

Universidad Nacional Autónoma de México Posgrado en Ciencias de la Tierra Centro de Geociencias

Caracterización isotópica de los clastos metamórficos de los conglomerados basales de la Formación Matzitzi, Puebla y sus implicaciones tectónicas

> **Tesis** Que para optar por el grado de: Maestra en Ciencias de la Tierra

Presenta Mariana Jaramillo Jaramillo

Tutor Dr. Luigi A. Solari Centro de Geociencias, UNAM

Miembros del comité evaluador

Dr. Fernando Ortega Gutiérrez, Instituto de Geología, UNAM Dr. Peter Schaaf, Instituto de Geofísica, UNAM Dra. María Teresa Orozco Esquivel, Centro de Geociencias, UNAM Dr. H. Rafael Torres de León, ENES, Unidad Morelia, UNAM

> Querétaro, México Noviembre, 2019

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor. "Declaro conocer el Código de Ética de la Universidad Nacional Autónoma de México, plasmado en la Legislación Universitaria. Con base en las definiciones de integridad y honestidad ahí especificadas, aseguro mediante mi firma al calce que el presente trabajo es original y enteramente de mi autoría. Todas las citas de, o referencias a la obra de otros autores aparecen debida y adecuadamente señaladas, así como acreditadas mediante los recursos editoriales convencionales".

Mariana Jaramillo

Mariana Jaramillo Jaramillo

Contenido

1.	Intro	oducción	1			
	1.1.	Objetivos	2			
2.	Mar	co geológico				
	2.1.	Orógeno Grenvilliano				
	2.2.	El Orógeno Grenvilliano en México: Microcontinente Oaxaquia	3			
	Con	nplejo Oaxaqueño				
	Con	nplejo Guichicovi	4			
	Gne	is Huiznopala	4			
	Gne	iss Novillo	5			
	2.3.	Geología del área de estudio	5			
3.	Met	odología	8			
	3.1.	Recolección de muestras	8			
	3.2.	Petrografía	8			
	3.3.	Microanálisis de zircones con LA–ICP–MS	8			
4.	Res	ultados	11			
	4.1.	Petrografía	11			
	4.2.	Geocronología U–Pb, elementos traza e isótopos de Hf en zircón	17			
	4.3.	Mapeo elemental e isotópico de zircones con LA–ICP–MS				
5.	Disc	usión				
6.	Con	clusiones	71			
Re	ferenc	ias	73			
An	exo 1.	Datos de la geocronología U–Pb en zircón	82			
An	exo 2.	Datos elementos traza en zircón				
An	Anexo 3. Imágenes de catodoluminiscencia de las muestras					
An	Anexo 4. Datos de isótopos de Hf en zircón135					
An	nexo 5. Tabla con la recopilación de las edades U—Pb de las unidades de Oaxaquia 143					

Agradecimientos

Agradezco al CONACYT por la beca que me brindó para realizar la maestría y al Proyecto PAPIIT-DGAPA IN103417 por los recursos dados para la investigación.

Estoy muy agradecida con mi asesor, el Dr. Luigi Solari, por su apoyo y acompañamiento en el desarrollo del proyecto. Agradezco también a la Dra. Teresa Orozco y al Dr. Carlos Ortega por sus observaciones durante la realización del proyecto. Especialmente, agradezco al Dr. Carlos Ortega por su ayuda y paciencia para realizar los experimentos en el LEI. También agradezco a los miembros del comité evaluador por sus comentarios para mejorar el manuscrito.

Gracias a Juanito por el apoyo en la elaboración de las láminas delgadas y a las personas del centro de cómputo del Centro de Geociencias, en especial a César Contreras, por el soporte brindado en la recuperación de información valiosa.

De igual forma agradezco a las personas que me ayudaron en la recolección de las muestras, Aleja, Sandra, Raúl, Ricardo y Maria Isabel.

También quisiera expresar mi gratitud a mis amigos, que hicieron que este tiempo en México fuera memorable.

Finalmente, gracias a mi familia por su apoyo.

Resumen

En el E y SE de México afloran unidades mesoproterozoicas aisladas – Gneises de Novillo y Huiznopala, y los Complejos de Guichicovi y Oaxagueño – que se han interpretado como fragmentos del microcontinente Oaxaguia. El cual es una porción significativa del Orógeno de Grenvilliano, por lo tanto, la evolución de este bloque cortical puede avudar a restringir las reconstrucciones tectónicas relacionadas con el ensamble del supercontinente de Rodinia. En este trabajo se realizaron análisis petrográficos, geocronología de U–Pb y determinaciones isotópicas de Lu-Hf en zircón con LA-ICP-MS en muestras del afloramiento más septentrional del Complejo Oaxaqueño, ubicado en el sur de México; así como en los clastos gnéisicos de la Formación Matzitzi del Paleozoico-Triásico temprano, una unidad sedimentaria continental para la cual los estudios de procedencia previos sugieren una fuente principal de grenvilliana. Esta forma de muestreo se empleó para obtener información de una amplia gama de muestras y posiblemente de unidades que no se han muestreado in situ. La mayoría de los clastos gnéisicos tienen una distribución de edad U–Pb unimodal, registrando un evento de cristalización de ca. 1.2-1.25 Ga. Mientras que uno en particular tiene un componente más antiguo con núcleos del Paleoproterozoico. Además, una muestra registra un evento de ca. 1.0 Ga. Asimismo, los isótopos de Hf revelan que los zircones de los clastos tienen un rango de εHf (1.2 Ga) ≈ + 1 a +5 y edades modelo de Hf entre 1.7 - 1.9 Ga. Por otro lado, el basamento in situ también registra los eventos de ca. 1.2 y 1.0 Ga, además, tiene un rango más alto de ɛHf (1.2 Ga) ≈ + 7 a + 9 y edades modelo de Hf de 1.5 a 1.6 Ga. Los eventos registrados de 1.2 Ga y 1.0 Ga son consistentes con la edad del arco magmático y metamorfismo de Oaxaquia, respectivamente. Los isótopos de Hf indican que el reciclaje de la corteza fue el proceso dominante durante la evolución del orógeno. El basamento in situ tiene un precursor cortical similar a lo que se ha llamado "Oaxaquia típica", representando el end-member menos evolucionado de este campo, mientras que los clastos provienen de una fuente con la influencia de una corteza más antigua. Los resultados de U-Pb e isótopos de Hf en zircones de los clastos gnéisicos de la Formación Matzitzi soportan una fuente local de los sedimentos, provenientes de las unidades proterozoicas de Oaxaguia. Alternativamente, los clastos también podrían representar porciones de Báltica cabalgadas sobre Oaxaquia durante la Orogenia Grenville.

Abstract

Isolated Mesoproterozoic inliers of lower crustal rocks in E and SE Mexico -the Novillo and Huiznopala gneisses, and the Guichicovi and Oaxacan Complexes- have been interpreted as fragments of the Oaxaguia microcontinent. Oaxaguia is a significant portion of the Grenville orogen, therefore, the evolution of this crustal block can help to constrain the tectonic reconstructions related to the assembly of the Rodinia supercontinent. In this work, petrographic analysis, U–Pb geochronology and Lu–Hf isotopic determinations in zircon by LA–ICP–MS were conducted in samples of the northernmost exposure of the Oaxacan Complex, located in southern Mexico; as well as in gneissic clasts from the overlying late Paleozoic-Early Triassic sedimentary Matzitzi Formation, a continental unit for which previous provenance studies suggest a Grenvillian main source. This sampling approach was taken to get information from a wide range of samples and possibly from units that have not been sampled in situ. Most clasts have a unimodal U–Pb age distribution, recording a crystallization event at ca. 1.2-1.25 Ga. While one sample in particular has an older component with Paleoproterozoic cores. Additionally, one sample records a ca. 1.0 Ga event. Furthermore, Hf isotopes reveal that zircons from the clasts have a range of ε Hf (1.2 Ga) \approx +1 to +5 and yield Hf model ages from 1.7 to 1.9 Ga. On the other hand, the in situ basement also records the ca. 1.2 and 1.0 Ga events and has a higher range of ɛHf (1.2 Ga) ≈+7 to +9 and Hf model ages from 1.5 to 1.6 Ga. The 1.2 Ga and 1.0 Ga recorded events are consistent with the age of arc magmatism and metamorphism elsewhere in Oaxaquia, respectively. The Hf isotopes indicate that crustal reworking was the dominant process during the evolution of the orogen. The in situ basement has a crustal precursor similar to what has been called "typical Oaxaguia", representing a less evolved end-member of this field, whereas the clasts come from a source that had the influence of an older crust. The results of U–Pb and Hf isotopes in zircon of the gneissic clasts of the Matzitzi Formation support a local provenance for sediments, from the Proterozoic units of Oaxaquia. Alternatively, these clasts can also represent slices of Baltica thrusted over Oaxaguia during the Grenville orogeny.

1. Introducción

En el este y sureste de México afloran unidades metamórficas aisladas en facies de granulita del Mesoproterozoico que comparten unos rasgos geológicos que sugieren una evolución tectónica común y que han sido interpretadas como parte del microcontinente Oaxaquia (Ortega-Gutiérrez et al., 1995). La evolución geológica de Oaxaquia comprende un arco entre 1.30-1.20 Ga, la intrusión de suites de anortosita, mangerita, charnoquita y granito (AMCG) entre 1.02-1.00 Ga y metamorfismo en facies de granulita alrededor de 0.99 Ga (Keppie & Ortega-Gutiérrez, 2010; y referencias allí citadas).

Los fechamientos U–Pb en zircones de Oaxaquia han arrojado edades típicas de cristalización de protolitos ígneos de ca. 1.2 Ga con un carácter isotópico de Hf moderadamente juvenil (e.g. Weber et al., 2010; Weber & Schulze, 2014; Solari et al., en prensa). Adicionalmente, se ha encontrado evidencia de un evento de cristalización de ca. 1.4-1.5 Ga en ortogneises que presentan núcleos heredados o intersecciones superiores con estas edades, como Gneis Huiznopala, la Migmatita El Catrín y ortogneises del área de Pluma Hidalgo (Solari et al., 2003; Schulze, 2011; Weber & Schulze, 2014), además, de picos de probabilidad de ca. 1.4 en paragneisses del Complejo Oaxaqueño (Solari et al., 2014). Por otra parte, se han reportado componentes heredados más antiguos en algunas unidades, con edades de hasta ca. 1.6 – 2.0 Ga (Weber et al. 2010; Weber & Schulze, 2014; Solari et al., 2014). Basados en diferencias en isótopos de Hf y geocronología U–Pb en zircones, Weber et al. (2010) hicieron una distinción entre "Oaxaquia típica" caracterizada por corteza podo diferenciada del Mesoproterozoico y otras porciones denominadas como "Oaxaquia continental" caracterizadas por la influencia de una corteza más antigua. Asimismo, Weber & Schulze (2014) sugirieron la existencia de un arco oceánico "proto-Oaxaquia" entre 1.5-1.4 Ga, que generó la corteza poco diferenciada sobre la que se desarrolló Oaxaquia. Sin embargo, no se han encontrado rocas con la misma composición isotópica de Hf del manto empobrecido.

Durante los procesos orogénicos, el metamorfismo de alto grado puede promover el crecimiento de zircón, la modificación de zircones antiguos o ambos (e.g. Halpin et al. 2012; Kröner et al. 2014; Chew et al. 2017). El análisis microanalítico de zircones de cinturones orogénicos comprende geocronología U–Pb, isótopos de Lu–Hf y análisis elementales, que combinados tienen el potencial de descifrar procesos de crecimiento de la corteza y pueden ser de gran ayuda para correlacionar unidades y entender configuraciones tectónicas antiguas. Oaxaquia ha sido ubicada en diferentes posiciones en las reconstrucciones paleogeográficas y se ha destacado su carácter alóctono con respecto a Laurencia (Ortega-Gutiérrez et al., 1995). Este microcontinente constituye una porción significativa del Orógeno Grenvilliano, por lo tanto, el registro de eventos tectónicas relacionadas con el ensamble del supercontinente Rodinia (e.g., Weber et al., 2010; Weber & Schulze, 2014; Solari et al., 2014).

En el área de Los Reyes Metzontla se encuentra el afloramiento más septentrional del Complejo Oaxaqueño (Fig. 1) y también aflora la Formación Matzitzi, una sucesión clástica continental, de la cual estudios de proveniencia anteriores sugieren una fuente principal grenvilliana (Bedoya-Mejía, 2018). En este trabajo se caracterizó con geocronología U–Pb e isótopos de Hf en zircones esta porción del Complejo Oaxaqueño, así como clastos gnéisicos de los conglomerados basales de la Formación Matzitzi. Además, se empleó una aplicación reciente en el campo de la geocronología U–Pb, el mapeo geocronológico y elemental de zircones con LA–ICP–MS (Chew et al., 2017) que puede ser de gran ayuda en el estudio de zircones complejos. Esta porción del Complejo Oaxaqueño no ha sido caracterizada con isótopos anteriormente, por lo que se desconoce si presenta las mismas características que tiene el complejo más al sur, si tiene afinidad con otras de las unidades de Oaxaquia o representa una unidad diferente. Por otra parte, el muestreo de clastos puede

tener un alto potencial para obtener información de un amplio rango de muestras y posiblemente de unidades que no han sido muestreadas en campo o que no afloran.

1.1. Objetivos

Los objetivos del trabajo son: (1) Caracterizar isotópicamente con U–Pb y Lu–Hf en zircones la porción más septentrional del Complejo Oaxaqueño y los clastos gnéisicos de los conglomerados basales de la Formación Matzitzi. (2) Realizar mapas geocronológicos y elementales de zircones, y usar estos como herramienta para evaluar los eventos registrados en los cristales. (3) Comparar las características isotópicas y geocronológicos obtenidas con las de otros bloques proterozoicos pertenecientes a Rodinia.

Figura 1. Mapa geológico del sur de México mostrando la localización del área de estudio en el recuadro amarillo. Los límites y nomenclatura de terrenos son de acuerdo con Sedlock et al., (1993). Tomado de Elías-Herrera et al. (2005).

2. Marco geológico

2.1. Orógeno Grenvilliano

La Orogenia Grenville agrupa una serie de eventos tectonotérmicos ocurridos entre ca. 1.3- 0.9 Ga que dieron origen al supercontinente Rodinia (e.g. Rivers, 1997; Li et al., 2008; Cawood & Pisarevsky, 2017). Este evento orogénico involucró a casi todos los bloques corticales existentes en este tiempo y actualmente se encuentran fragmentos grenvillianos dispersos en Norteamérica, Suramérica, Groenlandia, Escandinavia, Escocia, Antárctica y Australia (Tollo, 2005; Li et al., 2008). La Provincia Grenville, ubicada en el este de Canadá y en la cual se han identificado diferentes pulsos entre 1.3-0.9 Ga, da el nombre a esta orogenia; sin embargo, el término grenvilliano cubre este rango de edades y es usado comúnmente en sentido cronológico, sin referirse a un punto geográfico específico y los diferentes eventos reciben nombres distintos según la localidad donde fueron descritos.

2.2. El Orógeno Grenvilliano en México: Microcontinente Oaxaquia

El microcontinente Oaxaquia fue definido por Ortega-Gutiérrez et al. (1995) para referirse a las rocas mesoproterozoicas en facies de granulita que constituyen el basamento de la parten oriental y sur de México, que comparten una historia proterozoica similar, incluyendo un arco entre 1.30-1.20 Ga, la intrusión de suites AMCG entre 1.02-1.00 Ga y metamorfismo en facies de granulita alrededor de 0.99 Ga (Keppie & Ortega-Gutiérrez, 2010; y referencias allí citadas). Oaxaquia aflora de forma discontinua en el territorio mexicano y está constituida por cuatro unidades: el Complejo Oaxaqueño, el Complejo Guichicovi, el Gneis Huiznopala y el Gneis Novillo (Fig. 2).

Complejo Oaxaqueño

El Complejo Oaxaqueño es el afloramiento más grande (aproximadamente 7.000 km²) del basamento mesoproterozoico de México y se encuentra en el estado de Oaxaca y en el sur de Puebla (Fig. 1-2). Este complejo constituye el basamento del terreno Zapoteco, según la terminología de Sedlock et al. (1993), y está limitado por la Faja Volcánica Transmexicana al norte, al sur por la Falla Chacalapa, al oeste por la Falla Caltepec y al este por la Falla Oaxaca. La Falla Chacalapa lo yuxtapone con gneises migmatíticos mesozoicos del Complejo Xolapa (terreno Chatino); la Falla Caltepec define el contacto con el Complejo Acatlán de edad paleozoica (terreno Mixteco); y la franja milonítica de la Sierra de Juárez asociada a la Falla de Oaxaca marca el contacto con rocas jurásico-cretácicas de corteza oceánica y arco magmático del terreno Cuicateco (Alaniz-Álvarez et al., 1996; Elías-Herrera et al., 2005; Tolson, 2015). Este complejo ha sido estudiado en dos áreas principalmente, la región septentrional, alrededor de la ciudad de Oaxaca y la parte sur, cerca de Pluma Hidalgo, Estado de Oaxaca.

El Complejo Oaxaqueño está compuesto por rocas metaígneas (granitos, tonalitas, sienitas, gabros, y anortosita) y rocas metasedimentarias (metapelitas, mármoles, calcisilicatos, gneises cuarzo-feldespáticos y gneises con grafito) afectadas por metamorfismo en facies de granulita. En las rocas del área de Pluma Hidalgo y en la Migmatita El Catrín se han estimado edades de cristalización entre 1.4-1.5 Ga (Solari et al., 2003; Schulze, 2011; Weber & Schulze, 2014). Entre 1.2-1.3 Ga se formaron las rocas sedimentarias que dieron origen a los paragneisses y durante este periodo éstas fueron intrusionadas por cuerpos máficos con firma de arco en el sur e intraplaca en el norte (Keppie & Ortega-Gutiérrez, 2010). También se registró la intrusión a ca. 1140-1150 Ma de charnoquitas, sienitas y anortositas en el norte y granitoides en el sur del complejo en un posible ambiente de trasarco. Según Solari et al. (2003), hubo un evento de migmatización

en el norte del complejo evidenciado en la Migmatita El Catrín (ca. 1.10 Ga, evento Olmeca) casi sincrónico con la intrusión de granitos intraplaca en el sur. La intrusión de suites AMCG en todo el complejo se registra a ca.1010-1006 Ma (Keppie et al., 2003; Weber et al., 2010). El metamorfismo de alto grado tuvo lugar entre ca. 990-980 Ma (evento Zapoteca; Solari et al., 2003) y alcanzó condiciones de P-T de 7.2-8.2 kb y 700-825 °C en el norte (Mora et al., 1986) y de 8 kb y 800-900 °C en el sur (Schulze, 2011). Además, se registran algunas pegmatitas pretectónicas, sintectónicas y postectónicas con respecto al evento metamórfico granulítico, que presentan edades en los rangos de 1190 ± 7 a 1201 ± 5 Ma, 980 ± 5 a 981 ± 7 Ma y 963 ± 7 a 977 ± 5 Ma, respectivamente (Solari et al., 2003; Shchepetilnikova et al., 2015).

Figura 2. Mapa con la ubicación de las unidades mesoproterozoicas aflorantes en México y la extensión propuesta para el microcontinente Oaxaquia. Tomado de Weber & Schulze (2014).

Complejo Guichicovi

El Complejo Guichicovi aflora en el sureste de México, en el Istmo de Tehuantepec, Oaxaca (Fig. 2). Está compuesto por una serie de rocas metaígneas en el norte y oeste del complejo (gneises anortosíticos-tonalitícos, granulitas máficas, anfibolitas, charnoquitas y ortogneises) y una unidad metasedimentaria en el sureste (gneises cuarzo-feldespáticos con granate y/o biotita, gneises con grafito y mármoles impuros) (Weber & Hecht, 2003; Weber & Schulze, 2014). Las ortogneises tienen protolitos entre 1.25-1.20 Ga con firmas de arco magmático, mientras que el metamorfismo en facies de granulita (ca. 990-970) alcanzó condiciones de P–T de 7.4 kb y 840°C (Murillo-Muñetón, 1994; Weber & Hecht, 2003; Weber et al., 2010). Los paragneises de este complejo tienen zircones detriticos de hasta del Paleoproterozoico, indicando una fuente cratónica (Weber & Schulze, 2014).

Gneis Huiznopala

El Gneis Huiznopala se encuentra en el este del territorio mexicano en Molango, estado de Hidalgo (Fig. 2). Está compuesto por tres unidades diferentes todas bajo metamorfismo en facies de granulita: la Serie Principal de ortogneises (charnoquitas, metatonalitas y gneises graníticos con granate), la Unidad Supracortical (una secuencia de mármoles silícicos y paragneises granatíferos y calcisilicatados) y un complejo de anortositas y gabros (Lawlor et al., 1999; Weber & Schulze, 2014). Los ortogneises de la Serie Principal registran dos eventos magmáticos, el más antiguo con una edad de ca. 1.4 Ga (Weber & Schulze, 2014) y un magmatismo de arco entre 1.25-1.15 Ga (Lawlor et al., 1999; Weber & Schulze, 2014). Adicionalmente, estos ortogneises tienen un componente heredado con zircones entre 1.7-2.0 Ga, lo que indica la presencia de una corteza continental más antigua; sin embargo, los paragneises no presentan zircones detríticos del Mesoproterozoico temprano o más antiguos (Weber et al., 2010; Weber & Schulze, 2014). El complejo de anortosita-gabro se emplazó a ca. 1.0 Ga y el metamorfismo en facies de granulita (ca. 990 Ma) tuvo una temperatura de 725±50°C y 7.2±1.0 kb en su pico (Lawlor et al., 1999).

Gneiss Novillo

El Gneis Novillo es el afloramiento más septentrional de Oaxaquia en México y se encuentra al oeste de Ciudad Victoria, estado de Tamaulipas (Fig. 2). Está compuesto por una suite gabroica-potásica con características geoquímicas de arco y trasarco (ca. 1235-1175 Ma) intruida por una suite AMCG (ca. 1033-1010 Ma) y otra unidad metasedimentaria (gneises cuarzo-feldespáticos con granate y grafito, mármoles y rocas calcosilicatadas). Todas las unidades están afectadas por metamorfismo en facies de granulita (ca. 990 Ma; (Cameron et al., 2004; Weber et al., 2010) con condiciones de presión y temperatura en el pico de metamorfismo de 8.9-9.7 kb y 730-775 °C, respectivamente (Orozco-Esquivel, 1991).

2.3. Geología del área de estudio

En el área de los Reyes Metzontla aflora la porción más septentrional del Complejo Oaxaqueño, así como rocas polimetamórficas paleozoicas del Complejo Acatlán (Figs.1 y 3). Estos complejos constituyen los basamentos cristalinos de los terrenos Zapoteco y Mixteco, respectivamente; y están yuxtapuestos por la falla de Caltepec, una falla de rumbo lateral derecha con dirección NS (Sedlock et al., 1993; Elías-Herrera & Ortega-Gutiérrez, 2002). En esta zona el Complejo Acatlán está representado por la Formación Metzontla, una secuencia metavolcanosedimentaria en facies de esquisto verde, compuesta por filitas, calcarenitas, metacalizas y esquistos de actinolita (Elías-Herrera et al., 2011). El Granito Cozahuico es un cuerpo sintectónico que ha sido interpretado como el plutón que sella la sutura entre ambos terrenos, y del cual se han obtenido edades U–Pb de ca. 270 Ma, datando la edad de la sutura (Elías-Herrera et al., 2005). Ambos complejos están cubiertos discordantemente o están en contacto fallado con la Formación Matzitzi, una unidad sedimentaria clástica paleozoica, que es considerada como la unidad de traslape (Elías-Herrera et al., 2005; Centeno-García et al., 2009). La Formación Matzitzi subyace discordantemente a los conglomerados rojizos de la Formación Caltepec del Cretácico Inferior (Mendoza-Rosales, 2010). A continuación, se hace una descripción más amplia de la Formación Matzitzi.

Formación Matzitzi

La Formación Matzitzi es una sucesión sedimentaria que aflora entre los poblados de Los Reyes Metzontla, San Luis Atolotitlán y Santiago de Coatepec, y en una porción de la carretera Tehuacán-Oaxaca (Fig.3). Está conformada por conglomerados, areniscas, limolitas y lutitas con abundante contenido de flora fósil y fue depositada en un ambiente continental sobre la sutura del Pérmico temprano entre los complejos metamórficos Oaxaqueño y Acatlán –cubriendo discordantemente a los basamentos metamórficos y a la zona de Falla de Caltepec (Centeno-García et al., 2009; Elías-Herrera et al., 2011). Un estudio de proveniencia con zircones y apatitos detríticos, y petrografía indican una fuente principal grenvilliana (Bedoya-Mejía, 2018). En la parte basal se encuentran estratos de conglomerados gruesos que contienen principalmente clastos gnéisicos, el objeto de estudio de este trabajo. Estos fueron descritos por Centeno-García et al. (2009) como conglomerados masivos, matriz a clasto soportados, sin estructuras sedimentarias primarias, con clastos subredondeados a bien redondeados y tamaños entre guija y bloque (Fig. 4). Los estratos alcanzan espesores de 3 m y extensiones laterales de 100 m en la zona de Coatepec, formando un paquete de aproximadamente 80 m; y se encuentran interestratificados con areniscas gruesas con gradación normal e inversa y estratos delgados de lutita carbonosa con fósiles de plantas. Según Centeno-García et al. (2009) éstos fueron depositados en un ambiente aluvial y fluvial. Weber (1997), con base en la similitud de una planta fósil con la flora pérmica de Texas, le asignó una edad del Pérmico temprano, sin embargo, la naturaleza sinsedimentaria de la Felsita Atolotitlán de ca. 240 Ma fechada con geocronología U–Pb en zircones restringe la edad de la Formación Matzitzi al Pérmico tardío (Lopingiano) y al Triásico Medio (Elías-Herrera et al., 2011; Bedoya-Mejía, 2018).

Figura 3. Mapa geológico del área de los Reyes Metzontla, sur de Puebla (Elías-Herrera et al., 2011). Los puntos rojos indican las localidades donde se muestrearon clastos y los puntos amarillos indican en cuales se tomaron muestras in situ del Complejo Oaxaqueño.

Figura 4. (a-b) Afloramientos de conglomerados de la Formación Matzizi con clastos gnéisicos redondeados y tamaños entre guija y bloque. (c) Afloramiento del contacto tectónico entre el Complejo Oaxaqueño y conglomerados de la Formación Matzitzi. (d) Afloramiento del Complejo Oaxaqueño con rocas altamente alteradas, con meteorización esferoidal. Localización: (a-b) Barranca Las Pilas, Santiago Coatepec, (c-d) Autopista Tehuacán-Oaxaca, cerca del puente de Santa Lucía.

3. Metodología

3.1. Recolección de muestras

Se recolectaron muestras de clastos metamórficos de los conglomerados basales de la Formación Matzitzi en las localidades de Santiago Coatepec, Puebla en la Barranca Las Pilas y en la autopista Tehuacán-Oaxaca, cerca del puente de Santa Lucía. Adicionalmente se tomaron dos muestras *in situ* del Complejo Oaxaqueño (M40 y M50) en la barranca al oeste de Santiago Coatepec (Fig. 3-4). Las coordenadas de las estaciones donde se tomaron las muestras se encuentran en la tabla 1.

Tabla 1. Localización de las estaciones donde se tomaron las muestras, con los respectivos códigos de estas.

Muestras	Coordenadas
M1Ca, M1Cf, M1Ch, M1Ci, M2Cb, M2Cc, M3Ce, M3Cg	18° 10′ 11.16″ N, 97° 23′ 25.68″ W
M4Ca, M4Cb	18° 05′ 24.24″ N, 97° 20′ 20.51″ W
M40	18° 10′ 57.47″ N, 97° 24′ 26.56″ W
M50	18° 10′ 17.59″ N, 97° 24′ 37.36″ W

3.2. Petrografía

Las láminas delgadas fueron elaboradas en el taller de laminación del CGEO, UNAM. El análisis petrográfico se llevó a cabo en microscopios de luz transmitida del Laboratorio de Microscopía Electrónica del CGEO, UNAM. Este análisis comprendió la descripción textural, la identificación de minerales primarios y secundarios, y la asignación de porcentajes de minerales de manera visual.

3.3. Microanálisis de zircones con LA–ICP–MS

Los microanálisis de zircones con LA–ICP–MS, que comprenden análisis puntuales de U–Pb y REE, isótopos de Lu–Hf y mapeo elemental y geocronológico fueron realizados en el Laboratorio de Estudios Isotópicos (LEI) del CGEO, UNAM.

Preparación de muestras

Las muestras de roca fueron trituradas, tamizadas y bateadas para obtener una concentración de minerales densos, de la cual se realizó la separación manual de zircones. Los cristales fueron montados en resina epóxica y pulidos para exponer el interior de los cristales.

Con el fin de seleccionar los puntos de medición en los zircones, se obtuvieron imágenes de catodoluminiscencia (CL) con una platina de catodoluminiscencia Relion acoplada a una lupa binocular Olympus SXZ12 en el Laboratorio de Fluidos Corticales del Centro de Geociencias (CGEO), UNAM. La selección de los puntos se enfocó en los núcleos de los cristales y se seleccionaron alrededor de 30-60 puntos por muestra.

3.3.1. Análisis puntuales: Geocronología U–Pb y elementos traza

El sistema usado para realizar los análisis puntuales está conformado por una estación Resonetics M-50 con un láser de excímeros de ArF con longitud de onda de 193 nm (LPX Pro de Coherent) y una celda de doble volumen de washout rápido. Este sistema láser está acoplado a un espectrómetro de masas cuadrupolar Thermo Scientific iCAP Qc. Una descripción detallada del sistema y del método empleado se encuentra en Solari et al. (2018). El gas transportador de este sistema se compone de 350 ml/min de He y ~700 ml/min de Ar, al cual se le agregan ~4 ml/min de N₂ después de la ablación. Antes de que el material ablacionado llegue al plasma se encuentra el "squid" un dispositivo que homogeniza la señal.

Los parámetros analíticos usados se encuentran en la tabla 2. Los zircones de referencia 91500 (ca. 1065 Ma; Wiedenbeck et al., 1995) y Plešovice (ca. 337 Ma; Sláma et al., 2008) fueron analizados para ser usados como estándar primario y secundario, respectivamente. El estándar primario es utilizado para calcular el factor de corrección y la corrección de la deriva instrumental, mientras que el estándar secundario es usado para la validación (Horstwood et al., 2016). También se analizó el vidrio NIST 610 para recalcular las concentraciones elementales. Como estándar interno se usó el ²⁹Si, asumiendo un valor estequiométrico de 15.323% . Adicionalmente a los isótopos necesarios para la geocronología U–Pb (²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb, ²³²Th, y ²³⁸U), se midieron otros isótopos como ¹⁷⁹Hf, ³¹P, ⁴⁹Ti, ⁸⁹Y, ⁹³Nb, ⁴⁵Sc y los elementos de tierras raras (REE) que son útiles para la identificación de inclusiones y para la petrogénesis de zircones.

El espectrómetro de masas fue optimizado al inicio de cada sesión analítica usando el vidrio de referencia NIST SRM 612 que fue escaneado con una velocidad o.5 mm/s, una tasa de repetición de 10 Hz y un spot de 80 µm hasta alcanzar valores U/Th entre 1-1.05, UO/U <0.2%, ThO/Th < 1% y cuentas por segundo de ²³⁸U > 1,000,000. Una sesión de análisis consistía de dos mediciones del vidrio NIST 610, cinco del zircón 91500, tres del zircón Plešovice al iniciar la sesión, seguidas de intervalos de análisis de los zircones de edad desconocida, los cuales estaban conformados de la siguiente forma: diez mediciones de zircones desconocidos, dos del zircón 91500 y uno de Plešovice; adicionalmente, cada treinta zircones se realizaba un análisis extra del vidrio NIST 610. Al finalizar se realizaba una medición del estándar Plešovice, dos del 91500 y una del vidrio NIST 610. El tiempo total de análisis por circón fue de 60 segundos, de los cuales 15 son de pre-ablación, 30 de ablación y 15 de post-ablación.

La reducción de los datos, propagación de errores y cálculo de edades se realizaron en lolite v3.7 (Paton et al., 2011) usando los esquemas de reducción VisualAge (Petrus & Kamber, 2012) y Trace_elements. Se aplicó una corrección por fraccionamiento de profundidad y no se realizó corrección de Pb común, debido a la interferencia entre el ²⁰⁴Pb y el ²⁰⁴Hg. Los datos fueron exportados de lolite y fueron procesados en Excel usando lsoplot v. 4.15 (Ludwig, 2012).

Láser	
Instrumento	Resolution M-50, láser de excímeros de ArF, 193 nm
Tasa de repetición del láser	5 Hz
Densidad de energía	6 J/cm²
Tamaño del spot	23 µm
Profundidad de perforación	<10 µm
Flujo de He acarreador	350 ml/min
Flujo de Ar auxiliar	700 ml/min – 1 l/min
Flujo de N₂ acarreador	4 ml/min
Espectrómetro de masas	
Instrumento	Thermo Scientific iCAP Qc
Plasma RF power	1500 W
Elementos medidos	²⁰⁶ Pb, ²⁰⁷ Pb, ²⁰⁸ Pb, ²³² Th, ²³⁸ U, ¹⁷⁹ Hf, ³¹ P, ⁴⁹ Ti, ⁸⁹ Y, ⁹³ Nb, ⁴⁵ Sc y REE
Tiempo de adquisición de línea base	155
Tiempo de ablación	30 S
Tiempo de washout	15 \$

Tabla 2. Parámetros analíticos para los análisis puntuales U–Pb y trazas

3.3.2. Isótopos de Hf

Los análisis de Hf también fueron llevados a cabo en el LEI, UNAM, empleando el sistema láser descrito anteriormente acoplado a un espectrómetro de masas multicolector Neptune Plus ICPMS y siguiendo la metodología descrita por Ortega-Obregón et al. (2014). Para estos análisis se seleccionaron algunos zircones con edades U–Pb concordantes. Los análisis in situ de isótopos de Hf fueron realizados sobre los mismos puntos donde previamente se llevaron a cabo los análisis puntuales de U–Pb. Los parámetros analíticos usados se encuentran en la Tabla 3.

El espectrómetro de masas fue optimizado al inicio de la sesión analítica usando el vidrio de referencia NIST SRM 610 que fue escaneado con una tasa de repetición de 5 Hz y un spot de 32 μ m hasta alcanzar valores U/Th entre 1-1.1, óxidos de ThO/Th < 1%, UO/U < 0.2% y señal de ¹⁷⁷Hf > 100 mV.

Láser				
Instrumento	Resolution M-50, láser de excímeros de ArF, 193 nm			
Tasa de repetición del láser	5 Hz			
Densidad de energía	6 J/cm²			
Tamaño del spot	44 μm			
Flujo de He acarreador	350 ml/min			
Flujo de Ar auxiliar	700 ml/min – 1 l/min			
Flujo de N₂ acarreador	4 -11 ml/min			
Espectrómetro de masas				
Instrumento	Thermo Neptune Plus (MC-ICPMS)			
Power	1280 W			
Masas medidas	¹⁷² Yb, ¹⁷³ Yb, ¹⁷⁶ Hf-Lu-Yb, ¹⁷⁷ Hf, ¹⁷⁸ Hf, ¹⁷⁹ Hf, ¹⁸⁰ Hf			
Tiempo de adquisición de línea base	15 S			
Tiempo de ablación	60 s			
Tiempo de washout	15 S			

Tabla 3. Parámetros analíticos para los análisis puntuales Lu-Hf.

3.3.3. Mapeo geocronológico y elemental de zircones con LA-ICP-MS

Con el objetivo de realizar mapas geocronológicos y elementales en algunos de los zircones estudiados, se realizó una revisión de la literatura sobre la creación de mapas elementales e isotópicos con LA–ICP–MS y se llevó a cabo una serie de experimentos en el LEI para encontrar la combinación óptima de parámetros analíticos. El equipo usado para realizar estos análisis es el mismo que se usó para los análisis puntuales: una estación Resonetics M-50 con un láser de excímeros de ArF con longitud de onda de 193 nm (LPX Pro de Coherent) y una celda de doble volumen de washout rápido, acoplado a un espectrómetro de masas cuadrupolar Thermo Scientific iCAP Qc. En la sección 4.3 se encuentran detalles de la obtención de los mapas y de los parámetros analíticos usados.

4. Resultados

4.1. Petrografía

En muestras de mano todas tienen una estructura gnéisica. En lámina delgada se observan texturas granoblásticas con bandeamientos composicionales y la orientación preferencial de algunos cristales. En cuanto a la mineralogía, estas rocas están constituidas principalmente por minerales cuarzo-feldespáticos y presentan un alto grado de alteración de los minerales máficos. Como minerales primarios se encuentran cuarzo + plagioclasa + feldespato potásico ± piroxeno ± granate ± biotita ± hornblenda? y como minerales accesorios se presentan opacos, zircón, apatito y rutilo. Asimismo, los minerales producto de la alteración o retrogresión son clorita, biotita, moscovita, epidota y sericita. Las texturas granoblásticas son principalmente inequigranulares y la mayoría de los contactos son lobulados a ameboides, sin embargo, también se encuentran puntos triples con contactos rectos/aserrados formando ángulos de 120°. El tamaño predominante es medio a fino, aunque algunas muestras presentan granos gruesos de feldespato pertítico y cuarzo y porfidoblastos de granate (Fig. 5-6).

La alteración pervasiva de los minerales máficos no permite la identificación de las asociaciones minerales diagnósticas de las facies metamórficas. Sin embargo, texturalmente hay evidencia de temperatura alta por la presencia de texturas granoblásticas inequigranulares con contactos lobulados a ameboides entre cristales. Este tipo de contactos se desarrollan mediante la recristalización por migración de bordes que ocurre en condiciones de deformación de alta temperatura (Passchier & Trouw, 2005). De igual forma, la ocurrencia de cuarzo con subgranos "chessboard" indica deformación en condiciones de deformación con temperaturas> 700° C (Passchier & Trouw, 2005). Adicionalmente, el feldespato potásico presenta texturas micropertíticas en todas las muestras analizadas; estas texturas de exsolución son comunes en las rocas metamórficas en facies de granulita y son producto del reequilibrio post-metamórfico. Según la clasificación de pertitas de Spry (1969), las micropertitas observadas en las muestras cubren un amplio espectro: "*stringlet*", "*string*", "*bead*", "*rod*", "*ribbon*", "*flame*" y compuestas. Adicionalmente, se observó otro tipo de pertitas, denominadas por Mora et al. (1986) como pertitas convolutas, que fueron reportadas por estos autores en muestras del Complejo Oaxaqueño y que han sido reportadas en granulitas del Complejo Scourie en Escocia (Rollinson, 1982 en Mora et al., 1986).

En este caso la clasificación petrográfica de las muestras como ortogneises o paragneises es difícil debido a que la composición es cuarzo-feldespática (los protolitos posibles son granitoides o rocas sedimentariasvulcanosedimentarias de composición cuarzo-feldespática), además de no contar con las relaciones de campo.

A continuación, se encuentra la descripción de las muestras. En la tabla 4. se encuentran las abreviaturas de Whitney & Evans (2010) empleadas para los minerales. La clasificación de las texturas se realizó siguiendo a Moore (1970).

Abreviatura	Mineral	Abreviatura	Mineral
Ар	Apatito	Ms	Moscovita
Bt	Biotita	Орq	Opacos
Cal	Calcita	Pl	Plagioclasa
Chl	Clorita	Px	Piroxeno
Ep	Epidota	Qz	Cuarzo
Grt	Granate	Rt	Rutilo
Hbl	Hornblenda	Ser	Sericita
Kfs	Feldespato K	Zrn	Zircón

Tabla 4. Abreviaturas de minerales de Whitney & Evans (2010) usadas en la descripción petrográfica.

Muestras de clastos: localidad Santiago Coatepec

M1Ca: gneis cuarzo-feldespático con textura granoblástica, inequigranular, interlobulada (Fig.5a y 6c). Roca constituida por Qz (25%), Kfs (25%), y PI (23%) como minerales primarios, por Zrn, Ap y Opq como minerales accesorios y por Ser, Chl + Bt + Cal (25%) como productos de alteración/retrogresión. La roca presenta un bandeamiento definido por agregados de minerales máficos y agregados de Qz, PI y Kfs. La mayoría de los cristales es anédrica a subédrica con tamaños entre o.1-1.8 mm. Predominan los bordes lobulados, aunque en algunos sectores se encuentran agregados poligonales de plagioclasa, feldespato K y cuarzo con bordes rectos a aserrados formando ángulos de 120°. Los cristales de cuarzo presentan extinción ondulatoria, desarrollo de subgranos y lamellas de deformación. El feldespato potásico, en algunos casos microclina, presenta textura micropertítica ("*string*", "*ribbon*", "*rod*" y compuesta por "*string*" + "*rod*"). La plagioclasa se encuentra medianamente sericitizada y presenta maclas polisintéticas y maclas de deformación. Un agregado de clorita + calcita ±cuarzo se encuentra intercrecido con minerales opacos y en algunos sectores también se asocia a biotita. En algunos puntos se observa este agregado como pseudomorfo de un anfíbol y posiblemente como pseudomorfo de un piroxeno (posiblemente piroxeno cálcico por la alteración observada). Los cristales de biotita se encuentran deformados. El zircón y apatito se encuentran como inclusiones en los otros minerales.

M1Cf: gneis cuarzo-feldespático con textura granoblástica seriada y contactos ameboides-interlobulados. Aunque la mayoría de los contactos son ameboides-interlobulados, algunos son aserrados/rectos y forman ángulos de 120°. Los minerales primarios son Qz (50%), Kfs (30%), Pl (10%), los minerales accesorios son Px, Zrn, Rt, Opq y los minerales producto de alteración/retrogresión son Chl, Cal, Ep (8%). La mayoría de los cristales son anédricos, con tamaños menores a 1 mm. Se encuentran algunos cristales de cuarzo y de feldespato potásico micropertítico entre 2-8 mm alargados en una dirección preferencial (Fig.5b). El cuarzo presenta extinción ondulatoria y desarrollo de subgranos y lamellas de deformación, y algunos cristales están alargados en una dirección preferencial. El feldespato potásico, en algunos casos microclina, presenta texturas pertíticas-mesopertíticas ("*ribbon*", "*string*", convoluta). Una asociación de calcita, epidota, cuarzo y opacos se encuentra como pseudomorfo prismático de un ortopiroxeno, del cual hay algunos relictos muy finos. Además, se observa una asociación de clorita y calcita reemplazando cristales anédricos. La plagioclasa está poco sericitizada y presenta maclas polisintéticas, y en algunos cristales se observan maclas de deformación. Adicionalmente, hay microvenillas de calcita y microcristales de cuarzo. El zircón se encuentra como inclusión en los otros minerales. *M1Ch*: gneis cuarzo-feldespático con textura granoblástica inequigranular con contactos lobulados a rectos. Esta roca está compuesta por Kfs (50%), Oz (20%), Pl (10%), como minerales primarios, Px, Grt, Zrn, Opq y Rt como minerales accesorios y Chl, Bt, Cal (20%) como minerales producto de alteración/retrogresión. Los cristales son anédricos y tienen tamaños entre 0.2-1 mm, aunque hay algunos cristales de Kfs pertítico y Oz que alcanzan tamaños de 2-3 mm y están alargados en una dirección preferencial. Se observa un bandeamiento definido por agregados de Oz + Kfs + Pl con contactos rectos-aserrados definiendo ángulos de 120° y otras bandas donde predomina el Ks y tienen contactos interlobulados. Los cristales de cuarzo presentan extinción ondulatoria y algunos se encuentran alargados en una dirección. El feldespato potásico, en algunos casos microclina, presenta textura pertítica a mesopertítica (convoluta, "*ribbon*", "*rod*"; Fig.5c). Hay algunos relictos de ortopiroxeno. Se observan pseudomorfos de anfíbol reemplazados por un agregado de Chl + Cal \pm Oz con intercrecimiento de opacos. El pseudomorfo tiene cristales anédricos a subédricos orientados en una dirección preferencial y en algunos sectores se encuentra también asociado a biotita (cloritizada y deformada) y pequeños cristales euédricos de granate que están siendo reemplazados por clorita a lo largo de las fracturas.

Figura 5. Fotomicrografías: (a) textura granoblástica inequigranular con bordes lobulados, muestra M1Ca. (b) Mesopertita con exsolución extrema, muestra M1Cf. (c) Micropertita convoluta, muestra M1Ch. (d) Textura granoblástica con bordes rectos a lobulados, muestra M2Cc.

M1Ci: gneis cuarzo-feldespático con textura granoblástica inequigranular con contactos rectos a lobulados. La mineralogía primaria es Pl (70%), Oz (15%) y Kfs (5%), los minerales accesorios son Opq, Ap y Zrn y los minerales producto de alteración/retrogresión son Chl, Bt, Ms, Cal (10%). Los cristales son anédricos a subédricos, con tamaños menores a 0.5 mm. Se encuentran sectores con agregados principalmente de plagioclasa con contactos rectos formando ángulos des 120°. La plagioclasa está altamente sericitizada y presenta maclas polisintéticas y maclas de deformación. El cuarzo presenta extinción ondulatoria y subgranos, y algunos cristales están alargados en una dirección preferencial. El feldespato potásico presenta textura micropertítica ("*stringlet* + "*string*" + "*ribbon*"). Se observan pseudomorfos anédricos a subédricos de un anfíbol, que es reemplazado por un agregado de clorita ± calcita± cuarzo intercrecido con opacos y en algunos puntos en asociación con biotita cloritizada. Los minerales máficos se encuentran orientados en una dirección preferencial.

M2Cb: gneis plagioclásico con textura granoblástica inequigranular interlobulada a poligonal. Esta roca está compuesta por PI (85%) y Qz (10%) como minerales primarios, por Opq, Zrn y Ap como minerales accesorios y por Chl y Cal (5%) como minerales producto de alteración/retrogresión. Los bordes entre cristales son rectos a curvos y se observan puntos triples formando ángulos de 120°. El tamaño de los cristales está entre 0.25-0.5 mm. La plagioclasa presenta maclas polisintéticas, Carlsbad y de deformación, y algunos cristales presentan extinción ondulatoria y otros presentan microfallas. La composición de la plagioclasa es andesina (An 30 – estimada mediante el método de Carlsbad). El cuarzo presenta extinción ondulatoria. Los minerales máficos están reemplazados por una asociación de Chl + Opq + Oz ± Cal. Se observan venillas de calcita.

M2Cc: gneis cuarzo-feldespático con textura granoblástica inequigranular de contactos predominantemente lobulados (Fig.5d). Los cristales tienen tamaños entre o.5-2.5 mm. Los minerales primarios son Kfs (50%), Oz (40%), Pl (5%), los minerales accesorios son Opq, Ap y Zrn y los minerales producto de alteración/retrogresión son Chl, Bt, Hbl y Cal (5%). Predominan los contactos lobulados, aunque en algunos puntos se encuentran contactos rectos y la formación de ángulos de 120° entre diferentes agregados minerales (Pl, Kfs, Opq, Hbl). El feldespato potásico presenta textura micropertítica (*"ribbon"*) y se encuentra manchado. El cuarzo presenta extinción ondulatoria, subgranos y lamellas de deformación, y algunos cristales son alargados en una dirección preferencial. La plagioclasa está muy sericitizada y algunos cristales presentan maclado polisintético. Hay presencia de mirmequitas (intercrecimiento vermicular entre cuarzo y plagioclasa). La clorita se encuentra como pseudomorfo anédrico a euédrico de hornblenda, de la cual se encuentran algunos relictos y está asociada a opacos. Se observa calcita en las zonas de clivaje del Kfs y Pl y así como en venillas con microcristales de cuarzo.

M3Ce: gneis cuarzo-feldespático con textura granoblástica inequigranular con bordes interlobulados a ameboides. La roca está compuesta por Kfs (45%), Qz (35%), Pl (15%), como minerales primarios Zrn, Opq y Ap como minerales accesorios y Chl, Bt, Cal y Ms (5%) como minerales producto de alteración/retrogresión. Hay un bandeamiento entre agregados de Kfs y agregados de cristales de Qz. El feldespato potásico es microclina con textura pertítica, algunos cristales alcanzan tamaños de hasta 3mm. Se observan mirmequitas en los bordes de algunos cristales de Kfs. Algunos cristales de cuarzo tienen 1 cm y presentan inclusiones de Kfs, Bt, Cal, Qz y Pl. Los cristales de cuarzo presentan lamellas de deformación y subgranos, que en algunos casos son "chessboard", y algunos son alargados en una dirección preferencial. La plagioclasa, que alcanza tamaños de hasta 5mm, presenta maclas polisintéticas y de deformación y se encuentra altamente alterada a sericita. Los cristales de biotita están deformados y presentan coloración café y algunos se están alterando a clorita. Se encuentran algunos cristales de moscovita deformada asociada a la biotita. En algunos sectores se observa la asociación clorita + calcita. Hay calcita rellenando los planos de clivaje, así como en algunas venillas con cuarzo.

M3Cg: gneis cuarzo-feldespático con textura granoblástica inequigranular con contactos lobulados. Esta roca está compuesta por Qz (35%), Pl (35%), Kfs (10%), Grt (5%), Bt (5%) como minerales primarios, por Opq, Zr y Ap como minerales accesorios y por Ms, Chl (10%) como minerales producto de alteración/retrogresión. Los cristales de cuarzo tienen extinción ondulatoria, lamellas de deformación y subgranos, que pueden ser "chessboard" (Fig. 6d), y algunos están alargados en una dirección preferencial. El feldespato potásico es

micropertítico (pertitas "string") y se observan algunas mirmequitas en los bordes de pertitas. La plagioclasa está altamente sericitizada y presenta maclas polisintéticas, maclas de deformación y extinción ondulatoria. La biotita es color rojizo y está alterada a clorita, ésta se encuentra asociada a opacos y a algunos cristales de moscovita, los cristales se encuentran deformados y orientados en una dirección preferencial. Se observan porfidoblastos de granate de hasta 4 mm predominantemente euédricos a subédricos, aunque algunos cristales son anédricos alargados en la misma dirección que los otros minerales.

Muestras de clastos: localidad autopista Tehuacán-Oaxaca

M4Ca: gneis cuarzo-feldespático con textura granoblástica poligonal inequigranular con contactos lobulados a rectos. La mineralogía primaria es Pl (30%), Qz (30%) y Kfs (25%), Grt (10%), los minerales accesorios son Opq y Zrn y los minerales producto de alteración/retrogresión son Bt, Chl (5%). El feldespato potásico tiene textura micropertítica ("*flame"*, "*ribbon" y* "*string"*). Los cristales de plagioclasa tienen maclado polisintético y de deformación, y se encuentra poco sericitizada. El cuarzo tiene extinción ondulatoria y subgranos, que en ciertos casos son "chessboard", y algunos se encuentra alargados en una dirección preferencial. Hay algunas mirmequitas. Hay poiquiloblastos de granate anédricos a euédricos de hasta 3 mm con inclusiones de cuarzo, apatito y opacos (Fig.6a). También se encuentra como un pseudomorfo de piroxeno, que tiene formas anédricas a euédricas y en algunos sectores está en asociación con granate.

M4Cb: gneis cuarzo-feldespático con textura granoblástica, inequigranular con contactos lobulados a rectos. Roca constituida por Kfs (35%), Qz (25%) y Pl (5%) como minerales primarios, por Zrn, Ap y Opq como minerales accesorios y por Chl + Cal + Bt (20%) y Ser como productos de alteración/retrogresión. Algunos cristales de cuarzo, feldespato y clorita tienen mayores tamaños, entre o.5-1.5 mm y se encuentran orientados en una dirección preferencial, mientras que los otros cristales tienen tamaños alrededor de o.25 mm. En algunos sectores se encuentran puntos triples con cristales con contactos rectos formando ángulos de 120°. Los cristales de cuarzo presentan extinción ondulatoria, subgranos y algunos se encuentran alargados. El feldespato potásico presenta textura de exsolución micropertítica (*"ribbon"*, *"string"*, convoluta). La plagioclasa presenta maclas polisintéticas y de deformación. La clorita, intercrecida con opacos se encuentra como pseudomorfo de un anfíbol y de un piroxeno, tiene formas anédricas a subédricas y los cristales están orientados en una dirección. En algunos sectores se observa la clorita asociada también a calcita y se observaron algunos cristales de una mica cloritizada.

Muestras in situ del Complejo Oaxaqueño: localidad Santiago Coatepec

M40: gneis cuarzo-feldespático con textura granoblástica inequigranular con contactos lobulados a ameboides. La mineralogía primaria es Kfs (45%), Qz (35%) y Pl (5%), y los minerales accesorios son Opq, Ap, Zrn y Rt y los minerales producto de alteración/retrogresión son Chl, Cal, Ms (15%). Los cristales tienen tamaños entre 0.25-0.5 mm, aunque se encuentran cristales de cuarzo y feldespato potásico de hasta 3 mm. Predominan los contactos lobulados a ameboides, sin embargo, es posible encontrar algunos contactos rectos con ángulos de 120°. El feldespato potásico tiene textura pertítica (*"stringlet, "ribbon", "rod" y "string"*) y se encuentra muy manchado. Los cristales de cuarzo presentan lamellas de deformación, extinción ondulatoria y desarrollo de subgranos, que en algunos cristales es "chessboard", y algunos están alargados en una dirección preferencial. La plagioclasa tiene maclas polisintéticas. Se observan mirmequitas hacia los bordes de cristales de las pertitas. La clorita se encuentra intercrecida con opacos como pseudomorfo de un anfíbol (Fig. 6b) y también se encuentra reemplazando a una mica. Se observaron algunos cristales de moscovita asociada a opacos y calcita. Los planos de clivaje del feldespato potásico se encuentran rellenos por clorita y calcita, y también hay microvenillas rellenas de calcita.

M50: gneis cuarzo-feldespático con alternancia de bandas con textura granoblástica poligonal inequigranular y listones de cuarzo. La mineralogía primaria es Pl (10%), Oz (40%) y Kfs (30%), Bt (10%) los minerales accesorios son Opq, Ap y Zrn y los minerales producto de alteración/retrogresión son Chl (10%). La plagioclasa presenta maclas polisintéticas y está muy sericitizada. El feldespato potásico presenta textura micropertítica ("*string*" y "*ribbon*") y se encuentra muy manchado. Hay porfiroclastos de feldespato potásico de hasta 7 mm y algunos son sigmoidales. El cuarzo tiene extinción ondulatoria, lamellas de deformación y subgranos, y algunos cristales están orientados. Hay listones monominerales de cuarzo que presentan algunas inclusiones de cristales con forma de sigma. Los cristales de biotita, de color rojizo (¿biotita rica en titanio?), están siendo reemplazados por clorita y se encuentran orientados en la misma orientación marcada por los listones de cuarzo.

Figura 6. Fotomicrografías: (a) Porfidoblastos de granate, muestra M4Ca. (b) Clorita reemplazando a un mineral máfico, intercrecida con opacos, y micropertitas, muestra M4O. (c) Alteración de los minerales máficos a clorita intercrecida con opacos, muestra M1Ca. (d) Subgranos "chessboard" en cristal de cuarzo, muestra M3Cg.

4.2. Geocronología U–Pb, elementos traza e isótopos de Hf en zircón

4.2.1. U–Pb y elementos traza

Se aplicaron una serie de filtros para descartar los análisis afectados por micro-inclusiones que pueden afectar los valores de U–Pb y de REE. Las concentraciones de ³¹P y ⁴⁹Ti permiten identificar inclusiones de titanita y fosfatos (e.g. apatito, monacita; Chapman et al., 2016). El Ti puede alcanzar hasta 75 ppm en zircones (Hoskin & Schaltegger, 2003; Chapman et al., 2016), por lo tanto, los datos con Ti > 75 ppm fueron descartados. Además, los zircones que presentan altas concentraciones de titanio pueden presentar alteraciones, fracturas o imperfecciones cristalinas (Hoskin & Schaltegger, 2003; Watson et al., 2006), Harrison & Schmitt, 2007; Fu et al., 2008). De igual forma se usó un filtro utilizado por Chapman et al. (2016) para identificar los análisis con contenidos anómalos de fósforo, comúnmente el P presenta menores concentraciones a las explicadas por la sustitución xenotima (REE³⁺ + P⁵⁺ = Zr⁴⁺ + Si⁴⁺), por lo tanto, los análisis con equivalentes molares de P > 0.1 REE + Y presentan anomalías de P.

La concordancia de los datos también fue evaluada, un análisis es concordante si las edades ²⁰⁶Pb/²³⁸U, ²⁰⁷Pb/²³⁵U y ²⁰⁶Pb/²⁰⁷Pb son similares dentro del error y los análisis caen en la línea de concordia; cuantitativamente el porcentaje de discordancia es definido como discordancia=100-100*[Edad ²⁰⁶Pb/²³⁸U / Edad ²⁰⁷Pb/²⁰⁶Pb] (Ludwig, 1998; Gehrels, 2012). En este caso de las muestras analizadas, los zircones que tienen una discordancia >10% definen intersecciones inferiores que varían considerablemente de una muestra a otra y presentan errores muy grandes. Al graficar la concentración de U de los zircones vs el porcentaje de discordancia, se observa una correlación positiva entre estas variables (Fig.7). Los análisis discordantes presentan concentraciones de U entre 110 y 4000 ppm, con un promedio de 1150 ppm. Según Mezger & Krogstad (1997) la intersección inferior es significativa si es definida por zircones con concentraciones de U <100 ppm o si es confirmado por otros métodos geocronológicos. Considerando el alto contenido de U de algunos de los análisis discordantes la discordancia para gran parte de estos puede explicarse como resultado de pérdida de plomo en zircones metamícticos por difusión constante y/o lixiviación, por lo tanto, la intersección inferior puede no tener un significado geológico (Mezger & Krogstad, 1997). Con el fin de conservar solamente los datos significativos, todos los análisis con discordancia > 10% fueron descartados.

Figura 7. Porcentaje de discordancia vs concentración de U(ppm) para todos los análisis. La línea punteada corresponde a la línea de tendencia.

Para evaluar la consistencia de los elementos de tierras raras (REE) dentro de una muestra, estos fueron normalizados a los valores del condrito C1 de McDonough & Sun (1995) y graficados en un diagrama spider. Con relación a los valores condríticos, los zircones ígneos terrestres típicamente están enriquecidos en elementos de tierras raras pesadas (HREE) y empobrecidos en elementos de tierras raras ligeras (LREE), y el patrón de REE normalizado se caracteriza por una pendiente pronunciada desde los LREE hasta los HREE con una anomalía de Ce positiva y una anomalía de Eu negativa (Hoskin & Schaltegger, 2003). Cuantitativamente se pueden usar las razones normalizadas (Sm/La)_N y (Lu/Gd)_N y las razones Ce/Ce* y Eu/Eu* para evaluar el perfil de REE (Hoskin & Schaltegger, 2003). Las razones (Sm/La)_N y (Lu/Gd)_N se utilizan para medir la pendiente del patrón de LREE y HREE, respectivamente (entre mayor es la razón, mayor es la pendiente). La magnitud de las anomalías de Ce y Eu son expresadas como Ce/Ce* y Eu/Eu* (Ce/Ce* = $Ce_N/\sqrt{(La_N \times Pr_N)}$ y Eu/Eu* = $Eu_N/\sqrt{(Sm_N \times Gd_N)}$) donde Ce* y Eu* son los valores esperados de un patrón suavizado. Los valores de Ce/Ce* son ≥ 1 y Eu/Eu* varía entre uno (sin anomalía) y cero.

La mayoría de zircones analizados presenta el patrón típico de zircones ígneos, sin embargo, algunos de los análisis tienen patrones relativamente enriquecidos en LREE aunque se aplicaron filtros para descartar datos afectados por micro-inclusiones, que es uno de los factores que generan este tipo de patrones (Chapman et al., 2016). No obstante existen otros procesos que pueden explicar la variación de los LREE en los zircones como variaciones temporales en la composición del magma, mecanismos complejos de sustitución, sustituciones en zircones metamícticos o modificación por fluidos (Chapman et al., 2016; y referencias allí citadas). Aunque el enriquecimiento en LREE puede ser resultado de la evolución magmática, esto se abordó de manera conservativa y los análisis con patrones de REE diferentes no se tuvieron presentes para las estimaciones, aunque tuvieran edades aparentes similares al conjunto de datos.

La razón Th/U de los zircones se ha usado para diferenciar zircones ígneos de metamórficos, con la mayoría de los zircones metamórficos presentando razones Th/U <0.1, excepto en rocas metamórficas de alta temperatura y ultra-alta temperatura en las cuales esta razón frecuentemente es >0.1 (Kirkland et al., 2015; Yakymchuk et al., 2018). En una compilación de zircones de Australia occidental los zircones metamórficos tienen razones Th/U entre 0.001-10, mientras los zircones ígneos también pueden llegar a tener valores Th/U muy bajos, en un rango entre 0.01-20 (Yakymchuk et al., 2018). Por lo tanto, la aplicación de esta razón para diferenciar zircones ígneos de metamórficos debe ser usada con precaución.

A continuación, se presentan los resultados de U–Pb y REE para cada muestra. Los datos completos se pueden encontrar en los anexos 1 y 2, y las imágenes de catodoluminiscencia en el anexo 3.

М1Са

Esta muestra tiene zircones homogéneos y oscuros en CL, así como algunos zircones con núcleos luminiscentes. Una gran cantidad de análisis realizados en los dominios oscuros es discordante. Los zircones concordantes tienen el patrón de REE típico de zircones ígneos (Fig. 8a). El contenido de uranio se encuentra entre 118-1562 ppm y es mayor en los dominios oscuros que en general tienen concentraciones de U>400 ppm (Fig. 8b).Los valores de Th/U están entre 0.06-0.78 (promedio= 0.35 ± 0.18).

No hay una correlación entre el dominio con la edad, ni con el contenido de U, REE y valor Th/U. Los datos con concordancia mayor al 90% (n=26) tienen edades aparentes $^{207}Pb/^{206}Pb$ en un rango entre 1098-1310 Ma y la mayoría se encuentra a lo largo de la concordia en un lapso de ~100 Ma, con un pico de probabilidad en ca. 1230 Ma (Fig. 8c-d). Un grupo de datos robustos (concordancia >98%) tienen edades $^{207}Pb/^{206}Pb$ de: 1235 ± 39.5 (-1.3% disc), 1246 ± 40 (1.8% disc), 1256 ± 39 (0.2% disc) y 1259 ± 37 (1.9% disc). Estas edades están dentro del error de la media ponderada de las edades aparentes $^{207}Pb/^{206}Pb$ de los análisis con patrones de REE consistentes y concordancia >90%, que es de 1216±16 Ma (MSWD=0.72, n=24, Fig.8e).

M1Cf

En CL algunos zircones son pocos luminiscentes y aparentemente homogéneos, otros cristales presentan núcleos luminiscentes bordeados por un manto oscuro homogéneo. La mayoría de estos análisis tiene un patrón típico de REE de zircones ígneos (Fig.9a), sin embargo, cuatro análisis tienen patrones de REE alterados, enriquecidos en LREE. En general los zircones con dominios oscuros tienen U>400 ppm y muchos de estos análisis son discordantes (Fig. 9b). Las razones Th/U de los análisis con concordancia >90% están entre 0.19-0.60.

No se observa una correlación entre el dominio con la edad, ni con el contenido de U, REE y valor Th/U. Los datos con concordancia >90% tienen un rango de edades aparentes $^{207}Pb/^{206}Pb$ entre 1151-1358 M que se extienden a lo largo de en la concordia en un lapso de ~250 Ma y tienen un pico de probabilidad en ca.1240 Ma (Fig. 9c-d). Los análisis altamente concordantes (concordancia>98%) tienen edades aparentes $^{207}Pb/^{206}Pb$ entre 1151-1358 Ma, siendo las mayores 1276 ± 37 Ma (-0.5 % disc), 1273 ± 42 Ma (1.8 % disc), 1268 ± 43 Ma (1.0 % disc) y 1264 ± 43.5 Ma (1.0 % disc). Estas edades son iguales dentro del error a la media ponderada de las edades aparentes $^{207}Pb/^{206}Pb$ de los análisis con patrones de REE consistentes y concordancia >90%, que es de 1243±14 Ma (MSWD=0.91, n= 33, Fig.9e).

Figura 8. Muestra M1Ca: (a) Diagrama de REE de los zircones normalizados a condrito C1 de McDonough and Sun (1995).(b) Edad aparente ²⁰⁷Pb/²⁰⁶Pb vs U. (c) Diagrama de concordia con los datos con concordancia > 90%. (d) Histograma y probabilidad relativa de las edades aparentes ²⁰⁷Pb/²⁰⁶Pb de los datos con concordancia > 90%. (e) Media ponderada de las edades aparentes ²⁰⁷Pb/²⁰⁶Pb de los análisis con patrones de REE consistentes y concordancia >90%. Colores en las figuras a-c: amarillo-dominios oscuros, rojizo-dominios luminiscentes, azul-mezcla de dominio oscuro + luminiscente.

Figura 9. Muestra M1Cf: (a) Diagrama de REE de los zircones normalizados a condrito C1 de McDonough and Sun (1995).(b) Edad aparente ²⁰⁷Pb/²⁰⁶Pb vs U. (c) Diagrama de concordia con los datos con concordancia > 90%. (d) Histograma y probabilidad relativa de las edades aparentes ²⁰⁷Pb/²⁰⁶Pb de los datos con concordancia > 90%. (e) Media ponderada de las edades aparentes ²⁰⁷Pb/²⁰⁶Pb de los análisis con patrones de REE consistentes y concordancia >90. Colores en las figuras a-c: amarillo-dominios oscuros, rojo-dominios luminiscentes, azul-mezcla de dominio oscuro + luminiscente, gris: mezcla con borde metamórfico.

MıCh

En CL algunos zircones presentan núcleos luminiscentes bordeados por un manto oscuro homogéneo. Otros zircones son muy poco luminiscentes y aparentemente homogéneos, aunque en ciertos casos, se distinguen núcleos un poco más luminiscentes. En la mayoría de los zircones, también se puede observar un borde luminiscente muy fino, posiblemente asociado al metamorfismo. Un total de 33 análisis tienen concordancia mayor al 10%, sin embargo, algunos de estos análisis mezclan dominios de manto y borde, por lo que no fueron tomados en cuenta para los cálculos. El patrón de REE de la mayoría de los análisis es el típico de zircones (gneos (Fig.10a), solo 6 análisis presentan un patrón alterado, con enriquecimiento el LREE. El contenido de U es menor en los dominios luminiscentes (U <500 ppm) que en los dominios oscuros y la razón Th/U está en un rango entre 0.19 y 0.96 (Fig.10b).

No hay una correlación entre el dominio con la edad, ni con el contenido de U, REE y valor Th/U. Tanto los núcleos más luminiscentes, los mantos oscuros y zircones homogéneos tienen edades aparentes ²⁰⁷Pb/²⁰⁶Pb entre 1142-1370 Ma, con un pico de probabilidad en ca. 1250 Ma (Fig. 10c-d). Los análisis más robustos y más antiguos (concordancia > 98%) con REE consistentes tienen edades aparentes ²⁰⁷Pb/²⁰⁶Pb de 1257± 40.5 Ma (-0.2% disc), 1279± 45 Ma (-1.8% disc), 1287± 43.5 Ma (-0.8% disc). Dentro del error, éstas son iguales a la media ponderada edades aparentes ²⁰⁷Pb/²⁰⁶Pb de los análisis con patrones de REE consistentes y concordancia >90%, que es de 1243±18 Ma (MSWD=1.01, n= 19, Fig.10e).

М1Сі

En CL se observan algunos núcleos luminiscentes con o sin zonación oscilatoria débil rodeados por mantos oscuros, otros núcleos con baja luminiscencia rodeados por mantos luminiscentes y algunos cristales aparentemente homogéneos de baja luminiscencia. La mayoría de los cristales presentan un borde muy fino luminiscente. Algunos de los análisis mezclan bordes metamórficos con los otros dominios, por lo tanto, no se tuvieron presentes para los cálculos. Cuatro análisis presentan un patrón de REE alterado enriquecidos en LREE, sin embargo, la gran mayoría presenta el patrón típico de zircones ígneos (Fig. 11a). Los dominios oscuros tienen una concentración de uranio más alta (>400 hasta) que los dominios luminiscentes (~100 a ~400 ppm; Fig.11b). La relación Th/U se encuentra entre 0.16-0.19.

No hay una correlación entre la edad aparente de los diferentes dominios con los contenidos de U, REE o valores Th/U. La mayoría de los análisis con concordancia >90% se encuentra a lo largo de la concordia en un lapso de ~200 Ma, entre 1100 y 1300 Ma, con un pico de probabilidad en ca. 1215 Ma (Fig. 11c-d). Considerando solamente los análisis altamente concordantes (concordancia \ge 98%), las edades aparentes ²⁰⁷Pb/²⁰⁶Pb más antiguas, son: 1235 ± 55 Ma (0.0 % disc), 1238 ± 55 Ma (2.0 % disc), 1255 ± 55 Ma (-1.1 % disc) y 1263 ± 60 Ma (-1.0 % disc). Estas son iguales dentro del error a la media ponderada las edades aparentes ²⁰⁷Pb/²⁰⁶Pb de los análisis con patrones de REE consistentes y concordancia >90% de 1218±21 Ma (MSWD=0.75, n=28, Fig.11e).

Figura 10. Muestra M1Ch: (a) Diagrama de REE de los zircones normalizados a condrito C1 de McDonough and Sun (1995).(b) Edad aparente ²⁰⁷Pb/²⁰⁶Pb vs U. (c) Diagrama de concordia con los datos con concordancia > 90%. (d) Histograma y probabilidad relativa de las edades aparentes ²⁰⁷Pb/²⁰⁶Pb de los datos con concordancia > 90%. (e) Media ponderada de las edades aparentes ²⁰⁷Pb/²⁰⁶Pb de los análisis con patrones de REE consistentes y concordancia >90. Colores: amarillo-dominios oscuros, rojizo-dominios luminiscentes, azul-mezcla de dominio oscuro + luminiscente, gris: mezcla con borde metamórfico.

Figura 11. Muestra M1Ci: (a) Diagrama de REE de los zircones normalizados a condrito C1 de McDonough and Sun (1995).(b) Edad aparente ²⁰⁷Pb/²⁰⁶Pb vs U. (c) Diagrama de concordia con los datos con concordancia > 90%. (d) Histograma y probabilidad relativa de las edades aparentes ²⁰⁷Pb/²⁰⁶Pb de los datos con concordancia > 90%. (e) Media ponderada de las edades aparentes ²⁰⁷Pb/²⁰⁶Pb de los análisis con patrones de REE consistentes y concordancia > 90. Colores en las figuras a-c: amarillo-dominios oscuros, rojizo-dominios luminiscentes, azul-mezcla de dominio oscuro + luminiscente.

M2Cb

Los zircones en CL tienen algunos núcleos luminiscentes rodeados por mantos oscuros, otros núcleos con baja luminiscencia rodeados por mantos luminiscentes y algunos cristales aparentemente homogéneos de baja luminiscencia; y la mayoría de los cristales tiene un borde muy fino luminiscente. La mayoría de los zircones presenta un patrón de REE típico de zircones ígneos, solo dos análisis presentan un patrón diferente, uno empobrecido en HREE y otro enriquecido en LREE (Fig.12a). La razón Th/U de los análisis se encuentra entre 0.17-1.08. En general, los dominios oscuros tienen una concentración de uranio más alta que los dominios luminiscentes, de hasta ~1220 ppm (Fig.12b).

La edad aparente de los diferentes dominios no se puede correlacionar con los contenidos de U, REE o valores Th/U. La mayor parte de los datos con concordancia >90% se esparcen en la concordia en un lapso de ~200 Ma, con edades aparentes $^{207}Pb/^{206}Pb$ entre 1093-1279 Ma y un pico de probabilidad en ca. 1220 Ma (Fig. 12c-d). Las edades $^{207}Pb/^{206}Pb$ más antiguas y altamente concordantes (>98%) son: 1242 ± 34 Ma (o.8 % disc), 1246 ± 33 Ma (-0.2 % disc) y 1254 ± 30 Ma (-0.6 % disc). Estas son iguales dentro del error a la media ponderada de las edades aparentes $^{207}Pb/^{206}Pb$ de los análisis con patrones de REE consistentes y concordancia >90% que es de 1216±13 Ma (MSWD= 1.09, n=29, Fig.12e).

М2Сс

En CL se observan núcleos luminiscentes bordeados por mantos oscuros, algunos núcleos oscuros bordeados por mantos luminiscentes y otros zircones de poca luminiscencia; la mayoría con un borde luminiscente muy fino. Algunos de los análisis mezclan bordes metamórficos con los otros dominios, por lo tanto, no se tuvieron presentes para los cálculos. Esta muestra tiene un mayor número de zircones con patrones de REE alterados (9 análisis), aunque las edades aparentes de estos no difieren de las edades de los zircones que tienen patrones típicos de zircones (gneos (Fig. 13a). En general, la concentración de U es mayor en los dominios oscuros (U >300 ppm) que en los dominios luminiscentes (Fig.13b). Los valores de la razón Th/U están entre 0.20-0.62.

No hay una correlación entre las edades aparentes con los dominios anteriormente descritos, ni contenido de U o valores Th/U. Los datos concordantes >90% tienen un rango de edades aparentes $^{207}Pb/^{206}Pb$ entre 1118-1361 Ma. Estos datos tienen un pico de probabilidad en ca. 1250 Ma y se encuentran en la concordia en un lapso de ~150 Ma (Fig. 13c-d). Los análisis más viejos y más robustos (concordancia >98%) tienen edades aparentes $^{207}Pb/^{206}Pb$ de 1232 ± 45 Ma (-1.2 % disc), 1246 ± 37 Ma (-0.4 % disc) y 1294 ± 41.5 Ma (0.3% disc). Esta edad es igual dentro del error a la media ponderada de los análisis con patrones de REE consistentes y concordancia >90%, que es de 1240 ± 23 Ma (MSWD=1.6, n=26, Fig.13e).

Figura 12. Muestra M2Cb: (a) Diagrama de REE de los zircones normalizados a condrito C1 de McDonough and Sun (1995).(b) Edad aparente ²⁰⁷Pb/²⁰⁶Pb vs U. (c) Diagrama de concordia con los datos con concordancia > 90%. (d) Histograma y probabilidad relativa de las edades aparentes ²⁰⁷Pb/²⁰⁶Pb de los datos con concordancia > 90%. (c) Media ponderada de las edades aparentes ²⁰⁷Pb/²⁰⁶Pb de los análisis con patrones de REE consistentes y concordancia > 90. Colores en las figuras a-c: amarillo-dominios oscuros, rojizo-dominios luminiscentes, azul-mezcla de dominio oscuro + luminiscente.

Figura 13. Muestra M2Cc: (a) Diagrama de REE de los zircones normalizados a condrito C1 de McDonough and Sun (1995).(b) Edad aparente ²⁰⁷Pb/²⁰⁶Pb vs U. (c) Diagrama de concordia con los datos con concordancia > 90%. (d) Histograma y probabilidad relativa de las edades aparentes ²⁰⁷Pb/²⁰⁶Pb de los datos con concordancia > 90%. (c) Media ponderada de las edades aparentes ²⁰⁷Pb/²⁰⁶Pb de los análisis con patrones de REE consistentes y concordancia >90. Colores en las figuras a-c: amarillo-dominios oscuros, rojizo-dominios luminiscentes, azul-mezcla de dominio oscuro + luminiscente, gris: mezcla con borde metamórfico.

МзСе

En CL los zircones tienen algunos núcleos luminiscentes rodeados por mantos oscuros, otros núcleos con baja luminiscencia rodeados por mantos luminiscentes y algunos cristales homogéneos de baja luminiscencia; la mayoría con un borde muy fino luminiscente. Los valores de Th/U se encuentran entre 0.09-0.51. Cinco análisis se diferencian por tener un patrón de REE alterado, mientras que la gran mayoría presenta el patrón característico de zircones ígneos (Fig. 14a). En general, los dominios con baja luminiscencia presentan mayores contenidos de uranio (U>400 ppm) que los luminiscentes (Fig.14b).

Los datos con concordancia mayor al 90% (n=14) tienen edades aparentes ²⁰⁷Pb/²⁰⁶Pb entre 974-1324 Ma, con un pico de probabilidad en 1240 Ma (Fig. 14c-d). Las edades aparentes ²⁰⁷Pb/²⁰⁶Pb más antiguas con alta concordancia son 1232 ± 34.5 Ma (-1.3% disc), 1240 ± 32 Ma (-1.9% disc) y 1271 ± 33.5 Ma (1.4% disc). Esta edad es igual a la media ponderada de los análisis con patrones de REE consistentes y concordancia >90%, que es de 1235±42 Ma (MSWD=2.3, n=8, Fig. 14e).

МзСд

En CL la mayoría de los zircones tienen núcleos luminiscentes rodeados por mantos oscuros y un borde luminiscente muy fino. Algunos zircones son homogéneos y poco luminiscentes. La gran mayoría de los análisis presenta un patrón típico de zircones ígneos, excepto uno que está enriquecido en LREE (Fig.15a). Los valores de Th/U se encuentran entre 0.09-0.51.

Esta muestra presenta las edades más antiguas de las muestras analizadas. Los análisis de los núcleos con concordancia >90% tienen edades aparentes ²⁰⁷Pb/²⁰⁶Pb entre 1037-2470 Ma, con un pico de probabilidad mayor en ca. 1630 Ma (Fig.15c-d) y otro menor en ca. 1350 Ma. Nota: de esta muestra no se analizaron los mantos homogéneos oscuros, ni los zircones homogéneos (representan un evento ígneo o metamórfico?).

Figura 14. Muestra M₃Ce: (a) Diagrama de REE de los zircones normalizados a condrito C1 de McDonough and Sun (1995).(b) Edad aparente ²⁰⁷Pb/²⁰⁶Pb vs U. (c) Diagrama de concordia con los datos con concordancia > 90%. (d) Histograma y probabilidad relativa de las edades aparentes ²⁰⁷Pb/²⁰⁶Pb de los datos con concordancia > 90%. (c) Media ponderada de las edades aparentes ²⁰⁷Pb/²⁰⁶Pb de los análisis con patrones de REE consistentes y concordancia > 90. Colores en las figuras a-c: amarillo-dominios oscuros, rojizo-dominios luminiscentes, azul-mezcla de dominio oscuro + luminiscente.

Figura 15. Muestra M₃Cg: (a) Diagrama de REE de los zircones normalizados a condrito C1 de McDonough and Sun (1995). (b) Edad aparente ²⁰⁷Pb/²⁰⁶Pb vs U. (c) Diagrama de concordia con los datos con concordancia > 90%. (d) Histograma y probabilidad relativa de las edades aparentes ²⁰⁷Pb/²⁰⁶Pb. Colores en las figuras a-c: amarillo-dominios oscuros, rojizo-dominios luminiscentes.

М4Са

En CL se observan algunos cristales con núcleos luminiscentes bordeados por mantos oscuros y otros cristales luminiscentes homogéneos. La mayoría de los zircones presentan el patrón típico de zircones ígneos, sin embargo, un grupo presenta un empobrecimiento en HREE (Fig.16^a). Los valores Th/U de los zircones analizados se encuentra entre 0.16-0.39.

La mayoría de los datos con concordancia >90% se esparce a lo largo de la concordia en un lapso de ~400 Ma, con edades aparentes $^{207}Pb/^{206}Pb$ entre 962-1608 Ma y un pico de probabilidad mayor en ca.1140 Ma y uno menor en 1115 Ma (Fig. 16c-d). Sin embargo, no se obtuvieron medias ponderadas estadísticamente significativas. Hay un grupo de datos con edades aparentes alrededor de 1.0 Ga, entre ellos uno con alta concordancia (996 ± 35 Ma, 0.5% disc, Th/U=0.32) y la mayoría de estos está emprobrecido en HREE en comparación con los otros. La media ponderada de las edades aparentes $^{207}Pb/^{206}Pb$ de este grupo es de 1011±24 (MSWD = 0.62; Fig. 16e).

M4Cb

La mayoría de los zircones en CL tienen núcleos luminiscentes bordeados por mantos oscuros. Algunos tienen núcleos un poco más oscuros bordeados por un dominio luminiscente y finalmente por mantos de muy poca luminiscencia. En la mayoría se observa un borde luminiscente muy fino. La mayoría de los zircones analizados presenta el patrón de REE típico de zircones ígneos, exceptuando dos que están enriquecidos en LREE (Fig. 17^a). Los valores Th/U están entre 0.20-0.64.

No hay una correlación entre las edades aparentes con los dominios anteriormente descritos, ni contenido de U o valores Th/U. La mayoría de estos datos se encuentran a lo largo de la concordia en un lapso de ~200 Ma (Fig.17c). Los datos con concordancia >90% tienen edades aparentes ²⁰⁷Pb/²⁰⁶Pb entre 1135-1369 Ma con un pico de probabilidad en ca. 1225 Ma (Fig.17d). Los datos más viejos con mayor concordancia (>90%) tienen edades aparentes ²⁰⁷Pb/²⁰⁶Pb de 1237 ± 29 Ma (-0.2% disc), 1240 ± 30.5 Ma (-0.1% disc) y 1244 ± 38 Ma (0.0% disc). Estas son iguales dentro del error a la media ponderada de las edades aparentes ²⁰⁷Pb/²⁰⁶Pb de los análisis con patrones de REE consistentes y concordancia >90%, que es de 1213±16 Ma (MSWD=0.75, n=17, Fig. 17e).

Figura 16. Muestra M₄Ca: (a) Diagrama de REE de los zircones normalizados a condrito C1 de McDonough and Sun (1995). (b) Edad aparente ²⁰⁷Pb/²⁰⁶Pb vs U. (c) Diagrama de concordia con los datos con concordancia > 90%. (d) Histograma y probabilidad relativa de las edades aparentes ²⁰⁷Pb/²⁰⁶Pb. (e) (e) Media ponderada de las edades aparentes ²⁰⁷Pb/²⁰⁶Pb del grupo de análisis más jóvenes con patrones de REE empobrecidos en HREE. Colores en las figuras a-c: amarillo-dominios oscuros, rojizo-dominios luminiscentes, azul-mezcla de dominio oscuro + luminiscente.

Figura 17. Muestra M₄Cb: (a) Diagrama de REE de los zircones normalizados a condrito C1 de McDonough and Sun (1995).(b) Edad aparente ²⁰⁷Pb/²⁰⁶Pb vs U. (c) Diagrama de concordia con los datos con concordancia > 90%. (d) Histograma y probabilidad relativa de las edades aparentes ²⁰⁷Pb/²⁰⁶Pb de los datos con concordancia > 90%. (e) Media ponderada de las edades aparentes ²⁰⁷Pb/²⁰⁶Pb de los análisis con patrones de REE consistentes y concordancia > 90%. Colores en las figuras a-c: amarillo-dominios oscuros, rojizo-dominios luminiscentes, azul-mezcla de dominio oscuro + luminiscente.

M40

Los cristales son redondeados y en CL los cristales son aparentemente homogéneos, algunos presentan variaciones de zonación sectorial y la gran mayoría con poca luminiscencia. Estas características sugieren que representan zircones metamórficos (Corfu et al., 2003). Los zircones tienen un patrón de REE con una menor pendiente en los HREE (patrón plano en los HREE) y empobrecimiento de estos en comparación con las otras muestras (Fig.18a). Adicionalmente, los cristales con menor luminiscencia tienen contenidos de uranio >300 ppm (Fig. 18b). Esta muestra presenta los menores valores de la relación Th/U, que se encuentra entre 0.05-1.01 y en la mayoría de los análisis esta relación es menor a 0.2.

Los datos con concordancia mayor al 90% tienen edades aparentes ²⁰⁷Pb/²⁰⁶Pb entre 939-1120 Ma con un pico de probabilidad en ca. 1010 Ma y la mayoría se encuentra a lo largo de la concordia en un lapso de ~100 Ma (Fig.18c-d). Un grupo de zircones altamente concordantes (>98%) y REE consistentes tiene edades aparentes ²⁰⁷Pb/²⁰⁶Pb menores a 1050 Ma, la media ponderada de estas edades es 999±17 Ma (MSWD=0.55, n=17, (Fig.18e), solo se excluyeron tres zircones del cálculo que presentan edades entre 1050-1109 Ma, que pueden ser representar un componente más antiguo parcialmente reseteado.

M50

En CL se observan algunos núcleos poco luminiscentes rodeados por un manto luminiscente o núcleos luminiscentes con un manto menos luminiscente. El patrón de REE de los análisis es el típico de zircones ígneos (Fig.19a) y los valores Th/U están entre 0.19 y 0.56. Los dominios con mayor luminiscencia tienen contenidos de U <350 ppm, mientras que los dominios oscuros se caracterizan por mayores concentraciones de uranio (Fig.19b).

El contenido de U, REE y los valores Th/U no se correlacionan con la edad. Los datos concordantes >90% se encuentran a lo largo de la concordia en un lapso de ~150 Ma y tienen edades aparentes $^{207}Pb/^{206}Pb$ entre 1100-1268 Ma, con un pico de probabilidad en ca. 1240 Ma (Fig.19c-d). Los datos más robustos (concordancia>98%) con edades aparentes $^{207}Pb/^{206}Pb$ más viejas son 1262 ± 31 Ma (1.5% disc), 1256 ± 32 Ma (0.3% disc), 1254 ± 33.5 Ma (-0.1% disc) y 1252 ± 31.5 Ma (0.5% disc). Estas edades son iguales dentro del error a la media ponderada de las edades aparentes $^{207}Pb/^{206}Pb$ de los análisis con patrones de REE consistentes y concordancia >90%, que es 1233±14 Ma (MSWD=0.68, n=21, Fig.19e).

Figura 18. Muestra M40: (a) Diagrama de REE de los zircones normalizados a condrito C1 de McDonough and Sun (1995).(b) Edad aparente ²⁰⁷Pb/²⁰⁶Pb vs U. (c) Diagrama de concordia con los datos con concordancia > 90%. (d) Histograma y probabilidad relativa de las edades aparentes ²⁰⁷Pb/²⁰⁶Pb de los datos con concordancia > 90%. (e) Media ponderada de las edades aparentes ²⁰⁷Pb/²⁰⁶Pb de los análisis con patrones de REE consistentes y concordancia > 90. Colores en las figuras a-c: amarillo-dominios oscuros, rojizo-dominios luminiscentes, azul-mezcla de dominio oscuro + luminiscente.

Figura 19. Muestra M50: (a) Diagrama de REE de los zircones normalizados a condrito C1 de McDonough and Sun (1995).(b) Edad aparente ²⁰⁷Pb/²⁰⁶Pb vs U. (c) Diagrama de concordia con los datos con concordancia > 90%. (d) Histograma y probabilidad relativa de las edades aparentes ²⁰⁷Pb/²⁰⁶Pb de los datos con concordancia > 90%. (e) Media ponderada de las edades aparentes ²⁰⁷Pb/²⁰⁶Pb de los análisis con patrones de REE consistentes y concordancia > 90. Colores en las figuras a-c: amarillo-dominios oscuros, rojizo-dominios luminiscentes, azul-mezcla de dominio oscuro + luminiscente.

4.2.1.1. Diagramas de discriminación tectónica

Hoskin & Ireland (2000) señalaron la similitud de los patrones de las tierras raras de los zircones y la poca variación que hay en la química de los zircones de diferentes tipos de roca de la corteza terrestre. Sin embargo, Grimes et al. (2007) encontraron que se puede discriminar entre zircones de corteza continental y corteza oceánica con base en la razón U/Yb y la concentración de Y o Hf. Según estos autores estos diagramas han mostrado ser efectivos en >80% de los zircones analizados y resaltan la necesidad de evaluar una población y no granos individuales. En este caso, los zircones analizados caen en el campo de zircones continentales (Fig.20a-b). No obstante, estos diagramas no pueden distinguir entre ambientes de arco magmático e islas oceánicas enriquecidas en tierras raras. Grimes et al. (2015) mostraron que esta discriminación se puede hacer usando diagramas bivariantes con diferentes razones de U, Nb, Sc, Yb, Gd y Ce. En un diagrama de U/Yb vs Nb/Yb los zircones analizados se sobreponen con zircones de arco (Fig. 20c).

Adicionalmente, Yang et al. (2012) propusieron diagramas de Hf/Th vs Th/Nb y Nb/Hf vs Th/U para la discriminación entre zircones intraplaca/anorogénicos de zircones de arco/orogénicos. La gran mayoría de los análisis cae en el campo de zircones arco/orogénicos (Fig. 21 a,b), solamente los zircones de la muestra M40, que tienen características metamórficas, son los más dispersos en ambos diagramas.

■ M1Ca • M1Cf ▲ M1Ch × M1Ci • M2Cb ■ M2Cc • M3Ce + M3Cg × M4Ca × M4Cb • M40 ■ M50

■ M1Ca • M1Cf ▲ M1Ch × M1Ci • M2Cb ■ M2Cc • M3Ce + M3Cg × M4Ca × M4Cb • M40 ■ M50

Figura 21. Diagramas geoquímicos para la discriminación tectónica de zircones: (a) Nb/Hf vs Th/U y (b) Hf/Th vs Th/Nb con los campos Arco/Orogénico e Intraplaca/Anorogénico (Yang et al., 2012).

4.2.2. Isótopos de Lu–Hf

Los resultados de los análisis de Hf se encuentran en el anexo 4. Las fórmulas utilizadas en los cálculos están en la tabla 5 (Weber et al., 2012; Vervoort, 2014). La razón ¹⁷⁶Hf/¹⁷⁷Hf_(t) y el valor de ϵ Hf_(t) fueron calculados usando la edad ²⁰⁷Pb/²⁰⁶Pb de los zircones individuales y los valores presentes de ¹⁷⁶Lu/¹⁷⁷Hf y ¹⁷⁶Hf/¹⁷⁷Hf. El valor de épsilon Hf (ϵ Hf) es la desviación de ¹⁷⁶Hf/¹⁷⁷Hf de la muestra con respecto al reservorio condrítico uniforme (CHUR) x10⁴. Para estos cálculos se usó la constante de decaimiento del ¹⁷⁶Lu de λ = 1.867 x 10⁻¹¹ años⁻¹ (Söderlund et al., 2004) y los valores condríticos de Hf de Bouvier et al. (2008) (¹⁷⁶Lu/¹⁷⁷Hf_{CHUR}= 0.0336 y ¹⁷⁶Hf/¹⁷⁷Hf_{CHUR}= 0.282785).

El concepto de una edad modelo en el sistema de isótopos Lu–Hf sigue el de las edades modelo Sm–Nd (DePaolo, 1980). Para el sistema isotópico Lu–Hf el modelo del manto empobrecido (DM-depleted mantle) fue basado en ¹⁷⁶Hf/¹⁷⁷Hf_{DM}= 0.28325 y ¹⁷⁶Lu/¹⁷⁷Hf_{DM}= 0.0384 (Blichert-Toft & Albarède 1997) y este fue usado para el cálculo de las edades modelo T_{DM}. Adicionalmente, también se calculó una segunda edad modelo T_{DM*C} usando una curva de evolución de la corteza que pasa por el valor ¹⁷⁶Hf/¹⁷⁷Hf o ɛHf inicial del zircón y que tiene un valor de ¹⁷⁶Lu/¹²⁷⁷Hf = 0.015 (valor asumido para la corteza promedio, Griffin et al., 2002) y ésta es proyectada en el tiempo hasta la curva del manto empobrecido y el tiempo dado por la intersección es la edad modelo de residencia de la corteza (Fig. 22). Las edades modelos tienen limitaciones, como la dependencia en los valores asumidos de ¹⁷⁶Hf/¹⁷⁷Hf and ¹⁷⁶Lu/¹⁷⁷⁷Hf para el reservorio del manto empobrecido, así como el valor de ¹⁷⁶Lu/¹⁷⁷⁷Hf asumido para la corteza. Por lo tanto, estas no son edades absolutas, sin embargo, pueden brindar una estimación del tiempo de separación de un reservorio cortical del reservorio hipotético del manto empobrecido (Vervoort, 2014; Scherer et al., 2007; Spencer et al., 2019).

Tabla 5. Fórmulas para cálculos de ¹⁷⁶Hf/¹⁷⁷Hf (t), ɛHf(t), TDM y TDM*C

Fórmulas

$$\label{eq:eq:starter} \begin{split} & {}^{176}\text{Hf}/{}^{177}\text{Hf}_{(t)} = {}^{176}\text{Hf}/{}^{177}\text{Hf}_{-} {}^{176}\text{Lu}/{}^{177}\text{Hf}(e^{\lambda t}-1) \\ & \varepsilon \text{Hf}_{(t)} = (({}^{176}\text{Hf}/{}^{177}\text{Hf}_{(t)} - {}^{176}\text{Hf}/{}^{177}\text{Hf}\text{CHUR}, {}^{t}) / ({}^{176}\text{Hf}/{}^{177}\text{Hf}\text{CHUR}, {}^{t}) / ({}^{176}\text{Hf}/{}^{177}\text{Hf}\text{CHUR}, {}^{t}) / ({}^{176}\text{Hf}/{}^{177}\text{Hf}\text{CHUR}, {}^{t}) / {}^{176}\text{H}^{t} + {}^{176}\text{Lu}/{}^{177}\text{Hf}\text{CHUR}, {}^{t}) / {}^{104} \\ & \varepsilon \text{Hf}_{(t)} = (({}^{176}\text{Hf}/{}^{177}\text{Hf}_{(t)}) / ({}^{176}\text{Hf}/{}^{177}\text{Hf}_{\text{CHUR}} - {}^{176}\text{Lu}/{}^{177}\text{Hf}_{\text{CHUR}}, {}^{t}) + {}^{104} \\ & T_{\text{DM}} = ({}^{176}\text{Hf}/{}^{177}\text{Hf} - {}^{176}\text{Hf}/{}^{177}\text{Hf}_{\text{DM}}) / ({}^{176}\text{Lu}/{}^{177}\text{Hf} - {}^{176}\text{Lu}/{}^{177}\text{Hf}_{\text{DM}}) \\ & T_{\text{DM}} \times c = ({}^{176}\text{Hf}/{}^{177}\text{Hf} - {}^{176}\text{Hf}/{}^{177}\text{Hf}_{(t)} + {}^{176}\text{Lu}/{}^{177}\text{Hf}_{\text{avg,crust}}(e^{\lambda t}-1))) / ({}^{176}\text{Lu}/{}^{177}\text{Hf}_{\text{DM}} - {}^{176}\text{Lu}/{}^{177}\text{Hf}_{\text{avg,crust}}) \end{split}$$

 $\lambda = 1.867 \times 10^{-11} a \tilde{n} os^{-1} (Söderlund et al., 2004).$ ¹⁷⁶Hf/¹⁷⁷Hf_{CHUR} = 0.282785 y ¹⁷⁶Lu/¹⁷⁷Hf_{CHUR} = 0.0336 (Bouvier et al., 2008). ¹⁷⁶Hf/¹⁷⁷Hf_{DM} = 0.28325 y ¹⁷⁶Lu/¹⁷⁷Hf_{DM} = 0.0384 (Blichert-Toft & Albarède 1997). ¹⁷⁶Lu/¹⁷⁷Hf_{avg.crust} = 0.015 (Griffin et al., 2002).

En la figura 22 los valores isotópicos son reportados como valores de $\epsilon Hf_{(t)}$ con la respectiva edad aparente ²⁰⁷Pb/²⁰⁶Pb. La reproducibilidad externa de los zircones estándar (dos veces la desviación estándar del promedio, Fisher et al., 2014) se encuentra en un rango de aproximadamente ± 1 unidades épsilon Hf. Este valor es reportado en el diagrama de Hf y se debe tomar en cuenta para aproximar la incertidumbre de los análisis individuales y para comparar entre diferentes muestras. Siguiendo a Reimann et al. (2010) los zircones se consideran como juveniles cuando la diferencia es menor a 5 unidades épsilon a partir del manto; si la diferencia es entre 5 y 12 unidades épsilon, éstos son considerados moderadamente juveniles, finalmente, se consideran como evolucionados si la diferencia es mayor a 12 unidades épsilon.

Los zircones de la muestra M50 (la única muestra in situ del basamento a la que se le realizaron isótopos de Hf) presentan un rango limitado de ¹⁷⁶Hf/¹⁷⁷Hf_(t) entre 0.282182-0.282239 y valores ɛHf_(t) entre +7 y +9 (Fig.22) y representan los zircones más juveniles de todos los analizados. Siguiendo a Reimann et al. (2010) estos son considerados como zircones juveniles, aunque unos cuantos se encuentran en el límite de los moderadamente juveniles. Adicionalmente, presentan edades de residencia de la corteza entre 1.5-1.6 Ga (para la corteza promedio con ¹⁷⁶Lu/1⁷⁷Hf= 0.015, Griffin et al. 2002) indicando la cristalización a partir de una fuente del manto empobrecido. Por otro lado, la mayoría de los zircones de los clastos con edades aparentes ²⁰⁷Pb/²⁰⁶Pb de ca. 1.2 Ga tienen valores menores de ¹⁷⁶Hf/¹⁷⁷Hf_(t) entre -2.82045-0.282154 y ϵ Hf_(t) entre +1 y +6. Éstos son considerados como moderadamente juveniles y tienen edades de residencia de la corteza promedio con ¹⁷⁶Lu/1⁷⁷Hf= 0.015, Ga (para la corteza promedio con -1.2 Ga (para la corteza promedio con -1.2 Ga (para la corteza promedio con -1.2 Ga tienen valores menores de -1.2 Ga (para la corteza promedio con -1.2 Gu (para la corteza promedio con -1.2 Ga (para la corteza promedio con -1.2 Gu (para la corteza más antigua.

Figura 22. ϵ Hf_(t) vs. la edad aparente ²⁰⁷Pb/²⁰⁶Pb de los zircones analizados. La línea gris gruesa representa el modelo del manto empobrecido (DM: depleted mantle). La línea amarilla representa el reservorio condrítico uniforme (CHUR: chondritic uniform reservoir). Las líneas punteadas representan diferentes reservorios modelo de la corteza que se separaron del manto empobrecido en diferentes tiempos y tienen ¹⁷⁶Lu/¹⁷⁷Hf=0.015.

4.3. Mapeo elemental e isotópico de zircones con LA-ICP-MS

En las Ciencias de la Tierra, la técnica de ablación láser integrada a la espectrometría de masas con plasma de acoplamiento inductivo (LA–ICP–MS) está bien establecida para realizar análisis puntuales cuantitativos de elementos químicos y/o razones isotópicas de materiales geológicos a escala micrométrica, especialmente en la geocronología U–Pb de zircones (Sylvester, 2008; Schoene, 2014; Schaltegger et al., 2015). La habilidad de los zircones para preservar múltiples eventos hace que estos sean texturalmente complejos con distintos episodios de crecimiento (e.g. estructuras de núcleomanto-borde). Para logar una interpretación robusta de los datos es importante tener imágenes de los cristales (CL, BSE, RAMAN, etc.) y realizar los análisis teniendo un control textural. Sin embargo, es importante notar que los límites entre dominios en las imágenes de catodoluminiscencia no se correlacionan necesariamente con diferencias detectables en las edades de un cristal, regiones disturbadas o bordes termoquímicos (Schaltegger et al., 2015; Chew et al., 2017). Adicionalmente, los análisis puntuales LA–ICP–MS tienen forma cilíndrica y penetran entre 10 y 20 μ m, por lo que es difícil hacer una correlación con las imágenes CL. En cambio, si se realiza un mapa la ablación es somera, entre 1-3 μ m (Ubide et al., 2015; Chew et al., 2017), por lo que hay una correspondencia alta entre el material ablacionado y la superficie vista en las imágenes de CL o microscópicas.

El primer estudio que aplica el mapeo geocronológico en zircones es el de Chew et al. (2017). Estos autores estudiaron zircones complejos (entre 10 x 50 µm² y 200 x 100 µm²) del basamento de la Cordillera Oriental peruana con evidencia textural de núcleos-bordes y combinaron imágenes CL y Raman, mapas LA–ICP–MS elementales (abundancias de U y Th y razones Th/U) y geocronológicos (U–Pb) para caracterizar cómo las variaciones composicionales y estructurales en los cristales están relacionadas con la edad; obtuvieron una reproducción dentro del 1% de la edad publicada de los zircones de referencia y las edades de concordia obtenidas con las porciones concordantes de los cristales fueron consistentes con datos SIMS y TIMS, mientras que el tiempo de adquisición de los mapas estuvo entre 10-45 min por zircón. Estos autores sugieren que en zircones complejos se deben evitar los análisis puntuales debido a que se pueden mezclar edades de núcleo y borde, dominios con pérdida de Pb y dominios con Pb común. Este tema fue investigado con el objetivo de aplicar esta técnica en el Laboratorio de Estudios Isotópicos (LEI) del Centro de Geociencias, UNAM para analizar los zircones del Complejo Oaxaqueño; para esto se realizó una revisión de la literatura y se llevaron a cabo una serie de experimentos en zircones para encontrar la combinación óptima de parámetros analíticos.

El mapeo geocronológico de zircones mediante el LA–ICP–MS tiene un gran potencial, aunque menos precisos y exactos que los análisis puntuales, los mapas pueden revelar detalles geoquímicos que no pueden ser apreciados con los análisis convencionales, además, no se necesitan realizar interpolaciones entre puntos y no hay fraccionamiento por profundidad (Ulrich et al., 2009; Ubide et al., 2015; Chew et al., 2017). Por otra parte, en los análisis convencionales se invierte un tiempo considerable en la selección de los puntos usando las imágenes de CL, imágenes de electrones secundarios o la imagen del microscopio del sistema láser, lo que no ocurre en el caso del mapeo con LA–ICP–MS. Petrus et al. (2017) sugieren que con herramientas para la extracción de información de mapas, puede haber un cambio en la forma como los análisis LA–ICP–MS son llevados a cabo, los experimentos pueden ser programados en menor tiempo y la mayor inversión de tiempo del analista se puede dar en el momento de interrogación de los mapas.

La generación de imágenes/mapas a escala centimétrica a micrométrica de materiales geológicos es posible mediante otras técnicas como la microsonda electrónica (EPMA), emisión de rayos X inducida

por partículas (PIXE), espectrometría de masas de iones secundarios (SIMS) y fluorescencia de rayos x con radiación sincrotrón (SXRF). Cada una de estas tiene ventajas y desventajas, y las mayores diferencias se encuentran en la resolución espacial, los límites de detección y el esfuerzo analítico (Woodhead et al., 2007). Con respecto a las otras técnicas, el mapeo mediante LA–ICP–MS presenta desventajas como el tamaño relativamente grande del spot y la naturaleza destructiva, además, de la posibilidad de generar artefactos por el remuestreo. Sin embargo, este método ofrece un tiempo de procesamiento relativamente rápido y un menor costo, un rango muy dinámico (análisis de concentraciones desde pg/g a wt%), la habilidad de determinar tanto composiciones elementales como isotópicas y la posibilidad de ser usado en varias escalas, desde µm hasta cm (Woodhead et al., 2007; Woodhead et al., 2008; Ulrich et al., 2009).

El principio básico para obtener un mapa de distribución de elementos/isótopos con LA–ICP–MS es realizar un barrido con el láser a lo largo de líneas paralelas sucesivas (Fig. 23). Al diseñar el experimento se deben definir el número de líneas igualmente espaciadas que cubran el área de interés (una parte de un mineral o roca, un mineral, etc.) y también se deben definir otros parámetros como la velocidad de traslación, la tasa de repetición y el tiempo de lectura (Woodhead et al., 2007, 2008).

4.3.1. Antecedentes de la técnica

El desarrollo del mapeo de materiales mediante LA–ICP–MS inició en las ciencias biológicas con el análisis de variaciones en las concentraciones de elementos en secciones de tejidos. Woodhead et al. (2007) realizaron los primeros experimentos para entender los aspectos fundamentales del uso del LA–ICP–MS para la adquisición de imágenes elementales e isotópicas en materiales geológicos. Hasta la fecha se han realizado varios avances en esta aplicación, desde el desarrollo tecnológico de los sistemas de ablación láser (e.g. Müller et al., 2009), el desarrollo de procedimientos para optimizar la resolución espacial de los mapas (e.g. Ulrich et al., 2009; Bonta et al., 2015; Ubide et al., 2015; Chew et al., 2017; Fox et al., 2017), la creación de softwares y algoritmos para el procesamiento de los datos y la extracción de información de los mapa (e.g. Rittner & Müller, 2012; Paul et al., 2012; Petrus et al., 2017; Sforna & Lugli, 2017) y el acoplamiento de datos de mapas del mismo material obtenidos con dos o más instrumentos analíticos (e.g. Chirinos et al., 2014; Prohaska et al., 2016; Zhu et al., 2016). El desarrollo de lolite (Paton et al., 2010, 2011) software para la reducción de los datos que permite el procesamiento de la señal,

razones isotópicas/elementales vs. tiempo), ha facilitado la creación de mapas LA—ICP—MS (e.g. Ulrich et al., 2008; Paul et al., 2012; Ubide et al., 2015; Chew et al., 2017).

Limitaciones

Woodhead et al. (2007) realizaron una serie de experimentos para comprender los aspectos fundamentales del uso del LA–ICP–MS para el mapeo de materiales geológicos. Estos encontraron que la técnica tiene dos limitaciones principales: el fenómeno de mezcla dentro de la celda y el remuestreo de superficie. La mezcla dentro de la celda se debe a que la mayoría de los sistemas de ablación tienen un tiempo significativo de "washout", por lo tanto, una proporción del material generado por un pulso láser se combina con los vestigios de pulsos previos que permanecen en la celda de ablación antes de ser llevados al espectrómetro de masas. Este problema de puede ser controlado en gran medida por el diseño de la celda de ablación, Woodhead et al. (2007, 2008) sugieren el uso de celdas de ablación de bajo volumen o la incorporación de dispositivos para la reducción de este. El remuestreo de superficie se refiere al muestreo de la "manta de eyección" producida por las ablaciones anteriores. La magnitud de este efecto depende en gran medida de la tasa de repetición (que controla la cantidad de material depositado) y de la tasa de translación (que controla la velocidad a la que pulsos sucesivos del láser cruzan el material). En experimentos realizados por Woodhead et al. (2007) estos autores encontraron que el remuestreo en la dirección de movimiento es poco significativa, debido a que poco material se acumula al frente del spot que se mueve.

Resolución espacial en x-y-z

La remoción de material durante un barrido es relativamente pequeña y depende en un mayor grado de la tasa de repetición usada en el experimento. Ubide et al. (2015) encontraron que la penetración en clinopiroxeno y hornblenda utilizando diferentes parámetros analíticos era menor a 1 μ m (entre 0.4 y 0.7 μ m); con la mayor penetración obtenida con una tasa de repetición de 10 Hz, una velocidad de translación de 8 μ m/s y un spot de 12 μ m. Chew et al. (2017) observaron que la remoción de material de la superficie de zircones era entre 1.1 y 3.6 μ m, usando una tasa de repetición de 45 Hz, una velocidad de traslación de 20 μ m/s y un spot de 7 μ m. Debido al poco material que es removido, Ubide et al. (2015) destacan que la técnica es medianamente destructiva y tiene una muy buena resolución en z, por lo que es posible realizar varios mapas consecutivos en un mismo material sin tener que repulir la muestra. Además, también resaltan que la resolución espacial en z puede ser mejor que en las técnicas no destructivas que emplean haz de electrones, debido a que estas sufren de interacción y migración de volátiles como respuesta a las altas densidades de energía.

Ubide et al. (2015) evaluaron la resolución espacial de la técnica usando una rejilla de cobre sobre un vidrio. Encontraron que la rejilla de cobre era bien definida en los experimentos, aunque con un poco de suavizado de los bordes, y que detalles menores al tamaño del spot podían ser resueltos (e.g. discontinuidades de 7-10 μ m usando un tamaño de spot de 12 μ m). En este experimento también observaron que ocurría un trasporte aparente de aerosol desde el vidrio hacia el cable de la rejilla de cobre, debido a que las concentraciones de La no disminuían a las esperadas en el cable (o ppm); este fenómeno fue explicado como resultado de transporte de La en aerosol hacia los tubos y el dispositivo para suavizar la señal, en vez de una depositación de material sobre los cables.

Las mayores limitaciones para la resolución espacial están determinadas por las características del sistema LA–ICP–MS usado, como el tamaño más pequeño de spot disponible y el tiempo de "washout" de la celda de ablación. Sin embargo, si se usa un spot muy pequeño para lograr una mayor resolución espacial, el límite de detección y el tiempo de adquisición son comprometidos. El uso de sistemas láser

de excímeros y celdas de ablación de poco volumen pueden ayudar a aumentar la resolución espacial significativamente, además de la combinación óptima de todos los parámetros (velocidad de traslación, tasa de repetición, tiempo de adquisición, etc.) (Woodhead et al., 2008; Ulrich et al., 2009; Ubide et al., 2015).

4.3.2. Creación de mapas

A continuación, se describen los pasos para la creación de imágenes/mapas LA–ICP–MS usando el software lolite (Paton et al., 2011):

Ablación láser

• Configuración del láser

Se deben definir los parámetros analíticos y el área que se va a analizar. La amplia combinación de los parámetros, como el tamaño del spot, la velocidad de traslación y la tasa de repetición permiten llevar a cabo experimentos a diferentes niveles de detalle. Adicionalmente, se debe definir la sobreposición entre las líneas. Varios autores recomiendan que el área sea rectangular para facilitar la creación de mapas (Ubide et al., 2015; Chew et al., 2017). En vista de que el tamaño del spot puede variar, también recomiendan revisar el tamaño real del spot que se usará para el mapeo, pues estos pueden variar hasta o.5 µm del valor nominal (Ubide et al., 2015). Debido a que muchas celdas de ablación tienen flujos de gas unidireccionales, en vez de ciclónicos, la dirección de movimiento del láser con respecto al flujo del gas puede tener una alta influencia en el comportamiento de la ablación. Por lo tanto, para evitar cualquier artefacto generado por estos procesos, Woodhead et al. (2008) recomiendan realizar la ablación en la misma dirección (i.e., volviendo al mismo lado del área de ablación para cada línea), en vez de hacer el barrido hacia atrás y adelante.

Para obtener resolución espacial apropiada la consideración más importante es la combinación entre el tamaño del spot, la tasa de repetición y la velocidad de traslación; la selección de estos parámetros depende del tiempo del washout del sistema (Woodhead et al., 2008; Ulrich et al., 2009; Ubide et al., 2015). Chew et al. (2017) recomiendan determinar la velocidad de traslación y posteriormente ajustar el tiempo total de lectura del espectrómetro de masas para que haya un barrido de la lista de elementos/isótopos por cada micra de movimiento del láser. Ulrich et al. (2009) obtuvieron los mejores resultados en cuanto a resolución espacial y tiempo de adquisición eligiendo una velocidad de traslación alrededor de la mitad del tamaño del spot por segundo. Sin embargo, Ubide et al. (2015) utilizaron un sistema con un washout muy rápido (reducción del 90% de la señal en menos de 1.5 s) y no encontraron ventajas en esta restricción, por lo tanto, recomiendan usar velocidades de traslación mayores a la mitad del tamaño del spot, pero no mayores a 3/4 el tamaño del spot y una tasa de repetición relativamente alta (10 Hz) para reducir el tiempo del experimento y compensar los problemas relacionados con las bajas señales. En el caso de usar tasas de repetición muy altas (e.g. 45 Hz), la transferencia de aerosol debe ser rápida para evitar el fraccionamiento inducido por el láser (Petrus et al. 2017).

Con el objetivo de corregir el fenómeno de deriva instrumental de los espectrómetros de masa, Woodhead et al. (2008) recomiendan realizar el análisis de materiales de referencia al inicio y al final de cada experimento, usando los mismos parámetros analíticos usados en las muestras. Además, recomiendan realizar una pausa entre una línea y otra para monitorear la línea base y así poder modelar cualquier variación durante el tiempo de análisis.

• Configuración del espectrómetro de masas

Para asegurar un muestreo significativo, es necesario mantener al mínimo el número de elementos medidos y el tiempo de adquisición para cada elemento debe ser maximizado. El tiempo de adquisición para cada uno debe ser definido de acuerdo con la abundancia relativa de cada elemento. Para analitos poco abundantes se debe definir un tiempo de adquisición de al menos 30 ms. Finalmente, debido a que la información del espectrómetro de masas debe ser sincronizada con el log del láser para la creación del mapa, esta debe ser guardada como un experimento continuo (Ulrich et al., 2009; Ubide et al., 2015).

Reducción de los datos

Las series de tiempo son segmentadas en grupos que corresponden a medidas específicas, típicamente líneas base (baselines), materiales de referencia y "unknowns". lolite ofrece tres opciones para realizar esta segmentación: "Information from import, from laser log y from beam intensity". En el caso de la creación de mapas, para la selección de los materiales de referencia y los "unknowns" se usa el log del láser y para la selección de las líneas base se utiliza la intensidad del láser (e.g. U238> 1000 cuentas). Posteriormente, se usa un esquema de reducción de datos (DRS) para procesar las selecciones en datos cuantificados (e.g. concentraciones de elementos, razones isotópicas). Esta reducción involucra la interpolación entre las líneas base y los materiales de referencia, para hacer la substracción de las líneas base y la calibración. lolite tiene un conjunto de DRS para diferentes tipos de datos. En el caso del mapeo, no es necesario realizar corrección de fraccionamiento por profundidad.

Creación de las imágenes o mapas

lolite ofrece dos módulos para la creación de imágenes: "Image from selections" y CellSpace. "Image from selections" crea los mapas a partir de una serie de líneas paralelas de igual longitud sin realizar ninguna interpolación o suavizado de datos de líneas adyacentes, esto produce mapas que son un reflejo fiel de los datos de las series de tiempo, sin embargo, los mapas obtenidos tienen una naturaleza muy pixelada, por consiguiente, son poco realistas (Petrus et al., 2017). CellSpace (Paul et al., 2012) sincroniza el log del láser con la información del espectrómetro de masas. El algoritmo permite registrar cada segmento temporal de datos en las coordenadas de la celda de ablación láser, respetando la forma y rotación del haz y cualquier superposición potencial de puntos. CellSpace grafica la información del espectrómetro de masas que es registrada temporalmente vs la posición de ablación. Este método también permite superponer los mapas LA–ICP–MS creados sobre imágenes existentes del área (e.g. imágenes de catodoluminiscencia), las cuales deben estar mapeadas previamente en GeoStar y contener la información de coordenadas. La resolución de la imagen mapeada en GeoStar es la usada para realizar los cálculos en CellSpace (típicamente es de un píxel por micrómetro), por lo tanto, la imagen de entrada determina la resolución del mapa creado por CellSpace.

Extracción de datos cuantitativos del mapa

Para la extracción de información de los mapas, Petrus et al. (2017) crearon "Monocle", un complemento de lolite para la interrogación y extracción de información cuantitativa de mapas LA–ICP–MS. Esta herramienta permite la creación de áreas de interés (ROIs- regions of interest). El mapa puede ser inspeccionado en un modo "live" utilizando una lupa ajustable y varios inspectores (histograma, estimación de la densidad de Kernel, elementos de tierras raras y Wetherill / Tera-Wasserburg U–Pb). Los inspectores muestran como los patrones de REE, elipses de error U–Pb, etc., cambian a medida que se mueve la lupa de una región a otra del mapa y de esta forma se puede decidir dónde ubicar un ROI. Hay varias formas para definir las regiones de interés: dibujando polígonos, desde

una semilla o por criterios. Petrus et al. (2017) destacan que la creación de ROIs a partir de criterios permite la extracción de información de todo el mapa y adicionalmente limita el grado en que el usuario sesga esta extracción. Finalmente, Monocle computa la información de un ROI como el promedio, la desviación estándar y el error de correlación (para datos U–Pb) y esta información puede exportarse en forma de tabla para ser usada en otros programas.

4.3.3. Mapeo geocronológico y elemental de zircones con LA-ICP-MS en el LEI

Con base en el artículo de Chew et al. (2017) y en las sugerencias de múltiples autores recopiladas anteriormente, se realizaron una serie de experimentos con el objetivo de buscar la mejor combinación de parámetros analíticos en el equipo de ablación láser del LEI, la descripción del equipo utilizado puede ser encontrada en el capítulo de metodología (sección 3). Es de resaltar que la celda de ablación del sistema es de doble volumen y tiene una reproducibilidad espacial excelente y tiempo de "washout" bajo. Müller et al. (2009) describieron este tipo de celda y encontraron que el tiempo de "washout" es rápido y la señal baja un 99% en ~1.5 s. Si se utiliza el "squid", un dispositivo para suavizar la señal, el tiempo de "washout" aumenta, con una disminución del 99% de la señal en ~3.5 s. El uso del "squid" es recomendado cuando se usan tasas de repetición por debajo de 10 Hz (Müller et al., 2009).

4.3.3.1. Método

Ablación laser

La definición del área de ablación se realizó en el software GeoStar v8.49 (RESOlution Inc.). El área fue definida de modo que cubriera todo el cristal, por lo que es necesario ablacionar una porción de la resina al inicio y al final de cada línea. La ablación se realizó en la misma dirección para todas las líneas, volviendo al mismo lado al inicio de cada línea. El spot usado tenía forma circular y la necesidad de traslapar las diferentes líneas fue evaluado y se observó que era importante definir una sobreposición de 1 μ m para que no hubiera gaps en las imágenes generadas. El área de ablación estuvo entre 200 μ m² y 800 μ m².

Para encontrar la combinación óptima de parámetros se realizaron varios experimentos en zircones de prueba cambiando los siguientes parámetros: tamaño del spot (23 µm o 13 µm), la velocidad de traslación (7 µm/s, 10 µm/s, 20 µm/s) y la tasa de repetición (5 Hz, 10 Hz, 20 Hz). El "squid" se mantuvo durante todos los experimentos. La densidad de energía se mantuvo constante en todos los experimentos (6 J/cm²). Aunque el sistema tiene un "washout" rápido, entre una línea y otra hubo un tiempo de 30 s para monitorear la línea base.

Al inicio y al final de la ablación de cada zircón se realizaron barridos de los zircones de referencia primario y secundario usando los mismos parámetros analíticos que se usaron en las muestras. Se realizaron tres barridos al inicio y tres al final del zircón 91500 (ca. 1065 Ma; Wiedenbeck et al., 1995) y dos barridos al inicio y dos al final del zircón Plešovice (ca. 337 Ma; Sláma et al., 2008). Adicionalmente, se realizó una limpieza pre-ablación de los zircones, con el fin de remover la contaminación de Pb común (Chew et al., 2017), disparando unos pocos pulsos de laser con un tamaño de spot mayor al del zircón.

Una vez se obtuvieron buenos resultados en los zircones de prueba y los estándares, se procedió a realizar los mapas de los zircones seleccionados del Complejo Oaxaqueño. La combinación que generó mejores resultados fue: un spot de 13 µm (que es el tamaño mínimo del sistema láser usado), una velocidad de desplazamiento de 7 µm/s y una tasa de repetición de 10 Hz (Tabla 6). Al usar una tasa de

repetición de 20 Hz también se obtuvieron buenos resultados, pero se decidió usar la tasa de 10 Hz porque hay una menor penetración del zircón. Con una velocidad de 7 μ m/s y un spot 13 μ m, el tiempo total del experimento en un zircón de ~200 μ m, es de alrededor de 25-35 min incluyendo la medida de los estándares.

Láser	
Instrumento	Resolution M-50, láser de excímeros de ArF, 193 nm
Tasa de repetición del láser	10 Hz
Velocidad de traslación	7 μm/s
Tamaño del spot	13 µm
Espaciamiento entre líneas	12 μm
_Energía	6 J/cm ²
Espectrómetro de masas	
Instrumento	Thermo Scientific iCAP Qc
Plasma RF power	1500 W
lsótopos medidos con tiempo de	¹⁷⁹ Hf [5], ²⁰² Hg [20], ²⁰⁴ Pb [20], ²⁰⁶ Pb [30], ²⁰⁷ Pb [40], ²⁰⁸ Pb
adquisición [ms]	[20], ²³² Th [20], ²³⁸ U [20]
Tiempo total de adquisición	175 ms

Tabla 6. Parámetros analíticos utilizados durante los experimentos de mapeo de zircones con LA–ICP– MS

Espectrómetro de masas

El espectrómetro de masas fue optimizado al inicio de cada sesión analítica usando el vidrio de referencia NIST SRM 612 que fue escaneado con una velocidad o.5 mm/s, una tasa de repetición de 10 Hz y un spot de 80 µm hasta alcanzar valores 1.2 < U/Th > 1.0, óxidos de Th < 2% y cuentas de ²³⁸U > 1,000,000. La adquisición de los datos por el espectrómetro de masas se realizó en el software Qtegra (Thermo Fisher Scientific Inc.) como un experimento continuo. El tiempo de adquisición del espectrómetro de masas para cada elemento se definió con respecto a la abundancia relativa del analito en zircones y a la velocidad de traslación del experimento, de modo que al desplazarse una micra el espectrómetro de masas hiciera una lectura de todos los elementos (Chew et al. 2017). En total se midieron ocho analitos ¹⁷⁹Hf, ²⁰²Hg, ²⁰⁴Pb, ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb, ²³²Th y ²³⁸U.

Reducción de datos

La reducción de los datos se realizó en lolite v3.7 (Paton et al., 2011). El log del láser se usó para sincronizar la información del espectrómetro de masas con las coordenadas del láser en el tiempo. Se realizó la selección de las integraciones, para los materiales de referencia y los "unknowns" con el log del láser y para línea base con la intensidad de la señal. Se usó el esquema de reducción X_U_Pb_Geochron4. Como estándar interno se usó 29Si, asumiendo un valor estequiométrico de 32.77% SiO2 en zircón. El zircón 91500 (ca. 1065 Ma; Wiedenbeck et al., 1995) fue usado como estándar primario, del cual se obtuvo una edad de 1062±13 Ma. No se realizó corrección de Pb común, ni se aplicó corrección por fraccionamiento de profundidad. Después de la reducción de datos, los mapas fueron construidos usando los módulos "Image from selections" y CellSpace. La reducción de los datos y la construcción de los mapas toma alrededor de 20-35 min por experimento.

4.3.3.2. Mapas obtenidos

М1Са

En la imagen de cadoluminiscencia (Fig. 24a) se observa un núcleo luminiscente con zonación oscilatoria que constituye la mayor parte del cristal y es transgredido por un dominio oscuro y homogéneo en CL. Hay una alta correspondencia entre el contenido de uranio y las zonas de CL (zonas oscuras en CL = alto contenido de U; zonas brillantes en CL= bajo contenido de U), el dominio luminiscente presenta concentraciones de U entre 200-400 ppm, mientras que en el domino oscuro U > 800 ppm. La identificación de las dos zonas también se puede hacer en el mapa Th/U, la zona luminiscente presenta valores entre 0.4-1.0, mientras que el dominio oscuro presenta valores Th/U menores, entre 0.12-022.

El mapa de edad ²⁰⁶Pb/²³⁸U muestra que tanto el núcleo como algunos sectores del dominio rico en uranio tienen edades > 1150 Ma, aunque el dominio rico en uranio también presenta edades <1050 Ma, sin embargo, las edades en el sector rico en uranio son discordantes y podría estar relacionado a perdida de Pb. Se aplicó un criterio para seleccionar los pixeles que presentan datos U–Pb con concordancia mayor al 90% y edad ²⁰⁶Pb/²³⁸U > 1150 y <1280 Ma (el límite superior se aplicó para descartar pixeles sospechosos con edades de ca. 1300 que se encuentran al final de las líneas, aunque la mayoría de estos pixeles son discordantes). La aplicación de este criterio arrojó edades ²⁰⁶Pb/²³⁸U y ²⁰⁷Pb/²⁰⁶U de 1227.7 ± 3.3 Ma (2S) y 1206.6 ± 11.9 Ma (2S), respectivamente.

M1Ch

En la imagen de cadoluminiscencia (Fig. 24b) se observa un zircón con zonación oscilatoria con un borde muy fino luminiscente. En este caso no se observa una correspondencia entre los mapas de concentraciones de elementos y la imagen de catodoluminiscencia. En el mapa de uranio se observa que hay un núcleo con menor concentración de uranio 200-400 ppm, bordeado por un manto con concentraciones de U > 700 ppm y finalmente un borde con baja concentración de uranio. La identificación del núcleo y el manto también se puede hacer en el mapa Th/U, el dominio pobre en uranio tiene valores entre 0.4-1.0, mientras que el dominio con alto uranio presenta valores Th/U menores, entre 0.067-0.17.

El mapa de edad ²⁰⁶Pb/²³⁸U muestra que el núcleo tiene edades > 1150 Ma, aunque se observa que la parte más externa del núcleo tiene edades <1050 Ma. Se aplicó un criterio para seleccionar los pixeles que presentan datos U–Pb con concordancia mayor al 90% y edad ²⁰⁶Pb/²³⁸U > 1150 Ma. La aplicación de este criterio arrojó edades ²⁰⁶Pb/²³⁸U y ²⁰⁷Pb/²⁰⁶U de 1234± 8.5 Ma (2S) y 1220.6 ± 30.5 Ma (2S), respectivamente. Adicionalmente, se aplicó un criterio para seleccionar los pixeles con concordancia >90% y edad ²⁰⁶Pb/²³⁸U > 950 y < 1050 Ma, este criterio arrojó edades ²⁰⁶Pb/²³⁸U y ²⁰⁷Pb/²⁰⁶U de 1005.9 ± 9.1 Ma (2S) y 1012 ± 17.9 Ma (2S), respectivamente.

Figura 24. Mapas geocronológicos y elementales, fotomicrografía en luz reflejada e imagen de catodoluminiscencia de: (a) Zircón M1ca y (b) Zircón M1Ch.

M2Cb

En la imagen de cadoluminiscencia (Fig. 25a) se observa un núcleo luminiscente bordeado por un manto oscuro y finalmente un borde luminiscente. El contacto entre el núcleo luminiscente y el manto es abrupto en la mayor parte, sin embargo, también hay zonas donde es transgresivo. El mapa del contenido de uranio y las zonas de CL coinciden muy bien (zonas oscuras en CL = alto contenido de U; zonas brillantes en CL= bajo contenido de U). El mapa de uranio muestra que el núcleo luminiscente presenta contenidos de U entre 100-200 ppm y en el manto oscuro estas son mayores a 350 ppm (alcanzando concentraciones de hasta 850 ppm), además, se observa un borde fino con menor contenido de U < 200 ppm. Los dominios de manto y núcleo se pueden diferenciar también en el mapa de Th/U. El núcleo presenta valores entre 0.25-0.5 y el manto valores entre 0.083-0.167, con los menores valores hacia los bordes.

El mapa de edad ²⁰⁶Pb/²³⁸U muestra que tanto el núcleo como algunos sectores del dominio rico en uranio tienen edades > 1150 Ma, aunque el dominio rico en uranio también presenta zonas con edades <1050 Ma, que coinciden con los sectores con mayores concentraciones uranio, estos sectores son discordantes y la diferencia en la edad podría estar relacionada a perdida de Pb por daño de la estructura cristalina. Se aplicó un criterio para seleccionar los pixeles que presentan datos U–Pb con discordancia menor al 10% y edad ²⁰⁶Pb/²³⁸U > 1150 Ma. La aplicación de este criterio arrojó edades ²⁰⁶Pb/²³⁸U y ²⁰⁷Pb/²⁰⁶U de 1234.6± 3.7 Ma (2S) y 1217.4 ± 10.4 Ma (2S), respectivamente.

Adicionalmente, el mapa de edad ²⁰⁶Pb/²³⁸U también muestra edades <1050 Ma hacia el borde del cristal, al aplicar un criterio para seleccionar los pixeles con concordancia >90% y edad ²⁰⁶Pb/²³⁸U > 950 y < 1050 Ma, este criterio arrojó edades ²⁰⁶Pb/²³⁸U y ²⁰⁷Pb/²⁰⁶U de 1013.9 ± 6.4 Ma (2S) y 1030.9 ± 14.5 Ma (2S), respectivamente. Estas edades podrían representar el reseteo parcial del componente más viejo.

М2Сс

Este zircón en la imagen de catodoluminiscencia presenta un núcleo oscuro bordeado por un manto de mayor luminiscencia (Fig.25b). Tanto en el mapa de uranio, torio, plomo y razón Th/U es posible identificar los dos dominios. La zona oscura tiene un contenido muy alto de uranio, entre 1800-3500 ppm, además, tiene una razón Th/U entre 0.08-1.17; mientras que el dominio más luminiscente tiene concentraciones de uranio menores a 400 ppm y una razón Th/U> 0.2.

El mapa de edad ²⁰⁶Pb/²³⁸U muestra que el núcleo rico en uranio tiene edades <950 Ma, estos sectores son discordantes y esto podría estar relacionada a perdida de Pb por daño de la estructura cristalina. Adicionalmente, se observan que en las zonas luminiscentes hay zonas con edades >1150 Ma. Se aplicó un criterio para seleccionar los pixeles que presentan datos U–Pb con concordancia mayor al 90% y edad ²⁰⁶Pb/²³⁸U > 1150 y <1290 Ma (el límite superior se aplicó para descartar pixeles sospechosos con edades de ca. 1300 que se encuentran al inicio y al final de las líneas, aunque estos pixeles presentan datos discordantes). La aplicación de este criterio arrojó edades ²⁰⁶Pb/²³⁸U y ²⁰⁷Pb/²⁰⁶U de 1233 ± 5.9 Ma (2S) y 1215.4 ± 17.1 Ma (2S), respectivamente. También se aplicó un criterio para seleccionar los pixeles con concordancia >90% y edad ²⁰⁶Pb/²³⁸U > 950 y < 1050 Ma, este criterio arrojó edades ²⁰⁶Pb/²³⁸U y ²⁰⁷Pb/²⁰⁶U de 1233 ± 0.9 Ma (2S) y 995 ± 10.7 Ma (2S), respectivamente.

Figura 25. Mapas geocronológicos y elementales, fotomicrografía en luz reflejada e imagen de catodoluminiscencia de: (a) Zircón M2Cb y (b) Zircón M2Cc.

МзСд

Este zircón en la imagen de catodoluminiscencia presenta un núcleo que en su mayor parte es luminiscente con zonación oscilatoria débil, un manto oscuro homogéneo y un borde luminiscente muy fino (Fig.26a). El mapa de contenido de uranio y la imagen de CL tienen una alta correspondencia, las zonas oscuras en CL tiene un contenido alto de U (U >700 ppm hasta 1500), mientras las zonas brillantes en CL un bajo contenido de U (U < 300 ppm). La razón Th/U del núcleo es mayor a 0.2, mientras que el manto presenta razones Th/U entre 0.03-0.14

El mapa de edad ²⁰⁶Pb/²³⁸U muestra que el núcleo tiene edades > 1300 Ma y el manto rico en uranio tiene edades <1200 Ma. Se aplicó un criterio para seleccionar los pixeles que presentan datos U–Pb con concordancia mayor al 90% y edad ²⁰⁶Pb/²³⁸U > 1300 Ma y se obtuvo edades ²⁰⁶Pb/²³⁸U y ²⁰⁷Pb/²⁰⁶U de 1481.7 ± 11.4 Ma (2S) y 1477 ± 14.3 Ma (2S), respectivamente. Adicionalmente, se aplicó un criterio para seleccionar los pixeles con concordancia >90% y edad ²⁰⁶Pb/²³⁸U > 950 y < 1200 Ma, este criterio arrojó edades ²⁰⁶Pb/²³⁸U y ²⁰⁷Pb/²⁰⁶U de 1089.63 ± 6.5 Ma (2S) y 1083 ± 8.4 Ma (2S), respectivamente.

M4Cb

Este zircón muestra en CL un núcleo (luminiscente y oscuro) rodeado por un manto luminiscente. El manto está bordeado por un dominio oscuro y en algunas zonas es transgredido por este; adicionalmente, se observa un borde muy fino con una coloración diferente (Fig.26b). En este caso no hay una correspondencia tan alta entre el mapa de uranio con la imagen de CL como en los otros zircones. Sin embargo, es posible distinguir la parte luminiscente del núcleo y cierta parte del manto luminiscente y estos se caracterizan por bajos contenidos de uranio (<300 ppm), mientras que las zonas oscuras presentan contenidos de uranio mayores a 500 ppm (hasta de 850 ppm).

En el mapa de la relación Th/U se observa una zona central con valores Th/U> o.5. El mapa de edad ²⁰⁶Pb/²³⁸U muestra que el núcleo tiene edades > 1300 Ma. Se aplicó un criterio para seleccionar los pixeles que presentan datos U–Pb con concordancia mayor al 90% y edad ²⁰⁶Pb/²³⁸U >1300 Ma. Este criterio arrojó edades ²⁰⁶Pb/²³⁸U y ²⁰⁷Pb/²⁰⁶U de 1416.5 ± 16.8 Ma (2S) y 1382.8 ± 20 Ma (2S), respectivamente. Adicionalmente, el resto del zircón (tanto el manto luminiscente como el borde oscuro) tiene edades <1150 Ma. Un filtro para seleccionar los pixeles con datos U–Pb concordantes (concordancia >90%) y edad ²⁰⁶Pb/²³⁸U >950 y <1150 Ma. Este criterio arrojó edades ²⁰⁶Pb/²³⁸U y ²⁰⁷Pb/²⁰⁶U de 1048± 8.3 Ma (2S) y 1041 ± 10.4 Ma (2S), respectivamente.

Figura 26. Mapas geocronológicos y elementales, fotomicrografía en luz reflejada e imagen de catodoluminiscencia de: (a) Zircón M₃Cg y (b) Zircón M₄Cb.

M40

El zircón analizado presenta forma redondeada y en la imagen de catodoluminiscencia este tiene una respuesta luminiscente y se caracteriza por tener zonación sectorial, se puede observar también un borde más luminiscente muy fino (Fig.27a). Hay una alta correspondencia entre la imagen de CL y los mapas de U y Th, y se pueden relacionar los sectores con menor contenido de uranio y mayor luminiscencia. La concentración de uranio alcanza valores de 360 ppm en las partes menos luminiscentes, mientras que en las partes más luminiscentes tiene concentraciones menores a 150 ppm. Adicionalmente, en todos los mapas se observa un delgado borde con menores concentraciones en todos los elementos, que corresponde con el borde más luminiscente en CL.

En el mapa de la relación Th/U, se observa que la mayoría del cristal tiene valores > 0.5, mientras que el borde se caracteriza por valores menores a entre 0.33-0.11. El mapa de edad $^{206}Pb/^{238}U$ muestra que en el cristal tiene edades entre 950-1050 Ma. Se aplicó un criterio para seleccionar los pixeles que presentan datos U–Pb con concordancia mayor al 90% y edad $^{206}Pb/^{238}U$ >950 Ma. La aplicación de este criterio arrojó edades $^{206}Pb/^{238}U$ y $^{207}Pb/^{206}U$ de 998.2 ± 6.0 Ma (2S) y 987.5 ± 10.7 Ma (2S), respectivamente.

M50

Este cristal muestra en CL una zonación oscilatoria con algunos sectores oscuros y otros luminiscentes (Fig. 27b). El mapa de uranio y la imagen de catodoluminiscencia tienen una alta correspondencia (zonas oscuras en CL = alto contenido de U; zonas brillantes en CL= bajo contenido de U). Las zonas luminiscentes tienen contenido de uranio entre 200-400 ppm, mientras que las zonas oscuras la concentración de uranio es mayor a 800 ppm, alcanzando valores de 1900 ppm en el centro del cristal.

En el mapa de Th/U no se hace tan evidente la diferencia entre las zonas luminiscentes y oscuras, solo se alcanza a diferenciar que los sectores con mayor contenido de uranio tienen razones Th/U entre 0.06-0.12, mientras que el resto del zircón tiene valores Th/U entre 0.25-0.5. En los mapas elementales también se diferencia un borde con menores concentraciones en todos los elementos y razones Th/U<0.12. El mapa de edad ²⁰⁶Pb/²³⁸U muestra que la mayor parte del zircón tiene edades entre 1000-1100 Ma, aunque el sector rico en uranio presenta edades menores a 800 Ma, al igual que el borde. En este zircón no se obtuvieron pixeles concordantes.

Figura 27. Mapas geocronológicos y elementales, fotomicrografía en luz reflejada e imagen de catodoluminiscencia de: (a) Zircón M40 y (b) Zircón M50.

En la mayoría de los mapas obtenidos se observa que hay una alta correspondencia entre el mapa de uranio y la imagen de catodoluminiscencia (zonas oscuras en CL = alto contenido de U; zonas brillantes en CL= bajo contenido de U), al igual que con el mapa de la relación Th/U. Las edades obtenidas son similares dentro del error a aquellas que se obtuvieron mediante análisis puntuales en zircones de las mismas muestras (Tabla 7). Los zircones de las muestras M1Ca, M1Ch, M2Cb y M2Cc arrojaron edades alrededor de 1.2 Ga. Mientras que los zircones de las muestras M3Cg y M4Cb registran edades de 1.4 Ga. Mientras que en el zircón de la muestra M4o, que tiene características metamórficas, se obtuvo una edad de ca. 990 Ma. En todos los zircones se observaron zonas con edades aparentes menores a 950 Ma que son discordantes y que generalmente coinciden con dominios altos en uranio, lo que podría reflejar pérdida de Pb por metamictización. Por otro lado, las edades obtenidas son similares dentro del error a aquellas obtenidas mediante análisis puntuales en zircones de las mismas muestras (Tabla 7).

	Edad ²⁰⁶ Pb/ ²³⁸ U	Edad ²⁰⁷ Pb/ ²⁰⁶ U	U	Th	Edades análisis puntuales (Ma)	
	(Ma)	(Ma)	(ppm)	(ppm)	Media ponderada	Picos de probabilidad
MıCa	1227.7±3.3	1206.6 ± 11.9	281 ±23	132±8	1216 ± 16	1230
MıCh	1234±8.5	1220.6 ± 30.5	306 ±26	113 ± 15	1243 ± 18	1250
	1005.9 ± 9.1	1012 ± 17.9	482 ± 45	123 ± 11		
M2Cb	1234.6±3.7	1217.4 ± 10.4	230 ± 15	68 ± 4	1216 ± 13	1220
	1013.9 ± 6.4	1030.9 ± 14.5	343 ± 30	44 ± 6		
M2Cc	1233 ± 5.9	1215.4 ± 17.1	190 ± 25	53 ± 7	1240 ±23	1250
	998.6± 4.9	995 ± 10.7	511 ± 57	88 ± 6		
M3Cg	1481.7 ± 11.4	1477 ± 14.3	174 ± 14	86 ± 5		1630
	1089.63 ± 6.5	1083 ± 8.4	767 ± 28	58 ± 4		1350
M4Cb	1416.5 ± 16.8	1382.8 ± 20	355 ± 46	140 ± 19	1213 ± 16	1225
	1048± 8.3	1041±10.4	376 ± 18	89 ± 4		
M40	998.2 ± 6.0	987.5 ± 10.7	168 ± 8	104 ± 8	999 ± 17	1010

 Tabla 7. Edades de los zircones mapeados obtenidos creando regiones de interés por criterios.

 Adicionalmente se presentan las edades obtenidas en estas mismas muestras mediante análisis puntuales.

5. Discusión

Los diagramas bivariantes de discriminación tectónica que usan la guímica del zircón (U/Yb vs Hf, U/Yb vs Y, U/Yb vs Nb/Yb, Nb/Hf vs Th/U y Hf/Th vs Th/Nb) indican que los zircones analizados son continentales y de un ambiente de arco magmático (Grimes et al., 2007, 2015; Yang et al. 2012). Los resultados de geocronología U–Pb en zircones de la mayoría de los clastos gnéisicos estudiados (M 1Ca, M1Cf, M1Ch, M1Ci, M2Cb, M2Cc, M3Ce, M4Cb) arrojan picos de probabilidad entre ca. 1215-1250 Ma (Tabla 8). Los isótopos de Hf en zircón de estos clastos revelan valores 176 Hf/ 177 Hf(1.2Ga) entre 0.282045-0.282154 y EHf (1.2Ga) entre +1 y +6. Estos zircones son considerados como moderadamente juveniles siguiendo a Reimann et al. (2010) (zircones moderadamente juveniles: la diferencia es entre 5 y 12 unidades épsilon a partir del manto) y tienen edades de residencia de la corteza entre 1.7-1.9 Ga (para la corteza promedio con ¹⁷⁶Lu/¹⁷⁷Hf= 0.015, Griffin et al., 2002), lo que indica la influencia de una corteza del Paleoproterozoico tardío. Estos gneises se caracterizan por tener una composición principalmente cuarzo-feldespática y debido a que no se tienen relaciones de campo es difícil determinar si se trata de paragneises u ortogneises. No obstante, las poblaciones de zircones arrojan un evento de cristalización importante en el Mesoproterozoico, entre 1.25-1.2 Ga. Por otro lado, el clasto M₃Cg registra la influencia de rocas del Paleoproterozoico. Este clasto es de un gneis granatífero que presenta zircones más antiguos que el resto de las muestras analizadas, con un pico de probabilidad en ca. 1630 Ma y otro menor de ca. 1350 Ma.

Los análisis U–Pb con concordancia >10% de todas las muestras se encuentran a lo largo de la concordia en un lapso de centenares de millones de años. Este tipo de datos casi concordantes distribuidos a lo largo de la concordia ha sido reportado en ortogneises de terrenos metamórficos de alto grado (e.g. Halpin et al., 2012; Ibanez-Mejia et al., 2011; Kröner et al., 2013; Kröner et al., 2014) y se ha explicado como pérdida variable de plomo durante la orogénesis y/o como líneas de mezcla. En estos casos, la diferencia de edad entre los dos eventos (cristalización del protolito y metamorfismo) es relativamente pequeña y la línea de discordia es subparalela a la curva de concordia e imposible de diferenciar dependiendo de la magnitud de los errores (Corfu, 2013; Kröner et al., 2014). Esto es importante debido a que este tipo de datos se podría interpretar como edades concordantes que reflejan múltiples episodios de crecimiento, sin tener presente que pueden representar reseteo parcial o mezcla (Kröner et al., 2014). Halpin et al. (2012) sugieren usar solamente el conjunto de datos más robustos (concordancia entre 98%-102%) con edades aparentes ²⁰⁷Pb/²⁰⁶Pb más antiguas y con contenido de elementos de tierras raras (REE) consistente para estimar la edad mínima de cristalización de los protolitos. En el caso de que las muestras con picos mayores de probabilidad de ca. 1.2 Ga fueran ortogneises, la media ponderada de las edades ²⁰⁷Pb/²⁰⁶Pb, con valores entre 1210-1240 Ma, representaría la mejor estimación de la edad mínima de cristalización de los protolitos (Tabla 8). Estas edades son iguales dentro del error a las edades del conjunto de datos más robustos (concordancia entre 98%-102%) con edades aparentes ²⁰⁷Pb/²⁰⁶Pb más antiguas y con contenido de elementos de tierras raras consistente de cada muestra. De tratarse de paragneises, los sedimentos debieron provenir esencialmente de la erosión de granitoides de 1.25-1.2 Ga o de la actividad vulcanosedimentaria contemporánea y los protolitos sedimentarios debieron tener una composición esencialmente cuarzo-feldespática.

Por otra parte, en el caso de las muestras in situ del basamento, la muestra M40 presenta zircones metamórficos que arrojaron una edad de 999±17 Ma. Esta muestra presenta un empobrecimiento en los HREE en comparación con el patrón típico de los zircones ígneos, que podría deberse a la cristalización del zircón en equilibrio con granate (Rubatto, 2002). Mientras que la muestra M50 también registra un pico de probabilidad mayor de ca. 1240 Ma y una media ponderada de 1233±14. Los isótopos de Hf en zircones de la muestra M50 revelan un rango de 176 Hf/ 177 Hf (1.2 Ga) entre 0.282182-0.282239 mayores que los otros análisis y valores ɛHf (1.2Ga) entre +7 y +9, representando los zircones más juveniles de todos los analizados. Siguiendo a Reimann et al. (2010) estos son considerados como zircones juveniles, aunque unos cuantos se encuentran

en el límite de los moderadamente juveniles (zircones juveniles: la diferencia es menor a 5 unidades épsilon a partir del manto). Estos presentan edades de residencia de la corteza entre 1.5-1.6 Ga (para la corteza promedio con ¹⁷⁶Lu/¹⁷⁷Hf= 0.015, Griffin et al., 2002), indicando un precursor cortical del Mesoproterozoico temprano.

Las muestras estudiadas tienen una estructura gnéisica, y aunque no se encontraron las asociaciones minerales diagnósticas para definir las facies de metamorfismo por el alto grado de alteración de los minerales máficos, hay evidencia textural que sugieren una temperatura alta como las texturas granoblásticas con contactos altamente curvos entre agregados de feldespatos y cuarzos, que sugieren una recristalización por migración de bordes; el desarrollo de subgranos "chessboard" en cuarzo y las texturas de exsolución de los feldespatos (Passchier &Trouw, 2005; Mora et al., 1986).

Muestra	Edad ²⁰⁷ Pb/ ²⁰⁶ Pb más vieja, concordancia >98 % (Ma)	Media ponderada edades ²⁰⁷ Pb/ ²⁰⁶ Pb, concordancia >90% (Ma)	Pico de probabilidad, concordancia >90% (Ma)
MıCa	1259±37	1216±16	1230
MıCf	1276±37	1243±14	1240
MıCh	1287±43.5	1243±18	1250
MıCi	1263±60	1218±21	1215
M2Cb	1254±30	1216±13	1220
M2Cc	1294±41.5	1240 ± 27	1250
M3Ce	1271±33.5	1235±42	1240
M4Cb	1244±38	1213±16	1225
M50	1262±31	1233±14	1240

Tabla 8. Resumen de edades U—Pb de las muestras analizadas con edades de ca. 1.2 Ga.

Correlación de las muestras con unidades Grenvillianas

En las figuras 28 a 32 se comparan los análisis de este estudio con datos U–Pb y Hf en zircones reportados por otros autores de las unidades de Oaxaquia y de otras unidades proterozoicas. Para realizar la comparación de isótopos de Hf se incluyeron datos de unidades que comparten edades U–Pb primarias o heredadas similares a las registradas en las muestras. Weber et al. (2010) y Weber & Schulze (2014) reportaron los primeros análisis de Hf en zircón total para las diferentes unidades de Oaxaquia, adicionalmente, Solari et al. (en prensa) caracterizó puntualmente zircones de un amplio número de muestras del Complejo Oaxaqueño. De la margen NW de Amazonia existen análisis de zircones detríticos de unidades paleozoicas de Perú y norte de Bolivia (Reimann et al., 2010) y de macizos aislados precámbricos de Colombia y núcleos del basamento (Weber et al., 2010; Ibanez-Mejia et al., 2015;). De Laurencia se incluyeron datos de la suite AMCG de las Montañas Adirondacks (Bickford et al., 2016), de la Provincia de Riolitas y Granitos (Goodge & Vervoort, 2006), de la Provincia Yavapai (Bickford et al., 2008), del Proterozoico de Sonora (Arvizu et al., 2009) y de zircones detríticos de unidades paleozoicas apalachianas (Mueller et al., 2008). Asimismo, se incluyeron datos del sur de Báltica (Andersen et al., 2002; Andersen & Griffin, 2004; Andersen et al., 2007; Pedersen et al., 2009). Todos los datos fueron recalculados para realizar la comparación.

En primer lugar, se comparan las muestras de este estudio con los datos disponibles de las diferentes unidades de Oaxaquia (Fig. 28-29). Los picos de probabilidad de la mayoría de los clastos y de la muestra in situ M50 se encuentran entre ca. 1215-1250 Ma (Tabla 8), estas edades están en el rango de edades del magmatismo de arco de Oaxaquia (Fig. 28). La muestra M4Ca tiene un pico de probabilidad de ca. 1140 Ma que también se encuentra en este rango. Además, el clasto M3Cg con zircones del entre 1-6-2.4 Ga (Paleoproterozoico) registra edades comparables con zircones de una metapelita del sur de Oaxaca que tiene zircones detríticos de hasta ca. 1.8 Ga (Solari et al., 2014); y con un paragneis del Complejo Guichicovi y un ortogneis de Huiznopala donde se reportaron edades similares a las encontradas (Weber et al., 2010; Weber & Schulze, 2014).

Por otro lado, una de las muestras tomadas *in situ* registra una edad de metamorfismo de 999±17 Ma. Mientras que el clasto M4Ca también registra un evento a 1011±24 Ma (Tabla 9). Estas edades son consistentes con la edad del metamorfismo de alto grado reportada en el microcontinente Oaxaquia (Fig. 28, Evento Zapoteca). Aunque no se obtuvieron otras edades similares en las otras muestras, posiblemente debido a que los análisis puntuales estuvieron enfocados en los núcleos, los análisis concordantes de U–Pb de todas las muestras se encuentran a lo largo de la concordia en un lapso de cientos de millones de años, que puede explicarse como resultado de pérdida variable de plomo durante la orogénesis.

Tabla 9. Edades obtenidas que caen en el rango de edades de metamorfismo de alto grado en Oaxaquia.

Muestra		
M40	Grupo con media ponderada de 999±17 Ma (MSWD=0.55, n=17)	Th/U entre 0.05-1.01, la mayoría <0.2
M4Ca	Grupo con media ponderada de 1011±24 (MSWD = 0.62, n=8)	Concentración de HREE menor en comparación con los otros análisis.

Al comparar los datos de las muestras analizadas con isótopos de Hf en zircón (M2Cc, M1Ca, M1Cf, M1Ch, M1Ci, M4Cb, M3Ce, M2Cb, M5o) con otros datos del Complejo Oaxaqueño (Fig. 29; Weber et al., 2010; Weber & Schulze, 2014; Solari et al., en prensa) se observa que los zircones juveniles de la muestra in situ del basamento (M50) tienen similitud isotópica con zircones de una ortomigmatita y un ortogneis del sur del Complejo Oaxaqueño (Oaxo701 y Oaxo702, Weber et al. 2010), de un ortogneis granatífero del Gneis Novillo (NOV-7-85, Weber et al. 2010) y de un gneis granítico del Complejo Guichicovi (G-18-1, Weber et al. 2010), así como con zircones de un ortogneis y un paragneis del Gneis Huiznopala (Molg-1 y Molg-6, Weber & Schulze, 2014) y un zircón de la Migmatita El Catrín (Oax3-101, Weber & Schulze, 2014) ; aunque los zircones de la muestra M50 son un poco menos diferenciados. Por otro lado, los zircones de los clastos (muestras M2Cc, M1Ca, M1Cf, M1Ch, M1Ci, M4Cb, M3Ce, M2Cb) tienen una firma isotópica similar a muestras de la porción norte del Complejo Oaxaqueño, entre las que se encuentra un paragneis de la unidad El Marguez (Oax3-10-2; Weber & Schulze, 2014), un zircón de la Migmatita El Catrín (Oax3-101; Weber & Schulze, 2014), y los zircones de los paragneises OC1005, OC1006 y OC1008 del área de Nochixtlán estudiados por Solari et al. (en prensa), así como con zircones de un ortogneiss granatífero del Gneiss de Huiznopala (MOL-2-86, Weber & Schulze, 2014). Además, los zircones más primitivos de los clastos se asemejan isotópicamente a zircones de una metasienita OC1007, también del área de Nochixtlán (Solari et al., en prensa).

Figura 28. Recopilación de las edades U–Pb de Oaxaquia y edades U–Pb del Complejo Oaxaqueño de este estudio (amarillo). PO: arco proto-Oaxaquia, O: arco de Oaxaquia, EO: Evento Olmeca, AMCG: magmatismo AMCG, EZ: Evento Zapoteca. A los picos de probabilidad se les asignó un error del 3%. En el Anexo 5 se encuentra la recopilacón de los datos y las repectivas referencias.

Weber et al. (2010) y Weber & Schulze (2014) propusieron la presencia de dos dominios en Oaxaquia con base en diferencias isotópicas de Hf; estos autores identificaron un dominio menos diferenciado denominado "Oaxaquia típica" (en la Fig.29 representado por las muestras G-18-1, NOV-785, Mol9-6, Mol9-1, OAX0701, OAX0702, OAX0704, OAX0705) y otro llamado "Oaxaquia continental" (en la Fig.29 representado por las

muestras MOL-2-86, Oax3-10-2, Oax3-10-2). El primero se caracteriza por protolitos con edades de cristalización de ca. 1.2 Ga y una firma isotópica de Hf moderadamente juvenil, con valores ɛHf(t) entre +2 y +8 y edades de residencia de la corteza entre 1.5 - 1.65 Ga, además de la carencia de componentes heredados >1.4 Ga. Mientras que "Oaxaquia continental" también presenta protolitos de ca. 1.2 Ga, pero tiene un componente heredado de zircones del Paleoproterozoico y tiene valores isotópicos de Hf menores, con ɛHf_(t) entre -2 a +3 y edades de residencia de la corteza entre 1.7 – 2.0 Ga. Es importante anotar que Weber & Schulze (2014) encontraron evidencia de mezcla de corteza continental más antigua con corteza típica del arco de Oaxaquia en zircones de la Migmatita El Catrín durante el magmatismo de ca. 1.25 Ga, un zircón de ca. 1.25 Ga sin herencia tiene la firma isotópica de "Oaxaquia típica", mientras que un núcleo heredado de 1.4 Ga presenta un valor de ¹⁷⁷Hf/¹⁷⁶Hf significativamente menor, indicando un precursor continental. Solari et al. (en prensa) con base en un conjunto de datos muy amplio de isótopos de Hf del Complejo Oaxaqueño (marcadores azules en la Fig. 29) sugieren gue, en lugar de dos dominios diferentes, hay un continuo entre los dos, con el campo de "Oaxaguia típica" representando un end-member menos evolucionado. En el caso de los datos aguí reportados, los datos de la muestra M50 se sobreponen marginalmente con el campo moderadamente juvenil de "Oaxaquia típica" y podrían representar un end-member un poco menos evolucionado de este campo. Mientras que los zircones de los clastos, aunque tienen un rango isotópico similar a las muestras más antiguas del campo de" Oaxaguia continental", algunos también se sobreponen con el campo de "Oaxaquia típica". La comparación con los datos de Amazonia (Fig.30) muestra que los clastos presentan un precursor cortical similar a las muestras del Macizo de Garzón y de la Serranía de la Macarena de Colombia (Ibanez-Mejia et al. 2015). Este precursor cortical podría ser un basamento del tipo Mandur-2-m, un gneis máfico poco diferenciado que representa el basamento cubierto del NW de Amazonia (Ibanez-Mejia et al. 2015).

Al comparar con los datos con los datos de Báltica (Fig. 31), la firma isotópica de Hf de los zircones de la muestra in situ del basamento (M50) es similar a la de los zircones más diferenciados de los granitos intraplaca de 1.2 Ga del Bloque de Telemarkia (Granito Syrtveit, Pedersen et al., 2009; Complejo Vråvatn, Andersen et al., 2007). Por otro lado, los isótopos de Hf de los gneises calcialcalinos más jóvenes (1.22-1.30 Ga) del basamento del Valle de Setesdal (Pedersen et al., 2009) tienen un rango similar al de los zircones de los clastos estudiados.

En cuanto a las unidades de Laurencia, la Provincia Yavapai del SW de Estados Unidos presenta zircones del Paleoproterozoico con una firma isotópica de Hf juvenil a moderadamente juvenil (Bickford et al., 2008), que se sobreponen con los datos de rocas Paleoproterozoicas de Sonora (Arvizu et al., 2009), sin embargo, son muchos más antiguos que las muestras estudiadas, aunque los más juveniles de estos tienen edades modelo similares a la de los clastos estudiados. Por otro lado, las rocas de la suite AMCG de las Adirondacks (Bickford et al., 2010) son más jóvenes que las muestras estudiadas, al igual que la mayoría de los zircones detríticos apalachianos (Mueller et al., 2008).

Figura 29. Gráfico de ϵ Hf_(t) vs tiempo para la comparación de las muestras de este trabajo con datos disponibles de las unidades de Oaxaquia. La línea gris gruesa representa el modelo del manto empobrecido (DM: depleted mantle). CHUR: reservorio condrítico uniforme (chondritic uniform reservoir). Las líneas punteadas representan diferentes reservorios modelo de la corteza que se separaron del manto empobrecido en diferentes tiempos y tienen ¹⁷⁶Lu/¹⁷⁷Hf=0.015.

EL Vergel MIVS16A

Figura 30. Gráfico de ϵ Hf_(t) vs tiempo para la comparación de las muestras de este trabajo con datos disponibles de unidades del NW de Amazonia. La línea gris gruesa representa el modelo del manto empobrecido (DM: depleted mantle). CHUR: reservorio condrítico uniforme (chondritic uniform reservoir). Las líneas punteadas representan diferentes reservorios modelo de la corteza que se separaron del manto empobrecido en diferentes tiempos y tienen ¹⁷⁶Lu/¹⁷⁷Hf=0.015.

Figura 31. Gráfico de ϵ Hf_(t) vs tiempo para la comparación de las muestras de este trabajo con datos disponibles de rocas precámbricas de Báltica. La línea gris gruesa representa el modelo del manto empobrecido (DM: depleted mantle). CHUR: reservorio condrítico uniforme (chondritic uniform reservoir). Las líneas punteadas representan diferentes reservorios modelo de la corteza que se separaron del manto empobrecido en diferentes tiempos y tienen ¹⁷⁶Lu/¹⁷⁷Hf=0.015.

Figura 32. Gráfico de ϵ Hf_(t) vs tiempo para la comparación de las muestras de este trabajo con datos disponibles de rocas precámbricas de Laurencia. La línea gris gruesa representa el modelo del manto empobrecido (DM: depleted mantle). CHUR: reservorio condrítico uniforme (chondritic uniform reservoir). Las líneas punteadas representan diferentes reservorios modelo de la corteza que se separaron del manto empobrecido en diferentes tiempos y tienen ¹⁷⁶Lu/¹⁷⁷Hf=0.015.

Proveniencia de los clastos: fuentes proximales

Bedoya-Mejía (2018) realizó un análisis de procedencia detrítica de zircones y apatitos, integrado con petrografía en la Formación Matzitzi. Este arrojó un pico mayor de edades U–Pb del Precámbrico, un componente mayor de apatitos del Neoproterozoicos con características geoquímicas similares a los apatitos del Complejo Oaxaqueño, y un contenido abundante de cuarzo y feldespato con texturas de exsolución, además de fragmentos de líticos gnéisicos y minerales accesorios como granate y biotita. Todo lo anterior sugiere que la fuente principal de sedimentos para la Formación Matzitzi son rocas grenvillianas como las que se encuentran en el Complejo Oaxaqueño. Adicionalmente, la abundancia de feldespato en las areniscas, así como los clastos de gran tamaño en las facies conglomeráticas, que en algunos casos pueden llegar a tamaño de bloque, indican una rápida acumulación próxima a la fuente (Bedoya-Mejía, 2018).

La muestra M50 representa el basamento local, que tiene zircones de ca. 1.25 Ga con una firma isotópica de Hf juvenil (Fig. 29; ɛHf_(t) de+7 y edades modelo de Hf de 1.5-1.6 Ga). Adicionalmente, en el área de estudio, también se encuentran porciones del Complejo Oaxaqueño con una firma isotópica que refleja la influencia de una corteza más antigua. El paragneis OC1101 estudiado por Solari et al. (2014) y Solari et al. (en prensa) es de un afloramiento del Complejo Oaxaqueño en la Autopista Tehuacán-Oaxaca, donde el Complejo Oaxaqueño se encuentra en contacto tectónico con la Formación Matzitzi (en ese mismo lugar se realizó el muestreo del clasto M4Cb en la Formación Matzitzi). La muestra OC1101 es una granulita con granate que tiene edades U–Pb de zircones entre ca. 970 y <1300 Ma, con un pico de probabilidad en 1100 Ma (Solari et al., 2014) y edades modelo de Hf entre ca. 1870 y 2290 Ma (Fig. 29; Solari et al., en prensa). Por lo tanto, los clastos muestreados pueden tener una proveniencia local y brindan información del basamento del área.

Oaxaquia compuesta: vínculos paleotectónicos con el NW Amazonia

En varias reconstrucciones de Rodinia, Oaxaquia es ubicada dentro de la zona de colisión del NW de Amazonia con Báltica, compartiendo una relación con macizos grenvillianos de Colombia (e.g. Li et al., 2008; Cardona et al., 2010; Keppie & Ortega-Gutiérrez, 2010; Cawood & Pisarevsky, 2017; Weber et al., 2010). Estos remanentes precámbricos, denominados por Ibanez-Mejia et al. (2015) como el Orógeno de Putumayo, son encontrados discontinuamente en los Andes colombianos, específicamente en el Macizo de Garzón, el Macizo de Santa Marta, la Península de la Guajira, en el flanco este de la Cordillera Central de Colombia, así como en el basamento de la cuenca de antepaís del NW de Amazonia, además de algunas unidades en Perú y Ecuador y posiblemente en Venezuela. Este orógeno registra una historia proterozoica similar a la de Oaxaquia, con un arco entre 1.3-1.15 Ga y metamorfismo en facies de granulita alrededor de 0.99 Ga, así como el emplazamiento de granitoides anatécticos alrededor de 970 Ma (Cardona et al., 2010; Ibanez-Mejia et al., 2011; Ortega-Gutiérrez et al., 2018). Tanto los datos geoquímicos, geocronológicos, isotópicos como el registro detrítico de las diferentes unidades de Oaxaquia y de las rocas precámbricas de Colombia soportan una correlación tectónica en un sistema de arco y trasarco a lo largo de o en el flanco de la margen NW del Cratón Amazónico, que estuvo relacionado con el cierre de los océanos mesoproterozoicos durante la acreción de Rodinia (e.g. Ruiz et al., 1999; Keppie et al., 2003; Keppie & Dostal, 2007; Cardona et al., 2010; Weber et al., 2010; Weber & Schulze, 2014; Ibanez-Mejia et al., 2015; Cawood & Pisarevsky, 2017; Solari et al., en prensa). Las unidades de Oaxaquia estuvieron conectados a la margen de Colombia hasta la fragmentación de Pangea en el Triásico tardío (Cardona et al., 2010).

Los isótopos de Hf en zircones de las rocas de Oaxaquia (Weber et al., 2010; Weber & Schulze, 2014; Solari et al., en prensa; datos aquí presentados; Fig.29) revelan la ausencia de valores a lo largo de la curva del manto, lo que evidencia que el reciclaje de la corteza fue un proceso dominante durante el magmatismo de arco de 1.25-1.15 Ma. Mientras que algunas rocas evidencian el reciclaje de una corteza de 1.5-1.65 Ga, algunas otras muestran una influencia de una corteza más antigua (edades de residencia de Hf de 1.7-1.9 Ga). Weber et al. (2010) encontraron que zircones de un ortogneis de Huiznopala había cristalizado a partir de un precursor cortical (del Paleoproterozoico, 1.7 -1.9 Ga) similar al Gneis Guapotón del Macizo de Garzón (Fig. 29-30), sugiriendo una evolución común entre estas dos unidades. Un precursor cortical como este también ha sido evidenciado en zircones de otras unidades de Oaxaquia como en la Migmatita El Catrín (Oax3-101; Weber & Schulze, 2014), en un paragneis de la Unidad el Marquez (Oax3-10-2; Weber & Schulze, 2014), en los paragneises OC1005, OC1006, OC1008 y OC1013 del área de Nochixtlán estudiados por Solari et al. (en prensa) y en los zircones de los clastos gnéisicos aquí reportados.

Varios autores favorecen un sistema de arco Oaxaquia-NW Amazonia para explicar las variaciones en las firmas isotópicas de Hf (e.g. Ibanez-Mejia et al. 2011, 2015; Weber & Schulze, 2014; Solari et al., en prensa; Fig. 33). Según Ibanez-Mejia (2011), este sistema de arco habría tenido una evolución similar a la propuesta por Busby et al. (1998) y Busby (2004) para la evolución de márgenes convergentes con una cuenca oceánica: una progresión desde un régimen de esfuerzos altamente extensionales (fase 1) a medianamente extensionales (fase 2) hasta compresionales (fase 3). De acuerdo con Ibanez-Mejia (2011), la fase 1 correspondiente con un arco altamente extensional, podría estar representada por basaltos de rift de 1.3 Ga del norte del Complejo Oaxaqueño y por rocas ígneas bimodales con firma de trasarco del Gneiss Novillo de 1.2-1.1 Ga, sin embargo, estas rocas pueden ser parte de la fase 2. Alternativamente, la fase 1 podría estar representada por el arco intraoceánico "proto-Oaxaquia" de 1.4-1.5 Ga propuesto por Weber & Schulze (2014) (Fig. 34a), que habría generado la corteza mesoproterozoica poco diferenciada (con edades modelo de Hf de 1.5-1.65 Ga) durante la fragmentación del supercontinente Columbia. En la fase 2, que comprende un arco medianamente extensional con el desarrollo de cuenca de trasarco, el arco oceánico de la fase 1 ya se encuentra acrecionado al continente y representa el sustrato de la cuenca de antearco (Fig. 33; Busby, 2004). Esta fase correspondería al sistema de arco y trasarco Oaxaquia-NW Amazonia entre 1.25 – 1.15 Ga. En este contexto, el arco oceánico "proto-Oaxaquia" ya estaba unido a la margen continental activa del NW Amazonia para este tiempo (Fig. 34b), lo que es evidenciado por zircones de la Migmatita El Catrín que indican la mezcla de un precursor cortical con influencia continental y un precursor menos evolucionado durante este magmatismo (Weber & Schulze, 2014). Así se habría dado la fusión parcial de la corteza del arco "proto-Oaxaquia" y la intrusión de batolitos graníticos, mientras que las diferentes firmas isotópicas de Hf ("Oaxaquia típica", "Oaxaquia continental" o el continuo entre estos campos) estarían dadas por cantidades variables de material menos evolucionado y de componentes corticales reciclados (Weber et al., 2010, Weber & Schulze., 2014; Ibanez-Mejia et al., 2015; Solari et al., en prensa).

Figura 33. Sistema de arco Oaxaquia-NW Amazonia. Arco moderadamente extensional, Fase 2 de Busby (2004). Modificado de Busby (2004) e Ibanez-Mejia et al. (2011)

Figura 34. Modelo paleogeográfico para la evolución de Oaxaquia modificado de Weber & Schulze (2014), por Ortega-Gutiérrez et al. (2018). (a) Arco proto-Oaxaquia durante la dispersión del continente Columbia. (b) El arco intraoceánico proto-Oaxaquia ya está unido a Amazonia y se desarrolla el sistema de arco pericratónico Oaxaquia-NW Amazonia. (c) Acreción del sistema de arco pericratónico al continente. (d) Amalgamación final de Rodinia. Los detalles se encuentran en el texto. Abreviaciones: Am = Amazonia, Aus = Australia, BA = Báltica-Sveconorwegian, C = Congo, G = Groenlandia, Ind = India, K = Kalahari, Lau = Laurencia, NA = Norte de losAndes, Oax = Oaxaquia, R = Rio de la Plata, SF = Sao Francisco, T = Telemarkia, WA = Oeste de África, Z = Zimbabue.

La mayor parte del registro de zircones detríticos de paragneises de Oaxaquia y del NW de Amazonia presenta picos mayores de probabilidad alrededor de 1.2 Ga (Solari et al., 2014; Weber & Schulze, 2014; Ibanez-Mejia, 2015). Pocas muestras de paragneises han presentado zircones detríticos más viejos que 1.4 Ga, sin embargo, las diferencias isotópicas de Hf en zircones detríticos indican una proveniencia tanto de una fuente menos evolucionada como una fuente con influencia continental ("Oaxaquia típica" y "Oaxaquia continental") (datos presentados por Weber & Schulze, 2014; Solari et al, en prensa). Los picos de probabilidad de 1.2 Ga refuerzan la importancia del magmatismo en este tiempo y sugieren una fuente local para los sedimentos por la erosión de los granitoides o por la actividad vulcanosedimentaria contemporánea en un ambiente de arco-trasarco (Ibanez-Mejia, 2011; Weber & Schulze, 2014).

El basamento del NW de Amazonia presenta características isótopicas que sugieren que componentes corticales como estos pudieron ser reciclados durante el magmatismo del Mesoproterozoico en el arco (Ibanez-Mejia et al., 2015). Este basamento es representado por las muestras de los pozos Mandur 2-m y Payara1 con edades de cristalización de ca. 1.6 Ga (Fig. 30, Ibanez-Mejia et al., 2015). La muestra de Mandur 2-m, un gneis máfico que representa una corteza poco diferenciada de 1.7-2.0 Ga, mientras que el gneis supracortical Payara-1, presenta características que sugieren el reciclaje de material cortical más antiguo de 2.0-2.5 Ga, representando una posible extensión de la Provincia Río Negro-Juruena (Ibanez-Mejia et al., 2015). Un basamento tipo Mandur-2-m podría ser uno de los precursores corticales de los cuales se derivaron las

rocas que se encuentran en Oaxaquia. Mientras que el basamento tipo Payara-1 o las provincias del cratón Amazónico (datos de zircones detríticos de Reimann et al. 2010 en la Fig. 30) pudieron haber aportado el componente continental más antiguo, el cual es revelado por los isótopos de Hf en zircón de algunos paragneises del Complejo Oaxaqueño (Solari et al., en prensa), y edades U–Pb del Paleoproterozoico temprano de un paragneis del Complejo Guichicovi, de un ortogneis de Huiznopala (Weber & Schulze, 2014) y del clasto M3Cg aquí reportado. Por otra parte, los zircones más radiogénicos que se encuentran en el registro de Amazonia (Reimann et al., 2010; Ibanez-Mejia et al., 2015) tienen un precursor cortical similar al de los zircones más juveniles de Oaxaquia ("Oaxaquia típica"- protolitos de 1.2 Ga y núcleos heredados de 1.4 Ga con edades de residencia de la corteza de 1.5-1.65 Ga).

El cese de la actividad magmática del arco pericratónico se registra a aproximadamente 1.1 Ga. Contemporáneamente hubo un evento de migmatización, el evento Olmeca (Solari et al., 2003; 2014), que es registrado en algunas rocas del Complejo Oaxaqueño. Según Weber & Schulze (2014) la acreción del sistema de arco a la margen continental (Fig. 34c; fase 3- compresional de Busby et al., 1998) pudo haber ocasionado esta migmatización, sin embargo, Solari et al (2003) sugieren que este evento de migmatización pudo darse en un ambiente extensional. Ibanez-Mejia et al. (2011, 2015) proponen que el cambio en el estilo de deformación estuvo relacionado con la terminación de la actividad magmática y esto marcó el inicio de los eventos colisionales registrados en el orógeno.

Entre ca. 1030-1000 Ma se registra un magmatismo de suites AMCG (anortositas, mangeritas, charnockitas, granitos) en Oaxaquia, cuyo fechamiento ha presentado dificultades (Weber & Köhler, 1999; Keppie et al., 2003; Cameron et al., 2004; Weber et al., 2010). Mientras que en Colombia también se encuentran anortositas en la Sierra Nevada de Santa Marta, aunque no existen datos geocronológicos para estas (Tschanz et al., 1974). Las edades obtenidas en las unidades de Oaxaquia implican que este magmatismo fue anterior al pico metamórfico, una posible explicación es una delaminación de una corteza engrosada por la acreción del arco al continente (Solari et al., en prensa). La colisión final entre Báltica y NW Amazonia se dio a alrededor de 990 Ma (Fig. 34d), durante este evento se generó el metamorfismo de alto grado registrado en Oaxaquia, en el Orógeno de Putumayo y en el Orógeno Sveconorwegian (e.g. Ortega-Gutiérrez et al., 1995, 2018; Solari et al., 2003; Keppie & Ortega-Gutiérrez, 2010; Weber et al., 2015).

Con base en los isótopos de Hf, otra fuente potencial y alternativa de los clastos gnéisicos encontrados en la Formación Matzitzi, son rocas del sur de Telemarkia similares al basamento del valle de Setesdal (Pedersen et al., 2009, Fig. 31). Esto no implica que Báltica haya tenido un aporte directo de detritos a la cuenca en el Paleozoico tardío-Triásico, más bien esta idea viene de los modelos tectónicos que ubican a Oaxaquia durante la Orogenia Grenvilliana en la margen norte de Amazonia dentro de la zona de colisión con Báltica (e.g. Li et al., 2008; Weber et al., 2010; Cawood &Pisarevsky, 2017; Fig. 34d). En este contexto, los procesos tectónicos durante la orogenia pudieron haber ocasionado la transferencia de porciones corticales de Telemarkia sobre rocas del arco de Oaxaquia - NW Amazonia (Weber et al., 2010).

6. Conclusiones

Las rocas estudiadas son cuarzo-feldespáticas con una alteración intensa de los minerales máficos, por lo que no fue posible definir la facies de metamorfismo; sin embargo, hay evidencias texturales que sugieren una temperatura alta como texturas de exsolución en los feldespatos, bordes muy curvos en los agregados cuarzo-feldespáticos y desarrollo de subgranos "chessboard". La mayoría de los clastos gnéisicos tienen una distribución de edad U-Pb unimodal, registrando un evento de cristalización en el Mesoproterozoico, entre 1.25-1.20 Ga, mientras que en los diagramas de discriminación tectónica con REE caen en los campos de ambientes de arco. Esta edad de cristalización es consistente con la edad del magmatismo de arco registrada en Oaxaquia. Los isótopos de Hf de aquellos zircones con edades de cristalización de ca 1.2 Ga, revelan una firma isotópica moderadamente juvenil y edades de residencia de la corteza entre 1.7-1.9 Ga (¹⁷⁶Hf/¹⁷⁷Hf(_{1.2Ga}) entre o.282045-0.282154 y ɛHf (1.2Ga) entre +1 y +6). Por otro lado, los análisis concordantes de U–Pb de todas las muestras se encuentran a lo largo de la concordia en un lapso de cientos de millones de años, que puede explicarse como resultado de pérdida variable de plomo durante la orogénesis. Adicionalmente, un clasto en particular presenta un componente de zircones mucho más antiguo, con núcleos del Paleoproterozoico, reflejando la influencia de una corteza antigua.

Las muestras del basamento in situ estudiadas registran un evento de cristalización de ca. 1.2 Ga y otro evento de ca. 1.0 Ga. Los isótopos de Hf de los zircones de 1.2 Ga revelan un rango más alto de 176 Hf/ 177 Hf (1.2 Ga) que el de los clastos (entre 0.282182-0.282239), con ϵ Hf($_{1.2 Ga}$) \approx + 7 a +9 y edades modelo de Hf de 1.5 a 1.6 Ga. Esta firma isotópica revela un precursor cortical similar a lo que se ha llamado "Oaxaquia típica", representando el end-member menos diferenciado de este campo. Aunque la porción del basamento in situ estudiada tiene una fuente magmática menos diferenciada que los clastos, en el área de estudio y en otras porciones del Complejo Oaxaqueño, así como en el Gneis de Huiznopala se han encontrado rocas con precursores corticales más evolucionados (Weber et al., 2010; Weber & Schulze, 2014; Solari et al., en prensa). Los resultados de U–Pb e isótopos de Hf en zircones de los clastos gnéisicos de la Formación Matzitzi soportan una fuente local de los sedimentos, provenientes de las unidades proterozoicas de Oaxaquia. Alternativamente, los clastos también podrían representar porciones de Báltica cabalgadas sobre Oaxaquia durante la Orogenia Grenville.

Los isótopos de Hf en zircones de las rocas de Oaxaquia (Weber et al., 2010; Weber & Schulze, 2014; Solari et al., en prensa; datos aquí presentados; Fig.29) revelan la ausencia de valores a lo largo de la curva del manto, lo que evidencia que el reciclaje de la corteza fue un proceso dominante durante el magmatismo de arco. Los isótopos de Hf en zircón aquí presentados, en conjunto con los reportados por otros autores, favorecen un sistema de arco Oaxaquia-NW Amazonia para explicar las variaciones en las firmas isotópicas de Hf. En el NW de Amazonia se encuentran precursores corticales de los cuales se pudieron haber derivado las rocas con firma isotópica de Hf un poco más evolucionada. Las firmas isotópicas en este sistema de arco estarían dadas por cantidades variables de material magmático poco diferenciado y de componentes corticales reciclados.

Por otro lado, en los mapas geocronológicos y elementales de zircones obtenidos se observa que hay una alta correspondencia entre el mapa de uranio y la imagen de catodoluminiscencia (zonas oscuras en CL = alto contenido de U; zonas brillantes en CL= bajo contenido de U), al igual que con el mapa de la relación Th/U. Las edades obtenidas son similares dentro del error a aquellas que se obtuvieron mediante análisis puntuales en zircones de las mismas muestras. Varios cristales arrojaron edades de 1.2 Ga, mientras que otros arrojaron edades 1.4 Ga y de ca. 990 Ma. En todos los zircones se observaron zonas con edades aparentes menores a 950 Ma que son discordantes y que generalmente coinciden con dominios altos en uranio, lo que podría reflejar pérdida de Pb por metamictización. Es de resaltar que esta técnica tiene un gran potencial para estudiar cambios composicionales a muy pequeña escala en diferentes minerales, que pueden ser de ayuda

para investigar la petrogénesis de rocas. Por lo que en el futuro se podrían modificar los parámetros analíticos para aplicar esta técnica en otros minerales en el LEI.

Referencias

- Alaniz-Álvarez, S. A., Van Der Heyden, P., Nieto-Samaniego, A. F., & Ortega-Gutiérrez, F. (1996). Radiometric and kinematic evidence for Middle Jurassic strike-slip faulting in southern Mexico related to the opening of the Gulf of Mexico. *Geology*, 24(5), 443-446.
- Andersen, T., Griffin, W. L., & Pearson, N. J. (2002). Crustal Evolution in the SW Part of the Baltic Shield: the Hf Isotope Evidence. *Journal of Petrology*, 43(9), 1725-1747.
- Andersen, T., & Griffin, W. L. (2004). Lu-Hf and U-Pb isotope systematics of zircons from the Storgangen intrusion, Rogaland Intrusive Complex, SW Norway: Implications for the composition and evolution of Precambrian lower crust in the Baltic Shield. *Lithos*, 77(3-4), 271-288.
- Andersen, T., Griffin, W. L., & Sylvester, A. G. (2007). Sveconorwegian crustal underplating in southwestern Fennoscandia: LAM-ICPMS U-Pb and Lu-Hf isotope evidence from granites and gneisses in Telemark, southern Norway. *Lithos*, 93(3-4), 273-287.
- Arvizu, H. E., Iriondo, A., Izaguirre, A., Chávez-Cabello, G., Kamenov, G. D., Foster, D. A., ... Solís-Pichardo, G. (2009). Gneises bandeados paleoproterozoicos (~1.76-1.73 ga) de la Zona Canteras-Puerto Peñasco: Una nueva ocurrencia de rocas de basamento tipo Yavapai en el NW de Sonora, México. Boletin de La Sociedad Geologica Mexicana, 61(3), 375-402.
- Bedoya-Mejía, A.M. (2018). Análisis de procedencia y termocronología detrítica de las Formaciones Matzitzi y Tianguistengo: implicaciones tectónicas en la evolución Paleozoica-Mesozoica del sur de México. Tesis de Maestría Universidad Nacional Autónoma de México, México.
- Bickford, M. E., Mueller, P. A., Kamenov, G. D., & Hill, B. M. (2008). Crustal evolution of southern Laurentia during the Paleoproterozoic: Insights from zircon Hf isotopic studies of ca. 1.75 Ga rocks in central Colorado. *Geology*, 36(7), 555-558.
- Bickford, M. E., McLelland, J. M., Mueller, P. A., Kamenov, G. D., & Neadle, M. (2010). Hafnium isotopic compositions of zircon from adirondack AMCG suites: Implications for the petrogenesis of anorthosites, gabbros, and granitic members of the suites. *Canadian Mineralogist*, 48(4), 751-761.
- Bingen, B., Nordgulen, Ø., & Viola, G. (2008). A four-phase model for the sveconorwegian orogeny, SW Scandinavia. *Norwegian Journal of Geology*, 88, 43-72.
- Blichert-Toft, J., & Albarède, F. (1997). The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system, 148(1-2), 243–258.
- Bonta, M., Limbeck, A., Quarles, C. D., Oropeza, D., Russo, R. E., & Gonzalez, J. J. (2015). A metric for evaluation of the image quality of chemical maps derived from LA-ICP-MS experiments. *Journal of Analytical Atomic Spectrometry*, 30, 1809-1815.
- Bouvier, A., Vervoort, J. D., & Patchett, P. J. (2008). The Lu-Hf and Sm-Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. *Earth and Planetary Science Letters*, 273(1-2), 48-57.
- Busby, C., Smith, D., Morris, W., & Fackler-Adams, B. (1998). Evolutionary model for convergent margins facing large ocean basins: Mesozoic Baja California, Mexico. *Geology*, *26*(3), 227–230.

- Busby, C. (2004). Continental growth at convergent margins facing large ocean basins: A case study from Mesozoic convergent-margin basins of Baja California, Mexico. *Tectonophysics*, 392 (1-4), 241-277.
- Cameron, K. L., Lopez, R., Ortega-Gutiérrez, F., Solari, L. A., Keppie, J. D., & Schulze, C. (2004). U-Pb constraints and Pb isotopic compositions of leached feldspars: Constraints on the origin and evolution of Grenvillian rocks eastern and southern Mexico. *Geological Society of America Memoirs*, 197, 755-769.
- Cardona, A., Chew, D., Valencia, V. A., Bayona, G., Mišković, A., & Ibañez-Mejía, M. (2010). Grenvillian remnants in the Northern Andes: Rodinian and Phanerozoic paleogeographic perspectives. *Journal of South American Earth Sciences*, 29, 92-104.
- Cawood, P. A., & Pisarevsky, S. A. (2017). Laurentia-Baltica-Amazonia relations during Rodinia assembly. *Precambrian Research*, 292, 386-397.
- Centeno-García, E., Mendoza-Rosales, C. C., & Silva-Romo, G. (2009). Sedimentología de la Formación Matzitzi (Paleozoico superior) y significado de sus componentes volcánicos, región de Los Reyes Metzontla-San Luis Atolotitlán, Estado de Puebla. *Revista Mexicana De Ciencias Geológicas*, 26, 18-36.
- Chapman, J. B., Gehrels, G. E., Ducea, M. N., Giesler, N., & Pullen, A. (2016). A new method for estimating parent rock trace element concentrations from zircon. *Chemical Geology*, 439, 59-70.
- Chew, D. M., Petrus, J. A., Kenny, G. G., & McEvoy, N. (2017). Rapid high-resolution U-Pb LA-Q-ICPMS age mapping of zircon. *Journal of Analytical Atomic Spectrometry*, 32(2), 262-276.
- Chirinos, J. R., Oropeza, D. D., Gonzalez, J. J., Hou, H., Morey, M., Zorba, V., & Russo, R. E. (2014). Simultaneous 3-dimensional elemental imaging with LIBS and LA-ICP-MS. In *Journal of Analytical Atomic Spectrometry*, 29, 1292-1298.
- Corfu, F., Hanchar, J. M., Hoskin, P. W. O., & Kinny, P. (2003). Atlas of zircon textures. *Reviews in Mineralogy* and Geochemistry., 53(1), 469-500.
- Corfu, F. (2013). A century of U-pb geochronology: The long quest towards concordance. *Bulletin of the Geological Society of America*, 125(1-2), 33-47.
- DePaolo, D. J. (1980). Crustal growth and mantle evolution: inferences from models of element transport and Nd and Sr isotopes. 6.1. *Geochimica et Cosmochimica*, 44(8), 1185-1196.
- Elías-Herrera, M., & Ortega-Gutiérrez, F. (2002). Caltepec fault zone: An Early Permian dextral transpressional boundary between the Proterozoic Oaxacan and Paleozoic Acatlán complexes, southern Mexico, and regional tectonic implications. *Tectonics*, *21*(3), 4-1-4–18.
- Elías-Herrera, M., Ortega-Gutiérrez, F., & Sánchez-zavala, J. L. (2005). La falla de Caltepec : raíces expuestas de una frontera tectónica de larga vida entre dos terrenos continentales del sur de México. Boletín de la Sociedad Geológica Mexicana, 57(1), 83-109.
- Elías-Herrera, M., Ortega-Gutiérrez, F. Macías-Romo, C., Sánchez-Zavala, J.L., Solari, L.A. (2011). Colisión oblicua del Cisuraliano-Guadalupiano entre bloques continentales en el sur de México: evidencias estratigráfico-estructurales y geocronológicas. Simposio Dr. Zoltán de Cserna, sesenta años geologizando en México. Libro de resúmenes, Instituto de Geología, UNAM, 159-164.
- Fisher, C. M., Vervoort, J. D., & Hanchar, J. M. (2014). Guidelines for reporting zircon Hf isotopic data by LA-MC-ICPMS and potential pitfalls in the interpretation of these data. *Chemical Geology*, *363*, 125-133.

- Fox, M., Tripathy-Lang, A., & Shuster, D. L. (2017). Improved spatial resolution of elemental maps through inversion of LA-ICP-MS data. *Chemical Geology*, 467, 30-41.
- Fu, B., Page, F. Z., Cavosie, A. J., Fournelle, J., Kita, N. T., Lackey, J. S., ... Valley, J. W. (2008). Ti-in-zircon thermometry: Applications and limitations. *Contributions to Mineralogy and Petrology*, 156(2), 197–215.
- Gehrels, G. (2012). Detrital Zircon U-Pb Geochronology: Current Methods and New Opportunities. In *Tectonics of Sedimentary Basins: Recent Advances*.
- Goodge, J. W., & Vervoort, J. D. (2006). Origin of Mesoproterozoic A-type granites in Laurentia: Hf isotope evidence. *Earth and Planetary Science Letters*, 243 (3-4), 711-731.
- Griffin, W. L., Wang, X., Jackson, S. E., Pearson, N. J., Reilly, S. Y. O., Xu, X., & Zhou, X. (2002). Zircon chemistry and magma mixing, SE China : In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes, *61*, 237-269.
- Grimes, C. B., John, B. E., Kelemen, P. B., Mazdab, F. K., Wooden, J. L., Cheadle, M. J., Hanghøj , K., & Schwartz, J. J. (2007). Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. *Geology*, 35(7), 643-646.
- Grimes, C. B., Wooden, J. L., Cheadle, M. J., & John, B. E. (2015). "Fingerprinting" tectono-magmatic provenance using trace elements in igneous zircon. *Contributions to Mineralogy and Petrology*, 170: 46.
- Halpin, J. A., Daczko, N. R., Milan, L. A., & Clarke, G. L. (2012). Decoding near-concordant U-Pb zircon ages spanning several hundred million years: Recrystallisation, metamictisation or diffusion? *Contributions to Mineralogy and Petrology*, 163: 67.
- Harrison, T. M., & Schmitt, A. K. (2007). High sensitivity mapping of Ti distributions in Hadean zircons. *Earth* and *Planetary Science Letters*, 261(1–2), 9–19.
- Horstwood, M. S. A., Košler, J., Gehrels, G., Jackson, S. E., McLean, N. M., Paton, C., ... Schoene, B. (2016). Community-Derived Standards for LA-ICP-MS U-(Th-)Pb Geochronology – Uncertainty Propagation, Age Interpretation and Data Reporting. *Geostandards and Geoanalytical Research*, 40(3), 311–332.
- Hoskin, P. W.O., & Ireland, T. R. (2000). Rare earth element chemistry of zircon and its use as a provenance indicator. *Geology*, 28 (7), 627-630.
- Hoskin, P.W. O., & Schaltegger, U. (2003). The composition of zircon and igneous and metamorphic petrogenesis. *Reviews in Mineralogy and Geochemistry*, 53 (1), 27-62.
- Howard, A. L., Farmer, G. L., Amato, J. M., & Fedo, C. M. (2015). Zircon U-Pb ages and Hf isotopic compositions indicate multiple sources for Grenvillian detrital zircon deposited in western Laurentia. *Earth and Planetary Science Letters*, 432, 300-310.
- Ibanez-Mejia, M., Ruiz, J., Valencia, V. A., Cardona, A., Gehrels, G. E., & Mora, A. R. (2011). The Putumayo Orogen of Amazonia and its implications for Rodinia reconstructions: New U-Pb geochronological insights into the Proterozoic tectonic evolution of northwestern South America, 191(1-2), 58-77.
- Ibanez-Mejia, M., Pullen, A., Arenstein, J., Gehrels, G. E., Valley, J., Ducea, M. N., ... Ruiz, J. (2015). Unraveling crustal growth and reworking processes in complex zircons from orogenic lower-crust: The Proterozoic Putumayo Orogen of Amazonia. *Precambrian Research*, *267*, 285-310.
- Keppie, J. D., Dostal, J., Ortega-Gutiérrez, F., & Lopez, R. (2001). A Grenvillian arc on the margin of Amazonia:

Evidence from the southern Oaxacan Complex, southern Mexico. *Precambrian Research*, 112(3-4), 165-181.

- Keppie, J. D., Dostal, J., Cameron, K. L., Solari, L. A., Ortega-Gutiérrez, F., & Lopez, R. (2003). Geochronology and geochemistry of Grenvillian igneous suites in the northern Oaxacan Complex, southern Mexico: Tectonic implications. *Precambrian Research*, 120(3-4), 365-389.
- Keppie, J. D., & Dostal, J. (2007). Rift-related basalts in the 1.2-1.3 Ga granulites of the northern Oaxacan Complex, southern Mexico: Evidence for a rifted arc on the northwestern margin of Amazonia. *Proceedings of the Geologists' Association*, 118(1), 63-74.
- Keppie, J. D., & Ortega-Gutiérrez, F. (2010). 1.3-0.9 Ga Oaxaquia (Mexico): Remnant of an arc/backarc on the northern margin of Amazonia. *Journal of South American Earth Sciences*, 29(1), 21-27.
- Kirkland, C. L., Smithies, R. H., Taylor, R. J. M., Evans, N., & McDonald, B. (2015). Zircon Th/U ratios in magmatic environs. *Lithos*, 212-215, 397-414.
- Kröner, A., Rojas-Agramonte, Y., Kehelpannala, K. V. W., Zack, T., Hegner, E., Geng, H. Y., ... Barth, M. (2013). Age, Nd-Hf isotopes, and geochemistry of the Vijayan Complex of eastern and southern Sri Lanka: A Grenville-age magmatic arc of unknown derivation. *Precambrian Research*, 234, 288-321.
- Kröner, Alfred, Wan, Y., Liu, X., & Liu, D. (2014). Dating of zircon from high-grade rocks: Which is the most reliable method? *Geoscience Frontiers*, 5(4), 515-523.
- Lawlor, P. J., Ortega-Gutiérrez, F., Cameron, K. L., Ochoa-Camarillo, H., Lopez, R., & Sampson, D. E. (1999). U-Pb geochronology, geochemistry, and provenance of the Grenvillian Huiznopala Gneiss of eastern Mexico. *Precambrian Research*, 94(1-2), 73-99.
- Li, Z. X., Bogdanova, S. V., Collins, A. S., Davidson, A., De Waele, B., Ernst, R. E., ... Vernikovsky, V. (2008). Assembly, configuration, and break-up history of Rodinia: A synthesis. *Precambrian Research*, 160(1-2), 179-210.
- Ludwig, K. R. (1998). On the treatment of concordant uranium-lead ages. *Geochimica et Cosmochimica Acta*, 62(4), 665–676.
- Ludwig, K.R. (2012). User's Manual for Isoplot version 3.75-4.15: a geochronological toolkit for Microsoft Excel. *Berkeley Geochronology Center Special Publication, 5*.
- McDonough, W. F., & Sun, S. s. (1995). The composition of the Earth. Chemical Geology, 120(3-4), 223-253.

Mendoza-Rosales, C. (2010). Estratigrafía y facies de las cuencas cretácicas del sur de Puebla y su significado tectónico. Tesis de Maestría. Universidad Nacional Autónoma de México.

- Mezger, K., & Krogstad, E. J. (1997). Interpretation of discordant U-Pb zircon ages: An evaluation. *Journal of Metamorphic Geology*, 15, 127-140.
- Moore, A. C. (1970). Descriptive terminology for the textures of rocks in granulite facies terrains. *Lithos*, 3(2), 123-127.
- Mora C, Valley J, Ortega-Gutiérrez F. (1986) The temperature and pressure conditions of Grenville-age granulite-facies metamorphism of the Oaxacan Complex, Southern Mexico. Universidad Nacional Autónoma de México, Instituto de Geología, Revista, 6 (2), 222–242.

- Mueller, P. A., Kamenov, G. D., Heatherington, A. L., & Richards, J. (2008). Crustal Evolution in the Southern Appalachian Orogen: Evidence from Hf Isotopes in Detrital Zircons. *The Journal of Geology*, 116 (4), 414-422.
- Müller, W., Shelley, M., Miller, P., & Broude, S. (2009). Initial performance metrics of a new custom-designed ArF excimer LA-ICPMS system coupled to a two-volume laser-ablation cell. *Journal of Analytical Atomic Spectrometry*, 24(2), 209-214.
- Murillo-Muñetón, G. (1994). Petrologic and geochronologic study of Grenville age granulites and postgranulite plutons from the La Mixtequita area, state of Oaxaca in southern Mexico, and their tectonic significance. Master thesis. University of Southern California, Los Angeles, Cal., USA.
- Orozco-Esquivel M. (1991). Geotermobarometría de granulitas precámbricas del basamento de la Sierra Madre Oriental. Convención sobre la evolución geológica de México Memorias, 138–141.
- Ortega-Gutiérrez, F., Ruiz, J., & Centeno-García, E. (1995). Oaxaquia, a Proterozoic microcontinent accreted to North America during the late Paleozoic. *Geology*, *23*(12), 1127-1130.
- Ortega-Gutiérrez, F., Elías-Herrera, M., Morán-Zenteno, D. J., Solari, L., Weber, B., & Luna-González, L. (2018). The pre-Mesozoic metamorphic basement of Mexico, 1.5 billion years of crustal evolution. *Earth-Science Reviews*, 183, 2-37.
- Ortega-Obregón, C., Solari, L., Gómez-Tuena, A., Elías-Herrera, M., Ortega-Gutiérrez, F., & Macías-Romo, C. (2014). Permian-Carboniferous arc magmatism in southern Mexico: U-Pb dating, trace element and Hf isotopic evidence on zircons of earliest subduction beneath the western margin of Gondwana. *International Journal of Earth Sciences*, 103(5), 1287-1300.
- Passchier, C. W., & Trouw, R. A. J. (2005). Microtectonics (2nd ed.). Berlin, Germany: Springer-Verlag.
- Paton, C., Woodhead, J. D., Hellstrom, J. C., Hergt, J. M., Greig, A., & Maas, R. (2010). Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. *Geochemistry*, *Geophysics, Geosystems*, 11 (3).
- Paton, C., Hellstrom, J., Paul, B., Woodhead, J., & Hergt, J. (2011). Iolite: Freeware for the visualisation and processing of mass spectrometric data. *Journal of Analytical Atomic Spectrometry*, 26, 2508-2518.
- Paul, B., Paton, C., Norris, A., Woodhead, J., Hellstrom, J., Hergt, J., & Greig, A. (2012). CellSpace: A module for creating spatially registered laser ablation images within the lolite freeware environment. *Journal of Analytical Atomic Spectrometry*, 27, 700-706.
- Pedersen, S., Andersen, T., Konnerup-Madsen, J., & Griffin, W. L. (2009). Recurrent mesoproterozoic continental magmatism in South-Central Norway. *International Journal of Earth Sciences*, 98, 1151-1171.
- Petrus, Joseph A., & Kamber, B. S. (2012). VizualAge: A Novel Approach to Laser Ablation ICP-MS U-Pb Geochronology Data Reduction. *Geostandards and Geoanalytical Research*, 36(3), 247-270.
- Petrus, J. A., Chew, D. M., Leybourne, M. I., & Kamber, B. S. (2017). A new approach to laser-ablation inductively-coupled-plasma mass-spectrometry (LA-ICP-MS) using the flexible map interrogation tool 'Monocle.' *Chemical Geology*, 463, 76-93.
- Prohaska, T., Irrgeher, J., & Zitek, A. (2016). Simultaneous multi-element and isotope ratio imaging of fish otoliths by laser ablation split stream ICP-MS/MC ICP-MS. *Journal of Analytical Atomic Spectrometry*, 31, 1612-1621.

- Reimann, C. R., Bahlburg, H., Kooijman, E., Berndt, J., Gerdes, A., Carlotto, V., & López, S. (2010). Geodynamic evolution of the early Paleozoic Western Gondwana margin 14°-17°S reflected by the detritus of the Devonian and Ordovician basins of southern Peru and northern Bolivia. *Gondwana Research*, 18, 370– 384.
- Rittner, M., & Müller, W. (2012). 2D mapping of LA-ICPMS trace element distributions using R. *Computers & Geosciences*, 42, 152-161.
- Rivers, T. (1997). Lithotectonic elements of the Grenville Province: Review and tectonic implications. *Precambrian Research*, 46 (338), 73-76.
- Rollinson, H. R. (1982). Evidence from feldspar compositions of high temperatures in granite sheets in the Scourian complex, N.W. Scotland. *Mineralogical Magazine*, *46*(338), 73–76.
- Rubatto, D. (2002). Zircon trace element geochemistry: distribution coefficients and the link between U-Pb ages and metamorphism. *Chemical Geology*, *184*, 123-138.
- Ruiz, J., Tosdal, R. M., Restrepo, P. A., & Murillo-Muñetón, G. (1999). Pb isotope evidence for Colombiasouthern México connections in the Proterozoic. Geological Society of America Special Paper, 336, 183-197.
- Schaltegger, U., Schmitt, A. K., & Horstwood, M. S. A. (2015). U-Th-Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities. *Chemical Geology*, 402, 89-110.
- Scherer, E., Münker, C., & Mezger, K. (2001). Calibration of the lutetium-hafnium clock. *Science*, 293, No. (5530), 683-687.
- Scherer, E. E., Whitehouse, M. J., & Münker, C. (2007). Zircon as a monitor of crustal growth. *Elements*, 3 (1), 19-24.
- Schulze, C. (2011). Petrología y geoquímica de las rocas del área de Pluma Hidalgo, Oaxaca e implicaciones tectónicas para el Proterozoico de Oaxaquia. Tesis de doctorado. Universidad Autónoma Nacional de México, México, 311 pp.
- Schoene, B. (2014). U–Th–Pb Geochronology. In Holland, K. K. & Turekian, H. D. (Eds.), Treatise on Geochemistry, 341-378.
- Sedlock, R. L., Ortega-Gutiérrez, F., & Speed, R. C. (1993). Tectonostratigraphic Terranes and Tectonic Evolution of Mexico. Geological Society of America Special Paper, 278.
- Sforna, M. C., & Lugli, F. (2017). MapITI: A simple and user-friendly MATLAB script to elaborate elemental distribution images from LA-ICP-MS data. *Journal of Analytical Atomic Spectrometry*, 32, 1035-1043.
- Shchepetilnikova, V., Solé, J., Solari, L., & Abdullin, F. (2015). A chronological and chemical zircon study of some pegmatite dikes and lenses from the central part (Ayoquezco-Ejutla) of the Oaxacan Complex, southern Mexico. *Revista Mexicana de Ciencias Geologicas*, *32*(1), 123-143.
- Slagstad, T., Roberts, N. M. W., Marker, M., Røhr, T. S., & Schiellerup, H. (2013). A non-collisional, accretionary Sveconorwegian orogen. *Terra Nova*, 25, 30-37.

- Sláma, J., Košler, J., Condon, D. J., Crowley, J. L., Gerdes, A., Hanchar, J. M., ... Whitehouse, M. J. (2008). Plešovice zircon - A new natural reference material for U-Pb and Hf isotopic microanalysis. *Chemical Geology*, 249 (1-2), 1-35.
- Söderlund, U., Patchett, P. J., Vervoort, J. D., & Isachsen, C. E. (2004). The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions. *Earth and Planetary Science Letters*, 219(3-4), 311-324.
- Solari, L. A., Keppie, J. D., Ortega-Gutiérrez, F., Cameron, K. L., Lopez, R., & Hames, W. E. (2003). 990 and 1100 Ma Grenvillian tectonothermal events in the northern Oaxacan Complex, southern Mexico: Roots of an orogen. *Tectonophysics*, *365*(1-4), 257-282.
- Solari, L.A., Keppie, J. D., Ortega-Gutiérrez, F., Cameron, K. L., & Lopez, R. (2004). ~990 Ma peak granulitic metamorphism and amalgamation of Oaxaquia, Mexico: U-Pb zircon geochronological and common Pb isotopic data. *Revista Mexicana de Ciencias Geologicas*, 21(2), 212-225.
- Solari, L. A., Ortega-Gutiérrez, F., Elías-Herrera, M., Ortega-Obregón, C., Macías-Romo, C., & Reyes-Salas, M. (2014). Detrital provenance of the Grenvillian Oaxacan Complex, southern Mexico: a zircon perspective. *International Journal of Earth Sciences*, 103(5), 1301–1315.
- Solari, L. A., González-León, C. M., Ortega-Obregón, C., Valencia-Moreno, M., & Rascón-Heimpel, M. A. (2018). The Proterozoic of NW Mexico revisited: U–Pb geochronology and Hf isotopes of Sonoran rocks and their tectonic implications. *International Journal of Earth Sciences*, 107(3), 845-861.
- Solari, L.A., Ortega-Obregón, C., Ortega-Gutiérrez, F., Elías-Herrera, M. (in press). Origin and evolution of the Grenvillian Oaxacan Complex, southern Mexico: Hf isotopic and U-Pb geochronological constraints. Geological Society of Ameriyca Special Paper.
- Spencer, C. J., Kirkland, C. L., Prave, A. R., Strachan, R. A., & Pease, V. (2019). Crustal reworking and orogenic styles inferred from zircon Hf isotopes: Proterozoic examples from the North Atlantic region. *Geoscience Frontiers*, 10(2), 417-424.
- Spry, A. S. (1969). Metamorphic textures. Oxford, Inglaterra: Pergamon Press.
- Sylvester, P. (2008). Laser Ablation-ICP-MS in the Earth Sciences Current Practices and outstanding Issues. *Mineralogical Association of Canada Short Course 40*.
- Tollo, R. P. (2005). Grenvillian Orogeny. In Selley, R.C., Cocks, L.R.M., Plimer, I.R. (Eds.), *Encyclopedia of Geology*, 155-165.
- Tolson, G. (2005). La falla Chacalapa en el sur de Oaxaca. *Boletín de la Sociedad Geológica Mexicana*, 57(1), 111-122.
- Tschanz, C. M., Marvin, R. F., Cruz B., J., Mehnert, H. H., & Cebula, G. T. (1974). Geologic evolution of the sierra Nevada de Santa Marta, Northeastern Colombia. *Bulletin of the Geological Society of America*, 85(2), 273-284.
- Ubide, T., McKenna, C. A., Chew, D. M., & Kamber, B. S. (2015). High-resolution LA-ICP-MS trace element mapping of igneous minerals: In search of magma histories. *Chemical Geology*, 409, 157-168.

- Ulrich, T., Kamber, B. S., Jugo, P. J., & Tinkham, D. K. (2009). Imaging element-distribution patterns in minerals by laser ablation Inductively coupled plasma Mass spectrometry (LA-ICP-MS). *Canadian Mineralogist*, 47(5), 1001-1012.
- Vervoort, J. (2014). Lu-Hf Dating: The Lu-Hf Isotope System. In Rink W., Thompson J. (Eds.), *Encyclopedia of Scientific Dating Methods*.
- Watson, E. B., Wark, D. A., & Thomas, J. B. (2006). Crystallization thermometers for zircon and rutile. *Contributions to Mineralogy and Petrology*, 151(4), 413–433.
- Weber, B., & Köhler, H. (1999). Sm–Nd, Rb–Sr and U–Pb geochronology of a Grenville Terrane in Southern Mexico: origin and geologic history of the Guichicovi Complex. *Precambrian Research*, 96(3-4), 245-262.
- Weber, B., & Hecht, L. (2003). Petrology and geochemistry of metaigneous rocks from a Grenvillian basement fragment in the Maya block : The Guichicovi complex , Petrology and geochemistry of metaigneous rocks from a Grenvillian basement fragment in the Maya block: the Guichicovi complex, Oaxaca, southern Mexico. *Precambrian Research*, 124(1), 41-67.
- Weber, B., Scherer, E. E., Schulze, C., Valencia, V. A., Montecinos, P., Mezger, K., & Ruiz, J. (2010). U-Pb and Lu-Hf isotope systematics of lower crust from central-southern Mexico - Geodynamic significance of Oaxaquia in a Rodinia Realm. *Precambrian Research*, 182(1-2), 149-162.
- Weber, B., Scherer, E. E., Martens, U. K., & Mezger, K. (2012). Where did the lower Paleozoic rocks of Yucatan come from? A U-Pb, Lu-Hf, and Sm-Nd isotope study. *Chemical Geology*, *312-313*, 1-17.
- Weber, B., & Schulze, C. H. (2014). Early Mesoproterozoic (>1.4 Ga) ages from granulite basement inliers of SE Mexico and their implications on the Oaxaquia concept Evidence from U-Pb and Lu-Hf isotopes on zircon. *Revista Mexicana de Ciencias Geologicas*, *31*(3), 377–394.
- Weber, R. (1997). How old is the Triassic flora of Sonora and tamaulipas and news on Leonardian floras in Puebla and Hidalgo, Mexico. *Revista Mexicana de Ciencias Geologicas*, 14(2), 225-243.
- Whitney, D. L., & Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. American Mineralogist, 95(1), 185-187.
- Wiedenbeck, M., Allé, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., ... Spiegel, W. (1995). Thee natural zircon standards for U-Th-Pb, Lu-Hf, element and REE analyses. *Geostandard Newsletter*, 19, 1-23.
- Woodhead, J. D., Hellstrom, J., Hergt, J. M., Greig, A., & Maas, R. (2007). Isotopic and elemental imaging of geological materials by laser ablation inductively coupled plasma-mass spectrometry. In *Geostandards and Geoanalytical Research*, 31(4), 331-343.
- Woodhead, J., Hellstrom, J., Paton, C., Hergt, J., Greig, A., Maas, R. (2008). A guide to depth profiling and imaging applications of LAICP-MS. In Sylvester, P. (Ed.), Laser ablation ICP-MS in the Earth sciences: current practices and outstanding issues. Mineralogical Association of Canada, Short Course Series 40, 135-145.
- Yakymchuk, C., Kirkland, C. L., & Clark, C. (2018). Th/U ratios in metamorphic zircon. *Journal of Metamorphic Geology*, 36(6), 715-737.
- Yang, J., Cawood, P. A., Du, Y., Huang, H., Huang, H., & Tao, P. (2012). Large Igneous Province and magmatic arc sourced Permian-Triassic volcanogenic sediments in China. *Sedimentary Geology*, 261-262, 120-131.

Zhu, Z.-Y., Cook, N., Yang, T., Ciobanu, C., Zhao, K.-D., & Jiang, S.-Y. (2016). Mapping of Sulfur Isotopes and Trace Elements in Sulfides by LA-(MC)-ICP-MS: Potential Analytical Problems, Improvements and Implications. *Minerals*, 6(4), 110.

							Relacio	nes corregida	S ²							Edades	corregidas (Ma	a)			
	U (ppm) ¹	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±25 abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±25 abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±25	²⁰⁷ Pb/ ²³⁵ U	±25	²⁰⁷ Pb/ ²⁰⁶ Pb	±25	Mejor edad	±25	Disc%
MıCa	(PP)	199																			
01_3	162	48.8	0.30	0.0838	0.0057	2.5300	0.1800	0.2181	0.0057	0.0614	0.0064	0.05	1271	30	1279	51	1310	120	1310	120	3.0
02_3	303.9	158.1	0.52	0.0859	0.0041	2.3110	0.1300	0.1910	0.0031	0.0513	0.0041	0.34	1127	17	1219	42	1340	97	1340	97	15.9
03_3	980	221	0.23	0.0803	0.0031	2.3350	0.1300	0.2088	0.0075	0.0521	0.0039	0.88	1221	40	1220	39	1201	76	1201	76	-1.7
04_3	647	283.5	0.44	0.0830	0.0037	2.3160	0.1200	0.1991	0.0035	0.0511	0.0035	0.28	1170	19	1216	36	1266	85	1266	85	7.6
05_3	290	70.3	0.24	0.0816	0.0034	2.3280	0.1200	0.2058	0.0038	0.0604	0.0045	0.47	1206	20	1223	39	1231	82	1231	82	2.0
06_3	923	385	0.42	0.0804	0.0031	2.0060	0.0990	0.1799	0.0042	0.0583	0.0040	0.80	1066	23	1117	33	1205	76	1205	76	11.5
o7_3	475	197	0.41	0.0895	0.0038	2.6640	0.1300	0.2120	0.0033	0.0812	0.0060	0.20	1239	17	1321	35	1410	81	1410	81	12.1
08_3	161.7	54.7	0.34	0.0801	0.0036	2.2270	0.1300	0.2005	0.0054	0.0563	0.0041	0.60	1177	29	1191	39	1199	92	1199	92	1.8
09_3	792	347	0.44	0.0835	0.0036	2.2690	0.1200	0.1945	0.0035	0.0626	0.0046	0.54	1146	19	1202	36	1277	86	1277	86	10.3
10_3	1090	555.7	0.51	0.0798	0.0030	2.2110	0.1000	0.1998	0.0030	0.0596	0.0040	0.32	1174	16	1184	32	1191	73	1191	73	1.4
11_3	1562	957	0.61	0.0806	0.0031	2.1970	0.1000	0.1923	0.0033	0.0599	0.0041	0.30	1134	18	1180	32	1209	75	1209	75	6.2
12_3	1579	249	0.16	0.0784	0.0032	1.7400	0.0830	0.1582	0.0028	0.0593	0.0042	0.39	947	16	1023	31	1155	80	1155	80	18.0
13_3	4120	3858	0.94	0.0753	0.0029	0.8850	0.0410	0.0837	0.0015	0.0103	0.0008	0.64	518	9	644	22	1080	71	1080	71	52.0
14_3	970	148.5	0.15	0.0785	0.0030	2.1740	0.1000	0.1996	0.0031	0.0608	0.0042	0.37	1173	17	1172	32	1157	76	1157	76	-1.4
15_3	389	68	0.17	0.0884	0.0037	2.6460	0.1300	0.2178	0.0039	0.0773	0.0061	0.35	1270	21	1315	35	1393	77	1393	77	8.8
16_3	519.2	403.3	0.78	0.0810	0.0032	2.3260	0.1100	0.2080	0.0034	0.0529	0.0037	0.43	1218	18	1219	34	1216	78	1216	78	-0.2
17_3	512	70.3	0.14	0.0805	0.0030	2.3490	0.1100	0.2110	0.0035	0.0630	0.0046	0.48	1234	19	1227	34	1206	74	1206	74	-2.3
18_3	1370	670	0.49	0.0817	0.0030	2.3610	0.1100	0.2104	0.0035	0.0620	0.0042	0.75	1231	19	1230	33	1237	72	1237	72	0.5
19_3	555.6	165.8	0.30	0.0805	0.0032	2.1700	0.1100	0.1965	0.0034	0.0572	0.0041	0.62	1156	18	1171	35	1207	77	1207	77	4.2
20_3	1340	289.3	0.22	0.0761	0.0030	1.6310	0.0780	0.1564	0.0029	0.0416	0.0032	0.40	936	16	982	30	1094	80	1094	80	14.4
21_3	466	122	0.26	0.0827	0.0033	2.4270	0.1200	0.2146	0.0052	0.0692	0.0048	0.63	1253	28	1252	37	1256	78	1256	78	0.2
22_3	2630	690	0.26	0.0741	0.0030	0.6450	0.0310	0.0636	0.0015	0.0198	0.0015	0.68	397	9	505	19	1044	85	1044	85	62.0
23_3	508	157.8	0.31	0.0783	0.0030	2.1100	0.1000	0.1951	0.0051	0.0606	0.0042	0.68	1149	27	1152	33	1157	81	1157	81	0.7
24_3	768	208.9	0.27	0.0791	0.0030	2.1470	0.0980	0.1979	0.0031	0.0588	0.0040	0.30	1164	17	1164	31	1179	76	1179	76	1.3
25_3	280	93.8	0.34	0.0804	0.0038	2.2360	0.1200	0.2032	0.0034	0.0573	0.0044	0.37	1192	18	1191	38	1197	92	1197	92	0.4
26_3	1103	168.1	0.15	0.0794	0.0034	1.5640	0.0780	0.1450	0.0035	0.0536	0.0042	0.16	873	20	956	31	1180	87	1180	87	26.0
27_3	569.5	117.9	0.21	0.0793	0.0035	1.7050	0.0850	0.1576	0.0027	0.0589	0.0043	0.37	944	15	1010	32	1175	85	1175	85	19.7

Anexo 1. Datos de la geocronología U—Pb en zircón.

							Relacio	nes corregida	S ²						l	Edades	corregidas (Ma	i)			
	U (ppm) ¹	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±25	²⁰7Pb/²35U	±2S	²⁰⁷ Pb/ ²⁰⁶ Pb	±25	Mejor edad	±25	Disc%
28_3	670	375	0.56	0.0804	0.0034	2.3200	0.1200	0.2115	0.0036	0.0635	0.0044	0.47	1237	19	1218	36	1204	84	1204	84	-2.7
29_3	1088	175.9	0.16	0.0770	0.0030	1.5620	0.0740	0.1488	0.0031	0.0453	0.0038	0.55	894	17	955	29	1120	78	1120	78	20.2
30_3	1120	186.5	0.17	0.0756	0.0034	0.7070	0.0430	0.0672	0.0019	0.0313	0.0028	0.70	419	12	542	26	1078	92	1078	92	61.1
31_3	268	84.2	0.31	0.0797	0.0035	1.7920	0.0920	0.1635	0.0036	0.0469	0.0037	0.58	976	20	1042	34	1186	88	1186	88	17.7
32_3	361	140.6	0.39	0.0831	0.0036	3.1840	0.1700	0.2806	0.0070	0.0695	0.0049	0.45	1594	35	1452	40	1266	85	1266	85	-25.9
33_3	2680	958	0.36	0.0776	0.0029	1.1370	0.0530	0.1056	0.0021	0.0286	0.0020	0.70	647	12	771	25	1135	76	1135	76	43.0
34_3	852.2	145.1	0.17	0.0800	0.0030	2.2680	0.1000	0.2055	0.0031	0.0708	0.0049	0.30	1205	16	1202	32	1199	78	1199	78	-0.5
35_3	1824	876	0.48	0.0794	0.0030	1.9400	0.0930	0.1769	0.0029	0.0477	0.0032	0.67	1050	16	1094	32	1180	76	1180	76	11.0
36_3	768	162	0.21	0.0788	0.0031	2.1580	0.1000	0.1982	0.0038	0.0644	0.0049	0.55	1166	20	1167	33	1164	78	1164	78	-0.2
37_3	502	286	0.57	0.0818	0.0033	2.4120	0.1100	0.2141	0.0034	0.0654	0.0046	0.10	1251	18	1246	34	1235	79	1235	79	-1.3
38_3	1215	81.6	0.07	0.0811	0.0031	2.3550	0.1100	0.2109	0.0035	0.0659	0.0049	0.07	1233	19	1229	33	1222	75	1222	75	-0.9
39_3	1528	394	0.26	0.0777	0.0030	1.5300	0.0720	0.1433	0.0028	0.0470	0.0033	0.56	863	16	942	29	1141	80	1141	80	24.4
40_3	1015	150	0.15	0.0749	0.0029	1.2890	0.0630	0.1248	0.0027	0.0534	0.0047	0.73	758	16	840	28	1063	78	1063	78	28.7
41_3	1912	246.5	0.13	0.0741	0.0028	1.3920	0.0650	0.1367	0.0022	0.0422	0.0029	0.62	826	13	885	28	1044	79	1044	79	20.9
42_3	688.4	40.9	0.06	0.0763	0.0030	1.8390	0.0860	0.1761	0.0027	0.0701	0.0059	0.20	1046	15	1061	29	1098	79	1098	79	4.7
43_3	1148	120	0.10	0.0789	0.0030	1.5360	0.0710	0.1407	0.0022	0.0740	0.0054	0.43	849	12	944	29	1165	76	1165	76	27.1
44_3	318.6	127.2	0.40	0.0797	0.0036	2.0960	0.1200	0.1882	0.0035	0.0536	0.0044	0.47	1112	19	1146	39	1184	90	1184	90	6.1
45_3	614	271.7	0.44	0.0827	0.0031	2.4060	0.1100	0.2111	0.0030	0.0630	0.0042	0.13	1235	16	1244	33	1259	74	1259	74	1.9
46_3	922	234	0.25	0.0805	0.0032	2.0700	0.0970	0.1867	0.0031	0.0624	0.0043	0.29	1104	17	1138	32	1206	78	1206	78	8.5
47_3	195	73	0.37	0.0831	0.0034	2.5430	0.1200	0.2223	0.0046	0.0716	0.0056	0.34	1294	24	1283	36	1266	81	1266	81	-2.2
48_3	281	113.2	0.40	0.0811	0.0033	2.3390	0.1100	0.2105	0.0035	0.0659	0.0047	0.33	1231	19	1223	34	1224	78	1224	78	-0.6
49_3	390	133.3	0.34	0.0764	0.0030	1.9790	0.0960	0.1876	0.0031	0.0579	0.0041	0.39	1108	17	1107	33	1101	80	1101	80	-0.6
50_3	467	246.2	0.53	0.0808	0.0032	2.3330	0.1100	0.2091	0.0033	0.0635	0.0043	0.21	1224	18	1222	34	1212	79	1212	79	-1.0
5 1_ 3	829	127.9	0.15	0.0793	0.0031	1.6380	0.0830	0.1484	0.0043	0.0491	0.0046	0.81	892	24	986	31	1175	77	1175	77	24.1
52_2	652	256	0.39	0.0795	0.0032	2.0710	0.0980	0.1914	0.0035	0.0565	0.0040	0.56	1129	19	1141	35	1179	79	1179	79	4.2
53_2	118.2	39.1	0.33	0.0836	0.0040	2.4610	0.1300	0.2108	0.0042	0.0644	0.0050	0.24	1233	22	1263	40	1282	96	1282	96	3.8
54_2	1722	221.8	0.13	0.0776	0.0029	1.5490	0.0710	0.1431	0.0022	0.0614	0.0042	0.22	862	12	950	28	1137	79	1137	79	24.2
55_2	249	127.4	0.51	0.0815	0.0036	2.3550	0.1200	0.2089	0.0034	0.0624	0.0045	0.09	1223	18	1231	35	1246	80	1246	80	1.8
56_2	1455	226.7	0.16	0.0790	0.0030	1.9390	0.0890	0.1770	0.0028	0.0593	0.0040	0.27	1051	15	1094	31	1170	75	1170	75	10.2

							Relacio	nes corregida	S ²						E	Edades o	orregidas (Ma)			
	U (ppm)¹	Th (ppm)¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±25 abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±25	²⁰⁷ Pb/ ²³⁵ U	±25	²⁰⁷ Pb/ ²⁰⁶ Pb	±25	Mejor edad	±25	Disc%
M1Cf					0	0							60		C			0			
01_4	1832	417	0.23	0.0729	0.0028	1.1280	0.0520	0.1124	0.0023	0.0341	0.0030	0.73	687	14	767	25	1009	78	1009	78	31.9
02_4	1691	222	0.13	0.0784	0.0030	1.7240	0.0830	0.1586	0.0034	0.0540	0.0037	0.74	949	19	1017	31	1155	75	1155	75	17.8
03_4	361	151	0.42	0.0867	0.0041	2.5510	0.1400	0.2106	0.0045	0.0781	0.0069	0.54	1232	24	1285	40	1347	90	1347	90	8.5
04_4	223.3	112.5	0.50	0.0964	0.0060	2.6700	0.1800	0.2028	0.0038	0.0807	0.0077	0.57	1190	20	1313	49	1540	120	1540	120	22.7
05_4	280	124	0.44	0.0834	0.0045	2.4510	0.1400	0.2119	0.0040	0.0667	0.0047	0.03	1239	21	1256	42	1268	100	1268	100	2.3
06_4	660	217	0.33	0.0810	0.0032	2.3140	0.1100	0.2077	0.0040	0.0602	0.0042	0.49	1217	21	1216	34	1218	80	1218	80	0.1
07_4	526	169	0.32	0.0804	0.0032	2.2880	0.1100	0.2055	0.0032	0.0650	0.0046	0.40	1205	17	1208	34	1201	79	1201	79	-0.3
08_4	231.2	99.6	0.43	0.0833	0.0038	2.4660	0.1300	0.2149	0.0038	0.0647	0.0047	0.12	1255	20	1261	38	1268	90	1268	90	1.0
09_4	557	278	0.50	0.0807	0.0031	2.2990	0.1100	0.2061	0.0032	0.0629	0.0043	0.04	1208	17	1211	33	1210	76	1210	76	0.2
10_4	397	354	0.89	0.0878	0.0059	1.8200	0.1600	0.1480	0.0120	0.0288	0.0043	0.82	890	66	1049	57	1370	130	1370	130	35.0
11_4	1600	368	0.23	0.0749	0.0029	1.0640	0.0540	0.1025	0.0027	0.0329	0.0025	0.87	629	16	735	27	1070	70	1070	70	41.2
12_4	875	237	0.27	0.0788	0.0032	1.4020	0.0670	0.1295	0.0028	0.0415	0.0031	0.59	785	16	890	29	1162	80	1162	80	32.4
13_4	560	163.4	0.29	0.0809	0.0032	2.2750	0.1100	0.2030	0.0032	0.0654	0.0046	0.38	1193	18	1204	35	1216	80	1216	80	1.9
14_4	243.7	69	0.28	0.0787	0.0045	1.6070	0.0930	0.1474	0.0035	0.0476	0.0054	0.44	886	19	979	41	1152	120	1152	120	23.1
15_4	2230	203	0.09	0.0772	0.0030	1.2760	0.0600	0.1195	0.0021	0.0504	0.0036	0.46	728	12	835	27	1122	78	1122	78	35.1
16_4	129	50	0.39	0.0847	0.0050	2.6600	0.1700	0.2249	0.0049	0.0821	0.0062	0.10	1307	26	1314	46	1290	110	1290	110	-1.3
17_4	197	61	0.31	0.0955	0.0077	2.4500	0.1700	0.1802	0.0041	0.0743	0.0075	0.23	1068	22	1255	50	1520	150	1520	150	29.7
18_4	1219	309.8	0.25	0.0790	0.0031	1.6140	0.0750	0.1498	0.0025	0.0465	0.0032	0.69	900	14	978	32	1174	80	1174	80	23.4
19_4	2180	413	0.19	0.0787	0.0030	1.0960	0.0520	0.1003	0.0018	0.0449	0.0031	0.86	616	11	751	25	1162	75	1162	75	47.0
20_4	215.3	114.8	0.53	0.0784	0.0041	2.1150	0.1200	0.1967	0.0038	0.0587	0.0048	0.09	1158	20	1153	39	1151	100	1151	100	-0.6
21_4	269	104.6	0.39	0.0833	0.0034	2.5360	0.1200	0.2202	0.0037	0.0635	0.0046	0.06	1283	20	1281	35	1276	74	1276	74	-0.5
22_4	2791	1062	0.38	0.0796	0.0031	1.4580	0.0750	0.1320	0.0030	0.0433	0.0030	0.84	799	17	913	31	1185	77	1185	77	32.6
23_4	372.2	144.3	0.39	0.0805	0.0033	2.2620	0.1100	0.2032	0.0034	0.0624	0.0044	0.31	1192	18	1200	34	1204	80	1204	80	1.0
24_4	1760	226	0.13	0.0757	0.0029	1.7060	0.0850	0.1628	0.0040	0.0523	0.0041	0.82	972	22	1010	32	1085	77	1085	77	10.4
25_4	126.7	47.9	0.38	0.0813	0.0046	2.7000	0.1800	0.2336	0.0046	0.0659	0.0052	0.43	1353	24	1324	49	1235	110	1235	110	-9.6
26_4	325	89.2	0.27	0.0820	0.0033	2.4230	0.1200	0.2160	0.0048	0.0684	0.0050	0.67	1261	26	1248	37	1255	87	1255	87	-0.5
27_4	894	237	0.27	0.0843	0.0032	1.8900	0.0910	0.1628	0.0038	0.0566	0.0040	0.81	972	21	1081	35	1296	74	1296	74	25.0
28_4	2628	496	0.19	0.0804	0.0032	1.3430	0.0670	0.1206	0.0023	0.0505	0.0044	0.69	734	13	864	29	1204	79	1204	79	39.0

							Relacio	nes corregida	S ²							Edades	corregidas (Ma)			
	U (ppm)¹	Th (ppm)¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±25	²⁰⁷ Pb/ ²³⁵ U	±2S	²⁰⁷ Pb/ ²⁰⁶ Pb	±2S	Mejor edad	±2S	Disc%
29_4	761.7	304.2	0.40	0.0825	0.0031	2.3770	0.1100	0.2087	0.0031	0.0610	0.0041	0.34	1222	16	1235	32	1256	73	1256	73	2.7
30_4	631	218	0.35	0.0799	0.0032	2.0170	0.0970	0.1807	0.0030	0.0579	0.0041	0.22	1070	17	1121	33	1192	80	1192	80	10.2
31_4	402.9	121.8	0.30	0.0815	0.0033	2.4410	0.1200	0.2151	0.0038	0.0650	0.0048	0.23	1256	20	1254	36	1232	79	1232	79	-1.9
32_4	2340	1080	0.46	0.0774	0.0029	1.0000	0.0460	0.0935	0.0017	0.0183	0.0016	0.61	576	10	704	24	1129	75	1129	75	48.9
33_4	452	84.3	0.19	0.0805	0.0033	2.1990	0.1100	0.1963	0.0037	0.0612	0.0043	0.49	1155	20	1180	34	1205	81	1205	81	4.1
34_4	296	125.6	0.42	0.0824	0.0034	2.4120	0.1200	0.2117	0.0034	0.0640	0.0045	0.27	1238	18	1245	35	1258	75	1258	75	1.6
35_4	1126	453	0.40	0.0805	0.0032	2.1070	0.1000	0.1876	0.0029	0.0604	0.0041	0.48	1108	16	1151	34	1207	78	1207	78	8.2
36_4	497	159.6	0.32	0.0785	0.0034	1.8600	0.0970	0.1708	0.0041	0.0449	0.0039	0.63	1016	23	1066	35	1169	94	1169	94	13.1
37_4	351	123	0.35	0.0803	0.0034	2.0990	0.1100	0.1895	0.0034	0.0603	0.0044	0.66	1119	18	1147	35	1198	82	1198	82	6.6
38_4	294	85.4	0.29	0.0810	0.0036	2.3490	0.1200	0.2082	0.0039	0.0654	0.0050	0.20	1219	21	1226	38	1227	95	1227	95	0.7
39_4	580.2	308.6	0.53	0.0840	0.0035	2.4770	0.1300	0.2117	0.0036	0.0635	0.0045	0.62	1238	19	1264	39	1290	81	1290	81	4.0
40_4	791.8	308.2	0.39	0.0816	0.0033	2.4540	0.1200	0.2193	0.0033	0.0646	0.0045	0.05	1278	18	1258	34	1233	78	1233	78	-3.7
41_4	1433	698	0.49	0.0807	0.0030	2.2780	0.1000	0.2052	0.0033	0.0598	0.0040	0.63	1203	18	1205	32	1211	73	1211	73	0.7
42_4	341	136.2	0.40	0.0843	0.0035	2.1260	0.1000	0.1843	0.0031	0.0601	0.0047	0.38	1091	17	1157	33	1296	80	1296	80	15.8
43_4	140.9	45.7	0.32	0.0979	0.0076	2.7100	0.2100	0.2032	0.0044	0.0945	0.0110	0.17	1193	24	1325	57	1570	150	1570	150	24.0
44_4	1697	335	0.20	0.0809	0.0030	1.5610	0.0740	0.1402	0.0025	0.0517	0.0036	0.80	846	14	954	29	1216	73	1216	73	30.4
45_4	253	115	0.45	0.0831	0.0033	2.4370	0.1200	0.2140	0.0034	0.0638	0.0044	0.40	1250	18	1252	35	1273	84	1273	84	1.8
46_4	474.4	127.3	0.27	0.0809	0.0031	2.3270	0.1100	0.2073	0.0035	0.0612	0.0045	0.30	1214	19	1220	33	1215	76	1215	76	0.1
47_4	1438	173.9	0.12	0.0800	0.0031	1.5230	0.0770	0.1378	0.0029	0.0523	0.0037	0.82	832	17	939	31	1194	76	1194	76	30.3
48_4	586	200	0.34	0.0776	0.0037	1.7340	0.0940	0.1645	0.0036	0.0492	0.0035	0.45	982	20	1026	37	1130	93	1130	93	13.1
49_4	861	256	0.30	0.0818	0.0031	2.3860	0.1100	0.2111	0.0031	0.0646	0.0044	0.41	1235	17	1238	33	1243	71	1243	71	0.7
50_4	488	209	0.43	0.0819	0.0034	2.5120	0.1300	0.2231	0.0039	0.0694	0.0049	0.63	1298	20	1275	36	1248	76	1248	76	-4.0
51_4	132.3	48.5	0.37	0.0818	0.0048	2.4200	0.1600	0.2144	0.0037	0.0707	0.0056	0.04	1252	20	1245	46	1222	110	1222	110	-2.5
52_3	350.6	205	0.58	0.0832	0.0041	2.5180	0.1400	0.2197	0.0039	0.0661	0.0051	0.07	1280	20	1275	40	1262	94	1262	94	-1.4
53_3	421.8	251.1	0.60	0.0871	0.0035	2.7820	0.1300	0.2319	0.0040	0.0692	0.0047	0.29	1345	21	1352	36	1358	77	1358	77	1.0
54_3	165.8	166.6	1.00	0.0774	0.0041	1.9660	0.1100	0.1864	0.0037	0.0440	0.0032	0.19	1102	20	1109	42	1118	110	1118	110	1.4
55_3	312	100.4	0.32	0.0825	0.0038	2.3910	0.1300	0.2121	0.0041	0.0672	0.0048	0.19	1240	22	1241	40	1244	90	1244	90	0.3
56_2	1915	424	0.22	0.0760	0.0030	1.1450	0.0560	0.1091	0.0024	0.0352	0.0034	0.73	668	14	775	26	1093	78	1093	78	38.9
57 <u></u> 2	332	67.2	0.20	0.0824	0.0037	2.1520	0.1100	0.1944	0.0044	0.0557	0.0047	0.32	1145	24	1165	37	1250	87	1250	87	8.4

							Relacio	nes corregida	S ²							Edades	corregidas (Ma	i)			
	U (ppm)1	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2S abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2S abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2S	²⁰⁷ Pb/ ²³⁵ U	±2S	²⁰⁷ Pb/ ²⁰⁶ Pb	±2S	Mejor edad	±2S	Disc%
58_2	195.7	93.5	0.48	0.0816	0.0053	2.3400	0.1700	0.2062	0.0044	0.0640	0.0065	0.34	1208	23	1221	50	1230	120	1230	120	1.8
59_2	153.5	76.9	0.50	0.0824	0.0036	2.4180	0.1300	0.2143	0.0035	0.0642	0.0045	0.51	1251	18	1249	39	1264	87	1264	87	1.0
60_2	1046	339	0.32	0.0841	0.0038	1.3790	0.0740	0.1177	0.0027	0.0358	0.0028	0.34	717	16	879	32	1298	85	1298	85	44.8
61_2	128.9	50.6	0.39	0.0817	0.0039	2.4060	0.1300	0.2121	0.0051	0.0659	0.0050	0.12	1240	27	1246	39	1237	87	1237	87	-0.2
62_2	351.6	106	0.30	0.0807	0.0041	1.9870	0.1200	0.1775	0.0030	0.0610	0.0054	0.59	1053	16	1109	42	1208	99	1208	99	12.8
63_2	3490	549	0.16	0.1032	0.0039	0.7583	0.0350	0.0539	0.0011	0.0470	0.0033	0.70	338	7	574	21	1680	69	1680	69	79.9
64_2	1111	215.2	0.19	0.0807	0.0034	1.2950	0.0680	0.1176	0.0027	0.0439	0.0034	0.57	717	16	843	30	1212	83	1212	83	40.8
65_2	108.5	34.8	0.32	0.0839	0.0040	2.4790	0.1400	0.2165	0.0038	0.0678	0.0050	0.15	1266	19	1266	39	1294	86	1294	86	2.2
66_2	401	105.5	0.26	0.0816	0.0031	2.2740	0.1000	0.2035	0.0031	0.0630	0.0044	0.29	1194	17	1205	34	1236	73	1236	73	3.4
67_2	233	88	0.38	0.0830	0.0035	2.2030	0.1200	0.1957	0.0035	0.0634	0.0047	0.67	1152	19	1187	39	1261	84	1261	84	8.6
68_2	573	218	0.38	0.0806	0.0037	2.2240	0.1200	0.2009	0.0035	0.0610	0.0045	0.42	1180	19	1188	38	1206	90	1206	90	2.2
69_2	1070	283	0.26	0.0787	0.0031	1.3260	0.0680	0.1244	0.0029	0.0443	0.0032	0.70	756	17	857	30	1162	79	1162	79	34.9
70_2	353.6	82.3	0.23	0.0806	0.0039	2.0330	0.1100	0.1849	0.0035	0.0587	0.0043	0.34	1093	19	1125	38	1204	96	1204	96	9.2
71_2	1929	356	0.18	0.0814	0.0032	1.1870	0.0580	0.1062	0.0027	0.0331	0.0024	0.73	651	16	796	28	1227	78	1227	78	46.9
MıCh																					
01_	1205	176	0.15	0.0759	0.0032	1.4350	0.0710	0.1375	0.0021	0.0634	0.0044	0.20	831	12	903	29	1088	84	1088	84	23.7
02_5	748	319	0.43	0.0819	0.0034	1.9990	0.0970	0.1773	0.0028	0.0573	0.0039	0.03	1052	15	1115	33	1239	81	1239	81	15.1
03_5	1355	197	0.15	0.0719	0.0032	1.2900	0.0620	0.1308	0.0025	0.0405	0.0028	0.15	792	14	841	28	976	91	976	91	18.9
04_5	1018	194	0.19	0.0786	0.0030	2.1150	0.1000	0.1957	0.0036	0.0635	0.0044	0.68	1152	19	1153	34	1160	77	1160	77	0.7
05_5	1525	400.3	0.26	0.0806	0.0038	1.2110	0.0620	0.1083	0.0018	0.0355	0.0026	0.24	663	10	805	29	1205	91	1205	91	45.0
06_5	1390	622	0.45	0.0777	0.0030	0.9390	0.0430	0.0882	0.0014	0.0240	0.0017	0.36	545	8	672	23	1135	76	1135	76	52.0
07_5	332	111.9	0.34	0.0825	0.0033	2.3390	0.1100	0.2087	0.0033	0.0664	0.0047	0.46	1222	18	1223	35	1251	78	1251	78	2.3
08_5	1007	242	0.24	0.0752	0.0029	1.4080	0.0660	0.1373	0.0022	0.0448	0.0031	0.51	830	12	892	28	1081	70	1081	70	23.3
09_5	133.3	60	0.45	0.0938	0.0042	3.7500	0.2000	0.2963	0.0060	0.0913	0.0065	0.31	1673	30	1588	41	1494	85	1494	85	-12.0
10_5	522	230.2	0.44	0.0825	0.0039	2.4050	0.1300	0.2104	0.0034	0.0660	0.0050	0.53	1231	18	1243	39	1252	91	1252	91	1.7
11_5	3037	1386	0.46	0.0801	0.0032	0.9560	0.0460	0.0857	0.0015	0.0190	0.0014	0.48	530	9	681	24	1197	80	1197	80	55.7
12_5	433	167.2	0.39	0.0823	0.0033	2.5970	0.1300	0.2343	0.0039	0.0588	0.0040	0.60	1357	20	1303	34	1249	79	1249	79	-8.6
13_5	1626	535	0.33	0.0791	0.0030	1.6240	0.0740	0.1508	0.0022	0.0514	0.0035	0.46	905	12	979	29	1178	79	1178	79	23.1

							Relacio	nes corregida	S ²							Edades	corregidas (Ma)			
	U (ppm)¹	Th (ppm)¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±25	²⁰⁷ Pb/ ²³⁵ U	±25	²⁰⁷ Pb/ ²⁰⁶ Pb	±2S	Mejor edad	±2S	Disc%
14_5	1229	162.1	0.13	0.0720	0.0028	1.1300	0.0540	0.1158	0.0019	0.0437	0.0031	0.52	706	11	767	26	986	81	986	81	28.4
15_5	1357	531	0.39	0.0772	0.0031	1.2950	0.0620	0.1240	0.0023	0.0339	0.0023	0.34	754	13	845	28	1135	79	1135	79	33.6
16_5	702	268	0.38	0.0805	0.0033	2.1440	0.1000	0.1943	0.0032	0.0567	0.0039	0.07	1145	17	1163	33	1212	82	1212	82	5.5
17_5	856	143.6	0.17	0.0726	0.0028	1.0530	0.0490	0.1074	0.0022	0.0306	0.0023	0.49	658	13	732	25	999	79	999	79	34.2
18_5	911	359.8	0.39	0.0800	0.0031	2.0490	0.1000	0.1906	0.0031	0.0588	0.0040	0.60	1125	17	1132	33	1196	75	1196	75	6.0
19_5	885	132.4	0.15	0.0777	0.0032	1.3330	0.0650	0.1257	0.0023	0.0547	0.0041	0.16	764	13	860	28	1145	75	1145	75	33.3
20_5	232.1	98.2	0.42	0.0982	0.0044	3.4530	0.1800	0.2603	0.0045	0.0854	0.0062	0.19	1491	23	1515	41	1583	84	1583	84	5.8
21_5	1295	172.8	0.13	0.0799	0.0031	2.0440	0.1000	0.1881	0.0039	0.0662	0.0046	0.64	1111	21	1134	29	1193	78	1193	78	6.9
22_5	342	78.4	0.23	0.0797	0.0031	2.1600	0.1000	0.1988	0.0030	0.0614	0.0044	0.49	1169	16	1168	32	1185	78	1185	78	1.4
23_5	422	86.4	0.20	0.0937	0.0043	3.4260	0.1800	0.2707	0.0046	0.0791	0.0075	0.11	1544	24	1510	41	1499	86	1499	86	-3.0
24_5	776	260	0.34	0.0802	0.0031	2.1840	0.1000	0.2021	0.0034	0.0650	0.0049	0.61	1187	18	1176	32	1208	70	1208	70	1.7
25_5	568	126.2	0.22	0.0792	0.0033	1.9510	0.0960	0.1800	0.0031	0.0588	0.0043	0.32	1067	17	1098	33	1182	85	1182	85	9.7
26_5	447	302.7	0.68	0.0809	0.0032	2.2290	0.1100	0.2026	0.0032	0.0580	0.0039	0.27	1189	17	1189	33	1223	83	1223	83	2.8
27_5	777	331	0.43	0.0818	0.0032	2.2430	0.1100	0.2039	0.0036	0.0599	0.0041	0.29	1196	19	1194	33	1237	77	1237	77	3.3
28_5	482	118	0.24	0.0801	0.0034	2.3680	0.1200	0.2184	0.0035	0.0609	0.0045	0.37	1273	19	1236	34	1212	84	1212	84	-5.0
29_5	460	175.7	0.38	0.0822	0.0032	2.3550	0.1100	0.2106	0.0031	0.0633	0.0044	0.15	1232	17	1228	33	1246	77	1246	77	1.1
30_5	318	101.9	0.32	0.0840	0.0038	2.3580	0.1200	0.2077	0.0042	0.0671	0.0047	0.24	1216	22	1229	36	1286	90	1286	90	5.4
31_5	826.8	158.5	0.19	0.0780	0.0032	2.0310	0.1000	0.1915	0.0036	0.0556	0.0043	0.57	1130	20	1125	34	1142	80	1142	80	1.1
32_5	897	443.7	0.49	0.0825	0.0032	2.3240	0.1100	0.2052	0.0047	0.0641	0.0044	o.68	1203	25	1219	35	1255	76	1255	76	4.1
33_5	1319.5	187.3	0.14	0.0781	0.0030	1.7760	0.0830	0.1681	0.0028	0.0535	0.0040	0.59	1002	16	1036	31	1146	75	1146	75	12.6
34_5	419	189	0.45	0.0808	0.0040	2.3730	0.1300	0.2146	0.0036	0.0639	0.0045	0.05	1253	19	1233	40	1226	110	1226	110	-2.2
35_5	597	93.5	0.16	0.0771	0.0030	1.9260	0.0940	0.1839	0.0036	0.0624	0.0045	0.64	1088	20	1091	32	1123	74	1123	74	3.1
36_5	1028	285	0.28	0.0798	0.0033	1.2040	0.0580	0.1093	0.0021	0.0380	0.0028	0.47	669	12	802	26	1189	82	1189	82	43.8
37_5	418.4	189.3	0.45	0.0844	0.0036	2.4690	0.1200	0.2158	0.0034	0.0546	0.0037	0.22	1260	18	1262	36	1297	82	1297	82	2.9
38_5	253	69.5	0.27	0.0845	0.0037	2.1080	0.1100	0.1800	0.0033	0.0693	0.0054	0.44	1067	18	1149	36	1303	87	1303	87	18.1
39_5	475	229	0.48	0.0827	0.0034	2.4360	0.1200	0.2157	0.0035	0.0650	0.0044	0.29	1259	19	1253	35	1257	81	1257	81	-0.2
40_5	1100	180	0.16	0.0731	0.0037	0.8600	0.0520	0.0844	0.0021	0.0291	0.0027	0.48	522	12	630	29	1009	110	1009	110	48.3
41_5	1011	731	0.72	0.0814	0.0031	2.3280	0.1100	0.2078	0.0033	0.0605	0.0040	0.16	1217	18	1220	32	1238	72	1238	72	1.7
42_5	472	221	0.47	0.0828	0.0036	2.5160	0.1300	0.2189	0.0038	0.0678	0.0048	0.23	1276	20	1275	37	1257	85	1257	85	-1.5

							Relacio	nes corregida	S ²						[Edades	corregidas (Ma	a)			
	U (ppm)1	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2S abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2S	²⁰⁸ Pb/ ²³² Th	±2S abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2S	²⁰⁷ Pb/ ²³⁵ U	±2S	²⁰⁷ Pb/ ²⁰⁶ Pb	±2S	Mejor	±2S	Disc%
43_5	405	181.6	0.45	0.0831	0.0032	2.4610	0.1100	0.2157	0.0036	0.0643	0.0044	0.32	1259	19	1260	34	1267	76	1267	76	0.6
44_5	575	130.3	0.23	0.0824	0.0038	2.3880	0.1300	0.2077	0.0037	0.0706	0.0063	0.25	1217	20	1238	38	1252	88	1252	88	2.8
45_5	707.3	382	0.54	0.0836	0.0038	2.5550	0.1300	0.2238	0.0034	0.0684	0.0047	0.43	1302	18	1293	30	1279	90	1279	90	-1.8
46_5	4660	1767	0.38	0.0733	0.0029	0.4940	0.0250	0.0486	0.0013	0.0116	0.0010	0.78	306	8	407	17	1019	81	1019	81	70.0
47_5	327	120.3	0.37	0.0837	0.0039	2.4670	0.1300	0.2126	0.0034	0.0661	0.0051	0.27	1243	18	1261	39	1277	90	1277	90	2.7
48_5	955	191.3	0.20	0.0783	0.0031	1.8130	0.0850	0.1700	0.0026	0.0579	0.0041	0.24	1012	14	1052	32	1157	81	1157	81	12.5
49_5	2069	931	0.45	0.0829	0.0031	1.3980	0.0650	0.1223	0.0019	0.0348	0.0025	0.53	744	11	888	28	1265	74	1265	74	41.2
50_5	473	157	0.33	0.0822	0.0040	2.2350	0.1200	0.2011	0.0035	0.0565	0.0042	0.40	1181	19	1190	39	1240	97	1240	97	4.8
51_5	532	177	0.33	0.0818	0.0031	2.4200	0.1100	0.2153	0.0032	0.0652	0.0044	0.02	1257	17	1248	33	1246	70	1246	70	-0.9
52_4	186.1	179.1	0.96	0.0878	0.0044	2.7100	0.1700	0.2255	0.0049	0.0680	0.0053	0.59	1311	26	1328	46	1370	96	1370	96	4.3
53_4	493	228	0.46	0.0819	0.0032	2.3810	0.1100	0.2100	0.0035	0.0638	0.0045	0.39	1229	18	1236	34	1248	71	1248	71	1.5
54_4	526	163	0.31	0.0802	0.0033	2.4590	0.1200	0.2239	0.0042	0.0612	0.0046	0.47	1302	22	1259	36	1199	83	1199	83	-8.6
55_4	990	136	0.14	0.0751	0.0032	1.5710	0.0970	0.1520	0.0053	0.0533	0.0049	0.71	912	29	956	39	1065	85	1065	85	14.4
56_3	149.3	50.3	0.34	0.0841	0.0038	2.5560	0.1300	0.2230	0.0042	0.0700	0.0052	0.06	1297	22	1287	37	1287	87	1287	87	-0.8
57_3	569	301	0.53	0.0897	0.0037	2.2990	0.1100	0.1890	0.0030	0.0745	0.0051	0.02	1116	16	1212	33	1416	79	1416	79	21.2
58_3	1035	439	0.42	0.0780	0.0043	1.9460	0.1400	0.1847	0.0034	0.0546	0.0045	0.70	1093	19	1097	50	1144	110	1144	110	4.5
59_3	568	219	0.39	0.0817	0.0046	2.4520	0.1800	0.2154	0.0041	0.0639	0.0053	0.33	1260	20	1258	54	1234	110	1234	110	-2.1
M1Ci				0	<i>.</i>			c	0	<u> </u>			<i>.</i>		c						
01	354	132.4	0.37	0.0813	0.0046	2.4660	0.1800	0.2167	0.0038	0.0682	0.0057	0.11	1264	20	1261	53	1237	100	1237	100	-2.2
02	195	96.8	0.50	0.0811	0.0046	2.4170	0.1800	0.2146	0.0036	0.0697	0.0059	0.15	1253	19	1250	54	1229	110	1229	110	-2.0
03	510	153.5	0.30	0.0793	0.0044	2.3000	0.1700	0.2076	0.0033	0.0650	0.0054	0.06	1216	18	1212	52	1180	110	1180	110	-3.1
04	601.8	278.6	0.46	0.0814	0.0046	2.4970	0.1900	0.2167	0.0040	0.0681	0.0056	0.07	1265	21	1271	54	1229	110	1229	110	-2.9
05	153.6	75.1	0.49	0.0812	0.0048	2.4250	0.1800	0.2169	0.0042	0.0625	0.0062	0.27	1265	22	1248	55	1226	110	1226	110	-3.2
06	169.2	70	0.41	0.0812	0.0051	2.4670	0.2000	0.2165	0.0037	0.0683	0.0062	0.01	1263	20	1260	57	1227	120	1227	120	-3.0
07	664	294	0.44	0.0815	0.0046	2.4870	0.1900	0.2190	0.0038	0.0650	0.0054	0.16	1276	20	1268	54	1231	110	1231	110	-3.7
08	1468	932	0.63	0.0803	0.0044	2.4000	0.1800	0.2113	0.0033	0.0645	0.0053	0.06	1236	18	1242	52	1203	110	1203	110	-2.7
09	177.8	79.8	0.45	0.0810	0.0047	2.6630	0.2000	0.2399	0.0046	0.0676	0.0058	0.08	1386	24	1317	55	1222	110	1222	110	-13.4
10	1113	373.5	0.34	0.0741	0.0042	1.0340	0.0780	0.1021	0.0021	0.0234	0.0025	0.21	627	12	721	39	1042	120	1042	120	39.8

							Relacio	nes corregida	S ²							Edades	corregidas (Ma	a)			
	U (ppm)¹	Th (ppm)¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2S	²⁰⁷ Pb/ ²³⁵ U	±2S	²⁰⁷ Pb/ ²⁰⁶ Pb	±2S	Mejor edad	±2S	Disc%
11	1160	203.1	0.18	0.0780	0.0043	1.8970	0.1500	0.1749	0.0043	0.0577	0.0050	0.87	1039	24	1079	51	1144	110	1144	110	9.2
12	656	318	0.48	0.0781	0.0043	2.1760	0.1600	0.2004	0.0033	0.0604	0.0050	0.04	1177	18	1173	51	1148	110	1148	110	-2.5
13	395.1	173.3	0.44	0.0807	0.0046	2.4010	0.1800	0.2144	0.0035	0.0631	0.0052	0.10	1252	19	1242	54	1222	100	1222	100	-2.5
14	156	65.6	0.42	0.0814	0.0050	2.4600	0.2000	0.2164	0.0036	0.0688	0.0063	0.41	1263	19	1258	56	1220	120	1220	120	-3.5
15	631	218	0.35	0.0792	0.0044	2.0570	0.1500	0.1910	0.0036	0.0554	0.0046	0.68	1129	20	1137	54	1182	120	1182	120	4.5
16	115.1	44.8	0.39	0.0820	0.0050	2.4520	0.1900	0.2163	0.0039	0.0648	0.0055	0.08	1262	20	1256	57	1255	120	1255	120	-0.6
17	176.3	69.2	0.39	0.0823	0.0052	2.0890	0.1700	0.1817	0.0035	0.0582	0.0059	0.18	1076	19	1143	55	1241	130	1241	130	13.3
18	1304	860	0.66	0.0793	0.0043	2.1270	0.1600	0.1957	0.0031	0.0587	0.0048	0.01	1152	17	1158	51	1177	110	1177	110	2.1
19	228.6	102.2	0.45	0.0814	0.0046	2.4720	0.1900	0.2169	0.0039	0.0662	0.0064	0.66	1265	21	1263	56	1226	110	1226	110	-3.2
20	174	67.9	0.39	0.0844	0.0055	2.6190	0.2100	0.2248	0.0036	0.0648	0.0058	0.05	1307	19	1305	60	1293	130	1293	130	-1.1
21	703	352	0.50	0.0799	0.0044	2.3380	0.1700	0.2099	0.0033	0.0581	0.0048	0.08	1228	18	1225	50	1191	110	1191	110	-3.1
22	162.8	56	0.34	0.0796	0.0049	2.1560	0.1700	0.1955	0.0035	0.0580	0.0052	0.45	1151	19	1165	55	1188	120	1188	120	3.1
23	126.4	56.4	0.45	0.0815	0.0049	2.4230	0.1900	0.2148	0.0039	0.0591	0.0053	0.08	1254	21	1252	51	1234	110	1234	110	-1.6
24	101	51.9	0.51	0.0802	0.0048	2.2130	0.1700	0.2011	0.0039	0.0439	0.0040	0.34	1181	21	1183	55	1201	120	1201	120	1.7
25	187	79	0.42	0.0825	0.0051	2.4920	0.2000	0.2188	0.0043	0.0608	0.0056	0.29	1279	24	1269	57	1252	120	1252	120	-2.2
26	298	151	0.51	0.0804	0.0046	2.4110	0.1800	0.2136	0.0039	0.0565	0.0048	0.31	1248	21	1245	54	1203	110	1203	110	-3.7
27	138.1	50.93	0.37	0.0828	0.0053	2.4340	0.2000	0.2109	0.0040	0.0656	0.0064	0.25	1233	21	1251	60	1254	130	1254	130	1.7
28	794	130	0.16	0.0804	0.0047	2.2100	0.1700	0.2006	0.0037	0.0507	0.0045	0.63	1178	20	1184	55	1204	110	1204	110	2.2
29	200.1	101.9	0.51	0.0868	0.0053	2.4650	0.1900	0.2052	0.0036	0.0554	0.0060	0.05	1203	19	1259	56	1344	120	1344	120	10.5
30	221.6	75.6	0.34	0.0777	0.0047	2.1940	0.1700	0.2009	0.0035	0.0558	0.0050	0.10	1180	19	1178	54	1145	130	1145	130	-3.1
31	139.5	56.42	0.40	0.0845	0.0056	2.4100	0.2000	0.2071	0.0036	0.0596	0.0053	0.16	1213	19	1241	57	1290	120	1290	120	6.0
32	808	254	0.31	0.0780	0.0044	2.0900	0.1600	0.1942	0.0031	0.0528	0.0044	0.20	1144	17	1145	51	1144	110	1144	110	0.0
33	237	77.7	0.33	0.0826	0.0050	2.2580	0.1800	0.2023	0.0047	0.0585	0.0050	0.39	1188	25	1198	55	1254	120	1254	120	5.3
34	485	214.9	0.44	0.0804	0.0044	2.5060	0.1900	0.2244	0.0037	0.0605	0.0050	0.31	1305	20	1273	54	1208	100	1208	100	-8.0
35	642	331	0.52	0.0802	0.0045	2.3940	0.1800	0.2122	0.0037	0.0580	0.0047	0.40	1240	19	1240	53	1200	110	1200	110	-3.4
36	371	186.5	0.50	0.0818	0.0046	2.3010	0.1700	0.2072	0.0034	0.0577	0.0048	0.29	1214	18	1212	53	1238	110	1238	110	2.0
37	638	368	0.58	0.0836	0.0050	2.5910	0.2100	0.2234	0.0042	0.0649	0.0054	0.22	1300	22	1297	58	1279	120	1279	120	-1.6
38	237.9	72.8	0.31	0.0889	0.0053	2.9680	0.2400	0.2453	0.0051	0.0770	0.0077	0.58	1414	26	1398	60	1398	110	1398	110	-1.1
39	898	291.7	0.32	0.0769	0.0043	2.1190	0.1600	0.1962	0.0032	0.0586	0.0049	0.24	1155	17	1154	52	1116	110	1116	110	-3.5
39	одо	291.7	0.32	0.0/09	0.0043	2.1190	0.1000	0.1962	0.0032	0.0500	0.0049	0.24	1155	1/	1154	52	1110	110	1110	110	-3.5

							Relacio	nes corregida	S ²							Edades	corregidas (Ma	ı)			
	U (ppm)¹	Th (ppm)¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2S	²⁰⁷ Pb/ ²³⁵ U	±2S	²⁰⁷ Pb/ ²⁰⁶ Pb	±25	Mejor edad	±25	Disc%
40	161.2	75.2	0.47	0.0813	0.0046	2.3860	0.1800	0.2127	0.0040	0.0632	0.0055	0.23	1243	21	1238	54	1224	110	1224	110	-1.6
41	131.8	49.3	0.37	0.0855	0.0054	2.5060	0.2000	0.2153	0.0045	0.0664	0.0063	0.30	1257	24	1283	59	1318	130	1318	130	4.6
42	1169	96.7	0.08	0.0788	0.0044	2.2350	0.1600	0.2082	0.0034	0.0613	0.0051	0.04	1219	18	1192	51	1164	110	1164	110	-4.8
43	346	161.2	0.47	0.0803	0.0048	2.3640	0.1800	0.2125	0.0039	0.0601	0.0052	0.18	1242	21	1232	53	1200	120	1200	120	-3.5
44	141.3	65.91	0.47	0.0812	0.0048	2.3700	0.1800	0.2120	0.0038	0.0654	0.0056	0.08	1239	20	1235	56	1217	120	1217	120	-1.8
45	862	283	0.33	0.0791	0.0043	2.1870	0.1600	0.2001	0.0031	0.0589	0.0048	0.37	1176	17	1177	51	1173	110	1173	110	-0.3
46	196.4	75.6	0.38	0.0827	0.0047	2.5040	0.1900	0.2187	0.0038	0.0682	0.0059	0.30	1275	20	1275	58	1263	120	1263	120	-1.0
47	570	161.3	0.28	0.0783	0.0043	2.2130	0.1600	0.2023	0.0036	0.0644	0.0053	0.18	1187	20	1185	52	1151	110	1151	110	-3.1
48	129.5	51.2	0.40	0.0811	0.0050	2.4240	0.1900	0.2143	0.0037	0.0652	0.0058	0.00	1252	20	1248	56	1226	130	1226	130	-2.1
49	188.4	94.7	0.50	0.0811	0.0045	2.3880	0.1800	0.2113	0.0036	0.0643	0.0054	0.17	1235	19	1238	53	1227	110	1227	110	-0.7
50	181	67.16	0.37	0.0785	0.0049	2.2000	0.1800	0.1998	0.0038	0.0612	0.0058	0.44	1174	20	1179	57	1169	130	1169	130	-0.4
51	465	200.9	0.43	0.0833	0.0046	2.4510	0.1800	0.2108	0.0034	0.0657	0.0054	0.17	1233	18	1259	51	1273	110	1273	110	3.1
52	170.2	87.3	0.51	0.0811	0.0047	2.3380	0.1800	0.2027	0.0034	0.0589	0.0051	0.01	1190	18	1223	54	1217	120	1217	120	2.2
53	530	330	0.62	0.0822	0.0045	2.3140	0.1700	0.2020	0.0035	0.0587	0.0049	0.49	1186	19	1218	50	1247	110	1247	110	4.9
54	183.6	85.6	0.47	0.0809	0.0047	2.3250	0.1800	0.2038	0.0037	0.0608	0.0051	0.41	1196	20	1219	54	1212	120	1212	120	1.3
55	225	73.7	0.33	0.0893	0.0060	2.5900	0.2200	0.2030	0.0044	0.0741	0.0080	0.57	1191	23	1293	61	1396	120	1396	120	14.7
56	975	127	0.13	0.0862	0.0047	2.3600	0.1700	0.1952	0.0032	0.0569	0.0048	0.28	1150	17	1231	52	1342	110	1342	110	14.3
57	249	113	0.45	0.0802	0.0050	2.3490	0.1800	0.2107	0.0038	0.0577	0.0049	0.02	1232	20	1230	59	1193	120	1193	120	-3.3
58_1	153.7	60.6	0.39	0.0790	0.0047	2.2890	0.1700	0.2062	0.0037	0.0607	0.0053	0.17	1208	20	1210	56	1163	120	1163	120	-3.9
59_1	353	130.1	0.37	0.0803	0.0046	2.3980	0.1800	0.2122	0.0035	0.0637	0.0051	0.15	1240	19	1241	53	1213	110	1213	110	-2.3
60	422	293	0.69	0.0815	0.0046	2.4180	0.1800	0.2111	0.0043	0.0635	0.0054	0.27	1235	23	1247	54	1235	110	1235	110	0.0
61	541	256	0.47	0.0797	0.0044	2.2510	0.1700	0.2034	0.0035	0.0567	0.0047	0.34	1193	19	1196	52	1187	110	1187	110	-0.5
62	131.9	51.3	0.39	0.0816	0.0050	2.3940	0.1900	0.2121	0.0040	0.0644	0.0055	0.14	1240	21	1238	56	1223	120	1223	120	-1.4
63	254	123.3	0.49	0.0812	0.0046	2.3480	0.1800	0.2079	0.0035	0.0644	0.0053	0.25	1218	19	1226	53	1220	110	1220	110	0.2

							Relacio	nes corregida	1S ²							Edades	corregidas (Ma	a)			
	U	Th	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±25	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±25	²⁰⁸ Pb/ ²³² Th	±25	Rho	²⁰⁶ Pb/ ²³⁸ U	±2S	²⁰⁷ Pb/ ²³⁵ U	±25	²⁰⁷ Pb/ ²⁰⁶ Pb	±2S	Mejor	±2S	Disc%
MaCh	(ppm)¹	(ppm)¹			abs				abs		abs								edad		
01	1220	314	0.26	0.0781	0.0025	2.0840	0.0580	0.1943	0.0030	0.0585	0.0016	0.21	1145	16	1143	19	1148	64	1148	64	0.3
01b	885	238.3	0.27	, 0.0788	0.0026	2.2170	0.0680	0.2031	0.0035	0.0611	0.0019	0.60	1192	19	1186	22	1165	64	1165	64	-2.3
02	421	162	0.38	0.0808	0.0029	2.3980	0.0850	0.2140	0.0036	0.0653	0.0024	0.54	1250	19	1246	23	1224	63	1224	63	-2.1
03	842	197	0.23	0.0761	0.0024	1.9870	0.0530	0.1885	0.0031	0.0590	0.0016	0.47	1113	17	1111	18	1093	62	1093	62	-1.8
04	718	157.7	0.22	0.0798	0.0025	2.2190	0.0620	0.2027	0.0032	0.0614	0.0023	0.21	1190	17	1187	20	1188	63	1188	63	-0.2
05	1073	389	0.36	0.0739	0.0025	1.1360	0.0330	0.1121	0.0023	0.0278	0.0010	0.39	685	13	770	16	1035	69	1035	69	33.8
06	613	118.6	0.19	0.0715	0.0028	1.5170	0.0510	0.1531	0.0026	0.0462	0.0020	0.02	918	15	937	21	965	80	965	80	4.8
07	124.3	42.7	0.34	0.0805	0.0046	2.2800	0.1100	0.2065	0.0042	0.0653	0.0033	0.19	1210	23	1202	36	1215	110	1215	110	0.4
07b	87.9	30.62	0.35	0.0827	0.0061	2.5700	0.1700	0.2245	0.0064	0.0762	0.0059	0.02	1305	34	1302	43	1240	150	1240	150	-5.2
08	468	400	0.85	0.0787	0.0026	2.1810	0.0640	0.2008	0.0031	0.0577	0.0014	0.17	1179	17	1176	20	1161	65	1161	65	-1.6
09	417	154.8	0.37	0.0789	0.0031	2.2790	0.0830	0.2087	0.0037	0.0613	0.0025	0.19	1222	20	1210	24	1180	70	1180	70	-3.6
10	368.7	161.6	0.44	0.0792	0.0026	2.2260	0.0640	0.2039	0.0033	0.0606	0.0019	0.10	1196	18	1193	18	1172	66	1172	66	-2.1
11	158.9	70.2	0.44	0.0812	0.0029	2.3960	0.0830	0.2135	0.0037	0.0643	0.0020	0.30	1247	20	1239	25	1227	75	1227	75	-1.6
12	1558	625.2	0.40	0.0780	0.0029	1.8420	0.0530	0.1701	0.0030	0.0651	0.0017	0.19	1013	16	1060	19	1144	74	1144	74	11.5
13	988	471.5	0.48	0.0796	0.0035	2.0950	0.0840	0.1950	0.0033	0.0553	0.0020	0.23	1149	18	1146	28	1181	87	1181	87	2.8
14	1546	1215	0.79	0.0790	0.0024	1.8370	0.0480	0.1700	0.0028	0.0484	0.0012	0.27	1012	15	1059	17	1170	60	1170	60	13.5
15	892	448	0.50	0.0825	0.0025	2.4530	0.0660	0.2161	0.0034	0.0641	0.0015	0.47	1261	18	1258	19	1254	60	1254	60	-0.6
16	272	82.4	0.30	0.0834	0.0028	2.5520	0.0840	0.2208	0.0044	0.0658	0.0023	0.70	1286	23	1286	24	1275	65	1275	65	-0.9
17	161.9	174.7	1.08	0.0830	0.0033	2.7370	0.1000	0.2381	0.0038	0.0747	0.0027	0.08	1377	20	1337	28	1279	70	1279	70	-7.6
18	225.8	79.3	0.35	0.0810	0.0026	2.5290	0.0930	0.2214	0.0048	0.0691	0.0025	0.72	1289	25	1278	26	1217	64	1217	64	-5.9
19	656	147.5	0.22	0.0820	0.0029	2.3610	0.0740	0.2107	0.0035	0.0628	0.0025	0.02	1232	19	1230	22	1242	68	1242	68	0.8
20	371.3	126.5	0.34	0.0834	0.0030	2.3370	0.0720	0.2069	0.0035	0.0627	0.0025	0.03	1213	19	1227	20	1276	70	1276	70	5.0
21	1012	265	0.26	0.0794	0.0025	1.9330	0.0500	0.1799	0.0032	0.0603	0.0020	0.19	1066	17	1092	17	1179	63	1179	63	9.6
21b	215	91	0.42	0.0815	0.0040	2.3770	0.1100	0.2129	0.0042	0.0632	0.0029	0.24	1244	23	1241	35	1225	95	1225	95	-1.6
22	122	20.2	0.17	0.0788	0.0050	2.2400	0.1300	0.2096	0.0045	0.0950	0.0130	0.25	1227	24	1192	42	1160	130	1160	130	-5.8
23	1441	109.1	0.08	0.0763	0.0027	1.5660	0.0490	0.1492	0.0026	0.0583	0.0026	0.18	896	15	956	19	1099	70	1099	70	18.5
24	313	78.9	0.25	0.0726	0.0036	1.4900	0.0720	0.1479	0.0031	0.0477	0.0020	0.18	889	17	925	30	1018	85	1018	85	12.7

						Relacione	s corregidas	2							I	Edades (corregidas (Ma)			
	U (ppm)¹	Th (ppm)¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2S	²⁰⁷ Pb/ ²³⁵ U	±2S	²⁰⁷ Pb/ ²⁰⁶ Pb	±2S	Mejor edad	±2S	Disc%
25	627.6	306.1	0.49	0.0815	0.0030	2.2990	0.0730	0.2090	0.0037	0.0612	0.0026	0.30	1224	20	1212	22	1229	73	1229	73	0.4
25b	297.8	165.4	0.56	0.0814	0.0034	2.4800	0.1100	0.2183	0.0044	0.0667	0.0040	0.53	1273	24	1272	28	1225	82	1225	82	-3.9
25C	712	391	0.55	0.0813	0.0030	2.1530	0.0780	0.1969	0.0041	0.0605	0.0019	0.25	1159	22	1165	25	1226	74	1226	74	5.5
26	472	264.6	0.56	0.0806	0.0028	2.3790	0.0760	0.2130	0.0039	0.0643	0.0022	0.52	1245	21	1236	23	1209	67	1209	67	-3.0
27	255	209	0.82	0.0804	0.0028	2.2360	0.0670	0.2022	0.0039	0.0606	0.0018	0.08	1187	21	1192	21	1202	69	1202	69	1.2
28	284	185.2	0.65	0.0794	0.0035	2.3090	0.1000	0.2095	0.0041	0.0633	0.0022	0.33	1226	22	1213	32	1174	86	1174	86	-4.4
29	404	211	0.52	0.0822	0.0027	2.4110	0.0670	0.2138	0.0037	0.0640	0.0019	0.24	1249	20	1245	20	1246	66	1246	66	-0.2
30	633	291	0.46	0.0836	0.0034	2.4660	0.0840	0.2142	0.0042	0.0836	0.0032	0.03	1251	22	1262	25	1280	79	1280	79	2.3
31	123.1	54.8	0.45	0.0813	0.0037	2.4060	0.1000	0.2128	0.0042	0.0640	0.0027	0.25	1244	22	1241	30	1221	87	1221	87	-1.9
32	166.5	83.4	0.50	0.0829	0.0032	2.5990	0.1000	0.2268	0.0042	0.0690	0.0028	0.41	1318	22	1298	29	1261	75	1261	75	-4.5
33	210.6	130.3	0.62	0.0813	0.0033	2.3880	0.0840	0.2133	0.0044	0.0645	0.0027	0.07	1247	24	1243	23	1237	76	1237	76	-0.8
34	190	96.1	0.51	0.0794	0.0034	2.2480	0.0910	0.2075	0.0040	0.0629	0.0035	0.17	1215	21	1195	29	1175	86	1175	86	-3.4
35_M2_Cb	671.9	212.1	0.32	0.0804	0.0025	2.2850	0.0630	0.2055	0.0033	0.0616	0.0021	0.27	1205	18	1207	19	1205	62	1205	62	0.0
M2Cc																					
01_2	934	564	0.60	0.0811	0.0036	2.2150	0.1100	0.1939	0.0031	0.0573	0.0040	0.07	1143	17	1185	35	1221	91	1221	91	6.4
02_2	292.4	150.7	0.52	0.0843	0.0037	2.2880	0.1200	0.1947	0.0032	0.0602	0.0042	0.42	1147	17	1207	37	1301	89	1301	89	11.9
03_2	1550	364	0.23	0.0721	0.0033	0.9450	0.0480	0.0940	0.0020	0.0359	0.0030	0.18	579	12	675	25	1003	100	1003	100	42.3
04_2	318	96.5	0.30	0.0860	0.0041	2.3050	0.1300	0.1925	0.0033	0.0649	0.0062	0.31	1135	18	1212	39	1328	91	1328	91	14.5
05_2	193	74	0.38	0.0829	0.0034	2.3120	0.1100	0.1998	0.0032	0.0660	0.0046	0.28	1174	17	1215	34	1262	79	1262	79	7.0
06_2	433.6	199.7	0.46	0.0800	0.0030	2.2590	0.1000	0.2007	0.0031	0.0602	0.0040	0.30	1179	17	1199	33	1200	81	1200	81	1.8
07_2	98.5	43.7	0.44	0.0865	0.0042	2.6070	0.1400	0.2151	0.0039	0.0708	0.0053	0.13	1256	20	1304	41	1336	94	1336	94	6.0
08_2	1268	248	0.20	0.0792	0.0030	1.9920	0.0910	0.1794	0.0026	0.0567	0.0038	0.22	1064	14	1112	31	1174	76	1174	76	9.4
09_2	717	142.8	0.20	0.0822	0.0031	2.1450	0.0990	0.1848	0.0027	0.0611	0.0047	0.60	1093	15	1163	32	1248	74	1248	74	12.4
10_2	275	90.5	0.33	0.0808	0.0034	2.3410	0.1100	0.2071	0.0035	0.0692	0.0050	0.13	1213	19	1224	34	1228	83	1228	83	1.2
11_2	180.5	57.4	0.32	0.0827	0.0042	2.4210	0.1400	0.2110	0.0036	0.0662	0.0050	0.07	1234	19	1247	43	1254	100	1254	100	1.6
12_2	246	70.8	0.29	0.0854	0.0039	2.3530	0.1300	0.1964	0.0043	0.0710	0.0053	0.58	1156	23	1228	40	1321	90	1321	90	12.5
13_2	125.2	46.14	0.37	0.0855	0.0043	2.3300	0.1400	0.1963	0.0041	0.0638	0.0057	0.61	1155	22	1220	44	1316	99	1316	99	12.2
14_2	109.3	41.4	0.38	0.0794	0.0043	2.4310	0.1400	0.2176	0.0040	0.0649	0.0055	0.31	1269	21	1249	43	1189	100	1189	100	-6.7

							Relacio	nes corregida	S ²							Edades	corregidas (Ma	i)			
	U (ppm)¹	Th (ppm)¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2S	²⁰⁷ Pb/ ²³⁵ U	±2S	²⁰⁷ Pb/ ²⁰⁶ Pb	±2S	Mejor edad	±2S	Disc%
15_2	1121	301	0.27	0.0794	0.0034	1.3220	0.0670	0.1188	0.0020	0.0446	0.0030	0.47	724	12	855	29	1192	76	1192	76	39.3
16_2	228.5	97.6	0.43	0.0844	0.0036	2.5930	0.1300	0.2215	0.0037	0.0683	0.0048	0.11	1290	20	1297	36	1294	83	1294	83	0.3
17_2	175	88	0.50	0.0816	0.0041	2.4380	0.1400	0.2185	0.0040	0.0695	0.0051	0.44	1274	21	1259	43	1226	97	1226	97	-3.9
18_2	152.6	38.6	0.25	0.0819	0.0059	2.3300	0.1700	0.2030	0.0041	0.0711	0.0062	0.06	1191	22	1218	52	1230	140	1230	140	3.2
19_2	132	58.1	0.44	0.0839	0.0053	2.3690	0.1400	0.2070	0.0042	0.0649	0.0052	0.03	1212	23	1231	43	1270	120	1270	120	4.6
20_2	1154	242	0.21	0.0770	0.0032	1.5190	0.0740	0.1414	0.0026	0.0428	0.0029	0.42	852	14	938	30	1127	88	1127	88	24.4
21_2	772	259.5	0.34	0.0776	0.0037	1.7670	0.0960	0.1623	0.0038	0.0509	0.0036	0.32	970	21	1032	36	1147	89	1147	89	15.4
22_2	1102	207.5	0.19	0.0817	0.0040	1.9560	0.1100	0.1700	0.0030	0.0649	0.0062	0.21	1012	17	1100	36	1253	84	1253	84	19.2
23_2	176	68.6	0.39	0.0829	0.0040	2.3980	0.1300	0.2079	0.0035	0.0654	0.0048	0.38	1217	19	1244	42	1276	94	1276	94	4.6
24_2	640	196.7	0.31	0.0772	0.0032	1.7000	0.0830	0.1578	0.0027	0.0478	0.0034	0.32	945	15	1008	31	1123	83	1123	83	15.9
25_2	1708	602	0.35	0.0754	0.0030	0.8960	0.0430	0.0851	0.0015	0.0276	0.0021	0.52	526	9	649	23	1079	77	1079	77	51.2
26_2	187.7	56.8	0.30	0.0843	0.0039	2.2340	0.1100	0.1906	0.0033	0.0591	0.0049	0.03	1125	18	1191	36	1294	89	1294	89	13.1
27_2	683	141.5	0.21	0.0795	0.0036	1.9520	0.1100	0.1761	0.0042	0.0571	0.0045	o.68	1046	23	1098	38	1181	90	1181	90	11.4
28_2	172	108.4	0.63	0.0860	0.0037	2.7400	0.1400	0.2299	0.0038	0.0671	0.0047	0.27	1334	20	1341	38	1346	76	1346	76	0.9
29_2	155	66.2	0.43	0.0889	0.0040	2.4660	0.1400	0.2000	0.0046	0.0699	0.0050	0.36	1175	24	1260	41	1397	87	1397	87	15.9
30_2	172.3	84.9	0.49	0.0809	0.0046	2.2410	0.1300	0.1989	0.0037	0.0609	0.0044	0.46	1170	20	1192	39	1216	110	1216	110	3.8
31_2	167.3	69.2	0.41	0.0825	0.0055	2.3600	0.1600	0.2062	0.0043	0.0707	0.0059	0.08	1208	23	1240	42	1282	110	1282	110	5.8
32_2	178.9	90.6	0.51	0.0833	0.0051	2.4400	0.1600	0.2083	0.0043	0.0644	0.0047	0.05	1220	23	1250	48	1290	130	1290	130	5.4
33_2	336	198.9	0.59	0.0910	0.0049	2.6400	0.1700	0.2088	0.0044	0.0703	0.0053	0.69	1222	24	1318	51	1453	110	1453	110	15.9
34_2	533.7	255.8	0.48	0.0808	0.0037	2.1760	0.1200	0.1890	0.0035	0.0609	0.0047	0.23	1116	19	1172	39	1223	96	1223	96	8.7
35_2	374	78.21	0.21	0.0812	0.0032	2.2740	0.1100	0.2036	0.0032	0.0600	0.0043	0.29	1194	17	1207	34	1227	80	1227	80	2.7
36_2	1403	708	0.50	0.0798	0.0031	1.5820	0.0750	0.1413	0.0024	0.0426	0.0029	0.50	852	13	963	30	1189	77	1189	77	28.3
37_2	183.7	59.6	0.32	0.0808	0.0039	2.2500	0.1300	0.2011	0.0038	0.0648	0.0046	0.42	1181	20	1195	41	1207	94	1207	94	2.2
38_2	181.5	64.1	0.35	0.0809	0.0062	2.4770	0.1400	0.2279	0.0088	0.0669	0.0062	0.13	1323	46	1265	42	1210	160	1210	160	-9.3
39_2	428	209.5	0.49	0.0829	0.0032	2.4430	0.1200	0.2126	0.0034	0.0652	0.0044	0.34	1242	18	1255	35	1264	77	1264	77	1.7
40_2	3370	696	0.21	0.0738	0.0028	0.8880	0.0420	0.0865	0.0014	0.0268	0.0019	0.62	535	9	645	22	1034	77	1034	77	48.3
41_2	284	146	0.51	0.0855	0.0036	2.5860	0.1200	0.2177	0.0036	0.0662	0.0048	0.18	1270	19	1296	35	1321	80	1321	80	3.9
42_2	419.1	213	0.51	0.0807	0.0033	2.3220	0.1100	0.2058	0.0034	0.0610	0.0041	0.15	1208	18	1218	35	1224	87	1224	87	1.3
43_2	382	77.5	0.20	0.0807	0.0035	2.1060	0.1000	0.1908	0.0035	0.0639	0.0049	0.29	1126	19	1150	33	1220	79	1220	79	7.7

							Relacio	nes corregida	S ²							Edades	corregidas (Ma	a)			
	U (ppm)1	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2S	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2S	²⁰⁸ Pb/ ²³² Th	±2S	Rho	²⁰⁶ Pb/ ²³⁸ U	±2S	²⁰⁷ Pb/ ²³⁵ U	±2S	²⁰⁷ Pb/ ²⁰⁶ Pb	±2S	Mejor	±2S	Disc%
44_2	344	139.2	0.40	0.0850	0.0036	2.4430	0.1200	0.2082	0.0032	0.0668	0.0046	0.12	1219	17	1260	32	1310	82	1310	82	6.9
45_2	271	67.3	0.25	0.0851	0.0036	2.4640	0.1200	0.2127	0.0035	0.0738	0.0061	0.42	1243	19	1266	33	1310	82	1310	82	5.1
46_2	113.7	41.6	0.37	0.0823	0.0039	2.4980	0.1300	0.2171	0.0038	0.0686	0.0051	0.03	1267	20	1269	38	1240	92	1240	92	-2.2
47_2	525	105.1	0.20	0.0791	0.0034	1.6460	0.0830	0.1486	0.0025	0.0542	0.0040	0.21	893	14	987	32	1169	85	1169	85	23.6
48_2	2031	1510	0.74	0.0834	0.0034	1.2560	0.0630	0.1090	0.0023	0.0322	0.0029	0.83	667	13	825	28	1274	78	1274	78	47.6
49_2	403	99.8	0.25	0.0830	0.0035	2.2610	0.1100	0.1970	0.0033	0.0627	0.0044	0.19	1159	18	1200	33	1264	82	1264	82	8.3
50_2	256	112	0.44	0.0786	0.0033	2.1630	0.1100	0.1944	0.0032	0.0614	0.0044	0.31	1145	17	1168	35	1163	81	1163	81	1.5
51_2	148.9	70	0.47	0.0840	0.0042	2.4980	0.1300	0.2155	0.0037	0.0692	0.0050	0.13	1258	20	1270	38	1305	97	1305	97	3.6
52_1	569	285	0.50	0.0821	0.0031	2.4520	0.1100	0.2143	0.0034	0.0650	0.0044	0.50	1251	18	1258	33	1246	74	1246	74	-0.4
53_1	480	125	0.26	0.0809	0.0032	2.3600	0.1100	0.2093	0.0035	0.0664	0.0046	0.55	1225	19	1232	35	1214	77	1214	77	-0.9
54_1	1215	920	0.76	0.0782	0.0030	1.8180	0.0840	0.1664	0.0027	0.0467	0.0031	0.56	992	15	1051	30	1149	75	1149	75	13.6
55_1	357	130	0.36	0.1009	0.0039	4.1160	0.1900	0.2933	0.0049	0.0844	0.0058	0.43	1661	26	1657	38	1642	68	1642	68	-1.2
56_1	311	83	0.27	0.0777	0.0034	1.9020	0.1100	0.1759	0.0051	0.0613	0.0046	0.73	1044	28	1080	39	1134	87	1134	87	7.9
57_1	527	134.1	0.25	0.0798	0.0031	2.1920	0.1000	0.1986	0.0031	0.0599	0.0041	0.02	1168	17	1178	32	1194	80	1194	80	2.2
58_1	708	282	0.40	0.0768	0.0030	1.8380	0.0870	0.1715	0.0028	0.0446	0.0033	0.54	1021	16	1059	31	1118	82	1118	82	8.7
59_1	202.1	124.9	0.62	0.0856	0.0039	2.5960	0.1300	0.2194	0.0039	0.0667	0.0048	0.18	1278	20	1303	39	1325	88	1325	88	3.5
60_1	447	97.3	0.22	0.0813	0.0032	2.1450	0.1000	0.1882	0.0028	0.0636	0.0045	0.19	1112	15	1165	34	1251	84	1251	84	11.1
61_1	863	178.4	0.21	0.0782	0.0031	1.7580	0.0800	0.1622	0.0025	0.0558	0.0041	0.11	969	14	1030	29	1150	78	1150	78	15.7
62_1	764	165	0.22	0.0766	0.0033	1.7170	0.1000	0.1642	0.0046	0.0512	0.0042	0.81	980	25	1020	35	1106	85	1106	85	11.4
63_1	332	109.6	0.33	0.0808	0.0033	2.3480	0.1100	0.2091	0.0037	0.0646	0.0045	0.20	1224	20	1232	33	1210	79	1210	79	-1.2
64_1	738	218.8	0.30	0.0781	0.0030	1.9820	0.0920	0.1809	0.0028	0.0556	0.0038	0.28	1072	15	1109	31	1152	73	1152	73	7.0
65_1	151	68.25	0.45	0.0852	0.0042	2.4840	0.1300	0.2106	0.0038	0.0706	0.0053	0.16	1232	20	1269	40	1304	98	1304	98	5.5
66_1	1337	356	0.27	0.0780	0.0032	1.5910	0.0810	0.1471	0.0028	0.0478	0.0039	0.69	885	16	966	32	1143	81	1143	81	22.6
67_1	715	283	0.40	0.0784	0.0031	1.9320	0.0940	0.1752	0.0028	0.0511	0.0038	0.57	1041	15	1091	33	1152	79	1152	79	9.7
68_1	1015	174	0.17	0.0762	0.0030	1.5670	0.0720	0.1467	0.0030	0.0464	0.0034	0.62	883	17	957	29	1098	78	1098	78	19.6
69_1	2284	414	0.18	0.0753	0.0031	0.8730	0.0430	0.0828	0.0015	0.0307	0.0021	0.58	513	9	639	24	1072	82	1072	82	52.2
70_1	155.6	67.1	0.43	0.0871	0.0042	2.5700	0.1400	0.2111	0.0036	0.0706	0.0052	0.09	1234	19	1289	40	1357	95	1357	95	9.1
71_1	298.5	82.7	0.28	0.0830	0.0036	2.3370	0.1100	0.2021	0.0033	0.0669	0.0048	0.04	1187	18	1222	35	1261	83	1261	83	5.9
72_1	685	223	0.33	0.0744	0.0031	1.5950	0.0820	0.1541	0.0030	0.0480	0.0034	0.54	924	17	967	32	1054	80	1054	80	12.3

							Relacio	nes corregida	S ²						Edades	corregidas (Ma)				
	U (ppm)¹	Th (ppm)¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2S	²⁰⁷ Pb/ ²³⁵ U	±2S	²⁰⁷ Pb/ ²⁰⁶ Pb	±2S	Mejor edad	±2S	Disc%			
73_1	290	70.3	0.24	0.0834	0.0035	2.2460	0.1100	0.1930	0.0032	0.0727	0.0054	0.16	1138	18	1194	35	1271	82	1271	82	10.5
74_1	166.8	57.6	0.35	0.0867	0.0046	2.7300	0.1600	0.2283	0.0045	0.0683	0.0051	0.39	1326	23	1340	45	1361	95	1361	95	2.6
75_1	119.3	42.3	0.35	0.0799	0.0065	2.3300	0.1900	0.2085	0.0046	0.0686	0.0062	0.08	1221	24	1217	58	1160	160	1160	160	-5.3
76_1	149	60.1	0.40	0.0816	0.0038	2.4250	0.1300	0.2135	0.0036	0.0634	0.0046	0.12	1247	19	1248	38	1232	90	1232	90	-1.2
77_1	269	101.2	0.38	0.0801	0.0034	2.3630	0.1200	0.2093	0.0033	0.0683	0.0051	0.28	1227	16	1230	37	1203	89	1203	89	-2.0
78_1	541.9	162	0.30	0.0815	0.0032	2.2880	0.1100	0.2022	0.0034	0.0662	0.0047	0.48	1187	18	1211	36	1236	79	1236	79	4.0
79_1	218.4	91.7	0.42	0.0797	0.0032	2.3120	0.1100	0.2081	0.0034	0.0601	0.0045	0.13	1219	18	1216	33	1186	78	1186	78	-2.8
80_1	1850	454	0.25	0.0715	0.0028	0.9460	0.0490	0.0942	0.0024	0.0299	0.0022	0.83	580	14	675	26	966	80	966	80	40.0
81_1	2160	424	0.20	0.0728	0.0029	0.9170	0.0470	0.0914	0.0026	0.0284	0.0021	0.83	564	16	664	27	1006	81	1006	81	43.9
82_1	981	249.3	0.25	0.0784	0.0030	1.5770	0.0790	0.1428	0.0032	0.0510	0.0036	o.68	860	18	961	31	1166	90	1166	90	26.2
83_1	391	108.8	0.28	0.0783	0.0035	2.1760	0.1000	0.1976	0.0037	0.0631	0.0047	0.22	1162	20	1173	32	1149	88	1149	88	-1.1
M3Ce																					
01	350	100.3	0.29	0.0856	0.0040	2.6300	0.1200	0.2224	0.0049	0.0807	0.0077	0.58	1295	26	1309	33	1324	89	1324	89	2.2
02	694	100.8	0.15	0.0900	0.0032	2.0770	0.0670	0.1668	0.0027	0.1144	0.0055	0.07	995	15	1141	22	1422	69	1422	69	30.0
03	718	66.1	0.09	0.0731	0.0025	1.7570	0.0560	0.1727	0.0029	0.0625	0.0031	0.17	1027	16	1029	21	1013	69	1013	69	-1.4
04	1110	199.8	0.18	0.0805	0.0028	1.3160	0.0430	0.1196	0.0024	0.0511	0.0021	0.55	728	14	853	19	1205	70	1205	70	39.6
05	1285	206.4	0.16	0.0737	0.0026	1.4350	0.0440	0.1410	0.0024	0.0483	0.0016	0.44	850	14	903	18	1031	70	1031	70	17.5
06	1303	208	0.16	0.0817	0.0032	0.8040	0.0270	0.0712	0.0015	0.0384	0.0021	0.39	443	9	599	15	1235	77	1235	77	64.1
07	542	172	0.32	0.0841	0.0028	2.3230	0.0650	0.2012	0.0034	0.0616	0.0016	0.31	1183	17	1219	20	1302	58	1302	58	9.1
08	683	182.7	0.27	0.0845	0.0033	1.8990	0.0680	0.1635	0.0028	0.0559	0.0025	0.05	976	16	1080	24	1298	76	1298	76	24.8
09	191.6	71.5	0.37	0.0814	0.0030	2.4610	0.0760	0.2166	0.0041	0.0627	0.0026	0.20	1264	22	1260	22	1240	64	1240	64	-1.9
10	326	165	0.51	0.0817	0.0028	2.4200	0.0780	0.2136	0.0040	0.0632	0.0022	0.49	1248	21	1250	22	1232	69	1232	69	-1.3
11	709	237.2	0.33	0.0837	0.0025	2.2430	0.0600	0.1960	0.0032	0.0620	0.0018	0.09	1154	17	1194	19	1283	59	1283	59	10.1
12	1748	234	0.13	0.0737	0.0024	0.7760	0.0260	0.0766	0.0022	0.0310	0.0017	0.83	476	13	583	15	1028	66	1028	66	53.7
13	548	111.5	0.20	0.0717	0.0024	1.6960	0.0490	0.1708	0.0030	0.0509	0.0022	0.34	1016	16	1007	18	974	67	974	67	-4.4
14	1179	326.9	0.28	0.0780	0.0025	1.5110	0.0420	0.1394	0.0024	0.0364	0.0014	0.25	841	13	935	17	1152	69	1152	69	27.0
15	553	93.7	0.17	0.0871	0.0028	2.2470	0.0650	0.1871	0.0031	0.0869	0.0029	0.37	1106	17	1195	20	1359	63	1359	63	18.6
16	437	114.5	0.26	0.0817	0.0032	2.4300	0.0870	0.2147	0.0049	0.0702	0.0024	0.35	1254	26	1251	25	1235	76	1235	76	-1.5

							Relacio	nes corregida	S ²						Edades	corregidas (Ma)				
	U (ppm)¹	Th (ppm)¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2S	²⁰⁷ Pb/ ²³⁵ U	±2S	²⁰⁷ Pb/ ²⁰⁶ Pb	±2S	Mejor edad	±2S	Disc%
17	2060	232	0.11	0.0742	0.0025	0.7100	0.0250	0.0686	0.0016	0.0436	0.0016	0.72	428	10	544	15	1047	67	1047	67	59.1
18	1786	456.2	0.26	0.0796	0.0025	0.6860	0.0270	0.0632	0.0021	0.0162	0.0007	0.92	395	13	533	17	1186	63	1186	63	66.7
19	400.3	137.8	0.34	0.0827	0.0029	2.3720	0.0800	0.2101	0.0037	0.0681	0.0025	0.35	1229	20	1234	24	1259	69	1259	69	2.4
20	820	214	0.26	0.0707	0.0030	0.9360	0.0380	0.0967	0.0031	0.0330	0.0015	0.46	595	18	671	20	943	88	943	88	36.9
21	1399	444	0.32	0.0781	0.0027	1.1380	0.0340	0.1060	0.0019	0.0330	0.0013	0.09	649	11	771	16	1146	68	1146	68	43.3
22	2720	169	0.06	0.0763	0.0026	0.9160	0.0310	0.0876	0.0017	0.0900	0.0120	0.81	541	10	660	17	1099	69	1099	69	50.7
23	1560	317	0.20	0.0770	0.0026	1.1270	0.0390	0.1064	0.0028	0.0399	0.0012	o.86	652	16	766	19	1119	67	1119	67	41.7
24	278.4	163.9	0.59	0.0981	0.0032	3.3710	0.1000	0.2464	0.0043	0.0701	0.0021	0.27	1420	22	1499	22	1584	60	1584	60	10.4
25	680	138	0.20	0.0771	0.0026	2.0520	0.0620	0.1923	0.0034	0.0649	0.0019	0.39	1134	18	1132	21	1119	67	1119	67	-1.3
26	729	181.2	0.25	0.0779	0.0026	1.9240	0.0590	0.1824	0.0035	0.0574	0.0029	0.61	1080	19	1089	20	1142	67	1142	67	5.4
27	804	140	0.17	0.0809	0.0029	2.3950	0.0720	0.2140	0.0035	0.0651	0.0030	0.01	1250	19	1241	22	1216	70	1216	70	-2.8
28	316.8	99.1	0.31	0.0829	0.0030	2.4370	0.0710	0.2146	0.0038	0.0648	0.0024	0.06	1253	20	1256	22	1271	67	1271	67	1.4
29	373	116.6	0.31	0.0781	0.0031	2.0270	0.0840	0.1877	0.0044	0.0606	0.0023	0.50	1109	24	1124	28	1147	81	1147	81	3.3
30	513.6	77.37	0.15	0.0803	0.0026	2.3580	0.0720	0.2107	0.0036	0.0673	0.0028	0.34	1233	19	1230	22	1201	64	1201	64	-2.6
M3Cg																					
01	305.9	145	0.47	0.1013	0.0048	4.1000	0.1700	0.2930	0.0071	0.1018	0.0037	0.28	1656	36	1653	35	1645	90	1645	90	-0.7
02	434.6	47.3	0.11	0.0778	0.0027	1.9920	0.0630	0.1850	0.0033	0.0765	0.0027	0.36	1094	18	1112	21	1137	67	1137	67	3.8
03	444	70.1	0.16	0.0836	0.0037	2.2300	0.0880	0.1927	0.0041	0.0860	0.0037	0.13	1136	22	1190	28	1293	79	1293	79	12.1
04	363	45.7	0.13	0.0883	0.0032	2.1920	0.0720	0.1798	0.0032	0.0789	0.0044	0.20	1066	17	1177	23	1389	68	1389	68	23.3
05	942	108.3	0.11	0.0867	0.0029	2.6300	0.0720	0.2201	0.0039	0.0738	0.0033	0.03	1282	21	1309	20	1351	66	1351	66	5.1
06	621	141.3	0.23	0.0867	0.0031	2.6130	0.0760	0.2200	0.0039	0.0781	0.0036	0.28	1282	21	1304	21	1350	68	1350	68	5.0
07	335	137.7	0.41	0.0912	0.0031	3.0580	0.1100	0.2465	0.0051	0.0819	0.0031	0.48	1420	26	1421	27	1448	66	1448	66	1.9
08	516	79.1	0.15	0.0842	0.0029	2.3400	0.0680	0.2048	0.0033	0.0834	0.0024	0.03	1201	18	1229	18	1299	62	1299	62	7.6
09	774	78.81	0.10	0.0739	0.0024	1.7660	0.0490	0.1728	0.0027	0.0541	0.0020	0.12	1027	15	1033	18	1037	64	1037	64	0.9
10	240	154	0.64	0.1405	0.0047	5.9830	0.1700	0.3071	0.0053	0.1228	0.0037	0.10	1726	26	1972	24	2235	56	2235	56	22.8
11	433	400	0.92	0.1054	0.0036	4.3510	0.1300	0.3016	0.0058	0.0904	0.0022	0.31	1699	29	1703	24	1719	62	1719	62	1.2
12	559	51.3	0.09	0.0961	0.0034	2.3490	0.0680	0.1795	0.0030	0.1644	0.0061	0.07	1064	16	1227	21	1547	67	1547	67	31.2
13	510	316.8	0.62	0.0874	0.0035	2.7480	0.0990	0.2301	0.0043	0.0680	0.0022	0.16	1335	23	1341	27	1365	78	1365	78	2.2

							Relacio	nes corregida:	5 ²							Edades o	corregidas (Ma	ı)			
	U (ppm)¹	Th (ppm)¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2S	²⁰⁷ Pb/ ²³⁵ U	±25	²⁰⁷ Pb/ ²⁰⁶ Pb	±25	Mejor edad	±2S	Disc%
14	108.6	55.9	0.51	0.0972	0.0045	3.0500	0.1200	0.2299	0.0044	0.0738	0.0036	0.19	1334	23	1419	31	1559	85	1559	85	14.4
15	249.7	57.8	0.23	0.0983	0.0032	3.7480	0.1000	0.2779	0.0051	0.1007	0.0034	0.39	1581	26	1581	22	1595	64	1595	64	0.9
16	198.4	122.6	0.62	0.0999	0.0033	3.5760	0.1100	0.2605	0.0045	0.0836	0.0026	0.31	1492	23	1543	24	1627	66	1627	66	8.3
17	1302	67.2	0.05	0.0772	0.0026	1.8880	0.0580	0.1779	0.0032	0.0566	0.0029	0.50	1055	18	1076	20	1133	62	1133	62	6.9
18	262.7	108.2	0.41	0.1018	0.0037	3.8160	0.1200	0.2743	0.0047	0.0894	0.0028	0.31	1562	24	1596	26	1654	66	1654	66	5.6
18b	240.7	73.4	0.30	0.0940	0.0039	3.0700	0.1200	0.2348	0.0048	0.0792	0.0032	0.41	1360	25	1424	30	1505	78	1505	78	9.6
19	118.8	89.9	0.76	0.1115	0.0058	4.8700	0.2100	0.3223	0.0069	0.1048	0.0045	0.11	1801	33	1796	36	1815	97	1815	97	0.8
20	387	214	0.55	0.0997	0.0036	3.5420	0.1100	0.2601	0.0043	0.0807	0.0023	0.30	1490	22	1536	25	1614	68	1614	68	7.7
21	123.6	80.7	0.65	0.0897	0.0039	3.3400	0.1400	0.2724	0.0061	0.0785	0.0028	0.51	1553	31	1495	36	1411	83	1411	83	-10.1
22	417	40.5	0.10	0.0784	0.0028	2.1460	0.0730	0.1983	0.0037	0.0699	0.0036	0.45	1166	20	1166	25	1158	75	1158	75	-0.7
23	299	200	0.67	0.0976	0.0037	2.9050	0.1100	0.2178	0.0049	0.0856	0.0026	0.55	1270	26	1382	29	1576	71	1576	71	19.4
24	475.5	99.8	0.21	0.0985	0.0035	2.7160	0.0900	0.1997	0.0037	0.1101	0.0045	0.35	1174	20	1332	24	1592	67	1592	67	26.3
25	1088	75.4	0.07	0.0787	0.0024	1.9330	0.0520	0.1794	0.0031	0.0661	0.0022	0.74	1064	17	1094	17	1162	59	1162	59	8.5
26	709	24.5	0.03	0.0820	0.0030	2.3780	0.0820	0.2101	0.0035	0.1151	0.0063	0.28	1229	18	1235	25	1241	71	1241	71	0.9
27	1888	341.7	0.18	0.0846	0.0033	1.5180	0.0510	0.1298	0.0025	0.0585	0.0026	0.85	787	14	938	21	1303	76	1303	76	39.6
28	1457	234	0.16	0.0865	0.0028	2.7820	0.0800	0.2329	0.0045	0.0833	0.0034	0.43	1350	23	1354	19	1346	63	1346	63	-0.3
29	87.9	64.8	0.74	0.1615	0.0054	9.8400	0.2900	0.4417	0.0080	0.1188	0.0040	0.51	2367	43	2419	27	2470	56	2470	56	4.2
30	199	84.4	0.42	0.0908	0.0047	2.9810	0.1200	0.2436	0.0050	0.0708	0.0028	0.07	1405	26	1402	30	1433	99	1433	99	2.0
зор	354	171.8	0.49	0.0955	0.0037	3.5920	0.1100	0.2736	0.0047	0.0784	0.0022	0.06	1559	24	1547	25	1543	68	1543	68	-1.0
31	233	130.7	0.56	0.0989	0.0033	3.8720	0.1100	0.2837	0.0054	0.0835	0.0023	0.20	1610	27	1607	24	1612	74	1612	74	0.1
32	498	45.8	0.09	0.0886	0.0039	2.5790	0.0850	0.2126	0.0041	0.0571	0.0051	0.09	1243	22	1301	29	1390	83	1390	83	10.6
33	288	150	0.52	0.0860	0.0040	2.7420	0.1200	0.2306	0.0041	0.0592	0.0034	0.04	1338	21	1339	31	1333	90	1333	90	-0.4
34	722	55.5	0.08	0.0741	0.0024	1.8540	0.0520	0.1808	0.0028	0.0576	0.0025	0.08	1071	15	1065	19	1049	71	1049	71	-2.1
35	310.4	31.9	0.10	0.0799	0.0031	1.9060	0.0610	0.1727	0.0037	0.0670	0.0041	0.17	1027	20	1086	23	1200	81	1200	81	14.4
36	349.4	291.5	0.83	0.1007	0.0036	4.0470	0.1300	0.2930	0.0052	0.0886	0.0025	0.24	1657	26	1647	27	1633	66	1633	66	-1.5

							Relacio	nes corregida	IS ²							Edades	corregidas (Ma	ı)			
	U (ppm)¹	Th (ppm)¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±25	²⁰⁷ Pb/ ²³⁵ U	±2S	²⁰⁷ Pb/ ²⁰⁶ Pb	±25	Mejor edad	±2S	Disc%
M4Ca		<i>(</i>		0		0	0.6 -	(-		(
01	195.1	63.4	0.32	0.0830	0.0030	2.4850	0.0860	0.2163	0.0039	0.0675	0.0024	0.21	1262	20	1200	25	1262	73	1262	73	0.0
02	427	134	0.31	0.0768	0.0030	2.1000	0.0860	0.1974	0.0039	0.0556	0.0024	0.55	1101	21	1148	29	1111	80	1111	80	-4.5
03	625	189.3	0.30	0.0725	0.0023	1.7470	0.0480	0.1731	0.0029	0.0536	0.0015	0.41	1029	16	1026	18	996	64	996	64	-3.3
04	510.6	158.6	0.31	0.0776	0.0025	2.0350	0.0580	0.1907	0.0032	0.0561	0.0017	0.40	1125	17	1128	20	1134	63	1134	63	0.8
05	418	152.9	0.37	0.0731	0.0025	1.6240	0.0540	0.1617	0.0027	0.0479	0.0015	0.45	966	15	979	21	1013	69	1013	69	4.6
06	259.5	84.6	0.33	0.0821	0.0032	2.4230	0.0910	0.2143	0.0038	0.0649	0.0026	0.12	1252	20	1248	27	1242	78	1242	78	-0.8
07	554.7	88.5	0.16	0.0800	0.0031	2.3950	0.0760	0.2182	0.0038	0.0603	0.0025	0.12	1272	20	1241	23	1194	75	1194	75	-6.5
08	1372	750	0.55	0.0914	0.0027	1.7460	0.0440	0.1397	0.0023	0.0327	0.0010	0.45	843	13	1026	17	1454	57	1454	57	42.0
08b	451	139	0.31	0.0792	0.0030	2.1410	0.0770	0.1969	0.0034	0.0474	0.0024	0.58	1159	18	1162	25	1174	74	1174	74	1.3
09	579	143.9	0.25	0.0793	0.0025	1.9660	0.0540	0.1784	0.0030	0.0539	0.0018	0.22	1058	16	1103	19	1177	64	1177	64	10.1
10	742	170	0.23	0.0766	0.0025	1.7940	0.0510	0.1739	0.0028	0.0535	0.0021	0.37	1034	15	1043	19	1108	64	1108	64	6.7
11	533	212.9	0.40	0.0766	0.0026	1.8480	0.0540	0.1739	0.0028	0.0531	0.0016	0.07	1034	16	1062	19	1107	67	1107	67	6.6
12	663	117	0.18	0.0786	0.0025	2.1360	0.0590	0.1969	0.0032	0.0602	0.0017	0.38	1160	17	1162	19	1167	57	1167	57	0.6
13	174.3	53.2	0.31	0.0784	0.0030	1.9630	0.0670	0.1826	0.0033	0.0597	0.0027	0.30	1081	18	1102	23	1157	80	1157	80	6.6
14	693	108.1	0.16	0.0730	0.0029	1.7500	0.0680	0.1748	0.0035	0.0514	0.0023	0.23	1038	19	1027	25	1010	82	1010	82	-2.8
15	489	177	0.36	0.0740	0.0025	1.7560	0.0520	0.1721	0.0032	0.0506	0.0016	0.32	1024	17	1029	19	1046	72	1046	72	2.1
16	513	163.4	0.32	0.0721	0.0025	1.6660	0.0490	0.1662	0.0028	0.0493	0.0016	0.23	991	15	995	19	996	70	996	70	0.5
17	545	150	0.28	0.0771	0.0023	1.8530	0.0480	0.1740	0.0027	0.0514	0.0014	0.43	1034	15	1064	17	1121	60	1121	60	7.8
18	760	127.3	0.17	0.0807	0.0026	2.3470	0.0650	0.2112	0.0036	0.0623	0.0020	0.34	1235	19	1226	20	1211	62	1211	62	-2.0
19	660	194	0.29	0.0763	0.0024	2.0040	0.0570	0.1897	0.0031	0.0557	0.0015	0.47	1120	17	1118	20	1105	66	1105	66	-1.3
20	570	179.7	0.32	0.0786	0.0026	2.2100	0.0630	0.2033	0.0034	0.0595	0.0015	0.34	1193	18	1184	20	1159	65	1159	65	-3.0
21	283	86.8	0.31	0.0840	0.0031	2.5680	0.0850	0.2231	0.0037	0.0686	0.0024	0.27	1298	20	1295	26	1292	69	1292	69	-0.5
22	474	183	0.39	0.0708	0.0024	1.5040	0.0450	0.1532	0.0026	0.0446	0.0014	0.29	919	14	934	17	962	70	962	70	4.5
23	518	123.1	0.24	0.0739	0.0025	1.7290	0.0500	0.1692	0.0027	0.0530	0.0017	0.00	1008	15	1019	19	1035	69	1035	69	2.7
24	724	210.2	0.29	0.0767	0.0026	1.9110	0.0590	0.1822	0.0031	0.0548	0.0018	0.36	1079	17	1084	20	1109	69	1109	69	2.7
25	440	124.5	0.28	0.0781	0.0029	1.9200	0.0600	0.1769	0.0028	0.0549	0.0020	0.00	1050	15	1087	21	1153	71	1153	71	8.9
26	543	94.6	0.17	0.0767	0.0024	2.0040	0.0550	0.1894	0.0030	0.0599	0.0017	0.36	1118	16	1116	19	1109	62	1109	62	-0.8
27	345	164.1	0.48	0.0854	0.0032	2.1050	0.0650	0.1769	0.0029	0.0611	0.0020	0.08	1050	16	1150	21	1322	73	1322	73	20.6

							Relacior	nes corregida:	S ²					E	Edades o	orregidas (Ma)				
	U (ppm)¹	Th (ppm)¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2S abs	²º7Pb/²35U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²º6₽b/²³8U	±2S	²⁰⁷ Pb/ ²³⁵ U	±2S	²⁰⁷ Pb/ ²⁰⁶ Pb	±2S	Mejor edad	±2S	Disc%
28	155.6	49.1	0.32	0.0858	0.0039	2.5610	0.1000	0.2182	0.0041	0.0730	0.0030	0.08	1272	22	1293	30	1324	90	1324	90	3.9
28b	165.3	43.27	0.26	0.0992	0.0038	3.9000	0.1600	0.2852	0.0063	0.1155	0.0071	0.43	1618	32	1614	33	1608	71	1608	71	-0.6
28c	731	233.8	0.32	0.0780	0.0027	2.0550	0.0600	0.1929	0.0033	0.0584	0.0019	0.37	1137	18	1134	20	1153	64	1153	64	1.4
29	505	193.3	0.38	0.0794	0.0026	2.2410	0.0590	0.2033	0.0034	0.0609	0.0016	0.28	1193	18	1194	19	1180	65	1180	65	-1.1
30	537	159	0.30	0.0807	0.0026	2.2960	0.0730	0.2061	0.0041	0.0635	0.0018	0.64	1208	22	1212	23	1211	64	1211	64	0.2
31	617	175.3	0.28	0.0740	0.0026	1.7680	0.0600	0.1714	0.0028	0.0493	0.0017	0.31	1020	16	1033	22	1037	71	1037	71	1.6
32	711	152.1	0.21	0.0778	0.0024	1.8620	0.0500	0.1740	0.0028	0.0503	0.0015	0.52	1034	15	1067	17	1139	60	1139	60	9.2
M4Cb																					
01	370	95	0.26	0.0787	0.0028	2.1580	0.0690	0.1989	0.0034	0.0593	0.0028	0.26	1170	18	1167	22	1160	70	1160	70	-0.8
02	319	114.8	0.36	0.0812	0.0034	2.4280	0.1000	0.2157	0.0041	0.0617	0.0024	0.63	1259	22	1250	30	1220	80	1220	80	-3.2
03	1370	496	0.36	0.0802	0.0024	1.4310	0.0390	0.1284	0.0022	0.0291	0.0012	0.84	779	13	902	16	1200	59	1200	59	35.1
04	1268	505	0.40	0.0780	0.0025	1.4950	0.0400	0.1400	0.0027	0.0279	0.0010	0.59	845	15	928	16	1145	62	1145	62	26.2
05	514	102	0.20	0.0808	0.0028	2.2450	0.0710	0.2029	0.0036	0.0662	0.0026	0.44	1191	19	1195	22	1213	68	1213	68	1.8
o6	429	99.6	0.23	0.0817	0.0029	2.2190	0.0630	0.1957	0.0038	0.0575	0.0027	0.02	1152	20	1187	20	1235	70	1235	70	6.7
07	556	189.8	0.34	0.0804	0.0028	2.2970	0.0730	0.2063	0.0035	0.0567	0.0017	0.29	1209	19	1211	23	1204	70	1204	70	-0.4
o8	993	638	0.64	0.0817	0.0024	2.3020	0.0630	0.2067	0.0040	0.0615	0.0015	0.81	1211	21	1212	19	1236	58	1236	58	2.0
09	842	600	0.71	0.0795	0.0028	1.9200	0.0590	0.1759	0.0035	0.0459	0.0020	0.37	1044	19	1088	21	1180	69	1180	69	11.5
10	121.4	39.1	0.32	0.0789	0.0031	2.1720	0.0820	0.1982	0.0043	0.0598	0.0030	0.48	1166	23	1170	27	1162	79	1162	79	-0.3
11	619	136.9	0.22	0.0819	0.0025	2.3550	0.0660	0.2103	0.0034	0.0627	0.0021	0.44	1230	18	1229	20	1240	61	1240	61	0.8
12	168.9	57	0.34	0.0824	0.0032	2.4090	0.0870	0.2127	0.0038	0.0667	0.0040	0.48	1243	20	1243	26	1244	76	1244	76	0.1
13	359	181	0.50	0.0811	0.0029	2.4530	0.0770	0.2169	0.0037	0.0667	0.0020	0.29	1265	19	1258	23	1228	74	1228	74	-3.0
14	1168	186.4	0.16	0.0768	0.0025	1.5840	0.0480	0.1478	0.0027	0.0347	0.0022	0.61	889	15	963	19	1119	69	1119	69	20.6
15	301.1	102.6	0.34	0.0763	0.0029	1.7310	0.0620	0.1642	0.0028	0.0475	0.0021	0.28	980	16	1019	23	1105	81	1105	81	11.3
16	983	170.7	0.17	0.0837	0.0026	2.5910	0.0690	0.2252	0.0043	0.0698	0.0034	0.05	1309	23	1298	19	1284	61	1284	61	-1.9
17	287.7	69.3	0.24	0.0792	0.0045	1.9300	0.1100	0.1756	0.0035	0.0553	0.0037	0.48	1043	19	1090	40	1168	110	1168	110	10.7
18	690	140.9	0.20	0.0785	0.0026	2.0070	0.0610	0.1858	0.0030	0.0573	0.0021	0.25	1099	16	1117	21	1155	67	1155	67	4.9
19	2758	752	0.27	0.0759	0.0027	0.7820	0.0240	0.0751	0.0019	0.0142	0.0008	0.15	467	11	591	17	1110	89	1110	89	58.0
20	1480	635	0.43	0.0800	0.0024	1.7540	0.0450	0.1588	0.0025	0.0377	0.0011	0.22	950	14	1028	16	1197	62	1197	62	20.6

							Relacion	nes corregida:	5 ²							Edades o	corregidas (Ma)			
	U (ppm)¹	Th (ppm)¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2S	²⁰⁷ Pb/ ²³⁵ U	±2S	²⁰⁷ Pb/ ²⁰⁶ Pb	±2S	Mejor edad	±2S	Disc%
21	257	72.6	0.28	0.0876	0.0030	2.8110	0.0900	0.2342	0.0049	0.0779	0.0037	0.54	1356	26	1358	24	1369	65	1369	65	0.9
22	324	153	0.47	0.0808	0.0034	2.5020	0.1000	0.2225	0.0044	0.0644	0.0025	0.40	1295	23	1272	30	1212	83	1212	83	-6.8
23	578	150.6	0.26	0.0810	0.0026	2.4290	0.0670	0.2152	0.0038	0.0630	0.0020	0.51	1257	20	1253	21	1223	64	1223	64	-2.8
24	549	268.5	0.49	0.0816	0.0025	2.4110	0.0630	0.2138	0.0034	0.0647	0.0015	0.18	1249	18	1247	19	1237	58	1237	58	-1.0
25	1713	858	0.50	0.0805	0.0025	2.0430	0.0570	0.1850	0.0031	0.0512	0.0014	0.52	1094	17	1130	19	1208	61	1208	61	9.4
26	236	111.9	0.47	0.0831	0.0029	2.3380	0.0710	0.2039	0.0033	0.0617	0.0018	0.02	1196	18	1223	22	1271	65	1271	65	5.9
27	540	215	0.40	0.0814	0.0026	2.3540	0.0650	0.2111	0.0038	0.0614	0.0020	0.43	1235	20	1231	21	1228	63	1228	63	-0.6
28	915	181.7	0.20	0.0794	0.0025	2.2210	0.0650	0.2026	0.0046	0.0626	0.0021	0.82	1189	24	1187	20	1180	61	1180	61	-0.8
29	1181	1130	0.96	0.0805	0.0025	1.8140	0.0460	0.1636	0.0026	0.0297	0.0010	0.26	977	15	1050	17	1212	63	1212	63	19.4
30	593	120.8	0.20	0.0810	0.0024	2.3290	0.0620	0.2080	0.0036	0.0619	0.0019	0.61	1218	19	1221	19	1222	60	1222	60	0.3
31	773	217.8	0.28	0.0776	0.0027	2.1260	0.0850	0.1967	0.0054	0.0589	0.0029	0.73	1157	29	1156	28	1135	68	1135	68	-1.9
M40																					
01	610	76.8	0.13	0.0733	0.0024	1.8040	0.0520	0.1769	0.0031	0.0575	0.0019	0.10	1050	17	1047	19	1020	68	1020	68	-2.9
02	1258	130.1	0.10	0.0697	0.0023	0.9290	0.0280	0.0958	0.0016	0.0384	0.0013	0.53	590	10	667	15	917	69	917	69	35.7
03	562	62.2	0.11	0.0708	0.0030	1.5510	0.0550	0.1579	0.0028	0.0539	0.0022	0.05	945	16	950	22	946	84	946	84	0.1
04	774	91.9	0.12	0.0718	0.0025	1.1500	0.0360	0.1150	0.0022	0.0519	0.0023	0.41	702	13	777	17	986	68	986	68	28.9
05	1073	136	0.13	0.0727	0.0023	1.7010	0.0450	0.1691	0.0028	0.0532	0.0018	0.28	1007	15	1010	18	1009	61	1009	61	0.2
06	79.1	27.6	0.35	0.0743	0.0032	1.8110	0.0660	0.1759	0.0033	0.0547	0.0024	0.01	1045	18	1048	24	1032	88	1032	88	-1.3
07	2830	263.6	0.09	0.0603	0.0019	0.4718	0.0140	0.0569	0.0010	0.0266	0.0008	0.33	357	6	392	9	619	75	619	75	42.4
08	872	91.3	0.10	0.0729	0.0025	1.7080	0.0510	0.1711	0.0029	0.0535	0.0023	0.48	1018	16	1018	23	1008	71	1008	71	-1.0
09	577	94	0.16	0.0734	0.0025	1.7940	0.0550	0.1753	0.0030	0.0559	0.0025	0.23	1041	16	1043	20	1022	69	1022	69	-1.9
10	858	85.3	0.10	0.0729	0.0023	1.7160	0.0480	0.1681	0.0028	0.0491	0.0015	0.50	1002	15	1014	18	1009	64	1009	64	0.7
11	551	82.8	0.15	0.0781	0.0029	1.7570	0.0540	0.1615	0.0028	0.0730	0.0041	0.07	965	16	1032	18	1163	73	1163	73	17.0
12	751	71.4	0.10	0.0724	0.0023	1.6740	0.0510	0.1680	0.0039	0.0564	0.0020	0.75	1001	22	998	19	992	65	992	65	-0.9
13	802	89.1	0.11	0.0717	0.0024	1.6320	0.0480	0.1645	0.0029	0.0538	0.0018	0.28	982	16	984	18	978	66	978	66	-0.4
14	419.7	59.1	0.14	0.0723	0.0026	1.6570	0.0520	0.1659	0.0030	0.0565	0.0027	0.14	990	16	992	20	990	71	990	71	0.1
15	661	138	0.21	0.0767	0.0026	1.7790	0.0560	0.1709	0.0031	0.0570	0.0032	0.28	1017	17	1037	20	1120	76	1120	76	9.2
15b	550	59.5	0.11	0.0822	0.0028	1.0650	0.0400	0.0927	0.0026	0.0801	0.0046	0.62	572	16	735	19	1246	67	1246	67	54.1

							Relacio	nes corregida	S ²							Edades	corregidas (Ma	ı)			
	U (ppm) ¹	Th (ppm)1	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±25 abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±25 abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2S	²⁰⁷ Pb/ ²³⁵ U	±2S	²⁰⁷ Pb/ ²⁰⁶ Pb	±2S	Mejor edad	±25	Disc%
16	581	187.6	0.32	0.0734	0.0023	1.7410	0.0480	0.1721	0.0028	0.0514	0.0013	0.24	1024	15	1025	17	1019	64	1019	64	-0.5
17	335	122.9	0.37	0.0729	0.0026	1.7390	0.0530	0.1738	0.0029	0.0535	0.0019	0.30	1033	16	1022	20	1004	72	1004	72	-2.9
18	855	154	0.18	0.0744	0.0023	1.7650	0.0510	0.1731	0.0032	0.0530	0.0020	0.67	1029	18	1032	19	1050	63	1050	63	2.0
19	249	115.5	0.46	0.0715	0.0027	1.6620	0.0520	0.1672	0.0028	0.0505	0.0015	0.19	997	16	993	20	967	80	967	80	-3.1
20	148.7	101.7	0.68	0.0728	0.0030	1.6610	0.0590	0.1668	0.0032	0.0505	0.0019	0.02	994	18	995	22	1000	83	1000	83	0.6
21	618	99.7	0.16	0.0766	0.0027	1.8730	0.0690	0.1769	0.0033	0.0573	0.0022	0.81	1050	18	1071	25	1109	69	1109	69	5.3
22	1441	178.3	0.12	0.0875	0.0035	0.9390	0.0360	0.0779	0.0016	0.0528	0.0025	0.58	484	10	672	19	1368	77	1368	77	64.7
23	1001	82.7	0.08	0.0781	0.0030	1.2430	0.0410	0.1142	0.0020	0.0717	0.0074	0.03	697	12	820	19	1144	75	1144	75	39.1
24	1619	175.3	0.11	0.0740	0.0023	1.0800	0.0290	0.1066	0.0018	0.0480	0.0016	0.28	653	10	743	14	1040	62	1040	62	37.2
25	141.1	88	0.62	0.0729	0.0036	1.6940	0.0750	0.1680	0.0029	0.0504	0.0015	0.25	1001	16	1004	28	1001	110	1001	110	0.0
26	860	78.9	0.09	0.0701	0.0028	1.4450	0.0530	0.1488	0.0026	0.0495	0.0024	0.26	894	15	907	22	939	78	939	78	4.8
27	629	84.8	0.13	0.0715	0.0022	1.5960	0.0450	0.1624	0.0029	0.0488	0.0023	0.46	970	16	968	18	968	63	968	63	-0.2
28	1314	67.9	0.05	0.0735	0.0023	1.5610	0.0400	0.1542	0.0026	0.0540	0.0025	0.31	924	15	955	16	1025	63	1025	63	9.8
29	953	147.3	0.15	0.0730	0.0031	0.8450	0.0290	0.0822	0.0026	0.0367	0.0024	0.74	509	16	622	16	1011	86	1011	86	49.7
30	525	93.5	0.18	0.0724	0.0026	1.6750	0.0510	0.1686	0.0029	0.0530	0.0017	0.07	1004	16	998	19	1002	76	1002	76	-0.2
31	641	98.1	0.15	0.0996	0.0044	1.3940	0.0650	0.1003	0.0021	0.0883	0.0044	0.60	616	12	885	28	1628	76	1628	76	62.2
32	895	156.7	0.18	0.0769	0.0029	0.7890	0.0290	0.0735	0.0017	0.0361	0.0014	0.38	457	10	590	16	1122	72	1122	72	59.3
33	131.7	133.6	1.01	0.0725	0.0030	1.6950	0.0580	0.1691	0.0032	0.0511	0.0013	0.10	1007	17	1005	22	1004	85	1004	85	-0.3
34	540	61.2	0.11	0.0752	0.0027	1.8470	0.0600	0.1775	0.0032	0.0675	0.0031	0.42	1053	17	1066	23	1079	76	1079	76	2.4
M50																					
01	306	77·3	0.25	0.0810	0.0026	2.3660	0.0690	0.2106	0.0036	0.0627	0.0020	0.43	1232	19	1231	21	1223	61	1223	61	-0.7
02	164.1	33.7	0.21	0.0808	0.0029	2.3340	0.0740	0.2080	0.0036	0.0621	0.0024	0.25	1218	19	1224	22	1215	71	1215	71	-0.2
03	351	116.4	0.33	0.0822	0.0026	2.4200	0.0620	0.2131	0.0034	0.0658	0.0020	0.25	1245	18	1248	19	1252	63	1252	63	0.5
04	205	75.8	0.37	0.0818	0.0030	2.3570	0.0770	0.2094	0.0038	0.0679	0.0025	0.27	1226	20	1228	24	1233	74	1233	74	0.6
05	742	233.3	0.31	0.0763	0.0027	1.7890	0.0520	0.1679	0.0032	0.0517	0.0015	0.13	1001	18	1041	19	1100	70	1100	70	9.0
06	660	230.7	0.35	0.0812	0.0025	2.0590	0.0570	0.1865	0.0031	0.0561	0.0021	0.48	1102	17	1135	19	1224	62	1224	62	9.9
07	115.3	41.4	0.36	0.0820	0.0030	2.4010	0.0780	0.2126	0.0037	0.0631	0.0022	0.16	1243	20	1241	23	1243	69	1243	69	0.0
08	306	115	0.38	0.0819	0.0028	2.3880	0.0750	0.2125	0.0035	0.0666	0.0022	0.16	1242	19	1241	23	1246	71	1246	71	0.3
							Relacio	nes corregida	S ²						F	Edades	corregidas (Ma	i)			
-----	-------------	--------------	------	--------------------------------------	------------	-------------------------------------	---------	-------------------------------------	----------------	--------------------------------------	------------	------	-------------------------------------	-----	-------------------------------------	--------	--------------------------------------	-----	---------------	-----	-------
	U (ppm)¹	Th (ppm)¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2S	²⁰⁷ Pb/ ²³⁵ U	±2S	²⁰⁷ Pb/ ²⁰⁶ Pb	±2S	Mejor edad	±2S	Disc%
09	198.8	59.7	0.30	0.0824	0.0028	2.3050	0.0670	0.2014	0.0036	0.0650	0.0024	0.14	1185	18	1213	21	1249	67	1249	67	5.1
10	448	85	0.19	0.0768	0.0026	1.9920	0.0590	0.1881	0.0038	0.0633	0.0023	0.40	1111	21	1112	20	1112	68	1112	68	0.1
11	562.2	271.6	0.48	0.0800	0.0025	2.2290	0.0620	0.2017	0.0032	0.0607	0.0016	0.27	1184	17	1190	20	1194	62	1194	62	0.8
12	380	115.7	0.30	0.0823	0.0028	2.3780	0.0730	0.2091	0.0032	0.0621	0.0018	0.32	1224	17	1235	22	1247	66	1247	66	1.9
13	313	90.2	0.29	0.0826	0.0028	2.4370	0.0720	0.2138	0.0035	0.0650	0.0019	0.29	1249	19	1253	21	1261	66	1261	66	0.9
14	1341	121.1	0.09	0.0692	0.0022	0.7660	0.0240	0.0801	0.0018	0.0403	0.0018	0.64	497	11	578	14	902	64	902	64	44.9
15	423.3	59	0.14	0.0773	0.0029	1.3520	0.0520	0.1269	0.0029	0.0578	0.0024	0.56	770	16	867	22	1123	75	1123	75	31.4
16	1092	49.3	0.05	0.0728	0.0024	1.0910	0.0300	0.1086	0.0018	0.0480	0.0025	0.27	665	10	749	15	1006	66	1006	66	33.9
17	371	115	0.31	0.0823	0.0026	2.4380	0.0650	0.2144	0.0035	0.0652	0.0020	0.29	1252	19	1253	19	1256	64	1256	64	0.3
18	415	136.6	0.33	0.0806	0.0025	2.3840	0.0630	0.2125	0.0035	0.0642	0.0016	0.35	1242	18	1239	19	1209	60	1209	60	-2.7
19	1950	753	0.39	0.0667	0.0028	0.6010	0.0290	0.0649	0.0021	0.0215	0.0010	0.62	405	13	477	18	824	87	824	87	50.8
20	730	99.9	0.14	0.1004	0.0041	2.2620	0.0700	0.1649	0.0029	0.1490	0.0120	0.14	984	16	1200	22	1621	75	1621	75	39.3
20b	196.2	52.3	0.27	0.0779	0.0023	1.9290	0.0520	0.1906	0.0031	0.0566	0.0014	0.29	1124	17	1057	20	1121	50	1121	50	-0.3
21	289	161.4	0.56	0.0824	0.0028	2.4650	0.0710	0.2151	0.0035	0.0618	0.0016	0.20	1256	18	1261	21	1254	67	1254	67	-0.1
22	303.2	100.8	0.33	0.0825	0.0027	2.4320	0.0690	0.2128	0.0034	0.0658	0.0020	0.25	1244	18	1251	20	1262	62	1262	62	1.5
23	473	65.5	0.14	0.0817	0.0029	1.9310	0.0640	0.1716	0.0029	0.0952	0.0095	0.15	1021	16	1091	22	1235	70	1235	70	17.3
24	555.6	50.25	0.09	0.0769	0.0031	1.6110	0.0580	0.1503	0.0028	0.0614	0.0032	0.38	903	16	974	23	1113	83	1113	83	18.9
25	366	164	0.45	0.0782	0.0026	2.1280	0.0650	0.1965	0.0034	0.0606	0.0025	0.24	1156	18	1157	21	1157	71	1157	71	0.1
26	253.8	89.6	0.35	0.0831	0.0026	2.2760	0.0660	0.1987	0.0033	0.0663	0.0022	0.49	1168	18	1207	19	1268	62	1268	62	7.9
27	293.5	120	0.41	0.0816	0.0027	2.3350	0.0680	0.2071	0.0034	0.0619	0.0017	0.15	1214	18	1222	21	1237	67	1237	67	1.9
28	215.1	53.7	0.25	0.0814	0.0029	2.4070	0.0710	0.2133	0.0035	0.0649	0.0023	0.16	1246	19	1244	21	1230	72	1230	72	-1.3
29	587	183	0.31	0.0798	0.0025	2.1780	0.0580	0.1983	0.0031	0.0629	0.0016	0.14	1166	17	1174	19	1198	58	1198	58	2.6
30	330	135.7	0.41	0.0816	0.0027	2.2950	0.0670	0.2049	0.0034	0.0620	0.0018	0.17	1202	18	1210	21	1232	65	1232	65	2.5
31	189.6	31.7	0.17	0.0801	0.0034	1.8840	0.0800	0.1676	0.0032	0.0627	0.0032	0.37	999	18	1074	28	1200	86	1200	86	16.8
32	1600	58	0.04	0.0681	0.0030	0.5410	0.0220	0.0563	0.0018	0.0636	0.0037	0.59	353	11	439	15	879	96	879	96	59.8

¹Las concentraciones de U y Th son calculadas empleando un zircón estándar externo tal como en Paton et al. (2010), Geochemistry, Geophysics, Geosystems.

² Las incertidumbres propagadas se reportan en 2-sigma de acuerdo con Paton et al. (2010), Geochemistry, Geophysics, Geosystems.

Las relaciones 207Pb/206Pb, edades y errores son calculados de acuerdo con Petrus & Kamber, 2012, Geostandads Geoanalytical Research.

El diámetro de ablación fue de 23 micrómetros, usando el protocolo analítico modificado de Solari et al., 2010, Geostandads Geoanalytical Research.

Los datos analíticos se obtuvieron con un equipo Thermo iCapOc ICPMS acoplado a una estación láser de excímeros Resonetics, Resolution Mo5o.

La numeración del análisis corresponde con el número de zircón por muestra.

	Р	Sc	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Yb	Lu	Hf	Pb	Th	U
M1Ca														,								-
01 3	310	87.6	25.6	630	1.63	0.076	2.57	0.06	0.62	1.44	0.079	9,9	3.85	52.7	21	97.7	181	39.3	9860	32.25	48.8	162
02 3	-10	87.9	8.5	1357	2.16	0.31/	8.14	0.266	3.3/	4.82	0.61	29.1	10.09	119.8	45.3	202	356	72.5	10020	49.25	158.1	202.9
03.3	230	70.8	10.1	1013	2.3	2.07	13.3	0.9	5	5.6	1.13	26.3	8.2	89	31./	150	315	68.3	11180	158	221	980
04 3	290	92	86	1790	2.74	0.65	12.1	0.58	7.8	11.5	2.16	53	18.2	174	60.1	262	416	84.9	10600	112.5	283.5	647
	290	78.7	4.4	667	1.81	0.227	6.55	0.149	0.99	1.84	0.148	10.9	4.32	54	21.1	102.3	204	43.3	11010	54.5	70.3	290
-5_5 06 3	820	129	34.2	2370	4.76	0.77	14.2	0.62	8.3	10.5	1.61	56.3	19.8	214	83	375	712	153	8690	175.5	385	923
07.3	430	119.2	6	2040	2.25	0.05	5.9	0.276	4.65	9.51	0.388	49.5	16.8	195	71.9	306	, 505	97.6	10200	88	197	475
, 08_3	770	317	41	1780	1.71	0.51	4.52	, 0.167	1.61	3.46	0.325	25.4	10.59	143	, J 60.7	288	594	125.7	11340	33.25	54.7	161.7
	4700	64.8	490	2290	, 5.9	118	215	21	82	19.8	1.21	58.8	17.7	205	, 75.5	338	566	115.4	8960	128.5	347	, 792
10_3	580	72.1	5.7	2960	4.87	0.301	17.84	0.406	5.49	11.1	0.69	63.6	22.4	267	98.1	438	733	143.5	9660	200.5	555.7	1090
- 11_3	600	94.1	55	4790	7.1	0.55	19.7	1.06	9.9	18.8	2.08	110	37.8	439	163	695	1110	214	10020	225.25	957	1562
12_3	-160	70.8	7	1181	2.34	0.265	11.6	0.306	2.68	3.48	0.49	21.9	7.81	97.8	37.4	170	344	72.5	11450	207.5	249	1579
- 13_3	1010	752	62	11170	19.5	44.2	348	57.6	351	299	109.9	654	181	1482	368	1342	2170	376	13450	329	3858	4120
14_3	110	57.6	5.7	351	1.58	0.133	5.18	0.031	0.39	0.62	0.042	3.19	1.52	21.7	10.45	59.1	169.1	40.6	11510	179	148.5	970
15_3	20	70.9	7.8	535	1.63	0.058	5.15	0.14	1	1.46	0.434	8.69	3.09	40.2	17.18	87	204	44.3	11600	80	68	389
16_3	340	101.8	5.1	2890	2.28	0.222	12.4	0.527	7.83	13.1	1.16	69.4	23	265	98.6	412	669	129.9	8940	107.5	403.3	519.2
17_3	580	119.9	760	1010	5.22	0.61	5.84	0.174	1.13	2.39	0.41	14.8	6.44	81.1	33.1	161.8	350	72.8	12310	102.5	70.3	512
18_3	140	170.4	4400	2640	23.5	0.25	24.4	0.382	4.23	6.73	0.46	50.4	18.7	235	92.1	405	700	133.8	10640	268.5	670	1370
19_3	700	95.6	14.4	2520	2.42	0.41	7.54	0.78	8.1	17.1	2.74	74	27.5	273	80.9	332	523	96.6	10650	110	165.8	555.6
20_3	2660	71.5	31	877	3.37	84	157	15.9	63.7	15.1	2.43	31.4	7.83	80.9	27	122.5	259	56.4	10710	191.75	289.3	1340
21_3	150	69.7	10.5	581	1.74	0.69	7.32	0.271	1.9	1.92	0.416	10.37	3.76	46.6	18.3	89.2	190	42	10710	98.75	122	466
22_3	1340	387	43.3	7240	24.6	20.6	169	29.7	188	170	50.7	410	114	926	224	763	1162	214	13080	159.75	690	2630
23_3	1900	85.4	1180	988	11.5	38	79	6.7	33	7.1	0.85	21.8	7.28	85.4	32.6	147.1	281	56.8	9670	91.75	157.8	508
24_3	310	64.9	11	602	2.27	0.563	9.98	0.425	3.05	2.43	0.77	10.7	3.82	45.9	18.7	90.6	219	48.1	11070	148.75	208.9	768
25_3	170	92.8	7610	847	44.4	0.53	8.65	0.291	2.95	4.23	0.85	21.1	6.59	76.8	28.9	125.5	226	45.9	11400	55.25	93.8	280
26_3	190	68.7	2.2	1270	2.1	1.69	17.2	1.89	11.6	11.8	4.5	45	12.6	194	41	188	349	71.1	11700	151	168.1	1103
27_3	70	71.5	722	932	6.2	0.35	9.24	0.366	2.79	3.54	0.51	17	6.56	75.3	30.3	137	264	56.6	9050	100.25	117.9	569.5
28_3	530	76.8	3.8	2760	2.54	0.44	12.9	0.53	7	11.5	0.91	60.2	20.3	239	86.8	404	698	139	9170	163	375	670

•				. / /	· \	1	. /		/			/		
	$n_{0}v_{0} \rightarrow 1$	12 ± 00	lomontoc traza	on zircon l	nnnn		maraciana		nalicic corroc	nondo con o	In	im oro c	In JIRCO	n nor muoctro
- H		JAIUSE			en n n n n n	ганш		e a				$\Pi \Pi \Theta (0)$		
		racos c	icilicilicos ciuzu	CITZICOIL	CII PPIII/.	La 1101	i la cioni a			ponde con e				

	Р	Sc	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu	Hf	Pb	Th	U
29_3	190	74.2	8.8	608	2.03	0.287	8.62	0.41	2.63	3.44	0.75	12.9	3.96	50.3	18.5	87.6	200	44.9	10850	185	175.9	1088
30_3	640	177	1830	3710	13.2	11.3	81.7	15.6	95.3	80.8	28.3	198	55.3	440	113.4	415	729	141.6	11200	83.5	186.5	1120
31_3	300	158	7.6	1360	2.78	0.282	9	0.275	3.12	4.11	0.87	22.8	8.6	111	45.1	219	448	93.4	10060	48.5	84.2	268
32_3	110	89.7	6.5	1255	1.54	0.211	8.27	0.161	2.31	4.76	0.37	26.4	9.36	115	41.7	185	339	67.3	10330	85.5	140.6	361
33_3	270	235	24.4	4300	8.91	11.81	107.1	14.2	89.8	79.5	28.2	185	55	490	144	579	1042	197	16390	253.5	958	2680
34_3	100	64	9	545	1.56	0.334	7.77	0.236	1.89	1.97	0.25	10.3	3.35	41.1	16.9	82	186	41.5	11310	173.75	145.1	852.2
35_3	580	77.4	30.9	3500	4.75	0.95	24.6	0.55	7.12	10.6	0.83	66.6	24.5	309	121.1	536	961	186.6	10920	273.25	876	1824
36_3	-30	72.9	7.8	791	2.17	0.327	9.8	0.312	2.65	2.59	0.53	13.3	4.91	64.6	24.9	123	254	53	11250	142.25	162	768
37_3	370	108	32	2260	2.96	0.22	12.7	0.304	3.89	7.7	0.73	48.1	17	203	76.8	328	579	112.6	9100	102.5	286	502
38_3	-60	55.2	7.5	549	3.96	0.315	3.9	0.047	0.23	0.42	0.008	3.47	1.88	29.5	15.3	95.5	294	72.4	18090	224.25	81.6	1215
39_3	30	144	24	2420	4.7	5.11	49.3	6.83	45.2	36.6	11.6	93.1	28.3	257	77.1	313	576	116.3	12230	228.5	394	1528
40_3	230	83	30.6	772	2.34	0.66	8.19	0.57	3.61	4.23	o.86	15.4	5.31	62.9	25.7	117.9	237	50.8	9010	115.5	150	1015
41_3	40	56.7	4.9	402	1.39	0.54	8.11	0.128	0.77	0.64	0.111	4.52	1.84	26.7	11.58	64.1	177.9	41.1	10010	229	246.5	1912
42_3	470	103.9	14.6	839	1.85	0	1.14	0.049	0.62	1.73	0.05	11.3	4.98	63.2	26.7	130.2	268	58.8	9520	121.25	40.9	688.4
43_3	300	70.9	5.8	576	1.88	0.168	7.68	0.225	1.64	1.55	0.254	9.19	3.45	43.1	18.3	89.1	207	48.2	10120	159.5	120	1148
44_3	350	67.8	110	558	3.57	0.192	7.95	0.072	0.79	1.09	0.186	7.1	3.11	38.7	17.5	88.2	190	38.7	9720	56	127.2	318.6
45_3	620	127.6	8.3	2370	3.07	0.058	7.14	0.282	4.66	9.8	0.283	53.6	18.3	217	82.1	354	587	114.9	9960	125.75	271.7	614
46_3	290	75.6	10.2	1315	2.46	0.32	11.02	0.471	4.3	5.43	0.79	26.4	9.43	116	43.4	197	369	77.8	9870	158	234	922
47_3	290	77.1	7.8	880	1.38	0.08	4.31	0.118	1.78	3.27	0.32	19.3	6.4	78	29.1	123	231	46.9	9190	42.25	73	195
48_3	160	85.5	4.4	1393	1.51	0.054	6.98	0.137	2.51	5.01	0.356	28.6	10.22	121.8	45.8	203	355	69.7	9570	55	113.2	281
49_3	190	84	125	1159	1.71	0.188	7.82	0.107	1.69	3.91	0.291	22.5	8.48	98.2	38.4	170	309	63.1	9480	69.25	133.3	390
50_3	230	95.2	17	1780	2.14	0.118	10.17	0.38	5.38	9.7	2.32	52.4	16.9	171	59.5	239	402	83.8	8640	99.5	246.2	467
51_3	300	77.5	12.5	1042	3.82	1.16	14.2	1.72	11.4	9.9	2.79	30.6	10	96.1	32.7	145.5	320	69.7	11030	121.75	127.9	829
52_2	280	86	17.3	1630	4.12	0.42	10.4	0.42	4.73	6.8	1.06	32.9	11.8	137	54	245	461	94	9780	105	256	652
53_2	110	75.4	5.9	534	1.29	0.054	4.31	0.02	0.44	1.38	0.126	10.1	3.24	44.2	17.8	82.7	154.8	31.8	9450	23.65	39.1	118.2
54_2	150	63.2	108	570	2.91	0.66	11.18	0.64	3.25	3.22	0.74	10.4	3.59	42.7	17.2	86	230	54	11470	208	221.8	1722
55_2	290	99.6	10.6	1900	1.63	0.013	5.98	0.326	4.49	8.33	0.98	45.9	15.4	176.4	64.6	278	458	91.9	8950	51.5	127.4	249
56_2	400	64.7	4	434	1.65	0.075	7.78	0.069	0.67	1.27	0.13	5.42	2.06	29.7	11.96	67.9	178	44.5	10930	256.5	226.7	1455

	Р	Sc	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Yb	Lu	Hf	Pb	Th	U
MıCf																						
01_4	260	99	11.1	1770	13.3	3.31	44	5.14	31.1	21.2	7.77	54.3	17.1	166	57.8	276	598	123	12090	181.5	417	1832
02_4	370	77.9	6.9	1260	13.06	1.02	19.6	1.46	11.7	8.4	4.34	26.5	9.1	99	39.9	217	619	162	10980	292	222	1691
03_4	560	75.4	17	1300	1.8	0.099	7.32	0.19	1.64	3.81	0.211	24.9	9.3	111	43.7	191	336	68.7	10220	67.5	151	361
04_4	1750	77.8	84	1204	1.46	46	62	5.1	21	6.9	0.83	29.5	8.51	107.9	40	175.3	301	60.5	8480	44.45	112.5	223.3
05_4	140	78.4	6.9	1140	2.07	0.06	8.03	0.121	1.67	3.58	0.22	21.6	8.04	99	38	177	311	64	10070	49	124	280
06_4	120	92.8	7.4	1836	2.43	0.151	7.68	0.216	2.78	6.58	0.74	36.1	13.61	166	63.1	284	497	99.8	10540	123.5	217	660
07_4	410	59.3	13	1100	1.5	0.018	7.42	0.061	1.56	2.96	0.306	21.8	8.1	96	37.7	168	315	66.9	10060	102.5	169	526
08_4	130	82.6	8.4	1201	1.31	0	7.41	0.056	1.31	4.02	0.29	23.8	8.69	103.2	39.8	173	312	64.3	9870	47	99.6	231.2
09_4	380	68.6	7.2	1960	3.28	0.16	10.16	0.214	3.12	6.32	0.395	40.8	14.26	173	66	289	484	97.5	9090	109	278	557
10_4	790	78	5.3	1810	1.82	2.3	17.5	1.51	11.7	17.6	5.3	73	25.9	226	72	266	438	83	9880	53	354	397
11_4	140	102.1	19.5	2300	6.17	20.1	90	11.8	71.5	44.3	12	94	27.8	266	75.9	339	672	125.4	11230	186.75	368	1600
12_4	-20	89	15.7	1030	2.43	3	27.8	3.02	19	16.5	5.63	40	12.1	113	34.2	146	312	65.9	10450	120.25	237	875
13_4	-140	65.7	5.6	873	1.7	4.1	13.1	0.34	2.36	2.3	0.228	16	5.92	73.6	29	129.7	277	58	10730	92.25	163.4	560
14_4	190	73	7.6	700	1.23	0.37	8.8	0.23	1.84	2.53	0.54	12.7	4.63	57.3	21	108	230	51.9	10200	62	69	243.7
15_4	3610	93.6	11	8000	3.21	4.13	36.9	9.06	104	186	68	690	191	1390	277	742	851	174	10300	243.75	203	2230
16_4	520	75.5	2.6	840	0.93	8.5	18.3	1.41	5.5	2.78	0.301	16.1	5.59	69	27.6	123	233	46.5	9110	28.5	50	129
17_4	630	105	417	1660	2.91	0.17	3.96	0.305	3.96	12.6	2.66	52.2	19.3	189	55.5	220	372	69.9	10120	31.25	61	197
18_4	200	73.6	15.3	1217	6.7	1.79	27.1	2.09	13.1	10.67	4	32.7	11.6	121.8	42.2	195.1	424	89.6	11190	167.75	309.8	1219
19_4	770	206	38.1	4240	7.04	89	234	36.6	190	117	29.9	233	69	617	168	649	1201	221	11710	207.5	413	2180
20_4	130	70.4	-0.00335	1019	1.65	0.32	7.74	0.146	1.46	3.57	0.39	22.6	7.1	87.4	33.2	153	271	54.9	8880	46	114.8	215.3
21_4	280	101	8.3	1591	2.34	0.068	4.09	0.177	3	5.77	0.99	37.8	12.64	150.6	54.8	235	397	80.8	9090	52.775	104.6	269
22_4	550	68.4	44	3700	7.69	2.31	38.7	2.73	23.6	25.6	6.03	103.6	33.7	364	126.4	561	981	194.1	10810	263.25	1062	2791
23_4	250	103	3.5	1621	2.15	0	5.54	0.056	1.34	4.87	0.136	32.5	11.65	145.6	55.7	246	421	84.3	10730	70.75	144.3	372.2
24_4	130	69.7	9.6	705	9.6	0.201	10.94	0.156	1.76	1.25	1.08	4.82	2.09	36.3	20.9	144	435	113.4	9860	245	226	1760
25_4	200	73	4.2	723	1.28	0	4.38	0.025	0.83	1.9	0.2	12.5	4.89	62.9	24.3	110.4	209	43.9	9610	30.625	47.9	126.7
26_4	310	68.3	3.6	847	1.83	3.9	13.3	0.63	2.59	2.7	0.52	15.4	5.43	67.1	27.7	128.8	246	52.5	9900	63	89.2	325
27_4	1580	68.9	10.1	4830	1.87	1.32	23.8	3.26	34.2	82.5	39.3	435	112.5	810	175	504	595	103.3	9880	139.75	237	894
28_4	180	76.6	23.1	1830	6.34	4	45.7	4.41	30	18	5.4	49.1	14.1	162	57.6	288	637	138	12510	238.75	496	2628
29_4	-30	54.4	8.6	343	1.14	0	12.29	0.023	0.29	0.5	0.12	3.22	1.41	21	9.77	54.5	160.5	39.8	11020	154.5	304.2	761.7

	Р	Sc	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Eυ	Gd	Tb	Dy	Но	Er	Yb	Lu	Hf	Pb	Th	U
30_4	260	64.6	14.4	741	2.29	0.63	15	0.21	1.08	2.02	0.51	11.4	4.37	56.5	23.2	111	247	55.7	11320	105.5	218	631
31_4	0	51.7	7.3	278	0.82	0.01	9.26	0.006	0.28	0.6	0.043	2.7	1.04	16.8	8.12	43.5	127	31.5	9850	83.75	121.8	402.9
32_4	300	185	20.7	3390	10.39	9.81	92.6	17.5	112.8	88.8	25.7	166	47.8	426	115.8	479	940	179	11720	213.5	1080	2340
33_4	150	61.7	6.6	501	1.46	0.013	8.22	0.051	0.99	1.28	0.321	6.9	2.73	38.2	15.3	76.9	190	47.1	11640	91.5	84.3	452
34_4	250	99.9	4.8	1157	1.58	1.01	8.15	0.39	2.84	3.99	0.387	23.5	7.91	101.5	38.7	177.4	312	64.2	9790	61.5	125.6	296
35_4	120	54.4	28.4	1730	3.44	0.184	14.1	0.135	2.56	5.31	0.165	35.8	12.3	147	56.7	262	498	102.1	10100	168	453	1126
36_4	-130	64.3	6.2	414	1.27	1.69	20.3	1.59	11.3	9	2.92	16.2	5.09	49.6	15.1	68.6	165	38.5	10280	82	159.6	497
37_4	260	70.7	3.3	1170	1.7	0.0033	7.45	0.082	1.43	3.65	0.35	24.4	8.82	104	38.7	174	326	67.2	10150	66.75	123	351
38_4	150	94.1	4.5	725	2.07	0	4.5	0.03	0.83	1.88	0.073	11.1	4.47	59.4	24.5	118.9	228	47.3	11050	55.6	85.4	294
39_4	21200	73.5	14.9	2080	2.27	526	713	62.8	233	48.8	6.84	85.9	21	195	69.9	297	496	96.8	10520	127.25	308.6	580.2
40_4	150	51.1	3.3	386	1.32	0	13.2	0.019	0.17	0.52	0.119	4.21	1.64	23.4	11.62	63.3	180	44	11900	190.75	308.2	791.8
41_4	-40	57.8	5.1	621	1.81	0	16.8	0.042	0.68	1.37	0.249	7.53	2.99	38.8	17.7	96.4	269	63.2	12630	297.75	698	1433
42_4	12970	107.1	4.2	1890	1.68	45.9	82.1	7.7	33.8	13.6	1.22	52.7	16.3	181	66.3	275	467	92.6	9560	78.75	136.2	341
43_4	480	66.2	4	447	1.42	2.5	6.3	0.147	0.74	1.02	0.146	7.5	2.69	36.4	14.5	68.5	141	29.5	9340	28.625	45.7	140.9
44_4	590	86.1	16.5	1700	7.06	2.45	32.9	3.68	22	18.6	5.77	54	17.4	190	63.4	278	581	126.7	10900	236	335	1697
45_4	320	68.9	4.2	906	1.73	0.065	9.4	0.072	1.22	2.55	0.288	17.5	6.11	76.4	30.1	137	257	53.7	9380	52	115	253
46_4	-60	55.1	6.9	248	0.99	0.44	9.71	0.013	0.31	0.4	0.094	2.95	1.03	16	7.38	39.8	109.8	26.3	9900	104.75	127.3	474.4
47_4	-110	75.5	17.2	576	1.49	1.87	24.1	2.86	20.1	15.3	5.68	28.9	7.83	68	18.4	82.2	223	61.7	14880	158	173.9	1438
48_4	460	70.8	6.9	1230	2.07	7.1	23.7	1.79	10.7	7.9	1.61	30.5	10.13	108	41.2	191	353	73.8	10160	108.75	200	586
49_4	-80	51.5	5.2	344	0.86	0.141	10.45	-5.3E-8	0.162	0.3	0.082	3.09	1.26	19	9.22	56.8	182	46.2	12510	186.5	256	861
50_4	750	74.8	6.6	1284	4.3	19.4	39.5	2.55	11.2	4.5	0.4	24.5	8.42	107.7	43.3	196	357	72.2	10310	125.25	209	488
51_4	-30	102.2	4.3	1010	1.36	0	2.34	0.07	1.7	4.03	0.36	22.1	8.4	94	34	155	262	52.1	9780	31.525	48.5	132.3
52_3	690	82.5	13.2	1631	1.82	7.2	17.1	0.95	5.8	6.4	0.548	36.1	12.66	146.3	55·3	240	411	81.9	9950	65	205	350.6
53_3	90	158.6	3.6	1080	5.77	0.028	46.9	0.041	0.55	1.13	0.393	9.29	4.09	58.4	29	173.7	513	127.4	12200	92.25	251.1	421.8
54_3	-170	58.1	30600	1050	143	401	1004	130	548	124	14.6	126	21.8	143	35.8	123.3	187	34.2	8510	33.425	166.6	165.8
55_3	-100	52.2	6.9	306	0.57	0.055	9.84	0.025	0.21	0.37	0.052	3.21	1.2	16.83	8.59	49.2	150.9	39.3	9820	68.75	100.4	312
56_2	240	93.1	12.7	1810	3.44	10	60	7.7	46	29.6	10.2	71	21.3	201	62.7	280	637	155.9	9950	176.25	424	1915
57 <u></u> 2	80	61.5	3.4	351	1.01	0.01	8	0.059	0.49	0.74	0.084	5	1.42	22.9	10.3	61	165	38.6	11150	82.5	67.2	332
58_2	-210	83.9	4.2	1480	1.26	0.05	6.6	0.085	2.74	6	0.54	34.1	11.3	133	47.1	209	371	72.4	9980	41.5	93.5	195.7
59_2	-10	80.7	13.3	1198	1.6	0.032	5.9	0.19	2.91	4.68	0.467	26.9	9.33	108.2	40.4	176.4	302	59.4	9140	33.85	76.9	153.5
60_2	510	121.7	14.7	2080	3.04	5.58	43	7.73	52.4	50.5	15.7	121	34.5	269	73	272	486	90.6	13200	99.25	339	1046

	Р	Sc	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Eυ	Gd	Tb	Dy	Ho	Er	Yb	Lu	Hf	Pb	Th	U
61_2	540	69.6	9.5	791	1.31	3.2	13	1.2	8.6	4.1	0.18	17.1	6.02	66.5	25.3	115.8	211	42.8	9780	27	50.6	128.9
62_2	0	74.8	6.3	835	1.32	0.21	7.09	0.052	1.6	2.41	0.96	17.5	5.68	70.7	27	123	253	54.7	11300	64.75	106	351.6
63_2	1940	554	105	9850	13.9	36.3	293	59.9	383	302	91.4	601	177.1	1527	382	1389	2430	418	14530	205.75	549	3490
64_2	-100	107	8.5	990	1.81	4.24	40.2	5.91	34.1	25.7	11.4	53.6	14.5	133	35.9	158	330	64.9	10260	140	215.2	1111
65_2	60	71.7	9.1	514	1.5	0.009	3.79	0.0122	0.37	1.06	0.128	8.36	3.15	41.4	16.68	79	153.7	31.9	10360	23.1	34.8	108.5
66_2	-190	54.8	3.3	438	1.39	0.048	7.7	0.034	0.57	1.04	0.087	6.75	2.66	34.3	14	68.3	164.8	39.9	10670	75.5	105.5	401
67_2	380	75.4	6.7	1066	1.74	0.034	7.05	0.1	1.34	2.64	0.209	20.1	7.28	90.7	36	161	303	62.2	10760	46.25	88	233
68_2	110	51.9	5.3	491	1.07	0.05	10.3	0.006	0.27	0.5	0.145	5.3	1.82	29.7	13.1	77.9	217	52.5	12530	126.75	218	573
69_2	510	74.8	13.2	1900	5.42	1.57	30.2	2.44	18	18.6	8.4	62	20.9	196	60.7	284	539	114	10260	172	283	1070
70_2	-330	51	8.3	240	o.86	0.038	7.33	-5.11E- 8	0.12	0.6	0.05	2.79	0.94	13.5	6.63	38.9	116.2	30.9	10450	80	82.3	353.6
71_2	1950	149.4	22.4	7250	3.94	6.85	69.1	13.9	114	140	39.8	416	143	1130	269	827	1057	205	20280	202.5	356	1929
MıCh																						
01_5	290	62.4	18.5	1048	3.91	0.64	10.16	0.34	2.01	3.8	0.62	18.6	7.34	94	33.5	157	362	83.1	12930	149.25	176	1205
02_5	1040	100.5	7.2	4660	3.54	1	22.9	1.4	15.9	30.4	6.1	132	52	550	168	569	790	142	11070	133	319	748
03_5	60	51	5.3	466	2.87	o.6	9.7	0.079	0.56	1.02	0.077	5.78	2.39	31.5	14.5	75.7	184	41.9	10430	210.5	197	1355
04_5	-60	76.9	8.7	1041	3.6	0.098	10.22	0.207	1.87	3.05	0.31	18	6.87	84.5	34.5	165	317	66.3	11990	180.75	194	1018
05_5	2160	214	26.4	2590	3.17	97	191	32	146	62.5	13.9	124.9	36.7	325	86.2	327	559	101.2	9900	136	400.3	1525
06_5	390	134.7	530	2870	8.5	15	68.3	9.61	54.5	42.1	8.02	93.2	29.6	282	91	384	726	147	10490	129.75	622	1390
07_5	420	108.5	208	1920	1.37	0.45	3.72	0.267	2.85	5.89	0.17	37.1	13.81	162.4	63.4	284	498	98.2	11310	74.5	111.9	332
08_5	40	71.4	7.9	1421	2.43	1.29	11.2	0.247	3.13	4.74	0.269	26.4	9.54	117.1	47.3	215	416	91.6	11730	133.25	242	1007
09_5	30	70	6.3	947	3.03	0.134	7.15	0.157	2.06	3.27	0.61	20.5	7.73	87.1	33.2	149.5	262	53.6	9880	38.625	60	133.3
10_5	730	77.5	9.8	1620	2.62	0.12	8.33	0.232	3.42	6	0.27	36.1	12.5	150	55.6	235	415	83.5	10250	90	230.2	522
11_5	270	623	41	6400	9.33	31.6	269	38.8	214	144	38	300	91.3	800	213	810	1450	251	16710	218.75	1386	3037
12_5	350	80.1	9.4	1540	1.7	0.302	8.1	0.186	3.06	6.4	0.49	30.9	10.8	136	54.5	241	412	82.4	10500	123.25	167.2	433
13_5	470	126.9	13.8	3260	3.47	6.34	41.5	5.32	31.8	27.8	5.52	83.1	28	308	105.4	450	779	153.5	13090	204.75	535	1626
14_5	200	69.8	6.3	851	3.29	0.93	16.71	0.98	6.51	4.01	0.78	16.2	5.4	66.9	26.4	128	252	54.9	10620	133.25	162.1	1229
15_5	790	154	29.2	3210	5.31	27.1	93	14.5	80.1	34.7	6.04	89.5	27.6	310	107.5	476	829	159	11020	174.75	531	1357
16_5	-20	84.2	26.4	2000	2.12	0.104	9.72	0.201	3.89	7	0.91	44	15.5	185	70.1	308	517	104.3	10670	118.25	268	702
17_5	-60	82.5	8	597	2	0.136	7.35	0.159	1.44	1.95	0.338	10.03	4.11	49.6	19.5	90.3	187.2	40	10090	87.75	143.6	856
18_5	210	71.5	8	2440	3.89	1.14	17	1.07	9.8	10.1	o.86	47.8	17.3	210	83.1	371	645	130	11130	192.75	359.8	911

	Р	Sc	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu	Hf	Pb	Th	U
19_5	230	87.9	8.5	1460	2.5	0.9	10.84	0.644	5.02	7	2.01	33.4	13.1	154	50	202	339	66.1	11100	91	132.4	885
20_5	440	114.9	6.5	926	2.54	0	13.35	0.042	0.97	1.97	0.48	14.6	5.64	72.4	30.6	148.8	319	66.6	11110	52.75	98.2	232.1
21_5	530	59.5	13.5	842	4.26	13.7	27.4	1.39	5.86	2.97	0.288	12.7	5.3	63.8	26.8	139.7	323	72	13970	196.5	172.8	1295
22_5	-110	64.2	4.1	488	1.75	0.262	6.31	0.082	0.81	1.06	0.063	6.64	2.87	36.1	15.1	78.3	172.7	37.2	10220	66.25	78.4	342
23_5	-30	54.5	12.2	458	2.71	0.21	9.9	0.23	1.1	1.23	0.28	7	2.7	33.3	13.1	70.3	189	43.3	13400	147.25	86.4	422
24_5	260	63.3	10.8	1660	2.92	0.41	14	0.39	3.4	5.6	0.129	29.5	11.2	140	56.3	252	465	93.7	12330	182	260	776
25_5	-20	72.9	7.8	885	1.9	0.53	9.72	0.209	2.01	2.23	0.148	15.3	5.62	72.7	29.7	136.7	276	56.4	11370	96.5	126.2	568
26_5	340	105.6	4.5	1802	2.24	1.8	10.75	0.499	3.89	6.34	0.61	36.9	12.95	152.4	58.5	267	463	95.8	8810	97	302.7	447
27_5	2720	100.8	5	2270	4.33	94	188	18.2	73.5	21.6	1.72	61.1	18.8	210	78.1	344	595	114.5	11770	173.5	331	777
28_5	270	61.8	4	709	2.07	0	7.3	0.027	0.42	1.62	0.084	10.5	4.03	53.8	22.7	108	235	50.8	10950	114.25	118	482
29_5	190	81.2	9.8	1637	1.94	0.434	10.71	0.428	4.27	6.55	0.465	35.5	12.18	144.8	55.6	245	431	86.8	10150	98	175.7	460
30_5	3000	100.3	10.3	1630	1.41	58	132	15.5	65	19.7	1.83	48.3	14.7	172	56.2	227	380	72.8	9620	64.5	101.9	318
31_5	410	51.7	8.4	534	5.45	6.1	20.6	1.07	4.4	2.49	0.36	8.2	2.98	37.7	15.8	85	207	43.3	10950	177.25	158.5	826.8
32_5	-180	105	12.2	2770	3.75	0.84	18.7	0.406	5.91	9.7	0.48	58	20.3	243	94.9	410	697	136.1	11490	160.5	443.7	897
33_5	110	52	7	433	2.68	0.62	11.34	0.223	1.68	1.04	0.56	4.68	1.91	29.6	12.58	68	178.6	40.9	11490	209	187.3	1319.5
34_5	550	83.4	4.3	1850	1.81	14.2	31.1	2.61	12.2	9	0.6	43.4	14.8	171	60.4	275	463	90	9390	83.5	189	419
35_5	290	70.7	171	824	3.02	1.51	11.3	0.73	4	2.9	0.294	14.3	5.44	66.5	27.1	127.4	249	51.9	11410	104.5	93.5	597
36_5	660	267	9.1	3360	3.82	6.63	59.3	8.92	53.8	43.4	10.1	118.3	38.8	377	107.9	406	763	138.4	12180	96	285	1028
37_5	690	96.1	17.9	3250	2.6	26	59	5.5	23	15.2	3.75	74	30.8	359	118	456	700	117	8700	97	189.3	418.4
38_5	1040	81.1	8	923	2.18	27.1	56	5.4	22.9	5.7	0.302	16.2	5.85	73.5	29.7	146.1	297	62.6	10870	46.75	69.5	253
39_5	490	81.9	1.6	2180	1.92	0.105	9.71	0.235	4.18	8.8	0.46	48.9	16.2	198	75.1	321	541	107.2	9570	102.5	229	475
40_5	250	152	11.1	1466	4.63	27.3	72.2	11.87	59.5	30.6	9.7	54	16.9	147	44.2	195	427	84.9	9890	77	180	1100
41_5	1190	103.2	31.8	3360	6.3	51	94	7.9	33·3	16.7	0.79	75.8	26.34	312	115.9	499	825	159.6	8740	203.75	731	1011
42_5	900	100	9	1890	2.23	15.5	36.6	3	14.1	9.1	0.442	39.6	14.58	167	64.6	283	491	95.6	10060	91	221	472
43_5	530	91.3	4.1	1773	2.51	13.2	33.7	2.75	14.3	8.75	0.75	38.5	13.38	160.3	60.5	262	447	88.9	9930	86.75	181.6	405
44_5	170	79.1	11.5	679	1.97	0.13	7.14	0.028	0.92	1.29	0.172	10	4.22	54.4	22.2	103.5	221	47.3	11720	98.75	130.3	575
45_5	20	84.9	11.7	2610	3.51	0.22	15.1	0.44	5.1	8.4	0.28	53.1	18.3	230	83.9	385	654	124.3	9720	194.5	382	707.3
46_5	1260	1209	93	12900	9.06	89.8	490	96	515	358	86.6	688	205	1750	427	1540	2580	431	16750	195.5	1767	4660
47_5	450	99.2	6	1416	1.49	2.8	12.8	0.92	4.7	4.77	0.48	28.9	10.6	125.1	47.4	213	381	76.9	10550	63.5	120.3	327
48_5	170	64.1	8.1	913	2.42	1.68	12.91	0.382	1.91	2.49	0.266	15	5.7	72	30	143.6	301	65.3	11810	161	191.3	955
49_5	460	241	39.5	4120	11.54	20.8	125.2	18.5	102.4	73.1	18.2	158.4	49.6	456	136	545	971	187	14430	204.5	931	2069

	Р	Sc	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Yb	Lu	Hf	Pb	Th	U
50_5	400	125.8	5	1850	2.37	0.87	9.8	0.62	6.23	7.24	0.92	39.3	13.6	162	63.9	281	505	98.1	11480	113	157	473
51_5	590	110.4	10.7	1669	1.85	1.12	10.97	0.49	4.26	5.84	0.428	32.8	11.76	147.7	56.3	259	482	100	10160	106.25	177	532
52_4	70	85.2	11	1051	2.35	0.016	39.8	0.162	2.03	4.25	1.15	23.7	7.17	90.3	35.4	162	308	64.6	10260	37	179.1	186.1
53_4	310	75.1	9.1	1710	2.7	1.99	16.85	0.772	6.31	6.75	0.586	39	13.09	157	58.6	257	446	86.7	10060	103.25	228	493
54_4	270	74.2	9	1440	1.61	0.151	8.41	0.136	2.09	4.7	0.164	29.8	10.7	128	48.9	219	404	83.3	10140	127.25	163	526
55_4	270	48.6	12.5	454	1.52	0.35	8.54	0.063	0.43	0.76	0.38	4.3	2.19	29.6	13.5	73.4	183	39.7	10600	239.75	136	990
56_3	390	112.9	6.2	965	1.39	1.95	4.7	0.38	2.85	3.68	0.229	20.9	7.12	86.9	32	149	259	52.1	9770	38.175	50.3	149.3
57_3	870	143	23	2600	3.51	0.39	40.1	1.01	11.2	15.8	6.99	74.2	22.5	252	89.3	401	719	152	9100	127.5	301	569
58_3	280	83.5	5.6	2290	4.69	0.437	18.6	0.466	5.28	9.04	0.34	45.3	16.5	200	79	346	612	120.9	11840	215.75	439	1035
59_3	310	125.4	7.5	1800	2.82	1.26	15.3	0.75	5.28	6.65	0.354	35.9	13.41	161	61.4	271	484	96	11190	108.5	219	568
M1Ci																						
01	1300	99.1	13.2	1375	1.58	39.7	83	8.6	37.2	12	1.12	35.2	11.3	127.7	46.6	201	358	70.5	9600	69.25	132.4	354
02	1610	88	152	1066	2.17	57	126	11.3	48	11.3	0.78	27.4	8.45	97	36.3	158	287	56.1	10120	42.475	96.8	195
03	30	64.6	7.4	299	2.25	0	6.86	0.011	0.216	0.33	0.055	2.63	1.18	18.2	8.96	50.7	139.5	32	10410	98.5	153.5	510
04	530	135.7	11.5	2000	4.36	0.023	18.6	0.146	2.64	5.71	0.232	38.1	13.92	177	70.2	298	545	105	10620	109.25	278.6	601.8
05	1990	85.7	22.7	1056	1.83	46	99	11.3	48	11.3	0.59	30.7	8.99	98.6	35.5	158.4	271	53.7	9960	33.825	75.1	153.6
o6	140	103.7	8.8	967	1.63	0.008	5.41	0.043	1.45	2.85	0.366	19.5	6.78	83	33	144.7	278	54.3	10240	31.775	70	169.2
07	280	116.9	10.7	2530	2.89	0.42	11.28	0.42	5.6	10.6	0.305	62.5	20.4	240	89.2	381	628	117.9	11360	116.5	294	664
08	1120	94.9	38	4840	3.95	8.9	39.4	3.04	19.1	20.3	0.92	104.1	38.5	447	167	694	1130	209	10450	247.5	932	1468
09	350	82.4	4.9	1063	1.15	0	5.29	0.072	1.36	3.37	0.335	24.2	7.82	95.5	35.7	158.5	280	55.3	9580	41.025	79.8	177.8
10	1810	190	23	2860	3.59	22.5	139	7.41	38.4	25	7.8	75.8	24.2	262	94.2	425	802	160	11200	134.75	373.5	1113
11	520	75.6	6.7	1030	2.21	2.15	20.1	1.15	7.3	4.67	0.49	21.1	6.79	86	34.4	159	333	70.6	12140	161.5	203.1	1160
12	920	81.5	8.4	2140	5.36	0.48	13.22	0.239	3.36	7.66	0.669	45.8	16.15	196	74.9	324	564	108.9	10440	109.75	318	656
13	590	88.7	6.7	1703	3.3	o.88	12	0.33	3.63	6.55	0.373	36.1	12.63	151.2	57.9	254	452	85.9	10370	73.75	173.3	395.1
14	410	91.1	7.9	1047	1.11	0	5.02	0.057	1.34	3.26	0.361	20.2	7.81	91.7	35.9	153	276	54.8	10340	29.525	65.6	156
15	1180	107.7	8.1	2150	1.9	0.211	7.28	0.297	3.21	7.06	0.47	40.8	15.91	196	74.4	330	574	110.2	10840	122	218	631
16	310	82.7	9.3	685	1.16	0.096	4.95	0.031	0.64	2.08	0.199	13.6	4.6	56.9	22.4	104.2	197	39.8	9960	25.675	44.8	115.1
17	9200	96.2	56	813	2.9	125	220	27	102	20.8	2.27	32.9	8	80.8	26.8	119.7	231	47.4	10540	31.25	69.2	176.3
18	990	89.4	49	4750	10.59	0.99	32.8	0.63	8.9	18.7	1.26	114.3	38.1	456	165.7	711	1146	224	9190	267.75	860	1304
19	6080	91.7	7.5	969	1.69	159	314	34.3	133	23.9	1.27	37.4	8.92	90.5	33.1	135	251	50.4	9770	43.925	102.2	228.6

	Р	Sc	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Ευ	Gd	Tb	Dy	Но	Er	Yb	Lu	Hf	Pb	Th	U
20	1450	88.6	8.4	843	1.49	12	38	3	9.6	4	0.42	15.6	5.55	72.4	27.8	127.7	237	49.8	10200	40.25	67.9	174
21	400	87.3	14.8	1794	5.37	0.4	13.44	0.207	2.91	6.12	0.71	37.8	13.83	161.9	62.9	275	485	94.9	9890	130.25	352	703
22	2190	79.9	520	665	2.19	37.5	75.3	7.45	27.6	6.08	0.359	14.9	4.72	56.6	21.8	97.6	195	38.8	9200	34.6	56	162.8
23	180	82.3	8.3	885	1.17	0.16	5.25	0.154	1.49	3.28	0.382	19.4	6.5	77.9	29.7	131.2	238	47.6	9440	27.9	56.4	126.4
24	36200	79.3	13	854	1.32	620	1200	129	540	89	4.25	89	13.7	101	28.1	107.5	179	34.9	9090	23.55	51.9	101
25	860	82.6	7.3	1160	1.44	0.068	5.78	0.045	1.68	3.9	0.339	24.6	8.5	99.4	39.4	174	302	60.8	8870	44	79	187
26	2110	90.7	11.7	1790	1.83	28	67	6.4	27	10.8	0.61	44.6	14.3	167	60.2	256	435	83.9	9910	56.75	151	298
27	300	86.4	131	671	1.41	0.201	5.56	0.054	0.6	1.81	0.159	11.3	4.47	54.3	22.4	102.4	201	39	9530	27.15	50.93	138.1
28	-250	56.2	2.9	307	1.64	0.073	6.97	0.169	0.82	1.35	0.349	4.45	1.69	21.3	8.44	47.6	130.9	30.6	11070	180.5	130	794
29	1220	91.4	13.1	1262	1.38	14.6	33.6	2.53	10	6.04	1.91	28.9	9.29	112.9	42.6	180.2	328	65	9490	39.9	101.9	200.1
30	550	93.8	5.6	909	2.13	0.059	5.3	0.07	1.48	2.41	0.177	16.9	6.34	78.4	31.9	138.2	257	51.6	10200	40.3	75.6	221.6
31	570	84.3	6.8	730	1.35	0.034	5.09	0.048	0.73	1.97	0.255	13.61	4.99	62.6	24.1	110.7	212	41.9	8950	29.475	56.42	139.5
32	410	78.1	6.7	1478	3.27	0.083	13.02	0.215	3.04	6.46	0.534	33.5	11.06	138.4	50.6	225	408	81	10450	143	254	808
33	5500	68.3	1030	1036	6.6	93	287	38	168	38	2.8	44	10	98.5	35.7	151	275	56	7950	53.5	77.7	237
34	340	90.6	10.4	2090	3.92	0.46	11.81	0.32	4.05	6.48	0.452	42	14.86	179	71.2	315	549	109.1	9850	104.75	214.9	485
35	1420	110.1	10.6	2040	3.62	0.042	16.13	0.2	3.16	7.13	0.416	43.5	14.71	183	70.8	311	552	104.5	10090	112.25	331	642
36	280	82.3	15.5	2210	1.88	0.224	7.98	0.295	4.23	8.47	0.79	50.1	17.5	201.9	75	325	538	105.2	8510	76.75	186.5	371
37	7200	106	14.5	2900	3.89	93	199	20.6	78	21.9	0.98	69.2	22.8	257	97.6	411	711	138	10240	130.5	368	638
38	220	89.1	8.8	819	1.6	0.42	6.91	0.094	0.79	2.1	0.21	13.9	5.4	71.9	27	124	243	48.1	9650	57.25	72.8	237.9
39	940	65	6.9	346	2.85	0	6.21	0.01	0.22	0.84	0.039	4.49	1.88	23.1	10.43	54.1	139	32	11110	154.75	291.7	898
40	530	88	7.3	1038	1.55	0.21	6.06	0.173	1.7	3.74	0.329	21.6	7.75	91.9	35.1	156.1	281	56.2	9390	32.325	75.2	161.2
41	1050	102.7	7.8	752	1.66	0	5.23	0.026	0.61	2.15	0.228	13.2	5.05	64.5	25.7	115.1	221	44.7	9570	27.45	49.3	131.8
42	740	54.6	6.1	360	2.39	0.115	4.39	0.059	0.34	0.22	3.71	2.27	1.06	18.3	10.38	68.3	209	50.5	9730	266.75	96.7	1169
43	1270	87.2	9.3	1201	2.02	0.012	7.93	0.115	1.81	3.06	0.242	22.9	8.15	103.3	40.5	179	314	61.2	11330	65.75	161.2	346
44	1380	91.7	7.8	1055	1.32	0.079	4.91	0.078	1.77	4.68	0.353	23.9	7.76	96.2	35.9	153.6	276	54.3	9250	28.9	65.91	141.3
45	-420	66.9	6.6	433	2.7	0.021	7.79	0.047	0.49	0.76	0.102	5.65	2.12	28.9	12.53	66	169.1	38.7	11170	162.5	283	862
46	-30	93.9	7.5	1038	1.4	0.01	5.67	0.086	1.55	3.8	0.396	20.7	7.28	90.4	34.6	152	275	54.8	9060	42.725	75.6	196.4
47	480	77.5	18.1	574	2.49	0.096	6.58	0.071	0.75	1.56	0.206	10.04	3.56	47.8	18.56	87.7	187.4	41	10520	106.75	161.3	570
48	3300	88.8	7.5	746	1.2	6.8	19.5	1.64	7	3.09	0.279	14.3	5.05	62.3	25.3	110.3	208	41.3	9230	25.6	51.2	129.5
49	12300	89.5	6	1508	1.28	22.1	51	5.22	22.8	10.3	0.838	36.8	12.13	137.8	51.7	219.1	373	72.6	9480	39.325	94.7	188.4
50	-1100	83.2	101	773	1.78	0.056	6.08	0.12	0.92	2.42	0.35	14.2	5.16	64.6	25.5	113.4	220	44.9	8990	37.775	67.16	181

	Р	Sc	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Ευ	Gd	Tb	Dy	Ho	Er	Yb	Lu	Hf	Pb	Th	U
51	24800	83.4	74	1482	5.02	37.4	79	7.2	27.8	9	0.58	32	10.93	133.3	50	227	406	81	9710	94.5	200.9	465
52	4000	92.5	13.9	1263	1.04	2.1	8.5	0.38	2.83	5.41	0.552	27.6	9.67	114.8	42.5	186	319	62.5	9310	33.225	87.3	170.2
53	13800	87.5	28.6	2620	2.9	3.24	21.6	1.34	11	11.9	0.829	65.2	20.9	249	91.9	389	633	122.9	8800	99.75	330	530
54	39000	108.8	15.3	1479	1.4	6.6	19.1	2.34	14	8.4	0.93	35.7	12.31	139	50.9	220	370	71.8	8760	36.3	85.6	183.6
55	44000	88.5	70	742	1.6	0.33	4.89	0.074	1.14	2.76	0.238	13.7	4.97	62.1	24.5	110.1	212	43.1	8890	36.125	73.7	225
56	10000	62	6.1	783	16.4	0.062	8.98	0.121	1.3	1.83	0.113	8.3	3.7	53.6	23.7	130	329	72.7	13180	193.75	127	975
57	-37000	81.2	3.9	1130	1.38	7.9	23.2	1.85	8.2	5.48	0.45	25	8.24	102	38.6	165	296	58.3	9040	46.25	113	249
58	-8500	88.9	7.2	729	1.33	0	5.38	0.031	0.72	2.13	0.29	14.12	4.87	62.7	24.4	109.6	213	42.5	8690	29.225	60.6	153.7
59	-3500	120.1	7.8	1469	1.92	0	4.03	0.074	1.54	4.22	0.136	28.7	10.61	131.2	50.4	222	393	77	9970	66.75	130.1	353
60	-6800	86.1	14.8	2120	1.67	7	21.3	1.56	9.6	10.3	1.07	52.9	17.3	202	73.6	299	503	95	8860	66.75	293	422
61	-109000	116	7.9	2330	2.67	381	748	78	314	65	3.66	105	24.5	239	80.8	326	532	101.8	9790	99.5	256	541
62	-1700	81	7.7	796	1.08	0	4.25	0.025	0.69	1.89	0.252	14	5.08	66.4	27.1	119.2	218	45.3	9310	26.65	51.3	131.9
63	-1550	91.1	7.2	1221	1.68	1.4	11.1	0.39	2.69	3.98	0.357	25	8.79	104.3	41.1	178.9	330	66.3	9490	47.3	123.3	254
M2Cb																						
01	200	60	7.9	685	3.05	0	12.72	0.009	0.57	1.59	0.564	8.29	3.71	49.4	21.2	103.6	237	49.3	10690	178.3	314	1220
01b	50	59.4	5.9	692	3.75	0	13.5	0.039	0.43	1.73	0.47	9.4	3.67	49.4	20.7	104	225	45.6	9950	208.0	238.3	885
02	530	68.4	5.3	800	1.34	0.009	8.18	0.038	0.73	1.72	0.221	13.4	5	66	26.7	118	236	47.4	10420	99.3	162	421
03	330	60.5	7	545	2.8	0.013	12.75	0.0094	0.43	0.91	0.219	6.63	2.81	38.7	16.51	84.3	198.8	39.4	11240	147.0	197	842
04	220	58.4	5.1	500	1.54	0	8.1	0.019	0.55	0.85	0.317	6.15	2.7	35.8	15.9	75.7	182	40.8	9710	147.0	157.7	718
05	780	121.5	16.5	1850	2.7	5.81	48.6	5.42	33	31	9.4	73.6	20.4	190	61.4	258	469	89.4	10460	91.5	389	1073
06	460	59	6	740	1.69	0.015	12.7	0.09	1.59	4.6	1.35	20.2	5.9	65	21.2	91.2	206	39.6	10740	127.8	118.6	613
07	80	83	8.1	547	1.25	0.48	5.49	0.171	1.44	1.56	0.129	9.8	3.6	44.4	18.5	83.5	162	32.3	9930	20.8	42.7	124.3
o7b	570	76.4	7.1	541	1.14	0.069	4.12	0.025	0.88	1.24	0.133	9.1	3.53	45.3	17.8	79.8	154	32.6	8880	24.3	30.62	87.9
08	520	64.6	4.7	1108	3.96	0	15.47	0.032	0.71	1.85	0.58	15.2	6.38	86.6	36.1	175.8	362	74	12140	92.0	400	468
09	410	63.8	6.4	698	1.98	0.037	11.32	0.092	1.4	2.27	0.313	11.6	4.45	57.8	22.4	105	215	42.9	10750	94.3	154.8	417
10	170	60.3	10.9	556	2.27	0	10.75	0.013	0.43	1.07	0.328	7.9	3.23	43.7	17.61	84.7	188.5	40.3	10820	72.3	161.6	368.7
11	510	100.4	5.3	1047	1.34	0	5.76	0.061	1.49	3.51	0.437	22.1	7.48	92.9	35.9	155.7	284	56.4	9780	31.8	70.2	158.9
12	730	72.5	48	3380	6.47	0.062	20	0.5	6.91	14.8	0.71	88	26.9	326	118	477	777	144	10580	305.0	625.2	1558
13	700	81.4	8.4	1820	4.29	2.54	24.8	1.68	11.6	9.3	1.71	37.7	13	148	60.1	265	500	97.9	12000	145.3	471.5	988

	Р	Sc	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu	Hf	Pb	Th	U
14	1050	105.8	17.5	3760	16.5	0.135	60.8	0.71	9.8	15.8	1.16	87.7	31.2	382	140.8	611	1045	206	9270	228.5	1215	1546
15	460	96.5	5.5	2069	7	0	20.7	0.148	3.22	7.04	0.187	40.3	14.7	180	69.6	308	563	109.6	10850	170.5	448	892
16	310	111.9	3.7	1223	0.9	0.051	2.65	0.108	1.88	3.5	0.265	23.7	8.63	107	41.5	183	333	67.6	10490	49.0	82.4	272
17	300	113.8	6.5	1670	1.68	0.034	47.4	0.238	3.95	9	1.92	50.3	16.2	180	63.6	248	401	75.1	8060	40.3	174.7	161.9
18	130	83.5	5.5	1007	1.57	0.013	6.68	0.054	0.96	2.87	0.23	18.4	6.91	85.4	33.7	154.3	284	57.5	9700	47.5	79.3	225.8
19	630	111.8	2.8	1405	1.71	0	3.13	0.024	0.93	2.83	0.025	20.1	8.35	114	46.9	214	419	84.6	12650	97.8	147.5	656
20	240	91.3	6.2	1199	3.07	0.098	9.51	0.065	1.39	3.54	0.295	21.6	8.53	103.9	40.2	184	341	69	11800	55.5	126.5	371.3
21	320	115.1	173	1710	4.35	0.52	14.33	0.5	4.9	5.3	1.43	29.3	12.1	146	58.4	266	526	107.6	10380	124.5	265	1012
21b	190	101.4	9.1	1400	1.49	0.027	6.62	0.224	2.63	4.23	0.9	32.4	10.69	124	47.4	205	358	69.7	10080	50.5	91	215
22	-350	10.4	14.7	62.8	0.085	0.5	2.36	0.089	-0.00	0.11	0.115	1.08	0.33	5.1	1.95	10.5	20.6	4.26	1320	22.5	20.2	122
23	130	48.7	7	438	4.88	0.099	16.5	0.59	5.06	1.83	0.35	4.94	1.84	24.1	12.3	73.3	225	53.5	8970	225.3	109.1	1441
24	300	70.3	6.6	596	2.45	0.019	14.3	0.015	0.48	1.7	0.4	10.3	3.26	49.8	17.9	87	187	40.9	11500	107.5	78.9	313
25	40	62.1	7.2	537	2.35	0	9.07	0.0048	0.25	1.08	0.154	6.45	2.56	41.4	17.6	87.5	187	36.6	12710	76.0	306.1	627.6
25b	-240	54.2	4.1	487	1.81	0	7.23	0	0.23	0.68	0.059	5.4	2.62	37	15.9	76.9	163	32	10970	64.5	165.4	297.8
25C	160	87	10.2	1063	2.33	0	9.43	0.144	1.22	3.7	0.443	19.7	7.49	97.9	35.6	168	310	63.8	12150	84.0	391	712
26	100	81.9	7.2	1020	2.02	0	8.4	0.021	1.82	2.48	0.44	19.4	7.36	89.6	34.9	150	287	58	10960	94.0	264.6	472
27	150	75.5	5.1	1410	1.37	0.02	6.34	0.128	1.82	5.9	0.58	32.8	10.61	127	48	205	358	71.7	9330	44.8	209	255
28	140	78.2	3.7	1086	2.32	0.11	8.95	0.137	1.63	3.2	0.56	21.7	7.78	90.2	35.4	158.3	308	62.1	8980	53.5	185.2	284
29	231	124.7	8.8	1123	2.6	0.025	5.87	0.065	1.09	3.32	0.308	21.2	8.07	99	39.1	172.7	323	64.4	10790	69.8	211	404
30	25300	104	80	2840	4.55	314	900	140	710	198	23.4	260	48.3	362	100	356	539	106	8990	177.3	291	633
31	150	79	8.1	494	1.19	0.022	3.65	0.049	0.55	1.81	0.188	8.65	3.38	42	16.2	76.1	148	32.7	9300	23.0	54.8	123.1
32	37	89.8	5.9	810	1.26	0.011	4.88	0.06	1.12	2.27	0.218	15.16	5.62	69.8	26.6	120.4	229.3	46.2	9780	31.7	83.4	166.5
33	135	98.4	7.7	994	1.25	0	6.42	0.063	1.63	3.28	0.426	20.5	7.2	86.7	34	151.3	278	54.8	9800	33.2	130.3	210.6
34	78	89.7	7.8	906	1.39	0.363	7.24	0.109	1.55	2.9	0.4	17.3	6.21	77.2	30	138.8	261	52	10220	29.7	96.1	190
35	191	73.5	5.9	1129	3.91	0	9.9	0.0055	0.5	1.36	0.112	11.4	5.32	77.8	36.4	187.2	400	84	10290	107.8	212.1	671.9
M2Cc																						
01_2	320	88.9	10.8	2020	5.74	0.43	21	0.416	5.4	7.8	0.4	43.6	14.9	174	66.3	296	499	99	10410	158.75	564	934
02_2	90	82	3	1649	2.56	0.121	7.66	0.204	3.32	6.74	0.69	38.2	13.08	149.6	55.7	243	412	81.7	9410	56.25	150.7	292.4
03_2	210	167	22.4	2050	7.39	6.3	59	8.1	49.3	44.4	14.1	96	25	220	65.6	266	508	96	10050	147.5	364	1550
04_2	3340	66.6	25	460	1.35	185	451	60	276	53.1	2.84	52.6	8.1	57.5	15.1	62.6	140.7	35.3	11220	52.75	96.5	318

	Р	Sc	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Eυ	Gd	Tb	Dy	Ho	Er	Yb	Lu	Hf	Pb	Th	U
05_2	160	77.4	7.9	704	1.46	0	5.85	0.055	1.05	2.16	0.265	14	4.9	60.1	22.6	105.7	205	43.3	9710	36.4	74	193
06_2	60	79.3	8.5	1510	3.53	0.72	12	0.304	4.37	5.81	0.675	31.9	11.23	134.4	51.5	221	377	74.9	9020	85.5	199.7	433.6
07_2	1500	95.5	7	862	1.44	72.2	175	21.7	92.7	22.7	1.42	36	8.24	84.2	29	123.3	213	43.9	8500	23.775	43.7	98.5
08_2	100	59.4	11.8	968	3.57	0.037	10.82	0.081	0.98	2.96	0.211	15.2	6.03	73.2	30.8	151	321	66.7	11860	214.5	248	1268
09_2	100	58.3	5.8	260	1.5	0.295	7.84	0.179	1.33	0.82	2.52	2.85	1.13	14.1	6.96	44.6	147.4	38.7	11200	113.5	142.8	717
10_2	340	62.3	6.9	353	1.96	2.7	14.1	1.15	5.3	2.76	0.56	7.7	2.39	27.3	10.33	55.2	146.2	35.6	10630	59.5	90.5	275
11_2	170	51.8	6	212	1.47	0	6.19	-0.00	0.33	0.08	0.122	1.4	0.82	12.4	6.06	32.8	94.9	26.5	9300	41.75	57.4	180.5
12_2	50	60.8	5.5	399	1.53	0.012	5.6	-0.00	0.79	1	0.126	5	2.25	28.5	12.3	61	143	36.3	9530	52.25	70.8	246
13_2	10	78.4	5.3	619	1.38	0.242	5.54	0.125	0.71	1.64	0.219	10.4	3.89	50	20.3	90.7	182	38.8	9370	28.25	46.14	125.2
14_2	300	76.7	4.2	624	1.56	0.59	5.9	0.23	1.65	2	0.117	10.4	3.93	51.5	20.4	90.7	180	36.6	9630	29.075	41.4	109.3
15_2	-150	66.2	628	791	7.6	4.4	40.5	3	20.2	13.5	17.1	27	7.4	63.5	24.6	119	287	67.8	9900	177	301	1121
16_2	390	78.7	5	1035	1.55	0.246	7.14	0.155	1.87	3.08	0.219	19.8	7.25	86.8	33.9	153.6	276	55.3	9550	49.3	97.6	228.5
17_2	530	73.4	2.4	908	2.14	0.16	7.1	0.118	1.22	2.92	0.187	17.9	6.36	78.9	29.8	136	243	52.6	9630	46.5	88	175
18_2	-80	63	3.1	371	1.31	0	4.55	0.025	0.37	1.35	0.093	5.52	2.04	28.7	11.78	58.8	139	33.2	9590	33	38.6	152.6
19_2	330	89	6.1	1070	1.75	8.2	31	4.1	18.2	7.9	0.71	26.7	8.3	97	35.7	157	265	54.9	9160	31	58.1	132
20_2	-280	69.6	10.1	1078	6.94	11.9	39	3.9	20	9	2.9	26.4	8.14	90.3	34.7	168	394	90.3	13000	154.5	242	1154
21_2	140	64.3	9.9	961	2.73	1.42	12.6	0.711	4.43	4.1	0.43	18.9	6.94	81.6	31.1	147	294	62.8	13410	101	259.5	772
22_2	-10	67.5	42	402	1.51	0.51	14.1	0.76	4.96	5.8	4.29	11.9	3.63	32	11.2	56.3	189	52.8	14600	142.25	207.5	1102
23_2	-90	80.6	3.8	854	1.51	0.057	5.63	0.087	1.48	2.74	0.319	16.3	6.02	71.6	28.3	126.6	234	47.7	10820	34.2	68.6	176
24_2	30	45.9	21.8	430	2.03	0.82	12	0.71	5.7	3.9	5.72	10.9	3.08	31.4	12.1	64.9	170	41.9	10280	117.25	196.7	640
25_2	80	153	33.8	2110	6.36	7.53	59.5	8.63	61	52.9	27.1	115	29.8	249	66.7	261	503	95.9	10200	151	602	1708
26_2	-150	60.2	7.7	221	1.24	0.157	7.1	0.143	0.97	1.13	1.15	2.98	1.35	14.2	5.83	33.7	95.3	25.1	10970	39.75	56.8	187.7
27_2	150	59.4	9.9	539	3.19	0.197	9.06	0.201	1.38	1.41	0.5	8.2	2.68	35.4	15.6	83.5	216	53.6	12280	121	141.5	683
28_2	8630	80.9	7.5	1650	1.81	451	1130	152	681	145	4.99	159	26.3	196	56	211	315	58.9	9750	43.75	108.4	172
29_2	460	78.4	6.1	583	1.56	0.26	6.82	0.124	1.04	1.69	0.06	10.1	3.77	47.2	19	92.4	182	37.3	10180	30	66.2	155
30_2	40	82.2	9.7	1232	1.45	2.06	10.5	1.06	7.6	6.93	0.72	28.3	9.53	110.2	40.3	180	300	61.1	9180	32.5	84.9	172.3
31_2	1660	81	7	821	2.07	44	103	8.6	28.2	7.1	0.66	18.8	5.85	69.7	26.5	123	229	46.6	10040	35.75	69.2	167.3
32_2	200	89.2	7	1350	1.54	0	6.08	0.181	2.57	4.21	0.47	31.3	10.4	121.1	46.1	201	342	67.8	8880	41.75	90.6	178.9
33_2	470	80.3	51	1660	2.73	14.5	45.9	5.4	27.2	11.8	1.95	44.3	13.52	159	54.8	240	401	80.6	8680	62.5	198.9	336
34_2	-30	65.5	12.4	1140	4.64	0.149	17.3	0.133	1.9	3.64	0.281	21.6	7.3	93	36.5	168	331	66.9	11260	79.25	255.8	533.7
35_2	420	56.4	8.7	734	1.11	0.132	5.51	0.381	6	14.5	4.74	58	14.5	109	29.5	92	190	41.3	10800	74.5	78.21	374

	Р	Sc	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Yb	Lu	Hf	Pb	Th	U
36_2	400	64.5	14.3	1028	4.67	1.15	16.3	0.345	2.87	2.85	1.77	12.5	4.78	68.2	31.5	157	356	71.7	10460	164.75	708	1403
37_2	320	73.5	3.3	579	1.72	0.05	5.1	0.016	0.39	1.8	0.171	9.6	3.54	46.1	19.2	89.6	176	36.7	9870	35.5	59.6	183.7
38_2	40	66	9.3	639	1.83	0.019	5.3	-1.38E-7	0.79	2.67	0.15	12	4.6	60	20.3	100	187	38.8	8730	44	64.1	181.5
39_2	840	80.2	6.3	2230	2.44	17.9	54.7	6.55	32.2	14.9	0.92	57.1	17.5	203	74.7	322	540	103.1	9690	76.25	209.5	428
40_2	720	492	57	4900	17.9	20.8	214	30.2	188	162	55.4	311	79.7	612	161	693	1430	273	9880	264.75	696	3370
41_2	290	78.5	7.2	1710	1.43	0.081	7.52	0.22	2.69	6.7	0.46	37.3	12.5	150	58.4	242	414	79.9	9390	57.5	146	284
42_2	390	92.2	16.2	2360	2.25	1.33	9.8	0.58	5.61	8.7	1.02	52.7	18.34	219	80.2	348	582	113.8	9050	81	213	419.1
43_2	150	54.3	2.9	260	1.48	0.092	8.47	0.157	2.01	1.36	3.86	4.48	1.44	15.34	7.16	42.6	124.8	31.7	10970	75.5	77.5	382
44_2	610	83	7.8	1374	2.73	13.4	44	4.2	19.6	8.3	0.46	30.1	10.18	121.8	46.3	206	371	74.1	10230	67.75	139.2	344
45_2	190	72.1	3.6	580	1.45	0.45	5.74	0.049	0.57	1.34	0.24	9.4	3.47	46.4	18.7	88.2	191.8	43.3	9490	49.5	67.3	271
46_2	-70	79.6	7.2	749	1.55	0	4.32	0.041	0.83	2.05	0.157	15.2	5.1	60.8	24.4	113.3	204	41.9	9680	24.425	41.6	113.7
47_2	-10	64.4	6.4	475	1.7	0.343	8.15	0.35	1.85	1.67	0.53	7.22	2.52	33.8	14.41	74	185	42.6	10900	74.75	105.1	525
48_2	280	60.7	22.6	983	7.12	5.4	40.9	2.4	14.3	7.4	3.03	20.7	5.81	71.1	29	146.6	376	89.9	11790	173.25	1510	2031
49_2	60	58.4	3.4	274	1.77	0.0043	7.92	-1.07E-7	0.2	0.33	0.057	2.29	1.04	15.9	7.83	45.1	131.8	32.6	11780	70.5	99.8	403
50_2	6400	64.9	5.1	1230	2.85	157	430	59	240	65	2.1	82	16.7	141	44.5	175	293	59.8	9090	52.5	112	256
51_2	190	84.9	6.1	1054	1.66	0	6.19	0.093	2.63	4.26	0.48	23.8	7.92	92.7	35.7	157.7	282	56.2	9290	33.925	70	148.9
52_1	240	79.5	8.9	2280	3.67	0.58	13.5	0.52	4.94	8.88	0.42	47.1	16.9	200	76.7	337	560	110.8	9450	112	285	569
53_1	90	59.5	4.6	405	1.71	0.018	5.38	0.024	0.57	0.94	0.043	5.96	2.28	28.7	12.47	64.4	151.3	34	10200	95.5	125	480
54_1	340	82	12.8	3180	10.94	0.161	30.6	0.378	6.59	13	0.71	73.8	25.1	292	109	459	779	147.3	8550	204.75	920	1215
55_1	350	78.1	8.4	935	2.35	0.0058	5.39	0.088	1.28	3.58	0.292	21.1	6.66	82.7	32.6	141	257	52.3	10400	105.25	130	357
56_1	170	57.8	3.9	434	1.37	0.253	8.2	0.268	2.16	2.28	1.08	9	2.53	28.7	13.1	80.7	254	62.3	9910	70.75	83	311
57_1	120	58	8.3	380	2.23	0.057	9.23	0.129	0.56	0.87	0.119	3.14	1.46	22	10.68	63.1	178	42	10630	108.75	134.1	527
58_1	130	56.3	4.9	404	1.95	0.94	12.07	0.548	3.89	2.66	2.76	8.49	2.4	28.3	12.04	65.1	184	46.1	11150	124.5	282	708
59_1	100	74.8	3.6	669	2.46	0.014	24.3	0.041	0.71	1.92	0.301	10.9	3.57	51.4	21.8	105.8	230	49.5	10280	48.75	124.9	202.1
60_1	120	54.3	5	234	1.54	0.215	7.79	0.218	1.24	0.76	0.7	2.07	0.782	11.95	6.58	39.1	117.4	30.8	12050	88	97.3	447
61_1	-200	58.3	8.5	462	2.21	0.87	13.9	0.73	4.05	2.88	1.94	8.4	2.6	29.2	12.51	76.9	235	58.5	10990	162.75	178.4	863
62_1	200	50.7	5	407	1.9	0.22	8.09	0.169	1.13	1.61	2.55	5.5	2.2	25.6	10.7	62.8	168	38.9	10330	138.25	165	764
6 <u>3</u> 1	950	79.4	8.3	1383	1.55	44	95	11.4	51	22.2	0.82	41.4	12.4	133.9	47.2	194.1	341	69.2	10010	68.25	109.6	332
64_1	100	60.1	6.6	511	3.81	0.152	13.74	0.043	0.46	0.73	0.065	5.04	2.28	32.7	14.98	83.4	224	54.3	13170	120	218.8	738
65_1	110	81.5	5.5	907	1.51	0.06	5.27	0.064	1.6	3.17	0.317	17.6	6.85	78.2	30.5	132.1	239	48.5	9070	28.4	68.25	151
66_1	330	61	9.2	1220	4.46	1.7	21.4	1.72	12	10.4	3.37	33.8	9.9	114	40.8	202	449	103.8	9280	230.25	356	1337

	Р	Sc	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Eυ	Gd	Tb	Dy	Ho	Er	Yb	Lu	Hf	Pb	Th	U
67_1	150	69.7	6.4	915	6.56	0.059	13.41	0.062	1.02	2.26	0.141	15	5.63	73.5	30.4	142.4	299	67	11310	106.25	283	715
68_1	1140	53.1	6.1	475	2.35	26.4	72	8.6	37	8.3	1.59	12.9	2.78	29.4	12.2	73.4	219	55.1	10340	138.25	174	1015
69_1	420	110.2	22.6	1980	6.77	9.3	54.7	8.4	54.8	43.4	16.6	89	22.8	181	56.2	267	747	164	10810	157	414	2284
70_1	70	77.5	6.3	950	1.51	0.05	5.26	0.112	1.81	4.03	0.348	21	7.48	87.1	31.6	143	244	50.2	9810	29.525	67.1	155.6
71_1	170	67.5	5.9	657	1.51	3.6	13.1	0.99	3.4	2.54	0.206	12.5	4.06	51.4	20.8	101.8	209	45.4	10150	55.5	82.7	298.5
72_1	20	52.1	7	405	2.13	0.9	10.01	0.352	2.89	1.76	2.18	5.32	2.2	25.2	12.2	66.7	179	42.6	11330	98.75	223	685
73_1	100	74.9	10.1	695	2.13	0.121	5.7	0.095	1.17	1.96	0.346	12.3	4.35	54.8	22.1	106.2	213	44.8	10690	51.25	70.3	290
74_1	230	79.2	4.4	676	1.59	0	5.07	0.01	0.78	1.53	0.103	11.5	4.33	56.6	21.4	98.1	199	42.2	10350	36.65	57.6	166.8
75_1	440	77	7.1	575	1.5	0.095	4.39	0.037	0.91	1.59	0.147	9.6	3.58	47.6	18.9	89	169	34.1	10050	24.775	42.3	119.3
76_1	-150	86.5	7.2	837	1.37	0	5.48	0.044	0.83	1.81	0.224	14.24	5.87	71.5	28.3	123.9	233	48.6	9650	31.15	60.1	149
77_1	230	77.9	7.5	1257	2.59	0.046	6.95	0.061	1.99	3.88	0.203	23	9.48	106.6	43.1	198	355	71.9	10000	55.75	101.2	269
78_1	190	83.9	4.9	1180	2.28	0.18	5	0.092	1.25	3.06	0.057	21	8.29	105	39.4	182	330	69.8	11340	95	162	541.9
79_1	70	83.1	5.4	1031	2.3	0.036	6.88	0.099	1.5	3.18	0.24	20.7	7.57	90.2	34.1	150	272	55	10100	46.25	91.7	218.4
80_1	250	66.9	12.1	1460	8.21	4.16	40.1	3.19	22	18.1	9.7	47.7	13.8	133	45.2	198	432	92	13200	159	454	1850
81_1	350	107	22.3	2030	4.22	8.47	54.2	9.1	59.3	48.1	16.4	114	27.5	227	59.4	251	586	128.9	10100	201.75	424	2160
82_1	230	60.2	7.3	1370	7.5	1.02	21.3	0.87	9.2	8.7	2.24	32.3	10.7	115	44.5	213	430	84.7	9860	153.25	249.3	981
83_1	90	68.5	2.1	624	1.44	0	5.91	0.04	1.4	2.36	0.229	12.8	4.08	50.1	20.1	96.2	204	45.9	11000	60.5	108.8	391
МзСе																						
01	1220	116	0.9	1890	1.52	77.3	19.8	19.8	80	18.6	2.35	47.1	14.6	171	62.7	274	481	95	10400	98.5	100.3	350
02	430	99.1	284	1494	4.2	27.9	5.77	5.5	22	9	0.84	31	10	126.6	50.4	242	488	103.4	9860	101.0	100.8	694
03	260	93.6	6.7	1420	3.56	20.4	10.6	4.47	23.3	12.1	0.58	29.8	9.4	116	44.5	215	438	87.3	13290	132.0	66.1	718
04	1080	141	8.6	2680	5.69	86	36.7	21.9	102	29.9	4.55	59.3	18.6	233	88.3	420	772	156	11310	170.5	199.8	1110
05	1050	115.9	8.7	2220	5.19	4.18	7.21	1.27	6.9	7	0.193	32	13.7	177	72.9	353	667	133	12370	211.8	206.4	1285
06	770	278	72	5000	12.9	110	245	61.6	346	238	18.1	389	91.7	660	169	651	1100	223	14500	162.8	208	1303
07	600	131.5	7.3	2120	2.29	0.7	5.16	0.461	4.47	7.83	0.341	43.6	15.27	182	70.1	319	551	110	10690	105.5	172	542
08	630	122	9.1	1759	1.71	8.3	18.7	2.71	12.1	7.09	0.51	29	11.21	145.5	58.6	279	534	105.9	12600	92.8	182.7	683
09	220	125.3	2.2	1424	1.12	0.255	2.94	0.162	2.36	4.6	0.245	28.5	10.5	116.6	46	210	357	73.2	9380	48.5	71.5	191.6
10	530	154.5	13.8	2830	2.37	0.074	4.14	0.33	6.62	13.1	1.5	77.6	25	291	105.6	447	731	145	9150	66.o	165	326
11	1370	185	10.3	3110	2.05	9.6	5.93	1.94	11.6	13.2	0.54	65.1	24.1	296	116.5	532	950	186.8	11340	116.3	237.2	709
12	1130	246	203	3710	9.4	30.7	192	41.6	252	192	14.2	298	65.9	481	125.7	518	921	196	10230	138.3	234	1748

	Р	Sc	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu	Hf	Pb	Th	U
13	220	99.9	1.1	517	3.51	0	4.39	0.017	0.74	2.06	0	12.9	4.66	54.1	16.84	62.3	83.9	15.11	13060	99.3	111.5	548
14	1080	125.5	8.2	2290	5.14	30	34.8	10.44	47.2	24.9	2.53	52.3	16.4	188.4	73.1	352	681	138.4	11220	185.5	326.9	1179
15	650	119.6	93	1319	3.3	39.2	7.95	8.2	37.4	10.9	1.1	25.2	8.89	107	42.8	213	410	86.8	11970	110.3	93.7	553
16	670	107.1	8.1	1420	1.39	4.8	4.99	1.08	6.5	4.4	0.182	21.5	9.23	120.5	48.4	223	411	85.4	11130	88.0	114.5	437
17	1050	156.1	39.4	4130	11.73	91.1	182	38.1	194	94.7	14.6	163	44	438	143.6	647	1227	250	13120	157.5	232	2060
18	1960	285	56.5	7760	9.77	117	283	62.5	337	201	17.9	356	100.8	924	280	1125	2010	402	13910	178.5	456.2	1786
19	510	126.6	6.1	1910	1.81	0.96	5.01	0.72	6.9	9.4	0.326	39.9	13.77	166.8	61	275	486	98.5	12350	69.0	137.8	400.3
20	1200	195	30	4220	7.1	16.9	76	12.9	84	56.2	5.7	118	39.1	374	158	608	1230	210	11800	180.0	214	820
21	1020	146.4	18.1	2870	3.52	12.3	70	8.2	41.8	22	2.53	61.5	22.4	279	107.2	490	862	167.7	12700	124.3	444	1399
22	640	114.8	22.7	2150	7.74	44.3	85	19.5	113	61.2	6.9	90.4	20.6	202	70	353	889	195	20000	201.3	169	2720
23	1080	151.9	18.7	2530	6.87	3.71	34.8	4.26	26.4	22.4	3.06	52.5	18	227	85.8	402	734	147.3	11930	155.5	317	1560
24	230	79.3	4.5	369	2.02	0.143	28.7	0.103	0.81	1.2	0.184	6.05	2.24	26.4	11.25	54.9	128.2	29.3	11100	72.5	163.9	278.4
25	590	108.1	3.3	1600	2.47	5.6	4.85	0.97	5.82	4.19	0.216	23	9.54	126.4	53.2	246	467	96.5	12640	132.5	138	680
26	680	129.9	7.7	1850	1.86	0.022	4.36	0.064	1.43	4.5	0.052	27.1	11	146.8	59.2	278	539	105.2	14510	101.3	181.2	729
27	1050	187	4.1	3300	1.75	0.152	2.41	0.079	1.21	4.6	0.071	45.5	20.9	288	117	549	1040	202	12930	201.8	140	804
28	250	152.1	3.6	1352	1.54	0.003	2.99	0.098	1.94	4.86	0.26	29.1	9.75	116.1	45.5	202	371	74.8	10640	61.5	99.1	316.8
29	570	140	5.6	1960	1.53	4.27	3.33	1.4	5.86	8.4	0.283	44	15.3	183	65.4	285	492	95	10380	63.3	116.6	373
30	670	107.6	3.8	1233	1.6	0	1.78	0.029	0.34	1.69	0	13.4	6.22	92.8	39.6	194	403	82.8	13020	105.8	77.37	513.6
M ₃ Cg																						
01	500	137	17.8	1250	3.93	0.36	20.6	0.197	2.57	7.1	0.86	28.9	8.8	114	42.5	196	350	73·3	11330	80.8	145	305.9
02	270	154	5.6	1193	2.02	1.04	7.95	0.76	5.43	6.26	1.22	26.5	9.67	114.1	37	145.1	217	39.5	11890	86.5	47.3	434.6
03	660	199	5.8	920	2.6	0.025	18.3	0.035	0.71	1.43	0.56	10.6	4.61	66.2	28.3	142.4	331	72.6	12420	91.5	70.1	444
04	430	190.1	12.1	824	0.99	0.68	5.68	0.49	3.53	4.2	1.1	15.5	5.29	67.3	25	108.1	209	43.3	11150	64.5	45.7	363
05	1110	160	7.9	1720	2.12	0.091	2.84	0.201	1.87	2.67	1.8	17.9	8.9	125	53.9	269	571	118	12280	228.0	108.3	942
o6	810	183	8	1273	2.48	0.12	18	0.203	1.74	3.02	0.54	19.9	7.74	99.4	42.3	198	406	84.8	12430	109.0	141.3	621
07	210	81.4	11.6	800	4.95	0.028	29.2	0.067	0.9	1.95	0.35	11.04	4.22	59.4	25.4	133.3	323	67.9	12220	67.0	137.7	335
o8	500	206.7	10.4	1090	2.34	0.243	10.22	0.246	2.06	3.25	0.96	17.9	7.12	89.4	33.1	154	335	71.9	12320	100.8	79.1	516
09	400	109.1	7.2	446	0.6	0.02	1.53	0.028	0.62	2.72	0.039	15.5	4.61	44	13.3	52.2	84	16.2	13560	141.0	78.81	774
10	910	123.7	15	2870	2.69	1.54	14.4	1.44	14.1	16.4	4.78	72.8	23.7	265	93.5	389	686	140.5	8390	70.5	154	240
11	6400	151.8	13	1900	3.29	37	153	12.9	72	27.3	2.45	62.9	16.1	173	61	282	546	112.6	11000	112.5	400	433

	Р	Sc	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Eυ	Gd	Tb	Dy	Но	Er	Yb	Lu	Hf	Pb	Th	U
12	580	210	37.5	1410	1.88	0.64	10.58	0.75	5.8	5.5	2.91	25.2	10.3	116	38.4	171	316	64.8	12000	85.5	51.3	559
13	850	212	15.3	2670	3.07	0.031	12	0.33	7.4	12.9	2.51	71.6	23.2	262	95.3	416	714	141	9720	94.3	316.8	510
14	400	140.8	9.1	735	1.77	0.226	15.68	0.226	1.95	2.79	o.86	15.1	5.53	64.4	24.6	114.8	234	49.5	9500	29.2	55.9	108.6
15	360	128.5	9.9	618	1.96	0.117	12.42	0.092	0.86	1.84	0.274	10.8	3.94	51.5	20.8	100.4	214	45.6	11570	61.3	57.8	249.7
16	660	116.4	19	1002	1.1	0.042	13.81	0.384	5.28	6.77	1.78	24.8	7.54	84.5	31.2	145.1	299	64.6	10020	49.3	122.6	198.4
17	360	193	12.6	651	2.6	0.085	1.01	0.052	0.41	1.47	0.072	9.6	4.21	47.5	18.84	92.5	253	58.4	14660	193.8	67.2	1302
18	1020	190	11.9	1159	1.38	0.021	8.34	0.084	2.02	6.15	0.46	34.4	10.57	111.4	39.1	164.5	299	58.1	11590	56.8	108.2	262.7
18b	1030	160	10.7	950	1.16	0	6.15	0.086	1.91	5.28	0.41	25.5	9.52	89.9	31.8	131	239	49.9	10630	65.0	73.4	240.7
19	1000	326	14.4	1200	1.91	0.22	19.4	0.211	2.54	4.1	1.28	23.3	7.72	102.9	40.5	190	370	77.5	9890	40.0	89.9	118.8
20	1250	298	8.1	1520	2.47	0.029	32	0.091	1.65	3.29	0.91	20.6	8.5	115.9	50.3	255	574	122.8	12710	83.0	214	387
21	580	98.3	9.5	1063	3.95	0.019	57.6	0.184	4.03	5.64	1.44	26.9	8.55	100.8	35.9	157.4	322	63.8	9740	29.9	80.7	123.6
22	1040	141.7	7.9	485	1.63	0.139	9.54	0.058	0.42	0.99	0.097	5.88	2.75	36.2	15.23	73.7	163	33.4	11810	96.5	40.5	417
23	460	69.5	12.5	1230	3.61	0.65	27.4	0.88	5.86	5.18	1.97	26.6	9.1	107	38.1	171	335	72.2	7220	58.0	200	299
24	620	145.7	21.2	1132	3.3	1.08	13.33	0.69	5.25	5.2	2.15	28.4	8.88	99.6	34.3	148.9	271	57	12440	74.5	99.8	475.5
25	870	190.8	10.5	986	2.23	0.188	3.3	0.041	0.63	2.37	0.077	14.74	6.05	77.5	29.9	140.2	296	60.4	13590	180.3	75.4	1088
26	1500	294	12.2	1137	1.63	0.42	4.6	0.31	1.95	1.59	0.59	11.1	5.48	81.8	35.7	180	472	107.2	13280	194.0	24.5	709
27	2460	260	17.8	2370	8.26	3.01	9.2	0.9	5.57	5.1	1.01	34.4	12.7	174	75.6	366	794	165	9700	220.3	341.7	1888
28	1860	112.1	7.6	1040	13.6	24	72	7	27	5.3	0.137	15.6	5.82	75.2	32.3	173	428	98.3	11870	397.5	234	1457
29	990	83.3	10.7	735	1.09	0	14.4	0.033	1.48	2.79	0.28	14.7	4.97	60.2	23.6	109	212	42.4	10440	44.8	64.8	87.9
30	1650	182	11.6	1780	1.48	0.87	11.96	0.69	4.65	5.9	2.46	35.1	12.6	146	54.5	236	420	87.8	12000	38.0	84.4	199
зор	770	137.2	15.3	858	3.91	0	28.2	0.028	1.11	2.47	0.184	15.2	5.83	71.5	28.9	135	276	58.2	11430	80.0	171.8	354
31	470	128.7	19.9	826	3.73	0	26.6	0.037	0.82	2.23	0.275	14.5	5.43	69	27.1	128.2	259	56.6	10990	73.8	130.7	233
32	1740	294	6.1	1210	4.11	0.82	3.08	0.28	1.37	2.09	0.25	12.9	6.81	87.6	40.4	220	588	140	12950	133.8	45.8	498
33	610	88	15.7	755	2.97	47	128	14.4	66	10.9	0.38	18.4	5.26	65.8	24	120.6	239	50.1	10090	68.3	150	288
34	530	107.2	7.6	362	1.22	0.029	1.06	0.087	1.12	3.07	0.14	17.3	4.72	43.4	11.07	37.2	46.7	8.24	12940	129.5	55.5	722
35	330	105.7	8.2	691	1.44	0.014	3.05	0.0038	0.57	1.16	0.107	8.06	3.44	48.6	20.8	94.1	184	37.2	12180	54.0	31.9	310.4
36	640	117	11.8	1900	3.69	0.069	32.4	0.195	3.15	7.33	1.21	42.3	13.92	166	65.5	286	546	108.1	9200	119.0	291.5	349.4

	Р	Sc	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu	Hf	Pb	Th	U
M4Ca																						
01	870	131.2	8.4	1741	0.89	0.154	2.86	0.186	3.23	5.18	0.63	33.3	12.76	155.9	57.2	239	402	77.2	11260	40.8	63.4	195.1
02	510	76.7	2.7	486	1.1	0	3.87	0	0.58	2.2	0	10.4	4.45	47	15.5	59.7	94.5	17.6	12200	121.3	134	427
03	-10	80.4	4	241	1.21	0	4.87	0.028	0.87	1.73	0.034	9.16	2.73	25	8.15	29.5	44.6	8.6	12700	127.3	189.3	625
04	400	102.2	6.4	757	1.02	0	3.48	0.027	1.01	2.46	0.054	15.4	5.56	66.5	25.8	113.3	213.1	41.1	12620	91.5	158.6	510.6
05	90	83.4	7	186	0.82	0.004	4.82	0.034	0.83	1.86	0.125	9.1	2.5	20.9	5.76	18.8	24	4.13	12680	90.0	152.9	418
o6	300	134.2	9.5	1099	1.38	0	2.46	0.081	1.27	3.83	0.16	22.4	8.18	96.2	37.2	163	301	62.3	10280	56.3	84.6	259.5
07	540	113	7.1	1640	0.75	0.46	6.3	1.09	7.6	8.5	1.17	35.1	12.2	155	56.8	247	459	87.3	12610	135.3	88.5	554.7
08	1900	757	12.4	6120	2.02	12.3	93.4	19.9	108.2	86.2	20.9	195	75.1	845	258	1051	1810	302	13510	152.0	750	1372
o8b	1790	328	4.7	3530	1.44	4.67	25.4	4.55	23.6	22	4.16	73	28	352	122	542	940	183	12300	156.8	139	451
09	270	103.3	4.9	609	0.97	0.212	5.61	0.326	2.79	3.72	0.332	17	5.57	57.4	20.6	84.3	149	30.1	12720	117.5	143.9	579
10	230	106.9	8.4	583	1.18	0.008	3.98	0.061	1.55	2.19	0.114	13.9	4.68	54.1	20.1	85.3	160	32	13230	102.8	170	742
11	90	92.5	8.2	215	0.96	0.083	5.46	0.065	1.23	2.26	0.114	10.41	3.14	25.2	7.09	22.3	28.5	5.11	13040	100.8	212.9	533
12	310	81.4	6.1	387	1.47	0	3.38	0.017	0.43	1.5	0.09	8.45	3.01	33.7	12.38	54.8	112	24.4	12890	137.3	117	663
13	650	107	48	576	1.14	0.13	5.88	0.038	1.02	3.4	0.3	19.2	5.9	57.6	18.8	65.7	101	17.8	13800	146.3	53.2	174.3
14	880	142	3.5	1940	1.78	0.43	3.69	0.415	2.86	4.03	1.69	22.6	10.66	153	64.8	299	614	123	14740	98.0	108.1	693
15	520	85.4	39	1850	1.12	0.374	7.03	0.336	3.34	5	1.84	33.1	14.9	182	58	204	217	29.6	12850	99.8	177	489
16	120	87.5	7.4	210	o.86	0	4.09	0.037	0.76	1.68	0.104	8.75	2.35	23.4	6.74	22.8	32	6.19	12190	92.3	163.4	513
17	170	98	5.5	416	1.038	0.017	4.05	0.048	0.86	2.09	0.104	12.83	3.85	40.5	13.42	55.1	94.4	18.76	12820	90.5	150	545
18	360	104.5	5.6	1180	0.98	0.045	2.81	0.06	1.06	2.03	0.05	20.5	7.71	102	41.3	180	344	68.2	12860	150.0	127.3	760
19	80	87.7	5.4	343	1.07	0.0066	4.81	0.04	0.6	1.82	0.052	10.67	3.65	36.4	11.55	41.4	63.8	12.04	12600	125.0	194	660
20	120	90.8	6.6	512	1.15	0.118	5.18	0.34	1.83	3.72	0.177	15.4	5.44	54.3	17.5	64.9	94.3	17.5	12250	133.3	179.7	570
21	920	222	7	1613	1.44	4.1	11	1.26	6.5	5.83	0.304	33.3	11.74	142.9	55.3	246	451	89.2	11380	61.1	86.8	283
22	-200	76.4	15.1	166	1.09	0.018	5.57	0.047	0.39	2.06	0.1	7.1	2.09	18.7	5.24	17.1	22.3	3.94	11680	106.0	183	474
23	240	95.1	6.9	375	1.06	0.042	3.4	0.073	0.73	2.07	0.122	9.6	3.14	33.6	12.1	50	85	17.1	12960	82.5	123.1	518
24	70	99.4	11	394	0.96	0.031	4.78	0.028	0.87	1.77	0.156	12.7	4.5	40.4	12.68	46.1	66.6	12.71	13440	121.0	210.2	724
25	470	108.2	8.2	997	0.96	0.091	4.58	0.048	1.14	3.34	0.151	20.8	7.86	90.3	33.2	136	230	46.3	12640	102.5	124.5	440
26	240	90.6	6.5	753	1.41	0.031	2.86	0.135	1.92	3.41	0.176	18.9	5.8	68.5	25.3	108	193	39.6	11250	96.8	94.6	543
27	1310	105	6180	3650	18.9	0.37	6	0.43	4.2	7.9	2.9	65	27.8	370	123	425	406	67	12070	80.5	164.1	345
28	300	120.4	7	891	1.19	0.018	1.96	0.022	o.86	3.19	0.092	17.4	6.45	74.7	29.4	137	247	50.6	10840	29.8	49.1	155.6

	Р	Sc	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Εu	Gd	Tb	Dy	Ho	Er	Yb	Lu	Hf	Pb	Th	U
28b	960	112.5	4.6	1120	0.91	0.21	3.36	0.258	1.66	4.21	0.5	21.3	7.2	93	36.4	175	306	58.5	10400	64.8	43.27	165.3
28c	370	96.6	6.3	663	1.31	0	4.35	0.0048	1.06	1.45	0.056	14.4	5.17	62.4	21.4	92.7	151	30.4	13080	111.8	233.8	731
29	-140	80.3	2.8	522	1.24	0	4.19	0.034	0.4	1.89	0	12.7	4.4	49.7	16.72	64.3	98.1	18.81	12130	119.0	193.3	505
30	370	110.2	7	930	1.07	0.061	4.28	0.169	1.92	3.63	0.208	20.5	7.38	84.1	31	134	234	45.7	12210	109.0	159	537
31	170	91	4.9	522	0.84	0	3.91	0.026	0.84	2.63	0.108	12.7	4.21	45	16.7	70	120	22.5	12290	102.5	175.3	617
32	60	93.9	8.9	611	1.34	0.139	4.85	0.317	2.42	3.23	0.463	14.4	4.91	56	19.51	85.7	163.5	34	12140	128.8	152.1	711
M4Cb				6				2							0			ć				
01	230	74.3	4	674	1.04	0.42	7.19	0.183	1.43	2.37	0.21	12.33	4.68	56.6	22.8	103	219	46.3	10350	88.0	95	370
02	120	112	6.5	1570	2.01	0	5.28	0.085	1.68	6.32	0.29	35.4	11.3	146	56.5	241	417	81.9	11670	72.5	114.8	319
03	1110	166	13.2	2550	7.18	3.09	38.8	3.68	22.9	19.5	3.88	57.4	23.4	262	91.4	395	714	133	12570	205.3	496	1370
04	3100	325	13.8	7040	6.76	4.61	46.4	6.69	39.8	38.9	11.2	134	59.2	755	276	1177	2200	374	12910	194.3	505	1268
05	280	63.8	2.9	587	1.95	1.17	13.3	1.04	4.79	3	0.75	9.7	4.3	48.2	19.2	84.9	195	45	12380	150.3	102	514
06	400	73	5.2	510	2.58	0.115	11	0.24	1.8	0.8	0.41	6.48	2.91	40.7	17.2	88	215	47.3	12600	96.8	99.6	429
07	470	98	9.1	1440	1.81	0.424	11.56	0.406	4.15	7	0.81	32.6	11.22	130.4	49.9	216	402	79.4	11990	102.3	189.8	556
08	980	113.7	9.6	2980	3.77	0.438	23.9	0.822	8.72	14.5	0.67	72.4	24.9	283	110.7	463	757	144.7	9970	218.0	638	993
09	1540	245	36.5	4540	6.87	8.2	70.1	9.3	59.6	46.7	8.5	136	48.9	508	176	705	1109	206	8910	229.8	600	842
10	150	71.2	3.1	515	1.34	0.52	5.38	0.12	0.96	1.16	0.226	8.9	2.94	39.2	17.2	81.8	177	38	9780	32.0	39.1	121.4
11	220	60.1	6.6	368	1.56	0	6.86	0	0.148	0.43	0.036	3.53	1.53	23.3	11.16	61.7	178.8	41.5	11010	119.0	136.9	619
12	430	105.3	10.2	1051	1.26	0.49	4.29	0.113	1.64	2.49	0.23	18.5	7.15	87.8	35.7	159.4	307	61.9	9940	37.0	57	168.9
13	160	85.6	2.6	2270	1.72	0.028	9.3	0.273	5.58	10.3	0.64	53.1	17.8	204	80.8	342	576	113.7	9230	96.8	181	359
14	140	86.7	6.2	797	2.15	0.99	12.2	0.96	6.7	4.6	1.33	15.9	5.86	69.5	27.3	133	309	65.2	12150	188.3	186.4	1168
15	350	84	396	624	2.54	0.46	8.34	0.239	2	2.53	0.509	10.2	3.99	50.8	21.9	98.1	200	39.8	10030	45.3	102.6	301.1
16	70	63.9	1150	790	2.15	1.2	9.1	0.27	2.22	2.31	0.8	10.8	5.21	76	25.2	116	237	48.7	11660	215.8	170.7	983
17	240	82	8.6	627	1.55	0.041	7.9	0.068	0.88	2.09	0.26	9.9	4	46.1	22.5	95	215	44.8	10600	115.3	69.3	287.7
18	300	94.1	3.9	663	2.06	0.75	10.5	0.656	4.79	3.78	1.02	12.7	5.11	58.6	22.3	102.5	225	47.1	12410	159.3	140.9	690
19	1300	627	20.6	3680	4.12	18.7	127	21.9	121	78	24.2	149	55.8	544	154	586	1090	191	17800	157.8	752	2758
20	1150	223	10.4	3420	4.51	2.53	27.8	3.22	21.1	20	4.3	73.9	30.7	368	135.5	569	996	185.1	12640	222.0	635	1480
21	490	153	5.7	1059	1.34	0.141	5.91	0.15	0.79	2.27	0.099	16.4	7.2	87.7	35.8	160.3	313	63.3	11910	65.3	72.6	257
22	390	93.3	9	2060	0.96	0	3.88	0.174	3.78	6.9	0.34	42.8	16.8	183	68.6	286	504	94.7	9910	81.3	153	324
23	180	77.1	7.3	1300	1.57	0.069	8.64	0.151	2.37	4.32	0.57	24.3	9.4	115	44.2	195	364	75.2	10800	130.5	150.6	578

	Р	Sc	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Yb	Lu	Hf	Pb	Th	U
24	410	100.5	5.5	2380	2.46	0.029	11.4	0.293	4.27	9.09	0.557	51.7	17.5	211.6	82.8	354	623	120.5	10020	117.5	268.5	549
25	1480	185	22.4	4430	11.91	12.99	77.8	6.98	42.1	29.4	6.4	113.4	40.9	481	172	708	1247	232	10240	262.0	858	1713
26	800	90.5	780	1621	2.1	3.5	14.7	1.02	7.8	8.59	0.705	41.4	13.13	151.3	55.1	232	386	74.3	9560	50.6	111.9	236
27	370	81.4	4.4	1810	1.9	0.016	10.3	0.16	3.02	6.8	0.45	39	13.4	156	60	261	464	91	10650	103.3	215	540
28	180	62	9	394	1.08	0.025	6.85	0.058	0.52	0.71	0.12	4.29	2.03	27.2	11.67	61.9	157	35.1	11080	168.3	181.7	915
29	1380	358	36.2	4110	4.57	9.04	84	13.1	75.7	59.3	13.8	135.6	48.2	502	162.4	636	1012	175.8	9390	195.0	1130	1181
30	360	74.2	4.6	762	1.32	0.028	6.37	0.063	0.79	1.79	0.149	12	4.55	57.5	24.8	122.6	276	59	11490	123.3	120.8	593
31	1010	86	6.9	1540	1.61	25	51	4.2	18	11.4	1.39	37.2	12.8	154	54.2	229	411	80.3	10870	122.8	217.8	773
M40		c		6	0.0		ć			0				6.0	ć	â		0			6.0	
01	90	62.4	37	694	8.8	0.25	16	0.53	5.25	8.5	0.52	32.3	10.12	96.8	26	84.1	94.9	14.8	10590	139.3	76.8	610
02	2330	73.4	7.8	529	9.35	35.8	121	15.7	74.5	26.4	1.25	39.4	9.14	72.5 C	19.1	62.3	74.9	12.9	12560	139.0	130.1	1258
03	-70	71.9	7.5	578	8.6	1.63	23.6	1.55	11.5	9.6	0.45	23.6	6.67	63.1	22.7	86.9	153	32.1	11500	135.5	62.2	562
04	660	94	11.5	1410	17	4.5	54	4.7	30	19.9	1.77	53.2	18.4	187	55.5	187	217	32.5	9960	122.3	91.9	774
05	500	71.8	0.2	1287	0.73	0.39	10.77	0.88	10.3	15.4	1.11	50.6	10.0	103	47.1	179	261	48.3	11940	168.3	136	1073
06	260	113.8	0.0	708	0.89	0.117	7.38	0.579	8.89	10.75	2.47	30	8.9	83.1	25.4	97	147.7	27.9	7420	15.5	27.6	79.1
07	3400	76.4	7.9	- 0-	8.94	4.45	32.4	4.46	57	110	14.2	408	123	1080	259	729	696	114.1	12880	129.3	263.6	2830
08	240	03.5	0.2	30/	0.74	0.1/9	10.3	0.133	1.51	2.05	0.022	11./	3.00	39.3	12.9	55.9	103.1	20.5	10970	102.0	91.3	0/2
09	110	93.3	/.1	1320	1/	0.04	13.0	0./	0.3	0.1	0.3/	32./	10.9	125	40.4	200	3/2	6 <u>9</u> .9	12350	111.3	94	5//
10	-110	12/	0.5	503	0.9/	0.210	14.3	0.309	3.15	4.99	0.005	10.2	5.10 0 1 c	5/.2 00 -	19.0	03./	100.0	33./	11010	149.5	05.3 0-0	050
11	-100	124 60 3	1/	/52	14.1 6.61	- 0.90	25.7	1.01	10.9	11	0.41	2/.1	0.15	(7.2	30.0	130	220	3/./	11090	115.0	02.0	551
12	-00	68 5	32.2 6	490	6.01	/	34.2	3.41	13.3	4./	0.149	12.7	4.21	4/.3	10.03	/3.2 r6.6	141.0	20.0	12550	134.5	/1.4	/5±
13	-40	70.3	61	404	11.8	0.90	15.09	0.522	3.4± 28 c	3.3	0.100	±3./	4.15	42.4	13.0	170	264.5	20.4	120/0	100.0	59.1	(10.7
15	-110	101.1	24	1210	TT:0	10.5	E2 2	5.72	20.5	14	1.06	30.0	1/ 2	1/6	43.5	100	204	40.1 F0.8	11110	100.3	178	419.7 661
-5 15b	700	100.2	24 10 F	1310	5.99	10.5	122	3·5 18	21./ 70.5	-14.2 28 r	1.00	4/.1	14.Z	168	49.3	199	321	59.0	05/0	94.0 75 8	130	550
16	,00	71.0	±9.5	4.48	6.45	40	12 Z	0 1 2 7	79.5	4.24	4.70	45 20.8	±4.5 г 66	-20 -20	4/·±	<u>гбр</u>	300 72 F	12.80	12/70	/5.0	39.3 187.6	550 F ⁸¹
17	-100	70 /	15 6	206	5 28	0.014	-7.5 18.8	0.12	1.66	4·34	0.0/2	12.0	o.oo ج ج	25.4 25.2	10 16	257	/3·5 /8 2	7 81	121/.0	20 S	122.0	225
-/ 18	470	, u. 4	±2.0	290	5.20 6.52	0.045	10.0	0.43	2.00	5·44	0.05/		J·/	33·4	10.10	22.∕ 128	40.2 271	/.U±	11000	120.2	15/	335 866
10	4/0	70	7.1	288	7.64	0.01/	3.42	0.102	2.03	⊃·/ / 01	0.19/	20.5 14.8	9.07 4.01	-01.3 26.1	33.V 10.27	-50 7 CC	~4± 41 E	44·± 7.28	12020	+ <u>5</u> 0.3	-+⊃4 11⊑ ⊑	240
20 54	70	76.8	/.⊥ 8 1	200 4.4.E	/ 44	0	±9.94	0.103	2.04	4.01 E 18	0.005	22.1	6.22	50.±	16 E6	55·/	4±·5	11 72	11080	25.0	101 7	-49 178 7
20	70	70.0	0.1	445	4.07	0	20	0.132	2.00	5.10	0.1	22.1	0.23	50.2	10.50	55.4	/0.4	11./2	11900	25.0	101./	140./

	Р	Sc	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Eυ	Gd	Tb	Dy	Ho	Er	Yb	Lu	Hf	Pb	Th	U
21	500	62.6	4.5	847	5.37	1.68	19.3	1.32	8.7	6.6	0.28	25.7	8.1	89	29.7	113	177	35.8	11060	142.0	99.7	618
22	4310	557	110	10060	141	55.5	280	41.2	247	160	12.9	376	133.7	1420	436	1660	2190	322	13960	98.0	178.3	1441
23	2860	213	46.7	5880	72.2	16.9	216	21.9	153	112	9.72	262	82.7	881	271	975	1590	269	11970	120.5	82.7	1001
24	1940	511	47.2	4330	33.5	6.5	151	21.1	161	160	6.21	308	90.6	814	188	618	735	109.9	13070	145.3	175.3	1619
25	370	68.4	5.3	303	6.13	0	21.1	0.118	2.26	4.17	0.068	15.25	4.16	38.5	10.95	35.8	42.7	7.37	11750	26.4	88	141.1
26	140	63.4	7.7	249	6.75	0.422	23.2	2.58	15.2	2.92	0.051	10.2	2.83	26	8.73	32.3	46.8	8.57	12170	132.3	78.9	860
27	440	65.8	5.7	575	5.46	0.017	12.88	0.141	2.32	5.16	0.156	22.5	6.77	65.1	21.8	81.1	122	22.8	10930	122.5	84.8	629
28	1690	87.4	10.2	2390	8.35	1.2	17.2	2.79	35	47.2	3.24	137.6	37.2	353	96.7	337	482	80.2	12500	171.3	67.9	1314
29	410	124	48	2800	26.7	12.1	110	14.1	74	45.5	5.17	103	35	353	106	380	532	87.1	10500	113.0	147.3	953
30	50	75.6	6	471	6.15	0	16.6	0.138	2.25	4.84	0.087	17.6	5.03	49.8	16.5	64.8	101	19.2	12730	77.3	93.5	525
31	720	131	21.4	2390	23.3	5.54	63.4	7.01	40.2	33.1	2.98	81.8	27.7	303	100.6	409	814	159	9920	81.3	98.1	641
32	1600	263	42.9	3100	49.5	280	710	81	340	92	7.1	127	39.5	395	117	413	567	96.8	9760	97.5	156.7	895
33	200	71.6	6.5	522	8.4	0.035	27	0.191	3.76	8.55	0.14	30.5	8.08	70.3	19.5	61.5	71.5	11.69	11380	24.0	133.6	131.7
34	750	65.7	8.6	1145	6	0.207	13.5	0.608	6.3	14.8	1.38	60.8	21.3	187	47.4	150	155	25.2	11700	125.8	61.2	540
M50																						
01	310	61.6	3.8	1016	5.84	0.15	12.17	0.103	1.13	2.31	0.036	18.2	6.65	86.7	35.1	164.3	325	67.1	12440	65.0	77.3	306
02	70	58.9	2.9	381	3.11	0	7.31	0.0015	0.25	0.8	0	4.98	2.36	30.3	13.21	63.1	135.3	28.5	12750	34.7	33.7	164.1
03	560	69.8	8.1	1037	4.2	0.103	16.31	0.088	1.13	3.27	0.123	19.1	7.14	89.8	35.6	165.9	323	65.8	11160	70.5	116.4	351
04	440	73.4	6	1207	1.92	0.011	7.75	0.148	2.72	4.94	0.404	27.3	8.87	108.8	41.8	186.2	344	69.4	9360	41.3	75.8	205
05	700	60.7	8.6	2230	7.21	1.25	53	1.03	8.5	9.9	0.56	52.3	17.7	205	79.6	347	616	120.4	10980	149.8	233.3	742
06	370	76.1	11.7	2010	5.09	0.28	17.4	0.375	5.3	8.66	0.47	43.1	15.33	182	71.1	313	604	120.2	10600	114.8	230.7	660
07	240	85.3	8.1	1149	1.19	0.0111	4.62	0.174	3.41	6.23	0.535	29.6	9.91	109.1	40.5	172.4	307	60.9	9240	25.1	41.4	115.3
08	300	73.1	71	1400	3.55	0.166	10.5	0.212	2.67	5.04	0.193	30.4	11	126	49.5	223	410	82.1	11640	56.3	115	306
09	190	66	14.9	1067	3.86	0.321	9.63	0.288	3.39	4.88	0.252	25.3	8.36	95.3	37.9	165.7	303	61.1	10620	43.3	59.7	198.8
10	250	60.5	2.1	819	4.67	0.069	11.82	0.094	1.03	2.44	0.118	15	5.58	65	27.4	132.8	271	59.7	11630	95.3	85	448
11	330	81.9	8.8	3100	3.74	0.02	16.12	0.376	7.41	14.26	1.18	80.8	28.1	305	118	496	861	168.2	9050	128.0	271.6	562.2
12	440	67.1	4.1	1034	4.86	0.018	15.4	0.036	1.07	2.97	0.078	18	6.61	84.4	34.6	162.1	326	65.9	11740	78.5	115.7	380
13	910	71	5.4	914	3.59	1.67	20.6	1.27	7.6	3.85	0.176	17.7	6.27	77.5	32	145.3	294	59.8	11860	65.8	90.2	313
14	840	63.9	209	1061	12.1	1.78	22.5	2.36	18.5	13.7	6.58	26.7	8.27	89	36	172	415	94.6	11070	97.8	121.1	1341
15	780	70.6	12.1	1470	3.1	0.188	7.9	0.329	3.24	6.1	0.46	32.6	9.7	126	49.1	218	445	93.5	11810	99.8	59	423.3

	Р	Sc	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Yb	Lu	Hf	Pb	Th	U
16	150	62.5	15.3	611	5.82	1.94	12	0.74	5.84	2.44	0.46	10.4	3.98	45.6	19.25	101.5	287	66.4	17130	119.3	49.3	1092
17	210	67.3	11.4	1001	4.99	2.78	17.2	0.62	3.39	3.18	0.24	18.3	7.15	86.6	35.6	163.9	316	64.3	11580	90.3	115	371
18	340	64.8	12.6	1124	5.45	0	16.94	0.055	0.98	3.41	0.048	21.7	7.56	94.6	39.5	175.9	349	73.5	11830	94.5	136.6	415
19	1210	71.6	34.7	3550	18.2	2	32.2	1.76	13.7	16.2	4.5	61.4	24.1	314	135	638	1304	268	11860	131.3	753	1950
20	10	57.1	7.4	350	2.55	0.67	5.9	0.265	1.31	0.77	0.163	3.99	1.6	22	10.95	59.6	192.4	45.8	15930	116.8	99.9	730
20b	478	103.8	23.9	1270	3.48	1.58	14.49	1.58	8.42	8.71	1.8	31.8	11.38	120.7	50.3	194.8	360	76.6	10160	79.7	52.3	196.2
21	330	149.4	4.5	2233	1.6	0.029	14.97	0.288	5.89	10.78	2.19	54.1	17.84	206	79.9	344	645	133.8	9330	73.0	161.4	289
22	430	66.9	4.7	933	3.62	0	12.65	0.032	0.84	2.62	0.097	16.3	6.46	79·3	32.6	147.3	304	61.8	11350	72.3	100.8	303.2
23	-370	74	170	869	6.02	3.88	12.5	1.04	5.77	4	0.5	18.3	6.49	74.6	29.1	133.6	304	66.5	10430	81.5	65.5	473
24	320	68	19.3	640	2.94	0.5	6.09	0.42	4.3	6.2	0.88	21.4	6.1	60	21.2	96	234	59.6	13260	89.5	50.25	555.6
25	600	80.2	15.5	1930	4.95	1.44	14.5	0.87	7.83	10.2	0.59	40.1	15	169	69	288	548	109.5	9330	92.8	164	366
26	920	74.9	18.3	1390	3.45	0.95	13.7	1.25	10.2	9.7	0.67	34.4	11	122	48.2	211	405	82.4	11210	57.8	89.6	253.8
27	400	79.5	1.86	1951	2.04	0.013	10	0.251	4.92	9.55	0.524	46	15.49	178.8	69.1	298	539	105.7	9830	63.2	120	293.5
28	310	59.3	13.4	807	4.69	0.055	10.41	0.054	0.9	2.55	0.043	16.3	6.09	71.5	28.8	128.8	252	50.6	10630	50.8	53.7	215.1
29	1390	64.6	5	1650	4.4	3	28.7	2.17	16.7	10.1	0.43	39.1	12.8	150	57.2	262	503	99.8	12630	113.5	183	587
30	210	77.9	5.1	2120	2.59	0.014	11.81	0.347	6.09	10.26	0.57	48.4	16.6	196	76.2	327	581	117.1	10450	70.5	135.7	330
31	530	66.4	3.7	598	2.63	0.25	9.44	0.29	2.8	2	0.158	10.3	3.86	48.2	20.3	98.3	209	45.5	12110	45.5	31.7	189.6
32	130	121	106	3360	29.2	40.2	376	33.2	187	94	24.7	155	42.2	416	123	524	1000	189	10300	153.0	58	1600

Anexo 3. Imágenes de catodoluminiscencia de las muestras. M1Ca

MıCf

MıCh

M1Ci

M2Cb

M2Cc

M3Ce

M3Cg

M4Cb

1215±35.5(-0.2%) • 1223±30.5(-0.7%) 1233±37(0.6%) 6 1100±35(9.0%) 1224±31(9.9%) 1243±34.5(0.0%) 1249±33.5(5.1% 1246±35.5(0.3%) 32 1112±34(0.1%) 879±48(59.8%) 31 1200±43(16,8%) 19 600 1232±32.5(2.5%) 824±43.5(50.8%) 1237±333.5(1.9%) 1230±36(-1.3%) 1209±30(-2.7%) 29 1198±29(2.6%) 21 1254±33.5(-0.1%) 20 1621±37.5(39.3%) 26 1268±31(7.9%) 39 1262±36.5(0.0%) . 11 1194±31(0.8%) 14. • 22 1262±31(1.5%) 000 1261±33(0.9%) 23 1235±35(17.3%) 100µm 24 1113±41.5(18.9%) 16 17 1006±33 1256±32(0.3%) 16 1006±33(33.9%) ±32(0.3%) 15 1123±37.5(31.4%) 902±32(44.9%)

M50

	¹⁷⁶ Hf/ ¹⁷⁷ Hf St norm	¹⁷⁶ Hf/ ¹⁷⁷ Hf corr 2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf corr	¹⁷⁶ Lu/ ¹⁷⁷ Hf corr 2SE	¹⁷⁶ Yb/™Hf corr	ग⁵Yb/ग7Hf corr 2SE	¹⁷⁸ Hf/ ¹⁷⁷ Hf	178Hf/177Hf 2SE	176Hf/177Hf t	t (Ma)	εHf(o)	±2sigma	εHf(t)	TDM	TDM C*	Total Hf Beam (V)
M2Cc Zircon-	0.282108	0.000025	0.000966	0.000018	0.0286	0.00037	1.467216	0.000028	0.282084969	1262	-23.9404495	0.88406386	3.58308288	1609.58431	1816.96884	14.1
o5_Hf Zircon-	0.282121	0.000022	0.000737	0.000013	0.02265	0.00048	1.467218	0.000038	0.282102978	1294	-23.4807362	0.7779762	4.95116109	1581.9957	1756.7811	13.7
Zircon-	0.282113	0.000024	0.0008709	0.0000099	0.02784	0.00039	1.467234	0.00003	0.282092836	1226	-23.7636367	0.84870131	3.04211245	1598.64034	1822.39454	13.54
Zircon- 18 Hf	0.282128	0.000022	0.0005661	0.0000083	0.01671	0.00034	1.467261	0.000033	0.28211485	1230	-23.2331984	0.7779762	3.91380498	1565.32999	1771.1307	15.1
Zircon- 23_Hf	0.282129	0.000023	0.0006836	0.0000033	0.0206	0.00013	1.467279	0.000029	0.282112519	1276	-23.1978358	0.81333876	4.87915445	1568.75666	1747.08289	14.2
Zircon-	0.28213	0.000024	0.001027	0.000029	0.03305	0.00087	1.467212	0.000033	0.282104965	1290	-23.1624733	0.84870131	4.93042685	1581.56872	1754.92127	12.6
Zircon- 35_Hf	0.282117	0.000025	0.000681	0.000031	0.0181	0.0012	1.467264	0.000036	0.28210122	1227	-23.6221865	0.88406386	3.36217107	1585.196	1803.20882	12.17
Zircon- 46_Hf	0.282132	0.000023	0.000639	0.000014	0.01987	0.00062	1.467202	0.000031	0.282117034	1240	-23.0917481	0.81333876	4.21899922	1562.79781	1759.94559	13.21
Zircon- 49_Hf	0.282165	0.00002	0.0004599	0.0000036	0.01217	0.00016	1.467251	0.000026	0.282154018	1264	-21.9247838	0.70725109	6.07733291	1510.25327	1662.69975	17.52
Zircon- 52_Hf	0.282109	0.000026	0.001144	0.000019	0.03656	0.00096	1.467284	0.000028	0.282082075	1246	-23.9050869	0.91942642	3.11596849	1615.76464	1833.51861	13.23
Zircon- 76_Hf	0.2821	0.000023	0.0006677	0.0000096	0.02067	0.00027	1.467239	0.000032	0.282084464	1232	-24.2233499	0.81333876	2.88185339	1608.0687	1837.11041	14.3
Zircon- 78_Hf	0.2821	0.000023	0.000932	0.000034	0.0285	0.0015	1.467235	0.000027	0.282078243	1236	-24.2233499	0.81333876	2.75233273	1619.2423	1848.33331	14.76
M1Ca Zircon-	0.282151	0.000029	0.001722	0.000022	0.05225	0.00095	1.46725	0.000033	0.282111459	1216	-22.4198596	1.02551408	3.47483436	1581.32467	1787.52025	11.81
16_Hf Zircon-	0.282139	0.000025	0.001095	0.000029	0.037	0.0012	1.46723	0.000034	0.282114044	1207	-22.8442103	0.88406386	3.36167358	1571.86254	1787.50362	14.99
19_Hf Zircon-	0.282132	0.000023	0.0007442	0.0000069	0.02242	0.00027	1.467245	0.00003	0.282114343	1256	-23.0917481	0.81333876	4.48803617	1567.10059	1755.74802	14.12
Zircon-	0.282115	0.000039	0.001705	0.000025	0.05446	0.00059	1.467249	0.000028	0.28207624	1204	-23.6929116	1.37913963	1.9529154	1631.59789	1873.03081	11.15
Zircon-	0.282132	0.000029	0.001581	0.000051	0.0503	0.0014	1.467222	0.000038	0.282095123	1235	-23.0917481	1.02551408	3.32812949	1602.18923	1811.62799	11.54
Zircon-	0.28214	0.000023	0.000911	0.000023	0.02639	0.00068	1.467213	0.000027	0.282118977	1222	-22.8088477	0.81333876	3.87801035	1562.8716	1767.06694	15.43
Zircon-	0.28212	0.000028	0.0013185	0.0000074	0.04286	0.00052	1.467242	0.000031	0.282088641	1259	-23.5160988	0.99015153	3.64493376	1607.83741	1810.74793	14.33
Zircon-	0.28211	0.000032	0.000922	0.000023	0.02668	0.00095	1.467208	0.000034	0.282087948	1266	-23.8697243	1.13160175	3.77985498	1604.94884	1807.83996	13.75
Zircon-	0.282129	0.000026	0.000882	0.000029	0.02657	0.00097	1.467286	0.000033	0.282108612	1224	-23.1978358	0.91942642	3.55602116	1576.93151	1788.74747	13.93

Anexo 4. Datos de isótopos de Hf en zircón

	™Hf/™Hf St norm	™Hf/₩Hf corr 2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf corr	^{ı∞} Lu/ ^ı ™Hf corr 2SE	¹⁷⁶ Yb/177Hf corr	יי ⁶ Yb/יי⁄7Hf corr 2SE	¹⁷⁸ Hf/ ¹⁷⁷ Hf	^{ı⊅8} Hf/ ^ı 77Hf 2SE	₩6Hf/177Hft	t (Ma)	εHf(o)	±2sigma	εHf(t)	TDM	TDM C*	Total Hf Beam (V)
Zircon- 50 Hf	0.282163	0.00003	0.001671	0.000037	0.05366	0.00099	1.467242	0.000033	0.282124758	1212	-21.995509	1.06087664	3.85534714	1562.1671	1760.60903	11.36
Zircon-	0.282089	0.000024	0.0004903	0.0000035	0.01486	0.00017	1.467254	0.00003	0.282077123	1282	-24.612338	0.84870131	3.76062563	1615.73698	1821.63851	13.24
Zircon- 55_Hf	0.282116	0.000035	0.0007546	0.0000084	0.02175	0.0005	1.467252	0.000037	0.28209824	1246	-23.657549	1.23768941	3.68919755	1589.6309	1797.75128	13.26
MıCf																
Zircon- 21 Hf	0.28169	0.00037	0.0012387	0.0000053	0.03739	0.00025	1.4682	0.00053	0.281660136	1276	-38.7219973	13.0841452	-11.1642174	2202.5677	2740.08046	7
Zircon-	0.28214	0.00011	0.001157	0.000081	0.0316	0.0019	1.46736	0.00013	0.282112283	1268	-22.8088477	3.88988101	4.68843793	1573.04467	1752.68886	6.3
Zircon-	0.282168	0.000061	0.00069	0.000014	0.01719	0.00032	1.467247	0.000087	0.28215147	1268	-21.8186962	2.15711583	6.07816212	1515.19703	1665.80727	6.38
Zircon-	0.282137	0.000036	0.0007	0.000034	0.0194	0.0014	1.467268	0.000041	0.282120405	1255	-22.9149354	1.27305197	4.68022907	1558.39034	1742.95309	12.4
Zircon-	0.282086	0.000021	0.000642	0.000029	0.01683	0.00067	1.467232	0.000023	0.282070768	1256	-24.7184257	0.74261365	2.94275153	1626.25976	1852.18675	16.21
Zircon-	0.282105	0.000029	0.001175	0.000013	0.03739	0.00024	1.467221	0.00003	0.282077076	1258	-24.0465371	1.02551408	3.2120406	1622.67411	1836.9669	13.89
Zircon-	0.282092	0.000026	0.000717	0.000026	0.02147	0.00088	1.467238	0.000039	0.282074755	1273	-24.5062503	0.91942642	3.47151037	1621.17436	1832.58762	15.67
Zircon-	0.282115	0.000019	0.0006034	0.000009	0.01489	0.00021	1.467256	0.000025	0.282100833	1243	-23.6929116	0.67188854	3.71282465	1584.74069	1793.91471	16.26
Zircon-	0.282102	0.000029	0.000637	0.000019	0.01575	0.00077	1.46724	0.000044	0.282087032	1244	-24.1526248	1.02551408	3.24619468	1604.02784	1823.82153	14.58
Zircon-	0.282126	0.000027	0.0005562	0.0000061	0.01471	0.00029	1.467276	0.000039	0.282112867	1250	-23.3039235	0.95478897	4.29901268	1567.67553	1762.82649	14.94
Zircon-	0.282126	0.000027	0.000972	0.000012	0.03084	0.00035	1.467257	0.000028	0.282102789	1264	-23.3039235	0.95478897	4.26060017	1584.8362	1776.25604	12.52
Zircon- 65_Hf	0.282117	0.000025	0.00044457	0.00000079	0.01285	0.00016	1.467221	0.000027	0.282106129	1294	-23.6221865	0.88406386	5.06290756	1575.46538	1749.80119	13.45
MıCh																
Zircon-	0.282073	0.000026	0.001051	0.000012	0.034	0.00038	1.467249	0.00003	0.282048144	1252	-25.1781389	0.91942642	2.0493421	1661.8747	1904.72172	12.39
Zircon-	0.282141	0.000025	0.0008734	0.0000081	0.02589	0.00038	1.467249	0.000028	0.282120394	1249	-22.7734852	0.88406386	4.54315364	1559.94196	1746.78779	13.7
Zircon-	0.282145	0.000022	0.001196	0.000033	0.0358	0.0014	1.467227	0.00003	0.28211772	1208	-22.6320349	0.7779762	3.51475392	1567.67933	1778.73221	16.2
Zircon-	0.282136	0.00003	0.000674	0.000012	0.01802	0.00039	1.467285	0.000036	0.282120575	1212	-22.9502979	1.06087664	3.70703422	1558.71085	1769.87262	14.18
Zircon-	0.282151	0.000023	0.0009612	0.0000095	0.03002	0.00025	1.467224	0.000028	0.282128378	1246	-22.4198596	0.81333876	4.75792744	1549.65067	1731.00272	14.02
Zircon- 32_Hf	0.282165	0.000026	0.000952	0.000049	0.0276	0.0018	1.467265	0.000034	0.28214243	1255	-21.9247838	0.91942642	5.46131459	1529.81859	1694.12888	14.27

	ॐHf/₩7Hf St norm	^{ı⊅6} Hf/ ^ı 77Hf corr 2SE	¹⁷⁶ Lu/ ¹⁷⁷ Hf corr	ಸ್Lu/ಸ7Hf corr 2SE	^{ıı76} Yb/ ^{ıı77} Hf corr	ॐYb/₩Hf corr 2SE	¹⁷⁸ Hf/ ¹⁷⁷ Hf	¹⁷⁸ Hf/ ¹⁷⁷ Hf 2SE	¹⁷⁶ Hf/ ¹⁷⁷ Hf t	t (Ma)	εHf(o)	±2sigma	εHf(t)	TDM	TDM C*	Total Hf Beam (V)
Zircon-	0.282136	0.00003	0.001268	0.000035	0.0367	0.0017	1.467273	0.000031	0.28210589	1257	-22.9502979	1.06087664	4.21108206	1583.28056	1773.8329	13.61
Zircon-	0.282145	0.000022	0.0008548	0.000009	0.02519	0.00038	1.467222	0.000026	0.282124784	1252	-22.6320349	0.7779762	4.76717137	1553.63734	1735.15544	14.11
44_Ht Zircon-	0.282145	0.000022	0.002055	0.000073	0.0665	0.0023	1.467221	0.000032	0.282095338	1279	-22.6320349	0.7779762	4.33823054	1604.18142	1783.22888	15.27
45_Hf Zircon-	0.282086	0.000025	0.000793	0.000019	0.02216	0.00047	1.467274	0.000033	0.282066866	1277	-24.7184257	0.88406386	3.28291228	1632.69101	1847.49733	12.07
47_Hf Zircon	0.090100	0.00000	0.0009070	0.0000000	0.00559	0.00017	1 (67057	0.000000	0.090090050	1007	22.0050960	0.0070101	(20 92705 (1601 50000	1701 (000)	,
56_Hf	0.262109	0.000024	0.00080/9	0.0000029	0.02556	0.0001/	1.40/25/	0.000033	0.282089352	120/	-23.9050809	0.040/0131	4.30031954	1001.53239	1/91.40034	12.3
MıCi																
Zircon-	0.282133	0.000029	0.001637	0.000011	0.05214	0.00032	1.467266	0.00003	0.282095286	1220	-23.0563856	1.02551408	2.9923918	1603.17963	1820.77794	12.74
Zircon-	0.282089	0.000027	0.000855	0.000015	0.02694	0.00037	1.467231	0.000029	0.282069302	1220	-24.612338	0.95478897	2.07102068	1631.19514	1878.23508	13.18
Zircon-	0.282086	0.000024	0.001558	0.000013	0.05096	0.00062	1.467231	0.00003	0.282050046	1222	-24.7184257	0.84870131	1.43373869	1666.07088	1919.50983	14.2
07_Hf Zircon-	0.282082	0.000022	0.0010716	0.0000082	0.0335	0.00039	1.46726	0.000032	0.28205725	1223	-24.8598759	0.7779762	1.71195906	1650.25706	1902.9649	13.99
13_Hf Zircon-	0.282117	0.000023	0.000781	0.00002	0.0244	0.001	1.467267	0.000034	0.282098947	1224	-23.6221865	0.81333876	3.21328781	1589.34791	1810.14028	14.12
14_Hf Zircon-	0.282121	0.000025	0.0007553	0.0000054	0.02347	0.00019	1.467209	0.000036	0.282103498	1227	-23.4807362	0.88406386	3.44295944	1582.75349	1798.16631	12.75
16_Hf Zircon-	0.282105	0.000022	0.000619	0.00001	0.0191	0.00045	1.46725	0.000033	0.282090633	1229	-24.0465371	0.7779762	3.03229045	1599.14714	1825.36683	12.94
23_Hf Zircon-	0.282156	0.00003	0.001491	0.00006	0.0471	0.0022	1.467236	0.000037	0.282121336	1231	-22.2430468	1.06087664	4.16658208	1564.52492	1756.13006	12.82
36_Hf Zircon-	0.282074	0.000025	0.000861	0.000017	0.02701	0.00053	1.467255	0.00003	0.282053933	1234	-25.1427763	0.88406386	1.84475422	1652.20832	1903.3291	13.06
40_Hf Zircon-	0.282085	0.000026	0.0008554	0.0000056	0.02581	0.00016	1.467262	0.000028	0.282064998	1238	-24.7537882	0.91942642	2.3282107	1636.74728	1876.34641	12.59
46_Hf Zircon-	0.282124	0.000024	0.000696	0.000018	0.02102	0 00072	1 467227	0.000028	0 2821175	1255	-22 021022	0.8/870121	4.57720462	1562 2668	17/0 2806/	14.06
62_Hf	0			0.000010	0.02105	0.00075	1.40/23/		0		23.021023	0.040/0131	4.5//20405	(-/+9.50904	-4.00
63_Hf	0.202131	0.000031	0.000919	0.00003	0.0280	0.0011	1.40/209	0.00003	0.2821090/2	1203	-23.12/110/	1.09023919	4.40003412	15/5.09034	1/02.9/042	13.75
M50						<i>.</i>			0		0.00.0	0 0 0	<u>^</u>	^		
∠ırcon- o1_Hf	0.282251	0.000023	0.000791	0.000014	0.02464	0.00046	1.467241	0.000032	0.282232731	1223	-18.8836042	0.81333876	7.93448317	1404.18454	1513.90549	15.05
Zircon- 02_Hf	0.282221	0.00002	0.000463	0.000011	0.01404	0.00027	1.467215	0.000029	0.282210377	1215	-19.9444808	0.70725109	6.95964429	1433.45377	1568.71852	14.71
Zircon-	0.282241	0.000026	0.0008679	0.0000057	0.02674	0.00035	1.467223	0.000029	0.282220474	1252	-19.2372297	0.91942642	8.16055633	1420.92327	1522.68467	13.24
Zircon- 04 Hf	0.282262	0.000027	0.0011297	0.000009	0.03481	0.0004	1.467218	0.000039	0.282235693	1233	-18.4946161	0.95478897	8.26729027	1401.38015	1500.93782	11.72
	™Hf/™Hf St norm	¹⁷⁶ Hf/ ¹⁷⁷ Hf corr 2SE	^{ıxe} Lu/ ^{ıxı} Hf corr	^{ıze} Lu/ ^{ızr} Hf corr 2SE	176Yb/177Hf corr	ग⁵Yb/ग7Hf corr 2SE	¹⁷⁸ Hf/ ¹⁷⁷ Hf	¹³⁷⁸ Hf/ ¹³⁷⁷ Hf 2SE	¹⁷⁶ Hf/ ¹⁷⁷ Hf t	t (Ma)	εHf(o)	±2sigma	εHf(t)	TDM	TDM C*	Total Hf Beam (V)
---------------------------	--------------------	--	--	--	---------------------	-----------------------	--------------------------------------	---	--	-----------	-------------	------------	------------	------------	------------	----------------------------
Zircon-	0.282232	0.000025	0.00092	0.000022	0.02825	0.00054	1.46727	0.000036	0.2822104	1243	-19.5554927	0.88406386	7.5982257	1435.39553	1550.82958	11.16
Zircon-	0.282263	0.000025	0.001021	0.000035	0.0307	0.0011	1.467233	0.000029	0.28223897	1246	-18.4592535	0.88406386	8.67973057	1395.96151	1485.34756	13.86
Zircon-	0.282228	0.000025	0.0008681	0.0000063	0.02667	0.00012	1.467269	0.000028	0.282207552	1247	-19.6969429	0.88406386	7.58838048	1438.99433	1554.61252	13.32
Zircon-	0.282223	0.000022	0.0008389	0.0000038	0.02611	0.00026	1.467214	0.000029	0.282203016	1261	-19.8737557	0.7779762	7.74656501	1444.83119	1555.7756	13.45
Zircon-	0.282208	0.000029	0.000754	0.000011	0.02299	0.00046	1.467196	0.000036	0.28219011	1256	-20.404194	1.02551408	7.17494259	1462.38712	1587.64795	13.1
Zircon-	0.28225	0.000023	0.0009984	0.0000031	0.031134	0.000091	1.467196	0.000032	0.282227208	1209	-18.9189667	0.81333876	7.41982321	1413.26412	1535.11592	13.82
Zircon-	0.282217	0.000027	0.001462	0.0000097	0.04147	0.0006	1.467199	0.000035	0.282182368	1254	-20.085931	0.95478897	6.85479357	1477.33685	1606.12375	11.61
Zircon-	0.282212	0.000029	0.0007689	0.0000095	0.02359	0.00017	1.467251	0.000032	0.282193668	1262	-20.2627438	1.02551408	7.4378813	1457.41807	1575.9171	13.37
Zircon-	0.282243	0.000026	0.001184	0.00002	0.0349	0.00037	1.467238	0.000033	0.282215338	1237	-19.1665046	0.91942642	7.63661384	1430.02958	1543.67376	12.73
Zircon-	0.282253	0.000024	0.000849	0.0000062	0.02479	0.00032	1.467263	0.000031	0.282233278	1230	-18.812879	0.84870131	8.11332298	1403.54628	1508.22507	13.39
Zircon- 30_Hf	0.282251	0.000037	0.001246	0.000049	0.0353	0.002	1.467252	0.00004	0.282222008	1232	-18.8836042	1.30841452	7.75924877	1421.15451	1532.02441	13.7
M4Cb Zircon-	0.282151	0.000033	0.002456	0.000049	0.0854	0.0022	1.467274	0.000028	0.282094417	1220	-22.4198596	1.1669643	2.9615857	1613.13488	1822.70002	12
o2_Hf Zircon-	0.282121	0.000025	0.000703	0.000014	0.02202	0.00056	1.467232	0.00003	0.282104898	1213	-23.4807362	0.88406386	3.17389995	1580.5897	1803.94545	13.55
o5_Hf Zircon-	0.282137	0.000038	0.000607	0.000014	0.01675	0.00054	1.46722	0.000042	0.282122842	1235	-22.9149354	1.34377707	4.3110637	1554.61061	1750.25533	11.26
o6_Hf Zircon-	0.282134	0.000034	0.001729	0.000039	0.0543	0.0018	1.467187	0.000034	0.282093637	1236	-23.021023	1.20232686	3.29823529	1605.72449	1814.28024	10.91
o8_Hf Zircon-	0.282095	0.000024	0.000697	0.000014	0.01989	0.0005	1.467252	0.00003	0.282078676	1240	-24.4001627	0.84870131	2.85876256	1616.19223	1844.84136	12.61
11_Hf Zircon-	0.282114	0.000029	0.001151	0.000021	0.03614	0.00053	1.467228	0.00003	0.282086955	1244	-23.7282741	1.02551408	3.24344258	1609.08728	1823.99322	12.8
12_Hf Zircon-	0.282105	0.000025	0.001248	0.000061	0.0398	0.0022	1.467267	0.000033	0.282076057	1228	-24.0465371	0.88406386	2.4926649	1625.8146	1858.23611	12.99
13_Hf Zircon-	0.282097	0.000029	0.000968	0.000052	0.0304	0.0019	1.467271	0.00003	0.282074846	1212	-24.3294376	1.02551408	2.08554899	1624.94089	1871.04588	12.81
22_Hf Zircon-	0.282112	0.000039	0.00172	0.00016	0.0583	0.0058	1.467265	0.000042	0.282072275	1223	-23.7989992	1.37913963	2.24472569	1636.50414	1869.7644	13.69
23_Hf Zircon-	0.282148	0.000026	0.001717	0.000026	0.05427	0.00093	1.467227	0.000035	0.282107885	1237	-22.5259473	0.91942642	3.82623185	1585.36508	1782.11089	12.94
24_Hf Zircon-	0.282121	0.000029	0.000845	0.000053	0.0257	0.0022	1.467282	0.000037	0.282101403	1228	-23.4807362	1.02551408	3.39144846	1586.47845	1802.16836	14.38
27_Hf Zircon- 30 Hf	0.282157	0.000029	0.00087	0.000047	0.0281	0.0019	1.467226	0.000034	0.282136923	1222	-22.2076843	1.02551408	4.51437718	1537.61868	1727.3071	13.65

	™Hf/™Hf St norm	¹⁷⁶ Hf/ ¹⁷⁷ Hf corr 2SE	ᠮ ⁵ Lu/™Hf corr	^{ız6} Lu/™Hf corr 2SE	¹⁷⁶ Yb/177Hf corr	י™Yb/יידHf corr 2SE	¹⁷⁸ Hf/ ¹⁷⁷ Hf	^ı 78Hf/ग7Hf 2SE	176Hf/177Hft	t (Ma)	εHf(o)	±2sigma	εHf(t)	TDM	TDM C*	Total Hf Beam (V)
M3Ce																
Zircon- 09_Hf	0.28213	0.000025	0.0011205	0.0000085	0.03391	0.00042	1.467247	0.000031	0.282103757	1240	-23.1624733	0.88406386	3.74817527	1585.47729	1789.34612	12.8
Zircon- 10_Hf	0.282166	0.000027	0.001909	0.000025	0.0598	0.0012	1.467277	0.000034	0.282121581	1232	-21.8894213	0.95478897	4.19805888	1567.93148	1754.95148	12.98
Zircon- 19_Hf	0.282159	0.000024	0.00188	0.000058	0.0589	0.0018	1.467248	0.000029	0.282114286	1259	-22.1369592	0.84870131	4.55438735	1576.67408	1753.96787	15.11
Zircon- 27 Hf	0.282076	0.000033	0.001364	0.000083	0.0419	0.0028	1.467281	0.000031	0.282044679	1216	-25.0720512	1.1669643	1.10688127	1671.49699	1935.15561	14.66
Zircon- 28 Hf	0.282176	0.000027	0.001828	0.000085	0.0556	0.0025	1.467203	0.000026	0.282132104	1271	-21.5357957	0.95478897	5.45972666	1550.28316	1706.8551	15.13
Zircon- 30_Hf	0.282112	0.000035	0.00187	0.00017	0.0559	0.0046	1.467272	0.000039	0.282069596	1201	-23.7989992	1.23768941	1.64907834	1643.12195	1889.61238	13.2
M2Cb																
Zircon- 02_Hf	0.282123	0.000032	0.000776	0.000063	0.0232	0.0022	1.467304	0.000047	0.282105063	1224	-23.4100111	1.13160175	3.4301458	1580.8472	1796.60538	13.71
_ Zircon- 07_Hf	0.282114	0.000024	0.000637	0.000013	0.01947	0.00036	1.467255	0.000036	0.282099081	1240	-23.7282741	0.84870131	3.58235802	1587.50702	1799.69671	12.17
Zircon- 11_Hf	0.282107	0.000024	0.000801	0.000017	0.02488	0.00061	1.46725	0.000029	0.282088439	1227	-23.975812	0.84870131	2.90896507	1604.00796	1831.48748	11.73
Zircon- 15_Hf	0.282154	0.000029	0.00188	0.000017	0.06011	0.00035	1.46727	0.000033	0.282109466	1254	-22.3137719	1.02551408	4.26952493	1583.79411	1767.81972	12.7
Zircon- 16_Hf	0.282091	0.000027	0.00085	0.000017	0.02576	0.00078	1.467259	0.000031	0.282070524	1275	-24.5416129	0.95478897	3.36702986	1628.21387	1840.67794	12.83
Zircon- 19 Hf	0.282095	0.000021	0.0009018	0.0000031	0.02772	0.00018	1.467258	0.000029	0.282073845	1242	-24.4001627	0.74261365	2.7329932	1624.88667	1854.25659	14.65
Zircon- 25 Hf	0.282086	0.000023	0.000518	0.000011	0.01578	0.0002	1.467254	0.000027	0.282073977	1229	-24.7184257	0.81333876	2.44167284	1621.01623	1862.20121	14.74
Zircon-	0.282121	0.000025	0.0005094	0.0000029	0.01437	0.00022	1.467237	0.000032	0.282109254	1221	-23.4807362	0.88406386	3.51048528	1572.63116	1789.22927	11.61
Zircon-	0.282092	0.000024	0.000771	0.000029	0.02412	0.00088	1.467239	0.000035	0.282073633	1261	-24.5062503	0.84870131	3.15828306	1623.46595	1842.67983	12.14
Zircon- 33_Hf	0.28213	0.000027	0.000889	0.000022	0.02779	0.00087	1.467215	0.00003	0.28210923	1237	-23.1624733	0.95478897	3.87392727	1575.83501	1779.13287	12.21

	¹⁷⁶ Hf/ ¹⁷⁷ Hf St.norm	₩Hf/₩Hf	י™Lu/™Hf corr	™Lu/™Hf corr 2SE	י™Yb/יידHf corr	¹⁷⁶ Yb/177Hf corr 2SE	יז%Hf/יזיHf	₩Hf/₩Hf 2SE	Total Hf Beam (V)
Panch_1	0.282154	0.000028	0.00029556	0.00000037	0.008365	0.000067	1.467277	0.000037	11.23
PANCH_I	0.28218	0.000025	0.00029333	0.0000004	0.008237	0.000065	1.467229	0.000035	11.15
PANCH_G	0.282188	0.000022	0.0002938	0.00000031	0.008237	0.000066	1.467237	0.00004	10.66
PANCH_E	0.282166	0.000022	0.00029397	0.0000037	0.008136	0.000058	1.467263	0.000039	10.46
PANCH_C	0.282146	0.00003	0.00029419	0.00000041	0.008161	0.000059	1.467226	0.000036	9.85
PANCH_C_1	0.282146	0.00003	0.00029419	0.00000041	0.008161	0.000059	1.467226	0.000036	9.85
PANCH_A	0.28216	0.000034	0.00029355	0.0000047	0.008177	0.000068	1.467205	0.000041	9.06
average	0.28216286			Internal, accepted va	alue	0.282155±35			
stdev	1.6283E-05								
Mun o_1	0.282117	0.000039	0.0000004	0.0000004	0.000021	0.000038	1.467252	0.000054	21.29
Mun 1_1	0.28218	0.000043	0.001416	0.000046	0.00888	0.00031	1.467237	0.000049	6.69
Mun 3_1	0.282141	0.000021	0.003828	0.000013	0.04006	0.00013	1.467239	0.000023	23.63
Mun 4_1	0.282126	0.000033	0.005126	0.000094	0.166	0.0045	1.467224	0.000024	21.7
Mun o_2	0.282167	0.000063	0.00000077	0.0000064	-0.000038	0.000082	1.467307	0.000065	9.9
Mun 1_2	0.282144	0.000017	0.0020369	0.0000031	0.01379	0.00011	1.467236	0.000024	17.98
Mun 3_2	0.282128	0.000018	0.003788	0.000011	0.0399	0.0004	1.467224	0.000024	23.16
Mun 4_J	0.282151	0.000036	0.0069776	0.000068	0.2331	0.0013	1.467231	0.000028	21.71
Mun 1_3	0.282144	0.00002	0.0025022	0.0000013	0.01706	0.0001	1.467232	0.000027	17.19
Mun 3_3	0.28215	0.000017	0.003427	0.000011	0.03598	0.0004	1.467224	0.000023	23.56
Mun o_3	0.282142	0.00007	0.00000115	0.00000077	0.000069	0.000099	1.467223	0.000034	21.7
Mun 1_4	0.282148	0.000016	0.001616	0.000018	0.01107	0.00021	1.467218	0.000025	18.87
Mun 3_4	0.282131	0.000017	0.0033092	0.0000021	0.03386	0.00027	1.467214	0.000026	22.63
Mun 4_H	0.282113	0.000037	0.005854	0.000028	0.1866	0.0021	1.467223	0.000025	20.12
Mun 1_5	0.282131	0.000016	0.0023117	0.0000042	0.01563	0.00013	1.467215	0.000029	16.85
Mun 3_5	0.282138	0.000016	0.0020726	0.0000096	0.020918	0.000078	1.467227	0.000022	24.94
Mun o_4	0.282093	0.000043	0.0000096	0.0000086	0.000054	0.000059	1.467252	0.000067	23.75
Mun 1_6	0.282138	0.000018	0.0022085	0.0000015	0.01492	0.00011	1.46722	0.00003	17.03
Mun 3_6	0.282127	0.000018	0.003656	0.000011	0.03708	0.00015	1.467234	0.000023	21.29
Mun 4_F	0.282133	0.000036	0.006093	0.000043	0.19269	0.00047	1.46723	0.000024	19.19

	ı™Hf/™Hf	ı∞Hf/177Hf	™Lu/™Hf	¹⁷⁶ L∪/177Hf	י™Yb/יייHf	☞Yb/יייHf	¹⁷⁸ Hf/177Hf	178Hf/177Hf 2SE	Total Hf
	St norm	corr 2SE	corr	corr 2SE	corr	corr 2SE		0	Beam (V)
MUN 1_7	0.282142	0.000022	0.0021702	0.000028	0.01459	0.00011	1.467204	0.000028	16.48
Mun 3_7	0.28215	0.00002	0.00373	0.00001	0.03833	0.00025	1.467209	0.000022	21.24
Mun o_5	0.282123	0.000037	0.0000076	0.0000028	0.000049	0.000047	1.467238	0.000034	22.39
Mun 1_8	0.28214	0.000023	0.0017971	0.000064	0.01208	0.00013	1.467246	0.000028	17.14
Mun 3_8	0.282138	0.000018	0.002048	0.000019	0.02037	0.00024	1.46724	0.000021	23.76
Mun 4_D	0.282156	0.000034	0.006551	0.000025	0.2063	0.0024	1.467227	0.000025	18.77
Mun 1_12	0.282156	0.000022	0.0020749	0.0000025	0.01392	0.0001	1.467234	0.000029	16.55
Mun 1_9	0.282156	0.000022	0.0020749	0.0000025	0.01392	0.0001	1.467234	0.000029	16.55
Mun 3_12	0.282144	0.000018	0.00251	0.00011	0.0251	0.001	1.467235	0.000024	22.66
Mun 3_9	0.282144	0.000018	0.00251	0.00011	0.0251	0.001	1.467235	0.000024	22.66
Mun o_6	0.282132	0.000039	0.0000009	0.0000037	0.000063	0.000062	1.467261	0.000055	21.78
Mun 1_10	0.28213	0.000018	0.001879	0.0000022	0.012427	0.000085	1.467247	0.000027	16.7
Mun 3_10	0.282129	0.000018	0.0019821	0.0000087	0.01981	0.00012	1.46724	0.000023	22.92
Mun 4_B	0.282141	0.000036	0.0070081	0.0000057	0.2206	0.0011	1.467239	0.000025	18.43
Mun 1_11	0.282162	0.000019	0.0016862	0.0000013	0.011024	0.000061	1.467257	0.000031	17.08
Mun 3_11	0.282143	0.000018	0.0033409	0.0000024	0.03371	0.0002	1.467241	0.000027	19.13
Mun o_f	0.282142	0.000058	0.0000075	0.00000053	0.000036	0.000042	1.467242	0.000073	15.48
Mun 1_f	0.282113	0.000021	0.0016631	0.0000034	0.010989	0.000093	1.467249	0.00003	16.67
Mun 3_f	0.282148	0.000016	0.00276	0.00014	0.0276	0.0013	1.467242	0.000024	20.85
Mun 4_f_1	0.282112	0.000035	0.0067652	0.0000028	0.2162	0.0017	1.467206	0.000027	17.94
average	0.28213858			Reference value (Fi	sher et al., 2011, Chem	Geol.):		0.282138±10	
stdev	1.6268E-05								
PLE_2	0.282485	0.000016	0.00014502	0.0000065	0.006505	0.000032	1.467235	0.000024	18.03
PLE_1	0.282491	0.000016	0.00014099	0.0000035	0.006292	0.000049	1.467198	0.00003	17.08
PLE_3	0.282486	0.000021	0.00014527	0.0000005	0.006443	0.000047	1.467285	0.000025	16.86
PLE_4	0.282497	0.000018	0.00014752	0.00000047	0.006477	0.000051	1.46723	0.000027	17.15
PLE_5	0.282485	0.00002	0.00014087	0.0000037	0.006211	0.000051	1.467219	0.000031	16.3
PLE_8	0.28249	0.000019	0.0001458	0.0000039	0.006372	0.000049	1.467275	0.000027	15.9
PLE_6	0.28249	0.000019	0.0001458	0.0000039	0.006372	0.000049	1.467275	0.000027	15.9

	יז%Hf/יזיHf	176Hf/177Hf	∽6Lu/177Hf	176Lu/177Hf	י‰Yb/י⁄7Hf	יי%Yb/ייתHf	178Hf/177Hf	178Hf/177Hf 2SE	Total Hf
	St norm	corr 2SE	corr	corr 2SE	corr	corr 2SE			Beam (V)
PLE_7	0.282511	0.000019	0.00013994	0.0000004	0.006127	0.000047	1.467243	0.000032	15.26
average	0.28249188	Reference value (Sláma et al., 2018, Chei	m Geol.):		0.282482±13			
stdev	8.6922E-06								

℠Lu/‴HfCHUR, i	0.0336	Bouvier et al., 2008, EPSL
☞Hf/까HfCHUR, i	0.282785	Bouvier et al., 2008, EPSL
℠Lu/™HfDM	0.0384	Blichert-Toft & Albarède, 1997
₩Hf/₩HfDM	0.28325	Blichert-Toft & Albarède, 1997
Lambda	1.867E-11	Soderlund et al., 2004
¹⁷⁶ Lu/ ¹⁷⁷ HfC (avg interm crust)	0.015	Griffin et al., 2002
TDM C*		Fórmula en Weber et al., 2012, Chem Geol.

Complejo	Pre-Grenville (>1.3Ga)	Arco de Oaxaquia	Migmatización - Evento	AMCG suites	Pico metamórfico (facies de	Pegmatitas
		C b b c c	Olmeca	2	granulita) - Evento Zapoteca	postectónicas
Gneis Novillo		Granulita gabroica ¹ :		Dique pegmatitico- suite	Granito-suite AMCG ¹ :	
		1151± 2 (fracción discordante		AMCG ¹ :	982 ± 6 (fracción concordante,	
		2%, 207/206)		1010 ± 1 (fraccion discordante 2%, 207/206)	edad 207/206)	
		Augen gneis-suite potásica1:		, ,. ,	Dique ferrogabroico1:	
		1175 ± 16 (Int. Superior)		Granito – suite AMCG1:	985 ± 11 (Int. Inferior)	
				1033 ± 44 (Int. Superior)		
		Granulita-suite potásica1:				
		1173 ± 21 (Int. Superior)		Ortogneis con granate ² : 1020 + 16 (Edad de concordia)		
		Ortogneis con granate ²		1036 + 0 (fracción		
		1220± 37 (Int. Superior)		concordante, edad 207/206,		
		Cranulita gabraical		111015)		
Gneis	Ortogneis migmatítico3	Ω rtogneis con granate ² :			Ortogneis con granate ²	Peamatita con
Huiznonala	1411 + 27 (Int Superior)	1206 + 2E (Discordante / %			$077 + \mathbf{c6}$ (Int. Superior)	ilmenita4.
поглораа	1311 1 27 (line, Superior)	207/206)			3// ± 30 (int. 30penor)	088 + 2 (fracción
	$robabilidad_{207/206}$	20//200)			Paragneises 3.	concordante
	probabiliada, 20//200)	Metagrabro ^{3.}			ca. 983 (Pico de probabilidad	206/207)
	Ortogneis con granate ² :	1189 ± 52 (Int. Superior)			207/206)	200/20/)
	1823 ± 98 (Int. Superior,				- /1 /	
	un zircón)	Ortogneis con granate			Metagrabro ³ :	
		(granito S) ³ :			1015 ± 13 (Edad de concordia)	
	Charnoquita con granate (granito S)³:	1243 ±7 (Edad de concordia)				
	1412 ± 59 (Int. Superior)	Metatonalita4:				
	2026 ± 59 (Int. Superior,	1203 ± 1 (Concordante,				
	un zircón)	207/206)				
	Ca. 1.7 (dos zircones casi					
	concordantes)	Charnockita4:				
	1724 ± 34 (un zircón	1196 ± 2 (Concordante,				
	discordante 6.4%,	207/206)				
	20/12001	Paragneises ^{3.}				
		ca. 1103 (Pico de probabilidad				

Anexo 5. Tabla con la recopilación de las edades U–Pb de las unidades de Oaxaquia.

		 ca. 1165 (Pico de probabilidad, 207/206) ca. 1179 (Pico de probabilidad, 207/206) ca. 1210 (Pico de probabilidad, 207/206) ca. 1235 (Pico de probabilidad, 207/206) 				
Complejo Guichicovi	Paragneis 3: ca. 1336 (Pico de probabilidad, 207/206) ca. 1411 (Pico de probabilidad, 207/206) ca. 1465 (Pico de probabilidad, 207/206) ca. 1652 (Pico de probabilidad, 207/206) 1914 ± 117 (207/206, un zircón discordante 30%, Int.superior 2600 ± 500).	Gneis granítico ⁵ : 1231 ± 43 (Int. Superior) Gneis granítico ² : 1219± 11 (Concordia) Paragneis ³ : ca. 1178 (Pico de probabilidad, 207/206) ca. 1250 (Pico de probabilidad, 207/206)		Charnockita⁵: 991 ± 4 (fracción concordante 207/206)	Gneis granítico ⁵ : 975 ± 35 (Int. Inferior) Paragneises ³ : 978 ± 5.3 (Edad de concordia) Charnockita ² : 986 ± 6 (Edad de concordia) 991.5 ± 4.8 (Edad de Concordia, TIMS) Gneis granítico ² : 996 ± 9 (Edad de concordia)	
Complejo Oaxaqueño norte	Migmatita-neosoma ^{8:} 1358 ± 43 (Int. Superior) 1399 ± 58 (Int. Superior) Migmatita-paleosoma ^{3:} 1444 ± 16 (Edad de concordia) Granulita ^{9:} ca.1350 (Pico de probabilidad) ca. 1500 (zircones heredados) Granulita - metasedimentaria ⁹ : ca. 1500 (zircones heredados)	Charnockita ⁷ : 1158 ± 52 (Int. Superior) Metasienita ⁷ : 1131 ± 10 (Int. Superior) Paragneises ³ : ca. 1176 (Pico de probabilidad, 207/206) ca. 1179 (Pico de probabilidad, 207/206) ca. 1210 (Pico de probabilidad, 207/206) Granulita - metasedimentaria ⁹ : ca. 1150 (Pico de probabilidad)	Granulita con granate ⁹ : ca.1100 (Pico de probabilidad) Granulita ⁹ : ca.1100 (Pico de probabilidad) Migmatita-neosoma ⁸ : 1106 ± 6 (fracción concordante, 207/206) Migmatita-paleosoma ³ : 1116 ± 14 (Edad de concordia)	Granulita con granate ⁹ : ca. 1000 (Pico de probabilidad) Granulita - metasedimentaria ⁹ : ca. 1000 (Pico de probabilidad) Ortogranulita ⁹ : ca. 1000 (Pico de probabilidad) Mangerita ⁷ : 1012 ± 12 (Int. Superior)	Paragneises ³ : 959 ± 11 (Edad de concordia) Pegmatita con cuarzo azul ⁸ : 979 ± 3 (fracción concordante, 207/206) Charnockita ⁷ : 979 ± 84 (Int. Inferior) Granulita - metasedimentaria ⁹ : 987 ± 40 (Int. Inferior) 982 ± 21 (Promedio) Metagranito con granate ⁶ : 988 ± 5 (Int. Inferior) Metagabronorita ⁷ :	Pegmatita ⁸ : 977 ± 2 (Promedio, 207/206)

	Migmatita- melanosoma ⁹ :	Granulita - metasedimentaria ⁹ :		990 ± 4 (fracción concordante, 207/206)	
	ca. 1500 (zircones heredados)	ca. 1150 ca. 1280 (Picos de probabilidad)		Paragneis ⁸ : 994 ± 3 (Edad de concordia)	
		Migmatita- melanosoma ⁹ : ca. 1190 (Pico de probabilidad)		Anortosita ⁷ : 999 ± 9 (Int. Superior)	
		Metagrabro ⁷ : 1257 ± 71 (Int. Superior)		Charnockita¹º: 998 ± 9 (fracción concordante, 207/206)	
		Migmatita-paleosoma³: 1271 ± 16 (Int. Superior)		Charnockita ⁷ : 1004 ± 3 (fracción concordante, 207/206) 1001 ± 8 (fracción concordante, 207/206)	
				Metagrabro ⁷ : 1021 ± 39 (Int. Inferior)	
				Migmatita-neosoma ^{8:} 937 ± 100 (Int. Inferior) 1048 ± 31 (Int. Inferior)	
Complejo Oaxaqueño central	Granulita - metasedimentaria ⁹ : ca. 1380 (zircones	Metagranito con granate ⁶ : 1117 ± 4 (Concordia) 1134 ± 54 (Int. Superior)	Granulita- metapelítica ⁹ : ca. 1100 (Pico de probabilidad)	Granulita máfica ⁹ : ca. 980 (Pico de probabilidad)	Pegmatitas ¹¹ : 963 ± 7 (Promedio) 970 ± 5 (Promedio)
	heredados)	Granulita - metasedimentaria9:		Granulita - metasedimentaria ⁹ : ca. 995 (Pico de probabilidad)	977 ± 5 (Promedio)
	Granulita máfica ⁹ : ca. 1400 ca. 1600 (zircones	ca. 1120 (Pico de probabilidad)		Granulita - metasedimentaria ⁹ : ca. 980 (Pico de probabilidad)	
	heredados)	Granulita máfica ⁹ : ca. 1150 (Pico de probabilidad)		Pegmatitas ¹¹ : 980 ± 5 (Promedio) 981 ± 7 (Promedio)	
	Granulita - metasedimentaria ⁹ :	Pegmatitas ¹¹ :		Metagranito con granate ⁶ :	

	ca. 1450 ca. 1550 (zircones heredados)	1190 ± 7 (Promedio) 1201 ± 5 (Promedio)		988 ± 5 (Int. Inferior)	
	Granulita- metapelítica ⁹ : ca. 1775 (zircones heredados)				
Complejo	***Ortogneis	Ortomigmatita ² :		Cuarzomonzonita ² :	
Oaxaqueño	tonalítico²:	1199 ± 18 (Edad de concordia)	Cuarzomonzonita ² :	971.7 ± 3.5 (Int. Superior- TIMS)	
sur	1340 – 1290	1217 +9 –21 (Promedio,	1006 +17 –14 (Promedio,		
	(discordantes, 207/206)	207/206)	207/206)	Enderbita ² :	
				978± 2 (Edad de Concordia,	
		Ortogneis tonalítico ² :	Enderbita ² :	TIMS)	
	Granulita ¹² : 1390 ± 45 (Int. Superior)	ca. 1200	1007 ± 37 (Int. Superior, TIMS)	967 +29 -20 (Promedio, 207/206)	
	Granulita 12:			Ortomigmatita ² :	
	1392 ± 91 (Int. Superior)			ca. 999	
				Ortogneis tonalítico ² :	
				Ca. 1000	

Referencias

- 1. Cameron et al., (2004): ID-TIMS U–Pb
- 2. Weber et al., (2010): LA-MC-ICPMS U–Pb y en la tabla se especifica cuando es TIMS
- 3. Weber & Schulze, (2014): LA-MC-ICPMS U–Pb
- 4. Lawlor et al., (1999): ID-TIMS U–Pb
- 5. Weber & Köhler, (1999): ID-TIMS U–Pb
- 6. Keppie et al. (2001): ID-TIMS U–Pb
- 7. Keppie et al., (2003): ID-TIMS U–Pb
- 8. Solari et al., (2003): ID-TIMS U-Pb
- 9. Solari et al., (2014): LA–ICP–MS U–Pb
- 10. Solari et al. (2004): ID-TIMS U–Pb
- 11. Shchepetilnikova et al., (2015): LA–ICP–MS U–Pb
- 12. Schulze (2011): ID-TIMS U–Pb