

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN INGENIERÍA MAESTRÍA EN INGENIERÍA CIVIL – GEOTECNIA

COMPRESIBILIDAD DE MEZCLAS DIATOMEAS-BENTONITA MEDIANTE ENSAYES DE VELOCIDAD DE DEFORMACIÓN CONSTANTE

> TESIS QUE PARA OPTAR POR EL GRADO DE: MAESTRO EN INGENIERÍA

PRESENTA: NEVÁREZ LIZÁRRAGA ÓSCAR OMAR

TUTOR: DR. JORGE ABRAHAM DÍAZ RODRÍGUEZ FACULTAD DE INGENIERÍA

CIUDAD UNIVERSITARIA, CD. MX., SEPTIEMBRE 2019

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

Dedicatoria

A mis padres por todo su infinito apoyo. Mi madre, por ser siempre el motor que me impulsa hacer todo lo que me propongo. Mi padre, por enseñarme la responsabilidad y dedicación al trabajo. A mis abuelos, por ser esas personas que siempre te alientan y te hacen sentir orgulloso. Mi Tía Cande, por todo su apoyo incondicional y por quererme como a un hijo.

Agradecimientos

Al Programa de Maestría y Doctorado de la Facultad de Ingeniería de la Universidad Nacional Autónoma de México (UNAM), por brindarme la oportunidad de pertenecer a este programa.

Al Consejo Nacional de Ciencia y Tecnología (CONACYT) por la beca otorgada para la realización de mis estudios de Maestría en Ingeniería.

A mi tutor de tesis, Dr. Jorge Abraham Díaz Rodríguez, por su valiosa guía, apoyo y colaboración para realizar el presente trabajo.

A cada uno de los sinodales por sus valiosos comentarios, aportaciones y tiempo dedicado para la revisión de este trabajo de tesis: M.I. Agustín Deméneghi Colina, Dr. Osvaldo Flores Castrellón, M.I. Omar G. Ramírez Calderón y Dr. Hugo Meza Puesto.

Al Ing. Pedro Moreno Carrizales, por compartir sus ideas y principalmente por su apoyo técnico en la ejecución de las pruebas.

A todos los que me apoyaron durante la realización de este trabajo: mis tíos Paty Lizárraga y Marco Rodríguez por su apoyo en mi estancia en la CDMX, a Gerardo Gazca por su gran apoyo en tiempos de dificultades.

A mi compañera Mayra Nolasco, con quien compartí el trabajo de elaboración de cada una de las mezclas de la presente investigación.

Contenido

Resumen.	vii	
Listado de	figurasviii	
Listado de	Tablas xii	
Notación	xiii	
CAPÍTULC	1. INTRODUCCIÓN1	
1.1. O	bjetivo2	
1.2. A	cances2	
1.3. A	ntecedentes2	
1.3.1.	Para la condición de estado establecido12	
1.3.2.	Para la condición de estado transitorio15	
1.4. S	uelos arcillosos15	
1.5. S	uelos diatomáceos y el suelo de la CDMX20	
CAPÍTULC	2. PROPIEDADES ÍNDICE DE MEZCLAS DIATOMEAS – BENTONITA25	
2.1. In	troducción26	
2.2. D	escripción de los materiales que componen las mezclas de diatomita – bentonita. 26	
2.2.1.	Diatomita27	
2.2.2.	Propiedades físicas	
2.2.3.	Ambientes donde se desarrollan	
2.2.4.	Estudios sobre diatomeas	
2.3. B	entonita	
2.4. P	ropiedades Índice	
2.4.1.	Límites de consistencia o de Atterberg	
2.4.2.	Contenido de agua (w)37	
2.4.3.	Densidad de sólidos (Gs)	
2.4.4.	Relación de vacíos (e)37	
CAPÍTULO 3. METODOLOGÍA		
3.1. In	troducción40	
	Página iv	

3.2.	Me	zclas Diatomeas – Bentonita	40
3.2	2.1.	Elaboración de mezclas Diatomeas – Bentonita	40
3.2	2.2.	Llenado de moldes de consolidación	41
3.2	2.3.	Montaje en Consolidómetro Gigante	43
3.3.	Des	smontaje, almacenaje y preservación de las mezclas Diatomeas – Bentonita4	45
3.4.	Pru	eba de compresibilidad a velocidad de deformación constante	47
3.4	4.1.	Equipo utilizado	47
3.5.	Pro	ocedimiento de ensaye	55
3.5	5.1.	Labrado de probeta	55
3.5	5.2.	Saturación de líneas y celda de consolidación	57
3.5	5.3.	Montaje de la probeta	57
3.5	5.4.	Ejecución de la prueba	59
3.6.	Vel	ocidad de ensayes	62
3.7.	Def	finición de variables	63
3.7	7.1.	Deformación axial	63
3.7	7.2.	Velocidad de deformación	64
3.7	7.3.	Esfuerzo efectivo	64
3.7	7.4.	Coeficiente de permeabilidad.	64
3.7	7.5.	Coeficiente de compresibilidad volumétrica	64
3.7	7.6.	Coeficiente de consolidación	64
3.7	7.7.	Función, F3	64
CAPÍT	ULO 4	4. RESULTADOS	66
4.1.	Intr	oducción	67
4.2.	Pro	piedades índice	67
4.3.	Pru 71	ebas de compresibilidad con incrementos de carga a cada 24 horas eodómet	ſO.
4.4.	Pru	ebas de compresibilidad a velocidad de deformación constante	75
4.4	4.1.	Inicialización	75
		Página	v

	4.4.2.	Saturación76	
	4.4.3.	Mezcla 100B77	
	4.4.4.	Mezcla 80B20D	
	4.4.5.	Mezcla 60B40D	
	4.4.6.	Curvas de compresibilidad con el aumento de diatomeas	
	4.4.7.	Curvas de compresibilidad mezclas de Bentonita – Diatomeas y Caolinita98	
	4.4.8. CDMX.	Curvas de compresibilidad mezclas de Bentonita – Diatomeas y suelo de la 100	
	4.4.9.	Resumen de resultados102	
	4.4.10.	Parámetros de compresibilidad110	
CONCLUSIONES			
5.	1. Cor	nclusiones	
5.	2. Rec	comendaciones	
REFERENCIAS			
ANEXOS			
ANEXO 1			
ANEXO 2			

Resumen

El suelo de la CDMX, es muy particular debido a su composición la cual consta principalmente de mineral de arcilla de montmorillonita y microfósiles de diatomeas, da origen debido a las características geológicas y geomorfológicas de la faja Volcánica Trans- Mexicana, vinculado con la actividad volcánica de la región.

El presente trabajo estudia el comportamiento en el laboratorio de diversas pruebas índices y de compresibilidad, derivado de la fabricación de mezclas artificiales de los dos principales componentes del suelo de la CDMX, el primero es la bentonita que proviene de la familia de las arcillas de montmorillonitas, y el segundo son los microfósiles de diatomeas de las cuales las formas más usuales son cilíndricas, esféricas o de disco circular, las utilizadas en este trabajo de acuerdo a su forma están dentro de la clasificación de "diatomeas centrales".

Las mezclas se fabricaron en un inicio con un contenido de agua cercano a su límite líquido, posteriormente se decidió fabricarlas con un contenido del 100%, esto debido a la poca manejabilidad que se tenía al montar la mezcla en el consolidometro "gigante" con contenidos de agua mayores al 100%.

Se fabricaron 4 tipos de mezclas 100B (100% Bentonita), 80B20D (80% Bentonita – 20% Diatomeas), 60B40D (60% Bentonita – 40% Diatomeas) y 100K (100% Caolinita), las cuales fueron consolidadas bajo un esfuerzo vertical de aproximadamente 130 kPa, durante 28 días. Posteriormente, para cada una de las mezclas se determinó sus propiedades índice.

El objetivo principal de esta investigación es estudiar las propiedades de compresibilidad para cada una de las mezclas. Se realizó una serie de ensayes manteniendo la velocidad de deformación constante (0.5%/hr) en el cual variaba el contenido de agua según la fabricación de la mezcla, se hizo serie de ensayes variando la velocidad de una misma probeta brincando de una velocidad a otra (0.125%/hr a 5.0%/hr) y una última serie de ensayes de compresibilidad con incrementos de carga a cada 24 hr.

Listado de figuras

Figura 1.1. Pruebas realizadas por Hamilton y Crawford a diferentes velocidades (1959).

Figura 1.2. Consolidómetro de uso general, MIT (1961).

Figura 1.3. Cambios escalonados en la velocidad de deformación controlada en pruebas de eodómetro (Bell, 1977).

Figura 1.4. Pruebas de eodómetro con diferentes duraciones de incremento de cargas (Graham, 1983).

Figura 1.5. Curvas típicas de ensayes a diferentes velocidades de deformación constante (Leroueil, 1985).

Figura 1.6. Ciclo de formación de suelos. (Díaz Rodríguez, 2014)

Figura 1.7. Formas de deposición -el agua como agente de transporte- (Barnes, 2000).

Figura 1.8. Unidad y lámina silícica. (Díaz-Rodríguez, 2014)

Figura 1.9. Unidad y lámina alumínica. (Díaz-Rodríguez, 2014)

Figura 1.10. Estructura de minerales de arcilla de (a) caolinita; (b) ilita; (c) montmorillonita. (Adaptada Braja Das, 2013)

Figura 1.11. Registros extensos de sedimentos diatomáceos continentales (Bradbury, 1999).

Figura 1.12. Localización de sitios de muestreo para análisis de sedimentos diatomáceos en la faja volcánica Trans-Mexicana (Davis, 2002 y Telford, 2004).

Figura 1.13. Cuenca de México con su antiguo cuerpo de agua de 2000 km². Antiguos lagos de la Cuenca de México y sus ríos. (Díaz-Rodríguez et al., 1998)

Figura 2.1. Fichas técnicas de Bentonita y Tierra Diatomácea.

Figura 2.2. Bentonita y Tierra Diatomácea en polvo.

Figura 2.3. Fotomicrografías de diatomeas (Díaz-Rodríguez et al., 1998)

Figura 2.4. Fotomicrografías de diatomeas del material utilizado en la presente investigación (2019).

Figura 2.5. Principales yacimientos de diatomeas en la República Mexicana (Editado de la Coordinación General de Minería, 2016).

Figura 2.6. Estados, límites de un suelo.

Figura 2.7. Copa de Casagrande (1948).

Figura 2.8. Determinación del límite líquido por el método del cono (Díaz-Rodríguez, 2014).

Figura 2.9. Relaciones entre fases de una muestra de suelo (Díaz-Rodríguez, 2014).

Figura 3.1. Peso en seco de materiales (a) bentonita; (b) diatomeas.

Figura 3.2. Mezclado en seco de diatomeas y bentonita.

Figura 3.3. Mezclado en batidora.

Figura 3.4. Molde con piedra porosa inferior, papel filtro y lámina plástica. Mezcla lista para colocarse.

Figura 3.5. Llenado del molde con ayuda de espátula, nivelado y enrasado.

Figura 3.6. Colocación de papel filtro, piedra porosa y placa metálica.

Figura 3.7. Componentes del molde para colocación en el consolidómetro gigante. (Moreno – Arriaga, 2018)

Figura 3.8. Montaje del molde con la mezcla en el consolidómetro gigante. (Moreno – Arriaga, 2018).

Figura 3.9. Colocación de transductores (LVDT) para monitoreo de deformación de las mezclas.

Figura 3.10. Aplicación de primer incremento de carga.

Figura 3.11. Muestra ya pre-consolidada desmontada del consolidómetro gigante.

Figura 3.12. Hincado de anillos de pvc dentro de la muestra pre-consolidada.

- Figura 3.13. Mezcla cubierta para su almacenamiento.
- Figura 3.14. Equipo de velocidad de deformación constante.

Figura 3.15. Unidad Load Trac.

Figura 3.16. Unidad Flow Trac.

Figura 3.17. Diagrama Flow Trac.

Figura 3.18. Celda de consolidación.

Figura 3.19 Celda de consolidación desmontada.

Figura 3.20. Ventana de inicio del CRC.S.

Figura 3.21. Datos sobre la probeta a ensayar.

Figura 3.22. Contenidos de agua antes y después de la prueba.

Figura 3.23. Pestaña de fase: Inicialización.

Figura 3.24. Pestaña de fase: Saturación.

Figura 3.25. Pestaña de fase: Consolidación.

Figura 3.26. Extracción de muestra de anillo de pvc.

Figura 3.27. Labrado de probeta.

Figura 3.28. Llenado de cámara de consolidación con conjunto de piedras porosas, anillo con muestra, papel filtro y cabezal en su interior.

Figura 3.29. Diagrama de celda de consolidación ensamblada (Romero Tonix, 2017).

Figura 3.30. Pestaña de parámetros de prueba.

Figura 3.31. Diagrama de fase de consolidación.

Figura 3.32. Desmonte y obtención de contenido de agua posterior al ensaye.

Figura 4.1. Límites de consistencia según el contenido de diatomeas.

Figura 4.2. Densidad de sólidos según el contenido de diatomeas.

Figura 4.3. Relación de vacíos inicial según el contenido de diatomeas.

Figura 4.4. Pruebas de compresibilidad para las mezclas 100B, 80B20D, 60B40D y 100K con incrementos de carga a cada 24 horas.

Figura 4.5. Índices de compresión para cada incremento de carga a cada 24 horas.

Figura 4.6. Índices de recompresión para cada incremento de carga a cada 24 horas

Figura 4.7. Coeficiente de compresibilidad para cada incremento de carga a cada 24 horas

Figura 4.8. Coeficiente de variación volumétrica para cada incremento de carga a cada 24 horas

Figura 4.9. Esfuerzo de fluencia para cada una de las mezclas.

Figura 4.10. Variación de esfuerzo vertical con el contenido de diatomeas.

Figura 4.11. Fase de inicialización.

Figura 4.12. Fase de saturación.

Figura 4.13. Curvas de compresibilidad a 0.5%/h (100B 1, 100B 2), comparada con una prueba de carga incremental (100B CI).

Figura 4.14. Curvas de compresibilidad a 0.5%/h (100B 1, 100B 2, 100B 3, 100B 4, 100B 5, 100B CI).

Figura 4.15. Curvas de exceso de presión de poro a 0.5%/h (100B 1, 100B 2, 100B 3, 100B 4, 100B 5).

Figura 4.16. Curvas de exceso de presión de poro a 0.5%/h (100B 1, 100B 2, 100B 3, 100B 4, 100B 5).

Figura 4.17. Curva de compresibilidad variando la velocidad de deformación de 0.125% a 5.0%/h, para una misma probeta de la mezcla de 100B.

Figura 4.18. Curva de exceso de presión de poro a 0.125%/h - 5.0%/h, para una misma probeta de la mezcla 100B.

Figura 4.19. Curvas de compresibilidad a 0.5%/h (80B20D 1, 80B20D 2, 80B20D 3, 80B20D CI).

Figura 4.20. Curvas de compresibilidad a 0.5%/h (80B20D 4, 80B20D 5, 80B20D CI).

Figura 4.21. Curvas de compresibilidad a 0.5%/h (80B20D 1, 80B20D 2, 80B20D 3, 80B20D 4, 80B20D 5, 80B20D CI).

Figura 4.22. Curvas de exceso de presión de poro a 0.5%/h (80B20D 1, 80B20D 2, 80B20D 3, 80B20D 4, 80B20D 5).

Figura 4.23. Curvas de exceso de presión de poro a 0.5%/h (80B20D 1, 80B20D 2, 80B20D 3, 80B20D 4, 80B20D 5).

Figura 4.24. Curva de compresibilidad variando la velocidad de deformación de 0.125% a 5.0%/h, para una misma probeta de la mezcla de 100B.

Figura 4.25. Curva de exceso de presión de poro variando la velocidad de deformación de 0.125% a 5.0%/h, para una misma probeta de la mezcla de 80B20D.

Figura 4.26. Curvas de compresibilidad a 0.5%/h (60B40D 1, 60B40D 2, 60B40D 3, 60B40D CI).

Figura 4.27. Curvas de exceso de presión de poro a 0.5%/h (60B40D 1, 60B40D 2, 60B40D 3).

Figura 4.28. Curvas de exceso de presión de poro a 0.5%/h (60B40D 1, 60B40D 2, 60B40D 3).

Figura 4.29. Curva de compresibilidad variando la velocidad de deformación de 0.125% a 5% / h, para la mezcla de 60B40D.

Figura 4.30. Curvas de compresibilidad a 0.5%/h (100B, 80B20D, 60B40D).

Figura 4.31. Curvas de exceso de presión de poro a 0.5%/h (100B, 80B20D, 60B40D).

Figura 4.32. Curvas de compresibilidad a 0.5%/h (100B, 80B20D, 60B40D).

Figura 4.33. Curvas de exceso de presión de poro a 0.5%/h (100B, 80B20D, 60B40D).

Figura 4.34. Curvas de compresibilidad a 0.5%/h (100B, 80B20D, 60B40D.

Figura 4.35. Curvas de exceso de presión de poro a 0.5%/h (100B, 80B20D, 60B40D).

Figura 4.36. Curvas de compresibilidad a 0.5%/h (100B, 80B20D, 60B40D).

Figura 4.37. Curvas de exceso de presión de poro a 0.5%/h (100B, 80B20D, 60B40D).

Figura 4.38. Curvas de compresibilidad a 0.5%/h (100B, 80B20D, 60B40D y 100K).

Figura 4.39. Curvas de exceso de presión de poro a 0.5%/h (100B, 80B20D, 60B40D y 100K).

Figura 4.40. Curvas de compresibilidad a 0.5%/h (100B, 80B20D, 60B40D, PARQUE ALAMEDA Y RAMÓN LÓPEZ VELARDE).

Figura 4.41. Curvas de exceso de presión de poro a 0.5%/h (100B, 80B20D, 60B40D, PARQUE ALAMEDA Y RAMÓN LÓPEZ VELARDE).

Figura 4.42. Esfuerzo de fluencia vs contenido de agua para cada una de las mezclas.

Figura 4.43. Esfuerzo de fluencia vs relación de vacíos inicial para cada una de las mezclas.

Figura 4.44. Índice de compresión vs contenido de agua para cada una de las mezclas.

Figura 4.45. Índice de compresión vs relación de vacíos inicial para cada una de las mezclas.

Figura 4.46. Índice de compresión vs contenido de agua para la mezcla 100B.

Figura 4.47. Índice de compresión vs relación de vacíos inicial para la mezcla 100B.

Figura 4.48. Índice de compresión vs contenido de agua para la mezcla 80B20D.

Figura 4.49. Índice de compresión vs relación de vacíos inicial para la mezcla 80B20D.

Figura 4.50. Índice de compresión vs contenido de agua para la mezcla 60B40D.

Figura 4.51. Índice de compresión vs relación de vacíos inicial para la mezcla 60B40D.

Figura 4.52. Contenido de diatomeas vs relación al esfuerzo de fluencia, para cada uno de los contenidos de agua – relación de vacíos inicial.

Figura 4.53. Contenido de diatomeas vs Índice de compresión.

Figura 4.54. Variación del coeficiente de permeabilidad con respecto al esfuerzo efectivo (Mezcla 100B).

Figura 4.55. Variación del módulo de compresibilidad con respecto al esfuerzo efectivo (Mezcla 100B).

Figura 4.56. Variación del coeficiente de consolidación con respecto al esfuerzo efectivo (Mezcla 100B).

Figura 4.57. Variación del coeficiente de permeabilidad con respecto al esfuerzo efectivo (Mezcla 80B20D).

Figura 4.58. Variación del módulo de compresibilidad con respecto al esfuerzo efectivo (Mezcla 80B20D).

Figura 4.59. Variación del coeficiente de consolidación con respecto al esfuerzo efectivo (Mezcla 80B20D).

Figura 4.60. Variación del coeficiente de permeabilidad con respecto al esfuerzo efectivo (Mezcla 60B40D).

Figura 4.61. Variación del módulo de compresibilidad con respecto al esfuerzo efectivo (Mezcla 60B40D).

Figura 4.62. Variación del coeficiente de consolidación con respecto al esfuerzo efectivo (Mezcla 60B40D).

Figura A.1. Ventana "System Monitor"

Figura A.2. Ventana "Calibrate Displacemet".

Figura A.3. Ventana "Calibrate Pressure".

Figura A.4. Ventana "Pressure Control".

Listado de Tablas

- Tabla 2.1. Densidad de sólidos de minerales (Lambe y Whitman, 1979).
- Tabla 3.1. Características de transductores en la unidad Load Trac.
- Tabla 3.2. Características de transductor de presión de poro.
- Tabla 3.3. Programa de ensayes realizados, condiciones iniciales y condiciones finales.
- Tabla 3.4. Programa de ensayes realizados.
- Tablas 4.1. Límites de consistencia y densidad de solidos según el contenido de diatomeas.
- Tabla 4.2. Resumen con propiedades índice y volumétricas iniciales para todas las pruebas.
- Tabla 4.3. Resumen con propiedades índice y volumétricas finales para todas las pruebas.
- Tabla 4.4. Propiedades de la mezcla 100B.
- Tabla 4.5. Propiedades de la mezcla 80B20D.
- Tabla 4.6. Propiedades de la mezcla 60B40D.
- Tabla 4.7. Propiedades de la mezcla 100B, 80B20D y 60B40D, con contenido de agua muy similares.
- Tabla 4.8. Propiedades de la mezcla 100B, 80B20D y 60B40D, con contenido de agua similares.
- Tabla 4.9. Propiedades de la mezcla 100B, 80B20D y 60B40D, con contenido de agua similares.
- Tabla 4.10. Propiedades de la mezcla 100B, 80B20D y 60B40D, con contenido de agua similares.
- Tabla 4.11. Propiedades de la mezcla 100B, 80B20D, 60B40D y 100K.
- Tabla 4.12. Propiedades de la mezcla 100B, 80B20D, 60B40D y suelo de la CDMX.
- Tabla 4.13. Resumen de propiedades de todos los ensayes realizados.

Notación

- u exceso de presión de poro
- $u_{0}-\mbox{excess}$ de presión de poro en la parte superior del espécimen
- $u_h-\mbox{excess}$ de presión de poro en la parte inferior del espécimen
- Δu_h incremento en el exceso de presión de poro
- Δu0 lectura inicial durante el incremento en el exceso de presión de poro
- t tiempo
- z profundidad
- ε deformación unitaria
- ε velocidad de deformación
- σ_v esfuerzo total
- σ'_v esfuerzo efectivo
- σ'_{v0} esfuerzo efectivo vertical inicial
- σ'_{y} esfuerzo de fluencia
- σ'_p esfuerzo de preconsolidación
- σ_0 lectura inicial durante la consolidación de esfuerzo total
- e₀ relación de vacíos inicial
- e relación de vacíos
- ∈ deformación vertical
- γw Peso volumétrico del agua
- C_v Coeficiente de consolidación
- k Coeficiente de permeabilidad
- mv coeficiente de compresibilidad volumétrica
- C_c índice de compresión
- Cr índice de recompresión
- C_s índice de deformación
- r velocidad constante de deformación
- H altura de la probeta
- ΔH_n cambio en la altura de la probeta con cada incremento n
- H₀ altura inicial de la probeta
- T_v factor tiempo
- rHt desplazamiento de la muestra deformada verticalmente
- X cualquier punto de deformación
- W contenido de agua
- Gw grado de saturación
- Gs densidad de solidos
- W_L limite líquido
- W_P limite plástico
- IP índice de plasticidad
- Å Amstrong
- A actividad
- S_S superficie especifica
- Φ ángulo de fricción

capítulo 1 introducción

El suelo experimenta una deformación bajo la acción de un esfuerzo. Cuando un estrato de suelo saturado y compresible se somete a un cambio en el estado de esfuerzos, la presión de poro aumenta en forma instantánea. En suelos permeables, la disipación de la presión de poro puede ser inmediata; en cambio, en suelos poco permeables la disipación puede tomar un tiempo considerable.

La consolidación es un proceso de cambio de esfuerzos efectivos producido por la disipación de la presión de poro, lo que induce una reducción de su volumen, en función del tiempo, debido a la expulsión del agua de los poros del suelo. La consolidación la ocasiona un aumento de esfuerzos en la masa del suelo. La velocidad de deformación la controla la permeabilidad.

La compresibilidad es la propiedad de un suelo de reducir su volumen cuando se le somete a un incremento de esfuerzos. Se expresa como la relación entre el cambio de volumen o el cambio en la relación de vacíos y la magnitud del incremento de esfuerzo aplicado (Díaz-Rodríguez, 2014).

1.1. Objetivo.

Estudiar el efecto de la velocidad de deformación en la compresibilidad de mezclas artificiales de diatomeas – bentonita, para diferentes proporciones, utilizando un equipo de CSR (Constant Strain Rate).

1.2. Alcances.

El suelo de la Ciudad de México (CDMX) está compuesto principalmente por arcilla del tipo de montmorillonita, la bentonita pertenece a esta familia y usualmente se forma de la intemperización de las cenizas volcánicas, es por eso la importancia del estudio de este mineral de arcilla en la presente investigación.

Comprender el comportamiento que se presenta en los suelos diatomáceos, es posible mediante un programa experimental, el cual permita estimar un predecible comportamiento de ciertos materiales en este caso la diatomea y bentonita a diferentes proporciones. Esto además hace posible analizar el impacto que estos microfósiles tienen en las propiedades de la arcilla bentonítica.

Las pruebas realizadas permiten conocer la compresibilidad de un espécimen de suelo al variar la velocidad de deformación. Por tanto, los ensayes permiten analizar el comportamiento a diversas proporciones de diatomeas y diferentes velocidades de consolidación, conocer el cambio de viscosidad de las muestras con el contenido de diatomeas, a fin de estimar parámetros que puedan servir para investigaciones futuras.

1.3. Antecedentes.

Taylor (1942) concluyó de investigaciones en el Massachusetts Institute of Technology (MIT), que la consolidación avanza mucho más lento para incrementos de carga pequeños que para grandes, y que las predicciones de velocidad de asentamiento pueden tener un grave error al menos que los incrementos de carga en la prueba sean esencialmente los mismos que en el campo. Las pruebas en muestras de arcilla azul de Boston realizadas por Casagrande y Fadum (1944) mostraron curvas de esfuerzo – relación de vacíos de proporciones iguales, a pesar de que una se consolidó en siete incrementos de carga en una semana, mientras que la segunda se sometió a casi 50 incrementos durante un período de 85 días. La mayoría de los autores concuerdan en que se debe estandarizar para cualquier suelo en particular.

Terzaghi (1944) postuló que existe una "unión rígida" entre las películas de agua adsorbidas que rodean las partículas de arcilla inalterada que no se rompe por la carga lenta durante la sedimentación. Por lo tanto, los esfuerzos pueden aumentar a lo largo de una curva de esfuerzo - relación de vacíos. Sin embargo, la alteración y los esfuerzos excesivos durante una prueba de laboratorio destruyen esta "unión rígida" y transforman la arcilla a un estado "lubricado". En esta condición, el cambio de relación de vacíos bajo los incrementos de esfuerzos es mucho mayor que en la naturaleza y la curva de esfuerzos – relación de vacíos puede ser muy pronunciada.

Figura 1.1. Pruebas realizadas por Hamilton y Crawford a diferentes velocidades (1959).

Burmister (1958) sugiere que el ensaye de suelos se debe realizar con pequeños incrementos de carga para suelos blandos, esto es que de la naturaleza de los incrementos de carga parece tener menos efecto en el asentamiento. La variación entre la velocidad de carga de un elemento del suelo durante la depositación y durante la prueba en el laboratorio es invariablemente grande. El hecho de que los depósitos profundos y bastante uniformes de arcilla se encuentren en una relación de vacíos

prácticamente constante ha llevado a la conclusión de que la diferencia entre las velocidades de carga geológicas y de laboratorio tiene una gran influencia en el índice de compresión de un suelo.

Taylor (1942), Hvorslev (1949) y Terzaghi (1942) describen que la compresión inicial, casi instantánea, que ocurre bajo incrementos de carga puede deberse en gran parte al gas en burbujas dentro de la muestra. Estas burbujas de gas se pueden encontrar en suelos orgánicos o en suelos que tienen agua en los poros que se ha filtrado a través de suelos orgánicos.

Una prueba de compresión a velocidad de deformación constante, aunque requiere un equipo más sofisticado, se considera más apropiada que una prueba de compresibilidad a velocidad de aumento de esfuerzos constante, ya que a una velocidad controlada de esfuerzos la carga de recompresión se puede aplicar rápidamente mientras la carga de compresión normalmente consolidada se aplica más lentamente, dándole tiempo para el drenaje del agua en los poros. Hamilton y Crawford (1959), realizaron varias pruebas a velocidad de deformación constante con velocidades de compresión dentro de la rama normalmente consolidada que varían de 0.3% por hora a 9.0% por hora. En estas pruebas, existen realmente dos velocidades de aplicación de deformación: durante la compresión, el anillo de prueba se mueve considerablemente y, por lo tanto, la deformación en la muestra sólo toma una fracción de la carga aplicada, y la otra por encima del esfuerzo de preconsolidación, donde la velocidad de deformación es esencialmente constante e igual a la velocidad aplicada.

La investigación de métodos de prueba "rápidos" incluyó varias pruebas realizadas bajo velocidades controladas de deformación. Una ventaja de la prueba de velocidad de deformación constante radica en el hecho de que se requiere poco tiempo para alcanzar la carga de preconsolidación, y se puede seleccionar la velocidad de deformación durante la compresión de la rama normalmente consolidada. Hamilton y Crawford realizaron a cabo pruebas con velocidades que varían de 0.072 pulgadas por hora a 0.0024 pulgadas por hora. La figura 1.1 muestra el esfuerzo entre el cambio en la relación de vacíos para tres pruebas ejecutadas a varias velocidades, comparadas con una prueba de incrementos (Curva A). La prueba realizada con la velocidad de deformación más alta proporcionó el esfuerzo de preconsolidación más alto, y se cree que existió una excesiva presión de poro en esta muestra al ensayar. A pesar de las grandes diferencias en las velocidades, las dos curvas para las velocidades más bajas de deformación dan valores comparables para el esfuerzo de preconsolidación da valores comparables para el esfuerzo de preconsolidación de 2.7 kg/cm². La ligera diferencia en sus formas podría ser causada por diferencias en el contenido inicial de agua y en el tamaño del grano.

Hamilton y Crawford (1959) indicaron que en la prueba CSR se muestra muy prometedora como un medio rápido para determinar tanto el esfuerzo de preconsolidación como, la relación de vacíos – esfuerzo efectivo. Cuando se compararon las pruebas convencionales con las pruebas CSR, las pruebas de CSR muestran una menor compresibilidad, pero las formas generales de las curvas son similares. Aunque los autores saben que algunas presiones excesivas de poro se desarrollaron en las pruebas de CSR, no las miden. Los resultados de tales presiones habrían sido causar una disminución aparente de la compresibilidad. El rango de velocidades de deformación en las pruebas aplicadas por Hamilton y Crawford varían de 0.15% por minuto a 0.005% por minuto, pero incluso estas grandes diferencias no afectaron en gran medida los datos. Los datos para las velocidades de deformación más lentas mostraron una tendencia a una uniformidad más estrecha con la prueba estándar. La observación de las muestras de prueba después de que se secaron indicó que la fricción lateral aparentemente causó variaciones de esfuerzos más serias a través de las muestras en la prueba

estándar que en la prueba de CSR.

Crawford (1964) informó más datos de la prueba CSR, donde en lugar de justificar la prueba como un procedimiento rápido, presentó el efecto de la velocidad de deformación como un factor que se había ignorado durante demasiado tiempo en el análisis de asentamiento. Como resultado de la muestra de prueba utilizada en el laboratorio, Crawford señaló que las velocidades de consolidación en el laboratorio son con frecuencia varios millones de veces mayores que las velocidades experimentadas en el campo. Los datos de la prueba CSR se parecieron bastante a los de las pruebas estándar que conducen con diferentes duraciones de carga. Durante esta serie de pruebas, el exceso de presión de poro en la prueba de CSR fue aproximadamente del 5% de la presión aplicada. Crawford concluyó que en la prueba de CSR la consolidación se debió principalmente a un efecto plástico en lugar de hidrodinámico.

Schmertmann (1955) reconoció que las velocidades de compresión en el laboratorio son mucho mayores que las de campo. Sin embargo, indicó una preferencia por una velocidad controlada de prueba de carga en la que se pueden determinar los valores de C_v y k, así como el esfuerzo de preconsolidación y la relación de vacíos - esfuerzo efectivo. Aunque estuvo de acuerdo en que las dos últimas cantidades se podían determinar con precisión a partir de la prueba de CSR. Para Schmertmann, el mayor activo de este método de prueba fue el corto tiempo requerido para obtener la información deseada.

Crawford (1965) reporto en otras investigaciones, donde la velocidad de deformación varia de 0.133% a 0.0027% por minuto, y el máximo exceso en la presión de poro medida en la base de la muestra fue igual al 15% de la presión aplicada. En esta investigación las presiones de poro se midieron en la base de la muestra durante la duración de la prueba y se calculó el esfuerzo efectivo promedio en la muestra restando 1/2 de la presión de poro en exceso en la base del esfuerzo vertical total. Para la comparación, se llevaron a cabo pruebas de consolidación incremental estándar. A partir de estas pruebas, Crawford llegó a la conclusión de que la estructura del suelo tenía una importante resistencia a la compresión dependiente del tiempo. Los datos de prueba mostraron que cuanto mayor es la velocidad de deformación, menor es la compresibilidad o mayor es la resistencia plástica. También sugirió que la relación de vacíos final para una carga particular depende principalmente de la velocidad de compresión promedio y no del método por el cual se aplica la carga. Esto fue indicado por la marcada similitud de resultados entre las pruebas incrementales y la prueba CSR

En general, según con el trabajo realizado por Crawford del estudio realizado en muestras remoldeadas e informado por Whals y DeGodoy (1965). Las velocidades de deformación en esta serie de pruebas variaron de 0.23% por minuto a 0.053% por minuto y, como fue el caso en los estudios de Crawford, las presiones de poro se midieron en la base de la muestra. En comparación con las presiones máximas de poro de Crawford que eran un 15% de la presión aplicada, Whals y DeGodoy informaron valores del 25% para la prueba más lenta y del 75% para la prueba más rápida. Estos valores máximos resultantes resultaron de aumentos del tipo exponencial con el aumento de la deformación, y fueron mucho mayores que los valores registrados para la mayor parte de la duración de la prueba. Como fue el caso en el trabajo de Crawford, hubo un aumento en la compresibilidad con velocidades de deformación decrecientes. Cuando los resultados de CSR se compararon con los resultados de las pruebas estándar, Whals y DeGodoy observaron que, para el rango de velocidades de deformación utilizadas, todas las pruebas de CSR mostraron más compresibilidad que la prueba

estándar. Esto está en contraste con el trabajo de Crawford, donde se concluyó, lo opuesto. Las posibles explicaciones para esta diferencia se sugirieron en relación con la duración del incremento para las pruebas estándar y el tipo de suelo.

Smith y Whals (1969) mencionan que el utilizar procedimientos de prueba convencionales, la determinación de las características de consolidación de suelos cohesivos requiere un tiempo considerable. La prueba de velocidad de deformación constante (prueba CSR) se ha propuesto como un método para reducir el tiempo de una prueba de consolidación. En esta prueba, la muestra de suelo se carga de forma continua, en lugar de incrementos de carga, a cualquier velocidad que se requiera para producir una velocidad de deformación constante deseada. Anteriormente, la prueba CSR se ha utilizado para estimar la magnitud de la consolidación, pero se ha utilizado para determinar la velocidad de consolidación. Smith y Whals (1969) propusieron un modelo teórico para la interpretación de la prueba CSR lo cual permite la determinación tanto de la velocidad como de la magnitud de la consolidación en un período de tiempo mucho más corto del que se había reguerido anteriormente utilizando procedimientos convencionales. Ellos realizaron estudios experimentales y teóricos de consolidación bajo velocidades de deformación constantes. Los datos experimentales obtenidos los analizaron sobre la base de la teoría simple en un esfuerzo por obtener las características de consolidación deseadas, es decir, la relación de vacíos con el esfuerzo efectivo y la relación de vacíos en relación con el coeficiente de consolidación. Los datos de esas pruebas CSR obtenidos comparados con relaciones similares obtenidas a partir de pruebas de consolidación convencionales.

Inherente a los trabajos de Crawford (1965), Whals y DeGodoy (1965) relacionan la presión promedio de poro-agua con la presión del agua medida en la base de la muestra. Esta suposición es necesaria para determinar la relación de vacíos contra la relación de esfuerzos efectivos, dichas elecciones en ambas investigaciones fueron defendidas adecuadamente. En contraste con este enfoque, el modelo matemático desarrollado está basada en ciertas suposiciones iniciales, y la relación entre la presión de poro de agua promedio y la presión de poro de agua en la base es derivada, como parte de la teoría, a partir de estas suposiciones. Este enfoque además permite la evaluación de igual importancia del coeficiente de consolidación, C_v , versus la relación de vacíos. Tal relación de C_v no ha sido desarrollada previamente, la velocidad constante de deformación ha sido algo limitada en su utilización.

La formulación del modelo matemático para la prueba de CSR es similar a la de Terzaghi (1943) de su teoría unidimensional. El modelo básico se obtiene introduciendo algunas suposiciones de esta teoría. Las suposiciones usadas en esta teoría son:

- 1. El suelo es homogéneo y saturado.
- 2. El agua y los sólidos son incompresibles en relación con el esqueleto del suelo.
- 3. La ley de Darcy es válida para el flujo a través del suelo.
- 4. El suelo esta lateralmente confinado y el drenaje ocurre solo en la parte vertical.
- 5. Los esfuerzos totales y efectivos son uniformes a lo largo del plano horizontal, los esfuerzos diferenciales ocurren solo en planos diferentes a los horizontales.

De la teoría de la consolidación unidimensional con respecto al tiempo debido a un incremento de esfuerzos, Terzaghi propone la siguiente ecuación:

$$\frac{\partial u}{\partial t} = c_v \frac{\partial^2 u}{\partial z^2}$$

Dónde: u - exceso de presión de poro. t - tiempo. z - profundidad. $C_v - coeficiente de consolidación.$

Las pruebas de consolidómetro convencionales están basados en el trabajo de Terzaghi que ha sido utilizado por la ingeniería práctica por más de 90 años sin sufrir modificaciones. Algunos laboratorios usan procesos estandarizados para desarrollar la prueba y la interpretación de datos obtenidos de esta. Usualmente la prueba se hace por incrementos de carga donde cada incremento se deja aplicado por 24 horas para obtener curvas características de tiempo-deformación de donde se obtiene el coeficiente de consolidación C_v .

En 1969 dos nuevos métodos de pruebas de consolidación se desarrollaron: la prueba de gradiente controlado (Lowe, et al., 1969) y el de velocidad constante esfuerzos (Smith and Whals, 1969). Aboshi, et al. (1970) reportaron el uso de una velocidad constante de carga. El MIT desarrollo un consolidómetro con el propósito de superar muchas de las limitaciones de las pruebas convencionales

e incorporar algunos controles de las pruebas modernos que se describe a continuación. Los especímenes pueden ser saturados con un volumen constante bajo una contrapresión y carga, sin esfuerzos laterales, por incrementos de carga o a una velocidad constante de esfuerzos.

Un nuevo análisis de las condiciones de velocidad constante de carga (CSRC) fue desarrollado, la solución incluye la porción inicial transitorio de la prueba y las condiciones de estado transitorias. Esto es aplicable a cualquier permeabilidad, k, y coeficiente de compresibilidad, m_v, siempre y cuando existan mínimos incrementos de deformaciones y coeficiente de consolidación constante, c_v. Un dibujo esquemático del consolidómetro de uso general del MIT es mostrado en la figura 12.

Figura 1.2. Consolidómetro de uso general, MIT (1961).

La carga requerida para mantener la velocidad de deformación constante del pistón se controla con la celda de carga, y el exceso de la presión de poro en la base de la probeta impermeable se mide con el transductor de presión de poro. Para verificar que la velocidad del pistón de celda sea constante, el movimiento del pistón se monitorea en función del tiempo.

La carga de la muestra se puede alternar entre estos tres modos. Por ejemplo, una prueba de velocidad de deformación constante puede ser detenida en cualquier tiempo suficiente que permita que el exceso de presión de poro se disipe manteniendo una carga constante. Se podrá observar una compresión secundaria bajo este esfuerzo constante y después reanudar la prueba CSRC.

Para la interpretación de resultados de la prueba de consolidación con velocidad de deformación constante, es necesario hacer ciertas suposiciones para obtener soluciones teóricas aplicables al problema de consolidación. Las condiciones de frontera en esta prueba son diferentes de una prueba de odómetro convencional por lo que hacen que las soluciones disponibles de una prueba de odómetro no sean apropiadas para la prueba CSRC.

Una de las peculiaridades de cargar una muestra a una velocidad de deformación constante es que, a medida que el pistón se pone en movimiento, se desarrolla una condición transitoria de presión de poro en el suelo que debe disiparse antes de que se establezcan las condiciones de régimen permanente.

Smith and Whals (1969) analizaron sus datos a partir de una prueba de consolidación de deformación a velocidad constante usando una solución que se aplica después de que la condición transitoria se haya disipado. Considerando que la permeabilidad del suelo es contante con la profundidad de la muestra y que a relación de vacíos del suelo varia linealmente con la profundidad. La versión de su solución además supone que el cambio en la relación de vacíos con el tiempo es tan pequeño que existen diferencias infinitesimales. Observaron un comportamiento donde en pruebas CSR a baja velocidad de deformación muestran una menor compresibilidad que las pruebas CSR a velocidades de deformación más altas, lo cual se deben a fenómenos de estructuración

Lowe et al. (1969), analizaron la prueba en relación con el gradiente hidráulico constante, suponen que la permeabilidad es independiente de la profundidad en cualquier momento y que solo existen diferencias infinitesimales. Esta solución no considera condiciones transitorias y supone implícitamente que la estructura del suelo es linealmente elástica en cualquier momento.

Diversos autores han tratado de encontrar una solución teórica que incluya el comportamiento transitorio, que describa el comportamiento del suelo de la manera más general posible sin excesivas dificultades matemáticas, y cuyas suposiciones podrán verificarse a partir de los resultados de la prueba de consolidación misma. Por lo tanto, se supuso que existen deformaciones infinitesimales y que el coeficiente de consolidación, c_v, es independiente de la profundidad en cualquier momento. Esto es que el c_v, es insensible a pequeños cambios de esfuerzos, pero no necesariamente grandes. Estas suposiciones se han justificado previamente y se han utilizado para situaciones convencionales de consolidación dimensional en carga constante. Gibson, et al. (1967) han demostrado que una extensión de la teoría de la consolidación requiere grandes esfuerzos, además de las dificultades matemáticas, una redefinición de c_v, que todavía debe ser casi constante para que se obtengan soluciones. Los efectos inerciales se ignoraron por cualquier condición transitoria dinámica inicial donde se disipa claramente antes de que los efectos de consolidación se puedan medir. Se realizan suposiciones habituales de deformación, flujo en una dirección, fluido incompresible, sólidos del suelo y saturación completa del suelo.

Crooks y Graham (1976) mostraron que los efectos del tiempo son importantes en el comportamiento de esfuerzo-deformación de arcillas menos sensitivas, arcillas plásticas.

Bell (1977), en pruebas de velocidad controlada en arcillas de Belfast incorporo cambios escalonados (figura 1.3).

Figura 1.3. Cambios escalonados en la velocidad de deformación controlada en pruebas de eodómetro (Bell, 1977).

Graham (1983), demostró que cuando se cambia la velocidad de deformación durante una prueba, la curva de compresión salta de una velocidad constante de curva de deformación a otra. En arcillas ligeramente normalmente consolidadas muestran características significativas de esfuerzo – deformación dependientes del tiempo, esto independientemente del tipo de suelo, su resistencia al corte y sus esfuerzos de preconsolidación sin drenar cambian en aproximadamente en 10 - 20% para un cambio de diez veces en la velocidad de deformación. Arcillas consolidadas exhiben una dependencia significativa tiempo – esfuerzo – deformación. Pruebas de eodómetro mostraron que los efectos de la velocidad de deformación disminuyen al aumentar el esfuerzo más allá de su esfuerzo de preconsolidación (figura 1.4).

Figura 1.4. Pruebas de eodómetro con diferentes duraciones de incremento de cargas (Graham, 1983).

Leroueil (1985), demostró en ensayos realizados en las arcillas de Canadá y Sweden, que, durante la compresión unidimensional, el comportamiento se controla mediante una relación de índice de esfuerzo efectivo-deformación única. A una determinada relación de deformación, se pueden normalizar las curvas verticales esfuerzo efectivo-deformación obtenidas a diferentes velocidades de deformación con respecto al esfuerzo de preconsolidación medida a la velocidad de deformación correspondiente. Es decir, la relación de los esfuerzos efectivos medidos a dos velocidades de deformación diferentes es constante, cualquiera que sea el esfuerzo. Esta relación representa bastante bien el comportamiento de las arcillas naturales en el rango normalmente consolidado cuando el esfuerzo aumenta (figura 1.5).

Figura 1.5. Curvas típicas de ensayes a diferentes velocidades de deformación constante (Leroueil, 1985).

La velocidad de deformación al final de los periodos de carga en las pruebas de los edómetros convencionales a carga incremental a cada 24 horas es cercana a 10^{-7} s⁻¹ (Leroueil, 1988). Las pruebas de CSR realizadas a velocidades de deformación diferentes de 10^{-7} s⁻¹ proporcionan curvas de compresión que son diferentes de las obtenidas en las pruebas convencionales cargadas cada 24 horas. Leroueil (1996) muestra para arcillas naturales de diferentes países (Canadá, Finlandia, Italia, Japón, Suecia, Reino Unido), que la relación entre los esfuerzos de preconsolidación medidas en las pruebas de CSR realizadas a una velocidad de deformación de 1 a $4x10^{-6}$ s⁻¹ y en pruebas convencionales cargadas cada 24 horas es típicamente 1.25.

En prueba CSR rápidas, la velocidad de deformación es tan alta que la estructuración, el fortalecimiento de los contactos entre partículas o agregados debido a la tixotropía o la cementación, no tiene tiempo de desarrollarse; en pruebas convencionales de carga incremental a 24 horas, la estructura que podría haberse desarrollado durante las últimas horas de la etapa de carga anterior se destruye por la siguiente de una manera similar a la observada por Perret (1995). En pruebas CSR

lentas, permiten que la estructura se desarrolle en la arcilla joven, de tal manera que la deformación acumulada bajo un esfuerzo efectivo dado se vuelve más compleja que en pruebas rápidas.

Hay una estructuración progresiva con el tiempo cuando la arcilla se carga continuamente a una velocidad de deformación baja. Sin embargo, las pruebas de CSR con cambios en la velocidad de deformación brindan una oportunidad adicional para examinar en detalle el aspecto viscoso del comportamiento de un suelo. La estructuración no está simplemente relacionada con la velocidad de deformación, sino más bien con el efecto combinado del tiempo y la velocidad de deformación.

La manifestación de los procesos de estructuración es difícil, pero no imposible de predecir. Sin embargo, la posibilidad de tener una estructura en suelos arcillosos existe, y esto puede tener importantes implicaciones prácticas, por lo que debe considerarse.

La caracterización del subsuelo de la Ciudad de México (Marsal et al., 1956; Zeevaert, 1972; Díaz et al., 1998) ha permitido conocer la singularidad del suelo que se tiene y, a su vez, el contraste significativo que existe con respecto a los resultados de otros suelos estudiados en la literatura. En este sentido, el tema de la consolidación y que usualmente se estudia en ensayes de carga incremental, recientemente se ha investigado bajo el enfoque de deformación constante (Mendoza et al., 1996; López, 2002; Montes, 2006; Pinzón, 2007; Romero, 2017).

El ensaye a velocidad de deformación controlada (CSR) se introdujo en México por medio de un prototipo elaborado en el laboratorio del CENAPRED como método alternativo en el estudio de la consolidación de arcillas, donde el trabajo experimental permitió comparar las propiedades de compresibilidad obtenidas en un ensaye de CI y CSR para un mismo sondeo (Mendoza et al., 1996). Los trabajos comentados anteriormente se estandarizaron por la norma ASTM D-4186 la cual se basa en las siguientes suposiciones:

- 1. La relación entre la permeabilidad del suelo y la compresibilidad del suelo es constante.
- 2. El flujo del agua de poro del suelo ocurre solo en la dirección vertical.
- 3. Se aplica la ley de Darcy para flujo a través de medios porosos.
- 4. El suelo se encuentra saturado.
- 5. El suelo es homogéneo.
- 6. Se desprecia la compresibilidad de los granos de suelo y el agua.
- 7. La relación esfuerzo logaritmo contra deformación es lineal durante un intervalo de carga de corta duración.
- 8. La distribución del exceso en la presión de poro a través de la probeta es parabólica.

De lo anterior se puede escribir la ecuación básica de la consolidación como:

$$c_v \frac{\partial^2 \epsilon}{\partial z^2} = \frac{\partial \epsilon}{\partial t}$$

Donde:

 ϵ – deformación vertical.

t – tiempo.

C_v – coeficiente de consolidación;

$$c_v = \frac{k}{\gamma_w m_v}$$

k = coeficiente de permeabilidad.

 γ_w = peso volumétrico del agua.

m_v = coeficiente de compresibilidad volumétrica;

$$m_{v} = \frac{\Delta \epsilon}{\Delta \sigma_{v}}$$

La solución para la ecuación anterior para la deformación a cualquier punto es la siguiente:

$$\in (X, T_{v}) = r \mathsf{H}t \left[1 + F \left(X, T_{v}\right)\right]$$

En donde:

r = velocidad constante de deformación.

t = tiempo.

H = Altura de la muestra.

 T_v = factor tiempo.

rHt = Desplazamiento de la muestra deformada verticalmente.

Las distancias y desplazamientos son médicos verticalmente hacia abajo desde la superficie de drenaje, usando los siguientes parámetros:

$$X = \frac{z}{H}; T_{\nu} = \frac{c_{\nu}t}{H^2}$$

Analizando el lado derecho de la ecuación, hay dos partes. La primera representa la deformación promedio, la cual describe lo que sería el caso si las deformaciones fueran iguales en la muestra. La segunda parte consiste a su vez en dos partes, la primera representa la desviación de la deformación promedio que debe de haber en la condición estable. Si no es una condición transitoria esta es independiente del tiempo. Esta desviación debe existir para proveer el gradiente necesario para un flujo constante. La segunda parte es la parte transitoria de la solución y describe el decremento de la discontinuidad inicial configurada cuando se inicia la prueba.

1.3.1.Para la condición de estado establecido.

Una vez que se haya disipado el estado transitorio, resulta la siguiente ecuación:

$$\in (z,t) = rt + \frac{rH^2}{c_v} \left\{ \frac{1}{6} \left[3\left(\frac{z^2}{H} - 6\frac{z}{H} + 2\right) \right] \right\}$$

A cualquier tiempo, t, la diferencia entre la deformación superior e inferior, está dada por la siguiente expresión, $\Delta \in = \frac{1}{2} \frac{rH^2}{c_v}$. A cualquier punto, z, la diferencia entre la deformación entre dos tiempos t₁ y t₂ es $r(t_2 - t_1)$.

En la parte superior de la probeta el esfuerzo total aplicado, σ_v , es igual al esfuerzo efectivo σ'_v , ya que el exceso de la presión de poro, u₀, es cero. En la parte inferior el exceso de la presión de poro, u_h, es medido, entonces el esfuerzo efectivo vertical en la parte inferior será $\sigma'_v = \sigma_v - u_h$. La diferencia entre los esfuerzos en la parte superior e inferior es:

$$\Delta \sigma'_v = u_h$$

Ahora asumiendo que la relación esfuerzo efectivo – deformación es definida por un coeficiente de compresibilidad de volumen constante, m_v, el suelo se asume con un comportamiento lineal, entonces:

$$\Delta \sigma'_{\nu} = \frac{\Delta \in}{m_{\nu}}$$

De las diferencias en los esfuerzos y deformaciones entre la parte superior e inferior:

$$k = \frac{1}{2} \frac{rH^2 \gamma_w}{u_h}$$

Esto debido a que la velocidad de cambio de deformación a cualquier punto es constante, la velocidad de cambio de $\sigma'_v y$ la distribución de la presión de poro deberá ser constante, por lo que la ecuación en términos de cambio de esfuerzos totales queda:

$$m_{v} = \frac{\Delta \epsilon}{\Delta \sigma_{v}} = r \left(\frac{\Delta t}{\Delta \sigma_{v}} \right)$$

En donde $\Delta \sigma'_{v}$ es el cambio en el esfuerzo total sobre un incremento de tiempo, Δt . Por lo tanto, queda:

$$c_v = \frac{H^2}{2u_h} \left(\frac{\Delta \sigma_v}{\Delta t} \right)$$

La validez de la suposición lineal de esfuerzo-deformación puede probarse utilizando los valores de $\Delta \sigma_v$ en la parte superior e inferior y trazándolos contra las deformaciones correspondientes:

$$\in (0,t) = rt + \frac{rH^2}{3C_v} y \in (H,t) = rt - \frac{rH^2}{6C_v}$$

Una suposición razonable para una relación de vacíos en un suelo con comportamiento no lineal es:

$$-\frac{de}{d(\log\sigma_v)} = C_\epsilon$$

En donde C_c es conocido como el índice de compresión. Para pequeñas deformaciones la expresión anterior es equivalente a:

$$-\frac{de}{d(\log \sigma_v)} = C_{\epsilon} = \frac{C_c}{1+e}$$

Donde el término C_{\in} es conocido como índice de deformación.

Conocidos los esfuerzos totales, esfuerzos efectivos y la presión de poro en la parte superior e inferior de la probeta. La ecuación se puede aproximar a:

$$\frac{\in (0,t) - \in (H,t)}{\log(\sigma_v) - \log(\sigma_v - u_h)} = C_{\in}$$

Ó

$$-\frac{rH^2}{2c_v log\left(\frac{\sigma_v - u_h}{\sigma_v}\right)}$$

Comparando las condiciones para los dos tiempos en la parte superior de la superficie, se tiene que:

$$\frac{r\Delta t}{\log\left(\frac{\sigma_{v2}}{\sigma_1}\right)} = C_{\in}$$

En donde σ_{v1} y σ_{v2} son los esfuerzos totales a los tiempos t₁ y t₂, respectivamente, $\Delta t = t_2 - t_1$. Combinado las dos ecuaciones anteriores, tenemos:

$$c_{v} = -\frac{H^{2}\log\left(\frac{\sigma_{v2}}{\sigma_{v1}}\right)}{2\Delta t \log\left(1 - \frac{u_{h}}{\sigma_{v}}\right)}$$

El termino C_{ε} , puede ser fácil calculado por la siguiente expresión:

$$m_{v} = \frac{0.434C_{\in}}{\sigma'_{v}}$$

у

$$k = c_{v}m_{v}\gamma_{w}$$

En el caso lineal y no lineal la deformación es parabólicamente distribuida sobre la profundidad de la probeta, por lo que la deformación promedio es:

$$\epsilon_{promedio} = \frac{1}{3} [2 \in (H, t) + \epsilon (0, t] = rt$$

Si el suelo es lineal, el esfuerzo efectivo correspondiente para esta deformación será:

$$\sigma'_{promedio} = \frac{1}{3} [2\sigma'_{v}(H,t) + \sigma'_{v}(0,t)]$$
$$\sigma'_{promedio} = \sigma_{v} - \frac{2}{3}u_{h}$$

Si el suelo es no lineal el esfuerzo efectivo correspondiente será:

$$\sigma'_{promedio} = \left(\sigma_v^3 - 2\sigma_v^2 u_h + \sigma_v u_h^2\right)^{1/3}$$

1.3.2. Para la condición de estado transitorio.

Las condiciones transitorias para cualquiera de las relaciones de esfuerzo – deformación se pueden interpretarse por la siguiente ecuación, para cualquier momento, t.

$$\frac{\in (H,t)}{\in (0,t)} = \frac{1 + F(1,T_v)}{1 + F(0,T_v)} = F_3(T_v)$$

El termino F₃ depende únicamente de Tv. Para un material lineal, la deformación será proporcional al cambio en el esfuerzo efectivo desde un tiempo 0 al t:

$$F_3 = \frac{(\sigma_v - \sigma_v \text{ para } t = 0) - u_h}{(\sigma_v - \sigma_v \text{ para } t = 0)}$$

Para un material no lineal, la deformación será proporcional al cambio logarítmico del esfuerzo efectivo y a un tiempo t:

$$F_3 = \frac{\log(\sigma_v - u_h) - \log(\sigma_v \text{ para } t = 0)}{\log(\sigma_v) - \log(\sigma_v \text{ para } t = 0)}$$

1.4. Suelos arcillosos.

El suelo es un material que se desarrolla en respuesta a interacciones ambientales complejas entre diferentes partes del sistema Tierra. El suelo es una combinación de material mineral y orgánico, agua y aire. La materia mineral está compuesta de roca desintegrada y descompuesta, así como de humus (materia orgánica producida por la descomposición de plantas y animales). El ciclo de transformación de los minerales de la corteza terrestre se puede resumir en el diagrama siguiente (figura 1.6).

Figura 1.6. Ciclo de formación de suelos. (Díaz-Rodríguez, 2014)

El origen de las partículas de suelo se debe básicamente al intemperismo físico y químico de las rocas. El intemperismo físico se manifiesta con la dilatación y contracción diferencial, que se originan por el calentamiento y enfriamiento de masas de roca que contienen minerales de diferentes propiedades térmicas, otra manera es el efecto abrasivo del aire y del agua. Los agentes del intemperismo químico son la oxidación, la hidratación y la solución provocando la alteración de los minerales originales (Peck, 2001). Así, el conjunto de partículas producto de la alteración de las rocas constituyen los suelos. De acuerdo al lugar de deposición de dichas partículas se puede distinguir entre los suelos residuales y los suelos transportados. Los suelos formados in situ, comúnmente son llamados suelos residuales, como es el caso de caídos, piemonte, etc. Los suelos transportados, como su nombre lo indica, son aquellos formados a partir de la transportación de partículas producto de la erosión de las rocas; el agente de transporte natural puede ser el aire, el agua y/o el hielo, sin embargo, también puede deberse a la actividad volcánica de cada región y a la gravedad, debido a esto los suelos también son clasificados de acuerdo con el modo de transporte y de depositación. Los suelos formados por el aire se les llama eólicos, algunos ejemplos son: el loes, dunas, etc. Los suelos fluviales, aluviales, lacustres, estuarios y marinos son formados por el agua. Si el agente de transporte es el hielo, éste da origen a los suelos glaciares como las morrenas y el till.

Figura 1.7. Formas de deposición -el agua como agente de transporte- (Barnes, 2000).

Los suelos naturales son mezclas de partículas de arcilla y del suelo granular, por lo tanto, el comportamiento ingenieril de un material particulado, consiste en partículas de varios componentes diferentes (incluidos poros o vacíos), no se da simplemente por la suma de reacciones de los individuos solos. Mucho más importante para todo el sistema son las interacciones mutuas y la interferencia entre estos individuos (partículas o granos), que se verán influenciados por su disposición espacial (es decir, estructura). Varios investigadores han estudiado la estructura del suelo y su estrecha relación con el comportamiento del suelo desde hace muchos años. El nivel de la participación de diferentes tipos y tamaños de partículas dentro de la matriz del suelo en la transferencia de esfuerzos de contacto entre partículas dicta el comportamiento de esfuerzo- deformación.

El diagrama anterior (figura 1.7) muestra como los suelos arcillosos se encuentran en la zona de baja energía con excepción de la zona costera, esto debido a precipitaciones de gran intensidad en las zonas tributarias de los ríos, donde la creciente del cauce ocasiona que el agua arrastre diversos tamaños de partículas, siendo depositadas en las zonas cercanas a línea costera (deltas). De la misma manera ocurre cuando el cauce desemboca en un lago o laguna formando los abanicos aluviales.

La naturaleza de cada partícula que compone al suelo se deriva de los minerales que la constituyen, de su tamaño y de su forma. Todo depende del tipo de roca intemperizada que da origen a la partícula, al grado de abrasión, intemperismo químico y/o físico al que fue sometida, al agente de transporte. La mineralogía de un suelo es determinada por la mineralogía de la roca madre u original y el grado de intemperismo (Peck, 2001). Las partículas pueden clasificarse como:

- Granurales duros: silicatos en tamaños de partículas de limos hasta boleos.
- Granulares blandos: corales, conchas, ceniza volcánica y fragmento de esqueletos.
- Minerales de arcilla: caolinita, ilita y montmorilonita.
- Residuos vegetales: turba.

Los suelos están constituidos por partículas de diferente tamaño (e.g. fracciones: arcilla, limos, arenas, gravas, etc.), y cada fracción de tamaño contribuye con diferentes propiedades. En general se le presta mucha atención a la fracción gruesa, pero mucho de los problemas de la ingeniería práctica se relacionan con la fracción fina de los suelos.

El término "arcilla" tiene diferentes significados. Para evitar falta de claridad en el uso del término, se debe hacer la distinción entre "tamaño arcilla" (partículas menores de 0.002mm) y "minerales de arcilla" (material resultado del intemperismo químico de las rocas con propiedades de alta plasticidad).

Los minerales de arcilla son sillico-aluminatos hidratados con una forma cristalina y una estructura molecular relativamente complejas. Las investigaciones han demostrado que estos minerales están constituidos por dos tipos de láminas:

Lamina silícica (figura 1.8), la unidad básica silícica (SiO4⁴⁻) con una carga menos 4 está formada por un átomo de silicio, rodeado de cuatro oxígenos. El conjunto está organizado en forma de tetraedro. La distancia O-O es de 2.55 Å, lo cual deja un espacio interior de 0.55 Å, en el que un átomo de silicio de 0.5 Å de radio cabe sin causar distorsión. Los tetraedros se agrupan en unidades hexagonales con un átomo de oxígeno de enlace entre cada tetraedro, lo cual origina la formación de una lámina silíca con un espesor de 4.93 Å.

b) Lámina silícica.

 Lamina alumínica (figura 1.9), la unidad básica alumínica [Al₂(OH)₆] formada por un átomo de aluminio y seis de oxígeno o hidróxidos. Alrededor de él se dispone el conjunto en forma de octaedro. Al agruparse los octaedros con un átomo de oxígeno como nexo entre ellos, se forma una lámina alumínica con espesor de 5.05 Å.

a) Unidad básica alumínica (octaedro).

b) Lámina alumínica.

Figura 1.9. Unidad y lámina alumínica. (Díaz-Rodríguez, 2014).

De las distintas combinaciones de estas dos capas y de los diferentes cationes y aniones que las forman, resulta la gran variedad de los minerales arcillosos. Los minerales de arcilla se clasifican en tres grupos principales:

• Caolinitas (kaolinites). Están formados por una unidad silícica y una unidad alumínica (figura 1.10 a), con estructura 1:1. Estas unidades se repiten indefinidamente hasta formar una red o malla. Su composición química general se expresa mediante la fórmula:

$(OH)_8AI_4Si_4O_{10}$

La caolinita es un mineral abundante en los suelos, estable y resistente a la penetración del agua, y no está sujeta a expansión cuando se satura con agua. Un cristal típico de caolinita puede tener entre 70 y 100 capas de espesor. La haloisita (halloysite) es un mineral de la familia de las caolinitas.

 Montmorillonitas, están constituidas por una unidad alumínica y dos de silícicas (figura 1.10 b), estructura 2:1, lo cual forma una lámina de montmorillonita. Su composición química se expresa mediante la fórmula:

La liga entre dos láminas es débil y da como resultado un material poco estable, de manera especial en presencia del agua, lo cual induce expansión. La bentonita pertenece a la familia de las montmorillonitas, y usualmente se forma a partir de la intemperización de las cenizas volcánicas.

 Ilitas, están compuestas de manera similar que las montmorillonitas (figura 1.10 c) en lo referente a las unidades básicas, con estructura 2:1, pero son diferentes en su composición química:

$$(OH)_4K_y(AI_4Fe_4Mg_4Si_{8-y})O_{20}$$

La estructura básica de la ilita consiste de una lámina octaédrica (gibsita) entre dos láminas silícicas.

Figura 1.10. Estructura de minerales de arcilla de (a) caolinita; (b) ilita; (c) montmorillonita. (Adaptada Braja Das, 2013)

1.5. Suelos diatomáceos y el suelo de la CDMX.

Hay varios sitios en el mundo (figura 1.11) donde se han detectado microfósiles (diatomeas) en depósitos de suelos naturales marinos y lacustres (ej., la ciudad de México; la Bahía de Osaka, Japón; California, EUA; los sedimentos marinos, entre otros), Shiwakoti et al., 2002; Díaz-Rodríguez, 2003; Díaz-Rodríguez, et al., 1998; Terzaghi, et al., 1996.

Figura 1.11. Registros extensos de sedimentos diatomáceos continentales (Bradbury, 1999).

Los lagos con registros de diatomeas más extensos a lo largo del mundo, son aquellos que presentaron el tectonismo para mantener la configuración y el espacio necesario para la acumulación de sedimentos, así como actividad volcánica importante.

En México debido a las características geológicas y geomorfológicas de la faja Volcánica Trans-Mexicana, se han encontrado varios depósitos lacustres con sedimentos diatomáceos, vinculados con la actividad volcánica de la región, los cuales se encuentran en los estados de Veracruz, Puebla, Tlaxcala, Hidalgo, Estado de México, CDMX, Jalisco, Michoacán, Colima y Nayarit.

Una gran cantidad de cuencas lacustres cerradas de origen tectónico o volcánico se encuentran sobre la Faja Volcánica Trans-Mexicana. La más importante de ellas es la cuenca de México, sobre la cual se construyó la Ciudad de México. Otros sistemas cerrados se encuentran en el estado de Michoacán (Cuitzeo, Pátzcuaro, Zirahuén y Zacapu) y en el estado de Jalisco (Cajititlán, Atotonilco y Juanacatlán) (Davies et al., 2002).

Estos depósitos naturales de suelos que contienen diatomeas (suelos diatomáceos) se caracterizan por tener propiedades físicas y mecánicas singulares, que no siguen las bien establecidas correlaciones geotécnicas entre propiedades índice y los parámetros de deformación y resistencia. Un suelo diatomáceo es un suelo que contiene un contenido de diatomeas (i.e. > 20%) significativamente alto para influir en su comportamiento ingenieril. La literatura especializada sobre el tema es muy escasa, por lo que constituye un magnífico campo de investigación para explicar las causas y mecanismos responsables de dicho comportamiento.

Figura 1.12. Localización de sitios de muestreo para análisis de sedimentos diatomáceos en la faja volcánica Trans-Mexicana (Davis, 2002 y Telford, 2004).

Los antiguos ambientes lacustres constituyen una fuente importante de estudio, ya que mantienen información en los sedimentos de la cuenca, donde se formaron, y del medio ambiente. Condiciones que, en algún momento, prevalecieron en su entorno. Algunos de los indicadores biológicos más importantes en depósitos lacustres, son las de diatomeas.

En general, podría suponerse que la proliferación de diatomeas podría correlacionarse con las localidades con actividades volcánicas y cuerpos ricos en sílice disuelta en agua. El suelo de la ciudad de México se formó de cenizas volcánicas que sedimentan en un ambiente lacustre biológicamente activo (Díaz-Rodríguez et al. 1998, Díaz-Rodríguez 2003).

Un alto porcentaje de la composición del suelo de los sedimentos lacustres de la Ciudad de México se compone en gran parte de esqueletos silíceos y fragmentos de diatomeas esqueléticos. La producción de diatomeas se rige directamente por la sílice liberado por la ceniza volcánica a medida que se sometió al intemperismo iniciaron una gran a floración en las aguas del lago pleistoceno del Valle de México (figura 1.12).

Los suelos diatomáceos son de gran interés en la ingeniería, estos han sido reportados en varios lugares alrededor del mundo. Estos microfósiles de diatomeas tienen gran influencia en las propiedades índice, compresibilidad y resistencia al esfuerzo cortante del suelo.

Propiedades índices.

Estudios anteriores indican que los límites de consistencia aumentan a medida que aumenta el contenido de diatomita (Tanaka y Locat 1999; Shiwakoti et al. 2002). La razón del incremento en el límite líquido w_L y el límite plástico w_P de una mezcla de suelo-diatomita se atribuye a la enorme capacidad de retención de agua de los esqueletos de diatomeas. Sin embargo, el índice de plasticidad disminuye ligeramente. Existe una alta correlación entre la densidad del suelo y el contenido de microfósiles de diatomeas. Es razonable aceptar que cualquier adición de microfósiles de diatomeas a un suelo común provoca una reducción de la gravedad específica Gs de la mezcla.

Características fisicoquímicas.

Locat et al. (1996) señalaron el papel potencial de los microfósiles (diatomeas en particular) en las propiedades fisicoquímicas de los sedimentos porque podrían impactar la microestructura y la distribución del agua en los sedimentos.

Microestructura

La microestructura del suelo es uno de los factores que rigen el comportamiento mecánico de las arcillas. La microestructura de los suelos implica los efectos combinados del tejido, la composición química, la constitución mineralógica y las fuerzas de interacción entre partículas. Se requiere una mayor comprensión de la microestructura del suelo y la contribución de las partículas del suelo de diferentes tamaños a su respuesta mecánica.

Una investigación microestructural de los sedimentos arcillosos de la Bahía de Osaka reveló la presencia de abundantes microfósiles, particularmente en las capas marinas, que parecen influir directamente en el marco microestructural de los sedimentos y, eventualmente, su comportamiento geotécnico (Tanaka y Locat 1999). Los microfósiles actúan como un componente estructural que proporciona una alta compresibilidad cuando la mayor parte del espacio de poros intergregados está cerrado. Además, pueden introducir algún sesgo en las mediciones de las propiedades fisicoquímicas.

Compresibilidad

Mesri et al. (1975) indican que la alta compresibilidad del suelo natural de la CDMX se debe en parte a la abundante presencia de diatomeas después de investigar la relación entre el comportamiento mecánico y la microestructura.

Shiwakoti et al. (2002) presentaron datos que también indican que la presencia de microfósiles de diatomeas provoca un aumento significativo en el coeficiente de permeabilidad y compresibilidad de un suelo, debido a sus grandes esqueletos huecos. Sus resultados también muestran que la compresibilidad de la arcilla de Singapur y del caolín aumenta considerablemente con la adición de diatomita, mientras que la adición de arena Toyoura al caolín muestra el efecto contrario. Verdugo (2008) ha demostrado que, en el rango de presión utilizado en las pruebas
estándar, las partículas de diatomeas no presentan una presión asociada con una trituración o rompimiento.

Los suelos de la CDMX se formaron en un ambiente lacustre biológicamente activo. El intemperismo químico tomó lugar en el sistema de vacíos de los sedimentos depositados y provocó la disolución de los granos de ceniza volcánica, y la reprecipitación de nuevos minerales. El resultado, los suelos de la CDMX son sedimentos heterogéneos, volcánicos, lacustres, con una proporción y variedad de microfósiles (ostrácodos y diatomeas) que adicionan compuestos solubles generados por la alteración de sus exoesqueletos y que forman parte de la microestructura del suelo (Díaz-Rodríguez et al., 1998). Esto influye de tal manera en su comportamiento, que los suelos de la ciudad de México no pueden considerarse dentro de una clasificación convencional. Según Mesri, Rokhsar y Bohor (1975), la fracción tamaño limo constituye el 65% del suelo de la CDMX y está constituida principalmente por diatomeas o fragmentos de éstas.

El subsuelo de la CDMX tiene propiedades únicas. El contenido de agua es mayor a 400%, el índice de plasticidad excede 300% y el índice de compresión Cc puede llegar a un valor de 10, cuando en la mayoría de los suelos es menor a 1. Lo anterior, ubica a los sedimentos lacustres de la Ciudad de México como altamente compresibles, lo que ha dado lugar a intrincados problemas de cimentación para la construcción de edificios elevados y de gran peso en la Ciudad de México.

Figura 1.13. Cuenca de México con su antiguo cuerpo de agua de 2000 km². Antiguos lagos de la Cuenca de México y sus ríos. (Díaz-Rodríguez et al., 1998)

La cuenca de México, donde está situada la CDMX, ocupa un área de 9,600 km2, es predominantemente una planicie lacustre, con una elevación promedio de 2,250 m sobre el nivel medio del mar. La cuenca de México se cerró debido a la actividad volcánica, hace aproximadamente 700,000 años, lo cual dio origen a seis lagos (Zumpango, Xaltocan, Texcoco, México, Xochimilco y Chalco). En periodos de gran precipitación pluvial se formaba un solo lago de aproximadamente 2,000 km² (figura 1.13). Los productos de la intemperización de rocas

andesíticas, desintegración de las rocas, materiales piroclásticos, suelos residuales, gravas y arenas fueron erosionados y transportados hacia el lago rellenándolo con estos materiales. Otros constituyentes son productos finos y ultrafinos de ceniza volcánica que fueron generados por las erupciones volcánicas, que enriquecieron con sílice disuelta las aguas del lago, lo cual produjo la proliferación de diatomeas (Díaz-Rodríguez, et al. 1998).

Estudios físicos, químicos y mineralógicos del suelo de la CDMX, concluyeron que por la naturaleza alcalina de las interpartículas el agua permite la disolución de las frústulas de diatomeas, la precipitación del material amorfo comienza cuando el agua alcanza el punto de sobresaturación de sílice, las capas de material amorfo de las partículas del suelo y su actividad química hace que el suelo se comporte como un mineral arcilloso, partículas del suelo recubiertos por material amorfo desarrolla enlaces entre ellos debido a la superficie activa de la arcilla, estos enlaces son responsables de las propiedades especiales de los sedimentos de la CDMX. (Díaz-Rodríguez et al., 1998)

Los suelos de la ciudad de México son singulares, en el contexto de muchos otros suelos naturales (Díaz-Rodríguez et al., 1992; Díaz-Rodríguez, 2003). Tienen una superficie específica (S_s = 40-350 m²/g), relación de vacíos (e = 3 – 9), límites de Atterberg (w_L = 140 – 380%; w_p = 5 – 112%), actividad (A = 1-8) y un ángulo de fricción (Φ = 43 – 47°). La velocidad de propagación de ondas de cortante es constante con la profundidad, en los primeros 40 m (Vs = 70 – 90 m/s). El esfuerzo de fluencia σ_y ' es mayor que el esfuerzo vertical efectivo in situ σ'_{vo} . La aparente preconsolidación se debe a la diagénesis (Díaz-Rodríguez y Santamarina, 2001). De ahí que las propiedades y el comportamiento de los suelos de la CDMX presenten retos de interpretación que contradicen el comportamiento clásico de los suelos.

En el suelo de la CDMX, se han reportado índices de compresión (Cc) de hasta 10 debido a la presencia de microfósiles de diatomeas (55 a 65% diatomeas tamaño limo). Fue observado por Mesri et al. (1975) del mismo modo, un muy alto índice de compresión de sedimentos marinos fosilíferos y en el suelo de Japón se ha encontrado por varios investigadores (Rack, Tanaka y Locat). Rack et al. (1993) encontró un índice de compresión de hasta 5 en algunos derrames de diatomeas de gran altura en alta mar. Tanaka y Locat (1999), reportaron valores del índice de compresión de 4.7 en la bahía de Osaka.

La alta compresibilidad de los sedimentos de diatomeas se ha observado en varios sitios en sedimentos en aguas profundas de Japón (Arthur et al., 1980; Shephard and Bryant 1980; Johns 1986; Hill y Marsters 1990) y el margen continental sedimentos en Perú (Hill y Marsters 1990). La alta compresibilidad de un suelo diatomáceo se ha explicado a través de la formación de un marco rígido por interacción partícula a partícula entre diatomeas y arcillas (Shephard y Bryant, 1980). Este marco de diatomeas y arcilla soporta menos esfuerzos, presenta baja compresibilidad bajo esfuerzo de consolidación relativamente bajo, pero cuando se carga rápidamente bajo mayores esfuerzos de consolidación, este marco estructural colapsa dando como resultado una mayor compresibilidad.

CAPÍTULO 2 PROPIEDADES ÍNDICE DE MEZCLAS DIATOMEAS-BENTONITA

2.1. Introducción.

Anteriormente se narró acerca de la prueba de compresibilidad de velocidad de deformación constante, el objetivo del presente trabajo es conocer el comportamiento e influencia que tienen las diatomeas en un suelo arcilloso (bentonita) para diferente composición, por tal razón se realizaron ensayes de compresibilidad de velocidad de deformación constante para mezclas fabricadas en el laboratorio de diatomeas – bentonita. La mayoría de los estudios se han realizado en mezclas artificiales de diatomita y caolinita.

Un suelo se compone de un sistema de partículas sólidas y otro sistema de huecos o vacíos. Las partículas sólidas están formadas por diferentes minerales y materia orgánica, mientras que el sistema de vacíos puede estar ocupado parcial o totalmente por aire, agua, materia orgánica, y otros gases o líquidos.

En este capítulo se describe, de manera resumida, el procedimiento para la realización de la obtención de las propiedades índice de cada mezcla, para mayores detalles sobre el procedimiento de cada prueba, se recomienda consultar las referencias mencionadas.

Todas las pruebas se realizaron en el Laboratorio de Dinámica de Suelos de la Facultad de Ingeniería de la Universidad Nacional Autónoma de México.

2.2. Descripción de los materiales que componen las mezclas de diatomita - bentonita.

La diatomita comercialmente se adquiere como "Tierra de diatomeas", "Tierra diatomácea", o simplemente "Diatomita". Tanto la diatomita como la bentonita se expenden pulverizadas y en bolsas selladas (figura 2.1 - 2.2).

Figura 2.1. Fichas técnicas de Bentonita y Tierra Diatomácea.

Figura 2.2. Bentonita y Tierra Diatomácea en polvo.

2.2.1.Diatomita.

Las diatomeas son algas microscópicas fotosintéticas que crecen en ambientes de agua dulce o salada, pero rica en sílice disuelta. Un factor decisivo para la presencia de sílice disuelta en un cuerpo de agua es la existencia de actividad volcánica en el área.

La frústula o esqueleto de las diatomeas está compuesta de sílice opalina o biogénica. Es simétrica en forma, con una gran proporción de vacíos, decoradas con un patrón único de características del tamaño de nanómetros (poros, canales, espinas). Tienen una superficie rugosa con protuberancias y muescas (Round et al., 1990).

La morfología de las diatomeas se ilustra en la figura 2.3 - 2.4. Las formas más usuales son cilíndricas, esféricas o de disco circular; con dimensiones comprendidas entre 1 a 500 µm, El tamaño de la mayor parte de las diatomeas fluctúa en un rango de 10 a 100 µm de largo.

Figura 2.3. Fotomicrografías de diatomeas (Díaz-Rodríguez et al., 1998)

La diatomita o tierra de diatomeas es una roca sedimentaria, porosa y de bajo peso volumétrico que se forma con la acumulación y compactación de las frústulas de diatomeas. La diatomita es inerte, con una composición de aproximadamente 90% de sílice y el resto son óxidos de hierro y aluminio. Tiene una gran capacidad de absorción y una extensa área superficial (Antonides, 1998).

El interés de la ingeniería en las diatomeas radica en que son ejemplos sobresalientes de materiales micro y nanoestructurados que afectan las propiedades físicas, mecánicas e hidráulicas de los suelos.

Las diatomeas viven en casi todos los tipos de ambientes acuáticos y semi-acuáticos. Actualmente se estima que existen más de 100,000 diferentes especies, clasificadas por la morfología única de su frústula.

Figura 2.4. Fotomicrografías de diatomeas del material utilizado en la presente investigación (2019).

El 61% de la producción mundial de diatomita es usada como filtro, principalmente en las bebidas como cerveza, vinos, etc. El 39% restante, se aplica como agente de carga en diferentes industrias, destacando la fabricación de pintura y plástico.

Los yacimientos de mayor importancia comercial en México (figura 2.5) se localizan en la región minera El Barqueño, en el estado de Jalisco, municipio de Zacoalco de Torres, (aportando el 99.7% de la producción), los cuales pertenecen al Grupo Imerys, líder mundial en la extracción y transformación de minerales para la industria. El resto de la producción de diatomita (0.23%) se concentra en el estado de Michoacán, en los municipios de Ecuandureo y Senguio.

Figura 2.5. Principales yacimientos de diatomeas en la República Mexicana (Editado de la Coordinación General de Minería, 2016).

La diatomita es una roca silícea, sedimentaria de origen biogénico, principalmente está constituida por restos (esqueletos) fosilizados de las frústulas de las diatomeas, presentando diversos grados de consolidación. Se forma por la acumulación sedimentaria de los esqueletos microscópicos de algas unicelulares. Está compuesta de esqueletos opalinos fosilizados de la diatomea; los esqueletos se componen de sílice amorfa. La diatomita se forma por la acumulación sedimentaria hasta formar grandes depósitos con un grosor suficiente para tener un potencial comercial. La diatomita pura está formada por sílica opalina o hídrica, puede contener pequeñas cantidades de componentes inorgánicos como alúmina, hierro, tierras y metales alcalinos, así como otros constituyentes menores. La diatomita también contiene cantidades inusuales de agua libre, la cual puede variar de 10% a 60% aproximadamente. Los principales depósitos en el mundo, se han caracterizado por ser depósitos de tipo seco, en donde la diatomita se presenta como material de peso liviano. La densidad aparente (base seca) in situ varía de 0.32 a 0.64 ton/m3. (Coordinación General de Minería, 2016)

2.2.2.Propiedades físicas.

- Aspecto macroscópico: Roca purulenta, fina y porosa con aspecto margoso.
- Color por lo regular blanco brillante (en el caso de alta pureza) Pueden estar coloreadas -Blanco (calcinado con fundente) - Rosa (calcinado) - Gris (sin calcinar)
- Alta porosidad
- Volumen de muy baja densidad
- Muy alta capacidad para absorber líquidos (absorbe hasta 150% de su peso en agua)

- Capacidad abrasiva suave
- Conductividad térmica y eléctrica muy baja
- Alta resistencia a la temperatura
- Punto de fusión entre 1,400° a 1,750°C
- Peso específico 2.0 (la calcinación la incrementa a 2.3)
- Área superficial 10 a 30 m²/g (la calcinación la reduce de 0.5 a 5 m²/g)
- Índice de refracción 1.4 a 1.46 (la calcinación la incrementa a 1.49)
- Dureza (Mohs) 4.5 a 5 (la calcinación la incrementa de 5.5 a 6)
- Químicamente inerte
- El contenido de agua varía de acuerdo al depósito (de 10% hasta un 60%)
- La densidad aparente (base seca) in situ varía de 0.32 a 0.64 Ton/m³.
- Absorción de aceite: 120 g/100 g de aceite, pH 7.0

(Coordinación General de Minería, 2016)

2.2.3.Ambientes donde se desarrollan.

Las diatomeas pinnadas se encuentran de forma predominante en agua dulce y en ambientes marinos. Las diatomeas céntricas prosperan en aguas marinas, especialmente en latitudes subpolares y templadas.

Diferentes especies se desarrollan en los fondos oceánicos, estanques, lagos, ríos, pantanos, lagunas, mares y aguas oceánicas, mientras algunas otras proliferan en el suelo, hielo, o adheridas a árboles y rocas.

Al requerir luz para vivir, las diatomeas se desarrollan en una zona que no sobrepasa los 200m de profundidad. Cada especie tiene preferencias por una particular densidad del agua, con rasgos distintivos de temperatura, salinidad, acidez, oxígeno y concentración mineral (Armstrong y Brasier, 2005).

A partir de varias observaciones, Talliaferro (1933) dedujo que, con pocas excepciones, la existencia y abundancia de diatomeas está directamente relacionada con la actividad volcánica de la zona, ya que la ceniza volcánica aporta cantidades importantes de sílice al agua, el cual es aprovechado por las diatomeas para su crecimiento.

Después de su muerte, parte de los delgados y altamente porosos esqueletos de las diatomeas se disuelven, produciendo más sílice disponible para las próximas generaciones de diatomeas, por otro lado, algunos esqueletos descienden al fondo de los océanos o lagos formando sedimentos fosilíferos.

Existe un gran número de depósitos lacustres y marinos en el mundo que contienen microfósiles de origen silícico o calcáreo en su composición. En particular, los sedimentos formados por los esqueletos de algas microscópicas de tipo diatomea, dan origen a la formación de suelos diatomáceos y diatomita; la localización de estos depósitos está vinculada con ambientes influenciados por actividad tectónica o volcánica, los cuales son ricos en sílice soluble y otros nutrientes necesarios para el desarrollo de diatomeas.

2.2.4.Estudios sobre diatomeas.

La distribución y características de los sedimentos diatomáceos se ha estudiado en diferentes sitios alrededor del mundo, principalmente con propósitos de reconstrucción pale ambiental; por otro lado, los estudios orientados a su caracterización geotécnica son limitados.

Las diatomeas como organismos vivos y sus remanentes fósiles, han sido objeto de una gran variedad de investigaciones con fines paleo-ecológicos principalmente; por otro lado, las primeras evaluaciones de los suelos diatomáceos como geo-materiales se remontan al estudio de suelo de la Ciudad de México por Zeevaert (1949), Marsal y Masari (1959), Lo (1962), Mesri et al. (1975) entre otros, quienes advirtieron la presencia de ostrácodos y diatomeas fósiles en su composición. A estos estudios le siguieron los realizados en sedimentos marinos de los océanos Antártico, Pacífico e Indico, así como de las costas de Japón y California, donde se detectó la presencia de microfósiles en diferentes proporciones. En general estos sedimentos presentan propiedades físicas y mecánicas poco comunes, relacionadas con altos contenidos de agua natural, baja densidad relativa, alta porosidad, alta permeabilidad y compresibilidad, así como ángulos de fricción interna y resistencias al cortante inusualmente altas en comparación con otros suelos finos.

La mayor parte de los estudios geotécnicos relacionados con suelos diatomáceos, se limitan a presentar sus propiedades físicas y mecánicas sin precisar la influencia de los microfósiles en su comportamiento. Los trabajos que exponen la interacción entre microfósiles y suelos arcillosos, se basan en el estudio de mezclas artificiales caolín-diatomita o arcilla natural diatomita, y se orientaron principalmente a determinar la influencia de los microfósiles diatomáceos en las propiedades índice, compresibilidad y resistencia al cortante pseudoestática del suelo. Las aportaciones sobre el comportamiento de suelos diatomáceos concluyen que las características únicas de los microfósiles como su alta porosidad esquelética, rugosidad superficial, variada y compleja geometría, así como su importante capacidad de retención de agua dentro de su estructura, contribuyen en el complicado comportamiento de los suelos que los contienen.

En el campo de la geotecnia los sedimentos diatomáceos o diatomita, se han evaluado como material de relleno debido a sus características como material filtrante y su alto ángulo de fricción interna (Khilnani y Capik, 1989 y Day, 1995).

Se ha encontrado que el suelo diatomáceo tiene muy baja densidad seca, alto contenido de agua natural y compresibilidad. La presencia de diatomeas aumenta significativamente el líquido Límite y límite de plástico mientras que el índice de plasticidad permanece más o menos constante.

Se investigó el efecto de los microfósiles de diatomeas sobre la compresibilidad en mezclas de diatomea con caolín, arcilla de Singapur y arena Toyura por Shiwakoti et al. (2002). La adición de diatomea aumentó significativamente la compresibilidad y coeficiente de permeabilidad de las mezclas. Day (1995, 1997) también informó una alta compresibilidad en el suelo de diatomeas (65% de contenido de diatomeas) utilizando como material de relleno en California. Este relleno se comportó como un material granular denso (relativamente incompresible) cuando se somete a un esfuerzo efectivo de 50 kPa, y a esfuerzos efectivos más altos, la compresibilidad aumenta significativamente, posiblemente debido al aplastamiento de las diatomeas.

Diaz-Rodríguez (2011), las diatomeas son ejemplos sobresalientes de materiales naturales nanoestructurados que afectan a las propiedades mecánicas, hidráulicas y fisicoquímicas de los suelos. Los suelos volcánico-lacustres de la ciudad de México son suelos diatomáceos. Los resultados obtenidos en esta investigación sugieren una explicación de algunas propiedades de los suelos de la ciudad de México. Los límites de Atterberg aumentan con el incremento del contenido de diatomita (CD). Sin embargo, el índice de plasticidad disminuye. El ángulo de fricción de los suelos aumenta al incrementarse el contenido de diatomeas

Desh Raj Sonyok (2015), en mezclas de diatomeas y caolín han encontrado una alta compresibilidad al aumentar el contenido de diatomeas lo cual se explicó como resultante de la combinación de la compresión de los poros intergranulares, movimiento y flexión de partículas, compresión y posiblemente rotura de fragmentos de frústulas orientados aleatoriamente (más débiles). En general, 40% de contenido de diatomeas fue suficiente para impartir una influencia notable en el comportamiento de compresibilidad de las mezclas. La resistencia a la compresión disminuye con el contenido de diatomeas.

2.3. Bentonita

El término arcilla no sólo tiene connotaciones mineralógicas, sino también de tamaño de partícula, en este sentido se consideran arcillas todas las fracciones con un tamaño de grano inferior a 2 µm. Según esto todos los filosilicatos pueden considerarse verdaderas arcillas si se encuentran dentro de dicho rango de tamaños, incluso minerales no pertenecientes al grupo de los filosilicatos (cuarzo, feldespatos, etc.) pueden ser considerados partículas arcillosas cuando están incluidos en un sedimento arcilloso y sus tamaños no superan las 2 µm.

Las arcillas son constituyentes esenciales de gran parte de los suelos y sedimentos debido a que son, en su mayor parte, productos finales de la meteorización de los silicatos, formados a mayores presiones y temperaturas, donde en el medio exógeno se hidrolizan.

Las arcillas, presentan una estructura basada en el apilamiento de planos de iones de oxígeno e hidroxilos. Los grupos tetraédricos (SiO)₄ ⁴⁻ se unen compartiendo tres de sus cuatro oxígenos con otros vecinos formando capas, de extensión infinita y fórmula (Si₂O₅) ²⁻, que constituyen la unidad fundamental de los filosilicatos. En ellas los tetraedros se distribuyen formando hexágonos.

La bentonita proviene de la familia de las arcillas de montmorillonitas, estas están constituidas por una unidad alumínica y dos de silícicas, estructura con 2:1, lo cual forma una lámina de montmorillonita. Su composición química se expresa mediante la fórmula:

$(OH)_4AI_4Si_8O_{20}NH_2O$

La composición teórica sin el material de la capa intermedia es SiO₂, 66,7%; Al₂O₃, 28.3%; y H₂O, 5%. El mineral de esméctica más común es la montmorillonita cálcica, lo que significa que la deficiencia de carga de la capa se equilibra con el catión intercalado calcio y agua. El espaciamiento basal de la montmorillonita de calcio es de 14.2 Å. La montmorillonita sódica se produce cuando la deficiencia de carga se equilibra con los iones de sodio y el agua, y el espaciamiento basal es de 12.2 Å. Las montmorillonitas de calcio tienen dos capas de agua en la posición de la capa intermedia y las montmorillonitas de sodio tienen una capa de agua. La liga entre dos láminas es débil y da como resultado un material poco estable, de manera especial en presencia del agua, lo cual induce expansión. La bentonita usualmente se forma a partir de la intemperización de las cenizas volcánicas.

La arcilla a la cual se le da el nombre de bentonita está formada por lo regular de la alteración de la ceniza volcánica, de las primeras definiciones dadas a la bentonita indican que este es su modo de origen. Estudios recientes han demostrado que algunas arcillas designadas como bentonita están en función de su composición y propiedades. La consideración de las diversas formas en que se constituyen las bentonitas hace que sea conveniente analizar su origen bajo los siguientes encabezados:

- Alteración de la ceniza volcánica o toba esencialmente en sitio.
- Alteración hidrotermal generalmente de rocas ígneas.
- Alteración deuterica del material ígneo.
- Modos de origen diversos e inciertos, incluidos los casos en que no se puede establecer un modo de origen preciso.

La alteración de la ceniza volcánica se establece por la presencia de fragmentos y otras estructuras relictas de la ceniza o toba progenitora que se pueden ver en pruebas microscópicas, por el carácter de los minerales no arcillosos y, en ocasiones, por transiciones a lechos de ceniza asociados o toba. La alteración in situ está indicada por la alta concentración de minerales arcillosos, la ausencia de minerales detríticos, la asociación con lechos adyacentes y la transición de ceniza o toba.

Las bentonitas son rocas de arcilla que consisten principalmente de esméctica, es un tipo de arcilla con una proporción muy alta de mineral de arcilla (montmorillonita). Estas se forman principalmente de la alteración de rocas piroclásticas y / o volcaniclásticas. Extensos depósitos, vinculados a grandes erupciones, se han formado repetidamente en el pasado. Las capas de bentonita son útiles para la correlación estratigráfica y para interpretar la evolución geodinámica de nuestro planeta. Bentonitas en general se forman por la alteración biogenética o hidrotermal, favorecida por fluidos que lixivian elementos alcalinos y por su alto contenido de Mg. La composición de la esméctica está parcialmente controlada por la química de la roca. Estudios recientes han demostrado que los depósitos de bentonita pueden mostrar variaciones crípticas en la carga de la capa, es decir, las variaciones no son visibles a escala macroscópica, y estas se correlacionan con propiedades físicas.

Con alta plasticidad, la bentonita es altamente absorbente de agua y tiene altas características de contracción y expansión. La lechada de bentonita a menudo se usa para resolver problemas en la construcción de perforaciones o excavación de zanjas en suelos saturados de agua. Con el tiempo, los usos de la bentonita se extendieron a aplicaciones más actuales, incluyendo tecnología de fabricación de papel, muros de corte, purificación de aguas residuales e incluso en diferentes aspectos de la nanotecnología debido a nano-tamaños de partículas de bentonita. Debido a sus vastas aplicaciones de ingeniería, es de gran interés para la investigación

Las bentonitas se usan industrialmente por sus propiedades físicas y químicas, tienen estructura cristalina, por lo tanto, tienen una superficie específica grande, alta capacidad de intercambio catiónico, con variedad en el tipo de cationes intercambiables, comportamiento de hidratación e hinchazón, propiedades coloidales, reacción con compuestos orgánicos e inorgánicos reactivos. Debido a estas propiedades, las bentonitas se utilizan en una variedad de aplicaciones, como la perforación, procesos

de fundición, ingeniería civil, filtrado, decolorante y clarificante. Su aplicación más reciente es en la producción de nanocompuestos.

La alteración de las rocas piroclásticas volcánicas a esméctica es un proceso común que a menudo produce bentonita de depósitos de valor comercial. Evidencia en la naturaleza volcánica de precursores de bentonita es la presencia de minerales ígneos primarios como cuarzo, biotita, sanidina, circonio, apatita, ilmenita, magnetita); la presencia de fragmentos de vidrio que pueden estar parcialmente alterados o reemplazados pseudomórficamente por esméctica.

La alteración del vidrio puede ocurrir a través de la cristalización en su fase de vapor, por diagénesis, metamorfismo de contacto, actividad hidrotermal, hidrólisis en lagos alcalinos y en sedimentos marinos o filtración de aguas subterráneas.

Las bentonitas se han formado a lo largo de la historia de la Tierra, la actividad volcánica explosiva ha jugado un papel importante en la evolución de nuestro planeta. Sin embargo, solo aquellos formados después del Jurásico, y especialmente aquellos en el Cenozoico, tienen importancia económica. Las bentonitas más viejas, son marcadores estratigráficos importantes utilizados con fines de correlación. Los eventos volcánicos que produjeron los principales depósitos de bentonita están relacionados con las súper erupciones, que afectó el clima global.

2.4. Propiedades Índice

Las propiedades índices son todas aquellas utilizables para identificar o clasificar un suelo cualitativamente. Estas se determinan en forma simple, rápida y económica; no se requiere de instalaciones costosas, y con pocas excepciones, se determinan en muestras alteradas. Estas propiedades sirven para encuadrar a los suelos dentro de grupos en que las propiedades hidráulicas o mecánicas son burdamente similares.

Se presentan las propiedades índices y características generales de las muestras fabricadas de 100B (0% diatomeas, 100% bentonita), 80B20D (20% diatomeas, 80% bentonita) y 60B40D (40% diatomeas, 60% bentonita).

2.4.1.Límites de consistencia o de Atterberg.

La consistencia representa la mayor o menor resistencia que el suelo ofrece para cambiar de forma, y está en función del contenido de agua y de la mineralogía de las partículas. Se relaciona con las fuerzas de atracción entre partículas individuales o agregados de estas partículas.

La plasticidad de un suelo se puede definir como la propiedad para cambiar de forma bajo la acción de esfuerzos aplicados, sin variación volumétrica apreciable y sin desmoronarse ni agrietarse, además de mantener la nueva forma (deformada) al cesar la aplicación de los esfuerzos.

Figura 2.6. Estados, límites de un suelo (Díaz – Rodríguez, 2014).

Un suelo exhibe comportamiento plástico en un intervalo de contenido de agua, desde un límite inferior hasta un límite superior; a estos límites se les denomina plástico y líquido (figura 2.6), respectivamente, los cuales se conocen también como límites de consistencia o límites de Atterberg.

Para la determinación de los límites de consistencia se emplea la fracción de suelo que pasa la malla número 40 (0.425 mm) y se realiza mediante dos procedimientos:

- 1. Método de Casagrande.
- 2. Método del cono.

2.4.1.1. Método de Casagrande.

La determinación del límite liquido por el método de la copa de Casagrande (1948), radica en usar una copa semiesférica que es repetidamente golpeada contra una base de hule duro (micarta), la altura de caída es de 10 mm, operada con una frecuencia de dos caídas por segundo. El procedimiento consiste en preparar varias muestras de suelo con diferentes contenidos de agua, dejarlas en reposo en frascos de vidrio con tapa durante 24 horas, y después colocar cada una de las muestras en la copa de Casagrande, con una ranura de acuerdo con las dimensiones que se muestran en la figura 2.7. Para realizar la ranura se requiere de una espátula especial.

Figura 2.7. Copa de Casagrande (1948).

El límite líquido (w_L) se define como el contenido de agua para el cual la ranura se cierra en una longitud de 12.5 mm a los 25 golpes. Es difícil efectuar la determinación con un solo punto, por lo que se hacen varias determinaciones y se ajusta una línea recta. Con base en la línea de ajuste, se realiza la lectura correspondiente.

El límite plástico (w_p) se determina rolando una porción de suelo hasta que éste alcance un diámetro de 3 mm, si con este diámetro el suelo se empieza a romper en pedazos, se dice que el suelo está en el límite plástico.

El índice de plasticidad (I_p) es la diferencia entre el límite líquido y el límite plástico.

$$I_p = W_L - W_p$$

Los detalles de la determinación de los límites líquido y plástico se encuentran en la norma ASTM D-4138.

2.4.1.2. Método del cono

El método del cono (fall cone method) para determinar los límites líquido y plástico es prácticamente independiente del operador. Consiste en un cono metálico con un Angulo de 30° y un peso total de 80 g, el cual está suspendido arriba y en contacto con la muestra de suelo, como se muestra en la figura 2.8. Para determinar el límite líquido, el cono se libera de su freno por cinco segundos, y se mide la penetración en milímetros. El contenido de agua correspondiente a una penetración de 20 mm define el límite líquido. Resulta difícil efectuar la determinación de un solo punto, así que se hacen varias determinaciones y se ajusta una línea recta. Con base en la línea de ajuste, se realiza la lectura correspondiente.

Figura 2.8. Determinación del límite líquido por el método del cono (Díaz – Rodríguez, 2014).

El límite plástico se determina repitiendo la prueba con un cono de la misma geometría, pero con un peso de 240 g. El límite plástico se obtiene con la siguiente expresión:

$$W_p = W_L - 4.2\Delta W$$

Donde Δw es la separación en términos de contenido de agua, entre las dos rectas.

Los detalles de la determinación de los límites líquido y plástico con cono de penetración se encuentran en la norma británica BS1377-2.

2.4.2.Contenido de agua (w)

El contenido de agua (*w*), de una muestra de suelo se define como la relación entre el peso del agua y el peso de la materia sólida. Se expresa como un porcentaje. Este se obtiene antes y después de cada uno de los ensayes según lo marca la norma ASTM D 2216.

$$w = \frac{w_w}{w_s} x 100\%$$

Donde:

w_w − peso del agua w_s − peso de los sólidos

2.4.3.Densidad de sólidos (Gs)

La densidad de sólidos (specific gravity) se define como la relación de la densidad de un material entre la densidad del agua a 4°C. Alternativamente, se puede entender como la relación entre el peso unitario de sólidos y el peso unitario del agua.

$$G_s = \frac{\gamma_s}{\gamma_w} = \frac{W_s/V_s}{\gamma_w}$$

Mineral	Densidad de solidos
Caolinita	2.62 - 2.66
llita	2.60 - 2.86
Montmorillonita	2.75 - 2.78

Tabla 2.1. Densidad de sólidos de minerales (Lambe y Whitman, 1979).

Los detalles de la determinación densidad relativa de sólidos, Gs. Se obtiene para cada una de las mezclas con diferentes contenidos de diatomita, según la norma ASTM D 854 y el procedimiento descrito por Head (1992).

2.4.4.Relación de vacíos (e)

La relación de vacíos (e), es la que se establece entre el volumen de vacíos y el volumen de sólidos.

$$e = \frac{V_v}{V_s}$$

Figura 2.9. Relaciones entre fases de una muestra de suelo (Díaz-Rodríguez, 2014).

CAPÍTULO 3 METODOLOGÍA

3.1. Introducción.

Dentro de este capítulo se presenta la información correspondiente a la etapa experimental, que se llevó a cabo durante el estudio de las mezclas de Diatomita-Bentonita.

Se describen las características generales del equipo empleado para las pruebas de compresibilidad a velocidad de deformación constante (CSR), los procedimientos de obtención de las propiedades índice de las mezclas.

Se detalla el proceso seguido para la elaboración de las mezclas de Diatomita-Bentonita, haciendo mención de las peculiaridades presentadas durante el proceso.

Todos los ensayes que se presentan en esta tesis se realizaron en el Laboratorio de Dinámica de Suelos de la Facultad de Ingeniería de la Universidad Nacional Autónoma de México.

Siguiendo la línea de investigación del Dr. Jorge Abraham Díaz-Rodríguez, acerca de minerales de arcilla a diferentes proporciones de diatomeas, se han realizado tres trabajos de investigaciones todos con mineral de arcilla de caolinita: el primero presentado en el año del 2007, "Influencia de las diatomeas en la resistencia al corte del caolín", por el autor Oliver E. Nava Tristán; el segundo en el 2009, "Comportamiento cíclico de suelos diatomáceos", por Jorge A. López-Molina, y el tercero presentado en el 2018, "Efecto de los microfósiles en la compresibilidad de mezclas Caolinita-Diatomita", por Arturo Moreno-Arriaga. Este es el primer trabajo de investigación en el cual se cambió el mineral de arcilla por bentonita.

Para la etapa experimental se fabricaron mezclas con las siguientes proporciones en peso seco: 0% diatomeas – 100% bentonita (100B), 20% diatomeas – 80% bentonita (80B20D), 40% diatomeas – 60% bentonita (60B40D), con el fin de comparar con el mineral de arcilla de caolinita se elabora una mezcla de 0% diatomeas – 100% caolinita (100K).

3.2. Mezclas Diatomeas – Bentonita.

3.2.1.Elaboración de mezclas Diatomeas – Bentonita.

El procedimiento para formar las muestras artificiales diatomeas – bentonita inicia con el pesado de los materiales en seco para obtener la proporción deseada (figura 3.1). Ambos materiales se mezclan en seco, hasta obtener un grado de homogenización deseable (figura 3.2). Este punto se define cuando ya no se observan grumos de cualquiera de los dos materiales.

Bentonita. b) Diatomeas. Figura 3.1. Peso en seco de materiales.

Figura 3.2. Mezclado en seco de diatomeas y bentonita.

El material ya homogenizado se hidrata con agua destilada en pequeñas proporciones como si fuese

una masa añadiendo poco a poco y se deja reposar por 24 horas, cubierto con plástico autoadherente y dentro del cuarto húmedo. El motivo del reposo es asegurar que se ha dado tiempo suficiente para que las moléculas del agua queden rodeen las moléculas del material sólido y exista una adecuada repartición del agua en toda la mezcla. Paratodas las mezclas de bentonita se utilizó un contenido de agua del 100%, se llegó a esto después de una serie de pruebas cambiando el contenido de agua, y observando su consistencia y manejabilidad de la mezcla, a fin que pudiera ser fácil de colocar en los moldes del consolidómetro gigante.

Una vez transcurrido el tiempo se coloca el material en una batidora y se mezcla por un lapso de 15 a 20 minutos a baja velocidad (figura 3.3). El mezclado en estas condiciones permitió que el material estuviera completamente hidratado y fuese fácil de colocar dentro de los moldes de consolidación.

Figura 3.3. Mezclado en batidora.

3.2.2.Llenado de moldes de consolidación.

Los moldes de consolidación donde se coloca el material ya homogenizado tienen las siguientes características: es un molde cilíndrico de metal con 12.94 cm de diámetro, 16.37 cm de altura y 0.7 cm de espesor.

Para el llenado de los moldes se requiere de un arreglo muy similar al utilizado en una prueba de eodómetro convencional, es decir dos piedras porosas por molde con diámetro de 12.7 cm, un poco

menor que el diámetro del molde de metal, papel filtro para ambos extremos, una lámina plástica y una placa metálica de 12.7 cm de diámetro, para distribuir de manera uniforme el esfuerzo aplicado por el vástago sobre la cara superior de la mezcla.

La lámina plástica tiene una longitud de 40.9 cm, equivalente al perímetro interior del molde, y altura de 22 cm (figura 3.4), superior a la altura del molde, esta lámina cumple con dos funciones: la primera es evitar que el material este en contacto directo con el molde y esta se quede adherida a él, la segunda es ocupar al máximo la altura del molde para poder obtener el mayor número de probetas posibles una vez terminada la preconsolidación.

Figura 3.4. Molde con piedra porosa inferior, papel filtro y lámina plástica. Mezcla lista para colocarse.

Al realizar el llenado de los moldes se debe tomar en cuenta que se busca que la muestra contenga la menor cantidad de aire atrapado posible. La técnica utilizada para el llenado es en capas al interior del molde cilíndrico en forma circular, desde las paredes al centro, se asemeja al untado de "la crema de maní en un pan", donde la crema de maní es nuestra mezcla y el pan son las paredes del cilindro, lo anterior se realiza con mucho cuidado y paciencia (figura 3.5).

Figura 3.5. Llenado del molde con ayuda de espátula, nivelado y enrasado.

Una vez llenado el molde se enrasa con ayuda de una espátula de abanico, dejando lo más nivelado posible, se coloca el papel filtro humedecido, la piedra porosa y por último la placa de acero. La piedra y la placa se colocan con la ayuda de un nivel de burbuja, dejándolos lo más nivelado posible (figura 3.6 - 3.7).

Figura 3.6. Colocación de papel filtro, piedra porosa y placa metálica.

3.2.3.Montaje en Consolidómetro Gigante.

El cilindro con la mezcla es llevado al consolidómetro gigante para empezar con la etapa de preconsolidación, es transportado con mucho cuidado desde el cuarto húmedo. El arreglo del consolidómetro permite aplicar la carga a través de un vástago metálico, el cual se centra para evitar excentricidad en la carga mediante un balín que también se ajusta al centro de la placa (figura 3.8).

Figura 3.8. Montaje del molde con la mezcla en el consolidómetro gigante. (Moreno-Arriaga, 2018).

Se inicia la etapa de consolidación, la cual consiste en 5 incrementos de carga para obtener esfuerzos verticales de: 17 kPa, 34 kPa, 63 kPa, 95 kPa y 130 kPa. Cada incremento se aplicó por 24 horas y las deformaciones verticales se monitorearon mediante un transductor de desplazamiento lineal (figura 3.9 – 3.10). El último incremento de carga se mantuvo durante 28 días antes de desmontar la prueba. Se tuvo especial cuidado en mantener saturado el espécimen durante toda la etapa de consolidación, manteniéndolo bajo un tirante de agua constante. El tiempo de consolidación y el esfuerzo vertical aplicado, aseguraron que las muestras de diatomeas bentonita tuvieran la consistencia y estructura adecuada para ser labradas y minimizar su alteración.

Figura 3.9. Colocación de transductores (LVDT) para monitoreo de deformación de las mezclas.

Figura 3.10. Aplicación de primer incremento de carga.

3.3. Desmontaje, almacenaje y preservación de las mezclas Diatomeas – Bentonita.

Al finalizar el periodo de consolidación, se procede a realizar la descarga del esfuerzo aplicado, el cual se hizo por cargas de 26 kPa cada media hora, al igual que la carga se toman lecturas para cada decremento de carga.

Terminada la descarga se toma el molde con la mezcla consolidada, se lleva al cuarto húmedo para su posterior almacenaje, preservación y cuidado (figura 3.11).

Una vez pre-consolidadas las mezclas esto con la finalidad de que adquieran consistencia y estructura, se almacenan con todo el cuidado como si fuesen muestras obtenidas directamente del campo.

Figura 3.11. Muestra ya pre-consolidada desmontada del consolidómetro gigante.

Una vez desmontada la mezcla de Diatomeas – Bentonita, se extraen en anillos de pvc biselados y previamente cortados con altura de 4cm y 10cm de diámetro, se inicia un proceso de hincado de los anillos y a su vez con un alambre de grosor de 3 mm se va raspando la circunferencia de la pared del molde desplazando el material y facilitando el hincado del anillo. El fin de los anillos de pvc es facilitar el manejo de las posteriores probetas y así disminuir los errores por alteración del espécimen (figura 3.12).

Una vez extraída la muestra consolidada e introducida en los anillos, se enrasa perfectamente eliminando los excesos de material de cada uno de los bordes y del exterior de los anillos.

Figura 3.12. Hincado de anillos de pvc dentro de la muestra pre-consolidada.

Debido a que las probetas no son utilizadas de forma inmediata posterior a su extracción, es importante su protección y almacenamiento.

Primeramente, el tubo de anillos de pvc se cubre de una película de plástico auto adherente, posteriormente una capa de papel aluminio, seguido de tela tipo "manta de cielo", por último, se le aplica una capa de brea – parafina. La aplicación de la capa de brea – parafina se realiza con ayuda de una brocha, previo a su derretimiento para manipularse de forma líquida. Con este recubrimiento aseguramos que las muestras no pierdan su contenido de agua tal cual fueron extraídas, así mismo es importante no perder el sentido de aplicación del esfuerzo, por lo que se recomienda identificarlo en el tubo (figura 3.13). Estas se almacenan en el cuarto húmedo hasta el día de su ensaye.

Figura 3.13. Mezcla cubierta para su almacenamiento.

3.4. Prueba de compresibilidad a velocidad de deformación constante.

3.4.1.Equipo utilizado.

3.4.1.1. Descripción del equipo de Load trac/Flow trac.

El equipo utilizado para esta investigación Load Trac/Flow Trac, consiste en un marco de carga axial (Load trac-II), una bomba de flujo (Flow Trac-II) para controlar la presión, una celda de consolidación con capacidad de aplicar contrapresión, una computadora con tarjeta de datos para el control de la prueba y el software CRC.S (por sus siglas en inglés Constant Rate of Consolidation; Strain) para el control y procesamiento de datos (figura 3.14).

Figura 3.14. Equipo de velocidad de deformación constante.

El Load Trac es una unidad única de diseño que contiene un controlador incorporado, incluye un marco de carga, un transductor de carga tipo S, un transductor de desplazamiento, placa de carga con movimiento vertical y motor paso a paso, gato de tornillo sin fin que mueven el plato. Estos componentes, junto con la celda de carga montada externamente, generan la fuerza en una prueba y miden la fuerza, y el desplazamiento (figura 3.15). Se aplica la deformación a la probeta con el movimiento de la plataforma por medio de un pistón entre el espécimen y la celda de carga, El motor está configurado para dar 2000 pasos por revolución para el movimiento de la placa de carga, debido a su resolución y velocidad de la señal transmitida, el movimiento se realiza de forma suave. El sistema puede aplicar deformaciones dentro del rango de velocidades de desplazamiento, de 0.00003 hasta 15 mm por minuto. Con una pantalla LCD y un teclado en el panel frontal le permiten controlar manualmente el funcionamiento del marco de carga, así como monitorear el estado del sistema.

Figura	3.15.	Unidad	Load	Trac.
--------	-------	--------	------	-------

Тіро	Celda de carga	Transductor de desplazamiento
Excitación	6.5V	5.0V
Capacidad	11KN	75 mm
Rango	+/- 20 mV	2560 mV

Tabla 3.1. Características de transductores en la unidad Load Trac
--

La bomba de flujo Flow Trac es una unidad de diseño único que contiene una bomba de flujo, un transductor de presión, una válvula de salida, válvula de suministro y un controlador integrado (figura 3.16). Estos componentes controlan y miden la presión y el cambio de volumen en la celda de prueba. La bomba de flujo contiene un motor paso a paso con micro precisión que mueve un pistón en un cilindro lleno de agua para regular la presión mediante el volumen de agua dentro de la celda de consolidación. La válvula de salida controla si se puede o no aplicar la presión a la celda de agua desaireada en el cilindro colector, estas válvulas son del tipo solenoide de dos vías que controlan la dirección del flujo durante la operación normal del aparato, cuando una válvula se encuentra abierta la otra está cerrada (figura 3.17). Esta unidad de Flow Trac puede mantener la contrapresión requerida dentro de un rango de ± 0.35 kPa, y puede monitorear el cambio de volumen en un rango de 0.001 cm³ de agua mediante el número de pasos del motor. Una pantalla LCD y un teclado en el panel de frontal permiten controlar manualmente el funcionamiento de la bomba de flujo y monitorear el sistema.

Figura 3.16. Unidad Flow Trac.

Figura 3.17. Diagrama Flow Trac (Manual del equipo, 2012).

Тіро	Transductor de presión
Excitación	12.0V
Capacidad	1379 kPa
Rango	+/- 160 mV

Tabla 3.2. Características de transductor de presión de poro.

La celda para pruebas de consolidación a carga de deformación controlada, está diseñada para medir la presión de poro en la base del espécimen y soportar esfuerzos de contrapresión durante la prueba (figura 3.18 – 3.19). Mantiene el anillo de muestra que contiene el suelo en una alineación adecuada con el marco de carga, mantiene la presión del agua y la celda alrededor de la muestra. Incluye un anillo de corte de muestra, piedras porosas inferior y superior, tapa superior, cámara de consolidación, pistón, transductor de monitoreo de presión de poro, válvula manual que conecta la celda y la presión de poro mediante un puente conector (tubo), conexión de celda con el Flow Trac, y tornillos de ajuste. El anillo de corte con el borde biselado es de 63.5 mm de diámetro y 25.4 mm de altura.

Figura 3.19 Celda de consolidación desmontada.

El software CRC.S permite realizar una prueba de consolidación a deformación controlada definiendo las condiciones de prueba, a su vez mientras la prueba se está ejecutando el software procesa los datos en tiempo real, dando la opción de mostrarlos en el monitor del equipo de cómputo en forma numérica y gráfica. Una vez finalizada la prueba el programa almacena los datos, realiza los cálculos en automático para definir las tablas y gráficos finales. A éste se le puede introducir información específica de la probeta ensayada como contenidos de agua antes y después de la prueba.

3.4.1.2. Funcionamiento del equipo.

El software CRC.S permite controlar y definir los parámetros del suelo de cada una de las etapas de la prueba de consolidación a deformación controlada, las etapas son las siguientes:

- 1. Inicialización. Etapa en la cual se le aplica un valor inicial de carga a la probeta para proporcionar un buen contacto.
- 2. Saturación. Etapa en la cual se satura la muestra con contrapresión a cierta velocidad, hasta alcanzar un valor objetivo de 240 kPa, el cual se mantiene por un tiempo definido, para este trabajo se dejó por lo menos un tiempo de 24 horas.
- Consolidación. La muestra se consolida aplicando una deformación vertical a una velocidad constante. Dentro de esta etapa se pueden realizar secuencias de carga y descarga durante una misma prueba.

Cada una de las etapas de velocidad de consolidación y descarga se programan en el software en su pestaña correspondiente. El software es muy amigable al usuario, de fácil manejo y entendimiento. En la figura 3.20 se muestra la ventana de inicio al abrir el software, misma que permite registrar los datos de la prueba.

Initializ	ation	Saturation	Con	solidation Table
Project	Specimen	Water Content	Read Table	Test Parameters
Project Numbe	r: [Boring Number:		
Project Name	:	Test Number:		
Location	n: 🗌	Sample Number:		
Date of Tes	t:	Depth:		
Teste	r.	Elevation:		
Checke	r:	Sample Type:		
Description	1:			
Remark	3:			

Figura 3.20. Ventana de inicio del CRC.S.

El CRC.S además permite monitorear la prueba en curso en tiempo real durante la ejecución de la prueba, el comportamiento de los cuatro transductores, los transductores en la parte del Load Trac

correspondientes a la celda de carga y el transductor de desplazamiento, y los dos transductores de presión, uno en la celda y otro en la unidad de Flow Trac.

Las pestañas de la ventana de control donde se registran datos sobre la probeta se registran en los campos de texto de las hojas de Proyecto (Project), Espécimen (specimen) y Contenido de Agua (Water Content). La pestaña de Lectura (Read Table) nos ayuda a tener el control sobre los valores de salida del sensor y los tiempos en los que toma la lectura (Figura 3.21 – 3.22).

Initia	alization	Satura	ation	Con	solidation Table
Project	Specimen	Water Co	ntent	Read Table	Test Parameters
	Initial Diameter:	0.	mm		
	Initial Height:	0.	mm		
	Initial Sample Weight:	0.	kg		
	Specific Gravity:	Measured 💌	0.		
	Plasticity:	 Plastic Non-Plastic Unknown 			
	Liquid Limit:	0.			
	Plastic Limit:	0.			

Figura 3.21. Datos sobre la probeta a ensayar.

Initializ	zation		Saturation		Consolic	lation Table	
Project	Specimen		Water Content		le	Test Parameters	
fore Test — Trimmings	Tare ID:	-	After Test	fare ID:			
immings Tare	Weight: 0.	kg	Specimen Tare	Veight: 0.	kg		
rimmings Wet	Weight: 0.	kg	Specimen Wet	Weight: 0.	kg		
Trimmings Dry	Weight: 0.	kg					
			Trimmings 1	Tare ID:			
			Trimmings Tare	Weight: 0.	kg		
			Trimmings Wet	Weight: 0.	kg		
			Trimmings Dry	Weight: 0.	kg		

Figura 3.22. Contenidos de agua antes y después de la prueba.

La pestaña de Inicialización (initialization), es donde se controlan los parámetros de la fase de inicialización (figura 3.23). Dentro de los cuadros de texto se ingresa el valor del esfuerzo vertical que

Project	Specimen	W	later Content	Read Table	Test Parameters
Initialization		Saturation			Consolidation Table
	Seating Load:	4.	kPa		
	Maximum Duration:	10.	min		
	Minimum Duration:	5.	min		
T100	Time Offset Duration:	2.	min		
	Read Table:	Time 💌		•	

aplicará el Load Trac para hacer contacto entre la celda tipo S y la probeta de ensaye, además se ingresa el tiempo que será mantenido este esfuerzo antes de iniciar en automático la siguiente etapa.

Figura 3.23. Pestaña de fase: Inicialización.

La pestaña de Saturación (Saturation) es la utilizada para controlar esta misma fase (figura 3.24). Dentro del cuadro de texto Cell Pressure (Presión de celda) se ingresa el valor al cual debe llegar la contrapresión dentro de la celda de consolidación, para esto también se debe asignar la velocidad (Pressure rate) a la que se irá incrementando la presión gradualmente hasta llegar a la presión definida. El tiempo durante el cual se debe mantener la presión, se asigna en el cuadro de texto Mantain Time (tiempo mantenido), este debe ser lo suficientemente grande para después continuar manualmente a la fase de consolidación, este paso no es automático. En el cuadro de texto Maximum Excess Pressure (Exceso de presión de poro) se coloca el valor máximo que puede alcanzar la diferencia entre los transductores de presión de poro (pore pressure) y el de contrapresión en la celda (cell pressure), si la prueba alcanza dicho valor, el sistema empieza un proceso cíclico en el que decrece e incrementa la presión para que el incremento de presión de poro no ocurra rápidamente.

Project	Specimen	Water Cor	itent	Read Table	Test Parameters
Initialization		Saturation		Con	solidation Table
	Cell Pressure:	240.	kPa		
	Pressure Rate:	1.333333	kPa/min		
	Maintain Time:	2880.	min		
Maximum Excess Pressure:		13.789515779032	kPa		

Figura 3.24. Pestaña de fase: Saturación.

La pestaña de Tabla de Consolidación (Consolidation Table), se asignan los parámetros para controlar las fases de consolidación (figura 3.25). Dentro de esta fase es posible realizar varias etapas, llamados pasos (steps), para los cuales se asignan sus valores de control. El valor Final Normal Stress (esfuerzo normal final) es el valor límite que podrá alcanzar el equipo. El esfuerzo será aplicado conforme a la velocidad de deformación asignada por el usuario (Strain Rate). El programa usa límites de relación de presión de poro para evitar que el esfuerzo normal se incremente muy rápido, tanto que la presión de poro se vuelva muy alta para el transductor, o muy lento haciendo el tiempo de la prueba excesivamente extenso. La relación de presión de poro se refiere al valor del exceso de presión de poro entre el esfuerzo vertical (u / σ_v) actuante al momento de la medición, si el valor de la relación supera el insertado en la columna Upper Pressure Ratio (relación de presión superior) la velocidad de deformación actuante decrece por un factor de 2, para la presente investigación se colocó un valor de 1000 siendo este un límite muy elevado para poder llegar a la relación u / σ_v . Si el valor de la relación de presión de poro cae por debajo del insertado en la columna Lower Pressure Ratio (relación de presión inferior), la velocidad de deformación incrementa por un factor de 2, para todos los ensayes se colocó el valor de 0.01 para la relación u / σ_v , siendo un valor muy pequeño que no se alcanzará en la prueba, así se mantiene la velocidad de deformación asignada durante toda la ejecución de la prueba. Estos límites de relación de presión de poro permiten realizar pruebas dentro de los valores recomendados para este tipo de ensayes controlados por la velocidad de deformación.

Initializa		ation	ation				Consolida	ation Table	
	Final Normal Stress (kPa)	Strain Rate (%/min)	Lower Pressure Ratio	Upper Pressure Ratio	Equilit Presi Ra	brium sure Mai tio Ti (n	ntain me nin)	Read Table	
1	3000.	8.3333e-003	0.	1000.	1.e-002	1440.	Strain	*	•
2	10.	-8.333e-002	0.	1000.	1.e-002	5.	Strain	-	
3	0.	0.	0.	0.	0.	0.	Strain	•	
4	0.	0.	0.	0.	0.	0.	Time		-
5	0.	0.	0.	0.	0.	0.	Time	•	
6	0.	0.	0.	0.	0.	0.	Time	•	
7	0.	0.	0.	0.	0.	0.	Time	•	
8	0.	0.	0.	0.	0.	0.	Time	•	
9	0.	0.	0.	0.	0.	0.	Time		
10	0.	0.	0.	0.	0.	0.	Time	-	•

Figura 3.25. Pestaña de fase: Consolidación.

Si se llega al valor elegido como Final Normal Stress, el programa continúa monitoreando el parámetro de relación de presión de poro, ya que teóricamente, esta relación toma un tiempo indefinido. Se usa el parámetro Equilibrium Pressure Ratio (relación de presión de equilibrio) para determinar cuando la etapa de consolidación se encuentra cerca de la condición de equilibrio, al llegar al valor de Equilibrium Pressure Ratio, el programa toma un tiempo mantenido asignado por el usuario (Maintain Time) sobre esta condición antes de pasar al siguiente paso en automático.

La columna Read Table (tabla de lectura) permite seleccionar que columna de valores se usa para grabar los datos durante cada fase de consolidación, estos valores fueron asignados en la pestaña Read Table, la cual contiene las columnas de tiempo, deformación y desplazamiento.

El usuario puede terminar cada una de las etapas o pasos de consolidación cuando lo desee e iniciar el siguiente paso, además puede modificar en cualquier momento cualquiera de los parámetros de las columnas siempre y cuando la etapa a modificar no haya iniciado, de lo contrario el programa no reconoce ningún cambio. La prueba puede ser finalizada cuando el usuario lo requiera.

3.5. Procedimiento de ensaye.

3.5.1.Labrado de probeta.

El labrado se realiza en un cuarto húmedo con el objetivo que el espécimen no pierda su contenido de agua natural. Se toma un tubo de muestras de los ya almacenados, se corta una de los anillos de pvc de 4 cm de altura, y se extrae del anillo (figura 3.26), este se coloca en una placa de cristal para empezar con el labrado.

Figura 3.26. Extracción de muestra de anillo de pvc.

Se retira el anillo de consolidación, teniendo en cuenta el filo del anillo de consolidación se coloca el borde afilado del anillo sobre la parte inferior de la muestra, con el objetivo de que la parte superior de la muestra permanezca en el borde afilado, cuidando la dirección en la cual fue aplicado el esfuerzo al consolidarse. El anillo afilado se utiliza para cortar el exceso de la muestra de suelo a medida que se llena el anillo, además sirve para centrar la muestra dentro de la celda. Se pesa el anillo de consolidación al 0.01 g más cercano.

Previamente antes de empezar a recortar la muestra se le coloca al interior del anillo una capa de aceite de silicón para facilitar el hincado de este sobre la muestra. Al recortar la muestra hasta que tenga casi las mismas dimensiones que el interior del anillo el objetivo es bajar el anillo de consolidación a la muestra de suelo, con un mínimo de perturbaciones en la muestra y con un poco de balanceo del anillo en relación con la muestra, para que el exceso de muestra se recorte a medida que se llena el anillo, para esto se utiliza un torno de labrado como el de la imagen (figura 3.27). Es posible extraer una muestra directamente desde un tubo al anillo de consolidación con la configuración correcta.

Figura 3.27. Labrado de probeta.

Una vez que se haya presionado el anillo de consolidación dentro de la muestra se usan utensilios (segueta de alambre) para recortar los excedentes de material de la parte superior e inferior de la muestra. Se toman los recortes representativos para una determinación del contenido de agua. Se debe tener cuidado de recortar ambos extremos de la muestra de la forma más limpia posible. Cuando se haya terminado, se tendrá una muestra de 25,4 mm (1 pulgada) de alto.

Se limpia cualquier material en el exterior del anillo. Se pese la muestra y al 0.01 g más cercano. Inmediatamente después de completar el procedimiento descrito anteriormente, se selecciona una muestra representativa de los recortes que quedaron después de empujar el anillo sobre la muestra y los recortes que vinieron de los extremos de la muestra. Se colocan los recortes en una capsula para su secado y determinación de su contenido de agua antes de la prueba.

3.5.2. Saturación de líneas y celda de consolidación.

La saturación del equipo se realiza con el objetivo de eliminar aire atrapado en la celda de consolidación, así se minimiza la posibilidad de adicionar aire a la probeta, con el propósito de obtener resultados confiables.

Se toma la base de la celda de consolidación se coloca en un recipiente para captar el agua que fuese a salir del proceso, previamente se ajusta el aro sello inferior en la base y se coloca la cámara de consolidación, se conecta el transductor de presión de poro, se abre el tornillo de purga del transductor, se abre la válvula manual y se llena la cámara con agua previamente desairada hasta observar que el agua sale por el orificio de purga del transductor, y se espera que salga suficiente agua de la válvula. Considerado ya removido el aire dentro de la celda, se detiene el llenado, se cierra la válvula para mantener la saturación de esta, se coloca y se ajusta el tornillo de purga del transductor. Se retira la cámara de consolidación.

Ahora se toma la parte superior de la celda, colocada sobre un recipiente, se asegura que el tornillo bloquee el movimiento del pistón, este se encuentra mayormente en la parte superior de la tapa de la celda. Se empieza accionar el llenado del Flow Trac mediante el teclado del mismo, se permite el ingreso de agua al cilindro colector hasta un 85 %; posteriormente, con la opción "Jog" permite la salida de flujo de agua por la válvula de salida, se observa el avance de las burbujas de aire por el tubo de conexión hasta eliminar toda presencia de aire, una vez libre de burbujas se conecta el tubo de conexión en la celda – Flow Trac en la tapa superior. Se permite la expulsión de agua por la tapa eliminando así aire atrapad dentro de la misma. Terminado el proceso de saturación de las líneas se procede al montaje de la probeta.

3.5.3.Montaje de la probeta.

Se toma la parte inferior de la celda de consolidación, se retira con cuidado el aro sello de la ranura en la base de la celda de prueba, se limpia la ranura, se cubre ligeramente el aro sello con grasa de silicona y se vuelve a colocar en la ranura, se coloca el conjunto de piedra porosa y una pieza de papel filtro recortado al diámetro de la muestra. Las piedras porosas se hierven por lo menos 15 minutos y se dejan en el agua hasta el montaje de la prueba. La muestra más el anillo de consolidación en la piedra inferior saturada y el papel filtro (con el filo hacia arriba). Se tiene cuidado de evitar el movimiento de la muestra dentro del anillo de consolidación. El anillo de muestra debe estar en el

centro de la piedra. Se coloca una pieza de papel filtro recortado al diámetro de la muestra en la parte superior de la muestra. Se coloca con cuidado la piedra superior en el papel filtro quedando centrada sobre la muestra y se ubica el cabezal sobre la piedra.

Se limpia la superficies superior e inferior de la cámara, se baja sobre el anillo de consolidación (parte interior más grande del diámetro hacia abajo). Se coloca la cámara en el hueco de la base para que haga contacto uniforme con el aro sello. Se ajusta la cámara de consolidación sobre la base, teniendo el conjunto de anillo con probeta, piedras porosas, papel filtro y cabezal en su interior. Se llena la cámara con agua desairada (figura 3.28) el interior de la cámara, una vez llena se sitúa la tapa superior de la celda. Se revisa antes de la tapa superior que el pistón pase a través del manguito de manera que pase la parte inferior de la parte superior. Se retira el aro sello de la parte superior y se coloca en la cámara de modo que la cámara esté en la parte rebajada y haga contacto uniforme con el aro sello. Se alinean los orificios en la parte superior con los orificios en la base, se insertan los pernos y se aprietan. Se empuja con cuidado el pistón dentro de la celda hasta que toque la tapa superior. (Esto empujará un poco de agua a través de la ventilación). Se debe tener cuidado de no alterar la muestra al hacer esto. Se bloquea el pistón en su lugar con el tornillo de fijación.

Se llena el tubo del puente con agua, es decir se permite el paso de agua de la válvula de salida del Flow Trac por la conexión celda – Flow Trac, hasta permitir la liberación de agua por el tupo de conexión de la tapa, se abre la válvula manual de la celda y Se conecta el extremo del tubo de conexión a la válvula manual para completar las conexiones del puente, se permite liberar un poco de agua y finalmente se cierra la válvula manual y la de salida del Flow Trac.

Figura 3.28. Llenado de cámara de consolidación con conjunto de piedras porosas, anillo con muestra, papel filtro y cabezal en su interior.

Figura 3.29. Diagrama de celda de consolidación ensamblada (Romero-Tonix, 2017).

3.5.4. Ejecución de la prueba.

Para arrancar el ensaye, inicialmente se colocan los datos correspondientes en las pestañas de propiedades: Proyecto, Espécimen y Contenido de Agua. En Parámetros de Prueba (Test Parameters, figura 3.30) se selecciona la fase inicial deseada para el comienzo de la prueba, que para todos los ensayes fue de la fase de Inicialización.

Initiali	zation	Saturation	Con	solidation Table
Project	Specimen	Water Content	Read Table	Test Parameters
	Start Phase:	 Initialization Saturation Consolidation 		
Sta	art Compression Curve:	 Initialization Saturation Consolidation 		

Figura 3.30. Pestaña de parámetros de prueba.

Dentro de la pestaña de Inicialización el valor de carga de contacto asignado para todos los ensayos presentados fue de 4 kPa, que se mantuvo por una duración de entre 5 – 10 minutos. Para la pestaña de Saturación se estableció un valor de contrapresión, el cual se fue incrementando a una velocidad

de 1.33 kPa/min, el valor de contrapresión asignado se mantuvo durante 24 horas. En la pestaña de Tabla de Consolidación, se asignó un valor de 0.01 para la relación de equilibrio de presión, que se refiere al valor de la relación u_h / σ_v , y se definieron los valores de velocidad de a prueba en %/min para las etapas de consolidación y descarga.

La prueba se inicia en la opción del menú "Empezar (Start)", el software comienza con el llenado del cilindro colector del Flow trac hasta un llenado de aproximadamente del 75%, finalizando el equipo comenzara a posicionar la placa de carga hasta que exista un contacto entre el pistón de la celda y la celda de carga tipo S, para esto el programa pregunta si la posición del pistón es la adecuada, al aceptar pedirá el software desbloquear el tornillo del pistón liberándolo y poder iniciar la fase de Inicialización.

En automático al terminar la fase de Inicialización, el programa empieza la fase de saturación, por lo que el usuario deberá estar atento para abrir a válvula manual de la celda de consolidación y permitir la aplicación de la contrapresión en la base de la probeta, asegurando una saturación satisfactoria. El proceso de saturación se lleva a cabo al presurizar la celda de consolidación con el ingreso de agua por medio de la unidad Flow Trac, esta presurización se realiza de manera gradual hasta alcanzar el valor establecido, al estar abierta la válvula y el paso de agua a la celda, la presurización se distribuye en toda la probeta. Este proceso de saturación difiere al de otros ensayes como, por ejemplo, al de las pruebas triaxiales, aquí no es posible medir el grado de saturación de la probeta ya que no existe una separación entre la probeta y el medio confinante, no se puede medir el parámetro B de Skempton, sin embargo, como se tiene una contrapresión de 240 kPa y el tiempo es de 25 horas, se deduce que la saturación es segura.

Figura 3.31. Diagrama de fase de consolidación.

Al terminar la fase de Saturación, la siguiente fase se hace de manera manual, ya que la válvula de la celda de consolidación se debe de cerrar antes de iniciar la consolidación, para evitar el drenaje en la base de la probeta. Cerrada la válvula se inicia la fase de consolidación, esta comienza en base a los valores asignados por el usuario. Dentro de este proceso la placa de carga se mueve verticalmente hacia arriba a la velocidad de deformación definida para la realización de la prueba (figura 3.31).

Freevo	Drohoto	Me	zcla		_	$C_{\rm W}$ (0/)			Cur (0/)
Elisaye	FIUDEla	Bentonita	Diatomeas	W0 (70)	e 0	Gw ₀ (%)	Wf (70)	ef	Gw _f (%)
1	1	100	0	167.97	4.482	99.00	124.85	2.721	121.00
2	2	100	0	198.30	5.407	97.00	143.40	3.196	118.00
3	3	100	0	105.30	2.793	100.00	89.80	2.019	117.00
4	4	100	0	109.07	2.937	98.00	85.06	1.699	132.00
5	5	100	0	108.08	2.898	98.00	80.41	1.721	123.00
6	6 - CI	100	0	99.79	2.617	101.00	90.86	1.490	118.00
7	7	100	0	106.17	2.855	98.00	101.99	1.992	135.00
Freeve	Drohoto	Me	zcla			$C_{\rm W}$ (0/)			$C_{\rm M}$ (0/)
Ensaye	Propeta	Bentonita	Diatomeas	W0 (70)	e ₀	Gw ₀ (%)	Wf (70)	ef	GW _f (%)
8	1	80	20	195.74	5.023	101.00	140.30	2.957	123.00
9	2	80	20	166.76	4.368	99.00	69.90	2.510	72.00
10	3	80	20	168.00	4.419	98.00	115.39	2.561	117.00
11	4	80	20	102.11	2.681	99.00	72.46	1.450	129.00
12	5	80	20	106.30	2.795	99.00	75.73	1.545	127.00
13	6 - CI	80	20	102.49	2.761	96.00	91.31	2.178	109.00
14	7	80	20	101.66	2.692	98.00	92.96	2.078	116.00
Encovo	Droboto	Me	zcla		_	$C_{\rm W}$ (9/)	w (0/)	•	$C_{\rm W}$ (9/)
Elisaye	FIUDEla	Bentonita	Diatomeas	W ₀ (70)	e 0	Gw ₀ (%)	W _f (70)	e _f	Gw _f (%)
15	1	60	40	135.54	3.400	100.00	75.73	1.644	116.00
16	2	60	40	139.73	3.506	100.00	92.76	1.944	120.00
17	3	60	40	97.81	2.569	96.00	70.74	1.414	126.00
18	4 - CI	60	40	95.73	2.448	98.00	83.75	1.900	111.00
19	5	60	40	97.23	2.456	99.00	87.06	1.909	114.00
Encove	Droboto	Me	zcla			$C_{\rm W}$ (9/)	· (0/)		$C_{\rm W}$ (9/)
Ensaye	FIODela	Caolinita	Diatomeas	W ₀ (70)	e ₀	GW ₀ (%)	Wf (70)	e _f	GW _f (70)
20	1	100	0	48.41	8.822	14.16	36.36	0.632	148.00

Tabla 3.3. Programa de ensayes realizados, condiciones iniciales y condiciones finales.

La fase de consolidación podrá tener tantos ciclos como el usuario lo desee, esta información se debe de insertar dentro de la Tabla de Consolidación, esto antes de empezar la prueba o bien antes de finalizar un ciclo de carga o descarga en proceso.

Al finalizar las etapas de la fase de consolidación, el pistón se debe bloquear y posteriormente se debe llevar a cero el valor de contrapresión en la celda de consolidación, por lo que se debe de abrir la válvula de salida, y cerrar la válvula de suministro. En el menú "Control", se cambia el valor contenido en el cuadro de texto para llevar a cero la presión de la celda y la carga, se presiona el botón "Go (Ir)", y finalmente se cierra la ventana. Ya que se asegura no tener presión dentro de la celda, se procede a bajar la placa de carga hasta que exista margen para poder mover la celda del marco de carga y

proceder a su desconexión y desmontaje.

Para obtener el contenido de agua posterior a la prueba, previamente se pesa una cápsula y posteriormente esta misma con la muestra de suelo desmontada del anillo de consolidación, se lleva al horno para su secado y finalmente se pesa en seco (figura 3.32).

Figura 3.32. Desmonte y obtención de contenido de agua posterior al ensaye.

3.6. Velocidad de ensayes.

El efecto de la velocidad de deformación en las propiedades mecánicas del suelo puede tener importantes implicaciones para la ingeniería. En particular, en los parámetros inferidos de pruebas in situ (velocidad de deformación estimada $\dot{\varepsilon} = 10^{-3} \cdot 10^{-5}$ %/hr) y medidas realizadas en un laboratorio estándar (conducen a $\dot{\varepsilon} = 0.5 - 5$ % / h) debe considerarse cuidadosamente durante la selección de parámetros de diseño para sistemas de ingeniería donde la velocidad de deformación es típicamente entre $\dot{\varepsilon} = 10^{-2}$ y 10^{-3} % / h (Bjerrum, 1972; Prapaharan et al., 1989).

De las más recientes investigaciones sobre ensayes de CSR, en el suelo de la CDMX se tiene lo siguiente:

- La velocidad de ensaye sugerido para la arcilla del ex lago de Texcoco es ἐ = 0.15 %/hr. Se permite obtener similitud entre el esfuerzo de fluencia y el esfuerzo de preconsolidación de campo, σ'y ≈ σ'pc. (Damián, E., Flores, O., 2018)
- El suelo de la ciudad de México (Parque Ramón López Velarde), la prueba CSR = 0.50%/hr es la que mayor cercanía tiene con respecto a los resultados de la arcilla del ex lago de Texcoco. (Romero, W. 2017) (Damián, E., Flores, O., 2018).

Para la presente investigación se eligió realizar las pruebas de velocidad de deformación constante a una velocidad del 0.5%/hr, con base en los resultados de otras investigaciones. Así mismo, se decidió realizar un par de pruebas CSR variando en una misma probeta la velocidad de deformación, entre los rangos de 0.125% - 5%/hr, con el fin de obtener un rango en el cual se pueda comparar velocidades muy bajas (0.125%/hr), intermedias ((0.5%/hr) y altas (5%/hr).

El efecto de la velocidad de deformación afecta directamente la compresibilidad de los suelos finos, por lo tanto, el esfuerzo de fluencia aumenta al incrementar la velocidad y decrece con un valor bajo, generalmente las curvas de compresibilidad a diferentes velocidades de deformación son paralelas

La norma D4186-89 propone elegir el valor de la velocidad de deformación a partir del límite líquido, donde su rango máximo es de 120%-140%, estos valores se encuentran muy por debajo del mineral de arcilla analizado en este trabajo (bentonita de la familia de Montmorillonita, con límite líquido de 195%), del tipo de las arcillas de la Ciudad de México.

		Velocidad de	e deformación
Ensaye	Mezcla	s-1	% / hr
1	100B	1.40E-06	0.5
2	100B	1.40E-06	0.5
3	80B-20D	1.40E-06	0.5
4	80B-20D	1.40E-06	0.5
5	80B-20D	1.40E-06	0.5
6	80B-20D	1.40E-06	0.5
7	80B-20D	1.40E-06	0.5
8	60B-40D	1.40E-06	0.5
9	60B-40D	1.40E-06	0.5
10	100K	1.40E-06	0.5
11	100 B	1.40E-06	0.5
12	100 B	1.40E-06	0.5
13	60B-40D	1.40E-06	0.5
14	100 B	-	CI -24 hr
15	80B-20D	-	CI -24 hr
16	60B-40D	-	CI -24 hr
17	100B	3.5E-07 - 1.4E-05	0.125 - 5
18	80B20D	3.5E-07 - 1.4E-05	0.125 - 5
19	60B-40D	3.5E-07 - 1.4E-05	0.125 - 5
20	60B-40D	3.5E-07 - 1.4E-05	0.125 - 5

Tabla 3.4. Programa de ensayes realizados.

Con fines de comparación se realizaron ensayes de compresibilidad convencional para cada una de las mezclas, es decir, con carga incremental (CI) a cada 24 horas.

3.7. Definición de variables.

De los resultados de cada uno de los ensayes, se determinaron las variables siguientes:

3.7.1.Deformación axial.

Por la presencia de variabilidad en la relación de vacíos inicial de las probetas, la deformación se presenta en términos de porcentaje y deformación unitaria, según la siguiente expresión:

$$\varepsilon = \frac{\Delta H_n}{H_0} x 100$$

Donde:

 $\Delta H_n-Cambio$ en la altura de la probeta para cada incremento H_0- altura inicial de la probeta

3.7.2. Velocidad de deformación.

La velocidad de deformación para cada incremento, n, se calcula con la siguiente expresión:

$$\dot{\varepsilon}_n = \frac{\varepsilon_n - \varepsilon_{n-1}}{t_n - t_{n-1}}$$

Donde:

 $\varepsilon_n - deformación vertical t_n - tiempo$

3.7.3. Esfuerzo efectivo.

$$\sigma_n' = \left(\sigma_n^3 - 2\sigma_n^2 u_n + \sigma_n \Delta u_n^2\right)^{1/3}$$

Donde:

 $\sigma'_n - esfuerzo efectivo$ $\sigma_n - esfuerzo total$ $\Delta u_n - incremento en el exceso de presión de poro$

3.7.4.Coeficiente de permeabilidad.

$$k_{n} = -\frac{0.43\dot{\varepsilon}_{n}H_{0}H_{n}\gamma_{w}}{2\sigma_{n}^{\prime}\log\left(\frac{\Delta u_{n}}{\sigma_{n}}\right)}$$

Donde:

 $\dot{\varepsilon}_n - velocidad de deformación$ $<math>\gamma_w - peso específico del agua, 9.81 kN/m^3$

3.7.5.Coeficiente de compresibilidad volumétrica

Este se define como el cambio de volumen por unidad de incremento de esfuerzo efectivo, se define con la siguiente expresión:

$$m_{v} = \frac{\varepsilon_{n} - \varepsilon_{n-1}}{\sigma_{n} - \sigma_{n-1}}$$

3.7.6.Coeficiente de consolidación.

Se define con la siguiente expresión:

$$C_{v} = -\frac{H_{0}H_{n}log\left(\frac{\sigma_{n}}{\sigma_{n-1}}\right)}{2(t_{n} - t_{n-1})log\left(\frac{\Delta u_{n}}{\sigma_{n}}\right)}$$

3.7.7.Función, F3.

Las condiciones transitorias se dan cuando el factor tiempo, T_v , es menor a 0.5, mientras que el estado estacionario ocurre cuando $T_v \ge 0.5$. Wissa, et al. (1971), propusieron un método para calcular T_v como

una función de F_3 . La cual se expresa como:

$$F_n = 1 - \frac{\Delta u_n - \Delta u_0}{\log\left(\frac{\sigma_n}{\sigma_0}\right)}$$

Donde:

 $\Delta u_0 - lectura inicial durante la consolidación en el incremento en el exceso de presión de poro$

 σ_0 – lectura inicial durante la consolidación de esfuerzo total.

 F_3 es una función no lineal de T_v , y consecuentemente T_v se puede encontrar por iteración o deforma gráfica, por lo que el límite de las condiciones transitorias se presenta cuando $F_3 < 0.4$ y $T_v < 0.5$. Por lo tanto, cuando $F_3 \ge 0.4$, se presentan las condiciones del estado estacionario.

CAPÍTULO 4 RESULTADOS

4.1. Introducción.

En este capítulo se presentan los resultados de las pruebas, la obtención de las propiedades índice, las pruebas de compresibilidad para las velocidades mencionadas en la etapa experimental. Se hace una comparación de los tres tipos de mezclas de Diatomeas – bentonita, con pruebas realizadas anteriormente al suelo de la Ciudad de México a la misma velocidad, además comparar con una prueba de mineral de arcilla de 100% caolinita, y pruebas convencionales de carga incremental a cada 24 horas.

4.2. Propiedades índice.

Mezcla	Contenido de diatomeas	WP	WL	IP	Gs
	%	%	%	%	
100B	0.0	48.73	191.93	143.2	2.64
80B-20D	20.0	57.61	194.74	137.13	2.59
60B-40D	40.0	58.57	164.58	106.01	2.51

Tabla 4.1. Límites de consistencia y densidad de sólidos según el contenido de diatomeas.

Figura 4.1. Límites de consistencia según el contenido de diatomeas.

Para las mezclas Diatomeas – Bentonita se observa cómo para una proporción en la mezcla del 20% de diatomeas incrementa el límite líquido, en cambio al incrementar la proporción de diatomeas al 40% de la mezcla se ve claramente un decrecimiento en el límite líquido, la determinación del límite líquido se ejecutó conforme a la norma ASTM D-4138, para corroborar estos valores el procedimiento se realizó 3 veces, al final se presenta el promedio. Algunos investigadores (Losic et al., 2007), determinan que la presencia de diatomeas repercute en el aumento de su porosidad y por consiguiente en el incremento del contenido de agua natural. En cambio, el límite plástico va en aumento con el contenido de diatomeas, y el índice de plasticidad aumenta con la presencia de las diatomeas.

Figura 4.2. Densidad de sólidos según el contenido de diatomeas.

Se aprecia que la densidad de sólidos se reduce conforme aumenta la proporción de diatomeas en las mezclas, va de valores de una mezcla 100% bentonita con 2.64 a una mezcla con el 40% diatomeas – 60% Bentonita con un valor de 2.51. Se ve que va en decremento casi de manera lineal.

Comparando estos valores, con los obtenidos por algunos autores del suelo de la CDMX el cual es del orden de 2.4 a 2.5, el suelo de la Ciudad de México puede contener del 40% al 60% de microfósiles en su composición lo cual concuerda con los valores obtenidos de las mezclas de 60B40D, Mesri (1975) menciona que los microfósiles representan hasta un 65% de la muestra.

Figura 4.3. Relación de vacíos inicial según el contenido de diatomeas.

La figura 4.3 muestra la relación de vacíos inicial para cada una de las mezclas, todas las muestras de esta gráfica inicialmente tenían contenidos de agua entre 97% y 102%. Se ve que para condiciones iniciales con contenidos de agua muy similares las muestras presentan una relación de vacíos casi igual para cada una de las muestras ensayadas. Esto puede depender de las condiciones de formación de las muestras.

Encovo	Probata	Me	ezcla		Ws	Ww	w (%)	N	Vm	Vs	Vv	Vw	0	Gw (%)	n (%)
Elisaye	FIUDEIa	Bentonita	Diatomeas	w _m (9)	(g)	(g)	vv (70)	Υm	(cm ³)	(cm ³)	(cm ³)	(cm ³)	e	Gw (76)	11 (70)
1	1	100	0	103.80	38.74	65.06	167.97	1.290	80.44	14.67	65.77	65.06	4.482	98.93%	81.76%
2	2	100	0	98.87	33.14	65.73	198.30	1.229	80.44	12.55	67.89	65.73	5.407	96.82%	84.39%
3	3	100	0	114.93	55.98	58.95	105.30	1.429	80.44	21.21	59.23	58.95	2.793	99.52%	73.64%
4	4	100	0	112.77	53.94	58.83	109.07	1.402	80.44	20.43	60.01	58.83	2.937	98.04%	74.60%
5	5	100	0	113.35	54.47	58.88	108.08	1.409	80.44	20.63	59.81	58.88	2.898	98.44%	74.35%
6	6 - CI	100	0	117.31	58.72	58.59	99.79	1.458	80.44	22.24	58.20	58.59	2.617	100.68%	72.35%
7	7	100	0	113.56	55.08	58.48	106.17	1.412	80.44	20.86	59.58	58.48	2.855	98.16%	74.06%
Encovo	Drobota	Me	zcla	w (a)	Ws	Ww	M (0/)	V	Vm	Vs	Vv	Vw		Gw (%)	n (%)
Elisaye	FIUDEla	Bentonita	Diatomeas	w _m (9)	(g)	(g)	vv (70)	Υm	(cm ³)	(cm ³)	(cm ³)	(cm ³)	e	Gw (76)	11 (70)
8	1	80	20	102.30	34.59	67.71	195.74	1.272	80.44	13.36	67.08	67.71	5.023	100.93%	83.40%
9	2	80	20	103.53	38.81	64.72	166.76	1.287	80.44	14.98	65.46	64.72	4.368	98.88%	81.37%
10	3	80	20	103.04	38.45	64.59	168.00	1.281	80.44	14.84	65.60	64.59	4.419	98.47%	81.55%
11	4	80	20	114.39	56.60	57.79	102.11	1.422	80.44	21.85	58.59	57.79	2.681	98.64%	72.83%
12	5	80	20	113.26	54.90	58.36	106.30	1.408	80.44	21.20	59.24	58.36	2.795	98.51%	73.65%
		1					100.10	4 005	00.44	04.00	50.05	F0 70	0 704	00.400/	70 440/
13	6 - CI	80	20	112.18	55.40	56.78	102.49	1.395	80.44	21.39	59.05	56.78	2.761	96.16%	73.41%

Tabla 4.2. Resumen cor	n propiedades índice	y volumétricas iniciales	para todas las pruebas.
------------------------	----------------------	--------------------------	-------------------------

Encovo	Proboto	Me	ezcla	w (a)	Ws	Ww	w (%)	V	Vm	Vs	Vv	Vw		Gw (%)	n (%)
Elisaye	FIUDela	Bentonita	Diatomeas	w _m (g)	(g)	(g)	W (70)	Υm	(cm ³)	(cm ³)	(cm ³)	(cm ³)	e	Gw (76)	11 (70)
15	1	60	40	108.19	45.93	62.26	135.54	1.345	80.44	18.30	62.14	62.26	3.396	100.19%	77.25%
16	2	60	40	107.41	44.80	62.61	139.73	1.335	80.44	17.85	62.59	62.61	3.506	100.03%	77.81%
17	3	60	40	111.91	56.57	55.34	97.81	1.391	80.44	22.54	57.90	55.34	2.569	95.57%	71.98%
18	4 - CI	60	40	114.63	58.57	56.06	95.73	1.425	80.44	23.33	57.11	56.06	2.448	98.17%	70.99%
19	5	60	40	115.24	58.43	56.81	97.23	1.433	80.44	23.28	57.16	56.81	2.456	99.39%	71.06%
Encovo	Probota	Me	ezcla	w (a)	Ws	Ww	w (%)	V	Vm	Vs	Vv	Vw		Gw (%)	n (%)
Elisaye	FIUDela	Caolinita	Diatomeas	w _m (g)	(g)	(g)	W (70)	Υm	(cm ³)	(cm ³)	(cm ³)	(cm ³)	e	Gw (76)	11 (70)
20	1	100	0	31.36	21.13	10.23	48.41	0.390	80.440	8.19	72.25	10.23	8.822	14.16%	89.82%

Tabla 4.3. Resumen con propiedades índice y volumétricas finales para todas las pruebas.

Ensave	Probeta	Me	zcla	w (a)	w. (a)	w (a)	w (%)	V	Vm	Vs	Vv	Vw	۵	Gw (%)	n (%)
LIISaye	TIODEIA	Bentonita	Diatomeas	VVm (9)	ws (9)	ww (9)	W (70)	Υm	(cm ³)	(cm ³)	(cm ³)	(cm ³)		000(70)	11 (70)
1	1	100	0	83.89	37.31	46.58	124.85	1.595	52.59	14.13	38.46	46.58	2.721	121.12%	73.13%
2	2	100	0	79.52	32.67	46.85	143.40	1.531	51.93	12.38	39.55	46.85	3.196	118.44%	76.17%
3	3	100	0	102.09	53.79	48.30	89.80	1.660	61.51	20.37	41.14	48.30	2.019	117.42%	66.88%
4	4	100	0	96.62	52.21	44.41	85.06	1.810	53.37	19.78	33.59	44.41	1.699	132.20%	62.94%
5	5	100	0	95.04	52.68	42.36	80.41	1.750	54.30	19.95	34.35	42.36	1.721	123.34%	63.25%
6	6 - CI	100	0	109.86	57.56	52.30	90.86	1.658	66.26	21.80	44.46	52.30	2.039	117.64%	67.09%
7	7	100	0	103.24	51.11	52.13	101.99	1.782	57.92	19.36	38.56	52.13	1.992	135.19%	66.57%
F a a a a	Drokata	Me	zcla	()					Vm	Vs	Vv	Vw	_	O ₁₁₁ (0/)	
Ensaye	Probeta	Bentonita	Diatomeas	w _m (g)	w _s (g)	w _w (g)	W (%)	Ϋ́m	(cm ³)	(cm ³)	(cm ³)	(cm ³)	е	GW (%)	n (%)
8	1	80	20	82.40	34.29	48.11	140.30	1.573	52.40	13.24	39.16	48.11	2.958	122.85%	74.73%
9	2	80	20	65.31	38.44	26.87	69.90	1.254	52.09	14.84	37.25	26.87	2.510	72.14%	71.51%
10	3	80	20	82.17	38.15	44.02	115.39	1.567	52.45	14.73	37.72	44.02	2.561	116.70%	71.92%
11	4	80	20	95.61	55.44	40.17	72.46	1.823	52.45	21.40	31.05	40.17	1.450	129.40%	59.19%
12	5	80	20	94.21	53.61	40.60	75.73	1.788	52.68	20.70	31.98	40.60	1.545	126.95%	60.71%
13	6 - CI	80	20	103.27	53.98	49.29	91.31	1.559	66.23	20.84	45.39	49.29	2.178	108.60%	68.53%
14	7	80	20	105.20	54.52	50.68	92.96	1.623	64.80	21.05	43.75	50.68	2.078	115.84%	67.52%
F	Durkate	Me	zcla			(-)	(0/)		Vm	Vs	Vv	Vw	_	0(0/.)	
Ensaye	Probeta	Bentonita	Diatomeas	w _m (g)	w _s (g)	w _w (g)	W (%)	Ϋ́m	(cm ³)	(cm ³)	(cm ³)	(cm ³)	е	GW (%)	n (%)
15	1	60	40	86.60	49.28	37.32	75.73	1.668	51.91	19.63	32.28	37.32	1.644	115.63%	62.18%
16	2	60	40	83.77	43.46	40.31	92.76	1.644	50.97	17.31	33.66	40.31	1.944	119.78%	66.03%
17	3	60	40	95.07	55.68	39.39	70.74	1.775	53.56	22.18	31.38	39.39	1.414	125.54%	58.58%
18	4 - CI	60	40	106.39	57.90	48.49	83.75	1.590	66.90	23.07	43.83	48.49	1.900	110.63%	65.52%
19	5	60	40	107.58	57.51	50.07	87.06	1.614	66.65	22.91	43.74	50.07	1.909	114.48%	65.62%
F	Deskart	Me	zcla				(0()		Vm	Vs	Vv	Vw	_	0(0/.)	
⊨nsaye	Probeta	Caolinita	Diatomeas	w _m (g)	w _s (g)	w _w (g)	W (%)	Υm	(cm ³)	(cm ³)	(cm ³)	(cm ³)	е	GW (%)	n (%)
20	1	100	0	122.87	90.11	32.76	36.36	2.156	56.99	34.93	22.06	32.76	0.632	148.49%	38.72%

4.3. Pruebas de compresibilidad con incrementos de carga a cada 24 horas eodómetro.

Se realizaron pruebas convencionales para cada una de las mezclas 100B, 80B20D, 60B40D y 100K, esto a manera de comparar las pruebas de velocidad de deformación constante con una prueba convencional de incrementos. En las gráficas de las mezclas de bentonita con diversos contenidos de diatomeas se definen las mismas pendientes que en las curvas de los ensayes a velocidad de deformación controlada (0.5%/h). Una comparación de cada una de las mezclas se puede observar en la figura 4.4.

Se puede ver como con el contenido de diatomeas las curvas de compresibilidad se desplazan a la derecha, aumentando su esfuerzo de fluencia, para la mezcla 80B20D a esfuerzos verticales de 190 kPa tienden a de deformaciones similares que una mezcla 100B, para los ensayes se procuró que las probetas contengan el mismo contenido de agua, ya que este es un factor importante a la hora de comparar los resultados de las pruebas del mismo mineral de arcilla y que sólo el contenido de diatomeas sea el factor variante entre ellas. También se aprecia que las mezclas con bentonita tienen una compresibilidad mayor a la mezcla de 100K.

Figura 4.4. Pruebas de compresibilidad para las mezclas 100B, 80B20D, 60B40D y 100K con incrementos de carga a cada 24 horas.

Figura 4.5. Índices de compresión para cada incremento de carga a cada 24 horas.

Figura 4.6. Índices de expansión para cada incremento de carga a cada 24 horas.

En las figuras 4.5 y 4.6, se presentan gráficas de los índices de compresión y recompresión para cada incremento de carga a cada 24 horas. De donde para el índice de compresión se observa un aumento conforme el incremento de esfuerzo vertical, se tiene una tendencia lineal para cada una de las mezclas, para las mezclas 100B y 80B20D son pendientes muy similares, en cambio para la de 60B40D disminuye, lo cual podría ser debido al alto contenido de diatomeas. Para los índices de recompresión para esfuerzos verticales dentro del rango 37.50 – 285.00 kPa, la recuperación de la probeta es mínima, en cambio, al llegar a un mínimo esfuerzo vertical de 25 kPa da un gran salto de casi el doble del que se traía en etapas anteriores, para las mezclas 100B y 80B20D tienen tendencias muy similares, en cambio para la mezcla de 60B40D el índice de recompresión es menor pero sigue la misma tendencia en casi paralelo de las mezclas de 100B y 80B20D.

En las figuras 4.7 y 4.8 se presentan las tendencias de la variación de los coeficientes de compresibilidad y variación volumétrica para las tres mezclas, en cada incremento de carga a cada 24 horas, es claro que estos coeficientes disminuyen con el contenido de diatomeas.

Figura 4.7. Coeficiente de compresibilidad para cada incremento de carga a cada 24 horas.

Figura 4.8. Coeficiente de variación volumétrica para cada incremento de carga a cada 24 horas.

Figura 4.9. Esfuerzo de fluencia para cada una de las mezclas.

Figura 4.10. Variación de esfuerzo vertical con el contenido de diatomeas.

De la figura 4.9, se aprecia como el esfuerzo de fluencia va en incremento con el contenido de diatomeas, lo cual es claro en la figura 4.4 por el desplazamiento de las curvas de compresibilidad ante la presencia de diatomeas.

De la figura 4.10, se aprecia que las deformaciones incrementan con un contenido de diatomeas del 20%. En 2017 Díaz-Rodríguez, et al. presentan que para mezclas de caolinita-diatomeas existe un incremento máximo en mezclas con una proporción del 15% de diatomeas.

4.4. Pruebas de compresibilidad a velocidad de deformación constante.

4.4.1.Inicialización.

Los ensayes de velocidad de deformación constante inician con la etapa de inicialización, como ya se vio en la etapa experimental se aplican 4 kPa y se mantiene por una duración que va de 5 a 10 min, como se puede apreciar en la figura 4.11. En esta fase se presenta una gráfica muy similar para cada uno de los ensayes.

Figura 4.11. Fase de inicialización.

4.4.2.Saturación.

Finalizada la fase de inicialización, se comienza la fase de saturación en la cual se aplica una contrapresión de 240 kPa, la cual se llega a una velocidad que va incrementando gradualmente a una velocidad de 1.33 kPa/min, una vez al llegar al valor indicado, éste se mantiene por 24 horas, el proceso se describe por medio de la figura 4.12. Esta fase se ejecutó exactamente igual para cada uno de los ensayes.

Figura 4.12. Fase de saturación.

4.4.3.Mezcla 100B

Ensaye	Probeta	Ме	zcla	w ₀ (%)	e ₀	Gw ₀	w _f (%)	e _f	Gw _f	σ'y (kPa)	Сс	Cr	Cs
		Bentonita	Diatomeas			(70)			(70)	(KFa)			
1	1	100	0	167.97	4.482	99.00	124.85	2.721	121.00	48	0.6	0.02	0.01
2	2	100	0	198.30	5.407	97.00	143.40	3.196	118.00	38	0.65	0.01	0.01
3	3	100	0	105.30	2.793	100.00	89.80	2.019	117.00	52	0.38	0.02	0.01
4	4	100	0	109.07	2.937	98.00	85.06	1.699	132.00	53	0.36	0.02	0.01
5	5	100	0	108.08	2.898	98.00	80.41	1.721	123.00	59	0.39	0.01	0.02
6	6 - CI	100	0	99.79	2.617	101.00	90.86	1.490	118.00	45	0.24	0.16	0.03
7	7	100	0	106.17	2.855	98.00	101.99	1.992	135.00	Varia	ndo ve	elocida	d

Tabla 4.4. Propiedades de la mezcla 100B.

Figura 4.13. Curvas de compresibilidad a 0.5%/h (100B 1, 100B 2), comparada con una prueba de carga incremental (100B CI).

Al inicio de la presente investigación se siguió el procedimiento para la elaboración de las mezclas igual que el utilizado para mezclas de Caolinita – Diatomea (Moreno Arriaga, 2018), el cual consiste en agregar un contenido de agua al material seco igual al límite líquido de cada una de las mezclas, para la mezcla de 100% bentonita éste fue de 191.93%, es por eso que las pruebas 100 B1 y 100 B2, tienen contenidos de agua altos, debido a la poca manejabilidad de la mezcla, se probó con distintos contenidos de agua, encontrando que para un contenido de agua del 100%, la mezcla se encuentra más manejable. Esto mismo pasa para ciertas probetas de la mezcla 80B – 20D.

De la figura 4.13 se observa que las curvas de compresibilidad para la velocidad de 0.5%/hr, están en función de su relación de vacíos inicial o contenido de agua inicial, de lado izquierdo tenemos una probeta cuya relación de vacíos es de 5.407, y posteriormente probetas en las cuales su relación de vacíos va disminuyendo. La curva de 100B CI (carga incremental) se montó con un contenido de agua de 99.79%, y fue fabricada con contenido de agua igual a 100%. Así mismo, entre menos contenido de agua tiene la probeta ensayada más grande es su expansión durante el proceso de saturación, para una probeta con contenido de agua de 198.30% se tuvo una expansión de 1.26% de la altura inicial, y para una probeta con contenido de agua del 108.08% se tuvo una expansión de 3.56%, esto se puede explicar al grado de saturación de cada probeta o capacidad de absorción del mineral de arcilla, y debido a la doble capa eléctrica de agua de la partícula de arcilla (montmorillonita) que es de alrededor de 200 Å.

Figura 4.14. Curvas de compresibilidad a 0.5%/h (100B 3, 100B 4, 100B 5, 100B CI).

Al tener menos relación de vacíos inicial y menor contenido de agua inicial las partículas de los sólidos tienden a juntarse, la probeta se estructura y su esfuerzo de fluencia aumenta, su índice de compresión disminuye, mientras que los índices de recompresión y expansión permanecen iguales para todas las pruebas. Esto ocurre para ambas probetas con sus respectivos valores de relación de vacíos y contenidos de agua, según la fabricación de las muestras.

De la figura 4.15 se observa que para probetas con un alto contenido de agua inicial o relación de vacíos inicial (mayor a 4.000) es muy poco probable que exista un significativo aumento en el exceso de presión de poro, mientras que para las probetas que tienen una relación de vacíos inicial bajo (menor a 3.000) o con contenidos de agua alrededor del 100% el incremento de exceso de presión de poro es significativo a partir de 160 kPa en la probeta 100B 3 y 211 kPa para la probeta 100B 4, esto puede ser a que la Bentonita tiende a ser muy impermeable.

Figura 4.16. Curvas de exceso de presión de poro a 0.5%/h (100B 1, 100B 2, 100B 3, 100B 4, 100B 5).

De la figura 4.16 para las curvas de exceso de presión de poro en función de la relación u / σ_v se observa que para probetas con un bajo contenido de agua de 105.00 – 109.00% o relación de vacíos inicial baja 2.793 – 2.937, rebasa la relación u / $\sigma_v \le 30.00\%$, mientras que para las probetas ensayadas con contenido de agua inicial alto de 167.00 – 198.00% y relación de vacíos inicial alta de 4.482 – 5.407 caen dentro de una relación u / $\sigma_v \le 30.00\%$.

Figura 4.17. Curva de compresibilidad variando la velocidad de deformación de 0.125% a 5.0%/h, para una misma probeta de la mezcla de 100B.

Como ya se ha visto en otras investigaciones Bell (1977) en arcillas de Belfast, Graham (1983) arcillas lacustres de Ottawa, Leroueil, et al, 1996, en arcillas remoldeadas y artificialmente consolidadas de la región Jonquiére, Quebec, al haber un cambio en la velocidad de deformación la curva de compresibilidad se desplaza dependiendo del aumento o decremento en la velocidad. Para la mezcla de 100B, se inició la prueba a una velocidad de 5%/h, dando lugar a que el material solo se deformo poco menos de un 2.0%, se descargó totalmente y se inició una nueva etapa con una velocidad baja de 0.125%/h, se realizó este mismo proceso de carga y descarga dando como resultado 3 etapas para la velocidad de 5.0%/h y 2 etapas para la de 0.125%/h. Al final se obtuvo el grafico mostrado en la figura 4.17, donde se aprecia como al cambio de velocidad la curva se reincorpora según sea su velocidad siguiendo su misma trayectoria. Además, se observa que son prácticamente paralelas una curva de otra. De la gráfica 4.18, se observa como para la velocidad lenta (0.125%/h) el exceso de presión de poro es poco en comparación con el aumento en el exceso de presión de poro de una velocidad alta (5.0%/h).

CAPÍTULO 4.

Figura 4.18. Curva de exceso de presión de poro a 0.125%/h - 5.0%/h, para una misma probeta de la mezcla 100B.

4.4.4.Mezcla 80B20D

Encovo	Droboto	Me	ezcla	· · · · (0/)		Gw ₀	··· (0/)		Gw _f	σ'y	Co	Cr	Cc
Elisaye	FIUDEIa	Bentonita	Diatomeas	W ₀ (70)	e ₀	(%)	Wf (70)	e _f	(%)	(kPa)		C	LS
8	1	80	20	195.74	5.023	101.00	140.30	2.957	123.00	52	0.65	0.02	0.02
9	2	80	20	166.76	4.368	99.00	69.90	2.510	72.00	52	0.59	0.01	0.02
10	3	80	20	168.00	4.419	98.00	115.39	2.561	117.00	56	0.68	0.01	0.01
11	4	80	20	102.11	2.681	99.00	72.46	1.450	129.00	78	0.42	0.01	0.01
12	5	80	20	106.30	2.795	99.00	75.73	1.545	127.00	79	0.47	0.01	0.01
13	6 - CI	80	20	102.49	2.761	96.00	91.31	2.178	109.00	65	0.38	0.02	0.02
14	7	80	20	101.66	2.692	98.00	92.96	2.078	116.00	Varia	ndo ve	elocida	ıd

Tabla 4.5. Propiedades de la mezcla 80B20D.

Figura 4.19. Curvas de compresibilidad a 0.5%/h (80B20D 1, 80B20D 2, 80B20D 3, 80B20D CI).

De la figura 4.19 al igual que para la mezcla de 100B, se observa que las curvas de compresibilidad para una velocidad de deformación del 0.5%/h, están en función de su relación de vacíos inicial o contenido de agua, de lado izquierdo tenemos una probeta cuya relación de vacíos es de 5.023, y posteriormente probetas en las cuales su relación de vacíos inicial y contenido de agua va disminuyendo. Lo mismo ocurre en la figura 4.20, existe un ligero desplazamiento entre cada una de las curvas, quedando de lado izquierdo la de menor relación de vacíos inicial (2.795) y contenido de

agua (106.30%). La curva de 80B – 20D CI (carga incremental) se montó con un contenido de agua de 102.49% y una relación de vacíos de 2.761, esta fue fabricada con contenido de agua igual al 100%.

Debido a la estructuración de la probeta se observa cómo su esfuerzo de fluencia aumenta y su índice de compresión disminuye, mientras que los índices de recompresión y expansión permanecen iguales para todas las pruebas.

Para una relación de vacíos inicial menor (2.795) y con contenido de agua inicial bajo (106.30%) la probeta ensayada tendrá una mayor expansión en la etapa de saturación, para una probeta con contenido de agua de 195.74% y relación de vacíos de 5.023 se tuvo una expansión de 1.27% de la altura inicial, y para una probeta con contenido de agua del 106.30% y relación de vacíos es de 2.795 se tuvo una expansión de 1.76%, esto se puede explicar al grado de saturación de cada probeta o capacidad de absorción del mineral de arcilla, y debido a la doble capa eléctrica de agua de la partícula de arcilla (montmorillonita) que es de alrededor de 200 Å.

Figura 4.20. Curvas de compresibilidad a 0.5%/h (80B20D 4, 80B20D 5, 80B20D CI).

Figura 4.21. Curvas de compresibilidad a 0.5%/h (80B20D 1, 80B20D 2, 80B20D 3, 80B20D 4, 80B20D 5, 80B20D CI).

Figura 4.22. Curvas de exceso de presión de poro a 0.5%/h (80B20D 1, 80B20D 2, 80B20D 3, 80B20D 4, 80B20D 5)

De la figura 4.22 se observa, que para probetas con una relación de vacíos mayor (4.000 - 5.023) y con contenido de agua alto (165.00% - 196.00%) el incremento en el exceso de presión de poro se eleva para esfuerzos de 76 kPa en la probeta 80B20D 1 y en 95 kPa para la probeta 80B20D 3, en cambio, para las probetas con contenidos de agua alrededor del 100% o relación de vacíos de 2.700 el incremento de exceso de presión de poro empieza en esfuerzos arriba de 200 kPa.

Figura 4.23. Curvas de exceso de presión de poro a 0.5%/h (80B20D 1, 80B20D 2, 80B20D 3, 80B20D 4, 80B20D 5)

De la figura 4.23 para las curvas de exceso de presión de poro en función de la relación u / σ_v se observa que para probetas con un bajo contenido de agua de 105.00 – 109.00% o relación de vacíos inicial baja 2.681 – 2.795, caen dentro de una relación u / $\sigma_v \leq 30.00\%$, mientras que para las probetas ensayadas con contenido de agua inicial alto de 168.00 – 196.00% y relación de vacíos inicial alta de 4.419 – 5.023 rebasa la relación u / $\sigma_v \leq 30.00\%$, caso contrario a la mezcla 100B sin diatomeas.

Figura 4.24. Curva de compresibilidad variando la velocidad de deformación de 0.125% a 5.0%/h, para una misma probeta de la mezcla de 80B20D.

Como ya se ha visto en otras investigaciones Bell (1977) en arcillas de Belfast, Graham (1983) arcillas lacustres de Ottawa, Leroueil, et al., 1996, en arcillas remoldeadas y artificialmente consolidadas de la región Jonquiére, Quebec, al haber un cambio en la velocidad de deformación la curva de compresibilidad se desplaza, dependiendo del aumento o decremento en la velocidad. Para la mezcla de 80B40D se inició la prueba a una velocidad de 5%/h, dando lugar a que el material se deformara muy poco, se descargó totalmente y se inició una nueva etapa con una velocidad baja de 0.125%/h, se realizó este mismo proceso de carga y descarga, dando como resultado 3 etapas para la velocidad de 5%/h y 2 etapas para la de 0.125%/h. Al final se obtuvo el gráfico mostrado en la figura 4.24, donde se aprecia como al cambio de velocidad la curva se reincorpora según sea su velocidad siguiendo su misma trayectoria. De la gráfica 4.25, se observa cómo para la velocidad lenta (0.125%/h) el exceso de presión de poro es poco (menor a 30 kPa) en comparación con el aumento en el exceso de presión de poro de una velocidad alta (5%/h).

CAPÍTULO 4.

Figura 4.25. Curva de exceso de presión de poro variando la velocidad de deformación de 0.125% a 5.0%/h, para una misma probeta de la mezcla de 80B20D.

De la figura 4.25, se observa cómo para una velocidad lenta de 0.125%/h se tienen incrementos en el exceso de presión de poro bajos de hasta 23 kPa, en cambio al aumentar la velocidad a 5.0%/h se incrementa el exceso de presión de poro para esta mezcla de 100B hasta de 180 kPa.

4.4.5.Mezcla 60B40D.

-	Droboto	Me	zcla	(0/)		Gw ₀	(0/)		Gw _f	σ'y	Ca	C.	6
Ensaye	Propeta	Bentonita	Diatomeas	W0 (70)	e ₀	(%)	W _f (70)	ef	(%)	(kPa)		Cr	
15	1	60	40	135.54	3.400	100.00	75.73	1.644	116.00	65	0.47	0.01	0.01
16	2	60	40	139.73	3.506	100.00	92.76	1.944	120.00	65	0.43	0.01	0.02
17	3	60	40	97.81	2.569	96.00	70.74	1.414	126.00	72	0.32	0.02	0.01
18	4 - CI	60	40	95.73	2.448	98.00	83.75	1.900	111.00	81	0.33	0.02	0.02
19	5	60	40	97.23	2.456	99.00	87.06	1.909	114.00	Varia	ndo ve	elocida	d

Tabla 4.6. Propiedades de la mezcla 60B40D.

Figura 4.26. Curvas de compresibilidad a 0.5%/h (60B40D 1, 60B40D 2, 60B40D 3, 60B40D CI).

De la figura 4.24,26 al igual que para las mezclas anteriores, para una velocidad de deformación de 0.5%/h, se observa cómo ligeramente la curva de compresibilidad correspondiente a la probeta con menos contenido de agua inicial (97.81%) y relación de vacíos inicial menor (2.569) esta desplazada de lado derecho, y para las probetas con contenidos de agua inicial y relación de vacíos inicial similares están ligeramente desplazadas una de otra la de menos relación de vacíos inicial y contenido de agua inicial a la derecha de la otra. prácticamente son muy similares ambas curvas ya que sus contenidos de agua y relación de vacíos inicial varían muy poco.

Figura 4.28. Curvas de exceso de presión de poro a 0.5%/h (60B40D 1, 60B40D 2, 60B40D 3).

Figura 4.29. Curva de compresibilidad variando la velocidad de deformación de 0.125% a 5% / h, para la mezcla de 60B40D.

Como ya se ha visto en otras investigaciones Bell (1977) en arcillas de Belfast, Graham (1983) arcillas lacustres de Ottawa, Leroueil, et al., 1996, en arcillas remoldeadas y artificialmente consolidadas de la región Jonquiére, Quebec, al haber un cambio en la velocidad de deformación la curva de compresibilidad se desplaza dependiendo del aumento o decremento en la velocidad. Para la mezcla de 60B40D se inició la prueba a una velocidad de 5%/h, dando lugar a que el material se deformara muy poco, se descargó totalmente y se inició una nueva etapa con una velocidad baja de 0.125%/h, se realizó este mismo proceso de carga y descarga dando como resultado 4 etapas para la velocidad de 5%/h y 3 etapas para la de 0.125%/h. Al final se obtuvo el gráfico mostrado en la figura 4.29, donde se aprecia cómo al cambio de velocidad la curva se reincorpora según sea su velocidad, siguiendo su misma trayectoria. Además, se observa que son prácticamente paralelas una curva de otra.

4.4.6.Curvas de compresibilidad con el aumento de diatomeas.

Encovo	Droboto	Me	ezcla	M. (0/)	0.	Gw ₀	w. (0/)	0	Gw _f	σ'y	Co	Cr	Cc
Ensaye	Propeta	Caolinita	Diatomeas	W0 (70)	e ₀	(%)	W _f (70)	e _f	(%)	(kPa)		Cr	CS
2	2	100	0	198.30	5.407	97.00	143.40	3.196	118.00	38	0.65	0.01	0.01
8	1	80	20	195.74	5.023	101.00	140.30	2.957	123.00	52	0.65	0.02	0.02
16	2	60	40	139.73	3.506	100.00	92.76	1.944	120.00	65	0.43	0.01	0.02

Tabla 4.7. Propiedades de la mezcla 100B, 80B20D y 60B40D, con contenido de agua muy similares.

Figura 4.30. Curvas de compresibilidad a 0.5%/h (100B, 80B20D, 60B40D)

De la figura 4.30 se aprecian las tres curvas de compresibilidad para una misma velocidad de deformación constante (0.5%/h) para las tres mezclas, siendo aquí el aumento del contenido de diatomeas la variable que hace que se desplaza una de otra cada curva de compresibilidad, se tienen para las mezclas de 100B y 80B20D contenidos de agua y relación de vacíos inicial muy similares, mientras que para la mezcla de 60B40D su contenido de agua y relación de vacíos inicial es menor, es por eso que se aprecia un mayor desplazamiento, influyendo tanto el contenido de diatomeas como sus condiciones iniciales de relación de vacíos y contenido de agua.

Se observa cómo su esfuerzo de fluencia aumenta con el contenido de diatomeas y su índice de compresión disminuye para la mezcla de 60B40D, mientras que los índices de recompresión y

expansión permanecen iguales para todas las pruebas. Además, para las mezclas 100B y 80B20D tienden a tener un exceso de presión de poro más alto que la mezcla de 60B40D, esto podría ser debido al alto contenido de diatomeas.

Se observa cómo su esfuerzo de fluencia aumenta con el contenido de diatomeas y su índice de compresión disminuye para la mezcla de 60B40D, mientras que los índices de recompresión y expansión permanecen iguales para todas las pruebas. Además, para las mezclas 100B y 80B20D tienden a tener un exceso de presión de poro más alto que la mezcla de 60B40D, esto podría ser debido al alto contenido de diatomeas. La mezcla 60B40D no presenta un incremento en el exceso de presión de poro significativo.

Figura 4.31. Curvas de exceso de presión de poro a 0.5%/h (100B, 80B20D, 60B40D).

Ensaye	Probeta	Mezcla		··· (0/)		Gw ₀	w (0/)		Gw _f	σ'y	Co	Cr	Cc
		Caolinita	Diatomeas	w ₀ (%)	e ₀	(%)	W _f (70)	ଟf	(%)	(kPa)		Cr	
2	2	100	0	198.30	5.407	97.00	143.40	3.196	118.00	38	0.65	0.01	0.01
8	1	80	20	195.74	5.023	101.00	140.30	2.957	123.00	52	0.65	0.02	0.02
9	2	80	20	166.76	4.368	99.00	69.90	2.510	72.00	52	0.59	0.01	0.02
10	3	80	20	168.00	4.419	98.00	115.39	2.561	117.00	56	0.68	0.01	0.01
15	1	60	40	135.54	3.400	100.00	75.73	1.644	116.00	65	0.47	0.01	0.01
16	2	60	40	139.73	3.506	100.00	92.76	1.944	120.00	65	0.43	0.01	0.02

Tabla 4.8. Propiedades de la mezcla 100B, 80B20D y	/ 60B40D,	, con contenido de	e agua similares
--	-----------	--------------------	------------------

Figura 4.33. Curvas de exceso de presión de poro a 0.5%/h (100B, 80B20D, 60B40D).

En la figura 4.32 se pueden observar las gráficas correspondientes para las tres mezclas, donde se aprecia perfectamente que con el aumento de diatomeas se desplaza la curva de compresibilidad hacia la derecha, incrementa el esfuerzo de fluencia, así como también influye el contenido de agua inicial y la relación de vacíos inicial, a mayor relación de vacíos mayor será su compresibilidad. De la figura 4.33 se aprecia como para las mezclas de 100B y 80B20D presentan incrementos de exceso de presión de poro, en cambio la mezcla 60B40D no presenta excesos de presión de poros significativos, esto ocurre de igual manera en el suelo de la CDMX, por lo que podemos atribuírselo al contenido de diatomeas.

Ensaye	Probeta	Mezcla		M. (9/)	0	Gw ₀	Mr (9/)	0.	Gw _f	σ'y	Co	Cr	Ca
		Caolinita	Diatomeas	W0 (70)	e 0	(%)	vv t (70)	₽f	(%)	(kPa)		U	CS
1	1	100	0	167.97	4.482	99.00	124.85	2.721	121.00	48	0.6	0.02	0.01
9	2	80	20	166.76	4.368	99.00	69.90	2.510	72.00	52	0.59	0.01	0.02
16	2	60	40	139.73	3.506	100.00	92.76	1.944	120.00	65	0.43	0.01	0.02

Tabla 4.9. Propiedades de la mezcla 100B, 80B20D y 60B40D, con contenido de agua similares.

Figura 4.34. Curvas de compresibilidad a 0.5%/h (100B, 80B20D, 60B40D).

Figura 4.35. Curvas de exceso de presión de poro a 0.5%/h (100B, 80B20D, 60B40D).

En la figura 4.34 se pueden observar las gráficas correspondientes para las tres mezclas, donde se aprecia que con el aumento de diatomeas se desplaza la curva de compresibilidad hacia la derecha e incrementa el esfuerzo de fluencia, de las mezclas de 100B y 80B20D el desplazamiento es alrededor de 10 kPa una respecto a la otra, tendiendo a caer la curva de la mezcla 80B20D en la curva de la mezcla de 100B, lo cual se podría deber algún reacomodo súbito en la probeta ya que posteriormente vuelve a tomar la trayectoria de la curva que seguía en un principio, o bien a una falta de homogeneidad en la probetas. Las probetas de cada una de las mezclas tienen contenidos de agua y relación de vacíos muy similar, por lo que se puede atribuir que a mayor contenido de diatomeas se tendrá una menor compresibilidad, así mismo de la figura 4.35 se aprecia como el exceso de presión de poro disminuye con el contenido de diatomeas.

Ensavo	Probeta	Mezcla		wo (%) eo	Gw ₀	W. (%)	0.	Gw _f	σ'γ	<u> </u>	Cr	Cc	
Elisaye	FIUDEIa	Caolinita	Diatomeas	vv ₀ (70)			vv _f (70)	⊂f	(%)	(kPa)	UU	Cr	US
4	4	100	0	109.07	2.937	98.00	85.06	1.699	132.00	53	0.36	0.02	0.01
11	4	80	20	102.11	2.681	99.00	72.46	1.450	129.00	78	0.42	0.01	0.01
17	3	60	40	97.81	2.569	96.00	70.74	1.414	126.00	72	0.32	0.02	0.01

Tabla 4.10. Propiedades de la mezcla 100B, 80B20D y 60B40D, con contenido de agua similares.

Figura 4.36. Curvas de compresibilidad a 0.5%/h (100B, 80B20D, 60B40D).

En la figura 4.36 se aprecian las tres curvas de compresibilidad para una misma velocidad de deformación constante (0.5%/h) y un contenido de agua y relación de vacíos inicial muy similar para cada una de las mezclas, siendo aquí el aumento del contenido de diatomeas la variable que hace que se desplaza una de otra cada curva de compresibilidad. Con el aumento de diatomeas se desplaza la curva de compresibilidad hacia la derecha e incrementa el esfuerzo de fluencia, de las mezclas de 100B y 80B20D el desplazamiento es alrededor de 56 kPa una respecto a la otra, de la mezcla 80B20D de la de 60B40D se desplaza alrededor de 86 kPa, para deformaciones del 20% de la probeta, el cambio en la trayectoria de la curva para la mezcla de 100B se debe a un incremento súbito en la presión de poro. Las probetas de cada una de las mezclas tienen contenidos de agua y relación de vacíos muy similar, por lo que se puede atribuir que a mayor contenido de diatomeas se tendrá una menor compresibilidad, así mismo de la figura 4.37 se aprecia como el exceso de presión de poro disminuye con el contenido de diatomeas.

Figura 4.37. Curvas de exceso de presión de poro a 0.5%/h (100B, 80B20D, 60B40D).

4.4.7.Curvas de compresibilidad mezclas de Bentonita – Diatomeas y Caolinita.

Probeta	Mezcla	w₀ (%)	e ₀	Gw₀ (%)	W _f (%)	ef	Gw _f (%)	σ'y (kPa)	Cc	Cr	Cs
2	100B	198.30	5.407	97.00	143.40	3.196	118.00	38	0.65	0.01	0.01
1	80B20D	195.74	5.023	101.00	140.30	2.957	123.00	52	0.65	0.02	0.02
2	60B40D	139.73	3.506	100.00	92.76	1.944	120.00	65	0.43	0.01	0.02
1	100K	48.41	8.822	14.16	36.36	0.632	148.00	62	0.17	0.01	0.05

Tabla 4.11. Propiedades de la mezcla 100B, 80B20D, 60B40D y 100K.

Figura 4.38. Curvas de compresibilidad a 0.5%/h (100B, 80B20D, 60B40D y 100K).

En la figura 4.38, se comparan las curvas de compresibilidad de cada una de las mezclas, empezando por la de 100B, 80B20D, 60B40D y por último 100K (100% caolinita) a una misma velocidad de deformación (0.5%/hr). Se tienen pendientes totalmente diferentes de un material y otro. En la figura 4.39 se tienen las curvas de exceso de presión de poro para cada una de las mezclas, donde es evidente que para el mineral de Caolinita se tienen excesos de presión de poro bajos, en cambio las mezclas de 100B y 80B20D, tienen exceso de presión de poro altos, esto puede ser debido a que es un mineral más impermeable que la caolinita, además con el aumento de diatomeas se podría suponer que estas funcionan como disipadores del exceso de presión de poro por lo que disminuye para la mezcla 60B40D.

Figura 4.39. Curvas de exceso de presión de poro a 0.5%/h (100B, 80B20D, 60B40D y 100K).

4.4.8. Curvas de compresibilidad mezclas de Bentonita – Diatomeas y suelo de la CDMX.

Probeta	Mezcla	w₀ (%)	e ₀	Gw₀ (%)	W _f (%)	e _f	Gw _f (%)	σ'y (kPa)	Сс	Cr	Cs
2	100B	198.30	5.407	97.00	143.40	3.196	118.00	38	0.65	0.01	0.01
1	80B20D	195.74	5.023	101.00	140.30	2.957	123.00	52	0.65	0.02	0.02
2	60B40D	139.73	3.506	100.00	92.76	1.944	120.00	65	0.43	0.01	0.02
-	RLV	-	-	-	-	-	-	102	0.8	0.01	-
-	ALAMEDA	-	-	-	-	-	-	73	0.75	0.01	-

Tabla 4.12. Propiedades de la mezcla 100B, 80B20D, 60B40D y suelo de la CDMX.

Figura 4.40. Curvas de compresibilidad a 0.5%/h (100B, 80B20D, 60B40D, PARQUE ALAMEDA Y RAMÓN LÓPEZ-VELARDE).

En la figura 4.40 se comparan las curvas de compresibilidad de cada una de las mezclas, empezando por la de 100B, 80B20D, 60B40D y finalmente 2 pruebas realizadas en el suelo de la CDMX (Romero, 2017) todas con la misma velocidad de deformación (0.5%/hr). El suelo de la CDMX tiene aproximadamente entre 40 y 60% de microfósiles, se puede ver que los ensayes realizados a la misma velocidad de las mezclas y el suelo caen en el rango de las curvas en presencia de diatomeas.

Figura 4.41. Curvas de exceso de presión de poro a 0.5%/h (100B, 80B20D, 60B40D, PARQUE ALAMEDA Y RAMÓN LÓPEZ-VELARDE).

De la figura 4.41 se ve como para las curvas de exceso de presión de poro del suelo de la CDMX y la mezcla 60B40D no presentan incrementos considerables en el exceso de presión de poro durante la ejecución de la prueba, tienen comportamientos muy similares, esto se le puede atribuir a que tiene la mezcla una proporción del 40% de diatomeas en su consistencia y el suelo de la CDMX también tiene diatomeas, pero se desconoce su proporción.

4.4.9.Resumen de resultados.

Tabla 4.13. Resumen de propiedades de todos los ensayes realizados.

Encovo	Ensave Probeta Me		zcla	wo (%)		Gw ₀	w. (0/)	0	Gw _f	σ'y	6	Cr	Cc
Elisaye	FIODEla	Bentonita	Diatomeas	W0 (76)	e 0	(%)	Wf (70)	e _f	(%)	(kPa)		C	CS
1	1	100	0	167.97	4.482	99.00	124.85	2.721	121.00	48	0.60	0.02	0.01
2	2	100	0	198.30	5.407	97.00	143.40	3.196	118.00	38	0.65	0.01	0.01
3	3	100	0	105.30	2.793	100.00	89.80	2.019	117.00	52	0.38	0.02	0.01
4	4	100	0	109.07	2.937	98.00	85.06	1.699	132.00	53	0.36	0.02	0.01
5	5	100	0	108.08	2.898	98.00	80.41	1.721	123.00	59	0.39	0.01	0.02
6	6 - CI	100	0	99.79	2.617	101.00	90.86	1.490	118.00	45	0.24	0.16	0.03
7	7	100	0	106.17	2.855	98.00	101.99	1.992	135.00	Variando vele		locidad	
Encovo	Drohoto Mezcla		zcla	Ma (9/)	0.	Gw_0	(0/)		Gw _f	σ'y	0.0	Cr	Cc
Elisaye	FIUDEla	Bentonita	Diatomeas	W0 (70)	e 0	(%)	vv†(/o)	Et	(%)	(kPa)		U	CS
8	1	80	20	195.74	5.023	101.00	140.30	2.957	123.00	52	0.65	0.02	0.02
9	2	80	20	166.76	4.368	99.00	69.90	2.510	72.00	52	0.59	0.01	0.02
10	3	80	20	168.00	4.419	98.00	115.39	2.561	117.00	56	0.68	0.01	0.01
11	4	80	20	102.11	2.681	99.00	72.46	1.450	129.00	78	0.42	0.01	0.01
12	5	80	20	106.30	2.795	99.00	75.73	1.545	127.00	79	0.47	0.01	0.01
13	6 - CI	80	20	102.49	2.761	96.00	91.31	2.178	109.00	65	0.38	0.02	0.02
14	7	80	20	101.66	2.692	98.00	92.96	2.078	116.00	Varia	ndo ve	elocida	ıd
Encovo	Droboto	Me	zcla	··· (0/)		Gw₀	w (0/)		Gw _f	σ'y	6	Ċ	(
Elisaye	FIODEla	Bentonita	Diatomeas	W ₀ (76)	e ₀	(%)	W _f (70)	ef	(%)	(kPa)		U	CS
15	1	60	40	135.54	3.400	100.00	75.73	1.644	116.00	65	0.47	0.01	0.01
16	2	60	40	139.73	3.506	100.00	92.76	1.944	120.00	65	0.43	0.01	0.02
17	3	60	40	97.81	2.569	96.00	70.74	1.414	126.00	72	0.32	0.02	0.01
18	4 - CI	60	40	95.73	2.448	98.00	83.75	1.900	111.00	81	0.33	0.02	0.02
19	5	60	40	97.23	2.456	99.00	87.06	1.909	114.00	Varia	ndo ve	elocida	ld
Encovo	Drobota	Me	zcla	M. (%)	0	Gw_0	M. (%)	0	Gw _f	σ'y	C.		6
Ensaye	FIUDELA	Caolinita	Diatomeas	W0 (70)	e 0	(%)	vv f (70)	ef	(%)	(kPa)		C	LS
20	1	100	0	48.41	8.822	14.16	36.36	0.632	148.00	62	0.17	0.01	0.05

Figura 4.42. Esfuerzo de fluencia vs contenido de agua inicial para cada una de las mezclas.

Figura 4.43. Esfuerzo de fluencia vs relación de vacíos inicial para cada una de las mezclas.

De la figura 4.42 y 4.43 en función de las propiedades iniciales contenido de agua y relación de vacíos de cada una de las probetas se aprecia como para cada una de las mezclas entre mayor sea su contenido de agua inicial y relación de vacíos inicial las muestras presentan un menor esfuerzo de fluencia estas son más compresibles que aquellas probetas ensayadas con un menor contenido de agua y relación de vacíos inicial en estas se presentó un incremento significativo del 15 al 20% en su esfuerzo de fluencia

Figura 4.44. Índice de compresión vs contenido de agua para cada una de las mezclas.

De la figura 4.44 y 4.45 en función de las propiedades iniciales contenido de agua y relación de vacíos de cada una de las probetas se aprecia como para cada una de las mezclas entre mayor sea su contenido de agua inicial y relación de vacíos inicial las muestras presentan un mayor índice de compresión estas son más compresibles que aquellas probetas ensayadas con un menor contenido de agua y relación de vacíos inicial. Se presenta de manera individual esta grafica para cada una de las mezclad (figura 4.46 – 4.51).

Figura 4.45. Índice de compresión vs relación de vacíos inicial para cada una de las mezclas.

Figura 4.46. Índice de compresión vs contenido de agua para la mezcla 100B.

CAPÍTULO 4.

250.00 200.00 195.74 Contenido de agua inicial, w_0 (%) 168.00 6 166.76 150.00 80B20D 106.30 102.49 e 100.00 ... 102.11 50.00 0.00 0 0.1 0.2 0.3 0.5 0.6 0.7 0.8 0.4 Indice de compresión, Cc

Figura 4.47. Índice de compresión vs relación de vacíos inicial para la mezcla 100B.

Figura 4.49. índice de compresión vs relación de vacíos inicial para la mezcla 80B20D.

Figura 4.50. Índice de compresión vs contenido de agua para la mezcla 60B20D.

CAPÍTULO 4.

Figura 4.51. Índice de compresión vs relación de vacíos inicial para la mezcla 60B20D.

Figura 4.53. Contenido de diatomeas vs Índice de compresión.

De la figura 4.52 se observa que con el aumento de diatomeas hay un incremento en el esfuerzo de fluencia. En la figura 4.53 se aprecia que con un alto contenido de diatomeas (40%) disminuye su índice de compresión por lo que se vuelve menos compresible que una mezcla sin diatomeas.

4.4.10.Parámetros de compresibilidad

Figura 4.54. Variación del coeficiente de permeabilidad con respecto al esfuerzo efectivo (Mezcla 100B).

Figura 4.57. Variación del coeficiente de permeabilidad con respecto al esfuerzo efectivo (Mezcla 80B20D).

Figura 4.58. Variación del módulo de compresibilidad con respecto al esfuerzo efectivo (Mezcla 80B20D).

Figura 4.59. Variación del coeficiente de consolidación con respecto al esfuerzo efectivo (Mezcla 80B20D).

Figura 4.60. Variación del coeficiente de permeabilidad con respecto al esfuerzo efectivo (Mezcla 60B40D)

Figura 4.61. Variación del módulo de compresibilidad con respecto al esfuerzo efectivo (Mezcla 60B40D).

Figura 4.62. Variación del coeficiente de consolidación con respecto al esfuerzo efectivo (Mezcla 60B40D).

El coeficiente de permeabilidad (k) en cada una de las pruebas presentó una tendencia a disminuir al aumentar el esfuerzo efectivo (figura 4.54, 4.57, 4.60). Para el módulo de variación volumétrica (m_v) de cada uno de los ensayes realizados se puede apreciar que a valores cercanos al esfuerzo de fluencia se tiene el máximo módulo de variación volumétrica, para la mezcla de 100B se tiene un módulo de 0.005 1/kPa con un esfuerzo efectivo cercano al de fluencia, para el caso de la mezcla de 80B20D su módulo de variación al igual que la mezcla de 100B es de 0.005 1/kPa, y por ultimo para la mezcla de 60B40D para un esfuerzo cercano al valor del esfuerzo de fluencia se tiene un valor del módulo de variación volumétrica igual a 0.0025 1/kPa, el cual disminuyo para la proporción de diatomeas del 40% de la mezcla (figura 4.55, 4.58, 4.61). La variación del coeficiente de consolidación (C_v) en cada una de las pruebas al aumentar el esfuerzo efectivo disminuye (figura 4.56, 4.59, 4.62).

CONCLUSIONES RECOMENDACIONES

5.1. Conclusiones.

Se obtuvo un conjunto de curvas de compresibilidad mediante ensayes de pruebas de velocidad de deformación constante (CSR) a una velocidad de 0.5%/h. Los resultados de las pruebas de CSR se procesaron con la teoría propuesta por Wissa et al. (1971). Estos ensayes se comparan con resultados de pruebas con carga incremental para cada una de las mezclas, con el suelo de la CDMX y con una mezcla de 100K, de donde se puede resaltar los siguientes puntos:

- El límite líquido aumenta para la mezcla de 20% de diatomeas, en cambio para la mezcla de 40% de diatomeas disminuye, caso contrario a las mezclas con caolinita – diatomeas, que conforme al aumento de diatomeas incrementa su límite líquido.
- La densidad de sólidos se va reduciendo al aumentar la proporción de diatomeas en las mezclas.
- 3) La relación de vacíos inicial aumenta para un contenido de diatomeas del 20%, y disminuye al seguir aumentando el contenido de diatomeas a un 40% de la mezcla, al igual que para el límite líquido esto es caso contrario que para las mezclas de caolinita – diatomeas.
- 4) La tendencia de los índices de compresión conforme cada una de las etapas incrementales en ensayes de carga incremental a cada 24 horas, para las mezclas de 100B y 80B20D, son paralelas entre sí con una mínima variación de una entre otra, en cambio para la mezcla de 60B40D, la tendencia o pendiente es totalmente diferente, observando que la compresibilidad disminuye con el aumento de diatomeas, figura 4.5.
- El coeficiente de compresibilidad (a_v) y coeficiente de variación volumétrica (m_v) para pruebas con carga incremental, disminuyen conforme el aumento de diatomeas, figura 4.7 y 4.8.
- 6) El esfuerzo de fluencia incrementa conforme el aumento de diatomeas para las pruebas de carga incremental, figura 4.9.
- La compresibilidad para cada una de las etapas incrementales es mayor para un contenido de diatomeas igual al 20%, va en aumento conforme aumenta el esfuerzo de cada etapa, figura 4.10.
- 8) La trayectoria de las curvas de compresibilidad está en función de su contenido de agua inicial y relación de vacíos inicial, para cada una de las mezclas ensayadas a velocidad de deformación controlada (0.5%/h), a menor contenido de agua o relación de vacíos inicial menor su esfuerzo de fluencia será mayor, bien podría deberse que al tener menor contenido de agua o una baja relación de vacíos las partículas de los sólidos tienden a juntarse, estructurándose la probeta y provoca un aumento en su esfuerzo de fluencia.
- 9) La trayectoria de las curvas de compresibilidad está en función de la velocidad de deformación de la prueba, para los ensayes de esta investigación prueba 7 (100B), 14 (80B20D) y 19 (60B40D), a velocidad más lenta (0.125%/h), el esfuerzo de preconsolidación es menor que al de una velocidad alta (5.0%/h), figura 4.16, 4.22 y 4.26.
- 10) De una misma probeta es posible realizar ensayes a diferentes velocidades de deformación controlada, ya que en el instante en el que se hace un cambio en la velocidad de lenta a rápida o viceversa, la trayectoria de la curva de compresibilidad de inmediato se reincorpora según sea la velocidad aplicada del ensaye, figura 4.17, 4.24 y 4.29.
- 11) Se tienen incrementos de exceso de presión de poro mucho mayor para pruebas con

velocidades de ensaye rápidas como 5.0%/h, en cambio para velocidades lentas el exceso de presión de poro es mínimo, ya que la velocidad de deformación lenta permite la disipación de esta, figura 4.18.

- 12) La trayectoria de las curvas de compresibilidad está en función del contenido de diatomeas, a mayor contenido de diatomeas el esfuerzo de preconsolidación va en aumento, figura 4.30, 4.32, 4.34 y 4. 36. De la mezcla de 100B a 80B20D se tienen incrementos entre 45 50 kPa, de la mezcla de 80B20D a 60B40D el incremento es de 80 85 kPa, esto para un contenido de agua al 100%, y una deformación unitaria del 20%.
- 13) El exceso de presión de poro es mucho mayor para la mezcla de 100B y 80B20D, y disminuye con la mezcla de 60B40D, por lo que disminuye con el contenido de diatomeas, podría ser que las diatomeas en gran cantidad funcionan como disipadores de exceso de presión poro, figura 4.35 y 4.37.
- 14) Las mezclas de bentonita son más compresibles que las mezclas de caolinita, figura 4.38.
- 15) La trayectoria de las curvas de compresibilidad de las mezclas de bentonita comparadas con las del suelo de la CDMX (Tonix, 2017) son muy similares, esto debido a que son del mismo mineral de arcilla de Montmorillonita, figura 4.40. Con la familia de curvas de las mezclas de bentonita, podría tenerse como primera instancia un parámetro para suponer el contenido de diatomeas del suelo de la CDMX, ya que las curvas de compresibilidad del suelo de la CDMX caen en el rango de las curvas de compresibilidad para las mezclas de 80B20D y 60B40D.
- 16) El coeficiente de permeabilidad (k) presenta una disminución conforme aumenta el esfuerzo efectivo.
- 17) El módulo de variación volumétrica (m_v) se mantiene constante hasta alcanzar el esfuerzo de fluencia.
- 18) El coeficiente de consolidación (C_v) tiene una tendencia a reducirse conforme aumenta el esfuerzo efectivo, al llegar al esfuerzo de fluencia, este se mantiene constante.

5.2. Recomendaciones.

- La elaboración de mezclas del mineral de arcilla de Montmorillonita (Bentonita) y diatomeas está en sus inicios, por lo que, para explicar las propiedades de los suelos diatomáceos, en particular el suelo de la CDMX, es necesario profundizar más para conocer los efectos de estos microfósiles.
- Es recomendable realizar un esquema de mezclas de bentonita diatomeas, en el cual se pueda dejar la menor cantidad de espacios de dudas entre cada mezcla, es decir realizar mezclas a cada 5% - 10% en aumento el contenido de diatomeas.
- 3) Es importante estandarizar el proceso de elaboración de mezclas, ya que se tienen ciertas incertidumbres entre la homogeneidad de la mezcla.

REFERENCIAS.

REFERENCIAS BIBLIOGRÁFICAS

Bell, A.L. A geotechnical investigation of post-glacial estuarine deposits at Kinnegar, Belfast Lough. PhD thesis. Queen's University. Belfast. 1977.

Bjerrum, L. "Engineering Geology of Norwegian Normally Consolidated Marine Clays as Related to the Settlements of Building". Geotechnique 17, N°.2, pp. 83-118. 1967

Bradbury, J.P., Continental diatoms as indicator of long-term environmental change. In: The Diatoms: applications for the environmental and earth sciences. Cambridge University Press, Cambridge. pp. 169-182. 1999.

Braja, M. Das. "Fundamentos de ingeniería geotécnica". Cuarta edición, Cengage Learning Editores, S.A. de C.V. 2015

British Standards Institution, "Methods of Test for Soils for Civil Engineering Purposes", BS 1377.

Burmister, D.M., Suggested methods of test for consolidation soils. Proceedures for testing soils, Am. Soc. Testing Mats., Compiled by ASTM Committee D-18, pp. 287 – 295. 1958.

Casagrande, A., Fadum, R.E., Application of soil mechanics in designing building foundations. Author's closure, transactions, Am. Soc. Civil Engrs., Vol. 109, pp. 463 – 490. 1944.

Crawford Carl B. "Interpretation of the Consolidation Test". Journal of the Soil Mechanics and Foundations Division. Proceeding of the American Society of Civil Engineers. pp. 87-101. 1964.

Crawford Carl B. "The Resistance of Soil Structure to Consolidation". Canadian Geotechnical Journal 2, N°.2 pp. 90 – 97. 1965

Crawford Carl B. "On the Importance of Rate of Strain in the Consolidation Test". Technical Note. American Society for testing and Materials. pp. 60-62. 1988

Damián, E., Flores, O. Efecto de la velocidad de deformación en parámetros de compresibilidad en arcillas del ex lago de Texcoco, en ensayes CRS. XXIX Reunión nacional de Ingeniería Geotécnica, León, Guanajuato. 2018.

Davies, S.J., Metcalfe, S.E., Caballero, M.E. and Juggins, S. Developing diatom-based transfer functions for Central Mexican lakes. Hydrobiology. Vol. 467, pp. 199-213. 2002.

Desh Raj Sonyok, Effect of diatoms on index properties, compressibility, suction, and stiffness of diatomitekaolin mixtures. New Mexico State University, Las Cruces, New Mexico, 2015.

Diaz-Rodriguez, J.A., Martinez-Vazquez, J., Santamarina, J.C., "Strain-rates effects in Mexico City Soil", Technical Note. Journal of Geotechnical and Geoenviromental Engineering. 2009

Díaz-Rodríguez, Jorge Abraham, Comportamiento monotónico de suelos diatomáceos. Rev. Int. de Desastres Naturales, Accidentes e Infraestructura Civil. Vol. 12(1) 27. 2011.

Díaz-Rodríguez, J.A., Lozano-Santa Cruz, R., Dávila-Alcocer, V.M., Vallejo, E. and Girón, P., Physical, chemical, and mineralogical properties of México City sediments: a geotechnical perspective. Canadian Geotechnical Journal, 1998.

Díaz Rodríguez, J. Abraham, Mecánica de suelos "Naturaleza y propiedades". 2014.

Díaz Rodríguez, J. Abraham, Moreno-Arriaga, Arturo. Contributions of diatom microfossils to soil compressibility. 19th, ICSMGE. Seoul, 2017.

George E. Christidis, Warren D. Huff, Geological aspects and genesis of bentonites. Department of Mineral Resources Engineering (Chania, Greece), University of Cincinnati (USA). 2009

Graham, J., Crooks, J.H.A. and Bell, A.L. Time effects on the stress-strain behavior of natural soft clays. Geotechnique 33, N°. 3, pp. 327-340. 1983.

Grim, R. E., Guven, N. "Bentonites: Geology, Mineralogy and Uses". New York. Amsterdam. Elsevier. 1978.

Gorman, C. Thomas. "Strain-Rate Selection in the Constant-Rate-of-Strain Consolidation Test". University of Kentucky. 1981

Hamilton, J. and Crawford, C. Improved Determination of preconsolidation pressure of a sensitive clay. Special Technical publication No. 254. American Society for testing and materials, Philadelphia, 1959, pp. 254 – 270.

Head, K. H. "Manual of Soil Laboratory Testing: Permeability, Shear Strength and Compressibility Test". ELE International Limited, Vol. 2, London. 1992.

Hvorslev, M.J., Sub-surface exploration and sampling of soils for civil engineering purposes. Waterways experiment station, Vicksburg, Miss. 1949.

Khilnani, K. and Capik, M.L. Diatomaceous soils: a new approach. Civil Engineering, ASCE, Vol. 59, No. 2, pp. 68-70. 1988

Khilnani, K. and Capik, M.L. Engineering properties of diatomaceous fill (discussion). Journal of the Geotechnical and the Environmental Engineering, ASCE, Vol. 123, No. 6, pp. 589-592. 1997.

Lerouil, S., Samsom, L., Bososuk, M. Laboratory and field determination of preconsolidation pressures at gloucester. Canadian Geotechnical Journal, 20 (3), pp. 477 – 490. 1983.

Lerouil, S., Perret, D. and Locat, J. Strain rate and structuring effects on the compressibility of a Young clay. ASCE 1996.

López-Molina, Jorge Antonio, Comportamiento cíclico de suelos diatomáceos. (2009) Tesis dirigida por: Dr. Díaz-Rodríguez Jorge Abraham.

Moreno-Arriaga, Arturo, Efecto de los microfósiles en la compresibilidad de mezclas caolinita-diatomita. (2018). Tesis dirigida por: Dr. Díaz-Rodríguez Jorge Abraham.

Nava-Tristán, Oliver Elimelec, Influencia de las diatomeas en la resistencia al corte del caolín. (2007) Tesis dirigida por: Dr. Díaz-Rodríguez Jorge Abraham.

Perfil de mercado de la Diatomita. Coordinación general de minería. Secretaria de economía. (2016)

Romero-Tonix, Wendy, Compresibilidad del subsuelo de la Ciudad de México mediante ensayes de velocidad de deformación constante. (2017). Tesis dirigida por: Dr. Díaz-Rodríguez Jorge Abraham.

Sällfors, G. "Preconsolidation Pressure of Soft High Plastic Clays. PhD Thesis, Chalmers University of Technology, Gothemburg, 1975.

Schmertmann, J.H., "The Undisturbed Consolidation Behavior of Clay", Transactions, Am. Soc. Civil Engineers, Vol. 120, pp. 1201-1233. 1955.

Smith R.E., Whals H. E. Consolidation under constant rates of strain. Journal of the soil mechanics and foundations division. Proceedings of the American Society of Civil Engineers. March 1969. pp. 519 – 539.

Standard test methods for liquid limit, plastic limit, and plasticity index of soils ASTM D 4318-00.

Standard test methods for specific gravity of soil solids by water pycnometer ASTM D 854-02

Standard test method for one – dimensional consolidation properties of soils using controlled – strain loading. D 4186 – 89. ASTM, 1989.

Taylor, D.W., Research on consolidation of clays. Mass. Inst. Technology, Serial 82. 1942.

Telford, R.J., Barker, P., Metcalfe, S. and Newton, A. Lacustrine responses to tephra deposition: examples from Mexico. Quaternary Science Reviews, Vol. 23, pp. 2337-2353. 2004.

Terzaghi, K., Undisturbed clay samples and undisturbed clays. Journal, Boston Soc. Civil Engrs., Vol. 28, N°. 3. 1944.

Terzaghi, K., Theoretical soil mechanics. John Wiley and Sons, Inc., New York, N. Y. 1942.

Whals, H.E., and de Godoy, N.S. Interpretation of the consolidation test: Discussion. Journal of the Soil Mechanics and Foundation Division, ASCE, 91(SM3): 147–152. 1965.

Wissa, A., Christian, J. Davis, E & Heiberg, S. Consolidation at constant rate strain. Journal of soil mechanics and foundation Division ASCE 97, SM 10, pp. 1393 – 1413. 1971.

ANEXOS

Los transductores del equipo vienen calibrados de fábrica, por lo que para la presente investigación se verificaron que efectivamente estén funcionando correctamente. Para ambos transductores (desplazamiento, presión) utilizados en las pruebas de compresibilidad al verificarlos, los factores de corrección fueron mínimos, es decir los valores de error menor al 0.001%, por lo que no fue necesaria una calibración.

Transductor de desplazamiento

El equipo utilizado en la presente investigación utiliza un software que hace que la calibración de cada transductor de desplazamiento (LVDT) sea muy fácil. Para realizar la calibración, es necesario un conjunto de medidores de precisión. La calibración se puede realizar en cualquier sistema de unidades. Si las unidades son cambiadas después, el software del equipo convertirá automáticamente a las nuevas unidades.

La calibración se realiza utilizando tanto la ventana "Monitor System" y la ventana "Calibrate Displacement".

2000. 110///2	5.7845e+006	N
Displacement: 0	-45.376	mm
Pore Pressure: 144445	79012	kPa
Cell Pressure: 167772	9.3657e+005	kPa
Load Motor		
Power: OFF	Upper S	witch: OFF
Power: OFF Pulse Count: 80281404	Upper S Full S	witch: OFF witch: OFF
Power: OFF Pulse Count: 80281404 Cell Pressure Pump	Upper S Full S	witch: OFF witch: OFF
Power: OFF Pulse Count: 80281404 Cell Pressure Pump Power: OFF	Upper S Full S Empty S	witch: OFF witch: OFF witch: OFF
Power: OFF Pulse Count: 80281404 Cell Pressure Pump Power: OFF Pulse Count: 0	Upper S Full S Empty S Full S	witch: OFF witch: OFF witch: OFF witch: OFF

Figura A.1. Ventana "System Monitor"

	Dial Reading (mm)	Sensor Reading	-		Factor, mm/cnt 1.177119e-003
1	-1.5875	37202.		1	Offset, cnt
2	-2.54	36388.			38548
3	-3.175	35852.			0
4	-5.08	34227.			Standard Error
5	-6.35	33153.		Pead	12.7/568/5
6	-7.62	32074.		neau	Correlation
7	-12.7	27761.			0.99999993
8	-25.4	16969.			1.00
9	0.	0.			Save
0	0.	0.	-		

Figura A.2. Ventana "Calibrate Displacemet".

Desde la ventana "Monitor System", se lee la lectura de desplazamiento. Se mueve manualmente el cuerpo o varilla móvil del LVDT (si es necesario) hasta que se muestre el conteo. Los valores de conteos están entre 5,000 y 55,000. Nos aseguramos de que la varilla móvil del LVDT permanezca presionada contra la superficie.

Empujamos suavemente la varilla dentro del cuerpo del LVDT y colocamos un bloque de calibre delgado (2.54 mm o 0.100 in) entre la varilla y el plano de superficie. Soltamos la varilla para que sostenga el bloque del medidor contra la superficie plana. Ahora el transductor debe tener el grosor del bloque de calibración adentro del cuerpo del LVDT. Se toma en cuenta que la lectura de conteos (en la ventana System Monitor) que corresponde al LVDT ha disminuido. Se coloca en el campo de entrada de lecturas el valor de grosor del bloque de medida. Ahora al hacer clic en el botón grande "Read". Aparecerá un valor en el sensor "Sensor Reading".

Se retira el bloque del medidor y se reemplaza por un siguiente bloque más grueso (3.175 mm o 0.125 in). Registramos igual la medida del bloque.

Se repite este proceso insertando secuencialmente bloques de diferentes medidas cada vez más gruesos hasta que se haya cubierto el rango del LVDT.

Cuando se ha finalizado, guardamos la calibración en el botón "Calibrate". El factor de calibración, junto con el error estándar y el coeficiente de correlación se mostrarán en la ventana. Se verifica que los puntos de los datos estén cerca del mejor ajuste. Un mal ajuste o un punto de datos incorrecto indicara que la calibración debe repetirse.

Para guardar los factores de calibración que se muestren en la ventana "Calibrate", se presiona el botón "Save".

Transductor de presión

El software hace que la calibración del transductor de presión sea muy fácil. Para realizar la calibración, se necesitará una forma independiente de medir la presión. Se puede utilizar un transductor de presión calibrado independientemente o un manómetro. Se elije uno con una capacidad similar al sensor de presión del equipo. La calibración puede ser realizada en cualquier sistema de unidades.

La calibración se puede realizar usando:

1. Solo la ventana "Calibrate Pressure" (si está utilizando una presión independiente o fuente de suministro y control).

2. La ventana "Calibrate Pressure" y la ventana "Pressure Control" (si está utilizando la unidad FlowTrac-II como fuente de suministro de presión).

	Dial Reading (kPa)	Sensor Reading	-		Factor, kPa/cnt 5.5932755e-002
1	20.20164061	33000.	-	1	Offset, cnt
2	75.704441626	34000.			32657
3	186.84793880	36000.			0
4	298.33617387	38000.			Standard Error
5	410.03125168	40000.		Read	13.765035
6	521.79527707	42000.		neau	Correlation
7	633.83509278	44000.			0.99999758
8	746.08175122	46000.			1.000
9	858.46630482	48000.			Save
0	971.26454389	50000.	-		

Figura A.3. Ventana "Calibrate Pressure".

Cell Pressure Co	ontrol			Х
Cell Pressu	ure: D	-1826.595969101	kPa	
Close	Go	Stop	Help	

Figura A.4. Ventana "Pressure Control".

Calibración de presión por una fuente de control de presión independiente:

1. Conectamos la fuente de medición de presión calibrada (manómetro o cualquier otro medidor de presión) independientemente al dispositivo (cámara de consolidación), se conecta el transductor de presión a verificar o calibrar y la fuente externa de presión para aplicar incrementos de presión y tomar lecturas.

2. Abrimos el menú "Calibrate" y en la opción "Pressure", se abrirá la ventana para calibrar el transductor de presión.

3. Usando la fuente externa de presión, aplicamos un incremento de presión y se deja estabilizar. Tomamos lectura de presión producida en la fuente externa de medición de presión calibrado y se ingresa en la columna "Dial Reading" de la ventana "Calibrate Pressure". Se guarda la lectura apareciendo un valor en la columna "Sensor Reading". Se repite este procedimiento para una serie de valores de presión que cubran el rango del transductor de presión.

Este mismo procedimiento se puede realizar con la unidad de Flow Trac-II del equipo, ya que es la fuente de suministro de presión a la hora de realizar las pruebas.

100B

100B 0.5 % CSR 20-agosto-18

Tiempo	Deformación Axial	Deformación	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	δ (cm)	h (cm)		e = e ₀ -Δe	$\Delta v = (100 - \varepsilon_{vol})$	kPa	kPa	kPa	kPa
0	-1.0381	-0.02636774	2.56636774	-0.056912021	4.53923748	101.0381	3.9887	2.2649	0.56783	2.28
26.953	-0.78784	-0.02001114	2.56001114	-0.043191953	4.52551741	100.78784	10.534	2.2649	0.21501	8.9638
61.397	-0.53758	-0.01365453	2.55365453	-0.029471885	4.51179734	100.53758	15.879	2.2649	0.14263	14.331
85	-0.28733	-0.00729818	2.54729818	-0.015752366	4.49807782	100.28733	18.933	2.2649	0.11962	17.391
114.68	-0.037075	-0.00094171	2.54094171	-0.002032572	4.48435803	100.037075	22.424	2.2649	0.101	20.887
143.48	0.21318	0.00541477	2.53458523	0.011687221	4.47063824	99.78682	25.584	2.2649	0.088529	24.051
164.74	0.46343	0.01177112	2.52822888	0.025406741	4.45691872	99.53657	27.551	2.2649	0.082207	26.019
196.97	0.71369	0.01812773	2.52187227	0.039126809	4.44319865	99.28631	30.056	2.2649	0.075355	28.527
227.59	0.96394	0.02448408	2.51551592	0.052846328	4.42947913	99.03606	31.696	2.3208	0.073222	30.129
256.09	1.2142	0.03084068	2.50915932	0.066566396	4.41575906	98.7858	32.569	2.2089	0.067823	31.079
284.79	1.4644	0.03719576	2.50280424	0.080283174	4.40204228	98.5356	33.878	2.2649	0.066854	32.35
309.79	1.7147	0.04355338	2.49644662	0.094005435	4.38832002	98.2853	34.641	2.2649	0.065381	33.114
339.5	1.965	0.049911	2.490089	0.107727695	4.37459776	98.035	35.841	2.2649	0.063192	34.315
369.71	2.2152	0.05626608	2.48373392	0.121444474	4.36088098	97.7848	36.714	2.2649	0.06169	35.188
397.64	2.4655	0.0626237	2.4773763	0.135166734	4.34715872	97.5345	37.587	2.2649	0.060258	36.061
430.43	2.7157	0.06897878	2.47102122	0.148883512	4.33344194	97.2843	38.787	2.2649	0.058393	37.262

Tiempo	Deformación Axial	Deformación	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	δ (cm)	h (cm)	*	e = e₀ -∆e	$\Delta v = (100 - \varepsilon_{vol})$	kPa	kPa	kPa	kPa
458.99	2.966	0.0753364	2.4646636	0.162605773	4.31971968	97.034	39.765	2.2649	0.056958	38.24
486.16	3.2162	0.08169148	2.45830852	0.176322551	4.30600291	96.7838	40.75	2.2649	0.05558	39.226
514.46	3.4665	0.0880491	2.4519509	0.190044812	4.29228064	96.5335	41.732	2.2649	0.054272	40.208
544.07	3.7121	0.09428734	2.44571266	0.203509403	4.27881605	96.2879	42.823	2.3208	0.054197	41.261
569.37	3.9623	0.10064242	2.43935758	0.217226182	4.26509928	96.0377	43.586	2.3208	0.053247	42.025
599.05	4.2126	0.10700004	2.43299996	0.230948442	4.25137701	95.7874	44.568	2.2649	0.050818	43.045
636.45	4.4629	0.11335766	2.42664234	0.244670703	4.23765475	95.5371	45.986	2.2649	0.049251	44.464
656.77	4.7131	0.11971274	2.42028726	0.258387481	4.22393798	95.2869	46.641	2.2649	0.04856	45.118
686.33	4.9634	0.12607036	2.41392964	0.272109742	4.21021572	95.0366	47.619	2.2649	0.047563	46.097
715.47	5.2136	0.13242544	2.40757456	0.28582652	4.19649894	94.7864	48.717	2.3208	0.047639	47.157
741.3	5.4639	0.13878306	2.40121694	0.299548781	4.18277668	94.5361	49.586	2.3208	0.046805	48.026
775.95	5.7141	0.14513814	2.39486186	0.313265559	4.1690599	94.2859	50.782	2.2649	0.0446	49.261
806.92	5.9644	0.15149576	2.38850424	0.32698782	4.15533764	94.0356	52.095	2.2649	0.043476	50.574
834.83	6.2146	0.15785084	2.38214916	0.340704598	4.14162086	93.7854	52.967	2.2649	0.04276	51.447
867.49	6.4649	0.16420846	2.37579154	0.354426858	4.1278986	93.5351	54.058	2.3208	0.042932	52.5
892.03	6.7151	0.17056354	2.36943646	0.368143637	4.11418182	93.2849	55.149	2.2649	0.041068	53.629
928.77	6.9654	0.17692116	2.36307884	0.381865897	4.10045956	93.0346	56.567	2.3208	0.041028	55.009
957.08	7.2156	0.18327624	2.35672376	0.395582676	4.08674278	92.7844	57.658	2.2649	0.039281	56.138
985.82	7.4659	0.18963386	2.35036614	0.409304936	4.07302052	92.5341	58.858	2.2649	0.03848	57.338
1017.7	7.7162	0.19599148	2.34400852	0.423027197	4.05929826	92.2838	60.273	2.2649	0.037578	58.753
1040.9	7.9664	0.20234656	2.33765344	0.436743975	4.04558148	92.0336	61.258	2.3208	0.037886	59.701

Tiempo	Deformación Axial	Deformación	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	δ (cm)	h (cm)		e = e ₀ -Δe	$\Delta v = (100 - \varepsilon_{vol})$	kPa	kPa	kPa	kPa
1069.6	8.212	0.2085848	2.3314152	0.450208567	4.03211689	91.788	62.563	2.2649	0.036202	61.044
1104.7	8.4623	0.21494242	2.32505758	0.463930827	4.01839463	91.5377	64.312	2.2649	0.035217	62.793
1132.1	8.7125	0.2212975	2.3187025	0.477647605	4.00467785	91.2875	65.407	2.3768	0.036339	63.812
1167.6	8.9628	0.22765512	2.31234488	0.491369866	3.99095559	91.0372	66.712	2.2649	0.03395	65.194
1193.6	9.213	0.2340102	2.3059898	0.505086644	3.97723881	90.787	67.585	2.2649	0.033512	66.066
1227.9	9.4633	0.24036782	2.29963218	0.518808905	3.96351655	90.5367	68.788	2.3208	0.033739	67.232
1258.8	9.7135	0.2467229	2.2932771	0.532525683	3.94979977	90.2865	69.872	2.2649	0.032415	68.354
1282.9	9.9638	0.25308052	2.28691948	0.546247944	3.93607751	90.0362	70.966	2.2649	0.031915	69.448
1318.4	10.214	0.2594356	2.2805644	0.559964722	3.92236073	89.786	72.275	2.2649	0.031337	70.757
1349.8	10.464	0.2657856	2.2742144	0.573670536	3.90865492	89.536	73.37	2.3208	0.031632	71.814
1378.7	10.715	0.272161	2.267839	0.587431173	3.89489428	89.285	74.457	2.2649	0.030419	72.939
1409.2	10.965	0.278511	2.261489	0.601136986	3.88118847	89.035	75.657	2.2649	0.029936	74.139
1440.5	11.215	0.284861	2.255139	0.6148428	3.86748266	88.785	76.857	2.3208	0.030197	75.302
1466.2	11.465	0.291211	2.248789	0.628548614	3.85377684	88.535	77.73	2.2649	0.029138	76.212
1497.1	11.716	0.2975864	2.2424136	0.642309251	3.84001621	88.284	78.93	2.2649	0.028695	77.412
1529.1	11.966	0.3039364	2.2360636	0.656015064	3.82631039	88.034	80.129	2.2649	0.028265	78.612
1562.6	12.216	0.3102864	2.2297136	0.669720878	3.81260458	87.784	81.002	2.2649	0.027961	79.485
1590.4	12.466	0.3166364	2.2233636	0.683426691	3.79889877	87.534	82.093	2.2649	0.027589	80.576
1614.5	12.712	0.3228848	2.2171152	0.696913212	3.78541224	87.288	82.857	2.2649	0.027335	81.34
1647.4	12.962	0.3292348	2.2107652	0.710619026	3.77170643	87.038	83.838	2.2649	0.027015	82.322
1680.2	13.212	0.3355848	2.2044152	0.724324839	3.75800062	86.788	85.147	2.2649	0.0266	83.631

Tiempo	Deformación Axial	Deformación	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(٤, %)	δ (cm)	h (cm)		e = e ₀ -Δe	$\Delta v = (100 - \varepsilon_{vol})$	kPa	kPa	kPa	kPa
1708.2	13.463	0.3419602	2.1980398	0.738085476	3.74423998	86.537	85.802	2.2649	0.026397	84.285
1735.7	13.713	0.3483102	2.1916898	0.75179129	3.73053417	86.287	86.675	2.2649	0.026131	85.158
1761.5	13.963	0.3546602	2.1853398	0.765497104	3.71682835	86.037	87.547	2.2649	0.02587	86.031
1795.3	14.213	0.3610102	2.1789898	0.779202917	3.70312254	85.787	88.307	2.2089	0.025014	86.829
1828.5	14.464	0.3673856	2.1726144	0.792963554	3.6893619	85.536	89.62	2.2649	0.025272	88.103
1859.9	14.714	0.3737356	2.1662644	0.806669368	3.67565609	85.286	90.496	2.2648	0.025027	88.98
1886.3	14.964	0.3800856	2.1599144	0.820375181	3.66195028	85.036	91.583	2.2089	0.024119	90.105
1915.5	15.214	0.3864356	2.1535644	0.834080995	3.64824446	84.786	92.347	2.2649	0.024526	90.831
1944.2	15.465	0.392811	2.147189	0.847841632	3.63448382	84.535	93.547	2.2649	0.024211	92.031
1973.2	15.715	0.399161	2.140839	0.861547446	3.62077801	84.285	94.31	2.2089	0.023422	92.832
2006.3	15.965	0.405511	2.134489	0.875253259	3.6070722	84.035	95.623	2.3208	0.02427	94.069
2038.2	16.216	0.4118864	2.1281136	0.889013896	3.59331156	83.784	96.601	2.2649	0.023446	95.085
2066.3	16.466	0.4182364	2.1217636	0.90271971	3.57960575	83.534	97.583	2.2649	0.02321	96.067
2090.2	16.716	0.4245864	2.1154136	0.916425523	3.56589993	83.284	98.347	2.2649	0.02303	96.831
2124.1	16.966	0.4309364	2.1090636	0.930131337	3.55219412	83.034	99.546	2.2649	0.022752	98.031
2150.1	17.217	0.4373118	2.1026882	0.943891974	3.53843348	82.783	100.53	2.2089	0.021973	99.05
2176.1	17.462	0.4435348	2.0964652	0.957323671	3.52500179	82.538	101.07	2.2649	0.022408	99.558
2204.7	17.712	0.4498848	2.0901152	0.971029485	3.51129597	82.288	102.71	2.2649	0.022051	101.19
2234	17.963	0.4562602	2.0837398	0.984790122	3.49753534	82.037	103.58	2.2649	0.021865	102.07
2266.9	18.213	0.4626102	2.0773898	0.998495935	3.48382952	81.787	104.78	2.2649	0.021615	103.27
2296.6	18.463	0.4689602	2.0710398	1.012201749	3.47012371	81.537	106.09	2.2649	0.021348	104.58

Tiempo	Deformación Axial	Deformación	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(٤, %)	δ (cm)	h (cm)		e = e₀ -∆e	$\Delta v = (100 - \varepsilon_{vol})$	kPa	kPa	kPa	kPa
2327.9	18.713	0.4753102	2.0646898	1.025907563	3.45641789	81.287	106.86	2.2649	0.021196	105.34
2351	18.964	0.4816856	2.0583144	1.0396682	3.44265726	81.036	107.95	2.2089	0.020463	106.47
2384.6	19.214	0.4880356	2.0519644	1.053374013	3.42895144	80.786	109.04	2.2649	0.020772	107.52
2404.9	19.464	0.4943856	2.0456144	1.067079827	3.41524563	80.536	109.69	2.2649	0.020648	108.18
2436.8	19.714	0.5007356	2.0392644	1.080785641	3.40153982	80.286	110.78	2.2649	0.020444	109.27
2465.7	19.965	0.507111	2.032889	1.094546277	3.38777918	80.035	112.09	2.2649	0.020206	110.58
2488.7	20.215	0.513461	2.026539	1.108252091	3.37407337	79.785	113.29	2.3208	0.020486	111.74
2521.8	20.465	0.519811	2.020189	1.121957905	3.36036755	79.535	114.16	2.2649	0.019839	112.65
2541.7	20.715	0.526161	2.013839	1.135663718	3.34666174	79.285	115.15	2.2649	0.01967	113.63
2574.8	20.966	0.5325364	2.0074636	1.149424355	3.3329011	79.034	116.45	2.2649	0.019449	114.94
2604.5	21.216	0.5388864	2.0011136	1.163130169	3.31919529	78.784	117.76	2.2649	0.019232	116.25
2634.5	21.466	0.5452364	1.9947636	1.176835983	3.30548947	78.534	119.07	2.3208	0.019491	117.52
2661.8	21.716	0.5515864	1.9884136	1.190541796	3.29178366	78.284	120.05	2.2649	0.018865	118.54
2695.3	21.962	0.5578348	1.9821652	1.204028317	3.27829714	78.038	121.48	2.3208	0.019105	119.92
2726.2	22.212	0.5641848	1.9758152	1.21773413	3.26459133	77.788	122.35	2.2649	0.018512	120.83
2752	22.463	0.5705602	1.9694398	1.231494767	3.25083069	77.537	123.65	2.2649	0.018317	122.14
2787	22.713	0.5769102	1.9630898	1.245200581	3.23712488	77.287	124.96	2.2649	0.018124	123.45
2815.5	22.963	0.5832602	1.9567398	1.258906395	3.22341906	77.037	126.05	2.2649	0.017968	124.54
2842.5	23.213	0.5896102	1.9503898	1.272612208	3.20971325	76.787	127.14	2.2649	0.017813	125.63
2869.7	23.464	0.5959856	1.9440144	1.286372845	3.19595261	76.536	128.45	2.3208	0.018068	126.9
2898.5	23.714	0.6023356	1.9376644	1.300078659	3.1822468	76.286	129.33	2.3208	0.017946	127.77

Tiempo	Deformación Axial	Deformación	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	δ (cm)	h (cm)	*	e = e₀ -∆e	$\Delta v = (100 - \varepsilon_{vol})$	kPa	kPa	kPa	kPa
2926.1	23.964	0.6086856	1.9313144	1.313784472	3.16854098	76.036	130.53	2.3768	0.018209	128.94
2956.8	24.214	0.6150356	1.9249644	1.327490286	3.15483517	75.786	131.84	2.3768	0.018029	130.25
2990.4	24.465	0.621411	1.918589	1.341250923	3.14107453	75.535	133.04	2.4328	0.018287	131.41
3016.5	24.715	0.627761	1.912239	1.354956737	3.12736872	75.285	134.01	2.3768	0.017736	132.42
3047.4	24.965	0.634111	1.905889	1.36866255	3.11366291	75.035	134.89	2.4328	0.018035	133.26
3076.2	25.215	0.640461	1.899539	1.382368364	3.09995709	74.785	136.2	2.6007	0.019095	134.46
3106.2	25.466	0.6468364	1.8931636	1.396129001	3.08619646	74.534	137.18	2.6566	0.019366	135.4
3134.3	25.716	0.6531864	1.8868136	1.409834814	3.07249064	74.284	138.49	2.6566	0.019183	136.71
3159.2	25.966	0.6595364	1.8804636	1.423540628	3.05878483	74.034	139.69	2.7126	0.019419	137.88
3193.5	26.216	0.6658864	1.8741136	1.437246442	3.04507902	73.784	140.78	2.7126	0.019268	138.97
3223.7	26.462	0.6721348	1.8678652	1.450732962	3.03159249	73.538	142.09	2.9365	0.020666	140.12
3246.3	26.712	0.6784848	1.8615152	1.464438776	3.01788668	73.288	142.96	2.9924	0.020932	140.96
3281.9	26.963	0.6848602	1.8551398	1.478199413	3.00412604	73.037	144.82	3.0484	0.02105	142.78
3309.9	27.213	0.6912102	1.8487898	1.491905227	2.99042023	72.787	145.58	2.9925	0.020556	143.57
3341.8	27.463	0.6975602	1.8424398	1.50561104	2.97671442	72.537	147.65	3.1603	0.021404	145.54
3369.2	27.713	0.7039102	1.8360898	1.519316854	2.9630086	72.287	148.74	3.3282	0.022376	146.52
3400.7	27.964	0.7102856	1.8297144	1.533077491	2.94924797	72.036	150.49	3.4401	0.02286	148.19
3426.8	28.214	0.7166356	1.8233644	1.546783304	2.93554215	71.786	151.91	3.5521	0.023383	149.53
3455.7	28.464	0.7229856	1.8170144	1.560489118	2.92183634	71.536	153.11	3.7759	0.024662	150.58
3487.7	28.714	0.7293356	1.8106644	1.574194932	2.90813053	71.286	154.74	3.7759	0.024401	152.22
3516.1	28.965	0.735711	1.804289	1.587955569	2.89436989	71.035	156.38	3.9998	0.025577	153.7

Tiempo	Deformación Axial	Deformación	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(٤, %)	δ (cm)	h (cm)	Ť	e = e₀ -∆e	$\Delta v = (100 - \varepsilon_{vol})$	kPa	kPa	kPa	kPa
3540.8	29.215	0.742061	1.797939	1.601661382	2.88066407	70.785	157.8	3.9998	0.025348	155.12
3576.9	29.465	0.748411	1.791589	1.615367196	2.86695826	70.535	159.43	4.1118	0.02579	156.68
3607.6	29.715	0.754761	1.785239	1.62907301	2.85325245	70.285	161.18	4.2237	0.026205	158.35
3635	29.966	0.7611364	1.7788636	1.642833646	2.83949181	70.034	162.6	4.3915	0.027009	159.66
3664	30.216	0.7674864	1.7725136	1.65653946	2.825786	69.784	164.12	4.5594	0.02778	161.07
3695.8	30.466	0.7738364	1.7661636	1.670245274	2.81208018	69.534	165.98	4.6714	0.028145	162.85
3727.2	30.716	0.7801864	1.7598136	1.683951087	2.79837437	69.284	167.94	4.9512	0.029482	164.63
3756.6	30.962	0.7864348	1.7535652	1.697437608	2.78488785	69.038	168.81	4.2237	0.025019	165.99
3787.7	31.212	0.7927848	1.7472152	1.711143422	2.77118204	68.788	170.67	4.7273	0.027699	167.5
3821.2	31.462	0.7991348	1.7408652	1.724849235	2.75747622	68.538	172.41	3.9438	0.022874	169.78
3851.2	31.713	0.8055102	1.7344898	1.738609872	2.74371558	68.287	174.05	4.8393	0.027804	170.81
3877.6	31.963	0.8118602	1.7281398	1.752315686	2.73000977	68.037	175.69	4.3355	0.024677	172.79
3907.7	32.213	0.8182102	1.7217898	1.766021499	2.71630396	67.787	177.21	4.7273	0.026676	174.05
3941.6	32.463	0.8245602	1.7154398	1.779727313	2.70259814	67.537	179.51	4.5594	0.0254	176.45
3965.7	32.714	0.8309356	1.7090644	1.79348795	2.68883751	67.286	180.81	4.1118	0.022741	178.06
4002.3	32.964	0.8372856	1.7027144	1.807193764	2.67513169	67.036	183	4.1677	0.022775	180.21
4029.6	33.214	0.8436356	1.6963644	1.820899577	2.66142588	66.786	184.96	4.6714	0.025256	181.83
4064.9	33.464	0.8499856	1.6900144	1.834605391	2.64772007	66.536	187.36	4.7833	0.02553	184.16
4095.5	33.715	0.856361	1.683639	1.848366028	2.63395943	66.285	189.32	4.5035	0.023788	186.31
4125.2	33.965	0.862711	1.677289	1.862071841	2.62025362	66.035	191.61	4.8952	0.025547	188.34
4155.6	34.215	0.869061	1.670939	1.875777655	2.6065478	65.785	193.69	4.6154	0.023829	190.6

Tiempo	Deformación Axial	Deformación	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(٤, %)	δ (cm)	h (cm)		e = e ₀ -Δe	$\Delta v = (100 - \varepsilon_{vol})$	kPa	kPa	kPa	kPa
4183.1	34.465	0.875411	1.664589	1.889483469	2.59284199	65.535	195.1	4.0558	0.020788	192.39
4200.5	34.618	0.8792972	1.6607028	1.897871427	2.58445403	65.382	196.74	4.6154	0.023459	193.65
0	34.618	0.8792972	1.6607028	1.897871427	2.58445403	65.382	196.85	4.6714	0.023731	193.72
2.8376	34.368	0.8729472	1.6670528	1.884165613	2.59815984	65.632	115.69	-3.1637	-0.027347	117.79
5.989	34.118	0.8665972	1.6734028	1.870459799	2.61186566	65.882	76.315	-3.4995	-0.045857	78.63
9.2465	33.868	0.8602472	1.6797528	1.856753986	2.62557147	66.132	52.746	-3.8353	-0.072712	55.273
13.158	33.617	0.8538718	1.6861282	1.842993349	2.63933211	66.383	33.547	-3.4995	-0.10432	35.841
15.633	33.367	0.8475218	1.6924782	1.829287535	2.65303792	66.633	25.151	-3.3316	-0.13246	27.326
19.068	33.117	0.8411718	1.6988282	1.815581722	2.66674374	66.883	16.53	-3.0518	-0.18462	18.506
22.011	32.867	0.8348218	1.7051782	1.801875908	2.68044955	67.133	10.21	-2.9959	-0.29343	12.12
29.636	32.616	0.8284464	1.7115536	1.788115271	2.69421019	67.384	10.097	-0.92513	-0.09162	10.705
36.049	32.366	0.8220964	1.7179036	1.774409457	2.707916	67.634	10.101	-0.64533	-0.063889	10.527
47.152	32.116	0.8157464	1.7242536	1.760703644	2.72162181	67.884	10.206	-0.30951	-0.030325	10.412
57.981	31.866	0.8093964	1.7306036	1.74699783	2.73532763	68.134	9.9849	-0.19755	-0.019785	10.116
69.967	31.615	0.803021	1.736979	1.733237193	2.74908826	68.385	9.9883	-0.029686	-0.0029721	10.008
84.726	31.365	0.796671	1.743329	1.71953138	2.76279408	68.635	10.097	0.026279	0.0026025	10.08
101.96	31.115	0.790321	1.749679	1.705825566	2.77649989	68.885	10.2	0.13827	0.013557	10.107
121.01	30.865	0.783971	1.756029	1.692119752	2.7902057	69.135	9.9917	0.30607	0.030633	9.7866
139.86	30.614	0.7775956	1.7624044	1.678359115	2.80396634	69.386	9.9883	0.36207	0.036249	9.7454
163.04	30.364	0.7712456	1.7687544	1.664653302	2.81767216	69.636	10.094	0.41807	0.041417	9.8133
187.37	30.114	0.7648956	1.7751044	1.650947488	2.83137797	69.886	9.9917	0.5859	0.058638	9.5972

Tiempo	Deformación Axial	Deformación	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	δ (cm)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
207.31	29.896	0.7593584	1.7806416	1.638996019	2.84332944	70.104	9.9883	0.52996	0.053058	9.6318

100B 2 0.5 % CSR 01-octubre-18

Tiempo	Deformación Axial	Deformación	Deformación acumulada	$\Delta e = \varepsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	δ (cm)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
0	-1.2652	03213608	2.57213608	-0.081063228	5.48821055	101.2652	3.9887	2.2649	0.56783	2.28
29.437	-1.0149	-0.02577846	2.56577846	-0.065026138	5.47217346	101.0149	10.206	2.3208	0.22739	8.5937
61.177	-0.76466	-0.01942236	2.55942236	-0.048992893	5.45614022	100.76466	14.57	2.3208	0.15929	12.978
88.116	-0.51441	-0.01306601	2.55306601	-0.032959007	5.44010633	100.51441	17.515	2.3208	0.13251	15.932
113.21	-0.26416	-0.00670966	2.54670966	-0.01692512	5.42407245	100.26416	20.242	2.4328	0.12018	18.586
145.17	-0.013903	-0.00035314	2.54035314	-0.000890786	5.40803811	100.013903	22.533	2.4328	0.10796	20.88
171.8	0.23635	0.00600329	2.53399671	0.015143293	5.39200403	99.76365	24.06	2.4887	0.10344	22.371
205.08	0.4866	0.01235964	2.52764036	0.031177179	5.37597015	99.5134	25.478	2.4887	0.097681	23.791
233.03	0.73686	0.01871624	2.52128376	0.047211706	5.35993562	99.26314	26.351	2.5447	0.09657	24.626
256.8	0.98711	0.02507259	2.51492741	0.063245592	5.34390173	99.01289	27.329	2.5447	0.093114	25.605
289	1.2374	0.03142996	2.50857004	0.079282041	5.32786528	98.7626	28.205	2.6007	0.092205	26.444
319.06	1.4876	0.03778504	2.50221496	0.095312724	5.3118346	98.5124	28.969	2.7126	0.093638	27.131
345.91	1.7379	0.04414266	2.49585734	0.111349813	5.29579751	98.2621	29.842	2.7126	0.0909	28.005
373.46	1.9881	0.05049774	2.48950226	0.127380496	5.27976683	98.0119	30.605	2.7686	0.09046	28.73
404.14	2.2384	0.05685536	2.48314464	0.143417586	5.26372974	97.7616	31.478	2.7686	0.087953	29.604
432.59	2.4886	0.06321044	2.47678956	0.159448268	5.24769906	97.5114	32.241	2.8805	0.089341	30.291
456.29	2.7389	0.06956806	2.47043194	0.175485358	5.23166197	97.2611	32.896	2.8805	0.087564	30.946
486.69	2.9891	0.07592314	2.46407686	0.191516041	5.21563128	97.0109	33.66	2.9365	0.08724	31.672
513.71	3.2394	0.08228076	2.45771924	0.20755313	5.19959419	96.7606	34.641	2.9365	0.084767	32.655
547.76	3.485	0.088519	2.451481	0.223289084	5.18385824	96.515	35.514	3.0484	0.085836	33.452

Tiempo	Deformación Axial	Deformación	Deformación acumulada	$\Delta e = \varepsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(٤, %)	δ (cm)	h (cm)	*	e = e ₀ -Δe	$\Delta v = (100 - \varepsilon_{vol})$	kPa	kPa	kPa	kPa
577.77	3.7353	0.09487662	2.44512338	0.239326174	5.16782115	96.2647	36.387	3.0484	0.083778	34.325
603.4	3.9855	0.1012317	2.4387683	0.255356857	5.15179047	96.0145	37.147	3.0484	0.082064	35.086
635.68	4.2358	0.10758932	2.43241068	0.271393946	5.13575338	95.7642	38.241	3.2163	0.084105	36.066
662.2	4.486	0.1139444	2.4260556	0.287424629	5.1197227	95.514	38.787	3.2163	0.082923	36.612
698.59	4.7363	0.12030202	2.41969798	0.303461719	5.10368561	95.2637	39.768	3.3282	0.08369	37.517
727.64	4.9865	0.1266571	2.4133429	0.319492401	5.08765492	95.0135	40.641	3.3842	0.08327	38.352
760.49	5.2368	0.13301472	2.40698528	0.335529491	5.07161783	94.7632	41.623	3.4401	0.082651	39.296
795.55	5.487	0.1393698	2.4006302	0.351560174	5.05558715	94.513	42.495	3.4961	0.08227	40.131
813.8	5.7373	0.14572742	2.39427258	0.367597263	5.03955006	94.2627	42.932	3.3842	0.078827	40.645
847.74	5.9876	0.15208504	2.38791496	0.383634353	5.02351297	94.0124	43.804	3.4961	0.079812	41.442
878.61	6.2378	0.15844012	2.38155988	0.399665036	5.00748229	93.7622	44.459	3.3282	0.07486	42.211
909.01	6.4881	0.16479774	2.37520226	0.415702126	4.9914452	93.5119	45.55	3.4961	0.076754	43.188
942.64	6.7383	0.17115282	2.36884718	0.431732808	4.97541452	93.2617	46.204	3.5521	0.076878	43.805
969.49	6.9886	0.17751044	2.36248956	0.447769898	4.95937743	93.0114	46.855	3.6081	0.077004	44.418
999.44	7.2388	0.18386552	2.35613448	0.463800581	4.94334674	92.7612	47.513	3.72	0.078293	45
1030.6	7.4891	0.19022314	2.34977686	0.47983767	4.92730965	92.5109	48.386	3.8879	0.080351	45.758
1055.2	7.7393	0.19657822	2.34342178	0.495868353	4.91127897	92.2607	48.931	3.8319	0.078312	46.342
1086.4	7.9849	0.20281646	2.33718354	0.511604307	4.89554302	92.0151	49.586	4.0558	0.081793	46.844
1116.9	8.2352	0.20917408	2.33082592	0.527641397	4.87950593	91.7648	50.131	3.72	0.074204	47.62
1148.3	8.4855	0.2155317	2.3244683	0.543678486	4.86346884	91.5145	50.677	3.7759	0.07451	48.127
1175.5	8.7357	0.22188678	2.31811322	0.559709169	4.84743816	91.2643	51.331	3.664	0.07138	48.859
1206.9	8.986	0.2282444	2.3117556	0.575746259	4.83140107	91.014	51.877	3.9438	0.076023	49.213
1234.2	9.2362	0.23459948	2.30540052	0.591776941	4.81537038	90.7638	52.64	4.2796	0.081299	49.747
1265.1	9.4865	0.2409571	2.2990429	0.607814031	4.79933329	90.5135	53.295	3.9998	0.07505	50.594

Tiempo	Deformación Axial	Deformación	Deformación acumulada	$\Delta e = \varepsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	δ (cm)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
1297.1	9.7367	0.24731218	2.29268782	0.623844714	4.78330261	90.2633	53.731	3.8879	0.072358	51.107
1330.2	9.987	0.2536698	2.2863302	0.639881803	4.76726552	90.013	54.604	3.9998	0.073251	51.904
1359.7	10.237	0.2600198	2.2799802	0.655899672	4.75124765	89.763	55.367	4.3356	0.078306	52.438
1381.3	10.487	0.2663698	2.2736302	0.67191754	4.73522979	89.513	55.804	4.4475	0.079699	52.798
1411.7	10.738	0.2727452	2.2672548	0.68799948	4.71914785	89.262	56.571	4.8392	0.085543	53.297
1446	10.988	0.2790952	2.2609048	0.704017348	4.70312998	89.012	57.331	4.5594	0.079529	54.249
1477.3	11.238	0.2854452	2.2545548	0.720035216	4.68711211	88.762	57.764	4.5595	0.078933	54.683
1503.6	11.488	0.2917952	2.2482048	0.736053085	4.67109424	88.512	58.422	4.8952	0.083791	55.111
1529	11.739	0.2981706	2.2418294	0.752135024	4.6550123	88.261	59.073	4.9512	0.083816	55.724
1562.1	11.989	0.3045206	2.2354794	0.768152893	4.63899443	88.011	59.731	5.1751	0.08664	56.229
1596.9	12.239	0.3108706	2.2291294	0.784170761	4.62297656	87.761	60.058	4.6714	0.077781	56.902
1625.8	12.485	0.317119	2.222881	0.799932344	4.60721498	87.515	60.822	4.7833	0.078645	57.589
1653.5	12.735	0.323469	2.216531	0.815950212	4.59119711	87.265	61.476	5.1191	0.08327	58.014
1679.4	12.985	0.329819	2.210181	0.83196808	4.57517924	87.015	61.803	5.0631	0.081923	58.38
1710	13.236	0.3361944	2.2038056	0.84805002	4.55909731	86.764	62.567	5.1191	0.081818	59.106
1739.7	13.486	0.3425444	2.1974556	0.864067888	4.54307944	86.514	63.112	5.343	0.084658	59.498
1771.8	13.736	0.3488944	2.1911056	0.880085757	4.52706157	86.264	63.436	4.6714	0.073639	60.282
1799.9	13.986	0.3552444	2.1847556	0.896103625	4.5110437	86.014	64.312	5.1751	0.080468	60.814
1827.9	14.237	0.3616198	2.1783802	0.912185565	4.49496176	85.763	65.076	5.7347	0.088123	61.194
1852.6	14.487	0.3679698	2.1720302	0.928203433	4.47894389	85.513	65.512	6.0705	0.092662	61.4
1886.9	14.737	0.3743198	2.1656802	0.944221301	4.46292602	85.263	66.494	6.4063	0.096344	62.151
1915.9	14.987	0.3806698	2.1593302	0.96023917	4.44690816	85.013	66.93	6.4063	0.095716	62.588
1934.8	15.238	0.3870452	2.1529548	0.976321109	4.43082622	84.762	67.476	6.854	0.10158	62.825
1968.6	15.488	0.3933952	2.1466048	0.992338978	4.41480835	84.512	68.567	6.9659	0.10159	63.84

Tiempo	Deformación Axial	Deformación	Deformación acumulada	$\Delta e = \varepsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	δ (cm)	h (cm)		e = e ₀ -Δe	$\Delta v = (100 - \varepsilon_{vol})$	kPa	kPa	kPa	kPa
1996.8	15.738	0.3997452	2.1402548	1.008356846	4.39879048	84.262	69.112	6.91	0.099982	64.425
2032.3	15.988	0.4060952	2.1339048	1.024374714	4.38277261	84.012	70.09	7.8054	0.11136	64.785
2060.5	16.239	0.4124706	2.1275294	1.040456654	4.36669067	83.761	70.748	7.3577	0.104	65.754
2092.8	16.489	0.4188206	2.1211794	1.056474522	4.3506728	83.511	71.403	8.2531	0.11559	65.789
2116.9	16.739	0.4251706	2.1148294	1.072492391	4.33465493	83.261	72.494	8.8687	0.12234	66.453
2149.3	16.989	0.4315206	2.1084794	1.088510259	4.31863707	83.011	72.93	9.0926	0.12468	66.735
2171.1	17.235	0.437769	2.102231	1.104271841	4.30287548	82.765	73.584	9.0926	0.12357	67.39
2205.4	17.485	0.444119	2.095881	1.12028971	4.28685762	82.515	73.694	8.3091	0.11275	68.044
2231.1	17.736	0.4504944	2.0895056	1.13637165	4.27077568	82.264	75.221	10.324	0.13725	68.17
2256.6	17.986	0.4568444	2.0831556	1.152389518	4.25475781	82.014	74.893	8.477	0.11319	69.13
2293.1	18.236	0.4631944	2.0768056	1.168407386	4.23873994	81.764	76.748	10.548	0.13743	69.544
2311.3	18.486	0.4695444	2.0704556	1.184425255	4.22272207	81.514	77.293	10.883	0.14081	69.856
2346.7	18.737	0.4759198	2.0640802	1.200507194	4.20664013	81.263	78.057	10.828	0.13871	70.66
2373.5	18.987	0.4822698	2.0577302	1.216525063	4.19062226	81.013	79.148	11.667	0.14741	71.165
2402.5	19.237	0.4886198	2.0513802	1.232542931	4.17460439	80.763	80.02	11.947	0.1493	71.843
2429.3	19.487	0.4949698	2.0450302	1.248560799	4.15858653	80.513	80.129	10.772	0.13443	72.777
2465.8	19.738	0.5013452	2.0386548	1.264642739	4.14250459	80.262	81.548	12.339	0.15131	73.099
2496.5	19.988	0.5076952	2.0323048	1.280660607	4.12648672	80.012	83.293	13.682	0.16426	73.902
2514.8	20.238	0.5140452	2.0259548	1.296678476	4.11046885	79.762	83.184	13.01	0.1564	74.267
2554.2	20.488	0.5203952	2.0196048	1.312696344	4.09445098	79.512	84.929	14.577	0.17164	74.909
2575.2	20.739	0.5267706	2.0132294	1.328778284	4.07836904	79.261	85.58	14.801	0.17295	75.404
2607.7	20.989	0.5331206	2.0068794	1.344796152	4.06235117	79.011	86.347	15.025	0.17401	76.015
2632.1	21.239	0.5394706	2.0005294	1.36081402	4.0463333	78.761	87.329	15.137	0.17333	76.921
2663	21.489	0.5458206	1.9941794	1.376831889	4.03031544	78.511	88.529	15.976	0.18046	77.529

Tiempo	Deformación Axial	Deformación	Deformación acumulada	$\Delta e = \varepsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	δ (cm)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
2688.9	21.735	0.552069	1.987931	1.392593471	4.01455385	78.265	89.402	16.536	0.18496	78.006
2723.7	21.985	0.558419	1.981581	1.408611339	3.99853599	78.015	90.274	16.648	0.18441	78.803
2749	22.235	0.564769	1.975231	1.424629208	3.98251812	77.765	91.147	17.208	0.18879	79.28
2778.9	22.486	0.5711444	1.9688556	1.440711148	3.96643618	77.514	92.456	17.991	0.19459	80.035
2808.9	22.736	0.5774944	1.9625056	1.456729016	3.95041831	77.264	93.111	17.935	0.19262	80.733
2840.6	22.986	0.5838444	1.9561556	1.472746884	3.93440044	77.014	94.307	18.159	0.19255	81.775
2868.9	23.237	0.5902198	1.9497802	1.488828824	3.9183185	76.763	95.51	19.278	0.20184	82.182
2898.9	23.487	0.5965698	1.9434302	1.504846692	3.90230063	76.513	96.819	19.614	0.20258	83.257
2922.9	23.737	0.6029198	1.9370802	1.520864561	3.88628276	76.263	97.256	19.838	0.20398	83.534
2960.9	23.987	0.6092698	1.9307302	1.536882429	3.8702649	76.013	98.674	20.286	0.20558	84.638
2985	24.238	0.6156452	1.9243548	1.552964369	3.85418296	75.762	99.546	20.565	0.20659	85.315
3011	24.488	0.6219952	1.9180048	1.568982237	3.83816509	75.512	100.31	20.845	0.20781	85.881
3043.6	24.738	0.6283452	1.9116548	1.585000105	3.82214722	75.262	101.84	21.909	0.21513	86.65
3075.6	24.988	0.6346952	1.9053048	1.601017974	3.80612935	75.012	102.82	22.468	0.21852	87.234
3106.1	25.239	0.6410706	1.8989294	1.617099913	3.79004741	74.761	104.46	23.476	0.22474	88.151
3136.4	25.489	0.6474206	1.8925794	1.633117782	3.77402954	74.511	105	23.364	0.22251	88.781
3171.3	25.739	0.6537706	1.8862294	1.64913565	3.75801168	74.261	106.31	23.643	0.2224	89.897
3196.5	25.989	0.6601206	1.8798794	1.665153518	3.74199381	74.011	107.07	23.643	0.22082	90.665
3224.7	26.235	0.666369	1.873631	1.680915101	3.72623222	73.765	108.16	24.371	0.22532	91.236
3255.6	26.485	0.672719	1.867281	1.696932969	3.71021436	73.515	109.58	24.483	0.22343	92.579
3280.3	26.735	0.679069	1.860931	1.712950837	3.69419649	73.265	109.8	24.147	0.21992	93.046
3311.6	26.986	0.6854444	1.8545556	1.729032777	3.67811455	73.014	111.33	25.266	0.22696	93.772
3342.7	27.236	0.6917944	1.8482056	1.745050645	3.66209668	72.764	112.96	26.386	0.23358	94.606
3374.1	27.486	0.6981444	1.8418556	1.761068514	3.64607881	72.514	114.6	27.225	0.23757	95.643

Tiempo	Deformación Axial	Deformación	Deformación acumulada	$\Delta e = \varepsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	δ (cm)	h (cm)		e = e₀ -∆e	$\Delta v = (100 - \varepsilon_{vol})$	kPa	kPa	kPa	kPa
3403.5	27.736	0.7044944	1.8355056	1.777086382	3.63006094	72.264	115.58	27.505	0.23798	96.425
3431.4	27.987	0.7108698	1.8291302	1.793168322	3.613979	72.013	116.78	27.897	0.23888	97.352
3460.9	28.237	0.7172198	1.8227802	1.80918619	3.59796113	71.763	118.31	28.96	0.24478	98.114
3495.1	28.487	0.7235698	1.8164302	1.825204058	3.58194327	71.513	119.83	29.52	0.24634	99.241
3524.4	28.737	0.7299198	1.8100802	1.841221927	3.5659254	71.263	121.36	30.247	0.24923	100.25
3556.3	28.988	0.7362952	1.8037048	1.857303867	3.54984346	71.012	122.67	30.639	0.24976	101.29
3584.8	29.238	0.7426452	1.7973548	1.873321735	3.53382559	70.762	124.2	31.367	0.25255	102.29
3613.4	29.488	0.7489952	1.7910048	1.889339603	3.51780772	70.512	125.62	31.814	0.25326	103.39
3644.3	29.738	0.7553452	1.7846548	1.905357472	3.50178985	70.262	127.03	32.094	0.25265	104.62
3672	29.989	0.7617206	1.7782794	1.921439411	3.48570791	70.011	128.13	32.43	0.25311	105.47
3705.9	30.239	0.7680706	1.7719294	1.93745728	3.46969005	69.761	129.98	32.99	0.2538	106.93
3729.3	30.489	0.7744206	1.7655794	1.953475148	3.45367218	69.511	130.2	31.982	0.24564	107.89
3767.1	30.735	0.780669	1.759331	1.96923673	3.43791059	69.265	133.04	34.165	0.25681	109.15
3793.3	30.985	0.787019	1.752981	1.985254599	3.42189273	69.015	134.34	34.445	0.25639	110.27
3826.1	31.235	0.793369	1.746631	2.001272467	3.40587486	68.765	135.76	34.892	0.25702	111.37
3846.7	31.486	0.7997444	1.7402556	2.017354407	3.38979292	68.514	136.85	34.669	0.25333	112.64
3887.1	31.736	0.8060944	1.7339056	2.033372275	3.37377505	68.264	136.85	32.822	0.23983	113.99
3912.9	31.986	0.8124444	1.7275556	2.049390143	3.35775718	68.014	139.69	35.004	0.25059	115.25
3941.7	32.236	0.8187944	1.7212056	2.065408012	3.34173931	67.764	141.54	36.795	0.25996	115.81
3969.7	32.487	0.8251698	1.7148302	2.081489951	3.32565737	67.513	143.83	38.194	0.26554	117.09
4000	32.737	0.8315198	1.7084802	2.09750782	3.30963951	67.263	145.36	38.698	0.26622	118.26
4031.2	32.987	0.8378698	1.7021302	2.113525688	3.29362164	67.013	146.78	38.866	0.26479	119.57
4059.5	33.237	0.8442198	1.6957802	2.129543556	3.27760377	66.763	148.53	39.314	0.26469	121
4091	33.488	0.8505952	1.6894048	2.145625496	3.26152183	66.512	149.62	39.202	0.26201	122.19

Tiempo	Deformación Axial	Deformación	Deformación acumulada	$\Delta e = \varepsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(٤, %)	δ (cm)	h (cm)		e = e ₀ -Δe	$\Delta v = (100 - \varepsilon_{vol})$	kPa	kPa	kPa	kPa
4123.9	33.738	0.8569452	1.6830548	2.161643365	3.24550396	66.262	151.91	40.433	0.26617	123.59
4147.8	33.988	0.8632952	1.6767048	2.177661233	3.22948609	66.012	153.43	41.272	0.26899	124.51
4179.9	34.238	0.8696452	1.6703548	2.193679101	3.21346822	65.762	155.07	41.44	0.26724	126.04
4204.7	34.489	0.8760206	1.6639794	2.209761041	3.19738628	65.511	154.42	38.25	0.24771	127.73
4240.5	34.739	0.8823706	1.6576294	2.225778909	3.18136842	65.261	153.54	33.997	0.22142	129.95
4271.8	34.989	0.8887206	1.6512794	2.241796778	3.16535055	65.011	158.34	40.041	0.25288	130.37
4296.7	35.239	0.8950706	1.6449294	2.257814646	3.14933268	64.761	161.07	41.44	0.25728	132.1
4324.8	35.448	0.9003792	1.6396208	2.271205584	3.13594174	64.552	161.72	40.433	0.25001	133.5
0	35.448	0.9003792	1.6396208	2.271205584	3.13594174	64.552	161.83	40.489	0.25019	133.57
2.6873	35.198	0.8940292	1.6459708	2.255187715	3.15195961	64.802	87.656	-11.335	-0.12931	95.059
5.3879	34.947	0.8876538	1.6523462	2.239105776	3.16804155	65.053	58.316	-7.7529	-0.13295	63.376
8.5614	34.697	0.8813038	1.6586962	2.223087907	3.18405942	65.303	39.554	-6.6896	-0.16913	43.896
12.203	34.447	0.8749538	1.6650462	2.207070039	3.20007729	65.553	24.919	-6.1857	-0.24823	28.889
14.555	34.197	0.8686038	1.6713962	2.191052171	3.21609515	65.803	18.49	-5.6261	-0.30428	22.072
18.033	33.946	0.8622284	1.6777716	2.174970231	3.23217709	66.054	11.519	-5.5703	-0.48358	14.984
20.898	33.696	0.8558784	1.6841216	2.158952363	3.24819496	66.304	10.097	-4.6748	-0.46297	13.013
26.719	33.446	0.8495284	1.6904716	2.142934494	3.26421283	66.554	10.21	-3.4436	-0.33728	12.393
33.645	33.196	0.8431784	1.6968216	2.126916626	3.2802307	66.804	10.097	-2.9399	-0.29115	11.973
41.57	32.945	0.836803	1.703197	2.110834686	3.29631264	67.055	10.206	-2.3802	-0.23321	11.737
51.537	32.695	0.830453	1.709547	2.094816818	3.31233051	67.305	10.101	-1.8766	-0.18578	11.316
62.993	32.445	0.824103	1.715897	2.07879895	3.32834838	67.555	10.097	-1.7646	-0.17476	11.242
74.41	32.195	0.817753	1.722247	2.062781081	3.34436624	67.805	10.206	-1.6527	-0.16192	11.28
88.846	31.944	0.8113776	1.7286224	2.046699142	3.36044818	68.056	10.097	-1.4848	-0.14705	11.064
102.64	31.694	0.8050276	1.7349724	2.030681273	3.37646605	68.306	10.101	-1.4288	-0.14146	11.032

Tiempo	Deformación Axial	Deformación	Deformación acumulada	$\Delta e = \varepsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	δ (cm)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
125.8	31.444	0.7986776	1.7413224	2.014663405	3.39248392	68.556	10.101	-1.3729	-0.13592	10.996
142.38	31.194	0.7923276	1.7476724	1.998645537	3.40850179	68.806	10.097	-1.3728	-0.13596	10.993
164.9	30.943	0.7859522	1.7540478	1.982563597	3.42458373	69.057	10.097	-1.3169	-0.13042	10.957
186.45	30.698	0.7797292	1.7602708	1.966866086	3.44028124	69.302	10.097	-1.2609	-0.12488	10.921
220.54	30.448	0.7733792	1.7666208	1.950848218	3.45629911	69.552	9.9883	-1.149	-0.11503	10.74
242.3	30.197	0.7670038	1.7729962	1.934766278	3.47238105	69.803	9.9883	-0.92513	-0.092621	10.596
277.33	29.947	0.7606538	1.7793462	1.918748409	3.48839892	70.053	9.9883	-0.53337	-0.0534	10.341
309.29	29.697	0.7543038	1.7856962	1.902730541	3.50441678	70.303	10.097	-0.42144	-0.041738	10.376
338.43	29.433	0.7475982	1.7924018	1.885815672	3.52133165	70.567	10.101	-0.30954	-0.030645	10.306
373.73	29.257	0.7431278	1.7968722	1.874539093	3.53260823	70.743	10.097	-0.029686	-0.00294	10.117

100B 3 0.5 % CSR 03-diciembre-18

Tiempo	Deformación Axial	Deformación	Deformación acumulada	$\Delta e = \varepsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	δ (cm)	h (cm)		e = e₀ -∆e	$\Delta v = (100 - \varepsilon_{vol})$	kPa	kPa	kPa	kPa
0	-1.5757	-0.04002278	2.58002278	-0.059773	2.85319828	101.5757	3.9852	4.1118	1.0317	0.39957
23.837	-1.3254	-0.03366516	2.57366516	-0.05027806	2.84370334	101.3254	15.443	4.2237	0.27351	12.48
59.642	-1.0752	-0.02731008	2.56731008	-0.04078691	2.83421219	101.0752	22.533	4.2237	0.18744	19.621
83.735	-0.82491	-0.02095271	2.56095271	-0.03129234	2.82471762	100.82491	26.566	4.1677	0.15688	23.709
109.86	-0.57466	-0.01459636	2.55459636	-0.0217993	2.81522457	100.57466	30.496	4.2796	0.14033	27.572
134.3	-0.3244	-0.00823976	2.54823976	-0.01230587	2.80573115	100.3244	34.096	4.2796	0.12552	31.18
158.84	-0.074149	-0.00188338	2.54188338	-0.00281279	2.79623806	100.074149	38.023	4.2796	0.11255	35.113
192.36	0.1761	0.00447294	2.53552706	0.00668022	2.78674505	99.8239	42.386	4.2237	0.099647	39.522
220.67	0.42636	0.01082954	2.52917046	0.01617365	2.77725163	99.57364	46.095	4.2796	0.092843	43.196
248.2	0.67661	0.01718589	2.52281411	0.02566669	2.76775858	99.32339	48.931	4.2237	0.086318	46.073
278.34	0.92687	0.0235425	2.5164575	0.03516012	2.75826516	99.07313	51.444	4.2796	0.08319	48.55
303.11	1.1771	0.02989834	2.51010166	0.04465241	2.74877287	98.8229	52.967	4.2237	0.07974	50.113
330.55	1.4274	0.03625596	2.50374404	0.05414735	2.73927792	98.5726	54.928	4.2237	0.076895	52.074
361.62	1.6776	0.04261104	2.49738896	0.0636385	2.72978677	98.3224	57.113	4.2237	0.073953	54.261
387.5	1.9279	0.04896866	2.49103134	0.07313345	2.72029183	98.0721	58.749	4.2796	0.072846	55.86
422.52	2.1781	0.05532374	2.48467626	0.0826246	2.71080068	97.8219	61.476	4.2796	0.069614	58.589
452.4	2.4284	0.06168136	2.47831864	0.09211954	2.70130574	97.5716	63.44	4.2796	0.06746	60.553
476.58	2.6786	0.06803644	2.47196356	0.10161069	2.69181459	97.3214	65.076	4.2796	0.065764	62.191
507.47	2.9289	0.07439406	2.46560594	0.11110563	2.68231964	97.0711	67.367	4.2796	0.063527	64.482

Tiempo	Deformación Axial	Deformación	Deformación acumulada	$\Delta e = \varepsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	δ (cm)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
538.52	3.1745	0.0806323	2.4593677	0.12042229	2.67300299	96.8255	69.548	4.3356	0.062339	66.627
564.52	3.4248	0.08698992	2.45301008	0.12991723	2.66350805	96.5752	71.185	4.3356	0.060906	68.264
592.9	3.675	0.093345	2.446655	0.13940838	2.6540169	96.325	73.366	4.3915	0.059858	70.409
626.5	3.9253	0.09970262	2.44029738	0.14890332	2.64452195	96.0747	75.984	4.5035	0.059269	72.951
650.27	4.1755	0.1060577	2.4339423	0.15839447	2.6350308	95.8245	77.402	4.6154	0.059629	74.294
675.39	4.4258	0.11241532	2.42758468	0.16788942	2.62553586	95.5742	79.584	4.9512	0.062213	76.248
707.69	4.676	0.1187704	2.4212296	0.17738057	2.61604471	95.324	82.093	5.0631	0.061675	78.682
733.22	4.9263	0.12512802	2.41487198	0.18687551	2.60654977	95.0737	83.838	5.231	0.062394	80.314
767.83	5.1765	0.1314831	2.4085169	0.19636666	2.59705862	94.8235	86.675	5.4549	0.062935	82.999
799.13	5.4268	0.13784072	2.40215928	0.2058616	2.58756367	94.5732	89.074	5.0631	0.056842	85.666
824.9	5.6771	0.14419834	2.39580166	0.21535655	2.57806873	94.3229	90.925	5.2311	0.057531	87.404
857.24	5.9273	0.15055342	2.38944658	0.2248477	2.56857758	94.0727	93.547	5.4549	0.058312	89.874
884.9	6.1776	0.15691104	2.38308896	0.23434264	2.55908264	93.8224	95.947	5.6228	0.058603	92.161
919.68	6.4278	0.16326612	2.37673388	0.24383379	2.54959149	93.5722	99.11	6.4623	0.065203	94.754
949.3	6.6781	0.16962374	2.37037626	0.25332873	2.54009654	93.3219	102.06	6.798	0.066611	97.472
981.93	6.9283	0.17597882	2.36402118	0.26281988	2.53060539	93.0717	106.09	9.9321	0.093618	99.362
1017.1	7.1786	0.18233644	2.35766356	0.27231483	2.52111045	92.8214	107.95	6.5742	0.060903	103.52
1036	7.4288	0.18869152	2.35130848	0.28180598	2.5116193	92.5712	109.47	6.91	0.063122	104.81
1066.6	7.6744	0.19492976	2.34507024	0.29112263	2.50230265	92.3256	112.53	7.5815	0.067375	107.41
1098.9	7.9247	0.20128738	2.33871262	0.30061757	2.4928077	92.0753	115.58	8.4211	0.07286	109.89
1127.1	8.175	0.207645	2.332355	0.31011252	2.48331276	91.825	118.85	10.324	0.086861	111.87
1163	8.4252	0.21400008	2.32599992	0.31960367	2.47382161	91.5748	121.36	8.0293	0.066159	115.95
1189.8	8.6755	0.2203577	2.3196423	0.32909861	2.46432667	91.3245	123.44	8.477	0.068675	117.72
1225.8	8.9257	0.22671278	2.31328722	0.33858976	2.45483552	91.0743	127.47	9.6523	0.075721	120.95

Tiempo	Deformación Axial	Deformación	Deformación acumulada	$\Delta e = \varepsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	δ (cm)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
1255	9.176	0.2330704	2.3069296	0.3480847	2.44534057	90.824	131.62	13.626	0.10353	122.37
1280.8	9.4262	0.23942548	2.30057452	0.35757585	2.43584942	90.5738	133.58	11.723	0.087759	125.65
1313	9.6765	0.2457831	2.2942169	0.3670708	2.42635448	90.3235	137.51	14.241	0.10357	127.84
1345.8	9.9267	0.25213818	2.28786182	0.37656195	2.41686333	90.0733	149.29	36.907	0.24721	123.54
1373.7	10.177	0.2584958	2.2815042	0.38605689	2.40736839	89.823	157.36	49.499	0.31456	122.33
1405.2	10.427	0.2648458	2.2751542	0.39554045	2.39788482	89.573	165	58.622	0.35529	123.14
1434.4	10.677	0.2711958	2.2688042	0.40502402	2.38840126	89.323	152.45	23.196	0.15215	136.57
1461.8	10.928	0.2775712	2.2624288	0.41454551	2.37887976	89.072	163.25	38.53	0.23602	136.43
1492.6	11.173	0.2837942	2.2562058	0.42383941	2.36958587	88.827	166.2	35.508	0.21365	141.59
1523.4	11.428	0.2902712	2.2497288	0.43351264	2.35991264	88.572	174.71	47.093	0.26956	141.7
1557.2	11.679	0.2966466	2.2433534	0.44303414	2.35039114	88.321	177.44	46.029	0.25941	145.24
1585.7	11.929	0.3029966	2.2370034	0.4525177	2.34090758	88.071	182.99	50.171	0.27417	147.79
1607.5	12.174	0.3092196	2.2307804	0.46181159	2.33161368	87.826	182.34	41.664	0.2285	153.38
1641.2	12.425	0.315595	2.224405	0.47133309	2.32209219	87.575	191.61	57.614	0.30068	150.97
1673.4	12.675	0.321945	2.218055	0.48081665	2.31260862	87.325	178.08	25.267	0.14188	160.81
1702.1	12.925	0.328295	2.211705	0.49030022	2.30312506	87.075	191.61	46.477	0.24256	159.21
1730.1	13.175	0.334645	2.205355	0.49978378	2.2936415	86.825	193.69	43.007	0.22205	163.83
1755.3	13.426	0.3410204	2.1989796	0.50930528	2.28412	86.574	197.61	45.582	0.23066	165.92
1789	13.676	0.3473704	2.1926296	0.51878884	2.27463644	86.324	217.03	81.735	0.37661	158.38
1823.7	13.926	0.3537204	2.1862796	0.5282724	2.26515287	86.074	230.23	100.6	0.43694	156.99
1854.4	14.176	0.3600704	2.1799296	0.53775597	2.25566931	85.824	239.39	110.56	0.46182	158.39
1882.2	14.427	0.3664458	2.1735542	0.54727746	2.24614781	85.573	249.21	120.74	0.4845	160.22
1909.2	14.677	0.3727958	2.1672042	0.55676103	2.23666425	85.323	257.61	128.91	0.50042	162.19
1939.3	14.927	0.3791458	2.1608542	0.56624459	2.22718069	85.073	267.76	139.1	0.5195	164.26

Tiempo	Deformación Axial	Deformación	Deformación acumulada	$\Delta e = \varepsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	δ (cm)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
1969.3	15.177	0.3854958	2.1545042	0.57572815	2.21769712	84.823	277.68	149.06	0.53681	166.23
2003.1	15.428	0.3918712	2.1481288	0.58524965	2.20817562	84.572	288.81	160.03	0.55411	168.56
2031.2	15.678	0.3982212	2.1417788	0.59473321	2.19869206	84.322	298.73	169.49	0.56735	170.89
2061.3	15.928	0.4045712	2.1354288	0.60421678	2.1892085	84.072	308.77	179	0.57973	173.24
2085.1	16.178	0.4109212	2.1290788	0.61370034	2.17972494	83.822	317.17	187.01	0.58961	175.16
2119.7	16.429	0.4172966	2.1227034	0.62322184	2.17020344	83.571	328.84	197.97	0.60204	177.92
2147	16.679	0.4236466	2.1163534	0.6327054	2.16071987	83.321	339.64	208.1	0.61272	180.46
2170.9	16.925	0.429895	2.110105	0.64203723	2.15138805	83.075	348.59	216.33	0.62059	182.69
2200	17.175	0.436245	2.103755	0.65152079	2.14190449	82.825	330.26	180.07	0.54522	195.31
2229.1	17.425	0.442595	2.097405	0.66100435	2.13242092	82.575	351.53	205.75	0.58531	195.49
2263.6	17.675	0.448945	2.091055	0.67048792	2.12293736	82.325	368.88	226.85	0.61498	195.22
2290.9	17.926	0.4553204	2.0846796	0.68000942	2.11341586	82.074	332.99	170.61	0.51236	206.3
2324.8	18.176	0.4616704	2.0783296	0.68949298	2.1039323	81.824	352.62	192.1	0.54477	208.67
2347.9	18.426	0.4680204	2.0719796	0.69897654	2.09444874	81.574	373.34	216.89	0.58094	209.07
2380.7	18.676	0.4743704	2.0656296	0.7084601	2.08496517	81.324	375.42	212.97	0.56729	214.77
2401.8	18.927	0.4807458	2.0592542	0.7179816	2.07544367	81.073	384.91	222.32	0.57758	216.7
2434.7	19.177	0.4870958	2.0529042	0.72746517	2.06596011	80.823	375.64	203.4	0.54149	223.36
2462.9	19.427	0.4934458	2.0465542	0.73694873	2.05647655	80.573	389.82	219.91	0.56414	224.09
2487.4	19.677	0.4997958	2.0402042	0.74643229	2.04699298	80.323	406.07	238.27	0.58676	225.29
2522.7	19.928	0.5061712	2.0338288	0.75595379	2.03747149	80.072	428.76	267.09	0.62293	223.78
2541.8	20.178	0.5125212	2.0274788	0.76543735	2.02798792	79.822	431.93	266.48	0.61694	227.82
2576.2	20.428	0.5188712	2.0211288	0.77492092	2.01850436	79.572	393.96	202.45	0.51388	243.57
2604.8	20.678	0.5252212	2.0147788	0.78440448	2.0090208	79.322	443.05	277.84	0.6271	229.54
2634.2	20.929	0.5315966	2.0084034	0.79392598	1.9994993	79.071	441.63	262.45	0.59426	242.04

Tiempo	Deformación Axial	Deformación	Deformación acumulada	$\Delta e = \varepsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(٤, %)	δ (cm)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
2661.8	21.179	0.5379466	2.0020534	0.80340954	1.99001574	78.821	460.4	285.95	0.6211	241.07
2697.2	21.424	0.5441696	1.9958304	0.81270343	1.98072185	78.576	453.74	257.91	0.56841	259.13
2728.4	21.675	0.550545	1.989455	0.82222493	1.97120035	78.325	488.32	313.49	0.64196	246.22
2750.1	21.925	0.556895	1.983105	0.83170849	1.96171678	78.075	495.09	317.18	0.64066	250.24
2787.2	22.175	0.563245	1.976755	0.84119206	1.95223322	77.825	532.61	364.08	0.68357	247.32
2814.4	22.426	0.5696204	1.9703796	0.85071355	1.94271172	77.574	546.9	373.14	0.68229	254.64
2844.4	22.676	0.5759704	1.9640296	0.86019712	1.93322816	77.324	571.88	403.42	0.70543	253.18
2869.6	22.926	0.5823204	1.9576796	0.86968068	1.9237446	77.074	595.55	429.84	0.72175	253.83
2901.2	23.176	0.5886704	1.9513296	0.87916424	1.91426103	76.824	624.68	459.72	0.73594	257.12
2927.8	23.427	0.5950458	1.9449542	0.88868574	1.90473954	76.573	646.49	481.94	0.74547	259.65
2945.6	23.538	0.5978652	1.9421348	0.89289644	1.90052883	76.462	662.42	497.89	0.75162	261.74
0	23.533	0.5977382	1.9422618	0.89270677	1.90071851	76.467	662.09	497.83	0.75191	261.41
3.5226	23.283	0.5913882	1.9486118	0.88322321	1.91020207	76.717	376.62	238.27	0.63265	193.18
7.1691	23.033	0.5850382	1.9549618	0.87373964	1.91968563	76.967	200.56	75.691	0.37741	146.23
10.617	22.782	0.5786628	1.9613372	0.86421815	1.92920713	77.218	106.53	-9.8236	-0.092216	112.98
13.366	22.532	0.5723128	1.9676872	0.85473458	1.93869069	77.468	70.639	-12.286	-0.17393	78.609
16.769	22.282	0.5659628	1.9740372	0.84525102	1.94817426	77.718	43.913	-9.5437	-0.21733	50.065
19.39	22.032	0.5596128	1.9803872	0.83576746	1.95765782	77.968	28.856	-9.7676	-0.33849	35.047
23.121	21.781	0.5532374	1.9867626	0.82624596	1.96717932	78.219	15.333	-9.096	-0.59321	20.916
24.924	21.531	0.5468874	1.9931126	0.8167624	1.97666288	78.469	10.854	-8.5923	-0.79161	16.011
30.855	21.281	0.5405374	1.9994626	0.80727883	1.98614644	78.719	10.206	-3.4995	-0.34287	12.423
39.854	21.031	0.5341874	2.0058126	0.79779527	1.99563001	78.969	10.094	-1.3728	-0.136	10.99
48.513	20.78	0.527812	2.012188	0.78827377	2.0051515	79.22	9.8792	-0.47741	-0.048324	10.195
61.282	20.53	0.521462	2.018538	0.77879021	2.01463507	79.47	10.319	0.30607	0.029661	10.114

Tiempo	Deformación Axial	Deformación	Deformación acumulada	$\Delta e = \varepsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	δ (cm)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
63.037	20.502	0.5207508	2.0192492	0.77772805	2.01569723	79.498	10.097	0.41803	0.0414	9.8167

100B 4 0.5 % CSR 03-abril-19

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
0	-1.1354	2.56883916	-0.0447016	2.9817806	101.1354	6.2794	2.1529	0.34286	4.7463
27.126	-0.88052	2.56236521	-0.03466677	2.97174577	100.88052	12.606	2.2649	0.17966	11.047
59.525	-0.6349	2.55612646	-0.02499651	2.96207552	100.6349	18.933	2.2649	0.11962	17.391
81.18	-0.38465	2.54977011	-0.01514397	2.95222298	100.38465	22.424	2.2649	0.101	20.887
115.85	-0.1344	2.54341376	-0.00529143	2.94237044	100.1344	27.554	2.2648	0.082196	26.023
145.1	0.11586	2.53705716	0.0045615	2.93251751	99.88414	31.365	2.2649	0.07221	29.837
172.02	0.36611	2.53070081	0.01441404	2.92266496	99.63389	33.769	2.3208	0.068728	32.203
196.1	0.61637	2.5243442	0.02426697	2.91281203	99.38363	35.627	2.2648	0.063572	34.1
218.99	0.86662	2.51798785	0.03411951	2.90295949	99.13338	37.038	2.2649	0.061151	35.512
255.81	1.1169	2.51163074	0.04397324	2.89310577	98.8831	39.441	2.2649	0.057424	37.916
280.44	1.3671	2.50527566	0.05382381	2.8832552	98.6329	41.074	2.2649	0.055142	39.55
312.77	1.6174	2.49891804	0.06367832	2.87340069	98.3826	43.041	2.2649	0.052622	41.517
339.46	1.8676	2.49256296	0.07352889	2.86355012	98.1324	44.568	2.2649	0.050818	43.045
369.09	2.1179	2.48620534	0.0833834	2.85369561	97.8821	46.095	2.3208	0.050349	44.535
397.7	2.3681	2.47985026	0.09323397	2.84384504	97.6319	47.622	2.2649	0.047559	46.1
420.49	2.6184	2.47349264	0.10308848	2.83399053	97.3816	48.713	2.3208	0.047643	47.153
455.22	2.8686	2.46713756	0.11293905	2.82413996	97.1314	50.786	2.2649	0.044597	49.264
484.74	3.1189	2.46077994	0.12279356	2.81428545	96.8811	52.422	2.3208	0.044272	50.863
513.5	3.3692	2.45442232	0.13264807	2.80443094	96.6308	54.167	2.3208	0.042846	52.609
544.09	3.6148	2.44818408	0.14231753	2.79476147	96.3852	55.807	2.3208	0.041586	54.249

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(٤, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
568.26	3.865	2.441829	0.1521681	2.7849109	96.135	57.113	2.2649	0.039656	55.593
596.67	4.1153	2.43547138	0.16202261	2.77505639	95.8847	58.749	2.2649	0.038552	57.229
629.55	4.3655	2.4291163	0.17187318	2.76520582	95.6345	60.494	2.3208	0.038365	58.937
658.28	4.6158	2.42275868	0.18172769	2.75535131	95.3842	62.454	2.2649	0.036265	60.935
691.83	4.866	2.4164036	0.19157826	2.74550074	95.134	63.985	2.3208	0.036272	62.428
720.51	5.1163	2.41004598	0.20143277	2.73564623	94.8837	65.952	2.3768	0.036038	64.358
746.57	5.3666	2.40368836	0.21128728	2.72579172	94.6334	67.476	2.3768	0.035225	65.882
776.38	5.6168	2.39733328	0.22113785	2.71594115	94.3832	69.33	2.3768	0.034282	67.736
807.34	5.8671	2.39097566	0.23099236	2.70608664	94.1329	71.294	2.3208	0.032553	69.738
833.97	6.1173	2.38462058	0.24084293	2.69623607	93.8827	72.821	2.3768	0.032639	71.228
861.37	6.3676	2.37826296	0.25069744	2.68638156	93.6324	74.461	2.3768	0.03192	72.867
899.27	6.6178	2.37190788	0.26054801	2.67653099	93.3822	76.857	2.3768	0.030925	75.264
921.11	6.8681	2.36555026	0.27040252	2.66667648	93.1319	78.275	2.3768	0.030365	76.682
948.89	7.1183	2.35919518	0.28025309	2.65682591	92.8817	79.911	2.4328	0.030443	78.281
978.26	7.3686	2.35283756	0.2901076	2.6469714	92.6314	81.984	2.4887	0.030356	80.316
1005.3	7.6188	2.34648248	0.29995818	2.63712083	92.3812	83.729	2.5447	0.030392	82.024
1040.3	7.8691	2.34012486	0.30981268	2.62726632	92.1309	85.911	2.5447	0.02962	84.206
1072	8.1147	2.33388662	0.31948215	2.61759685	91.8853	88.202	2.6566	0.03012	86.422
1097.3	8.365	2.327529	0.32933666	2.60774235	91.635	89.729	2.6007	0.028984	87.987
1132.5	8.6152	2.32117392	0.33918723	2.59789177	91.3848	92.238	2.6566	0.028802	90.458
1157.6	8.8655	2.3148163	0.34904174	2.58803727	91.1345	93.874	2.6566	0.0283	92.095
1194	9.1157	2.30846122	0.35889231	2.57818669	90.8843	96.71	2.7686	0.028627	94.856
1221.9	9.366	2.3021036	0.36874682	2.56833219	90.634	98.674	2.8245	0.028625	96.782

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
1250.8	9.6162	2.29574852	0.37859739	2.55848161	90.3838	100.86	2.8805	0.028561	98.926
1285.1	9.8665	2.2893909	0.3884519	2.5486271	90.1335	103.15	3.0484	0.029554	101.1
1308	10.117	2.2830282	0.39831428	2.53876472	89.883	104.67	3.0484	0.029123	102.63
1337.1	10.367	2.2766782	0.40815698	2.52892202	89.633	106.96	3.0484	0.028499	104.92
1373.6	10.617	2.2703282	0.41799968	2.51907933	89.383	109.69	3.4401	0.031362	107.39
1401.9	10.867	2.2639782	0.42784238	2.50923663	89.133	111.98	3.72	0.033219	109.49
1434.8	11.118	2.2576028	0.43772444	2.49935456	88.882	114.49	3.8879	0.033958	111.88
1460	11.368	2.2512528	0.44756714	2.48951186	88.632	116.57	4.1677	0.035753	113.77
1494.7	11.618	2.2449028	0.45740984	2.47966917	88.382	119.62	4.8393	0.040456	116.37
1522.8	11.869	2.2385274	0.46729191	2.4697871	88.131	122.02	5.1751	0.042412	118.54
1546.9	12.119	2.2321774	0.4771346	2.4599444	87.881	123.65	5.231	0.042304	120.14
1583.7	12.369	2.2258274	0.4869773	2.4501017	87.631	126.71	5.343	0.042169	123.12
1611.7	12.615	2.219579	0.49666252	2.44041649	87.385	128.79	5.4548	0.042355	125.13
1641.5	12.865	2.213229	0.50650521	2.43057379	87.135	131.18	6.0705	0.046276	127.1
1669.5	13.115	2.206879	0.51634791	2.42073109	86.885	134.02	7.2458	0.054066	129.14
1701.4	13.365	2.200529	0.52619061	2.4108884	86.635	136.53	7.1898	0.052662	131.69
1726.3	13.616	2.1941536	0.53607268	2.40100633	86.384	139.14	7.4137	0.05328	134.16
1755.8	13.866	2.1878036	0.54591537	2.39116363	86.134	141.43	8.3091	0.058749	135.84
1785.8	14.116	2.1814536	0.55575807	2.38132093	85.884	144.93	10.156	0.070077	138.07
1819.7	14.366	2.1751036	0.56560077	2.37147824	85.634	147.87	10.324	0.069817	140.91
1847.2	14.617	2.1687282	0.57548284	2.36159617	85.383	148.85	7.8054	0.052437	143.6
1869.9	14.867	2.1623782	0.58532554	2.35175347	85.133	151.03	8.1972	0.054274	145.52
1903.6	15.117	2.1560282	0.59516823	2.34191077	84.883	154.2	9.5963	0.062234	147.73

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(٤, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
1935.4	15.367	2.1496782	0.60501093	2.33206807	84.633	158.45	12.674	0.079989	149.89
1964.9	15.618	2.1433028	0.614893	2.32218601	84.382	162.06	15.585	0.096168	151.49
1995.3	15.868	2.1369528	0.6247357	2.31234331	84.132	168.49	23.811	0.14132	152.21
2019.3	16.118	2.1306028	0.63457839	2.30250061	83.882	165.21	11.163	0.06757	157.68
2054.4	16.368	2.1242528	0.64442109	2.29265791	83.632	167.83	10.939	0.06518	160.46
2086.1	16.619	2.1178774	0.65430316	2.28277585	83.381	174.38	19.782	0.11344	160.93
2118	16.869	2.1115274	0.66414586	2.27293315	83.131	176.77	17.767	0.10051	164.72
2144.5	17.119	2.1051774	0.67398855	2.26309045	82.881	178.08	14.857	0.083427	168.04
2174.1	17.365	2.098929	0.68367377	2.25340524	82.635	181.47	15.808	0.087114	170.77
2203.4	17.615	2.092579	0.69351647	2.24356254	82.385	186.38	21.069	0.11305	172.05
2231.6	17.865	2.086229	0.70335916	2.23371984	82.135	190.2	23.084	0.12137	174.48
2265.6	18.116	2.0798536	0.71324123	2.22383777	81.884	195.32	26.889	0.13767	176.96
2297.7	18.366	2.0735036	0.72308393	2.21399507	81.634	192.27	13.346	0.069413	183.26
2324.2	18.616	2.0671536	0.73292663	2.20415238	81.384	194.66	14.129	0.072584	185.13
2348.7	18.866	2.0608036	0.74276933	2.19430968	81.134	199.03	17.096	0.085894	187.46
2384.2	19.117	2.0544282	0.75265139	2.18442761	80.883	205.47	25.938	0.12624	187.79
2408.9	19.367	2.0480782	0.76249409	2.17458491	80.633	204.38	16.872	0.082552	192.97
2438	19.617	2.0417282	0.77233679	2.16474222	80.383	209.5	21.237	0.10137	195.09
2464.9	19.867	2.0353782	0.78217949	2.15489952	80.133	213.32	22.244	0.10428	198.22
2498	20.118	2.0290028	0.79206155	2.14501745	79.882	219.87	29.968	0.1363	199.4
2528.9	20.368	2.0226528	0.80190425	2.13517475	79.632	228.16	38.306	0.16789	201.85
2559.3	20.618	2.0163028	0.81174695	2.12533206	79.382	221.61	18.998	0.085728	208.76
2591.9	20.868	2.0099528	0.82158965	2.11548936	79.132	227.28	22.244	0.09787	212.2

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
2616	21.119	2.0035774	0.83147172	2.10560729	78.881	230.12	23.643	0.10274	214.07
2648.6	21.369	1.9972274	0.84131441	2.09576459	78.631	236.45	28.345	0.11988	217.15
2671.5	21.619	1.9908774	0.85115711	2.08592189	78.381	241.79	34.892	0.14431	217.93
2700.8	21.865	1.984629	0.86084232	2.07623668	78.135	250.19	44.183	0.1766	219.79
2731.2	22.115	1.978279	0.87068502	2.06639398	77.885	252.37	38.642	0.15311	225.91
2758.3	22.365	1.971929	0.88052772	2.05655129	77.635	254.45	37.803	0.14857	228.58
2788.6	22.616	1.9655536	0.89040979	2.04666922	77.384	268.52	63.938	0.23812	223.99
2811.7	22.866	1.9592036	0.90025249	2.03682652	77.134	288.48	105.35	0.3652	213.08
2844.6	23.116	1.9528536	0.91009518	2.02698382	76.884	308.22	135.24	0.43876	209.72
2875.6	23.366	1.9465036	0.91993788	2.01714112	76.634	324.91	156.28	0.48099	209.84
2904.6	23.617	1.9401282	0.92981995	2.00725906	76.383	339.86	172.79	0.50842	211.69
2931.6	23.867	1.9337782	0.93966265	1.99741636	76.133	354.37	188.57	0.53214	213.57
2967.6	24.117	1.9274282	0.94950534	1.98757366	75.883	372.37	207.15	0.55631	216.61
2998.4	24.367	1.9210782	0.95934804	1.97773096	75.633	388.73	223.27	0.57436	219.96
3022.7	24.618	1.9147028	0.96923011	1.9678489	75.382	400.29	234.97	0.58699	222
3058.5	24.868	1.9083528	0.97907281	1.9580062	75.132	420.15	254.16	0.60494	226.21
3086.4	25.118	1.9020028	0.9889155	1.9481635	74.882	434.54	267.93	0.61658	229.34
3115.4	25.368	1.8956528	0.9987582	1.9383208	74.632	451.34	283.66	0.62847	233.26
3141.6	25.619	1.8892774	1.00864027	1.92843873	74.381	465.42	296.86	0.63784	236.47
3171.6	25.873	1.8828258	1.01864045	1.91843855	74.127	480.58	311.08	0.6473	239.9
3198.5	26.119	1.8765774	1.02832567	1.90875334	73.881	496.72	326.08	0.65646	243.65
3235.3	26.365	1.870329	1.03801088	1.89906813	73.635	516.36	344.27	0.66672	248.21
3264.4	26.615	1.863979	1.04785358	1.88922543	73.385	533.37	359.88	0.67472	252.27

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
3293.5	26.865	1.857629	1.05769627	1.87938273	73.135	549.08	374.88	0.68274	255.42
3325.3	27.115	1.851279	1.06753897	1.86954003	72.885	569.81	394.58	0.69248	259.61
3356.2	27.366	1.8449036	1.07742104	1.85965796	72.634	587.15	410.7	0.69947	263.44
3386.9	27.616	1.8385536	1.08726374	1.84981527	72.384	608.32	430.51	0.70771	267.92
3419.1	27.866	1.8322036	1.09710644	1.83997257	72.134	627.73	449.15	0.7155	271.53
3444.8	28.116	1.8258536	1.10694913	1.83012987	71.884	645.3	465.49	0.72136	275.29
3481.3	28.367	1.8194782	1.1168312	1.8202478	71.633	668.97	487.93	0.72938	279.89
3510.3	28.617	1.8131282	1.1266739	1.81040511	71.383	688.71	506.23	0.73504	284.11
3533.5	28.867	1.8067782	1.1365166	1.80056241	71.133	613.55	401.63	0.6546	302.04
3571.7	29.117	1.8004282	1.14635929	1.79071971	70.883	685.22	492.46	0.71869	294.18
3601.8	29.368	1.7940528	1.15624136	1.78083764	70.632	720.02	529.85	0.73588	296.4
3635.1	29.618	1.7877028	1.16608406	1.77099495	70.382	694.6	476.06	0.68538	321.31
3666	29.868	1.7813528	1.17592676	1.76115225	70.132	742.82	542.21	0.72994	310.35
3699.1	30.118	1.7750028	1.18576945	1.75130955	69.882	776.2	578.54	0.74535	311.84
3725	30.369	1.7686274	1.19565152	1.74142748	69.631	800.74	604.22	0.75458	313.88
3755	30.619	1.7622774	1.20549422	1.73158478	69.381	826.7	630.14	0.76223	317.29
3788.4	30.865	1.756029	1.21517943	1.72189957	69.135	851.14	649.95	0.76362	325.39
3815.9	31.115	1.749679	1.22502213	1.71205687	68.885	877.21	676.7	0.77142	327.94
3842.8	31.365	1.743329	1.23486483	1.70221418	68.635	903.93	703.9	0.77871	330.71
3876.8	31.615	1.736979	1.24470753	1.69237148	68.385	869.35	654.48	0.75284	342.39
3910.4	31.866	1.7306036	1.2545896	1.68248941	68.134	928.04	721.75	0.77771	340.55
3937.9	32.116	1.7242536	1.26443229	1.67264671	67.884	965.57	760.7	0.78783	343.48
3968.4	32.366	1.7179036	1.27427499	1.66280401	67.634	999.71	795.18	0.79541	347.11

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
4003.9	32.621	1.7114266	1.28431454	1.65276446	67.379	1041.3	836.14	0.803	352.54
4034.3	32.867	1.7051782	1.29399976	1.64307925	67.133	1076.4	870.56	0.80877	357.28
4066.7	33.117	1.6988282	1.30384245	1.63323655	66.883	1115.8	908.73	0.81444	363
4098.6	33.367	1.6924782	1.31368515	1.62339385	66.633	1153.7	945.89	0.81985	368.01
4129.7	33.617	1.6861282	1.32352785	1.61355116	66.383	1193.9	984.56	0.82467	373.99
4133.2	33.65	1.68529	1.32482709	1.61225192	66.35	1197.8	988.54	0.82529	374.34
0	33.65	1.68529	1.32482709	1.61225192	66.35	1197.8	988.48	0.82524	374.41
3.1421	33.4	1.69164	1.31498439	1.62209462	66.6	868.48	676.81	0.7793	317.17
6.567	33.149	1.6980154	1.30510232	1.63197669	66.851	570.46	389.09	0.68207	265.73
10.076	32.899	1.7043654	1.29525962	1.64181938	67.101	338.11	166.3	0.49184	215.31
13.674	32.649	1.7107154	1.28541692	1.65166208	67.351	187.47	24.371	0.13	170.85
17.178	32.399	1.7170654	1.27557423	1.66150478	67.601	100.2	-55.659	-0.55547	134.52
20.683	32.148	1.7234408	1.26569216	1.67138685	67.852	58.425	-47.768	-0.81759	87.016
23.6	31.898	1.7297908	1.25584946	1.68122954	68.102	36.826	-45.473	-1.2348	62.949
26.861	31.648	1.7361408	1.24600676	1.69107224	68.352	22.751	-43.85	-1.9274	46.558
29.955	31.398	1.7424908	1.23616407	1.70091494	68.602	13.919	-42.563	-3.058	35.411
33.279	31.147	1.7488662	1.226282	1.71079701	68.853	10.206	-38.366	-3.759	28.877
38.887	30.897	1.7552162	1.2164393	1.7206397	69.103	9.9883	-31.034	-3.1071	25.616
44.451	30.647	1.7615662	1.2065966	1.7304824	69.353	10.097	-26.389	-2.6135	23.777
52.185	30.397	1.7679162	1.19675391	1.7403251	69.603	10.101	-22.248	-2.2026	21.946
60.856	30.114	1.7751044	1.18561197	1.75146703	69.886	9.9917	-19.282	-1.9298	20.458
70.641	29.896	1.7806416	1.17702914	1.76004987	70.104	10.097	-16.819	-1.6657	19.413
82.631	29.646	1.7869916	1.16718644	1.76989256	70.354	10.097	-15.084	-1.4939	18.569

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(٤, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
97.578	29.396	1.7933416	1.15734374	1.77973526	70.604	10.101	-13.237	-1.3105	17.653
109.06	29.145	1.799717	1.14746168	1.78961733	70.855	10.097	-12.174	-1.2057	17.109
127.14	28.895	1.806067	1.13761898	1.79946003	71.105	9.9917	-11.055	-1.1064	16.419
144.73	28.649	1.8123154	1.12793376	1.80914524	71.351	9.9883	-10.047	-1.0059	15.887
163.95	28.399	1.8186654	1.11809107	1.81898794	71.601	9.9917	-9.2639	-0.92716	15.473
184.94	28.149	1.8250154	1.10824837	1.82883064	71.851	9.8826	-8.4245	-0.85245	14.906
192.47	28.075	1.826895	1.10533493	1.83174407	71.925	10.097	-8.2006	-0.81215	15.009

100B 5 0.5 % CSR 08-abril-19

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \varepsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)	•	e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
0	-3.5684	2.63063736	-0.13911	3.0374957	103.5684	5.1886	2.097	0.40415	3.674
20.097	-3.3182	2.62428228	-0.12935623	3.02774194	103.3182	12.388	2.3208	0.18734	10.788
50.053	-3.0679	2.61792466	-0.11959858	3.01798428	103.0679	18.718	2.3208	0.12399	17.137
85.565	-2.8177	2.61156958	-0.10984481	3.00823052	102.8177	25.26	2.3208	0.091878	23.688
111.84	-2.5674	2.60521196	-0.10008715	2.99847286	102.5674	29.733	2.3208	0.078057	28.164
144.45	-2.3172	2.59885688	-0.09033339	2.9887191	102.3172	35.299	2.3768	0.067332	33.696
168.74	-2.0669	2.59249926	-0.08057573	2.97896144	102.0669	39.441	2.3768	0.060262	37.84
199.92	-1.8167	2.58614418	-0.07082197	2.96920768	101.8167	43.586	2.3768	0.054531	41.987
228.47	-1.5664	2.57978656	-0.06106431	2.95945002	101.5664	46.532	2.3768	0.05108	44.933
249.89	-1.3161	2.57342894	-0.05130665	2.94969236	101.3161	48.386	2.3768	0.049122	46.788
284.84	-1.0659	2.56707386	-0.04155289	2.9399386	101.0659	51.004	2.3768	0.0466	49.407
316.51	-0.81564	2.56071726	-0.03179679	2.9301825	100.81564	53.731	2.4328	0.045277	52.097
343.72	-0.56539	2.55436091	-0.02204108	2.92042679	100.56539	55.586	2.3768	0.042759	53.989
372.87	-0.31513	2.5480043	-0.01228498	2.91067069	100.31513	57.876	2.4328	0.042034	56.243
-396.86	0.064881	2.53835202	0.00252931	2.89585639	99.935119	59.727	2.3768	0.039795	58.132
424.9	0.18537	2.5352916	0.00722644	2.89115927	99.81463	62.021	2.3768	0.038322	60.427
456.43	0.43563	2.528935	0.01698254	2.88140317	99.56437	64.534	2.4327	0.037697	62.902
485.86	0.68588	2.52257865	0.02673825	2.87164746	99.31412	66.603	2.4328	0.036526	64.971
517.8	0.93613	2.5162223	0.03649396	2.86189175	99.06387	69.33	2.4887	0.035897	67.661
547.06	1.1818	2.50998228	0.04607112	2.85231458	98.8182	71.294	2.4887	0.034908	69.625

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
572.32	1.432	2.5036272	0.05582488	2.84256082	98.568	73.366	2.4887	0.033922	71.698
600.78	1.6823	2.49726958	0.06558254	2.83280316	98.3177	75.66	2.6006	0.034372	73.917
633.63	1.9325	2.4909145	0.0753363	2.8230494	98.0675	78.057	2.5447	0.032601	76.351
659.14	2.1828	2.48455688	0.08509396	2.81329174	97.8172	80.129	2.5447	0.031757	78.424
687.61	2.433	2.4782018	0.09484772	2.80353798	97.567	82.093	2.5447	0.030998	80.388
724.52	2.6833	2.47184418	0.10460538	2.79378032	97.3167	84.933	2.7126	0.031938	83.114
745.61	2.9335	2.4654891	0.11435914	2.78402656	97.0665	86.453	2.7686	0.032024	84.597
775.69	3.1838	2.45913148	0.1241168	2.7742689	96.8162	89.071	2.9925	0.033596	87.065
805.94	3.434	2.4527764	0.13387057	2.76451514	96.566	91.253	3.1044	0.03402	89.171
832.56	3.6843	2.44641878	0.14362822	2.75475748	96.3157	93.438	3.1603	0.033823	91.319
865.59	3.9345	2.4400637	0.15338199	2.74500372	96.0655	95.947	3.1044	0.032355	93.866
897.91	4.1848	2.43370608	0.16313964	2.73524606	95.8152	98.456	3.2163	0.032667	96.3
925.49	4.4351	2.42734846	0.1728973	2.7254884	95.5649	100.86	3.3842	0.033555	98.587
960.18	4.6853	2.42099338	0.18265107	2.71573464	95.3147	103.36	3.4961	0.033823	101.02
984.31	4.9356	2.41463576	0.19240872	2.70597698	95.0644	105.55	3.7199	0.035243	103.05
1022.1	5.1858	2.40828068	0.20216249	2.69622322	94.8142	108.38	3.9438	0.036388	105.74
1050.2	5.4361	2.40192306	0.21192015	2.68646556	94.5639	110.78	4.3356	0.039136	107.87
1078.3	5.6817	2.39568482	0.22149458	2.67689112	94.3183	112.96	4.8952	0.043334	109.68
1111.2	5.9319	2.38932974	0.23124834	2.66713736	94.0681	115.47	4.2237	0.036577	112.64
1136.2	6.1822	2.38297212	0.241006	2.6573797	93.8178	117.55	4.9512	0.042122	114.22
1166.2	6.4324	2.37661704	0.25075976	2.64762594	93.5676	120.6	6.1824	0.051264	116.44
1202.2	6.6827	2.37025942	0.26051742	2.63786828	93.3173	123.76	6.5182	0.052667	119.38
1231.3	6.933	2.3639018	0.27027508	2.62811062	93.067	126.16	6.6861	0.052997	121.66

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
1265.5	7.1832	2.35754672	0.28002884	2.61835686	92.8168	128.89	6.6861	0.051874	124.39
1292.1	7.4335	2.3511891	0.2897865	2.6085992	92.5665	131.07	6.854	0.052292	126.46
1325	7.6837	2.34483402	0.29954026	2.59884544	92.3163	134.02	7.1898	0.053648	129.18
1353.8	7.934	2.3384764	0.30929792	2.58908778	92.066	136.31	7.3017	0.053568	131.4
1378.8	8.1842	2.33212132	0.31905168	2.57933402	91.8158	138.6	7.5815	0.054701	133.5
1420	8.4345	2.3257637	0.32880934	2.56957636	91.5655	141.77	7.9173	0.055848	136.44
1447.9	8.6847	2.31940862	0.3385631	2.5598226	91.3153	144.49	8.1972	0.056732	138.97
1474.3	8.935	2.313051	0.34832076	2.55006494	91.065	146.78	8.3651	0.05699	141.15
1503.4	9.1852	2.30669592	0.35807452	2.54031118	90.8148	149.51	8.7008	0.058197	143.65
1534.4	9.4355	2.3003383	0.36783218	2.53055352	90.5645	152.23	8.5889	0.056419	146.45
1559.7	9.6857	2.29398322	0.37758594	2.52079976	90.3143	154.85	9.1486	0.059079	148.69
1590.7	9.936	2.2876256	0.3873436	2.5110421	90.064	157.68	8.9807	0.056953	151.64
1620.7	10.182	2.2813772	0.39693363	2.50145207	89.818	159.87	9.0366	0.056525	153.79
1652.9	10.432	2.2750272	0.4066796	2.49170611	89.568	163.14	9.2045	0.05642	156.95
1678.4	10.682	2.2686772	0.41642556	2.48196014	89.318	164.99	9.1486	0.055448	158.84
1704.4	10.932	2.2623272	0.42617153	2.47221418	89.068	167.4	9.4844	0.056658	161.01
1740.6	11.183	2.2559518	0.43595647	2.46242923	88.817	170.34	9.3165	0.054693	164.07
1767.1	11.433	2.2496018	0.44570244	2.45268327	88.567	173.07	9.7642	0.056419	166.49
1794.7	11.683	2.2432518	0.4554484	2.4429373	88.317	175.69	9.7082	0.055259	169.15
1824.5	11.933	2.2369018	0.46519437	2.43319134	88.067	178.3	10.044	0.056332	171.54
1848.7	12.184	2.2305264	0.47497931	2.42340639	87.816	180.92	10.492	0.05799	173.86
1884.4	12.434	2.2241764	0.48472528	2.41366043	87.566	183.76	10.66	0.058009	176.58
1914.1	12.684	2.2178264	0.49447124	2.40391446	87.316	186.92	10.995	0.058823	179.52

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
1945.7	12.934	2.2114764	0.50421721	2.3941685	87.066	189.65	11.107	0.058568	182.17
1971.5	13.185	2.205101	0.51400216	2.38438355	86.815	192.7	11.779	0.061124	184.77
2001.9	13.435	2.198751	0.52374812	2.37463758	86.565	195.1	11.499	0.058939	187.36
2031.6	13.685	2.192401	0.53349408	2.36489162	86.315	198.49	12.171	0.061318	190.29
2059.3	13.935	2.186051	0.54324005	2.35514566	86.065	201.32	12.618	0.062678	192.82
2092	14.186	2.1796756	0.553025	2.34536071	85.814	204.59	12.73	0.062222	196.02
2125.5	14.436	2.1733256	0.56277096	2.33561474	85.564	208.41	13.234	0.063499	199.49
2151.9	14.686	2.1669756	0.57251692	2.32586878	85.314	210.38	13.066	0.062108	201.57
2175.5	14.936	2.1606256	0.58226289	2.31612282	85.064	213.32	13.514	0.06335	204.21
2212.4	15.182	2.1543772	0.59185292	2.30653279	84.818	217.14	14.074	0.064814	207.65
2235	15.432	2.1480272	0.60159888	2.29678682	84.568	220.19	14.409	0.065439	210.48
2265.9	15.683	2.1416518	0.61138383	2.28700187	84.317	222.92	14.129	0.063383	213.4
2294.3	15.933	2.1353018	0.62112979	2.27725591	84.067	225.65	13.962	0.061873	216.24
2328	16.183	2.1289518	0.63087576	2.26750995	83.817	229.9	14.969	0.065111	219.81
2357.1	16.433	2.1226018	0.64062172	2.25776398	83.567	233.5	15.752	0.067462	222.88
2387.1	16.684	2.1162264	0.65040667	2.24797903	83.316	237.43	16.032	0.067524	226.62
2418.1	16.934	2.1098764	0.66015264	2.23823307	83.066	240.7	16.592	0.068931	229.51
2443.1	17.184	2.1035264	0.6698986	2.2284871	82.816	243.76	16.536	0.067838	232.6
2476.1	17.434	2.0971764	0.67964456	2.21874114	82.566	247.46	16.928	0.068404	236.05
2501.1	17.685	2.090801	0.68942951	2.20895619	82.315	250.85	16.816	0.067036	239.51
2529	17.935	2.084451	0.69917548	2.19921023	82.065	254.45	17.599	0.069167	242.57
2560.5	18.185	2.078101	0.70892144	2.18946426	81.815	258.7	18.383	0.071058	246.3
2589	18.435	2.071751	0.7186674	2.1797183	81.565	262.95	19.11	0.072676	250.05

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \varepsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)	•	e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
2618.5	18.686	2.0653756	0.72845235	2.16993335	81.314	266.55	18.942	0.071064	253.77
2641.9	18.936	2.0590256	0.73819832	2.16018739	81.064	270.38	19.614	0.072543	257.14
2671.1	19.186	2.0526756	0.74794428	2.15044142	80.814	274.19	19.782	0.072147	260.84
2702.9	19.432	2.0464272	0.75753431	2.14085139	80.568	278.33	19.222	0.069062	265.37
2731	19.682	2.0400772	0.76728027	2.13110543	80.318	282.26	19.614	0.069489	269.03
2760.6	19.932	2.0337272	0.77702624	2.12135947	80.068	286.41	19.894	0.06946	272.99
2790.9	20.182	2.0273772	0.7867722	2.1116135	79.818	291.21	20.118	0.069084	277.64
2820.4	20.433	2.0210018	0.79655715	2.10182855	79.567	295.24	20.901	0.070793	281.14
2850.8	20.683	2.0146518	0.80630312	2.09208259	79.317	300.7	21.965	0.073044	285.87
2883.1	20.933	2.0083018	0.81604908	2.08233662	79.067	305.93	22.86	0.074722	290.5
2909.6	21.184	2.0019264	0.82583403	2.07255168	78.816	311.72	24.259	0.077825	295.33
2936.6	21.434	1.9955764	0.83557999	2.06280571	78.566	315.64	24.091	0.076324	299.37
2963.6	21.684	1.9892264	0.84532596	2.05305975	78.316	320.66	25.267	0.078796	303.58
2992.2	21.934	1.9828764	0.85507192	2.04331378	78.066	325.02	25.378	0.078082	307.88
3020.8	22.189	1.9763994	0.8650128	2.0333729	77.811	329.61	26.162	0.079374	311.92
3051.7	22.435	1.970151	0.87460283	2.02378287	77.565	335.71	26.722	0.079596	317.65
3082.7	22.685	1.963801	0.8843488	2.01403691	77.315	340.51	27.057	0.07946	322.23
3109.3	22.935	1.957451	0.89409476	2.00429094	77.065	345.64	28.177	0.08152	326.59
3139.6	23.186	1.9510756	0.90387971	1.99450599	76.814	349.89	29.072	0.083088	330.23
3170.5	23.436	1.9447256	0.91362567	1.98476003	76.564	355.56	29.8	0.08381	335.41
3198.4	23.686	1.9383756	0.92337164	1.97501407	76.314	359.82	29.296	0.081418	340.02
3229.1	23.932	1.9321272	0.93296167	1.96542404	76.068	365.05	30.191	0.082704	344.64
3255.5	24.182	1.9257772	0.94270763	1.95567807	75.818	369.53	29.296	0.079279	349.73
Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
--------	----------------------	--------------------------	---------------------------------------	-----------------------	----------------------------------	----------------------	---------------------------------	-----------------------------------	----------------------
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
3290.3	24.432	1.9194272	0.9524536	1.94593211	75.568	375.31	31.535	0.084023	353.98
3318.4	24.682	1.9130772	0.96219956	1.93618614	75.318	381.42	32.262	0.084585	359.59
3340.9	24.933	1.9067018	0.97198451	1.9264012	75.067	384.8	32.374	0.084133	362.9
3376.1	25.183	1.9003518	0.98173047	1.91665523	74.817	392.55	32.766	0.08347	370.39
3404.4	25.433	1.8940018	0.99147644	1.90690927	74.567	396.69	32.71	0.082457	374.57
3437.3	25.683	1.8876518	1.0012224	1.8971633	74.317	403.46	33.997	0.084265	380.46
3466.2	25.934	1.8812764	1.01100735	1.88737836	74.066	409.35	34.277	0.083736	386.16
3498.2	26.184	1.8749264	1.02075331	1.87763239	73.816	415.12	34.333	0.082705	391.91
3523.8	26.434	1.8685764	1.03049928	1.86788643	73.566	421.67	35.9	0.085137	397.39
3555.1	26.684	1.8622264	1.04024524	1.85814046	73.316	426.47	36.683	0.086016	401.65
3586.8	26.935	1.855851	1.05003019	1.84835551	73.065	434.33	37.691	0.08678	408.82
3614.5	27.185	1.849501	1.05977615	1.83860955	72.815	439.34	37.355	0.085024	414.07
3640.7	27.435	1.843151	1.06952212	1.82886359	72.565	445.89	38.53	0.086411	419.82
3678	27.685	1.836801	1.07926808	1.81911762	72.315	453.31	38.586	0.085121	427.2
3708.1	27.936	1.8304256	1.08905303	1.80933267	72.064	461.05	40.489	0.087819	433.65
3735.2	28.186	1.8240756	1.09879899	1.79958671	71.814	467.59	41.049	0.087787	439.81
3762.4	28.432	1.8178272	1.10838902	1.78999668	71.568	473.71	40.041	0.084528	446.62
3793.9	28.682	1.8114772	1.11813499	1.78025072	71.318	482.11	41.664	0.086421	453.91
3825	28.932	1.8051272	1.12788095	1.77050475	71.068	490.29	43.007	0.087719	461.18
3855.8	29.187	1.7986502	1.13782184	1.76056387	70.813	498.79	43.959	0.08813	469.04
3887.9	29.433	1.7924018	1.14741186	1.75097384	70.567	506.65	44.518	0.087868	476.52
3917.9	29.683	1.7860518	1.15715783	1.74122788	70.317	515.59	45.694	0.088623	484.66
3949.8	29.933	1.7797018	1.16690379	1.73148191	70.067	523.99	47.708	0.091048	491.68

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
3975.9	30.183	1.7733518	1.17664976	1.72173595	69.817	532.07	47.82	0.089877	499.69
4006.5	30.434	1.7669764	1.18643471	1.711951	69.566	540.14	49.052	0.090813	506.92
4039.4	30.684	1.7606264	1.19618067	1.70220503	69.316	550.39	49.947	0.090748	516.57
4064.3	30.934	1.7542764	1.20592663	1.69245907	69.066	557.48	50.003	0.089695	523.62
4098.7	31.184	1.7479264	1.2156726	1.68271311	68.816	568.06	52.298	0.092063	532.64
4126.2	31.435	1.741551	1.22545755	1.67292816	68.565	577.34	53.529	0.092717	541.07
4161	31.685	1.735201	1.23520351	1.66318219	68.315	588.46	54.48	0.092581	551.56
4191.1	31.935	1.728851	1.24494947	1.65343623	68.065	598.28	55.152	0.092184	560.92
4220.2	32.185	1.722501	1.25469544	1.64369027	67.815	606.35	54.704	0.090218	569.31
4252.5	32.436	1.7161256	1.26448039	1.63390532	67.564	617.37	56.047	0.090784	579.42
4259.1	32.501	1.7144746	1.26701434	1.63137137	67.499	619.88	56.551	0.091229	581.58
0	32.501	1.7144746	1.26701434	1.63137137	67.499	619.88	56.495	0.091139	581.62
3.0807	32.25	1.72085	1.25722939	1.64115631	67.75	383.6	-50.454	-0.13153	416.54
6.1744	32	1.7272	1.24748343	1.65090228	68	246.26	-72.672	-0.2951	292.6
10.466	31.75	1.73355	1.23773746	1.66064824	68.25	133.58	-75.023	-0.56161	179.81
13.003	31.5	1.7399	1.2279915	1.67039421	68.5	95.289	-70.825	-0.74327	138.02
16.313	31.249	1.7462754	1.21820655	1.68017916	68.751	59.513	-72.169	-1.2127	101.05
19.256	30.999	1.7526254	1.20846058	1.68992512	69.001	36.278	-71.777	-1.9785	75.1
23.234	30.749	1.7589754	1.19871462	1.69967108	69.251	18.603	-68.251	-3.6689	51.966
26.063	30.499	1.7653254	1.18896866	1.70941705	69.501	10.319	-67.076	-6.5002	39.538
31.808	30.248	1.7717008	1.17918371	1.719202	69.752	10.206	-57.618	-5.6452	36.076
38.177	29.998	1.7780508	1.16943774	1.72894796	70.002	10.21	-47.208	-4.6238	32.288
46.238	29.748	1.7844008	1.15969178	1.73869392	70.252	10.097	-39.597	-3.9215	29.215

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \varepsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
55.44	29.497	1.7907762	1.14990683	1.74847887	70.503	9.9883	-33.721	-3.376	26.722
66.167	29.247	1.7971262	1.14016087	1.75822484	70.753	9.9883	-29.579	-2.9614	25.007
77.061	28.997	1.8034762	1.1304149	1.7679708	71.003	10.097	-26.893	-2.6634	23.995
90.784	28.747	1.8098262	1.12066894	1.77771677	71.253	10.097	-24.486	-2.425	22.943
107.2	28.496	1.8162016	1.11088399	1.78750171	71.504	9.9849	-22.36	-2.2394	21.86
126.84	28.246	1.8225516	1.10113803	1.79724768	71.754	10.101	-20.737	-2.053	21.257
143.04	27.996	1.8289016	1.09139206	1.80699364	72.004	10.097	-19.617	-1.9428	20.736
162.7	27.75	1.83515	1.08180203	1.81658367	72.25	10.094	-18.61	-1.8437	20.26
185.62	27.468	1.8423128	1.07080859	1.82757712	72.532	9.9951	-17.659	-1.7667	19.698
189.1	27.472	1.8422112	1.07096452	1.82742118	72.528	10.097	-17.771	-1.7599	19.867

80B20D

80B20D 0.5 % CSR 27-agosto-18

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
0	-1.432	2.5763728	-0.08624805	5.10915652	101.432	4.0977	2.041	0.49808	2.588
29.057	-1.1818	2.57001772	-0.07117873	5.0940872	101.1818	12.497	3.4401	0.27527	10.083
57.208	-0.9315	2.5636601	-0.05610339	5.07901186	100.9315	17.297	3.7759	0.2183	14.678
80.775	-0.68125	2.55730375	-0.04103106	5.06393953	100.68125	20.358	3.9997	0.19647	17.596
113.93	-0.43099	2.55094715	-0.02595813	5.0488666	100.43099	24.606	4.3356	0.1762	21.623
146.67	-0.18074	2.5445908	-0.0108858	5.03379427	100.18074	28.533	4.6714	0.16372	25.327
172.26	0.069515	2.53823432	0.00418682	5.01872164	99.930485	30.714	4.7833	0.15574	27.436
203.22	0.31977	2.53187784	0.01925945	5.00364901	99.68023	33.223	5.1751	0.15577	29.677
223.93	0.57002	2.52552149	0.03433178	4.98857668	99.42998	34.314	5.3989	0.15734	30.613
255.91	0.82028	2.51916489	0.04940471	4.97350375	99.17972	36.059	5.7347	0.15903	32.127
284.61	1.0705	2.5128093	0.06447524	4.95843323	98.9295	37.147	5.7907	0.15589	33.178
314.29	1.3208	2.50645168	0.07955058	4.94335789	98.6792	38.677	6.2384	0.16129	34.398
347.38	1.571	2.5000966	0.09461989	4.92828858	98.429	39.768	6.6301	0.16672	35.215
374.95	1.8213	2.49373898	0.10969523	4.91321324	98.1787	41.077	6.91	0.16822	36.331
404.79	2.0715	2.4873839	0.12476455	4.89814392	97.9285	42.274	7.2458	0.1714	37.294
432.74	2.3218	2.48102628	0.13983989	4.88306858	97.6782	43.259	7.5256	0.17397	38.084
463.91	2.5721	2.47466866	0.15491523	4.86799324	97.4279	44.455	7.8054	0.17558	39.086
488.88	2.8223	2.46831358	0.16998455	4.85292392	97.1777	45.441	7.9733	0.17547	39.956

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
516.88	3.0726	2.46195596	0.18505989	4.83784858	96.9274	46.859	8.3651	0.17852	41.101
553.45	3.3182	2.45571772	0.19985215	4.82305632	96.6818	47.844	8.5329	0.17835	41.971
572.68	3.5684	2.44936264	0.21492147	4.807987	96.4316	48.604	8.7008	0.17901	42.615
605.29	3.8187	2.44300502	0.22999681	4.79291166	96.1813	49.917	8.9247	0.17879	43.774
630.59	4.0689	2.43664994	0.24506612	4.77784234	95.9311	50.459	8.8687	0.17576	44.358
659.79	4.3192	2.43029232	0.26014146	4.762767	95.6808	52.095	9.4284	0.18099	45.603
689.64	4.5694	2.42393724	0.27521078	4.74769769	95.4306	52.855	9.0926	0.17203	46.605
720.55	4.8197	2.41757962	0.29028612	4.73262235	95.1803	53.728	9.2605	0.17236	47.361
749.28	5.07	2.411222	0.30536146	4.71754701	94.93	54.713	9.2605	0.16926	48.35
783.45	5.3202	2.40486692	0.32043078	4.70247769	94.6798	56.022	9.5403	0.1703	49.466
807.68	5.5705	2.3985093	0.33550612	4.68740235	94.4295	56.782	9.5404	0.16802	50.229
843.62	5.8207	2.39215422	0.35057543	4.67233303	94.1793	58.2	9.8761	0.16969	51.414
872.97	6.071	2.3857966	0.36565077	4.65725769	93.929	59.185	10.156	0.1716	52.205
905.6	6.3212	2.37944152	0.38072009	4.64218838	93.6788	60.276	10.492	0.17406	53.061
932.32	6.5715	2.3730839	0.39579543	4.62711304	93.4285	61.585	10.883	0.17672	54.097
960.18	6.8217	2.36672882	0.41086475	4.61204372	93.1783	62.567	10.939	0.17484	55.043
987.22	7.072	2.3603712	0.42594009	4.59696838	92.928	63.549	11.107	0.17478	55.909
1022.2	7.3222	2.35401612	0.4410094	4.58189906	92.6778	64.858	11.331	0.17471	57.065
1052.3	7.5725	2.3476585	0.45608474	4.56682372	92.4275	66.388	11.779	0.17742	58.283
1086	7.8181	2.34142026	0.47087701	4.55203146	92.1819	67.148	11.779	0.17542	59.046
1111.2	8.0684	2.33506264	0.48595235	4.53695612	91.9316	68.672	12.115	0.17641	60.337
1143.2	8.3186	2.32870756	0.50102166	4.5218868	91.6814	70.312	12.562	0.17867	61.665
1173.2	8.5689	2.32234994	0.516097	4.50681146	91.4311	71.403	12.898	0.18064	62.522

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e ₀ -Δe	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
1198.1	8.8191	2.31599486	0.53116632	4.49174215	91.1809	72.603	13.234	0.18228	63.488
1236.3	9.0694	2.30963724	0.54624166	4.47666681	90.9306	74.457	13.682	0.18375	65.031
1263.2	9.3196	2.30328216	0.56131098	4.46159749	90.6804	75.33	13.794	0.18311	65.828
1290	9.5699	2.29692454	0.57638632	4.44652215	90.4301	76.312	13.962	0.18295	66.694
1321.2	9.8201	2.29056946	0.59145563	4.43145283	90.1799	77.839	14.409	0.18512	67.909
1352.9	10.07	2.284222	0.60650688	4.41640158	89.93	78.93	14.465	0.18327	68.965
1380	10.321	2.2778466	0.62162438	4.40128408	89.679	80.129	14.689	0.18332	70.01
1410.9	10.571	2.2714966	0.63668165	4.38622681	89.429	81.657	14.969	0.18332	71.345
1441.9	10.821	2.2651466	0.65173893	4.37116954	89.179	82.744	14.913	0.18023	72.477
1474.6	11.071	2.2587966	0.6667962	4.35611227	88.929	84.384	15.305	0.18137	73.844
1500.8	11.322	2.2524212	0.6819137	4.34099477	88.678	85.802	15.585	0.18163	75.069
1528.6	11.572	2.2460712	0.69697097	4.3259375	88.428	86.893	15.808	0.18193	76.005
1564.8	11.822	2.2397212	0.71202824	4.31088023	88.178	88.311	16.256	0.18408	77.11
1589.2	12.072	2.2333712	0.72708551	4.29582296	87.928	89.729	16.872	0.18803	78.095
1620.5	12.318	2.2271228	0.74190186	4.2810066	87.682	90.598	17.264	0.19055	78.689
1649.7	12.568	2.2207728	0.75695914	4.26594933	87.432	92.238	17.711	0.19202	80.016
1675.9	12.819	2.2143974	0.77207664	4.25083183	87.181	93.438	17.655	0.18895	81.262
1707.6	13.069	2.2080474	0.78713391	4.23577456	86.931	94.42	18.047	0.19114	81.968
1739.4	13.319	2.2016974	0.80219118	4.22071729	86.681	96.052	18.607	0.19371	83.208
1769.3	13.569	2.1953474	0.81724845	4.20566002	86.431	97.583	19.446	0.19928	84.145
1794.8	13.82	2.188972	0.83236595	4.19054252	86.18	99.219	20.677	0.2084	84.905
1828.6	14.07	2.182622	0.84742322	4.17548525	85.93	100.42	20.901	0.20814	85.951
1855.3	14.32	2.176272	0.86248049	4.16042797	85.68	101.51	21.069	0.20756	86.923

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
1884.6	14.57	2.169922	0.87753776	4.1453707	85.43	102.38	21.181	0.20688	87.724
1915.3	14.821	2.1635466	0.89265526	4.1302532	85.179	104.02	22.132	0.21277	88.684
1948.6	15.071	2.1571966	0.90771254	4.11519593	84.929	105.65	23.755	0.22485	89.153
1973.1	15.321	2.1508466	0.92276981	4.10013866	84.679	106.75	24.427	0.22883	89.767
1998.7	15.571	2.1444966	0.93782708	4.08508139	84.429	108.05	25.099	0.23228	90.594
2034.7	15.822	2.1381212	0.95294458	4.06996389	84.178	109.91	25.994	0.23651	91.81
2056.4	16.072	2.1317712	0.96800185	4.05490662	83.928	111	26.442	0.23821	92.586
2086.5	16.322	2.1254212	0.98305912	4.03984935	83.678	111.98	27.169	0.24262	93.044
2114.9	16.572	2.1190712	0.99811639	4.02479208	83.428	113.73	28.68	0.25218	93.698
2148.5	16.823	2.1126958	1.01323389	4.00967458	83.177	114.93	29.016	0.25247	94.662
2177.1	17.068	2.1064728	1.02799002	3.99491845	82.932	115.69	29.408	0.25419	95.144
2206	17.318	2.1001228	1.04304729	3.97986118	82.682	117.11	30.191	0.25781	95.999
2237.2	17.569	2.0937474	1.05816479	3.96474368	82.431	117.98	30.359	0.25733	96.753
2261.2	17.819	2.0873974	1.07322206	3.94968641	82.181	118.53	30.751	0.25944	97.019
2293.9	18.069	2.0810474	1.08827933	3.93462914	81.931	120.16	31.702	0.26383	97.97
2318.1	18.319	2.0746974	1.1033366	3.91957186	81.681	121.25	32.374	0.26699	98.576
2346.8	18.57	2.068322	1.1184541	3.90445436	81.43	122.02	32.934	0.26991	98.933
2376.9	18.82	2.061972	1.13351137	3.88939709	81.18	123.55	33.773	0.27337	99.855
2403.9	19.07	2.055622	1.14856864	3.87433982	80.93	124.85	34.892	0.27947	100.34
2433.6	19.321	2.0492466	1.16368614	3.85922232	80.679	125.84	36.012	0.28618	100.51
2456.1	19.571	2.0428966	1.17874342	3.84416505	80.429	127.47	37.243	0.29217	101.24
2487.9	19.821	2.0365466	1.19380069	3.82910778	80.179	129	38.194	0.29608	102.08
2520	20.071	2.0301966	1.20885796	3.81405051	79.929	130.85	39.314	0.30044	103.12

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
2548.7	20.322	2.0238212	1.22397546	3.79893301	79.678	132.27	40.097	0.30314	103.97
2576.2	20.572	2.0174712	1.23903273	3.78387574	79.428	133.91	41.328	0.30863	104.7
2608.4	20.822	2.0111212	1.25409	3.76881847	79.178	135.44	42.336	0.31259	105.49
2637.8	21.072	2.0047712	1.26914727	3.75376119	78.928	137.18	43.567	0.31759	106.33
2665.9	21.323	1.9983958	1.28426477	3.73864369	78.677	139.47	45.414	0.32561	107.26
2697.6	21.568	1.9921728	1.2990209	3.72388757	78.432	140.78	45.694	0.32457	108.37
2725.2	21.818	1.9858228	1.31407817	3.7088303	78.182	142.42	47.149	0.33106	108.93
2754.5	22.069	1.9794474	1.32919567	3.6937128	77.931	144.38	48.66	0.33703	109.78
2780.9	22.319	1.9730974	1.34425294	3.67865553	77.681	146.23	49.947	0.34155	110.68
2809.4	22.569	1.9667474	1.35931021	3.66359826	77.431	148.09	51.178	0.34559	111.62
2835.7	22.819	1.9603974	1.37436748	3.64854098	77.181	150.27	52.969	0.3525	112.47
2869.2	23.07	1.954022	1.38948498	3.63342348	76.93	152.45	54.033	0.35443	113.87
2902.2	23.32	1.947672	1.40454225	3.61836621	76.68	152.67	52.857	0.34623	115
2928.6	23.57	1.941322	1.41959953	3.60330894	76.43	154.85	54.48	0.35182	115.98
2961.5	23.82	1.934972	1.4346568	3.58825167	76.18	155.83	54.312	0.34853	117.11
2988.5	24.071	1.9285966	1.4497743	3.57313417	75.929	157.47	55.767	0.35415	117.65
3018.6	24.321	1.9222466	1.46483157	3.5580769	75.679	159.87	57.222	0.35793	118.98
3047.6	24.571	1.9158966	1.47988884	3.54301963	75.429	162.82	58.845	0.36142	120.74
3072	24.821	1.9095466	1.49494611	3.52796236	75.179	164.34	59.853	0.3642	121.52
3106.5	25.072	1.9031712	1.51006361	3.51284486	74.928	167.94	62.819	0.37406	122.89
3135.7	25.322	1.8968212	1.52512088	3.49778759	74.678	169.36	63.043	0.37225	124.16
3158.5	25.572	1.8904712	1.54017815	3.48273031	74.428	169.9	63.043	0.37105	124.72
3194.4	25.822	1.8841212	1.55523542	3.46767304	74.178	173.83	66.177	0.3807	126.3

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
3220.3	26.068	1.8778728	1.57005178	3.45285669	73.932	174.27	65.393	0.37524	127.36
3253.3	26.318	1.8715228	1.58510905	3.43779942	73.682	176.78	67.352	0.38099	128.4
3281.6	26.569	1.8651474	1.60022655	3.42268192	73.431	177.65	67.24	0.3785	129.38
3313.1	26.819	1.8587974	1.61528382	3.40762465	73.181	180.06	68.415	0.37996	130.92
3338.3	27.069	1.8524474	1.63034109	3.39256737	72.931	181.14	68.975	0.38078	131.6
3366.3	27.319	1.8460974	1.64539836	3.3775101	72.681	183.21	70.486	0.38472	132.54
3399.1	27.57	1.839722	1.66051586	3.3623926	72.43	185.5	71.773	0.38691	133.88
3425.9	27.82	1.833372	1.67557314	3.34733533	72.18	185.29	70.654	0.38132	134.53
3451.8	28.07	1.827022	1.69063041	3.33227806	71.93	188.12	71.941	0.38242	136.43
3486.2	28.32	1.820672	1.70568768	3.31722079	71.68	190.85	73.228	0.3837	138.21
3516.9	28.571	1.8142966	1.72080518	3.30210329	71.429	193.69	75.243	0.38848	139.54
3545.3	28.821	1.8079466	1.73586245	3.28704602	71.179	195.32	76.307	0.39067	140.39
3575.3	29.071	1.8015966	1.75091972	3.27198875	70.929	197.83	77.258	0.39052	142.21
3605.2	29.321	1.7952466	1.76597699	3.25693148	70.679	200.01	78.769	0.39382	143.26
3638.8	29.572	1.7888712	1.78109449	3.24181398	70.428	202.85	80.84	0.39852	144.54
3668.2	29.822	1.7825212	1.79615176	3.2267567	70.178	202.09	76.698	0.37953	147.01
3698.7	30.072	1.7761712	1.81120903	3.21169943	69.928	202.74	75.859	0.37417	148.34
3733.1	30.322	1.7698212	1.82626631	3.19664216	69.678	206.99	79.664	0.38486	149.72
3762.1	30.568	1.7635728	1.84108266	3.18182581	69.432	208.85	80.28	0.38439	151.14
3787.5	30.818	1.7572228	1.85613993	3.16676854	69.182	210.49	80.504	0.38247	152.64
3816.4	31.069	1.7508474	1.87125743	3.15165104	68.931	212.45	81.231	0.38236	154.08
3850.8	31.319	1.7444974	1.8863147	3.13659376	68.681	215.18	82.798	0.38479	155.65
3873	31.569	1.7381474	1.90137197	3.12153649	68.431	217.79	85.597	0.39302	156.13

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
3909	31.819	1.7317974	1.91642925	3.10647922	68.181	222.05	89.067	0.40111	157.77
3936.6	32.07	1.725422	1.93154675	3.09136172	67.93	224.99	90.913	0.40407	159.33
3970.4	32.32	1.719072	1.94660402	3.07630445	67.68	226.74	91.081	0.4017	161
3998.8	32.57	1.712722	1.96166129	3.06124718	67.43	229.57	91.977	0.40064	163.2
4027.7	32.82	1.706372	1.97671856	3.04618991	67.18	231.43	92.48	0.39961	164.71
4059.9	33.071	1.6999966	1.99183606	3.03107241	66.929	232.74	91.641	0.39375	166.71
4086.7	33.321	1.6936466	2.00689333	3.01601514	66.679	232.74	89.85	0.38606	168.12
4115.4	33.571	1.6872966	2.0219506	3.00095787	66.429	236.88	93.264	0.39371	169.69
4144.7	33.821	1.6809466	2.03700787	2.98590059	66.179	241.14	97.685	0.4051	170.57
4176.6	34.072	1.6745712	2.05212537	2.97078309	65.928	244.74	99.868	0.40806	172.54
4206.6	34.322	1.6682212	2.06718264	2.95572582	65.678	249.43	104.62	0.41945	173.58
4238.6	34.572	1.6618712	2.08223992	2.94066855	65.428	251.28	104.23	0.4148	175.8
4266.6	34.822	1.6555212	2.09729719	2.92561128	65.178	253.68	105.3	0.41508	177.43
4293.3	35.073	1.6491458	2.11241469	2.91049378	64.927	255.97	106.42	0.41573	178.9
4301.2	35.114	1.6481044	2.11488408	2.90802439	64.886	256.3	106.02	0.41367	179.55
0	35.114	1.6481044	2.11488408	2.90802439	64.886	256.41	105.97	0.41328	179.7
3.7834	34.864	1.6544544	2.09982681	2.92308166	65.136	114.71	7.4696	0.065118	109.67
6.7846	34.614	1.6608044	2.08476954	2.93813893	65.386	62.021	-34.896	-0.56264	83.518
10.192	34.364	1.6671544	2.06971227	2.9531962	65.636	38.231	-26.893	-0.70343	54.529
13.087	34.113	1.6735298	2.05459477	2.9683137	65.887	27.118	-22.472	-0.82866	40.552
16.005	33.863	1.6798798	2.03953749	2.98337097	66.137	18.173	-21.688	-1.1934	30.679
18.833	33.613	1.6862298	2.02448022	2.99842824	66.387	11.519	-21.464	-1.8634	23.227
23.492	33.363	1.6925798	2.00942295	3.01348552	66.637	10.2	-17.043	-1.6709	19.635

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
29.888	33.112	1.6989552	1.99430545	3.02860302	66.888	10.101	-13.853	-1.3715	17.963
37.989	32.862	1.7053052	1.97924818	3.04366029	67.138	9.9815	-11.838	-1.186	16.812
47.435	32.612	1.7116552	1.96419091	3.05871756	67.388	10.094	-10.327	-1.0231	16.146
61.221	32.362	1.7180052	1.94913364	3.07377483	67.638	10.097	-9.2639	-0.91746	15.584
73.177	32.111	1.7243806	1.93401614	3.08889233	67.889	10.203	-8.3684	-0.82019	15.21
87.4	31.861	1.7307306	1.91895887	3.1039496	68.139	10.097	-7.6969	-0.76227	14.732
104.88	31.611	1.7370806	1.9039016	3.11900687	68.389	10.097	-7.1372	-0.70684	14.421
125.07	31.36	1.743456	1.8887841	3.13412437	68.64	9.9883	-6.5776	-0.65853	13.995
147.03	31.11	1.749806	1.87372682	3.14918164	68.89	9.9849	-6.0179	-0.6027	13.674
170.73	30.86	1.756156	1.85866955	3.16423891	69.14	10.097	-5.6821	-0.56274	13.598
193.64	30.61	1.762506	1.84361228	3.17929619	69.39	10.101	-5.4024	-0.53484	13.44
220.79	30.364	1.7687544	1.82879593	3.19411254	69.636	9.9883	-5.2344	-0.52406	13.228
252	30.114	1.7751044	1.81373866	3.20916981	69.886	9.9883	-5.1785	-0.51845	13.195
280.82	29.864	1.7814544	1.79868138	3.22422708	70.136	9.9883	-4.9546	-0.49604	13.065
314.82	29.613	1.7878298	1.78356388	3.23934458	70.387	9.9849	-4.9546	-0.49621	13.062
350.64	29.363	1.7941798	1.76850661	3.25440185	70.637	9.9883	-4.9546	-0.49604	13.065
391.83	29.113	1.8005298	1.75344934	3.26945913	70.887	10.097	-4.7307	-0.46851	13.045
430.17	28.923	1.8053558	1.74200582	3.28090265	71.077	9.8792	-4.7307	-0.47886	12.823

80B20D 2 0.5 % CSR 05-noviembre-18

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \varepsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
0	-1.2791	2.57248914	-0.07852626	5.21770709	101.2791	3.9887	2.3208	0.58186	2.2304
32.897	-1.0288	2.56613152	-0.06315989	5.20234072	101.0288	15.661	2.4887	0.15892	13.954
60.155	-0.77857	2.55977568	-0.04779782	5.18697865	100.77857	20.021	2.4888	0.12431	18.325
83.506	-0.52831	2.55341907	-0.03243391	5.17161474	100.52831	23.078	2.5447	0.11026	21.349
116.3	-0.27806	2.54706272	-0.01707061	5.15625144	100.27806	27.224	2.6007	0.09553	25.461
148.45	-0.027806	2.54070627	-0.00170706	5.14088789	100.027806	30.932	2.6566	0.085885	29.135
174.76	0.22245	2.53434977	0.01365661	5.12552422	99.77755	33.332	2.7126	0.08138	31.498
203.68	0.4727	2.52799342	0.02901991	5.11016092	99.5273	35.62	2.7686	0.077727	33.749
226.28	0.72295	2.52163707	0.04438321	5.09479762	99.27705	36.932	2.8245	0.076479	35.024
257.81	0.97321	2.51528047	0.05974712	5.07943371	99.02679	38.241	3.0484	0.079715	36.181
286.88	1.2235	2.5089231	0.07511288	5.06406795	98.7765	39.223	3.0484	0.07772	37.163
316.09	1.4737	2.50256802	0.09047311	5.04870772	98.5263	40.314	3.1603	0.078393	38.178
349.55	1.724	2.4962104	0.10583948	5.03334135	98.276	41.623	3.2163	0.077272	39.45
377.35	1.9742	2.48985532	0.12119971	5.01798112	98.0258	42.386	3.2163	0.07588	40.214
406.64	2.2245	2.4834977	0.13656608	5.00261475	97.7755	43.695	3.1603	0.072326	41.562
432.58	2.4747	2.47714262	0.15192631	4.98725452	97.5253	44.568	2.8805	0.064631	42.626
464.47	2.725	2.470785	0.16729268	4.97188815	97.275	45.986	3.1044	0.067506	43.893
489.04	2.9752	2.46442992	0.18265291	4.95652792	97.0248	46.866	2.9924	0.06385	44.849
515.64	3.2255	2.4580723	0.19801928	4.94116155	96.7745	48.171	3.3282	0.069091	45.926
553.38	3.4711	2.45183406	0.21309711	4.92608373	96.5289	49.259	2.6566	0.053932	47.471

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \varepsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e ₀ -Δe	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
572.66	3.7214	2.44547644	0.22846348	4.91071736	96.2786	49.695	2.6007	0.052333	47.946
607.89	3.9716	2.43912136	0.24382371	4.89535713	96.0284	51.658	3.2722	0.063344	49.453
633.34	4.2219	2.43276374	0.25919008	4.87999076	95.7781	52.64	3.2722	0.062162	50.435
660.85	4.4721	2.42640866	0.27455031	4.86463053	95.5279	53.728	3.3842	0.062988	51.447
691.29	4.7224	2.42005104	0.28991668	4.84926416	95.2776	54.604	2.9924	0.054802	52.59
723.07	4.9726	2.41369596	0.30527691	4.83390393	95.0274	55.913	3.0484	0.05452	53.862
750.31	5.2229	2.40733834	0.32064328	4.81853756	94.7771	56.785	2.9924	0.052697	54.773
784.18	5.4731	2.40098326	0.33600351	4.80317733	94.5269	58.091	2.9365	0.05055	56.116
810	5.7234	2.39462564	0.35136988	4.78781096	94.2766	59.294	3.1044	0.052355	57.206
845.3	5.9736	2.38827056	0.36673011	4.77245073	94.0264	60.385	3.1044	0.051409	58.298
876.24	6.2239	2.38191294	0.38209648	4.75708436	93.7761	61.912	3.1044	0.050141	59.825
909.15	6.4742	2.37555532	0.39746285	4.74171799	93.5258	63.33	3.1044	0.049018	61.244
936.14	6.7244	2.36920024	0.41282308	4.72635776	93.2756	64.203	3.1603	0.049224	62.079
961.82	6.9747	2.36284262	0.42818945	4.71099139	93.0253	65.512	3.2163	0.049094	63.35
989.98	7.2249	2.35648754	0.44354968	4.69563116	92.7751	66.821	3.2722	0.04897	64.621
1025.1	7.4752	2.35012992	0.45891605	4.68026479	92.5248	68.13	3.0484	0.044744	66.082
1054.3	7.7254	2.34377484	0.47427628	4.66490456	92.2746	69.548	3.1044	0.044636	67.463
1087.1	7.971	2.3375366	0.4893541	4.64982673	92.029	70.748	3.2163	0.045461	68.587
1113	8.2213	2.33117898	0.50472047	4.63446036	91.7787	71.948	3.3282	0.046258	69.712
1146.4	8.4715	2.3248239	0.5200807	4.61910013	91.5285	73.257	3.2163	0.043904	71.097
1176.1	8.7218	2.31846628	0.53544707	4.60373376	91.2782	74.566	3.2722	0.043884	72.368
1200.9	8.9721	2.31210866	0.55081344	4.58836739	91.0279	75.439	3.3282	0.044118	73.203
1240.6	9.2223	2.30575358	0.56617367	4.57300716	90.7777	76.966	3.0484	0.039607	74.92

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \varepsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
1266.4	9.4726	2.29939596	0.58154004	4.55764079	90.5274	77.839	3.1603	0.040601	75.717
1292.9	9.7228	2.29304088	0.59690027	4.54228056	90.2772	78.82	3.2163	0.040805	76.661
1324.7	9.9731	2.28668326	0.61226664	4.52691419	90.0269	80.239	3.2722	0.040781	78.042
1355.1	10.223	2.2803358	0.62760846	4.51157237	89.777	81.22	3.2722	0.040289	79.024
1380.8	10.474	2.2739604	0.6430178	4.49616303	89.526	81.984	3.2722	0.039913	79.788
1412.8	10.724	2.2676104	0.65836575	4.48081508	89.276	83.511	3.2722	0.039183	81.315
1446.3	10.974	2.2612604	0.6737137	4.46546713	89.026	84.384	3.2722	0.038778	82.188
1478.4	11.224	2.2549104	0.68906166	4.45011917	88.776	85.693	3.2722	0.038186	83.497
1505.6	11.475	2.248535	0.704471	4.43470983	88.525	86.893	3.3842	0.038947	84.622
1532.7	11.725	2.242185	0.71981895	4.41936188	88.275	87.871	3.2163	0.036603	85.714
1568.6	11.975	2.235835	0.7351669	4.40401393	88.025	89.074	3.2722	0.036736	86.879
1594.2	12.225	2.229485	0.75051486	4.38866597	87.775	90.165	3.3842	0.037533	87.895
1623.6	12.471	2.2232366	0.76561724	4.37356359	87.529	91.256	3.4961	0.038311	88.91
1653.6	12.721	2.2168866	0.78096519	4.35821564	87.279	92.238	3.5521	0.03851	89.854
1680.5	12.971	2.2105366	0.79631315	4.34286769	87.029	93.438	3.608	0.038614	91.017
1712.1	13.222	2.2041612	0.81172249	4.32745834	86.778	93.983	3.4961	0.037199	91.638
1743.3	13.472	2.1978112	0.82707044	4.31211039	86.528	95.074	3.608	0.03795	92.653
1773.1	13.722	2.1914612	0.84241839	4.29676244	86.278	96.165	3.72	0.038683	93.669
1800.4	13.972	2.1851112	0.85776635	4.28141449	86.028	97.256	3.608	0.037098	94.835
1831.4	14.223	2.1787358	0.87317569	4.26600514	85.777	98.128	3.664	0.037339	95.67
1859.5	14.473	2.1723858	0.88852364	4.25065719	85.527	98.998	3.72	0.037577	96.502
1888.3	14.723	2.1660358	0.90387159	4.23530924	85.277	99.874	3.7759	0.037807	97.34
1918.8	14.974	2.1596604	0.91928094	4.21989989	85.026	100.64	3.8319	0.038076	98.066

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \varepsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
1953.4	15.224	2.1533104	0.93462889	4.20455194	84.776	101.72	3.4402	0.033818	99.418
1977.6	15.474	2.1469604	0.94997684	4.18920399	84.526	102.16	3.4401	0.033673	99.858
2003.2	15.724	2.1406104	0.96532479	4.17385604	84.276	102.93	3.5521	0.03451	100.55
2040.8	15.975	2.134235	0.98073414	4.15844669	84.025	103.8	3.5521	0.03422	101.42
2060.9	16.225	2.127885	0.99608209	4.14309874	83.775	104.35	3.664	0.035114	101.89
2091.3	16.475	2.121535	1.01143004	4.12775079	83.525	105.11	3.608	0.034326	102.69
2120.1	16.725	2.115185	1.02677799	4.11240284	83.275	105.98	3.664	0.034572	103.53
2151.9	16.976	2.1088096	1.04218734	4.09699349	83.024	106.53	3.72	0.03492	104.03
2181	17.221	2.1025866	1.05722833	4.0819525	82.779	106.86	3.72	0.034813	104.36
2208.2	17.471	2.0962366	1.07257628	4.06660455	82.529	107.62	3.7759	0.035086	105.09
2240.1	17.722	2.0898612	1.08798563	4.0511952	82.278	108.16	3.8879	0.035944	105.56
2264.7	17.972	2.0835112	1.10333358	4.03584725	82.028	108.49	3.9438	0.036352	105.85
2296.2	18.222	2.0771612	1.11868153	4.0204993	81.778	109.15	3.8319	0.035108	106.58
2323	18.472	2.0708112	1.13402948	4.00515135	81.528	110.02	3.8879	0.03534	107.41
2349	18.723	2.0644358	1.14943883	3.989742	81.277	110.57	3.9998	0.036175	107.88
2379.1	18.973	2.0580858	1.16478678	3.97439405	81.027	111.11	3.9438	0.035495	108.46
2406.9	19.223	2.0517358	1.18013473	3.9590461	80.777	111.98	4.0558	0.036218	109.26
2436.1	19.473	2.0453858	1.19548268	3.94369815	80.527	112.2	3.9438	0.03515	109.56
2457.8	19.724	2.0390104	1.21089203	3.9282888	80.276	112.75	3.9438	0.03498	110.1
2489.7	19.974	2.0326604	1.22623998	3.91294085	80.026	113.73	4.0558	0.035662	111.01
2520.5	20.224	2.0263104	1.24158793	3.8975929	79.776	114.38	3.9998	0.03497	111.7
2548.6	20.474	2.0199604	1.25693588	3.88224495	79.526	115.15	4.1117	0.035709	112.39
2575.8	20.725	2.013585	1.27234523	3.8668356	79.275	116.02	4.0558	0.034958	113.3

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \varepsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
2608.4	20.975	2.007235	1.28769318	3.85148765	79.025	117.22	4.1117	0.035078	114.46
2636.8	21.225	2.000885	1.30304113	3.8361397	78.775	117.87	4.1677	0.035358	115.08
2664.5	21.475	1.994535	1.31838908	3.82079175	78.525	119.07	4.2237	0.035471	116.24
2696.4	21.721	1.9882866	1.33349147	3.80568936	78.279	120.06	4.2796	0.035645	117.19
2724.7	21.971	1.9819366	1.34883942	3.79034141	78.029	121.36	4.2796	0.035263	118.49
2753.3	22.222	1.9755612	1.36424876	3.77493207	77.778	122.67	4.3915	0.035799	119.73
2779.7	22.472	1.9692112	1.37959672	3.75958411	77.528	123.45	4.5593	0.036934	120.39
2808.7	22.722	1.9628612	1.39494467	3.74423616	77.278	124.85	4.4475	0.035622	121.87
2834.5	22.972	1.9565112	1.41029262	3.72888821	77.028	125.73	4.6154	0.03671	122.63
2868.3	23.223	1.9501358	1.42570196	3.71347887	76.777	127.14	4.6714	0.036741	124.01
2900.5	23.473	1.9437858	1.44104992	3.69813091	76.527	128.13	4.5594	0.035585	125.07
2927.3	23.723	1.9374358	1.45639787	3.68278296	76.277	129.54	4.6154	0.035628	126.45
2959.6	23.973	1.9310858	1.47174582	3.66743501	76.027	130.97	4.6713	0.035668	127.83
2984.5	24.224	1.9247104	1.48715516	3.65202567	75.776	131.73	4.6714	0.035463	128.59
3016.1	24.474	1.9183604	1.50250312	3.63667771	75.526	133.14	4.6714	0.035086	130.01
3044.3	24.724	1.9120104	1.51785107	3.62132976	75.276	134.02	4.7833	0.035692	130.81
3071.4	24.974	1.9056604	1.53319902	3.60598181	75.026	135.33	4.7833	0.035346	132.12
3104	25.225	1.899285	1.54860836	3.59057247	74.775	136.74	4.7273	0.034571	133.57
3133.2	25.475	1.892935	1.56395632	3.57522451	74.525	138.05	4.7833	0.034648	134.85
3157.2	25.725	1.886585	1.57930427	3.55987656	74.275	139.03	4.7273	0.034001	135.87
3193.4	25.975	1.880235	1.59465222	3.54452861	74.025	140.67	4.9512	0.035197	137.35
3218.5	26.221	1.8739866	1.60975461	3.52942623	73.779	141.76	4.7273	0.033347	138.59
3251.1	26.471	1.8676366	1.62510256	3.51407827	73.529	143.29	4.8952	0.034163	140.01

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \varepsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
3278.9	26.722	1.8612612	1.6405119	3.49866893	73.278	144.82	4.9512	0.034189	141.5
3311.1	26.972	1.8549112	1.65585985	3.48332098	73.028	146.23	4.8953	0.033476	142.95
3338.1	27.222	1.8485612	1.67120781	3.46797303	72.778	147.65	5.0072	0.033912	144.3
3367.1	27.472	1.8422112	1.68655576	3.45262507	72.528	148.85	5.0631	0.034014	145.46
3397.8	27.723	1.8358358	1.7019651	3.43721573	72.277	151.03	5.1191	0.033894	147.6
3426.4	27.973	1.8294858	1.71731305	3.42186778	72.027	152.02	5.0631	0.033307	148.62
3451.1	28.223	1.8231358	1.73266101	3.40651983	71.777	153.87	5.231	0.033996	150.36
3489	28.473	1.8167858	1.74800896	3.39117187	71.527	156.16	5.343	0.034214	152.58
3519	28.724	1.8104104	1.7634183	3.37576253	71.276	158.34	5.3989	0.034096	154.72
3547.2	28.974	1.8040604	1.77876625	3.36041458	71.026	160.42	5.3989	0.033656	156.8
3576.1	29.224	1.7977104	1.79411421	3.34506663	70.776	162.05	5.5108	0.034007	158.36
3610.1	29.474	1.7913604	1.80946216	3.32971867	70.526	164.34	5.5668	0.033873	160.61
3640.9	29.725	1.784985	1.8248715	3.31430933	70.275	165.76	5.4549	0.032909	162.1
3670.9	29.975	1.778635	1.84021945	3.29896138	70.025	168.49	5.6228	0.033372	164.72
3699.9	30.225	1.772285	1.85556741	3.28361343	69.775	170.12	5.7347	0.033709	166.28
3734.7	30.475	1.765935	1.87091536	3.26826547	69.525	173.29	5.9026	0.034062	169.33
3763.4	30.721	1.7596866	1.88601774	3.25316309	69.279	174.92	6.0145	0.034384	170.89
3790.3	30.971	1.7533366	1.9013657	3.23781514	69.029	176.89	6.0705	0.034318	172.82
3819.9	31.221	1.7469866	1.91671365	3.22246718	68.779	179.18	5.8466	0.03263	175.26
3853.2	31.472	1.7406112	1.93212299	3.20705784	68.528	181.91	5.9026	0.032448	177.95
3877.7	31.722	1.7342612	1.94747094	3.19170989	68.278	183.54	5.9586	0.032464	179.55
3911.8	31.972	1.7279112	1.9628189	3.17636194	68.028	185.94	5.8466	0.031443	182.02
3939.4	32.222	1.7215612	1.97816685	3.16101398	67.778	188.34	6.1265	0.032529	184.23

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \varepsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
3974	32.473	1.7151858	1.99357619	3.14560464	67.527	190.52	6.2384	0.032744	186.34
4004.6	32.723	1.7088358	2.00892414	3.13025669	67.277	193.36	6.5182	0.03371	188.99
4033.3	32.973	1.7024858	2.0242721	3.11490874	67.027	195.21	6.5742	0.033678	190.8
4066.2	33.223	1.6961358	2.03962005	3.09956078	66.777	198.27	6.854	0.034569	193.67
4093	33.474	1.6897604	2.05502939	3.08415144	66.526	199.69	6.5742	0.032923	195.28
4122.9	33.724	1.6834104	2.07037734	3.06880349	66.276	202.41	6.4623	0.031926	198.08
4152.4	33.974	1.6770604	2.0857253	3.05345554	66.026	204.49	6.5742	0.03215	200.08
4183.1	34.225	1.670685	2.10113464	3.03804619	65.775	206.99	6.798	0.032842	202.44
4212.2	34.475	1.664335	2.11648259	3.02269824	65.525	209.83	6.9659	0.033197	205.16
4247.3	34.725	1.657985	2.13183054	3.00735029	65.275	212.23	7.2458	0.034141	207.37
4272.3	34.975	1.651635	2.1471785	2.99200234	65.025	214.74	7.4697	0.034785	209.73
4304.5	35.226	1.6452596	2.16258784	2.97659299	64.774	217.35	7.6375	0.035139	212.23
4307.6	35.239	1.6449294	2.16338593	2.9757949	64.761	217.57	7.5816	0.034846	212.49
0	35.239	1.6449294	2.16338593	2.9757949	64.761	217.46	7.5816	0.034864	212.38
3.7481	34.989	1.6512794	2.14803798	2.99114285	65.011	107.4	-8.0327	-0.07479	112.69
6.2409	34.739	1.6576294	2.13269003	3.0064908	65.261	74.897	-7.6969	-0.10277	79.944
9.9448	34.489	1.6639794	2.11734208	3.02183875	65.511	48.931	-1.6527	-0.033775	50.027
13.145	34.238	1.6703548	2.10193273	3.0372481	65.762	33.544	-1.7086	-0.050936	34.673
16.155	33.988	1.6767048	2.08658478	3.05259605	66.012	22.751	-1.8206	-0.080021	23.949
19.125	33.738	1.6830548	2.07123683	3.067944	66.262	15.006	-1.5407	-0.10267	16.017
22.396	33.488	1.6894048	2.05588888	3.08329195	66.512	10.21	-1.149	-0.11254	10.962
27.541	33.237	1.6957802	2.04047953	3.0987013	66.763	9.9883	-0.8132	-0.081415	10.523
34.555	32.987	1.7021302	2.02513158	3.11404925	67.013	10.097	-0.47741	-0.04728	10.413

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \varepsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(٤, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
42.078	32.737	1.7084802	2.00978363	3.1293972	67.263	10.097	-0.42144	-0.041738	10.376
54.657	32.487	1.7148302	1.99443568	3.14474515	67.513	10.21	-0.30954	-0.030318	10.415
65.614	32.236	1.7212056	1.97902633	3.1601545	67.764	10.206	-0.47741	-0.046775	10.522
78.277	31.986	1.7275556	1.96367838	3.17550245	68.014	10.097	-0.30951	-0.030653	10.303
91.806	31.736	1.7339056	1.94833043	3.1908504	68.264	10.097	-0.085651	-0.0084825	10.154
111.29	31.486	1.7402556	1.93298248	3.20619835	68.514	9.9849	-0.25351	-0.02539	10.153
130.43	31.235	1.746631	1.91757313	3.2216077	68.765	10.097	0.026279	0.0026025	10.08
133.73	31.18	1.748028	1.91419658	3.22498425	68.82	10.097	-0.029686	-0.00294	10.117

80B20D 3 05 % CSR 12-noviembre-18

Tiempo	Deformació n Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(٤, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
0	-1.2281	2.57119374	-0.06654792	4.4853186	101.2281	4.0977	2.097	0.51174	2.5408
27.24	-0.97784	2.56483714	-0.05298691	4.47175759	100.97784	12.715	2.2089	0.17372	11.196
56.734	-0.72759	2.55848079	-0.03942643	4.45819711	100.72759	17.846	2.3208	0.13005	16.263
87.956	-0.47734	2.55212444	-0.02586596	4.44463664	100.47734	22.53	2.2649	0.10053	20.993
116.07	-0.22708	2.54576783	-0.01230494	4.43107562	100.22708	26.354	2.3208	0.088062	24.783
139.36	0.023172	2.53941143	0.00125564	4.41751504	99.976828	29.187	2.3208	0.079516	27.619
172.2	0.27343	2.53305488	0.01481654	4.40395414	99.72657	32.678	2.3768	0.072735	31.073
201.34	0.52368	2.52669853	0.02837702	4.39039366	99.47632	35.187	2.4328	0.069139	33.546
236.59	0.77393	2.52034218	0.04193749	4.37683319	99.22607	36.932	2.3768	0.064356	35.33
262.47	1.0242	2.51398532	0.05549905	4.36327163	98.9758	38.023	2.4887	0.065454	36.345
288.89	1.2744	2.50763024	0.06905681	4.34971387	98.7256	39.219	2.4328	0.062031	37.58
322.31	1.5247	2.50127262	0.08262	4.33615068	98.4753	40.419	2.4328	0.060189	38.781
354.21	1.7749	2.49491754	0.09617776	4.32259292	98.2251	41.841	2.5447	0.060819	40.127
383.12	2.0252	2.48855992	0.10974094	4.30902974	97.9748	43.15	2.5447	0.058974	41.436
410.11	2.2755	2.4822023	0.12330413	4.29546655	97.7245	44.128	2.4888	0.056399	42.453
440.28	2.5257	2.47584722	0.13686189	4.28190879	97.4743	45.223	2.6007	0.057508	43.472
471.84	2.776	2.4694896	0.15042507	4.26834561	97.224	46.641	2.5447	0.05456	44.928
495.07	3.0262	2.46313452	0.16398284	4.25478784	96.9738	47.622	2.5447	0.053435	45.91
525.53	3.2765	2.4567769	0.17754602	4.24122466	96.7235	48.713	2.6007	0.053387	46.964
551.7	3.5221	2.45053866	0.19085452	4.22791616	96.4779	50.128	2.6567	0.052998	48.341

Tiempo	Deformació n Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
587.16	3.7723	2.44418358	0.20441229	4.21435839	96.2277	51.658	2.7126	0.05251	49.834
615	4.0226	2.43782596	0.21797547	4.20079521	95.9774	52.422	2.6566	0.050678	50.636
641.89	4.2728	2.43147088	0.23153323	4.18723745	95.7272	53.84	2.7686	0.051422	51.978
673.86	4.5231	2.42511326	0.24509642	4.17367426	95.4769	55.367	2.7686	0.050004	53.506
700.72	4.7734	2.41875564	0.2586596	4.16011108	95.2266	55.804	2.7126	0.04861	53.98
735.38	5.0236	2.41240056	0.27221736	4.14655332	94.9764	57.549	2.8245	0.04908	55.65
764.65	5.2739	2.40604294	0.28578055	4.13299013	94.7261	58.531	2.8245	0.048257	56.632
797.98	5.5241	2.39968786	0.29933831	4.11943237	94.4759	59.731	2.8805	0.048225	57.795
833.7	5.7744	2.39333024	0.31290149	4.10586919	94.2256	61.476	2.9365	0.047766	59.503
850.88	6.0246	2.38697516	0.32645926	4.09231142	93.9754	61.912	2.8805	0.046525	59.977
886.92	6.2749	2.38061754	0.34002244	4.07874824	93.7251	62.894	2.9365	0.046689	60.921
916.13	6.5251	2.37426246	0.35358021	4.06519047	93.4749	64.203	3.0484	0.04748	62.154
947.75	6.7754	2.36790484	0.36714339	4.05162729	93.2246	65.512	2.9924	0.045677	63.502
982.29	7.0256	2.36154976	0.38070115	4.03806953	92.9744	66.058	3.0484	0.046147	64.009
1010.1	7.2759	2.35519214	0.39426434	4.02450634	92.7241	67.476	3.1044	0.046007	65.39
1039.6	7.5261	2.34883706	0.4078221	4.01094858	92.4739	68.457	3.1603	0.046165	66.334
1069.8	7.7764	2.34247944	0.42138528	3.9973854	92.2236	69.545	3.2163	0.046248	67.384
1095.6	8.022	2.3362412	0.43469378	3.9840769	91.978	70.421	3.2722	0.046467	68.222
1126.5	8.2723	2.32988358	0.44825697	3.97051371	91.7277	71.403	3.3282	0.046612	69.166
1161	8.5225	2.3235285	0.46181473	3.95695595	91.4775	72.494	3.4401	0.047454	70.182
1190.3	8.7728	2.31717088	0.47537791	3.94339277	91.2272	73.475	3.5521	0.048344	71.088
1216.5	9.023	2.3108158	0.48893568	3.929835	90.977	74.457	3.608	0.048458	72.032
1244.4	9.2733	2.30445818	0.50249886	3.91627182	90.7267	75.221	3.608	0.047966	72.796

Tiempo	Deformació n Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(٤, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
1275.4	9.5235	2.2981031	0.51605663	3.90271405	90.4765	76.322	3.7758	0.049473	73.783
1308.6	9.7738	2.29174548	0.52961981	3.88915087	90.2262	77.402	3.8319	0.049506	74.826
1339.5	10.024	2.2853904	0.54317757	3.87559311	89.976	78.711	3.9438	0.050105	76.06
1369	10.274	2.2790404	0.5567245	3.86204618	89.726	79.594	4.1116	0.051657	76.829
1401.5	10.525	2.272665	0.57032561	3.84844507	89.475	80.784	4.1677	0.051591	77.981
1421.9	10.775	2.266315	0.58387254	3.83489814	89.225	81.111	4.0558	0.050002	78.384
1453.9	11.025	2.259965	0.59741947	3.82135121	88.975	82.315	4.2796	0.051991	79.436
1489.8	11.275	2.253615	0.61096639	3.80780429	88.725	83.835	4.3356	0.051716	80.919
1521.1	11.526	2.2472396	0.62456751	3.79420317	88.474	84.711	4.5035	0.053163	81.681
1547.1	11.776	2.2408896	0.63811444	3.78065624	88.224	86.133	4.7833	0.055534	82.913
1572.3	12.026	2.2345396	0.65166136	3.76710932	87.974	86.896	4.8952	0.056334	83.601
1605.8	12.276	2.2281896	0.66520829	3.75356239	87.724	87.984	5.1751	0.058818	84.499
1640.5	12.522	2.2219412	0.67853846	3.74023222	87.478	89.183	5.1751	0.058027	85.699
1668.2	12.772	2.2155912	0.69208539	3.72668529	87.228	90.056	5.1751	0.057465	86.572
1696.7	13.022	2.2092412	0.70563232	3.71313836	86.978	91.147	5.3989	0.059233	87.511
1723.9	13.273	2.2028658	0.71923343	3.69953725	86.727	92.347	5.7347	0.0621	88.483
1752.8	13.523	2.1965158	0.73278036	3.68599032	86.477	93.332	5.7347	0.061444	89.469
1781.1	13.773	2.1901658	0.74632729	3.67244339	86.227	94.092	6.0145	0.063922	90.039
1814.9	14.023	2.1838158	0.75987421	3.65889647	85.977	95.398	6.2944	0.06598	91.154
1842.7	14.274	2.1774404	0.77347533	3.64529535	85.726	96.383	6.5182	0.067628	91.987
1871.1	14.524	2.1710904	0.78702225	3.63174843	85.476	97.256	7.0779	0.072776	92.478
1895.9	14.774	2.1647404	0.80056918	3.6182015	85.226	98.128	6.9659	0.070988	93.428
1930.9	15.024	2.1583904	0.81411611	3.60465457	84.976	99.437	7.0779	0.071179	94.661

Tiempo	Deformació n Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
1958.5	15.275	2.152015	0.82771722	3.59105346	84.725	100.31	7.6375	0.076142	95.148
1976.8	15.525	2.145665	0.84126415	3.57750653	84.475	100.96	8.1972	0.081189	95.423
2012.8	15.775	2.139315	0.85481107	3.56395961	84.225	102.93	8.8128	0.085621	96.966
2039	16.026	2.1329396	0.86841219	3.55035849	83.974	103.47	9.0366	0.087333	97.358
2074.9	16.276	2.1265896	0.88195912	3.53681156	83.724	104.89	9.4844	0.090421	98.469
2102.8	16.526	2.1202396	0.89550604	3.52326464	83.474	106.53	11.499	0.10794	98.717
2132.8	16.776	2.1138896	0.90905297	3.50971771	83.224	108.06	12.003	0.11108	99.897
2157.7	17.027	2.1075142	0.92265408	3.4961166	82.973	108.82	12.227	0.11236	100.51
2190.2	17.272	2.1012912	0.93593007	3.48284061	82.728	110.56	12.954	0.11716	101.75
2213.1	17.522	2.0949412	0.949477	3.46929368	82.478	111.55	13.794	0.12366	102.15
2244.1	17.773	2.0885658	0.96307811	3.45569257	82.227	112.2	13.57	0.12095	102.96
2270.5	18.023	2.0822158	0.97662504	3.44214564	81.977	114.27	15.585	0.13638	103.63
2292.6	18.273	2.0758658	0.99017197	3.42859871	81.727	115.91	16.984	0.14653	104.29
2330.1	18.523	2.0695158	1.00371889	3.41505179	81.477	116.78	16.592	0.14208	105.44
2349.7	18.774	2.0631404	1.01732001	3.40145067	81.226	118.52	18.439	0.15557	105.89
2383.5	19.024	2.0567904	1.03086693	3.38790375	80.976	120.6	20.23	0.16774	106.71
2410.4	19.274	2.0504404	1.04441386	3.37435682	80.726	122.57	22.748	0.1856	106.89
2439.4	19.524	2.0440904	1.05796079	3.36080989	80.476	124.2	23.42	0.18856	108.05
2467.5	19.775	2.037715	1.0715619	3.34720878	80.225	125.83	24.035	0.19101	109.25
2502.9	20.025	2.031365	1.08510883	3.33366185	79.975	126.82	23.811	0.18776	110.4
2531.5	20.275	2.025015	1.09865576	3.32011492	79.725	128.78	24.987	0.19402	111.53
2550.5	20.525	2.018665	1.11220268	3.306568	79.475	129.76	25.77	0.19859	111.96
2591.3	20.776	2.0122896	1.1258038	3.29296688	79.224	133.14	28.736	0.21583	113.22

Tiempo	Deformació n Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
2612.6	21.026	2.0059396	1.13935072	3.27941996	78.974	134.13	29.296	0.21842	113.81
2645.3	21.276	1.9995896	1.15289765	3.26587303	78.724	135.21	29.296	0.21666	114.9
2669.9	21.526	1.9932396	1.16644458	3.2523261	78.474	137.18	30.359	0.22131	116.11
2700.4	21.772	1.9869912	1.17977475	3.23899593	78.228	138.71	31.591	0.22775	116.75
2728.4	22.022	1.9806412	1.19332168	3.225449	77.978	140.67	32.542	0.23133	118.04
2763.4	22.273	1.9742658	1.20692279	3.21184789	77.727	142.63	34.725	0.24345	118.43
2789.8	22.523	1.9679158	1.22046972	3.19830096	77.477	144.82	35.956	0.24829	119.73
2819.8	22.773	1.9615658	1.23401665	3.18475403	77.227	146.57	37.355	0.25487	120.46
2848.6	23.023	1.9552158	1.24756357	3.17120711	76.977	149.07	39.817	0.2671	121.18
2881.6	23.274	1.9488404	1.26116469	3.15760599	76.726	145.58	35.228	0.24199	121.02
2909	23.524	1.9424904	1.27471161	3.14405907	76.476	152.23	40.713	0.26744	123.71
2940.5	23.774	1.9361404	1.28825854	3.13051214	76.226	154.85	42	0.27123	125.4
2964.8	24.024	1.9297904	1.30180547	3.11696521	75.976	155.95	42.448	0.27219	126.18
3004.1	24.275	1.923415	1.31540658	3.1033641	75.725	158.89	43.455	0.27349	128.41
3025.9	24.525	1.917065	1.32895351	3.08981717	75.475	160.42	44.518	0.27751	129.16
3054	24.775	1.910715	1.34250044	3.07627024	75.225	162.38	46.757	0.28796	129.48
3086.9	25.025	1.904365	1.35604736	3.06272332	74.975	164.88	47.82	0.29002	131.22
3117.8	25.276	1.8979896	1.36964848	3.0491222	74.724	168.71	51.29	0.30402	132.49
3146.9	25.526	1.8916396	1.3831954	3.03557528	74.474	170.34	51.514	0.30242	133.98
3178.3	25.776	1.8852896	1.39674233	3.02202835	74.224	171.65	51.794	0.30174	135.1
3211.8	26.026	1.8789396	1.41028926	3.00848142	73.974	175.58	55.488	0.31603	136.3
3238.8	26.272	1.8726912	1.42361943	2.99515125	73.728	176.78	55.599	0.31452	137.43
3267.5	26.522	1.8663412	1.43716636	2.98160432	73.478	180.16	58.678	0.3257	138.54

Tiempo	Deformació n Axial	Deformación acumulada	$\Delta e = \varepsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
3299.3	26.773	1.8599658	1.45076747	2.96800321	73.227	182.12	60.133	0.33018	139.42
3324.7	27.023	1.8536158	1.4643144	2.95445628	72.977	184.2	61.308	0.33284	140.64
3354.4	27.273	1.8472658	1.47786133	2.94090935	72.727	187.69	63.658	0.33917	142.39
3386.1	27.523	1.8409158	1.49140825	2.92736243	72.477	189.76	65.114	0.34314	143.39
3414.9	27.774	1.8345404	1.50500937	2.91376131	72.226	192.49	67.408	0.3502	144.41
3446.5	28.024	1.8281904	1.5185563	2.90021438	71.976	194.01	66.681	0.3437	146.52
3474.6	28.274	1.8218404	1.53210322	2.88666746	71.726	197.72	70.038	0.35423	147.72
3505.5	28.524	1.8154904	1.54565015	2.87312053	71.476	200.12	71.941	0.35949	148.7
3538.5	28.775	1.809115	1.55925126	2.85951942	71.225	204.7	75.187	0.3673	150.87
3568	29.025	1.802765	1.57279819	2.84597249	70.975	206.56	75.803	0.36698	152.28
3595.9	29.275	1.796415	1.58634512	2.83242556	70.725	208.96	77.594	0.37134	153.35
3624.4	29.525	1.790065	1.59989204	2.81887864	70.475	212.78	80.168	0.37677	155.25
3656.1	29.776	1.7836896	1.61349316	2.80527752	70.224	217.24	84.086	0.38705	156.76
3686.4	30.026	1.7773396	1.62704008	2.7917306	69.974	221.83	88.451	0.39873	158.03
3714.3	30.276	1.7709896	1.64058701	2.77818367	69.724	225.32	91.585	0.40646	159.14
3745.3	30.526	1.7646396	1.65413394	2.76463674	69.474	229.9	94.607	0.41152	161.45
3773.5	30.772	1.7583912	1.66746411	2.75130657	69.228	231.54	95.055	0.41054	162.78
3810.3	31.022	1.7520412	1.68101104	2.73775964	68.978	235.79	96.958	0.4112	165.64
3836.3	31.272	1.7456912	1.69455797	2.72421271	68.728	240.48	101.66	0.42273	166.73
3868.4	31.523	1.7393158	1.70815908	2.7106116	68.477	244.52	104.18	0.42605	168.87
3891.5	31.773	1.7329658	1.72170601	2.69706467	68.227	247.14	105.13	0.42538	170.81
3930.2	32.023	1.7266158	1.73525293	2.68351775	67.977	253.25	110.39	0.4359	172.89
3956.4	32.273	1.7202658	1.74879986	2.66997082	67.727	256.74	113.36	0.44152	174.11

Tiempo	Deformació n Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
3986.2	32.524	1.7138904	1.76240098	2.6563697	67.476	261.21	116.55	0.44618	176.16
4016.1	32.774	1.7075404	1.7759479	2.64282278	67.226	266.99	121.36	0.45454	178.24
4048.1	33.024	1.7011904	1.78949483	2.62927585	66.976	270.7	124.1	0.45845	179.85
4079.1	33.274	1.6948404	1.80304176	2.61572892	66.726	275.94	127.85	0.46333	182.23
4109	33.525	1.688465	1.81664287	2.60212781	66.475	279.53	129.59	0.46358	184.54
4141.2	33.775	1.682115	1.8301898	2.58858088	66.225	285.43	134.68	0.47185	186.49
4174.4	34.025	1.675765	1.84373672	2.57503396	65.975	290.88	139.16	0.47839	188.48
4195.1	34.275	1.669415	1.85728365	2.56148703	65.725	293.83	140.27	0.47741	190.63
4235.7	34.526	1.6630396	1.87088476	2.54788591	65.474	300.26	145.37	0.48413	193.14
4264.1	34.776	1.6566896	1.88443169	2.53433899	65.224	305.72	149.84	0.49014	195.12
4268.1	34.795	1.656207	1.88546126	2.53330942	65.205	306.59	150.4	0.49057	195.56
0	34.795	1.656207	1.88546126	2.53330942	65.205	306.48	150.4	0.49074	195.45
3.39	34.544	1.6625824	1.87186014	2.54691054	65.456	147.22	17.263	0.11727	135.47
6.1878	34.294	1.6689324	1.85831322	2.56045746	65.706	85.038	-21.464	-0.25241	98.805
9.7459	34.044	1.6752824	1.84476629	2.57400439	65.956	51.113	-7.8088	-0.15278	56.195
12.411	33.794	1.6816324	1.83121936	2.58755132	66.206	35.623	-5.5143	-0.15479	39.21
15.929	33.543	1.6880078	1.81761825	2.60115243	66.457	21.118	-5.1785	-0.24521	24.443
18.732	33.293	1.6943578	1.80407132	2.61469936	66.707	13.701	-5.0666	-0.36981	16.898
22.524	33.043	1.7007078	1.7905244	2.62824628	66.957	10.203	-3.4435	-0.3375	12.386
28.336	32.792	1.7070832	1.77692328	2.6418474	67.208	10.094	-2.2123	-0.21917	11.52
35.642	32.542	1.7134332	1.76337635	2.65539433	67.458	10.094	-1.3728	-0.136	10.99
44.226	32.292	1.7197832	1.74982943	2.66894125	67.708	9.777	-1.0371	-0.10608	10.457
55.877	32.042	1.7261332	1.7362825	2.68248818	67.958	9.9883	-0.75723	-0.075812	10.487

Tiempo	Deformació n Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
68.442	31.791	1.7325086	1.72268139	2.69608929	68.209	10.097	-0.47741	-0.04728	10.413
83.528	31.504	1.7397984	1.70712951	2.71164116	68.496	9.9849	-0.47737	-0.04781	10.301
99.965	31.291	1.7452086	1.69558753	2.72318315	68.709	9.8826	-0.25358	-0.025659	10.051
117.33	31.041	1.7515586	1.68204061	2.73673007	68.959	9.9883	-0.14162	-0.014178	10.082
141.2	30.79	1.757934	1.66843949	2.75033119	69.21	9.6576	-0.085619	-0.0088654	9.7146
159.91	30.54	1.764284	1.65489257	2.76387811	69.46	9.9883	-0.029686	-0.0029721	10.008
165.8	30.471	1.7660366	1.65115361	2.76761707	69.529	9.9917	0.082211	0.008228	9.9368

80B20D 4 0.5 % CSR 25-febrero-19

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(٤, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
0	-1.0196	2.56589784	-0.03753197	2.71858073	101.0196	3.9887	1.9851	0.49767	2.5205
37.862	-0.7693	2.55954022	-0.02831831	2.70936707	100.7693	18.279	2.041	0.11166	16.891
59.775	-0.51904	2.55318362	-0.01910612	2.70015488	100.51904	22.315	2.041	0.091465	20.932
92.626	-0.26879	2.54682727	-0.00989429	2.69094305	100.26879	27.878	2.041	0.073212	26.5
118.8	-0.018537	2.54047084	-0.00068236	2.68173112	100.018537	32.132	1.9851	0.061777	30.795
145.68	0.23172	2.53411431	0.00852973	2.67251903	99.76828	36.278	1.9851	0.054718	34.942
172.65	0.48197	2.52775796	0.01774155	2.66330721	99.51803	40.201	1.9851	0.049379	38.867
198.37	0.73222	2.52140161	0.02695338	2.65409539	99.26778	43.913	1.9851	0.045204	42.58
231.94	0.98248	2.51504501	0.03616557	2.64488319	99.01752	47.95	2.041	0.042566	46.579
258.15	1.2327	2.50868942	0.04537629	2.63567247	98.7673	50.568	1.9851	0.039255	49.235
285.16	1.483	2.5023318	0.05458995	2.62645881	98.517	52.967	1.9851	0.037477	51.636
315.38	1.7332	2.49597672	0.06379994	2.61724882	98.2668	55.149	1.9851	0.035994	53.818
341.44	1.9835	2.4896191	0.0730136	2.60803516	98.0165	57.113	2.041	0.035737	55.744
366.32	2.2337	2.48326402	0.08222359	2.59882517	97.7663	58.967	1.9851	0.033664	57.636
398.54	2.484	2.4769064	0.09143725	2.58961151	97.516	61.694	1.9851	0.032176	60.364
427.17	2.7343	2.47054878	0.10065092	2.58039784	97.2657	63.876	1.9851	0.031077	62.546
461.84	2.9845	2.4641937	0.1098609	2.57118786	97.0155	66.93	1.9291	0.028822	65.638
488.1	3.2348	2.45783608	0.11907457	2.5619742	96.7652	68.676	1.9851	0.028905	67.346
513.14	3.485	2.451481	0.12828455	2.55276421	96.515	70.966	1.9851	0.027972	69.637
545.21	3.7306	2.44524276	0.13732521	2.54372356	96.2694	73.475	1.9851	0.027017	72.146

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
576.22	3.9809	2.43888514	0.14653887	2.53450989	96.0191	75.984	1.9851	0.026125	74.655
603.36	4.2311	2.43253006	0.15574885	2.52529991	95.7689	78.057	1.9851	0.025431	76.728
632.43	4.4814	2.42617244	0.16496252	2.51608624	95.5186	80.239	1.9851	0.024739	78.91
664.66	4.7316	2.41981736	0.1741725	2.50687626	95.2684	82.747	1.9851	0.023989	81.419
692.01	4.9819	2.41345974	0.18338617	2.49766259	95.0181	84.82	1.9851	0.023403	83.492
715.48	5.2322	2.40710212	0.19259983	2.48844893	94.7678	86.78	1.9291	0.02223	85.489
746.5	5.4824	2.40074704	0.20180982	2.47923894	94.5176	89.074	1.9851	0.022285	87.746
774.07	5.7327	2.39438942	0.21102348	2.47002528	94.2673	91.365	1.9851	0.021727	90.037
807.64	5.9829	2.38803434	0.22023347	2.46081529	94.0171	93.871	1.9291	0.020551	92.58
838.94	6.2332	2.38167672	0.22944713	2.45160163	93.7668	96.71	1.9851	0.020526	95.382
864.94	6.4834	2.37532164	0.23865712	2.44239165	93.5166	98.783	1.9851	0.020095	97.455
897.08	6.7337	2.36896402	0.24787078	2.43317798	93.2663	101.29	1.9851	0.019597	99.964
924.57	6.9839	2.36260894	0.25708076	2.423968	93.0161	103.91	1.9851	0.019104	102.58
958.49	7.2342	2.35625132	0.26629443	2.41475433	92.7658	106.42	2.041	0.019179	105.05
987.98	7.4844	2.34989624	0.27550441	2.40554435	92.5156	108.93	2.041	0.018737	107.56
1022	7.7347	2.34353862	0.28471808	2.39633068	92.2653	111.55	1.9851	0.017796	110.22
1058.4	7.9849	2.33718354	0.29392806	2.3871207	92.0151	114.71	1.9851	0.017305	113.38
1074.4	8.2306	2.33094276	0.3029724	2.37807636	91.7694	116.02	2.041	0.017592	114.65
1108.7	8.4808	2.32458768	0.31218238	2.36886638	91.5192	118.75	1.985	0.016716	117.42
1140.9	8.7311	2.31823006	0.32139605	2.35965271	91.2689	121.47	2.041	0.016802	120.11
1170.7	8.9813	2.31187498	0.33060603	2.35044273	91.0187	124.31	1.9851	0.015969	122.98
1206.7	9.2316	2.30551736	0.3398197	2.34122906	90.7684	127.47	2.041	0.016011	126.11
1233.6	9.4818	2.29916228	0.34902968	2.33201908	90.5182	129.65	2.041	0.015742	128.29

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
1267.5	9.7321	2.29280466	0.35824335	2.32280541	90.2679	132.82	2.041	0.015367	131.45
1296.7	9.9823	2.28644958	0.36745333	2.31359543	90.0177	135.54	2.041	0.015058	134.18
1322.7	10.233	2.2800818	0.37668172	2.30436704	89.767	138.05	1.9851	0.014379	136.73
1356.3	10.483	2.2737318	0.38588434	2.29516442	89.517	140.78	2.041	0.014498	139.42
1388.6	10.733	2.2673818	0.39508696	2.2859618	89.267	143.83	2.041	0.01419	142.47
1418.4	10.983	2.2610318	0.40428959	2.27675918	89.017	146.02	2.041	0.013978	144.65
1448.4	11.234	2.2546564	0.41352902	2.26751974	88.766	149.4	1.9851	0.013287	148.07
1477.4	11.484	2.2483064	0.42273164	2.25831712	88.516	151.91	1.9851	0.013068	150.58
1505.2	11.734	2.2419564	0.43193426	2.2491145	88.266	154.52	1.9851	0.012846	153.2
1535.3	11.984	2.2356064	0.44113688	2.23991188	88.016	157.58	1.9851	0.012597	156.25
1566.4	12.235	2.229231	0.45037632	2.23067244	87.765	160.63	1.9851	0.012358	159.31
1598.3	12.485	2.222881	0.45957894	2.22146982	87.515	163.91	2.097	0.012793	162.51
1628.2	12.73	2.216658	0.46859751	2.21245125	87.27	166.52	1.9291	0.011585	165.23
1649.3	12.981	2.2102826	0.47783694	2.20321182	87.019	168.6	1.9851	0.011774	167.27
1681.4	13.231	2.2039326	0.48703956	2.1940092	86.769	171.21	2.041	0.011921	169.85
1714.8	13.481	2.1975826	0.49624218	2.18480658	86.519	174.48	1.9291	0.011056	173.2
1744.7	13.732	2.1912072	0.50548162	2.17556714	86.268	177.32	1.9851	0.011195	176
1771.8	13.982	2.1848572	0.51468424	2.16636452	86.018	179.72	1.9291	0.010734	178.44
1797.2	14.232	2.1785072	0.52388686	2.1571619	85.768	182.23	1.9851	0.010893	180.91
1830.8	14.482	2.1721572	0.53308948	2.14795928	85.518	185.72	1.9851	0.010688	184.4
1864.9	14.733	2.1657818	0.54232891	2.13871985	85.267	188.89	2.041	0.010806	187.52
1893	14.983	2.1594318	0.55153154	2.12951722	85.017	191.72	2.041	0.010646	190.36
1921.1	15.233	2.1530818	0.56073416	2.1203146	84.767	194.78	2.041	0.010479	193.41

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
1947.1	15.483	2.1467318	0.56993678	2.11111198	84.517	196.96	2.2648	0.011499	195.45
1978.1	15.734	2.1403564	0.57917621	2.10187255	84.266	200.78	2.3208	0.011559	199.23
2007	15.984	2.1340064	0.58837883	2.09266993	84.016	203.39	1.9851	0.0097596	202.07
2040.1	16.234	2.1276564	0.59758146	2.0834673	83.766	206.34	1.9851	0.0096203	205.01
2070	16.484	2.1213064	0.60678408	2.07426468	83.516	208.96	1.9851	0.0094998	207.63
2098	16.735	2.114931	0.61602351	2.06502525	83.265	211.47	1.9851	0.0093871	210.14
2122.9	16.985	2.108581	0.62522613	2.05582263	83.015	214.19	1.9851	0.0092675	212.87
2158.7	17.235	2.102231	0.63442875	2.04662001	82.765	217.14	1.9851	0.0091418	215.81
2184.9	17.481	2.0959826	0.64348413	2.03756463	82.519	220.41	2.041	0.00926	219.05
2202.9	17.731	2.0896326	0.65268676	2.028362	82.269	222.15	1.9851	0.0089356	220.83
2240	17.981	2.0832826	0.66188938	2.01915938	82.019	226.41	2.097	0.0092618	225.01
2268.7	18.231	2.0769326	0.671092	2.00995676	81.769	229.36	2.1529	0.0093869	227.92
2302.8	18.482	2.0705572	0.68033143	2.00071733	81.518	232.85	2.1529	0.0092462	231.41
2331.9	18.732	2.0642072	0.68953405	1.99151471	81.268	236.23	2.2649	0.0095876	234.72
2363.6	18.982	2.0578572	0.69873668	1.98231208	81.018	238.84	2.2089	0.0092485	237.37
2388.5	19.232	2.0515072	0.7079393	1.97310946	80.768	242.01	2.4328	0.010052	240.39
2421.3	19.483	2.0451318	0.71717873	1.96387003	80.517	245.28	2.7126	0.011059	243.47
2441.8	19.733	2.0387818	0.72638135	1.95466741	80.267	248.12	2.7126	0.010933	246.31
2475.2	19.983	2.0324318	0.73558397	1.94546479	80.017	252.05	3.1044	0.012317	249.97
2502.6	20.233	2.0260818	0.7447866	1.93626216	79.767	255.54	4.5594	0.017843	252.49
2527.2	20.484	2.0197064	0.75402603	1.92702273	79.516	259.03	4.2237	0.016306	256.2
2562.6	20.734	2.0133564	0.76322865	1.91782011	79.266	263.39	4.9512	0.018798	260.08
2580.5	20.984	2.0070064	0.77243127	1.90861749	79.016	266.34	5.6228	0.021112	262.57

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
2615.5	21.234	2.0006564	0.78163389	1.89941487	78.766	270.48	6.2384	0.023064	266.31
2642.4	21.485	1.994281	0.79087333	1.89017543	78.515	274.3	5.3989	0.019683	270.69
2671.5	21.735	1.987931	0.80007595	1.88097281	78.265	278.66	6.5742	0.023592	274.26
2699.6	21.981	1.9816826	0.80913133	1.87191743	78.019	282.81	7.1898	0.025423	277.99
2735.9	22.231	1.9753326	0.81833395	1.86271481	77.769	288.37	8.0293	0.027844	282.99
2766.1	22.481	1.9689826	0.82753657	1.85351219	77.519	292.62	8.4211	0.028778	286.98
2785.3	22.731	1.9626326	0.83673919	1.84430957	77.269	295.68	8.2531	0.027912	290.15
2825.2	22.982	1.9562572	0.84597863	1.83507013	77.018	301.35	8.7008	0.028873	295.52
2850.4	23.232	1.9499072	0.85518125	1.82586751	76.768	305.17	8.9247	0.029245	299.19
2881.2	23.482	1.9435572	0.86438387	1.81666489	76.518	309.97	9.3725	0.030237	303.69
2907.2	23.732	1.9372072	0.87358649	1.80746227	76.268	314.99	10.212	0.03242	308.14
2935.9	23.983	1.9308318	0.88282592	1.79822284	76.017	317.5	7.4696	0.023527	312.5
2961	24.233	1.9244818	0.89202855	1.78902021	75.767	321.53	9.1486	0.028453	315.4
2997.7	24.483	1.9181318	0.90123117	1.77981759	75.517	328.29	9.6523	0.029401	321.83
3024.9	24.733	1.9117818	0.91043379	1.77061497	75.267	332.11	9.8761	0.029737	325.5
3053.8	24.984	1.9054064	0.91967322	1.76137554	75.016	337.46	11.443	0.03391	329.79
3081.6	25.234	1.8990564	0.92887584	1.75217292	74.766	341.5	11.051	0.032362	334.09
3114	25.484	1.8927064	0.93807847	1.74297029	74.516	347.39	12.059	0.034713	339.3
3143	25.734	1.8863564	0.94728109	1.73376767	74.266	351.42	12.898	0.036703	342.77
3171.8	25.985	1.879981	0.95652052	1.72452824	74.015	357.97	13.794	0.038533	348.71
3195.9	26.235	1.873631	0.96572314	1.71532562	73.765	362.11	13.178	0.036392	353.27
3232.1	26.481	1.8673826	0.97477852	1.70627024	73.519	368.33	14.241	0.038665	358.77
3255.7	26.731	1.8610326	0.98398114	1.69706762	73.269	372.8	14.073	0.037751	363.36

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
3283	26.981	1.8546826	0.99318377	1.68786499	73.019	376.95	13.57	0.035999	367.85
3314.8	27.231	1.8483326	1.00238639	1.67866237	72.769	382.73	13.794	0.03604	373.48
3346	27.482	1.8419572	1.01162582	1.66942294	72.518	388.18	13.794	0.035534	378.93
3376	27.732	1.8356072	1.02082844	1.66022032	72.268	395.49	16.424	0.041528	384.47
3406.7	27.982	1.8292572	1.03003106	1.6510177	72.018	400.18	15.529	0.038804	389.76
3440.7	28.232	1.8229072	1.03923369	1.64181507	71.768	407.27	14.297	0.035105	397.68
3466.7	28.483	1.8165318	1.04847312	1.63257564	71.517	412.29	14.521	0.035221	402.55
3495.5	28.733	1.8101818	1.05767574	1.62337302	71.267	417.42	14.745	0.035324	407.53
3527.5	28.983	1.8038318	1.06687836	1.6141704	71.017	423.86	12.842	0.030298	415.25
3553.4	29.233	1.7974818	1.07608098	1.60496778	70.767	429.31	15.249	0.035519	419.08
3583.8	29.484	1.7911064	1.08532042	1.59572834	70.516	437.38	15.473	0.035376	427
3617.7	29.734	1.7847564	1.09452304	1.58652572	70.266	444.36	17.375	0.039102	432.7
3647.7	29.984	1.7784064	1.10372566	1.5773231	70.016	451.02	13.85	0.030708	441.73
3677.7	30.234	1.7720564	1.11292828	1.56812048	69.766	457.89	17.208	0.03758	446.34
3706.7	30.485	1.765681	1.12216771	1.55888105	69.515	468.14	23.811	0.050864	452.13
3738.6	30.735	1.759331	1.13137034	1.54967842	69.265	475.67	22.804	0.047941	460.34
3772.6	30.98	1.753108	1.14038891	1.54065985	69.02	484.29	24.203	0.049977	468.01
3800.7	31.231	1.7467326	1.14962834	1.53142042	68.769	491.49	23.028	0.046854	476.01
3834.2	31.481	1.7403826	1.15883096	1.5222178	68.519	501.41	26.05	0.051953	483.89
3862.1	31.731	1.7340326	1.16803358	1.51301518	68.269	510.36	29.856	0.058499	490.25
3896.2	31.981	1.7276826	1.1772362	1.50381256	68.019	520.94	33.102	0.063542	498.63
3923.1	32.232	1.7213072	1.18647564	1.49457312	67.768	529.88	33.997	0.06416	506.97
3951.6	32.482	1.7149572	1.19567826	1.4853705	67.518	537.52	36.515	0.067933	512.89

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
3985.2	32.732	1.7086072	1.20488088	1.47616788	67.268	534.36	2.2649	0.0042385	532.85
4007.9	32.983	1.7022318	1.21412031	1.46692845	67.017	536.32	2.7126	0.0050578	534.51
4047.3	33.233	1.6958818	1.22332293	1.45772583	66.767	547.45	2.7686	0.0050572	545.6
4075.3	33.483	1.6895318	1.23252556	1.4485232	66.517	556.17	3.8879	0.0069904	553.58
4107.2	33.733	1.6831818	1.24172818	1.43932058	66.267	566.86	4.3356	0.0076484	563.97
4130.7	33.984	1.6768064	1.25096761	1.43008115	66.016	574.28	4.1677	0.0072572	571.5
4169	34.234	1.6704564	1.26017023	1.42087853	65.766	586.61	4.2237	0.0072001	583.79
4198.8	34.484	1.6641064	1.26937285	1.41167591	65.516	596.75	5.343	0.0089534	593.19
4228.3	34.734	1.6577564	1.27857548	1.40247328	65.266	605.59	5.287	0.0087303	602.06
4255.3	34.985	1.651381	1.28781491	1.39323385	65.015	615.41	6.5182	0.010592	611.05
4266.9	35.077	1.6490442	1.29120147	1.38984729	64.923	618.9	5.5668	0.0089947	615.18
0	35.077	1.6490442	1.29120147	1.38984729	64.923	618.79	5.5668	0.0089963	615.07
3.2351	34.827	1.6553942	1.28199885	1.39904991	65.173	380.66	-16.707	-0.04389	391.72
6.7534	34.577	1.6617442	1.27279623	1.40825253	65.423	239.28	-15.756	-0.065846	249.68
10.205	34.326	1.6681196	1.2635568	1.41749196	65.674	152.23	-10.663	-0.070044	159.26
13.224	34.076	1.6744696	1.25435418	1.42669458	65.924	104.34	-10.159	-0.097365	111.01
16.998	33.826	1.6808196	1.24515155	1.43589721	66.174	65.945	-7.1372	-0.10823	70.621
20.193	33.576	1.6871696	1.23594893	1.44509983	66.424	43.477	-7.6969	-0.17703	48.468
23.243	33.325	1.693545	1.2267095	1.45433926	66.675	27.987	-8.3685	-0.29901	33.32
26.5	33.075	1.699895	1.21750688	1.46354188	66.925	16.424	-8.0327	-0.48907	21.417
29.717	32.825	1.706245	1.20830426	1.4727445	67.175	10.206	-8.5923	-0.84185	15.336
36.082	32.575	1.712595	1.19910163	1.48194713	67.425	10.206	-8.8162	-0.86379	15.457
43.63	32.324	1.7189704	1.1898622	1.49118656	67.676	10.097	-5.0665	-0.50177	13.242

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
52.784	32.074	1.7253204	1.18065958	1.50038918	67.926	10.206	-5.4583	-0.53479	13.58
63.568	31.824	1.7316704	1.17145696	1.5095918	68.176	10.097	-5.7941	-0.57382	13.662
77.507	31.574	1.7380204	1.16225434	1.51879442	68.426	10.101	-5.7941	-0.57363	13.665
90.121	31.296	1.7450816	1.15202102	1.52902774	68.704	9.9917	-5.4024	-0.54068	13.329
107.15	31.073	1.7507458	1.14381228	1.53723648	68.927	10.097	-5.4583	-0.54057	13.469
125.18	30.823	1.7570958	1.13460966	1.5464391	69.177	10.097	-4.0592	-0.402	12.649
145.21	30.573	1.7634458	1.12540704	1.55564172	69.427	10.097	-4.4509	-0.4408	12.881
167.19	30.327	1.7696942	1.11635166	1.5646971	69.673	10.097	-4.7867	-0.47405	13.078
189.18	30.077	1.7760442	1.10714904	1.57389972	69.923	10.097	-4.9546	-0.49068	13.176
203.12	29.924	1.7799304	1.10151703	1.57953173	70.076	10.097	-3.7793	-0.37429	12.481

80B20D 5 0.5 % CSR 04-marzo-19

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
0	-1.761	2.5847294	-0.06682729	2.86167628	101.761	4.5341	1.9851	0.43781	3.0885
31.269	-1.5108	2.57837432	-0.05733258	2.85218157	101.5108	15.661	2.041	0.13033	14.269
58.112	-1.2605	2.5720167	-0.04783407	2.84268306	101.2605	20.897	2.041	0.097672	19.513
89.155	-1.0103	2.56566162	-0.03833936	2.83318835	101.0103	26.133	2.041	0.078102	24.754
113.21	-0.76003	2.55930476	-0.02884199	2.82369098	100.76003	30.063	2.041	0.06789	28.687
143.75	-0.50978	2.55294841	-0.01934538	2.81419437	100.50978	34.423	1.9851	0.057666	33.087
168.83	-0.25952	2.54659181	-0.00984839	2.80469739	100.25952	37.368	1.9851	0.053121	36.033
191.94	-0.0092687	2.54023542	-0.00035173	2.79520073	100.009269	41.405	1.9851	0.047943	40.07
223.98	0.24098	2.53387911	0.00914483	2.78570417	99.75902	44.892	1.9851	0.044219	43.558
256.63	0.49124	2.5275225	0.01864182	2.77620718	99.50876	47.735	1.985	0.041584	46.402
282.99	0.74149	2.52116615	0.02813843	2.76671057	99.25851	49.586	1.9851	0.040033	48.254
313.48	0.99175	2.51480955	0.03763541	2.75721358	99.00825	51.768	1.9851	0.038345	50.436
334.17	1.242	2.5084532	0.04713202	2.74771697	98.758	53.513	1.9851	0.037095	52.181
366	1.4923	2.50209558	0.05663053	2.73821846	98.5077	56.131	1.9851	0.035365	54.8
394.44	1.7425	2.4957405	0.06612524	2.72872375	98.2575	57.985	1.9851	0.034234	56.654
423.95	1.9928	2.48938288	0.07562375	2.71922524	98.0072	60.494	1.9851	0.032814	59.164
457.84	2.243	2.4830278	0.08511846	2.70973053	97.757	62.898	1.985	0.03156	61.567
484.94	2.4933	2.47667018	0.09461697	2.70023202	97.5067	64.967	1.9851	0.030555	63.637
515.95	2.7435	2.4703151	0.10411168	2.69073731	97.2565	67.367	1.9851	0.029466	66.037
540.65	2.9891	2.46407686	0.11343183	2.68141716	97.0109	69.221	1.9851	0.028677	67.891
Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
--------	----------------------	--------------------------	---------------------------------------	-----------------------	----------------------------------	----------------------	---------------------------------	-----------------------------------	----------------------
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
572.33	3.2394	2.45771924	0.12293034	2.67191866	96.7606	71.73	2.041	0.028454	70.363
597.83	3.4896	2.45136416	0.13242505	2.66242394	96.5104	73.694	2.041	0.027696	72.326
624.84	3.7399	2.44500654	0.14192356	2.65292544	96.2601	75.875	1.9851	0.026162	74.546
665.08	3.9902	2.43864892	0.15142206	2.64342693	96.0098	78.711	2.041	0.02593	77.345
684.73	4.2404	2.43229384	0.16091678	2.63393222	95.7596	80.239	2.041	0.025437	78.872
718.05	4.4907	2.42593622	0.17041528	2.62443371	95.5093	82.642	2.097	0.025374	81.238
745.52	4.7409	2.41958114	0.17991	2.614939	95.2591	84.602	2.041	0.024125	83.236
777.49	4.9912	2.41322352	0.1894085	2.60544049	95.0088	87.22	2.097	0.024042	85.816
803.72	5.2414	2.40686844	0.19890322	2.59594578	94.7586	89.183	2.041	0.022886	87.818
835.9	5.4917	2.40051082	0.20840172	2.58644727	94.5083	91.801	2.097	0.022843	90.398
865.35	5.7419	2.39415574	0.21789643	2.57695256	94.2581	93.765	2.097	0.022364	92.362
898.53	5.9922	2.38779812	0.22739494	2.56745405	94.0078	96.601	2.097	0.021708	95.198
924.16	6.2424	2.38144304	0.23688965	2.55795934	93.7576	98.565	2.097	0.021275	97.162
958.78	6.4927	2.37508542	0.24638816	2.54846083	93.5073	101.07	2.097	0.020747	99.671
992.8	6.7429	2.36873034	0.25588287	2.53896612	93.2571	103.8	2.041	0.019663	102.44
1023.4	6.9932	2.36237272	0.26538138	2.52946761	93.0068	106.09	2.097	0.019766	104.69
1048.8	7.2435	2.3560151	0.27487989	2.51996911	92.7565	108.16	2.097	0.019387	106.76
1079.3	7.4891	2.34977686	0.28420004	2.51064896	92.5109	110.45	2.097	0.018985	109.05
1102.6	7.7393	2.34342178	0.29369475	2.50115425	92.2607	112.42	2.1529	0.019151	110.98
1139.1	7.9896	2.33706416	0.30319326	2.49165574	92.0104	114.82	2.1529	0.018751	113.38
1170.4	8.2398	2.33070908	0.31268797	2.48216103	91.7602	117.76	2.1529	0.018282	116.32
1202.9	8.4901	2.32435146	0.32218647	2.47266252	91.5099	120.05	2.097	0.017467	118.65
1230.3	8.7403	2.31799638	0.33168119	2.46316781	91.2597	122.45	2.1529	0.017582	121.01

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
1261.6	8.9906	2.31163876	0.34117969	2.4536693	91.0094	125.4	2.1529	0.017169	123.96
1292.2	9.2408	2.30528368	0.35067441	2.44417459	90.7592	129.11	2.4327	0.018842	127.48
1319.2	9.4911	2.29892606	0.36017291	2.43467608	90.5089	132.05	2.4887	0.018846	130.39
1356.1	9.7414	2.29256844	0.36967142	2.42517757	90.2586	135.98	2.6566	0.019537	134.2
1384	9.9916	2.28621336	0.37916613	2.41568286	90.0084	138.05	2.7126	0.019649	136.24
1408.1	10.242	2.2798532	0.38866843	2.40618056	89.758	140.13	2.8245	0.020157	138.24
1440.6	10.492	2.2735032	0.39815556	2.39669344	89.508	143.39	2.8246	0.019698	141.51
1471	10.742	2.2671532	0.40764268	2.38720631	89.258	145.36	2.9365	0.020201	143.4
1500	10.993	2.2607778	0.41716775	2.37768124	89.007	147.98	3.2722	0.022113	145.79
1529.9	11.243	2.2544278	0.42665487	2.36819412	88.757	150.05	3.2722	0.021807	147.86
1560.9	11.493	2.2480778	0.43614199	2.358707	88.507	153	3.3842	0.022119	150.73
1596.8	11.743	2.2417278	0.44562912	2.34921988	88.257	156.71	3.608	0.023024	154.29
1616.5	11.989	2.2354794	0.45496445	2.33988455	88.011	158.89	3.608	0.022708	156.47
1646.7	12.239	2.2291294	0.46445157	2.33039743	87.761	161.94	3.7759	0.023316	159.42
1682	12.49	2.222754	0.47397664	2.32087235	87.51	164.89	4.0558	0.024597	162.17
1705.3	12.74	2.216404	0.48346376	2.31138523	87.26	166.85	3.9998	0.023973	164.17
1735.6	12.99	2.210054	0.49295088	2.30189811	87.01	169.25	4.2236	0.024954	166.43
1764.6	13.24	2.203704	0.50243801	2.29241099	86.76	171.54	4.2796	0.024948	168.68
1792.6	13.491	2.1973286	0.51196308	2.28288592	86.509	173.4	4.3915	0.025326	170.46
1823.4	13.741	2.1909786	0.5214502	2.27339879	86.259	176.12	4.6714	0.026523	173
1856.6	13.991	2.1846286	0.53093732	2.26391167	86.009	178.31	4.6714	0.026199	175.18
1885.2	14.241	2.1782786	0.54042445	2.25442455	85.759	181.03	4.8393	0.026731	177.79
1909.7	14.492	2.1719032	0.54994952	2.24489948	85.508	183.44	5.0631	0.027601	180.04

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
1944	14.742	2.1655532	0.55943664	2.23541235	85.258	185.94	4.7833	0.025725	182.74
1973.7	14.992	2.1592032	0.56892376	2.22592523	85.008	189.21	4.9512	0.026168	185.89
2001.5	15.242	2.1528532	0.57841088	2.21643811	84.758	191.61	5.1191	0.026716	188.19
2032.5	15.493	2.1464778	0.58793595	2.20691304	84.507	195.1	5.5108	0.028246	191.41
2065.1	15.743	2.1401278	0.59742308	2.19742592	84.257	196.74	5.8466	0.029717	192.83
2089.4	15.993	2.1337778	0.6069102	2.18793879	84.007	198.82	5.9585	0.02997	194.82
2116.4	16.243	2.1274278	0.61639732	2.17845167	83.757	201.54	6.0705	0.030121	197.47
2151.6	16.494	2.1210524	0.62592239	2.1689266	83.506	205.03	6.5742	0.032064	200.62
2171.3	16.739	2.1148294	0.63521977	2.15962922	83.261	206.34	6.6861	0.032403	201.86
2204.3	16.989	2.1084794	0.6447069	2.1501421	83.011	208.09	6.91	0.033207	203.45
2232.3	17.24	2.102104	0.65423197	2.14061703	82.76	211.25	7.1898	0.034035	206.43
2265.5	17.49	2.095754	0.66371909	2.1311299	82.51	213.65	7.7494	0.036272	208.45
2292	17.74	2.089404	0.67320621	2.12164278	82.26	216.27	7.9733	0.036868	210.92
2322.1	17.99	2.083054	0.68269333	2.11215566	82.01	218.88	8.1412	0.037194	213.42
2352.1	18.241	2.0766786	0.6922184	2.10263059	81.759	221.39	7.9174	0.035762	216.08
2376.9	18.491	2.0703286	0.70170553	2.09314347	81.509	223.79	8.2531	0.036878	218.26
2410	18.741	2.0639786	0.71119265	2.08365634	81.259	225.87	7.4696	0.033071	220.86
2438.1	18.991	2.0576286	0.72067977	2.07416922	81.009	228.59	7.8054	0.034145	223.36
2463.6	19.242	2.0512532	0.73020484	2.06464415	80.758	230.56	8.7568	0.037981	224.68
2492.2	19.492	2.0449032	0.73969197	2.05515703	80.508	233.5	9.2605	0.039659	227.29
2521.1	19.742	2.0385532	0.74917909	2.04566991	80.258	236.77	9.5963	0.040529	230.33
2549.6	19.992	2.0322032	0.75866621	2.03618278	80.008	240.16	10.268	0.042755	233.26
2575.1	20.243	2.0258278	0.76819128	2.02665771	79.757	242.78	9.932	0.04091	236.11

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
2603	20.493	2.0194778	0.7776784	2.01717059	79.507	246.48	11.275	0.045744	238.91
2635.9	20.743	2.0131278	0.78716553	2.00768347	79.257	250.63	10.268	0.040969	243.74
2663.2	20.994	2.0067524	0.7966906	1.9981584	79.006	254.56	12.506	0.04913	246.15
2692.8	21.239	2.0005294	0.80598798	1.98886102	78.761	258.37	11.051	0.042773	250.95
2725.8	21.489	1.9941794	0.8154751	1.97937389	78.511	263.39	13.178	0.050032	254.53
2749.9	21.74	1.987804	0.82500017	1.96984882	78.26	266.88	14.633	0.05483	257.03
2782.2	21.99	1.981454	0.83448729	1.9603617	78.01	272.23	16.424	0.060332	261.16
2811.2	22.24	1.975104	0.84397442	1.95087458	77.76	275.72	18.271	0.066267	263.4
2839.5	22.49	1.968754	0.85346154	1.94138745	77.51	280.84	19.782	0.070437	267.5
2867.7	22.741	1.9623786	0.86298661	1.93186238	77.259	277.24	7.5815	0.027346	272.17
2897.9	22.991	1.9560286	0.87247373	1.92237526	77.009	283.68	11.331	0.039944	276.08
2926.9	23.241	1.9496786	0.88196085	1.91288814	76.759	289.46	17.152	0.059253	277.91
2955.9	23.491	1.9433286	0.89144798	1.90340102	76.509	294.92	19.614	0.066507	281.69
2983.9	23.742	1.9369532	0.90097305	1.89387595	76.258	299.28	20.845	0.069651	285.22
3015.7	23.992	1.9306032	0.91046017	1.88438882	76.008	303.32	21.125	0.069647	289.06
3044.4	24.242	1.9242532	0.91994729	1.8749017	75.758	308.77	23.532	0.076211	292.88
3076.6	24.492	1.9179032	0.92943442	1.86541458	75.508	312.59	23.588	0.075459	296.66
3100.6	24.743	1.9115278	0.93895949	1.85588951	75.257	319.24	27.169	0.085106	300.86
3133.6	24.993	1.9051778	0.94844661	1.84640238	75.007	323.61	26.722	0.082575	305.54
3159.7	25.243	1.8988278	0.95793373	1.83691526	74.757	329.39	28.512	0.086562	310.09
3187.6	25.498	1.8923508	0.9676106	1.8272384	74.502	335.39	31.87	0.095026	313.79
3219.4	25.739	1.8862294	0.97675618	1.81809281	74.261	338	25.49	0.075414	320.79
3249.6	25.989	1.8798794	0.9862433	1.80860569	74.011	342.04	25.378	0.074197	324.91

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
3273.1	26.24	1.873504	0.99576838	1.79908062	73.76	347.17	28.345	0.081645	328
3312.4	26.49	1.867154	1.0052555	1.7895935	73.51	356.66	32.038	0.089829	334.97
3337.3	26.74	1.860804	1.01474262	1.78010637	73.26	356.33	23.308	0.06541	340.62
3370.3	26.99	1.854454	1.02422974	1.77061925	73.01	368.33	33.158	0.090021	345.88
3399.3	27.241	1.8480786	1.03375481	1.76109418	72.759	374.11	34.165	0.091323	350.97
3429.8	27.491	1.8417286	1.04324194	1.75160706	72.509	381.63	36.348	0.095242	357
3457.2	27.741	1.8353786	1.05272906	1.74211993	72.259	388.07	37.915	0.0977	362.36
3485.9	27.991	1.8290286	1.06221618	1.73263281	72.009	390.58	31.87	0.081597	369.04
3516	28.242	1.8226532	1.07174125	1.72310774	71.758	397.35	36.571	0.092039	372.58
3548.1	28.492	1.8163032	1.08122838	1.71362062	71.508	406.84	41.72	0.10255	378.52
3573.4	28.742	1.8099532	1.0907155	1.7041335	71.258	413.82	42.224	0.10203	385.17
3607.3	28.992	1.8036032	1.10020262	1.69464637	71.008	420.15	41.608	0.099033	391.93
3637.3	29.243	1.7972278	1.10972769	1.6851213	70.757	429.09	45.918	0.10701	397.9
3666	29.493	1.7908778	1.11921481	1.67563418	70.507	436.18	46.701	0.10707	404.46
3697	29.743	1.7845278	1.12870194	1.66614706	70.257	447.96	54.48	0.12162	410.86
3730	29.993	1.7781778	1.13818906	1.65665993	70.007	455.49	53.249	0.11691	419.26
3759	30.239	1.7719294	1.14752439	1.64732461	69.761	456.8	34.165	0.074792	433.73
3788.8	30.489	1.7655794	1.15701151	1.63783748	69.511	459.85	38.082	0.082815	434.1
3818.6	30.739	1.7592294	1.16649863	1.62835036	69.261	472.72	50.619	0.10708	438.35
3852.8	30.99	1.752854	1.1760237	1.61882529	69.01	485.92	61.756	0.12709	443.83
3883.8	31.24	1.746504	1.18551083	1.60933817	68.76	494.98	62.595	0.12646	452.31
3909.8	31.49	1.740154	1.19499795	1.59985105	68.51	503.05	64.61	0.12844	459
3941.8	31.741	1.7337786	1.20452302	1.59032597	68.259	512.32	70.71	0.13802	464.02

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
3973.9	31.991	1.7274286	1.21401014	1.58083885	68.009	524.65	75.635	0.14416	472.93
4003	32.241	1.7210786	1.22349726	1.57135173	67.759	527.7	76.698	0.14534	475.24
4036	32.491	1.7147286	1.23298439	1.56186461	67.509	533.92	69.311	0.12982	486.65
4062.8	32.742	1.7083532	1.24250946	1.55233954	67.258	538.83	75.579	0.14027	487.18
4094.9	32.992	1.7020032	1.25199658	1.54285241	67.008	548.65	80.056	0.14592	493.89
4127.9	33.242	1.6956532	1.2614837	1.53336529	66.758	560.54	88.787	0.1584	499.66
4156.8	33.492	1.6893032	1.27097082	1.52387817	66.508	561.41	70.542	0.12565	513.34
4187.6	33.743	1.6829278	1.2804959	1.5143531	66.257	574.17	84.925	0.14791	516.06
4217.7	33.993	1.6765778	1.28998302	1.50486598	66.007	584.54	91.697	0.15687	521.68
4247.4	34.243	1.6702278	1.29947014	1.49537885	65.757	596.21	99.588	0.16704	527.81
4277.6	34.493	1.6638778	1.30895726	1.48589173	65.507	608.53	107.76	0.17708	534.39
4282.3	34.516	1.6632936	1.30983008	1.48501891	65.484	609.95	107.31	0.17593	536.13
0	34.516	1.6632936	1.30983008	1.48501891	65.484	609.95	107.31	0.17593	536.13
3.5222	34.266	1.6696436	1.30034296	1.49450604	65.734	354.04	13.738	0.038803	344.82
7.4819	34.016	1.6759936	1.29085583	1.50399316	65.984	190.74	-61.143	-0.32056	229.59
10.673	33.766	1.6823436	1.28136871	1.51348028	66.234	128.57	-15.644	-0.12168	138.79
13.78	33.515	1.688719	1.27184364	1.52300535	66.485	85.475	-15.924	-0.1863	95.785
16.687	33.265	1.695069	1.26235652	1.53249248	66.735	60.058	-14.637	-0.24371	69.457
20.872	33.015	1.701419	1.2528694	1.5419796	66.985	31.59	-13.965	-0.44206	40.322
23.193	32.765	1.707769	1.24338227	1.55146672	67.235	22.642	-13.125	-0.57969	30.711
26.375	32.514	1.7141444	1.2338572	1.56099179	67.486	13.588	-12.51	-0.92065	20.995
29.8	32.264	1.7204944	1.22437008	1.57047891	67.736	10.2	-10.439	-1.0235	16.317
37.736	32.014	1.7268444	1.21488296	1.57996604	67.986	10.094	-7.473	-0.74034	14.604

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
45.868	31.764	1.7331944	1.20539583	1.58945316	68.236	10.203	-6.3537	-0.62273	14.089
56.669	31.513	1.7395698	1.19587076	1.59897823	68.487	10.094	-5.6262	-0.55738	13.562
67.554	31.263	1.7459198	1.18638364	1.60846535	68.737	10.097	-5.0665	-0.50177	13.242
81.418	31.013	1.7522698	1.17689652	1.61795248	68.987	9.9883	-4.6748	-0.46803	12.902
97.605	30.763	1.7586198	1.1674094	1.6274396	69.237	9.9883	-4.283	-0.4288	12.671
114.15	30.512	1.7649952	1.15788432	1.63696467	69.488	10.101	-3.9473	-0.39079	12.585
131.51	30.262	1.7713452	1.1483972	1.64645179	69.738	10.206	-3.8353	-0.37577	12.625
153.44	30.012	1.7776952	1.13891008	1.65593891	69.988	10.097	-3.6674	-0.3632	12.414
175.33	29.766	1.7839436	1.12957475	1.66527424	70.234	9.9883	-3.6114	-0.36157	12.27
203.07	29.516	1.7902936	1.12008763	1.67476136	70.484	10.097	-3.4435	-0.34103	12.279
204.39	29.488	1.7910048	1.11902507	1.67582392	70.512	9.9883	-3.4435	-0.34476	12.169

60B40D

60B40D 1 0.5 % CSR 21-enero-19

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
0	-0.9454	2.56401316	-0.04159494	3.44131394	100.9454	3.9887	4.1677	1.0449	0.50377
26.851	-0.69515	2.55765681	-0.03058465	3.43030364	100.69515	10.861	4.3915	0.40434	7.6889
55.806	-0.4449	2.55130046	-0.01957435	3.41929334	100.4449	15.988	4.5035	0.28168	12.823
81.729	-0.19464	2.54494386	-0.00856361	3.40828261	100.19464	19.806	4.5035	0.22738	16.676
113.41	0.055612	2.53858746	0.00244677	3.39727222	99.944388	24.06	4.6154	0.19183	20.875
140.79	0.30587	2.5322309	0.01345742	3.38626157	99.69413	27.66	4.7273	0.17091	24.411
169.56	0.55612	2.52587455	0.02446772	3.37525128	99.44388	30.278	4.8952	0.16168	26.92
199.67	0.80637	2.5195182	0.03547801	3.36424098	99.19363	32.681	4.9512	0.1515	29.291
226.67	1.0566	2.51316236	0.04648743	3.35323156	98.9434	34.754	5.1191	0.14729	31.251
249.63	1.3069	2.50680474	0.05749993	3.34221907	98.6931	36.169	5.231	0.14463	32.591
282.2	1.5571	2.50044966	0.06850802	3.33121097	98.4429	38.02	5.343	0.14053	34.368
310.86	1.8074	2.49409204	0.07952052	3.32019847	98.1926	39.768	5.5668	0.13998	35.965
355.8	2.0576	2.48773696	0.09052862	3.30919038	97.9424	41.514	5.6787	0.13679	37.636
379.59	2.3079	2.48137934	0.10154111	3.29817788	97.6921	43.259	5.7907	0.13386	39.307
406.29	2.5581	2.47502426	0.11254921	3.28716978	97.4419	45.113	5.9586	0.13208	41.048
440.05	2.8084	2.46866664	0.12356171	3.27615729	97.1916	47.404	6.0705	0.12806	43.266
471.6	3.0587	2.46230902	0.1345742	3.26514479	96.9413	49.913	6.1265	0.12274	45.74
499.58	3.3089	2.45595394	0.1455823	3.25413669	96.6911	51.986	6.0145	0.1157	47.894

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
526.99	3.5592	2.44959632	0.1565948	3.2431242	96.4408	54.058	6.2944	0.11644	49.776
556.25	3.8048	2.44335808	0.16740051	3.23231849	96.1952	56.349	6.2944	0.1117	52.071
588.95	4.055	2.437003	0.17840861	3.22131039	95.945	58.967	6.5182	0.11054	54.537
611.65	4.3053	2.43064538	0.1894211	3.21029789	95.6947	61.04	6.5182	0.10679	56.613
642.42	4.5555	2.4242903	0.2004292	3.1992898	95.4445	63.44	6.5182	0.10275	59.016
668.8	4.8058	2.41793268	0.2114417	3.1882773	95.1942	66.058	6.7421	0.10206	61.483
703.66	5.0561	2.41157506	0.22245419	3.1772648	94.9439	69.112	6.6861	0.096743	64.579
731.79	5.3063	2.40521998	0.23346229	3.16625671	94.6937	71.621	6.798	0.094917	67.014
759.41	5.5566	2.39886236	0.24447479	3.15524421	94.4434	74.021	6.91	0.093352	69.339
790.92	5.8068	2.39250728	0.25548288	3.14423611	94.1932	76.857	7.0779	0.092091	72.063
816.47	6.0571	2.38614966	0.26649538	3.13322362	93.9429	79.257	6.9659	0.087891	74.542
850.9	6.3073	2.37979458	0.27750348	3.12221552	93.6927	82.086	7.0779	0.086226	77.297
879.41	6.5576	2.37343696	0.28851597	3.11120302	93.4424	84.602	7.1338	0.084322	79.777
911.52	6.8078	2.36708188	0.29952407	3.10019493	93.1922	87.111	7.1898	0.082536	82.249
946.71	7.0581	2.36072426	0.31053657	3.08918243	92.9419	89.947	7.3017	0.081178	85.011
964.64	7.3083	2.35436918	0.32154466	3.07817433	92.6917	91.147	7.3017	0.080109	86.212
1000	7.5586	2.34801156	0.33255716	3.06716184	92.4414	93.656	7.5256	0.080354	88.569
1028.6	7.8088	2.34165648	0.34356526	3.05615374	92.1912	95.729	7.6375	0.079783	90.567
1059.5	8.0591	2.33529886	0.35457775	3.04514124	91.9409	97.801	7.6935	0.078665	92.602
1092.6	8.3047	2.32906062	0.36538346	3.03433553	91.6953	99.983	7.8614	0.078627	94.671
1119.4	8.555	2.322703	0.37639596	3.02332304	91.445	101.51	8.1972	0.080752	95.969
1149.4	8.8052	2.31634792	0.38740406	3.01231494	91.1948	103.47	8.1412	0.078679	97.972
1180.4	9.0555	2.3099903	0.39841655	3.00130244	90.9445	105.11	8.1972	0.077987	99.571

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
1206.1	9.3057	2.30363522	0.40942465	2.99029434	90.6943	106.86	8.3091	0.07776	101.24
1239.3	9.556	2.2972776	0.42043715	2.97928185	90.444	108.6	8.0852	0.074449	103.14
1272	9.8062	2.29092252	0.43144524	2.96827375	90.1938	110.67	8.2531	0.074572	105.1
1302.7	10.056	2.2845776	0.44243574	2.95728325	89.944	111.76	8.1972	0.073346	106.23
1332.6	10.307	2.2782022	0.45347904	2.94623996	89.693	113.51	8.3651	0.073695	107.86
1361.5	10.557	2.2718522	0.46447833	2.93524066	89.443	115.36	8.7568	0.075906	109.45
1388.5	10.807	2.2655022	0.47547763	2.92424136	89.193	117	8.6449	0.073888	111.16
1419.4	11.058	2.2591268	0.48652093	2.91319807	88.942	118.85	9.1486	0.076973	112.67
1453.2	11.308	2.2527768	0.49752022	2.90219877	88.692	120.38	8.9807	0.074602	114.32
1485.7	11.558	2.2464268	0.50851952	2.89119947	88.442	122.56	9.4844	0.077383	116.16
1516.1	11.808	2.2400768	0.51951882	2.88020018	88.192	123.76	9.0926	0.073468	117.62
1536.9	12.059	2.2337014	0.53056211	2.86915688	87.941	125.29	9.4844	0.075699	118.88
1568.9	12.309	2.2273514	0.54156141	2.85815758	87.691	126.82	9.6523	0.076111	120.3
1604.1	12.559	2.2210014	0.55256071	2.84715829	87.441	128.67	9.5403	0.074145	122.23
1634	12.805	2.214753	0.56338402	2.83633498	87.195	130.2	9.988	0.076714	123.45
1660	13.055	2.208403	0.57438331	2.82533568	86.945	131.07	9.5963	0.073214	124.59
1685	13.305	2.202053	0.58538261	2.81433638	86.695	132.93	9.8761	0.074298	126.26
1720	13.555	2.195703	0.59638191	2.80333709	86.445	134.78	10.044	0.074521	128
1753.6	13.806	2.1893276	0.6074252	2.79229379	86.194	136.2	9.9321	0.072923	129.49
1781.1	14.056	2.1829776	0.6184245	2.78129449	85.944	137.5	9.8202	0.071417	130.88
1810	14.306	2.1766276	0.6294238	2.7702952	85.694	139.47	10.436	0.074826	132.42
1835.9	14.556	2.1702776	0.6404231	2.7592959	85.444	140.34	10.604	0.075555	133.18
1867.5	14.807	2.1639022	0.65146639	2.7482526	85.193	142.31	10.212	0.071759	135.42

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
1895.9	15.057	2.1575522	0.66246569	2.73725331	84.943	143.39	9.9881	0.069656	136.65
1928.9	15.307	2.1512022	0.67346499	2.72625401	84.693	145.37	9.988	0.06871	138.63
1957.7	15.557	2.1448522	0.68446428	2.71525471	84.443	147	10.38	0.07061	140
1986.8	15.808	2.1384768	0.69550758	2.70421142	84.192	148.64	10.492	0.070586	141.56
2010.7	16.058	2.1321268	0.70650688	2.69321212	83.942	150.27	10.995	0.073171	142.85
2047	16.308	2.1257768	0.71750617	2.68221282	83.692	152.02	10.772	0.070856	144.75
2076.3	16.558	2.1194268	0.72850547	2.67121352	83.442	154.09	10.772	0.069903	146.82
2094.7	16.809	2.1130514	0.73954877	2.66017023	83.191	154.63	10.492	0.067849	147.56
2129.6	17.059	2.1067014	0.75054806	2.64917093	82.941	157.47	10.995	0.069824	150.06
2156.2	17.309	2.1003514	0.76154736	2.63817163	82.691	159.1	10.772	0.067702	151.84
2191.6	17.555	2.094103	0.77237067	2.62734833	82.445	161.4	11.667	0.072286	153.53
2220.5	17.805	2.087753	0.78336997	2.61634903	82.195	163.15	11.611	0.071169	155.31
2251.5	18.055	2.081403	0.79436926	2.60534973	81.945	165.11	11.667	0.070664	157.23
2275.6	18.306	2.0750276	0.80541256	2.59430644	81.694	166.96	11.667	0.069879	159.09
2309.6	18.556	2.0686776	0.81641186	2.58330714	81.444	169.25	11.779	0.069594	161.3
2331.6	18.806	2.0623276	0.82741115	2.57230784	81.194	170.78	12.003	0.070281	162.68
2363.4	19.056	2.0559776	0.83841045	2.56130854	80.944	172.52	12.003	0.069572	164.43
2391.2	19.307	2.0496022	0.84945375	2.55026525	80.693	174.71	12.562	0.071906	166.23
2415.5	19.557	2.0432522	0.86045304	2.53926595	80.443	176.45	12.115	0.068658	168.28
2450.3	19.807	2.0369022	0.87145234	2.52826665	80.193	178.74	12.674	0.070909	170.19
2467.7	20.057	2.0305522	0.88245164	2.51726736	79.943	179.94	12.73	0.070747	171.35
2502.9	20.308	2.0241768	0.89349493	2.50622406	79.692	181.58	11.723	0.064562	173.68
2528.1	20.558	2.0178268	0.90449423	2.49522476	79.442	184.09	12.451	0.067634	175.69

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
2556.7	20.808	2.0114768	0.91549353	2.48422547	79.192	186.16	12.842	0.068985	177.5
2585.2	21.058	2.0051268	0.92649283	2.47322617	78.942	188.23	12.618	0.067036	179.72
2620.7	21.309	1.9987514	0.93753612	2.46218287	78.691	191.07	12.954	0.067799	182.33
2650.3	21.559	1.9924014	0.94853542	2.45118358	78.441	193.69	13.458	0.069483	184.61
2669.3	21.809	1.9860514	0.95953472	2.44018428	78.191	195.22	13.402	0.068651	186.18
2708.9	22.055	1.979803	0.97035802	2.42936097	77.945	198.27	13.514	0.06816	189.15
2729.4	22.305	1.973453	0.98135732	2.41836167	77.695	200.01	13.346	0.066725	191.01
2763.1	22.555	1.967103	0.99235662	2.40736238	77.445	202.52	13.682	0.067557	193.29
2787	22.806	1.9607276	1.00339991	2.39631908	77.194	204.7	13.458	0.065743	195.63
2816	23.056	1.9543776	1.01439921	2.38531978	76.944	207.54	13.962	0.067272	198.12
2841.5	23.306	1.9480276	1.02539851	2.37432049	76.694	209.07	13.29	0.063568	200.11
2877.6	23.556	1.9416776	1.03639781	2.36332119	76.444	212.56	13.626	0.064104	203.37
2902.9	23.807	1.9353022	1.0474411	2.35227789	76.193	214.19	13.402	0.062569	205.16
2932.9	24.057	1.9289522	1.0584404	2.3412786	75.943	217.47	14.073	0.064716	207.98
2961.1	24.307	1.9226022	1.0694397	2.3302793	75.693	219.87	13.962	0.0635	210.46
2993.1	24.557	1.9162522	1.08043899	2.31928	75.443	222.81	14.241	0.063917	213.21
3022.7	24.808	1.9098768	1.09148229	2.30823671	75.192	224.78	12.898	0.057383	216.09
3052.9	25.058	1.9035268	1.10248159	2.29723741	74.942	227.83	13.906	0.061035	218.46
3075.8	25.308	1.8971768	1.11348088	2.28623811	74.692	230.34	13.85	0.060126	221.01
3112.8	25.558	1.8908268	1.12448018	2.27523881	74.442	234.05	15.081	0.064435	223.88
3135	25.809	1.8844514	1.13552348	2.26419552	74.191	236.12	14.465	0.061262	226.38
3161.6	26.059	1.8781014	1.14652277	2.25319622	73.941	238.41	14.241	0.059735	228.82
3192.7	26.309	1.8717514	1.15752207	2.24219692	73.691	242.01	14.969	0.061852	231.93

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
3222	26.555	1.865503	1.16834538	2.23137362	73.445	245.5	15.529	0.063254	235.03
3251.7	26.805	1.859153	1.17934468	2.22037432	73.195	248.23	15.529	0.062558	237.76
3282.5	27.055	1.852803	1.19034397	2.20937502	72.945	251.72	15.641	0.062135	241.18
3315.7	27.305	1.846453	1.20134327	2.19837572	72.695	255.1	15.137	0.059337	244.91
3343.6	27.556	1.8400776	1.21238657	2.18733243	72.444	257.61	14.633	0.056804	247.76
3372.9	27.806	1.8337276	1.22338586	2.17633313	72.194	260.66	14.353	0.055064	251.01
3403.6	28.056	1.8273776	1.23438516	2.16533383	71.944	264.7	14.801	0.055916	254.74
3428.4	28.306	1.8210276	1.24538446	2.15433454	71.694	267.53	14.745	0.055115	257.61
3458.3	28.557	1.8146522	1.25642775	2.14329124	71.443	271.79	16.032	0.058988	260.99
3491.5	28.807	1.8083022	1.26742705	2.13229194	71.193	276.48	16.984	0.061428	265.04
3523.3	29.057	1.8019522	1.27842635	2.12129265	70.943	280.08	16.424	0.058641	269.02
3552.5	29.307	1.7956022	1.28942565	2.11029335	70.693	284.01	16.984	0.0598	272.57
3580.5	29.558	1.7892268	1.30046894	2.09925005	70.442	288.04	18.159	0.063042	275.81
3613.2	29.808	1.7828768	1.31146824	2.08825076	70.192	292.95	18.327	0.062559	280.6
3648.7	30.058	1.7765268	1.32246754	2.07725146	69.942	297.53	18.998	0.063853	284.73
3678.8	30.308	1.7701768	1.33346683	2.06625216	69.692	301.9	18.383	0.060891	289.51
3710.4	30.559	1.7638014	1.34451013	2.05520887	69.441	306.59	19.334	0.063062	293.56
3739	30.809	1.7574514	1.35550943	2.04420957	69.191	311.5	20.398	0.065482	297.75
3770.4	31.055	1.751203	1.36633273	2.03338626	68.945	315.97	21.125	0.066858	301.72
3802.2	31.305	1.744853	1.37733203	2.02238696	68.695	321.86	22.468	0.069807	306.7
3830.3	31.555	1.738503	1.38833133	2.01138767	68.445	324.37	19.39	0.059778	311.31
3865.3	31.805	1.732153	1.39933063	2.00038837	68.195	331.13	21.405	0.064642	316.7
3889.2	32.056	1.7257776	1.41037392	1.98934507	67.944	335.5	23.364	0.069639	319.73

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
3929	32.306	1.7194276	1.42137322	1.97834578	67.694	342.37	23.14	0.067587	326.77
3957	32.556	1.7130776	1.43237252	1.96734648	67.444	347.6	23.084	0.066408	332.04
3988.1	32.806	1.7067276	1.44337181	1.95634718	67.194	351.75	21.461	0.061012	337.29
4011.2	33.057	1.7003522	1.45441511	1.94530389	66.943	356.44	21.965	0.061623	341.64
4053.4	33.307	1.6940022	1.46541441	1.93430459	66.693	364.51	22.636	0.0621	349.26
4083	33.557	1.6876522	1.4764137	1.92330529	66.443	371.17	25.714	0.069279	353.82
4115.1	33.807	1.6813022	1.487413	1.91230599	66.193	376.95	25.714	0.068217	359.6
4144.7	34.058	1.6749268	1.4984563	1.9012627	65.942	382.51	25.658	0.067078	365.21
4172.9	34.308	1.6685768	1.50945559	1.8902634	65.692	387.42	26.61	0.068685	369.47
4208.6	34.558	1.6622268	1.52045489	1.8792641	65.442	395.38	25.77	0.065178	378.01
4240	34.808	1.6558768	1.53145419	1.86826481	65.192	401.82	28.68	0.071376	382.46
4272.1	35.059	1.6495014	1.54249748	1.85722151	64.941	409.45	30.695	0.074967	388.72
4299.8	35.309	1.6431514	1.55349678	1.84622222	64.691	414.37	30.303	0.073132	393.91
4313.9	35.462	1.6392652	1.56022835	1.83949065	64.538	417.31	31.423	0.075298	396.09
0	35.457	1.6393922	1.56000836	1.83971063	64.543	417.53	31.423	0.075259	396.31
2.5149	35.207	1.6457422	1.54900907	1.85070993	64.793	275.28	-15.588	-0.056626	285.58
6.1746	34.957	1.6520922	1.53800977	1.86170923	65.043	163.47	-15.196	-0.09296	173.45
9.7238	34.706	1.6584676	1.52696647	1.87275252	65.294	103.58	-14.637	-0.14131	113.12
12.721	34.456	1.6648176	1.51596718	1.88375182	65.544	70.53	-14.804	-0.2099	80.083
16.027	34.206	1.6711676	1.50496788	1.89475112	65.794	46.208	-14.525	-0.31433	55.444
19.434	33.956	1.6775176	1.49396858	1.90575041	66.044	28.533	-14.133	-0.49532	37.311
22.338	33.705	1.683893	1.48292529	1.91679371	66.295	18.061	-13.741	-0.76084	26.336
25.481	33.455	1.690243	1.47192599	1.92779301	66.545	10.319	-13.014	-1.2611	17.777

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
30.833	33.205	1.696593	1.46092669	1.9387923	66.795	10.319	-9.8796	-0.95742	16.147
40.73	32.955	1.702943	1.44992739	1.9497916	67.045	10.101	-8.8162	-0.87282	15.347
48.487	32.704	1.7093184	1.4388841	1.96083489	67.296	10.101	-8.5924	-0.85066	15.226
60.271	32.454	1.7156684	1.4278848	1.97183419	67.546	10.097	-8.3125	-0.82323	15.07
72.77	32.204	1.7220184	1.41688551	1.98283349	67.796	9.9917	-8.0327	-0.80394	14.807
92.307	31.954	1.7283684	1.40588621	1.99383279	68.046	10.189	-7.8087	-0.76635	14.889
106.17	31.703	1.7347438	1.39484291	2.00487608	68.297	10.097	-7.8088	-0.77335	14.794
126.47	31.421	1.7419066	1.38243571	2.01728329	68.579	9.9917	-7.8088	-0.78153	14.684
148.45	31.203	1.7474438	1.37284432	2.02687468	68.797	9.9883	-7.9767	-0.79861	14.772
172.37	30.953	1.7537938	1.36184502	2.03787397	69.047	9.8792	-8.0886	-0.81875	14.72
173.21	30.948	1.7539208	1.36162503	2.03809396	69.052	9.8792	-8.0886	-0.81875	14.72

60B40D 2 0.5 % CSR 28-enero-19

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \varepsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)	-0)	e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
0	-1.0381	2.56636774	-0.04678026	3.55311506	101.0381	4.8613	2.097	0.43136	3.3367
27.072	-0.78784	2.56001114	-0.03550271	3.54183751	100.78784	12.828	2.1529	0.16783	11.349
51.815	-0.53758	2.55365453	-0.02422515	3.53055995	100.53758	16.642	2.097	0.126	15.213
86.993	-0.28733	2.54729818	-0.01294805	3.51928285	100.28733	21.442	2.1529	0.10041	19.982
117.82	-0.037075	2.54094171	-0.00167072	3.50800552	100.037075	25.151	2.097	0.083376	23.733
143.82	0.21318	2.53458523	0.0096066	3.49672819	99.78682	27.987	2.097	0.074927	26.571
174.91	0.46343	2.52822888	0.02088371	3.48545109	99.53657	30.932	2.1529	0.069602	29.48
200.89	0.71369	2.52187227	0.03216126	3.47417354	99.28631	32.787	2.097	0.063958	31.374
227.72	0.96394	2.51551592	0.04343836	3.46289643	99.03606	34.75	2.097	0.060344	33.338
258.54	1.2142	2.50915932	0.05471592	3.45161888	98.7858	36.496	2.097	0.057458	35.084
287.41	1.4644	2.50280424	0.06599077	3.44034403	98.5356	38.35	2.097	0.05468	36.939
320.18	1.7147	2.49644662	0.07727012	3.42906467	98.2853	40.419	2.041	0.050497	39.047
347.82	1.965	2.490089	0.08854948	3.41778532	98.035	41.732	2.097	0.050249	40.322
373.89	2.2152	2.48373392	0.09982433	3.40651047	97.7848	43.695	2.097	0.047991	42.286
404.41	2.4655	2.4773763	0.11110368	3.39523111	97.5345	45.659	2.097	0.045927	44.25
435.78	2.7157	2.47102122	0.12237853	3.38395626	97.2843	47.841	2.041	0.042663	46.47
461.54	2.966	2.4646636	0.13365789	3.37267691	97.034	49.586	2.041	0.041161	48.216
489.54	3.2162	2.45830852	0.14493274	3.36140206	96.7838	51.768	2.041	0.039427	50.398
523.31	3.4665	2.4519509	0.1562121	3.3501227	96.5335	53.949	2.041	0.037832	52.58
548.91	3.7121	2.44571266	0.16727965	3.33905514	96.2879	56.131	2.097	0.037359	54.724

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \varepsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
573.45	3.9623	2.43935758	0.1785545	3.32778029	96.0377	57.876	2.041	0.035265	56.507
603.45	4.2126	2.43299996	0.18983386	3.31650094	95.7874	59.84	2.097	0.035043	58.434
631.17	4.4629	2.42664234	0.20111322	3.30522158	95.5371	61.912	2.041	0.032966	60.544
664.9	4.7131	2.42028726	0.21238807	3.29394673	95.2869	64.534	2.041	0.031627	63.166
696.98	4.9634	2.41392964	0.22366742	3.28266738	95.0366	66.821	2.041	0.030544	65.453
722.63	5.2136	2.40757456	0.23494227	3.27139253	94.7864	68.676	2.097	0.030535	67.27
759.75	5.4639	2.40121694	0.24622163	3.26011317	94.5361	71.294	2.041	0.028628	69.926
782.44	5.7141	2.39486186	0.25749648	3.24883832	94.2859	72.821	2.097	0.028796	71.416
818.4	5.9644	2.38850424	0.26877583	3.23755896	94.0356	75.766	2.041	0.026938	74.399
846	6.2146	2.38214916	0.28005068	3.22628412	93.7854	77.73	2.041	0.026258	76.363
877.31	6.4649	2.37579154	0.29133004	3.21500476	93.5351	79.911	2.097	0.026241	78.507
912.88	6.7151	2.36943646	0.30260489	3.20372991	93.2849	82.42	2.097	0.025443	81.016
933.2	6.9654	2.36307884	0.31388424	3.19245055	93.0346	83.62	2.097	0.025077	82.216
962.17	7.2156	2.35672376	0.32515909	3.1811757	92.7844	85.693	2.097	0.024471	84.289
1000.1	7.4659	2.35036614	0.33643845	3.16989635	92.5341	88.202	2.097	0.023775	86.798
1027.3	7.7162	2.34400852	0.34771781	3.15861699	92.2838	90.162	2.041	0.022638	88.796
1060.1	7.9664	2.33765344	0.35899266	3.14734214	92.0336	92.129	2.097	0.022761	90.725
1085.1	8.212	2.3314152	0.37006021	3.13627458	91.788	93.765	2.097	0.022364	92.362
1120.6	8.4623	2.32505758	0.38133957	3.12499523	91.5377	96.274	2.097	0.021781	94.871
1149.1	8.7125	2.3187025	0.39261442	3.11372038	91.2875	97.91	2.097	0.021417	96.507
1173.9	8.9628	2.31234488	0.40389378	3.10244102	91.0372	99.765	2.097	0.021019	98.362
1210.1	9.213	2.3059898	0.41516862	3.09116617	90.787	102.16	2.097	0.020526	100.76
1239.6	9.4633	2.29963218	0.42644798	3.07988682	90.5367	103.91	2.097	0.020181	102.51

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \varepsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
1270.7	9.7135	2.2932771	0.43772283	3.06861197	90.2865	105.87	2.097	0.019807	104.47
1299.8	9.9638	2.28691948	0.44900219	3.05733261	90.0362	107.62	2.097	0.019485	106.22
1330.7	10.214	2.2805644	0.46027704	3.04605776	89.786	109.69	2.097	0.019116	108.29
1356.8	10.464	2.2742144	0.47154287	3.03479192	89.536	111.55	2.097	0.018799	110.14
1387.9	10.715	2.267839	0.48285377	3.02348102	89.285	113.4	2.097	0.018492	112
1419.4	10.965	2.261489	0.49411961	3.01221519	89.035	115.25	2.097	0.018194	113.85
1454.2	11.215	2.255139	0.50538545	3.00094935	88.785	117.55	2.097	0.01784	116.14
1481.7	11.465	2.248789	0.51665128	2.98968351	88.535	119.29	2.097	0.017579	117.89
1505.2	11.716	2.2424136	0.52796218	2.97837261	88.284	120.49	2.097	0.017403	119.09
1540.1	11.966	2.2360636	0.53922802	2.96710678	88.034	122.35	2.097	0.01714	120.94
1572.6	12.216	2.2297136	0.55049386	2.95584094	87.784	123.98	2.041	0.016463	122.61
1599.8	12.466	2.2233636	0.5617597	2.9445751	87.534	124.64	2.097	0.016825	123.23
1628.5	12.712	2.2171152	0.57284528	2.93348952	87.288	126.49	2.041	0.016136	125.13
1653.5	12.962	2.2107652	0.58411112	2.92222368	87.038	127.8	2.1529	0.016846	126.36
1688.3	13.212	2.2044152	0.59537695	2.91095784	86.788	129.22	2.041	0.015795	127.85
1720.5	13.463	2.1980398	0.60668785	2.89964694	86.537	130.85	2.041	0.015598	129.49
1752.7	13.713	2.1916898	0.61795369	2.88838111	86.287	131.94	2.041	0.015469	130.58
1778.5	13.963	2.1853398	0.62921953	2.87711527	86.037	132.93	2.041	0.015355	131.56
1807.3	14.213	2.1789898	0.64048536	2.86584943	85.787	134.02	2.041	0.01523	132.65
1835.5	14.464	2.1726144	0.65179627	2.85453853	85.536	135.33	2.041	0.015082	133.96
1865.1	14.714	2.1662644	0.6630621	2.8432727	85.286	136.09	2.041	0.014998	134.73
1898.8	14.964	2.1599144	0.67432794	2.83200686	85.036	137.94	2.041	0.014796	136.58
1928.8	15.214	2.1535644	0.68559378	2.82074102	84.786	138.93	2.041	0.014691	137.56

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \varepsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)	- 0)	e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
1957.3	15.465	2.147189	0.69690468	2.80943012	84.535	138.17	2.041	0.014772	136.8
1981.5	15.715	2.140839	0.70817051	2.79816428	84.285	140.78	2.041	0.014498	139.42
2016.8	15.965	2.134489	0.71943635	2.78689845	84.035	142.74	2.041	0.014298	141.38
2043.2	16.216	2.1281136	0.73074725	2.77558755	83.784	143.94	1.9851	0.01379	142.62
2069.9	16.466	2.1217636	0.74201309	2.76432171	83.534	144.82	2.097	0.01448	143.42
2098.2	16.716	2.1154136	0.75327892	2.75305587	83.284	146.13	2.041	0.013968	144.76
2127.1	16.966	2.1090636	0.76454476	2.74179004	83.034	147.22	2.041	0.013864	145.85
2159.9	17.217	2.1026882	0.77585566	2.73047914	82.783	149.07	2.041	0.013692	147.71
2190.1	17.462	2.0964652	0.78689618	2.71943862	82.538	150.27	2.041	0.013582	148.91
2220.1	17.712	2.0901152	0.79816202	2.70817278	82.288	151.8	2.041	0.013446	150.43
2243.8	17.963	2.0837398	0.80947292	2.69686188	82.037	153.11	2.041	0.01333	151.75
2276.6	18.213	2.0773898	0.82073876	2.68559604	81.787	155.18	2.097	0.013513	153.78
2297.9	18.463	2.0710398	0.83200459	2.6743302	81.537	156.38	2.041	0.013052	155.02
2328.9	18.713	2.0646898	0.84327043	2.66306437	81.287	157.58	2.097	0.013307	156.18
2356.9	18.964	2.0583144	0.85458133	2.65175347	81.036	159.98	2.097	0.013108	158.58
2379.9	19.214	2.0519644	0.86584717	2.64048763	80.786	161.4	2.041	0.012646	160.03
2413.7	19.464	2.0456144	0.877113	2.62922179	80.536	163.47	2.041	0.012486	162.11
2432.8	19.714	2.0392644	0.88837884	2.61795596	80.286	164.89	2.097	0.012717	163.49
2466.8	19.965	2.032889	0.89968974	2.60664506	80.035	167.07	2.041	0.012217	165.71
2496.6	20.215	2.026539	0.91095558	2.59537922	79.785	169.36	2.041	0.012051	168
2524.8	20.465	2.020189	0.92222142	2.58411338	79.535	171.32	2.041	0.011913	169.96
2550.5	20.715	2.013839	0.93348725	2.57284754	79.285	173.29	2.041	0.011778	171.92
2585.5	20.966	2.0074636	0.94479815	2.56153664	79.034	175.9	2.041	0.011603	174.54

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \varepsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)	- 0)	e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
2615.6	21.216	2.0011136	0.95606399	2.55027081	78.784	178.31	2.041	0.011447	176.94
2640.5	21.466	1.9947636	0.96732983	2.53900497	78.534	180.05	2.041	0.011336	178.69
2673.8	21.716	1.9884136	0.97859566	2.52773913	78.284	182.45	2.097	0.011493	181.05
2700.6	21.962	1.9821652	0.98968125	2.51665355	78.038	184.74	2.041	0.011048	183.38
2729.6	22.212	1.9758152	1.00094709	2.50538771	77.788	186.81	2.041	0.010925	185.45
2755.7	22.463	1.9694398	1.01225799	2.49407681	77.537	189.54	2.041	0.010768	188.18
2782.6	22.713	1.9630898	1.02352382	2.48281097	77.287	191.83	2.097	0.010931	190.43
2811.5	22.963	1.9567398	1.03478966	2.47154514	77.037	194.45	2.097	0.010784	193.05
2846.2	23.213	1.9503898	1.0460555	2.4602793	76.787	197.4	2.041	0.01034	196.03
2874.7	23.464	1.9440144	1.0573664	2.4489684	76.536	199.9	2.041	0.01021	198.54
2901.5	23.714	1.9376644	1.06863223	2.43770256	76.286	202.19	2.041	0.010094	200.83
2932.2	23.964	1.9313144	1.07989807	2.42643673	76.036	205.14	2.041	0.0099497	203.77
2961.3	24.214	1.9249644	1.09116391	2.41517089	75.786	208.09	2.041	0.0098086	206.72
2990.5	24.469	1.9184874	1.10265506	2.40367974	75.531	210.71	2.041	0.0096864	209.34
3020.4	24.715	1.912239	1.11374065	2.39259415	75.285	213.76	2.041	0.0095483	212.39
3044.8	24.965	1.905889	1.12500648	2.38132832	75.035	215.61	2.041	0.0094662	214.25
3081	25.215	1.899539	1.13627232	2.37006248	74.785	219.1	1.9851	0.0090602	217.77
3105.5	25.466	1.8931636	1.14758322	2.35875158	74.534	221.94	1.9851	0.0089444	220.61
3129.8	25.716	1.8868136	1.15884906	2.34748574	74.284	224.01	2.041	0.0091112	222.65
3164.4	25.966	1.8804636	1.17011489	2.3362199	74.034	227.72	2.041	0.0089625	226.36
3195.2	26.216	1.8741136	1.18138073	2.32495407	73.784	230.23	2.041	0.0088651	228.87
3225.4	26.462	1.8678652	1.19246631	2.31386848	73.538	234.05	2.041	0.0087205	232.68
3257.2	26.712	1.8615152	1.20373215	2.30260265	73.288	236.88	1.9851	0.0083799	235.56

Tiempo	Deformación Axial	Deformación acumulada	∆e = ε _{vol} (1+ e₀)	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)	- 0)	e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
3288.2	26.963	1.8551398	1.21504305	2.29129175	73.037	240.16	2.041	0.0084987	238.79
3312.4	27.213	1.8487898	1.22630889	2.28002591	72.787	242.99	2.041	0.0083995	241.63
3343.6	27.463	1.8424398	1.23757473	2.26876007	72.537	246.27	2.041	0.0082877	244.91
3374.3	27.713	1.8360898	1.24884056	2.25749423	72.287	250.3	1.985	0.0079304	248.98
3401.1	27.964	1.8297144	1.26015146	2.24618333	72.036	252.59	1.9851	0.007859	251.26
3428.6	28.214	1.8233644	1.2714173	2.2349175	71.786	256.41	1.9851	0.0077417	255.08
3463.9	28.464	1.8170144	1.28268314	2.22365166	71.536	260.66	1.9851	0.0076154	259.34
3497.1	28.714	1.8106644	1.29394897	2.21238582	71.286	264.71	2.041	0.0077102	263.34
3523.6	28.965	1.804289	1.30525987	2.20107492	71.035	267.86	2.041	0.0076196	266.5
3552.2	29.215	1.797939	1.31652571	2.18980909	70.785	271.46	2.041	0.0075186	270.1
3584.1	29.465	1.791589	1.32779155	2.17854325	70.535	275.5	2.041	0.0074082	274.14
3617.8	29.715	1.785239	1.33905739	2.16727741	70.285	280.3	2.041	0.0072816	278.94
3648.5	29.966	1.7788636	1.35036829	2.15596651	70.034	284.34	2.041	0.0071782	282.97
3681.8	30.216	1.7725136	1.36163412	2.14470068	69.784	288.7	2.041	0.0070697	287.34
3712.6	30.466	1.7661636	1.37289996	2.13343484	69.534	293.06	2.041	0.0069645	291.7
3743.8	30.716	1.7598136	1.3841658	2.122169	69.284	297.1	2.041	0.0068698	295.74
3770.9	30.962	1.7535652	1.39525138	2.11108342	69.038	300.7	2.041	0.0067876	299.34
3800.4	31.212	1.7472152	1.40651722	2.09981758	68.788	304.95	2.041	0.0066929	303.59
3833.4	31.462	1.7408652	1.41778305	2.08855174	68.538	310.08	2.041	0.0065822	308.72
3855.7	31.713	1.7344898	1.42909395	2.07724084	68.287	312.81	2.041	0.0065249	311.44
3895.4	31.963	1.7281398	1.44035979	2.06597501	68.037	319.02	2.041	0.0063977	317.66
3923.4	32.213	1.7217898	1.45162563	2.05470917	67.787	322.73	2.041	0.0063242	321.37
3956.5	32.463	1.7154398	1.46289147	2.04344333	67.537	327.64	2.041	0.0062296	326.28

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \varepsilon_{vol} (1 + e_n)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	h (cm)	-0)	e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
3984.7	32.714	1.7090644	1.47420237	2.03213243	67.286	332.22	2.041	0.0061435	330.86
4017.6	32.964	1.7027144	1.4854682	2.02086659	67.036	337.24	2.041	0.0060521	335.88
4049.4	33.214	1.6963644	1.49673404	2.00960076	66.786	341.82	2.097	0.0061347	340.42
4078.5	33.464	1.6900144	1.50799988	1.99833492	66.536	346.4	2.041	0.005892	345.04
4107	33.715	1.683639	1.51931078	1.98702402	66.285	351.09	2.097	0.0059727	349.7
4135.9	33.965	1.677289	1.53057661	1.97575818	66.035	354.69	2.041	0.0057543	353.33
4169.2	34.215	1.670939	1.54184245	1.96449235	65.785	360.48	2.041	0.005662	359.11
4193.4	34.465	1.664589	1.55310829	1.95322651	65.535	364.73	2.041	0.005596	363.37
4225.5	34.716	1.6582136	1.56441919	1.94191561	65.284	369.97	2.097	0.005668	368.57
4259.4	34.966	1.6518636	1.57568503	1.93064977	65.034	375.09	2.097	0.0055906	373.69
4279.8	35.216	1.6455136	1.58695086	1.91938394	64.784	378.91	2.097	0.0055342	377.51
4315.2	35.467	1.6391382	1.59826176	1.90807303	64.533	384.58	2.041	0.0053071	383.22
4339.3	35.712	1.6329152	1.60930228	1.89703251	64.288	388.4	2.041	0.005255	387.04
4373.2	35.962	1.6265652	1.62056812	1.88576668	64.038	395.27	2.1529	0.0054467	393.84
4404.2	36.213	1.6201898	1.63187902	1.87445578	63.787	400.4	2.097	0.0052372	399
4428.4	36.463	1.6138398	1.64314486	1.86318994	63.537	405.2	2.041	0.0050371	403.84
4452	36.634	1.6094964	1.65085069	1.85548411	63.366	409.24	2.041	0.0049874	407.87
0	36.63	1.609598	1.65067044	1.85566436	63.37	409.13	2.041	0.0049887	407.77
3.4474	36.379	1.6159734	1.63935954	1.86697526	63.621	236.56	1.985	0.0083912	235.23
6.3513	36.129	1.6223234	1.6280937	1.8782411	63.871	158.23	1.9291	0.012191	156.95
9.6972	35.879	1.6286734	1.61682786	1.88950694	64.121	102.6	1.985	0.019346	101.28
13.821	35.629	1.6350234	1.60556202	1.90077277	64.371	62.134	1.985	0.031947	60.803
16.075	35.378	1.6413988	1.59425112	1.91208367	64.622	49.143	1.9292	0.039256	47.848

Tiempo	Deformación Axial	Deformación acumulada	$\Delta e = \varepsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(٤, %)	h (cm)		e = e₀ -∆e	Δv = (100- ε _{vol})	kPa	kPa	kPa	kPa
19.434	35.128	1.6477488	1.58298529	1.92334951	64.872	34.86	1.9851	0.056944	33.523
21.582	34.878	1.6540988	1.57171945	1.93461535	65.122	27.224	1.9851	0.072917	25.884
25.052	34.628	1.6604488	1.56045361	1.94588118	65.372	16.417	1.9851	0.12092	15.066
27.779	34.377	1.6668242	1.54914271	1.95719208	65.623	10.319	1.985	0.19237	8.9491
33.07	34.127	1.6731742	1.53787688	1.96845792	65.873	10.316	1.9851	0.19243	8.9456
41.043	33.877	1.6795242	1.52661104	1.97972376	66.123	10.094	1.9291	0.19112	8.763
50.542	33.627	1.6858742	1.5153452	1.9909896	66.373	10.101	1.985	0.19652	8.7298
60.778	33.376	1.6922496	1.5040343	2.0023005	66.624	10.097	2.041	0.20213	8.6862
72.964	33.126	1.6985996	1.49276846	2.01356633	66.874	10.097	1.9851	0.19659	8.7264
80.46	32.996	1.7019016	1.48691023	2.01942457	67.004	10.101	2.041	0.20206	8.6896

60B40D 3 0.5 % CSR 13-mayo-19

Tiempo	Deformación Axial	Deformación	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(٤, %)	δ (cm)	h (cm)		$e = e_0 - \Delta e$	$\Delta v = (100 - \varepsilon_{vol})$	kPa	kPa	kPa	kPa
0	-1.6869	-0.04284726	2.58284726	-0.060202492	2.62902651	101.6869	4.6432	2.1529	0.46368	3.065
27.344	-1.4366	-0.03648964	2.57648964	-0.051269726	2.62009374	101.4366	15.115	2.1529	0.14244	13.644
60.377	-1.1864	-0.03013456	2.57013456	-0.042340528	2.61116454	101.1864	21.115	2.1529	0.10196	19.654
88.68	-0.93613	-0.0237777	2.5637777	-0.033408832	2.60223285	100.93613	25.587	2.1529	0.084141	24.131
110.27	-0.68588	-0.01742135	2.55742135	-0.02447785	2.59330187	100.68588	28.424	2.097	0.073776	27.008
143.24	-0.43563	-0.011065	2.551065	-0.015546868	2.58437088	100.43563	33.55	2.1529	0.06417	32.099
176.26	-0.18537	-0.0047084	2.5447084	-0.006615529	2.57543955	100.18537	37.587	2.1529	0.05728	36.137
202.97	0.064881	0.00164798	2.53835202	0.002315489	2.56650853	99.935119	40.205	2.1529	0.05355	38.756
233.94	0.31513	0.0080043	2.5319957	0.011246435	2.55757758	99.68487	42.714	2.1529	0.050404	41.266
255.34	0.56539	0.01436091	2.52563909	0.020177774	2.54864624	99.43461	44.132	2.1529	0.048785	42.684
286.59	0.81564	0.02071726	2.51928274	0.029108756	2.53971526	99.18436	46.313	2.1529	0.046487	44.867
315.49	1.0659	0.02707386	2.51292614	0.038040095	2.53078392	98.9341	48.168	2.1529	0.044697	46.722
343.98	1.3161	0.03342894	2.50657106	0.046969293	2.52185472	98.6839	50.459	2.097	0.041559	49.051
376.79	1.5664	0.03978656	2.50021344	0.055902059	2.51292196	98.4336	52.858	2.097	0.039672	51.451
403.84	1.8167	0.04614418	2.49385582	0.064834826	2.50398919	98.1833	55.149	2.097	0.038024	53.742
434.13	2.0669	0.05249926	2.48750074	0.073764024	2.49505999	97.9331	57.113	2.097	0.036717	55.706
459.05	2.3172	0.05885688	2.48114312	0.08269679	2.48612723	97.6828	59.185	2.097	0.035431	57.779
492.33	2.5674	0.06521196	2.47478804	0.091625988	2.47719803	97.4326	61.694	2.097	0.03399	60.288
517.72	2.8177	0.07156958	2.46843042	0.100558754	2.46826526	97.1823	63.77	2.1529	0.03376	62.327
544.7	3.0633	0.07780782	2.46219218	0.109323786	2.45950023	96.9367	65.949	2.097	0.031797	64.543

Tiempo	Deformación Axial	Deformación	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(٤, %)	δ (cm)	h (cm)		e = e₀ -∆e	$\Delta v = (100 - \epsilon_{vol})$	kPa	kPa	kPa	kPa
581.8	3.3135	0.0841629	2.4558371	0.118252984	2.45057103	96.6865	68.894	2.097	0.030438	67.489
602.63	3.5638	0.09052052	2.44947948	0.12718575	2.44163827	96.4362	70.748	2.097	0.02964	69.343
632.98	3.8141	0.09687814	2.44312186	0.136118517	2.4327055	96.1859	73.475	2.097	0.02854	72.071
662.09	4.0643	0.10323322	2.43676678	0.145047714	2.4237763	95.9357	76.202	2.097	0.027519	74.798
687.65	4.3146	0.10959084	2.43040916	0.153980481	2.41484354	95.6854	78.602	2.097	0.026678	77.198
721.62	4.5648	0.11594592	2.42405408	0.162909679	2.40591434	95.4352	81.875	2.1529	0.026296	80.433
752.57	4.8151	0.12230354	2.41769646	0.171842445	2.39698157	95.1849	84.817	2.097	0.024724	83.413
780.49	5.0653	0.12865862	2.41134138	0.180771643	2.38805237	94.9347	87.442	2.041	0.023341	86.076
814.47	5.3156	0.13501624	2.40498376	0.189704409	2.37911961	94.6844	90.929	2.097	0.023062	89.525
838.27	5.5658	0.14137132	2.39862868	0.198633607	2.37019041	94.4342	93.547	2.097	0.022416	92.144
874.41	5.8161	0.14772894	2.39227106	0.207566374	2.36125764	94.1839	97.365	2.1529	0.022112	95.924
903.65	6.0663	0.15408402	2.38591598	0.216495571	2.35232845	93.9337	100.2	2.097	0.020928	98.798
932.35	6.3166	0.16044164	2.37955836	0.225428338	2.34339568	93.6834	103.36	2.097	0.020287	101.96
964.21	6.5668	0.16679672	2.37320328	0.234357536	2.33446648	93.4332	106.85	2.097	0.019625	105.45
989.38	6.8171	0.17315434	2.36684566	0.243290302	2.32553371	93.1829	109.36	2.097	0.019174	107.96
1017.5	7.0673	0.17950942	2.36049058	0.2522195	2.31660452	92.9327	112.63	2.097	0.018618	111.23
1054.3	7.3176	0.18586704	2.35413296	0.261152266	2.30767175	92.6824	116.45	2.097	0.018007	115.05
1082.3	7.5632	0.19210528	2.34789472	0.269917298	2.29890672	92.4368	119.4	2.1529	0.018031	117.96
1117.4	7.8135	0.1984629	2.3415371	0.278850065	2.28997395	92.1865	123	2.2089	0.017959	121.52
1142.2	8.0637	0.20481798	2.33518202	0.287779262	2.28104475	91.9363	125.73	2.1529	0.017124	124.29
1177.2	8.314	0.2111756	2.3288244	0.296712029	2.27211199	91.686	129.1	2.097	0.016243	127.7
1207.9	8.5642	0.21753068	2.32246932	0.305641226	2.26318279	91.4358	135.54	2.097	0.015471	134.14
1233.7	8.8145	0.2238883	2.3161117	0.314573993	2.25425002	91.1855	149.73	2.1529	0.014379	136.684
1271.4	9.0647	0.23024338	2.30975662	0.323503191	2.24532083	90.9353	167.07	2.097	0.012552	140.538

Tiempo	Deformación Axial	Deformación	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	δ (cm)	h (cm)		$e = e_0 - \Delta e$	$\Delta v = (100 - \epsilon_{vol})$	kPa	kPa	kPa	kPa
1300.1	9.315	0.236601	2.303399	0.332435957	2.23638806	90.685	166.63	2.097	0.012585	144.392
1328	9.5653	0.24295862	2.29704138	0.341368724	2.22745529	90.4347	173.95	2.097	0.012055	148.246
1359.1	9.8155	0.2493137	2.2906863	0.350297921	2.2185261	90.1845	197.07	2.097	0.010641	152.1
1392.2	10.066	0.2556764	2.2843236	0.359237825	2.20958619	89.934	217.9	2.097	0.0096235	155.954
1418.2	10.316	0.2620264	2.2779736	0.368159886	2.20066413	89.684	230.99	2.097	0.0090781	159.808
1451.4	10.566	0.2683764	2.2716236	0.377081946	2.19174207	89.434	286.73	2.097	0.0073135	163.662
1482.7	10.817	0.2747518	2.2652482	0.386039694	2.18278432	89.183	317.61	2.097	0.0066025	167.516
1520.9	11.067	0.2811018	2.2588982	0.394961754	2.17386226	88.933	395.93	2.097	0.0052964	171.37
1548.1	11.317	0.2874518	2.2525482	0.403883814	2.1649402	88.683	448.62	2.1529	0.0047991	175.224
1577.6	11.567	0.2938018	2.2461982	0.412805874	2.15601814	88.433	470.54	2.097	0.0044565	179.078
1615.9	11.818	0.3001772	2.2398228	0.421763622	2.14706039	88.182	530.65	2.097	0.0039517	182.932
1641.6	12.063	0.3064002	2.2335998	0.430507241	2.13831678	87.937	551.26	2.097	0.003804	186.786
1671.8	12.313	0.3127502	2.2272498	0.439429301	2.12939472	87.687	563.81	2.097	0.0037193	190.64
1700.4	12.564	0.3191256	2.2208744	0.448387049	2.12043697	87.436	551.7	2.041	0.0036996	194.494
1725.8	12.814	0.3254756	2.2145244	0.457309109	2.11151491	87.186	529.01	2.097	0.003964	198.348
1758.6	13.064	0.3318256	2.2081744	0.46623117	2.10259285	86.936	479.16	2.097	0.0043764	202.202
1785.7	13.314	0.3381756	2.2018244	0.47515323	2.09367079	86.686	419.27	2.097	0.0050015	206.056
1814.8	13.565	0.344551	2.195449	0.484110978	2.08471304	86.435	379.78	2.041	0.0053743	209.91
1840.3	13.815	0.350901	2.189099	0.493033038	2.07579098	86.185	365.38	2.041	0.0055859	213.764
1869.6	14.065	0.357251	2.182749	0.501955098	2.06686892	85.935	371.71	2.097	0.0056414	217.618
1898.2	14.315	0.363601	2.176399	0.510877158	2.05794686	85.685	393.64	2.097	0.0053272	221.472
1927.1	14.566	0.3699764	2.1700236	0.519834906	2.04898911	85.434	423.64	2.097	0.00495	225.326
1960	14.816	0.3763264	2.1636736	0.528756966	2.04006705	85.184	437.49	2.097	0.0047931	229.18
1991	15.066	0.3826764	2.1573236	0.537679026	2.03114499	84.934	417.64	2.097	0.0050211	233.034

Tiempo	Deformación Axial	Deformación	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	δ (cm)	h (cm)		$e = e_0 - \Delta e$	$\Delta v = (100 - \epsilon_{vol})$	kPa	kPa	kPa	kPa
2017.5	15.316	0.3890264	2.1509736	0.546601086	2.02222293	84.684	448.51	2.0969	0.0046753	236.888
2041.5	15.567	0.3954018	2.1445982	0.555558835	2.01326518	84.433	424.18	2.097	0.0049436	240.742
2076.4	15.817	0.4017518	2.1382482	0.564480895	2.00434312	84.183	464.32	2.097	0.0045162	244.596
2102.3	16.067	0.4081018	2.1318982	0.573402955	1.99542106	83.933	503.92	2.041	0.0040504	248.45
2131.6	16.317	0.4144518	2.1255482	0.582325015	1.986499	83.683	534.03	2.097	0.0039267	252.304
2160.4	16.568	0.4208272	2.1191728	0.591282763	1.97754125	83.432	573.19	2.097	0.0036584	256.158
2194.3	16.813	0.4270502	2.1129498	0.600026382	1.96879763	83.187	623.37	2.097	0.0033639	260.012
2222.3	17.064	0.4334256	2.1065744	0.60898413	1.95983989	82.936	552.57	2.041	0.0036937	265.866
2251.4	17.314	0.4397756	2.1002244	0.61790619	1.95091783	82.686	522.58	2.097	0.0040128	271.72
2282.1	17.564	0.4461256	2.0938744	0.62682825	1.94199577	82.436	523.12	2.097	0.0040085	277.574
2305.4	17.814	0.4524756	2.0875244	0.63575031	1.93307371	82.186	545.16	2.097	0.0038465	283.428
2339.5	18.065	0.458851	2.081149	0.644708059	1.92411596	81.935	567.08	2.097	0.0036978	289.282
2362.2	18.315	0.465201	2.074799	0.653630119	1.9151939	81.685	590.21	2.097	0.003553	295.136
2391.8	18.565	0.471551	2.068449	0.662552179	1.90627184	81.435	569.26	2.1529	0.003782	300.99
2422.1	18.815	0.477901	2.062099	0.671474239	1.89734978	81.185	579.74	2.097	0.0036171	306.844
2449.2	19.066	0.4842764	2.0557236	0.680431987	1.88839203	80.934	616.28	2.097	0.0034027	312.698
2479.7	19.316	0.4906264	2.0493736	0.689354047	1.87946997	80.684	640.93	2.097	0.0032718	318.552
2498	19.566	0.4969764	2.0430236	0.698276107	1.87054791	80.434	654.02	2.1529	0.0032919	324.406
2533.1	19.816	0.5033264	2.0366736	0.707198167	1.86162585	80.184	671.26	2.097	0.003124	330.26
2562.3	20.067	0.5097018	2.0302982	0.716155915	1.8526681	79.933	666.78	2.1529	0.0032288	336.114
3143.4	25.067	0.6367018	1.9032982	0.894597116	1.6742269	74.933	612.35	2.2649	0.0036987	475
3741.1	30.068	0.7637272	1.7762728	1.073074005	1.49575001	69.932	717.29	4.1117	0.0057323	700
3770	30.313	0.7699502	1.7700498	1.081817624	1.48700639	69.687	722.74	3.8319	0.0053019	720.19
3803.1	30.563	0.7763002	1.7636998	1.090739684	1.47808433	69.437	737.37	3.8319	0.0051967	734.81

Tiempo	Deformación Axial	Deformación	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	δ (cm)	h (cm)		$e = e_0 - \Delta e$	$\Delta v = (100 - \epsilon_{vol})$	kPa	kPa	kPa	kPa
3830.9	30.814	0.7826756	1.7573244	1.099697432	1.46912658	69.186	744.99	3.9439	0.0052938	742.36
3858.6	31.064	0.7890256	1.7509744	1.108619492	1.46020452	68.936	755.25	4.4475	0.0058888	752.28
3893.6	31.314	0.7953756	1.7446244	1.117541552	1.45128246	68.686	768.78	4.7833	0.0062219	765.59
3916.7	31.564	0.8017256	1.7382744	1.126463613	1.4423604	68.436	779.91	4.8952	0.0062767	776.64
3957	31.815	0.808101	1.731899	1.135421361	1.43340266	68.185	797.9	4.8393	0.006065	794.67
3984.9	32.065	0.814451	1.725549	1.144343421	1.4244806	67.935	806.74	5.0072	0.0062067	803.4
4016.6	32.315	0.820801	1.719199	1.153265481	1.41555854	67.685	816.88	5.1751	0.0063351	813.43
4041	32.565	0.827151	1.712849	1.162187541	1.40663648	67.435	823.98	5.343	0.0064844	820.41
4078.7	32.816	0.8335264	1.7064736	1.171145289	1.39767873	67.184	837.61	5.7906	0.0069133	833.75
4106.9	33.066	0.8398764	1.7001236	1.180067349	1.38875667	66.934	847.97	6.2944	0.0074228	843.77
4137.2	33.316	0.8462264	1.6937736	1.188989409	1.37983461	66.684	860.09	6.5182	0.0075785	855.73
4149.5	33.418	0.8488172	1.6911828	1.19262961	1.37619441	66.582	863.57	5.8466	0.0067703	859.67
0	33.418	0.8488172	1.6911828	1.19262961	1.37619441	66.582	863.46	5.8466	0.0067711	859.56
3.2836	33.168	0.8424672	1.6975328	1.18370755	1.38511647	66.832	562.39	0.75382	0.0013404	561.89
7.005	32.918	0.8361172	1.7038828	1.17478549	1.39403853	67.082	348.48	0.5859	0.0016813	348.09
10.351	32.667	0.8297418	1.7102582	1.165827741	1.40299627	67.333	231.11	0.5859	0.0025352	230.71
14.346	32.417	0.8233918	1.7166082	1.156905681	1.41191834	67.583	136.3	0.80985	0.0059416	135.76
17.431	32.167	0.8170418	1.7229582	1.147983621	1.4208404	67.833	91.583	0.86575	0.0094532	91.005
20.644	31.917	0.8106918	1.7293082	1.139061561	1.42976246	68.083	61.479	1.0336	0.016812	60.788
23.915	31.666	0.8043164	1.7356836	1.130103813	1.4387202	68.334	38.023	0.92172	0.024241	37.406
27.292	31.416	0.7979664	1.7420336	1.121181753	1.44764226	68.584	22.966	0.92175	0.040136	22.347
30.699	31.166	0.7916164	1.7483836	1.112259693	1.45656432	68.834	13.588	1.0336	0.07607	12.89
34.756	30.916	0.7852664	1.7547336	1.103337633	1.46548638	69.084	10.206	1.2015	0.11772	9.3888
40.493	30.665	0.778891	1.761109	1.094379885	1.47444413	69.335	10.21	1.4254	0.13961	9.236

Tiempo	Deformación Axial	Deformación	Deformación acumulada	$\Delta e = \epsilon_{vol} (1 + e_0)$	Relación de vacíos	Volumen	Esfuerzo vertical	Exceso de presión de poro	Relación de presión de poro	Esfuerzo efectivo
min	(ε, %)	δ (cm)	h (cm)		e = e₀ -∆e	$\Delta v = (100 - \epsilon_{vol})$	kPa	kPa	kPa	kPa
47.653	30.415	0.772541	1.767459	1.085457825	1.48336619	69.585	10.097	1.4254	0.14117	9.1232
57.726	30.165	0.766191	1.773809	1.076535765	1.49228825	69.835	10.097	1.5373	0.15225	9.0445
67.246	29.915	0.759841	1.780159	1.067613705	1.50121031	70.085	10.097	1.5373	0.15225	9.0445
78.737	29.664	0.7534656	1.7865344	1.058655956	1.51016806	70.336	10.097	1.6493	0.16334	8.9655
92.336	29.414	0.7471156	1.7928844	1.049733896	1.51909012	70.586	10.097	1.6493	0.16334	8.9655
107.95	29.164	0.7407656	1.7992344	1.040811836	1.52801218	70.836	10.097	1.7052	0.16888	8.9259
125.12	28.914	0.7344156	1.8055844	1.031889776	1.53693424	71.086	9.9883	1.7052	0.17072	8.8164
140.35	28.668	0.7281672	1.8118328	1.023110469	1.54571355	71.332	10.094	1.7053	0.16894	8.9224
143.86	28.626	0.7271004	1.8128996	1.021611563	1.54721245	71.374	10.097	1.7612	0.17442	8.8862