

UNIVERSIDAD NACIONAL AUTÓNOMA DE MEXICO

PROGRAMA DE MAESTRÍA Y DOCTORADO EN CIENCIAS QUÍMICAS

CONFIGURACIÓN ABSOLUTA Y ANÁLISIS CONFORMACIONAL DE 6-HEPTENIL-5,6-DIHIDRO-2*H*-PIRAN-2-ONAS DE ESPECIES DEL GÉNERO *HYPTIS* (LABIADAS)

TESIS

PARA OPTAR POR EL GRADO DE

DOCTOR EN CIENCIAS

PRESENTA

M. en C. LUCERO MARICELA MARTÍNEZ FRUCTUOSO

Dr. ROGELIO GREGORIO PEREDA MIRANDA FACULTAD DE QUÍMICA

MÉXICO CDMX, MAYO 2019

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

JURADO ASIGNADO

Presidente: Dra. María Luisa Villareal Ortega Vocal: Dr. Francisco Hernández Luis Vocal: Dra. Karina Martínez Mayorga Vocal: Dr. Mario Alberto Figueroa Saldívar Secretario: Dr. Jose Alberto Rivera Chávez

Sitio donde se desarrolló el tema: Departamento de Farmacia, Laboratorio 123. Facultad de Química. Universidad Nacional Autónoma de México.

Asesor:

Dr. Rogelio Gregorio Pereda Miranda

Sustentante:

M. en C. Lucero Maricela Martínez Fructuoso.

AGRADECIMIENTOS

Agradezco el apoyo brindado a las siguientes personas e instituciones:

Al CONACyT (número de becario 288963) por la beca otrogada.

A la Dirección General de Asuntos de Personal Académico (IN215016; IN208019) y al CONACyT (proyecto CB220535) por el financiamiento parcial de esta investigación.

A los miembros del Comité tutor –los Drs. Federico de Río y Mario Figueroa– y al jurado asignado por sus observaciones, las cuales me permitieron enriquecer la presente disertación.

A la Unidad de Servicios y Apoyo a la Investigación (USAI), Facultad de Química, UNAM, por el registro de los espectros de resonancia magnética nuclear y espectrometría de masas.

Al Dr. Carlos Martín Cerda García-Rojas del Departamento de Química del Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional por la asesoría en los cáculos teóricos de RMN-DFT y en la determinación de la rotación óptica y registro de algunos espectros de resonancia magnética nuclear.

A la Dra. Mabel Clara Fragoso Serrano por su apoyo y dedicación durante la realización de la presente investigación.

A la Dra. Suzana G. Leitão (Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, Brasil) por compartir el material vegetal de la especie brasileña *Hyptis monticola*.

Al Dr. Rogelio Pereda Miranda por permitirme trabajar en su grupo de investigación y por la dedicación brindada durante la dirección de la presente investigación.

CONTENIDO

1.	Introducción	5	
2.	Antecedentes 9		
	2.1 La familia Lamiaceae		
	2.2 Género Hyptis	9	
	2.3 Hyptis pectinata e Hyptis monticola	11	
	2.4 Fitoquímica de especies del género Hyptis	14	
	2.5 Dihidro-2 <i>H</i> -piran-2-onas		
	2.5.1 Dihidro-2 <i>H</i> -piran-2-onas sustituidas en la posición C-4	18	
	2.5.2 Dihidro-2 <i>H</i> -piran-2-onas sustituidas en la posiciones C-5 y C-6	21	
	2.5.2.1 5,6-Dihidro-2H-piran-2-onas aisladas de especies del	24	
	género Hyptis		
	2.6 Química computacional	25	
	2.6.1 La resonancia magnética nuclear y el análisis conformacional	28	
	2.7 Referencias	34	
3.	Justificación	45	
1	Objetives	17	
т.	objeuvos	т/	
5.	Capítulo I: Structure Elucidation, Conformation, and Configuration of Cytotoxic 6-	49	
	Decking to a Tubulin		
	5.1 Introduction	51	
	5.2 Results and discussion	54	
	5.3 Experimental section	73	
	5.4 References	83	
	5.5 Información suplementaria	87	
(Construction In Additional and the state of	105	
0.	Capítulo II: Aislamiento y elucidación estructural de 2(5H)-furanonas 18 18 18 18		
	6 1 Introducción	185	
	6.2 Desarrollo experimental	188	
	6.2.1 Determinación de constantes espectroscópicas	188	
	6.2.2 Material vegetal	188	
	6.2.3 Extracción del material vegetal	188	
	6.2.4 Técnicas cromatográficas		
	6.2.5.1 Cromatografía en columna abierta	189	
	6.2.5.2 Cromatografía en capa fina (CCF)	189	
	6.2.5.3 Cromatografía en contracorriente (HSCCC)	189	
	6.2.5.4 Cromatografía de líquidos de alta resolución (CLAR)	190	
	6.2.6 Fraccionamiento primario	191	
	6.2.7 Fraccionamiento secundario	192	
	6.2.8 Análisis y purificación mediante cromatografía de líquidos	194	
	6.2.9 Hidrólisis de la montecólida A (14) y pectinólida I (15)	202	
	6.2.10 Reacción de acetilación de 1 y 4	202	
	6.2.11 Ensayo de citotoxicidad	202	
	6.3 Resultados y discusión	205	
	6.3.1 Estudio fitoquímico	205	
	6.3.2 Elucidación estructural de las lactonas 1-5	206	
	6.3.3 Elucidación estructural de las sustancias aromáticas	212	
	6.4 Referencias	220	
	6.5 Información suplementaria	223	
7.	Conclusiones 24		
8	Publicaciones y presentaciones en congresos		
.	r ubicaciones y presentaciones en congresos 23		

V

LISTA DE FIGURAS

Introducción

Figura 1. Plantas con compuestos con actividad antitumoral.		
Antecedentes		
Figura 2. Morfología de Hyptis pectinata.	12	
Figura 3. Morfología de Hyptis monticola.	14	
Figura 4. Terpenoides aislados de de especies del género Hyptis.	15	
Figura 5. Lignanos aislados de especies del género Hyptis.	16	
Figura 6. Flavonoides y fenilpropanoides aislados de especies del género Hyptis.	17	
Figura 7. Pironetina aislada de Streptomyces sp.	18	
Figura 8. Dihidro-2 <i>H</i> -piran-2-onas sustituidas en la posición 4.	20	
Figura 9. Dihidro-2 <i>H</i> -piran-2-onas sustituidas en las posiciones 5 y 6.	23	
Figura 10. 5,6-dihidro-2H-piran-2-onas aisladas del género Hyptis.	25	
Figura 11. Estructuras de productos naturales corregidas a través de química	31	
computacional.		
Figura 12. Estructuras originales y corregidas por DFT de las 5,6-dihidro-2 <i>H</i> -		
piran-2-onas de especies del género Hyptis.		

Capítulo I

Figure 1. Chemical structure of pironetin (above), a representative example of 52 cytotoxic 5,6-dihydro-2*H*-pyran-2-ones, and minimum energy molecular model of α -tubulin with pironetin covalently bonded at Lys352 (below). Pironetin incorportation alters the H8 and M-loop tertiary structure of α -tubulin.

Figure 2. RMSD values between theoretical and experimental ${}^{3}J_{\text{H,H}}$ for epimers **3** and **5** in gas phase (blue) and solution (red).

Figure 3. The four most relevant conformers of pectinolide C (3) modeled in CHCl₃ 62 solution, showing the stabilizing intramolecular hydrogen bond formed between the hydroxy hydrogen at C-5 in the lactone ring and the carbonyl group of the acetyloxy substituent at C-3'.

Figure 4. The four most relevant conformers of pectinolide J (5) modeled in in 62 CHCl₃ solution.

Figure 5. Structure of the most frequent and stable pectinolide K (6)-tubulin 72 complex. Tubulin α -subunit (cyan); β -subunit (blue). The distance between the Lys352 amino group (red) and the β carbon atom of the α , β -unsaturated lactone was 5.30 Å, close enough to favor a Michael addition. Docking energy (*E_f* kcal/mol) and hydrogen bond distances are indicated.

Capítulo II

Figura 1. La bútenólida más simple, 2-furanona.	185
Figura 2. Butenólidas de original natural.	185
Figura 3. 2(5H)-furanonas aisladas de especies del género Hyptis.	186
Figura 4. 2(5 <i>H</i>)-furanonas de origen natural.	187

Figura 5. Purificación de la fracción 85-87 a través de la técnica de reciclaje.	197	
Figura 6. CLAR a nivel preparativo de la fracción 39-51.	197	
Figura 7. CLAR a nivel preparativo de la fracción 19-25.		
Figura 8. CLAR a nivel analítico de la fracción 35-38.		
Figura 9. CLAR a nivel analítico de la fracción A9.		
Figura 10. CLAR a nivel analítico de la fracción F4.	198	
Figura 11. Purificación del pico 2 de la fracción F4 a través de la técnica de reciclaje.	199	
Figura 12. Ensayo de citotoxicidad con el método de la SRB en la línea celular	204	
MCF-7 (carcinoma de mama). La figura muestra la toxicidad producida por		
diferentes controles positivos (CI ₅₀ µg/mL): vinblastina, 0.047; adriamicina, 0.644;		
colchicina, 0.016; camptotecina, >0.00064; elipticina, 0.359.		
Figura 13. Pirona adicional y furanonas a aisladas de <i>H. monticola</i> e <i>H. pectinata</i> .	205	
Figura 14. Sustancias aromáticas aisladas de las plantas <i>H. monticola</i> e <i>H. pectinata</i> .	206	
Figura 15. Correlaciones químicas entre la pectinólida A y las montecólidas.	207	
Figura 16. Mecanismo para la apertura de la δ -lactona y formación de la 2(5H)-	208	
furanona.		
Figura 17. Correlación química entre la pectinólida I (15) y las 2(5 <i>H</i>)-furanonas.	211	
Figura 18. Espectro de masas mediante (+)-ESI de la 3-acetoxi-aromadendrina (8).	214	
Figura 19. Fragmentación en (+)-electroespray de la 3-acetoxi-aromadendrina (8).	215	
Figura S1. Espectro de ¹ H RMN (400 MHz) de la montecólida C (1) en CD ₃ OD.	223	
Figura S2. Espectro de ¹³ C RMN (100 MHz) de la montecólida C (1) en CD ₃ OD.	224	
Figura S3. Espectro 2D 1 H- 1 H COSY de la montecólida C (1) en CD ₃ OD.	225	
Figura S4. Espectro 2D 1 H- 13 C HSQC de la montecólida C (1) en CD ₃ OD.	226	
Figura S5. Espectro de ¹ H RMN (400 MHz) de la montecólida D (2) en CDCl ₃ .		
Figura S6. Espectro de ¹³ C RMN (100 MHz) de la montecólida D (2) en CDCl ₃ .	227	
Figura S7. Espectro bidimensional ${}^{1}\text{H}{}^{-1}\text{H}$ COSY de la montecólida D (2) en CDCl ₃	228	
Figura S8. Espectro bidimensional ¹ H- 13 C HSQC de la montecólida D (2) en CDCl ₃ .	229	
Figura S9. Espectro de ¹ H RMN (400 MHz) de la pectinólida N (3) en CDCl ₃ .	230	
Figura S10. Espectro de ¹³ C RMN (100 MHz) de la pectinolida N (3) en CDCl ₃ .	231	
Figura S11. Espectro de ¹ H RMN (400 MHz) de la pectinolida O (4) en CDCl ₃ .	232	
Figura S12. Espectro de ¹³ C RMN (100 MHz) de la pectinolida $O(4)$ en CDCl ₃ .	233	
Figura S13. Espectro de ¹ H RMN (400 MHz) de la pectinolida P (5) en CDCl ₃ .	234	
Figura S14. Espectro de ¹³ C RMN (100 MHz) de la pectinolida P (5) en CDCl ₃ .	235	
Figura S15. Espectro de ² H RMN (400 MHZ) del dinidrokaempierol (6) en CD ₃ OD.	230	
Figura S16. Espectro de $^{-1}$ C RIVIN (100 MHZ) del dinidrokaempierol (6) en CD ₃ OD.	237	
Figura S17. Espectro de ¹ H RIVIN (400 MHz) de cartamidina (7) en CD ₃ OD. Figura S18. Espectro de 13 C DNOL (100 MHz) de la sertemidina (7) en CD OD	238	
Figura S18. Espectro de 10 C RMIN (100 MHz) de la cartamidina (7) en CD ₃ OD.	239	
Figura S17. Espectro de H KMIN (400 MHZ) de 2 <i>K</i> , 5 <i>K</i> -acetoxi-aromadendrina (8) on CD-OD	240	
Figure S18 Espectre de ¹³ C PMN (100 MHz) de le 2P 2P acetori aromadendrine	241	
(8) on CD ₂ OD	212	
Figure \$17 Espectro de ¹ H RMN (400 MHz) de 28 38-acetovi-dihidrogosinetina	2 7 2	
(9) en CD ₂ OD	243	
Figura S18. Espectro de ¹³ C RMN (100 MHz) de la 2 <i>R</i> 3 <i>R</i> -acetoxi-	<i>Δ</i> τ <i>J</i>	
dihidrogosipetina (9) en CD ₃ OD.	244	
Figura S19. Espectro de ¹ H RMN (400 MHz) del ácido rosmarínico (10) en CD ₃ OD.		
	245	

Figura S20. Espectro de ¹³C RMN (100 MHz) del ácido rosmarínico (10) en 246 CD₃OD.

LISTA DE CUADROS

Antecedentes

Antecedentes		
Cuadro 1. Actividad farmacológica de especies del género Hyptis.		
Cuadro 2. Taxonomía de <i>H. pectinata</i> e <i>H. monticola</i> .		
Cuadro 3. Fiemplos de enantiómeros mostrando diferentes actividades biológicas		
	00	
Capítulo I		
Table 1. ¹ H NMR Data of Natural Products 4-10 (400 MHz in CDCl ₂ δ in ppm	56	
and Lin Hz)	50	
Table 2 $\frac{13}{12}$ NMP Data of Natural Products 4 10 (100 MHz in CDCl. δ in npm)	57	
Table 2. C NVIK Data of Natural Flouders 4-10 (100 Milz in CDC13, 0 in ppin). Table 2. ¹ U NMD Chamical Shift Data for Signals from (S) and (D) Estar	50	
Table 5. If NMR Chemical Sint Data for Signals from (5)- and (R)-Ester	28	
Derivatives 11, 13 and 16 (300 MHz in CDCl ₃ , ∂ in ppm).	60	
Table 4. Summary ^a of Theoretical ^a and Experimental ^a Chemical Shifts (in ppm) for	60	
the C-4' Protons of 3 and 5 .		
Table 5. Summary ^{<i>a</i>} of Theoretical ^{<i>b</i>} and Experimental ^{<i>c</i>} ${}^{3}J_{H,H}$ Coupling Constants for	65	
Compound 2-5, 10, and 14.		
Table 6. ¹ H NMR Data of Derivatives 14 and 17-19 (300 MHz in CDCl ₃ , δ in ppm,	69	
and J in Hz)		
Table 7. ¹³ C NMR Data of Derivatives 14 and 17-19 (75 MHz in CDCl ₃ , δ in ppm,	69	
and J in Hz).		
Table 8. Cytotoxicity of Natural Compounds 1-10 for Three Cancer Cell Lines.	72	
Capítulo II		
Cuadro 1 . Columnas utilizadas en el equipo de CLAR.	190	
Cuadro 2. Fraccionamiento primario de <i>H. pectinata</i> .	192	
Cuadro 3. Fraccionamiento secundario de las fracciones A9. A12 y B8.	194	
Cuadro 4 Condiciones utilizadas en CLAR para H monticola e H pectinata	196	
Cuadro 5 Valores de ¹ H NMR para los productos naturales 1-5 (400 MHz en CDC) ₂	211	
$v CD_2 OD^a \delta$ en nnm <i>L</i> en Hz)	211	
Cuadro 6 Valores de ¹³ C NMR para los productos naturales 1 5 (100 MHz en	212	
$CDCl_{a} \times CD_{a}OD^{a} \delta $ on nmm)	212	
Chodro 7. Citatorioidad da las 2(51) furenanas aisladas da 11. nastingta a 11.	212	
Monticola	212	
$C_{\text{res}} = \frac{1}{2} \sum_{i=1}^{n} \frac{1}{2} \sum_{$	210	
Cuadro 8. valores de 'H NNIK para los productos naturales $5-7$ (400 MHz en	218	
CD_3OD , δ en ppm, J en Hz).	010	
Cuadro 9. Valores de 'H NMR para los productos naturales 5-7 (400 MHz en	218	
CD_3OD , δ en ppm, J en Hz).		

LISTA DE ABREVIATURAS

Abreviatura

Significado

[α]	Rotación específica
B3LYP	Funcional de intercambio Becke, funcional de
-	correlación Lee-Yang-Parr con tres parámetros
CDCl ₃	Cloroformo deuterado
CH ₂ Cl ₂	Diclorometano
CHCl ₃	Cloroformo
Cvs316	Residuo de cisteína 316
COSY	Correlation Spectroscopy
mCPBA	Ácido meta cloroperbenzoico
ΔG	Energía libre de Gibbs
δ	Desplazamiento químico
d	Doblete
dd	Doble de doble
ddd	Doble de doble de doble
DFT	Teoría de funcionales de la densidad
DGDZVP	Conjunto de bases doble zeta para electrones de
	valencia más funciones de polarización
DMSO	Dimetil Sulfóxido
ECD	Dicroísmo circular electrónico
ESIMS	Espectrometría de masas por ionización en
	electrospray
AcOEt	Acetato de etilo
GIAO	Orbitales atómicos gauge incluidos
H_2O_2	Peróxido de hidrógeno
HCT-15	Carcinoma de colon
HeLa	Carcinoma de cérvix
HPLC	Cromatografía de líquidos de alta resolución
HRESIMS	Espectrometría de masas por ionización en
	electrospray de alta resolución
HSCCC	Cromatografía en contracorriente
HSQC	Heteronuclear single quantum coherence
Hz	Hertz
IC_{50}	Concentración inhibitoria media
J	Constante de acoplamiento
$^{3}J_{\mathrm{H,H}}$	Constante de acoplamiento vecinal
КОН	Hidróxido de potasio
Lys352	Residuo de lisina 352
MCF-7	Carcinoma de mama
m/z	Relación masa carga
MeOH	Metanol
CD ₃ OD	Metanol deuterado

MMFF94	Merck Molecular Force Field 94
(<i>S</i>)- y (<i>R</i>)-MTPA-Cl	(S)- o (R)- α -metoxi- α -(triflourometil)fenilacetil
¹ H NMR/RMN	Resonancia magnética nuclear de hidrógeno
¹³ C NMR/RMN	Resonancia magnética nuclear de carbono 13
NOE	Efecto Nuclear Overhauser
ORD	Dispersión óptica rotatoria
Р	Fracción molar
PCM	Polarizable continuum model
ppm	Partes por millón
RMSD	Root-mean-square deviation
SRB	Sulforrodamina B
t	Triplete
TMS	Tetrametilsilano
t_r	Tiempo de retención
UPLC	Cromatografía de líquidos de ultra resolución

RESUMEN

La actividad farmacológica de un metabolito depende de su estructura tridimensional, por ello es importante determinarla para comprender las interacciones involucradas con las biomoléculas que sirvan como sus ligandos. La determinación de la configuración absoluta de los centros quirales de una molécula se puede llevar a cabo a través de método experimentales como la rotación óptica, la difracción de rayos X, el dicroísmo circular, el dicroísmo circular vibracional y la derivatización con ésteres de Mosher; además de métodos computacionales, como la Teoría de Funcionales de la Densidad (DFT), a través de los cuales se puede realizar un análisis conformacional para obtener las constantes de acoplamiento vecinales H,H (${}^{3}J_{H,H}$) y los desplazamientos químicos teóricos (δ) para los núcleos de protón y carbono en la resonancia magnética nuclear (RMN), considerando condiciones para una fase gaseosa o en solución con el fin de comparar los valores teóricos obtenidos con los experimentales y poder distinguir entre un grupo de epímeros.

El presente trabajo describe el aislamiento, la purificación, la caracterización estructural, el análisis conformacional por DFT, la evaluación del potencial citotóxico y el análisis de acoplamiento molecular de las 5,6-dihidro-2*H*-piran-2-onas aisladas de las especies *Hyptis pectinata* e *Hyptis monticola*, compuestos a los cuales se les ha reportado actividad citotóxica y antimicrobiana. El anillo de δ -lactona- α , β -insaturada es el responsable de la actividad biológica por medio de su interacción con la subunidad alfa del dímero de tubulina a través de una adición tipo Michael que sucede entre el nitrógeno terminal del residuo de lisina 352 y el doble enlace de la δ -lactona- α , β -insaturada; los grupos funcionales presentes en la cadena lateral interacciones por puentes de hidrógeno con los grupos funcionales de los aminoácidos cercanos dándole estabilidad al complejo formado. Además, de estas especies de *Hyptis* también se aislaron, purificaron, caracterizaron y evaluó el potencial citotóxico de compuestos del tipo 2(5*H*)-furanonas, relacionadas con las 5,6-dihidro-2*H*-piran-2-onas, junto con seis estructuras flavonoides y un fenilpropanoide previamente aislados de otras especies de la familia Lamiaceae.

1

Utilizando diversas técnicas cromatográficas como columna abierta y la cromatografía de líquidos de alta resolución (CLAR) se obtuvieron de H. pectinata tres 5,6-dihidro-2H-piran-2-onas previamente descritas conocidas como pectinólida A-C y cinco compuestos novedosos, pectinólida I-M junto con tres estructuras tipo 2(5H)-furanonas. A partir de la cromatografía en contra corriente, de H. monticola se obtuvieron dos compuestos biogenéticamente relacionados con las pectinólidas, la montecólida A y B, una nueva 2(5H)furanona y dos flavonoides previamente reportados. La configuración absoluta de los compuestos obtenidos se determinó a través del registro de sus propiedades quirópticas, ésteres de Mosher y el análisis de las constantes de acoplamiento vecinales H,H (${}^{3}J_{H,H}$) en RMN. Se realizó el análisis conformacional de la pectinólida C y J, correspondiente a un par enantiomérico, para confirmar la configuración absoluta de los centros quirales presentes en la cadena alifática que sustituye la posición C-6 del anillo de δ -lactona- α , β -insaturada de estos compuestos a través de un protocolo basado en la comparación de las constantes de acoplamiento vecinales calculadas por DFT B3LYP/DGDZVP y experimentales (RMN). Este protocolo también se aplicó para las pectinólidas B e I y la montecólida B, junto con el derivado obtenido de la epoxidación y posterior apertura en medio ácido de la pectinólida K.

Se evaluó el potencial citotóxico de las 5,6-dihidro-2*H*-piran-2-onas y las 2(5*H*)-furanonas aisladas frente a tres líneas celulares derivadas de tumores humanos; las 2(5*H*)-furanonas y las pectinólidas L y M no presentaron actividad citotóxica, el resto de los compuestos presentaron una actividad moderada que se encuenta en un rango de IC₅₀ 0.1-9.9 μ M. Se seleccionaron las pectinólidas C y K, las montecólidas A y B y el epóxido derivado obtenido de la epoxidación de la pectinólida K para el análisis de acoplamiento molecular ("docking"). Este análisis puso en evidencia la alta afinidad de las 5,6-dihidro-2*H*-piran-2-onas con la subunidad α del dímero de tubulina, a través de una adición tipo Michael de las 5,6-dihidro-2*H*-piran-2-onas. Esta interacción puede representar un mecanismo para justificar el potencial citotóxico de estas moléculas flexibles.

ABSTRACT

The pharmacological activity of a metabolite depends on its three-dimensional structure, so it is important to determine its configuration in order to understand the interactions involved with the biomolecules that serve as ligands. The absolute configuration for the chiral centers of a molecule can be determined through experimental methods such as optical rotation, X-ray diffraction, circular dichroism, circular vibrational dichroism, and derivatization with Mosher esters; in addition to computational methods, such as the Density Functional Theory (DFT), through which a conformational analysis can be performed to obtain the theoretical vicinal coupling constants H,H ($^{3}J_{H,H}$) and chemical shifts (δ) for proton and carbon in nuclear magnetic resonance (NMR). After considering conditions for a gaseous phase or in solution, it is possible to compare theoretical values with experimental values to be able to distinguish between a group of epimers.

The present work describes the isolation, purification, structural characterization, conformational analysis by DFT, evaluation of the cytotoxic potential and molecular coupling analysis of 5,6-dihydro-2*H*-pyran-2-ones isolated from the species *Hyptis pectinata* and *Hyptis monticola*, compounds to which cytotoxic and antimicrobial activity have been reported. The δ -lactone- α , β -unsaturated ring is responsible for the biological activity by means of its interaction with the alpha subunit of the tubulin dimer through a Michael-type addition that occurs between the terminal nitrogen of the lysine residue 352 and the double bond of the δ -lactone- α , β -unsaturated, the functional groups present in the side chain interact by hydrogen bonds with the functional groups of nearby amino acids giving stability to the complex. In addition, from these *Hyptis* species, 2(5*H*)-furanones, related to 5,6-dihydro-2*H*-pyran-2-ones, were also isolated, purified, characterized and their cytotoxic potential evaluated, together with six flavonoids and one phenylpropanoid, which represented structures previously isolated from other species of the family Lamiaceae.

By the application of various chromatographic techniques, such as open column and high performance liquid chromatography (HPLC), three previously described 5,6-dihydro-2*H*-pyran-2-ones, the known pectinolide A-C, were obtained from *H. pectinata* in aditition to

five novel compounds, pectinolide I-M, together with three 2-(5*H*)-furanones. The use of countercurrent chromatography afforded two compounds, biogenetically related to pectinolides from *H. monticola* extracts: montecolide A and B, in addition to a new 2(5*H*)-furanone. Their absolute configuration was determined through the registration of their chiroptical properties, Mosher esters and the analysis of the vicinal coupling constants H,H (${}^{3}J_{H,H}$) in NMR. The conformational analysis of pectinolide C and J corresponding to an enantiomeric pair was performed to confirm the absolute configuration of the substituent groups present in the aliphatic chain that substitutes the C-6 position of the δ -lactone- α , β -unsaturated ring of these compounds through a protocol based on the comparison of the vicinal coupling constants calculated by DFT (B3LYP/DGDZVP) and experimental (NMR). This protocol was also applied for the pectinolide B, I, montecolide B and the derivative obtained from the epoxidation and subsequent opening in acid medium of pectinolide K.

The cytotoxic potential of the 5,6-dihydro-2*H*-pyran-2-ones and the 2(5*H*)-furanones isolated against three cell lines derived from human tumors was evaluated; the 2(5*H*)-furanones and the pectinolides L and M did not present cytotoxic activity, the rest of the compounds presented a moderate activity that was found in a range of IC₅₀ 0.1-9.9 μ M. Pectinolide C, K, montecolide A, B and the epoxide derivative obtained from the epoxidation of pectinolide K were selected for a molecular docking analysis in which a high affinity of the 5,6-dihydro-2*H*-pyran-2-ones with the α subunit of the tubulin dimer was demonstrated though a Michael-type addition, which may be a possible mechanism contributing to the cytotoxic potential of these small and flexible molecules.

1. INTRODUCCIÓN

La utilidad de las plantas medicinales para el tratamiento de diversos padecimientos es un hecho bien conocido desde siempre por todas las sociedades. La OMS define a las plantas medicinales como cualquier especie vegetal que contiene sustancias que pueden ser empleadas para propósitos terapéuticos o cuyos principios puedan servir de precursores para la síntesis de nuevos fármacos. En el caso de México, éste ocupa el quinto lugar respecto al número de especies de plantas y se estiman alrededor de 7000 especies con algún tipo de uso, de las cuales 4000 se han identificado y registrado con atributos medicinales.¹

Cáncer es un término genérico que designa un amplio grupo de enfermedades que pueden afectar a cualquier parte del organismo; también se habla de tumores malignos o neoplasias malignas y una característica definitoria de estos términos es la multiplicación rápida de células anormales que se extienden más allá de sus límites habituales y pueden invadir partes adyacentes del cuerpo o propagarse a otros órganos, un proceso que se denomina metástasis, la cual es la principal causa de muerte por cáncer. El cáncer es la segunda causa de muerte en el mundo, en el 2015 ocasionó 8.8 millones de muertes.² El tratamiento de estas enfermedades se basa principalmente en la cirugía, radiación y quimioterapia, sin embargo, algunos productos de origen vegetal también desempeñan un papel importante.^{3,4}

Una variedad de compuesto derivados de plantas han sido utilizados exitosamente en el tratamiento del cáncer, uno de los más significativos ejemplos son los alcaloides de la vinca aislados de *Catharantus roseus*; la vincristina, vinblastina y vindesina fueron los primeros alcaloides de la vinca con actividad antitumoral identificada. El mecanismo de acción de estos compuestos se lleva a cabo a través de la unión específica con la subunidad β -tubulina y bloquea la habilidad de polimerización con la α -tubulina en microtúbulos lo cual lleva a la muerte celular por la inhibición de la mitosis.^{3,4} Metabolitos como la maitansina, un macrólido aislado de plantas del género *Maytenus*, desestabilizan los microtúbulos al unirse a la β -tubulina e inhibir las interacciones longitudinales entre los dímeros de tubulina; la colchicina inhibe la formación del microtúbulo previniendo principalmente previniendo el cambio conformacional de la forma "curva" del dímero de tubulina en su forma libre a una

estructura "recta" en los microtúbulos.⁵ Otros ejemplos de compuestos con actividad antitumoral derivado de productos naturales son el etoposido, una epipodofilotoxina inhibidora de la topoisomerasa II aislada de *Podophyllum peltatum* y *Podophyllum emodi*. Los taxanos como el paclitaxel, aislado inicialmente de *Taxus brevifolia*, y el docetaxel, un taxano semisintético obtenido a partir del 10-desacetilbaccatina III aislado de *Taxus baccata*, muestran una actividad citotóxica sobre la tubulina manteniendo el microtúbulo polimerizado y protegiéndolo de su despolimerización,³ al igual que la pelorusida A y la laulimalida aisladas de esponjas marinas *Cacospongia mycofijensis* y *Mycale hentscheli* respectivamente.⁵

Figura 1. Plantas productoras de compuesto con actividad antitumoral.

A diferencia de los compuestos anteriormente mencionados, las 5,6-dihidro-2*H*-piran-2onas, aisladas de diversos microorganismos y plantas, son los únicos compuestos que actúan sobre la subunidad α del dímero de tubulina desestabilizando los microtúbulos al unirse y perturbar la hélice H8 y el bucle T7 de la α -tubulina que inhibe las interacciones tubulinatubulina longitudinales⁵. De las plantas del género *Hyptis* se han aislado una variedad de 5,6dihidro-2*H*-piran-2-onas, por ejemplo, las brevipólidas aisladas de *Hyptis brevipes* que desarrollaron una citotoxicidad moderada en contra de la línea celular de carcinoma nasofaríngeo⁶ y las pectinólidas aisladas *H. pectinata* que exhibieron una IC₅₀ menor a 4 μ g/mL frente a diversas líneas celulares.⁷

En el presente estudio, se realizó una investigación química de dos plantas del género Hyptis provenientes de México y del suroeste de Brasil; este género tiene una importante relevancia dentro de la medicina tradicional latinomaericana donde se le ha dado usos para el tratamiento de malestares gastrointestinales, pulmonares y cutáneos, así como para el tratamiento de dolores reumáticos, musculares y calambres; también se ha demostrado una variedad de actividades farmacológicas entre las que resaltan las propiedades antiinflamatorias, antifúngicas y antimicrobianas, incluyendo la actividad citotóxica relacionada con las 5,6-dihidro-2H-piran-2-onas y los compuestos de tipo lignano. El presente trabajo se enfocó en el aislamiento, purificación y caracterización de nuevos compuestos citotóxicos, a partir de los cuales y utilizando una combinación de correlaciones químicas, mediciones quirópticas y análisis de resonancia magnética nuclear (RMN) de sus ésteres de Mosher se confirmó su configuración absoluta. Mediante el empleo de cálculos DFT-RMN para determinar los desplazamientos químicos y las constantes de acoplamiento $J_{\text{H-H}}$ fue posible la diferenciación epimérica de los compuestos aislados. Se realizó el acoplamiento molecular para determinar la alta afinidad por el sitio de unión en la α-tubulina para explicar el potencial citotóxico de estas moléculas pequeñas y altamente flexibles.

2. ANTEDECENTES

2.1 La familia Lamiaceae.

La familia Lamiaceae está constituida por 236 géneros y 7173 especies, son plantas aromáticas y tienen importancia económica en varias partes del mundo ya que muchas se usan como condimento (*Origanum, Thymus y Mentha*), para la perfumería (*Lavandula, Pogostemon y Salvia*) y para usos ornamentales (*Coleus, Salvia y Scutellaria*). Presentan una distribución cosmopolita, en México se encuentran ampliamente distribuidas principalmente a lo largo de las zonas montañosas y de manera primordial en el eje volcánico transversal. Los géneros más representativos en el país son *Salvia, Scutellaria, Stachys* e *Hyptis* con más de 35 especies cada uno.⁸

El nombre original de la familia es Labiatae (labiadas) debido a que típicamente las flores tienen los pétalos fusionados en un labio superior e inferior. Las hojas emergen de manera opuesta, cada par en ángulo recto con el anterior (llamado decusado) o verticiladas (conjunto de tres o más hojas que crecen al mismo nivel). Los tallos son frecuentemente cuadrados en la sección transversal. Las flores son bilateralmente simétricas con cinco pétalos fusionados y cinco sépalos también fusionados. Son usualmente bisexuales y verticilastradas (flores en racimo).⁹ Los constituyentes medicinales de las especies de la familia Lamiaceae incluyen principalmente aceites esenciales con propiedades antibacterianas, antivirales, carminativas y antiespasmolíticas.¹⁰

2.2 Género Hyptis.

El género *Hyptis* es rico en especies de gran importancia farmacológica alrededor del mundo y su uso se remonta a las civilizaciones mesoamericanas. El manuscrito del siglo XVI "Historia Plantarum Novoae Hispanae" del médico español Francisco Hernández menciona a especies del género *Hyptis* con el nombre de "huistsiquia" (purépecha) y "xoxouhcaptli" (náhuatl) para el tratamiento de disentería, tumores, reumatismo, llagas e infecciones oculares.⁶ De este género se conocen 280 especies en el mundo, de las cuales 35 se encuentran

en México y 17 son endémicas y se distribuyen principalmente en las partes tropicales del sur y a lo largo de ambas costas.⁸

La mayoría de los usos tradicionales que se le han dado a las plantas de este género están relacionados con el tratamiento de padecimientos gastrointestinales, cutáneos, respiratorios, así como para el tratamiento de la fiebre y el dolor.¹¹ Otros usos descritos para estas especies están relacionados con el tratamiento de la gota utilizando preparados de la planta *H. fasciculata*¹²; especies como *H. mutabilis* e *H. suaveolens* han sido utilizadas para el tratamiento contra el paludismo¹³ y la segunda para el tratamiento de la tuberculosis.¹⁴ Las especies *H. oblongifolia* e *H. albida* han sido utilizadas como repelentes de insectos^{15,16} e *H. spicigera* se ha usado tradicionalmente como insecticida.¹⁷ Algunos de estos usos, y muchos otros, se han corroborado a través de estudios científicos. En el cuadro 1 se resume la actividad farmacológica para las especies del género *Hyptis*.

Cuadro 1. Actividad farmacológica de especies del género Hyptis.

H. romboides	Actividad antixantina oxidasa ¹⁸ y antimicrobiana ¹⁹		
H. Suaveolens	Actividad contra <i>Plasmodium falciparum</i> ²⁰ , antidiabética ²¹ .		
	antiviral contra el virus causante de la fiebre chikunguña ²² .		
	antimicótico contra el género Aspergillus ²³ , antinociceptiva ²⁴ ,		
	gastroprotectiva contra agentes $ulcerantes^{24}$. efecto		
	hepatoprotectivo ²⁵		
H. brevines	Actividad antimicrobiana ¹⁹ , antifúngica ²⁶		
H crenata	Actividad a antiulcerogénica 27 citotóxica y antioxidante 28		
H. crenana H. sniciaera	Repelente de insectos ²⁹ actividad antinocicentiva ³⁰		
11. spicizera	α antibolicopiiva de inscetos , actividad antibolicopiiva ,		
H lantanifolia	Inhibidor de la VIH transcriptasa reversa ³²		
II. tuntunijottu II. functionan	1 Initiation of the transcription reversa		
H. jruucosa	Actividad antioxidante, electo antinociceptivo", electo		
TT / · ·			
H. martiussi	Actividad antiulcerogenica ³³ , antimicrobiana mediada por luz^{30} ,		
	antifungica, antiprotozoaria contra <i>Trypanozoma cruzi³⁷</i> ,		
	antiedematogenica ³⁰		
H. albida	Actividad antiinflamatoria ³⁹		
H. urticoides	Actividad antimicrobiana contra S. aureus y E. coli ⁴⁰		
H. mutabilis	Actividad antitumoral en sarcomas de roedores ⁴¹ , antifúngica contra		
	<i>Mucor sp.</i> ⁴²		
H. fasciculata	<i>a</i> Actividad antimicrobiana frente <i>H. pylori</i> , <i>E. coli</i> y <i>S. enteritidis</i> ⁴³		
H. ovalifolia	Actividad antifúngica contra dermatofitos ⁴⁴		
H. atrorubens	Actividad antibacteriana y antifúngica ⁴⁵		
H. verticillata	Actividad citotóxica, antimicrobiana, antifúngica, insecticida,		
	antiviral ⁴⁶		

2.3 Hyptis pectinata e Hyptis monticola.

Hyptis pectinata es conocida comúnmente como "hierba del burro" en Veracruz, con el nombre maya de xoolte'xnuuk en Yucatán y en San Luis Potosí con el nombre huasteco de Terek de task maape'.⁴⁷ En Brasil, se le conoce como "mercúrio do campo" o "Canudiho" en los estados de Sergipe y Alagoa. En el resto de Hispanoamérica, se le conoce como "poleo".⁴⁸ Se encuentra diseminada abundantemente en los trópicos de ambos hemisferios. En África, se distribuye desde Sierra Leona hacia el este hasta Abisinia y hacia el sur hasta Angola, Rodesia, Tanzania, Malawi y Madagascar. En Asia, ha sido hallada en Java, Guam y en India, en las regiones de Tamil Nadu, Bengala Occidental y Assam. En México, se distribuye en el eje volcánico transversal, en el pacífico desde Nayarit hasta Chiapas, en los estados del Golfo de México y de la península de Yucatán.⁴⁹

Es una hierba enmalezada perenne de hasta tres metros de alto, más o menos pubescente en las partes superiores, los ángulos a menudo escabrosos; láminas foliares variables en tamaño y forma, casi siempre de 4-7 cm de largo, las superiores reducidas, generalmente ovada, agudas o acuminadas, redondeadas en la base o hasta semicodiformes, irregularmente crenado-aserradas, la superficie superior densa y delicadamente hirsuta o a veces hirsuta, la inferior más clara, ya puberulenta, ya enblanquecida y tomentosa; pecíolos casi siempre de 2-3 cm de largo; címulas laxas, antes que densas, semiescorpiodes, a menudo bifurcadas, subtendidas por brácteas lineares o subfoliares, las bractéolas setáceas, pectinadas, de 1-4 mm de largo; pendúculos de 1-2 mm de largo; glomérulos generalmente apretados y en espiga; las espigas apanojadas, a menudo densamente; tubo del cáliz en la flor apenas de 1 mm de largo, los dientes de 1-1.5 mm de largo, erectos, estrictos, el orificio blanco-hirsuto, el tubo maduro de 1.5-2.5 mm de largo, levemente híspido, leve pero notablemente estrechado en el orificio; tubo de la corola de 1.5 mm de largo; núculas de más o menos 1 mm de largo, negras⁴⁹ (Figura 12).

En la medicina tradicional mexicana, *H. pectinata*, se ha usado para el tratamiento de fiebres, problemas cutáneos, gastrointestinales, rinofaringitis y congestión pulmonar,⁵⁰ además en Brasil se ha utilizado tradicionalmente en desórdenes del hígado, asma, tos, bronquitis y dismenorrea.⁵¹

Los extractos acuosos de las hojas demostraron efectos sobre la estimulación de la regeneración hepática,⁵² previenen la pérdida ósea en la enfermedad periodontal⁵³ y muestran efectos antidematogénicos y antinociceptivos en modelos animales.⁴⁸ Los efectos antinociceptivos mediados por loa receptores opioides y colinérgicos se han demostrado para el aceite esencial de *H. pectinata*,⁵⁴ junto con la actividad antiinflamatoria a través de la inhibición de la producción de óxido nítrico y la prostaglandina E2.⁵⁵ Los extractos orgánicos presentaron actividad contra el promastigote de *Leismania brazilensis*,⁵⁶ y también muestran propiedades antioxidantes⁵⁷ y actividad antimicrobiana contra bacterias Gram positivo como *Streptococcus mutans*⁵⁸ y levaduras.⁵⁹

Los aceites esenciales de *H. pectinata* son responsables de un gran número de aplicaciones terapéuticas; sin embargo, esta planta contiene un grupo de marcadores químicos conformado por el sistema farmacofórico alquilante de 6-heptenil-5,6-dihidro-2*H*-piran-2-ona, que contribuye con sus propiedades antimicrobianas y citotóxicas. La actividad de estos compuestos está relacionada con el sistema δ -lactona α,β -insaturado que actúa como una aceptor tipo Michael.⁶⁰

Figura 2. Morfología de Hyptis pectinata.

Hyptis monticola es una especie endémica del sureste de los estados de Minas Gerais y Río de Janeiro.⁴⁹ No se han descrito estudios previos para la actividad farmacológica de esta especie; sin embargo, se han estudiado los aceites esenciales de esta planta y se determinó que sus principales componente eran el *trans*-cariofileno, el (*E*)-metil-cinamato, el germacreno D, el limoneno, el α -muroleno y el β -pineno.⁶¹

Es un arbusto pequeño con ramas más o menos rígidas, delicada y levemente híspidas con pelos ascendentes, los internodios casi tan largos como las hojas; láminas foliares coriáceas, casi siempre obovadas, a veces ovadas u ovales, de 2.0-4.5 cm de largo, de 1.0-2.5 cm de ancho, redondeadas en el ápice u obtusas, estrechadas debajo de la mitad o aún acuminadas hasta pecíolos de 2-6 mm de largo, sus márgenes crenados, principalmente arriba de la mitad, la superfície superior escabrosa, también glabra, la inferior levemente híspida a lo largo de las venas y menudamente puberulenta en las areolas, o casi glabra; capítulos maduros de 12-15 mm de diámetro, hemisféricos, en las axilas de las hojas superiores notablmente reducidas con pendúculos levemente híspidos de 8-12 mm de largo, semicorimbosos y agregados en panojas bastante hojosas; brácteas subuladas, de 4-6 mm de largo; cáliz en la flor más o menos 1 mm de ancho en la base, de 5 mm de largo; núculas de 2 mm de largo⁴⁹ (Figura 3). La clasificación taxonómica de *H. pectinata* e *H. monticola* se encuentra en el cuadro 2.

Cuadro 2. Taxonomía de <i>H. pectinata</i> e <i>H. monticola</i> .			
Reino	Plantae		
Division	Magnoliophyta		
Clase	Magnoliopsida		
Orden	Lamiales		
Familia	Lamiaceae		
Género	Hyptis		
Especie	Hyptis pectinata (L.)	Hyptis monticola Mart. Ex Benth.	
	Poit.		

2.4 Fitoquímica de especies del género Hyptis.

De las especies del género *Hyptis*, se han aislado una gran variedad de metabolitos secundarios, entre los que destacan aquellos de tipo terpenoide, flavonoide, lignano y las 5,6dihidro- α -pironas. Los aceites esenciales de las plantas pertenecientes a la familia Lamiaceae son de gran importancia económica, además de que son los responsables de muchas de las actividades farmacológicas. Los principales compuestos presentes en los aceites esenciales son los monoterpenos y sesquiterpenos, aunque otras sustancias han sido identificadas como ácidos grasos C₁₆ y C₁₈ esterificados en *H. spicigera*, fenol en *H. pectinata* y acetato de decilo en *H. emory*, entre otros.¹¹

Figura 3. Morfología de Hyptis monticola.

Los diterpenos son metabolitos ampliamente distribuidos en la familia Lamiaceae (Figura 4), de *Hyptis carvalhoi*⁶² y del extracto metanólico de las raíces de *H. crassifolia*⁶³ se han aislado una variedad de diterpenos con esqueleto abietano, del extracto hexánico de las raíces de *H. martiussi* se identificaron dos diterpenos abietanos, carnosol y 11,14-dihidroxi-8,11,12-

abietatrien-7-ona, con actividad antiproliferativa en diversas líneas celulares⁶⁴ y dos tanshiononas que presentaron actividad genotóxica frente a células de pulmón de hámster V79.⁶⁵ El carnosol también fue identificado en *H. dilatata* junto con el 7-etoxirosmanol y presentaron actividad citotóxica frente a tres líneas celulares diferentes (HeLa, MCF7 y HT29) y actividad antibacteriana contra *B. subtilis, S. aureus* y *Salmonella* sp.⁶⁶. De *H. crenata*, se aisló un diterpeno bis-*seco*-abietano el cual demostró inducir la transcripción dependiente de elementos que responden a cAMP en células Neuro2A⁶⁷. También se han aislado diterpenos del tipo labdánico del extracto metanólico de *H. fasciculata*¹² y de las partes aéreas de *Hyptis spicigera*, los cuales presentaron propiedades insecticidas¹⁷. En los extractos orgánicos, se ha presentado un alto contenido de triterpernos pentacíclicos; un ejemplo son los ácidos hiptático A y 2α-hidroursólico aislados de *H. capitata* que resultaron tóxicos contra células de tumor de colon (HCT-8)⁶⁸.

Figura 4. Terpenoides aislados de especies del género Hyptis.

Se han identificado compuestos de origen esteroidal; en *H. suaveolens*: β -sitosterol, su D-glucósido y campesterol, en *H. capitata*; estigmasterol; y en *H. romboides*: estigmasterol, β -sitosterol y sus glucósidos).¹¹ De tipo alcaloide, se aisló el (*R*)-5-hidroxipirrolidin-2-ona de la especie *H. verticillata*.⁶⁹

Los lignanos (Figura 5) con esqueleto de ariltetralinas son los principales responsables de las actividades citotóxicas descritas para los extractos orgánicos de estas especies. Las propiedades antisépticas de las infusiones preparadas con las partes aéreas de *H. verticillata* y su empleo para eliminar verrugas es un resultado la actividad antimitótica establecida para su alto contenido de lignanos citotóxicos ($ED_{50} < 10^{-2} \mu g/mL$).⁷⁰ De esta especie, se han aislado los lignanos citotóxicos: 5-metoxidihidropodofilotoxina, dihidropodofilotoxina, deoxidihidropodofilotoxina, (-)-yateína, deoxipicropodofilina, entre otros.^{70,71} Los neolignanos aislados del extracto etanólico de *Hyptis rhomboides*, hiprhombina C y epihiprhombina B exhibieron una mejor actividad antixantina oxidasa que el alopurinol.¹⁸ La desoxipodofilotoxina aislada de la *H. tomentosa* presentó actividad citotóxica.⁷²

Figura 5. Lignanos asilados de especies del género Hyptis.

Una gran variedad de compuestos con estructura de flavonoide y fenilpropanoide (Figura 6) también se han aislado de este género; algunos ejemplos provienen de las partes áreas de *H. verticillata* donde se aisló la sideritoflavona (KB: ED_{50} 1.6 µg/mL)⁶⁹ y los flavonoides 5-hidroxi-4',6,7,8-tetrametoxiflavona y 5-hidroxi-4',3,6,7,8-pentametoxiflavona aislados de *H. tomentosa*⁷¹; las metoxiflavonas cirsilineol y cirsimaritina aisladas de *H. fasciculata* presentaron actividad anti-*Helicobacter pylori*.⁴³ Del extracto hidrometanólico de *H. atrorubens* se aislaron la isoquercetina y el hiperósido, junto con los derivados del ácido cafeico como el ácido rosmanírico y el metilrosmarinato, estos compuestos presentaron actividad antibacteriana.⁴⁵ Otros derivados del ácido cafeico como el ácido sambacaitarico y el 3-*O*-metil-sambacaitarico se aislaron de *Hyptis pectinata* y presentaron actividad contra el promastigote de *L. braziliensis*.⁵⁶

Figura 6. Flavonoides y fenilpropanoides asilados de especies del género Hyptis.

2.5 Dihidro-2H-piran-2-onas.

Las 5,6-dihidro- α -pironas tienen un anillo de δ -lactona- α , β -insaturada y pueden presentar con una variedad de grupos sustituyentes alrededor del anillo. La actividad antimicrobiana⁷

y citotóxica⁷³ de estos compuestos está relacionada con el sistema de δ -lactona- α , β insaturada.^{74,} La pironetina (Figura 7), aislada de cultivos de *Streptomyces* sp., es un ejemplo representativo de este tipo de compuestos y su mecanismo de acción se lleva a cabo a través de una adición tipo Michael en la subunidad α del dímero de tubulina, la cual se complementa con el carácter lipofilico de este metabolito provisto por los sustituyentes alquilo en la posición C-6 que facilitan la interacción con las membranas celulares;⁷⁵ la reacción de adición sucede entre el nitrógeno terminal de la α -lisina-352 con el carbono cuatro del doble enlace del anillo de δ -lactona- α , β -insaturada. Los oxígenos de los grupos funcionales presentes en la cadena lateral interacciona por medio de enlaces de hidrógeno con los grupos funcionales de los aminoácidos cercanos al sitio de acción⁷⁶. Sin embargo, se ha postulado, basándose en datos cristalográficos y de espectrometría de masas, que la pironetina también podría formar un enlace covalente a la cisteína-316 en la subunidad α del dímero de tubulina.⁷⁷ El resto de metabolitos disruptores del microtúbulo aislados de plantas se unen a la subunidad β de la tubulina.⁵

Figura 7. Pironetina aislada de Streptomyces sp.

2.5.1. Dihidro-2H-piran-2-onas sustituidas en la posición C-4.

Las α -pironas sustituidas en la posición C-4 se han aislado de diversos microorganismos y plantas. De los constituyentes volátiles de *Nicotiana tabacum*, se aisló una 4-isopropil-5,6-dihidro- α -pirona;⁷⁸ del género *Penicillium sizovae* se han descrito compuestos con estructura 4-metil-5,6-dihidro- α -pirona como la anhidromevalonolactona, este metabolito es precursor en la síntesis de agentes controladores de pestes de insectos, presenta actividad inhibitoria frente a *Lactobacillus acidophilus y L. heterohiochii* en presencia de ácido mevalónico e inhibe completamente el crecimiento de *S. cerevisiae* y *S. carlsbergensis*; dado a su

importancia como precursor de diversos compuestos con actividad biológica se ha desarrollado su producción utilizando cepas recombinantes de *Aspergillus orizae*.⁷⁹ De un cultivo líquido del ascomiceto *Pestalotiopsis* sp., un patógeno de plantas, se obtuvo una 4metoxi-5,6-dihidro- α -pirona con una cadena alifática en la posición C-6. La configuración absoluta de los sustituyentes se determinó por cristalografía;⁸⁰ del hongo endófito aislado de *Corylus avellana*, se obtuvieron dos compuestos con una cadena alifática de cinco miembros unida a la posición C-6 que presentaron moderada actividad citotóxica frente a cuatro líneas celulares humanas;⁸¹ de cultivos sólidos del hongo endófito *Sarcosomataceae*⁸² y del hongo *Nectria* sp.,⁸³ se aislaron otras α -pironas similares sin descripciones de alguna actividad biológica y del hongo *Nodulisporium* sp. se aisló la nodulisporipirona D que presentó actividad antifúngica moderada contra *A. niger*.⁸⁴

La monacolina K, que no presenta un doble enlace en el anillo de lactona y aislada de *Monascus ruber*, posee una actividad hipocolesterolémica al ser un inhibidor competitivo de la HMG-CoA reductasa.⁸⁵ Otras α-pironas sustituidas en las posiciones C-3, C-4 y C-6 con azúcares y grupos terpenoides han sido aisladas de *Tricholepsis eburnea*⁸⁶ y de cepas de *Serratia plymuthica*,⁷⁵ cuyos dos compuestos aislados, plimuthipiranonas, presentaron una actividad antimicrobiana potente frente a bacterias Gram positivo. En la Figura 8, se muestras algunas estructuras de dihidro-2*H*-piran-2-onas sustituidas en la posición C-4.

Figura 8. Dihidro-2*H*-piran-2-onas sustituidas en la posición 4.

2.5.2. Dihidro-2H-piran-2-onas sustituidas en las posiciones C-5 y C-6.

Se han obtenido α -pironas sustituidas únicamente en la posición C-5, como la bisélida E aislada del ascidiáceo *Didemnidae* sp.,⁸⁷ y sustituidas solamente en C-6 como la callystatina A obtenida de *Callyspongia truncata*, la cual presentó actividad citotóxica frente a la línea celular KB.⁸⁸ Dos α -pironas con cadenas alifáticas de 7 y 10 carbonos fueron asiladas de *Cheilolejeuna imbricata*.⁸⁹ De los áfidos de la especie *Cryptomyzus* sp. se obtuvieron las cryptolactonas con actividad citotóxica contra células humanas promielociticas de leucemia HL-60.⁹⁰ α -Pironas glucosiladas en la cadena sustituyente de C-6 se han obtenido *Euscaphis japonica*.⁹¹ Las gamahonólidas obtenidas del ascomiceto Epichloe typhina presente en el estroma de *Phleum pratense* mostraron actividad antifúngica.⁹²

La fostriecina de *Streptomyces pulveraceus*, que presenta un grupo fosfato en su cadena lateral, ha demostrado actividad antitumoral a través de la inhibición de la proteína fosfatasa (PP)2A al unirse al residuo cis-269 de la subunidad PP2Ac, interrumpiendo la mitosis celular.^{93,94}

De plantas del género *Cryptocarya* se han aislado metabolitos con como la *R*-goniothalamina con actividad citotóxica;⁹⁵ los criptocarioles A-H, polioles de cadena larga que protegen a la proteína Pdcd4 de la degradación inducida por en tetradecanoilforbol (TPA, un potente promotor tumoral usado en la invstigación biomédica); la proteína Pdcd4 se encarga de inhibir la transformación, migración e invasión de las células cancerosas *in vitro*.⁹⁶ La *Z*-criptofoliona y criptomoscatona D2 mostraron una alta actividad inhibitoria del punto G2 del ciclo celular y que pueden forzar a la célula a detenerse en la fase G2 debido al daño en el ADN antes de entrar a la mitosis y pueden mejorar la eliminación de células cancerosas por radiación ionizante y agentes quimioterapéuticos; la rugulactona induce el inhibidor kappa β (Iκβ), un regulador crítico del factor nuclear κβ (NF-κβ) que se encuentra activo en muchos tipos de neoplasias malignas.⁹⁷ La 7',8'-dihidroobolactona aislada de *C. obovata* presentó actividad inhibitoria contra *Trypanosoma brucei*.⁹⁸ Los criptorigidifolioles mostraron actividad antimalaria moderada contra *Plasmodium falciparum*.⁹⁹ Finalmente se han aislado otras *α*-pironas sin actividad biológica demostrada de las especies *C. strictifolia* y *C. latifolia*.^{100,101}

También aislada de *Bryonopsis lacinosa*, la *R*-goniothalamina presentó actividad citotóxica en un ensayo con *Artemia salina*¹⁰² y en la línea celular de cáncer de pulmón no microcítica (NSCLC) H1299¹⁰³, además de actividad antimicrobiana significativa contra un amplio rango de bacterias Gram positivo y negativo, así como en hongos patógenos junto con actividad larvicida contra el mosquito *Culex quinquefaciatus*¹⁰⁴; la *S*-goniothalamina es un análogo sintético de la *R*-goniothalamina con actividad citotóxica frente a una variedad de líneas celulares.¹⁰⁵

Las pasiflorinas, aisladas del género *Passiflora*, son α -pironas sustituidas en la posición C-6 por cadenas alifáticas largas que pueden presentar grupos sustituyentes a lo largo de éstas. Por ejemplo, la pasiflorina A obtenida de *P. foetida* presentó actividad contra el amastigote de *L. Panamensis*,¹⁰⁶ al igual que la α -pironas aisladas de *Raimondia monoica* que también presentaron actividad contra *Plasmodium falciparum*.¹⁰⁷ Del género *Ravensara*, se han obtenido α -pironas con actividad antifúngica contra *C. albicans* y *Cladosporium cucumerinum* un fitopatógeno.^{108,109}

La micotoxina rubratoxina B aislada de *Penecillium rubrum* es un macrociclo de nueve miembros unido a la posición C-6, al cual se le atribuyen diversas actividades biológicas como actividad hepatotóxica,¹¹⁰ citotóxica en fibrosarcoma humano (HT1U80), inhibitoria de la metaloproteinasa MMP2 y MMP9 relacionadas con el inicio del tumor, su crecimiento y metástasis,¹¹¹ además de inducir la apoptosis p53 independiente en células HL60.¹¹² La tarchonanthuslactona obtenida de *Tarchonanthus trilobus* también presentó actividad citotóxica frente a diversas líneas celulares.¹¹³

Se han obtenido diversas 5,6-dihidro-2*H*-piran-2-onas como las bitungólidas aisladas de la esponja *Theonella swinhoei* que presentaron actividad citotóxica en células de fibroblastos normales de rata 3Y1 y actividad débil contra la fosfatasa de doble especificidad (VHR);¹¹⁴ otra α -pirona citotóxica denominada pterocidina sustituida en C-5 y C-6 se obtuvo de cepas de *Streptomyces* originarias de sedimentos marinos.¹¹⁵ De *Diplodia corticola*, se obtuvo la diplopirona B con actividad antifúngica para el control de *Phytophthora spp*. que ocasionan enferemades en las plantas.¹¹⁶ En la Figura 9 se muestras algunas estructuras de dihidro-2*H*-piran-2-onas sustituidas en la posición C-5 y C-6.

Figura 9. Dihidro-2H-piran-2-onas sustituidas en las posiciones C-5 y C-6.

2.5.2.1. 5,6-Dihidro-2H-piran-2-onas aisladas de especies del género Hyptis.

La primer α -pirona aislada de este género (Figura 10) fue aislada de *H. pectinata* y se conoce como hiptólida.¹¹⁷ De esta especie, también se han aislado las pectinólidas A-C, las cuales poseen actividad citotóxica para una variedad de líneas celulares (IC₅₀ < 4 µg/mL) y antimicrobiana frente *Staphyloccocus aureus* y *Bacillus subtilis*;⁷ también se han aislado otros compuestos denominados pectinólidas D-G de una colecta de la isla Barbados.¹¹⁸ De *H. urticoides* se aisló la hipurticina, cuya reasignación estructural y configuracional se estableció recientemente mediante el empleo de cálculos teóricos DFT-RMN y simulación espectral (RMN).¹¹⁹ De *H. oblongifolia* se han descrito la 5'-*epi*-olguina, 5-desacetoxi-5'*epi*-olguina¹⁵ y la 10-*epi*-olguina, la cual también se aisló de *H. capitata*.¹²⁰ La argentilactona aislada de *Hyptis ovalifolia* presenta actividad antifúngica contra *Paracoccidiodes lutzii*,¹²¹ los hongos dermatofitos *Microsporum canis*, *Gypseum tricophyton mentaagrophytes* y *T. rubrum*.¹²² De las partes áreas de *H. macrostachys*, se aisló la denominada hiptenólida, la cual presentó actividad antiespasmolítica en íleon de cobayo inducida por histamina y carbacol junto con actividad antibacteriana contra una cepa resistente a meticilina de *S. aureus*;¹²³ este compuesto también ha sido aislado de *Neohyptis paniculata*.¹²⁴

En *H. spicigera* se aisló la denominada con el nombre trivial espicigérolida, la cual presentó una actividad citotóxica contra la línea celular de carcinoma nasofaríngeo.¹²⁵ De *H. brevipes* se obtuvieron diez compuesto llamados brevipólidas A-J, los cuales contiene un ciclopropano en su esqueleto y la cadena se extiende con un grupo cinamoilo que esterifica al hidroxilo de la posición C-6' de la cadena lateral. Las brevipólidas G-J presentaron actividad citotóxica en contra de líneas celulares del carcinoma nasofaríngeo (KB), mientras que las brevipólidas B y F presentaron actividad frente a las líneas celulares de carcinoma de mama (MCF7) y adenocarcinoma de colon grado II (HT-29).⁶ Estos compuestos presentan actividad como inhibidores en un ensayo ELISA del complejo nuclear NF-κB, receptor de citoquinas CCR5, el principal receptor del VIH tipo 1.¹²⁶

Figura 10. 5,6-dihidro-2H-piran-2-onas aisladas de especies del género Hyptis.

2.6. Química computacional.

La química computacional es un resultado de la evolución de la química teórica y su objetivo principal es predecir todo tipo de propiedades moleculares de sistemas químicos utilizando la fisicoquímica, la física molecular y la física cuántica. Esta disciplina permite investigar múltiples propiedades y comportamientos moleculares como la geometría, la energía, la reactividad química, las propiedades espectroscópica, eléctricas y magnéticas, entre otras.¹²⁷

Los métodos matemáticos para llevar a cabo sus objetivos pueden dividirse en dos grandes categorías:
A) Mecánica molecular: aplica las leyes de la física clásica al núcleo molecular sin considerar explícitamente los electrones. Se basa en los siguientes principios:

-El núcleo y los electrones de un átomo están juntos, es decir, se tratan como una partícula única y las partículas como si fueran esferas.

-Los enlaces entre partículas se comportan como osciladores armónicos.

-Las interacciones no enlazantes entre partículas se tratan utilizando la mecánica clásica.

-Se utilizan funciones de potencial individuales para describir las diferentes interacciones.

-Las funciones de energía potencial se relacionan con parámetros derivados empíricamente que describen las interacciones entre los átomos.

-La suma de todas las interacciones determina la distribución espacial de un conjunto de átomos.

-Las energías obtenidas en la mecánica molecular no son cantidades absolutas sino que sólo se pueden utilizar para comparar energías estéricas relativas entre dos o más conformaciones de la misma molécula.^{127,128}

B) Mecánica cuántica: se basa en la ecuación de Shrödinger para describir una molécula con un tratamiento directo de la estructura electrónica. En ésta los núcleos y electrones se distinguen unos de los otros y las interacciones electrón-electrón y electrón-núcleo son explícitas y están dirigidas por el movimiento y las cargas de los electrones.^{127,128}

Dentro de los métodos de cálculo de mecánica cuántica los principales son los métodos semiempíricos, los *ab initio* (desde el principio) y la teoría de funcionales de la densidad (DFT). Los métodos *ab initio* no emplean otra información empírica que no sea la de las constantes físicas fundamentales. Partiendo del método variacional Hartree-Fock (HF) de cálculo de orbitales moleculares (OM), es posible formular familias de métodos *ab initio*, como las Moller-Plesset (MP) y Coupled-Cluster (CC), que están organizadas jerárquicamente en términos de su capacidad para describir la correlación electrónica de modo que es posible predecir cualquier propiedad molecular con una exactitud controlable. En la práctica la aplicación de los métodos *ab initio* más exactos puede ser muy complicada,

así como requerir del empleo de súpercomputadoras de altas prestaciones y una gran cantidad de tiempo de cálculo.^{128,129}

A causa de las dificultades en la aplicación de los método *ab initio* a moléculas medianas y grandes, se han desarrollado los métodos semiempíricos para el tratamiento de estas moléculas; estos métodos obtienen la energía y orbitales moleculares, pero lo hacen simplificando los cálculos HF o DFT, al remplazar valores esperados de la función de onda o de funcionales de la densidad electrónica por formas paramétricas ajustadas estadísticamente, empleando grandes conjuntos de datos experimentales (geometrías moleculares y calores de formación) o datos teóricos generados por métodos *ab initio* o DFT. El costo computacional se reduce al considerar sólo los electrones de valencia y no los de capas internas o *core*, se utilizan sólo conjuntos de base mínima, así como el número mínimo de funciones necesarias para representar los electrones realizando aproximaciones para simplificar el número de integrales de traslape y de repulsión interelectrónica por resolver. De esta manera, estos cálculos son casi tan rápidos como los cálculos de mecánica molecular hasta el punto que es posible realizar cálculos semiempíricos en sistemas de miles de átomos.^{128,129}

En 1964, Hohenberg y Kohn probaron un teorema que establecía que para las moléculas con estados basales no degenerados, la energía del estado basal, la función de onda y las demás propiedades electrónicas se determinan únicamente por la densidad electrónica de ese estado, por lo que se puede decir que la energía del estado basal es funcional (función de una función) de la densidad electrónica. La implementación de los métodos DFT conduce a las ecuaciones de Kohn-Sham (KS), muy semejantes a las ecuaciones HF porque la densidad electrónica se expresa a partir de orbitales moleculares. Los cálculos se inician con una densidad de partida, que usualmente se encuentra superponiendo las densidad se estima el potencial de intercambio y correlación, la cual se usa en las ecuaciones KS y permite obtener los orbitales Kohn-Sham; estos son orbitales para el sistema de referencia ficticio de electrones no interactuantes y, de manera estricta, no tienen un significado físico. Su utilidad es la de permitir que la densidad molecular exacta del estado basal pueda calcularse; al obtener los orbitales, estos se usan para conseguir una densidad electrónica y con ello se inicia el ciclo

de nuevo hasta que no exista una diferencia entre la densidad y los orbitales, cuando el cálculo converge se puede calcular la energía.^{128,129}

El potencial de intercambio y correlación es la derivada del funcional de la energía de intercambio y correlación. El problema es que este funcional no se conoce, así que para determinarlo se han desarrollado varios métodos para encontrar aproximaciones, como la aproximación local de la densidad (LDA) y la aproximación local de la densidad de espín (LSDA), ambas basadas en un modelo de gas uniforme de electrones que es apropiado para sistemas donde la densidad varía lentamente con la posición; también hay aproximaciones donde se corrigen los funcionales variando la densidad electrónica con respecto a la posición y algunas de estas aproximaciones son los funcionales por gradiente de Perdew y Wang de 1986 (PW86), el de Becke de 1988 (B88) y el Lee-Yang-Parr (LYP). Los funcionales híbridos se utilizan con frecuencia, por ejemplo el funcional B3LYP donde se mezclan funcionales que depende de la densidad con una expresión Hartree-Fock. Los funcionales corregidos por el gradiente y los híbridos proporcionan excelentes resultado en las geometrías de equilibro, frecuencias vibracionales, momentos dipolares y energía de atomización.^{128,129}

El uso de la química computacional no es independiente de la química experimental, ya que la forma de comprobar que los modelos son adecuados o que las propiedades calculadas son cercanas o correctas a las propiedades reales es el trabajo experimental. Esto quiere decir que sin el trabajo de laboratorio la química computacional no existiría.

2.6.1. La resonancia magnética nuclear y el análisis conformacional

La resonancia magnética nuclear (RMN) es una poderosa herramienta para el análisis de la configuración relativa de los metabolitos secundarios pero no es raro que en algunos casos la asignación estructural este incompleta o incorrecta. Debido a que la configuración espacial de los átomos en una molécula está íntimamente relacionada con la actividad biológica, es importante dilucidar las estructuras de manera correcta, ya que pares de compuestos enantioméricos pueden presentar diferente actividad cuando actúan sobre el mismo sitio de unión, o presentar actividad para dos sitios de unión diferentes, resultando en inactividad, ser

metabolizados o absorbidos por la célula de manera diferenciada, interactuar de forma diferente con el mismo metabolito o incluso resultar tóxicos (Cuadro 3).

La determinación de la configuración absoluta se puede llevar a cabo a través de diversos método experimentales como la rotación óptica, donde es necesario conocer los datos físicos de ambos enantiómeros, la difracción de rayos X, el dicroísmo circular y el dicroísmo circular vibracional.¹³⁰ A partir de la resonancia magnética nuclear es posible determinar la configuración absoluta empleando agentes derivatizantes quirales que emplean ácidos arilalcoxiacéticos, o sus sales quirales para la formación de ésteres, que dependiendo del enantiómero del ácido o la sal utilizada se obtendrá cambios en los espectros de resonancia del compuesto problema; algunos ejemplos de reactivos utilizados con este fin son el ácido fenilmetoxiacético (MPA) v el reactivo de Mosher (ácido a-metoxi-atrifluorometilfenilacético).¹³¹ La química computacional puede resultar una valiosa herramienta para determinar la configuración absoluta, ya que se puede establecer las propiedades magnéticas de los enantiómeros de un compuesto y compararlas con los valores experimentales, como los desplazamientos químicos o las constantes de acoplamiento.¹³⁰

La elucidación estructural de los productos naturales presenta diversos retos pues se trata de estructuras complejas y muchas veces sin precedentes, algunas pueden ser moléculas flexibles con numerosas conformaciones y su asignación espectroscópica se basa en la ¹³C y ¹H RMN en la cual los espectros obtenidos pueden presentar regiones pobladas con muchas señales que complique su asignación, además, el valor de los desplazamientos químicos puede variar dependiendo del disolvente en el que se encuentre el compuesto. A través del cálculo de los desplazamientos químicos de ¹³C y ¹H mediante DFT, en conjunto con la síntesis total y la resonancia magnética, se han corregido la estructura total o algunos centros quirales de diversos productos naturales como el hexaciclinol, la aquatólida, la elatenina, la nobilisitina A, el vannusal B, entre otros¹³² (Figura 11). Actualmente la mayoría de los cálculos con DFT se enfocan a moléculas rígidas con pocas conformaciones y a la obtención de los desplazamientos químicos. Es fácil determinar la configuración de compuestos cíclicos (tres a seis miembros) a través de los parámetros de RMN, como los valores de las constantes de acoplamientos y las intensidades del efecto Nuclear Overhauser (NOE), sin embargo, asignar la configuración de sistemas flexibles no es una tarea fácil; las constantes de

acoplamiento ofrecen una valiosa información en estudios conformacionales y estereoquímicos pues proporcionan información geométrica relevante.¹³³

Cuadro 3. Ejemplos de enantiómeros mostrando diferentes actividades biológicas. ¹³⁴						
Metabolito	Enantiómero	Actividad				
Spirocromano	S R	Cardioprotector Inactivo				
Zilpaterol	S,S R,R	Afinidad por el receptor adrenérgico β_2 Afinidad por el receptor opiode μ				
Talidomida	S R	Mutagénico Sedante, hipnótico				
Metadona	S R	Produce riesgo cardiovascular Inhibe el canal de potasio cardiaco				
Etambutol	S R	Tubercolostático Produce ceguera				
Penilcilamina	S R	Antiartrítico Mutagénico				
Asparagina	S R	Sabor amargo Sabor dulce				
Amlodipino	S R	Antihipertensivo y antianginal Inactivo				

Las constantes de acoplamiento ${}^{3}J_{\text{H-H}}$ se relacionan directamente con sus ángulos dihedros a través de la ecuación de Karplus y dependen de los parámetros moleculares como la sustitución, los ángulos y longitudes de enlace, la electronegatividad y la posición relativa de los sustituyentes unidos al fragmento H-C-C-H; también, las constantes de acoplamiento heteronucleares (${}^{3}J_{\text{C-H}}$) siguen una relación similar a la de Karplus y, por lo tanto, pueden usarse para derivar restricciones angulares adicionales. En el caso ${}^{2}J_{\text{C-H}}$, sus valores pueden ser útiles cuando el C α tiene un sustituyente electronegativo, la magnitud relativa de la ${}^{2}J_{\text{C-H}}$ de dos enlaces puede relacionarse con el ángulo diedro entre el protón y el átomo electronegativo unido al carbono acoplado. 133,135

Figura 11. Estructuras de productos naturales corregidas a través de química computacional.

Ejemplos del uso del cálculo de las constantes de acoplamiento vecinales (J_{H-H}) para moléculas flexibles son los realizados para las 5,6-dihidro-2H-piran-2-onas (Figura 12) de origen vegetal ya que esta clase de metabolitos secundarios representa un modelo de estudio muy interesante debido a su funcionalización y alto grado de dispersión conformacional (Figura 12).^{60,135} La metodología llamada de "DFT-RMN"¹³⁵ incluye la comparación de las constantes de acoplamiento $J_{\rm H,H}$ vecinales experimentales a través del error cuadrático medio (RMSD) con los valores teóricos obtenidos a partir de una búsqueda conformacional utilizando mecánica molecular (MMFF94). Mediante el empleo de una optimización geométrica, utilizando DFT B3LYP y la base DGZVP, para obtener las frecuencias vibracionales y los parámetros termodinámicos a 298 K y 1 atm y el método GIAO (Gauge Independent Atomic Orbital), se establecieron las constantes de acoplamiento vecinales para la hipurticina,¹¹⁹ logrando su asignación estructural correcta y la determinación de la configuración absoluta. Esta metodología también se describió para otras 5,6-dihidro-apironas pertenicientes a especies de la familia de las labiadas como la espicigerólida,⁶⁰ la 5'epiolguina,⁶⁰ la olguina,⁶⁰ la sinargentólida A,¹³⁶ y las brevipólidas A-J⁶ y K-O.¹³⁷ Para estas últimas, se complementó el análisis estructural con los cálculos de DFT para la obtención de los espectros teóricos de dicroísmo circular (Figura 12).

Una cuestión crucial que debe abordarse es la forma en como se evalúa la precisión de los desplazamientos químicos calculados y las constantes de acoplamiento. Con frecuencia, se presenta una gráfica de datos calculados *versus* experimentales y la precisión se juzga de acuerdo a: 1) la correlación lineal entre los dos; 2) un parámetro estadístico como el coeficiente de correlación que debe ser suficientemente alto; c) el error absoluto medio que debe ser mínimo y d) la pendiente que debe ser cerca de la unidad y la intersección cercana de cero.¹³⁸ Existen otras metodologías para la determinación de la estereoquímica de una molécula orgánica como la probabilidad DP4 que usa los cáculos de desplazamientos químicos a través de GIAO RMN cuando sólo se dispone de datos experimentales para un único diastereoisómero dentro de todas las posibilidades esteroquímicas posibles.^{139,140}

Figura 12. Estructuras originales y corregidas por DFT de las 5,6-dihidro-2*H*-piran-2-onas de especies del género *Hyptis*.

2.7. Referencias

- Loraine S, Mendoza-Espinoza JA. Las plantas medicinales en la lucha contra el cáncer, relevancia para México Medicinal plants as potential agents against cancer, relevance for Mexico. *Rev Mex Ciencias Farm*. 2010;41(4):18-27. http://www.redalyc.org/articulo.oa?id=57916060003.
- 2. OMS | Cáncer. *WHO*. 2017. https://www.who.int/cancer/es/. Accessed November 23, 2018.
- Prakash O, Kumar A, Kumar P, Ajeet A. Anticancer Potential of Plants and Natural Products: A Review. *Am J Pharmacol Sci.* 2013;1(6):104-115. doi:10.12691/ajps-1-6-1
- 4. Da Rocha AB, Lopes RM, Schwartsmann G. Natural products in anticancer therapy. *Curr Opin Pharmacol.* 2001;1(4):364-369. doi:10.1016/S1471-4892(01)00063-7
- Steinmetz MO, Prota AE. Microtubule-Targeting Agents: Strategies To Hijack the Cytoskeleton. *Trends Cell Biol.* 2018;28(10):776-792. doi:10.1016/j.tcb.2018.05.001
- Suárez-Ortiz GA, Cerda-García-Rojas CM, Hernández-Rojas A, Pereda-Miranda R. Absolute configuration and conformational analysis of brevipolides, bioactive 5,6-dihydro-α-pyrones from *Hyptis brevipes . J Nat Prod.* 2013;76(1):72-78. doi:10.1021/np300740h
- Fragoso-Serrano M, Gibbons S, Pereda-Miranda R. Anti-staphylococcal and cytotoxic compounds from *Hyptis pectinata*. *Planta Med*. 2005;71(3):278-280. doi:10.1055/s-2005-837831
- Martínez-Gordillo M, Fragoso-Martínez I, García-Peña MDR, Montiel O. Géneros de Lamiaceae de México, diversidad y endemismo. *Rev Mex Biodivers*. 2013;84(1):30-86. doi:10.7550/rmb.30158
- Raja RR. Medicinally potential plants of Labiatae (Lamiaceae) family: an overview. 2012:203-2013. doi:20026216
- Pereda-Miranda R. Bioactive natural products from traditionally used Mexican plants. *Recent Adv Phytochem*. 1995;29:83-112.

http://books.google.com/books?hl=en&lr=&id=3UK8q5N40KIC&oi=fnd&pg=PA83&dq=plant+anti herbivore+chemicals+AND+human+culture&ots=1kAuJsifVE&sig=OMv4R88D7uOymnmBcRK7vi jqvvw.

- Falcão DQ, Menezes FS. Revisão etnofarmacológica, farmacológica e química do gênero *Hyptis*. The *Hyptis* genus: an ethnopharmacological and chemical review. *Rev Bras Farmacogn*. 2003;84(3):69-74.
- 12. Ohsaki A, Kishimoto Y, Isobe T, Fukuyama Y. New labdane diterpenoids from </i>Hyptis fasciculata</i>. *Chem Pharm Bull (Tokyo)*. 2005;53(12):1577-1579. doi:10.1248/cpb.53.1577
- Olorunnisola OS, Adetutu A, Balogun EA, Afolayan AJ. Ethnobotanical survey of medicinal plants used in the treatment of malarial in Ogbomoso, Southwest Nigeria. *J Ethnopharmacol*. 2013;150(0):71-78. doi:http://dx.doi.org/10.1016/j.jep.2013.07.038
- Bunalema L, Obakiro S, Tabuti JRS, Waako P. Knowledge on plants used traditionally in the treatment of tuberculosis in Uganda. *J Ethnopharmacol.* 2014;151(2):999-1004. doi:10.1016/j.jep.2013.12.020

- Pereda-Miranda R, García M, Delgado G. Structure and stereochemistry of four α-pyrones from Hyptis oblongifolia. Phytochemistry. 1990;29(9):2971-2974. doi:10.1016/0031-9422(90)87117-D
- Pereda-Miranda R, Delgado G. Triterpenoids and flavonoids from *Hyptis albida*. J Nat Prod. 1990;53(1):182-185. doi:10.1021/np50067a028
- 17. Fragoso-Serrano M, González-Chimeo E, Pereda-Miranda R. Novel labdane diterpenes from the insecticidal plant *Hyptis spicigera*. *J Nat Prod*. 1999;62(1):45-50. doi:10.1021/np980222z
- Tsai SF, Lee SS. Neolignans as xanthine oxidase inhibitors from *Hyptis rhomboides*. *Phytochemistry*. 2014;101:121-127. doi:10.1016/j.phytochem.2014.01.016
- Xu DH, Huang YS, Jiang DQ, Yuan K. The essential oils chemical compositions and antimicrobial, antioxidant activities and toxicity of three *Hyptis* species. *Pharm Biol.* 2013;51(9):1125-1130. doi:10.3109/13880209.2013.781195
- Chukwujekwu JC, Smith P, Coombes PH, Mulholland DA, Van Staden J. Antiplasmodial diterpenoid from the leaves of *Hyptis suaveolens*. *J Ethnopharmacol*. 2005;102(2):295-297. doi:10.1016/j.jep.2005.08.018
- Danmalam UH, Abdullahi LM, Agunu A, Musa KY. Acute Toxicity Studies and Hypoglycemic Activity of the Methanol Extract of the Leaves of *Hyptis Suaveolens* Poit.(Lamiaceae). *J Pharm Sci.* 2009;8(2):87-92.
- Kothandan S, Swaminathan R. Evaluation of in vitro antiviral activity of *Vitex Negundo* L., *Hyptis suaveolens* (L) poit., *Decalepis hamiltonii* Wight & Arn., to Chikungunya virus. *Asian Pacific J Trop Dis.* 2014;4(S1):S111-S115. doi:10.1016/S2222-1808(14)60424-2
- Moreira ACP, Lima E de O, Wanderley PA, Carmo ES, de Souza EL. Chemical composition and antifungal activity of *Hyptis suaveolens* (L.) Poit leaves essential oil against Aspergillus species. *Brazilian J Microbiol.* 2010;41(1):28-33. doi:10.1590/S1517-83822010000100006
- 24. Begum A, Sama V, Dodle JP. Study of antinociceptive effects on acute pain treated by bioactive fractions of *Hyptis suaveolens*. *J Acute Dis*. 2016;5(5):397-401. doi:10.1016/j.joad.2016.08.006
- Ghaffari H, Ghassam BJ, Prakash HS. Hepatoprotective and cytoprotective properties of *Hyptis* suaveolens against oxidative stress-induced damage by CCl4 and H2O2. Asian Pac J Trop Med. 2012;5(11):868-874. doi:10.1016/S1995-7645(12)60162-X
- Goun E, Cunningham G, Chu D, Nguyen C, Miles D. Antibacterial and antifungal activity of Indonesian ethnomedical plants. *Fitoterapia*. 2003;74(6):592-596. doi:10.1016/S0367-326X(03)00117-5
- Diniz LRL, Vieira CFX, Santos EC Dos, et al. Gastroprotective effects of the essential oil of *Hyptis* crenata Pohl ex Benth. on gastric ulcer models. *J Ethnopharmacol*. 2013;149(3):694-700. doi:10.1016/j.jep.2013.07.026
- Rebelo MM, Da Silva JKR, Andrade EHA, Maia JGS. Antioxidant capacity and biological activity of essential oil and methanol extract of *Hyptis crenata* Pohl ex Benth. *Brazilian J Pharmacogn*. 2009;19(1 B):230-235. doi:10.4067/S0718-07642015000400007
- 29. Wekesa I, Onek LA, Deng AL, Hasanali A, Othira JO. Toxicity and repellant potency of Hyptis

spicigera extracts on Sitophilus zeamais motschulsky (Coleoptera : Curculionidae). J Stored Prod Post-harvest Res. 2011;2(June):113-119.

- Simões RR, Coelho I dos S, Junqueira SC, et al. Oral treatment with essential oil of *Hyptis spicigera* Lam. (Lamiaceae) reduces acute pain and inflammation in mice: Potential interactions with transient receptor potential (TRP) ion channels. *J Ethnopharmacol.* 2017;200(February):8-15. doi:10.1016/j.jep.2017.02.025
- Takayama C, De-Faria FM, De Almeida ACA, et al. Gastroprotective and ulcer healing effects of essential oil from *Hyptis spicigera* Lam. (Lamiaceae). *J Ethnopharmacol*. 2011;135(1):147-155. doi:10.1016/j.jep.2011.03.002
- Matsuse IT, Lim YA, Hattori M, Correa M, Gupta MP. A search for anti-viral properties in Panamanian medicinal plants. The effects on HIV and its essential enzymes. *J Ethnopharmacol*. 1998;64(1):15-22. doi:10.1016/S0378-8741(98)00099-3
- Lima ACBD, Paixão MS, Melo M, et al. Orofacial antinociceptive effect and antioxidant properties of the hydroethanol extract of *Hyptis fruticosa* salmz ex Benth. *J Ethnopharmacol*. 2013;146(1):192-197. doi:10.1016/j.jep.2012.12.031
- Santos MRV, Carvalho AA, Medeiros IA, Alves PB, Marchioro M, Antoniolli AR. Cardiovascular effects of *Hyptis fruticosa* essential oil in rats. *Fitoterapia*. 2007;78(3):186-191. doi:10.1016/j.fitote.2006.11.009
- Caldas GFR, Do Amaral Costa IMÊ, Da Silva JBR, et al. Antiulcerogenic activity of the essential oil of *Hyptis martiusii* Benth. (Lamiaceae). *J Ethnopharmacol.* 2011;137(1):886-892. doi:10.1016/j.jep.2011.07.005
- Coutinho HDM, Costa JGM, Lima EO, Siqueira-Júnior JP. In vitro phototoxic activity of *Eugenia jambolana* L. and *Hyptis martiusii* Benth. *J Photochem Photobiol B Biol*. 2009;96(1):63-65. doi:10.1016/j.jphotobiol.2009.04.002
- Santos KKA, Matias EFF, Sobral-Souza CE, et al. Trypanocide, cytotoxic, and anti-Candida activities of natural products: *Hyptis martiusii* Benth. *Eur J Integr Med*. 2013;5(5):427-431. doi:10.1016/j.eujim.2013.06.001
- Barbosa AGR, Oliveira CDM, Lacerda-Neto LJ, et al. Evaluation of chemical composition and antiedematogenic activity of the essential oil of *Hyptis martiusii* Benth. *Saudi J Biol Sci*. 2017;24(2):355-361. doi:10.1016/j.sjbs.2015.10.004
- 39. Sánchez Miranda E, Pérez Ramos J, Fresán Orozco C, Zavala Sánchez MA, Pé;rez Gutié;rrez S. Anti-Inflammatory effects of *Hyptis albida* chloroform extract on lipopolysaccharide-stimulated peritoneal macrophages. *ISRN Pharmacol*. 2013;2013(Splm 20419):Article ID 713060. http://search.ebscohost.com/login.aspx?direct=true&AuthType=cookie,ip,shib&db=awn&AN=23970 974&site=ehost-live.
- Meckes M, Villarreal ML, Tortoriello J, Berlin B, Berlin EA. A microbiological evaluation of medicinal plants used by the Maya people of Southern Mexico. *Phyther Res.* 1995;9(4):244-250. doi:10.1002/ptr.2650090403

- Ximenes RM, Melo AM, Magalhães LPM, de Souza IA, de Albuquerque JFC. Antitumor Activity of Leaves from *Hyptis mutabilis* (A. Rich.) Briq. (Lamiaceae) in Mice Bearing Tumor. *Dataset Pap Pharmacol.* 2013;2013(Daufpe 6256):1-3. doi:10.7167/2013/169357
- 42. Maria M. Oliva, Mirta S. Demo, Abel G. Lopez MLL& JAZ. Antimicrobial Activity and Composition of *Hyptis mutabilis* Essential Oil. *J Herbs, Spices Med Plants*. 2005;11(4):57-63. doi:10.1300/J044v11n04_07
- Isobe T, Doe M, Morimoto Y, Nagata K, Ohsaki A. The Anti-Helicobacter pylori Flavones in a Brazilian Plant, *Hyptis fasciculata*, and the Activity of Methoxyflavones. *Biol Pharm Bull*. 2006;29(5):1039-1041. doi:10.1248/bpb.29.1039
- Souza LKH, De Oliveira CMA, Ferri PH, et al. Antimicrobial Activity of *Hyptis ovalifolia* Towards Dermatophytes. *Mem Inst Oswaldo Cruz*. 2003;98(7):963-965. doi:10.1590/S0074-02762003000700018
- 45. Abedini A, Roumy V, Mahieux S, et al. Rosmarinic acid and its methyl ester as antimicrobial components of the hydromethanolic extract of *Hyptis atrorubens* Poit. (Lamiaceae). *Evidence-based Complement Altern Med.* 2013;2013. doi:10.1155/2013/604536
- Picking D, Delgoda R, Boulogne I, Mitchell S. *Hyptis verticillata* Jacq: A review of its traditional uses, phytochemistry, pharmacology and toxicology. *J Ethnopharmacol.* 2013;147(1):16-41. doi:10.1016/j.jep.2013.01.039
- 47. Biblioteca Digital Medicina Tradicional Mexicana.
 http://www.medicinatradicionalmexicana.unam.mx/. Accessed November 23, 2018.
- Bispo MD, Mourão RHV, Franzotti EM, et al. Antinociceptive and antiedematogenic effects of the aqueous extract of *Hyptis pectinata* leaves in experimental animals. *J Ethnopharmacol*. 2001;76(1):81-86. doi:10.1016/S0378-8741(01)00172-6
- 49. Revisión del género *Hyptis* (Labiatae). In: *Revista Del Museo de La Plata, Sección Botánica*. ; 1949:153-497.
- Pereda-Miranda R, Hernández L, Villavicencio MJ, et al. Structure and stereochemistry of pectinolides a-C, novel antimicrobial and cytotoxic 5, 6-dihydro-α-pyrones from *Hyptis pectinata*. J Nat Prod. 1993;56(4):583-593. doi:10.1021/np50094a019
- 51. Agra MDF, Freitas PF De, Barbosa-filho JM. Synopsis of the plants known as medicinal and poisonous in Northeast of Brazil. 2007;17(1):114-140.
- 52. Melo GB, Lemos Silva R, Melo VA, et al. Proliferative effect of the aqueous extract of *Hyptis pectinata* on liver regeneration after partial hepatectomy in rats. *Acta Cirúrgica Bras -Vol Planta Melo GB alActa Cirúrgica Bras*. 2006;21(21):33-36. doi:10.1039/c5ta00976f
- Paixão MS, Melo MS, Damascena NP, et al. *Hyptis pectinata* gel prevents alveolar bone resorption in experimental periodontitis in rats. *Brazilian J Pharmacogn*. 2015;25(1):35-41. doi:10.1016/j.bjp.2014.12.002
- 54. Falcão REA, de Souza SA, Camara CA, et al. Evaluation of the orofacial antinociceptive profile of the ethyl acetate fraction and its major constituent, rosmarinic acid, from the leaves of *Hyptis*

pectinata on rodents. Brazilian J Pharmacogn. 2016;26(2):203-208. doi:10.1016/j.bjp.2015.07.029

- 55. Guilhon CC, Raymundo LJRP, Alviano DS, et al. Characterisation of the anti-inflammatory and antinociceptive activities and the mechanism of the action of *Lippia gracilis* essential oil. J *Ethnopharmacol.* 2011;135(2):406-413. doi:10.1016/j.jep.2011.03.032
- 56. Falcao RA, Do Nascimento PLA, De Souza SA, et al. Antileishmanial phenylpropanoids from the leaves of *Hyptis pectinata* (L.) poit. *Evidence-based Complement Altern Med.* 2013;2013. doi:10.1155/2013/460613
- 57. Serafini MR, Campos M, Rabelo K, et al. Determination of chemical and physical properties of *Hyptis pectinata* essential oil and their redox active profile. 2012;3(March):1-9.
- Nascimento PFC, Alviano WS, Nascimento ALC, Santos PO, Arrigoni-blank MF, Jesus RA De. Hyptis pectinata essential oil : chemical composition and anti- *Streptococcus mutans* activity. 2008;(May 2007):485-489. doi:10.1111/j.1601-0825.2007.01405.x
- 59. Santos PO, Costa MDJC, Alves JAB, et al. Chemical Composition and antimicrobial activity of the essential oil of *Hyptis pectinata* (L.) poit. 2008;31(7):1648-1652.
- López-Vallejo F, Fragoso-Serrano M, Suárez-Ortiz GA, Hernández-Rojas AC, Cerda-García-Rojas CM, Pereda-Miranda R. Vicinal1H-1H NMR coupling constants from density functional theory as reliable tools for stereochemical analysis of highly flexible multichiral center molecules. *J Org Chem*. 2011;76(15):6057-6066. doi:10.1021/jo200637g
- Perera WH, Bizzo HR, Gama PE, et al. Essential oil constituents from high altitude Brazilian species with antimicrobial activity: Baccharis parvidentata Malag., *Hyptis monticola* Mart. ex Benth. and *Lippia origanoides* Kunth. *J Essent Oil Res.* 2017;29(2):109-116. doi:10.1080/10412905.2016.1210039
- Lima KSB de, Ávila Pimenta AT, Silva Guedes ML, Sousa Lima MA, Silveira ER. Abietane diterpenes from *Hyptis carvalhoi* Harley. *Biochem Syst Ecol.* 2012;44:240-242. doi:10.1016/j.bse.2011.12.001
- 63. Lima KSB, Guedes MLS, Silveira ER. Abietane diterpenes from *Hyptis crassifolia* Mart. ex Benth. (Lamiaceae). *J Braz Chem Soc.* 2015;26(1):32-39. doi:10.5935/0103-5053.20140210
- 64. Costa-Lotufo L V., Araújo ECC, Lima MAS, et al. Antiproliferative effects of abietane diterpenoids isolated from *Hyptis martiusii* Benth (Labiatae). *Pharmazie*. 2004;59(1):78-79.
- Cavalcanti BC, Moura DJ, Rosa RM, et al. Genotoxic effects of tanshinones from *Hyptis martiusii* in V79 cell line. *Food Chem Toxicol*. 2008;46(1):388-392. doi:10.1016/j.fct.2007.08.009
- Álvarez F, Tello E, Bauer K, Díaz LE, Jimenez C. Cytotoxic and Antimicrobial Diterpenes fom *Hyptis dilatata. Curr Bioact Compd.* 2015;(July 2016):189-197. doi:10.2174/1573407211666150914213356
- 67. Yun YS, Fukaya H, Nakane T, et al. A New Bis- seco -abietane Diterpenoid from *Hyptis crenata* Pohl ex Benth. *Org Lett.* 2014;16(23):6188-6191. doi:10.1021/ol503086n
- 68. Yamagishi T, Zhang DC, Chang JJ, McPhail DR, McPhail AT, Lee KH. The cytotoxic principles of *Hyptis capitata* and the structures of the new triterpenes hyptatic acid-A and -B. *Phytochemistry*.

1988;27(10):3213-3216. doi:10.1016/0031-9422(88)80028-1

- 69. Dalgleish T, Williams JMG., Golden A-MJ, et al. Biological and Pharmacological Activities and Further Constituents of *Hyptis verticillata*. *J Exp Psychol Gen*. 2007;136(1):23-42.
- Kuhnt M, Rimpler H, Heinrich M. Lignans and other compounds from the mixe indian medicinal plant *Hyptis verticillata*. *Phytochemistry*. 1994;36(2):485-489. doi:10.1016/S0031-9422(00)97101-2
- Novelo M, Cruz JG, Hernández L, et al. Cytotoxic constituents from *Hyptis Verticillata*. J Nat Prod. 1993;56(10):1728-1736. doi:10.1021/np50100a011
- 72. Kingston DGI, Rao MM, Zucker W V. Plant Anticancer Agents. IX. Constituents of Hyptis tomentosa. *J Nat Prod.* 1979;42(5):496-499. doi:10.1021/np50005a010
- 73. Falomir E, Murga J, Ruiz P, et al. Stereoselective synthesis and determination of the cytotoxic properties of spicigerolide and three of its stereoisomers. *J Org Chem.* 2003;68(14):5672-5676. doi:10.1021/jo034470y
- Davies-Coleman, M. T.; Rivett DEA. Naturally occurring 6-substituted 5, 6-dihydro-α-pyrones. In:
 Herz, W.; Grisebach, H.; Kirby, G. W.; Tamm C, ed. *Progress in the Chemistry of Organic Natural Products*. New York; 1989:1-35.
- 75. Bjerketorp J, Levenfors JJ, Sahlberg C, et al. Antibacterial 3,6-Disubstituted 4-Hydroxy-5,6-dihydro-2H-pyran-2-ones from *Serratia plymuthica* MF371-2. *J Nat Prod*. 2017;80(11):2997-3002. doi:10.1021/acs.jnatprod.7b00565
- Bañuelos-Hernández AE, Mendoza-Espinoza JA, Pereda-Miranda R, Cerda-García-Rojas CM.
 Studies of (-)-pironetin binding to α-tubulin: Conformation, docking, and molecular dynamics. *J Org Chem.* 2014;79(9):3752-3764. doi:10.1021/jo500420j
- 77. Yang J, Wang Y, Wang T, et al. Pironetin reacts covalently with cysteine-316 of α-tubulin to destabilize microtubule. *Nat Commun.* 2016;7(May):1-9. doi:10.1038/ncomms12103
- Demole E, Berthet D. A Chemical Study of Burley Tobacco Flavour (*Nicotiana tabacum* L.). I.
 Volatile to medium-volatile constituents (b.p. ≤ 84°/0.001 Torr. *Helv Chim Acta*. 1972;55(6):1866-1882. doi:10.1002/hlca.19720550603
- 79. Wattanachaisaereekul S, Tachaleat A, Punya J, Haritakun R, Boonlarppradab C, Cheevadhanarak S. Assessing medium constituents for optimal heterologous production of anhydromevalonolactone in recombinant *Aspergillus oryzae*. *AMB Express*. 2014;4(1):1-16. doi:10.1186/s13568-014-0052-9
- Valenti DJ, Arif AM, Strobel GA, Harper JK. (6S*)-6-[(1S*,2R*)-1,2-Dihydroxypentyl]-4-methoxy5, 6-dihydro-2H-pyran-2-one. *Acta Crystallogr Sect E Struct Reports Online*. 2013;69(11):721-727.
 doi:10.1107/S1600536813027025
- Akay, Ş., Ekiz, G., Kocabaş, F., Hameş-Kocabaş, E. E., Korkmaz, K. S., Bedir E. A new 5,6-dihydro-2-pyrone derivative from *Phomopsis amygdali*, an endophytic fungus isolated from hazelnut (*Corylus avellana*). *Phytochem Lett.* 2014;7(1):93-96. doi:10.1016/j.phytol.2013.09.012
- Tian JF, Yu RJ, Li XX, et al. 1H and 13C NMR spectral assignments of 2-pyrone derivatives from an endophytic fungus of Sarcosomataceae. *Magn Reson Chem.* 2015;53(10):866-871. doi:10.1002/mrc.4282

- Li W, Li X Bin, Li L, Li RJ, Lou HX. α-Pyrone derivatives from the endolichenic fungus *Nectria* sp. *Phytochem Lett.* 2015;12:22-26. doi:10.1016/j.phytol.2015.02.008
- Zhao Q, Wang CX, Yu Y, et al. Nodulisporipyrones A-D, new bioactive α-pyrone derivatives from Nodulisporium sp. J Asian Nat Prod Res. 2015;17(5):567-575. doi:10.1080/10286020.2015.1040776
- Endo A, Hasumi K, Masuda M. Dihydromonacolin L and Monacolin Those Inhibit Cholesterol X, New Metabolites Biosynthesis. *J Antibiot (Tokyo)*. 1985;XXXVIII(3):321-327. doi:10.7164/antibiotics.38.321
- 86. Maher S, Rasool S, Mehmood R, Perveen S, Tareen RB. Trichosides A and B, new withanolide glucosides from *Tricholepis eburnea*. Nat Prod Res. 2018;32(1):1-6. doi:10.1080/14786419.2015.1030340
- Teruya T, Suenaga K, Maruyama S, Kurotaki M, Kigoshi H. Biselides A-E: Novel polyketides from the Okinawan ascidian Didemnidae sp. *Tetrahedron*. 2005;61(27):6561-6567. doi:10.1016/j.tet.2005.04.052
- Murakami N, Sugimoto M, Nakajima T, Kawanishi M, Tsutsui Y, Kobayashi M. Participation of the Conjugated Diene Part for Potent Cytotoxicity of Callystatin A, a Spongean Polyketide. 2000;8:2651-2661.
- Of VCOMPONENTS, Liverworts THE, Olivacea ARCHILEJEUNEA, Elliptica ANDLEPTOLEJEUNEA. Volatile components of the liverworts *Archilejeunea olivacea*, *Cheilolejeunea imbricata* and *Leptolejeunea elliptica*. 1997;44(7):1261-1264.
- 90. Horikawa M, Inai M, Oguri Y, et al. Isolation and Total Syntheses of Cytotoxic Cryptolactones A1,A2,B1, and B2: α,β-Unsaturated δ-Lactones from a *Cryptomyzus* sp. Aphid. *J Nat Prod*. 2014;77(11):2459-2464. doi:10.1021/np500542x
- 91. Takeda Y, Okada Y, Masuda T, Hirata E, Takushi A, Otsuka H. Euscapholide and its glucoside from leaves of *Euscaphis japonica*. *Phytochemistry*. 1998;49(8):2565-2568. doi:10.1016/S0031-9422(98)00193-9
- 92. Koshino H, Yoshihara T, Okuno M, Sakamura S, Tajimi A, Shimanuki T. Gamahonolides A, B, and Gamahorin, Novel Antifungal Compounds from Stromata of *Epichloe typhina* on *Phleum pratense*. *Biosci Biotechnol Biochem*. 1992;56(7):1096-1099. doi:10.1271/bbb.56.1096
- 93. Swingle MR, Amable L, Lawhorn BG, et al. Structure-activity relationship studies of fostriecin, cytostatin, and key analogs, with PP1, PP2A, PP5, and(beta12-beta13)-chimeras (PP1/PP2A and PP5/PP2A), provide further insight into the inhibitory actions of fostriecin family inhibitors. *J Pharmacol Exp Ther*. 2009;331(1):45-53. doi:10.1124/jpet.109.155630
- 94. Takeuchi T, Takahashi N, Ishi K, Kusayanagi T, Kuramochi K, Sugawara F. Antitumor antibiotic fostriecin covalently binds to cysteine-269 residue of protein phosphatase 2A catalytic subunit in mammalian cells. *Bioorganic Med Chem.* 2009;17(23):8113-8122. doi:10.1016/j.bmc.2009.09.050
- 95. Kasaplar P, Yilmazer Ö, Çağir A. 6-Bicycloaryl substituted (S)- and (R)-5,6-dihydro-2H-pyran-2-ones: Asymmetric synthesis, and anti-proliferative properties. *Bioorganic Med Chem*.
 2009;17(1):311-318. doi:10.1016/j.bmc.2008.10.069

- 96. Grkovic T, Blees JS, Colburn NH, et al. Cryptocaryols A-H, α-pyrone-containing 1,3-polyols from *Cryptocarya* sp. implicated in stabilizing the tumor suppressor Pdcd4. J Nat Prod. 2011;74(5):1015-1020. doi:10.1021/np100918z
- 97. Sturgeon CM, Cinel B, Díaz-Marrero AR, et al. Abrogation of ionizing radiation-induced G2 checkpoint and inhibition of nuclear export by *Cryptocarya* pyrones. *Cancer Chemother Pharmacol*. 2008;61(3):407-413. doi:10.1007/s00280-007-0483-y
- 98. Davis RA, Demirkiran O, Sykes ML, et al. 7',8'-Dihydroobolactone, a typanocidal α-pyrone from the rainforest tree *Cryptocarya obovata*. *Bioorganic Med Chem Lett*. 2010;20(14):4057-4059. doi:10.1016/j.bmcl.2010.05.091
- 99. Liu Y, Rakotondraibe LH, Brodie PJ, et al. Antimalarial 5,6-Dihydro-α-pyrones from *Cryptocarya rigidifolia*: Related Bicyclic Tetrahydro-α-Pyrones Are Artifacts. *J Nat Prod*. 2015;78(6):1330-1338. doi:10.1021/acs.jnatprod.5b00187
- Juliawaty LD, Kitajima M, Takayama H, Achmad SA, Aimi N. A 6-substituted-5,6-dihydro-2-pyrone from *Cryptocarya strictifolia*. *Phytochemistry*. 2000;54(8):989-993. doi:10.1016/S0031-9422(00)00077-7
- 101. Collett, L. A., Davies-Coleman, M. T., Rivett, D. E., Drewes, S. E., & Horn MM. Absolute configuration of α-pyrones from Cryptocarya latifolia and *Syncolostemon densiflorus*. *Phytochemistry*. 1997;44(5):935-938.
- Mosaddik MA, Haque ME. Cytotoxicity and Antimicrobial Activity of Goniothalamin Isolated from Bryonopsis laciniosa. Phyther Res. 2003;17(10):1155-1157. doi:10.1002/ptr.1303
- 103. Chiu CC, Liu PL, Huang KJ, et al. Goniothalamin inhibits growth of human lung cancer cells through DNA damage, apoptosis, and reduced migration ability. *J Agric Food Chem*. 2011;59(8):4288-4293. doi:10.1021/jf200566a
- 104. Kabir KE, Khan AR, Mosaddik MA. Goniothalamin A potent mosquito larvicide from *Bryonopsis* laciniosa L. J Appl Entomol. 2003;127(2):112-115. doi:10.1046/j.1439-0418.2003.00716.x
- 105. De Fátima Â, Kohn LK, De Carvalho JE, Pilli RA. Cytotoxic activity of (S)-goniothalamin and analogues against human cancer cells. *Bioorganic Med Chem*. 2006;14(3):622-631. doi:10.1016/j.bmc.2005.08.036
- Cardona G. W, Quiñones F. W, Echeverri L. F. Leishmanicidal activity of passifloricin A and derivatives. *Molecules*. 2004;9(8):666-672.
- 107. Carmona D, Sáez J, Granados H, et al. Antiprotozoal 6-substituted-5,6-dihydro-α-pyrones from Raimondia cf. Monoica. Nat Prod Res. 2003;17(4):275-280. doi:10.1080/1057563031000065062
- Andrianaivoravelona JO, Sahpaz S, Terreaux C, Hostettmann K, Stoeckli-evans H, Rasolondramanitra J. Two 6-substituted 5, 6-dihydro- a -pyrones from *Ravensara anisata*. 2000;52(1999):265-269.
- 109. Raoelison GE, Terreaux C, Queiroz EF, et al. Absolute configuration of two new 6-alkylated a-pyrones (= 2H-pyran-2-ones) from *Ravensara crassifolia*. *Helv Chim Acta*. 2001;84(11):3470-3476. doi:10.1002/1522-2675(20011114)84:11<3470::AID-HLCA3470>3.0.CO;2-K

- Nagashima H, Nakamura K, Goto T. Hepatotoxin rubratoxin B induced the secretion of TNF-α, IL-8, and MCP-1 in HL60 cells. *Biochem Biophys Res Commun.* 2001;287(4):829-832. doi:10.1006/bbrc.2001.5657
- 111. Wang T, Zhang Y, Wang Y, Pei Y hu. Anti-tumor effects of Rubratoxin B on cell toxicity, inhibition of cell proliferation, cytotoxic activity and matrix metalloproteinase-2,9. *Toxicol Vitr*. 2007;21(4):646-650. doi:10.1016/j.tiv.2007.01.001
- 112. Nagashima H, Goto T. Calcium channel blockers verapamil and diltiazem impaired rubratoxin B-caused toxicity in HL60 cells. *Toxicol Lett.* 2000;118(1-2):47-51. doi:10.1016/S0378-4274(00)00266-6
- 113. Toneto Novaes LF, Martins Avila C, Pelizzaro-Rocha KJ, et al. (-)-Tarchonanthuslactone: Design of New Analogues, Evaluation of their Antiproliferative Activity on Cancer Cell Lines, and Preliminary Mechanistic Studies. *ChemMedChem*. 2015;10(10):1687-1699. doi:10.1002/cmdc.201500246
- 114. Sirirath S, Tanaka J, Ohtani II, et al. Bitungolides A F, new polyketides from the Indonesian sponge *Theonella cf. swinhoei. J Nat Prod.* 2002;65(12):1820-1823. doi:10.1021/np0200865
- 115. Igarashi Y, Asano D, Furihata K, et al. Absolute configuration of pterocidin, a potent inhibitor of tumor cell invasion from a marine-derived *Streptomyces*. *Tetrahedron Lett.* 2012;53(6):654-656. doi:10.1016/j.tetlet.2011.11.115
- 116. Masi M, Maddau L, Linaldeddu BT, et al. Bioactive Secondary Metabolites Produced by the Oak Pathogen Diplodia corticola. J Agric Food Chem. 2016;64(1):217-225. doi:10.1021/acs.jafc.5b05170
- Achmad S, Høyer T, Kjær A, Makmur L, Norrestam R. Molecular and Crystal Structure of Hyptolide, a Naturally Occurring alpha,beta-Unsaturated delta-Lactone. *Acta Chem Scand*. 1987;41b(Table 1):599-609. doi:10.3891/acta.chem.scand.41b-0599
- Boalino DM, Connolly JD, McLean S, Reynolds WF, Tinto WF. α-Pyrones and a 2(5H)-furanone from *Hyptis pectinata*. *Phytochemistry*. 2003;64(7):1303-1307. doi:10.1016/j.phytochem.2003.08.017
- 119. Mendoza-Espinoza JA, López-Vallejo F, Fragoso-Serrano M, Pereda-Miranda R, Cerda-García-Rojas CM. Structural reassignment, absolute configuration, and conformation of hypurticin, a highly flexible polyacyloxy-6-heptenyl-5,6-dihydro-2H-pyran-2-one. *J Nat Prod.* 2009;72(4):700-708. doi:10.1021/np800447k
- 120. Almtorp GT, Hazell AC, Torssell KBG. A lignan and pyrone and other constituents from *Hyptis* capitata. Phytochemistry. 1991;30(8):2753-2756. doi:10.1016/0031-9422(91)85137-O
- 121. Araújo FS, Coelho LM, Silva L do C, et al. Effects of Argentilactone on the Transcriptional Profile, Cell Wall and Oxidative Stress of *Paracoccidioides* spp. *PLoS Negl Trop Dis*. 2016;10(1):1-18. doi:10.1371/journal.pntd.0004309
- 122. De Oliveira CMA, Silva MDRR, Kato L, Da Silva CC, Ferreira HD, Souza LKH. Chemical composition and antifungal activity of the essential oil of *Hyptis ovalifolia* Benth. (Lamiaceae). J Braz Chem Soc. 2004;15(5):756-759. doi:10.1055/s-2004-827162
- 123. Costa VCDO, Tavares JF, Silva AB, et al. Hyptenolide, a new α-pyrone with spasmolytic activity from *Hyptis macrostachys*. *Phytochem Lett*. 2014;8(1):32-37. doi:10.1016/j.phytol.2014.01.009

- Rahman MM, Gibbons S. Antibacterial constituents of *Neohyptis paniculata*. *Fitoterapia*. 2015;105:269-272. doi:10.1016/j.fitote.2015.07.012
- 125. Pereda-Miranda R, Fragoso-Serrano M, Cerda-García-Rojas CM. Application of molecular mechanics in the total stereochemical elucidation of spicigerolide, a cytotoxic 6-tetraacetyl-oxyheptenyl-5,6dihydro-α-pyrone from *Hyptis spicigera*. *Tetrahedron*. 2001;57(1):47-53. doi:10.1016/S0040-4020(00)00987-X
- Deng Y, Balunas MJ, Kim J, et al. Bioactive 5,6-Dihydro-r-pyrone Derivatives from *Hyptis brevipes*. 2009;72:1165-1169.
- 127. Valles-sánchez A, Rosales-marines L, Eugenia L, Lorena S. Métodos y Usos de la Química Computacional Computational Chemistry Methods and its Applications. *Rev Científica la Univ Autónoma Coahuila Métodos*. 2014;6(11):16-21.
- 128. D. Suárez. Objetivos y caracteristicas de la quimica computacional y su aplicacion al estudio de materiales de carbono. *Bol Grup Español Carbón*. 2012;25:23-28. doi:10.1021/nl102916n
- Cuevas G, Cortes F. Introduccion a La Quimica Computacional. primera ed. Mexico: Fondo de Cultura Economica; 2003.
- Cedrón JC, Tenerife LL. Métodos para Determinar la Configuración Absoluta de una Molécula. Inst Univ Bioorgánica "Antonio Gonzáles." 2011:19-31.
- José M. Seco, Emilio Quiñoá and RR. The Assignment of the Absolute Configuration by NMR Using Chiral Derivatizing Agents: A Practical Guide. New York: Oxford University Press; 2015.
- Tantillo DJ. Walking in the woods with quantum chemistry-applications of quantum chemical calculations in natural products research. *Nat Prod Rep.* 2013;30(8):1079-1086. doi:10.1039/c3np70028c
- 133. Riccio R, Bifulco G, Cimino P, Bassarello C, Gomez-Paloma L. Stereochemical analysis of natural products. Approaches relying on the combination of NMR spectroscopy and computational methods. *Pure Appl Chem.* 2003;75(2-3):295-308. doi:10.1351/pac200375020295
- 134. Mohan SJ, Mohan EC, Yamsani MR. Chirality and its Importance in Pharmaceutical Field- An Overview. Int J Pharm Sci Nanotechnol. 1998;1(4):309-316. http://www.pharmabooksyndicate.com/issues/309.pdf.
- 135. Tormena CF. Conformational analysis of small molecules: NMR and quantum mechanics calculations. *Prog Nucl Magn Reson Spectrosc*. 2016;96:73-88. doi:10.1016/j.pnmrs.2016.04.001
- 136. Juárez-González F, Suárez-Ortiz GA, Fragoso-Serrano M, Cerda-García-Rojas CM, Pereda-Miranda
 R. DFT 1H-1H coupling constants in the conformational analysis and stereoisomeric differentiation of
 6-heptenyl-2H-pyran-2-ones: Configurational reassignment of synargentolide A. *Magn Reson Chem*.
 2015;53(3):203-212. doi:10.1002/mrc.4178
- 137. Suárez-Ortiz GA, Cerda-García-Rojas CM, Fragoso-Serrano M, Pereda-Miranda R. Complementarity of DFT Calculations, NMR Anisotropy, and ECD for the Configurational Analysis of Brevipolides K-O from *Hyptis brevipes*. J Nat Prod. 2017;80(1):181-189. doi:10.1021/acs.jnatprod.6b00953
- 138. Bagno A, Rastrelli F, Saielli G. Toward the complete prediction of the1H and13C NMR spectra of

complex organic molecules by DFT methods: Application to natural substances. *Chem - A Eur J*. 2006;12(21):5514-5525. doi:10.1002/chem.200501583

- Smith SG, Goodman JM. Assigning stereochemistry to single diastereoisomers by GIAO NMR calculation: The DP4 probability. *J Am Chem Soc.* 2010;132(37):12946-12959. doi:10.1021/ja105035r
- 140. Grimblat N, Zanardi MM, Sarotti AM. Beyond DP4: An Improved Probability for the Stereochemical Assignment of Isomeric Compounds using Quantum Chemical Calculations of NMR Shifts. J Org Chem. 2015;80(24):12526-12534. doi:10.1021/acs.joc.5b02396

3. JUSTIFICACIÓN

Las 5,6-dihidro- α -pironas han demostrado ser responsables de la actividad citotóxica y antimicrobiana de algunas especies de plantas del género *Hyptis*. A su vez estos compuestos flexibles de bajo peso molecular y con múltiples centros quirales representan un valioso y muy poco explorado modelo para el análisis conformacional y configuracional a través de la teoría de funcionales de la densidad (DFT). Debido a esto, se seleccionaron dos especies del género *Hyptis* con el fin de aislar, purificar y caracterizar la estructura molecular de nuevos 5,6-dihidro- α -pironas citotóxicas. También se realizó el análisis termodinámico teórico de esta clase de metabolitos secundarios con una alta dispersión conformacional, en combinación con correlaciones químicas, mediciones quirópticas y constantes experimentales obtenidas a través de DFT-RMN para determinar la configuración absoluta y lograr la diferenciación epimérica de ejemplos selectos de 5,6-dihidro- α -pironas con una alta afinidad por la subunidad alfa del dímero de tubulina.

4. OBJETIVOS

El objetivo principal del presente estudio consistió en llevar a cabo el aislamiento, la purificación y la caracterización estructural de nuevas 5,6-dihidro- α -pironas citotóxicas a partir de los extractos de *Hyptis pectianta* e *Hyptis monticola*, con el fin de realizar el análisis conformacional y el establecimiento de la configuración absoluta aplicando el cálculo teórico DFT de las constantes de acoplamiento (³*J*_{H,H}) y desplazamientos químicos (δ) en la resonancia magnética nuclear y su correlación con los valores experimentales; además, se determinó el potencial citotóxico de las 5,6-dihidro- α -pironas aisladas en diferentes líneas celulares y su análisis mediante acoplamiento molecular con la tubulina.

Objetivos específicos

- Realizar el aislamiento y la purificación de las 5,6-dihidro-α-pironas a través de diversas técnicas cromatográficas.
- Caracterizar la estructura química de los compuestos obtenidos utilizando RMN y espectrometría de masas (MS), en conjunto con derivatizaciones con ésteres de Mosher y correlaciones químicas para establecer la configuración absoluta.
- Analizar, a través de un protocolo de modelado molecular con DFT y RMN, la conformación teórica en fase gaseosa y en disolución de las 5,6-dihidro-α-pironas obtenidas para determinar la configuración absoluta y establecer su diferenciación epimérica.
- Evaluar el potencial citotóxico de los compuestos puros utilizando tres líneas celulares derivadas de tumores humanos: HTC-15 (carcinoma de colon), HeLa (carcinoma de cérvix) y MCF-7 (carcinoma de mama).
- Realizar el análisis de acoplamiento molecular (docking) utilizando como ligandos las 5,6-dihidro-α-pironas aisladas con mayor potencial citotóxico para la proteína α,βtubulina.

5. CAPÍTULO I

Structure Elucidation, Conformation, and Configuration of Cytotoxic 6-Heptyl-5,6-dihydro-2*H*-pyran-2-ones from *Hyptis* Species and their Molecular Docking to α-Tubulin

Lucero Martínez-Fructuoso,[†] Rogelio Pereda-Miranda,^{*,†} Daniel Rosas-Ramírez,[†] Mabel Fragoso-Serrano,[†] Carlos M. Cerda-García-Rojas,[‡] Aline Soares da Silva,[§] Gilda Guimarães Leitão,[⊥] and Suzana Guimarães Leitão[§]

[†]Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico

[‡]Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, A. P. 14-740, Mexico City 07000, Mexico

[§]Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, CCS, Bloco A, Ilha do Fundão, 21941-902, Rio de Janeiro, Brazil

⊥Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, CCS,
 Bloco H, Ilha do Fundão, 21941-590, Rio de Janeiro, Brazil

ABSTRACT: Cytotoxic 6-heptyl-5,6-dihydro-2*H*-pyran-2-ones are chemical markers of *Hyptis* (Lamiaceae) and responsible for some of the therapeutic properties of species with relevance to traditional medicine. The present investigation describes the isolation of known pectinolides A-C (1-3), in addition to the new pectinolides I-M (4-8), from two Mexican collections of *H. pectinata* by HPLC. The novel biosynthetically related monticolides A (9) and B (10) were also isolated by high-speed countercurrent chromatography from *H. monticola*, an endemic species of the Brazilian southeastern high-altitude regions. A combination of chemical correlations, chiroptical measurements, and Mosher esters NMR analysis was used to confirm their absolute configuration. The utility of DFT-NMR chemical shifts and J_{H-H} calculations was assessed for epimer differentiation. Molecular docking studies indicated that 6-heptyl-5,6-dihydro-2*H*-pyran-2-ones have a high affinity for the pironetin-binding site of α -tubulin, which may be a possible mechanism contributing to the cytotoxic potential of these small and flexible molecules.

5.1 INTRODUCTION

The plants belonging to the genus *Hyptis* from the mint family (Lamiaceae), commonly known as bushmints, are widespread in the tropical Americas with the Guianan and Brazilian shields as their diversification center.¹ This genus has a great relevance for the traditional medicine of Latin America in the treatment of gastrointestinal and respiratory problems and fever.²⁻⁴ H. pectinata (L.) Poit., with a pantropical distribution, has spread as a weed and became naturalized throughout the South American tropics to the Caribbean, Central America, and Mexico. It is considered a noxious weed of cultivated land, pastures, and trailsides. In Mexico and Brazil, it is utilized extensively in ethnomedicine as a decoction, mainly as a natural anti-inflammatory agent for rheumatic pains. Aqueous and organic extracts from leaves have shown antiedematogenic and antinociceptive effects in animal models,^{5,6} validating the popular use of this herbal drug. In addition, the antimicrobial activities of its essential oils, with thymol as the major component, are also responsible for a large number of the therapeutic applications of this medicinal plant.⁷ Additionally, H. monticola Mart. ex Benth. is an endemic species of high-altitude areas (1000-2000 m a.s.l.) at the Brazilian Southeastern region. Its essential oil was characterized predominantly by *trans*-caryophyllene, (E)-methyl cinnamate, germacrene D, limonene, α -muurolene, and β pinene.^{7c} The pharmacological properties of this species have not been studied.

Hyptis contains a group of chemical markers possessing the 6-heptyl-5,6-dihydro-2*H*pyran-2-one system, which contributes with its antimicrobial³ and cytotoxic⁸ properties. The activity of these compounds is related to the α,β -unsaturated δ -lactone system, a well-known Michael acceptor, which is complemented with the lipophilicity provided by the 6-alkyl substituent to facilitate interaction with cell membranes.^{8b} Pironetin, isolated from cultures of *Streptomyces* sp., is a representative example of this type of cytotoxic compounds, which is the only natural compound currently known to bind to α -tubulin, and is a potent inhibitor of microtubule polymerization. Its mechanism of action is carried out through a Michaeltype addition of Lys352 of the tubulin α -subunit to the β -carbon atom of the α , β -unsaturated δ -lactone (Figure 1).⁹ However, it has been postulated that pironetin could also form a covalent bond to Cys316.^{9c} All other microtubule-disruptive drugs of plant origin bind to β tubulin.¹⁰

Figure 1. Chemical structure of pironetin (above), a representative example of cytotoxic 5,6dihydro-2*H*-pyran-2-ones, and minimum energy molecular model of α -tubulin with pironetin covalently bonded at Lys352 (below). Pironetin incorportation alters the H8 and M-loop tertiary structure of α -tubulin.

The first compound isolated from *H. pectinata* and belonging to this class of 5,6-dihydro-2*H*-pyran-2-ones was named hyptolide.^{11a} Pectinolides A-C (**1-3**) were isolated from this species collected in Mexico, which demonstrated cytotoxic activity for a variety of cell lines and antimicrobial activity against *Staphyloccocus aureus* and *Bacillus subtilis*.^{3a} Other α pyrones, pectinolides D-F, and a 2(5*H*)-furanone (pectinolide G), were also isolated from a collection from Barbados.^{11b} Pectinolide H, corresponding to a butenolide structurally related to pectinolide B, displayed antimicrobial activity against multidrug resistant strains of *S. aureus*.^{3b}

The 6-heptenyl-5,6-dihydro-2*H*-pyran-2-ones have been used as models to study the conformational and configurational properties of flexible natural products with multiple chiral centers. Thus, DFT-NMR calculations, in combination with ECD data, have been used to solve the absolute configuration of this type of compounds.¹² The present investigation describes the isolation and structural elucidation of seven biosynthetically related new lactones isolated from a Mexican collection of *H. pectinata* and the Brazilian endemic species *H. monticola*. A combination of chemical correlations, chiroptical measurements, and Mosher ester methodology was used to confirm the absolute configuration of these flexible compounds and their utility was further assessed through the comparison of DFT calculated and experimental values for epimer differentiation at the C-3' chiral center of the side chain. The binding interactions of these cytotoxic 5,6-dihydro-2*H*-pyran-2-ones to α -tubulin were also studied through molecular docking analysis.

5.2 RESULTS AND DISCUSSION

Pectinolides A-C (1-3), in addition to the new pectinolides I-M (4-8), were isolated from two Mexican collections of *H. pectinata* by reversed-phase preparative HPLC. The biosynthetically related 6-heptyl-5,6-dihydro-2*H*-pyran-2-ones, monticolides A (9) and B (10), were also isolated from the Brazilian endemic species *H. monticola* by high-speed countercurrent chromatography. The known compounds 1-3 were identified by HPLC coelution with authentic samples and comparison of their ¹H and ¹³C NMR spectra with published data.³ The positive Cotton effect in the circular dichroism curve ($\Delta \varepsilon$ 260-290 nm) was correlated with the C-6(*S*) configuration for the three compounds as described for all 6substituted 5,6-dihydro- α -pyrones from the mint family.^{12,13} The pseudo-equatorial side chain at C-6 and the axially oriented substituent at C-5 were established by the *J*_{5,6} value.^{3a} The C-3' absolute configuration was previously corroborated as *S* by Mosher ester derivatives of pectinolide B (2)^{3b} and ozonolysis of pectinolides A (1) and C (3), which yielded (+)-2(*S*)acetyloxyhexanoic acid.^{3a}

1
$$R_1 = Ac$$
 $R_2 = Ac$
2 $R_1 = Ac$ $R_2 = H$
3 $R_1 = H$ $R_2 = Ac$
4 $R_1 = H$ $R_2 = H$
11 $R_1 = MTPA R_2 = MTPA$

The molecular formula of pectinolide I (4) was deduced as $C_{12}H_{18}O_4$ by HRESIMS (*m/z* 249.10969 [M + Na]⁺). The 6-heptenyl-5,6-dihydro-2*H*-pyran-2-one framework was recognized through its characteristic ¹H and ¹³C NMR signals (Tables 1 and 2, respectively; Figures S19-S21, Supporting Information) by comparison with published data for the pectinolide series.³ The positive Cotton effect in the circular dichroism curve ($\Delta \varepsilon_{289}$ +1.32) was correlated with the C-6(*S*) configuration. The pseudo-equatorial side chain at C-6 and the axially oriented hydroxy group at C-5 were established by the *J*_{5,6} value of 3.5 Hz. The simple peracetylation of 4 did not enable a direct chemical comparison of 4 with pectinolide A (1), since its diacetylated derivate was identical in its NMR data and chromatographic behavior to those prepared from pectinolides C (3) and J (5).

Table 1.	¹ H NMR	Data o	f Natural	Products	4-10	(400	MHz in	CDCl ₃	δ in	ppm,	and.	<i>J</i> in	Hz)

positior	n 4	5	6	7	8	9	10
3	6.13 d (9.8)	6.10 d (9.8)	6.24 d (9.7)	2.70 dd (17.5, 1.6)	2.78 dd (17.4, 3.6)	6.24 d (9.7)	6.23 d (9.6)
				2.64 dd (17.5, 3.4)	2.65 dd (17.4, 6.2)		
4	6.98 dd (9.8, 4.9)	6.98 dd (9.8, 5.5)	6.95 dd (9.7, 5.7)	4.06 ddd (4.8, 3.4, 1.6))4.13 ddd (6.2, 5.3, 3.6)	6.95 dd (9.7, 6.1)	7.08 dd (9.6, 6.1)
5	4.24 dd (4.9, 3.3)	4.12 dd (5.5, 3.0)	5.17 dd (5.7, 2.9)	4.89 dd (7.5, 4.8)	4.44 t (5.3)	5.27 dd (6.1, 2.5)	5.40 dd (6.1,2.3)
6	5.36 dd (7.6, 3.3)	5.31 ddd (7.5, 3.0,	5.59 ddd (8.1, 2.9,	5.80 t (7.5)	4.99 dd (8.6, 5.3)	4.54 dd (9.7, 2.5)	4.55 dd (9.5, 2.3)
		0.9)	1.8)				
1′	5.78 dd (11.7, 7.6)	5.76 dd (11.5, 7,5)	5.74 dd (10.9, 8.1)	5.65 (11.2, 7.5)	5.71 dd (10.1, 8.6)	5.43 dd (9.7, 1.9)	3.89 dd (9.5, 0.9)
2'	5.84 dd (11.7, 7.6)	5.66 ddd (11.5, 9.1,	5.64 dd (10.9, 9.0)	5.58 m	5.49 m	5.45 dd (7.4, 1.9)	4.02 dd (5.6, 0.9)
		0.9)					
3'	4.47 ddd (7.6, 6.4,	5.46 ddd (9.1, 7.4,	5.35 ddd (9.0, 7.2,	5.58 m	5.45 m	5.01 ddd (8.7,	5.06 ddd (7.2, 5.6,
	6.7)	5.9)	5.9)			7.4, 4.0)	5.0)
$4'_{\text{proS}}$	1.62 m	1.70 m	1.68 m	1.58 m	1.69 m	1.69 m	1.66 m
$4'_{\text{pro}R}$	1.51 m	1.59 m	1.55 m	1.58 m	1.53 m	1.63 m	1.66 m
5'	1.29 m	1.33 m	1.32 m	1.30 m	1.34 m	1.31 m	1.30 m
6'	1.29 m	1.30 m	1.32 m	1.30 m	1.34 m	1.31 m	1.30 m
7'	0.90 t (6.9)	0.90 t (6.9)	0.90 t (7.0)	0.90 t (7.3)	0.91 t (7.0)	0.89 t (6.8)	0.91 t (6.3)
CH ₃ O	-	-	-	3.28 s	3.31 s	-	-
CH ₃ CO) _	2.03 s	2.08 s	2.08 s	2.04 s	2.11 s	2.12 s
CH ₃ CO) _	-	2.04 s	2.05 s	-	2.10 s	2.11 s
CH ₃ CO) –	-	-	-	-	2.06 s	-
CH ₃ CO) _	-	-	-	-	2.05 s	-

position	4	5	6	7	8	9	10
2	163.8	162.9	162.2	174.3	171.5	160.9	162.1
3	122.4	122.6	125.1	34.8	33.8	125.4	125.2
4	144.8	144.4	139.9	76.4	84.3	139.5	140.5
5	62.9	63.2	64.3	82.7	76.8	59.6	61.4
6	77.2	77.8	75.1	69.0	71.1	75.6	76.9
1′	123.6	125.8	133.1	125.0	131.6	66.9	68.4
2'	138.9	133.8	126.2	135.1	130.1	70.8	70.0
3'	68.6	70.7	69.4	71.6	65.9	71.8	75.9
4′	36.9	34.2	34.0	34.3	34.7	30.3	30.7
5'	27.4	27.1	27.2	27.4	27.1	27.1	27.3
6'	22.6	22.4	22.5	22.6	22.5	22.3	22.4
7′	13.9	13.9	13.9	13.9	13.9	13.9	13.9
CH ₃ CO	-	171.0	170.3	170.6	171.5	170.4	171.9
CH ₃ CO	-	-	169.8	169.2	-	170.1	170.6
CH_3CO	-	-	-	-	-	169.8	-
CH_3CO	-	-	-	-	-	169.4	-
CH ₃ CO	-	21.2	21.1	21.2	21.3	20.9	21.2
CH ₃ CO	-	-	20.5	21.0	-	20.6	20.6
CH ₃ CO	-	-	-	-	-	20.5	-
CH ₃ CO	-	-	-	-	-	20.5	-
CH ₃ O	-	-	-	56.8	57.2	-	-

Table 2. ¹³C NMR Data of Natural Products **4-10** (100 MHz in CDCl₃, δ in ppm)

Thus, in order to avoid further inexactitudes in the assignment of the chiral center C-3' at the side chain, Mosher ester derivatization was used. Bis-MTPA derivatives (11) corroborated the C-5(*S*) and C-3'(*S*) absolute configuration for compound 4 in accordance with the negative value for the δ_{H}^{SR} sign distribution pattern for the *anti-sec/sec-1,n-*diols¹⁴ (Table 3 and Figure S35, Supporting Information).

Pectinolide J (5) was found to have the molecular formula $C_{14}H_{20}O_5$, as determined by ESIMS $(m/z \ 291.12061 \ [M + Na]^+)$. The ¹H NMR spectrum slightly differed in the chemical shifts and multiplicities for H-1', H-2', and H-3' signals to those reported for pectinolide C (3) (Table 1; Figure S5, Supporting Information); however, their ¹³C NMR data were almost identical (Table 2; Figure S4, Supporting Information). Also, an evident difference in their HPLC retention time values was registered (3: $t_R \ 9.2 \ min; \ 5: t_R \ 8.6 \ min)$. The positive sign for the circular dichroism ($\Delta \varepsilon_{278} + 0.57$) was in agreement with the C-6(*S*) absolute configuration, in addition, the pseudo-

equatorial side chain at C-6 and the axially oriented hydroxy group at C-5 were established by the $J_{5,6}$ value of 2.9 Hz. Thus, the structure for compound **5** ($[\alpha]_D$ +63.8) should correspond to the C-3'(R) epimer of pectinolide C (**3**, $\Delta \varepsilon_{270}$ +0.38, $[\alpha]_D$ +80.9).³ On acetylation, compound **5** afforded derivative **6**, which was chromatographically undistinguishable from pectinolide K (**6**). Natural compound **6** was found to have the molecular formula C₁₆H₂₂O₆, as determined by ESIMS (m/z 333.13078 [M + Na]⁺). Although the ¹H and ¹³C NMR data of **6** were quite comparable with those of **1**, their optical rotations (**1**, $[\alpha]_D$ +202 vs. **6**, $[\alpha]_D$ +98) differed and indicated the presence of a second natural diastereoisomeric pair at the C-3' chiral center of the side chain between both compounds.

			protor	n chemic	al shifts	$(\Delta \delta_{\rm H} = \delta_{\rm H})$	$(s - \delta_R)$	
compound	MTPA-ester	H-3	H-4	H-5	H-6	H-1'	H-2'	H-3′
	S	6.91	5.94	4.13	5.24	5.81	5.75	4.37
11	$arDelta\delta_{ m H}$	-0.02	-0.03	-0.04	-0.03	-0.02	-0.01	-0.02
	R	6.93	5.97	4.17	5.27	5.83	5.76	4.39
	S	5.99	6.83	5.09	3.66	4.14	5.54	5.40
13	$arDelta\delta_{ m H}$	-0.1	-0.2	-0.25	-0.91	0.16	1.58	0.31
	R	6.09	7.03	5.34	4.57	3.98	3.96	5.09
	S	6.94	6.13	5.20	3.79	4.26	5.82	5.41
16	$arDelta\delta_{ m H}$	-0.14	-0.04	-0.21	-1.05	0.09	1.56	0.27
	R	7.08	6.17	5.41	4.84	4.17	4.26	5.14

Table 3. ¹H NMR Chemical Shift Data for Signals from (S)- and (R)-Ester Derivatives **11**, **13** and **16** (300 MHz in CDCl₃, δ in ppm)

Complementary structural information was available via the utility of the DFT chemical shifts and ${}^{3}J_{\rm H,H}$ calculations¹² in the gas phase and CHCl₃ solution for the conformational analysis and epimer differentiation of compounds **3** and **5** by taking advantage of the fact that the absolute configuration for pectinolide C (**3**) has also been confirmed by stereoselective total synthesis.¹⁵ The ¹H chemical shifts and coupling constants were sufficiently different between this natural product and its epimeric counterpart at C-3', pectinolide J (5), to permit the appropriate spectroscopic interpretation of each stereoisomer after comparison with the DFT $^{1}\mathrm{H}$ NMR chemical shifts and $^{3}J_{\mathrm{H,H}}$ values. In contrast, experimental $^{13}\mathrm{C}$ NMR data was not useful to distinguish between these stereoisomers (Figure S4, Supporting Information). This situation was previously reported for pairs of stereoisomers when two chiral moieties are separated by a flexible connective chain,^{12b} thus producing identical ¹³C NMR spectra but distinguishable ¹H NMR spectra, as observed for **3** and **5**. The conformational distributions of 3 and 5 were obtained by using the Monte Carlo protocol complemented with a systematic search with molecular mechanics minimization in which the C(5)-C(6)-C(1')=C(2') and C(1')=C(2')-C(3')-C(4') dihedral angles were rotated in steps of 180° and the remaining dihedral angles of the heptenyl moiety were rotated in steps of 120°, starting at 60° for each bond. The acetyloxy H-C_{sp3}-O-C_{sp} and C_{sp3}-O-C=O dihedral angles were explored within the range from $+60^{\circ}$ to -60° to find the more favored alignment. DFT single-point calculations were achieved at the B3LYP/6-31G(d) level theory for each minimum-energy structure falling between $E_{\text{MMFF}} = 0.5$ kcal/mol and geometry optimization at the B3LYP/DGDZVP level were carried out for all the structures within an $E_{\text{DFT-SP}}$ range of 0-3 kcal/mol. This procedure yielded 14 conformers for 3 and 20 for 5; their Gibbs free energy values (ΔG) and conformational populations (P), together with NMR chemical shifts (¹H, Tables S1 and S3; ¹³C Tables S17 and S19, Supporting Information) and coupling constants (Tables S7 and S11, Supporting Information), were calculated from the minimum-energy structures with the gauge-invariant atomic orbital (GIAO) method. Subsequently, the minimum energy structures, chemical shifts (DFT-¹H NMR, Tables S2 and S4; and DFT-¹³C NMR, Tables S18 and S20, Supporting Information), and coupling constants (Tables S8 and S12, Supporting Information) were refined and recalculated with the polarizable continuum model (PCM) using CHCl₃ as the solvent.

Calculated ¹H NMR chemical shifts in solution for compounds **3** and **5** are summarized in Tables S2 and S4 (Supporting Information), where experimental values are also included for comparison, showing values with RMSD < 0.20 ppm. The main differences in the chemical shifts between this pair of diastereoisomers were observed in the C-1'=C-2'-C-3'-C-4' fragment (Figure S5, Supporting Information), in particular, the C-4' pro*R* and pro*S* protons ($\Delta\delta_{H-4'proR-H-4'proS} = 0.1$ ppm) were unquestionably distinguished based on the DFT chemical shift predictions (Table 4).

Table 4. Summary^{*a*} of Theoretical^{*b*} and Experimental^{*c*} Chemical Shifts (in ppm) for the C-4' Protons of **3** and **5**.

compound		H-4'proS	H-4′proR
3	theor gas phase	1.5638	1.6133
	theor solvent	1.5945	1.6846
	exp	1.6591	1.7559
5	theor gas phase	1.6678	1.5280
	theor solvent	1.6465	1.5374
	exp	1.6990	1.5909

^{*a*}For full details on theoretical chemical shifts calculations for each contributing conformer, refer to Supporting Information (Tables S1-S4).^{*b*}Obtained from the DFT-optimized structures using DFT B3LYP/DGDZVP in gas phase and DFT B3LYP/DGDZVP PCM in solution. Values were Boltzmann averaged with equation $\Sigma_i J_i \times P_i$, where J_i is the spin–spin coupling constant (in Hz) for each conformer and P_i is the population for the ith conformer calculated from ΔG values at 298 K and 1 atm.^{*c*}The ¹H NMR chemical shifts were obtained at 700 MHz from CDCl₃ solutions using TMS as the internal standard.

Calculated ${}^{3}J_{\rm H,H}$ values were scaled using the previously described factors.^{12a} Thus, an excellent correlation (a low RMSD) was obtained when the correct combination of theoretical and experimental ${}^{3}J_{\rm H,H}$ values were chosen, i.e., **3**-theor/**3**-exp and **5**-theor/**5**exp in contrast to **3**-theor/**5**-exp and **5**-theor/**3**exp (Figure 2), which also confirmed the biosynthetic enantiodivergence at C-3'. The observed reduction in the RMSD values (from 1.13 to 0.87 Hz) for the ${}^{3}J_{\rm H,H}$ in gas phase and solution reflects that the inclusion of solvation provides a more precise calculation model for hydroxylated compounds, as previously described.^{12b}

Figure 2. RMSD values between theoretical and experimental ${}^{3}J_{H,H}$ for epimers 3 and 5 in gas phase (blue) and solution (red).

Figures 3 and 4 show the four minimum-energy structures in CHCl₃ solution of conformers of **3** and **5**, respectively. For example, in the most relevant conformer **5**-1 with a 32.9% contribution to the Boltzmann population (Figure 4), it was observed the anti-orientation between H-3' and H-4'pro*S* that resulted in a large DFT ${}^{3}J_{\text{HH}}$ value (11.3 Hz, Table S12, Supporting Information), while the H-3'/H-4'pro*R* pair exists in a gauche orientation giving a small DFT ${}^{3}J_{\text{HH}}$ (1.9 Hz). Conversely, conformer **5**-2, which contributed with a 23.5% of the Boltzmann population, showed a DFT ${}^{3}J_{\text{HH}} = 3.7$ Hz for the H-3'/H-4'pro*S* derived from the gauche orientation, while the calculated ${}^{3}J_{\text{HH}}$ for H-3'/H-4'pro*R* was 11.5 Hz. The calculated averaged ${}^{3}J_{\text{HH}}$ values for these protons in the new pectinolide J (**5**) in CHCl₃ solution were $J_{3',4'proR} = 5.12$ and $J_{3',4'proS} = 7.26$ Hz at the equilibrium considering 20 conformers (Table S12, Supporting Information), in agreement with the experimental values ($J_{3',4'proR} = 5.90$ and $J_{3',4'proS} = 7.38$ Hz). The solvent used in our computational calculations is aprotic and accounted for the stabilizing interaction derived from the intramolecular hydrogen bond formed between the hydroxy hydrogen at C-5 in the lactone ring and the carbonyl group of the acetyloxy substituent at C-3' present in pectinolide C (**3**) with a distance of 1.76 Å (Figure 3). In contrast, a higher
conformational dispersion was found at the side chain of pectinolide J (5) due to the lack of such an interaction (Figure 4). Theoretical ${}^{3}J_{H,H}$ values were estimated in solution by evenly decreasing and increasing the percentages of the hydrogen-bonded and non-bonded conformations resulting in higher values for the RMSD, thus confirming that the hydrogen bonded conformations were accurately estimated for **3** (Figure S3; Table S24, Supporting Information).

Figure 3. The four most relevant conformers of pectinolide C (3) modeled in CHCl₃ solution, showing the stabilizing intramolecular hydrogen bond formed between the hydroxy hydrogen at C-5 in the lactone ring and the carbonyl group of the acetyloxy substituent at C-3'.

Figure 4. The four most relevant conformers of pectinolide J(5) modeled in in CHCl₃ solution.

Additionally, NOE differential spectroscopy¹⁶ of **3** and **5** carried out in CDCl₃ at 700 MHz (Figures S6 and S7, Supporting Information) was in agreement with the high flexibility reflected by the calculated models. Thus, irradiation of H-2' in compound **3** induced almost identical enhancements in H-4'pro*R* (1.15%) and H-4'pro*S* (1.21%) in accordance with the presence of conformer **3**-1, having a contribution to the Boltzmann population of 41.1% (Figure S8, Supporting Information), in which the measured distance between the vinylic H-2' and the synperiplanar H-4'pro*R* was 2.6 Å, in co-existence with conformers **3**-2, **3**-3, and **3**-4, with a synperiplanar orientation between H-2' and H-4'pro*S*, having a combined contribution of 44.2% to the Boltzmann population.

A preferential use of a protocol involving simulations of the surrounding medium (PCM solvation algorithm) was recognized for the deacetylated compounds (Table 5), as previously described for related compounds.^{12b} These findings are in line with our recent reports on the application of the DFT-NMR integrated approach¹² for the ${}^{3}J_{H,H}$ calculations of some other related flexible systems that indicate the necessity for a careful consideration of the overall DFT population to integrate the population-averaged coupling constants as well as the theoretical energies (ΔG) and spectroscopic properties (e.g., ECD)^{12c} of the molecules capable of existing in more than two conformers. Some drawbacks in the NMR calculations in structural terms and conformer populations of highly flexible natural products could emerge if the populationaveraged coupling constants for the vicinal interacting protons to chiral centers in flexible chains are not considered, since variations between the epimers are quite subtle.¹² In order to avoid ambiguities¹⁷ for the absolute configurations of the stereogenic centers at the side chains of 6-alkyl-5,6-dihydro-2*H*-pyran-2-ones, comparison between the Boltzmann-averaged $\delta_{\rm H}$ and ${}^{3}J_{\rm H,H}$ values for signals that participate in the couplings with the chiral center protons is required, but also a well-reproduced experimental ¹H NMR spectrum (RMSD < 0.5 Hz), employing spectral simulation. This task was achieved for compounds 3 and 5 by non-linear fitting to their simulated parameters through an iteration processing of chemical shifts, $J_{H,H}$, and line widths based on the original ¹H NMR plots¹³ using MestReNova software (Figures S1 and S2, Supporting Information). Accordingly, the convergence between the DFT calculated and experimental ¹H NMR chemical shifts and coupling constant values (³ $J_{H,H}$) conformed a single solution that correctly supported the conformational model for epimer differentiation at the chiral center C-3' for compounds **3** and **5**, which arose from the following results: (1) the exact calculation for each conformer's geometry; (2) the complete approximation of the free energies and Boltzmann population for each analyzed stereoisomer; and (3) the appropriate selection of the calculation method, as in this case B3LYP/DGDZVP.^{12a} This approach also allowed the understanding of the conformational behavior of these flexible bioactive natural products in order to gain insight into the role of their interactions with molecular receptors, as demonstrated by the high affinity for the pironetin-binding site of α -tubulin of these 6-heptyl-5,6-dihydro-2*H*-pyran-2-ones.

Two saturated δ -lactones, pectinolides L (7) and M (8), were also isolated from *H*. *pectinata*. Compound 7 gave a sodium adduct ion $[M + Na]^+$ at *m/z* 365.15729, corresponding to a molecular formula of C₁₇H₂₆O₇. A methoxy group was evident from a single signal at δ 3.28, which, in addition to the absence of the characteristic olefinic protons for the 5,6dihydro- α -pyrone skeleton, suggested the presence of a saturated δ -lactone substituted at C-4 by a methoxy group (¹H and ¹³C NMR: Figures S25 and S26, Supporting Information). This substituent was established as axially oriented from the coupling constants $J_{3\beta,4}$ = 1.6 Hz, $J_{3\alpha,4}$ = 3.4 Hz, and $J_{4,5}$ = 4.8 Hz.

compound	data	$J_{5,6}$	$J_{6,1'}$	$J_{l^{\prime}\!\prime,2^{\prime}}$	$J_{2',3'}$	$J_{3',4'\mathrm{pro}R}$	$J_{3',4'\mathrm{pro}S}$	RMSD
2 (5 <i>S</i> ,6 <i>S</i> ,3' <i>S</i>)	theor gas phase	3.52	7.54	12.15	6.63	5.37	5.64	0.99
	theor solvent	3.31	8.36	12.16	6.92	4.40	6.56	0.97
	exp	2.99	8.20	11.45	7.65	6.40	7.25	
3 (5 <i>S</i> ,6 <i>S</i> ,3' <i>S</i>)	theor gas phase	4.29	4.56	12.54	9.36	7.14	5.50	1.13
	theor solvent	3.86	5.92	12.30	9.54	6.31	6.20	0.87
	exp	2.98	6.62	11.65	8.50	7.54	5.68	
4 (5 <i>S</i> ,6 <i>S</i> ,3' <i>S</i>)	theor gas phase	3.07	8.47	12.37	5.77	6.63	4.88	1.06
	theor solvent	2.99	8.52	11.68	8.28	5.08	6.65	0.82
	exp	3.30	7.65	11.70	7.60	6.70	6.40	
5 (5 <i>S</i> ,6 <i>S</i> ,3' <i>R</i>)	theor gas phase	3.02	9.60	11.50	9.67	3.90	8.12	1.24
	Theor solvent	2.73	9.51	11.48	9.51	5.12	7.26	0.90
	exp	3.04	7.52	11.46	9.10	5.90	7.38	
10 (5 <i>S</i> ,6 <i>S</i> ,1' <i>S</i> ,2' <i>R</i> ,3' <i>S</i>)	theor gas phase	2.79	8.62	1.08	4.01	10.46	2.81	1.79
	theor solvent	2.79	8.78	0.92	5.05	10.55	2.64	1.74
	exp	2.30	9.50	0.95	5.60	7.20	5.05	
14 (5 <i>S</i> ,6 <i>S</i> ,1' <i>S</i> ,2' <i>R</i> ,3' <i>R</i>)	theor gas phase	2.84	8.45	2.25	4.69	2.48	10.28	1.90
	theor solvent	2.85	8.68	2.01	6.71	2.33	10.27	1.74
	exp	2.50	10.0	1.30	6.50	5.50	7.86	

Table 5. Summary ^{<i>a</i>} of Theoretical ^{<i>b</i>}	and Experimental ^c	${}^{3}J_{\rm H,H}$ Coupling	Constants for C	ompound
2-5 , 10 , and 14				

^{*a*}For full details on theoretical ¹H–¹H coupling constant calculations for each contributing conformer, refer to Supporting Information. (Tables S5-S16).^{*b*}Obtained from the DFT-optimized structures using DFT B3LYP/DGDZVP in gas phase and DFT B3LYP/DGDZVP PCM in solution. Values were Boltzmann averaged with equation $\Sigma_i J_i \times P_i$, where J_i is the spin–spin coupling constant (in Hz) for each conformer and P_i is the population for the ith conformer calculated from ΔG values at 298 K and 1 atm.^{*c*}J_{H,H} values and line widths were generated by iteration of these spectral parameters. ¹H NMR spectrum obtained at 400 MHz from CDCl₃ solutions using TMS as the internal standard.

The molecular formula of pectinolide M (8) was established as $C_{15}H_{24}O_6$ from the [M + Na]⁺ at *m/z* 323.14680. The NMR data revealed that only one acetoxy group was present and the multiplicities for the proton geminal to this group indicated that C-3' is the acylated position (Figures S27 and S28, Supporting Information). Therefore, this natural product should have the same substitution pattern as pectinolide C (3). The methoxy group was also confirmed as axially oriented ($J_{3\beta,4} = 6.2$ Hz, $J_{3\alpha,4} = 3.6$ Hz, and $J_{4,5} = 5.3$ Hz). Compound 7 was identical to a

derivative previously synthesized by base-catalyzed methanolysis of pectinolide A (1).³ In order to confirm the absolute configuration of **8**, the above-mentioned reaction was also used for the chemical correlation of compounds **4** and **8**. TLC detected the presence of compounds **7** and **8** in the crude CH₂Cl₂-soluble total extract. Also, these compounds were identified by selective molecular ion search by UPLC-ESIMS analysis. These findings proved that compounds **7** and **8** were produced as natural saturated δ -lactones.

From the dichloromethane extract from leaves of H. monticola, two 6-heptyl-5,6-dihydro-2H-pyran-2-ones named monticolides A (9) and B (10), were obtained by high-speed countercurrent chromatography (HSCCC). Attempts to purify compound 10 from the natural source were unsuccessful, since the fraction mainly containing this product was combined with a complex mixture of structurally related 6-heptyl-5,6-dihydro-2H-pyran-2-ones. Acetylation of the whole fraction afforded a tetracetylated derivative chromatographically and spectroscopically identical with natural product 10. A chemical correlation of pectinolide A (1) with monticolides A (9) and B (10) was accomplished by treatment with $mCPBA/H_2O_2$, followed by acetylation.³ The natural compound **10** was identical to the derivative obtained from the acid-catalyzed hydrolysis of the epoxide intermediate, which would be formed by the epoxidation of the less hindered re-si face of the side chain double bond to form the C-1'(S), C-2'(S) epoxide, compound 12, followed by ring opening due to a nucleophilic attack of water at the C-2' position, which generated diol 10. Comparison of the ¹H NMR spectra registered for derivative 10 and the one obtained for the CCC-fraction containing this natural product allowed the conclusive identification of this product in the natural mixture (Figures S37, Supporting Information). The absolute configuration for the threo-diol was validated as C-1'(S) and C-2'(R) from the diagnostic $\Delta \delta_{\rm H}^{SR}$ signs¹⁴ for the syn-1,2 bis-MTPA-diesters (14; Table 3). Acetylation of derivative 10 also afforded the peracetylated derivative 9, which was identical to the natural product isolated from *H. monticola*.

On epoxidation followed by ring opening (*m*CPBA/H₂O₂), pectinolide K (**6**) also afforded a related 1,2-diol (**14**), derived from epoxide intermediate (**15**). Compound **14** was epimeric to compound **10** at position C-3' as confirmed by the C-1'(*S*) and C-2'(*R*) absolute configurations also deduced from the analysis of the bis-MTPA derivatives¹⁴ (**16**) (Table 3; ¹H NMR: Figure S36, Supporting Information). The configurational assignments for the chiral center C-3' in this epimeric pair was also deduced by DFT-NMR calculations, which confirmed the (*S*)-configuration for derivative **10** as opposed to the (*R*)-configuration for compound **14** (Table 3). A higher steric hindrance for the *re-si* face of the side chain double bond is observed for the most stable conformer of compound **6** in comparison with the one calculated for its C-3' epimer, pectinolide A (**1**), which resulted from the inversion of configuration for the stereogenic center C-3' (Figure S38, Supporting Information). Thus, the prevention of the interaction with the

epoxidation reagent (*m*-CPBA) as a result of the spatial orientation of the C-3' substituents at the side chain could explain the selectivity for the epoxidation of the less hindered α -face of the lactone ring double bond in compound **6** at room temperature to afford epoxide **17**. In contrast, the epoxidation of pectinolide I (**4**) afforded epoxides **18** and **19**, which resulted from the lack of π selectivity and reflected the absence of steric hindrance around the side chain double bond as imposed by the acetyl substituents in compounds **1** and **6**. Acetylation of derivative **18** afforded the biosynthetic precursor of monticolides A (**9**) and B (**10**), corresponding to a higher molecular weight homologue of asperlin (**20**), a 6-propyl-5,6dihydro-2*H*-pyran-2-one antibiotic with cytotoxic properties, isolated from marine-derived *Aspergillus* species.¹⁸ This intermediate under an acid-catalyzed ring opening of the epoxide yielded monticolide B (**10**).

Table 6. ¹H NMR Data of Derivatives 14 and 17-19 (300 MHz in CDCl₃, δ in ppm, and J in Hz)

position	14	17	18	19		
3	6.23 d (9.6)	3.68 d (3.8)	6.18 dd (9.7)	6.16 d (9.8)		
4	7.13 dd (9.6, 6.1)	3.77 dd (3.8, 3.5)	7.05 dd (9.7, 5.7)	6.96 dd (9.8, 5.5)		
5	5.44 dd (6.1, 2.5)	5.40 dd (3.5, 3.5)	4.40 dd (5.7, 2.9)	4.32 dd (3.3, 5.5)		
6	4.80 dd (10.0, 2.5)	5.70 dd (7.9, 2.2)	4.52 dd (7.5, 2.9)	4.70 dd (7.0, 3.3)		
1′	4.20 dd (10.0, 1.3)	5.49 (11.4, 7.9)	3.11 dd (7.5, 4.1)	3.54 dd (7.0, 4.3)		
2'	4.25 dd (6.5, 1.3)	5.58 (11.4, 9.0)	3.53 dd (4.1, 7.3)	3.15 dd (8.8, 4.3)		
3'	5.12 ddd (7.9, 6.5, 5.5)	5.33 ddd (9.0, 7.7, 6.2)	3.67 td (7.3, 5.6, 3.1)	3.84 td (8.8, 6.1, 3.7)		
$4'_{\text{pro}S}$	1.65 m	1.69 m	1.67 m	1.67 m		
$4'_{\text{pro}R}$	1.65 m	1.55 m	1.67 m	1.67 m		
5'	1.34 m	1.34 m	1.30 m	1.30 m		
6'	1.34 m	1.34 m	1.30 m	1.30 m		
7'	0.92 t (7.1)	0.92 t (6.4)	0.93 t (7.1)	0.93 t (7.1)		
CH ₃ CO	2.12 s	2.14 s	-	-		
CH ₃ CO	2.12 s	2.04 s	-	-		

Table 7. ¹³C NMR Data of Derivatives 14 and 17-19 (75 MHz in CDCl₃, δ in ppm, and J in Hz)

position	14	17	18	19
2	161.2	165.5	161.8	161.9
3	124.8	51.7	123.1	123.2
4	140.4	48.5	144.0	144.2
5	61.3	68.2	61.7	61.8
6	77.2	71.7	77.7	79.4
1′	58.8	133.3	58.8	56.1
2'	69.9	125.4	52.8	58.9
3'	75.2	69.7	69.1	68.1
4′	30.4	38.6	34.6	35.4
5'	27.0	25.1	27.3	27.3
6'	22.3	22.4	22.6	22.6
7'	13.9	14.1	14.0	14.2
CH_3CO	171.8	169.7	-	-
CH_3CO	169.5	170.1	-	-
<i>CH</i> ₃CO	21.2	21.0	-	-
<i>CH</i> ₃CO	20.5	21.1	-	-

The 5,6-dihydro-2*H*-pyran-2-one framework of the isolated compounds 1-6, 9 and 10, constitutes the pharmacophoric moiety responsible for the cytotoxicity against a variety of tumor cell lines (Table 8). The most significant values were for 6 with IC₅₀ values of 0.5-0.8

 μ M. As expected, the saturated δ -lactone, pectinolides L (7) and M (8), were non-cytotoxic (Table 8). A molecular docking study¹⁹ was performed to identify possible binding modes between these dihydropyrones and α -tubulin in order to recognize their cytotoxicity as a result of their potential as alkylating agents. Previously, the model for the pironetin-tubulin complex indicated that hydrogen-bonding interactions with pironetin occurs through Asn249, Asn258, and Lys352, the latter with a distance of 3.69 Å between the amino acid residue and the β carbon atom of the α,β -unsaturated lactone (Figure 1), supporting the formation of a covalent adduct for the most frequently found pironetin-tubulin complex with a docking energy of $E_f = -6.97$ kcal/mol.^{9b} Compounds 3, 6, 9, 10 and 12 were docked into the pironetin-binding site of α tubulin and this analysis showed that these 5,6-dihydro-2H-pyran-2-ones interact primarily through stable hydrogen bonds with some amino acid residues (Phe351, Lys352, and Val353) at the same α -tubulin unit proposed for the pironetin interaction^{9b} and with similar binding energies (Figure 5). Therefore, molecular docking analysis established that this class of bioactive natural products could form a covalent bond to Lys352 via a 1,4-addition to the α,β unsaturated lactone. For the cytotoxic pectinolide K (6), the most frequently found and most stable 5,6-dihydro-2*H*-pyran-2-one-tubulin complex was disclosed at $E_f = -5.80$ kcal/mol and displayed three hydrogen-bond interactions between the oxygen of the lactone ring with the amide hydrogen of Val353, the carbonyl group of the acetyloxy residue at C-3' at the side chain, and the amide hydrogen of Phe351, as well as the carbonyl group of the acetyloxy residue at C-5 with the amide hydrogen of Lys352. Thus, the distance between the latter amino group and the β carbon atom of the α , β -unsaturated lactone was 5.30 Å, close enough to favor a Michael addition (Figure S39, Supporting Information). The complex formed with pectinolide C (3; E_f = -5.82 kcal/mol) displayed the same interaction observed for compound 6 with Phe351 and Val353 with a distance of 5.10 Å for the 1,4-addition of Lys352 to the α,β -unsaturated lactone. The most stable complex ($E_f = -4.34$ kcal/mol) found for the interaction of monticolide A (9)

with α -tubulin showed a distance of 4.70 Å for the 1,4-addition of Lys352 to the α,β unsaturated lactone and represents a hydrogen-bond interaction between the carbonyl group of the acetyloxy residue at C-1' and the amide hydrogen of Phe351. For monticolide B (10), the most frequently found complex ($E_f = -5.16$ kcal/mol) displayed a distance between the Lys352 amino group and the α,β -unsaturated lactone of 3.70 Å, with three hydrogen-bond interactions as observed for compound 6. The molecular docking for the intermediate epoxide 12 (MCF-7: IC₅₀ 3.2 μ M) showed a distance of 4.20 Å for the 1,4-addition of Lys352 to the α , β -unsaturated lactone ($E_f = -4.82$ kcal/mol) and displayed two hydrogen-bond interactions between the carbonyl group of the acetyloxy residue at C-5 and the amide hydrogen of Val353 and the epoxide oxygen with the amide hydrogen of Phe351. Although asperlin (20) disclosed a binding mode higher in energy than that of pironetin ($E_f = -4.21$ kcal/mol), two hydrogen-bond interactions were formed with Phe351 and Val353 with a distance of 5.20 Å for the 1,4-addition of Lys352 to support the formation of the covalent adduct. Probably, the high energy observed for the complex asperlin-tubulin could be the result of the lack of additional oxygenated substituents at the C-6 propyl side chain that could provide further points for hydrogen-bond interactions with the amino acid residues of the protein to deliver additional complex stabilization. Interestingly, in all surface scanning simulations carried out with 3, 6, 9 and 10, there were no indication of a binding mode close to Cys316, in contrast with recent data obtained in the solid state for pironetin.^{9c} Thus, the 5,6-dihydro-2*H*-pyran-2-one framework is a pharmacophore model for tubulin inhibitors to provide a better understanding of the cytotoxic potential of these small-molecule tubulin-binding ligands.

		<u>IC₅₀ $(\mu M)^a$, 72 h</u>									
compound	MCF-7	HeLa	HCT15								
1	3.2	3.2	5.7								
2	9.3	4.1	5.2								
3	1.0	0.3	2.3								
4	5.9	6.2	7.4								
5	1.3	1.4	9.5								
6	0.5	0.7	0.8								
7	>10	>10	>10								
8	>10	>10	>10								
9	7.7	2.7	>10								
10	9.8	6.9	9.9								
vinblastine	0.012	0.011	0.011								
pironetin	0.015	0.092	< 0.015								

Table 8. Cytotoxicity of Natural Compounds 1-10 for Three Cancer Cell Lines

^{*a*}MCF-7 = breast carcinoma; HeLa = cervix carcinoma; HCT-15 = colon carcinoma.

Figure 5. Structure of the most frequent and stable pectinolide K (6)-tubulin complex. Tubulin α -subunit (cyan); β -subunit (blue). The distance between the Lys352 amino group (red) and the β carbon atom of the α , β -unsaturated lactone was 5.30 Å, close enough to favor a Michael addition. Docking energy (*E*_f kcal/mol) and hydrogen bond distances are indicated.

5.3 EXPERIMENTAL SECTION

General Experimental Procedures. Optical rotations were measured with a Perkin-Elmer model 341 polarimeter using methanol as solvent. ECD curves were recorded on a JASCO J-715 spectropolarimeter. NMR techniques and HPLC instrumentation were described in preceeding papers.¹³ In brief, ¹H and ¹³C NMR experiments were measured on a Varian VNMRS-400 instrument, using tetramethylsilane as an internal standard. All NMR assignments were confirmed by 2D experiments, including COSY, HSOC, and HMBC. NOE experiments were registered on a Bruker Avance III HD spectrometer at 700 MHz. HPLC analyses were carried out on a Waters instrument (Millipore Corp., Waters Chromatography Division, Milford MA) with a 600E multisolvent delivery system and a 996 photodiode array detector. For the MS analysis, a Thermo LTQ Orbitrap XL hybrid FT mass spectrometer (ThermoFisher, San Jose, CA, USA) equipped with an electrospray ionization source was used. Each sample (1 mg) was dissolved in 1 ml of MeOH and 250 μ L were diluted with 100 μ L of MeOH-H₂O (9:1, v/v) containing 0.1% formic acid supplemented with 1 µmol/L sodium formate and directly infused into the ESI source. The detection parameters in the positive-ionization mode were set as follows: capillary temperature at 275 °C; spray voltage 4.5 kV; capillary voltage 20 V, and 95 V for the tube lens; sheath gas flow 60 arbitrary units of nitrogen.

Plant Material. The aerial parts of *Hyptis pectinata* were collected in Dos Ríos (19.29472° N, 96.47375° W; Elev. 940 m) and camino al campo de tiro El Corso (19.29433° N, 96.48118 W; Elev. 943 m), Municipio de Emiliano Zapata, Veracruz, Mexico in October and December, 2009. An individual plant specimen of each collection was identified by Adriana Hernández-Rojas and deposited with the voucher accession numbers XAL0001406 and XAL0000286, respectively, in the herbarium of the Instituto de Ecología, Xalapa, Veracruz, Mexico. Leaves of *H. monticola* were collected in the locality of Vale das Videiras, Petrópolis, Rio de Janeiro, Brazil (22.02196° S, 44.41166° W; Elev. 1812 m) in October, 2013. Professor Raymond Harley

(Universidade Estadual de Feira de Santana, Bahia, Brazil) carried out the identification and a voucher specimen was deposited in the herbarium of the Biology Institute, Universidade Federal do Rio de Janeiro, under accession number RFA39927.

Extraction and Isolation. The aerial parts of *H. pectinata* from the Dos Ríos collection (2.77 kg) were powdered and extracted by maceration at room temperature with CH_2Cl_2 . The extract was dried under reduced pressure to obtain 125.8 g of a greenish-brown residue (collection1). For the removal of triterpenes, the extract was dissolved in methanol (50 mL per 1.0 g of extract) and kept for twelve hours at 0 °C. The extract was filtered and concentrated under reduced pressure to afford a triterpene-free extract. The same extraction procedure was used to obtain the CH_2Cl_2 -soluble extract from El Corso collection (2.79 kg, 169.3 g of extract; collection 2). For the removal of triterpenes, the extract was dissolved in a commercial mixture of hexanes (75 mL per 2.0 g of extract) and extracted with the same volume of a mixture of H_2O -MeOH (4:1); the methanol was removed from the aqueous phase by concentration in vacuum, followed by consecutive extractions using CH_2Cl_2 and EtOAc.

Leaves from *Hyptis monticola* (1.05 kg) were dried in an oven at a temperature below 40 °C, pulverized in a Wiley mill, and extracted by macerations with ethanol-water (7:3). The resulting solution was concentrated to remove the ethanol and subjected to liquid-liquid partition with solvents of increasing polarity. The extracts were dried in a rotary evaporator to afford *n*-hexane (4.06 g), dichloromethane (7.02 g), ethyl acetate (13.18 g) and *n*-butanol (22.72 g) extracts.

The resulting triterpene-free extract (18.74 g) from *H. pectinata* collection 1 was fractionated using an open glass column packed with silica gel in a 1:20 ratio. The extract was adsorbed in silica gel (1:1) and the column eluted using a gradient of *n*-hexane-CH₂Cl₂, followed by CH₂Cl₂-acetone and acetone-methanol in several proportions. A total of 65 eluates was obtained

(500 mL each), which were combined in 15 fractions. Fraction 9 (2.0 g, eluted with CH_2Cl_2 and CH_2Cl_2 -acetone, 9:1) was further fractionated by silica gel CC using a gradient of *n*-hexane-EtOAc, and 40 eluates were obtained (50 mL each), which were combined in 12 subfractions. Subfraction II (eluted with *n*-hexane-EtOAc, 4:1 and 7:3) afforded compound 6 (88.0 mg), subfraction VI (eluted with *n*-hexane-EtOAc, 3:2) afforded compound **2** (16.4 mg), subfraction VIII (eluted with *n*-hexane-EtOAc, 3:2) afforded compound **3** (20.3 mg), subfraction IV (eluted with *n*-hexane-EtOAc, 7:3) afforded compound 7 (8.6 mg), and subfraction IX (eluted with nhexane-EtOAc, 7:3) afforded compound 8 (1.3 mg). Fraction 10 (1.8 g, eluted with CH₂Cl₂acetone, 9:1) was resolved by HPLC on a Symmetry C₁₈ column (Waters, 7 μ m, 19 × 300 mm) with an isocratic elution of MeOH-H₂O (4:1) and a flow rate of 6.14 mL/min (sample injection, 500 μ L; concentration, 0.05 mg/ μ L). The peak with $t_{\rm R}$ value of 8.62 min was collected by the heart-cutting technique to afford pure compound 5 (20 mg). Fraction 12 (1.6 g, eluted with CH₂Cl₂-acetone, 7:3 and 1:1) was fractionated by silica gel CC, and seven pooled eluates were collected. Eluate V (49.0 mg, eluted with n-hexane-EtOAc, 1:1) was also resolved by HPLC on a Symmetry C₁₈ column (Waters, 7 μ m, 19 × 300 mm) with an isocratic elution of MeOH-H₂O (8:2) and a flow rate of 6.14 mL/min (sample injection, 500 μ L; concentration, 0.05 mg/ μ L). The peak with t_R value of 10.12 min was collected by heart cutting and re-injected (sample injection, 500 μ L; concentration, 0.05 mg/ μ L) in the chromatograph operating in the recycle mode to achieve total homogeneity after three cycles. These techniques afforded pure compound 4 (10 mg).

The resulting triterpene-free extract (20.04 g) from collection 2 (*H. pectinata*) was fractionated under the same conditions described above. A total of 49 eluates was obtained (500 mL each) and combined in 11 fractions. Fraction 4 (0.6 g, eluted with CH_2Cl_2 -acetone, 95:5 and 9:1) was further fractionated in silica gel CC using a gradient of *n*-hexane-EtOAc and 47 eluates were obtained (50 mL each), which were combined into 10 subfractions. Subfraction II

(eluted with *n*-hexane-EtOAc, 4:1) afforded compound **1** (15.0 mg) and subfraction III (eluted with *n*-hexane-EtOAc, 7:3) afforded compound **2** (4.2 mg). Fraction 9 (0.89 g, eluted with CH₂Cl₂-acetone, 3:7) was resolved by HPLC on a Symmetry C₁₈ column (Waters, 7 μ m, 19 × 300 mm) with an isocratic elution of MeOH-H₂O (8:2) and a flow rate of 6.14 mL/min (sample injection, 500 μ L; concentration, 0.05 mg/ μ L) to yield pure compound **4** (10 mg).

Part of the CH₂Cl₂-soluble extract (500 mg) from *H. monticola* was fractionated by HSCCC in a HTPrepTM Quattro CCC, equipped with a JASCO PU-2089s Plus pump and a fraction collector Merck L-7650 (HTPrep). The solvent system was *n*-hexane-EtOAc-MeOH-H₂O (0.8:1:0.8:1) prepared in a separation funnel at room temperature.²⁰ The two phases were separated and degassed by sonication for 5 min. Then, the CCC column was first filled with the stationary phase (aqueous lower phase), and after set setting the rotation, the mobile phase (organic upper phase) was pumped in. Samples were dissolved in equal volumes of phases and were injected after the hydrodynamic equilibrium inside the column was reached. The stationary phase retention (*Sf*) before injection was 84.2%. The CH₂Cl₂ extract was fractionated using the 95-mL coil, with a flow rate of 3 mL/min (upper phase as mobile), 860 rpm. A total of 65 fractions (3 mL) were collected with the rotation on. Afterwards, 30 additional fractions were collected pumping out the mobile phase. Fractions 14-21 afforded impure monticolide A (**9**, 32.9 mg), which was further purified by HPLC, silica gel column *µ*Porasil, (3.9 × 300 mm, 10 *µ*m), *n*-hexane-EtOAc as mobile phase, flow rate 2,0 mL/min, retention time 13.5 min. Fractions 56-67 afforded a complex mixture of 6-heptyl-5,6-dihydro-2*H*-pyran-2-ones.

Pectinolide A (1): colorless oil; $[\alpha]_D$ +202 (*c* 0.15, MeOH); ¹H and ¹³C NMR, see Supporting Information, which was identified by comparison with an authentic sample.³

Pectinolide B (2): colorless oil; $[\alpha]_D$ +90 (*c* 0.57, MeOH). ¹H and ¹³C NMR, see Supporting Information, which was identified by comparison with an authentic sample.³

Pectinolide C (3): colorless oil; $[\alpha]_D$ +81 (*c* 0.76, MeOH). ¹H and ¹³C NMR, see Supporting Information, which was identified by comparison with an authentic sample.³

Pectinolide I (4): colorless oil; ORD (*c* 0.20, MeOH) [α]₅₈₉+12.5, [α]₅₇₈+13.0, [α]₅₄₆+15.5, [α]₄₃₆+27.5; ECD (*c* 8.8 × 10⁻⁵ M, MeOH) λ_{max} (Δ_c) 206 (+1.09), 212 (-0.90), 235 (+2.86), 263 (-0.26), 289 (+1.32); ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) data (Figures S19 and S20, Supporting Information), see Tables 1 and 2; positive HRESIMS *m/z* 249.10969 (calcd for C₁₂H₁₈O₄+ Na⁺ requires 249.10973, δ = -0.1 ppm).

Pectinolide J (5): colorless oil; ORD (*c* 0.39, MeOH) [α]₅₈₉+63.8, [α]₅₇₈+65.9, [α]₅₄₆+76.4, [α]₄₃₆+143.3; ECD (*c* 7.5 × 10⁻⁵ M, MeOH) λ_{max} (Δ_{ε}) 228 (+2.56), 251 (-0.65), 278 (+0.57); ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) data (Figures S4 and S22, Supporting Information), see Tables 1 and 2; positive HRESIMS *m*/*z* 291.12061 (calcd for C₁₄H₂₀O₅+ Na⁺, 291.12029, δ =+1.1 ppm).

Pectinolide K (6): colorless oil; ORD (*c* 0.15, MeOH) $[\alpha]_{589}$ +98.7, $[\alpha]_{578}$ +103.3, $[\alpha]_{546}$ +120.0, $[\alpha]_{436}$ +224.0, $[\alpha]_{365}$ +402.8; ECD (*c* 6.4 × 10⁻⁵ M, MeOH) λ_{max} (Δ_{ε}) 214 (+24.7), 246 (+1.20), 265 (+2.45); ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) data (Figures S23 and S24, Supporting Information), see Tables 1 and 2; positive HRESIMS *m/z* 333.13078 (calcd for C₁₆H₂₂O₆ + Na⁺ requires 333.13086, δ = -0.2 ppm).

Pectinolide L (7): colorless oil; ORD (c 0.04 CHCl₃) [α]₅₈₉-0.6, [α]₅₇₈-0.6, [α]₅₄₆-1.2, [α]₄₃₆+1.8, [α]₃₆₅+5.3; ECD (c 5.0 × 10⁻⁵ M, MeOH) λ_{max} (Δ_{ε}) 208 (+2.10); ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) data (Figures S25 and S26, Supporting Information), see Tables 1 and 2; positive HRESIMS *m*/*z* 365.15729 (calcd for C₁₇H₂₆O₇+ Na⁺, 365.15707, δ =+0.6 ppm).

Pectinolide M (8): colorless oil; ORD (*c* 0.17 CHCl₃) $[\alpha]_{589}$ –7.5, $[\alpha]_{578}$ -7.5, $[\alpha]_{546}$ –2.5, $[\alpha]_{436}$ +2.5, $[\alpha]_{365}$ +10.0; ECD (*c* 5.0 × 10⁻⁵ M, MeOH) λ_{max} (Δ_{ε}) 206 (+2.4); ¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) data, see Tables 1 and 2 (Figures S27 and S28, Supporting Information); positive HRESIMS *m/z* 323.14680 (calcd for C₁₅H₂₄O₆ + Na⁺, 323.14651, δ = +0.9 ppm).

Monticolide A (9): colorless oil; ORD (*c* 0.06, MeOH) $[\alpha]_{589}$ +83.3, $[\alpha]_{578}$ +85.0, $[\alpha]_{546}$ +100.0, $[\alpha]_{436}$ +196.7, $[\alpha]_{365}$ +363.3; ECD (*c* 4.7 × 10⁻⁵ M, MeOH) λ_{max} (Δ_{ε}) 209 (+34.30), 254 (-1.31), 268 (+0.75); ¹H and ¹³C NMR, see Figures S29 and S30, Supporting Information; positive HRESIMS *m/z* 451.15810 (calcd for C₂₀H₂₈O₁₀ + Na⁺, 451.15746, δ = +1.4 ppm).

Monticolide B (10): colorless oil; ORD (*c* 0.39, CHCl₃) $[\alpha]_{589}$ +91.4, $[\alpha]_{578}$ +94.9, $[\alpha]_{546}$ +110.3, $[\alpha]_{436}$ +210.8, $[\alpha]_{365}$ +391.4; ECD (*c* 4.0 × 10⁻⁵ M, MeOH) λ_{max} (Δ_{ϵ}) 209 (+35.12), 255 (-1.52), 268 (+0.81); ¹H and ¹³C NMR, see Figures S31 and S32, Supporting Information; positive HRESIMS *m/z* 367.13601 (calcd for C₁₆H₂₄O₈ + Na⁺, 367.13634, δ = -0.9 ppm).

Oxidation of Compounds 1 and 6 with *m*-Chloroperbenzoic Acid/H₂O₂. Compounds 1 and 6 (25.0 mg each) were individually dissolved in CH₂Cl₂ (10.0 mL), *m*-CPBA (18.0 mg) and 0.5 mL H₂O₂ (50%) were added, and the mixture stirred and refluxed for three days. The reaction mixture of compound 1 was separated by silica gel CC using a gradient of CHCl₃/Me₂CO, fractions eluted with CHCl₃-Me₂CO (4:1), to afford compound 10 (14.6 mg). In the case of compound 6, the mixture was separated in silica gel CC using a gradient of *n*-hexane/EtOAc, fractions eluted with *n*-hexane-EtOAc (6:4), to afford compound 14 (3.0 mg).

Derivative **14**: colorless oil; ORD (*c* 0.29, CHCl₃) [α]₅₈₉+104.2, [α]₅₇₈+109.7, [α]₅₄₆+127.0, [α]₄₃₆+240.6, [α]₃₆₅+447.3; ¹H NMR (300 MHz, CDCl₃) and ¹³C NMR (75 MHz, CDCl₃) data

(Figures S33 and S34, Supporting Information), see Tables 1 and 2; 367.13689 (calcd for $C_{16}H_{24}O_8 + Na^+$, 367.13634, $\delta = +1.5$ ppm).

Oxidation of Compounds 4 and 6 with *m***-Chloroperbenzoic Acid.** Compounds **4** and **6** (25.0 mg each) were dissolved in CH₂Cl₂ (5.0 mL) and treated with *m*-CPBA (18.0 mg) at room temperature for 48 h. For compound **4**, the mixture obtained was separated by silica gel CC using a gradient of *n*-hexane/EtOAc, fractions eluted with *n*-hexane-EtOAc (11:9) were separated by HPLC on a μ Porasil column (Waters, 10 μ m, 3.9 × 300 mm), with a isocratic elution of *n*-hexane-EtOAc (1:1) and a flow rate of 0.3 mL/min (sample injection, 20 μ L; concentration, 0.2 mg/ μ L). The peaks with *t_R* values of 17.32 min and 20.01 min were collected to afford pure compounds **18** and **19**. The reaction mixture of compound **6** was separated by silica gel CC, using a gradient of CHCl₃-EtOAc, and the fractions eluted with CHCl₃-EtOAc (24:1) afforded compound **17** (21.5 mg).

Preparation of (*R*)- and (*S*)-MTPA Ester Derivatives of Compounds 4, 10 and 14. Each compound (2.0 mg each) was independently dissolved in 0.5 mL of CDCl₃. This solution was transferred into two clean NMR tubes and 4-(dimethylamino)pyridine (0.8 mg), *N*,*N*'-dicyclohexylcarbodiimide (20 mg), pyridine- d_5 (0.1 mL), and 20 μ L of (*S*)- or (*R*)- α -methoxy- α -(trifluoromethyl) phenylacetyl chloride [(*S*)- or (*R*)-MTPA-Cl] were added.²¹ The reaction mixtures were purged with nitrogen and left for 24 h, then the ¹H NMR spectra were recorded.

Hydrolysis of Pectinolide I (4): Compound 4 (5 mg) was dissolved in 5 mL MeOH/H₂O (80 %) containing 0.1 M KOH (2 mL) and stirred for 3 h. The usual workup of the reaction gave an oily residue that was purified by HPLC on a Symmetry C₁₈ column (Waters, 7 μ m, 19 × 300 mm) with an isocratic elution of MeOH-H₂O (8:2) and a flow rate of 4.5 mL/min, to afford 3.5 mg of **8** (*t*_R 10.8 min), which was identical with an authentic sample of the natural product.

Computational Methods. Molecular building and the Monte Carlo searches for all compounds were carried out in the Spartan'10 program using the MMFF94 force-field calculations followed by single-point DFT calculations. All structures were DFT-optimized in the Gaussian 09 program on a Linux operating system in the HP Cluster Platform Intel E2670 with 5312 processors and 15 000 gigabytes RAM. The optimized structures were used to calculate the thermochemical parameters at 298 K and 1 atm. The free energy values were obtained from the vibrational frequency calculations as the sum electronic and thermal free energies. The Gibbs free energy equation ($\Delta G = -RT \ln K$) was used to obtain the conformational populations, taking into account a cyclic equilibrium between the selected conformers within a $\Delta G = 0.3$ kcal/mol range. Magnetic shielding tensors were calculated with the GIAO method and the NMR spin-spin coupling constants (SSCC) J were obtained by the sum of the Fermi contact, the diamagnetic spin-orbit, spin-dipolar, and paramagnetic spin-orbit values calculated from B3LYP/DGDZVP-optimized structures. Calculations taking into account the solvent (CHCl₃) were carried out starting from DFT-optimized structures. Geometry optimization at the DFT B3LYP/DGDZVP level, calculation of the vibrational frequencies, thermochemical parameters, magnetic shielding tensors, ¹H and ¹³C NMR chemical shifts and the total ¹H-¹H spin-spin coupling constants were also calculated using the PCM solvation algorithm included in the Gaussian 09 program.²² For each job, eight processors were used, and each conformer required three different DFT jobs: geometric optimizations, frequency calculation, and SSCC estimations.

Spectral Simulation. Spectral simulation of ¹H NMR chemical shifts and ${}^{3}J_{H,H}$ coupling constants was performed through nonlinear adjustment of the spectral parameters with the original recorded spectra using MestReNova.

Docking Study. The AutoDock Tools 1.5.6 package (The Scripps Research Institute, La Jolla, CA) was employed for addition of polar hydrogen atoms, Gasteiger-Marsili charges, and solvation parameters to the 1JFF.PDB structure of α,β -tubulin which was combined with the molecular model of the analyzed 5,6-dihydro-2*H*-pyran-2-ones **3**, **6**, **9**, **10**, and **12**, as previously described for pironetin.^{9b} Docking was carried out with AutoDock 4.2 software (The Scripps Research Institute, La Jolla, CA, USA) using the default parameters. The entire system was subjected to a surface scanning and refined docking, considering the α Lys352 residue as flexible and a grid box size set at 40 Å × 40 Å × 40 Å in the x, y, and z dimensions centered at the nitrogen atom of the α Lys352 residue. The Lamarckian genetic algorithm was applied. During the docking experiment, 100 runs were carried out.

Cytotoxicity Assays. Cytotoxic activity was evaluated by the sulforhodamine B (SRB) assay, as previously described.²³ All isolates were screened in vitro against three human cancer cell lines: HCT-15 (colorectal), HeLa (cervix), and MCF-7 (breast).²⁴

ASSOCIATED CONTENT

Supporting Information

¹H and ¹³C NMR spectra for natural products **4-10** and derivative **14**. Simulated vs experimental ¹H NMR spectra of **3** and **5**. MTPA ester derivatives **11** and **16**. DFT B3LYP/DGDZVP total free energies, population, NMR chemical shifts, ¹H-¹H coupling constants, and NOE experiments of stereoisomers **3-5**. XYZ coordinates for all computed structures of **3** and **5**. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*Tel: +52 55 5622-5288. Fax: +52 55 5622 5329. E-mail: pereda@unam.mx.

Author Contributions

Taken in part from the Ph.D. thesis of L. Martínez-Fructuoso (Posgrado en Ciencias Químicas, UNAM).

ORCID

Lucero Martínez-Fructuoso: 0000-0002-2279-5479 Rogelio Pereda-Miranda: 0000-0002-0542-0085 Mabel Fragoso-Serrano: 0000-0002-7693-8391 Carlos M. Cerda-García-Rojas: 0000-0002-5590-7908 Suzana Guimarães Leitão: 0000-0001-7445-074X

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

Financial support was provided by CONACyT (Mexico, CB220535), DGAPA, (UNAM, IN215016), CNPq and FAPERJ (Brazil). We are indebted to Dirección General de Servicios de Cómputo Académico (UNAM: LANCAD-UNAM-DGTIC-204) for providing the resources to carry out computational calculations at Miztli supercomputer, and to the technical personnel of USAII, Facultad de Química (UNAM) for the recording of NMR spectra (especially to N. López Balbiaux and R. I. del Villar Morales). L.M.F. is grateful to CONACyT for a graduate student scholarship (288963).

REFERENCES

Harley, R. M.; Atkins, S.; Budantsev, A. L.; Cantino, P. D.; Conn, B. J.; Grayer, R.; Harley, M. M.; De Kok,
 R.; Krestovskaja, T.; Morales, R.; Paton, A. J.; Ryding, O.; Upson, T. *Flowering Plants. Dicotyledons*, Vol. 7.
 Kadereit, J. W., Ed.; Springer-Verlag: Berlin, 2004, pp 167–275.

(2) (a) Agra, M. de F.; França de Freitas, P.; Barbosa-Filho, J. M. *Rev. Bras. Farmacogn.* 2007, *17*, 114–140. (b)
Pereda-Miranda, R. *Phytochemistry of Medicinal Plants*. Arnason, J. T., Mata, R., Romeo, J. T., Eds.; Plenum: New York, 1995; pp 83–112.

(3) (a) Pereda-Miranda, R.; Hernández, L.; Villavicencio, M. J.; Novelo, M.; Ibarra, P.; Chai, H.; Pezzuto, M. J. J. Nat. Prod. 1993, 56, 583–593. (b) Fragoso-Serrano, C.; Gibbons, S.; Pereda-Miranda, R. Planta Med. 2005, 71, 278–280.

(4) Novelo, M.; Cruz, J. G.; Hernandez, L.; Pereda-Miranda, R.; Chai, H., Mar, W.; Pezzuto, J. M. J. Nat. Prod.
1993, 56, 1728–1736.

(5) Arrigoni-Blank, M. F.; Antoniolli, A. R.; Caetano, L. C.; Campos, D. A.; Blank, A. F.; Alves, P. B. *Phytomedicine* **2008**, 15, 334–339.

(6) Falcão, R. E. A.; de Souza, S. A.; Camara, C. A.; Quintans, J. S. S.; Santos, P. L.; Correia, M. T.; Silva, T. M.
S.; Lima, A. A. N.; Quintans-Júnior, L. J.; Guimarães, A. G. *Rev. Bras. Farmacogn.* 2016, *26*, 203–208.

(7) (a) Nascimento, P. F. C.; Alviano, W. S.; Nascimento, A. L. C.; Santos, P. O.; Arrigoni-Blank, M. F.; de Jesus,

R. A.; Azevedo, V. G.; Alviano, D. S.; Bolognese, A. M.; Trindale, R. C. Oral Dis. 2008, 14, 485-489. (b) Santos,

P. O.; Costa, M. de J. C.; Alves, J. A. B.; Nascimento, P. F. C.; de Melo, D. L. F. M.; Barbosa Jr., A. M.; Trindade,

R. de C.; Blank, A. F.; Arrigoni-Blank, M. F.; Alves, P. B.; do Nascimento, M. P. F. Quim. Nova 2008, 31, 1648-

1652. (c) Perera, W. H.; Bizzo, H. R.; Gama. P. E.; Alviano, C. S.; Salimena, F. R.; Alviano, D. S.; Leitão, S. G. *J. Essent. Oil Res.* **2017**, *29*, 109-116.

(8) (a) Falomir, E.; Murga, J.; Ruiz, P.; Carda, M.; Marco, J. A.; Pereda-Miranda, R.; Fragoso-Serrano, M.; Cerda-García-Rojas, C. M. J. Org. Chem. 2003, 68, 5672–5676. (b) Bjerketorp, J.; Levenfors, J. J.; Sahlberg, C.; Nord, C. L.; Andersson, P. F.; Guss, B.; Öberg, B.; Broberg, A. J. Nat. Prod. 2017, 80, 2997–3002.

(9) (a) Usui, T.; Watanabe, H.; Nakayama, H.; Tada, Y.; Kanoh, N.; Kondoh, M.; Asao, K.; Takio, K.; Watanabe, H.; Nishikawa, K.; Kitahara, T.; Osada, H. *Chem. Biol.* 2004, *11*, 799–806. (b) Bañuelos-Hernández, A. E.; Mendoza-Espinoza, J. A.; Pereda-Miranda, R.; Cerda García-Rojas, C. M. *J. Org. Chem.* 2014, *79*, 3752–3764.
(c) Yang, J.; Wang, Y.; Wang, T.; Jiang, J.; Botting, C. H.; Liu, H.; Chen, Q.; Yang, J.; Naismith, J. H.; Zhu, X.; Chen, L. *Nat. Commun.* 2016, *7*, 12103.

(10) (a) Kingston, D. G. J. Nat. Prod. 2009, 72, 507–515. (b) Steinmetz, M. O.; Prota, A. E. Trends Cell Biol.
2018, 28, 776–792.

(11) (a) Achman, S.; Hoyer, T.; Kjaer, S.; Makmur, L.; Norrestam, R. *Acta Chem. Scand.* 1987, *B41*, 599-609. (b)
Boalino D. M.; Connolly J. D.; McLean S.; Reynolds W. F.; Tinto, W. F. *Phytochemistry* 2003, *64*, 1303–1307.
(12) (a) López-Vallejo, F.; Fragoso-Serrano, M.; Suárez-Ortiz, G. A.; Hernández-Rojas, A.; Cerda-García-Rojas, C. M.; Pereda-Miranda, R. *J. Org. Chem.* 2011, *76*, 6057–6066. (b) Juárez-González, F.; Suárez-Ortiz, G. A.; Fragoso-Serrano, M.; Cerda-García-Rojas, C. M.; Pereda-Miranda, R. *Magn. Reson. Chem.* 2015, *53*, 203–212.
(c) Suárez-Ortiz, G. A.; Cerda-García-Rojas, C. M.; Fragoso-Serrano, M.; Pereda-Miranda, R. *J. Nat. Prod.* 2017, *80*, 181–189.

(13) (a) Davies-Coleman, M. T.; Rivett, D. E. A. In Progress in the Chemistry of Organic Natural Products; Herz,

W.; Grisebach, H.; Kirby, G. W.; Tamm, C., Eds.; Springer: New York, 1989, Vol. 55, pp 1-35. (b) Collett, L. A.;

Davies-Coleman, M. T.; Rivett, D. E. A. In Progress in the Chemistry of Organic Natural Products; Herz, W.;

Falk, H.; Kirby, G. W.; Moore, R. E.; Tamm, C., Eds.; Springer-Verlag: New York, 1998, Vol. 75, pp 182-209.

(14) (a) Seco, J. M.; Martino, M.; Quiñoá, E.; Riguera, R. Org. Lett. 2000, 2, 3261-3264. (b) Seco, J. M.; Quiñoá,

E.; Riguera, R. Chem. Rev. 2004, 104, 17–117. (c) Seco, J. M.; Quiñoá, E.; Riguera, R. Chem. Rev. 2012, 112, 4603–4641.

(15) (a) Sabitha, G.; Das, S. K.; AnkiReddy, P.; Yadav, J. S. *Tetrahedron Lett.* 2013, *54*, 1097–1099. (b) Ghogare,
R. S.; Wadavrao, S. B.; Narsaiah, A. V. *Helv. Chim. Acta* 2016, *99*, 247–254.

(16) Gil, R. R.; Navarro-Vázquez, A. Modern NMR Approaches to the Structure Elucidation of Natural Products;Williams, A. J.; Martin, G. E.; Rovnyak, D., Eds.; Royal Society of Chemistry:

Cambridge, UK, 2016; pp 1-38.

(17) (a) Rahman, M. M.; Gibbons, S. *Fitoterapia* 2015, *105*, 269–272. (b) Rivera-Chávez, J.; Figueroa, M.;
González, M. D.; Glenn, A. E.; Mata, R. J. Nat. Prod. 2015, *78*, 730–735.

(18) Lee, Y. M.; Kim, M. J.; Li, H.; Zhang, P.; Bao, B.; Lee, K. J.; Jung, J. H. Mar. Biotechnol. 2013, 15, 499– 519.

(19) Niu, M. M.; Qin, J. Y.; Tian, C. P.; Yan, X. F.; Dong, F. G.; Cheng, Z. Q.; Fida, G.; Yang, M.; Chen, H.; Gu,
Y. Q. Acta Pharmacol. Sin. 2014, 35, 967–979.

(20) de Souza Figueiredo, F.; Celano, R.; de Sousa Silva, D.; das Neves Costa, F.; Hewitson, P.; Ignatova, S.;
Piccinelli, A. L.; Rastrelli, L., Leitão, S. G.; Leitão, G. G. J. Chromatogr. A. 2017, 1481, 92–100.

(21) (a) Fragoso-Serrano, M.; González-Chimeo, E.; Pereda-Miranda, R. J. Nat. Prod. 1999, 62, 45–50. (b) Hoye,
T. R.; Jeffrey, C. S.; Shao, F. Nat. Protoc. 2007, 2, 2451–2458.

(22) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.;

Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.;

Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.;

Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.;

Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene,

M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;

Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth,

G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, Ö.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. Gaussian 09, Revision A.1, Gaussian, Inc., Wallingford CT, 2009.

(23) Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J. T.; Bokesch, H.; Kenney, S.; Boyd, M. R. J. Natl. Cancer Inst. 1990, 82, 1107–1112.

(24) Figueroa-González, G.; Jacobo-Herrera, N.; Zentella-Dehesa, A.; Pereda-Miranda, R. J. Nat. Prod. 2012, 75, 93–97.

5.1 Información suplementaria

Structure Elucidation, Conformation, and Configuration of Cytotoxic 6-Heptyl-5,6-dihydro-2*H*-pyran-2-ones from *Hyptis* Species and their Molecular Docking to α-Tubulin

Lucero Martínez-Fructuoso,[†] Rogelio Pereda-Miranda,^{*,†} Daniel Rosas-Ramírez,[†] Mabel Fragoso-Serrano,[†] Carlos M. Cerda-García-Rojas,[‡] Aline Soares da Silva,[§] Gilda Guimarães Leitão,[⊥] and Suzana Guimarães Leitão[§]

[†]Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico

[‡]Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, A. P. 14-740, Mexico City 07000, Mexico

[§]Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, CCS, Bloco A, Ilha do Fundão, 21941-590, Rio de Janeiro, Brazil

⊥Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, CCS, Bloco H, Ilha do Fundão, 21941-590, Rio de Janeiro, Brazil

Table of contents	page
Table S1. Comparison between DFT and experimental ¹ H NMR chemical shifts for the most relevant conformers of 3 .	88
Table S2. Comparison between DFT and experimental 1 H NMR chemical shiftsfor the most relevant conformers of 3 considering PCM solvation in CHCl ₃	89
Table S3. Comparison between DFT and experimental ¹ H NMR chemical shiftsfor the most relevant conformers of 5.	90
Table S4. Comparison between DFT and experimental ¹ H NMR chemical shifts for the most relevant conformers of 5 considering PCM solvation in CHCl ₃ .	91
Table S5. DFT B3LYP/DGDZVP relative free energies, population, and comparison between DFT and experimental ¹ H- ¹ H couplings for the most relevant conformers of 2 .	92
Table S6. DFT B3LYP/DGDZVP relative free energies, population, and comparison between DFT and experimental ¹ H- ¹ H couplings for the most relevant conformers of 2 considering PCM solvation in CHCl ₃ .	93
Table S7. DFT B3LYP/DGDZVP relative free energies, population, and comparison between DFT and experimental ¹ H- ¹ H couplings for the most relevant conformers of 3 .	94
Table S8. DFT B3LYP/DGDZVP relative free energies, population, and comparison between DFT and experimental ¹ H- ¹ H couplings for the most relevant conformers of 3 considering PCM solvation in CHCl ₃ .	95
Table S9. DFT B3LYP/DGDZVP relative free energies, population, and comparison between DFT and experimental ¹ H- ¹ H couplings for the most relevant conformers of 4 .	96
Table S10. DFT B3LYP/DGDZVP relative free energies, population, and comparison between DFT and experimental ¹ H- ¹ H couplings for the most relevant conformers of 4 considering PCM solvation in CHCl ₃ .	97
Table S11. DFT B3LYP/DGDZVP relative free energies, population, and comparison between DFT and experimental ¹ H- ¹ H couplings for the most relevant conformers of 5 .	98
Table S12. DFT B3LYP/DGDZVP relative free energies, population, and comparison between DFT and experimental ¹ H- ¹ H couplings for the most relevant conformers of 5 considering PCM solvation in CHCl ₃ .	99
Table S13. DFT B3LYP/DGDZVP relative free energies, population, and comparison between DFT and experimental ¹ H- ¹ H couplings for the most relevant conformers of 10 .	100

Table S14. DFT B3LYP/DGDZVP relative free energies, population, and comparison between DFT and experimental ¹ H- ¹ H couplings for the most relevant conformers of 10 considering PCM solvation in CHCl ₃ .	101
Table S15. DFT B3LYP/DGDZVP relative free energies, population, and comparison between DFT and experimental ¹ H- ¹ H couplings for the most relevant conformers of 14 .	102
Table S16. DFT B3LYP/DGDZVP relative free energies, population, and comparison between DFT and experimental ¹ H- ¹ H couplings for the most relevant conformers of 14 considering PCM solvation in CHCl ₃ .	103
Table S17. Comparison between DFT and experimental 13 C NMR chemical shifts for the most relevant conformers of 3 .	104
Table S18. Comparison between DFT and experimental 13 C NMR chemical shifts for the most relevant conformers of 3 in CHCl ₃ .	105
Table S19. Comparison between DFT and experimental ¹³ C NMR chemical shifts for the most relevant conformers of 5 .	106
Table S20. Comparison between DFT and experimental ¹³ C NMR chemical shifts for the most relevant conformers of 5 in CHCl ₃ .	107
Table S21. ¹ H NMR Data of compounds 2 and 4 obtained by non-linear fit of the spectra to spectral parameters.	108
Table S22. ¹ H NMR Data of compounds 3 and 5 obtained by non-linear fit of the spectra to spectral parameters.	108
Table S23. ¹ H NMR Data of compounds 10 and 14 obtained by non-linear fit of the spectra to spectral parameters.	109
Figure S1. Simulated and experimental ¹ H NMR spectrum of 3.	110
Figure S2. Simulated and experimental ¹ H NMR spectrum of 5.	111
Figure S3 . RMSD values for different percentajes of hydrogen bonded conformations of 3 .	112
Table S24 . Corrected theoretical coupling constant for different percentages ofhydrogen bonded conformations of 3.	112
Figure S4. A) ¹³ C NMR spectrum of pectinolide C (3); B) ¹³ C NMR spectrum of pectinolide J (5).	113
Figure S5. A) ¹ H NMR spectrum of pectinolide C (3); B) ¹ H NMR spectrum of pectinolide J (5) in CDCl ₃ (700 MHz).	114

Figure S6. NOE difference spectrum of pectinolide C (3) with ¹ H NMR spectrum for comparison in CDCl ₃ (700 MHz). Vertical arrow indicate the irradiation frequency of H-2' ($\delta = 5.66$).	115
Figure S7 . NOE difference spectrum of pectinolide J (5) with ¹ H NMR spectrum for comparison in CDCl ₃ (700 MHz). Vertical arrow indicate the irradiation frequency of H-2' ($\delta = 5.72$).	116
Figure S8 . The four most relevant conformers of 3 modeled in CHCl ₃ solution and their contribution to the NOE effect between H-2' and H-4'.	117
Figure S9. The four most relevant conformers of 2 modeled in gas phase.	118
Figure S10. The four most relevant conformers of 2 modeled in CHCl ₃ solution.	118
Figure S11. The four most relevant conformers of 3 modeled in gas phase.	119
Figure S12. The four most relevant conformers of 4 modeled in gas phase.	119
Figure S13. The four most relevant conformers of 4 modeled in $CHCl_3$ solution.	120
Figure S14. The four most relevant conformers of 5 modeled in gas phase.	120
Figure S15. The four most relevant conformers of 10 modeled in gas phase.	121
Figure S16. The four most relevant conformers of 10 modeled in CHCl ₃ solution.	121
Figure S17. The four most relevant conformers of 14 modeled in gas phase.	122
Figure S18. The four most relevant conformers of 14 modeled in CHCl ₃ solution.	122
Physical and spectroscopic of pectinolides A-C (1-3).	123
Figure S19. ¹ H NMR spectra of pectinolide I (4) in CDCl ₃ (400 MHz).	124
Figure S20. ¹³ C NMR spectra of pectinolide I (4) in CDCl ₃ (100 MHz).	125
Figure S21. ¹ H (400 MHz; insert) and ¹³ C (100 MHz) NMR spectra of pectinolide I (4) in CD ₃ OD.	126
Figure S22. ¹ H NMR spectra of pectinolide J (5) in CDCl ₃ (400 MHz).	127
Figure S23. ¹ H NMR spectra of pectinolide K (6) in CDCl ₃ (400 MHz).	128
Figure S24. ¹³ C NMR spectra of pectinolide K (6) in CDCl ₃ (100 MHz).	129
Figure S25. ¹ H NMR spectra of pectinolide L (7) in CDCl ₃ (400 MHz).	130

Figure S26. ¹³ C NMR spectra of pectinolide L (7) in CDCl ₃ (100 MHz).	131
Figure S27. ¹ H NMR spectra of pectinolide M (8) in CDCl ₃ (400 MHz).	132
Figure S28. ¹³ C NMR spectra of pectinolide M (8) in CDCl ₃ (100 MHz).	133
Figure S29. ¹ H NMR spectra of monticolide A (9) in CDCl ₃ (400 MHz).	134
Figure S30. ¹³ C NMR spectra of monticolide A (9) in CDCl ₃ (100 MHz).	135
Figure S31. ¹ H NMR spectra of monticolide B (10) in CDCl ₃ (400 MHz).	136
Figure S32. ¹³ C NMR spectra of monticolide B (10) in CDCl ₃ (100 MHz).	137
Figure S33. ¹ H NMR spectra of derivate 14 in CDCl ₃ (300 MHz).	138
Figure S34. ¹³ C NMR spectra of derivate 14 in CDCl ₃ (75 MHz).	139
Figure S35. ¹ H NMR spectra of <i>R</i> - (cyan) and <i>S</i> -MTPA (red) ester derivatives 11 of compound 4 in CDCl ₃ (300 MHz).	140
Figure S36. ¹ H NMR spectra of <i>S</i> - (cyan) and <i>R</i> -MTPA (red) ester derivatives (16) of compound 14 in CDCl ₃ (300 MHz). The preparation of these derivatives was performed in NMR tubes and ¹ H spectra were recorded directly without purification of reaction mixtures.	141
Figure S37. Comparison of the ¹ H NMR spectra (300 MHz in DMSO) for the mixture of 6-heptenyl-5,6-dihydro-2 <i>H</i> -pyran-2-ones from the analysed fraction of <i>H. monticola</i> (red) and monticolide B (10 ; black).	142
Figure S38. The most relevant conformer of pectinolides A (1) and K (6) modeled ir phase. Arrows indicate the less hindered face of the side chain double bond for the interaction with epoxidation reagent (m CPBA).	143
Figure S39 . Complexes between docked compounds (3 , 6 , 9 , 10 , 12 and 20) and tubulin (A-F). The distance between the Lys352 amino group and β carbon of the α,β -unsaturated lactone (NH ₂ -C β), the docking energy (<i>E</i> _f), and the hydrogen bond distances are indicated.	144
Coordinates for all computes conformers of epimers 3 and 5.	145

Table S1. (Compariso	n betweer	n DFT and	d experimen	ntal ¹ H	NMR o	chemical	shifts for	the mo	ost releva	int confo	ormers o	of 3 .
C (102	Dh II	2 114	- 115	11/	111,	1101	1122	TT 4 7	TT 4 7	1157	1157	11/

Conformer	$\varDelta G^{\mathrm{a}}$	P^{b}	H3	H4	H5	H6	H1'	H2'	Н3'	H4'proS	H4'proR	H5'proS	H5'proR	H6'proS	H6'proR	H7'
3- 1	0	0.4807	6.0544	6.9756	3.6902	5.0191	5.4824	5.7399	6.3774	1.5533	1.5411	1.5083	1.4708	1.4306	1.3124	1.1260
3- 2	0.2391	0.3211	6.0521	6.9688	3.6941	5.0211	5.6222	5.6450	6.3698	1.4908	1.683	1.7084	1.2453	1.4241	1.3042	0.9841
3- 3	1.3391	0.0501	6.0801	6.9950	3.7092	5.0549	5.4924	5.7574	6.5541	1.8137	1.5455	1.2962	1.7727	1.8123	1.4023	0.5097
3-4	1.4213	0.0436	6.0421	6.9649	3.6927	5.0359	5.5534	6.0189	6.4884	1.7496	1.807	1.4499	1.6338	1.337	1.3243	1.1495
3- 5	1.6202	0.0312	6.0696	6.9906	3.7076	5.0451	5.6447	5.5955	6.4369	1.6511	1.669	1.3074	1.3049	2.5744	1.19	1.2479
3- 6	1.8417	0.0215	6.1367	6.9448	3.6194	5.7542	6.1347	5.6050	5.0345	1.5838	1.5789	0.9816	1.3167	1.3562	1.347	1.1114
3- 7	2.0281	0.0157	6.1322	6.9712	3.5867	4.8786	6.2435	5.9252	5.3541	1.3289	1.7282	0.9837	1.0705	1.3474	1.2861	0.8305
3-8	2.4059	0.0083	6.0472	6.9684	3.6906	5.0405	5.5547	6.0122	6.5302	2.0492	1.5742	1.721	1.5639	1.6469	1.3193	1.1479
3-9	2.5157	0.0069	6.0936	7.0484	3.9633	4.4773	5.6959	6.0387	5.7850	1.8277	2.4157	1.3728	1.564	1.4183	1.3167	0.8806
3- 10	2.5546	0.0064	6.1396	6.9756	3.5586	4.9518	6.3036	5.8754	5.7048	1.5678	1.6075	1.1771	1.2862	1.3092	1.303	1.0812
3- 11	2.7108	0.0050	6.0662	6.9882	3.7019	5.0385	5.6349	5.5898	6.4507	1.4519	1.9934	1.5963	1.3161	1.3669	2.4872	1.1527
3- 12	2.8621	0.0038	6.1309	6.9401	3.6037	5.7683	5.7683	5.6101	5.0387	1.8857	1.3514	1.3514	1.2025	1.6111	1.3581	1.0966
3- 13	3.0309	0.0029	6.1458	6.9558	3.6291	5.7940	6.1832	5.6011	5.3163	1.7622	1.5609	1.3169	1.3261	1.3514	1.211	0.8465
3- 14	3.0635	0.0027	6.1372	6.9680	3.5114	4.8276	6.1238	6.2932	5.6562	2.0137	1.1104	1.4091	1.4915	1.2102	1.2205	1.1073
Weigl	hted values	c	6.0595	6.9740	3.6900	5.0374	5.5749	5.7230	6.3287	1.5638	1.6133	1.5313	1.4040	1.4768	1.3168	1.0468
Experin I	nental valu RMSD	es ^d	6.1799	7.0363	4.1775	5.3371	5.7705	5.717	5.5395	1.6591	1.7559	1.3851	1.3665	1.3561	1.3489	0.9432 0.28

^a In kcal/mol.

^b In molar fraction from AG° values at 298 K and 1 atm. ^c Shielding constants were obtained from the DFT optimized structures using GIAO-DFT B3LYP/DGDZVP calculated from the B3LYP/DGDZVP. Values were Boltzmann averaged with the equation $\Sigma^i \delta^i \times P^i$, where δ^i is the ¹H NMR chemical shift value (in ppm) for each conformer and P^i is the population for the ith conformation. ^d In ppm, measured at 400 MHz from CDCl₃ solutions using TMS as the internal standard.

in CHCl ₃ .																
Conformer	$\varDelta G^{\mathrm{a}}$	P^{b}	H3	H4	H5	H6	H1'	Н2'	Н3'	H4'proS	H4'proR	H5'proS	H5'proR	H6'proS	H6'proR	H7'
3- 1	0	0.4114	6.1689	7.2533	3.879	5.1913	5.6632	5.9026	6.237	1.5761	1.6525	1.5395	1.4277	1.4555	1.3673	1.1484
3- 2	0.4198	0.2025	6.166	7.2461	3.8815	5.1939	5.7982	5.7976	6.2532	1.5751	1.7433	1.572	1.2817	1.4641	1.3609	0.9597
3- 3	0.4606	0.1891	6.2374	7.2682	3.7893	5.0438	6.3218	6.0912	5.4242	1.4495	1.7222	1.0858	1.0932	1.3712	1.3319	0.8515
3-4	1.2305	0.0515	6.2481	7.2613	3.8157	5.6764	6.205	5.8312	5.1315	1.6688	1.6483	1.0811	1.2598	1.3952	1.387	1.1226
3- 5	1.3353	0.0432	6.1577	7.2426	3.881	5.2089	5.7334	6.1693	6.3596	1.806	1.8009	1.5275	1.6454	1.3643	1.3622	1.1652
3- 6	1.5161	0.0318	6.241	7.2613	3.7392	5.0147	6.2045	6.4414	5.7218	1.9406	1.3148	1.4638	1.5228	1.2695	1.2534	1.1212
3- 7	2.0018	0.0140	6.2608	7.27	3.823	5.7008	6.2576	5.8258	5.4039	1.8422	1.649	1.2872	1.3922	1.4085	1.2501	0.822
3-8	2.1241	0.0114	6.178	7.2613	3.889	5.209	5.8247	5.7449	6.3605	1.7525	1.7146	1.3224	1.3853	2.4088	1.256	1.2032
3-9	2.2772	0.0087	6.2412	7.2538	3.7978	5.6548	6.201	5.8352	5.1417	1.963	1.4279	1.2808	1.2248	1.6344	1.3994	1.1313
3- 10	2.3745	0.0075	6.2536	7.2597	3.8345	5.7141	6.2665	5.8516	5.4282	1.6603	1.9412	1.5645	1.4051	1.4358	1.3109	1.1233
3- 11	2.4454	0.0066	6.2129	7.3436	4.1492	4.6964	5.8806	6.1702	5.6806	1.9055	2.2177	1.4319	1.6068	1.4075	1.3603	0.9133
3- 12	2.4592	0.0065	6.2528	7.2655	3.8214	5.7129	6.098	5.9193	5.3522	1.6614	1.7205	1.3722	1.8255	1.4699	1.4432	0.6625
3- 13	2.6142	0.0050	6.1614	7.2481	3.8819	5.2127	5.734	6.1641	6.4016	2.1049	1.5733	1.7931	1.5781	1.6917	1.3486	1.1658
3- 14	2.7567	0.0039	6.2414	7.2786	3.7631	5.0513	6.4066	6.0637	5.632	1.6522	1.6691	1.1271	1.3634	1.3131	1.4738	1.1094
3- 15	2.8414	0.0034	6.1926	7.2661	3.8802	5.2041	5.6798	5.9024	6.424	1.8545	1.6543	1.371	1.8256	1.6518	1.4427	0.6207
3- 16	2.8483	0.0034	6.2351	7.29	4.0144	5.5179	6.2195	6.304	5.3727	1.5807	1.8056	1.3452	1.3296	1.3535	1.3695	0.8934
Weig	hted values	c	6.1907	7.2556	3.8544	5.1998	5.8917	5.9429	5.9789	1.5945	1.6846	1.4222	1.3409	1.4406	1.3544	1.4406
Experii	nental valu	es ^d	6.1799	7.0363	4.1775	5.3371	5.7705	5.717	5.5395	1.6591	1.7559	1.3851	1.3665	1.3561	1.3489	1.3561
	RMSD															0.18

Table S2. Comparison between DFT and experimental ¹H NMR chemical shifts for the most relevant conformers of 3 considering PCM solvation

^a In kcal/mol.

^b In molar fraction from AG° values at 298 K and 1 atm. ^c Shielding constants were obtained from the DFT optimized structures using GIAO-DFT B3LYP/DGDZVP calculated from the B3LYP/DGDZVP. Values were Boltzmann averaged with the equation $\Sigma^i \delta^i \times P^i$, where δ^i is the ¹H NMR chemical shift value (in ppm) for each conformer and P^i is the population for the ith conformation. ^d In ppm, measured at 400 MHz from CDCl₃ solutions using TMS as the internal standard.

Conformer	ΔG^{a}	P^{b}	H3	H4	H5	H6	H1'	H2'	Н3'	H4'proS	H4' $_{proR}$	H5'proS	H5'proR	H6'proS	H6'proR	H7'
5-1	0	0.33227	6.1964	7.3074	4.0334	5.3788	6.2446	5.9666	5.2789	1.6658	1.4464	1.2274	1.5466	1.3412	1.3915	1.1236
5- 2	0.26481	0.21250	6.2252	7.1681	4.2699	5.3338	6.3407	5.9026	5.2803	1.6640	1.4458	1.2216	1.5370	1.3404	1.3934	0.8593
5- 3	0.63504	0.11375	6.2044	7.3044	4.0652	7.3044	6.3463	5.8843	5.2559	1.6586	1.6130	1.2536	1.1727	1.3845	1.3594	1.0960
5-4	0.97954	0.06356	6.2036	7.3051	4.1346	5.3415	6.2103	5.9242	5.4776	1.8410	1.4493	1.5616	1.3536	1.2065	1.5427	0.7805
5- 5	1.04920	0.05654	6.1941	7.3044	4.0997	5.3026	6.3166	6.2964	5.4603	1.5831	1.7436	1.6303	1.5399	1.3278	1.3058	1.1414
5-6	1.20545	0.04343	6.1995	7.3071	4.0946	5.3577	6.2375	5.9663	5.2138	1.4381	1.7420	1.1977	1.7613	1.6449	1.3486	0.6790
5- 7	1.31338	0.03620	6.2363	7.1659	4.1942	5.3596	6.4847	5.8455	5.2595	1.6550	1.6030	1.2760	1.1802	1.3837	1.3615	1.0971
5-8	1.35981	0.03347	6.2361	7.1657	4.1933	5.3595	6.4847	5.8453	5.2606	1.6552	1.6035	1.2762	1.1802	1.3838	1.3617	1.0972
5-9	1.58509	0.02288	6.1948	7.3106	4.1168	5.3419	6.2327	5.9776	5.2597	1.9724	1.2143	1.4502	1.5305	1.4126	1.6302	0.6935
5-10	1.65537	0.02032	6.2142	7.3048	4.0838	5.3692	6.3746	5.8410	5.4603	1.6705	1.7859	1.3632	1.3452	1.5238	1.1842	0.8782
5-11	1.97791	0.01179	6.1965	7.1452	4.5977	5.0811	6.0339	5.9114	5.0637	1.5459	1.7600	1.6028	1.4674	1.2894	1.2960	0.9090
5-12	2.17432	0.00846	6.2074	7.3121	4.1000	5.3761	6.2424	5.9517	5.4607	1.6852	1.7232	1.8144	1.3670	1.4856	1.4335	1.0750
5- 13	2.23896	0.00759	6.2027	7.2988	3.8187	5.4305	6.5144	6.4266	5.5338	1.9559	1.5741	1.9057	1.4823	1.3322	1.7015	1.0928
5-14	2.24335	0.00753	6.2139	7.3119	4.0003	5.4160	6.3987	5.8670	5.4487	1.9529	1.6083	1.3903	1.6066	1.4650	1.4447	1.0803
5- 15	2.32367	0.00658	6.2407	7.1708	4.2136	5.3900	6.3866	5.9242	5.4678	1.6831	1.7299	1.8028	1.3668	1.4829	1.4306	0.9838
5- 16	2.44039	0.00540	6.1974	7.3062	4.1167	5.3092	6.2971	6.2880	5.5142	1.3546	2.0412	1.5707	1.8033	1.6824	1.3110	1.0025
5- 17	2.48808	0.00498	6.2396	7.2101	4.6557	5.1154	6.1659	6.1781	5.4061	1.3446	2.0329	1.5488	1.7613	1.6708	1.3077	1.0701
5- 18	2.57718	0.00429	6.1995	7.1487	4.6020	5.0844	6.0322	5.8997	5.1016	1.3140	2.0787	1.5436	1.7183	1.6721	1.2784	1.0531
5- 19	2.78614	0.00301	6.2131	7.3166	4.0534	5.4417	6.3085	6.0051	5.3113	1.8660	1.6631	1.3184	1.5029	1.7558	1.1624	0.7161
5-20	2.83509	0.00277	6.2131	7.3166	4.0531	5.4411	6.3085	6.0044	5.3116	1.8666	1.6635	1.3184	1.5031	1.1625	1.7557	0.7161
5- 21	2.86458	0.00264	6.2489	7.2125	4.5463	5.1729	6.2666	5.7845	5.3810	1.9393	1.5653	1.3773	1.6086	1.4878	1.3775	0.6213
Weig	ghted values	c	6.2078	7.2629	4.1281	5.5722	6.2981	5.9526	5.3035	1.6678	1.5280	1.3084	1.4681	1.3665	1.3915	0.9981
Experi	mental value	es ^d	6.1036	6.9846	4.1233	5.3068	5.7577	5.6589	5.464	1.6990	1.5909	1.3075	1.3530	1.3001	1.3017	0.8999
1	RMSD															0.20

Table S3. Comparison between DFT and experimental ¹H NMR chemical shifts for the most relevant conformers of **5**.

^a In kcal/mol.

^b In molar fraction from AG° values at 298 K and 1 atm.

° Shield

ing constants were obtained from the DFT optimized structures using GIAO-DFT B3LYP/DGDZVP calculated from the B3LYP/DGDZVP. Values were Boltzmann averaged with the equation $\Sigma^i \delta^i \times P^i$, where δ^i is the ¹H NMR chemical shift value (in ppm) for each conformer and P^i is the population for the ith conformation. ^d In ppm, measured at 400 MHz from CDCl₃ solutions using TMS as the internal standard.

Table S4. Comparison between DFT and experimental ¹H NMR chemical shifts for the most relevant conformers of **5** considering PCM solvation in CHCl₃.

Conformer	$\varDelta G^{\mathrm{a}}$	P^{b}	H3	H4	Н5	H6	H1'	H2'	Н3'	H4'proS	H4'proR	H5'proS	H5'proR	H6'proS	H6'proR	H7'
5-1	0.0000	0.3290	6.1036	7.0775	4.0119	5.3145	6.2813	5.7744	5.2212	1.6241	1.4502	1.2022	1.5822	1.3374	1.4019	1.155
5-2	0.1995	0.2349	6.1106	7.0797	4.0276	5.2922	6.3802	5.6957	5.1926	1.6335	1.5617	1.3344	1.1623	1.3761	1.3482	1.1143
5-3	0.8465	0.0788	6.108	7.0828	4.0476	5.2998	6.2702	5.7432	5.4297	1.7997	1.4524	1.606	1.3244	1.2174	1.5485	0.7927
5-4	0.9293	0.0685	6.106	7.0786	4.0736	5.2873	6.2746	5.7768	5.167	1.3875	1.7503	1.1718	1.7886	1.6527	1.3422	0.7033
5- 5	0.9375	0.0676	6.1211	7.0935	4.014	5.3461	6.4261	5.679	5.4102	1.654	1.7273	1.3169	1.4198	1.5602	1.137	0.9764
5-6	1.3128	0.0359	6.1014	7.0808	4.0851	5.276	6.2725	5.793	5.2132	1.9384	1.21	1.4221	1.5677	1.4243	1.6397	0.7024
5-7	1.3899	0.0315	6.1002	7.0763	4.0456	5.24	6.3609	6.13	5.4164	1.5796	1.7075	1.6738	1.5173	1.3401	1.3018	1.1729
5-8	1.4458	0.0287	6.1825	6.7745	4.2388	5.2707	6.4706	5.7131	5.2376	1.6231	1.4617	1.1994	1.5671	1.3363	1.4075	0.8684
5-9	1.6347	0.0208	6.1135	6.8827	4.4852	4.9	6.1759	5.6917	5.0249	1.5061	1.7051	1.6228	1.4861	1.3005	1.2883	0.9364
5-10	1.6685	0.0197	6.1295	7.0284	3.706	5.5604	6.5184	6.3037	5.5311	2.0877	1.5371	1.934	1.43	1.337	1.6963	1.1559
5-11	1.7018	0.0186	6.1928	6.7779	4.2002	5.2736	6.5872	5.645	5.2151	1.6227	1.5551	1.3713	1.166	1.3733	1.3518	1.1137
5-12	1.7037	0.0185	6.1927	6.7777	4.1995	5.2742	6.5875	5.6453	5.215	1.6227	1.5554	1.3712	1.1661	1.3732	1.3519	1.1137
5-13	2.1731	0.0084	6.122	7.0921	4.0194	5.3794	6.343	5.8362	5.2498	1.8412	1.6285	1.3329	1.4809	1.1146	1.8633	0.6994
5-14	2.1737	0.0084	6.1132	7.0875	4.0545	5.3171	6.2895	5.7729	5.4235	1.6399	1.7312	1.8432	1.3412	1.4899	1.4328	1.1
5- 15	2.1957	0.0081	6.12	7.0909	3.9685	5.3792	6.428	5.6897	5.4053	1.9378	1.5526	1.3556	1.6676	1.5076	1.5153	1.0356
5-16	2.2208	0.0077	6.1016	7.0798	4.0647	5.2459	6.3408	6.1199	5.4711	1.3433	2.0099	1.6117	1.7834	1.6885	1.3211	1.0355
5- 17	2.5226	0.0047	6.1518	7.0566	3.7419	5.6459	6.5168	6.0385	5.2842	1.8557	1.6162	1.6417	1.4823	1.7795	1.105	0.7091
5-18	2.6205	0.0039	6.1269	6.912	4.5936	4.95	6.1234	5.4679	5.0204	1.6317	1.639	1.8479	1.3319	1.3996	1.4476	0.6598
5-19	2.6211	0.0039	6.1269	6.9119	4.5938	4.9502	6.1235	5.4678	5.0203	1.6317	1.6391	1.848	1.3319	1.3996	1.4477	1.0121
5-20	2.9725	0.0022	6.1072	7.0815	3.9988	5.3321	6.2466	5.7936	5.2942	2.049	1.4025	1.5483	1.7697	1.4627	1.5677	1.3939
Weig	hted value	s ^c	6.1126	7.0524	4.0467	5.2964	6.3352	5.7614	5.2513	1.6465	1. 5374	1.3414	1.4400	1.3835	1.3894	1.0334
Experin	nental valı	ues ^d	6.1036	6.9846	4.1233	5.3068	5.7577	5.6589	5.464	1.6990	1.5909	1.3075	1.3530	1.3001	1.3017	0.8999
]	RMSD															0.17

^a In kcal/mol.

^b In molar fraction from AG° values at 298 K and 1 atm.

^c Shielding constants were obtained from the DFT optimized structures using GIAO-DFT B3LYP/DGDZVP calculated from the B3LYP/DGDZVP. Values were Boltzmann averaged with the equation $\Sigma^i \delta^i \times P^i$, where δ^i is the ¹H NMR chemical shift value (in ppm) for each conformer and P^i is the population for the ith conformation.

^d In ppm, measured at 400 MHz from CDCl₃ solutions using TMS as the internal st

Table 55. DFT	DOLIP/DOD	ZVP rela	live free er	nergies," po	pulation,	⁻ and compa	rison betwee	en DF 1º and	experimen		couprings	for the mos	st relevant con	formers of Z		
Conformers	ΔG^{a}	$J_{5,6}$	$J_{6,1'}$	$J_{I^\prime,2^\prime}$	$J_{2^\prime,3^\prime}$	$J_{3',4'proR}$	$J_{3',4' proS}$	P^b	$PJ_{5,6}$	$PJ_{6,1'}$	$PJ_{1',2'}$	$PJ_{2',3'}$	$PJ_{3',4'proR}$	$PJ_{3',4'proS}$		
2- 1	0	3.38	10.01	11.86	9.75	10.46	3.49	0.2121	0.72	2.12	2.52	2.07	2.22	0.74		
2- 2	0.2567	3.47	7.22	13.15	4.13	5.08	2.02	0.1380	0.48	1.00	1.81	0.57	0.70	0.28		
2- 3	0.2774	5.12	6.03	12.93	5.35	1.58	10.61	0.1333	0.68	0.80	1.72	0.71	0.21	1.41		
2-4	0.6382	3.57	9.52	11.82	9.46	2.46	11.30	0.0725	0.26	0.69	0.86	0.69	0.18	0.82		
2- 5	0.6583	3.57	9.52	11.82	9.46	2.46	11.30	0.0701	0.25	0.67	0.83	0.66	0.17	0.79		
2- 6	0.8202	3.39	8.04	12.96	5.15	10.68	4.36	0.0533	0.18	0.43	0.69	0.27	0.57	0.23		
2- 7	0.9469	5.07	6.39	12.89	5.52	10.92	4.14	0.0430	0.22	0.28	0.55	0.24	0.47	0.18		
2- 8	1.0046	3.48	7.35	12.99	4.33	1.56	10.57	0.0390	0.14	0.29	0.51	0.17	0.06	0.41		
2- 9	1.2487	4.20	7.64	12.13	9.85	4.50	2.87	0.0259	0.11	0.20	0.31	0.25	0.12	0.07		
2- 10	1.2600	4.05	7.38	12.11	9.33	1.54	10.54	0.0254	0.10	0.19	0.31	0.24	0.04	0.27		
2- 11	1.2682	3.48	9.77	11.87	9.71	10.33	3.56	0.0250	0.09	0.24	0.30	0.24	0.26	0.09		
2- 12	1.2883	3.36	7.08	12.59	2.45	5.15	2.76	0.0242	0.08	0.17	0.30	0.06	0.12	0.07		
2- 13	1.4546	5.11	6.04	12.92	5.33	1.62	10.54	0.0183	0.09	0.11	0.24	0.10	0.03	0.19		
2- 14	1.7043	5.12	6.09	12.90	5.40	2.06	11.36	0.0120	0.06	0.07	0.15	0.06	0.02	0.14		
2- 15	1.7231	3.48	9.43	12.26	7.95	4.23	2.43	0.0116	0.04	0.11	0.14	0.09	0.05	0.03		
2- 16	1.7288	3.58	9.72	11.90	9.79	11.00	3.59	0.0115	0.04	0.11	0.14	0.11	0.13	0.04		
2- 17	1.7696	3.53	9.67	11.83	9.47	2.48	11.31	0.0107	0.04	0.10	0.13	0.10	0.03	0.12		
2- 18	1.8505	3.57	9.37	12.09	9.60	4.36	2.99	0.0094	0.03	0.09	0.11	0.09	0.04	0.03		
2- 19	1.8662	5.29	5.76	13.19	5.19	5.64	2.22	0.0091	0.05	0.05	0.12	0.05	0.05	0.02		
2- 20	1.9710	5.06	6.28	12.98	5.45	11.32	4.64	0.0076	0.04	0.05	0.10	0.04	0.09	0.04		
2- 21	2.0846	3.43	7.48	12.95	4.50	11.26	1.64	0.0063	0.02	0.05	0.08	0.03	0.07	0.01		
2- 22	2.1097	3.55	9.71	11.83	9.99	10.08	4.12	0.0060	0.02	0.06	0.07	0.06	0.06	0.02		
2- 23	2.1467	3.42	10.03	11.87	9.79	10.97	3.48	0.0057	0.02	0.06	0.07	0.06	0.06	0.02		
2- 24	2.2182	4.06	8.30	12.39	8.43	4.23	2.49	0.0050	0.02	0.04	0.06	0.04	0.02	0.01		
2- 25	2.2490	3.84	4.59	13.18	1.95	2.79	12.75	0.0048	0.02	0.02	0.06	0.01	0.01	0.06		
2- 26	2.3494	5.26	5.78	13.22	5.18	5.67	2.30	0.0040	0.02	0.02	0.05	0.02	0.02	0.01		
2- 27	2.4918	3.23	6.50	12.34	9.53	2.00	10.83	0.0032	0.01	0.02	0.04	0.03	0.01	0.03		
2- 28	2.5107	3.48	7.89	12.97	5.21	11.01	4.66	0.0031	0.01	0.02	0.04	0.02	0.03	0.01		
2- 29	2.5571	3.79	4.97	13.27	2.00	4.78	2.94	0.0028	0.01	0.01	0.04	0.01	0.01	0.01		
2- 30	2.5703	3.39	6.33	12.53	8.75	1.81	10.60	0.0028	0.01	0.02	0.03	0.02	0.01	0.03		
2- 31	2.8031	5.21	5.80	13.23	5.19	5.73	2.23	0.0019	0.01	0.01	0.02	0.01	0.01	0.004		
2- 32	2.8709	2.53	4.66	13.19	6.30	12.19	3.37	0.0017	0.004	0.01	0.02	0.01	0.02	0.01		
								W	eighted valu	es ^c	3.87	8.11	12.44	7.13	5.90	6.20
						Correc	ted weighted	values ^d	3.52	7.54	12.15	6.63	5.37	5.64		
						Exp	erimental va	lues ^e	2.99	8.2	11.45	7.65	6.4	7.25		
RMSD													0.99			

Table S5 DET B31 VP/DGDZVP relative free energies ^a nonulation ^b and comparison between DET^c and experimental $^{1}H_{-}^{1}H$ couplings for the most relevant conformers of 2

^a In kcal/mol.

^b In molar fraction from AG° values at 298 K and 1 atm.

^c In Hz, calculated from the B3LYP/DGDZVP structures with equation $\Sigma^i J^i \times P^i$, where J_i is the spin-spin coupling constant value for each conformer and P^i is the population for the ith conformation. ^d The scaling factors were as follows: $f_{H(sp3)-H(sp3)} = 0.910$; $f_{H(sp3)-H(sp2)} = 0.929$ and $f_{H(sp2)-H(sp2)} = 0.977$. ^e Experimental coupling constants obtained by spectra simulation.

Table S6. DFT B3LYP/DGDZVP relative free energies,^a population,^b and comparison between DFT^c and experimental ¹H-¹H couplings for the most relevant conformers of 2 considering PCM solvation in CHCl₃.

Conformers	ΔG^{a}	$J_{5,6}$	$J_{6,1'}$	$J_{I^{\prime},2^{\prime}}$	$J_{2^{\prime}\!,3^{\prime}}$	$J_{3',4'proR}$	$J_{3',4'proS}$	P^b	$PJ_{5,6}$	$PJ_{6,1'}$	$PJ_{1',2'}$	$PJ_{2',3'}$	$PJ_{3',4'proR}$	$PJ_{3',4'proS}$
2- 1	0	3.63	9.45	11.77	9.40	2.35	11.40	0.1547	0.56	1.46	1.82	1.45	0.36	1.76
2- 2	0.1042	3.51	7.79	12.87	4.53	1.55	10.53	0.1297	0.46	1.01	1.67	0.59	0.20	1.37
2- 3	0.2171	3.52	7.47	13.06	4.13	5.29	2.03	0.1072	0.38	0.80	1.40	0.44	0.57	0.22
2-4	0.2309	3.54	9.89	11.83	9.81	10.55	3.55	0.1047	0.37	1.04	1.24	1.03	1.11	0.37
2- 5	0.3847	3.63	9.46	11.77	9.40	2.35	11.40	0.0808	0.29	0.76	0.95	0.76	0.19	0.92
2- 6	0.4298	3.54	9.80	11.97	9.01	1.90	10.87	0.0749	0.27	0.73	0.90	0.67	0.14	0.81
2- 7	0.5240	3.47	8.21	12.86	5.21	10.62	4.44	0.0639	0.22	0.52	0.82	0.33	0.68	0.28
2- 8	0.7091	3.46	9.89	12.15	8.82	4.19	2.51	0.0467	0.16	0.46	0.57	0.41	0.20	0.12
2- 9	0.7511	3.50	9.78	11.97	9.23	4.21	3.12	0.0435	0.15	0.43	0.52	0.40	0.18	0.14
2- 10	0.8929	3.53	9.95	11.82	9.77	10.45	3.60	0.0343	0.12	0.34	0.41	0.33	0.36	0.12
2- 11	0.9275	3.46	9.89	12.15	8.82	4.19	2.51	0.0323	0.11	0.32	0.39	0.28	0.14	0.08
2- 12	1.3347	3.39	10.41	12.41	1.63	2.71	12.72	0.0163	0.06	0.17	0.20	0.03	0.04	0.21
2- 13	1.3692	5.38	6.33	12.88	5.44	1.50	10.55	0.0153	0.08	0.10	0.20	0.08	0.02	0.16
2- 14	1.5474	3.43	10.37	12.38	1.67	2.72	12.76	0.0114	0.04	0.12	0.14	0.02	0.03	0.14
2- 15	1.5487	3.53	7.61	12.89	4.46	11.10	1.45	0.0113	0.04	0.09	0.15	0.05	0.13	0.02
2- 16	1.6315	5.28	6.66	12.88	5.65	10.98	4.18	0.0098	0.05	0.07	0.13	0.06	0.11	0.04
2- 17	1.7420	3.50	10.04	11.84	9.93	11.01	3.45	0.0082	0.03	0.08	0.10	0.08	0.09	0.03
2- 18	1.7646	3.33	7.50	12.67	2.35	5.14	2.74	0.0079	0.03	0.06	0.10	0.02	0.04	0.02
2- 19	1.8010	3.95	5.49	13.29	1.95	4.67	3.03	0.0074	0.03	0.04	0.10	0.01	0.03	0.02
2- 20	1.8869	3.39	10.47	12.54	1.78	4.71	2.96	0.0064	0.02	0.07	0.08	0.01	0.03	0.02
2- 21	1.9509	3.61	9.50	12.04	9.55	4.33	3.04	0.0057	0.02	0.05	0.07	0.05	0.02	0.02
2- 22	2.0407	3.45	10.01	11.77	10.10	10.17	4.06	0.0049	0.02	0.05	0.06	0.05	0.05	0.02
2- 23	2.1586	2.72	2.57	13.37	6.82	1.71	11.82	0.0040	0.01	0.01	0.05	0.03	0.01	0.05
2- 24	2.1731	3.54	7.74	13.11	3.98	4.53	2.71	0.0039	0.01	0.03	0.05	0.02	0.02	0.01
2- 25	2.3801	5.34	6.37	12.86	5.46	1.56	10.52	0.0028	0.01	0.02	0.04	0.02	0.00	0.03
2- 26	2.3958	5.34	6.38	12.87	5.54	1.74	11.21	0.0027	0.01	0.02	0.03	0.02	0.00	0.03
2- 27	2.4310	3.40	10.18	11.85	9.81	11.07	3.11	0.0026	0.01	0.03	0.03	0.03	0.03	0.01
2- 28	2.5904	5.26	6.54	12.96	5.56	11.39	4.62	0.0020	0.01	0.01	0.03	0.01	0.02	0.01
2- 29	2.6487	3.57	9.55	11.78	9.35	2.41	11.45	0.0018	0.01	0.02	0.02	0.02	0.004	0.02
2- 30	2.7818	3.34	6.53	12.41	9.68	2.05	10.89	0.0014	0.005	0.01	0.02	0.01	0.003	0.02
2- 31	2.7887	3.38	6.45	12.57	8.99	1.75	10.59	0.0140	0.05	0.09	0.18	0.13	0.02	0.15
						V	Veighted value	es ^c	3.64	9.00	12.45	7.44	4.84	7.21
						Correc	Corrected weighted values ^d			8.36	12.16	6.92	4.40	6.56
						Ext	perimental val	ues ^e	2.99	8.2	11.45	7.65	6.4	7.25
							RMSD							0.97

^a In kcal/mol.

^b In molar fraction from AG° values at 298 K and 1 atm. ^c In Hz, calculated from the B3LYP/DGDZVP structures with equation $\Sigma^i J^i \times P^i$, where J_i is the spin-spin coupling constant value for each conformer and P^i is the population for the ith conformation. ^d The scaling factors were as follows: $f_{H(sp3)-H(sp3)} = 0.910$; $f_{H(sp3)-H(sp2)} = 0.929$ and $f_{H(sp2)-H(sp2)} = 0.977$. ^e Experimental coupling constants obtained by spectra simulation.
Table S7. DFT	B3LYP/DGE	OZVP rela	tive free e	nergies,ª p	opulation, ^b	and compar	ison betweer	n DFT ^c and e	experimen	ntal ¹ H- ¹ H	couplings	for the mo	st relevant con	formers of 3.
Conformers	ΔG^{a}	$J_{5,6}$	$J_{6, 1'}$	$J_{I',2'}$	$J_{2',3'}$	$J_{3',4'proR}$	$J_{3',4'proS}$	P^b	$PJ_{5,6}$	$PJ_{6,1'}$	$PJ_{1',2'}$	$PJ_{2',3'}$	$PJ_{3',4'proR}$	$PJ_{3',4'proS}$
3- 1	0	4.85	4.7	12.82	10.09	11.35	1.93	0.4807	2.33	2.26	6.16	4.85	5.46	0.93
3- 2	0.2391	4.81	4.64	12.96	10	4.08	11.68	0.3211	1.54	1.49	4.16	3.21	1.31	3.75
3- 3	1.3391	4.86	4.64	12.83	10.03	11.65	1.72	0.0501	0.24	0.23	0.64	0.5	0.58	0.09
3-4	1.4213	4.88	4.67	13.05	10.4	3.04	4.61	0.0436	0.21	0.2	0.57	0.45	0.13	0.2
3- 5	1.6202	4.74	4.54	13.07	9.98	3.48	12.08	0.0312	0.15	0.14	0.41	0.31	0.11	0.38
3- 6	1.8417	3.22	8.02	11.82	10.32	3.53	11.58	0.0215	0.07	0.17	0.25	0.22	0.08	0.25
3-7	2.0281	2.97	9.95	11.9	10.71	3.61	10.88	0.0158	0.05	0.16	0.19	0.17	0.06	0.17
3-8	2.4059	4.9	4.66	13.06	10.46	3.12	4.61	0.0083	0.04	0.04	0.11	0.09	0.03	0.04
3- 9	2.5157	1.76	7.27	12.79	8.56	3.27	4.3	0.0069	0.01	0.05	0.09	0.06	0.02	0.03
3- 10	2.5546	2.97	10.14	11.83	10.85	3.87	11.41	0.0064	0.02	0.07	0.08	0.07	0.02	0.07
3- 11	2.7108	4.67	4.49	13.09	10	3.57	12.05	0.0049	0.02	0.02	0.06	0.05	0.02	0.06
3- 12	2.8621	3.18	8.06	11.85	10.31	3.71	11.42	0.0038	0.01	0.03	0.05	0.04	0.01	0.04
3- 13	3.0309	3.2	8.5	11.88	10.24	3.61	12.02	0.0029	0.01	0.02	0.03	0.03	0.01	0.03
3- 14	3.0635	2.99	9.83	12.1	9.52	2.84	4.42	0.0027	0.01	0.03	0.03	0.03	0.01	0.01
						W	eighted valu	es ^c	4.72	4.91	12.84	10.08	7.85	6.05
						Correct	ed weighted	values ^d	4.29	4.56	12.54	9.36	7.14	5.50
						Exp	erimental va	lues ^e	2.98	6.62	11.65	8.5	7.54	5.68
							RMSD							1.13

^b In molar fraction from AG° values at 298 K and 1 atm. ^c In Hz, calculated from the B3LYP/DGDZVP structures with equation $\Sigma^i J^i \times P^i$, where J_i is the spin-spin coupling constant value for each conformer and Pⁱ is the population for the ith conformation. ^d The scaling factors were as follows: $f_{H(sp3)-H(sp3)} = 0.910$; $f_{H(sp3)-H(sp2)} = 0.929$ and $f_{H(sp2)-H(sp2)} = 0.977$. ^e Experimental coupling constants obtained by spectra simulation.

Table S8. DFT B3LYP/DGDZVP relative free energies,^a population,^b and comparison between DFT^c and experimental ¹H-¹H couplings for the most relevant conformers of **3** considering PCM solvation in CHCl₃.

Conformers	ΔG^{a}	$J_{5,6}$	$J_{6,1'}$	$J_{l',2'}$	$J_{2^{\prime}\!,3^{\prime}}$	$J_{3',4'proR}$	$J_{3',4' proS}$	P^b	$PJ_{5,6}$	$PJ_{6,1'}$	$PJ_{1',2'}$	$PJ_{2',3'}$	$PJ_{3',4'proR}$	$PJ_{3',4'proS}$
3- 1	0	4.71	4.83	12.87	10.18	11.38	1.94	0.4114	1.94	1.99	5.29	4.19	4.68	0.80
3- 2	0.4198	4.61	4.71	13.05	10.17	4.03	11.65	0.2025	0.93	0.95	2.64	2.06	0.82	2.36
3- 3	0.4606	3.33	10.09	11.85	10.65	3.65	10.95	0.1891	0.63	1.91	2.24	2.01	0.69	2.07
3-4	1.2305	3.46	8.71	11.71	10.39	3.71	11.51	0.0515	0.18	0.45	0.60	0.54	0.19	0.59
3- 5	1.3353	4.75	4.80	13.09	10.51	3.04	4.59	0.0432	0.21	0.21	0.57	0.45	0.13	0.20
3- 6	1.5161	3.38	9.93	12.05	9.80	2.85	4.38	0.0318	0.11	0.32	0.38	0.31	0.09	0.14
3- 7	2.0018	3.45	9.14	11.78	10.35	3.75	11.99	0.0140	0.05	0.13	0.17	0.15	0.05	0.17
3- 8	2.1241	4.48	4.60	13.13	10.13	3.48	12.06	0.0114	0.05	0.05	0.15	0.12	0.04	0.14
3- 9	2.2772	3.45	8.94	11.76	10.40	3.93	11.33	0.0087	0.03	0.08	0.10	0.09	0.03	0.10
3- 10	2.3745	3.42	9.54	11.78	10.28	3.74	11.93	0.0075	0.03	0.07	0.09	0.08	0.03	0.09
3- 11	2.4454	1.73	7.25	12.92	8.79	3.20	4.35	0.0066	0.01	0.05	0.09	0.06	0.02	0.03
3- 12	2.4592	3.50	8.66	11.63	10.39	11.93	2.18	0.0065	0.02	0.06	0.08	0.07	0.08	0.01
3- 13	2.6142	4.75	4.80	13.10	10.58	3.10	4.60	0.0050	0.02	0.02	0.07	0.05	0.02	0.02
3- 14	2.7567	3.25	10.43	11.85	10.72	3.41	11.42	0.0039	0.01	0.04	0.05	0.04	0.01	0.04
3- 15	2.8414	4.62	4.86	12.91	10.05	11.92	2.19	0.0034	0.02	0.02	0.04	0.03	0.04	0.01
3- 16	2.8483	3.36	9.89	12.46	7.09	4.40	11.22	0.0034	0.01	0.03	0.04	0.02	0.01	0.04
						W	eighted value	es ^c	4.24	6.37	12.59	10.27	6.94	6.81
						Correc	ted weighted	values ^d	3.86	5.92	12.30	9.54	6.31	6.20
						Exp	erimental val	ues ^e	2.98	6.62	11.65	8.5	7.54	5.68
						1	RMSD							0.87

^a In kcal/mol.

^b In molar fraction from AG° values at 298 K and 1 atm. ^c In Hz, calculated from the B3LYP/DGDZVP structures with equation $\Sigma^i J^i \times P^i$, where J_i is the spin-spin coupling constant value for each conformer and P^i is the population for the ith conformation. ^d The scaling factors were as follows: $f_{H(sp3)-H(sp3)} = 0.910$; $f_{H(sp3)-H(sp2)} = 0.929$ and $f_{H(sp2)-H(sp2)} = 0.977$. ^e Experimental coupling constants obtained by spectra simulation.

Table S9. DFT	B3LYP/DGI	DZVP rel	ative free e	nergies,ª p	opulation, ^t	and compar	rison betwee	n DFT ^c and	experime	ntal ¹ H- ¹ H	couplings	for the mo	ost relevant co	nformers of 4 .
Conformers	ΔG^{a}	$J_{5,6}$	$J_{6,1'}$	$J_{l',2'}$	$J_{2',3'}$	$J_{3',4'proR}$	$J_{3',4'proS}$	P^b	$PJ_{5,6}$	$PJ_{6,1'}$	$PJ_{1',2'}$	$PJ_{2',3'}$	$PJ_{3',4'proR}$	$PJ_{3',4'proS}$
4 -1	0	4.01	8.41	13.88	2.70	11.21	1.83	0.2525	1.01	2.12	3.51	0.68	2.83	0.46
4 -2	0.1023	2.85	10.53	11.79	9.66	3.44	10.53	0.2124	0.60	2.24	2.50	2.05	0.73	2.24
4-3	0.2083	2.84	10.59	11.64	9.66	11.28	2.36	0.1776	0.50	1.88	2.07	1.72	2.00	0.42
4 -4	0.6959	3.08	6.77	12.65	2.59	2.67	5.27	0.0780	0.24	0.53	0.99	0.20	0.21	0.41
4-5	0.8936	4.04	8.40	13.86	2.75	11.86	2.17	0.0559	0.23	0.47	0.77	0.15	0.66	0.12
4 -6	0.9507	2.81	10.57	11.91	9.85	2.92	4.29	0.0507	0.14	0.54	0.60	0.50	0.15	0.22
4 -7	1.0686	2.85	10.54	11.81	9.72	3.57	10.36	0.0416	0.12	0.44	0.49	0.40	0.15	0.43
4 -8	1.1471	4.04	8.00	13.94	2.17	2.86	5.13	0.0364	0.15	0.29	0.51	0.08	0.10	0.19
4-9	1.1477	4.56	5.66	12.73	4.62	3.21	12.04	0.0364	0.17	0.21	0.46	0.17	0.12	0.44
4 -10	1.6685	4.15	5.97	12.70	6.91	3.35	11.58	0.0151	0.06	0.09	0.19	0.10	0.05	0.17
4 -11	1.7175	3.10	6.96	12.63	2.47	2.70	5.28	0.0139	0.04	0.10	0.18	0.03	0.04	0.07
4 -12	1.8430	3.15	6.43	12.61	2.87	11.86	2.09	0.0113	0.04	0.07	0.14	0.03	0.13	0.02
4 -13	2.2415	4.07	8.51	14.14	2.80	4.38	11.66	0.0057	0.02	0.05	0.08	0.02	0.03	0.07
4 -14	2.4052	4.09	5.99	12.70	6.98	3.56	12.04	0.0044	0.02	0.03	0.06	0.03	0.02	0.05
4 -15	2.4103	4.02	8.43	13.87	2.79	11.96	2.38	0.0043	0.02	0.04	0.06	0.01	0.05	0.01
4 -16	2.8746	1.76	7.84	12.08	10.05	3.66	10.97	0.0020	0.00	0.02	0.02	0.02	0.01	0.02
4 -17	2.9305	4.08	8.51	14.12	2.82	3.78	11.69	0.0018	0.01	0.02	0.03	0.01	0.01	0.02
						W	eighted valu	ues ^c	3.37	9.11	12.66	6.21	7.28	5.37
						Correc	ted weighted	l values ^d	3.07	8.47	12.37	5.77	6.63	4.88
						Exp	perimental va	alues ^e	3.30	7.65	11.70	7.60	6.70	6.40
						1	RMSD							1.06

^b In molar fraction from AG° values at 298 K and 1 atm. ^c In Hz, calculated from the B3LYP/DGDZVP structures with equation $\Sigma^i J^i \times P^i$, where J_i is the spin-spin coupling constant value for each conformer and P^i is the population for the ith conformation. ^d The scaling factors were as follows: $f_{H(sp3)-H(sp3)} = 0.910$; $f_{H(sp3)-H(sp2)} = 0.929$ and $f_{H(sp2)-H(sp2)} = 0.977$. ^e Experimental coupling constants obtained by spectra simulation.

Table S10. DFT B3LYP/DGDZVP relative free energies, ^a population	^b and comparison between DFT ^c and experime	ental ¹ H- ¹ H couplings for the most relevant	nt conformers of 4 considering
PCM solvation in CHCl ₃ .	· ·		

Conformers	ΔG^{a}	$J_{5,6}$	$J_{6,1'}$	$J_{I',2'}$	$J_{2',3'}$	$J_{3',4'proR}$	$J_{3',4'proS}$	P^b	$PJ_{5,6}$	$PJ_{6, 1'}$	$PJ_{1',2'}$	$PJ_{2',3'}$	$PJ_{3',4'proR}$	$PJ_{3',4'proS}$
4 -1	0	3.20	10.44	11.78	9.71	3.52	10.61	0.3851	1.23	4.02	4.54	3.74	1.35	4.09
4-2	0.3043	3.13	10.68	11.66	9.68	11.28	2.23	0.2304	0.72	2.46	2.69	2.23	2.60	0.51
4-3	0.6237	3.26	3.95	11.78	9.77	3.78	10.44	0.1344	0.44	0.53	1.58	1.31	0.51	1.40
4 -4	0.6670	3.33	10.01	11.97	9.43	3.05	4.24	0.1249	0.42	1.25	1.49	1.18	0.38	0.53
4-5	1.4721	3.27	7.25	12.73	2.43	2.63	5.28	0.0321	0.11	0.23	0.41	0.08	0.08	0.17
4- 6	1.5173	4.12	8.48	13.96	2.57	11.28	1.81	0.0297	0.12	0.25	0.42	0.08	0.34	0.05
4 -7	1.6767	4.40	5.85	12.89	4.79	3.18	11.93	0.0227	0.10	0.13	0.29	0.11	0.07	0.27
4-8	2.0789	4.25	6.00	12.79	6.92	3.44	11.59	0.0115	0.05	0.07	0.15	0.08	0.04	0.13
4-9	2.2703	4.11	8.46	13.95	2.63	11.84	2.01	0.0083	0.03	0.07	0.12	0.02	0.10	0.02
4 -10	2.4303	4.09	8.04	14.01	2.11	2.96	5.02	0.0064	0.03	0.05	0.09	0.01	0.02	0.03
4 -11	2.5853	3.36	6.82	12.67	2.87	11.81	2.06	0.0049	0.02	0.03	0.06	0.01	0.06	0.01
4 -12	2.7341	1.73	7.92	12.26	9.98	3.58	11.05	0.0038	0.01	0.03	0.05	0.04	0.01	0.04
4- 13	2.8420	3.30	7.30	12.72	2.39	2.71	5.22	0.0032	0.01	0.02	0.04	0.01	0.01	0.02
4 -14	2.9455	4.12	6.00	12.81	6.89	3.61	12.07	0.0027	0.01	0.02	0.03	0.02	0.01	0.03
						· ·	Weighted valu	les ^c	3.29	9.17	11.95	8.92	5.58	7.31
						Corre	cted weighted	l values ^d	2.99	8.52	11.68	8.28	5.08	6.65
						Ex	perimental va	lues ^e	3.30	7.65	11.70	7.60	6.70	6.40
							RMSD							0.82

^b In molar fraction from AG° values at 298 K and 1 atm. ^c In Hz, calculated from the B3LYP/DGDZVP structures with equation $\Sigma^i J^i \times P^i$, where J_i is the spin-spin coupling constant value for each conformer and Pⁱ is the population for the ith conformation. ^d The scaling factors were as follows: $f_{H(sp3)-H(sp3)} = 0.910$; $f_{H(sp3)-H(sp2)} = 0.929$ and $f_{H(sp2)-H(sp2)} = 0.977$. ^e Experimental coupling constants obtained by spectra simulation.

Conformers	ΔG^{a}	$J_{5,6}$	$J_{6,1'}$	$J_{I',2'}$	$J_{2',3'}$	$J_{3',4'proR}$	$J_{3',4'proS}$	P^b	$PJ_{5,6}$	$PJ_{6,1'}$	$PJ_{1',2'}$	$PJ_{2',3'}$	$PJ_{3',4'proR}$	$PJ_{3',4'proS}$
5-1	0	3.22	10.57	11.68	10.43	1.88	11.27	0.3323	1.07	3.51	3.88	3.46	0.62	3.74
5- 2	0.2648	3.46	10.21	11.77	10.43	1.92	11.35	0.2125	0.73	2.17	2.50	2.22	0.41	2.41
5- 3	0.635	3.25	10.47	11.77	10.23	11.46	3.79	0.1138	0.37	1.19	1.34	1.16	1.30	0.43
5-4	0.9795	3.34	10.39	11.71	10.28	2.17	11.87	0.0636	0.21	0.66	0.74	0.65	0.14	0.75
5- 5	1.0492	3.22	10.53	11.95	10.96	4.85	2.75	0.0565	0.18	0.60	0.68	0.62	0.27	0.16
5-6	1.2054	3.27	10.50	11.72	10.43	1.78	11.24	0.0434	0.14	0.46	0.51	0.45	0.08	0.49
5- 7	1.3134	3.39	10.32	11.79	10.23	11.48	3.75	0.0362	0.12	0.37	0.43	0.37	0.42	0.14
5-8	1.3598	3.39	10.32	11.80	10.23	11.48	3.75	0.0335	0.11	0.35	0.39	0.34	0.38	0.13
5-9	1.5851	3.21	10.47	11.71	10.41	1.90	11.22	0.0229	0.07	0.24	0.27	0.24	0.04	0.26
5-10	1.6554	3.34	10.46	11.84	10.27	11.89	3.87	0.0203	0.07	0.21	0.24	0.21	0.24	0.08
5-11	1.9779	4.65	4.98	12.94	10.08	4.31	3.09	0.0118	0.05	0.06	0.15	0.12	0.05	0.04
5-12	2.1743	3.30	10.50	11.69	10.23	2.12	11.86	0.0085	0.03	0.09	0.10	0.09	0.02	0.10
5-13	2.239	3.13	9.59	11.65	10.88	4.77	2.94	0.0076	0.02	0.07	0.09	0.08	0.04	0.02
5-14	2.2433	3.23	10.64	11.77	10.26	11.89	3.94	0.0075	0.02	0.08	0.09	0.08	0.09	0.03
5- 15	2.3237	3.40	10.39	11.70	10.23	2.11	11.86	0.0066	0.02	0.07	0.08	0.07	0.01	0.08
5-16	2.4404	3.23	10.46	11.99	11.00	4.91	2.78	0.0054	0.02	0.06	0.06	0.06	0.03	0.02
5- 17	2.4881	3.33	9.56	12.13	10.73	4.81	2.79	0.005	0.02	0.05	0.06	0.05	0.02	0.01
5-18	2.5772	4.64	5.01	12.91	10.05	4.42	3.13	0.0043	0.02	0.02	0.06	0.04	0.02	0.01
5-19	2.7861	3.23	10.55	11.76	10.34	11.21	3.86	0.003	0.01	0.03	0.04	0.03	0.03	0.01
5-20	2.8351	3.23	10.55	11.76	10.34	11.21	3.86	0.0028	0.01	0.03	0.03	0.03	0.03	0.01
5-21	2.8646	3.27	9.99	11.95	10.30	11.98	3.84	0.0026	0.01	0.03	0.03	0.03	0.03	0.01
						W	eighted valu	es ^c	3.32	10.34	11.77	10.41	4.28	8.92
						Correct	ed weighted	values ^d	3.02	9.60	11.50	9.67	3.90	8.12
						Exp	erimental va	lues ^e	3.04	7.52	11.46	9.10	5.90	7.38
						1	RMSD							1.24

Table S11. DFT B3LYP/DGDZVP relative free energies,^a population,^b and comparison between DFT^c and experimental ¹H-¹H couplings for the most relevant conformers of 5.

^b In molar fraction from AG° values at 298 K and 1 atm.

^c In Hz, calculated from the B3LYP/DGDZVP structures with equation $\Sigma^i J^i \times P^i$, where J_i is the spin-spin coupling constant value for each conformer and P^i is the population for the ith conformation. ^d The scaling factors were as follows: $f_{H(sp3)-H(sp3)} = 0.910$; $f_{H(sp3)-H(sp2)} = 0.929$ and $f_{H(sp2)-H(sp2)} = 0.977$. ^e Experimental coupling constants obtained by spectra simulation.

Table S12. DFT B3LYP/DGDZVP relative free energies,^a population,^b and comparison between DFT^c and experimental ¹H-¹H couplings for the most relevant conformers of 5 considering PCM solvation in CHCl₃.

Conformers	ΔG^{a}	$J_{5,6}$	$J_{6,1'}$	$J_{l',2'}$	$J_{2',3'}$	$J_{3',4'proR}$	$J_{3',4' proS}$	P^b	$PJ_{5,6}$	$PJ_{6,1'}$	$PJ_{1',2'}$	$PJ_{2',3'}$	$PJ_{3',4'proR}$	$PJ_{3',4'proS}$
5-1	0	2.91	10.5	11.7	10.31	1.89	11.32	0.329	0.96	3.45	3.85	3.39	0.62	3.72
5- 2	0.1995	2.91	10.45	11.76	10.08	11.53	3.7	0.2349	0.68	2.46	2.76	2.37	2.71	0.87
5- 3	0.8465	2.93	10.45	11.7	10.16	2.16	11.87	0.0788	0.23	0.82	0.92	0.8	0.17	0.94
5-4	0.9293	2.95	10.43	11.75	10.32	1.77	11.27	0.0685	0.2	0.71	0.81	0.71	0.12	0.77
5- 5	0.9375	2.92	10.52	11.78	10.18	11.87	4.15	0.0676	0.2	0.71	0.8	0.69	0.8	0.28
5- 6	1.3128	2.91	10.43	11.72	10.3	1.94	11.27	0.0359	0.1	0.37	0.42	0.37	0.07	0.4
5- 7	1.3899	2.88	10.51	11.96	10.85	4.91	2.72	0.0315	0.09	0.33	0.38	0.34	0.15	0.09
5-8	1.4458	3.36	10.2	11.76	10.33	1.9	11.35	0.0287	0.1	0.29	0.34	0.3	0.05	0.33
5-9	1.6347	4.77	5.43	12.78	9.97	4.28	3.09	0.0208	0.1	0.11	0.27	0.21	0.09	0.06
5-10	1.6685	3.06	7.44	11.43	10.74	4.79	2.99	0.0197	0.06	0.15	0.22	0.21	0.09	0.06
5-11	1.7018	3.3	10.21	11.78	10.09	11.55	3.66	0.0186	0.06	0.19	0.22	0.19	0.21	0.07
5-12	1.7037	3.3	10.21	11.78	10.09	11.55	3.67	0.0185	0.06	0.19	0.22	0.19	0.21	0.07
5-13	2.1731	2.93	10.53	11.74	10.19	11.27	3.76	0.0084	0.02	0.09	0.1	0.09	0.09	0.03
5-14	2.1737	2.93	10.48	11.67	10.14	2.15	11.89	0.0084	0.02	0.09	0.1	0.09	0.02	0.1
5- 15	2.1957	2.91	10.57	11.73	10.14	11.92	4.02	0.0081	0.02	0.09	0.09	0.08	0.1	0.03
5-16	2.2208	2.89	10.46	11.99	10.9	4.95	2.78	0.0077	0.02	0.08	0.09	0.08	0.04	0.02
5- 17	2.5226	3.01	8.68	11.31	10.18	11.3	3.82	0.0047	0.01	0.04	0.05	0.05	0.05	0.02
5-18	2.6205	4.82	5.34	12.58	9.62	2.15	12.19	0.0039	0.02	0.02	0.05	0.04	0.01	0.05
5-19	2.6211	4.82	5.34	12.58	9.62	2.15	12.19	0.0039	0.02	0.02	0.05	0.04	0.01	0.05
5-20	2.9725	2.9	10.51	11.7	10.33	0.88	10.27	0.0022	0.01	0.02	0.03	0.02	0	0.02
						,	Weighted valu	les ^c	3.00	10.24	11.76	10.24	5.63	7.98
						Corre	cted weighted	l values ^d	2.73	9.51	11.48	9.51	5.12	7.26
						Ex	xperimental va	alues ^e	3.04	7.52	11.46	9.10	5.90	7.38
							RMSD							0.90

^a In kcal/mol.

^b In molar fraction from AG° values at 298 K and 1 atm. ^c In Hz, calculated from the B3LYP/DGDZVP structures with equation $\Sigma^i J^i \times P^i$, where J_i is the spin-spin coupling constant value for each conformer and P^i is the population for the ith conformation.

^d The scaling factors were as follows: $f_{H(sp3)-H(sp3)} = 0.910$; $f_{H(sp3)-H(sp2)} = 0.929$ and $f_{H(sp2)-H(sp2)} = 0.977$. ^e Experimental coupling constants obtained by spectra simulation.

Table S13. DFT B3LYP/DGDZVP relative free energies,^a population,^b and comparison between DFT^c and experimental ¹H-¹H couplings for the most relevant conformers of 10.

Conformers	ΔG^{a}	$J_{5,6}$	$J_{6,1'}$	$J_{I^{\prime}\!,2^{\prime}}$	$J_{2^{\prime}\!,3^{\prime}}$	$J_{3',4'proR}$	$J_{3',4' proS}$	P^b	$PJ_{5,6}$	$PJ_{6,1'}$	$PJ_{1',2'}$	$PJ_{2',3'}$	$PJ_{3',4'proR}$	$PJ_{3',4'proS}$
10- 1	0	3.27	9.22	0.92	4.82	12.48	2.59	0.59787	1.95	5.51	0.55	2.88	7.46	1.55
10-2	0.7549	2.30	9.63	0.53	1.40	11.88	1.81	0.16719	0.38	1.61	0.09	0.23	1.99	0.30
10-3	0.9344	3.30	9.20	0.88	5.11	12.36	2.59	0.12349	0.41	1.14	0.11	0.63	1.53	0.32
10-4	1.5882	3.22	9.22	0.61	6.37	0.46	10.77	0.04096	0.13	0.38	0.02	0.26	0.02	0.44
10-5	1.9848	3.16	8.74	9.52	3.71	12.52	1.99	0.02097	0.07	0.18	0.20	0.08	0.26	0.04
10- 6	2.0984	2.31	9.62	0.59	1.58	3.51	11.94	0.01731	0.04	0.17	0.01	0.03	0.06	0.21
10- 7	2.1756	2.01	9.20	1.35	10.15	3.02	4.44	0.01520	0.03	0.14	0.02	0.15	0.05	0.07
10- 8	2.4015	3.17	8.78	9.42	3.90	4.47	12.64	0.01038	0.03	0.09	0.10	0.04	0.05	0.13
10-9	2.6663	2.31	9.64	0.59	1.61	12.20	4.53	0.00664	0.02	0.06	0.004	0.01	0.08	0.03
						W	eighted val	ues ^c	3.06	9.28	1.10	4.32	11.49	3.09
						Correct	ted weighte	d values ^d	2.79	8.62	1.08	4.01	10.46	2.81
						Exp	erimental v	alues ^e	2.30	9.50	0.95	5.60	7.20	5.05
						-	RMSD							1.79

^a In kcal/mol.

^b In molar fraction from AG° values at 298 K and 1 atm. ^c In Hz, calculated from the B3LYP/DGDZVP structures with equation $\Sigma^i J^i \times P^i$, where J_i is the spin-spin coupling constant value for each conformer and P^i is the population for the ith conformation.

^d The scaling factors were as follows: $f_{\rm H(sp3)-H(sp3)} = 0.910$; $f_{\rm H(sp3)-H(sp2)} = 0.929$ and $f_{\rm H(sp2)-H(sp2)} = 0.977$. ^e Experimental coupling constants obtained by spectra simulation.

Table S14. DFT B3LYP/DGDZVP relative free energies,^a population,^b and comparison between DFT^c and experimental ¹H-¹H couplings for the most relevant conformers of 10 considering PCM solvation in CH₃Cl₃.

Conformers	ΔG^{a}	$J_{5,6}$	$J_{6,1'}$	$J_{l',2'}$	$J_{2',3'}$	$J_{3',4'proR}$	$J_{3',4'proS}$	P^b	$PJ_{5,6}$	$PJ_{6,1'}$	$PJ_{1',2'}$	$PJ_{2',3'}$	$PJ_{3',4'proR}$	$PJ_{3',4'proS}$
10- 1	0	3.27	9.41	0.90	5.79	12.39	2.70	0.63664	2.08	5.99	0.58	3.69	7.89	1.72
10-2	0.90236	2.29	9.71	0.60	1.15	11.81	1.75	0.13880	0.32	1.35	0.08	0.16	1.64	0.24
10-3	0.93499	3.30	9.40	0.88	6.10	12.25	2.67	0.13136	0.43	1.23	0.12	0.80	1.61	0.35
10-4	1.62588	2.24	9.41	1.29	9.96	2.97	4.48	0.04093	0.09	0.39	0.05	0.41	0.12	0.18
10-5	2.25025	3.25	9.40	0.59	7.44	0.28	10.25	0.01427	0.05	0.13	0.01	0.11	0.00	0.15
10- 6	2.35253	2.29	9.72	0.64	12.91	3.58	11.93	0.01200	0.03	0.12	0.01	0.15	0.04	0.14
10- 7	2.54581	2.28	9.71	0.65	1.31	12.24	4.35	0.00866	0.02	0.08	0.01	0.01	0.11	0.04
10-8	2.56150	2.20	9.40	1.19	9.47	12.36	2.63	0.00844	0.02	0.08	0.01	0.08	0.10	0.02
10-9	2.86270	3.11	8.92	9.52	3.64	12.46	2.08	0.00507	0.02	0.05	0.05	0.02	0.06	0.01
10- 10	3.02836	3.18	8.95	9.39	3.82	4.23	12.60	0.00384	0.01	0.03	0.04	0.01	0.02	0.05
							Weighted va	lues ^c	3.06	9.45	0.94	5.44	11.60	2.90
						Corr	ected weight	ed values ^d	2.79	8.78	0.92	5.05	10.55	2.64
						E	xperimental	values ^e	2.30	9.50	0.95	5.60	7.20	5.05
							RMSD							1.74

^a In kcal/mol.

^b In molar fraction from AG° values at 298 K and 1 atm. ^c In Hz, calculated from the B3LYP/DGDZVP structures with equation $\Sigma^i J^i \times P^i$, where J_i is the spin-spin coupling constant value for each conformer and P^i is the population for the ith conformation.

^d The scaling factors were as follows: $f_{\rm H(sp3)-H(sp3)} = 0.910$; $f_{\rm H(sp1)-H(sp2)} = 0.929$ and $f_{\rm H(sp2)-H(sp2)} = 0.977$. ^e Experimental coupling constants obtained by spectra simulation.

Table S15. DFT B3LYP/DGDZVP relative free energies,^a population,^b and comparison between DFT^c and experimental ¹H-¹H couplings for the most relevant conformers of 14.

Conformers	ΔG^{a}	$J_{5,6}$	$J_{6,1'}$	$J_{l',2'}$	$J_{2',3'}$	$J_{3',4'proR}$	$J_{3',4'proS}$	P^b	$PJ_{5,6}$	$PJ_{6,1'}$	$PJ_{1',2'}$	$PJ_{2',3'}$	$PJ_{3',4'proR}$	$PJ_{3',4'proS}$
14- 1	0	3.06	9.20	2.55	8.72	1.80	11.56	0.55048	1.68	5.06	1.40	4.80	0.99	6.36
14-2	0.5673	3.23	9.32	0.49	0.58	2.30	12.47	0.21129	0.68	1.97	0.10	0.12	0.49	2.63
14-3	1.3058	3.26	9.75	0.27	0.42	2.12	12.50	0.06074	0.20	0.59	0.02	0.03	0.13	0.76
14 -4	1.4144	3.26	9.75	0.32	0.43	12.95	3.88	0.05057	0.16	0.49	0.02	0.02	0.65	0.20
14-5	1.6171	3.03	8.72	9.38	0.33	1.75	11.94	0.03592	0.11	0.31	0.34	0.01	0.06	0.43
14- 6	1.6246	3.03	8.72	9.38	0.33	1.75	11.94	0.03546	0.11	0.31	0.33	0.01	0.06	0.42
14- 7	1.9365	3.27	9.75	0.31	0.43	12.91	3.42	0.02095	0.07	0.20	0.01	0.01	0.27	0.07
14-8	2.1630	3.56	0.38	0.42	2.46	1.86	12.00	0.01429	0.05	0.01	0.01	0.04	0.03	0.17
14-9	2.6581	1.94	9.33	0.80	0.38	2.08	12.75	0.00620	0.01	0.06	0.00	0.002	0.01	0.08
14- 10	2.6958	3.01	8.72	9.36	0.34	1.81	11.98	0.00581	0.02	0.05	0.05	0.002	0.01	0.07
14- 11	2.8909	3.53	0.40	0.41	2.47	1.89	12.00	0.00418	0.01	0.002	0.002	0.01	0.01	0.05
14- 12	2.9010	3.24	9.75	4.49	0.14	1.72	11.56	0.00411	0.01	0.04	0.02	0.001	0.01	0.05
						V	Veighted v	alues ^c	3.12	9.10	2.30	5.05	2.72	11.30
						Correc	cted weigh	ted values ^d	2.84	8.45	2.25	4.69	2.48	10.28
						Ex	perimental	values ^e	2.50	10.0	1.30	6.50	5.50	7.86
							RMSE)						1.90

^a In kcal/mol.

^b In molar fraction from AG° values at 298 K and 1 atm.

^c In Hz, calculated from the B3LYP/DGDZVr(and rule tructures with equation $\Sigma^i J^i \times P^i$, where J_i is the spin-spin coupling constant value for each conformer and P^i is the population for the ith conformation. ^d The scaling factors were as follows: $f_{H(sp3)-H(sp3)} = 0.910$; $f_{H(sp3)-H(sp2)} = 0.929$ and $f_{H(sp2)-H(sp2)} = 0.977$. ^e Experimental coupling constants obtained by spectra simulation.

Table S16. DFT B3LYP/DGDZVP relative free energies,^a population,^b and comparison between DFT^c and experimental ¹H-¹H couplings for the most relevant conformers of 14 considering PCM solvation in CH₃Cl₃.

Conformers	ΔG^{a}	$J_{5,6}$	$J_{6,1'}$	$J_{I^{\prime}\!,2^{\prime}}$	$J_{2^{\prime}\!,3^{\prime}}$	$J_{3',4'proR}$	$J_{3',4' proS}$	P^b	$PJ_{5,6}$	$PJ_{6,1'}$	$PJ_{1',2'}$	$PJ_{2',3'}$	$PJ_{3',4'proR}$	$PJ_{3',4'proS}$
14- 1	0	3.11	9.25	2.40	8.90	1.88	11.63	0.7994	2.48	7.39	1.92	7.11	1.51	9.30
14-2	1.4201	3.24	9.52	0.53	0.59	2.43	12.57	0.0727	0.24	0.69	0.04	0.04	0.18	0.91
14-3	1.4910	3.27	9.85	0.25	0.51	2.04	12.37	0.0645	0.21	0.64	0.02	0.03	0.13	0.80
14 -4	1.8681	3.28	9.85	0.29	0.46	12.98	3.37	0.0341	0.11	0.34	0.01	0.02	0.44	0.12
14-5	2.1178	3.28	9.84	0.29	0.51	12.90	3.15	0.0224	0.07	0.22	0.01	0.01	0.29	0.07
14-6	2.8288	3.08	8.82	9.41	0.35	2.08	12.14	0.0067	0.02	0.06	0.06	0.002	0.01	0.08
						W	eighted val	ues ^c	3.14	9.34	2.05	7.22	2.56	11.28
						Correc	ted weighte	d values ^d	2.85	8.68	2.01	6.71	2.33	10.27
						Exp	perimental v	alues ^e	2.50	10.0	1.30	6.50	5.50	7.86
						_	RMSD							1.74

^a In kcal/mol.

^b In molar fraction from AG° values at 298 K and 1 atm.

^c In Hz, calculated from the B3LYP/DGDZVP structures with equation $\Sigma^i J^i \times P^i$, where J_i is the spin-spin coupling constant value for each conformer and Pⁱ is the population for the ith conformation.

^d The scaling factors were as follows: $f_{H(sp3)-H(sp3)} = 0.910$; $f_{H(sp3)-H(sp2)} = 0.929$ and $f_{H(sp2)-H(sp2)} = 0.977$. ^c Experimental coupling constants obtained by spectra simulation.

Table S17. Comparison between DFT and experimental ¹³ C	C NMR chemical shifts for the most relevant conformers of 3 .
---	--

		1			1											
Conformer	$\varDelta G^{\mathrm{a}}$	P^{b}	C2	C3	C4	C5	C6	C1'	C2'	C3'	C4'	C5'	C6'	C7'	COCH ₃	CO <u>C</u> H ₃
3-1	0.0000	0.4807	168.6947	127.8572	155.2909	68.9182	89.5518	135.4852	141.4963	82.4205	42.9467	35.224	29.9766	19.3346	183.1498	26.3016
3- 2	0.2391	0.3211	168.7447	127.9326	155.3102	68.9037	89.4231	137.9551	141.2562	81.531	42.8605	33.6962	30.4887	19.3011	182.3721	26.5523
3- 3	1.3391	0.0501	168.8293	127.7703	155.3953	68.9008	89.6226	135.5517	141.6461	78.1342	36.43	30.728	23.4308	16.9067	183.397	26.3362
3-4	1.4213	0.0436	168.6377	127.8386	155.2867	68.9676	89.5849	135.9948	139.5566	80.4487	42.3854	30.762	30.2495	19.486	182.6235	26.3933
3- 5	1.6202	0.0312	169.0077	127.8229	155.4821	68.802	89.4269	138.7352	140.8917	80.6169	42.0886	32.498	27.5504	19.6726	182.5055	26.6057
3- 6	1.8417	0.0215	169.3864	131.5188	152.9633	72.9604	86.0661	144.3199	139.1772	77.2179	42.0447	34.7655	30.253	19.3031	179.5718	25.773
3-7	2.0281	0.0157	169.0969	131.4157	153.4333	71.8954	84.3526	138.2202	142.1302	77.3537	41.6221	35.0263	29.9569	19.3098	179.4848	25.8972
3-8	2.4059	0.0083	168.6411	127.8554	155.3005	68.9156	89.5606	136.1717	139.4006	80.3175	38.9747	28.3112	27.6288	16.8266	182.7025	26.4054
3-9	2.5157	0.0069	170.2675	130.708	155.3703	71.3643	87.4902	133.039	149.4275	86.3548	42.4541	31.2325	29.9869	19.5655	184.0261	26.1379
3- 10	2.5546	0.0064	169.0755	131.4391	153.363	72.0944	84.548	139.187	142.0418	73.4847	40.7235	33.0898	27.9766	19.2385	178.8423	25.9314
3- 11	2.7108	0.0050	168.965	127.8642	155.4567	68.8202	89.4516	138.8561	140.8084	80.0163	36.656	30.3286	23.5662	16.2031	182.5443	26.6399
3- 12	2.8621	0.0038	169.3963	131.5003	153.0697	73.0382	86.0934	144.3035	139.3861	77.5424	39.179	32.4444	28.2634	16.9623	179.6523	25.7965
3- 13	3.0309	0.0029	169.3672	131.5485	152.9676	73.1719	85.9797	144.6701	139.2881	74.8844	41.0444	32.0433	28.6065	19.0249	179.7968	25.7958
3- 14	3.0635	0.0027	169.0753	131.3296	153.3779	72.252	84.0961	135.2629	142.4505	77.511	43.8027	30.5229	30.2226	19.3575	178.853	25.7022
Weig	hted value	s ^c	168.7658	128.0864	155.1976	69.11862	89.26994	136.7269	141.3088	81.47281	42.40147	34.05981	29.68078	19.17295	182.6719	26.37363
Experir	nental valu	ues ^d	162.857	123.0075	144.3283	63.2989	78.0568	125.6675	134.3283	71.1361	34.379	27.3426	22.6007	14.085	171.2096	21.3494
	RMSD															8.27

^b In molar fraction from AG° values at 298 K and 1 atm.

^c Shielding constants were obtained frm the DFT optimized structures using GIAO-DFT B3LYP/DGDZVP calculated from the B3LYP/DGDZVP. Values were Boltzmann averaged with the equation $\Sigma^i \delta^i \times P^i$, where δ^i is the ¹³C NMR chemical shift value (in ppm) for each conformer and P^i is the population for the ith conformation. ^d In ppm, measured at 400 MHz from CDCl₃ solutions using TMS as the internal standard.

Table S18. Comparison between DFT and experimental ¹³C NMR chemical shifts for the most relevant conformers of **3** considering PCM solvation in CHCl₃.

Conformer	$\varDelta G^{\mathrm{a}}$	P^{b}	C2	C3	C4	C5	C6	C1'	C2'	C3'	C4'	C5'	C6'	C7'	COCH ₃	CO <u>C</u> H ₃
3- 1	0.0000	0.4114	172.2233	126.7860	157.7934	68.2666	89.9216	134.9332	141.7458	82.6571	42.6402	35.1927	29.6499	18.9988	185.5288	26.1403
3- 2	0.4198	0.2025	172.2359	126.9423	157.8306	68.2391	89.8462	137.7417	141.2293	81.8098	42.4653	33.7925	30.0914	18.9884	184.7092	26.4384
3- 3	0.4606	0.1891	172.6601	129.8417	156.1570	71.3395	85.0535	137.5598	143.1330	78.2155	41.2464	34.5236	29.7567	18.9652	182.1253	25.9461
3-4	1.2305	0.0515	172.9462	129.8844	156.0314	72.1018	86.6666	141.4844	141.2388	77.9171	41.4396	34.3664	29.9431	18.9917	181.9381	25.7760
3- 5	1.3353	0.0432	172.2144	126.8060	157.7890	68.2950	89.9642	135.4296	139.9231	80.6589	42.3433	30.5241	30.0035	19.1061	185.0057	26.2694
3- 6	1.5161	0.0318	172.6533	129.7590	156.1039	71.5607	84.7595	143.0499	134.8076	78.0513	43.1279	30.4301	29.9565	19.0163	181.5537	25.7735
3- 7	2.0018	0.0140	172.8865	130.0036	155.9454	72.3124	86.5762	141.8127	141.3508	75.6792	40.4044	31.9846	28.0239	18.8737	182.0888	25.7901
3-8	2.1241	0.0114	172.3355	126.9273	157.8990	68.1747	89.8095	138.6627	140.6584	80.7850	41.6345	32.1886	27.4136	19.1122	184.7376	26.4791
3-9	2.2772	0.0087	172.9261	129.8722	156.0568	72.0654	86.5781	141.2132	141.4729	78.1915	38.6589	32.0586	28.1436	16.6109	181.9602	25.8099
3- 10	2.3745	0.0075	172.8579	129.9774	155.9574	71.9536	86.3823	141.5701	141.8264	74.6172	35.0984	29.6627	24.2473	15.5061	182.1438	25.8348
3- 11	2.4454	0.0066	173.8324	129.7371	158.2648	70.7211	88.1403	133.0861	148.6686	85.9156	42.6471	30.8719	29.8425	19.1525	186.4165	26.0068
3- 12	2.4592	0.0065	172.8367	129.8675	155.9539	72.2046	86.5151	139.5649	141.1245	73.3972	35.4623	29.9270	23.1420	15.7394	182.8932	25.5342
3- 13	2.6142	0.0050	172.2248	126.7940	157.8786	68.2750	89.9355	135.6064	139.7892	80.5215	38.9697	39.6335	27.3833	16.4566	185.0777	26.2773
3- 14	2.7567	0.0039	172.6365	129.8063	156.2304	71.3308	84.9783	138.1419	143.4723	75.6842	40.2858	32.7482	27.6714	19.0457	181.6806	25.9872
3- 15	2.8414	0.0034	172.2954	126.8212	157.8888	68.2428	89.8732	135.3446	141.7950	77.9946	36.0549	30.3472	23.2422	16.4851	185.5850	26.1625
3- 16	2.8483	0.0034	173.0213	129.5536	156.7113	70.7782	87.0455	137.7967	143.1129	81.8252	44.7037	34.3225	30.0508	18.9051	181.6648	26.0296
Weigl	hted value	s ^c	172.3869	127.7995	157.2637	69.3193	88.4822	136.8942	141.5912	80.8492	42.0555	34.1667	29.6152	18.9049	184.2164	26.1259
Experin	nental valu	ıes ^d	162.857	123.0075	144.3283	63.2989	78.0568	125.6675	134.3283	71.1361	34.379	27.3426	22.6007	14.085	171.2096	21.3494
I	RMSD															8.74

^b In molar fraction from AG° values at 298 K and 1 atm.

^c Shielding constants were obtained from the DFT optimized structures using GIAO-DFT B3LYP/DGDZVP calculated from the B3LYP/DGDZVP. Values were Boltzmann averaged with the equation $\Sigma^i \delta^i \times P^i$, where δ^i is the ¹³C NMR chemical shift value (in ppm) for each conformer and P^i is the population for the ith conformation.

^d In ppm, measured at 400 MHz from CDCl₃ solutions using TMS as the internal standard.

I able b	17. Con	IP at 1501		I DI I und experimental e i titit enemiear sintis for the most relevant comprimers of c.												
Conformer	$\varDelta G^{\mathrm{a}}$	P^{b}	C2	C3	C4	C5	C6	C1'	C2'	C3'	C4'	C5'	C6'	C7'	COCH ₃	CO <u>C</u> H ₃
5-1	0	0.33227	173.3566	129.3803	157.6177	70.8072	85.3397	137.3499	143.0497	79.891	42.3893	35.3625	29.6618	19.0827	183.8361	25.9917
5-2	0.26481	0.21250	173.213	129.8627	157.1169	70.0476	84.8134	137.8878	141.5538	80.2502	42.47	35.4291	29.6198	19.1003	183.8315	26.029
5- 3	0.63504	0.11375	173.3889	129.3622	157.6147	70.9401	85.6932	139.9971	143.2619	79.1799	41.9271	33.8564	30.1295	19.0076	183.0198	26.2009
5-4	0.97954	0.06356	173.3549	129.3785	157.567	70.919	85.5251	137.9369	142.7999	75.8979	41.052	32.5324	26.8258	19.0808	184.0203	26.0114
5- 5	1.04920	0.05654	173.3905	129.3746	157.6263	70.6783	85.2621	138.0659	140.2718	77.9602	42.0601	30.4391	30.0727	19.1631	183.3589	26.0891
5-6	1.20545	0.04343	173.3348	129.3781	157.6088	70.7702	85.4164	137.4116	142.8143	80.0715	39.6876	32.6825	27.8286	16.7024	183.9408	26.0295
5-7	1.31338	0.03620	173.204	129.956	157.0693	70.227	84.9145	140.3308	142.3308	79.3191	42.0039	33.8365	30.149	19.004	182.9465	26.2159
5-8	1.35981	0.03347	173.1986	129.9581	157.0603	70.2251	84.9183	140.3357	142.3228	79.3213	42.0003	33.8379	30.148	19.0041	182.9439	26.2179
5-9	1.58509	0.02288	173.3834	129.3421	157.7275	70.7858	85.5471	137.5417	142.8102	80.3221	39.4281	33.28	27.9502	16.8178	183.8815	26.0241
5-10	1.65537	0.02032	173.3092	129.3656	157.53	70.9771	85.8263	140.412	142.4443	77.4559	40.8163	32.2482	27.8747	19.1891	183.1494	26.1981
5-11	1.97791	0.01179	172.7737	129.5365	154.9567	66.6433	87.4581	141.1393	137.1847	82.7604	42.0921	30.5513	29.98	19.1217	185.9721	26.1655
5-12	2.17432	0.00846	173.3307	129.3708	157.6067	70.8565	85.4217	137.6932	143.017	74.9542	35.7149	29.9258	23.3782	15.617	183.9643	25.9873
5-13	2.23896	0.00759	173.4115	129.5803	156.9524	69.5591	83.9791	135.8366	144.9453	78.4918	39.7971	28.4425	28.4581	16.5516	182.7754	25.8885
5-14	2.24335	0.00753	173.3067	129.4596	157.4933	70.8363	85.4593	140.0634	143.0511	76.6267	35.2096	29.8255	23.8078	15.541	183.1966	26.1551
5- 15	2.32367	0.00658	173.1374	130.0596	157.017	70.163	84.6014	137.9343	142.206	75.0751	35.781	29.9628	23.3935	15.6291	183.897	25.9802
5-16	2.44039	0.00540	173.3959	129.3864	157.6381	70.8077	85.33	138.3524	139.8901	77.6514	38.6466	27.9623	27.4404	16.5077	183.3525	26.1021
5-17	2.48808	0.00498	173.4727	130.5503	155.1562	69.4265	85.2376	137.3702	140.7708	79.1185	39.3616	27.8028	27.4982	16.4501	183.8266	25.9822
5-18	2.57718	0.00429	172.8283	129.5424	154.977	66.6432	87.4197	141.1252	137.3021	82.6183	39.0916	28.0758	27.6762	16.4738	185.94	26.1161
5-19	2.78614	0.00301	173.383	129.3806	157.7099	70.9511	85.6459	138.6812	144.4406	80.6688	40.7881	34.1157	29.4302	19.1584	182.7127	26.2367
5-20	2.83509	0.00277	173.3859	129.3773	157.7145	70.9545	85.6435	138.6918	144.4323	80.6633	40.7895	34.1164	29.4303	19.1582	182.714	26.2385
5-21	2.86458	0.00264	173.4494	130.5305	155.222	70.0708	85.4946	139.5726	142.6255	77.7446	35.3156	29.8976	24.2174	15.6238	183.5155	26.1139
Wei	ghted value	s ^c	173.3042	129.5329	157.3942	70.5312	85.2830	138.2114	142.3932	79.3690	41.7502	34.0493	29.2360	18.7788	183.6633	26.0568
Experi	imental valu	ıes ^d	163.119	122.7925	144.5857	63.3476	77.9432	125.9883	133.989	70.8769	34.3643	27.3082	22.5876	14.0611	171.1353	21.3265
	RMSD															8.13

Table S19. Comparison between DFT and experimental ¹³C NMR chemical shifts for the most relevant conformers of 5.

^a In kcal/mol.

^b In molar fraction from AG° values at 298 K and 1 atm.

^c Shielding constants were obtained frm the DFT optimized structures using GIAO-DFT B3LYP/DGDZVP calculated from the B3LYP/DGDZVP. Values were Boltzmann averaged with the equation $\Sigma^i \delta^i \times P^i$, where δ^i is the ¹³C NMR chemical shift value (in ppm) for each conformer and P^i is the population for the ith conformation.

^d In ppm, measured at 400 MHz from CDCl₃ solutions using TMS as the internal standard.

Table S20. Comparison between DFT and experimental ¹³C NMR chemical shifts for the most relevant conformers of 5 considering PCM solvation in CHCl₃.

Conformer	$\varDelta G^{\mathrm{a}}$	P^{b}	C2	C3	C4	C5	C6	C1'	C2'	C3'	C4'	C5'	C6'	C7'	COCH ₃	CO <u>C</u> H ₃
5-1	0.0000	0.3290	169.6797	130.2394	155.3689	70.6346	84.3291	139.5319	140.4641	79.6344	42.5082	35.4386	29.6958	19.186	181.5151	25.9043
5- 2	0.1995	0.2349	169.7404	130.1895	155.4113	70.7108	84.6568	141.8194	141.0397	78.9131	42.1821	33.8261	30.2725	19.0499	180.78	26.0989
5-3	0.8465	0.0788	169.7007	130.1822	155.4193	70.7431	84.4187	140.0106	140.5605	75.5743	41.2289	32.564	26.801	19.2046	181.7073	25.9158
5-4	0.9293	0.0685	169.6654	130.2378	155.3852	70.6623	84.4411	139.7056	140.1957	79.7164	39.8041	32.7389	27.8647	16.7839	181.6207	25.9373
5- 5	0.9375	0.0676	169.7545	130.164	155.4795	70.6685	84.6784	141.8377	140.4416	77.2759	40.7281	32.2438	27.7795	19.3282	180.998	26.0738
5- 6	1.3128	0.0359	169.6983	130.2067	155.4775	70.6323	84.5034	139.7607	140.2754	79.99	39.5023	33.3423	27.9468	16.9327	181.5412	25.9322
5- 7	1.3899	0.0315	169.7021	130.2273	155.3832	70.5284	84.1713	140.1734	137.5964	77.6058	42.0157	30.4342	30.0914	19.2728	181.0069	25.9887
5-8	1.4458	0.0287	168.9394	132.5203	152.3062	70.0554	83.4961	140.369	138.66	80.0213	42.6649	35.4975	29.6737	19.2073	181.4583	25.9857
5-9	1.6347	0.0208	168.7709	130.5808	151.5994	66.806	86.0849	144.6792	133.7084	82.501	42.3683	30.4189	30.0024	19.2023	183.5263	26.0234
5-10	1.6685	0.0197	169.9649	130.6566	153.921	69.2929	83.1612	136.9045	144.5447	78.8549	39.3543	28.5854	28.5649	16.6572	180.1514	25.716
5-11	1.7018	0.0186	168.9888	132.5741	152.3008	70.1852	83.7412	142.5651	139.4881	79.1996	42.3149	33.7989	30.3088	19.0476	180.6813	26.1765
5-12	1.7037	0.0185	168.9904	132.5707	152.3023	70.1834	83.7374	142.5691	139.4923	79.1933	42.3135	33.7984	30.3089	19.0478	180.68	26.1777
5-13	2.1731	0.0084	169.7482	130.2381	155.463	70.6387	84.5609	140.2315	142.5675	80.5322	40.9556	34.4013	29.3754	19.2284	180.4702	26.1311
5-14	2.1737	0.0084	169.6953	130.2261	155.4166	70.6923	84.3893	139.779	140.6615	74.6001	35.8205	29.9442	23.3474	15.6444	181.6438	25.8919
5- 15	2.1957	0.0081	169.7089	130.2559	155.3334	70.5396	84.4461	141.5808	141.0022	76.3892	35.2862	29.6737	23.626	15.5477	181.0108	26.0573
5-16	2.2208	0.0077	169.719	130.1676	155.4826	70.6409	84.2359	140.4721	137.2373	77.3097	38.547	27.935	27.3927	16.6387	181.0335	25.9873
5-17	2.5226	0.0047	169.9582	130.6074	154.2452	69.4179	83.3061	137.1803	147.8842	81.0051	40.5281	33.6399	29.5215	18.9345	179.5595	25.8794
5-18	2.6205	0.0039	168.8457	130.5658	151.7616	67.0214	86.0511	144.6238	135.444	79.1842	35.6839	29.6248	23.0648	15.8044	183.7646	25.9533
5-19	2.6211	0.0039	168.8451	130.566	151.7588	67.0208	86.0516	144.6248	135.4432	79.1816	35.6839	29.622	23.0653	15.8016	183.7641	25.9529
5-20	2.9725	0.0022	169.7032	130.2236	155.3595	70.6607	84.3857	138.225	140.5946	81.8147	35.1255	35.8651	25.6111	15.9883	181.3859	26.4484
Weigl	hted values	s ^c	169.6031	130.3614	155.0244	70.4742	84.4080	140.5248	140.3086	78.8921	41.5886	33.6816	29.1137	18.7515	181.2534	25.9795
Experin	nental valu	ies ^d	163.119	122.7925	144.5857	63.3476	77.9432	125.9883	133.989	70.8769	34.3643	27.3082	22.5876	14.0611	171.1353	21.3265
]	RMSD															7.49

^a In kcal/mol.

^b In molar fraction from AG° values at 298 K and 1 atm.

^c Shielding constants were obtained from the DFT optimized structures using GIAO-DFT B3LYP/DGDZVP calculated from the B3LYP/DGDZVP. Values were Boltzmann averaged with the equation $\Sigma^i \delta^i \times P^i$, where δ^i is the ¹³C NMR chemical shift value (in ppm) for each conformer and P^i is the population for the ith conformation. ^d In ppm, measured at 400 MHz from CDCl₃ solutions using TMS as the internal standard.

Table S21. ¹H NMR data of compounds 2 and 4 obtained by non-linear fit of the spectra to spectral parameters^a

Η	2	4
3	6.2258 (1H d, <i>J</i> _{3,4} = 9.29)	6.1280 (1H d, <i>J</i> _{3,4} = 9.80)
4	7.0016 (1H dd, $J_{3,4}$ = 9.29, $J_{4,5}$ =5.60)	6.9773 (1H dd, $J_{3,4}=9.80, J_{4,5}=4.90$)
5	5.2723 (1H dd, $J_{4,5}=5.60, J_{5,6}=2.99$)	4.2442 (1H dd, $J_{4,5}$ = $4.90, J_{5,6}$ = 3.30)
6	5.5215 (1H dd, $J_{5,6}=2.99, J_{6,1}=8.20$)	5.3591 (1H ddd, $J_{5,6}$ = 3.30, $J_{6,1}$ =7.65)
1′	5.6511 (1H dd, $J_{6,1}$ = 8.20, $J_{1',2'}$ = 11.45)	5.7850 (1H dd, $J_{6,1} = 7.65$, $J_{1',2} = 11.70$)
2'	$5.7610 (1H dd, J_{1',2'}=11.45, J_{2',3'}=7.65)$	5.8380 (1H ddd, $J_{1',2'}=11.70, J_{2',3'}=7.60$)
3	4.4089 (1H ddd, $J_{2',3'}=7.65$, $J_{3',4'proR}=7.25$,	4.4723 (1H ddd, <i>J</i> _{2',3'} = 7.60, <i>J</i> _{3',4'proR} =6.70, <i>J</i> _{3',4'proS'} =6.40)
	$J_{3,4'proS}=6.40)$	
^a Coup	oling constants in Hz.	

6.1036 (1H d, $J_{3,4}$ = 9.76)

 $J_{4'proS,5'proR}=4.50$

 $J_{4'proR,5'proR}=9.30$)

6.9846 (1H dd, $J_{3,4}=9.76$, $J_{4,5}=5.53$)

4.1233 (1H dd, $J_{4,5}$ = 5.53, $J_{5,6}$ =3.04)

5.7577 (1H dd, $J_{6,1} = 7.52$, $J_{1',2'} = 11.46$)

 $J_{5'proS,6'proS}=6.90, J_{5'proS,6'proR}=6.90)$

 $J_{5'proS,6'proS}=6.90, J_{5'proS,6'proR}=6.90)$

0.8999 (3H t, $J_{6',7'}=6.94$)

5.3068 (1H ddd, $J_{5.6}$ = 3.04, $J_{6.1}$ =7.52, $J_{6.2}$ = 0.92)

5.6589 (1H ddd, $J_{1',2'}=11.46$, $J_{2',3'}=9.10$, $J_{6,2'}=0.92$)

5.4640 (1H ddd, $J_{2',3'}= 9.10$, $J_{3',4'proR}= 5.90$, $J_{3',4'proS}= 7.38$)

1.6990 (1H dddd, $J_{3',4'proS} = 7.38, J_{4'proS,4'proR} = -14.50, J_{4'proS,5'proS} = 9.80,$

1.5909 (1H ddddd, $J_{3',4'proR} = 5.90$, $J_{4'proS,4'proR} = -14.50$, $J_{4'proR,5'proS} = 6.00$,

1.3075 (1H ddddd, *J*_{4'proS,5'proS}=9.80, *J*_{4'proR,5'proS}=6.00, *J*_{5'proS,5'proR}=-14.5,

1.3530 (1H ddddd, *J*_{4'proS,5'proR}=4.50, *J*_{4'proR,5'proR}=9.30, *J*_{5'proS,5'proR}=-14.5,

1.3001 (1H dddd, $J_{5'proS,6'proS}=6.90, J_{5'proR,6'proS}=6.90, J_{6'proS,6'proR}=-14.50, J_{6',7'}=6.94$)

1.3017 (1H dddd, *J*_{5'proS,6'proR}=6.90, *J*_{5'proR,6'proR}=6.90 *J*_{6'proS,6'proR}=-14.50, *J*_{6',7}=6.94)

5

Table S22. ¹H NMR data of compounds **3** and **5** obtained by non-linear fit of the spectra to spectral parameters^a

Η 3 $6.1799 (1 \text{H d}, J_{3,4} = 9.75)$ 7.0363 (1H dd, $J_{3,4}$ = 9.75, $J_{4,5}$ =5.57) 4.1775 (1H dd, J_{4.5}= 5.57, J_{5.6}=2.98) 5.3371 (1H dd, $J_{5.6}=2.98$, $J_{6.1}=6.62$, $J_{6.2}=-1.10$) 5.7705 (1H dd, $J_{6,1} = 6.62, J_{1',2'} = 11.60$) 5.7170 (1H dd, $J_{1',2'}=11.60$, $J_{2',3'}=8.60$, $J_{6,2}=-1.1$) 5.5395 (1H ddd, $J_{2',3'} = 8.60$, $J_{3',4'proR} = 7.54$, $J_{3',4'proS} = 5.67$) 1.6591 (1H dddd, $J_{3',4'proS} = 5.67, J_{4'proS,4'proR} = -14.50, J_{4'proS,5'proS} = 9.65,$ $4'_{proS}$ $J_{4'proS,5'proR} = 6.30$ 1.7559 (1H ddddd, $J_{3',4'proR} = 7.54$, $J_{4'proS,4'proR} = -14.50$, $J_{4'proR,5'proS} = 4.65$, $4'_{proR}$ $J_{4'proR,5'proR}=9.80)$ 1.3851 (1H ddddd, $J_{5'proS,4'proS} = 9.65$, $J_{5'proS,4'proR} = 4.65$, $J_{5'proR,5'proS} = -14.5$, $5'_{proS}$ $J_{5'proS,6'proS}=6.90, J_{5'proS,6'proR}=6.90)$ 1.3665 (1H ddddd, $J_{5'proR,4'proS} = 6.30$, $J_{5'proR,4'proR} = 9.80$, $J_{5'proR,5'proS} = -14.5$, $5'_{proR}$ *J*_{5'proS,6'proS}=6.90, *J*_{5'proS,6'proR}=6.90) 1.3561 (1H dddd, $J_{5'proS,6'proS}=6.90, J_{5'proR,6'proS}=6.90, J_{6'proS,6'proR}=-14.50,$ $6'_{proS}$ $J_{6',7'}=6.95$) $6'_{proR}$ 1.3489 (1H dddd, $J_{5'proS,6'proR}=6.90, J_{5'proR,6'proR}=6.90, J_{6'proS,6'proR}=-14.50, J_{5'proR,6'proR}=6.90$ $J_{6',7'}=6.95$) 0.9432 (3H t, $J_{6',7'}=6.95$)

^aCoupling constants in Hz.

3

4

5

6

1'

2'

3'

7'

112

Table S23. ¹H NMR data of compounds 10 and 14 obtained by non-linear fit of the spectra to spectral parameters^a

Η	10
3	6.2299 (1H d, <i>J</i> _{3,4} = 9.60)
4	7.0854 (1H dd, $J_{3,4}$ = 9.60, $J_{4,5}$ =6.10)
5	$5.4059 (1 \text{H dd}, J_{4,5} = 6.10, J_{5,6} = 2.30)$
6	4.5521 (1H dd, $J_{5,6}$ = 2.30, $J_{6,1'}$ =9.50)
1′	$3.8900 (1 \text{H dd}, J_{6,1} = 9.50)$
2′	4.0239 (1H dd, <i>J</i> _{2',3'} =5.60)
3'	5.0608 (1H ddd, $J_{2',3'}$ = 5.60, $J_{3',4'proR}$ =7.20,
	$J_{3',4'pros}=5.05)$

^aCoupling constants in Hz.

14

6.2316 (1H d, $J_{3,4}$ = 9.65) 7.1269 (1H dd, $J_{3,4}$ = 9.65, $J_{4,5}$ =6.15) 5.4385 (1H dd, $J_{4,5}$ = 6.15, $J_{5,6}$ =2.50) 4.8018 (1H ddd, $J_{5,6}$ = 2.50, $J_{6,1'}$ =10.00) 4.2046 (1H dd, $J_{6,1'}$ = 10.00, $J_{1',2'}$ =1.30) 4.2527 (1H ddd, $J_{1',2'}$ = 1.30, $J_{2',3'}$ =6.50) 5.1253 (1H ddd, $J_{2',3'}$ = 6.50, $J_{3',4'proR}$ =5.50, $J_{3',4'proS}$ =7.86)

Figure S1. Experimental (A) and simulated (B) ¹H NMR spectra (400 MHz) of **3**.

Figure S2. Experimental (A) and simulated (B) ¹H NMR spectra (400 MHz) of 5.

Figure S3. RMSD values for different percentages of hydrogen bonded conformations of 3.

Table S24. Corrected theoretical coupling constant for different percentages of hydrogen bonded conformations of3.

		Corrected coupling constant (J) in Hz ^a									
Percentaje ^b	RMSD	$J_{5,6}$	$J_{6,1'}$	$J_{1',2'}$	$J_{2',3'}$	$J_{3',4'proR}$	$J_{3',4' proS}$				
93.2	1.52	4.57	5.68	13.97	10.61	8.23	5.96				
87.1	1.34	4.43	5.73	13.65	10.41	7.86	6.01				
81.0	1.17	4.30	5.77	13.33	10.20	7.49	6.05				
74.8	1.04	4.16	5.82	13.01	9.99	7.12	6.10				
68.7	0.90	4.00	5.80	12.59	9.71	6.73	6.08				
64.2	0.87	3.89	5.87	12.35	9.56	6.41	6.15				
61.4	0.87	3.86	5.92	12.3	9.54	6.31	6.20				
54.7	0.88	3.71	5.97	11.96	9.31	5.91	6.24				
53.4	0.89	3.68	5.98	11.89	9.27	5.83	6.25				
51.5	0.92	3.65	6.02	11.82	9.24	5.73	6.29				
49.7	0.97	3.63	5.96	11.00	9.05	5.64	6.36				
46.1	1.01	3.60	6.22	11.79	9.25	5.48	6.50				
40	1.13	3.53	6.45	11.72	9.26	5.18	6.74				
33.8	1.27	3.48	6.71	11.71	9.31	4.90	7.01				
27.7	1.41	3.41	6.93	11.63	9.30	4.60	7.23				
21.5	1.54	3.28	6.98	11.32	9.09	4.23	7.28				
15.4	1.68	3.12	6.98	10.94	8.84	3.85	7.28				
9.3	1.86	3.16	7.47	11.25	9.15	3.66	7.79				

^aCalculated considering PCM solvation in CHCl₃. The scaling factors were as follows: $f_{H(sp3)-H(sp3)} = 0.910$; $f_{H(sp3)-H(sp2)} = 0.929$ and $f_{H(sp2)-H(sp2)} = 0.977$. ^bPercentaje of total hydrogen bonded conformations. $f_{H(sp2)-H(sp2)} = 0.977$. ^bPercentaje of total hydrogen bonded conformation.

Figure S4. A) ¹³C NMR spectrum in CDCl₃ (100 MHz) of pectinolide C (3); B) ¹³C NMR spectrum of pectinolide J (5).

Figure S5. A) ¹H NMR spectrum of pectinolide C (3); and B) ¹H NMR spectrum of pectinolide J (5) in CDCl₃ (700 MHz).

Figure S6. NOE difference spectrum of pectinolide C (3) with ¹H NMR spectrum for comparison in CDCl₃ (700 MHz). Vertical arrow indicate the irradiation frequency of H-2['] (δ = 5.66).

Figure S8. The four most relevant conformers of 3 modeled in CHCl₃ solution and their contribution to the NOE effect between H-2' and H-4'.

Figure S9. The four most relevant conformers of 2 modeled in gas phase.

Figure S10. The four most relevant conformers of 2 modeled in CHCl₃ solution.

Figure S11. The four most relevant conformers of **3** modeled in gas phase.

Figure S12. The four most relevant conformers of 4 modeled in gas phase.

Figure S13. The four most relevant conformers of 4 modeled in $CHCl_3$ solution.

Figure S14. The four most relevant conformers of 5 modeled in gas phase.

Figure S15. The four most relevant conformers of 10 modeled in gas phase.

Figure S16. The four most relevant conformers of 10 modeled in CHCl₃ solution.

Figure S17. The four most relevant conformers of 14 modeled in gas phase.

Figure S18. The four most relevant conformers of 14 modeled in CHCl₃ solution.

Physical and spectroscopic constants of petinolides A-C (1-3):

Pectinolide A (1): colorless oil; $[\alpha]_D + 202.0^{\circ}$ (*c* 0.15, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 6.95 (dd, J = 9.7, 5.7 Hz, 1H, H-4), 6.24 (d, J = 9.7 Hz, 1H, H-3), 5.73 (dd, J = 10.9, 8.4 Hz, 1H, H-1'), 5.64 (dd, J = 10.5, 10.1 Hz, 1H, H-2'), 5.59 (dd, J = 8.1, 12.9 Hz, 1H, H-6), 5.35 (ddd, J = 10.1, 7.4, 6.3 Hz, 1H, H-3'), 5.18 (dd, J = 5.7, 3.0 Hz, 1H, H-5), 2.08 (s, 3H, 5-OAc), 2.04 (s, 3H, 3'-OAc), 1.70 (m, 2H, H-4'), 1.54 (m, 2H, H-5'), 1.30 (m, 2H, H-6'), 0.90 (t, J = 7.1 Hz, 3H, H-7'). ¹³C NMR (101 MHz, CDCl₃) δ 170.26, 169.81 (Me-CO-), 162.09 (C-2), 139.89 (C-4), 133.16 (C-1'), 126.24 (C-2'), 124.81 (C-3), 75.07 (C-6), 69.39 (C-3'), 64.49 (C-5), 34.05 (C-4'), 27.23 (C-5'), 22.46 (C-6'), 21.10 (Me-CO-), 20.49 (Me-CO-), 13.88 (C-7').

Pectinolide B (**2**): colorless oil; $[\alpha]_D$ +89.6° (*c* 0.57, MeOH). ¹H NMR (500 MHz, CDCl₃) δ 6.97 (dd, J = 9.7, 5.6 Hz, 1H, H-4), 6.22 (d, J = 9.7 Hz, 1H, H-3), 5.76 (dd, J = 11.4, 7.8 Hz, 1H, H-2'), 5.65 (dd, J = 11.4, 8.2 Hz, 1H, H-1'), 5.52 (dd, J = 8.2, 3.1 Hz, 1H, H-6), 5.27 (dd, J = 5.5, 3.1 Hz, 1H, H-5), 4.41 (dd, J = 14.0, 7.0 Hz, 1H, H-3'), 2.10 (s, 3H, 5-OAc), 1.61 (m, 1H, H-4'_{proR}), 1.48 (m, 1H, H-4'_{proS}), 1.35 (m, 4H, H-5', H-6'), 0.91 (t, J = 6.0 Hz, 3H, H-7'). ¹³C NMR (126 MHz, CDCl₃) δ 170.14 (Me-CO-), 162.59 (C-2), 140.50 (C-4) 139.03 (C-2'), 124.81 (C-3), 123.04 (C-1'), 74.84 (C-6), 68.39 (C-3'), 63.82 (C-5), 37.05 (C-4'), 27.43 (C-5'), 22.74 (C-6'), 20.56 (Me-CO-), 14.13 (C-7').

Pectinolide C (**3**): colorless oil; $[\alpha]_D$ +80.9° (*c* 0.76, MeOH). ¹H NMR (400 MHz, CDCl₃) δ 7.01 (dd, J = 9.8, 5.4 Hz, 1H, H-4), 6.08 (d, J = 9.8 Hz, 1H, H-3), 5.82 (dd, J = 11.2, 8 Hz, 1H,H-1'), 5.66 (dd, J = 11.2, 9.2 Hz, 1H, H-2'), 5.44 (ddd, J = 9.2, 6.8, 5.8 Hz, 1H, H-3'), 5.35 (dd, J = 8.0, 3.0 Hz, 1H, H-6), 4.12 (dd, J = 5.4, 3.0 Hz, 1H, H-5), 2.04 (s, 3H, MeOAc), 1.68 (m, 2H, H-4'), 1.55 (m, 2H, H-5'), 1.29 (m, 2H, H-6'), 0.90 (t, J = 6.9 Hz, 3H, H-7'). ¹³C NMR (101 MHz, CDCl₃) δ 171.03 (Me-CO-), 162.67 (C-2), 144.14 (C-4), 134.15 (C-2'), 125.49 (C-1'), 122.83 (C-3), 77.88 (C-6), 70.96 (C-3'), 63.13 (C-5), 34.21 (C-4'), 27.17 (C-5'), 22.44 (C-6'), 21.18 (Me-CO-), 13.92 (C-7').

Figure S19. ¹H NMR spectra of pectinolide I (4) in CDCl₃ (400 MHz).

Figure S20. ¹³C NMR spectra of pectinolide I (4) in CDCl₃ (100 MHz).

Figure S21. ¹H (400 MHz; insert) and ¹³C (100 MHz) NMR spectra of pectinolide I (4) in CD₃OD.

Figure S22. ¹H NMR spectra of pectinolide J (5) in CDCl₃ (400 MHz).

Figure S23. ¹H NMR spectra of pectinolide K (6) in CDCl₃ (400 MHz).

Figure S24. ¹³C NMR spectra of pectinolide K (6) in CDCl₃ (100 MHz).

Figure S26. ¹³C NMR spectra of pectinolide L (7) in CDCl₃ (100 MHz).

Figure S27. ¹H NMR spectra of pectinolide M (8) in CDCl₃ (400 MHz).

Figure S28. ¹³C NMR spectra of pectinolide M (8) in CDCl₃ (100 MHz).

Figure S29. ¹H NMR spectra of monticolide A (9) in CDCl₃ (400 MHz).

Figure S31. ¹H NMR spectra of monticolide B (10) in CDCl₃ (400 MHz).

Figure S32. ¹³C NMR spectra of monticolide B (10) in CDCl₃ (100 MHz).

Figure S35. ¹H NMR spectra of *R*- (cyan) and *S*-MTPA (red) ester derivatives 11 of compound 4 in CDCl₃ (300 MHz).

Figure S36. ¹H NMR spectra of *S*- (cyan) and *R*-MTPA (red) ester derivatives (16) of compound 14 in CDCl₃ (300 MHz). The preparation of these derivatives was performed in NMR tubes and ¹H spectra were recorded directly without purification of reaction mixtures.

Figure S37. Comparison of the ¹H NMR spectra (300 MHz in DMSO) for the mixture of 6-heptenyl-5,6-dihydro-2*H*-pyran-2-onas from the analysed fraction of *H. monticola* (red) and monticolide B (**10**; black).

Figure S38. The most relevant conformer of pectinolides A (1) and K (6) modeled in gas phase. Arrows indicate the less hindered face of the side chain double bond for the interaction with epoxidation reagent (mCPBA).

Figure S39. Complexes between docked compounds (3, 6, 9, 10, 12 and 20) and α -tubulin (A-F). The distance between the Lys352 amino group and β carbon of the α , β -unsaturated lactone (NH₂-C β), the docking energy (E_f), and the hydrogen bond distances are indicated.

Coordinates for all computes conformers of epimers **3** and **5**

Structure 3-2 in gas phase

Structure 3-1 in gas phase

Center	Atomic	Atomic	Coord	linates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.000000	0.000000	0.000000
2	6	0	0.00000	0.00000	1.340944
3	6	0	1.256053	0.00000	-0.782036
4	8	0	2.426051	-0.140197	-0.087512
5	8	0	1.300432	0.185669	-1.982145
6	6	0	1.278725	-0.083004	2.140749
7	6	0	2.409922	-0.669048	1.258331
8	1	0	-0.907479	0.098875	-0.588169
9	1	0	-0.926295	0.117811	1.899774
10	1	0	1.134803	-0.793104	2.963482
11	8	0	1.560595	1.154195	2.773048
12	1	0	1.936193	1.789312	2.129555
13	1	0	2.203149	-1.745667	1.170144
14	6	0	3.761507	-0.502906	1.899127
15	6	0	4.797411	0.280570	1.570797
16	1	0	3.870973	-1.119193	2.791342
17	1	0	5.677098	0.226722	2.213749
18	6	0	4.947675	1.244743	0.419835
19	8	0	5.305600	2.562881	0.979001
20	6	0	4.302459	3.364305	1.380807
21	8	0	3.116612	3.071539	1.319400
22	6	0	4.823996	4.672322	1.927254
23	1	0	4.019682	1.360537	-0.131105
24	1	0	5.272264	4.496469	2.910789
25	1	0	3.999760	5.377933	2.030728
26	1	0	5.601581	5.082253	1.278104
27	6	0	6.086757	0.851263	-0.523087
28	6	0	6.240822	1.783307	-1.733170
29	6	0	7.357043	1.341583	-2.691071
30	6	0	7.514804	2.273151	-3.899788
31	1	0	8.319254	1.933815	-4.561706
32	1	0	7.752580	3.296047	-3.584385
33	1	0	8.307973	1.290955	-2.143276
34	1	0	7.151981	0.321407	-3.041990
35	1	0	6.592853	2.315136	-4.491214
36	1	0	5.288918	1.823226	-2.279737
37	1	0	6.444304	2.803461	-1.385050
38	1	0	7.026072	0.806884	0.043815
39	1	0	5.876690	-0.168551	-0.867043

Center	Atomic	Atomic	Coord	linates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	 6	0	0.000000	0.000000	0.000000
2	6	0	0.00000	0.000000	1.340981
3	6	0	1.256317	0.000000	-0.781689
4	8	0	2.425701	-0.137189	-0.086054
5	8	0	1.301227	0.182508	-1.982343
6	6	0	1.278779	-0.082283	2.140866
7	6	0	2.409487	-0.668051	1.257650
8	1	0	-0.907527	0.098383	-0.588148
9	1	0	-0.926274	0.117667	1.899907
10	1	0	1.135891	-0.791614	2.964370
11	8	0	1.560733	1.156222	2.770509
12	1	0	1.928056	1.790516	2.121262
13	1	0	2.200530	-1.744413	1.168386
14	6	0	3.760949	-0.507080	1.899431
15	6	0	4.809406	0.257561	1.565922
16	1	0	3.860424	-1.114626	2.798976
17	1	0	5.684810	0.196846	2.214620
18	6	0	4.983720	1.218264	0.415010
19	8	0	5.309663	2.542255	0.984047
20	6	0	4.289139	3.332698	1.361179
21	8	0	3.108066	3.029170	1.267266
22	6	0	4.784427	4.643522	1.925379
23	1	0	4.073093	1.321284	-0.166966
24	1	0	5.586014	5.055220	1.307490
25	1	0	5.193283	4.469580	2.926336
26	1	0	3.954460	5.346564	1.995972
27	6	0	6.169058	0.868444	-0.489500
28	6	0	5.969543	-0.432830	-1.280666
29	6	0	/.13/63/	-0./291//	-2.232396
30	6	0	6.9546/5	-2.033/30	-3.019313
31	1	0	6.044318	-2.004376	-3.629114
32	1	0	6.8/368/	-2.895178	-2.345841
33	1	0	8.0/29/1	-0.///2/4	-1.658165
34	1	0	7.254046	0.106/14	-2.935056
35	1	0	7.800486	-2.215/43	-3.691620
30	1	0	5.8459/0	-1.2/2468	-0.585040
3/	1	0	5.035/49	-U.3/2461	-1.053938
56 20	1	0	0.3119/U 7 0000FF	1./U459/	-1.104946
27	1	U	/.000955	0.0059/0	0.110905

Structure 3-3 in gas phase

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	0.000000	0.000000	0.000000
2	6	0	0.00000	0.00000	1.340879
3	6	0	1.256464	0.00000	-0.781128
4	8	0	2.425966	-0.147017	-0.088164
5	8	0	1.301031	0.190694	-1.980741
б	6	0	1.278731	-0.082354	2.140223
7	6	0	2.410012	-0.671046	1.259266
8	1	0	-0.907041	0.099943	-0.588603
9	1	0	-0.926208	0.118538	1.899719
10	1	0	1.134898	-0.790056	2.964961
11	8	0	1.561521	1.156748	2.768467
12	1	0	1.932470	1.790088	2.120328
13	1	0	2.203224	-1.747961	1.174413
14	б	0	3.760952	-0.502893	1.901094
15	6	0	4.803144	0.270588	1.568354
16	1	0	3.863763	-1.109191	2.800980
17	1	0	5.678658	0.218850	2.217338
18	6	0	4.967179	1.220383	0.407134
19	8	0	5.301258	2.550779	0.953953
20	б	0	4.286274	3.344645	1.338212
21	8	0	3.103768	3.040145	1.264551
22	б	0	4.787411	4.660279	1.885642
23	1	0	4.047263	1.318004	-0.158426
24	1	0	5.176638	4.499678	2.896721
25	1	0	3.963563	5.372575	1.931662
26	1	0	5.603324	5.053268	1.274631
27	6	0	6.139770	0.825555	-0.495303
28	6	0	6.339850	1.726529	-1.727876
29	6	0	5.218903	1.681439	-2.783579
30	б	0	5.043433	0.318496	-3.467915
31	1	0	5.982142	-0.018211	-3.925812
32	1	0	4.285585	0.375345	-4.255825
33	1	0	5.447029	2.436623	-3.546683
34	1	0	4.263028	1.985682	-2.340380
35	1	0	4.712742	-0.453198	-2.765577
36	1	0	6.478878	2.760426	-1.389656
37	1	0	7.284440	1.434654	-2.206331
38	1	0	7.056660	0.825591	0.107963
39	1	0	5.973054	-0.212019	-0.804263

Structure 3-4 in gas phase

NumberTypeA1160 0.00000 0.00000 0260 0.00000 0.00000 1360 1.255913 0.000000 -0 480 2.426202 -0.137586 -0 580 1.300198 0.185573 -1 660 1.277544 -0.90134 2 760 2.409310 -0.672714 1 810 -0.925956 0.119964 1 1010 1.130713 -0.806536 2 1180 1.560236 1.141074 2 1210 1.945585 1.780714 2 1310 2.202261 -1.748904 1 1460 3.759371 -0.507966 1 1560 4.794229 0.280815 1 1610 3.86044 -1.126756 2 1710 5.663876 0.231761 2 1860 4.935066 1.258542 0 1980 5.329162 2.562497 1 2060 4.895665 4.658284 2 2310 3.990224 1.399975 -0 2410 4.091515 5.388888 2 2510 5.702087 5.046443 1 <th>2 000000 340894 782197 086520 982109 141480 256830 588073 899830 958272 785091 152167 164137</th>	2 000000 340894 782197 086520 982109 141480 256830 588073 899830 958272 785091 152167 164137
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	000000 340894 782197 086520 982109 141480 256830 5588073 899830 958272 785091 152167 164137
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	340894 782197 086520 982109 141480 588073 899830 958272 785091 152167 164137
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	782197 086520 982109 141480 588073 899830 958272 785091 152167 164137
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	086520 982109 141480 256830 588073 899830 958272 785091 152167 164137
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	982109 141480 256830 588073 899830 958272 785091 152167 164137
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.141480 .256830 .588073 .899830 .958272 785091 152167 164137
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	256830 588073 899830 958272 785091 152167 164137
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	588073 899830 958272 785091 152167 164137
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$.899830 .958272 785091 152167 164137
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	958272. 785091 152167 164137
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	785091 152167 164137
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	152167 164137
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	164137
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	900792
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	581499
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	791681
18 6 0 4.935066 1.258542 0 19 8 0 5.329162 2.562497 1 20 6 0 4.345793 3.368853 1 21 8 0 3.155304 3.092376 1 22 6 0 4.895665 4.658284 2 23 1 0 3.990224 1.399975 -0 24 1 0 4.091515 5.388388 2 25 1 0 5.702087 5.046443 1	235762
19 8 0 5.329162 2.562497 1 20 6 0 4.345793 3.368853 1 21 8 0 3.155304 3.092376 1 22 6 0 4.895665 4.658284 2 23 1 0 3.990224 1.399975 -0 24 1 0 4.091515 5.38838 2 25 1 0 5.702087 5.046443 1	439619
20 6 0 4.345793 3.368853 1 21 8 0 3.155304 3.092376 1 22 6 0 4.895665 4.658284 2 23 1 0 3.990224 1.399975 -0 24 1 0 4.091515 5.388838 2 25 1 0 5.702087 5.046443 1	009101
21 8 0 3.155304 3.092376 1 22 6 0 4.895665 4.658284 2 23 1 0 3.990224 1.399975 -0 24 1 0 4.091515 5.388888 2 25 1 0 5.702087 5.046443 1	449222
22 6 0 4.895665 4.658284 2 23 1 0 3.990224 1.399975 -0 24 1 0 4.091515 5.388838 2 25 1 0 5.702087 5.046443 1	409444
23 1 0 3.990224 1.399975 -0 24 1 0 4.091515 5.388838 2 25 1 0 5.702087 5.046443 1	011740
24 1 0 4.091515 5.388838 2 25 1 0 5.702087 5.046443 1	074294
25 1 0 5.702087 5.046443 1	100518
	385288
26 1 0 5.310980 4.463577 3	006363
27 6 0 6.013495 0.886214 -0	584653
28 6 0 7.429163 0.655061 -0	036003
29 6 0 8.454894 0.397341 -1	150088
30 6 0 9.872829 0.149326 -0	619609
31 1 0 10.579181 -0.026913 -1	438368
32 1 0 9.903579 -0.726448 0	039457
33 1 0 8.466948 1.254834 -1	836127
34 1 0 8.132512 -0.465603 -1	748136
35 1 0 10.238086 1.008663 -0	044819
36 1 0 7.743337 1.527132 0	551222
37 1 0 7.429493 -0.201245 0	
38 1 0 5.659283 -0.014176 -1	650733
39 1 0 6.036612 1.685633 -1	650733 101013

Structure 3-5 in gas phase

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	0.000000	0.000000	0.000000	
2	6	0	0.00000	0.000000	1.340935	
3	6	0	1.256509	0.00000	-0.780664	
4	8	0	2.426089	-0.138027	-0.085637	
5	8	0	1.301920	0.180569	-1.981816	
6	6	0	1.279703	-0.078937	2.139581	
7	6	0	2.409068	-0.668564	1.257763	
8	1	0	-0.907212	0.097111	-0.588814	
9	1	0	-0.926320	0.116654	1.899917	
10	1	0	1.137805	-0.783373	2.967464	
11	8	0	1.563255	1.163563	2.760338	
12	1	0	1.927333	1.791664	2.103019	
13	1	0	2.197589	-1.744585	1.169107	
14	6	0	3.759300	-0.511448	1.902343	
15	6	0	4.820491	0.235962	1.569116	
16	1	0	3.845241	-1.107173	2.811214	
17	1	0	5.685869	0.171130	2.230715	
18	6	0	5.028409	1.182259	0.411673	
19	8	0	5.314829	2.519412	0.974703	
20	6	0	4.274054	3.299286	1.314015	
21	8	0	3.100027	2.979245	1.188891	
22	6	0	4.734193	4.621395	1.881842	
23	1	0	4.141525	1.267709	-0.207928	
24	1	0	5.583720	5.015336	1.319431	
25	1	0	5.060863	4.468633	2.916087	
26	1	0	3.905103	5.329167	1.873551	
27	6	0	6.271824	0.836861	-0.417629	
28	6	0	6.152391	-0.452061	-1.249811	
29	6	0	5.226748	-0.345017	-2.472365	
30	6	0	5.194086	-1.635480	-3.301543	
31	1	0	4.530613	-1.531700	-4.166658	
32	1	0	4.828516	-2.480034	-2.705161	
33	1	0	5.568284	0.484851	-3.106546	
34	1	0	4.206911	-0.097680	-2.160633	
35	1	0	6.191871	-1.899443	-3.673297	
36	1	0	7.159673	-0.722375	-1.593417	
37	1	0	5.821639	-1.279522	-0.608306	
38	1	0	6.475811	1.685636	-1.081872	
39	1	0	7.128587	0.761355	0.264080	

Structure 3-6 in gas phase

Center	Atomic	Atomic	Coord	linates (Ang	stroms)
Number	Number	Туре	X	Y	Z
1	6	0	0.00000	0.000000	0.00000
2	6	0	0.00000	0.000000	1.341770
3	6	0	1.264324	0.00000	-0.781999
4	8	0	2.423812	-0.191964	-0.086873
5	8	0	1.304793	0.246331	-1.970501
6	6	0	1.298314	-0.095304	2.107616
7	6	0	2.348862	-0.803508	1.236371
8	1	0	-0.906304	0.102809	-0.589279
9	1	0	-0.922542	0.122265	1.905833
10	1	0	1.160397	-0.697834	3.010129
11	8	0	1.700908	1.191580	2.589718
12	1	0	1.766103	1.791798	1.827882
13	1	0	2.038336	-1.843571	1.097869
14	6	0	3.745069	-0.736407	1.793605
15	6	0	4.360739	-1.669084	2.530814
16	1	0	4.282988	0.178532	1.554157
17	1	0	5.383437	-1.471189	2.853633
18	6	0	3.806048	-2.992664	2.995131
19	8	0	4.524369	-4.065897	2.297436
20	6	0	4.002817	-4.490125	1.118667
21	8	0	2.958789	-4.076599	0.647292
22	6	0	4.891071	-5.526526	0.472420
23	1	0	2.748011	-3.092262	2.748000
24	1	0	5.266064	-6.238016	1.211984
25	1	0	5.755803	-5.024140	0.026038
26	1	0	4.336664	-6.042553	-0.311583
27	6	0	4.019187	-3.241362	4.491668
28	6	0	3.200866	-2.297713	5.384579
29	6	0	3.406049	-2.562848	6.883591
30	6	0	2.575587	-1.632775	7.777182
31	1	0	2.745832	-1.845000	8.838282
32	1	0	1.502762	-1.749402	7.583261
33	1	0	4.470586	-2.449966	7.128296
34	1	0	3.151142	-3.607610	7.106174
35	1	0	2.830656	-0.581118	7.602611
36	1	0	3.459317	-1.254874	5.161675
37	1	0	2.133004	-2.406882	5.145287
38	1	0	3.744207	-4.282044	4.701487
39	1	0	5.088079	-3.146175	4.721635

Structure 3-7 in gas phase

Center	Atomic	Atomic	Coord	linates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	 6	0	0.000000	0.000000	0.000000
2	6	0	0.00000	0.000000	1.341983
3	6	0	1.263234	0.000000	-0.783266
4	8	0	2.426186	-0.190271	-0.089997
5	8	0	1.302406	0.235872	-1.973485
6	6	0	1.298346	-0.087383	2.108043
7	6	0	2.356764	-0.789149	1.239214
8	1	0	-0.906870	0.099336	-0.589049
9	1	0	-0.922879	0.118084	1.906229
10	1	0	1.164913	-0.691176	3.010394
11	8	0	1.692871	1.202058	2.587903
12	1	0	1.724888	1.810517	1.830524
13	1	0	2.037990	-1.828757	1.114282
14	6	0	3.745333	-0.709034	1.806396
15	6	0	4.470365	-1.715788	2.310138
16	1	0	4.175907	0.289902	1.800520
17	1	0	5.466632	-1.484280	2.687735
18	6	0	4.079564	-3.163352	2.444663
19	8	0	5.109493	-3.912360	1.721792
20	6	0	4.720510	-5.052251	1.093731
21	8	0	3.583654	-5.485990	1.114234
22	6	0	5.883833	-5.688399	0.369483
23	1	0	3.121437	-3.380477	1.970029
24	1	0	6.706189	-5.875393	1.066106
25	1	0	6.256266	-5.007580	-0.401907
26	1	0	5.560268	-6.623383	-0.087529
27	6	0	4.049472	-3.652187	3.901432
28	6	0	2.923750	-3.030260	4.740048
29	6	0	2.889553	-3.563824	6.180195
30	6	0	1.762137	-2.953008	7.022343
31	1	0	1.859743	-1.862960	7.087405
32	1	0	1.770447	-3.348574	8.043799
33	1	0	3.855287	-3.362415	6.662531
34	1	0	2.780230	-4.656044	6.159344
35	1	0	0.778805	-3.173019	6.590094
36	1	0	3.033874	-1.938415	4.762593
37	1	0	1.956841	-3.237328	4.259069
38	1	0	3.929059	-4.741198	3.882221
39	1	0	5.022871	-3.444445	4.363792

Structure 3-8 in gas phase

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Type	X	Y Y	Z
1	6	0	0.00000	0.000000	0.00000
2	6	0	0.00000	0.00000	1.340952
3	6	0	1.255833	0.00000	-0.782368
4	8	0	2.426588	-0.136252	-0.087271
5	8	0	1.299451	0.183733	-1.982637
6	6	0	1.277828	-0.087579	2.141394
7	6	0	2.410719	-0.668278	1.257105
8	1	0	-0.907409	0.099710	-0.588136
9	1	0	-0.926170	0.118580	1.899843
10	1	0	1.132564	-0.803750	2.958614
11	8	0	1.558189	1.144564	2.784032
12	1	0	1.939385	1.785266	2.149423
13	1	0	2.207371	-1.745318	1.166523
14	6	0	3.759155	-0.496797	1.902857
15	6	0	4.790496	0.297733	1.586284
16	1	0	3.866457	-1.113831	2.794896
17	1	0	5.657606	0.254227	2.244192
18	6	0	4.928525	1.274581	0.443410
19	8	0	5.304359	2.585040	1.011011
20	6	0	4.309958	3.388057	1.431662
21	8	0	3.122284	3.099536	1.387918
22	6	0	4.843713	4.692808	1.974127
23	1	0	3.985304	1.404333	-0.076707
24	1	0	5.618314	5.098376	1.318829
25	1	0	5.298532	4.513962	2.954162
26	1	0	4.024470	5.403154	2.084984
27	6	0	6.017325	0.915070	-0.575241
28	6	0	7.427063	0.678852	-0.010288
29	6	0	8.490197	0.409097	-1.091492
30	6	0	8.816150	1.613710	-1.986584
31	1	0	7.953689	1.933568	-2.580610
32	1	0	9.622123	1.371468	-2.688001
33	1	0	8.167497	-0.435053	-1.715924
34	1	0	9.411801	0.081839	-0.593663
35	1	0	9.143879	2.471878	-1.387517
36	1	0	7.733483	1.545831	0.588966
37	1	0	7.404709	-0.180227	0.671305
38	1	0	5.672768	0.016298	-1.101489
39	1	0	6.035254	1.721906	-1.316606

Structure 3-9 in gas phase

					\
Center	Atomic	Atomic	Coord	inates (Ang	stroms)
Number	Number	Туре	Χ	¥	Z
1	6	0	0.000000	0.000000	0.000000
2	6	0	0.00000	0.00000	1.340127
3	6	0	1.263828	0.000000	-0.778624
4	8	0	2.418611	-0.283677	-0.102362
5	8	0	1.320187	0.282130	-1.959148
6	6	0	1.306152	-0.079459	2.097446
7	б	0	2.313584	-0.859600	1.223013
8	1	0	-0.905441	0.105564	-0.589887
9	1	0	-0.921027	0.124620	1.905137
10	1	0	1.163975	-0.663840	3.020297
11	8	0	1.675540	1.256890	2.387757
12	1	0	2.498038	1.296853	2.919037
13	1	0	1.901316	-1.871590	1.108227
14	6	0	3.687642	-0.994561	1.829328
15	6	0	4.724563	-0.149616	1.763953
16	1	0	3.828228	-1.910978	2.400541
17	1	0	5.641082	-0.442790	2.274979
18	6	0	4.806143	1.180553	1.053647
19	8	0	5.639603	2.091046	1.859201
20	6	0	5.172518	2.508932	3.049638
21	8	0	4.105141	2.165251	3.536371
22	6	0	6.132572	3.470413	3.710164
23	1	0	3.817576	1.632090	0.961075
24	1	0	6.170988	4.399827	3.133200
25	1	0	7.142892	3.052913	3.725952
26	1	0	5.794347	3.685093	4.723650
27	6	0	5.466748	1.122366	-0.330025
28	6	0	6.861892	0.483172	-0.376330
29	б	0	7.484962	0.534163	-1.779627
30	б	0	8.871377	-0.119062	-1.846374
31	1	0	8.825733	-1.177529	-1.563855
32	1	0	9.576708	0.374567	-1.167181
33	1	0	7.558404	1.580354	-2.105592
34	1	0	6.812770	0.039655	-2.493203
35	1	0	9.289461	-0.063353	-2.857510
36	1	0	7.526914	0.991974	0.333258
37	1	0	6.800096	-0.564259	-0.053082
38	1	0	4.777690	0.577374	-0.982784
39	1	0	5.516964	2.150808	-0.709253

Structure 3-10 in gas phase

Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Туре	Х	¥	Ζ
1	6	0	0.000000	0.000000	0.000000
2	б	0	0.00000	0.000000	1.341873
3	б	0	1.263217	0.00000	-0.782979
4	8	0	2.425731	-0.192494	-0.089820
5	8	0	1.302918	0.238510	-1.972665
6	б	0	1.298393	-0.086814	2.107658
7	б	0	2.354977	-0.792904	1.239673
8	1	0	-0.906853	0.099241	-0.589039
9	1	0	-0.922839	0.117987	1.906144
10	1	0	1.163674	-0.687413	3.011988
11	8	0	1.695776	1.202868	2.584263
12	1	0	1.729326	1.809552	1.825529
13	1	0	2.033871	-1.831326	1.111896
14	б	0	3.744895	-0.714716	1.804644
15	б	0	4.489700	-1.729122	2.262932
16	1	0	4.162677	0.289428	1.829722
17	1	0	5.487654	-1.495019	2.634930
18	б	0	4.123828	-3.188659	2.336676
19	8	0	5.060295	-3.880348	1.446447
20	б	0	4.558521	-4.861721	0.651921
21	8	0	3.393009	-5.211953	0.653318
22	б	0	5.639811	-5.439914	-0.230688
23	1	0	3.119398	-3.381593	1.963703
24	1	0	5.998292	-4.671160	-0.922217
25	1	0	5.237829	-6.281854	-0.794043
26	1	0	6.492937	-5.761672	0.373097
27	б	0	4.292182	-3.782510	3.744214
28	б	0	3.337141	-3.214169	4.808110
29	б	0	1.860359	-3.597364	4.619923
30	6	0	0.961076	-3.065116	5.743436
31	1	0	-0.083892	-3.355882	5.589804
32	1	0	0.998956	-1.970601	5.800993
33	1	0	1.490777	-3.225296	3.655416
34	1	0	1.775388	-4.690577	4.568565
35	1	0	1.274285	-3.455496	6.718801
36	1	0	3.668865	-3.581129	5.787979
37	1	0	3.432849	-2.121185	4.849186
38	1	0	4.151248	-4.867314	3.666736
39	1	0	5.330689	-3.619962	4.058200

Structure 3-11 in gas phase

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	 6	0	0.000000	0.000000	0.000000
2	6	0	0.000000	0.00000	1.340913
3	6	0	1.256849	0.00000	-0.780303
4	8	0	2.425612	-0.142492	-0.085133
5	8	0	1.303245	0.183889	-1.980885
6	6	0	1.280430	-0.077874	2.138690
7	6	0	2.406992	-0.673846	1.257801
8	1	0	-0.907045	0.097598	-0.588995
9	1	0	-0.926221	0.116767	1.900015
10	1	0	1.138443	-0.777334	2.970721
11	8	0	1.568717	1.167919	2.750702
12	1	0	1.934506	1.788264	2.086971
13	1	0	2.189467	-1.748806	1.169406
14	6	0	3.758022	-0.524603	1.902502
15	6	0	4.828362	0.208471	1.566322
16	1	0	3.836583	-1.114659	2.815808
17	1	0	5.690886	0.139171	2.231235
18	6	0	5.049978	1.144731	0.403103
19	8	0	5.327292	2.488337	0.957118
20	6	0	4.282970	3.270214	1.280065
21	8	0	3.110334	2.948349	1.147107
22	6	0	4.737676	4.597749	1.839778
23	1	0	4.170658	1.222465	-0.228422
24	1	0	5.578662	4.996122	1.267543
25	1	0	5.076371	4.451442	2.871022
26	1	0	3.903282	5.299236	1.836240
27	6	0	6.306091	0.798323	-0.406374
28	6	0	6.217988	-0.514239	-1.206200
29	6	0	5.238783	-0.519303	-2.396170
30	6	0	5.582991	0.482827	-3.507670
31	1	0	5.506270	1.520967	-3.166204
32	1	0	4.895558	0.372024	-4.352883
33	1	0	4.214969	-0.343180	-2.050724
34	1	0	5.240091	-1.530524	-2.823229
35	1	0	6.602888	0.330121	-3.882590
36	1	0	7.225867	-0.740392	-1.579327
37	1	0	5.957595	-1.333904	-0.524635
38	1	0	6.511154	1.638983	-1.077973
39	1	0	7.155989	0.744722	0.286022

Structure 3-12 in gas phase

Center	Atomic	Atomic	Coord	linates (Angs	stroms)
Number	Number	Туре	Х	¥	Ζ
1	6	0	0.00000	0.000000	0.00000
2	б	0	0.00000	0.000000	1.341895
3	б	0	1.264399	0.00000	-0.781903
4	8	0	2.423252	-0.194558	-0.086728
5	8	0	1.305509	0.248433	-1.969965
6	б	0	1.298935	-0.095681	2.107285
7	б	0	2.346313	-0.807939	1.235770
8	1	0	-0.906331	0.103432	-0.589163
9	1	0	-0.922373	0.122503	1.906111
10	1	0	1.160628	-0.695709	3.011465
11	8	0	1.704539	1.191541	2.585671
12	1	0	1.770892	1.789232	1.821960
13	1	0	2.030341	-1.846098	1.096325
14	б	0	3.743910	-0.749291	1.790041
15	б	0	4.359548	-1.687538	2.520347
16	1	0	4.285460	0.163758	1.551508
17	1	0	5.384908	-1.494143	2.837364
18	6	0	3.802667	-3.010788	2.983919
19	8	0	4.491730	-4.084817	2.257588
20	6	0	3.930248	-4.503786	1.095839
21	8	0	2.874004	-4.083745	0.658289
22	6	0	4.791036	-5.544788	0.420336
23	1	0	2.737659	-3.096337	2.763374
24	1	0	4.212338	-6.047984	-0.354369
25	1	0	5.174193	-6.266673	1.145553
26	1	0	5.651525	-5.049254	-0.041534
27	6	0	4.054406	-3.278551	4.470890
28	6	0	3.281113	-2.323120	5.393192
29	6	0	3.438895	-2.632842	6.892676
30	6	0	4.857886	-2.429226	7.442926
31	1	0	5.578805	-3.118232	6.990335
32	1	0	4.883901	-2.596472	8.525227
33	1	0	3.115368	-3.664395	7.086892
34	1	0	2.747925	-1.988169	7.450002
35	1	0	5.210743	-1.407669	7.257081
36	1	0	3.591203	-1.287867	5.202286
37	1	0	2.213151	-2.373798	5.138826
38	1	0	3.757543	-4.313734	4.680133
39	1	0	5.131910	-3.214539	4.661072

Structure 3-13 in gas phase

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	0.000000	0.000000	0.000000
2	6	0	0.00000	0.00000	1.341815
3	6	0	1.264756	0.000000	-0.781498
4	8	0	2.423691	-0.192368	-0.085834
5	8	0	1.305957	0.246814	-1.969891
6	6	0	1.298272	-0.094577	2.107913
7	6	0	2.348032	-0.804647	1.237831
8	1	0	-0.906181	0.103100	-0.589386
9	1	0	-0.922668	0.121770	1.905746
10	1	0	1.159229	-0.695442	3.011399
11	8	0	1.701905	1.192849	2.588204
12	1	0	1.763239	1.792970	1.825986
13	1	0	2.037363	-1.844214	1.099006
14	6	0	3.744472	-0.735976	1.792661
15	6	0	4.391564	-1.690488	2.473567
16	1	0	4.260285	0.201856	1.596913
17	1	0	5.412859	-1.479688	2.792622
18	6	0	3.884352	-3.055412	2.871828
19	8	0	4.571873	-4.061857	2.052561
20	6	0	3.967721	-4.440983	0.898653
21	8	0	2.877707	-4.037412	0.534338
22	6	0	4.828102	-5.415509	0.129927
23	1	0	2.816044	-3.158134	2.682885
24	1	0	5.258631	-6.166823	0.796400
25	1	0	5.656340	-4.869891	-0.334317
26	1	0	4.232172	-5.889776	-0.649900
27	6	0	4.220037	-3.409099	4.325851
28	6	0	3.504565	-2.543237	5.377747
29	6	0	1.996858	-2.809694	5.512270
30	6	0	1.337328	-1.964851	6.610252
31	1	0	1.449471	-0.893144	6.408963
32	1	0	1.788383	-2.166231	7.588925
33	1	0	1.837759	-3.875452	5.724704
34	1	0	1.489552	-2.615202	4.558110
35	1	0	0.265914	-2.179573	6.688297
36	1	0	3.978395	-2.732955	6.349459
37	1	0	3.672833	-1.479977	5.162942
38	1	0	3.969962	-4.465386	4.482905
39	1	0	5.305980	-3.323177	4.454593

Structure 3-14 in gas phase

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	0.000000	0.000000	0.000000
2	6	0	0.00000	0.000000	1.341999
3	6	0	1.263420	0.000000	-0.783008
4	8	0	2.426335	-0.191278	-0.090041
5	8	0	1.302364	0.236274	-1.973125
6	6	0	1.298691	-0.085676	2.107443
7	6	0	2.357428	-0.788750	1.239154
8	1	0	-0.906720	0.099468	-0.589205
9	1	0	-0.922896	0.118158	1.906201
10	1	0	1.165661	-0.687962	3.011124
11	8	0	1.692673	1.203861	2.585978
12	1	0	1.724345	1.812196	1.828511
13	1	0	2.035471	-1.828578	1.115783
14	6	0	3.744285	-0.714562	1.810155
15	6	0	4.435867	-1.719615	2.362324
16	1	0	4.196496	0.273896	1.774945
17	1	0	5.429829	-1.502040	2.749433
18	6	0	3.986137	-3.146976	2.539462
19	8	0	5.161915	-3.966154	2.247441
20	6	0	4.945796	-5.181918	1.680574
21	8	0	3.842218	-5.629666	1.432591
22	6	0	6.254749	-5.879569	1.392274
23	1	0	3.215924	-3.416625	1.814034
24	1	0	6.886690	-5.893426	2.284500
25	1	0	6.796984	-5.332583	0.614502
26	1	0	6.057604	-6.896371	1.053053
27	6	0	3.458417	-3.473875	3.948754
28	6	0	4.432163	-3.199678	5.103758
29	6	0	3.860044	-3.613453	6.467756
30	6	0	4.822727	-3.343454	7.631303
31	1	0	4.386506	-3.650749	8.588060
32	1	0	5.068482	-2.277577	7.705217
33	1	0	3.604981	-4.681425	6.445444
34	1	0	2.916822	-3.078725	6.643856
35	1	0	5.763488	-3.891787	7.503487
36	1	0	5.371457	-3.738227	4.925404
37	1	0	4.686593	-2.132239	5.130913
38	1	0	2.539555	-2.890313	4.095780
39	1	0	3.158095	-4.528266	3.951368

Structure 3-1 in CHCl₃ solution

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	Х	Y	Z
1	6	0	0.000000	0.000000	0.000000
2	б	0	0.00000	0.00000	1.341328
3	6	0	1.257326	0.00000	-0.774550
4	8	0	2.423720	-0.149828	-0.088039
5	8	0	1.306410	0.193465	-1.979241
6	6	0	1.279694	-0.082219	2.138638
7	6	0	2.405704	-0.680955	1.263601
8	1	0	-0.909056	0.094773	-0.585985
9	1	0	-0.927771	0.110216	1.898397
10	1	0	1.134450	-0.778782	2.970747
11	8	0	1.570431	1.170765	2.748629
12	1	0	1.976064	1.781013	2.098429
13	1	0	2.187421	-1.753141	1.172987
14	6	0	3.759326	-0.528483	1.902865
15	б	0	4.796173	0.260894	1.589997
16	1	0	3.869721	-1.166696	2.778918
17	1	0	5.676979	0.189376	2.229172
18	б	0	4.949129	1.244696	0.456163
19	8	0	5.326185	2.548518	1.036727
20	б	0	4.342327	3.372682	1.433949
21	8	0	3.147718	3.105168	1.361315
22	6	0	4.889286	4.666403	1.984444
23	1	0	4.019516	1.383218	-0.086992
24	1	0	5.387147	4.469800	2.939409
25	1	0	4.074685	5.373056	2.140994
26	1	0	5.633486	5.088645	1.304627
27	6	0	6.078428	0.855640	-0.500906
28	б	0	6.240168	1.809754	-1.692697
29	6	0	7.345632	1.370174	-2.664039
30	6	0	7.509791	2.321627	-3.856409
31	1	0	8.307268	1.983872	-4.527694
32	1	0	7.761603	3.335403	-3.522809
33	1	0	8.298027	1.297759	-2.121623
34	1	0	7.124622	0.359459	-3.032002
35	1	0	6.585523	2.385288	-4.442603
36	1	0	5.286746	1.874503	-2.234443
37	1	0	6.460550	2.819935	-1.326485
38	1	0	7.018993	0.786610	0.060821
39	1	0	5.853940	-0.154094	-0.864779

Structure 3-2 in CHCl₃ solution

Center	Atomic	Atomic	Coord	linates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	 б	0	0.00000	0.00000	0.00000
2	6	0	0.000000	0.000000	1.341430
3	6	0	1.257777	0.000000	-0.774283
4	8	0	2,423169	-0.152898	-0.087087
5	8	0	1.307170	0.195534	-1.978638
6	6	0	1.280440	-0.082198	2.137812
7	6	0	2.402402	-0.686941	1.261764
8	1	0	-0.908955	0.095625	-0.585981
9	1	0	-0.927513	0.111189	1.898693
10	1	0	1.135356	-0.773840	2.973911
11	8	0	1.576209	1.173681	2.739552
12	1	0	1.973440	1.778453	2.078911
13	1	0	2.175653	-1.757694	1.169992
14	6	0	3.755605	-0.549281	1.904409
15	6	0	4.817370	0.204295	1.586298
16	1	0	3.844090	-1.172870	2.793638
17	1	0	5.687930	0.118315	2.238161
18	6	0	5.017791	1.171345	0.445327
19	8	0	5.346457	2.490499	1.027306
20	6	0	4.335907	3.304593	1.372949
21	8	0	3.149193	3.021561	1.248127
22	6	0	4.841539	4.608219	1.939849
23	1	0	4.119112	1.287508	-0.152767
24	1	0	5.631910	5.022567	1.309349
25	1	0	5.269475	4.425951	2.931003
26	1	0	4.016687	5.314785	2.028950
27	6	0	6.219453	0.818081	-0.436795
28	6	0	6.032142	-0.478463	-1.238088
29	6	0	7.233183	-0.790581	-2.142679
30	6	0	7.060600	-2.088918	-2.942212
31	1	0	6.178680	-2.039972	-3.591658
32	1	0	6.934119	-2.950496	-2.275848
33	1	0	8.141786	-0.857818	-1.529265
34	1	0	7.392541	0.046192	-2.835575
35	1	0	7.931953	-2.284008	-3.577338
36	1	0	5.868613	-1.318099	-0.550913
37	1	0	5.124739	-0.401457	-1.850915
38	1	0	6.382879	1.655600	-1.125757
39	1	0	7.115824	0.744849	0.192628

Structure 3-3 in CHCl₃ solution

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	6	0	0.000000	0.000000	0.000000	
2	6	0	0.00000	0.00000	1.342215	
3	6	0	1.261132	0.00000	-0.777824	
4	8	0	2.423350	-0.190539	-0.095471	
5	8	0	1.305563	0.230595	-1.975441	
6	6	0	1.294289	-0.082056	2.113496	
7	6	0	2.367910	-0.766738	1.250790	
8	1	0	-0.909245	0.095126	-0.585574	
9	1	0	-0.924653	0.111009	1.903912	
10	1	0	1.158927	-0.701475	3.004308	
11	8	0	1.667178	1.206795	2.616681	
12	1	0	1.677541	1.838289	1.877089	
13	1	0	2.071614	-1.813052	1.137282	
14	6	0	3.756938	-0.643985	1.808474	
15	6	0	4.513283	-1.626313	2.315556	
16	1	0	4.160705	0.366102	1.794725	
17	1	0	5.502542	-1.361840	2.689517	
18	6	0	4.162712	-3.082627	2.466707	
19	8	0	5.207750	-3.808623	1.733846	
20	6	0	4.859274	-4.963615	1.119266	
21	8	0	3.733052	-5.434431	1.142904	
22	6	0	6.041946	-5.575986	0.408646	
23	1	0	3.206123	-3.328982	2.004910	
24	1	0	6.837042	-5.793023	1.128035	
25	1	0	6.444452	-4.870260	-0.323578	
26	1	0	5.735185	-6.494600	-0.090973	
27	6	0	4.171160	-3.558720	3.927455	
28	6	0	3.046608	-2.954840	4.780766	
29	6	0	3.054126	-3.476300	6.225651	
30	6	0	1.931890	-2.880517	7.085428	
31	1	0	2.010225	-1.788212	7.138924	
32	1	0	1.969266	-3.267483	8.109714	
33	1	0	4.025164	-3.250262	6.685812	
34	1	0	2.966054	-4.570622	6.216388	
35	1	0	0.944941	-3.123370	6.674095	
36	1	0	3.133105	-1.860965	4.792413	
37	1	0	2.075733	-3.186486	4.320621	
38	1	0	4.077364	-4.650611	3.922289	
39	1	0	5.147249	-3.322021	4.369063	

Structure 3-4 in CHCl₃ solution

NumberNumberTypeXYZ	Center	Atomic	Atomic	Coord	linates (Angs	stroms)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Number	Number	Туре	Х	¥	Z
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	6	0	0.00000	0.000000	0.00000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	б	0	0.00000	0.000000	1.342217
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	6	0	1.262504	0.000000	-0.776005
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	8	0	2.421484	-0.195753	-0.091993
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	8	0	1.308910	0.241563	-1.971721
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	6	0	1.294860	-0.091510	2.112399
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	6	0	2.358891	-0.785888	1.247475
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8	1	0	-0.908592	0.099571	-0.585838
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	1	0	-0.924095	0.116192	1.903902
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	1	0	1.155399	-0.706860	3.005297
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	8	0	1.680590	1.195285	2.612627
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	1	0	1.726811	1.816152	1.865487
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	1	0	2.063529	-1.830700	1.119516
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	6	0	3.753211	-0.687565	1.800871
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	6	0	4.413170	-1.636944	2.476691
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	1	0	4.246888	0.265907	1.624376
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	1	0	5.424972	-1.411623	2.814837
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	6	0	3.921303	-3.011484	2.855435
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	8	0	4.726517	-4.002000	2.125596
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	6	0	4.286801	-4.385161	0.903793
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	8	0	3.244721	-3.993466	0.402098
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	6	0	5.254022	-5.341674	0.250187
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	1	0	2.879213	-3.160846	2.570942
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	1	0	5.602272	-6.092138	0.963721
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	1	0	6.128676	-4.781681	-0.096954
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	1	0	4.775922	-5.820952	-0.604068
28 6 0 3.222600 -2.476580 5.261728 29 6 0 3.392496 -2.830128 6.746700 30 6 0 2.502596 -1.987672 7.669694 31 1 0 2.648476 -2.262271 8.720239 32 1 0 1.441053 -2.127807 7.433392 33 1 0 3.167440 -3.894728 6.894156 35 1 0 2.726471 -0.919081 7.570115 36 1 0 3.484807 -1.412848 5.115010 37 1 0 2.168740 -2.610398 4.979163 38 1 0 3.876450 -4.391496 4.487569 39 1 0 5.164677 -3.195695 4.606823	27	б	0	4.108289	-3.329684	4.342094
29 6 0 3.392496 -2.830128 6.746700 30 6 0 2.502596 -1.987672 7.669694 31 1 0 2.648476 -2.262271 8.720239 32 1 0 1.441053 -2.127807 7.43392 33 1 0 3.67440 -3.894728 6.894156 34 1 0 3.167440 -3.894728 6.894156 35 1 0 2.726471 -0.919081 7.570115 36 1 0 3.448407 -1.412848 5.115010 37 1 0 3.876450 -4.391496 4.487569 38 1 0 3.876450 -4.391496 4.606823 39 1 0 5.164677 -3.195695 4.606823	28	6	0	3.222600	-2.476580	5.261728
30 6 0 2.502596 -1.987672 7.669694 31 1 0 2.648476 -2.262271 8.720239 32 1 0 1.441053 -2.127807 7.433392 33 1 0 4.444367 -2.696640 7.031968 34 1 0 3.167440 -3.894728 6.894156 35 1 0 2.726471 -0.919081 7.570115 36 1 0 3.448407 -1.412848 5.115010 37 1 0 3.876450 -4.391496 4.487569 38 1 0 3.16677 -3.195695 4.606823	29	б	0	3.392496	-2.830128	6.746700
31 1 0 2.648476 -2.262271 8.720239 32 1 0 1.441053 -2.127807 7.433392 33 1 0 4.444367 -2.696640 7.031968 34 1 0 3.167440 -3.894728 6.894156 35 1 0 2.726471 -0.919081 7.570115 36 1 0 3.448407 -1.412848 5.115010 37 1 0 2.168740 -2.610398 4.979163 38 1 0 3.876450 -4.391496 4.487569 39 1 0 5.164677 -3.195695 4.606823	30	6	0	2.502596	-1.987672	7.669694
32 1 0 1.441053 -2.127807 7.433392 33 1 0 4.444367 -2.696640 7.031968 34 1 0 3.167440 -3.894728 6.894156 35 1 0 2.726471 -0.919081 7.570115 36 1 0 3.448407 -1.412848 5.115010 37 1 0 2.168740 -2.610398 4.979163 38 1 0 3.876450 -4.391496 4.487569 39 1 0 5.164677 -3.195695 4.606823	31	1	0	2.648476	-2.262271	8.720239
33 1 0 4.444367 -2.696640 7.031968 34 1 0 3.167440 -3.894728 6.894156 35 1 0 2.726471 -0.919081 7.570115 36 1 0 3.448407 -1.412848 5.115010 37 1 0 2.168740 -2.610398 4.979163 38 1 0 3.876450 -4.391496 4.487569 39 1 0 5.164677 -3.195695 4.606823	32	1	0	1.441053	-2.127807	7.433392
34 1 0 3.167440 -3.894728 6.894156 35 1 0 2.726471 -0.919081 7.570115 36 1 0 3.448407 -1.412848 5.115010 37 1 0 2.168740 -2.610398 4.979163 38 1 0 3.876450 -4.391496 4.487569 39 1 0 5.164677 -3.195695 4.606823	33	1	0	4.444367	-2.696640	7.031968
35 1 0 2.726471 -0.919081 7.570115 36 1 0 3.448407 -1.412848 5.115010 37 1 0 2.168740 -2.610398 4.979163 38 1 0 3.876450 -4.391496 4.487569 39 1 0 5.164677 -3.195695 4.606823	34	1	0	3.167440	-3.894728	6.894156
36 1 0 3.448407 -1.412848 5.115010 37 1 0 2.168740 -2.610398 4.979163 38 1 0 3.876450 -4.391496 4.487569 39 1 0 5.164677 -3.195695 4.606823	35	1	0	2.726471	-0.919081	7.570115
37 1 0 2.168740 -2.610398 4.979163 38 1 0 3.876450 -4.391496 4.487569 39 1 0 5.164677 -3.195695 4.606823	36	1	0	3.448407	-1.412848	5.115010
38 1 0 3.876450 -4.391496 4.487569 39 1 0 5.164677 -3.195695 4.606823	37	1	0	2.168740	-2.610398	4.979163
39 1 0 5.164677 -3.195695 4.606823	38	1	0	3.876450	-4.391496	4.487569
	39	1	0	5.164677	-3.195695	4.606823

Coordinates for all computes conformers of epimers **3** and **5**

Structure 3-6 in CHCl₃ solution

Structure 3-5 in CHCl₃ solution

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	 6	0	0.000000	0.000000	0.000000	
2	6	0	0.00000	0.00000	1.341314	
3	6	0	1.257141	0.00000	-0.774800	
4	8	0	2.423552	-0.149565	-0.087847	
5	8	0	1.305941	0.194754	-1.979229	
6	6	0	1.278647	-0.089363	2.139263	
7	6	0	2.404526	-0.685733	1.261948	
8	1	0	-0.908933	0.097169	-0.585777	
9	1	0	-0.927473	0.112821	1.898325	
10	1	0	1.130610	-0.791938	2.965795	
11	8	0	1.570686	1.157673	2.760705	
12	1	0	1.984945	1.772950	2.120960	
13	1	0	2.185191	-1.757371	1.167172	
14	6	0	3.756899	-0.535473	1.903972	
15	6	0	4.793261	0.258014	1.599589	
16	1	0	3.864408	-1.176021	2.778763	
17	1	0	5.664014	0.190580	2.250290	
18	6	0	4.937445	1.253638	0.473828	
19	8	0	5.348634	2.544240	1.062312	
20	6	0	4.382836	3.369758	1.499440	
21	8	0	3.184076	3.116818	1.447043	
22	6	0	4.953284	4.642143	2.075108	
23	1	0	3.991842	1.415803	-0.032727	
24	1	0	4.165854	5.390582	2.162856	
25	1	0	5.772486	5.017719	1.458087	
26	1	0	5.355585	4.430624	3.071525	
27	6	0	6.006502	0.887115	-0.562933	
28	6	0	7.422544	0.629911	-0.026735	
29	6	0	8.435664	0.372252	-1.152308	
30	6	0	9.853954	0.099103	-0.635014	
31	1	0	10.551550	-0.076990	-1.461441	
32	1	0	9.876517	-0.784707	0.013654	
33	1	0	8.454083	1.238010	-1.827635	
34	1	0	8.097104	-0.479764	-1.756957	
35	1	0	10.234046	0.947313	-0.053249	
36	1	Ű	7.754126	1.490239	0.568113	
37	1	0	7.416143	-0.234546	0.649266	
38	1	Ű	5.641043	-0.001706	-1.091445	
39	1	0	6.033932	1.698374	-1.301357	

Center	Atomic	Atomic	Coord	linates (Ang	stroms)
Number	Number	Туре	X	¥	Z
1	6	0	0.00000	0.000000	0.000000
2	6	0	0.00000	0.000000	1.342201
3	б	0	1.261484	0.000000	-0.777408
4	8	0	2.423627	-0.191783	-0.095398
5	8	0	1.306027	0.231609	-1.974842
6	6	0	1.294234	-0.081830	2.113416
7	б	0	2.368956	-0.766300	1.251038
8	1	0	-0.909090	0.095156	-0.585755
9	1	0	-0.924597	0.111237	1.903921
10	1	0	1.158252	-0.701830	3.003593
11	8	0	1.666149	1.205933	2.619184
12	1	0	1.672795	1.840300	1.882218
13	1	0	2.071506	-1.813317	1.139495
14	б	0	3.756470	-0.646779	1.812543
15	6	0	4.483036	-1.624071	2.370897
16	1	0	4.180616	0.353766	1.765593
17	1	0	5.471262	-1.367401	2.748579
18	6	0	4.081260	-3.062651	2.569892
19	8	0	5.267405	-3.848358	2.214827
20	б	0	5.073728	-5.058998	1.640299
21	8	0	3.973564	-5.536777	1.413734
22	6	0	6.391582	-5.719953	1.315504
23	1	0	3.283023	-3.353342	1.885286
24	1	0	7.006323	-5.798116	2.216594
25	1	0	6.942573	-5.110218	0.593230
26	1	0	6.212946	-6.711178	0.899459
27	6	0	3.642501	-3.405279	4.004952
28	6	0	4.663528	-3.094437	5.109112
29	6	0	4.175185	-3.532046	6.497837
30	6	0	5.180636	-3.221785	7.614445
31	1	0	4.802967	-3.546169	8.590477
32	1	0	5.384937	-2.146356	7.677056
33	1	0	3.965093	-4.609884	6.485330
34	1	0	3.220266	-3.036640	6.719142
35	1	0	6.135834	-3.731368	7.440756
36	1	0	5.613037	-3.596261	4.883991
37	1	0	4.876591	-2.017969	5.127819
38	1	0	2.711318	-2.857421	4.198737
39	1	0	3.383921	-4.470648	4.024429

Structure 3-7 in CHCl₃ solution

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	0.000000	0.000000	0.000000
2	6	0	0.00000	0.00000	1.342163
3	6	0	1.262768	0.000000	-0.775975
4	8	0	2.421374	-0.198932	-0.092754
5	8	0	1.309113	0.243957	-1.971215
6	6	0	1.294799	-0.091199	2.112464
7	6	0	2.358269	-0.787504	1.248132
8	1	0	-0.908484	0.099997	-0.585949
9	1	0	-0.924205	0.115298	1.903848
10	1	0	1.153540	-0.706326	3.005230
11	8	0	1.681115	1.194790	2.614439
12	1	0	1.712239	1.821464	1.871482
13	1	0	2.062847	-1.831883	1.120778
14	6	0	3.753189	-0.688813	1.798566
15	6	0	4.444238	-1.655787	2.416835
16	1	0	4.225895	0.282175	1.664632
17	1	0	5.454921	-1.419600	2.750773
18	6	0	4.000364	-3.064361	2.728544
19	8	0	4.776984	-3.984363	1.883068
20	6	0	4.254060	-4.325136	0.681904
21	8	0	3.162766	-3.949553	0.282626
22	6	0	5.197417	-5.213003	-0.092362
23	1	0	2.948059	-3.219503	2.494597
24	1	0	5.627559	-5.982073	0.553443
25	1	0	6.021383	-4.604685	-0.479629
26	1	0	4.668447	-5.669767	-0.928782
27	6	0	4.307817	-3.477031	4.173109
28	6	0	3.519195	-2.704021	5.244639
29	6	0	2.019244	-3.033605	5.306815
30	6	0	1.295502	-2.290566	6.437614
31	1	0	1.371611	-1.204156	6.311011
32	1	0	1.726882	-2.541189	7.413931
33	1	0	1.895113	-4.116287	5.442203
34	1	0	1.534905	-2.790658	4.352192
35	1	0	0.231446	-2.549851	6.466969
36	1	0	3.965773	-2.936377	6.219659
37	1	0	3.653622	-1.624026	5.101228
38	1	0	4.103393	-4.550361	4.267044
39	1	0	5.383135	-3.344975	4.343932

Structure 3-8 in CHCl₃ solution

Center	Atomic	Atomic	Coord	linates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	0.000000	0.000000	0.000000
2	б	0	0.00000	0.00000	1.341344
3	6	0	1.258370	0.000000	-0.773450
4	8	0	2.423369	-0.157582	-0.086121
5	8	0	1.308011	0.198590	-1.977194
б	6	0	1.281484	-0.084780	2.135832
7	6	0	2.397896	-0.698040	1.259410
8	1	0	-0.908395	0.096806	-0.586623
9	1	0	-0.927144	0.112455	1.898916
10	1	0	1.134659	-0.771390	2.975783
11	8	0	1.586481	1.173125	2.728303
12	1	0	1.986477	1.767880	2.060215
13	1	0	2.160764	-1.766178	1.163114
14	6	0	3.750389	-0.576458	1.906119
15	6	0	4.829574	0.153191	1.589827
16	1	0	3.820900	-1.191363	2.803104
17	1	0	5.689954	0.056189	2.253595
18	6	0	5.066200	1.107541	0.445048
19	8	0	5.373852	2.434579	1.023577
20	6	0	4.353378	3.248951	1.336560
21	8	0	3.170801	2.962718	1.182877
22	6	0	4.840460	4.557016	1.909660
23	1	0	4.187535	1.217961	-0.182309
24	1	0	5.682858	4.945037	1.332544
25	1	0	5.188033	4.389029	2.934416
26	1	0	4.023413	5.278157	1.924323
27	6	0	6.312415	0.748222	-0.375011
28	6	0	6.182345	-0.531793	-1.218861
29	6	0	5.261359	-0.401628	-2.442350
30	6	0	5.210508	-1.684182	-3.283262
31	1	0	4.554293	-1.562386	-4.152069
32	1	0	4.829250	-2.528200	-2.695871
33	1	0	5.615568	0.429046	-3.068059
34	1	0	4.245842	-0.140948	-2.125921
35	1	0	6.206263	-1.959665	-3.651819
36	1	0	7.187533	-0.808138	-1.562669
37	1	0	5.840880	-1.361739	-0.586319
38	1	0	6.536823	1.598209	-1.030936
39	1	0	7.159988	0.651206	0.314851

Structure 3-9 in CHCl₃ solution

Conton					
Center	Atomic	Atomic	coord	ainates (Angs	SLLOMS /
Number	Number	туре	A	¥ 	<u>ک</u>
1	6	0	0.00000	0.000000	0.000000
2	6	0	0.000000	0.000000	1.342208
3	6	0	1.262467	0.000000	-0.776130
4	8	0	2.421457	-0.196347	-0.093070
5	8	0	1.308253	0.241688	-1.971921
6	б	0	1.295333	-0.088457	2.111869
7	б	0	2.359802	-0.783616	1.248185
8	1	0	-0.908603	0.098877	-0.585924
9	1	0	-0.924071	0.115282	1.904145
10	1	0	1.157143	-0.702041	3.006201
11	8	0	1.679069	1.200217	2.609045
12	1	0	1.724445	1.819377	1.860414
13	1	0	2.064691	-1.828435	1.121859
14	6	0	3.754211	-0.680299	1.799649
15	6	0	4.433313	-1.633835	2.450422
16	1	0	4.234022	0.283426	1.641225
17	1	0	5.443797	-1.398337	2.785644
18	6	0	3.969801	-3.025173	2.803482
19	8	0	4.770982	-3.984178	2.028122
20	6	0	4.301804	-4.350947	0.812271
21	8	0	3.237160	-3.971001	0.350517
22	6	0	5.267781	-5.273131	0.109280
23	1	0	2.923576	-3.182777	2.541070
24	1	0	4.774863	-5.740465	-0.743177
25	1	0	5.648928	-6.033936	0.794488
26	1	0	6.122292	-4.688660	-0.247472
27	6	0	4.198855	-3.379313	4.275758
28	6	0	3.335642	-2.544280	5.234664
29	6	0	3.444802	-2.974476	6.708253
30	6	0	4.828565	-2.757171	7.337911
31	1	0	5.600137	-3.368427	6.857742
32	1	0	4.818024	-3.020976	8.401262
33	1	0	3.163552	-4.032276	6.798909
34	1	0	2.701190	-2.410912	7.285386
35	1	0	5.137265	-1.707740	7.259029
36	1	0	3.602215	-1.483277	5.147204
37	1	0	2.284539	-2.623179	4.925000
38	1	0	3.964735	-4.443398	4.402866
39	1	0	5.263224	-3.256944	4.505868

Structure 3-10 in CHCl₃ solution

Center	Atomic	Atomic	Coord	linates (Angs	stroms)
Number	Number	Туре	Х	¥	Ζ
1	6	0	0.00000	0.000000	0.00000
2	б	0	0.00000	0.000000	1.342136
3	б	0	1.262834	0.000000	-0.775830
4	8	0	2.421514	-0.197474	-0.092327
5	8	0	1.308908	0.242683	-1.971360
6	б	0	1.295082	-0.089016	2.112254
7	б	0	2.359833	-0.785369	1.250063
8	1	0	-0.908432	0.099142	-0.586198
9	1	0	-0.924134	0.114925	1.903989
10	1	0	1.154153	-0.701396	3.006875
11	8	0	1.680364	1.199402	2.609386
12	1	0	1.718552	1.820171	1.861739
13	1	0	2.067200	-1.830345	1.123045
14	6	0	3.753856	-0.676145	1.800259
15	б	0	4.479248	-1.652228	2.362483
16	1	0	4.197086	0.314102	1.715519
17	1	0	5.485027	-1.401443	2.700904
18	б	0	4.085963	-3.090853	2.596269
19	8	0	4.854908	-3.929532	1.663011
20	б	0	4.294539	-4.213093	0.463898
21	8	0	3.174695	-3.855435	0.133183
22	б	0	5.235972	-5.013697	-0.402343
23	1	0	3.029980	-3.260899	2.391392
24	1	0	5.709956	-5.812615	0.172795
25	1	0	6.028586	-4.354330	-0.770999
26	1	0	4.691947	-5.426882	-1.251616
27	б	0	4.460391	-3.590021	3.996644
28	б	0	3.706121	-2.900147	5.147948
29	б	0	2.191734	-3.170986	5.228257
30	б	0	1.816538	-4.641782	5.460839
31	1	0	2.113592	-5.281078	4.622504
32	1	0	0.733968	-4.752370	5.587415
33	1	0	1.690820	-2.808601	4.321198
34	1	0	1.786775	-2.567641	6.050145
35	1	0	2.299152	-5.032985	6.364596
36	1	0	4.167245	-3.227747	6.088503
37	1	0	3.871785	-1.817105	5.092075
38	1	0	4.291675	-4.671815	4.024232
39	1	0	5.538094	-3.440805	4.135101

Structure 3-11 in CHCl₃ solution

Center	Atomic	Atomic	c Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
	 6		0 00000	0 00000	0 00000
2	6	0	0.000000	0 000000	1 340722
3	6	0	1 264983	0.000000	-0 771629
4	8	0	2 415632	-0 287873	-0 103791
5	8	0	1 325155	0 287130	-1 957059
6	6	0	1.306805	-0.076690	2.096606
7	6	0	2.312485	-0.861846	1,229627
8	1	0	-0.907239	0.098274	-0.588037
9	1	0	-0.923052	0.112645	1.904213
10	1	0	1.166012	-0.649715	3.024322
11	8	0	1.683036	1.265778	2.375680
12	1	0	2.528473	1.303229	2.871165
13	1	0	1.898107	-1.871154	1.114284
14	6	0	3.684149	-1.000650	1.839409
15	6	0	4.736207	-0.174184	1.769631
16	1	0	3.805072	-1.909222	2.426634
17	1	0	5.641865	-0.477962	2.293196
18	6	0	4.851614	1.142500	1.039652
19	8	0	5.683169	2.054314	1.845029
20	6	0	5.200631	2.513403	3.012046
21	8	0	4.108806	2.206639	3.476395
22	6	0	6.165894	3.464738	3.674894
23	1	0	3.873552	1.609440	0.917410
24	1	0	6.240570	4.379397	3.078458
25	1	0	7.164086	3.022277	3.725372
26	1	0	5.810879	3.711637	4.675057
27	б	0	5.540582	1.050920	-0.328607
28	б	0	6.930355	0.398012	-0.335580
29	6	0	7.579146	0.416187	-1.727867
30	6	0	8.961229	-0.249219	-1.755166
31	1	0	8.900847	-1.301042	-1.451251
32	1	0	9.657239	0.253748	-1.073164
33	1	0	7.667298	1.455057	-2.072792
34	1	0	6.916420	-0.088446	-2.443410
35	1	0	9.397922	-0.217589	-2.759578
36	1	0	7.586878	0.915380	0.375380
37	1	0	6.853559	-0.641754	0.007755
38	1	0	4.861517	0.496933	-0.984679
39	1	0	5.606779	2.070385	-0.728676

Center	Atomic	Atomic	Coord	linates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	 6	0	0.000000	0.00000	0.000000
2	6	0	0.000000	0.000000	1.342149
3	6	0	1.262498	0.000000	-0.776081
4	8	0	2.421322	-0.200796	-0.093985
5	8	0	1.308769	0.244631	-1.971242
6	6	0	1.295437	-0.088319	2.111675
7	6	0	2.360308	-0.784018	1.248453
8	1	0	-0.908479	0.099075	-0.586086
9	1	0	-0.924091	0.115108	1.903995
10	1	0	1.155998	-0.702045	3.006168
11	8	0	1.680234	1.199456	2.609985
12	1	0	1.720631	1.821485	1.863456
13	1	0	2.065815	-1.829728	1.125404
14	б	0	3.755955	-0.680087	1.797995
15	6	0	4.419865	-1.621086	2.481700
16	1	0	4.249676	0.270508	1.606631
17	1	0	5.434207	-1.392280	2.809113
18	6	0	3.921656	-2.983506	2.893047
19	8	0	4.723113	-4.000343	2.198628
20	6	0	4.291860	-4.414663	0.984199
21	8	0	3.259836	-4.025788	0.460083
22	6	0	5.253731	-5.402849	0.371120
23	1	0	2.882134	-3.131125	2.602541
24	1	0	5.557384	-6.154228	1.104098
25	1	0	6.154948	-4.871873	0.047579
26	1	0	4.789945	-5.879895	-0.492176
27	6	0	4.107745	-3.227177	4.394603
28	6	0	3.633754	-4.602293	4.898122
29	6	0	2.129991	-4.899936	4.752184
30	6	0	1.211897	-3.960640	5.547784
31	1	0	1.475257	-3.959719	6.612407
32	1	0	0.165482	-4.274363	5.464437
33	1	0	1.958225	-5.929928	5.088803
34	1	0	1.841587	-4.884332	3.693411
35	1	U	1.270701	-2.925421	5.192892
30	1	U	4.203653	-5.383009	4.381367
3/	1	U	3.904947	-4.6/8635	5.959295
38 20	1	U	5.1/1359	-3.105996	4.633/66
39		U 	3.502035	-2.423039	4.922060

Structure 3-12 in CHCl₃ solution

Structure 3-13 in CHCl₃ solution

Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	 6	0	0.000000	0.000000	0.000000
2	6	0	0.00000	0.00000	1.341412
3	6	0	1.257173	0.00000	-0.774870
4	8	0	2.423638	-0.148762	-0.087724
5	8	0	1.306072	0.193247	-1.979559
6	6	0	1.278939	-0.087867	2.139535
7	6	0	2.404440	-0.684190	1.262089
8	1	0	-0.908962	0.096388	-0.585831
9	1	0	-0.927724	0.111668	1.898237
10	1	0	1.131311	-0.789567	2.966957
11	8	0	1.570222	1.160124	2.759309
12	1	0	1.988537	1.772948	2.119677
13	1	0	2.185254	-1.755879	1.167924
14	6	0	3.756317	-0.533736	1.905322
15	б	0	4.792996	0.260393	1.603488
16	1	0	3.862558	-1.174820	2.779820
17	1	0	5.662034	0.192679	2.256424
18	6	0	4.937798	1.256239	0.478160
19	8	0	5.337475	2.550691	1.066651
20	6	0	4.365113	3.377502	1.486328
21	8	0	3.167631	3.118456	1.430517
22	6	0	4.927121	4.661716	2.043791
23	1	0	3.993822	1.411863	-0.033597
24	1	0	5.717667	5.051748	1.398612
25	1	0	5.367768	4.461317	3.025995
26	1	0	4.128235	5.394749	2.154193
27	6	0	6.014720	0.899044	-0.554407
28	6	0	7.424632	0.632071	-0.003372
29	6	0	8.474122	0.361195	-1.097443
30	6	0	8.812616	1.574028	-1.976832
31	1	0	7.950254	1.917091	-2.558128
32	1	0	9.608799	1.328590	-2.688461
33	1	0	8.131784	-0.467794	-1.731581
34	1	0	9.393877	0.011909	-0.611563
35	1	0	9.159562	2.416846	-1.366785
36	1	0	7.750872	1.485000	0.605426
37	1	0	7.393678	-0.235929	0.666077
38	1	0	5.655539	0.013237	-1.092768
39	1	0	6.038593	1.717482	-1.282652

Center	Atomic	Atomic	Coord	linates (Ang	stroms)
		туре	A		
1	6	0	0.00000	0.00000	0.00000
2	6	0	0.00000	0.000000	1.342119
3	6	0	1.261315	0.000000	-0.77726
4	8	0	2.423360	-0.193054	-0.09521
5	8	0	1.306378	0.232874	-1.97441
6	6	0	1.295102	-0.078991	2.11218
7	6	0	2.366162	-0.770543	1.25157
8	1	0	-0.909139	0.094794	-0.58573
9	1	0	-0.924529	0.110802	1.903992
10	1	0	1.159676	-0.690569	3.00826
11	8	0	1.670991	1.213293	2.604175
12	1	0	1.680498	1.838102	1.85890
13	1	0	2.065118	-1.815097	1.136108
14	6	0	3.755500	-0.652186	1.809142
15	6	0	4.543575	-1.646474	2.239443
16	1	0	4.135484	0.366100	1.858050
17	1	0	5.531252	-1.378376	2.615339
18	6	0	4.242675	-3.122007	2.286059
19	8	0	5.232221	-3.745459	1.39673
20	6	0	4.841325	-4.822118	0.674640
21	8	0	3.723323	-5.309581	0.728829
22	6	0	5.964228	-5.322202	-0.201669
23	1	0	3.255864	-3.356447	1.890389
24	1	0	6.253496	-4.542598	-0.91261
25	1	0	5.639958	-6.211297	-0.74202
26	1	0	6.842471	-5.554796	0.40711
27	6	0	4.416310	-3.724033	3.689869
28	6	0	3.372937	-3.263486	4.72302
29	6	0	1.964160	-3.842833	4.515/5
30	6	0	0.975735	-3.397200	5.60158
31	1	0	-0.019089	-3.824391	5.43393
32	1	0	0.872261	-2.305620	5.62153
33	1	0	1.572753	-3.553924	3.53200.
34	1	0	2.025843	-4.938792	4.504612
35	1	0	1.311717	-3.714658	6.59580
30	1	U	3./29249	-3.50398/	5./1045
3/	1	U	3.323504	-2.100/0/	4./4034.
38 20	1	0	4.3//362	-4.815380	3.59448
ود	T	U	5.423097	-3.4/1100	4.0430/

Structure 3-14 in CHCl₃ solution

Structure 3-15 in CHCl₃ solution

Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Type	Х	Y	Z
1	 6	0	0.000000	0.000000	0.000000
2	б	0	0.000000	0.00000	1.341423
3	б	0	1.257517	0.00000	-0.774685
4	8	0	2.424007	-0.148296	-0.087052
5	8	0	1.305499	0.192669	-1.979365
6	6	0	1.279692	-0.087446	2.138197
7	б	0	2.401782	-0.689334	1.259954
8	1	0	-0.908815	0.096122	-0.586103
9	1	0	-0.927417	0.112379	1.898677
10	1	0	1.132575	-0.784726	2.969423
11	8	0	1.576589	1.163048	2.749830
12	1	0	1.978771	1.773804	2.097854
13	1	0	2.173906	-1.758960	1.161755
14	6	0	3.755779	-0.555785	1.901960
15	6	0	4.804544	0.222499	1.600829
16	1	0	3.856615	-1.202491	2.773058
17	1	0	5.679497	0.133163	2.245913
18	б	0	4.981560	1.218687	0.480965
19	8	0	5.338664	2.517041	1.087384
20	б	0	4.344021	3.337035	1.464413
21	8	0	3.151740	3.076535	1.340986
22	б	0	4.870965	4.612964	2.072735
23	1	0	4.063544	1.358351	-0.079650
24	1	0	5.178717	4.410477	3.104186
25	1	0	4.084157	5.367321	2.081677
26	1	0	5.745254	4.976103	1.528448
27	б	0	6.148112	0.841486	-0.437668
28	б	0	6.426907	1.834943	-1.581037
29	6	0	5.308115	1.995397	-2.626847
30	6	0	5.007719	0.726829	-3.437872
31	1	0	5.913399	0.351344	-3.930139
32	1	0	4.263257	0.928781	-4.215392
33	1	0	5.606133	2.795311	-3.316601
34	1	0	4.386798	2.346024	-2.145496
35	1	0	4.608073	-0.076524	-2.810775
36	1	0	6.657061	2.815302	-1.147730
37	1	0	7.341222	1.505637	-2.092350
38	1	0	7.052860	0.734847	0.173960
39	1	0	5.929586	-0.153972	-0.839563

Center	Atomic	Atomic	Coor	dinates (Ang	gstroms)
Number	Number	Туре	Х	¥	Z
1	6	0	0.000000	0.000000	0.00000
2	6	0	0.00000	0.000000	1.34238
3	6	0	1.261079	0.00000	-0.77793
4	8	0	2.422923	-0.183008	-0.09571
5	8	0	1.303148	0.225272	-1.97739
б	6	0	1.294001	-0.081806	2.11406
7	6	0	2.368880	-0.762805	1.25193
8	1	0	-0.909145	0.095745	-0.58572
9	1	0	-0.925257	0.112193	1.90305
10	1	0	1.164171	-0.704900	3.00217
11	8	0	1.661393	1.207933	2.62046
12	1	0	1.690886	1.835812	1.87849
13	1	0	2.082622	-1.809716	1.14180
14	6	0	3.758699	-0.629525	1.80793
15	6	0	4.510110	-1.585456	2.37059
16	1	0	4.173739	0.374088	1.74258
17	1	0	5.500463	-1.291127	2.71354
18	6	0	4.204789	-3.049921	2.58691
19	8	0	2.785228	-3.204316	2.91760
20	6	0	2.446898	-4.199931	3.77520
21	8	0	3.252591	-4.959939	4.28534
22	6	0	0.955754	-4.231024	4.00927
23	1	0	4.775567	-3.402719	3.44908
24	1	0	0.429988	-4.368016	3.05992
25	1	0	0.624161	-3.280704	4.43786
26	1	0	0.708737	-5.046297	4.68887
27	6	0	4.535932	-3.934694	1.37188
28	6	0	6.022356	-3.917200	0.98403
29	6	0	6.338579	-4.872161	-0.17650
30	6	0	7.817900	-4.854320	-0.58320
31	1	0	8.127499	-3.854252	-0.90875
32	1	0	8.010536	-5.547633	-1.40941
33	1	0	5.718440	-4.605459	-1.04239
34	1	0	6.049156	-5.892825	0.10650
35	1	0	8.463225	-5.146105	0.25382
36	1	0	6.321283	-2.899383	0.70390
37	1	0	6.631936	-4.193644	1.85539
38	1	0	4.235998	-4.960223	1.61596
39	1	0	3.925313	-3.607412	0.52182

Structure 3-16 in CHCl₃ solution

Structure 5-1 in gas phase

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	X	Y	Z
1	8	0	0.00000	0.000000	0.000000
2	6	0	0.000000	0.000000	1.468694
3	6	0	1.429273	0.000000	2.033767
4	6	0	2.242166	1.068692	1.346596
5	6	0	1.920617	1.488428	0.112597
6	6	0	0.811399	0.874551	-0.653712
7	8	0	0.640046	1.066731	-1.847668
8	8	0	2.100874	-1.265712	1.962374
9	б	0	-0.802712	-1.195344	1.893061
10	6	0	-1.926522	-1.189083	2.622566
11	6	0	-2.685365	0.003486	3.147943
12	8	0	-2.617878	-0.009843	4.617264
13	6	0	-4.169533	-0.054438	2.778934
14	6	0	-4.971689	1.175489	3.226148
15	6	0	-6.453961	1.096681	2.830644
16	6	0	-7.259711	2.323171	3.278102
17	6	0	-1.541661	0.560678	5.202963
18	8	0	-0.642460	1.111389	4.585378
19	6	0	-1.597049	0.418349	6.704551
20	1	0	-0.466867	0.932302	1.790904
21	1	0	1.341559	0.219482	3.100230
22	1	0	3.123756	1.449809	1.856874
23	1	0	2.506073	2.227563	-0.425625
24	1	0	2.315065	-1.449632	1.031774
25	1	0	-0.393280	-2.153614	1.580186
26	1	0	-2.372553	-2.151368	2.875421
27	1	0	-2.250088	0.943570	2.808368
28	1	0	-4.228803	-0.159091	1.688628
29	1	0	-4.605423	-0.966413	3.206050
30	1	0	-4.892328	1.287959	4.314220
31	1	0	-4.527263	2.078709	2.785593
32	1	0	-6.534125	0.984487	1.741233
33	1	0	-6.896354	0.190656	3.265668
34	1	0	-8.311328	2.237207	2.982914
35	1	õ	-7.227628	2.442347	4.367578
36	1	õ	-6.862599	3.242629	2.831961
37	1	0 0	-2.579256	0.712269	7.083185
38	1	0	-1 439319	-0 630876	6 974334
39	1	0	-0.817994	1.029078	7.160500
	±	U	0.01/94	1.022070	/.100300

Structure 5-2 in gas phase

Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Туре	Х	¥	Z
1	8	0	0.00000	0.00000	0.00000
2	6	0	0.00000	0.00000	1.46523
3	6	0	1.417457	0.00000	2.04404
4	6	0	2.244122	1.057860	1.35111
5	6	0	1.947947	1.451899	0.10401
6	6	0	0.846898	0.827731	-0.66421
7	8	0	0.701040	0.986736	-1.86707
8	8	0	2.009752	-1.299403	1.87452
9	6	0	-0.807086	-1.197430	1.88135
10	6	0	-1.894490	-1.201668	2.66360
11	6	0	-2.596959	-0.021304	3.28536
12	8	0	-2.508625	-0.145702	4.74884
13	6	0	-4.087893	0.008569	2.94042
14	6	0	-4.831952	1.229477	3.49907
15	6	0	-6.319988	1.247829	3.11841
16	6	0	-7.067278	2.463883	3.68105
17	6	0	-1.404820	0.339183	5.35834
18	8	0	-0.492871	0.901801	4.77059
19	6	0	-1.446555	0.085918	6.84590
20	1	0	-0.469694	0.932255	1.78445
21	1	0	1.314674	0.236760	3.10853
22	1	0	3.111200	1.461519	1.87054
23	1	0	2.541948	2.181293	-0.43812
24	1	0	2.813009	-1.340692	2.41891
25	1	0	-0.433252	-2.145132	1.50133
26	1	0	-2.353351	-2.164792	2.88880
27	1	0	-2.127882	0.923384	3.00917
28	1	0	-4.167480	-0.005854	1.84655
29	1	0	-4.554505	-0.916724	3.30142
30	1	0	-4.736901	1.246852	4.59154
31	1	0	-4.352947	2.146856	3.12955
32	1	0	-6.415813	1.234023	2.02459
33	1	0	-6.797142	0.327089	3.47958
34	1	0	-7.019972	2.485928	4.77625
35	1	0	-6.634409	3.400964	3.31131
36	1	0	-8.124323	2.449016	3.39321
37	1	0	-1.321628	-0.985378	7.03392
38	1	0	-0.641666	0.634320	7.33512
39	1	0	-2.413394	0.382634	7.26015

Structure 5-3 in gas phase

Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	8	0	0.000000	0.000000	0.000000
2	6	0	0.00000	0.00000	1.468522
3	6	0	1.428624	0.00000	2.034409
4	6	0	2.243776	1.065874	1.345541
5	6	0	1.921591	1.487242	0.112212
б	6	0	0.810524	0.875533	-0.653273
7	8	0	0.638025	1.069602	-1.846730
8	8	0	2.099117	-1.266794	1.968386
9	6	0	-0.801895	-1.196302	1.892048
10	6	0	-1.911240	-1.194349	2.643388
11	6	0	-2.647796	-0.007995	3.213834
12	8	0	-2.507505	-0.034540	4.679503
13	6	0	-4.154081	-0.053547	2.944281
14	6	0	-4.510837	0.086099	1.456975
15	6	0	-6.026552	0.077524	1.209223
16	6	0	-6.392537	0.216078	-0.274237
17	6	0	-1.409700	0.540139	5.218372
18	8	0	-0.547077	1.107467	4.564461
19	6	0	-1.386137	0.376744	6.718699
20	1	0	-0.468588	0.931009	1.792047
21	1	0	3.126869	1.444569	1.855043
22	1	0	2.508024	2.225166	-0.426587
23	1	0	2.309663	-1.457900	1.038380
24	1	0	-0.403535	-2.152370	1.558599
25	1	0	-2.357566	-2.158353	2.890142
26	1	0	-2.232237	0.936146	2.860748
27	1	0	-4.559779	-0.992485	3.341790
28	1	0	-4.619665	0.759632	3.513919
29	1	0	-4.085865	1.020360	1.064890
30	1	0	-4.046062	-0.725830	0.883839
31	1	0	-6.452438	-0.854093	1.605050
32	1	0	-6.491900	0.893239	1.778335
33	1	0	-7.478686	0.206116	-0.417932
34	1	0	-6.009391	1.154959	-0.691089
35	1	0	-5.969983	-0.605044	-0.865085
36	1	õ	-0.641164	1.045853	7.149378
37	1	0	-2.370929	0.575806	7.147681
38	1	0 0	-1.121239	-0.657754	6.960908
39	1	Ő	1.338888	0.222870	3,099731

Structure 5-4 in gas phase

Center	Atomic	Atomic	Coord	linates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	8	0	0.000000	0.000000	0.00000
2	б	0	0.00000	0.000000	1.467936
3	6	0	1.428099	0.000000	2.036843
4	6	0	2.246467	1.061110	1.344855
5	6	0	1.926438	1.480870	0.110406
6	6	0	0.814230	0.871319	-0.654764
7	8	0	0.642791	1.063331	-1.848681
8	8	0	2.095826	-1.268553	1.981014
9	6	0	-0.803261	-1.196568	1.889369
10	6	0	-1.890701	-1.202184	2.671898
11	6	0	-2.601828	-0.020996	3.282852
12	8	0	-2.465683	-0.101638	4.745521
13	6	0	-4.104059	-0.044805	2.984910
14	6	0	-4.905388	1.132281	3.566581
15	6	0	-4.573185	2.506077	2.962700
16	6	0	-5.457604	3.627244	3.524587
17	б	0	-1.357216	0.431330	5.305584
18	8	0	-0.485499	1.009695	4.673666
19	6	0	-1.333414	0.205017	6.797572
20	1	0	-0.467857	0.932651	1.788925
21	1	0	1.335085	0.228657	3.100766
22	1	0	3.130395	1.438671	1.853780
23	1	0	2.515442	2.216230	-0.429088
24	1	0	2.313901	-1.465378	1.054035
25	1	0	-0.423800	-2.148651	1.524083
26	1	0	-2.337636	-2.167646	2.910630
27	1	0	-2.158709	0.921100	2.964563
28	1	0	-4.216859	-0.067475	1.893832
29	1	0	-4.515411	-0.989331	3.361586
30	1	0	-5.970409	0.924784	3.400612
31	1	0	-4.767645	1.165105	4.654341
32	1	0	-3.520952	2.756654	3.147444
33	1	0	-4.691450	2.459866	1.871812
34	1	0	-5.337702	3.719170	4.610641
35	1	0	-5.204896	4.595259	3.078140
36	1	0	-6.517909	3.433261	3.323521
37	1	0	-2.313965	0.400830	7.237667
38	1	0	-1.083896	-0.842693	6.995318
39	1	0	-0.577059	0.843668	7.253817

Structure 5-5 in gas phase

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
	 o		0 00000		0 00000
1	6	0	0.000000	0.000000	1 468500
2	0	0	1 /28972	0.000000	2 034286
1	6	0	2 2/2619	1 067996	1 346686
	6	0	1 021045	1 /88/18	0 112817
5	6	0	0 811325	0 874957	-0 653501
7	8	0	0.639551	1 067693	-1 847250
, 8	0	0	2 100169	-1 265982	1 96/732
0	6	0	_0 802197	-1 195/02	1 804/32
10	6	0	-1 015333	-1 103005	2 640604
11	6	0	-2 652198	0 001606	3 101622
12	0 0	0	-2.052190	_0 050102	3.191022 1 661273
12	0	0	4 126240	0.050192	2 007452
14	0	0	-4.130349 E 0047E1	1 124760	2.00/432
14	0	0	-5.004751	-1.134700	2 002110
16	6	0	-0.407001 7 271140	2 112022	2.003110
17	0	0	-7.371140	-2.113033	5.293309
10	0	0	-1.500901	0.439710	1 662706
10	6	0	1 566192	0.900301	4.003700
19	1	0	-1.300182	0.200110	1 700577
20	1	0	1 220004	0.933090	2 100571
21	1	0	2 104725	1 449022	1 956970
22	1	0	3.124/35	1.440022	1.050070
23	1	0	2.500007	2.22/103	1 024767
24	1	0	2.314923	-1.451941	1 560074
25	1	0	-0.396362	-2.151960	1.3000/4
20	1	0	-2.340911	-2.159519	2.094045
27	1	0	-2.1/0230 A EA6727	0.932445	2.004023
∠o 20	1	0	-4.340/3/	0.9/9910	3.444358 1 719174
29	1	0	-4.100459	0.104340	1./101/0 0.720010
20	1	0	-4.0524/9	-2.0009//	4 200006
31	1	0	-4.904465	-1.298211	4.309806
3∠ 22	1	0	-0.050084	-U.UIS31/	3.3/3085
22	1	0	0.200299	-0./00420	1.003143
34	1	U	-8.42083/	-1.933585	3.03500/
35	1	U	-/.05/634	-3.035307	2./899/3
30	1	U	-/.318910	-2.290/90	4.3/4098
31	1	U	-2.543811	0.582506	/.145041
38	1	U	-1.428883	-0.778787	7.003544
39	T	U	-0.//0059	0.802598	1.230293

Structure 5-6 in gas phase

Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	8	0	0.000000	0.000000	0.000000
2	6	0	0.00000	0.00000	1.468508
3	6	0	1.428259	0.00000	2.035390
4	6	0	2.245170	1.064016	1.345376
5	6	0	1.925808	1.482088	0.110203
6	6	0	0.814360	0.870587	-0.655018
7	8	0	0.643299	1.061431	-1.849239
8	8	0	2.098091	-1.267324	1.971804
9	6	0	-0.802521	-1.197128	1.889485
10	б	0	-1.915611	-1.198786	2.635091
11	6	0	-2.661473	-0.013193	3.193803
12	8	0	-2.575370	-0.058573	4.661823
13	6	0	-4.150571	-0.055071	2.843347
14	6	0	-4.931054	1.181051	3.316127
15	6	0	-6.444429	1.106077	3.047978
16	6	0	-6.832940	1.094342	1.562188
17	6	0	-1.479709	0.475796	5.244951
18	8	0	-0.580340	1.026575	4.627693
19	6	0	-1.510508	0.290529	6.742531
20	1	0	-0.467871	0.932386	1.789821
21	1	0	1.338553	0.224400	3.100521
22	1	0	3.127750	1.443216	1.855401
23	1	0	2.514115	2.217771	-0.429656
24	1	0	2.316115	-1.456899	1.043192
25	1	0	-0.401476	-2.152026	1.556115
26	1	0	-2.360976	-2.163853	2.878347
27	1	0	-2.224121	0.930920	2.868109
28	1	0	-4.219777	-0.157166	1.754657
29	1	0	-4.589283	-0.964803	3.273585
30	1	0	-4.770384	1.311323	4.392538
31	1	0	-4.520750	2.076372	2.828524
32	1	0	-6.854373	0.214310	3.541019
33	1	0	-6.922176	1.967271	3.531833
34	1	0	-6.430680	1.972735	1.042952
35	1	0	-6.459847	0.203477	1.045721
36	1	0	-7.922061	1.108124	1.443377
37	1	0	-0.746658	0.915111	7.205630
38	1	0	-2.496850	0.534784	7.144123
39	1	0	-1.307358	-0.759393	6.977933

Structure 5-7 in gas phase

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	8	0	0.000000	0.000000	0.000000
2	б	0	0.00000	0.00000	1.465514
3	6	0	1.417884	0.00000	2.042466
4	6	0	2.241406	1.061923	1.351611
5	б	0	1.943805	1.456950	0.105211
6	6	0	0.844600	0.829998	-0.663586
7	8	0	0.699259	0.989035	-1.866534
8	8	0	2.012180	-1.298132	1.869280
9	6	0	-0.805776	-1.197246	1.884044
10	6	0	-1.914994	-1.194897	2.635388
11	6	0	-2.645692	-0.010003	3.215732
12	8	0	-2.528300	-0.063702	4.683168
13	6	0	-4.148416	-0.033245	2.923858
14	6	0	-4.483322	0.144003	1.435418
15	6	0	-5.995380	0.149125	1.166796
16	6	0	-6.340355	0.326990	-0.317550
17	6	0	-1.434593	0.490165	5.250143
18	8	0	-0.554234	1.059284	4.621621
19	6	0	-1.441053	0.303210	6.748152
20	1	0	-0.469433	0.930717	1.788737
21	1	0	1.316279	0.234119	3.107569
22	1	0	3.107114	1.467499	1.871857
23	1	0	2.535168	2.189133	-0.436027
24	1	0	2.827853	-1.331113	2.395615
25	1	0	-0.412037	-2.149413	1.536691
26	1	0	-2.369270	-2.158116	2.870685
27	1	0	-2.213985	0.935465	2.886438
28	1	0	-4.569081	-0.976778	3.294105
29	1	0	-4.613854	0.771520	3.505574
30	1	0	-4.048626	1.085400	1.072046
31	1	0	-4.014412	-0.656030	0.849178
32	1	0	-6.430714	-0.790354	1.532687
33	1	0	-6.465078	0.952161	1.750236
34	1	0	-7.424433	0.323608	-0.476608
35	1	0	-5.949332	1.275237	-0.704877
36	1	0	-5.911455	-0.479780	-0.923400
37	1	0	-1.231160	-0.746019	6.980182
38	1	0	-0.673551	0.931326	7.200351
39	1	0	-2.422372	0.543464	7.164328

Structure 5-8 in gas phase

Center	Atomic	Atomic	Coord	linates (Ang	stroms)
Number	Number	Туре	х	Y	Z
1	8	0	0.00000	0.000000	0.00000
2	б	0	0.00000	0.000000	1.465556
3	6	0	1.417874	0.000000	2.042475
4	6	0	2.241373	1.062025	1.351707
5	6	0	1.943844	1.456958	0.105282
6	6	0	0.844727	0.829828	-0.663615
7	8	0	0.699539	0.988615	-1.866589
8	8	0	2.012259	-1.298063	1.869143
9	6	0	-0.805803	-1.197321	1.883890
10	6	0	-1.915203	-1.195216	2.634957
11	б	0	-2.646053	-0.010456	3.215358
12	8	0	-2.528984	-0.064488	4.682842
13	6	0	-4.148703	-0.033603	2.923105
14	б	0	-4.483150	0.144073	1.434625
15	6	0	-5.995106	0.149428	1.165502
16	б	0	-6.339571	0.327863	-0.318884
17	б	0	-1.435403	0.489287	5.250050
18	8	0	-0.555162	1.058821	4.621722
19	б	0	-1.441195	0.301179	6.747941
20	1	0	-0.469451	0.930733	1.788708
21	1	0	1.316304	0.233975	3.107605
22	1	0	3.106992	1.467674	1.872027
23	1	0	2.535124	2.189128	-0.436076
24	1	0	2.827648	-1.331208	2.395905
25	1	0	-0.411879	-2.149381	1.536428
26	1	0	-2.369428	-2.158527	2.869948
27	1	0	-2.214200	0.935075	2.886433
28	1	0	-4.569488	-0.977235	3.292966
29	1	0	-4.614285	0.771013	3.504902
30	1	0	-4.048225	1.085518	1.071642
31	1	0	-4.014135	-0.655856	0.848322
32	1	0	-6.430655	-0.790142	1.530907
33	1	0	-6.464928	0.952295	1.749080
34	1	0	-7.423597	0.324587	-0.478302
35	1	0	-5.948384	1.276239	-0.705733
36	1	0	-5.910507	-0.478702	-0.924896
37	1	0	-0.680268	0.936557	7.201146
38	1	0	-2.425104	0.530478	7.164017
39	1	0	-1.219968	-0.746022	6.978779

Structure 5-9 in gas phase

NumberNumberTypeXYZ180 0.00000 0.00000 0.00000 260 0.00000 0.00000 1.468 360 1.429338 0.000000 2.032 460 2.241210 1.070431 1.346 560 1.919520 1.490422 0.112 660 0.811530 0.874387 -0.653 780 0.641197 1.065086 -1.847 880 2.101344 -1.265411 1.95611 960 -0.803628 -1.195611 1.891 1060 -1.906644 -1.19432 2.651 1160 -2.634942 -0.002533 3.228 1280 -2.634947 -0.070298 4.692 1360 -4.125984 -0.021784 2.883 1460 -7.238310 0.155840 3.588 1760 -1.439773 0.446268 5.279 1880 -0.537306 0.994415 4.664 1960 -1.464769 0.243213 6.774 2010 -0.467257 0.932869 1.789 2110 2.302661 -0.425 2310 -2.355039 -2.157748 2.892 2410 2.311346 -1.450545 1.02	Center	Atomic	Atomic	Coordinates (Angstroms)		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number	Number	Туре	X	Y	Z
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	8	0	0.000000	0.000000	1 469416
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	6	0	1 420220	0.000000	1.408410
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	6	0	1.429330	1.070421	2.032903
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	6	0	2.241210	1.070431	1.346811
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	6	0	1.919520	1.490422	0.112893
780 0.641197 1.065086 -1.647 880 2.101344 -1.265411 1.9561 960 -0.803628 -1.195611 1.891 1060 -1.906644 -1.194432 2.651 1160 -2.634942 -0.006253 3.226 1280 -2.543497 -0.070298 4.695 1360 -4.125984 -0.021784 2.882 1460 -4.886949 1.216750 3.381 1560 -7.238310 0.155840 3.588 1760 -1.44769 0.243213 6.774 1660 -0.537306 0.994415 4.664 1960 -1.464769 0.243213 6.774 2010 0.467257 0.932869 1.789 2110 3.122060 1.452263 1.857 2310 2.503990 2.230261 -0.425 2410 2.311346 -1.450545 1.027 2510 -2.185637 0.935679 2.912 2810 -4.204311 -0.087062 1.790 2910 -4.88266 1.272643 4.474 3110 -4.389205 2.114997 2.922 3310 -6.436003 1.196796 1.867 3410 -7	0	6	0	0.811530	0.8/438/	-0.653670
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	/	8	0	0.641197	1.065086	-1.84/996
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	8	0	2.101344	-1.265411	1.958759
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	6	0	-0.803628	-1.195611	1.891413
1160 -2.643942 -0.006253 3.228 1280 -2.543497 -0.070298 4.698 1360 -4.125984 -0.021784 2.883 1460 -4.886949 1.216750 3.381 1560 -6.367271 1.254550 2.961 1660 -7.238310 0.155840 3.586 1760 -1.439773 0.446268 5.279 1880 -0.537306 0.994415 4.664 1960 -1.464769 0.243213 6.774 2010 -0.467257 0.932869 1.789 2110 1.341413 0.217144 3.099 2210 3.122060 1.452263 1.857 2310 2.503990 2.230261 -0.425 2410 2.311346 -1.450545 1.027 2510 -0.412731 -2.150875 1.547 2610 -2.355039 -2.157748 2.896 2710 -4.268404 -0.940122 3.286 3010 -4.389205 2.114997 2.992 2310 -6.777758 2.233098 3.240 3310 -6.436003 1.196796 1.867 3410 -7.183196 0.186545 4.683 3510 <td< td=""><td>10</td><td>6</td><td>U</td><td>-1.906644</td><td>-1.194432</td><td>2.651927</td></td<>	10	6	U	-1.906644	-1.194432	2.651927
1280 -2.543497 -0.070298 4.699 13 60 -4.125984 -0.021784 2.883 14 60 -4.886949 1.216750 3.381 15 60 -6.367271 1.254550 2.961 16 60 -7.238310 0.155840 3.586 17 60 -1.439773 0.446268 5.279 18 80 -0.537306 0.994415 4.664 19 60 -1.464769 0.243213 6.774 20 10 -0.467257 0.932869 1.789 21 10 1.341413 0.217144 3.099 22 10 3.122060 1.452263 1.857 23 10 2.503990 2.230261 -0.425 24 10 2.311346 -1.450545 1.027 25 10 -0.412731 -2.150875 1.547 26 10 -2.355039 -2.157748 2.896 27 10 -4.204311 -0.087062 1.790 29 10 -4.818266 1.272643 4.474 31 10 -4.389205 2.114997 2.992 32 10 -6.436003 1.196796 1.867 34 10 -7.183196 0.186545 4.683 35 10 -8.288968 0.282040 3.304 </td <td>11</td> <td>6</td> <td>0</td> <td>-2.634942</td> <td>-0.006253</td> <td>3.228191</td>	11	6	0	-2.634942	-0.006253	3.228191
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	8	0	-2.543497	-0.070298	4.695105
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	6	0	-4.125984	-0.021784	2.883454
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	6	0	-4.886949	1.216750	3.381327
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	6	0	-6.367271	1.254550	2.961925
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	6	0	-7.238310	0.155840	3.588785
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	6	0	-1.439773	0.446268	5.279260
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	8	0	-0.537306	0.994415	4.664162
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	6	0	-1.464769	0.243213	6.774604
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	1	0	-0.467257	0.932869	1.789324
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	1	0	1.341413	0.217144	3.099674
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	1	0	3.122060	1.452263	1.857814
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	1	0	2.503990	2.230261	-0.425417
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	1	0	2.311346	-1.450545	1.027392
26 1 0 -2.355039 -2.157748 2.896 27 1 0 -2.185637 0.935679 2.912 28 1 0 -4.204311 -0.087062 1.796 29 1 0 -4.568404 -0.940122 3.286 30 1 0 -4.818266 1.272643 4.474 31 1 0 -4.389205 2.114997 2.992 32 1 0 -6.477758 2.233098 3.240 33 1 0 -6.436003 1.196796 1.867 34 1 0 -7.183196 0.186545 4.683 35 1 0 -8.288968 0.282040 3.304	25	1	0	-0.412731	-2.150875	1.547074
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	1	0	-2.355039	-2.157748	2.896388
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	1	0	-2.185637	0.935679	2.912745
29 1 0 -4.568404 -0.940122 3.286 30 1 0 -4.818266 1.272643 4.474 31 1 0 -4.389205 2.114997 2.992 32 1 0 -6.777758 2.233098 3.240 33 1 0 -6.436003 1.196796 1.867 34 1 0 -7.183196 0.186545 4.683 35 1 0 -8.288968 0.282040 3.304	28	1	0	-4.204311	-0.087062	1.790913
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	1	0	-4.568404	-0.940122	3.286202
31 1 0 -4.389205 2.114997 2.992 32 1 0 -6.777758 2.233098 3.240 33 1 0 -6.436003 1.196796 1.867 34 1 0 -7.183196 0.186545 4.683 35 1 0 -8.288968 0.282040 3.304	30	1	0	-4.818266	1.272643	4.474655
32 1 0 -6.777758 2.233098 3.240 33 1 0 -6.436003 1.196796 1.867 34 1 0 -7.183196 0.186545 4.683 35 1 0 -8.288968 0.282040 3.304	31	1	0	-4.389205	2.114997	2.992170
33 1 0 -6.436003 1.196796 1.867 34 1 0 -7.183196 0.186545 4.683 35 1 0 -8.288968 0.282040 3.304	32	1	0	-6.777758	2.233098	3.240995
34 1 0 -7.183196 0.186545 4.683 35 1 0 -8.288968 0.282040 3.304	33	1	0	-6.436003	1.196796	1.867254
35 1 0 -8.288968 0.282040 3.304	34	1	0	-7.183196	0.186545	4.683746
	35	1	0	-8.288968	0.282040	3.304899
36 1 0 -6.931739 -0.845613 3.268	36	1	0	-6.931739	-0.845613	3.268536
37 1 0 -1.243446 -0.806211 6.995	37	1	0	-1.243446	-0.806211	6.995841
38 1 0 -0.708811 0.873182 7.243	38	1	0	-0.708811	0.873182	7.243495
39 1 0 -2.453563 0.466477 7.181	39	1	0	-2.453563	0.466477	7.181980

Structure 5-10 in gas phase

Center	Atomic	Atomic	Coord	linates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	8	0	0.000000	0.000000	0.000000
2	6	0	0.00000	0.000000	1.468310
3	6	0	1.428652	0.000000	2.036161
4	6	0	2.249140	1.058249	1.341970
5	6	0	1.930414	1.475945	0.106543
б	6	0	0.815497	0.868524	-0.656488
7	8	0	0.643260	1.059713	-1.850405
8	8	0	2.095463	-1.269144	1.981842
9	6	0	-0.801095	-1.197600	1.889788
10	6	0	-1.905646	-1.202758	2.648140
11	6	0	-2.643645	-0.025535	3.235931
12	8	0	-2.488350	-0.066560	4.699904
13	6	0	-4.155460	-0.093382	2.991906
14	6	0	-4.575791	0.016092	1.515828
15	6	0	-4.324438	1.388011	0.870101
16	6	0	-4.865414	1.474816	-0.563183
17	6	0	-1.390103	0.510824	5.235152
18	8	0	-0.539838	1.095258	4.580109
19	6	0	-1.348486	0.325511	6.732519
20	1	0	-0.468611	0.930900	1.792300
21	1	0	1.337537	0.230975	3.099638
22	1	0	3.134255	1.434191	1.850049
23	1	0	2.521827	2.207696	-0.435277
24	1	0	2.309033	-1.468169	1.054352
25	1	0	-0.404340	-2.151530	1.548446
26	1	0	-2.347067	-2.170371	2.889391
27	1	0	-2.236054	0.924193	2.891936
28	1	0	-4.527258	-1.037337	3.408939
29	1	0	-4.624068	0.712527	3.569652
30	1	0	-4.075846	-0.762904	0.926082
31	1	0	-5.649417	-0.205085	1.461327
32	1	0	-4.793033	2.167461	1.486074
33	1	0	-3.250241	1.610329	0.857298
34	1	0	-4.393212	0.726391	-1.210012
35	1	0	-5.948004	1.302345	-0.588763
36	1	0	-4.673832	2.460705	-1.000772
37	1	0	-2.329072	0.514045	7.175741
38	1	0	-1.076695	-0.711419	6.956129
39	1	0	-0.601346	0.991335	7.164500

Structure 5-11 in gas phase

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	8	0	0.000000	0.000000	0.000000	
2	6	0	0.00000	0.000000	1.458468	
3	6	0	1.418927	0.00000	2.073602	
4	6	0	2.328536	0.918946	1.304339	
5	6	0	2.045827	1.308998	0.053812	
6	6	0	0.879803	0.776488	-0.681960	
7	8	0	0.710555	0.950534	-1.879587	
8	8	0	2.033298	-1.283996	2.140003	
9	6	0	-0.833669	-1.203078	1.838818	
10	6	0	-1.425207	-1.461385	3.010592	
11	6	0	-1.416460	-0.602558	4.250048	
12	8	0	-1.136786	-1.449316	5.420870	
13	6	0	-2.749896	0.099007	4.543131	
14	6	0	-3.978766	-0.814169	4.660473	
15	6	0	-5.255001	-0.036455	5.015813	
16	6	0	-6.493174	-0.935377	5.126764	
17	6	0	0.114715	-1.911796	5.593478	
18	8	0	1.046706	-1.662460	4.838540	
19	6	0	0.221873	-2.776552	6.824265	
20	1	0	-0.485964	0.933466	1.766022	
21	1	0	1.312819	0.401014	3.088803	
22	1	0	3.248875	1.230883	1.792983	
23	1	0	2.701740	1.958250	-0.517865	
24	1	0	1.741764	-1.679082	2.984812	
25	1	0	-0.936277	-1.930981	1.037219	
26	1	0	-1.982529	-2.392004	3.102204	
27	1	0	-0.626737	0.149777	4.203767	
28	1	0	-2.623104	0.672304	5.470028	
29	1	0	-2.908097	0.830687	3.741199	
30	1	0	-4.138144	-1.346212	3.714362	
31	1	0	-3.796765	-1.579746	5.424707	
32	1	0	-5.103771	0.495047	5.964899	
33	1	0	-5.432136	0.736595	4.256158	
34	1	0	-6.695007	-1.451305	4.180654	
35	1	0	-6.359152	-1.700759	5.900342	
36	1	0	-7.384537	-0.353039	5.385027	
37	1	0	-0.239674	-2.282185	7.682570	
38	1	0	-0.317347	-3.713921	6.653857	
39	1	0	1.269403	-2.994809	7.029985	

Structure 5-12 in gas phase

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	¥	Z
1	8	0	0.000000	0.000000	0.00000
2	б	0	0.00000	0.000000	1.468295
3	6	0	1.428715	0.000000	2.03527
4	6	0	2.245344	1.063600	1.344514
5	6	0	1.925625	1.482117	0.109570
6	б	0	0.813732	0.871315	-0.65525
7	8	0	0.641708	1.062872	-1.84915
8	8	0	2.097600	-1.267625	1.972980
9	6	0	-0.803202	-1.196154	1.889883
10	6	0	-1.912369	-1.196104	2.641284
11	6	0	-2.653474	-0.010098	3.206364
12	8	0	-2.562705	-0.059807	4.673580
13	6	0	-4.143997	-0.059944	2.86026
14	6	0	-4.982636	1.113610	3.39908
15	6	0	-4.616092	2.512111	2.868212
16	6	0	-4.780673	2.681787	1.35077
17	6	0	-1.465040	0.474202	5.25369
18	8	0	-0.572890	1.035065	4.634850
19	6	0	-1.481467	0.271411	6.749139
20	1	0	-0.467329	0.932190	1.79096
21	1	0	1.338838	0.225182	3.10029
22	1	0	3.128272	1.442547	1.854092
23	1	0	2.513864	2.218089	-0.42998
24	1	0	2.309588	-1.461099	1.04385
25	1	0	-0.406726	-2.151597	1.55261
26	1	0	-2.358767	-2.160456	2.88571
27	1	0	-2.210843	0.930860	2.882360
28	1	0	-4.220121	-0.115922	1.768600
29	1	0	-4.556333	-1.000812	3.244920
30	1	0	-6.032868	0.909093	3.15298
31	1	0	-4.921720	1.119715	4.493619
32	1	0	-5.256049	3.242771	3.37854
33	1	0	-3.588612	2.769250	3.15612
34	1	0	-4.101970	2.032603	0.787090
35	1	0	-5.803947	2.443330	1.03635
36	1	0	-4.571480	3.713706	1.048069
37	1	0	-0.740518	0.920142	7.216394
38	1	0	-2.474515	0.468650	7.15940
39	1	0	-1.232169	-0.772001	6.969086
Structure 5-13 in gas phase

Center	Atomic	Atomic	Coord	linates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	8	0	0.000000	0.000000	0.000000
2	6	0	0.00000	0.000000	1.472538
3	б	0	1.429753	0.00000	2.030708
4	б	0	2.239953	1.072600	1.345904
5	6	0	1.915407	1.495183	0.113829
6	б	0	0.804611	0.882343	-0.651522
7	8	0	0.628246	1.081669	-1.843656
8	8	0	2.104522	-1.263906	1.953591
9	б	0	-0.807695	-1.184555	1.924640
10	б	0	-2.117748	-1.178419	2.208434
11	б	0	-3.069940	-0.017669	2.071169
12	8	0	-3.646091	0.278071	3.391168
13	б	0	-4.246513	-0.283441	1.121662
14	б	0	-5.140703	-1.483703	1.472984
15	6	0	-6.412583	-1.575213	0.610271
16	б	0	-6.155693	-1.841500	-0.880247
17	б	0	-2.946221	1.097920	4.208059
18	8	0	-1.884775	1.619728	3.902709
19	6	0	-3.645235	1.272796	5.534608
20	1	0	-0.469158	0.933217	1.794516
21	1	0	1.355636	0.212857	3.100530
22	1	0	3.122718	1.452083	1.855139
23	1	0	2.499295	2.236269	-0.423343
24	1	0	2.304108	-1.451680	1.020360
25	1	0	-0.252562	-2.113226	2.036735
26	1	0	-2.564950	-2.105690	2.562909
27	1	0	-2.547859	0.877948	1.735631
28	1	0	-4.854977	0.629814	1.098649
29	1	0	-3.820541	-0.400915	0.119027
30	1	0	-4.575273	-2.418182	1.366763
31	1	0	-5.435794	-1.413445	2.526436
32	1	0	-7.042375	-2.379379	1.011123
33	1	0	-6.992855	-0.649331	0.722409
34	1	0	-5.607754	-1.021367	-1.356254
35	1	0	-5.570111	-2.758133	-1.021235
36	1	0	-7.099388	-1.963015	-1.423597
37	1	0	-3.610013	0.330380	6.090406
38	1	0	-3.148163	2.052104	6.112029
39	1	0	-4.697397	1.527136	5.383315

Structure 5-14 in gas phase

Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	8	0	0.000000	0.000000	0.000000
2	6	0	0.000000	0.000000	1.468/1/
3	6	0	1.4292/5	1.000000	2.033691
4	6	0	2.243080	1.06//56	1.34585/
5	6	0	1.921869	1.48/406	0.111/19
0	0	0	0.812433	0.8/2928	-0.65434/
/	8	0	0.642520	1.063367	-1.848/13
8	8	0	2.100641	-1.266033	1.965658
9	6	0	-0.800958	-1.196308	1.893890
10	6	0	-1.943257	-1.190532	2.594269
11	6	0	-2./26/24	-0.001253	3.0910/9
12	8	0	-2.653976	0.024525	4.561434
13	6	0	-4.221038	-0.09/396	2.763620
14	6	0	-4.549406	-0.078956	1.259198
15	6	0	-4.206156	1.219016	0.504016
16	6	0	-4.9589/3	2.463081	0.99/389
17	6	0	-1.591434	0.637331	5.129286
18	8	0	-0.706902	1.193393	4.4954/2
19	6	0	-1.641341	0.534315	6.634350
20	1	0	-0.467268	0.931455	1.792677
21	1	0	1.341942	0.221403	3.099817
22	1	0	3.124816	1.448200	1.856347
23	1	0	2.507887	2.225589	-0.427205
24	1	0	2.313421	-1.454451	1.035561
25	1	0	-0.373979	-2.155241	1.607650
26	1	0	-2.384690	-2.154503	2.849784
27	1	0	-2.309263	0.937662	2.729818
28	1	0	-4.609613	-1.024108	3.203295
29	1	0	-4./294/4	0.726302	3.2/6266
30	1	0	-4.042258	-0.918591	0.768331
31	1	0	-5.625023	-0.270791	1.154385
32	1	0	-3.125761	1.405403	0.541859
33	1	0	-4.438994	1.060711	-0.556073
34	1	0	-4.693996	2.725707	2.027509
35	1	U	-4.728805	3.331420	0.370284
36	Ţ	U	-6.044064	2.306745	0.963855
37	1	U	-0.882657	1.182720	7.072403
38	1	U	-2.632517	0.805064	7.006629
39	1	0	-1.44/987	-0.501410	6.931617

Structure 5-15 in gas phase

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	8		0.00000	0.000000	0.00000
2	6	0	0.00000	0.000000	1.465546
3	6	0	1.417833	0.000000	2.043173
4	6	0	2.242290	1.060427	1.351526
5	6	0	1.946593	1.453579	0.104119
6	6	0	0.847741	0.826200	-0.664759
7	8	0	0.704207	0.982321	-1.868228
8	8	0	2.009714	-1.299212	1.871599
9	6	0	-0.806135	-1.197040	1.883754
10	6	0	-1.920152	-1.194063	2.627865
11	6	0	-2.661701	-0.006366	3.188391
12	8	0	-2.601872	-0.068424	4.657148
13	6	0	-4.145470	-0.039598	2.811998
14	6	0	-4.984104	1.137871	3.342208
15	6	0	-4.595364	2.536216	2.826973
16	6	0	-4.732967	2.717234	1.308109
17	6	0	-1.514784	0.454110	5.265785
18	8	0	-0.603187	1.011286	4.672195
19	б	0	-1.572154	0.246688	6.759857
20	1	0	-0.468325	0.931647	1.788092
21	1	0	1.316982	0.235421	3.108471
22	1	0	3.107414	1.466539	1.872379
23	1	0	2.539050	2.184807	-0.437230
24	1	0	2.838940	-1.324961	2.376933
25	1	0	-0.408567	-2.149798	1.542511
26	1	0	-2.373772	-2.156902	2.865189
27	1	0	-2.204524	0.933563	2.882142
28	1	0	-4.199732	-0.087101	1.718677
29	1	0	-4.574077	-0.979363	3.181220
30	1	0	-6.031198	0.944279	3.074796
31	1	0	-4.944487	1.136812	4.437778
32	1	0	-5.236693	3.269813	3.331386
33	1	0	-3.570359	2.781382	3.133589
34	1	0	-4.508887	3.749001	1.015705
35	1	0	-4.051422	2.065144	0.751293
36	1	0	-5.753169	2.490793	0.975357
37	1	0	-2.559534	0.506108	7.149461
38	1	0	-1.396414	-0.810862	6.982436
39	1	0	-0.803464	0.848149	7.245053

Structure 5-16 in gas phase

Center	Atomic	Atomic	Coord	linates (Angs	stroms)
Number	Number	Туре	X	Y	Z
1	8	0	0.00000	0.000000	0.00000
2	б	0	0.00000	0.000000	1.467983
3	6	0	1.428674	0.00000	2.034592
4	6	0	2.242677	1.068250	1.347596
5	б	0	1.921666	1.487845	0.113299
6	6	0	0.813387	0.872534	-0.653622
7	8	0	0.644555	1.062179	-1.848339
8	8	0	2.100035	-1.265922	1.965842
9	6	0	-0.799837	-1.197782	1.892561
10	б	0	-1.891439	-1.206617	2.670016
11	б	0	-2.606004	-0.018468	3.263865
12	8	0	-2.502144	-0.093124	4.730033
13	б	0	-4.102509	0.054956	2.932200
14	6	0	-4.956180	-1.152135	3.353704
15	6	0	-6.458199	-0.975221	3.060507
16	б	0	-7.155123	0.102148	3.904444
17	б	0	-1.399095	0.432521	5.308028
18	8	0	-0.503923	0.987521	4.688350
19	б	0	-1.418481	0.234678	6.804208
20	1	0	-0.466840	0.932979	1.789073
21	1	0	1.337423	0.219859	3.100577
22	1	0	3.124048	1.449172	1.858403
23	1	0	2.507505	2.226190	-0.425609
24	1	0	2.319632	-1.450669	1.036680
25	1	0	-0.409194	-2.149663	1.538721
26	1	0	-2.320490	-2.175707	2.918113
27	1	0	-2.135178	0.914136	2.955405
28	1	0	-4.484524	0.968614	3.401147
29	1	0	-4.184143	0.202768	1.847736
30	1	0	-4.608583	-2.048699	2.827218
31	1	0	-4.818126	-1.344546	4.424897
32	1	0	-6.596074	-0.752420	1.993840
33	1	0	-6.956400	-1.936711	3.236551
34	1	0	-8.229640	0.128178	3.691821
35	1	0	-7.032676	-0.097373	4.975920
36	1	0	-6.759445	1.103758	3.705559
37	1	0	-0.620602	0.818974	7.262309
38	1	0	-2.387034	0.524257	7.219352
39	1	0	-1.265636	-0.825660	7.029729

Structure 5-17 in gas phase

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	8	0	0.000000	0.000000	0.000000
2	6	0	0.000000	0.00000	1.461014
3	6	0	1.419772	0.00000	2.058003
4	6	0	2.278980	1.006710	1.341703
5	6	0	1.981535	1.407591	0.097585
б	6	0	0.858507	0.816149	-0.664181
7	8	0	0.706553	0.986856	-1.864353
8	8	0	2.092398	-1.264808	1.968389
9	6	0	-0.798965	-1.207803	1.868821
10	6	0	-1.781019	-1.266629	2.778311
11	6	0	-2.360631	-0.128547	3.581550
12	8	0	-2.263467	-0.464818	5.009452
13	6	0	-3.843698	0.151076	3.298202
14	6	0	-4.807562	-1.025236	3.519065
15	6	0	-6.283307	-0.672001	3.255644
16	6	0	-6.894183	0.325626	4.251021
17	6	0	-1.097907	-0.201998	5.641072
18	8	0	-0.129888	0.309476	5.098666
19	6	0	-1.153354	-0.626327	7.088447
20	1	0	-0.479799	0.929998	1.777474
21	1	0	1.307036	0.292789	3.107653
22	1	0	3.169327	1.369204	1.850246
23	1	0	2.595952	2.114561	-0.451260
24	1	0	1.774607	-1.824688	2.696390
25	1	0	-0.507924	-2.124416	1.358819
26	1	0	-2.228014	-2.239955	2.973212
27	1	0	-1.793219	0.789155	3.427845
28	1	0	-4.132166	1.000471	3.927508
29	1	0	-3.912424	0.493517	2.257904
30	1	0	-4.530645	-1.853139	2.855829
31	1	0	-4.702905	-1.397255	4.545752
32	1	0	-6.386476	-0.281223	2.234314
33	1	0	-6.867144	-1.600404	3.285269
34	1	0	-6.410434	1.307030	4.203066
35	1	0	-7.959602	0.477728	4.045422
36	1	0	-6.803315	-0.040265	5.280990
37	1	0	-1.213348	-1.717730	7.146564
38	1	0	-0.257684	-0.284004	7.606396
39	1	0	-2.046563	-0.221804	7.571481

Structure 5-18 in gas phase

Center	Atomic	Atomic	Coord	linates (Angs	stroms)
Number	Number	Туре	X	¥	Z
1	8	0	0.00000	0.000000	0.00000
2	б	0	0.00000	0.000000	1.458242
3	6	0	1.419105	0.000000	2.072819
4	6	0	2.327492	0.920765	1.304314
5	6	0	2.042360	1.314495	0.055425
б	6	0	0.876773	0.781146	-0.680728
7	8	0	0.706005	0.957633	-1.877780
8	8	0	2.034851	-1.283425	2.137860
9	6	0	-0.834327	-1.202083	1.840088
10	6	0	-1.426986	-1.455775	3.012362
11	6	0	-1.414097	-0.592958	4.249083
12	8	0	-1.143828	-1.438518	5.422647
13	6	0	-2.738246	0.127901	4.538151
14	6	0	-3.981164	-0.769367	4.646115
15	6	0	-5.279146	0.008314	4.930083
16	б	0	-5.346941	0.663674	6.317483
17	6	0	0.105470	-1.906851	5.597272
18	8	0	1.037375	-1.667499	4.839184
19	6	0	0.210382	-2.756779	6.838478
20	1	0	-0.485346	0.933908	1.765704
21	1	0	1.312505	0.400057	3.088222
22	1	0	3.248099	1.232574	1.792541
23	1	0	2.696525	1.966568	-0.515050
24	1	0	1.746026	-1.679718	2.982877
25	1	0	-0.936712	-1.932331	1.040597
26	1	0	-1.984350	-2.385949	3.107256
27	1	0	-0.615765	0.150138	4.201443
28	1	0	-2.597737	0.701705	5.461067
29	1	0	-2.883386	0.859000	3.732722
30	1	0	-4.108934	-1.322184	3.707961
31	1	0	-3.827592	-1.518260	5.433108
32	1	0	-5.419051	0.773961	4.155053
33	1	0	-6.122909	-0.685226	4.827078
34	1	0	-4.577864	1.432064	6.450503
35	1	0	-6.318695	1.145132	6.473474
36	1	0	-5.213840	-0.081207	7.111427
37	1	0	1.247987	-3.048582	6.997512
38	1	0	-0.164159	-2.207278	7.706219
39	1	0	-0.409607	-3.651039	6.722724

Structure 5-19 in gas phase

Center	Atomic	Atomic	Coord	linates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	8	0	0.000000	0.000000	0.000000
2	б	0	0.00000	0.000000	1.468941
3	б	0	1.429124	0.00000	2.033042
4	б	0	2.242536	1.068592	1.345581
5	б	0	1.921374	1.487912	0.111270
6	б	0	0.812781	0.872259	-0.654771
7	8	0	0.642854	1.061618	-1.849406
8	8	0	2.100516	-1.266047	1.961883
9	б	0	-0.800330	-1.197855	1.890942
10	б	0	-1.925000	-1.200437	2.619720
11	6	0	-2.670783	-0.016358	3.180170
12	8	0	-2.530683	-0.050121	4.647864
13	б	0	-4.183458	-0.031390	2.925999
14	6	0	-4.607646	0.184069	1.458784
15	б	0	-4.599404	-1.068582	0.567489
16	б	0	-5.102024	-0.782619	-0.853846
17	б	0	-1.436649	0.526784	5.191758
18	8	0	-0.577651	1.105821	4.543320
19	б	0	-1.414363	0.352460	6.690895
20	1	0	-0.467723	0.931479	1.792629
21	1	0	1.341069	0.219637	3.099194
22	1	0	3.123708	1.449965	1.856384
23	1	0	2.506950	2.226424	-0.427687
24	1	0	2.306814	-1.455081	1.030480
25	1	0	-0.390851	-2.153083	1.568909
26	1	0	-2.367640	-2.166218	2.864109
27	1	0	-2.249069	0.926996	2.832910
28	1	0	-4.606349	-0.968615	3.309121
29	1	0	-4.603158	0.773507	3.539893
30	1	0	-5.626987	0.590177	1.464848
31	1	0	-3.980378	0.963177	1.003929
32	1	0	-5.232363	-1.838315	1.029643
33	1	0	-3.589648	-1.488835	0.514842
34	1	0	-6.124710	-0.386525	-0.841759
35	1	0	-5.104026	-1.692668	-1.463976
36	1	0	-4.465833	-0.046147	-1.358541
37	1	0	-1.193281	-0.693322	6.927878
38	1	0	-0.642999	0.989663	7.123258
39	1	0	-2.389652	0.590162	7.122547

Structure 5-20 in gas phase

Center	Atomic	Atomic	Coord	linates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	8	0	0.00000	0.000000	0.00000
2	б	0	0.00000	0.000000	1.468883
3	6	0	1.429140	0.000000	2.032960
4	6	0	2.242452	1.068692	1.345545
5	6	0	1.921247	1.488091	0.111272
6	6	0	0.812713	0.872418	-0.654785
7	8	0	0.642654	1.061843	-1.849384
8	8	0	2.100548	-1.266024	1.961632
9	6	0	-0.800277	-1.197897	1.890896
10	6	0	-1.924623	-1.200610	2.620181
11	6	0	-2.670127	-0.016632	3.181220
12	8	0	-2.529550	-0.050811	4.648846
13	б	0	-4.182904	-0.031493	2.927570
14	б	0	-4.607630	0.184460	1.460581
15	6	0	-4.599951	-1.067933	0.568907
16	б	0	-5.103125	-0.781471	-0.852127
17	б	0	-1.435128	0.525606	5.192494
18	8	0	-0.576523	1.105124	4.543942
19	б	0	-1.411005	0.349213	6.691338
20	1	0	-0.467730	0.931464	1.792634
21	1	0	1.341166	0.219563	3.099132
22	1	0	3.123599	1.450140	1.856341
23	1	0	2.506721	2.226712	-0.427653
24	1	0	2.307103	-1.454792	1.030233
25	1	0	-0.391001	-2.153059	1.568402
26	1	0	-2.367195	-2.166434	2.864512
27	1	0	-2.248465	0.926774	2.834054
28	1	0	-4.605709	-0.968809	3.310563
29	1	0	-4.602312	0.773244	3.541874
30	1	0	-5.626912	0.590711	1.467176
31	1	0	-3.980438	0.963614	1.005704
32	1	0	-3.590287	-1.488335	0.515719
33	1	0	-5.232837	-1.837701	1.031104
34	1	0	-6.125752	-0.385240	-0.839475
35	1	0	-4.467053	-0.044917	-1.356853
36	1	0	-5.105509	-1.691323	-1.462543
37	1	0	-2.389877	0.570081	7.123597
38	1	0	-1.172583	-0.693388	6.925810
39	1	0	-0.649512	0.997277	7.125134

Structure 5-21 in gas phase

Center	Atomic	Atomic	Lic Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
l	8	0	0.000000	0.000000	0.000000	
2	6	0	0.000000	0.000000	1.462008	
3	6	0	1.421000	0.000000	2.056000	
4	6	0	2.275102	1.012767	1.341817	
5	6	0	1.977580	1.412483	0.097419	
6	6	0	0.857720	0.816145	-0.665076	
7	8	0	0.707330	0.983674	-1.865897	
8	8	0	2.097760	-1.262520	1.957733	
9	6	0	-0.801331	-1.205297	1.867552	
10	6	0	-1.841355	-1.248153	2.711165	
11	6	0	-2.503840	-0.105664	3.439165	
12	8	0	-2.352233	-0.326612	4.886663	
13	6	0	-4.017947	-0.050484	3.200539	
14	6	0	-4.429301	0.251123	1.747999	
15	6	0	-4.059439	1.646605	1.210505	
16	6	0	-4.717247	2.814610	1.959734	
17	6	0	-1.213840	0.099243	5.476723	
18	8	0	-0.313236	0.674207	4.883758	
19	6	0	-1.203580	-0.234771	6.948677	
20	1	0	-0.477657	0.929404	1.782077	
21	1	0	1.308983	0.289907	3.106204	
22	1	0	3.162725	1.379741	1.851863	
23	1	0	2.589633	2.122180	-0.450595	
24	1	0	1.801874	-1.821488	2.695350	
25	1	0	-0.467475	-2.135168	1.410388	
26	1	0	-2.293705	-2.220987	2.906786	
27	1	0	-2.035769	0.850145	3.206857	
28	1	0	-4.447406	-1.013804	3.501705	
29	1	0	-4.435024	0.700651	3.880033	
30	1	0	-4.000783	-0.510306	1.085144	
31	1	0	-5.518359	0.131018	1.683274	
32	1	0	-2.970277	1.780119	1.210621	
33	1	0	-4.359008	1.688437	0.156230	
34	1	0	-5.808979	2.710774	1.970443	
35	1	0	-4.380257	2.881241	3.000062	
36	1	0	-4.478812	3.769383	1.478328	
37	1	0	-1.115787	-1.318680	7.074488	
38	1	0	-0.357796	0.255136	7.430723	
39	1	õ	-2.139627	0.076226	7.419418	
	-	0	2.13/02/	5.070220	,	

Structure 5-1 in CHCl₃ solution

$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
Number Number Type X Y Z 1 8 0 0.000000 0.000000 0.000000 2 6 0 0.000000 0.000000 1.463330 3 6 0 1.431351 0.000000 2.024179 4 6 0 2.226332 1.093402 1.353552 5 6 0 1.893376 1.525890 0.127227 6 6 0 0.789328 0.906108 -0.650200 7 8 0 2.110943 -1.25754 1.908624 9 6 0 -0.794283 -1.2004248 2.614173 11 6 0 -2.692774 -0.017395 3.132105 12 8 0 -2.613893 -0.004494 4.600282 13 6 0 -4.995476 1.123927 3.216593 14 6 0 -1.51807 0.561971 5.159686 18	Center	Atomic	Atomic	Coord	linates (Angs	stroms)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Number	Number	Туре	X	Y	Z
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	8	0	0.000000	0.000000	0.000000
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	6	0	0.000000	0.000000	1.463330
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	6	0	1.431351	0.000000	2.024179
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	6	0	2.226332	1.093402	1.353552
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	6	0	1.893376	1.525890	0.127227
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	6	0	0.789328	0.906108	-0.650200
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	8	0	0.614624	1.117440	-1.834130
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	8	0	2.110943	-1.257254	1.908624
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	6	0	-0.794283	-1.200883	1.889676
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	6	0	-1.920750	-1.204248	2.614173
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	б	0	-2.692774	-0.017395	3.132105
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	8	0	-2.613893	-0.004649	4.600282
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	6	0	-4.179383	-0.099976	2.778123
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	6	0	-4.995476	1.123927	3.216593
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	6	0	-6.480001	1.020715	2.835324
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	6	0	-7.298863	2.241402	3.274423
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	6	0	-1.519807	0.561971	5.159686
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	8	0	-0.625961	1.094471	4.523981
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	6	0	-1.551676	0.436644	6.664967
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	1	0	-0.468959	0.928001	1.796539
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	1	0	1.351518	0.188844	3.097054
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	1	0	3.104318	1.478759	1.867899
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	1	0	2.462588	2.281954	-0.405457
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	1	0	2.305047	-1.410104	0.968582
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	1	0	-0.372550	-2.155431	1.582182
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	1	0	-2.358477	-2.169933	2.869572
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	1	0	-2.272816	0.923358	2.774023
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	1	0	-4.247793	-0.222713	1.690087
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	1	0	-4.598559	-1.011316	3.223456
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	1	0	-4.906987	1.250863	4.302301
32 1 0 -6.568763 0.893187 1.748217 33 1 0 -6.906471 0.114039 3.284893 34 1 0 -8.351647 2.137607 2.990009 35 1 0 -7.259522 2.375642 4.361827 36 1 0 -6.919424 3.160928 2.813597 37 1 0 -2.532214 0.719132 7.056640 38 1 0 -1.373661 -0.607079 6.944094 39 1 0 -0.773005 1.063614 7.099366	31	1	0	-4.567814	2.028468	2.761834
33 1 0 -6.906471 0.114039 3.284893 34 1 0 -8.351647 2.137607 2.990009 35 1 0 -7.259522 2.375642 4.361827 36 1 0 -6.919424 3.160928 2.813597 37 1 0 -2.532214 0.719132 7.056640 38 1 0 -1.373661 -0.607079 6.944094 39 1 0 -0.773005 1.063614 7.099366	32	1	0	-6.568763	0.893187	1.748217
34 1 0 -8.351647 2.137607 2.990009 35 1 0 -7.259522 2.375642 4.361827 36 1 0 -6.919424 3.160928 2.813597 37 1 0 -2.532214 0.719132 7.056640 38 1 0 -1.373661 -0.607079 6.944094 39 1 0 -0.773005 1.063614 7.099336	33	1	0	-6.906471	0.114039	3.284893
35 1 0 -7.259522 2.375642 4.361827 36 1 0 -6.919424 3.160928 2.813597 37 1 0 -2.532214 0.719132 7.056640 38 1 0 -1.373661 -0.607079 6.944094 39 1 0 -0.773005 1.063614 7.09936	34	1	0	-8.351647	2.137607	2.990009
36 1 0 -6.919424 3.160928 2.813597 37 1 0 -2.532214 0.719132 7.056640 38 1 0 -1.373661 -0.607079 6.944094 39 1 0 -0.773005 1.063614 7.099336	35	1	0	-7.259522	2.375642	4.361827
37 1 0 -2.532214 0.719132 7.056640 38 1 0 -1.373661 -0.607079 6.944094 39 1 0 -0.773005 1.063614 7.099336	36	1	0	-6.919424	3.160928	2.813597
38 1 0 -1.373661 -0.607079 6.944094 39 1 0 -0.773005 1.063614 7.099336	37	1	0	-2.532214	0.719132	7.056640
39 1 0 -0.773005 1.063614 7.099336	38	1	0	-1.373661	-0.607079	6.944094
	39	1	0	-0.773005	1.063614	7.099336

Structure 5-2 in CHCl₃ solution

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	X	Y	Z	
1	8	0	0.000000	0.000000	0.000000	
2	6	0	0.000000	0.00000	1.463332	
3	б	0	1.430953	0.00000	2.024172	
4	б	0	2.226364	1.092626	1.352843	
5	б	0	1.892041	1.527018	0.127556	
6	б	0	0.786728	0.909000	-0.649345	
7	8	0	0.609404	1.123315	-1.832336	
8	8	0	2.110220	-1.257632	1.910202	
9	б	0	-0.794046	-1.201170	1.889415	
10	б	0	-1.913796	-1.204872	2.624349	
11	б	0	-2.672406	-0.020873	3.168999	
12	8	0	-2.550573	-0.018132	4.635240	
13	б	0	-4.174205	-0.088001	2.879726	
14	6	0	-4.510696	0.035050	1.386197	
15	б	0	-6.021576	-0.002618	1.112733	
16	б	0	-6.364910	0.122251	-0.377268	
17	6	0	-1.445918	0.553056	5.167520	
18	8	0	-0.574642	1.098468	4.511278	
19	б	0	-1.431645	0.413648	6.671882	
20	1	0	-0.470328	0.926954	1.797299	
21	1	0	3.105181	1.476937	1.866531	
22	1	0	2.461071	2.283372	-0.404923	
23	1	0	2.302039	-1.413316	0.970140	
24	1	0	-0.377723	-2.155197	1.572784	
25	1	0	-2.352816	-2.170848	2.877658	
26	1	0	-2.262811	0.921788	2.803906	
27	1	0	-4.573172	-1.028738	3.280408	
28	1	0	-4.659574	0.721617	3.438149	
29	1	0	-4.096271	0.974070	0.993721	
30	1	0	-4.019552	-0.769702	0.825320	
31	1	0	-6.437699	-0.939763	1.506356	
32	1	0	-6.512428	0.806454	1.670166	
33	1	0	-7.447875	0.091554	-0.539613	
34	1	0	-5.992277	1.065651	-0.792945	
35	1	0	-5.917349	-0.692833	-0.957576	
36	1	0	-0.681246	1.083038	7.092836	
37	1	0	-2.416859	0.628324	7.092825	
38	1	0	-1.178089	-0.619262	6.932905	
39	1	0	1.350520	0.190298	3.096595	

Structure 5-3 in CHCl₃ solution

Center	Atomic	Atomic	Coord	linates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	8	0	0.000000	0.000000	0.000000
2	6	0	0.00000	0.000000	1.462975
3	6	0	1.431656	0.000000	2.023501
4	6	0	2.226460	1.093283	1.352447
5	6	0	1.892235	1.527150	0.126958
6	6	0	0.788110	0.907466	-0.650152
7	8	0	0.612451	1.119245	-1.833810
8	8	0	2.110243	-1.257557	1.907773
9	6	0	-0.791949	-1.202765	1.889385
10	6	0	-1.899043	-1.213707	2.643056
11	6	0	-2.652589	-0.033060	3.200907
12	8	0	-2.532766	-0.042903	4.666707
13	6	0	-4.149877	-0.116855	2.889542
14	6	0	-4.996571	1.056425	3.411208
15	6	0	-4.698339	2.415014	2.757241
16	6	0	-5.633817	3.526988	3.250191
17	6	0	-1.424055	0.515351	5.204548
18	8	0	-0.551183	1.064614	4.553714
19	6	0	-1.405789	0.355537	6.706813
20	1	0	-0.469901	0.927888	1.795771
21	1	0	1.351489	0.189351	3.096136
22	1	0	3.104810	1.478386	1.866353
23	1	0	2.460775	2.283816	-0.405592
24	1	0	2.297814	-1.414061	0.966963
25	1	0	-0.382406	-2.154306	1.557030
26	1	0	-2.332884	-2.182232	2.894478
27	1	0	-2.234962	0.907902	2.845414
28	1	0	-4.249417	-0.192306	1.799391
29	1	0	-4.534501	-1.056858	3.304390
30	1	0	-6.052321	0.809165	3.239266
31	1	0	-4.876831	1.136038	4.498596
32	1	0	-3.660044	2.710245	2.954884
33	1	0	-4.787829	2.320295	1.666646
34	1	0	-5.545394	3.668627	4.333816
35	1	0	-5.402929	4.483853	2.769685
36	1	0	-6.681735	3.289191	3.032369
37	1	0	-2.389066	0.565719	7.134557
38	1	0	-1.152591	-0.681070	6.953153
39	1	0	-0.652813	1.017952	7.134117

Structure 5-4 in CHCl₃ solution

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	X	Y	Z	
1	8	0	0.000000	0.000000	1 462974	
2	6	0	1 420407	0.000000	1.4028/4	
3	6	0	1.430497	1.000000	2.025550	
4	6	0	2.228687	1.089906	1.352843	
5	6	0	1.89/49/	1.520880	0.125468	
0	6	0	0.791715	0.903173	-0.651112	
/	8	0	0.61/44/	1.113//1	-1.835237	
8	8	0	2.108870	-1.25865/	1.916008	
9	6	0	-0./93489	-1.202776	1.886/44	
10	6	0	-1.902488	-1.215264	2.637558	
11	6	U	-2.654812	-0.036342	3.200789	
12	8	0	-2.536440	-0.056966	4.666545	
13	6	0	-4.150951	-0.104516	2.885911	
14	6	0	-4.939663	1.125968	3.359242	
15	6	0	-6.458189	1.023656	3.131805	
16	6	0	-6.884605	0.974346	1.657357	
17	6	0	-1.423606	0.487841	5.209531	
18	8	0	-0.544616	1.032164	4.563127	
19	6	0	-1.411654	0.320723	6.711029	
20	1	0	-0.470275	0.928056	1.795117	
21	1	0	1.348858	0.192688	3.097373	
22	1	0	3.107224	1.474099	1.867137	
23	1	0	2.468796	2.274505	-0.408461	
24	1	0	2.311300	-1.413179	0.978018	
25	1	0	-0.384798	-2.153449	1.550842	
26	1	0	-2.338496	-2.184190	2.883492	
27	1	0	-2.238585	0.909627	2.852080	
28	1	0	-4.244615	-0.225936	1.800947	
29	1	0	-4.565246	-1.013524	3.341658	
30	1	0	-4.752285	1.275478	4.428775	
31	1	0	-4.556914	2.020435	2.847700	
32	1	0	-6.842186	0.137040	3.654358	
33	1	0	-6.936697	1.887404	3.610362	
34	1	0	-6.508966	1.846048	1.108019	
35	1	0	-6.513305	0.077648	1.149947	
36	1	0	-7.976265	0.970934	1.566071	
37	1	0	-0.637427	0.955575	7.142047	
38	1	0	-2.387828	0.563984	7.137850	
39	1	0	-1.196283	-0.725066	6.954322	

Structure 5-5 in CHCl₃ solution

Center	Atomic	Atomic	Coord	linates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	8	0	0.000000	0.000000	0.000000
2	6	0	0.00000	0.000000	1.463769
3	6	0	1.431026	0.000000	2.024515
4	6	0	2.227697	1.091499	1.352492
5	6	0	1.895674	1.523082	0.125578
6	6	0	0.789384	0.905982	-0.650464
7	8	0	0.612036	1.119251	-1.833672
8	8	0	2.110299	-1.257723	1.911153
9	6	0	-0.793234	-1.200747	1.892033
10	6	0	-1.925448	-1.201669	2.607699
11	6	0	-2.705021	-0.016047	3.117783
12	8	0	-2.607934	0.016409	4.585767
13	6	0	-4.204219	-0.119211	2.816704
14	6	0	-4.561609	-0.119714	1.320026
15	6	0	-4.244710	1.186363	0.574348
16	6	0	-4.738833	1.172789	-0.878080
17	6	0	-1.513896	0.600798	5.125484
18	8	0	-0.631356	1.133429	4.473736
19	6	0	-1.527745	0.494774	6.632633
20	1	0	-0.469355	0.927287	1.797899
21	1	0	1.350862	0.190652	3.096954
22	1	0	3.106346	1.475911	1.866366
23	1	0	2.466567	2.276990	-0.408363
24	1	0	2.302134	-1.413477	0.971086
25	1	0	-0.364068	-2.156392	1.598326
26	1	0	-2.360872	-2.167523	2.867682
27	1	0	-2.299249	0.923827	2.745444
28	1	0	-4.584173	-1.035894	3.284694
29	1	0	-4.704984	0.718262	3.317892
30	1	0	-4.059385	-0.955401	0.816533
31	1	0	-5.637905	-0.319351	1.237297
32	1	0	-4.702314	2.029490	1.110176
33	1	0	-3.163039	1.369040	0.575801
34	1	0	-4.270242	0.361827	-1.446792
35	1	0	-5.825206	1.031436	-0.926320
36	1	0	-4.501056	2.112946	-1.386952
37	1	0	-2.515522	0.739945	7.030602
38	1	0	-1.301711	-0.536860	6.922171
39	1	0	-0.771399	1.158657	7.051565

Structure 5-6 in CHCl₃ solution

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
		 0	0 00000	0 00000	0 000000
2	6	0	0.000000	0.000000	1 462911
3	6	0	1 431266	0.000000	2 023720
4	6	0	2 225895	1 093906	1 353189
5	6	0	1 892620	1 526743	0 126997
6	6	0	0 788419	0 906845	-0 650174
7	8	0	0 612943	1 118563	-1 833901
, 8	8	0	2 110787	-1 257309	1 907726
9	6	0	-0 795533	-1 200848	1 887851
10	6	0	-1 904055	-1 207946	2 639460
11	6	0	-2 648082	-0 023820	3 202794
12	8	0	-2 540877	-0 052523	4 669088
13	6	0	-4 142401	-0 070850	2 875740
14	6	0	-4 920458	1 161265	3 362373
15	6	0	-6 403079	1 173269	2 949670
16	6	0	-7 253763	0 063048	3 583997
17	6	0	-1 425781	0 478417	5 221424
18	8	0	-0.536648	1.015510	4.582878
19	6	0	-1.424248	0.304287	6.722131
20	1	0	-0 469301	0 928637	1 794815
21	1	0	1.351006	0.188158	3.096531
22	1	0	3,103750	1,479401	1.867658
23	1	0	2,461337	2,283152	-0.405735
24	1	0	2.305814	-1.410457	0.967922
25	1	0	-0.390554	-2.153027	1.551694
26	1	0	-2.344593	-2.174259	2.887359
27	1	0	-2.217942	0.918905	2.862285
28	1	0	-4.232259	-0.158331	1.785435
29	1	0	-4.563869	-0.989100	3.301035
30	1	0	-4.846147	1.229778	4.454534
31	1	0	-4.438437	2.063331	2.961714
32	- 1	0	-6.828389	2.146205	3,226191
33	1	0	-6.476409	1.110873	1.855516
34	1	0	-7.193145	0.095625	4.678561
35	1	0	-8.307889	0.172455	3.306791
36	1	õ	-6.935288	-0.934599	3.263594
37	1	0	-1.192419	-0.739105	6.960897
38	1	0	-0.663189	0.948512	7.162746
39	1	0	-2.407440	0.528713	7.142770

Structure 5-7 in CHCl₃ solution

Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Туре	X	Y	Z
1	8	0	0.00000	0.00000	0.00000
2	6	0	0.00000	0.000000	1.463105
3	6	0	1.431508	0.00000	2.023754
4	6	0	2.225437	1.094858	1.354095
5	6	0	1.891586	1.528218	0.128256
6	6	0	0.788168	0.907552	-0.649552
7	8	0	0.613245	1.119454	-1.833319
8	8	0	2.111845	-1.256591	1.905892
9	6	0	-0.793291	-1.200698	1.891970
10	6	0	-1.916296	-1.207254	2.62256
11	6	0	-2.677478	-0.015413	3.146500
12	8	0	-2.619111	-0.021267	4.616355
13	6	0	-4.163919	0.001033	2.766823
14	6	0	-5.005457	-1.196098	3.234179
15	6	0	-6.494081	-1.033172	2.891032
16	6	0	-7.350320	-2.221860	3.346229
17	6	0	-1.515699	0.509036	5.193386
18	8	0	-0.601433	1.024492	4.573033
19	6	0	-1.565668	0.367486	6.696747
20	1	0	-0.468220	0.928909	1.795054
21	1	0	1.351497	0.186794	3.096983
22	1	0	3.103261	1.480434	1.868545
23	1	0	2.459738	2.285381	-0.403992
24	1	0	2.306631	-1.407561	0.965666
25	1	0	-0.370445	-2.154493	1.583436
26	1	0	-2.340205	-2.175458	2.883764
27	1	0	-2.220991	0.915846	2.811041
28	1	0	-4.592817	0.925715	3.173695
29	1	0	-4.215235	0.087859	1.674061
30	1	0	-4.637033	-2.120752	2.772305
31	1	0	-4.893094	-1.321150	4.317928
32	1	0	-6.873881	-0.112065	3.353233
33	1	0	-6.604579	-0.897838	1.806740
34	1	0	-8.405148	-2.073452	3.090451
35	1	Ő	-7.021610	-3.153839	2.871413
36	1	0 0	-7.287943	-2.363662	4.431630
37	1	0	-2.547986	0.652886	7.08145
38	1	0	-1 397620	-0 680737	6 965301
39	1	0	-0 786360	0 982715	7 146589

Structure 5-8 in CHCl₃ solution

Center	Atomic	Atomic	Coord	linates (Angs	stroms)
Number	Number	Туре	X	Y	Z
1	8	0	0.00000	0.00000	0.00000
2	б	0	0.00000	0.00000	1.457964
3	6	0	1.414342	0.00000	2.047881
4	б	0	2.244738	1.056533	1.357805
5	6	0	1.954691	1.446419	0.109028
6	б	0	0.851486	0.826203	-0.668356
7	8	0	0.714972	0.994278	-1.864665
8	8	0	1.995501	-1.305326	1.884078
9	6	0	-0.800739	-1.202774	1.874174
10	6	0	-1.903494	-1.212892	2.633753
11	6	0	-2.635983	-0.034080	3.221665
12	8	0	-2.546655	-0.103458	4.688761
13	6	0	-4.127495	-0.053726	2.878813
14	б	0	-4.904500	1.165353	3.394868
15	б	0	-6.394362	1.126793	3.022622
16	6	0	-7.174144	2.342323	3.540188
17	6	0	-1.438283	0.404875	5.272382
18	8	0	-0.533011	0.950928	4.664323
19	6	0	-1.468912	0.198027	6.769104
20	1	0	-0.471225	0.928749	1.787628
21	1	0	1.303931	0.238589	3.112124
22	1	0	3.106387	1.467339	1.883009
23	1	0	2.547435	2.176489	-0.434055
24	1	0	2.858689	-1.314250	2.327183
25	1	0	-0.404957	-2.147577	1.509942
26	1	0	-2.354590	-2.179206	2.862257
27	1	0	-2.191116	0.912792	2.912934
28	1	0	-4.208320	-0.112067	1.786365
29	1	0	-4.568987	-0.977022	3.275299
30	1	0	-4.803852	1.226774	4.485222
31	1	0	-4.454435	2.082271	2.988997
32	1	0	-6.495533	1.065614	1.930874
33	1	0	-6.843254	0.207795	3.422638
34	1	0	-7.122692	2.410984	4.633208
35	1	0 0	-6.771538	3.276215	3.130717
36	1	õ	-8.231627	2.285645	3.259918
37	1	Ő	-1.327361	-0.864909	6,990614
38	1	Ő	-0.668117	0.773639	7,233421
39	1	0	-2.437765	0.492741	7.180501
	±		2.13,,03	J. 1/2/11	,

Structure 5-9 in CHCl₃ solution

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	X	Y	Z
1	8	0	0.00000	0.00000	0.00000
2	6	0	0.00000	0.00000	1.45036
3	6	0	1.415459	0.00000	2.08041
4	6	0	2.332276	0.909618	1.30865
5	6	0	2.049482	1.306772	0.06106
6	6	0	0.875638	0.792799	-0.68192
7	8	0	0.701911	0.992412	-1.86824
8	8	0	2.024995	-1.281301	2.16556
9	6	0	-0.830248	-1.205330	1.83094
10	6	0	-1.472070	-1.438232	2.98114
11	6	0	-1.526908	-0.542001	4.19226
12	8	0	-1.264394	-1.342703	5.39907
13	6	0	-2.884484	0.136094	4.42254
14	6	0	-4.094084	-0.803289	4.53406
15	6	0	-5.399137	-0.049171	4.83064
16	6	0	-6.617397	-0.975770	4.93307
17	6	0	-0.002100	-1.758359	5.62123
18	8	0	0.945183	-1.489626	4.89763
19	6	0	0.089858	-2.603694	6.86889
20	1	0	-0.490309	0.931181	1.76354
21	1	0	1.298333	0.411309	3.09158
22	1	0	3.260204	1.203734	1.79501
23	1	0	2.710038	1.949938	-0.51257
24	1	0	1.745209	-1.662390	3.01839
25	1	0	-0.882600	-1.954798	1.04466
26	1	0	-2.021341	-2.373316	3.07855
27	1	0	-0.751280	0.225538	4.14416
28	1	0	-2.801518	0.742303	5.33371
29	1	0	-3.036841	0.836746	3.59177
30	1	0	-4.212865	-1.366620	3.60015
31	1	0	-3.913108	-1.540997	5.32545
32	1	0	-5.288901	0.513525	5.76744
33	1	0	-5.574064	0.697662	4.04462
34	1	0	-6.780002	-1.523487	3.99749
35	1	0	-6.487878	-1.715529	5.73181
36	1	0 0	-7.529982	-0.409743	5.14910
37	1	0 0	-0.467639	-2.146486	7.68995
38	1	0 0	-0.357263	-3.583789	6.67205
39	1	Ő	1,136328	-2.736036	7.14318

Structure 5-10 in CHCl₃ solution

Center	Atomic	Atomic	Coord	inates (Ang	stroms)
Number	Number	Туре	X	Y	Z
1	8	0	0.000000	0.000000	0.000000
2	6	0	0.000000	0.000000	1.468799
3	б	0	1.429702	0.00000	2.021880
4	6	0	2.230491	1.086723	1.346494
5	6	0	1.892888	1.525393	0.123972
6	6	0	0.777197	0.918475	-0.647115
7	8	0	0.586539	1.147041	-1.825491
8	8	0	2.106203	-1.259959	1.920071
9	6	0	-0.810668	-1.181588	1.932446
10	6	0	-2.148967	-1.234198	1.948528
11	6	0	-3.086937	-0.163887	1.452296
12	8	0	-3.939915	0.271623	2.567418
13	6	0	-4.023141	-0.621428	0.325781
14	6	0	-4.930422	-1.819566	0.648585
15	6	0	-5.989446	-2.098581	-0.433444
16	6	0	-5.417617	-2.528697	-1.792262
17	6	0	-3.434469	1.215778	3.396798
18	8	0	-2.341149	1.735391	3.256707
19	6	0	-4.402475	1.529855	4.514200
20	1	0	-0.478037	0.929375	1.795369
21	1	0	1.363903	0.193635	3.096759
22	1	0	3.117219	1.460810	1.853931
23	1	0	2.465227	2.278342	-0.409735
24	1	0	2.241899	-1.453470	0.977016
25	1	0	-0.241725	-2.040688	2.281058
26	1	0	-2.625851	-2.132407	2.337928
27	1	0	-2.528983	0.706638	1.107998
28	1	0	-4.644289	0.241327	0.051732
29	1	0	-3.387785	-0.838090	-0.539946
30	1	0	-4.322981	-2.723248	0.787755
31	1	0	-5.440780	-1.634427	1.601066
32	1	0	-6.659737	-2.885411	-0.064778
33	1	0	-6.614855	-1.205187	-0.565615
34	1	0	-4.813376	-1.740526	-2.253512
35	1	0	-4.781800	-3.416485	-1.689790
36	1	U	-6.221504	-2.776193	-2.494253
37	1	U	-4.476463	0.667683	5.184914
38	1	U	-4.045098	2.394597	5.073240
39		U U	-5.401823	1.721763	4.114771

Structure 5-11 in CHCl₃ solution

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
NumberNumberTypeXY21800.000000.000000.000002600.000000.000004602.2417071.0607865601.9504841.4516576600.8496020.8284217800.7137440.996329960-0.800836-1.2021991060-1.91799-1.2069821160-2.535460-0.0702421280-2.535460-0.0702421360-4.151004-0.0538931460-4.4808590.1283621560-5.9912270.1224701660-1.4336100.2872041760-1.4336100.2872041880-0.5465421.0286921960-1.4335100.28720420100.0714560.9275151960-1.4336100.28720421101.3049660.23526523102.5404702.18848424102.867201-1.30863723310-2.63525-2.17213228610-4.6233000.744362910-4.6233000.744363110-3.999489-0.662142	Center	Atomic	Atomic	Coord	linates (Angs	stroms)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Number	Number	Type	Х	Y	Z
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	8	0	0.00000	0.00000	0.00000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	6	0	0.00000	0.000000	1.458185
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	б	0	1.414558	0.00000	2.046670
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4	6	0	2.241707	1.060786	1.358981
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	6	0	1.950484	1.451657	0.110796
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	б	0	0.849602	0.828421	-0.667593
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	8	0	0.713744	0.996329	-1.864028
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	8	0	1.997641	-1.303871	1.878204
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	6	0	-0.800836	-1.202199	1.875469
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	6	0	-1.911799	-1.206982	2.623361
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	6	0	-2.649202	-0.025772	3.201320
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	8	0	-2.535460	-0.070242	4.668720
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	б	0	-4.151004	-0.053893	2.905305
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	б	0	-4.480859	0.128362	1.416281
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	б	0	-5.991227	0.122470	1.138302
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	6	0	-6.328990	0.308594	-0.346617
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	6	0	-1.430691	0.472026	5.227253
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	8	0	-0.546542	1.028692	4.597577
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	6	0	-1.433510	0.287204	6.727256
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	1	0	-0.471456	0.927515	1.790222
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	1	0	1.304966	0.235265	3.111634
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	1	0	3.101396	1.474187	1.885348
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	1	0	2.540470	2.184884	-0.431027
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	1	0	2.867201	-1.308637	2.308782
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	1	0	-0.398624	-2.149344	1.524375
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	1	0	-2.363525	-2.172132	2.856913
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	1	0	-2.219342	0.919875	2.868823
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	1	0	-4.568776	-1.000672	3.271175
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	1	0	-4.623300	0.744336	3.490873
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	1	0	-4.052167	1.075247	1.059495
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	1	0	-3.999489	-0.662142	0.827571
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	1	0	-6.421250	-0.823223	1,494856
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33	1	0	-6.472498	0.916339	1.725244
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	1	0	-7.411834	0.297512	-0.512550
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	1	0	-5.943793	1.262530	-0.725226
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	1	õ	-5.889798	-0.489126	-0.956657
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	1	0	-1.221754	-0.761578	6.960539
39 1 0 -2 414153 0 525900 7 146	38	1	0 0	-0.664104	0.917095	7,174070
	39	1	õ	-2.414153	0.525900	7.146285

Structure 5-12 in CHCl₃ solution

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	Х	Y	Z	
1	8	0	0.000000	0.000000	0.000000	
2	6	0	0.00000	0.000000	1.458198	
3	6	0	1.414551	0.00000	2.046671	
4	б	0	2.241743	1.060719	1.358915	
5	6	0	1.950446	1.451714	0.110785	
6	б	0	0.849405	0.828686	-0.667546	
7	8	0	0.713277	0.996905	-1.863903	
8	8	0	1.997627	-1.303882	1.878347	
9	б	0	-0.800877	-1.202199	1.875406	
10	б	0	-1.912272	-1.206932	2.622660	
11	б	0	-2.649933	-0.025653	3.200173	
12	8	0	-2.536320	-0.069591	4.667581	
13	6	0	-4.151695	-0.054124	2.904064	
14	б	0	-4.481451	0.127230	1.414909	
15	6	0	-5.991794	0.121094	1.136801	
16	6	0	-6.329418	0.306576	-0.348233	
17	6	0	-1.431696	0.472927	5.226108	
18	8	0	-0.547498	1.029512	4.596418	
19	6	0	-1.434749	0.288509	6.726163	
20	1	0	-0.471444	0.927496	1.790293	
21	1	0	1.304964	0.235386	3.111614	
22	1	0	3.101534	1.473998	1.885216	
23	1	0	2.540469	2.184920	-0.431022	
24	1	0	2.867090	-1.308690	2.309116	
25	1	0	-0.398409	-2.149388	1.524727	
26	1	0	-2.364048	-2.172090	2.856090	
27	1	0	-2.220207	0.919939	2.867350	
28	1	0	-4.569356	-1.000755	3.270454	
29	1	0	-4.624157	0.744366	3.489145	
30	1	0	-4.052751	1.073907	1.057586	
31	1	0	-3.999997	-0.663606	0.826712	
32	1	0	-6.421783	-0.824471	1.493731	
33	1	0	-6.473181	0.915188	1.723347	
34	1	0	-7.412226	0.294817	-0.514346	
35	1	0	-5.944698	1.260619	-0.727049	
36	1	0	-5.889661	-0.491070	-0.957966	
37	1	0	-0.664929	0.917980	7.172850	
38	1	0	-2.415260	0.528055	7.145033	
39	1	0	-1.223851	-0.760368	6.959780	

Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
Number	Number	Туре	Χ	Ү	Z
1	8	0	0.000000	0.000000	0.00000
2	6	0	0.00000	0.000000	1.464011
3	6	0	1.430244	0.000000	2.025416
4	6	0	2.227241	1.091400	1.353734
5	6	0	1.895512	1.523141	0.126721
6	6	0	0.789486	0.905948	-0.650054
7	8	0	0.612877	1.119353	-1.833381
8	8	0	2.110048	-1.257624	1.913331
9	6	0	-0.794669	-1.200977	1.888901
10	6	0	-1.937312	-1.204528	2.588327
11	б	0	-2.709383	-0.018619	3.107154
12	8	0	-2.604830	-0.015278	4.576928
13	6	0	-4.214922	-0.053767	2.815521
14	б	0	-4.604191	0.139589	1.335531
15	б	0	-4.540439	-1.117818	0.452964
16	6	0	-5.008596	-0.852339	-0.983870
17	6	0	-1.506494	0.554545	5.123298
18	8	0	-0.627178	1.101287	4.478931
19	б	0	-1.511937	0.414391	6.627702
20	1	0	-0.469005	0.927844	1.797084
21	1	0	1.348674	0.191108	3.097688
22	1	0	3.105772	1.475678	1.867914
23	1	0	2.466553	2.277308	-0.406699
24	1	0	2.309085	-1.410851	0.974362
25	1	0	-0.363811	-2.155769	1.594773
26	1	0	-2.376520	-2.170297	2.840008
27	1	0	-2.288084	0.921290	2.748564
28	1	0	-4.637197	-0.990770	3.200512
29	1	0	-4.659712	0.752177	3.410557
30	1	0	-5.632632	0.521896	1.309879
31	1	0	-3.983875	0.930403	0.891127
32	1	0	-3.519621	-1.512369	0.431052
33	1	0	-5.167551	-1.900207	0.902427
34	1	0	-6.038741	-0.476432	-1.004989
35	1	0	-4.372000	-0.108985	-1.477068
36	1	0	-4.975499	-1.766712	-1.586159
37	1	0	-2.495610	0.657561	7.036946
38	1	0	-1.291794	-0.625053	6.892694
39	1	0	-0.748593	1.063594	7.056797

Structure 5-13 in CHCl₃ solution

Structure 5-14 in CHCl₃ solution

Center	Atomic	Atomic	Coordinates (Angstroms)			
Number	Number	Туре	X	Y	Ζ	
1	8	0	0.00000	0.00000	0.00000	
2	6	0	0.000000	0.000000	1.462973	
3	6	0	1.431100	0.000000	2.024458	
4	б	0	2.226220	1.093139	1.353511	
5	6	0	1.893329	1.525814	0.127214	
6	6	0	0.789195	0.906377	-0.650261	
7	8	0	0.614132	1.117963	-1.834031	
8	8	0	2.110380	-1.257468	1.910174	
9	6	0	-0.795486	-1.200203	1.888924	
10	6	0	-1.912628	-1.203883	2.627728	
11	б	0	-2.671758	-0.017653	3.166911	
12	8	0	-2.580521	-0.024448	4.634328	
13	б	0	-4.161569	-0.094575	2.823641	
14	б	0	-5.014326	1.081032	3.335112	
15	б	0	-4.655180	2.472615	2.781156	
16	6	0	-4.796465	2.610262	1.258216	
17	6	0	-1.474627	0.521606	5.190470	
18	8	0	-0.585726	1.061515	4.553786	
19	6	0	-1.481867	0.359387	6.692521	
20	1	0	-0.468775	0.928186	1.796375	
21	1	0	1.350565	0.189743	3.097090	
22	1	0	3.104223	1.478476	1.867850	
23	1	0	2.462677	2.281904	-0.405317	
24	1	0	2.305233	-1.411556	0.970454	
25	1	0	-0.382829	-2.154189	1.567625	
26	1	0	-2.352112	-2.169522	2.880534	
27	1	0	-2.242358	0.920659	2.817453	
28	1	0	-4.237671	-0.178382	1.733623	
29	1	0	-4.562209	-1.030583	3.232405	
30	1	0	-6.061497	0.863680	3.086134	
31	1	0	-4.960462	1.106702	4.429684	
32	1	0	-5.310660	3.206536	3.266644	
33	1	õ	-3.635628	2.747517	3.080897	
34	1	Ő	-4.100065	1,960806	0.716978	
35	1	Ő	-5.810736	2.352193	0.930551	
36	1	Ő	-4.596354	3.638427	0.937938	
37	1	0	-0 736581	1 021167	7 134088	
38	1	0	-2 472368	0 567463	7 104160	
30	± 1	0	-2.7/2300	-0 677545	6 940507	
	±	0	-1.231330	-0.077545	0.940307	

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	8	0	0.000000	0.000000	0.00000
2	6	0	0.00000	0.000000	1.46397
3	б	0	1.430917	0.00000	2.02465
4	б	0	2.227056	1.092394	1.35357
5	б	0	1.895567	1.523398	0.12631
6	6	0	0.790183	0.905128	-0.65050
7	8	0	0.614426	1.117468	-1.83411
8	8	0	2.110723	-1.257329	1.91116
9	6	0	-0.793933	-1.200066	1.89298
10	6	0	-1.948859	-1.195510	2.57130
11	6	0	-2.751807	-0.004595	3.02984
12	8	0	-2.709691	0.056446	4.49922
13	6	0	-4.237461	-0.117444	2.67219
14	6	0	-4.529908	-0.139800	1.16025
15	6	0	-4.149838	1.129643	0.37490
16	6	0	-4.873819	2.404406	0.83109
17	6	0	-1.638805	0.657490	5.06716
18	8	0	-0.733925	1.179360	4.43785
19	б	0	-1.711940	0.586491	6.57469
20	1	0	-0.468986	0.927321	1.79832
21	1	0	1.351254	0.189810	3.09754
22	1	0	3.105102	1.477419	1.86801
23	1	0	2.466044	2.277971	-0.40711
24	1	0	2.302957	-1.412354	0.97107
25	1	0	-0.348770	-2.157576	1.63084
26	1	0	-2.386752	-2.158736	2.83670
27	1	0	-2.333717	0.929258	2.65531
28	1	0	-4.631886	-1.034004	3.12828
29	1	0	-4.762211	0.715516	3.15263
30	1	0	-4.021540	-0.999257	0.70660
31	1	0	-5.605420	-0.321780	1.03528
32	1	0	-3.064876	1.287127	0.41208
33	1	0	-4.378726	0.950016	-0.68244
34	1	0	-4.611070	2.687164	1.85671
35	1	0	-4.616322	3.250698	0.18511
36	1	0	-5.962612	2.277253	0.79257
37	1	0	-0.953949	1.239406	7.00748
38	1	0	-2.706834	0.869729	6.92758
39	1	0	-1.529130	-0.443894	6.89688

Structure 5-15 in CHCl₃ solution

Structure 5-16 in CHCl₃ solution

Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
	 o				0 00000
1	0	0	0.000000	0.000000	1 462672
2	6	0	1 /21212	0.000000	2 023484
1	6	0	2 224005	1 005447	1 254061
	0	0	1 000005	1 520020	0 120220
5	6	0	1.890895	1.329038	-0 6/9552
7	8	0	0.707000	1 110375	-1 833300
2	8	0	2 112043	_1 256206	1 00/800
0	6	0	_0 791626	-1 202460	1 800601
10	6	0	-1 89/093	-1 216940	2 651907
11	6	0	-2 633225	-0.030577	2.031907
12	8	0	-2.035223	-0 057697	4 684676
12	6	0	_1 131762	0.003216	2 888479
14	6	0	_1 960098	-1 206613	2.000479
15	6	0	-6 467225	-1.068020	3 063389
16	6	0	-7 180318	0 020186	3 879219
17	6	0	-1 /17086	0.020100	5 235367
18	8	0	-0 528796	1 023040	4 594451
19	6	0	-1 425001	0 336387	6 738594
20	1	0	_0 468251	0.028825	1 7950/9
20	1	0	1 350560	0.920025	3 096564
21	1	0	3 102611	1 481237	1 868671
22	1	0	2 459050	2 286068	_0 404113
23	1	0	2.40000	-1 408488	0 963968
25	1	0	-0 382467	-2 152872	1 554414
25	1	0	-2 31/300	-2 188077	2 007722
20	1	0	-2 182005	0 902692	2 881316
28	1	0	-4 532090	0.902092	3 331476
20	1	0	-4 219590	0.115608	1 800043
30	1	Ő	-4 598530	-2 111321	2 847901
31	1	0 0	-4 809195	-1 364136	4 425890
32	1	0	-6 617286	-0 880907	1 991488
32	1	0	-6 945355	-2 033363	3 271310
34	1	0	-8 256625	0 017505	3 675197
35	1	0	-7 045984	-0 142338	4 955416
36	1	0	-6 808505	1 023522	3 646169
37	1	0	-0 624620	0 938164	7 169100
38	1	0	-2 391625	0 635431	7 152115
39	1	0	-1.267111	-0.715672	6.997531
	<u>+</u>		±•20/±±±		

Center Number	Atomic Number	Atomic Type	Coord X	linates (Ang: Y	stroms) Z
1	8	0	0.000000	0.000000	1 46057
2	6	0	1 420501	0.000000	2 02200
1	6	0	2 221272	1 085451	1 3/552
	0	0	1 006722	1 510720	1.34332
5	0	0	1.090722	0 011/11	0.12037
7	0	0	0.701704	1 12/21/	1 020001
7	0	0	0.595084	1 250706	-1.03009
0	6	0	_0 807552	-1 187816	1 92270
10	6	0	2 120000	1 205000	2 05600
10	0	0	-2.139900	-1.203909	2.03008.
12	0	0	-3.094072	-0.071240	3 06377
12	6	0	-1 248501	_0 /00108	0 83449
14	6	0	-3 837883	-0.606017	-0 64018
14	0	0	-3 351370	-2.015057	-1 01/69
16	6	0	-2 974060	-2.013037	-2 /07/0
17	6	0	2.974000	1 161706	2 969691
18	0	0	-2 002722	1 672684	3 583120
10	6	0	2 01/061	1 272065	5.J0J120
20	1	0	-3.014001	1.372003	1 70004
20	1	0	1 362078	0.928007	3 09696
21	1	0	2 116/66	1 462224	1 052670
22	1	0	2 470104	2 271027	1.05307
23	1	0	2.470194	1 441411	-0.41422
24	1	0	2.2/0380	-1.441411	2 12501
20	1	0	-0.240903	-2.092030	2.12391
20	1	0	-2.013925	-2.12/9/0	1 42060
27	1	0	-2.300830	1 202412	1 20502
20	1	0	-4.782027	-1.293413	0 00354
29	1	0	4.952557	0.420241	1 26521
21	1	0	2 066221	-0.307370	-1.20521
31	1	0	-3.000321	0.12/101	-0.90913
32	1	0	-4.141000	-2.741072	-0.77821
24	1	0	2 000055	1 000707	2 1/500
34	1	0	-3.623955	-1.002/0/	-3.14500
30	1	0	-2.030225	-3.143/93	-2.14/35
20	1	0	-2.134409	-1.440431	-2./409/
3/	1	U	-3./4893/	0.40/048	5.///120
38	1	U	-3.369396	2.20/501	5./03538
39	Ţ	U	-4.8/3812	1.562312	4.9/110.

Structure 5-17 in CHCl₃ solution

Structure 5-18 in CHCl₃ solution

Center	Atomic	Atomic	Coord	linates (Angs	stroms)
Number	Number	Туре	X	Y	Z
1	8		0.00000	0.000000	0.00000
2	6	0	0.000000	0.000000	1.450308
3	6	0	1.415349	0.000000	2.078160
4	6	0	2.328655	0.915292	1.308622
5	6	0	2.043467	1.315829	0.062515
6	6	0	0.871444	0.798323	-0.681036
7	8	0	0.696115	0.999233	-1.866902
8	8	0	2.027708	-1.280639	2.156203
9	6	0	-0.836906	-1.201334	1.830346
10	6	0	-1.480315	-1.432340	2.980227
11	6	0	-1.539870	-0.545057	4.196298
12	8	0	-1.244340	-1.348539	5.393592
13	6	0	-2.939448	0.039241	4.422083
14	6	0	-3.081517	0.944020	5.659686
15	6	0	-2.253183	2.242200	5.648385
16	6	0	-2.622372	3.225870	4.528298
17	6	0	0.029771	-1.727314	5.611538
18	8	0	0.969159	-1.419928	4.892877
19	6	0	0.147416	-2.586771	6.847395
20	1	0	-0.488187	0.932423	1.763677
21	1	0	1.298135	0.405272	3.091247
22	1	0	3.255777	1.211276	1.795409
23	1	0	2.700983	1.963406	-0.509643
24	1	0	1.762275	-1.658298	3.014838
25	1	0	-0.901147	-1.946103	1.040476
26	1	0	-2.049088	-2.357749	3.073024
27	1	0	-0.791791	0.248040	4.144825
28	1	0	-3.211851	0.584613	3.511890
29	1	0	-3.647973	-0.794057	4.501861
30	1	0	-4.143013	1.206510	5.759136
31	1	0	-2.826619	0.362805	6.553018
32	1	0	-2.393377	2.739662	6.616092
33	1	0	-1.181910	2.007649	5.592981
34	1	0	-3.685538	3.490631	4.570596
35	1	0	-2.046349	4.153392	4.615350
36	1	0	-2.426662	2.814530	3.531778
37	1	0	-0.441487	-2.171281	7.668591
38	1	0	-0.248210	-3.584277	6.628849
39	1	0	1.195849	-2.673185	7.132564

Center	Atomic	Atomic	Coord	linates (Ang	stroms)
Number	Number	туре	X	¥ 	Z
1	8	0	0.00000	0.00000	0.00000
2	6	0	0.00000	0.000000	1.450323
3	6	0	1.415320	0.00000	2.078177
4	6	0	2.328637	0.915324	1.308688
5	6	0	2.043520	1.315767	0.062539
6	б	0	0.871540	0.798209	-0.68104
7	8	0	0.696317	0.998999	-1.866949
8	8	0	2.027698	-1.280659	2.156124
9	б	0	-0.836923	-1.201329	1.830335
10	б	0	-1.480372	-1.432335	2.980193
11	б	0	-1.539976	-0.545035	4.196252
12	8	0	-1.244457	-1.348451	5.393569
13	6	0	-2.939587	0.039218	4.421972
14	6	0	-3.081800	0.943889	5.659629
15	6	0	-2.253358	2.242000	5.648638
16	6	0	-2.622222	3.225816	4.528579
17	6	0	0.029641	-1.727265	5.611500
18	8	0	0.969020	-1.419870	4.892836
19	6	0	0.147250	-2.586781	6.847323
20	1	0	-0.488200	0.932426	1.763671
21	1	0	1.298101	0.405166	3.091301
22	1	0	3.255709	1.211363	1.795538
23	1	0	2.701051	1.963316	-0.509638
24	1	0	1.762406	-1.658306	3.014808
25	1	0	-0.901138	-1.946090	1.040453
26	1	0	-2.049164	-2.357735	3.072962
27	1	0	-0.791931	0.248095	4.144763
28	1	0	-3.211952	0.584633	3.511793
29	1	0	-3.64808/	-0./94115	4.501645
30	1	0	-4.143294	1.206453	5./58909
31	1	0	-2.827127	0.362567	6.552959
32	1	0	-2.393718	2.739376	6.616368
33	1	0	-1.182095	2.00/358	5.593440
34	1	0	-2.045/4/	4.15306/	4.61552
35	1	0	-2.426852	2.814348	3.532043
30	1	0	-3.085257	3.491076 2.672610	4.3/102
<i>31</i> 20	1	0	1.193/13	-2.0/301U	7 66066
30 20	1	0	-U.441281 _0 2/8859	-2.1/1046 -3 58/110	6 62800
ود	± 		-0.240050	-3.304110	0.020004

Structure 5-19 in CHCl₃ solution

Structure 5-20 in CHCl₃ solution

Center	Atomic	Atomic	Coord	linates (Angs	stroms)
Number	Number	Туре	Х	Y	Z
1	8	0	0.000000	0.000000	0.000000
2	6	0	0.000000	0.000000	1.463691
3	6	0	1.431680	0.000000	2.023326
4	6	0	2.225241	1.094766	1.353087
5	6	0	1.890711	1.528663	0.127739
6	6	0	0.786608	0.908805	-0.649415
7	8	0	0.610105	1.122189	-1.832728
8	8	0	2.111543	-1.256965	1.906378
9	6	0	-0.795334	-1.199640	1.891324
10	6	0	-1.927930	-1.198767	2.606255
11	6	0	-2.706273	-0.008893	3.111288
12	8	0	-2.624422	0.008388	4.580220
13	6	0	-4.189299	-0.107259	2.736895
14	6	0	-5.017645	1.182443	2.896897
15	6	0	-5.282147	1.688495	4.327062
16	6	0	-6.063409	0.709439	5.214137
17	6	0	-1.522143	0.563513	5.135464
18	8	0	-0.631662	1.098609	4.496999
19	6	0	-1.538410	0.421309	6.639396
20	1	0	-0.469090	0.927822	1.797047
21	1	0	1.352688	0.187852	3.096347
22	1	0	3.103373	1.480223	1.867088
23	1	0	2.458555	2.286121	-0.404417
24	1	0	2.301517	-1.411225	0.965701
25	1	0	-0.370373	-2.156038	1.594130
26	1	0	-2.367802	-2.162899	2.864242
27	1	0	-2.285576	0.929632	2.747556
28	1	0	-4.221265	-0.399212	1.680175
29	1	0	-4.638703	-0.936947	3.295232
30	1	0	-4.531310	1.982138	2.321896
31	1	0	-5.985985	1.010949	2.407862
32	1	0	-4.336781	1.947871	4.815730
33	1	0	-5.848796	2.625229	4.247172
34	1	0	-5.496958	-0.207962	5.403243
35	1	0	-6.291938	1.160467	6.186280
36	1	0	-7.016396	0.426483	4.750311
37	1	0	-2.525433	0.659546	7.043305
38	1	0	-1.315624	-0.617942	6.903328
39	1	0	-0.779672	1.071566	7.075070

CAPÍTULO II

Aislamiento y elucidación estructural de 2(5*H*)-furanonas y sustancias aromáticas.

6.1. Introducción

Otros compuestos aislados del género *Hyptis*, tales como las 2(5H)-furanonas, coloquialmente conocidos como butenólidas, están relacionados con las 5,6-dihidro-2*H*-piran-2-onas. Las butenólidas (Figura 1) son parte de la familia de las lactonas α,β -insaturadas con un cadena heterocíclica de cuatro carbonos comúnmente producidas por hongos, bacterias, corales y plantas.¹ En el contexto de los productos naturales, el nombre butenólida se emplea habitualmente y, por lo tanto, los esqueletos de estos compuesto se numeran como derivados del ácido 4-hidroxibutenoico y no como furano. Las butenólidas se pueden convertir en furanos mediante la reducción parcial de la lactona y luego la deshidratación.²

Figura 1. La bútenólida más simple, 2-furanona.

La butenólida más común y de importancia bioquímica es el ácido ascórbico (vitamina C) o las karrakinas como la, 3-metil-2*H*-furo[2,3-*c*]pyran-2-ona (Figura 2), que desencadenan la germinación de semillas en plantas pirófitas cuya reproducción depende del fuego de los incendios naturales por causa del calor o tormentas y de los provocados.³

De la especie *H. pectinata* se han aislado dos furanonas (Figura 3) denominadas como la pectinólida G de una colecta de Barbados⁴ y la pectinólida H, relacionada con la pectinólida B, la cual presenta actividad antimicrobiana contra cepas de *S. aureus*.⁵

Figura 3. 2(5H)-furanonas aisladas de especies del género Hyptis.

Este tipo de compuestos también se encontraron en varios organismos de origen marino (Figura 4). De cepas de *Streptomyces* sp. obtenidas de sedimentos del fondo marino y esponjas del Mediterráneo, se han aislado butenólidas con actividad antifouling o antiincrustante, la cual evita o ralentiza el crecimiento de percebes, algas y organismos marinos que se adhieren al casco de las embarcaciones marinas, contra la larva de *Balanus amphitrite*⁶ y actividad moderada contra *Trypanosoma brucei*⁷, además se ha demostrado que inducen la activación de los factores de transcripción PPAR α y PPAR γ (los peroxisomas proliferadores activados del receptor) los cuales modulan la expresión de muchos genes involucrados en el metabolismo de los lípidos y la glucosa.⁸ Se describió la actividad antimicrobiana contra *Mycobacterium smegmatis* y *M. tuberculosis* de butenólidas aisladas de hongos del coral *Ramaria cystidiphora*.^{9,10}

La actividad citotóxica *in vitro* contra líneas celulares humanas y murinas de las butenólidas ailsadas de la esponja marina *Homaxinella* sp.¹¹ y la bacteria *Streptoverticillium luteoverticillatum*¹² se han demostrado. De *Diplodia corticola* se obtuvo la diplofuranilona C cuya estructura consiste en dos butenólidas unidas.¹³ De la esponja marina *Hippospongia lachne* se obtuvo la hipólida E que presentó actividad antiinflamatoria débil para PKCa y PKC γ y las (6*Z*)- y (6*E*)- neomanólidas, dos 2*H*-furanonas sustituidas en C-3 y C-4 derivadas de la manólida aislada de *Luffariella variabilis*, un potente antiinflamatorio que inhibe 186 selectivamente la fosfolipasa A₂ (PLA₂).¹⁴ Otra esponja marina de la cual se han obtenido este tipo de compuestos es *Aplysinopsis digitata* cuyas 2*H*-furanonas presentaron actividad citotóxica contra células múrinas de leucemia P388.¹⁵

Figura 4. 2(5H)-furanonas de origen natural.

6.2. Desarrollo experimental

6.2.1. Determinación de constantes espectroscópicas

Los espectros de ¹H y ¹³C RMN se registraron a una frecuencia de 400 MHz en ¹H y 100 MHz en ¹³C, utilizando CDCl₃ y CD₃OD como disolvente en ambos casos en un equipo Varian VNMRS-400. Los desplazamientos químicos (δ) se expresaron en partes por millón (ppm), utilizando como referencia interna la señal del tetrametilsilano (TMS). Todas las asignaciones de RMN fueron confirmadas por experimentos 2D (COSY, HSQC, HMBC). La rotación óptica se obtuvo con un polarímetro modelo Perkin-Elmer 341, utilizándose metanol como disolvente. Para el análisis de MS se empleó la técnica por electrospray en un equipo Agilent Technologies acoplado a un cromatógrafo de líquidos, el cual constaba de una bomba binaria de la serie 1260 modelo G1312B9 acoplada con un espectrómetro de masas tipo triple cuadrupolo modelo Agilent 6410.

6.2.2. Material vegetal

Se utilizaron dos colectas de *Hyptis pectinata* obtenidas del municipio Emiliano Zapata, estado de Veracruz, durante el 6 de diciembre del 2010 y el 22 de octubre del 2009. Un ejemplar de estas colectas se depositó en el herbario del Instituto de Ecología en Xalapa con los números de voucher XAL0001406 (C-1) y XAL0000286 (C-2). La planta *H. monticola* fue recolectada en el Valle de Videiras, Petrópolis, Río de Janeiro, Brasil, en octubre del 2013 y un ejemplar de esta colecta se depositó en el herbario del Instituto de Biología de la Universidade Federal do Rio de Janeiro bajo el número de voucher RFA39927.

6.2.3. Extracción del material vegetal

Hyptis pectinata: El material vegetal utilizado (2.77 kg para C-1 y 2.79 kg para C-2) se dejó secar mediante exposición al aire libre a temperatura ambiente y se pulverizó para después proceder a su extracción a través de una maceración con CH₂Cl₂. El extracto se sometió a la eliminación de triterpenos a través de la precipitación utilizando metanol; para ello, el

extracto se disolvió en metanol agregando 50 mL por cada gramo de extracto y se dejó 12 horas a 0°C; posteriormente, se filtró y concentró hasta la mitad del volumen. Se repitió el proceso, esta vez concentrando el extracto a sequedad.

Hyptis monticola: Las hojas de la planta (1.05 kg) se secaron y pulverizaron para someterse a un proceso de maceración con la mezcla EtOH: H_2O (7:3). El extracto resultante se sometió a particiones líquido-líquido con disolventes de polaridad creciente: hexano, CH₂Cl₂, acetato de etilo y *n*-butanol.

6.2.4. Técnicas cromatográficas

6.2.4.1. Cromatografía en columna abierta

Para el fraccionamiento primario del extracto de *H. pectinata* se utilizó la cromatografía en columna abierta utilizando columnas de vidrio de diversas dimensiones empacadas con gel de sílice 60 (con tamaño de partícula de 0.063-0.200mm). Los extractos se adsorbieron en gel de sílice con una relación 1:1 y la fase móvil constó de una serie de mezclas de disolventes con el fin de modificar la polaridad, que inició con *n*-hexano y se aumentó gradualmente la polaridad hasta finalizar con metanol.

6.2.5.2. Cromatografía en capa fina (CCF)

Se utilizaron cromatoplacas de aluminio cubiertas con gel de sílice $60F_{254}$ marca Merk. Para detectar los constituyentes presentes en las placas se utilizó una lámpara de UV a 254 nm y 356 nm y como agente cromógeno se usó sulfato cérico (12 g de sulfató cérico, 22.5 mL de ácido sulfúrico y 350 g de hielo) y calentamiento para su revelado.

6.2.5.3. Cromatografía en contracorriente (HSCCC)

Se utilizó un equipo HTPrepTM Quattro CCC equipado con una bomba JASCO PU-2089s Plus y un colector de fracciones Merck L7650 (HTPrep). El sistema de solventes fue *n*hexano-acetato de etilo-MeOH-H₂O (0.8:1:0.8:1). Las dos fases se separaron y se 189 desgasificaron por sonicación durante 5 minutos. Luego, la columna CCC se llenó primero con la fase estacionaria (fase inferior acuosa) y, después de ajustar la rotación, se bombeó la fase móvil (fase superior orgánica). Las muestras se disolvieron en volúmenes iguales de fase y se inyectaron después de que se alcanzó el equilibrio hidrodinámico dentro de la columna. La retención de la fase estacionaria (*Sf*) antes de la inyección fue del 84.2%.

6.2.5.4. Cromatografía de líquidos de alta resolución (CLAR)

Se realizó con un equipo marca Waters que contaba con una bomba modelo 600E, un detector de UV de arreglo de diodos modelo 2996 y una válvula de recirculación de muestra y disolvente. El equipo estuvo adaptado a un equipo de cómputo que contaba con el programa Empower 2 (Waters) para el control del cromatógrafo y procesamiento de los datos. Se utilizaron disolventes grado analítico y las siguientes columnas de fase reversa y normal para el análisis, la separación y la purificación de las muestras:

Cuadro 1. Columnas utilizadas en el equipo de CLAR			
Tipo de columna	Tamaño de partícula/ dimensiones		
Fase reversa			
μ Bondapak NH ₂	10 µm, 3.9 x 300 mm		
μ Bondapak NH ₂	10 µm, 7.8 x 300 mm		
Waters Symmetry C18	5 µm, 4.6 x 250 mm		
Waters Symmetry C18	7 µm, 19 x 150 mm		
Fase normal			
µPorasil sílica analítica	10 µm, 3.9 x 300 mm		

Para el escalamiento del método analítico a nivel semipreparativo y preparativo, se utilizó la siguiente fórmula: $F_p=F_a(l_p/l_a)(d_p^2/d_a^2)$

F_p=Flujo columna preparativa/semipreparativa; F_a=Flujo columna analítica

l_p=Longitud de columna preparativa; l_a=longitud columna analítica

d_p=Diámetro columna preparativa; d_a=Diámetro columna analítica

6.2.6. Fraccionamiento primario

Para el fraccionamiento primario de los extractos de *H. pectinata*, la muestra se adsorbió en gel de sílice en una relación 1:1 y se aplicó a una columna abierta de gel de sílice en una proporción 1:20 con base en el peso del material vegetal. La elución se comenzó con *n*-hexano y la polaridad se incrementó utilizando los siguientes disolventes: CH_2Cl_2 , acetona y metanol. Los eluatos colectados se analizaron mediante CCF para determinar su similitud cromatográfica y proceder a la reunión de fracciones (Cuadro 2). De la fracción A15, se obtuvieron 100 mg del ácido rosmarínico (**10**).

Ácido rosmarínico (10): sólido café; p.f. 171-173 °C; RO (*c* 0.21 g/mL, MeOH) [*a*]₅₈₉ +46.7, [*a*]₅₇₈ +49.5, [*a*]₅₄₆ +58.1; ESI modo negativo *m/z* 359 [C₁₈H₁₆O₈ - H]⁻; ¹H RMN (400 MHz, CD₃OD) δ 7.49 (d, *J* = 15.9 Hz, 1H, H-3), 6.23 (d, *J* = 15.9 Hz, 1H, H-4), 7.01 (d, *J* = 2.1 Hz, 1H, H-6), 6.75 (d, *J* = 8.3 Hz, 1H, H-9), 6.90 (dd, *J* = 8.3, 2.1 Hz, 1H, H-10), 5.07 (dd, *J* = 9.8, 3.3 Hz, 1H, H-1[']), 3.08 (dd, *J* = 14.3, 3.3 Hz, 1H, H-2[']), 2.91 (dd, *J* = 14.3, 9.8 Hz, 1H, H-2[']), 6.65 (d, *J* = 2.1 Hz, 1H, H-4[']), 6.61 (d, *J* = 8.2 Hz, 1H, H-7[']), 6.75 (d, *J* = 8.2, 2.1 Hz, 1H, H-8[']); ¹³C RMN (100 MHz, CD₃OD) δ 169.0 (C-2), 146.6 (C-3), 115.6 (C-4), 127.9 (C-5), 115.1 (C-6), 146.8 (C-7), 149.4 (C-8), 116.4 (C-9), 122.9 (C-10), 77.6 (C-1[']), 38.8 (C-2[']), 131.1 (C-3[']), 116.2 (C-4[']), 145.9 (C-5[']), 144.8 (C-6[']), 121.7 (C-7[']), 117.5 (C-8[']), 177.5 (COOH).

Para la separación de los constituyentes de *H. monticola* se utilizó la cromatografía en contracorriente donde se analizaron once diferentes sistemas de disolventes (hexano:acetato de etilo:MeOH:H₂O) y se seleccionó la proporción 0.8:1:0.8:1. Un total de 65 fracciones se colectaron (3 mL) durante la rotación de la columna, posteriomente 30 fracciones de la fase móvil se colectaran con la bomba apagada.

	C-1	*	C-2
Sistema de	Fracciones colectadas	Sistema de elución	Fracciones
elución			colectadas
Hexano	1-4 (A1)	Hexano	1 (B1)
	5-10 (A2)	Hexano:CH ₂ Cl ₂ (8:2)	2-4 (B2)
	11-12 (A3)	Hexano: $CH_2Cl_2(7:3)$	5-7 (B3)
Hexano:CH ₂ Cl ₂	13-14 (A3)	Hexano:CH ₂ Cl ₂	8-14 (B4)
(7:3)	15-17 (A4)	(6:4)	
	18-20 (A5)		
Hexano:	21-22 (A5)	Hexano:CH ₂ Cl ₂	15 (B5)
CH_2Cl_2	23-28 (A6)	(3:7)	
(5:5)			
CH_2Cl_2	29-30 (A7)	CH_2Cl_2	16 (B6)
	31-32 (A8)		
	33-40 (A9)		
CH ₂ Cl ₂ :Acetona	41-43 (A9)	CH ₂ Cl ₂ :Acetona (9:1)	17-19 (B7)
(9:1)	44-46 (A10)	CH ₂ Cl ₂ :Acetona (8:2)	20-21 (B8)
	47 (A11)	CH_2Cl_2 : Acetona (7:3)	22 (B9)
CH ₂ Cl ₂ :Acetona	48(A11)	CH ₂ Cl ₂ :Acetona (5:5)	23-25 (B10)
(7:3)	49-52 (A12)	CH ₂ Cl ₂ :Acetona (4:6)	26-29 (B11)
Acetona	56-59 (A13)	Acetona	30-35 (B12)
	60-61 (A14)		
Acetona:Metanol	61-64 (A14)	Acetona:Metanol	36 (B13)
(7:3)		(7:3)	37 (B14)
		Acetona:Metanol	39 (B15)
		(5:5)	
		Acetona:Metanol	
		(3:7)	
Metanol	65 (A15)	Metanol	40-42 (B16)
			43-44 (B17)
			45-57 (B18)

Cuadro 2. Fraccionamiento primario de *H. pectinata*

6.2.7. Fraccionamiento secundario

Del fraccionamiento primario del extracto de *H. pectinata* se seleccionaron las fracciones A9, A12 y B8 para un segundo fraccionamiento en columna abierta. Dichas fracciones se adsorbieron en gel de sílice y se aplicaron en una columna abierta de la misma manera en que se realizó el fraccionamiento primario (Cuadro 3). La elución comenzó con *n*-hexano y la polaridad se incrementó utilizando acetato de etilo y metanol. Los eluatos colectados se

analizaron mediante CCF. A través de este procedimiento se obtuvieron la pectinólidas O (7.1 mg, 4) y P (4.7 mg, 5) de las fracciones D7 y E5, respectivamente.

Pectinólida O (4): aceite amarillo; ORD (*c* 0.11 g/mL, MeOH) [α]₅₈₉-8.2, [α]₅₇₈-8.2, [α]₅₄₆-10.9, [α]₄₃₆-14.5; ESI modo positivo *m/z* 311 [C₁₆H₂₂O₆+H]⁺; ¹H RMN (400 MHz, CDCl₃) δ 6.18 (dd, *J* = 5.8, 2.0 Hz, 1H, H-3), 7.42 (dd, *J* = 5.8, 1.6 Hz, 1H, H-4), 5.14 (ddd, *J* = 4.3, 2.0, 1.6 Hz, 1H, H-5), 6.01 (dd, *J* = 8.9, 4.3Hz, 1H, H-1'), 5.62 (dd, *J* = 8.9, 11.0 Hz, 1H, H-2'), 5.50 (dd, *J* = 11.0, 8.4 Hz, 1H, H-3'), 5.46 (ddd, *J* = 8.4, 7.4, 5.9 Hz, 1H, H-4'), 1.62 (m, 2H, H-5'), 1.31 (m, 2H, H-6'), 1.31 (m, 2H, H-7'), 0.90 (t, *J* = 6.9 Hz, 3H, H-8'), 2.02 (s, 3H, CH₃CO), 2.05 (s, 3H, CH₃CO); ¹³C RMN (100 MHz, CDCl₃) δ 172.0 (C-2), 123.5 (C-3), 152.4 (C-4), 83.1 (C-5), 68.4 (C-1'), 135.0 (C-2'), 125.2 (C-3'), 70.2 (C-4'), 34.2 (C-5'), 27.4 (C-6'), 22.5 (C-7'), 14.0 (C-8'), 170.4 (CH₃CO), 169.6 (CH₃CO), 21.2 (CH₃CO), 20.9 (CH₃CO).

Pectinólida P (5): aceite amarillo; ORD (*c* 0.48 g/mL, MeOH) $[\alpha]_{589}$ +0.2, $[\alpha]_{578}$ 0, $[\alpha]_{546}$ +0.2, $[\alpha]_{436}$ +0.8; ESI modo positivo *m/z* 227 $[C_{12}H_{18}O_4 + H]^+$; ¹H RMN (400 MHz, CDCl₃) δ 6.20 (dd, *J* = 5.8, 2.0 Hz, 1H, H-3), 7.46 (dd, *J* = 5.8, 1.5 Hz, 1H, H-4), 5.07 (ddd, *J* = 5.4, 2.0, 1.5 Hz, 1H, H-5), 4.73 (dd, *J* = 7.1, 5.4 Hz, 1H, H-1'), 5.72 (ddd, *J* = 11.4, 7.1, 1.2 Hz, 1H, H-2'), 5.50 (dd, *J* = 11.4, 8.1, 1.2 Hz, 1H, H-3'), 4.51 (ddd, *J* = 8.1, 5.3, 5.2 Hz, 1H, H-4'), 1.57 (m, 2H, H-5'), 1.25 (m, 2H, H-6'), 1.25 (m, 2H, H-7'), 0.90 (t, *J* = 6.9 Hz, 3H, H-8'); ¹³C RMN (100 MHz, CDCl₃) δ 172.5 (C-2), 117.0 (C-3), 138.2 (C-4), 85.2 (C-5), 68.3 (C-1'), 123.1 (C-2'), 127.4 (C-3'), 68.1 (C-4'), 37.0 (C-5'), 27.4 (C-6'), 23.4 (C-7'), 14.0 (C-8').

Cuadro 3. Fraccionamiento secundario de las fracciones A9, A12 y B8.						
I	49	A12		B	B8	
Sistema de	Fracciones	Sistema de	Fracciones	Sistema de	Fracciones	
elución	colectadas	elución	colectadas	elución	colectadas	
Hexano	1 (D1)	Hexano:	1-3 (E1)	Hexano	1-4 (F1)	
		AcOEt	4-8 (E2)	Hexano:	5 (F2)	
		(7:3)	9 (E3)	AcOEt (9:1)		
Hexano:	2-3 (D1)	Hexano:	10-18 (E3)	Hexano:	6-11 (F3)	
AcOEt	4 (D2)	AcOEt	19-20 (E4)	AcOEt (8:2)		
(7:3)	5-6 (D3)	(6:4)		Hexano:	12-14 (F4)	
	7 (D4)			AcOEt (7:3)		
Hexano:	8 (D5)	Hexano:	21-25 (E4)	Hexano:	15-19 (F5)	
AcOEt	9 (D6)	AcOEt	26-30 (E5)	AcOEt		
(6:4)	10 (D7)	(5.5:4.5)		(65:35)		
Hexano:	11 (D8)	Hexano:	31-33 (E5)	Hexano:	20-24 (F6)	
AcOEt	12 (D9)	AcOEt	34-49 (E6)	AcOEt (6:4)		
(5:5)	13-14 (D10)	(5:5)	50 (E7)	Hexano:	25-35 (F7)	
	15 (D11)			AcOEt		
				(55:45)		
AcOEt	16-25 (D11)	AcOEt	51-53 (E7)	Hexano:	36-38 (F8)	
				AcOEt (5:5)		
Metanol	26-30 (D12)	Metanol	54 (E7)	Hexano:	39-45 (F9)	
				AcOEt		
				(45:55)		
				Hexano:	46-57 (F10)	
				AcOEt (4:6)		
				Hexano:	58-59 (F11)	
				AcOEt (3:7)		
				AcOEt	60-66 (F12)	
				Metanol	67 (F13)	

6.2.8. Análisis y purificación mediante cromatografía de líquidos

Para llevar a cabo la purificación de las fracciones 19-25, 35-38, 39-51 y 85-87 de *H. monticola* se determinaron las condiciones analíticas más adecuadas utilizando la cromatografía de líquidos de alta resolución (CLAR) en fase reversa y fase normal (cuadro 4). En el caso de las fracciones 19-25, 39-51 y 85-87 se determinó que el sistema que permitía una resolución adecuada correspondía a una fase estacionaria amino y en una fase móvil de CH₃CN:agua (8:2) para las fracciones 19-25 y 39-51, y acetonitrilo (CH₃CN) para la fracción 85-87 utilizando un flujo de 1.42 mL/min y una longitud de 320 nm para el registro del cromatograma. Para la separación, se inyectaron de 20 mg a 30 mg de muestra en 500 μL de 194

vehículo (CH₃CN). En el caso de la fracción 35-38, se seleccionó una fase estacionaria de gel de sílice y una fase móvil de *n*-hexano:acetato de etilo (1:1) utilizando un flujo de 0.3 mL/min y una longitud de 320 nm para el registro del cromatograma. Se inyectaron 5 mg de muestra por 20 µL de vehículo (acetato de etilo). La fracción 85-87 se purificó a través de la técnica de reciclaje durante tres ciclos (Figura 5) y se obtuvieron 2.8 mg de muestra de un aceite amarillo pálido (4.1 mg) con un t_r 13.64 min, la montecólida C (1). De la fracción 39-51, se obtuvieron cinco picos diferentes (Figura 6); se seleccionaron el pico 2 correspondiente al flavonoide aromadedrina (6) (dihydrokaempferol, sólido amarillo, 22.5 mg) con un t_r 10.68 min y el pico 3 correspondiente al flavonoide 2,3-dihidrogosipetina (9) (sólido amarillo, 3.1 mg) con un t_r 14.67 min; de la fracción 19-25 se obtuvieron tres picos (Figura 7) y se seleccionó el pico 2 correspondiente al flavonoide cartamidina (7) (sólido amarillo, 16.9 mg) con un t_r 13.90 min y el pico 3, correspondiente al flavonoide 3-acetoxi-aromadedrina (8) (sólido amarillo, 2.2 mg) con t_r 15.41 min. Para la fracción 35-38 se obtuvieron cinco picos (Figura 8) de los cuales se seleccionó el pico 4 con un t_r 24.01 min que corresponde a la montecólida D (2) (aceite amarillo, 5.8 mg de muestra).

Para las fracciones A9 y F4 de *H. pectinata* se determinaron las condiciones analíticas óptimas utilizando la CLAR en fase reversa (cuadro 4). Para purificar la fracción A9 se seleccionó una fase móvil de CH₃CN:H₂O (7:3) utilizando una columna C₁₈, un flujo de 6.14 mL/min y una longitud de 254 nm para el registro del cromatograma, se inyectaron 25 mg de muestra por 500 μ L de vehículo (metanol); se obtuvieron seis picos (Figura 9) los cuales se cortaron y colectaron por separado, se seleccionaron el pico 4 (*t_r* 22.20 min) que corresponde a la salvigenina (**11**) (sólido amarillo, 43.2 mg de muestra) y el pico 6 (*t_r* 31.40 min) que corresponde a la 5-hidroxi-7,4'-dimetoxiflavona (**12**) (sólido amarillo pálido, 26.5 mg de muestra). En el caso de la fracción F4, se usó una fase móvil de CH₃CN:H₂O (7:3) utilizando una columna C₁₈ utilizando un flujo de 3.07 mL/min y una longitud de 254 nm para el registro del cromatograma, se inyectaron 25 mg de muestra por 500 μ L de vehículo (metanol). Se obtuvieron dos picos (Figura 10) y se seleccionó el pico 2 (*t_r* 25.87 min), el cual se purificó por la técnica de reciclaje durante nueve ciclos (Figura 11) y se obtuvo la pectinólida N (**3**) (aceite amarillo, 29 mg de muestra).

Cuadro 4. Condiciones utilizadas en CLAR para H. monticola e H. pectinata

Fase normal	Fase reversa
Fase estacionaria: µPorasil (10 µm 3.9 x	Fase estacionaria: µBondapack NH ₂
300 mm)	-nivel analítico: 10 μm 3.9 × 300 mm
Fase móvil: Hexano:Acetato de	-nivel preparativo: $10 \ \mu m \ 7.8 \times 300 \ mm$
etilo (5:5)	Fase móvil: CH ₃ CN:H ₂ O (4:1) y CH ₃ CN.
Flujo: 0.3 mL/min	Flujo: 0.3 mL/min (analítico) y 1.42
Longitud de onda: 320 nm	(preparativo).
volumen de inyección: 20 y 10 µL	Longitud de onda: 320 nm
Cantidad de muesta: 1-5 mg	volumen de inyección: 20 µ (analítico) y
	500 μL (preparativo)
	Cantidad de muesta: 1 mg (analítico) y 20-
	30 mg (preparativo)
	Fase estacionaria: Waters Symmetry C18
	-nivel analítico: 5 μ m 4.6 \times 250 mm
	-nivel preparativo: 7 um 19 × 300 mm v
	$19 \times 150 \text{ mm}$
	Fase móvil: $CH_3CN:H_2O(7:3)$
	Fluio: 0.3 mL/min (analítico) v 6.14 v
	3.07 mL/min (preparativo).
	$19 \times 150 \text{ mm}$ Fase móvil: CH ₃ CN:H ₂ O (7:3) Flujo: 0.3 mL/min (analítico) y 6.14 y 3.07 mL/min (preparativo).

Longitud de onda: 254 nm

500 µL (preparativo)

mg (preparativo)

volumen de inyección: 20 µ (analítico) y

Cantidad de muesta: 1 mg (analítico) y 25

Figura 5. Purificación de la fracción 85-87 a través de la técnica de reciclaje. Condiciones cromatográficas: columna de fase reversa amino; detector de arreglo de diodos (320 nm); fase móvil: CH₃CN, flujo 1.42 mL/min.

Figura 6. CLAR a nivel preparativo de la fracción 39-51. Condiciones cromatográficas: columna de fase reversa amino; detector de arreglo de diodos (320 nm); fase móvil: CH₃CN:H₂O (4:1), flujo 1.42 mL/min.

Figura 7. CLAR a nivel preparativo de la fracción 19-25. Condiciones cromatográficas: columna de fase reversa amino; detector de arreglo de diodos (320 nm); fase móvil: CH₃CN:H₂O (4:1), flujo 1.42 mL/min.

Figura 8. CLAR a nivel analítico de la fracción 35-38. Condiciones cromatográficas: columna de fase normal de gel de sílice; detector de arreglo de diodos (320 nm); fase móvil: *n*-hexano:acetato de etilo (1:1), flujo 0.3 mL/min.

Figura 9. CLAR a nivel analítico de la fracción A9. Condiciones cromatográficas: columna de fase reversa C_{18} ; detector de arreglo de diodos (254 nm); fase móvil: CH₃CN:H₂O (7:3), flujo 6.14 mL/min.

Figura 10. CLAR a nivel analítico de la fracción F4. Condiciones cromatográficas: columna de fase reversa C_{18} ; detector de arreglo de diodos (254 nm); fase móvil: CH₃CN:H₂O (7:3), flujo 3.07 mL/min.

Figura 11. Purificación del pico 2 de la fracción F4 a través de la técnica de reciclaje. Condiciones cromatográficas: columna de fase reversa C_{18} ; detector de arreglo de diodos (254); fase móvil: CH₃CN:H₂O (7:3), flujo 3.07 mL/min.

Montecólida C (*I*): aceite amarillo; ORD (*c* 0.11 g/mL, MeOH) [*a*]₅₈₉+15.0, [*a*]₅₇₈+15.8, [*a*]₅₄₆+19.2, [*a*]₄₃₆+41.7; ESI modo positivo *m/z* 325 [C₁₄H₂₂O₇+ Na]⁺; ¹H RMN (400 MHz, CD₃OD) δ 6.10 (d, *J* = 9.6 Hz, 1H, H-3), 7.14 (dd, *J* = 9.6, 6.0 Hz, 1H, H-4), 4.36 (dd, *J* = 6.0, 2.5 Hz, 1H, H-5), 4.41 (dd, *J* = 9.5, 2.5 Hz, 1H, H-6), 4.05 (dd, *J* = 9.5, 1.2 Hz, 1H, H-1'), 3.89 (dd, *J* = 7.6, 1.2 Hz, 1H, H-2'), 5.18 (ddd, *J* = 8.7, 7.6, 3.6 Hz, 1H, H-3'), 1.67 (m, 2H, H-4'), 1.35 (m, 2H, H-5'), 1.35 (m, 2H, H-6'), 0.93 (t, *J* = 7.1 Hz, 3H, H-7'), 2.11 (s, 3H, CH₃CO); ¹³C RMN (100 MHz, CD₃OD) δ 173.0 (C-2), 123.1 (C-3), 147.1 (C-4), 60.1 (C-5), 80.2 (C-6), 70.1 (C-1'), 72.1 (C-2'), 74.4 (C-3'), 34.0 (C-4'), 28.8 (C-5'), 23.9 (C-6'), 14.3 (C-7'), 172.3 (CH₃CO), 21.2 (CH₃CO).

Montecólida D (2): aceite amarillo; ORD (*c* 0.29 g/mL, MeOH) $[\alpha]_{589}$ -51.4, $[\alpha]_{578}$ -54.1, $[\alpha]_{546}$ -61.7, $[\alpha]_{436}$ -110.0; ESI modo positivo *m/z* 387 $[C_{18}H_{26}O_9 + H]^+$; ¹H RMN (400 MHz, CDCl₃) δ 6.11 (dd, *J* = 5.7, 2.1 Hz, 1H, H-3), 7.37 (dd, *J* = 5.7, 1.7 Hz, 1H, H-4), 5.56 (ddd, *J* = 2.1, 1.7, 1.7 Hz, 1H, H-5), 4.90 (dd, *J* = 9.9, 1.7 Hz, 1H, H-1'), 4.25 (dd, *J* = 9.9, 1.5 Hz, 1H, H-2'), 5.06 (dd, *J* = 7.5, 1.5 Hz, 1H, H-3'), 5.27 (ddd, *J* = 8.5, 7.5, 4.4 Hz, 1H, H-4'), 199 1.63 (m, 2H, H-5'), 1.32 (m, 2H, H-6'), 1.32 (m, 2H, H-7'), 0.91 (t, J = 6.8 Hz, 3H, H-8'), 2.05 (s, 3H, CH₃CO), 2.05 (s, 3H, CH₃CO), 1.97 (s, 3H, CH₃CO); ¹³C RMN (100 MHz, CDCl₃) δ 172.6 (C-2), 122.5 (C-3), 153.4 (C-4), 81.1 (C-5), 69.2 (C-1'), 69.1 (C-2'), 72.5 (C-3'), 72.8 (C-4'), 30.7 (C-5'), 27.2 (C-6'), 22.5 (C-7'), 14.0 (C-8'), 170.9 (CH₃CO), 170.3 (CH₃CO), 170.1 (CH₃CO), 21.0 (CH₃CO), 20.7 (CH₃CO), 20.6 (CH₃CO).

Pectinólida N (3): aceite amarillo; ORD (*c* 3.17 g/mL, MeOH) [α]₅₈₉ -4.3, [α]₅₇₈ -4.4, [α]₅₄₆ -4.6; ESI modo positivo *m/z* 273 [C₁₄H₁₈O₄+ Na]⁺; ¹H RMN (400 MHz, CDCl₃) δ 6.23 (d, *J* = 5.3 Hz, 1H, H-3), 7.43 (d, *J* = 5.3 Hz, 1H, H-4), 6.26 (d, *J* = 12.0 Hz, 1H, H-1'), 6.64 (dd, *J* = 12.0, 9.9 Hz, 1H, H-2'), 5.65 (m, 1H, H-3'), 5.65 (m, 1H, H-4'), 1.68 (m, 2H, H-5'), 1.30 (m, 2H, H-6'), 1.30 (m, 2H, H-7'), 0.89 (t, *J* = 6.7 Hz, 3H, H-8'), 2.05 (s, 3H, CH₃CO); ¹³C RMN (100 MHz, CDCl₃) δ 170.6 (C-2), 119.9 (C-3), 143.5 (C-4), 150.1 (C-5), 109.1 (C-1'), 123.9 (C-2'), 135.0 (C-3'), 70.0 (C-4'), 34.2 (C-5'), 27.1 (C-6'), 22.4 (C-7'), 14.0 (C-8'), 169.3 (CH₃**CO**).

Dihydrokaempferol (6): sólido amarillo; p.f. 247-249 °C; ORD (*c* 0.13 g/mL, MeOH) [α]₅₈₉ +16.2, [α]₅₇₈ +16.9, [α]₅₄₆ +20.0; ESI modo negativo *m/z* 287 [C₁₅H₁₂O₆ - H]⁻; ¹H RMN (400 MHz, CD₃OD) δ 4.96 (d, *J* = 11.6 Hz, 1H, H-2), 4.52 (d, *J* = 11.6 Hz, 1H, H-3), 5.91 (d, *J* = 2.1 Hz, 1H, H-6), 5.86 (d, *J* = 2.1 Hz, 1H, H-8), 7.34 (d, *J* = 8.6 Hz, 2H, H-2'/H-6'), 6.82 (d, *J* = 8.6 Hz, 2 H, H-3'/H-5'); ¹³C RMN (100 MHz, CD₃OD) δ 85.0 (C-2), 73.6 (C-3), 198.4 (C-4), 165.3 (C-5), 97.4 (C-6), 169.0 (C-7), 96.4 (C-8), 164.5 (C-9), 101.8 (C-10), 129.3 (C-1'), 130.4 (C-2'), 116.1 (C-3'), 159.2 (C-4'), 116.1 (C-5'), 130.4 (C-6').

Cartamidina (7): sólido amarillo; p.f. 179-181 °C; ORD (*c* 0.05 g/mL, MeOH) [α]₅₈₉ -6.0, [α]₅₇₈ -8.0, [α]₅₄₆ -8.0; ESI modo negativo *m/z* 287 [C₁₅H₁₂O₆ - H]⁻; ¹H RMN (400 MHz, CD₃OD) δ 5.33 (dd, *J* = 12.9, 3.3 Hz, 1H, H-2), 3.11 (dd, *J* = 17.4, 12.9 Hz, 1H, H-3), 2.69 200 (2d, *J* = 17.4, 3.3 Hz, 1H, H-3), 5.89 (s, 1H, H-8), 7.31 (d, *J* = 8.3 Hz, 2H, H-2'/H-6'), 6.82 (d, *J* = 8.3 Hz, 2H, H-3'/H-5'); ¹³C RMN (100 MHz, CD₃OD) δ 80.4 (C-2), 44.0 (C-3), 197.7 (C-4), 168.7 (C-5), 168.6 (C-6), 164.9 (C-7), 96.2 (C-8), 165.4 (C-9), 103.3 (C-10), 131.1 (C-1'), 129.0 (C-2'), 116.3 (C-3'), 159.0 (C-4'), 116.3 (C-5'), 129.0 (C-6').

3-Acetoxi-aromadendrina (8): sólido amarillo; ESI modo negativo *m/z* 329 [C₁₇H₁₄O₇ - H]⁻; ESI modo positivo *m/z* 353 [C₁₇H₁₄O₇ + Na]⁺; ¹H RMN (400 MHz, CD₃OD) δ 5.29 (d, *J* = 11.7 Hz, 1H, H-2), 5.82 (d, *J* = 11.7 Hz, 1H, H-3), 5.95 (s, 1H, H-6), 5.95 (s, 1H, H-8), 7.33 (d, *J* = 8.6 Hz, 2H, H-2'/H-6'), 6.83 (d, *J* = 8.6 Hz, 2H, H-3'/H-5'), 1.98 (s, 3H, CH₃CO) ; ¹³C RMN (100 MHz, CD₃OD) δ 82.4 (C-2), 73.9 (C-3), 192.9 (C-4), 165.5 (C-5), 97.1 (C-6), 164.2 (C-7), 98.0 (C-8), 165.9 (C-9), 101.7 (C-10), 127.9 (C-1'), 130.1 (C-2'), 116.3 (C-3'), 159.6 (C-4'), 116.3 (C-5'), 130.1 (C-6'), 170.9 (CH₃CO), 20.2 (CH₃CO).

2,3-Dihidrogosipetina (9): sólido amarillo; p.f. 298-299 °C; ESI modo negativo *m/z* 319 [C₁₅H₁₂O₈ - H]⁻; ¹H RMN (400 MHz, CD₃OD) δ 5.74 (d, *J* = 11.7 Hz, 1H, H-2), 5.19 (d, *J* = 11.7 Hz, 1H, H-3), 5.88 (s, 1H, H-6), 6.89 (d, *J* = 1.9 Hz, 1H, H-2'), 6.77 (m, 1H, H-3'), 6.77 (m, H-5'); ¹³C RMN (100 MHz, CD₃OD) δ 73.8 (C-2), 82.3 (C-3), 193.1 (C-4), 169.6 (C-5), 96.7 (C-6), 164.0 (C-7), 165.4 (C-8), 171.1 (C-9), 102.0 (C-10), 128.4 (C-1'), 115.5 (C-2'), 146.5 (C-3'), 147.9 (C-4'), 116.2 (C-5'), 120.8 (C-6').

Salvigenina (11): sólido amarillo; p.f. 188-190 °C; EM-IE *m/z* 328 [C₁₈H₁₆O₆]; ¹H RMN (400 MHz, CDCl₃) δ 12.78 (s, 1H, OH), 7.87 (d, *J* = 8.0 Hz, 2H, H-2'/H-6'), 7.04 (d, *J* = 8.0 Hz, 2H, H-3'/H-5'), 6.60 (s, 1H, H-8), 6.56 (s, 1H, H-3), 3.98 (s, 3H, OCH₃), 3.93 (s, 3H, OCH₃), 3.90 (s, 3H, OCH₃).

5-Hidroxi-7,4'-dimetoxiflavona (12): sólido amarillo pálido; p.f. 166-168 °C; EM-IE *m/z* 298 [C₁₇H₁₄O₅]; ¹H RMN (400 MHz, CDCl₃) δ 12.81 (s, 1H, OH), 7.86 (d, *J* = 8.0 Hz, 2H, H-2'/H-6'), 7.03 (d, *J* = 8.0 Hz, 2H, H-3'/H-5'), 6.58 (s, 1H, H-8), 6.37 (d, *J* = 2.5, 1H, H-6), 6.48 (d, *J* = 2.5, 1H, H-3), 3.89 (s, 3H, OCH₃), 3.88 (s, 3H, OCH₃).

6.2.9. Hidrólisis de la montecólida A (14) y pectinólida I (15)

La montecólida A (14; 10 mg) se disolvió en 2 mL de una mezcla de MeOH/H₂O (70%), la cual contenía 0.6 mL de una solución 0.1 M de KOH. La mezcla se dejó en agitación a temperatura ambiente durante tres horas y pasado ese tiempo, la reacción se aciduló con HCl 1N y se realizó una partición, por triplicado, con 4 mL de acetato de etilo. La fase orgánica se secó con Na₂SO₄ y concentró a presión reducida. Se registró el espectro de ¹H RMN del crudo de reacción. Se utilizó el mismo procedimiento para el compuesto **15**.

6.2.10. Reacción de acetilación de los compuestos 1 y 4

5 mg de cada compuesto por separado se disolvieron en 0.5 mL de piridina anhidra y 0.5 de anhídrido acético (Ac₂O). La mezcla de reacción se agitó durante 24 horas a temperatura ambiente. El curso de reacción se monitoreó mediante CCF hasta la desaparición de la muestra. Posteriormente, se adicionaron 5 mL de agua destilada y se realizaron tres extracciones sucesivas con 10 mL de acetato de etilo cada una. Las fases orgánicas se reunieron y se trataron con 10 mL de HCl 1N, seguido de su neutralización con una solución saturada de NaHCO₃. La fase orgánica se lavó en dos ocasiones con 5 mL de agua destilada y se registró el espectro de ¹H RMN de la mezcla de reacción.

6.2.11 Ensayo de citotoxicidad

Para este bioensayo (Figura 12) se utilizaron tres líneas celulares: HCT-15 (carcinoma de colon), MCF-7 (carcinoma de mama) y HeLa (carcinoma de cérvix). Estas líneas se cultivaron en medio de suero bovino fetal a 37 °C bajo atmósfera de CO₂ al 5% en el aire y

100% de humedad relativa. La preparación del ensayo consistió en permitir el crecimiento celular hasta el 60-70% de confluencia. El medio se cambió para incubar las líneas durante 24 horas adicionales. Posteriormente, las células se lavaron con 5 mL de PBS y se agregó 0.3 mL de tripsina para su separación de la caja de crecimiento; se incubó por 5 min y se comprobó su dispersión a través de observación por microscopio. Se agregaron 5 mL de medio y con una cámara de Neubauer se llevó a cabo el conteo celular y se calculó el volumen necesario para tener una suspensión de 10⁴ células. De esta suspensión se tomaron 190 μ L y se agregaron en las 96 cavidades de 250 μ L de las microplacas de plástico con 10 μ L de las diferentes concentraciones de las muestras a analizar y los controles, cada una por triplicado. Para las células que servirían como blanco, al tiempo inicial, se incubaron los 190 μ L por 30 minutos en las condiciones de crecimiento anteriormente descritas.

La microplaca se incubó por 72 horas y, concluido el tiempo, las células se fijaron con 100 μ L de ácido tricloroacético (TCA) y se colocaron a 4 °C por 30 minutos. Pasado el tiempo, se decantó el TCA y se lavó por cuatro ocasiones con agua fría, se secaron al aire libre para después teñir cada pozo con 100 μ L de sulforodamida B (SRB) al 0.4% en ácido acético al 1% por 30 minutos. Se lavó el exceso de colorante con ácido acético al 1% y después se llevó a cabo un segundo secado. La SRB se solubilizó con 200 μ L de Tris base 10 mM (pH 10) y se agitó por 5 minutos. La densidad celular se determinó utilizando un lector para ELISA a 564 nm. Como control positivo se utilizó una disolución de 4 mg/mL de vinblastina y se realizaron 5 diluciones (2 μ g/mL-0.32 μ g/mL) utilizando DMSO al 10%. Para las fracciones analizadas y los productos naturales de prueba se prepararon disoluciones en una concentración de 4 mg/mL y a partir de esta se hicieron 4 diluciones (20 μ g/mL-0.16 μ g/mL). Los valores obtenidos en las diferentes concentraciones de prueba se promediaron y se determinó el porcentaje de crecimiento con la siguiente fórmula:

$$\% Crecimiento = \frac{D.O._{c\acute{e}lulas+muestra} - D.O._{c\acute{e}lulas tiempo inicial}}{D.O._{c\acute{e}lulas+DMSO 10\%} - D.O._{c\acute{e}lulas tiempo inicial}} \times 100$$

El porcentaje de crecimiento se graficó junto con sus respectivas concentraciones utilizando el programa Table Curve 2D v5.01. Se consideraron activas las fracciones con una $IC_{50} \le 20$ µg/mL y los compuestos puros con una $IC_{50} \le 4$ µg/mL.

Figura 12. Ensayo de citotoxicidad con el método de la SRB en la línea celular MCF-7 (carcinoma de mama). La figura muestra la toxicidad producida por diferentes controles positivos (CI₅₀ μ g/mL): vinblastina, 0.047; adriamicina, 0.644; colchicina, 0.016; camptotecina, >0.00064; elipticina, 0.359.¹⁶

6.3. Resultados y discusión

6.3.1. Estudio fitoquímico

A partir del extracto hidroetanólico de *H. monticola*, se obtuvo un nuevo compuesto (Figura 13) que se identificó como la 6S-[1'*S*,2'*R*,3'*S*-trihidroxi-1'-heptenil]-5*S*-acetiloxi-5,6dihidro-piran-2-ona denominada como la montecólida C (1), junto con un nuevo compuesto con esqueleto de butenólida que se identificó como la 5S-[1'*S*,3'*S*,4'*R*-diacetiloxi-,2'*S*hidroxi-octenil]-5*H*-furan-2-ona y se denominó como la montecólida D (2); también, se aislaron los flavonoides dihidrokaempferol (6), un diastereoisómero de éste, la cartamidina (7); el derivado acetilado del dihidrokaemferol, la 3-acetoxi-aromadendrina (8) y la 2,3dihidrogosipetina (9) (Figura 14). Del extracto diclorometanoico de *H. pectinata*, se obtuvieron tres nuevas butenólidas identificadas como la 5Z-[(2'*Z*)-4'*S*-acetiloxi-octenil]-*5H*-furan-2-ona, la 5S-[(2'*Z*)-1'4'-diacetiloxi-octenil]-*5H*-furan-2-ona y la 5S-[(2'*Z*)-1'4'hidroxi-octenil]-*5H*-furan-2-ona, que se denominaron como pectinólidas N (3), O (4) y P (5), respectivamente; además, se idetificaron tres sutancias aromáticas: el ácido rosmarínico (10), un fenilpropanoide abundante en la familia de las labiadas,¹⁷ y dos compuestos de tipo flavonoide: la salvigenina (11) y la 5-hidroxi-7,4'-dimetoxiflavona (12).

Figura 13. Pirona adicional y furanonas a aisladas de la especies estudiadas.

Figura 14. Sustancias aromáticas aisladas de las plantas analizadas.

6.3.2. Elucidación estructural de las lactonas 1-5

A partir del pico purificado mediante la técnica de reciclaje de la fracción de 85-87 de *H. monticola*, se obtuvo un compuesto novedoso con un esqueleto de 5,6-dihidro- α -pirona que se denominó como la montecólida C (1). Su fórmula molecular se determinó mediante el ion correspondiente a la molécula cationizada de *m/z* 325 [C₁₄H₂₂O₇ + Na]⁺ y que fue registrado en electrospray en modo positivo. En el espectro de ¹H RMN (Figura S1) se observa el mismo sistema ABX para el núcleo de la δ -lactona- α , β -insaturada presente en las montecólidas A y B descritas anteriormente (véase Capítulo I). Las señales de los protones vinílicos del doble enlace conjugado al carbonilo de la pirona se observan con un doblete para H-3 (δ 6.10, *J* = 9.6 Hz) y un doblete de dobletes para H-4 (δ 7.14, *J* = 9.6, 6.0 Hz), el desplazamiento de H-4 es característico para un metino β enlazado a un cromóforo de carbonilo α , β -insaturado.^{1,2} El desplazamiento para H-5 se encuentra en $\delta_{\rm H}$ 4.36 debido a que en esta posición está unido a un grupo hidroxilo; la constante de acoplamiento (³*J*_{*H*,*H*) entre H-5 y H-6 es de 2.5 Hz lo que indica la posición ecuatiorial para H-5 y la posición axial de H-6, dejando una configuración pseudoecuatorial para la cadena lateral unida a C-6. Al igual que H-5, los} protones unidos a las posiciones C-1' (δ_H 4.05) y C-2' (δ_H 3.89) se encuentran unidos a un grupo hidroxilo y que provoca que su desplazamiento químico se localice a campos más altos que cuando se encuentran sustituidos por grupos acetoxilo, como es el caso de la posición C-3' (δ_H 5.18) que presenta una multiplicidad de doblete de doblete de dobletes debido a su acoplamiento con H-2'y el metileno de la posición C-4' y, por lo tanto, en este carbono se encuentra el único grupo acetoxilo sustituyente (δ_H 2.11) presente en la molécula. A través del espectro bidimensional HMBC, se corroborró la correlación entre el carbonilo del grupo acetoxilo sustituyente (δ_C 172.28) y H-3'.

El espectro de ¹³C RMN (Figura S2) puso de manifiesto las cinco señales correspondientes a carbonos base de oxígeno que presenta la molécula posicionados entre 60 y 80 ppm, además de los dos carbonos vinílicos correspondientes a C-3 y C-4 ($\delta_{\rm C}$ 123.12 y 147.09) y el carbonilo correspondiente a la lactona ($\delta_{\rm C}$ 172.97); además se observan tres metilenos a campo alto correspondientes a la cadena de heptenilo y al grupo CH₃ ($\delta_{\rm C}$ 21.16) del radical acetoxilo. Todas las asignaciones se corroboraron a través de los espectros bidimensionales COSY, HSQC (Figura S3 y S4). Para determinar la configuración absoluta de todos los centros quirales del compuesto 1, se recurrió a la correlación química mediante la derivatización por peracetilación (Figura 15). El análisis del espectro de ¹H RMN permitió concluir que este derivado correspondía a la montecólida A (11) cuya configuración absoluta se determinó en su totalidad mediante correlación química con la pectinólida A¹⁸ (12) (véase Capítulo 1). Por lo tanto, se determinó que la configuración absoluta para los centros quirales de la montecólida C (1) son 5'S, 6'S, 1'S, 2'R y 3'S.

Figura 15. Correlaciones químicas entre la pectinólida A y las montecólidas.

Del espectro de ¹H RMN (Figura S5) del pico 4 (detectado a 320 nm) de la fracción 38-35 de *H. monticola*, se identificaron un par de señales doblete de dobletes ($\delta_{\rm H}$ 7.37 y 6.11) que pertenecen a los protones vinílicos H-3 y H-4 ($J_{3,4} = 5.7$) de una 2(5H)-furanona y cuya fórmula molecular corresponde a C₁₈H₂₆O₉ y se determinó a través del catión de m/z 409 $[C_{18}H_{26}O_9 + Na]^+$ registrado en electrospray en modo positivo. Se observan cinco carbonos bases de oxígeno en el espectro de ¹³C RMN (Figura S6), uno perteneciente a la posición C-5 (8 81.12) y el resto a posiciones sustituidas en la cadena de octilo unida al anillo. Se determinó la presencia de tres grupos acetoxilo a través de los tres singuletes ($\delta_{\rm H}$ 2.05, 2.05 y 1.97) observados en el espectro de RMN protónica junto con sus señales correspondientes a sus respectivos carbonilos (δ_C 170.93, 170.32 y 170.13) en el espectro de RMN C-13, estas tres unidades se encuentran unidas a las posiciones C-1', C-3' y C-5' lo cual se determinó a partir del espectro bidimensional HMBC, además de quedar en evidencia a partir del desplazamiento químico de estas señales ($\delta_{\rm H}$ 4.90-5.56). La posición C-2' se encuentra sustituida por un grupo hidroxilo. Al igual que con la montecólida C (1), para determinar por completo la configuración absoluta de la molécula se realizó una correlación química con la montecólida A (11) a través de la hidrólisis de ésta y la acetilación de la montecólida D (2) para generar el mismo producto en ambas reacciones, la butenólida 14 (Figura 15). Estos resultados permitieron determinar que la configuración absoluta de la montecólida D (2) corresponde a 5*S*, 1'*S*, 2'*S*, 3'*R*, 4'*S*.

Figura 16. Mecanismo para la apertura de la δ -lactona y formación de la 2(5*H*)-furanona.

El mecanismo de reacción (Figura 16) para entender esta correlación química involucra la apertura de la δ -lactona- α , β -insaturada por acción de la base (⁻OH) con la concomitante transesterificación del residuo de acetato de la posición C-5 -correspondiente al anillo de δ -lactona original- al grupo hidroxilo resultante de la apertura de la lactona (posición C-6 de la δ -lactona) y la relactonización a un ciclo de cinco miembros por ataque del hidroxilo alilíco (C-5) que corresponde al producto cinético desplazando el equilibrio hacia la 2(5*H*)-furanona.¹⁹

La nueva pectinólida N (**3**) se obtuvo de las fracciones menos polares del fraccionamiento secundario de *H. pectinata*.²⁰ La fórmula C₁₄H₁₈O₄ se determinó a partir del catión de *m/z* 273 obtenido por electrospray ([C₁₄H₁₈O₄+Na]⁺) y la estructura se determinó a partir del análisis de los espectros de ¹H RMN y ¹³C RMN (Cuadro 5 y 6, Figura S9 y S10). En el espectro de ¹³C RMN (Figura S10) se observa dos señales de carbonilo (δ_{C} 169.32 y 170.65), seis señales para protones vinílicos (110-150 ppm), una señal base de oxígeno (δ_{C} 70.05) y cinco señales para protones alifáticos (14-35 ppm). Al comparar las señales de este espectro con las descritas para la pectinólida G⁴ (Figura 4), se encontró que las señales correspondientes a las posiciones C-2' a C-4' eran similares, lo que llevó a proponer la estructura de este compuesto como una 2(5H)- furanona.

A través del espectro de ¹H RMN (Figura S9) se observa una señal correspondiente a un grupo O-acetilo ($\delta_{\rm H}$ 5.65), el cual correspondía con una de las señales de carbonilo ($\delta_{\rm C}$ 169.32) y la señal base de oxígeno observada ($\delta_{\rm C}$ 70.05) en el espectro de ¹³C RMN; además, se observan las señales correspondientes a la doble ligadura del anillo adyacente al carbonilo (6.23 ppm y 7.43 ppm) los cuales se muestran como dobletes (J = 5.3 Hz), al igual que el protón en la posición C-1' ($\delta_{\rm H}$ 6.26, J = 12.0 Hz). El protón de la posición C-2' ($\delta_{\rm H}$ 6.64) se presenta como un doblete de dobletes. Los protones oleofínicos de la cadena latera C-2' y C3' presentan una constante de acoplamiento de 9.9 Hz que estableció la geometría para este doble enlace como *Z*, en el caso del doble enlace entre C-5 y C-1 se corroboró la geometría *Z* a través de la correlación entre H-1' y H-4 observada en el espectro bidimensional NOESY. La comparación de este espectro también mostró cierta similitud con el espectro de ¹H RMN de la pectinólida G. Las señales correspondientes a los protones alifáticos de la cadena lateral (H-5' a H-8') muestran el mismo patrón que las señales para estos protones en las 5,6-dihidro- α -pironas. El resumen de los desplazamientos químicos y constantes de acoplamiento 209

se incluyen en el Cuadro 5 y 6. Para la determinación de la configuración absoluta de la posición C-4', se consideró que debe ser la misma configuración S de la pectinólida A, compuesto que se encuentra de forma mayoritaria en estas plantas, la cual debe ser precursor biosintético de esta furanona.

De las fracciones secundarias D7 y E5, se obtuvieron dos nuevas 2(5H)-furanonas: la pectinólida O (4) y su derivado desacetilado, la pectinólida P (5), cuyas fórmulas moleculares $C_{16}H_{22}O_6$ y $C_{12}H_{18}O_4$, respectivamente, se determinaron a partir de cationes de m/z 333 $[C_{16}H_{22}O_6+Na]^+$ y m/z 249 $[C_{12}H_{18}O_4+Na]^+$ obtenidos por electrospray. Al igual que para la montecólida D (2), en el espectro de ¹H RMN (Figura S11 y S13) se observa el par de doblete de dobletes correspondiente a los protones vinílicos H-3 y H-4 con una J = 11.0 Hz para ambos compuestos y que corresponde a un doble enlace *cis* que se encuentra ubicado en la cadena unida a la posición C-5 de la furanona. Así, las cuatro señales en el espectro de ¹³C RMN (Figura S12 y S14) ubicadas entre 152.53 y 116.96 ppm corroboran la presencia de dos dobles enlaces. La presencia de tres carbonos base de oxígeno corresponden a las posiciones C-5 de anillo y a las posiciones C-1' y C-4' de la cadena de octilo. La ausencia de señales correspondientes a grupos acetoxilos en el espectro de ¹H RMN, en δ 2.02 y 2.05 para la pectinólida O (4), junto con la diferencia en la masa (CH₂CO \times 2 = 84 uma) entre ambos compuestos confirmó que la pectinólida P (5) está sustituida en C-1' y C-3' por grupos hidroxilos. Para determinar la configuración absoluta de los centros quirales de ambas pectinólidas P (5) y O (4) se utilizó la correlación química con la pectinólida I (15) (Figura 17) cuya configuración se determinó mediante el efecto cotton positivo en la curva ECD $(\Delta_{\varepsilon 389} + 1.32)$ para la posición C-6 (S), con la constante de acoplamiento entre (H-5 y H-6 $J_{5ec.6} = 2.5$) para la posición C-5 (S) y a través de la derivatización con ésteres de mosher y la comparación de las constantes de acoplamiento teóricas con las experimentales a través de cálculos DFT para la posición C-3' (véase Capítulo I). A partir de la hidrólisis alcalina de la pectinólida I (15) se obtuvo la pectinólida P (5) cuya acetilación total permitió la formación de la pectinólida O (4). Por lo tanto, la asignación de la configuración absoluta para ambos compuestos es: 5S, 1'S, 4'S. En el Cuadro 5 y 6 se presentan los valores de desplazamiento químico y las constantes de acoplamiento para los compuestos inéditos en la literaura de *Hyptis*, una 5,6-dihidro-piran-2-ona (1) y cuatro 2(5*H*)-furanona (2-5).

Figura 17. Correlación química entre la pectinólida I (15) y las 2(5H)-furanonas.

Cuadro 5. Valores de ¹ H RMN para los productos naturales 1-5 (400 MHz en CDCl ₃ y CD ₃ OD ^a , δ en					
ppm, J en	Hz)				
	1 ^a	2	3	4	5
Posición					
3	6.10 d (9.6)	6.11 dd (5.7,	6.23 d (5.3)	6.18 dd (5.8, 2.0)	6.20 dd (5.8, 2.0)
		2.1)			
4	7.14 dd (9.6,	7.37 dd (5.7,	7.43 d (5.3)	7.42 dd (5.8, 1.6)	7.46 dd (5.8, 1.5)
	6.0)	1.7)			
5	4.36 dd (6.0,	5.56 ddd (2.1,	-	5.14 ddd (4.3,	5.07 ddd (5.4,
	2.5)	1.7, 1.7)		2.0, 1.6)	2.0, 1.5)
6	4.41 dd (9.5,	-	-	-	-
	2.5)				
1'	4.05 dd (9.5,	4.90 dd (9.9,	6.26 d (12.0)	6.01 dd (8.9, 4.3)	4.73 dd (7.1, 5.4)
	1.2)	1.7)			
2'	3.89 dd (7.6,	4.25 dd (9.9,	6.64 dd (12.0,	5.62 dd (8.9,	5.72 ddd (11.4,
	1.2)	1.5)	9.9)	11.0)	7.1, 1.2)
3'	5.18 ddd (8.7,	5.06 dd (7.5,	5.65 m	5.50 dd(11.0,	5.50 ddd (11.4,
	7.6, 3.6)	1.5)		8.4)	8.1, 1.2)
4'	1.67 m	5.27 ddd (8.5,	5.65 m	5.46 ddd (8.4,	4.51 ddd (8.1,
		7.5, 4.4)		7.4, 5.9)	5.3, 5.2)
5'	1.35 m	1.63 m	1.68 m	1.62 m	1.57 m
6'	1.35 m	1.32 m	1.30 m	1.31 m	1.25 m
7'	0.93 t (7.1)	1.32 m	1.30 m	1.31 m	1.25 m
8'	-	0.91 t (6.8)	0.89 t (6.7)	0.90 t (6.9)	0.90 t (6.9)
CH ₃ CO-	2.11 s	2.05 s	2.05 s	2.02 s	-
CH ₃ CO-	-	2.05 s	-	2.05 s	-
CH ₃ CO-	-	1.97 s	-	-	-

El potencial citotóxico de las 2(5*H*)-furanonas aisladas como productos naturales se determinó sobre tres líneas celulares: HCT-116 (carcinoma de colon), MCF-7 (carcinoma de mama) y HeLa (carcinoma de cérvix). De los resultados obtenidos (cuadro 7) se observa que sólo los compuestos **2** y **4** presentaron actividad citotóxica débil para la línea celular de HeLa y de HCT-116, a diferencia de las 5,6-dihidro- α -pironas, cuya alta actividad citotóxica asociada al anillo δ -lactona- α , β -insaturada ha sido demostrada en diversas ocasiones (véase Capítulo 1).^{21,22}

Cuadro 6. Valores	s de ¹³ C RMN pa	ra los productos	s naturales 1-5 (100 MHz en CD	Cl ₃ y CD ₃ OD ^a , δ
en ppm)					
	1 ^a	2	3	4	5
Posición					
2	172.97	172.58	170.65	172.04	172.54
3	123.12	122.46	119.91	123.53	116.96
4	147.09	153.38	143.50	152.37	138.25
5	60.09	81.12	150.11	83.06	85.17
6	80.23	-	-	-	-
1'	70.14	69.24	109.11	68.36	68.28
2'	72.07	69.13	123.86	135.01	123.09
3'	74.44	72.53	135.05	125.25	127.48
4'	34.04	72.85	70.05	70.21	68.09
5'	28.85	30.67	34.17	34.25	37.00
6'	23.88	27.22	27.14	27.36	27.37
7'	14.34	22.53	22.44	22.53	23.39
8'	-	14.03	13.94	13.95	13.98
СН3СО-	172.28	170.93	169.32	170.35	-
СН3СО-	-	170.32	-	169.64	-
СН3СО-	-	170.13	-	-	-
СН3СО-	-	-	-	-	-
CH ₃ CO-	21.16	21.03	21.23	21.18	-
CH3CO-	-	20.69	-	20.89	-
CH ₃ CO-	-	20.62	-	-	-

Cuadro 7. Citotoxicidad de las 2(5H)-furanonas aisladas de H.					
$IC_{50} (\mu g/mL)$					
MCF-7	HeLa	HCT-116			
15.96	13.10	19.79			
24.90	21.25	1.87			
10.39	2.04	4.76			
22.98	22.66	>25			
0.0041	0.0045	0.08			
	MCF-7 15.96 24.90 10.39 22.98 0.0041	MCF-7 HeLa 15.96 13.10 24.90 21.25 10.39 2.04 22.98 22.66 0.0041 0.0045			

MCF-7 = carcinoma de mama; HeLa = carcinoma de cérvix, HCT-116 = carcinoma de colon.

6.3.3. Elucidación estructural de las sustancias aromáticas

Del pico 2 de las fracciones 39-51 y 19-25 de *H. monticola* obtenidas por CLAR se obtuvieron dos compuestos con estructura flavonoide que fueron identificados como el dihidrokaempferol (6) y la cartamidina (7), compuesto previamente descritos en la literatura. El dihidrokaempferol (6) se aisló originalmente de la madera de *Pinus sibirica*²³ y también

ha sido descrito en los frutos de *Faidherbia albida*²⁴ y en la madera de *Pseudotsuga menziesii*²⁵; la cartamidina (7) se ha identificado en especies del género *Carthamus*²⁶ y en las raíces de *Enkleia siamensis*.²⁷ La estructura de estos compuesto se asignó a través de ¹H RMN y ¹³C RMN (Figuras S15-S18), los espectros bidimensionales COSY, HSQC y HMBC, junto con los espectros de masas registrados mediante electrospray en modo negativo.

Para el caso del dihidrokaempferol (6), su fórmula molecular se determinó como C₁₅H₁₂O₆ a través del ion correspondiente a la molécula desprotonada de *m/z* 287 [M – H][–] registrado en electrospray en modo negativo. En el espectro de ¹H RMN se observa un sistema A₂B₂ indicativo de una sustitución *para* del anillo aromático B, encontrándose dos dobletes entre 6.82 ppm (H-3' y H-5') y 7.34 ppm (H-2' y H- 6') con una constante de acoplamiento de 8.6 Hz, correspondiente a una sustitución *orto*. Se observan dos carbonos base de oxígeno en las posiciones C-2 y C-3 cuyos desplazamientos químicos en ¹³C RMN se encuentran en $\delta_{\rm C}$ 84.96 y $\delta_{\rm C}$ 73.62, respectivamente. Se observan dos protones en $\delta_{\rm H}$ 5.86 y $\delta_{\rm H}$ 5.91 con una constante de acoplamiento de 2.1 Hz relacionada con una sustitución *meta* en las posiciones C-6 y C-8. Todas las asignaciones en los anillos aromáticos se corroboraron a través del espectro HMBC.

La cartamidina (7), un isómero del dihidrokaempferol, se identificó a través de los espectros de ¹H RMN y ¹³C RMN (Figura S17 y S18). Se observa que el grupo hidroxilo de la posición C-3 presente en el dihidrokaempferol ahora se encuentra en la posición C-6 (δ_C 168.62) del anillo aromático; la posición C-3 presenta un carbono alifático (δ_C 44.00) con dos protones (δ_H 3.11 y 2.69) con una constante de acoplamiento geminal de 17.4 Hz y constantes de 12.9 Hz y 3.1 Hz que se acoplan con el protón de la posición C-2 que corresponde a una base de oxígeno cuyo desplazamiento en ¹³C RMN es de δ_C 80.45; el único protón (H-8) presente en el anillo A del flavonoide tiene un desplazamiento de δ_H 5.89, el anillo B de la molécula muestra el mismo sistema A₂B₂ que el dihidrokaempferol (**6**).

Del pico 3 de la fracción 19-25 de *H. monticola* obtenido por CLAR se aisló el derivado acetilado en la posición C-3 del dihidrokaempferol (6), denominado como la 3-acetoxiaromadendrina (8), este flavanolol trihidroxilado se aisló previamente del extracto lipofílico de las hojas de *Siparuna andina* y mostró una moderada actividad antiplasmódica *in vitro*.²⁸ 213

Su fórmula molecular se determinó como $C_{17}H_{14}O_7$ a través del ion correspondiente de m/z $353 [M + Na]^+$ registrado en electrospray en modo positivo (Figura 18); además en el espectro de masas, se observa el pico correspondiente a la molécula protonada (m/z 331 [M + H]⁺), así como la eliminación subsecuente de una molécula de ácido acético (m/z 271) y la pérdida de una molécula de CO (m/z 243). El pico de m/z 153 es el resultado de la fragmentación de la molécula desacetilada protonada a través de una reacción tipo retro diels alder (RDA) (Figura 19), característica de los flavonoides.²⁹ A partir de este pico se puede corroborar la sustitución en el anillo A del flavanolol, que al igual que el dihidrokaempferol (6), presenta dos hidroxilos en posición meta. La estructura se asignó a través del análisis espectroscópico en la RMN¹H y ¹³C (Figuras S19-S20) y los espectros bidimensionales HSQC y HMBC. En el espectro de ¹H RMN se observa un sistema A₂B₂ para el anillo B, los protones H-2 ($\delta_{\rm H}$ 5.29) y H-3 ($\delta_{\rm H}$ 5.82) presentan una constante de acoplamiento de 11.7 Hz que indica que los protones se encuentran en posición cis, además se observa un singulete en $\delta_{\rm H}$ 1.98 perteneciente al CH₃ del grupo acetoxilo (δ_C 170.89) unido a la posición C-3 (δ_C 73.90); los H-6 y H-8 del anillo A se observan como un singulete ($\delta_{\rm H}$ 5.95) que intregra para dos protones.

Figura 18. Espectro de masas mediante (+)-ESI de la 3-acetoxi-aromadendrina (8).

Figura 19. Fragmentación en (+)-electroespray de la 3-acetoxi-aromadendrina (8).

A partir del pico 3 de la fracción 39-51, se obtuvo el flavanolol 2,3-dihidrogosipetina (**9**), cuya fórmula molecular se determinó como $C_{15}H_{12}O_8$ a través del ion correspondiente a la molécula desprotonada de *m/z* 319 [M – H][–] registrado en electrospray en modo negativo. Este flavanolol se aisló anteriormente a través de la hidroxilación de la taxifolina usando la proteína taxifolin 8-monooxigenasa de *Pseudomonas* sp. en la presencia de NADH y NADPH.³⁰ El derivado metoxilado en las posiciones C-7 y C-8 se aisló de la planta *Erica cinerea.*³¹ La asignación de la estructura se obtuvo mediante el análisis espectroscópico en la RMN ¹H y ¹³C (Figura S21 y S22), junto con los espectros bidimensionales COSY, HSQC y HMBC para asignar correctamente los desplazamientos químicos. Para el anillo B se observan dos señales: un doblete para el protón H-2' ($\delta_H 6.89$) con una *J* = 1.9 Hz que indica un acoplamiento en *meta* y una señal con multiplicidad compleja para los protones H-5' y H-6' ($\delta_H 6.77$). Dos carbonos base de oxígeno ($\delta_C 73.82 y 82.26$) observados en el espectro de ¹³C RMN corresponde a las posiciones C-2 y C-3 sustituida con un grupo hidroxilo. Para el anillo A se observa únicamente una señal para el protón H-6, el cual en el espectro de HMBC

presentó una correlación con todos los carbonos del anillo a excepción de C-9 (δ_{C} 171.11) que se encuentra en posición *para* respecto a C-6 y que se identificó a partir de su correlación con H-2 por HMBC, esto permitió descartar que el protón se encontrara en la posición C-8.

De la fracción A5 obtenida del fraccionamiento primario de un extracto H. pectinata eluida con metanol por columna abierta se identificó al ácido rosmarínico (10), un éster entre el ácido cafeico y el ácido 3,4-dihidroxifenilactico, se aisló originalmente de la planta Rosmarinus officinalis; sin embargo, se ha encontrado en plantas de las familias Boraginaceae y Lamiaceae, en particular en la subfamilia Nepetoidae;³² dentro del género Hyptis, se aisló de una colecta brasileña de H. pectinata.³³ La asignación de la estructura de este compuesto se obtuvo por ¹H y ¹³C RMN (Figura S23 y S24) junto con los espectros bidimensionales COSY, HSQC y HMBC para asignar correctamente las correlaciones entre los átomos de la molécula: ambos anillos aromáticos presentes en la estructura cuentan con tres protones, uno de ellos con una constante acoplamiento de 8.2 Hz (H-9 y H-7') correspondiente a un acoplamiento en posición *orto*, otro con una constante de acoplamiento de 2.1 Hz (H-6 y H-4') que corresponde a un acoplamiento en posición meta y, finalmente, un protón que cuenta con constantes para acoplamientos otro y meta (H-10 y H-1'), la correlación entre los protones de los anillos aromáticos se confirmó a través del espectro COSY. En 6.23 ppm y 7.49 ppm se observan dos protones con una constante de acoplamiento de 15.9 Hz que indica que se trata de un doble enlace trans unido a uno de los anillos aromáticos y al carbonilo ($\delta_{\rm C}$ 169.04), lo cual se confirmó por el espectro HMBC. Esta parte corresponde al ácido cafeico. Unido al segundo anillo aromático se encuentras dos carbonos alifáticos, uno de ellos en δ_C 38.76 posee dos protones con una constante geminal (J = 17.1Hz) en $\delta_{\rm H}$ 2.91 y 3.08. El carbono vecinal se encuentra unido al oxígeno del carbonilo ($\delta_{\rm C}$ 77.56) y las constantes de acoplamiento de sus protones (9.7 Hz y 3.3 Hz) corresponden a los protones en $\delta_{\rm H}$ 2.91 y 3.08, respectivamente. El espectro de masas obtenido por electrospray en modo negativo confirma la estructura a través del anión de la molécula desprotonada de m/z 359 [C₁₇H₁₆O₆ – H]⁻. En los Cuadros 8 y 9 se resumen los desplazamientos y constantes de acoplamiento de los compuestos obtenidos.

Del pico 4 de la fracción A9 del extracto de *H. pectinata* se obtuvo la salvigenina²⁰(5-hidroxi-4',6,7 trimetoxiflavona) (**11**), flavonoide ampliamente distribuido en la familia *Lamiaceae*³⁴ y aislado originalmente de Salvia officinalis.35 Su fórmula molecular se determinó como $C_{18}H_{16}O_6$ a partir del ion radical obtenido por impacto electrónico con una *m*/z 328. En el espectro de ¹H-RMN se encontró un singulete en $\delta_{\rm C}$ 12.78 correspondiente a un OH en C-5 cuyo desplazamiento a campo bajo se debe a que se encuentra quelatado con el oxígeno del carbonilo en C-4, el singulete en $\delta_{\rm H}$ 6.60 corresponde al protón en la posición 8; los tres singuletes presentes entre δ_H 3.90-3.98 corresponden a los grupos metoxilo presentes en la molécula en las posiciones C-7, C-6 y C-4' y la señal en $\delta_{\rm H}$ 6.56 pertenece al protón vinílico H-3; se encuentran dos dobletes en δ 7.04 (H-3'/H-5') y $\delta_{\rm H}$ 7.86 (H-2'/H-6') que integran para dos protones cada uno y con una constante de acoplamiento de 8.0 Hz. Estas señales son indicativas de un sistema A₂B₂ donde las sustituciones se encuentran en posición para. En el caso de la 5-hidroxi-7,4'-dimetoxiflavona (11), otra flavona aislada de la familia Lamiaceae³⁶, su ion radical observado por impacto electrónico con una m/z 298 corresponde a la fórmula molecular C₁₇H₁₄O₅. La diferencia entre este flavonoide y la salvigenina es de 30 unidades de masa, correspondiente a un grupo metoxilo. A través del espectro de ¹H-RMN se corrobora la presencia de solo dos grupos metoxilo ($\delta_{\rm H}$ 3.90 y 3.88), además se observa el mismo sistema A₂B₂ para las posiciones H-2'/H-6' y H-3'/H-5' junto con un singulete en $\delta_{\rm H}$ 6.48 perteneciente a H-3 y el singulete para el grupo hidroxilo en C-5. En el caso de este compuesto, se presentan dos dobletes ($\delta_{\rm H}$ 6.37 y 6.58) con una constante de acoplamiento meta (2.5 Hz) para los protones H-6 y H-8.

Cuadro 8. Valores de ¹	H RMN para los n	roductos naturales	6-10 (400 MHz_0	CD3OD, δ en nni	n. J en Hz).
Posición	6	7	8	9	10
2	4.96 d (11.6)	5.33 dd (12.9,	5.29 d (11.7)	5.74 d (11.7)	-
3	4.52 d (11.6)	3.3) 3.11 dd (17.4, 12.9) 2.69 dd (17.4,	5.82 d (11.7)	5.19 d (11.7)	7.49 d (15.9)
4	-	3.3)	-	-	6.23 d (15.9)
5 6	- 5.91 d (2.1)	-	- 5.95 s	- 5.88 s	- 7.01 d (2.1)
7 8	- 5.86 d (2.1)	- 5.89 s	5.95 s	-	-
9	-	-	-	-	6.75 d (8.2)
10	-	-	-	-	6.90 dd (8.2, 2.1)
1'	-	-	-	-	5.07 dd (9.8, 3.3)
2'	7.34 d (8.6)	7.31 d (8.3)	7.33 d (8.6)	6.89 d (1.9)	3.08 dd (14.3, 3.3) 2.91 dd (14.3,
3'	682 d (8 6)	6824(83)	6834(86)		9.8)
3 4'	0.82 d (8.0)	0.82 u (8.3)	0.85 d (8.0)	-	6.65 d(2.1)
5'	6.82 d (8.6)	6.82 d (8.3)	6.83 d (8.6)	6.77 m	-
6 '	7.34 d (8.6)	7.31 d (8.3)	7.33 d (8.6)	6.77 m	-
7'	-	- ` `	-	-	6.61 dd (8.2)
8'	-	-	-	-	6.75 dd (8.2, 2.1)
CH ₃ CO	-	-	1.98	-	

Cuadro 9. Valores de ¹	³ C RMN para los p	oroductos naturales	s 6-10 (100 MHz ei	n CD ₃ OD, δ en	ppm, J en Hz)
Posición	6	7	8	9	10
2	84.96	80.45	82.37	73.82	169.04
3	73.62	44.00	73.90	82.26	146.65
4	198.45	197.75	192.89	193.09	115.59
5	165.32	168.66	165.49	169.59	127.95
6	97.36	168.62	97.06	96.73	115.06
7	168.97	164.86	164.21	164.02	146.77
8	96.34	96.25	98.05	165.38	149.38
9	164.54	165.41	165.86	171.11	116.43
10	101.77	103.28	101.68	102.01	122.91
1'	129.29	131.11	127.90	128.37	77.56
2'	130.37	129.03	130.13	115.53	38.76
3'	116.12	116.33	116.30	146.46	131.08
4'	159.22	158.99	159.58	147.95	116.16
5'	116.12	116.33	116.30	116.20	145.95
6'	130.37	129.03	130.13	120.78	144.81
7'	-	-	-	-	121.72
8'	-	-	-	-	117.46
CH ₃ CO	-	-	20.22	-	-
СН3СО	-	-	170.89	-	-
СООН	-	-	-	-	177.53

La importancia de los flavonoides y los conjugados del ácido cafeico, como el ácido rosmarínico (**10**), confiere una importancia farmacológica a las especies de *Hyptis* utilizadas en la medicina tradicional, como desinfectantes y calmantes de las irritaciones de las mucosas estomacales. Esta consideración se fundamenta principalmente por la actividad antibacteriana demostrada por algunos flavonoides.³⁷ Sin embargo, la actividad antioxidante de los flavonoides y sus metabolitos –ácidos fenólicos- ha recibido la mayor atención por parte de la investigación farmacognóstica, debido a su capacidad para reducir la formación de radicales libres y a neutralizar a los radicales libres *in vivo*. Este propiedad se evidenció experimentalmente por el aumento de la capacidad antioxidante del plasma através de la regulación del estrés oxidativo posprandial³⁸ y la preservación de los ácidos grasos poliinsaturados de las membranas de eritrocitos.³⁹

El metabolismo de los flavonoides de las dos especies del género *Hyptis* analizadas (*H. pectinata* y *H. monticola*) se caracteriza por la oxidación de las posiciones C-8 y C-3 del núcleo básico, rasgo que comparte con otras especies incluidas en el género y algunos quimiotipos de *Mentha*, *Thymus* y Plectranthus, *inter alia*.^{40,41} Para la actividad antimicrobiana se requiere de al menos un grupo hidroxilo en el anillo A de los flavonoides (especialmente en C-7); la hidroxilación de las posiciones C-5 y C-6 también contribuyen al incremento de la actividad.⁴²

6.4. Referencias

- Karuppiah V, Sun W, Li Z. Natural Products of Actinobacteria Derived from Marine Organisms. *Stud* Nat Prod Chem. 2016;48:417-446. doi:10.1016/B978-0-444-63602-7.00013-8
- 2. Joule JA, Mills K. Heterocyclic Chemistry. 5th ed. Ware: Wiley; 2010. doi:978 92 4 150215 3
- Flematti GR, Ghisalberti EL, Dixon KW, Trengove RD. A compound from smoke that promotes seed germination. *Science (80-)*. 2004;305(5686):977. doi:10.1126/science.1099944
- Boalino DM, Connolly JD, McLean S, Reynolds WF, Tinto WF. α-Pyrones and a 2(5H)-furanone from *Hyptis pectinata*. *Phytochemistry*. 2003;64(7):1303-1307. doi:10.1016/j.phytochem.2003.08.017
- Fragoso-Serrano M, Gibbons S, Pereda-Miranda R. Anti-staphylococcal and cytotoxic compounds from *Hyptis pectinata*. *Planta Med*. 2005;71(3):278-280. doi:10.1055/s-2005-837831
- Xu Y, He H, Schulz S, et al. Potent antifouling compounds produced by marine *Streptomyces*. *Bioresour Technol*. 2010;101(4):1331-1336. doi:10.1016/j.biortech.2009.09.046
- Pimentel-Elardo SM, Kozytska S, Bugni TS, Ireland CM, Moll H, Hentschel U. Anti-parasitic compounds from *Streptomyces* sp. strains isolated from Mediterranean sponges. *Mar Drugs*. 2010;8(2):373-380. doi:10.3390/md8020373
- Igarashi Y, Ikeda M, Miyanaga S, Kasai H, Shizuri Y, Matsuura N. Two butenolides with PPARα agonistic activity from a marine-derived *Streptomyces*. *J Antibiot (Tokyo)*. 2015;68(5):345-347. doi:10.1038/ja.2014.151
- Centko RM, Ramón-García S, Taylor T, et al. Ramariolides A-D, antimycobacterial butenolides isolated from the mushroom *Ramaria cystidiophora*. J Nat Prod. 2012;75(12):2178-2182. doi:10.1021/np3006277
- Lehmann J, Richers J, Pöthig A, Sieber SA. Synthesis of ramariolide natural products and discovery of their targets in mycobacteria. *Chem Commun.* 2017;53(1):107-110. doi:10.1039/C6CC08365J
- Mansoor TA, Hong J, Lee CO, et al. New Cytotoxic Metabolites from a Marine Sponge *Homaxinella* sp. *J Nat Prod*. 2004;67(4):721-724. doi:10.1021/np030358j
- Li DH, Zhu TJ, Liu HB, Fang YC, Gu QQ, Zhu WM. Four butenolides are novel cytotoxic compounds isolated from the marine-derived bacterium, *Streptoverticillium luteoverticillatum* 11014. *Arch Pharm Res.* 2006;29(8):624-626. doi:10.1007/BF02968245
- Masi M, Maddau L, Linaldeddu BT, et al. Bioactive Secondary Metabolites Produced by the Oak Pathogen *Diplodia corticola*. J Agric Food Chem. 2016;64(1):217-225. doi:10.1021/acs.jafc.5b05170
- 14. Piao SJ, Zhang HJ, Lu HY, et al. Hippolides A-H, acyclic manoalide derivatives from the marine sponge *Hippospongia lachne*. *J Nat Prod*. 2011;74(5):1248-1254. doi:10.1021/np200227s
- Ueoka R, Nakao Y, Fujii S, Van Soest RWM, Matsunaga S. Aplysinoplides A-C, cytotoxic sesterterpenes from the marine sponge *Aplysinopsis digitata*. J Nat Prod. 2008;71(6):1089-1091.
- 16. Figueroa-Gonzaélez G, Jacobo-Herrera N, Zentella-Dehesa A, Pereda-Miranda R. Reversal of multidrug resistance by morning glory resin glycosides in human breast cancer cells. *J Nat Prod.*

2012;75(1):93-97. doi:10.1021/np200864m

- Petersen M, Simmonds MSJ. Rosmarinic acid. *Phytochemistry*. 2003;62(2):121-125. doi:10.1016/S0031-9422(02)00513-7
- Pereda-Miranda R, Hernández L, Villavicencio MJ, et al. Structure and stereochemistry of pectinolides a-C, novel antimicrobial and cytotoxic 5, 6-dihydro-α-pyrones from *Hyptis pectinata*. J Nat Prod. 1993;56(4):583-593. doi:10.1021/np50094a019
- 19. Eliel EL, Doyle MP. Basic Organic Stereochemistry. 1st ed. Wiley-Interscience; 2001.
- Flores Suárez DL. Aislamiento mediante cromatografía de líquidos de los constituyentes de la especie Hyptis pectinata. 2016.
- Bates D, Eastman A. Microtubule destabilising agents: far more than just antimitotic anticancer drugs. Br J Clin Pharmacol. 2017;83(2):255-268. doi:10.1111/bcp.13126
- 22. Steinmetz MO, Prota AE. Microtubule-Targeting Agents: Strategies To Hijack the Cytoskeleton. *Trends Cell Biol.* 2018;28(10):776-792. doi:10.1016/j.tcb.2018.05.001
- 23. Lutskii, V.I., Gromova, A.S., Tyukavkina NA. Aromadendrin, apigenin and kaemperol from the wood of *Pinus sibirica*. *Chem Nat Compd*. 1971;7(2):197. doi:10.1360/zd-2013-43-6-1064
- 24. Mohammed MM, Ali AA, Desoky EK, Gobraeil LG. Compounds isolation and antioxidant activity of *Faidherbia albida* fruit extract. 2018:35-40.
- Mbakidi-Ngouaby H, Pinault E, Gloaguen V, et al. Profiling and seasonal variation of chemical constituents from *Pseudotsuga menziesii* wood. *Ind Crops Prod.* 2018;117(February):34-49. doi:10.1016/j.indcrop.2018.02.069
- 26. Compounds N. Anthocyans of carthamus species. Chem Nat Compd. 1998;34(4):557-558.
- Rajachan OA, Kanokmedhakul S, Nasomjai P, Kanokmedhakul K. Chemical constituents and biological activities from roots of *Enkleia siamensis*. *Nat Prod Res*. 2014;28(4):268-270. doi:10.1080/14786419.2013.838241
- Petersen M, Simmonds MSJ. Rosmarinic acid. *Phytochemistry*. 2003;62(2):121-125. doi:10.1016/S0031-9422(02)00513-7
- Demarque DP, Crotti AEM, Vessecchi R, Lopes JLC, Lopes NP. Fragmentation reactions using electrospray ionization mass spectrometry: An important tool for the structural elucidation and characterization of synthetic and natural products. *Nat Prod Rep.* 2016;33(3):432-455. doi:10.1039/c5np00073d
- 30. Jenett-Siems K, Siems K, Jakupovic J, et al. Sipandinolide: A butenolide including a novel type of carbon skeleton from *Siparuna andina*. *Planta Med*. 2000;66(4):384-385. doi:10.1055/s-2000-14898
- 31. Jeffrey M, Knight M EC. The Bacterial Degradation of Flavonoids. *Biochem J*. 1972;130:373-381.
- Bennini B, Chulia AJ, Kaouadji M, Delage C. (2R,3R)-Dihydroflavonol aglycone and glycosides from *Erica cinerea*. *Phytochemistry*. 1993;33(5):1233-1236. doi:10.1016/0031-9422(93)85055-V
- Falcao RA, Do Nascimento PLA, De Souza SA, et al. Antileishmanial phenylpropanoids from the leaves of *Hyptis pectinata* (L.) poit. *Evidence-based Complement Altern Med.* 2013;2013. doi:10.1155/2013/460613

- Tomás-Barberán FA, Wollenweber E. Flavonoid aglycones from the leaf surfaces of some Labiatae species. *Plant Syst Evol.* 1990;173(3-4):109-118. doi:10.1007/BF00940856
- Mansourabadi AH, Sadeghi HM, Razavi N. Anti-inflammatory and Analgesic Properties of Salvigenin, *Salvia officinalis* Flavonoid Extracted. 2015;1(3):31-41.
- Taylor P, Habibi Z, Cheraghi Z, Ghasemi S, Yousefi M. New highly hydroxylated triterpene from Salvia atropatana Bunge. Natural Product Research 2013:37-41.
- Cushnie TPT, Lamb AJ. Recent advances in understanding the antibacterial properties of flavonoids. Int J Antimicrob Agents. 2011;38(2):99-107. doi:10.1016/j.ijantimicag.2011.02.014
- Selby-Pham J, Selby-Pham SN, Wise K, Bennett LE. Understanding health-related properties of bushmint (*Hyptis*) by pharmacokinetic modelling of intestinal absorption. Phytochemistry letters. 2018 Aug 31;26:16-9.
- 39. Pietta PG. Flavonoids as antioxidants. J Nat Prod. 2000;63(7):1035-1042. doi:10.1021/np9904509
- Milevskaya V V., Prasad S, Temerdashev ZA. Extraction and chromatographic determination of phenolic compounds from medicinal herbs in the Lamiaceae and Hypericaceae families: A review. *Microchem J.* 2019;145:1036-1049. doi:10.1016/j.microc.2018.11.041
- Peter SR, Peru KM, Fahlman B, McMartin DW, Headley J V. The application of HPLC ESI MS in the investigation of the flavonoids and flavonoid glycosides of a Caribbean Lamiaceae plant with potential for bioaccumulation. *J Environ Sci Heal - Part B Pestic Food Contam Agric Wastes*. 2015;50(11):819-826. doi:10.1080/03601234.2015.1058103
- Farhadi F, Khameneh B, Iranshahi M, Iranshahy M. Antibacterial activity of flavonoids and their structure–activity relationship: An update review. *Phyther Res.* 2019;33(1):13-40. doi:10.1002/ptr.6208

6.4. Información suplementaria

Figura S1. Espectro de ¹H RMN (400 MHz) de la montecólida C (1) en CD₃OD.

Figura S2. Espectro de ¹³C RMN (100 MHz) de la montecólida C (1) en CD₃OD.

Figura S3. Espectro bidimensional ¹H-¹H COSY de la montecólida C (1) en CD₃OD.

Figura S4. Espectro bidimensional ¹H-¹³C HSQC de la montecólida C (1) en CD₃OD.

Figura S6. Espectro de ¹³C RMN (100 MHz) de la montecólida D (2) en CDCl₃.

Figura S7. Espectro bidimensional ¹H-¹H COSY de la montecólida D (2) en CDCl₃.

Figura S8. Espectro bidimensional ¹H-¹³C HSQC de la montecólida D (2) en CDCl₃.

Figura S9. Espectro de ¹H RMN (400 MHz) de la pectinólida N (3) en CDCl₃.

Figura S10. Espectro de ¹³C RMN (100 MHz) de la pectinólida N (3) en CDCl₃.

Figura S11. Espectro de ¹H RMN (400 MHz) de la pectinólida O (4) en CDCl₃.

Figura S12. Espectro de ¹³C RMN (100 MHz) de la pectinólida O (4) en CDCl₃.

Figura S13. Espectro de ¹H RMN (400 MHz) de la pectinólida P (5) en CDCl₃.

Figura S15. Espectro de ¹H RMN (400 MHz) del dihidrokaempferol (6) en CD₃OD.

Figura S17. Espectro de ¹H RMN (400 MHz) de cartamidina (7) en CD₃OD.

Figura S18. Espectro de ¹³C RMN (100 MHz) de la cartamidina (7) en CD₃OD.

Figura S19. Espectro de ¹H RMN (400 MHz) de 2*R*,3*R*-acetoxi-aromadendrina (9) en CD₃OD.

Figura S20. Espectro de ¹³C RMN (100 MHz) de la 2*R*,3*R*-acetoxi-aromadendrina (9) en CD₃OD.

Figura S21. Espectro de ¹H RMN (400 MHz) de 2*R*,3*R*-dihidrogosipetina (8) en CD₃OD.

Figura S22. Espectro de ¹³C RMN (100 MHz) de la 2R, 3R-dihidrogosipetina (8) en CD₃OD.

Figura S23. Espectro de ¹H RMN (400 MHz) del ácido rosmarínico (10) en CD₃OD.

Figura S24. Espectro de ¹³C RMN (100 MHz) del ácido rosmarínico (10) en CD₃OD.

7. Conclusiones

1.- A partir del estudio fitoquímico del extracto diclorometanólico de la especie *Hyptis pectinata* de una colecta mexicana se obtuvieron tres 5,6-dihidro-2*H*-piran-2-onas conocidas (pectinólidas A-C) junto con cinco nuevas δ-lactonas (pectinólidas I-M), dos de las cuales, las pectinólidas K y J, resultaron epímeros de las pectinólidas A y C en el centro C-3' de la cadena lateral.

2.- La comparación de las constantes de acoplamiento vecinales experimentales (${}^{3}J_{\rm H,H}$) y teóricas obtenidas a través de un protocolo de modelado molecular DFT-RMN a nivel B3LYP/DGDZVP permitió el establecimiento de la configuración absoluta de los centros quirales de la cadena heptenil de las 5,6-dihidro-2*H*-piran-2-onas entre pares de epímeros, en particular entre la pectinólida C y la pectinólida J. Las ${}^{3}J_{\rm H,H}$ por DFT fueron consistentes con las constantes experimentales, lo cual permitió la comparación entre epímeros utilizando el error cuadrático medio (RMSD) como análisis estadístico.

3.- La consideración del disolvente empleado experimentalmente en los cálculos teórico en solución (DFT PCM) reduce el nivel de error en los resultados obtenidos en fase gaseosa. La comparación entre constantes de acoplamiento vecinales en esta clase de moléculas pequeñas flexibles permite la determinación adecuada de la configuración absoluta que no se logra a través de los cálculos de los desplazamientos químicos de ¹H RMN y ¹³C RMN.

4.- Se aislaron tres nuevas 5(2*H*)-furanonas (pectinólida N-P), un fenilpropanoide, el ácido rosmarínico, y dos flavonoides descritos previamente en la familia Lamiaceae. La butenólidas caracterizadas se encuentran biogéneticamente relacionadas con las 5,6-dihidro-2*H*-piran-2-onas como se demostró mediante correlación química.

5.- Del extracto dihidroetanólico de una colecta brasileña de *H. monticola* se aislaron tres nuevas 5,6-dihidro-2*H*-piran-2-onas (montecólida A-C), metabolitos relacionados biosintéticamente con las pectinólidas, junto con una nueva 5(2*H*)-furanona (montecólida D) y cuatro flavonoides, sustancias aromáticas ampliamente distribuidas en la familias pertenecientes al orden de las lamiales.

6.- El empleo de diversas de técnicas cromatográficas permitió la purificación de los metabolitos presentes en los extractos, en particular la cromatografía de líquidos de alta resolución, la cual a partir de su modalidad de reciclaje de la muestra permitió la máxima resolución de los metabolitos en estudio.

7.- La combinación de correlaciones químicas, mediciones quirópticas, el uso de agentes derivatizantes como los ésteres de Mosher, en conjunto con el análisis por RMN, permitió la confirmación de la configuración absoluta de los nuevos metabolitos aislados.

8.- Las pectinólidas y montecólidas se relacionan estructuralmente como derivados de un ácido dodecanoico polifuncionalizado cuyo precursor correspondería a un hexacétido biosintetizado en el metabolismo del acetato-malonato.

9.- A través del estudio de la actividad citotóxica frente a tres diferentes líneas celulares (HeLa, MCF-7 y HCT-5) de los nuevos compuestos aislados se encontró que sólo las 5,6dihidro-2*H*-piran-2-onas que conservaban su doble enlace en el anillo de δ -lactona- α , β insaturada presentaban la actividad biológica; los valores más significativos (IC₅₀ 0.5-0.8 μ M) fueron para la pectinólida K. El estudio de acoplamiento molecular indicó que las 5,6dihidro-2*H*-piran-2-onas tienen una alta afinidad para el sitio de unión en la subunidad α tubulina de la pironetina, lo cual posiblemente contribuye al potencial citotóxico de estos compuestos.

10.- El género *Hyptis* constituye la fuente de 5,6-dihidro-2*H*-piran-2-onas y 5(2*H*)-furanonas de interés quimiosistemático debido a su distribución restringuida en la familia de las labiadas (Lamiaceae).

Publicaciones y presentaciones en congresos

Publicación: DOI 10.1021/acs.jnatprod.8b00908

pubs.acs.org/jnp

Structure Elucidation, Conformation, and Configuration of Cytotoxic 6-Heptyl-5,6-dihydro-2*H*-pyran-2-ones from *Hyptis* Species and Their Molecular Docking to α -Tubulin

Lucero Martínez-Fructuoso,[†][©] Rogelio Pereda-Miranda,^{*,†}[©] Daniel Rosas-Ramírez,[†] Mabel Fragoso-Serrano,[†][©] Carlos M. Cerda-García-Rojas,[‡][©] Aline Soares da Silva,[§] Gilda Guimarães Leitão,[⊥] and Suzana Guimarães Leitão[§][©]

[†]Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico

[®]Departamento de Química, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, A. P. 14-740, Mexico City 07000, Mexico

⁸Faculdade de Farmacia, Universidade Federal do Rio de Janeiro, CCS, Bloco A, Ilha do Fundão, 21941-902, Rio de Janeiro, Brazil ¹Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, CCS, Bloco H, Ilha do Fundão, 21941-590, Rio de Janeiro, Brazil

Participación en congresos internacionales:

Phytochemical Society of Europe. Young Scientists' Meeting on Advances in Phytochemical Analysis (Trends in Natural Products Research). Liverpool, Reino Unido; Julio 2-5, 2018. Con el tema: "Conformational and configurational analysis by DFT calculations of cytotoxic 6-heptyl-5,6-dihydro-2H-pyran-2-ones from Hyptis species and their molecular docking to α -tubulin".