

Universidad Nacional Autónoma de México

FACULTAD DE CIENCIAS

ESTUDIO DEL MODO PLASMÓNICO COLECTIVO EN SISTEMAS MONOCAPA DESORDENADOS FORMADOS POR NANOPARTÍCULAS ESFÉRICAS Y SU ANÁLISIS PARA BIOSENSADO

T E S I S

QUE PARA OPTAR POR EL GRADO DE: Físico

PRESENTA:

Jonathan Alexis Urrutia Anguiano

DIRECTOR DE TESIS: Dr. Alejandro Reyes Coronado

Cd. Universitaria, Cd. de México, YYYY 2019

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

1. Datos del alumno Urrutia Anguiano Jonathan Alexis 55 44 44 60 93 Universidad Nacional Autónoma de México Facultad de Ciencias Física 414011025 2. Datos del tutor Dr Alejandro Reyes Coronado 3. Datos del sinodal 1 Dr Rubén Gerardo Barrera y Pérez 4. Datos del sinodal 2Dra Citlali Sánchez Aké 5. Datos del sinodal 3 Dr Guseppe Pirruccio 6. Datos del sinodal 4 Dra CeliaAngelina Sánchez Pérez

7. Datos del trabajo escrito Estudio del modo plasmónico colectivo en sistemas monocapa desordenados formados por nanopartículas esféricas y su análisis para biosensado 107p YYYY

Agradecimientos

En estas líneas agradezco a quienes me brindaron apoyo y me guiaron durante mis estudios profesionales en la Universidad Nacional Autónoma de México (UNAM). Primeramente, en el ámbito académico, agradezco al Dr. Alejandro Reyes Coronado por sus consejos a lo largo de varios años de trabajo junto a él; a la Dra. Citlali Sánchez Aké por permitirme acercarme al trabajo experimental en su laboratorio; al Dr. Rubén Gerardo Barrera y Pérez no sólo por sus enseñanzas en la física, sino por mostrarme que la vida hay que disfrutarla; y al Dr. Guiseppe Pirruccio por sus valiosos comentarios y críticas al trabajo. Asimismo, agradezco al proyecto DGAPA-UNAM PAPIIT IN114919 por el apoyo económico que me otorgó a lo largo de un año para desarrollar mi trabajo de tesis de licenciatura y al programa de movilidad estudiantil de la Dirección General de Cooperación e Internacionalización por corroborar que la formación que me dio la UNAM compite con la de cualquier lado del mundo.

También quiero reconocer el esfuerzo de mi familia: a mi mamá, quien, entre muchas otras cosas, me enseñó que lo que uno hace por los demás no es una molestia sino una muestra de cariño; a mi papá, por desarrollar un interés en lo que me apasiona y conocerme a través de ello; a mis hermanas, Abby y Dianis, por aconsejarme desde la experiencia y el entendimiento en la que fue una nueva etapa; y a Mamá Bola y a Tío Beto, por todo lo que fueron para mí.

Igualmente, le doy las gracias a quienes me siguen acompañando desde hace varios ayeres: a Ximena LP, David de Aragón, Adrián AJ y Bryan ChH, por amistades eternas basadas en discutir, en escuchar, en descubrir y en reconocer, respectivamente, y que con el paso del tiempo sólo ganan fortaleza y significado para mí; y a Karla GB, por forjar conmigo una relación que, pese a nuestro reniegue por el otro, ha sido de las más valiosas.

Finalmente, les ofrezco (en orden cronológico) mis más sinceras palabras de gratitud por una camaradería siempre creciente: a Leo GP, por brindarme una amistad que me costó el último bocado de chilaquiles, el cual cedería de nuevo; a Clau GR, por las intermitentes, pero siempre gratificantes, pláticas rondando por la ciudad; a AJ Polanco, por tus habilidades culinarias y por encarnar la fidelidad con los amigos; a EA Conde, por su sinceridad perpetua y clases de baile; a Jorge BD, por compartir conmigo *el juego* de la ayudantía, la tesis y los propes; a Diana PV, por el asilo en su cubo y la confianza que nos dimos; a Mariana dBF, por enseñarme nuevas formas de aprender y el mensaje de Moby Dick: ser tú mismo; a Juan José BM, por ser las Prispas en medio de las Pringles (en varios sentidos); *Karen LM, für die schöne Piñata und die unerwartete Freundschaft; den faulen Veronika Z, Darko Z und C Ying, die meine Familie waren und mit denen ich nur Abenteuer erlebt;* al gran JC, por las clases de mecánica y termo, pero también por mostrar determinación en lo que se quiere; y (nuevamente) a Clau GR por permitirme conocernos de nuevo, aprender del otro y crecer juntos.

Resumen/Abstract

Los biosensores plasmónicos comerciales tradicionalmente emplean plasmones-polaritones de superficie excitados en una película continua de oro. Recientemente, se han propuesto arreglos nanoestructurados tanto periódicos como desordenados para el biosensado empleando resonancias plasmónicas de red de superficie y resonancias de plasmón de superficie localizadas, respectivamente. Sin embargo, en general, su fabricación es lenta y costosa, pues involucran técnicas de fabricación como la litografía coloidal de hueco-máscara, y deposición por evaporación catódica y formación de poros. Como una alternativa, en este trabajo de tesis de licenciatura se estudia la posibilidad de emplear sistemas monocapa desordenados de nanopartículas esféricas tanto de oro como de plata para biosensado, analizando su reflectancia y transmitancia de forma teórica por medio del modelo de esparcimiento coherente. Dicho modelo predice la existencia de un supuesto modo plasmónico colectivo de la monocapa, excitado en incidencia interna, que puede sintonizarse al elegir el radio a de las nanopartículas que forman la monocapa y su fracción de cubierta Θ . Los resultados obtenidos muestran que una monocapa desordenada de nanopartículas esféricas de oro con radio a = 30 nm y $\Theta = 0.125$ podría emplearse para el biosensado al igual que una monocapa de nanopartículas de plata de a = 40 nm y $\Theta = 0.1$. La comparación del supuesto modo plasmónico colectivo predicho por el modelo de esparcimiento coherente con la resonancia plasmónica de red de superficie y la resonancia de plasmón de superficie localizada muestra sensibilidades similares para ángulos de incidencia cercanos al ángulo crítico. Adicionalmente, en este trabajo se compara la sensibilidad del supuesto modo plasmónico colectivo —excitable en ambas polarizaciones— con la del plasmón-polaritón de superficie que sólo se excita en polarización p—, mostrando que existen condiciones particulares en las que la sensibilidad de una monocapa de nanopartículas de oro (plata) es comparable con la de una película delgada de oro (plata).

Commercial plasmonic biosensors use traditionally surface plasmon-polaritons excited on a continuous gold film. Periodic and disordered nanostructured arrays have been recently proposed for biosensing by employing plasmonic surface lattice resonances and localized surface plasmon resonances. However their production is generally expensive and time consuming due to their fabrication techniques such as hole-mask colloidal lithography or sputtering deposition followed by pore formation. As an alternative, in this bachelor thesis it is studied the possibility to use disordered monolayers of gold and silver spherical nanoparticles as a biosensor, by analyzing theoretically their reflectance and transmittance by means of the coherent scattering model. This model predicts a collective-like plasmonic mode, excited in an internal reflectance configuration and for both polarizations, which can be tuned by choosing the radius (a) of the nanoparticles in the monolayer and its cover fraction Θ . The obtained results show that a monolayer of gold nanoparticles with a = 30 nm and $\Theta = 0.125$ could be used for biosensing, as well as a monolayer of silver nanoparticles with a = 40 nm and $\Theta = 0.1$. The performed comparison for the sensitivity between the collective-like plasmonic mode and both the plasmonic surface lattice resonances and the localized surface plasmon resonance shows it is similar for angles of incidence close to the critical angle. In addition, the sensitivity of the collective-like plasmonic mode and the surface plasmon-polariton were compared, showing that under particular conditions the sensitivity of a monolayer formed by gold (silver) nanoparticles is comparable to that of a thin gold (silver) film.

"Wo es viel Licht ist, ist auch viel Schatten." "Donde hay mucha luz, la sombra es profunda."

G"otz von Berlichingen, primer acto.

J. W. von Goethe

Índice general

	Agradecimientos			III	
	Resumen				
	Introducción				
1.	Teoría				
	1.1.	Ecuaciones de Maxwell y fórmulas de Fresnel			
	1.2.				
		1.2.1.	Solución a la ecuación de onda con simetría esférica	16	
	1.3.	Respu	esta electromagnética de materiales plasmónicos	26	
		1.3.1.	Modelo de Drude-Sommerfeld	26	
		1.3.2.	Corrección por tamaño para partículas esféricas	28	
		1.3.3.	Plasmones	30	
	1.4.	Model	o de esparcimiento coherente	40	
		1.4.1.	Monocapa suspendida en el espacio libre	42	
		1.4.2.	Monocapa soportada sobre un sustrato	47	
2.	Res	puesta	óptica de una monocapa desordenada de nanopartículas esféricas	51	
	2.1. Análisis con el modelo de Drude-Sommerfeld				
		2.1.1.	Reflectancia de una monocapa suspendida en agua	52	
		2.1.2.	Reflectancia y transmitancia de una monocapa soportada sobre un sustrato en configuración de reflexión total atenuada	54	
	2.2. Reflectancia y transmitancia de una monocapa de nanopartículas de materiales reales: oro y plata		64		
	2.3.	Anális	is de sensibilidad de una monocapa como biosensor $\ldots \ldots \ldots \ldots \ldots$	75	
	Conclusiones			81	
A.	Con de r	nparac nanopa	ión de la sensibilidad de una película continua y de una monocapa rtículas	83	
Ín	dice	alfabé	tico	93	

Introducción

Las propiedades físicas de los materiales dependen en general del tamaño del sistema [1], por ejemplo, a escala nanométrica —de 1 a 100 nm [1]—, la respuesta electromagnética (EM) de bulto de los metales es menos relevante que los efectos de superficie [2]. La nanoplasmónica estudia la respuesta EM a esta escala y el interés en su estudio se ha renovado debido a las posibles aplicaciones que emplean las resonancias plasmónicas de superficie (Surface Plasmon Resonances, SPRs), como la espectroscopía [3], el sensado [4], la litografía [5], la biología y medicina [4]. Otro ejemplo donde la nanoplasmónica ha impactado es en el área de los biosensores [6, 7], definidos como "dispositivos [...] basados en elementos de reconocimiento biológico conectados a un transductor de señal, que relaciona la concentración de [uno o varios analítos] a una señal medible" [7]. Los biosensores se clasifican según el método de reconocimiento del analito, o bien, del transductor empleado [7]. Dentro de los biosensores comerciales, los ópticos se caracterizan por su estabilidad, por sus mediciones sin marcadores, y por la posibilidad de miniaturización y de multiplexeo [6], sobre todo los que se basan en nanoestructuras plasmónicas.

Los plasmones son oscilaciones colectivas de los electrones libres en un material metálico, resultado del acoplamiento con la radiación EM a las frecuencias en las que ocurren las SPRs [5]. Los plasmones pueden excitarse dentro de un metal (plasmones de volumen) o sobre la superficie de alguna estructura metálica (plasmones de superficie) [8], en cuyo caso, los plasmones pueden ser de dos tipos: propagantes y localizados. Cuando el plasmón se propaga a lo largo de una interfaz plana entre un medio dieléctrico y uno metálico se le denomina *plasmón-polaritón de superficie* (Surface Plasmon Polariton, SPP) [8]. Si el plasmón, en cambio, se encuentra en la superficie de una partícula metálica, de tamaño finito, se le conoce como *resonancia de plasmón de superficie localizado* (Localized Surface Plasmon Resonance, LSPR) [8].

Los biosensores ópticos emplean las SPRs por la respuesta que tienen ante cambios del índice de refracción de la matriz [9], que es el medio que rodea la estructura metálica. Los sensores comerciales se caracterizan por el uso de SPPs [6] en una configuración de reflexión total atenuada (Attenuated Total Reflection, ATR), en donde el índice de refracción del medio donde incide la luz que ilumina a la estructura metálica es mayor al de la matriz [ver Fig. 1]. Las mediciones de reflectancia, en un sistema en configuración ATR, presentan mínimos para determinadas combinaciones de ángulos de incidencia θ_i y longitud de onda λ [10]. Los sensores basados en las LSPRs [ver Fig. 1b)] han sido propuestos por algunos autores como mejora sobre los sensores comerciales [4, 9], debido a que las LSPRs reducen el área de sensado a las dimensiones de la NP y, al poder ser excitados con iluminación directa, permiten miniaturizar el arreglo experimental empleado [6].

Fig. 1: Iluminación de a) una película delgada y b) un arreglo de NPs esféricas desordenadas por un haz óptico de longitud de onda λ , en configuración ATR.

En el 2009 se publicó un artículo 9 en el que se propone un sistema bidimensional de NPs cilíndricas de oro, localizadas periódicamente, para la mejora de la resolución en el biosensado [ver Fig. 2a)]; las dimensiones de los nanocilindros y el parámetro de red del arreglo son menores que la longitud de onda con la que se ilumina el arreglo [9]. En el artículo se reportó un modo plasmónico distinto a los modos de las NPs individuales, que permite el sensado del índice de refracción de la matriz y se le denominó modo guiado [9]. En el 2018 se publicó que este modo es una respuesta colectiva del arreglo periódico [10] y que depende del parámetro de red; en este artículo se le identificó como una resonancia de red de superficie plasmónica (Plasmonic Surface Lattice Resonance, PSLR), las cuales ocurren cuando un ravo que se refracta por la estructura periódica excita una LSPR en los elementos de la estructura [11]; las PSLR dependen del ángulo de incidencia y de la periodicidad del arreglo [10] y pueden acoplarse con la matriz o con el sustrato. En la Fig. 2b) se reproducen las gráficas (extraídas de 9) de la reflectancia como función de la longitud de onda, para el arreglo mostrado en la Fig. 2a), en donde se consideró un sustrato de vidrio (n = 1.5) y una matriz de aire (n = 1), así como una monocapa de nanocilindros de 360 nm de largo, 25 nm de diámetro, con una separación entre ellos de 60 nm. La respuesta EM del arreglo de nanocilindros fue calculada al considerar a los cilindros como nanoesferoides y emplear una modificación del modelo de Maxwell Garnett [12] —que es una teoría de medio efectivo¹— para la función dieléctrica efectiva de la monocapa $\varepsilon(\omega) = n^2(\omega)$. En la Fig. 2c) se grafica la relación de dispersión (energía como función de la proyección perpendicular al sustrato del vector de onda) de la PSLR (puntos blancos), mientras que en la Fig. 2d) se grafican los resultados experimentales del corrimiento de la PSLR al cambiar el índice de refracción de la matriz (reproducida de [10]).

Los cálculos de la reflectancia en ATR [Fig. 2b)], muestran las resonancias plasmónicas típicas de NPs individuales para cilindros (modo longitudinal alrededor de 720 nm y el transversal alrededor de 500 nm) y adicional a ellas, se observa la PSLR alrededor de los 1,050 nm. La PSLR, al excitarse a energías menores del modo longitudinal, no puede corresponder a una resonancia de NP individual y por tanto debe corresponder a un modo colectivo. En la Fig. 2c) se grafica la relación de dispersión de dicho modo, donde los puntos blancos corresponden a los mínimos en la reflectancia alrededor de 1,050 nm de la Fig. 2b) de la PSLR. Las líneas punteadas en la Fig. 2c) corresponden a los ángulos críticos de las interfaces del medio efectivo simulado con el aire (línea superior izquierda) y con el sustrato (línea inferior derecha); la región oscura debajo

¹Proceso de homogenización en donde se sustituye el medio heterogéneo por un medio continuo equivalente. Este proceso se basa en la respuesta promedio del medio original cuando la longitud de onda de la luz incidente es grande en comparación a las dimensiones del sistema [13].

Fig. 2: a) Esquema de un arreglo periódico cuadrado de nanocilindros de oro —extraído de [9]—. b) Cálculos de la reflectancia —extraídos de [9]— como función de la longitud de onda λ , para distintos ángulos de incidencia, y c) de la relación de dispersión —extraída de [9]—, considerando nanocilindros inmersos en una matriz de aire (n = 1), sobre un sustrato de vidrio (n = 1.5), de 360 nm de largo, 25 nm de diámetro y una separación de 60 nm entre ellos. En d) se grafican los resultados experimentales —extraídos de [10]— del corrimiento de las PSLR excitadas para un arreglo de nanocilindros inmersos en agua y soportados por un sustrato de vidrio para un ángulo de incidencia de 46° y 73°; para este caso se emplearon cilindros de altura de 90 nm, de diámetro de 134 nm y una separación de 320 nm. Las mediciones se realizaron cuando las oscilaciones del plasmón se acoplan con la matriz (PSLR_{H2O}) y con el sustrato (PSLR_{sus}).

de la línea punteada inferior derecha representa las combinaciones de energía y vector de onda sin sentido físico². En la Fig. 2d) se muestra el corrimiento de la longitud de onda de excitación $\delta\lambda$ de las PSLRs como función del índice de refracción de la matriz n —medido en unidades de índice de refracción (Refractive Index Units, RIU)— cuando un haz de luz que incide a 46° (líneas punteadas) y a 73° (líneas sólidas) se difracta por la matriz de agua (líneas roja y magenta) y por el sustrato de vidrio (líneas azul y morado). Dentro de la gráfica se muestran los valores de la sensibilidad $\delta\lambda/\delta n$ para cada caso.

²La proyección del vector de onda perpendicular a la interfaz está dada por $k_z = (\omega/c)n_m \cos \theta_i$, donde ω y θ_i son la frecuencia angular y el ángulo de incidencia de la onda plana incidente, respectivamente. La combinación de $\hbar \omega$ y k_z en la región negra de la Fig. 2c) corresponde a valores donde $\cos \theta_i > 1$, dando como resultado un ángulo complejo de incidencia, por lo que no tiene sentido físico.

Los biosensores basados es nanoestructuras periódicas ordenadas, como el de nanocilindros mostrado en la Fig. 2a), pueden ser sintonizados a una longitud de onda particular al ajustar el parámetro de red del arreglo, permitiendo optimizar la medición del sensor para cada tipo de muestra, además de ser compatibles con equipos comerciales actuales [9]. Sin embargo, la fabricación de arreglos ordenados de NPs presenta una complicación técnica de alto costo y largo tiempo de fabricación [6], por lo que en esta tesis se propone el uso de un arreglo bidimensional desordenado de NPs esféricas que presente una respuesta colectiva semejante a la reportada en [9] y [10]. Se ha observado que la respuesta colectiva en un arreglo desordenado también es sintonizable según las propiedades de las NPs empleadas, por lo que su uso en sensado no sólo cuenta con las ventajas de los sensores propuestos en [9] y [10], sino también una reducción en los precios y tiempos de fabricación.

Para caracterizar la respuesta óptica de un arreglo bidimensional desordenado de NPs esféricas plasmónicas se emplea el modelo de esparcimiento coherente (Coherent Scattering Model, CSM) [14], el cual proporciona expresiones analíticas para los coeficientes de amplitud de reflexión y de transmisión para una monocapa de NPs esféricas, idénticas, y desordenadas. Las expresiones dadas por el CSM dependen de las componentes de la matriz de esparcimiento que aparece en la solución de Mie —que resuelve los campos EMs esparcidos por una esfera iluminada por una onda plana monocromática [15]—, así como la respuesta EM del material con que están hechas las partículas esféricas de la monocapa: la función dieléctrica $\varepsilon(\omega)$. Para caracterizar una excitación equivalente a la PSLR estudiada en [9] y [10], es decir, una respuesta colectiva apta para el biosensado, se calcula la reflectancia y transmitancia del sistema monocapa mediante los coeficientes de amplitud de reflexión y transmisión del CSM.

Adicional a la caracterización de la respuesta óptica de una monocapa desordenada de NPs esféricas e idénticas dada por el CSM, se realiza una comparación entre ésta y la respuesta óptica de los biosensores comerciales basados en SPPs. La comparación se realiza mediante un análisis de sensibilidad (el corrimiento de la longitud de onda de la resonancia respecto al cambio del índice de refracción de la matriz $\delta \lambda_{res}/\delta n$) y de la figura de mérito (Figure Of Merit, FoM) de bulto FoM_B —definida como $(\delta \lambda_{res}/\delta n)/\Gamma$, con Γ la anchura a media altura (Full Width at Half Maximum, FWHM)—, como se efectúa en [16], donde se compara experimentalmente la respuesta óptica de una monocapa desordenada de nanodiscos (NDs) de oro [ver Fig. 3a)] con la de una película continua de oro. Los NDs empleados en [16] son nanocilindros de 30 nm de altura y 120 nm de diámetro³, mientras que el grosor de la película continua es de 50 nm: estos parámetros sintonizan la LSPR de los ND y el SPP a 700 nm, considerando $\theta_i = 70^\circ$. En la Fig. 3b) se grafica la longitud de onda de resonancia λ_{res} del arreglo desordenado de NDs, que coincide con la LSPR de los nanocilindros individuales, como función del ángulo de incidencia θ_i ; los valores de λ_{res} corresponden a los mínimos de la transmitancia graficada en el recuadro dentro de la Fig. 3b). En la Fig. 3c) i) se grafican la reflectancia y la transmitancia en una configuración de iluminación directa del arreglo desordenado de NDs, mientras que en la Fig. 3c) ii) se grafica la reflectancia. en configuración ATR, para la película continua de oro, en ambos caso se considera una matriz de agua (n = 1.33) y de agua con distintas concentraciones de etilenglicol. Finalmente, en la Fig. 3c) iii) se grafica el corrimiento de la resonancia $\delta \lambda_{res}$ como función del índice de refracción de la matriz; la sensibilidad tanto del SPP como la LSPR de los NDs se muestran dentro de la gráfica. A partir de la Fig. 3c) se concluye en [16] que la sensibilidad del SPP (3, 300 nm RIU⁻¹) es mayor

³En [16] no se da información sobre la fracción de cubierta ni de la distancia mínima promedio entre NDs.

Fig. 3: a) Micrografía de electrones de barrido de la muestra del arreglo desordenado de NDs —nanocilindros de 30 nm de altura y 120 nm de diámetro— de oro sobre vidrio. El recuadro interior muestra una fotografía de la muestra con un sustrato de 2.5 cm de diámetro. b) Gráfica de la longitud de onda de resonancia λ_{res} del arreglo desordenado de NDs como función del ángulo de incidencia para ambas polarizaciones: s y p. Los valores de λ_{res} corresponden a los mínimos de la transmitancia graficada dentro del recuadro. c) Gráfica i) de la transmitancia y reflectancia del arreglo de NDs en iluminación directa y ii) de la reflectancia de una película delgada de oro de 50 nm de grosor en una configuración ATR como función de la longitud de onda λ , considerando una matriz de agua (n = 1.33) y de agua con distintas concentraciones de etilenglicol; iii) corrimiento de λ_{res} presente en la película delgada y en el arreglo de NDs; el valor de la sensibilidad de cada arreglo se encuentra dentro de la gráfica. Todas las gráficas fueron extraídas de [16].

a la del arreglo desordenado de NDs (178 nm RIU⁻¹), lo cual también ocurre con las FoM: para el SPP se obtiene que $FoM_{B,SPP} \approx 57 \text{ RIU}^{-1}$, mientras que para los ND $FoM_{B,ND} \approx 2 \text{ RIU}^{-1}$. Los resultados reportados en [16] para la sensibilidad y la FoM_B son consistentes con lo reportado en la literatura [17, 18].

El objetivo de esta tesis de licenciatura es caracterizar la respuesta EM de una monocapa desordenada de NPs esféricas idénticas soportada por un sustrato, calculando la reflectacia y transmitancia de forma analítica por el formalismo del CSM (considerando monocapas formadas por NPs de oro y de plata), y compararla tanto con la de una película continua de 50 nm de grosor (sistema empleado en biosensores comerciales) [16], como con la de una monocapa de nanocilindros ordenados [9, 10] y con la de una monocapa de nanodiscos desordenados [16], y evaluar si el sistema de NPs esféricas desordenadas es apto para el biosensado.

Para determinar si una monocapa desordenada de nanopartículas esféricas puede ser empleada como biosensor, se realizaron cálculos de la reflectancia en ATR para una monocapa de NPs embebidas en agua y soportadas por un sustrato de vidrio, considerando que la función dieléctrica de las NPs en la monocapa está dada por el modelo de Drude-Sommerfeld. Se caracterizó un modo plasmónico distinto a las SPRs de partículas individuales mediante variaciones del radio de las NPs y de la fracción de cubierta de las monocapa. Es decir, primero se estudió el supuesto modo plasmónico colectivo para una monocapa de NPs ideales, y posteriormente se estudiaron monocapas con NPs de materiales reales: oro y plata. Mediante la caracterización, variando nuevamente el radio de las NPs de la monocapa y la fracción de cubierta de ésta, se determinaron los parámetros óptimos para que las monocapas de NPs de oro y de plata sean propuestas como biosensores. Finalmente, se comparó la sensibilidad del supuesto modo plasmónico colectivo ante cambios en el índice de refracción de la matriz donde están embebidas las NPs con la sensibilidad del SPP excitado en una película continua de oro de 50 nm (sensores comerciales) y con propuestas de arreglos nanoestructurados para el biosensado publicados en [9, 10, 16]; asimismo se calcularon las FoM de bulto para el supuesto modo plasmónico colectivo y para el SPP considerado tanto oro como plata para las NPs en la monocapa y para la película continua.

Esta tesis está dividida en tres partes: Teoría (capítulo 1), Respuesta óptica de una monocapa desordenada de nanopartículas esféricas (capítulo 2) y Conclusiones. En el capítulo 1, se presentan en la sección 1.1 la solución tipo ondas planas de las ecuaciones de Maxwell y las ecuaciones de Fresnel para describir el comportamiento de una onda plana monocromática al incidir sobre una superficie plana entre dos medio materiales lineales, homogéneos e isótropos, mientras que en la sección 1.2 se estudia la solución de Mie, que resuelve las ecuaciones de Maxwell para una partícula esférica, empleando la matriz de esparcimiento que relaciona los campos EMs esparcidos por la esfera con los campos EMs incidentes, explicando el problema de absorción y esparcimiento de luz por una partícula esférica de material y tamaño arbitrario. En la sección 1.3 se estudia la respuesta EM de materiales plasmónicos en bulto y a escala nanométrica: en la subsección 1.3.1 se presenta el modelo de Drude-Sommerfeld (respuesta EM de un gas de electrones libres) para la función dieléctrica, mientras que en la sección 1.3.2 se presenta un método para determinar los parámetros del modelo de Drude-Sommerfeld que ajustan a los datos experimentales de la función dieléctrica del oro y de la plata, así como una corrección por tamaño de la función dieléctrica para NPs esféricas; asimismo, en la sección 1.3.3 se presentan los plasmones, que son oscilaciones colectivas resultado del acoplamiento entre una onda plana y los electrones libres de algún material. En la sección 1.4 se estudia el CSM, que proporciona expresiones analíticas para los coeficientes de amplitud de reflexión y de transmisión de una monocapa desordenada de NPs esféricas e idénticas, suspendida en el espacio libre (sección 1.4.1) y soportada por un sustrato (sección 1.4.2), cuando una onda plana monocromática incide sobre la monocapa. Posteriormente, en el capítulo 2, se presentan en la sección 2.1 los resultados de la reflectancia de una monocapa de NPs con una función dieléctrica tipo Drude, suspendida en el espacio libre (subsección 2.1.1) y soportada por un sustrato e iluminada en una configuración ATR (subsección 2.1.2). En la sección 2.2 se presentan los resultados de la reflectancia en una configuración ATR de un monocapa de NPs de oro y de plata y en la sección 2.3 se realiza un análisis de sensibilidad para una monocapa de NPs esféricas de oro y se compara con la de una película continua de oro 50 nm de grosor y con la propuestas de sistemas nanoestructurados. Por último, se escriben las conclusiones, con base en los resultados del capítulo 2, para el posible empleo de una monocapa de NPs de oro y de plata como biosensor, así como trabajo a futuro.

Capítulo 1

Teoría

En este capítulo se estudia la interacción de la luz con la materia, caracterizada por una función dieléctrica dependiente de la frecuencia, que se modifica según el tamaño del objeto. En la primera sección se presentan la solución de ondas planas a las ecuaciones de Maxwell y las condiciones que se imponen a los campos electromagnéticos (EMs) al propagarse a través de un medio homogéneo, lineal e isótropo, y al cruzar una interfaz arbitraria a otro medio con las mismas características, así como el caso particular de la reflexión y transmisión de una onda plana al cruzar una interfaz plana, que deviene en las fórmulas de Fresnel. En la segunda sección se presenta la solución de Mie, que consiste en la solución al problema de absorción y esparcimiento de luz debido a una partícula esférica de tamaño y material arbitrario al ser iluminada por una onda plana monocromática, dando como resultado los campos EMs esparcidos por la partícula. En la tercera sección se presenta el modelo de Drude-Sommerfeld para la función dieléctrica como respuesta EM de materiales plasmónicos, así como un método para ajustar las mediciones experimentales de la función dieléctrica y poder hacer la corrección de tamaño para partículas esféricas *pequeñas*; asimismo se definen los plasmones —acoplamiento de la luz con los electrones libres de un material— al considerar materiales cuya respuesta EM es descrita por el modelo de Drude-Sommerfeld, así como el caso de materiales más realistas (oro y plata). Finalmente, en la cuarta sección, se presenta la respuesta EM de una monocapa de partículas esféricas idénticas, descrita por el modelo de esparcimiento coherente (Coherent Scattering Model, CSM) en donde se calculan los coeficientes de amplitud de reflexión y transmisión para un sistema monocapa de NPs esféricas idénticas, inmersa en un medio dieléctrico (denominado matriz) y soportada por un sustrato dieléctrico.

1.1. Ecuaciones de Maxwell y fórmulas de Fresnel

Las ecuaciones de Maxwell describren, junto con la fuerza de Lorentz, toda la electrodinámica y en su forma diferencial están dadas por las siguientes expresiones [19]:

Ecuaciones de Maxwell en el sistema internacional de unidades					
$\nabla \cdot \mathbf{E} = \frac{\rho_{tot}}{\varepsilon_0},$	(Ley de Gauss eléctrica)	(1.1a)			
$\nabla \cdot \mathbf{B} = 0,$	(Ley de Gauss magnética)	(1.1b)			
$ abla imes {f E} = -rac{\partial {f B}}{\partial t},$	(Ley de Faraday-Lenz)	(1.1c)			
$ abla imes \mathbf{B} = \mu_0 \mathbf{J}_{tot} + arepsilon_0 \mu_0 rac{\partial \mathbf{E}}{\partial t},$	(Ley de Ampère-Maxwell)	(1.1d)			

donde **E** es el campo eléctrico y **B**, el campo magnético; ρ_{tot} es la densidad volumétrica de carga total y \mathbf{J}_{tot} , la densidad volumétrica de corriente total; ε_0 es la permitividad eléctrica del vacío y μ_0 , la permeabilidad magnética del vacío.

Al desacoplar las ecuaciones de Maxwell, los campos EMs obedecen la ecuación de onda [20], que al emplear la transformada Fourier¹ y considerar una región del espacio sin fuentes ($\rho_{tot} = 0$ y $\mathbf{J}_{tot} = \mathbf{0}$), se obtiene la ecuación de Helmholtz para \mathbf{E} y \mathbf{B} [19]

$$\nabla^2 \mathbf{E} + k^2 \mathbf{E} = \mathbf{0}, \qquad (1.2a) \qquad \nabla^2 \mathbf{B} + k^2 \mathbf{B} = \mathbf{0}. \qquad (1.2b)$$

Una de las soluciones a la ecuación de Helmholtz para los campos EMs son las ondas planas, es decir, que los campos EMs son de la forma [21]

$$\mathbf{E}(\mathbf{r},t) = \mathbf{E}_{\mathbf{0}}e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}, \qquad (1.3a) \qquad \qquad \mathbf{B}(\mathbf{r},t) = \mathbf{B}_{\mathbf{0}}e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}, \qquad (1.3b)$$

en donde \mathbf{E}_0 y \mathbf{B}_0 representan las amplitudes de los campos EMs, \mathbf{k} es el vector de onda y ω es la frecuencia angular; la tríada de vectores { $\mathbf{k}, \mathbf{E}, \mathbf{B}$ } constituye una base ortogonal derecha en el vacío [19]. Para un medio material caracterizado por una función dieléctrica $\varepsilon(\omega)$ y una permeabilidad magnética μ , se define el índice de refracción del medio $n(\omega)$ como

Índice de refracción
$$n(\omega) = \sqrt{\frac{\mu\varepsilon(\omega)}{\varepsilon_0\mu_0}}.$$
(1.4)

Tanto $n(\omega)$, como $\varepsilon(\omega)$ y μ se determinan de forma experimental y son, en general, cantidades complejas. Para que las ondas planas sean solución de las ecuaciones de Maxwell, es necesario que se cumpla la relación de dispersión, que relaciona a la magnitud del vector de onda k con la frecuencia angular ω de la siguiente manera

Relación de dispersión

$$k(\omega) = \frac{\omega}{c} n(\omega), \qquad (1.5)$$

en donde $c = \sqrt{1/\varepsilon_0 \mu_0}$ es la velocidad de la luz.

 $[\]frac{1}{\mathcal{F}[f(\mathbf{r},\omega)] = \int_{-\infty}^{\infty} f(\mathbf{r},t) e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)} dt, \text{ con } \mathbf{k} \text{ una función de } \omega. \text{ La transformada de Fourier inversa es entonces } \\
\mathcal{F}^{-1}[f(\mathbf{r},t)] = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(\mathbf{r},\omega) e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)} d\omega.$

A partir de las ecuaciones de Maxwell se construye el teorema de conservación de la energía [19], escrito en términos del vector de Poynting \mathbf{S} , que representa el flujo de energía EM por unidad de tiempo y unidad de área. Al considerar campos EMs de la forma de ondas planas [Ec. (1.3)], el vector de Poynting está dado por [20]

Vector de Poynting		
	$\mathbf{S} = \mathbf{E} imes \mathbf{H}^*,$	(1.6)

en donde $\mathbf{H} = \mathbf{B}/\mu$ es el campo H y * corresponde a la operación complejo conjugado.

Las ecuaciones de Maxwell imponen condiciones a la frontera sobre los campos EMs cuando estos cruzan la frontera entre dos medios distintos, denominada interfaz. En la Fig. 1.1 se muestra la interfaz entre dos medios arbitrarios caracterizados por la función dieléctrica ε_i y la permeabilidad magnética μ_i , con i = 1, 2 dependiendo del medio. Para deducir las condiciones a la frontera de los campos EMs sobre la interfaz, con vector normal $\hat{\mathbf{u}}$, se evalúan los campos EMs en un cilindro con caras de área A y altura δ [ver Fig. 1.1a)], así como en un circuito de largo l y altura δ [ver Fig. 1.1b)]. Al considerar el límite $\delta \to 0$, evaluando los campos EMs sobre la interfaz, la ausencia de fuentes externas ($\sigma_{ext} = 0$ y $\mathbf{K}_{ext} = \mathbf{0}$) y que los medios que conforman a la interfaz son lineales, homogéneos e isótropos, los campos EMs obedecen las siguientes condiciones [19]:

Condiciones de frontera de los campos EMs sin fuentes externas						
$\varepsilon_1 E_1^{\perp} - \varepsilon_2 E_2^{\perp} = 0,$ $B_1^{\perp} - B_2^{\perp} = 0,$	(1.7a) $(1.7c)$	$egin{aligned} \mathbf{E}_1^{\parallel} &- \mathbf{E}_2^{\parallel} &= 0, \ & & & & \ & & \ & & \ & \ & \ & \ & $	(1.7b) $(1.7d)$			

donde \perp corresponde a la componente perpendicular a la interfaz y \parallel , a la paralela.

Fig. 1.1: Esquema de una interfaz entre dos medios distintos y arbitrarios con **a**) una densidad de carga superficial σ_{tot} y **b**) una densidad de corriente superficial \mathbf{K}_{tot} . Los campos EMs son evaluados en **a**) en el cilindro de área A y altura $\delta \to 0$ y en **b**) en el circuito de largo l y altura $\delta \to 0$. En ambas figuras el vector normal a la superficie es $\hat{\mathbf{u}}$.

Cuando una onda plana [Ec. (1.3)] incide sobre la interfaz entre dos medios lineales, homogéneos e isótropos, ésta se descompone en una onda plana reflejada y una transmitida. Al describir el medio de incidencia y de transmisión por su índice de refracción n_i y n_t , respectivamente, e imponer las condiciones a la frontera del los campos EMs [Ecs. (1.7)], válidas para todo tiempo y todo punto en la interfaz, las fases de las tres ondas son iguales, por lo que se cumple:

Ley de reflexión y ley de Snell			
$ heta_i = heta_r,$	(1.8)	$n_i \sin \theta_i = n_t \sin \theta_t,$	(1.9)

en donde θ_i es el ángulo de incidencia; θ_r , el de reflexión y θ_t , el de transmisión; los tres medidos respecto la dirección normal a la interfaz. La Ec. (1.8) es la llamada ley de reflexión mientras que la Ec. (1.9) es conocida como la ley de Snell², y determinan la dirección de propagación de las ondas planas reflejada y el transmitida.

Los coeficientes de amplitud de reflexión r y de transmisión t se definen como el cociente de las amplitudes del campo eléctrico reflejado E^r , y transmitido E^t , respectivamente, entre el campo eléctrico incidente E^i . El valor de los coeficientes de amplitud r y t depende de la polarización del campo eléctrico incidente, es decir, de la dirección en la que \mathbf{E}^i oscila respecto al plano definido por el vector normal a la interfaz y la dirección de propagación de la onda plana incidente, denominado plano de incidencia. En la Fig. 1.2 se muestra una onda plana que se propaga en el medio de incidencia (con índice de refracción n_i) en la dirección \mathbf{k}^i , e incide sobre la interfaz a un ángulo θ_i respecto al vector normal a la interfaz. La onda plana se refleja con un ángulo $\theta_r = \theta_i$ y se propaga en una dirección \mathbf{k}^r , y también se refracta en un ángulo θ_t , dado por la Ec. (1.9), y se propaga en una dirección \mathbf{k}^t . En la Fig. 1.2a) el campo eléctrico oscila en dirección perpendicular al plano de incidencia, por lo que se le denomina polarización s (del alemán senkrecht), mientras que en la Fig. 1.2b) el campo eléctrico oscila paralelo al plano de incidencia, por lo que se le denomina polarización p (del alemán parallel).

Fig. 1.2: Esquema de una onda plana en polarización **a**) s y **b**) p que se propaga en una dirección \mathbf{k}^i e incide con un ángulo de incidencia θ_i sobre una interfaz plana entre dos medio lineales, homogéneos e isótropos, donde el medio de incidencia tiene un índice de refracción n_i y el de transmisión n_t . El vector de onda reflejado forma un ángulo $\theta_r = \theta_i$ con la dirección normal a la interfaz, dado por la ley de reflexión [Ec. (1.8)] y el vector de onda transmitido se propaga con un ángulo θ_t dado por la ley de Snell [Ec. (1.9)]. En el esquema se asume que la orientación de los campos EMs incidentes (\mathbf{E}^i , \mathbf{B}^i) se preserva en los campos EMs reflejados (\mathbf{E}^r , \mathbf{B}^r) y transmitidos (\mathbf{E}^t , \mathbf{B}^t), es decir, que no hay un cambio de fase de los campos EMs al interactuar con la interfaz.

En polarización s el campo eléctrico es perpendicular al plano de incidencia y paralelo a la interfaz por lo que, mediante la Ec. (1.7b), $E^i + E^r = E^t$, en donde se asume que la orientación

 $^{^{2}}$ La ley fue nombrada así debido al físico holandés Willebroerd Snellius, aunque investigaciones más recientes indican que el registro más antiguo de esta ley (correctamente formulada) fue en el año 984 en el libro *On the Burning Instruments* del matemático persa Ibn Sahl [22].

del campo eléctrico incidente se preserva tras la reflexión y la transmisión, como se observa en la Fig. 1.2a). Al emplear la continuidad de la componente paralela a la interfaz de \mathbf{B}/μ [Ec. (1.7d)], la relación E = (c/n)B, la ley de reflexión [Ec. (1.8)] y de Snell [Ec. (1.9)], así como considerar medios no magnéticos ($\mu = \mu_0$), se obtienen los coeficientes de amplitud r y t para polarización s, dados por [20]

Coeficientes de amplitud para polarización s

$$r_s = \frac{n_i \cos \theta_i - \sqrt{n_t^2 - n_i^2 \sin^2 \theta_i}}{n_i \cos \theta_i + \sqrt{n_t^2 - n_i^2 \sin^2 \theta_i}}, \quad (1.10) \quad t_s = \frac{2n_i \cos \theta_i}{n_i \cos \theta_i + \sqrt{n_t^2 - n_i^2 \sin^2 \theta_i}}. \quad (1.11)$$

Para polarización p el campo eléctrico es paralelo al plano de incidencia, y por tanto tiene una componente paralela y una perpendicular a la interfaz, como se observa en la Fig. 1.2b). Las condiciones a la frontera de los campos EM [Ec. (1.7b)] imponen que $E^i \cos \theta_i - E^r \cos \theta_r =$ $E^t \cos \theta_t$. Al asumir que los campos EMs reflejado y transmitido no tienen una diferencia de fase respecto a los campos EMs incidentes, y al emplear las Ecs. (1.7d), (1.8) y (1.9), así como la relación E = (c/n)B y considerar medios no magnéticos, se calculan los coeficientes de amplitud r y t para polarización p, dados por [20]

Coeficientes de amplitud para polarización p

$$r_p = \frac{n_t^2 \cos \theta_i - n_i \sqrt{n_t^2 - n_i^2 \sin^2 \theta_i}}{n_t^2 \cos \theta_i + n_i \sqrt{n_t^2 - n_i^2 \sin^2 \theta_i}}, \quad (1.12) \quad t_p = \frac{2n_i n_t \cos \theta_i}{n_t^2 \cos \theta_i + n_i \sqrt{n_t^2 - n_i^2 \sin^2 \theta_i}}. \quad (1.13)$$

Dado que los coeficientes de amplitud dependen de los índices de refracción de los medios que conforman la interfaz, es posible hacer la distinción entre dos casos al analizar el término dentro de la raíz cuadrada en las Ecs. (1.10)–(1.13): incidencia externa $(n_t > n_i)$ e incidencia interna $(n_t < n_i)$. En la Fig. 1.3 se grafican los coeficientes de amplitud r (líneas continuas) y t (líneas discontinuas) en función del ángulo de incidencia θ_i para una interfaz entre aire (n = 1) y un medio con un índice de refracción n = 1.5, en configuración de incidencia externa [Fig. 1.3a)] e interna [Fig. 1.3b)] para ambas polarizaciones, en donde las líneas azules corresponden a la polarización s y las rojas a p. Para el caso de incidencia interna $n_t < n_i$ los coeficientes de amplitud son cantidades complejas, por lo que se grafica tanto su parte real como la imaginaria en la Fig. 1.3b). En la Fig. 1.3 se muestran dos valores particulares para el ángulo de incidencia. Uno de ellos es el ángulo Brewster θ_B , valor al que el coeficiente de amplitud de reflexión r_p [Ec. (1.12)] es igual a cero. El ángulo de Brewster está dado por [20]

$$\tan \theta_B = \frac{n_t}{n_i},\tag{1.14}$$

tanto para incidencia externa [Fig. 1.3a)], donde $\theta_B \approx 56^\circ$, como para interna [Fig. 1.3b)], donde $\theta_B \approx 33^\circ$. El cambio de signo del coeficiente de reflexión r_p para $\theta_i > \theta_B$ corresponde a un cambio de fase de π radianes del campo eléctrico reflejado respecto al campo eléctrico incidente. De la Ec. (1.14) se deduce que el ángulo de Brewster de incidencia externa θ_B^{ext} es complementario al de incidencia interna θ_B^{int} , es decir, $\theta_B^{ext} + \theta_B^{int} = 90^\circ$, como se observa en las gráficas de la Fig. 1.3. Un segundo valor particular para el ángulo de incidencia es el ángulo crítico θ_c , el cual se

Fig. 1.3: Coeficientes de amplitud r (líneas continuas) y t (líneas discontinuas), en función del ángulo de incidencia θ_i , en configuración de incidencia **a**) externa e **b**) interna para una interfaz entre aire (n = 1) y un medio con índice de refracción n = 1.5. Los cálculos para polarización s se muestran en azul y para p en rojo; en el caso de incidencia interna, los coeficientes de amplitud son cantidades complejas y se grafica tanto su parte real, como la imaginaria. Se indica la posición tanto para el ángulo de Brewster θ_B como para el ángulo crítico θ_c mediante las flechas grises.

observa sólo en incidencia interna $(n_i > n_t)$ y cumple que [20]

$$\sin \theta_c = \frac{n_t}{n_i}.\tag{1.15}$$

Al sustituir la Ec. (1.15) en la ley de Snell [Ec. (1.9)] se obtiene que $\theta_t = 90^\circ$, por lo que para $\theta_i > \theta_c$ toda la luz se refleja (nada se transmite), es decir, se está en el régimen de reflexión total interna. En la Fig. 1.3b) se observa que los coeficientes de amplitud son máximos en $\theta_c \approx 41^\circ$ sin embargo, para $\theta_i > \theta_c$, los coeficientes de amplitud [Ecs. (1.10)–(1.13)] son cantidades complejas, lo que indica que los campos eléctricos reflejado y transmitido tienen un desfase, distinto de π radianes, respecto al campo eléctrico incidente.

Para corroborar que toda la luz es reflejada en incidencia interna para $\theta_i > \theta_c$ se considera la conservación de la energía transportada por los campos EMs al cruzar la interfaz. Al calcular el promedio temporal³ del vector de Poynting [Ec. (1.6)], se obtiene la irradiancia I [20], dada por

$$I = \langle S \rangle_t = \frac{nc\varepsilon_0}{2} E E^*, \tag{1.16}$$

que corresponde a la energía promedio por unidad de tiempo y unidad de área transportada por los campos EMs en la dirección $\hat{\mathbf{k}}$ [19]. Para calcular la potencia P, definida como energía por unidad de tiempo, transportada por los campos EMs al cruzar la interfaz se multiplica la Ec. (1.16) por la sección transversal de un haz de luz. En la Fig. 1.4 se muestran las secciones transversales de un haz que incide a un ángulo θ_i sobre la interfaz entre dos medios con índice de refracción n_i y n_t , respectivamente. Cuando el haz se refleja, a un ángulo $\theta_r = \theta_i$, y se refracta a un ángulo θ_t , la sección transversal del haz cambia. Si el área de los haces justo en la interfaz es A, mediante la ley de reflexión [Ec. (1.8)] y la ley de Snell [Ec. (1.9)], la sección transversal del haz incidente y el reflejado es $A \cos \theta_i$, mientras que la del haz transmitido es $A \cos \theta_t$. Al emplear la Ec. (1.16) y multiplicarla por el área de cada uno de los tres haces mostrados en la Fig. 1.4, se

³El promedio temporal del vector de Poynting es $\langle \mathbf{S} \rangle_t = (1/\tau) \int_t^{t+\tau} \mathbf{S}(t') dt'$, y para campos EMs tipo ondas planas es $\langle \mathbf{S} \rangle_t = (1/2) \operatorname{Re}[\mathbf{E} \times (\mathbf{B}/\mu)^*]$ [21].

Fig. 1.4: Sección transversal de un haz de luz incidiendo en una interfaz entre dos medio lineales, homogéneos e isótropos con índices de refracción $n_i y n_t$. El haz incide sobre la interfaz a un ángulo de θ_i , se refleja con un ángulo θ_r y se transmite a un ángulo θ_t , calculados mediante las leyes de reflexión y de Snell, respectivamente. El área del haz sobre la interfaz es A, mientras que en los haces, al propagarse, es $A \cos \theta$, en donde θ es el ángulo de propagación respectivo para cada haz.

obtiene que la energía por unidad de tiempo transportada por cada haz de luz es

$$P = IA\cos\theta = \frac{nc\varepsilon_0}{2}EE^*\cos\theta,$$

en donde el ángulo θ e índice de refracción n toman los valores de θ_i y n_i para el haz incidente y el reflejado, mientras que toma los valores de θ_t y n_t para el haz transmitido. Cuando se normaliza la energía por unidad de tiempo transportada por el haz reflejado y por el haz transmitido entre la del haz incidente, se obtienen las expresiones de la reflectancia R y la transmitancia T [20]

Reflectancia y transmitancia

$$R = rr^*, \qquad (1.17) \qquad T = \frac{n_t \cos \theta_i}{n_i \cos \theta_t} tt^*, \qquad (1.18)$$

en donde r es el coeficiente de amplitud de reflexión y t el de transmisión, dados por las Ecs. (1.10)-(1.13).

En la Fig. 1.5 se grafican la reflectancia (líneas continuas) y transmitancia (líneas discontinuas) en función del ángulo de incidencia θ_i , para polarización s (en azul) y p (en rojo), de un haz de luz que incide en la interfaz entre aire (n = 1) y un medio con índice de refracción n = 1.5, para una configuración de incidencia externa [Fig. 1.5a)] e incidencia interna [Fig. 1.5b)]. En la Fig. 1.5 se observa que $R_p = 0$ para el ángulo de Brewster, tanto para incidencia interna como externa. Asimismo, se aprecia que la relación R + T = 1 se cumple para todo ángulo de incidencia y en particular para $\theta_i > \theta_c$ se cumple que $R_p = R_s = 1$ y que $T_s = T_p = 0$. La relación R + T = 1 es válida ya que se consideraron medios materiales sin absorción. En general, la función dieléctrica ($\varepsilon = n^2$, para medios no magnéticos) es compleja, donde la parte imaginaria Im[ε] se asocia con la absorción de energía por el material [23]. Cuando la luz se propaga a través de

Fig. 1.5: Reflectancia (líneas continuas) y transmitancia (líneas discontinuas) en función del ángulo de incidencia θ_i , en configuración de incidencia **a**) externa y **b**) interna para una interfaz entre aire (n = 1) y un medio con índice de refracción n = 1.5. Los cálculos para polarización s se muestran en azul y para p en rojo. Se indica la posición tanto del ángulo de Brewster θ_B , como del ángulo crítico θ_c mediante las flechas grises.

algún medio absorbente, se cumple en general

$$R + T + A = 1,$$

en donde el término A es la energía absorbida por el material, relativa a la energía del haz incidente.

1.2. Solución de Mie

El problema de absorción y esparcimiento de luz por una partícula esférica de tamaño arbitrario fue resuelto por el físico alemán Gustav Mie en 1908 [24]. La solución de Mie consiste en expandir una onda plana monocromática, que ilumina a una esfera de tamaño y material arbitrario, en una base de armónicos esféricos vectoriales que representan una base ortogonal, cuyos elementos satisfacen las ecuaciones de Maxwell [15]. Al considerar las condiciones de contorno que satisfacen los campos EMs sobre la superficie de la esfera, se escriben los campos EMs dentro de la partícula y los campos esparcidos por ésta como una serie de armónicos esféricos vectoriales, cuvos coeficientes corresponden a una expansión multipolar v son conocidos como los coeficientes de Mie [15]. A pesar de que existen publicaciones previas a la de Mie en donde el problema de la absorción y esparcimiento de luz es tratado de forma semejante, el trabajo de Mie destacó debido al desarrollo de relaciones recursivas que facilitan el cálculo numérico y a que discute la convergencia de los resultados [25]. El desarrollo de una solución apta para el cálculo numérico permitió que en el artículo de Mie se describieran diez propiedades de la luz al interactuar con suspensiones diluidas de partículas esféricas [24], lo que contribuyó al impacto de su solución sobre el trabajo de otros autores [25]. El desarrollo de la solución de Mie descrito en esta sección se basa principalmente en [15].

Para el estudio del esparcimiento por una partícula arbitraria inmersa en un medio con índice de refracción n_m , denominado matriz, se considera que la partícula es iluminada por una onda plana monocromática con una longitud de onda λ , cuya dirección de propagación define la

Fig. 1.6: Diagrama del plano de esparcimiento (en verde) definido por el vector **r**, posición donde se evalúan los campos EMs, y el vector $\hat{\mathbf{e}}_z$, cuando una onda plana monocromática propagándose en dirección z (en rojo) ilumina a una partícula arbitraria. La base cartesiana para vectores se muestra en azul, mientras que la base esférica se muestra en negro. Las direcciones paralelas \parallel y perpendiculares \perp al plano de incidencia para el campo eléctrico incidente, denotado por el subíndice i y el esparcido, denotado por el subíndice s, se muestra en morado; el haz incidente se muestra en rojo.

dirección z, es decir,

$$\mathbf{E}^{i} = (E_{x}^{i} \hat{\mathbf{e}}_{x} + E_{y}^{i} \hat{\mathbf{e}}_{y}) e^{i(kz-\omega t)}, \qquad (1.19)$$

donde $k = 2\pi n_m/\lambda$ es el número de onda. En la Fig. 1.6 se muestra una partícula localizada en el origen, iluminada por una onda plana monocromática [Ec. (1.19)] que se propaga en la dirección z. De forma análoga al plano de incidencia, se construye el plano de esparcimiento (en verde en la Fig. 1.6), con el vector de la dirección de esparcimiento $\hat{\mathbf{e}}_r$ y la dirección del haz incidente $\hat{\mathbf{e}}_z$, que define las componentes ortogonales \perp y paralelas || de los campos EMs, así como su polarización. Los vectores unitarios perpendicular y paralelo al plano de esparcimiento de la onda incidente, $\hat{\mathbf{e}}^i_{\perp}$ y $\hat{\mathbf{e}}^i_{\parallel}$, respectivamente, y de los campos EMs esparcidos $\hat{\mathbf{e}}^s_{\perp}$ y $\hat{\mathbf{e}}^s_{\parallel}$ están dados por

$$\hat{\mathbf{e}}_{\perp}^{i} = -\hat{e}_{\varphi} = \sin\varphi \,\hat{\mathbf{e}}_{x} - \cos\varphi \,\hat{\mathbf{e}}_{y}, \qquad (1.20a) \qquad \qquad \hat{\mathbf{e}}_{\parallel}^{i} = \cos\varphi \,\hat{\mathbf{e}}_{x} + \sin\varphi \,\hat{\mathbf{e}}_{y}, \qquad (1.20b)$$

$$\hat{\mathbf{e}}^s_{\perp} = -\hat{\mathbf{e}}_{\varphi},$$
 (1.21a) $\hat{\mathbf{e}}^s_{\parallel} = \hat{\mathbf{e}}_{\theta}.$ (1.21b)

Al despejar $\hat{\mathbf{e}}_x$ y $\hat{\mathbf{e}}_y$ de las Ecs. (1.20) y reescribirlos en la base de los vectores unitarios en la dirección perpendicular y normal al plano de esparcimiento, como $\hat{\mathbf{e}}_x = \sin \varphi \, \hat{\mathbf{e}}_{\perp}^i + \cos \varphi \, \hat{\mathbf{e}}_{\parallel}^i$ y $\hat{\mathbf{e}}_y = -\cos \varphi \, \hat{\mathbf{e}}_{\perp}^i + \sin \varphi \, \hat{\mathbf{e}}_{\parallel}^i$, se obtiene que el campo eléctrico incidente \mathbf{E}^i [Ec. (1.19)] se puede escribir como

$$\mathbf{E}^{i} = [(\cos\varphi E_{x}^{i} + \sin\varphi E_{y}^{i})\hat{\mathbf{e}}_{\perp}^{i} + (\sin\varphi E_{x}^{i} - \cos\varphi E_{y}^{i})\hat{\mathbf{e}}_{\parallel}^{i}]e^{ikz} = E_{\perp}^{i}\hat{\mathbf{e}}_{\perp}^{i} + E_{\parallel}^{i}\hat{\mathbf{e}}_{\parallel}^{i}, \qquad (1.22)$$

en donde se omite el término de la fase temporal $e^{-i\omega t}$ y la fase espacial e^{ikz} se incluye en los coficientes E^i_{\perp} y E^i_{\parallel} . Adicionalmente, al considerar para el campo eléctrico esparcido únicamente

los términos que corresponden al campo lejano, es decir, el término con componentes transversales, que decae como r^{-1} y cumple con la relación $kr \ll 1$, el campo esparcido \mathbf{E}^s puede escribirse como [15]

$$\mathbf{E}^{s} \propto \frac{e^{ikr}}{-ikr} \mathbf{E}_{\mathbf{0}}^{\mathbf{s}} = \frac{e^{ikr}}{-ikr} \Big(E_{\perp}^{s} \hat{\mathbf{e}}_{\perp}^{s} + E_{\parallel}^{s} \hat{\mathbf{e}}_{\parallel}^{s} \Big), \tag{1.23}$$

en donde $\mathbf{E}_{\mathbf{0}}^{\mathbf{s}}$ es la amplitud del campo esparcido, E_{\perp}^{s} y E_{\parallel}^{s} sus componentes en la base de los vectores paralelo y perpendicular al plano de esparcimiento [Ec. (1.21)]. Asimismo, es posible relacionar al campo eléctrico esparcido \mathbf{E}^{s} por una partícula localizada en el centro de coordenadas [Ec. (1.23)] con el campo eléctrico incidente \mathbf{E}^{i} [Ec. (1.22)], mediante el operador de esparcimiento de campo lejano $\mathbb{F}(\hat{\mathbf{k}}^{i}, \hat{\mathbf{k}}^{s})$ [26]

$$\mathbf{E}^{s} = \frac{e^{i\mathbf{k}^{s}\cdot\mathbf{r}}}{r} \mathbb{F}(\hat{\mathbf{k}}^{i}, \hat{\mathbf{k}}^{s}) \mathbf{E}^{i}, \qquad (1.24)$$

donde \mathbb{F} depende de la dirección de la onda plana incidente $\hat{\mathbf{k}}^i$ y de la dirección del campo eléctrico esparcido $\hat{\mathbf{k}}^s$. Al considerar la forma asintótica del campo eléctrico esparcido [Ec. (1.23)] y su relación con el campo eléctrico incidente [Ec. (1.24)], se pueden relacionar las componentes perpendiculares del campo esparcido y el campo incidente de una onda plana en la base de los vectores perpendiculares y paralelos al plano de incidencia mediante la matriz de esparcimiento \mathbb{S} [15]

$$\begin{pmatrix} E_{\parallel}^{s} \\ E_{\perp}^{s} \end{pmatrix} = \frac{e^{ik(r-z)}}{-ikr} \begin{pmatrix} S_{2} & S_{3} \\ S_{4} & S_{1} \end{pmatrix} \begin{pmatrix} E_{\parallel}^{i} \\ E_{\perp}^{i} \end{pmatrix},$$
(1.25)

en donde $S_j = S_j(\theta, \varphi)$, con j = 1, 2, 3 y 4, son funciones complejas, además de que las componentes de la matriz de esparcimiento en la Ec. (1.25) dependen en general de la geometría de la partícula iluminada por la onda plana.

1.2.1. Solución a la ecuación de onda con simetría esférica

Las ecuaciones de Maxwell, al considerar una región del espacio sin fuentes y campos EMs armónicos en el tiempo, se reescriben como [21]

$$\nabla \cdot \mathbf{E} = 0, \qquad (1.26a) \qquad \nabla \cdot \mathbf{H} = 0, \qquad (1.26b)$$

$$\nabla \times \mathbf{E} = i\omega\mu\mathbf{H},$$
 (1.26c) $\nabla \times \mathbf{H} = -i\omega\varepsilon(\omega)\mathbf{E},$ (1.26d)

en donde $\mathbf{H} = \mathbf{B}/\mu$ es el campo H, y tanto la función dieléctrica $\varepsilon(\omega)$ como la permeabilidad magnética μ del material son funciones continuas. Al desacoplar las ecuaciones de Maxwell, se concluye que los campos EMs son soluciones a la ecuación de Helmholtz vectorial [Ecs. (1.2)] [21]

$$\nabla^2 \mathbf{E} + k^2 \mathbf{E} = \mathbf{0}, \qquad \nabla^2 \mathbf{H} + k^2 \mathbf{H} = \mathbf{0},$$

en donde $k = nk_0$ es la magnitud del vector de onda, n es el índice de refracción en la región del espacio donde se evalúan los campos EMs [Ec. (1.4)] y $k_0 = \omega/c$ es la relación de dispersión en el vacío [Ec. (1.5)].

Se propone un campo vectorial \mathbf{M} tal que [15]

$$\mathbf{M} = \nabla \times (\mathbf{r}\psi), \qquad (1.27)$$

donde ψ es una función escalar y **r** el vector de posición; dado que **M** es el rotacional de $\mathbf{r}\psi$, se cumple que $\nabla \cdot \mathbf{M} = \mathbf{0}$, y que **M** y **r** son vectores perpendiculares⁴. La ecuación de Helmholtz para **M**, dado que el operador laplaciano y el rotacional conmutan⁵, es

$$\nabla^{2}\mathbf{M} + k^{2}\mathbf{M} = \nabla \times \left[\nabla^{2}\left(\mathbf{r}\psi\right) + k^{2}\left(\mathbf{r}\psi\right)\right],$$

y como se cumple que⁶ $\nabla^2(\mathbf{r}\psi) = 2\nabla\psi + \mathbf{r}\nabla^2\psi$ y que $\nabla \times (\nabla\psi) = 0$, la ecuación de Helmholtz para **M** puede reescribirse como

$$\nabla^{2}\mathbf{M} + k^{2}\mathbf{M} = \nabla \times \left[\mathbf{r}\left(\nabla^{2}\psi + k^{2}\psi\right)\right].$$
(1.28)

Adicional a \mathbf{M} , se define el vector \mathbf{N} como [15]

$$\mathbf{N} = \frac{\nabla \times \mathbf{M}}{k},\tag{1.29}$$

cuyo laplaciano es $\nabla^2 \mathbf{N} = \nabla^2 (\nabla \times \mathbf{M}/k) = \nabla \times (\nabla^2 \mathbf{M}/k)$, y por tanto la ecuación de Helmholtz para \mathbf{N} es

$$\nabla^{2}\mathbf{N} + k^{2}\mathbf{N} = \nabla \times \left(\frac{\nabla^{2}\mathbf{M}}{k}\right) + k\nabla \times \mathbf{M} = \frac{1}{k}\nabla \times \left(\nabla^{2}\mathbf{M} + k^{2}\mathbf{M}\right)$$

Los campos **M** y **N** cumplen con la ecuación de Helmholtz vectorial [Ecs. (1.2)] si, y sólo si, la función escalar ψ cumple con la ecuación de Helmholtz escalar $\nabla^2 \psi + k^2 \psi = 0$. Si este es el caso, entonces, el rotacional de **N** está dado por

$$\nabla \times \mathbf{N} = \nabla \times \left(\frac{\nabla \times \mathbf{M}}{k}\right) = \frac{\nabla(\nabla \cdot \mathbf{M}) - \nabla^2 \mathbf{M}}{k} = -\frac{\nabla^2 \mathbf{M}}{k} = \frac{k^2 \mathbf{M}}{k} = k \mathbf{M}.$$
 (1.30)

Los campos vectoriales \mathbf{M} y \mathbf{N} son conocidos como los armónicos esféricos vectoriales, ψ como su función generadora y \mathbf{r} como el vector de guía o vector piloto [15]. Los armónicos esféricos vectoriales \mathbf{M} y \mathbf{N} cumplen con tener divergencia nula y que el rotacional de uno es proporcional al otro [Ecs. (1.29) y (1.30)], es decir, que cumplen con las ecuaciones de Maxwell [Ecs. (1.26)] siempre que se cumpla que

⁴Empleando la convención de la suma de Einstein y con ϵ_{ijk} el símbolo de Levi-Civita:

 $M_i = [\nabla \times (\mathbf{r}\psi)]_i = \epsilon_{ijk}\partial_j(r_k\psi) = \psi\epsilon_{ijk}\partial_j(r_k) - \epsilon_{ikj}r_k\partial_j\psi = \psi[\nabla \times \mathbf{r}]_i - [\mathbf{r} \times \nabla \psi]_i = -[\mathbf{r} \times \nabla \psi]_i.$

⁵Para un campo vectorial arbitrario \mathbf{A} se cumple que $\nabla^2 \mathbf{A} = \nabla(\nabla \cdot \mathbf{A}) - \nabla \times (\nabla \times \mathbf{A})$, por lo que el rotacional del laplaciano de \mathbf{A} es $\nabla \times (\nabla^2 \mathbf{A}) = \nabla \times [\nabla(\nabla \cdot \mathbf{A})] - \nabla \times [\nabla \times (\nabla \times \mathbf{A})] = -\nabla \times [\nabla \times (\nabla \times \mathbf{A})]$ pues el rotacional del gradiente de cualquier función es nulo. Además, al sustituir $\mathbf{A} \to \nabla \times \mathbf{A}$ en la expresión del laplaciano de \mathbf{A} y considerando que la divergencia del rotacional de cualquier función es nulo, se obtiene que $\nabla^2(\nabla \times \mathbf{A}) = \nabla[\nabla \cdot (\nabla \times \mathbf{A})] - \nabla \times [\nabla \times (\nabla \times \mathbf{A})] = -\nabla \times [\nabla \times (\nabla \times \mathbf{A})]$. Por tanto, ∇^2 y $\nabla \times$ son operadores que conmutan.

 $^{{}^{6}[\}nabla^{2}(\mathbf{r}\psi)]_{i} = \partial_{jj}^{2}(r_{i}\psi) = \partial_{j}[\partial_{j}(r_{i})\psi + r_{i}\partial_{j}\psi] = \partial_{jj}r_{i} + 2\partial_{j}r_{i}\partial_{j}\psi + r_{i}\partial_{jj}^{2}\psi, \text{ donde } \partial_{j}r_{i} = \delta_{ij} \text{ con } \delta_{ij} \text{ la delta de Kronecker, por lo que se cumple que } [\nabla^{2}(\mathbf{r}\psi)]_{i} = 2\partial_{i}\psi + r_{i}\partial_{jj}\psi = 2[\nabla\psi]_{i} + [\mathbf{r}\nabla^{2}\psi]_{i}.$

 ψ : Función generadora de los armónicos esféricos vectoriales

$$\nabla^2 \psi + k^2 \psi = 0. \tag{1.31}$$

Cuando se considera una partícula esférica de radio a e índice de refracción n_p , inmersa en un medio denominado matriz con índice de refracción n_m (ver Fig. 1.7), iluminada por una onda plana monocromática propagándose a lo largo del eje z, es conveniente emplear coordenadas esféricas (r, θ, φ) , en las que la función generadora de los armónicos esféricos vectoriales debe cumplir con la ecuación

$$\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial\psi}{\partial r}\right) + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\psi}{\partial\theta}\right) + \frac{1}{r^2\sin^2\theta}\frac{\partial^2\psi}{\partial\varphi^2} + k^2\psi = 0.$$
(1.32)

Al resolver la Ec. (1.32) es posible construir un conjunto de funciones linealmente independientes que sean una base para los campos EMs incidente, esparcido y dentro de la esfera, lo que permite determinar, mediante las condiciones a la frontera de los campos EMs, la forma de la matriz de esparcimiento [Ec. (1.25)].

Fig. 1.7: Esfera de radio a e ínidee de refracción n_p , inmersa en una matriz con índice n_m . La esfera es iluminada por una onda plana monocromática con vector de onda \mathbf{k}_i , que se propaga en la dirección \hat{e}_z .

Para resolver la Ec. (1.32) se emplea el método de separación de variables, proponiendo como solución $\psi = R(r)\Theta(\theta)\Phi(\varphi)$. Para que ψ sea solución a la Ec. (1.32), las funciones $R(r), \Theta(\theta), y \Phi(\varphi)$ deben cumplir las siguientes ecuaciones diferenciales [15]

$$\frac{1}{\Phi}\frac{\mathrm{d}^2\psi}{\mathrm{d}\varphi^2} + m^2\Phi = 0,\tag{1.33}$$

$$\frac{1}{\sin\theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin\theta \frac{\mathrm{d}\Theta}{\mathrm{d}\theta} \right) + \left[\ell(\ell+1) - \frac{m^2}{\sin^2\theta} \right] \Theta = 0, \tag{1.34}$$

$$\frac{\mathrm{d}}{\mathrm{d}r}\left(r^2\frac{\mathrm{d}R}{\mathrm{d}r}\right) + \left[k^2r^2 - \ell(\ell+1)\right]R = 0,\tag{1.35}$$

en donde tanto ℓ como m son constantes que se determinan mediante las condiciones impuestas a ψ . Dado que ψ debe ser una función con periodicidad 2π en φ , es decir que $\psi(\varphi) = \psi(\varphi + 2\pi)$,

las soluciones linealmente independientes de la Ec. (1.33) son

$$\Phi_e(\varphi) = \cos(m\varphi),$$
 (1.36a) $\Phi_o(\varphi) = \sin(m\varphi),$ (1.36b)

con m un número natural (incluido el cero) y donde los subíndices e y o hacen referencia a que son funciones pares (*even*, e) e impares (*odd*, o), respectivamente. Las funciones $\sin(m\varphi)$ y $\cos(m\varphi)$ obedecen las siguientes relaciones de ortogonalidad

$$\int_{0}^{2\pi} \sin(m\varphi) \cos(m'\varphi) d\varphi = 0 \qquad \forall m, m', \qquad (1.37a)$$

$$\int_{0}^{2\pi} \sin(m\varphi) \sin(m'\varphi) d\varphi = \int_{0}^{2\pi} \cos(m\varphi) \cos(m'\varphi) d\varphi = \delta_{m,m'} \frac{\pi}{2}, \quad (1.37b)$$

en donde $\delta_{m,m'}$ es la delta de Kronecker.

Al realizar el cambio de variable $\mu = \cos \theta$ en la Ec. (1.34), ésta se reescribe como

$$(1-\mu^2)\frac{\mathrm{d}^2\Theta}{\mathrm{d}\mu^2} - 2\mu\frac{\mathrm{d}\Theta}{\mathrm{d}\mu} + \left[\ell(\ell+1) - \frac{m^2}{(1-\mu^2)}\right]\Theta = 0,$$

cuyas soluciones son las funciones asociadas de Legendre $P_{\ell}^{m}(\cos \theta)$ de grado ℓ y orden m [27], imponiendo que $\ell = m, m + 1, m + 2, ...$ para que la Ec. (1.34) sea finita en $\theta = 0$ y $\theta = \pi$. Las funciones asociadas de Legendre cumplen con la relación de ortogonalidad

$$\int_{-1}^{1} P_{\ell}^{m}(\mu) P_{\ell'}^{m} d\mu = \delta_{\ell,\ell'} \frac{2}{2\ell+1} \frac{(\ell+m)!}{(\ell-m)!}.$$
(1.38)

Asimismo, las funciones asociadas de Legendre se reducen a los polinomios de Legendre cuando m = 0, además de que las funciones asociadas y los polinomios de Legendre se relacionan mediante la siguiente identidad [27]

$$P_{\ell}^{m}(\mu) = (1 - \mu^{2})^{m/2} \frac{\mathrm{d}^{m} P_{\ell}(\mu)}{\mathrm{d}\mu^{m}}, \qquad (1.39)$$

de donde se deduce que $P_{\ell}^m(\pm 1) = 0$ para toda *m* distinta de cero.

Para resolver la Ec. (1.35) se emplea el cambio de variable $\rho = kr$ y se define la función $Z = R\sqrt{\rho}$, por lo que la ecuación radial se reescribe como

$$\rho \frac{\mathrm{d}}{\mathrm{d}\rho} \left(\rho \frac{\mathrm{d}Z}{\mathrm{d}\rho}\right) + \left[\rho^2 - \left(\ell + \frac{1}{2}\right)^2\right] Z = 0, \qquad (1.40)$$

cuyas soluciones son las funciones esféricas de Bessel $j_{\ell} \ge y_{\ell}$, o cualquier combinación lineal de ellas, por lo que de forma general las soluciones de la Ec. (1.40) son [27]

$$j_{\ell}(\rho) = \sqrt{\frac{\pi}{2\rho}} J_{\ell+1/2}(\rho), \qquad (1.41a) \qquad \qquad y_{\ell}(\rho) = \sqrt{\frac{\pi}{2\rho}} Y_{\ell+1/2}(\rho), \qquad (1.41b)$$

$$h_{\ell}^{(1)}(\rho) = j_{\ell}(\rho) + iy_{\ell}(\rho), \qquad (1.41c) \qquad h_{\ell}^{(2)}(\rho) = j_{\ell}(\rho) - iy_{\ell}(\rho), \qquad (1.41d)$$

en donde J_{ℓ} y Y_{ℓ} son las funciones de Bessel del primer y segundo tipo, respectivamente, y h_{ℓ} son las funciones esféricas de Bessel del tercer tipo, también denominadas como funciones esféricas de Hankel. Todas las funciones esféricas de Bessel z_{ℓ} —donde z_{ℓ} es cualquier función de las Ecs. (1.41)— pueden ser calculadas mediante relaciones de recurrencia⁷ [27].

Dado que las soluciones para la ecuación azimutal son las Ecs. (1.36), para la polar, Ec. (1.39) y para la radial, Ecs. (1.41), las funciones generadoras de los armónicos esféricos vectoriales son

$$\psi_{em\ell} = \cos(m\varphi) P_{\ell}^{m}(\cos\theta) z_{\ell}(kr), \quad (1.42a) \qquad \psi_{om\ell} = \sin(m\varphi) P_{\ell}^{m}(\cos\theta) z_{\ell}(kr). \quad (1.42b)$$

Al emplear las Ecs. (1.42) en la Ec. (1.27) se obtiene como resultado $\mathbf{M}_{em\ell}$ y $\mathbf{M}_{om\ell}$, dados por las expresiones

Armónicos esféricos vectoriales
$$\mathbf{M}_{em\ell} \mathbf{y} \mathbf{M}_{om\ell}$$

$$\mathbf{M}_{em\ell} = -m\sin(m\varphi)z_{\ell}(kr)\frac{P_{\ell}^{m}(\cos\theta)}{\sin\theta}\,\hat{\mathbf{e}}_{\theta} - \cos(m\theta)z_{\ell}(kr)\frac{\mathrm{d}P_{\ell}^{m}(\cos\theta)}{\mathrm{d}\theta}\,\hat{\mathbf{e}}_{\varphi}, \qquad (1.43a)$$

$$\mathbf{M}_{em\ell} = -m\cos(m\varphi)z_{\ell}(kr)\frac{P_{\ell}^{m}(\cos\theta)}{\sin\theta}\,\hat{\mathbf{e}}_{\varphi} - \sin(m\theta)z_{\ell}(kr)\frac{\mathrm{d}P_{\ell}^{m}(\cos\theta)}{\mathrm{d}\theta}\,\hat{\mathbf{e}}_{\varphi}, \qquad (1.43b)$$

$$\mathbf{M}_{om\ell} = m\cos(m\varphi)z_{\ell}(kr)\frac{\mathbf{\Gamma}_{\ell}(\cos\theta)}{\sin\theta}\,\hat{\mathbf{e}}_{\theta} - \sin(m\theta)z_{\ell}(kr)\frac{\mathrm{d}\mathbf{\Gamma}_{\ell}(\cos\theta)}{\mathrm{d}\theta}\,\hat{\mathbf{e}}_{\varphi}.$$
 (1.43b)

Para el cálculo de $\mathbf{N}_{em\ell}$ y $\mathbf{N}_{om\ell}$ se sustituyen las Ecs. (1.43a) y (1.43b) en la Ec. (1.29). Para simplificar las expresiones de las componentes radiales de $\mathbf{N}_{em\ell}$ y $\mathbf{N}_{om\ell}$, se agrupan los términos que dependen de φ y kr y, dado que las funciones asociadas de Legendre cumplen con la relación

$$-\ell(\ell+1)P_{\ell}^{m}(\cos\theta) = \frac{1}{\sin\theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left(\sin\theta \frac{\mathrm{d}P_{\ell}^{m}(\cos\theta)}{\mathrm{d}\theta}\right) - \frac{m^{2}}{\sin^{2}\theta}P_{\ell}^{m}(\cos\theta)$$

que es una consecuencia de la Ec. (1.34), las expresiones de $\mathbf{N}_{em\ell}$ y $\mathbf{N}_{om\ell}$ son

Armónicos esféricos vectoriales $N_{em\ell}$ y $N_{om\ell}$

$$\mathbf{N}_{em\ell} = \cos(m\varphi) \frac{z_{\ell}(kr)}{kr} \ell(\ell+1) P_{\ell}^{m}(\cos\theta) \,\hat{\mathbf{e}}_{r} + \cos(m\varphi) \frac{1}{kr} \frac{\mathrm{d}}{\mathrm{d}(kr)} \Big[kr \, z_{\ell}(kr) \Big] \frac{\mathrm{d}P_{\ell}^{m}(\cos\theta)}{\mathrm{d}\theta} \,\hat{\mathbf{e}}_{\theta}$$
(1.43c)
$$- m \sin(m\varphi) \frac{1}{kr} \frac{\mathrm{d}}{\mathrm{d}(kr)} \Big[kr \, z_{\ell}(kr) \Big] \frac{P_{\ell}^{m}(\cos\theta)}{\sin\theta} \,\hat{\mathbf{e}}_{\varphi},$$
(1.43c)
$$\mathbf{N}_{om\ell} = \sin(m\varphi) \frac{z_{\ell}(kr)}{kr} \ell(\ell+1) P_{\ell}^{m}(\cos\theta) \,\hat{\mathbf{e}}_{r} + \sin(m\varphi) \frac{1}{kr} \frac{\mathrm{d}}{\mathrm{d}(kr)} \Big[kr \, z_{\ell}(kr) \Big] \frac{\mathrm{d}P_{\ell}^{m}(\cos\theta)}{\mathrm{d}\theta} \,\hat{\mathbf{e}}_{\theta}$$
(1.43d)
$$+ m \cos(m\varphi) \frac{1}{kr} \frac{\mathrm{d}}{\mathrm{d}(kr)} \Big[kr \, z_{\ell}(kr) \Big] \frac{P_{\ell}^{m}(\cos\theta)}{\sin\theta} \,\hat{\mathbf{e}}_{\varphi}.$$

Los armónicos esféricos vectoriales son solución a la ecuación de Helmholtz, por lo que cualquier

⁷Todas las funciones esféricas de Bessel cumplen [27]: $z_{\ell-1}(\rho) + z_{\ell+1}(\rho) = (2\ell+1)z_{\ell}(\rho)/\rho \text{ y } (2\ell+1) dz_{\ell}(\rho)/d\rho = \ell z_{\ell-1}(\rho) - (\ell+1)z_{\ell+1}(\rho), \text{ con } j_0(\rho) = \sin \rho/\rho \text{ y } j_1(\rho) = \sin \rho/\rho^2 - \cos \rho/\rho, y_0(\rho) = -\cos \rho/\rho \text{ y } y_1(\rho) = -\cos \rho/\rho^2 - \sin \rho/\rho.$

solución de los campos EMs transversales puede escribirse como una serie en términos de las Ecs. (1.43).

Para resolver el problema de los campos EMs esparcidos por una partícula esférica, esto es, determinar las componentes de la matriz de esparcimiento \mathbb{S} de la Ec. (1.25), se expande una onda plana monocromática \mathbf{E}^i en la base de los armónicos esféricos vectoriales, haciendo uso de sus condiciones de ortogonalidad, calculadas a partir de la relaciones de ortogonalidad de las Ecs. (1.37) y (1.38), dando como resultado que los armónicos esféricos vectoriales son ortogonales cuando tienen paridad distinta y cuando se realiza el producto interior entre \mathbf{M} y \mathbf{N} , es decir

$$\langle \mathbf{M}_{em\ell}, \mathbf{M}_{om'\ell'} \rangle_{\theta,\varphi} = \langle \mathbf{N}_{em\ell}, \mathbf{N}_{om'\ell'} \rangle_{\theta,\varphi} = 0 \qquad \forall m, m', \ell, \ell', \quad (1.44)$$
$$\langle \mathbf{M}_{om\ell}, \mathbf{N}_{em'\ell'} \rangle_{\theta,\varphi} = \langle \mathbf{M}_{om\ell}, \mathbf{N}_{om'\ell'} \rangle_{\theta,\varphi} = \langle \mathbf{M}_{em\ell}, \mathbf{N}_{em'\ell'} \rangle_{\theta,\varphi} = 0 \qquad \forall m, m', \ell, \ell', \quad (1.45)$$
$$\langle \mathbf{M}_{em\ell}, \mathbf{N}_{om\ell'} \rangle_{\theta,\varphi} = \langle \mathbf{M}_{om\ell}, \mathbf{N}_{em\ell'} \rangle_{\theta,\varphi} = 0 \qquad \forall \ell, \ell' m, \quad (1.46)$$

en donde se definió el producto interior $\langle \mathbf{A}, \mathbf{B} \rangle_{\theta, \varphi}$ como

$$\langle \mathbf{A}, \mathbf{B} \rangle_{\theta, \varphi} \equiv \int_0^{2\pi} \int_0^{\pi} \mathbf{A} \cdot \mathbf{B} \sin \theta \mathrm{d}\theta \mathrm{d}\varphi.$$

De igual manera, cuando se realiza el producto interior con elementos de los armónicos esféricos vectoriales de la misma paridad, y considerando las combinaciones de $\langle \mathbf{M}, \mathbf{M} \rangle_{\theta,\varphi}$ y $\langle \mathbf{N}, \mathbf{N} \rangle_{\theta,\varphi}$, se obtienen las siguientes relaciones

$$\langle \mathbf{M}_{em\ell}, \mathbf{M}_{em\ell'} \rangle_{\theta,\varphi} = \langle \mathbf{M}_{om\ell'}, \mathbf{M}_{om\ell'} \rangle_{\theta,\varphi} = \delta_{\ell,\ell'} \pi z_{\ell}(\rho)^2 \frac{\ell(\ell+1)}{2\ell+1} \frac{(\ell+m)!}{(\ell-m)!} \quad \forall \ell, \ell', m, \qquad (1.47)$$

$$\langle \mathbf{N}_{em\ell}, \mathbf{N}_{em\ell'} \rangle_{\theta,\varphi} = \langle \mathbf{N}_{om\ell}, \mathbf{N}_{om\ell'} \rangle_{\theta,\varphi}$$
(1.48)
$$\ell(\ell+1) \left(\ell+m\right)! \left(\left\lceil z_{\ell}(\rho) \right\rceil^2 \right) \qquad \left\lceil 1 \operatorname{d}[\rho z_{\ell}(\rho)] \right\rceil^2 \right)$$

$$= \delta_{\ell,\ell'} \pi \frac{\ell(\ell+1)}{2\ell+1} \frac{(\ell+m)!}{(\ell-m)!} \left\{ \left[\frac{z_{\ell}(\rho)}{\rho} \right]^2 \ell(\ell+1) + \left[\frac{1}{\rho} \frac{\mathrm{d}[\rho z_{\ell}(\rho)]}{\mathrm{d}\rho} \right]^2 \right\} \quad \forall \ell,\ell',m.$$

Al considerar una onda plana monocromática con longitud de onda λ , polarizada en la dirección $\hat{\mathbf{e}}_x$, y caracterizada por el campo eléctrico \mathbf{E}^i propagándose en la dirección $\hat{\mathbf{e}}_z$, en una matriz con función dieléctrica ε_m , permeabilidad magnética μ_m y por tanto índice de refracción $n_m = \sqrt{\varepsilon_m \mu_m / \varepsilon_0 \mu_0}$ (ver Fig. 1.7), en la base de los vectores ortonormales polares canónicos, así como en la base de los armónicos esféricos vectoriales [Ecs. (1.43)], se obtiene

$$\mathbf{E}^{i} = E_{0}e^{ik_{m}r\cos\theta}(\sin\theta\cos\varphi\hat{\mathbf{e}}_{r} + \cos\theta\cos\varphi\hat{\mathbf{e}}_{\theta} - \sin\varphi\hat{\mathbf{e}}_{\varphi})$$
$$= \sum_{m=0}^{\infty}\sum_{\ell=m}^{\infty} [B_{em\ell}\mathbf{M}_{em\ell} + B_{om\ell}\mathbf{M}_{om\ell} + A_{em\ell}\mathbf{N}_{em\ell} + A_{om\ell}\mathbf{N}_{om\ell}],$$

donde se omite la dependencia temporal $e^{-i\omega t}$. El término E_0 es la magnitud del campo eléctrico, $k_m = 2\pi n_m/\lambda$ es el número de onda, y $B_{em\ell}$, $B_{om\ell}$, $A_{em\ell}$ y $A_{om\ell}$ son los coeficientes en la expansión de armónicos esféricos vectoriales de la onda plana, que se determinan a partir de las Ecs. (1.47) y (1.48). Los únicos elementos de los armónicos esféricos vectoriales con componente radial son $\mathbf{N}_{em\ell}$ y $\mathbf{N}_{om\ell}$; dado que la componente radial de la onda plana es proporcional a $\cos \varphi$ en la base canónica, los únicos términos de $\mathbf{N}_{em\ell}$ y $\mathbf{N}_{om\ell}$ que contribuyen al valor de \mathbf{E}^i son los términos pares $(\mathbf{M}_{em\ell})$ y con m = 1, es decir que $A_{om\ell} = 0$ para todo ℓ , y $A_{em\ell} = 0$ para $\ell \neq 1$. Asimismo, por la dependencia con sin φ en la componente $\mathbf{\hat{e}}_{\varphi}$, $B_{em\ell} = 0$ pues $\mathbf{M}_{em\ell}$ es proporcional a cos φ en dicha entrada. Puesto que la onda plana es finita en todo el espacio, se elige $z_{\ell} = j_{\ell}^{8}$, denotado en los armónicos esféricos vectoriales con el superíndice (1). Entonces, la onda plana en la base de los armónicos esféricos vectoriales se escribe como

$$\mathbf{E}^{i} = \sum_{\ell=1}^{\infty} \left[B_{o1\ell} \mathbf{M}_{o1\ell}^{(1)} + A_{e1\ell} \mathbf{N}_{e1\ell}^{(1)} \right],$$

con $B_{ol\ell} = \langle \mathbf{E}^i, \mathbf{M}_{ol\ell}^{(1)} \rangle_{\theta,\varphi} / \langle \mathbf{M}_{ol\ell}^{(1)}, \mathbf{M}_{ol\ell}^{(1)} \rangle_{\theta,\varphi}$ y $A_{el\ell} = \langle \mathbf{E}^i, \mathbf{N}_{el\ell}^{(1)} \rangle_{\theta,\varphi} / \langle \mathbf{N}_{el\ell}^{(1)}, \mathbf{N}_{el\ell}^{(1)} \rangle_{\theta,\varphi}$. Al emplear las Ecs. (1.47) y (1.48) con m = 1, las condiciones de ortogonalidad de los armónicos esféricos vectoriales, y la ley de Faraday-Lenz [Ec. (1.26c)], se calcula la expresión de los campos EMs de la onda plana incidente en una base esférica, dada por

$$\mathbf{E}^{i} = \sum_{\ell=1}^{\infty} E_{\ell} \Big(\mathbf{M}_{o1\ell}^{(1)} - i \mathbf{N}_{e1\ell}^{(1)} \Big), \qquad (1.49a) \qquad \mathbf{H}^{i} = \frac{-k_{m}}{\omega \mu_{m}} \sum_{\ell=1}^{\infty} E_{\ell} \Big(\mathbf{M}_{e1\ell}^{(1)} + i \mathbf{N}_{o1\ell}^{(1)} \Big), \qquad (1.49b)$$

con $E_{\ell} = E_0 i^{\ell} (2\ell + 1) / [\ell(\ell + 1)].$

Para calcular los campos EMs esparcidos (\mathbf{E}^s , \mathbf{H}^s) y los campos EMs dentro de la partícula esférica (\mathbf{E}^p , \mathbf{H}^p), se emplean las condiciones a la frontera de los campos EMs [Ecs. (1.7)], en donde las componentes paralelas de los campos EMs a la interfaz son continuas⁹, es decir

$$\left(\mathbf{E}^{i} + \mathbf{E}^{s} - \mathbf{E}^{p}\right) \times \hat{\mathbf{e}}_{r} = \left(\mathbf{H}^{i} + \mathbf{H}^{s} - \mathbf{H}^{p}\right) \times \hat{\mathbf{e}}_{r} = \mathbf{0}.$$
(1.50)

De las Ecs. (1.49) y de las condiciones a la frontera [Ec. (1.50)], se deduce que en la expansión de los campos EMs esparcidos e internos, los coeficientes para $m \neq 1$ son nulos. Para que los campos EMs dentro de la partícula (\mathbf{E}^p , \mathbf{H}^p), caracterizada por la función dieléctrica ε_p , permeabilidad magnética μ_p e índice de refracción $n_p = \sqrt{\varepsilon_p \mu_p / \varepsilon_0 \mu_0}$, sea finita en el origen, que coincide con el centro de la partícula, se emplea como solución a la ecuación de radial las funciones $j_\ell(k_p r)$, con $k_p = 2\pi n_p / \lambda$ el número de onda dentro de la partícula esférica. Las expresiones para los campos EMs en esta región son

$$\mathbf{E}^{p} = \sum_{\ell=1}^{\infty} E_{\ell} \Big(c_{\ell} \mathbf{M}_{o1\ell}^{(1)} - i d_{\ell} \mathbf{N}_{e1\ell}^{(1)} \Big), \quad (1.51a) \quad \mathbf{H}^{p} = \frac{-k_{p}}{\omega \mu_{p}} \sum_{\ell=1}^{\infty} E_{\ell} \Big(d_{\ell} \mathbf{M}_{e1\ell}^{(1)} + i c_{\ell} \mathbf{N}_{o1\ell}^{(1)} \Big). \quad (1.51b)$$

Para los campos esparcidos ($\mathbf{E}^s, \mathbf{H}^s$) —definidos fuera de la partícula— las funciones $j_\ell \neq y_\ell$ no tienen puntos indeterminados, por lo que se emplean para la parte radial las funciones esféricas de Hankel $h_\ell^{(1)} \neq h_\ell^{(2)}$, que en su límite asintótico ($\ell^2 \ll kr$), son [15]

$$h_{\ell}^{(1)}(k_m r) \approx -i^{\ell} \frac{e^{ik_m r}}{ik_m r}, \qquad \qquad h_{\ell}^{(2)}(k_m r) \approx -i^{\ell} \frac{e^{-ik_m r}}{ik_m r},$$

⁸La función esférica de Bessel $y_{\ell}(\rho)$ diverge cuando $\rho = 0$, por lo que los campos EMs en el origen, que se elige como el centro de la partícula, divergirían.

⁹Considerando que no hay densidades superficiales de carga ni de corriente externas sobre la superficie de la partícula.

por lo que $h_{\ell}^{(1)}$ corresponde a una onda esférica saliente y $h_{\ell}^{(2)}$ a una entrante. Dado que el campo esparcido es una onda saliente, se emplea $h_{\ell}^{(1)}$ como solución radial a la función generadora de los armónicos esféricos vectoriales. Entonces, los campos EMs esparcidos ($\mathbf{E}^{s}, \mathbf{H}^{s}$) son

$$\mathbf{E}^{s} = \sum_{\ell=1}^{\infty} E_{\ell} \Big(i a_{\ell} \mathbf{N}_{e1\ell}^{(3)} - b_{\ell} \mathbf{M}_{o1\ell}^{(3)} \Big), \quad (1.52a) \quad \mathbf{H}^{s} = \frac{k}{\omega \mu} \sum_{\ell=1}^{\infty} E_{\ell} \Big(i b_{\ell} \mathbf{N}_{o1\ell}^{(3)} + a_{\ell} \mathbf{M}_{e1\ell}^{(3)} \Big), \quad (1.52b)$$

en donde se denota mediante el superíndice (3) que se emplean las funciones esféricas de Hankel $h_{\ell}^{(1)}$ para la solución radial. Para expresar la dependencia angular polar en los armónicos esféricos vectoriales [Ecs. (1.43)], se definen las funciones π_{ℓ} y τ_{ℓ} como

$$\pi_{\ell}(\cos\theta) = \frac{P_{\ell}^{1}(\cos\theta)}{\sin\theta}, \qquad (1.53a) \qquad \tau_{\ell}(\cos\theta) = \frac{\mathrm{d}P_{\ell}^{1}(\cos\theta)}{\mathrm{d}\theta}. \qquad (1.53b)$$

Las relaciones de recurrencia de las funciones asociadas de Legendre [27] permiten expresar a π_{ℓ} y τ_{ℓ} como [15]

$$\pi_{\ell}(\mu) = \frac{2\ell - 1}{\ell - 1} \mu \pi_{\ell - 1}(\mu) - \frac{\ell}{\ell - 1} \pi_{\ell - 2}(\mu), \qquad \qquad \tau_{\ell}(\mu) = \ell \mu \pi_{\ell}(\mu) - (\ell + 1) \pi_{\ell - 1}(\mu),$$

en donde se empleó el cambio de variable $\mu = \cos \theta$ y se define $\pi_0 = 0$ y $\pi_1 = 1$. La función π_{ℓ} tiene la paridad de $\ell - 1$, mientras que τ_{ℓ} tiene la paridad de ℓ y, a pesar de no ser orotogonales, sí lo es la suma aritmética de ellas, es decir [15]

$$\int_{-1}^{1} [\tau_{\ell}(\mu) + \pi_{\ell}(\mu)] [\tau_{\ell'}(\mu) + \pi_{\ell'}(\mu)] d\mu = \int_{-1}^{1} [\tau_{\ell}(\mu) - \pi_{\ell}(\mu)] [\tau_{\ell'}(\mu) - \pi_{\ell'}(\mu)] d\mu = 0, \qquad \ell \neq \ell'.$$
(1.54)

Para determinar los coeficientes $a_{\ell}, b_{\ell}, c_{\ell} \neq d_{\ell}$ de las Ecs. (1.51) y (1.52) se emplean las condiciones a la frontera [Ec. (1.50)], por lo que se deben de satisfacer las siguientes ecuaciones

$$\begin{aligned} E^{i}_{\theta} + E^{s}_{\theta} &= E^{p}_{\theta}, \\ H^{i}_{\theta} + H^{s}_{\theta} &= H^{p}_{\theta}, \end{aligned} \qquad \qquad E^{i}_{\varphi} + E^{s}_{\varphi} &= E^{p}_{\varphi}, \\ H^{i}_{\theta} + H^{s}_{\theta} &= H^{p}_{\theta}, \end{aligned}$$

en r = a, que es la superficie de la partícula esférica. Al emplear la ortogonalidad de las funciones sin φ y cos φ [Ec. (1.37)], reescribir los armónicos esféricos vectoriales [Ecs. (1.43)] en términos de π_{ℓ} y τ_{ℓ} y emplear la ortogonalidad de $\tau_{\ell} \pm \pi_{\ell}$ [Ec. (1.54)], junto con las expresiones de los campos EMs de la onda plana incidente [Ecs. (1.49)], de los campos EMs dentro de la partícula [Ecs. (1.51)] y los campos EMs esparcidos [Ecs. (1.52)], se obtiene el siguiente sistema de ecuaciones

(1)

$$j_{\ell}(Nx)c_{\ell} + h_{\ell}^{(1)}(x)b_{\ell} = j_{\ell}(x),$$

$$\mu_{m}[Nj_{\ell}(Nx)]'c_{\ell} + \mu_{p}[xh_{\ell}^{(1)}(x)]'b_{\ell} = \mu_{p}[xj_{\ell}(x)]',$$

$$\mu_{m}Nj_{\ell}(Nx)d_{\ell} + \mu_{p}h_{\ell}^{(1)}(x)a_{\ell} = \mu_{p}j_{\ell}(x),$$

$$[Nj_{\ell}(Nx)]'d_{\ell} + N[xh_{\ell}^{(1)}(x)]'a_{\ell} = N[xj_{\ell}(x)]',$$
en donde ' denota la derivada respecto al argumento de las funciones de Bessel, $x = k_m a = 2\pi n_m a/\lambda$ es el parámetro de tamaño y $N = n_p/n_m$ es el índice de refracción relativo entre la partícula y la matriz. Al determinar los coeficientes $a_\ell y b_\ell$, se obtiene una expresión analítica para los campos EMs esparcidos, por lo que es posible determinar las componentes de la matriz de esparcimiento S en la Ec. (1.25). La solución para los coeficientes $a_\ell y b_\ell$, los coeficientes de los campos EMs esparcidos¹⁰, son

$$a_{\ell} = \frac{\mu_m N^2 j_{\ell}(Nx) [xj_{\ell}(x)]' - \mu_p j_{\ell}(x) [Nxj_{\ell}(x)]'}{\mu_m N^2 j_{\ell}(Nx) [xh_{\ell}^{(1)}(x)]' - \mu_p h_{\ell}^{(1)}(x) [Nxj_{\ell}(Nx)]'},$$
(1.55a)

$$b_{\ell} = \frac{\mu_p N j_{\ell}(Nx) [x j_{\ell}(x)]' - \mu_m j_{\ell}(x) [Nx j_{\ell}(x)]'}{\mu_p j_{\ell}(Nx) [x h_{\ell}^{(1)}(x)]' - \mu_m h_{\ell}^{(1)}(x) [Nx j_{\ell}(Nx)]'},$$
(1.55b)

sin embargo, para el caso en el que la partícula esférica no es magnéntica, $n_p = \sqrt{\varepsilon_p/\varepsilon_0}$, y tampoco lo es la matriz $n_m = \sqrt{\varepsilon_m/\varepsilon_0}$, las Ecs. (1.55) se reducen a

Coeficientes de Mie

$$u_{\ell} = \frac{N\psi_{\ell}(Nx)\psi_{\ell}'(x) - \psi_{\ell}(x)\psi_{\ell}'(Nx)}{N\psi_{\ell}(Nx)\xi_{\ell}'(x) - \xi_{\ell}(x)\psi_{\ell}'(Nx)},$$
(1.56a)

$$p_{\ell} = \frac{\psi_{\ell}(Nx)\psi_{\ell}'(x) - N\psi_{\ell}(x)\psi_{\ell}'(Nx)}{\psi_{\ell}(Nx)\xi_{\ell}'(x) - N\xi_{\ell}(x)\psi_{\ell}'(Nx)},$$
(1.56b)

en donde $\psi_{\ell}(\rho) = \rho j_{\ell}(\rho)$ y $\xi_{\ell}(\rho) = \rho h_{\ell}^{(1)}(\rho)$ son las funciones de Riccati-Bessel [15, 27]. Los armónicos esféricos vectoriales representan una expansión multipolar del campo eléctrico esparcido por una partícula esférica y los coeficientes de Mie [Ec. (1.56)] modulan la contribución al campo total esparcido de cada término: a_{ℓ} , los multipolos eléctricos; b_{ℓ} , los magnéticos [28]. En la Fig. 1.8 se muestran las primeras cuatro contribuciones multipolares del campo eléctrico esparcido¹¹ \mathbf{E}^{s} [Ec. (1.52a)], considerando únicamente las componentes transversales a una superficie esférica y concéntrica a la partícula esparcidora.

Los campos EMs esparcidos [Ecs. (1.52)] se calcularon al considerar una onda plana monocromática incidente \mathbf{E}^i polarizada en la dirección $\hat{\mathbf{e}}_x$. Sin embargo, debido a la simetría de la esfera, una onda plana polarizada en la dirección $\hat{\mathbf{e}}_y$ se describe mediante la transformación $\varphi \rightarrow \varphi + \pi/2$, por lo que los campos EMs esparcidos y dentro de la esfera se calculan mediante el mismo procedimiento [15]. Entonces, cualquier cantidad relacionada con la absorción y esparcimiento de una esfera se puede calcular mediante los coeficientes de Mie [Ecs. (1.56)]. En particular, para determinar la matriz de esparcimiento \mathbb{S} se relaciona el campo eléctrico esparcido en el límite de campo lejano, en donde al emplear las funciones de Riccati-Bessel, y sus derivadas, en el límite asintótico¹² $\ell^2 \ll kr$, las componentes radiales de los campos EMs decaen como $(k_m r)^{-2}$, por lo

 10 Las expresiones de los coeficientes para los campos EMs dentro de la partícula esférica [Ecs. (1.51)] son

$$c_{\ell} = \frac{\mu_{p} j_{\ell}(x) [x h_{\ell}^{(1)}(x)]' - \mu_{p} h_{\ell}^{(1)}(x) [x j_{\ell}(x)]'}{\mu_{p} j_{\ell}(Nx) [x h_{\ell}^{(1)}(x)]' - \mu_{m} h_{\ell}^{(1)}(x) [N x j_{\ell}(Nx)]'}, \qquad d_{\ell} = \frac{\mu_{p} N j_{\ell}(x) [x h_{\ell}^{(1)}(x)]' - \mu_{p} N h_{\ell}^{(1)}(x) [x j_{\ell}(x)]'}{\mu_{m} N^{2} j_{\ell}(Nx) [x h_{\ell}^{(1)}(x)]' - \mu_{p} h_{\ell}^{(1)}(x) [N x j_{\ell}(Nx)]'},$$

¹¹En el artículo original de Mie (ref. [24]) se les denomina a la contribuciones multipolares como ondas parciales. ¹²En el límite $\ell^2 \ll \rho$, se cumple que $h_{\ell}^{(1)}(\rho) \approx (-i)^{\ell} e^{i\rho}/i\rho$ y $dh_{\ell}^{(1)}/d\rho = (-i)^{\ell} e^{i\rho}/\rho$. Por lo tanto, $\xi(\rho) \approx (-i)^{\ell} e^{i\rho}/i$ y $d\xi/d\rho = (-i)^{\ell} e^{i\rho}(1/i\rho + 1)$.

Fig. 1.8: Contribuciones multipolares a) eléctricas a_{ℓ} y b) magnéticas b_{ℓ} de orden $\ell = 1, 2, 3$ y 4 del campo esparcido \mathbf{E}^{s} por una partícula esférica, evaluadas en una superficie matemática esférica y concéntrica a la partícula que radia los campos EMs, en donde el plano de la página corresponde al plano de oscilación del campo eléctrico incidente \mathbf{E}^{i} . En las gráficas, el color rojo corresponde a los valores máximos del campo eléctrico, mientras que los azules son los puntos menos intensos, donde se presentan los nodos ($\mathbf{E}^{s} \approx \mathbf{0}$) en la superficie esférica.

que son despreciables. Al escribir los armónicos esféricos vectoriales [Ecs. (1.43)] en términos de π_{ℓ} , τ_{ℓ} y de las funciones de Riccati-Bessel ψ y ξ en el límite asintótico, despreciando los términos proporcionales a $(k_m r)^{-1}$, el campo eléctrico esparcido en la componente paralela y perpendicular al plano de esparcimiento (ver Fig. 1.6) es

$$E_{\theta}^{s} \hat{\mathbf{e}}_{\parallel}^{s} = \frac{\cos\varphi}{k_{m}r} \sum_{\ell}^{\infty} E_{0} i^{\ell} \frac{2\ell+1}{\ell(\ell+1)} (ia_{\ell}\xi_{\ell}^{\prime}\tau_{\ell} - b_{\ell}\xi_{\ell}\pi_{\ell}) \hat{\mathbf{e}}_{\theta}$$
$$\approx E_{0} \cos\varphi \frac{e^{ik_{m}r}}{-ik_{m}r} \sum_{\ell}^{\infty} \frac{2\ell+1}{\ell(\ell+1)} (a_{\ell}\tau_{\ell} + b_{\ell}\pi_{\ell}) \hat{\mathbf{e}}_{\theta}, \qquad (1.57a)$$

$$E_{\varphi}^{s} \hat{\mathbf{e}}_{\perp}^{s} = \frac{\sin\varphi}{k_{m}r} \sum_{\ell}^{\infty} E_{0}i^{\ell} \frac{2\ell+1}{\ell(\ell+1)} (-ia_{\ell}\xi_{\ell}'\pi_{\ell} + b_{\ell}\xi_{\ell}\tau_{\ell}) \hat{\mathbf{e}}_{\varphi}$$
$$\approx E_{0}\sin\varphi \frac{e^{ik_{m}r}}{-ik_{m}r} \sum_{\ell}^{\infty} \frac{2\ell+1}{\ell(\ell+1)} (a_{\ell}\pi_{\ell} + b_{\ell}\tau_{\ell}) (-\hat{\mathbf{e}}_{\varphi}), \qquad (1.57b)$$

donde $\hat{\mathbf{e}}_{\parallel}^{s} = \hat{\mathbf{e}}_{\theta}$ y $\hat{\mathbf{e}}_{\perp}^{s} = -\hat{\mathbf{e}}_{\varphi}$. Al emplear la Ec. (1.22) para reescribir a la onda plana incidente \mathbf{E}^{i} [Ec. (1.49a)] en la base de { $\hat{\mathbf{e}}_{\parallel}^{i}, \hat{\mathbf{e}}_{\perp}^{i}$ } [Ec. (1.20)], se determina la forma explícita de la matriz de esparcimiento para una partícula esférica:

Matriz de esparcimiento de Mie

$$\begin{pmatrix} E_{\parallel}^s \\ E_{\perp}^s \end{pmatrix} = \frac{e^{ik_m(r-z)}}{-ik_m r} \begin{pmatrix} S_2(\theta) & 0 \\ 0 & S_1(\theta) \end{pmatrix} \begin{pmatrix} E_{\parallel}^i \\ E_{\perp}^i \end{pmatrix},$$
(1.58)

donde $E^i_{\parallel} = E_0 \cos \varphi, \ E^i_{\perp} = E_0 \sin \varphi$ y

$$S_1(\theta) = \sum_{\ell}^{\infty} \frac{2\ell+1}{\ell(\ell+1)} (a_{\ell}\pi_{\ell} + b_{\ell}\tau_{\ell}), \quad (1.59a) \qquad S_2(\theta) = \sum_{\ell}^{\infty} \frac{2\ell+1}{\ell(\ell+1)} (a_{\ell}\tau_{\ell} + b_{\ell}\pi_{\ell}). \quad (1.59b)$$

1.3. Respuesta electromagnética de materiales plasmónicos

En el artículo original de Mie [24] se emplea la solución a los campos EMs esparcidos para describir las propiedad ópticas de suspensiones coloidales de partículas esféricas de oro. En sus cálculos, Mie asumió que la respuesta electromagnética del oro en bulto, dada por los datos experimentales de la función dieléctrica $\varepsilon(\omega)$, era válida también para nanopartículas (NPs) cuyo radio fuera un orden de magnitud menor al de la longitud de onda de la luz que ilumina a la NP [25]. A pesar de que la suposición de Mie es válida para los cálculos que publicó [25], en general la respuesta electromagnética de los materiales depende de sus dimensiones y a la nanoescala los efectos de superficie cobran relevancia respecto a los de bulto¹³ [29, 30], por lo que la función dieléctrica de bulto debe corregirse para NPs. Para su corrección, se asume que a la función dieléctrica contribuye tanto la respuesta de los electrones de conducción del material mediante $\varepsilon^{intra}(\omega)$, correspondiente a las transiciones electrónicas intrabanda, como la de los electrones ligados mediante $\varepsilon^{inter}(\omega)$, correspondiente a las transiciones electrónicas interbanda [29], es decir

$$\varepsilon^B_{exp}(\omega) = \varepsilon^{intra}(\omega) + \varepsilon^{inter}(\omega),$$

en donde $\varepsilon_{exp}^B(\omega)$ es la función dieléctrica de bulto, que se determina de forma experimental [31]. Es posible considerar los efectos de tamaño en $\varepsilon^{intra}(\omega)$ empleando el modelo de Drude-Sommerfeld, el cual describe la función dieléctrica de un material en bulto con electrones de conducción a partir de asumir un gas de electrones libres [32]. Al corregir el modelo de Drude-Sommerferd considerando los efectos de tamaño de la NP e introducir esta corrección en los datos experimentales del bulto, se construye una función dieléctrica apta para NPs y el cálculo de sus propiedades ópticas mediante la solución de Mie.

1.3.1. Modelo de Drude-Sommerfeld

Para describir la contribución de los electrones de conducción en la respuesta EM del material $\varepsilon^{intra}(\omega)$ se emplea el modelo de Drude-Sommerfeld que, desde un enfoque clásico, es la solución a la ecuación de movimiento de los electrones libres en un material ante la presencia

 $^{^{13}}$ Una diferencia en la respuesta EM de bulto respecto a la de NPs ocurre cuando el camino libre medio de los electrones libres de algún metal es mayor que las dimensiones de la NP [29].

de un campo eléctrico externo oscilante [32]. El efecto de un campo eléctrico externo \mathbf{E} sobre los electrones libres de un material es un cambio en su posición, por lo que aparecen momentos dipolares $\mathbf{p} = q_e \mathbf{r}$; con q_e la carga del electrón y \mathbf{r} su desplazamiento. El efecto neto en el material es una polarización $\mathbf{P} = n_v \mathbf{p}$, donde n_v es la densidad volumétrica electrónica [3]. La respuesta óptica del material dada por el modelo de Drude-Sommerfeld, caracterizada por la función dieléctrica $\varepsilon_D(\omega)$, depende de \mathbf{E} y \mathbf{P} como

$$\mathbf{P} = n_v q_e \mathbf{r} = \varepsilon_0 \left(\frac{\varepsilon_D(\omega)}{\varepsilon_0} - 1 \right) \mathbf{E}, \tag{1.60}$$

donde se asume que la polarización ocurre en la dirección del campo eléctrico [3]. Si el material se encuentra ante la presencia de un campo eléctrico oscilante de la forma $\mathbf{E}_{\mathbf{0}}e^{-i\omega t}$, la ecuación de movimiento que obedece un electrón libre del material es [28, 32]

$$m_e^* \frac{\partial^2 \mathbf{r}}{\partial t^2} + \gamma \frac{\partial \mathbf{r}}{\partial t} = q_e \mathbf{E}_0 e^{-i\omega t}, \qquad (1.61)$$

donde m_e^* es la masa efectiva del electrón¹⁴ [32] y γ es la constante fenomenológica de amortiguamiento [28], que es el inverso del tiempo promedio entre eventos de colisiones de los electrones [3, 32]. Al multiplicar la Ec. (1.61) por $n_v q_e$, resolverla con el Ansatz $\mathbf{r} = \mathbf{r}_0 e^{-i\omega t}$ y compararla con la Ec. (1.60), se obtiene la función dieléctrica tipo Drude [3, 32]:

Modelo de Drude-Sommerfeld

$$\frac{\varepsilon_D(\omega)}{\varepsilon_0} = 1 - \frac{\omega_p^2}{\omega(\omega + i\gamma)}, \qquad (1.62) \qquad \qquad \omega_p = \sqrt{\frac{n_v q_e^2}{m_e^* \varepsilon_0}}, \qquad (1.63)$$

con ω_p la frecuencia de plasma. La constante fenomenológica γ depende de las dimensiones y geometría del material, por ejemplo, para un material en bulto se emplea γ_B dada por [28]

$$\gamma_B = \frac{v_F}{L},\tag{1.64}$$

donde v_F es la velocidad de Fermi¹⁵ del material a una temperatura dada y L es el camino libre medio, que representa la distancia promedio que recorren los electrones entre eventos de colisiones [32].

La frecuencia de plasma ω_p en el modelo de Drude-Sommerfeld delimita regímenes donde el material plasmónico se comporta como un metal o como un dieléctrico [34]. En la Fig. 1.9 se grafican las funciones dieléctricas (gráfica interna) y los índices de refracción (gráfica principal) modelados por una función tipo Drude [Ec. (1.62)] con $\hbar\omega_p = 4.3$ eV [Fig. 1.9a)] y $\hbar\omega_p = 10$ eV [Fig. 1.9b)], y $\hbar\gamma = 0.15$ eV. En estas gráficas se observa que Re[$\varepsilon(\omega)$] < 0 para $\omega < \omega_p$, por lo que al sustituir el índice de refracción en la expresión de una onda plana propagante se obtiene

 $^{^{14}}$ La masa efectiva es el resultado de la interacción de un electrón con el potencial de la red cristalina que conforma al material, con los fonones de la red y con otros electrones en la red [32].

¹⁵En un sistema con N electrones, que obedecen el principio de exclusión de Pauli, la energía de Fermi E_F es la que corresponde al nivel energético ocupado con mayor energía, y está dada por $E_F = (\hbar^2/2m_e^*)k_F^2$, con k_F la norma del vector de onda de Fermi [32]. Puesto que la velocidad de Fermi es $v_F = p_F/m_e^* = \hbar k_F/m$ y que para un gas de electrones libres $k_F = (3\pi n_v)^{1/3}$, se obtiene que para metales como el oro, plata o cobre, $v_F \approx 10^{15}$ nm s⁻¹ [32, 33].

una onda evanescente, es decir, la onda plana no penetra el material y es reflejada: el material presenta una respuesta metálica. Para $\omega > \omega_p$ se cumple que $\operatorname{Re}[\varepsilon(\omega)] > 0$ y $\operatorname{Im}[\varepsilon(\omega)] \approx 0$, por lo que el material, en dicho régimen, se comporta como un material transparente.

Fig. 1.9: Índice de refracción (gráfica externa) y función dieléctrica (gráfica interna) del modelo de Drude-Sommerfeld para las frecuencias de plasma **a**) $\hbar\omega_p = 4.3$ eV y **b**) $\hbar\omega_p = 10$ eV; ambos casos con $\hbar\gamma = 0.15$ eV, como función de la energía. En el marco superior se observa su dependencia con la longitud de onda λ .

1.3.2. Corrección por tamaño para partículas esféricas

La corrección de la función dieléctrica para NPs esféricas a partir de la función dieléctrica de bulto $\varepsilon_B^{exp}(\omega)$, obtenida mediante métodos experimentales, consiste en la modificación de la constante fenomenológica de amortiguamiento en el modelo de Drude-Sommerfeld¹⁶, dado que ésta depende del camino libre medio de los electrones L y debe modificarse cuando el radio de las NPs a es menor a L [28]. Por ejemplo, para metales típicos como el oro y la plata, a frecuencias del espectro visible y a una temperatura de 273 K, el camino libre medio de los electrones libres para el oro y la plata es de 56 nm y 42 nm, respectivamente¹⁷, por lo que para NPs de oro o plata con radios menores a 60 nm se hace una corrección de la constante fenomenológica para materiales de bulto. La corrección de γ_B para una partícula esférica de radio a se calcula al considerar el camino libre medio efectivo de los electrones, proporcional al radio de la partícula, obteniedo así un término de amortiguamiento adicional al de bulto y que es aditivo a éste [28], es decir,

$$\gamma = \gamma_B + \gamma_a = v_F \left(\frac{1}{L} + \frac{A}{a}\right)$$

donde A es un parámetro del orden de la unidad [29, 30] y depende de la teoría con la que se calcule el camino libro medio efectivo [28]. Entonces, para NPs esféricas modeladas por una función dieléctrica tipo Drude [Ec. (1.62)] se emplea la corrección por tamaño de la función

¹⁶También es posible hacer una corrección de tamaño en la contribución interbanda de la función dieléctrica considerando la densidad de estados. Sin embargo, para los datos experimentales de [31], esta corrección para partículas esféricas es apreciable para NPs con radios menores a 2 nm [30].

¹⁷Cálculos a partir de los datos obtenidos de las tablas 1.3 y 2.1 de [33], donde $v_F^{Au} = 1.40 \times 10^{15}$ nm s⁻¹ y $v_F^{Ag} = 1.39 \times 10^{15}$ nm s⁻¹.

dieléctrica dada por

$$\frac{\varepsilon(\omega)}{\varepsilon_0} = \frac{\varepsilon_B^{exp}(\omega)}{\varepsilon_0} - \left(1 - \frac{\omega_p^2}{\omega(\omega + i\gamma_B)}\right) + \left(1 - \frac{\omega_p^2}{\omega[\omega + i(\gamma_B + Av_F/a)]}\right),\tag{1.65}$$

en donde se resta la contribución del material de bulto a la función dieléctrica experimental $\varepsilon_B^{exp}(\omega)$ y se introduce la función dieléctrica con la corrección $\gamma = \gamma_B + \gamma_a$. Para realizar este proceso se calculan los parámetros ω_p y γ_B que mejor ajusten el modelo de Drude-Sommerfeld a los datos experimentales, sin embargo, la función dieléctrica experimental del material $\varepsilon_B^{exp}(\omega)$ depende del método de fabricación de la muestra y del sustrato sobre el que está depositada [35, 36]. En el cálculo de ω_p y γ_B se debe considerar que el comportamiento tipo Drude es válido para el límite $\omega \to 0$ (caso estático), por lo que el ajuste debe hacerse hasta una cierta frecuencia de corte en la que el modelo de Drude aún sea válido [30], y la elección de la frecuencia de corte para el ajuste modifica el resultado de los parámetros de Drude.

Para determinar los parámetros ω_p y γ del modelo de Drude [Ec. (1.62)] se emplea el método propuesto en [30], donde se construyen dos relaciones lineales entre $\varepsilon'(\omega) = \operatorname{Re}[\varepsilon_D(\omega)/\varepsilon_0]$ y $\varepsilon''(\omega) = \operatorname{Im}[\varepsilon_D(\omega)/\varepsilon_0]$. Las partes real e imaginaria de la Ec. (1.62) son

$$\varepsilon' = 1 - \frac{\omega_p^2 \omega^2}{\omega^4 + (\omega\gamma)^2}, \qquad (1.66a) \qquad \varepsilon'' = \frac{\omega_p^2(\omega\gamma)}{\omega^4 + (\omega\gamma)^2}, \qquad (1.66b)$$

donde no se escribe la dependencia en ω de ε' y ε'' para hacer más claro el siguiente procedimiento. Dado que $1 - \varepsilon' = \omega_p^2 \omega^2 / [\omega^4 + (\omega \gamma)^2]$, al calcular $(1 - \varepsilon') \gamma / \omega$ y sustituir con la Ec. (1.66b) se obtiene que $(1 - \varepsilon')(\gamma / \omega) = \varepsilon''$, por lo que se cumple la relación

$$\omega \varepsilon'' = \gamma (1 - \varepsilon'). \tag{1.67}$$

Asimismo, al calcular la suma del cuadrado de $1 - \varepsilon'$ y el cuadrado de ε'' se obtiene

$$(1 - \varepsilon')^2 + (\varepsilon'')^2 = \frac{\omega_p^4 \omega^4}{[\omega^4 + (\omega\gamma)^2]^2} + \frac{\omega_p^4 (\omega\gamma)^2}{[\omega^4 + (\omega\gamma)^2]^2} = \frac{\omega_p^4 [\omega^4 + (\omega\gamma)^2]}{[\omega^4 + (\omega\gamma)^2]^2} = \frac{\omega_p^4}{\omega^4 + (\omega\gamma)^2}$$

y al multiplicar ambos lados de la ecuación por ω^2 y sustituir con la Ec. (1.66a) se obtiene

$$\omega^{2} [(1 - \varepsilon')^{2} + (\varepsilon'')^{2}] = \omega_{p}^{2} (1 - \varepsilon').$$
(1.68)

Es decir, al graficar el lado izquierdo de las Ecs. (1.67) y (1.68) como función de $1 - \varepsilon'$ se obtienen dos funciones lineales sin ordenada al origen por lo que, al emplear los valores experimentales de la función dieléctrica, cuando estos no correspondan a una recta que cruza por el origen, la función dieléctrica deja de ser descrita por el modelo de Drude. Asimismo, es posible determinar los parámetros ω_p y γ de la función dieléctrica empleando los valores de la parte real y la parte imaginaria de $\varepsilon(\omega)/\varepsilon_0$.

En la Fig. 1.10 se muestran las gráficas de las Ecs. (1.67) en rojo y (1.68) en azul, donde se emplearon los datos experimentales para la función dieléctrica del oro [Fig. 1.10a)] y la plata [1.10b)] obtenidos de [31]. Para ambos materiales, el modelo de Drude-Sommerfeld describe los datos experimentales para $\hbar\omega < 1.76$ eV (delimitado por la línea vertical gris); los datos considerados para el ajuste se muestran como anillos, el resto como discos. Mediante un ajuste de los datos experimentales, se determinó que para el oro $\hbar\omega_p = (8.70 \pm 0.02)$ eV y $\hbar\gamma = (8.29 \pm 0.08) \times 10^{-2}$ eV, mientras que para la plata $\hbar\omega_p = (9.05 \pm 0.02)$ eV y $\hbar\gamma = (2.04 \pm 0.08) \times 10^{-2}$ eV.

Fig. 1.10: Determinación de los parámetros $\hbar\gamma$ (rojo) y $\hbar\omega_p$ (azul) mediante las Ecs. (1.67) y (1.68), respectivamente, para los datos experimentales de la función dieléctrica **a**) del oro y **b**) la plata obtenidos de [31]; la dependencia en la energía $\hbar\omega$ se muestra en la escala superior. Los anillos corresponden a datos considerados para el ajuste al modelo de Drude-Sommerfeld, mientras que los discos corresponden a los datos de contribuciones no plasmónicas; la división entre ambos regímenes corresponde a la línea vertical gris que para ambos casos se encuentra en $\hbar\omega \approx 1.76$ eV.

En la Fig. 1.11 se muestra la correción por tamaño de la función dieléctrica del oro [Fig. 1.11a)] y la plata [Fig. 1.11b)] para partículas esféricas, considerando A = 1 en la Ec. (1.65) [29]. Tanto para el oro como para la plata, la función dieléctrica de bulto, experimental, corresponde a las líneas continuas y los puntos a sus valores experimentales; la función dieléctrica para NPs esféricas de radio a = 5 nm corresponde a las líneas discontinuas; para a = 10 nm, líneas punteadas; y para a = 50 nm, líneas punto-discontinuas. Asimismo, para ambos materiales, la función dieléctrica para NPs se asemeja a la de bulto para energías $\hbar \omega > 2$ eV. Sin embargo, para $\hbar \omega < 2$ eV, los efectos de tamaño son apreciables y más significativos mientras menor sea el radio de las NPs, como se observa tanto en la parte real (líneas azules) como en la imaginaria (líneas rojas) de la función dieléctrica, o con mayor claridad en las ampliaciones de la Fig. 1.11, donde se muestra el comportamiento de la función dieléctrica del oro y de la plata en el espectro visible para distintos radios de NPs.

1.3.3. Plasmones

En la deducción de la función dieléctrica del modelo de Drude [Ec. (1.62)] se resolvió la ecuación de movimiento de los electrones libres en un material ante la presencia de un campo eléctrico oscilante en el tiempo. A las oscilaciones colectivas (modos propios) de los electrones libres debido al acoplamiento con la radiación EM se les denominan plasmones, que pueden ocurrir en el bulto [5], o bien, sobre una superficie. A diferencia del plasmón de volumen, las resonancias plasmónicas de superficie (Surface Plasmon Resonances, SPRs) pueden clasificarse en modos propagantes y localizados. Cuando un plasmón se propaga a lo largo de una interfaz plana entre un medio dieléctrico y uno metálico, se le denomina *plasmón-polaritón de superficie* (Surface Plasmon Polariton, SPP) [8]. Si el plasmón, en cambio, se encuentra en la superficie de una partícula metálica, de tamaño finito, se le conoce como resonancia de plasmón de superficie *localizado* (Localized Surface Plasmon Resonance, LSPR) [8].

Fig. 1.11: Comparación de la función dieléctrica (parte real en azul e imaginaria en rojo) como función de la energía $\hbar\omega$ para **a**) el oro y **b**) la plata en bulto (líneas continuas) y para NPs esféricas de radio a = 5 nm (líneas discontinuas), a = 10 nm (líneas punteadas) y a = 50 nm (líneas punto-discontinuas). La dependencia de la función dieléctrica con la longitud de onda λ se muestra en la escala superior. Los datos experimentales para la función dieléctrica de bulto fueron tomados de [31], y se grafican como puntos en **a**) y en **b**).

Para determinar a qué frecuencias se excitan los plasmones de volumen se calcula el rotacional de la ley de Faraday-Lenz y se sustituye el rotacional del campo magnético con la ley de Ampère-Maxwell, y tras calcular su transformada de Fourier el resultado es [8]

$$\mathbf{k}(\mathbf{k}\cdot\mathbf{E}) - k^2\mathbf{E} = -rac{arepsilon(\omega)}{arepsilon_0}rac{\omega^2}{c^2}\mathbf{E},$$

donde se hace la distinción entre los casos de ondas transversales ($\mathbf{k} \cdot \mathbf{E} = 0$), obteniendo la

relación de dispersión

$$k^{2} = \frac{\varepsilon(\omega)}{\varepsilon_{0}} \frac{\omega^{2}}{c^{2}}, \qquad (1.5 \ bis)$$

y los casos con ondas longitudinales ($\mathbf{k} \cdot \mathbf{E} = kE$), en donde

$$\varepsilon(\omega) = 0. \tag{1.69}$$

Para obtener la relación de dispersión de un plasmón de volumen, se sustituye la función dieléctrica del modelo de Drude-Sommerfeld [Ec. (1.62)], considerando el límite $\gamma \rightarrow 0$, en las Ecs. (1.5 *bis*) y (1.69), dando como resultado

Relación de dispersión del plasmón de volumen							
$k^2 = rac{\omega^2 - \omega_p^2}{c^2}, \ \omega = \omega_p.$	(Modo transversal) (Modo longitudinal)	(1.70a) $(1.70b)$					

Dado que el plasmón de volumen es un modo longitudinal no puede acoplarse a ondas EMs transversales [8]. Por otro lado, el SPP sí responde a ondas EM transversales y su relación de dispersión se calcula al considerar la geometría presentada en la Fig. 1.12, en donde un haz de luz incide sobre una interfaz plana entre un medio dieléctrico, con una función dieléctrica $\varepsilon_1(\omega) > 0$ y uno metálico con $\varepsilon_2(\omega)$, es decir, que cumpla con que $\operatorname{Re}[\varepsilon_2(\omega)] < 0$, que en el modelo de Drude-Sommerfeld [Ec. (1.62)] basta con que $\omega < \omega_p$.

Fig. 1.12: Esquema de una interfaz entre un medio dieléctrico (z > 0) y uno metálico (z < 0) sobre la que incide un haz de luz proveniente del medio dieléctrico; ambos materiales son homogéneos, lineales e isótropos. La reflexión del haz de luz es total debido a la naturaleza metálica del material. Sin embargo, por las condiciones a la frontera de los campos EMs se presenta una onda evanescente en z < 0 que se propaga en dirección de \mathbf{k}_x , paralela a la interfaz, y la longitud de penetración de la onda evanecente es $\xi = 1/k_x$, con k_x la magnitud de \mathbf{k}_x .

En la Fig. 1.12 se observa que al incidir el haz de luz sobre la interfaz (z = 0) entre el medio dieléctrico (z > 0) y el metálico (z < 0), se presenta una onda evanescente en el medio metálico que se propaga en la dirección de $\mathbf{k}_x = k_x \hat{\mathbf{e}}_x$, cuya amplitud decae exponencialmente en la dirección $\hat{\mathbf{e}}_z$ y cuyo máximo valor $\xi = 1/k_x$ es su longitud de penetración. Si se considera que una onda plana, con frecuencia ω y vector de onda \mathbf{k}^i , es la que incide sobre la interfaz, los campos EMs de la onda evanescente se proponen como

$$\mathbf{E}(\mathbf{r},t) = \mathbf{E}(z)e^{ik_x x - \omega t}, \qquad (1.71a) \qquad \mathbf{H}(\mathbf{r},t) = \mathbf{H}(z)e^{ik_x x - \omega t}, \qquad (1.71b)$$

donde $\mathbf{E}(z > 0) = \mathbf{E}_1$, con E_1 la magnitud del campo eléctrico dentro del dieléctrico, y $\mathbf{E}(z < 0)$

 $0) = \mathbf{E}_2$ la magnitud del campo eléctrico en el medio metálico; lo análogo se cumple para el campo \mathbf{H} y para la función dieléctrica $\varepsilon(z)$. La ecuación de Helmholtz [Ecs. (1.2)] para los campos EMs de las Ecs. (1.71) son

$$\frac{\partial^2 \mathbf{E}}{\partial z^2} + \left[k_0^2 \frac{\varepsilon(z)}{\varepsilon_0} - k_x^2 \right] \mathbf{E} = 0, \qquad (1.72a) \qquad \frac{\partial^2 \mathbf{H}}{\partial z^2} + \left[k_0^2 \frac{\varepsilon(z)}{\varepsilon_0} - k_x^2 \right] \mathbf{H} = 0, \qquad (1.72b)$$

con $k_0 = \omega/c$. Para el cálculo de la relación de dispersión del SPP, se considera que existe homogeneidad en la dirección y, y que la única dependencia en la variable x es en el término de propagación, es decir, que $\partial/\partial x \rightarrow ik_x$. Bajo estas consideraciones, al desarrollar la ley de Faraday-Lenz y la ley de Ampère-Maxwell con las expresiones de las Ecs. (1.71), se obtiene el siguiente conjunto de ecuaciones

$$\begin{pmatrix} -\partial E_y/\partial z\\ \partial E_x/\partial z - ik_x E_z\\ ik_x E_y \end{pmatrix} = i\omega\mu_0 \begin{pmatrix} H_x\\ H_y\\ h_z \end{pmatrix}, \quad (1.73a) \quad \begin{pmatrix} -\partial H_y/\partial z\\ \partial H_x/\partial z - ik_x H_z\\ ik_x H_y \end{pmatrix} = i\omega\varepsilon(z) \begin{pmatrix} E_x\\ E_y\\ E_z \end{pmatrix}. \quad (1.73b)$$

El SPP es sensible a la polarización de la onda plana incidente por lo que se consideran los casos de polarización s y p. En polarización s, las componentes no nulas de los campos EMs son E_y , H_z y H_x , por lo que se cumplen las relaciones

$$H_x = \frac{i}{\omega\mu_0} \frac{\partial E_y}{\partial z}, \qquad (1.74a) \qquad \qquad H_z = \frac{k_x}{\omega\mu_0} E_y, \qquad (1.74b)$$

junto con la ecuación de Helmholtz para el campo eléctrico [Ec. (1.72a)] con $\mathbf{E} = E_y \hat{\mathbf{e}}_y$, cuya solución se propone como

$$E_y(z) = \begin{cases} E_1 e^{ik_x x} e^{-k_{1,z} z}, & z > 0\\ E_2 e^{ik_x x} e^{k_{2,z} z}, & z < 0 \end{cases},$$
(1.75)

con $k_{j,z} = k_j \cos \theta_i$ y $k_j = k_0 \sqrt{\varepsilon_j(\omega)/\varepsilon_0}$, con j = 1, 2; donde se escribe de forma explícita el comportamiento del decaimiento exponencial en la amplitud y se omite el término $e^{-i\omega t}$ por simplicidad. Al calcular el campo **H** con las Ecs. (1.74) y (1.75), se obtienen las expresiones

$$H_x(z) = \begin{cases} -i\frac{E_1}{\omega\mu_0}k_{1,z}e^{ik_xx}e^{-k_{1,z}z}, & z > 0\\ i\frac{E_2}{\omega\mu_0}k_{2,z}e^{ik_xx}e^{k_{2,z}z}, & z < 0 \end{cases}, \qquad \qquad H_z(z) = \begin{cases} \frac{E_1}{\omega\mu_0}k_xe^{ik_xx}e^{k_{1,z}z} & z > 0\\ \frac{E_2}{\omega\mu_0}k_xe^{ik_xx}e^{k_{2,z}z} & z < 0 \end{cases}.$$

Las condiciones a la frontera impuestas en los campos EMs resultan en que las componentes paralelas a la interfaz del campo eléctrico, E_y , y del campo **H**, H_z , sean continuas, por lo que $E_1 = E_2$. Adicionalmente, por la continuidad de la componente paralela a la interfaz del campo **H**, H_x , se concluye que en z = 0

$$E_1(k_{1,z} + k_{2,z}) = 0. (1.76)$$

Por el Ansatz propuesto en la Ec. (1.75), para que la onda evanescente esté confinada a la interfaz

se debe cumplir que $k_{j,z} < 0$, por tanto la Ec. (1.76) se satisface sólo si $E_1 = E_2 = 0$, es decir que no existe un acoplamiento entre los electrones libres del metal en la interfaz plana y la onda EM incidente para polarización s.

El cálculo de la relación de dispersión del SPP para polarización p es análogo al cálculo con polarización s al intercambiar el campo eléctrico por el campo \mathbf{H} y al intercambiar la permeabilidad magnética por la función dieléctrica [8], es decir, $\mathbf{E} \leftrightarrow \mathbf{H} \ge \varepsilon(z) \leftrightarrow \mu_0$. Al considerar las condiciones de continuidad del campo $\varepsilon(z)\mathbf{E} \ge 0$ el campo \mathbf{H} , se obtiene la expresión

$$\frac{E_1}{\omega} \left(\frac{k_{1,z}}{\varepsilon_1} + \frac{k_{2,z}}{\varepsilon_2} \right) = 0,$$

de donde se obtiene que

$$\frac{k_{1,z}}{k_{2,z}} = -\frac{\varepsilon_1}{\varepsilon_2}.\tag{1.77}$$

Asimismo, la ecuación de Helmholtz para el campo \mathbf{H} [Ec. (1.72b)] impone que

$$k_{j,z}^2 = k_x^2 - k_0^2 \frac{\varepsilon_j}{\varepsilon_0}.$$
 (1.78)

Al elevar al cuadrado ambos lados de la Ec. (1.77), sustituir $k_{j,z}^2$ con la Ec. (1.78), y despejar k_x^2 empleando la identidad de diferencia de cuadrados, se calcula la relación de dispersión del SSP. Adicionalmente, como $k_0^2 \varepsilon_j(\omega) = k_x^2 + k_{j,z}^2$, entonces [8]

Relación de dispersión del SPP

$$k_x^2 = \frac{k_0^2}{\varepsilon_0} \frac{\varepsilon_1 \varepsilon_2}{\varepsilon_1 + \varepsilon_2}, \qquad (1.79a) \qquad \qquad k_{j,z}^2 = \frac{k_0^2}{\varepsilon_0} \frac{\varepsilon_j^2}{\varepsilon_1 + \varepsilon_2}, \qquad (1.79b)$$

con j = 1 para el medio dieléctrico y j = 2 para el medio metálico.

Para que se obtenga una onda evanescente en la interfaz (modo ligado), k_x debe ser una cantidad real y k_z una cantidad imaginaria [3], por lo que en la Ec. (1.79a) la suma y el producto de las funciones dieléctricas deben ser ambas positivas o ambas negativas y $\varepsilon_1 + \varepsilon_2 < 0$ en la Ec. (1.79b) [3], dando como resultado que $\varepsilon_1 \varepsilon_2 < 0$. Estas condiciones se satisfacen con la suposición inicial en la que ε_1 corresponda a la respuesta EM de un medio dieléctrico y ε_2 a la de un metal [3, 8]. La frecuencia de resonancia ω del SPP se obtiene maximizando las Ecs. (1.79), es decir, cuando $\varepsilon_1(\omega) + \varepsilon_2(\omega)$ es mínima. Si se emplea el modelo de Drude-Sommerfeld [Ec. (1.62)] en el límite $\gamma \to 0$ para $\varepsilon_2(\omega)$, entonces [8]

Frecuencia de resonancia del SPP
$$\omega = \frac{\omega_p}{\sqrt{1 + \varepsilon_1/\varepsilon_0}}.$$
(1.80)

La Fig. 1.13 muestra la relación de dispersión como la dependencia de la frecuencia ω con la componente paralela del vector de onda k_x , respecto a una interfaz entre el vacío ($\varepsilon_1 = \varepsilon_0$) y un material descrito por el modelo de Drude-Sommerfeld [Ec. (1.62)], en el límite $\gamma \to 0$ para una onda plana monocromática propagándose en el vacío (línea continua negra), para el plasmón de volumen (línea continua roja) y para un SPP (línea continua azul). Las líneas discontinuas roja y azul corresponden a los valores $\omega = \omega_p$ y $\omega = \omega_p/\sqrt{2}$, respectivamente, que son las frecuencias que delimitan el régimen de modos radiativos ($\omega > \omega_p$), donde las dos componentes del vector de onda **k** son cantidades reales, y el régimen de modos ligados ($\omega < \omega_p/\sqrt{2}$), donde k_x es una cantidad real pero la componente del vector de onda perpendicular a la interfaz k_z es una cantidad imaginaria. La línea discontinua negra corresponden a la relación de dispersión de una onda plana monocromática propagándose en un medio con n = 1.5.

Fig. 1.13: Relación de dispersión en términos de ω/ω_p como función de $k_x c/\omega_p$ de una onda plana monocromática en vacío (línea sólida negra), del plasmón de volumen (línea sólida roja) y del SPP (línea sólida azul) para materiales con una función dieléctrica tipo Drude en el límite $\gamma \to 0$, considerando una interfaz entre estos materiales y el vacío $(\varepsilon_1 = \varepsilon_0)$. El régimen de modos radiativos se encuentra en $\omega_p \leq \omega$ (igualdad denotada por la línea discontinua roja), donde k_x y k_z son cantidades reales; el régimen de modos ligados se encuentra en $\omega \leq \omega_p/\sqrt{2}$ (igualdad denotada por la línea discontinua azul), donde k_x es una cantidad real pero k_z es una cantidad imaginaria. Para excitar a un SPP es necesario cambiar el índice de refracción de la matriz, por ejemplo empleando un prisma para obtener una onda plana viajando en vidrio (línea punteada negra); la región sombreada delimita las frecuencias a las que el SPP puede excitarse.

La relación dispersión de la onda plana monocromática propagándose en el vacío (línea continua negra en la Fig. 1.13) es igual a la del SPP (línea continua azul) para $k_x = 0$, por lo que no es posible excitar al SPP con este tipo de ondas [34]. Sin embargo, un arreglo experimental que permite excitar al SPP sobre la interfaz entre un medio dieléctrico, con función dieléctrica $\varepsilon_1(\omega)$, y una película metálica, caracterizada por $\varepsilon_2(\omega)$ y de grosor d, consiste en soportar la película metálica sobre un sustrato, con una función dieléctrica $\varepsilon_3(\omega) > \varepsilon_1(\omega)$, e iluminarla en una configuración de reflexión total atenuada (Attenuated Total Reflection, ATR) [9, 34], como se muestra en la Fig. 1.14a). En este tipo de configuración se emplea el sustrato para generar una onda evanescente en la interfaz entre éste y la película metálica que logre penetrar hasta la interfaz entre la película metálica y el dieléctrico con $\varepsilon_1(\omega)$. Cuando una onda plana monocromática incide sobre la interfaz entre la película metálica y el sustrato, con un ángulo de incidencia mayor al ángulo crítico, se produce una onda evanescente que se propaga en la dirección $\mathbf{k}_x = k_x \hat{\mathbf{e}}_x$ y si $\xi = 1/k_x > d$, la onda evanescente penetra la interfaz entre la matriz y la película, excitando al SPP [34], representado por la línea naranja en la Fig. 1.14a). En la Fig. 1.14b) se grafica la reflectancia R como función del ángulo de incidencia θ_i , de la longitud de onda λ y la energía $\hbar \omega$

1. TEORÍA

de la onda plana, cuando ésta se propaga a través del prisma, con $\varepsilon_3(\omega)/\varepsilon_0 = 1.5^2$, e incide sobre una película de oro de grosor d = 50 nm que forma una interfaz con el vacío ($\varepsilon_1(\omega)/\varepsilon_0 = 1$). Para $\lambda < 500$ nm la reflectancia es cercana a cero pues el oro se comporta como un dieléctrico, mientras que para $\lambda > 500$ nm tiene una respuesta metálica por lo que la reflexión de luz aumenta; para $\theta_i > 42^\circ$ la luz que incide sobre la placa metálica se refleja totalmente a excepción de una región resaltada por la línea punteada blanca, para la cual $R \approx 0$ en $\lambda > 500$ nm, que corresponde a las combinaciones de ángulo de incidencia y longitudes de onda —equivalente a valores de k_x y ω , respectivamente— a los que el SPP se propaga sobre la interfaz entre la película de oro y el vacío.

Fig. 1.14: a) Esquema de una configuración ATR para la medición de la relación de dispersión del SPP mediante la reflectancia R y b) cálculo de la reflectancia al considerar una película de oro de grosor d = 50 nm con una función dieléctrica $\varepsilon_2(\omega)$, dada por los datos experimentales de [31], inmersa en una matriz dieléctrica con $\varepsilon_1(\omega)/\varepsilon_0 = 1$ y sobre un prisma dieléctrico con $\varepsilon_3(\omega)/\varepsilon_0 = 1.5^2$. Cuando una onda plana monocromática con polarización p incide sobre la interfaz entre el prisma y la película de oro a un ángulo mayor al crítico se produce una onda evanescente propagante en la dirección $\mathbf{k}_x = k_x \hat{\mathbf{e}}_x$; si la longitud de penetración $1/k_x$ es mayor al grosor d de la película metálica, es posible excitar al SPP sobre la interfaz entre el medio metálico y la matriz, como se observa en la Fig. 1.13. La línea punteada blanca en b) corresponden a la relación de dispersión del SPP propagándose sobre la interfaz entre el aire y una película metálica de oro.

Los SPPs son ondas electromagnéticas propagantes acopladas a los electrones libres de un metal sobre una interfaz plana e infinita entre el metal y un medio dieléctrico [8]. Cuando la interfaz entre el medio metálico y el dieléctrico tiene una área finita, como sucede con NPs, el resultado de la interacción entre una onda plana incidente y los electrones libres del metal es una excitación no propagante, también causada por el acoplamiento entre la radiación EM y los electrones libres, denominada resonancia de plasmón de superficie localizado (Localized Surface Plasmon Resonance, LSPR) [8]. La curvatura de las NPs tiene dos efectos en las LSPRs: la amplificación de los campos EMs dentro y fuera de la NP (campo cercano) y la excitación de la LSPR con iluminación directa, es decir, sin emplear métodos como la iluminación en ATR [8].

En presencia de una NP esférica iluminada por una onda plana monocromática, los campos EMs fuera de la NP corresponden a la suma de los campos EMs de la onda plana incidente (\mathbf{E}^{i} , \mathbf{H}^{i}) y de los campos EMs esparcidos por la NP (\mathbf{E}^{s} , \mathbf{H}^{s}), por lo que el vector de Poynting [Ec. (1.6)], al considerar su promedio temporal, puede escribirse como [15]

$$\langle \mathbf{S} \rangle_t = \underbrace{\frac{1}{2} \operatorname{Re} \left(\mathbf{E}^i \times \mathbf{H}^{i*} \right)}_{\langle \mathbf{S}^i \rangle_t} + \underbrace{\frac{1}{2} \operatorname{Re} \left(\mathbf{E}^s \times \mathbf{H}^{s*} \right)}_{\langle \mathbf{S}^s \rangle_t} + \underbrace{\frac{1}{2} \operatorname{Re} \left(\mathbf{E}^i \times \mathbf{H}^{s*} + \mathbf{E}^s \times \mathbf{H}^{i*} \right)}_{\langle \mathbf{S}^{ext} \rangle_t},$$

en donde \mathbf{S}^i y \mathbf{S}^s son los vectores de Poynting correspondientes a la onda plana incidente, con número de onda k_m y cuyo campo eléctrico tiene amplitud E_0 , y a los campos EMs esparcidos por la NP, respectivamente, y \mathbf{S}^{ext} corresponde a los productos cruzados. La energía W_{abs} trasportada por los campos EMs que es absorbida por la partícula se calcula al integrar $\langle \mathbf{S} \rangle_t$ sobre una esfera de radio R concéntrica a la NP, cuyo radio sea mayor al radio de la NP, es decir,

$$W_{abs} = -\int_0^{2\pi} \int_0^{\pi} \left(\langle \mathbf{S}^i \rangle_t + \langle \mathbf{S}^s \rangle_t + \langle \mathbf{S}^{ext} \rangle_t \right) \cdot \hat{\mathbf{e}}_r \, \mathrm{d}a = W_i - W_{sca} + W_{ext}, \tag{1.81}$$

donde $W_i = 0$, pues se asume que la matriz donde se encuentra inmersa la NP no es absorbente [15]. Como W_{abs} es independiente de R, al suponer que tanto la matriz como la NP no son magnéticas, es posible emplear la solución de Mie para la expresión de \mathbf{E}^s en el campo lejano dada por las Ecs. (1.57) y a partir de éstas calcular \mathbf{H}^s con ley de Faraday-Lenz [Ec. (1.26c)], dando como resultado que W_{sca} es [15]

$$W_{sca} = \frac{\pi \|E_0\|^2}{\omega \mu_0 k_m} \sum_{\ell}^{\infty} (2\ell + 1) \operatorname{Re}(-i\xi_{\ell}^* \xi_{\ell}') \Big(|a_{\ell}|^2 + |b_{\ell}|^2 \Big),$$
(1.82)

en donde a_{ℓ} y b_{ℓ} son los coeficientes de Mie [Ecs. (1.56)], $\xi_{\ell}(\rho) = \rho h_{\ell}^{(1)}(\rho)$ es una función de Riccati-Bessel, y donde además se emplearon las propiedades de ortogonalidad de las funciones $\sin \varphi \ y \cos \varphi$ [Ec. (1.37)], de $\tau_{\ell} \pm \pi_{\ell}$ [Ec. (1.54)], junto con la relación [15]

$$\int_{-1}^{1} [\pi_{\ell}(\mu)\pi_{\ell'}(\mu) + \tau_{\ell}(\mu)\tau_{\ell'}(\mu)] \mathrm{d}\mu = \delta_{\ell,\ell'} \frac{2\ell^2(\ell+1)^2}{2\ell+1}$$

Definiendo la función de Riccati-Bessel $\chi_{\ell}(\rho) = -\rho y_{\ell}(\rho)$, se reescribe ξ_{ℓ} como $\xi_{\ell} = \psi_{\ell} - i\chi_{\ell}$, con $\psi_{\ell}(\rho) = \rho j_{\ell}(\rho)$. Dado que se cumple que $\chi_{\ell}\psi'_{\ell} - \psi_{\ell}\chi_{\ell} = 1$ [15], y como ψ_{ℓ} y χ_{ℓ} son funciones reales con variables reales, se obtiene que

$$\operatorname{Re}(-i\xi_{\ell}^{*}\xi_{\ell}') = \operatorname{Re}\left[(\chi_{\ell}^{*}\psi_{\ell}' - \psi_{\ell}^{*}\chi_{\ell}') - i(\psi\ell^{*}\psi_{\ell}' - \chi_{\ell}^{*}\chi_{\ell}')\right] = (\chi_{\ell}^{*}\psi_{\ell}' - \psi_{\ell}^{*}\chi_{\ell}') = \chi_{\ell}\psi_{\ell}' - \psi_{\ell}\chi_{\ell} = 1.$$

Al sustituir $\operatorname{Re}(-i\xi_{\ell}^{*}\xi_{\ell}') = 1$ en la Ec. (1.82), la energía transportada por los campos EMs esparcidos, por unidad de tiempo, es

$$W_{sca} = \frac{\pi \|E_0\|^2}{\omega \mu_0 k_m} \sum_{\ell}^{\infty} (2\ell+1) \sum_{\ell}^{\infty} \left(|a_\ell|^2 + |b_\ell|^2 \right) = I_i \frac{2\pi}{k_m^2} \sum_{\ell} (2\ell+1) \left(|a_\ell|^2 + |b_\ell|^2 \right), \quad (1.83)$$

en donde $I_i = ||\langle \mathbf{S}^i \rangle|| = ||E_0||^2 k_m/2\omega\mu_0$ es la irradiancia, o energía por unidad de tiempo y unidad de área, transportada por la onda plana monocromática incidente. Al escribir los campos EMs incidentes en términos de las funciones $\pi_\ell y \tau_\ell$, se calcula W_{ext} de forma análoga a W_{sca} , obteniéndose

$$W_{ext} = I_i \frac{2\pi}{k_m^2} \sum_{\ell}^{\infty} (2\ell + 1) \operatorname{Re}(a_{\ell} + b_{\ell}).$$
(1.84)

De la Ec. (1.81), empleando las expressiones de W_{sca} y W_{ext} , es posible calcular la energía absorbida W_{abs} por la NP. Al despejar W_{ext} de la Ec. (1.81) se obtiene que $W_{ext} = W_{abs} + W_{sca}$, razón por la que W_{ext} es la energía que se extingue mediante la absorción y esparcimiento de luz por la NP. Al normalizar W_{sca} y W_{ext} por la irradiancia de la onda plana incidente I_i , se obtienen cantidades con unidades de área, que se conocen como secciones transversales de extinción C_{ext} , absorción C_{abs} y esparcimiento C_{sca} , que se relacionan como

Secciones transversales de extinción, absorción y esparcimiento

$$C_{ext} = C_{abs} + C_{sca},\tag{1.85}$$

$$C_{sca} = \frac{2\pi}{k_m^2} \sum_{\ell} (2\ell+1) \Big(|a_\ell|^2 + |b_\ell|^2 \Big), \ (1.86) \qquad C_{ext} = \frac{2\pi}{k_m^2} \sum_{\ell}^{\infty} (2\ell+1) \operatorname{Re}(a_\ell + b_\ell), \ (1.87)$$

con a_{ℓ} y b_{ℓ} , los coeficientes de Mie, dados por la Ec. (1.56).

Para poder comparar la cantidad de luz extinguida por partículas esféricas de distintos radios, se emplean las eficiencias de absorción Q_{abs} , esparcimiento Q_{sca} y extinción Q_{ext} , que se calculan a través de las secciones transversales de absorción C_{abs} , esparcimiento C_{sca} y extinción C_{ext} al normalizarlas por la sección transversal geométrica de cada partícula πa^2 , dando como resultado

$$\frac{C_{ext}}{\pi a^2} = \frac{C_{ext}}{\pi a^2} + \frac{C_{ext}}{\pi a^2} \longrightarrow Q_{ext} = Q_{abs} + Q_{sca}.$$
(1.88)

Para una NP esférica, la eficiencia de extinción Q_{ext} , al igual que los campos EMs esparcidos [Ec. (1.57)], está en términos de una expansión multipolar modulada por los coeficientes a_{ℓ} y b_{ℓ} [Ecs. (1.56)], que dependen, entre otros parámetros, de N que es el cociente del índice de refracción de la partícula $n_p(\omega)$ y el de la matriz $n_m(\omega)$. De la Ec. (1.87) se observa que, para un multipolo ℓ fijo, la contribución de los campos EMs en la extinción de luz es máxima cuando el denominador de los coeficientes de Mie es mínimo [3, 8]. Si se considera que la respuesta óptica de la partícula es $\varepsilon_p(\omega) = n_p^2(\omega)$, y se mantienen constantes el radio a de la NP, el índice de refracción n_m de la matriz y la longitud de onda λ de la onda plana incidente, entonces a la frecuencia $\omega_{\ell} = c(2\pi/\lambda_{\ell})$, donde el denominador de las Ecs. (1.56) es mínimo, se le denomina frecuencia del modo normal de orden ℓ [15, 37]. Por ejemplo, los modos normales eléctricos ocurren a las frecuencias en las que a_{ℓ} es máximo, es decir, cuando

$$\psi_{\ell}(Nx)\xi'_{\ell}(x) - N\xi_{\ell}(x)\psi'_{\ell}(Nx) = 0.$$
(1.89)

Al considerar el límite de partícula pequeña ($x = k_m a \ll 1$) para esferas inmersas en vacío ($n_m = 1$), haciendo un desarrollo en serie de Taylor de las funciones esféricas de Bessel y Hankel alrededor del origen, a través de las funciones de Riccati-Bessel, y sustituyéndolas en la Ec. (1.89),

se obtiene que los modos normales eléctricos cumplen la relación [37]

$$\varepsilon_p(\omega_\ell) = -\frac{\ell+1}{\ell}.$$
(1.90)

Si se emplea la función dieléctrica del modelo de Drude-Sommerfeld [Ec. (1.62)] y se sustituye en la Ec. (1.90), al despejar ω_{ℓ} tras considerar además el límite $\gamma \to 0$ y de partícula pequeña, la expresión para la frecuencia de resonancia del modo normal del multipolo ℓ es [37]

Frecuencia de resonancia del LSP

$$\frac{\omega_\ell}{\omega_p} = \sqrt{\frac{\ell}{2\ell + 1}}.\tag{1.91}$$

Adicionalmente, si se considera la contribución de todos los órdenes multipolares $(\ell \to \infty)$, la mayor frecuencia de resonancia es $\omega_{\infty} = \omega_p/\sqrt{2}$, que corresponde a la SPR de una esfera de radio infinito, equivalente a un plano infinito.

Para partículas esféricas de radio arbitrario a con una función dieléctrica dada por el modelo de Drude-Sommerfeld, la frecuencia de resonancia ω_{ℓ} sufre un corrimiento al rojo debido al tiempo de acomplamiento a/c entre la interacción EM de la esfera y la densidad de carga inducida que corresponde al plasmón de superficie [38]. En la Fig. 1.15 se muestran las frecuencias de resonancia ω_{ℓ} normalizadas respecto a la frecuencia de plasma ω_p , como función del parámetro adimensional $a\omega_p/c$ para los multipolos $\ell = 1, 2, 3, 4$ y 5. El límite de partícula pequeña [Ec. (1.91)] se recupera cuando $a \to 0$ (lado izquierdo de la gráfica en la Fig. 1.15).

Fig. 1.15: Frecuencias de resonancia ω_{ℓ}/ω_{p} para una esfera con una función dieléctrica tipo Drude, como función del parámetro adimensional $\omega_{p}a/c$, para los multipolos $\ell = 1, 2, 3, 4 \ge 5$.

Para una partícula esférica con una función dieléctrica arbitraria, los modos normales corresponden a las frecuencias en donde la sección transvesal de extinción es máxima para la contribución multipolar ℓ [28]. En la Fig. 1.16 se grafica la eficiencia de extinción Q_{ext} (línea continua azul) y la de esparcimiento Q_{abs} (línea punteada azul) como función de la longitud de onda λ y la energía $\hbar\omega$ para una partícula esférica de radio a = 30 nm, inmersa en una matriz con índice de refracción $n_m = 1.33$, con una función dieléctrica tipo Drude [Ec. (1.62)] con parámetros $\hbar\omega_p = 4.3$ eV y $\hbar\gamma = 0.15$ eV [ver Fig. 1.16a)] y con $\hbar\omega_p = 10$ eV y $\hbar\gamma = 0.15$ eV [ver Fig. 1.16b)]. Para determinar los modos normales del campo eléctrico en la partícula se grafican en la Fig. 1.16, adicionalmente, las contribuciones multipolares de las eficiencias de extinción $Q_{ext}^{(\ell)}$ para

 $\ell = 1, 2 \text{ y } 3$, representadas por las líneas discontinuas verde, rosa y cian, respectivamente, en la escala vertical derecha. Cuando $\hbar\omega_p = 4.3 \text{ eV}$, los modos normales, en términos de la longitud de onda, se excitan a $\lambda^{(1)} = 658 \text{ nm}, \lambda^{(2)} = 561 \text{ nm y } \lambda^{(3)} = 532 \text{ nm},$ mientras que para $\hbar\omega_p = 10 \text{ eV}$ se excitan a $\lambda^{(1)} = 342 \text{ nm}, \lambda^{(2)} = 262 \text{ nm y } \lambda^{(3)} = 238 \text{ nm}.$

Fig. 1.16: Eficiencias de extinción Q_{ext} (línea continua azul) y esparcimiento Q_{sca} (línea punteada azul) como función de la energía $\hbar\omega$ y de la longitud de onda λ para una partícula esférica, de radio a = 30 nm e inmersa en una matriz con índice de refracción $n_m = 1.33$, con una función dieléctrica tipo Drude con los parámetros **a**) $\hbar\omega_p = 4.3$ eV y $\hbar\gamma = 0.15$ eV y **b**) $\hbar\omega_p = 10$ eV y $\hbar\gamma = 0.15$ eV; los resultados se obtuvieron al considerar la contribución de los primeros seis multipolos garantizando convergencia según el criterio de Wimcombe [15]. La contribución de la energía $\hbar\omega$ para localizar los modos normales. Se consideraron los modos dipolares ($\ell = 1$), cuadrupolares ($\ell = 2$) y octopolares ($\ell = 3$), correspondientes a las líneas verdes, rosas y cian, respectivamente. Cuando $\hbar\omega_p = 4.3$ eV, los modos normales, en términos de la longitud de onda, se excitan a $\lambda^{(1)} = 658$ nm, $\lambda^{(2)} = 561$ nm y $\lambda^{(3)} = 532$ nm, mientras que para $\hbar\omega_p = 10$ eV se excitan a $\lambda^{(1)} = 342$ nm, $\lambda^{(2)} = 262$ nm y $\lambda^{(3)} = 238$ nm. Las flechas sólidas, punteadas y discontinuas son una ayuda visual para la lectura de la gráfica, indicando a qué escala corresponde cada tipo de línea.

Al considerar el caso con $\hbar\omega_p = 4.3$ eV, la extinción de luz a 1.9 eV (modo dipolar) se debe no sólo al esparcimiento sino también a la absorción: un tercio de la extinción se debe al esparcimiento, y dos tercios a la absorción. De forma distinta, para $\hbar\omega_p = 10$ eV, el esparcimiento de luz predomina en el proceso de extinción de luz a $\hbar\omega = 3.6$ eV (modo dipolar).

1.4. Modelo de esparcimiento coherente

La solución de Mie en conjunto con la corrección por tamaño a la función dieléctrica para algún material, permite estudiar la respuesta electromagnética de una NP esférica individual y calcular las frecuencias de resonancia de los plasmones localizados de superficie (Localized Surface Plasmons Resonances, LSPRs), empleados por ejemplo en la espectroscopía [3], el sensado [4] y la litografía [5]. Sin embargo, no siempre es posible emplear la respuesta EM de una partícula individual para la descripción de un sistema compuesto de muchas partículas —como una monocapa de NPs—, por lo que se han empleado diversos enfoques entre los que se encuentran la aproximación cuasiestática y las teorías de esparcimiento múltiple [14, 39-41]. En el caso límite de partícula pequeña, donde el parámetro de tamaño $x = ka \ll 1$, con k el número de onda dentro de la matriz donde se encuentran inmersas las NPs, suponiéndolas esféricas con un radio a, es posible emplear la aproximación cuasiestática, que considera que sólo la excitación dipolar contribuye al campo total [14]. En particular, bajo la aproximación cuasiestática, es posible desarrollar una teroía de medio efectivo para calcular la reflectancia de una monocapa de NPs [39, 40]. Sin embargo, cuando el parámetro de tamaño es comparable o mayor a la unidad, una teoría de esparcimiento múltiple es necesaria, debido a la excitación de multipolos de ordenes mayores [39]. El modelo de esparcimiento coherente (Coherent Scattering Model, CSM) toma en cuenta la interacción de esparcidores ante la presencia de un campo eléctrico promedio; este enfoque además incluye la contribución del esparcimiento múltiple debido a la interacción entre las NPs [14].

El cálculo de las expresiones para la reflectancia y la transmitancia en el formalismo del CSM considera el campo eléctrico total esparcido por una monocapa de NPs. En general, éste puede descomponerse en una componente coherente —respuesta promedio con una dirección de propagación bien definida— y una componente difusa —causada por las fluctuaciones y cuya propagación se da en todas las direcciones—[26], como se muestra en la Fig. 1.17, en donde un arreglo desordenado de NPs inmersas en una matriz se ilumina con una onda plana monocoromática en la dirección \mathbf{k}^i , y en donde las flechas rojas corresponden a los vectores de onda del campo eléctrico esparcido por NPs en la dirección coherente, mientras que las flechas rosas corresponden a los vectores de onda del campo eléctrico esparcido difuso. Para definir los coeficientes de amplitud de reflexión r y transmisión t para una arreglo desordenado de NPs inmersas en una matriz, se toma en cuenta únicamente la componente coherente al asumir que la cantidad de energía que porta la componente difusa es mucho menor que la que porta la coherente [14]. Para el cálculo de $r \neq t$, primero se calculan los coeficientes de amplitud de reflexión y transmisión de una monocapa de NPs suspendida en el espacio libre (Free Standing Monolayer, FSM), es decir, inmersa en un medio dieléctrico denominado matriz, seguido del efecto de introducir una interfaz con un medio denominado sustrato. La reflectancia del sistema sustrato-monocapa-matriz se resuelve al considerar múltiples reflexiones en la interfaz entre las superficies dadas por la interfaz sustrato-matriz y monocapa-matriz.

Fig. 1.17: Placa de grosor d y volumen V con N partículas esféricas idénticas, localizadas al azar e iluminadas con una onda plana monocromática con vector de onda \mathbf{k}^i . La dirección de los campos esparcidos coherentes se denotan por \mathbf{k}_{coh}^r y \mathbf{k}_{coh}^t . Las flechas rojas sólidas representan las componentes coherentes del campo esparcido mientras que las rosas representan la componente difusa.

1.4.1. Monocapa suspendida en el espacio libre

Para calcular los coeficientes de amplitud de reflexión y transmisión del CSM se calcula el campo eléctrico promedio esparcido por las NPs dentro de la región del espacio, caracterizado por un índice de refracción real n_m , delimitada por -d/2 < z < d/2, una placa de grosor d y volumen V, en donde se encuentran N nanopartículas esféricas idénticas, con índice de refracción n_p , y distribuidas espacialmente de forma aleatoria, como se observa en la Fig. 1.17. Si una onda plana $\mathbf{E}^i = E_0 e^{i\mathbf{k}^i \cdot \mathbf{r}} \hat{\mathbf{e}}_i$ (por simplicidad se omite la dependecia temporal), con $\hat{\mathbf{e}}_i$ un vector en el plano de polarización de la onda plana y $|\mathbf{k}^i| = k = 2\pi n_m/\lambda$, incide sobre la placa, el campo eléctrico esparcido por las NPs dentro de la placa \mathbf{E}^s (asumiendo una densidad N/V baja), puede calcularse bajo la aproximación de esparcimiento individual (Single Scattering Approximation, SSA), en donde cada NP esparce la luz sin considerar la interacción entre el campo eléctrico esparcido por las otras NPs [42]. Al considerar la interacción del campo eléctrico incidente con las N nanopartículas dentro de la placa, el campo eléctrico esparcido por todas las partículas tiene componentes espaciales en todas las direcciones, por lo que el campo eléctrico esparcido puede descomponerse en una componente coherente y una difusa, representadas en la Fig. 1.17 mediante las flechas rojas y rosas, respectivamente.

El campo eléctrico esparcido promedio $\langle \mathbf{E}^s \rangle$, que corresponde a la componente coherente, se calcula al considerar el promedio espacial de los campos esparcidos por las NPs dentro de la placa al suponer que la posición de una NP es independiente a la de las demás y que la probabilidad de encontrar el centro de una NP dentro del volumen de la placa es uniforme, por lo que la componente coherente del campo esparcido es [41]

$$\langle \mathbf{E}^{s} \rangle = \begin{cases} \langle \mathbf{E}^{s}_{r,SSA} \rangle e^{i\mathbf{k}^{r}_{coh} \cdot \mathbf{r}} = i \frac{N}{V} \frac{dE_{0}}{2} \frac{\sin(k^{i}_{z}d)}{k^{i}_{z}d} \frac{\mathbb{F}(\hat{\mathbf{k}}^{r}, \hat{\mathbf{k}}^{i}) \cdot \hat{\mathbf{e}}_{i}}{k^{i}_{z}} e^{i\mathbf{k}^{r}_{coh} \cdot \mathbf{r}}, \quad d/2 < z \\ \langle \mathbf{E}^{s}_{t,SSA} \rangle e^{i\mathbf{k}^{t}_{coh} \cdot \mathbf{r}} = i \frac{N}{V} \frac{dE_{0}}{2} \frac{\mathbb{F}(\hat{\mathbf{k}}^{i}, \hat{\mathbf{k}}^{i}) \cdot \hat{\mathbf{e}}_{i}}{k^{i}_{z}} e^{i\mathbf{k}^{t}_{coh} \cdot \mathbf{r}}, \qquad z < -d/2 \end{cases}$$
(1.92)

en donde $k_z^i = k^i \cos \theta$; \mathbf{k}^i es el vector de onda del campo eléctrico incidente $\mathbf{E}^i = \mathbf{E}_0 e^{i\mathbf{k}^i \cdot \mathbf{r}}$, polarizado en la dirección $\hat{\mathbf{e}}_i$; \mathbf{k}_{coh}^r es la dirección de propagación de la componente coherente coherente reflejada; $\mathbf{k}_{coh}^t = \mathbf{k}^i$ es la dirección de propagación de la componente coherente transmitida; y \mathbb{F} es el operador de esparcimiento de campo lejano [Ec. (1.24)] que depende de la dirección de propagación de la onda plana incidente \mathbf{k}^i y la del campo esparcido \mathbf{k}^s . El término \mathbb{F} no limita la solución del campo eléctrico esparcido promedio al campo lejano, puesto que es un resultado derivado de promediar la respuesta EM [43].

En la Fig. 1.17 se observa que la dirección de propagación de $\langle \mathbf{E}_{r,SSA}^s \rangle$ en d/2 < z, dada por el vector de onda \mathbf{k}_{coh}^r y la de $\langle \mathbf{E}_{t,SSA}^s \rangle$ en z < -d/2, dada por \mathbf{k}_{coh}^t , forman un ángulo θ respecto a la dirección normal a la monocapa (sistema coordenado azul). A diferencia de la componente difusa (flechas rosas), la componente coherente del campo eléctrico esparcido es distinta de cero al calcular el promedio espacial, ya que los campos eléctricos esparcidos por cada NP en la placa interfieren constructivamente en las direcciones de esparcimiento $\hat{\mathbf{k}}^s = \hat{\mathbf{k}}^i = \hat{\mathbf{k}}_{coh}^t$ y $\hat{\mathbf{k}}^s = \hat{\mathbf{k}}_{coh}^r$ [41]. Puesto que las NPs dentro de la placa son esféricas e idénticas, se calcula la expresión del operador de esparcimiento $\mathbb{F}(\hat{\mathbf{k}}^s, \hat{\mathbf{k}}^i)$ al comparar su expresión general [Ec. (1.24)] con la matriz de esparcimiento de Mie [Ec. (1.58)], por lo que el operador de esparcimiento de campo lejano es

$$\mathbb{F}(\hat{\mathbf{k}}^s, \hat{\mathbf{k}}^i) = \frac{1}{-ik} \begin{pmatrix} S_2(\vartheta) & 0\\ 0 & S_1(\vartheta) \end{pmatrix},$$
(1.93)

en donde ϑ denota el ángulo entre la dirección del campo esparcido $\hat{\mathbf{k}}^s$ y del campo incidente $\hat{\mathbf{k}}^i$, con $\vartheta = 0$ para $\hat{\mathbf{k}}^s = \hat{\mathbf{k}}_{coh}^t$ y $\vartheta = \pi - 2\theta$ para $\hat{\mathbf{k}}^s = \hat{\mathbf{k}}_{coh}^r$, como se observa en la Fig. 1.17.

Al sustituir la Ec. (1.93) en la Ec. (1.92) y multiplicar las expresiones resultantes por $(3ka^3)/(3ka^3)$, con *a* el radio de las NPs y $k = 2\pi n_m/\lambda$, y agrupar términos, se obtienen las siguientes expresiones

$$\langle \mathbf{E}_{r,SSA}^s \rangle = -\frac{E_0}{\cos\theta_i} \frac{3}{2} \left(\frac{N}{V} \frac{4}{3} \pi a^3 \right) \frac{kd}{(ka)^3} \frac{\sin\left(k_z^i d\right)}{k_z^i d} S_j(\vartheta) \hat{\mathbf{e}}_i = -\alpha \frac{\sin\left(k_z^i d\right)}{k_z^i d} S_j(\vartheta) \mathbf{E}_0, \qquad (1.94a)$$

$$\langle \mathbf{E}_{t,SSA}^s \rangle = -\frac{E_0}{\cos\theta_i} \frac{3}{2} \left(\frac{N}{V} \frac{4}{3} \pi a^3 \right) \frac{kd}{(ka)^3} S_j(0) \hat{\mathbf{e}}_i = -\alpha S(0) \mathbf{E}_0, \tag{1.94b}$$

donde se emplea j = 1 para polarización s y j = 2 para p en los elementos de matriz no nulos de la matriz de esparcimiento de Mie, $S_j(\vartheta)$, y se define $S(0) \equiv S_1(0) = S_2(0)$. La expresión de α en las Ecs. (1.94) en términos del parámetro de tamaño x = ka es

$$\alpha \equiv \frac{3}{2} \left(\frac{N}{V} \frac{4}{3} \pi a^3 \right) \frac{kd}{x^3 \cos \theta_i} = \frac{3}{2} \frac{kd}{x^3 \cos \theta_i} f,$$

con $f = N4\pi a^3/(3V)$ la fracción volumétrica de llenado, que es el cociente entre el volumen que ocupan todas las NPs de la placa entre el volumen de ésta. Si se considera el límite $d \to 0$, lo que equivale a tener una monocapa de partículas esféricas desordenadas y al asumir que la componente difusa del campo esparcido por las partículas es despreciable en comparación a la componente coherente, es posible definir los coeficientes de amplitud de reflexión y transimisión en la SSA a partir de las Ecs. (1.94) como

$$r_{coh}^{SSA} = -\alpha S_j(\vartheta), \qquad (1.95a) \qquad t_{coh}^{SSA} = 1 - \alpha S(0), \qquad (1.95b)$$

considerando para el coeficiente de amplitud de transmisión la contribución de la onda plana incidente en la Ec. (1.94b), y al considerar que V = Ad, con A el área de la monocapa paralela al plano z = 0, el coeficiente α se reescribe como

$$\alpha = \frac{2\Theta}{x^2 \cos \theta_i},\tag{1.96}$$

donde $\Theta = N\pi a^2/A$ es la fracción de cubierta, que corresponde al área proyectada por todas las esferas sobre el área de la placa. La distancia mínima promedio $\langle \mathscr{D}_{min} \rangle$ entre las NPs de una monocapa se relaciona con su fracción de cubierta Θ mediante la expresión $\Theta = \pi a^2/(2a + \langle \mathscr{D}_{min} \rangle)^2$, como se observa en la Fig. 1.18. Entonces, la separación mínima promedio entre las NPs de la monocapa es

$$\frac{\langle \mathscr{D}_{min} \rangle}{a} = \sqrt{\frac{\pi}{\Theta}} - 2, \qquad (1.97)$$

de donde se deduce que el valor máximo de Θ es 0.78, cuando $\langle \mathcal{D}_{min} \rangle = 0$, y que cuando

=

 $\langle \mathscr{D}_{min} \rangle = a$ se cumple que $\Theta = \pi/9 \approx 0.349$. El cociente entre la distancia mínima promedio entre NPs y su radio se calcula para algunos valores en la tabla 1.1.

Tabla 1.1: Cociente entre la distancia promedio $\langle \mathscr{D}_{min} \rangle$ entre NPs y su radio *a*, para una monocapa de NPs esféricas e idénticas con fracción de cubierta Θ .

Θ	0.05	0.1	0.2	0.3	0.4	0.5	0.6	0.7
$\langle \mathscr{D}_{min} \rangle / a$	5.93	3.60	1.96	1.23	0.80	0.51	0.29	0.12
		a			Ī			
					a			
		S	ustrato					
			4501400		- (Dn	$_{nin}\rangle$		

Θ

NP

Fig. 1.18: Vista superior de una monocapa de NPs de radio a con fracción de cubierta Θ sobre un sustrato. La separación promedio entre las NPs es $\langle \mathscr{D}_{min} \rangle$, por lo que el área total del cuadrado es $(2a + \langle \mathscr{D}_{min} \rangle)^2$, el de una NP es πa^2 y por tanto $\Theta = \pi a^2/(2a + \langle \mathscr{D}_{min} \rangle)^2$.

a

Al analizar las Ecs. (1.95) y (1.96) para ángulos rasantes $\theta \to \pi/2$, se observa que $\alpha \to \infty$, además de que para partículas pequeñas $x \ll 1$ el producto $r_{coh}^{SSA} r_{coh}^{SSA*}$ puede tomar valores mayores a la unidad. Por tanto, los coeficientes de amplitud calculados a partir de la SSA son válidos únicamente para ángulos de incidencia no rasantes [14].

Para calcular los coeficientes de amplitud de reflexión y transmisión para una monocapa de NPs que no estén limitados a ángulos de incidencia bajos, se deben considerar contribuciones de esparcimiento múltiple (Multiple Scattering, MS) en el cálculo del campo eléctrico \mathbf{E}^{exc} que excita a las partículas dentro de la placa, el cual se puede descomponer como

$$\mathbf{E}^{exc} = \mathbf{E}_{t}^{exc} e^{i\mathbf{k}_{coh}^{t}\cdot\mathbf{r}} + \mathbf{E}_{r}^{exc} e^{i\mathbf{k}_{coh}^{r}\cdot\mathbf{r}},\tag{1.98}$$

donde \mathbf{E}_{r}^{exc} es la componente del campo eléctrico que excita a las NPs que se refleja según la SSA y \mathbf{E}_{t}^{exc} la que se transmite; dado que la reflexión y transmisión de \mathbf{E}^{exc} están dadas por las Ecs. (1.94), su polarización es la de la onda plana $\hat{\mathbf{e}}_{i}$ y su dirección de propagación está dada por \mathbf{k}_{coh}^{r} y \mathbf{k}_{coh}^{t} , respectivamente. Entonces, el campo eléctrico esparcido promedio considerando el MS \mathbf{E}_{MS}^{s} , toma en cuenta las reflexiones y transmisiones de \mathbf{E}^{exc} según las Ecs. (1.94) en el límite $d \rightarrow 0$ [43], como se observa en la Fig. 1.19, y la contribución del campo eléctrico incidente \mathbf{E}^{i} , por lo que [14]

$$\langle \mathbf{E}_{r,coh}^{s} \rangle = \langle \mathbf{E}_{r,MS}^{s} \rangle = [-\alpha S_{j}(\vartheta) E_{t}^{exc} - \alpha S(0) E_{r}^{exc}] \hat{\mathbf{e}}_{i} e^{i\mathbf{k}_{coh}^{r} \cdot \mathbf{r}}, \qquad (1.99a)$$

$$\langle \mathbf{E}_{t,coh}^{s} \rangle = \mathbf{E}^{i} + \langle \mathbf{E}_{t,MS}^{s} \rangle = [E_{0} - \alpha S(0)E_{t}^{exc} - \alpha S_{j}(\vartheta)E_{r}^{exc}]\hat{\mathbf{e}}_{i}e^{i\mathbf{k}_{coh}^{t}\cdot\mathbf{r}}.$$
 (1.99b)

Para determinar la expresión del campo eléctrico que excita a las NPs en la placa \mathbf{E}^{exc} considerando el MS¹⁸, se divide la placa donde se encuentran las NPs en dos (de grosor d/2

 $^{^{18}}$ El procedimiento descrito emplea un enfoque heurístico que se publicó en [14] sin emabargo, un enfoque más riguroso se encuentra en [42].

Fig. 1.19: Película de grosor d y volumen V con N partículas esféricas idénticas excitada por una onda plana monocromática incidente \mathbf{E}^i . El campo eléctrico que excita a las NPs dentro de la película \mathbf{E}^{exc} se divide en una componente reflejada \mathbf{E}_r^{exc} y una transmitida \mathbf{E}_t^{exc} , considerando así el esparcimiento múltiple por las NPs. El campo eléctrico esparcido promedio reflejado $\langle \mathbf{E}_{r,coh}^s \rangle$ corresponde a la suma de $r_{coh}^{SSA} E_t^{exc}$ (reflexión de E_t^{exc} en la SSA) y de $\langle t_{coh}^{coh} - 1 \rangle E_r^{exc}$ (transmisión de \mathbf{E}_r^{exc} en la SSA), mientras que el campo eléctrico esparcido promedio transmitido $\langle \mathbf{E}_{r,coh}^s \rangle$ corresponde la suma de $(t_{coh}^{SSA} - 1) E_t^{exc}$ (transmisión de E_t^{exc} en la SSA) y de $r_{coh}^{coh} E_r^{exc}$ (reflexión de \mathbf{E}_r^{exc} en la SSA), como se representa en la figura y en las Ecs. (1.99). Las flechas rojas corresponden a la onda plana incidente y los campos esparcidos promedios mientras que las flechas naranjas corresponden al campo que excita a las NPs.

cada una) y se calcula el promedio de \mathbf{E}^{exc} en la interfaz entre las dos placas (z = 0) de forma autoconsistente, por lo que las NPs en la placa no sólo son iluminadas por el campo eléctrico incidente \mathbf{E}^i , sino también por \mathbf{E}^{exc} [14]. El campo \mathbf{E}^{exc} se puede descomponer en una componente transmitida \mathbf{E}^{exc}_t y una reflejada, \mathbf{E}^{exc}_r . Para calcular \mathbf{E}^{exc}_t de forma autoconsistente se considera que \mathbf{E}^{exc}_t es igual a la suma del campo eléctrico incidente más el promedio de la transmisión del campo E^{exc}_t y a la reflexión del campo E^{exc}_r —que corresponden a la suma de los campos esparcidos por las NPs en la placa superior (0 < z < d/2)—, es decir,

$$\mathbf{E}_{t}^{exc}e^{i\mathbf{k}^{i}\cdot\mathbf{r}} = \left[E_{0} - \frac{1}{2}(\alpha S(0)E_{t}^{exc} + \alpha S_{j}(\vartheta)E_{r}^{exc})\right]e^{i\mathbf{k}_{coh}^{t}\cdot\mathbf{r}}\mathbf{\hat{e}}_{i}, \qquad (1.100a)$$

donde el factor 1/2 indica que es la respuesta EM promedio dentro de la placa. Asimismo, el campo \mathbf{E}_r^{exc} se calcula de forma autoconsistente como la reflexión del campo E_t^{exc} y la transmisión del campo E_r^{exc} —campos esparcidos por las NPs en la placa inferior (-d/2 < z < 0)—, por lo que su expresión es

$$\mathbf{E}_{r}^{exc}e^{i\mathbf{k}^{r}\cdot\mathbf{r}} = \left[-\frac{1}{2}(\alpha S_{j}(\vartheta)E_{t}^{exc} + \alpha S(0)E_{r}^{exc})\right]e^{i\mathbf{k}_{coh}^{r}\cdot\mathbf{r}}\hat{\mathbf{e}}_{i}.$$
(1.100b)

En la Fig. 1.20 se muestra una representación gráfica de las Ecs. (1.100), que son válidas únicamente en -d/2 < z < d/2.

Al resolver las Ecs. (1.100) para E_t^{exc} y E_r^{exc} en términos del campo eléctrico incidente \mathbf{E}_0

Fig. 1.20: Película de grosor d y volumen V con N partículas esféricas idénticas (no mostradas en la figura) dividida en dos regiones: z < 0 y z > 0. Una onda plana monocromática \mathbf{E}^i incide en las placas generando un campo eléctrico que excita a las NPs dentro de la película y que considera el esparcimiento múltiple de las NPs al dividirlo en una componente reflejada \mathbf{E}_{r}^{exc} y una transmitida \mathbf{E}_{t}^{exc} , dando como resultado los campos esparcidos promedio reflejado $\langle \mathbf{E}_{r,MS}^s \rangle$ y transmitido $\langle \mathbf{E}_{t,MS}^s \rangle$. Sobre la interfaz entre las dos placas (z = 0) tanto \mathbf{E}_{r}^{exc} como \mathbf{E}_{t}^{exc} se reflejan y transmiten según las Ecs. (??), proceso descrito por las Ecs. (1.100). Las flechas rojas corresponden a la onda plana incidente y los campos esparcidos promedio, mientras que las flechas naranjas corresponden al campo que excita a las NPs.

se obtienen las siguientes expresiones

$$\mathbf{E}_{t}^{exc} = \frac{1 + \frac{1}{2}\alpha S(0)}{1 + \alpha S(0) + \frac{1}{4}\alpha^{2} \left[S^{2}(0) - S_{j}^{2}(\vartheta)\right]} \mathbf{E}_{0},$$
$$\mathbf{E}_{r}^{exc} = \frac{-\frac{1}{2}\alpha S_{j}(\vartheta)}{1 + \alpha S(0) + \frac{1}{4}\alpha^{2} \left[S^{2}(0) - S_{j}^{2}(\vartheta)\right]} \mathbf{E}_{0},$$

por lo que, al sustituirlas en las expresiones de los campos esparcidos promedio reflejados y transmitidos [Ecs. (1.99)], se obtienen

$$\begin{split} \langle \mathbf{E}_{r,coh}^{s} \rangle &= \frac{-\alpha S_{j}(\vartheta)}{1 + \alpha S(0) + \frac{1}{4}\alpha^{2} \left[S^{2}(0) - S_{j}^{2}(\vartheta)\right]} \mathbf{E}_{0} e^{i\mathbf{k}_{coh}^{r}\cdot\mathbf{r}}, \\ \langle \mathbf{E}_{t,coh}^{s} \rangle &= \frac{1 - \frac{1}{4}\alpha^{2} \left[S^{2}(0) - S_{j}^{2}(\vartheta)\right]}{1 + \alpha S(0) + \frac{1}{4}\alpha^{2} \left[S^{2}(0) - S_{j}^{2}(\vartheta)\right]} \mathbf{E}_{0} e^{i\mathbf{k}_{coh}^{t}\cdot\mathbf{r}}, \end{split}$$

de donde es posible calcular los coeficientes de amplitud de reflexión y transmisión para una monocapa de NPs esféricas bajo el formalismo del CSM. Entonces, considerando que el campo eléctrico que excita a las NPs toma en cuenta el esparcimiento múltiple y que la componente coherente del campo esparcido es mucho mayor que la contribución de la componente difusa, así como $\vartheta = \pi - 2\theta$, se obtiene que

Coeficientes de amplitud del CSM

r

$$coh = \frac{-\alpha S_j(\pi - 2\theta)}{1 + \alpha S(0) + \frac{1}{4}\alpha^2 \left[S^2(0) - S_j^2(\pi - 2\theta)\right]},$$
(1.101a)

$$_{coh} = \frac{1 - \frac{1}{4}\alpha^2 \left[S^2(0) - S_j^2(\pi - 2\theta) \right]}{1 + \alpha S(0) + \frac{1}{4}\alpha^2 \left[S^2(0) - S_j^2(\pi - 2\theta) \right]},$$
(1.101b)

con j = 1 para polarización s, j = 2 para $p \ge S(0) = S_1(0) = S_2(0)$.

1.4.2. Monocapa soportada sobre un sustrato

Las Ecs. (1.101) corresponden a los coeficientes de amplitud de reflexión y transmisión de una onda plana \mathbf{E}^i que incide a un ángulo θ sobre una monocapa de NPs esféricas, idénticas, de radio a e índice de refracción n_p , localizadas de forma aleatoria e inmersa en una matriz con índice de refracción n_m , sin ser soportada de alguna forma. Sin embargo, en la realidad las NPs no pueden estar embebidas en un espacio libre, sino que están soportadas sobre un sustrato, de índice de refracción n_s ; adicionalmente la incidencia del haz de luz puede ser tanto en configuración externa, como se muestra en la Fig. 1.21a), como en interna, es decir ATR, como se muestra en la Fig. 1.21b).

Fig. 1.21: Esquema de la reflexión coherente de una monocapa de NPs esféricas, con índice de refracción n_p , embebida en una matriz con índice de refracción n_m y soportada por un sustrato con índice de refracción n_s , iluminada en un esquema de **a**) incidencia externa y **b**) en configuración ATR. El sistema coordenado azul, con el eje z paralelo a la dirección normal a la monocapa, define los ángulos de incidencia θ_i , de reflexión y de transmisión θ_t mediante la ley de reflexión y la ley de Snell. El sistema coordenado negro, con el eje z' paralelo a **k**ⁱ en **a**) y paralelo a **k**^t_{coh} en **b**), se emplea para determinar el ángulo ϑ (donde se evalúan los elmentos de la matriz de esparcimiento de Mie) en términos de θ_i o θ_t .

En la Fig. 1.21 se observa que el ángulo θ a evaluar r_{coh} y t_{coh} en las Ecs. (1.101) depende del medio por el que incide el campo eléctrico de la onda plana, con dirección \mathbf{k}^i . En incidencia externa, Fig. 1.21a), la onda plana incide sobre las NPs a un ángulo θ_i dado que no interactúa con la interfaz matriz-sustrato y no modifica su trayectoria. Por otro lado, en una configuración ATR, Fig. 1.21b), la onda plana cruza la interfaz sustrato-matriz, por lo que se refracta a un ángulo θ_t dado por la ley de Snell, e incide a la monocapa en $\theta = \theta_t$. Además de considerar el ángulo con el que la onda plana ilumina a las NPs, se debe calcular la contribución del sustrato en la reflectancia R y transmitancia T, que también depende del medio por donde incide la onda plana.

Para calcular los coeficientes de amplitud de reflexión y transmisión del sistema matrizmonocapa-sustrato, es decir, en incidencia externa, se consideran las múltiples reflexiones del sistema, mostradas en la Fig. 1.22. Cuando la onda plana con amplitud E_i incide en la monocapa, en z = 2a, se presenta una primera reflexión dada por el CSM, es decir que la amplitud del campo eléctrico en la primera reflexión es $r_{coh}E_i$. La segunda reflexión se presenta tras dos transmisiones en la monocapa y una reflexión en la interfaz matriz-sustrato, con una diferencia de fase $2\beta = 2(2ak_m \cos \theta)$ respecto a la primera reflexión, es decir, que la amplitud de la segunda reflexión es $t_{coh}^2 r_{ms} e^{i2\beta} E_i$. En la tercera reflexión hay dos transmisiones en la monocapa, dos reflexiones en la interfaz matriz-sustrato, y una reflexión en la monocapa; al considerar la diferencia de camino óptico con la primera reflexión, la amplitud de la tercera reflexión es $t_{coh}^2 r_{coh} r_{ms}^2 e^{i4\beta} E_i$. Al considerar el resto de las reflexiones, se obtiene que el coeficiente de amplitud de reflexión rdel sistema es

$$r = r_{coh} + t_{coh}^2 r_{ms} e^{i2\beta} + t_{coh}^2 r_{coh} r_{ms}^2 e^{i4\beta} + t_{coh}^2 r_{coh}^2 r_{ms}^3 e^{i6\beta} + t_{coh}^2 r_{coh}^3 r_{ms}^4 e^{i8\beta} + \dots$$
(1.102)

Para el cálculo del coeficiente de amplitud de transmisión t del sistema se sigue un procedimiento

Fig. 1.22: Esquema de las múltiples reflexiones en incidencia externa del sistema matriz-monocapa-sustrato producidos por una onda plana \mathbf{E}^i que incide sobre una monocapa de NPs esféricas de radio a, embebida en una matriz con índice de refracción n_m y soportada por un sustrato con índice de refracción n_s , a un ángulo θ_i respecto a la dirección normal de la monocapa. Las reflexiones y transmisiones en la interfaz sustrato-matriz (z = 0) se describen mediante los coeficientes de amplitud de Fresnel [Ecs. (1.10)–(1.13)], mientras que en la interfaz monocapa-matriz (z = 2a) las reflexiones y transmisiones son descritas por el CSM [Ecs. (1.101)]. Los coeficientes de amplitud de reflexión y transmisión se evalúan en θ_i . En los coeficientes de amplitud $r_{\alpha\beta}$ y $t_{\alpha\beta}$, el medio de incidencia de la onda plana monocromática corresponde a α y el de transmisión a β .

análogo al de r: la primera transmisión ocurre después de una transmisión en la monocapa, una transmisión en la interfaz matriz-sustrato y una diferencia de fase de β , por lo que la amplitud de la primera transmisión es $t_{coh}t_{ms}e^{i\beta}$. Para la *m*-ésima transmisión se presentan m-1 reflexiones con la monocapa y m-1 con el sustrato, además de una fase de $(2m-1)\beta$, es decir,

$$t = t_{coh}t_{ms}e^{i\beta} + t_{coh}r_{ms}r_{coh}t_{ms}e^{i3\beta} + t_{coh}r_{ms}^2r_{coh}^2t_{ms}e^{i5\beta} + t_{coh}r_{ms}^3r_{coh}^3t_{ms}e^{i7\beta} + \dots$$
(1.103)

Al factorizar $r_{ms}t_{coh}^2e^{2i\beta}$ en la Ec. (1.102), a excepción del primer término r_{coh} , y factorizar $t_{coh}t_{ms}e^{i\beta}$ en la Ec. (1.103), se obtienen las siguientes expressiones

$$r = r_{coh} + r_{ms} t_{coh}^2 e^{2i\beta} \left[1 + r_{coh} r_{ms} e^{2i\beta} + \left(r_{coh} r_{ms} e^{2i\beta} \right)^2 + \left(r_{coh} r_{ms} e^{2i\beta} \right)^3 + \dots \right]$$

$$t = t_{coh} t_{ms} e^{i\beta} \left[1 + r_{coh} r_{ms} e^{2i\beta} + \left(r_{coh} r_{ms} e^{2i\beta} \right)^2 + \left(r_{coh} r_{ms} e^{2i\beta} \right)^3 + \dots \right],$$

y dado que $\left\|r_{coh}r_{ms}e^{2i\beta}\right\| < 1$, es posible reescribir los coeficientes de amplitud del sistema como

Coeficientes de amplitud dados por el CSM en incidencia externa

$$r = r_{coh}(\theta_i) + \frac{r_{ms}(\theta_i)t_{coh}(\theta_i)e^{i2\beta}}{1 - r_{coh}(\theta_i)r_{ms}(\theta_i)e^{2i\beta}}, \quad (1.104a) \qquad t = \frac{t_{ms}(\theta_i)t_{coh}(\theta_i)e^{i\beta}}{1 - r_{coh}(\theta_i)r_{ms}(\theta_i)e^{2i\beta}}, \quad (1.104b)$$

$$\cos \beta = 2ak_0n_m \cos \theta_i.$$

Cuando se considera que la onda plana monocromática incide sobre el sistema con un ángulo θ_i en una confiuración ATR, ésta se refleja por la interfaz sustrato-matriz (z = 0) a un ángulo θ_i pero se transmite a un ángulo θ_t . La onda plana ilumina a las NPs a un ángulo θ_t , y a este mismo ángulo se refleja y transmite a través de la monocapa (en z = 2a), como se observa en la Fig. 1.23, donde, por claridad, los subíndices *sm* corresponden a los coeficientes de Fresnel evaluados en θ_i , mientras que *ms* y *coh*, en θ_t . De forma análoga al caso de incidencia externa, los coeficientes de amplitud de reflexión y transmisión del sistema son

$$r = r_{sm} + t_{sm}r_{coh}r_{ms}e^{i2\beta} + t_{sm}r_{coh}^2r_{ms}e^{i4\beta} + t_{sm}r_{coh}^3r_{ms}^2e^{i6\beta} + t_{sm}r_{coh}^4r_{ms}^3e^{i8\beta}\dots,$$
(1.105)

$$t = t_{sm}t_{coh}e^{i\beta} + t_{sm}r_{coh}r_{ms}t_{coh}e^{i3\beta} + t_{sm}r_{coh}^2r_{ms}^2t_{coh}e^{i5\beta} + t_{sm}r_{coh}^3r_{ms}^3t_{coh}e^{i7\beta} + \dots, \quad (1.106)$$

donde $\beta = 2ak_m \cos \theta_t$. Al factorizar $t_{sm}r_{coh}t_{ms}e^{2i\beta}$ en la Ec. (1.105) y $t_{sm}t_{coh}e^{i\beta}$ en la Ec. (1.106), y considerar que $||r_{coh}r_{ms}e^{i2\beta}|| < 1$, los coeficientes de amplitud están dados por

$$r = r_{sm} + t_{sm}r_{coh}t_{ms}e^{2i\beta} \left[1 + r_{coh}r_{ms}e^{2i\beta} + \left(r_{coh}r_{ms}e^{2i\beta}\right)^{2} + \left(r_{coh}r_{ms}e^{2i\beta}\right)^{3} + \dots \right]$$

$$= r_{sm} + \frac{t_{sm}r_{coh}t_{ms}e^{2i\beta}}{1 - r_{ms}r_{coh}e^{i2\beta}},$$

$$(1.107)$$

$$t = t_{coh}t_{ms}e^{i\beta} \left[1 + r_{coh}r_{ms}e^{2i\beta} + \left(r_{coh}r_{ms}e^{2i\beta}\right)^{2} + \left(r_{coh}r_{ms}e^{2i\beta}\right)^{3} + \dots \right] = \frac{t_{coh}t_{ms}e^{i\beta}}{1 - r_{ms}r_{coh}e^{i2\beta}}.$$

Es posible reescribir la Ec. (1.107) empleando las relaciones de Stokes¹⁹, por lo que se obtiene

¹⁹Las relaciones de Stokes se deducen a partir de la invariancia de las ecuaciones de Maxwell ante inversiones

Fig. 1.23: Esquema de las múltiples reflexiones en ATR del sistema matriz-monocapa-sustrato producidos por una onda plana \mathbf{E}^i que incide en la interfaz de un sustrato, con índice de refracción n_s , que sostiene a una monocapa de NPs esféricas de radio a embebida en una matriz con n_m , a un ángulo θ_i respecto a la dirección normal a la interfaz. Las reflexiones y transmisiones en la interfaz sustrato-matriz (z = 0) se describen por medio de los coeficientes de amplitud de Fresnel [Ecs. (1.10)–(1.13)] en θ_i , mientras que en la interfaz monocapa-matriz (z = 2a) las reflexiones y transmisiones son descritas por el CSM [Ecs. (1.101)] en θ_t . En los coeficientes de amplitud $r_{\alpha\beta}$ y $t_{\alpha\beta}$, el medio de incidencia del haz de luz es α y el de transmisión en β .

Coeficientes de amplitud de CSM en configuración ATR

$$r = \frac{r_{sm}(\theta_i) + r_{coh}(\theta_t)e^{i2\beta}}{1 - r_{coh}(\theta_t)r_{sm}(\theta_i)e^{2i\beta}}, \quad (1.108a) \qquad t = \frac{t_{sm}(\theta_i)t_{coh}(\theta_t)e^{i\beta}}{1 - r_{coh}(\theta_t)r_{ms}(\theta_t)e^{2i\beta}}, \quad (1.108b)$$
con $\beta = 2ak_0n_m \cos \theta_t$

temporales $(t \to -t)$, y relacionan a los coeficientes de amplitud r y t evaluados en θ_i y θ_t para una interfaz entre medios no absorbentes. Las relaciones de Stokes son [20, 41]: $r_{it}(\theta_i) = -r_{ti}(\theta_t)$, $t_{it}(\theta_i) = 1 + r_{it}(\theta_i)$, y $t_{ti}(\theta_t) = 1 + r_{it}(\theta_t)$, con i el medio de incidencia y t el de transmisión.

Capítulo 2

Respuesta óptica de una monocapa desordenada de nanopartículas esféricas

Para calcular la reflectancia R y transmistancia T de una monocapa de nanopartículas (NPs) esféricas inmersa en un medio dieléctrico, denominado matriz, y soportada sobre un sustrato dieléctrico, se emplea el modelo de esparcimiento coherente (Coherent Scattering Model, CSM) [14, 41]. El CSM proporciona expresiones analíticas sencillas para los coeficientes de amplitud de reflexión r y de transmisión t de la monocapa cuando está suspendida en el espacio libre (Free Standing Monolayer, FSM) [Ecs. (1.101)], y para el sistema matriz-monocapa-sustrato tanto en incidencia externa [Ecs. (1.104)] como interna, o bien en una configuración de reflexión total atenuada (Attenuated Total Reflection, ATR) [Ecs. (1.108)]. En la primera sección de este capítulo se calcula la respuesta electromagnética (EM) de una moncapa de NPs esféricas considerando que la función dieléctrica de las NPs está dada por el modelo de Drude-Sommerfeld [Ec. (1.62)], que depende de dos parámetros: la frecuencia de plasma ω_p , que sintoniza las frecuencias de resonancia plasmónicas de superficie (Surface Plasmon Resonances, SPRs), y la constante fenomenológica de amortiguamiento γ , que ajusta el ancho de cada SPR. Como se muestra a continuación, la reflectancia y transmitancia de una monocapa de NPs presenta excitaciones distintas a las SPRs de partículas individuales (Single Particle SPRs, SP-SPRs), como el modo quiado reportado en 9 y [10], también denominado resonancia de red de superficie plasmónica (Plasmonic Surface Lattice Resonance, PSLR). Asimismo, se mostrará que la elección de ω_p y γ evita el traslape entre las excitaciones en la monocapa y las SP-SPR, lo que facilita la identificación de cada tipo de modo. En la segunda sección se emplean las correcciones por tamaño de las funciones dieléctricas del oro y de la plata para NPs esféricas, para identificar si un modo semejante al modo guiado se encuentra presente en monocapas formadas con NPs de materiales reales, así como las características de la monocapa para que pueda ser empleada como biosensor. Finalmente, en la tercera sección, se hace un análisis de la sensibilidad ante cambios del índice de refracción del modo excitado en la monocapa distinto de las SP-SPRs y se compara con la sensibilidad de un biosensor comercial, que consiste en una película continua de oro donde se excita al plasmón-polaritón de superficie (Surface Plasmon Polariton, SPP), así como con arreglos nanoestructurados que se han propuesto en la literatura para el biosensado.

2.1. Análisis con el modelo de Drude-Sommerfeld

En la primera subsección se analiza la reflectancia de una FSM empleando el modelo de Drude-Sommerfled con parámetros $\hbar\omega_p = 4.3 \text{ eV}$ y $\hbar\gamma = 0.15 \text{ eV}$ [ver Fig. 1.9a)], y se compara la respuesta EM de la monocapa con la de una partícula individual. En la segunda subsección se estudia la reflectancia de una monocapa soportada en configuración de reflexión interna atenuada, ver Fig. 1.14a), empleando el modelo de Drude-Sommerfeld en un primer caso con los parámetros $\hbar\omega_p = 4.3 \text{ eV}$ y $\hbar\gamma = 0.15 \text{ eV}$, y posteriormente con $\hbar\omega_p = 10 \text{ eV}$ y $\hbar\gamma = 0.15 \text{ eV}$ [ver Fig. 1.9b)] para modificar la longitud de onda de las SP-SPRs; ulteriormente se calcula la reflectancia de la monocapa considerando variaciones en la fracción de cubierta Θ y el radio *a* de las NPs, parámetros que modifican la distancia mínima promedio $\langle \mathcal{D}_{min} \rangle$ entre las NPs y la cantidad de electrones libres en la monocapa. Adicionalmente, se calcula la transmitancia de la monocapa para las dos funciones dieléctricas, con $\hbar\omega_p = 4.3 \text{ eV}$ y $\hbar\omega_p = 10 \text{ eV}$ (con el mismo valor $\hbar\gamma = 0.15$ eV), para corroborar que los modos distintos a las SP-SPRs tienen un comportamiento semejante al modo guiado o a las LSPRs reportadas en [9] y [10].

2.1.1. Reflectancia de una monocapa suspendida en agua

Para el cálculo de la reflectancia mediante el CSM de una FSM suspendida en una matriz con $n_m = 1.33$, modelando el agua en la ventana del espectro visible [44], se empleó la Ec. (1.17) con el coeficiente de amplitud de reflexión coherente r_{coh} [Ec. (1.101a)]. En la Fig. 2.1 se muestran los resultados de la reflectancia R en función del ángulo de incidencia θ_i y tanto de la longitud de onda λ de la onda plana incidente (escala inferior), como de la energía en unidades de $\hbar\omega = hc/\lambda$ (escala superior). La frecuencia de plasma empleada para la función dieléctrica tipo Drude fue $\hbar\omega_p = 4.3$ eV y la constante fenomenológica de amortiguamiento $\hbar\gamma = 0.15$ eV (que corresponden a 288.5 nm y 8,270 nm, respectivamente). Se consideraron NPs de radio a = 30 nm y fracciones de cubierta Θ : 0.05, 0.1, 0.2, 0.3 y 0.4. En el renglón superior de la Fig. 2.1, gráficas de i) a v), se muestra la reflectancia para polarización p, mientras que en el renglón inferior para polarización s, vi) - x). La línea punteada vertical verde en $\lambda \approx 658$ nm corresponde a la SP-SPR dipolar ($\ell = 1$), mientras que la línea vertical rosa punteada en $\lambda \approx 561$ nm corresponde a la excitación del modo cuadrupolar ($\ell = 2$).

La reflectancia para polarización p [Fig. 2.1 i)–v)] es cero para el ángulo de Brewster $\theta_B = 45^{\circ}$ y para regiones alejadas de las SP-SPRs (líneas punteadas verticales verde y rosa). En la gráfica v), $\Theta = 0.4$, se observa a 658 nm (escala inferior) y en el intervalo $50^{\circ} < \theta_i < 80^{\circ}$ que $R \approx 0$. Sin embargo, conforme el valor de λ se aleja de 658 nm, la reflectancia aumenta. La extinción de luz a 561 nm es menos evidente al disminuir la fracción de cubierta, como se observa al comparar las gráficas iii) y iv); para las fracciones de cubierta $\Theta = 0.05$ y 0.1, gráficas i) y ii), la extinción de luz a la frecuencia de la SP-SPR dipolar ya no es apreciable. En contraparte, para polarización s [Fig. 2.1 vi)–x)] la reflectancia es distinta de cero para todo ángulo de incidencia a las frecuencias de las SP-SPRs.

Para comparar la respuesta EM de una FSM al variar la fracción de cubierta, se grafica en la Fig. 2.2 cortes de la reflectancia mostrada en la Fig. 2.1, para ambas polarizaciones: R_p en la Fig. 2.2a) y R_s Fig. 2.2b). Se grafican los cortes de la reflectancia a $\theta_i = 65^{\circ}$, pues a este

Fig. 2.1: Gráficas de la reflectancia para una FSM como función del ángulo de incidencia θ_i y tanto de la longitud de onda λ de la onda plana incidente (escala inferior) como de la energía en unidades de $\hbar\omega$ (escala superior), para una función dieléctrica tipo Drude con $\hbar\omega_p = 4.3$ eV y $\hbar\gamma = 0.15$ eV. Las gráficas en el renglón superior $[\mathbf{i})-\mathbf{v}$] muestran los resultados de la reflectancia para polarización p y las del renglón inferior $[\mathbf{i})-\mathbf{v}$] para polarización s, donde se consideraron NPs de radio a = 30 nm y distintas fracciones de cubierta Θ : 0.05, 0.1, 0.2, 0.3 y 0.4. Las líneas verticales punteadas verdes y rosas corresponden a las SP-SPRs dipolar (658 nm) y cuadrupolar (561 nm), respectivamente.

ángulo se extingue la luz reflejada alrededor de la SP-SPR dipolar para polarización p y para fracciones de cubierta $\Theta \ge 0.1$. En la Fig. 2.2a), para la polarización p, se presenta un mínimo en la reflectancia alrededor de 658 nm para fracciones de cubierta mayores a $\Theta = 0.05$, los cuales son más pronunciados conforme aumenta la fracción de cubierta. Sin embargo, para $\Theta = 0.05$ se observa un máximo en lugar de un mínimo. Para polarización s, Fig. 2.2b), se presenta un máximo en la reflectancia a 658 nm para todos los valores de Θ . Para ambas polarizaciones y a las fracciones de cubierta mayores, $\Theta = 0.3$ y $\Theta = 0.4$, se observa un mínimo en la reflectancia alrededor de 561 nm lo que corresponde a la SP-SPR cuadrupolar.

Al calcular la distancia mínima promedio $\langle \mathscr{D}_{min} \rangle$ entre las NPs de a = 30 nm mediante la Tab. 1.1, se obtiene que $\langle \mathscr{D}_{min} \rangle = 177.8$ nm para $\Theta = 0.05$, por tanto el análisis de partícula individual es válido. Con este enfoque se entiende la presencia del máximo en la reflectancia de una monocapa de NPs con $\Theta = 0.05$ (en negro en la Fig. 2.2) a la longitud de onda de la SP-SPR dipolar como una cota mínima ya que, a $\lambda = 658$ nm, la contribución del esparcimiento a la extinción de luz de cada una de las NPs que conforman la monocapa no es despreciable, como se observa en las eficiencias de extinción y de esparcimiento graficadas en la Fig. 1.16.

En las Figs. 2.1 y 2.2 se mostró la respuesta EM de una monocapa de NPs suspendida en un medio con $n_m = 1.33$ al interactuar con una onda plana monocromática. En la presencia de un sustrato que soporte la monocapa, con índice de refracción n_s , es posible considerar una iluminación en configuración de incidencia externa o interna, según sea el medio de incidencia de la onda plana. Para incidencia externa, a todo ángulo de incidencia, una onda plana iluminará a las NPs de la monocapa por lo que, respecto al caso de la FSM, la posición de los máximos y mínimos de la reflectancia no cambiarán y los valores de R presentarán un decremento, debido al sustrato

2. RESPUESTA ÓPTICA DE UNA MONOCAPA DESORDENADA DE NANOPARTÍCULAS ESFÉRICAS

Fig. 2.2: Cortes de la Fig. 2.1 a $\theta_i = 65^{\circ}$ de la reflectancia de una FSM de NPs esféricas de radio a = 30 nm en polarización a) $p \neq b$) s, en función tanto de la longitud de onda λ (escala inferior) como de la energía de la onda plana incidente en unidades de $\hbar\omega$ (escala superior). Los parámetros de la función dieléctrica tipo Drude para las NPs son $\hbar\omega_p = 4.3$ eV y $\hbar\gamma = 0.15$ eV y las fracciones de cubierta consideradas fueron Θ : 0.05, 0.1, 0.2, 0.3 y 0.4. Las líneas verticales punteadas verdes y rosas corresponden a las SP-SPRs dipolar (658 nm) y cuadrupolar (561 nm), respectivamente.

que disminuye el contraste entre el índice de refracción de las NPs en la monocapa y el medio de transmisión. Por otro lado, para el caso de incidencia interna y ángulos mayores al ángulo crítico $\theta_c = \arcsin(n_m/n_s)$, las NPs en la monocapa serán iluminadas por ondas evanescentes, por tratarse de una configuración ATR, por lo que es posible observar cambios en la respuesta EM de la monocapa, como sucede cuando se tiene una placa continua y se excitan plasmones polaritones de superficie.

2.1.2. Reflectancia y transmitancia de una monocapa soportada sobre un sustrato en configuración de reflexión total atenuada

La respuesta EM de una monocapa de NPs embebida en una matriz con índice de refracción n_m y soportada por un sustrato con índice de refracción n_s , se calcula al emplear la Ec. (1.17) con el coeficiente de amplitud de reflexión r de la Ec. (1.108a). Para comparar los resultados de la reflectancia de una FSM y una monocapa soportada por un sustrato e iluminada en configuración ATR, se emplean los parámetros utilizados en los cálculos de las Figs. 2.1 y 2.2 ($n_m = 1.33$, a = 30 nm, $\hbar\omega_p = 4.3$ eV y $\hbar\gamma = 0.15$ eV) considerando un sustrato con índice de refracción $n_s = 1.5$, modelando un vidrio BK7 cuyo índice de refracción es 1.50 ± 0.05 en un intervalo de longitudes de onda entre 334.1 nm y 2,325.4 nm [45]. En la Fig. 2.3 se presentan los resultados de la reflectancia R en función del ángulo de incidencia θ_i y tanto de la longitud de onda λ (escala inferior) como de la energía $\hbar\omega$ (escala superior) de la onda plana incidente. Las gráficas i) – v) en la Fig. 2.3 corresponden a la polarización p, mientras que las gráficas vi) – x) a polarización s. Al igual que para la FSM, se consideraron los casos para la fracción de cubierta $\Theta = 0.05, 0.1, 0.2, 0.3 \text{ y}$ 0.4. Las SP-SPRs corresponden a la línea vertical verde punteada en $\lambda \approx 658$ nm para el modo dipolar y la línea vertical rosa punteada en $\lambda \approx 561$ nm para el modo cuadrupolar. Adicionalmente, los puntos amarillos en la Fig. 2.3 corresponden a los mínimos en R para ángulos mayores al ángulo crítico entre el sustrato y la matriz ($\theta_c \approx 62.5^\circ$), y longitudes de onda mayores a la SP-SPR dipolar.

Fig. 2.3: Gráficas de la reflectancia en configuración ATR de una monocapa como función del ángulo de incidencia θ_i y de la longitud de onda λ (escala inferior) así como de la energía de la onda plana incidente en unidades de $\hbar\omega$ (escala superior), para una función dieléctrica tipo Drude con $\hbar\omega_p = 4.3$ eV y $\hbar\gamma = 0.15$ eV. Las gráficas en el renglón superior $[\mathbf{i})-\mathbf{v}$)] muestran los resultados de la reflectancia para polarización p y las del renglón inferior $[\mathbf{v}\mathbf{i})-\mathbf{x}$)] para polarización s, donde se consideraron NPs de radio a = 30 nm y distintas fracciones de cubierta Θ : 0.05, 0.1, 0.2, 0.3 y 0.4. Las líneas verticales punteadas verdes y rosas corresponden a las SP-SPRs dipolar (658 nm) y cuadrupolar (561 nm), respectivamente. Los puntos amarillos corresponden a los mínimos en R para ángulos mayores a $\theta_c \approx 62.5^{\circ}$ y longitudes de onda mayores a la SP-SPRs dipolar.

En la Fig. 2.3 se observa que $R \approx 1$ para ángulos mayores al ángulo crítico, $\theta_c \approx 62.5^\circ$, excepto en dos regiones: a longitudes de onda correspondientes a las SP-SPRs (líneas punteadas verticales) y en una región a longitudes de onda mayores a la SP-SPR dipolar (puntos amarillos). El decremento en la reflectancia después del ángulo crítico alrededor de la SP-SPR cuadrupolar (561 nm) es resultado de la extinción de luz debido a la presencia de las NPs y es apreciable tanto para polarización p como para s, siendo más evidente para las fracciones de cubierta mayores. La respuesta óptica de la monocapa a 658 nm (SP-SPR dipolar) es distinta para cada polarización. Mientras que en polarización p, gráficas \mathbf{i})- \mathbf{v}), la SP-SPR dipolar se aprecia para todos los valores de Θ considerados, para polarización s, gráficas \mathbf{vi})- \mathbf{x}), sólo se aprecia cuando Θ toma valores cercanos a cero, lo cual puede ser el traslape con la excitación distinta a las SP-SPRs que se observa en la Fig. 2.3 (puntos amarillos).

Adicional a la región cercana a las SP-SPRs, se observan mínimos en la reflectancia para ángulos de incidencia mayores al ángulo crítico y para longitudes de onda mayores a la SP-SPR dipolar, los cuales están representados por los puntos amarillos en la Fig. 2.3. Dado que los puntos amarillos corresponden a una excitación que ocurre a energías menores en comparación a las SP-SPRs, ésta no puede ser plasmónica de partícula individual, por lo que se especula que se debe a una respuesta plasmónica colectiva como el *modo guiado* o la resonancia de red de superficie plasmónica (Plasmonic Surface Lattice Resonance, PSLR) reportada en [9] y [10]. Al analizar las gráficas en la Fig. 2.3 se observa que el supuesto modo plasmónico colectivo se corre al rojo conforme aumenta la fracción de cubierta Θ y que se traslapa con la SP-SPR dipolar cuando Θ toma valores cercanos a cero, lo cual es más evidente al considerar polarización p que s.

2. RESPUESTA ÓPTICA DE UNA MONOCAPA DESORDENADA DE NANOPARTÍCULAS ESFÉRICAS

Dado que la supuesta excitación colectiva presenta un mínimo en la reflectancia alrededor de $\theta_i = 75^\circ$ para los casos de fracción de cubierta analizados en la Fig. 2.3, se grafican cortes de la reflectancia a este ángulo en la Fig. 2.4, en donde las líneas punteadas verticales corresponden a las longitudes de onda de las SP-SPRs (verde para la excitación dipolar y rosa para la cuadrupolar). En polarización p, Fig. 2.4a) la excitación de la monocapa para todos los valores de Θ alrededor de $\lambda \approx 561$ nm coincide con la SP-SPR cuadrupolar y la reflectancia disminuye conforme la fracción de cubierta crece, por lo que se relaciona con la cantidad de NPs presentes en la monocapa; para polarización s, Fig. 2.4b), el mínimo en la reflectancia en la SP-SPR cuadrupolar se define mejor conforme aumenta Θ a pesar de que $R_s \approx 0.8$ para todos los valores de Θ considerados. Por otra parte, la excitación dipolar de partícula individual (658 nm) no se aprecia para todos los casos estudiados en la Fig. 2.4 y sólo coincide con un mínimo en la reflectancia para polarización pcuando $\Theta = 0.1$ nm (línea naranja), mientras que para $\Theta \ge 0.2$ se presenta un corrimiento al azul de la SP-SPR dipolar, debido a la interacción entre las NPs de la monocapa. Para $\Theta = 0.05$ en polarización p (línea sólida negra) no se observa un mínimo al valor de λ de la SP-SPR dipolar sino a $\lambda \approx 715$ nm, asociado al supuesto modo plasmónico colectivo de la monocapa ya que a esta longitud de onda la reflectancia toma valores cercanos a cero y este comportamiento no se observa para los corrimientos al azul de la SP-SPR dipolar. Para el caso de polarización s, no se aprecian corrimientos al azul de la SP-SPR dipolar, sino sólo se aprecia el supuesto modo plasmónico colectivo a $\lambda > 658$ nm.

Fig. 2.4: Cortes de la reflectancia mostrada en la Fig. 2.3 a $\theta_i = 75^{\circ}$ para una monocapa iluminada en configuración ATR de NPs esféricas de radio a = 30 nm en polarización **a**) p y **b**) s como función de la longitud de onda λ (escala inferior) y de la energía $\hbar\omega$ (escala superior). Los parámetros de la función dieléctrica tipo Drude para las NPs son $\hbar\omega_p = 4.3$ eV y $\hbar\gamma = 0.15$ eV y las fracciones de cubierta consideradas fueron Θ : 0.05, 0.1, 0.2, 0.3 y 0.4. Las líneas verticales punteadas verdes y rosas corresponden a las SP-SPRs dipolar (658 nm) y cuadrupolar (561 nm), respectivamente.

Los mínimos de la reflectancia a $\lambda > 650$ nm en la Fig. 2.4, que corresponden al supuesto modo plasmónico colectivo, presentan un corrimiento al rojo conforme la fracción de cubierta de la monocapa aumenta para ambas polarizaciones, contrario al comportamiento observado en las excitaciones plasmónicas de partícula individual de la monocapa observadas en la Fig. 2.4a), entre 561 nm y 658 nm. Otra diferencia entre las excitaciones en λ mayores a las SP-SPRs y los corrimientos al azul de éstas, es que el decremento en el valor de R no es monótono, sino que se aprecia un máximo a fracciones de cubierta intermedias (ver Fig. 2.4, casos $\Theta = 0.05$, 0.1 y 0.2). El corrimiento al rojo del supuesto modo plasmónico colectivo es mayor para polarización p que para s, como se observa en la Fig. 2.4. Por ejemplo, para $\Theta = 0.1$ (línea naranja sólida), el mínimo en R se localiza a 765 nm para p y a 740 nm para s. Por lo anterior, los mínimos en R_p y R_s localizados a longitudes de onda mayores a la de los modos plasmónicos de partícula individual no son corrimientos de las excitaciones multipolares de una partícula aislada, sino una respuesta colectiva de las NPs en la monocapa.

En la Fig. 2.4, para $\Theta = 0.3$ y 0.4 a ambas polarizaciones, el supuesto modo plasmónico colectivo se separa de la SP-SPRs dipolar (línea punteada vertical verde) a longitudes mayores a 900 nm —región en donde el agua presenta absorción—, por lo que no son apreciables en la Fig. 2.4. Sin embargo, al elegir valores de Θ entre 0.05 y 0.2, es posible sintonizar la resonancia del supuesto modo plasmónico colectivo entre 695 nm y 830 nm para polarización p, o bien, entre 715 nm y 815 nm para polarización s.

Para caracterizar el supuesto modo plasmónico colectivo se repitieron los cálculos de la reflectancia modificando la frecuencia de plasma en el modelo de Drude, que caracteriza la respuesta EM de las NPs y modifica la posición de las SP-SPRs. Los resultados de la reflectancia de un sistema monocapa con los parámetros empleados en la Fig. 2.3, pero con $\hbar\omega_p = 10$ eV, se muestran en la Fig. 2.5. Dado que $\omega_p \propto \sqrt{n_v}$, con n_v la densidad volumétrica electrónica [Ec. (1.63)], para $\hbar\omega_p = 10$ eV se considera un mayor número de electrones libres en comparación con $\hbar\omega_p = 4.3$ eV, y por tanto se espera que las resonancias, tanto las SP-SPRs como la del supuesto modo plasmónico colectivo, sean más intensas. En la Fig. 2.5 las líneas verticales punteadas verde y rosa en 342 nm y 262 nm corresponden nuevamente a las SP-SPRs dipolar y cuadrupolar (que se corren al azul respecto a las SP-SPR obtenidas con $\hbar\omega_p = 4.3$ eV), respectivamente, mientras que los puntos amarillos corresponden a los mínimos en la reflectancia asociados al supuesto modo plasmónico colectivo.

Fig. 2.5: Gráficas de la reflectancia en configuración ATR de una monocapa como función del ángulo de incidencia θ_i y de la longitud de onda λ (escala inferior), así como de la energía de la onda plana incidente en unidades de $\hbar\omega$ (escala superior), para una función dieléctrica tipo Drude con $\hbar\omega_p = 10 \text{ eV}$ y $\hbar\gamma = 0.15 \text{ eV}$. Las gráficas en el renglón superior $[\mathbf{i})-\mathbf{v}$)] muestran los resultados para polarización p y las del renglón inferior $[\mathbf{v}\mathbf{i})-\mathbf{x}$)] para polarización s, donde se consideraron NPs de radio a = 30 nm y distintas fracciones de cubierta Θ : 0.05, 0.1, 0.2, 0.3 y 0.4. Las líneas verticales punteadas verdes y rosas corresponden a las SP-SPRs dipolar (342 nm) y cuadrupolar (262 nm), respectivamente. Los puntos amarillos corresponden a los mínimos en R para ángulos mayores a $\theta_c \approx 62.5^{\circ}$ y longitudes de onda mayores a la SP-SPRs dipolar.

2. RESPUESTA ÓPTICA DE UNA MONOCAPA DESORDENADA DE NANOPARTÍCULAS ESFÉRICAS

En las gráficas mostradas en la Fig. 2.5 ($\hbar\omega_p = 10 \text{ eV}$), como es de esperarse, se aprecian características semejantes a las observadas en la Fig. 2.3, en las que se empleó $\hbar\omega_p = 4.3 \text{ eV}$. La excitación de la SP-SPR dipolar (líneas verticales punteadas verdes) sólo es apreciable para polarización p (para todas las fracciones de cubierta consideradas). En ambas polarizaciones, la reflectancia, considerando $\theta_i > \theta_c$, disminuye para valores de λ cercanos a la SP-SPR cuadrupolar (líneas verticales punteadas rosas), así como a longitudes de onda mayores a la SP-SPR dipolar, es decir, en la supuesta excitación colectiva (puntos amarillos); de igual forma, el corrimeinto al rojo de la supuesta excitación colectiva respecto a la SP-SPR dipolar es mayor para polarización p que para s. Asimismo, al modificar el parámetro $\hbar\omega_p$ de 4.3 eV a 10 eV se sintonizó la supuesta excitación colectiva a longitudes de onda menores, por ejemplo, para $\Theta = 0.3$, para todo ángulo de incidencia, la supuesta excitación colectiva se localiza a $\lambda < 900 \text{ nm para } \hbar\omega_p = 10 \text{ eV}$, mientras que para $\hbar\omega_p = 4.3 \text{ eV}$ el modo colectivo ya no se apreciaba en el espectro visible (ver gráficas **iv**) y **ix**) de las Figs. 2.3 y 2.5).

Dado que la elección del parámetro ω_p sintoniza a las SP-SPRs y al supuesto modo plasmónico colectivo, la separación entre estos puede modificarse. Para comparar con el caso de $\hbar\omega_p = 4.3 \text{ eV}$ (Fig. 2.4), se grafica en la Fig. 2.6 cortes de la reflectancia graficada en la Fig. 2.5, donde se emplea $\hbar\omega_p = 10 \text{ eV}$, a $\theta_i = 75^\circ$ para ambas polarizaciones, Fig. 2.6a) para p y Fig. 2.6b) para s, en función de la longitud de onda de la onda plana incidente, para una monocapa de NPs de radio a = 30 nm y fracciones de cubierta consideradas en la Fig. 2.5; las líneas punteadas verde y rosa corresponden a las SP-SPRs dipolar y cuadrupolar, respectivamente. Para ambas polarizaciones y para todas las fracciones de cubierta, se presenta una excitación a la longitud de onda correspondiente a la SP-SPR octopolar en $\lambda = 240 \text{ nm}$ (línea punteada vertical cian), la cual se corre al azul para ambas polarizaciones, al igual que la SP-SPR cuadrupolar alrededor de 262 nm (línea punteada vertical rosa). De forma semejante a los resultados obtenidos con $\hbar\omega_p = 4.3 \text{ eV}$ (Fig. 2.4), la reflectancia de la monocapa considerando $\hbar\omega_p = 10 \text{ eV}$ y $\theta_i = 75^\circ$ (Fig. 2.6) se presenta un corrimiento al azul de la SP-SPR dipolar (línea punteada vertical verde) para $\Theta \ge 0.2$, que aumenta conforme Θ crece. Sin embargo, para $\Theta = 0.05 \text{ y } 0.1$ en polarización p, y para todos los valores de Θ considerados para s, la SP-SPR dipolar no se aprecia en los cálculos

Fig. 2.6: Cortes de la reflectancia mostrada en la Fig. 2.5 a $\theta_i = 75^{\circ}$ para una monocapa iluminada en configuración ATR de NPs esféricas de radio a = 30 nm en polarización **a**) p y **b**) s como función de la longitud de onda λ (escala inferior) y de la energía en unidades de $\hbar\omega$ (escala superior). Los parámetros de la función dieléctrica tipo Drude para las NPs son $\hbar\omega_p = 10$ eV y $\hbar\gamma = 0.15$ eV y las fracciones de cubierta consideradas fueron Θ : 0.05, 0.1, 0.2, 0.3 y 0.4. Las líneas verticales punteadas verdes, rosas y cianes corresponden a las SP-SPRs dipolar (342 nm), cuadrupolar (262 nm) y octopolar (238 nm), respectivamente.

de la reflectancia. En su lugar, se observan mínimos localizados a longitudes de onda mayores a 342 nm, atribuidos al supuesto modo plasmónico colectivo.

En la Fig. 2.6 ($\hbar\omega_p = 10 \text{ eV}$), los mínimos de reflectancia a $\lambda > 342 \text{ nm}$ se atribuyen a una supuesta respuesta colectiva de las NPs en la monocapa. De forma análoga al caso $\hbar\omega_p = 4.3$ eV (Fig. 2.4), para $\hbar\omega = 10$ eV los mínimos de reflectancia se corren al rojo conforme aumenta la fracción de cubierta y su presencia es más evidente para fracciones de cubierta intermedia, siendo $\Theta = 0.1$ cuando la reflectancia en la excitación del supuesto modo plasmónico colectivo alcanza un valor mínimo. Cuando $\Theta = 0.05$ (líneas negras en la Fig. 2.6) la excitación del supuesto modo plasmónico colectivo se separa de la SP-SPR dipolar aproximadamente 40 nm para ambas polarizaciones, mientras que para $\Theta = 0.2$ la excitación del supuesto modo plasmónico colectivo se separa de la SP-SPR dipolar 210 nm y 160 nm para polarización $p ext{ y s}$, respectivamente. Es decir, que la separación entre la SP-SPR dipolar y el supuesto modo plasmónico colectivo es menor que cuando se consideró $\hbar\omega_p = 4.3$ eV en la Fig. 2.4 (en donde, para $\Theta = 0.2$, la supuesta excitación colectiva se separó de la SP-SPR dipolar 240 nm y 200 nm para polarización p y s, respectivamente). Por otra parte, la anchura a media altura (Full Width at Half Maximum, FWHM) Γ de la supuesta excitación colectiva es mayor para $\hbar \omega_p = 10$ eV en comparación a $\hbar\omega_p = 4.3$ eV. Por ejemplo, para $\Theta = 0.05$ y $\hbar\omega_p = 4.3$ eV, $\Gamma \approx 140$ nm para polarización p y $\Gamma \approx 120$ nm para s (ver Fig. 2.4), mientras que para $\hbar \omega_p = 10$ eV, $\Gamma \approx 180$ nm para polarización $p \neq \Gamma \approx 140 \text{ nm para } s \text{ (ver Fig. 2.6)}.$

Ya que el supuesto modo plasmónico colectivo sufre un corrimiento al rojo al aumentar la fracción de cubierta, parámetro que modifica el volumen neto de material plasmónico —es decir, la cantidad de electrones libres en la monocapa—, disminuyendo la distancia mínima promedio $\langle \mathcal{D}_{min} \rangle$ entre las NPs, se analizó si el comportamiento es semejante a cambios en el radio *a* de las NPs, parámetro que también modifica la cantidad de electrones libres en la monocapa. Si los mínimos en la reflectancia a energías menores que la SP-SPR dipolar son sensibles al radio de las NPs, como lo son con la fracción de cubierta, se refuerza la idea de que esta excitación se debe a un efecto colectivo de los electrones libres en las NPs.

Los resultados de la reflectancia de una monocapa con $\Theta = 0.3$, inmersa en un medio con índice de refracción $n_m = 1.33$ y soportada por un sustrato con índice de refracción $n_m = 1.5$, se muestran en la Fig. 2.7, como función del ángulo de incidencia, tanto de la longitud de onda λ (escala inferior) como de la energía $\hbar\omega$ (escala superior) de la onda plana incidente. Se consideraron NPs con una respuesta EM dada por una función dieléctrica tipo Drude [Ec. (1.62)] con los parámetros $\hbar\omega_p = 4.3$ eV y $\hbar\gamma = 0.15$ eV, con radios a: 3 nm, 5 nm, 10 nm y 20 nm. La reflectancia en polarización p se presenta en las gráficas **i**)-**iv**), mientras que en s, en las gráficas **v**)-**viii**). Las SP-SPRs dipolar y cuadrupolar corresponden a las líneas punteadas verde y rosa, respectivamente. Para a = 3 nm y 5 nm la excitación dipolar se localiza en $\lambda \approx 615$ nm, para el radio a = 10 nm en $\lambda \approx 620$ nm y a = 20 nm en $\lambda \approx 635$ nm, mientras que la SP-SPR cuadrupolar se localiza en $\lambda \approx 551$ nm para $a \leq 10$ nm y para el caso a = 20 nm, $\lambda \approx 555$ nm.

En la Fig. 2.7 (variación del radio a) la respuesta EM de la monocapa es análoga a la observada en la Fig. 2.3 (variación de Θ): la reflectancia, considerando $\theta_i > \theta_c \approx 62.5^\circ$, es menor a 1 en las SP-SPRs (líneas punteadas verticales) y en valores de λ mayores a las de la SP-SPR dipolar (puntos amarillos). La distancia entre estas regiones aumenta al crecer el radio de las NPs, al igual que lo hacía al aumentar la fracción de cubierta, además de que también esta distancia es mayor para polarización p, que para s. Asimismo, la SP-SPR dipolar sólo es apreciable para

Fig. 2.7: Gráficas de la reflectancia en configuración ATR de una monocapa como función del ángulo de incidencia θ_i y de la longitud de onda λ (escala inferior), así como de la energía de la onda plana incidente en unidades de $\hbar\omega$ (escala superior), para una función dieléctrica tipo Drude con $\hbar\omega_p = 4.3 \text{ eV y } \hbar\gamma = 0.15 \text{ eV}$. Las gráficas en el renglón superior $[\mathbf{i})-\mathbf{v}$)] muestran los resultados para polarización p y las del renglón inferior $[\mathbf{v}\mathbf{i})-\mathbf{x}$)] para polarización s, donde se consideró una fracción de cubierta $\Theta = 0.3$ y NPs de radio a: 3 nm, 5 nm, 10 nm y 20 nm. Las líneas verticales punteadas verdes y rosas corresponden a las SP-SPRs dipolar y cuadrupolar, respectivamente. Los puntos amarillos corresponden a los mínimos en R para ángulos mayores a $\theta_c \approx 62.5^{\circ}$ y longitudes de onda mayores a la SP-SPRs dipolar.

polarización p a partir de NPs con radios $a \ge 10$ nm; para s la resonancia sólo es apreciable para ángulos menores al ángulo crítico ($\theta_c \approx 62.5^{\circ}$). Dado que la excitación a energías menores a las de las SP-SPRs (puntos amarillos) se modifica al aumentar el radio de las NPs, al igual que al cambiar el valor de la fracción de cubierta, esta excitación puede corresponder a un modo colectivo, ya que responde a la cantidad neta de material plasmónico —de electrones libres presentes en la monocapa. Para analizar la respuesta EM de la monocapa al aumentar el radio de las NPs, y compararla con la variación en Θ en la Fig. 2.4, se grafican en la Fig. 2.8 cortes de la reflectancia de la Fig. 2.7 a $\theta_i = 75^{\circ}$. La región sombreada verde entre 615 nm y 658 nm corresponde al intervalo en λ donde se localizan las SP-SPRs dipolares para las NPs empleadas (con radios 3 nm $\leq a \leq 20$ nm), y la región sombreada rosa entre 551 nm y 561 nm donde se localizan las SP-SPRs cuadrupolares.

En los resultados de la reflectancia para polarización p, graficados en la Fig. 2.8a), la excitación cuadrupolar sólo es apreciable para a = 20 nm, mientras que la SP-SPR dipolar sólo se aprecia para los radios de 10 nm y 20 nm (líneas amarilla y verde) a $\lambda \approx 620$ nm. Para a = 5 nm, la reflectancia evaluada en $\lambda \approx 620$ nm no es mínima, sin embargo se presenta un cambio en la pendiente de la reflectancia; adicionalmente, en 690 nm, la reflectancia para a = 5 nm tiene un mínimo con $R_p < 0.1$, el cual se atribuye al supuesto modo plasmónico colectivo. Para a = 3 nm (línea negra) no se manifiesta la SP-SPR dipolar sino únicamente el mínimo correspondiente al supuesto modo plasmónico colectivo a 650 nm, en donde $R_p \approx 0$. A partir del comportamiento de R_p para a = 3 nm y a = 5 nm a 620 nm, así como el corrimiento al rojo de la excitación del supuesto modo plasmónico colectivo al aumentar el radio de las NPs en la monocapa, se concluye

Fig. 2.8: Cortes de la reflectancia mostrada en la Fig. 2.7 a $\theta_i = 75^{\circ}$ para una monocapa iluminada en configuración ATR de NPs esféricas de fracción de cubierta $\Theta = 0.3$ en polarización **a**) p y **b**) s en función de la longitud de onda λ (escala inferior) y de la energía $\hbar\omega$ (escala superior). Los parámetros de la función dieléctrica tipo Drude para las NPs son $\hbar\omega_p = 4.3$ eV y $\hbar\gamma = 0.15$ eV, y los radios considerados fueron a: 3 nm, 5 nm, 10 nm y 20 nm. La SP-SPR dipolar para los tamaños de partículas utilizadas corresponde la región verde entre 615 nm y 658 nm, mientras que la cuadrupolar corresponde a la región rosa entre 551 nm y 561 nm.

que para NPs con radios tendiendo a cero, la supuesta excitación colectiva corresponde a la de partícula individual.

Para polarización s, Fig. 2.8b), la respuesta cuadrupolar sólo se observa para a = 20 nm y, como ocurrió en casos anteriores (Figs. 2.4 y 2.6), la SP-SPR dipolar no es apreciable. Las excitaciones a $\lambda > 620$ nm en la Fig. 2.8 siguen las tendencias observadas para el supuesto modo plasmónico colectivo: corrimiento al rojo al aumentar el valor de a y $R_s \approx 0$ a las longitudes de onda del supuesto modo plasmónico colectivo. Por lo tanto, estas excitaciones se atribuyen al modo plasmónico colectivo y se corrobora que la excitación colectiva se traslapa con la SP-SPR dipolar cuando el radio de las NPs tiende a cero, tanto para polarización p como para s.

La respuesta óptica de la monocapa correspondiente al supuesto modo plasmónico colectivo presenta, a un valor de θ_i fijo (Figs. 2.4, 2.6 y 2.8), tanto un ensanchamiento de la resonancia como un corrimiento al rojo, al aumentar la fracción de cubierta de la monocapa o el radio de las NPs que la conforman. El supuesto modo plasmónico colectivo también se corre al rojo al aumentar el ángulo de incidencia, como se observa en las Figs. 2.3, 2.5 y 2.7, y la reflectancia a las longitudes de onda de la supuesta excitación colectiva decrece conforme aumenta el ángulo de incidencia (para después llegar a R = 1 a incidencia rasante, como es de esperarse), como se evidencia en los casos con $\Theta = 0.3$ y 0.4 (Figs. 2.5 y 2.7); otro efecto en la elección del ángulo de incidencia es que la FWHM del supuesto modo plasmónico colectivo disminuye al aumentar θ_i . La SP-SPR dipolar coincide con el supuesto modo plasmónico colectivo cuando los radios de la NPs de la monocapa, o su fracción de cubierta, tienden a cero y cuando los ángulos de incidencia son cercanos al ángulo crítico θ_c . Asimismo, para polarización p la SP-SPR dipolar es apreciable en la reflectancia y distinguible del modo colectivo, mientras que para s no se aprecia. El valor de la reflectancia a las longitudes de onda de la supuesta excitación colectiva, así como su ancho. dependen del material de las NPs. Por ejemplo, para polarización p, considerando a = 30 nm, $\Theta = 0.05 \text{ y} \ \theta_i = 75^\circ, \ \hbar \omega_p = 4.3 \text{ eV}$ la reflectancia es mínima para $\lambda = 715 \text{ nm}$ [ver Fig. 2.4a)], mientras que para $\hbar \omega_p = 10$ eV es mínima para $\lambda = 380$ nm [ver Fig. 2.6a)].

El supuesto modo plasmónico colectivo se caracterizó por medio del análisis de la reflectancia de la monocapa empleando el CSM, mostrando que a ciertas longitudes de onda —mayores que las SP-SPRs, por lo que no pueden corresponder a excitaciones de partícula individual—, λ^{exc} , la reflectancia es cercana a cero. Es decir, que la energía del haz incidente no se refleja a λ^{exc} pero bien podría transmitirse hacia el sustrato. Por tanto, se calculó la transmitancia del sistema.

En la Fig. 2.9 se muestran los cálculos de la reflectancia R, la transmitancia T y la suma de éstas (R + T) de una monocapa de NPs inmersa en un medio con índice de refracción $n_m = 1.33$ y soportada por un sustrato con índice de refracción $n_s = 1.5$, en función del ángulo de incidencia θ_i , así como de la longitud de onda λ (escala inferior) y de la energía $\hbar\omega$ (escala superior) de la onda plana incidente, tanto para polarización p [i)–iii)] como para s [iv)–vi)]. Para $\hbar\omega_p = 4.3$ eV [Fig. 2.9a)] se eligieron los parámetros de la monocapa $\Theta = 0.2$ y a = 30 nm, ya que el supuesto modo plasmónico colectivo para estos valores se encuentra dentro del espectro visible para todo valor de θ_i . Para $\hbar\omega_p = 10$ eV [Fig. 2.9b)], los parámetros de la monocapa elegidos fueron $\Theta = 0.3$ y a = 30 nm, en donde se localizó al modo plasmónico colectivo entre 500 nm y 850 nm.

Para ambos casos analizados en la Fig. 2.9, $\hbar\omega_p = 4.3$ eV y $\hbar\omega_p = 10$ eV, se observa que para valores de λ cercanos a los de las SP-SPRs (líneas punteadas verticales) la reflectancia R presenta máximos locales para ángulos de incidencia $\theta_i < \theta_c \approx 62.5^\circ$, debido al esparcimiento de luz a esa longitud de onda, y mínimos locales para $\theta_i > \theta_c$, causado por la extinción de luz (tanto esparcimiento como absorción). Por otro lado, la transmitancia T es cercana a cero para todo valor de θ_i en los valores de λ cercanos a los de las SP-SPRs y, adicional a estos valores de λ , la transmitancia es cero para $\theta_i > \theta_c$, es decir, que a las longitudes de onda que excitan al supuesto modo plasmónico colectivo no hay transmisión de luz. La suma de $R \ge T$ [en las Figs. 2.9a) y 2.9b), iii) y vi)] en los valores de λ que corresponden a las SP-SPRs es menor a la unidad debido a la absorción y esparcimiento de luz por las NPs individuales, como se observa al comparar las eficiencias de extinción para NPs de radio a = 30 nm inmersa en agua y con una función dieléctrica tipo Drude con los parámetros $\hbar\omega_p = 4.3$ eV y $\hbar\gamma = 0.15$ eV [ver Fig. 1.16]. A pesar de que se pueden presentar procesos de absorción a longitudes de onda mayores a las de las SP-SPRs (líneas punteadas verticales) debido a la interacción entre las NPs de la monocapa. el supuesto modo plasmónico colectivo se debe al esparcimiento múltiple, lo que propicia que la energía se transporte a lo largo de la interfaz. El resultando de la interacción entre las NPs. además de los procesos de absorción, es el esparcimiento de luz sobre la interfaz, una dirección distinta a la transmitida coherente (es decir $T \approx 0$), por lo que el supuesto modo plasmónico colectivo presenta un comportamiento de modo guiado.

El modelo del CSM predice una excitación colectiva en la respuesta EM de una monocapa de NPs esféricas e idénticas, inmersa en una matriz y soportada por un sustrato al ser iluminada por una onda evanescente, es decir, en una configuración ATR. Esta excitación no corresponde a una SP-SPR pues se excita a energías menores a éstas, y puede catalogarse como un supuesto modo plasmónico colectivo pues depende del radio de las NPs de la moncapa y de su fracción de cubierta, parámetros que modifican la cantidad de electrones libres en la monocapa y cuya elección sintoniza al supuesto modo plasmónico colectivo. Asimismo, este supuesto modo plasmónico colectivo se comporta como un modo guiado pues la suma de la reflectancia y la transmitancia en la dirección coherente de esparcimiento es mucho menor que 1. Tras la caracterización del supuesto modo plasmónico colectivo, empleando el modelo de Drude-Sommerfeld para la función dieléctrica de las NPs, se analiza si esta excitación colectiva también es apreciable en materiales

Fig. 2.9: Gráficas de la reflectancia R, transmitancia T y su suma R + T en configuración ATR de una monocapa de NPs esféricas como función del ángulo de incidencia θ_i y de la longitud de onda λ (escala inferior) así como de la energía $\hbar\omega$ (escala superior) de la onda plana incidente, considerando NPs con una función dieléctrica tipo Drude con a) $\hbar\omega_p = 4.3$ eV, $\hbar\gamma = 0.15$ eV y un radio de a = 30 nm y fracción de cubierta $\Theta = 0.2$, y b) $\hbar\omega_p = 10$ eV y $\hbar\gamma = 0.15$ eV con a = 30 nm y $\Theta = 0.3$. Las gráficas en el renglón superior [i)–iii] muestran los resultados de la reflectancia para polarización p y las del renglón inferior [iv)–vi)] para polarización s. Las líneas verticales punteadas verdes corresponden a la SP-SPR dipolar (658 nm y 342 nm para $\hbar\omega_p = 4.3$ eV y $\hbar\omega_p = 10$ eV, respectivamente), y las rosas a la SP-SPR cuadrupolar (561 nm y 262 nm para $\hbar\omega_p = 4.3$ eV y $\hbar\omega_p = 10$ eV, respectivamente). Los puntos a marillos corresponden a los mínimos en R, y R + T para ángulos mayores a $\theta_c \approx 62.5^{\circ}$ y longitudes de onda mayores a la SP-SPRs dipolar.

más realistas. En la siguiente sección se presentan los resultados de la respuesta EM de una monocapa conformada por NPs de oro y plata, es decir, empleando como función dieléctrica de las NPs la corrección por tamaño de los datos experimentales para el oro y plata [31].

2.2. Reflectancia y transmitancia de una monocapa de nanopartículas de materiales reales: oro y plata

Con la finalidad de presentar la respuesta óptica de una monocapa de NPs esféricas hechas con materiales realista, se emplea en esta sección la función dieléctrica con corrección por tamaño para NPs esféricas de oro [Fig. 1.11a)] y de plata [Fig. 1.11b)]. La elección de NPs de oro y plata surge a partir del uso frecuente de estos materiales para el biosensado [4, 6], así como por su biocompatibilidad [46, 47]. Se realizaron cálculos de la reflectancia en configuración ATR para monocapas de NPs esféricas de oro y monocapas de NPs esféricas de plata dado que en este esquema, para NPs con una función dieléctrica descrita por el modelo de Drude [Ec. (1.62)], se identificó un supuesto modo plasmónico colectivo el cual, si se presenta también en materiales reales, podría usarse en biosensado. De forma análoga a la sección 2.1.2, se presentan cálculos de la reflectancia considerando monocapas conformadas por NPs tanto de oro como de plata, variando los parámetros Θ (fracción de cubierta) y a (radio de las NPs) para identificar y caracterizar al supuesto modo plasmónico colectivo, así como para optimizar estos parámetros para el biosensado. Adicionalmente, se calcula la transmitancia de las monocapas de NPs de oro y de plata para corroborar que el supuesto modo plasmónico colectivo presenta características de un modo guiado, como se observó para una monocapa de NPs con una función dieléctrica tipo Drude.

En la Fig. 2.10 se muestran los cálculos de la reflectancia R, empleando el CSM, de una monocapa de NPs esféricas idénticas de oro con un radio de a = 25 nm, inmersa en una matriz de agua $(n_m = 1.33)$ y soportada por un sustrato con un índice de refracción $n_s = 1.5$, que es iluminada por una onda plana en una configuración ATR. La reflectancia se grafica como función del ángulo de incidencia θ_i y tanto de la longitud de onda λ (escala inferior), como de la energía en unidades de $\hbar\omega$ (escala superior). Se consideraron las fracciones de cubierta $\Theta = 0.1, 0.125, 0.15, 0.175 \text{ y} 0.2$ —garantizando las condiciones de validez del CSM—, así como la polarización de la onda plana incidente: las gráficas i)-v corresponden a la polarización p y vi)-x) a s. Las líneas punteadas verticales verdes y rosas corresponden a las SP-SPRs dipolares y cuadrupolares, respectivamente: para una NP de oro de a = 25 nm inmersa en agua, la SP-SPR dipolar se localiza en $\lambda \approx 531$ nm y la cuadrupolar en 513 nm. Los puntos amarillos, localizados a longitudes de onda mayores a las de la SP-SPR dipolar, corresponden al supuesto modo plasmónico colectivo. A diferencia de los cálculos de la reflectacia de una monocapa de NPs con una función dieléctrica tipo Drude analizada en la sección 2.1.2, para una monocapa de NPs de oro se observan las contribuciones no plasmónicas de la función dieléctrica del oro para $\lambda < 513$ nm. Sin embargo, dado que el supuesto modo plasmónico colectivo se excita a energías menores a las SP-SPRs, la contribución de los electrones ligados no se traslapa con el supuesto modo plasmónico colectivo.

En la Fig. 2.10, en las gráficas i), ii), vi) y vii), correspondientes a $\Theta = 0.1$ y 0.125 para ambas polarizaciones, el supuesto modo plasmónico colectivo se excita a valores de λ cercanos a la SP-SPR dipolar para ángulos de incidencia alrededor del ángulo crítico θ_c . Sin embargo para valores de $\Theta \ge 0.175$, no es apreciable ningún mínimo en la reflectancia para $\theta_i \approx \theta_c$; por ejemplo para $\Theta = 0.2$ para polarización p [gráfica v)] a $\lambda = 531$ nm (línea punteada vertical verde) el supuesto modo plasmónico colectivo (puntos amarillos) se excita a partir de $\theta \approx 75^{\circ}$, mientras que para s [gráfica x)] a partir de $\theta_i \approx 65^{\circ}$. Es decir, a diferencia de los resultados obtenidos al emplear el modelo de Drude para la función dieléctrica de las NPs en la monocapa, el supuesto modo plasmónico colectivo en una monocapa de NPs de oro no puede excitarse a todos los ángulos

2.2 Reflectancia y transmitancia de una monocapa de nanopartículas de materiales reales: oro y plata

Fig. 2.10: Gráficas de la reflectancia en configuración ATR de una monocapa de NPs esféricas de oro de radio a = 25 nm como función del ángulo de incidencia θ_i y de la longitud de onda λ (escala inferior), así como de la energía de la onda plana incidente en unidades de $\hbar\omega$ (escala superior). Las gráficas en el renglón superior $[\mathbf{i})-\mathbf{v}$)] muestran los resultados para polarización p y las del renglón inferior $[\mathbf{vi})-\mathbf{x}$)] para polarización s, donde se consideraron los valores de fracción de cubierta $\Theta = 0.1, 0.125, 0.15, 0.175$ y 0.2. Las líneas verticales punteadas verdes y rosas corresponden a las SP-SPRs dipolar en $\lambda = 531$ nm y cuadrupolar en $\lambda = 513$ nm, respectivamente. Los puntos amarillos corresponden a los mínimos en R para ángulos mayores a $\theta_c \approx 62.5^\circ$ y longitudes de onda mayores a la SP-SPRs dipolar.

de incidencia a menos que $\Theta \leq 0.15$. Al comparar la respuesta EM de la monocapa para las dos polarizaciones, el corrimiento al rojo del supuesto modo plasmónico colectivo respecto a la SP-SPR dipolar es mayor para polarización p, \mathbf{v}), que para s, \mathbf{x}) —comportamiento también observado al considerar una respuesta tipo Drude para las NPs de la monocapa—.

La reflectancia de una monocapa de NPs con las mismas características que las de la Fig. 2.10 pero con NPs esféricas de plata, de radio a = 35 nm, se grafica en la Fig. 2.11. El radio de las NPs de plata se eligió mayor que el de las NPs de oro para sintonizar la SP-SPR dipolar (líneas verticales verdes) en el espectro visible en $\lambda = 430$ nm; la SP-SPR cuadrupolar (líneas verticales rosas) se sintoniza en $\lambda = 375$ nm. Al igual que para la función dieléctrica del oro, la de la plata cuenta con contribuciones no plasmónicas mas éstas no pueden ser excitadas en el espectro visible, por lo que los cálculos de la reflectancia de una monocapa de NPs de plata se asemejan a los resultados obtenidos al considerar el modelo de Drude-Sommerfeld, como se observa al comparar las Figs. 2.3 (modelo de Drude-Sommerfeld con $\hbar\omega_p = 4.3$ eV) y 2.11 (NPs de plata).

En la reflectancia para la monocapa de NPs de plata, Fig. 2.11, la SP-SPR cuadrupolar (línea vertical punteada rosa) se aprecia a $\lambda \approx 375$ nm para todos los valores de Θ considerados, sin embargo, la SP-SPR dipolar (línea punteada vertical verde) sólo se aprecia para polarización p cuando $\Theta = 0.2$, gráfica **v**), mientras que para s no se aprecia para ningún valor de Θ , característica también observada para las NPs con una función dieléctrica tipo Drude en la Fig. 2.7. Otra semejanza entre los resultados obtenidos con el modelo de Drude-Sommerfeld y con las NPs de plata, pero que no se observa con las NPs de oro, es el límite del supuesto modo plasmónico colectivo cuando θ_i tiende a θ_c , en donde la longitud de onda de excitación del supuesto modo

2. RESPUESTA ÓPTICA DE UNA MONOCAPA DESORDENADA DE NANOPARTÍCULAS ESFÉRICAS

Fig. 2.11: Gráficas de la reflectancia de una monocapa de NPs esféricas de plata de radio a = 35 nm en configuración ATR como función del ángulo de incidencia θ_i y de la longitud de onda λ (escala inferior), así como de la energía de la onda plana incidente en unidades de $\hbar\omega$ (escala superior). Las gráficas en el renglón superior $[\mathbf{i})-\mathbf{v}$)] muestran los resultados para polarización p y las del renglón inferior $[\mathbf{v}\mathbf{i})-\mathbf{x}$] para polarización s, donde se consideraron los valores de fracción de cubierta $\Theta = 0.1, 0.125, 0.15, 0.175$ y 0.2. Las líneas verticales punteadas verdes y rosas corresponden a las SP-SPRs dipolar en $\lambda = 430$ nm y cuadrupolar en $\lambda = 375$ nm, respectivamente. Los puntos amarillos corresponden a los mínimos en R para ángulos mayores a $\theta_c \approx 62.5^\circ$ y longitudes de onda mayores a la SP-SPRs dipolar.

plasmónico colectivo tiende a la SP-SPR dipolar.

Tanto para la monocapa de NPs de oro, como de NPs de plata, la reflectancia a las longitudes de onda del supuesto modo plasmónico colectivo (puntos amarillos en las Figs. 2.10 y 2.11) para $\Theta \geq 0.175$ es mínima a ángulos de incidencia rasantes ($\theta_i \leq 90^\circ$) y los valores de θ_i donde R es mínima disminuyen conforme Θ decrece. Adicionalmente, el ancho de la resonancia a ángulos rasantes (para oro y plata) es menor en comparación al resto de los ángulos por lo que podría proponerse para ser usado en el biosensado. Sin embargo para ángulos grandes, en la medición experimental de la reflectancia, el área del haz de luz incidente se deforma (extiende) al incidir sobre la interfaz entre el sustrato y la matriz mediante la transformación $A \to A'/\cos \theta_i$, en donde A es el área del haz al incidir sobre la interfaz y A' es la sección transversal del haz (ver Fig. 1.4). La deformación del haz complica las mediciones de reflectancia a incidencia rasante, restringiendo el valor de θ_i a ángulos menores a 80°, valor para el que el diámetro del haz, en la dirección paralela a la interfaz, aumenta en un factor de 5.7.

Una diferencia entre los resultados de la reflectancia de las monocapas de NPs de oro y plata, es el valor de θ_i al cual se comienza a excitar el supuesto modo plasmónico colectivo una vez escogido Θ . Para analizar este comportamiento, se grafican en la Fig. 2.12 cortes de la reflectancia graficada en las Figs. 2.10 (para las NPs de oro) y 2.11 (para las NPs de plata) a $\theta_i = 65^\circ$, ángulo que deforma el área del haz en un factor de 2.4. Asimismo, se grafican en la Fig. 2.13 cortes de la reflectancia para ambas monocapas a $\theta_i = 75^\circ$, ángulo que deforma el área del haz en un factor de 3.8 y en donde la reflectancia, evaluada a las longitudes de onda del supuesto modo plasmónico colectivo para todos los casos de Θ estudiados en las Figs. 2.10 y 2.2 Reflectancia y transmitancia de una monocapa de nanopartículas de materiales reales: oro y plata

2.11, es menor a 0.4, lo cual permitiría un uso óptimo del supuesto modo plasmónico colectivo para el biosensado: una fácil identificación del supuesto modo colectivo (pues $R \approx 0$) y poca deformación del haz de luz incidente. En las Figs. 2.12 y 2.13 los paneles izquierdos corresponden a los cálculos para la monocapa de NPs de oro y los derechos a los de plata, mientras que los paneles superiores corresponden a la reflectancia en polarización p y los inferiores a polarización s. Las líneas punteadas verticales verdes corresponden a la SP-SPR dipolar, que para las NP de oro se localiza en $\lambda \approx 531$ nm y para las de plata en $\lambda \approx 430$ nm; la SP-SPR cuadrupolar (líneas punteadas verticales rosas) se localizan en $\lambda \approx 513$ nm y en $\lambda \approx 375$ nm para las NPs de oro y plata, respectivamente.

Fig. 2.12: Cortes a $\theta_i = 65^{\circ}$ de las gráficas de la reflectancia en configuración ATR de una monocapa de NPs esféricas de oro de radio a = 25 nm (Fig. 2.10) y de plata de a = 35 nm (Fig. 2.11) como función de la longitud de onda λ (escala inferior) y de la energía $\hbar\omega$ (escala superior). Los paneles izquierdos corresponden a los cálculos para la monocapa de NPs de oro y los derechos a los de NPs de plata; los panles superiores corresponden a la reflectancia en polarización p y los inferiores a polarización s. La SP-SPR dipolar (líneas punteadas verticales verdes) para la NP de oro se localiza en $\lambda \approx 531$ nm y la de la NP de plata en $\lambda \approx 430$ nm, mientras la SP-SPR cuadrupolar (líneas punteadas verticales rosas) se localizan en $\lambda \approx 513$ nm y en $\lambda \approx 375$ nm para las NPs de oro y plata, respectivamente.

En la Fig. 2.12 la reflectancia para la monocapa de NPs de oro (paneles izquierdos) se observa la SP-SPR y el supuesto modo plasmónico colectivo para valores particulares de Θ . Por ejemplo, a $\Theta = 0.2$ (línea turquesa) a ambas polarizaciones no se observa la SP-SPR dipolar ($\lambda \approx 531$ nm) ni tampoco el supuesto modo plasmónico colectivo, pero para $\Theta = 0.1$ (línea negra) y 0.125 (línea naranja), se observa que el supuesto modo colectivo se superpone con la SP-SPR dipolar. La longitud de onda de excitación λ^{exc} del supuesto modo plasmónico colectivo para $\Theta = 0.125$ es $\lambda^{exc} \approx 540$ nm y la reflectancia evaluada en λ^{exc} es $R \approx 0$ para ambas polarizaciones, mientras que para $\Theta = 0.1, R_p(\lambda^{exc}) \approx 0$ y $R_s(\lambda^{exc}) \approx 0.02$.

Para la monocapa de NPs de plata, paneles derechos en la Fig. 2.12, la reflectancia a

 $\theta_i = 65^{\circ}$, a todos los valores de Θ , presenta un mínimo a 375 nm (línea punteada vertical rosa) que corresponde a la SP-SPR cuadrupolar. La excitación dipolar de partícula individual a 430 nm sólo es apreciable como mínimos locales en la reflectancia a polarización p. Para polarización s el supuesto modo plasmónico colectivo y la SP-SPR dipolar se traslapan. Los valores de la reflectancia para la monocapa de NPs de plata considerando $\theta_i = 65^{\circ}$ son mayores al aumentar Θ y siempre mayores a 0.2, a diferencia de los resultados con NPs de oro en donde se obtuvieron valores cercanos a cero. Al igual que para el caso de NPs modeladas con un función dieléctrica tipo Drude, el supuesto modo plasmónico colectivo para una monocapa de NPs de oro y de plata se corre hacia el rojo conforme Θ crece.

Fig. 2.13: Cortes a $\theta_i = 75^\circ$ de las gráficas de la reflectancia en configuración ATR de una monocapa de NPs esféricas de oro de radio a = 25 nm (Fig. 2.10) y de plata de a = 35 nm (Fig. 2.10) como función de la longitud de onda λ (escala inferior) y de la energía $\hbar\omega$ (escala superior). Los paneles izquierdos corresponden a los cálculos para la monocapa de NPs de oro y los derechos a los de NPs de plata; los panles superiores corresponden a la reflectancia en polarización p y los inferiores a polarización s. La SP-SPR dipolar (líneas punteadas verticales verdes) para la NP de oro se localiza en $\lambda \approx 531$ nm y la de la NP de plata en $\lambda \approx 430$ nm, mientras la SP-SPR cuadrupolar (líneas punteadas verticales rosas) se localizan en $\lambda \approx 513$ nm y en $\lambda \approx 370$ nm para las NPs de oro y plata, respectivamente.

En contraste con los cortes a $\theta_i = 65^{\circ}$ (Fig. 2.12), la reflectancia para $\theta_i = 75^{\circ}$ (Fig. 2.13) tanto para la monocapa de NPs de oro, como de plata, se aprecia el supuesto modo plasmónico colectivo a longitudes de onda mayores a la SP-SPR dipolar, además de haberse corrido al rojo respecto al caso de $\theta_i = 65^{\circ}$ para todos los valores de Θ considerados. Una característica compartida por todos los casos estudiados de Θ , al comparar los cortes para $\theta_i = 65^{\circ}$ (Fig. 2.12) y para $\theta_i = 75^{\circ}$ (Fig. 2.13), es una mejor definición en la forma de la resonancia y de su FWHM. Por ejemplo, para la monocapa de NPs de plata, para los dos ángulos de incidencia elegidos y el caso de $\Theta = 0.2$ considerando polarización s (líneas turquesas en los paneles inferiores izquierdos), la resonancia es menos amplia y mejor definida para $\theta_i = 75^{\circ}$ ($\Gamma = 160$ nm) que para $\theta_i = 65^{\circ}$ ($\Gamma = 220$ nm).

2.2 Reflectancia y transmitancia de una monocapa de nanopartículas de materiales reales: oro y plata

Fig. 2.14: Gráficas de la reflectancia de una monocapa de NPs de oro en configuración ATR como función del ángulo de incidencia θ_i y de la longitud de onda λ (escala inferior), así como de la energía $\hbar\omega$ (escala superior). Las gráficas en el renglón superior $[\mathbf{i}]-\mathbf{v}$) muestran los resultados para polarización p y las del renglón inferior $[\mathbf{v}\mathbf{i}]-\mathbf{x}$) para polarización s, donde se consideró una fracción de cubierta $\Theta = 0.125$ y NPs de radio a: 15 nm, 20 nm, 25 nm, 30 nm y 35 nm. Las líneas verticales punteadas verdes y rosas corresponden a las SP-SPRs dipolar y cuadrupolar, respectivamente. Los puntos amarillos corresponden a los mínimos en R para ángulos mayores a $\theta_c \approx 62.5^\circ$ y longitudes de onda mayores a la SP-SPRs dipolar.

Para determinar si los radios elegidos para las NPs de oro y de plata son los óptimos para el empleo del supuesto modo plasmónico colectivo en el sensado (valores de $R \approx 0$ dentro del espectro visible y considerando $\theta_i < 80^\circ$), se presentan a continuación gráficas de la reflectancia en configuración ATR para una monocapa de NPs de oro (Fig. 2.14) y de plata (Fig. 2.15) para un valor de fracción de cubierta Θ fijo y para distintos radios a de las NPs. En la Fig. 2.14 se grafica la reflectancia en configuración ATR para una monocapa de NPs de oro, inmersa en un medio con $n_m = 1.33$ y soportada por un sustrato con $n_s = 1.5$, considerando $\Theta = 0.125$, fracción de cubierta elegida con base en los resultados calculados en las Figs. 2.12 y 2.13, variando los radios de las NPs alrededor de 25 nm, es decir, a = 15 nm, 20 nm, 25 nm, 30 nm y 35 nm, siendo entonces las SP-SPR dipolares (líneas punteadas verticales verdes) $\lambda \approx 525$ nm, 527 nm, 531 nm, 535 nm y 541 nm para cada radio, respectivamente, y las cuadrupolares (líneas punteadas verticales rosas) $\lambda \approx 513$ nm para a = 15 nm, 20 nm y 25 nm, y $\lambda \approx 514$ nm para a = 30 nm y 35 nm; el supuesto modo plasmónico colectivo se representa mediante los punto amarillos.

En la Fig. 2.14 se observa la tendencia identificada con la monocapa de NPs con una función dieléctrica tipo Drude al variar el tamaño de las NPs: a radios mayores, el supuesto modo plasmónico colectivo se corre al rojo y el ancho de la resonancia aumenta; conforme el radio disminuye, el supuesto modo plasmónico colectivo tiende a la frecuencia de la SP-SPR dipolar. Al igual que la respuesta EM de la monocapa de NPs de oro ante variaciones de la fracción de cubierta (Fig. 2.10), el supuesto modo plasmónico colectivo a la longitud de onda de la SP-SPR dipolar se excita a partir de un ángulo de incidencia, aumentando conforme Θ crece.

En la Fig. 2.15 se presentan los cálculos de la reflectancia de una monocapa de NPs

de plata, inmersa en un medio con n_m = 1.33 y soportada por un sustrato con n_s = 1.5 en configuración ATR. Se considera $\Theta = 0.1$ por ser la fracción de cubierta a la cual $R \approx 0$ en las Figs. 2.12 y 2.13, y los radios de las NPs alrededor de 35 nm, es decir, a = 30 nm, 35 nm, 40 nm, 45 nm y 50 nm, estando entonces las SP-SPR dipolares (líneas punteadas verticales verdes) localizadas en $\lambda \approx 417$ nm, 430 nm, 444 nm, 459 nm y 479 nm para cada radio, respectivamente, y las cuadrupolares (líneas punteadas verticales rosas) en $\lambda \approx 373$ nm, 376 nm, 379 nm, 383 nm y 388 nm, respectivamente. Los puntos amarillos corresponden al mínimos de la reflectancia del supuesto modo plasmónico colectivo, cuyo comportamiento es semejante al observado para el oro en la Fig. 2.14: al aumentar el radio de las NPs, el supuesto modo plasmónico colectivo es más apreciable y se corre hacia el rojo, efecto más evidente para polarización p que para s, mientras que el ensanchamiento del supuesto modo plasmónico colectivo es mayor para las NPs de plata debido a que el radio de las NPs es mayor que el de las NPs de oro. A pesar de esta similitud en el comportamiento del supuesto modo plasmónico colectivo para NPs de oro y de plata, una diferencia son los valores de θ_i a los cuales la reflectancia se minimiza: el mínimo global de la reflectancia debido al supuesto modo plasmónico colectivo se localiza a ángulos rasantes conforme aumenta el radio de las NPs oro, mientras que para las NPs de plata, el mínimo global se corre a ángulos cercanos al ángulo crítico.

Para contrastar el comportamiento del supuesto modo plasmónico ante variaciones de Θ contra variaciones en *a*, se grafican en la Fig. 2.16 cortes a $\theta_i = 65^\circ$ y en la Fig. 2.17 a 75° de la reflectancia *R* de las Figs. 2.14 y 2.15, con la finalidad de observar a qué longitud de onda se sintoniza el supuesto modo plasmónico colectivo a los valores de θ_i seleccionados, así como el ancho de su resonancia, y elegir los parámetros óptimos para su uso en el sensado. Tanto en la Fig. 2.16, como en la Fig. 2.17, los paneles izquierdos corresponden a los cálculos para una monocapa de NPs de oro con $\Theta = 0.125$ y los derechos para una monocapa de NPs de plata con $\Theta = 0.1$, mientras que los paneles superiores corresponden a polarización *p* y los inferiores a *s*.

Los cálculos de la reflectancia de la monocapa de NPs de oro a $\theta_i = 65^{\circ}$, considerando ambas polarizaciones (paneles izquierdos de la Fig. 2.16), muestran que el ancho de la excitación del supuesto modo plasmónico colectivo disminuye al disminuir el radio de las NPs, por ejemplo a para a = 15 nm (línea negra) la FWHM para p es $\Gamma = 100$ nm y para s es $\Gamma = 110$ nm, mientras que para 25 nm (línea amarilla), el ancho de la resonancia es $\Gamma = 110$ nm y $\Gamma = 125$ nm, para p y s, respectivamente. La presencia del supuesto modo plasmónico colectivo es menos evidente para los radios mayores, como se observa para a = 35 nm (línea turquesa), donde éste se excita a $\lambda^{exc} \approx 550$ nm para ambas polarizaciones. Por otro lado, para ambas polarizaciones, la reflectancia de la monocapa de NPs de oro con a = 35 nm en el intervalo $\lambda < \lambda^{exc}$ es menor a 0.1 por lo que el supuesto modo plasmónico colectivo no es tan apreciable como para el caso de a = 20 nm (línea naranja) en donde $R \approx 0$ en $\lambda^{exc} \approx 530$. Es decir, para ángulos cercanos al ángulo crítico, las NPs de oro de menor tamaño son más aptas para el biosensado, así como valores de Θ cercanos a 0.125.

Al observar la reflectancia de la monocapa de NPs de plata a 65° (paneles derechos en la Fig. 2.16), el efecto del ensanchamiento del supuesto modo plasmónico colectivo, así como el corrimiento al rojo es más evidente comparado al caso de NPs de oro (paneles izquierdos). Esto se debe a que los valores considerados para los radios de las NPs fueron mayores que para el oro. Para polarización s (panel inferior derecho), el ancho del supuesto modo plasmónico colectivo para un radio de a = 30 nm (línea negra) se localiza en $\lambda^{exc} \approx 450$ nm y tiene un FWHM Γ

2.2 Reflectancia y transmitancia de una monocapa de nanopartículas de materiales reales: oro y plata

Fig. 2.15: Gráficas de la reflectancia de una monocapa de NPs de plata en configuración ATR como función del ángulo de incidencia θ_i y de la longitud de onda λ (escala inferior), así como de la energía $\hbar\omega$ (escala superior). Las gráficas en el renglón superior $[\mathbf{i})-\mathbf{v}$) muestran los resultados para polarización p y las del renglón inferior $[\mathbf{v}\mathbf{i})-\mathbf{x}$) para polarización s, donde se consideró una fracción de cubierta $\Theta = 0.1$ y NPs de radio a: 30 nm, 35 nm, 40 nm, 45 nm y 50 nm. Las líneas verticales punteadas verdes y rosas corresponden a las SP-SPRs dipolar y cuadrupolar, respectivamente. Los puntos amarillos corresponden a los mínimos en R para ángulos mayores a $\theta_c \approx 62.5^{\circ}$ y longitudes de onda mayores a la SP-SPRs dipolar.

de 80 nm, mientras que para un radio de 50 nm (línea turquesa), el supuesto modo plasmónico colectivo se excita a $\lambda^{exc} \approx 550$ nm y $\Gamma \approx 120$ nm, es decir, 1.5 veces mayor en comparación al caso con a = 30 nm. Para polarización p (panel superior derecho), considerando NPs de plata, los valores de Γ son al menos 40 nm más grandes (para todos los valores de a considerados) que para polarización s, lo que complicaría la detección del supuesto modo plasmónico colectivo. Las NPs de plata de mayor tamaño y fracciones de cubierta bajas ($\Theta = 0.1$) permiten el empleo de la monocapa para el sensado al elegir ángulos cercanos a θ_c , pues el supuesto modo plasmónico colectivo.

Cuando se varió el parámetro Θ manteniendo el radio de las NPs de oro y de plata fijo (Figs. 2.12 y 2.13), se observó que para $\theta_i = 75^\circ$ el supuesto modo plasmónico colectivo tenía una mejor definición en comparación a $\theta_i = 65^\circ$, además de sintonizarse más hacia al rojo y, para los valores de Θ seleccionados, la reflectancia disminuía. Estas características también se observan en la variación del radio de las NPs en la monocapa, comparando $\theta_i = 65^\circ$ (Fig. 2.16) y $\theta_i = 75^\circ$ (Fig. 2.17) con un valor de $\Theta = 0.125$ para las NPs de oro (paneles izquierdos) y de $\Theta = 0.1$ para las de plata (paneles derechos). Al considerar NPs de oro, la reflectancia a $\theta_i = 65^\circ$ (Fig. 2.16) toma valores alrededor de 0.5 para 350 nm $\leq \lambda \leq 525$ nm lo que contrasta con los valores a las longitudes de onda del supuesto modo plasmónico colectivo λ^{exc} en donde, para polarización p, $R_p(\lambda^{exc}) < 0.025$ para radios de $a \geq 20$ nm (líneas naranja, amarilla, verde y turquesa) y, para s $R_s(\lambda^{exc}) < 0.025$ cuando $a \geq 25$ nm (líneas amarilla, verde y turquesa). Adicionalmente, para los radios $a \geq 25$ nm, que cumplen para ambas polarizaciones que $R(\lambda^{exc}) < 0.025$, el supuesto modo plasmónico colectivo $\lambda \approx 620$ nm, y el ancho de la resonancia es de $\Gamma \approx 100$ nm para a = 25 nm y de $\Gamma \approx 130$ nm para a = 35 nm. Al tener una

2. RESPUESTA ÓPTICA DE UNA MONOCAPA DESORDENADA DE NANOPARTÍCULAS ESFÉRICAS

Fig. 2.16: Cortes a $\theta_i = 65^{\circ}$ de las gráficas de la reflectancia en configuración ATR de una monocapa de NPs esféricas de oro con $\Theta = 0.125$ (Fig. 2.14) y de plata con $\Theta = 0.1$ (Fig. 2.15), como función de la longitud de onda λ (escala inferior) y de la energía $\hbar\omega$ (escala superior). Los paneles izquierdos corresponden a los cálculos para la monocapa de NPs de oro y los derechos a los de NPs de plata; los paneles superiores corresponden a la reflectancia en polarización p y los inferiores a polarización s. Los valores de radios a considerados para la monocapa de NPs de oro fueron a = 15 nm, 20 nm, 25 nm, 30 nm y 35 nm, localizando las SP-SPR dipolares (región sombreada verde) entre 525 nm $< \lambda < 541$ nm y las cuadrupolares (región sombreada rosa) entre 513 nm y 514 nm; para la monocapa de NPs de plata se eligieron los radios a = 30 nm, 35 nm, 40 nm, 45 nm y 50 nm, por lo que las SP-SPRs dipolares se encuentran entre 417 nm $< \lambda < 479$ nm y las cuadrupolares entre 373 nm $< \lambda < 388$ nm.

respuesta EM semejante para radios entre 25 nm y 35 nm, el supuesto modo plasmónico colectivo presente en una monocapa de NPs de oro, a ambas polarizaciones y considerando $\theta_i = 75^{\circ}$, puede emplearse para sensado, ya que errores experimentales en la fabricación de las NPs no modificarían en una forma significativa la respuesta promedio.

Para la monocapa de NPs de plata (paneles derechos de la Fig. 2.17), el comportamiento es análogo al observado para la monocapa de NPs de oro. La refelctancia evaluada en las longitudes de onda del supuesto modo plasmónico colectivo λ^{exc} , para la monocapa de las NPs de plata a ambas polarizaciones, es cercana a cero mientras que a longitudes de onda menores a la SP-SPR cuadrupolar, la cual puede observase como mínimos locales en R alrededor de la región sombreada rosa, es mayor a 0.6, por lo que se facilitaría experimentalmente la identificación del supuesto modo plasmónico colectivo. Por ejemplo, para polarización p (panel superior derecho) para a = 40 nm, 45 nm y 50 nm, el supuesto modo plasmónico colectivo se localiza a 500 nm, 530 nm y 540 nm, respectivamente, y para estos tres casos $R_p \approx 0$. Asimismo, para polarización s (panel inferior derecho) para a = 30 nm, 35 nm y 40 nm, el supuesto modo plasmónico colectivo se excita a $\lambda^{exc} = 460$ nm, 470 nm y 480 nm, respectivamente, e igualmente, $R_s \approx 0$. En general, para todos los casos de radios de NPs de plata mostrados en la Fig. 2.17, la reflectancia a las longitudes de ondas del supuesto modo plasmónico colectivo es menor a 0.04 a ambas polarizaciones. Los

2.2 Reflectancia y transmitancia de una monocapa de nanopartículas de materiales reales: oro y plata

Fig. 2.17: Cortes a $\theta_i = 75^{\circ}$ de las gráficas de la reflectancia en configuración ATR de una monocapa de NPs esféricas de oro con $\Theta = 0.125$ (Fig. 2.14) y de plata con $\Theta = 0.1$ (Fig. 2.15), como función de la longitud de onda λ (escala inferior) y de la energía $\hbar\omega$ (escala superior). Los paneles izquierdos corresponden a los cálculos para la monocapa de NPs de oro y los derechos a los de NPs de plata; los paneles superiores corresponden a la reflectancia en polarización p y los inferiores a polarización s. Los valores de radios a considerados para la monocapa de NPs de oro fueron a = 15 nm, 20 nm, 25 nm, 30 nm y 35 nm, localizando las SP-SPR dipolares (región sombreada verde) entre 525 nm $< \lambda < 541$ nm y las cuadrupolares (región sombreada rosa) entre 513 nm y 514 nm; para la monocapa de NPs de plata se escogieron los radios a = 30 nm, 35 nm, 40 nm, 45 nm y 50 nm, por lo que las SP-SPRs dipolares se encuentran entre 417 nm $< \lambda < 479$ nm y las cuadrupolares entre 373 nm $< \lambda < 388$ nm.

valores de la FWHM Γ del supuesto modo plasmónico colectivo presente en la monocapa de NPs de plata y para los casos donde $R_s \approx R_p \approx 0$, son, para polarización p de $\Gamma = 80$ nm para a = 40nm (línea amarilla en el panel superior derecho) y $\Gamma = 140$ nm para a = 50 nm (línea turquesa en el panel superior derecho), mientras que para polarización s, Γ está en un rango entre 60 nm, para a = 30 nm (línea negra en el panel inferior derecho), y 80 nm, para a = 40 nm (línea amarilla en el panel inferior derecho). Al igual que con la monocapa de NPs de oro, empleando NPs de plata, el supuesto modo plasmónico colectivo puede emplearse en el sensado al considerar $\Theta = 0.1$ y radios de NPs entre 35 nm y 40 nm, pues a $\theta_i = 75^\circ$, la reflectancia (para ambas polarizaciones) a las longitudes de onda λ^{exc} que excitan al supuesto modo plasmónico colectivo es cercana a cero y representa un mínimo en la reflectancia global.

Con base en los resultados mostrados en las Figs. 2.13 y 2.17, se propone que, para emplear una monocapa desordenada de NPs esféricas como sensor basado en el supuesto modo plasmónico colectivo, se eligen los parámetros $\Theta = 0.125$ y radio a = 30 nm con NPs de oro, y $\Theta = 0.1$ y a = 40 nm con NPs de plata. Estos parámetros garantizan la validez del CSM [41]. Finalmente, para determinar si el supuesto modo plasmónico colectivo en materiales reales tiene propiedades de un modo guiado, como las PSLRs reportadas en [9] o como se observó con el CSM al considerar una monocapa de NPs cuya función dieléctrica se describió por el modelo de Drude-Sommerfeld,

Fig. 2.18: Gráficas de la reflectancia R, transmitancia T y la suma R + T en configuración ATR de una monocapa de NPs esféricas como función del ángulo de incidencia θ_i y de la longitud de onda λ (escala inferior) así como de la energía de la onda plana incidente en unidades de $\hbar\omega$ (escala superior), considerando **a**) NPs de oro de radio a = 30 nm y fracción de cubierta Θ de 0.125, y **b**) NPs de plata de radio a = 40 nm y $\Theta = 0.1$. Las gráficas en el renglón superior [**i**)–**iii**)] muestran los resultados de la reflectancia para polarización p y las del renglón inferior [**iv**)–**vi**)] para polarización s. Las líneas verticales punteadas verdes corresponden a la SP-SPRs dipolares ($\lambda \approx 531$ nm y $\lambda \approx 444$ nm para las NPs empleadas de oro y plata, respectivamente), y las rosas a la SP-SPR cuadrupolar ($\lambda \approx 514$ nm y $\lambda \approx 383$ nm para las NPs de oro y de plata, respectivamente). Los puntos amarillos corresponden a los mínimos en R, y R + T para ángulos mayores a $\theta_c \approx 62.5^\circ$ y longitudes de onda mayores a la SP-SPRs dipolares.

se muestran en la Fig. 2.18 los cálculos de la reflectancia R, la transmitancia T y la suma de éstas (R + T) de una monocapa de NPs inmersa en un medio con índice de refracción $n_m = 1.33$ y soportada por un sustrato con índice de refracción $n_s = 1.5$, en función del ángulo de incidencia θ_i , así como de la longitud de onda λ (escala inferior) y de la energía $\hbar\omega$ (escala superior) de la onda plana incidente, tanto para polarización p [i)–iii)] como para s [iv)–vi)]. La Fig. 2.18a) corresponde a los cálculos al considerar una monocapa de NPs de oro de radio de 30 nm y con

 $\Theta = 0.125$, y la Fig. 2.18b) a los de una monocapa de NPs de plata con radios de 40 nm y $\Theta = 0.1$, es decir, los óptimos para emplear el supuesto modo plasmónico colectivo en el sensado considerando $\theta_i < 80^{\circ}$.

Los resultados de R+T, tanto para la monocapa de NPs de oro [paneles iii) y vi) en la Fig. 2.18a)] como para las de plata [paneles iii) y vi) en la Fig. 2.18b)], muestran un comportamiento análogo al observado en el caso donde se emplearon las funciones dieléctricas tipo Drude para las NPs de la monocapa: la reflectancia a las longitudes de onda del supuesto modo plasmónico colectivo (puntos amarillos) es cercana a cero, además de que la transmitancia a esas mismas longitudes de onda es cero. En analogía con el SPP, en donde $R \approx T \approx 0$ a sus longitudes de onda de excitación, se refuerza la idea de que el supuesto modo plasmónico colectivo presenta las propiedades de un modo guiado cuando se consideran materiales reales para las NPs. A pesar de que a las longitudes de onda del supuesto modo plasmónico colectivo puede presentarse absorción, una parte de la energía que no viaja en las direcciones coherentes de reflexión o transmisión, puede propagarse a lo largo de la interfaz, por medio de procesos de esparcimiento múltiple por la interacción entre las NPs de la monocapa.

El supuesto modo plasmónico colectivo, observado en una monocapa de NPs con una función dieléctrica tipo Drude, también aparece al considerar las funciones dieléctricas experimentales para el oro y la plata de [31], con sus respectivas correcciones por tamaño. Al considerar una monocapa de NPs de oro de radio a = 30 nm con una fracción de cubierta $\Theta = 0.125$ y una de NPs de plata de a = 40 nm y $\Theta = 0.1$ (ver Fig. 2.18), es posible emplear el supuesto modo plasmónico colectivo para el sensado, considerando un intervalo para el ángulo de incidencia $70^{\circ} < \theta_i < 80^{\circ}$ (ver Fig. 2.17). Para evaluar el uso del supuesto modo plasmónico colectivo en el sensado, en la siguiente sección se estudia la respuesta del supuesto modo plasmónico colectivo ante cambios del índice de refracción de la matriz n_m y, a su vez, se compara su respuesta con la de propuestas de sensores nanoestructurados basados en las resonancias de superficie localizadas [16] y en las PSLRs [10], así como con biosensores plasmónicos comerciales, los cuales emplean la excitación del plasmón polaritón de superficie, excitados en una película continua de oro de 50 nm [6, 16].

2.3. Análisis de sensibilidad de una monocapa como biosensor

En las secciones anteriores se estudió la respuesta EM de una monocapa desordenada de NPs esféricas e idénticas, soportada por un sustrato con índice de refracción $n_s = 1.5$, simulando a un vidrio BK7, e inmersa en agua (matriz con índice de refracción $n_m = 1.33$). Cuando las NPs se iluminan en una configuración ATR, se observa un supuesto modo plasmónico colectivo, el cual puede sintonizarse al seleccionar los siguientes parámetros: la fracción de cubierta Θ de la monocapa, el material de las NPs y su radio a. En la Fig. 2.18 se muestran los resultados de la reflectancia de una monocapa de NPs de oro y una de NPs de plata, con los parámetros a y Θ aptos para el sensado. La elección de a = 30 nm y $\Theta = 0.125$ para las NPs de oro, y a = 40 nm y $\Theta = 0.1$ para las de plata, sintoniza al supuesto modo plasmónico colectivo dentro del espectro visible y, al calcular al reflectancia e smínima ($R \approx 0$) para ángulos de incidencia menores a 80° y para ambas polarizaciones. En esta sección se compara la respuesta EM de una monocapa

desordenada de NPs de oro con arreglos nanoestructurados reportados en la literatura [10, 16]; para una comparación detallada entre una película continua de oro y de plata de 50 nm (sensores comerciales) con las monocapas desordenadas de NPs esféricas de oro y de plata propuestas para el biosensado, consultar el apéndice A.

Los biosensores plasmónicos comerciales miden cambios en el índice de refracción de la matriz y su rendimiento puede cuantificarse mediante la sensibilidad de bulto S_B [6, 16], que es la dependencia del corrimiento $\delta \lambda^{exc}$ de la excitación ante cambios en el índice de refracción de la matriz δn_m medido en unidades de índice de refracción (Refractive Index Units, RIU), es decir

$$S_B = \frac{\delta \lambda^{exc}}{\delta n_m}.$$
(2.1)

Otro parámetro que caracteriza el rendimiento del biosensor es Γ , la anchura a media altura (Full Width at Half Maximum, FWHM) de la resonancia. Para considerar tanto la sensibilidad de bulto como la FWHM en el rendimiento del biosensor, se define la *figura de mérito* (Figure of Merit, FoM) de bulto FoM_B dada por la expresión

$$FoM_B = \frac{S_B}{\Gamma} = \frac{1}{\Gamma} \frac{\delta \lambda^{exc}}{\delta n_m},$$
(2.2)

la cual se reporta evaluada en $n_m = 1.33$. El empleo de la FoM_B permite tanto comparar la sensibilidad como calificar la calidad de biosensores ópticos que emplean distintos tipos de resonancias [10, 16], como puede ser la comparación entre sensores comerciales, basados en el plasmón polaritón de superficie (Surface Plasmon Polariton, SPP), el supuesto modo colectivo, predicho por del CSM, y los sensores basados en las resonancias de superfice localizadas (Localized Surface Plasmon Resonance, LSPRs), como las resonancias de una monocapa de nanodiscos desordenados [16], o las resonancias de red de superficie plasmónicas¹ (Plasmon Surface Lattice Resonances, PSLRs), reportadas en [9] y [10].

En la Fig. 2.19 se compara la sensibilidad del supuesto modo plasmónico colectivo de una monocapa de NPs de oro (a = 30 nm y $\Theta = 0.125$) con la del SPP (para un película de oro de 50 nm de grosor), así como con resultados experimentales de la sensibilidad del SPP —reportada por Svedenhal et al.² [16] para una película de oro de 50 nm de grosor a $\theta_i = 70^{\circ}$ —, con resultados experimentales de la sensibildad de un arreglo bidimensional desordenado de nanodiscos (NDs)—reportado por Svedenhal et al.² [16], donde los NDs son nanocilindros de oro de 30 nm de altura y 120 nm de diámetro, para polarización p y s, iluminados a $\theta_i = 70^{\circ}$ —, que coincide con la LSPR de los NDs individuales (NDs-LSPR), y con resultados experimentales de la sensibildad de la PSLR —reportada por Danilov et al.² [10] para un arreglo ordenado cuadrado (parámetro de red de 134 nm) de nanocilindros de oro de 90 nm de altura y 134 nm de diámetro a $\theta_i = 73^{\circ}$ —. En la Fig. 2.19 se grafica el corrimiento $\delta \lambda^{exc}$ como función del índice de refracción de la matriz n_m , en un rango de 1.33 RIU a 1.42 RIU para los ángulos de incidencia $\theta_i = 68^{\circ}$, 70°, 73° y 75° para: el supuesto modo plasmónico colectivo considerando polarización p (CSM p-Pol., líneas turquesas continuas) y s (CSM s-Pol., líneas turquesas discontinuas), una película de oro de

¹Las PSLRs se excitan en arreglos periódicos de NPs cuando un haz difractado por la estructura, a su vez, excita una LSPR en un elemento de la red. Dado que la difracción del haz puede ser por la matriz o por el sustrato, los LSPRs se pueden acomplar con cada uno de estos medio y por tanto se identifican dos tipos de PSLRs [10].

²Ver la Introducción para una descripción más detallada de sus resultados.

Fig. 2.19: Corrimiento al rojo de la longitud de onda de excitación $\delta\lambda^{exc}$ como función del índice de la matriz n_m , para el supuesto modo plasmónico colectivo en una monocapa de NPs idénticas de oro —radio a = 30 nm y fracción de cubierta $\Theta = 0.125$ — predicho por el CSM y considerando $\theta_i = 68^\circ$, 70°, 73° y 75° para polarización p (CSM p-Pol., líneas turquesas continuas) y s (CSM s-Pol., líneas turquesas discontinuas), para el SPP en una película continua de oro de 50 nm de grosor [SPP (Teo), líneas amarillas; SPP (Exp), rombos azules], la NDs-LSPR en una monocapa desordenada de NDs para polarización p (ND p-Pol., cuadrados verdes) y s (ND s-Pol., círculos verdes) y el PSLR cuando se acopla con la matriz (PSLR_{H2O}, puntos naranjas) y con el sustrato (PSLR_{sus}, cuadrados naranjas). Los datos experimentales del SPP y de las NDs-LSPR corresponden a los resultados de Svedenhal et al. reportados en [16] y los de las PSLR a los resultados de Danilov et al. reportados en [10]. Cuando $S_B = \delta\lambda^{exc}/\delta n_m > 0$ el modo se corre hacia el rojo y cuando $S_B < 0$, se corre hacia el azul. Las líneas punteadas magenta, amarillas, verdes y naranjas corresponden a aproximaciones lineales para determinar S_B del supuesto modo plasmónico colectivo, del SPP (Teo), de las NDs-LSPRs y de las PSLR, respectivamente, y sus valores es encuentran en la tabla 2.1.

50 nm de grosor [SPP (Teo), líneas amarillas; SPP (Exp), rombos azules], un arreglo desordenado de NDs considerando polarización p (NDs-LSPR p-Pol., cuadrados verdes) y s (NDs-LSPR s-Pol., círculos verdes) y la PSLR cuando el haz de luz se refracta por la matriz (PSLR_{H2O}, puntos naranjas) y por el sustrato (PSLR_{sus}, cuadrados naranjas). La sensibilidad de bulto S_B corresponde a la pendiente de las gráficas mostradas en la Fig. 2.19. Las sensibilidades del SPP, de la NDs-LSPR y de la PSLR presentan un comportamiento lineal, con corrimiento al rojo de la resonancia, mientras que el supuesto modo plasmónico colectivo muestra una sensibilidad con una tendencia distinta: la resonancia se corre tanto al rojo, como al azul, según el valor de n_m y θ_i .

Con base en los resultados de S_B para el supuesto modo plasmónico colectivo, se determinó que la longitud de onda de excitación λ^{exc} de este modo puede correrse al rojo o al azul según el valor de n_m . Para visualizar este comportamiento, no presente para el SPP, la NDs-LSPR ni para la PSLR, se grafica en la Fig. 2.20 la reflectancia de la monocapa de NPs de oro considerada en la Fig. 2.19 como función de la longitud de onda λ para polarización p (panel superior y líneas sólidas) y s (panel inferior y líneas punteadas) para distintos valores de n_m : la opacidad

de las curvas en la Fig. 2.20 es proporcional al valor de n_m , siendo la línea más tenue el caso de $n_m = 1.33$ y el más opaco el de $n_m = 1.42$; se muestra en la Fig. 2.20 el valor de n_m máximo considerado para cada gráfica, por ejemplo, para $\theta_i = 68^{\circ}$ se consideró desde $n_m = 1.33$ hasta 1.390, ya que el $\theta_c = \arcsin(1.390/1.5) \approx 68^{\circ}$. En la Fig. 2.20 los puntos rojos corresponden a los mínimos en la reflectancia, es decir, a las longitudes de onda de excitación λ^{exc} del supuesto modo plasmónico colectivo, mientras que las flechas negras son una ayuda al ojo para identificar el cambio en el valor de λ^{exc} y de $R(\lambda^{exc})$ al aumentar el índice de refracción de la matriz.

Fig. 2.20: Reflectancia para polarización p, R_p (panel superior) y polarización s, R_s (panel inferior), de una monocapa desordenada de NPs de oro (radio a = 30 nm y fracción de cubierta $\Theta = 0.125$) como función de la longitud de onda λ para distintos valores del índice de refracción de la matriz n_m . La opacidad de las gráficas es proporcional al valor de n_m y los puntos rojos corresponden al mínimo de la reflectancia, es decir, al valor de λ^{exc} considerado para los cálculos de la sensibilidad S_B de la Fig. 2.19 y la tabla 2.20.

De la Fig. 2.20 se observa que conforme el índice de refracción de la matriz aumenta, no sólo hay un corrimiento al rojo o al azul de la longitud de onda de excitación λ^{exc} (puntos rojos en la Fig. 2.20) del modo plasmónico colectivo, sino también su FWHM aumenta. Para un valor de θ_i fijo, cuando éste se aproxima al ángulo crítico al aumentar el índice de refracción de la matriz n_m , el supuesto modo plasmónico colectivo es más sensible, presentando un corrimiento al azul de λ^{exc} . Sin embargo, cuando $\theta_i \rightarrow \theta_c$, el FWHM aumenta, lo que puede dificultar la medición de λ^{exc} . Al considerar el valor de la FWHM, Γ , obtenido para la monocapa de oro, se calcula el valor de FoM_B para polarización $p \ y \ \theta_i = 68^\circ, 70^\circ, 73^\circ \ y 75^\circ$, dando como resultado $FoM_B = -2.64 \pm 0.07$ RIU⁻¹, 0.93 ± 0.07 RIU⁻¹, ± 0.07 RIU⁻¹ y 4.03 ± 0.07 RIU⁻¹, respectivamente, mientras que para $s \ FoM_B = 0.59 \pm 0.04$ RIU⁻¹, 1.88 ± 0.04 RIU⁻¹, ± 0.04 RIU⁻¹ y 4.37 ± 0.04 RIU⁻¹, respectivamente. Los valores calculados de la FoM de bulto para el supuesto modo plasmónico colectivo son consistentes con los reportados en [16] para arreglos nanoestructurados: del orden de la unidad.

Para comparar las sensiblidades de las cuatro resonancias estudiadas, se aproximó a los datos experimentales del SPP, de la NDs-LSPR y a la PSLR una recta (líneas punteadas que se ajustan a cada conjunto de datos en la Fig. 2.19) cuya pendiente es el valor de S_B , y para el supuesto modo plasmónico colectivo predicho por el CSM se ajustó una recta (línea punteada

magenta en la Fig. 2.19) para distintos intervalos de n_m . Los resultados de la sensibilidad para el CSM, especificando el intervalo de n_m seleccionado, se encuentran en la tabla 2.1, así como la sensibilidad del SPP para cada uno de los ángulos de incidencia, la de la NDs-LSPR a 70° y la de la PSLR a 73°. A partir de la Fig. 2.19 se observa que el CSM predice un corrimiento tanto al rojo ($S_B > 0$) como al azul ($S_B < 0$) para el supuesto modo plasmónico colectivo, que corresponde a los valores de mostrados en la tabla 2.1.

Tabla 2.1: Resultados de sensibilidad S_B del SPP, del supuesto modo plasmónico colectivo predicho por el CSM (considerando una monocapa de NPs de oro) para los ángulos de incidencia $\theta_i = 68^{\circ}$, 70°, 73° y 75°, de la NDs-LSPR ($\theta_i = 70^{\circ}$) y de la PSLR ($\theta_i = 73^{\circ}$). Los valores de S_B para el SPP corresponden a la pendiente de las líneas amarillas en la Fig. 2.19, en donde se consideró una película delgada de oro de 50 nm de grosor, para la NDs-LSPR la pendiente de las líneas punteadas verdes que ajusta a los datos experimentales, y para la PSLR a la pendiente de las líneas punteadas naranjas que ajusta a los datos experimentales. Para el supuesto modo plasmónico colectivo, la sensibilidad S_B corresponde al ajuste lineal (líneas punteadas magentas en la Fig. 2.19 a un intervalo de n_m seleccionado dado que S_B no presenta un valor constante como sucede para las otras excitaciones. Datos experimentales extraídos de [10] y [16].

-					
	SPP	CSM p-Pol.		CSM s-Pol.	
	$S_B \text{ [nm RIU}^{-1]}$	$[nm RIU^{-1}]$		$[nm RIU^{-1}]$	
$A_{-} = 60^{\circ}$	$6 14270 \pm 9729$	-435.95 ± 6.94	$n_m \in (1.33, 1.36)$	-204.96 ± 8.94	$n_m \in (1.33, 1.36)$
$\theta_i = 0.0$	$0,142.79 \pm 01.20$	$-1, 479.02 \pm 99.32$	${\bf n_m} \in ({\bf 1.36},{\bf 1.39})$	$-2, 275.10 \pm 131.22$	$n_{\mathbf{m}} \in (1.36, 1.39)$
$\theta = 70^{\circ}$	$3,968.39 \pm 52.43$	-201.85 ± 5.76	$n_m \in (1.33, 1.34)$	-10.71 ± 5.16	$n_m \in (1.33, 1.35)$
$v_i = 10$		-542.24 ± 8.05	$n_m \in (1.34, 1.39)$	-435.23 ± 15.72	$n_m \in (1.5, 1.39)$
$0 - 72^{\circ}$	$2,220,0\pm 27,70$	20.75 ± 6.11	$n_m \in (1.33, 1.35)$	111.20 ± 5.32	$n_m \in (1.33, 1.37)$
$v_i = 15$	$2,529.9 \pm 51.10$	-881.84 ± 10.05	$n_m \in (1.36, 1.42)$	-833.11 ± 22.53	$n_m \in (1.38, 1.42)$
$\theta_i = 75^{\circ}$	$1,689.59 \pm 18.11$	150.20 ± 4.56	$n_m \in (1.33, 1.37)$	200.36 ± 4.55	$n_m \in (1.33, 1.375)$
		$-1,613.37\pm94.61$	${f n_m} \in ({f 1.38},{f 1.405})$	$-1,040.64\pm35.02$	${\bf n_m} \in ({\bf 1.38, 1.42})$
		Svedenhal et al. [16]		Danilov et al. [10]	
	SPP	NDs-LSPR p -Pol.	NDs-LSPR s-Pol.	$PSRL_{H_2O}$	$PSLR_{H_2O}$
	$S_B \text{ [nm RIU}^{-1]}$	$S_B \text{ [nm RIU}^{-1]}$	$S_B \text{ [nm RIU}^{-1} \text{]}$	$S_B \text{ [nm RIU}^{-1]}$	$S_B \text{ [nm RIU}^{-1} \text{]}$
$\theta_i = 70^\circ$	$3,423.96 \pm 77.07$	177.36 ± 6.52	180.61 ± 3.70		
$\theta_i = 73^\circ$				397.11 ± 11.19	52.70 ± 6.03

El valor de S_B del SPP, de la NDs-LSPR y de la PSLR es constante para valores de n_m entre 1.33 RIU y 1.42 RIU, además de ser positivo, es decir, que el mínimo de la reflectancia sólo se corre hacia el rojo al aumentar el valor de n_m . Por otro lado, la sensibilidad del supuesto modo plasmónico colectivo varía según el valor de n_m y presenta un corrimiento de la excitación tanto al rojo como al azul, como se observa en la Fig. 2.19, siendo el corrimiento al azul (para $\theta_i \rightarrow \theta_c$) más sensible que el corrimiento al rojo. Por ejemplo, a pesar de que el SPP es el más sensible de los modos presentados en la tabla 2.1, el supuesto modo plasmónico colectivo presenta valores de S_B del mismo orden de magnitud cuando la excitación se corre al azul (ver datos en negritas en la tabla 2.1). A partir de los resultados de la sensibilidad S_B mostrados en la Fig. 2.19 y resumidos en la tabla 2.1, se concluye que la sensibilidad del supuesto modo plasmónico colectivo es comparable con la de la NDs-LSPR y la PSLR para algunos intervalos de n_m . Por ejemplo, para $\theta_i = 70^\circ$ el supuesto modo plasmónico colectivo es más sensible que el arreglo de NDs para las dos polarizaciones cuando $1.35 \le n_m \le 1.39$ y para polarización p en el intervalo $1.33 \le n_m \le 1.35$; asimismo, para $\theta_i = 73^\circ$, el supuesto modo plasmónico colectivo es más sensible que la PSLR para $1.36 \le n_m \le 1.42$ a ambas polarizaciones. Es decir, el arreglo desordenado de NPs esféricas compite en términos de sensibilidad tanto con el arreglo nanoestructurado ordenado de nanocilindros como con el arreglo desordenado de NDs y, para ángulos de incidencia cercanos al ángulo crítico, tiene una sensibilidad mayor.

Finalmente, se calcula la longitud de penetración $\xi = 1/k_x$, con k_x la proyección paralela a

la interfaz de la matriz con el sustrato del vector de onda del supuesto modo plasmónico colectivo, mediante la siguiente expresión

$$\xi = \frac{1}{k_x} = \frac{\lambda^{exc}}{2\pi n_m} \frac{1}{\sin \theta_i},\tag{2.3}$$

donde λ^{exc} es la longitud de onda de excitación del supuesto modo plasmónico colectivo al ángulo de incidencia θ_i excitado en la moncapa de NPs de oro con radio a = 30 nm y $\Theta = 0.125$ y en un intervalo de n_m entre 1.33 RIU y 1.42 RIU. El valor de ξ calculado³ fue de $\xi = 69.85 \pm 2.97$ nm para p y $\xi = 70.39 \pm 1.06$ nm para s, considerando $\theta_i = 68^\circ$, y $\xi = 70.80 \pm 1.27$ nm para p y $\xi = 70.59 \pm 0.82$ nm con $\theta_i = 70^\circ$. Para $\theta = 73^\circ$, se obtuvo que $\xi = 72.95 \pm 0.79$ nm para polarización p y $\xi = 70.70 \pm 0.48$ nm y para $\theta_i = 73^\circ$ mientras que $\xi = 72.48 \pm 0.43$ nm para p y $\xi = 70.72 \pm 0.28$ nm considerando $\theta_i = 75^\circ$. El valor calculado de ξ aumenta para los ángulos de incidencia en los que la reflectancia toma valores más cercanos a cero, es decir, que la longitud de penetración del supuesto modo colectivo modifica el valor de la reflectancia evaluada en λ^{exc} , lo que puede deberse a que el campo eléctrico que excita a las NPs de la monocapa interactúa en mayor medida con las NPs, lo que a su vez realza el fenómeno de esparcimiento múltiple y reduce la reflectancia. La longitud de penetración del supuesto modo plasmónico colectivo es aproximadamente 10 nm menor a la del SPP de una película continua de oro de 50 nm (ver apéndice A), por lo que el supuesto modo plasmónico colectivo puede sensar cambios en el índice de refracción de la matriz a una distancia del sustrato comparable a la de lo sensores comerciales.

³La longitud de penetración depende de n_m sin embargo, la diferencia de ξ entre $n_m = 1.33$ y $n_m = 1.42$ para un valor de θ_i fijo es menor a 1.5 nm, por lo que se reporta como valor nominal la mediana y la incertidumbre asociada es la diferencia entre la mediana y los valores extremos.

Conclusiones

El objetivo principal de esta tesis de licenciatura fue carcaterizar la respuesta electromagnética de una monocapa desordenada de nanopartículas esféricas para proponer su uso en biosensado. Se calculó la reflectancia y transmitancia de la monocapa cuando una onda plana monocromática linealmente polarizada incide sobre ésta, empleando el modelo de esparcimiento coherente [14, 39-41] —el cual proporciona expresiones analíticas de la reflectancia y transmitancia cuando la monocapa se encuentra embebida en un dieléctrico, denominado matriz, y soportada por un sustrato— y considerando para la función dieléctrica de las nanopartículas que forman la monocapa tanto el modelo de Drude-Sommerfeld como la corrección por tamaño de la función dieléctrica del oro y de la plata para nanopartículas esféricas. Asimismo, se comparó la sensibilidad de la respuesta electromagnética de una monocapa de nanopartículas esféricas de oro ante cambios en el índice de refracción de la matriz con la de propuestas de biosensores nanoestructurados reportados en la literatura [9, 10, 16], basados en la resonancia de plasmón de superficie localizada y en la resonancia de red de superfice plasmónica.

Al emplear el modelo de esparcimiento coherente considerando nanopartículas con una función dieléctrica tipo Drude, se identificó un supuesto modo plasmónico colectivo que puede sintonizarse seleccionando el radio a de las nanopartículas de la monocapa y su fracción de cubierta Θ . El supuesto modo plasmónico colectivo se excita en un esquema de reflexión total atenuada y a energías menores a las del plasmón dipolar de superficie localizado de las nanopartículas individuales formando la monocapa, además de presentarse tanto para polarización p como s. Adicionalmente, al analizar la reflectancia y transmitancia de la monocapa a las longitudes de onda del supuesto modo plasmónico colectivo, se observó que éste presenta características de un modo guiado. Al considerar materiales reales (oro y plata) para las nanopartículas en la monocapa también se observó la presencia del supuesto modo plasmónico colectivo. Al analizar las respuesta electromagnética de una monocapa desordenada de nanopartículas esféricas ante cambios en el índice de refracción de la matriz n_m , se observó que la sensibilidad del supuesto modo plasmónico colectivo (considerando una monocapa con nanopartículas de oro con a = 30 nm y $\Theta = 0.125$) es semejante a la de los arreglos nanoestructurados desordenados de nanodiscos y ordenados de nanocilindros, reportados en [16] y [10], respectivamente. Por ejemplo, la sensibilidad del supuesto modo plasmónico colectivo es mayor para $\theta_i = 70^\circ$ y a ambas polarizaciones cuando $1.35 \leq n_m \leq 1.39$ (comparado a los nanodiscos), y para θ_i = 73° a ambas polarizaciones cuando $1.36 \le n_m \le 1.42$ (comparado a los nanocilindros). La figura de mérito de bulto —la sensibilidad dividida por el ancho de la resonancia— para el supuesto modo plasmónico colectivo es consistente con el reportado en la literatura para arreglos nanoestructurados [16]. Al comparar la respuesta electromagnética del supuesto modo plasmónico colectivo con la del plasmón-polaritón

de superficie (excitado en una película continua de oro de 50 nm de grosor), el primero tiene un sensiblidad menor mas, dependiendo del intervalo de n_m , la sensibilidad de estas excitaciones es del mismo orden de magnitud. Cabe resaltar que el supuesto modo plasmónico colectivo se excita a ambas polarizaciones —en contraste con el plasmón-polaritón de superficie que sólo se excita en polarización p— y presenta un corrimiento de su longitud de onda de excitación tanto hacia al rojo como al azul al aumentar el índice de refracción de la matriz —característica no observada para la excitación de la película continua de oro, ni para los arreglos nanoestructurados de nanocilindros ni nanodiscos—.

Como resultado de este trabajo de tesis, se determinó que una monocapa desordenada de nanopartículas esféricas, e idénticas, de oro con a = 30 nm y $\Theta = 0.125$ y una de nanopartículas de plata con a = 40 nm y $\Theta = 0.1$ pueden emplearse para biosensado, ya que estos parámetros sintonizan al supuesto modo plasmónico colectivo dentro del espectro visible y minimizan la reflectancia a las longitudes de onda del supuesto modo plasmónico colectivo a ángulos de incidencia menores a 80°, facilitando su medición.

Como continuación al trabajo presentado en esta tesis, se propone la identificación experimental del supuesto modo plasmónico colectivo con monocapas desordenadas de nanopartículas esféricas de oro y de plata con los valores de $a \neq \Theta$ propuestos para cada material. La propuesta para la fabricación de las nanopartículas esféricas de oro y de plata es sintetizar las nanopartículas, en una suspensión colidal, mediante el método de Turkevich [48], para luego depositar las nanopartículas sobre un sustrato en concentraciones bajas, formando la monocapa. Para la detección experimental del supuesto modo plasmónico colectivo, se propone realizar la medición de la reflectancia y la transmitancia, dentro del espectro visible, para un ángulo de incidencia entre el ángulo crítico y 80°. Asimismo, se propone calcular la figura de mérito de superficie, que cuantifica la sensibilidad ante cambios de índice de refracción locales al rededor de los elementos de arreglos nanoestructurados [6, 16], considerando un analito particular para funcionalizar a las nanopartículas de la monocapa y estudiar el corrimiento de la longitud de onda de excitación del supuesto modo plasmónico colectivo cuando se forma una capa uniforme al rededor de las nanopartículas.

Apéndice A

Comparación de la sensibilidad de una película continua y de una monocapa de nanopartículas

En la sección 2.3 se comparó la sensibilidad del supuesto modo plasmónico colectivo para una monocapa desordenada de nanopartículas (NPs) de oro, con radio un radio a y una fracción de cubierta Θ , predicha por el modelo de esparcimiento coherente (Coherent Scattering Model, CSM), con las de los arreglos nanoestructurados propuestos en la literatura [10, 16]. En esta sección se calcula la longitud de penetración ξ y la figura de mérito de bulto FoM_B para una monocapa desordenada de NPs de oro y de plata, y se compara con las de un sensor comercial basado en los plasmones-polaritones de superficie (Surface Plasmon Polaritons, SPPs), para una película continua de oro y una de plata. En la Fig. A.1 se muestran los cálculos de la reflectancia en un esquema de reflexión total atenuada para una película continua de oro y una de plata —donde se observa el SPP resaltado por la línea discontinua blanca—, ambas de grosor d = 50 nm, y para una monocapa de NPs esféricas de oro (con a = 30 nm y $\Theta = 0.125$) y una de NPs de plata (con a = 40 nm y $\Theta = 0.1$) —resaltando al supuesto modo plasmónico colectivo con los puntos amarillos—; se consideró para todos los cálculos un sustrato con índice de refracción $n_s = 1.5$ y una matriz de agua con $n_m = 1.33$.

En la Fig. A.1 se comparan el comportamiento del SPP para una película continua de oro y una de plata, con el del supuesto modo plasmónico colectivo para una monocapa de NPs de oro y una de plata, cuando el índice de la matriz es $n_m = 1.33$. El SPP para los dos materiales considerados no se observa en el espectro visible para ángulos de incidencia cercanos al crítico $\theta_c \approx 62.5^{\circ}$ ya que el valor de la proyección paralela a la interfaz del vector de onda no es suficientemente grande para excitarlo. Por otro lado, el supuesto modo plasmónico colectivo se excita para todos los ángulos de incidencia tanto para la moncapa de NPs de oro como para la de NPs de plata. Asimismo, el supuesto modo plasmónico colectivo puede sintonizarse cambiando los parámetros Θ y a, mas el SPP no puede sintonizarse pues está limitado por el grosor d de la película: si d es mayor que la longitud de penetración de la onda evanescente que ilumina a la película continua, el SPP no puede ser excitado. Otra diferencia es la anchura a media altura (Full Width at Half Maximum, FWHM) del SPP, que es menor a la del supuesto modo plasmónico colectivo, para los dos materiales considerados. Al comparar el supuesto modo plasmónico colectivo considerando ambas polarizaciones, se observa que el FWHM es menor para

Fig. A.1: Gráficas de reflectancia R en configuración ATR, considerando un sustrato con $n_s = 1.5$ y una matriz con $n_m = 1.33$, como función del ángulo de incidencia θ_i y de la longitud de onda λ (escala inferior) así como de la energía en unidades de $\hbar\omega$ (escala superior), para una película continua de 50 nm de grosor (columna izquierda), y una monocapa de NPs esféricas iluminada por una onda plana en polarización p (columna central) y en polarización s (columna derecha); los paneles superiores corresponden a una película continua y NPs de oro con a = 30 nm y $\Theta = 0.125$, mientras que para los paneles inferiores corresponden a una película continua y NPs de plata con a = 40nm y $\Theta = 0.1$. Las líneas punteadas blancas (columna izquierda) corresponden a los mínimos en la reflectancia debido a la excitación del SPP y los puntos amarillos (columna central y columna derecha) corresponden a los mínimos en Rdel supuesto modo plasmónico colectivo predicho por el CSM. Las líneas verticales punteadas verdes corresponden a la SP-SPR dipolar (531 nm y 444 nm para las NPs de oro y plata, respectivamente), y las rosas a la SP-SPR cuadrupolar (514 nm y 383 nm para las NPs de oro y de plata, respectivamente).

s que para p, tanto en las monocapas de NPs de oro como en las de plata; al comparar la FWHM para una polarización fija, éste es menor para las NPs de oro que para las de plata por el tamaño elegido para las NPs en cada monocapa.

A partir de la Fig. A.1 es posible calcular la longitud de penetración ξ del SPP y del supuesto modo plasmónico colectivo mediante la Ec. (2.3):

$$\xi = \frac{1}{k_x} = \frac{\lambda^{exc}}{2\pi n_m} \frac{1}{\sin \theta_i}$$

con λ^{exc} la longitud de excitación del modo plasmónico (SPP o el predicho por el CSM). Considerando oro como el material de la película continua y el de las NPs, se obtuvo que la longitud de penetración del supuesto modo colectivo para polarización p, ξ_p^{CSM} , y s, ξ_s^{CSM} , se encontraban en el rango 70.60 nm $\leq \xi_p^{CSM} \approx \xi_s^{CSM} \leq 73.15$, para $n_m = 1.33$ y $\theta_i = 65^{\circ}, 70^{\circ}, 75^{\circ}$ y 80°, mientras que para el SPP 88.40 nm $\leq \xi^{SPP} \leq 71.86$ para $\theta_i = 70^{\circ}, 75^{\circ}$ y 80°. Para la película continua de plata y la monocapa de NPs de plata, se obtuvo que $\xi_p^{CSM} > \xi_s^{CSM}$, en donde $63.40 \text{ nm} \leq \xi_s^{CSM} \leq 66.60 \text{ y} 60.76 \text{ nm} \leq \xi_p^{CSM} \leq 65.80$, para $n_m = 1.33 \text{ y} \theta_i = 65^{\circ}, 70^{\circ}, 75^{\circ} \text{ y} 80^{\circ}$, 80° , y que 76.40 nm $\leq \xi^{SPP} \leq 79.05$, para $\theta_i = 70^{\circ}, 75^{\circ} \text{ y} 80^{\circ}$. El valor de ξ^{SPP} , tanto para el oro como para la plata, disminuye conforme el ángulo de incidencia crece. Sin embargo, para el supuesto modo colectivo ξ^{CSM} es mayor a los valores de θ_i en los que la reflectancia es mínima, es decir, que la longitud de penetración del supuesto modo colectivo modifica el valor de la reflectancia evaluada en λ^{exc} . Esto puede deberse a que el campo eléctrico que excita a las NPs de la monocapa es más intenso, lo que a su vez realza el fenómeno de esparcimiento múltiple y reduce la reflectancia.

Para calcular la FoM_B es necesario evaluar la sensibilidad del SPP y del supuesto modo plasmónico colectivo en $n_m = 1.33$. Para esto, se grafica en la Fig. A.2 el corrimiento de la longitud de onda de excitación $\delta\lambda^{exc}$ como función del índice de refracción n_m , en unidades de índice de refracción (Refractive Index Units, RIU), del SPP [Fig. A.2a)], y del supuesto modo plasmónico colectivo en polarización p [Fig. A.2b)] y s [Fig. A.2c)] en el intervalo 1.33 RIU $\leq n_m \leq 1.332$ RIU. Se consideraron los ángulos de incidencia $\theta_i = 65^\circ$, 70°, 75° y 80°. Las líneas continuas corresponden a la película y la monocapa de NPs de oro, mientras que las líneas discontinuas a la película y monocapa de NPs de plata.

Fig. A.2: Gráficas del corrimiento $\delta \lambda^{exc}$ de la longitud de onda de la excitación en función del índice de refracción de la matriz, en un intervalo entre 1.33 RIU y 1.332 RIU, del **a**) SPP excitado en una película de oro (líneas continuas) y de plata (líneas discontinuas) de 50 nm de grosor cada una, y **b**) del supuesto modo plasmónico colectivo predicho por el CSM considerando polarización p y **c**) polarización s, excitados en una monocapa de NPs de oro de radio a = 30 nm y fracción de llenado $\Theta = 0.125$ (líneas continuas) y una de NPs de plata con a = 40 nm y $\Theta = 0.1$ (líneas discontinuas).

La sensibilidad del SPP [Fig. A.2a)] sólo se reporta para $\theta_i = 70^\circ$, 75° y 80° dado que para 65° el SPP no se excita en el espectro visible. Sin embargo, la sensibilidad del SPP, tanto para oro como para plata, es mayor al considerar ángulos de incidencia menores, como se observa al comparar el corrimiento al rojo para $\theta_i = 70^\circ$ (líneas amarillas) y para $\theta_i = 80^\circ$ (líneas turquesas). Considerando un ángulo de incidencia de 70° la sensibilidad del SPP para ambos materiales es aproximadamente igual, mas para $\theta_i = 75^\circ$ y 80° el SPP de la película de plata es más sensible que la del oro. El mayor corrimiento al rojo del SPP, al aumentar el índice de refracción de la matriz de 1.33 RIU a 1.332, es de 7 nm y se presenta para ambos materiales cuando $\theta_i = 70^\circ$.

A. COMPARACIÓN DE LA SENSIBILIDAD DE UNA PELÍCULA CONTINUA Y DE UNA MONOCAPA DE NANOPARTÍCULAS

A diferencia del SPP, el supuesto modo plasmónico colectivo predicho por el CSM sí puede excitarse en el espectro visible para ángulos cercanos al ángulo crítico y, es en estos valores, cuando el supuesto modo plasmónico colectivo es más sensible, presentando un corrimiento al azul en lugar de un corrimiento al rojo, como se observa en las Figs. A.2b) y A.2c), para polarización p y s, respectivamente. El corrimiento al azul se observa para polarización p en $\theta_i = 65^{\circ}$ y, para este ángulo de incidencia, la monocapa de NPs de oro (líneas continuas) es más sensible que para la monocapa de NPs de plata (líneas discontinuas). Para ambos materiales en $\theta_i \geq 75^{\circ}$ (líneas verdes) el supuesto modo plasmónico colectivo para las dos polarizaciones se corre al rojo; la sensibilidad de la monocapa de NPs de plata es mayor en comparación a la de NPs de oro (comparar líneas continuas y discontinuas del mismo color). La sensibilidad del supuesto modo plasmónico colectivo se maximiza en dos casos: para ángulos de incidencia lo más cercanos al crítico (como también ocurre para el SPP) y para ángulos de incidencia alrededor de 80°. En las Figs. A.2b) y A.2c) se observa que el mayor corrimiento al rojo para el supuesto modo plasmónico colectivo predicho por el CSM en polarización p y s es $\delta\lambda^{exc} \approx -1.5$ nm considerando $\theta_i = 65^{\circ}$.

En la tabla A.1 se muestran los resultado de los cálculos de FoM_B para el SPP y el supuesto modo plasmónico colectivo con base en las Figs. A.1 y A.2. La FoM de bulto del SPP para el oro es menor a la de la plata para todos los ángulos de incidencia, pero son del mismo orden de magnitud. La FoM_B de la plata es mayor a la del oro debido a una mayor sensibilidad y a un ancho de resonancia menor. En contraste, la FoM de bulto de la monocapa de NPs, tanto para oro como para plata, es un orden de magnitud menor a la del SPP. La diferencia entre las FoM del SPP y del supuesto modo plasmónico colectivo no se debe la sensibilidad sino al ancho de la resonancia, el cual aumenta para ángulos de incidencia cercanos al crítico para el modo plasmónico colectivo.

Tabla A.1: Resultados de la figura de mérito FoM_B del SPP y del supuesto modo plasmónico colectivo predicho por el CSM y a ambas polarizaciones, para los ángulos de incidencia $\theta_i = 65^\circ$, 70°, 75° y 80°. Para el SPP de consideró una película delgada de oro, y una de plata, de 50 nm de grosor y para el supuesto modo plasmónico colectivo una monocapa de NPs de oro de radio a = 30 nm y una fracción de cubierta $\Theta = 0.125$, y una monocapa de NPs de plata con a = 40 nm y $\Theta = 0.1$. La incertidumbre reportada se calculó mediante el error obtenido del ajuste lineal para S_B .

Au	SPP	CSM p -Pol.	CSM s -Pol.
$ heta_i$	$FoM_B \ [\pm 0.6 \ RIU^{-1}]$	$FoM_B \ [\pm 0.07 \ RIU^{-1}]$	$FoM_B \ [\pm 0.04 \ RIU^{-1}]$
65°	—	-2.64	-0.59
70°	67.5	0.93	1.88
75°	48.5	2.47	3.19
80°	69.7	4.03	4.37
Ag	SPP	CSM <i>p</i> -Pol.	CSM s-Pol.
$\begin{array}{c} \operatorname{Ag} \\ \theta_i \end{array}$	$\begin{array}{c} \text{SPP} \\ FoM_B \ [\pm 0.2 \ \text{RIU}^{-1}] \end{array}$	$\begin{array}{c c} \text{CSM } p\text{-Pol.} \\ \hline FoM_B \ [\pm 1.1 \ \text{RIU}^{-1}] \end{array}$	$\begin{array}{c} \text{CSM } s\text{-Pol.} \\ FoM_B \ [\pm 0.05 \ \text{RIU}^{-1}] \end{array}$
$\begin{array}{c} {\rm Ag} \\ \theta_i \\ 65^\circ \end{array}$	$\begin{array}{c} \text{SPP} \\ FoM_B \ [\pm 0.2 \text{ RIU}^{-1}] \\ - \end{array}$	$\begin{array}{c} \text{CSM } p\text{-Pol.} \\ FoM_B \ [\pm 1.1 \ \text{RIU}^{-1}] \\ -3.66 \end{array}$	$\begin{array}{c} \text{CSM s-Pol.} \\ FoM_B \ [\pm 0.05 \ \text{RIU}^{-1}] \\ -2.08 \end{array}$
$\begin{array}{c c} & & & \\ & & \\ \hline \theta_i \\ \hline 65^\circ \\ & 70^\circ \end{array}$	$ \begin{array}{c} \text{SPP} \\ \hline FoM_B \ [\pm 0.2 \ \text{RIU}^{-1}] \\ \hline \\ 90.2 \end{array} $	$\begin{array}{c} \text{CSM } p\text{-Pol.} \\ \hline FoM_B \ [\pm 1.1 \ \text{RIU}^{-1}] \\ \hline -3.66 \\ -0.82 \end{array}$	$\begin{array}{c} \text{CSM s-Pol.} \\ \hline FoM_B \ [\pm 0.05 \ \text{RIU}^{-1}] \\ -2.08 \\ 0.42 \end{array}$
$\begin{array}{c c} & & & \\ & & \\ & & \\ \hline & & \\$	$\begin{array}{c} \text{SPP} \\ \hline FoM_B \ [\pm 0.2 \ \text{RIU}^{-1}] \\ \hline \\ 90.2 \\ 64.7 \end{array}$	$\begin{array}{c} \text{CSM } p\text{-Pol.} \\ \hline FoM_B \ [\pm 1.1 \ \text{RIU}^{-1}] \\ \hline -3.66 \\ -0.82 \\ 1.47 \end{array}$	$\begin{array}{c} \text{CSM s-Pol.} \\ \hline FoM_B \ [\pm 0.05 \ \text{RIU}^{-1}] \\ \hline -2.08 \\ 0.42 \\ 2.28 \end{array}$

Los resultados obtenidos para la sensibilidad y la figura de mérito de bulto del SPP son consistentes con los reportados en la literatura [6, 10, 16]. Asimismo, se estima que la figura de mérito de biosensores basados en LSPRs, por ejemplo para la NDs-LSPR, es del orden de la unidad [16], al igual que la FoM de bulto calculada para el supuesto modo plasmónico colectivo. A partir de estos resultados se estima que los sensores basados en SPP sean una mejor opción para el biosensado en comparación con sensores nanoestructurados. Sin embargo, la aplicación de sensores basados en NPs se ha enfocado en el bioreconocimiento en tiempo real [6, 16], es decir, en la detección de pocas partículas alrededor de la nanoestructura empleada que cambien el índice de refracción de la matriz localmente alrededor de las NPs y no el índice de refracción de toda la matriz. La comparación del SPP con el supuesto modo colectivo mediante la FoM_B no considera los fenómenos locales alrededor de las nanoestrucutras.

Bibliografía

- D. R. Boverhof, C. M. Bramante, J. H. Butala, S. F. Clancy, M. Lafranconi, J. West y S. C. Gordon. Comparative assessment of nanomaterial definitions and safety evaluation considerations. *Regulatory toxicology and pharmacology*, **73**(1):137-150, 2015 (citado en la pág. 1).
- [2] J. Zhao, A. O. Pinchuk, J. M. McMahon, S. Li, L. K. Ausman, A. L. Atkinson y G. C. Schatz. Methods for describing the electromagnetic properties of silver and gold nanoparticles. *Accounts of chemical research*, 41(12):1710-1720, 2008 (citado en la pág. 1).
- [3] L. Novotny y B. Hecht. *Principles of nano-optics*. Cambridge university press, 2006 (citado en las págs. 1, 27, 34, 38, 40).
- [4] P. K. Jain, X. Huang, I. H. El-Sayed y M. A. El-Sayed. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Accounts of chemical research, 41(12):1578-1586, 2008 (citado en las págs. 1, 40, 64).
- [5] M. I. Stockman. Nanoplasmonics: the physics behind the applications. *Phys. Today*, 64(2):39-44, 2011 (citado en las págs. 1, 30, 40).
- [6] M. C. Estevez, M. A. Otte, B. Sepulveda y L. M. Lechuga. Trends and challenges of refractometric nanoplasmonic biosensors: A review, 2014. DOI: 10.1016/j.aca.2013.10.048. URL: http://dx.doi.org/10.1016/j.aca.2013.10.048 (citado en las págs. 1, 4, 64, 75, 76, 82, 86).
- [7] C. V. Mun'delanji, K. Kerman, I.-M. Hsing y E. Tamiya. Nanobiosensors and Nanobioanalyses. Springer, 2015 (citado en la pág. 1).
- [8] S. A. Maier. *Plasmonics: fundamentals and applications*. Springer Science & Business Media, 2007 (citado en las págs. 1, 30-32, 34, 36, 38).
- [9] A. V. Kabashin, P. Evans, S. Pastkovsky, W. Hendren, G. A. Wurtz, R. Atkinson, R. Pollard, V. A. Podolskiy y A. V. Zayats. Plasmonic nanorod metamaterials for biosensing. *Nature materials*, 8(11):867-871, 2009 (citado en las págs. 1-6, 35, 51, 52, 55, 73, 76, 81).
- [10] A. Danilov, G. Tselikov, F. Wu, V. G. Kravets, I. Ozerov, F. Bedu, A. N. Grigorenko y A. V. Kabashin. Ultra-narrow surface lattice resonances in plasmonic metamaterial arrays for biosensing applications. *Biosensors and Bioelectronics*, **104**:102-112, 2018 (citado en las págs. 1-6, 51, 52, 55, 75-77, 79, 81, 83, 86).
- [11] A. I. Väkeväinen, R. J. Moerland, H. T. Rekola, A. P. Eskelinen, J. P. Martikainen, D. H. Kim y P. Törmä. Plasmonic surface lattice resonances at the strong coupling regime. *Nano letters*, 14(4):1721-1727, 2013 (citado en la pág. 2).

- [12] R. Atkinson, W. R. Hendren, G. A. Wurtz, W. Dickson, A. V. Zayats, P. Evans y R. J. Pollard. Anisotropic optical properties of arrays of gold nanorods embedded in alumina. *Physical Review B*, **73**(23):235402, 2006 (citado en la pág. 2).
- [13] A. Sihvola. Electromagnetic mixing formulas and applications, número 47. Iet, 1999 (citado en la pág. 2).
- [14] A. Reyes-Coronado, G. Morales-Luna, O. Vázquez-Estrada, A. García-Valenzuela y R. G. Barrera. Analytical modeling of optical reflectivity of random plasmonic nano-monolayers. *Optics Express*, **9594**:6697-6706, 2018. ISSN: 10944087. DOI: 10.1364/0E.26.012660 (citado en las págs. 4, 40, 41, 44, 45, 51, 81).
- [15] C. F. Bohren y D. R. Huffman. Absorption and scattering of light by small particles. John Wiley & Sons, 1998 (citado en las págs. 4, 14, 16-18, 22-24, 37, 38, 40).
- [16] M. Svedendahl, S. Chen, A. Dmitriev y M. Käll. Refractometric sensing using propagating versus localized surface plasmons: A direct comparison. *Nano Letters*, 9(12):4428-4433, 2009. ISSN: 15306984. DOI: 10.1021/n1902721z (citado en las págs. 4-6, 75-79, 81-83, 86).
- B. Brian, B. Sepúlveda, Y. Alaverdyan, L. M. Lechuga y M. Käll. Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates. *Optics Express*, 17(3):2015, 2009. ISSN: 1094-4087. DOI: 10.1364/oe.17.002015 (citado en la pág. 5).
- C. P. Cahill, K. S. Johnston y S. S. Yee. A surface plasmon resonance sensor probe based on retro-reflection. Sensors and Actuators, B: Chemical, 45(2):161-166, 1997. ISSN: 09254005.
 DOI: 10.1016/S0925-4005(97)00290-6 (citado en la pág. 5).
- [19] D. J. Griffiths. Introduction to electrodynamics. Pearson, 4° edición, 2013 (citado en las págs. 7-9, 12).
- [20] E. Hecht. Optics. Addison Wesley, 4° edición, 1998 (citado en las págs. 8, 9, 11-13, 50).
- [21] J. D. Jackson. Classical electrodynamics. John Wiley & Sons, 3° edición, 1999 (citado en las págs. 8, 12, 16).
- [22] A. Kwan, J. Dudley y E. Lantz. Who really discovered Snell's law? *Physics World*, 15(4):64, 2002 (citado en la pág. 10).
- [23] H. Ibach y H. Lüth. Solid-state physics: an introduction to principles of material science. Springer, 2003 (citado en la pág. 13).
- [24] G. Mie. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Annalen der Physik, 330(3):377-445, 1908. ISSN: 15213889. DOI: 10.1002/andp.19083300302 (citado en las págs. 14, 24, 26).
- H. Horvath. Gustav Mie and the scattering and absorption of light by particles: Historic developments and basics. Journal of Quantitative Spectroscopy and Radiative Transfer, 110(11):787-799, 2009. ISSN: 00224073. DOI: 10.1016/j.jqsrt.2009.02.022 (citado en las págs. 14, 26).
- [26] L. Tsang, J. A. Kong y K.-H. Ding. Scattering of electromagnetic waves: theories and applications. John Wiley & Sons, 2000 (citado en las págs. 16, 41).
- [27] G. B. Arfken y H. J. Weber. Mathematical methods for physicists. Harcourt Academic Press, 2001 (citado en las págs. 19, 20, 23, 24).
- [28] U. Kreibig y M. Vollmer. Optical Properties of Metal Clusters. Springer, 1995 (citado en las págs. 24, 27, 28, 39).
- [29] C. Noguez. Surface Plasmons on Metal Nanoparticles : The Influence of Shape and Physical Environment. J. Phys. Chem, 100(111):3806-3819, 2007 (citado en las págs. 26, 28, 30).
- [30] L. J. Mendoza Herrera, D. M. Arboleda, D. C. Schinca y L. B. Scaffardi. Determination of plasma frequency, damping constant, and size distribution from the complex dielectric

function of noble metal nanoparticles. *Journal of Applied Physics*, **116**(23):233105, 2014. ISSN: 10897550. DOI: 10.1063/1.4904349 (citado en las págs. 26, 28, 29).

- [31] P. B. Johnson y R. W. Christy. Optical constants of the noble metals. *Physical review B*, 6(12):4370, 1972 (citado en las págs. 26, 28-31, 36, 63, 75).
- [32] R. Gross y A. Marx. Festkörperphysik. Walter de Gruyter GmbH & Co KG, 2014 (citado en las págs. 26, 27).
- [33] N. Ashcroft y N. Mermin. Solid State Physics. Saunders College, Philadelphia, 1976 (citado en las págs. 27, 28).
- [34] A. Trügler. Optical properties of metallic nanoparticles. Tesis doctoral, Karl–Franzens– Universität Granz, Graz, Alemania, 2011 (citado en las págs. 27, 35).
- [35] V. B. Svetovoy, P. J. Van Zwol, G. Palasantzas y J. T. M. De Hosson. Optical properties of gold films and the Casimir force. *Physical Review B - Condensed Matter and Materials Physics*, 77(3):1-12, 2008. ISSN: 10980121. DOI: 10.1103/PhysRevB.77.035439 (citado en la pág. 29).
- [36] A. Raja, L. Waldecker, J. Zipfel, Y. Cho, S. Brem, J. D. Ziegler, M. Kulig, T. Taniguchi, K. Watanabe, E. Malic, T. F. Heinz, T. C. Berkelbach y A. Chernikov. Dielectric disorder in two-dimensional materials. *Nature Nanotechnology*, 14(September), 2019. ISSN: 1748-3395. DOI: 10.1038/s41565-019-0520-0. URL: http://dx.doi.org/10.1038/s41565-019-0520-0 (citado en la pág. 29).
- [37] C. A. Maciel Escudero. Linear momentum transfer from swift electrons to small metallic nanoparticles: dipole approximation. Tesis de maestría, Universidad Nacional Autónoma de México, Ciudad de México, México, oct. de 2017 (citado en las págs. 38, 39).
- [38] J. Aizpurua. Coupling of electrons and electromagnetic surface modes in scanning transmission electron microscopy. Tesis doctoral, Universidad de País Vasco, País Vasco, España, 1998 (citado en la pág. 39).
- [39] M. C. Peña-Gomar, F. Castillo, A. García-Valenzuela, R. G. Barrera y E. Pérez. Coherent optical reflectance from a monolayer of large particles adsorbed on a glass surface. *Applied* optics, 45:626-632, 2006. ISSN: 0003-6935. DOI: 10.1364/AD.45.000626 (citado en las págs. 40, 41, 81).
- [40] R. G. Barrera, M. del Castillo-Mussot, G. Monsivais, P. Villaseñor y W. L. Mochán. Optical properties of two-dimensional disordered systems on a substrate. *Phys. Rev. B*, 43(17):13819-13826, 1991. DOI: 10.1103/PhysRevB.43.13819 (citado en las págs. 40, 41, 81).
- [41] A. García-Valenzuela, E. Gutiérrez-Reyes y R. G. Barrera. Multiple-scattering model for the coherent reflection and transmission of light from a disordered monolayer of particles. *JOSA A*, 29(6):1161-1179, 2012 (citado en las págs. 40, 42, 50, 51, 73, 81).
- [42] R. G. Barrera y A. García-Valenzuela. Coherent reflectance in a system of random Mie scatterers and its relation to the effective-medium approach. JOSA A, 20(2):296-311, 2003 (citado en las págs. 42, 44).
- [43] E. Gutiérrez-Reyes, A. García-Valenzuela y R. G. Barrera. Overview of an effective-medium approach to the reflection and refraction of light at a turbid colloidal half-space. *Physica Status Solidi (B) Basic Research*, **249**(6):1140-1147, 2012. ISSN: 03701972. DOI: 10.1002/ pssb.201100735. URL: www.pss-b.com (citado en las págs. 42, 44).
- [44] G. M. Hale y M. R. Querry. Optical Constants of Water in the 200-nm to 200-μm Wavelength Region. Applied Optics, 12(3):555, 1973. ISSN: 0003-6935. DOI: 10.1364/ao.12.000555 (citado en la pág. 52).

- [45] Optical Glass Data Sheets. SCHOTT AG. Mayo de 2019. URL: https://www.schott.com/d/advanced_optics/ac85c64c-60a0-4113-a9df-23ee1be20428/1.14/schott-optical-glass-collection-datasheets-english-may-2019.pdf (citado en la pág. 54).
- $[46] \quad (Citado en la pág. 64).$
- [47] M. Bosetti, A. Massè, E. Tobin y M. Cannas. Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. *Biomaterials*, 23(3):887-92, 2002. ISSN: 0142-9612. URL: http://www.ncbi.nlm.nih.gov/pubmed/11771707 (citado en la pág. 64).
- [48] M. Wuithschick, A. Birnbaum, S. Witte, M. Sztucki, U. Vainio, N. Pinna, K. Rademann, F. Emmerling, R. Kraehnert y J. Polte. Turkevich in New Robes: Key Questions Answered for the Most Common Gold Nanoparticle Synthesis. ACS Nano, 9(7):7052-7071, 2015. ISSN: 1936086X. DOI: 10.1021/acsnano.5b01579 (citado en la pág. 82).

Índice alfabético

Ángulo crítico, véase Incidencia interna, 12 de Brewster, 11 Índice de refracción, véase también Función dieléctrica, 8 Unidades de índice de refracción RIU, 76 Anchura a media altura (FWHM) (Γ), 59, 76 Armónicos esféricos vectoriales, 17 **M** y **N**, 20 $M^{(1)}$ v $N^{(1)}$, 22 $M^{(3)}$ y $N^{(3)}$, 23 expansión de una onda plana en la base de los, 22función generadora solución azimutal de la, 19 función generadora de los, 17, 18 función generadora, de los solución general, 20 solución polar de la, 19 solución radial de la, 19 relaciones de ortogonalidad de los, 21

Bessel

ecuación esférica de, 19 funciones de Riccati-Bessel, 24 funciones esféricas de, 19 relaciones de recurrencia de las, 20 Biosensor, 1 comercial, véase también Plasmón polaritón de superficie (SPP) Figura de Mérito (FoM), 76 de bulto (FoM_B), 76 Brewster ángulo de, 11 Drude-Sommerfeld modelo de, 26, 27 constante fenomenológica de amortiguamiento $(\gamma), 27, 51$ ecuación de movimiento, 27 frecuencia de plasma (ω_p) , 27, 51 Ecuación asociada de Legendre, 19 de Helmholtz, 8, 16 de movimiento de un electrón libre, véase también Drude-Sommerfeld, 27de onda, 8 esférica de Bessel, 19 Eficiencia, véase también Sección transversal de absorción, 38 de esparcimiento, 38de extinción, 38 Electrón libre, 27 masa efectiva del, 27 Electromagnéticos campos condiciones a la frontera de los, 9 condiciones a la frontera de una esfera de los, 22, 23 lejano, 16, 24 operador de campo lejano, 16, 42 Esparcimiento de luz, véase Mie Coherente, Modelo de (CSM), 41 de Mie, matriz de, 25, 43Individual, Aproximación de (SSA), 42

campo eléctrico esparcido promedio, 42coeficientes de amplitud, 43 Múltiple (MS), 40 campo eléctrico esparcido promedio, 44 matriz de, 16 Fermi velocidad de, 27, 28 Fourier transformada de, 8Fresnel coeficientes de amplitud de (r, t), 10, 48 relaciones de Stokes, 49 ecuaciones de, 10Reflectancia (R), 13 Transmitancia (T), 13 Función dieléctrica, 8, 26 Absorción, 14 de la plata, 30 del oro, 30interbanda, 26 intrabanda, 26 para partículas esféricas, corrección por tamaño de la, 29 tipo Drude, 27 Hankel, véase Bessel funciones de Riccati-Bessel, 24 funciones esféricas de, 20 límite asintótico de las, 22, 24 Incidencia externa, 11, 53 interna, 11, 54 Kronecker delta de, 17, 19 Legendre ecuación asociada de, 19 funciones asociadas de, 19 functiones π_{ℓ} y τ_{ℓ} , 23 functiones $\pi_{\ell} \neq \tau_{\ell}$, ortogonalidad, 23 relaciones de ortogonalidad de las, 19 relaciones de recurrencia de las, 23 polinomios de, 19

Lev de la reflexión, 9 de Snell, 9 Maxwell ecuaciones de, 7 solución de ondas planas a las, 8 transformada de Fourier de las, 16 Mie coeficientes de. 24. 38 expansión multipolar, 24 matriz de esparcimiento de, 25, 43 elementos de la $[S_i(\theta)], 43$ solución de, 14, 26 campos electromagnéticos dentro de una partícula esférica, 22, 24 campos electromagnéticos esparcidos por una partícula esférica, 23, 24 Onda esférica, 22 evanescente, 28, 32, 54 plana, 8 en la base cartesiana canónica, 8 en la base de los armónicos esféricos vectoriales, 22 en la base esférica canónica, 21 Ortogonalidad armónicos esféricos vectoriales, relaciones de, 21 funciones π_{ℓ} y τ_{ℓ} , relaciones de, 23 funciones asociadas de Legrende, relaciones de, 19 seno y coseno, relaciones de, 19 Plano de esparcimiento, 15de incidencia, 10 Plasmón, 30 de volumen, 32de Superficie Localizado, Resonancia de (LSPR), 30, 40 modos normales, 39de superficie localizado, resonancia de (LSPR), 36 Polaritón de Superficie (SPP), 30, 34 longitud de penetración (ξ) , 32 Polarización

de una onda plana, 10 respecto al plano de esparcimiento, 15 paralela (||), 15 perpendicular (\perp), 15 respecto al plano de incidencia paralela (p), 10 perpendicular (s), 10 Poynting vector de, 9 promedio temporal del, 12 Reflexión total

atenuada, 35, 51

interna, 12 Relación de dispersión, 8, 32, 35 de una onda plana, 8 del plasmón de volumen, 32 del SPP, *véase* Plasmón Riccati-Bessel funciones de, 24, 37 límite asintótico de las, 24

Sección transversal, véase también Eficiencia de absorción, 38 de esparcimiento, 38 de extinción, 38