

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO POSGRADO EN CIENCIAS DE LA TIERRA CENTRO DE GEOCIENCIAS

ANÁLISIS DE LOS CONGLOMERADOS DE LA FORMACIÓN MATZITZI, SUR DE MÉXICO: IMPLICACIONES PARA LA EVOLUCIÓN DEL PALEOZOICO

TESIS

QUE PARA OPTAR POR EL GRADO DE: MAESTRA EN CIENCIAS DE LA TIERRA

PRESENTA:

SANDRA JUÁREZ ZÚÑIGA

TUTOR

DR. LUIGI SOLARI CENTRO DE GEOCIENCIAS, UNAM

MIEMBROS DEL COMITÉ TUTOR

DRA. CLAUDIA C. MENDOZA ROSALES (FACULTAD DE INGENIERÍA, UNAM) DRA. MARÍA TERESA OROZCO ESQUIVEL (CGEO, UNAM) DR. CARLOS ORTEGA OBREGÓN (CGEO, UNAM) DR. MARIANO ELÍAS HERRERA (INSTITUTO DE GEOLOGÍA, UNAM)

JURIQUILLA, QUERÉTARO, MAYO 2019

Universidad Nacional Autónoma de México

UNAM – Dirección General de Bibliotecas Tesis Digitales Restricciones de uso

DERECHOS RESERVADOS © PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea objeto de protección de los derechos de autor, será exclusivamente para fines educativos e informativos y deberá citar la fuente donde la obtuvo mencionando el autor o autores. Cualquier uso distinto como el lucro, reproducción, edición o modificación, será perseguido y sancionado por el respectivo titular de los Derechos de Autor.

AGRADECIMIENTOS

Al CONACYT por el apoyo económico durante los dos años de mis estudios de maestría y al proyecto PAPIIT DGAPA IN103417 por el financiamiento económico para realizar este proyecto.

A mi asesor, Dr. Luigi Solari, por sus consejos y apoyo constante durante el desarrollo de este trabajo. A los miembros del comité, Dr. Michelangelo Martini y Dr. Fernando Ortega, por sus observaciones y comentarios respecto al tema. También agradezco a los miembros del comité evaluador por sus revisiones y comentarios para mejorar el trabajo escrito.

Agradezco a las personas que me acompañaron a campo: Geovanny Hernández, Juan Carlos Castillo, Mariana Jaramillo, Ricardo Milián, Raúl Martínez y Alejandra Bedoya.

A quienes me ayudaron con el trabajo de laboratorio: Manuel, Juanito, Harim y Carlos Ortega, les agradezco su paciencia para compartir sus conocimientos. Gracias a Javi, Gio, Juan Carlos y personas que discutieron conmigo algunas dudas; también a Karina y Antonio por la edición de algunas de mis figuras.

A Alan y Antonio, por leer mi escrito y ayudarme a hacerlo más claro.

Al Centro de Geociencias, por haberme brindado un espacio de trabajo durante mis estudios de maestría.

A mis amigos, por tantos momentos agradables.

Finalmente, a mi familia. Todo es posible gracias a ustedes.

TABLA DE CONTENIDO

RESUMEN	i
ABSTRACT	ii
1. INTRODUCCIÓN	1
2. MARCO GEOLÓGICO	4
2.1 Basamento	4
2.1.1 Complejo Oaxaqueño	4
2.1.2 Complejo Acatlán	5
2.1.3 Granito Cozahuico	9
2.2 Formación Matzitzi	10
2.3 Felsita Atolotitlán	12
2.4 Unidades post-triásicas	12
3. MARCO TECTÓNICO	14
4. METODOLOGÍA	18
4.1 Petrografía	18
4.2 Análisis U-Pb en circón mediante LA-ICPMS	19
4.3 Geocronología detrítica en estudios de procedencia	20
4.4 Escalamiento multidimensional (MDS)	22
5. RESULTADOS	25
5.1 Descripción petrográfica	25
5.1.1 Clastos volcánicos	25
5.1.2 Clastos sub-volcánicos	32
5.1.3 Clastos de arenisca	35
5.1.4 Clastos y lente graníticos	36
5.2 Geocronología U-Pb	39
5.2.1 Clastos volcánicos	39
5.2.2 Clastos sub-volcánicos	45
5.2.3 Clastos de arenisca	47
5.2.4 Clastos de granitoides	48
5.2.5 Granitoides	50
5.3 Escalamiento multidimensional MDS	51
5.4 Geoquímica de elementos traza	56
6. DISCUSIÓN E INTERPRETACIONES	63
6.1 Discusión de resultados	63
6.2 Modelo tectónico del sur de México durante el Paleozoico Tardío-Triásico Temprano	68
7. CONCLUSIONES	71
8. REFERENCIAS	73
Apéndice 1. Imágenes de catodoluminiscencia	82
Apéndice 2. Análisis U-Pb en circones mediante LA-ICP-MS	85
Apéndice 3. Concentraciones de elementos traza	99
Apéndice 4. Datos de muestras para el análisis MDS	.112

RESUMEN

El entendimiento de la Formación Matzitzi es fundamental en las reconstrucciones del sur de México durante el ensamble de Pangea, ya que conserva el registro geológico del Paleozoico Tardío-Triásico Medio dentro de sus componentes. En este trabajo se presenta un estudio de procedencia enfocado en los clastos de conglomerado de la Fm. Matzitzi para reconocer las fuentes de sedimento. Los análisis petrográfico y geocronológico de los clastos de conglomerado indican la erosión de una fuente volcánica y una clástica, además de fuentes plutónicas relacionadas al Complejo Oaxaqueño. Los clastos de origen volcánico de composición félsica a intermedia, y de edades constreñidas entre 269 y 285 Ma, demuestran la contribución de una fuente volcánica del Pérmico. El vulcanismo se habría emplazado sobre el Complejo Oaxaqueño dada la herencia notable de circones de edad grenvilliana y está relacionado al arco permo-carbonífero del sur de México. Fragmentos de arenisca cuarzosa indican la erosión de unidades clásticas de edades detríticas entre ~3400 y 290 Ma (del Arqueano al Pérmico), con dos poblaciones principales de edad grenvilliana y panafricana. Mediante un análisis de escalamiento multidimensional (MDS) se comparan los fragmentos de arenisca con unidades clásticas de los bloques Mixteco, Oaxaquia, Chortís y Maya; así como con unidades siliciclásticas del norte, centro y sur de México. El análisis MDS demuestra el aporte principal de fuentes gondwánicas y localmente del Complejo Oaxaqueño a los clastos de arenisca; asimismo, demuestra la afinidad genética entre éstos con unidades clásticas del centro y sur de México. Los clastos graníticos analizados son de edades mesoproterozoicas y están asociados al Complejo Oaxaqueño subyacente, corroborando el aporte dominante del basamento. Los datos recopilados son discutidos dentro de los modelos tectónicos del sur de México durante la acreción de Pangea en el Paleozoico Tardío.

ABSTRACT

The Matzitzi Formation contains the geological record of the Late Paleozoic-Middle Triassic, so its understanding is a fundamental element in the tectonic reconstructions of southern Mexico during Pangea assemblage. In this work, I present a provenance study of the conglomerate clasts of the Matzitzi Formation to recognize the sediment sources. Petrological and geochronological analyses of conglomerate pebbles indicate contributions of volcanic and clastic sources, as well as Oaxacan Complex plutonic rocks to the Matzitzi Formation. Volcanic samples have felsic to intermediate compositions and ages ranging from 269 to 285 Ma, which demonstrate a Permian volcanic source. The occurrence of Grenvillian grains in volcanic clasts suggests that the vulcanism was emplaced over the Oaxacan Complex, and it is related to the activity of the Permian-Carboniferous arc in southern Mexico. The presence of quartz-rich sandstone clasts demonstrates the erosion of clastic units with detrital ages between ~3400 and 290 Ma and two main populations of Grenvillian and Panafrican ages. A multidimensional scaling analysis (MDS) was performed to compare detrital ages of the sandstone clasts with clastic units from the Mixteco, Oaxaquia, Chortís and Maya terranes; furthermore, siliciclastic units from northern, central and southern Mexico were also compared. The MDS shows the main contribution from Gondwanan sources and the Oaxacan Complex to the sandstone clasts, and it also shows their genetic affinity with clastic units from central and southern Mexico. The granitic clasts have Mesoproterozoic ages and belong to the underlying Oaxacan Complex, suggesting that the main contribution is from the basement. The new data is evaluated into the tectonic models of southern Mexico during Pangea accretion in Late Paleozoic times.

1. INTRODUCCIÓN

La configuración tectónica de los bloques corticales que conformaron México durante el Paleozoico Tardío estuvo condicionada por los eventos de acreción de Pangea durante la colisión de Laurencia y Gondwana. En el sur de México, estos procesos involucraron la yuxtaposición de terrenos perigondwánicos con el sur de Laurencia, como una continuación al sur de la orogenia Variscana-Alleghaniana-Ouachita (Nance et al., 2012), donde los bloques del sur, conformados por los terrenos metamórficos Mixteca y Oaxaquia (Fig. 1), amalgamaron en el Pérmico temprano-medio (Elías-Herrera y Ortega-Gutiérrez, 2002). se Simultáneamente a este proceso, un sistema de subducción con vergencia al este en el sector occidental de Pangea desarrolló un arco volcánico en el Carbonífero-Pérmico, extendiéndose posiblemente hasta el Triásico, el cual se emplazó por la actual margen oriental de México (Torres et al., 1999; Dickinson y Lawton, 2001). El traslape temporal de estos dos eventos asociados con distintos regímenes tectónicos ha llevado a interpretar de manera diferente las unidades del Paleozoico Superior y, en consecuencia, a proponer distintos modelos tectónicos de los bloques del sur en la era paleozoica hasta su límite con el Triásico. Adicionalmente, el depósito de la Fm. Matzitzi, de carácter clástico continental, posterior a la sutura de los terrenos metamórficos Acatlán y Oaxaqueño representa un cambio a un régimen tectónico dominado por procesos de erosión y sedimentación. Estos procesos pudieron ser contemporáneos a las últimas etapas de deformación en el Complejo Acatlán en el Pérmico (Centeno-García et al., 2009) o posteriores, marcando el final del proceso orogénico (Ortega-Gutiérrez et al., 2018).

La Fm. Matzitzi es una de las unidades clásticas más antiguas que afloran en el sur de México y única por su registro de flora fósil continental del Pensilvánico y Pérmico con afinidad a Laurasia (Hernández-Láscares, 2000). Por su contenido fosilífero, se le asignó una edad de depósito del Paleozoico Superior (Weber, 1997; Hernández-Láscares, 2000) y se interpretó como una sucesión de peri-arco, semejante a las unidades metasedimentarias de edades carboníferas-pérmicas del Complejo Acatlán (Keppie et al., 2004). Sin embargo, los recientes estudios de geocronología en circones detríticos y de un cuerpo ígneo contemporáneo al depósito han demostrado una edad de depósito del Triásico Medio (Elías-Herrera et al., 2011; Bedoya-Mejía, 2018). Esta nueva edad no descarta la correlación con unidades del Paleozoico Superior, pero sugiere una posible correlación con las sucesiones siliciclásticas del Triásico Superior depositadas en la margen paleo-pacífica de Pangea (Silva-Romo et al., 2000; Centeno-García, 2005; Barboza-Gudiño et al., 2010; Ortega-Flores et al., 2014; Silva-Romo et al., 2015).

A pesar de la importancia que tiene la Fm. Matzitzi en las reconstrucciones del límite Paleozoico-Mesozoico, son pocos los trabajos de procedencia que se han hecho en esta formación. Si bien previamente se ha identificado una fuente principal proveniente del Complejo Oaxaqueño subyacente (Centeno-García et al., 2009), y de manera subordinada posiblemente de las raíces del arco del este de México (BedoyaMejía, 2018), las fuentes potenciales de sus componentes de distinta naturaleza, tales como los líticos arenosos y volcánicos, no han sido reconocidas debido a que dichas unidades ya no están expuestas en el área y sólo se pueden observar indirectamente en sus componentes.

De acuerdo con las reconstrucciones de Pangea en el límite permo-triásico, los clastos volcánicos en la Fm. Matzitzi podrían provenir del arco permo-carbonífero del sur de México, reconocido únicamente por los plutones expuestos (Solari et al., 2001; Ortega-Obregón et al., 2014; Grajales-Nishimura et al., 2018), o bien, de un arco más antiguo, tal como está registrado en el Complejo Acatlán subyacente (Keppie et al., 2004; Vega-Granillo et al., 2009). Los clastos graníticos tienen como fuentes potenciales las unidades cristalinas que conforman el basamento, ya sea el Complejo Oaxaqueño, las raíces del arco, o los cuerpos sin-orogénicos (p. ej., el granito Cozahuico, Elías-Herrrera y Ortega-Gutiérrez, 2002), como se ha propuesto anteriormente (Ortega-Gutiérrez et al., 2018). Respecto a los clastos procedentes de fuentes distales por un sistema fluvial más complejo, posiblemente de afinidad gondwánica, similar a las unidades mesozoicas del centro y sur de México (Silva-Romo et al., 2000; Centeno-García, 2005; Barboza-Gudiño et al., 2010; Ortega-Flores et al., 2014; Silva-Romo et al., 2015), cuyo sistema de drenaje dominante era de oriente a poniente.

Figura 1. Mapa geológico regional simplificado donde se muestran los bloques continentales del sur de México de acuerdo con Campa y Coney (1983) (*modificado de Ortega-Gutiérrez et al., 2018*). El recuadro negro muestra la localización del área de estudio.

Para reconocer las unidades expuestas en el Paleozoico Tardío y Triásico Temprano que sirvieron como fuente de aporte de sedimentos, se hicieron análisis de procedencia en las litofacies conglomeráticas de la Fm. Matzitzi. Se caracterizaron clastos de naturaleza volcánica, plutónica y clástica mediante técnicas convencionales de petrografía de láminas delgadas y fechamientos U-Pb y análisis de elementos traza en circones ígneos y detríticos mediante la técnica de LA-ICPMS. Adicionalmente, se utilizó la técnica estadística de escalamiento multidimensional (MDS-*Multidimensional Scaling*) como complemento a los diagramas de densidad de Kernel de los clastos de arenisca para determinar la procedencia de manera más precisa.

Con la información anterior se evaluaron las condiciones de depósito de la Fm. Matzitzi dentro de los distintos escenarios tectónicos propuestos para el sur de México en el Paleozoico Tardío y Triásico Medio.

2. MARCO GEOLÓGICO

La Fm. Matzitzi es una sucesión sedimentaria clástica de origen continental que aflora en el sureste del estado de Puebla, entre las localidades de Los Reyes Metzontla, San Luis Atolotitlán y Santiago Coatepec, además en una franja sobre la carretera de cuota Tehuacán-Oaxaca (Fig. 2). Esta formación tiene gran importancia en las reconstrucciones de la era paleozoica en el sur de México porque representa la unidad de traslape entre los complejos Acatlán y Oaxaqueño (Elías-Herrera et al., 2005) y porque conserva el registro paleobotánico de esta era, ya que posee abundante flora fósil asignada al Paleozoico Superior (Weber, 1997; Hernández-Láscares, 2000).

El basamento cristalino de la Fm. Matzitzi está conformado por el Complejo Acatlán, localmente representado por la Fm. Metzontla, y el Complejo Oaxaqueño, así como el granito Cozahuico (Elías-Herrera et al., 2011), el cual fue emplazado en la zona de falla de Caltepec durante la yuxtaposición tectónica de los dos complejos (Elías-Herrera y Ortega-Gutiérrez, 2002). A la Fm. Matzitzi le sobreyace discordantemente la Fm. Caltepec, de edad cretácica y de carácter clástico, que cambia transicionalmente a la Fm. La Compañía de carácter carbonatado (Mendoza-Rosales, 2010). Finalmente, depósitos volcánicos cenozoicos cubren a las unidades anteriores (Fig. 3).

2.1 Basamento

2.1.1 Complejo Oaxaqueño

El Complejo Oaxaqueño constituye el afloramiento más grande del microcontinente Oaxaquia (Ortega-Gutiérrez et al., 1995), un microterreno de edad mesoproterozoica que está ligado al orógeno grenvilliano y que aflora discontinuamente en el este de México en cuatro complejos cristalinos, que son: Gneis Novillo (Cameron et al., 2004), Gneis Huiznopala (Lawlor et al., 1999), Complejo Oaxaqueño y Complejo Guichicovi (Ruiz et al., 1999). La evolución de Oaxaquia está relacionada a un arco intraoceánico de edad 1.5-1.4 Ga (Weber y Schulze, 2014) que colisionó con Amazonia en las etapas finales de acreción de Rodinia. Durante este proceso, el magmatismo continuó activo entre 1.25 y 1.2 Ga, y el pico metamórfico en facies de granulita ocurrió a ~990 Ma durante el evento orogénico Zapoteco (Solari et al., 2003).

El Complejo Oaxaqueño está formado por una gran variedad litológica que incluye ortomigmatitas, ortogneisses, pegmatitas, granulitas y paragneisses de edad grenvilliana (Solari et al., 2003). Las ortomigmatitas de la unidad El Catrín se encuentran intrusionadas por una suite AMCG (anortosita-mangerita-charnoquita-granito) y tienen evidencia de metamorfismo en facies de granulita con retrogresión. Los ortogneisses incluyen, entre otros, las suites AMCG de la unidad Huitzo y Pluma Hidalgo y secuencias charnoquíticas-gabróicas. Las granulitas y paragneises de la unidad El Marquez están agrupados en: metapelitas ricas en Al, gneises cuarzo-feldespáticos con grafito y rocas calco-silicatadas con mármoles.

Las pegmatitas son cuerpos deformados y no deformados de origen pre-, sin- y post-tectónico (Shchepetilnikova et al., 2015).

La evolución del Complejo Oaxaqueño inició con magmatismo de arco intra-oceánico entre ~1.45 y 1.4 Ga, de acuerdo con las edades de los protolitos ígneos (Weber y Schulze, 2014). Las edades de circones detríticos (Solari et al., 2014) indican que entre 1.3 y 1.1 Ga continuó un periodo de sedimentación, el cual fue contemporáneo a la intrusión de cuerpos máficos con firma intraplaca de edad entre 1.2 y 1.3 Ga (Keppie y Dostal, 2007) que se han interpretado como magmatismo en una cuenca de trasarco asociada a rift. Las intrusiones máficas con firma de arco fechadas en 1140-1150 Ma (Keppie et al., 2001) representan el magmatismo sincrónico a la acreción continental. Las edades de las suites AMCG (Keppie et al., 2003; Weber et al., 2010) y de las pegmatitas sin- y post-tectónicas indican que el magmatismo continuó activo hasta 1.0-0.96 Ga.

Dos eventos orogénicos están registrados en la parte norte del Complejo Oaxaqueño (Solari et al., 2003). El primero es un evento de migmatización que ocurrió a ~1.1 Ga durante la orogenia Olmeca, simultáneo a las intrusiones intraplaca, y el segundo es el evento de metamorfismo en facies de granulita durante la orogenia Zapoteca (Solari et al., 2003) entre 1004 y 978 Ma.

La Fm. Tiñú de edad Cámbrico-Ordovícico Inferior (Landing et al., 2007) sobreyace al Complejo Oaxaqueño. Consiste en una secuencia clástica-carbonatada de plataforma que contiene fauna con afinidad gondwánica y detritos derivados del Complejo Oaxaqueño subyacente (Gillis et al., 2005; Murphy et al., 2005), indicando que el Complejo Oaxaqueño formaba parte de la margen peri-gondwánica durante el Paleozoico Temprano. A esta formación le sobreyacen sucesiones sedimentarias continental y marino somera del Carbonífero, que son las formaciones Santiago e Ixtaltepec, las cuales tienen afinidad con Norteamérica (Navarro-Santillán et al., 2002), indicando la proximidad entre Oaxaquia y Laurencia en el Paleozoico Tardío.

En la región de Los Reyes Metzontla afloran ortogneises graníticos del Complejo Oaxaqueño de edades entre 1 y 1.1 Ga (U-Pb, Elías-Herrera et al., 2011).

2.1.2 Complejo Acatlán

El Complejo Acatlán (Ortega-Gutiérrez, 1978) constituye el basamento cristalino del Terreno Mixteca (Campa y Coney, 1983). Este complejo poli-orogénico comprende una gran diversidad litológica que involucra rifting, deformación y polimetamorfismo asociados a la evolución de uno o más océanos durante la era paleozoica.

Figura 2. Mapa geológico de la región Los Reyes Metzontla-Caltepec (*modificado de Elías-Herrera et al., 2011*). Los puntos amarillos representan las localidades de muestreo de las litofacies conglomeráticas de la Fm. Matzitzi y de los granitos Cozahuico y Los Reyes, éste último en contacto tectónico con la Fm. Matzitzi (coordenadas de muestreo en tabla 1). Se indica la localización de las muestras fechadas mediante LA-ICP-MS.

La litología del Complejo Acatlán se ha agrupado en dos secuencias de alto y bajo grado metamórfico (Keppie et al., 2008) que están en contacto tectónico. La secuencia de alta presión fue agrupada como Fm. Xayacatlán por Ortega-Gutiérrez (1978) y posteriormente redefinida como ensamble Piaxtla y consiste de rocas metasedimentarias de alto grado intercaladas con rocas máficas-ultramáficas metamorfoseadas en facies de eclogita y esquisto azul. Los protolitos de las rocas metasedimentarias tienen una edad máxima de depósito entre 481 y 433 Ma (Galaz et al., 2013) y las rocas máficas tienen una edad de cristalización entre 466 y 442 Ma (Keppie et al., 2008b). Estas unidades guardan una estrecha relación con los granitoides Esperanza, cuerpos metagraníticos de alta presión que tienen edades de cristalización entre 478 y 440 Ma (Ortega-Gutiérrez et al., 1999; Sánchez-Zavala et al., 2004; Talavera-Mendoza et al., 2005; Vega-Granillo et al., 2007).

Figura 3. Columna estratigráfica esquemática de la región de Los Reyes Metzontla elaborada con base en las observaciones de campo y en la literatura consultada.

Estas unidades de alto grado se han interpretado, por un lado, como corteza continental y oceánica que fue eclogitizada en el Ordovícico Tardío-Silúrico temprano durante la colisión continental que cerró el Océano Iapetus (Ortega-Gutiérrez et al., 1999; Talavera-Mendoza et al., 2005; Vega-Granillo et al., 2007), donde las edades mesoproterozoicas heredadas se han interpretado como contaminación de Laurencia, Gondwana o Oaxaquia. Las edades más jóvenes, de 440 y 442 Ma (Ortega-Gutiérrez et al., 1999; Talavera-Mendoza et al., 2005), se relacionan con los fundidos anatécticos producidos durante el levantamiento orogénico y descompresión (Ortega-Gutiérrez et al., 2018). Por otro lado, las rocas del ensamble de alta presión se interpretan como sucesiones de rift intrusionadas por magmatismo bimodal Ordovícico durante la apertura del océano Rheico (Keppie et al., 2008) en una margen peri-gondwánica que posiblemente involucra al

Complejo Oaxaqueño. Posteriormente, sufrieron metamorfismo en facies de eclogita en el Devónico Tardío-Missisípico (Elías-Herrera et al., 2007; Middleton et al., 2007; Estrada-Carmona et al., 2015) durante el cierre del Océano Rheico, por un proceso de subducción y posterior extrusión sobre la placa superior a través de un canal de subducción (Keppie et al., 2010). La presencia de fauna de Laurencia en las rocas carboníferas (Navarro-Santillán et al., 2002) sugiere que este proceso ocurrió en la margen occidental de Pangea, una vez que este supercontinente estaba completo.

El ensamble metamórfico de bajo grado fue primeramente agrupado dentro de la Fm. Cosoltepec (Ortega-Gutiérrez, 1981) debido a la similitud de sus estilos de deformación, metamorfismo de bajo a medio grado y litología, que en conjunto consiste en rocas siliciclásticas con intercalaciones de rocas máficas de corteza oceánica (Keppie et al., 2007). Posteriormente fueron separadas en distintas unidades con base en las edades máximas de depósito definidas con circones detríticos, que van desde el Cámbrico hasta el Missisípico (Talavera et al., 2005; Grodzicki et al., 2008; Morales-Gámez et al., 2008; Ramos-Arias et al., 2008). Keppie et al. (2008) sugieren que las unidades clásticas Huerta, Amate y Las Minas, de edades cambroordovícicas (Morales-Gámez et al., 2008), son sucesiones de margen pasivo que fueron intrusionadas por diques graníticos y máficos toleíticos de edad ordovícica (Talavera-Mendoza et al., 2005; Keppie et al., 2008b), similar a la secuencia anterior, durante el rifting del océano Rheico. Las unidades Salada, Cosoltepec (localidad tipo), Grupo Patlanoaya y las formaciones Tecomate y Olinalá sobreyacen la secuencia anterior y son unidades clástico-carbonatadas relacionadas a un arco Devónico-Pérmico (Keppie et al., 2008). Estas unidades se depositaron en cuencas extensionales asociadas a movimientos laterales derechos (Ramos-Arias et al., 2008) por subducción oblicua. Las poblaciones proterozoicas panafricana y grenvilliana de los circones detríticos se asocian a los bloques adyacentes que son Oaxaquia y Bloque Maya (Keppie et al., 2008). Ortega-Gutiérrez et al. (2018) sugieren que las formaciones siliciclásticas Tecomate y Metzontla sobreyacen a las rocas de alto grado metamórfico y a la Fm. Cosoltepec. El depósito de estas unidades en un ambiente marino somero está asociado a las estructuras de transpresión derecha que afectaron al Complejo Acatlán en el Pérmico, entre ~295-270 Ma, y que concluyeron su ciclo orogénico. Los cuerpos plutónicos Granito Cozahuico y Totoltepec representan las intrusiones sintectónicas a este proceso.

Otras unidades del Complejo Acatlán que no están agrupadas en los dos ensambles anteriores se describen a continuación.

La unidad El Rodeo (Vega-Granillo et al., 2009) es una suite metamórfica de bajo grado relacionada a un arco de edad Ordovícico Inferior-Medio en las etapas tempranas de evolución del Complejo Acatlán y se considera como la unidad que permitió la exhumación de las rocas de alta presión (Ortega-Gutiérrez et al., 2018). Los plutones Palo Liso, Los Hornos y La Noria son un conjunto de granitoides que tienen edades U-

Pb entre 470 y 440 Ma (Miller et al., 2007), por lo que fueron relacionadas al rifting del océano Rheico, aunque aparentemente cortan a las unidades del Grupo Patlanoaya por lo que deberían ser de edades pérmicas (Ortega-Gutiérrez et al., 2018 y referencias). La Fm. Chazumba y la migmatita Magdalena, que antes se habían agrupado junto con el litodema Cosoltepec dentro del ensamble Petlalcingo, se redefinieron como Complejo Ayú, de edad permo-jurásica (Helbig et al., 2012) y se encuentra sobreyaciendo al Complejo Acatlán.

En el área de estudio aflora la Fm. Metzontla (Elías-Herrera et al., 2008), una secuencia metavolcanosedimentaria compuesta por filitas, calcacarenitas, metacalizas y esquistos verdes, que se encuentra polideformada y metamorfizada en facies de esquisto verde y tiene una edad del Missisípico Medio al Pérmico superior.

2.1.3 Granito Cozahuico

El granito Cozahuico es un cuerpo ígneo de edad pérmica de ~270 Ma (Elías-Herrera y Ortega-Gutiérrez, 2002; Elías-Herrera et al., 2005) que se ha interpretado como un granito sintectónico emplazado en el límite tectónico entre los Complejos Acatlán y Oaxaqueño en la Zona de Falla de Caltepec. Esta falla cortical es una estructura de orientación N-S y NNW asociada al evento de cizalla dúctil que acrecionó a los complejos en el Pérmico temprano durante un evento orogénico (Elías-Herrera et al., 2005, 2011). El movimiento de la falla ocurrió en un régimen transpresivo derecho, entre 275.6 y 270.4 Ma, determinado por la edad de cristalización de un leucosoma anatéctico y el granito Cozahuico, el cual tiene foliación milonítica sobrepuesta a la foliación magmática primaria y evidencias de cataclasis posterior (Elías-Herrera et al., 2005). El granito tiene abundantes circones de edades proterozoicas que están relacionados a la fusión del Complejo Oaxaqueño, además de un importante aporte de magmas sub-corticales. La edad ⁴⁰Ar/³⁹Ar de 268.6 Ma en un esquisto de mica milonitizado dentro de la zona de falla se interpretó como la edad de enfriamiento de los cuerpos involucrados, lo cual implica una tasa de enfriamiento de ~180°C/Ma causada por una exhumación rápida.

El evento orogénico de acreción de terrenos está relacionado al ensamble final de Pangea occidental, que además causó la deformación y metamorfismo de la Fm. Metzontla entre 275 y ~270 Ma (Elías-Herrera et al., 2008).

Por otro lado, se ha interpretado al granito Cozahuico como parte de las raíces expuestas del arco Permo-Carbonifero del sur de México que fue contemporáneo con la deformación derecha (Kirsch et al., 2012).

2.2 Formación Matzitzi

La Formación Matzitzi es una sucesión sedimentaria clástica compuesta por areniscas, areniscas conglomeráticas, conglomerados y lutitas y limolitas carbonosas fosilíferas que están relacionadas a un ambiente fluvial (Hernández-Láscares, 2000; Centeno-García et al., 2009). Su importancia se debe a que, además de ser la unidad depositada sobre los complejos Acatlán y Oaxaqueño, es la única unidad de carácter continental en el sur de México que contiene abundante flora fósil del Paleozoico Superior (Weber, 1997; Hernández-Láscares, 2000). Los diversos trabajos realizados en la Fm. Matzitzi llevaron a que por décadas se debatiera su edad de depósito. Hernández-Láscares (2000) hizo una compilación de los trabajos paleobotánicos previos y estudió nuevos géneros, con lo que determinó una edad máxima de depósito del Pensilvánico Inferior-Pérmico inferior con base en el contenido fosilífero. Posteriormente, Elías-Herrera et al. (2011) determinaron una edad de depósito del Triásico Medio con base en el fechamiento de la Felsita Atolotitlán que se emplazó contemporáneamente a la sedimentación de la Fm. Matzitzi.

Figura 4. Fotografías de los afloramientos de la Fm. Matzitzi en las inmediaciones de Los Reyes Metzontla, Coatepec y San Luis Atolotitlán. A) Contacto entre horizontes conglomeráticos y arenosos de la Fm. Matzitzi en Barranca Nacional (localidades 3 y 5). B) Horizonte de conglomerado donde se aprecian los diferentes tamaños de los clastos y la composición predominante de gneises y cuarcitas. C) Lítico del Complejo Oaxaqueño bien redondeado. D) Contacto entre la felsita Atolotitlán y la Fm. Matzitzi donde se aprecia la relación concordante entre éstas.

Las areniscas conforman la litofacies más abundante y varían composicionalmente entre arenisca feldespática, cuarzoarenita y arenisca lítica y son de tamaño de grano grueso a medio. Se encuentran en estratos medios a gruesos; lenticulares, planos e irregulares; con estructuras internas masiva, de gradación y ocasionalmente laminación cruzada. Algunos estratos poseen trazas de hojas y troncos en la base. Esta litofacies se encuentra alternada con los conglomerados en contactos graduales o como lentes dentro de los estratos (Fig. 4A).

Los conglomerados se encuentran en estratos masivos delgados a gruesos con formas tabulares, lenticulares e irregulares. Son clasto y matriz soportados, mal clasificados, con tamaños que van desde gránulos hasta bloques (Fig. 4B). Los clastos son redondeados a subredondeados, con composición variable de una localidad a otra, al igual que el tamaño de grano. Los componentes principales reconocidos en dichos conglomerados son fragmentos del Complejo Oaxaqueño (Fig. 4C), fragmentos de cuarzo monomineral, granito deformado y no deformado y cuarzoarenita; en menor cantidad se encuentran líticos volcánicos y lutitas negras que se interpretan como intraclastos. Centeno-García et al. (2009) reportan clastos de caliza y determinan una composición máfica e intermedia de los clastos volcánicos. Ortega-Gutiérrez et al. (2018) indican que al menos algunos de los componentes graníticos proceden del granito Cozahuico. En las localidades aledañas al basamento (Complejo Oaxaqueño) en Coatepec (Fig. 2) los clastos son más grandes y alcanzan tamaños de hasta ~2 m de diámetro y su procedencia es principalmente del Complejo Oaxaqueño. En zonas alejadas a donde aflora el basamento se encuentran fragmentos más pequeños, cuyos tamaños máximos son de ~60 cm, y la composición es más diversa (Fig. 4). La presencia de clastos de dimensiones de varios metros procedentes del Complejo Oaxaqueño en la barranca de Coatepec está relacionada al evento de exhumación rápida propuesto por Elías-Herrera et al. (2005), donde las altas tasas de exhumación permitieron el desarrollo de relieves abruptos que propiciaron un ambiente fluvial de alta energía en las localidades aledañas al bloque levantado.

Las litofacies más finas de lutita y lodolita se encuentran en estratos finos a medios, de forma tabular, con superficies planas y erosivas y laminación interna. Ocasionalmente se encuentran en estratos masivos. Algunos horizontes son más carbonosos. Su principal característica es que contienen la mayoría de las plantas fósiles, la mayoría en posición horizontal y algunas *in situ*. Las superficies de estratificación se pierden donde la bioturbación es muy intensa. Otro rasgo característico es que tienen clivaje de deformación. Horizontes finos de colores claros corresponden posiblemente a depósitos de ceniza volcánica (Centeno-García et al., 2009).

Aunque no se ha definido una localidad tipo para dicha formación, debido a que se encuentra muy deformada; Hernández-Láscares (2000) propuso una sección tipo, de carácter informal, con un espesor de 1080 m en la Barranca de Coatepec en el poblado del mismo nombre. Sin embargo, este espesor es dudoso

debido al grado de deformación que tiene la sucesión sedimentaria, ya que está afectada por múltiples fallas normales, inversas, laterales y plegamiento.

2.3 Felsita Atolotitlán

La felsita o toba Atolotitlán es un cuerpo ígneo que aflora en las inmediaciones del poblado San Luis Atolotitlán (Fig. 2), tiene una composición riodacítica-dacítica y tiene una afinidad geoquímica de arco volcánico (Centeno-García et al., 2009). La relación concordante que guarda con la estratificación de la Fm. Matzitzi (Fig. 4D) y el reconocimiento de peperitas en el contacto indican que el emplazamiento de este cuerpo fue contemporáneo con la sedimentación, por un lado, interpretado como un flujo piroclástico (Centeno-García et al., 2009), o bien, como un diquestrato (Hernández-Láscares, 2000; Elías-Herrera et al., 2011).

Independientemente del carácter intrusivo o extrusivo de este cuerpo, la edad U-Pb de ~240 Ma obtenida por Elías-Herrera et al. (2011) y corroborada por Bedoya-Mejía (2018) le asigna al depósito de la Fm. Matzitzi una edad del Triásico Medio al menos en el sector de San Luis Atolotitlán. La edad pérmica determinada anteriormente con la flora fósil es considerada errónea ya que se traslapa con la edad del Granito Cozahuico y los gneises migmatíticos de la Falla Caltepec, lo cual es inconsistente considerando la relación de discordancia angular de la Fm. Matzitzi con el basamento (Elías-Herrera et al., 2011). Además, descarta la relación genética de la Fm. Matzitzi con las unidades permo-carboníferas del Complejo Acatlán, como se había propuesto anteriormente (Keppie et al., 2004).

2.4 Unidades post-triásicas

En la región de los Reyes Metzontla aflora una sucesión sedimentaria compuesta por areniscas, conglomerados y lutitas y limolitas de edad Jurásico Inferior-Medio (Bedoya-Mejía, 2018) que previamente se había descrito como la Fm. Matzitzi. Algunas características que permiten diferenciar entre esta unidad y la Fm. Matzitzi son los abundantes clastos de caliza fosilífera en esta unidad, además de encontrarse poco alterada y deformada, lo que le permite conservar su estructura interna. Con las observaciones de campo sólo se reconocen contactos por fallas y la relación de esta unidad con las unidades adyacentes no es clara, por lo que son necesarios más trabajos en dicha unidad.

Al suroeste de Los Reyes Metzontla, conglomerados rojizos de la Fm. Caltepec (Mendoza-Rosales, 2010) descansan en discordancia angular sobre la Fm. Matzitzi. La Fm. Caltepec fue nombrada anteriormente como lechos rojos (Hernández-Láscares, 2000) y como miembro Caltepec de la Fm. La Compañía (Ramírez-Vargas, 2009). Está constituida por conglomerados rojizos polimícticos con algunas intercalaciones de areniscas, limolitas y lutitas. Sus componentes principales son clastos de los complejos Acatlán y Oaxaqueño, del granito Cozahuico, areniscas de la Fm. Matzitzi y caliza. Este conglomerado

conserva estructuras sedimentarias que permiten inferir su depósito en un ambiente fluvial con relieve abrupto de abanico (Centeno-García et al., 2009; Ramírez-Vargas, 2009; Mendoza-Rosales, 2010). Por sus relaciones estratigráficas y fósiles en clastos de caliza se le he asignado una edad del Cretácico Inferior.

La Fm. Caltepec cambia transicionalmente a la Fm. La Compañía (Mendoza-Rosales, 2010) de carácter terrígeno-calcáreo donde se incluyen los miembros Dixiñado y Yistepec (Ramírez-Vargas, 2009), el primero compuesto por una sucesión rítmica de conglomerados-areniscas y areniscas calcáreas-calizas con paleosismitas, y el segundo por calizas y calcarenitas fosilíferas con lentes arrecifales. Con base en el contenido fosilífero se le ha asignado una edad del Cretácico Inferior y su ambiente de depósito es de laguna costera protegida con un importante aporte de sedimentos. Esta formación cambia lateralmente a las turbiditas de la Fm. Zapotitlán.

La transición de un ambiente terrígeno de carácter continental a uno marino está asociada a la transgresión marina cretácica (Ramírez-Vargas, 2009; Mendoza-Rosales, 2010).

Sobre las unidades antes mencionadas descansa discordantemente un grupo volcanosedimentario del Cenozoico (Centeno-García et al., 2009). El grupo incluye depósitos piroclásticos, derrames de lava y cuerpos intrusivos de composición andesítica-dacítica; además de un conglomerado asociado a flujos de escombros contemporáneo al vulcanismo.

3. MARCO TECTÓNICO

La configuración tectónica de México durante el Paleozoico Tardío y Triásico estuvo controlada por los eventos orogénicos de acreción de Pangea en sus etapas finales durante la colisión de Gondwana y terrenos peri-gondwánicos con el sur Laurencia (Poole et al., 2005; Nance et al., 2010), y por el emplazamiento de un arco volcánico en la margen occidental de Pangea, desde el sur de Norteamérica, pasando por México, hasta América Central (Torres et al., 1999; Dickinson y Lawton, 2001), el cual está relacionado a la subducción con vergencia al este de la placa de paleo-Pacífico y cuya geometría se ha modificado constantemente desde los primeros modelos de Dickinson y Lawton (2001) y Elías-Herrera y Ortega-Gutiérrez (2002).

El traslape temporal entre el cierre del océano Rheico durante la orogenia Variscana-Alleghaniana-Ouachita (Nance et al., 2010) y el desarrollo del arco magmático, ha llevado a proponer modelos contrastantes sobre la disposición de los bloques del sur (Mixteca y Oaxaquia) y la paleogeografía del Paleozoico Tardío hasta el límite con el Triásico. Parte del debate se debe a los distintos modelos de evolución geológica del Complejo Acatlán y su acreción con el Complejo Oaxaqueño y al emplazamiento de cuerpos de edades permo-carboníferas en el sur de México (p. ej. Kirsch et al., 2012; Ortega-Obregón et al., 2014; Grajales-Nishimura et al., 2018).

Las localidades en donde se han reportado rocas ígneas con edades de cristalización del Pérmico-Carbonífero que se han interpretado dentro de los distintos modelos tectónicos se muestran en la Figura 5 y se describen a continuación.

En el sector oriental del Complejo Acatlán, el emplazamiento del Plutón Totoltepec en el Pensilvánico-Cisuraliano (edades U-Pb de 306-289 Ma, Kirsch et al., 2012; ~278 Ma, Vega-Granillo et al., 2009) y la sedimentación de la Fm. Tecomate en el Carbonífero-Pérmico (Keppie et al., 2004; Kirsch et al., 2012) están relacionados al emplazamiento del arco volcánico, el cual inició su actividad en el Carbonífero en los bloques del sur. El plutón Totoltepec (Fig. 5) consiste en una suite de gabro, diorita, tonalita y trondhjemita que tiene una firma geoquímica toleítica-calcialcalina y valores ɛNd entre -0.8 y +3.3 asociadas a un arco continental primitivo (Kirsch et al., 2012). La Fm. Tecomate es una unidad metasedimentaria clásticacarbonatada con intercalaciones de rocas volcánicas de composición félsica-intermedia, que indica la contemporaneidad de la sedimentación con el magmatismo. Mientras que Kirsch et al. (2013) relacionan la deformación del Plutón Totoltepec a un régimen transtensivo por la convergencia oblicua de la placa del Paleo-Pacífico, Vega-Granillo et al. (2009) sugieren deformación compresiva durante la orogenia Alleghaniana, entre 275 y 270 Ma, durante el cierre de Pangea.

Figura 5. Mapa de los terrenos tectonoestratigráficos de México (Campa y Coney, 1983) donde se muestran las localidades donde se han reportado rocas ígneas de edad Pérmico-Carbonífero. Ver texto para mayor información. Edades U-Pb de: 1. Arvizu-Gutiérrez, 2012; Arvizu-Gutiérrez et al., 2009. 2. McKee et al., 1988. 3. Gursky y Michalzik, 1989.4. Rosales-Lagarde et al., 2005. 5. Kirsch et al., 2012. 6. Elías-Herrera y Ortega-Gutiérrez, 2002; Elías-Herrera et al., 2005. 7. Ortega-Obregón et al., 2014. 8. Grajales-Nishimura et al., 2018. 9. Ducea et al., 2004. 10. Murillo-Muñetón 1994. 11. Weber et al., 2005; Weber et al., 2007. 12. Solari et al., 2010.

Otras unidades permo-carboníferas asociadas al emplazamiento del arco continental son cuerpos plutónicos y rocas volcánicas que afloran en el Complejo Oaxaqueño y en sus límites con el Complejo Acatlán y el Complejo Xolapa (Fig. 5; Solari et al., 2001; Ortega-Obregón et al., 2014; Grajales-Nishimura et al., 2018). En el Complejo Oaxaqueño, el granito Etla y la riolita Sosola tienen edades de 255 y 270 Ma, respectivamente, y el stock Carbonera de ~272-275 Ma. En el límite entre el Complejo Oaxaqueño y el Complejo Acatlán, el Plutón Cuanana tiene una edad de 287 Ma y el batolito Zaniza de 311 Ma. En el Complejo ofiolítico Juchatengo (Grajales-Nishimura et al., 1999), en el límite con el Complejo Xolapa (Campa y Coney, 1983), el Batolito Honduras tiene una edad de 290 Ma. Dichos cuerpos tienen una firma geoquímica de arco asociada al magmatismo del Carbonífero-Pérmico en el sur de México y valores de ɛHf en circones entre -1 y -14 y entre +3.8 y +8.5 (Ortega-Obregón et al., 2014). Estos valores son positivos en los plutones más máficos y de mayor edad y se vuelven negativos hacia los cuerpos félsicos y jóvenes, lo cual indica diferente grado de contaminación cortical de los magmas.

Grajales-Nishimura et al. (2018) documentaron cuerpos intrusivos de edades comprendidas entre el Pensilvánico y el Cisuraliano (entre 313 y 277 Ma, U-Pb) en el Complejo Juchatengo (Fig. 5), los cuales tienen valores εHf en circones entre +3.2 y +15.0 y entre 0 y -2.8, que indican fuentes primitivas con diferente grado de contaminación cortical. Con base en las edades del stock tonalítico Paso de Brujas (ca. 277–278 Ma, U–Pb) y el batolito Honduras, los autores infieren que el magmatismo de ~290-275 Ma está relacionado a los procesos de acreción de los terrenos peri-gondwánicos con Laurencia durante la orogenia Variscana-Alleghaniana-Ouachita (Nance et al. 2010; Keppie et al. 2012).

De manera similar, el granito Cozahuico es interpretado como un granito sintectónico emplazado en la sutura entre los Complejos Acatlán y Oaxaqueño bajo un régimen transpresivo derecho durante el cierre de Pangea (Elías-Herrera y Ortega-Gutiérrez, 2002; Elías-Herrera et al., 2005), o como parte del arco en el sur de México, afectado por deformación posterior (Kirsch et al., 2012).

En el sureste mexicano, el stock La Mixtequita, en el Complejo Guichicovi, de edad 254 ± 7 Ma (U-Pb, Murillo-Muñetón 1994); gneises del Pérmico medio-superior (~272, 258 y 251 Ma Weber et al., 2005, 2007) en el Macizo de Chiapas, y el magmatismo en los Altos Cuchumatanes entre 317 y 312 Ma (Solari et al., 2010), indican que el arco volcánico se emplazó también dentro del Bloque Maya desde el Pensilvánico. Al suroeste del batolito de Honduras, dentro del Complejo Xolapa, un gneis de 272±10 Ma (Ducea et al., 2004) podría estar igualmente relacionado (Fig. 5).

Por otro lado, en el norte de México dentro del bloque de Coahuila, el arco volcánico Las Delicias (McKee et al., 1988 y 1999) de edad Missísipico-Pérmico medio está asociado al mismo sistema de arco de los bloques del sur. En el terreno Sierra Madre, el vulcanismo de edad Pérmico-Pensilvánico (?) intercalado con la Fm. Tuzancoa (Rosales-Lagarde et al., 2005) y la Fm. Guacamaya (Gursky y Michalzik, 1989) del Pérmico inferior también están relacionadas.

En el noroeste de Sonora, dentro del bloque Caborca, Arvizu et al. (2009) y Arvizu-Gutiérrez (2012) reportaron cuerpos plutónicos de composición granítica de edades permo-triásicas entre ~284 y 221 Ma (U-Pb). Estos autores proponen que el magmatismo en el noroeste del país, que tiene un alcance hasta el Triásico Tardío, enlaza el magmatismo de los bloques del sur con el del suroeste de Norteamérica, representa un sistema de subducción posterior a la colisión continental y es oblicuo a la sutura. Este nuevo sistema de subducción de orientación general NW-SE permitiría el establecimiento del arco volcánico cordillerano en el Pérmico tardío-Triásico con la misma geometría hasta el Jurásico. Sin embargo, las edades del Pensilvánico-Pérmico (U-Pb) en los bloques del sur sugieren que el arco es más antiguo en este sector (Kirsch et al., 2012; Ortega-Obregón et al., 2014; Grajales-Nishimura et al., 2018), ya que los únicos cuerpos con edades más jóvenes son un gneis del Macizo de Chiapas fechado en el límite permo-triásico

(251 Ma, Weber at al., 2005) y la Felsita Atolotitlán del Triásico Medio (U-Pb, Elías-Herrera et al., 2011), que no son considerados como parte del arco (Kirsch et al., 2014).

La aparente ausencia de magmatismo de arco en el sur de México durante el Triásico Medio y Tardío se explica por un posible cambio en el ángulo de subducción de la placa, que se relaciona a un evento de exhumación en el Complejo Acatlán, registrado en el Plutón Totoltepec y la Fm. Tecomate (Kirsch et al., 2014), o bien, por el comienzo del rifting en el oeste de Pangea en el Triásico Medio (Spikings et al., 2015).

La sedimentación de la Fm. Matzitzi en un periodo de quietud magmática refleja posiblemente la transición de un margen activo a uno pasivo en la margen occidental Pangea ecuatorial, como un depósito temprano previo a las sucesiones clásticas del Triásico Superior en la paleo-margen mexicana, representadas por los abanicos Potosino (Silva-Romo et al., 2000; Centeno-García, 2005) y Tolimán (Ortega-Flores et al., 2014), así como los sistemas fluviales alimentadores El Alamar (Barboza-Gudiño et al., 2010) y La Mora (Silva-Romo et al., 2015) , los cuales fluían de este a oeste y drenaban principalmente el cratón amazónico.

4. METODOLOGÍA

El trabajo consistió en un muestreo sistemático de clastos ígneos y cuarzoarenitas en las litofacies conglomeráticas de la Fm. Matzitzi, en el poblado de Los Reyes Metzontla y sobre la autopista Tehuacán-Oaxaca en el km 99+003 (Tabla 1; Fig. 2). Los clastos se seleccionaron conforme su tamaño, preferentemente los de tamaño superior a ~5 cm para tener suficiente material para el procesamiento posterior.

La localización de los afloramientos donde los clastos fueron colectados se muestra en la Figura 2. La primera parte de la clave de los clastos corresponde con la localidad donde fue muestreado de acuerdo con la tabla 1 y la Figura 2. El segundo elemento de la clave indica el número de clasto.

Localidades de muestreo	Coordenadas		Clave de muestras colectadas
1	18°05'38.60"N	97°20'20.51''W	MAT1
2	18°13'25.65"N	97°28'09.78"W	M2
3	18°13'12.66"N	97°28'10.30"W	MAT3
4	18°13'20.50"N	97°28'22.15"W	M4
5	18°13'14.64"N	97°28'09.64''W	MAT5
7	18°14'28.22''N	97°29'36.15"W	MAT7
6	18°13'21.25'' N	97°27'59.75" W	M3
8	18°10'13.12'' N	97°23'25.72" W	MTZ-01
9	18°10'15.42"N	97°23'25.43"W	MTZ-02
10	18°13'19.66"N	97°28'19.79"W	Granito Los Reyes (COZA-02)
11	18°06'25.99"N	97°26'22.25''W	Granito Cozahuico

Tabla 1. Coordenadas geográficas de las localidades de muestreo.

4.1 Petrografía

Para caracterizar y clasificar petrográficamente los clastos de la Fm. Matzitzi se describieron 22 láminas delgadas de fragmentos volcánicos, sub-volcánicos, plutónicos y detríticos. Se describieron 17 clastos de naturaleza volcánica y subvolcánica para determinar la composición y características del magmatismo asociado al arco volcánico. Para nombrar este tipo de rocas se utilizó el esquema de clasificación de rocas volcánicas de Streckeisen (1978). También se describieron dos clastos de arenisca para determinar las fuentes potenciales de sus componentes y ambiente tectónico. Para el análisis composicional de las areniscas se utilizó el método de Gazzi-Dickinson (Gazzi, 1966; Dickinson, 1970), que no involucra el tamaño de grano, y el sistema de clasificación QtFL de Garzanti (2016). Para discriminar entre ambientes petrotectónicos se utilizó el esquema de Dickinson (1985). Adicionalmente se caracterizaron dos clastos de granitoides para analizar la naturaleza de los cuerpos plutónicos expuestos al tiempo del depósito de la Fm.

Matzitzi. Finalmente, se anexa la descripción petrográfica del granito de Los Reyes, que se encuentra en contacto por falla con la Fm. Matzitzi (Fig. 2), para comparar y correlacionar con el granito Cozahuico.

4.2 Análisis U-Pb en circón mediante LA-ICPMS

El trabajo consistió en el pulverizado y lavado de cada muestra y posterior concentración de cristales de circón por separación magnética y líquidos pesados o por batea en el Laboratorio de Molienda y Separación Mineral del Centro de Geociencias, UNAM. La cantidad de circones por muestra varía dependiendo del tamaño del clasto y de la abundancia relativa de este mineral en el tipo de roca analizada.

Utilizando un microscopio binocular se seleccionaron manualmente entre 35 y 54 cristales para los clastos ígneos y 100 cristales para los clastos de arenisca. Los circones se montaron en una resina epóxica y se pulieron con lijas de distinta rugosidad para exponer el interior de los cristales y hacer estudios de catodoluminiscencia con un luminoscopio ELM 3R, previo a la ablación, para reconocer la estructura interna del circón y seleccionar un punto adecuado de análisis.

Los análisis isotópicos de U-Pb se realizaron con un sistema de ablación láser conectado a un espectrómetro de masas cuadrupolar de fuente de plasma inductivamente acoplada (LA-ICPMS) en el Laboratorio de Estudios Isotópicos (LEI) del Centro de Geociencias, UNAM, siguiendo la metodología analítica descrita por Solari et al. (2010) con modificaciones en algunos de los parámetros que se explican más adelante.

La técnica de LA-ICPMS consiste en la ablación de los cristales de circón en una celda Laurin Technic mediante un láser de excímeros de 193 nm de longitud de onda que es generado por un pulso de 23 ns a partir de la excitación con alto voltaje de una mezcla de ArF. El láser emplea una tasa de repetición de 5 Hz y densidad de energía de 6 J/cm². El diámetro del haz del láser es de 23 μ m con una profundidad final de menos de 10 μ m. El gas acarreador compuesto por He y Ar (~350 ml/min y ~850 ml/min, respectivamente) incorpora el material ablacionado y se mezcla con ~3.8 ml/min de N₂ antes de la medición para amplificar las señales de los isótopos en el espectrómetro de masas.

Previo a la sesión analítica, el sistema ICPMS se optimiza durante la ablación a lo largo de una línea en el vidrio NIST 612 con un diámetro de 80 μ m y una tasa de repetición de 10 Hz. Las señales de U, Th y óxidos de Th se monitorean para optimizar el equipo hasta que cumpla con los parámetros de detección de poco más de 1x10⁶ csp (cuentas por segundo) de ²³⁸U, una relación ²³⁸U/²³²Th cercana a 1.05 y ThO/Th<0.02.

Una vez optimizado el equipo, la secuencia de análisis de las muestras comienza con dos puntos de control en el vidrio NIST 610, cinco en el circón estándar 91500 (Wiedenbeck et al., 1995; Goolaerts et al., 2004) y tres en el estándar secundario Plešovice (Sláma et al., 2008). Después se analizan los circones de edad desconocida en intervalos como sigue: diez circones de edad desconocida con dos del estándar 91500 y uno del Plešovice y cada treinta circones un análisis extra en el vidrio NIST 610. Al terminar el análisis de los

circones de edad desconocida, la secuencia finaliza con una medición en el estándar Plešovice, dos de 91500 y uno en el vidrio NIST 610. El tiempo total de análisis por circón es de 60 s, de los cuales 15 s son de preablación, 30 s de ablación y 15 s de post-ablación.

El espectrómetro de masas Thermo Icap Qc colecta las señales de los isótopos ²⁰⁶Pb, ²⁰⁷Pb, ²⁰⁸Pb, ²³²Th, ²³⁸U necesarios para el cálculo de las edades. La masa 204Pb útil para evaluar la concentración de plomo común no se registra dado que la señal es muy baja y se ve interferida por la señal del isóbaro ²⁰⁴Hg. Adicionalmente se colectan las señales de P, Sc, Ti, Y, Nb, Hf y elementos de Tierras Raras (REE, *rare earth elements*): La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb y Lu. También se monitorea el Si ya que se utiliza como estándar interno para recalcular las concentraciones elementales con base en su proporción estequiométrica en el circón. Las señales de P, Ti e Y se monitorean para identificar inclusiones de otras fases minerales que puedan modificar las relaciones isotópicas de Pb y U, importantes para el cálculo de las edades.

El tratamiento de los datos crudos se hace con el software Iolite (Paton et al., 2011) y el esquema de reducción de datos VizualAge para U-Pb de Petrus y Kamber (2012) aplicando las correcciones por deriva instrumental y fraccionamiento por profundidad, así como las propagaciones de error dadas por la variabilidad del estándar primario, a las relaciones isotópicas calculadas de los circones desconocidos. Posteriormente los datos se importan a hojas de cálculo de Excel desarrolladas en el LEI donde se generan las tablas con las relaciones isotópicas y edades. Los diagramas de concordia de Wetherill y el cálculo de las edades promedio se grafican con el software online IsoplotR (Vermeesch, 2018) disponible en *http://www.ucl.ac.uk/~ucfbpve/isoplotr/*.

4.3 Geocronología detrítica en estudios de procedencia

Desde el continuo mejoramiento de las diversas técnicas microanalíticas para el fechamiento U-Pb, la geocronología U-Pb en circones detríticos ha sido ampliamente utilizada en los estudios de procedencia y cálculo de edad máxima de depósito de unidades sedimentarias, ya que estas técnicas permiten obtener con suficiente precisión y exactitud la edad de los circones individualmente (Gehrels, 2012).

Las principales aplicaciones de la Geocronología U-Pb en las sucesiones sedimentarias son para determinar la edad máxima de depósito con base en la población más joven (al menos 3 granos) y en estudios de procedencia mediante la correlación de las edades detríticas con las posibles fuentes del sedimento, así como con otras unidades sedimentarias. A escala regional se pueden hacer estudios de la evolución de la fuente con la caracterización y comparación de las rocas erosionadas respecto al terreno fuente, así como reconstrucciones paleogeográficas con la discriminación entre terrenos. Con respecto al uso de circones detríticos, existen algunos cuestionamientos sobre la validez del método ya que hay incertidumbre sobre cómo debe ser la selección y cantidad de granos que se van a analizar. Esto depende en gran medida de qué se pretende obtener con las edades. Si se desea obtener el límite máximo de la edad del depósito, idealmente se elegirán los granos de color más claro y menos redondeados ya que el grado de redondeamiento tiende a incrementar en circones más antiguos dado que tienen más oportunidad de ser retrabajados (Gehrels, 2012), aunque no se puede generalizar. En cambio, si se desea caracterizar los distintos componentes para identificar las fuentes de procedencia, lo mejor es elegir una muestra representativa de la población total y con un mayor número de análisis. Para esto, se analizan comúnmente más de 100 granos, con lo cual se asegura detectar las poblaciones menos abundantes (Andersen, 2005; Gehrels, 2012). Sin embargo, esta forma aleatoria de selección de granos no siempre es aplicable ya que comúnmente se evitan granos que tengan daños en su estructura, núcleos heredados y zoneamiento, inclusiones, fracturamiento, etcétera. Estas características de la estructura interna del circón son identificadas con la técnica de catodoluminiscencia.

La interpretación de las edades del circón también es cuestionable en las rocas detríticas. Normalmente en estas rocas se grafica una curva de distribución para identificar los distintos componentes. Adicionalmente se agrupan los datos por poblaciones y se calculan las edades promedio de las posibles fuentes, esto asumiendo que las edades similares son cogenéticas. No obstante, los datos deben interpretarse con cuidado pues no se puede asegurar que las edades similares tienen la misma procedencia. Una manera de verificar si las edades similares corresponden o no a la misma fuente es cuantificando la concentración de U y la relación U/Th para identificar posibles eventos tectonotérmicos post-cristalización que hayan podido causar pérdida de Pb. Aun así, la presencia y abundancia de cierta población de circones en las rocas clásticas no necesariamente tienen un único origen, principalmente cuando los bloques que representan las posibles fuentes no están bien caracterizados y no se conocen las diferencias entre éstos (Bahlburg et al., 2009).

Además, otro tipo de estudios se pueden integrar a la geocronología detrítica para mejorar la interpretación de edades. Por ejemplo, analizar el comportamiento de los elementos traza en los circones, como las tierras raras, sirve para diferenciar entre cristales de origen ígneo o metamórfico (Hoskin y Schaltegger, 2003); además que provee información adicional que facilita la interpretación de las edades detríticas (Andersen, 2005).

La ventaja de utilizar clastos de los conglomerados es que el análisis se hace de manera puntual (*in situ*) sobre el componente de interés, en este caso, los clastos volcánicos, graníticos y detríticos. Esto permite asignar una edad a un componente, que a su vez se asocia directamente a una fuente.

4.4 Escalamiento multidimensional (MDS)

El escalamiento multidimensional (MDS, *Multidimensional Scaling*) es una técnica estadística multivariable que modela en un espacio de pocas dimensiones la similitud/disimilitud (llámese proximidad) entre un conjunto robusto de datos.

Esta técnica estadística se emplea en geocronología detrítica debido a que, en los últimos años, se ha generado una gran cantidad de datos U-Pb en circón que complican la visualización y comparación de edades detríticas en los diagramas de densidad de Kernel. Por ello, el uso de este método cuantitativo permite hacer correlaciones de una manera más sencilla y las interpretaciones de procedencia más objetivas.

El desarrollo matemático del método se encuentra en el trabajo de Vermeesch (2013) y el programa de MATLAB para generar mapas de escalamiento multidimensional se encuentra en *http://mudisc.london-geochron.com.* De manera general, el método consiste en crear un mapa bidimensional donde se representa visualmente la similitud entre un conjunto de muestras. Para poder representar en un espacio euclidiano la semejanza entre muestras, es necesario generar una matriz de disimilitud a partir de la comparación entre cada par de muestras empleando la prueba de Kolmogorov-Smirnov (K-S). Esta prueba (K-S) convierte el espectro de edades detríticas en una función de densidad acumulada y obtiene la máxima diferencia entre cada par de funciones, la cual representa la disimilitud entre dos muestras. A partir de la matriz de disimilitudes, el MDS genera un mapa en el espacio euclidiano donde la distancia entre dos muestras *i* y *j* aproxima la disparidad entre ellas, de modo que en dicho mapa las muestras similares aparecen cercanas entre sí y las disimilares separadas (Fig. 6). Adicionalmente, cada muestra se une con su vecino más próximo y con el segundo más próximo mediante una línea sólida y una punteada, respectivamente.

Figura 6. IZQUIERDA-Ejemplo de mapa de escalamiento multidimensional (tomado de Vermeesch, 2013) y DERECHA- Gráfico de Shepard correspondiente. Nótese la separación de las muestras en dos grupos en el mapa MDS, lo cual indica que no están relacionadas genéticamente. El valor de 'stress' en el diagrama de Shepard cuantifica la calidad de ajuste del modelo.

Además de agrupar las muestras que son similares y separar las que son disimilares, lo cual puede representar un origen común o distinto de las muestras, el análisis MDS permite introducir muestras sintéticas de las unidades que representan las posibles fuentes de procedencia y que están asociadas a los eventos orogénicos más relevantes (Spencer et al., 2016). Las muestras sintéticas facilitan la visualización de los cambios en los patrones detríticos a través del tiempo, así como la asociación con determinada fuente y ambiente geodinámico. La cercanía de las muestras de interés a las muestras sintéticas, indica la incorporación mayor o menor de determinado componente, discrimina entre las fuentes potenciales que se hayan inferido previamente, permite ubicarlas en un contexto geodinámico y refleja la dirección de evolución en el tiempo de determinada sucesión.

Mediante una serie de iteraciones, el modelo busca el mejor ajuste de los datos analizando todas las combinaciones posibles. La calidad del ajuste se representa en un diagrama de Shepard (Fig. 6) y se cuantifica con el parámetro S (Tabla 2; Vermeesch, 2013). En el diagrama de Shepard se muestra la dispersión entre las similitudes/disimilitudes (datos de entrada) y las distancias o disparidades calculadas (datos de salida). Un buen ajuste de los datos está dado por una función creciente y si esta función tiene una pendiente cercana a 1, entonces se dice que el ajuste es bueno. De manera cuantitativa, el valor del parámetro S obedece los valores de la tabla 2 para determinar la calidad de ajuste.

cuantificado con ci valor de S.				
S	Bondad del ajuste			
0.2	Pobre			
0.1	Aceptable			
0.05	Bueno			
0.025	Excelente			
0	Perfecto			

Tabla 2. Interpretación de calidad del ajustecuantificado con el valor de S.

En este trabajo, el análisis MDS compara los dos fragmentos de arenisca (claves M4F16 y M4V11) con unidades sedimentarias y metasedimentarias de los bloques de basamento, Complejos Acatlán y Oaxaqueño, y de los bloques adyacentes, Maya y Chortís, ya que éstos representaban fuentes locales al momento de depósito de la Fm. Matzitzi. También se integran unidades siliclásticas triásicas del norte, centro y sur de México, con las que podría compartir características genéticas la Fm. Matzitzi, asumiendo que el sistema de drenaje principal que alimentó estas unidades se haya instaurado desde el Triásico Medio-Tardío. Además, con la incorporación de las unidades triásicas es posible trazar la evolución espacio-temporal de las unidades depositadas en el oeste de Pangea ecuatorial durante el Paleozoico Tardío-

Triásico. En el Apéndice 4 se sintetiza la información de las unidades utilizadas para el análisis de escalamiento multidimensional.

Al modelo se incorporan muestras sintéticas que tienen una distribución normal y que pertenecen al arco carbonífero-pérmico (300±50 Ma; p. ej., Kirsch et al., 2012; Ortega-Obregón et al., 2014; Grajales-Nishimura et al., 2018), Orógeno Pan-Africano-Brasiliano (600±100 Ma; p. ej., Cordani y Teixeira, 2007), Complejo Oaxaqueño (1000±50 Ma; Solari et al., 2003), Orógeno Grenville/Sunsas (1200±100 Ma; p. ej., Cawood et al., 2007) y cinturones orogénicos presentes en las márgenes de los cratones de Laurencia y Amazonia (1600±100; Cawood et al., 2007; Cordani y Teixeira, 2007).

5. RESULTADOS

5.1 Descripción petrográfica

5.1.1 Clastos volcánicos

Se describieron en total 17 clastos de origen volcánico, 13 de ellos son rocas extrusivas de composición riolítica, dacítica y andesítica, y los 4 restantes son sub-volcánicos de composición dacítica-andesítica.

MAT1P1: lava andesítica. Roca volcánica holocristalina porfídica de composición intermedia. Los fenocristales de plagioclasa, anfíbol (?), cuarzo y minerales opacos conforman ~13% modal y se encuentran inmersos en una matriz criptocristalina producto de desvitrificación (Fig. 7 A y B). Los fenocristales de plagioclasa (8%) tienen formas tabulares subédricas, su tamaño varía entre 0.45 y 2.3 mm y se encuentran moderadamente sericitizados. Los pseudomorfos de anfíbol (5%) son cristales subédricos reemplazados por clorita y sericita y su tamaño varía de 0.25 a 1 mm. Sólo se encontró un fenocristal anédrico de cuarzo de ~0.4 mm (<1%), posiblemente accidental (Fig. 7 B). La matriz originalmente vítrea presenta una textura cripto a microcristalina producto de la desvitrificación, donde se reconocen microcristales tabulares alargados que pueden ser microlitos de plagioclasa.

M2V11: lava riolítica. Roca volcánica holocristalina de composición félsica con textura afírica, ya que sólo contiene ~2% modal de fenocristales (Fig. 7 C). Los fenocristales de plagioclasa principalmente, y escaso sanidino, se encuentran como cristales individuales subédricos y anédricos, con formas tabulares y tamaño entre 0.25 y 1 mm. Se encuentran moderada a intensamente sericitizados, algunos afectados únicamente en el núcleo. Ciertos cristales tienen textura poikilítica cuyas inclusiones son de minerales opacos (posibles óxidos). La matriz está compuesta por un mosaico microcristalino de cuarzo, feldespato, mica blanca y escasa biotita que está moderadamente cloritizada.

M3V2: lava riolítica. Roca volcánica de composición félsica holocristalina afírica, con alrededor de 2% de fenocristales de feldespatos (Fig. 7 D). Los fenocristales se encuentran como cristales individuales y en glomeropórfidos, la mayoría tiene formas anédricas y escasamente subédricas, miden entre 0.2 y 0.6 mm y tienen alteración sericítica moderada a pervasiva, en casos únicamente en el núcleo del cristal. La matriz está formada por un mosaico microcristalino de composición cuarzo-feldespática con cristales de moscovita y algunos óxidos diseminados. Los feldespatos de la matriz también están sericitizados, cloritizados y/o reemplazados por óxidos de Fe en algunas partes.

Figura 7. Fotomicrografías de clastos volcánicos de los conglomerados de la Fm. Matzitzi. A) y B) MAT1P1, C) M2V11, D) M3V2, E) y F) MAT3V2. Fotomicrografías con nícoles cruzados, objetivo 5x, campo visual 1.8 x 1.45 mm. Abreviaturas: Am=anfíbol, Fs=feldespato Pl=plagioclasa, Qz=cuarzo. Las líneas punteadas amarillas delimitan la fábrica foliada con diferente tamaño de grano y en (F) también delimitan un fantasma de cristal de plagioclasa.

MAT3V2: lava dacítica. Roca volcánica holocristalina inequigranular porfídica con 10% de fenocristales (Fig. 7 E y F). Los fenocristales de plagioclasa tienen formas tabulares euhédricas a anédricas, comúnmente se encuentran como glomeropórfidos (Fig. 7 F) y tienen alteración incipiente a moderada a sericita y óxidos, en los núcleos de los cristales principalmente. Hay fantasmas de fenocristales y un cristal pseudomorfo donde el mineral de reemplazamiento es sericita. El tamaño de los cristales varía entre 0.12 y 3 mm. Algunos cristales se encuentran ligeramente deformados. La matriz está compuesta por un mosaico granofírico, producto de la desvitrificación, que tiene dos dominios con diferente tamaño de grano y muestra una fábrica foliada incipiente debida al flujo (Fig. 7 E). Los dominios más gruesos tienen una textura microcristalina formada por cristales anédricos a subédricos de cuarzo, feldespato potásico, plagioclasa y escasa biotita. Los dominios más finos son de composición similar, pero tienen escasa mica blanca. Las micas de la matriz están moderadamente cloritizadas.

MAT3FA4: lava riolítica. Roca félsica holocristalina inequigranular porfídica que contiene 8% de fenocristales (Fig. 8 A y B). Los fenocristales de plagioclasa y sanidino se encuentran como cristales individuales o glomeropórfidos (Fig. 8 B), tienen formas euhédricas a anédricas, tamaño entre 0.45 y 2.5 mm y están reemplazados parcial a totalmente por sericita, minerales opacos y hematita. El reemplazamiento ocurre en el núcleo o en todo el cristal. En un cristal se ve una textura de exsolución pertítica. La matriz se encuentra totalmente desvitrificada, con esferulitas radiales (Fig. 8 A) que forman aglomerados, dentro de un mosaico granofírico cripto y microcristalino de composición cuarzo-feldespática con algo de biotita y moscovita, algunas cloritizadas, y que llegan a formar cúmulos (sobre todo la biotita).

M3Q1: lava riolítica. Roca félsica holocristalina inequigranular porfídica (Fig. 8 C y D). Los fenocristales de cuarzo, sanidino y escasa plagioclasa constituyen un 5% modal. Se encuentran como cristales individuales y eventualmente formando glomeropórfidos. Los fenocristales de cuarzo (2%) tienen formas anédricas, miden entre 0.25 y 1.9 mm y comúnmente tienen bordes y golfos de reabsorción. Los feldespatos (3%) tienen formas tabulares euhédricas a subédricas con tamaño entre 0.2 y 0.75 mm. Se reconoce un cristal con textura simplectítica. Los óxidos ocurren como mineral accesorio. La matriz está formada por un agregado microcristalino de cuarzo y feldespato con moscovita y escasa biotita, ambas parcialmente cloritizadas, que forman algunos aglomerados.

MAT3P5: lava riolítica. Roca extrusiva de composición félsica con textura inequigranular porfídica (Fig. 8 E y F), con un contenido de 25-30% de fenocristales que se encuentran como cristales individuales. Los fenocristales son: cuarzo, sanidino, plagioclasa, biotita, óxidos y líticos de cuarzo polimineral. Los fenocristales de cuarzo (10%) tienen formas euhédricas con bordes bien definidos y terminaciones bipiramidales y anédricas por bordes reabsorbidos (Fig. 8 E), con tamaño entre 0.3 y 5.5 mm.

Figura 8. Fotomicrografías de clastos volcánicos de los conglomerados de la Fm. Matzitzi. A) y B) MAT3FA4, C) y D) M3Q1, E) y F) MAT3P5. Fotomicrografías con nícoles cruzados, objetivo 5x, campo visual 1.8 x 1.45 mm. Abreviaturas: Bt=biotita, Fs=feldespato, Op= opacita, Pl=plagioclasa, Qz= cuarzo, Qp= cuarzo policristalino, Sa= sanidino, Ser= sericita,. Los círculos amarillos delimitan esferulitas radiales.

Los cristales de feldespato (12%) tienen formas euhédricas a subédricas y tamaño entre 0.3 y 5 mm, se encuentran fracturados, sericitizados moderada a intensamente y algunos con reemplazamiento de óxidos de Fe. Los cristales tabulares euhédricas a subédricas de biotita (6%) miden en su lado largo entre 0.3 y 2.25 mm y algunas están parcialmente cloritizadas. Los cristales más pequeños forman cúmulos. Los óxidos tienen formas subédricas a anédricas, tamaño menor a 0.25 mm y se encuentran en el borde de un lítico. Los líticos policristalinos de cuarzo constituyen un 2% modal, miden ~1.3 y ~3 mm, tienen una foliación apenas reconocida, el más pequeño está rodeado por minerales opacos y cristales de biotita (Fig. 8 F). El circón se encuentra como accesorio. La matriz está compuesta por un agregado microcristalino de composición cuarzo-feldespática con algunos microcristales de biotita. Clorita y sericita se encuentran rellenando los intersticios. En algunas partes de la matriz el tamaño de grano es más grueso por la desvitrificación más intensa.

M4F20: lava dacítica. Roca volcánica holocristalina con textura inequigranular porfídica y glomeroporfídica (Fig. 9 A y B). Los aglomerados de plagioclasa y cuarzo conforman el 10% de la roca. Los fenocristales de plagioclasa (8%) son los de mayor tamaño, entre 0.5 y 2.5 mm, tienen formas tabulares euhédricos a anédricos y tienen alteración incipiente a sericita (Fig. 9 A). Los cristales de cuarzo (2%) tienen formas euhédricas con terminaciones bipiramidales y anédricas con golfos de reabsorción y miden entre 0.5 y 1.2 mm. La matriz está desvitrificada, evidenciada por la textura esferulítica y granofírica micro y criptocristalina en diferentes dominios (Fig. 9 B). Su composición es cuarzo-feldespática, con mica blanca y óxidos y algunas concentraciones de biotita cloritizada. Cabe destacar que abundantes microfenocristales están atrapados en las esferulitas.

M4Q1: lava dacítica. Roca volcánica holocristalina con textura inequigranular seriada, con 10% de fenocristales inmersos en una matriz desvitrificada con foliación por flujo (Fig. 9 C y D). Los fenocristales de plagioclasa (~10%) tienen formas tabulares euhédricas a subédricas, su tamaño varía entre 0.3 y 2.6 mm y se encuentran como cristales individuales y escasamente formando glomeropórfidos. Algunos cristales están dislocados, posiblemente debido al flujo. En general, los fenocristales están moderada a intensamente alterados a sericita y óxidos, en algunos casos afectando únicamente al núcleo debido al zoneamiento composicional o remplazándolo totalmente. La matriz es un agregado felsítico cripto y microcristalino producto de la desvitrificación. Los dominios finos microcristalinos definen la foliación y tienen esferulitas radiales y en abanico (Fig. 9 C). Los dominios gruesos son cuarzo-feldespáticos con escasa biotita y se encuentran como lentes alargados (Fig. 9 D). Las biotitas, algunas moderadamente cloritizadas, forman lentes que siguen la foliación. Los minerales opacos (posibles óxidos), se encuentran como componentes secundarios en la matriz, además de circón como accesorio.

Figura 9. Fotomicrografías de clastos volcánicos de los conglomerados de la Fm. Matzitzi. A) y B) M4F20, C) y D) M4Q1, E) M4CZ1. Fotomicrografías con nícoles cruzados, objetivo 5x, campo visual 1.8 x 1.45 mm. Abreviaturas: Pl=plagioclasa, Qz=cuarzo. Las líneas punteadas rojas delimitan la fábrica foliada y los círculos rojos esferulitas radiales.
M4CZ1: lava riolítica. Roca de composición félsica holocristalina con textura afírica. La matriz es un agregado granofírico cripto y microcristalino de composición cuarzo-feldespática producto de la desvitrificación (Fig. 9 E). En los dominios más finos se reconocen microlitos de feldespatos e hilos de sericita que marcan una foliación de flujo incipiente. Únicamente se reconoce un fenocristal anédrico de cuarzo de ~1 mm (<1%). Los óxidos y otros minerales opacos se encuentran como accesorios en la matriz.

MAT7P1: lava dacítica. Roca volcánica holocristalina con textura inequigranular porfídica. Tiene fenocristales de plagioclasa y escaso cuarzo que ocurren como cristales individuales y en glomeropórfidos en una matriz granofírica a esferulítica (Fig. 10 A y B). Los fenocristales de plagioclasa (15%) son euhédricos a anédricos, miden entre 0.75 y 3.2 mm, tienen reemplazamiento incipiente a pervasivo de sericita y/o óxidos (posible hematita y magnetita), en algunos casos afectando únicamente al núcleo debido al zoneamiento composicional, o forman pseudomorfos. La matriz está desvitrificada, tiene abundantes esferulitas con formas radiales y en abanico (Fig. 10B), inmersas en un mosaico micro y criptocristalino de composición cuarzo-feldespática, con biotita como constituyente menor. La matriz también se encuentra sericitizada y además cloritizada. Los óxidos diseminados en la matriz ocurren como componentes secundarios.

MTZ-01-V2: latita. Roca volcánica de composición intermedia holocristalina con textura inequigranular porfídica que tiene cerca del 5% de fenocristales en una matriz de grano fino (Fig. 10 C). Los fenocristales de plagioclasa y feldespato potásico (~5%) y minerales opacos y un pseudomorfo (<1%) se encuentran como cristales individuales. Los cristales de plagioclasa y feldespato potásico son euhédricos a subédricos, con formas tabulares, tamaño entre 0.5 y 3 mm y tienen alteración sericítica moderada a pervasiva. Los minerales opacos son euhédricos y subédricos, con formas irregulares y prismáticas y de tamaño de ~0.3 mm. El cristal pseudomorfo de traza hexagonal (posible anfíbol) mide 0.3 mm y está reemplazado por óxidos y clorita (?). El circón se encuentra como accesorio. La matriz está conformada por un agregado felsítico microcristalino, con mica blanca como componente secundario, que está cloritizada en partes.

M3V8: lava andesítica-basáltica. Roca de composición intermedia con textura intergranular (Fig. 10 D). Está formada por fenocristales de plagioclasa que miden en promedio 0.25 mm. Los intersticios entre los cristales de plagioclasa están ocupados por óxidos, posible magnetita y hematita y algunas micas moderadamente cloritizadas, posible biotita.

Figura 10. Fotomicrografías de clastos volcánicos de los conglomerados de la Fm.Matzitzi, A) y B) MAT7P1, C) MTZ-01-V2 y D) M3V8. Fotomicrografías con nícoles cruzados, objetivo 5x, campo visual 1.8 x 1.45 mm. Abreviaturas: Fs=feldespato, Py=pirita. Los círculos amarillos delimitan esferulitas radiales.

5.1.2 Clastos sub-volcánicos

M2F33: dacita. Roca de composición intermedia holocristalina inequigranular seriada (Fig. 11 A y B). Los fenocristales de plagioclasa, cuarzo, anfibol (?) y sanidino constituyen ~50% de la muestra y se encuentran principalmente como cristales individuales y ocasionalmente formando aglomerados en una matriz granofírica. Los fenocristales de plagioclasa (30%) tienen formas subédricas, miden de 0.5 hasta 2.5 mm, están moderadamente alterados a sericita y algunos tienen textura poikilítica (óxidos como inclusiones). Los cristales de cuarzo (12%) tienen formas subédricas a anédricas, la mayoría con bordes y golfos corroídos (Fig. 11 B), algunos con textura esqueletal. Su tamaño varía entre 0.2 a 1.4 mm. Los cristales de anfíbol (6%) son de tamaño entre 0.3 y 2.1 mm, tienen formas subédricas a anédricas, y tienen mayor grado de alteración, pervasiva en la mayoría, donde los minerales de alteración son clorita, minerales opacos posiblemente óxidos y biotita (Fig. 11 A). El sanidino es el menos abundante (5%), su tamaño varía entre

0.3 y 1 mm y se encuentra como cristales tabulares subédricos. Hay minerales accesorios como el circón. La matriz está formada por un mosaico de cristales anédricos a subédricos de grano muy fino de composición cuarzo-feldespática, con sericita, clorita y óxidos en los instersticios. La matriz se vuelve microlítica intergranular en partes.

M2V9: dacita. Roca subvolcánica de composición intermedia holocristalina con textura seriada con microa mega-fenocristales, que se encuentran como cristales individuales (Fig. 11 C y D). Los fenocristales constituyen ~50% de la muestra y son de plagioclasa, pseudomorfos de anfibol y biotita (?), cuarzo, sanidino, biotita. Los minerales opacos y óxidos están como constituyentes secundarios. Los fenocristales de plagioclasa (25%) tienen formas tabulares euhédricas y subédricas, miden de 0.25 a 3.4 mm y están moderada a intensamente alterados a sericita y clorita, además tienen inclusiones de óxidos. Los pseudomorfos de anfíbol (10%) son anédricas y subédricas, miden de 0.17 a 3.25 mm y están reemplazados por clorita, sericita y óxidos. Los fenocristales de cuarzo (13%) son anédricos, miden entre 0.2 y 2 mm y presentan bordes y golfos de corrosión y algunos tienen textura esqueletal. Los cristales de sanidino miden entre 0.3 y 1 mm, son escasos (3%) y tiene formas tabulares euhédricos y subédricos con alteración incipiente a sericita. La matriz está formada por un mosaico cripto a microcristalino donde los cristales son anédricos a subédricos de composición cuarzo-feldespática y en partes algo de mica blanca ligeramente cloritizada.

MAT3P4: andesita. Roca sub-volcánica de composición intermedia holocristalina inequigranular seriada (Fig. 11 E) con un contenido de fenocristales de ~60% modal. Los fenocristales son de plagioclasa, pseudomorfo de anfíbol (?), cuarzo, feldespato potásico y óxidos. Los fenocristales de plagioclasa (34%) son euhédricos a anédricos, miden entre 0.5 y 7 mm, tienen formas tabulares y están moderada a intensamente alterados a sericita. Los pseudomorfos de anfíbol (20%) están reemplazados por clorita, sericita y óxidos, miden entre 0.25 y 2.35 mm y se encuentran como cristales anédricos que parecen deformados y subédricos tabulares o con traza pseudohexagonal y en alguno se ve un borde de opacita. Los cristales de cuarzo (5%) tienen formas anédricas con los bordes reabsorbidos y miden entre 0.25 y 1.2 mm. Los óxidos ilmenita-magnetita de tamaño menor a 0.3 mm tienen formas anédricas, algunos con borde de titanita y ocurren como accesorio, al igual que el circón. El sanidino se encuentra como cristales euhédricos, es muy escaso (1%) y de tamaño de 0.55 mm. La matriz consiste en un agregado cripto a microcristalino formado por cristales anédricos de cuarzo y feldespato. El feldespato está sericitizado y cloritizado moderadamente.

Figura 11. Fotomicrografías de clastos sub-volcánicos de los conglomerados de la Fm. Matzitzi. A) y B) M2F33, C) y D) M2V9, E) MAT3P4 y F) MAT5P1. Fotomicrografías con nícoles cruzados, objetivo 5x, campo visual 1.8 x 1.45 mm. Abreviaturas: Am=anfíbol, Bt=biotita, Chl=clorita, Fs=feldespato, Pl=plagioclasa, Qz=cuarzo.

MAT5P1: andesita-dacita. Roca sub-volcánica de composición intermedia holocristalina con textura inequigranular seriada (Fig. 11 F). Los fenocristales (60%) euhédricos y subédricos son de plagioclasa, pseudomorfo de anfíbol (?), cuarzo y feldespato potásico, son más comunes los megafenocristales (>5mm). Abundantes óxidos se encuentran como accesorio y como reemplazamiento. Los fenocristales de plagioclasa (30%) son subédricos a anédricos, de tamaño desde 0.25 hasta 12 mm y están intensamente sericitizados. Algunos tienen inclusiones de óxidos. Los pseudomorfos de anfíbol (20%) son generalmente anédricos y algunos subédricos, miden entre 0.5 y 6 mm y los minerales de reemplazamiento son clorita y óxidos. El cuarzo (8%) es anédrico y se caracteriza por sus bordes y golfos de reabsorción, su tamaño va desde 0.3 hasta 1.13 mm. El sanidino es muy escaso, menor a 2% y de tamaño ~0.55 mm. Los óxidos, posible ilmenita y magnetita, tienen formas anédricas, miden menos de 0.3 mm y alguno tiene una corona de titanita. La matriz consiste en un mosaico de microcristales anédricos de cuarzo y feldespato débil a moderadamente sericitizado.

5.1.3 Clastos de arenisca

M4F16: arenisca cuarzosa. Muestra de grano fino a medio, moderadamente clasificada, con clastos subredondeados y redondeados. La composición de los clastos en orden decreciente es cuarzo en cristales individuales, plagioclasa, feldespato potásico, biotita, moscovita, líticos reemplazados por arcillas, posiblemente volcánicos y/o metamórficos y cuarzo policristalino, posible pedernal (Fig. 12 A). Con base en la composición de Qt (92%), F (5%) y L (3%) se clasifica como arenisca cuarzosa. Los fragmentos de feldespato están moderadamente sericitizados y las micas cloritizadas. La mayoría de los contactos entre granos son cóncavo/convexo y planares y en zonas se ven suturados, indicando un mayor grado de compactación. Hay granos de moscovita que están deformados. Los minerales pesados que están presentes son circón, epidota (?) y óxidos opacos. Los espacios entre los granos están ocupados por una matriz arcillosa compuesta por feldespatos, sericita y clorita con algunos óxidos. La clasificación de la arenisca en el diagrama QtFL corresponde con el campo de procedencia de cratón interior (Dickinson, 1985).

M4V11: arenisca cuarzosa. Muestra de grano muy fino a grueso, mal clasificada, con clastos subredondeados en una matriz que constituye un 5% modal. La composición de los clastos en orden decreciente es cuarzo monomineral, plagioclasa, feldespato potásico, moscovita, biotita, líticos reemplazados por minerales arcillosos como clorita y sericita, cuarzo policristalino y calcita (Fig. 12 B). De acuerdo con la abundancia relativa de los componentes mayores Qt (95%), F (3%) y L (2%), la arenisca se clasifica como arenisca cuarzosa. Las micas se encuentran cloritizadas de moderada a intensamente, en casos formando pseudomorfos, y los feldespatos reemplazados moderadamente por sericita y óxidos. Los minerales pesados presentes son circón, apatito y opacos. Los contactos entre granos son puntuales, planares y cóncavo/convexo. Hay deformación de granos suaves como micas y líticos producto de la compactación.

La matriz arcillosa está formada por sericita, clorita y escaso feldespato. Un cementante calcáreo se encuentra en una pequeña porción de la muestra dada la cercanía de vetillas de calcita que facilitan la filtración. La clasificación de la arenisca en el diagrama QtFL corresponde con una fuente de procedencia de cratón interior (Dickinson, 1985).

Figura 12. Fotomicrografías de clastos de arenisca de los conglomerados de la Fm. Matzitzi. A) M4F16 y B) M4V11. Fotomicrografías con nícoles cruzados, objetivo 5x, campo visual 1.8 x 1.45 mm. Abreviaturas: Fs=feldespato, Lt=lítico, Pl=plagioclasa, Qz=cuarzo.

5.1.4 Clastos y lente graníticos

M4F6: Ortogneis. Roca granítica con textura inequigranular interlobular (Fig. 13 A y B). La mineralogía primaria es cuarzo, feldespato potásico, plagioclasa, epidota y relictos de biotita. Los feldespatos están de moderada a intensamente alterados a sericita y con inclusiones de óxidos. Las biotitas están moderadamente reemplazadas por clorita o hasta formar pseudomorfos. Son características las texturas gráfica y pertítica. La muestra se encuentra muy fracturada. Las fracturas están rellenas de calcita, óxidos y micas blancas. Tiene evidencias de recristalización dinámica como bordes irregulares, algunos lobulares, en los cristales de cuarzo, indicando migración del borde de grano (GBM); además, algunos cristales tienen sub-granos, en casos con extinción de tablero de ajedrez (*chessboard extinction*).

MTZ-02 GR: Ortogneis. Roca de composición cuarzo-feldespática, con textura poligonal seriada (Fig. 13 C y D). La mineralogía es cuarzo, ortoclasa y microclina, pseudomorfo de minerales ferromagnesianos, epidota, minerales opacos (óxidos), plagioclasa y escasa biotita. Los minerales accesorios son circón y apatito. Algunos cristales tienen textura poikilítica, donde las inclusiones son cristales redondeados de cuarzo, feldespato, óxidos y epidota. Las texturas más comunes son de exsolución (pertitas), maclas de deformación y gráfica. Los cristales originalmente ferromagnesianos fueron reemplazados por agregados

microcristalinos felsíticos, filosilicatos y óxidos opacos, posiblemente durante retrogresión. Algunos cristales de óxidos (posible ilmenita-magnetita) tienen un borde de hematita. Las biotitas están parcialmente cloritizadas. Hematita, sericita, calcita y clorita están como relleno de vetillas y reemplazando parcialmente los minerales primarios. La recristalización estática se infiere por la textura poligonal, con bordes curvados y en casos rectos, asociada a la reducción del área de borde de grano (GBAR).

Granitoide Los Reyes COZA-02: Ortogneis. Roca de composición granítica con textura seriada interlobular (Fig. 13 E y F). La composición primaria es plagioclasa, feldespato alcalino (posible ortoclasa), cuarzo y óxidos opacos, epidota y circón como accesorios. La plagioclasa se encuentra sericitizada moderadamente, con texturas tamiz en los núcleos de algunos cristales. Los cristales tienen también textura gráfica y algunos de ellos están deformados. Los cristales de feldespato potásico se encuentran alterados y muestran textura pertítica. Los óxidos son relativamente abundantes. La epidota ocurre como cristales anédricos con formas ovaladas. Los cristales de cuarzo se caracterizan por tener inclusiones de feldespato, cuarzo y epidota. Además, algunos cristales tienen bordes irregulares y lobulares por migración de borde de grano (GBM) y hay un agregado policristalino con evidencia de rotación de sub-granos (SGR), que en conjunto indican recristalización dinámica. Hay vetillas con relleno de calcita, mica blanca, óxidos y clorita. En general la roca se encuentra muy alterada, fracturada y fragmentada por posible cataclasis.

Figura 13. Fotomicrografías de clastos de granitoides de los conglomerados de la Fm. Matzitzi: A) y B) M4F6, C) y D) MTZ-02-GR. E) y F) son del granito de Los Reyes (clave COZA-02) que está en contacto tectónico con la Fm. Matzitzi. Fotomicrografía (C) es con luz plana. Objetivo 5x, campo visual 1.8 x 1.45 mm. Abreviaturas: Bt=biotita, Cc=calcita, Chl=clorita, Ep=epidota, Fs=feldespato, Pl=plagioclasa, Qz=cuarzo, Ser=sericita.

5.2 Geocronología U-Pb

Un total de 17 muestras fueron analizadas mediante la técnica de LA-ICP-MS en circón, de las cuales 8 son fragmentos volcánicos, 3 son sub-volcánicos, 2 son fragmentos de granitoides y 2 de areniscas cuarzosas. Además, se incluyeron una muestra del granito Cozahuico y una muestra del granitoide que aflora en Los Reyes Metzontla, que se encuentra en contacto por falla con la Fm. Matzitzi (ver Figura 2).

Los datos geocronológicos de las 17 muestras analizadas están reportados en las tablas del Apéndice 2 y en las tablas 3 y 4 se sintetizan los resultados obtenidos.

5.2.1 Clastos volcánicos

MAT1P1. Los circones de esta muestra son incoloros, rosados y rojizos. Tienen morfologías de prismas cortos euhédricos a subédricos, con terminaciones piramidales o puntas sub-redondeadas, y anédricos que se ven totalmente redondeados. El tamaño de los cristales varía entre ~200 y 400 µm y su elongación máxima es de 3:1. Las imágenes de catodoluminiscencia muestran dos grupos de circones, uno con baja luminiscencia y otro muy luminiscente (CL Apéndice 1). Generalmente los cristales poco luminiscentes tienen una estructura interna homogénea donde no se reconocen sobrecrecimientos magmáticos y los muy luminiscentes parecen tener núcleos con sobrecrecimientos ígneos. En total se seleccionaron 36 bordes de granos para el análisis que grafican sobre la concordia desde ~1300 hasta ~250 Ma (Fig. 14 A). A pesar de que el análisis se hizo en los bordes, son abundantes las edades grenvillianas y en menor medida panafricanas, las cuales corresponden a xenocristales. A partir del grupo de edades más jóvenes, obtenidas en los sobrecrecimientos magmáticos de los circones más luminiscentes (ver CL Apéndice 1), se obtuvo un promedio ponderado de 272.50±2.10 Ma (MSWD=0.89, n=6, Fig. 14 A) que se interpreta como la edad de cristalización.

MAT3V2. Los circones de esta muestra tienen morfologías prismáticas euhédricas a subédricas con terminaciones bipiramidales o puntas redondeadas y algunos están fragmentados. Los cristales son incoloros, amarillos, parduzcos y rosados, siendo estos dos últimos los más redondeados. El tamaño de los prismas varía entre 200 y 600 µm y tienen una relación de elongación de 2:1 y 3:1. Las imágenes de catodoluminiscencia muestran que los circones son poco luminiscentes y tienen una estructura interna homogénea o núcleos con sobrecrecimientos magmáticos. Sólo un grano se muestra muy luminiscente. Se analizaron en total 35 cristales, de los cuales uno se descartó por ser muy discordante. Del resto de análisis se obtuvieron dos edades mesoproterozoicas (Fig. 14 B) muestreadas en dominios heredados (ver CL Apéndice 1). El resto de los análisis grafican en la curva de concordia o muy cerca de ésta y oscilan entre 275 y 294 Ma. Un promedio ponderado de 285.51±0.87 Ma (MSWD=2.80, n=26, Fig. 14 B) se asume como la mejor aproximación a la edad de cristalización.

	Localidad	Clave	Tipo de roca	Edad de cristalización (Ma)	MS WD	No. de circones	Rango de edad de cristales heredados (Ma)
	1	MAT1P1	Lava andesítica	272.50±2.1	0.89	5	577-1328
Fragmentos volcánicos	3	MAT3V2	Lava dacítica	285.51±0.87	2.80	26	970-1279
	3	MAT3FA4	Lava riolítica	$282.40{\pm}1.80$	3.00	9	554-1447
	3	MAT3P5	Lava riolítica	280.75 ± 0.65	1.20	31	1058 (único)
	4	M4F20	Lava dacítica	281.23±0.70	2.30	32	1180-1271
	4	M4Q1	Lava dacítica	280.00 ± 0.57	2.16	25	1069-1273
	4	M4CZ1	Lava riolítica	279.90 ± 2.20	4.30	8	529-1383
	7	MAT7P1	Lava dacítica	282.40±0.61	1.20	29	641-1210
	2	M2V9	Dacita	284.86±0.85	2.50 36	36	
Fragmentos sub- volcánicos	3	MAT3P4	Andesita	284.42±0.79 269.57±1.04	1.13 0.70	19 14	976-991
	5	MAT5P1	Andesita- Dacita	282.95±0.81	1.90	31	889 (único)
Fragmentos de granitoides	4	M4F6	Granito recristalizado				298-1312
	9	MTZ-02- GR	Granitoide recristalizado	1241.70±7.00	0.32	21	1033-1346

Tabla 3. Resultados sintetizados del fechamiento en circones de clastos ígneos de los conglomerados de la Fm. Matzitzi. El número de localidad corresponde con las coordenadas de la Tabla 1.

MAT3FA4. Los circones de esta muestra se pueden agrupar en dos poblaciones. Un primer grupo está formado por cristales de color rosado, rojizo y pardo, que tienen formas de prismas subédricos a anédricos con diferente grado de redondeamiento. El tamaño llega hasta ~300 μ m, aunque varios están fragmentados y su elongación máxima es de 3:1. El segundo grupo corresponde a cristales euhédricos a subédricos con los bordes ligeramente redondeados que tienen hábitos prismáticos con elongación de 2:1 hasta 4:1. Su tamaño varía entre 200 y 400 μ m y generalmente los cristales están completos. Las imágenes de CL muestran que la mayoría de los granos son poco luminiscentes y son escasos los luminiscentes. Los cristales tienen zonación oscilatoria, la cual es muy clara en los circones luminiscentes, y otros se ven homogéneos internamente. En total se analizaron 35 bordes de granos, los cuales grafican sobre la curva de concordia entre ~1460 y 260 Ma, con dos poblaciones principales de edades grenvillina y pérmica. La edad promedio de 282.40±1.80 Ma (MSWD=3.0, n=9, Fig. 14 C), obtenida del grupo de circones analizados en sobrecrecimientos magmáticos (ver CL Apéndice 1), se asume como la edad de cristalización. Las edades proterozoicas corresponden a los múltiples circones heredados.

Figura 14. Resultados de los análisis en circón mediante LA-ICP-MS de los clastos volcánicos de composición riolítica-andesítica de los conglomerados de la Fm. Matzitzi. Se muestran los diagramas de concordia y promedio ponderado para cada clasto. Las elipses y barras de error están reportadas a 2-sigma.

Muestra MAT3P5. Los circones de esta muestra se pueden agrupar en cristales de dos tamaños. Los cristales de mayor tamaño son rosados, rojizos y pardos, tienen morfologías prismáticas euhédricos a subédricos, que tienen terminación bipiramidal y redondeada. Su tamaño varía entre ~300 y 400 μ m y su relación de elongación es 3:1 y 2:1, que los hace ver como prismas achatados. Los circones pequeños son incoloros y amarillentos, en su mayoría tienen formas euhédricas alargadas. Su tamaño varía entre ~90 y 200 μ m y su relación de largo/ancho es 4:1 y 3:1 y en menor medida prismas cortos con relación 2:1. Con las imágenes de catodoluminiscencia se aprecia que la mayoría de los circones son muy luminiscentes, sólo unos pocos son de baja luminiscencia, y la mayoría están zonificados, producto de múltiples sobrecrecimientos magmáticos. En total se fecharon 35 bordes de cristales, de los cuales se obtuvieron dos datos discordantes que fueron descartados. El resto de los análisis concordantes definen una población pérmica y un solo dato tiene edad concordante proterozoica atribuida a un dominio heredado (ver CL Apéndice 1). El grupo de circones pérmicos definen un promedio ponderado de 280.75±0.65 Ma (MSWD=1.20, n=32, Fig. 14 D) que representa la edad de cristalización de la roca.

M4F20. Los circones de esta muestra son mayormente incoloros y algunos con tonalidades amarillentas y rosadas. Las morfologías son prismas euhédricos achatados y alargados, de tamaño entre ~250 y 950 μ m, el más largo, y comúnmente con una relación largo/ancho de 2:1 y 3:1, aunque la elongación máxima es de 5:1. Los cristales rosados tienen los bordes ligeramente redondeados mientras que los incoloros en general tienen los bordes y aristas bien conservados y terminaciones bipiramidales bien desarrolladas. Algunos granos se encuentran fracturados y con inclusiones. Bajo catodoluminiscencia, los circones se muestran luminiscentes, con zonación interna de los granos y algunos con una estructura interna compleja. Se analizaron en total 35 circones en sus bordes, de los cuales tres son mesoproterozoicos, que corresponden con granos heredados. El resto de los análisis grafican sobre o muy cerca de la curva de Concordia en un intervalo entre 272 y 288 Ma (Fig. 15 A), de donde se obtuvo un promedio ponderado de 281.23±0.70 Ma (MSWD=2.30, n=32, Fig. 15 A) que se interpreta como la edad de cristalización.

M4Q1. Los circones de esta muestra son incoloros y parduzcos. Los granos incoloros son en general prismas euhédricos o subédricos con terminación bipiramidal y rara vez tienen las puntas redondeadas, mientras que los granos parduzcos son redondeados anédricos. La mayoría se encuentran fracturados. El tamaño de los prismas varía entre ~250 y 1100 µm y la relación de elongación es de 2:1 y 3:1 o 1:1 y se ven esféricos. Las imágenes de catodoluminiscencia muestran que los granos son moderadamente a muy luminiscentes y que tienen núcleos con zonación oscilatoria o en casos con un único borde de sobrecrecimiento magmático. Se analizaron en total 35 cristales en sus capas externas, cuyas edades grafican sobre la concordia en dos poblaciones (Fig. 15 B). La primera es un conjunto de siete edades grenvillianas muestreadas en granos heredados. El segundo grupo está compuesto por edades pérmicas, de las cuales tres fueron rechazadas por

el grado de discordancia. Del resto de análisis se obtuvo una media ponderada de 280.00±0.57 Ma (MSWD=2.16, n=25, Fig. 15 B) que corresponde a la edad de cristalización de la muestra.

M4CZ1. Los cristales son incoloros, rojizos y parduzcos y las formas más comunes son prismas anédricos y subédricos. Su tamaño varía entre ~80 y 300 μ m, aunque muchos son fragmentos por lo que el tamaño original era mayor. Los cristales incoloros tienen formas alargadas con elongación máxima de 4:1 y los cristales rojizos a parduzcos son más grandes y con bordes redondeados, con formas esféricas y muy fracturados. La catodoluminiscencia muestra que la mayoría de los granos son poco luminiscentes y que escasos cristales con formas prismáticas son altamente luminiscentes y tienen núcleos de xenocristales. Hay cristales zonificados y con estructura interna uniforme. Se realizaron 54 análisis de los cuales dos fueron descartados por tener un error muy grande. El resto de los análisis grafican a lo largo de la curva de concordia, o muy cerca de ésta, entre ~1400 y 270 Ma (Fig. 15 C). El conjunto de edades proterozoicas se asume como herencia de granos grenvillianos y panafricanos. A partir del grupo de circones más jóvenes se obtuvo una media ponderada de 279.90±2.20 Ma (MSWD=4.30, n=8, Fig. 15 C) que se interpreta como la mejor aproximación a la edad de cristalización.

MAT7P1. Los circones de esta muestra son incoloros y la mayoría se encuentra como fragmentos equigranulares anédricos o subédricos alargados. Escasamente hay prismas euhédricos con terminación bipiramidal. El tamaño varía entre ~100 y 500 µm, siendo más comunes los cristales pequeños que son la mayoría equidimensionales. Los cristales prismáticos son los más escasos y su elongación es de 2:1 y 3:1. Con la catodoluminiscencia se aprecia que los circones tienen baja a moderada luminiscencia, sin embargo, se logra apreciar las capas de sobrecrecimiento magmático en gran parte de ellos. Se analizaron 35 cristales, procurando que el punto fuera sobre la última capa de crecimiento. Los resultados son un grupo de circones concordantes de edad pérmica y cuatro edades proterozoicas que caen sobre o cerca de la concordia (Fig. 15 D). El promedio ponderado de 282.40±0.61 Ma (MSWD=1.20, n=31, Fig. 15 D), obtenido a partir del grupo de edades más jóvenes, se interpreta como la edad de cristalización de la roca.

Figura 15. Resultados de los análisis en circón mediante LA-ICP-MS de los clastos volcánicos de composición riolítica-dacítica de los conglomerados de la Fm. Matzitzi. Se muestran los diagramas de concordia y promedio ponderado para cada clasto. Las elipses y barras de error están reportadas a 2-sigma.

5.2.2 Clastos sub-volcánicos

M2V9. Los circones de esta muestra son incoloros y rosados a rojizos, con tamaño entre 100 y 300 µm. Las morfologías son prismas euhédricos a subhédricos con terminaciones bipiramidales bien desarrolladas y una relación largo/ancho de 2:1 y 3:1. La mayoría de los prismas tienen sus bordes bien definidos y sólo algunos granos tienen bordes redondeados. Las imágenes de catodoluminiscencia muestran que la mayoría de los cristales se caracterizan por ser muy luminiscentes y tener zonación oscilatoria y sólo algunos son poco luminiscentes; además, se reconocen núcleos de xenocristales, aunque son poco comunes. Se realizaron un total de 38 análisis de los cuales uno fue omitido por tener un error muy grande (Tabla 2). El resto de los análisis muestran edades pérmicas concordantes o muy cerca de la concordia (Fig. 16 A), de donde se obtuvo un promedio ponderado de 284.86±0.85 Ma (MSWD=2.50, n=37, Fig. 16 A) que se interpreta como la edad de cristalización de la roca.

MAT3P4. Los circones de esta muestra son incoloros y rosados, de tamaño entre 100 y 500 µm. Las morfologías son prismas euhédricos con relación de elongación de 3:1, y granos multifacéticos con bordes ligeramente redondeados que se ven achatados. Las imágenes de CL muestran que los circones son muy luminiscentes y que gran parte de ellos están zonificados, tienen núcleos heredados o son muy uniformes composicionalmente. En total se realizaron 36 análisis en los bordes, de los cuales se obtuvieron dos edades concordantes neoproterozoicas, medidas en granos heredados donde no hay sobrecrecimientos magmáticos (ver CL Apéndice 1). Del resto de análisis se pueden observar dos poblaciones en la curva de concordia, la más antigua con un promedio ponderado de 284.42±0.79 Ma (MSWD=1.13, n=19, Fig. 16 B) y la más joven con un promedio de 269.57±1.04 Ma (MSWD=0.70, n=14, Fig. 16 B). La media ponderada más joven se atribuye al evento de cristalización más reciente. Hay un circón que tiene una edad discordante triásica (230 Ma) por pérdida de Pb.

MAT5P1. Los circones de esta muestra son incoloros a rosados, con tamaños entre 150 y 300 µm. Tienen formas de prismas euhédricos donde predominan los cristales con elongación de 3:1 y 4:1. Algunos tienen los bordes ligeramente redondeados, pero en general dominan los cristales con bordes bien definidos. Bajo catodoluminiscencia se observa que los cristales son muy luminiscentes, con pocas excepciones, y que están zonificados, algunos tienen inclusiones o núcleos heredados. Se realizaron en total 35 análisis que grafican sobre la curva de concordia o son ligeramente discordantes (menor al 10%) (Fig. 16 C). Se obtuvo una edad discordante neoproterozoica que corresponde a un dominio heredado (ver CL Apéndice 1) y una edad triásica (239.7 Ma) por pérdida de plomo en el cristal. El resto de las edades, muestreadas en bordes magmáticos, pertenecen a una población pérmica cuyo promedio ponderado es 282.95±0.81 Ma (MSWD=1.90, n=33, Fig. 16 C) que se interpreta como la edad de cristalización.

Figura 16. Resultados de los análisis en circón mediante LA-ICP-MS de los clastos sub-volcánicos de composición dacítica-andesítica de los conglomerados de la Fm. Matzitzi. Se muestran los diagramas de concordia y promedio ponderado para cada clasto. Las elipses y barras de error están reportadas a 2-sigma.

5.2.3 Clastos de arenisca

M4F16. Los circones de esta muestra son anédricos equidimensionales (esferoidales), prismáticos subédricos con bordes y puntas redondeados y escasos prismáticos euhédricos bipiramidales. El tamaño de los prismas varía entre ~120 y 600 µm y se ven achatados o alargados con elongación de hasta 4:1. Son incoloros, rosados y rojizos. Las imágenes de catodoluminiscencia muestran circones moderadamente luminiscentes, que tienen núcleos con sobrecrecimientos o son uniformes internamente. Se analizaron cien bordes de granos y las edades resultantes, en su mayoría concordantes, grafican sobre la curva de concordia entre ~290 y 3200 Ma con una mayor concentración entre ~290 y 1300 Ma (Fig. 17 A). El diagrama de densidad muestra dos picos de edad panafricana y grenvilliana (Fig. 18 A), que indica un aporte mayor de fuentes con dichas edades. Con base en el grupo de circones más jóvenes (n=3, Tabla 3-Apéndice 2), la edad máxima de depósito para esta arenisca es del límite Carbonífero-Pérmico.

Tabla 4. Resultados sintetizados del fechamiento en circones de clastos de arenisca de los conglomerados de la Fm. Matzitzi. El número de localidad corresponde con las coordenadas de la Tabla 1.

Localidad	Clave	Edad mínima (Ma)	Edad máxima (Ma)	# de granos
4	M4F16	293.2	3199	100
4	M4V11	290	3404	99

M4V11. Los cristales seleccionados son en su mayoría incoloros, rosados y algunos amarillentos. La forma de los granos es redondeada en general y sólo algunos son prismas cortos euhédricos con terminación bipiramidal y subédricos con la punta redondeada. El tamaño de los granos varía entre 100 y 500 μm y la elongación máxima es de 3:1. Bajo catodoluminiscencia se distinguen dos grupos de circones, uno de granos muy luminiscentes y otro poco luminiscentes, en ambos grupos los cristales tienen una estructura interna uniforme o con zonación oscilatoria, algunos con inclusiones y/o núcleos de xenocristales. En total se analizaron cien cristales en sus bordes. Las edades concordantes o casi concordantes tienen un rango de edad entre 290 y ~3400 Ma (Fig. 17 B), con dos picos máximos de edad grenvilliana y panafricana (Fig. 18 B), indicando un aporte mayor de dos fuentes con dichas edades, tal como en la muestra anterior. La edad máxima de depósito obtenida con la subpoblación de circones más jóvenes (al menos tres granos) es del Devónico Inferior-Medio, aunque hay un circón de 290 Ma que puede indicar una edad de depósito más reciente del Pérmico (Tabla 3-Apéndice 2).

Figura 17. Resultados de los análisis en circón mediante LA-ICP-MS de los clastos de arenisca cuarzosa de los conglomerados de la Fm. Matzitzi. Se muestran los diagramas de concordia para cada clasto. Los recuadros internos presentan un acercamiento a la concordia entre 0 y 1300 Ma. Las elipses de error están reportadas a 2sigma.

Figura 18. Curvas de estimación de densidad de kernel de los circones detríticos de los clastos de arenisca cuarzosa de la Fm. Matzitzi. Las líneas negras debajo de cada curva representan un circón individual.

5.2.4 Clastos de granitoides

M4F6. Los cristales de esta muestra son muy particulares porque tienen su estructura muy dañada y sus colores son diferentes a las muestras anteriores, pues van de muy claros como blanquecinos y rosados a parduzcos muy oscuros. Las morfologías son prismas subédricos a anédricos de tamaño entre 150 y 650 µm. Los prismas tienen puntas redondeadas y una elongación promedio de 3:1 y en menor medida 2:1. Los cristales anédricos tienen formas achatadas redondeadas. Con las imágenes de catodoluminiscencia se observa que todos los cristales son poco luminiscentes, tienen inclusiones de apatito algunos de ellos y difícilmente se reconoce la estructura interna de los cristales. En total se analizaron 35 cristales en sus bordes, sin que pudiera determinarse que se trataran de dominios ígneos correspondientes con las últimas

etapas de cristalización (ver CL Apéndice 1). Los resultados son edades, discordantes la mayoría, entre 1300 y 300 Ma (Fig. 19 A), por lo que no es posible determinar una edad de cristalización promedio, aunque posiblemente las edades concordantes cercanas a 1.25 Ga representarían la mejor aproximación a la edad de cristalización. Las edades discordantes más jóvenes evolucionan sobre la discordia por pérdida de Pb asociada a recristalización y/o alteración posterior de los cristales.

MTZ-02-GR. Los cristales son prismas elongados y achatados subédricos, pocos euhédricos y algunos anédricos bien redondeados, que tienen una relación largo/ancho de 3:1, 2:1 y 1:1 y tamaño entre 200 y 700 μm. Los cristales son de colores rosa pálido, rojizos, amarillentos e incoloros; en general se encuentran sanos y algunos tienen inclusiones. Bajo catodoluminiscencia se muestran moderadamente luminiscentes, comúnmente con una estructura interna homogénea o con núcleos que tienen sobrecrecimientos concéntricos (Apéndice 1). Se analizaron 35 bordes de cristales de donde se obtuvieron edades del Mesoproterozoico que tienen una distribución bimodal en la concordia (Fig. 19 B). Del grupo de circones con edades concordantes más antiguas, se obtuvo un promedio ponderado de 1241.70±7.00 Ma (MSWD=0.32, n=21, Fig. 19 B) que se interpreta como la edad de cristalización; mientras que el grupo de edades más jóvenes representan un evento posterior que ocasionó pérdida de Pb en algunos cristales. Ambas edades están relacionadas con los eventos tectonotérmicos del Complejo Oaxaqueño (Solari et al., 2003).

Figura 19. Resultados de los análisis en circón mediante LA-ICP-MS de clastos de granitoide de los conglomerados de la Fm. Matzitzi. Se muestran los diagramas de concordia y promedio ponderado para cada clasto. Las elipses y barras de error están reportadas a 2-sigma.

5.2.5 Granitoides

Granitoide Los Reyes (COZA-02). Con el fin de comparar las edades U-Pb y elementos tierras raras del granito que aflora en los Reyes Metzontla con los clastos de granitoides en la Fm. Matzitzi, se fechó uno de los cuerpos graníticos que están en contacto por falla con la Fm. Matzitzi en la localidad de Los Reyes Metzontla (Fig. 2), que además se han interpretado previamente como el Granito Cozahuico (Centeno-García et al., 2009) o como un gneiss granítico del Complejo Oaxaqueño en su sector más septentrional (Elías-Herrera et al., 2011).

Los circones de este granito son rosados e incoloros, con formas prismáticas euhédricas a subédricas y escasos anédricos redondeados. Los cristales prismáticos euhédricos tienen terminaciones bipiramidales bien desarrolladas y los subédricos tienen los bordes ligeramente redondeados. Su tamaño varía entre ~250 y 900 µm y relación largo/ancho de 2:1 hasta 6:1, siendo más comunes los prismas alargados respecto a los cortos. Las imágenes de catodoluminiscencia muestran que todos los circones son moderadamente luminiscentes. La estructura interna de los cristales es heterogénea y son pocos los cristales que parecen tener un borde de sobrecrecimiento. Para el análisis se seleccionaron 55 cristales y se fecharon en sus bordes para obtener la edad del último evento de cristalización. Las edades obtenidas grafican sobre la concordia entre ~1.1 y 1.3 Ga (Fig. 20 A). El promedio ponderado de 1203.00±5.50 Ma (MSWD=1.40, n=32, Fig. 20 A) representa la mejor aproximación a la edad de cristalización del granito.

Granito Cozahuico. Para comparar la edad y patrones de elementos tierras raras del granito Cozahuico con el granito de Los Reyes y con los clastos graníticos de la Fm. Matzitzi, se analizó un fragmento del granito Cozahuico, cuya edad es del Pérmico inferior (270.4±2.6 Ma; Elías-Herrera et al., 2005).

Los circones separados son en su mayoría rosados y escasos incoloros, se caracterizan por estar muy fracturados y con su estructura muy dañada. Su tamaño varía entre ~200 y 900 µm. La mayoría son cristales subédricos prismáticos, en casos únicamente fragmentos, que tienen los bordes redondeados y son anédricos. Raramente se encuentran cristales euhédricos con bordes bien desarrollados y las terminaciones piramidales conservadas. Las imágenes de catodoluminiscencia muestran cristales muy luminiscentes que son homogéneos composicionalmente y raramente hay granos que tienen núcleos con sobrecrecimientos concéntricos. Los circones que carecen de zonación tienen abundantes fracturas rellenas, además de inclusiones, y se encuentran dañados (CL Apéndice 1). En total hicieron 44 análisis en los bordes de los cristales, a pesar de no reconocer bordes magmáticos dada su estructura interna (ver CL Apéndice 1). De los 44 análisis realizados, 42 dieron edades proterozoicas concordantes o cerca de la concordia, asumidos como circones heredados (Fig. 20 B). Únicamente dos de las edades son pérmicas por lo que no se calculó un promedio.

Figura 20. Resultados de los análisis en circón mediante LA-ICP-MS del granito Los Reyes que está en contacto tectónico con la Fm. Matzitzi y del Granito Cozahuico. Se muestran los diagramas de concordia para ambos granitos y el promedio ponderado para el granito Los Reyes. Las elipses y barras de error están reportadas a 2-sigma.

5.3 Escalamiento multidimensional MDS

En el diagrama de escalamiento multidimensional no métrico (MDS, Fig. 21) se muestra la relación entre los clastos de arenisca y las unidades que representan las fuentes potenciales. En el modelo se comparan las edades detríticas de los dos fragmentos de arenisca (claves M4F16 y M4V11) con edades detríticas de 58 muestras sedimentarias y metasedimentarias de los terrenos Oaxaquia, Mixteco, Maya y Chortís; así como con unidades siliciclásticas del norte, centro y sur de México (Figura 22; Apéndice 4). La comparación de los clastos de arenisca de la Fm. Matzitzi con estas unidades considera que la firma detrítica de los clastos coincide con la de estas unidades. El gráfico Shepard correspondiente se muestra en la Figura 23.

El mapa se caracteriza por un comportamiento disperso de las muestras que indica que la proveniencia es muy variable para la mayoría de ellas, aunque es notable una concentración mayor de algunas de las unidades, incluyendo los clastos de arenisca, próxima a las muestras sintéticas de 1000±50 y de 600±100 Ma, las cuales representan al Complejo Oaxaqueño (Solari et al., 2003) y al Orógeno Pan-Africano-Brasiliano (Cordani y Teixeira, 2007), respectivamente (Fig. 21). La aproximación de los clastos de arenisca hacia estas dos muestras sintéticas refleja la contribución mayor de estos dos componentes y coincide con los picos de la misma edad en los diagramas de densidad (Fig. 18), confirmando que éstas fueron las dos fuentes principales de sedimento.

Figura 21. Diagrama de escalamiento multidimensional (MDS) no métrico de los dos fragmentos de arenisca cuarzosa de la Fm. Matzitzi (M4F16 y M4V11) y 50 muestras sedimentarias y metasedimentarias de los terrenos Oaxaquia y Mixteco; Bloques Maya y Chortís y unidades siliciclásticas del Triásico en el Norte, Centro y Sur de México. Referencias de edades U-Pb son de: 1. Sánchez-Zavala et al. (2004), 2. Talavera-Mendoza et al. (2005), 3. Keppie et al. (2006), 4. Morales-Gámez et al. (2008), 5. Grodzicki et al. (2008), 6. Kirsch et al. (2012), 7. Torres-De León et al. (2012), 8. Gillis et al. (2005), 9. Weber et al. (2006), 10. Weber et al. (2007), 11. Weber et al. (2008), 12. González-León et al. (2009), 13. Ortega-Flores et al. (2014), 14. Barboza et al. (2010), 15. Silva-Romo et al. (2015), 16. Bedoya-Mejía (2018), 17. Ramírez-Calderón (2018). Las muestras sintéticas representan las fuentes potenciales de sedimento: arco permo-carbonífero (300±50), Orógeno Pan-Africano-Brasiliano (600±100), Complejo Oaxaqueño (1000±50), Orógeno Grenvilliano/Sunsas (1200±100), cinturones orogénicos de margen cratónica (1600±100).

Por otro lado, los vecinos más cercanos de los clastos de arenisca son unidades del Complejo Acatlán, Bloque Maya y la unidad triásica paleo-río La Mora (Figura 21; Talavera-Mendoza et al., 2005, Keppie et al., 2006, Grodzicki et al., 2008, Weber et al., 2006, 2008, Silva-Romo et al., 2015). La cercanía de los clastos con estas unidades indica que sus firmas detríticas son similares, tal como puede observarse en la figura complementaria 24, donde se comparan las curvas de densidad de los clastos de arenisca con las muestras más cercanas. Las firmas detríticas de estas muestras son similares en el pico de edad panafricana y, un poco menos marcado, el pico de edad grenvilliana; además picos menores de edad paleoproterozoica y arqueana también son similares en algunas de las muestras. Estas características sugieren que los clastos de arenisca y las unidades representadas tienen una proveniencia común, o bien, las unidades más jóvenes son producto del reciclaje de las unidades más antiguas.

Aunque un fragmento de arenisca (clave M4F16) está unido con línea sólida con una sola muestra triásica, del paleo-río La Mora, otras unidades triásicas también se encuentran relativamente cercanas a estos clastos, específicamente del Abanico Tolimán (Fig. 21; Ortega-Flores et al., 2014), lo cual soporta la idea de que comparten características genéticas. Otras unidades relativamente cercanas son las formaciones Santiago e Ixtaltepec (Gillis et al., 2005), tal como es de esperarse ya que su espectro detrítico también muestra un mayor número de edades grenvillianas, que supone la aportación directa del Complejo Oaxaqueño.

Figura 22. Localización aproximada de las unidades utilizadas para el análisis de escalamiento multidimensional. Las muestras utilizadas son de unidades clásticas triásicas que podrían compartir características genéticas con la Fm. Matzitzi. También se añaden unidades de los bloques adyacentes Oaxaquia, Mixteco, Maya y Chortís. Más información de las muestras en el Apéndice 4.

Por otro lado, las muestras más lejanas que reflejan mayor disimilitud con los clastos de arenisca son la mayoría de las unidades permo-carboníferas del Complejo Acatlán (Sánchez-Zavala et al., 2004; Talavera-Mendoza et al., 2005; Keppie et al., 2006; Morales-Gámez et al., 2008; Grodzicki et al., 2008; Kirsch et al., 2012); las areniscas de la Fm. Matzitzi (Bedoya-Mejía, 2018) y las dos muestras del Bloque Chortís (Torres-De León et al., 2012), sesgadas a la muestra sintética de 1200±100 Ma; así como las unidades triásicas del Macizo de Chiapas (Weber et al., 2007, 2008) y la Fm. Tianguistengo (Ramírez-Calderón, 2018), donde la

firma de arco predomina. Asimismo, las muestras del norte de Sonora, representadas por los grupos Antimonio y Barranca (González-León et al., 2009), se encuentran separadas de los clastos y se aproximan más a la muestra sintética 1600±100, indicando una proveniencia muy distinta. La disimilitud entre los clastos de arenisca con las unidades del Complejo Acatlán y Macizo de Chiapas se debe a que posiblemente dichas unidades no estaban expuestas en el tiempo de sedimentación de los clastos por lo que no podrían representar una fuente. La disimilitud con las muestras triásicas del norte de México, de Sonora, se explica posiblemente por una dirección de drenaje distinto.

Figura 23. Gráfico de Shepard del modelo MDS presentado anteriormente.

A pesar de no distinguir claramente una dirección de evolución de las unidades más viejas a las más jóvenes en el mapa que pueda reflejar la variación de las sucesiones dentro de un contexto geodinámico, hay una transición desde las muestras influenciadas por las fuentes grenvillianas, que son las unidades paleozoicas del Complejo Acatlán, Bloque Chortís, cubierta sedimentaria del Complejo Oaxaqueño y las areniscas de la Fm. Matzitzi, hacia las rocas metamórficas del Bloque Maya y la Fm. Tianguistengo, reflejando la incorporación mayor de material derivado de fuentes panafricanas y del arco carbonífero-pérmico. No obstante, las demás muestras siliciclásticas triásicas no se adaptan a este comportamiento general.

Figura 24. Curvas de estimación de densidad de kernel de circones detríticos de los clastos de arenisca cuarzosa de la Fm. Matzitzi (claves M4F16 y M4V11) y de los vecinos más próximos a estos clastos en el mapa de escalamiento multidimensional de la Figura 21. Nótese la similitud principalmente en la población de circones panafricanos. Referencias: 1. Talavera-Mendoza et al. (2005), 2. Keppie et al. (2006), 3. Grodzicki et al. (2008), 4. Weber et al. (2006), 5. Weber et al. (2008), 6. Silva-Romo et al. (2015).

5.4 Geoquímica de elementos traza

Las concentraciones elementales de tierras raras de los circones fueron normalizadas respecto a los valores de condrita (Sun y McDonough, 1989) y graficadas en un diagrama multielementos (figuras 25, 27, 29 y 31: Apéndice 3). Los fragmentos volcánicos muestran una tendencia general típica de los circones ígneos de enriquecimiento de Tierras Raras pesadas (HREE) respecto a las Tierras Raras ligeras (LREE) (Fig. 25), con una anomalía positiva de Ce y negativa de Eu. Algunos cristales tienen un patrón semiplano de Tierras Raras ligeras donde no hay anomalía positiva de Ce y la de Eu es pequeña. La anomalía de Eu difiere entre circones de las mismas muestras, pues tienen picos más o menos pronunciados. En general la anomalía de Eu es más acentuada para circones mesoproterozoicos respecto a los circones pérmicos. El caso más claro es la muestra MAT1P1 que tiene claramente dos grupos de circones con distinta anomalía Eu, en el caso de circones mesoproterozoicos el pico es muy acentuado y en los circones pérmicos la anomalía es muy tenue (Fig. 25 A). Las diferencias entre las muestras se pueden apreciar mejor en el diagrama de Eu* vs Dy/Yb (Fig. 26), donde Eu* es una medida del empobrecimiento de Eu respecto a los elementos vecinos y se calcula como: $Eu^{*}=(Eu/0.0563)/[(Sm/0.148)^{*}(Gd/0.199)]^{1/2}$. En este caso las variaciones en Eu^{*} reflejan los diferentes grados de fraccionamiento de la plagioclasa en los magmas generadores. Las relaciones de Dy/Yb se muestran dispersas también, aunque la mayoría de los valores se encuentran entre 0.1 y 0.5. Esta dispersión de datos muestra que diferentes suites magmáticas estuvieron involucradas en la generación de los magmas parentales.

Las rocas subvolcánicas tienen también una pendiente positiva de tierras raras ligeras a pesadas (Fig. 27), con anomalía positiva de Ce y algunos cristales con un comportamiento plano de tierras raras ligeras.

Estos fragmentos se caracterizan por tener un patrón muy parecido entre sí con una anomalía de Eu poco marcada, lo que refleja poco fraccionamiento de la plagioclasa asociado a la composición intermedia de las muestras. En la Figura 28 las similitudes entre las tres muestras son más claras ya que la mayoría de los datos están concentrados en rangos cortos de Eu* y Dy/Yb, debido a que el rango de composición de los fragmentos sub-volcánicos es más limitado. La concentración de valores indica que estas muestras de composición intermedia están asociadas a la misma fuente de magma poco evolucionado.

Figura 25. Patrones de tierras raras normalizados a condrita (Sun y McDonough, 1989) de circones de clastos de lava riolítica a andesítica de la Fm. Matzitzi. Las áreas sombreadas representan las concentraciones en rocas ígneas permocarboníferas en el sur de México.

Figura 26. Diagrama Dy/Yb vs Eu* de circones de clastos de lava riolítica a andesítica de la Fm. Matzitzi. Los datos son de circones pérmicos (que definen la edad de cristalización) y más antiguos (heredados). La edad en paréntesis es la media ponderada obtenida en la sección 5.2. Se etiquetan algunos de los valores con la edad del circón (en Ma) para visualización. Eu*=(Eu/0.0563)/[(Sm/0.148)*(Gd/0.199)]^{1/2}.

Figura 28. Diagrama Dy/Yb vs Eu* de circones de clastos sub-volcánicos dacíticos y andesíticos de la Fm. Matzitzi. Los datos son de circones pérmicos y escasos heredados. La edad en paréntesis es la media ponderada obtenida en la sección 5.2. Se etiquetan algunos de los valores con la edad del circón (en Ma) para visualización. $Eu*=(Eu/0.0563)/[(Sm/0.148)*(Gd/0.199)]^{1/2}$.

Por otro lado, los patrones de tierras raras de las areniscas son de pendiente positiva con enriquecimiento de tierras raras pesadas respecto a las ligeras, asociados a circones de origen ígneo, y en casos con un comportamiento plano en las tierras raras pesadas, asociado a circones metamórficos correspondientes con edades neoproterozoicas-cámbricas (Fig. 29). Ambos patrones son similares y como en las muestras anteriores, se observan las típicas anomalías negativa de Eu y positiva de Ce, con algunas excepciones. Las variaciones más importantes se observan en el diagrama Dy/Yb vs Eu* (Fig. 30). Los valores de la anomalía de Eu* oscilan entre 0 y 1.2, similar a las muestras anteriores, pero con un valor de poco más de 2.8 (Fig. 30), lo que manifiesta que los circones cristalizaron a partir de magmas con diferente grado de fraccionamiento de la plagioclasa. Las variaciones más importantes están en la relación de Dy/Yb, pues los valores están entre 0 y 2.23, los cuales son superiores a las muestras anteriores. Los valores más altos de dicha relación están asociados a cristalización en equilibrio con granate (Rubatto, 2002), el cual incorpora las tierras raras pesadas y empobrece el líquido residual.

Figura 29. Patrones de tierras raras normalizados a condrita (Sun y McDonough, 1989) de circones de clastos de arenisca cuarzosa de la Fm. Matzitzi. Los circones fueron clasificados por edad para observar las diferencias entre éstos. Las áreas sombreadas representan las concentraciones en rocas ígneas permo-carboníferas en el sur de México.

Figura 30. Diagrama Dy/Yb vs Eu* de circones de clastos de arenisca de la Fm. Matzitzi. El rango de edad de los circones es del Pérmico al Arqueano. Se etiquetan algunos de los valores con la edad del circón (en Ma) para visualización. Eu*= $(Eu/0.0563)/[(Sm/0.148)*(Gd/0.199)]^{1/2}$.

El clasto de granitoide Mtz-02-GR tiene un patrón característico de circones ígneos, con pendiente positiva de tierras raras ligeras a pesadas, anomalía de Ce positiva y de Eu negativa y sólo dos cristales que tienen un patrón plano de La a Lu con un pico negativo en Eu (Fig. 31). En el detalle se aprecia que el valor de Eu* del clasto Mtz-02-GR está acotado entre cero y 0.4 (Fig. 32). En el caso del clasto de granito M4F6, el patrón de tierras raras tiene una pendiente positiva, pero difiere con todas las anteriores, pues contrario a lo que se esperaría, la anomalía de Eu es negativa, positiva o nula (Fig. 31 A); donde los enriquecimientos de Eu explican los valores tan altos de Eu*, de hasta 7 (Fig. 32). Estos valores pueden reflejar un

enriquecimiento de plagioclasa en el magma, movilización de elementos, o bien, podría estar asociado a cambios en el estado de oxidación del magma (Hoskin y Schaltegger, 2003).

El granitoide de Los Reyes a pesar de tener edades correspondientes con el Complejo Oaxaqueño, muestra un patrón típico de circones ígneos con enriquecimiento de tierras raras pesadas respecto a ligeras (Fig. 31 C) y no tiene un patrón plano como en algunas muestras con circones de origen metamórfico.

Figura 31. Patrones de tierras raras normalizados a condrita (Sun y McDonough, 1989) de: A) y B) circones de clastos de granitoides de la Fm. Matzitzi. C) circones del granito Los Reyes que aflora en contacto tectónico con la Fm. Matztzi. D) por comparación se anexan circones del Granito Cozahuico. Las áreas sombreadas representan las concentraciones en rocas ígneas permo-carboníferas en el sur de México.

Figura 32. Diagrama Dy/Yb vs Eu* de circones de clastos de granitoides de la Fm. Matzitzi (M4F6 y Mtz02_GR) y del granito Los Reyes que están en contacto tectónico con la Fm. Matzitzi. Las edades de los circones del clasto M4F6 varían entre 298 y 1312 Ma. Se etiquetan algunos de los valores con la edad del circón (en Ma) para visualización. $Eu*=(Eu/0.0563)/[(Sm/0.148)*(Gd/0.199)]^{1/2}$.

6. DISCUSIÓN E INTERPRETACIONES

6.1 Discusión de resultados

El análisis petrográfico y fechamiento U-Pb de los fragmentos examinados en este trabajo demuestran la existencia de vulcanismo activo durante el Pérmico en el sur de México, el cual no está expuesto en el área debido a los procesos de erosión y exhumación de bloques, pero se encuentra registrado dentro de la Fm. Matzitzi.

La composición mineralógica y las características texturales de los clastos analizados confirman una fuente volcánica en las facies conglomeráticas de la Fm. Matzitzi (Centeno-García et al., 2009). Su composición varía de intermedia a félsica y a pesar de ser más comunes los clastos félsicos, éstos no habían sido reportados anteriormente. La naturaleza extrusiva de los clastos se reconoció por las texturas porfídica y de desvitrificación de la matriz, ambas muy comunes en lavas e intrusiones sin-volcánicas (McPhie et al., 1993). Además, el efecto de reabsorción de los cristales de cuarzo, observado en algunos de los clastos, también es una característica común en este tipo de rocas. Las características de los fenocristales, que en su mayoría corresponden con cristales completos, con formas euhédricas y subédricas y relativamente uniformes en cuanto a su mineralogía y tamaño, confirman el carácter efusivo de los clastos y discriminan facies piroclásticas (Allen y McPhie, 2003), de modo que se desconoce si el arco pérmico tuvo actividad explosiva. Los únicos indicios de actividad explosiva son finos horizontes intercalados en la sucesión de la Fm. Matzitzi que podrían corresponder con depósitos piroclásticos (Centeno-García et al., 2009) de edad triásica.

Los diagramas de tierras raras de los circones en los clastos volcánicos y sub-volcánicos de las mismas edades muestran el mismo comportamiento geoquímico, pero en el detalle se aprecia un comportamiento distinto en los circones de cada muestra que refleja las diferencias en sus condiciones de cristalización. La composición variable de los clastos y el comportamiento de los elementos de tierras raras indican que los procesos de diferenciación magmática, asimilación de corteza y/o mezcla de magmas fueron relevantes para la generación de los magmas. Las composiciones máficas-intermedias representan magmas menos diferenciados que tienen poco grado de contaminación, mientras que las composiciones félsicas reflejan la evolución del magma poco evolucionado hacia magmas evolucionados por diferenciación magmática, asimilación o fusión de corteza y/o mezcla de magmas de composición félsica asociada a los procesos de asimilación y/o fusión de corteza es corroborada por los abundantes circones y núcleos heredados de edades proterozoicas provenientes del basamento, posiblemente el Complejo Oaxaqueño.

El grado de selección y clasificación de los conglomerados sugiere que la fuente volcánica era próxima al depósito de la Fm. Matzitzi. La coexistencia de fragmentos metamórficos de grandes dimensiones (de hasta ~2 m) con líticos volcánicos de pocos centímetros en las cercanías de donde aflora el basamento *in situ* en Santiago Coatepec, sugiere que el arco volcánico se emplazó sobre los bloques de basamento. Las edades mesoproterozoicas de núcleos y circones en los clastos volcánicos apoyan esta hipótesis. Adicionalmente, las características composicionales de las litofacies arenosas de la Fm. Matzitzi, con alto contenido de feldespato (Bedoya-Mejía, 2018), confirman el depósito del sedimento en las cercanías del basamento, con poco transporte de material por un sistema de drenaje de baja eficiencia dominado por relieves abruptos producto de las altas tasas de exhumación (Elías-Herrera et al., 2005). El alto grado de redondeamiento, que no depende de la distancia de transporte, se asocia a meteorización esferoidal; mientras que la relativa escasez de los clastos volcánicos se asocia a la baja actividad volcánica del arco.

Por lo anterior, el vulcanismo reconocido en los clastos de la Fm. Matzitzi estaría emplazado sobre los bloques del sur, y se relaciona localmente con los cuerpos plutónicos de edad permo-carbonífera expuestos actualmente en dichos bloques, los cuales se han interpretado como las raíces del arco magmático emplazado en la margen occidental de Pangea (p. ej. Kirsch et al., 2012). En este trabajo se documenta el vulcanismo del Pérmico inferior-medio (Cisuraliano-Guadalupiano) por las edades de los clastos volcánicos y sub-volcánicos entre ~285 y 269 Ma, y se desconoce su inicio desde el Carbonífero, tal como en el caso de los equivalentes intrusivos (p. ej. Kirsch et al., 2012; Ortega-Obregón et al., 2014; Grajales-Nishimura et al., 2018). Con las edades obtenidas no se puede descartar que la extensión temporal del vulcanismo sea más amplia, pues a pesar de hacer el muestreo en distintas localidades, no hay un control estratigráfico de los niveles muestreados debido al grado de deformación de la sucesión.

La relevancia de encontrar clastos volcánicos del Pérmico en una región donde no hay vulcanismo preservado de edades similares es que soporta la hipótesis del emplazamiento de un arco magmático en el Paleozoico Tardío sobre los bloques del sur por una zona de subducción con vergencia general al este. No obstante, la orientación de la subducción y la temporalidad del arco permanecen debatidas y se discutirá más adelante en el modelo tectónico.

Por otro lado, los clastos de composición granítica tienen evidencias de recristalización y edades de alrededor de 1250 Ma que indican procedencia del Complejo Oaxaqueño, el cual representaba la fuente de sedimento principal. Aunque el clasto MTZ-02-GR tiene dos poblaciones de circones mesoproterozoicas, ambas se encuentran en el intervalo de edades reportadas para el Complejo Oaxaqueño (Solari et al., 2003; Weber y Schulze, 2014). En cuanto al fragmento M4F6, las edades se encuentran en un rango muy amplio y la mayoría son discordantes, lo que refleja un evento térmico que produjo pérdida de plomo, pero por sus características petrográficas y la edad mesoproterozoica que define una población de circones concordantes,

su fuente también se interpreta como del Complejo Oaxaqueño. Además de las múltiples edades discordantes, la anomalía positiva de Eu en algunos de los circones confirma la alteración y/o recristalización de la muestra.

Dentro de este contexto, la existencia de clastos graníticos de edades más jóvenes, tales como el granito Cozahuico (Ortega-Gutiérrez et al., 2018) o las raíces del arco como se ha documentado en las litofacies arenosas (Bedoya-Mejía, 2018), se desconoce. Sin embargo, la coexistencia de los fragmentos volcánicos y las raíces plutónicas dentro del mismo depósito parece poco probable, pues durante el depósito de la Fm. Matzitzi, la cubierta volcánica estaba expuesta y era una fuente de sedimento, mientras que sus equivalentes plutónicos estaban emplazados en niveles corticales medios a profundos (p ej., Granito Cozahuico y Totoltepec, Elías-Herrera et al., 2011; Kirsch et al., 2013; Ortega-Gutiérrez et al., 2014). Para depositar dentro de la misma cuenca clastos volcánicos y plutónicos de la misma edad se requieren tasas de exhumación y erosión extremadamente altas para remover la cubierta volcánica y exponer las raíces plutónicas. No obstante, la aparente presencia de clastos del Plutón Totoltepec en el Cisuraliano (275 Ma; Kirsch et al., 2012), y la exhumación del granito Cozahuico hace 268 Ma (Elías-Herrera et al., 2005) serían coherentes con las altas tasas de levantamiento asociadas a los últimos eventos orogénicos del Complejo Acatlán (Ortega-Gutiérrez et al., 2018) y permitiría la temprana exposición de los intrusivos.

Respecto a los clastos de arenisca, éstos tienen una composición rica en cuarzo que indica una procedencia de una fuente texturalmente madura, de cratón interior (Dickinson, 1985). Sus características composicionales difieren de las litofacies arenosas dentro de la misma formación, pues estudios previos en las areniscas indican un enriquecimiento en feldespato con afinidad a basamento levantado (Bedoya-Mejía, 2018). Esta disimilitud en las características composicionales sugiere una procedencia de los clastos extracuenca y no el reciclaje del mismo depósito.

El comportamiento de las tierras raras en los circones sigue en general el mismo patrón que el resto de las muestras analizadas y de los intrusivos permo-carboníferos y sólo en algunos casos se observa un patrón plano, que en conjunto con los valores altos de Dy/Yb no visto en otras muestras, reflejaría las fuentes metamórficas de algunos de estos granos.

Las edades en los circones detríticos de los clastos de arenisca abarcan desde el Arqueano hasta el límite Pérmico-Carbonífero, con la edad más antigua entre 3.4 y 3.2 Ga y la más joven de ~290 Ma en ambos clastos. La edad máxima de depósito para el fragmento de clave M4F16 es del límite Carbonífero-Pérmico y para el fragmento de clave M4V11 es del Devónico, considerando la población de granos más joven, o bien, podría ser del Pérmico considerando el circón más joven. Los espectros de edades detríticas en ambos clastos son similares y muestran un continuo desde el Mesoproterozoico hasta el Paleozoico, con dos picos principales de edad Mesoproterozoica (entre ~1.2 y 0.95 Ga) y Neoproterozoica-Cámbrica (entre ~650 y 500 Ma), que en términos generales corresponden los ciclos orogénicos Grenvilliano y Pan-Africano-Brasiliano, respectivamente (Fig. 18). El grupo de circones más abundante es de edad grenvilliana y tiene como fuente principal al Complejo Oaxaqueño, corroborado en el mapa MDS (Fig. 21), pues, aunque edades semejantes se encuentran tanto en Laurencia como en Gondwana, la proximidad de los clastos con la muestra sintética de 1000±50 Ma, que representa al Complejo Oaxaqueño, y su lejanía de la muestra que representa el Orógeno Grenville/Sunsas típico (Cawood et al., 2007), favorece una procedencia local. Estas edades también se encuentran en unidades clásticas paleozoicas de los terrenos Oaxaquia y Mixteco (Gillis et al., 2005; Nance et al., 2009), y no se descartan como fuentes de sedimento subordinadas.

Los circones de edades neoproterozoicas-cámbricas siguen en abundancia al grupo grenvilliano y tienen como fuente al Orógeno Pan-Africano-Brasiliano (Cordani y Teixeira, 2007), o bien, unidades detríticas retrabajadas del Complejo Acatlán y/o Bloque Maya, donde se han documentado circones con edades semejantes (Talavera-Mendoza et al., 2005; Weber et al., 2008; 2007; 2006; Nance et al., 2009; Kirsch et al., 2012). No obstante, parece poco probable que el Complejo Acatlán represente una fuente de sedimento principal, pues como se ve en el mapa MDS, la gran mayoría de las muestras del Complejo Acatlán son disimilares a los clastos de arenisca, posiblemente porque dicho complejo aún no se encontraba expuesto. A pesar de que las unidades del Bloque Maya tienen similitud con los clastos de arenisca, no representan una fuente, ya que el comportamiento de las muestras en el mapa MDS indica una trayectoria de evolución desde los clastos de arenisca hacia las unidades del Bloque Maya, donde la contribución de la fuente permocarbonífera es mayor (Fig. 21). En cambio, es más factible que dichas unidades tengan como fuente al Orógeno Panafricano-Brasiliano, dada su proximidad, pero con distinta contribución. La cercanía de los clastos con esta muestra sintética favorece una procedencia gondwánica.

Las edades del grupo panafricano-brasiliano cambian progresivamente a edades neoproterozoicas entre ~700 y 950 Ma, las cuales conforman el tercer grupo más abundante. Estas edades favorecen una proveniencia del cratón amazónico ya que representan la provincia del arco magmático Goiás en el cinturón orogénico de Brasilia (Pimentel et al., 2000). Además, estas edades están ausentes en Norteamérica (Cawood et al., 2007), por lo que descartan una fuente de Laurencia.

Aunque las edades paleoproterozoicas y arqueanas se encuentran en menor proporción, éstas indican la erosión de fuentes con circones muy antiguos. Estas edades tienen una gran extensión en las provincias cratónicas de Norteamérica y Sudamérica, por lo que la correlación de éstas podría hacerse con ambos lados del continente; sin embargo, las edades de dominio gondwánico discutidas anteriormente, favorecen la correlación con las provincias de Amazonia (Cordani y Teixeira, 2007; Cordani et al., 2009). A pesar de
que las edades paleoproterozoicas también se encuentran en las unidades metasedimentarias del Complejo Acatlán, debido a su disimilitud con los clastos de arenisca, se descartan como una fuente de procedencia.

Las edades ordovícicas forman uno de los grupos más escasos y su correlación más aceptable es con los cuerpos ígneos de edades entre 480-440 Ma que se encuentran localmente en el Complejo Acatlán (Sánchez-Zavala et al., 2004; Talavera-Mendoza et al., 2005; Miller et al., 2007; Keppie et al., 2008b) y que forman parte de un cinturón magmático ordovícico-silúrico emplazado en la margen pasiva de Gondwana durante la apertura del Océano Rheico (Keppie et al., 2008). Asumiendo que estos cuerpos ígneos representan una fuente de sedimento para unidades paleozoicas del Complejo Acatlán (Nance et al., 2009), y para la Fm. Santa Rosa en el Bloque Maya (Weber et al., 2006), entonces estos cuerpos fueron exhumados y expuestos tempranamente, por lo que también representan una fuente.

Los grupos de circones carboníferos y devónicos, que definen la edad máxima de depósito de los clastos, representan fuentes igualmente escasas. Las edades carboníferas se asocian localmente con el arco magmático emplazado en los bloques del sur en este periodo; en cambio, las edades devónicas son más difíciles de correlacionar ya que no hay unidades locales de edad devónica que representen claramente una fuente. La presencia de edades devónicas en metasedimentos del Complejo Acatlán, ha llevado a proponer que éstas también pertenecen al arco, el cual tuvo que instaurarse desde el Devónico (Keppie et al., 2008). A pesar de que estas poblaciones podrían suponer una correlación con las unidades metasedimentarias del Paleozoico Superior del Complejo Acatlán (Talavera-Mendoza et al. 2005; Keppie et al. 2006, 2008; Grodzicki et al. 2008; Morales-Gámez et al. 2008; Kirsch et al., 2012), en el mapa MDS se ve que no hay proximidad entre éstas, por lo que su relación no es clara. Edades semejantes se encuentran en las Montañas Maya de Belice (Martens, 2010) y en los sedimentos de la Fm. Santa Rosa (Weber et al., 2006) en el Bloque Maya, lo cual podría explicar la cercanía de éstas.

Los circones detríticos de los clastos coinciden con las poblaciones grenvilliana, panafricana y de arco reportadas en las areniscas en la Fm. Matzitzi (Bedoya-Mejía, 2018); sin embargo, el resto de las edades de los clastos no se identificaron previamente, posiblemente porque su proporción en los clastos de los conglomerados es muy baja y en la fracción de arenas se ve oculta por la contribución mucho mayor de fuentes grenvillianas, tal como se ve en el mapa MDS.

Como se mencionó anteriormente, en el mapa MDS se observa que la procedencia entre los clastos de arenisca de la Fm. Matzitzi y las unidades paleozoicas del complejo Acatlán es diferente, pues se encuentran dispersas en el mapa; en cambio, los clastos son más próximos a las unidades siliciclásticas del Triásico Superior del centro y sur de México, particularmente el paleo-río La Mora y los abanicos Tolimán y Potosí. Lo anterior sugiere que los clastos y dichas unidades comparten características genéticas, posiblemente al

tener mismas fuentes de sedimento, lo cual coincide con los estudios de procedencia donde se reconocen fuentes gondwánicas para estas unidades con un patrón de drenaje con dirección al oeste (p.ej. Barboza-Gudiño et al., 2010; Ortega-Flores et al., 2014; Silva-Romo et al., 2015). Por lo tanto, es posible que la Fm. Matzitzi comparta características genéticas con estas unidades porque estuvieron alimentadas por un mismo sistema de drenaje, el cual se instauró posiblemente desde el Paleozoico Tardío-Triásico Temprano. Adicionalmente, en el mapa MDS también se aprecia la disimilitud entre los clastos y las unidades triásicas del norte de México, las cuales tienen como fuente principal a Laurencia (González-León et al., 2009).

Finalmente, las características petrográficas y la edad mesoproterozoica del granito Los Reyes (clave COZA-02), que aparece en afloramientos aislados en la localidad de Los Reyes Metzontla, indican que las cuñas de este granito forman parte del basamento del Complejo Oaxaqueño, por lo que afloramientos del granito Cozahuico en el área se desconocen.

6.2 Modelo tectónico del sur de México durante el Paleozoico Tardío-Triásico Temprano

La evolución tectónica de los bloques del sur de México durante el Paleozoico Tardío está asociada a las etapas finales del ensamble de Pangea.

El emplazamiento de un arco sobre los bloques del sur en el Carbonífero y Pérmico está documentado por los cuerpos intrusivos de edades del Missisípico-Pérmico y el vulcanismo pérmico del Cisuraliano reportado en este trabajo (Fig. 33).

El desarrollo del arco está asociado a una zona de subducción con vergencia general al sureste durante el cierre diacrónico del océano Rheico. La geometría en tijera de la zona de subducción (Hatcher et al., 2002) amalgamó los continentes de noreste a suroeste y colisionó el sureste de Laurencia con el noroeste de Gondwana durante el Pensilvánico-Pérmico temprano, formando el cinturón orogénico Marathon-Ouachita (Poole et al., 2005), mientras que el magmatismo continuó activo sobre los bloques peri-gondwánicos de Oaxaquia y Mixteca y el sur del Bloque Maya, favorecidos por su disposición más occidental respecto al frente orogénico (Fig. 34 A). Debido a la escasez de registro volcánico en estos periodos, se asume que la actividad del arco fue dominantemente plutónica. Al mismo tiempo, la subducción oblicua produjo la deformación y yuxtaposición de bloques, incluyendo a algunos de los cuerpos intrusivos, reconocidos principalmente en Complejo Acatlán, en su límite con el Complejo Oaxaqueño en la zona de falla de Caltepec y en el Macizo de Chiapas en el Bloque Maya.

La culminación de los procesos de acreción y ensamble de Pangea extinguió paulatinamente el magmatismo de arco, ocurriendo los últimos pulsos en el Pérmico tardío, documentado por las edades de algunos cuerpos

cercanas a 250 Ma, como el granito Etla, el stock la Mixtequita y posiblemente los gneises del Macizo de Chiapas.

Figura 33. Localidades donde se ha reportado magmatismo del Carbonífero-Pérmico, con un alcance hasta el Triásico en México. Edades U-Pb de 1. Arvizu-Gutiérrez, 2012; Arvizu-Gutiérrez et al., 2009. 2. McKee et al., 1988. 3. Gursky and Michalzik, 1989.4. Rosales-Lagarde et al., 2005. 5. Kirsch et al., 2012. 6. Elías-Herrera y Ortega-Gutiérrez, 2002; Elías-Herrera et al., 2005. 7. Ortega-Obregón et al., 2014. 8. Grajales-Nishimura et al., 2018. 9. Ducea et al., 2004. 10. Murillo-Muñetón 1994. 11. Weber et al., 2005; Weber et al., 2007. 12. Solari et al., 2010. 13. Este estudio.

Aunque algunos modelos proponen que el magmatismo pérmico en los bloques del sur es producto de una zona de subducción naciente con vergencia al este en la margen paleo-pacífica de Pangea una vez que estaba totalmente amalgamada (p. ej., Keppie et al., 2008), estos modelos sugieren que el magmatismo continuó durante el Triásico y formó un cinturón a nivel cordillerano, desde el sur de Norteamérica, pasando por México hasta América Central (p. ej., Arvizu e Iriondo, 2015); no obstante, el magmatismo triásico es escaso en México y en el sur está representado únicamente por la Felsita Atolotitlán de edad ~240 Ma.

Durante el desarrollo del arco se depositaron sucesiones clásticas en los terrenos peri-gondwánicos, como las registradas en el Complejo Acatlán (p. ej. Tecomate, Patlanoaya, Olinalá) y en el Bloque Maya (Fm. Santa Rosa); así como las sucesiones similares de donde provienen los clastos de arenisca reportados en este trabajo (Fig. 34 A). Estas sucesiones estuvieron alimentadas por un patrón de drenaje con orientación general E-W que drenó gran parte de fuentes gondwánicas (Nance et al., 2009, Weber et al., 2008; este estudio).

En el Triásico Temprano la subducción cesó una vez que Pangea estaba completamente amalgamada, y dio paso a la sedimentación de la Fm. Matzitzi sobre los bloques Acatlán y Oaxaqueño, documentado por el emplazamiento contemporáneo de la Felsita Atolotitlán en el Triásico Medio (Fig. 34 B).

Figura 34. A) Reconstrucción paleogeográfica para el Carbonífero tardío-Pérmico medio de los bloques que conforman México durante la acreción del noroeste de Gondwana con el sur de Laurencia. B) Reconstrucción paleogeográfica para el Pérmico tardío-Triásico Temprano de la margen occidental de Pangea ecuatorial. Triángulos rojos indican el magmatismo activo, en amarillo las cuencas pre-depósito de la Fm. Matzitzi, en verde la cuenca de depósito de la Fm. Matzitzi. Las flechas representan la dirección de aporte de sedimento. CA-Andes Colombianos, Cho-Chortis, Coah-Coahuila, F-Florida, M-Andes de Mérida, Mx-Mixteca, CMC-My-Macizo de Chiapas-Sur del Bloque Maya, Oax-Oaxaquia, Y-Yucatán. Modificado de Weber et al. (2007) y Ortega-Obregón et al. (2014).

El depósito de la Fm. Matzitzi en un ambiente continental ocurrió bajo un régimen transicional; donde la toba Atolotitlán representa posiblemente los remanentes del arco permo-carbonífero, o bien, representa el magmatismo asociado al adelgazamiento de la corteza continental durante los inicios del rifting en el noroeste de Sudamérica (Spikings et al., 2015) previo a la fragmentación de Pangea. Las unidades expuestas que aportaron sedimento al depósito de la Fm. Matzitzi fueron el Complejo Oaxaqueño y la cubierta volcánica sobreyacente; así como una sucesión clástica de afinidad gondwánica cuya cercanía se desconoce y, de ser efectivas las tasas de levantamiento muy altas, las raíces plutónicas también pudieron haber contribuido (Fig. 34 B).

En este escenario, la Fm. Matzitzi antecede a las sucesiones clásticas depositadas a partir del Triásico Tardío en la margen occidental de Pangea en el actual centro y sur de México. Dada la similitud entre los clastos de arenisca de la Fm. Matzitzi y las sucesiones triásicas, es posible que dichas sucesiones hayan sido alimentadas por fuentes gondwánicas siguiendo el mismo patrón de drenaje este-oeste.

7. CONCLUSIONES

La existencia de un arco magmático pérmico en el actual sur de México es documentada en este trabajo por el reconocimiento de clastos volcánicos de edad entre 285 y 269 Ma dentro de la Fm. Matzitzi. Este rango de edades no permite reconocer vulcanismo del Carbonífero que sea correlacionable con los cuerpos intrusivos de dichas edades en el sur de México.

Las texturas principales de los clastos son típicamente de lavas, por lo que el vulcanismo era de tipo efusivo; mientras que la composición que varía de félsica a intermedia indica que la fusión y asimilación de corteza preexistente para la generación del magma parental fue un proceso relevante.

La múltiple herencia de circones mesoproterozoicos corrobora la incorporación de corteza continental, ya que se atribuye a la fusión del Complejo Oaxaqueño. Por lo tanto, el vulcanismo se emplazó sobre los bloques de basamento, tal como se ha documentado en algunos de los cuerpos plutónicos por sus firmas isotópicas.

Dos clastos de granitoides estudiados tienen características y edades del Complejo Oaxaqueño subyacente y dada su abundancia dentro de los conglomerados se reconoce que éste fue la fuente principal de sedimento; mientras que la escasez de los clastos volcánicos dentro del mismo depósito sugiere baja actividad volcánica del arco.

La coexistencia de clastos volcánicos y cuerpos intrusivos de edad pérmica dentro del mismo depósito no pudo ser confirmada en este trabajo. Sin embargo, los estudios de la tasa de exhumación de algunos de estos cuerpos intrusivos indican su rápida exposición en la superficie debido al levantamiento acelerado de bloques por los procesos de acreción de Pangea, lo cual permitiría su erosión y depósito junto con la cubierta volcánica.

El estudio de los clastos de arenisca reconoce fuentes de procedencia que no se habían reportado previamente. El análisis composicional de los clastos indica la erosión de fuentes cratónicas y difiere de las características texturales de las facies arenosas de la misma formación, sugiriendo una proveniencia de una cuenca preexistente. La geocronología detrítica en los clastos de arenisca permitió identificar componentes en un rango de edad del Arqueano al Carbonífero con dos fuentes dominantes provenientes del Complejo Oaxaqueño y del orógeno Panafricano-Brasiliano; además de demostrar una afinidad gondwánica para los componentes de edades proterozoicas y arqueanas. Adicionalmente, la técnica de escalamiento multidimensional muestra la similitud entre los clastos de arenisca y unidades triásicas del centro y sur de México, indicando que comparten características genéticas. Asimismo, la disimilitud entre los clastos y unidades paleozoicas del Complejo Acatlán indica que éste no representa una fuente principal de sedimento.

Estas nuevas edades y correlaciones con otras sucesiones complementan las interpretaciones de procedencia de la Fm. Matzitzi, al mismo tiempo que enriquecen las reconstrucciones paleogeográficas del Paleozoico Tardío-Triásico. No obstante, se requieren más estudios para hacer una correlación más efectiva entre estas unidades triásicas.

El fechamiento y análisis petrográfico de los lentes graníticos que afloran en Los Reyes Metzontla indican que éstos son cuñas tectónicas del Complejo Oaxaqueño, por lo que se desconocen aforamientos del granito Cozahuico en la comunidad.

El uso de clastos de conglomerado facilitó el reconocimiento de fuentes de manera directa y demuestra que su integración a los estudios de procedencia en areniscas puede mejorar las interpretaciones de la Fm. Matzitzi, así como del contexto paleogeográfico en el cual se depositó. No obstante, por la importancia que tiene esta formación en las reconstrucciones tectónicas de Pangea durante el Paleozoico Tardío-Triásico, son necesarios estudios detallados de estratigrafía, geocronología, geoquímica, etcétera, para delimitar la extensión espacial de la Fm. Matzitzi, su edad de depósito, así como su relación con las unidades adyacentes y su evolución tectónica en un contexto más amplio.

8. REFERENCIAS

Allen, S.R., McPhie, J. (2003). Phenocryst fragments in rhyolitic lavas and lava domes. *Journal of Volcanology and Geothermal Research*, 126, 263-283.

Andersen, T. (2005). Detrital zircons as tracers of sedimentary provenance: limiting conditions from statistics and numerical simulation. *Chemical Geology*, 216, 249-270.

Arvizu, H., Iriondo, A., Izaguirre, A., Chávez-Cabello, G., Kamenov, G.D., Solís-Pichardo, G., Foster, D., Lozano-Santa Cruz, R. (2009). Rocas graníticas pérmicas en la Sierra Pinta, NW de Sonora, México: Magmatismo de subducción asociado al inicio del margen continental activo del SW de Norteamérica. *Revista Mexicana de Ciencias Geológicas*, 26(3), 709-728.

Arvizu-Gutiérrez, H.E. (2012). Magmatismo permo-triásico en el NW de Sonora, México: Inicio de la subducción y maduración de un margen continental activo. Tesis de Maestría. Universidad Nacional Autónoma de México.

Arvizu, H.E., Iriondo, A. (2015). Control temporal y geología del magmatismo Permo-Triásico en Sierra Los Tanques, NW Sonora, México: Evidencia del inicio del arco magmático cordillerano en el SW de Laurencia. Boletín de la Sociedad Geológica Mexicana, 67(3), 545-586.

Bahlburg, H., Vervoort, E.D., Andrew, S., Frane, D., Bock, B., Augustsson, C., Reimann, C. (2009). Timing of crust formation and recycling in accretionary orogens: Insights learned from the western margin of South America. *Earth Science Reviews*, 97(1-4), 215-241.

Barboza-Gudiño, J.R., Zavala-Monsiváis, A., Venegas-Rodríguez, G., Barajas-Nigoche, L.D. (2010). Late Triassic stratigraphy and facies from northeastern Mexico: tectonic setting and provenance. *Geosphere*, 6, 621–640.

Bedoya-Mejía, A.M. (2018). Análisis de procedencia y termocronología detrítica de las Formaciones Matzitzi y Tianguistengo: implicaciones tectónicas en la evolución Paleozoica-Mesozoica del sur de México. Tesis de Maestría. Universidad Nacional Autónoma de México.

Cameron, K.L., López, R., Ortega-Gutiérrez, F., Solari, L.A., Keppie, J.D., Schulze, C. (2004). U-Pb constraints and Pb isotopic compositions of leached feldspars: contraints on the origin and evolution of Grenvillian rocks from eastern and southern Mexico, in Tollo, R.P., Corriveau, L., McLelland, J., Bartholomew, M.J., *eds.* Proterozoic tectonic evolution of the Grenville Orogen in North America. *Geological Society of America Memoir 197*, 755-770.

Campa, M.F., Coney, P.J. (1983). Tectono-stratigraphic terranes and mineral resource distributions in Mexico. *Can. J. Earth Sci*, 20, 1040–1051.

Cawood, P.A., Nemchin, A.A., Strachan, R., Prave, T., Krabbendam, M. (2007). Sedimentary basin and detrital zircon record along East Laurentia and Baltica during assembly and breakup of Rodinia. *Journal of the Geological Society, London*, 164, 257-275.

Centeno-García, E. (2005). Review of Upper Paleozoic and Lower Mesozoic stratigraphy and depositional environments of central and west Mexico: Constraints on terrane analysis and paleogeography, in Anderson, T.H., et al., eds. The Mojave-Sonora Megashear Hypothesis: Development, Assessment, and Alternatives. *Geological Society of America Special Paper*, 393, 233–258.

Centeno-García, E., Mendoza-Rosales, C., C., Silva-Romo, G. (2009). Sedimentología de la Formación Matzitzi (Paleozoico superior) y significado de sus componentes volcánicos, región de Los Reyes Metzontla-San Luis Atolotitlán, Estado de Puebla. *Revista Mexicana de Ciencias Geológicas*, 26(1), 18-36.

Cordani, U.G., Teixeira, W. (2007). Chapter 14: "Proterozoic accretionary belts in the Amazonian Craton", in Hatcher, R.D., Jr., Carlson, M.P., McBride, J.H., and Martínez-Catalán, J.R., eds., 4-D *Framework of Continental Crust: Geological Society of America Memoir 200*.

Cordani, U.G., Teixeira, W., D'Agrella-Filho, M.S., Trindade, R.I. (2009). The position of the Amazonian Craton in supercontinents. *Gondwana Research*, 15, 396-407.

Dickinson, W.R. (1970). Interpreting detrital modes of graywacke and arkose. *Journal of Sedimentary Research*, 40, 695-707.

Dickinson, W.R. (1985). Interpreting provenance relation from detrital modes of sandstones. En *Provenance of arenites*, 333-361.

Dickinson, W.R., Lawton, T. (2001) Carboniferous to Cretaceous assembly and fragmentation of Mexico. *GSA Bulletin*, 113(9), 1142-1160.

Ducea, M.N., Gehrels, G.E., Shoemaker, S., Ruiz, J., Valencia, V.A. (2004) Geologic evolution of the Xolapa Complex, southern Mexico: Evidence from U-Pb zircon geochronology. *Geological Society of America Bulletin*, 116, 1016–1025.

Elías-Herrera, M., Ortega-Gutiérrez, F. (2002). Caltepec fault zone: An early Permian dextral transpressional boundary between the Proterozoic Oaxacan and Paleozoic Acatlán complexes, southern Mexico, and regional tectonic implications. *Tectonics*, 21(3).

Elías-Herrera, M., Ortega-Gutiérrez, F., Sánchez-Zavala, J.L., Macías-Romo, C., Ortega-Rivera, A., Iriondo, A. (2005). La falla de Caltepec: raíces expuestas de una frontera tectónica de larga vida entre dos terrenos continentales del sur de México. *Boletín de la Sociedad Geológica Mexicana*, LVII: 1, 83-109.

Elías-Herrera, M., Ortega-Gutiérrez, F., Macías-Romo, C., Sánchez-Zavala, J.L., Solís-Pichardo, G.N., Torres-López, M., Valencia, V., Ortega-Rivera, A. (2008). Relaciones estratigráfico-estructurales y geocronológicas de una secuencia metavolcanosedimentaria (Fm. Metzontla) en la zona de yuxtaposición de los complejos Acatlán y Oaxaqueño, sur de México—Remanentes de una cuenca intrarco pensilvánica. *Geos*, 28(2), 351 (resumen).

Elías-Herrera, M., Ortega-Gutiérrez, F., Macías-Romo, C., Sánchez-Zavala, J.L., Solari, L.A. (2011). Colisión oblicua del Cisuraliano-Guadalupiano entre bloques continentales en el sur de México: evidencias estratigráfico-estructurales y geocronológicas. Simposio Dr. Zoltán de Cserna; Sesenta años geologizando en México. *Libro de Resúmenes, Instituto de Geología, UNAM*, 159–164.

Elías-Herrera, M., Macías-Romo, M.C., Ortega-Gutiérrez, F., Sánchez-Zavala, J.L., Iriondo, A., Ortega-Rivera, A. (2007). Conflicting stratigraphic and geochronologic data from the Acatlán Complex: "Ordovician" granites intrude sedimentary and metamorphic rocks of Devonian-Permian age. *Eos Transactions AGU Joint Assembly Supplement*, 88 (23) (Abstract T41A–12).

Estrada-Carmona, J., Weber, B., Scherer, E.E., Martens, U., Elías-Herrera, M. (2015). Lu-Hf Geochronology of Mississippian High-Pressure Metamorphism in the Acatlán Complex, Southern México. Gondwana Research.

Galaz, G., Keppie, J.D., Lee, J.K.W., Ortega-Rivera, A. (2013). A high-pressure folded klippe at Tehuitzingo on the western margin of an extrusion zone, Acatlán Complex, southern México. *Gondwana Research*, 23, 641–660.

Garzanti, E. (2016) From static to dynamic provenance analysis-Sedimentary petrology upgraded. *Sedimentary Geology*, 336, 3-13.

Gazzi, P. (1966). Le arenarie del flysch sopracretaceo dell' Appennino modenese; correlazioni con il flysch di Monghidoro. *Mineralogica e Petrográfica Acta*, 12, 69-97.

Gehrels, G. (2012). Detrital Zircon U-Pb Geochronology: Current Methods and New Opportunities. *Tectonics of Sedimentary Basins: Recent Advances*, 45-62.

Gillis, R.J., Gehrels, G.E., Ruiz, J., Flores de Dios-González, L.A. (2005). Detrital zircon provenance of Cambrian-Ordovician and Carboniferous strata of the Oaxaca terrane, southern Mexico. *Sedimentary Geology*, 182, 87-100.

González-León, C.M., Valencia, V.A., Lawton, T.F., Amato, J.M., Gehrels, G.E., Leggett, W.J., Montijo-Contreras, O., Fernández, M.A. (2009). The Lower Mesozoic record of detrital zircon U-Pb geochronology of Sonora, México, and its paleogeographic implications. Revista Mexicana de Ciencias Geológicas, 26(2), 301-314.

Goolaerts, A., Mattielli, N., De Jong, J., Weis, D., Scoates, J.S. (2004). Hf and Lu isotopic reference values for the zircon standard 91500 by MC-ICP-MS. *Chemical Geology*, 206, 1-9.

Grajales-Nishimura, J.M., Centeno-García, E., Keppie, J.D., Dostal, J. (1999). Geochemistry of Paleozoic basalts from the Juchatengo Complex of Southern Mexico: tectonic implications. *Journal of South American Earth Sciences*, 12, 537-544.

Grajales-Nishimura, J.M., Ramos-Arias, M.A., Solari, L., Murillo-Muñetón, G., Centeno-García, E., Schaaf, P., Torres-Vargas, R. (2018). The Juchatengo Complex: an un upper-level ophiolite assemblage of late Paleozoic age in Oaxaca, southern Mexico. *International Journal of Earth Science*, 107, 1005–1031.

Grodzicki, K.R., Nance, R.D., Keppie, J.D., Dostal, J., Murphy, J.B. (2008). Structural, geochemical and geochronological analysis of metasedimentary and metavolcanic rocks of Coatlaco area, Acatlán Complex, southern Mexico. *Tectonophysics*, 461, 311-323.

Gursky, H.J., Michalzik, D. (1989). Lower Permian turbidites in the northern Sierra Madre Oriental, Mexico. *Zentralblatt für Geologie und Paläontologie*, 1(5/6), 821–838.

Hatcher, R.D. (2002). Alleghanian (Appalachian) orogeny, a product of zipper tectonics: Rotational transpressive continent-continent collision and closing of ancient oceans along irregular margins, in Martínez Catalán, J.R., Hatcher, R.D., Jr., Arenas, R., and Díaz García, F., eds., Variscan-Appalachian dynamics: The building of the late Paleozoic basement: Boulder, Colorado. *Geological Society of America Special Paper 364*, 199–208.

Helbig, M., Keppie, J.D., Murphy, J.B., Solari, L.A. (2012). U–Pb geochronological constraints on the Triassic–Jurassic Ayú Complex, southern Mexico: derivation from the western margin of Pangea-A. *Gondwana Res.*, 22 (3–4), 910–927.

Hernández-Láscares, D. (2000). Contribución al conocimiento de la estratigrafía de la Formación Matzitzi, área Los Reyes Metzontla-Santiago Coatepec, extremo suroriental del estado de Puebla: México. Tesis de Maestría. Universidad Nacional Autónoma de México.

Hoskin, P.W.O., Schaltegger, U. (2003). The composition of Zircon and Igneous and Metamorphic Petrogenesis. *Reviews in Mineralogy and Geochemistry*, 53(1), 27-62.

Keppie, J.D., Dostal, J., Ortega-Gutiérrez, F., Lopez, R. (2001). A Grenvillian arc on the margin of Amazonia: evidence from the southern Oaxacan Complex, southern Mexico. *Precambrian Res*, 112:165–181.

Keppie, J.D, Dostal, J., Cameron, K.L., Solari, L.A., Ortega-Gutiérrez, F., López, R. (2003). Geochronology and Geochemistry of Grenvillian igneous suites in the northern Oaxacan Complex, southern Mexico: tectonic implications. *Precambrian Res*, 120:365–389.

Keppie, J.D., Sandberg, C.A., Miller, B.V., Sánchez-Zavala, J.L., Nance, R.D., Poole, F.G. (2004). Implications of latest Pennsylvanian to Middle Permian paleontological and U-Pb SHRIMP data from the Tecomate Formation to re-dating tectonothermal events in the Acatlán Complex, southern Mexico. *International Geology Review*, 46(8), 745–754.

Keppie, J.D., Nance, R.D., Fernández-Suárez, J., Storey, C.D., Jeffries, T.E., Murphy, J.B. (2006). Detrital zircon data from the eastern Mixteca terrane, southern Mexico: evidence for an Ordovician-Mississippian continental rise and a Permo-Triassic clastic wedge adjacent to Oaxaquia. *International Geology Review*, 48, 97-111.

Keppie, J.D., Dostal, J. (2007). Rift-related basalts in the 1.2–1.3 Ga granulites of the northern Oaxacan Complex, southern Mexico: evidence for a rifted arc on the northwestern margin of Amazonia. *Proc Geol Assoc*, 118, 63–74.

Keppie, J.D., Dostal, J., Elías-Herrera, M. (2007). Ordovician–Devonian oceanic basalts in the Cosoltepec Formation, Acatlán Complex, southern México: Vestiges of the Rheic Ocean? In: Linnemann, U., Nance, R.D., Kraft, P., Zulauf, G. (Eds.), The evolution of the Rheic Ocean: From Avalonian-Cadomian active margin to Alleghenian-Variscan collision. *Geological Society of America Special Paper*, 423, 477-487.

Keppie, J.D., Dostal, J., Murphy, J.B., Nance, R.D. (2008). Synthesis and tectonic interpretation of the westernmost Paleozoic Variscan orogen in Southern Mexico: from rifted Rheic margin to active Pacific margin. *Tectonophysics*, 461, 277–290.

Keppie, J.D., Dostal, J., Miller, B.V., Ramos-Arias, M.A., Morales-Gámez, M., Nance, D.R., Murphy, J.B., Ortega-Rivera, A., Lee, J.K.W., Housh, T., Cooper, P. (2008b). Ordovician–earliest Silurian rift tholeiites in the Acatlán Complex, southern Mexico: evidence of rifting on the southern margin of the Rheic Ocean. *Tectonophysics*, 495, 130–156.

Keppie, J.D., Nance, R.D., Ramos-Arias, M.A., Lee, J.K.W., Dostal, J., Ortega-Rivera, A., Murphy, J.B. (2010). Late Paleozoic subduction and exhumation of Cambro-Ordovician passive margin and arc rocks in the northern Acatlán Complex, southern Mexico: geochronological constraints. *Tectonophysics*, 495, 213–229.

Keppie, J.D., Nance, R.D., Dostal, J., Lee, J.K.W., Ortega-Rivera, A. (2012). Constraints on the subduction erosion/extrusion cycle in the Paleozoic Acatlán Complex of southern Mexico: geochemistry and geochronology of the type Piaxtla Suite. *Gondwana Research*, 21, 1050-1065.

Kirsch, M., Keppie, J.D., Murphy, J.B., Solari, L.A. (2012). Permian-Carboniferous arc magmatism and basin evolution along the western margin of Pangea: geochemical and geochronological evidence from the eastern Acatlán Complex, southern Mexico. *GSA Bulletin*, 124(9/10), 1607-1628.

Kirsch, M., Keppie, J.D., Murphy, J.B., Lee, J.K.W. (2013). Arc plutonism in a transtensional regime: the late Palaeozoic Totoltepec pluton, Acatlán Complex, southern Mexico. *International Geology Review*, 55(3), 263-286.

Kirsch, M., Helbig, M., Keppie, J.D., Murphy, J.B., Lee, J.K.W., Solari, L.A. (2014). A Late Triassic tectonothermal event in the eastern Acatlán Complex, southern Mexico, synchronous with a magmatic arc hiatus: The result of fl at-slab subduction? *Lithosphere*, 6(2), 63-79.

Landing, E.D., Westrop, S.R., Keppie, D. (2007). Terminal Cambrian and lowest Ordovician succession of Mexican West Gondwana: biotas and sequence stratigraphy of the Tiñú Formation. *Geol. Mag.*, 144(6), 909-936.

Lawlor, P.J., Ortega-Gutiérrez, F., Cameron, K.L, Ochoa-Camarrillo, H., López, R., Sampson, D.A. (1999). U-Pb geochronology, geochemistry, and provenance of the Grenvillian Huiznopala Gneiss of Eastern Mexico. Precambrian Research, 94, 73-99.

Martens, U, Weber, B., Valencia, V.A. (2010). U/Pb geochronology of Devonian and older Paleozoic beds in the southeastern Maya Block, Central America: Its affinity with peri-gondwanan terranes. *Geological Society of America Bulletin*, 122(5/6), 815-829.

McKee, J.W., Jones, N.W., Anderson, T.H. (1988). La Delicias basin: A record of late Paleozoic arc volcanism in northeastern Mexico. *Geology*, 16, 37-40.

McKee, J.W., Jones, N.W., Anderson, T.H. (1999). Late Paleozoic and early Mesozoic history of the Las Delicias terrane, Coahuila, Mexico, in Bartolini, C., Wilson, J. L., and Lawton, T. F., eds., Mesozoic Sedimentary and Tectonic History of North-Central Mexico: Boulder, Colorado. *Geological Society of America Special Paper 340*.

McPhie, J., Doyle, M., Allen, R. (1993). Volcanic textures: a guide to the interpretation of textures in volcanic rocks. Centre for Ore Deposits and Exploration Studies, University of Tazmania.

Mendoza-Rosales, C. (2010). Estratigrafía y facies de las cuencas cretácicas del sur de Puebla y su significado tectónico. Tesis de doctorado. Universidad Nacional Autónoma de México.

Middleton, M., Keppie, JD., Murphy, J.B., Miller, B.V., Nance, R.D. (2007). P-T-t constrains on exhumation following subduction in the Rheic Ocean: eclogitic Asis Lithodeme, piaxtla Suite, Acatlán Complex, southern Mexico. *Geological Society of America Special Paper*, 423, 489-509.

Miller, B.V., Dostal, J., Keppie, J.D., Nance, R.D., Ortega-Rivera, A., Lee, J.K.W. (2007). Ordovician calcalkaline granitoids in the Acatlán Complex, southern México. In: Geochemical and geochronologic data and implications for the tectonics of the Gondwanan margin of the Rheic Ocean. *Geological Society of America Special Paper*, 423, 465–475.

Morales-Gámez, M., Keppie, J.D., Norman, M. (2008). Ordovician-Silurian rift-passive margin on the Mexican margin of the Rheic Ocean overlain by Permian periarc rocks: evidence from the Acatlán Complex, southern Mexico. *Tectonophysics*, 461, 291–310.

Murillo-Muñetón, G. (1994). Petrologic and geochronologic study of the Grenville-age granulites and postgranulite plutons from the La Mixtequita area, State of Oaxaca in Southern Mexico, and their tectonic significance. Tesis de Maestría. Universidad del Sur de California.

Murphy, J.B., Keppie, J.D., Braid, J.F., Nance, R.D. (2005). Geochemistry of the Tremadocian Tiñú Formation (Southern Mexico): provenance in the underlying ~1 Ga Oaxacan Complex on the southern margin of the Rheic Ocean. *International Geology Review*, 47, 887-900.

Nance, R.D., Keppie, J.D., Miller, B.V., Murphy, J.B., Dostal, J. (2009). Palaezoic palaeogeography of Mexico: constraints from detrital zircon age data. *Geological Society of London, Special Publications*, 327, 239-269.

Nance, R.D., Gutiérrez-Alonso, G., Keppie, J.D., Linnemann, U., Murphy, J.B., Quesada, C., Strachan, R.A., Woodcock, N.H. (2010). Evolution of the Rheic Ocean. *Gondwana Research*, 17, 194-222.

Nance, R.D., Gutiérrez-Alonso, G., Keppie, J.D., Linnemann, U., Murphy, J.B., Quesada, C., Strachan, R.A., Woodcock, N.H. (2012). A brief history of the Rheic Ocean. *Geoscience Frontiers*, 3(2), 125-135.

Navarro-Santillán, D., Sour-Tovar, F., Centeno-García, E. (2002). Lower Mississipian (Osagean) brachiopods from the Santiago Formation, Oaxaca, Mexico: stratigraphic and tectonic implications. *Journal of South American Earth Sciences*, 15, 327-336.

Ortega-Flores, B., Solari, L., Lawton, T.F., Ortega-Obregón, C. (2014). Detrital-zircon record of major Middle Triassic–Early Cretaceous provenance shift, central Mexico: demise of Gondwanan continental fluvial systems and onset of back-arc volcanism and sedimentation. *International Geology Review*, 56, 237-261.

Ortega-Gutiérrez, F., Ruiz, J., Centeno-García, E. (1995). Oaxaquia, a Proterozoic microcontinent accreted to North America during the late Paleozoic. *Geology*, 23, 1127-1130.

Ortega-Gutiérrez, F. (1978). Estratigrafía del Complejo Acatlán en la Mixteca Baja, Estados de Puebla y Oaxaca. Universidad Nacional Autónoma de México, Instituto de Geología, 112–131 2. Revista.

Ortega-Gutiérrez, F. (1981). Metamorphic belts of southern Mexico and their tectonic significance. *Geofis. Int.*, 20, 177–202.

Ortega-Gutiérrez, F., Elías-Herrera, M., Reyes-Salas, M., Macías-Romo, C., López, R. (1999). Late Ordovician–Early Silurian continental collision orogeny in southern Mexico and its bearing on Gondwana-Laurentia connections. *Geology*, 27, 719–722.

Ortega-Gutiérrez, F., Elías-Herrera, M., Morán-Zenteno, D., Solari, L., Luna-González, L., Schaaf, P. (2014). A review of the batholiths and other plutonic intrusions of Mexico. Gondwana Research, 26, 834-868.

Ortega-Gutiérrez, F., Elías-Herrera, M., Morán-Zenteno, D.J., Solari, L., Weber, B., Luna-González, L. (2018). The pre-Mesozoic metamorphic basement of Mexico, 1.5 billion years of crustal evolution. *Earth Science Reviews*, 183, 2-37.

Ortega-Obregón, C., Solari, L., Gómez-Tuena, A., Elías-Herrera, M., Ortega-Gutiérrez, F., Macías-Romo, C. (2014). Permian–Carboniferous arc magmatism in southern Mexico: U–Pb dating, trace element and Hf isotopic evidence on zircons of earliest subduction beneath the western margin of Gondwana. *Int J Earth Sci (Geol Rundsch)*, 103:1287–1300.

Paton, C., Woodhead, J.D., Hellstrom, J.C., Hergt, J.M., Greig, A., Maas, R. (2011). Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. *Geochemistry, Geophysics, Geosystems*, 11(3).

Petrus, J.A., Kamber, B.S. (2012). VizualAge: A novel approach to laser ablation ICP-MS U-Pb geochronology data reduction. *Geostandards and Geoanalytical Research*, 36(3), 247-270.

Pimentel, M. (2000). The Neoproterozoic Goiás Magmatic Arc, Central Brazil: a review and new Sm-Nd isotopic data. *Revista brasilena de Geociencias*, 30(1), p. 035-039.

Poole, F.G., Perry, W.J., Jr., Madrid, R.J., Amaya-Martínez, R. (2005). Tectonic synthesis of the Ouachita-Marathon-Sonora orogenic margin of southern Laurentia: Stratigraphic and structural implications for timing of deformational events and plate tectonic model, in Anderson, T.H., Nourse, J.A., McKee, J.W., Steiner, M.B., eds., The Mojave-Sonora megashear hypothesis: Development, assessment, and alternatives. *Geological Society of America Special Paper 393*, 543–596.

Ramírez-Calderón, M.G. (2018). Formación Tianguistengo: el registro de un ambiente fluvial del Triásico en el sur de México (Pue., Oax.). Tesis de Maestría. Universidad Nacional Autónoma de México.

Ramírez-Vargas, D. (2009). Análisis de facies de la Formación La Compañía, Caltepec, Estado de Puebla. Tesis de Licenciatura. Universidad Nacional Autónoma de México.

Ramos-Arias, M.A., Keppie, J.D., Ortega-Rivera, A., Lee, J.W.K. (2008). Extensional Late Paleozoic deformation on the western margin of Pangea, Patlanoaya area, Acatlán Complex, southern Mexico. *Tectonophysics*, 448, 60-76.

Rosales-Lagarde, L., Centeno-García, E., Dostal, J., SourTovar, F., Ochoa-Camarillo, H., Quiroz-Barroso, S. (2005). The Tuzancoa Formation: Evidence of an Early Permian submarine continental arc in east-central Mexico. *International Geology Review*, 47, 901–919.

Rubatto, D. (2002). Zircon trace element geochemistry: distribution coefficients and the link between U-Pb ages and metamorphism. *Chemical Geology*, 184, 123-138.

Ruiz, J., Tosdal, R.M., Restrepo, P.A., Murillo-Muñetón, G. (1999) Pb isotope evidence for Colombiasouthern Mexico connections in the Proterozoic. *Geological Society of America, Special Papers*, 336, 183-197.

Sánchez-Zavala, J.L., Ortega-Gutiérrez, F., Keppie, J.D., Jenner, G.A., Belousova, E., Macías-Romo, C. (2004). Ordovician and Mesoproterozoic zircons from the Tecomate Formation and Esperanza Granitoids, Acatlán Complex, Southern Mexico: local provenance in the Acatlán and Oaxacan Complexes. *Int. Geol. Rev.*, 246, 1005–1021.

Shchepetilnikova, V., Solé, J., Solari, L.A., Abdullin, F. (2015). A chronological and chemical zircon study of some pegmatite dikes and lenses from the central part (Ayoquezco-Ejutla) of the Oaxacan Complex, southern Mexico. *Revista Mexicana de Ciencias Geológicas*, 32 (1), 123–143.

Silva-Romo, G., Arellano-Gil, J., Mendoza-Rosales, C., Nieto-Obregón, J. (2000). A submarine fan in the Mesa Central. *Journal of South American Earth Science*, 13, 429-442.

Silva-Romo, G., Mendoza-Rosales, C., Campos-Madrigal, E., Centeno-García, E., Peralta-Salazar, R. (2015). Early Mesozoic Southern Mexico-Amazonian connection based on U-Pb ages from detrital zircons:

The La Mora Paleo-river in the Mixteca Terrane and its paleogeographic and tectonic implications. *Gondwana Research*, 28, 689-701.

Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Matthew, S.A., Horstwood, M.S., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., Whitehouse, M.J. (2008). Plešovice zircon- a new natural reference material for U-Pb and Hf isotopic microanalysis. *Chemical Geology*, 249(1-2), 1-35.

Solari, L.A., Dostal, J., Ortega-Gutiérrez, F., Keppie, J.D. (2001). The 275 Ma arc-related La Carbonera stock in the northern Oaxacan Complex of southern Mexico: U-Pb geochronology and geochemistry. *Revista Mexicana de Ciencias Geológicas*, 18(2), 149-161.

Solari, L.A., Keppie, J.D., Ortega-Gutiérrez, F., Cameron, K.L., Lopez, R., Hames, W.E. (2003). Grenvillian tectonothermal events in the northern Oaxacan Complex, southern Mexico: roots of an orogen. *Tectonophysics*, 365, 257–282.

Solari, L.A, Gómez-Tuena, A., Bernal, J.P., Pérez-Arvizu, O., Tanner, M. (2010). U-Pb Zircon Geochronology with an Integrated LA-ICP-MS Microanalytical Workstation: Achievements in Precision and Accuracy. *Geostandards and Geoanalytical Research*, 34(1), 5-18.

Solari, L.A., Ortega-Gutiérrez, F., Elías-Herrera, M., Ortega-Obregón, C., Macías-Romo, C., Reyes-Salas, M. (2014). Detrital provenance of the Grenvillian Oaxacan Complex, southern Mexico: a zircon perspective. *Int J Earth Sci (Geol Rundsch)*, 103:1301-1315.

Solari, L.A., Ortega-Gutiérrez, F., Elías-Herrera, M., Gómez-Tuena, A., Schaaf, P. (2010). Refining the age of magmatism in the Altos Cuchumatanes, western Guatemala, by LA–ICPMS, and tectonic implications. *International Geology Review*, 52(9), 977-998.

Spencer, C.J., Kirkland, C.L. (2016). Visualizing the sedimentary response through the orogenic cycle: A multidimensional scaling approach. *Lithosphere*, 8(1), 29-37.

Spikings, R., Cochrane, R., Villagomez, D., Van der Lelij, R., Vallejo, C., Winkler, W., Beate, B. (2015). The geological history of northwestern South America: from Pangaea to the early collision of the Caribbean Large Igneous Province (290–75Ma). *Gondwana Research*, 27, 95-139.

Streckeisen, A. L. (1978). IUGS Subcommission on the Systematics of Igneous Rocks. Classification and Nomenclature of Volcanic Rocks, Lamprophyres, Carbonatites and Melilite Rocks. Recommendations and Suggestions. *Neues Jahrbuch für Mineralogie*, Abhandlungen, 141, 1-14.

Sun, S.S., McDonough, W.F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D., Norry, N.J.(eds.), Magmatism in the ocean basins. Geological Society Special Publications, 42, 313–345.

Talavera-Mendoza, O., Ruiz, J., Gehrels, G.E., Meza-Figueroa, D.M., Vega-Granillo, R., Campa-Uranga, M.F. (2005). U-Pb geochronology of the Acatlán Complex and implications for the Paleozoic paleogeography and tectonic evolution of southern Mexico. *Earth Planet. Sci. Lett.*, 235, 682–699.

Torres, R., Ruiz, J., Patchett, P.J., Grajales, J.M. (1999). Permo-Triassic continental arc in eastern México: Tectonic implications for reconstructions of southern North America, in Bartolini, C., Wilson, J.L., Lawton, T.F. (eds.). *Mesozoic Sedimentary and Tectonic History of North-Central Mexico: Geological Society of America Special Paper*, 340, 191-196. Torres-De León, R., Solari, L.A., Ortega-Gutiérrez, F., Martens, U. (2012). The Chortís Blocksouthwestern México connections: U-Pb zircon geochronology constraints. *American Journal of Science*, 312, 288-313.

Vega-Granillo, R., Talavera-Mendoza, O., Meza-Figueroa, D., Ruiz, J., Gehrels, G.E., López-Martínez, M., De la Cruz-Vargas, J.C. (2007). Pressure-temperature-time evolution of Paleozoic high-pressure rocks of the Acatlán Complex (southern Mexico): implications for the evolution of the Iapetus and Rheic Oceans. *Geol. Soc. Am. Bull.*, 119 (9/10), 1249–1264.

Vega-Granillo, R., Calmus, T., Meza-Figueroa, D., Ruiz, J., Talavera-Mendoza, O., López-Martínez, M. (2009). Structural and tectonic evolution of the Acatlán Complex, southern Mexico: Its role in the collisional history of Laurentia and Gondwana. *Tectonics*, 28, TC4008.

Vermeesch, P. (2013). Multi-sample comparison of detrital age distributions. *Chemical Geology*, 140-146.

Vermeesch, P. (2018). IsoplotR: a free and open toolbox for geochronology. *Geoscience Frontiers* (in press).

Weber, R. (1997). How old is the Triassic flora of Sonora and Tamaulipas, and news on Leonardian floras in Puebla and Hidalgo, México. *Revista Mexicana de Ciencias Geológicas*, 14(2), 225-243.

Weber, B., Schulze, C.H. (2014). Early Mesoproterozoic (>1.4 Ga) ages from granulite basement inliers of SE Mexico and their implications on the Oaxaquia concept – Evidence from U-Pb and Lu-Hf isotopes on zircon. *Revista Mexicana de Ciencias Geológicas*, 31(3), 377-394.

Weber, B., Valencia, V. A., Schaaf, P., Pompa-Mera, V., Ruiz, J. (2008). Significance of provenance ages from the Chiapas Massif Complex (Southeastern Mexico): Redefining the Paleozoic basement of the Maya Block and its evolution in a peri-gondwanan realm. *The Journal of Geology*, 116, 619-639.

Weber, B., Cameron, K.L., Osorio, M., Schaaf, P. (2005). A late Permian tectonothermal event in Grenville crust of the Southern Maya terrane: U–Pb zircon ages from the Chiapas massif, Southeastern México. *International Geology Review*, 47, 509-529.

Weber, B., Schaaf, P., Valencia, V.A., Iriondo, A., Ortega-Gutiérrez, F. (2006). Provenance ages of late Paleozoic sandstones (Santa Rosa Formation) from the Maya block, SE Mexico. Implications on the tectonic evolution of western Pangea. *Revista Mexicana de Ciencias Geológicas*, 23(3), 262-276.

Weber, B., Iriondo, A., Premo, W.R., Hecht, L., Schaaf, P. (2007). New insights into the history and origin of the southern Maya block, SE México: U–Pb–SHRIMP zircon geochronology from metamorphic rocks of the Chiapas massif. *Int J Earth Sci (Geol Rundsch)*, 96, 253–269.

Weber, B., Scherer, E.E., Schulze, C., Valencia, V.A., Montecinos, P., Mezger, K., Ruiz, J. (2010). U–Pb and Lu–Hf isotope systematics of lower crust from central-southern Mexico—geodynamic significance of Oaxaquia in a Rodinia Realm. *Precambrian Res*, 182:149–162.

Wiedenberck, M., Alle, P., Corfu, F., Griffin, W., Meier, M., Oberli, F., von Quadt, A., Roddick, J.C., Spiegel, W. (1995). Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. *Geostandards and Geoanalytical Research*, 19(1), 1-23.

Apéndice 1. Imágenes de catodoluminiscencia

Clastos volcánicos

Clastos subvolcánicos

Clastos de arenisca

Clastos de granitoides

Granito Los Reyes

Granito Cozahuico

Apéndice 2. Análisis U-Pb en circones mediante LA-ICPMS

Tabla 1. Datos U-Pb de circones de clastos volcánicos de la Fm. Matzitzi

							CORRECT RATIOS ²	TED								CORRE AGES (CTED Ma)				
		Th		207 pk /	+2-	207 ph /	+2=	206 p.h. /	+2=	208 p. k /	+2=		206 p.h. /		207 p.h. /		207ph /		Best		
Clave muestra	(ppm) ¹	(ppm) ¹	Th/U	²⁰⁶ Pb	±20 abs	²³⁵ U	±20 abs	²³⁸ U	±20 abs	²³² Th	±20 abs	Rho	238U	±2σ	²³⁵ U	±2σ	²⁰⁶ Pb	±2σ	age	±2σ	Disc %
	(144)	(FF)																	(Ma)		
Zr_MAT1-P1_3	124.1	45.92	0.370024174	0.0533	0.0044	0.296	0.023	0.0404	0.0013	0.0135	0.0013	-0.10931	255.4	8.1	262	18	290	180	255.4	8.1	2.52
Zr_IVIAT1-P1_8	65.7	13.19	0.200761035	0.049	0.0061	0.295	0.036	0.0421	0.0015	0.0145	0.0017	-0.049653	205.8	9	258	29	100	250	205.8	9	-3.02
ZI_IVIAT1-P1_2/	29	22.0	0.160440078	0.072	0.011	0.451	0.000	0.0431	0.0023	0.0185	0.0045	0.14555	272	14	357	47	100	220	272 2	14	23.61
ZI_IVIAT1-P1_10	90.9 90.5	23.9	0.202920293	0.0508	0.0050	0.302	0.034	0.04314	0.0012	0.0135	0.0015	0.14958	272.5	7.0	205	20	240	220	272.5	7.0	-2.75
ZI_WAT1-F1_2 7r_MAT1-D1_4	62.3	15.44	0.241490085	0.0313	0.0051	0.31	0.020	0.0434	0.0010	0.0133	0.0014	-0.00/1978	273.0	9.0 10	273	20	120	210	273.0	9.0 10	-4.14
ZI_WAT1-F1_4	60.3	13.5	0.243383873	0.0460	0.0001	0.302	0.039	0.0434	0.0017	0.0158	0.0019	-0.0041978	273.9	00	203	24	220	200	273.9	00	-4.14
7r MAT1-P1 32	37.2	65	0.174731183	0.0510	0.0053	0.315	0.031	0.0441	0.0010	0.0134	0.0010	0.73625	577	63	570	62	640	190	577	63	-1 23
Zr MAT1-P1 30	96.1	51.2	0.532778356	0.0693	0.0042	1	0.14	0.104	0.012	0.0401	0.0038	0.93619	634	73	687	73	894	110	634	73	7.71
Zr MAT1-P1 36	101	7.76	0.076831683	0.0709	0.0038	1.628	0.082	0.1633	0.0035	0.0475	0.0054	-0.070926	975	20	982	33	955	110	975	20	0.71
Zr MAT1-P1 28	13.04	2	0.153374233	0.0682	0.0074	1.6	0.17	0.1636	0.0058	0.053	0.011	0.23776	976	32	952	67	850	220	976	32	-2.52
Zr MAT1-P1 10	386	130.2	0.337305699	0.0724	0.0029	1.683	0.069	0.1677	0.0033	0.0509	0.0027	0.1889	999.6	18	1001	26	1002	81	999.6	18	0.14
Zr MAT1-P1 31	338.7	42	0.124003543	0.074	0.0031	1.756	0.081	0.1704	0.0047	0.0489	0.0034	0.67495	1014	26	1028	29	1035	83	1014	26	1.36
Zr_MAT1-P1_25	108.4	8.36	0.077121771	0.0718	0.0036	1.734	0.086	0.1739	0.0042	0.0557	0.0053	0.22574	1033	23	1019	32	985	100	1033	23	-1.37
Zr_MAT1-P1_23	229.8	191	0.831157528	0.0726	0.0031	1.768	0.076	0.1753	0.0037	0.048	0.0026	0.086746	1041	20	1033	28	996	90	1041	20	-0.77
Zr_MAT1-P1_24	83	6.2	0.074698795	0.0762	0.0042	1.907	0.1	0.179	0.005	0.0591	0.0086	0.10636	1061	27	1081	36	1079	110	1061	27	1.85
Zr_MAT1-P1_20	534	90.3	0.169101124	0.0759	0.0029	1.907	0.078	0.183	0.0039	0.054	0.0029	0.55488	1083	21	1085	26	1088	78	1083	21	0.18
Zr_MAT1-P1_18	105.5	29.9	0.283412322	0.0755	0.0035	1.924	0.09	0.1845	0.004	0.0561	0.0038	0.23513	1091	22	1087	31	1068	93	1091	22	-0.37
Zr_MAT1-P1_5	470	213	0.453191489	0.079	0.0031	2.069	0.11	0.1904	0.0072	0.0401	0.0062	0.88284	1123	39	1143	35	1165	80	1123	39	1.75
Zr_MAT1-P1_22	1029	221.1	0.214868805	0.08098	0.003	2.13	0.082	0.1917	0.0037	0.0546	0.0029	0.29446	1130.6	20	1159.4	27	1218	74	1130.6	20	2.48
Zr_MAT1-P1_1	415	107.6	0.259277108	0.0779	0.003	2.171	0.084	0.2011	0.004	0.0606	0.0033	0.070384	1181.3	21	1172.7	26	1146	73	1181.3	21	-0.73
Zr_MAT1-P1_9	306	99.6	0.325490196	0.0779	0.0032	2.166	0.089	0.2026	0.004	0.0602	0.0032	0.11257	1189.1	21	1169	29	1148	78	1189.1	21	-1.72
Zr_MAT1-P1_13	107.6	153.3	1.42472119	0.0787	0.0038	2.26	0.13	0.2044	0.0072	0.05817	0.003	0.66794	1198	38	1196	42	1181	85	1198	38	-0.17
Zr_MAT1-P1_21	550	60	0.109090909	0.0783	0.003	2.235	0.093	0.2054	0.0047	0.0642	0.0041	0.53586	1204	25	1191	29	1151	76	1204	25	-1.09
Zr_MAT1-P1_14	197	51.6	0.261928934	0.0791	0.0033	2.235	0.093	0.2071	0.0042	0.0631	0.0036	0.22546	1213	22	1193	30	1172	84	1213	22	-1.68
Zr_MAT1-P1_12	158	62.2	0.393670886	0.0825	0.0037	2.391	0.11	0.2094	0.0044	0.0655	0.0039	0.34084	1225	24	1238	33	1256	85	1225	24	1.05
Zr_MAT1-P1_6	400	107.7	0.26925	0.0812	0.0032	2.376	0.097	0.2101	0.0043	0.0625	0.0033	0.36887	1229	23	1234	29	1237	75	1229	23	0.41
Zr_WAT1-P1_29	223	127 6	0.293/219/3	0.0803	0.0032	2.358	0.096	0.2113	0.0042	0.0631	0.0035	0.30774	1235.7	22	1229	29	1199	78	1235.7	22	-0.55
ZI_IVIAT1-P1_55	454	127.0	0.294009217	0.08177	0.003	2.399	0.094	0.2131	0.0042	0.0613	0.0035	0.44509	1245.2	22	1241.9	20	1230	74	1245.2	22	-0.27
Zr_MAT1-P1_11	200	7/ 3	0.311923077	0.0814	0.0034	2.414	0.1	0.2143	0.0046	0.0621	0.0033	0.30732	1255	24	1231	23	1225	02 8/1	1255	24	-0.10
Zr_MAT1-P1_15	241	107.1	0.308238735	0.0312	0.0034	2.424	0.11	0.2130	0.0040	0.0634	0.0034	0.33027	1256	23	1240	28	1163	80	1256	23	-2.43
Zr_MΔT1-P1_17	296	60.1	0.203040541	0.0804	0.0032	2.370	0.057	0.2171	0.0049	0.064	0.0034	0.38393	1270	26	1247	33	1211	81	1270	26	-1 84
Zr_MAT1-P1_35	327	84.9	0.259633028	0.0804	0.0032	2.410	0.098	0.2170	0.0043	0.0643	0.0034	0 21148	1270	23	1255	29	1223	80	1270	23	-1 27
Zr MAT1-P1 34	204	66.7	0.326960784	0.0793	0.0035	2.414	0.11	0.2181	0.0043	0.0646	0.0037	0.25348	1271.6	23	1245	33	1180	91	1271.6	23	-2.14
Zr MAT1-P1 26	270	55.5	0.205555556	0.0784	0.0033	2.478	0.11	0.2287	0.0048	0.0612	0.0043	-0.021215	1328	25	1268	30	1163	92	1328	25	-4.73
Zr Mat3v2 20	878	430	0.489749431	0.0557	0.0032	0.335	0.022	0.04361	0.00094	0.01453	0.0011	0.37598	275.1	5.8	293	17	430	130	275.1	5.8	6.11
Zr Mat3v2 12	710	352.7	0.496760563	0.0573	0.003	0.348	0.02	0.04372	0.00086	0.01444	0.001	0.16757	275.8	5.3	303.3	15	491	110	275.8	5.3	9.07
Zr Mat3v2 25	1094.4	863	0.788559942	0.0568	0.0027	0.3427	0.018	0.0438	0.00082	0.01392	0.00091	0.063961	276.4	5.1	300.2	13	475	100	276.4	5.1	7.93
Zr Mat3v2 30	591	310	0.524534687	0.0538	0.0035	0.328	0.023	0.04454	0.0008	0.01436	0.0011	0.12963	280.9	5	288	17	370	130	280.9	5	2.47
Zr_Mat3v2_29	364	151	0.414835165	0.0636	0.0039	0.381	0.032	0.0448	0.0025	0.01665	0.0013	0.41986	282	15	327	23	740	150	282	15	13.76
Zr_Mat3v2_26	827.6	385.9	0.466288062	0.0553	0.0028	0.3402	0.019	0.04474	0.00074	0.01428	0.001	-0.085351	282.1	4.6	298.4	15	421	110	282.1	4.6	5.46
Zr_Mat3v2_13	671	285	0.424739195	0.0562	0.0038	0.344	0.024	0.04478	0.00085	0.01459	0.0011	0.046617	282.4	5.2	300	18	440	150	282.4	5.2	5.87
Zr_Mat3v2_31	748	353	0.471925134	0.0616	0.0038	0.384	0.029	0.04479	0.001	0.01574	0.0012	0.45605	282.5	6.3	329	21	670	140	282.5	6.3	14.13
Zr_Mat3v2_3	534	213.9	0.400561798	0.0758	0.0041	0.473	0.03	0.04487	0.00079	0.0217	0.0017	0.18956	283	4.9	393	21	1105	89	283	4.9	27.99
Zr_Mat3v2_7	308	152.6	0.495454545	0.0576	0.0039	0.357	0.027	0.04499	0.00093	0.01462	0.0011	0.22436	283.7	5.7	313	19	520	140	283.7	5.7	9.36
Zr_Mat3v2_24	733	514	0.701227831	0.0585	0.0033	0.364	0.024	0.04513	0.00077	0.01512	0.001	0.15799	284.5	4.8	317	19	580	120	284.5	4.8	10.25
Zr_Mat3v2_4	767	700	0.912646675	0.0531	0.0031	0.327	0.019	0.04519	0.00095	0.01404	0.00098	-0.05221	284.9	5.8	287.2	15	340	140	284.9	5.8	0.80
Zr_Mat3v2_33	1028	1023	0.995136187	0.0645	0.003	0.3982	0.021	0.04523	0.00064	0.01447	0.00096	0.14211	285.2	4	340.2	15	751	97	285.2	4	16.17
Zr_Mat3v2_10	660.4	350.2	0.530284676	0.0561	0.0033	0.35	0.021	0.04529	0.00086	0.01479	0.0011	0.064757	285.5	5.3	304.1	16	460	130	285.5	5.3	6.12
Zr_Mat3v2_17	526	164.2	0.3121673	0.0554	0.0037	0.343	0.023	0.04529	0.00081	0.01698	0.0014	-0.24691	285.5	5	299	18	410	150	285.5	5	4.52

Zr_Mat3v2_21	491.8	218.3	0.443879626	0.0581	0.0032	0.363	0.024	0.04531	0.00084	0.01592	0.0012	0.23691	285.6	5.2	314	18	542	130	285.6	5.2	9.04
Zr_Mat3v2_28	612	451.2	0.737254902	0.0583	0.0035	0.368	0.023	0.04547	0.00086	0.01476	0.00097	-0.0037166	286.7	5.3	318	17	522	130	286.7	5.3	9.84
Zr_Mat3v2_27	446.7	336.5	0.753301992	0.0553	0.0034	0.34	0.024	0.0455	0.00076	0.01441	0.001	0.23473	286.8	4.7	299	17	410	140	286.8	4.7	4.08
Zr_Mat3v2_32	1131	862	0.762157383	0.0557	0.0028	0.348	0.02	0.04552	0.00074	0.01416	0.00095	0.13124	286.9	4.5	303.2	15	450	100	286.9	4.5	5.38
Zr_Mat3v2_2	855	651	0.761403509	0.0622	0.0032	0.389	0.022	0.04553	0.00071	0.01531	0.001	0.10221	287	4.4	333.1	16	672	120	287	4.4	13.84
Zr_Mat3v2_34	684	439	0.641812865	0.0542	0.0034	0.337	0.022	0.04559	0.00095	0.0144	0.00099	-0.060148	287.4	5.8	295	17	360	140	287.4	5.8	2.58
Zr_Mat3v2_22	1052	599.8	0.570152091	0.0543	0.0028	0.337	0.02	0.04563	0.0007	0.01439	0.00096	0.088718	287.6	4.3	295	15	383	120	287.6	4.3	2.51
Zr_Mat3v2_9	952	962	1.010504202	0.0562	0.0036	0.359	0.026	0.04565	0.00073	0.01415	0.00093	-0.031102	287.7	4.5	311	19	480	160	287.7	4.5	7.49
Zr_Mat3v2_35	829	726	0.87575392	0.0527	0.0031	0.331	0.022	0.0457	0.00084	0.01406	0.00094	0.24081	288.1	5.2	290	17	304	130	288.1	5.2	0.66
Zr_Mat3v2_5	808.2	424.9	0.525736204	0.0563	0.0035	0.349	0.022	0.04574	0.00092	0.01437	0.001	-0.20375	288.3	5.7	306	18	440	140	288.3	5.7	5.78
Zr_Mat3v2_6	389.1	244	0.627088152	0.0641	0.0043	0.4	0.027	0.04574	0.001	0.01639	0.0012	0.04435	288.3	6.3	343	21	730	130	288.3	6.3	15.95
Zr_Mat3v2_15	583	250	0.428816467	0.0614	0.0034	0.384	0.026	0.04575	0.00078	0.01786	0.0013	0.46948	288.4	4.8	330	19	662	110	288.4	4.8	12.61
Zr_Mat3v2_23	596	372	0.624161074	0.0581	0.0036	0.366	0.024	0.04577	0.00091	0.01541	0.0011	-0.18342	288.5	5.6	316	18	510	140	288.5	5.6	8.70
Zr_Mat3v2_19	791	443.8	0.561061947	0.0531	0.003	0.335	0.021	0.04583	0.00079	0.01399	0.00093	-0.02748	288.9	4.9	292.8	16	315	130	288.9	4.9	1.33
Zr_Mat3v2_16	501	287	0.572854291	0.0592	0.004	0.376	0.026	0.04628	0.00088	0.01559	0.0011	-0.14779	291.7	5.4	323	19	540	150	291.7	5.4	9.69
Zr_Mat3v2_14	558	219.1	0.39265233	0.0537	0.0037	0.35	0.026	0.04635	0.0009	0.01485	0.001	0.16823	292.1	5.6	304	19	360	160	292.1	5.6	3.91
Zr_Mat3v2_18	352	213	0.605113636	0.0573	0.0036	0.368	0.025	0.0466	0.0013	0.01546	0.0012	0.38934	293.7	8.1	321	17	480	140	293.7	8.1	8.50
Zr_Mat3v2_8	381	117	0.307086614	0.0641	0.0036	0.41	0.024	0.04668	0.00093	0.01841	0.0014	-0.0067794	294.1	5.7	350	19	749	120	294.1	5.7	15.97
Zr_Mat3v2_11	317.8	43.4	0.1365638//	0.075	0.0038	1.657	0.097	0.1623	0.003	0.0536	0.0045	0.50061	970	1/	991	37	1060	100	970	1/	2.12
Zr_Mat3v2_1	223	71.7	0.321524664	0.0843	0.0038	2.56	0.13	0.2195	0.0034	0.0691	0.0048	0.14737	1279	18	1288	38	1298	89	1279	18	0.70
Zr_MAT3FA4_1	77.2	15.64	0.202590674	0.0507	0.0048	0.298	0.027	0.0416	0.0015	0.0162	0.002	0.038455	262.6	9.5	263	21	250	200	262.6	9.5	0.15
Zr_MAT3FA4_26	655	52.7	0.080458015	0.0525	0.0027	0.318	0.015	0.04373	0.00097	0.01345	0.0011	-0.042622	275.9	6	280	12	297	120	275.9	6	1.46
Zr_MAT3FA4_9	581	403	0.69363167	0.0517	0.0023	0.312	0.015	0.04383	0.001	0.0135	0.00074	0.32922	276.5	6.3	275.4	12	267	100	276.5	6.3	-0.40
Zr_MAT3FA4_14	391	182.7	0.467263427	0.0513	0.0026	0.3128	0.015	0.0441	0.00098	0.01399	0.00081	0.031278	278.2	6	276	12	248	110	278.2	6	-0.80
Zr_MAI3FA4_13	304	61.7	0.202960526	0.0512	0.0031	0.311	0.018	0.04423	0.001	0.01565	0.001	0.00038055	279	6.3	2/4	14	250	130	279	6.3	-1.82
Zr_MAI3FA4_7	214	92.7	0.4331//5/	0.0517	0.0038	0.319	0.022	0.04484	0.001	0.01539	0.001	-0.13828	282.8	6.4	280	1/	220	150	282.8	6.4	-1.00
Zr_IVIA13FA4_35	991	159	0.160443996	0.0576	0.0026	0.3564	0.016	0.04532	0.00098	0.01/36	0.0011	0.034189	285.7	6	309.3	12	506	98	285.7	6	7.63
Zr_IVIA13FA4_23		4/8	0./1//1//18	0.0517	0.0022	0.3258	0.014	0.04539	0.00093	0.01409	0.00076	0.23379	286.1	5.7	286.2	11	280	96 180	286.1	5.7	0.03
ZI_IVIA15FA4_20	10.0	33.0	0.403541007	0.0509	0.0040	0.324	0.03	0.0461	0.0019	0.0155	0.0013	0.15142	292	12	202	23	210	150	292	12	-3.35
ZI_IVIAISFA4_20	155.5	40.5	0.302340365	0.0517	0.0038	0.551	0.024	0.0464	0.0012	0.0152	0.0013	0.047971	292.5	12	291	20	270	150	292.5	12	-0.45
ZI_IMAT3FA4_30	00.0 181	42.1	0.463023041	0.0378	0.0041	1 730	0.03	0.0656	0.0021	0.0207	0.0021	0.053505	966 5	10	1023	29	11/12	86	966 5	10	-1.04
ZI_MAT3FA4_10	100	130 61.6	0.208393041	0.078	0.0034	1.735	0.075	0.1010	0.0034	0.0302	0.0020	0.004328	900.5	20	070	27	1038	110	900.5	20	0.51
ZI_IMAT3FA4_4 7r_ΜΔΤ3FΔ4_24	623	114.8	0.303137013	0.0741	0.0042	1.669	0.090	0.1032	0.0037	0.0490	0.0032	0.12839	996 3	19	979	26	1058	78	996 3	19	0.31
Zr_MAT3EA4_24	21/	128	0.1394205005	0.0728	0.0028	1.637	0.000	0.169	0.0034	0.0511	0.0028	0.02430	1000.0	19	085	20	0//	22	1000.0	19	-1.61
Zr_MAT3FA4_10	764	176 5	0.433430440	0.0704	0.0023	1.669	0.007	0.1681	0.0033	0.031	0.0027	0.3641	1000.3	18	998	25	995	74	1000.5	18	-0.33
Zr_MAT3FA4_17	469	95 5	0.203624733	0.0717	0.0020	1.668	0.066	0.1683	0.0033	0.0507	0.0020	0.28847	1001.5	18	997 5	23	974	79	1001.5	18	-0.49
Zr_MAT3FΔ4_12 7r_MΔT3FΔ4_2	104.8	31.85	0.203024733	0.074	0.0020	1 751	0.000	0.1711	0.0043	0.0518	0.0025	0.25839	1002.4	24	1025	27	1036	98	1012.4	24	0.45
Zr_MAT3FA4_2	74.6	26.3	0 352546917	0.0724	0.0035	1 709	0.086	0.173	0.0045	0.0510	0.0039	0.36972	1028	27	1013	34	990	100	1028	27	-1 48
Zr_MAT3FA4_19	339	86.1	0 253982301	0.0744	0.0029	1 805	0.083	0 1768	0.0054	0.0537	0.0033	0 78347	1049	30	1046	30	1048	78	1049	30	-0.29
Zr MAT3FA4 27	667	179.8	0.269565217	0.07747	0.0029	1.986	0.077	0.1851	0.0036	0.0561	0.0029	0.21209	1094.5	20	1110.4	26	1133	78	1094.5	20	1.43
Zr MAT3FA4 32	88.2	40.06	0.454195011	0.0752	0.0036	1.929	0.088	0.1865	0.0045	0.0569	0.0034	0.1325	1102	24	1090	30	1057	95	1102	24	-1.10
Zr MAT3FA4 21	399	77.7	0.194736842	0.0762	0.0032	2.007	0.092	0.1909	0.005	0.0578	0.0033	0.63825	1126	27	1119	30	1100	83	1126	27	-0.63
Zr MAT3FA4 18	110.5	43.4	0.392760181	0.0775	0.0039	2.044	0.098	0.1939	0.0041	0.0601	0.0036	0.057652	1142	22	1131	34	1114	97	1142	22	-0.97
Zr MAT3FA4 31	111.2	42.8	0.384892086	0.0779	0.0035	2.153	0.096	0.2011	0.0044	0.0604	0.0036	-0.06973	1181	23	1167	32	1132	91	1181	23	-1.20
Zr MAT3FA4 25	53.9	30.1	0.558441558	0.0783	0.0045	2.191	0.12	0.2016	0.0053	0.0613	0.0039	0.11878	1184	28	1178	38	1123	110	1184	28	-0.51
Zr_MAT3FA4_8	55.3	30.9	0.558770344	0.0778	0.0044	2.125	0.11	0.2026	0.005	0.0587	0.0039	0.15116	1189	27	1153	38	1127	120	1189	27	-3.12
Zr_MAT3FA4_15	588	85.5	0.145408163	0.0774	0.0029	2.178	0.085	0.203	0.0038	0.0543	0.0029	0.012387	1191.3	21	1173.7	27	1129	75	1191.3	21	-1.50
Zr_MAT3FA4_6	261	90	0.344827586	0.0813	0.0032	2.35	0.095	0.2093	0.0042	0.0615	0.0034	0.13544	1225	22	1226	29	1227	81	1225	22	0.08
Zr_MAT3FA4_29	217.2	63.7	0.293278085	0.0807	0.0033	2.365	0.1	0.2116	0.0043	0.0649	0.0037	0.26449	1237	23	1230	30	1212	83	1237	23	-0.57
Zr_MAT3FA4_22	253	73.1	0.288932806	0.0807	0.0033	2.368	0.11	0.2122	0.0053	0.0588	0.0033	0.73384	1240	28	1234	35	1207	81	1240	28	-0.49
Zr_MAT3FA4_11	452	142	0.314159292	0.08179	0.0031	2.438	0.097	0.2159	0.0045	0.0648	0.0034	0.4447	1260	24	1253	28	1241	71	1260	24	-0.56
Zr_MAT3FA4_33	121.4	43	0.354200988	0.0815	0.0037	2.43	0.11	0.2171	0.0048	0.0634	0.0037	-0.1918	1266	25	1252	31	1222	89	1266	25	-1.12
Zr_MAT3FA4_3	140	49	0.35	0.0831	0.0035	2.477	0.11	0.2175	0.0044	0.0654	0.0036	0.19226	1268	23	1264	31	1261	83	1268	23	-0.32
Zr_MAT3FA4_34	142.7	57.4	0.402242467	0.0906	0.0039	3.104	0.14	0.2457	0.0055	0.0783	0.0043	0.50661	1416	29	1431	35	1447	81	1447	81	1.05
Zr_MAT3P5_30	129.8	90.6	0.697996918	0.0708	0.0054	0.428	0.03	0.0432	0.0013	0.01419	0.00087	-0.35833	272.6	7.9	362	22	950	150	272.6	7.9	24.70
Zr_MAT3P5_21	161.5	80.9	0.500928793	0.0529	0.0038	0.315	0.022	0.04323	0.0012	0.01275	0.0011	0.023794	272.8	7.5	277	17	280	150	272.8	7.5	1.52
Zr_MAT3P5_5	99	41.5	0.419191919	0.0554	0.0041	0.34	0.024	0.0434	0.0013	0.01337	0.0011	0.12945	273.6	7.8	296	18	430	150	273.6	7.8	7.57
Zr_MAT3P5_4	262.7	126.4	0.481157214	0.0521	0.0028	0.314	0.016	0.04366	0.00094	0.01382	0.00081	0.034678	276	6	277.1	13	268	120	276	6	0.40
Zr_MAT3P5_7	241	124	0.514522822	0.0531	0.0031	0.321	0.019	0.0438	0.00099	0.01363	0.0009	0.079192	276.3	6.1	282	15	320	130	276.3	6.1	2.02
Zr_MAT3P5_2	286	121.9	0.426223776	0.0555	0.0029	0.338	0.017	0.04385	0.00098	0.0136	0.00089	0.085886	276.7	6.1	295.1	13	416	110	276.7	6.1	6.24

Zr MAT3P5 18	708	337	0.475988701	0.0518	0.0024	0.3138	0.015	0.04404	0.00086	0.01388	0.00081	0.058557	277.8	5.3	276.8	12	270	110	277.8	5.3	-0.36
Zr MAT3P5 12	479	289.2	0.603757829	0.0522	0.0026	0.318	0.016	0.04406	0.00094	0.01349	0.00078	0.0032553	277.9	5.8	279.9	12	290	110	277.9	5.8	0.71
Zr MAT3P5 22	355	180	0.507042254	0.0532	0.0029	0.324	0.018	0.04409	0.001	0.01447	0.00085	-0.099337	278.1	6.3	284.6	13	307	120	278.1	6.3	2.28
Zr MAT3P5 32	272.9	141.1	0.517039209	0.0523	0.003	0.318	0.018	0.04414	0.001	0.0122	0.00072	-0.031889	278.5	6.3	280	14	290	130	278.5	6.3	0.54
Zr MAT3P5 3	245.2	97.3	0.396818923	0.0539	0.0034	0.332	0.021	0.04422	0.00098	0.01446	0.001	0.26732	279	6.1	292	15	390	130	279	6.1	4.45
7r MAT3P5 14	212.5	84.9	0 3995 2941 2	0.0523	0.0033	0 319	0.021	0.04423	0.001	0.01375	0.00095	0.053952	279	6.2	280	16	260	140	279	6.2	0.36
Zr_MΔT3P5_11	190.6	79.4	0.416579224	0.0513	0.0032	0 321	0.019	0.04428	0.0011	0.01392	0.00099	0.00069867	279 3	6.7	282	15	270	120	279 3	6.7	0.96
7r MAT2D5 20	05.8	62.5	0.410373224	0.0536	0.0032	0.321	0.015	0.04428	0.0011	0.01332	0.00033	0.038123	275.5	7.2	286	20	220	120	275.5	7.2	2 10
ZI_WATSF5_25	204	22.5	0.032400833	0.0530	0.0041	0.320	0.025	0.04435	0.0012	0.01338	0.001	0.058125	200 /	7.2 6 E	200	12	222	110	200 /	7.2 6 E	1 61
ZI_WATSP5_0	254	165.6	0.57100555	0.0555	0.0028	0.323	0.017	0.04440	0.0011	0.01355	0.00078	0.20382	200.4	6.5	205	15	400	120	280.4	6.5	1.01
ZI_IVIATOF5_20	230.7	110.0	0.040123093	0.0534	0.0034	0.330	0.02	0.04454	0.0011	0.0142	0.00088	0.037743	200.9	0.0	255	14	400	120	200.9	0.0	4.78
ZI_IVIA13P5_23	246.7	120.0	0.409042139	0.054	0.003	0.327	0.018	0.04459	0.0011	0.01373	0.00086	0.2034	201.2	0.7	207	14	330	120	201.2	0.7	2.02
ZI_IVIATSF5_20	320.3	130.3	0.350777130	0.0531	0.0026	0.325	0.017	0.04403	0.0011	0.01414	0.00090	0.12085	201.4	0.5	203.0	17	200	120	201.4	0.5	1.05
ZI_IVIA13P5_19	470	280	0.000640550	0.0532	0.0035	0.325	0.025	0.04471	0.0011	0.01465	0.00093	0.29075	202	0.7	200	10	300	150	202	6.7	1.05
ZI_IVIA13P5_35	172.2	94.5	0.412003/33	0.0515	0.0037	0.321	0.024	0.04465	0.001	0.01456	0.00091	0.11527	202.7	0.2	203	10	270	130	202./	6.2	0.11
Zr_MAT3P5_1	1/3.2	93.5	0.539838337	0.0561	0.0035	0.35	0.02	0.04477	0.0011	0.01495	0.001	0.1621	283	6.7	306	14	450	130	283	6.7	7.52
Zr_MA13P5_20	244	103.9	0.425819672	0.0536	0.0035	0.332	0.022	0.04493	0.00098	0.01428	0.00092	-0.065543	283.3	6	290	1/	330	150	283.3	6	2.31
Zr_MA13P5_9	426.1	280	0.65/122/41	0.0531	0.0026	0.331	0.016	0.04495	0.00098	0.0143	0.00082	0.11956	283.5	6.1	291.3	12	326	110	283.5	6.1	2.68
Zr_MA13P5_15	1/3.3	/0	0.403923832	0.0526	0.0037	0.327	0.022	0.045	0.0013	0.01416	0.0011	0.040146	283.6	8	288	1/	300	160	283.6	8	1.53
Zr_MA13P5_24	467	194.5	0.416488223	0.051	0.0026	0.317	0.016	0.04501	0.001	0.01418	0.00085	-0.13145	283.8	6.3	279.1	12	222	110	283.8	6.3	-1.68
Zr_MA13P5_10	326	213	0.653374233	0.0521	0.0033	0.32	0.02	0.04504	0.0012	0.01472	0.00087	0.089705	284	7.3	285	15	260	140	284	7.3	0.35
Zr_MA13P5_25	235.8	110.5	0.468617472	0.0548	0.003	0.34	0.019	0.04507	0.00098	0.01504	0.0011	0.013942	284.2	6	297	14	380	120	284.2	6	4.31
Zr_MAT3P5_33	134	57.5	0.429104478	0.0519	0.0044	0.322	0.025	0.0453	0.0013	0.0154	0.0014	0.032442	285.5	8.3	286	20	270	180	285.5	8.3	0.17
Zr_MAT3P5_27	202	78.7	0.38960396	0.0539	0.0033	0.338	0.021	0.04526	0.0011	0.01564	0.001	-0.096708	286.2	7.2	299	15	350	140	286.2	7.2	4.28
Zr_MAT3P5_31	283	143	0.505300353	0.0527	0.0032	0.336	0.02	0.04548	0.0012	0.0142	0.00099	-0.076345	286.7	7.4	293	15	310	140	286.7	7.4	2.15
Zr_MAT3P5_17	87	43.8	0.503448276	0.0533	0.0049	0.33	0.029	0.0455	0.0015	0.014	0.0013	0.006646	287	9.3	288	22	300	200	287	9.3	0.35
Zr_MAT3P5_16	226	105.8	0.468141593	0.0518	0.0033	0.324	0.02	0.04555	0.0011	0.01609	0.0012	-0.11642	287.1	6.6	284	15	260	140	287.1	6.6	-1.09
Zr_MAT3P5_34	302	124.6	0.412582781	0.0514	0.0028	0.325	0.017	0.04605	0.001	0.01467	0.00096	0.014649	290.2	6.3	286.6	13	250	120	290.2	6.3	-1.26
Zr_MAT3P5_13	154.7	23.9	0.154492566	0.0595	0.004	0.382	0.026	0.04658	0.0012	0.0208	0.0021	-0.087654	293.4	7.3	330	18	600	130	293.4	7.3	11.09
Zr_MAT3P5_6	81.8	30.8	0.376528117	0.074	0.0033	1.833	0.083	0.1783	0.0039	0.0555	0.0032	0.046501	1058	21	1055	30	1036	88	1058	21	-0.28
Zr_M4F20_18	371	244	0.657681941	0.0546	0.0031	0.322	0.019	0.04324	0.00092	0.01369	0.00094	-0.13252	272.9	5.7	284.8	14	375	130	272.9	5.7	4.18
Zr_M4F20_13	360	160	0.44444444	0.0531	0.003	0.314	0.019	0.0433	0.00084	0.01397	0.0011	0.09544	273.2	5.2	276.7	15	314	130	273.2	5.2	1.26
Zr_M4F20_20	303	123	0.405940594	0.0543	0.0034	0.328	0.021	0.04357	0.0008	0.01391	0.0011	-0.16614	274.9	5	288	16	380	140	274.9	5	4.55
Zr_M4F20_35	643	700	1.088646967	0.0524	0.0026	0.3145	0.018	0.04383	0.00065	0.01328	0.00089	0.12398	276.5	4	278.5	13	308	120	276.5	4	0.72
Zr_M4F20_25	464.3	377	0.811975016	0.0514	0.003	0.317	0.02	0.04389	0.00073	0.01337	0.00094	-0.048594	276.9	4.5	279	16	254	130	276.9	4.5	0.75
Zr_M4F20_27	495.5	385.6	0.778203835	0.0513	0.0028	0.311	0.019	0.04398	0.00073	0.01309	0.00089	-0.068718	277.4	4.5	274.7	14	251	120	277.4	4.5	-0.98
Zr_M4F20_34	416.2	351	0.843344546	0.0512	0.0028	0.314	0.019	0.0441	0.00068	0.01333	0.0009	-0.26603	278.2	4.2	278.1	14	254	120	278.2	4.2	-0.04
Zr_M4F20_10	566	566	1	0.0523	0.0028	0.32	0.019	0.04415	0.0008	0.01356	0.00093	0.26547	278.5	4.9	281.3	15	281	120	278.5	4.9	1.00
Zr M4F20 29	489	429	0.877300613	0.0525	0.0027	0.32	0.019	0.04422	0.00075	0.01336	0.00093	-0.068333	278.9	4.6	281.7	14	302	120	278.9	4.6	0.99
Zr_M4F20_33	645.1	605	0.937839095	0.052	0.0027	0.322	0.019	0.04429	0.00078	0.01345	0.00089	0.34852	279.3	4.8	283	14	278	120	279.3	4.8	1.31
Zr M4F20 11	296.8	113	0.380727763	0.058	0.0041	0.35	0.026	0.04439	0.00096	0.01459	0.0011	0.12296	280	5.9	306	20	530	140	280	5.9	8.50
Zr M4F20 14	247	87.3	0.353441296	0.0544	0.0039	0.329	0.024	0.0444	0.001	0.01386	0.0012	-0.029606	280	6.4	291	18	350	160	280	6.4	3.78
Zr M4F20 24	306.2	133.1	0.434683214	0.0527	0.0033	0.325	0.021	0.04441	0.00085	0.01409	0.0011	0.075042	280.1	5.2	289	16	340	140	280.1	5.2	3.08
Zr_M4F20_28	379	226	0.596306069	0.0571	0.004	0.353	0.027	0.04461	0.0011	0.01545	0.0011	0.16864	281.3	6.8	306	21	470	150	281.3	6.8	8.07
Zr M4F20 2	330.7	165.5	0.500453583	0.0522	0.0029	0.319	0.02	0.04466	0.00083	0.01356	0.001	-0.027596	281.6	5.1	281.8	15	276	120	281.6	5.1	0.07
Zr M4F20 9	535.3	365.2	0.682234261	0.0544	0.0033	0.333	0.022	0.04468	0.00081	0.01476	0.0011	-0.15044	281.8	5	291	17	370	140	281.8	5	3.16
Zr M4F20 3	326.7	218.4	0.668503214	0.0525	0.0032	0.321	0.021	0.04472	0.00081	0.01399	0.00099	-0.0032781	282	5	282	16	280	130	282	5	0.00
Zr_M4F20_17	383.9	286	0.744985673	0.0566	0.0035	0.351	0.024	0.04479	0.00084	0.01336	0.00096	0.085845	282.5	5.2	305	18	460	140	282.5	5.2	7.38
Zr M4F20 15	401.8	234.2	0.582877053	0.0533	0.0028	0.328	0.02	0.04482	0.00077	0.01363	0.00092	0.058218	282.7	4.7	287.9	15	333	120	282.7	4.7	1.81
Zr M4F20 16	417.5	231	0.553293413	0.0518	0.0027	0.324	0.019	0.04485	0.0007	0.01386	0.00095	0.064492	282.8	4.3	284.4	15	270	120	282.8	4.3	0.56
Zr M4F20 26	400	202.5	0.50625	0.0546	0.0034	0.34	0.023	0.04488	0.00078	0.01402	0.001	0.12095	283	4.8	298	17	410	140	283	4.8	5.03
Zr M4F20 19	274	144.4	0.527007299	0.0559	0.0046	0.347	0.029	0.045	0.0011	0.01383	0.0012	0.031353	283.6	7	301	22	420	180	283.6	7	5.78
Zr M4F20 12	419.2	319	0.760973282	0.0574	0.0037	0.352	0.023	0.04489	0.0008	0.01391	0.00095	-0.063127	283.7	4.7	308	17	510	130	283.7	4.7	7.89
Zr M4F20 5	416.1	368	0.884402788	0.0519	0.0026	0.3203	0.018	0.04506	0.00076	0.01352	0.00093	-0.014591	284.1	4.7	281.8	14	264	120	284.1	4.7	-0.82
Zr_M4F20_7	397	275	0.692695214	0.0515	0.0027	0.3204	0.018	0.04513	0.0009	0.01387	0.00096	0.23139	284.5	5.5	283.1	14	246	120	284.5	5.5	-0.49
Zr M4F20 4	336.4	231	0.686682521	0.0533	0.0032	0.326	0.02	0.04514	0.00075	0.01366	0.00094	-0.088982	284.6	4.6	286	16	310	130	284.6	4.6	0.49
Zr_M4F20_31	373	313	0 839142091	0.0533	0.003	0 331	0.021	0.04513	0.00094	0.01392	0.00096	0 31807	284.6	5.8	290 3	16	340	130	284.6	5.8	1 96
7r M4F20 21	272	155 5	0 571691176	0.0533	0.0036	0 334	0.024	0.04518	0 00078	0.01367	0.00090	-0 26389	284.9	4.8	293	17	350	160	284.9	4.8	2.80
7r M4F20 22	274	136.2	0 497080292	0.0537	0.0031	0 333	0.021	0.04534	0 00087	0.01539	0.0011	0 11861	285.9	54	291	16	376	140	285.9	54	1 75
7r M4F20_22	361	193.2	0.457000292	0.0517	0.0031	0.333	0.021	0.04539	0.00007	0.01/06	0.0011	0 32671	286.1	5.4	280	16	246	130	286.1	5.4	=2.19
Zr_M4F20_0	318	216.5	0.55001108	0.0512	0.003	0.310	0.021	0.04572	0.00095	0.01518	0.001	-0.051907	288.2	5.9	200	19	520	140	200.1	5.9	9.66
Zr M4F20 8	384.2	264	0.687142112	0.0543	0.003	0 345	0.025	0.04581	0 00000	0.01497	0.0011	0.034224	288.7	5.2 6.1	300.8	15	387	130	288.7	5. <u>2</u> 6.1	4 02
ZI_IVI4F20_0	304.2 1051	204	0.00/142113	0.0343	0.003	0.545	0.02	0.04361	0.00033	0.0145/	0.0011	0.034224	200.7	16	1172 5	15	1166	13U 87	200.7	16	-0.61
21_11141 20_30	TODT	203.1	0.10014/4/9	0.0703	0.0034	2.1//	0.11	0.201	0.0029	0.00	0.004	0.030314	1100.7	10	11/3.3	55	1100	07	1100.7	10	-0.01

Tabla 1. Datos U-Pb de circones de clastos volcánicos de la Fm. Matzitzi (continuación)

Zr M4F20 1	698	252.5	0.361747851	0.08123	0.0034	2.466	0.12	0.2174	0.0033	0.0636	0.0042	0.20489	1268	18	1261.6	36	1232	89	1268	18	-0.51
Zr M4F20 23	254	91.4	0.35984252	0.0823	0.0037	2.445	0.13	0.218	0.0034	0.0627	0.0043	0.081697	1271	18	1262	39	1245	90	1271	18	-0.71
7r M4O1 6	774	719	0.93	0.0708	0.006	0.412	0.015	0.043	0 0008	0.015	0.0006	-0.07	271 1	49	352	11	946	190	271 1	49	23.00
Zr_M4Q1_0	364.4	233.8	0.55	0.0700	0.0066	0.372	0.019	0.043	0.0000	0.0173	0.0000	0.07	271.2	11	378	14	720	210	271.1	11	17 30
Zr_M4Q1_2	100	200.0	0.64	0.0022	0.0000	0.372	0.013	0.0433	0.0017	0.0175	0.001	0.02	272.2	12	284	10	291	210	272.2	12	3 80
Zr_M4Q1_0	455	521	0.04	0.0544	0.0045	0.323	0.013	0.0435	0.0007	0.0120	0.0000	0.20	273.2	4.2 E C	204	10	200	110	273.2	4.2 E C	0.50
ZI_IVI4Q1_29	705	550	0.03	0.0525	0.0024	0.313	0.015	0.0435	0.0009	0.0131	0.0007	0.30	274.0	3.0	270.1	10	209	200	274.0	2.0	0.30 F 20
Zr_IVI4Q1_12	705	054.9	0.95	0.0551	0.0048	0.331	0.011	0.0435	0.0006	0.0139	0.0006	0.04	274.7	3.9	290	0.0	399	200	274.7	5.9	5.50
ZI_IVI4Q1_15	008	408	0.77	0.0525	0.0046	0.3151	0.01	0.0438	0.0007	0.0139	0.0007	-0.1	276.0	4.4	277.8	0	289	200	276.0	4.4	0.40
Zr_M4Q1_25	96.7	20.59	0.21	0.0516	0.0043	0.323	0.023	0.0441	0.0013	0.0151	0.0015	-0.01	2/8.3	7.8	283	18	310	1/0	278.3	7.8	1.70
Zr_M4Q1_3	316	228	0.72	0.0516	0.0048	0.325	0.015	0.0442	0.0011	0.0139	0.0007	0.22	279.1	/	285	11	270	200	279.1	/	2.10
Zr_M4Q1_9	409.2	157.3	0.38	0.0549	0.0051	0.331	0.013	0.0443	0.0007	0.0145	0.0008	0.15	279.1	4.3	290	9.9	380	200	279.1	4.3	3.80
Zr_M4Q1_18	379	284.1	0.75	0.0528	0.0028	0.32	0.015	0.0443	0.0009	0.0136	0.0008	-0.06	279.6	5.8	280.9	12	289	120	279.6	5.8	0.50
Zr_M4Q1_28	578	305	0.53	0.0534	0.0027	0.327	0.015	0.0444	0.001	0.0133	0.0008	-0.32	279.8	6	287	11	330	99	279.8	6	2.50
Zr_M4Q1_26	255.4	177	0.69	0.0517	0.0031	0.316	0.017	0.0444	0.0012	0.0137	0.0009	-0.03	279.9	7.2	277.9	13	280	130	279.9	7.2	-0.70
Zr_M4Q1_22	346.3	165.9	0.48	0.053	0.0032	0.324	0.017	0.0444	0.001	0.0143	0.0008	-0.06	280	6	284	14	290	130	280	6	1.40
Zr_M4Q1_4	308.8	155.8	0.5	0.0545	0.0051	0.339	0.015	0.0444	0.0007	0.014	0.0008	-0.09	280.1	4.3	296	11	360	200	280.1	4.3	5.40
Zr_M4Q1_23	486	337	0.69	0.0518	0.0026	0.318	0.016	0.0445	0.001	0.0142	0.0008	0.29	280.7	6.3	279.6	12	275	120	280.7	6.3	-0.40
Zr_M4Q1_24	709	797	1.12	0.0529	0.0024	0.3221	0.014	0.0446	0.001	0.0137	0.0007	0.26	281	6	283.3	11	313	100	281	6	0.80
Zr_M4Q1_14	367	171	0.47	0.0519	0.0048	0.318	0.015	0.0446	0.0009	0.0137	0.0007	0.11	281.3	5.2	281	12	272	210	281.3	5.2	-0.10
Zr M4Q1 16	465	397	0.85	0.0523	0.0026	0.32	0.014	0.0446	0.001	0.0137	0.0007	-0.07	281.5	6	281.6	11	279	110	281.5	6	0.00
Zr M4Q1 32	496	352.6	0.71	0.0508	0.0028	0.317	0.017	0.0448	0.0012	0.0143	0.0008	0.03	282.4	7.1	279	13	215	120	282.4	7.1	-1.20
Zr M4Q1 5	277.3	176.4	0.64	0.0518	0.0072	0.317	0.038	0.0449	0.001	0.0152	0.0012	-0.27	283.1	6.4	278	27	230	260	283.1	6.4	-1.80
Zr M4Q1 15	188.5	61.2	0.32	0.054	0.0051	0.337	0.017	0.045	0.001	0.0135	0.001	0.16	283.6	6.1	294	13	360	210	283.6	6.1	3.50
Zr M401 33	305	173	0.57	0.0535	0.0035	0.331	0.02	0.0451	0.001	0.015	0.0009	-0.26	284.6	6.4	290	15	310	140	284.6	6.4	1.90
Zr M401 34	486	282.6	0.58	0.0531	0.0029	0.328	0.017	0.0452	0.001	0.0143	0.0008	-0.04	285	6.3	287.3	13	306	120	285	6.3	0.80
7r M401 31	568	405	0.71	0.0491	0.0026	0 312	0.016	0.0453	0.0011	0.014	0.0008	-0.07	285.7	6.5	275.3	12	158	120	285.7	6.5	-3.80
Zr_M401_30	160 3	50	0.31	0.052	0.0031	0.324	0.016	0.0454	0.0013	0.0163	0.0013	0.19	285.9	7.8	283	13	260	130	285.9	7.8	-1.00
Zr M401 7	176 /	86.2	0.49	0.0557	0.0069	0.342	0.028	0.0454	0.0012	0.0205	0.0014	0.23	286	7 /	203	21	300	210	286	7.4	3 70
Zr_M4Q1_7	1/1	50.2	0.42	0.0517	0.0034	0.332	0.020	0.0454	0.0012	0.0203	0.0014	0.06	200	6.9	207	16	260	1/0	200	6.0	0.30
Zr_M4Q1_17	166.0	100 E	0.42	0.0517	0.0034	0.332	0.02	0.0462	0.0011	0.0105	0.0011	0.00	201.2	0.5 E 7	252	22	200	220	201.2	0.5 E 7	10.30
ZI_IVI4Q1_1 7r_M4O1_10	130.8	210.3	0.04	0.0073	0.0061	1.052	0.032	0.0407	0.0009	0.017	0.0012	-0.33	1060 7	12	1000	16	1171	170	1060 7	12	2 70
ZI_IVI4Q1_10	202.2	122	0.22	0.0791	0.0000	1.992	0.040	0.1803	0.0024	0.0539	0.0023	0.20	1005.7	15	1033	20	1005	07	1005.7	15	2.70
Zr_IVI4Q1_27	310	125	0.39	0.076	0.0031	1.002	0.072	0.1810	0.0037	0.0549	0.0029	0.51	1075	20	1078	20	1095	0/	1075	20	0.50
ZI_IVI4Q1_21	115.5	20.4	0.25	0.0757	0.0035	1.912	0.085	0.1651	0.0047	0.0567	0.0041	-0.06	1094	25	1085	20	1089	91	1094	25	-1.00
Zr_IVI4Q1_35	218.6	113.3	0.52	0.0795	0.0036	2.077	0.084	0.1931	0.0043	0.0605	0.0032	0.35	1138	23	1145	28	1182	88	1138	23	0.60
Zr_M4Q1_19	340	63.9	0.19	0.0783	0.0033	2.107	0.081	0.1959	0.0042	0.0585	0.0034	0.36	1153	23	1150	27	1154	86	1153	23	-0.30
Zr_M4Q1_20	503	154.2	0.31	0.0785	0.0031	2.223	0.082	0.2065	0.0043	0.0633	0.0032	0.51	1210	23	1188	25	1156	/9	1210	23	-1.90
Zr_M4Q1_11	173.2	64.5	0.37	0.0827	0.0071	2.504	0.067	0.2184	0.0031	0.0661	0.0033	-0.04	1273	17	1275	20	1273	170	1273	17	0.20
Zr_M4CZ1_16	601	163.1	0.271381032	0.0542	0.0026	0.3204	0.015	0.04294	0.00096	0.01419	0.00089	0.094401	271.6	5.7	281.9	12	361	110	271.6	5.7	3.65
Zr_M4CZ1_13	345	169	0.489855072	0.0526	0.0031	0.312	0.018	0.04312	0.0011	0.01318	0.00086	0.015333	272.1	6.9	275	14	280	130	272.1	6.9	1.05
Zr_M4CZ1_17	603	151.1	0.250580431	0.0517	0.0026	0.31	0.016	0.04375	0.00093	0.014	0.0008	0.099533	276	5.7	273.9	12	279	120	276	5.7	-0.77
Zr_M4CZ1_1	322	144	0.447204969	0.0518	0.003	0.315	0.019	0.04421	0.001	0.01413	0.00085	0.21503	278.9	6.5	277	15	250	130	278.9	6.5	-0.69
Zr_M4CZ1_27	254.8	102.1	0.400706436	0.0532	0.0033	0.325	0.02	0.04485	0.0011	0.01356	0.00086	0.069219	282.8	7	285	15	360	140	282.8	7	0.77
Zr_M4CZ1_50	279	157.5	0.564516129	0.0535	0.0042	0.331	0.027	0.0452	0.0013	0.01467	0.00095	0.25215	285.2	8.2	289	21	350	180	285.2	8.2	1.31
Zr_M4CZ1_26	690	282	0.408695652	0.0519	0.0024	0.3258	0.015	0.04545	0.00091	0.01409	0.00075	0.11505	286.5	5.6	286.1	12	279	99	286.5	5.6	-0.14
Zr M4CZ1 14	503	176.5	0.350894632	0.0527	0.0024	0.3282	0.015	0.04548	0.00099	0.01405	0.0008	0.15194	286.7	6.1	287.9	11	320	110	286.7	6.1	0.42
Zr_M4CZ1_45	498	153.6	0.308433735	0.0517	0.0023	0.3376	0.016	0.04721	0.001	0.01515	0.00091	0.073944	297.4	6.3	295	12	266	110	297.4	6.3	-0.81
Zr M4CZ1 46	318.4	145.1	0.45571608	0.0535	0.003	0.349	0.02	0.04738	0.001	0.01538	0.00091	-0.14849	298.4	6.1	303	15	314	120	298.4	6.1	1.52
Zr_M4CZ1_25	490.6	429	0.874439462	0.0533	0.0025	0.3561	0.016	0.04876	0.0011	0.01471	0.0008	0.20886	306.9	6.6	308.9	12	335	100	306.9	6.6	0.65
Zr M4CZ1 23	160.7	80.9	0.503422526	0.0567	0.0036	0.394	0.026	0.05058	0.0013	0.01618	0.0012	0.34439	318.1	8.2	336	19	460	140	318.1	8.2	5.33
Zr M4C71 15	144 3	74.6	0 516978517	0.0561	0.0035	0 403	0.023	0.0512	0.0015	0.01722	0.0012	0.041809	321.6	9	346	17	460	130	321.6	9	7 05
Zr_M4C71_30	206.9	85.5	0 413243113	0.0582	0.003	0.695	0.035	0.0855	0.0019	0.02638	0.0015	-0.085678	529	11	534	21	533	120	529	11	0.94
Zr_M4C71_51	910	497	0 546153846	0.05978	0.0023	0 799	0.032	0.09723	0.0019	0.02936	0.0015	0 3574	598 1	11	596	18	597	80	598 1	11	-0.35
7r M4C71 19	401	107 4	0 267820424	0.0622	0.0023	0.9//	0.04	0 1102	0.0013	0.0237	0.0010	-0 040608	674 7	12	674	21	673	92	674 7	12	_0 10
Zr_WI+CZ1_10	1125	107.4	0.207030424	0.0025	0.0027	1 218	0.04	0.1105	0.0025	0.0337	0.0013	0.55661	722.8	1/	800 0	21	1030	78	722.8	1/	0.10
ZI_IVI4CZI_43	105.0	40.5	0.043111111	0.0741	0.0028	1.210	0.040	0.1200	0.0023	0.0525	0.0032	0.33001	/ 33.0	10	075	21	1033	/0 07	/ 33.0	10	5.40
21_IVI4CZ1_28	103.3	10.92	0.1021//858	0.0716	0.0031	1.01/	0.071	0.105	0.0035	0.0559	0.0047	0.10099	904.Z	70	9/5	20 20	980	0/	904.Z	70	-0.94
21_IVI4C21_8	101.3	32.9	0.203967762	0.0720	0.0031	1.002	0.073	0.1008	0.0036	0.0482	0.0032	0.1/269	995	20	993	28	980	94	395	20	-0.20
2r_W4C21_52	136.9	49.6	0.362308254	0.0729	0.0032	1.687	0.081	0.1682	0.004	0.0498	0.0028	0.33332	1002	22	1005	30	999	93	1002	22	0.30
2r_W4CZ1_55	555	56.83	0.102396396	0.0732	0.0028	1./41	0.069	0.1/19	0.0033	0.0527	0.003	0.064733	1022.5	18	1024.9	25	1015	/9	1022.5	18	0.23
2r_M4CZ1_7	796	18.31	0.023002513	0.0737	0.0029	1.762	0.069	0.172	0.0034	0.0451	0.0047	0.34233	1023.4	19	1031.3	26	1030	79	1023.4	19	0.77
Zr_M4CZ1_48	171.7	51.5	0.299941759	0.0807	0.0037	1.941	0.09	0.1732	0.0038	0.0595	0.0036	0.31304	1030	21	1094	31	1205	90	1030	21	5.85
Zr_M4CZ1_39	114.5	70.9	0.619213974	0.0733	0.0039	1.777	0.089	0.1752	0.0038	0.0505	0.0028	-0.27618	1041	21	1041	31	1009	110	1041	21	0.00

Zr_M4CZ1_47	737	24.49	0.033229308	0.0738	0.0028	1.802	0.075	0.177	0.0038	0.0536	0.0038	0.67583	1051	21	1048	29	1032	79	1051	21	-0.29
Zr_M4CZ1_21	406	38.2	0.09408867	0.0749	0.003	1.838	0.076	0.1791	0.0039	0.0598	0.0036	0.36123	1062	21	1058	27	1065	83	1062	21	-0.38
Zr_M4CZ1_37	537.9	70.8	0.131622978	0.0757	0.003	1.89	0.075	0.1816	0.0036	0.0536	0.003	0.25274	1075.9	20	1077.1	26	1084	79	1075.9	20	0.11
Zr_M4CZ1_41	299	55.2	0.184615385	0.0747	0.003	1.875	0.077	0.182	0.0036	0.0614	0.0035	-0.054408	1077.9	20	1072	27	1059	84	1077.9	20	-0.55
Zr_M4CZ1_6	897	21	0.023411371	0.0761	0.0029	1.919	0.081	0.1844	0.0038	0.0381	0.004	0.65916	1091	21	1087	28	1094	76	1091	21	-0.37
Zr_M4CZ1_36	480	164.9	0.343541667	0.0782	0.0032	2.021	0.087	0.1869	0.0038	0.0476	0.003	0.044815	1106.3	21	1122	29	1147	82	1106.3	21	1.40
Zr_M4CZ1_42	194	49.8	0.256701031	0.0774	0.0034	2.015	0.088	0.1889	0.0038	0.0546	0.0033	0.14364	1115.3	21	1124	31	1128	88	1115.3	21	0.77
Zr_M4CZ1_10	760	185.1	0.243552632	0.07872	0.003	2.049	0.081	0.1901	0.0036	0.05731	0.003	0.3546	1121.7	19	1131.6	27	1162	75	1121.7	19	0.87
Zr_M4CZ1_44	80.6	38.8	0.481389578	0.0753	0.0035	1.984	0.094	0.1904	0.0043	0.0568	0.0034	0.091079	1123	23	1111	33	1080	96	1123	23	-1.08
Zr_M4CZ1_35	270.2	87.58	0.324130274	0.079	0.0032	2.091	0.089	0.1912	0.0039	0.0575	0.0033	0.18426	1128	21	1148	31	1195	98	1128	21	1.74
Zr_M4CZ1_11	848	204.6	0.241273585	0.07806	0.003	2.059	0.079	0.1928	0.0037	0.05804	0.003	-0.068617	1136.3	20	1134.9	26	1145	76	1136.3	20	-0.12
Zr_M4CZ1_34	825	270	0.327272727	0.07729	0.0029	2.055	0.08	0.1937	0.0039	0.05779	0.003	0.4618	1141.3	21	1135	28	1126	75	1141.3	21	-0.56
Zr_M4CZ1_54	850	164.7	0.193764706	0.079	0.003	2.11	0.14	0.1942	0.0099	0.0629	0.0033	0.9679	1142	53	1150	47	1172	77	1142	53	0.70
Zr_M4CZ1_2	309.8	90	0.290510006	0.0778	0.0031	2.097	0.086	0.1953	0.0038	0.0589	0.0032	0.18878	1150	20	1149	27	1136	79	1150	20	-0.09
Zr_M4CZ1_43	280	88.3	0.315357143	0.0795	0.0033	2.168	0.089	0.1975	0.0039	0.0586	0.0032	-0.028233	1161.8	21	1174	29	1183	81	1161.8	21	1.04
Zr_M4CZ1_29	407	129.8	0.318918919	0.0787	0.0031	2.14	0.085	0.198	0.0038	0.0578	0.0031	-0.024801	1164.8	20	1161.1	28	1165	80	1164.8	20	-0.32
Zr_M4CZ1_31	1008	251.6	0.249603175	0.07848	0.0029	2.149	0.081	0.1981	0.0037	0.05913	0.003	0.011139	1165.3	20	1164.6	26	1157	73	1165.3	20	-0.06
Zr_M4CZ1_33	332.5	133.3	0.400902256	0.0787	0.0034	2.136	0.093	0.1987	0.0042	0.0602	0.0033	0.29618	1168	23	1159	30	1156	86	1168	23	-0.78
Zr_M4CZ1_12	598	72.7	0.121571906	0.0781	0.0031	2.12	0.085	0.1988	0.0038	0.0593	0.0038	-0.19873	1168.7	20	1157	30	1147	78	1168.7	20	-1.01
Zr_M4CZ1_40	1308	265	0.202599388	0.07954	0.0029	2.236	0.086	0.2041	0.0039	0.05994	0.0031	0.611	1197.2	21	1192	27	1184	72	1197.2	21	-0.44
Zr_M4CZ1_22	1299	501	0.385681293	0.0792	0.0029	2.234	0.09	0.2048	0.0045	0.06122	0.0031	0.80201	1201	24	1191	28	1175	72	1201	24	-0.84
Zr_M4CZ1_3	1157	256.6	0.221780467	0.08016	0.003	2.31	0.089	0.208	0.0042	0.05967	0.003	0.53505	1218	22	1216.7	29	1199	73	1218	22	-0.11
Zr_M4CZ1_32	205.4	95.5	0.464946446	0.0819	0.0032	2.356	0.096	0.2085	0.0043	0.0611	0.0034	0.35294	1221	23	1229	29	1238	77	1221	23	0.65
Zr_M4CZ1_5	3/5	113.3	0.302133333	0.0804	0.0031	2.312	0.091	0.2088	0.004	0.0597	0.0032	0.18337	1222.2	22	1217.2	27	1203	76	1222.2	22	-0.41
Zr_W4CZ1_19	287.3	96.7	0.33658197	0.0813	0.0031	2.350	0.094	0.2107	0.0042	0.0624	0.0033	0.26345	1232.0	22	1229	28	1232	/9	1232.0	22	-0.29
Zr_IVI4CZ1_53	195	69.8	0.35/948/18	0.0783	0.0033	2.34	0.1	0.2146	0.0046	0.0623	0.0036	0.088009	1253	24	1226	30	1148	84	1253	24	-2.20
ZI_IVI4CZ1_9	111/	30Z	0.505155595	0.0824	0.0031	2.435	0.094	0.2140	0.0041	0.064	0.0032	0.25924	1205.0	22	1252	20	1204	70	1205.0	22	-0.12
ZI_IVI4CZ1_36	115.9	41.0	0.300966360	0.0806	0.0030	2.440	0.11	0.2207	0.005	0.0678	0.004	0.17215	1205	20	1254	33 2E	1204	90	1205	20	-2.47
ZI_IVI4CZ1_24	210	40.7	0.313340341	0.0830	0.0041	2.071	0.13	0.2313	0.0054	0.0072	0.0047	-0.022300	1202	20	1227	27	1271	94 0C	1202	20	-1.90
21_1014C21_20	510	102.9	0.551555464	0.0010	0.0050	2.702	0.15	0.2393	0.0055	0.0034	0.0056	0.46179	1303	20	1327	54	1234	80	1303	20	-4.22
7r MAT7D1 E	62.1	16.02	0.27	0.0526	0.0059	0 2120	0.0250	0.0422	0.0016	0.0152	0.0017	0.21	272 4	0.6	277.0	26.0	200.0	220.0	272 /	0.6	1 66
ZI_WAT7P1_3	02.1	10.92	0.27	0.0520	0.0038	0.3120	0.0330	0.0432	0.0010	0.0135	0.0017	0.21	272.4	5.0	277.0	12.0	230.0	230.0	272.4	5.0	1.00
ZI_WAT7P1_33	621.5	407	0.39	0.0535	0.0025	0.3133	0.0150	0.0439	0.0009	0.0130	0.0007	-0.20	270.7	5.5	201.2	12.0	214.0	110.0	270.7	5.5	1.00
Zr_MAT7P1_2 7r_MΔT7P1_8	729	493	0.43	0.0545	0.0025	0.3214	0.0150	0.0442	0.0009	0.0140	0.0008	0.15	270.7	5.6	287 3	12.0	382.0	110.0	270.7	5.6	2.82
Zr_MAT7P1_0	271 1	138.6	0.50	0.0536	0.0020	0.3270	0.0100	0.0443	0.0000	0.0134	0.0007	-0.02	279.2	6.1	288.0	14.0	330.0	130.0	279.2	6.1	3.02
Zr_MAT7P1_3	461	235	0.51	0.0506	0.0035	0.3270	0.0150	0.0443	0.0010	0.0134	0.0008	0.02	279.3	6.2	200.0	12.0	205.0	110.0	279.3	6.2	-1 67
Zr_MAT7P1_20	341	189	0.55	0.0526	0.0029	0 3220	0.0180	0.0443	0.0011	0.0147	0.0009	0.17	279.4	6.5	283.0	14.0	284.0	120.0	279.4	6.5	1 27
Zr_MAT7P1_2	313	166.4	0.53	0.0564	0.0029	0 3480	0.0180	0.0444	0.0011	0.0146	0.0008	0.10	279.8	6.5	302.4	14.0	440.0	120.0	279.8	6.5	7 47
Zr_MAT7P1_32	440	235	0.53	0.0528	0.0025	0.3400	0.0170	0.0444	0.0010	0.0140	0.0008	0.33	280.0	6.4	284.2	13.0	313.0	110.0	280.0	6.4	1 48
Zr MAT7P1 17	498	216.4	0.43	0.0513	0.0027	0.3160	0.0160	0.0444	0.0010	0.0143	0.0008	-0.09	280.2	5.8	278.6	12.0	249.0	110.0	280.2	5.8	-0.57
Zr MAT7P1 3	272.1	127.9	0.47	0.0547	0.0040	0.3360	0.0230	0.0445	0.0011	0.0148	0.0009	-0.01	280.7	6.9	296.0	17.0	380.0	150.0	280.7	6.9	5.17
Zr MAT7P1 4	425	249	0.59	0.0548	0.0027	0.3370	0.0170	0.0445	0.0010	0.0131	0.0007	0.11	280.8	6.0	294.6	13.0	396.0	110.0	280.8	6.0	4.68
Zr MAT7P1 24	972	708	0.73	0.0517	0.0023	0.3175	0.0140	0.0446	0.0009	0.0134	0.0007	0.07	281.5	5.6	279.8	11.0	267.0	100.0	281.5	5.6	-0.61
Zr MAT7P1 22	1039	492	0.47	0.0519	0.0022	0.3221	0.0140	0.0447	0.0009	0.0148	0.0008	-0.14	282.0	5.3	283.4	11.0	270.0	98.0	282.0	5.3	0.49
Zr_MAT7P1_27	530	236	0.45	0.0532	0.0026	0.3280	0.0160	0.0448	0.0009	0.0143	0.0009	-0.09	282.6	5.8	288.0	12.0	317.0	110.0	282.6	5.8	1.87
Zr_MAT7P1_15	867	471	0.54	0.0516	0.0023	0.3182	0.0140	0.0449	0.0009	0.0145	0.0008	0.00	282.9	5.8	280.3	11.0	267.0	99.0	282.9	5.8	-0.93
Zr_MAT7P1_21	351	219	0.62	0.0527	0.0029	0.3270	0.0170	0.0449	0.0011	0.0145	0.0009	0.12	282.9	6.5	286.8	13.0	310.0	120.0	282.9	6.5	1.36
Zr_MAT7P1_34	512	236	0.46	0.0518	0.0026	0.3230	0.0160	0.0449	0.0010	0.0141	0.0008	0.14	283.1	6.0	283.5	12.0	267.0	110.0	283.1	6.0	0.14
Zr_MAT7P1_35	393	168.6	0.43	0.0520	0.0030	0.3230	0.0170	0.0449	0.0010	0.0137	0.0008	-0.22	283.1	6.4	283.6	13.0	260.0	130.0	283.1	6.4	0.18
Zr_MAT7P1_26	525	322.6	0.61	0.0522	0.0024	0.3238	0.0150	0.0450	0.0010	0.0139	0.0007	0.15	283.4	6.2	284.5	12.0	280.0	100.0	283.4	6.2	0.39
Zr_MAT7P1_13	810	583	0.72	0.0509	0.0024	0.3180	0.0140	0.0450	0.0009	0.0140	0.0007	-0.28	283.6	5.8	280.1	11.0	234.0	100.0	283.6	5.8	-1.25
Zr_MAT7P1_18	856	462.2	0.54	0.0518	0.0022	0.3238	0.0140	0.0451	0.0009	0.0145	0.0008	0.18	284.0	5.8	284.6	11.0	266.0	96.0	284.0	5.8	0.21
Zr_MAT7P1_31	374	105.2	0.28	0.0516	0.0027	0.3230	0.0170	0.0451	0.0010	0.0146	0.0009	0.11	284.3	6.4	285.4	13.0	260.0	120.0	284.3	6.4	0.39
Zr_MAT7P1_12	833	368	0.44	0.0510	0.0024	0.3188	0.0150	0.0452	0.0009	0.0143	0.0008	0.03	285.2	5.5	280.7	11.0	229.0	100.0	285.2	5.5	-1.60
Zr_MAT7P1_10	540	312	0.58	0.0518	0.0027	0.3220	0.0170	0.0454	0.0010	0.0136	0.0008	0.05	285.9	6.0	284.5	13.0	269.0	120.0	285.9	6.0	-0.49
Zr_MAT7P1_6	579	360	0.62	0.0529	0.0025	0.3340	0.0160	0.0455	0.0009	0.0145	0.0008	0.11	286.8	5.6	293.0	12.0	325.0	110.0	286.8	5.6	2.12
Zr_MAT7P1_25	373	111.9	0.30	0.0518	0.0026	0.3270	0.0160	0.0457	0.0010	0.0149	0.0010	0.22	288.1	6.3	287.1	13.0	284.0	110.0	288.1	6.3	-0.35
Zr_MAT7P1_30	335	118	0.35	0.0572	0.0029	0.3650	0.0180	0.0457	0.0011	0.0162	0.0010	0.18	288.2	6.5	315.3	14.0	502.0	120.0	288.2	6.5	8.59
Zr_MAT7P1_14	574	285	0.50	0.0531	0.0027	0.3370	0.0170	0.0460	0.0011	0.0146	0.0009	0.37	290.1	6.7	294.3	13.0	314.0	110.0	290.1	6.7	1.43
Zr_MAT7P1_11	534	411	0.77	0.0520	0.0024	0.3350	0.0170	0.0463	0.0010	0.0146	0.0008	0.22	291.7	6.0	293.0	13.0	293.0	110.0	291.7	6.0	0.44
Zr_MAT7P1_16	1338	1120	0.84	0.0529	0.0021	0.3497	0.0140	0.0479	0.0009	0.0146	0.0008	0.31	301.9	5.8	304.4	11.0	322.0	91.0	301.9	5.8	0.82
2r MAT7P1 23	40.7	12.3	0.30	0.0705	0.0059	0.9900	0.1100	0.1050	0.0094	0.0320	0.0041	0.69	641.0	55.0	691.0	59.0	850.0	170.0	641.0	55.0	7.24

Zr_MAT7P1_28	774	120	0.16	0.0721	0.0027	1.7090	0.0690	0.1707	0.0034	0.0454	0.0025	0.53	1015	3 19.0	1011.0	26.0	986.0	78.0	1015.8	19.0	-0.47
Zr_MAT7P1_1	294	177	0.60	0.0840	0.0037	2.2970	0.1000	0.2006	0.0044	0.0657	0.0038	0.34	1178	24.0	1211.0	30.0	1286.0	83.0	1178.0	24.0	2.73
Zr_MAT7P1_19	587	234.2	0.40	0.0788	0.0031	2.2660	0.0910	0.2065	0.0041	0.0625	0.0032	0.28	1210	3 22.0	1201.0	29.0	1169.0	72.0	1210.3	22.0	-0.77

Tabla 2. Datos U-Pb de circones de clastos sub-volcánicos de la Fm. Matzitzi

							CORRE RATIO	ECTED S ²								CORI AGES	RECTED S (Ma)				
Clave muestras	U (ppm) ¹	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	206Pb/ 238U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s	Best age (Ma)	±2s	Disc %
Zr_M2V9_17	589	236.8	0.402037351	0.0534	0.0026	0.3133	0.015	0.04277	0.00094	0.01338	0.00084	0.14511	270	5.8	276.4	12	345	110	270	5.8	2.32
Zr_M2V9_23	305.9	116.9	0.38215103	0.0608	0.004	0.369	0.023	0.04345	0.0012	0.01739	0.0012	-0.24899	274.1	7.5	318	17	650	140	274.1	7.5	13.81
Zr_M2V9_15	347	165.7	0.477521614	0.0524	0.0038	0.321	0.022	0.04347	0.0012	0.01385	0.00089	0.15966	274.3	7.2	282	17	300	150	274.3	7.2	2.73
Zr_M2V9_25	489	270.7	0.553578732	0.0523	0.0027	0.318	0.016	0.04392	0.00098	0.01354	0.00079	0.14027	277.1	6.1	279.8	13	289	110	277.1	6.1	0.96
Zr_M2V9_3	490.4	190	0.387438825	0.0529	0.0025	0.325	0.016	0.04423	0.00095	0.01424	0.0008	0.056547	279	5.9	285.3	12	320	100	279	5.9	2.21
Zr_M2V9_28	551	283	0.513611615	0.0518	0.0027	0.316	0.017	0.0443	0.001	0.014	0.00081	0.22816	279.4	6.2	278.8	13	276	120	279.4	6.2	-0.22
Zr_M2V9_24	292	111.6	0.382191781	0.0516	0.0027	0.323	0.017	0.04434	0.001	0.01431	0.00097	0.15504	279.7	6.3	285.4	14	291	120	279.7	6.3	2.00
Zr_M2V9_20	347.6	133.3	0.383486766	0.0526	0.0027	0.324	0.016	0.04445	0.00099	0.0137	0.00089	-0.096535	280.3	6.1	284.5	12	332	120	280.3	6.1	1.48
Zr_M2V9_31	380	277	0.728947368	0.054	0.0031	0.336	0.02	0.04444	0.00093	0.01384	0.00076	0.1237	280.3	5.8	293	15	390	130	280.3	5.8	4.33
Zr_M2V9_32	486	221.7	0.45617284	0.053	0.0027	0.327	0.017	0.04446	0.001	0.01364	0.00082	0.26937	280.4	6.2	286.8	13	311	110	280.4	6.2	2.23
Zr_M2V9_10	464	168.3	0.362715517	0.0525	0.003	0.323	0.018	0.04455	0.0011	0.01418	0.00087	-0.049788	280.9	6.5	283.6	13	279	120	280.9	6.5	0.95
Zr_M2V9_8	110	53.6	0.487272727	0.0553	0.0064	0.33	0.036	0.0446	0.0015	0.0142	0.0014	0.080061	281.3	9.4	287	27	310	230	281.3	9.4	1.99
Zr_M2V9_6	412	180	0.436893204	0.0522	0.0029	0.323	0.019	0.04467	0.001	0.01403	0.00086	0.17857	281.7	6.3	283	14	280	130	281.7	6.3	0.46
Zr_M2V9_26	456	291	0.638157895	0.0543	0.0027	0.328	0.018	0.04468	0.001	0.01397	0.00077	0.15207	281.7	6.2	288	14	364	110	281.7	6.2	2.19
Zr_M2V9_22	590	268.5	0.455084746	0.0519	0.0024	0.3217	0.015	0.04476	0.00097	0.01454	0.00081	0.30838	282.3	6	282.9	12	269	110	282.3	6	0.21
Zr_M2V9_29	274	95.6	0.348905109	0.0527	0.0038	0.326	0.022	0.04478	0.0012	0.01502	0.0011	-0.20427	282.3	7.4	285	17	310	150	282.3	7.4	0.95
Zr_M2V9_4	426	149.2	0.350234742	0.0545	0.0027	0.341	0.016	0.04481	0.001	0.01449	0.00084	-0.0091129	282.6	6.3	297.4	12	379	110	282.6	6.3	4.98
Zr_M2V9_19	945	785	0.830687831	0.0522	0.0024	0.3248	0.015	0.04485	0.00094	0.01416	0.00074	-0.029812	282.8	5.8	285.4	11	291	100	282.8	5.8	0.91
Zr_M2V9_16	386	131	0.339378238	0.0526	0.0027	0.326	0.016	0.04498	0.0011	0.01477	0.00092	0.15387	283.6	6.9	287.5	13	307	110	283.6	6.9	1.36
Zr_M2V9_7	451	161	0.356984479	0.0526	0.003	0.326	0.019	0.04503	0.0011	0.0143	0.00088	0.30259	283.9	6.6	288	14	331	120	283.9	6.6	1.42
Zr_M2V9_33	419	188	0.448687351	0.0502	0.0027	0.314	0.017	0.04502	0.001	0.01399	0.0009	0.092765	283.9	6.3	276.9	13	198	120	283.9	6.3	-2.53
Zr_M2V9_1	429.6	194.9	0.45367784	0.0507	0.0025	0.318	0.016	0.04512	0.001	0.01483	0.00088	0.15191	284.5	6.2	280	12	222	110	284.5	6.2	-1.61
Zr_M2V9_9	522	230.1	0.440804598	0.0519	0.0025	0.323	0.016	0.04518	0.00094	0.01429	0.00081	0.15755	284.9	5.8	284	12	269	110	284.9	5.8	-0.32
Zr_M2V9_21	268	120.4	0.449253731	0.0512	0.003	0.324	0.019	0.0452	0.0011	0.01458	0.00089	0.20643	285	6.7	284	15	260	130	285	6.7	-0.35
Zr_M2V9_37	298	135.7	0.455369128	0.0538	0.0034	0.338	0.021	0.04539	0.001	0.01411	0.00089	0.1571	286.1	6.4	297	16	350	140	286.1	6.4	3.67
Zr_M2V9_36	337	146	0.433234421	0.0514	0.0028	0.321	0.018	0.04541	0.001	0.01455	0.00088	0.28282	286.3	6.5	284	13	237	120	286.3	6.5	-0.81
Zr_M2V9_5	339	116.9	0.344837758	0.0551	0.0035	0.344	0.021	0.04555	0.001	0.0155	0.0011	-0.074579	287.1	6.5	303	16	400	150	287.1	6.5	5.25
Zr_M2V9_38	389	136.3	0.350385604	0.0543	0.0027	0.34	0.017	0.0456	0.001	0.01495	0.00098	0.21181	287.4	6.4	296.4	13	372	120	287.4	6.4	3.04
Zr_M2V9_13	402.2	165.1	0.410492292	0.0502	0.0025	0.317	0.016	0.04563	0.00098	0.01444	0.00092	0.21558	287.6	6	278.9	13	191	110	287.6	6	-3.12
Zr_M2V9_12	594	477	0.803030303	0.0507	0.0022	0.3211	0.014	0.04566	0.00096	0.01439	0.00077	-0.13957	287.8	5.9	283.5	11	226	97	287.8	5.9	-1.52
Zr_M2V9_35	458	173.1	0.377947598	0.0525	0.0025	0.333	0.017	0.04593	0.001	0.0146	0.00087	0.2054	289.5	6.1	293.2	12	320	110	289.5	6.1	1.26
Zr_M2V9_27	486	194	0.399176955	0.0511	0.0023	0.324	0.016	0.04599	0.001	0.015	0.00091	0.19143	289.8	6.3	285	12	233	100	289.8	6.3	-1.68
Zr_M2V9_11	370	136	0.367567568	0.0541	0.0031	0.34	0.019	0.04624	0.0011	0.01453	0.00092	0.0038376	291.3	7	296	15	344	120	291.3	7	1.59
Zr_M2V9_18	156	103	0.66025641	0.0542	0.0036	0.347	0.024	0.04638	0.0013	0.0138	0.00093	0.30507	292.3	7.8	301	18	370	150	292.3	7.8	2.89
Zr_M2V9_14	264	89.9	0.340530303	0.0537	0.003	0.352	0.019	0.04655	0.0011	0.01589	0.0012	-0.023324	293.3	6.6	305	14	360	130	293.3	6.6	3.84
Zr_M2V9_2	266.3	101.3	0.380398047	0.0524	0.0035	0.337	0.021	0.04659	0.0011	0.01561	0.0012	-0.30868	293.5	7	294	16	290	150	293.5	7	0.17
Zr_M2V9_30	322	133	0.413043478	0.051	0.0032	0.33	0.02	0.04678	0.0012	0.01556	0.00094	0.076386	294.7	7.4	289	15	240	130	294.7	7.4	-1.97
Zr_M2V9_34	290	115.5	0.398275862	0.0541	0.0031	0.351	0.021	0.04733	0.0012	0.01572	0.001	0.28404	298.9	7.4	305	16	376	130	298.9	7.4	2.00
Zr MAT3P4 24	867	531.7	0.613264129	0.0552	0.0029	0.278	0.015	0.03643	0.00097	0.01053	0.00063	0.5819	230.6	6	248.5	12	417	110	230.6	6	7.20
Zr_MAT3P4_22	88.8	26.6	0.29954955	0.0511	0.0046	0.299	0.028	0.0416	0.0016	0.0132	0.0014	0.075004	262.4	10	267	23	380	180	262.4	10	1.72
Zr MAT3P4 27	159.1	64.7	0.406662476	0.0512	0.0036	0.3	0.022	0.04205	0.0011	0.01328	0.00097	0.2216	265.5	6.7	268	18	250	160	265.5	6.7	0.93
Zr MAT3P4 1	101.2	39.88	0.394071146	0.053	0.0046	0.306	0.024	0.04206	0.0012	0.01355	0.0011	0.11195	265.6	7.7	269	19	290	180	265.6	7.7	1.26
Zr MAT3P4	167.9	143.3	0.853484217	0.0535	0.0035	0.306	0.02	0.04217	0.0011	0.01247	0.00075	0.16993	266.3	6.6	272	15	340	140	266.3	6.6	2.10
Zr MAT3P4 16	94.7	29.42	0.310665259	0.0517	0.005	0.305	0.03	0.0427	0.0013	0.0125	0.0014	-0.0020657	269.3	8.2	271	24	210	210	269.3	8.2	0.63
Zr MAT3P4 6	109.9	23.35	0.212465878	0.0516	0.0063	0.312	0.038	0.04276	0.0012	0.0138	0.0016	-0.031985	269.9	7.4	271	29	190	240	269.9	7.4	0.41
Zr MAT3P4 12	86.8	26.48	0.305069124	0.0541	0.0054	0.317	0.031	0.0428	0.0013	0.014	0.0012	-0.05937	270	7.8	279	23	330	210	270	7.8	3.23
Zr MAT3P4 14	92.4	29.7	0.321428571	0.05	0.0045	0.297	0.025	0.0426	0.0015	0.01414	0.0012	0.17468	270.3	8.8	262	19	170	180	270.3	8.8	-3.17
Zr_MAT3P4_10	121.4	32.41	0.266968699	0.0498	0.0039	0.296	0.021	0.0429	0.0013	0.0139	0.0013	-0.16113	270.8	8	261	16	160	160	270.8	8	-3.75
Zr_MAT3P4_17	71.5	23.48	0.328391608	0.0519	0.0054	0.302	0.028	0.0428	0.0015	0.0136	0.0015	-0.21276	271.8	9.1	269	22	260	220	271.8	9.1	-1.04

Zr_MAT3P4_11	114.2	37.2	0.325744308	0.0541	0.0046	0.323	0.026	0.04311	0.0012	0.0138	0.0012	-0.18833	272	7.1	282	20	290	180	272	7.1	3.55
Zr_MAT3P4_20	115.8	38.26	0.330397237	0.0498	0.004	0.302	0.023	0.04313	0.001	0.0143	0.0013	-0.1805	272.2	6.4	268	18	210	170	272.2	6.4	-1.57
Zr_MAT3P4_32	92.7	28.6	0.308522114	0.0556	0.0054	0.323	0.036	0.0433	0.0013	0.0141	0.0016	0.14914	273	7.9	294	27	420	210	273	7.9	7.14
Zr MAT3P4 31	79.9	21.4	0.267834793	0.0529	0.0051	0.323	0.029	0.0437	0.0014	0.0158	0.0015	-0.053921	275.4	8.9	285	23	350	200	275.4	8.9	3.37
Zr_MAT3P4_5	85.9	26.91	0.313271246	0.052	0.0043	0.316	0.025	0.0441	0.0015	0.014	0.0013	0.19956	277.9	9.2	283	19	250	170	277.9	9.2	1.80
Zr MAT3P4 21	97.6	20.9	0.214139344	0.0553	0.0051	0.332	0.028	0.04415	0.0012	0.014	0.0015	-0.12979	278.5	7.7	289	21	370	190	278.5	7.7	3.63
Zr MAT3P4 28	67	12.29	0.183432836	0.0548	0.0056	0.316	0.032	0.0442	0.0018	0.015	0.0023	0.1732	278.5	11	280	25	310	210	278.5	11	0.54
Zr MAT3P4 2	16.37	12.32	0.752596213	0.064	0.01	0.366	0.06	0.0443	0.0023	0.0131	0.0017	0.2681	279	14	326	43	580	310	279	14	14.42
Zr MAT3P4 4	97.1	28.3	0.291452111	0.0593	0.0051	0.361	0.031	0.0445	0.0014	0.017	0.0014	0.15757	280.4	8.3	313	23	510	180	280.4	8.3	10.42
Zr MAT3P4 34	352.6	119.5	0 338910947	0.0504	0.0027	0.317	0.016	0.04457	0.0011	0.01488	0.00095	-0.078894	281.1	67	281	12	212	120	281.1	67	-0.04
7r MAT3P4 8	316	118.3	0 374367089	0.0507	0.0028	0.313	0.016	0.0447	0.0011	0.01428	0.00095	-0.040388	281.9	6.5	276.4	12	215	110	281.9	6.5	-1.99
Zr_MAT3P4_35	398	186.7	0.469095477	0.0515	0.0020	0.315	0.016	0.04475	0.00099	0.01411	0.00095	0.073763	282.2	6.1	270.4	13	251	120	282.2	6.1	-1.58
Zr_MAT2D4_33	267	102.2	0.382146067	0.0515	0.0027	0.315	0.010	0.04473	0.00077	0.01422	0.00003	0.2168	202.2	6	287.0	14	207	120	202.2	6	1.00
Zr_MAT2D4_10	207	102.5	0.385140007	0.0529	0.003	0.329	0.016	0.04404	0.00097	0.01452	0.00091	0.15747	202.7	61	201.9	14	211	110	202.7	61	1.01
ZI_MAT3F4_29	249	147.0	0.373372319	0.0521	0.0020	0.320	0.010	0.04494	0.00099	0.01302	0.00084	0.15741	203.4	6.1	287.5	14	260	120	203.4	6.1	0.77
ZI_MAT3P4_20	340	147.2	0.422988500	0.0515	0.003	0.327	0.010	0.045	0.00098	0.01445	0.00089	0.13741	205.0	0.1	280	14	200	120	205.0	6.1	1.46
Zr_MA15P4_55	469	100	0.353944563	0.051	0.0028	0.32	0.018	0.04522	0.001	0.01455	0.00086	-0.036321	285.1	0.3	281	15	220	120	285.1	0.5	-1.40
Zr_MA13P4_13	251	101.7	0.405179283	0.0508	0.003	0.314	0.018	0.04526	0.00098	0.01455	0.00086	-0.11606	285.5	0	277	14	240	130	285.5	0	-5.00
Zr_MA13P4_19	320.3	135.2	0.422104277	0.0531	0.0032	0.328	0.02	0.04528	0.001	0.01408	0.00086	0.22978	285.5	6.4	287	15	310	130	285.5	0.4	0.52
Zr_MAT3P4_9	296	97.3	0.328/16216	0.0545	0.003	0.345	0.018	0.0454	0.001	0.01536	0.00094	0.0063079	286.2	6.3	300.1	14	391	120	286.2	6.3	4.63
Zr_MAT3P4_30	437	231	0.528604119	0.0517	0.0027	0.322	0.016	0.04547	0.001	0.01429	0.00083	0.12232	286.7	6.1	282.9	13	249	110	286.7	6.1	-1.34
Zr_MAT3P4_3	391	185	0.47314578	0.0526	0.0026	0.335	0.018	0.04583	0.0011	0.01515	0.00088	0.31024	288.9	6.6	292.9	13	292	110	288.9	6.6	1.37
Zr_MAT3P4_15	146	58.2	0.398630137	0.0545	0.0036	0.343	0.021	0.04628	0.0012	0.01459	0.0012	-0.068392	291.6	7.2	298	16	360	140	291.6	7.2	2.15
Zr_MAT3P4_25	198	73.6	0.371717172	0.0519	0.0031	0.331	0.02	0.04634	0.0011	0.01434	0.001	0.15899	292	6.7	291	15	280	130	292	6.7	-0.34
Zr_MAT3P4_7	179.2	99.7	0.556361607	0.0716	0.003	1.611	0.068	0.1631	0.0034	0.0509	0.0029	0.1505	976	20	978	26	968	84	976	20	0.20
Zr_MAT3P4_23	287	70.1	0.244250871	0.0716	0.0031	1.638	0.072	0.1663	0.0036	0.0538	0.0032	0.2973	991	20	984	28	968	88	991	20	-0.71
Zr MAT5P1 28	865	651	0.752601156	0.0517	0.0024	0.2711	0.014	0.03789	0.0011	0.00879	0.00066	0.5348	239.7	6.7	243.3	11	270	110	239.7	6.7	1.48
Zr MAT5P1 5	85.9	37.27	0.433876601	0.0583	0.0052	0.347	0.028	0.0437	0.0013	0.0134	0.0012	-0.21763	275.5	8.2	301	21	480	200	275.5	8.2	8.47
Zr MAT5P1 29	303	108.1	0 356765677	0.0524	0.0033	0.316	0.02	0.04367	0.00098	0.01354	0.00085	0.12571	275 5	6	280	15	290	140	275 5	6	1.61
Zr MAT5P1 23	488	216.5	0 443647541	0.0531	0.0027	0.321	0.016	0.04382	0.00093	0.0138	0.0008	-0.28512	276.4	57	282.4	13	310	120	276.4	57	2.12
Zr MAT5P1 1	362.9	157.1	0.432901626	0.0532	0.0028	0.326	0.018	0.04386	0.00093	0.0145	0.00092	0.03641	276.7	5.8	288	14	343	130	276.7	5.8	3.92
Zr_MAT5P1_4	600	288	0.412017167	0.0504	0.0024	0.3088	0.015	0.04308	0.00099	0.01358	0.00076	-0.041132	277.4	6.1	272.0	11	2/0	120	277 /	6.1	-1.65
Zr_MAT5P1_17	421	232	0.551068884	0.0515	0.0024	0.314	0.015	0.04409	0.00095	0.01350	0.00084	0.197	278.1	5.9	272.9	14	240	130	278.1	5.9	-0.40
Zr_MAT5P1_11	311	112.7	0.362370421	0.0511	0.0028	0.309	0.017	0.04416	0.00098	0.01374	0.00004	0.16124	278.6	6	273 3	13	240	120	278.6	6	-1.94
Zr_MAT5P1_11	606 7	201.2	0.302379421	0.0511	0.0028	0.309	0.017	0.04416	0.00098	0.01374	0.00091	0.16204	278.0	5.5	273.5	12	266	110	278.0	5.5	2 47
ZI_MAT5D1_24	526	291.2	0.4/99/3028	0.0544	0.0020	0.3251	0.015	0.04410	0.0009	0.01440	0.00079	-0.10394	278.0	5.5	202.2	12	207	110	278.0	5.5	4.10
ZI_MAT5D1_10	201	237	0.442104179	0.0549	0.0028	0.3352	0.015	0.04455	0.001	0.01303	0.00092	-0.23908	201	6.5	293.5	12	220	140	201	6.5	4.19
ZI_MAT5P1_16	291	92.5	0.51/162151	0.0531	0.0033	0.328	0.019	0.04461	0.0011	0.01484	0.00097	0.25055	201.5	5.0	207	13	224	140	201.5	5.0	1.99
ZI_MATSPI_34	409	244	0.320233804	0.0554	0.0024	0.3243	0.015	0.04469	0.00096	0.01349	0.00077	0.20852	201.0	5.9	284.9	12	220	100	201.0	5.9	1.09
Zr_MAI5PI_33	2/4.5	97.6	0.355555556	0.051	0.003	0.315	0.019	0.04473	0.0011	0.01417	0.00092	0.23559	282	6.9	279	15	230	130	282	6.9	-1.08
Zr_MAI5PI_/	199.8	/6.9	0.384884885	0.0542	0.0032	0.333	0.019	0.04476	0.0011	0.01504	0.0011	-0.32689	282.3	6.5	291	14	370	140	282.3	6.5	2.99
Zr_MAT5P1_2	403.7	155	0.383948477	0.0515	0.0028	0.317	0.018	0.04481	0.00094	0.01459	0.00088	0.18329	282.5	5.8	279	14	237	120	282.5	5.8	-1.25
Zr_MAT5P1_25	297	169	0.569023569	0.0556	0.0036	0.341	0.022	0.0448	0.0012	0.01353	0.00086	0.090925	282.5	7.3	297	17	410	150	282.5	7.3	4.88
Zr_MAT5P1_12	450.4	158	0.35079929	0.051	0.0027	0.317	0.016	0.04492	0.00099	0.01401	0.00091	0.0035929	283.2	6.1	279.3	13	224	120	283.2	6.1	-1.40
Zr_MAT5P1_35	384	122.8	0.319791667	0.052	0.0028	0.323	0.018	0.04497	0.001	0.01434	0.00096	0.20648	283.6	6.4	284	14	264	120	283.6	6.4	0.14
Zr_MAT5P1_15	360	125.3	0.348055556	0.051	0.0031	0.318	0.019	0.04499	0.0011	0.01456	0.00093	0.27962	283.7	6.7	280	15	230	130	283.7	6.7	-1.32
Zr_MAT5P1_19	513	278	0.541910331	0.053	0.0025	0.327	0.016	0.04503	0.0011	0.01425	0.00079	0.16573	283.9	6.7	288.3	12	331	110	283.9	6.7	1.53
Zr_MAT5P1_30	280.1	94.6	0.337736523	0.0499	0.0036	0.313	0.023	0.04507	0.0012	0.01529	0.0011	-0.049808	284.2	7.6	276	17	220	150	284.2	7.6	-2.97
Zr_MAT5P1_21	372	148.8	0.4	0.0511	0.003	0.324	0.018	0.04513	0.001	0.01437	0.00087	-0.1523	284.5	6.2	284	14	250	140	284.5	6.2	-0.18
Zr_MAT5P1_13	317	172	0.542586751	0.0499	0.003	0.316	0.018	0.04518	0.001	0.0146	0.00087	0.0049367	284.8	6.3	278	14	200	140	284.8	6.3	-2.45
Zr_MAT5P1_20	279.4	111.69	0.399749463	0.0512	0.0029	0.321	0.018	0.04522	0.0011	0.01395	0.00087	0.022035	285.1	6.5	282	14	240	130	285.1	6.5	-1.10
Zr_MAT5P1_27	190	71.5	0.376315789	0.0509	0.0031	0.316	0.018	0.04527	0.0012	0.01453	0.001	-0.068116	285.4	7.4	279	14	230	130	285.4	7.4	-2.29
Zr MAT5P1 26	490	268.5	0.547959184	0.052	0.0025	0.326	0.016	0.04549	0.001	0.01354	0.0008	0.22465	286.8	6.1	286.2	12	280	110	286.8	6.1	-0.21
Zr MAT5P1 8	765	384	0.501960784	0.0522	0.0024	0.3281	0.016	0.04569	0.0012	0.01429	0.00078	0.36793	288	7.2	287.8	12	294	100	288	7.2	-0.07
Zr MAT5P1 32	292	132.4	0.453424658	0.0521	0.0029	0.324	0.018	0.04573	0.0011	0.01462	0.0011	0.090226	288.3	6.9	285	14	270	120	288.3	6.9	-1.16
Zr MAT5P1 22	343	134	0.390670554	0.0518	0.0033	0.326	0.021	0.0459	0.001	0.01458	0.00093	0.18881	289.3	63	288	17	250	140	289 3	6.3	-0.45
Zr MAT5P1 0	212	787	0 371226415	0.0532	0.0032	0.333	0.02	0.04602	0.0011	0.01556	0.0011	0 20718	290	6.5	200	15	340	140	290	6.5	0.34
Zr MAT5D1 16	412	166	0.402012621	0.0525	0.0032	0.335	0.02	0.0462	0.0011	0.01506	0.00002	0.23013	291.1	60	294	14	28/	120	201 1	60	0.04
Zr_MAT5P1_2	283	130.5	0.461130742	0.0510	0.0020	0.335	0.022	0.04632	0.0011	0.01/30	0.00092	0.041128	201.0	6.0	207	17	280	150	201.0	6.9	0.02
Zr_MAT5D1_14	205	219	0.401130742	0.0517	0.0034	0.335	0.022	0.04033	0.0011	0.01459	0.00093	0.009224	271.7	7	272	16	210	150	271.7	7	0.03
ZI_WIAIJFI_14 7r_MAT5D1_21	194	210	0.3044/9/18	0.0507	0.0055	0.328	0.021	0.04098	0.0011	0.01577	0.0015	-0.096524	290	72	200	21	210	150	290	72	-2.78
ZI_MAI3PI_31	184	84.7	0.40032008/	0.0598	0.0046	0.388	0.029	0.04732	0.0012	0.01577	0.0011	0.10933	298	1.3	334	21	550	100	298	1.5	10.78
Zr MAT5PI 10	369	102.2	0.27696477	0.0723	0.0031	1.47	0.12	0.1483	0.0098	0.0487	0.003	0.92519	889	55	914	49	983	88	889	55	2.74

Tabla 3. Datos U-Pb de circones de clastos de arenisca de la Fm. Matzitzi

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		CORRECTED RATIOS ²															CORI (Ma)	RECTED A	AGES			
Unit <thunit< th=""> Unit Unit <thu< th=""><th>Clave muestra</th><th>U</th><th>Th</th><th>Th/U</th><th>²⁰⁷Pb/ 206ph</th><th>±2s</th><th>²⁰⁷Pb/ 23511</th><th>±2s</th><th>²⁰⁶Pb/ 23811</th><th>±2s</th><th>²⁰⁸Pb/ 232Th</th><th>±2s</th><th>Rho</th><th>²⁰⁶Pb/ 2381 1</th><th>±2s</th><th>²⁰⁷Pb/ 23511</th><th>±2s</th><th>²⁰⁷Pb/ 206ph</th><th>±2s</th><th>Best age</th><th>±2s</th><th>Disc</th></thu<></thunit<>	Clave muestra	U	Th	Th/U	²⁰⁷ Pb/ 206ph	±2s	²⁰⁷ Pb/ 23511	±2s	²⁰⁶ Pb/ 23811	±2s	²⁰⁸ Pb/ 232Th	±2s	Rho	²⁰⁶ Pb/ 2381 1	±2s	²⁰⁷ Pb/ 23511	±2s	²⁰⁷ Pb/ 206ph	±2s	Best age	±2s	Disc
Description Main 2.3 0.32 0.033 0.033 0.0465 0.00465 0.00148 0.00148 0.0014 0.00143 0.0014<		(ppm)	(ppin)		PO	abs		abs		abs	11	abs						PO		(Ma)		70
2	Zr_M4F16_47	401.7	218	0.542694	0.0527	0.0035	0.33	0.026	0.04653	0.00082	0.01445	0.001	0.2985	293.2	5	292	19	300	140	293.2	5	-0.41
2	Zr_M4F16_80 Zr_M4E16_6	270	163	0.603704	0.0516	0.0027	0.334	0.016	0.04/61	0.00083	0.0151	0.00079	-0.02961	299.8	5.1	292	12	250	120	299.8	5.1	-2.67
22_MEPC_35 019 015 0.42862 0.0087 0.0019 0.0086 0.0009 0.0236 0.018 0.0444 4.81 5.5 4.10 1.5 4.12 4.8 4.13 1.5 4.12 4.8 4.81 5.5 4.00 2_MMEPL_30 0.017 0.020 0.088 0.0019 0.0224 0.0011 0.02244 465.1 5.5 4.00 4.65.2 5.6 0.031 0.0244 4.65.1 5.5 4.00 4.65.2 5.6 4.01 4.02 4.65.2 5.6 6.01 5.0 7.0 8.002 0.001 0.0214 0.0011 0.0244 4.65.1 5.5 4.0 5.1 5.2 8.0 5.2 5.0 6.0 5.0 8.0 2.0 0.011 0.0249 5.0 8.1 5.2 8.0 5.2 8.0 5.2 8.0 5.2 8.0 5.2 8.0 5.2 8.0 5.2 8.0 5.2 8.0 5.2 8.0 5.2 </td <td>Zr_M4F16_0</td> <td>157.7</td> <td>223</td> <td>0.310804</td> <td>0.0505</td> <td>0.0038</td> <td>0.375</td> <td>0.023</td> <td>0.0485</td> <td>0.0012</td> <td>0.01337</td> <td>0.001</td> <td>0.13043</td> <td>320.0</td> <td>5.1</td> <td>323</td> <td>10</td> <td>373</td> <td>03</td> <td>303.9</td> <td>5.1</td> <td>1.02</td>	Zr_M4F16_0	157.7	223	0.310804	0.0505	0.0038	0.375	0.023	0.0485	0.0012	0.01337	0.001	0.13043	320.0	5.1	323	10	373	03	303.9	5.1	1.02
Zimerie, 30 0887 88.1 0.12862 0.0039 0.0024 0.00445 0.00445 48.1 5.5 4807 1.2 999 7.4 48.1 5.5 4807 1.2 999 7.4 48.1 5.5 4807 1.2 999 7.4 4811 5.5 4807 1.2 999 7.4 4811 5.5 4807 1.2 4914 5.5 4807 1.4 4811 5.5 6817 7.4 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 8.7 1.42 7.5 7.5 8.7 7.5 8.7 7.5 8.7 7.5 8.7 7.5 8.7 7.5 8.7 7.5 8.7 7.5 8.7 7.5 8.7 7.5 8.7 7.5 8.7 7.5 8.7 7.5 8.7 7.5 8.7 7.5 8.7 7.5 8.7 7.5 8.7 7.5 <td>Zr M4F16 45</td> <td>501.9</td> <td>215</td> <td>0.428372</td> <td>0.0547</td> <td>0.0023</td> <td>0.5</td> <td>0.010</td> <td>0.0661</td> <td>0.00079</td> <td>0.02046</td> <td>0.001</td> <td>0.23365</td> <td>412.6</td> <td>4.8</td> <td>411.3</td> <td>13</td> <td>412</td> <td>83</td> <td>412.6</td> <td>4.8</td> <td>-0.32</td>	Zr M4F16 45	501.9	215	0.428372	0.0547	0.0023	0.5	0.010	0.0661	0.00079	0.02046	0.001	0.23365	412.6	4.8	411.3	13	412	83	412.6	4.8	-0.32
Z.MHF6,00 0477 0475 06010 06271 00714 00076 00224 0011 02248 64.2 5.6 697 1 490 16 4452 5.6 697 1 540 51 550 71 747 74	Zr_M4F16_30	688.7	83.1	0.120662	0.0599	0.002	0.606	0.019	0.07366	0.00092	0.0354	0.0018	-0.04445	458.1	5.5	480.7	12	599	74	458.1	5.5	4.70
Z.MHF6_70 486 1.6 0.05215 0.057 0.007 0.020 0.0716 0.0090 0.024 0.0012 0.032 14.6 4.4 13 506 7.4 47.1 5.8 0.72 Z.MHF0_41 617 2.6 0.03111 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0321 0.0331 0.0332 0.0331 0.0325 53.8 8 55 15 31 54.8 8 0.33 Z.MHF0_12 2.41 53.3 0.0324 0.0321 0.0331 0.0362 0.0313 0.0341 53.8 13 54.8 13 54.8 13 54.8 13 54.8 13 54.8 13 54.8 14 55.8 17 43.8 43.8 43.8 43.8 43.8 43.8 43.8 43.8 43.8 43.8 43.8 43.8 43.8 43.8 43.8	Zr_M4F16_60	407	245	0.601966	0.057	0.0022	0.588	0.022	0.07484	0.00093	0.02274	0.0011	0.26548	465.2	5.6	469	14	489	86	465.2	5.6	0.81
Z.MHFLG-34 614 161 0.20213 0.081 0.0019 0.014 0.0214 0.0014 0.22313 81.4 6.4 48.4 13 22.6 70 48.46 6.4 0.23 0.2448 0.031 0.0214 0.031 0.0214 0.0314 0.0214 0.0314 0.0214 0.0314 0.0214 0.0314 0.0214 0.0314 0.0214 0.0314 <td>Zr_M4F16_70</td> <td>486</td> <td>31.6</td> <td>0.065021</td> <td>0.0574</td> <td>0.002</td> <td>0.606</td> <td>0.02</td> <td>0.07716</td> <td>0.00096</td> <td>0.0246</td> <td>0.0021</td> <td>0.07483</td> <td>479.1</td> <td>5.8</td> <td>480.5</td> <td>13</td> <td>506</td> <td>74</td> <td>479.1</td> <td>5.8</td> <td>0.29</td>	Zr_M4F16_70	486	31.6	0.065021	0.0574	0.002	0.606	0.02	0.07716	0.00096	0.0246	0.0021	0.07483	479.1	5.8	480.5	13	506	74	479.1	5.8	0.29
Z.MHFIG.47 166.4 123 0.0781 0.015 0.0271 0.0014 0.02281 23.15 8.7 7.92 19 548 95 21.15 8.7 1.20 CMMFIG.47 0.014111 0.0158 0.0021 0.0021 0.0021 0.0021 0.0143 53.14 6.8 53.54 6.6 53.9 8.7 53.14 6.8 63.14 64.14 64.14 64.14 64.14 64.14 64.14 64.14 64.14 64.14 64.14 64.14 64.14 64.14 64.14 64.14 <th< td=""><td>Zr_M4F16_94</td><td>614</td><td>161</td><td>0.262215</td><td>0.0581</td><td>0.0019</td><td>0.615</td><td>0.02</td><td>0.07807</td><td>0.0011</td><td>0.02449</td><td>0.0012</td><td>0.3832</td><td>484.6</td><td>6.4</td><td>488.1</td><td>13</td><td>526</td><td>70</td><td>484.6</td><td>6.4</td><td>0.72</td></th<>	Zr_M4F16_94	614	161	0.262215	0.0581	0.0019	0.615	0.02	0.07807	0.0011	0.02449	0.0012	0.3832	484.6	6.4	488.1	13	526	70	484.6	6.4	0.72
Z.MHE.3.8 017 2.9.3 0.4541 0.0584 0.0579 0.0023 0.0124 0.0534 0.0584 0.55 12 551 13 150 0.58 14 2.54 Z.MHE.0.2 473 33.3 0.1584 0.0571 0.0023 0.0221 0.0124 0.0144 0.1045 0.013 0.0144 0.1045 531 15 546 9.8 33.3 18 551 9.5 546 9.8 531 18 561 9.8 541 9.8 441 7.5 0.0278 0.0016 0.0158 0.0286 0.0011 0.0284	Zr_M4F16_67	166.4	123	0.739183	0.0585	0.0027	0.687	0.033	0.0843	0.0015	0.02741	0.0014	0.22531	521.5	8.7	529	19	548	95	521.5	8.7	1.42
Display <t< td=""><td>Zr_M4F16_38</td><td>01/</td><td>26.6</td><td>0.043112</td><td>0.0583</td><td>0.0026</td><td>0.68</td><td>0.14</td><td>0.08482</td><td>0.012</td><td>0.0328</td><td>0.0033</td><td>0.008425</td><td>524.8</td><td>68 9 1</td><td>526</td><td>00</td><td>530</td><td>83</td><td>524.8</td><td>68</td><td>0.23</td></t<>	Zr_M4F16_38	01/	26.6	0.043112	0.0583	0.0026	0.68	0.14	0.08482	0.012	0.0328	0.0033	0.008425	524.8	68 9 1	526	00	530	83	524.8	68	0.23
Z.MH716_18 54.4 05.5 0.0289 0.0004 0.017 0.0105 0.01080 0.0133 518 12 291 010 555 12 290 Z.MH716_12 47.5 33.9 0.71384 0.0612 0.0025 0.0034 0.021 0.0021 0.0133 558 14 52.9 620 150 358 12 24.0 0.011 0.0116 0.0138 558 14 640 140 451.1 2.2 34.1 15.0 29 620 460 140 451.8 11 2.0 11.0 541.8 7.2 7.2 7.2 7.2 0.015 0.019 0.1120 541.8 13 560 140 451.8 11 2.0 11.0 2.0 11.0 10.057 57.1 15.1 553.2 9.1 1.0 10.057 15.7 11.5 551 451 451.8 11.2 12.0 11.0 10.057 57.5 11.1 1.0 10.055	Zr_M4F16_14 Zr_M4F16_92	225	122.5	0.34843	0.0576	0.0022	0.078	0.023	0.0852	0.0014	0.02019	0.0015	0.20990	520.8	9.1	582	13	750	82	520.8	9.1	-0.34 8.25
Z.MATFIG.25 42.82 55.9 0.8339 0.0623 0.0734 0.0824 0.0023 0.0214 0.1245 55.9 14 55.2 29 0.20 150 58 14 2.44 Z.MATFIG.28 366 70.2 0.271844 0.073 0.0024 0.0021 0.0124 538 14 55.4 14 44 44 14.1 14.0 44 14.1 14.0 44 14.1 14.0 44.1 14.1 14.0 14.0 14.0 16.0 16.0 14.0 44.1 14.1 14.0 44.1 14.1 14.0 44.1 14.1 14.0 44.1 14.1 14.0 44.1 14.1 14.0 44.1 14.1 14.0 14.0 15.0 16.0 14.0 <td>Zr M4F16 18</td> <td>54.4</td> <td>50.5</td> <td>0.928309</td> <td>0.0602</td> <td>0.0046</td> <td>0.717</td> <td>0.053</td> <td>0.0864</td> <td>0.002</td> <td>0.0269</td> <td>0.0015</td> <td>0.040861</td> <td>535</td> <td>12</td> <td>551</td> <td>31</td> <td>590</td> <td>160</td> <td>535</td> <td>12</td> <td>2.90</td>	Zr M4F16 18	54.4	50.5	0.928309	0.0602	0.0046	0.717	0.053	0.0864	0.002	0.0269	0.0015	0.040861	535	12	551	31	590	160	535	12	2.90
Z M4P16_12 47.5 33.9 0.0152 0.0234 0.028 0.021 0.0245 6.39 13 5.68 4 6.00 10 5.57 12 5.68 5.7 12 5.87 12 5.68 5.7 12 5.87 12 5.68 5.7 12 5.67 12 5.77 14 5.77 14 5.77 14 5.75 12 5.75 12 5.75 12 5.75 12 5.75 12 5.75 12 5.75 12 5.75 12 5.75 12 5.75 12 5.75 13 5.85 9 5.46 9.85 5.75 12 5.75 13 5.68 9.75 11 1.049 2.2 2.15 2.2 2.15 2.2 2.15 2.2 2.15 2.2 2.15 2.2 2.15 2.2 2.15 2.2 2.15 2.2 2.15 2.2 2.15 2.2 2.15 2.2	Zr M4F16 25	42.82	35.9	0.838393	0.0625	0.0048	0.727	0.055	0.087	0.0023	0.0261	0.0023	-0.13833	538	14	552	29	620	150	538	14	2.54
Z.MAFI6.58 306 70.2 0.2712 0.0733 0.0024 0.078 0.0018 0.0109 0.1189 54.8 7.2 535 7.4 818 94 51.8 11 30.4 Z.MAFI6.37 160 29.5 0.18475 0.0056 0.007 0.726 0.018 0.0271 0.010 0.12845 53.8 15 55 95 54.66 98 1.16 Z.MAFI6.31 0.047 0.058 0.001 0.028 0.001 0.018 0.028 0.011 0.1488 557 15 587 16 587 17 18 583 68 557.7 1 1.049 Z.MAFI6.56 732 18.3 0.058 0.0018 0.0028 0.018 0.0285 0.011 0.0753 577.7 18 583 68 557.7 7 7.8 Z.MAFI6.57 732 1.3 0.035 0.0293 0.0293 0.0113 0.027 577.7 18 58	Zr_M4F16_12	47.5	33.9	0.713684	0.0612	0.0045	0.743	0.058	0.0872	0.0023	0.0267	0.0021	0.10245	539	13	568	34	610	150	539	13	5.11
Z_MHE16,51 53.7 29.41 0.547672 0.0069 0.0044 0.718 0.0017 0.0271 0.0019 -0.16546 54.6 9.8 55.5 18 55.5 16 55.5 18 55.5 18 55.5 13 58.6 9.8 55.2 9.1 55.5 13 58.6 9.8 15.0 10.6 25.2 11 55.5 13 58.6 17.0 55.1 1.6 55.5 13 58.6 17.0 55.1 1.6 55.5 13 58.6 18.0 55.2 9.1 25.5 15.7 56.1 13 58.6 18.0 55.2 51.2 51.6 15.6 17.0 15.0 17.0 15.0 18.0 18.0 15.0 16.0 55.7 51.7 13.1 50.0 10.0025 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.0035 0.013 0.0224	Zr_M4F16_98	306	70.2	0.229412	0.0573	0.0024	0.695	0.028	0.08769	0.0012	0.0278	0.0016	0.11209	541.8	7.2	535	17	481	94	541.8	7.2	-1.27
Z.MHF16,37 160 29.5 0.184375 0.0998 0.0027 0.728 0.0021 0.24205 54.6 9.8 53.6 9.5 54.6 9.8 54.6 9.8 1.16 Z.MHF16,31 94.4 77.5 0.839975 0.0632 0.0281 0.0218 0.02165 0.014 0.02859 550.2 9.1 557 11 551 15 15 15 15 15 15 15 15 15 15 15 15 16 9.5 16 9.5 17 11 45 16 9.5 17 16 15 15 17 10 15 1	Zr_M4F16_53	53.7	29.41	0.547672	0.0606	0.0044	0.741	0.051	0.0878	0.0018	0.0271	0.0019	-0.16546	543	11	560	29	640	140	543	11	3.04
Z.M.HIB, 3H 467.8 401.4 10.9449 0.0549 0.0012 0.129 0.0014 0.02265 0.0014 0.02265 0.0014 0.02265 0.0014 0.02265 0.0014 0.02265 0.0014 0.02265 0.0014 0.02265 0.0014 0.02265 0.0014 0.02265 0.0014 0.02265 0.0014 0.02265 0.0014 0.02265 0.0014 0.02265 0.0014 0.00265 0.0014 0.00265 0.0014 0.00265 0.0014 0.00265 0.0014 0.00265 0.0014 0.00253 0.0014 0.00253 0.0014 0.00253 0.0014 0.00253 0.0014 0.00253 0.0014 0.0025 0.0014 0.0025 0.0013 0.00244 0.0013 0.0014 0.0013 0.0013 0.0014 0.0013 0.0013 0.0014 0.0013 0.0013 0.0014 0.0014 0.0013 0.0013 0.0014 0.0014 0.0014 0.0013 0.0014 0.0014 0.0014 0.0014 0.0013 0.0013 0.00	Zr_M4F16_37	160	29.5	0.184375	0.0596	0.0027	0.726	0.031	0.0885	0.0017	0.0278	0.0021	-0.24205	546.6	9.8	553	18	565	95	546.6	9.8	1.16
Z.M.PHE.34 94.7 17.3 0.0.0973 0.0074 0.0013 0.0084 0.0018 0.0016 0.00280 0.0014 0.00280 0.0014 0.00280 0.0014 0.00280 0.0014 0.00280 0.0014 0.00280 0.0014 0.00280 0.0014 0.00280 0.0014 0.00280 0.0014 0.0016	Zr_M4F16_81	467.8	491.4	1.050449	0.0598	0.002	0.729	0.023	0.0886	0.0011	0.02655	0.0012	0.14881	547	6.6	555	13	588	72	547	6.6	1.44
Z_MHIE_LOS 101.2 40.6 0.49913 0.0613 0.0217 0.213 0.0017 0.213 0.0017 0.213 0.0017 0.0213 0.0015 0.00165 0.00165 0.00165 0.00165 0.00165 0.00165 0.00155 0.0015 0.0115 0.0155 0.011 0.0155 0.011 0.013 0.0274 65.6 1.5 67.6 55.8 1.00 65.7 7.5 1.1 3.58 7.5 7.5 1.1 3.58 7.5 1.1 3.58 1.00 65.6 7.6 7.5 1.1 3.58 1.00 56.7 2.15 7.5 7.6 1.5 1.5 1.6 7.7 1.1 3.58 1.0 1.00 7.5 1.13 3.55 1.0 1.5 1.1 3.55 1.1 3.55 1.7 1.1 3.55 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	Zr_M4F16_54 Zr_M4E16_100	94.4	77.5 94	0.820975	0.0637	0.003	0.784	0.035	0.0891	0.0015	0.0280	0.0014	-0.05839	550.2 557 7	9.1	555	19	709 562	100	557.7	9.1	0.27
$ \begin{array}{c} \mathbf{r}_{\mathbf{L}} \mathbf{MF1} \left[\mathbf{c}_{6} 722 \\ \mathbf{R}_{\mathbf{L}} \mathbf{R}_{\mathbf{L}} \\ \mathbf{R}_{\mathbf{L}} \mathbf{MF1} \left[\mathbf{c}_{5} 72 \\ \mathbf{R}_{\mathbf{L}} \mathbf{MF1} \left[\mathbf{c}_{5} 72 \\ \mathbf{R}_{\mathbf{L}} \mathbf{MF1} \left[\mathbf{c}_{5} 72 \\ \mathbf{R}_{\mathbf{L}} \mathbf{R}_{\mathbf{L}} \right] \\ \mathbf{R}_{\mathbf{L}} \mathbf{MF1} \left[\mathbf{c}_{\mathbf{R}} 72 \\ \mathbf{R}_{\mathbf{L}} \mathbf{R}_{\mathbf{L}} \right] \\ \mathbf{R}_{\mathbf{L}} \mathbf{MF1} \left[\mathbf{c}_{\mathbf{R}} 72 \\ \mathbf{R}_{\mathbf{L}} \mathbf{R}_{\mathbf{L}} \right] \\ \mathbf{R}_{\mathbf{L}} \mathbf{R}_{\mathbf{L}} \\ \mathbf{R}_{\mathbf{L}} \mathbf{R}_{\mathbf{L}} \right] \\ \mathbf{R}_{\mathbf{L}} \mathbf{R}_{\mathbf{L}} \mathbf{R}_{\mathbf{L}} \\ \mathbf{R}_{\mathbf{L}} \mathbf{R}_{\mathbf{L}} \right] \\ \mathbf{R}_{\mathbf{L}} \mathbf{R}_{\mathbf{L}} \mathbf{R}_{\mathbf{L}} \\ \mathbf{R}_{\mathbf{L}} \mathbf{R}_{\mathbf{L}} \right] \\ \mathbf{R}_{\mathbf{L}} \mathbf{R}_{\mathbf{L}} \\ \mathbf{R}_{\mathbf{L}} \mathbf{R}_{\mathbf{L}} \right] \\ \mathbf{R}_{\mathbf{L}} \mathbf{R}_{\mathbf{L}} \\ \mathbf{R}_{\mathbf{L}} \\ \mathbf{R}_{\mathbf{L}} \mathbf{R}_{\mathbf{L}} \\ \mathbf{R}_{\mathbf{L}} \\ \mathbf{R}_{\mathbf{L}} \\ \mathbf{R}_{\mathbf{L}} \\ \mathbf{R}_{\mathbf{L}} \\ \mathbf{R}_{\mathbf{L}} \\ \mathbf{R}_{\mathbf{L}} \mathbf{R}_{\mathbf{L}} \\ \mathbf{R}_{\mathbf{L}} \\ \mathbf{R}_{\mathbf{L}} \\ \mathbf{R}_{\mathbf{L}} \mathbf{R}_{\mathbf{L}} \\ \mathbf{R}_{\mathbf{L}} \\ \mathbf{R}_{\mathbf{L}} \\ \mathbf{R}_{\mathbf{L}} \\ \mathbf{R}_{\mathbf{L}} \\ \mathbf{R}_{\mathbf{L}} \\ \mathbf{R}_{\mathbf{L}} \mathbf{R}_{\mathbf{L}} \\ \mathbf{R}_{\mathbf{L}} \mathbf{R}_{\mathbf{L}} \\ \mathbf{R}_{\mathbf{L}} \\ \mathbf{R}_{\mathbf{L}} \\ \mathbf{R}_{\mathbf{L}} $	Zr_M4F16_66	103.2	04 50.6	0.449198	0.0582	0.0024	0.723	0.03	0.0904	0.0018	0.02800	0.0014	-0.08534	5587	92	571	23	630	130	558.7	9.2	2 15
$ \begin{array}{c} \hline r_{1} \text{MFI}_{1} \ (c_{1}, c_{2}, c_{2}, c_{3}, c_{4}, $	Zr_M4F16_56	732	18.3	0.025	0.05959	0.0018	0.743	0.022	0.09063	0.00096	0.0306	0.003	0.04235	559.2	5.7	564.1	13	583	68	559.2	5.7	0.87
	Zr M4F16 52	39.06	3.02	0.077317	0.078	0.006	0.96	0.067	0.091	0.0025	0.0953	0.0093	-0.12496	561	15	676	35	1120	160	561	15	17.01
$ \begin{array}{c} z_{m} MF16_{6} & 126.3 \\ z_{m} MF16_{7} & 313 \\ z_{m} MF16_{$	Zr_M4F16_78	332	248	0.746988	0.0611	0.0023	0.763	0.027	0.0917	0.0013	0.02768	0.0013	0.022944	565.6	7.6	578	15	627	81	565.6	7.6	2.15
$ \begin{array}{c} z_{L} \mathrm{M4F16}, 7 \\ z_{L} \mathrm{M4F16}, 3 \\ z_{L} \mathrm{M4F16}, 5 $	Zr_M4F16_84	126.3	2.48	0.019636	0.06	0.0037	0.758	0.053	0.092	0.0038	0.059	0.0085	0.031413	567	22	571	31	580	120	567	22	0.70
$ \begin{array}{c} x_{m} \text{MeF16} \\ \text{C} 5 \\ x_{m} \text{MeF16} \\ \text{C} 7 \\ x_{m} \text{MeF16} \\ \text{C} 7 $	Zr_M4F16_7	313	251	0.801917	0.0595	0.0022	0.752	0.029	0.0924	0.0014	0.02807	0.0013	0.24853	569.8	8.2	568	17	590	79	569.8	8.2	-0.32
$ \begin{array}{c} \chi_{2} \text{MHF16} & 1 \\ \chi$	Zr_M4F16_57	220.7	69.8	0.316266	0.0602	0.0032	0.765	0.049	0.0924	0.0021	0.0306	0.0032	-0.11539	570	13	575	27	570	99 70	570	13	0.87
$ \begin{array}{c} \lambda_{L} \operatorname{Merl} [0.7] \\ \pi_{L} \operatorname{Merl} $	Zr_M4F16_31 Zr_M4F16_77	564	20.8	0.036879	0.0594	0.0021	0.77	0.028	0.094	0.0013	0.0298	0.002	0.40224	578.9	7.9	583	16	578	140	578.9	7.9	0.70
$ \begin{array}{c} \mu_{2} \text{Marfie}(2,3) \\ \mu_{2} \text{Marfie}(2,3) \\ \mu_{1} \text{Marfie}(3,3) \\ \mu_{1} Marfie$	ZI_M4F10_// Zr_M4F16_76	202.5	52.72	0.775212	0.0605	0.0036	0.795	0.042	0.0949	0.0021	0.0292	0.0017	-0.1135	588 2	6.8	590	24	643	94	588.2	6.8	0.64
$ \begin{array}{c} \hline x_{T} \operatorname{M4F16} = 0 & 416 & 168 & 0.403 \\ x_{T} \operatorname{M4F16} = 0 & 167 & 0.0023 & 0.0091 & 0.0022 & 0.783 & 0.028 & 0.00966 & 0.0011 & 0.00311 & 0.0014 & 0.18655 & 504.8 & 6.2 & 586 & 16 & 566 & 79 & 594.8 & 6.2 & -150 \\ \hline x_{T} \operatorname{M4F16} = 54 & 173 & 48.4 & 0.0279769 & 0.0623 & 0.0023 & 0.829 & 0.029 & 0.0994 & 0.0012 & 0.0318 & 0.0017 & 0.060156 & 611.5 & 8.9 & 621 & 20 & 680 & 91 & 611.5 & 8.9 & 91.3 \\ \hline x_{T} \operatorname{M4F16} = 1 & 194.4 & 56.5 & 0.378179 & 0.062 & 0.0022 & 0.837 & 0.036 & 0.0994 & 0.0015 & 0.0314 & 0.0017 & 0.060156 & 611.5 & 8.9 & 621 & 20 & 682 & 100 & 621.3 & 9 & 0.43 \\ \hline x_{T} \operatorname{M4F16} = 1 & 194.4 & 56.5 & 0.378179 & 0.062 & 0.0022 & 0.832 & 0.038 & 0.1012 & 0.0018 & 0.0016 & -0.01880 & 621.3 & 9 & 624 & 20 & 682 & 100 & 621.3 & 9 & 0.43 \\ \hline x_{T} \operatorname{M4F16} = 1 & 44.98 & 20.47 & 0.455091 & 0.0755 & 0.0044 & 1.043 & 0.062 & 0.1012 & 0.0013 & 0.0347 & 0.0032 & 0.1086 & 628 & 18 & 734 & 27 & 1090 & 110 & 628 & 18 & 14.44 \\ \hline x_{T} \operatorname{M4F16} = 1 & 517 & 71.6 & 0.141223 & 0.0601 & 0.002 & 0.031 & 0.0102 & 0.0314 & 0.0018 & 0.1623 & 642.4 & 7.8 & 636 & 156 & 657 & 57 & 642.4 & 7.8 & -1.01 \\ \hline x_{T} \operatorname{M4F16} = 1 & 137 & 7 & 0.327144 & 0.0721 & 0.0024 & 0.035 & 0.1091 & 0.0024 & 0.0314 & 0.0018 & 0.1623 & 642 & 12 & 598 & 667 & 14 & 670 & 19 & 694 & 80 & 667 & 14 & 0.45 \\ \hline x_{T} \operatorname{M4F16} = 1 & 85.7 & 47.1 & 0.49952 & 0.0037 & 0.0035 & 1.0191 & 0.0024 & 0.0374 & 0.0022 & -0.17326 & 722 & 14 & 724 & 6710 & 120 & 722 & 14 & 0.28 \\ \hline x_{T} \operatorname{M4F16} = 1 & 85.7 & 47.1 & 0.598152 & 0.0071 & 0.0023 & 1.113 & 0.037 & 0.115 & 0.0036 & 0.0379 & 0.0018 & -0.11924 & 702 & 21 & 768 & 26 & 1010 & 92 & 702 & 21 & 859 \\ \hline x_{T} \operatorname{M4F16} = 5 & 15.4 & 0.398152 & 0.071 & 0.0024 & 1.331 & 0.077 & 0.115 & 0.0034 & 0.0022 & -0.17326 & 724 & 11 & 759 & 18 & 719 & 74 & 754 & 11 & 0.66 \\ \hline x_{T} \operatorname{M4F16} = 5 & 95.9 & 53.3 & 0.393791 & 0.0725 & 0.0023 & 1.143 & 0.004 & 0.0374 & 0.0022 & -0.17326 & 724 & 178 & 718 & 719 & 96 & 67 & 817.6 & 11 & 3.92 \\ \hline x_{T} \operatorname{M4F16} = 5 & 75.4 & 165 & 0.113557 & 0.0699 & 0.021 & 1.331 & 0.0$	Zr_M4F16_23	163.8	133.6	0.815629	0.0601	0.0025	0.8	0.032	0.0961	0.0012	0.02915	0.0019	0.12497	591.2	8.6	598	18	620	93	591.2	8.6	1.14
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Zr_M4F16_90	416	168	0.403846	0.0591	0.0022	0.783	0.028	0.09666	0.0011	0.02931	0.0014	0.18655	594.8	6.2	586	16	566	79	594.8	6.2	-1.50
$ \begin{array}{c} 2r_{\rm M} {\rm MF16}_{-54} & 173 & 48.4 & 0.27976 & 0.062 & 0.0027 & 0.847 & 0.03 & 0.0095 & 0.0015 & 0.0311 & 0.0017 & 0.06156 & 611.5 & 8.9 & 621 & 20 & 680 & 91 & 611.5 & 8.9 & 1.53 \\ 2r_{\rm M} {\rm MF16}_{-11} & 109.7 & 58.7 & 0.535096 & 0.0602 & 0.002 & 0.843 & 0.038 & 0.1015 & 0.0018 & 0.0302 & 0.0016 & -0.0182 & 623.3 & 10 & 621 & 21 & 599 & 98 & 623.3 & 10 & -0.37 \\ 2r_{\rm M} {\rm MF16}_{-39} & 44.98 & 20.47 & 0.455091 & 0.0755 & 0.0044 & 1.043 & 0.062 & 0.1025 & 0.0031 & 0.0347 & 0.0032 & 0.1088 & 628 & 18 & 734 & 27 & 1090 & 110 & 628 & 18 & 14.44 \\ 2r_{\rm M} {\rm MF16}_{-57} & 190 & 62.4 & 0.32411 & 0.0601 & 0.002 & 0.873 & 0.028 & 0.1048 & 0.0013 & 0.0347 & 0.0032 & 0.1088 & 628 & 18 & 734 & 27 & 1090 & 110 & 628 & 18 & 14.44 \\ 2r_{\rm M} {\rm MF16}_{-56} & 113.1 & 7 & 0.327144 & 0.0611 & 0.0024 & 0.936 & 0.1091 & 0.0024 & 0.0311 & 0.018 & 0.4384 & 667 & 14 & 670 & 19 & 694 & 80 & 667 & 14 & 0.45 \\ 2r_{\rm M} {\rm MF16}_{-56} & 133.1 & 7 & 0.327144 & 0.0739 & 0.0031 & 1.133 & 0.057 & 0.115 & 0.0036 & 0.0391 & 0.0022 & -0.17326 & 722 & 14 & 724 & 26 & 710 & 120 & 722 & 14 & 59 \\ 2r_{\rm M} {\rm MF16}_{-59} & 259.8 & 155.4 & 0.598152 & 0.0671 & 0.0024 & 1.269 & 0.0414 & 0.133 & 0.0079 & 0.018 & 0.26722 & 754 & 11 & 759 & 18 & 779 & 74 & 754 & 11 & 0.66 \\ 2r_{\rm M} {\rm MF16}_{-59} & 259.8 & 155.4 & 0.598152 & 0.071 & 0.0026 & 1.269 & 0.044 & 0.133 & 0.0019 & 0.0402 & 0.018 & 0.21732 & 722 & 14 & 758 & 18 & 966 & 67 & 817.6 & 11 & 3.92 \\ 2r_{\rm M} {\rm MF16}_{-59} & 55.3 & 2.41 & 0.688571 & 0.071 & 0.0024 & 1.237 & 0.0019 & 0.0403 & 0.0022 & -0.17326 & 722 & 14 & 758 & 18 & 966 & 67 & 817.6 & 11 & 3.92 \\ 2r_{\rm M} {\rm MF16}_{-59} & 55.3 & 0.3393791 & 0.072 & 0.0021 & 1.316 & 0.001 & 0.0122 & 0.0026 & 817.6 & 11 & 831 & 19 & 966 & 67 & 828.9 & 9.4 & 851 & 71 & 965 & 65 & 828.9 & 9.4 & 3.47 \\ 2r_{\rm M} {\rm MF16}_{-5} & 65.7 & 216.7 & 0.1458 & 0.0021 & 1.428 & 0.0022 & 0.0024 & 0.23828 & 860 & 12 & 906 & 21 & 1017 & 73 & 860 & 12 & 5.08 \\ 2r_{\rm M} {\rm MF16}_{-5} & 65.7 & 114.7 & 0.1455 & 0.0021 & 1.428 & 0.0021 & 0.044 & 0.0438 & 0$	Zr_M4F16_22	269.9	107.1	0.396814	0.0607	0.0023	0.829	0.029	0.09942	0.0012	0.03182	0.0016	-0.15261	611	7.2	614	16	621	84	611	7.2	0.49
$ \begin{array}{c} 2r_{\rm M} \mathrm{AFE}[6_19 & 149.4 & 56.5 & 0.378179 & 0.062 & 0.0028 & 0.852 & 0.07 & 0.1012 & 0.0015 & 0.0314 & 0.0016 & 0.18106 & 621.3 & 9 & 624 & 20 & 682 & 100 & 621.3 & 9 & 0.43 \\ 2r_{\rm M} \mathrm{AFE}[6_139 & 44.98 & 20.47 & 0.455091 & 0.0755 & 0.0044 & 1.043 & 0.062 & 0.1025 & 0.0031 & 0.037 & 0.0032 & 0.1088 & 628 & 18 & 734 & 27 & 1090 & 110 & 628 & 18 \\ 2r_{\rm M} \mathrm{AFE}[6_15 & 507 & 71.6 & 0.141223 & 0.0601 & 0.0024 & 0.937 & 0.028 & 0.1048 & 0.0013 & 0.0324 & 0.0018 & 0.11623 & 642.4 & 7.8 & 636 & 15 & 625 & 75 & 642.4 & 7.8 & -1.01 \\ 2r_{\rm M} \mathrm{AFE}[6_25 & 113.1 & 37 & 0.327144 & 0.0621 & 0.0024 & 0.936 & 0.036 & 0.0091 & 0.0024 & 0.0341 & 0.0018 & 0.4384 & 667 & 14 & 670 & 19 & 694 & 80 & 667 & 14 & 0.45 \\ 2r_{\rm M} \mathrm{AFE}[6_26 & 415 & 149 & 0.359036 & 0.0652 & 0.0033 & 1.113 & 0.037 & 0.115 & 0.0036 & 0.0391 & 0.0026 & -0.14924 & 702 & 21 & 768 & 26 & 1010 & 92 & 702 & 21 & 8.59 \\ 2r_{\rm M} \mathrm{AFE}[6_26 & 415 & 149 & 0.359036 & 0.0652 & 0.0023 & 1.113 & 0.037 & 0.1241 & 0.002 & 0.0370 & 0.018 & 0.26722 & 754 & 11 & 759 & 18 & 779 & 74 & 754 & 11 & 0.66 \\ 2r_{\rm M} \mathrm{AFE}[6_55 & 343.4 & 71.4 & 0.20791 & 0.0026 & 1.269 & 0.044 & 0.1332 & 0.0019 & 0.0018 & 0.26722 & 754 & 11 & 759 & 18 & 779 & 74 & 754 & 11 & 0.66 \\ 2r_{\rm M} \mathrm{AFE}[6_55 & 534.3 & 71.4 & 0.20821 & 1.013 & 0.037 & 0.1241 & 0.002 & 0.0370 & 0.018 & 0.26722 & 754 & 11 & 759 & 18 & 779 & 74 & 754 & 11 & 0.66 \\ 2r_{\rm M} \mathrm{AFE}[6_55 & 334.3 & 71.4 & 0.20821 & 1.43 & 0.004 & 0.1332 & 0.0019 & 0.0402 & 0.0018 & 0.11834 & 806.6 & 11 & 831 & 20 & 948 & 81 & 806.6 & 11 & 3.92 \\ 2r_{\rm M} \mathrm{AFE}[6_50 & 155.9 & 65.33 & 0.3971 & 0.0725 & 0.0021 & 1.435 & 0.005 & 0.1428 & 0.0022 & 0.0024 & 0.3769 & 0.028 & 81.76 & 11 & 831 & 19 & 960 & 67 & 81.76 & 11 & 3.92 \\ 2r_{\rm M} \mathrm{AFE}[6_50 & 155.9 & 65.33 & 0.3971 & 0.0725 & 0.0021 & 1.437 & 0.045 & 0.1432 & 0.0017 & 0.0438 & 0.0019 & 0.2889 & 9.4 & 858.7 & 17 & 965 & 68 & 828.9 & 9.4 & 34.7 \\ 2r_{\rm M} \mathrm{AFE}[6_50 & 155.9 & 65.33 & 0.3971 & 0.0725 & 0.0021 & 1.438 & 0.044 & 0.0418 & 0.0042 & 0.018 & 0.0328 & 0.0328 $	Zr_M4F16_54	173	48.4	0.279769	0.0623	0.0027	0.847	0.036	0.0995	0.0015	0.0311	0.0017	0.060156	611.5	8.9	621	20	680	91	611.5	8.9	1.53
$ \begin{array}{c} z_{\rm T} {\rm M4F16_11} & 109.7 & 58.7 & 0.535096 & 0.0602 & 0.0027 & 0.843 & 0.038 & 0.1015 & 0.0018 & 0.032 & 0.0016 & -0.01882 & 623.3 & 10 & 621 & 21 & 599 & 98 & 623.3 & 10 & -0.37 \\ z_{\rm T} {\rm M4F16_61} & 507 & 71.6 & 0.141223 & 0.0601 & 0.002 & 0.873 & 0.028 & 0.1025 & 0.0031 & 0.0347 & 0.0022 & 0.1088 & 628 & 18 & 734 & 27 & 1090 & 110 & 628 & 18 & 14.44 \\ z_{\rm T} {\rm M4F16_61} & 507 & 71.6 & 0.141223 & 0.0601 & 0.002 & 0.873 & 0.028 & 0.1025 & 0.0034 & 0.0018 & 0.11623 & 642.4 & 7.8 & 636 & 15 & 625 & 75 & 642.4 & 7.8 & -1.01 \\ z_{\rm T} {\rm M4F16_62} & 113 & 37 & 0.327144 & 0.0739 & 0.0031 & 0.035 & 0.109 & 0.0026 & -0.14924 & 702 & 21 & 768 & 26 & 1010 & 92 & 702 & 21 & 8.59 \\ z_{\rm T} {\rm M4F16_65} & 133.1 & 37 & 0.327144 & 0.0739 & 0.0033 & 0.115 & 0.0036 & 0.0391 & 0.0026 & -0.17326 & 722 & 14 & 724 & 26 & 710 & 120 & 722 & 14 & 0.28 \\ z_{\rm T} {\rm M4F16_55} & 259.8 & 155.4 & 0.598152 & 0.071 & 0.0026 & 1.049 & 0.0018 & 0.0018 & 0.26722 & 754 & 11 & 759 & 18 & 779 & 74 & 754 & 11 & 0.66 \\ z_{\rm T} {\rm M4F16_55} & 259.8 & 155.4 & 0.598152 & 0.071 & 0.0026 & 1.042 & 0.0018 & 0.0018 & 0.018 & 0.2722 & 754 & 11 & 759 & 18 & 719 & 960 & 67 & 817.6 & 11 & 3.92 \\ z_{\rm T} {\rm M4F16_55} & 165.9 & 65.3 & 0.39371 & 0.0071 & 0.0024 & 1.314 & 0.001 & 0.0413 & 0.0022 & -0.0262 & 817.6 & 11 & 851 & 19 & 960 & 67 & 817.6 & 11 & 3.92 \\ z_{\rm T} {\rm M4F16_55} & 165.9 & 65.3 & 0.393791 & 0.0727 & 0.0021 & 1.457 & 0.0017 & 0.04135 & 0.0019 & -0.06486 & 828.9 & 9.4 & 858.7 & 17 & 966 & 65 & 828.9 & 9.4 & 3.47 \\ z_{\rm T} {\rm M4F16_55} & 165.9 & 65.3 & 0.393791 & 0.0727 & 0.0021 & 1.457 & 0.0012 & 0.1428 & 0.0022 & -0.0232 & 860 & 12 & 916 & 21 & 1017 & 73 & 860 & 12 & 5.08 \\ z_{\rm T} {\rm M4F16_57} & 114.7 & 0.149544 & 0.0727 & 0.0021 & 1.457 & 0.0014 & 0.0452 & 0.002 & -0.0288 & 860 & 12 & 916 & 21 & 1017 & 73 & 860 & 12 & 5.08 \\ z_{\rm T} {\rm M4F16_57} & 576 & 687 & 216.7 & 10.434 & 0.072 & 0.0024 & 0.776 & 803.8 & 10 & 833 & 7 & 922 & 60 & 863.8 & 10 & 2.17 \\ z_{\rm T} {\rm M4F16_59} & 57.7 & 0.19683 & 0.0727 & 0.0021 & 1.458 & 0.004 &$	Zr_M4F16_19	149.4	56.5	0.378179	0.062	0.0028	0.852	0.037	0.1012	0.0015	0.03145	0.0016	0.18106	621.3	9	624	20	682	100	621.3	9	0.43
$ \begin{array}{c} z_{\rm T} {\rm M4F16}_{-59} & 44.98 & 20.47 & 0.455091 & 0.075 & 0.0044 & 1.043 & 0.062 & 0.102 & 0.0031 & 0.034 & 0.0013 & 0.1088 & 6.28 & 18 & 7.4 & 27 & 1090 & 110 & 628 & 18 & 14.44 \\ z_{\rm T} {\rm M4F16}_{-61} & 507 & 71.6 & 0.141223 & 0.0601 & 0.002 & 0.873 & 0.028 & 0.1048 & 0.0013 & 0.011623 & 642.4 & 7.8 & 636 & 15 & 625 & 75 & 642.4 & 7.8 & -1.01 \\ z_{\rm T} {\rm M4F16}_{-62} & 190 & 62.4 & 0.328421 & 0.0621 & 0.0024 & 0.936 & 0.036 & 0.1091 & 0.0024 & 0.0341 & 0.0018 & 0.4384 & 667 & 14 & 670 & 19 & 694 & 80 & 667 & 14 & 0.45 \\ z_{\rm T} {\rm M4F16}_{-10} & 85.7 & 47.1 & 0.327144 & 0.0739 & 0.0031 & 1.133 & 0.057 & 0.115 & 0.0026 & 0.0391 & 0.0022 & -0.17326 & 722 & 14 & 724 & 26 & 710 & 120 & 722 & 14 & 0.28 \\ z_{\rm T} {\rm M4F16}_{-50} & 25.9 & 155.4 & 0.598152 & 0.0652 & 0.0023 & 1.113 & 0.037 & 0.1241 & 0.002 & 0.0379 & 0.0018 & 0.26722 & 754 & 11 & 759 & 18 & 779 & 74 & 754 & 11 & 0.66 \\ z_{\rm T} {\rm M4F16}_{-55} & 343.4 & 71.4 & 0.207921 & 0.071 & 0.0024 & 1.314 & 0.04 & 0.1352 & 0.0019 & 0.0402 & 0.0018 & 0.26722 & 754 & 11 & 851 & 19 & 960 & 67 & 817.6 & 11 & 3.92 \\ z_{\rm T} {\rm M4F16}_{-55} & 350.2 & 241 & 0.688571 & 0.071 & 0.0024 & 1.314 & 0.04 & 0.1352 & 0.0017 & 0.0413 & 0.0024 & 0.022 & -0.0262 & 817.6 & 11 & 851 & 19 & 960 & 67 & 817.6 & 11 & 3.92 \\ z_{\rm T} {\rm M4F16}_{-55} & 353.0 & 241 & 0.688571 & 0.071 & 0.0023 & 1.331 & 0.039 & 0.1372 & 0.0017 & 0.0413 & 0.0024 & 0.23828 & 860 & 12 & 906 & 21 & 1017 & 73 & 860 & 12 & 5.08 \\ z_{\rm T} {\rm M4F16}_{-51} & 576 & 114.7 & 0.149544 & 0.07276 & 0.0021 & 1.435 & 0.05 & 0.1428 & 0.0022 & 0.0434 & 0.0014 & 0.028828 & 866.7 & 12 & 912 & 19 & 1004 & 56 & 862.7 & 12 & 5.41 \\ z_{\rm T} {\rm M4F16}_{-51} & 578 & 400 & 0.44848 & 0.072 & 0.0042 & 0.0434 & 0.0014 & 0.0489 & 866.5 & 8.1 & 800 & 17 & 987 & 60 & 866.5 & 8.1 & 3.72 \\ z_{\rm T} {\rm M4F16}_{-51} & 599 & 65.7 & 0.109638 & 0.0725 & 0.0021 & 1.438 & 0.0014 & 0.0445 & 0.0022 & -0.0688 & 866.5 & 8.1 & 900 & 17 & 925 & 21 & 997 & 60 & 863.8 & 10 & 2.17 \\ z_{\rm T} {\rm M4F16}_{-51} & 599 & 65.7 & 0.109638 & 0.0725 & 0.0021$	Zr_M4F16_11	109.7	58.7	0.535096	0.0602	0.0027	0.843	0.038	0.1015	0.0018	0.0302	0.0016	-0.01882	623.3	10	621	21	599	98	623.3	10	-0.37
$ \begin{array}{c} z_{\rm L} {\rm M4F16} \underbrace{0.50}{2} & 1.00 & 0.141223 & 0.0001 & 0.002 & 0.033 & 0.028 & 0.1048 & 0.0013 & 0.0324 & 0.0018 & 0.11023 & 0.024 & 1.8 & 0.00 & 19 & 0.23 & 1.7 & 0.24 & 1.8 & 1.01 \\ z_{\rm L} {\rm M4F16} \underbrace{0.6}{6} & 113.1 & 37 & 0.327144 & 0.0739 & 0.0031 & 1.133 & 0.057 & 0.115 & 0.0036 & 0.0391 & 0.0026 & -0.14924 & 702 & 21 & 768 & 26 & 1010 & 92 & 702 & 21 & 8.59 \\ z_{\rm L} {\rm M4F16} \underbrace{0.6}{6} & 113.1 & 37 & 0.327144 & 0.0739 & 0.0035 & 1.047 & 0.053 & 0.118 & 0.0024 & 0.0374 & 0.0026 & -0.14924 & 702 & 21 & 768 & 26 & 1010 & 92 & 702 & 21 & 8.59 \\ z_{\rm L} {\rm M4F16} \underbrace{0.6}{6} & 113 & 0.57 & 0.035 & 0.0035 & 1.047 & 0.053 & 0.118 & 0.0024 & 0.0374 & 0.0022 & -0.17326 & 722 & 14 & 724 & 26 & 710 & 120 & 722 & 14 & 0.28 \\ z_{\rm L} {\rm M4F16} \underbrace{0.59}{6} & 259.8 & 155.4 & 0.598152 & 0.071 & 0.0026 & 1.269 & 0.044 & 0.1333 & 0.019 & 0.0402 & 0.0370 & 0.0018 & -0.11834 & 806.6 & 11 & 831 & 20 & 948 & 81 & 806.6 & 11 & 2.94 \\ z_{\rm L} {\rm M4F16} \underbrace{0.59}{5} & 343.4 & 71.4 & 0.207921 & 0.071 & 0.0024 & 1.314 & 0.04 & 0.1352 & 0.0019 & 0.0403 & 0.0022 & -0.0262 & 817.6 & 11 & 851 & 19 & 960 & 67 & 817.6 & 11 & 3.92 \\ z_{\rm L} {\rm M4F16} \underbrace{0.59}{1} & 65.33 & 0.393791 & 0.0725 & 0.0027 & 1.435 & 0.05 & 0.1428 & 0.0022 & 0.0434 & 0.0018 & 0.26722 & 724 & 16 & 858.7 & 17 & 965 & 65 & 828.9 & 9.4 & 3.47 \\ z_{\rm L} {\rm M4F16} \underbrace{0.59}{1} & 65.33 & 0.393791 & 0.0726 & 0.0021 & 1.437 & 0.045 & 0.0021 & 0.0413 & 0.0019 & 0.72892 & 860 & 12 & 906 & 21 & 1017 & 73 & 860 & 12 & 5.08 \\ z_{\rm L} {\rm M4F16} \underbrace{0.59}{1} & 65.3 & 0.072 & 0.0021 & 1.437 & 0.045 & 0.0021 & 0.0342 & 0.0019 & 0.72892 & 865.5 & 8.1 & 9.48 & 81 & 9.65 & 8.1 & 3.72 \\ z_{\rm L} {\rm M4F16} \underbrace{0.59}{1} & 65.7 & 0.1575 & 0.0021 & 1.438 & 0.0014 & 0.0452 & 0.002 & -0.10889 & 866.5 & 8.1 & 9.94 & 858 & 17 & 922 & 60 & 863.8 & 10 & 2.17 \\ z_{\rm L} {\rm M4F16} \underbrace{0.59}{1} & 65.7 & 0.15429 & 0.070 & 0.0021 & 1.438 & 0.0016 & 0.04127 & 0.0018 & 0.5807 & 894 & 8.9 & 892 & 18 & 933 & 62 & 879.4 & 8.9 & 1.41 \\ z_{\rm L} {\rm M4F16} \underbrace{0.59}{1} & 5.53 & 3.059 & 0.177 & 0.0022 & 0.1428 & 0$	Zr_M4F16_39 Zr_M4E16_61	44.98	20.47	0.455091	0.0755	0.0044	1.043	0.062	0.1025	0.0031	0.0347	0.0032	0.10886	628	18	/ 34 626	27	1090 625	75	628	18	14.44
$ \begin{array}{c} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Zr_M4F16_01	190	62.4	0.328421	0.0621	0.002	0.875	0.028	0.1048	0.0013	0.0324	0.0018	0.4384	667	14	670	19	694	80	667	14	0.45
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Zr M4F16_65	113.1	37	0.327144	0.0739	0.0024	1.133	0.057	0.115	0.0036	0.0391	0.0026	-0.14924	702	21	768	26	1010	92	702	21	8.59
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Zr_M4F16_10	85.7	47.1	0.549592	0.0637	0.0035	1.047	0.053	0.1185	0.0024	0.0374	0.0022	-0.17326	722	14	724	26	710	120	722	14	0.28
$ \begin{array}{c} z_{\rm L} {\rm M4F16_59} & 259.8 & 155.4 & 0.598152 & 0.071 & 0.0026 & 1.29 & 0.044 & 0.1333 & 0.0019 & 0.0402 & 0.0018 & -0.11834 & 806.6 & 11 & 831 & 20 & 948 & 81 & 806.6 & 11 & 2.94 \\ z_{\rm L} {\rm M4F16_55} & 343.4 & 71.4 & 0.207921 & 0.071 & 0.0024 & 1.314 & 0.04 & 0.1352 & 0.0019 & 0.0403 & 0.0022 & -0.0262 & 817.6 & 11 & 851 & 19 & 960 & 67 & 817.6 & 11 & 3.92 \\ z_{\rm L} {\rm M4F16_53} & 350 & 241 & 0.688571 & 0.071 & 0.0023 & 1.31 & 0.09 & 0.1372 & 0.0017 & 0.04135 & 0.0019 & -0.06486 & 828.9 & 9.4 & 858.7 & 17 & 965 & 65 & 828.9 & 9.4 & 3.47 \\ z_{\rm L} {\rm M4F16_50} & 165.9 & 65.3 & 0.393791 & 0.0725 & 0.0027 & 1.435 & 0.05 & 0.1428 & 0.0022 & 0.0434 & 0.0019 & 0.23828 & 860 & 12 & 906 & 21 & 1017 & 73 & 860 & 12 & 5.08 \\ z_{\rm L} {\rm M4F16_77} & 77 & 114.7 & 0.149544 & 0.07276 & 0.0021 & 1.435 & 0.05 & 0.1432 & 0.0012 & 0.0342 & 0.0019 & 0.72892 & 862.7 & 12 & 912 & 19 & 1004 & 56 & 862.7 & 12 & 5.41 \\ z_{\rm L} {\rm M4F16_79} & 572.4 & 65 & 0.113557 & 0.0699 & 0.0021 & 1.436 & 0.014 & 0.0466 & 0.0028 & 0.57674 & 863.8 & 10 & 883 & 17 & 922 & 60 & 863.8 & 10 & 2.17 \\ z_{\rm L} {\rm M4F16_41} & 988 & 400 & 0.404858 & 0.072 & 0.0021 & 1.424 & 0.04 & 0.14387 & 0.0014 & 0.0452 & 0.002 & -0.10889 & 866.5 & 8.1 & 900 & 17 & 987 & 60 & 866.5 & 8.1 & 3.72 \\ z_{\rm L} {\rm M4F16_56} & 323.5 & 38.6 & 0.166022 & 0.0707 & 0.0021 & 1.428 & 0.049 & 0.0467 & 0.003 & 0.20387 & 890 & 27 & 897 & 30 & 930 & 71 & 890 & 27 & 0.78 \\ z_{\rm L} {\rm M4F16_57} & 599 & 65.7 & 0.109683 & 0.0725 & 0.0021 & 1.488 & 0.049 & 0.1499 & 0.0467 & 0.003 & 0.2387 & 890 & 17 & 925 & 21 & 997 & 60 & 900 & 17 & 2.70 \\ z_{\rm L} {\rm M4F16_71} & 599 & 65.7 & 0.109683 & 0.0725 & 0.0021 & 1.488 & 0.049 & 0.1499 & 0.0021 & 0.4188 & 9002 & 17 & 915 & 0.33 & 910 & 71 & 890 & 27 & 0.78 \\ z_{\rm L} {\rm M4F16_99} & 512 & 278 & 0.542696 & 0.0726 & 0.0021 & 1.488 & 0.042 & 0.0467 & 0.003 & 0.2387 & 890 & 17 & 925 & 21 & 997 & 60 & 900 & 17 & 2.70 \\ z_{\rm L} {\rm M4F16_99} & 512 & 278 & 0.542696 & 0.0726 & 0.0022 & 1.544 & 0.05 & 0.1559 & 0.0022 & 0.0469 & 0.0021 & 0.4188 & 594 & 12$	Zr_M4F16_62	415	149	0.359036	0.0652	0.0023	1.113	0.037	0.1241	0.002	0.03709	0.0018	0.26722	754	11	759	18	779	74	754	11	0.66
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Zr_M4F16_59	259.8	155.4	0.598152	0.071	0.0026	1.269	0.044	0.1333	0.0019	0.0402	0.0018	-0.11834	806.6	11	831	20	948	81	806.6	11	2.94
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Zr_M4F16_55	343.4	71.4	0.207921	0.071	0.0024	1.314	0.04	0.1352	0.0019	0.0403	0.0022	-0.0262	817.6	11	851	19	960	67	817.6	11	3.92
$ \begin{array}{c} z_{\rm r} {\rm M4F16_50} & 165.9 & 65.33 & 0.393^{91} 1 & 0.0725 & 0.0027 & 1.435 & 0.05 & 0.1428 & 0.0022 & 0.0434 & 0.0024 & 0.23828 & 860 & 12 & 906 & 21 & 1017 & 73 & 860 & 12 & 5.08 \\ z_{\rm r} {\rm M4F16_15} & 767 & 114.7 & 0.149544 & 0.07276 & 0.0021 & 1.457 & 0.045 & 0.1432 & 0.0018 & 0.0466 & 0.0028 & 0.57674 & 863.8 & 10 & 883 & 17 & 922 & 60 & 863.8 & 10 & 2.17 \\ z_{\rm r} {\rm M4F16_41} & 988 & 400 & 0.404858 & 0.072 & 0.0021 & 1.457 & 0.045 & 0.1432 & 0.0014 & 0.0452 & 0.002 & 0.57674 & 863.8 & 10 & 883 & 17 & 922 & 60 & 863.8 & 10 & 2.17 \\ z_{\rm r} {\rm M4F16_54} & 282.5 & 38.6 & 0.166022 & 0.070 & 0.0021 & 1.424 & 0.04 & 0.14387 & 0.0014 & 0.0452 & 0.002 & 0.10889 & 866.5 & 8.1 & 900 & 17 & 987 & 60 & 866.5 & 8.1 & 3.72 \\ z_{\rm r} {\rm M4F16_58} & 232.5 & 38.6 & 0.166022 & 0.070 & 0.0025 & 1.424 & 0.04 & 0.1462 & 0.0016 & 0.04127 & 0.0018 & 0.5207 & 879.4 & 8.9 & 892 & 18 & 933 & 62 & 879.4 & 8.9 & 1.41 \\ z_{\rm r} {\rm M4F16_57} & 599 & 65.7 & 0.109683 & 0.0725 & 0.0021 & 1.488 & 0.049 & 0.0467 & 0.003 & 0.20387 & 890 & 27 & 897 & 30 & 930 & 71 & 890 & 27 & 0.78 \\ z_{\rm r} {\rm M4F16_71} & 599 & 65.7 & 0.109683 & 0.0725 & 0.0021 & 1.488 & 0.049 & 0.1499 & 0.003 & 0.0475 & 0.0024 & 0.37482 & 900 & 17 & 925 & 21 & 997 & 60 & 900 & 17 & 2.70 \\ z_{\rm r} {\rm M4F16_99} & 512 & 278 & 0.542969 & 0.0726 & 0.0022 & 1.559 & 0.0022 & 0.0469 & 0.0021 & 0.41895 & 934 & 12 & 947 & 20 & 998 & 62 & 934 & 12 & 1.37 \\ z_{\rm r} {\rm M4F16_99} & 512 & 278 & 0.542969 & 0.0726 & 0.0022 & 1.559 & 0.0022 & 0.0469 & 0.0021 & 0.41895 & 934 & 12 & 947 & 20 & 998 & 62 & 934 & 12 & 1.37 \\ z_{\rm r} {\rm M4F16_99} & 512 & 278 & 0.542969 & 0.0728 & 0.0024 & 1.572 & 0.059 & 0.1571 & 0.0032 & 0.0469 & 0.0021 & 0.41895 & 934 & 12 & 947 & 20 & 998 & 62 & 934 & 12 & 1.37 \\ z_{\rm r} {\rm M4F16_93} & 314 & 105 & 0.312967 & 0.0728 & 0.0024 & 1.572 & 0.059 & 0.1571 & 0.0032 & 0.0469 & 0.0022 & 0.3868 & 927 & 15 & 10.43 & 958 & 24 & 1001 & 71 & 940 & 18 & 1.88 \\ z_{\rm r} {\rm M4F16_13} & 314 & 105 & 0.312967 & 0.0728 & 0.0024 & 1.572 & 0.059 & 0.1573 & 0.0022 & 0.046$	Zr_M4F16_32	350	241	0.688571	0.071	0.0023	1.331	0.039	0.1372	0.0017	0.04135	0.0019	-0.06486	828.9	9.4	858.7	17	965	65	828.9	9.4	3.47
$ \begin{array}{c} z_{\rm T} {\rm M4F16} [-7] & 572.4 & 65 \\ z_{\rm T} {\rm M4F16} [-7] & 572.4 & 65 \\ z_{\rm T} {\rm M4F16} [-7] & 572.4 & 65 \\ z_{\rm T} {\rm M4F16} [-7] & 572.4 & 65 \\ z_{\rm T} {\rm M4F16} [-7] & 572.4 & 65 \\ z_{\rm T} {\rm M4F16} [-7] & 572.4 & 65 \\ z_{\rm T} {\rm M4F16} [-7] & 572.4 & 65 \\ z_{\rm T} {\rm M4F16} [-7] & 572.4 & 65 \\ z_{\rm T} {\rm M4F16} [-7] & 572.4 & 65 \\ z_{\rm T} {\rm M4F16} [-7] & 572.4 & 65 \\ z_{\rm T} {\rm M4F16} [-7] & 572.4 & 65 \\ z_{\rm T} {\rm M4F16} [-7] & 572.4 & 65 \\ z_{\rm T} {\rm M4F16} [-7] & 592 & 66 \\ z_{\rm T} {\rm M4F16} [-7] & 592 & 65.7 \\ z_{\rm T} {\rm M4F16} [-7] & 599 & 65.7 \\ z_{\rm T} {\rm M4F16} [-7] & 0.0022 & 0.0024 \\ z_{\rm T} {\rm M4F16} [-7] & 0.0023 & 0.0024 \\ z_{\rm T} {\rm M4F16} [-7] & 0.003 & 0.038 \\ z_{\rm T} {\rm M4F16} [-7] & 0.0025 \\ z_{\rm T} {\rm M4F16} [-7] & 0.0024 \\ z_{\rm T} {\rm M4F16} [$	Zr_M4F16_50	165.9	65.33	0.393/91	0.0725	0.0027	1.435	0.05	0.1428	0.0022	0.0434	0.0024	0.23828	860	12	906	21	1017	13	860	12	5.08
$ \begin{array}{c} \mathbf{z}_{\mathrm{T}} \mathrm{M4F16}_{-16} + 1 & 98 & 400 & 0.40458 & 0.072 & 0.0021 & 1.424 & 0.04 & 0.1437 & 0.0016 & 0.0452 & 0.002 & -0.1088 & 86.5 & 8.1 & 900 & 17 & 927 & 60 & 805.8 & 10 & 2.17 \\ \mathbf{z}_{\mathrm{T}} \mathrm{M4F16}_{-9} - 687 & 216.7 & 0.315429 & 0.0701 & 0.0021 & 1.409 & 0.042 & 0.1462 & 0.0016 & 0.0452 & 0.002 & -0.1088 & 866.5 & 8.1 & 900 & 17 & 987 & 60 & 866.5 & 8.1 & 3.72 \\ \mathbf{z}_{\mathrm{T}} \mathrm{M4F16}_{-9} - 687 & 216.7 & 0.315429 & 0.0701 & 0.0021 & 1.409 & 0.042 & 0.1462 & 0.0016 & 0.04127 & 0.0018 & 0.58207 & 879.4 & 8.9 & 892 & 18 & 933 & 62 & 879.4 & 8.9 & 1.41 \\ \mathbf{z}_{\mathrm{T}} \mathrm{M4F16}_{-5} - 58 & 232.5 & 38.6 & 0.166022 & 0.0707 & 0.0025 & 1.424 & 0.07 & 0.1481 & 0.0049 & 0.0467 & 0.003 & 0.20387 & 890 & 27 & 897 & 30 & 930 & 71 & 890 & 27 & 0.78 \\ \mathbf{z}_{\mathrm{T}} \mathrm{M4F16}_{-9} - 59 & 65.7 & 0.109683 & 0.0725 & 0.0021 & 1.488 & 0.049 & 0.1499 & 0.003 & 0.0475 & 0.0024 & 0.37482 & 900 & 17 & 925 & 21 & 997 & 60 & 900 & 17 & 2.70 \\ \mathbf{z}_{\mathrm{T}} \mathrm{M4F16}_{-9} - 66 & 688 & 219.8 & 0.319477 & 0.0827 & 0.0024 & 1.774 & 0.058 & 0.1547 & 0.0027 & 0.04828 & 0.0022 & 0.3808 & 927 & 15 & 1035 & 23 & 1259 & 61 & 927 & 15 & 10.43 \\ \mathbf{z}_{\mathrm{T}} \mathrm{M4F16}_{-9} - 512 & 278 & 0.542969 & 0.0726 & 0.0023 & 1.544 & 0.05 & 0.1559 & 0.0022 & 0.0469 & 0.0021 & 0.41895 & 934 & 12 & 947 & 20 & 998 & 62 & 934 & 12 & 1.37 \\ \mathbf{z}_{\mathrm{T}} \mathrm{M4F16}_{-51} & 374.8 & 117.3 & 0.312967 & 0.0728 & 0.0024 & 1.572 & 0.059 & 0.1571 & 0.0032 & 0.0495 & 0.0026 & 0.5088 & 940 & 18 & 958 & 24 & 1001 & 71 & 940 & 18 & 1.88 \\ \mathbf{z}_{\mathrm{T}} \mathrm{M4F16}_{-13} & 314 & 10 & 0.03124 & 0.0728 & 0.0022 & 1.651 & 0.0032 & 0.0495 & 0.0022 & 0.3815 & 940 & 18 & 958 & 24 & 1001 & 71 & 940 & 18 & 1.88 \\ \mathbf{z}_{\mathrm{T}} \mathrm{M4F16}_{-13} & 314 & 10 & 0.01 & 0.0728 & 0.0022 & 1.651 & 0.0032 & 0.0495 & 0.0022 & 0.3815 & 940 & 18 & 958 & 24 & 1001 & 71 & 940 & 18 & 1.88 \\ \mathbf{z}_{\mathrm{T}} \mathrm{M4F16}_{-13} & 314 & 10 & 0.01 & 0.0128 & 0.0022 & 0.3455 & 0.0022 & 0.3485 & 0.0022 & 0.34815 & 940 & 18 & 958 & 24 & 1001 & 71 & 940 & 18 & 1.88 \\ \mathbf{z}_{\mathrm{T}} \mathrm{M4F16}_{-13} & 314 & 100 & 0.0128 & 0.002$	$Z_1_W4F10_15$ Zr M4F16 70	572.4	65	0.149544	0.07276	0.0021	1.457	0.045	0.1432	0.0021	0.0542	0.0019	0.72692	863.8	12	883	19	922	50 60	863.8	12	2.17
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zr M4F16 41	988	400	0.404858	0.072	0.0021	1.424	0.04	0.14387	0.0013	0.0452	0.0020	-0.10889	866.5	8.1	900	17	987	60	866.5	8.1	3.72
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Zr M4F16 9	687	216.7	0.315429	0.0701	0.0021	1.409	0.042	0.1462	0.0016	0.04127	0.0018	0.58207	879.4	8.9	892	18	933	62	879.4	8.9	1.41
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Zr_M4F16_58	232.5	38.6	0.166022	0.0707	0.0025	1.424	0.07	0.1481	0.0049	0.0467	0.003	0.20387	890	27	897	30	930	71	890	27	0.78
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Zr_M4F16_71	599	65.7	0.109683	0.0725	0.0021	1.488	0.049	0.1499	0.003	0.0475	0.0024	0.37482	900	17	925	21	997	60	900	17	2.70
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Zr_M4F16_96	688	219.8	0.319477	0.0827	0.0024	1.774	0.058	0.1547	0.0027	0.04828	0.0022	0.38608	927	15	1035	23	1259	61	927	15	10.43
Zr_M4F16_12_2101_106_0_232194_00728_0.0024_1.571_0.059_0.1571_0.0032_0.0495_0.0026_0.50985_940_18_958_24_1001_71_940_18_1.88_758_758_1001_71_940_18_1.88_758_1001_70_18_1.88_758_1001_70_18_1.88_758_1001_70_18_1.88_758_1001_70_18_1.88_758_1001_70_18_1.88_758_1001_70_18_1.88_758_1001_70_18_1.88_758_1001_70_18_1.88_758_1001_70_18_1.88_758_1001_70_18_1.88_758_1001_70_18_1.88_758_1001_70_18_1.88_758_1001_70_18_1.88_758_1001_70_18_1.88_758_1000_18_1000_18_1.88_758_1000_180_18	Zr_M4F16_99	512	278	0.542969	0.0726	0.0023	1.544	0.05	0.1559	0.0022	0.0469	0.0021	0.41895	934	12	947	20	998	62	934	12	1.37
	Zr_M4F16_51 7r_M4F16_12	374.8	117.3	0.312967	0.0728	0.0024	1.572	0.059	0.1571	0.0032	0.0495	0.0026	0.50985	940	18	958	24	1001	71 66	940	18	1.88

Zr_M4F16_33	270	164	0.607407	0.074	0.0023	1.621	0.052	0.1589	0.0034	0.0446	0.0029	0.50689	950	19	977	20	1037	63	950	19	2.76
Zr M4F16 29	407	10.3	0.025307	0.0707	0.0022	1.591	0.064	0.1614	0.0046	0.0592	0.0052	0.49498	964	26	966	27	943	63	964	26	0.21
7r M4F16 21	59.4	31.78	0.535017	0.0814	0.0045	1.83	0.16	0.1627	0.0098	0.0556	0.0047	0.62825	971	56	1072	68	1280	110	971	56	9.42
Zr_M4E16_05	477	246	0.515722	0.0717	0.0045	1.50	0.10	0.1620	0.0023	0.0350	0.0047	0.62010	072	19	068	10	025	65	072	19	0.52
ZI_WI4F10_93	4//	240	0.515725	0.0711	0.0021	1.39	0.049	0.1629	0.0033	0.04932	0.0022	0.02019	1002	10	1010	15	1024	75	1002	10	-0.52
Zr_M4F16_48	121.5	82.5	0.680132	0.0741	0.0028	1.707	0.067	0.1685	0.0027	0.0497	0.0027	0.34047	1003	15	1010	25	1034	15	1003	15	0.69
Zr_M4F16_26	201.4	73.8	0.366435	0.0732	0.0026	1.683	0.058	0.1688	0.0024	0.048	0.0024	0.18657	1005	13	1001	22	1016	71	1005	13	-0.40
Zr_M4F16_93	425	42.81	0.100729	0.0732	0.0023	1.723	0.054	0.1714	0.0024	0.0513	0.003	0.32684	1020	13	1016	20	1019	67	1020	13	-0.39
Zr_M4F16_2	50.4	40	0.793651	0.0777	0.0032	1.83	0.074	0.1722	0.0028	0.0521	0.0027	0.373	1024	15	1062	26	1146	85	1024	15	3.58
Zr M4F16 83	139.3	51.2	0.367552	0.0733	0.0027	1.726	0.061	0.1722	0.0025	0.0512	0.0026	0.14421	1024	14	1019	22	1011	75	1024	14	-0.49
Zr M4F16 43	487	51.3	0 105339	0.0728	0.0023	1 736	0.052	0.1732	0.0019	0.0522	0.0024	0 10246	1029.6	10	1021	19	1027	63	1029.6	10	-0.84
Zr_M/F16_75	121.2	35.1	0.289604	0.0755	0.0029	1 707	0.068	0.1738	0.003	0.055	0.0033	0.005014	1035	16	1043	24	1077	70	1025.0	16	0.77
Zr_M4E16_1	214	61.2	0.285004	0.0735	0.0025	1.777	0.003	0.1745	0.003	0.051	0.0033	0.005014	1035	26	1045	24	1000	65	1027	26	0.10
ZI_M4F10_1	214	01.5	0.280449	0.0728	0.0023	1.///	0.074	0.1743	0.0048	0.031	0.0027	0.45814	1057	20	1055	20	1000	05	1057	20	-0.19
Zr_M4F16_16	81.1	117.2	1.445129	0.0835	0.0039	2	0.09	0.1747	0.0035	0.0543	0.0025	-0.052	1038	19	1120	32	1289	90	1038	19	7.32
Zr_M4F16_8	48.9	2.9	0.059305	0.0745	0.0044	1.77	0.1	0.1751	0.0057	0.112	0.017	0.35369	1040	32	1031	41	1050	130	1040	32	-0.87
Zr_M4F16_64	253.2	188.1	0.742891	0.0767	0.0025	1.855	0.061	0.1766	0.0025	0.0522	0.0025	0.24564	1048	14	1067	22	1114	66	1048	14	1.78
Zr_M4F16_5	413	81.3	0.196852	0.0731	0.0022	1.804	0.056	0.1776	0.0026	0.0501	0.0026	0.4838	1054	14	1046	20	1022	59	1054	14	-0.76
Zr M4F16 89	216.2	21.65	0.100139	0.0704	0.0024	1.746	0.059	0.1777	0.0024	0.0476	0.0033	0.050798	1054	13	1025	21	946	70	1054	13	-2.83
Zr M4F16 74	111.4	32.8	0 294434	0.0769	0.0029	1 865	0.067	0.1786	0.0025	0.0558	0.0031	0 17252	1059	14	1073	23	1106	76	1059	14	1 30
7r M/F16 36	356	88.8	0 249438	0.0776	0.0024	1 982	0.063	0.1865	0.0028	0.0537	0.0025	0.658/13	1103	16	1110	22	1131	60	1103	16	1.43
Zr_M4E16_69	262	207	1 122599	0.0752	0.0024	1.962	0.003	0.1803	0.0023	0.0537	0.0023	0.00040	1105 2	10	1000	21	1071	64	1105	12	0.66
ZI_M4F10_08	202	297	1.135366	0.0732	0.0024	1.933	0.062	0.1872	0.0022	0.0335	0.0024	0.52850	1100.2	12	1099	21	10/1	04	1100.2	12	-0.00
Zr_M4F16_91	74.3	59.5	0.800808	0.0764	0.0032	1.975	0.08	0.1883	0.0028	0.058	0.0029	-0.06062	1112	15	1104	27	1089	81	1112	15	-0.72
Zr_M4F16_87	359.3	229	0.63735	0.0767	0.0023	1.992	0.057	0.1885	0.0021	0.05787	0.0026	0.1329	1113.1	11	1112.2	19	1114	62	1113.1	11	-0.08
Zr_M4F16_88	53.2	21.7	0.407895	0.08	0.0035	2.07	0.1	0.1904	0.0055	0.0665	0.005	0.088001	1123	30	1144	36	1220	78	1123	30	1.84
Zr_M4F16_3	175	103.1	0.589143	0.0756	0.0027	1.983	0.067	0.1911	0.0023	0.0569	0.0026	0.13877	1127	13	1111	22	1075	72	1127	13	-1.44
Zr M4F16 44	151.4	93	0.614267	0.0823	0.0029	2.24	0.073	0.1992	0.0029	0.0589	0.0028	0.17958	1171	15	1192	23	1278	68	1171	15	1.76
7r M4F16 28	334	105.6	0.316168	0.0894	0.0027	2 956	0.084	0.2402	0.0025	0.0691	0.0032	0 21974	1387 7	13	1398	22	1409	58	1387 7	13	0.74
Zr_M4F16_4	329	281.1	0.854407	0.104	0.0027	1 202	0.12	0.2402	0.0025	0.0857	0.0032	0.50461	1601	17	1693	24	1603	53	1603	53	0.12
Zr_M4E16_25	65.0	201.1	0.692515	0.104	0.003	4.205	0.12	0.2012	0.0035	0.0872	0.0037	0.20024	1607	22	1710	24	1722	60	1722	60	0.12
ZI_M4F10_55	65.2	44.5	0.082313	0.1055	0.0034	4.595	0.14	0.3013	0.0047	0.0875	0.0041	0.39024	1097	25	1/10	27	1725	62	1725	62	0.76
Zr_M4F16_1/	651	248.3	0.381413	0.106	0.003	3.978	0.1	0.2731	0.0032	0.0793	0.0034	0.418	1559	16	1629.5	21	1729	51	1729	51	4.33
Zr_M4F16_24	147	107	0.727891	0.1078	0.0034	4.515	0.13	0.3064	0.0037	0.088	0.004	0.070722	1723	18	1733	24	1758	57	1758	57	0.58
Zr_M4F16_40	198.9	130.5	0.656109	0.1128	0.0034	5.17	0.15	0.3328	0.0041	0.0943	0.0042	0.28161	1852	20	1847	25	1847	52	1847	52	-0.27
Zr_M4F16_42	93.7	275	2.934899	0.12	0.004	4.96	0.15	0.3041	0.0041	0.0926	0.004	0.1416	1711	20	1812	25	1967	57	1967	57	5.57
Zr M4F16 73	699	3.42	0.004893	0.1242	0.0034	5.324	0.14	0.3116	0.0036	0.083	0.0093	0.18072	1748.7	18	1872.7	24	2017	48	2017	48	6.62
Zr M4F16 80	66.7	55.9	0.838081	0.1269	0.0042	671	0.21	0 3824	0.0054	0 1049	0.0047	0.063458	2087	25	2073	27	2049	58	2049	58	-0.68
Zr_M/F16_46	308	117.7	0.382143	0.1635	0.0046	8 97	0.25	0.4016	0.0058	0.1172	0.0056	0.40131	2176	26	2334 7	25	2/01	46	2401	46	6.80
Zr_M4E16_90	260.9	62.2	0.362143	0.1656	0.0046	0.77	0.20	0.4010	0.0050	0.1211	0.0057	0.90465	2170	45	2334.7	25	2471	=0 =2	2471	40 52	4.95
ZI_M4F10_62	309.8	02.2	0.108199	0.1030	0.0048	9.77	0.58	0.4279	0.01	0.1211	0.0037	0.80405	2290	45	2415	33	2515	33	2515	33	4.65
Zr_M4F16_69	222.1	136.2	0.611585	0.1832	0.0052	12.26	0.33	0.48/3	0.0049	0.1337	0.0059	0.40816	2559	21	2624	25	2680	45	2680	45	2.48
Zr_M4F16_49	92.6	89.6	0.967603	0.1847	0.0054	13.18	0.38	0.5265	0.0061	0.1416	0.0063	0.31492	2726	26	2692	26	2700	49	2700	49	-1.26
Zr_M4F16_63	409.5	142.6	0.34823	0.1914	0.007	12.93	1	0.486	0.033	0.1366	0.0063	0.93409	2554	160	2673	120	2753	69	2753	69	4.45
Zr_M4F16_20	289	290.4	1.004844	0.1995	0.0055	14.99	0.39	0.547	0.0061	0.1501	0.0062	0.63857	2812	26	2814	26	2821	45	2821	45	0.07
Zr M4F16 97	106.3	64.2	0.603951	0.2134	0.0066	10.65	0.35	0.3635	0.0059	0.1144	0.0055	0.56973	1999	28	2495	31	2933	49	2933	49	19.88
Zr_M4F16_72	63.8	54.1	0.847962	0.2526	0.0075	20.72	0.62	0.605	0.011	0.1557	0.0073	0.29171	3050	43	3129	30	3199	47	3199	47	2.52
7. 14.1.02	(27	07.2	0 155024	0.0522	0.0045	0.245	0.020	0.046	0.0012	0.0146	0.0014	0.29205	200	0.0	200	22	210	100	200	0.2	2.22
Zr_M4V1_85	627	97.2	0.155024	0.0532	0.0045	0.345	0.029	0.046	0.0013	0.0146	0.0014	-0.28305	290	8.2	300	22	310	190	290	8.2	3.33
Zr_M4v1_54	433	329	0.759815	0.0549	0.0029	0.476	0.028	0.06276	0.001	0.01886	0.0013	0.10664	392.4	6.1	397	20	395	120	392.4	6.1	1.16
Zr_M4v1_89	264	148.1	0.560985	0.0587	0.0039	0.519	0.036	0.0647	0.0014	0.0195	0.0014	-0.04968	404.2	8.3	427	22	550	160	404.2	8.3	5.34
Zr_M4v1_98	267	266.9	0.999625	0.056	0.0035	0.502	0.032	0.0649	0.0014	0.0212	0.0015	0.10915	405.3	8.5	412	22	450	130	405.3	8.5	1.63
Zr_M4v1_70	401.6	285.2	0.710159	0.0557	0.0031	0.576	0.035	0.07549	0.0013	0.02319	0.0015	-0.02718	469.1	7.5	461	23	430	130	469.1	7.5	-1.76
Zr M4v1 55	127	212.3	1.671654	0.0602	0.0042	0.649	0.046	0.0805	0.0017	0.02321	0.0016	0.15874	498.9	9.9	506	29	580	150	498.9	9.9	1.40
Zr M4v1 4	263	225	0.855513	0.0578	0.0029	0.654	0.037	0.08125	0.0013	0.0241	0.0016	0.063855	503.6	7.7	510	22	529	110	503.6	7.7	1.25
Zr M4v1 64	106.8	59.8	0.559925	0.0597	0.0038	0.668	0.044	0.0821	0.0019	0.02495	0.0018	0.015036	508.4	11	520	28	550	140	508.4	11	2.23
Zr_M4v1_42	222.2	105.0	0.3395723	0.0597	0.0038	0.680	0.047	0.0821	0.0012	0.02455	0.0025	0.089222	514	14	521	20	520	150	514	14	2.25
ZI_WHVI_42	322.2	103.9	0.521025	0.0587	0.0038	0.089	0.047	0.083	0.0023	0.0295	0.0023	0.066525	516.2	14	531	20	550	120	516.2	14	2.12
Zr_M4V1_96	267	142	0.551855	0.0606	0.0034	0.691	0.042	0.0854	0.0018	0.0252	0.0022	0.15132	516.5	11	535	25	614	120	516.5	11	3.13
Zr_M4v1_9	163.2	84.6	0.518382	0.058	0.0033	0.676	0.044	0.0839	0.0017	0.02657	0.0019	0.27942	519.5	9.9	522	27	546	120	519.5	9.9	0.48
Zr_M4v1_33	534	51.3	0.096067	0.0573	0.0028	0.696	0.04	0.0867	0.0015	0.0235	0.0024	0.27067	536	9.1	536	24	494	110	536	9.1	0.00
Zr_M4v1_36	319	260	0.815047	0.0583	0.003	0.708	0.043	0.0881	0.0022	0.0285	0.0021	0.29186	544	13	542	25	520	110	544	13	-0.37
Zr M4v1 94	392	121	0.308673	0.0584	0.0029	0.715	0.041	0.0887	0.0016	0.02792	0.002	0.27242	547.9	9.4	547	24	541	110	547.9	9.4	-0.16
Zr M4v1 91	150	67.3	0.448667	0.0626	0.0045	0.753	0.058	0.0889	0.002	0.0263	0.002	0.032075	549	12	573	32	690	150	549	12	4.19
Zr M4v1 63	219	10.19	0.04653	0.0587	0.0031	0.731	0.045	0.09	0.0017	0.0339	0.0039	0.41295	556.6	99	555	26	545	110	556.6	99	-0.29
$7_r M4_{v1} 1$	219	20.87	0.025187	0.0500	0.0031	0.749	0.042	0.0006	0.0015	0.0401	0.0035	0.78699	550.0	0	567	25	604	120	550.0	0.7	1 29
Zi_iVi+v1_1	020.0	20.07	0.02318/	0.0399	0.005	0.740	0.045	0.0900	0.0013	0.0401	0.0045	0.20000	557.4	7	507	23	540	120	557.4	7	1.30
Zr_M4v1_8	219	156	0./12329	0.0588	0.0031	0.741	0.042	0.09133	0.0014	0.02821	0.0019	0.20523	563.4	8.4	562	25	549	110	565.4	8.4	-0.25
Zr_M4v1_66	152.4	123.9	0.812992	0.0582	0.0036	0.74	0.049	0.0914	0.0016	0.02779	0.0019	0.056052	563.9	9.4	560	29	533	130	563.9	9.4	-0.70
Zr_M4v1_82	315	138.4	0.439365	0.06	0.0029	0.757	0.042	0.0915	0.0015	0.02819	0.002	0.21815	564.6	8.9	571	25	599	100	564.6	8.9	1.12
Zr_M4v1_59	321	45	0.140187	0.059	0.0029	0.752	0.043	0.0918	0.0017	0.029	0.0022	0.3238	566.1	10	568	25	576	100	566.1	10	0.33
Zr_M4v1_72	234	183.8	0.78547	0.0597	0.0032	0.766	0.046	0.09184	0.0014	0.02827	0.0019	0.081663	566.4	8.4	579	26	610	120	566.4	8.4	2.18
Zr M4v1 15	183.6	92.9	0.505991	0.0594	0.0031	0.766	0.05	0.0924	0.0024	0.0258	0.0021	0.41547	570	14	575	29	575	120	570	14	0.87
Zr M4v1 71	432	93.1	0.215509	0.0581	0.0027	0 745	0.04	0.09284	0.0013	0.02731	0.0019	-0 13755	572 3	79	564.9	23	521	100	572 3	79	-1 31
A_A174 T 7 1 _ / 1	-54	10.1	0.410000	0.0001	0.0027	0.740	0.04	0.07204	0.0010	0.04701	0.0017	0.15755	214.2	1.1	204.2	40	541	100	014.0	1./	1.01

Zr_M4v1_69	648	22.74	0.035093	0.0596	0.0026	0.771	0.04	0.09368	0.0014	0.0331	0.0032	0.16195	577.2	8	580.2	23	585	96	577.2	8	0.52
Zr_M4v1_2	101.3	19.09	0.18845	0.0619	0.0046	0.804	0.059	0.0939	0.0019	0.0307	0.0031	-0.24827	578.7	11	598	34	640	160	578.7	11	3.23
Zr M4v1 57	116.2	33.3	0.286575	0.0612	0.0041	0.798	0.06	0.095	0.0018	0.0302	0.0024	0.017135	584.9	11	592	34	600	150	584.9	11	1.20
Zr M4v1 99	247	29.6	0.119838	0.061	0.0038	0.79	0.052	0.0957	0.0033	0.0494	0.0078	0.31244	589	20	590	29	629	130	589	20	0.17
Zr M4v1 7	166.4	90.2	0.542067	0.0597	0.0033	0.794	0.049	0.0971	0.002	0.02947	0.0021	0.31392	597.6	12	595	29	582	120	597.6	12	-0.44
Zr M4v1 60	668	30.9	0.046257	0.0592	0.0027	0.801	0.043	0.098	0.0018	0.0315	0.0027	0.43289	602.7	11	599	25	570	97	602.7	11	-0.62
Zr M4v1 17	1011	104 7	0 103561	0.0609	0.0027	0.833	0.043	0.09947	0.0014	0.03178	0.0022	0.001357	611.3	8.2	616.5	23	632	97	611.3	8.2	0.84
Zr_M4v1_39	243	369	1 518519	0.0626	0.0033	0.916	0.052	0.1046	0.0018	0.03089	0.0021	0.09073	641	10	659	28	691	110	641	10	2 73
$2r_M4v1_40$	121.2	102.2	1.465701	0.0604	0.0035	0.971	0.056	0.1051	0.0021	0.02022	0.0021	0.097524	644.2	12	634	20	505	120	644.2	12	1.62
Zr_M4v1_{51}	270	192.5	0.650408	0.0506	0.0030	0.871	0.050	0.1051	0.0021	0.02006	0.0021	0.15822	654	12	642	20	580	110	654	12	1.02
ZI_W4V1_31	279	22.2	0.039498	0.0590	0.0031	0.00	0.051	0.1110	0.0022	0.03000	0.0021	0.13823	602	13	042	20	380	100	602	15	-1.67
Zr_M4v1_20	3/1	23.2	0.062534	0.0634	0.0031	0.969	0.06	0.1118	0.0029	0.0363	0.0034	0.74784	683	1/	080	31	711	100	685	1/	0.44
Zr_M4v1_31	218	93.3	0.427982	0.0636	0.0033	0.997	0.058	0.1134	0.0018	0.035	0.0024	0.003373	692.2	10	/01	29	/41	110	692.2	10	1.26
Zr_M4v1_24	128.4	168.6	1.313084	0.0605	0.0046	0.962	0.075	0.1147	0.0026	0.03424	0.0023	-0.32988	700	15	693	39	580	170	700	15	-1.01
Zr_M4v1_90	31.4	31.07	0.98949	0.0724	0.0087	1.16	0.13	0.1161	0.0026	0.0373	0.0038	0.059942	708	15	786	64	1020	250	708	15	9.92
Zr_M4v1_80	103.8	33.2	0.319846	0.0613	0.0038	1	0.069	0.1165	0.0028	0.0359	0.0029	0.14089	710	16	704	33	663	120	710	16	-0.85
Zr_M4v1_34	436	80.2	0.183945	0.0632	0.0028	1.022	0.055	0.1169	0.002	0.0382	0.0027	0.5848	712.6	12	716	28	727	98	712.6	12	0.47
Zr_M4v1_61	415	212	0.510843	0.0652	0.0032	1.108	0.067	0.1232	0.0035	0.03621	0.0025	0.6833	749	20	756	32	771	110	749	20	0.93
Zr_M4v1_3	213.1	124	0.581886	0.0661	0.0035	1.119	0.067	0.1241	0.0027	0.0381	0.0026	0.4614	754	15	765	34	814	110	754	15	1.44
Zr_M4v1_44	328	91.2	0.278049	0.0641	0.003	1.118	0.07	0.1261	0.0032	0.0437	0.003	0.80956	766	19	763	34	738	100	766	19	-0.39
Zr M4v1 86	257.4	78.2	0.303807	0.0673	0.0036	1.195	0.073	0.1274	0.0023	0.0397	0.0034	0.26889	772.8	13	797	34	839	110	772.8	13	3.04
Zr M4v1 92	215.2	80.4	0.373606	0.0665	0.0037	1.217	0.072	0.1331	0.0023	0.0407	0.0029	-0.21702	805.6	13	810	32	818	120	805.6	13	0.54
Zr M4v1 22	303	152	0.50165	0.0674	0.0032	1.239	0.068	0.1334	0.0023	0.0415	0.003	0.52266	807.2	13	821	34	864	99	807.2	13	1.68
Zr M4v1 5	148	104	0 702703	0.0661	0.0037	1 255	0.088	0.138	0.0035	0.0401	0.003	0 56655	833	20	823	39	835	100	833	20	-1.22
Zr_M4v1_13	301.4	100.6	0 333776	0.0672	0.0031	1 336	0.072	0.1437	0.0021	0.0447	0.0031	0.15501	865 3	12	862	31	841	99	865 3	12	-0.38
Zr_M4v1_75	323	107.3	0.332108	0.07	0.0036	1.350	0.083	0.1462	0.0024	0.045	0.0034	0.41285	879.5	12	890	35	920	110	879.5	12	1 18
$Z_{r} M_{v1} 46$	74.6	107.5	0.552176	0.0711	0.0016	1.404	0.003	0.1462	0.0024	0.0457	0.0034	0.017224	880	10	008	20	060	120	880	10	2.09
Zr_M4v1_77	604	202	0.590515	0.0711	0.0040	1.423	0.079	0.1403	0.0033	0.04510	0.004	0.017334	801 1	12	908	22	1050	150	801 1	12	4.50
ZI_W4V1_//	004	302	0.5	0.0743	0.0033	1.31	0.078	0.1462	0.0021	0.04519	0.003	0.090874	891.1	12	954	32	018	90	891.1	12	4.39
ZI_W4V1_64	95.8	36.9	0.414/12	0.0098	0.0039	1.450	0.087	0.1485	0.0028	0.0433	0.0037	-0.20028	892	15	902	20	918	120	892 005	15	1.11
Zr_M4v1_45	294	19.95	0.06/85/	0.0683	0.0033	1.414	0.089	0.1509	0.0036	0.0448	0.005	0.51393	906	20	894	3/	872	100	906	20	-1.54
Zr_M4v1_95	200.9	56.2	0.279741	0.0707	0.0036	1.452	0.082	0.1517	0.0025	0.05	0.0036	0.19359	910.6	14	909	34	932	110	910.6	14	-0.18
Zr_M4v1_52	745	29.6	0.039/32	0.074	0.0033	1.574	0.082	0.1536	0.0024	0.0449	0.0041	0.057504	920.8	14	960	33	1038	92	920.8	14	4.08
Zr_M4v1_18	253	108.1	0.427273	0.0701	0.0033	1.509	0.083	0.1544	0.0029	0.0475	0.0033	0.27538	925	16	936	32	933	100	925	16	1.18
Zr_M4v1_65	145.3	30.46	0.209635	0.0735	0.0039	1.584	0.094	0.1569	0.0029	0.0572	0.0041	0.33521	940	16	962	37	1012	110	940	16	2.29
Zr_M4v1_38	85.1	69.3	0.814336	0.0697	0.0036	1.546	0.09	0.1583	0.0031	0.0467	0.0033	0.099724	947	17	947	36	901	100	947	17	0.00
Zr_M4v1_23	178	103	0.578652	0.0721	0.0034	1.644	0.093	0.1653	0.004	0.0538	0.004	0.57407	986	22	985	35	986	99	986	22	-0.10
Zr_M4v1_6	474	53.9	0.113713	0.0723	0.0031	1.658	0.086	0.1658	0.0027	0.0504	0.0037	0.514	989	15	992	33	989	88	989	15	0.30
Zr_M4v1_81	655	57.7	0.088092	0.0868	0.0038	2.034	0.11	0.1692	0.0023	0.0509	0.0046	0.19755	1007.6	13	1127	35	1359	88	1007.6	13	10.59
Zr_M4v1_76	142	35.2	0.247887	0.0735	0.0035	1.721	0.097	0.1695	0.0027	0.0524	0.0038	0.12404	1009	15	1014	36	1017	97	1009	15	0.49
Zr_M4v1_97	151.8	66.38	0.437286	0.0747	0.0037	1.745	0.1	0.1708	0.0028	0.0531	0.0038	0.32519	1016	15	1027	36	1048	100	1016	15	1.07
Zr_M4v1_12	205.5	75.8	0.368856	0.0741	0.0034	1.792	0.098	0.1745	0.0043	0.0533	0.0039	0.57221	1040	22	1041	36	1045	97	1040	22	0.10
Zr M4v1 67	367.7	31.5	0.085668	0.0734	0.0031	1.779	0.091	0.1756	0.0025	0.0551	0.0042	0.37222	1042.7	14	1037.3	33	1021	87	1042.7	14	-0.52
Zr M4v1 88	146	58.8	0.40274	0.0733	0.0036	1.771	0.098	0.1758	0.0028	0.0496	0.0035	-0.19573	1044	15	1036	35	1015	100	1044	15	-0.77
Zr M4v1 93	359	33.29	0.09273	0.0739	0.0035	1.804	0.099	0.177	0.0026	0.0547	0.0043	0.045899	1050.8	14	1046	36	1032	99	1050.8	14	-0.46
Zr M4v1 68	237	133	0 561181	0.0756	0.0035	1 843	0.12	0 1779	0.0067	0.053	0.004	0.81683	1055	37	1062	42	1078	94	1055	37	0.66
Zr M4v1 21	202.5	82.9	0.409383	0.0745	0.0033	1 881	0.1	0 1804	0.0028	0.0521	0.0037	0.41043	1069	15	1073	35	1056	93	1069	15	0.37
Zr_M4v1_10	202.5	104.5	0.377256	0.07516	0.0032	1.869	0.095	0.1808	0.0020	0.0542	0.0037	0.46948	1071.2	15	1069.6	34	1070	85	1071.2	15	-0.15
Zr_M4v1_41	282	87	0.308511	0.0738	0.0034	1.847	0.000	0.1808	0.0027	0.0545	0.0037	-0.10416	1071.4	14	1065	35	1028	95	1071.4	14	-0.60
$Z_{r} M_{4v1} 27$	236	87.6	0.300311	0.0756	0.0034	1.047	0.078	0.1800	0.0020	0.0538	0.0037	-0.10410	1079.9	15	1003	25	11020	02	1078.8	14	1 20
$Z_{1}W_{4}v_{1}^{2}$	230	120.1	0.371180	0.0700	0.0050	2.026	0.1	0.1822	0.0027	0.0553	0.0030	0.0101	1078.8	15	1202	41	1802	92 80	1078.8	15	22.20
Zi_Wi+vi_4/	270	26.67	0.380003	0.1139	0.0032	1.024	0.15	0.183	0.0029	0.0555	0.0037	0.045006	1085	12	1090	25	1093	80	1085	10	0.26
ZI_W4V1_55	219	30.07	0.131434	0.076	0.0034	1.924	0.1	0.1855	0.0024	0.0611	0.0048	0.043990	1085.1	15	1089	33	1097	09	1085.1	15	0.50
Zr_M4v1_58	414.7	97.4	0.234869	0.076	0.0034	1.975	0.1	0.1844	0.0032	0.056	0.004	0.30078	1091	18	1106	35	1099	8/	1091	18	1.30
Zr_M4v1_32	496	27.72	0.055887	0.0739	0.0034	1.8/5	0.1	0.1846	0.0041	0.0551	0.0045	0.48271	1092	22	10/1	36	1033	94	1092	22	-1.96
Zr_M4v1_29	399	232	0.581454	0.0749	0.0033	1.936	0.1	0.1849	0.004	0.0567	0.0038	0.64387	1093	22	1093	36	1062	90	1093	22	0.00
Zr_M4v1_56	163	61.2	0.37546	0.0756	0.0035	1.932	0.11	0.1849	0.0032	0.0536	0.0037	0.36845	1093	17	1093	35	1075	93	1093	17	0.00
Zr_M4v1_78	396	150.2	0.379293	0.0758	0.0033	1.959	0.1	0.1865	0.0029	0.0544	0.0036	0.31491	1102	16	1101	34	1084	87	1102	16	-0.09
Zr_M4v1_30	222.7	118.4	0.531657	0.0775	0.0035	2.061	0.11	0.1915	0.0029	0.0562	0.0037	-0.00316	1129	16	1136	35	1128	89	1129	16	0.62
Zr_M4v1_14	43.2	21.3	0.493056	0.074	0.0053	1.93	0.17	0.1944	0.0068	0.0638	0.0071	0.3998	1145	37	1095	55	1050	140	1145	37	-4.57
Zr_M4v1_53	281	117.1	0.416726	0.0766	0.0035	2.102	0.11	0.196	0.003	0.0581	0.004	0.072932	1154	16	1149	36	1112	88	1154	16	-0.44
Zr_M4v1_49	115.6	111.6	0.965398	0.0764	0.004	2.111	0.12	0.1977	0.0036	0.059	0.004	0.13248	1163	19	1150	40	1106	100	1163	19	-1.13
Zr_M4v1_85	97.3	126	1.294964	0.0797	0.004	2.275	0.13	0.2041	0.0033	0.0599	0.004	0.03319	1197	18	1202	40	1195	110	1197	18	0.42
Zr M4v1 74	118.2	40.3	0.340948	0.0782	0.0041	2.21	0.13	0.2064	0.0035	0.0632	0.0045	0.04535	1210	19	1182	40	1138	100	1210	19	-2.37
Zr M4v1 48	273	131.7	0.482418	0.0785	0.0034	2.321	0.12	0.2142	0.0032	0.0604	0.004	0.23317	1251	17	1218	37	1155	86	1251	17	-2.71
Zr M4v1 73	180.3	70.2	0.389351	0.0808	0.0038	2.42	0.13	0.216	0.0036	0.0642	0.0045	0.14038	1261	19	1253	37	1216	91	1261	19	-0.64
Zr M4v1 50	253	90.3	0.356917	0.1083	0.0048	4.72	0.27	0.316	0.011	0.0802	0.0054	0.83943	1767	54	1776	47	1778	79	1778	79	0.51
Zr M4v1 37	312	91.9	0 294551	0.1218	0.0055	6.07	0.34	0 3595	0.0069	0.0977	0.0068	0 71653	1980	33	1985	49	1981	81	1981	81	0.25
Zr M4v1 11	105.8	109.9	1.038752	0.1210	0.0056	6.05	0.32	0.3566	0.0059	0 1044	0.007	0.25624	1966	28	1985	48	1991	81	1991	81	0.25
$Z_{r} M_{v1} 16$	350.1	326.0	0.033732	0.1227	0.0050	10.24	0.52	0.3300	0.0059	0.1168	0.0076	0.23024	2222	20	2456	40	2540	70	25/0	70	5.46
Z1_IVI+V1_10	550.1	520.5	0.755755	0.1092	0.0071	10.24	0.52	0.4557	0.0003	0.1100	0.0070	0.01051	2322	20	2450	4/	2347	70	2347	70	5.40

Zr_M4v1_87	131.6	124.9	0.949088	0.1786	0.0076	10.75	0.55	0.4379	0.0075	0.1204	0.008	0.36121	2341	33	2503	49	2642	73	2642	73	6.47
Zr_M4v1_43	119.2	72.2	0.605705	0.1884	0.008	13.57	0.68	0.5236	0.0087	0.1391	0.0093	0.33262	2714	37	2720	48	2726	71	2726	71	0.22
Zr_M4v1_26	269	266	0.988848	0.1885	0.0082	13.08	0.68	0.503	0.012	0.1329	0.0086	0.77211	2625	50	2688	46	2727	71	2727	71	2.34
Zr_M4v1_79	155.7	72.3	0.464355	0.1944	0.0085	14.11	0.72	0.5256	0.0078	0.1375	0.0093	0.26959	2723	33	2756	48	2777	71	2777	71	1.20
Zr_M4v1_25	523.3	11.4	0.021785	0.2134	0.0088	14.83	0.73	0.5001	0.0069	0.065	0.011	0.61042	2614	29	2804	47	2931	66	2931	66	6.78
Zr_M4v1_28	55.2	33.6	0.608696	0.2492	0.012	22.58	1.2	0.6485	0.012	0.1709	0.012	-0.05554	3222	48	3208	50	3183	70	3183	70	-0.44
Zr_M4v1_62	183.8	148.7	0.809032	0.2668	0.011	22.47	1.1	0.6076	0.0099	0.1659	0.011	0.66097	3068	44	3204	50	3286	66	3286	66	4.24
Zr_M4v1_19	48.4	19.4	0.400826	0.288	0.012	27.99	1.4	0.7022	0.012	0.1865	0.013	0.39917	3428	45	3418	50	3404	67	3404	67	-0.29

Tabla 4. Datos U-Pb de circones de clastos de granitoide de la Fm. Matzitzi

							CORRE	ECTED RAT	TIOS ²							(Ma)	ECTED A	GES			
Clave muestras	U (ppm) ¹	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2□ abs	²⁰⁷ Pb/ ²³⁵ U	±2 abs	²⁰⁶ Pb/ ²³⁸ U	±2 abs	²⁰⁸ Pb/ ²³² Th	±2□ abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2□	²⁰⁷ Pb/ ²³⁵ U	±2	²⁰⁷ Pb/ ²⁰⁶ Pb	±2	Best age (Ma)	±2 🗆	Disc %
Zr_M4F6_8	2269	455	0.200529	0.0648	0.0076	0.428	0.097	0.04738	0.0032	0.0186	0.0094	0.49073	298.4	19	361.8	50	764	140	298.4	19	17.52
Zr_M4F6_5	3030	128	0.042244	0.0605	0.0022	0.405	0.079	0.0482	0.0071	0.0347	0.0023	0.8594	303.4	42	345	46	629	67	303.4	42	12.06
Zr_M4F6_20	3170	171	0.053943	0.0632	0.0085	0.4233	0.058	0.04865	0.0022	0.0255	0.0051	0.57087	306.2	14	358.3	36	724	150	306.2	14	14.54
Zr_M4F6_31	3987	1495	0.374969	0.0754	0.0021	0.524	0.036	0.0501	0.0031	0.01287	0.0012	0.866	315.2	19	428	22	1077	56	315.2	19	26.36
Zr_M4F6_34	2608	214	0.082055	0.06398	0.0019	0.4774	0.048	0.05383	0.0049	0.0279	0.0015	0.73544	338	29	396.2	29	738	61	338	29	14.69
Zr_M4F6_3	2149	269	0.125174	0.0681	0.0023	0.518	0.14	0.0553	0.012	0.0221	0.0038	0.52217	347	70	423.6	69	868	64	347	70	18.08
Zr_M4F6_30	2788	151.6	0.054376	0.073	0.0021	0.5612	0.016	0.05575	0.00077	0.0583	0.0026	0.39854	349.7	4.7	453.5	11	1011	58	349.7	4.7	22.89
Zr_M4F6_19	2130	243	0.114085	0.0646	0.0019	0.501	0.017	0.05614	0.0014	0.0233	0.0012	0.74244	352.1	8.6	412.5	12	757	59	352.1	8.6	14.64
Zr_M4F6_9	1974	530	0.26849	0.0676	0.002	0.537	0.017	0.05767	0.0012	0.02062	0.00097	0.41587	362.3	7.1	436	11	851	60	362.3	7.1	16.90
Zr_M4F6_13	1802	746.4	0.414206	0.066	0.0023	0.545	0.09	0.0599	0.0076	0.01687	0.0021	0.81656	375.1	45	441.8	47	802	65	375.1	45	15.10
Zr_M4F6_6	3320	572	0.172289	0.06947	0.0021	0.574	0.077	0.0603	0.0065	0.02464	0.0023	0.89541	377	39	460	42	911	62	377	39	18.04
Zr_M4F6_4	2955	139.4	0.047174	0.0736	0.0023	0.616	0.16	0.0605	0.013	0.0609	0.0024	0.023331	378.9	75	487	69	1026	60	378.9	75	22.20
Zr_M4F6_18	2328	83.9	0.03604	0.0668	0.007	0.569	0.072	0.06217	0.0019	0.049	0.024	0.6409	388.8	11	457	36	820	110	388.8	11	14.92
Zr_M4F6_1	1734	417	0.240484	0.0665	0.0021	0.597	0.032	0.06416	0.0024	0.02257	0.0012	0.068333	400.9	15	475	19	829	63	400.9	15	15.60
Zr_M4F6_14	1860	200.9	0.108011	0.0715	0.0023	0.682	0.02	0.06863	0.0014	0.0372	0.0047	0.41492	427.9	8.6	527.6	12	968	63	427.9	8.6	18.90
Zr_M4F6_29	1748	406	0.232265	0.0665	0.0019	0.668	0.019	0.07258	0.0008	0.02302	0.001	0.35787	451.7	4.8	519	11	824	60	451.7	4.8	12.97
Zr_M4F6_16	1621	381	0.23504	0.0683	0.0021	0.694	0.037	0.07304	0.0024	0.02302	0.0012	0.48588	454.5	15	534.9	21	875	61	454.5	15	15.03
Zr_M4F6_2	2028	454	0.223866	0.08676	0.0034	0.896	0.027	0.0749	0.002	0.0401	0.0023	0.71108	465.4	12	649.3	14	1353	69	465.4	12	28.32
Zr_M4F6_21	1945	495.6	0.254807	0.0704	0.0021	0.727	0.023	0.07524	0.00095	0.02291	0.001	0.47359	467.7	5.7	554.4	14	936	61	467.7	5.7	15.64
Zr M4F6 26	2491	799	0.320755	0.0737	0.0021	0.775	0.033	0.07656	0.002	0.01701	0.0011	0.29894	475.6	12	582.7	18	1030	59	475.6	12	18.38
Zr_M4F6_7	1605	300.8	0.187414	0.0786	0.0023	1.0506	0.039	0.0968	0.0024	0.02988	0.0021	0.14579	595.8	14	729.1	21	1160	61	595.8	14	18.28
Zr_M4F6_12	1835	141.8	0.077275	0.0719	0.0021	0.998	0.034	0.1009	0.0029	0.0465	0.0024	0.48976	619.5	17	702.5	18	979	59	619.5	17	11.81
Zr M4F6 27	1551	339	0.218569	0.07792	0.0022	1.592	0.046	0.14791	0.0019	0.04534	0.002	0.41056	889.2	10	967.1	18	1143	54	889.2	10	8.06
Zr_M4F6_22	1154	345	0.29896	0.07826	0.0022	1.689	0.07	0.1574	0.0056	0.0492	0.0023	0.8925	942	32	1003	28	1156	56	942	32	6.08
Zr M4F6 25	1154	200.2	0.173484	0.0811	0.0023	1.914	0.083	0.1714	0.0068	0.052	0.0022	0.73234	1020	38	1085	33	1222	55	1020	38	5.99
Zr_M4F6_24	918	178.7	0.194662	0.0776	0.0022	2.011	0.073	0.1848	0.0053	0.0562	0.0027	-0.09709	1093	30	1119	27	1134	56	1093	30	2.32
Zr_M4F6_32	173	42.4	0.245087	0.0823	0.0027	2.189	0.068	0.1946	0.0029	0.0631	0.0033	0.11092	1146	15	1179	22	1245	66	1146	15	2.80
Zr_M4F6_10	866	166	0.191686	0.0784	0.0022	2.155	0.063	0.1971	0.0034	0.057	0.0027	0.32109	1160	18	1166	21	1165	55	1160	18	0.51
Zr_M4F6_33	963	273	0.283489	0.08104	0.0023	2.362	0.066	0.2107	0.0028	0.06183	0.0027	0.55136	1232.2	15	1231	20	1220	55	1232.2	15	-0.10
Zr_M4F6_28	123.6	34.6	0.279935	0.0808	0.0029	2.366	0.081	0.2126	0.0031	0.0644	0.0036	0.18491	1242	16	1234	25	1215	72	1242	16	-0.65
Zr_M4F6_17	819	142.1	0.173504	0.0803	0.0023	2.432	0.12	0.215	0.0076	0.0619	0.0031	0.87042	1255	41	1251	39	1202	57	1255	41	-0.32
Zr_M4F6_11	331	100.5	0.303625	0.0824	0.0024	2.455	0.067	0.2158	0.0024	0.0657	0.003	0.20795	1259.6	13	1258.5	20	1255	59	1259.6	13	-0.09
Zr_M4F6_15	933	274	0.293676	0.0817	0.0023	2.427	0.067	0.216	0.0024	0.0629	0.0028	0.069862	1261	12	1250.3	19	1235	57	1261	12	-0.86
Zr_M4F6_23	128	36.1	0.282031	0.0847	0.0025	2.67	0.21	0.2258	0.016	0.0724	0.0063	0.65055	1312	87	1319	77	1303	59	1312	87	0.53
Zr_MTZ-02-GR_22	638	479	0.750784	0.0835	0.0026	1.969	0.13	0.1738	0.011	0.0421	0.0026	0.41369	1033	65	1105	56	1276	60	1033	65	6.52
Zr_MTZ-02-GR_11	271.7	100.1	0.368421	0.0816	0.0026	2.101	0.068	0.1894	0.0024	0.0571	0.0025	0.28654	1118	13	1152	22	1241	64	1118	13	2.95
Zr_MTZ-02-GR_1	107.5	34.45	0.320465	0.0827	0.0031	2.23	0.079	0.1913	0.0032	0.0519	0.0033	0.39102	1128	17	1189	25	1250	72	1128	17	5.13
Zr_MTZ-02-GR_4	529	119.6	0.226087	0.07875	0.0022	2.094	0.063	0.1928	0.0031	0.0563	0.0027	0.47644	1136.7	16	1146.4	20	1163	56	1136.7	16	0.85
Zr_MTZ-02-GR_27	172.5	71.3	0.413333	0.082	0.0029	2.165	0.089	0.1931	0.0044	0.052	0.0039	0.84611	1138	23	1167	28	1246	67	1138	23	2.49
Zr_MTZ-02-GR_10	473.7	174	0.367321	0.0801	0.0025	2.139	0.071	0.1942	0.0027	0.0568	0.0026	0.53051	1144	15	1163	23	1202	63	1144	15	1.63
Zr_MTZ-02-GR_33	472	103.7	0.219703	0.0796	0.0023	2.132	0.063	0.1948	0.003	0.0602	0.0029	0.80861	1147	16	1159	20	1188	57	1147	16	1.04
Zr_MTZ-02-GR_6	552	172.7	0.312862	0.0804	0.0023	2.18	0.06	0.195	0.0022	0.0615	0.0027	0.38104	1148	12	1174	20	1202	58	1148	12	2.21
Zr_MTZ-02-GR_12	321	136	0.423676	0.0787	0.0025	2.141	0.062	0.1955	0.0022	0.0592	0.0027	0.065495	1151	12	1161	20	1164	60	1151	12	0.86
Zr_MTZ-02-GR_16	579	334.6	0.577893	0.07876	0.0022	2.146	0.059	0.198	0.0028	0.05465	0.0024	0.68347	1164	15	1163.6	19	1167	57	1164	15	-0.03
Zr_MTZ-02-GR_19	569	456	0.801406	0.0804	0.0024	2.194	0.066	0.1982	0.0023	0.0572	0.0025	0.23274	1165.6	13	1179	20	1202	60	1165.6	13	1.14
Zr_MTZ-02-GR_15	190.6	57.59	0.302151	0.0776	0.0025	2.171	0.072	0.2003	0.0031	0.0567	0.0028	0.23193	1177	16	1171	23	1141	64	1177	16	-0.51

Tabla 4. Datos U-Pb de circones de clastos de granitoides de la Fm. Matzitzi (continuación)

Zr_MTZ-02-GR_13	206.6	78.4	0.379477	0.0824	0.0028	2.365	0.075	0.2089	0.0025	0.0589	0.0027	0.28723	1223	13	1231	22	1256	65	1223	13	0.65
Zr_MTZ-02-GR_8	253	106.2	0.419763	0.0902	0.0027	2.63	0.085	0.2105	0.0039	0.0701	0.0038	0.92141	1231	21	1306	25	1425	59	1231	21	5.74
Zr_MTZ-02-GR_18	160.5	53	0.330218	0.0823	0.0027	2.407	0.077	0.2106	0.0027	0.0623	0.0032	-0.00657	1232	14	1243	23	1246	62	1232	14	0.88
Zr_MTZ-02-GR_14	102.3	32.1	0.313783	0.0822	0.0032	2.421	0.094	0.2108	0.0034	0.0634	0.0034	0.21122	1233	18	1246	28	1246	77	1233	18	1.04
Zr_MTZ-02-GR_20	347	318.3	0.917291	0.0804	0.0023	2.361	0.064	0.2114	0.0023	0.06168	0.0026	0.29397	1236.3	12	1232.3	19	1204	54	1236.3	12	-0.32
Zr_MTZ-02-GR_28	209.6	68.8	0.328244	0.0819	0.0027	2.4	0.077	0.2115	0.0026	0.0625	0.0031	0.30709	1237	14	1245	23	1236	64	1237	14	0.64
Zr_MTZ-02-GR_2	223	83	0.372197	0.083	0.0025	2.401	0.071	0.212	0.0029	0.0618	0.0028	0.16157	1239	16	1242.7	21	1266	59	1239	16	0.30
Zr_MTZ-02-GR_34	179.3	55.2	0.307864	0.0821	0.0025	2.403	0.072	0.2119	0.0028	0.0619	0.0031	0.28182	1239	15	1245	21	1247	63	1239	15	0.48
Zr_MTZ-02-GR_9	421	157	0.372922	0.0806	0.0023	2.367	0.082	0.2122	0.0046	0.0606	0.003	0.53899	1240	24	1232	24	1217	57	1240	24	-0.65
Zr_MTZ-02-GR_24	265	111.9	0.422264	0.0799	0.0025	2.368	0.066	0.2121	0.0026	0.0625	0.0029	-0.00192	1240	14	1233	20	1190	61	1240	14	-0.57
Zr_MTZ-02-GR_25	383	185	0.483029	0.08219	0.0024	2.423	0.066	0.2122	0.0024	0.0634	0.0028	0.31309	1240.6	13	1251.5	20	1247	56	1240.6	13	0.87
Zr_MTZ-02-GR_23	212	77.9	0.367453	0.0823	0.0026	2.423	0.074	0.2128	0.0026	0.0611	0.003	0.009258	1244	14	1251	22	1246	65	1244	14	0.56
Zr_MTZ-02-GR_21	204.7	62	0.302882	0.0817	0.0027	2.381	0.075	0.2134	0.0036	0.0645	0.003	0.37101	1247	19	1236	23	1230	66	1247	19	-0.89
Zr_MTZ-02-GR_32	418	304	0.727273	0.0817	0.0024	2.391	0.069	0.2134	0.0023	0.06005	0.0026	0.088538	1247.1	13	1239	21	1233	60	1247.1	13	-0.65
Zr_MTZ-02-GR_30	208	64.8	0.311538	0.0812	0.0027	2.415	0.091	0.2136	0.004	0.0619	0.0032	0.56361	1248	21	1245	28	1227	68	1248	21	-0.24
Zr_MTZ-02-GR_26	307	102.7	0.334528	0.0821	0.0027	2.395	0.084	0.2143	0.0036	0.0633	0.003	0.52057	1251	19	1239	25	1240	67	1251	19	-0.97
Zr_MTZ-02-GR_29	135.4	38	0.28065	0.0812	0.0029	2.399	0.083	0.2143	0.0033	0.0628	0.0034	0.16108	1251	18	1243	26	1229	76	1251	18	-0.64
Zr_MTZ-02-GR_35	180.1	53.9	0.299278	0.0817	0.0026	2.419	0.076	0.2147	0.0027	0.0631	0.0031	0.41269	1254	14	1247	22	1244	62	1254	14	-0.56
Zr_MTZ-02-GR_7	371	165	0.444744	0.082	0.0025	2.434	0.069	0.2159	0.0023	0.06345	0.0028	0.32581	1260.3	12	1252.2	20	1244	60	1260.3	12	-0.65
Zr_MTZ-02-GR_3	313	123	0.392971	0.0827	0.0024	2.461	0.069	0.2166	0.0026	0.0634	0.003	0.081398	1263.8	14	1260.2	20	1259	57	1263.8	14	-0.29
Zr_MTZ-02-GR_31	192.7	56.3	0.292164	0.0824	0.0028	2.498	0.082	0.2204	0.0026	0.0635	0.0031	0.36605	1284	14	1270	23	1248	67	1284	14	-1.10
Zr_MTZ-02-GR_17	291	103.5	0.35567	0.082	0.0026	2.5	0.079	0.2219	0.0026	0.0648	0.0031	0.22656	1292	14	1271	23	1248	62	1292	14	-1.65
Zr_MTZ-02-GR_5	196	58.6	0.29898	0.0796	0.0025	2.573	0.1	0.2323	0.0055	0.0673	0.0035	0.38367	1346	29	1292	29	1198	62	1346	29	-4.18

Tabla 5. Datos U-Pb de circones de granitoide Los Reyes (COZA-02) y Granito Cozahuico

							CORRE	ECTED RAT	TOS ²				CORF (Ma)	RECTED A	AGES						
Clave muestra	U (ppm) ¹	Th (ppm) ¹	Th/U	²⁰⁷ Pb/ ²⁰⁶ Pb	±2s abs	²⁰⁷ Pb/ ²³⁵ U	±2s abs	²⁰⁶ Pb/ ²³⁸ U	±2s abs	²⁰⁸ Pb/ ²³² Th	±2s abs	Rho	²⁰⁶ Pb/ ²³⁸ U	±2s	²⁰⁷ Pb/ ²³⁵ U	±2s	²⁰⁷ Pb/ ²⁰⁶ Pb	$\pm 2s$	Best age (Ma)	±2s	Disc %
Zr_COZ-02_5	592	23.4	0.039527	0.0727	0.0061	1.657	0.04	0.1634	0.0021	0.0642	0.0035	0.078294	975.4	12	992	15	1002	170	975.4	12	1.67
Zr_COZ-02_8	839	271	0.323004	0.08	0.0067	1.967	0.046	0.1778	0.0025	0.0518	0.0024	0.21297	1054.8	14	1103.7	16	1193	170	1054.8	14	4.43
Zr_COZ-02_46	157	43	0.273885	0.074	0.0035	1.847	0.1	0.1804	0.0027	0.0543	0.004	0.064382	1068.9	15	1061	36	1031	96	1068.9	15	-0.74
Zr_COZ-02_39	240.5	72.1	0.299792	0.0766	0.0036	1.92	0.11	0.1827	0.003	0.0542	0.0037	0.38295	1082	16	1091	34	1107	96	1082	16	0.82
Zr COZ-02 15	157	53.2	0.338854	0.0769	0.0066	1.96	0.057	0.1844	0.0031	0.0598	0.0032	0.33024	1091	17	1100	20	1132	170	1091	17	0.82
Zr_COZ-02_47	126.6	18.7	0.147709	0.0832	0.0043	2.113	0.12	0.1862	0.0037	0.0662	0.0055	0.082492	1101	20	1152	40	1278	110	1101	20	4.43
Zr COZ-02 42	194	71.6	0.369072	0.0812	0.0038	2.102	0.12	0.1894	0.0032	0.0563	0.004	0.44062	1118	18	1149	39	1221	93	1118	18	2.70
Zr_COZ-02_18	274	48.5	0.177007	0.0784	0.0067	2.069	0.057	0.192	0.0027	0.0578	0.003	0.074171	1132	15	1138	19	1152	170	1132	15	0.53
Zr COZ-02 9	239	39.64	0.165858	0.0793	0.0067	2.108	0.064	0.1937	0.003	0.06	0.0031	0.239	1141	17	1153	21	1174	160	1141	17	1.04
Zr COZ-02 48	236	27.8	0.117797	0.0764	0.0034	2.068	0.11	0.1939	0.0031	0.0604	0.0048	0.21601	1142	17	1137	36	1102	89	1142	17	-0.44
Zr COZ-02 40	154.1	33.1	0.214796	0.0771	0.0036	2.076	0.11	0.1955	0.0032	0.0566	0.004	0.16718	1151	17	1142	38	1121	96	1151	17	-0.79
Zr COZ-02 28	285	47.8	0.167719	0.0776	0.0065	2.1	0.054	0.1972	0.0026	0.0607	0.0028	-0.05261	1160.4	14	1148	18	1142	180	1160.4	14	-1.08
Zr COZ-02 17	104.4	21.8	0.208812	0.0772	0.0067	2.12	0.07	0.1978	0.0047	0.06	0.0039	0.22775	1163	25	1154	23	1114	170	1163	25	-0.78
Zr COZ-02 13	385	79.8	0.207273	0.079	0.0067	2.16	0.054	0.1978	0.0024	0.0621	0.0027	0.40172	1163.6	13	1170	17	1169	170	1163.6	13	0.55
Zr COZ-02 6	236	34.6	0.14661	0.079	0.0067	2.181	0.054	0.1983	0.0027	0.0627	0.0032	-0.05537	1166	15	1176	17	1165	170	1166	15	0.85
Zr_COZ-02_31	175	53.6	0.306286	0.0792	0.0068	2.162	0.063	0.1984	0.003	0.0598	0.0027	0.23016	1166	16	1170	21	1182	170	1166	16	0.34
Zr COZ-02 11	355	59.2	0.166761	0.0802	0.0069	2.191	0.055	0.1989	0.0029	0.0624	0.0031	0.19934	1169	16	1178	17	1198	170	1169	16	0.76
Zr_COZ-02_45	245	93	0.379592	0.0805	0.0037	2.186	0.12	0.1989	0.004	0.0582	0.0043	0.28751	1169	21	1175	37	1201	88	1169	21	0.51
Zr COZ-02 4	416.6	89.5	0.214834	0.082	0.007	2.279	0.054	0.1992	0.0026	0.058	0.0027	0.23909	1171	14	1205	17	1243	160	1171	14	2.82
Zr_COZ-02_26	387	174	0.449612	0.0798	0.0066	2.187	0.062	0.1992	0.0038	0.0612	0.003	0.51857	1171	20	1176	20	1186	160	1171	20	0.43
Zr COZ-02 34	210	55.6	0.264762	0.0803	0.0069	2.19	0.068	0.1996	0.0035	0.0614	0.003	0.36647	1173	19	1179	21	1211	170	1173	19	0.51
Zr_COZ-02_43	121.2	29.41	0.242657	0.0799	0.0039	2.195	0.12	0.1999	0.0044	0.0638	0.0049	0.29542	1174	23	1177	39	1182	96	1174	23	0.25
Zr_COZ-02_35	256.8	46.5	0.181075	0.0791	0.0067	2.2	0.058	0.2002	0.0031	0.0618	0.0033	0.33387	1176	17	1182	19	1169	170	1176	17	0.51
Zr COZ-02 32	403.9	81.9	0.202773	0.0809	0.0069	2.234	0.06	0.2011	0.0028	0.0556	0.0032	0.47093	1181	15	1191	18	1216	170	1181	15	0.84
Zr COZ-02 54	402	130	0.323383	0.08067	0.0034	2.239	0.11	0.2029	0.0033	0.0589	0.004	0.61774	1191	18	1196	33	1210	83	1191	18	0.42
Zr_COZ-02_29	291	63.2	0.217182	0.0797	0.0067	2.241	0.059	0.2047	0.0031	0.0575	0.0032	0.33114	1201	17	1193	19	1192	170	1201	17	-0.67
Zr COZ-02 55	385	96	0.249351	0.0796	0.0035	2.247	0.12	0.205	0.0028	0.0598	0.004	0.061007	1202	15	1195	36	1194	82	1202	15	-0.59
Zr COZ-02 25	526.7	114.6	0.217581	0.0794	0.0066	2.241	0.054	0.2051	0.0028	0.0598	0.0026	0.29791	1202.6	15	1193	17	1177	160	1202.6	15	-0.80
Zr COZ-02 14	168.5	37.6	0.223145	0.0812	0.0069	2.297	0.061	0.2055	0.003	0.0634	0.0033	0.28892	1205	16	1212	19	1233	170	1205	16	0.58
Zr_COZ-02_27	378	82	0.216931	0.0805	0.0069	2.269	0.056	0.2057	0.0027	0.0592	0.0027	-0.15242	1205.7	14	1202	17	1203	160	1205.7	14	-0.31
Zr COZ-02 1	198	56.3	0.284343	0.0814	0.007	2.331	0.065	0.2054	0.0031	0.0641	0.0031	0.18349	1207	16	1220	20	1221	170	1207	16	1.07
Zr_COZ-02_52	213.1	39.9	0.187236	0.0811	0.0036	2.315	0.12	0.2071	0.0029	0.0627	0.0044	0.014258	1213.2	16	1216	36	1229	81	1213.2	16	0.23

Tabla 5. Datos U-Pb de circones de granitoide Los Reyes y Granito Cozahuico (continuación)

Zr_COZ-02_49	360	112.4	0.312222	0.08044	0.0034	2.298	0.12	0.2077	0.0029	0.0593	0.004	0.23974	1216.7	15	1211.1	36	1209	87	1216.7	15	-0.46
Zr_COZ-02_19	190	61.7	0.324737	0.0807	0.0069	2.321	0.066	0.2082	0.0032	0.0627	0.003	0.39813	1219	17	1217	20	1214	170	1219	17	-0.16
Zr COZ 02_19	216	05	0.300633	0.0708	0.0069	2.321	0.066	0.2002	0.0036	0.0624	0.0026	0.61215	1220	10	1221	20	1100	160	1220	10	0.09
ZI_COZ-02_20	310	95	0.300033	0.0798	0.0008	2.329	0.000	0.2084	0.0030	0.0034	0.0030	0.01313	1220	15	1221	20	1190	100	1220	15	0.08
Zr_COZ-02_22	349	101.2	0.289971	0.0809	0.0067	2.317	0.058	0.2087	0.0029	0.0604	0.0028	0.39256	1222	15	1221	1/	1220	180	1222	15	-0.08
Zr_COZ-02_53	298	98	0.328859	0.081	0.0035	2.333	0.12	0.2089	0.0038	0.0613	0.0042	0.40175	1223	20	1223	36	1223	89	1223	20	0.00
Zr_COZ-02_50	166	62.5	0.376506	0.0803	0.0037	2.31	0.13	0.2095	0.0039	0.0637	0.0044	0.35061	1226	21	1216	40	1194	92	1226	21	-0.82
Zr COZ-02 16	295	91.3	0.309492	0.0802	0.0068	2.299	0.06	0.2096	0.003	0.0631	0.003	-0.00012	1227	16	1211	18	1196	170	1227	16	-1.32
Zr COZ-02 38	260.3	49.2	0.189013	0.0793	0.0044	2 289	0.14	0.2101	0.0037	0.0589	0.0043	0 16425	1229	20	1213	41	1170	110	1229	20	-1.32
Zr_COZ 02_12	260.5	50.2	0.102227	0.0903	0.0068	2.207	0.06	0.2102	0.0028	0.0652	0.0022	0.015781	1220 4	15	1213	19	1205	170	1220 4	15	0.77
ZI_COZ-02_12	201	30.2	0.192557	0.0805	0.0008	2.555	0.00	0.2105	0.0028	0.0632	0.0055	0.013781	1230.4	15	1221	10	1203	170	1230.4	15	-0.77
Zr_COZ-02_33	108.9	20.3	0.18641	0.0825	0.007	2.326	0.073	0.2106	0.0043	0.0694	0.0037	0.30999	1232	23	1224	22	1248	1/0	1232	23	-0.65
Zr_COZ-02_44	335	65	0.19403	0.0822	0.0037	2.383	0.12	0.2111	0.0032	0.0595	0.0041	0.087912	1235	17	1237	38	1251	86	1235	17	0.16
Zr_COZ-02_3	282	66.5	0.235816	0.0803	0.0068	2.366	0.058	0.2113	0.0027	0.0623	0.0031	0.097557	1235.6	14	1232	17	1202	160	1235.6	14	-0.29
Zr COZ-02 51	218	42.5	0.194954	0.081	0.0036	2.355	0.13	0.2115	0.0037	0.0608	0.0045	0.40865	1236	20	1228	38	1221	90	1236	20	-0.65
7r COZ 02 30	220	48.5	0.220455	0.0811	0.007	2 355	0.061	0.2127	0.0029	0.064	0.0032	0.06733	12/13	16	1228	10	1218	170	1243	16	-1.22
ZI_COZ-02_30	214	40.J	0.220455	0.0811	0.007	2.333	0.062	0.2127	0.0020	0.004	0.0032	-0.00755	1245	15	1220	10	1210	170	1245	15	0.25
ZI_COZ-02_7	214	34.4	0.234206	0.0809	0.0009	2.401	0.065	0.2137	0.0029	0.0664	0.0052	-0.052	1246.4	15	1244	19	1210	170	1246.4	15	-0.55
Zr_COZ-02_36	285	85.8	0.301053	0.0837	0.0037	2.45	0.13	0.2141	0.0036	0.0631	0.0043	0.44805	1251	19	1259	39	1281	86	1251	19	0.64
Zr_COZ-02_24	92.5	20.8	0.224865	0.0811	0.0072	2.393	0.09	0.2148	0.0039	0.0637	0.0039	0.28747	1254	21	1237	27	1206	180	1254	21	-1.37
Zr_COZ-02_21	97.3	22.7	0.233299	0.0812	0.0071	2.37	0.089	0.2153	0.0038	0.0682	0.0035	0.019404	1257	20	1230	26	1200	180	1257	20	-2.20
Zr COZ-02 10	203	44.8	0 22069	0.0814	0.007	2 4 3 6	0.07	0.2166	0.0033	0.0662	0.0036	0.225	1264	17	1252	21	1222	170	1264	17	-0.96
7r COZ 02 37	157.0	35.2	0.222026	0.0810	0.0039	2 /31	0.13	0.2167	0.0037	0.0657	0.0049	0.05194	1264	20	1256	41	1234	9/	1264	20	-0.64
ZI_COZ-02_37	137.9	55.2	0.222920	0.0017	0.0057	2.431	0.15	0.2107	0.0037	0.0037	0.0047	-0.05174	1204	10	1250	10	1234	170	1204	10	-0.04
ZF_COZ-02_2	275.4	69.4	0.251997	0.0814	0.0068	2.476	0.062	0.217	0.0034	0.0646	0.0036	0.31854	1200	18	1264	18	1227	170	1200	18	-0.10
Zr_COZ-02_41	62.2	14.7	0.236334	0.0786	0.0048	2.45	0.16	0.2186	0.0045	0.0668	0.006	0.076153	1274	24	1251	48	1170	120	1274	24	-1.84
Zr_COZ-02_23	161	48.1	0.298758	0.0808	0.0069	2.429	0.075	0.2195	0.0041	0.065	0.0032	0.4183	1279	22	1253	22	1211	170	1279	22	-2.08
7. COZAHUICO 20	121.2	15.5	0 275412	0.0555	0.004	0 222	0.024	0.0448	0.0012	0.01546	0.0011	0 20152	282.7	87	207	10	420	150	2827	87	4.91
ZI_COZAHURCO_23	121.2	45.5	0.375413	0.0555	0.004	0.332	0.024	0.0448	0.0013	0.01340	0.0011	0.30133	202.7	0.2	297	15	420	150	202.7	0.2	4.01
Zr_COZAHUICO_35	123	35.1	0.285366	0.0541	0.0064	0.331	0.035	0.0462	0.0021	0.0195	0.0019	-0.16651	291	13	289	27	370	220	291	13	-0.69
Zr_COZAHUICO_13	318.7	252	0.790712	0.0524	0.0029	0.335	0.017	0.04629	0.0011	0.01439	0.00083	0.19657	291.7	6.9	293	13	282	120	291.7	6.9	0.44
Zr_COZAHUICO_8	779	63.5	0.081515	0.0698	0.0029	0.884	0.077	0.0926	0.0067	0.0468	0.0029	0.5844	571	39	642	38	916	84	571	39	11.06
Zr COZAHUICO 2	191.5	29.7	0.155091	0.0716	0.0033	1.252	0.051	0.128	0.0029	0.043	0.003	-0.19277	777	17	823	23	960	84	777	17	5.59
Zr COZAHUICO 9	863	142.2	0 164774	0.0717	0.0029	1 287	0.058	0.13	0.0048	0.0277	0.0018	0.60075	787 7	28	839	28	984	83	787 7	28	6.11
Zr COZAHUICO 30	529.9	88.8	0 167579	0.0706	0.0029	1 258	0.063	0.1296	0.0049	0.046	0.004	0.37303	789	28	827	20	030	85	780	28	1 50
ZI_COZAHURCO_30	529.9	00.0	0.107379	0.0700	0.0029	1.238	0.003	0.1290	0.0049	0.040	0.004	0.37303	709	20	027	29	939	0.5	109	20	4.55
Zr_COZAHUICO_32	8/3	96.8	0.110882	0.0699	0.0028	1.288	0.046	0.1338	0.0027	0.045	0.0026	0.020927	809.3	15	840	20	926	84	809.3	15	3.65
Zr_COZAHUICO_40	882	135.6	0.153741	0.0726	0.0033	1.387	0.074	0.138	0.0023	0.0489	0.0035	0.3098	833	13	883	32	999	94	833	13	5.66
Zr_COZAHUICO_28	485.2	77.7	0.16014	0.0766	0.0037	1.521	0.058	0.1431	0.0051	0.0541	0.0079	0.19221	862	30	938	25	1139	90	862	30	8.10
Zr COZAHUICO 20	241	38.9	0.161411	0.0724	0.0033	1.514	0.061	0.1516	0.0033	0.0526	0.0034	0.18699	910	18	935	25	984	94	910	18	2.67
7r COZAHUJCO 24	320	48	0.15	0.0706	0.0032	1 /06	0.069	0.1546	0.0037	0.05	0.0032	0.20628	027	21	031	27	946	00	027	21	0.43
Zr_COZAUUICO_1	242	40	0.15	0.0700	0.0032	1.470	0.007	0.1570	0.0037	0.0290	0.0032	0.27020	045	10	059	27	1007	00	045	10	1.26
Zr_COZAHUICO_I	342	98.8	0.288889	0.0729	0.0031	1.562	0.057	0.1579	0.0032	0.0389	0.0023	0.044668	945	18	958	22	1007	90	945	18	1.50
Zr_COZAHUICO_41	362	76	0.209945	0.072	0.0034	1.552	0.082	0.1578	0.003	0.0488	0.0036	0.030693	945	16	951	33	990	100	945	16	0.63
Zr_COZAHUICO_27	421.4	93.6	0.222117	0.0719	0.003	1.572	0.059	0.1587	0.0031	0.046	0.0026	0.50184	949.4	17	958	23	979	84	949.4	17	0.90
Zr COZAHUICO 6	312	70.1	0.224679	0.0711	0.0032	1.573	0.063	0.1587	0.004	0.035	0.0028	0.42258	950	22	966	24	959	88	950	22	1.66
Zr COZAHUICO 26	372	80.2	0.215591	0.0732	0.0032	1.601	0.062	0.1594	0.0032	0.0497	0.0028	-0.0736	953	18	969	24	1008	89	953	18	1.65
7r COZAHUICO 25	350	76.3	0.218	0.0767	0.0034	1 738	0.083	0.1642	0.0056	0.0621	0.0037	0.2259	980	31	1022	3/	1102	80	080	31	4.11
ZI_COZALIUICO_10	330	70.3	0.218	0.0707	0.0034	1.756	0.085	0.1642	0.0050	0.0021	0.0037	0.2239	980	10	1022	24	050	07	980	10	4.11
Zr_COZAHUICO_10	324	07.8	0.209259	0.0713	0.0028	1.607	0.059	0.1645	0.0035	0.0517	0.0028	0.22407	981	19	972	23	959	80	981	19	-0.93
Zr_COZAHUICO_31	368.1	85.9	0.23336	0.0715	0.003	1.635	0.061	0.166	0.0032	0.0502	0.0028	-0.03133	989.9	18	986	24	976	87	989.9	18	-0.40
Zr_COZAHUICO_15	341.2	91.7	0.268757	0.073	0.0033	1.66	0.068	0.1664	0.0036	0.0489	0.0026	-0.03616	992	20	994	27	1012	90	992	20	0.20
Zr COZAHUICO 22	262.2	50.49	0.192563	0.0714	0.0031	1.645	0.063	0.167	0.0036	0.0524	0.003	0.30018	995	20	989	25	967	89	995	20	-0.61
7r COZAHUICO 7	214.6	52.2	0 243243	0.073	0.0032	1 658	0.072	0.1672	0.0037	0.0433	0.0032	0.47296	996	20	993	27	1019	88	996	20	-0.30
	260	08.6	0.267200	0.0724	0.003	1.671	0.065	0.1672	0.0024	0.0427	0.0027	0.41768	006.4	10	008	24	000	85	006.4	10	0.16
ZI_COZAHURCO_16	307	51.4	0.207207	0.0724	0.005	1.071	0.005	0.1672	0.0034	0.0437	0.0021	0.41700	000.4	10	1004	24	1017	05))0. 4	10	0.10
Zr_COZAHUICO_16	307	51.4	0.16/42/	0.0723	0.0032	1.69	0.065	0.16/5	0.0035	0.0525	0.0031	-0.16019	998.2	19	1004	25	1017	85	998.2	19	0.58
Zr_COZAHUICO_3	288.9	65.55	0.226895	0.0727	0.0034	1.699	0.068	0.168	0.0034	0.0497	0.0029	-0.08555	1000.8	19	1007	26	1014	91	1000.8	19	0.62
Zr_COZAHUICO_17	361	77.8	0.215512	0.0743	0.0032	1.724	0.067	0.168	0.0035	0.0499	0.0029	0.30947	1001	19	1016	25	1048	87	1001	19	1.48
Zr COZAHUICO 33	266	43.1	0.16203	0.0725	0.0031	1.699	0.064	0.1682	0.0034	0.0505	0.0031	0.13534	1002.2	19	1007	24	990	89	1002.2	19	0.48
7r COZAHUICO 37	299.9	72.81	0 242781	0.0742	0.0038	17	0.097	0.1683	0.0031	0.05	0.0036	0.21939	1003	17	1011	34	1049	98	1003	17	0.79
ZI_COZALIUICO_5	251	72.01	0.242701	0.0742	0.0030	1.7	0.057	0.1605	0.0031	0.05	0.0030	0.42771	1003	10	1011	24	072	20	1003	10	1.50
ZF_COZAHUICO_5	351	12.1	0.207123	0.0715	0.003	1.651	0.062	0.1686	0.0034	0.0496	0.0028	0.43771	1004	18	989	24	973	80	1004	18	-1.52
Zr_COZAHUICO_14	364	70.2	0.192857	0.0718	0.0029	1.667	0.062	0.1688	0.0034	0.0503	0.003	0.21294	1005	19	999	23	974	83	1005	19	-0.60
Zr_COZAHUICO_23	272.9	57.2	0.209601	0.0721	0.0031	1.685	0.066	0.1686	0.0035	0.0513	0.0031	0.31859	1005	19	1002	25	987	88	1005	19	-0.30
Zr COZAHUICO 11	660.8	179.9	0.272246	0.078	0.0031	1.833	0.15	0.1692	0.013	0.04833	0.0042	0.31539	1008	77	1057	74	1157	88	1008	77	4.64
7r COZAHUICO 21	294.2	60.9	0.207002	0.0727	0.0032	1 681	0.065	0.1692	0.0037	0.0525	0.0029	0 17421	1008	20	1002	24	995	90	1008	20	-0.60
7= COZALILICO 20	202.5	47.1	0.207002	0.0727	0.0032	1 200	0.005	0.1072	0.0037	0.0525	0.0027	0.17421	1000 7	12	1002	24	1009	00	1000 7	12	-0.00
ZI_COZAHUICO_39	292.3	47.1	0.101026	0.0725	0.0033	1.088	0.091	0.1090	0.0023	0.0529	0.0036	0.37807	1009.7	15	1005	34	1008	99	1009.7	13	-0.0/
zr_cozahuico_42	409	87	0.212714	0.0724	0.0033	1.7	0.089	0.1705	0.0024	0.0525	0.0036	-0.08878	1014.8	13	1008	33	992	93	1014.8	13	-0.67
Zr_COZAHUICO_19	920	79.8	0.086739	0.0715	0.0029	1.689	0.066	0.1709	0.0039	0.0527	0.0029	0.37635	1017	21	1004	24	967	86	1017	21	-1.29
Zr_COZAHUICO 12	249.1	45.11	0.181092	0.0734	0.0031	1.735	0.064	0.1711	0.0036	0.0517	0.0031	7.15E-05	1018	20	1021	24	1034	83	1018	20	0.29
Zr COZAHUICO 36	300.6	52.49	0.174617	0.0728	0.0036	1.714	0.096	0.1711	0.0027	0.0525	0.0039	-0.1047	1018	15	1013	36	999	100	1018	15	-0.49
7: COZAHUICO 4	227	72.2	0.221101	0.0727	0.0022	1 727	0.067	0.1710	0.002/	0.0515	0.002	0.07/229	1022 5	10	1022	26	1022	00	1022 5	10	0.05
ZI_COZAUUUCO_4	321	12.3	0.221101	0.0757	0.0052	1./3/	0.007	0.1719	0.0054	0.0515	0.005	0.074558	1022.5	19	1025	20	1023	90	1022.5	19	0.05
Zr_COZAHUICO_34	290.5	57	0.196213	0.071	0.0032	1.698	0.092	0.1719	0.0024	0.0515	0.0037	0.19804	1022.5	13	1009	33	958	90	1022.5	13	-1.34
Zr_COZAHUICO_38	254	48	0.188976	0.0737	0.0034	1.753	0.093	0.1731	0.0026	0.0527	0.0038	0.12794	1029.4	14	1027	34	1032	98	1029.4	14	-0.23

1: Las concentraciones de U y Th son calculadas empleando un circón estándar externo tal como en Paton et al., 2010, Geochemistry, Geophysics, Geosystems. 2: Las incertidumbres propagadas se reportan a 2-sigma de acuerdo con Paton et al., 2010, Geochemistry, Geophysics, Geosystems.

Las relaciones 207Pb/206Pb, edades y errores son calculados de acuerdo con Petrus and Kamber, 2012, Geostandards Geoanalytical Research.

El diámetro de ablación fue de 23 micrómetros, usando el protocolo analítico modificado de Solari et al., 2010, Geostandards Geoanalytical Research.

Los datos analíticos se obtuvieron con un equipo Thermo iCapQc ICPMS acoplado a una estación de laser de excímeros Resonetics, Resolution M050.

La numeración de los circones corresponde con el numero de análisis. Los datos se ordenan por edad para facilitar su visualización.

Apéndice 3. Concentraciones de elementos traza en circón mediante LA-ICPMS

Tabla 1. Concentraciones elementales en circones de clastos volcánicos de la Fm. Matzitzi

(ppm)	Р	Sc	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Yb	Lu	Hf	206Pb	Pb	Th	U
Zr MAT1-P1 1	480	280	6.1	1215	1.67	1.21E-08	2.75	0.025	0.82	2.68	0.058	19	7.69	96.7	41.7	173.4	344	71.2	11470		65.25	107.6	415
Zr MAT1-P1 2	106	283	6.9	1271	2.28	-6E-08	5.66	0.049	1.31	3.36	1.94	23.1	8.84	99.8	39.6	170.8	374	84.4	7980		3.2625	19.44	80.5
Zr MAT1-P1 3	169	277	7	1282	2.6	2.37E-07	7.79	0.107	1.9	5.75	2.7	31.6	9.91	106.8	40.9	164.6	329	72.9	7660		4.7225	45.92	124.1
Zr_MAT1-P1_4	86	264	4.3	470	1.21	-8.5E-07	3.24	0.0126	0.58	1.59	0.86	10.28	3.19	36.9	14.83	64.3	143.9	33.7	9040		2.69	15.3	62.3
Zr_MAT1-P1_5	678	325	7.5	1870	1.51	0.81	8.2	1.25	7.5	6.6	1.06	30.4	13.1	158	64	268	520	107.7	12650		84	213	470
Zr_MAT1-P1_6	228	256	4.8	837	1.66	0.000579	5.09	0.029	0.39	1.78	0.046	12.02	5.04	63.1	27.7	121.9	245	51.6	12690		76.5	107.7	400
Zr_MAT1-P1_7	77	279	5.5	839	1.69	-0.00216	3.09	0.053	0.93	2.91	1.7	20.3	6.76	70.5	26.1	105.4	216	48.5	8570		2.6275	14	69.3
Zr_MAT1-P1_8	142	264	4.9	1019	1.8	-0.00367	4.63	0.052	1	2.81	1.54	18.6	6.66	76.8	32.5	142.5	315	74.9	7780		2.56	13.19	65.7
Zr_MAT1-P1_9	258	257.6	3.74	890	1.519	0.000596	3.77	0.032	0.66	1.94	0.073	14.26	5.5	69	29.6	128.4	250	52	10900		51.625	99.6	306
Zr_MAT1-P1_10	301	307	11	716	2.41	-0.00019	4.72	0.079	1.24	3.3	0.067	16.12	5.57	62.1	22.79	85.4	141.2	26.8	13080		60.275	130.2	386
Zr_MAT1-P1_11	207	243.5	4.7	961	1.16	0.018	3.18	0.057	0.64	1.97	0.118	15.4	5.82	77.3	32	137.6	256	54.1	10560		47.5	81.1	260
Zr_MAT1-P1_12	204	259	3.4	803	1.84	0.33	5.07	0.095	1.19	2.04	0.268	15	5.52	67.3	27.1	114.6	225	47.3	9840		29.55	62.2	158
Zr_MAT1-P1_13	191	238	10.4	508	4.51	3.52E-06	8.52	0.021	0.2	0.75	0.177	6	2.37	31.5	15.12	77.9	224	56.7	12130		23.5	153.3	107.6
Zr_MAT1-P1_14	224	256	5.19	668	1.24	0.0101	2.77	0.034	0.47	1.33	0.109	10.14	3.96	50.7	22.2	98.2	194	40.6	11110		35.325	51.6	197
Zr_MAT1-P1_15	224	261	4	990	1.15	2.4E-07	3.28	0.064	0.97	3.02	0.164	20.2	6.88	82	33.2	137	262	54	11250		47.15	74.3	241
Zr_MAT1-P1_16	95	274	7.1	1249	2.2	7.92E-10	5.71	0.075	1.42	3.62	2	25.5	9.36	103.3	39.7	161.3	331	72.8	8470		3.7	23.9	90.9
Zr_MAT1-P1_17	484	275	8	1197	1.49	-4.9E-09	1.54	0.054	0.66	1.98	0.089	16.3	7.15	87.3	40.1	179	357	76.6	12480		62.75	60.1	296
Zr_MAT1-P1_18	105	236.7	2.9	474	2.18	1.49E-08	5.3	0.0194	0.71	1.6	0.097	9.05	3.41	40.1	16.35	69.6	136.3	28.8	11120		16.7	29.9	105.5
Zr_MAT1-P1_19	245	259	2.5	1537	1.018	-6.6E-08	3.81	0.072	1.8	4.39	0.317	30.5	11.42	132	51.7	211	367	74.4	10920		56	107.1	267
Zr_MAT1-P1_20	219	230	5.3	468	2.15	0.066	7.8	0.052	0.53	1.01	0.146	4.95	2.27	29.6	14.04	70.9	193.1	46.1	11060		87	90.3	534
Zr_MAT1-P1_21	56	243	5.6	338	2.03	-4.8E-07	4.9	0.0055	0.143	0.36	0.09	2.25	1.22	18.4	9.86	52.1	164	42.8	12240		82	60	550
Zr_MAT1-P1_22	318	259	6.3	1101	6.42	0.642	17.34	1.03	5.78	4.78	1.09	17.25	7.37	89	35.4	165.5	370	80.4	12000		161.25	221.1	1029
Zr_MAT1-P1_23	520	254	11.1	700	4.48	8	40.9	2.6	14.4	5.6	0.134	17.2	5.77	61.1	23.8	99.6	201	44.4	12740		39	191	229.8
Zr_MAT1-P1_24	213	247	16.4	637	3.71	3.71E-05	8.53	0.034	0.61	1.73	0.216	10.83	4.29	52.1	22	94.9	214	49.2	8990		12.475	6.2	83
Zr_MAT1-P1_25	175	251	15.5	294	4.88	-0.00017	20.7	0.13	2.18	4.46	0.67	17.5	5.1	39.4	10.74	31.4	36.3	6.42	10140		18	8.36	108.4
Zr_MATT-P1_26	82	240	4	4/1	1.38	0.129	3.54	0.038	0.37	1.13	0.019	5.66	2.6	34.7	15.18	69.8	147	32.7	13240		64.5	55.5	270
Zr_MATI-PI_2/	72	266	4.4	680	1.33	-0.00015	3.01	0.037	0.6	1.85	1.25	14.4	5.31	54.7	12 70	89	188	43.1	8340		1.725	11	59
Zr_MAT1-P1_28	201	251	11.8	595	5.//	4.4/E-05	22.42	0.089	1.2	2.3	0.8	10.55	3.33	58.2	13.79	55.4 100.6	102.9	21	10760		1.8425	2	13.04
ZI_MATI-PI_29	205	244.1	50	080	1.5	-1.2E-03	7.80	0.023	0.0	1.0	1.06	10.95	4.42	J4.0	22.39	110.0	191.0	40.7 54.2	10700		41.223	63.5 51.2	223
ZI_MATI-PI_50 7r MATI DI 21	444	222	3.2	1122	2.80	0.6E.07	0.41	0.038	0.74	2.95	0.256	17.12	7.20	/1.8 04.1	20.2	119.2	233	57.0	9390		9.93 55.25	31.2 42	90.1 229 7
ZI_MATI-FI_31 7r MATI DI 22	140	271	11	1122	1.45	-9.00-07	2.62	0.043	0.74	1.67	0.550	8 70	2 27	27.4	15.2	64.8	127	22.1	8800		2 7175	42	27.2
ZI_MATI-FI_32 Zr_MATI-PI_33	214	2/1	5	936	1.45	-6.4E-08	5.52	0.041	0.03	1.07	0.7	14 51	6.10	72.8	31.2	135.1	250	54.5	11720		2.7175	127.6	134
Zr_MAT1-P1_34	265	242.0	36	883	1.75	1.7E_08	2.72	0.042	0.57	2 30	0.12	14.51	5.82	70.1	20.3	123.5	237	48.1	10630		40.5	667	204
Zr_MAT1-P1_35	203	247 5	4.2	741	1.11	-4 9E-09	4.03	0.023	0.37	13	0.032	10.42	4 32	56	29.5	110.2	218.4	46.1	13110		66.25	84.9	327
Zr MAT1-P1_36	222	303	35.5	304	2.04	-2.8E-11	1.35	0.0117	0.33	0.91	0.09	4.47	1.84	23.1	10.13	49.8	126.2	30.9	13340		15.975	7.76	101
<u></u>		505	0010	501	2.01	2.02.11	1.55	0.0117	0.00	0.71	0.09	,	1.01	20.1	10.15	1710	120.2	5017	10010		10.770	1.10	101
Zr Mat3v2 1	150	84	4.4	686	1.18	0	3.48	0.03	0.48	1.71	0.075	12.2	4.42	57.9	22.4	102.1	202	38.3	11040	179.7	44.925	71.7	223
Zr Mat3v2 2	2660	153	5.5	5310	6.42	39.9	148	17.4	87	43.1	4.12	143	44.5	496	184	775	1430	268	7660	150	37.5	651	855
Zr Mat3v2 3	3770	131	5.8	2330	7.39	20.6	78	10.6	65	29.3	1.23	65.2	18.3	204	75.6	334	669	138.7	9710	100.2	25.05	213.9	534
Zr Mat3v2 4	500	220	6.3	6830	5.76	0.078	67.1	1.41	24.7	38.4	5.08	181	58.3	636	231	975	1690	329	6860	127	31.75	700	767
Zr_Mat3v2_5	330	130	2.6	2130	10.1	0	25.4	0.097	1.8	4.85	0.28	36.4	13.4	177	71	329	632	126.2	9940	169	42.25	424.9	808.2
Zr_Mat3v2_6	1110	163.9	7.9	2320	3.95	1.93	38.9	1.8	15.6	13.2	1.71	56.7	19.3	211	79.5	355	664	131.9	6980	75.7	18.925	244	389.1
Zr_Mat3v2_7	300	101.1	3.2	2000	1.74	0	10.66	0.181	3.41	6.38	0.8	40.6	13.97	173	68	304	601	120.2	7440	58.4	14.6	152.6	308
Zr_Mat3v2_8	1700	137.3	2	1434	6.52	26.1	78.6	9.66	52.6	14.2	0.46	30	9.45	112.3	48.1	229	505	107.5	8600	67.9	16.975	117	381
Zr_Mat3v2_9	720	277	5	4060	12.1	0.26	59.2	0.83	14.3	26	3.06	120.3	36.3	389	140.5	585	1047	204	6270	161	40.25	962	952
Zr_Mat3v2_10	440	127.7	2.6	2070	7.8	1.89	29.2	0.94	5.43	7.28	0.87	42.9	14.1	178	69.2	312	612	120.6	9660	114.3	28.575	350.2	660.4
Zr_Mat3v2_11	-350	76	9.1	305	0.66	0.024	1.75	0.013	0.34	0.85	0.237	4.83	1.66	22.4	8.65	46	120	29.9	10020	233	58.25	43.4	317.8
Zr_Mat3v2_12	230	134.8	3.7	1853	8.77	0	22.6	0.104	1.5	4.02	0.35	31.2	11.99	154.9	62.1	287	580	116.7	9250	112.5	28.125	352.7	710
Zr_Mat3v2_13	910	139	3.6	2520	9.41	26	89	8.2	30	13.8	1.41	53.6	18.2	210	81.5	370	710	144	9610	135.1	33.775	285	671
Zr_Mat3v2_14	260	124.9	1.2	1860	8.24	0	22.2	0.023	1.36	4.17	0.187	30.8	11.42	154.5	62.2	284	570	116.4	9680	113.2	28.3	219.1	558
Zr_Mat3v2_15	480	139.7	-0.0014	1930	8.18	0.046	26.7	0.226	2.39	4.47	0.48	33.6	12.94	162	64.7	289	592	116.3	9260	103	25.75	250	583
Zr_Mat3v2_16	370	118.9	3.1	3100	3.47	0.04	20.1	0.384	6.52	12.97	1.61	67.8	22.9	277	106.6	472	897	179.3	7960	90.1	22.525	287	501
Zr_Mat3v2_17	560	130.9	2.8	1655	5.78	0.097	10.63	0.124	1.51	3.46	0.264	23.2	9.51	131.9	53.6	257	560	113	10370	80.8	20.2	164.2	526
Zr_Mat3v2_18	350	118.2	3	2900	2.12	0.01	12.5	0.41	6.26	12.2	1.95	66.8	22.6	260	97.6	443	852	168	7730	75.4	18.85	213	352
Zr_Mat3v2_19	440	141	2.2	2140	9.6	0	26.6	0.096	2	5.55	0.49	35.3	13.74	175	70.2	326	672	134.3	8680	123.9	30.975	443.8	791
Zr_Mat3v2_20	2160	142	1.7	5390	10.02	184	381	40.4	180	97.4	20.6	270	73.7	631	172	607	979	175	9770	136	34	430	878
Zr_Mat3v2_21	300	129.1	3.7	1645	6.34	0.9	20.02	0.388	3.83	4.35	0.43	28.7	10.35	135.4	54.1	257	520	106.8	9220	83.7	20.925	218.3	491.8

Zr_Mat3v2_22	350	124.7	2.6	2210	11.8	0	25.8	0.07	1.4	4.89	0.278	34.9	14.08	179	72.5	334	662	129.7	10140	188	47	599.8	1052
Zr_Mat3v2_23	580	132.8	3.6	4310	3.99	0.013	20.2	0.439	8.02	18.1	3.12	88.7	31.9	370	138.2	622	1171	234	8050	101.9	25.475	372	596
Zr_Mat3v2_24	550	155.8	1.9	5020	4.21	0.069	24.9	0.75	12.4	22	3.55	121.8	39.4	451	1/0.8	/28	138/	269	/630	108.3	27.075	514	1004.4
Zr_Mat3v2_25	670	141.4	15	2/00	10.22	40	26.8	0.359	3 27	5 21	4.5	34.2	13 37	1717	92.1 67.7	314	627	126.5	0730	195.2	40.0	385.0	827.6
Zr_Mat3v2_20	790	157.6	5.7	2030	4 47	0.019	32.4	0.199	3.54	77	1 38	46	16.5	196	737	321	636	126.9	6830	83.7	20.925	336.5	446.7
Zr_Mat3v2_27	1090	157.0	2.4	1670	4 33	13.4	64	3.5	16.8	11.1	0.95	44.6	13.81	150 5	56.2	238	449	89.9	7140	85.9	21 475	451.2	612
Zr Mat3v2 29	900	213	3.4	3800	6.83	0.57	29.7	2.2	24	38	15	160	46	440	135	530	910	177	7900	75.8	18.95	151	364
Zr Mat3v2 30	300	222	4.6	3850	8.87	0.91	44.1	1.06	11.9	19.4	4.2	90	30.5	351	128.8	568	1079	214	7650	108.7	27.175	310	591
Zr_Mat3v2_31	2800	131.7	4.2	1810	5.67	0.38	24.5	0.76	9.3	11.8	2.6	45	15.2	166	62	269	510	98.8	8820	102.8	25.7	353	748
Zr_Mat3v2_32	2880	204	6.9	3660	10.5	0.064	79.3	0.335	5.72	12.4	1.38	83.9	27.2	336	120.7	527	993	191	7510	185	46.25	862	1131
Zr_Mat3v2_33	1800	301	9.1	5450	12.3	1.54	90	3.06	30.4	42.1	7.04	170.3	51	535	183.3	760	1271	243	6810	181.8	45.45	1023	1028
Zr_Mat3v2_34	2100	195	5.2	4120	4.91	0.035	49.3	0.86	10.9	22.4	2.54	102.9	33.5	371	138.7	584	1081	210	6910	102.2	25.55	439	684
Zr_Mat3v2_35	2000	181	1.2	2650	12.7	0.014	51.3	0.343	5.35	11.4	0.59	67.1	21.6	252	92.2	390	683	131.6	8020	167	41.75	726	829
Zr_MAT3FA4_1	111	257.3	2.59	341	1.05	-4E-09	4.14	0.02	0.38	1.1	0.343	5.31	2	24.4	10.32	48.3	126.3	33.3	10920		3.0375	15.64	77.2
Zr_MAT3FA4_2	90	275	8.5	196	1.76	1.58E-08	6.97	0.074	1.62	3.7	0.464	12.8	3.24	23.7	6.88	20.7	25.1	5.19	10800		17.825	31.85	104.8
Zr_MAT3FA4_3	281	273	7.8	788	1.3	-5E-08	2.97	0.025	0.84	2.01	0.167	12.8	5.42	64.5	26.5	112.2	208	43.4	10050		26.95	49	140
Zr_MAT3FA4_4	335	234	8.9	800	3.19	0.5	20.9	0.67	6.9	7.7	2.3	22	6.9	73	26.2	116	259	54.2	10880		17	61.6	109
Zr_MAT3FA4_5	237	2/1	3.5	680	1.77	-7.9E-07	4.01	0.091	1.47	3.45	0.389	18.9	6.06	60.7	23.4	93.7	168.4	35	9780		12.075	26.3	74.6
Zr_MA13FA4_6	311	266	12	905	1.96	2.56E-06	6.84	0.036	0.73	2.31	0.217	15	6.07	/4	30.8	130	250	51.5	10070		48.55	90	261
Zr_MAI3FA4_/	159	265.1	4.3	834	0.793	0.021	4.57	0.189	2.74	3.88	1.25	17.04	5.44	62.1	26.1	120.4	286	/0.5	9180		8.45	92.7	214
ZI_MAIJFA4_0	1520	200	2.7	1228	1.40	0.055	4.15	0.555	3.92	9.38	1.22	22.2	11.60	121.1	43.5	266	506	129	10820		22.15	30.9 402	591
Zr_MAT3FA4_9	384	330	9.6	843	1.75	2.89	23.2	5.18	35.5	32.1	1.22	54.9	15.9	115	32.6	104	161	28.3	12330		23.15 96.75	130	484
Zr MAT3FA4 11	235	254 3	5.4	1054	1.63	-0.00017	4 75	0.063	1 15	3.12	0.093	17.5	7 31	85.2	35.7	148	284	59.1	10980		77 5	142	452
Zr MAT3FA4 12	119	287	7.4	245	1.26	0.0079	5.96	0.046	0.95	2.65	0.137	11.27	3.35	26.8	8.16	26.3	38.1	7.28	12400		70.25	95.5	469
Zr MAT3FA4 13	116	244	1.81	526	1.59	0.0018	5.73	-0.0006	0.144	0.76	0.367	5.53	2.42	31.7	15.57	81.8	247	64.2	11960		11.525	61.7	304
Zr_MAT3FA4_14	234	272	4.1	759	1.3	0.132	9.65	0.107	1.19	2.19	0.711	11.51	4.52	53.5	23.5	110.1	278	67.7	9810		15.125	182.7	391
Zr_MAT3FA4_15	250	285	6.4	483	2.75	0.024	2.38	0.044	0.58	1.8	0.168	9.7	3.91	40	14.81	57.5	110	22.5	12840		117.75	85.5	588
Zr_MAT3FA4_16	227	276	6.9	556	1.03	2.26E-07	3.95	0.0035	0.37	1.57	0.215	9.07	3.88	46	18.12	75.3	140.8	29.9	11010		46.55	138	314
Zr_MAT3FA4_17	329	309	8.1	633	2.35	0.0108	3.3	0.082	1.31	4.42	0.11	24.4	7.66	67.9	20.6	66.2	82.5	14.08	12870		114	176.5	764
Zr_MAT3FA4_18	379	289	14.3	938	2.24	1.66E-08	5.83	0.092	1.54	3.54	0.139	20.7	7.18	82	32	131	241	49	11120		18.55	43.4	110.5
Zr_MAT3FA4_19	54	246	6.1	392	1.32	0.74	7.57	0.149	0.81	0.99	0.099	4.94	2.06	25.9	12.08	59.2	149.3	36.1	10910		53.25	86.1	339
Zr_MAT3FA4_20	180	317	10.4	744	1.3	1.35E-09	9.35	0.066	0.87	2.03	1.07	11.67	4.35	51	22.7	111.8	280	69.1	8960		3.625	35.6	76.8
Zr_MA13FA4_21	188	262	5	522	1.58	-1.9E-12	3.38	0.025	0.196	0.93	0.037	1.4	2.91	39.4	17.18	11.1	1/6.6	39.3	12640		72	77.1	399
ZI_MAI3FA4_22 7r_MAT2EA4_22	277	235	4.5	2200	1.20	1.2E 12	20.7	57.9	2.0	6 66	0.81	33.3 42.6	15.6	180	20.5	218	207	45.2	7520		27 575	/5.1	233
Zr_MAT3FA4_23	333	245	5.05	700	3.14	0.02	0.88	0.026	0.42	1.16	0.16	80	3.88	52.1	24.1	118 5	304	70.2	12140		94.5	11/1 8	623
Zr MAT3FA4 25	342	301	7.2	1363	1 37	0.02	4 34	0.391	6.32	9.7	0.10	42.7	13.3	132.3	47.7	179	296	60.2	9560		9 975	30.1	53.9
Zr MAT3FA4 26	45	245	0.82	626	3.55	0.0019	4.05	0.0029	0.179	0.95	0.164	6.63	3	40.4	18.32	94.3	259	62.9	13140		27.1	52.7	655
Zr MAT3FA4 27	173	271	4.37	829	2.26	0.0133	7.1	0.053	0.77	2.47	0.182	13.41	5.5	67.3	27.8	122	258	55.4	12530		110.75	179.8	667
Zr_MAT3FA4_28	120	284	3.3	775	1.88	-7.8E-15	19.2	0.035	0.55	1.84	1.22	12.08	4.5	54	23.1	104.3	269	65.6	10830		5.925	48.3	133.3
Zr_MAT3FA4_29	236	282	6.2	701	1.37	2.94E-14	3.78	0.027	0.439	1.67	0.084	10.76	4.59	58.4	23.7	101.8	202.8	42.3	11410		42.675	63.7	217.2
Zr_MAT3FA4_30	180	260.7	6.2	574	1.94	-1.1E-13	5.83	0.056	1.01	2.43	0.158	13	4.81	52.3	19.1	74.5	126	24.8	10860		7.45	42.1	86.8
Zr_MAT3FA4_31	347	272	15.6	853	2.22	-2.2E-11	6.08	0.074	1.63	3.57	0.161	18.3	6.69	75	29.1	118.9	217.2	43.6	11040		20.475	42.8	111.2
Zr_MAT3FA4_32	430	298	3.7	1431	1.55	0.022	5	0.381	6.04	9.98	0.92	45.6	14.3	143.1	51.9	192.6	325	63.2	9370		15.95	40.06	88.2
Zr_MAT3FA4_33	216	265	3.4	681	1.4	-2.9E-10	4.89	0.029	0.41	1.64	0.181	10.59	4.35	52.1	22.8	101.4	207.1	42.3	9670		24.025	43	121.4
Zr_MAT3FA4_34 Zr_MAT3FA4_35	426 169	302 234	8.9 4.64	907 855	2.04 3.63	1.06E-09 2.39	11.5 56.1	2.03	1.1 10.98	2.77 5.67	0.369 2.28	15.13 17.47	6.08 6.03	67.3	31.1 26.4	131.2 119.3	284 294	63.3 66.2	9630 10770		30.8 39.65	57.4 159	142.7 991
7 14 505 1	200	210	2.0	1005	1.40	0.045	0.27	0.025	0.75	0.07	0.554	12.25	5.07	60.0	22.1	154.2	201	00.0	0770		a 195	02.5	172.0
Zr_MAT3P5_1	380	319	3.8	1005	1.49	0.045	8.37	0.035	0.75	2.26	0.554	13.25	5.37	68.9	33.1	154.3	381	98.3	8770		/.175	93.5	173.2
ZI_WAI3P3_2 7r_MAT3P5_2	8200	282	3.1	835	1.51	54.8 0.0019	90.8	10.0	51.4 0.45	32.4	10.5	0.46	33.9 4.15	201 54.6	26.5	∠10 131.5	330	13.3	10890		12.25	121.9	280
Zr_MAT3P5_4	224	204	27	826	2.02	0.11	13.22	0.0120	0.45	1.05	0.222	9.40 11.44	4.15	58	20.5	131.5	308	02.9 75 4	9900		10.2	126.4	243.2
Zr_MAT3P5_5	217	352	87	799	1.46	0	6 37	0.025	0.57	1.5	0.23	10.5	4.05	55	26.5	120.2	286	72.8	9040		4 25	41.5	99
Zr MAT3P5 6	92	233	2.5	128.3	1.40	0	2.5	0.0023	0.138	0.42	0.186	2.1	0.823	10 33	4 56	21.5	56.4	12.33	5250		13 25	30.8	81.8
Zr MAT3P5 7	229	358	3.9	1359	2.68	0.018	11.88	0.023	0.88	2.22	0.75	17.9	7.69	96.2	45.3	214	493	120.5	9810		10.175	124	241
Zr_MAT3P5_8	340	327	2.78	1660	3.95	0.63	19.2	0.32	1.7	3.34	0.65	24	9.41	120.8	56.2	256	564	133.9	10360		16.475	225	394
Zr_MAT3P5_9	202	292	3.1	1014	2.71	0.0091	16.23	0.04	0.8	2.17	0.347	13.3	5.54	72.5	33.3	154.9	358	87.8	10040		18.625	280	426.1
Zr_MAT3P5_10	465	321	4.5	2310	3.3	-2.1E-42	13.6	0.108	2.41	5.27	1.39	38.3	14.9	184	84.2	377	764	176	8260		12.575	213	326
Zr_MAT3P5_11	251	300	3.07	803	2.37	8.02E-42	9.8	0.02	0.43	1.13	0.233	8.43	4.08	52.6	25.9	126.8	317	81.5	9600		8.025	79.4	190.6
Zr_MAT3P5_12	1900	301	2.43	1885	2.63	15.6	55	4.8	22	9.3	1.07	32.2	12.02	139.1	62.5	278	632	152.8	9420		19.1	289.2	479
Zr_MAT3P5_13	16900	245	2.38	557	0.832	21.9	56.2	7.27	35.3	8.79	3.41	17.5	4.3	38.8	16.33	70.4	179	49.5	10290		7.1	23.9	154.7
Zr_MAT3P5_14	354	291	1.77	807	2.22	0.34	11.02	0.181	1.05	1.47	0.21	10.35	4.06	52	26.1	126.2	328	81.3	9840		8.375	84.9	212.5
Zr_MAT3P5_15	186	288	2.8	734	1.82	0.0017	8.62	0.025	0.51	1.11	0.298	9.15	3.79	48.6	23.2	116	300	75.1	9930		1.2	70	173.3
ZI_MAI3P5_10	125	295	2.4	/88	2.22	-3.4E-39	10.38	0.025	0.5	1.4/	0.276	9.57	4.25	33.2	23.3	123.4	311	/0.8	10/10		9.45	105.8	220

Zr_MAT3P5_17	125	275	4.8	464	0.95	-1.2E-36	2.6	0.021	0.28	0.78	0.277	4.36	2.27	28.4	14.8	73.1	192	53.1	7700		3.6125	43.8	87
Zr_MAT3P5_18	444	322	2.3	2000	8.06	0.221	24.1	0.177	1.53	3.34	0.488	21.9	9.9	134	64.2	319	778	189	10510		30.15	337	708
Zr_MAT3P5_19	679	341	4.2	3150	3.44	3.1	29.3	1.37	9.6	11.5	2.03	60.1	22.4	261	112	491	1000	223	10430		18.575	286	476
Zr_MAT3P5_20	2700	298	4.7	931	2.71	25.6	71	7.5	33.4	8	0.6	16.6	5.46	65	30.5	146.3	363	90.4	9350		9.85	103.9	244
Zr_MAT3P5_21	1230	296	5.8	1870	1.64	3.9	18.8	1.62	12.1	23.1	8.4	91	27.3	225	62	206	366	83.4	9300		5.975	80.9	161.5
Zr_MAT3P5_22	1540	298	1.98	1295	2.36	10.1	33	2.7	13.6	5.2	0.82	20.4	7.84	94.6	42.3	202	472	112.9	9270		14.6	180	355
Zr_MAT3P5_23	1830	312	2.76	983	2.71	14	46.5	4.38	19.2	5.31	0.594	14.4	5.58	68.4	33	155.1	382	94.9	9560		10.05	116.8	248.7
Zr_MAT3P5_24	680	318	2.97	1545	5.2	3.5	26.3	1.33	6.2	3.67	0.547	19.4	7.63	100.7	48.6	246	615	151.7	9310		18.55	194.5	467
Zr_MAT3P5_25	1260	272	2.7	844	2.56	5.2	23.9	2.02	9.1	3.42	0.63	12.3	4.7	57.1	26	129.9	325	81.2	9590		10.525	110.5	235.8
Zr_MAT3P5_26	244	342	2.9	1262	3.63	1.68E-31	12.81	0.034	0.64	2.13	0.356	13.8	6.16	81.6	40.5	198.2	510	126.6	10890		15.1	130.5	328.9
Zr_MAT3P5_27	238	295	2.7	812	2.2	0.15	10.04	0.074	0.68	1.58	0.242	9.62	4.23	53.9	25.8	127.8	328	82.4	9930		8.675	78.7	202
Zr_MAT3P5_28	11900	296	4.3	1568	1.85	110	254	32	138	29.7	2.29	46.6	12.5	126.7	52.7	235	504	115	10060		12.025	165.6	258.7
Zr_MAT3P5_29	319	410	17	1380	1.99	0.0064	7.91	0.051	0.96	2.67	0.99	19.8	8.09	103.8	47.2	212	431	99	7470		4.1	62.5	95.8
Zr_MAT3P5_30	3370	306	4.3	1010	2.06	15.9	47.3	5.38	26.2	10.1	1.87	23.7	7.7	83	34.3	150	317	74.6	8280		5.575	90.6	129.8
Zr_MAT3P5_31	820	296	3.3	1520	1.93	2.7	18.6	0.77	4.3	3.77	0.422	23.9	10.04	116.9	54.3	241	513	121.6	10400		10.8	143	283
Zr_MAT3P5_32	335	298	3.3	1469	2.9	0.061	11	0.094	1.44	3.51	0.672	21.3	9.05	111.2	50.7	237	526	123.7	9550		11.2	141.1	272.9
Zr_MAT3P5_33	6880	300	4.1	707	1.69	66.3	159	19	81.6	15.3	1.25	21.2	4.98	51.7	22.6	107.6	272	68	9940		6.225	57.5	134
Zr_MAT3P5_34	860	321	2.65	1100	3.62	4.8	24.5	1.55	6.2	2.88	0.373	14.5	5.27	72.8	35.3	173	428	108.5	9550		13.65	124.6	302
Zr_MAT3P5_35	214	296	3.39	860	2.42	1.13E-24	10.65	0.0203	0.59	1.4	0.301	10.46	4.31	55.4	28.1	138.7	338	86.7	9920		9.425	94.5	229
Zr_M4F20_1	-30	95.3	4.9	1272	2.51	0.012	7.94	0.044	1.48	3.44	0.07	23.8	8.98	113.4	44.3	199	375	71.2	11700	580	145	252.5	698
Zr_M4F20_2	450	206	4.8	1824	4.17	5	23.1	1.9	11.1	6.04	1.18	32.1	10.94	143.9	60.8	289	576	122	7910	57.2	14.3	165.5	330.7
Zr_M4F20_3	300	195	7.8	2110	2.85	0.149	9.79	0.195	3.42	7.13	1.88	40.1	15.1	184	72.9	327	622	124.3	7020	53.5	13.375	218.4	326.7
Zr_M4F20_4	740	144.9	5.7	1450	2.53	6.9	27.4	2.58	13	7.06	1.08	30.9	10.5	125.3	49.7	219	415	84.1	7460	56	14	231	336.4
Zr_M4F20_5	440	181	10.2	2210	3.11	0.0055	12.2	0.166	3.06	7.06	2.09	46.9	16	193	75.5	336	612	124.3	6990	68.8	17.2	368	416.1
Zr_M4F20_6	580	135.7	5.8	1477	3.38	3.8	21.7	1.5	8.1	5.33	0.748	30	9.75	128	50	231	450	88.8	8610	56.6	14.15	193.5	361
Zr_M4F20_7	640	129.4	2.7	1555	3.42	5.8	28.4	2.33	12.5	6.62	0.92	33.3	11.37	137.7	53.3	234	459	91	8250	64.8	16.2	275	397
Zr_M4F20_8	1940	128	4.2	1657	3.65	11.4	45.7	4.4	25.7	11.4	1.69	39.5	13.07	149.6	58.2	249	453	88.5	8240	70.3	17.575	264	384.2
Zr_M4F20_9	40	240	3.7	2830	5.53	0.016	16.9	0.217	4.02	8.2	2.21	54.6	19.6	245	96.2	440	832	162	7340	80.9	20.225	365.2	535.3
Zr_M4F20_10	380	181	10.6	3070	4.14	2.62	24.9	1.25	9.2	12.5	3.14	71.6	23.5	280	106.4	455	844	164	7630	92.4	23.1	566	566
Zr_M4F20_11	730	138	3.2	1638	2.45	0	8.9	0.065	1.76	4.61	0.57	30.8	10.9	134.8	55.8	265	522	104.7	9580	51.5	12.875	113	296.8
Zr_M4F20_12	160	176	7.5	1770	3.21	0.52	13.83	0.383	3.99	6.04	1.63	38.5	13.19	156.5	60.9	270	500	101	7560	71.1	17.775	319	419.2
Zr_M4F20_13	300	162.5	5.8	2390	2.99	0.333	12.71	0.228	4.82	8.18	1.63	48	16.96	205	81.5	373	708	142.7	8090	56.4	14.1	160	360
Zr_M4F20_14	410	119.7	4	1095	2.69	1.41	12.3	0.528	3.52	3.27	0.425	19.1	7	92	36.5	172	350	71.4	9100	41.9	10.475	87.3	247
Zr_M4F20_15	840	210	10	2470	3.14	0.0045	12.36	0.15	3.12	7.05	2.11	46.3	17.04	210	84.3	381	727	144.5	7270	66.9	16.725	234.2	401.8
Zr_M4F20_16	650	222	6.2	2200	4.08	0	12.55	0.108	2.1	5.28	1.4	35.5	13.28	171.1	72.7	344	669	135.3	7140	69.1	17.275	231	417.5
Zr_M4F20_17	10400	208	11.4	2460	3.69	47	134	16.6	85	23.4	3.64	64.8	19.4	224	86.9	381	689	135.7	7500	77.4	19.35	286	383.9
Zr_M4F20_18	1260	229	5.9	4060	2.5	0.2	14.4	0.652	11.94	22.5	6.43	108.3	34	372	139.9	590	1026	202	6940	63.6	15.9	244	371
Zr_M4F20_19	830	117.6	2.6	2130	1.57	0.63	11.9	0.61	7.7	12.8	3.27	54.2	17.9	204	74.7	316	537	104.3	8060	40.5	10.125	144.4	274
Zr_M4F20_20	3510	132.2	3.9	1274	4.73	25.6	77	9.6	48	12.8	1.06	29.1	9.15	106.7	42.4	199	398	82.6	9390	53.6	13.4	123	303
Zr_M4F20_21	1260	11/./	5.1	2050	1.58	0	1.14	0.15	3.92	8.8	1.51	45.6	15.43	186	/1.4	312	590	116.5	8330	45.6	11.4	155.5	272
Zr_M4F20_22	940	121.9	1.8	1093	2.83	0	9.61	0.049	1.05	3.2	0.397	19.2	7.16	91.7	37.6	172.5	332	67.8	9160	46.7	11.675	136.2	274
Zr_M4F20_23	290	96.3	6.5	837	1.49	0	3.59	0.029	0.66	1.73	0.094	12.61	5.59	71.5	28.9	129.6	247	47.5	10/80	200	50	91.4	254
Zr_M4F20_24	920	181.9	5.6	1627	3.72	0	10.58	0.036	1.02	3.26	0.75	24.4	9.51	129.1	53.5	258	533	109.8	8020	47.1	11.775	133.1	306.2
Zr_M4F20_25	520	170.8	8	2043	3.73	0.26	15.32	0.28	3.2	5.98	1.73	42.7	14.53	179.6	69.5	322	620	122.1	7530	67.9	16.975	377	464.3
Zr_M4F20_26	820	256	9.1	2380	3.85	0	11.78	0.111	1.86	5.1	1.56	35.3	14.16	188	80.1	377	750	151.9	7240	60.3	15.075	202.5	400
Zr_M4F20_27	840	145.7	6.1	1/3/	3.54	0.76	14.1	0.4	3.08	5.15	1.24	35.0	11.98	148	60.1 50.4	269	519	103.8	8180	83	20.75	385.6	495.5
ZI_W4F20_28	780	190.1	4.0	1420	4.81	2.19	12.57	0.854	0.09	6.05	1.38	30	10.15	122.3	50.4 72.1	224	429	83.0	9/80	33.2 70.0	15.8	420	3/9
Zr_M4F20_29	200	184.4	/./	2170	3.87	0	13.57	0.148	2.62	0.73	1.62	41.2	15.11	187.3	/3.1	331	617	124.1	/490	/9.9	19.975	429	489
Zr_M4F20_30 Zr_M4F20_21	430	02.5	4.1	522	4.55	2 97	23.0	0.02	10.05	0.91	0.140	5.90	2.0	33.8	10	83.3	204	38.4	7500	693 50 0	1/3.23	205.1	272
ZI_W4F20_31	1000	152	9.4	1770	2.42	3.67	20.0	1.4	10.05	0 1	1.65	40.7	10.20	137	00.1	200	308	99.2	7390	55.0	14.7	315	210
Zr_M4F20_32	620	152	17.1	2540	2.87	0.58	11.95	0.38	4.09	9.4	2.52	23	18.38	221	8/	388	/3/	145.5	0910	35.9	13.975	216.5	518
ZI_W4F20_55	280	198	0.1	2240	4.65	0.48	16.1	0.32	2.09	7.45	1.78	46.5	16.69	201	77.4	343	619	120.5	7370	115.2	26.5	251	045.1
Zr_M4F20_54 Zr_M4F20_25	1010	184	9	2310	3.01	0.99	10.9	0.45	3.98	/.0	2.24	40./	10.54	202.2	100.8	352	033	124.8	6720	100 6	10.525	351	410.2
ZI_WI4F20_55	1900	180.4	0	2900	4.40	12.4	49	4.9	50	16.1	5.65	11.5	24.01	270	100.8	420	131	145.5	0750	100.0	23.15	700	045
Zr_M4Q1_1	270	136.4	27.7	1235	1.39	6.4	13.2	1.33	8.4	5.44	1.37	27.2	8.84	110.8	40.6	185	360	74.6	5800		6.9	100.5	156.8
Zr_M4Q1_2	360	252	5	2870	3.02	0.163	13.06	0.42	6	12.4	2.94	64.5	22.3	265	100.4	446	853	172	7480		11.925	233.8	364.4
Zr_M4Q1_3	290	164	4.3	3060	1.98	0.041	11.8	0.442	8.8	17	3.23	82	26.9	292	107	469	840	167	7500		13.1	228	316
Zr_M4Q1_4	190	229	8.7	2067	4.1	0	10.37	0.118	2.15	3.72	1.16	29.3	11.82	168	69.2	335	675	137.2	6660		12.2	155.8	308.8
Zr_M4Q1_5	180	125.6	1.8	1393	2.63	0.028	11.07	0.11	1.86	4.71	0.312	29.2	10.04	120.4	47.4	217.1	429	87	9980		10.15	176.4	277.3
Zr_M4Q1_6	460	193.6	5.7	2590	12.82	0.96	93.7	2.26	16	14.7	4.64	60.4	20.4	241	87.7	401	783	155.7	8610		31.675	719	774
Zr_M4Q1_7	340	143.2	3.7	1551	1.14	0.019	6.1	0.173	3.16	5.97	1.41	34.2	11.47	134.2	52.9	239	473	95.1	8480		6.55	86.2	176.4
Zr_M4Q1_8	710	180.8	3.6	2490	4.45	2.6	25.1	1.05	10.7	11.7	1.45	55.9	19	222	85	390	745	152.6	8820		21.125	321	499
Zr_M4Q1_9	1170	167.6	6.1	2060	6.72	8.78	36.1	3.69	23.6	15.7	6.6	57.2	18.8	196	71.6	317	641	131.1	9860		15.175	157.3	409.2
Zr_M4Q1_10	180	89.1	6.1	379	3.51	0	19.5	0.012	0.29	0.72	0.203	3.74	1.64	22.5	11.29	63.5	189	47.7	12600		154.5	210.1	963.9
Zr_M4Q1_11	250	126.2	5.1	1181	0.97	0.003	2.65	0.083	1.36	3.98	0.197	23.9	8.61	105.7	40.5	178	321	63.3	10230		41.95	64.5	173.2

Zr_M4Q1_12	4700	194	4.7	2630	7.11	98	261	36	174	46	2.76	86	23.1	250	90.4	407	741	142.4	9140	28.27	5 654	.9	705
Zr_M4Q1_13	720	202.7	5.6	3340	5.56	5.4	38.5	1.6	12.5	14.9	2.69	82.9	27.2	314	115.7	505	944	183.3	8360	26.9	468		608
Zr_M4Q1_14	470	188.2	2.5	1930	5.96	0.024	16.8	0.084	1.32	4.04	0.65	30.6	12.11	154	64.4	310	640	132.1	9970	18.3	171		367
Zr_M4Q1_15	520	140.5	3.2	1028	3.6	0	8.56	0.025	0.86	2.05	0.19	15.2	5.93	82.5	34.7	174.2	373	81.2	10880	9.325	61.2	2	188.5
Zr_M4Q1_16	108	241	0.1	2570	4.96	0.195	21.5	0.327	5.12	11.5	2.10	01.0	21.2	240	90.3	399	735	148.9	8440	21.03	597		405
ZI_M4Q1_17 Zr_M4Q1_18	76	224	7.5	1828	2.02	1.42	10.5	0.37	2.00	2.35	1.24	28.2	5.44 12.61	40.1	62	280	205	40	9800	0.0	29	1	270
Zr_M4Q1_18	26	151.8	5.5	450	1.61	-5.1E-06	3.68	0.207	0.82	2 45	0.068	13	4 42	44.6	14.6	58.8	114	23.1	12140	64	63 0	.1	340
Zr_M4Q1_20	132	138.7	57	1029	2	0.61	6.21	0.398	3.9	5.98	1.83	26.3	8.68	99.9	35.5	148 3	277	52.6	10630	87.5	154	2	503
Zr M4O1 21	-19	159	8.6	480	2.69	0.02	3.43	0.056	1.03	2.3	0.171	11.1	3.64	41.9	15.9	70.4	136	27.5	10650	21.57	5 26.4	1	115.5
Zr M4O1 22	125	168	3.54	1406	4.58	6.9	24.7	2.1	8.9	5.7	0.352	26.2	9.09	119.5	47.2	221	443	91.6	9710	15.15	165	.9	346.3
Zr_M4Q1_23	529	209	7.1	2040	3.97	15.9	55	4.9	21	9.1	1.36	35	13.14	164.8	69.5	333	700	148.9	8200	20.17	5 337		486
Zr_M4Q1_24	492	206	5.5	2780	6.26	15.4	68	5.9	34.5	20.9	2.79	78.8	24.6	270	99.8	437	785	157	8080	30.1	797		709
Zr_M4Q1_25	-6	127.2	2.2	629	1.93	-4.9E-06	5.98	0.028	0.5	1.41	0.537	8.92	3.79	45	18.5	88.9	224	52.8	10550	4.45	20.5	59	96.7
Zr_M4Q1_26	143	195.3	17.1	2390	2.1	0.53	9.44	0.77	10.01	15.6	4.02	70.8	21.8	235	84.7	369	657	131.1	5780	9.7	177		255.4
Zr_M4Q1_27	3	120.7	5.8	914	1.36	0.029	3.89	0.046	0.84	2.38	0.113	16.8	6.46	76.2	31.1	138	254	50.6	10190	52.75	123		318
Zr_M4Q1_28	158	137.6	5.1	1205	4.96	0.52	19	0.48	4.77	5.75	1.85	22.7	7.72	92.8	40.7	190	455	103.7	9120	23.95	305		578
Zr_M4Q1_29	650	162.2	5.9	2350	6.4/	9	47.4	3.82	20.9	11./	1.61	54.5	17.5	208	/9./	360	6//	136.4	7270	25.2	596		668
Zr_M4Q1_30 Zr_M4Q1_31	2	221	2.81	845 2850	1.74	-4.1E-06	4.54	0.037	0.78	1.92	0.558	12.98	5.25 21.2	07.1	28.2	130.5	304 846	172	7350	0.123	50 405		100.5
Zr_M4Q1_31	36	221	4.9	2350	5.7	-4.21-00	17.7	0.24	3 33	7.68	1.04	48.1	17	207	99 81.8	371	716	1/2	6790	18 27	5 352	6	106
Zr_M4Q1_32	2	191	10.4	1710	3 36	0.128	9.93	0.19	2.78	5 38	1.37	34.2	11 73	148	59	270	512	106	6620	11.27	173	.0	305
Zr M4O1 34	1360	146.3	23	780	2.14	26.6	65.2	61	24.5	5.30	0.97	13.76	4 4 1	54.1	23 27	118	289	66 1	8410	20.4	282	6	486
Zr M4Q1 35	60	118.7	7.3	375	2.48	-4E-06	3.29	0.039	0.343	1.02	0.096	7.24	2.43	30.5	12.14	57	118.5	25.51	10400	37.55	113	.3	218.6
Zr_M4CZ1_1	8400	375	4.1	889	2.42	24	61	6.8	34	8.3	2.68	18.7	5.8	60.8	27	131	353	94.6	13520	15.95	144		322
Zr_M4CZ1_2	149	270	4.18	596	6.82	0	21.4	0.024	0.55	1.76	0.121	10.1	4.01	45.2	19.4	82.7	163	36	12730	56	90		309.8
Zr_M4CZ1_3	480	312	11.5	1470	4.3	0.0073	6.41	0.089	0.93	3.35	0.165	20	8.9	105.7	50.1	218	455	102.3	15700	235.5	256	.6	1157
Zr_M4CZ1_4	1690	321	13.2	638	1.84	14.2	46.3	4.4	21.5	6.2	0.699	15	5.05	50.1	21.5	90.2	175	39.7	11580	1.71	111	.2	181.2
Zr_M4CZ1_5	303	282	3.4	934	2.06	0.0024	4.77	0.03	0.71	2.21	0.075	14.8	6.25	72.1	31.8	133.8	251	54	12600	71.75	113	.3	375
Zr_M4CZ1_6	65/	540	5.5	1560	2.33	0.033	0.687	0.078	0.56	1.53	0.39	9.6	6.33	96.4	49.3	249	617	145.8	15170	124	21		897
Zr_M4CZ1_60 Zr_M4CZ1_7	140	485	5.5 5.0	1510	2.32	0.032	0.84	0.093	0.79	1.72	0.500	8.2 5.05	5.2 2.60	81.5	41.0	212	200 152	25.1	15200	148.3	18.)	161.2
Zr_M4CZ1_8	570	207	7.1	2550	0.57	0 122	2.75	0.0104	5.05	10.99	1.8	54.4	2.09	22.7	03.6	378	658	137	12460	24.7	5 562	,	1117
Zr_M4CZ1_9	161	265	59	541	4.2	0.08	18.6	0.00	1 11	1 52	0.534	677	2 79	36.3	16.84	80.4	215	52.1	12720	116	185	1	760
Zr M4CZ1 10	152	339	5.2	501	3.17	0.0087	5.07	0.033	0.92	3.05	0.123	15	5.05	45.5	17.2	65.6	114.6	25.5	14710	157.7	5 204	.6	848
Zr M4CZ1 11	64	282	5.2	411	1.73	0	2.88	0.0078	0.127	0.99	0.092	5.39	2.38	29	13.4	61.7	126	28.4	14430	91.5	72.3	7	598
Zr_M4CZ1_12	20	350	4.3	786	2.2	0	12.5	0.038	0.71	1.91	0.562	9.7	3.9	49.8	25	122.1	336	90.1	11820	14.42	5 169		345
Zr_M4CZ1_13	360	284	3.54	724	2.26	3.5	17.9	0.76	3.6	1.94	0.447	9.15	3.58	44.4	22.3	110.8	303	80.9	11410	20.15	176	.5	503
Zr_M4CZ1_14	1750	391	3	1810	2.4	5.1	23.4	2.5	12.9	6.7	0.78	29.6	11.48	141.8	64.7	283	540	122.3	10430	7.3	74.0	5	144.3
Zr_M4CZ1_15	59	247	1.97	529	2.15	0.169	9.4	0.109	0.78	1.07	0.501	6.36	2.77	34.6	16.7	80.5	222	56.2	12050	21.75	163	.1	601
Zr_M4CZ1_16	141	258	2.2	1074	3.09	0.153	11.05	0.25	2.67	4.03	1.39	19	7.06	80.4	35.5	158	388	94.5	10650	21.75	151	.1	603
Zr_M4CZ1_17	390	287	3.2	1438	3.87	0	6.72	0.071	1.64	4.4	0.044	26.5	10.76	124.9	52.1	212	382	80.3	11800	39.32	5 107	.4	401
Zr_M4CZ1_18 Zr_M4CZ1_10	235	272	8.1	860	1.9	0	5.38	0.052	0.79	2.39	0.109	14.6	5.92	68 80 1	29.9	124.1	235	49.7	11700	54.5	96.	0	287.3
Zr_M4CZ1_19	201	233	0.0	909	2.00	0.0000	0.70 4 21	0.045	0.95	2.70	0.228	10.8	5.7	80.1 72	32.0	139	202	57.8	16800	12.23	28	.9	310 406
Zr_M4CZ1_20	270	293	7.6	1740	617	0.31	24.4	0.202	2.1	4.92	0.133	29.3	12.5	145	62	262	505	105	12360	240	501	-	1299
Zr M4CZ1 22	850	450	4	2930	2.5	2.4	16.4	1.18	7.2	7.66	0.85	45.1	19.3	226	108.2	462	859	192	12470	8.875	80.9)	160.7
Zr M4CZ1 23	930	464	52	476	1.51	7.1	24	1.9	11.4	6	0.68	13.2	3.92	40.9	15.5	67.9	179	47.4	14600	42.5	46.	7	148
Zr_M4CZ1_24	789	511	7.9	4750	8.72	0.271	30.6	0.266	3.96	10.9	0.891	80.2	33.8	414	183	752	1382	292	12520	25.32	5 429		490.6
Zr_M4CZ1_25	1250	491	3.2	4160	4.19	0	14	0.112	2.48	9.1	1.32	64	26.9	336	152.3	683	1500	347	13350	33.75	282		690
Zr_M4CZ1_26	199	316	4.1	732	1.52	0	8	0.054	0.75	2.08	0.623	11.1	4.34	50.8	23	106.5	274	70.8	11390	11.77	5 102	.1	254.8
Zr_M4CZ1_27	196	290	8	558	2.41	0	8.71	0.027	0.337	1.06	0.082	6.95	2.87	37.8	17.33	82.3	195.4	45.1	13960	26.1	16.8	39	165.3
Zr_M4CZ1_28	232	302	4.2	923	1.12	0	3.31	0.033	0.87	2.31	0.599	14.48	6.03	71.6	31.9	135	274	59.2	10790	72.25	129	.8	407
Zr_M4CZ1_29	162	276	12.2	111	1.32	0	3.4	0.03	0.69	1.05	0.25	4.14	1.12	10.66	3.41	11.5	16.8	3.43	8520	16.32	5 85.5	5	206.9
Zr_M4CZ1_30	214	319	7.3	963	4.71	0.184	15.8	0.58	5	5.1	1.76	16.4	6.3	69.9	31.3	148.5	379	88.9	16000	206	251	.6	1008
Zr_M4CZ1_31	220	212	12.1 5.6	1940	1.59	0.19	5.15	0.298	5.01	/.84	0.96	45.4	15.4	108	08.5	208	454	93.8	11220	42.73	95.	, ,	205.4
$Z_1_W_4CZ_1_52$ 7r M4C71_33	291	283	5.0	907	5.86	0.0107	4.79	0.078	0.82	4.62	0.202	27.1	5 33	65.1	40.9	141.6	354	80.9	12750	30.73 130.7	133 5 270		332.3 825
Zr M4C71 34	1200	203	96	962	2.3	7.7	21.5	2.52	10.2	5.5	0.303	19.3	6.73	71.8	33.2	140	263	57.2	10720	54 75	270 874	58	270 2
Zr M4CZ1 35	234	264	7.7	1022	2.99	0.273	11.36	0.63	5.3	6.5	1.72	22.5	8.53	87.2	35.1	158	314	71.4	9630	83 25	164	.9	480
Zr M4CZ1 36	574	378	4.1	1528	9.92	0.071	11.52	0.034	0.46	1.36	0.317	9.79	6.44	96.7	51.8	280	869	205	12360	88.5	70.8	3	537.9
Zr_M4CZ1_37	192	268	22.6	577	1.57	0.38	5.54	0.113	0.75	1.49	0.163	9.34	3.79	45.6	19.83	83.9	163.4	36.1	9440	21.32	5 41.8	3	113.9
Zr_M4CZ1_38	195	258	10.4	767	4.09	0	8.51	0.061	1.29	2.88	0.226	16	6.07	68.2	27.9	112.1	198	40.9	10640	17.92	5 70.9)	114.5
Zr_M4CZ1_39	-5	266	12	522	1.35	0.05	3.91	0.037	0.39	0.79	0.132	4.55	2.15	29.5	15.7	80.9	249	69.5	12420	211.7	5 265		1308
Zr_M4CZ1_40	168	288	7.9	938	4.32	0.7	5.8	0.54	5	6	0.365	27.4	8.57	86.8	33.3	128.8	218	45.6	12030	52	55.2	2	299
Zr M4CZ1 41	216	298	6.6	682	2.41	0.0055	5.59	0.047	0.99	2.36	0.167	12.72	4.87	57	23.8	98.4	195.7	43.1	13430	32.05	49.8	3	194
Zr_M4CZ1_42	230	288	3.4	898	1.92	0	4.91	0.039	0.55	2.17	0.059	14.2	5.6	70	30.7	132	247	52.8	11420	53.5	88.3	280	
--------------	-------	-----	------	------	-------	----------	-------	--------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	-------	--------	-------	-------	
Zr_M4CZ1_43	427	329	14.7	1131	2.6	0	5.88	0.114	2.73	5.86	0.312	29.8	9.85	105.8	40.5	155.5	276	56.9	11020	15.05	38.8	80.6	
Zr_M4CZ1_44	1280	256	3.35	856	2.66	11.39	34.4	3.22	13.7	3.65	0.607	11.39	4.31	53.2	26.3	133.8	368	94.5	9730	21.025	153.6	498	
Zr_M4CZ1_45	900	294	3.2	670	1.31	9.3	28.2	2.3	9.2	3.51	0.85	12.5	4.32	48.9	21.9	98.5	255	64.1	10920	14.85	145.1	318.4	
Zr_M4CZ1_46	67	317	7.5	252	1.23	0	0.617	0.0102	0.099	0.87	0.059	5.75	2.49	23.4	8.34	32.9	75.2	19.5	12190	126.75	24.49	737	
Zr_M4CZ1_47	276	314	150	2030	2.31	0.059	2.32	0.288	5.47	12.5	1.41	56.8	19.1	191	73.9	284	486	102.8	8120	29.85	51.5	171.7	
Zr_M4CZ1_48	102	243	7.2	642	4.07	0.088	3.75	0.136	1.03	1.23	0.58	6.8	3	42.3	21.5	110.8	305	78.3	10400	122.5	48.5	1125	
Zr_M4CZ1_49	124	271	6.6	2090	1.97	0.019	9.38	0.308	4.58	9.2	1.05	46.8	17	180	73.2	298	550	115.3	8200	12.575	157.5	279	
Zr_M4CZ1_50	858	292	4.87	1297	2.83	9.77	42.7	4.11	21.6	13.04	1.25	42	12.74	119.8	43.7	171.2	320	68	10560	83	497	910	
Zr M4CZ1 51	260	309	3.5	600	1.48	0.002	4.45	0.069	1.11	3.15	0.071	18	5.55	52.8	19.2	75	125	22.9	13370	22.5	49.6	136.9	
Zr M4CZ1 52	175	258	5	932	1.22	0.022	2.96	0.084	1.35	2.91	0.232	18.1	7.15	77.9	31.9	132.8	234	50.5	9890	38.5	69.8	195	
Zr M4CZ1 53	444	237	18.5	2800	14.8	0.133	13.83	0.489	6.13	11.6	1.59	66.8	26	277	112.1	437	709	144.4	11550	137.25	164.7	850	
Zr_M4CZ1_54	225	337	8.3	526	1.71	0	1.87	0.044	0.6	2.27	0.142	12.6	4.93	48.9	17.1	65.2	130.9	29.5	12820	95.25	56.83	555	
Zr_MAT7P1_1	11100	269	3.8	2270	3.96	54	204	43	302	136	3.73	198	38.8	277	86	305	452	92.5	8500	46.75	177	294	
Zr_MAT7P1_2	353	351	3.8	2220	8.12	0.0134	21.9	0.109	1.91	5.07	0.96	31.5	13.31	168.1	76.7	357	732	160.6	7590	20.45	242	567	
Zr_MAT7P1_3	170	254	3.5	980	2.87	0.07	10.65	0.069	1.5	3.01	0.443	15.95	6.62	77.4	33.5	150.3	295	68.2	7290	11.325	127.9	272.1	
Zr_MAT7P1_4	495	289	2.16	2950	3.57	5.9	33	2	14.5	17.4	3.21	72.8	24.9	271	106.8	442	814	174	7830	17.975	249	425	
Zr_MAT7P1_5	45	256	2	614	2.12	0.0033	8.68	0.0165	0.282	1.19	0.417	7.41	3.04	38.5	18.9	96.2	268	68	10210	2.435	16.92	62.1	
Zr_MAT7P1_6	508	322	5.1	4410	3.79	0.054	17.16	0.608	9.2	18.3	3.8	96.9	34.3	385	152.6	629	1141	244	7530	22.425	360	579	
Zr_MAT7P1_7	1310	296	6.3	3780	2.12	0.096	10.09	0.94	14.8	38.2	13.1	172	53.3	455	136	452	691	138	6970	11.8	166.4	313	
Zr_MAT7P1_8	1520	336	4.2	3810	4.59	23	72	10.1	52	27	3.03	101	33.6	355	138.9	574	997	208.6	7590	27.025	493	729	
Zr_MAT7P1_9	315	281	2.52	1927	2.04	-1.2E-05	10.2	0.209	3.85	7.88	1.35	40.3	14.54	158.9	67	284	532	114.1	7350	10.325	138.6	271.1	
Zr_MAT7P1_10	496	326	3.2	3110	4.45	0.017	19.9	0.36	6.24	12.1	2.27	66.5	24.8	279	113.2	479	879	188	7660	21.675	312	540	
Zr_MAT7P1_11	740	344	5	3780	4.8	1.33	24.8	0.99	10.2	18.4	4.26	88.2	31.7	343	136	570	1024	219	7110	23.95	411	534	
Zr_MAT7P1_12	557	314	1.79	2290	11.87	0.52	28.8	0.32	2.85	5.61	0.308	37.8	15.26	182	80.3	349	666	143.5	9920	33.975	368	833	
Zr_MAT7P1_13	684	385	3.89	5590	5.69	0.125	34.7	0.837	14.2	27.2	4.7	138.3	47.6	526	208	855	1520	317	7520	30.9	583	810	
Zr_MAT7P1_14	835	333	1.24	2120	5.53	-0.0037	16.9	0.051	1.35	4.38	0.55	32	13.4	163	70.9	323	639	142	8470	25.5	285	574	
Zr_MAT7P1_15	482	310	1.57	3100	8.7	0.0091	34.5	0.246	5.15	10.98	1.11	63.6	23.7	268	112.6	474	885	189	8080	32.5	471	867	
Zr_MAT7P1_16	223	288	4.44	862	1.5	0.092	20.47	0.223	2.11	2.95	1.4	13.51	5	60.2	27.7	136.4	354	94.1	11640	53.775	1120	1338	
Zr_MAT7P1_17	369	403	6.3	2641	8.69	0.0096	21.74	0.119	2.33	6.74	1.08	39.7	16.29	207.7	92.5	413	836	182.6	7960	20.925	216.4	498	
Zr_MAT7P1_18	3700	350	3.98	2760	9.69	82	261	28.9	120	29.3	2.2	69	22	242	99.8	422	801	173.6	8330	34.725	462.2	856	
Zr_MAT7P1_19	397	260	5	1960	2.42	0.09	9.51	0.123	2.52	6.07	0.382	39.1	14.8	165	67.1	282	486	99.7	10470	122.25	234.2	587	
Zr_MAT7P1_20	359	287	3.83	2580	2.15	0.0091	11.82	0.329	6.53	11.93	1.97	58	20.9	230	93.4	398	724	156.5	7720	13.75	189	341	
Zr_MAT7P1_21	260	300	4.58	2550	2.04	0.0109	9.47	0.349	6.81	12.53	2.6	63.8	21.9	229	92.3	386	681	146.2	7330	13.85	219	351	
Zr_MAT7P1_22	695	323	1.58	2790	13.02	2.11	39.1	0.98	6.8	7.56	0.464	48.9	19.7	232	98	423	793	171.7	9640	43.75	492	1039	
Zr_MAT7P1_23	129	268	22.6	210	1.18	-3.5E-10	3.36	0.048	0.65	1.29	0.678	4.54	1.57	15.1	6.1	30.3	74	17	9000	3.5775	12.3	40.7	
Zr_MAT7P1_24	790	320	2.8	4440	8.26	2.9	48.8	1.77	12.9	18.8	2.44	96.9	35.1	392	160	666	1229	259	8520	40.5	708	972	
Zr_MAT7P1_25	313	310	2.8	1540	8.28	0.109	13.33	0.084	1.08	3.08	0.314	19.6	8.41	111.7	52.1	241	520	117.7	8970	15.55	111.9	373	
Zr_MAT7P1_26	367	339	5	2150	5.69	0.0137	21.4	0.136	2.49	6.21	1.05	35.7	14.41	172.2	73.2	322	646	142.1	7810	22	322.6	525	
Zr_MAT7P1_27	273	296	2.27	1511	5.32	-9.6E-15	16.56	0.059	1.06	3.39	0.3	24.7	9.85	119.6	52.2	230	456	99	10370	21.875	236	530	
Zr_MAT7P1_28	124	237	5	503	1.88	0.234	4.24	0.214	1.63	2.93	1.56	8.99	3.21	37.3	16.42	80	210	51.1	10610	123	120	774	
Zr_MAT7P1_29	350	326	3.3	2470	3.94	0.034	13.27	0.222	3.72	8.35	1.53	47.3	17.24	203.2	86.7	378	746	162.6	7880	18.05	235	461	
Zr_MAT7P1_30	209	303	2.1	1467	5.25	2.55E-14	12.19	0.041	1.06	2.95	0.438	19.6	8.37	104.4	48.2	223.3	485	110	8200	13.075	118	335	
Zr_MAT7P1_31	491	277	0.98	1253	3.09	-9.9E-14	7.14	0.0116	0.58	1.96	0.152	16.6	7.3	92.2	42.6	190.1	414	92.7	9210	14.55	105.2	374	
Zr_MAT7P1_32	178	268	1.91	2240	2.63	0.0112	14.06	0.175	3.61	7.81	1.07	47.3	16.63	192.1	79.9	334	622	132.8	9090	17.1	235	440	
Zr_MAT7P1_33	382	292	3.5	2270	7.86	-1.4E-12	31.1	0.124	2.64	5.58	0.86	40.8	16	191	79.2	339	657	141.5	8210	30.825	487	821.9	
Zr_MAT7P1_34	454	311	2.39	2480	3.57	0.0048	13.17	0.215	4.04	8.98	1.52	50.5	18.86	218	88.2	377	730	159.5	9260	20.4	236	512	
Zr_MAT7P1_35	305	276	1.26	1894	2.89	-2E-11	12.87	0.042	1.43	5.04	0.328	33.2	12.86	155.3	65.6	274	544	117.3	10340	17	168.6	393	

Tabla 2. Concentraciones elementales en circones de clastos sub-volcánicos de la Fm. Matzitzi

(ppm)	Р	Sc	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Yb	Lu	Hf	Pb	Th	U
Zr_M2V9_1	1020	274	3	938	1.55	9.9	30.1	2.35	9.8	3.91	1.05	15.5	5.27	65.1	29.5	138	353	86.5	10140	17.9	194.9	429.6
Zr_M2V9_2	3590	262	2.51	505	1.17	38.4	85.8	9.05	33.7	6.63	1.04	10.32	3.15	34.1	15.26	73.8	202	50.1	10460	11.75	101.3	266.3
Zr_M2V9_3	175	282	3.8	791	1.78	0.0083	11.2	0.055	0.74	1.65	0.479	10.22	4.02	52.1	23.97	122.4	332	81.6	10750	19	190	490.4
Zr_M2V9_4	1490	261.7	3.6	594	1.38	14.1	36.1	3	11.6	2.81	0.7	8.7	3.06	37.8	17.79	89.2	249	63.6	10640	16.15	149.2	426
Zr_M2V9_5	2000	265	3.6	432	1.17	23	53	5.3	19	3.6	0.59	7.2	2.53	29.2	12.88	63.7	181.5	45.9	11410	12.325	116.9	339
Zr_M2V9_6	117	258	2.57	740	1.61	0.0039	11.69	0.054	0.79	1.88	0.75	11	4.38	52.2	22.7	106.3	270	67.2	11130	17.175	180	412
Zr_M2V9_7	161	274	3.1	746	1.48	-5.2E-15	8.98	0.051	0.69	1.61	0.519	10.5	3.96	48.5	22.4	111.4	304	76.2	11060	18.125	161	451
Zr_M2V9_8	158	264	6.6	360	0.85	1.93E-14	5.98	0.026	0.34	0.85	0.356	5.68	2.03	26.4	11	54.3	138.6	33.5	10570	4	53.6	110
Zr_M2V9_9	2250	288	6.1	1120	1.97	20	52	4.8	19.1	6.7	1.16	20	6.69	79.6	36.4	170.2	415	99.1	10230	21	230.1	522
Zr_M2V9_10	151	272	3.3	744	1.77	7.67E-11	10.48	0.032	0.6	1.42	0.397	9.03	3.44	48.1	22.4	111.6	296	75.4	10880	18.075	168.3	464

Zr_M2V9_11	302	281	3	674	1.75	0.95	11.4	0.32	1.62	1.52	0.437	8.21	3.36	42.2	20	105.6	290	74.3	11150	16.05	136	370
Zr_M2V9_12	322	309	4.8	2420	2.27	0.025	18.3	0.331	6.26	10.55	3.6	48.6	16.8	190	76.9	352	788	184	8630	24.625	477	594
Zr_M2V9_13	1510	257	4	611	1.5	11.4	34.2	2.63	11.3	2.69	0.587	8.85	3.2	40.6	19.2	96.1	258	65.6	10430	16.6	165.1	402.2
Zr_M2V9_14	560	257	2.9	489	0.988	2.5	11.6	0.68	3.6	1.51	0.351	7.3	2.49	35.1	15.18	75	195.8	50.4	10880	10.925	89.9	264
Zr_M2V9_15	250	274	5.4	609	1.49	2	13.3	0.53	1.69	1.64	0.389	8.33	3.32	41.7	18.8	93.6	245	60.2	10520	14.05	165.7	347
Zr_M2V9_16	130	264.2	2.9	657	1.44	2.06E-07	8.46	0.03	0.41	1.24	0.381	8.71	3.19	42	19.95	102.9	275	68.7	11140	15.75	131	386
Zr_M2V9_17	181	276	2.2	835	2.44	-7.1E-07	13.84	0.033	0.52	1.3	0.438	9.88	4.12	54.3	25.59	130	352	89.1	11050	22.15	236.8	589
Zr_M2V9_18	170	265	6.9	915	1.06	2.98E-06	9.09	0.129	2.08	3.6	1.12	16	5.85	69.7	29.4	138	321	75.3	9340	6.825	103	156
Zr_M2V9_19	416	297	5.2	4570	3.51	0.066	30.2	0.771	12.78	24.2	5.75	107.5	35.5	393	154.9	671	1360	292	9570	39.8	785	945
Zr_M2V9_20	131	263	1.95	670	1.5	-0.00255	8.21	0.028	0.74	1.57	0.473	9.08	3.63	45.5	20.17	102.3	274	69.5	10330	13.7	133.3	347.6
Zr_M2V9_21	142	275	5.5	698	1.49	-0.0035	9.62	0.033	0.67	1.28	0.561	8.97	3.45	47.7	20.9	108.5	282	71.9	10620	11.2	120.4	268
Zr_M2V9_22	145	274	4.9	905	2.56	0.048	15.39	0.097	1.14	1.98	0.718	11.31	4.5	59.3	27.5	143.1	376	91.3	10530	23.1	268.5	590
Zr_M2V9_23	2830	276	7.2	1538	1.24	27.9	67.3	7.4	33.6	20.9	10.6	72.1	21.66	186.7	52.8	186.1	332	72.4	10800	11.85	116.9	305.9
Zr_M2V9_24	117	267.7	3.53	598	1.23	4.68E-05	8.45	0.025	0.45	1.51	0.418	8.32	2.87	39.8	17.7	91.6	248.2	62.6	9960	11.85	111.6	292
Zr_M2V9_25	136	267	4.3	1080	1.67	0.0057	11.74	0.132	2.09	3.47	1.13	18.6	6.63	79.1	34.2	160.5	384	90.7	9900	19.1	270.7	489
Zr_M2V9_26	239	266	5	1596	1.17	0.04	9.49	0.252	3.88	5.23	1.96	26	9.78	116.9	50.1	233.2	580	136.9	8670	17.475	291	456
Zr_M2V9_27	179	263	3.5	845	1.93	-8.5E-07	10.88	0.04	0.82	1.86	0.517	10.8	4.24	56.4	25.7	132.4	349	85.6	10700	18.725	194	486
Zr_M2V9_28	223	288	6.5	1219	1.91	0.016	13.33	0.137	1.79	3.43	1.07	19	6.74	87.7	38.2	184.4	429	104	10110	21.05	283	551
Zr_M2V9_29	165	261	4.9	458	1.08	0.017	7.02	0.048	0.53	1.1	0.329	5.89	2.35	30.2	13.86	70.4	192	48.3	11080	11.25	95.6	274
Zr_M2V9_30	108	246.3	3.7	531	1.37	-3.6E-10	7.65	0.023	0.49	1.15	0.371	6.33	2.63	33.7	15.9	80.5	216	54.4	11180	13.75	133	322
Zr_M2V9_31	193	264	4.43	1082	1.07	0.032	9.64	0.212	2.69	5.12	1.72	21.9	7.14	82.5	34.3	161	388	91.7	9840	15.95	277	380
Zr_M2V9_32	228	260	4.3	765	2	1.2	14.67	0.342	2.12	1.65	0.612	10.47	4.12	52.7	23.6	120.6	305	73.1	10420	17.925	221.7	486
Zr_M2V9_33	232	262	3.7	808	1.47	0.15	11.03	0.09	1.14	2.15	0.651	11.4	4.2	57.1	25.5	123.6	313	78.3	10/10	16.6	188	419
Zr_M2V9_34	9100	261	4.5	510	1.26	92	190	22.2	/9	14	1.8	15.7	3.65	37.8	15.6	/6.6	192	46.8	11010	13.775	115.5	290
Zr_M2V9_35	155	254	2.05	674	1.86	0.26	11.6	0.132	0.65	1.39	0.42	7.82	3.22	45.4	20.4	106.2	281	72.5	10610	18.175	1/3.1	458
Zr_M2V9_36	144	262	2.62	653	1.14	-1.2E-13	1.57	0.062	0.93	1.95	0.529	10	3.69	45.9	20.9	100.1	253	62.1	10/90	14.05	146	357
Zr_M2V9_37	104	252	3.4	028	0.94	3.24E-14	/.54	0.057	0.94	1.09	0.54	9.99	3.47	44.8	19.5	94.5	239	51.1	10820	12.55	135.7	298
ZI_W12V9_58	185	280	4.02	730	1.05	-0.0E-13	6.95	0.055	0.76	1.75	0.555	10.01	5.60	50.5	25.41	116.2	510	70.2	10940	13.823	150.5	369
Zr_MAT3P4_1	148	295	4	1156	3.79	-4.7E-24	26.8	0.088	1.66	5	3.05	27.9	8.92	93	38.2	161.3	363	83.8	8980	6.875	143.3	167.9
Zr_MAT3P4_2	243	271	2.85	1020	3.38	0.31	14.1	0.18	1.14	2.26	0.85	14.07	5.69	69	32.4	160.5	397	96.7	9490	4.25	39.88	101.2
Zr_MAT3P4_3	120	275	9.7	367	1.03	-1.3E-20	9.55	0.016	0.46	1.37	0.368	7.36	2.74	30.3	12.02	53.3	110.8	24.4	8990	0.7	12.32	16.37
Zr_MAT3P4_4	269	305	5.3	808	1.93	0.069	12.1	0.08	0.83	2.14	0.72	10.7	4.33	55	25.7	125.2	334	83.6	9010	17.5	185	391
Zr_MAT3P4_5	11400	267	4.9	956	3.23	43.1	104	10	38.6	7.1	1.68	16.4	5.18	64.1	29.6	150	371	93.1	9800	4.425	28.3	97.1
Zr_MAT3P4_6	700	264	2.38	965	3.34	2	22.1	0.89	4.9	2.74	0.9	13.6	5.3	64.8	29.8	149.2	372	90.8	9050	3.4975	26.91	85.9
Zr_MAT3P4_7	64	261	2.37	703	2.24	-2.3E-18	9.78	0.018	0.345	1.23	0.429	7.38	3.28	40.9	20.7	110.2	331	88.3	9970	4.2675	23.35	109.9
Zr_MAT3P4_8	520	279	8.3	920	3.13	0.0068	5.76	0.076	1.48	3.67	0.115	21.5	7.61	83	31.8	131	222	47.9	10340	28.375	99.7	179.2
Zr_MAT3P4_9	440	280	3.13	623	1.68	1.11	10.8	0.27	1.49	1.55	0.408	7.85	3.29	41.1	19.45	100.1	261	69.1	9030	12.1	118.3	316
Zr_MAT3P4_10	1870	272	7.2	749	1.52	7.1	23.9	1.91	9.3	7.7	2.2	23.7	7.4	72	24.2	103.5	241	60.4	9160	11.85	97.3	296
Zr_MA13P4_11	4/	273	2.49	1040	5.8	-4.4E-16	16.26	0.0161	0.52	1.98	0.81	12.89	5.26	68.5	32.5	162.2	420	102.4	9930	4.825	32.41	121.4
Zr_MA13P4_12	200	287	3.19	1200	4.32	-8.4E-14	19.2	0.025	0.64	4 21	0.88	15.5	0./4 5.09	83.2	38.5	187	401	110.8	10460	4.59	37.2	114.2
Zr_MA13P4_15	2690	204	3.79	570	3.27	9.5	3/./	3.08	15	4.21	1	15./	5.08	01./	29	143.0	349	80.4	9610	3.005	20.48	80.8
Zr_MA13P4_14	135	278	4.84	5/8	1.44	0.055	1.57	0.045	0.48	1.37	0.471	8	3.04	38.0	18.25	90.2	226.6	58.2	9510	10.075	101.7	251
Zr_MA13P4_15	195	202	1.93	930	3.17	0.016	12.44	0.045	0.05	1.94	0.041	5 64	4.59	20.2	29.2	71.5	303	91.4	9300	5.5825	29.7	92.4
ZI_MAI3P4_10 Zr_MAT2D4_17	215	2/1.4	3.2	435	2.22	-1.0E-11	14.72	0.0143	0.45	1.0	0.525	12 20	2.45 5.21	50.2	20.7	150.0	165	40.7	9230	0.175	36.2	140
ZI_WAI5P4_17	207	257	2.5	704	3.23	0.0039	14.72	0.022	0.55	1.6	0.587	12.39	3.21	51.1	30.7	130.9	208	90.8	0/50	3.3373	29.42	94.7
ZI_MAI3P4_18 7r_MAT2P4_10	202	200	2.9	704 529	2.64	6.2	15.05	1.82	0.00	2.28	0.322	7 20	4.1	25.4	24.5	82.0	217	76.9 56.6	10080	2.705	25.46	267
Zr_MAT3P4_17	960	325	1.8	723	1.47	27	16.1	0.76	3.3	1.82	0.407	0.24	3.63	47.2	22.8	115.0	208	75.6	10050	13.25	135.2	320.3
Zr_MAT3P4_20	117	281	3.3	1330	5.05	0.017	22	0.045	0.70	2.5	1.06	17.1	7.25	90	42.3	210.3	194	122.1	9560	1 7375	38.26	115.8
Zr_MAT3P4_21 Zr_MAT3P4_22	283	283	0.87	610	3 34	2 74E-06	6.83	0.0139	0.145	0.71	0.43	674	2.62	35.9	18.2	96.1	283	76.6	12930	4.7575	20.9	97.6
Zr_MAT3P4_22	410	286	1.9	1003	3 54	0.63	16.8	0.26	1.4	2.09	0.45	13.6	5 34	67.2	31	154.1	392	96.9	10930	3 4125	26.5	88.8
Zr_MAT3P4_23	1350	307	81	2440	3.16	0.089	3 31	0.166	1.4	5 77	0.334	38.5	17.3	208	87.5	372	651	129.1	11250	37.7	70.1	287
Zr MAT3P4 25	436	342	6	1412	3.82	1.26	34.2	2.82	21.1	20.2	8 35	467	15.2	141	47.8	209	456	102.1	9950	26	531.7	867
Zr_MAT3P4_26	244	259	2 59	458	1.22	0.000387	6 64	0.027	0 393	0.83	0.291	5.88	2.54	31.1	14.02	72.3	186 1	48.2	9680	7 425	73.6	198
Zr MAT3P4 27	4280	264	2.38	625	1.4	25.5	63	6	22.6	5 24	0.2	12.3	4 19	43.1	19.77	97.3	237	59.2	9960	14 075	147.2	348
Zr MAT3P4 28	252	251	1.56	849	3.31	0.045	15.69	0.034	0.68	1.99	0.774	12.71	5.01	59.7	27.1	130.9	312	74.8	9990	6.3	64.7	159.1
Zr MAT3P4 29	72	249	14	403	1 13	-0.0254	3.18	-0.0096	0.204	0.59	0 311	5 57	2.18	26.4	12.26	62.2	163	42.6	10560	2.855	12.29	67
Zr MAT3P4 30	1430	277	3.2	700	2.39	7.7	26.2	1.88	7.3	2.28	0.64	9.71	3.83	46	22	110.2	296	77.6	9670	16.775	147.6	393
Zr MAT3P4 31	1250	258	3.25	1015	0.93	8.2	27.2	1.73	6.9	4.96	0.98	21.3	6.69	75.9	32.4	149	336	81.4	9400	18.975	231	437
Zr MAT3P4 32	4100	246	2.36	594	1.16	18.4	46	5	23.9	5	0.8	13.3	3.95	42.2	18	90.3	214	52.2	9670	3.3125	21.4	79.9
Zr MAT3P4 33	214	267	3.4	949	3.84	0.00843	13.76	0.039	0.5	1.52	0.501	10.9	4.72	59.8	28.7	146.6	374	92.8	10380	3.825	28.6	92.7
Zr_MAT3P4_34	6680	283	2.89	806	3.1	41.9	101.4	10.2	39.2	7.34	1.18	13.6	4.1	53.1	25	128.6	343	90.9	9990	20.625	166	469
Zr_MAT3P4_35	360	274	2.6	621	1.94	0.02	8.4	0.024	0.57	1.31	0.3	7.82	3	39.2	18.6	98.1	246	64.5	9620	14.725	119.5	352.6
Zr_MAT3P4_36	167	280	2.05	857	1.39	-0.00015	10.28	0.049	1.3	2.55	0.76	13.9	5.23	61.5	27.6	131.2	311	74.7	9840	16.2	186.7	398
Zr_MAT5P1_1	149	267	4.8	612	1.69	2.4E-15	9.07	0.0162	0.51	1.27	0.481	8.26	3.06	40.6	18.8	95.5	250	61.7	10740	14.45	157.1	362.9

Zr_MAT5P1_2	155	266.4	4.2	581	1.52	-3.5E-18	9	0.025	0.5	1.12	0.38	7.55	3.08	38.2	17.61	92.8	254	62.6	11720	15.975	155	403.7
Zr_MAT5P1_3	130	277	5.5	669	1.33	0.095	9.37	0.065	0.89	1.7	0.433	8.84	3.43	44.3	20.3	107.3	274	67.4	10660	12.1	130.5	283
Zr_MAT5P1_4	410	278	2.47	1118	3.73	0.55	22.6	0.21	1.34	2.19	0.644	13.8	5.36	71	34.3	176	467	114.8	11330	26.225	288	699
Zr_MAT5P1_5	134	243.8	7.7	358	0.728	0.0019	4.42	0.027	0.37	1.14	0.38	5.52	2.16	27.1	11.58	56.5	131.2	32	9210	3.175	37.27	85.9
Zr_MAT5P1_6	4400	262	3.5	777	2.51	45	102	10.4	38	6.8	1.04	13.1	4.12	51.3	23.3	122.3	315	79.9	10510	21.15	237	536
Zr_MAT5P1_7	174	262	3.5	457	1.01	4.45E-21	6.7	0.026	0.33	0.73	0.335	5.65	2.25	30.8	14.17	72.6	198	49.5	10510	7.775	76.9	199.8
Zr_MAT5P1_8	233	273	4.1	1086	3.21	0.106	22.1	0.091	1.49	2.76	0.794	14.2	5.49	74.4	33.6	174	430	104.9	10510	31.15	384	765
Zr_MAT5P1_9	1000	272	2.8	512	1.21	3.9	15.6	1.17	4.3	1.71	0.501	7.1	2.66	33.6	15.16	82.7	221	55.5	11130	9.1	78.7	212
Zr_MAT5P1_10	102	254.6	14.8	203	1.58	0.063	22	0.096	0.96	1.64	0.589	5.96	1.77	17.2	6.37	27.8	66.2	15.3	11720	45.9	102.2	369
Zr_MAT5P1_11	137	263	2.9	507	1.26	2.52E-23	7.91	0.022	0.31	1.02	0.363	5.73	2.47	32.2	15.43	81.7	228	56.5	11860	12.6	112.7	311
Zr_MAT5P1_12	186	266	2.67	732	1.87	0.084	9.74	0.063	0.61	1.31	0.492	8.36	3.61	46.9	21.54	114.3	310	77	11090	18.1	158	450.4
Zr_MAT5P1_13	160	263	3.5	866	0.917	-3.3E-26	8.58	0.071	1.38	3.02	0.89	16.2	5.6	65.9	27.6	129.7	297	70.1	11410	13.375	172	317
Zr_MAT5P1_14	222	290	3.4	765	1.4	7.3E-27	8.92	0.031	0.73	1.44	0.65	11.5	4.22	54.8	24	120.7	330	78.2	11370	19.15	218	567
Zr_MAT5P1_15	168	256.9	2.5	621	1.34	-2.2E-27	7.81	0.03	0.49	1.16	0.343	7.56	2.89	39.1	18.9	97.8	262	64.4	10400	13.775	125.3	360
Zr_MAT5P1_16	153	264	3.4	605	1.69	6.22E-28	9.44	0.021	0.44	1.32	0.423	7.78	3.11	41.3	18.4	94.3	250	61.2	11550	17.1	166	412
Zr_MAT5P1_17	171	249	2.06	869	0.98	0.216	9.81	0.185	2.05	3.36	0.93	14.3	5.49	65.2	27.2	135.4	316	75.9	11040	15.2	232	421
Zr_MAT5P1_18	273	241	2	432	1.14	0.37	7.54	0.12	0.74	0.84	0.292	5.71	2.17	27.7	12.44	68.2	188.1	48.7	11440	11.275	92.3	291
Zr_MAT5P1_19	370	259	2.59	1085	1.22	3.2	15.3	0.64	4.1	4.21	1.11	19.7	7.13	84.4	35.2	166	374	87	11110	19.775	278	513
Zr_MAT5P1_20	102	260	3	542	1.29	3.2E-30	7.86	0.021	0.46	0.99	0.293	6.74	2.73	34.8	16.33	85.9	223	56.2	11460	11.75	111.69	279.4
Zr_MAT5P1_21	292	287	3.5	806	2.07	1.14	14.5	0.33	1.81	1.92	0.454	10.14	4	53.4	25	131.4	330	83.5	11200	15.2	148.8	372
Zr_MAT5P1_22	210	268	3.1	630	1.56	-4.5E-33	8.92	0.019	0.41	1.12	0.434	8.25	3.13	39.4	18.9	100.4	268	67.7	10920	14.2	134	343
Zr_MAT5P1_23	192	275.6	3.9	791	2.43	1.18E-33	14	0.023	0.35	1.46	0.445	9.31	3.82	51.3	24.2	125.5	329	81.7	11750	18.9	216.5	488
Zr_MAT5P1_24	2340	290	5	1210	2.67	21.4	60	5.1	20.8	6.1	1.18	20.1	6.87	86.3	38.6	190.2	457	109.2	11360	23.45	291.2	606.7
Zr_MAT5P1_25	237	282	3.97	938	1.25	8.44E-35	9.82	0.087	1.6	3.02	1.03	15	5.65	68.9	29.5	144.7	344	82.1	10690	11.8	169	297
Zr_MAT5P1_26	226	259	3.04	1118	1.3	0.0018	11.36	0.143	2.28	3.62	1.14	19.5	7.11	84.4	36.1	170.3	399	93.3	11310	19.725	268.5	490
Zr_MAT5P1_27	183	260	4.4	463	1.19	6.08E-36	6.33	0.047	0.331	0.96	0.292	5.77	2.24	31.2	13.53	75.6	194.7	48.1	11390	7.825	71.5	190
Zr_MAT5P1_28	448	358	4.9	1482	2.44	3.58	37.6	3.97	25.9	22.9	10.5	55.1	16.5	157	49.9	215	456	99.2	11690	28.3	651	865
Zr_MAT5P1_29	150	242	3.2	514	1.21	4.09E-37	7.18	0.029	0.37	0.95	0.304	6.44	2.46	34.5	15.21	81.6	218	55.4	10970	11.325	108.1	303
Zr_MAT5P1_30	130	242	2.7	452	1.16	-1.2E-37	6.55	0.02	0.18	0.75	0.296	5.55	2.13	29.6	13.55	72.7	201	50.3	11600	12.05	94.6	280.1
Zr_MAT5P1_31	9400	247	4	575	1.06	79	162	18.4	69	12.2	1.71	16.6	4.13	43.3	18	87.7	210	50.9	10860	8.225	84.7	184
Zr_MAT5P1_32	173	248	3.7	698	1.11	1.71E-40	7.38	0.029	0.9	1.97	0.65	10.9	3.95	50.2	21.8	107.4	263	63.9	11290	12.25	132.4	292
Zr_MAT5P1_33	141	259	2.55	487	1.27	-4.4E-41	6.78	0.0012	0.263	1.11	0.277	5.94	2.35	31.5	14.5	79.5	215	55.2	12210	11.35	97.6	274.5
Zr_MAT5P1_34	102	256.4	2.53	708	1.89	0.033	14.46	0.052	0.94	1.45	0.411	9.56	3.79	50	21.5	110.8	281	67.7	11840	18.175	244	469
Zr_MAT5P1_35	1940	253.9	3.7	596	1.58	12.3	32	2.45	10.5	2.43	0.615	8.84	2.86	38.2	18.19	97.4	267	69.3	11330	15.8	122.8	384

Tabla 3. Concentraciones elementales en circones detríticos de clastos de arenisca de la Fm. Matzitzi

(ppm)	Р	Sc	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Yb	Lu	Hf	206Pb	Pb	Th	U
Zr_M4F16_1	720	123.2	3.1	838	0.93	3.1	9.9	0.68	4	2.97	0.33	13.9	5.02	67.9	27.5	129.7	269	56.5	10620		40.1	61.3	214
Zr_M4F16_2	310	111.6	9.8	906	1.46	0.0028	9.42	0.138	2.71	5.72	0.528	27.3	8.31	90.6	33.1	127.7	219	42.4	9700		9.725	40	50.4
Zr_M4F16_3	260	121.7	9	622	0.89	0	22.7	0.076	1.56	2.77	0.61	15.1	4.62	54.4	20.2	88	182	37.9	9870		33.075	103.1	175
Zr_M4F16_4	500	158	7	1782	7.7	0	65.3	0.067	1.68	5.3	1.1	30.6	11.87	146.4	60.8	275	566	114.4	9330		103	281.1	329
Zr_M4F16_5	950	222.8	7.2	2200	1	0	1.5	0.052	0.92	4.76	0.073	36.7	15.47	200.7	74.1	302	517	93.7	13200		79.5	81.3	413
Zr_M4F16_6	3040	165.4	5	678	1.59	14.5	49.3	5.1	23	5.37	1.19	17.3	4.97	54.6	21.04	97.5	227.9	51.8	10870		7.925	81.5	157.7
Zr_M4F16_7	200	148.2	13.8	290	1.01	0	7.41	0.105	2.01	4.62	0.077	19.3	4.84	38.4	9.69	29.8	39.3	6.42	12860		30.3	251	313
Zr_M4F16_8	90	96.4	2.2	180	0.5	0	0.89	0	0.19	0.34	0.137	1.95	0.72	10.8	5.38	29.9	92.2	25.3	10980		10.85	2.9	48.9
Zr_M4F16_9	530	137.5	4.5	1432	3.44	0.077	6.03	0.077	1.23	3.93	0.153	25.9	10.47	127.1	49.9	218	392	77.8	11510		94.75	216.7	687
Zr_M4F16_10	1290	112.1	14.4	747	1.87	0.87	11	1.19	8.2	7.1	1.16	23.6	7.16	78.5	26.8	106.6	183.7	35.9	9060		11.85	47.1	85.7
Zr_M4F16_11	50	97.8	5.9	120.1	1.36	0	2.14	0.0033	0.138	0.59	0.422	4.5	1.44	13.53	3.89	13.09	17	3.07	9180		11.375	58.7	109.7
Zr_M4F16_12	210	104.4	12.7	345	1.76	0	5.05	0.06	0.94	2.39	0.151	11.4	3.81	37.8	12.01	40	50.8	8.57	12120		4.3075	33.9	47.5
Zr_M4F16_13	220	149.1	3.4	584	1.17	0.017	16.47	0.138	1.47	2.72	1.07	17.4	5.01	51.6	18.8	80.5	165.7	35.7	11400		51.55	106	319.1
Zr_M4F16_14	369	207	7	1509	2.66	0	12.22	0.096	1.65	4.21	0.69	26.8	10.62	135	53.4	241	457	91.6	11290		20.575	122.3	223
Zr_M4F16_15	1620	331	14.5	4040	1.4	0.39	7.5	0.59	7	9.8	2.41	52.6	24.25	335	139.2	641	1331	255.2	12770		113.25	114.7	767
Zr_M4F16_16	1440	135.8	4.3	1229	2.05	5	35.7	0.85	5.8	6.1	2.35	27.5	9.71	105.3	41	186	375	77.1	7670		12.425	117.2	81.1
Zr_M4F16_17	340	86.6	3.6	1183	7.22	0.005	16.6	0.12	1.57	3.36	0.175	20.9	8.17	100.2	39.1	180	320	60.5	13660		164.25	248.3	651
Zr_M4F16_18	313	115	23.7	475	1.19	0	35.1	0.109	2.19	4.06	1.38	17.9	4.89	47.6	16.3	65.3	121	24	9670		4.8475	50.5	54.4
Zr_M4F16_19	212	109.4	14.7	598	1.78	0	5.22	0.032	0.79	2.18	0.108	12.06	4.44	53.2	19.73	91.3	174.1	34	10630		15.95	56.5	149.4
Zr_M4F16_20	350	130	8.3	1830	12.3	0.009	39.5	0.129	2.06	5.4	0.99	32.3	12.2	158	63	281	528	103.9	11630		177.75	290.4	289
Zr_M4F16_21	190	89	22.5	454	2.93	0.12	4.97	0.068	0.91	1.94	0.47	9.9	3.58	43.4	15.79	66.6	126.7	25.1	7800		11.35	31.78	59.4
Zr_M4F16_22	31	89.3	2.02	120.1	0.453	0	17.3	0.0033	0.252	0.45	0.263	2.33	0.722	8.02	3.06	15.22	43.3	11.27	11010		27.9	107.1	269.9
Zr_M4F16_23	233	123.9	20.8	504	1.7	0.013	24.5	0.188	2.76	4.25	1.9	16.2	4.48	47	16.69	68.6	132.8	27.38	7470		16.8	133.6	163.8
Zr_M4F16_24	329	95.2	7	1014	3.19	0	10.39	0.072	1.72	3.74	0.191	23.6	8.13	93.1	34.5	148.1	255	48.7	9060		45.7	107	147
Zr M4F16 25	150	102.8	9.5	747	0.87	0.058	4.38	0.55	9.02	10.7	1.16	34.8	9.35	87.1	27	100.6	150.3	29.1	8200		4.175	35.9	42.82

7 MARIA AC	274	1740	~ .	1100	7.00	0	11.01	0.054	1.50	4.1.1	0.1.40	210	0.10	100.0	41.7	175.0	217	<1 A	10,000	25.075	72.0	201.4
Zr_M4F16_26	376	1/6.2	5.4	1122	1.22	0	11.81	0.054	1.59	4.11	0.149	24.9	9.19	109.9	41./	1/5.3	317	61.4	10680	35.875	/3.8	201.4
Zr M4F16 27	250	101.5	2.7	826	1.42	0.072	7.26	0.115	2.02	3.18	0.43	20.1	6.9	77.6	29	122.1	222.4	43.2	10030	21.25	62.4	190
7r M/E16 28	320	103.3	4.1	705	2.67	0	14.11	0.031	0.49	1.64	0.164	11.85	4 69	62.9	27.3	128.0	282	50	11500	87.25	105.6	334
ZM4F16_20	260	201	16.4	200	2.07	0	0.012	0.051	0.42	1.04	0.107	12.5	5.14	40.2	10.29	25.0	20.4	6.61	12470	01.25	10.2	407
Zr_M4F16_29	300	201	16.4	388	0.65	0	0.213	0	0.22	1.28	0.102	12.5	5.14	49.5	12.38	35.8	39.4	0.01	12470	81	10.5	407
Zr_M4F16_30	510	303	3.7	1153	2.26	0	12.7	0.052	0.95	1.47	0.52	10.6	5.48	84.7	36.9	188.7	465	97	13270	48.75	83.1	688.7
Zr M4F16 31	195	115.9	3.6	133.2	0.256	0	1.24	0.0064	0.48	2.69	0.226	10.9	2.71	18 98	4 32	12.16	14.4	2.84	12800	51 525	20.8	564
7- M4E16 22	400	107.5	5.0	1725	2.49	0.077	12.26	0.262	1 65	0.80	1.01	50.6	16.2	1777	62.6	252	126	70.6	0850	47.25	241	250
ZI_W4F10_32	490	107.5	3.2	1723	2.48	0.077	15.20	0.265	4.05	9.89	1.01	50.0	10.5	1//./	02.0	235	420	79.0	9850	47.23	241	550
Zr_M4F16_33	200	108.2	14	1300	2.15	0.55	22.1	1.02	10.2	10.1	2.68	38.7	13	135	45.5	180	306	52.3	10210	49.75	164	270
Zr M4F16 34	430	148.4	18.3	926	2.57	0	19.5	0.094	2.07	5.79	0.214	32	10.7	101.9	30.3	106	148	25.8	12810	9.975	77.5	94.4
7r M4E16 35	117	162.4	187	1004	1 37	0.04	1 73	0.459	5.82	8 74	1 32	35	0.07	104.2	36.1	147.8	241	47.5	8160	21.25	44.5	65.2
21_14110_33	117	102.4	10.7	1004	1.57	0.04	4.75	0.457	5.82	0.74	1.52	55).)/	104.2	50.1	147.0	241	47.5	8100	21.25	44.5	05.2
Zr_M4F16_36	780	166.5	4.6	1723	2.58	0	6.79	0.026	0.85	2.46	0.11	18.2	9.1	127.1	58	296	663	141.9	11690	73.25	88.8	356
Zr_M4F16_37	60	88.1	2.7	175	1.52	0	5.91	0	0.083	0.23	0.249	2.33	0.9	11.9	5.38	28.4	76.4	17.9	10700	13.275	29.5	160
7r M4F16 38	190	152	29.4	195	0.38	0	0.31	0.029	0.81	52	0.081	28.5	6.22	34.8	5.97	14 47	15.6	2.45	11670	43.25	26.6	617
ZM4F16_30	10	104.5	50	(1)	2.00	0	6.31	0.027	1.05	2.46	0.001	17.0	5.75	64.2	02.1	00.0	170	22.45	0120	= CO5	20.0	44.00
ZI_W4F10_39	10	104.5	5.8	042	5.98	0	0.45	0.084	1.05	5.40	0.251	17.9	5.75	04.5	23.1	98.2	172	33.9	9120	5.625	20.47	44.98
Zr_M4F16_40	90	111.2	10.9	612	2.95	0	25.9	0.042	0.73	1.72	0.175	9.78	3.72	51.4	20.7	96.7	218.4	45.7	10360	72.75	130.5	198.9
Zr M4F16 41	740	207	4.8	1682	3.77	3.3	26.4	2.21	13.7	7.9	1.29	36.1	12.11	152.4	58.8	268	495	99.1	11370	141.25	400	988
7r M4E16 42	280	1117	21	816	2.65	0.024	42.5	0.228	5.44	7.6	2.25	20.1	7 70	797	27.0	116.5	215	42.0	8210	22 175	275	02.7
ZI_W4110_42	280	111.7	21	810	2.05	0.024	42.5	0.558	3.44	7.0	3.23	29.1	1.19	/0./	21.9	110.5	213	43.9	8210	55.175	213	93.7
Zr_M4F16_43	950	312	4	2030	0.952	0	0.8	0.034	0.87	3.29	0.107	35.2	15.38	191	66.9	268	432	77.6	12920	74.25	51.3	487
Zr M4F16 44	980	213	15.9	2110	0.6	0	1.94	0.12	2.65	7.72	0.213	47.8	17.7	197	76.2	316	533	101.7	11050	29.05	93	151.4
7r M4E16 45	440	2177	13	1554	2.51	0.122	11.67	0.138	1.56	12	1.15	26.7	10.08	131	53.2	252	524	110.5	11300	34 825	215	501.9
ZI_NHT10_45	440	120.0	4.5	1554	2.51	1.40.0	11.07	0.130	1.50	4.2	1.15	20.7	10.00	151	22.0	2.52	324	110.5	10500	122.25	215	200
Zr_M4F16_46	7040	130.9	5.7	698	1.36	149.8	419	50.4	226	44.6	1.2	46.6	8.12	66.5	22.9	101	216	48.2	10500	132.25	117.7	308
Zr_M4F16_47	220	190	5.6	1215	2.28	0	14.5	0.078	0.85	3.22	0.74	18.5	6.91	94.1	39.6	197	438	96.2	9320	18.35	218	401.7
7r M4F16 48	380	1477	9.1	642	1.61	0	14.8	0.08	0.93	1.93	0.53	14.1	471	55.9	22.3	98.9	188	37.5	10020	23 125	82.5	121.3
Z M4E16 40	240	147.7	12.7	1050	1.01	0	14.0	0.00	1.00	1.55	0.05	22.6	9.01	04.5	26.0	162.9	200	60.5	10620	42.0	02.5	02.6
ZI_W4F10_49	540	111	15.7	1058	4.39	0	05.5	0.101	1.62	4.24	0.95	25.0	8.01	94.5	30.9	102.8	509	00.5	10090	45.2	89.0	92.0
Zr_M4F16_50	390	83.4	10.9	1417	2.94	0	7.15	0.021	1.06	3.32	0.75	25.7	9.85	125.7	51.2	223	386	76.1	8730	28.625	65.33	165.9
Zr M4F16 51	840	326	19.1	1580	1.24	0	8.89	0.034	1.27	5.05	1.37	40.9	13.4	160	54.8	222	360	67.2	10360	63.5	117.3	374.8
7r M4E16 52	210	116.6	19.4	216	1 1 1	Ő	2 47	0.088	0.02	2.25	0.122	11.6	2 50	25.7	10.65	26.2	12.4	7 25	11610	2 825	2.02	20.06
ZI_W4110_32	510	110.0	10.4	510	1.11	0	5.47	0.088	0.93	2.55	0.123	11.0	3.39	33.7	10.05	30.2	42.4	1.55	11010	5.625	5.02	39.00
Zr_M4F16_53	320	112.6	36.4	555	1.37	0.49	11.45	0.175	1.99	2.46	0.9	12.2	4.14	47.3	18.9	88.8	186	40.2	6810	5.5	29.41	53.7
Zr M4F16 54	20	82.9	7.5	243	0.72	0.011	1.92	0.01	0.51	0.72	0.078	4.47	1.52	19.9	7.76	37.4	80	16.7	8730	20.025	48.4	173
7r M4E16 55	880	301	13.8	1354	1.43	0.053	2 39	0.294	4 14	93	3.9	35.1	11.6	136	48.1	205	425	88.4	11980	62.25	71.4	343.4
21_114110_55	600	205.2	15.0	1354	0.61	0.000	1.00	0.204	4.14	2.07	0.07	16.0	7.50	70.1	40.1	116.0	425	44.4	11000	62.25	10.2	545.4
Zr_M4F16_56	630	295.3	1.5	826	0.61	0.037	1.08	0.08	0.81	2.37	0.27	16.8	7.52	/9.1	27.4	116.2	223	44.4	11990	63.9	18.5	132
Zr_M4F16_57	240	155.4	26.8	220	0.91	0.06	3.01	0.08	1.7	2.85	0.145	12.6	2.95	24.7	7.46	27	43.9	7.95	11240	18.375	69.8	220.7
7r M4F16 58	-100	112.4	37	544	2.89	0	2.99	0.031	0.83	1 64	0.093	12	4 46	50.2	19.4	87	176	34.1	11680	36.5	38.6	232.5
ZM4F16_50	510	077	5.0	1210	2.40	0	0.14	0.022	1.76	4.04	1.20	26.6	4.40	112.1	17.4	102	257	71.0	0520	27.575	155 4	250.9
Zr_M4F16_59	510	211	5.2	1210	3.42	0	9.14	0.032	1.70	4.84	1.38	20.0	9.21	113.1	44.2	192	357	/1.8	8530	31.373	155.4	259.8
Zr_M4F16_60	400	151.3	4.8	806	2.51	0.096	19.14	0.251	1.63	2.14	0.93	11.72	4.39	60.5	25.8	132	321	71.9	10570	31.875	245	407
Zr M4F16 61	780	218	58	1294	0.92	0.013	1 75	0.057	0.9	3 73	0.053	26.8	11 55	130.2	42.4	167.5	282	54.1	12450	55 25	71.6	507
7- M4E16 62	250	000	16	026	10.2	0.015	12.07	0.070	1.12	2.20	0.121	10.2	6 70	00	22.0	146.2	255	49	10810	50.20	140	415
ZI_W4F10_02	550	02.0	4.0	920	10.2	0	15.07	0.079	1.12	5.56	0.151	19.2	0.72	00	52.9	140.5	233	40	10810	54	149	415
Zr_M4F16_63	620	117	6.4	1720	3.33	0	9.4	0.125	3.1	8.1	0.26	37.9	13.5	157	61.7	255	465	92	11370	272.5	142.6	409.5
Zr M4F16 64	4300	114.1	6	2630	1.94	29	144	25	169	74	2.78	130	31.1	303	95	378	566	102.6	9510	45	188.1	253.2
7r M4E16 65	120	02.2	22.2	61.2	0.86	0	1.45	0.0047	0.24	0.26	0	1.54	0.510	1 19	1.90	86	21	5.01	10020	12 55	27	112.1
ZI_WH110_03	150	92.2	23.2	01.5	0.80	0	1.45	0.0047	0.24	0.20	0	1.34	0.519	4.40	1.69	8.0	21	5.01	10030	15.55	57	115.1
Zr_M4F16_66	420	139.6	7.3	937	1.61	0	4.96	0.055	1.33	3.68	0.362	21	7.14	86.2	33.4	149.7	282	57.3	10790	10.325	50.6	103.2
Zr M4F16 67	680	131.4	14.6	1230	1.76	0	4.43	0.098	1.98	5.1	0.112	27.1	9.37	113	43.2	190	369	70.7	11410	15.075	123	166.4
7r M4F16 68	430	138.9	14	749	3.92	0.05	24.3	0 174	2.76	4 93	0.483	21.5	6.82	77 1	27.1	117	200.6	38.4	9900	49 775	297	262
ZM4F16_00	1450	110.0	2.0	(20	1.92	1.1	24.5	0.52	2.70	4.75	0.405	15	4.7	56.4	21.0	100.0	200.0	41.5	0000	120	126.2	202 7
ZI_W4F10_09	1450	116.2	2.8	039	1.65	1.1	21.2	0.32	5.24	2.35	0.54	15	4./	30.4	21.8	100.8	202	41.5	9900	152	150.2	222.1
Zr_M4F16_70	2180	520	5	2500	1.34	0	1.17	0.038	0.7	2.76	0.214	23.4	13.13	198	82.9	396	844	166.3	12770	37.475	31.6	486
Zr M4F16 71	440	94.7	6.5	505	1.57	0.031	3.09	0.058	0.55	1.1	0.064	8.59	3.17	42.4	16.95	82.9	164.6	32	12800	99.75	65.7	599
7r M4E16 72	650	1347	10.5	1850	23	0	11.68	0.226	5.13	9.6	2.07	17.4	15.2	183	65.3	276	481	01.5	9120	35 75	54.1	63.8
21_114110_72	0.10	540	10.5	500	2.5	0.014	11.00	0.220	0.106	0.044	0.077		1.55	105	16.5	1160	401	106.0	12210	040	2.12	600
ZI_M4F10_/3	840	343	1.4	508	0.45	0.014	0.2	U	0.106	0.000	0.367	2.20	1.55	30.9	10.5	110.5	514	120.3	12240	248	3.42	099
Zr_M4F16_74	60	82	3.1	308	2.55	0	4.09	0.0112	0.16	0.57	0.089	3.78	1.65	23.52	9.98	51.7	110.7	20.28	13410	20.4	32.8	111.4
Zr M4F16 75	190	128.9	4.7	900	1.22	0.016	5.77	0.082	1.81	3.65	0.82	20.4	7.03	84.6	31.2	137.4	262	53.4	9420	19.525	35.1	121.2
7r M4E16 76	220	141.1	10.1	266	0.0	0	2.92	0.026	0.62	1.67	0.166	8.06	2.05	22.4	12.56	52.2	102.2	21.2	0440	10.025	52 72	202.5
ZI_W4110_70	550	141.1	10.1	500	0.9	0	2.85	0.030	0.03	1.07	0.100	0.90	2.93	55.4	12.50	55.5	105.5	21.2	9440	19.925	52.72	202.5
Zr_M4F16_//	510	128.3	9.9	624	1.19	0	7.51	0.088	1.76	3.62	0.276	16.9	5.45	60.9	21.49	91.6	165.2	31.5	10800	6.725	50.8	65.7
Zr M4F16 78	380	173.8	4.3	1202	3.72	0.0031	15.36	0.07	1.66	3.91	0.691	24.8	8.32	105.4	42.1	193.2	370	73.6	10030	28.725	248	332
7r M4F16 79	1350	321	74	2190	1 53	0.004	1 24	0.09	1.09	3 39	0.234	32.5	13.83	191.3	74.8	336	628	121.8	11420	87	65	572.4
Zi_M4110_77	1350	102.1	1.47	2170	1.55	0.004	10.6	0.07	1.02	0.07	0.254	16.0	5.00	71.1	74.0	100 5	020	121.0	0200	00 705	55.0	572.4
Zr_M4F16_80	320	193.1	14.7	/69	1.45	0	19.6	0.068	1.55	3.41	0.8	16.5	5.72	/1.1	21.2	120.5	235	48.1	9380	29.125	55.9	00.7
Zr_M4F16_81	310	89.9	13	1272	1.24	0.278	15.86	1.1	15.2	21	2.58	67.6	16.26	149.2	43.5	163.6	243.4	44.2	7940	45	491.4	467.8
Zr M4F16 82	-110	101.9	4.7	236	0.95	0	6.18	0	0.29	0.5	0.145	3.65	1.34	17.1	6.83	35.3	96	22.3	11870	154.5	62.2	369.8
7r M/E16 92	630	306	10.9	1272	1.07	0	1.24	0.066	2 19	1.24	0.301	27.1	9.44	1177	11 5	202	376	76.0	9230	25.6	51.2	130.2
Z1_IVI+110_00	050	105.0	10.0	14/3	1.07	0 00 10	1.24	0.000	2.10	4.24	0.501	21.1	7.44	11/./	44.3	202	570	10.9	12500	23.0	31.2	139.3
Zr_M4F16_84	310	185.9	4.2	90.8	1.02	0.0048	1.2	0	0.057	0.63	0.477	4.26	1.32	11.26	3.17	8.58	8.18	1.51	13520	11.05	2.48	126.3
Zr_M4F16 85	380	225.2	3.1	1219	2.87	0	12.56	0.046	1.22	3.83	0.97	25.1	8.66	105	40.7	183.8	378	78.2	11880	24.5	223	466
7r M4F16 86	210	168.1	49	916	1.48	0	17.83	0.085	2.07	3 72	1.53	20.46	671	77	28.5	130.6	299	67.3	11180	11.85	163	270
Z. MAE16.07	210	107.2	4.7	210	2.67	0	21.05	0.005	2.07	3.12	0.175	14.1	5.71	(0.2	20.5	127	200	50.4	12120	(7.05	220	250.2
ZI_M4F10_8/	211	107.5	9	640	3.07	U	21.9	0.047	0.91	2.18	0.175	14.1	3.33	08.5	∠ð	137	289	59.4	12120	07.25	229	339.5
Zr_M4F16_88	380	111.4	2	547	0.47	0	10.1	0.042	0.72	1.18	0.535	8.8	3.27	41.1	18	86.7	204	45.8	9140	11.5	21.7	53.2
Zr M4F16 89	760	210.2	4.8	1414	0.64	0	0.41	0	0.41	2.16	0.021	21.7	10.72	131.7	44.6	180	288	53.9	13180	43.95	21.65	216.2
7r M/E16 00	137	110.6	1.39	1347	3 59	0	7.0	0	0.25	2.05	0.277	20	8.23	100.0	15.8	219	113	88 /	13720	37.25	168	/16
Zi_Wi+i 10_90	157	110.0	1.50	134/	5.56	0	1.7	0.107	0.23	2.03	0.277	20	0.23	107.9	45.0	210	-++.5	00.4	13720	12.075	100	410
∠r_M4F16_91	195	116.6	2.43	1256	0.451	0	/.06	0.187	4.13	0.83	0.81	54.8	11.02	124.3	45.3	193.4	552	00	8150	13.9/5	59.5	/4.3
Zr_M4F16_92	800	310	9.4	1596	1.5	0.08	1.79	0.124	1.68	3.81	0.46	20.6	9.36	125.8	52.5	264	658	138.7	12750	26.15	44	291.7

Zr_M4F16_93	90	88.1	1.7	456	2.57	0.0023	4.39	0.026	0.5	1.22	0.044	8.8	3.44	41.6	15.55	70.8	136.8	28	12060		74.25	42.81	425
Zr_M4F16_94	509	160.3	4.3	1804	3.72	0.36	7.69	0.346	2.91	6.24	1.48	32.5	12.96	154.3	61.4	289	575	114.1	12530		45.025	161	614
Zr_M4F16_95	820	163.7	7.9	2240	2.57	0.017	9.8	0.157	3.28	7.3	0.59	47.5	16.3	205	79.2	353	635	123.4	11420		80	246	477
Zr_M4F16_96	240	115	10.7	520	2.12	0.319	18.29	0.557	3.83	3.33	1.54	11.63	3.46	39.9	15.97	80.5	216	50.5	12030		105.75	219.8	688
Zr_M4F16_97	113	97.9	3.1	292	2.52	0	9.63	0.023	0.69	0.79	0.195	5.49	1.94	23.4	9.05	43.2	94.5	19.9	11080		37.25	64.2	106.3
Zr_M4F16_98	113	104.4	11.1	610	1.69	0.087	5.98	0.466	6.59	7.43	0.79	27.1	7.15	65.9	21.2	82.4	134.5	25.4	10620		26.35	70.2	306
Zr_M4F16_99	530	114.2	3.1	1540	1.43	0.32	13.8	0.313	3.41	5.6	1.18	26.4	9.61	122.9	50	243	528	111.5	11430		72.75	278	512
Zr_M4F16_100	50	98.9	11.7	88	0.338	0	4.78	0.125	2.16	3.07	0.54	9.2	1.94	14.1	3.15	10.4	13.3	2.24	9280		16.35	84	187
7r M4v1 1	560	307	117	816	0.00	0.046	0.67	0.116	0.97	1.82	0.25	87	4.52	62.2	26.3	136	355	70.3	15600	204	73 5	20.87	878.6
Zr M4v1 2	460	112.9	15.3	169.4	1.12	0.040	6.46	0.045	1.72	3.67	0.23	11.9	2.85	20.7	5 72	18.4	25.1	4 53	11280	35.5	8 875	19.09	101.3
Zr M4v1 3	270	92.2	4 3	886	2.88	Ő	8 79	0.068	0.94	3 39	0.109	18.9	6.62	82.9	31.1	137.4	243	45.2	10710	108.9	27 225	124	213.1
Zr M4v1 4	480	355	6.9	1950	6.21	Ő	29.2	0.082	1.45	4.02	1.27	26.5	10.34	147.5	61.2	301	680	142.1	9980	84.4	21.1	225	263
Zr M4v1 5	710	137	5.6	1142	3.27	õ	6.25	0.121	2.87	5.5	0.366	27.1	9.62	110.3	39.9	172	298	58	9330	87.7	21.925	104	148
Zr M4v1 6	1380	545	20.7	2090	3.68	0.89	21.6	2.65	19.1	19.8	8.9	52.3	17.2	195	70.3	308	714	144	13100	339	84.75	49.3	1293
Zr_M4v1_7	810	155.3	5.9	1900	1.2	0.306	3.73	0.368	3.07	4.73	0.55	34.8	15.2	187	62.1	234	346	59.6	14400	308	77	53.9	474
Zr_M4v1_8	1330	98.6	8.6	579	2.1	25	71	5.5	26	8.7	1.21	22.7	6.12	59.8	20	80.4	143.6	26.7	9530	71.7	17.925	90.2	166.4
Zr_M4v1_9	400	92.6	10.8	1021	7.95	0	30.2	0.091	1.71	3.92	0.9	21.8	7.25	86.2	34.3	157.8	323	67.8	8790	78.7	19.675	156	219
Zr_M4v1_10	110	104.6	55	552	1.01	0.009	7.1	0.033	0.94	1.93	0.421	10.08	3.46	44.1	17.5	80.7	170.7	35.8	9660	55.6	13.9	84.6	163.2
Zr_M4v1_11	430	96.5	12.7	599	1.19	0	11.25	0.017	0.5	1.32	0.202	9.2	3.45	45.8	18.08	91.2	199.1	40.8	11430	186.1	46.525	104.5	277
Zr_M4v1_12	460	304	6.6	955	1.43	0	9.14	0.127	2.45	5.95	1.36	31.8	9.86	97.3	32.5	135	229	45.1	9220	147.6	36.9	109.9	105.8
Zr_M4v1_13	280	84.3	3	661	1.08	0	5.57	0.042	1.03	2.29	0.226	11.8	4.7	58.5	22.2	101.1	192.4	37.5	10320	137.8	34.45	75.8	205.5
Zr_M4v1_14	570	95.9	3.5	1076	2.09	0.05	4.23	0.088	1.03	2.59	0.075	19.8	7.16	90.9	36.4	163.9	300	57	9770	163.5	40.875	100.6	301.4
Zr_M4v1_15	190	99.5	5.6	930	1.11	0	8.26	0.08	1.72	4.24	1.53	25.8	7.97	93.2	33.9	143	249	49.1	9310	37.7	9.425	21.3	43.2
Zr_M4v1_16	870	206.9	10.7	2540	0.93	0.0055	8.66	0.185	3.22	7.74	0.9	50.7	19.5	233	86.9	383	675	127.8	10770	66.8	16.7	92.9	183.6
Zr_M4v1_17	450	241	11.2	1960	2.48	0.036	21.5	0.174	3.13	10.3	2.17	60.4	18.9	198	67.9	276	450	79.7	10480	677	169.25	326.9	350.1
Zr_M4v1_18	120	136.9	2.9	346	1.11	0	1.97	0.026	0.62	2.67	0.149	15.5	5.21	45.1	10.78	28.7	26	5.85	12600	413	103.25	104.7	1011
Zr_M4v1_19	920	83.3	238	1208	5.00	0.26	2 75	0.55	0.2	9.4	1.10	37.1	2 74	122.8	41.9	181	308	58.8	8490	107	41.75	108.1	255
Zr_W4v1_20 Zr_M4v1_21	-70	100	4.5	1020	0.66	0	2.75	0.028	0.272	2.02	0.465	24.4	5.74 0.61	46.7	21.1	109.7	232	42.2	12200	137.0	25 425	19.4	46.4
$Z_1_W_4v_1_2$ Zr M4v1 22	180	83.5	13.1	446	0.00	0	8.49	0.024	0.05	2.93	0.112	7.26	2.64	34.7	13.8	66.3	147.6	29.9	12290	141.7	36 225	82.9	202.5
Zr_M4v1_22	550	69	16.1	2410	5.13	0	24.1	0.164	3 78	8.8	0.71	51.6	18.2	226	86	372	614	113	10190	167	41 75	152	303
Zr M4v1 24	890	112.5	6.5	953	2.18	20	95	9.8	45	10.2	1.02	24.4	6.99	78.4	31.5	148.9	335	70.2	11120	113	28.25	103	178
Zr M4v1 25	370	104.6	21.3	417	1.71	0.028	3.58	0.216	3.68	8.25	0.045	29.9	7.3	57	13.78	40.3	42.3	5.52	13760	51.4	12.85	168.6	128.4
Zr M4v1 26	350	391	9.5	476	5.41	0	1.31	0.014	0.103	0.26	0.287	3.02	2.12	35	16.61	91.6	330	76.1	11590	937	234.25	11.4	523.3
Zr_M4v1_27	550	65.8	7.6	2060	6.22	0.61	22.7	0.68	7.23	9.5	1.07	47.1	16.3	187	70.4	300	519	97.6	8710	603	150.75	266	269
Zr_M4v1_28	160	90.6	4.6	1451	8.31	0.024	9.84	0.161	3.24	7.22	0.265	34.2	12.23	139.3	50.1	215	369	65.9	10940	167	41.75	87.6	236
Zr_M4v1_29	110	106.6	3.8	571	0.61	0	9	0.081	1.74	3.17	1.13	14.8	4.63	47.2	18.8	87.1	195	40.3	10370	117.3	29.325	33.6	55.2
Zr_M4v1_30	160	257	7.5	1410	4.67	0.0035	31.4	0.066	1.98	5.03	1.42	32.7	10.53	128	50.1	226	432	86.2	9870	238	59.5	232	399
Zr_M4v1_31	290	90.8	9.3	893	0.8	0	5.55	0.033	0.64	1.99	0.276	15.19	6.05	75.6	29.7	136.7	271	54.2	9080	156.4	39.1	118.4	222.7
Zr_M4v1_32	290	82.3	10	650	1.31	5.7	23	1.82	7.8	3.55	0.205	13.2	4.78	56.3	21.9	100.7	191	38.4	10000	101.1	25.275	93.3	218
Zr_M4v1_33	140	152.8	7.8	1350	0.75	0.21	1.15	0.119	1.26	2.78	0.036	21.3	9.27	117.6	43.3	183	311	56	11920	300	75	27.72	496
Zr_M4v1_34	210	239	10.7	444	1.03	0.083	1.89	0.144	2.43	4.5	0.85	14.6	4.3	42.8	13.5	55.1	107	22.9	12340	153	38.25	51.3	534
Zr_M4v1_35	260	150.5	20.9	1186	1.18	0	1.47	0.039	1.1	3.51	0.102	25.2	9.53	111.3	39.9	171	283	53.3	11850	193	48.25	80.2	436
Zr_M4v1_30	100	150.0	5	2440	0.97	0.042	0.89	0.001	1.42	4.07	0.052	40	18.2	231	82	318	205	/0.5	12030	204	51	30.07	219
$Z_{I}_{V_{4}V_{1}_{3}}$	40 820	200	4.4	1010	0.71	0	9.8	0.135	2.02	4.55	0.9	21.0	11.2	02 141	54.6	228	293	76.4	9320	90 502	125.5	200	212
$Z_1_W_4v_1_30$ Zr M4v1_30	380	97.8	57	2400	3.14	0.052	4.83	0.127	6.33	13 58	2.93	707	22	244	34.0 86.5	352	555	102.7	8350	54.9	13 725	69.3	85.1
Zr_M4v1_40	10	96.5	3.5	1409	1.62	0.034	33.6	0.275	4 77	6.68	1 73	31.4	10.68	123	45.8	213	432	87.7	8960	106.9	26 725	369	243
Zr M4v1 41	220	135.4	2470	580	25.3	6.2	45.5	2.25	11.9	7.11	0.72	22.2	6.21	60.7	20.1	78.3	132.2	25.1	11070	60.9	15.225	192.3	131.2
Zr M4v1 42	210	145.3	7.7	425	1.03	0	2.8	0.108	2.32	7.2	0.355	31.3	7.8	60.9	13.83	37.9	38.3	5.74	11340	209.4	52.35	87	282
Zr M4v1 43	190	83.8	5.3	488	20.1	0	13.47	0.063	0.82	3.58	0.55	20.7	6.47	62.4	17.2	63	87	16.1	11070	89.2	22.3	105.9	322.2
Zr_M4v1_44	310	66.7	10.3	691	3.49	0	10.3	0.053	0.9	1.65	0.174	11.07	4.23	55.4	22.9	106.9	219	42.9	10370	266	66.5	72.2	119.2
Zr_M4v1_45	-60	78.1	2.6	626	10.5	0	8.67	0.011	0.54	1.18	0.052	10	4.08	54.3	21.8	102.6	219	43.7	12090	196	49	91.2	328
Zr_M4v1_46	660	208	13.4	1840	1.48	0	0.37	0.039	0.76	1.9	0.031	21.1	11	158	64.6	296	627	117	13200	191	47.75	19.95	294
Zr_M4v1_47	140	90.5	2.3	710	1.68	0	4.61	0.127	2.53	3.84	1.48	22.9	6.66	71.1	25.5	107.8	192	38.8	7810	39.6	9.9	44.5	74.6
Zr_M4v1_48	290	124	4.8	923	2.65	0.094	19	0.069	1.66	4.22	0.66	22.6	7.19	86.3	31.6	136.9	263	53	9390	234	58.5	120.1	316
Zr_M4v1_49	250	63.7	7.2	486	2.33	0	19.1	0.032	0.32	1.06	0.262	5.88	2.46	33	14.22	76.3	203	42.5	9750	218	54.5	131.7	273
Zr_M4v1_50	530	121	11.5	1104	3.48	0.035	44.9	0.102	1.45	3.48	0.647	22	7.35	92.6	37	174.4	352	71.9	9820	87.7	21.925	111.6	115.6
Zr_M4v1_51	240	102.6	6.8	493	1.74	0	12.8	0.03	0.35	1.06	0.167	/.08	2.87	37.4	16.1	177.5	180	51	117/00	327	81.75	90.3	253
Zr_M4v1_52	1/0	85.2	4.9	963	1.5	0.0051	15.42	0.215	5.41	5.82	0.483	26.5	8.41	92.7	52.6	13/	255	45.8	10060	105.5	25.875	184	219
$Z_{r} M_{v1} 53$	560	1/3	4	909 648	1.43	5.1	22.8	0.98	0 5.6	9.4 2.76	5.5 0.64	23.7	0 3 83	0/ /8.8	10.8	131	270	55.4	10340	401	120.25 53.25	29.0 117.1	740 281
$Z_1_W_{4V1}_{54}$	_350	90	2 10 1	518	1.61	0	22.0	0.052	1.03	2.70	0.04	10 0	3.05	40.0	15.0	77.0 77.5	197	11 J.	10340	100.4	25.25	320	433
Zr M4v1 56	540	153.4	8	939	2.12	0.047	35.8	0.052	5 25	7.65	2.19	28.2	8.78	97	33.5	139.8	260	49.3	10160	37 7	9 425	212.3	127
Zr M4v1 57	250	138.7	10.1	1730	0.99	0	3.19	0.22	4.24	9.21	0.392	49	15.62	171.4	61.9	257	430	80.3	10470	119.6	29.9	61.2	163
Zr_M4v1_58	210	91.4	13.6	317	2.37	0	14.38	0.061	0.9	1.77	0.279	8	3.01	31	10.3	43.6	83.9	16.31	9990	46	11.5	33.3	116.2

Zr_M4v1_59	300	79.7	3.2	994	3.51	0.037	7.63	0.035	1.04	2.79	0.079	19.5	7.21	88.2	34	152.7	270	52.6	10820	342	85.5	97.4	414.7
Zr_M4v1_60	-140	66.4	2.8	938	14.7	0	6.94	0.071	1.26	2.38	0.464	15.4	5.54	75.4	32.6	173.7	385	76.3	13970	110.6	27.65	45	321
Zr_M4v1_61	10	94.4	6.7	117	0.9	0	3.75	0.0067	0.193	0.59	0.139	3.28	1.15	12.1	3.59	11.54	17.8	2.93	12850	236	59	30.9	668
Zr_M4v1_62	170	73.6	2.9	966	7.4	0	12.1	0.029	0.6	2.11	0.074	12.2	5.45	71.5	30.8	154	359	72.2	12430	203	50.75	212	415
Zr_M4v1_63	510	128	5.3	1378	1.42	0.04	19	0.397	4	5.92	2.32	25.9	8.4	101.6	40.6	203	523	123.7	7800	550	137.5	148.7	183.8
Zr_M4v1_64	150	102.2	3.9	99.4	1.95	0	2.78	-3.7E-07	0.105	0.85	0.3	6.53	1.75	15.2	3.3	9.64	8.95	1.41	11140	82.7	20.675	10.19	219
Zr_M4v1_65	120	69	28	704	5.37	0	13.09	0.089	1.7	4.19	0.069	19.3	6.56	69.8	24.9	102.5	172.8	32.7	11320	37.8	9.45	59.8	106.8
Zr_M4v1_66	600	98.4	3.3	407	0.83	0	5.27	0.0041	0.24	0.83	0.182	6.33	2.5	33.1	13.65	64.8	134.7	28.5	10830	86.5	21.625	30.46	145.3
Zr_M4v1_67	360	94.8	28.3	96	0.373	0.0058	5.31	0.14	2.24	3.06	0.327	7.9	1.66	12.4	3.16	10.6	13.9	2.22	11300	58.5	14.625	123.9	152.4
Zr_M4v1_68	1530	235	7.2	2760	0.93	0	0.53	0.026	0.95	4.16	0.077	35.9	17.8	237	91	394	693	129.6	12760	265	66.25	31.5	367.7
Zr_M4v1_69	350	156.9	16	1130	4.36	0	15.3	0.108	1.55	3.41	1.84	24.6	7.97	95.7	35.4	160	347	75.7	9410	158	39.5	133	237
Zr_M4v1_70	-10	100.3	7.7	139.7	0.26	0	2.26	0.055	1.82	6.32	1.19	20.7	4.11	22.2	4.65	12.13	12.9	2.04	13270	237	59.25	22.74	648
Zr_M4v1_71	810	225.4	4.2	2011	4.36	0	21.14	0.187	2.94	6.09	1.6	36.1	13.05	164.2	66.4	316	655	131.7	9400	114.8	28.7	285.2	401.6
Zr_M4v1_72	480	89.2	16.5	103.5	0.423	0	1.56	0.085	2.08	4.83	0.128	14.5	2.86	16.6	3.2	9	9.7	1.45	10930	149.8	37.45	93.1	432
Zr_M4v1_73	100	73.4	23.2	247	1.12	0	4.73	0.076	1.47	2.52	0.97	9.84	2.58	25.8	8.06	31.6	61.1	11.21	10260	86	21.5	183.8	234
Zr_M4v1_74	230	92.8	4.6	912	1.16	0	4.2	0.051	0.91	2.57	0.177	16.7	6.36	78.5	31	137.2	245	47.9	10370	140.7	35.175	70.2	180.3
Zr_M4v1_75	300	85.9	12.4	1008	1.2	1.9	13.2	0.59	3.4	2.65	0.302	17.4	6.47	81.5	32.5	152	301	62.5	10160	106.8	26.7	40.3	118.2
Zr_M4v1_76	630	92.3	14.5	829	1.35	0	3.65	0.04	0.83	2.57	0.019	16.9	6.45	73.1	27.9	127.6	235	46.4	11140	201	50.25	107.3	323
Zr_M4v1_77	330	76.1	4.4	650	3.98	0	6.26	0.033	0.86	2.29	0.17	13.94	4.89	58.9	22.6	102	198.2	38	10080	93.4	23.35	35.2	142
Zr_M4v1_78	100	78.7	10.1	1336	3.39	0.36	15.5	0.248	2.7	4.56	0.97	24.1	8.53	106	43.7	204	445	89	10130	327	81.75	302	604
Zr_M4v1_79	710	128	8.6	1728	1.14	0	3.63	0.12	2.53	5.97	0.165	38.8	14.22	163.8	60.2	247	427	79.4	11570	284	71	150.2	396
Zr_M4v1_80	130	60	5.6	824	3.44	0	9.77	0.079	1.82	3.01	0.153	17.5	5.85	72.4	28.1	123.4	216	41.8	9710	334	83.5	72.3	155.7
Zr_M4v1_81	-30	127.5	8.4	771	1.22	0	6.48	0.051	0.63	2.13	0.897	12.86	4.69	58.5	24.5	116.2	267	58.7	8380	48.2	12.05	33.2	103.8
Zr_M4v1_82	820	171.4	22.8	1167	2.47	0.063	3.39	0.152	1.24	2.73	0.65	13.2	6.1	85.8	38.1	192.6	504	103.4	13250	395	98.75	57.7	655
Zr_M4v1_83	350	158.6	5.8	1187	1.94	0.098	8.89	0.095	1.05	2.73	0.562	19	7.16	95.5	39.2	185	414	85.6	10590	122	30.5	138.4	315
Zr_M4v1_84	650	94.5	3.5	1137	3.44	0	7.59	0.048	0.83	2.31	0.66	15.3	6.15	80.5	33.6	172	446	98	10330	85.5	21.375	97.2	627
Zr_M4v1_85	170	80	5.1	1830	3.95	0.0038	9.46	0.318	5.58	10.95	1.18	50.5	16.2	180	65.7	274	457	84.8	9620	58.8	14.7	38.9	93.8
Zr_M4v1_86	270	104.5	8	628	3.17	0	44.8	0.061	1.23	2.33	0.62	13.61	4.67	55.6	21.42	98	198.8	40.4	10460	75.9	18.975	126	97.3
Zr_M4v1_87	450	206	14	383	1.22	0	1.06	0.029	1.44	3.23	0.175	16.4	4.72	42.1	12.6	49.6	95.7	19.7	11260	114	28.5	78.2	257.4
Zr_M4v1_88	310	79.2	8.8	1471	4.25	0.123	13.95	0.217	2.87	5.33	1.35	29.9	9.85	123.9	50.8	221	398	77.9	8360	209.8	52.45	124.9	131.6
Zr_M4v1_89	730	170.8	5.9	1597	0.79	0.0045	1.58	0.088	1.65	4.63	0.175	31.4	11.52	140.2	54	238	443	85.7	10850	91.9	22.975	58.8	146
Zr_M4v1_90	1460	139.2	7.8	759	2.1	20	60	5.2	20	7.1	1.15	18.6	5.94	65.9	24.6	114	238	48.9	10100	62.9	15.725	148.1	264
Zr_M4v1_91	110	106.4	5.2	939	1.12	0	2.3	0.114	2.1	4.1	0.43	20.7	7.47	86.3	32.5	137.3	252	49	9040	14.53	3.6325	31.07	31.4
Zr_M4v1_92	270	140.4	9.1	747	1.62	0	6.65	0.041	1.22	2.34	0.701	16.4	5.78	66.3	25.8	112.6	228	47.2	9950	46	11.5	67.3	150
Zr_M4v1_93	340	144.9	4	533	0.79	0	9.24	0.032	0.45	1.29	0.32	8.84	3.07	38.9	16.15	79.8	207	48.5	10670	101.4	25.35	80.4	215.2
Zr_M4v1_94	1010	239	6	2880	0.84	0	0.671	0.056	1.28	5.36	0.15	48	20.8	258	95.2	399	703	131	11860	213.6	53.4	33.29	359
Zr_M4v1_95	190	92.4	12.1	316	0.98	0	3.18	0.096	1.58	5	0.093	24.6	6.85	48.9	11.7	36	40	6.7	12130	123.4	30.85	121	392
Zr_M4v1_96	360	58.2	3.9	1269	2.48	0.0055	8.75	0.158	3.43	6.78	0.485	32.6	11.4	121.6	45.4	188	317	57.3	9000	115	28.75	56.2	200.9
Zr_M4v1_97	350	408	9.4	1130	3.96	0	18.6	0.036	0.69	2.9	1.1	20	7.46	94	38.6	178	359	70.7	10370	76.9	19.225	142	267
Zr_M4v1_98	440	62.3	5.9	1045	2.25	0	13.18	0.073	1.8	3.6	0.113	20	7.44	90.1	35.2	160.4	301	59.7	10080	96.5	24.125	66.38	151.8
Zr_M4v1_99	1800	152.9	14.2	1001	6.01	56.2	196	17.5	82	16.7	1.94	31.6	8.75	91.5	34	148.9	298	58.6	10460	62.4	15.6	266.9	267
Zr_M4v1_100	280	90.4	12.1	72.2	0.374	0	3.17	0.02	0.3	0.96	0.104	5.29	1.44	11.1	2.19	6	4.83	0.86	11250	83.4	20.85	29.6	247

Tabla 4. Concentraciones elementales en circones de clastos de granitoides de la Fm. Matzitzi

(ppm)	Р	Sc	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Yb	Lu	Hf	Pb	Th	U
Zr_M4F6_1	312	117.2	9.7	2140	8.29	4.9	39.5	3.8	21.3	15.1	8.8	47.9	17.3	193	71.4	325	656	124.7	17600	152.25	417	1734
Zr_M4F6_2	170	106.3	6	1800	6.48	0.401	17.3	0.181	2.02	3.07	1.58	20.8	9.04	124.8	56.5	296	683	138.5	20000	199.25	454	2028
Zr_M4F6_3	345	167	251	4860	16.6	34.1	253	31.9	174	124	220	264	71	584	156	607	1060	205	15900	180.5	269	2149
Zr_M4F6_4	640	158	114	8300	9.5	19.2	254	32	242	205	305	473	118	950	283	1010	1540	273	17700	195.75	1289	3545
Zr_M4F6_5	240	124	25	1980	15.7	15.2	85	10.4	58	31	14.5	58	16.9	179	63	292	642	134	25200	182.5	139.4	2955
Zr_M4F6_6	193	108.2	12.2	1330	6.25	5.27	29	3.69	21	12.3	28.3	27.9	8.39	94.2	37.6	204	572	126.5	23100	175.5	128	3030
Zr_M4F6_7	118	119.6	6.1	1510	9.92	2.7	26.4	1.02	4.93	4.56	0.73	18.8	7.56	106.1	45.7	244	629	126.2	23600	187.25	572	3320
Zr_M4F6_8	264	189	152	5260	16.3	20.9	317	32.1	180	132	136	264	71.8	634	171	691	1200	209	20400	210.75	300.8	1605
Zr_M4F6_9	250	116	85	2940	11.6	31.6	208	26.8	164	81	239	134	31.1	269	84	370	729	146	19100	172.25	455	2269
Zr_M4F6_10	579	139.3	298	3640	10.35	14.8	104	12.1	69.7	51	53.1	127	35.8	349	116.9	513	998	191	17280	159.75	530	1974
Zr_M4F6_11	240	106	8.2	1190	4.96	0.238	11.83	0.4	3.75	4.86	1.67	20.9	7.35	94	37.4	191	408	81.2	18800	243	166	866
Zr_M4F6_12	1080	130.8	4.6	1293	1.96	55	161	22.8	126	43	0.2	71	16.6	129	44.4	193	328	63.9	13840	91.75	100.5	331
Zr_M4F6_13	130	102.1	13.8	1108	9.32	2.81	19.6	2.02	10.6	7.4	4.92	19.2	6.93	88.9	34.2	184	412	87.4	20190	186.75	141.8	1835
Zr_M4F6_14	430	116	43	3290	5.26	16.4	83	8.4	45.6	29.8	33.5	80	24.6	274	103	513	990	199	16100	166.25	746.4	1802
Zr_M4F6_15	250	96.1	9.4	1371	9.11	2.26	17	0.92	6.5	5.9	3.9	24.3	8.72	111.7	42.8	221	477	99.5	19530	161.25	200.9	1860
Zr_M4F6_16	70	113.2	4.6	1390	3.03	0	11.4	0.026	0.91	3.66	0.048	21.9	8.71	110	45.3	231	423	79.5	15180	192	274	933
Zr M4F6 17	80	107	6.5	2000	9.3	0.74	21.1	0.49	3.91	6.67	2.54	32	12.5	157	64	323	624	127	18300	185.75	381	1621

Zr_M4F6_18	-170	96.2	6.4	935	4.08	0	8.69	0.023	0.48	1.1	0.022	10.3	4.61	65	29.5	161	353	71.9	18580	238.5	142.1	819
Zr_M4F6_19	220	93.9	9.6	1130	8.46	2.12	12.1	1.46	11	11.5	8.7	29.9	8.8	90	33.7	170	402	88.6	21500	163.75	83.9	2328
Zr_M4F6_20	120	87.3	22.9	1410	9.92	10.6	56	7.1	34	21	48	41.2	11.3	118	41.9	225	524	111.4	22400	159.5	243	2130
Zr_M4F6_21	350	100.6	47	1890	8.2	19.5	115	13.2	66	38	49	71	19.1	195	65	309	628	124	20480	127.5	171	3170
Zr_M4F6_22	110	109.2	32.2	2030	8.03	7.6	73.9	6.68	44.5	29	21.4	63.8	17	175	65.2	327	603	120.5	17860	149.75	495.6	1945
Zr_M4F6_23	800	115.7	13.5	2710	3.85	3	31.5	2.76	20	26	22.5	82.4	24.8	254	89.3	448	945	187	15670	178.25	345	1154
Zr_M4F6_24	-80	111	6.3	733	1.1	0.08	4.12	0.136	1.52	3.5	0.91	13.9	5.13	63	23	120	206	40.3	11800	43	36.1	128
Zr_M4F6_25	420	98	9.1	1860	4.74	0.45	13.5	0.79	8.1	14.5	4.26	51.2	17.2	172	58.7	278	482	92.9	17300	238.5	178.7	918
Zr_M4F6_26	190	107	14.4	1180	5.01	0.66	18.9	1.32	10.5	8.5	3.81	23.7	9.1	102	36.6	198	379	74.6	19400	182.75	200.2	1154
Zr_M4F6_27	1120	128.4	46.3	4140	9.13	30.6	124	23.1	143	104.8	125	208	52.7	456	140	604	992	184	16580	266.5	799	2491
Zr_M4F6_28	160	97.3	6.5	1485	6.69	0.45	17.4	0.386	3.52	4.44	1.74	22.9	9.1	113.9	47.5	259	505	96	17280	258	339	1551
Zr_M4F6_29	-80	119.2	9.6	615	1.17	0.262	4	0.074	0.6	1.74	0.111	11.45	3.87	49.3	20.2	100.2	176.6	36.4	11330	29.125	34.6	123.6
Zr_M4F6_30	160	98.6	5.1	1736	6.98	0.22	17.1	0.146	1.61	4.23	0.37	23.9	10.15	133.8	56.6	306	580	115.1	16600	156	406	1748
Zr_M4F6_31	360	80.3	6.6	1192	12.14	2.5	14.5	1.09	6.6	4.92	2.78	14.4	6.12	81.3	36	203	474	99.3	19400	160.5	151.6	2788
Zr_M4F6_32	1610	287	166	7130	12.8	33.1	188	25.6	158	108.5	33.6	264	72.8	737	241	1097	1880	334	16260	204	1495	3987
Zr_M4F6_33	-160	110.1	4.4	669	1.72	1.9	7.5	0.77	5	3.73	0.57	14.5	4.89	54.5	22.1	109	197	39.9	11520	35.25	42.4	173
Zr_M4F6_34	350	91	5.6	1369	3.06	1.03	19.5	1.21	10.16	8.53	0.164	28.7	9.88	111.8	45.1	229	402	80.3	13140	222.75	273	963
Zr_M4F6_35	590	88.1	11.3	1730	18.1	2.65	15.3	1.49	9	7.8	4.98	25	9.32	125.4	54.2	293	614	123.3	17790	160	214	2608
Zr_MTZ-02-GR_1	-330	136	6.3	1042	1.46	0	3.39	0.019	0.89	2.61	0.191	18.1	6.72	84.5	34.9	170	296	59.4	12540	38.5	34.45	107.5
Zr_MTZ-02-GR_2	420	128.4	5.9	1439	1.32	0	2.97	0.079	1.2	4.59	0.248	28.3	9.88	124	48.5	232	373	72.6	11190	44.15	83	223
Zr_MTZ-02-GR_3	420	132.3	6.5	1760	1.46	0	4.05	0.087	1.8	5.48	0.139	34.6	12.3	151	59.3	279	454	84.8	11070	61.25	123	313
Zr_MTZ-02-GR_4	500	146.3	6.7	1031	10.94	0.044	26	0.022	0.52	2.01	0.14	13.8	6.13	79.5	33.5	178.2	352	75.3	12020	99.25	119.6	529
Zr_MTZ-02-GR_5	270	129.5	7.7	1016	5.6	0	6.6	0.023	0.86	2.08	0.15	15.1	6.42	82.1	33.9	169	319	65.4	10640	54	58.6	196
Zr_MTZ-02-GR_6	230	179	6	426	7.04	0.041	46.6	0.04	0.43	0.81	0.192	4.65	1.89	25.6	12.15	70	198	52	13470	121.25	172.7	552
Zr_MTZ-02-GR_7	560	154.3	5.7	2070	2.38	0	12.8	0.126	3.34	8.81	0.32	50.7	16.46	193.5	71	321	531	100.9	10980	79	165	371
Zr_MTZ-02-GR_8	2050	151.7	10.1	1940	3.35	62	132	18.4	85	32.1	1.08	70.2	20.1	205	69.6	297	462	86.5	10260	48.75	106.2	253
Zr_MTZ-02-GR_9	710	144	6.6	1590	3.4	0.006	23.3	0.108	2.08	5.7	0.153	31.6	11.2	140	53.7	251	441	87.2	11160	76.5	157	421
Zr_MTZ-02-GR_10	420	139.4	6.8	816	5.8	0.206	47.2	0.072	0.52	1.55	0.177	11	4.4	60.2	26	133.4	306	69.5	11940	93.25	174	473.7
Zr_MTZ-02-GR_11	750	142.1	6.5	1204	7.25	0.019	30.7	0.108	1.45	3.71	0.279	23	8.41	100.5	39.5	189	361	70.3	10700	50.25	100.1	271.7
Zr_MTZ-02-GR_12	1200	134.3	6.1	1860	3.56	0.129	6.09	0.148	2.44	6.48	0.287	39.9	13.9	167	62.1	286	473	94.7	10930	67.5	136	321
Zr_MTZ-02-GR_13	930	150.4	5.9	1239	1.72	0.187	3.98	0.244	2.31	4.41	0.242	26.1	8.89	108.8	42.1	189	338	66.3	10150	47.5	78.4	206.6
Zr_MTZ-02-GR_14	220	143.9	8.2	855	1.1	0	1.74	0.052	0.93	3.14	0.241	17.9	6.41	75.7	28.7	132.3	233.5	47.9	10010	21.65	32.1	102.3
Zr_MTZ-02-GR_15	690	147.9	5.7	1329	2.11	0.0045	2.44	0.032	0.79	4.06	0.122	22.2	9.04	112.3	44.9	211	396	80.4	10870	45.75	57.59	190.6
Zr_MTZ-02-GR_16	910	125.1	3.7	1150	16.93	0.022	167.8	0.036	0.74	2.66	0.76	17.3	7.02	86.7	35.9	187.2	420	92.2	12770	108	334.6	579
Zr_MTZ-02-GR_17	840	154.3	6.2	1366	2.27	0	4.3	0.077	1.28	4	0.168	26.5	9.43	117.4	46.5	216	375	73.7	10620	60.25	103.5	291
Zr_MTZ-02-GR_18	410	152	7.9	956	1.7	0.011	2.55	0.041	0.65	3.2	0.127	17.38	6.71	81.8	32.1	146.9	275	55.2	10270	34.575	53	160.5
Zr_MTZ-02-GR_19	520	130	6.2	1361	12.4	0	205	0.042	0.58	1.95	0.56	13.89	5.95	89.5	39.8	217.1	554	115	13060	99.5	456	569
Zr_MTZ-02-GR_20	700	134.6	5.4	1711	13.37	0	167.8	0.034	1.11	3.3	0.79	25.6	10.34	138.9	55.7	258	516	103.3	10710	81	318.3	347
Zr_MTZ-02-GR_21	480	124.9	4.2	852	2.57	0.0047	16.6	0.022	0.79	2.03	0.093	13	5.36	68.1	27.2	133.3	260	54	10360	45.5	62	204.7
Zr_MTZ-02-GR_22	1070	169	7.8	1640	12.6	1.976	143	2.17	13.9	9.8	2.48	39.3	13.54	147.8	56.3	249	514	101.5	11860	89.25	479	638
Zr_MTZ-02-GR_23	590	133.9	11	1353	1.88	0.71	5.41	0.461	3.56	5.34	0.281	28.3	10.22	118.1	44.9	200.9	357	70.1	10510	50.225	77.9	212
Zr_MTZ-02-GR_24	1040	134.6	7.8	1900	1.21	0	3.38	0.088	1.99	6.6	0.287	40	13.9	171	64.3	275	461	88.1	9470	61	111.9	265
Zr_MTZ-02-GR_25	750	134.2	9.7	1930	3.27	0.215	7.1	0.209	3.74	7.27	0.302	44.2	14.9	177	65.9	284	479	92.7	9400	87.75	185	383
Zr_MTZ-02-GR_26	690	122.1	2.9	1327	3.27	0.0026	31.8	0.064	1.38	3.57	0.255	26.5	9.38	117	44	195	379	76.1	10910	63.5	102.7	307
Zr_MTZ-02-GR_27	25200	117.8	6.9	3470	5.14	960	2430	337	1610	464	7.5	554	99.5	648	141	413	484	78.9	9880	36.55	71.3	172.5
Zr_MTZ-02-GR_28	330	139.2	5	1136	1.62	0	2.9	0.027	1.04	2.87	0.145	20.5	7.55	97.3	38.2	173.4	323	63.7	10750	43.375	68.8	209.6
Zr_MTZ-02-GR_29	710	117.3	7.4	759	1.16	0	3.26	0.015	0.56	1.59	0.082	11.83	4.63	61.7	24.4	113.1	226	44.6	10370	30.375	38	135.4
Zr_MTZ-02-GR_30	430	145.3	6.5	1180	2.27	0	4.42	0.052	1.05	3.22	0.174	21.2	8.15	99.6	39.3	173	334	66.6	10270	44.75	64.8	208
Zr_MTZ-02-GR_31	610	136.2	3	931	1.88	0	2.96	0.067	0.48	1.51	0.066	17.2	5.71	75.7	30.8	139.1	269	54.9	10560	43.525	56.3	192.7
Zr_MTZ-02-GR_32	540	133.6	6.8	1382	13.29	0.026	188.1	0.021	0.84	2.33	0.47	17.6	7.47	103.9	44.4	212	490	100.1	11710	100.75	304	418
Zr_MTZ-02-GR_33	280	130.6	3.5	601	8.39	0.65	47.2	0.152	0.97	1.19	0.093	7.3	3.03	41.4	18.3	95.5	262	62.4	11880	99.75	103.7	472
Zr_MTZ-02-GR_34	610	129.3	6.1	957	1.39	0	2.95	0.033	0.66	2.14	0.091	17.02	6.2	78.7	33	143.3	281	55.3	10520	41.125	55.2	179.3
Zr_MTZ-02-GR_35	340	138.1	7.9	892	1.71	0	2.84	0.036	0.69	2.09	0.091	14.3	6.03	75.9	29.8	135.6	269	53.2	10540	41.2	53.9	180.1

Tabla 5. Concentraciones elementales en circones de granitoide Los Reyes (COZA-02) y Granito Cozahuico

(ppm)	Р	Sc	Ti	Y	Nb	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Yb	Lu	Hf	206Pb	Pb	Th	U
Zr_COZ-02_1	360	107.4	23.6	1186	1.93	0.97	5.78	0.36	3.46	4.88	0.42	26.6	9.52	111.6	40.8	180	311	61.2	8250		37.75	56.3	198
Zr_COZ-02_2	200	102.7	5	864	3.03	0.015	6.21	0.046	1.15	3.66	0.1	16.7	6.28	78.8	30.5	133.5	247	49.9	9740		56	69.4	275.4
Zr_COZ-02_3	154	113.2	4.5	1002	2.87	0	5.69	0.081	1.31	3.55	0.16	21.6	7.36	91	34.2	153.8	280	54.9	9670		59.4	66.5	282
Zr_COZ-02_4	-20	110.1	5.5	1023	3.79	0	7.97	0.044	1.27	3.56	0.125	21.3	7.83	91.7	35.8	162.9	297	59.1	10550		85.25	89.5	416.6
Zr_COZ-02_5	230	84.1	2.6	349	1.74	0	1.87	0	0.36	0.54	0.064	5.11	1.99	26.9	11.5	58.1	136.8	30.9	10090		89.75	23.4	592

Zr_COZ-02_6	260	96.2	5	679	2.18	0	4.11	0.02	0.84	2.01	0.052	12.17	4.46	56.4	22.7	104.7	203	42.3	9510		51.275	34.6	236
Zr_COZ-02_7	340	127.4	5.5	1313	2.4	0	4.46	0.136	2.95	5.57	0.347	31.6	10.71	124.2	45.7	195.7	346	69.5	8210		48.375	54.4	214
Zr_COZ-02_8	450	108	4.5	1930	6.98	0.038	15.5	0.167	2.91	6.82	1.49	40.8	14.2	178	67	283	502	97.9	9790		152.25	271	839
Zr_COZ-02_9	190	91.6	6.1	761	2.05	0.0036	3.87	0.034	0.59	1.6	0.105	13.5	5.07	62.1	25.5	117.6	230	49	9930		51.2	39.64	239
Zr_COZ-02_10	290	104.1	4.6	758	2.3	0	4.8	0.03	0.88	2.6	0.069	16.2	5.64	67.6	25.6	116	214.7	43.1	9550		42.725	44.8	203
Zr_COZ-02_11	380	83.6	3.5	516	2.78	0	5.33	0.023	0.37	1.19	0.018	7.51	3.13	41	16.94	80.7	177.8	37.2	10990		65.75	59.2	355
Zr_COZ-02_12	360	96.2	3.2	774	2.93	0	5.34	0.017	0.51	1.9	0.024	13.26	5.05	66.9	26.3	120.7	234	47.3	10360		52.65	50.2	261
Zr_COZ-02_13	410	93.3	6.3	936	3.55	0	7.35	0.028	0.98	2.64	0.04	18.4	6.48	82.4	32.2	144.5	276	54.9	10250		87.25	79.8	385
Zr_COZ-02_14	270	101.4	4.9	781	2.19	0	4.88	0.032	1	2.23	0.123	15.36	5.57	67.9	26.4	120.3	225	43.9	9550		37.625	37.6	168.5
Zr_COZ-02_15	500	114.5	2.5	1508	2.4	0.043	7.99	0.211	3.48	1.42	0.75	39.8	13.24	149.5	53.4	227.5	388	/6.4	8380		30.4	55.2	157
Zr_COZ-02_16 Zr_COZ_02_17	540 410	103.2	2.5	622	2.51	0.018	0.21 2.05	0.196	4.29	8.0 1.66	0.47	48.1	10	182	07.8	280	408	91 27.6	9430		01	91.5	295
ZI_COZ-02_17 7r COZ 02_18	410	00.2	4.7	715	2.69	2.16	12	1.5	10.1	4.50	0.067	11.4	4.15 5.2	62.7	21.2	112.5	212.6	127	10610		52.525	49.5	274
Zr_COZ-02_18	360	118.2	4.3	1930	1 48	0.037	4 32	0.36	5.93	4.59	1.94	54.8	17.45	192.5	67.2	281	448	43.7	8310		40 775	40.J 61.7	190
Zr_COZ-02_20	300	116.4	4	1800	2.23	0	6.13	0.118	2.72	8.2	0.339	40.3	14.6	170	62.1	272	463	88.5	9870		64	95	316
Zr COZ-02 21	230	116.9	3.3	910	1.3	0	2.27	0.099	2.49	4.12	0.389	23.6	7.4	86	31.8	137	245	49.2	8600		23.425	22.7	97.3
Zr COZ-02 22	290	103.4	3	1207	2.37	0	6.99	0.109	2.06	4.55	0.202	27.5	9.56	110	40.9	180.8	314	62.5	9450		63.175	101.2	349
Zr_COZ-02_23	290	142.1	2.7	1823	1.32	0.098	3.95	0.308	5.85	11.7	1.27	53.1	16.9	184	64.3	264	447	85.8	8460		31.5	48.1	161
Zr_COZ-02_24	160	111.3	4.8	661	1.41	0	2.82	0.037	1.02	2.29	0.212	14.3	4.89	57.8	23.1	99.6	184.7	38.2	8610		18.55	20.8	92.5
Zr_COZ-02_25	340	99.2	1.5	975	3.93	0	8.83	0.059	1.14	2.91	0.022	17.1	6.89	85.2	33.4	152	290	55.8	10490		91.25	114.6	526.7
Zr_COZ-02_26	590	111.8	11.7	2490	3.24	0.59	9.4	0.78	11	17.5	1.03	78.2	24.4	266	90.5	374	604	114.6	8350		68	174	387
Zr_COZ-02_27	240	98	3.4	941	3.64	0	7.75	0.028	0.94	2.67	0.067	17.4	6.74	83.5	32.2	147	271	54.3	10400		73.5	82	378
Zr_COZ-02_28	300	88.1	1.9	555	2.32	0	4.83	0.028	0.39	1.5	0	8.6	3.39	46.2	18.9	85.8	184.6	37.7	10870		47.85	47.8	285
Zr_COZ-02_29	140	100.9	3.6	811	2.77	0	6.01	0.045	0.91	2.2	0.101	14.73	5.9	69.8	27.6	126.1	237	48.1	10080		55.25	63.2	291
Zr_COZ-02_30	440	103.6	5.4	811	2.27	0.19	5.63	0.118	1.52	2.91	0.108	15.91	5.9	/4.6	27.38	126.8	234.8	46.8	9490		46.65	48.5	220
Zr_COZ-02_31	540	114.1	2.41	1//1	1.59	0.033	3.95	0.26	4.95	10.5	1.13	51.8	16.2	1/5./	03	262	426	81.8	8150		32.0	55.6	1/5
ZI_COZ-02_32	5540	92.5	3.9	628	2.07	35.2	116 /	10.21	106.5	2.52	1.24	28.7	7.49	68.0	24.5	01.8	162.8	42.0	10840		25 625	20.2	405.9
Zr_COZ-02_33	243	96.2	3.1	1157	2 37	0.057	4 01	0.212	3 07	6.27	0.95	30.6	9.61	113	40.4	175	297	58.3	9100		37.75	55.6	210
Zr_COZ-02_35	180	93.7	2.8	693	3 79	0.0056	7 49	0.0212	0.7	1.78	0.041	11 53	4 64	61.3	24.05	110.7	207 3	40.6	10290		51.875	46.5	256.8
Zr Coza02 36	145	105.5	2.9	1540	2.32	0.26	6.4	0.35	4.9	6.8	0.34	39.4	12.9	149	55.4	230	408	76.4	9260	219	54.75	85.8	285
Zr Coza02 37	130	93	2.3	623	1.95	0	3.97	0.034	0.58	1.83	0.074	12.2	4.32	54.3	21.8	96	187	37.3	9930	133.2	33.3	35.2	157.9
Zr Coza02 38	90	83	2.8	639	2.71	0	4.48	0.016	0.35	2.17	0.06	11.2	4.65	54.3	22.4	98.4	187	40.5	9340	235	58.75	49.2	260.3
Zr_Coza02_39	-40	83.6	2.8	752	2.37	0.016	6.8	0.093	1.53	3.38	0.148	18.9	5.97	72.7	26.8	117	208	41	9460	175	43.75	72.1	240.5
Zr_Coza02_40	-8	96.4	2.1	696	2.06	0	3.48	0.054	0.9	2.14	0.139	15.1	5.45	63.4	24.5	106.9	201	39.7	8780	119.2	29.8	33.1	154.1
Zr_Coza02_41	48	116.5	3	642	1.05	0	1.51	0.058	1.46	3	0.314	16.3	5.32	60.4	23.1	98.9	178	35.9	7690	51.6	12.9	14.7	62.2
Zr_Coza02_62	70	107	5.2	1590	2.22	0.037	4.54	0.287	5.6	9.1	0.75	50	15.3	162	59.1	235	397	75.5	8240	152	38	71.6	194
Zr_Coza02_43	107	95.3	1.6	985	1.76	0	3.92	0.09	1.99	4.82	0.3	24.7	8.22	96.4	35.1	147.5	259	49.5	9230	93.2	23.3	29.41	121.2
Zr_Coza02_44	70	83.7	2.8	752	3.01	6	24	3.1	10	5.3	0.69	17.4	6.4	68	25.8	119	225	44.9	10810	258	64.5	65	335
Zr_Coza02_45	136	100.5	4.6	1790	3.05	0.049	5.98	0.325	5.7	10.2	0.78	49.5	16.2	181	64.2	268	459	88	7510	185	46.25	93	245
Zr_Coza02_46	188	106.5	1.08	1163	1.77	0	4.46	0.116	3.2	6.21	0.807	33.5	10.05	113.1	40.6	167.6	284	55.3	7950	103.1	25.775	43	157
Zr_Coza02_47	20	81.2	1.8	470	1.82	0.014	2.12	0.059	0.51	1.44	0.197	8.8	3.15	59.0	15.5	70.5	145	265	9580	105.5	23.823	18.7	120.0
ZI_C0Za02_48 Zr_C0Za02_49	-20	101.0	5.4 1.01	1800	2.75	0.013	5.76	0.04	0.05	0.72	0.124	10.27	5.67 15.6	180	67.1	90.2 281	179	50.5 90.7	9700 8370	267	56.75	27.8	250
Zr_Coza02_49	120	101.7	2.9	1491	3.48	0.4	10.7	0.43	6.2	8.82	1	40.0	13.71	147.2	53	217	372	71.2	7810	135.7	33 925	62.5	166
Zr_Coza02_50	70	87.9	47	706	2.45	0.015	4 67	0.054	0.86	2.21	0.094	13 74	4 99	60.4	24.3	109 5	207	41.4	9510	183	45 75	42.5	218
Zr Coza02 52	0	89.4	2.8	729	2.49	0.0026	4.62	0.022	0.69	1.98	0.098	14	4.98	64.2	25	113.9	211	42.2	10240	171.4	42.85	39.9	213.1
Zr Coza02 53	170	104.8	6	1510	2.35	0.99	7.63	0.565	5.16	6.62	0.383	37	12.5	142	52.9	224	395	75.8	8010	226	56.5	98	298
Zr_Coza02_54	190	79	9.7	1810	3.96	0.073	6.32	0.207	3.35	9.1	0.43	49.3	16	185	66.4	270	435	83.9	10140	305	76.25	130	402
Zr_Coza02_55	290	103.8	2.8	1196	3.32	0	7.11	0.062	1.43	4.23	0.213	25	9.16	107.7	41	183	337	65.3	9820	314	78.5	96	385
Zr_COZAHUICO	51	110.2	3.68	740	5.3	0.164	8.6	0.258	1.9	2.66	0.503	14.2	5.27	66.2	26.2	118.3	224	47.1	9310		49.75	98.8	342
Zr_COZAHUICO_1	-79	65.3	1.94	281	2.55	0.089	3.6	0.132	0.98	1.37	0.458	4.67	2.04	24.1	9.89	47.3	95.7	20.8	5300		20.925	29.7	191.5
Zr_COZAHUICO_2	21	113.8	3.8	671	4.07	-4E-06	8.23	0.021	0.57	1.75	0.177	11.71	4.73	57.2	23.2	103.4	200.1	43.4	8990		44.85	65.55	288.9
Zr_COZAHUICO_3	53	110.5	2.93	648	4.72	-4E-06	8.48	0.021	0.45	1.23	0.135	10.88	4.48	55.5	21.77	101.8	199.1	41.2	9130		50.25	72.3	327
Zr_COZAHUICO_4	80 62	119.6	3.1	623	4.89	-3.9E-06	8.96	0.028	0.52	1.41	0.145	11.4	4.54	51.9	21.1	96.2	140	40.3	9310		51.75	72.7	351
ZI_COZAHUICO_5	130	106 4	3.62 8.6	1170	3.07 85	0.7	64.7	11.0	10.1	3.39	1.05	13.7	4.55	47.1	11.5	162	249	31.2 10.6	9390		43.923	125 9	512
Zr COZAHUICO 7	38	113.2	3.83	487	3.4	76	167	15.4	54	54.7 64	1 1.5	11 1	3 46	41 1	16.47	79.9	163.9	34.8	10030		32.925	52.2	214.6
Zr COZAHUICO 8	-20	102.6	4.2	661	6.3	0.7	9.12	0.66	3.76	3.09	1.44	13.9	4.81	57.7	22.5	101.7	192.7	41.9	9050		67.75	63.5	779
Zr COZAHUICO 9	170	116.2	19.7	790	6.12	3.8	20.6	3.35	18.5	11.2	3.92	27.2	8.05	81.8	28.4	112.9	205	40.2	10430		91	142.2	863
Zr_COZAHUICO 10	230	111.1	41.5	637	4.98	-4.1E-06	7.61	0.019	0.28	1.55	0.132	11	4.16	54.4	21.5	100.2	196	41	8970		52.5	67.8	324
Zr_COZAHUICO_11	300	91	4.7	1510	20.9	1.72	33.3	2.28	13.1	10.8	2.28	30.3	11.2	121	49.4	235	431	88	10080		131.25	179.9	660.8
Zr_COZAHUICO_12	20	115.9	3.35	581	3.94	-4E-06	5.44	0.0078	0.26	1.17	0.078	9.37	3.57	50.3	19.8	93.8	190	40.5	9720		43.25	45.11	249.1
Zr_COZAHUICO_13	230	136.5	5.3	881	1.5	-3.3E-06	8.85	0.031	0.47	1.71	0.55	12.49	4.79	64.3	28.2	143.7	349	81	7350		12.525	252	318.7
Zr_COZAHUICO_14	-10	122.4	3.75	595	4.42	-3.4E-06	8.7	0.019	0.5	1.56	0.14	9.95	4.2	50.9	20.49	93.9	185.7	38.4	9530		51.025	70.2	364
Zr COZAHUICO 15	200	126.1	3 7 5	734	3.81	0.049	933	0.043	0.56	2.2	0.176	14 04	5 23	64 3	25.5	114.6	224	46.9	9560		50 825	917	341.2

Tabla 5. Concentraciones elementales en circones de granitoide Los Reyes y Granito Cozahuico (continuación)

Zr_COZAHUICO_16	80	112	2.31	474	3.64	0.0019	6.61	0.0041	0.36	1.09	0.093	8.6	3.31	42.1	16.53	75.9	152.2	31.8	9190		44.3	51.4	307
Zr_COZAHUICO_17	280	118.5	3.71	720	5.24	-3.3E-06	7.58	0.012	0.28	1.65	0.111	11.91	4.73	60.8	24.5	115.6	220	45.8	9580		51.775	77.8	361
Zr_COZAHUICO_18	80	121.5	3.84	796	5.21	0.287	10.08	0.39	3.13	3.42	0.84	15.4	6.06	72	28.2	125.9	247	50	9430		55.275	98.6	369
Zr_COZAHUICO_19	60	117.5	3	586	3.94	-3.1E-06	6.64	0.012	0.39	1.29	0.049	11.15	4.18	50.4	20.8	90.6	185.6	36.7	10220		118.5	79.8	920
Zr_COZAHUICO_20	240	112.6	3.4	378	3.2	-3.4E-06	5.83	0.024	0.31	0.76	0.054	6.93	2.52	33	12.83	59.4	114.1	23.4	9730		30.175	38.9	241
Zr_COZAHUICO_21	250	116.3	3.01	564	4.06	-3.4E-06	7.26	0.0132	0.3	1.24	0.095	9.18	3.61	47.9	19.22	89	174.4	37.3	9720		43.45	60.9	294.2
Zr_COZAHUICO_22	350	119.8	3.14	513	3.77	-3.3E-06	6.28	0.0102	0.186	1.22	0.155	8.72	3.36	44.4	17.41	82.8	165.8	34.8	9580		37.625	50.49	262.2
Zr_COZAHUICO_23	200	116.7	2.62	510	3.7	-3.3E-06	7.31	0.0143	0.28	1.12	0.105	9.53	3.32	44.1	17.24	80.6	167.5	34.8	9360		39.375	57.2	272.9
Zr_COZAHUICO_24	250	122.7	4.5	591	3.83	0.0073	6.97	0.039	0.64	1.52	0.28	11.1	4.27	54.4	20.7	91.7	165	33.4	10360		43.25	48	320
Zr_COZAHUICO_25	280	102.8	4.2	1470	3.17	0.169	10.3	0.204	1.9	5.6	0.471	36.3	11.63	146	54.4	229	358	69.7	9340		53	76.3	350
Zr_COZAHUICO_26	120	126.2	3.6	681	4.59	-3.1E-06	10.09	0.0135	0.53	1.54	0.192	12.3	4.81	61.5	23.4	109.6	215	42.9	10030		48.525	80.2	372
Zr_COZAHUICO_27	30	113	5.7	833	6.98	0.647	12	0.797	4.9	4.57	1.13	18.7	6.38	74.7	29.3	134	238	49.5	9690		61.75	93.6	421.4
Zr_COZAHUICO_28	170	122.1	5.1	495	4.6	0.8	9.53	0.682	4.4	3.21	0.84	12.5	3.81	50.5	17.8	77.9	139.1	28.2	11160		57.5	77.7	485.2
Zr_COZAHUICO_29	-40	138	7.7	690	1.56	-3.4E-06	6.87	0.045	0.92	2.26	0.423	12.6	4.65	56.8	21.6	101.6	215	46.3	9200		5.25	45.5	121.2
Zr_COZAHUICO_30	380	212	6.7	731	1.03	0.0039	6.51	0.02	0.42	2.03	0.83	12.38	4.28	59.3	24.7	117.5	261	57.3	8480		0.04375	37.59	105.6
Zr_COZAHUICO_31	100	125	4.5	635	5.79	0.059	6.13	0.089	0.87	0.99	0.39	10.83	4.12	61.4	22.1	102.1	203	41.2	10730		55	88.8	529.9
Zr_COZAHUICO_32	200	123.5	3.6	806	5.67	-2.8E-06	7.47	0.018	0.44	2.14	0.139	14.6	5.26	70.5	27.8	128.6	257	52.2	10260		48.3	85.9	368.1
Zr_COZAHUICO_33	-220	109	3.7	399	2.62	0.075	6.95	0.031	0.68	1.15	0.089	6.82	2.56	32.4	13	59.5	150	35	11400		116.25	96.8	873
Zr_COZAHUICO_34	150	119.9	3.43	529	3.8	-3.1E-06	6.61	0.0081	0.4	1.31	0.05	9.11	3.57	47	18	83.8	154	31.8	10410		41.75	43.1	266
Zr_Cozahuico	-1700	75.2	1.47	620	3.6	0.0097	7.48	0.021	0.38	1.27	0.081	10.49	4.03	52.5	20.94	97.8	196.7	40.2	10210	171.1	42.775	57	290.5
Zr_Cozahuico	-2100	78.1	3.6	479	1.62	0	8.31	-3.4E-07	0.5	1.53	0.233	6.97	2.9	37.9	15.8	76.9	170	36.1	10590	23.7	5.925	35.1	123
Zr_Cozahuico	-4300	75.1	5.2	571	3.5	0	7.44	0.0084	0.59	1.16	0.098	9.11	3.74	48.4	19.7	90.5	180.8	37.2	10450	173.4	43.35	52.49	300.6
Zr_Cozahuico	-2500	89	6	358	1.45	0.009	10.58	0.04	0.76	1.5	0.048	9.4	3.29	33.9	11.71	47.9	82.5	16.3	13320	179	44.75	72.81	299.9
Zr_Cozahuico	1700	71.9	2.7	618	3.87	0	6.25	0.015	0.22	0.99	0.109	10.48	3.93	52.7	21.5	99.5	200.6	41	10710	167.6	41.9	48	254
Zr_Cozahuico	14000	75.9	4.4	530	3.41	0	7.24	0.0121	0.34	1.14	0.082	9.17	3.53	45.6	18.46	84	167.8	35.5	10410	179	44.75	47.1	292.5
Zr_Cozahuico	3500	80.1	4.7	1367	11.8	0.58	15.8	0.67	4.37	5.74	1.45	29.6	11.09	129.2	49.7	208	375	71.5	11690	395	98.75	135.6	882
Zr_Cozahuico	1800	78.1	3.9	798	4.61	0.094	10.97	0.111	1.21	2.44	0.65	16	5.88	71.3	28.9	125	247	50.2	10870	206	51.5	76	362
Zr_Cozahuico	2100	81.3	2.5	908	6.49	0	8.87	0.032	0.48	2.08	0.162	15.7	6.31	78.7	31.3	141	270	55.3	10980	239	59.75	87	409

Apéndice 4. Datos de muestras para el análisis MDS

Terreno	Unidad	Clave (s)	Tipo de roca	Referencia		
		CB36	Metapelita			
	Macizo de Chiapas	CB33	Metapelita	Weber at $a1$ (2008)		
	Unidad sepultura	CB44	Cuarcita	weder et al. (2008)		
Sur de Pleque		CB54	Meta-arenisca			
Sui de Bioque		CMP2	Migmatita (ortogneis)			
Iviaya	Macizo de Chiapas	CB32	Anatexita (paragneis)	Weber et al. (2007)		
		CB45	Para-anfibolita			
	Em Santa Doco	Em Santa Dasa CB55 Arenisca		Weber at $a1$ (2006)		
	Fill. Salita Kosa	SR1	Arenisca	weber et al. (2000)		
		TT-81	Metapsamita			
		TT82	metapelita	V_{irresh} at al. (2012)		
		TT612	metapsamita	$\mathbf{K}_{\mathrm{HSCH}} \in \mathbf{a}_{\mathrm{H}} \left(2012 \right)$		
		486 A	metapsammita			
		HR2	Arenisca recristalizada	Sánhar Zarala at		
	Fm. Tecomate	GR5	Arenisca recristalizada			
		HR3	Arenisca recristalizada			
		FR5	Arenisca	Sanchez-Zavala et		
		FR3	Arenisca recristalizada	al. (2004)		
Mixteco		FR2	Arenisca			
(Complejo		FR4	Arenisca recristalizada			
Acatlan)	Unidad Coatlaco	LCB3	Cuarcita	Grodzicki et al. (2008)		
	Unidad Salada	SAL-12	Metapsammita	Morales-Gámez et al. (2008)		
	Fm. Olinalá	ACA-502	Arenisca calcárea			
	Tecomate	ACA-503	Arenisca volcaniclástica	Talavera-Mendoza		
	Fm. Cosoltepec	ACA-51	Cuarcita	et al. (2005)		
	Fm. Cosoltepec	ACA-55	cuarcita			
	Fm. Cosoltepec	COS-100	Semipelita	Keppie et al. (2006)		
Complejo Oaxaqueño	Fm. Santiago		Arenisca	- Gillis et al. 2005		
(Cubierta sedimentaria)	Fm. Ixtaltepec		Arenisca			
	Fm La Mora	HL-04 TEZ-21	Areniscas	Silva-Romo et al.		
		TEZ-23	1 Homseus	(2015)		
		CH06-01				
Unidades	Abanico potosino	RC06-31	Areniscas	Barboza Gudiño et		
sedimentarias		I B06 1				
triásicas	Fm. El Alamar	SM06 01	Areniscas	ai. (2010)		
(centro y sur de		T11 01				
México)		T11-01				
	Compleio El Chilor	T11-05	Araniscas	Ortega-Flores et al.		
	Complejo El Chilar	T11-00	Arcinscas	(2014)		
		TTT-09				
		111-10				

Síntesis de las unidades empleadas para el análisis de escalamiento multidimensional.

		T11-11				
		II-T1	Arenisca			
	Em Tionquistongo	II-T3	Arenisca	Ramírez-Calderón		
	rin. Tranguistengo	IV-T1	Arenisca	(2018)		
		Máscara	Matriz de conglomerado			
		RMO-01				
	Em Motzitzi	RMO-04	Araniaaaa	Bedoya-Mejía		
	FIII. Matzitzi	ABM-05	Alemscas	(2018)		
		ABM-10				
Límite Maya-	Filita San Diego	Gt0417	Metaarenisca	Torres-de León et		
Chortis	Finta San Diego	Ov142B	Meta-arenisca	al. (2012)		
	Grupo Barranca:					
	Fm. Arrayanes	7-26-07-1	Sandstone			
	Fm. Santa clara		Arenisca			
Sonora	Fm. coyotes	7-28-07-1	Arenisca (clasto)	González-León et		
501101.a	Grupo Antimonio:			al. (2009)		
	Fm. Antimonio	2000-1	Sandstone			
	Fm. Río Asunción	2000-0	Sandstoe			
	Fm. Santa Rosa	4-5-08-1	sandstone			

Muestra sintética	Edad (Ma)	Referencia
Arco Pérmico-Carbonífero	300±50	Kirsch et al., 2012; Ortega-Obregón et al., 2014 Grajales-Nishimura et al., 2018
Orógeno Panafricano-Brasiliano	600±100	Cordani y Teixeira, 2007
Complejo Oaxaqueño	1000±50	Solari et al., 2003
Orógeno Grenvilliano (típico)	1200±100	Cawood et al., 2007
Provincias de márgenes cratónicas	1600±100	Cawood et al., 2007

Nota: Las muestras sintéticas siguen una distribución normal