

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN

Evaluación Técnica para una Planta Productora de Furfural a partir del Olote de Maíz

TESIS

QUE PARA OBTENER EL TÍTULO DE: INGENIERO QUÍMICO

PRESENTA

JOSÉ LUIS MENDOZA HERNÁNDEZ

ASESOR
I.Q. MIGUEL ÁNGEL GARCÍA CAMPOS

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

MEXICO

FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN SECRETARÍA GENERAL DEPARTAMENTO DE EXÁMENES PROFESIONALES

ASUNTO: VOTO APROBATORIO

M. en C. JORGE ALFREDO CUÉLLAR ORDAZ DIRECTOR DE LA FES CUAUTITLAN PRESENTE

> ATN: I.A. LAURA MARGARITA CORTAZAR FIGUEROA Jefa del Departamento de Exámenes Profesionales de la FES Cuautitlán.

Con base en el Reglamento General de Exámenes, y la Dirección de la Facultad, nos permitimos comunicar a usted que revisamos el: **Trabajo de Tesis**

Evaluación Técnica para una Planta Productora de Furfural a partir del Olote de Maíz.

Que presenta el pasante: José Luis Mendoza Hernández

Con número de cuenta: 414043743 para obtener el Título de la carrera: Ingeniería Química

Considerando que dicho trabajo reúne los requisitos necesarios para ser discutido en el **EXAMEN PROFESIONAL** correspondiente, otorgamos nuestro **VOTO APROBATORIO**.

ATENTAMENTE

"POR MI RAZA HABLARÁ EL ESPÍRITU"

Cuautitlán Izcalli, Méx. a 23 de mayo de 2019.

PROFESORES QUE INTEGRAN EL JURADO

PRESIDENTE

M.A. Carlos Alberto Morales Rojas

VOCAL

Q. Celestino Silva Escalona

SECRETARIO

I.Q. Miguel Ángel García Campos

1er. SUPLENTE

M.E. María Teresa Ylizaliturri Gómez Palacio

2do. SUPLENTE

I.Q.I. Raúl Gómez Gómez Tagle

NOTA: los sinodales suplentes están obligados a presentarse el día y hora del Examen Profesional (art. 127).

Universidad Nacional Autónoma de México Facultad de Estudios Superiores Cuautitlán

"Evaluación Técnica Para Una Planta Productora De Furfural A Partir Del Olote De Maíz"

Agradecimientos

A mis padres Tirzo y María del Refugio, por estar siempre ahí, por haberme apoyado incondicionalmente durante toda la carrera y durante toda mi vida, por haber estado en los buenos momentos, así como también en los difíciles. Siempre les estaré eternamente agradecido por forjarme como la persona que soy. A mi padre por enseñarme el valor del trabajo y lo fascinante que es su oficio, la tubería; a mi madre que me demostró que con esfuerzo todo es posible y gracias a sus enseñanzas ahora soy una persona independiente.

A mis hermanos, Ismael, Moisés y Sebastián que han estado conmigo ayudándome y acompañándome en este viaje llamado vida, espero el mayor de los éxitos para ustedes, sé que lo lograrán.

A mi familia Hernández, por ser un pilar para mí, por demostrarme el verdadero significado de FAMILIA... porque compartir esta vida con mejores personas sería imposible.

A la memoria de mi tío Samuel y mi abuelo Luis, por ser grandes maestros de vida y haberme permitido compartir su gran alegría con la siempre vivían, aprendí mucho de ustedes, parte de la persona que soy ahora se lo debo a ustedes.

A mis primos, hermanos, amigos y colegas, Luis Ángel y Elías, por enseñarme lo maravilloso que es el mundo de la ingeniería química, siempre han sido y serán un ejemplo para mí, en el ámbito personal y profesional.

A mi prima, y compañera de toda la carrera, Cinthya, por compartir todos los buenos y malos momentos durante la carrera, por apoyarme siempre y haber sido siempre la mejor compañera de equipo.

A mis amigos y amigas de la facultad, Karem, Gaby, Rocío, Lupita, Lidya, Betty, Mildred, Diana y Erika, por acompañarme durante estos años de carrera.

Al ingeniero Miguel Ángel García Campos por su infinita paciencia y apoyo para la elaboración de esta tesis.

Universidad Nacional Autónoma de México Facultad de Estudios Superiores Cuautitlán

"Evaluación Técnica Para Una Planta Productora De Furfural A Partir Del Olote De Maíz"

[...] "A continuación entraron en pláticas acerca de la creación y la formación de nuestra primera madre y padre. De maíz amarillo y de maíz blanco se hizo su carne; de masa de maíz se hicieron los brazos y las piernas del hombre. Únicamente masa de maíz entró en la carne de nuestros padres, los cuatro hombres que fueron creados." (Fragmento del Popol Vuh)

Índice

1.	Objetivo General	6
2.	Introducción	7
3.	Justificación	8
4.	El maíz	
	4.1. El Olote de Maíz	
_		
5.	Furfural	
	5.1. Antecedente Histórico	
	5.2. Propiedades y características	
	5.3. Propiedades Físicas	
	5.4. Propiedades Químicas	
	5.5. Usos y Aplicaciones	
6	Perfil de Mercado	28
Ο.	6.1. Producción Nacional e importaciones	
	6.2. Demanda Nacional Estimada	
	6.3. Análisis de Precios	
_		0.7
1.	Estudio Técnico	
	7.1. Perfil Tecnológico de manufactura	
	7.1.2. Proceso de Quacker Oats	
	7.1.2. Proceso de Alba	
	7.1.4. Proceso Rosenlew	
	7.1.5. Proceso Escher-Wyss.	
	7.1.6. Procesos actuales	
	7.2. Ingeniería Básica	
	7.2.1 Bases de Diserio	
	7.2.1.2. Funcionalidad del sistema.	
	7.2.1.3. Capacidad Instalada	
	7.2.1.4. Factor de Servicio	
	7.2.1.5. Flexibilidad	
	7.2.1.6. Modos de Operación	
	7.2.1.7. Especificación de Materia prima	
	7.2.1.8. Condiciones de las alimentaciones al proceso	
	7.2.1.9. Especificación del producto	
	7.2.1.10. Condición del Producto	
	7.2.1.11. Agentes Químicos	

Universidad Nacional Autónoma de México Facultad de Estudios Superiores Cuautitlán

"Evaluación Técnica Para Una Planta Productora De Furfural A Partir Del Olote De Maíz"

7.2.1.12. Efluentes	51
7.2.1.13. Servicios Auxiliares	
7.2.1.14. Condiciones de sitio	
7.2.1.15. Instalaciones requeridas para almacenamiento	
7.2.1.16. Edificaciones dentro de planta	
7.2.1.17. Equipo de proceso	
7.2.1.18. Normas, códigos y especificaciones	56
7.2.2 Descripción del Proceso	57
7.2.3. Diagrama de Bloques de Proceso	
7.2.4. Diagrama de Flujo de Proceso	58
7.2.5. Diagrama de Tubería e Instrumentación	58
7.2.6. Diagrama General de Arreglo de Equipo	58
7.2.7. Balance de materia y energía	59
7.2.8. Dimensionamiento y especificación de equipo	62
7.2.9. Lista de equipo	76
8. Conclusiones	78
9. Glosario	79
10. Anexo 1	81
11. Anexo 2	92
12. Bibliografía	106

1. Objetivo General

• Evaluar la viabilidad técnica y económica para la instalación de una planta productora de furfural a partir del olote de maíz.

1.1 Objetivos Particulares

- Realizar una investigación bibliográfica acerca del Furfural en revistas, libros, artículos científicos y sitios web, para conocer sus propiedades físicas y químicas, así como sus usos, métodos de obtención, productos derivados, etc.
- Llevar a cabo un análisis de mercado, dentro de un marco nacional, considerando los valores de importaciones y exportaciones, identificando además a empresas que consumen este compuesto químico.
- Desarrollar la ingeniería básica de la planta mediante la elaboración de documentos ingenieriles como:
 - Diagrama de bloques
 - Diagrama de flujo de proceso
 - o Diagrama de tubería e instrumentación
 - o Diagrama general de arreglo de equipo
 - o Balance de materia de energía
 - Lista de equipo
 - Requerimiento de servicios auxiliares
 - Hoja de datos de equipos

2. Introducción

El presente trabajo pretende realizar una evaluación técnica y económica para una planta productora de furfural a partir del aprovechamiento del olote de maíz, el cual representa un desecho en las zonas agrarias del país al no ser usado para otro fin más que incineración o en algunos casos como complemento alimenticio para ganado bovino. En contraste, el furfural es un intermediario importante para la síntesis de furanos, además de su uso en la manufactura de plásticos, barnices, insecticidas, funguicidas y reactivos en química analítica, lo cual hace al furfural un producto con enorme potencial económico.

Actualmente los combustibles fósiles son los principales recursos usados para producir energía o compuestos químicos, sin embargo, han provocado un daño importante al medio ambiente, por lo cual desde hace algunos años la industria ha decidido encaminar sus procesos al uso de materias primas renovables, como es la biomasa vegetal proveniente de desechos agrícolas, desechos de plantas papeleras o desechos urbanos. Estas materias primas son una buena opción económica debido a su bajo costo y mínimo impacto ambiental, como es el caso del olote de maíz.

El maíz ocupa el tercer lugar en la producción mundial después del trigo y el arroz, con un rendimiento de dos toneladas por hectárea aproximadamente. El cultivo del maíz tiene importancia especial, dado que este cereal constituye la base de alimentación de los mexicanos, siendo cultivado prácticamente en todo el territorio nacional, con fines de autoconsumo, alimentación animal y comercialización. Sin embargo, a nivel mundial el maíz también representa un papel importante a nivel industrial, ya que se procesa para obtener diversos productos como aceite, colodión, celuloide, glicerina, explosivos, emulsiones, productos farmacéuticos, furfural, entre otros. (Parsons, 1983)

El furfural es un compuesto orgánico heterocíclico, posee un anillo de furano y un grupo aldehído en su estructura química. Se produce a partir de desechos del maíz como es el olote, el cual es llevado a un proceso de digestión ácida y calentamiento con vapor de agua en un reactor durante 2 horas, resultando inicialmente en la formación de pentosa, y posteriormente la deshidratación de dicha pentosa resulta en la formación de furfural, todo esto dentro del mismo reactor, ya que las reacciones que se llevan a cabo son simultaneas.

Actualmente el mercado mundial de furfural presenta una creciente demanda gracias al uso cada vez más frecuente de productos químicos provenientes de biomasa vegetal sostenible, además de la constante volatilidad de los productos derivados del petróleo y las diversas normas ambientales que conllevan su uso. China es el mayor productor y consumidor de furfural a escala global, con un 85% de la producción y 75% del consumo, ambos a nivel mundial. El gigante asiático seguirá impulsando este mercado esperando un crecimiento anual de más del 4% en los próximos cinco años, ya que el valor de su mercado ha alcanzado los 582 millones de dólares y sigue en aumento. (Chemical Economics Handbook, 2018).

3. Justificación

Toda producción de bienes y servicios generalmente viene acompañada por la generación de algún tipo de residuo, ya sea líquido, sólido o gaseoso. Estos residuos representan un grave problema para la sociedad en México y el mundo, debido a que en algunos casos dichos residuos pueden tener efectos importantes sobre la salud de las personas o el medio ambiente. La sustentabilidad de nuestra civilización está determinada por el desarrollo de tecnologías que permitan suministrar fuentes de energía, alimentos y productos químicos sin comprometer la salud del planeta a largo plazo, lo cual se traduce en un enorme reto científico, tecnológico y social.

Es por esto por lo que el desarrollo de esta tesis cobra relevancia, al proponer el aprovechamiento de un residuo orgánico para obtener un compuesto químico de alto valor agregado, como lo es el furfural, el miembro más importante de la familia de los compuestos heterocíclicos conocidos como furanos, ya que es la base de la preparación de los demás derivados. La producción de furfural, además de constituir un paso hacia adelante en el desarrollo de la industria química en México, permitirá cubrir la demanda nacional y exportar un producto cuya demanda mundial se encuentra en aumento.

El presente documento muestra un panorama general acerca de la situación actual del furfural, el comportamiento de su mercado, así como de las tecnologías de producción alrededor del mundo. Además, se desarrolló la ingeniería básica conceptual basándose en un proceso distinto a los tradicionales, se trata de un proceso más amigable con el ambiente y menos agresivo, lo cual también se traduce en una reducción en los costos de producción.

4. El maíz

El maíz (Zea Mays) es uno de los granos con mayor importancia en el mundo, pertenece a la familia de las gramíneas y es un cereal que se adapta muy bien en diversas condiciones ecológicas y edáficas, lo cual hace posible que pueda ser encontrado en casi todos lados, su cultivo es de régimen anual, su ciclo vegetativo oscila entre 80 y 200 días, desde la siembra hasta la cosecha.

Existen diversas teorías para explicar su origen, la más aceptada es que proviene del Teocintle (*Zea Mexicana*) el cual es una gramínea de características muy parecidas a las del maíz y que se encuentra en todo el territorio mexicano desde hace aproximadamente 10,000 años. Antes de su descubrimiento por los europeos, el cultivo del maíz se extendió hacia el norte en Canadá y hacia el sur en Argentina, posteriormente se extendió a Europa, Asia y África. Se considera que alrededor del año 1000 D.C. la planta de maíz comenzó a ser desarrollada por agricultores que la mejoraron siguiendo un proceso de selección en el cual conservaban las semillas de las mazorcas más deseables para sembrar la próxima estación. Esta forma de selección de las mazorcas más grandes todavía es usada por los agricultores mexicanos, en algunos lugares del territorio nacional es aún un rito motivo de ceremonias religiosas anuales (Paliwal, Granados, Lafitte, & Violic, 2001)

El maíz tiene también importancia en la alimentación animal, tanto por su forraje como por sus granos enteros, molidos o quebrados que son sumamente nutritivos, además desempeña un papel importante en la industria, ya que se procesa en gran número de productos y subproductos como aceite, colodión, celuloide, explosivos, plásticos, jabón, glicerina, emulsiones, productos medicinales y productos farmacéuticos. (Parsons, 1983)

La planta de maíz es alta con abundantes hojas y un sistema radical fibroso, normalmente con un solo tallo que tiene hasta 30 hojas. Algunas veces se desarrolla una o dos yemas laterales en la axila de las hojas en la mitad superior de la planta; estas terminan en una inflorescencia femenina la cual se desarrolla en una mazorca cubierta por hojas que la envuelven, la parte superior termina en una inflorescencia masculina, este tiene una espiga central prominente y varias ramificaciones laterales, las cuales producen abundantes granos de polen.

Su morfología es la siguiente:

- 1. Tallo: es leñoso y cilíndrico
- Hoja: la vaina de la hoja forma un cilindro alrededor del entrenudo, pero con los extremos desunidos. Su color usual es verde, pero se pueden encontrar hojas rayadas de blanco y verde.

Sistema radicular

- Raíz seminal o principal: está representada por un grupo de una a cuatro raíces, que pronto dejan de funcionar. Se originan en el embrión. Suministra nutrientes a las semillas en las primeras dos semanas.
- Raíces adventicias: El sistema radicular de una planta es casi totalmente de tipo adventicio. Puede alcanzar hasta 2 m de profundidad
- Raíces de sostén o soporte: este tipo de raíces se originan en los nudos, cerca de la superficie del suelo. Favorecen una mayor estabilidad.

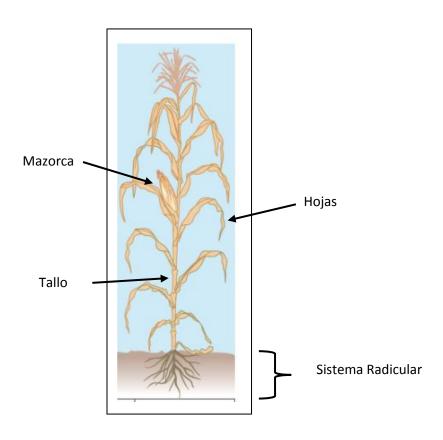


Fig. 1. Morfología del Maíz

4.1. El Olote de Maíz

El olote de maíz se encuentra entre las fuentes de recursos no maderables con un alto contenido de xilanas, por lo que ha sido considerado de interés como fuente alternativa de diferentes compuestos químicos de interés comercial o industrial, entre otras fuentes de biomasa. El olote es un residuo o subproducto agrícola que se genera en grandes cantidades en el proceso de separación del grano de la mazorca (ver fig. 2) y se estima que por cada tonelada de maíz se obtienen 170 Kg de olote (Córdoba, y otros, 2013).

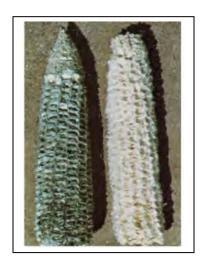


Fig. 2. Olote de maíz

A pesar de que anualmente se generan cantidades enormes de olote en México y el mundo, su explotación como materia prima en la elaboración de diversos productos químicos resulta bastante complicada debido a la dificultad que existe para acceder a sus componentes, así como la incompleta caracterización y valoración química de sus principales componentes. Algunos de los usos para el olote que han sido reportados en la literatura son el forraje para rumiantes, soporte para disminuir la erosión en la tierra y también como sustratos para la producción de la enzima xilanasa (Córdoba, y otros, 2013). En cuanto a la conversión del olote en productos químicos de valor agregado, se tienen la hidrólisis con ácidos minerales, reacciones enzimáticas, explosión con vapor, tratamientos con ozono, peróxido alcalino, entre otros, aunque estos métodos presentan dificultados debido a sus altos costos, elevado consumo energético y gran número de operaciones unitarias.

Desde el punto de vista químico, el olote de maíz está compuesto por hemicelulosa (23-32%), Celulosa (38-50%) y Lignina (15-25%) (Avci, Saha, Kennedy, & Cotta, 2013):

 Hemicelulosa: Son polisacáridos que, excluyendo la celulosa, constituyen las paredes celulares de las plantas. Las hemicelulosas forman aproximadamente

una tercera parte de los carbohidratos en las partes maderosas de las plantas. La estructura química de las hemicelulosas consiste en cadenas largas con una gran variedad de pentosas, hexosas, y sus correspondientes ácidos urónicos. Se encuentra presente en frutas, tallos de plantas, y las cáscaras de granos. Los polisacáridos que producen pentosanos al hidrolizarse se llaman pentosas. La xilana es un pentosano que consiste en unidades de D-Xilosa (Véase Fig.3.) (Chávez-Sifontes & Domine, 2013)

Fig.3. Estructura química de la xilana

 Celulosa: Es un polímero con cadenas largas sin ramificaciones β-D-Glucosa y se distingue del almidón por tener grupos -CH₂OH alternando por arriba y por debajo del plano de la molécula (véase fig.4.). La ausencia de cadenas laterales permite a las cadenas de glucosa acercarse unas a otras para formar estructuras rígidas. La celulosa es el material estructural más común en las plantas y puede ser hidrolizada. (Chávez-Sifontes & Domine, 2013)

$$-0 \xrightarrow{\text{CH}_2\text{OH}} \xrightarrow{\text{H}} \xrightarrow$$

Fig.4. Estructura química de la celulosa

Lignina: Es uno de los biopolímeros más abundantes en las plantas y junto con la celulosa y la hemicelulosa conforman la pared celular, dando como resultado redes de lignina-hidratos de carbono. Está presente en todas las plantas vasculares, y al igual que muchos otros componentes de la biomasa, se forma mediante la reacción de fotosíntesis, además está considerada como un recurso renovable asequible y de potencial uso industrial. La definición estructural de la

Cuautitlán Izcalli, Estado de México, México PAG. 13 DE 108

FECHA: 27-08-19

lignina no ha podido ser bien definida debido a la complejidad de su aislamiento, análisis de composición, y caracterización estructural (véase fig.5.). Una característica importante de la lignina es que son resistentes a la hidrólisis ácida. (Chávez-Sifontes & Domine, 2013)

Fig.5. Estructura química propuesta para la Lignina

A estos tres polímeros a base de carbono se les llama en conjunto: biomasa lignocelulósica, esta biomasa se encarga de otorgarle su rigidez y estructura a las plantas (véase fig. 6.). Cuando se separan estos polímeros pueden ser aprovechados para la fabricación de biocombustibles o productos químicos de gran valor, como los furanos; las cuales son moléculas con una estructura que consta de un anillo de cuatro átomos de carbono y un átomo de oxígeno, los cuales pueden extraerse del material lignocelulósico para aprovechar el gran potencial energético que poseen.

El principal problema con el aprovechamiento de la biomasa lignocelulósica es que sus polímeros (celulosa, hemicelulosa y lignina) son bastante recalcitrantes. Las cadenas de glucosa en la celulosa son mayormente insolubles y existen en microfibrillas cristalinas que hacen que los azúcares sean difíciles de separar. Estas microfibrillas de celulosa están unidas a la hemicelulosa, la cual contiene una variedad de azúcares (de cinco y seis carbonos), lo que también dificulta bastante el poder separarlos. Todo ese material está envuelto por la lignina, la cual es una compleja molécula hecha de polímeros entrecruzados entre sí, los fuertes enlaces químicos de sus polímeros hacen que sea muy difícil de romper, además de que su composición varia de una planta a otra y su verdadera estructura no está del todo definida.

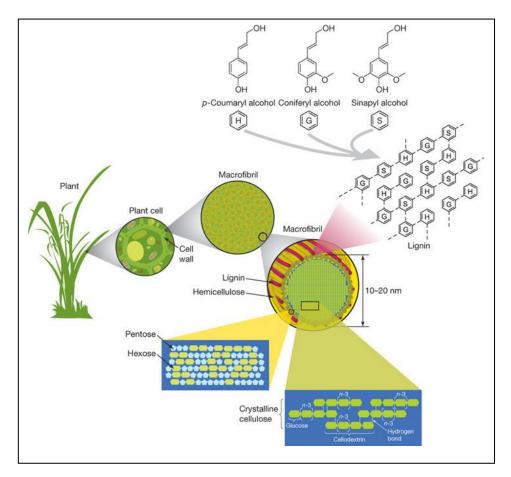


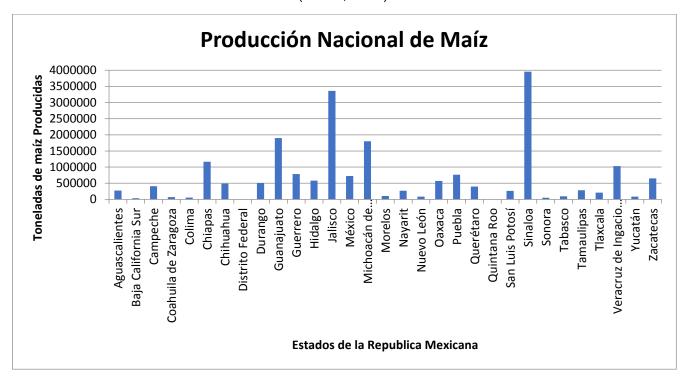
Fig.6. Biomasa lignocelulósica (Rubin, 2008)

4.2. Situación del Maíz en la República Mexicana

México es el principal productor de maíz blanco en el mundo. Asimismo, este es el cultivo más importante del país ya que representa aproximadamente el 35% de la superficie sembrada durante un año agrícola tanto para cultivos cíclicos como perennes. Además, anualmente se consumen alrededor de 20 millones de toneladas métricas de este grano. Tiene un consumo promedio per cápita al año de 196.4 Kg de maíz blanco, especialmente en tortillas, representa el 20.9% del gasto total en alimentos, bebidas y tabaco realizado por las familias mexicanas¹.

La producción de maíz grano se divide en blanco y amarillo. El maíz blanco representa 86.94% de la producción y se destina principalmente al consumo humano. Esa producción satisface la totalidad del consumo nacional. El maíz amarillo se destina a la industria o a la fabricación de alimentos balanceados para la producción pecuaria. Esa producción satisface solo el 24% de los requerimientos nacionales. La producción de maíz amarillo es deficitaria pues solo satisface 23.95% de los requerimientos nacionales, mientras que la producción de maíz blanco satisface en su totalidad los requerimientos. En ambos casos, Estados Unidos es el principal proveedor de maíz grano¹.

La estacionalidad de las importaciones de maíz amarillo muestra que el mayor flujo comercial se realiza de marzo a mayo, mientras que en el caso del maíz blanco julio es el mes en el que se importa más en promedio. En 2016, el 76% del maíz amarillo se destinó al consumo pecuario, 18% a la industria almidonera, 2% al autoconsumo, 2% al consumo humano y el resto a mermas. Por otro lado, el 52% del maíz blanco se destinó al consumo humano. 19% al consumo pecuario, 18% al autoconsumo, 6% a las exportaciones, 1% en semilla para siembra y el resto a mermas¹.


Gran parte del territorio nacional es propicio para la producción de maíz grano, en estados como Tamaulipas y Nuevo León hay zonas con gran potencial de aprovechamiento. De las 7.76 millones de hectáreas de maíz grano sembradas en 2016, el 75.59% de la superficie no se encuentra mecanizada, 65.06% no cuenta con tecnología aplicada a la sanidad vegetal, mientras que el 30.16% del territorio sembrado con este cultivo contó con asistencia técnica. Por otro lado, 3.55% de la producción es por modalidad de riego de gravedad, 0.19% de riego por bombeo, 45.25% por otro tipo de riego y el resto es temporal¹.

De acuerdo con la encuesta nacional agropecuaria del 2014, Sinaloa, Jalisco, Guanajuato son los mayores productores de maíz a nivel nacional (véase gráfica No.1.) (INEGI, 2014).

¹ Subsecretaría de Fomento a los Agronegocios SAGARPA, 2018)

Grafica No.1. Producción Nacional de Maíz (INEGI, 2014).

Durante el año 2015 la producción de maíz grano en México creció a una tasa anual de 6.1 por ciento para totalizar 24.69 millones de toneladas, siendo diez estados los que concentraron aproximadamente el 80 por ciento de la producción: Sinaloa, Jalisco, Estado de México, Michoacán, Chihuahua, Guanajuato, Veracruz, Chiapas, Tamaulipas y Puebla. Sinaloa se ubica como el principal productor de maíz en el país con una participación de 21.8%, lo cual representa un volumen de 5.3 millones de toneladas. En segundo lugar, se encuentra Jalisco con 13.5 por ciento de participación y un volumen de producción de 3.3 millones de toneladas. El tercer lugar lo ocupa el Estado de México con una participación de 8.2 por ciento del total y un volumen de 2 millones de toneladas (FIRA, 2018).

Para México, de acuerdo con el reporte Perspectivas agrícolas OCDE-FAO 2016-2025, se proyecta que la superficie cosechada de maíz crezca una tasa promedio anual de 0.6 por ciento en ese período. Así mismo se prevé que la producción nacional crezca a una tasa promedio anual del 1.0 por ciento, así para 2025 la producción se ubicaría en 26.41 millones de toneladas.

Con lo anterior podemos asegurar que la materia prima, el olote, estará disponible en grandes cantidades y bajos precios, durante prácticamente todo el año y solo se cubrirían los costos de transporte.

5. Furfural

El furfural es un compuesto orgánico heterocíclico, posee un anillo de furano y un grupo aldehído en su estructura química (ver Fig. 7). Se produce a partir de desechos del maíz como es el olote, el cual es llevado a un proceso de digestión ácida y acompañado con vapor de agua en un reactor durante 2 horas, resultando inicialmente en la formación de pentosa, y posteriormente la deshidratación de dicha pentosa resulta en la formación de furfural, todo esto dentro del mismo reactor, ya que las reacciones que se llevan a cabo son simultáneas. Hasta la fecha, no se ha encontrado una síntesis química rentable por medio de la cual se pudiera obtener el furfural a partir de un proceso que no utilice como materia prima residuos agrícolas.

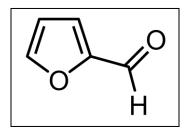


Fig.7. Estructura Química del Furfural

Reciéntenme ha sido identificado como uno de los químicos más prometedores para la producción sustentable de combustibles y productos químicos en el siglo 21. Es producto de la deshidratación de azúcares de cinco carbonos como la xilosa y arabinosa, los cuales son derivados de la biomasa hemicelulosica (Yan, Guosheng, Todd, & Cody, 2014) (Ver Fig.8).

Fig.8. Obtención del Furfural a partir de la Hemicelulosa

5.1. Antecedente Histórico

En 1832 Döbereiner descubre el furfural, siendo su trabajo el primero en reportar este compuesto heterocíclico. El informe que presentó relacionaba la obtención de gotas amarillentas de destilado lechoso en la preparación de ácido fórmico a partir del azúcar, dichas gotas fueron identificadas después como furfural. Otros científicos en el mundo continuaron haciendo investigación durante muchos años. La primera vez que se produjo furfural en grandes cantidades fue a principios de 1922 en Estados Unidos de América, por la *Quaker Oats Company*, destinándolo a la producción de resinas fenólicas.

Para 1965, la misma *Quaker Oats Company en Memphis Tennessee, E.U.A*, se encargó de adaptar un nuevo proceso para la obtención del furfural. Este sería a partir del bagazo de caña de azúcar en una planta localizada al sur de puerto rico y cuya producción inicial seria de 15,000 toneladas por año.

Dentro del sector nacional existieron dos empresas dedicadas a la producción de furfural:

- Furfural y Derivados S.A. (FYDSA)
- Productos Furánicos S.A.

El dueño e inventor de la tecnología de FYDSA, Luis de Alba Martínez, inicialmente trabajaba para obtener, a partir de la resina de pino, un producto llamado brea, el cual para su refinación requería del uso de furfural, el cual tenia un precio muy alto que hacia poco rentable producir esa brea, por lo que decidió tratar de elaborar su propio furfural para posteriormente utilizarlo en la obtención de la brea refinada en cuestión².

De esa decisión se derivó el que comenzara a reunir información en 1964, acerca de los procesos para obtención de furfural, datos que procedían, en su mayoría, de los Estados Unidos. Posteriormente se enteró que en el país no se producía y que se importaban cantidades importantes, principalmente por parte de PEMEX. En un primer paso instaló un rudimentario laboratorio en su casa, donde empezó a experimentar y obtener pequeñas cantidades de furfural a partir de olote. Este laboratorio fue montado en un cuarto que era destinado para guardar implementos de jardinería, siendo parte del "equipo" ollas de vapor usadas en cocina².

Al cuantificar los resultados de los experimentos de laboratorio, instaló una planta piloto. Para esta planta se adquirió, en su mayor parte, equipo considerado como chatarra, el cual fue acondicionado y adaptado para operar dentro del proceso. El diseño de la planta piloto lo realizó el señor de Alba².

Por el tiempo en que el señor Luis de Alba realizaba sus pruebas en la planta piloto, Petróleos Mexicanos, por medio de una publicación a través de los periódicos, dio a conocer sus requerimientos para la adquisición de furfural. De esa invitación y de los

_

² (Pérez Aceves & Pérez y Peniche, 2018)

Universidad Nacional Autónoma de México Facultad de Estudios Superiores Cuautitlán

"Evaluación Técnica Para Una Planta Productora De Furfural A Partir Del Olote De Maíz"

resultados positivos de las prácticas de planta piloto, el señor de Alba decidió instalar la planta para producción comercial de furfural².

Es importante mencionar que todo el trabajo y evaluación de resultados generados en el laboratorio y planta piloto fue realizado por Luis de Alba, cuya preparación formal no rebasaba la educación secundaria, y que contaba solo con experiencia previa en la construcción civil y la perforación de pozos petroleros, además de sus indiscutibles habilidades e ingenio propios.

El tiempo que requirió el diseño de la planta fue de 12 meses y se llevó a cabo en el año de 1966. No se necesitó de la asesoría o contribución alguna por parte de personal calificado, profesionista o técnico, del extranjero. Finalmente, *Furfural y Derivados S.A.(FYDSA)* comenzó operaciones en el año 1971, con una planta en Irapuato, Guanajuato. Usaban olote de maíz como materia prima y ácido sulfúrico como catalizador, contaba con una capacidad nominal de 1800 toneladas/año la cual servía casi en su totalidad para abastecer a *PEMEX*².

Por otro lado, *Productos Furánicos S.A.* comenzó operaciones en 1980, teniendo sus oficinas en la Ciudad de México. Usaba como materia prima el bagazo de caña y ácido sulfúrico como catalizador, además contaba con una capacidad 8000 Toneladas/año. La mayor parte de su producción era exportada a E.U.A. ya que esta empresa contaba con capital extranjero: 25 % de sus acciones pertenecían a *COSCOL Petroleum Co.*, quienes además distribuían el furfural en el extranjero. Posteriormente la empresa fue disuelta por problemas económicos a causa de la apertura del mercado y la globalización, entrando al país furfural a menor precio (Domenzain Ortega & Galimberti Cazorzi, 1981).

5.2. Propiedades y características

Tiene un olor aromático parecido al de las almendras y recién destilado es un líquido incoloro, estable a temperatura ambiente y en condiciones de ausencia de oxígeno. (Becerra Tapia & Ibarra Sanchez, 1993). Comercialmente se maneja en tonalidades que van del amarillo al café.

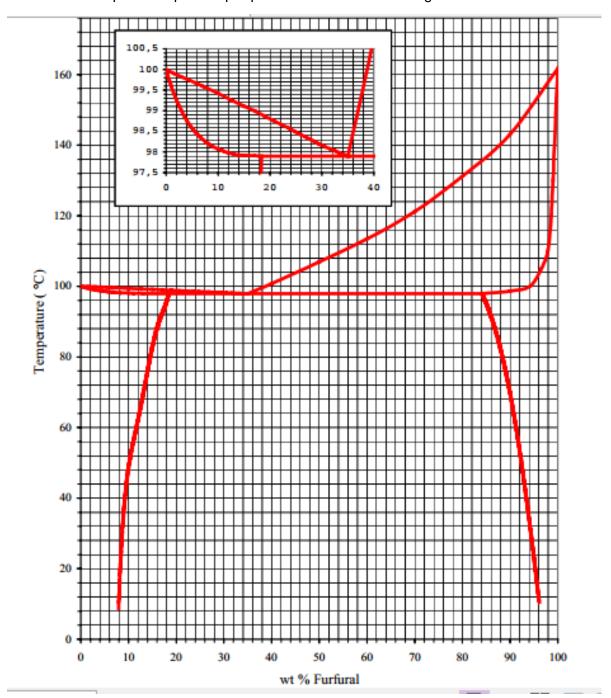
Fig. 9. Muestras de: Furfural (Izq.), Metil Furano (Centro) y Alcohol Furfurilico (Der.)

5.3. Propiedades físicas

El furfural es también conocido como 2-Furaldehído o Furfuraldehído, de fórmula molecular $C_5H_4O_2$ y masa de 96.08 g/mol. Sus excepcionales propiedades físicas hacen de este aldehído heterocíclico un buen disolvente selectivo, ya que remueve compuestos aromáticos de aceites lubricantes mejorando la relación viscosidad – temperatura, elimina compuestos aromáticos del Diesel mejorando su ignición, además de que se ha probado como un funguicida eficaz (Yan, Guosheng, Todd, & Cody, 2014). Muchas de sus propiedades se presentan a continuación:

Masa Molar (g/mol) Punto de Ebullición a 1 atm (°C) Punto de Congelación (°C)	96.08 161.7 -36.5
Índice de Refracción 20 °C 25 °C	1.5261 1.5235
Densidad (g/cm³) 20 °C 25 °C	1.1598 1.1545

Densidad de vapor (aire=1)	3.3
Presión Crítica (MPa) Temperatura Crítica (°C)	5.502 397
Solubilidad (%Peso) Agua Alcohol	8.3
Calor de Vaporización (Liq)(kJ/mol) Capacidad Calorífica (Liq)(J/g.K)(20-100°C) Calor de Combustión (Liq)(kJ/mol) Entalpia de formación (kJ/mol)	42.8 1.74 2344 -151
Viscosidad (mPa.s) 0 °C 25 °C 38 °C 54 °C 99 °C	2.48 1.49 1.35 1.09 1.68
Tensión Superficial (Dina/cm) 0 °C 29 °C 30 °C	43.5 40.7 41.1
Constante Dieléctrica a 20°C	41.9


El Furfural es completamente miscible en muchos de los disolventes orgánicos comunes como alcohol etílico, éter, acetona, cloroformo, benceno, y otros hidrocarburos aromáticos. Es poco miscible en hidrocarburos alifáticos saturados, los compuestos inorgánicos son en general bastante insolubles en furfural.

El agua es parcialmente soluble en el furfural, la temperatura de disolución es de 120.9 °C a 760 mm Hg, siendo la concentración crítica de la disolución 50.7% en peso de furfural. Por debajo de la temperatura crítica de disolución se encuentran en equilibrio dos fases líquidas.

El furfural y el agua forman un sistema binario no ideal, a presión atmosférica forman un heteroazeótropo de mínimo punto de ebullición que contiene 35% en peso de furfural (9.17% mol de furfural) y la mezcla ebulle a 97.9°C. Lo anterior puede observarse en el siguiente gráfico:

Grafica No.2. Equilibrio liquido-vapor para el sistema furfural – agua

5.4. Propiedades Químicas

De fórmula $C_5H_4O_2$, el furfural es conocido con otros nombres como: furfuraldehido, aceite de salvado, furol, aldehído furfural, aldehído furfurílico, aldehído pironácido, carbonal, aldehído furfural carboxílico.

El furfural posee dos poderosos grupos funcionales, un aldehído y un sistema conjugado (C = C - C = C). El grupo aldehído (C = O) del furfural puede experimentar reacciones típicas como acilación, condenaciones de aldol y Knoevenagel, reducción a alcoholes, aminación reductiva a aminas, descarbonilación, oxidación a ácidos carboxílicos, y reacciones de Grignard. El sistema de anillo del furano (C = C - C = C) puede someterse a procesos de alquilación, hidrogenación, oxidación, halogenación, reacciones de nitración y de apertura de anillo (Yan, Guosheng, Todd, & Cody, 2014).

Algunas de sus propiedades son las que caracterizan a los aldehídos aromáticos como variantes atribuibles al anillo furano. Puede ser oxidado a ácido furóico, reducido a alcohol furfurílico y convertido a furano por descarbonilación con catalizadores selectivos.

Por largo tiempo se ha visto que el furfural almacenado toma color con la formación simultanea de productos acídicos, todo esto es resultado de una auto oxidación. Se ha visto que el fierro actúa como favorecedor de la oxidación acelerando mucho la velocidad de formación de ácido cuando el furfural se pone en contacto por mucho tiempo con aire. El estaño y el alumino son menos favorecedores de la oxidación, y el cobalto actúa como antioxidante.

Es importante hacer notar que la auto oxidación del furfural está sujeta a una auto inhibición cuando el 7-8% del aldehído ha sido destruido. Aún más, con adición de agua se ha encontrado que decrece la velocidad de absorción de oxigeno y resultados similares se han obtenido cuando hay adición de pequeñas cantidades de bases orgánicas, preferentemente aminas terciarias o las comunes antioxidantes fenólicas.

A temperaturas elevadas (150 °C – 200 °C) el periodo que retardan la oxidación los inhibidores se vuelve extremadamente corto, así que los antioxidantes ya no son de ningún valor. La única manera de prevenir la auto oxidación del furfural a altas temperaturas es la de proveer una atmosfera inerte, como la de nitrógeno o dióxido de carbono (Domenzain Ortega & Galimberti Cazorzi, 1981).

5.5. Usos y Aplicaciones del Furfural

Disolvente Selectivo en Refinación de Aceites Lubricantes

A nivel industrial el Furfural tiene diversas aplicaciones gracias a sus características de solubilidad (puede disolver compuestos aromáticos y olefinas insaturadas) y fácil recuperación por destilación. Actualmente todas las principales compañías petroleras usan furfural como disolvente selectivo en la refinación de aceites lubricantes. La primera unidad de refinación fue construida por una filial de

Texaco, la *Indian Refining Company*, lo cual permitió la producción de aceite para motores de alta calidad con propiedades mejoradas de temperatura y viscosidad (International Furan Chemicals B.V., 2018).

Decolorante de la Colofonia de la Madera

El furfural es usado como agente decolorante para refinar colofonia de madera cruda obteniendo un producto con el cual se fabrican jabones, barnices y en la industria papelera. La colofonia es obtenida procesando la trementina del exudado de los árboles de pino.

Destilación Extractiva del Butadieno

Durante la segunda guerra mundial la tecnología para la purificación de butadieno fue desarrollada en los Estados Unidos para la manufactura de caucho sintético. Mediante la destilación extractiva con furfural, el butadieno o el isopreno pueden ser separados de otros hidrocarburos (C₄ y C₅).

Disolvente Reactivo y Agente Humectante

El Furfural es efectivo como disolvente de resinas fenólicas, ya que reacciona fácilmente con el fenol para formar resinas termofijas. Esta reacción se lleva a cabo bajo catálisis ácida o básica. Estas resinas son frecuentemente usadas en la industria, debido a su resistencia a la corrosión, estabilidad a altas temperaturas, bajo riesgo al fuego, y una gran resistencia mecánica.

La aplicación más importante de estas resinas es en la fabricación de corazones de moldeo para fundición, en morteros cementos, mezclas refractarias, revestimientos abrasivos y otros.

Así mismo es usado como agente humectante en ruedas abrasivas y balatas de frenos, o como aglutinante de abrasivos.

Materia Prima para Derivados del Furano

Gran parte de la producción de Furfural se destina a la obtención de alcohol furfurílico, furano, metilfurano, acetilfurano, furfurilamina, metiltetrahidrofurano, tetrahidrofurano, ácido livulineico, entre otros compuestos heterocíclicos de cinco miembros que contienen oxígeno.

5.6. Productos Derivados del Furfural

Existen diversos químicos derivados del furfural, entre los cuales podemos encontrar alcohol furfurílico, tetrahidrofurano (THF), alcohol tetrahidrofurfurílico, 2-metilfurano, 2-metiltetrahidrofurano, furano y ácido livulineico

• Alcohol Furfurílico: Es preparado por hidrogenación del furfural, y es un monómero para hacer resinas de furano. Las resinas industriales de furano son resistentes a la corrosión, no se queman y se caracterizan por uno baja emisión de humo. Los polímeros del furano pueden incluir formaldehido, urea, fenoles, etc., en su estructura. El mayor mercado de aplicación para resinas de furano es en la producción de núcleos y moldes utilizados en la fundición de metales, en la producción de plásticos reforzados con fibra de vidrio resistentes a la corrosión.

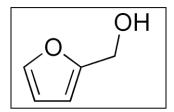


Fig.10. Estructura química del Alcohol Furfurílico

 Tetrahidrofurano (THF): Es producido por descarbonilación del furfural a furano por hidrogenación catalítica. El THF se aplica como disolvente para resinas y plásticos, películas protectoras y adhesivos. El THF también actúa como disolvente en diferentes síntesis orgánicas finas a escala comercial y como intermediario químico.

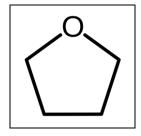


Fig.11. Estructura química del Tetrahidrofurano

• Alcohol Tetrahidrofurfurílico: El alcohol tetrahidrofurfurílico (THFA) es obtenido mediante un proceso de hidrogenación catalítica a alta presión que utiliza un

catalizador de Nickel de alta actividad y selectividad, partiendo del alcohol furfurílico como materia prima. El THFA así obtenido presenta una pureza mínima de 98,5%.

El THFA es utilizado en varias aplicaciones industriales, como:

- o Disolvente para herbicidas bio compatibles usados en el sector agrícola
- o Materia prima para detergentes en el sector eléctrico de circuitos integrados
- Disolvente para intermediarios de síntesis orgánica
- Disolvente para la industria farmacéutica

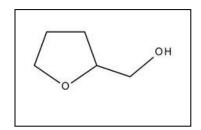


Fig.12. Estructura química del Alcohol
Tetrahidrofurfurílico

• **2-Metilfurano**: Es un intermediario químico que normalmente se obtiene por hidrogenación catalítica de alcohol furfurílico o mediante la hidrogenación del furfural en fase vapor. Es usado como aromatizante y saborizante debido a que su olor es similar al del chocolate, además se está evaluando su potencial como combustible alternativo.

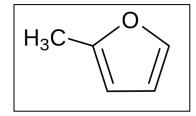


Fig.13. Estructura química del 2-Metilfurano

Ácido Levulínico: Es un cetoácido blanco y cristalino preparado a partir de la levulosa, la inulina, el almidón, mediante su ebullición con algún ácido mineral como el sulfúrico. Se usa en la producción de Nylon, gomas sintéticas, plásticos y productos farmacéuticos. Es un precursor en la producción industrial de otros productos químicos tales como el 2-Metiltetrahidrofurano y la Gamma-valerolactona.

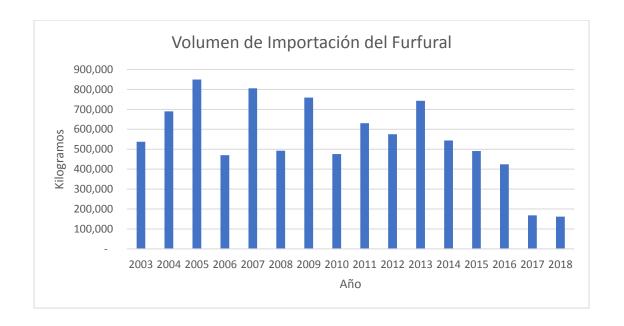
Fig.14. Estructura química del Ácido Levulínico

6. Perfil de Mercado

6.1. Producción Nacional e Importaciones

Actualmente en México **no se produce** Furfural, no hay registro de plantas productoras desde la desaparición de *FYDSA* (*Furfural y Derivados S.A.*) en la década de los 90's, sin embargo, existen muchas empresas que lo comercializan, entre las cuales se encuentran: *Brenntag de México S.A. de C.V.*, *Petroquímica del Golfo S.A. de C.V.*, *Mane México S.A. de C.V.*, *FRUTAROM de México S.A. de C.V.* y *Soluciones Químicas Integradas ARCARAN S.A. de C.V.*

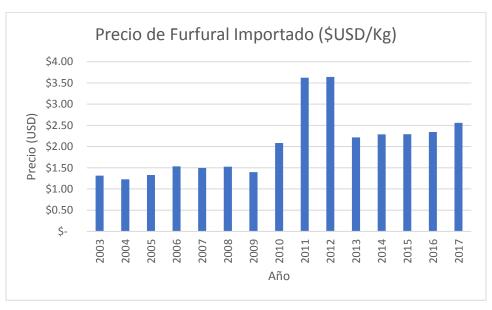
Lo anterior significa que todo el furfural que demanda la nación es importado, siendo los principales países de procedencia Republica Dominicana, Sudáfrica, Estados Unidos de América, Reino Unido, China y Canadá (véase tabla No.2.).


<u>Tabla No.2. Volumen de Importación de Furfural en los últimos años (Kg/Año.</u> (INEGI Balanza Comercial de Mercancías de México 2003-2018)

Año	República Dominicana	Sudáfrica	Estados Unidos de América	Reino Unido de la Gran Bretaña	República Popular de China	España	Canadá	Francia
2003	0	11,193	526,603	0	0	1	0	0
2004	218,282	5,715	466,059	0	0	202	0	0
2005	838,974	952	9,768	115	0	150	0	0
2006	455,967	4,762	9,052	76	0	0	0	2
2007	793,826	4,764	6,469	166	0	100	708	0
2008	197,751	107,459	8,066	100	178,446	0	943	1
2009	59,733	238,238	4,777	150	456,313	5	0	25
2010	39,987	135,201	300,326	195	0	5	0	0
2011	1	6,192	622,661	1,591	0	10	0	2
2012	0	5,954	569,333	27	0	20	0	2
2013	717,534	12,859	11,342	874	241	30	0	0
2014	515,299	17,852	9,388	799	347	20	0	0
2015	199,517	5,694	6,955	727	278,120	20	0	10
2016	0	0	5,749	845	415,439	55	2,536	15
2017	149,848	5,000	7,423	1,020	1,379	55	3,440	0
2018	149,903	60	8,981	450	940	40	1,290	0

A continuación, podemos observar en forma gráfica el comportamiento de las importaciones del Furfural:

<u>Grafica No.3. Volumen de importación del Furfural (Balanza Comercial de Mercancías de México 2003-2018)</u>


Como se puede apreciar, el volumen de importación de furfural ha decaído en los últimos años, a pesar de que anteriormente su comportamiento fue fluctuante y a partir de 2013 sufrió una total caída hasta 2018. Lo anterior puede deberse a que PEMEX, su mayor consumidor en México, ha disminuido su producción de aceite lubricantes drásticamente, viéndose totalmente afectado por la aprobación de la reforma energética y los descensos en precios de crudo de los últimos años. También se podría considerar que el descenso en las importaciones se deba a que hay algún productor nacional el cual aún no está registrado en las bases de datos de la Secretaria de Economía y/o el INEGI, lo cual es una posibilidad remota pero no se descarta.

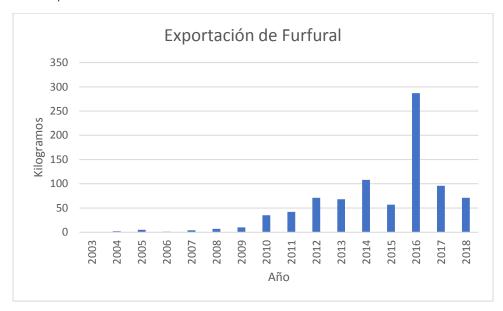
Por otro lado, es importante analizar la evolución del precio promedio del Furfural importado (véase Tabla No.4.), dado que ha presentado una tendencia al alza desde hace algunos años (véase grafica No.4.), esto resulta ser un indicativo de que el mercado del Furfural puede tener un gran futuro dentro de la industria química nacional.

Tabla No.3. Evolución del precio promedio de Furfural importado. (Balanza Comercial de Mercancías de México 2003-2018)

IMPORTACIONES								
Año	Valor (USD)	Volumen (Kg)	Precio por Kg (USD/Kg)					
2003	706,255	537,918	1.31					
2004	847,025	690,329	1.23					
2005	1,129,573	850,165	1.33					
2006	720,024	469,921	1.53					
2007	1,205,213	806,074	1.50					
2008	751,139	492,772	1.52					
2009	1,061,311	759,303	1.40					
2010	992,085	475,749	2.09					
2011	2,283,924	630,459	3.62					
2012	2,095,876	575,337	3.64					
2013	1,647,088	742,881	2.22					
2014	1,243,734	543,705	2.29					
2015	1,126,048	491,044	2.29					
2016	994,772	424,640	2.34					
2017	430,206	168,167	2.56					

Grafica No.4. Precio del Furfural Importado. (Balanza Comercial de Mercancías de México 2003-2018)

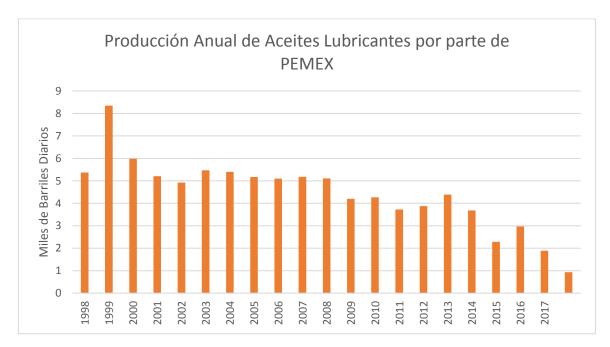
Ahora bien, en cuanto a las exportaciones cabe resaltar que son mínimas en comparación con las importaciones, siendo los principales destinos Colombia y Brasil, a continuación, se muestra la evolución de las exportaciones de Furfural:


Tabla No.4. Exportación de Furfural. (Balanza Comercial de Mercancías de México 2003-2018)

Año	Colombia	Brasil	Costa Rica	Argentina	Paraguay	Uruguay	EE.UU
2003	0	0	0	0	0	0	0
2004	2	0	0	0	0	0	0
2005	5	0	0	0	0	0	0
2006	1	0	0	0	0	0	0
2007	4	0	0	0	0	0	0
2008	7	0	0	0	0	0	0
2009	10	0	0	0	0	0	0
2010	35	0	0	0	0	0	0
2011	42	0	0	0	0	0	0
2012	66	0	0	0	0	0	0
2013	65	0	0	1	1	1	0
2014	60	3	45	0	0	0	0
2015	55	2	0	0	0	0	0
2016	103	0	0	0	0	0	183
2017	95	0	0	0	0	0	0
2018	67	3	0	0	0	0	0

Es más que evidente la bajísima cantidad de exportación nacional del Furfural, también cabe resaltar que la mayoría de los destinos de exportación corresponden a países sudamericanos, principalmente Colombia. A continuación, se muestra un gráfico realizado a partir de la tabla anterior (tabla No.4.) para poder presentar de manera más sintetizada el cambio en las exportaciones desde hace 15 años (véase gráfico No.5.):

Grafica No.5. Evolución de la exportación de FurfuraL. (Balanza Comercial de Mercancías de México 2003-2018)



Claramente hay cierta tendencia al aumento del volumen de las exportaciones de Furfural, destacando un despunte en 2016 aunque para los últimos dos años (2017 y 2018) bajara drásticamente. A pesar del fluctuante comportamiento en los últimos 4 años se espera que el Furfural mantenga su tendencia de incremento para los años siguientes, lo cual aseguraría otro posible objetivo de venta.

6.2. Demanda Nacional Estimada

Petróleos Mexicanos (PEMEX) es el principal consumidor de Furfural en el país, ya que en la Refinería "Ing. Antonio M. Amor" ubicada en Salamanca, Guanajuato, cuentan con dos plantas de destilación con Furfural, con una capacidad de producción de 77 mil barriles diarios de aceites lubricantes básicos (Petróleos Mexicanos, 2018). Sin embargo, recientemente la producción de aceites lubricantes básicos ha disminuido como se muestra en la gráfica No.6.:

Grafica No.6. Producción anual de aceites lubricantes. (Petróleos Mexicanos. Base de Datos Institucional)

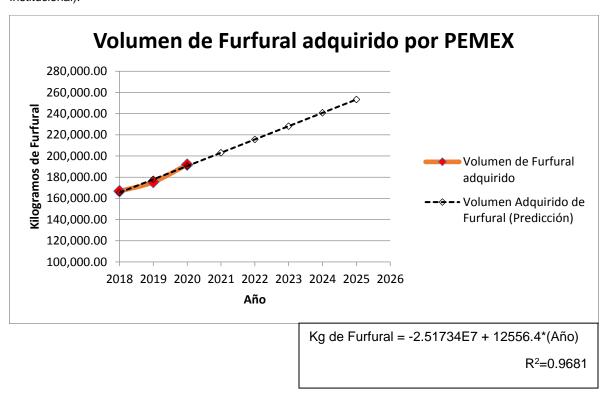
La producción de lubricantes está muy por debajo de la capacidad instalada, lo cual ha provocado que PEMEX no sea capaz de abastecer la demanda nacional de este hidrocarburo.

Por otro lado, existen empresas en México que utilizan el Furfural para manufacturar productos derivados furánicos, una de estas es *Mane México S.A. de C.V.*, quien, de acuerdo con el Sistema de Información Arancelaria Vía Internet de la Secretaría de Economía, exporta alcohol furfurílico, alcohol tetrahidrofurfurílico, nitrofurazona, ranitidina, sales de ranitidina, remestrina y demás derivados de sustitución del furano. Además, tenemos a empresas como FRUTAROM de México, la cual lo importa desde China para venderlo aquí en México a empresas de saborizantes y aromatizantes. También tenemos que considerar el consumo de furfural por parte de las industrias de los adhesivos, resinas furánicas, y de fabricación de piezas abrasivas.

Desafortunadamente resulta casi imposible cuantificar el volumen de importación por cada empresa debido a que se trata de secretos industriales, a pesar de eso, PEMEX, por ser una empresa paraestatal, pone a disposición del público algunos de sus contratos para adquisiciones de materias primas, uno de estos contratos es el de "Adquisición de Furfural para la Refinería "Ing. Antonio M. Amor" bajo la modalidad de contrato abierto sujeto a ajustes de precios para los ejercicios fiscales 2018, 2019 y 2020", en el cual se especifica el volumen adquirido (véase tabla No.6.), así como las capacidades de almacenamiento en las plantas de destilación (véase tabla No.5.).

Tabla No.5. Tanques de almacenamiento de Furfural. (Petróleos Mexicanos. Base de Datos Institucional)

Consecutivo	TAG	UBICACIÓN	CAPACIDAD (Kg)
1	3D-1-A	Planta U-3	258,891.00
2	D-207A	Planta LF	134,485.20
3	D-207B	Planta LF	134,485.20
4	D-207C	Planta LF	134,485.20


Tabla No.6. Volumen de Furfural adquirido por PEMEX a Soluciones Químicas Integradas ARCARAN, S.A. de C.V. (en conjunto con IFC NORTH AMERICA INC.)

Posc.	Año	Unidad	Cantidad	Cantidad	Precio	Importe	Importe
			Mínima	Máxima	Unitario	Mínimo Total	Máximo Total
					Total	(USD)	(USD)
					(USD)		
1	2018	Kg	166,765.13	800,000.00	3.40	652,385.20	2,720,000.00
2	2019	Kg	175,372.37	800,000.00	3.40	596,266.06	2,720,000.00
3	2020	Kg	191,878.00	800,000.00	3.40	567,001.44	2,720,000.00
		Total	534,015.50	2,400,000.00	Total	\$1,815,652.70	\$8,160,000.00

Cabe resaltar que en el contrato de PEMEX para la adquisición de Furfural también se menciona la posibilidad de requerir la cantidad máxima en caso de ser necesario, por lo cual se anexan los precios y cantidades correspondientes.

De acuerdo con la Tabla No.6. la cantidad requerida de Furfural mantiene una tendencia al alza desde el presente año y hasta 2020, por lo cual se graficaron dichos datos (véase grafica No.7.) y se realizó una regresión lineal a modo de predicción.

Grafica No.7. Volumen de Furfural adquirido por PEMEX. (Petróleos Mexicanos. Base de Datos Institucional).

La predicción para la adquisición de Furfural presenta un comportamiento lineal con una buena correlación, y es clara la tendencia a aumentar en los próximos años, considerando también que dentro de las políticas del actual gobierno mexicano se pretende aumentar la capacidad de producción de las actuales refinerías, además de la construcción de una nueva en el estado de Tabasco, lo cual representaría nuevas oportunidades de mercado para el Furfural.

Finalmente es posible establecer la capacidad inicial para la planta de producción de Furfural, considerando que todo el que se requiere en el país es importado y que PEMEX (el mayor consumidor de este orgánico heterocíclico) pretende aumentar su producción de aceites lubricantes, la capacidad inicial será la tercera parte que requerirá PEMEX en los próximos tres años, es decir: 180 toneladas/año.

6.4. Análisis de los Precios

Gracias al SIAVI (Sistema de Información Arancelaria Vía Internet) se conocen algunos de los precios de importación más recientes por cada país de procedencia (véase tabla no.7.).

Tabla No.7. Precios por Kg de Furfural importado en el año 2017.

País de Procedencia	Valor (USD)	Volumen (Kg)	Precio Unitario (USD/Kg)	
Sudáfrica	20798	5000	\$	4.16
Estados Unidos de América	51431	7423	\$	6.93
Reino Unido	14540	1020	\$	14.25
China	6486	1379	\$	4.70
España	644	55	\$	11.71

Los precios de Furfural varían bastante dependiendo del país procedente, observándose que los precios más altos son los de países europeos, y los precios más bajos corresponden a países con mano de obra barata, como China, el cual está totalmente industrializado, pero con pésimas condiciones laborales. En cuanto a Sudáfrica, se sabe que su planta de producción de Furfural es propiedad de *International Furan Chemicals* (*IFC*), una gigante transnacional en el mercado de los furanos.

Los precios en el mercado interno también son variables, y es que en el concurso de PEMEX para la adquisición de Furfural se ofrecieron dos precios solamente, así mismo se logró obtener el precio que FRUTAROM México (importante proveedor de Furfural) maneja en el mercado nacional:

Empresa	Precio Unitario (USD/Kg)
Soluciones Químicas Integradas Arcaran (en conjunto con	\$ 3.40
IFC NORTH AMERICA INC)	
Brenntag de México S.A. de C.V.	\$ 4.89
FRUTAROM México S.A. de C.V.	\$ 15.5

7. Estudio Técnico

7.1. Perfil Tecnológico de manufactura

A escala industrial el furfural se obtiene a partir del aprovechamiento de los residuos agrícolas que contienen aldopentosas (Ribosa, Arabinosa, Xilosa, etc.), siendo el olote de maíz y el bagazo de caña las principales fuentes de este grupo de moléculas.

Principalmente existen dos tipos de proceso, continuos y discontinuos, regularmente los procesos continuos se aplican a plantas industriales, y los discontinuos a plantas piloto o laboratorios. En los procesos continuos la materia prima se mezcla con una solución diluida de algún ácido mineral en un digestor, para posteriormente pasar a una etapa de separación del furfural en torres de destilación.

7.1.1. Proceso de Quacker Oats

Este proceso es de un solo paso en el que la materia prima se carga en grandes digestores rotatorios en los que se trata con ácido sulfúrico diluido. Los digestores giran lentamente mientras el flujo de vapor es introducido hasta obtener la presión y temperaturas deseadas, logrando que se abra la válvula de salida para permitir la remoción del furfural formado, el cual es arrastrado por la corriente de vapor, para su posterior condensación, y el líquido así formado se lleva a una columna de despojo.

Los vapores que salen de esta columna de despojo por la parte superior, ricos en furfural, se separan en dos capas, después de condenarse eliminando una pequeña cantidad de cabezas de bajo punto de ebullición con recuperación de metanol.

La capa inferior, rica en furfural, se envía a una columna deshidratadora en la que se hace eliminar el contenido de agua (8%), obteniéndose de esta manera el producto final.

(El diagrama correspondiente a este proceso, se encuentra en el anexo 1)

7.1.2. Proceso de Alba

La materia prima se utiliza tal como se recibe, sin la necesidad de un secado previo; por medio de transportadores mecánicos se carga a los digestores, en los que se trata con ácido sulfúrico diluido o fosfato monobásico de calcio, en caso de que se requiera utilizar el residuo como fertilizante.

Por medio de un flujo de vapor que se introduce en los digestores, se precalienta la carga hasta obtener la temperatura y presión adecuada; después de 1 hora y 20 minutos de reacción, en las que las aldopentosas se transforman en furfural, una válvula colocada en la parte superior del digestor permite la salida de los vapores saturados de furfural hacia los intercambiadores de calor en donde se condensan en una solución azeotrópica que es alimentada a una columna de despojo.

En esta columna se introduce vapor a baja presión y se eliminan por la parte superior vapores ricos en furfural, los que se condensan al pasar por otra serie de intercambiadores de calor, separándose en dos capas. La capa superior es agua con algo de furfural y se le recircula hacia la columna de despojo. La capa inferior, formada por furfural, impurezas y agua (aproximadamente 8%), se almacena para pasar posteriormente al proceso de purificación que consta de los siguientes pasos:

- 1. Se neutraliza la acidez hasta un pH = 7
- 2. Por destilación al vacío se separan breas de alto punto de ebullición formadas principalmente por alcoholes y agua, quedando como producto final el furfural

(El diagrama correspondiente a este proceso, se encuentra en el anexo 1)

7.1.3. Proceso Agrifurane

El proceso Agrifurane es muy similar a los descritos anteriormente con la diferencia de que éste usa fosfato cálcico como catalizador. Se utilizan varios reactores cilíndricos que se calientan después de cargados con el material y añadida la solución de ácido fosfórico. Cuando el material ha sido agotado de su contenido de furfural, condensan los vapores y alimentan a una columna de destilación, en la que se obtienen vapores ricos en furfural, los que se condensan, enfrían y decantan. La capa inferior, que tiene gran contenido de furfural, se purifica, neutralizándola y deshidratándola, para obtener así el furfural técnico. Las corrientes con bajo contenido de furfural, obtenidas del decantador, neutralizador, y de la columna de deshidratación, se envían a una columna de fracciones volátiles.

El residuo solido de los digestores se envía a un escurridor, recirculando la fracción liquida a uno de los digestores.

(El diagrama correspondiente a este proceso, se encuentra en el anexo 1)

7.1.4. Proceso Rosenlew

Este es un proceso continuo y autocatalítico, basado fundamentalmente en la utilización de ácidos orgánicos débiles como catalizadores. Las condiciones óptimas del tiempo de residencia en el reactor permiten controlar los problemas de corrosión e intercristalización de los aceros, si bien se requieren temperaturas y presiones superiores de operación respecto a aquellos procesos que implican ácidos fuertes. El uso de ácidos orgánicos débiles en el proceso hace que se requieran cantidades reducidas de sales para neutralizar el pH.

La materia prima se lleva al pre impregnador, transportándose posteriormente al reactor por medio de un alimentador rotatorio, en donde, mediante una válvula rotativa y una dosificadora, se alimenta en forma continua al reactor, al que se inyecta por el fondo vapor precalentado para efectuar la hidrolisis. El tiempo de permanencia del material

Cuautitlán Izcalli, Estado de México, México

PAG. 39 DE 108 FECHA: 27-08-19

crudo en el reactor va de una a dos horas. Durante la hidrolisis se forman, a partir de las hemicelulosas del material, ácido acético y pequeñas cantidades de ácido fórmico. El residuo se aprovecha como combustible de la caldera. Posteriormente se arrastra el furfural por medio del vapor hacia un intercambiador de calor, se condensa y se lleva al tanque para furfural diluido. De este tanque el furfural es llevado hacia la columna de destilación en contracorriente con vapor secundario inyectado en el fondo de la columna.

En esta fase se rompe el azeótropo formado (35% furfural, 65% agua en paso), se condensa la solución, se le lleva a unos tanques decantadores donde se inyecta una solución de carbonato de sodio para neutralización. El líquido recibido en el decantador está formado por dos capas: la superior es agua con 7% de furfural, y la inferior es furfural al 95% aproximadamente. Se separan las capas y la superior (7% de furfural) se recircula al tanque para furfural diluido, mientras que la otra se purifica por destilación al vacío en una columna, se elimina el resto del agua, obteniéndose así el furfural puro que es llevado al tanque de almacenamiento.

La fracción de bajo punto de ebullición procedente de la primera destilación pasa a una torre de destilación fraccionada de cuyos vapores, una vez condensados a través de los intercambiadores, se obtiene metanol industrial y acetona técnica. El destilado del fondo, consistente de agua y furfural, se regresa para furfural diluido.

(El diagrama correspondiente a este proceso, se encuentra en el anexo 1)

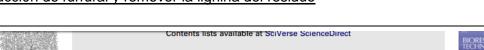
7.1.5. Proceso Escher-Wyss

La materia prima tratada se somete a una pre-vaporización y se impregna del catalizador ácido, calentándose con vapor a cerca de 100 °C, después se conduce al reactor y una vez formado el furfural, los vapores se limpian, condensan y enfrían a alrededor de 55 °C, este líquido que contiene furfural y ácido acético se lava, desaerea y recoge en una cuba intermedia, de donde pasa a una columna de destilación azeotrópica y se calienta a una temperatura cercana a la de ebullición.

El producto de desecho (una mezcla de agua y ácido acético con muy escasas cantidades de furfural), se enfría a una temperatura de aproximadamente 30 °C, a fin de aumentar la eficacia de la extracción anterior y se lleva a una columna de extracción. La mezcla que se retira de la columna de destilación azeotrópica se condensa e introduce a un separador: la capa rica en furfural se neutraliza y se lleva a la columna de vacío, donde el furfural se deshidrata y depura. El furfural puro se condensa y se enfría.

El residuo de la columna de destilación azeotrópica rico en ácido acético se hace pasar a la columna de recuperación de ésteres para recuperar el acetato de etilo. Los ácidos residuales se destilan en una columna de depuración, después en la columna de recuperación el ácido acético se separa del ácido fórmico como capa residual.

(El diagrama correspondiente a este proceso, se encuentra en el anexo1)


7.1.6. Procesos Actuales

Hoy en día la mayor parte del Furfural que es producido en el mundo se obtiene mediante hidrólisis con ácido sulfúrico (Chemical Economics Handbook, 2018) debido a que es el proceso más barato, ya que solo se requiere ácido sulfúrico diluido y vapor para llevar a cabo la reacción, lo cual se traduce en menos operaciones unitarias. Sin embargo, a largo plazo el ácido sulfúrico provoca importantes daños en tubería, equipos y accesorios debido a su carácter fuerte, aunado a que el efluente procedente del reactor principal requiere un tratamiento especial al tener un pH bajo.

Afortunadamente hay muchos esfuerzos en las universidades para mejorar el proceso tradicional, la mayor parte de las investigaciones acerca del Furfural provienen de China y en menor proporción de Estados Unidos. Algunas de las investigaciones más importantes son las siguientes:

<u>Hidrolisis de olote de maíz co-catalizada con cloruro férrico y ácido acético para mejorar la producción de furfural y remover la lignina del residuo</u>

Bioresource Technology

ELSEVIE

SEVIER journal homepage: www.elsevier.com/locate/biortech

FeCl₃ and acetic acid co-catalyzed hydrolysis of corncob for improving furfural production and lignin removal from residue

Liaoyuan Mao, Lei Zhang, Ningbo Gao, Aimin Li*

Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, PR China

Para Aumentar el rendimiento del furfural y la eliminación de la lignina se usó ácido acético y cloruro férrico como catalizadores en la hidrólisis del olote de maíz. En este trabajo de investigación se usaron diferentes concentraciones de cloruro férrico a distintas temperaturas. Los resultados demostraron que a altas concentraciones de cloruro férrico causaron una importante degradación de la celulosa, mientras que el ácido acético fue mas eficaz en la eliminación de la lignina.

Se obtuvo un rendimiento del furfural máximo del 67.89% en condiciones de 180 °C y en presencia de 20 mM de cloruro férrico y 3% de ácido acético. Simultáneamente, la eliminación de lignina alcanzó el 54.79%, dejando intacta al 74.29 de la celulosa, brindando la posibilidad de aprovecharse para la producción de etanol.

Producción de furfural a partir de licores de olote auto hidrolizado por tecnología de microondas.

Contents lists available at SciVerse ScienceDirect

Industrial Crops and Products

Furfural production from corn cobs autohydrolysis liquors by microwave technology

Cristina Sánchez, Luis Serrano, Mª Angeles Andres, Jalel Labidi*

Chemical and Environmental Engineering Department, University of the Basque Country, Pza Europa, 1, 20018 Donostia-San Sebastián, Spain

Este estudio se basa en la conversión de monómeros hemicelulósicos en furfural utilizando diferentes ácidos catalizadores y tecnología de microondas. En este trabajo, se obtienen licores con alto contenido de hemicelulosas provenientes del olote de maíz, la auto hidrólisis se trató con ácido sulfúrico y ácido clorhídrico como catalizadores, para obtener las condiciones óptimas para la producción de furfural. Dichas condiciones se determinaron usando diseños experimentales en los que se variaron las concentraciones de catalizador, la temperatura y el tiempo de reacción.

Los resultados mostraron que la producción de furfural estaba fuertemente influenciada por la concentración del catalizador, el tiempo y la temperatura de reacción. Se alcanzaron rendimientos del 37% respecto de las hemicelulosas totales contenidas en la materia prima inicial, usando ácido clorhídrico como catalizador a una concentración diluida (2% v/v), temperatura de 180 °C durante 5 minutos.

Además del furfural, se obtienen altas concentraciones de otros productos de degradación final como ácido acético o ácido fórmico, así mismo se observó que las microondas ayudan a romper las cadenas poliméricas de la hemicelulosa, lo cual permite obtener el furfural con mejor rendimiento.

Producción mejorada de furfural a partir de rastrojo de maíz empleando un catalizador ácido heterogéneo.

En este trabajo se propone usar un catalizador ácido en estado solido (SC-CaCt-700) en diferentes solventes orgánicos. Este sistema catalítico desarrollado demostró una eficacia superior para la producción de furfural a partir del olote de maíz, comparado con métodos tradicionales.

El catalizador que se usa está hecho a partir de citrato de calcio calcinado a 600 °C, carbón en medio fuertemente ácido y atmosfera de nitrógeno, para posteriormente someterse a una sulfonación en condiciones de temperatura altas, además de que se requieren diferentes operaciones unitarias para su purificación.

El olote se sometió a reacción con el catalizador a 200 °C durante 100 minutos en un medio orgánico, valerolactona, obteniendo un rendimiento del 93%.

Producción de furfural usando líquidos iónicos

Los líquidos iónicos se pueden usar en procesos para la obtención de furfural, ya sea como aditivos, como catalizadores, y/o como medios de reacción. Dependiendo del líquido iónico se puede añadir un catalizador externo al proceso, generalmente ácidos de Lewis, ácidos de Bronsted, y/o ácidos en estado sólido. Los líquidos iónicos son sales compuestas de grandes cationes orgánicos y aniones inorgánicos u orgánicos, los cuales difieren de los solventes orgánicos tradicionales, en su naturaleza química, estructura, y propiedades.

También existen líquidos iónicos ácidos que pueden funcionar como solventes y catalizadores, los cuales permiten la conversión directa de pentosas, pentosanos o biomasa con contenido de xilano a furfural. Lo anterior permitiría altos rendimientos de furfural, así como la disminución de subproductos.

<u>Producción de furfural a partir de carbohidratos derivados de biomasa y residuos</u> lignocelulósicos a través de catalizadores ácidos heterogéneos.

Contents lists available at ScienceDirect

Industrial Crops and Products

journal homepage: www.elsevier.com/locate/indcrop

Furfural production from biomass-derived carbohydrates and lignocellulosic residues via heterogeneous acid catalysts

Luxin Zhang a,*, Guoyun Xi a, Kun Yub, Han Yub, Xiaochang Wang a

- a College of Environmental and Municipal Engineering, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Key Laboratory of
- Environmental Engineering, Shaanxi, Xi'an University of Architecture and Technology, Xi'an 710055, PR China b College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China

Con el objetivo de mejorar la eficiencia en la producción de furfural a partir de biomasa lignocelulósica, se usaron catalizadores solidos como silicoaluminofosfatos y beta zeolitas modificadas. Estos se estudiaron para catalizar la conversión de carbohidratos derivados de biomasa, usando como medio a solventes de lactona.

La gamma valerolactona mostró un rendimiento alto, junto con la beta zeolita con hierro, mostrando la mayor actividad en la conversión de carbohidratos de 6 átomos a furfural, mientras que la beta zeolita con aluminio fue más eficaz en la transformación de carbohidratos de 5 y 6 átomos a furfural. Se tienen rendimientos del 30-78% en mezclas de glucosa y xilosa en gamma valerolactama catalizadas por zeolitas modificadas, por ejemplo, con la zeolita modificada con aluminio se produjo un rendimiento del 37.4% a 448 K en 100 minutos.

<u>Patente No. 200510015185: Producción de furfural co-catalizada con ácido acético y cloruro férrico.</u>

Para el desarrollo de la ingeniería en este proyecto se optó por un proceso similar al del uso de ácido acético co-catalizado con una solución de cloruro férrico, con la diferencia que se usará cloruro de sodio a modo de co-catalizador y se trabajará a una presión de 0.9 MPa (China Patente nº CN 200510015185, 2005). El hecho de usar cloruro de sodio en lugar de cloruro férrico minimizará los problemas ambientales del proceso, lo cual será benéfico para el proceso.

A partir de los procesos mas viables expuestos anteriormente se realizó una tabla comparativa, para evaluar de forma mas sencilla sus ventajas y desventajas, así como la síntesis de los procesos que se proponen.

Proceso	Descripción	Ventajas	Desventajas
Pre tratamiento catalítico hidrotérmico del olote para convertirlo en furfural mediante un catalizador solido	Se da un tratamiento inicial con vapor de agua a 180°C durante 120 min para posteriormente pasarlo a un reactor con agitación en presencia de un catalizador solido (SO ₄ /TiO ₂ – ZrO ₂ /La ⁺³)	-Presenta un alto rendimiento en la obtención de furfural - Evita corrosión elevada en equipos, tubería y accesorio al no usar un ácido fuerte	- Costos de producción altos debido a la complejidad y preparación del catalizador - Problemas en la recuperación del catalizador, traducido en un mayor número de operaciones unitarias
Producción de furfural a partir de licor de olote auto hidrolizado por tecnología de microondas	Tratamiento inicial con vapor de agua a 180 °C durante media hora, posteriormente llevarlo al reactor con ácido clorhídrico, se aplica agitación y microondas durante 5 min a 180 °C	- Menor tiempo de reacción que con el método tradicional - Buen rendimiento (37%)	- El uso de tecnología de microondas significaría un costo elevado de inversión y mantenimiento - El uso de ácidos fuertes provoca daños a largo plazo en tubería, equipo y accesorios
Producción mejorada de Furfural a partir de residuos de maíz empleando un catalizador ácido heterogéneo	Se carga al reactor los residuos de maíz previamente molidos, junto con un catalizador de citrato de calcio en medio ácido, además de agregar un solvente orgánico al reactor, todo esto a 200 °C durante 100 min	- Rendimiento alto, hasta del 93%	- La preparación del catalizador es compleja y requiere tiempo, además de su elevado costo - Uso de ácidos fuertes - Uso de solventes orgánicos
Producción de Furfural usando líquidos iónicos	Propone usar N,N-dimetilacetamida junto con cloruro de cromo y cloruro de litio durante dos horas a 140 °C en un reactor	-Buen rendimiento (hasta del 55%) - El calentamiento del reactor puede ser mediante aceite, evitando el uso de vapor de agua	 uso de solventes y co-catalizadores que generarían problemas ambientales Altos costos en reactivos y catalizadores
Hidrolisis Co- Catalizada con cloruro férrico y ácido acético para mejorar la producción de furfural y la eliminación de lignina	Propone usar ácido acético y una solución de cloruro férrico 20 mM (milimolar) en un reactor durante 30 minutos a 180 °C	- Buen rendimiento (67%) - Emplea un ácido débil, el cual provoca un menor daño a equipos, tubería y accesorios - Menor tiempo que método tradicional	- Emplea cloruro férrico, lo cual implica problemas de tratamiento de residuos

7.2. Ingeniería Básica

7.2.1 Bases de Diseño

7.2.1.1. Generalidades

Generado por la necesidad de minimizar la generación de residuos e impulsar la industria química nacional, se pretende aprovechar los residuos creados por el consumo y producción de maíz, dicho residuo se refiere al olote, el cual no es utilizado por los agricultores y empresas que producen maíz. El olote de maíz suele ser usado en algunos hogares rurales como medio combustible, sin embargo, tiene un poder calorífico bajo, fuera de esto el olote no tiene ningún uso y en la mayoría de los casos solo se almacena hasta su descomposición. Por otro lado, se sabe que el olote de maíz junto con el bagazo de caña son los materiales con mayor rendimiento en la obtención de Furfural (Ortega & Cazorzi, 1981), aunado a esto en la región central de México se cosechan grandes cantidades de maíz de las cuales el olote no es aprovechado y solo se desecha (INEGI: Encuesta Nacional Agropecuaria 2014) por estos motivos y debido a la importante demanda y poca oferta que presenta el Furfural dentro de la república mexicana se considera viable desarrollar una planta para su obtención.

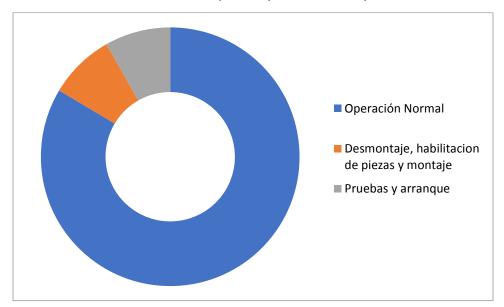
7.2.1.2. Funcionalidad del sistema

La función de la planta FVM-100 es obtener Furfural a partir de olote maíz, de este modo se recibe a la planta materia prima a un bajo costo (debido a que se trata de un desecho orgánico), y se obtiene un producto que es usado como intermediario para diversos procesos químicos y petroquímicos.

Para llevar a cabo este tratamiento se presenta un proceso semi continuo, la primera sección del proceso es un reactor por lotes, en el cual se lleva a cabo una hidrolisis ácida del olote de maíz, con ácido acético, vapor de agua y co-catalizado con cloruro de sodio, durante media hora en un digestor. Posteriormente los vapores del digestor se llevan a una torre de separación a modo de llegar al punto heteroazeotrópico del sistema aguafurfural y lograr su separación gracias a la formación de dos fases liquidas, así como la separación de algunos subproductos de la hidrolisis, finalmente la corriente rica en furfural es llevada a una torre deshidratadora donde finalmente se quitará prácticamente toda el agua, hasta obtener como producto Furfural al 99.5% de pureza.

7.2.1.3. Capacidad Instalada

Se pretende producir inicialmente 180 Ton/año de Furfural (Se prevee una posible expansión de la producción en años futuros), a partir del olote de maíz producido en el estado de Hidalgo (posteriormente se requerirá abastecimiento de otros estados de la


región centro del país), el cual, de acuerdo con datos del INEGI produce alrededor de 581,395 Ton/año de maíz, lo cual se traduce en 145,348 Ton/año de olote. Esto representa más del olote requerido para nuestro proceso, por lo que se asegura abastecimiento de materia prima.

7.2.1.4. Factor de Servicio

Considerando que la planta operará 305 días al año debido a que se consideraran 2 meses de mantenimiento (1 mes para desmontaje, limpieza y montaje y 1 mes para pruebas y arranques)

F.S.= 305 días/365 días = 0.8356

Grafica No.7. Distribución anual de tiempo de operación de la planta

7.2.1.5. Flexibilidad

La carga que se procesará consiste en una corriente de olotes triturados en dos o tres partes debido a que la mayoría del maíz es cosechado mediante maquinas cosechadoras que trituran las plantas de maíz a modo de obtener el grano suelto, las cuales son provenientes de los campos de cultivo del estado de Hidalgo, y son recibidas en la planta al silo TV-101. Se considerarán las siguientes capacidades de producción:

- Capacidad Mínima ("Turn Down"): La capacidad mínima de la planta será de aproximadamente 90 Ton/año
- Capacidad nominal: La planta operará de manera normal con 180 Ton/año

 Capacidad Máxima: La capacidad máxima de la planta será la permitida con el sobre diseño de los equipos. Aproximadamente 215 Ton/año

7.2.1.5.1. Falla de energía eléctrica

A falla de energía eléctrica la planta dejará de estar en servicio, efectuándose un paro ordenado del proceso.

7.2.1.5.2. Falla de vapor

A falla de suministro de vapor la planta dejará de estar en servicio, efectuándose un paro ordenado del proceso.

7.2.1.5.3. Falla de aire de instrumentos

A falla de aire de instrumentos de la planta se procederá a realizar un paro ordenado del proceso.

7.2.1.5.4. Falla de agua de enfriamiento

A falla de agua de enfriamiento de la planta se procederá a realizar un paro ordenado del proceso.

7.2.1.6. Modos de Operación

El proceso se va a operar en modo Semi Automático, ya que parte del proceso se controlará por controles electrónicos y automáticos.

Se propone operar la sección de digestión por lotes debido a que se requiere cargar y descargar el reactor, y la sección de separación de furfural en modo continuo.

7.2.1.7. Especificación de Materia prima

7.2.1.7.1. Olote de maíz

Composición Química (%mas	a)
Hemicelulosa	32
Celulosa	50
Lignina	18
	100

7.2.1.7.2. Ácido acético

Propiedades	
Densidad (Kg/m³)	1049
Solubilidad en agua	Miscible
Presión de vapor (20°C) (mmHg)	11.4
Punto de fusión (°C)	17
Punto de ebullición (°C)	118
Masa molecular (g/mol)	60.02

7.2.1.7.3. Cloruro de Sodio

Propiedades	
Densidad (Kg/m³)	2170
Solubilidad en agua (g/L)	360
Presión de vapor (20°C) (mmHg)	ND
Punto de fusión (°C)	804
Punto de ebullición (°C)	1413
Masa molecular (g/mol)	58.44

7.2.1.8. Condiciones de las alimentaciones al proceso

Alimentación	Procedencia	Estado Físico	Presión (Kg/cm²)	Temperatura (°C)	Forma de recibo
Olote de maíz	Silo de almacenamiento	Solido		25 °C	Banda Transp.
Ácido acético	Tanque de almacenamiento	Liquido	2.033 Kg/cm ²	25 °C	Tubería
Vapor de agua	Cuarto de calderas	Gas	9.2 Kg/cm ²	180 °C	Tubería
Cloruro de Sodio	Silo de almacenamiento	Solido		25 °C	Banda Transp.

7.2.1.9. Especificación del producto

Furfural al 98 % en peso en estado líquido con los siguientes parámetros:

Parámetro	Valor
Estado físico	Líquido
Peso específico 20°C/4°C	1.150
Pureza	98% Peso Mínimo
Acidez Gr. Equiv./L	0.02 Máximo
Cenizas	0.006% Peso Máximo
Agua por destilación	0.2% Volumen Máximo
Colos ASTM	2.5 Máximo

Contenido máximo de contaminantes (agua, metanol, ácido acético): 2%

7.2.1.10. Condición del Producto

Parámetro	Valor	
Temperatura (°C)	38	
Presión (Kg/cm²)	1.033	
Flujo molar (Kgmol/h)	0.2787	
Flujo másico (Kg/h)	26.78	
Pureza (%peso)	98	

7.2.1.11. Agentes Químicos

Agente	Edo. Físico		Presión		Те	mperatui	ra
Químico		Máx.	Norm.	Mín.	Máx.	Norm.	Mín.
Ácido Acético	Líquido		2.033	2.033	38	AMB	10
Cloruro de Sodio	Solido		1.033	1.033	38	AMB	10

7.2.1.12. Efluentes

La planta contará con drenaje de tipo químico, sanitario y pluvial, dentro del límite de batería.

La ventilación del drenaje químico será de registro sellado con un diámetro de 6 in, y estará hecho de Polietileno de Alta Densidad, por lo tanto, su velocidad máxima de flujo será de 5 m/s. La profundidad en la que se encontrará será de 60 cm en el área de proceso, calderas y laboratorio.

Por otro lado, en las zonas de almacén de materia prima, almacén de herramienta y materiales, la profundidad del drenaje será de 90 cm.

La ventilación del drenaje sanitario será de registro sellado con un diámetro de 8 in, y estará hecho de concreto simple, teniendo una velocidad máxima de flujo de 3 m/s. La profundidad en la que se encontrará será de 60 cm en el área de proceso y laboratorios. Por otro lado, en la zona de almacenes la profundidad será de 90 cm.

La ventilación del drenaje pluvial será de rejillas abiertas, con un diámetro de 2 in, y estará hecho de concreto simple, teniendo una velocidad de flujo máxima de 3 m/s. La profundidad a la que se encontrará será de 60 cm en el área de proceso, y en las calles, áreas verdes y estacionamiento se encontrará a 50 cm.

7.2.1.13. Servicios Auxiliares

7.2.1.13.1. Vapor de baja presión (VBP)

Tipo	Mínimo	Normal	Máximo
Presión (Kg/cm²)	9	9.2	9.6
Temperatura (°C)	180	180	190
Calidad	Vap. Sat.	Vap. Sat.	Vap. Sat.
Disponibilidad	La requerida		

7.2.1.13.2. Condensado

Tipo	Mínimo	Normal	Máximo
Presión (Kg/cm²)	1	1.033	2.033
Temperatura (°C)	180	180	190
Calidad			
Disponibilidad	La requerida		

El condensado que se genere en la planta deberá ser captado y enviado a límite de baterías para su tratamiento correspondiente.

7.2.1.13.3. Agua para servicio sanitario y potable

Tipo	Normal	Máximo
Presión (Kg/cm² man)	3	5
Temperatura (°C)	Amb.	38
Disponibilidad	La requerida	

7.2.1.13.4. Agua contra incendio

Tipo	Normal
Presión (Kg/cm² man)	7
Temperatura (°C)	Amb.
Disponibilidad	La requerida

7.2.1.13.5. Aire de instrumentos

Para el suministro de aire de instrumentos se hará la adquisición de un paquete con dos compresores, uno para operar normalmente y el otro como relevo en caso de falla, además de pre y post filtros de secado de aire, así como tanques acumuladores de aire seco para la instrumentación.

Tipo	Normal	Máximo		
Presión (Kg/cm² man)	7	7		
Temperatura (°C)	Amb.	38		
Disponibilidad	La requerida			

7.2.1.13.6. Energía eléctrica

El suministro de energía eléctrica a será provisto por la Comisión Federal de Electricidad.

Se operará con una tensión de suministro de 23 KV debido a que se tienen equipos que requieren de importante potencia eléctrica.

Para el área de oficinas se operará con una tensión eléctrica de 125 V para los equipos electrónicos y de laboratorio.

7.2.1.13.7. Sistema de comunicación

La planta contará con un sistema de comunicación y voceo en todas las áreas. Además de un sistema de circuito cerrado de TV, con cámaras de monitoreo en la zona de reacción y destilación del proceso. Así mismo se asignarán radios intrínsecamente seguros al personal que lo requiera para la acción de sus labores.

7.2.1.13.8. Sistema contra incendio

El sistema contra incendio estará conformado por la red de agua contra incendio, la cual consta de hidrantes, sistemas de aspersión de agua, válvulas de diluvio, tomas para camión, así como detectores de atmósferas explosivas, gases tóxicos, alarmas y extintores a lo largo de las instalaciones de planta.

7.2.1.14. Condiciones de sitio

Se pretende conformar el proyecto para una Planta de *Obtención de Furfural a partir de olote de maíz en* Tula de Allende, municipio del estado de Hidalgo, México, el cual está ubicado en las coordenadas 20°01'56" y 99°15'16, Cuenta con una altura de 2167 msnm. Lo conforman 21 localidades en las cuales habitan 29,683 personas. Limita al norte con Tlaxcoapan, al sur con Atotonilco, al oeste con Atitalaquia y al este con Ajacuba.

La zona posee una buena ubicación, tiene cerca la zona metropolitana del valle de México, lo cual ayudaría a poder surtir producto a posibles clientes al centro del país, además tiene conexión con la autopista arco norte, permitiendo el rápido acceso al golfo de México y el bajío, de los cuales podrían encontrarse clientes y/o proveedores.

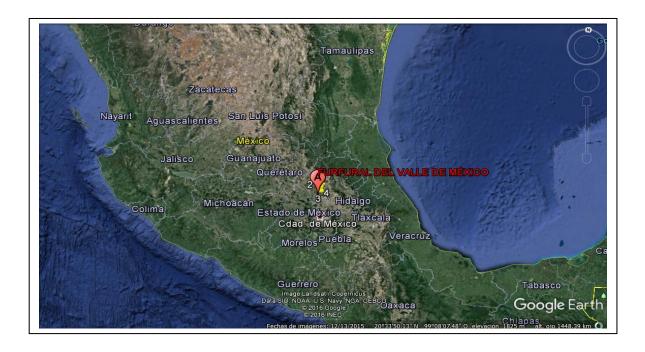


Fig. 15. Ubicación de la planta productora de furfural

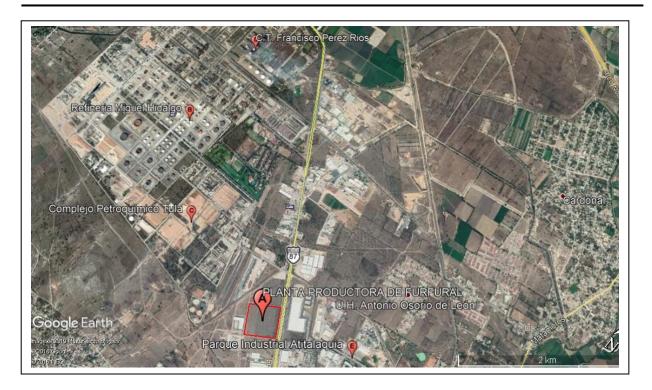


Fig. 16. Ubicación de la planta productora de furfural a escala local

El área cuenta con diversas vías de comunicación, como es la carretera Tula-Jorobas, la cual conecta a la autopista México-Querétaro, además de tener cerca la autopista arco norte. También cuenta con vías férreas, las cuales son usadas por diversas empresas aledañas como son *PEMEX* y *CFE*, entre otras encontradas en el parque industrial vecino, como es *CARGILL*.

Localización:

Ciudad/Estado/País: Tula de Allende, Hidalgo, México

Condiciones: Seco

Altitud: 2116 msnm (metros sobre el nivel del mar)

Presión atmosférica: 599 mmHg

• Temperatura ambiente

Temperatura	Bulbo seco
Máxima (°C).	32
Mínima (°C).	0
Máxima promedio (°C).	
Mínima promedio (°C).	7.0
Promedio (°C).	20.0
Bulbo Húmedo, Promedio (°C).	18.33
Bulbo Seco, Máxima (°C).	35.0

Humedad Relativa

Máxima	64.7 %				
Mínima	19.28 %				

Viento

Dirección de vientos dominantes	NE-SO
Dirección de vientos reinantes:	
Velocidad media, km/h	13.86 km/h
Velocidad máxima, km/h	140.0 km/h

• Precipitación pluvial

Máxima en 1 h, mm.	50
Máxima en 24 h, mm.	
Promedio anual, mm	

Terremotos

Magnitud, m (cm/s ²)	
Zona	Zona sísmica 3

7.2.1.15. Instalaciones requeridas para almacenamiento

Para el almacenamiento de materia prima se tendrán dos silos de olote de maíz, un silo para almacenamiento para el cloruro de sodio, un tanque atmosférico para almacenamiento de ácido acético y otro para agua cruda.

Además, en el área de proceso se tendrá un tanque horizontal de acero al carbón para almacenamiento del producto final.

7.2.1.16. Edificaciones dentro de planta

Las instalaciones que necesitará la planta de producción de furfural serán las siguientes:

- Oficinas administrativas
- Laboratorio de análisis y control de calidad
- Caseta de vigilancia
- Cuarto de control
- Almacén de herramienta menor y mayor

Además del espacio requerido para el área de proceso, almacén de materia prima, y cuarto de calderas.

7.2.1.17. Equipo de proceso

En recipientes la presión de diseño será del 10% o 2 Kg/cm² arriba de la presión máxima, la que sea mayor. Todo equipo deberá especificar estampado ASME, a menos que se especifique que no es requerido.

7.2.1.18. Normas, códigos y especificaciones

EQUIPO	NORMA, CÓDIGO O ESPECIFICACIÓN
Recipientes a Presión	API, ASME, ANSI
Tubería	ANSI
Seguridad	API, ASME
Instrumentación	ISA, API
Intercambiadores	TEMA, ASME y ANSI
Bombas y Compresores	API

7.2.2 Descripción del Proceso

La planta de producción de Furfural (FVM-100) tiene por objeto aprovechar los residuos de maíz (olote) provenientes de las zonas de cultivo del centro del país (Hidalgo, Estado de México, Querétaro, Veracruz) para producir Furfural de alta pureza mediante hidrolisis ácida con ácido acético y co-catalizada con cloruro de sodio, tal como se presentó en el capítulo 7. (véase diagrama de bloques de proceso y diagrama de flujo de proceso en Anexo 1).

Esta planta recibe olote de maíz que es almacenado en dos silos en el área de almacenamiento de materia prima, posteriormente mediante bandas es llevado al Digestor (DC-101) donde es cargado con vapor de agua de baja presión, proveniente del cuarto de calderas, ácido acético puro proveniente del tanque atmosférico (FB-101) y cloruro de sodio del silo TV-102. El vapor será inyectado hasta lograr condiciones de 9.2 Kg/cm² y 180 °C durante 30 minutos.

Los vapores del reactor conteniendo 4 % de Furfural son condesados en el intercambiador de calor (EA-101) y llevados al tanque de balance (FA-101). Por otro lado, los residuos sólidos y líquidos del Digestor (DC-101) se mandan a un filtro prensa (FG-101) donde es recuperado el líquido y bombeado hasta el tanque de balance (FA-101) para mezclarse con los vapores condensados. El líquido contenido en el tanque de balance (FA-101) es mandado a la torre azeotrópica (DA-101) en la cual se eliminan subproductos del digestor de alto punto de ebullición como ácido acético y metanol, obteniendo vapores de la torre con un 35% (peso) de Furfural los cuales son condensados en el intercambiador (EA-103) y mandados al tanque de separación (FA-102) en el cual se tendrán dos fases liquidas, ya que el Furfural y el agua forman un heteroazeótropo de bajo punto de ebullición a 1 atm y 98 °C. Debido a la diferencia de densidades el Furfural (saturado con agua) será bombeado del tanque de separación (FA-102) a la torre deshidratadora (DA-102), mientras que la fase acuosa será enviada de nuevo a la torre azeotrópica (DA-101).

En la torre deshidratadora (DA-102) se eliminará la mayor cantidad de agua, hasta dejarlo con una pureza de 98%(peso), el cual saldrá en los fondos de esta torre siendo enfriados en el intercambiador (EA-104) para finalmente llevarlos al tanque de almacenaje de producto terminado (FA-103).

7.2.3. Diagrama de Bloques de Proceso

(El diagrama correspondiente a este proceso, se encuentra en el Anexo 1)

7.2.4. Diagrama de Flujo de Proceso

(El diagrama correspondiente a este proceso, se encuentra en el Anexo 1)

7.2.5. Diagrama de Tubería e Instrumentación

(El diagrama correspondiente a este proceso, se encuentra en el Anexo 1)

7.2.6. Diagrama General de Arreglo de Equipo

(El diagrama correspondiente a este proceso, se encuentra en el Anexo 1)

7.2.7. Balance de materia y energía

										-	
		UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO									
		FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN									
	EVALU	EVALUACIÓN TÉCNICA PARA UNA PLANTA PRODUCTORA DE FURFURAL A PARTIR DEL OLOTE DE MAÍZ									
		BALANCE DE MATERIA Y ENERGÍA									
CORRIENTE	1		2		3	}	4		5	,	
COMPONENTE	FRAC MOL	Kgmol/h	FRAC MOL	Kgmol/h	FRAC MOL	Kgmol/h	FRAC MOL	Kgmol/h	FRAC MOL	Kgmol/h	
FURFURAL	0.00000	0.00	0.00000	0.00	0.00000	0.00	0.00000	0.00	0.00000	0.00	
AGUA	0.00000	0.00	1.00000	40.18	0.00000	0.00	0.00000	0.00	0.81850	8.0422	
ÁCIDO ACETICO	1.00000	0.6894	0.00000	0.00	0.00000	0.00	1.00000	0.6894	0.08060	0.7923	
CLORURO DE SODIO	0.00000	0.00	0.00000	0.00	1.00000	0.9907	0.00000	0.00	0.10080	0.9907	
OLOTE	0.00000	0.00	0.00000	0.00	0.00000	0.00	0.00000	0.00	-	-	
METANOL	0.00000	0.00	0.00000	0.00	0.00000	0.00	0.00000	0.00	0.00000	0.00	
FRACCIÓN DE VAPOR	0.00	000	1.00	00	0.0000		0.0000		0.0000		
Temperatura, (°C)	25	.0	180	.0	25	.0	25.0		180.0		
Presión, (kg/cm2_g)	1.0	00	9.2	:0	1.00		3.5000		1.00		
Flujo Molar, (kgmol/h)	0.6	§9	40.	18	0.9907		0.6894		-		
Flujo Masico, (kg/h)	41.4	000	723.	80	57.90		41.4000		600.24		
Peso Molecular, (kg/kgmol)	60.0	526	18.0150		58.44		60.0526		-		
Densidad a P y T, (kg/m3)	1049	.000	999.014		2165.0000		1049.000		-		
Viscosidad, (cP)	0.9282 0.01517		517	-		0.9276		-			
Capacidad Calorífica, (kcal/kg-C)	0.52	207	0.61	30	0.2139		0.5210		-		
Entalpía, (kcal/kg)	38.1	560	665.	178	356	.90	38.2430				

	UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO										
		FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN									
	FVΔIII	EVALUACIÓN TÉCNICA PARA UNA PLANTA PRODUCTORA DE FURFURAL A PARTIR DEL OLOTE DE MAÍZ									
	LVALO	BALANCE DE MATERIA Y ENERGÍA									
CORRIENTE	E		7		8		9)	10	0	
COMPONENTE	FRAC MOL	Kgmol/h	FRAC MOL	Kgmol/h	FRAC MOL	Kgmol/h	FRAC MOL	Kgmol/h	FRAC MOL	Kgmol/h	
FURFURAL	0.00000	0.00	0.00000	0.00	0.00000	0.00	0.00855	0.28	0.00672	0.28	
AGUA	0.00000	0.00	0.91020	8.03	0.00000	0.00	0.98550	32.14	0.96950	40.1770	
ÁCIDO ACETICO	0.00000	0.0000	0.08980	0.79	0.00000	0.00	0.00000	0.0000	0.01910	0.7923	
CLORURO DE SODIO	-	0.99	0.00000	0.00	0.00000	0.0000	0.00000	0.00	0.00000	0.0000	
OLOTE	-	-	0.00000	0.00	1.00000	-	0.00000	0.00	0.00000	0.00	
METANOL	0.00000	0.00	0.00000	0.00	0.00000	0.00	0.00590	0.19	0.00460	0.19	
FRACCIÓN DE VAPOR	0.00	000	0.00	000	0.0000		1.0000		0.0000		
Temperatura, (°C)	180	0.0	50.	.0	50	.0	180	0.0	160	160.0	
Presión, (kg/cm2_g)	1.0	00	1.0	00	1.00		9.2000		7.85		
Flujo Molar, (kgmol/h)	-		8.82	277	-		32.6132		804.34		
Flujo Masico, (kg/h)	407.9	9000	192.	.34	361.90		612.0000		41.44		
Peso Molecular, (kg/kgmol)	-		21.7880		-		18.7654		19.4093		
Densidad a P y T, (kg/m3)	-		1011.514		-	•	4.494		907	7.7	
Viscosidad, (cP)	-	- 0.56650		-		0.0155		0.1714			
Capacidad Calorífica, (kcal/kg-C)	-		0.88	320	-		0.1776		0.9890		
Entalpía, (kcal/kg)	-		48.6	340	-		11,996	5.1611	153.4	1940	

	UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO										
		FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN									
	EVALU										
	EVALU	EVALUACIÓN TÉCNICA PARA UNA PLANTA PRODUCTORA DE FURFURAL A PARTIR DEL OLOTE DE MAÍZ BALANCE DE MATERIA Y ENERGÍA									
CORRIENTE	1	11 12 13 14 15								5	
COMPONENTE		Kamol/h	FRAC MOL	Kamol/h	FRAC MOL	Kamol/h	FRAC MOL	Kamol/h	FRAC MOL	Kgmol/h	
FURFURAL	0.00672	0.2787	0.09170	0.2787	0.09170	0.2787	0.78890	0.27	0.00390	0.01	
AGUA	0.96950	40.1770	0.90830	2.76	0.90830	2.76	0.21110	0.07	0.99610	2.5494	
ÁCIDO ACETICO	0.01910	0.7923	0.00000	0.00	0.00000	0.00	0.00000	0.00	0.00000	0.00	
CLORURO DE SODIO	0.00000	0.0000	0.00000	0.00	0.00000	0.00	0.00000	0.00	0.00000	0.00	
OLOTE	0.00000	0.0000	0.00000	0.00	0.00000	0.00	0.00000	0.00	0.00000	0.00	
METANOL	0.00460	0.1929	0.00000	0.00	0.00000	0.00	0.00000	0.00	0.00000	0.00	
FRACCIÓN DE VAPOR	0.00	000	1.00	000	0.0000		0.0000		0.0000		
Temperatura, (°C)	100	0.0	110	0.0	98.0		98.0		98.0000		
Presión, (kg/cm2_g)	3.	10	1.4	10	1.00		1.0000		1.0000		
Flujo Molar, (kgmol/h)	804	.34	0.15	61	0.1561		0.3400		2.5594		
Flujo Masico, (kg/h)	41.	.44	74.0	932	74.0	932	27.2042		46.8890		
Peso Molecular, (kg/kgmol)	19.4	093	19.4	19.4659		659	80.0	120	18.3	200	
Densidad a P y T, (kg/m3)	0.9	061	-		968.5	5590	1070.189		961.0	0180	
Viscosidad, (cP)	0.28	344	0.01277		0.2919		0.6358		0.2870		
Capacidad Calorífica, (kcal/kg-C)	0.9	610	0.36	600	0.95	540	0.4580		0.9950		
Entalpía, (kcal/kg)	95.0	190	599.	595	92.	75	42.4	420	96.9	090	

			UNIVE	RSIDAD	NACIONAL	AUTÓNO	MA DE MÉ	XICO		
			FACUL1	TAD DE E	STUDIOS S	SUPERIOR	RES CUAUT	ITLÁN		
	EVALU	ACIÓN TÉC	NICA PARA I	JNA PLAN	TA PRODUC	TORA DE F	URFURAL A	PARTIR DI	EL OLOTE D	EMAÍZ
				BALAN	CE DE MAT	TERIA Y E	NERGÍA			
CORRIENTE	10	6	17	7	18	8	19	9	20	0
COMPONENTE	FRAC MOL	Kgmol/h	FRAC MOL	Kgmol/h	FRAC MOL	Kgmol/h	FRAC MOL	Kgmol/h	FRAC MOL	Kgmol/h
FURFURAL	0.00000	0.0000	0.00000	0.0000	0.00000	0.0000	0.78890	0.27	0.00000	0.00
AGUA	1.00000	32.1770	1.00000	32.1770	0.84170	5.24	0.21110	0.07	1.00000	0.0646
ÁCIDO ACETICO	0.00000	0.0000	0.00000	0.00	0.12730	0.7923	0.00000	0.00	0.00000	0.00
CLORURO DE SODIO	0.00000	0.0000	0.00000	0.00	0.00000	0.00	0.00000	0.00	0.00000	0.00
OLOTE	0.00000	0.0000	0.00000	0.00	0.00000	0.00	0.00000	0.00	0.00000	0.00
METANOL	0.00000	0.0000	0.00000	0.00	0.03100	0.1929	0.00000	0.00	0.00000	0.00
FRACCIÓN DE VAPOR	0.00	000	1.00	00	0.14	196	0.00	000	1.00	000
Temperatura, (°C)	100	0.0	120	.0	110	0.0	97	.0	100.0	0000
Presión, (kg/cm2_g)	1.8	30	1.8	0	1.8	30	1.03	30	1.03	330
Flujo Molar, (kgmol/h)	32.	18	32.13	800	6.22	252	0.34	100	0.06	646
Flujo Masico, (kg/h)	579	.68	579.	68	148.1	1600	27.2	042	0.00)16
Peso Molecular, (kg/kgmol)	18.0	153	18.0	153	49.7	430	80.0	120	18.0	150
Densidad a P y T, (kg/m3)	950.	710	993.9	960	2875.	4930	1070	.189	999.0	0140
Viscosidad, (cP)	0.25	547	0.012	297	0.01	112	0.6358		0.02	270
Capacidad Calorífica, (kcal/kg-C)	1.01	100	0.50	90	0.32	200	0.45	580	1.00	000
Entalpía, (kcal/kg)	110.2	2000	646.8	894	-		42.4	420	100.1200	

			LINUX		NIA CIONIAI	AUTÓNO	MA DE MÉ	VICO		· 1
							RES CUAUT			
		. a.á 								í-
	EVALU	ACION IEC	NICA PARA					PARTIR DI	EL OLOTE D	E MAIZ
	_				CE DE MAT				_	
CORRIENTE			22		2:		2		2	
COMPONENTE	FRAC MOL	Kgmol/h	FRAC MOL	Kgmol/h	FRAC MOL	Kgmol/h	FRAC MOL	Kgmol/h	FRAC MOL	Kgmol/h
FURFURAL	0.00000	0.00	0.00000	0.00	0.00000	0.00	0.98000	0.27	0.98000	0.27
AGUA	1.00000	0.0646	1.00000	0.0646	1.00000	0.0646	0.00200	0.05	0.00200	0.05
ÁCIDO ACETICO	0.00000	0.00	0.00000	0.00	0.00000	0.00	0.00000	0.00	0.00000	0.00
CLORURO DE SODIO	0.00000	0.00	0.00000	0.00	0.00000	0.00	0.00000	0.00	0.00000	0.00
OLOTE	0.00000	0.00	0.00000	0.00	0.00000	0.00	0.00000	0.00	0.00000	0.00
METANOL	0.00000	0.00	0.00000	0.00	0.00000	0.00	0.00000	0.00	0.00000	0.00
FRACCIÓN DE VAPOR	0.00	000	0.00	000	0.00	000	0.00	000	1.00	000
Temperatura, (°C)	40.0	000	40.0	000	40.0	000	160	0.0	180.0	0000
Presión, (kg/cm2_g)	0.70	000	0.70	000	2.00	000	1.40	000	1.40	000
Flujo Molar, (kgmol/h)	0.06	646	0.06	46	0.06	646	0.27	700	0.27	700
Flujo Masico, (kg/h)	0.00	016	0.00	16	0.00)16	25.9	432	25.9	432
Peso Molecular, (kg/kgmol)	18.0	150	18.0	150	18.0	150	96.0	860	96.0	860
Densidad a P y T, (kg/m3)	989.4	4160	989.4	160	989.9	9900	1164	.231	1166	6.40
Viscosidad, (cP)	0.67	711	0.67	'11	0.68	310	0.64	101	0.0	124
Capacidad Calorífica, (kcal/kg-C)	0.99	980	0.99	080	0.99	990	0.4650		0.3040	
Entalpía, (kcal/kg)	40.0	660	40.0	660	41.0	566	67.5	370	177.3549	

							MA DE MÉ			
							RES CUAUT			
	EVALU	ACIÓN TÉC	NICA PARA					PARTIR D	EL OLOTE D	EMAÍZ
				BALAN	CE DE MAT	ERIA Y E	NERGÍA			
CORRIENTE	2	6	2	7	28	3	2	9	-	
COMPONENTE	FRAC MOL	Kgmol/h	FRAC MOL	Kgmol/h	FRAC MOL	Kgmol/h	FRAC MOL	Kgmol/h	FRAC MOL	Kgmol/h
FURFURAL	0.98000	0.27	0.98000	0.27	0.98000	0.27	0.00000	0.00		
AGUA	0.00200	0.05	0.00200	0.05	0.00200	0.05	1.00000	0.0646		
ÁCIDO ACETICO	0.00000	0.00	0.00000	0.00	0.00000	0.00	0.00000	0.00		
CLORURO DE SODIO	0.00000	0.00	0.00000	0.00	0.00000	0.00	0.00000	0.00		
OLOTE	0.00000	0.00	0.00000	0.00	0.00000	0.00	0.00000	0.00		
METANOL	0.00000	0.00	0.00000	0.00	0.00000	0.00	0.00000	0.00		
FRACCIÓN DE VAPOR	0.00	000	0.00	000	0.00	000	0.00	000		
Temperatura, (°C)	160	0.0	38.	.0	38	.0	40.0	000		
Presión, (kg/cm2_g)	1.40	000	1.0	00	1.0	00	2.00	000		
Flujo Molar, (kgmol/h)	0.2	700	0.27	'00	0.27	700	0.06	646		
Flujo Masico, (kg/h)	25.9	1432	25.9	432	25.9	432	0.00	016		
Peso Molecular, (kg/kgmol)	96.0	860	96.0	860	96.0	860	18.0	150		
Densidad a P y T, (kg/m3)	1164	.231	1141	.300	1141	.300	989.9	9900		•
Viscosidad, (cP)	0.64	401	1.30	456	1.30	456	0.68	310		
Capacidad Calorífica, (kcal/kg-C)	0.46	650	0.40	000	0.40	000	0.99	990		
Entalpía, (kcal/kg)	67.5	370	14.7	'96	14.7	796	41.0	566		

7.2.8. Dimensionamiento y especificación de equipo

)		RSIDAD NACIONA				HOJAS DE		DE PROCES	O PARA
CLIENTE							Proyecto:		FVM-100	
PLANTA		PLANTA PRODU	CTORA DE FURFURAL	_			Ноја:	1	de	1
LOCALIZACIO	ÓN	TULA DE ALLEN	DE, HIDALGO				Req. No:			
CLAVE DEL	EQUIPO	DA-102					No. de Unidad	es:	1	
SERVICIO		TORRE DESHIDE	RATADORA				Posición:		Vertical	
Tipo		Empaque Estruct	urado: Empa	aque Al	eatorio:					
Diametro Inte		907		mm						
Longitud	(T-T):	8540		mm						
Temperatura	Operación	Domo: Máx:	110 °C Fondos:		160°C 185°C					
Presión	Operación Máxima	Domo: 1 kg/cm : 2 kg/cm2			4 kg/cm2 man + V.1		(17	9		
Nivel		1800 mm Norm		_	152 mm	1	(33)+	1(8)		
Alarmas		230 mm Bajo N		•	ro: - mm	1				
Materiales		Tapas:	A.C. Cuerpo:		A.C.	1			-	
Corrosión Pe	rmisible	Tapas: -	mm Cuerpo:		mm	1			Ţ	
Recubrimient		-	Aislamiento:	Sí		1				
Relevado de I		Sí	Estampado ASME:	Sí					+(11)	
riolovidao do l	LoidoiLoo.	PLAT	•				1			
No	No de Pasos	Tipo	Espaciamiento (mm	n)	Material	(
1-20.	1	Valvulados	610	/	A.C.	1	· ' ' ,			
. 201	· · · · · ·	BOQUIL	L			1		$\overline{}$		
No.	Cantidad	D. Nom.	Servici	io		(1A) + - T=			
1 A/B	2	610	Registro de Hombre			۱	ノ' <u>"</u>			
8	1	38	Venteo							
10	1	310	Alimentación de FA-10)2						
11	1	310	Alimentación de agua o		ada					
17	1	260	Salida de vapores de a						8540	
31	1	76	Drene	J					35	
33	1	(2)	Valvula de Seguridad de	de Presi	ión (PSV)	1	14	<u>-</u>	~	
35 A/B	2	122	Conexión de Servicio		(. 5.)	1				
36	1	38	Instrumentos de Presió	ón				\neg	<u> </u>	
41	1	38	Instrumentos de Tempe			1		(36)	
46 A/D	4	51	Instrumentos de Nivel			1	l	ļ., ·	L	
18	1	290	Salida de furfural al 98%	%		(55A) + F	_	1 (46A)	
	1					1		7	41)	
	İ					1		1	\sim \mid	
									+(46B)	
						1		_	T +0B)	
						1	N.MAX	1.800 mm		
						1	LAH —		+(1B)	
	İ					(3	5B) - N.N -	1,001 mm	' ()	
						1	LAL —	795 mm	+(31)	
		NOTA	\S				N.M —	152 mm "	~ 1	
(1) Acotacion	nes en mm					1				
(2) Por el fal	bricante						- 1			
							+			
							(18	в)		
							1 90			
						1	30	•		
						1				
Pov	isión	0	1 2	1	3	4	5		6	
	cha:	0	1 2		3	"	3		1	
	oró:	JLMH					1		1	
	visó:		 						+	
Kev	/ISO:	MAGC	<u> </u>							

	7.0	_				MA DE MÉXICO ES CUAUTITLÁN	HOJAS DE		DE PROCES RES	SO PAR
CLIENTE							Proyecto:		FVM-100	
PLANTA		PLANTA PR	ODUCTORA D	E FURFURA	L		Ноја:	1	de	1
LOCALIZACI	ÓN	TULA DE AL	LENDE, HIDA	LGO			Req. No:			
CLAVE DEL	EQUIPO	DA-101					No. de Unidade	es:	1	
SERVICIO		TORRE HETI	EROAZEOTRO	PICA			Posición:		Vertical	
Tipo	Platos: X	Empaque Es	tructurado:	Empaque	Aleatorio:					
Diametro Inte			00		nm					
Longitud	(T-T):	19:	214	n	nm					
	T	Domo:	100 °C	Fondos:	110°C		(17)			
Temperatura		Máx:	120 °C	Diseño:	°C		~ ¥			
	+		kg/cm2	Fondos:	1.8 kg/cm2		(33)+ 1	(8)		
Presión			Diseño:		m2 man + V.T		L			
Nivel		-			Bajo: 152				-	
Alarmas					vel de Paro: -				ľ	
Materiales		Tapas:	A.C.	Cuerpo:	A.C.					
Corrosión Pe			mm	•	mm			L		
Recubrimient		Tapas: -	Aislamiento:	Cuerpo:	Sí		1			
				CME:		_				
Relevado de	∟stuerzos:	Sí	Estampado A	OIVIE:	Sí	(10)+	— ⊫			
			TOS				4	_		
No	No de Pasos	Tipo		iento (mm)	Material			`		
1-30.	1	Valvulados	6	10	A.C.	14				
		BOQU	IILLAS				1			
No.	Cantidad	D. Nom.		Servicio						
1 A/B	2	610	Registro de H	lombre						
8	1	38	Venteo							
10	1	310	Alimentación	de FA-101					4	
11	1	310	Alimentación		antada				32	
17	1	260	Salida de vap						19	
31	1	76	Drene		-9					
33	1	(2)		guridad de Pr	resión (PS\/)					
35 A/B	2	122	Conexión de		-5.5 (1 0 1)		30			
36	1	38	Instrumentos						6)	
41	1	38	Instrumentos		ıra	_		 		
46 A/D	4	51	Instrumentos			(35A)+	I -		(46A)	
18	1	290			20	<u> </u>			<u>. </u>	
10	1	290	Salida de org	anicos pesado	US			(4	1)	
									_	
								L., .	(468)	
								T	(46B)	
							1			
							N.MAX — 3,2		\frown	
							LAH — 2,5	1 " 1	(1B)	
						(35B)+	- 17	81 mm 72 mm ,		
							N.M — 15		(31)	
_		NO.	TAS							
(1) Acotacio	nes en mm									
(2) Por el fa							Ţ			
, ,										
							19			
							110) '		
Rev	risión	0	1	2	3	4	5		6	
Fee	cha:									
Elal	boró:	JLMH								

"Evaluación Técnica Para Una Planta Productora De Furfural A Partir Del Olote De Maíz"

Proyecto: FVM-100			F	ACULTAD D	E ESTUDIOS	SUPE	RIORES C	DE MÉXICO CUAUTITLÁN artir del Olote de Maíz	PR	AS DE DA OCESO REACTOR	PARA	E
PLANTA PLANTA PRODUCTOR	CLIENTE			•					Provecto:		VM-100	
COCALIZACIÓN TULA DE ALLENDE, HIDALGO	PLANTA		PLANTA PR	ODUCTORA	DE FURFURAL							1
2.AVE DEL EQUIPO	OCALIZAC	IÓN							-			
Moderate Postation Posta				,					<u> </u>	ides:	1	
	SERVICIO			ÁCIDO					-			
Name	Tipo de	Líquido:	Ácido	acetico	Fluio:	41.40	L/h					
Ferentian 1980 "C Makinna 2000 "C Disento 215 "C Disen	Fluido		AC	SUA								
Demonstors Longitud (T-T); 2194	Temperatura	Operación:	180	°C	Máxima:	200	°C		Diseño:	215		
Makefine: 1814	Presión	Operación:	9).2	Diseño:		10.58		Cap. Nom.:	-	BLS	
Namas Alto Nivel: 1573 mm Bajo Nivel: 911 mm Nivel de Paro: mislamiento Si Agitacido No Calentamiento No Zona Sismica: No No Procece. Vientos Dominantes Velocidad Vientos Dom Acero Inoxidable	Dimensiones	s Longitud (T-T):	2134	mm	Diametro:	1829	mm		Cap. Total:	6.167	m3	
No	Vivel	Máximo:	1814	mm	Normal:	1393	mm		Mínimo:	610	mm	
Velocidad Vientos Dominantes Velocidad Vientos Dom	Alarmas	Alto Nivel:	1573	mm	Bajo Nivel:	911	mm		Nivel de Paro):	-	mm
Material de la Placa Sequence Aislamiento	Si	Agitación	No				Zona Sísmica:	-	N	lo		
No. Cantidided D. Norn. Servicio (1) Acotaciones en mm 1A	Direcc. Vien	tos Dominantes		-	Velocidad Vien	tos Dom	1	-				
No. Cartidad D. Nom. ENTRADA DE VAPOR (2) Por Fabricante	√laterial de l	la Placa						Acero Inoxidab	е			
1			BOQUIL	LAS					NOTAS			
18	No.	Cantidad	D. Nom.		Servicio		(1) Acotac	ones en mm				
2	1A	1		ENTR	ADA DE VAPOR	R	(2) Por Fal	oricante				
3				ENTRADA	DE ÁCIDO ACE	ETICO		·	-			
4 1 REGISTRO HOMBRE CUERPO 5 1 ESCOTILLA DE MUESTREO 6 1 VENTEO DE EMERGENCIA 7 1 SALIDA DE RESIDUO 1829 (a) (b) (b) (c) (c) (d) (d) (d) (d) (e) (d) (e) (e) (e) (e) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f	2	1		SALIDA DE	PRODUCTO A	EA-101						
5 1 ESCOTILIA DE MUESTREO 6 1 VENTEO DE EMERGENCIA 7 1 SALIDA DE RESIDUO 1829	3	1			VENTEO							
6 1 VENTEO DE EMERGENCIA 7 1 SALIDA DE RESIDUO 1829 (a) 1	4	1		REGISTR	O HOMBRE CUE	RPO						
7 1 SALIDA DE RESIDUO 1829 6	5	1		ESCOTIL	LA DE MUESTF	REO						
Revisión 0 1 2 3 4 5 6 Fecha: Elaboró: JLMH		1		VENTEC	DE EMERGEN	ICIA						
Revisión 0 1 2 3 4 5 6 Fecha: Elaboró: JLMH	7	1		SALI	DA DE RESIDUC)						
Revisión 0 1 2 3 4 5 6 Fecha: Elaboró: JLMH												
Revisión 0 1 2 3 4 5 6 Fecha: Elaboró: JLMH												
Revisión 0 1 2 3 4 5 6 Fecha: Elaboró: JLMH												
Fecha: Elaboró: JLMH					(1A)+ (1B)+			2134				
Fecha: Elaboró: JLMH			T -		_	-				1		
Elaboró: JLMH			0	1	2	3	1	4	5	'	6	
				-		-	-					
			1		1	+	1					

Cuautitian Izcalli, Estado de México, México PAG. 65 DE 108 FECHA: 27-08-19

"Evaluación Técnica Para Una Planta Productora De Furfural A Partir Del Olote De Maíz"

				CIONAL AUTÓN UDIOS SUPERIO			HOJAS DE	DATOS E		≣so
CLIENTE							Proyecto:	F	VM-100	
PLANTA		PLANTA PR	ODUCTORA	DE FURFURAL			Hoja:		de	1
LOCALIZACI	ΙÓΝ	TULA DE AL					Reg. No:			
CLAVE DEL		FB-101	ELINDE, IIID	1200			No. de Unidad	los:	1	
SERVICIO	LQUIFO		AL MACENIA	MIENTO DE ÁC	DO 40E	TICO				
	Tiz ii						Posición		/ertical	
Tipo de	Líquido:	Acido	acetico	Flujo:	39.50	L/h	Densidad:	1049.00	kg/m3	
Fluido	Vapor o Gas:		-	Flujo:	-	m3/h	Densidad:	-	kg/m3	
Temperatura		25	°C	Máxima:	38	°C	Diseño:	53	°C	
Presión	Operación:		ТМ	Diseño:		ATM	Cap. Nom.:	-	BLS	
	Longitud (T-T):	3257	mm	Diametro:	3668	mm	Cap. Total:	37.26	m3	
Nivel	Máximo:	2768	mm	Normal:		mm	Mínimo:	488	mm	
Alarmas	Alto Nivel:	2668	mm	Bajo Nivel:	605	mm	Nivel de Paro:		556	mm
Aislamiento	No	Agitación	No	Calentamiento		No	Zona Sísmica:	N	lo	
Direcc. Vient	tos Dominantes		-	Velocidad Vier	itos:					
Material de la	a Placa					Ace	ro al Carbón			
		BOQUIL	LAS	-			NOTA	s		
No.	Cantidad	D. Nom.		Servicio		(1) Acotacio	nes en mm			
1	1	2	FNTRA	DA DE ÁCIDO ACETI	CO	(2) Por Fabr				
2	1	 		DEÁCIDO A GA-1		(~) i oi i abi	Tourite			
		1								
3	1	 		RO HOMBRE Y VEN						
4	1	-		RO HOMBRE CUERI						
5	1		ESCOTILLA	DE MEDICIÓN Y MUI	STREO					
6	1			VENTEO						
7	1		DRE	NAJE DE TANQUE						
8 A/B	2		IND	ICADOR DE NIVEL						
	7	5		3668 MIN. L	A.B.N. 909	1524 F. T.	MAX. L. N. N. S.		3527	
	visión echa:	0	1	2	3	4	5		6	
Fe		0 JLMH	1	2	3	4	5		6	

Cuautitlán Izcalli, Estado de México, México PAG. 66 DE 108 FECHA: 27-08-19

						DMA DE MÉX ES CUAUTITL		HOJAS DE		PIENTES	ESO PAR
CLIENTE								Proyecto:		FVM-100	
PLANTA				DE FURFUR	AL			Ноја:	1	de	1
LOCALIZACIO		TULA DE AL	LENDE, HID	ALGO				Req. No:			
CLAVE DEL		FA-101						No. de Unidade	s:	1	
SERVICIO	r			INTERMEDI				Posición:		Horizonta	
Tipo de	Líquido:		al/Agua	Flujo:	0.84	m3/h		Densidad:		kg/m3	
Fluido	Vapor o Gas:		•	Flujo:	-	m3/h		Densidad:	•	kg/m3	
Temperatura	-	100	°C	Máxima:	120	°C		Diseño:	135	°C	
Presión	Operación:	3.1	kg/cm2 ma		3.56	kg/cm2 man		Diseño:	3.5	5 kg/cm2 man	+ V.T
	Longitud (T-T)	2220	mm	Diametro:	1525	mm		Cap. Total:	4.05	m3	
Nivel	Máximo:	1296	mm	Normal:	1220	mm		Mínimo:	305	mm	
Alarmas	Alto Nivel:	1372	mm	Bajo Nivel:	228	mm		Nivel de Paro:		200	mm
Materiales	Carcaza:	A.C.	Tapas	A.C.	Malla Sepa	radora: No E	spesor	-	mm	Material	-
Tipo Circular	Diametro:	-	mm	Tipo Rectar	ngıLargo	- m	nm	Ancho	-	mm	
Corrosión Pe	rmisible	Carcaza	-	mm	Tapas	- m	nm	Recubrimie	nto Int.	-	
Relevado de I	Esfuerzos	No		Estampado AS	SN			-			
		BOQU	JILLAS					NOTA	S		
No.	Cantidad	D. Nom.		Servicio		(1) Acotacione	es en mm				
1	1	590	Registro de	Hombre		(2) Por Fabrica					
8	1	210	Venteo								
10	1	305	Alimentació	n de EA-101							
15	1	102		oducto a DA-	-101						
31	1	76	Drene								
45 A/D	4	51	Instrumento	s de Nivel							
	, ,	٠.									
				o de l'alvei							
				5 do 141401							
				0 00 14101							
				0 00 14101							
						2220					
	(4) (45B) (45C)	55A)+			10)	2220 N.MAX		3)	1525		
	45B 45G	450	000 N.P.T.	A.B.N N	05 = 1 220 mm 2,	N <u>.M</u> AX		15)			6
Revi	45B 45C	450+	00 8 1.P.T.	A.B.N N N N N N N N N N N N N N N N N N N	305 Z Z Z (5) 1,220 mm Z Z	NMAX		15)			6
Revi Fec Elab	45B 45C	450+	00 8 1.P.T.	A.B.N N N N N N N N N N N N N N N N N N N	305 Z Z Z (5) 1,220 mm Z Z	NMAX		15)			6

)	_		D NACIONAL		IA DE MÉXICO S CUAUTITLÁN	HOJAS DE		DE PROCI PIENTES	ESO PAF
CLIENTE							Proyecto:		FVM-100	
PLANTA		PLANTA PR	ODUCTORA	DE FURFURAL			Ноја:	1	de	1
LOCALIZACIO	ÓN	TULA DE AL	LENDE, HID	ALGO			Req. No:			
CLAVE DEL		FA-102					No. de Unidade	es:	1	
SERVICIO		TANQUE DE	SEPARACIO	ON DE FURFURAL			Posición:		Horizontal	
Tipo de	Líquido:	Furfur	al/Agua	Flujo:	0.07	m3/h	Densidad:	996.34	kg/m3	
Fluido	Vapor o Gas:		-	Flujo:	-	m3/h	Densidad:	-	kg/m3	
Temperatura		98	°C	Máxima:	110	°C	Diseño:	125	°C	
Presión	Operación:	1	kg/cm2 mai		3.5	kg/cm2 man	Diseño:	3.5	kg/cm2 man	+ V.T
	Longitud (T-T):	2018	mm	Diametro:	1112	mm	Cap. Total:	4.05	m3	
livel	Máximo:	945	mm	Normal:	890	mm	Mínimo:	180	mm	
Alarmas	Alto Nivel:	920	mm	Bajo Nivel:	222	mm	Nivel de Paro:		-	mm
/lateriales	Carcaza:	A.C.	Tapas	A.C.	Malla Sepa	radora: SI Espesor	-	mm	Material	
īpo Circular		•	mm	Tipo Rectangular	Largo	- mm	Ancho	-	mm	
Corrosión Pe		Carcaza	-	mm	Tapas	- mm	Recubrimie	ento Int.	-	
Relevado de l	Esfuerzos	No		Estampado ASME			-			
		BOO	UILLAS				NOTA	AS		
No.	Cantidad	D. Nom.		Servicio		(1) Acotaciones en mr	1			
1	1	590	Registro de	Hombre		(2) Por Fabricante				
8	1	190	Venteo							
10	1	205	Alimentació	n de EA-103						
15	1	102	Salida de Fu	urfural a GA-104						
16	1	102	Salida de A	gua a DA-101						
						!				
31	1 1	76	Drene							
31 45 A/D	1 4	76 51	Drene Instrumento							
31 45 A/D	4	76 51	Drene Instrumento							
		51 N.MAX	AAN N.N	S de Nivel) 00 7 1		1 1 15)	31)		1)
45 A/D	45A 45B 45C 45D 45D 45D 45D 45D 45D 45D	N.MA	AAN . N . W . W . W . O . O . O . O . O . O . O	s de Nivel	NPT 1700	4	1 15 (31)		1)
45 A/D Rev Fe	45A 45B 45C 45D 45D	N. MA.	AAN AW WW 068	ABN N.M		4	15) (31)		1)

	7					A DE MÉXICO S CUAUTITLÁN	HOJAS DE		PIENTES	ESO PARA
CLIENTE							Proyecto:		FVM-100	
PLANTA	όν.	PLANTA PRODU					Hoja:	1	de	1
CLAVE DEL		TULA DE ALLENI	DE, HIDALG	10			Req. No:			
	EQUIPO	FA-104	IDLIOC ACI	10000			No. de Unidade	es:	1	
SERVICIO	L	TANQUE DE RES					Posición:		Horizontal	
Tipo de	Líquido:	AGU	A	Flujo:	0.01	m3/h	Densidad:	989.42	kg/m3	
Fluido	Vapor o Gas:	<u> </u>		Flujo:	-	m3/h	Densidad:	-	kg/m3	
Temperatura	•	40	°C	Máxima:	100	°C	Diseño:	115	°C	
Presión	Operación:	0.7	kg/cm2 ma		2	kg/cm2 man	Diseño:		5 kg/cm2 man	+ V.I
	Longitud (T-T)		mm	Diametro:	990	mm	Cap. Total:	1.56	m3	
Nivel	Máximo:	841	mm	Normal:	792	mm	Mínimo:	198	mm	
Alarmas	Alto Nivel:	800	mm	Bajo Nivel:	200	mm	Nivel de Paro:		200	mm
Materiales	Carcaza:	A.C.	Tapas	A.C.	Malla Sepai	•	<u> </u>	mm	Material	-
Tipo Circular		-	mm	Tipo Rectang		- mm	Ancho	-	mm	
Corrosión Pe		Carcaza	-	mm	Tapas	- mm	Recubrimi	ento Int.	-	
Relevado de	Esfuerzos	No		Estampado ASN	\		-			
		BOQUIL	LAS				NOT	AS		
No.	Cantidad	D. Nom.		Servicio		(1) Acotaciones en mm				
1	1	590	Registro de	Hombre		(2) Por Fabricante				
8	1	210	Venteo							
10	1	305	Alimentació	n de EA-101						
15	1	102	Salida de p	roducto a DA-1	01					
31	1	76	Drene							
45 A/D	4	51	Instrumento	s de Nivel						
	(45A) (45B)+ (45C)+ (45C)	841 mm 800 mm	N.N N.N WW WW	3N N.M		2001	8		1 066	
	(45B)+ (45C)+ (45C)	841 mm 800 mm	792 mm 7.2 X X X X X X X X X X X X X X X X X X X	3N N.M 86 1 16	1200 1700		5 31		1 066	
	45B+ 45C+ 45C	841 mm 800 mm ×	AN N.N W W W	3N N.M 861	1200				1 066	6
Fed	45B+ 45C+ 45C	0 841 mm 800 mm	792 mm 7.2 X X X X X X X X X X X X X X X X X X X	3N N.M 86 1 16	1200 1700		5 31		1 066	6
Fed Elak	45B+ 45C+ 45C	841 mm 800 mm	792 mm 7.2 X X X X X X X X X X X X X X X X X X X	3N N.M 86 1 16	1200 1700		5 31		1 066	6

· · · · · · · · · · · · · · · · · · ·)	_		NACIONAL ESTUDIOS				HOJAS DE		DE PROCE IENTES	SO PARA
PLANTA PLANTA PRODUCTORA DE FURFURAL Hojo: 1 do 1	CLIENTE	14-02							Provecto:		FVM-100	
COCALIZACIÓN TULA DE ALLENDE, HIDALGO Seq. Noc.	PLANTA		PLANTA PE	RODUCTORA	DE FURFURA	L			<u> </u>	1		1
No. Cardidad D. Nort Student D. Nort LOCALIZACI	ÓN	TULA DE A	LLENDE. HID	ALGO								
Description				,					· ·	96.	1	
				FIIRFIIRAI	ΔΙ 98%				1			
Vapor o Cas:						0.02	m2/h			1125 24		
Impression Companies Com			FUR									
Preside Pres			20									
		•										V.T.
Macinic		-						n			-	V.I
Name												
										378		
Tipo Circular Diametrix												
Carcaza						•						-
No. Cantidad D. Nom. Servicio (1) Acotaciones en mm (1) Acotaciones en mm (2) Por Fabricante (3) Por Fabricante (4) Acotaciones en mm (2) Por Fabricante (3) Por Fabricante (4) Por Fabricante (4) Por Fabricante (5) Por Fabricante (6) Por Fabricante (7)												
No. Cantidad D. Nom. Servicio (1) Acotaciones en mm (2) Por Fabricante (3) Por	Corrosión Pe	rmisible	Carcaza	-	mm	Tapas	-	mm	Recubrimi	ento Int.	-	
No. Cantidad D. Nom. Servicio (1) Acotaciones en mm	Relevado de	Esfuerzos			Estampado AS	١						
1			BOQ	UILLAS					NOT	AS		
8 1 210 Venteo 10 1 305 Alimentación de EA-104 15 1 102 Salida de producto a LB 31 1 76 Dene 45 A/D 4 51 Instrumentos de Nivel 3600 8 NI.MAX AAN E E E N.N. ABN N.M. AAN E E E E E E E E E E E E E E E E E E E	No.	Cantidad	D. Nom.		Servicio		(1) Acotaci	ones en mm				
10 1 305 Alimentación de EA-104 15 1 102 Salida de producto a LB 31 1 76 Drene 45 A/D 4 51 Instrumentos de Nivel 36 00 8	1	1	590	Registro de	Hombre		(2) Por Fab	ricante				
15	8	1	210	-								
15	10	1	305	Alimentació	n de EA-104							
31 1 76 Drene	15	1	102	Salida de p	roducto a LB							
A5 A/D 4 51 Instrumentos de Nivel	31	1	76	Drene								
3600 10					ns de Nivel							
Revisión 0 1 2 3 4 5 6 Fecha: Elaboró: JLMH	43 A/D		31	motramente	3 de Nivel							
Revisión 0 1 2 3 4 5 6 Fecha: Elaboró: JLMH												
Revisión 0 1 2 3 4 5 6 Fecha: Elaboró: JLMH												
Revisión 0 1 2 3 4 5 6 Fecha: Elaboró: JLMH												
Revisión 0 1 2 3 4 5 6 Fecha: Elaboró: JLMH												
Revisión 0 1 2 3 4 5 6 Fecha: Elaboró: JLMH	,		10)				8 + T	N.MAX AAN E E N E E E	I.N A ABN I E A N.M	+	45A) +(45B)	
Fecha:	Bass		15)			- NI	16 \(\))	41 1	4		
Elaboró: JLMH			U	1	2	3		4	5		6	
			II NALI	-								
				-	-		-		 			

#i CLIENTE	FAC	ERSIDAD NACIONA JLTAD DE ESTUDIOS cnica para una Planta Pro	S SUPERIORE	S CUAUTIT	TLÁN		E DATOS I		
	DI ANTA DO	ODUCTORA DE EUREUR				-			
PLANTA		ODUCTORA DE FURFUR	AL			Ноја:	1	de	1
LOCALIZACIÓN		LENDE, HIDALGO				Req. No:			
CLAVE DEL EQUIPO	EA-101					No. de Unida	des:	1	
SERVICIO	CONDENSAL	OOR DE VAPORES DE R							
			CONDICIONES I	DE OPERACIO	ON				
) CORAZA				LADO TUBOS		
Tipo de Fluido	0	VAPOR DE AGUA SA	TURADO CON F	URFURAL		AGUA	DE ENFRIAM	IENTO	
Flujo Másico Total	l kg/hr		612				91409 x 1.1		
		ENTRADA	SAL	.IDA	ENTE	RADA		SALIDA	
Flujo Másico Liquido kg/hr	r	-	61	2	914	109		91409	
Densidad Liquido a P.T. ko	g/m3	-	903.	517				685.86	
Conductividad Térmica Liqu	uido kcal/hr m	-	0.4	43	0	.1		0.08	
Viscosidad Liquido. cP		-	0.16	648	0.	57		0.28	
Calor Especifico kcal/kg °	С	-	1.0	12	0.	48		0.56	
Peso Molecular		-	18.7	765	133	.84		133.84	
Flujo Másico Vapor kg/hr		612							
Densidad Vapor a P.T. kg/	/m3	4.494						-	
Conductividad Térmica Var	por kcal/hr m	0.027	-						
Viscosidad Vapor. cP		0.015	-			-		-	
Calor Latente kcal/kg		-	-			•		-	
Peso Molecular		18.765	18.7	765					
Temperatura °C		180	16.7			8		115	
Presión de Operación kg/c	rm2 man	9.2	8.8		5			4.7	
No. de Pasos	JIIIZ IIIGII	5.2	0.0	33	, ,	.4		4.7	
Caída de Presión Permisib	olo kalem?	,).3515				0.7		
Factor de Ensuciamiento I		,	-						
			-		0.292		-		
Carga Térmica Requerida I		Onlanda da							
Coef. Total de T. Calor Kca	ai/n m2 °C	Calculado	2011077	anáu	Requerido				
			CONSTR	UCCION	1				
Presión de Diseño kg/cm2									
Temperatura de Diseño kg									
Time de Interresculto !	de Calor		T		Pitch/Arreglo		mm		
Tipo de Intercambiador		Numero	D. Externo	mm	BWG		Longitud	mm	
Tubos Material									
		Material			Diametro inte	mo	mm		
Tubos Material Coraza					Diametro inte Soportes	mo	mm		
Tubos Material		Material				rno	mm		
Tubos Material Coraza	n	Material Canal			Soportes	rno		nm	
Tubos Material Coraza Material	n	Material Canal Haz de tubos Lado Coraza	nm Sal.	mm	Soportes Mamparas	mn	r	nm	mm
Tubos Material Coraza Material Tolerancia a la Corrosió	n	Material Canal Haz de tubos Lado Coraza		mm	Soportes Mamparas Lado Tubos	mm	r	nm	mm
Tubos Material Coraza Material Tolerancia a la Corrosió Boquillas	on Si()	Material Canal Haz de tubos Lado Coraza Ent. n		mm	Soportes Mamparas Lado Tubos Ent.	mm	r	nm	mm
Tubos Material Coraza Material Tolerancia a la Corrosió Boquillas Código		Material Canal Haz de tubos Lado Coraza Ent. Estampado ASME	nm Sal.	mm	Soportes Mamparas Lado Tubos Ent.	mm	r	nm	mm
Tubos Material Coraza Material Tolerancia a la Corrosió Boquillas Código		Material Canal Haz de tubos Lado Coraza Ent. Estampado ASME	Clase		Soportes Mamparas Lado Tubos Ent.	mm	r	nm	mm
Tubos Material Coraza Material Tolerancia a la Corrosió Boquillas Código Aislamiento	Si()	Material Canal Haz de tubos Lado Coraza Ent. n Estampado ASME No ()	Clase	tas	Soportes Mamparas Lado Tubos Ent.	mm	r	nm	mm
Tubos Material Coraza Material Tolerancia a la Corrosió Boquillas Código Aislamiento (1) Esta hoja correspondo	Si ()	Material Canal Haz de tubos Lado Coraza Ent. n Estampado ASME No ()	Clase Note Intercambiad	ias or de calor	Soportes Mamparas Lado Tubos Ent. Protección C	mm átodica	r Sal.	nm	mm
Tubos Material Coraza Material Tolerancia a la Corrosió Boquillas Código Aislamiento	Si ()	Material Canal Haz de tubos Lado Coraza Ent. n Estampado ASME No ()	Clase Note Intercambiad	ias or de calor	Soportes Mamparas Lado Tubos Ent. Protección C	mm átodica	r Sal.	nm	mm
Tubos Material Coraza Material Tolerancia a la Corrosió Boquillas Código Aislamiento (1) Esta hoja correspond. (2) La definición de que fluid (3) El diseño de este equ	Si () e a la condici do circula por co	Material Canal Haz de tubos Lado Coraza Ent. n Estampado ASME No () ones de operación en estaza y que fluido circula pulizo de forma especifica	Clase Note: Intercambiad or tubos se tomo a por lo que no	tas or de calor de los criterio se llenaron	Soportes Mamparas Lado Tubos Ent. Protección Ci	mm átodica entan en el Ane construcción	r Sal.	nm	mm
Tubos Material Coraza Material Tolerancia a la Corrosió Boquillas Código Aislamiento (1) Esta hoja correspondo (2) La definición de que fluid	Si () e a la condici do circula por co	Material Canal Haz de tubos Lado Coraza Ent. n Estampado ASME No () ones de operación en estaza y que fluido circula pulizo de forma especifica	Clase Note: Intercambiad or tubos se tomo a por lo que no	tas or de calor de los criterio se llenaron	Soportes Mamparas Lado Tubos Ent. Protección Ci	mm átodica entan en el Ane construcción	r Sal.	nm	mm
Tubos Material Coraza Material Tolerancia a la Corrosió Boquillas Código Aislamiento (1) Esta hoja correspondi (2) La definición de que fluid (3) El diseño de este equ	Si () e a la condici do circula por co	Material Canal Haz de tubos Lado Coraza Ent. n Estampado ASME No () ones de operación en estaza y que fluido circula pulizo de forma especifica	Clase Note: Intercambiad or tubos se tomo a por lo que no	tas or de calor de los criterio se llenaron	Soportes Mamparas Lado Tubos Ent. Protección Ci	mm átodica entan en el Ane construcción	r Sal.		mm
Tubos Material Coraza Material Tolerancia a la Corrosió Boquillas Código Aislamiento (1) Esta hoja corresponde (2) La definición de que fluid (3) El diseño de este eque (4) Los factores de ensure	Si () e a la condici do circula por co sipo no se rea ciamiento se «	Material Canal Haz de tubos Lado Coraza Ent. n Estampado ASME No () ones de operación en elegaza y que fluido circula polizo de forma especificancuentran reportados	Clase Note: Intercambiad or tubos se tomo a por lo que no en la literatura	tas or de calor de los criterio se llenaron y se presenta	Soportes Mamparas Lado Tubos Ent. Protección Ci s que se prese los datos de an en el Ane	mm átodica intan en el Ane construcción	r Sal.		
Tubos Material Coraza Material Tolerancia a la Corrosió Boquillas Código Aislamiento (1) Esta hoja correspond. (2) La definición de que fluid (3) El diseño de este equ (4) Los factores de ensuc	Si () e a la condici do circula por co sipo no se rea ciamiento se «	Material Canal Haz de tubos Lado Coraza Ent. n Estampado ASME No () ones de operación en elegaza y que fluido circula polizo de forma especificancuentran reportados	Clase Note: Intercambiad or tubos se tomo a por lo que no en la literatura	tas or de calor de los criterio se llenaron y se presenta	Soportes Mamparas Lado Tubos Ent. Protección Ci s que se prese los datos de an en el Ane	mm átodica intan en el Ane construcción	r Sal.		

				•			AUTÓNOMA SUPERIORES C			
			Evaluación					al a partir del Olo	te de Maí	z
		HOJA	AS DE DAT	OS DE PRO	CESC	PARA BOI	MBAS CENTR	RIFUGAS		
	GE	NERALIDA	DES				CONDICIONE	S DE OPERAC	IÓN	
CLIENTE					Fluido			ÁCIDO ACETI	СО	
					Tempe	ratura de Borr	25	°C	77	°F
PLANTA			E OLOTE DE I	DE FURFURAL MAÍZ	_	lad Especifica		1.0526		
					Presió	n de Vapor:	1.05 8.80E-04	kg/cm2 (abs) Pa s	14.98 0.8777	psia cP
CLAVE DEL	EQUIPO	GA-101/R				ión/Erosión	0.0UE-U4		0.0777	LF.
SERVICIO		BOMBA DE S	SUMINISTRO	DE ÁCIDO	Ocasio	onada por:		ÁCIDEZ		
JERVICIO		ACETICO			Capac	idad Normal:	41.4	L/h	0.2	gpm
PROYECTO		FVM-100				idad de Diseño	45.5	m3/h	0.2	gpm
						n de Descarga	3.5	kg/cm2 (man)	49.8	psig
HOJA		1	DE	1		n de Succión	0.0	kg/cm2 (man)	0.0	psig
.50/1		•		•	Presió	n Diferencial	3.5	kg/cm2 (man)	49.8	psig
CANTIDAD F	EOLIERIDA	2 (DOS)			Carga	Diferencial	23.7	m	77.7	ft
ח שאמווזייי ב	LAOLIVIDA	2 (500)			NPSH	Disponible	10.6	m	34.8	ft
JSO REGUL	AR: 1 (UNA)	ACCIONADO	R: MOTOR		Potend	cia Hidraulica	0.4	kW	0.6	HP
					1					
RELEVO: 1	(UNA)	ACCIONADO	R: MOTOR							
				FUN	CION	AMIENTO				
Tamaño y Tip										
Curva Propue										
NPSH Reque					N Suc	ción		pies de de agu	ıa	
Numero de P					RPM:					
	Condiciones No				Poteno	ia al Freno (Bh	HP)			
	encia al Freno d		Diseño							
	a de Impulsor					m			ft	
Caudal Minin	no Continuo Es	table				m3/h			g	jpm .
				co	NSTR	UCCIÓN				
Carcaza	Montaje:					Corte:				
Impulsor	Montaje:		Tipo:		Diame	tro de Diseño:		Diametro M	áximo:	
Chumaceras			Radial:			Empuje:				
Sello Mecáni	со		Código API:			Fabricante:				
Plan API 610			Lubricación:			Enfriamiento:				
Cople:					Guada	Cople:				
Materiales:										
Boquilla	Succión	Diametro:			Clase	ANSI:		Posición:		
Doquilla	Descarga	Diametro:			Clase	ANSI:		Posición:		
				MOT	OR EL	ECTRICO				
abricante					otecció	n de la Carca:				
Potencia					RPM:					
/oltaje			Fases:			ı	Hertz:			
Chumaceras	:				Lubrica					
				TUR		E VAPOR				
Fabricante			Ma	odelo:	L		Gobernador:			
Potencia de	Selección		IVIC		RPM:					
Consumo de					kg/ HF	hr				
	ν αμυι		Carcaza		Ny/ FIF		Partos Internas:			
			Carcaza:		Lubrica		Partes Internas:			
					Not					
	dera un sobre	diseño del 10º	%		1101					
Chumaceras				ón, así como c	aracteri	siticas de mot	or electrico y/o t	urbina por diseño	Mécanico	
Chumaceras (1) Se consi										
Chumaceras (1) Se consi (2)Especifica	ciones de fur		i	2	.3	4	5	6	7	8
Chumaceras (1) Se consi (2)Especifica Re	aciones de fur visión	0	1	2	3	4	5	6	7	8
(2)Especifica Re	ciones de fur		i	2	3	4	5	6	7	8

				_	_)MA DE MÉ: .ES CUAUTIT		
			Evaluac					urfural a part		de Maíz
		Н	OJAS DE D	DATOS DE	PROCESO	PARA BO	OMBAS CI	ENTRIFUGA	NS.	
	GEN	NERALIDAI	DES				CONDICIO	ONES DE OF	PERACIÓN	
CLIENTE					Fluido			RESI	DUOS ACUO	sos
PLANTA			ODUCTORA D		Temperatura Gravedad Esi		80	°C	176 1.0125	°F
		MAÍZ			Presión de V	apor:	1.00	kg/cm2 (abs)	14.98	psia
CLAVE DEL	EQUIPO	GA-102/R			Viscosidad: Corrosión/Ero		3.70E-04	Pa s	0.37036	сР
SERVICIO		BOMBA DE F	RESIDUOS AG	cuosos	Ocasionada p Capacidad No	ormal:	0.2	M3/h	0.9	gpm
PROYECTO		FVM-100			Capacidad de Presión de D		0.2 9.4	m3/h kg/cm2 (man)	1.0 133.7	gpm psig
HOJA		1	DE	1	Presión de S Presión Difere		0.0 9.4	kg/cm2 (man)	0.0 133.7	psig psig
CANTIDAD R	EQUERIDA	2 (DOS)			Carga Diferen		85.9	m m	281.8	ft
USO REGUL	AR: 1 (UNA)	ACCIONADO	R: MOTOR		Potencia Hidi		0.1	kW	0.1	HP
RELEVO: 1 (UNA)	ACCIONADO	R: MOTOR							
					FUNCION	AMIENTO				
Tamaño y Tip	0									
Curva Propue	sta									
NPSH Reque	rido				N Succión			pies de de ag	ua	
Numero de P					RPM:					
	Condiciones N				Potencia al F	reno (BHP)				
	ncia al Freno a de Impulsor	del Impulsor d	le Diseño			m				ft
	o Continuo Es					m3/h				gpm
					CONSTR	UCCIÓN				<u>.</u>
Carcaza	Montaje:					Corte:				
Impulsor	Montaje:		Tipo:		Diametro	de Diseño:		Diametro	Máximo:	
Chumaceras			Radial:			Empuje:				
Sello Mecáni	00		Código API:			Fabricante:				
Plan API 610			Lubricación:			Enfriamiento:				
Cople: Materiales:					Guada Cople	:				
	Succión	Diametro:			Clase ANSI:			Posición:		
Boquilla	Descarga	Diametro:			Clase ANSI:			Posición:		
					MOTOR EI	LECTRICO				
Fabricante					Protección o	le la Carcaza				
Potencia					RPM:					
Voltaje			Fases:				Hertz:			
Chumaceras:					Lubricación: TURBINA	DE VAPOR	<u> </u>			
Fabricante			Mod	delo:			Gobernador:			
Potencia de S					RPM:					
Consumo de	Vapor				kg/ HP hr					
Material			Carcaza:				Partes Interr	nas:		
Chumaceras:					Lubricación:					
(4) 6 '	Jana1	- dl # d ! *	00/		No	tas				
• •		ediseño del 1		dán a-í	00 00FC =+= ='-'	tions de met	or oloc4=! = - :	do turbino r	diooff - M f	aniaa
						1		/o turbina poi		
	isión	0	1	2	3	4	5	6	7	8
	ha: oró:	JLMH						1		
	risó:	MAGC					 			
ne.		IVIAGO	l		1	ļ				!

				LINIVE	RSIDAD NA	CIONAI A	 AUTÓNON	MA DE MÉXI	CO	
			_	FACUL	TAD DE EST	UDIOS SU	JPERIORE	S CUAUTITL	ÁN	
				ación Técnica p DATOS DE P				•	del Olote d	le Maíz
	GF	ENERALID		DATOG DE T	I			ONES DE OF	PERACIÓN	J
CLIENTE	<u> </u>		1520		Fluido		00.10.10.10		JRADA CON	
						. Dl				
PLANTA			ODUCTORA I	DE FURFURAL A AÍZ	Gravedad Esp	ecifica:	98	°C	208 1.0523	°F
CLAVE DEL I	EQUIPO	GA-103/R			Presión de Va Viscosidad: Corrosión/Eros		3.17E-01	kg/cm2 (abs) Pa s	0.3171	psia cP
SERVICIO		BOMBA DE I	RECIRCULAC	IÓN A DA-101	Ocasionada po	or:				
PROYECTO		FVM-100			Capacidad No Capacidad de		0.05 0.1	M3/h m3/h	0.2	gpm gpm
					Presión de De Presión de Su		3.0 1.0	kg/cm2 (man) kg/cm2 (man)	42.7 14.2	psig psig
HOJA		1	DE	1	Presión Difere	ncial	2.0	kg/cm2 (man)	28.4	psig
CANTIDAD R	EQUERIDA	2 (DOS)			Carga Diference NPSH Disponi		10.4	m m	-	ft ft
USO REGUL	AR: 1 (UNA)	ACCIONADO	R: MOTOR		Potencia Hidra	ulica	0.1	kW	0.1	HP
RELEVO: 1 (I	UNA)	ACCIONADO	R: MOTOR							
				F	UNCIONAN	IIENTO				
Tamaño y Tip	0									
Curva Propue:										
NPSH Reque					N Succión			pies de de ag	ua	
Numero de Pa					RPM:					
	Condiciones No		5: "		Potencia al Fr	eno (BHP)				
	ncia al Freno d a de Impulsor o		Diseno							4
	o Continuo Es					m m3/h				ft
Caudai Willilli	O CONTINUO ES	table			CONSTRUC					gpm
Carcaza	Montaje:					Corte:				
	Montaje:		Tipo:		Diametro d			Diametro	Máximo:	
Chumaceras	workajo.		Radial:			Empuje:		Diametro	WIGAIITIO.	
Sello Mecánio	00		Código API:			abricante:				
Plan API 610			Lubricación:		I	Enfriamiento:				
Cople:					Guada Cople:					
Materiales:										
Boquilla	Succión	Diametro:			Clase ANSI:			Posición:		
Doquilla	Descarga	Diametro:			Clase ANSI:			Posición:		
				M	OTOR ELEC	CTRICO				
Fabricante					Protección de	la Carcaza				
Potencia					RPM:					
Voltaje			Fases:				Hertz:			
Chumaceras:					Lubricación:	VAR-0-				
					URBINA DE	VAPOR	0.1			
Fabricante	Poloopié =		- N	lodelo:	DDM:		Gobernador:			
Potencia de S					RPM:					
Consumo de ' Material	ναμυι		Carcaza		kg/ HP hr		Partes Interr	200:		
			Carcaza:		Lubricación:		i aites iiteli	ias.		
Chumaceras:					Notas					
	lera un sobre	diseño del 10	1%		NOLAS					
(1) Se concid				ión, así como cai	racterisiticas d	e motor ele	ctrico v/o tu	rbina nor dise	ño Mécanic	0
(1) Se consid			,	, as some car		- 1110101 616	Janes yro tu	por urse	mocanic	-
(2)Especifica			1	2	3	Δ	5	6	7	R
(2)Especifica Rev	isión	0	1	2	3	4	5	6	7	8
(2)Especifica Rev Fed			1	2	3	4	5	6	7	8

				115187=	DOID 45 **					
								MA DE MÈXI	_	
			,					S CUAUTITL		
		HO						<i>fural a partir</i> NTRIFUGAS		e Maiz
	GI	ENERALIDADE			T			ONES DE OI	,	1
	Gi	ENEKALIDADE					CONDICIO			
CLIENTE					Fluido			FUI	RFURAL AL 3	38%
DI ANITA		PLANTA PRODUC	CTORA DE FL	JRFURAL A	Temperatura		98	°C	208	°F
PLANTA		PARTIR DE OLOT	TE DE MAÍZ		Gravedad Esp			ka/am2 (aha)	1.1565	noin
					Presión de Va Viscosidad:	apor:	6.58E-01	kg/cm2 (abs) Pa s	0.6358	psia cP
CLAVE DEL E	QUIPO	GA-104/R			Corrosión/Ero	sión	0.002 01		0.0000	
SERVICIO		BOMBA DE ALIM	ENTACIÓN A	DA-102	Ocasionada p	or:				
OLIVIOIO		BOINDA DE ALIM	LITTACIONA	DA-102	Capacidad No		0.03	M3/h	0.1	gpm
PROYECTO		FVM-100			Capacidad de		0.1	m3/h	0.4	gpm
					Presión de De Presión de Si		2.0	kg/cm2 (man)	28.4	psig
HOJA		1 DE	1		Presión Difere		1.0	kg/cm2 (man	14.2	psig psig
					Carga Diferen		9.4	m Kg/CIIIZ (IIIaII)	-	psig ft
CANTIDAD RE	QUERIDA	2 (DOS)			NPSH Dispor		-	m	-	ft
USO REGULA	R: 1 (UNA)	ACCIONADOR: M	OTOR		Potencia Hidr	aulica	0.1	kW	0.1	HP
RELEVO: 1 (U	NA)	ACCIONADOR: M	OTOR							
·					FUNCIONA	MICNITO				
Tamaño y Tipo					FUNCIONA	WIENTO				
Curva Propues										
NPSH Requeri					N Succión			pies de de ag	ua	
Numero de Pa	sos				RPM:					
Eficiencia a Co	ndiciones No	ormales			Potencia al F	reno (BHP)				
		del Impulsor de Dis	seño							
Máxima Carga						m				ft
Caudal Minimo	Continuo Es	stable			CONSTRU	m3/h				gpm
Carcaza M	Montaje:				CONSTINU	Corte:				
	Montaje:		Tipo:		Diametro			Diametro	Máximo:	
Chumaceras			Radial:			Empuje:				
Sello Mecánico)		Código API:			Fabricante:				
Plan API 610			Lubricación:		0 - 1 0 :	Enfriamiento:				
Cople:					Guada Cople:					
Materiales:	Succión	Diametro:			Clase ANSI:			Posición:		
Boguilla -		Diametro:			Clase ANSI:			Posición:		
L.	3			N	OTOR ELE	CTRICO				
Fabricante					Protección d	e la Carcaza				
Potencia	-				RPM:	-	-			<u> </u>
Voltaje			Fases:				Hertz:			
Chumaceras:				_	Lubricación:	- VADOD				
Enhricanta			N/		URBINA DI	VAPUK	Cohornode			
Fabricante Potencia de Se	elección		IVIO	lelo:	RPM:		Gobernador:			
Consumo de V					kg/ HP hr					
Material			Carcaza:				Partes Interr	nas:		
Chumaceras:	-				Lubricación:				-	
(1) Se conside	era un sobre	ediseño del 10%			Nota	s				
`		ncionamiento y	construcción.	así como ca	aracterisiticas	de motor ele	ectrico v/o t	urbina por dis	eño Mécanio	:0
Revis		0	1	2	3	4	5	6	7	8
Fech										-
Elabo	ró:	JLMH								
Revi	só:	MAGC								

			UNIVE	RSIDAD N	ACIONAL A	AUTÓNON	MA DE MÉXI	СО	
							S CUAUTITL		
							fural a partir		e Maíz
	HOJ	AS DE DAT	TOS DE F	PROCESO	PARA BO	MBAS CEN	NTRIFUGAS	1	
G	ENERALIDADE	S				CONDICIO	ONES DE OI	PERACIÓN	
CLIENTE				Fluido			RESI	DUOS ACUC	sos
	PLANTA PRODUC	TORA DE EUI	DELIDAL A	Temperatura	de Bombeo:	40	°C	104	°F
PLANTA	PARTIR DE OLOTI		RFURAL A	Gravedad Esp				1	
				Presión de Va	apor:		kg/cm2 (abs)	-	psia
CLAVE DEL EQUIPO	GA-105/R			Viscosidad: Corrosión/Ero	nsión	6.58E-01	Pas	0.67	сР
055) #010				Ocasionada p					
SERVICIO	BOMBA DE RECIR	RCULACION A	DA-102	Capacidad No	ormal:	0.01	M3/h	-	gpm
PROYECTO	FVM-100			Capacidad de	Diseño (1):	0.1	m3/h	0.4	gpm
PROTECTO	F V IVI-100			Presión de De	escarga:	2.0	kg/cm2 (man	28.4	psig
HOJA	1 DE	1		Presión de Si	ucción	1.0	kg/cm2 (man	14.2	psig
IOJA	I DL	'		Presión Difere	encial	1.0	kg/cm2 (man)	14.2	psig
CANTIDAD REQUERIDA	2 (DOS)	-		Carga Diferen		13.2	m	-	ft
JANTIDAD NEQUENIDA	2 (500)			NPSH Dispor	nible	•	m	-	ft
JSO REGULAR: 1 (UNA)	ACCIONADOR: MC	OTOR		Potencia Hidr	raulica	0.1	kW	0.1	HP
DELEVO 4 (IINA)	40010114 DOD 140	2700							
RELEVO: 1 (UNA)	ACCIONADOR: MC	JIOR							
				FUNCIONA	MIENTO				
Tamaño y Tipo Curva Propuesta									
NPSH Requerido				N Succión			nino do do oa		
Numero de Pasos				RPM:			pies de de ag	ua	
					Table (DLID)				
Eficiencia a Condiciones N		- 7 -		Potencia al F	reno (BHP)				
Máxima Potencia al Freno		BIIO							4
Máxima Carga de Impulsor Caudal Minimo Continuo E					m ···O//				ft
Caudai Minimo Continuo E	Stable			CONOTRI	m3/h				gpm
				CONSTRU					
Carcaza Montaje:	_	_			Corte:				
Impulsor Montaje:		Tipo:		Diametro	de Diseño:		Diametro	Máximo:	
Chumaceras		Radial:			Empuje:				
Sello Mecánico		Código API:			Fabricante:				
Plan API 610	L	Lubricación:			Enfriamiento:				
Cople:				Guada Cople:					
Materiales:									
Boquilla Succión	Diametro:			Clase ANSI:			Posición:		
Descarga	Diametro:			Clase ANSI:			Posición:		
			N	MOTOR ELE					
Fabricante					le la Carcaza				
Potencia				RPM:					
Voltaje	F	Fases:				Hertz:			
Chumaceras:				Lubricación:					
			T	URBINA DI	E VAPOR				
Fabricante		Mode	elo:			Gobernador:			
Potencia de Selección				RPM:					
Consumo de Vapor				kg/ HP hr					
Material	(Carcaza:				Partes Interr	nas:		
Chumaceras:				Lubricación:					
		•		Nota	s		•		
(1) Se considera un sobre								· ·	
(2)Especificaciones de fu	1 1	i i		1			1		
Revisión	0	1	2	3	4	5	6	7	8
Fecha:				ļ					
Elaboró:	JLMH								
Revisó:	MAGC			<u> </u>					

7.2.9. Lista de equipo

REACTORES

Clave	Servicio	Características
DC-101	Digestor	LTT=2134mm D = 1829 mm
		Pop= 9.2 Kg/cm ² Pdis =12 Kg/cm ²
		Top = 180 °C Tdis =200 °C
		Material de Const : Acero al C.

TORRES

Clave	Servicio	Características
DA-101	Torre de destilación heteroazeotrópica	LTT=19214 mm D =1100 mm
	·	Pop= 1.8 Kg/cm ² Pdis =3.5Kg/cm ²
		Top = 100 °C Tdis =120 °C
		Material de Const : Acero al C.
DA-102	Torre deshidratadora	LTT= 8540mm D =907 mm
		Pop = 2 Kg/cm ² Pdis =4 Kg/cm ²
		Top = 160 °C Tdis = 185 °C
		Material de Const : Acero al C.

TANQUES Y RECIPIENTES

Clave	Servicio	Características
FA-101	Tanque de producto intermedio	LTT= 2220 mm D =1525 mm
		Pop = 3.1 Kg/cm^2 Pdis = 5 Kg/cm^2
		Top = 100 °C Tdis = 12 0 °C
		Material de Const : Acero al C.
FA-102	Tanque de separación de Furfural	LTT=2018 mm D =1112 mm
		Pop =1.03 Kg/cm ² Pdis =3 Kg/cm ²
		Top = $98 ^{\circ}\text{C}$ Tdis = $125 ^{\circ}\text{C}$
		Material de Const : Acero al C.
FA-103	Tanque de producto terminado	LTT= 3600 mm D = 1890 mm
		Pop = 1 Kg/cm ² Pdis = 3 Kg/cm ² Top = 38 °C Tdis = 100 °C
		Top = $38 ^{\circ}\text{C}$ Tdis = $100 ^{\circ}\text{C}$
		Material de Const : Acero al C.
FA-104	Tanque de recirculación a torre	LTT= 2001 mm D = 990 mm
	deshidratadora	Pop = 0.7 Kg/cm^2 Pdis = 2 Kg/cm^2
		Top = $40 ^{\circ}$ C Tdis = $115 ^{\circ}$ C
		Material de Const : Acero al C.
FB-101	Tanque de almacenamiento de ácido acético	LTT= 3257 mm D = 3668 mm
		Pop = 1 Kg/cm ² Pdis = 3 Kg/cm^2
		Top = $38 ^{\circ}\text{C}$ Tdis = $60 ^{\circ}\text{C}$
		Material de Const : Acero al C

INTERCAMBIADORES

Clave	Servicio	Características
EA-101	Condensador de vapores de reactor	Qt = 2920 Kcal/h
EA-102	Rehervidor de torre azeotrópica	Qt = 1950 Kcal/h
EA-103	Condensador de torre azeotrópica	Qt = 2100 Kcal/h
EA-104	Enfriador de producto terminado	Qt = 1800 Kcal/h
EA-105	Rehervidor de torre deshidratadora	Qt = 3010 Kcal/h
EA-106	Condensador de torre deshidratadora	Qt = 3300 Kcal/h

BOMBAS

Clave	Servicio	Características
GA-101	Bomba de alimentación de ácido acético	Cap = $4.5 \text{ m}3/\text{h}$, $\Delta P = 3.5 \text{ Kg/cm}^2$
GA-102	Bomba de alimentación de residuos líquidos	Cap = 1 m3/h, $\Delta P = 9.4 \text{ Kg/cm}^2$
GA-103	Bomba re-recirculación a torre azeotrópica	Cap = 0.05 m3/h, ΔP = 2 Kg/cm ²
GA-104	Bomba de alimentación de torre deshidratadora	Cap = 0.03 m3/h, ΔP = 1 Kg/cm ²
GA-105	Bomba re-recirculación a torre deshidratadora	Cap = 0.01 m3/h, ΔP = 1 Kg/cm ²

<u>FILTRO</u>

Clave	Servicio	Características
F-101	Filtro prensa de residuos celulósicos	LTT= 2000 mm D = 1500 mm
		Pop = $1.03 \text{ Kg/cm}^2 \text{ Pdis} = 3 \text{ Kg/cm}^2$
		Top = 80 °C Tdis = 100 °C
		Material de Const : Acero al C

BANDAS TRANSPORTADORAS

Clave	Servicio	Características
H-101	Banda transportadora para cloruro de sodio	LTT= 2500 mm
H-102	Banda transportadora para olote de maíz	LTT= 2500 mm

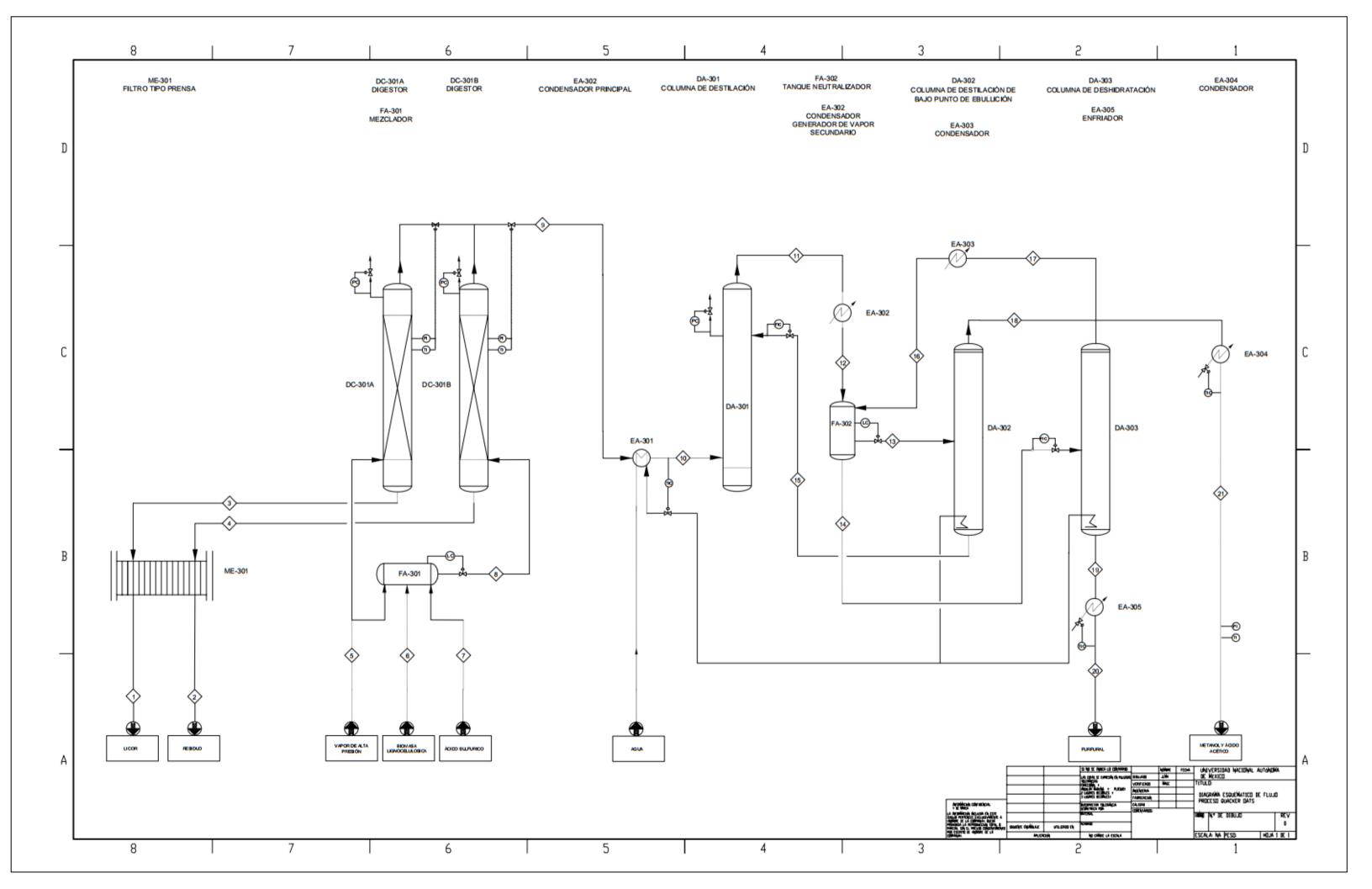
8. Conclusión

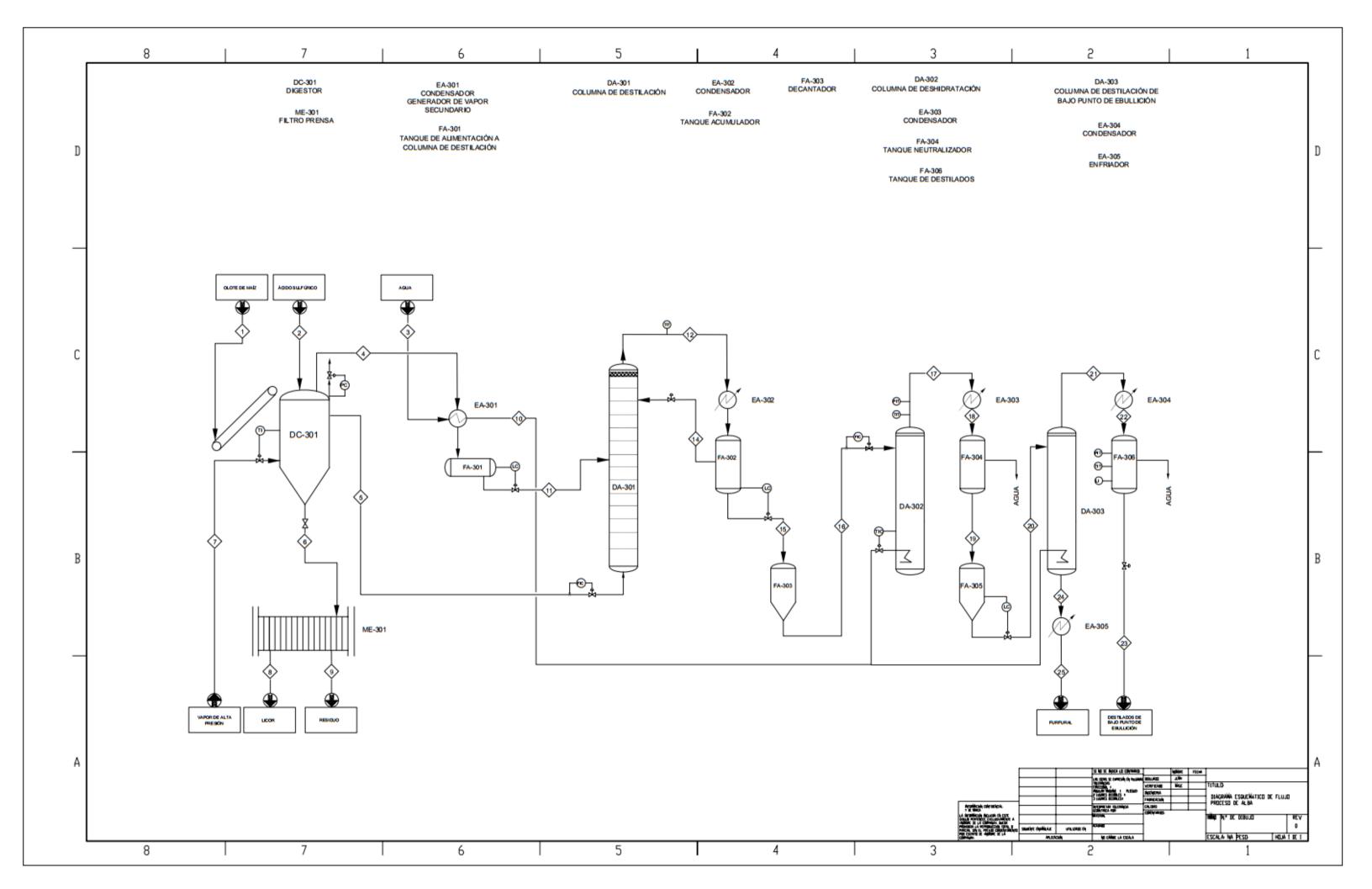
La producción de furfural a partir de olote maíz representa una alternativa atractiva como proceso para el aprovechamiento de residuos y la creación de productos con valor agregado, además en esta propuesta se emplea un ácido débil con un co-catalizador de bajo impacto ambiental, lo cual mejora el proceso tradicional, en el cual se usa ácido sulfúrico o algún otro ácido mineral, provocando serios problemas de contaminación, ataque a las líneas y equipos de proceso, además de que implica una operación unitaria más, que es la neutralización del furfural. Este proceso tradicional es el que más se usa hoy en día alrededor del mundo, y fue desarrollado por Quacker Oats desde hace varias décadas, sin embargo, no es un proceso muy rentable: tiene bajos rendimientos, alto consumo energético (se usan grandes cantidades de vapor). Debido a lo anterior el precio del furfural en el mercado es demasiado alto y no permite su uso final como producto químico o combustible.

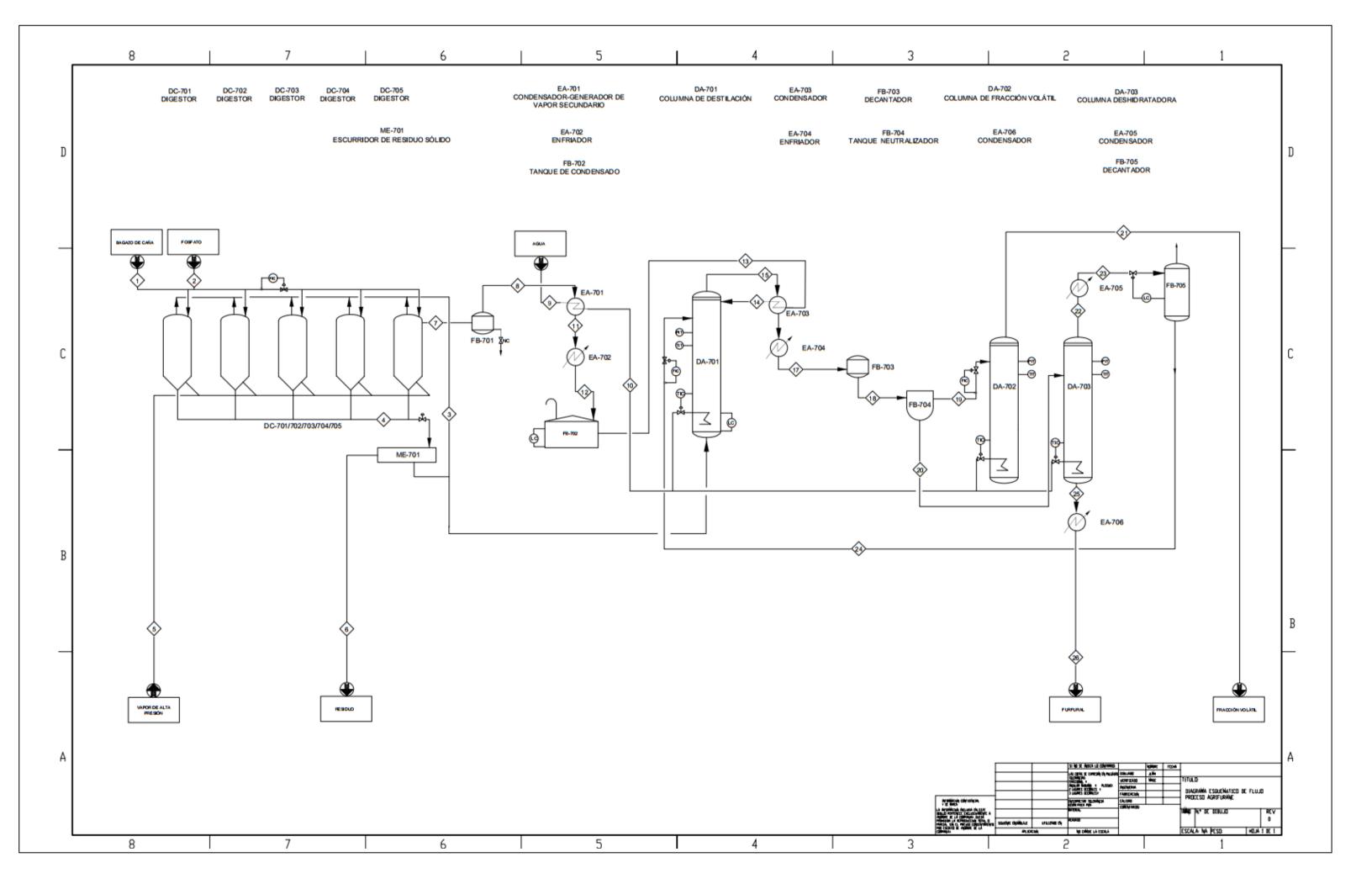
El desarrollo de este nuevo proceso permitiría reducir costos de producción, de inversión, y mantenimiento, ya que los reactivos son poco agresivos. Además, representa una atractiva oportunidad de inversión en el mercado nacional, ya que todo el furfural que se encuentra hoy en día en el país proviene del extranjero a precios elevados, por tanto, se tendría todo el mercado libre para la colocación de furfural de origen mexicano, concentrándose en PEMEX, particularmente en la Refinería Ing. Antonio M. Amor de Salamanca, Guanajuato, tal como lo haría FYDSA hace ya varias décadas.

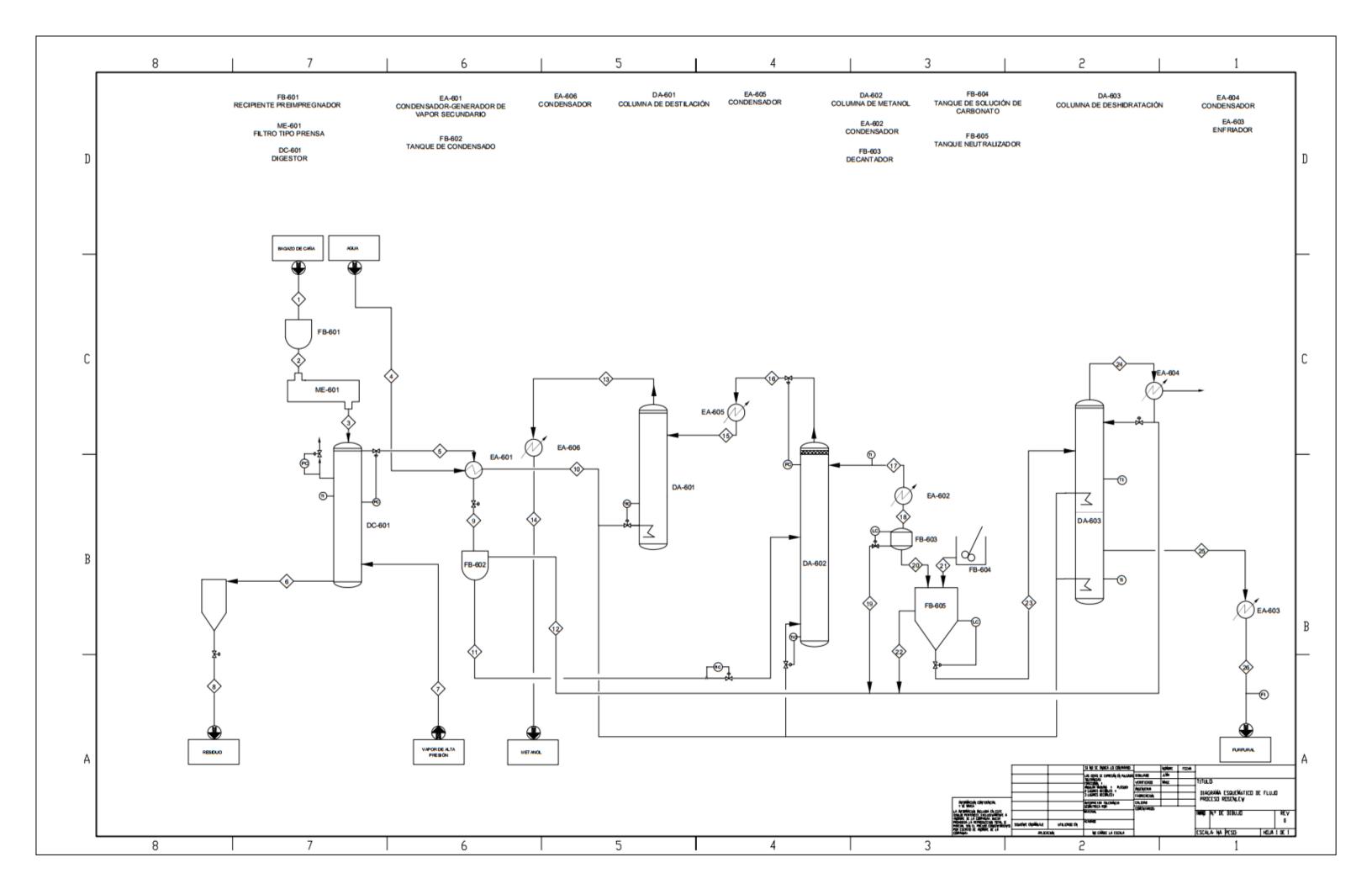
Este estudio técnico muestra el panorama general con respecto a la producción de furfural, métodos de obtención, perfil de mercado nacional, exportaciones, importaciones, ingeniería básica conceptual, para futuros trabajos de investigación más detallados, o desarrollo de ingeniería de detalle por inversionistas interesados en iniciar un proyecto de producción.

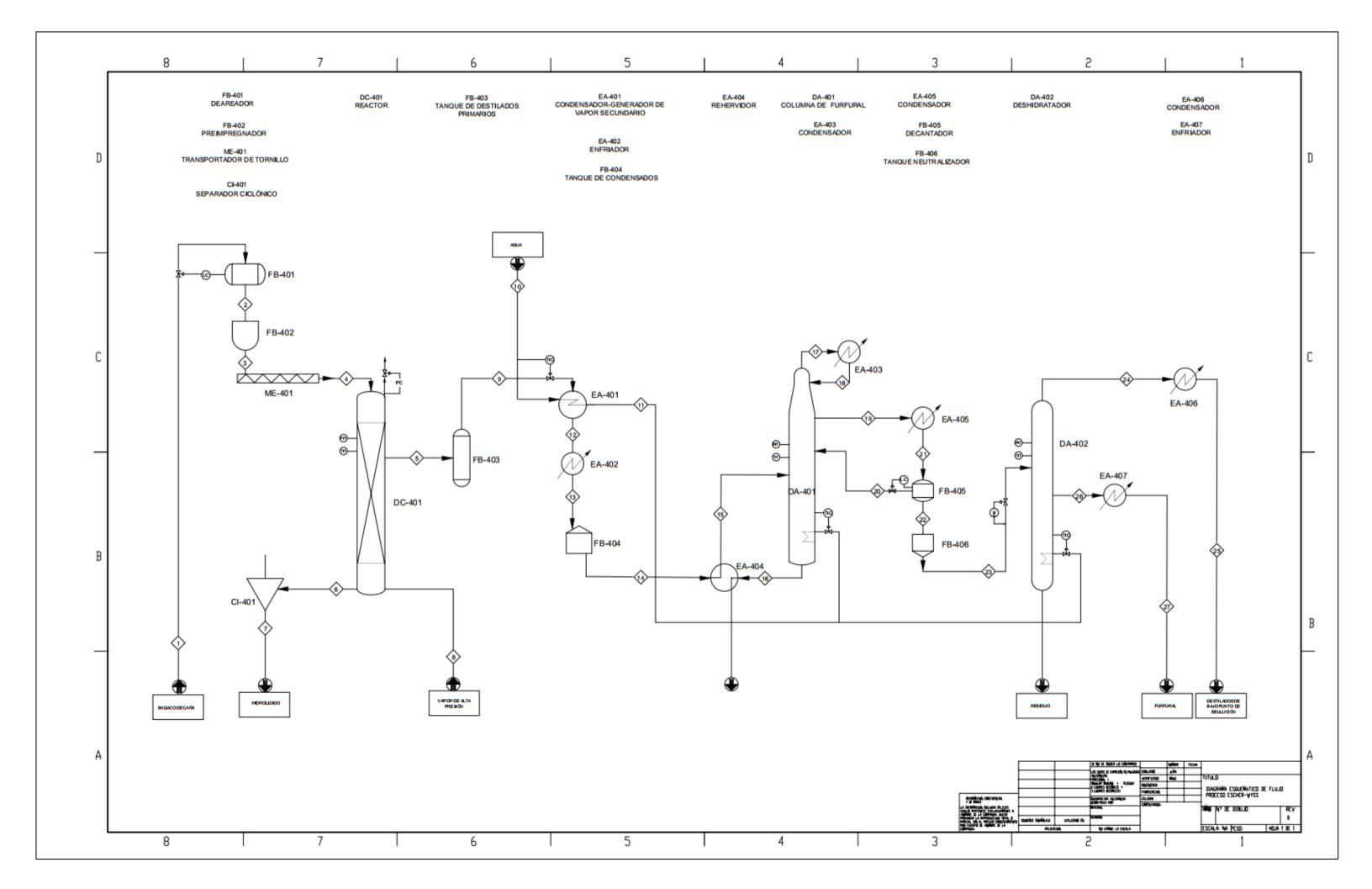
9. Glosario

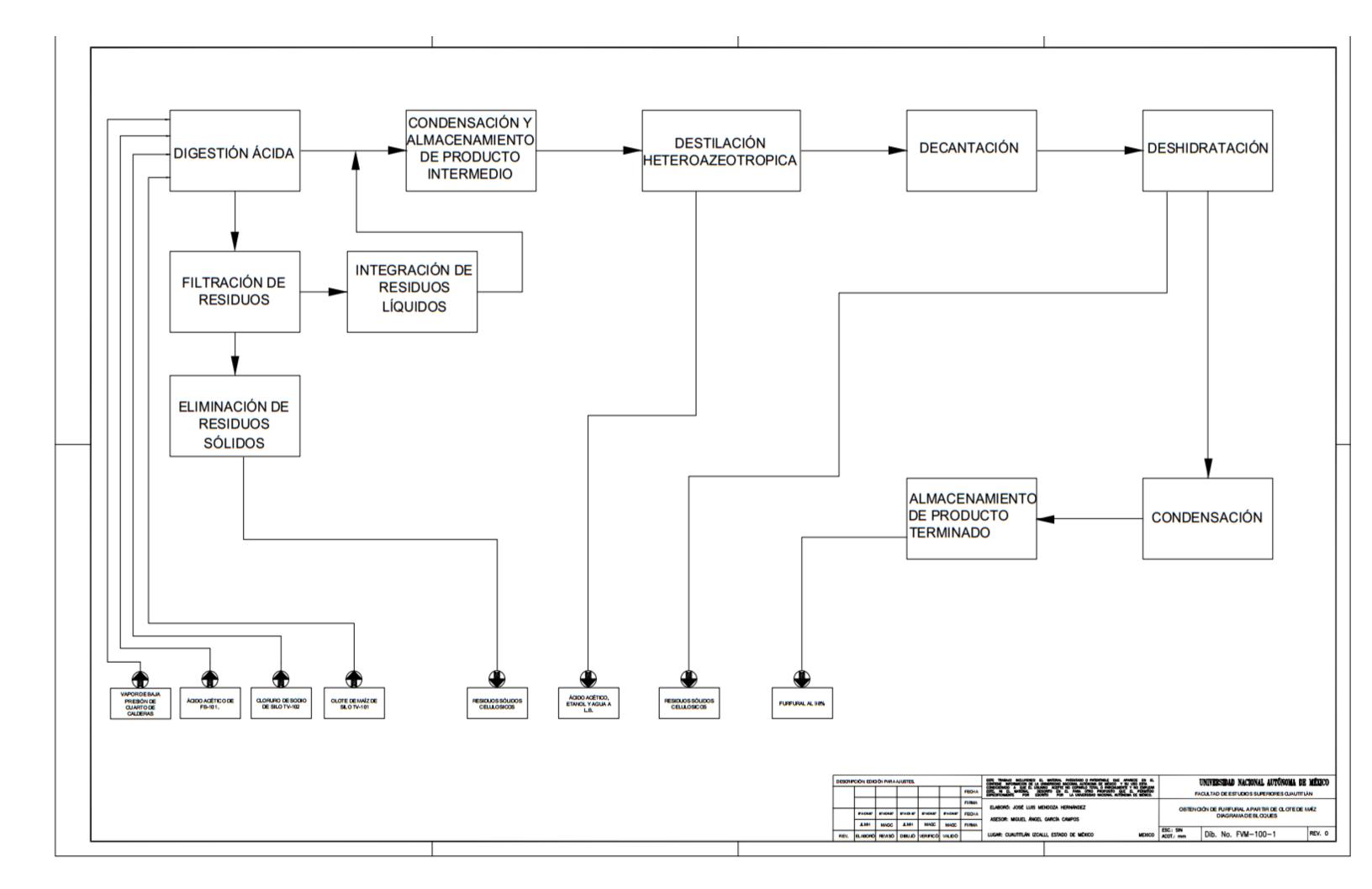

- **Aglutinante**: sustancia que alberga en su seno el pigmento y lo mantiene fijo al soporte. Es el elemento que sirve para cohesionar pigmentos.
- Aldehído: compuestos orgánicos caracterizados por poseer el grupo funcional -CHO
- Azeótropo: mezcla líquida de composición definida entre dos o más compuestos químicos que hierve a temperatura constante y que se comporta como si estuviese formada por un solo componente.
- Biomasa: La biomasa es aquella materia orgánica de origen vegetal o animal, incluyendo los residuos y desechos orgánicos, susceptible de ser aprovechada energéticamente. Las plantas transforman la energía radiante del sol en energía química a través de la fotosíntesis, y parte de esta energía queda almacenada en forma de materia orgánica.
- **Biocombustible:** Mezcla de sustancias orgánicas que se utiliza como combustible en los motores de combustión interna. Deriva de la biomasa.
- **Celuloide:** Nombre comercial de un material plástico de nitrato de celulosa, que se obtiene usando nitrocelulosa y alcanfor, con añadidos de tintes y otros agentes.
- Colodión: Solución de nitrocelulosa en una mezcla de éter y alcohol usada en cinematografía
- Colofonia: Resina natural de color ámbar obtenida de las coníferas por exudación de los árboles en crecimiento.
- Destilación extractiva: Destilación en presencia de un componente miscible, de alto punto de ebullición y relativamente no volátil, el disolvente, que no forma azeótropo con los otros componentes de la mezcla.
- Edáfica: Existencia de organismos adaptados a las condiciones bajo el suelo
- **Emulsión**: Mezcla de dos líquidos inmiscibles de manera más o menos homogénea. Un líquido es dispersado en otro.
- **Furano:** Compuesto orgánico heterocíclico aromático de cinco miembros con un átomo de oxígeno.
- Glicerina: Alcohol que se usa en cosmética por sus propiedades para la piel. Se utiliza para elaborar diversos productos cosméticos como el jabón y otros productos, aunque también se puede obtener para hacer remedios caseros.
- **Gramíneas:** Son una familia de plantas herbáceas, o muy raramente leñosas, perteneciente al orden *Poales* de las *monocotiledóneas*.
- **Miscibilidad:** Término usado en química que se refiere a la propiedad de algunos líquidos para mezclarse en cualquier proporción, formando una disolución.
- Orgánicos heterocíclicos: Son compuestos orgánicos cíclicos en los que al menos uno de los de los componentes del ciclo es de un elemento diferente al carbono.

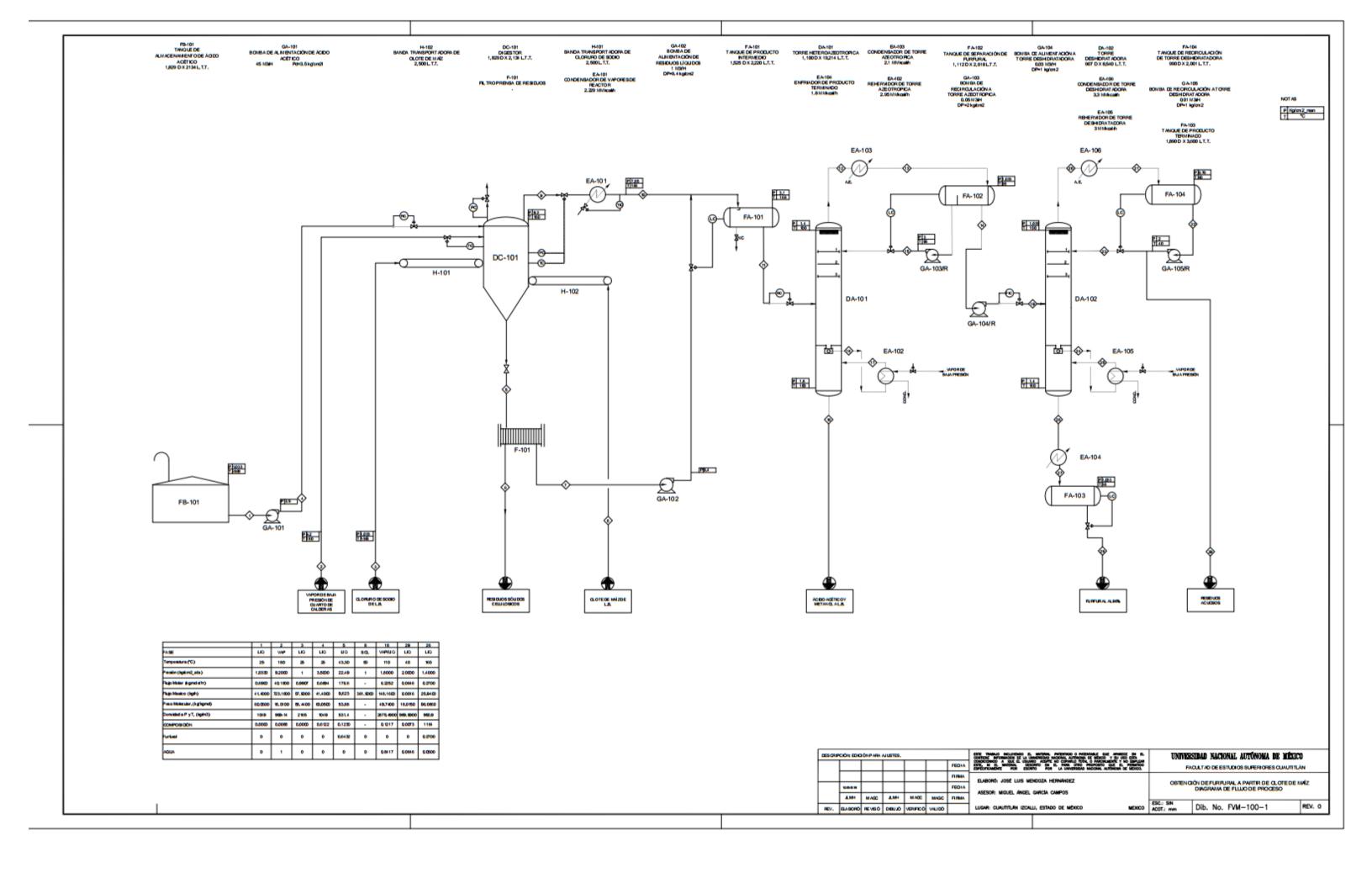


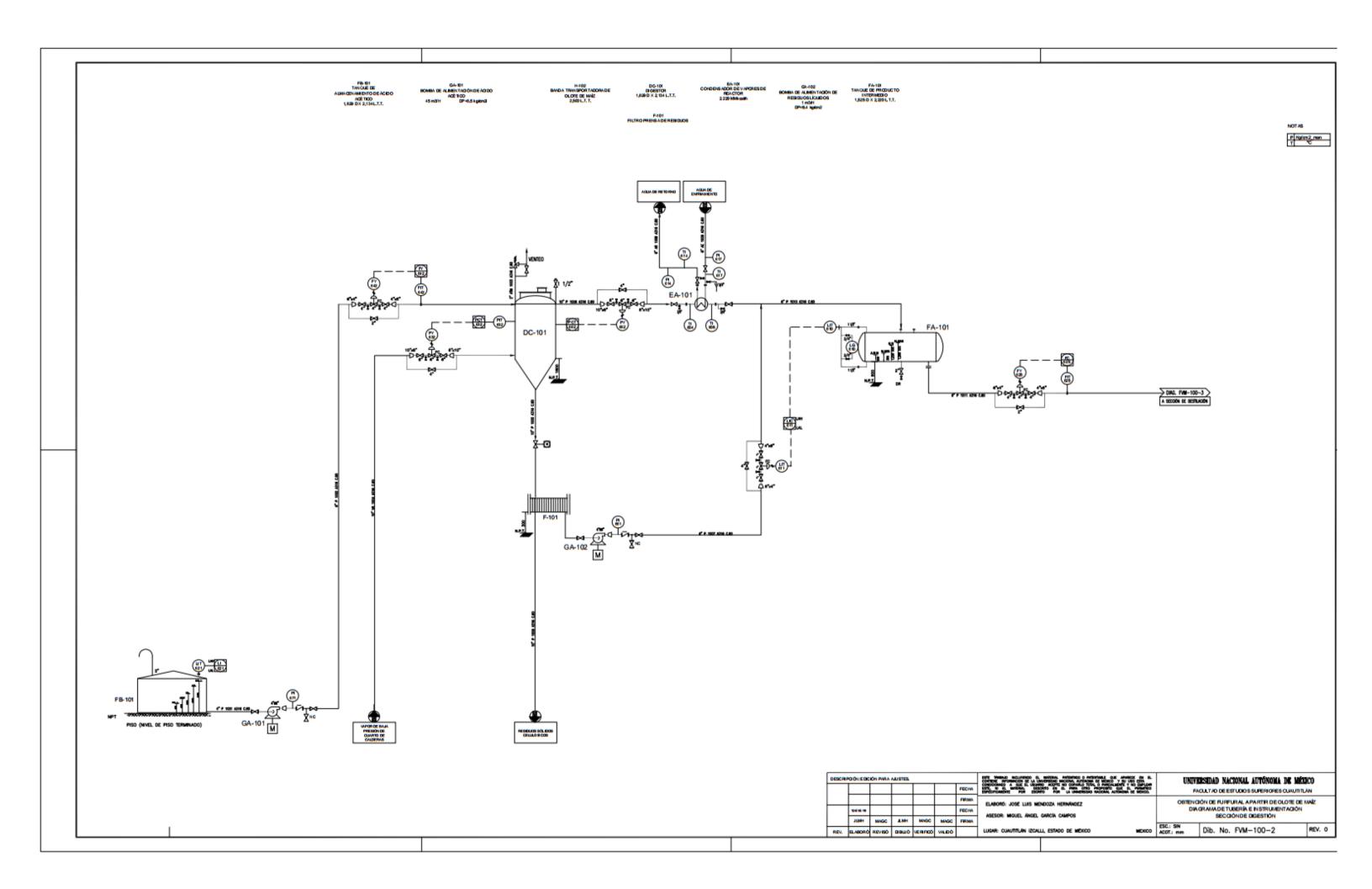

- Pentosa: Monosacáridos formados por una cadena de cinco átomos de carbono que cumplen una función estructural.
- **Polisacárido:** Biomoléculas formadas por la unión de una gran cantidad de monosacáridos.
- **Planta perenne:** Aquella que vive durante más de dos años o, en general, florece y produce semillas más de una vez en su vida.
- Resina termofija: Son resinas que una vez moldeadas no pueden modificar su forma por cambios de temperatura
- **Trementina:** Líquido volátil e incoloro producido mediante la destilación de la resina, o miera, de diversas especies de coníferas y de varias especies de árboles terebintáceos. Es usada como disolvente de pinturas, y como materia prima para la fabricación de compuestos aromáticos sintéticos y algunos desinfectantes.
- Xilanas: Polisacárido constituido por una cadena lineal de residuos de xilosa y diversas ramificaciones y sustituciones.

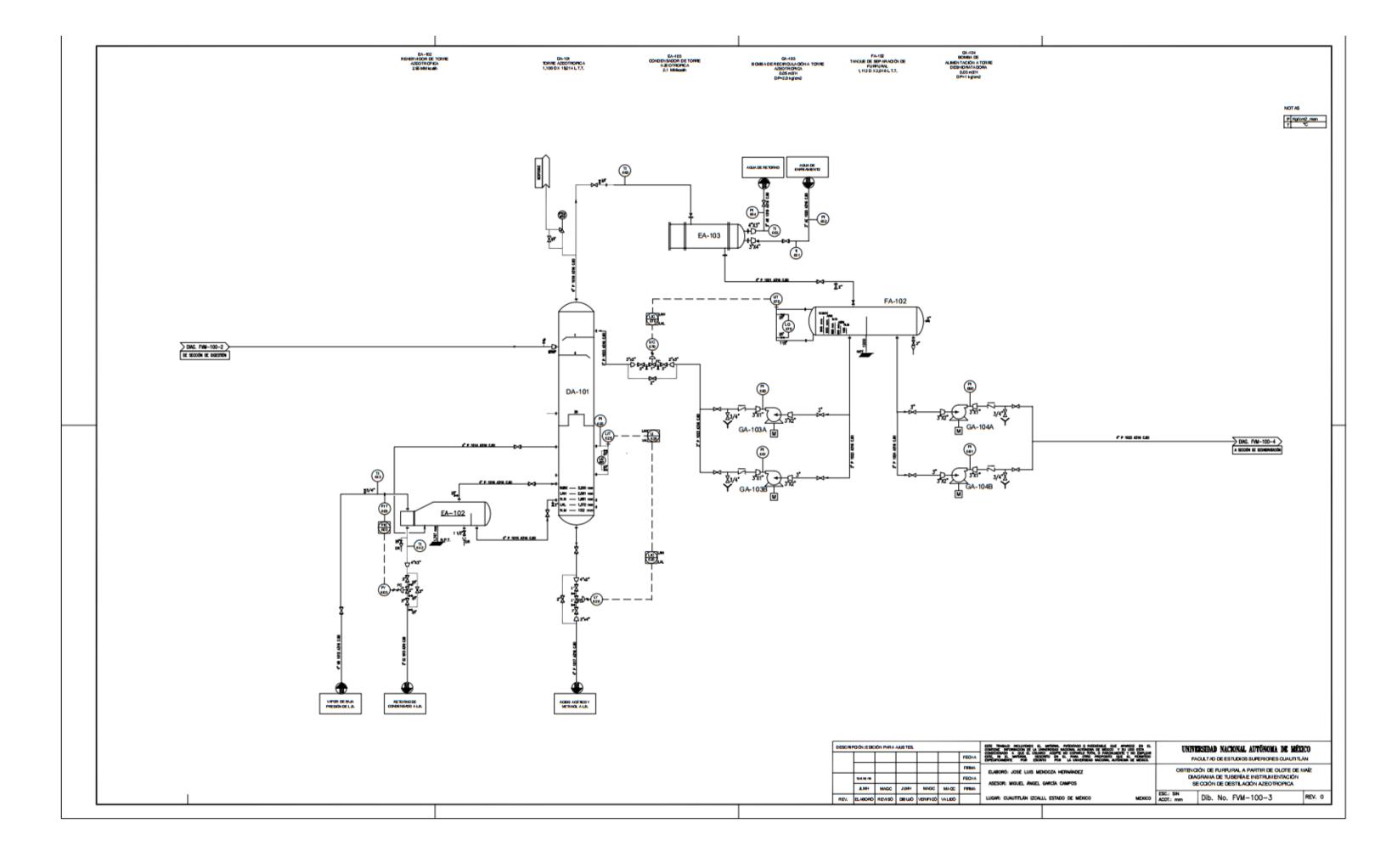


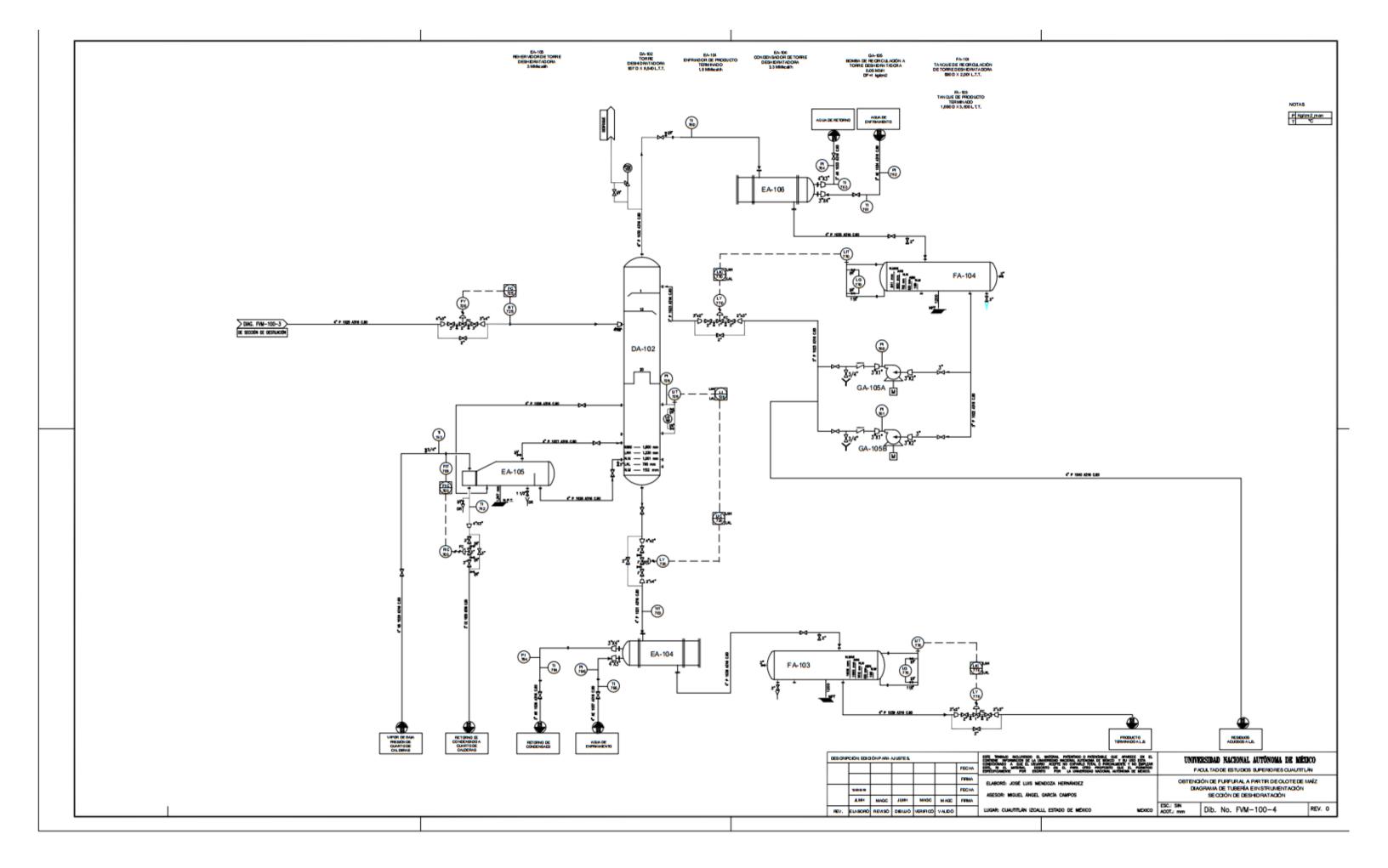

Anexo 1











Anexo 2

11. Anexo 2

Manejo y hojas de seguridad de productos y reactivos

FICHA DE DATOS DE SEGURIDAD

Fundada en la directiva 2001/58/CE de la Comisión de las Comunidades Europeas

FURFURAL

Identificación de la sustancia o preparado y del sociedad/empresa

1.1 Identificación de la sustancia o del preparado:

Sinónimos: 2-furaldehído

: 98-01-1 N° CAS

N° indice CE : 605-010-00-4 Código NFPA : 202-627-7 Masa molecul : LT7000000 Fórmula quím : 3-2-0 N° EINECS N° RTECS

1.2 Uso de la sustancia o preparado: Agente de aromatización

Combustible: aditivo Producto farmacéutico: materia prima Materia prima quimíca Agente de impregnación Solvente

1.3 Identificación de la sociedad/empresa:

International Furano Chemicals B.V. Rotterdam Airportplein 7

3045 AP Rotterdam Tel.: +31 10 238 05 55 Fax: +31 10 238 05 50

Composición/información sobre los componentes

Componentes peligrosos	N° CAS N° EINECS	Conc. en	Símbolo de peligro	Riesgos (Frases R)
furfural	98-01-1	> 98	T	21-23/25-36/37-40 (1)
	202-627-7			

(1) Texto completo de las frases R: véase sección 16

Identificación de los peligros

- Nocivo en contacto con la piel
 Tóxico por inhalación y por ingestión
 Irrita los ojos y las vías respiratorias
 Posibles efectos cancerígenos

FURFURAL

Primeros auxilios

- Contacto con los ojos:

 - Lavar inmediatamente con abundante agua
 No utilizar productos neutralizantes
 Si la irritación persiste consultar al médico/servicio médico
- 4.2 Contacto con la piel:

 Lavar inmediatamente con abundante agua
 Puede lavarse con jabón
 Retirar la ropa antes de lavarse
 Si la irritación persiste consultar al médico/servicio médico
- 4.3 Después de inhalación:
 Llevar a la víctima a un espacio ventilado
 Víctima inconsciente: mantener vías respiratorias abiertas
 - Consultar inmediatamente al médico/servicio médico
- 4.4 Después de ingestión:
 - No dar nunca agua a un paciente sin conocimiento Víctima plenamente consciente: provocar vómito No dar a beber, o poco

 - En caso de malestar: consultar al médico/servicio médico

Medidas contra incendios

5.1 Medios de extinción adecuados:

- Agua pulverizada
- Espuma resistente al alcohol
- Polvo BC
- Anhídrido carbónico

5.2 Medios de extinción a evitar:

- Chorro cerrado puede hacer desbordar recipiente
- 5.3 Riesgos especiales:

 - Materia que presenta un riesgo de incendio En combustión: liberación de monóxido de carbono/dióxido de carbono
- 5.4 Instrucciones:
 - Enfriar depósitos con agua pulverizada/llevar a lugar seguro
 - Tener en cuenta los líquidos de extinción tóxicos
 - Moderar el uso de agua, si es posible contenerla

- 5.5 Equipo de protección especial para los bomberos:

 Calentamiento/fuego: aparato de aire comprimido/oxígeno
 Calentamiento/fuego: traje antigás

Medidas a tomar en caso de derrame accidental

6.1 Equipo de protección/precauciones individuales:

Véase secciones 8.1/8.3/10.3

6.2 Precauciones para la protección del medio ambiente:

- Impedir contaminación del suelo y del agua
- No tirar a la alcantarilla
- Recoger/bombear producto derramado en recipiente apropiado
 Detener el escape cortando el origen
- Contener el líquido derramado

6.3 Métodos de limpieza:

- Absorber líquido derramado en arena/tierra/vermiculita, diatomita, caliza pulverizada o bicarbonato de sodio
- Palear producto absorbido en barriles tapados
 Vaciar las cisternas deterioradas/enfriadas
- Recoger minuciosamente sólidos derramados y residuos
- Entregar producto recogido al fabricante/organismo competente

Manipulación y almacenamiento

7.1 Manipulación:

- Evitar/limitar la exposición y/o el contacto Conexión a tierra de aparatos No tirar los residuos a la alcantarilla Retirar de inmediato la ropa contaminada

- Limpiar la ropa contaminada
- 7.2 Almacenamiento:
 - Mantener el recipiente bien cerrado

 - Conservar protegido de la luz Ventilación a nivel del suelo

 - Se necesita una cubeta para recoger derrames líquidos
 Conservar alejado de: fuentes de calor, materias combustibles, agentes de oxidación, ácidos, bases

: 20 °C T° de almacenamiento : N.E. Cantidades límite Tiempo límite de almacenamiento : N.E. Recipiente (selección del material)

:acero, acero inoxidable, aluminio, hierro apropiado

:materia sintética

7.3 Usos específicos:

Véase las informaciones facilidadas por el fabricante

"Evaluación Técnica Para Una Planta Productora De Furfural A Partir Del Olote De Maíz"

Controles de la exposición/protección personal

8.1 Valores límites de la exposición:

TLV-TWA mq/m^3 ppm mg/m³ ppmTLV-STEL mg/m³ TLV-Ceiling ppm

MEL-LTEL MEL-STEL

MAK TRK

MAC-TGG 8 h MAC-TGG 15 1 MAC-Ceiling

VME-8 h VLE-15 min.

GWBB-8 h : 8.0 mq/m° ppm GWK-15 min. mg/m³ ppm Valor momentáneo : mg/m³ ppm mg/m³ ppm CE-STEL mg/m³ ppm

10. Estabilidad y reactividad

10.1 Condiciones que deben evitarse/reactividad: - Inestable en exposición a la luz - Inestable al aire

10.2 Materias que deben evitarse:

- Conservar alejado de: fuentes de calor, materias combustibles, agentes de oxidación, ácidos, bases Conservar alejado de: materia sintética

8.3 Protección personal:

10.3 Productos d

- Se oxida Se oxida Se descon Reacción oxidantes Con (algr incendio, Polimeriz Esta reac En combus

- 8.3.1 protección respiratoria:

 Máscara antigás con filtro tipo A
 Alta concentración de gas/vapor: aparato de aire comprimido/oxígeno

8.3.2 protección de las manos:

- Guantes Materias adecuadas: Caucho al butilo PVA Tetrafluoroetileno Viton

- Tiempo de penetración:

8.3.4 protección cutánea:

. - Ropa de seguridad Materias adecuadas:

Caucho al butilo PVA Tetrafluoroetileno Viton

Hoja de datos de seguridad Ácido acético

Sección 1. Identificación del producto

- Nombre de la sustancia: Ácido acético.

Número CAS: 64-19-7.RTECS: AF1225000.

- **Fórmula química:** C₂H₄O₂.

Estructura química:

Masa molar: 60,05 g/mol

Sinónimos: ácido acético, ácido acético glacial.

Usos recomendados: solvente, regulador de pH y otros.

Sección 2. Identificación del peligro o peligros

Descripción de peligros:

Información pertinente a los peligros para el hombre y el ambiente:

Este producto puede generar irritación y quemaduras por contacto en el hombre y otros organismos.

Sistemas de clasificación:

-NFPA(escala 0-4):

-HMIS(escala 0-4):

SALUD	3
INFLAMABILIDAD	2
REACTIVIDAD	0

Sección 3. Composición/información sobre los constituyentes		
Composición		
Número CAS	Componentes peligrosos	% m/m
64-19-7	Acido acético glacial	99 8 %

Sección 4. Primeros auxilios

Información general:

- Información general: Sustancia nociva para la salud, si alguno de estos síntomas se presentan, buscar atención medica de inmediato
- Contacto ocular: Lavar con abundante agua, mínimo durante 15 minutos. Levantar y separe los párpados para asegurar la remoción del químico. Si la irritación persiste repetir el lavado y buscar atención médica.
- Contacto dérmico: Retirar la ropa y calzado contaminados. Lavar la zona afectada con abundante agua y jabón, mínimo durante 15 minutos. Si la irritación persiste repetir el lavado. Extraer la sustancia con un algodón impregnado de Polietilenglicol 400.
- Inhalación: Trasladar a la persona afectada a una atmósfera no contaminada para que respire aire puro. Si no se produce una rápida recuperación, obtener atención médica inmediatamente.
- Ingestión: Lavar la boca con agua. Si está consciente, suministrar abundante agua. No inducir el vómito. Mantener la víctima abrigada y en reposo.

Efectos por exposición

- Contacto ocular: Puede causar quemaduras irreversibles de la córnea.
- Contacto dérmico: Es corrosivo, produce quemaduras, altamente irritante.
- Inhalación: Irritación severa de la nariz y la garganta. Altas concentraciones puede causar inflamación en las vías respiratorias (bronconeumonía) y acumulación de fluidos en los pulmones (edema).
- Ingestión: Quemaduras e inflamación de la boca, el abdomen, garganta y estomago. En grandes cantidades puede ser fatal; existe peligro de perforación de los tubos digestivos (pleuritis) y del estómago (peritonitis). Las soluciones diluidas como el vinagre, no causan daño.

Sección 5. Medidas de lucha contra incendios

- Agentes extintores: Agua en forma de rocío, espuma para alcohol, polvo químico seco o CO₂.
- Productos peligrosos por combustión: Monóxido de carbono y dióxido de carbono.
 Equipo de protección para combatir fuego: Aparato de respiración autónomo con mascarilla facial completa y traje protector completo.

Sección 6. Medidas que deben tomarse en caso de vertido accidental

- Precauciones personales, equipo protector y procedimiento de emergencia: Evacuar o aislar el área de peligro (entre 50 y 100 metros en todas las direcciones), demarcar las zonas. Restringir el acceso a personas innecesarias y sin la debida protección. Usar equipo de protección personal. Ventilar el área. Eliminar toda fuente de ignición. No inhalar los vapores ni tocar el producto derramado.
- Precauciones relativas al medio ambiente: No permitir que caiga en fuentes de agua y alcantarillas.
- Métodos y materiales para la contención y limpieza de vertidos: Absorber con material inerte como arena o tierra. Recoger y depositar en contenedores con cierre hermético, cerrados, limpios, secos y marcados. Lavar con abundante agua el piso. Neutralizar con soda. Recoger la sustancia utilizando los absorbentes adecuados. Absorbentes Recomendados: vermiculita, salchichas, almohadas.

Sección 7. Manipulación y almacenamiento

- Manipulación de recipientes: Usar siempre protección personal así sea corta la exposición o la actividad que realice con el producto. Mantener estrictas normas de higiene, no fumar, beber, ni comer en el sitio de trabajo. Lavarse las manos después de usar el producto. Quitarse la ropa y el equipo protector contaminados antes de entrar en los comedores. Lea las instrucciones de la etiqueta antes de usar el producto. Rotular los recipientes adecuadamente. Manipular alejado de fuentes de ignición y calor.
- Condiciones de almacenamiento: Lugares ventilados, frescos, secos y señalizados. Temperatura adecuada 15-25°C. No almacenar por debajo de 12°C. Rotular los recipientes adecuadamente y mantenerlos bien cerrados. Inspeccione periódicamente las áreas de almacenamiento para detectar daños y fugas en los contenedores.

Sección 8. Controles de exposición/ protección personal

Parámetros de control (valores límite que requieren monitoreo)

TWA	25 mg/m ³
STEL	37 mg/m^3

- Condiciones de ventilación: Ventilación local y general.
- Equipo de protección respiratoria: Equipo de respiración autónomo (SCBA).
- Equipo de protección ocular: Gafas de seguridad para químicos a prueba salpicaduras con lente de policarbonato.

Equipo de protección dérmica: Guantes: 4H, vitón, caucho butilo (para 8 horas), caucho de nitrilo (para 4 horas), neopreno (períodos cortos). No recomendados: Caucho natural, PVC, PVA. Delantal revestido de vinilo o caucho, traje en Tivek. Teflón, saranex, responder (para 8 horas), chemrel (para 4 horas). Botas: Caucho de butilo (para 8 horas), caucho de nitrilo (para 4 horas), neopreno (períodos cortos).

Sección 9. Propiedades f	isicas y quimicas
Estado físico	Líquido
Color	Sin color
Olor	olor muy picante (vinagre)
Umbral olfativo	0,037 a 0,15 ppm
pН	1 M = 2,4
•	0.01 M = 3.4
Punto de fusión	16.6 °C
Punto de ebullición	118 °C
Punto de inflamación	43 °C
Tasa de evaporación	0,24 g/m ² a 25°C y viento a 4,5 m/s
Límites de explosión	Inferior: 5,4 %V/V
	Superior: 16 %V/V
Presión de vapor a 20°C	11.4 mm Hg
Densidad relativa de vapor	2,07
(aire=1)	
Densidad relativa (agua=1)	1,05
Solubilidad en agua	Miscible
Solubilidad en otros	Soluble en alcohol, glicerina y éter. Insoluble en sulfuro de carbono
disolventes	
Coeficiente de reparto	-0,31 -0,17
n-octanol/agua (Log pow)	
Temperatura de	426 °C
autoinflamación	

Sección 10. Estabilidad y reactividad

- Reactividad: Corrosivo.
- Estabilidad: Estable bajo condiciones normales.
- Incompatibilidad: Puede reaccionar violentamente con materiales oxidantes incluyendo acetaldehído, cromatos, otros ácidos, fosfatos, carbonatos, permanganatos, peróxidos, tricloruro de fósforo, metales, óleum, hidróxido de sodio y combustibles, metales.
- Productos de polimerización: No ocurrirá.
- Productos peligrosos de la descomposición: CO. CO₂.

Sección 11. Información toxicológica

- Toxicidad agua: Compuesto poco contaminante del agua (1 según Clasificación Alemana).
- Corrosión/irritación cutáneas: Sí.
- Lesiones oculares graves/irritación ocular: Sí.
- Sensibilización respiratoria o cutánea: Sí.
- Mutagenicidad en células germinales: No.
- Carcinogenicidad: No.

Hoja de datos de seguridad Cloruro de Sodio

Sección 1. Identificación del producto

Nombre de la sustancia: Cloruro de sodio

Número CAS: 7647-14-5
RTECS: VZ4725000
Fórmula química: NaCl
Estructura química:

- Masa molar: 58,4 g/mol.
- Sinónimos: Sal de mesa, Halita, Sal de mar.
- Usos recomendados: Productos químicos, vidriado de cerámica, metalurgia, curado de piele aguas minerales, higiene metal, extintor de incendios, deshielo de autopistas, herbicida, entre otros

Sección 2. Identificación del peligro o peligros

Descripción de peligros:

Misceláneo.

Información pertinente a los peligros para el hombre y el ambiente:

Producto considerado no peligroso. En contacto con los ojos puede provocar irritación.

Sistemas de clasificación:

-NFPA(escala 0-4):

-HMIS(escala 0-4):

SALUD	1
INFLAMABILIDAD	0
REACTIVIDAD	0
PROTECCIÓN PERSONAL	Е

Sección 3. Composición/información sobre los constituyentes

Composición

	Número CAS	Componentes peligrosos	% m/m
	7647-14-5	Cloruro de sodio	99.0 %
•			

Sección 4. Primeros auxilios

- Información general: En caso de emergencia mantener la víctima en reposo, buscar asistencia médica.
- Contacto ocular: Lavar con abundante agua, mínimo durante 15 minutos. Levantar y separe los párpados para asegurar la remoción del químico. Si la irritación persiste repetir el lavado.
- Contacto dérmico: Retirar la ropa y calzado contaminados. Lavar la zona afectada con abundante agua y jabón, mínimo durante 15 minutos. Si la irritación persiste repetir el lavado.
- Inhalación: Trasladar al aire fresco. Si no respira administre respiración artificial. Si respira con dificultad suministre oxígeno. Mantener la víctima abrigada y en reposo.
- Ingestión: Lavar la boca con agua. Si está consciente, suministrar abundante agua. No inducir el vómito. Buscar atención médica inmediatamente.

Efectos por exposición

- Contacto ocular: Irritaciones
 Contacto dérmico: Irritaciones
- Inhalación: Tos
- Ingestión: La ingestión de grandes cantidades puede irritar el estómago con nausea y vómito. Puede
 afectar el comportamiento, los órganos sensoriales, el metabolismo y el sistema cardiovascular. La
 exposición continua puede producir deshidratación, la congestión de órganos internos y el coma.

FECHA: 27-08-19

Sección 5. Medidas de lucha contra incendios

- Agentes extintores: Fuego pequeño: Usar polvo químico seco. Fuego grande: Usar rocío de agua, niebla o espuma. No usar chorro.
- Productos peligrosos por combustión: Cuando es calentado a temperaturas de 801°C o más puede emitir gases tóxicos de cloruro y de óxidos de sodio
- Equipo de protección para combatir fuego: Aparato de respiración autónomo con mascarilla facial completa y traje protector completo.

Sección 6. Medidas que deben tomarse en caso de vertido accidental

- Precauciones personales, equipo protector y procedimiento de emergencia: Evacuar o aislar el área de peligro. Restringir el acceso a personas innecesarias y sin la debida protección. Trabajar en zona fresca y bien ventilada: puede ser necesaria ventilación artificial. Observar las medidas de protección adecuadas para el manejo de productos químicos. Usar equipo de protección personal.
- Precauciones relativas al medio ambiente: No permitir que caiga en fuentes de agua y alcantarillas.
- Métodos y materiales para la contención y limpieza de vertidos: Ventilar el área del derrame, usar equipo de protección adecuado y completo, barres el material y depositarlo en un contenedor debidamente etiquetado, para su posterior disposición. El área del derrame puede ser barrida y lavada con abundante agua.

Sección 7. Manipulación y almacenamiento

- Manipulación de recipientes: Deben manipularse con cuidado para evitar derrames. Los recipientes vacíos son un peligro de incendio y se deben evaporar bajo una capilla de gases. Mantener estrictas normas de higiene, no fumar, beber, ni comer en el sitio de trabajo. Lavarse las manos después de usar el producto. Quitarse la ropa y el equipo protector contaminados antes de entrar en los comedores.
- Condiciones de almacenamiento: No se necesita almacenamiento específico, pero sí se pide que se almacene en un área fresca y ventilada. Use ropa protectora adecuada.

Sección 8. Controles de exposición/ protección personal

Parámetros de control (valores límite que requieren monitoreo)

TWA	No disponible
STEL	No disponible

- Condiciones de ventilación: Ventilación local y general.
- Equipo de protección respiratoria: Respirador aprobado por NIOSH adecuado para los componentes del producto. Si la ventilación es restringida, debe usarse filtros químicos y mecánicos aprobados.
- **Equipo de protección ocular:** Se recomienda utilizar anteojos de seguridad con protectores laterales o escudo facial. Debe haber lavaojos cerca.

Equipo de protección dérmica: Si existe contacto con la piel deben utilizarse guantes de hule,

C			07 - 0	
Section	J Promi	ariariae	ricione w	amminae.
Sección 9	7	Luci Pri Li Luci III	I KILWI KEME	

	Sólido, cristales.		
Estado físico Color	Blanco		
C 0.01			
Olor	Olor leve. Sabor salino.		
Umbral olfativo	No disponible		
pH	7 (neutro)		
Punto de fusión	804°C		
Punto de ebullición	1413°C		
Punto de inflamación	No aplica		
Tasa de evaporación	No disponible		
Límites de explosión	No disponible		
Presión de vapor a 0°C	No disponible		
Densidad relativa de vapor	No aplica		
(aire=1)			
Densidad relativa (agua=1)	2,165		
Solubilidad en agua	360 g/L en agua a 20°C		
Solubilidad en otros	Soluble en glicerina y en amoniaco. Levemente		
disolventes	soluble en alcohol etílico. Insoluble en ácido		
	clorhídrico.		
Coeficiente de reparto	No disponible		
n-octanol/agua (Log pow)			
Temperatura de	No aplica		
autoinflamación			
Temperatura de	801°C ó mas		
descomposición			
Peligro de explosión	No aplica		

Sección 10. Estabilidad y reactividad

- Reactividad: Corrosivo.
- Estabilidad: Estable bajo condiciones normales. Se descompone alrededor de los 205 °C. Higroscópico.
- Incompatibilidad: Reacciona violentamente con Halógenos. Soluciones alcalinas. Metales. Agentes oxidantes y con Soluciones o compuestos clorados, álcalis, oxidantes potentes.
- Productos de polimerización: No ocurre.
- Productos peligrosos de la descomposición: CO, CO₂.

Sección 11. Información toxicológica

 Toxicidad agua: Evite la contaminación de alcantarillas y cursos de agua. No se esperan productos de degradación peligrosos a corto plazo. Sin embargo, pueden formarse productos de degradación a

largo plazo. Los productos de degradación no son tóxicos.

- Corrosión/irritación cutáneas: Sí.
- Lesiones oculares graves/irritación ocular: Sí.
- Sensibilización respiratoria o cutánea: Sí.
- Mutagenicidad en células germinales: Es mutagénico para las células somáticas de los mamíferos.
 Es mutagénico para bacterias y levaduras.
- Carcinogenicidad: No.
- Toxicidad para la reproducción: Sí.
- Toxicidad sistémica específica de órganos diana: No disponible.
- Peligro por aspiración: Sí.
- Posibles vías de exposición: Oral, dermal y respiratoria.
- Efectos inmediatos: Irritación y corrosión de órganos.
- Efectos retardados: Alta presión sanguínea, respiración rápida.
- Efectos crónicos: Alta presión sanguínea, respiración rápida y posible irritación de la piel por contacto repetido.
- LD/LC50:

Oral (LD-50)	3000 mg/kg (ratas)
Dermal (LD-50)	>10000 mg/kg (conejo)
Inhalativa (LC-50)	>42000 mg/m ³ 1 hora (rata)

12. Bibliografía

- 1. Avci, A., Saha, B. C., Kennedy, G. J., & Cotta, M. A. (2013). High temperature dilute phosphoric acid pretreament of corn stover for furfural and ethanol production. *Industrial Crops and Products*, 478-484.
- 2. Becerra F., & Ibarra M. C. (1993). Tesis. *Estudio Tecnico-Economico para el Aprovechamiento Industrial de los Residuos Fibrosos de la Caña de Azucar en la Obtención de Furfural.* Distrito Federal: Instituto Politecnico Nacional.
- 3. Chávez-Sifontes, M., & Domine , M. E. (2013). Lignina, Estructura y Aplicaciones: Métodos de despolimerización para la obtención de derivados aromáticos de interés industrial. *Avances en Ciencias e Ingeniería*, 15-46.
- 4. Chemical Economics Handbook. (08 de Febrero de 2018). *IHS Markit*. Obtenido de https://ihsmarkit.com/products/furfural-chemical-economics-handbook.html
- 5. Chengli, L., Wenping, X., Heying, C., Jiabo, L., & Shichang, W. (2005). *China Patente nº CN 200510015185*.
- 6. Córdoba, J. A., Salcedo, E., Rodríguez, R., Zamora, J. F., Manríquez, R., Contreras, H., . . . Delgado, E. (2013). Caracterización y Valoración Química del Olote: Degradación Hidrotérmica bajo Condiciones Subcríticas. *Revista Latinoamericana de química*, 171-184.
- 7. Espinosa, B. M. (1970). *Diseño y Calculo de una Planta Extractora de Furfural a partir de los Residuos del Maíz.* Distrito Federal, México: UNAM.
- FIRA. (21 de Marzo de 2018). El Portal Único del Gobierno. Obtenido de https://www.gob.mx/cms/uploads/attachment/file/200637/Panorama_Agroalimentario_Ma_z_ 2016.pdf
- 9. INEGI. (2014). Encuesta Nacional Agropecuaria . Ciudad de México, México : INEGI.
- 10. International Furan Chemicals B.V. (12 de Julio de 2018). Obtenido de IFC, Supplier in Furfural and Furfuryl Alcohol: http://www.furan.com/ifc.html
- 11. Ortega, C. D., & Cazorzi, S. G. (1981). *Aprovechamiento Integral del Olote de Maíz en la Obtención de Furfural.* Distrito Federal, México: Universidad Nacional Autónoma de México.
- 12. Paliwal, R., Granados, G., Lafitte, H., & Violic, A. (2001). *El Maíz en los Tropicos: Mejoramiento y Producción*. Roma: Organización de las Naciones Unidas para la Agricultura y la Alimentación.
- 13. Parsons, D. (1983). Manuales para eduación agropecuaria : Maíz. Ciudad de México: Trillas.
- 14. Pérez Aceves, L. A., & Pérez y Peniche, J. d. (2 de Agosto de 2018). *Comisión Económica para America Latina y el Caribe*. Obtenido de http://archivo.cepal.org/pdfs/1978/S7800320.pdf

- 15. Petróleos Mexicanos. (25 de Julio de 2018). *El Portal Único del Gobierno*. Obtenido de gob.mx: https://www.gob.mx/cms/uploads/attachment/file/6977/Refinacion Web.pdf
- 16. Rubin, E. (2008). Genomics of cellulosic biofuels. Nature, 841-845.
- 17. Secretaría de Economía. (25 de Julio de 2018). *Sistema de Información Arancelaria Vía Internet*. Obtenido de SIAVI: http://187.191.71.239/
- 18. Subsecretaría de Fomento a los Agronegocios SAGARPA. (21 de Marzo de 2018). Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Obtenido de http://www.sagarpa.gob.mx/agronegocios/Documents/estudios_economicos/escenariobase/perspectivalp_11-20.pdf
- 19. Yan, K., Guosheng, W., Todd, L., & Cody, J. (2014). Production, Properties and Catalytic Hydrogenation of Furfural to Fuel Additives and Value-Added Chemicals. *Renewable and Sustainable Energy Reviews*, 663-676.