
UNIVERSIDAD NACIONAL AUTÓNOMA DE MEXICO
POSGRADO EN CIENCIAS FÍSICAS

INSTITUTO DE FÍSICA

STABLE DARK MATTER AND NEUTRINO MASSES FROM A DISCRETE GROUP

TESIS
QUE PARA OPTAR POR EL GRADO DE:

MAESTRO EN CIENCIAS (FÍSICA)

PRESENTA:
LEON MANUEL GARCIA DE LA VEGA

TUTOR PRINCIPAL
EDUARDO PEINADO RODRÍGUEZ

INSTITUTO DE FÍSICA UNAM

MIEMBROS DEL COMITÉ TUTOR
ERIC VÁZQUEZ JÁUREGUI

INSTITUTO DE FÍSICA UNAM
CESAR FERNANDEZ RAMIREZ

INSTITUTO DE CIENCIAS NUCLEARES UNAM

CIUDAD UNIVERSITARIA, CD. MX., AGOSTO 2019



 

UNAM – Dirección General de Bibliotecas 

Tesis Digitales 

Restricciones de uso 
  

DERECHOS RESERVADOS © 

PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL 
  

Todo el material contenido en esta tesis esta protegido por la Ley Federal 
del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México). 

El uso de imágenes, fragmentos de videos, y demás material que sea 
objeto de protección de los derechos de autor, será exclusivamente para 
fines educativos e informativos y deberá citar la fuente donde la obtuvo 
mencionando el autor o autores. Cualquier uso distinto como el lucro, 
reproducción, edición o modificación, será perseguido y sancionado por el 
respectivo titular de los Derechos de Autor. 

 

  

 



Stable dark matter and neutrino masses
from a discrete group

Leon Manuel Garcia de la Vega

May 2019



Acknowledgements

I thank and acknowledge the following financial supports

• DGAPA-PAPIIT IN107118

• DGAPA-PAPIIT IA102418

• German-MexicanResearchCollaborationGrantNo. SP 778/4-1 (DFG)

• Grant No. 278017 (CONACyT)

• CONACYT Postgraduate studies scholarship

Additionally I thank the College of William and Mary, the University of
Colima and the International Center for Theoretical Physics for their hos-
pitality.



Contents

1 Introduction 1
1.1 Dark matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Neutrino oscillations . . . . . . . . . . . . . . . . . . . . . . . 5

2 The Standard Model 7
2.1 Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Massive Neutrinos in the Standard Model and Beyond 15
3.1 Majorana fermions . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Massive neutrinos . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2.1 Neutrino masses in SU(2)L ×U(1)Y gauge theory . . . 21
3.2.2 Neutrinoless double beta decay . . . . . . . . . . . . 23

4 Lepton Flavor models 27
4.1 Fermion masses and discrete symmetries . . . . . . . . . . . 27
4.2 A4 group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3 Models for Dark Matter and neutrino masses with A4 . . . . 30

4.3.1 Model building . . . . . . . . . . . . . . . . . . . . . . 30
4.3.2 Model for A1 texture . . . . . . . . . . . . . . . . . . . 32
4.3.3 Model for A2 texture . . . . . . . . . . . . . . . . . . . 33
4.3.4 Other models . . . . . . . . . . . . . . . . . . . . . . . 34
4.3.5 Model Phenomenology . . . . . . . . . . . . . . . . . 35
4.3.6 Dark Matter stability . . . . . . . . . . . . . . . . . . 36
4.3.7 A1 texture phenomenology . . . . . . . . . . . . . . . 37
4.3.8 A2 texture phenomenology . . . . . . . . . . . . . . . 38

5 Conclusion 41

v



Chapter 1

Introduction

The Standard Model (SM) of High Energy Physics is the most accurate
model of fundamental interactions developed so far. Nevertheless several
open questions in the area remain open. Two of the most compelling evi-
dences for the incompleteness of the SM are neutrino oscillations and the
astrophysical and cosmological observations of DarkMatter (DM). Both of
these phenomenons can be solved by extending SM to include more parti-
cles and symmetries. The possibility that these two problems may be con-
nected is intriguing.

1.1 Dark matter

To define what DM should be it would be useful to describe the observa-
tions that have led us to search for it. In 1933 the swiss astronomer Fritz
Zwicky published a paper [1] where he uses the virial theorem to deduce
the mass-to-light ratio of the Coma cluster. The result he obtained is that

‘...the average density in the Coma system would have to be at
least 400 times greater than that derived on the basis of ob-
servations of luminous matter. ... If this should be verified, it
would lead to the surprising result that dark matter exists in
much greater density than luminous matter.’ 1

What this means is that the gravitational potential between the lumi-
nous matter in the cluster does not account for the velocity of galaxies in it.
This is typically regarded as the first evidence for the existence of DM, and

1Translation from [2].

1
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Figure 1.1: Rotation curves for 21 galaxies [3] . The horizontal axis shows
the distance from the galactic radius in kiloparsecs and the vertical axis
shows the velocity of gas on the galactic plane in km s−1.

the first use of the term dark matter.
Several decades after Zwicky’s observation, and shortly after the advent of
radio astronomy, Vera Rubin observed a similar phenomenon on a smaller
scale, in the rotation of gas inside cylindrically symetrical galaxies. Accord-
ing toNewtonian gravity (which should hold reasonablywell for intragalac-
tic motion) the speed v of this gas at a radius r from the center of the galaxy
is

v(r) =

√
GNM(r)

r
, (1.1)

where GN is the gravitational constant and M(r) is the mass enclosed by a
sphere of radius r. Rubin measured the speed of the rotating gas, by ob-
serving the Doppler shift of the hydrogen 21 cm line. The result is illus-
trated in Fig. (1.1). The expected behavior from the observed luminosity
profile is a rise in v(r) in the central region from the rise in M(r) in the
dense center followed by a decline outside this region, whereM(r) changes
insignificantly. The observed profile does not match this prediction, and
instead shows a flat profile for large radiuses, suggesting the presence of
nonluminous matter outside the bright center of galaxies.

Furthermore, weak lensing studies of colliding clusters in theBullet sys-
tem for example, show that there are non-emitting components of matter
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that produce gravitational lensing of background sources. The studies con-
sist of the mapping of matter distribution by X-ray emission and by weak
lensing of background objects. X-raymapping is sensitive to light-emitting
gas and weak lensing is sensitive to all matter in the cluster. The disparity
between thesemappings proves the presence of non-emittingmatter in the
cluster, and its negligible friction with hydrogen gas and with itself [4].
Finally, the most successful model for describing the dynamics of the Uni-
verse, the Lambda-Cold Dark Matter (ΛCDM) model, predicts a DM to
baryonic matter ratio of ∼ 6. This ratio may be calculated by combining
observations sensitive only to baryon density and comparing it to observa-
tions sensitive to all matter. There are several ways to measure the baryon
density of the Universe, for example [5]

• By measuring the intensity of X-ray emission in groups of galaxies,
where most of the baryons of the Universe are,

• By observing the absorption of light from distant sources by baryons
along the line of sight,

• By analyzing the Cosmic Microwave Background (CMB), the relative
height of the peaks of the anisotropy spectrum depends on baryon
density,

• Bymeasuring the abundance of light elements and comparing to pre-
dictions of Big Bang Nucleosynthesis.

All of these measurements are in good agreement with a cosmological den-
sity of baryons of

Ωb ∼ 0.04, (1.2)

with Ω j ≡ ρ j/ρcr, where ρcr is the critical density of the Universe. On the
other hand, to calculate the total matter density of the UniverseΩm we rely
on the following methods

• Weak lensing of distant light sources can quantify the matter density
along the line of sight,

• The large scale structure of the Universe is mapped through galaxy
surveys, its power spectrumdepends onΩm through the cosmological
model,

• The CMB anisotropy power spectrum depends too on Ωm through
ΛCDM, and it can determine Ωm to ∼ 0.1% accuracy,
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among others. The matter density probes agree on a total matter density
of Ωm ∼ 0.3, leaving a gap of ΩCDM ∼ 0.25 unaccounted for. This is what is
called cold dark matter in cosmology.
From these and other observations we can infer some properties of DM,
some of the most salient ones are

• Neutral - DMmust not couple significantlywith photons. Strong con-
straints on its charge and other electromagnetic form factors can be
derived from astrophysical observations.

• Cold - DMmust have cooled enough to form dense potential wells in
the early universe to drive structure formation.

• Abundant - The production mechanism for DM in the early universe
must produce enough abundance of DM particles to account for the
observed Ωm. It also need be stable, or very slowly decaying for this
abundance not to drop from the structure formation era to today, and
oversaturate the baryonic or radiation abundances.

In high energy physics many models of DM particles have been developed,
but no experimental confirmation of any has been achieved. Among the
many experimental probes of DM the most commonly cited ones are of
three types: direct detection experiments, indirect detection experiments
and collider production searches. Direct DM detection consists on the ob-
servation of a volume of a material called the target, waiting for a DM par-
ticle, from the local halo density, to interact with the nucleus of the target.
Indirect detection consists in the observation of the spectrum of astropar-
ticles, hoping to find a feature of the spectrum consistent with DM annihi-
lation or decay. Collider searches consist on the production of DM in par-
ticle colliders, characterized by a missing energy signature in the outgoing
particles. To date none of these searches have obtained strong signals to
determine the properties of DM.
It should also be mentioned that the problem of DM has also been treated
as a problem of general relativity, by assuming that the observations of
”excess gravity” in galaxies and clusters are the result of a modification of
gravity, and not of an additional source of gravity. This class of theories
are generically called Modified Newtonian Dynamics (MOND), and have
been studied since the early 80’s [6]. Although they succeed in explaining
galactic and cluster dynamics, they have faced problems when confronted
with CMB data [7] or when confronted with cluster collision data [8].
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1.2 Neutrino oscillations

The idea that neutrinos oscillate when propagating was first put forth by
Pontecorvo in 1958 [9], based on a rumor that Davis had observed the lep-
ton number violating process

ν̄e +
37 Cl → e−+37 Ar, (1.3)

in a reactor experiment [10]. In Pontecorvo’s paper he proposes neutrino-
antineutrino mixing, in analogy to the K0 − K̄0 system, to explain the ob-
seration of such processes. After this work Pontecorvo proceeded to con-
sider neutrino flavor mixing, in addition to mixing with sterile states. Al-
though in the reactor neutrino experiment the anomaly disappeared, in
solar neutrino observations Davis measured a third of the expected neu-
trino flux. This was called the solar neutrino problem, and was confirmed
in directional detection experiments by Kamiokande during the 80’s. Be-
cause these experiments are sensitive to high-energy neutrinos only (> 7
MeV), and the flux in the high energy region is highly sensitive to the so-
lar model, it wasn’t until the detection of this anomaly by GALLEX, which
had a threshold of ∼ 0.2 MeV, that the problem could be reasonably im-
putated to neutrino physics, rather than to solar physics. Similar discrep-
ancies were observed in atmospheric neutrinos by IMB and Kamiokande.
The oscillation of neutrinos was finally confirmed by experiments sensi-
tive to the three neutrino flavors, and capable of discriminating between
charged current and neutral current processes. This observation wasmade
by SNO [11] and Kamiokande [12], finally measuring a total solar neutrino
flux in good agreement with the Solar Standard Model. The existence of
neutrino oscillations requires a mismatch between flavor and mass eigen-
states, whichmeans that neutrinos aremassive particles. The origin of this
mass and the mixing between states is an open problem, which cannot be
solved within the SM of high energy physics. This is a reason to pursue
the study of neutrinos, they provide a sure path to Beyond the SM (BSM)
physics. In a further section of this work we shall explain some possible
ways neutrinos can acquire mass and the potential phenomenology it im-
plies.



Chapter 2

The Standard Model

2.1 Standard Model

The standard model of high energy Physics describes the matter content
and interactions of all observed fundamental particles. It is based on the
gauge group GSM = SU(3)C × SU(2)L ×U(1)Y . The particle content can be
classified in gauge bosons, quarks, leptons and theHiggs boson. The gauge
bosons associated with the SU(3)C symmetry are the gluons Gi (i = 1, ..,8),
the bosons associated with SU(2)L are the W j ( j = 1,2,3), and the boson
associated with U(1)Y is the B. The leptons are left-handed SU(2)L dou-
blets Lα with hypercharge YL = −1/2 and right-handed SU(2)L singlets eα
with hypercharge Ye =−1. Leptons are, characteristically, SU(3)C singlets.
Quarks are left-handed SU(2)L doublets Qα with hypercharge YQ = 1/6,
right-handed SU(2)L singlets uα withhyperchargeYu = 2/3 and right-handed
SU(2)L singlets dα with hypercharge Yd =−1/3. Quarks are SU(3)C triplets
(quark color indices are suppressed in this text). For all quarks and lep-
tons, there are 3 generations (α = 1,2,3). Finally, the scalarΦ is an SU(3)C
singlet, an SU(2)L doublet and it carries hyperchargeYΦ = 1/2. The particle
content is summarized in Table (2.1).

The Lorentz and gauge invariant, renormalizable Lagrangian obtained
is therefore

LSM = Lg +LF +LΦ +LY , (2.1)

where Lg is the gauge boson kinetic lagrangian, LF is the fermion kinetic
lagrangian, LΦ is the scalar lagrangian and LY is the Yukawa coupling la-
grangian. The gauge bosons kinetic terms are

Lg =−1
4

Gα
µνGµνα − 1

4
W α

µνW µνα − 1
4

BµνBµν , (2.2)

7
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Particle Description SU(3)C SU(2)L U(1)Y
Gi Gauge bosons 8 - -
W j Gauge bosons - 3 -
B Gauge boson - - 1

Lα =

(
να
eα

)
L

Left-handed leptons 1 2 -1/2

(eα)R Right-handed leptons 1 1 -1

Qα =

(
uα
dα

)
L

Left-handed quarks 3 2 1/6

(uα)R Right-handed up quarks 3 1 2/3
(dα)R Right-handed down quarks 3 1 -1/3

Φ =

(
ϕ+

ϕ 0

)
Complex scalar 1 2 1/2

Table 2.1: Standard Model particle content before electroweak symmetry
breaking [13].

where Gα
µν is the gluon field strength tensor

Gα
µν = ∂µGα

ν −∂νGα
µ −gs f αβγGµβ Gνγ , α ,β ,γ = 1,2, ...,8, (2.3)

with gs the strong coupling constant and fαβγ are the SU(3) group structure
constants. W α

µν is the SU(2)L gauge boson field strength tensor

W α
µν = ∂µW α

ν −∂νW α
µ −gεαβγWµβWνγ , α ,β ,γ = 1,2,3, (2.4)

where g is the weak coupling constant and εαβγ are the SU(2) structure
constants. Bµν is theU(1)Y field strength tensor

Bµν = ∂µBν −∂νBµ . (2.5)

The fermion kinetic terms have the form of the free Dirac kinetic term

LF = ψiγµ∂µψ , (2.6)

with the substitution

∂µ → Dµ , (2.7)

where Dµ , is the covariant derivative. This substitution ensures gauge in-
variance, and the form of the covariant derivative for each fermion field
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depends on its gauge transformation properties. For the quark doubletsQ,
the covariant derivative is

Dµ = ∂µ I +
ig
2

τ⃗ ·W⃗µ +
ig′

6
IBµ +

igs

2
I⃗λαα ′ · G⃗µ , (2.8)

where g′ is theU(1)Y coupling constant, τ are the 2-dimensional represen-
tations of SU(2) and λ are the 3-dimensional representations of SU(3) .
For right-handed quarks

Dµ = ∂µ + ig′Y Bµ , (2.9)

withY = 2/3 for up-type quarks andY =−1/3 for down quarks. For lepton
doublets

Dµ = ∂µ I +
ig
2

τ⃗ ·W⃗µ − ig′

2
IBµ , (2.10)

and for right-handed charged leptons

Dµ = ∂µ − ig′Bµ . (2.11)

Note that mass terms are strictly forbidden in the gauge invariant La-
grangian for chiral fermions and gauge bosons. This contradicts the ob-
servation of nonzero masses for the physical Z and W bosons, and of the
masses of leptons. The solution of this problem is the spontaneous break-
ing of the gauge group by the scalar fieldΦ. Given thatΦ is a Lorentz scalar,
it is the only particle in the SM which can develop a non-zero vacuum ex-
pectation value (vev) without breaking Lorentz invariance. Φ is uncharged
under SU(3)C, so this symmetry remains unbroken. Because the breaking
of the electroweak sector is independent of the strong sector we can analyze
it independently from it. This allows us to neglect strong interactions from
this point forward. The breaking of SU(2)L ×U(1)Y proceeds as follows:

1. The minimum of the scalar potential, dictated by the couplings of the
scalar potential, lies outside Φ = 0.

2. Φ is expanded around theminimum, the true vacuum, asΦ= ⟨Φ⟩+ϕ ,
where ϕ is a physical field.

3. The gauge fieldsW i and B acquire mass terms from the Higgs kinetic
term, which mixes them to produce the mass eigenstates W±, Z and
A.
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First we find the vacuum of the theory, by minimizing the scalar poten-
tial. The scalar doublet can be written, in SU(2)L space, as

Φ =

(
ϕ1 + iϕ2
ϕ3 + iϕ4

)
, (2.12)

where each ϕi is a real scalar field. The vev of the fields may be aligned
so that only ⟨ϕ3⟩ = v ̸= 0. With this vev alignment we obtain the tadpole
equation for the vev

dV (Φ)

dΦ
|ϕi=0 = µ2v+λv3 = 0, (2.13)

so the minimum of the potential is

v=

√
−µ2

λ
(2.14)

for µ2 < 0. Schematically the potential has the shape illustrated in Fig.(2.1)
The breaking of a continuous symmetry should result in the appearance
of massless scalar states according to the Goldstone theorem. The Higgs-
Englert-Broutmechanismensures that theGoldstone bosons produced from
breaking gauge symmetries are not physical states, but are eaten by the
gauge bosons of the broken gauge group. This is the mechanism by which
gauge bosons become massive. This disappearance of physical degrees of
freedom of the scalar sector is made explicit in the unitary gauge. After
rewriting the scalar kinetic terms in the unitary gauge, where Φ is written
as

Φ =

(
0

v+H

)
, (2.15)

the gauge bosonsW and B acquire mass terms through the Higgs field ki-
netic term, the quarks and down-type leptons obtain mass terms through
the Yukawa couplings, and the only physical degree of freedom of Φ that
remains is a neutral scalar H. The charged bosons W± resulting from the
mixing ofW 1 withW 2 acquire the mass

M2
W± =

1
4

g2v2. (2.16)

The W 3 and B bosons mix to form the mass eigenstates Z and A, in the
following manner[

Zµ
Aµ

]
=

[
cosθW sinθW
−sinθW cosθW

][
W 3

µ
Bµ

]
, (2.17)
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Figure 2.1: Schematic illustration of the Higgs potential. The minimum of
the potential lies outside of zero, because of the choice of the values of the
parameters of the potential. The breaking of SU(2)L×U(1)Y arises from the
non-invariance of the base state of this potential under the group transfor-
mations.
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where the mixing angle θW , the Weinberg angle, is defined as follows

sinθW =
g′√

g2 +g′2
, (2.18)

from which the cosine of the angle is

cosθW =
g√

g2 +g′2
. (2.19)

The A boson remains massless and the Z boson acquires the mass

M2
Z =

1
4
v2(g2 +g′2). (2.20)

From eqs.(2.16-2.20) we obtain a prediction for the masses MW , MZ and
cosθW

M2
W = M2

Zcos2θW , (2.21)

at tree level. This prediction is valid whenW and Z bosons acquire masses
from scalar doublets. This relationship is confirmed experimentally at an
accuracy of 0.1% ([14]) , severely limiting the scalar sector of SU(2)L×U(1)Y
and the mechanism of its breaking.
The breaking of SU(2)L ×U(1)Y by the scalar vev leaves behind a remnant
symmetryU(1)Q, generated by the combination of the generators τ3 and Y
of the original gauge group. The massless boson A is identified as a pho-
ton, and its masslessness is guaranteed at all levels of perturbation theory
by the remnantU(1)Q.
In the fermion sector the Yukawa couplings generatemasses after EWsym-
metry breaking. The relevant couplings in the lagrangians are

L f =−
3

∑
α,β=1

[
vY u

αβ√
2

uαLuβR +
vY d

αβ√
2

dαLdβR +
vY l

αβ√
2

eαLeβR +h.c. ,

]
, (2.22)

generating the Dirac mass matrices

M f =
Y f
√

2
v, (2.23)

with f = u,d, l designates up-quarks, down-quarks and charged leptons re-
spectively. These matrices are not necessarily diagonal, a change of ba-
sis is required to arrive at the mass eigenstates of the theory. For each
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fermion type the left-handed and right-handed parts are transformed in-
dependently through the R f

L/R matrices, such that the mass eigenstates are
written as

f ′αL/R = R f
αβ fβL/R. (2.24)

Under this transformation the mass matrices transform as

Ru†
L MuRu

R =

mu 0 0
0 mc 0
0 0 mt

 , (2.25)

Rd†
L MdRd

R =

md 0 0
0 ms 0
0 0 mb

 , (2.26)

Rl†
L MlRl

R =

me 0 0
0 mµ 0
0 0 mτ

 . (2.27)

In the Standard Model Lagrangian the interaction of fermions with the Z,
the photon and the physical scalar H are unaffected by these transforma-
tions. In the charged current interaction, the operators with W± bosons,
the transformation matrices for the left-handed up type quarks and down
type quarks appear and have a physical effect in the quark sector. In the
lepton sector the charged current interaction appears with the transfor-
mations for left-handed neutrinos and charged leptons. The combination
appearing in these terms are

UCKM = Ru†
L Rd

R, (2.28)

UPMNS = Rl†
L Rν

R, (2.29)

the first one in quark interactions and the second one in lepton interac-
tions. There are 3 generations of particles in the Standard Model, mak-
ing these matrices 3-dimensional. In general they can be parametrized by
three Euler angles and 3 complex phases, but due to the freedom to ab-
sorb nonphysical phases in Dirac fields it is possible to absorb two phases
for quarks, and for leptons if neutrinos are not Majorana particles. The
phases make thematrices complex, and thus introduce Charge-Parity (CP)
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violation to the Standard Model. The mixing matrix of the quark sector is
written in the PDG parametrization as follows

UCKM =

 c12c13 s12c13 −s13e−iδCKM

−s12c23 − c12s23s13eiδCKM c12cc23 − s12s13eiδCKM s23c13
s12s23 − c12c23s13eiδCKM −c12s23 − s12c23s13eiδCKM c23c13

 .(2.30)

In the quark sector CP violating phenomena have been observed, suggest-
ing a value of the CKM complex phase around [14]

δCKM ∼ 1.2±0.08rad. (2.31)

CP violation in the Standard Model is a subject of great interest, due to
its possible connection to Baryogenesis, the unknown mechanism which
results in the matter-antimatter imbalance of the Universe. The observed
value for δCKM is too small to account for the observed imbalance [15], but
a large enough value of its equivalent in the lepton sector may explain this
phenomenon [16].



Chapter 3

Massive Neutrinos in the Standard
Model and Beyond

3.1 Majorana fermions

The Dirac field equation defines a spin 1/2 particle. The field equation is

(iγµ∂µ −m)Ψ = 0, (3.1)

which can be derived from the field Lagrangian density

LD = Ψ̄(iγµ∂µ −m)Ψ, (3.2)

where Ψ̄ = ψ †γ0. The gammamatrices γµ are a set of 4 matrices of dimen-
sion 4 defined by the conditions

{γµ ,γν}= 2gµν , (3.3)

γ0γµγ0 = γµ † . (3.4)

The general solution for the Dirac equation is a Dirac fermion, which can
be written as a Fourier expansion in the following manner

Ψ(x) = ∑
s

∫
p

(
as(p)ũs(p)e−ip·x +b†

s (p)ṽs(p)eip·x
)
, (3.5)

where u,v are the Dirac spinors, the plane wave solutions. This solutions
have 4 degrees of freedom, physically corresponding to the two possible
chiralities for the particle and antiparticle.
The set of matrices obeying (3.4) is not unique, a similarity transformation

15
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defined by a unitary matrix U can generate another basis ˜γµ from a given
basis γµ

˜γµ =UγµU†. (3.6)

The question arises then, can the Dirac equation be purely real, and there-
fore have real solutions? Evidently if all the entries of the γµ matrices can
be made purely imaginary, or zero, the Dirac equation would then be real.
As first found byMajorana [17] we canwrite down a set ofmatrices obeying
(3.4) with only imaginary entries and zeroes, as shown below

γ̃0 =

(
0 σ2

σ2 0

)
, γ̃1 =

(
iσ1 0
0 iσ1

)
, (3.7)

γ̃2 =

(
0 σ2

−σ2 0

)
, γ̃0 =

(
iσ3 0
0 iσ3

)
,

where σ i are the usual Pauli matrices. This is theMajorana basis for the γµ

matrices, where

˜γµ∗
=− ˜γµ , (3.8)

adopting the convention of using a tilde accent to denote the gammamatri-
ces in this basis, and the solutions for the Dirac equation in this basis. Now
that we have imposed a reality condition on the Dirac equation through the
use of the Majorana basis we can search for real solutions to the equation
of motion. This solutions will obey

Ψ̃∗ = Ψ̃, (3.9)

and we will call them Majorana fermions. Note that the reality condition
(3.9) for the solutions of the Dirac equation holds only in the Majorana
basis, a change of γµ basis comes with a change of basis in the solutions Ψ,
to maintain the invariance of the Lagrangian under such transformations.
The basis change defined by the unitary matrixU is given by

˜γµ =UγµU†, (3.10)

Ψ̃ =UΨ.

With this transformation rules in mind we can write down the Majorana
condition (3.9) in an arbitrary basis as follows. Transforming the condition
withU we immediately obtain

U†Ψ = (U†Ψ)∗, (3.11)
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from which we can write, using the unitarity ofU ,

Ψ =UUT Ψ∗. (3.12)

The unitarity ofU guarantees the unitarity ofUUT . It is standard to define
the Majorana condition with a matrixC, obtained from

γ0C =UUT . (3.13)

With this definition we write the Majorana condition in its common form

Ψ = γ0CΨ∗, (3.14)

which is valid in any basis. Returning to the Majorana basis, we can write
down the Fourier expansion of a solution to the Dirac equation

Ψ̃(x) = ∑
s

∫
p

(
as(p)ũs(p)e−ip·x +a†

s (p)ũ∗s (p)eip·x
)
, (3.15)

where the sum over s is over spin states. This solution is given in terms of
the spinors ũ in theMajorana basis. Note that the two terms of the solution
are complex conjugate of each other, guaranteeing that Ψ̃ is real.
Now, if we use the chiral basis for spinors, where the γµ matrices take a
block diagonal form, a 4-spinor can be written in terms of 2-spinors as fol-
lows

Ψ =

(
ξ1
ξ2

)
, (3.16)

and using the Majorana condition in this basis

(γ0C)chiral =

(
0 iσ2

−iσ2 0

)
(3.17)

∴ ξ2 =−iσ2ξ ∗
1 , ξ1 = iσ2ξ ∗

2 . (3.18)

This equation relates one 2-spinor with another, eliminating degrees of
freedom of the field. We can therefore write theMajorana field in this basis
as

Ψ =

(
ξ

−iσ2ξ ∗

)
. (3.19)

With this in mind the Dirac Lagrangian for the Majorana field becomes

L =
i
2
(ξ †σ µ∂µξ −mξ T σ2ξ ) =

1
2
(ξ †iσ µ∂µξ −mξ̄Cξ ), (3.20)
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where we have identified the first field in the mass term as the charge con-
jugated field. Themass term in this Lagrangian is theMajoranamass term.
Contrast this termwith the Diracmass term that StandardModel fermions
have

LDirac =−mξ̄1ξ2, (3.21)

which is formed from the two independent chiral bispinors. From the first
form of the Majorana mass term it is obvious that anyU(1) charge carried
by theMajorana field is broken by themass term, since under aU(1) trans-
formation the Majorana field and mass terms transform as

ξ → eiθ ξ ∴ −mξ T σ2ξ →−mei2θ ξ T σ2ξ , (3.22)

making this term not invariant underU(1). This applies both to global and
gauge symmetries, which is why neutrinos are the only Standard Model
particles that may be Majorana, since they are the only electrically neutral
fermions. A charged particle withMajoranamasswould spoilU(1)Q, which
we know is a good symmetry. A globalU(1) which could be broken by Ma-
jorana neutrinos, and which we don’t know if it is a good symmetry is lep-
ton number L. Lepton number is an accidental symmetry of the Standard
Model, underwhich charged leptons and neutrinos have charge L=+1 and
charged antileptons and antineutrinos are charged L=−1. The Lagrangian
of the StandardModel preserves this symmetry, which guarantees the acci-
dental conservation of L perturbatively. If neutrinos areMajorana particles
then L is not conserved, and theMajoranamass term predicts perturbative
processes where |∆L|= 2.

3.2 Massive neutrinos

As shown in the last section, thematter content of the StandardModel does
not allow for massive neutrinos. The observation of neutrino oscillations
indicate that there are at least two neutrino mass eigenstates with nonzero
mass.
In general the mass terms are not diagonal in the interaction basis, so it is
necessary to rotate the lepton states from the interaction basis, defined by
the gauge invariant Lagrangian, to themass eigenstate basis using the com-
plex rotation matricesVν for neutrinos andVl for charged leptons. This ro-
tation affects only charged current interactions in the SM, where the com-
bination

UMNSP =V †
l Vν , (3.23)
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appears. In the three neutrino case this matrix is defined by three euler
angles θi j and one CP violating phase δCP. If neutrinos are Majorana parti-
cles an additional matrix, containing two phases, is necessary to relate the
two basis. This phases, however, can be absorbed either by the rotation
matrix UMNSP or by the masses themselves. Here we absorb the phases in
the neutrino masses, making the diagonal neutrino mass matrix complex.
Additionally the physical phases are the phase differences between neu-
trinos, so we choose to insert the phases in the second and third neutrino
mass eigenstates. The transformation from the interaction basis to the ba-
sis where charged leptons are diagonal is given by

ν f
α = (UMNSP)αβ νm

β , (3.24)

where ν f are the interaction eigenstates, and νm the mass eigenstates. The
PDG convention writes the matrix in the following form

UMNSP =

 c12c13 s12c13 −s13e−iδ

−s12c23 − c12s23s13eiδ c12cc23 − s12s13eiδ s23c13
s12s23 − c12c23s13eiδ −c12s23 − s12c23s13eiδ c23c13

 ,(3.25)

with the shorthand notation ci j = cosθi j and si j = sinθi j. Under this rotation
the mass matrix transforms from the interaction basis to the mass basis in
the following manner

(MI
ν)

2 =UT
MNSP(M

m)2UMNSP, (3.26)

where Mm = diag(µ1,µ2,µ3), in our convention µ1 is a real positive num-
ber. Note that another common convention makes µ3 the real mass, and
these two convention are related by a global phase shift, leading to the same
physical observables.
The neutrino oscillation probability can be written using this matrix and
masses as

Pαβ (E,L) = |∑iU∗
αiUβ iei

m2
i L

2E |2 (3.27)

= δαβ −4∑i> j Re(U∗
αiUβ iUα jU∗

β j)sin2
(

∆m2
i jL

4E

)
(3.28)

+2∑i> j Im(U∗
αiUβ iUα jU∗

β j)sin
(

∆m2
i jL

2E

)
, (3.29)

where Pαβ (E,L) is the probability of detecting a neutrino emitted in the fla-
vor α with an energy E at a distance L as a neutrino of flavor β . From the
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Parameter Best-fit 3σ range
δm2

21 [10−5 eV2] 7.37 6.93 - 7.97
|δm2| [10−3 eV2] 2.50 (2.46) 2.37 - 2.63 (2.33 - 2.60)

sin2θ12 0.297 0.250 - 0.354
sin2θ23, δm2 > 0 0.437 0.379 - 0.616
sin2θ23, δm2 < 0 0.569 0.383 - 0.637
sin2θ13, δm2 > 0 0.0214 0.0185 - 0.0246
sin2θ13 δm2 < 0 0.0218 0.0186 - 0.0248

δ/π 1.35 (1.32) 0.92 - 1.99(0.83 - 1.99)

Table 3.1: Mixing parameters obtained from fits of oscillation experiment
results [18].

last expression given for the probability it is obvious that oscillation experi-
ments canmeasure angles and squaredmass differences, but notMajorana
phases or the absolute mass scale of neutrinos. It can, however, measure
the CP violating angle δ , which may be related to the matter-antimatter
imbalance of the Universe [16]. In Fig. (3.1) we show one of the current
fits for the oscillation parameters from various experiments [18].

Oscillation experiments are sensitive to squared mass differences, but
not to the absolute scale of the neutrino masses. The most sensitive direct
searches for neutrino masses are the measurements of the electron energy
spectrum of beta decay. The observed process is

(A,Z)→ (A,Z +1)+ e−+ ν̄ , (3.30)

where (A,Z) is a nucleus with A nucleons and Z protons. Neutrino masses
affect the kinematics of the process, which can be, in principle, observed
in a distortion of the shape of the energy spectrum of the emitted electron.
This experiment can measure the effective electron mass mνe

m2
νe
= ∑

i
|Uei|2m2

i . (3.31)

The current experimental bounds on mνe come from the tritium beta decay
experiments Troitsk [19] and Mainz [20]

mTroitsk
νe

< 2.05 eV (3.32)

mMainz
νe

< 2.3 eV.
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Fromcosmological observations, in conjunctionwith a cosmologicalmodel,
one can derive a limit on the sum of neutrinos masses [21]

∑
i

mνi < 0.12eV, (3.33)

which is stronger than direct limits, but depends on cosmological model
parameters.
The smallness of this bounds is at odds with the mass generation mecha-
nism of the Standard Model, which produces masses from a 102GeV higgs
vev.

3.2.1 Neutrino masses in SU(2)L ×U(1)Y gauge theory

The Standard Model does not contain right-handed neutrinos, unlike ev-
ery other fermion in the theory. The Standard Model is built this way pre-
cisely to prohibit the generation of neutrino masses at all orders in pertur-
bation theory. Completing the StandardModel with 3 generations of right-
handed neutrinos Nα , transforming under GSM = SU(3)C ×SU(2)L ×U(1)Y
as

NR ∼ (1,1,1), (3.34)

we obtain a Yukawa coupling for neutrinos

Lν = Y ν
αβ L̄αΦ̃N, (3.35)

which after EW symmetry breaking generates the Dirac mass terms

LD = Y ν
αβvν̄αN. (3.36)

Additionally, the right-handedneutrinos can form theMajoranamass terms

LN = Mαβ N̄cN. (3.37)

The scale of the Majorana mass terms is arbitrary, in principle, or it could
be generated by the breaking of higher-scale symmetries. In the casewhere
M >> vY ν , the mixing of N with ν produces 6 Majorana neutrino eigen-
states, 3 light neutrinos, which are mostly active neutrinos, and 3 heavy
neutrinos, which are mostly sterile. This mechanism for light neutrino
mass generation is called the type I seesaw mechanism [22]. It is a UV
completion of the Weinberg dimension-5 operator [23]

LW =
gW

Λ
L̄cΦΦL, (3.38)
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Figure 3.1: Left. Effective dimension-5 Weinberg operator [23] leading
to light neutrino Majorana masses. This is the lowest dimension, elec-
troweak invariant operator which can account for neutrino masses in the
Standard Model. This operator violates lepton number by two units. The
high-energy mechanism giving rise to the operator, the UV completion, is
containedwithin the gray blob of the diagram. Right. Type-I seesawmech-
anism [22, 24–27] for neutrino Majorana masses. The completion of the
Weinberg operator is achieved by introducing a GSM singlet fermion N for
each family of neutrinos. It naturally results in sub-eV neutrinomasses for
N masses larger than ∼ 1013 GeV, for unit order Yukawa couplings.

which is SU(2)L×U(1)Y invariant, and generatesMajorananeutrinomasses
after EW symmetry breaking. The resulting mass matrix in the (ναNα) ba-
sis is given by the block matrix

MTypeI =

(
0 mD

mT
D M

)
. (3.39)

In the M >> vY ν limit the light neutrino mass matrix ml and the heavy
neutrino matrix mh generated by this mechanism are given by

ml ≊−mT
DM−1mD, (3.40)

mh ≊ M, (3.41)

at first order in mD/M, where mD is the Dirac mass matrix. To generate the
sub-eV light neutrino masses required by tritium decay experiments when
the Dirac term Yukawa couplings are of order O(1) the sterile neutrinos
masses must be heavier than 1013 GeV , which is close to the GUT scale
∼ 1015GeV . Another two seesaw mechanisms for Majorana masses are il-
lustrated in Fig. (3.2). These three seesaw mechanisms complete the LW
operator at tree level, using SU(2)L triplets or singlets. In these completions
of the Weinberg operator the smallness of neutrino masses is explained by
the heaviness of the intermediate particles. The Weinberg operator can
also be completed at loop order, the smallness of neutrino masses can be
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Figure 3.2: Left. Type-II seesawmechanism for neutrino masses [27]. The
UV completion of the Weinberg operator is obtained by adding a scalar
transforming as (1,3,0) under the Standard Model gauge group.Right.
Type-III seesawmechanism for neutrino masses [28]. The UV completion
of the Weinberg operator is obtained by adding a fermion transforming as
(1,3,0) under the Standard Model gauge group.

explained in these frameworks from the loop factors (4π)−2N arising from
N-loops, and from the heavy particles appearing inside the loop.

3.2.2 Neutrinoless double beta decay

A promising phenomenon to determine the Majorana nature of neutrinos
is neutrinoless double beta decay (0νββ ), the simultaneous beta decay of
two neutrons within a nucleus yielding no outgoing neutrinos

2n → 2p+2e−, (3.42)

or in terms of nuclear processes

(A,Z)→ (A,Z +2)+2e−+Qββ , (3.43)

where Qββ is the energy released in the process. This process violates lep-
ton number by two units (∆L= 2), if neutrinos areMajorana particles 0νββ
could be an observable process. Although Majorana neutrinos are not the
only BSM physics contributing to 0νββ [29], this process can be used to
constrain the values of neutrino masses. Additionally, the Schechter-Valle
theorem guarantees Majorana masses for neutrinos in the presence of any
mechanism giving rise to 0νββ [30], as can be seen from Fig (3.3). Given
the theoretical interest of this phenomenon, several experiments have been
carried out in search of it. The search of it has proven to be challenging, in
both the experimental and the theoretical fronts. The current limits on the
half-life of this process have reached the range [32]

T 0νββ
1/2 > 1025 −1026years, (3.44)
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Figure 3.3: BlackBox theorem [30]. This StandardModel diagramguaran-
tees nonzero Majorana masses for neutrinos in the presence of any mech-
anism giving rise to 0νββ inside the black box. An analysis of the effect
of the operators leading to 0νββ on the lifetime T 0ν

1/2 and on the induced
Majorana masses shows that the current limits on the decay lifetime im-
pose bounds on the operators leading to Majorana masses far too strict to
account for the observed neutrino oscillation parameters ∆m2

12 and ∆m2
13

[31]. This excludes this types of operators as leading contributors to neu-
trino masses.
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with forthcoming experiments promising to increase their sensitivity up to
two orders of magnitude.
In the Standard Model extended with neutrino Majorana masses the dia-
gram resulting in 0νββ is given by Fig. (??). The half-life for this process,
assuming this diagram is the only contributor, can be written as

(T 0νββ
1/2 )−1 = G0ν ×|M0ν |2 ×⟨mββ ⟩2, (3.45)

where G0ν is the phase space factor, M0ν is the nuclear transition matrix
element, and mββ is the effective Majorana mass

⟨mββ ⟩2 = |∑
i

U2
eim(νi)|2. (3.46)

TheneutrinomixingmatrixU contains both theDirac andMajoranaphases
δ and αi. Assuming there are only three active neutrinos, which means
there is only one Dirac phase and twoMajorana phases, and using the PDG
parametrization ofU we can write the effective Majorana mass as follows

⟨mββ ⟩= |c2
12c2

13m1 + s2
12c2

13m2eiα2 + s2
13m3ei(α3−2δ )|, (3.47)

where we have adopted the notation si j = sinθi j and ci j = cosθi j. The pres-
ence of Majorana and Dirac phases in the sum allows for relative minus
signs between the terms in the sum, opening up the possibility of cancella-
tions.
The nuclear transition matrix element is the biggest source of theoretical
uncertainty. To calculate |M0ν | one needs to evaluate nuclear structure
transitions from the initial nucleus to the final state, as well as properly ex-
pressing the nuclear-lepton interaction lagrangian in terms of the quark-
lepton interaction lagrangian. Both of these steps are highly non-trivial,
and the results from different approaches agree within one order of mag-
nitude, which is themain source of the one order of magnitude uncertainty
in mβ β [33].
The most stringent measurement of the half-life of a neutrinoless double
beta decay mode is by the KamLAND-Zen experiment [32]. This experi-
ment used 136Xe as a parent nucleus, yielding a lower limit on the lifetime
of the decay of

T 0ν
ββ > 1.07×1026 years (3.48)

at 90% C.L. This translates to a limit on the effective Majorana mass of

⟨mββ ⟩< (61−165)meV, (3.49)
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Figure 3.4: Allowed values ofmββ frommeasurements of T 0ν
1/2 of

136Xe [32],
cosmology [21], and neutrino oscillation parameters [18]. The KamLAND-
Zen and Planck regions are exclusion limits, while the regions from oscil-
lation data are allowed regions.

depending on the nuclear model used to calculate the nuclear transition
matrix element. Combining the constraints from this experiment, the con-
straints from cosmology on neutrinomasses fromPlanck [21], and the con-
straints from neutrino oscillation parameters we can obtain a plot of the
allowed parameter space in the ⟨mββ ⟩−mlight plane, as shown in Fig. (3.4).
The constraints from neutrino oscillation parameters are obtained from
varying the oscillation angles, within 3σ in eq. (3.47), and varying the
complex phases in all angles. Note that for normal hierarchy (m1 < m3)
a cancellation between terms of eq. (3.47) can lead to sub-10−4 eV effective
neutrino masses, which are below the projected sensitivity of near-future
experiments [34]. In the inverted hierarchy case there are no cancellations,
and as such, it can be excluded in the case of non-observation of 0νββ in
experiments with a sensitivity larger than T 0ν

1/2 ∼ 1028y, for most nuclei, and
considering the worst case scenario for the values of the nuclear transition
matrix elements [35].



Chapter 4

Lepton Flavor models

4.1 Fermion masses and discrete symmetries

The masses of fermions of the SM are determined by the Yukawa coupling
with the Higgs field Φ

m f
i j = Y f

i j ⟨Φ⟩ f̄i f j (4.1)

where f is a family of fermions (u quarks ,d quarks or charged leptons).
The observed values of SM fermion masses is given in Table (4.1). The
masses of each fermion type spans several orders of magnitude, for exam-
ple, up-type quark masses span from O(10−3GeV) to O(102GeV). Given
the singular value of the Higgs vev, ⟨Φ⟩ = 246GeV , the following question
arises: why are the masses of each generation of particles so far from each
other?. Mathematically this is equivalent to asking: why are the eigenval-
ues of each matrix Y f so different? Additionally the mismatch between
the interaction basis states and the mass basis states, encoded in the mix-
ing angles of the lepton and quark mixing matrices, introduces new unex-
plained parameters to the SM. An interesting way of naturally relating the
observed mass spectrum in both the quark and lepton sectors to their mix-
ing patterns is with the introduction of discrete symmetries to the Standard
Model. Discrete flavor symmetries are defined by a discrete group GF , un-
der which Standard Model fields transform under matrix representations
across generations, e.g.,

Lα → Rαβ Lβ , (4.2)

where Rαβ is a matrix representation of an element ofG f . A Lagrangian in-
variant under this symmetry is formulated and additional fields are added
to the SM, including scalar fields which acquire vevs necessary to break G f

27
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Field Mass (GeV)

u 2.2+0.5
−0.4 ×10−3

s 95+9
−3 ×10−3

t 173±0.4
d 4.7+0.5

−0.3 ×10−3

c 1.275+0.025
−0.035

b 4.18+0.04
−0.03

e (0.5109989461±0.0000000031)×10−3

µ 0.1134289257±0.0000000025
τ 1.77686±0.00012

Table 4.1: Standard model fermion mass spectrum. Values from [14].

in order to produce phenomenologically viable masses and mixing angles.
One of the attractive features of discrete groups in model building is the
avoidance of additional gauge or goldstone bosons. Many discrete groups
are regularly used in model building, including, but not limited to, S3 [36],
D4, A4 or ∆(27). In this work we will use the A4 symmetry group, motivated
by its status as the smallest group with an irreducible three dimensional
representation. In the next section we proceed to describe the group.

4.2 A4 group

A4 is the group of even permutations of 4 objects, or the invariance group
of a tetrahedron. We can denote an element of the group, a particular per-
mutation 1234 → n1n2n3n4, with the shorthand (n1n2n3n4). All elements of
the group can be generated by the permutation S and T defined by

S = (4321) , T = (2314). (4.3)

A4 can be presented then with the equality

S2 = T 3 = (ST )3 = I. (4.4)

Two elements of a group h1 and h2 are said to belong to the same equiva-
lence class if there exists an element g of the group such that

g−1h1g = h2. (4.5)
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A4 contains 4 equivalence classes, which are composed of the following el-
ements

C1 : I (4.6)

C2 : T, ST, T S, ST S (4.7)

C3 : T 2, ST 2, T S2, T ST (4.8)

C4 : S, T 2ST, T ST 2. (4.9)

In a finite group the sum of the square of the dimensions of irreducible
representations of the group adds to the number of elements of the group.
From this and from the property of the characters of elements on the rep-
resentations A and B

∑
g∈G

χA
g (χB

g )
∗ = Nδ B

A , (4.10)

we candeduce thatA4 has 4 irreducible representations, three of dimension
one (1,1’,1”) and one of dimension three (3).
For these representations we can write the generators of the group S and
T, in the S diagonal basis, as follows

1 : S = 1 T = 1
1′ : S = 1 T = ω
1′′ : S = 1 T = ω2

3 : S =

1 0 0
0 −1 0
0 0 −1

 T =

0 1 0
0 0 1
1 0 0

 , (4.11)

where ω = e2iπ/3. There is also an equivalent basis where T is diagonal
instead of S, but we will work on this S diagonal basis.
The multiplication rules for the irreducible representations of A4 are

3⊗3 = 1⊕1′⊕1⊕31 ⊕32

1⊗1 = 1
1⊗1′ = 1′

1⊗1′′ = 1′′

1⊗3 = 3
1′⊗1′ = 1′′

1′′⊗1′′ = 1′

1′⊗1′′ = 1. (4.12)
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Le Lµ Lτ le lµ lτ NT N4 N5 H η ϕ
SU(2)L 2 2 2 1 1 1 1 1 1 2 2 1

A4 α β γ α β γ 3 δ ε 1 3 3

Table 4.2: Matter content of the model. α,β ,γ and ε denote any of the
one-dimensional representations

The product of two triplets a = (a1,a2,a3) and b = (b1,b2,b3) in the S diag-
onal basis can be decomposed as follows

1 : a1b1 +a2b2 +a3b3

1′ : a1b1 +a2b2ω +a3b3ω2

1′′ : a1b1 +a2b2ω2 +a3b3ω
31 : (a2b3,a3b1,a1b2)

32 : (a3b2,a1b3,a2b1). (4.13)

From eq. (4.4) we see that S by itself generates Z2 and T generates Z3. This
implies that the vev of a scalar ϕ triplet under A4 which is invariant under S
will preserve the Z2 subgroup, while invariance under T preserves Z3. The
vev alignments which preserve these subgroups are as follows

⟨ϕ⟩= (v,v,v)Z3, (4.14)

⟨ϕ⟩= (v,0,0)Z2. (4.15)

4.3 Models for Dark Matter and neutrino masses
with A4

4.3.1 Model building

To obtain models for neutrino masses and mixings using the A4 group we
proceed as described before. First we add to the SM right-handed Neu-
trinos N to obtain Majorana masses from the seesaw mechanism. Next
we assign representations of A4 to the matter content of the lepton sector.
Finally we add scalars transforming nontrivially under A4 to break the dis-
crete group andobtain phenomenologically viablemasses andmixings. We
propose then the matter content of table (4.2).

The five additional right-handed neutrinos are the triplet NT and the
singlets N4 and N5. The scalars η and ϕ will develop an A4 breaking vev,
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whose form will determine the residual symmetry. For an arbitrary as-
signment of α ,β ,γ and η representations the model lagrangian reads

LY = yeLeleH + yµLµ lµH + yµLµ lµH (4.16)

+ yν
1 Le [NT η ]α + yν

2 Lµ [NT η ]β + yν
3 Lτ [NT η ]γ

+ yν1
4 δαδ LeN4H + yν2

4 δβδ LµN4H + yν3
4 δγδ LτN4H

+ yν1
5 δαεLeN5H + yν2

5 δβεLµN5H + yν3
5 δγεLτN5H

+ MNc
T NT +M4δδ1Nc

4N4 +M5δε1Nc
5N5

+ yN1
2 δ1δ

[
Nc

T ϕ
]

1 N4 + yN1′′
2 δ1′′δ

[
Nc

T ϕ
]

1′ N4

+ yN1′
2 δ1′δ

[
Nc

T ϕ
]

1′′ N4 + yN1
3 δ1ε

[
Nc

T ϕ
]

1 N5

+ yN1′′
3 δ1′′ε

[
Nc

T ϕ
]

1′ N5 + yN1′′
3 δ1′ε

[
Nc

T ϕ
]

1′′ N5

+ yN
1
[
Nc

T ϕ
]

31
NT +(yN

1 )
′ [Nc

T ϕ
]

32
NT

+ M45δδε∗Nc
4N5 +h.c

Notice that 1′∗ = 1′′ implies 1′×1′∗ = 1 and 1′′×1′′∗ = 1. This is the reason
to assign Li and li the same representation, to maintain the charged lepton
masses diagonal. TheMajoranamasses for the right-handed neutrinos are
obtained from the terms proportional toM4,M5,M,M45, and afterA4 break-
ing from the Yukawa couplings of ϕ . The Dirac mass terms for neutrinos
are obtained from the Yukawa couplings of η with Li and NT and from the
couplings ofH and Li withN4 andN5. The resultant Dirac and right-handed
Majorana mass matrices, mD and MR respectively, are then used to obtain
the light neutrino mass matrix through the type-I seesawmechanism. The
light neutrino mass matrix is then

mν =−mDM−
R 1mT

D. (4.17)

We will concentrate on models with a remnant Z2 symmetry. This is phe-
nomenologically interesting because a remnant Z2 stabilizes the lightest
particle odd under it, in this case it can either be a scalar or a fermion.
This lightest Z2 odd particle is a candidate for Dark Matter.
Given the matter content in table (4.2) we obtain different light neutrino
mass matrix textures using different assignments of α ,β ,γ and ε . We ob-
tain the correspondence between irreps assignment and neutrino textures
as shown in Table (4.3). This work is focused on the models for A1 and
A2 because they lead to the interesting case of non-observable neutrinoless
double beta decay, they contain dark matter candidates and because these
textures are statistically favored over the others [37].
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Le Lmu Lτ N4 N5 Matrix Texture
1 1′′ 1′ 1 1′ B3
1 1′′ 1′ 1 1′′ B4
1′′ 1 1′ 1 1′ A1
1′′ 1′ 1 1 1′ A2

Table 4.3: Particle representations under A4 symmetry giving rise to dif-
ferent neutrino mass matrix textures. The nomenclature of the matrices
follow [38].

4.3.2 Model for A1 texture

To obtain an A1 texture we assign the following representations

α = 1′′,β = 1,γ = 1′,δ = 1,ε = 1′. (4.18)

The Lagrangian for this model is then

LY = yeLeleH + yµLµ lµH + yµLµ lµH (4.19)

+ yν
1 Le [NT η ]1′′ + yν

2 Lµ [NT η ]1 + yν
3 Lτ [NT η ]1′

+ yν2
4 LµN4H + yν3

5 LτN5H +MNc
T NT

+ M4Nc
4N4 + yN1

2
[
Nc

T ϕ
]

1 N4 + yN1′
3
[
Nc

T ϕ
]

1′′ N5

+ yN
1
[
Nc

T ϕ
]

3 NT +(yN
1 )

′ [Nc
T ϕ
]

32
NT +h.c. .

To obtain neutrino masses the scalar fields develop the following vevs

⟨H⟩= (0,vH)
T ,⟨η⟩= (0,vη)

T ,⟨ϕ⟩= vϕ (4.20)

in EW space and

vη = (vη ,0,0),vϕ = (vϕ ,0,0) (4.21)

in flavor space. This form of the vevs in EW space ensures the breaking of
SU(2)L ×U(1)Y toU(1)EM as in the Standard Model. The form of the vevs
in flavor space ensures that the remnant symmetry is Z2. The only fields
odd under this Z2 are ϕ2,3, η2,3 and N2,3.
After the breaking of these symmetries we obtain the right-handed neu-
trino Majorana mass matrix

MR =


M 0 0 vϕ yN1

2 vϕ yN1′
3

0 M Mϕ 0 0
0 Mϕ M 0 0

vϕ yN1
2 0 0 M4 0

vϕ yN1′
3 0 0 0 0

 , (4.22)
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where Mϕ = vϕ (yN
1 +(yN

1 )
′). The Dirac mass matrix takes the form

mD =

 vηyν
1 0 0 0 0

vηyν
2 0 0 vHyν2

4 0
vηyν

3 0 0 0 vHyν3
5

 . (4.23)

The resultant light neutrinomassmatrix is obtained with the type-I seesaw
formula (4.17), and is as follows

mν =

 0 0 w
0 x y
w y z

 , (4.24)

where

w =
−vHvηyν

1 yν3
5

(vϕ yN1′
3 )

, (4.25)

x =
−v2

H(y
ν2
4 )2

M4
,

y =
yN1′

3 vH(vHvϕ yν2
4 yN1

2 − vηM4yν
2 )

M4vϕ yN1′
3

,

z =
yN1′

3 vH(MM4yN1′
3 vH −2M4yν

3 yN1′
3 vϕ vη − vHv2

ϕ (y
N1
2 )2yN1′

3 )

M4v2
ϕ (y

N1′
3 )2

.

. This matrix has the form of the A1 texture as classified in [38]. An im-
mediate consequence of a zero in themee entry is the unobservability of the
neutrinoless double beta decay, despite of the fact that neutrinos are Ma-
jorana particles in the model and thus violate lepton number by two units.

4.3.3 Model for A2 texture

In this instance we need the representations

α = 1′′,β = 1′,γ = 1,δ = 1,ε = 1′, (4.26)

as defined before, yielding the Lagrangian

LY = yeLeleH + yµLµ lµH + yµLµ lµH (4.27)

+ yν
1 Le [NT η ]1′′ + yν

2 Lµ [NT η ]1′ + yν
3 Lτ [NT η ]1

+ yν3
4 LτN4H + yν1

5 δαδ LeN5H +MNc
T NT

+ M5Nc
5N5 + yN1

2
[
Nc

T ϕ
]

1 N4 + yN1′′
3
[
Nc

T ϕ
]

1′′ N5

+ yN
1
[
Nc

T ϕ
]

31
NT +(yN

1 )
′ [Nc

T ϕ
]

32
NT +h.c. .

(4.28)
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After EWand A4 symmetry breakingwe obtain the same right-handed neu-
trino Majorana mass matrix as in eq.(4.22), but the Dirac mass matrix is
now

mD =

 vηyν
1 0 0 0 0

vηyν
2 0 0 0 vHyν2

5
vηyν

3 0 0 vHyν3
4 0

 . (4.29)

The resulting light neutrino mass matrix is

mν =

 0 w′ 0
w′ x′ y′

0 y′ z′

 , (4.30)

where

w′ =
−vHvηyν2

5 yν
1

vϕ yN1′
3

, (4.31)

x′ =
vHyν2

5 (−2M4vηvϕ yν
2 yN1′

3 +MM4vHyν2
5 − vHv2

ϕ (y
N1
2 )2yν2

5 )

M4v2
ϕ (y

N1′
3 )2

,

y′ =
vH(−M4vηyν

3 + vHvϕ yN1
2 yν3

4 )yν2
5

M4vϕ yN1′
3

,

z′ =
−v2

h(y
ν3
4 )2

M4
.

This is the A2 texture, in the classification defined by (REF). As in the last
model the entry mee of the matrix is zero, resulting in unobservable neutri-
noless double beta decay.

4.3.4 Other models

As reported in [39], the framework presented here is capable of generat-
ing models for the B3 and B4 matrix textures when the lepton doublets and
right-handed neutrinos are assigned the A4 irreps shown in Table (4.3). In
these models a remnant Z2 can be obtained as well, leading to the presence
of a dark matter candidate. In contrast to the A1 and A2 textures, however,
themee entry of the neutrinomassmatrix is nonzero at tree level, leading to
observable neutrinoless double beta decay. Additionally the B1 and B2 tex-
tures can be obtained by expanding the model with a scalar SU(2)L triplet
. Obtaining these textures requires breaking A4 to Z3, charging under the
residual symmetry the charged leptons, excluding the existence of a dark
matter candidate.
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4.3.5 Model Phenomenology

We focus on the models for A1 and A2 for the following reasons. The zero
entry of mee implies unobservable neutrinoless double beta decay, making
the determination of theMajorana nature of neutrinos impossible through
this observable, widely considered to be the golden standard for this. In
addition to this, as pointed out in [37], the A1 and A2 textures are less con-
strained by the observed values of mixing angles and squared mass differ-
ences, without conflicting with cosmological bounds on neutrino masses.
The phenomenology of the two zero texture neutrino matrices has been
extensively studied [38, 40, 41], here we The resulting light neutrino mass
matrices mν are related to the neutrino mixing matrixUMNSP and the com-
plex neutrino mass matrix in the mass basis diag(µ1,µ2,µ3) with the equa-
tion

mν =UMNSPdiag(µ1,µ2,µ3)UT
MNSP. (4.32)

We adopt the convention where the physical Majorana phases are located
in µ2 and µ3, that is to say,

µ1 = m1 ∈ IR , µ2,3 = m2,3eiα2,3, m2,3 ∈ IR. (4.33)

The two independent zeros in mν then relate the masses andmixing angles
in the following manner

µ2 =

(
1+

sinθ23

cosθ12cosθ23sinθ12sinθ13e−iδ − sin2θ12sinθ23

)
µ1

µ3 =±

(
−cotθ13cosθ12cosθ23e2iδ

cosθ12cosθ23sinθ13 − sinθ12sinθ23eiδ

)
µ1. (4.34)

We can approximate these relationships taking into account the smallness
of θ13 by neglecting sinθ13 terms obtaining

µ2 =−µ1cot2θ12 , µ3 =±µ1eiδ cotθ12cotθ23

sinθ13
. (4.35)

All predictions derived from these equation receive small corrections from
the observed nonzero value of θ13.
From the measured values of the mixing angles and squared mass differ-
ences the inverse hierarchy is excluded. This is because

cot2θ12 ∼ 3, (4.36)
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which implies

m2 > m1. (4.37)

Using the normal hierarchy values for the oscillation parameters, the al-
lowed range of values for the lightest neutrino mass m1 are

A1 : m1 ∈ [4,8]meV (4.38)

A2 : m1 ∈ [3,8]meV. (4.39)

We can also immediately extract the approximate values of the Majorana
phases from 4.35

A1 : α2 = π , α3 = δ , (4.40)

A2 : α2 = π , α3 = δ +π. (4.41)

The zeros of the neutrino mixing matrices are not protected to all orders
of perturbation, in fact they receive contributions at one loop order. The
responsible diagram is shown in Fig (4.1). For each model a rough approx-
imation to the value of this correction can be obtained by considering the
largest entry in the matrix with the same Yukawa coupling as the neutri-
nos in the zero entry, and multiplying by the usual (4π)−2 one loop factor.
The values of the nonzero entries are restricted by the equation (4.32), to-
gether with the oscillation parameters and the cosmological neutrinomass
limit. The resulting estimations for the correction of the most stringently
constrained observable, mee are

mee ∼ 8×10−5eV (4.42)

for both textures. The current limit on this matrix element is 0.2 eV and
the projected sensitivity of near-future experiments is 0.01 eV [34].

4.3.6 Dark Matter stability

As mentioned before, the remnant Z2 defines a dark sector, which is com-
posed of N2,3,ϕ2,3,η2,3. Under this Z2 these fields transform as

N2 →−N2 , η2 →−η2 , ϕ2 →−ϕ2, (4.43)

N3 →−N3 , η3 →−η3 , ϕ3 →−ϕ3. (4.44)
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Figure 4.1: Feynman diagram of the models giving rise to nonzero mee.

Generically, these fields will mix among themselves, respecting Lorentz in-
variance, and will produce a set of 2 fermion and 4 scalar dark mass eigen-
states. These eigenstates will transform as odd under Z2 as well. The light-
est particle in the dark sector will be a candidate for dark matter. The
dark matter phenomenology can be divided in two cases, the scalar and
the fermion case. In the scalar case the dark matter phenomenology will
be somewhat similar to an Inert Singlet Higgs Model,if the lightest dark
particle is primarily ϕ , or to the Inert Higgs Doublet Model otherwise, as
analyzed in [42] . In the fermion case the phenomenology can be char-
acterized as a Majorana dark matter with a scalar portal to the SM, very
similar to the Scotogenic Model [43], but with the addition of an annihila-
tion channel for dark matter, which can alleviate the tension between LFV
observables and the freeze-out mechanism inherent to the Scotogenic.

4.3.7 A1 texture phenomenology

The A1 texture is defined by the zeros in the mee and mµµ . The immediate
constraints from these zeros are

cos2θ12cos2θ13µ1 + cos2θ13sin2θ12µ2 + e−2iδ sin2θ13µ3 = 0 (4.45)

(−cosθ12cosθ13cosθ23sinθ12 − cosθ13eiδ sinθ13sinθ23 + cosθ13e(iδ )sin2θ12sinθ13sinθ23)µ1 +

(cosθ12cosθ13cosθ23sinθ12 − cosθ13e(iδ )sin2θ12sinθ13sinθ23)µ2 +

cosθ13e−iδ sinθ13sinθ23µ3 = 0,
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which can be reduced to constraints on µ2 and µ3

µ2 =

(
1+

sinθ23

cosθ12cosθ23sinθ12sinθ13e−iδ − sin2θ12sinθ23

)
µ1

µ3 =

(
−cotθ13cosθ12cosθ23e2iδ

cosθ12cosθ23sinθ13 − sinθ12sinθ23eiδ

)
µ1. (4.46)

For mee = 0 an inverted hierarchy neutrino spectrum is excluded. Using
the measured oscillation parameters [18], a scan is performed to obtain
predictions for δ , m1, and the Majorana phases α2 and α3. The results are
shown in Figure (4.2). From these numerical scan we see that the Dirac
phase δ is predicted to be in the range [0.8−1.7]π. The Majorana phase α2
lies near π, receiving corrections from nonzero θ13. The remaining phase
α3 depends strongly on the value of δ , preferring values between π and 2π .

4.3.8 A2 texture phenomenology

The A2 is defined by zeros in the entries mee and meτ . The resulting con-
straints are

µ2 =

(
1− cosθ23

sinθ12sinθ23cosθ12sinθ13e−iδ + sin2θ12cosθ23

)
µ1

µ3 =

(
−cotθ13cosθ12sinθ23e2iδ

cosθ12sinθ23sinθ13 + sinθ12cosθ23eiδ

)
µ1. (4.47)

As in the first texture, we perform a scan over the fitted values of the os-
cillation parameters from [18]. The results are shown in Figure (4.3). The
values for δ in this case can reach 2π and a little beyond up to 0.1π. In con-
trast to the last case, the corrections from nonzero θ13 move the value of α2
from π to values below π. As in the last case, α3 depends strongly on δ .
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Figure 4.2: Results for the numerical scan of the A1 texture using the oscil-
lation parameters at 3σ(blue points) and 1σ (red points) C.L.The upper left
panel shows the correlation between the sin2θ23 and the Dirac CP violating
phase δ . The contours represent the 3σ (light blue) and 1σ (red) C.L. from
NuFit [18]. The upper right panel shows the allowed values of the lightest
neutrino mass as function of δ , showing the range [3−8]meV as favored by
this texture. The lower left and right panels show the correlations between
δ and the Majorana phases α2 and α3 respectively. The α2 phase lies very
near the middle point Π. The α3 phase is strongly correlated with δ .
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Figure 4.3: Results for the numerical scan of the A2 texture using the oscil-
lation parameters at 3σ(blue points) and 1σ (red points) C.L.The upper left
panel shows the correlation between the sin2θ23 and the Dirac CP violating
phase δ . The contours represent the 3σ (light blue) and 1σ (red) C.L. from
NuFit [18]. The upper right panel shows the allowed values of the lightest
neutrino mass as function of δ , showing the range [3−8]meV as favored by
this texture. The lower left and right panels show the correlations between
δ and the Majorana phases α2 and α3 respectively. The α2 phase lies very
near the middle point Π. The α3 phase is strongly correlated with δ .



Chapter 5

Conclusion

In this work we have briefly reviewed basic mechanisms for the genera-
tion of Majorana masses and flavor symmetries. We have applied this to
an A4 symmetric model, which after the flavor symmetry breaking gener-
ates viable Majorana neutrino masses and leaves a Z2 symmetry behind.
The Z2 symmetry defines a dark sector with a stable dark matter candi-
date. The flavor symmetry generates zeroes in the neutrino mass matrix,
which result in correlations between the masses and mixing angles. We
analysed the phenomenology and viability of these matrix textures and fo-
cused on a pair of them, A1 and A2, where neutrinoless double beta decay
is unobservable. Additionally the flavor symmetry predicts nonzero Dirac
and Majorana phases, introducing sizable CP violation to the lepton sec-
tor. Although the dark sector remains unexplored, the particle content and
symmetry suggests a strong similarity to existingmodels, namely to the in-
ert scalar models, which have been extensively studied before and remain
viable for heavy (>∼ 500 GeV) dark matter masses. The consequences for
themodels considered are important, since neutrinoless double beta decay
is the most sensitive avenue for the observation of |∆L| = 2 processes. If
neutrinoless double beta decay is unobservable, the determination of the
Majorana nature of neutrinos would be theoretically possible with other
less sensitive processes only, like lepton flavor violating decays of mesons,
which are sensitive to the nonzero elements of the neutrino mass matrix.
In summary, the addition of a flavor symmetry to the SM,with right-handed
neutrinos and scalar fields can result in the generation of phenomenologi-
cally viable neutrino Majorana mass matrices and a dark sector with a sta-
ble dark matter candidate.
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