.

2. Choose a spin ~ex in the current configuration C that does not belong

to any existing cluster. Take ~ex as the pivot to construct the cluster

Ci. Add ~ex to Ci.

3. Consider ∆H = b′ − b, where b = −~ex · ~ex+µ̂ (here µ̂ is a unit vector

which can take any of the 2d directions along the axes of the lattice:

±x̂1,±x̂2, ...,±x̂d) and b′ = −~ex ·~e ′x+µ̂, where ~e ′x = ~ex−2~r(~r ·~ex) is the

flipped spin. Set a bond between spin ~ex and ~e ′x+µ̂ with probability

Px,x+µ̂ =

 1− exp (−β∆H) if ∆H > 0

0 if ∆H ≤ 0.

If the bond is accepted, then ~ex and ~ex+µ̂ belong to the same cluster,

and we add ~ex+µ̂ to Ci. From ~ex exhaust all other µ̂ directions.

4. Return to step 3 using ~ex+µ̂ (if it exists) as the pivot which already

belongs to the cluster in order to set bonds with other spins. This is

done until all the bonds are exhausted and the cluster is finished.

5. Return to step 2 until all the spins in the lattice belong to some cluster.

6. Collectively flip all spins in each cluster, i.e. perfrom the transforma-

tion ~ex → ~e ′x, with probability Pflip = 1
2
.

Let us go through each step. In the Ising model it is clear what we mean by

a flip since this model has just two options for the spin direction. For N ≥ 2,

however, spins can point in infinitely many directions: in the XY-model spins are

defined in the circumference of the unit circle S1, in the Heisenberg model, spins

live in the surface of the unit sphere S2, in the O(4) model, spins point in the 3-d

surface of a 4-dimensional unit sphere S3, etc. We need some sort of orientation,
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like we have in the Ising model to define when a spin is “up” or “down”, in order

to define a flip.

Step 1 generates a random vector ~r, its direction is called the Wolff direction.

This direction defines a plane that is perpendicular to ~r, this plane is known as

the Wolff plane1. We perform the flip with respect to this Wolff plane. If ~r ·~ex > 0

we say that ~ex is “above” the Wolff plane (up). If ~r · ~ex < 0, then ~ex is “below”

(down). What we do is to flip the projection of ~ex with respect to ~r to the other

side of the Wolff plane. The resulting spin ~e ′x will be the mirror image of ~ex with

respect to the Wolff plane, see figure 2.1.

Step 2 selects a spin ~ex in the lattice. This spin is the first one in our cluster,

from this we will possibly add more spins. In step of 3 the algorithm we consider

creating the bonds between all nearest neighbor spins of ~ex that are all in the same

half-space with respect to the Wolff plane using the complementary probability

of the Boltzmann factor 1 − exp(−β∆H). If some bonds are accepted we add

these new spins to the cluster. From the accepted spins we will repeat the same

procedure discarding, the spins that already belong to the cluster (step 4).

The algorithm ensures that a bond is never tried more than once. However a

single spin can be tried more than once by any of the other links that connect it to

the cluster. In step 5 we construct all other clusters to fill the lattice. Finally we

flip each cluster with probability 1/2. Going through the whole algorithm once is

in this case known as one sweep. For the single-cluster algorithm we always flip the

constructed cluster. Also, the definition of a sweep is to perform V/〈cluster size〉

updates of the algorithm (the cluster size is the number of spins in each cluster).

Figure 2.2 illustrates the process of accepting bonds and identifying clusters.

Black points represent spins “up”, and white circles represent spins “down”,

bold black lines represent a bond.

1In N = 2 the Wolff plane is a line. In N = 3 is indeed a plane, but in N > 3 this is a N − 1
dimensional hyper-plane. Whichever the case is, we will call it indistinctly the “Wolff plane”.
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~r(
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· ~e x

)

Figure 2.1: A unit vector ~r defines the Wolff plane. We apply the flip to ~ex by
taking its mirror image with respect to the Wolff plane. The flipped version of ~ex
is ~e ′x = ~ex − 2~r(~r · ~ex), with lenght |~e ′x| = |~ex| = 1.

~ex

(a)

~ex−ŷ

~ex+x̂
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Figure 2.2: (a) Initial cluster with one element C = {~ex}. (b) Completed cluster
with five elements C = {~ex, ~ex+x̂, ~ex−ŷ, ~ex+x̂−ŷ, ~ex+2x̂−ŷ}.
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2.4 Adding more terms to the Hamilton func-

tion

In order to take into account the contributions of extra terms in the in Hamilton

function, such as an external magnetic field ~h or a chemical potential µ, we will

modify the Wolff algorithm2 and consider two options. The first one is to change

the probability of flipping the clusters [18]. The other one is to introduce a ghost

spin [19] that is a “neighbor” to every spin in the lattice; it changes the way

clusters are created.

2.4.1 Modified flip probability

We will modify step 6 of Algorithm 2. Consider the standard form of the Hamilton

function, let us call itH0, and add an extra term H̃ which may include the external

magnetic field and/or the chemical potential,

H[~e ] = H0 + H̃

H0 = −J
∑
〈xy〉

~ex · ~ey.

In step 3 of Algorithm 2, the Hamilton function for creating bonds is H0.

Modified flip probability

6. Suggest the flip of the cluster with probability p = 1/2 but do not

flip it. If the suggestion is accepted, then we flip the cluster with

probability

Pflip =

 1 if ∆H̃ ≤ 0

exp
(
−β∆H̃

)
otherwise,

where ∆H̃ = H̃ [C ′i] − H̃[C]. Here, H̃[C] stands for the the energy

from the extra terms in the current configuration, and H̃ [C ′i] means

that only the spins in the cluster Ci are flipped.

2The Metropolis method is general and can be used for any real Hamilton function.
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Ghost spin

Figure 2.3: The ghost spin is considered to be a neighbor to every spin in the
lattice.

2.4.2 Ghost spin

We define the ghost spin ~e0 ∈ RN as a unit vector in the direction of the external

magnetic field, ~e0 =
~h

|~h|
. This vector will act as a neighbor to each spin in the

lattice (like a ghost), see figure 2.3. The following algorithm provides a procedure

assuming that the extra term is only the magnetic field ~h.

Algorithm 3. Ghost spin

1. Generate a random unit vector ~r ∈ RN , |~r| = 1 and take its direction

as the Wolff direction.

2. Generate bonds between ~e0 and the spins in the lattice with probability

1− e−2hβ(~r·~e0)(~r·~ex) if (~r · ~e0)(~r · ~ex) > 0. The cluster formed with these

bonds is called the ghost cluster.

3. Carry out the same steps to form clusters as in Algorithm 2 — other

clusters can be linked to the ghost cluster — except that we do not

flip the ghost cluster.

The main difference between the clusters formed with the Wolff algorithm and

the ones formed with the ghost spin is that the ghost cluster can be disjoint.

In order to include other terms in the Hamilton function beside ~h, like a chem-

ical potential µ, carry out this algorithm but this time instead of flipping with

probability 1/2 we perform the step of the modified flip probability described ear-

lier. In this case, H̃ = µN , where N generally represents the particle number.
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thermalisationhot start
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Figure 2.4: Depiction of the process to attain to thermal equilibrium as the sim-
ulation runs.

2.5 Extracting information from simulations

2.5.1 Starting points

In order to implement discrete translational invariance, we will use periodic bound-

ary conditions. With this choice of boundaries, every site in the lattice is equivalent

to any other. It is the most popular choice for boundary conditions.

To start a simulation we need some initial configuration C0. If we generate C0

such that the spins point in random directions, we say that C0 is a hot start. If

instead C0 is one of the vacuum configurations where spins are parallel, we call

it a cold start. Usually none of these two starts represents a preferred configura-

tion of the system, therefore, we let the system reach equilibrium after a number

Ntherm of Monte Carlo sweeps. This process of reaching equilibrium is known as

thermalisation. Figure 2.4 illustrates this process.

2.5.2 Taking measurements

We will discard all the sweeps of thermalisation before data collection in order

to attain thermal averages without systematic errors inherited from the non-

equilibrium configurations. To obtain statistically independent configurations, we
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skip a number Nskip of sweeps between the measurements. Now we are ready to

compute all the thermal averages of quantities of interest. Let us summarize what

we have to do: a depiction of

1. Generate C0 (hot or cold start).

2. Perform Ntherm configurations.

3. Take measurements every Nskip sweeps after thermalisation.

4. End the simulation after taking Nmeas measurements.

5. Compute thermal averages and their statistical errors.

As they stand, the definitions for the magnetization density (1.21) and the

magnetic susceptibility (1.22) are not useful if we simulate a finite system. This

is because 〈 ~M〉 is zero at h = 0, since the average over all configurations must

vanish. As such, averaging only the magnetization would yield incorrect results.

To overcome this problem we take the average of the absolute value of the mag-

netization as pointed out in Ref. [20]. Thus now we arrive to new definitions of

these quantities,

magnetization density m =
1

V
〈| ~M |〉 (2.6)

magnetic susceptibility χm =
β

V

(
〈 ~M2〉 − 〈| ~M |〉2

)
. (2.7)

2.6 The sign problem

The sign problem refers to the difficulty of computing the integral of a rapidly

oscillating function. For instance, if we try to compute the expectation value of a

quantity O[C] weighted with e−S0[C]+iµN [C]

〈O〉 =

∫
DC O[C]e−S0[C]+iµN [C]∫
DC e−S0[C]+iµN [C]

,
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where S0, µ, N ∈ R, we realize that it is impossible to evaluate this expression

by generating configurations weighted by p[C] ∝ e−S0[C]+iµN [C]. This is because

the weight function is now a complex number and cannot be interpreted as a

probability anymore.

In the context of QCD, the sign problem has prevented conclusive numerical

simulations at high baryonic chemical potential to explore the QCD phase diagram.

An attempt to deal with this problem is to generate the configurations weighted

with the real part exp(−S0), and let the observable O absorb the imaginary part

exp(iµN). This process is called reweighting. Unfortunately, due to the rapid

oscillations, one needs an exponentially large statistichs as the volume of the

system grows. For a general overview on this topic we refer to Ref. [21].

In this thesis we will circumvent the sign problem by studying an effective

model that does not suffer from it.
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Chapter 3

Quantum Chromodynamics and

Chiral Perturbation Theory

3.1 Quantum Chromodynamics (QCD)

From now on we will work with the Euclidean time functional integral formalism.

As we described in Chapter 1, QCD is the SU(3) part of the Standard Model that

describes the strong interaction of (colored) quarks and gluons. In the pure QCD

sector, the left-hand and right-hand chiral SU(2) quark doublets — in the next

section we give the definitions of left and right handedness —uL,R(x)

dL,R(x)

 ,

cL,R(x)

sL,R(x)

 ,

tL,R(x)

bL,R(x)

 ,

couple in the same way to the gluon field. Hence the mass term can be written

into the QCD Lagrangian without gauge symmetry breaking as follows

LQCD(Ψ̄,Ψ, Gµ) =
∑

f

Ψ̄f,L(x) (iγµ[∂µ + gsGµ(x)]) Ψf,L(x)

+
∑

f

Ψ̄f,R(x) (iγµ[∂µ + gsGµ(x)]) Ψf,R(x)

+
∑

f

mf

(
Ψ̄fL(x)ΨfR(x) + Ψ̄fR(x)ΨfL(x)

)
+

1

4
Tr [Gµν(x)Gµν(x)] , (3.1)
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where repeated indices are summed over. The γµ are the Dirac matrices. The

spinor fields Ψf = Ψf,L + Ψf,R represent a quark of flavor f ∈ {u, d, . . . , t} and

mass mf . The gluons are introduced through an algebra-valued gauge potential

Gµ(x) = iGa
µλa, a ∈ {1, 2, . . . , 8}, where λa are eight 3 × 3 matrices and are the

generators of the SU(3) color group such that λ†a = λa, Trλa = 0. Now we choose

a representation of λa, let us take the Gell-Mann matrices,

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −i 0

i 0 0

0 0 0

 , λ3 =


1 0 0

0 −1 0

0 0 0



λ4 =


0 0 1

0 0 0

1 0 0

 , λ5 =


0 0 −i

0 0 0

i 0 0

 , λ6 =


0 0 0

0 0 1

0 1 0



λ7 =


0 0 0

0 0 −i

0 i 0

 , λ8 =
1√
3


1 0 0

0 1 0

0 0 −2

 , (3.2)

this representation ensures the normalization relation

Tr(λaλb) = 2δab. (3.3)

The gluon field strength tensor Gµν is given by

Dµ = ∂µ + gsGµ

Gµν =
1

gs

[Dµ, Dν ] = ∂µGν − ∂νGµ + gs[Gµ, Gν ], (3.4)

where gs is the dimensionless gauge coupling constant of the strong interaction.
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3.2 Chiral symmetry in QCD

We introduce the Euclidean chirality matrix γ5 = γ1γ2γ3γ4, γ2
5 = 1, {γ5, γµ} = 0,

and define the projection operators

P± =
1

2
(1± γ5) . (3.5)

Now defining left-handed and right-handed fermions

ψL,R = P∓ψ, ψ̄L,R = ψ̄P± , (3.6)

we can rewrite the QCD Lagrangian (3.1) considering the chiral limit — i.e. mass-

less quarks — as follows

LQCD =
∑

f

(
ψ̄L,fi /DψL,f + ψ̄R,fi /DψR,f

)
+

1

4
Tr [GµνGµν ] , (3.7)

where /D = γµDµ. We see that (3.7) reveals that the QCD Lagrangian has a global

symmetry U(Nf )L ⊗ U(Nf )R under separate U(Nf ) transformations of the left-

handed and right-handed quarks for Nf massless quark flavors. We can decompose

each U(Nf ) symmetry into a SU(Nf ) and a U(1) part, hence we obtain

SU(Nf )L ⊗ SU(Nf )R ⊗ U(1)B ⊗ U(1)A . (3.8)

Under the U(1)B symmetry, both the left and right handed fermions transform in

the same way: ψR,L → eiαψR,L. Its conserved associated charge corresponds to

the baryon number.

The U(1)A is anomalous and it is explicitly broken by the Adler-Bell-Jackiw

anomaly. Under this symmetry, both the left-handed and right-handed fermions

transform with opposite phase: ψR,L → e±iαψR,L. The remaining chiral flavor

symmetry breaks spontaneously

SU(Nf )L ⊗ SU(Nf )R → SU(Nf )L=R , (3.9)
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which, according to the Goldstone theorem [22, 23] gives rise to N2
f − 1 NGBs.

An important order parameter for the chiral SSB in QCD is the chiral conden-

sate

Σ ≡ −〈Ψ̄fΨf〉 = −〈0|Ψ̄f(x)Ψ(x)f |0〉 , (3.10)

where sum over the index f is implicit. Σ is a measure of the density of quark-

antiquark pairs that have condensed into the same quantum state. It is expected

to vanish at high temperatures, so the system is in the chiral phase. Numerical

QCD analysis reveals a value Σ ≈ (250 MeV)3.

3.3 Chiral perturbation theory

At low energies some field theories can be described by an effective field theory,

which is an approximation of the more fundamental theory.

If we consider QCD at low energies, compared with its intrinsic scale ΛQCD,

the first generation of quarks dominates nuclear physics. The effective theory of

QCD is known as Chiral Perturbation Theory (ChPT), which instead of taking

the quarks and gluons as the fundamental degrees of freedom, takes the Nambu-

Goldstone bosons which manifest at low energies after the spontaneous symmetry

breaking of the chiral symmetry. The parameters that ChPT involves are the

so-called low energy coupling constants [24, 25, 26].

Considering massless quarks, the two flavor QCD Lagrangian has a global

symmetry G = SU(2)L ⊗ SU(2)R ' O(4) with nG = 3 + 3 = 6 generators,

which then spontaneously breaks down to H = SU(2)L=R ' O(3) with nH = 3

generators. According to Goldstone’s theorem this gives rise to nG − nH = 6 −

3 = 3 massless NGBs. ChPT describes the NBGs by fields in the coset space

G/H = SU(2) ' O(3). In QCD we identify these three NGBs to the three pions

π0, π+ , π−. If we consider instead three flavors, these quasi NGBs are the light

meson octet, consisting of the three pions, the four kaons and the η-meson.

In this sense our fields need to take the form of 2× 2 matrices U(x) ∈ SU(2).
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An element of SU(2) can be written in the following matrix form

U =

z1 −z∗2
z2 z∗1

 , U †U = 1 , (3.11)

where z1 , z2 ∈ C, with detU = |z1|2+|z2|2 = 1. Since the matrix U(x) is described

by two complex numbers, and therefore four real numbers, we can also describe

an element of SU(2) with a real four component vector ~e(x) ∈ R4 with |~e(x)| = 1.

In other words, the SU(2) group is isomorphic to the 3 dimensional sphere S3,

and therefore ~e(x) ∈ S3.

What form should the Lagrangian of our effective theory take? In ChPT it is

enough to describe the system with fields in the coset space. However, we also

want to take into account the chiral symmetry and the SSB exhibited by the

system, so we need a Lagrangian that is SU(2)L ⊗ SU(2)R ' O(4) invariant, and

which can break down to SU(2)L=R ' O(3).

3.3.1 The non-linear σ-model

Since we want a Lagrangrian which is compatible with the idea of low energies, we

have to construct one with the least number of derivatives, since this represents

the power of momenta,

Lkin(U) =
F 2
π

4
Tr
[
∂µU

†∂µU
]
, U(x) ∈ SU(2), (3.12)

where Fπ ≈ 92.4 MeV is the low energy constant, known as the pion decay con-

stant. Regarding chiral flavor symmetry, the field U(x) transforms as

U(x)→ U ′(x) = LU(x)R†, ∂µU(x)→ ∂µU
′(x) = L∂µU(x)R† (3.13)

where L ∈ SU(2)L and R ∈ SU(2)R, and therefore

Lkin(U ′) =
F 2
π

4
Tr
[
∂µU

′†∂µU
′] =

F 2
π

4
Tr
[
R∂µU

†L†L∂µUR
†] = Lkin(U). (3.14)
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The last equality is due to the fact that L†L = R†R = 1, along with the cyclic

property of the trace.

Alternatively, the Lagrangian can be formulated with the field ~e(x),

Lkin(~e ) =
F 2
π

2
∂µ~e

T∂µ~e . (3.15)

The field ~e(x) transforms with elements O ∈ O(4) as

~e(x)→ ~e(x)′ = O~e(x) , ∂µ~e(x)→ ∂µ~e(x)′ = O∂µ~e(x) , (3.16)

and therefore

Lkin(~e ′) =
F 2
π

2
∂µ~e

′ T∂µ~e
′ =

F 2
π

2
∂µ~e

′ TOTO∂µ~e ′ = Lkin(~e ) , (3.17)

since OTO = 1. In summary, the Lagrangian (3.15) is invariant under O(4)

transformations, and the field ~e(x) has a non-linear constrain |~e(x)| = 1. Therefore

the system is described by the non-linear σ-model [4] that we described in Section

1.2.

3.4 The inclusion of quark masses

In reality the chiral symmetry is only approximate, since quarks are massive,

therefore the chiral symmetry is explicitly broken. This provides the NGBs with a

small non-zero mass. Nevertheless, ChPT is still applicable in the massive quark

case.

We know that the chiral symmetry breaking term in the Lagrangian of QCD

is of the form

Lm =
∑

f

mf

(
Ψ̄fL(x)ΨfR(x) + Ψ̄fR(x)ΨfL(x)

)
. (3.18)

In our effective theory, we have to map this term onto another one which breaks
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the symmetry in the same way,

Lm,eff(U) = c1Tr[M(U + U †)] , (3.19)

where M = diag(mu,md, . . . ), and transforms as

Lm,eff(U ′) = c1Tr[M(U ′ + U ′†)] = c1Tr[M(LUR† +RU †L†)] . (3.20)

For quark flavors with equal masses, M = mq1, we obtain

Lm,eff(U) = c1mqTr[(U + U †)] , (3.21)

which is symmetric under SU(Nf)L=R transformations.

Now we have to determine the value of the low energy constant c1. As such,

we first have to obtain the vacuum expectation value of (∂/∂mf)LQCD|M=0

〈0| ∂
∂mf

LQCD|M=0|0〉 = 〈0|Ψ̄fΨf |0〉 = − 1

Nf

〈(−Ψ̄Ψ)〉 = − 1

Nf

Σ . (3.22)

The same value should arise when taking the vacuum value of our effective La-

grangian. The classical solution corresponds to a constant field U(x) = 1,

〈0| ∂
∂mf

Lm,eff |M=0|0〉 = c1Tr[diag(0, ..., 0, 1, 0, ..., 0)(1 + 1)] = 2c1 , (3.23)

and therefore,

c1 = − 1

2Nf

Σ . (3.24)

Hence, the complete Lagrangian with two quark flavors with equal masses takes

the form

Leff(U) =
F 2
π

4
Tr
[
∂µU

†∂µU
]
− 1

4
Σ Tr[M(U + U †)] . (3.25)

Using the field ~e(x), the effective Lagrangian for Nf = 2 is of the form

Leff(~e) =
F 2
π

2
∂µ~e

T∂µ~e− ~h · ~e . (3.26)

The second term breaks explicitly the O(4) symmetry down to O(3), so it also
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follows the same symmetry breaking pattern as LQCD. The low energy constant

in this term can be perfectly included in the definition of the external field ~h.

3.4.1 Masses of quasi-NBGs

In order to obtain the masses of the quasi-NGBs we are going to expand around

the vacuum solution U(x) = 1. We write U(x) = exp(iπa(x)ηa/Fπ), where a =

1, 2, . . . , N2
f −1, ηa are the generators of SU(Nf ), normalized such that Tr[ηaηb] =

2δa,b generalizing equation (3.3). Now we expand consistently in powers of the

quasi-NBGs up to order πa(x)2

U(x) = 1 + iπa(x)ηa/Fπ −
1

2
(πa(x)ηa/Fπ)2 . (3.27)

Considering equal quark masses, M = mq1, the mass term of the effective La-

grangian is

Tr[M(U + U †)] = mq Tr[U + U †]

= 2mqNf −mq
1

F 2
π

πa(x)πb(x) Tr[ηaηb]

= 2mq

(
Nf −

1

F 2
π

πa(x)πa(x)

)
. (3.28)

Together with the kinetic we obtain

Leff =
1

2
∂µπa∂µπa −

mq

Nf

Σ

(
Nf −

1

F 2
π

πa(x)πa(x)

)
. (3.29)

In classical field theory the corresponding equation of motion is given by

∂µ
δLeff

δ∂µπa
− δLeff

δπa
= ∂µ∂µπa −

2mqΣ

NfF 2
π

πa = 0 . (3.30)

This is the Klein-Gordon equation in Euclidean time, for a pseudo-scalar particle

πa with mass Mπ,

M2
π =

2mqΣ

NfF 2
π

. (3.31)

This expression is known as the Gell-Mann–Oakes–Renner relation [27].
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Considering again two quark flavors we have

M2
π =

mqΣ

F 2
π

. (3.32)

It is natural to relate h ∼ mqΣ.

3.5 Dimensional reduction

Let us consider the system in a finite volume. We assume periodic boundary

conditions, as we mentioned in Chapter 2, this provides translation invariance.

Since we are working with four spacetime dimensions, we assume a 4-d volume

of the form β × V , where β is the extent in Euclidean time tE, and V is the 3-

d spatial volume of a cube of length L. Therefore the Euclidean action for our

effective model reads

SE[~e ] =

∫ β

0

dtE

∫
V

d3x

(
F 2
π

2
∂µ~e(x) · ∂µ~e(x)− ~h · ~e(x)

)
. (3.33)

We are going to consider the case of short β, which in field theory corresponds

to β = 1/T , therefore we consider the case of high temperature. In this case

only the leading modes contribute significantly. All other modes have a higher

energy, p = 2πn/β, n ∈ Z, so in our low effective theory those modes decouple.

This indicates that the Lagrangian is almost constant in tE, and the action (3.33)

reduces to

SE[~e ] = β

∫
V

d3x

(
F 2
π

2
∂i~e(x) · ∂i~e(x)− ~h · ~e(x)

)
, (3.34)

where i = 1, 2, 3 in contrast to µ = 1, 2, 3, 4. This simplification is known as

dimensional reduction. The dimensional reduction takes us to the 3-d O(4) model,

which is endowed with topological charges.
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3.6 The inclusion of the baryonic chemical po-

tential

At fixed Euclidean time tE, the field U(x) ∈ SU(2) maps the 3-d coordinate

space into S3. Geometry tells us that Π3[S3] = Z which implies that the field

configurations fall into topological sectors labeled by a topological charge Q ∈ Z.

In this case it is given by

Q =
1

24π2

∫
d3x εijk Tr ((U∂iU)(U∂jU)(U∂kU)) , i, j, k ∈ {1, 2, 3} . (3.35)

As Skyrme pointed out [28], the topological charge can be interpreted as the

baryon number, even though the field U represents mesons. This term enters in

our effective theory, multiplied by the chemical potential µB

H[~e ] =

∫
V

d3x

(
F 2
π

2
∂µ~e(x) · ∂µ~e(x)− ~h · ~e(x)

)
− µBQ[~e ] . (3.36)

Since Q is a dimensionless number, µB has dimension [mass]. It is interpreted as

the energy decrease if we add a baryon, or the energy increase if we remove an

anti-baryon from the system.

3.7 Lattice regularization

The functional integral as it stands is still a highly divergent expression which

is undefined until we use a regularization scheme. Since we are working with

the topological charge which at a perturbative level is not manifested, we need a

non-perturbative approach. To this end, the only non-perturbative regularization

scheme is practically the lattice regularization, which is perfect if we want to

simulate the system with a computer.

On the lattice, the continuum field ~e(x) is replaced by a lattice field ~ex, which

is defined in the sites x of the 3-d lattice, with lattice spacing a and x/a ∈ Z3.
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We discretize the derivative in the standard form

∂i~e(x)→ ~ex+aı̂ − ~ex
a

, (3.37)

where ı̂ is a unit vector in the direction of the component xi. Therefore we obtain

∂i~e(x) · ∂i~e(x)→
∑
i

(
~ex+aı̂ − ~ex

a

)2

=
∑
i

~e 2
x+aı̂ − 2~ex+aı̂ · ~ex + ~e 2

x

a2

=
2

a2

∑
i

(1− ~ex+aı̂ · ~ex) . (3.38)

Since we are only interested in energy differences, we can drop the additive con-

stant. Therefore the lattice Hamiltonian is written as (with
∫
d3x→ a3

∑
x)

Hlat[~e ] = −F 2
πa
∑
x

∑
i

~ex+aı̂ · ~ex − µBQ[~e ]− a3~h ·
∑
x

~ex . (3.39)

We denote the inverse coupling that we will use in the simulation as βlat, then the

lattice action reads

SE,lat[~e ] = βlatHlat[~e ] = βlat

(
−
∑
x

∑
i

~ex+aı̂ · ~ex − µB,latQ[~e ]− ~hlat ·
∑
x

~ex

)
.

(3.40)

We recognize the physical meaning of the dimensionless parameters that we are

inserting in the simulation code,

βlat = βF 2
πa , µB,lat =

µB
F 2
πa

, hlat =
ha2

F 2
π

. (3.41)

If we consider massless quarks, simulations show that the critical value βc when

µB = 0, where the second order phase transition takes place, is βc,lat = 1/Tc,lat =

0.93590, according to Ref. [29, 30]. If we identify this critical value βc,lat with the

actual cross-over temperature Tx ≈ 155 MeV [31], we could in principle use the

ratio βx/βc,lat to convert µB,lat and hlat into physical units.

We need to estimate a value for hlat that is realistic, since this term represents

the mass term of the quarks. From the Gell-Mann–Oakes–Renner relation we

know that h has units of [mass]4, then we are going to use use the proper powers
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of βx/βc,latt to convert it into lattice units

hlat = h
β4
x

β4
c,lat

= h(145.1 MeV)−4 . (3.42)

According to the Gell-Mann–Oakes–Renner relation

h = F 2
πM

2
π ≈ (92.4 MeV)2(138 MeV)2 = (112.9 MeV)4 = 1.626× 108 MeV4 .

(Since we are not dealing with electromagnetic interactions, we use an inter-

mediate value for the pion using the masses of the charged and neutral pions

M0
π ' 135 MeV, M±

π ' 140 MeV.) Inserting this into (3.42) we obtain

hlat ≈ 0.367 . (3.43)

This value corresponds to a quark mass of

mq =
F 2
πM

2
π

Σ
=

1.626× 108 MeV4

(250 MeV)3
≈ 10.4 MeV . (3.44)

This mass is somewhat higher than mu ' 2.2 MeV, md ' 4.7 MeV, but we know

that they are renormalized. However, it is in the same order of magnitude. Our

SSB picture refers to the pions as the physical degrees of freedom, therefore Mπ

is the reliable quantity to set the scale since it is directly measurable, in contrast

to the quark masses.

In conclusion, in this work we study the low energy dynamics of quasi NGBs,

with two quark flavors, up and down, considering their masses as degenerate. To

this end, we use the 3-d O(4) model as an effective theory. We are going to monitor

the temperature T = 1/β where the crossover takes place, in order to explore the

QCD phase diagram with two massive quark flavors at finite baryon density. This

is done numerically using the algorithm for O(N) models described in Chapter 2,

thus avoiding the numerical sign problem [32, 33].
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Chapter 4

Results for the 3-d O(4) Model

4.1 Set-up

We present simulation results for the 3-d O(4) model, obtained with the Wolff

multi-cluster algorithm using a cubic lattice structure with a volume V = L3, and

periodic boundary conditions in all directions, with an external magnetic field,

hlat = |~hlat| = 0.367, and with chemical potentials µB,lat ∈ {0, 0.2, 0.4, . . . , 2}.

A spin variable is denoted as ~ex, with |~ex| = 1, ∀x = (x1, x2, x3), and the

standard lattice action and Hamilton function with a chemical potential µB and

external field ~h are used,

Slat[~e ] = βlatH[~e ], H[~e ] = H0 +H1 +H2 = −
∑
〈xy〉

~ex ·~ey −~hlat ·
∑
x

~ex− µB,latQ[~e ]

(4.1)

H0 = −
∑
〈xy〉 ~ex · ~ey

H1 = −~hlat ·
∑

x ~ex

H2 = −µB,latQ[~e ],

where Q[~e ] is the topological charge. The following definitions were used to mea-

sure a set of observables:
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energy density ε =
1

V
〈H〉 (4.2)

specific heat cv =
β2

lat

V

(
〈H2〉 − 〈H〉2

)
(4.3)

magnetization density m =
1

V
〈| ~M |〉, ~M =

∑
x

~ex (4.4)

magnetic susceptibility χm =
βlat

V

(
〈 ~M2〉 − 〈| ~M |〉2

)
(4.5)

topological charge density q =
1

V
〈Q〉 (4.6)

topological susceptibility χt =
1

V

(
〈Q2〉 − 〈Q〉2

)
(4.7)

time-layer connected correlator C(r) = 〈~sx3 · ~sx3+r〉 − 〈~sx3〉 · 〈~sx3+r〉 (4.8)

~sx3 =
1

L2

∑
x1,x2

~e(x1,x2,x3)

Since we are dealing with periodic boundaries, the correlation length ξ is ob-

tained from the correlation function by a 2-parameter fit to

C(r) = A cosh((r − L/2)/ξ). (4.9)

4.1.1 Topological charge

In order to compute the topological charge we first need to split the whole lattice

into unit cubes, in each of these vertices lives a spin variable ~ex, we also split each

cube into six tetrahedra with the following configuration of vertices: {F,H,A,E},

{G,B,F,H}, {H,A,B,F}, {H,G,B,D}, {A,B,D,H} and {G,B,D,C}, see figure 4.1.

The four spin variables {~e1, ~e2, ~e3, ~e4} that live at the vertices of each of these

six tetrahedra, span by themselves a spherical tetrahedron,4 see figure 4.2. Its

volume will contribute to the total topological charge of the lattice. We define the

topological charge as the number of times all the tetrahedra in the lattice cover

the surface of the sphere S3. It is important to mention that we take the spherical

tetrahedra with minimal volume, and the contribution to Q is the oriented volume,

which can be positive or negative.

The analytical formula to compute the volume of a spherical tetrahedra was
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developed by Murakami in Ref. [34].

In terms of the edge lenghts l1, l2, l3, l4, l5, l6 of a tetrahedron T , its volume

is given by

Vol(T ) =Re
(
L̃(b1, b2, . . . , b6, z̃0)

)
− πarg(−q̃2)−

6∑
j=1

lj
∂Re

(
L̃(b1, b2, . . . , b6, z)

)
∂lj

∣∣∣∣∣∣
z=z̃0

− 1

2
π2 mod 2π2, (4.10)

where we define bj = eilj for j = 1, 2, . . . , 6 and

L(a1, a2, . . . , a6, z) =
1

2

(
Li2(z) + Li2(a−1

1 a−1
2 a−1

4 a−1
5 z) + Li2(a−1

1 a−1
3 a−1

4 a−1
6 )

+ Li2(a−1
2 a−1

3 a−1
5 a−1

6 z)− Li2(−a−1
1 a−1

2 a−1
3 z)

− Li2(−a−1
1 a−1

5 a−1
6 z)− Li2(−a−1

2 a−1
4 a−1

6 z)

− Li2(−a−1
3 a−1

4 a−1
5 z) +

3∑
j=1

log aj log aj+3

)
,

with aj = eiθj for j = 1, . . . , 6, where θj are the dihedral angles of the tetrahedron.

Li2(z) is the dilogarithm function defined by a series expansion valid for |z| ≤ 1

Li2(z) =
∞∑
k=1

zk

k2
. (4.11)

We define L̃(b1, b2, b3, b4, b5, b6, z) = L(−b−1
4 ,−b−1

5 ,−b−1
6 ,−b−1

1 ,−b−1
2 ,−b−1

3 , z).

We now define the auxiliary parameter z0 as

z0 =
−q1 + 2

√
q2

1 + 4q0q2

2q2

(4.12)

q0 =a1a4 + a2a5 + a3a6 + a1a2a6 + a1a3a5 + a2a3a4 + a4a5a6 + a1a2a3a4a5a6

q1 =− (a1 − a−1
1 )(a4 − a−1

4 )− (a2 − a−1
2 )(a5 − a−1

5 )− (a6 − a−1
6 )(a7 − a−1

7 )

q2 =a−1
1 a−1

4 + a−1
2 a−1

5 a−1
3 a−1

6 + a−1
1 a−1

2 a−1
6 + a−1

1 a−1
3 a−1

5 + a−1
2 a−1

3 a−1
4 + a−1

4 a−1
5 a−1

6

+ a−1
1 a−1

2 a−1
3 a−1

4 a−1
5 a−1

7 .
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Finally, we obtain z̃0 and q̃2 from z0 and q2 by substituting aj with −b−1
j±3 for

j = 1, . . . , 6. It is important to keep the same order of the edges as in figure 4.2.

Since computing the volume of each tetrahedron of the latice takes precious

computing time, we prefer a faster method.

We did this by choosing a random unit vector ~s. If this vector is inside the

spherical tetrahedron spanned by the four spins {~e1, ~e2, ~e3, ~e4} of a single configu-

ration of vertices, then this tetrahedron contributes to the topological charge with

dQ = ±1. The sign of dQ is determined by the orientation of the spherical volume

spanned by these 4 spins. This is done by taking the sign of the determinant of the

matrix [~e1, ~e2, ~e3, ~e4]. The topological charge is then the sum of the contributions

dQ of each spherical tetrahedron spanned by all spins in the lattice:

Q =
∑

tetrahedron i

dQi. (4.13)

The topological charge cannot depend on the election of the random vector ~s, and

we can take it to be ~s = (1, 0, 0, 0). As a consistency test, we checked for a set of

configurations that Q is indeed independent of the choice of ~s, and coincides with

the result obtained from Murakami’s formula.

In order to probe whether if the vector ~s is indeed inside the spherical tetra-

hedron we must solve the following equation for ~T

~s = [~e1, ~e2, ~e3, ~e4]~T . (4.14)

If all the components of ~T are positive, then ~s is inside the spherical tetrahedron.

This method of computing the topological charge is by far the fastest one.

4.2 Results with L = 8, 12, 16, 20

We begin each simulatio with a “hot start” (a random configuration), perform

Ntherm = 104 sweeps of thermalisation, and then proceed to take measurements

every Nskip = 10 sweeps. We used Nmeas = 5 × 104 measurements for statistics

splitted into 5 jobs with 104 measurements each. The errors were obtained by
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Figure 4.1: Decomposition of a single unit cube of the lattice into six tetrahedra.
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Figure 4.2: Spherical tetrahedron spanned by four spins {~e1, ~e2, ~e3, ~e4}. The edges
l1, . . . , l6, are the shortest arcs in S3.
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the “jackknife” method using 5 bins, see Appendix A. The correlation length was

obtained by equation (4.9) using a fit with Gnuplot in the interval [2, L − 2]

in order to exclude contaminations due to higher excitations. We used both the

magnetic susceptibility and the specific heat to extract the crossover βx by a 3-

parameter fit to a Gaussian function

G(β) = A exp

[
−1

2

(
β − βx
σ

)2
]
. (4.15)

We used both quantities to plot the crossover region in the phase diagram. We

did this for every L we simulated, then we extrapolated βx to L→∞ using a fit

to a linear function

βx(1/L) = α

(
1

L

)
+ βx(0). (4.16)

We also measure the autocorrelation function with respect ti the magnetization

ACF (t) = 〈[m(s)− 〈m〉] [m(t+ s)− 〈m〉]〉 ∝ exp

(
− t

τexp

)
(4.17)

to extract the exponential autocorrelation time τexp. For a discrete set of data we

can approximate the normalized autocorrelation function as

ACF (t) =
1

(Nmeas − t)σ2

Nmeas−t∑
k=1

[m(k)− 〈m〉] [m(k + t)− 〈m〉] , (4.18)

where t = 0, . . . , Nmeas − 1 and σ2 is the variance of the data set.

The autocorrelation time is a measure of how long it takes to the system

to move from one configuration to another which is significantly different, i.e.

statistically independent. If we want truly independent configurations, we may

want to take our measurements at intervals greater than one τexp. One can simply

take measurements at intervals of 2τexp, see Ref. [14] for more details.

If we take Nmeas measurements, the number of independent measurements after

thermalization, is of the order of

n =
Nmeas

2τexp

. (4.19)
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4.2.1 Results at chemical potential µB,lat = 2

We begin this section by analyzing the autocorrelation time in figure 4.3, to see

whether we have a decent statistics or not. The largest value of τexp we have,

is around 25 sweeps, according to equation (4.19) this leaves us a number of

independent measurements of around 5× 104/(2.5× 2) = 104 which are separated

by 10 sweeps. Of course this number decreases as βlat decreases. The lower τexp is

around 10 sweeps, so we have a statistics of 2.5× 104 independent measurements.

We can say that we indeed have a decent statistics since at least we have between

half and a fifth of the independent measurements left.

Figure 4.4 shows the time it took for the simulation to run a single job with

104 measurements separated by 10 Monte Carlo sweeps. We made a 2 parameter

fit to a power law function f(V ) = αV β in order to predict the time at different

volumes.
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Figure 4.3: Exponential autocorrelation time in units of MC sweeps vs. βlat.

In figure 4.5 we see the average size of the clusters of the Wolff algorithm. At

high temperatures most of the clusters consist of a single spin. At low temperatures
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the algorithm tends to create larger clusters. We see that the cluster size in small

volumes is a bit larger than in extended volumes, this is due to the periodic

boundaries. In small volumes a cluster is prone to close at the boundaries which

makes it a bit larger.

Figure 4.6 is the acceptance rate of the flips of the Wolff algorithm with the

modified flip probability.
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Figure 4.4: Average time in days of one single job with 104 measurements of
statistics separated by 10 sweeps vs. the volume V = L3 of the lattice. We
include a fit to a power law. We used cores with a CPU clock speed of 2.40GHz.

Now we show plots for the observables defined earlier in this chapter. At this

value of the chemical potential and at L = 16 we took 105 measurements instead

of 5× 104.

In figure 4.7 we see that the energy density of the system follows a smooth

curve, which is stable in the volume. A way to tell if the system undergoes a

first order phase transition is to look for discontinuities in some observables at βc.

In this case, the fact that we see a smooth curve agrees with the literature that

indicate that the QCD phase diagram have whether a crossover or a first order

48



4.2. RESULTS WITH L = 8, 12, 16, 20

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0.75  0.8  0.85  0.9  0.95  1

⟨c
lu

st
e
r 

si
ze
⟩

βlat

hlat = 0.367, µlat = 2

L = 8
L = 12
L = 16
L = 20

Figure 4.5: Average of the cluster size vs. βlat.

phase transition, in our case we can say that we are in the crossover region.

Figure 4.8 shows the magnetization density. We see that it converges a bit

slower than the energy density with increasing volume. Again, we observe a

smooth behavior without any discontinuities.

Figure 4.9 shows the specific heat defined in equation (4.3). Although we

observe that the peak increases at larger volumes, but this effect does not trend

towards a divergence for V →∞, despite its peak gradually increasing. Therefore

we can conclude that we are indeed in the crossover region. The fits using equation

(4.15) are also shown to evaluate βx in each volume. Figure 4.10 shows the βx

against the inverse of the lattice size L in order to extrapolate βx to infinite volume,

which is the value that we plot in the phase diagram.

Figures 4.11 and 4.12 show the magnetic susceptibility and the extrapolation

of βx to infinite volume. In the case of the specific heat we obtain βc = 0.950(15),

but using the magnetic susceptibility we obtain βc = 0.793(2). This discrepancy

in the values of βc illustrates the fact that a crossover occurs in a region of the
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Figure 4.6: Acceptance rate of the flips vs. βlat.

phase diagram rather than a single line.

Figure 4.13 depicts the topological charge density. It is also a smooth curve

and for increasing volume. In figure 4.14 the topological susceptibility is shown:

we see that at low βlat this observable increases with increasing volume.

One of the most important quantities to measure is the correlation length ξ.

This quantity set a physical scale of the system. We measured this by computing

first the ξ for every single job, then we took the average and computed errors using

the jackknife method with 5 bins.

4.2.2 Results at L = 20

We now show corresponding results at µB,lat ∈ {0, 0.2, . . . , 2} with fixed volume

V = 203.

In figure 4.16 we see that the autocorrelation time increases with increasing

µB,lat, This indicates that at higher values of the chemical potential, we can no

longer rely on our statistics, which implies that we need to take more measurements
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Figure 4.7: Energy density vs. βlat.

at larger intervals.

In figure 4.19 we observe that the crossover βx,lat does not change when the

chemical potential changes. So in our phase diagram we will obtained a crossover

line which is almost constant in µB.

On the other hand, if we observe figure 4.20 we now see a change in βx,lat, which

will be reflected in the phase diagram of temperature vs. chemical potential as a

decreasing line.
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Figure 4.20: Magnetic susceptibility vs. βlat.
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Figure 4.21: Topological charge density vs. βlat.
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Figure 4.22: Topological susceptibility vs. βlat.
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Chapter 5

Conclusions

In this work we explored the two flavor QCD phase diagram with massive quarks

by studying the 3-d O(4) model. Since this model does not suffer from the sign

problem, we could simulate the system at finite baryon density.

A variety of chemical potential, µB,lat were simulated the system with different

lattice volumes, V = 83, 123, 163, 203. We extracted the crossover temperatures

Tx,lat = 1/βx,lat which we plot in the phase diagram, by extrapolating βx,lat to

infinite volume, using a Gaussian fit for the specific heat cV and the magnetic

susceptibility χm. Since the transition is a crossover, there is no single point

which can be identified as the point where the transition actually takes place,

instead there is a region which is given by cv and χm. Without a chemical potential

µB,lat = 0, the crossover occurs at βx,lat = 0.931(8) for the cV , and βx,lat = 0.680(1)

for the χm. In order to convert the chemical potential and the temperatures into

physical units we took the average of these two, βx,lat = 0.806(5), and the ratio

between this and the physical value βx ≈ 1
155 MeV

βx,lat

βx
≈ 125 MeV . (5.1)

Finally we multiplied the temperature and the chemical potentials with this con-

stant to obtain the physical values.

Figure 5.1 depicts the QCD phase diagram with two massive quark flavors.

The red line is the crossover temperatures Tx = 1/βx using cV and the green line

using χm.
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Reference TCEP µCEP

[35] 0.85Tc 1.11Tc
[39] 69.9 MeV 319.1 MeV
[40] 5.1 MeV 286.7 MeV
[41] 144-155 MeV > 2TCEP

[36] 112 MeV 204 MeV
[37] 119-162 MeV 84-86 MeV
[38] 38 MeV 245 MeV
[42] > 133.3 MeV
[43] > 130 MeV > 133.3 MeV
[44] 18-45 MeV 315-349 MeV

This work > 250 MeV

Table 5.1: Estimations of CEP by some authors including ours. Table taken from
Ref. [44].

The main goal of this work was to check whether the hypothetical critical end

point exists or not. A CEP was not observed in the range of energies we worked

with. Nonetheless, our effective theory successfully predicts the decreasing behav-

ior of the crossover line at least with the line using the magnetic susceptibility.

With our data, we can at least give a lower bound for the CEP, µB = 250 MeV.

If we rely in our effective model, we can discard some of the estimations for the

CEP in table 5.1, such as the ones in references [35], [36], [37] and [38].

Higher chemical potentials µB are difficult to simulate, due to increasing auto-

correlation time, which implies an increase in the computing time due to the need

of taking the measurements at higher intervals in order to have decent statistics.

The main limitation of our effective theory is that the dimensional reduction

requires high energy, where the 2-flavor approximation is questionable. In order

to fix this need to include at least the quark s, which implies derivatives in the

effective Lagrangian of higher orders. Including such term has the effect that the

3-d O(4) model is no longer feasible to study the QCD phase diagram.
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Appendix A

Jackknife Error

Suppose a set of data of a certain quantity O with N elements is given. Then the

jackknife error algorithm is specified by the following sequence of steps:

Jackknife method

1. Calculate the average Ō from the full data set.

2. Split the data set in M segments, or bins, with the same number of

elements.

3. For each m = 1, . . . ,M remove the m-th block and calculate the av-

erage Ō(m) from the data of the M − 1 remaining blocks.

4. Estimate the error of O by

δOjackknife =

√√√√M − 1

M

M∑
m=1

(Ō(m) − Ō)2 .
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