

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO
MAESTRÍA EN CIENCIA E INGENIERÍA DE LA COMPUTACIÓN

ESPECIFICACIÓN DE TAREAS CONTÍNUAS EN
MODELOS ASÍNCRONOS DE MEMORIA COMPARTIDA

Y LA TOPOLOGÍA DE ARGUMENTOS DE PARTICIÓN

TESIS
QUE PARA OPTAR POR EL GRADO DE

MAESTRO EN CIENCIAS E INGENIERÍA DE LA COMPUTACIÓN

PRESENTA:
HUGO RINCÓN GALEANA

TUTORES PRINCIPALES
DR. SERGIO RAJSBAUM GORODEZKY

INSTITUTO DE MATEMÁTICAS, UNAM

DR. ULRICH SCHMID
EMBEDDED COMPUTING SYSTEMS GROUP, TUWIEN

CIUDAD UNIVERSITARIA, CD. MX. MAYO 2019

UNAM – Dirección General de Bibliotecas

Tesis Digitales

Restricciones de uso

DERECHOS RESERVADOS ©

PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal
del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea
objeto de protección de los derechos de autor, será exclusivamente para
fines educativos e informativos y deberá citar la fuente donde la obtuvo
mencionando el autor o autores. Cualquier uso distinto como el lucro,
reproducción, edición o modificación, será perseguido y sancionado por el
respectivo titular de los Derechos de Autor.

iii

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Abstract
Posgrado en Ciencia e Ingeniería en Computación

Instituto de Matemáticas

Maestro en Ciencia e Ingeniería de la Computación

Continuous Task Specification in Asynchronous Shared Memory Models And the
Topology of Partitioning Arguments

by Hugo RINCÓN GALEANA

This thesis further explores the relationship between combinatorial topology and dis-
tributed systems. This relationship was first introduced in the ACM STOC 1993 con-
ference, where combinatorial topology was presented as an useful framework to un-
derstand better distributed tasks solvability. Results such as the central Asynchronous
Computability Theorem (ACT) of Herlihy and Shavit, which characterizes solvable tasks
in read/write shared memory where any number of asynchronous processes can crash,
have established combinatorial topology as an essential tool.

In this thesis, we present two results, which are both strongly connected to the topo-
logical framework for distributed computing.

We reformulate the ACT in terms of continuous tasks, a new notion we propose
here. Continuous tasks are defined through continuous functions that preserve some of
the chromatic structure.

A second result is a topological formulation for the BRS theorem, an impossibility
result for k-set agreement that captures the essence of general partitioning arguments.
We also show that in general, partitioning arguments are too weak to show set agree-
ment in the asynchronous shared-memory model by giving an algorithm that solves set
agreement for any run that admits a partitioning argument in the asynchronous shared-
memory model.

HTTPS://WWW.UNAM.MX/
http://www.mcc.unam.mx/
http://www.matem.unam.mx/

v

Acknowledgements

I want to thank my advisors,Sergio Rajsbaum and Ulrich Schmid, and my reviewers,
Marcelo Aguilar, Armando Castañeda and David Flores, for their invaluable support
and guidance.

I also want to thank all of my teachers for everything that I could learn from them.

vii

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Background . 1
1.2 Motivation . 2
1.3 Results . 2
1.4 Organization . 3

2 Puzzles and Simplicial Complexes 5
2.1 The muddy children problem . 5
2.2 Cheryl’s birthday puzzle . 6

3 The Asynchronous Shared Memory Model 11
3.1 Model Specification . 11
3.2 States, actions, executions . 12
3.3 Tasks . 12

4 Combinatorial Topology 15
4.1 Basic Concepts . 15
4.2 Subdivisions and Communication . 20

5 The ACT and Simplicial Approximation 23
5.1 The Asynchronous Computability Theorem 23
5.2 Simplicial approximation . 24

6 Continuous Tasks 29
6.1 Contributions . 31
6.2 The Asynchronous Wait-free Shared Memory Model 31
6.3 Chromatic Functions and Continuous Tasks 32
6.4 Proofs for lemmas . 37

7 Message Passing and BRS Theorem 39
7.1 Model and preliminary definitions . 39
7.2 Topological BRS Theorem . 45
7.3 Shared memory model . 48
7.4 Partition compatible runs . 49

viii

8 Conclusions 53
8.1 Summary . 53
8.2 Future Work . 53

ix

To my family and friends.

The few and true who stayed until the end.

1

Chapter 1

Introduction

1.1 Background

Distributed tasks can be defined through a set of valid inputs, a set of valid outputs
and a mapping that specifies which output configurations are valid with respect to an
input configuration. In distributed computing the main difficulty for solving tasks is
usually not the processing power of each process (as opposed to parallel or sequential
computing), but it is more frequently related to communication failures, either in the
interconnecting network or through a process failure by itself.

Since communication is assumed to be unreliable (with some model restrictions),
protocols cannot fully depend on the global state of the system, but should depend only
on the partial information that is acquired by each process. Since protocols should de-
cide with incomplete information, they should take advantage of the model’s commu-
nication assumptions. It has been discovered in 1993 [2] that there is a deep connection
between distributed computability and algebraic topology. An overview of this area
appears in [33].

The topological objects known as chromatic simplicial complexes allow us to model
the incomplete information observed by each process. A chromatic simplicial complex
consists of a set of colored vertices and a descending set of faces. Each vertex corre-
sponds to the "point of view" of a process, while a face consists of a valid configuration
of such points of view. The color for each vertex corresponds to the process id for such
a point of view.

Given a set of valid inputs, we can build a simplicial complex that captures the
valid input configurations. Symmetrically, another simplicial complex can be built for
the output configurations. These complexes are known as the Input Complex and the
Output Complex (denoted by I and O respectively). In this way, we can state a task
in terms of two simplicial complexes and a map between the faces of I and the power
set of faces of O. A protocol complex P can also be built in the same way by using the
final states for each process and their valid configurations instead of input or output
values. Notice that communication and model conditions define the way that the input
complex I is transformed into the protocol complex P [33].

Although these complexes can be formulated for any distributed computing model
[10], we will focus on the asynchronous shared memory model with crash failures. In
this model, each process communicates by writing into a segment of a shared mem-
ory. Any process can read any segment of the shared memory, but it may only write
on its reserved segment. A crashing process may stop at any time of its execution and

2 Chapter 1. Introduction

will never recover, thus it is not required to decide. Since we are considering an asyn-
chronous model, each process runs at its own speed and may be delayed by an arbitrary
amount of time. Therefore in this model, a crashed process is indistinguishable from a
sufficiently delayed process.

Communication rounds of this model subdivide the Input Complex I . Therefore,
the Protocol Complex P corresponds to a chromatic subdivision of I . This allows task
solvability for this model to be characterized in terms of the Input Complex. This char-
acterization is given by the Asynchronous Computability Theorem(ACT) [2].

1.2 Motivation

Our main goal is to study task solvability for distributed systems. In particular we will
focus on the asynchronous shared memory model, since the protocol complex for this
model corresponds to a subdivision of the Input Complex I .

Since our focus is task solvability, rather than message or time complexity, we will
consider that our computing model is the iterated immediate snapshot model. This
model is equivalent to the general asynchronous wait-free shared memory model [20],
but it is simpler since each process only has two operations and the protocol complex is
given by the standard k-th chromatic subdivision, where k is the number of communi-
cation rounds defined for the protocol.

Since both the ACT [2] and the Simplicial Approximation Theorem can be used in
conjunction to characterize topologically colorless tasks [33], our goal is now to extend
this characterization to include colored tasks. Recall that in colorless tasks, a valid out-
put is given only by the set of decision values, while in a colored task, it is also important
to consider which process decides which value. The ACT [3] provides a characteriza-
tion of the wait-free read/write memory solvability of colored tasks. One of our goals is
to provide an alternate proof (of “only if” direction, the hardest one), which we believe
is simpler. This extension is given in terms of chromatic functions, which are continuous
functions that preserve some of the color structure of the input complex.

Another goal was to give a topological formulation for general partitioning argu-
ments for the k-set agreement impossibility. Partitioning arguments show that k-set
agreement is impossible for a non empty set of runs where communication is segmented
and processes can be partitioned into sets with different information.

A first contribution towards this goal is a topological statement of a general parti-
tioning argument known as the BRS Theorem [4], by generalizing this result, we could
show that a partitioning argument is not always suitable for proving impossibilities in
the Iterated Immediate Snapshot model.

1.3 Results

In this thesis we present two results
We reformulate the ACT [3] in terms of continuous tasks, a new notion we propose

here. Continuous tasks are defined through continuous functions that preserve some
of the chromatic structure. Such continuous functions are called chromatic functions.
Any chromatic function f : |I| → |O| has a chromatic simplicial map µ : Sub(I) →
O that is sufficiently similar to f , but is defined over a chromatic subdivision of I .

1.4. Organization 3

Such simplicial maps and subdivisions correspond to a protocol in the asynchronous
shared memory model, according to the ACT. Reciprocally any chromatic simplicial
map given by a protocol that solves a task induces a continuous chromatic function |µ|.
This correspondence allows us to formulate the general ACT in terms of continuous
tasks.

A second result is a topological formulation for the BRS theorem [4], an impossibility
result for k-set agreement that captures the essence of general partitioning arguments.
The result is initially given in terms of indistinguishable runs. In order to characterize
this result in terms of topology, we introduce the concept of D-view embeddings which
is equivalent to run indistinguishability. We show that k-set agreement is impossible if
the protocol complex D-view embeds a protocol complex that cannot solve k-set agree-
ment.

We also show that, in general, partitioning arguments are not enough to show set-
agreement impossibility in the asynchronous shared-memory model by giving an al-
gorithm that solves set agreement for any run that admits a partitioning argument in
the asynchronous shared-memory model. For this algorithm we use the fact that, in
any run where a partitioning argument is valid, there exists some process that fails to
receive some information at some point of the run. Therefore, the perfectly reliable com-
munication configuration is not present, and we can then design a protocol that solves
set-agreement.

1.4 Organization

The thesis chapter structure is the following:
We start with a puzzles Chapter 2, which uses simplicial complexes to model the

individual points of view for each process as an example . In this chapter we also show
how communication modifies the points of view for each process by giving the simpli-
cial complex for the points of view at different stages. This illustrates very well that a
protocol transforms the initial input complex from an uncertain state into a simplicial
complex where it is safe to make a decision.

In Chapter 3 we give the formal definition for a distributed task, and the asyn-
chronous shared-memory model. We also show the connection between this model
and the combinatorial topology framework by stating the Asynchronous Computability
Theorem. This theorem allows us to state task solvability for the asynchronous shared
memory model only in terms of the input and output complexes.

The formal definitions and preliminary results about combinatorial topology are
given in Chapter 4. The rigorous mathematical definition is given for a chromatic sim-
plicial complex and for the topological spaces that these objects induce.

In Chapter 5 we elaborate on the relationship between the ACT and simplicial ap-
proximation. This is in a way an introduction to our first result, which extends the
simplicial approximation theorem to a colored version of the theorem.

In Chapter 6 we give our first result, a chromatic version of the simplicial approx-
imation theorem. This chromatic approximation allows us to state tasks in terms of
continuous functions that preserve the basic chromatic structure of the input complex,
i.e., chromatic functions. We prove that any solvable task is equivalent to a chromatic

4 Chapter 1. Introduction

function between the input complex and the output complex. We also give some of the
advantages of using a continuous task specification.

Our next results in Chapter 7 consist of giving a topological formulation for a gener-
alized partition-based impossibility result. These results give a topological perspective
of the partition-based BRS theorem. An interesting property about this result is that it
proves k-set agreement impossibility for asynchronous message passing models with-
out using the Sperner’s Lemma or any topological framework. However, we also show
that a partitioning argument (in particular the BRS theorem) is too weak to show set-
agreement impossibility for the asynchronous shared memory model in general.

Finally in Chapter 8 we summarize briefly our results, future work, including related
open questions.

5

Chapter 2

Puzzles and Simplicial Complexes

In this chapter we will model two puzzles with the simplicial complexes in order to il-
lustrate the combinatorial topology framework. The model represents all possible con-
figurations for a given puzzle. Vertices represent specific views for an agent, while edges
and faces represent possible worlds.

It is worth noting that as communication happens, the possible worlds change, as
each of the agents gain new information regarding their world. This is reflected as a
transformation of the simplicial complex model. In particular for these puzzles, as each
piece of information is gained, possible worlds are removed from the model.

This shows that puzzle solving strategies eventually transform the simplicial com-
plex model into a trivial (one triangle or "simplex") complex. This trivial simplicial
complex is the real configuration for the puzzle.

The puzzles that we are considering, is the classic muddy children problem, and
a birthday guessing puzzle. While both can be solved by using logic and deduction,
we solved them here with the topological model in order to familiarize the reader with
simplicial complexes.

2.1 The muddy children problem

To further illustrate the topological approach, we use the following problem: Suppose
that some children are playing in a muddy playground. At the end of their playtime,
some of them have dirty foreheads and some are clean. Their teacher tells them publicly
that at least one of them is dirty, and that, without communicating with each other, all
muddy children must announce themselves on the hour. The solution is usually given
in the following manner: If a child doesn’t see any other muddy partners, it must an-
nouce itself, because it can be certain that it is the muddy child. Inductively, if a child
can see k muddy partners at time k, it must announce itself at time k + 1. If it wasn’t
muddy, the rest of the muddy children would each see k − 1 partners and announce
themselves at time k.

In the topological approach to this problem we represent the problem as an abstract
simplicial complex, whose vertices are n dimensional vectors that represent the perspec-
tives of each child. In vector representation, value 1 at coordinate i means that child i is
muddy. Value 0 at coordinate i means that child i is clean, and ⊥ represents ignorance
about child i. Each possible configuration of this problem is represented by a simplex
formed by n vertices that are consistent with each other. That is v1, . . . , vn form a simplex

6 Chapter 2. Puzzles and Simplicial Complexes

if ∀ i, j ∈ {1, . . . , n}, ∀ h ∈ {1, . . . , n}, vi(h) = vj(h) 6= ⊥ or vi(h) = ⊥ or vj(h) = ⊥.

Notice that each vertex has exactly one coordinate with value ⊥ (the coordinate
corresponding to itself), since each child initially ignores its own status, but can see
the rest of the children. Thus we can think of vertices as vectors of the following
form v = (x1, . . . , xk = ⊥, . . . , xn), assuming that ⊥ = xk for some k ∈ {1, . . . , n}.
This implies that each vertex belongs to exactly two simplices, the simplex where ⊥
takes the value 1 and the simplex where ⊥ takes value 0. Such simplices are the fol-
lowing, σ0(v) = {z : z is consistent with (x1, . . . , xk = 1, . . . , xn)} and σ1(v) = {z :
z is consistent with (x1, . . . , xk = 0, . . . , xn)}.

When the teacher announces that there is at least one muddy child the simplex
σ0 = {z : z is consistent with (0, . . . , 0)} is removed from the abstract simplicial com-
plex. That is, the possibility that every child is clean is discarded from our universe.
Since every vertex belonged to two simplices, the vertices that belonged to σ0 now only
belong to one simplex. Since each of these vertices belong to only one simplex, they are
certain of their status. This corresponds to the induction base on the first solution.

Now let’s notice that, as time passes, our simplicial complex also evolves. For such
purpose we define terminal simplices. We say that a simplex is terminal if it has at least
one vertex that only belongs to this simplex. For each hour that has passed without
announcements, the terminal simplices are removed. This is safe because any vertex
that only belongs to one simplex is certain about its status. Thus, if no announcement
is made, it’s because these vertices perspective (which is now corresponding to its sim-
plex) does not correspond to the outcome of the problem and can thus be removed.

Since at time 0 we have terminal simplices (caused by the teachers announcement),
each vertex belongs to at most 2 simplices, each hour removes at least one terminal
simplex, and because the whole abstract simplicial complex is connected at any time,
eventually the simplex that represents the configuration matching the outcome of the
problem becomes terminal, and an announcement will be made. If an announcement is
made, then every other vertex on the simplex is also ready to announce itself, for there
is only one simplex that makes every pair compatible.

Figure 2.1, taken from [33] illustrates this problem as an abstract simplicial complex
for the case of 3 children and its evolution as time passes.

It is interesting to note that it suffices to guarantee that there is at least one terminal
simplex at any given time. This is interesting because, we can change the initial state-
ment by the teacher to any other that forbids any one or more simplices.

2.2 Cheryl’s birthday puzzle

Now let’s consider the following puzzle published by the New York Times [41]. Al-
bert and Bernard are talking to Cheryl and decide to ask her birthday. She decides not

2.2. Cheryl’s birthday puzzle 7

FIGURE 2.1: Muddy children problem evolution

to tell them directly but instead to give them some clues. First she lists 10 possible dates:

May 15 16 19

June 17 18

July 14 16

August 14 15 17

After sharing this information with both of them, first she tells Albert the month of
her birthday and next she tells Bernard the day of her birthday.

She asks Albert if he already knows her birthday, to which he responds: “I don’t
know, but I also know that Bernard doesn’t know”.

Upon hearing this Bernard says “I did not know her birthday, but now I know”.

At last by hearing what Bernard said, Albert says “Now I also know her birthday”.

Which date is Cheryl’s birthday? To solve this question we will model the puz-
zle as an abstract simplicial complex. Each possible perspective from Albert and each
possible perspective from Bernard form the vertices of the complex. Each possible birth-
day forms a simplex from the abstract simplicial complex. Since Cheryl tells Albert the
month of her birthday, each possible perspective from Albert can be represented by each
possible month. Likewise each possible perspective from Bernard can be represented by
a day number between 14 and 19. Following these observations, we can notice that each
simplex is formed by two vertices, the month and the day. Thus, our puzzle can be
modeled by an undirected graph.

After Cheryl enumerates the list, Albert states that he doesn’t know the date, and
that Bernard also doesn’t know the date. This means that Albert’s perspective is am-
biguous, and he also knows that Bernard’s perspective is ambiguous. This statement

8 Chapter 2. Puzzles and Simplicial Complexes

Albert Bernard

May

June

July

August

14

15

16

17

18

19

FIGURE 2.2: This initial undirected graph represents all possible birth-
days after Cheryl enumerates a list

shows that all from Bernard’s perspective, he has at least 2 possible months from which
he can’t decide with absoulte certainty. This means that vertices 18 and 19 are not part
of the possibilities. Since Albert (who only knows the month) is aware of this, it should
be because month June and May are not the month of the birthday, thus eliminating
them from our graph.

2.2. Cheryl’s birthday puzzle 9

Albert Bernard

July

August

14

15

16

17

FIGURE 2.3: This graph remains after Albert’s first statement

Next Bernard states that after hearing Albert’s statement, he already knows the
birthday. This removes vertex 14 from our graph, since it is the only ambiguous ver-
tex (with degree at least 2) on Bernard’s side.

Albert Bernard

July

August

15

16

17

FIGURE 2.4: This graph remains after Bernard’s statement

Finally since at last Albert knows the birthday after hearing what Bernard said, we
remove all ambiguous vertices on Albert’s side, leaving us only with July 16.

10 Chapter 2. Puzzles and Simplicial Complexes

Albert Bernard

July 16

FIGURE 2.5: This graph remains after Albert’s last statement

11

Chapter 3

The Asynchronous Shared Memory
Model

In this chapter we give the basic formal definition for the model that we will use during
the greater part of our work. We will also define tasks and task solvability.

This model is given by n processes that communicate through shared memory. Fail-
ure crashes are the only failures considered by our model. Since we are only concerned
about computability, we will assume that the model is the same as the Iterated Imme-
diate Snapshot Model. This model is equivalent in terms of computability power as
the single write single read asynchronous shared memory model. The Iterated Imme-
diate Snapshot Model, however provides us with a simpler way to reason about task
solvability.

3.1 Model Specification

The asynchronous read/write model consists of n+ 1 processes denoted by [n] = {0, 1, . . . , n}.
These numbers are called ids.

A process is a deterministic state machine, that runs at an arbitrary speed indepen-
dent of the speed of other processes (hence the asynchronous nature of the model).

Processes communicate using a shared memory array mem[0 . . . n] of n + 1 atomic
single writer-multi reader registers. Atomic operations write(v) and read(j), 0 ≤ j ≤ n
are available to each process. Process i can use write(v) to write value v to register i
(single writer registers) and read(j) reads register j (mem[j]).

The protocol D executed by the processes is given by their state machines, which
are identical at every process except for the id i and some input value xi. It is assumed
that D is in canonical form, that is, it is deterministic, full-information and with a round
structure. Full-information means that the entire local state of a process is available to
other processes. That is, a process always writes its entire local state(view) to the shared
memory. A round structure is defined as follows: A process executes a Collect() opera-
tion if it reads all registers in an arbitrary order. We use the notation WCollect(x) when
a process executes a write(x) operation followed by a Collect() operation. A one round
model consists of processes that execute once the WCollect(x) operation. A multi round
model consists of processes that execute N WCollect(x) operations. By assuming that
each process writes its whole local state (including past round states), and reads all the

12 Chapter 3. The Asynchronous Shared Memory Model

shared memory, we only need to concern ourselves with the execution of the rounds.
The iterated immediate snapshot model simplifies the protocol specification, since each
correct process executes exactly the same operations exactly the same amount of times.
Since our main focus is computability power, this makes the iterated immediate snap-
shot model a useful choice for analyzing tasks.

3.2 States, actions, executions

We will add to the set of processes [n], an environment register e that models shared
memory and scheduling operations of the processes.
For each process i (including the environment register e) , we have a set Li repre-
senting the local states of i. We use the notation Li to indicate that i is at local state
Li ∈ Li, and L0

i to denote the set of i′s initial states.. The set of global states is given by
G = Le × L0 × . . .× Ln, with G0 describing the set of initial global states. That is, the
vector of the local states defines a global state. This is an important property that will
become relevant for the topological model of the protocol.

In the model described previously, given a protocol D and a global state G that
includes the shared memory and the environment, the scheduling of the processes
uniquely determines the next state of the system. A scheduling action is a set Sched ⊆
{0, . . . , n} of the processes that are scheduled to move next. A run of a deterministic
protocol D can be represented by G0 � sa1 � sa2 � . . ., where G0 is an initial global state
and sai are scheduling actions. An execution is a subinterval of a run that starts and
ends in a state. The sequence of scheduling actions sa1, sa2, . . . , is called a composed
scheduling action. Given an execution R and a composed scheduling action sa, R� sa
denotes the execution given by extending R through the composed scheduling action sa
(first execute R, then execute the composed scheduling actions, starting with the final
state of R).

We will analyze N-round protocols. Let Sch be the set of all composed scheduling
actions where every correct process executes its N rounds. Since the correct processes
in the model that we are considering, each executes exactly N rounds, then we can con-
sider all valid sequences of scheduling actions as permutations or subsequences of per-
mutations. All such permutations are allowed when t = n processes can crash. When
t < n, it is possible to define a subset of the permutations that represent the model where
task solvability is concerned. Let SN(D, M,G0) be the set of all executions of protocol
D in model M that start in the initial states G0, and each process executes N rounds,
according to a schedule in Sch.

3.3 Tasks

Processes have input values; in the initial states of the system, G0, all processes are in
the same initial state, differing only in their ids and input values, the shared memory is

3.3. Tasks 13

empty. Each combination of input values assigned to each process is represented as a
vector (x0, . . . , xn). Analogously, the output of a task can be defined by a set of vectors
(y0, . . . , yn) which represent the combination of processes output values.

A task is defined by a set of input vectors, a set of output vectors, and a relation ∆
that specifies for each input vector x, a set of valid output vectors denoted by y = ∆(x).

Definition 1. A task is a triple 〈I, O, ∆〉 where I and O are sets of vectors, and ∆ is a map from
I into 2O [33], [13].

In a given model with schedules Sch, a protocol D solves the task in N rounds if af-
ter executing any schedule in Sch, each process i with input value xi, decides an output
value yi, such that y = (yi) ∈ ∆(x) for x = (xi).

Consider for example the binary consensus task. Processes start with input value 0
or 1, and all correct processes have to decide the same value, which must be the input
of one of the processes. This task is unsolvable, even if only one process may crash [1].

More generally, in the k-set agreement task [13], processes start with inputs from a
set of at least k + 1 values, and have to decide on at most k different inputs. This task is
solvable if and only if t < k, where t is the number of processes allowed to crash.

Another task that is similar to consensus is the approximate agreement task. Correct
processes must agree on values close to each other. The approximate agreement task is
solvable in the asynchronous model even when t = n [5]. The rounds of the protocol
needed depend on how close the values should be.

In the next section we will provide a topological framework for analyzing the asyn-
chronous model.

15

Chapter 4

Combinatorial Topology

In this chapter we will give the preliminary combinatorial topology concepts that we
need for our results. It is intended that this work be self-contained, although a basic
knowledge of topology is required for further results.

First we define the basic objects known as simplicial complexes. Simplicial com-
plexes will be used to define spaces that represent universes of valid inputs, valid out-
puts or minimal final configurations. It is interesting to note that we provide these
universes with a topological structure instead of only considering the isolated inputs or
outputs.

This topological structure gives rise to interesting properties that can be translated
to distributed computing properties.

4.1 Basic Concepts

First we define the basic object in combinatorial topology, the simplicial complex. Sim-
plicial complexes are interesting because they are combinatorial objects that capture
interesting topological properties. In a way, they are a bridge between combinatorics
and topology.

A simplicial complex S is a pair 〈V, S〉, such that V is a set, called the vertices of S ,
and S ⊆ 2V is a collection of finite non-empty subsets of V such that if σ ∈ S and σ′ ⊆ σ,
then σ′ ∈ S; and for each v ∈ V, {u} ∈ S.

We say that a simplicial complex L = 〈V ′, S′〉 is a subcomplex of K = 〈V, S〉 if
V ′ ⊆ V and S′ ⊆ S. We denote it by L ⊆ K.

A simplicial complex S = 〈V, S〉 is called a simplex if S = 2V , when V is finite. In
this thesis we will restrict only to finite vertex sets. Abusing notation, we will also refer
to elements of S as simplices (since elements of S correspond to subcomplexes that are
simplices). We can think of simplices as the building blocks of a simplicial complex. We
will also refer to simplices as faces of S .

Also we will use the same name of the simplicial complex (S) to refer to the sim-
plicial set, in order to avoid cumbersome notation. We will return to the tuple notation
whenever there is a risk of ambiguity.

16 Chapter 4. Combinatorial Topology

Let S = 〈V, S〉 be a simplicial complex. σ ∈ S is a facet of S if it is maximal in S, that
is, σ is not a face of a larger simplex.

A simplex σ ∈ S, has dimension n− 1 if |σ| = n. We say that the whole complex has
dimension n if the maximum dimension of its simplices is n.

A simplicial complex C is pure if all its facets are of the same dimension n.

Let K = 〈V1, S1〉 and L = 〈V2, S2〉 be two simplicial complexes. We define the join
of K and L, denoted by K ∗ L = 〈V1 tV2, S′〉, where S′ = S1 t S2 t {α t β | α ∈ S1, β ∈
S2}. The join is a higher-dimensional case of the graph sum. Also the join of a simplicial
complex with a vertex is the combinatorial analog to the coning operation.

Simplicial complexes can also be thought in a more geometric sense. Given a sim-
plex σ of dimension n, we can consider S, a set of n + 1 affine-indepent vertices in Rn+1.
The affine space generated by S is called the geometric realization of S, and is denoted
by |S|. However, since defining a simplicial complex directly through cartesian coordi-
nates may be troublesome, we will define it as a functional space, where each point is
an affine coordinate function.

Now we define maps that are structure preserving. Let K = 〈V, S〉 and L = 〈V ′, S′〉
be two simplicial complexes. A map µ : V → V ′ is a simplicial map between K and L if
for all σ ∈ S, µ(σ) ∈ S′. Given {v0, . . . , vn} ∈ S, then {µ(v0), . . . , µ(vn)} ∈ S′.

We will also be interested in maps that are not vertex-vertex maps. In particular,
we will also consider maps that send simplices into subcomplexes. We also want those
maps to preserve somehow the topological structure. If K = 〈V, S〉 and L = 〈V ′, S′〉 are
simplicial complexes, then ϕ : S → 2S′ is a carrier map if it is monotonic, that is, for all
σ, τ ∈ S, σ ⊆ τ implies that ϕ(σ) ⊆ ϕ(τ).

Let S be a simplicial complex with vertices VS, we define a geometric simplicial com-
plex, denoted by |S| = {α : VS → [0, 1] ⊆ R | α−1(0, 1] ∈ S, ∑

v∈VS

α(v) = 1} ⊆ RVS .

If VS is finite, this gives way to a canonical embedding into a real vector space, which
is finite dimensional if S is finite, that does not depend on how the vertices are labeled.
Simply notice that |S| ⊆ RVS ∼= Rk for some k if VS is finite.

However, if |VS| is too large, there exists an embedding that depends only on the
dimension of S, but is not canonical since it depends on the vertex labeling. Lets assume
that VS = {v1, v2, . . . , vm} and dim(S) = n. Let pi = (i, i2, i3, . . . , i2n+1) ∈ R2n+1 for

1 ≤ i ≤ m. It follows that f : |S| ↪→ R2n+1, f (α) =
m
∑

i=1
α(vi)pi is an affine embedding

into R2n+1.
This construction allows us to connect the combinatorial point of view with a topo-

logical point of view by using affine combinations.

4.1. Basic Concepts 17

Now that we have a geometric interpretation of simplicial complexes, we can now
define subdivisions of simplicial complexes.

Let A and B be simplicial complexes. We say that B subdivides (is a subdivision of)
A if there exists an homeomorphism h : |A| → |B| and a carrier map Φ : A → 2B such
that, for every simplex σ ∈ A, the restriction h||σ| is a homeomorphism between |σ| and
|Φ(σ)| [33].

Another equivalent definition of subdivision is given as follows : B is a subdivision
of A if the following conditions are met:

1. VB
ι
↪→ |A|.

2. Given {α0, . . . , αq} ∈ B, there exists s ∈ A such that {α0, . . . , αq} ∈ |s|.

3. The induced map ι̂ : |B| → |A| is a homeomorphism, where ι̂ is defined as follows:
let β = ∑

w∈VB
β(w)w, then ι̂(β) = ∑

w∈VB
β(w)ι(w).

As we can see, the definition allows for many different kinds of subdivision, how-
ever we are particularly interested in the standard barycentric subdivision, and its chro-
matic generalization, the standard chromatic subdivision.

Let A = 〈V, S〉 be a simplicial complex. The barycentric subdivision of A denoted
by BaryA = 〈Bary(V), Bary(S)〉 is defined as follows:

• The set of vertices of the barycentric subdivision of A, corresponds to the set of
simplices of A. Bary(V) = S.

• A collection of simplices of A, {σ0, . . . , σk} belongs to Bary(S) if {σ0 (. . . (σk}.
Notice that the vertices σi of Bary(V) correspond geometrically to the barycenter
of σi.

In a more explicit way, we can define the inclusion map Bary(V)
ι
↪→ |S| as follows:

let σ ∈ S = Bary(V) = S be a q-simplex, then ι(σ)(v) =

{
1

q+1 if v ∈ σ

0 if v /∈ σ
.

This definition corresponds to ι(σ) being the barycenter of |σ|.

FIGURE 4.1: Barycentric subdivision of a triangle [33]

18 Chapter 4. Combinatorial Topology

Since we are interested in distinguishing between processes, we also color the ver-
tices of a simplicial complex. If K = 〈V, S〉 is a simplicial complex, a coloring of K is a
map from the vertices of the complex to a finite set of colors C, χ : V → C such that for
every σ ∈ S, χ|σ is injective (it does not repeat colors in any simplex).

A chromatic simplicial complex is the object given by a simplicial complex and a col-
oring for the simplicial complex. We denote a chromatic simplicial complex as a tuple
〈V, S, χ, C〉, where V and S are as defined for simplicial complexes, C is a finite color
set, and χ is a coloring for 〈V, S〉. Note that every simplicial complex admits a coloring.
Take for example the trivial coloring χ : V → V, where χ = IV is the identity map.

Now, we can define a map that also preserves the color structure. A chromatic sim-
plicial map between chromatic simplices K = 〈V, S, χ, C〉 and L = 〈V ′, S′, χ′, C〉 is a
map µ : V → V ′ such that it is a simplicial map and χ(v) = χ(µ(v)).

We can also define a chromatic join of two chromatic simplicial complexes K and L
if we either restrict to disjoint color sets or by making them disjoint from the definition
of the join. To simplify notation, we will assume that K and L have different chromatic
sets.

Let A = 〈V, S, χ, C〉 and B = 〈V ′, S′, χ′, C〉 be chromatic simplicial complexes. We
say that B subdivides chromatically (is a chromatic subdivision of)A if 〈V ′, S′〉 is a sub-
division of 〈V, S〉 and the subdivision carrier map Φ : A → 2B is chromatic, meaning
that it preserves color, that is, a vertex is mapped of a color c is mapped to a set of ver-
tices necessarily of color c. [33].

We also define a chromatic generalization of the barycentric subdivision called the
standard chromatic subdivision. LetA = 〈V, S, χ, C〉 be a chromatic simplicial complex.
We define the standard chromatic subdivision ofA, denoted by ChA = 〈ChV, ChS, χ′, C〉
as follows: The vertices of the standard chromatic subdivision are pairs (c, σ) such that
c ∈ C, σ ∈ S, and c ∈ χ(σ). A collection of pairs {(c0, σ0), . . . , (ck, σk)} is a k-simplex in
the standard chromatic subdivision if{σ0 ⊆ . . . ⊆ σk}, and if ci ∈ χ(σj) then σi ⊆ σj. In
the standard chromatic subdivision of a simplex σ, it is particularly useful to define the
center simplex of the subdivision. The center simplex consists of the vertices (ci, σ) for
each color ci ∈ χ(σ). Figure 4.2 shows an example of a standard chromatic subdivision.

We use chromatic simplicial complexes to model the possible views for each process.
A color corresponds to a process and a vertex to a possible view for such process. In the
previous section we noted that a global configuration is determined by the local con-
figurations of the processes. It is natural then to see that a global configuration under
this model corresponds to a simplex: Possible global states form a simplicial complex
in which vertices are local views of a process, simplices are global configurations, and
an implicit undistinguishability relation is given by vertices that belong to several sim-
plices.

We use such a model to represent the inputs, the outputs, and the different stages of
execution of a protocol. In our asynchronous model of computation, a communication

4.1. Basic Concepts 19

FIGURE 4.2: Chromatic subdivision of a triangle [33]

round can be described by applying an iterated operation to the input complex.

More formally, we can model a task 〈I, O, ∆〉 using the chromatic simplicial com-
plexes in the following way. As discussed earlier, I and O are sets of vectors that rep-
resent configurations for each of the processes. We now use them to build an input
complex I = 〈VI , SI〉 and an output complex O = 〈VO, SO〉 for the task.

For the vertices of the input complex we consider the input values of the processes:
VI = {(p, x)| p is a process and x is a valid input for p}. A simplex s = {(p1, x1), . . . , (pk, xk)} ∈
SI if there exists a vector x ∈ I such that s induces a subvector of s, i.e. that s forms a
valid input configuration. For (p, xp) ∈ VI then we define the coloring of the input
complex as χ(p, xp) = p.

We define the output complex in the same way as the input complex. The only dif-
ference is that I and O are different vector sets.

For example, let’s consider 2-process binary consensus. In that case I = {(0, 0), (0, 1), (1, 0), (1, 1)}
and O = {(0, 0), (1, 1)}.

For the input complex we have the following vertices and simplices:
VI = {(p1, 0), (p1, 1), (p2, 0), (p2, 1)}.
SI = {{(p1, 0)}, {(p1, 1)}, {(p2, 0)}, {(p2, 1)}, {(p1, 0), (p2, 0)}, {(p1, 0), (p2, 1)},
{(p1, 1), (p2, 0)}, {(p1, 1), (p2, 1)}}.

The output complex has the following vertices and simplices:
VO = {(p1, 0), (p1, 1), (p2, 0), (p2, 1)}
SO = {{(p1, 0)}, {(p1, 1)}, {(p2, 0)}, {(p2, 1)}, {(p1, 0), (p2, 0)}, {(p1, 1), (p2, 1)}}.

Figure 4.3 illustrates the topology of the input and output complexes.

It is worth noting that the input complex for consensus is connected and the output
complex for consensus is disconnected.

20 Chapter 4. Combinatorial Topology

0

1

0

1

0

1

0

1

FIGURE 4.3: Input(left) and output(right) complexes for 2 process binary
consensus

Given the input and output complexes for the task T = 〈I, O, ∆〉, we now translate ∆
into a map from the input complex into the output complex. Note that ∆ is not a simpli-
cial map, since a single input simplex may have more than one acceptable output. Tak-
ing consensus for example, we find ∆({(p1, 0), (p2, 1)}) = {{(p1, 0), (p2, 0)}, {(p1, 1), (p2, 1)}}.
However ∆ induces a carrier map from the input complex to the output complex. More
specifically, for VI , let v be a vertex of I , we define Sv = {σ ∈ SI | v ∈ σ and σ is a facet
of the input complex }.

We define ∆̃(σ) as the subcomplex of O given by ∆(
⋂

v∈σ
Sv). By definition it is clear

that ∆̃ is a carrier map, and that it extends ∆.

4.2 Subdivisions and Communication

Lets recall from a previous section that since the asynchronous model is a full-information
protocol, we only need to be concerned about the scheduling of the process rounds.

We can use our topological framework to analyze the effects of communication
rounds on the input complex. We define a protocol complex P = 〈VP, SP〉 in the fol-
lowing way.

VP = {(p, s) | p is a process and s is an n-round final view of p}. This means that
for each process and each of its possible final views there is a vertex in VP. Note that a
final view is a local state of a process p such that the protocol is able to decide an output
value for p.

SP = {σ | for all (p1, s1), (p2, s2) ∈ σ, s1 and s2 are compatible n-round final process
views }. Note that s1 and s2 are compatible if there exists a run where s2 is a final view
for p1 and s2 is a final view for p2

Herlihy and Shavit, showed that an n-round protocol complex corresponds to the
nth chromatic subdivision of the input complex [3]. Even more, they characterized asyn-
chronous solvability in terms of the input and output complexes using the correspon-
dence between the n-round protocol complex and the standard nth chromatic subdivi-
sion of the input complex.

4.2. Subdivisions and Communication 21

Let’s consider a scenario with two processes p1 and p2 that have initial input values
1 and 0 respectively.

01

FIGURE 4.4: p1 and p2 (blue and red) have initial values 1 and 0 respec-
tively

The following possibilities are valid observations for p1:
p1 wrote its view and read before p2 was able to write its view. We denote this by (p1,⊥).
p1 wrote its view and read after p2 wrote its view. We denote this by (p1, 0).

The valid observations for p2 are:
p2 wrote its view and read before p1 was able to write its view. We denote this by (p2,⊥).
p2 wrote its view and read after p1 wrote its view. We denote this by (p2, 1).

The valid protocol runs are:

1. {(p1,⊥), (p2, 1)} which corresponds to p1 reading before p2 wrote its view. It re-
sults from the following process schedule (p1.write, p1.collect, p2.write, p2.collect).

2. {(p2, 1), (p1, 0)} which corresponds to both p1 and p2 being able to read each oth-
ers view. It results from the process schedules
{(p1.write, p2.write, p1.collect, p2.collect), (p2.write, p1.write, p1.collect, p2.collect),
(p1.write, p2.write, p2.collect, p1.collect), (p2.write, p1.write, p2.collect, p1.collect)}.

3. {(p1, 0), (p2,⊥)} which corresponds to p2 reading before p1 is able to write its
view.
It results from the following process schedule (p2.write, p2.collect, p1.write, p1.collect).

Figure 4.5 illustrates the protocol complex for this case.

1 0 1 0

(p1,⊥) (p2, 1) (p1, 0) (p2,⊥)

FIGURE 4.5: 1-round protocol complex

Note that we can get an s + k round protocol by composing an s-round protocol and
a k-round protocol. By using this observation, we can consider the final view of a pro-
cess in an s round protocol as the input value for the k round protocol that will come
after. This implies that an n-round protocol complex is obtained by the n-iterated chro-
matic subdivision of the input complex, since a 1 round protocol induces a 1-chromatic
subdivision, and an n-round protocol can be obtained by iterating a 1-round protocol.

23

Chapter 5

The ACT and Simplicial
Approximation

We have already given the preliminary concepts and definitions regarding combinato-
rial topology and the distributed computing model.

In this chapter we introduce the Asynchronous Computability Theorem (ACT) and
the Simplicial Approximation Theorem. These results can be used to produce a fully
topological characterization of colorless tasks. This characterization serves as the basis
for our first result which extends the Simplicial Approximation Theorem into a chro-
matic version.

In order to approach the ACT, we show the relationship between communication
rounds and the standard chromatic subdivision of the input complex.

5.1 The Asynchronous Computability Theorem

Now that we have defined simplicial complexes for both the inputs and outputs and
defined a carrier map between them that corresponds to ∆ we can move to the Asyn-
chronous Computability Theorem. This theorem was stated by Herlihy and Shavit [3],
and characterizes asynchronous task solvability in terms of combinatorial topology, us-
ing the tools and framework introduced in the previous section.

Theorem 1 (Asynchronous Computability Theorem [3]). Let T = 〈I, O, ∆〉 be a task. T
has a wait-free, layered immediate snapshot protocol if and only if the input complex I has a
chromatic subdivision DivI and a chromatic simplicial map µ : DivI → O into the output
complex such that µ preserves ∆.

The goal of this work is to establish sufficient topological conditions on the simpli-
cial complexes of the theorem such that a chromatic simplicial map exists between a
chromatic subdivision of the input complex I and the output complex O.

A very important tool for connecting simplicial complexes to topological properties
is simplicial approximation. A simplicial approximation is a simplicial map that is ho-
motopic (can be deformed continuously) to a given continuous function. It allows us to
represent a continuous function in combinatorial terms, in other words, it extracts set
topological properties and carries it to combinatorics.

24 Chapter 5. The ACT and Simplicial Approximation

A very useful result for finding simplicial approximations is the simplicial approxi-
mation theorem, which roughly states that every continuous function between simpli-
cial complexes has a simplicial approximation. The formal definition of simplicial ap-
proximation and the statement for the simplicial approximation theorem will be given
in detail in the following section. An original proof for an appropriate chromatic ap-
proximation theorem will also be included.

It is worth noting that this theorem does not yield a chromatic simplicial approxima-
tion. In this chapter we will show that this is possible under certain conditions for the
output complex O.

5.2 Simplicial approximation

(Following notation from http://suess.sdf-eu.org/website/lang/en/algtop/notes5.

pdf)
Suppose that f : |K| → |L| is a continuous function between the geometric realiza-

tions of two simplicial complexes K and L. Notice that, for each point y ∈ |L|, y is an
interior point of a unique simplex σ ∈ L. This simplex is called the carrier of y and is
denoted carrL(y) (with respect to L)

A simplicial map φ : K → L is a simplicial approximation to f (with respect toK andL)
if, for each point x ∈ |K|, the image of its geometric realization |φ|(x) lies in carrL(f (x)).

For a given simplicial complex K we define the star of a vertex v by

star(v) :=
⋃
v∈σ

σo.

Where σo is the interior of the geometric realization of σ.

An alternate, but equivalent and useful definition for open star of a vertex is the fol-
lowing:

Let v ∈ VK, we define st(v) = {α ∈ |K| | α(v) 6= 0}. From this definition, it clearly
follows that st(v) is an open subset of |K|.

The following definition is also equivalent:

Let f : |K| → |L| continuous, a simplicial map φ : K → L is a simplicial approxi-
mation to f if f (α) ∈ |l| ⇒ |φ|(α) ∈ |l|, for α ∈ |K| and l ∈ L. In particular if v ∈ Vk
such that f (v) ∈ Vl then |φ|(v) = f (v). Each v ∈ Vk defines an element v ∈ |K| given by

v(v′) =
{

1 ifv′ = v
0 ifv′ 6= v

Notice that when K is finite, we give |K| the metric d(α, β) =
√

∑
v∈VK

[α(v)− β(v)]2. If

VK = {v1, . . . , vm} then |K| ⊆ RVK ∼= Rm, so that |K| has the canonical euclidean metric.

Lemma 1. If φ : K → L is a simplicial approximation to f : |K| → |L|, then |φ| ∼= f .

http://suess.sdf-eu.org/website/lang/en/algtop/notes5.pdf
http://suess.sdf-eu.org/website/lang/en/algtop/notes5.pdf

5.2. Simplicial approximation 25

Let X be a triangulable space, and let U be an open covering of X. A triangula-
tion f : |K| → X is finer than U if for each v ∈ VK, there exists U ∈ U such that
f (st(v)) ⊆ U.

Another important technical concept for simplicial approximation is the mesh of the
geometric realization of a simplicial complex. Lets recall that the geometric realization
of an n-dimensional simplicial complex is an Euclidean space (embedded in R2n+1).
Therefore, it can be given a metric. Since we are considering finite simplicial complexes,
we can define the maximum diameter of every simplex, as a measure of the coarse-
ness of the complex. This measure will help us to decide whether a subdivision is fine
enough for simplicial approximation.

More formally we define the mesh of a simplicial complex K as

mesh(K) = max{diam(σ)|σ ∈ K}

Lemma 2. For any vertex v ∈ |σ| in the geometric realization of a simplex σ of dimension n,
with barycenter σ̂ and diameter diam(σ) = d, d(v, σ̂) ≤ n

n + 1
· d. Therefore the barycentric

subdivision is a mesh shrinking operation.

Proof. Consider σ = {v0, . . . , vn}. Since v ∈ |σ|, it is an affine combination of v0, . . . vn,

that is, v =
n

∑
i=0

λi · vi. Note that the barycenter σ̂ is also an affine combination σ̂ =

n

∑
i=0

1
n + 1

· vi.

First consider the distance between the barycenter and the rest of the vertices:

|σ̂− vj| =
∣∣∣∣∣
(

n

∑
j 6=i=0

1
n + 1

· vi

)
− n

n + 1
· vj

∣∣∣∣∣ = 1
n + 1

∣∣∣∣∣ n

∑
i=0

(vi − vj)

∣∣∣∣∣ ≤ n
n + 1

· d

.

Note that since v is an affine combination, then σ̂ =
n
∑

i=0
λi · σ̂. Therefore

|v− σ̂| = |
n

∑
i=0

λi · (vi − σ̂)| ≤
n

∑
i=0

λi|(vi − σ̂)| ≤
n

∑
i=0

λi · (
n

n + 1
· d) = n

n + 1
· d

.
2

Corollary 1. If K is an n-dimensional simplicial complex of mesh d then, Baryk(K) has a mesh
upper bound of (n

n+1)
k · d.

Corollary 2. For every n-dimensional simplicial complex K and every ε > 0 , there exists
k ∈N such that mesh(BarykK) < ε .

26 Chapter 5. The ACT and Simplicial Approximation

We will now show that if we choose carefully the center simplex for standard chro-
matic subdivision, the mesh upper bound still holds: Lets assume that for a given sim-
plex σ of diameter d and dimension n, and a k-dimensional face κ, we chose the subdi-
vision simplex of κ to have diameter at most k

k+1 · d. Since the subdivision simplex of κ

has diameter at most k
k+1 · d, adjacent new vertices are at a distance at most k

k+1 · d. Since
every other edge lies inside a face of the barycentric subdivision, its length is bounded
by n

n+1 · d. Therefore, all edges of the standard chromatic subdivision for σ are bounded
by n

n+1 · d.

This observation shows that the previous results hold for the standard chromatic
subdivision as well.

Corollary 3. If K is an n-dimensional chromatic simplicial complex with mesh d, then Chk(K)
has a mesh upper bound of (n

n+1)
k · d.

Corollary 4. For every n-dimensional chromatic simplicial complex K and every ε > 0 , there
exists k ∈N such that mesh(ChkK) < ε .

Lemma 3. σ = {v0, . . . , vn} is a simplex in K iff
n⋂

i=0
star(vi) 6= ∅.

Proof. If σ is a simplex in K then σo 6= ∅. Let x ∈ σo. For each vi, i ∈ {0, . . . , n}, vi ∈ σ.

Then σo ⊆ star(vi) =
⋃

vi∈µ
µo. Therefore ∅ 6= σo ⊆

n⋂
i=0

star(vi).

Now lets assume that
n⋂

i=0
star(vi) 6= ∅. Let x ∈

n⋂
i=0

star(vi) and µ = carrK(x). Since

x ∈ star(vi), carrK(x) = µ ⊆ star(vi). It follows from the definition of star(vi) and from
µ ⊆ star(vi) that vi ∈ µ for i ∈ {0, . . . , n}.

Since µ is a simplex of K and σ ⊆ µ therefore σ = {v0, . . . , vn} is also a simplex of K.
2

Lemma 4. Let v ∈
n⋂

i=0
star(vi), then vi ∈ carrK(v) for each i ∈ {0, . . . , n}.

Proof. Since v ∈ star(vi), then carrK(v) = µ ⊆ star(vi). Therefore vi ∈ µ for each i. 2

Lemma 5. Let f : |K| → |L| be a continuous function between the underlying spaces of the
simplicial complexes K and L. Assume there is a vertex map φ, such that for each vertex v of K,

f (staro(v)) ⊆ staro(φ(v)).

Then φ is a simplicial approximation to f

Proof. To show that φ is a simplicial approximation of f , we need to show that it is a
simplicial map and that for each point x ∈ |K|, |φ(x)| ∈ carrL(f (x)).

Let x ∈ |K|. Consider carrK(x) = {v0, . . . , vk}, then x ∈ carrL(x) and x ∈
k⋂

i=0
star(vi).

By hypothesis we have that f (star(vi)) ⊆ star(φ(vi)). This implies that f (
k⋂

i=0
star(vi)) ⊆

5.2. Simplicial approximation 27

k⋂
i=0

f (star(vi)) ⊆
k⋂

i=0
star(φ(vi)), and hence f (x) ∈

k⋂
i=0

star(φ(vi)). Therefore
k⋂

i=0
star(φ(vi)) 6=

∅. By Lemma 2, {φ(v0), . . . , φ(vk)} is a simplex in L. This makes φ a simplicial map.

Also, since f (x) ∈
k⋂

i=0
star(φ(vi)), Lemma 3 reveals that |φ(vi)| ∈ carrL(f (x)). This

shows that φ(carrK(x)) ⊆ carrL(f (x)). Therefore φ(x) ∈ carrL(f (x)), showing that φ is
a simplicial approximation to f . 2

Lemma 6. Let K = 〈V(K), S(K)〉 be a simplicial complex, then C = {star(v)|v ∈ V(K)} is
an open covering of |K|.

Proof. Let x ∈ |K|, consider carrK(x) = σ = {v0, . . . , vn}, then σ ∈ star(vi) for each i.
By definition, each star(vi) is an open set. 2

Lemma 7. Let K be a simplicial complex, and C an open covering for |K|. Then there exists
n ∈N such that for every vertex v ∈ V(BarynK), star(v) ⊆ S ∈ C .

Proof. Since |K| is compact [28], for every open covering C , there exists δ > 0 (called
the Lebesgue number for C) such that for every A with diam(A) < δ then A ⊆ S ∈ C .
Consider some n such that BarynK has mesh less than δ/2. For every x, y ∈ star(v),
we find d(x, y) ≤ d(x, v) + d(v, y) < δ, star(v) has diameter less than δ. Therefore
star(v) ⊆ S ∈ C . 2

Theorem 2 (Simplicial Approximation Theorem). Let f : |K| → |L| be a continuous
function between the underlying spaces of simplicial complexes K and L. Then, for sufficiently
large m, there exists a simplicial approximation to f

φ : BarymK → L

Proof. Consider the open covering C = {star(w)|w ∈ V(L)} for |L|. Since f is con-
tinuous, f−1(C) = C ′ is an open covering of |K|. It follows from Lemma 6 that there
exists an m such that, for each vertex v of BarymK, star(v) ⊆ S ∈ C ′. This means that
for each vertex v of BarymK, there is some w ∈ V(L with star(v) ⊆ f−1(star(w)), hence
f (star(v)) ⊆ star(w). We can therefore define a vertex map φ : BarymK → L such
that, for each vertex v of BarymK, f (star(v)) ⊆ star(φ(v)).By Lemma 4, φ is a simplicial
approximation to f .

2

This theorem characterizes solvability of colorless tasks, which are tasks that are de-
fined only by their input and output values (colorless tasks do not take process ids into
account), since their input and output complexes do not need a chromatic description.
Also the protocol complex for colorless tasks induced by the rounds of communication
is a barycentric subdivision of the input complex.

However, this is not sufficient for colored tasks in the general asynchronous model.
For this more general problem we will extend Theorem 2 for chromatic simplicial com-
plexes.

28 Chapter 5. The ACT and Simplicial Approximation

Note that the importance of the Simplicial Approximation Theorem goes beyond
distributed computing applications. Since it can be shown that every geometric realiza-
tion of every simplex is convex, every continuous function between triangulated spaces
is homotopic to a simplicial map.

29

Chapter 6

Continuous Tasks

We will consider the model introduced in Chapter 3, which we briefly recall. We have a
set of processes that communicate through a single-writer, multi-reader shared memory.

We consider the wait-free asynchronous model, where each process runs at its own
speed and up to n processes may fail by crashing. A crashed process cannot further read
nor write and is indistinguishable from a process with an arbitrarily large delay. Since
all but one process may crash, and a crashed process is indistinguishable from a slow
one, it is not safe for a process to wait for other processes.

There are several equivalent variants for this model, each with the same computabil-
ity power. We will use the wait-free iterated immediate snapshot model, where each
process executes the same number of communication rounds. Each communication
rounds consists of executing an immediate snapshot operation. An immediate snapshot
consists of writing the state of the process into its memory segment and immediately af-
ter reading the whole shared memory (snapshot). Although the immediate snapshot
operation seems to be more powerful than single reads and writes, it has been shown in
[33] that it has the same computability power.

Recall that the definition of a distributed task T is given by a tuple 〈I, O, ∆〉 where I
and O are sets, and ∆ : I → 2O is monotonically non-decreasing [33]. The intuition be-
hind the definition is that I corresponds to the set of valid global inputs, O corresponds
to the valid set of outputs, and ∆ is a map that associates which outputs are considered
to be a valid solution of the task T for a given input.

For example, binary 2-process consensus specified as a task T = 〈I, O, ∆〉, reads:
I = {(0, 0), (0, 1), (1, 0), (1, 1)}
O = {(0, 0), (1, 1)}
∆(0, 0) = {(0, 0)}
∆(0, 1) = {(0, 0), (1, 1)}
∆(1, 0) = {(0, 0), (1, 1)}
∆(1, 1) = {(1, 1)}

While this definition is very general and comprises a correct definition for many dif-
ferent scenarios in distributed computing, it considers certain tasks as valid even though
there does not exist a protocol that solves them. For example, let us consider the con-
sensus task T∗ for any non-trivial wait-free model. The classical FLP result [1] shows
that no protocol for such a model exists that solves T∗. It would hence be simpler not to

30 Chapter 6. Continuous Tasks

consider T∗ as a valid task within a non-trivial wait-free model.

In [2], Herlihy and Shavit used a topological framework to fully characterize asyn-
chronous shared memory tasks. They described a standard way of building a simplicial
complex with the input and the output sets. This construction is based on the local
views of each process, rather than on descriptions based on global states of the system.

The input complex I = 〈V(I), F(I)〉 is given by its set of vertices V(I) and its set
of faces F(I).

• V(I) = {(pi, vi) | pi ∈ Π, vi ∈ Vi} where Vi is the set of valid inputs for pi.

• F(I) = {σ ⊆ V(I) | σ is part of a valid input configuration }

The output complex O = 〈V(O), F(O)〉 is given by its set of vertices V(O) and its
set of faces F(O). The output complex is given in the same way as the input complex.

• V(O) = {(pi, vi) | pi ∈ Π, vi ∈ V̂i} where V̂i is the set of valid outputs for pi.

• F(O) = {σ ⊆ V(O) | σ is part of a valid output configuration }.

We also consider a chromatic map χ : V(I)∪V(O)→ {1, . . . , n+ 1} that maps each
pair (pi, v) to its process id χ(pi, v) = i.

The protocol complex PM = M〈V(P), F(P)〉 for a given protocol P and modelM
is defined as

• V(P) = {(pi, vi) | pi ∈ Π, vi ∈ Vi} where Vi is the set of valid minimal final
views for pi in protocol P under a given modelM.

• F(P) = {σ ⊆ V(P)} where σ corresponds to a valid configuration of minimal
final views of a run.

• The chromatic function χ : V(P) → Π is given by the id of each process, that is
χ(pi, vi) = pi.

• The decision map for a protocol µ : V(P) → V(O) is a color-preserving vertex
map that maps final views of a process to valid outputs for a task.

Task solvability in this general model is characterized in the following way: A task
T = 〈I, O, ∆〉 is solvable in a model M if and only if there exists a protocol P such that
the decision map for P, µ : P → O is a chromatic simplicial map that preserves ∆, that
is µ(σ) ∈ ∆(σ) for any simplex σ.

According to Chapter 4, in the iterated immediate snapshot model, any protocol
complex corresponds to a chromatic subdivision of I . Using this observation, task solv-
ability in the iterated immediate snapshot model is characterized through Theorem 1
in Chapter 5, the Asynchronous Computability Theorem. This theorem states that the

6.1. Contributions 31

protocol task is solvable if and only if there exists a chromatic subdivision of the input
complex, Ch(I) and a chromatic simplicial map µ : Ch(I) → O from the chromatic
subdivision of the input complex to the output complex, such that µ preserves the deci-
sion map ∆.

This result implies that any protocol that solves a task in the wait-free shared mem-
ory model induces a continuous function between the geometric realization of the in-
put complex and the output complex. We will show that for any continuous map
f : |I| → |O| between the input and output complexes that satisfies certain color pre-
serving conditions also induces a protocol whose decision map approximates f . It is
this correspondence that allows us to state task specification in terms of a continuous
function between geometric realizations of simplicial complexes.

6.1 Contributions

Our main contribution is a new way to state valid tasks, in an asynchronous wait-free
shared memory model, that corresponds exactly to solvable tasks. For that purpose,
we define a set of properties for continuous functions between geometric realizations
of simplicial complexes I and O. We say that f : |I| → |O| is chromatic if it satisfies
said conditions, and will give the colouring correspondence between chromatic func-
tions f : |I| → |O| and solvable tasks: For any chromatic function f : |I| → |O| there
exists a chromatic subdivision Ch(I) of I , and a simplicial map µ : Ch(I)→ O that ap-
proximates f . Conversely any protocol that solves a task in the asynchronous wait-free
shared memory model induces a chromatic function f : |I| → |O|.

Our second contribution is that we characterize solvable tasks in terms of continu-
ous functions, in a different way than it was proposed in [33]. This provides an easily
applicable criterion for deciding whether or not a given task has a solution in the asyn-
chronous wait-free memory model, without explicitly using more complex tools such
as calculating homology groups.

A third contribution is that for any task given in terms of a chromatic function, we
can construct a protocol in the iterated immediate snapshot that solves the given task.

6.2 The Asynchronous Wait-free Shared Memory Model

As mentioned before, we will use the iterated immediate snapshot model. Slightly gen-
eralizing the single layer model introduced in Chapter 3, the model consists of a set
of processes Π = {p0, . . . , pn} that communicate using a layered single-write snapshot
shared memory Mk×(n+1), where k is the number of layers of the shared memory. Each
process executes exactly k asynchronous communication rounds, corresponding to the
k layers. During a given round j, process pi writes atomically its full state into M[j][i]
, and immediately afterwards, it takes a snapshot of M[j] (i.e. pi instantaneously reads
M[j][k] for each 0 ≤ k ≤ n). Note that immediate snapshots may be scheduled simul-
taneously for several processes, and that different protocols differ only in number of

32 Chapter 6. Continuous Tasks

communication rounds and the decision for each process.

Consider the protocol complex P for this model. We consider the final view of a
process pi to be its k memory snapshots. Since we are considering a shared memory
model, the scheduling of a round induces a partial ordering of the participating pro-
cesses snapshots (a process that is scheduled later is able to read more local views). We
have assured in Chapter 4. that shows that the protocol complex P for a k-round pro-
tocol in the model corresponds to the standard k − th chromatic subdivision of I , the
input complex.

6.3 Chromatic Functions and Continuous Tasks

Consider a continuous function f : |I| → |O| between geometric simplicial complexes
induced by chromatic simplicial complexes I and O of dimension n. We consider a
generalized chromatic map χ̄ : V(I) ∪V(O)→ 2C that sends vertices to singleton sets.
We further extend it to include points in the geometric simplicial complexes that do not
correspond to vertices of the simplicial complexes: We define the extended chromatic
map χ : |I| ∪ |O| → 2C as:

χ(x) = χ̄(carr(x))

,
where carr(x) is the minimal face (from I if x ∈ I or O respectively) that contains x

as an interior vertex.

Definition 2 (Continuous Chromatic Function). We say that f is chromatic with respect to
I and O if it satisfies the following conditions:

(1) For every x ∈ |I|, χ(f (x)) ⊆ χ(x)

(2) For every x ∈ |I|, ε > 0 and c ∈ χ(x), there exists xc such that carr(xc) = carr(x),
d(xc, x) < ε and c ∈ χ(f (xc)).

This definition corresponds intuitively to the idea that f maps the color structure of
I into O. Since color corresponds to process ids in the distributed computing frame-
work, it makes sense to be interested in functions that preserve the color structure. In-
formally, (1) corresponds to the notion that a valid decision on a given set of processes
S should only depend on processes from S; Figure 6.1 shows an example of a function
that violates this condition. In addition, (2) Ensures that any point in |I| is always close
to points that decide with each of its colors. Figure 6.2 shows an example where this
does not hold.

6.3. Chromatic Functions and Continuous Tasks 33

f

f

f

x O

A

Bv1

v2

FIGURE 6.1: f is not chromatic since f (x) = O and χ(O) 6⊂ χ(x)

The following definition states formally what it means to be a chromatic approxi-
mation of a function. Although this definition is similar to the simplicial approximation
concept used in algebraic topology [36], it is less restrictive in the topological sense, but
has a new color preservation requirement. This will allow us to give a relationship be-
tween decision maps and continuous chromatic functions.

f

f

x

x′

A

Bv1

v2

FIGURE 6.2: f is not chromatic since there is a region around x′ that is
mapped to blue, and χ(x′) = {blue, green}.

Definition 3. Let I and O be chromatic simplicial complexes, and
f : |I| → |O| be a continuous chromatic function. We say that µ : I → O is a chromatic
approximation to f if it is a chromatic simplicial map, and for every v ∈ V(I), carr(µ(v)) ⊆
carr(f (v)).

Notice that chromatic approximations are different from the simplicial approxima-
tions defined in classical algebraic topology. While chromatic approximations may seem
more permissive at first glance, it should be noted that it is required that they also pre-
serve the chromatic structure.

We can proceed to define continuous tasks.

Definition 4 (Continuous Task). We say that T = 〈I ,O, f 〉 is a continuous task if I and
O are pure chromatic simplicial complexes of the same dimension, and f : |I| → |O| is a
continuous chromatic function.

34 Chapter 6. Continuous Tasks

A continuous task uses a chromatic function in order to describe which outputs are
valid for each input configuration. Later in this section, we will show that continuous
tasks exactly coincide with the tasks that can be wait-free solved in asynchronous shared
memory.

Definition 5. We say that an algorithm A solves a continuous task T = 〈I ,O, f 〉, if A induces
a subdivision of I , Sub(I), and a decision map µ : Sub(I) → O, such that for each σ ∈
Sub(I), |µ(σ)| ⊆ f (|σ|).

Definition 6. We say that a continuous task T has a solution if there exists an algorithm A that
solves T

Note that a continuous task T = 〈I ,O, f 〉 induces a task T′ = 〈I ,O, ∆ f 〉, where
∆ f (σ) = {carrO(f (x)) | x ∈ I : carrI (x) = σ}. (Recall that a task is a tuple 〈I, O, ∆〉
where ∆ is a function that maps a valid input to a set of valid outputs).

f

f

x

x′

B′

A′′

B′′

A′

A

Bv1

v2

FIGURE 6.3: A continuous task is given by f . An input with values v1
and v2 is allowed to decide on any segment of AB but B′A′′ is favored by

f
.

Figure 6.3 shows a simple continuous task, similar to approximate agreement (can
be extended to binary approximate agreement). The continuous task in Figure 3 induces
the task 〈I ,O, ∆ f 〉, where ∆ f (v1, v2) = {AB′, B′A′′, A′′B′′, B′′A′, A′B}.

Lemma 8. A continuous task T = 〈I ,O, f 〉 has a solution if and only if its induced task
T′ = 〈I ,O, ∆ f 〉 has a solution.

Theorem 3. Let T = 〈I ,O, f 〉 be a continuous task, then T has a solution in the asynchronous
shared memory model.

This theorem is a direct consequence of Theorem 4, the proof of which relies on some
technical lemmas.

6.3. Chromatic Functions and Continuous Tasks 35

Theorem 4. Let T = 〈I ,O, ∆〉 be a task. T is solvable in the asynchronous wait-free shared
memory model if and only if there exists a continuous task T′ = 〈I ,O, f 〉, such that f (|σ|) ⊆
|∆(σ)| for any input configuration σ.

Proof.
First let’s assume that T = 〈I ,O, ∆〉 is solvable. By the Asynchronous Computabil-

ity Theorem, there exists k and µ : Chk(I)→ O such that µ is a chromatic simplicial map
that preserves ∆. Consider |µ| : |I| → |O| the continuous map induced by µ. By lemma
8, |µ| is chromatic since µ is a chromatic simplicial map. Therefore 〈I ,O, |µ|〉 is a contin-
uous task. Notice that since |µ| is the affine map induced by µ, we have |µ|(σ) = |µ(σ)|,
and since µ preserves ∆, also µ(σ) ⊆ ∆(σ). It follows that |µ|(σ) ⊆ |∆(σ)|.

Now lets assume that 〈I ,O, f 〉 is a continuous task such that f (|σ|) ⊆ |∆(σ)|. By
Lemma 10, there exists a chromatic approximation of f , namely µ : Chk(I) → O. Let
σ′ ∈ Chk(I) be a subdivided simplex of σ ∈ I . Since µ is a chromatic approximation of
f , we have |µ(σ′)| ⊆ f (|σ′|) ⊆ f (|σ|) ⊆ |∆(σ)|. Therefore µ is a chromatic simplicial
map that preserves ∆, and by the Asynchronous Computability Theorem, task T =
〈I ,O, ∆〉 is solvable. 2

Lemma 9. Let µ : Chk(I) → O be a chromatic simplicial map, then |µ| : |I| → |O| is a
chromatic continuous function.

Lemma 10. Lef f : |I| → |O| be a continuous chromatic function, there exists k ∈ N such
that for any σ ∈ Chk(I) (the k-th standard chromatic subdivision), f (σ) ⊆ star(w) for some
w ∈ V(O).

This property allows us to partially approximate f through a standard chromatic
subdivision. Since we are interested in color preserving approximations, this is not
enough, since we cannot necessarily map a whole simplex σ into a single vertex. How-
ever, this allows us to map a single vertex v of each facet σ into the center of a star w.
We will now project the rest of the facet σ \ {v} into the link of w. By composing the
function with the projection over a single vertex w, we get a new continuous function.
We can proceed iteratively until a trivial vertex map is left.

To summarize that this iterative subdivision, we give the following recursive defini-
tion.

Definition 7. Let I andO be pure chromatic simplicial complexes of dimension k and Sub(I) a
chromatic subdivision of I . We say that a continuous function f : |I| → |O| has the chromatic
star property with respect to Sub(I) if for each facet σ of I , the following conditions hold:

• f (|σ|) ⊆ star(w) for some w ∈ O.

• If k > 0, for any v ∈ σ such that χ(v) = χ(w), πw ◦ f : |σ \ v| → |lk(w)| has the
chromatic star property.

Notice that both σ \ v and lk(w) have dimension k− 1, and that any chromatic vertex
map has the chromatic star property.

36 Chapter 6. Continuous Tasks

Lemma 11. Let f : |I| → |O| be a chromatic function and Sub(I) a chromatic subdivision
of I such that f has the chromatic star property with respect to Sub(I). Then, there exists a
chromatic simplicial map µ : Sub(I)→ O that is a chromatic approximation to f .

Lemma 12. Let I and O be pure chromatic simplicial complexes of dimension k and f : |I| →
|O| a chromatic function. There exists a chromatic subdivision Sub(I) such that f has the
chromatic star property with respect to Sub(I).

Continuous tasks fully characterize solvable tasks in the asynchronous shared mem-
ory model. However, the chromatic function f also gives each valid output configura-
tions a certain weight or value based on the volume of its preimage.

Consider the continuous task given by figure 3. Although any segment of AB is
considered as a valid output, configuration B′A′′ has a higher weight than any of the
rest of valid configurations.

f

O A

BC

D

E F

v1

v2 v3

v1

v2 v3

FIGURE 6.4: A simplex is mapped inside star(o)

6.4. Proofs for lemmas 37

6.4 Proofs for lemmas

In this section we include proofs for more technical lemmas.

Lemma 9. Proof. Since µ is a chromatic simplicial map, then for every σ ∈ Chk(I),
χ(σ) = χ(µ(σ)). It follows then from the definition that χ(x) = χ(|µ|(x)). Therefore
|µ| is chromatic. 2

Lemma 10. Proof. Consider C = {star(w) | w ∈ V(O}. C is an open covering
of O, therefore f−1(C) is an open covering of I . Since I is compact, then f−1(C) has
a Lebesgue number ε. Since the standard chromatic subdivision is a mesh-srhinking
operation, there exists k such that Chk(I) has mesh less than ε. Therefore, σ ∈ f−1(C)
for any σ ∈ Chk(I). Consequently, for any σ ∈ Chk(I), f (σ) ⊆ star(w) for some
w ∈ V(O). 2

Lemma 11 Proof. Consider the vertex map µ : Sub(I) → O given by µ(v) = w
where χ(w) = χ(v) and w ∈ carr(f (v)). µ is a chromatic vertex map, and from defini-
tion, it approximates f chromatically. It remains to see that it is also a simplicial map.

Let σ ∈ Sub(I) be a facet. Since f has the chromatic star property with respect to
Sub(I), then f (σ) ⊆ star(w) for some w ∈ V(O). Since I and O are pure and of the
same dimension, then there exists v1 ∈ σ such that χ(v1) = χ(w). From the definition
of µ, it follows that µ(v1) = w. Notice that since µ is chromatic, then µ(σ \ v1) ⊆ lk(w).
Also notice that if κ is a simplex in lk(w), then κ ∪w is a simplex. Therefore it is enough
to show that µ(σ \ v1) is a simplex.

Since f has the chromatic star property, then πw ◦ f also has the chromatic star prop-
erty and there exists a w2 such that πw ◦ f (σ \ v1) ⊆ star(w2). Inductively, there exists
wi such that πwi−1 ◦ . . . ◦ f (σ \ {v1, . . . , vi−1}) ⊆ star(wi).

Notice that µ(vk) is a simplex, since it is only a vertex.
Since πwk−2 ◦ . . . ◦ f (σ \ {v1, . . . , vi−2}) ⊆ star(wk−1), then µ(vk) and µ(vk−1) form a sim-
plex. Inductively any {µ(vk), µ(vk−1), . . . µ(vk−i)} form a simplex. In particular µ(σ) is
a simplex.

Since µ is a chromatic vertex map and for any facet σ, µ(σ) is a simplex, then µ is a
chromatic simplicial map. 2

39

Chapter 7

Message Passing and BRS Theorem

In this chapter, we will analyze the topological structure of a general partition based
impossibility result. This result is known as the BRS theorem, and it allows us to show
k-set agreement impossibility for asynchronous message-passing models without the
use of the Sperner’s Lemma or other explicit topological tools.

We will also show that partition based arguments are not suitable for agreement im-
possibility in the shared memory model. We achieve this by showing that set-agreement
is solvable in any shared memory model that allows a partition or that has a communi-
cation segmentation.

7.1 Model and preliminary definitions

We consider a set Π = {p1, . . . , pn} of processes each with its own unique identifier.
We will primarily consider message passing protocols where each process has an indi-
vidual message buffer for each of the processes in its local state. Valid messages are
represented by a possibly infinite set M. Typically, we will consider deterministic full
information protocols, where processes send messages that consist of the entire history
of local states. We represent p2 receives message m ∈ M from p1 by appending m to
the message buffer of p2 that corresponds to p1. We will consider that the initial input
is given as a message from a process pi to itself, and that the decision value is also ap-
pended to the message buffer reserved to itself. A global state of the system is the vector
of all local states.

We define a run of a given protocol as a valid infinite sequence of global states, in
which eventually each non-crashing process reaches a final decision state. Messages
that reach a process after a final decision state do not change the process’ final decision.
Note that the output of the process is defined by its local view at the first time it reached
a decision state. We call such local views minimal final views. Notice that if run α and
run β have the same minimal final views for each process, then they have the same de-
cision outputs. Therefore we can restrict our attention to the equivalence classes of runs
given by the minimal final views at each process.

We define a task TΠ = 〈I ,O, ∆〉 as a tuple where I and O are chromatic simpli-
cial complexes that model the valid inputs and outputs for a set Π of processes and
∆ : I → 2O is a valid decision function that maps valid input configurations to valid
output configurations.

40 Chapter 7. Message Passing and BRS Theorem

The input complex I = 〈V(I), F(I)〉 is given by its set of vertices V(I) and its set
of faces F(I).

• V(I) = {(pi, vi) | pi ∈ Π, vi ∈ Vi} where Vi is the set of valid inputs for pi.

• F(I) = {σ ⊆ V(I) | σ is part of a valid input configuration }

The output complex O = 〈V(O), F(O)〉 is given by its set of vertices V(O) and its
set of faces F(O). The output complex is given in the same way as the input complex.

• V(O) = {(pi, vi) | pi ∈ Π, vi ∈ V̂i} where V̂i is the set of valid outputs for pi.

• F(O) = {σ ⊆ V(O) | σ is part of a valid output configuration }.

∆ : F(I)→ F(O) is a function that satisfies:

• σ ⊆ µ⇒ ∆(σ) ⊆ ∆(µ) .

• χ(∆(σ)) ⊆ χ(σ).

We define the protocol complex PM = M〈V(P), F(P)〉 for a given protocol P and
modelM as

• V(P) = {(pi, vi) | pi ∈ Π, vi ∈ Vi} where Vi is the set of valid minimal final
views for pi in protocol P under a given modelM.

• F(P) = {σ ⊆ V(P)} where σ corresponds to a valid configuration of minimal
final views of a run.

• The chromatic function χ : V(P) → Π is given by the id of each process, that is
χ(pi, vi) = (pi).

• The decision map for a protocol µ : V(P) → V(O) is a color-preserving vertex
map that maps final views of a process to valid outputs for a task.

Notice that since the initial input values are self messages, each run is produced by
a unique configuration of initial input values. Therefore, for each task T there exists a
chromatic simplicial map iT : F(P)→ F(I) such that i(σ) is the initial input configura-
tion for each process in σ.

A protocol P solves a task TΠ in model M if and only if the decision map for the
protocol is a simplicial map that carries ∆. That is µ(σ) ⊆ ∆(iT(σ)).

Notice that since the decision map µ needs to be chromatic, the decision map is
determined by the mapping values at the facets. Therefore the facet decision map,
µ̂ : F̂(P)→ 2V(O), determines µ.

7.1. Model and preliminary definitions 41

Definition 8 (Restriction of an Algorithm). Let A be an algorithm for a modelM = 〈Π〉,
and D ⊆ Π a nonempty set of processes. Consider a restricted modelM′ = 〈D〉. The restric-
tion of the model only requires that algorithm A is computationally compatible withM′, i.e, A
can be executed inM′. The restricted modelM′ may consist of a smaller set of processes, and
no assumptions are made about the synchrony of message passing in M′. Therefore the runs
inM′ do not necessarily correspond to runs inM and vice versa. To restrict algorithm A for
modelM to an algorithm for modelM′, we just drop all messages sent from D to the outside.
We call the restricted algorithm A|D = B.

Let B be the protocol complex for B executed in M′. Notice that even if protocol B corre-
sponds to a restriction of A to D, since message buffers for processes not in D are not present in
B, the protocol complex B is strictly different from any protocol complex that includes Π in its
set of processes. Therefore, we need to define a way to extend the views in B in a way that could
possibly match a protocol complex with processes Π executed inM. The natural way of doing
this is by adding empty message buffers denoted by ⊥ for any process not in D.

We can define the extended complex of B with respect to Π, AD, as follows:

• V(AD) = {(p, w,⊥, . . . ,⊥) | (p, w) ∈ V(B)} and⊥ represents empty message buffers
for processes in Π\D.

• F(AD) = {σ ⊆ V(AD) : ∃σ̂ ∈ F(B), (p, w,⊥, . . . ,⊥) ∈ σ ⇒ (p, w) ∈ σ̂}. Notice
that this definition induces an extended view copy of F(B) in AD.

We will show that AD is isomorphic to B.

42 Chapter 7. Message Passing and BRS Theorem

Claim 1. Let AD and B be as defined above. Then there exists a chromatic bijective simplicial
map µ : AD → B.

Proof.
Consider the following vertex map µ : V(AD) → V(B), (p, sw, m1, . . . , md,⊥, . . . ,⊥) 7→

(p, sw, m1, . . . , md).
We define γ : V(B)→ V(AD) as follows: (p, sw, m1, . . . , md) 7→ (p, sw, m1, . . . , md,⊥, . . . ,⊥).

Notice that γ is well defined and is the inverse function of µ. This makes µ a bijection. It only
remains to show that µ is simplicial and color preserving.

Consider σ ∈ F(AD), from the definition of F(AD) there exists σ̂ such that (p, w,⊥, . . . ,⊥) ∈
σ ⇒ (p, w) ∈ σ̂. It is clear that µ maps σ 7→ σ̂. Since σ̂ ∈ F(B), then µ is a simplicial map.
Notice that, by definition, µ preserves the process id, its local state and all message buffers in D.
Therefore µ is a color preserving simplicial map. 2

This isomorphic copy AD of the protocol complex B will be useful, since under certain con-
ditions it corresponds to a subcomplex of A.

Definition 9. (Indistinguishability of Runs). Runs α and β are indistinguishable for a process
p if p has the same sequence of states in α and β until p decides [4]. Notice that since p has the
same sequence of states until decision for runs α and β, then the minimal final view for p is the
same for both runs α and β. This means that the simplices σα and σβ that correspond to runs
α and β, share vertex (p, sw, m1, . . . , mk), where (sw, m1, . . . , mk) corresponds to the minimal
final view of p at both runs α and β.

This definition can be generalized to a set D of processes. We say that α
D∼ β if α is indistin-

guishable from β until decision for all p ∈ D. Following the previous observation, this translates
naturally as D-skel(σα) = D-skel(σβ) where D-skel(σα) = {(p, w) ∈ σα : p ∈ D} .

Definition 10. (Compatibility of Runs). Let R and R′ be sets of runs, possibly from differ-
ent synchrony models. Runs R′ are compatible with runs R for processes in D, denoted by
R′ �D R, if ∀α ∈ R′∃β ∈ R : a D∼ β.

If R and R′ are sets of runs for the same protocol A, and in the same synchrony
modelM, then both induce subcomplexes of a common protocol complex A. We will
call those subcomplexesR andR′ respectively. We define D-skel(R′) as the subcomplex
ofR′ where all vertices of D-skel(R′) correspond to processes of D with views fromR′.
Given these definitions, it is clear thatR′ �D R if and only if D-skel(R′) ⊆ D-skel(R).

Notice that the previous equivalence is restrictive, since it only works for sets of
runs from the same protocol and the same synchronicity model. However, we will give
a more general definition that allows runs from different protocols and different syn-
chrony models.

Definition 11. (D-View embedding). Let A and B be protocols with a non-empty common set
of processes S and D ⊆ S. Consider sets of runs R and R′ from protocol A in modelM and B
in modelM′ respectively, and the subcomplexes R and R′ that correspond to runs R and R′,

7.1. Model and preliminary definitions 43

respectively.

We say thatR′ is D-view embedded inR if for every (p, ws, m1, . . . , mk) ∈ D-skel(R′) the
following conditions hold for every 1 ≤ i ≤ k.

• pi /∈ S⇒ mi = ⊥

• There exists (p, ws, m′1, . . . m′r) ∈ V(R) such that m′i =

{
mi if pi ∈ S
⊥ if pi /∈ S

• µ : D-skel(R′) → R defined by (p, ws, m1, . . . , mk) 7→ (p, ws, m′1, . . . , m′r) is a simpli-
cial map.

Notice that µ is an embedding of D-skel(R′), i.e. an injective simplicial map.

If both sets of runs come from the same algorithm (B = A) and the same synchrony
model (M = M′), then the embedding is given by the inclusion ι : D-skel(R′) → R;
ι(p, w) = (p, w). This matches with the previous observation that R′ �D R if and only
if D-skel(R′) ⊆ D-skel(R) in this case.

More generally, we will show that we can formulate compatibility of runs in terms
of D-view embedding.

Claim 2. Let R and R′ be sets of runs from algorithms A and B in modelM andM′ respec-
tively. Let S be the set of common processes for R and R′ and D ⊆ S. Then R′ �D R ⇔ R′
is D-view embedded inR.

Proof. We will show first thatR′ �D R ⇒ R′ is D-view embedded inR.

For (p, ws, m1, . . . , mk) ∈ V(D-skel(R′)), recall that p ∈ D and (ws, m1, . . . , mk) cor-
responds to a minimal final view for a run α in R′. Notice that since R′ �D R, there

exists a run β ∈ R with α
D∼ β. Then, there exists (p, w′s, m′1, . . . , . . . , m′r) ∈ V(R) that

corresponds to the minimal final view of p for run β. Since (w′s, m′1, . . . , . . . , m′r) and
(ws, m1, . . . , mk) are indistinguishable for p, their local states are the same, ws = w′s,
message buffers for common processes match, and message buffers for processes that
are not common must be empty. From these observations it follows that mi = ⊥ for all

pi /∈ S and that m′i =

{
mi if pi ∈ S
⊥ if pi /∈ S

Therefore µ : D-skel(R′) → R is well defined. To show that it is an embedding of
D-skel(R′) we need to show that it is injective and simplicial.

Suppose that (p, ws, m1, . . . , mk) and (p, w′s, m′1, . . . , m′k) both map to
(p, ŵs, m̂1, . . . , m̂r). From the definition, then ws = ŵs = w′s. It is also required that the
message buffers for processes not in S be empty, therefore, we only need to be concerned
about message buffers for processes in S being the same. However, from the definition
we also have that mi = m̂i = m′i for all pi ∈ S. Therefore µ is injective.

44 Chapter 7. Message Passing and BRS Theorem

It only remains to show that µ is a simplicial map. Since by definition µ preserves
process ids (it is a chromatic vertex map), we only need to check that facets (maxi-
mal simplices) of D-skel(R′) are mapped inside a facet in R. Consider a facet σ′ in
D-skel(R′), from the definition of R′, there exists a run α that corresponds to σ′. Since
R′ �D R, there exists a run β, and a facet σ ∈ R such that µ(σ′) ⊆ σ. Therefore µ is a
D-view embedding fromR′ intoR.

Now, lets assume that R′ is D-view embedded into R. Then there exists a D-view
embedding µ : D-skel(R′) → R. It follows from the definition of a D-view embedding
and from the definition of D-skel(R′) thatR′ �D R.

2

Definition 12 (Decision map split). LetA be the protocol complex for a given algorithm A on
a modelM = 〈Π〉 andA′ a non-empty subcomplex ofA. Let D ⊆ Π be a set of processes inM,
D = Π\D and B = A|D the restriction of algorithm A to D in a given modelM′ = 〈D〉 with
possibly different synchrony, resulting in protocol complex B. We say that D splits the decision
map of A at A′ with respect to M′ if B is D-view embedded in A′ and µ|A′ = µD ∗ µ|D,
where µD is the decision map for restricted algorithm B at the extended complex AD, µ|A′ is the
decision map µ of A restricted to A′ and µ|D is the decision map µ restricted to D-skel(A′) .

Lemma 13. Let A be the protocol complex for a given algorithm A in a modelM = 〈Π〉 and
A′ a non-empty subcomplex ofA. Let D ⊆ Π be a set of processes inM, B = A|D a restriction
of algorithm A to D in a modelM′ with possibly different synchrony,AD the extended complex
of B with respect to Π and µ be the decision map for A, then D splits µ at A′ with respect to
M′ ⇔AD = D-skel(A′).

Proof. Suppose that D splits µ at A′. Then µ|A′ = µD ∗ µ|D. Therefore

µ|A′(p, w) =

{
µD(p, w) if p ∈ D,
µ(p, w) otherwise.

By definition if (p, w) ∈ V(A′) and p ∈ D, since µD can be applied to (p, w), then
(p, w) ∈ Dom(µD) = AD. Therefore, D-skel(A′) ⊆ AD. Conversely, since by Defini-
tion 7, B is D-view embedded in A′ . Therefore, by Claim 2, AD is a subcomplex of
D-skel(A′). Consequently D-skel(A′) = AD.

Now lets assume that D-skel(A′) = AD. Therefore in A′, each process from D
reached a decision before receiving messages from D. Notice that since AD is isomor-
phic to B, the processes from D atA′ decide in the same way as the restricted algorithm.
Therefore,

µ(p, w) =

{
µD(p, w) if p ∈ D,
µ|D(p, w) if p ∈ D.

This shows that µ = µD ∗ µ|D, and since D-skel(A′) = AD, the protocol complex of the
restricted algorithm B is D-view embedded in A′. Hence D splits µ at A′ with respect
toM′.

2

7.2. Topological BRS Theorem 45

We will show in the next section that decision map splitting is equivalent to finding
a partition of Π into D, D and a set of runs where D decides independently from D.
However, notice that D could use information from D to decide.

7.2 Topological BRS Theorem

Since we have already established an equivalence between topological conditions and
run compatibility, we can proceed to state a slightly more general version of the BRS
theorem from a topological perspective. Recall that the BRS theorem requires that some
conditions (A)-(D) hold, in order to guarantee the k-set agreement impossibility. In the
following lemmas, we will state topological properties that are slightly weaker than the
original conditions (A)-(D).

Let M = 〈Π〉 be a system model and A an algorithm that runs in model M. As-
sume that each p ∈ Π starts with a different input value. Also assume that there is
a distinguished set D ⊆ Π, and a partition of Π\D = D given by D1, . . . , Dk−1. Let
{v1, . . . , vk−1} be a fixed set of different values.

The original BRS theorem formulates the following conditions for runs of algorithm
A in modelM and a restricted modelM′ = 〈D〉 .

dec-D If pj ∈ D then pj receives no messages from any process in D until every process
in D has decided.

dec-D For every set Di, value vi was proposed by some p ∈ D, and there is some q ∈ Di
that decides vi.

R(D) denotes the set of runs fromM where dec-D holds. R(D,D) denotes the set of
runs fromM where both dec-D and dec-D hold.

(A) R(D) is nonempty.

(B) R(D) �D R(D,D).

(C) Consensus is not solvable inM′.

(D) M′
A|D
�D MA.

We can generalize the statement of the BRS theorem by slightly relaxing conditions
(A)-(D).

Claim 3. LetM,M′, A, D, D and Di be as defined for the BRS-theorem. Then, (A)-(D) imply

(A’) R(D) is nonempty.

(B’) Consensus is not solvable inM′

(C’) M′
A|D
�D R(D,D).

46 Chapter 7. Message Passing and BRS Theorem

Proof. Notice that (A’) and (A) are the same, also (B’) and (C). Therefore it is enough to
show that (B) and (D) imply (C’).

Let γ be a run inM′
A|D

. From condition (D), there exists a run γ′ ∈ MA such that

γ
D∼ γ′. Since γ′ is indistinguishable from γ until decision for D, each process p ∈ D in

run γ′ decides before receiving a message from D. Therefore γ′ ∈ R(D).

Also notice that from (B) we get that there exists γ′′ ∈ R(D,D) such that γ′
D∼ γ′′.

Since D∼ is transitive, we have that γ
D∼ γ′′. This proves that (C’) holds. 2

Lemma 14. LetM,M′, A, D, D and Di be as defined for the BRS-theorem. Then (A’)–(C’)
are equivalent to the following :

1. There exists a non empty subcomplex A′ of A such that D-skel(A′) = AD (the extended
complex for A|D with respect toM).

2. For each Di, the decision map µ|A′ maps every view from Di into a decision configuration
that includes vi as a decision value.

3. Each vi is the input value for some process p ∈ D at subcomplex A′.

4. Consensus is not solvable inM′ = 〈D〉.

Proof.
First we will show that (A’)–(C’)⇒ 1.–4.

It follows from (C’), that B is D-view embedded in R(D,D), where R(D,D) is the sub-
complex of A that corresponds to runsR(D,D). This implies that
AD ⊆ D-skel(R(D,D)).

We define

• F(A′) = {σ ∈ F(R(D,D)) : D-skel(σ) ∈ F(AD)}.

• V(A′) = {(p, w) ∈ V(A) : (p, w) ∈ σ ∈ F(A′)}.

Notice that this trivially implies AD ⊆ A′, so A′ 6= ∅. It also follows from the defi-
nition of A′ that A′ ⊆ R(D,D), since F(A′) ⊆ F(R(D,D)). Therefore condition 1 holds for
A′.

Conditions 2. and 3. follow from A′ ⊆ R(D,D).

Condition 4. is the same as (B’).

This shows that (A’)–(C’)⇒ 1.–4.

We will now show that 1.–4. ⇒ (A’)–(C’).

7.2. Topological BRS Theorem 47

From 1. we get that B is D-view embedded in A′ since AD = D-skel(A′). From
conditions 2. and 3. we get that A′ ⊆ R(D), therefore AD ⊆ R(D), where R(D) is the
complex of all runs where dec-D holds. Notice that since AD = D-skel(A′) is the ex-
tended view complex of the restricted algorithm, then for each run in A′, the processes
from D reached a decision before receiving messages from D. Since A′ ⊆ R(D), we
therefore get A′ ⊆ R(D,D). Since A′ is non-empty, it follows that ∅ 6= R(D,D) ⊆ R(D).
This shows that (A’) holds.

Condition 4. is the same as condition (B’).

Finally, since AD = D-skel(A′) ⊆ R(D,D), condition (C’) holds.

2

This gives us a topological equivalence of a slightly stronger BRS theorem and some
insight into the conditions required for stating a partition based impossibility theorem
from a topological point of view. This is further developed in the following theorem.

Theorem 5 (Decision split theorem). Let M = 〈Π〉 be a model and A, an algorithm that
runs inM. Let A be the protocol complex of A,M′ = 〈D〉 be a model with D a subset of Π,
and µ the decision map for A. Assume that the following conditions hold:

(a) There exists a non-empty subcomplex A′, such that D splits µ at A′ with respect toM′.

(b) Consensus is not solvable inM′.

(c) Processes in D = Π\D always decide at least k− 1 input values from D for runs in A′.

Then A does not solve k-set agreement.

Proof. Assume by contradiction that A solves k-set agreement. In particular µ|A′ always
decides on at most k input values. Notice that since µ always decides at least k− 1 input
values from D for runs inA′, then µ|D always decides on at least k− 1 input values from
D. From Condition (a) and Definition 7, we have that µ|A′ = µD ∗ µ|D. Since all possible
decision values from µD are disjoint from at least k− 1 decision values in µ|D, and µ|A′
solves k-set agreement, then µD always decides on at most 1 decision value. Therefore
µD solves consensus at D-skel(A′) = AD. Since AD ∼= B, where B is the protocol
complex for algorithm B in model M′, consensus is solvable in M′. This contradicts
Condition (b). 2

Corollary 5. LetM = 〈Π〉 be a model and A an algorithm that runs inM. Let A be the pro-
tocol complex of A, D a subset of Π andM′ = 〈D〉 a model in which the restricted algorithm
A|D can be executed. Assume that the following conditions hold.

(a’) There exists a non-empty subcomplex A′, such that D-skel(A′) = AD.

(b’) Consensus is not solvable inM′.

48 Chapter 7. Message Passing and BRS Theorem

(c’) Processes in D = Π\D always decide at least k− 1 input values from D for runs in A′.

Then A does not solve k-set agreement onM.

Proof. The result follows from decision splitting being equivalent to AD = D-skel(A′)
and applying the decision split theorem. 2

Corollary 6. Let M, M′, A, D, D and Di be as defined for the BRS-theorem. If conditions
1.–4. hold then A does not solve k-set agreement.

Proof. Notice that Conditions 1. and 4. correspond to (a’) and (b’) respectively; 2. and
3. imply condition (c’). Therefore, Conditions 1.–4. satisfy (a’) –(c’). It follows from
Corollary 12 that A does not solve k-set agreement. 2

Corollary 7. Let M, M′, A, D, D and Di be as defined for the BRS-theorem. If conditions
(A’)–(C’) hold, then A does not solve k-set agreement.

Proof. It follows from Lemma 10 and Corollary 13 that A does not solve k-set agree-
ment. 2

7.3 Shared memory model

In the previous sections we developed a topological framework that allowed us to state
a version of the BRS-theorem from the topological point of view. In this section we will
restrict our attention to the specific shared memory model.

We consider a set of processes Π = {p1, . . . , pn} and a shared snapshot memory
M = (e, m1, . . . , mn) where e is a buffer for global variables and each mi corresponds to
the local memory portion of process pi in the snapshot memory.

In order to argue about k-set agreement impossibility in a more simple way, we will
assume that the protocols are full information immediate snapshot layered protocols.
Although these assumptions simplify our analysis, they do not reduce computability
power. [33]

In this model, each process executes a predefined number r of asynchronous rounds
or layers. Each round i consists of concurrent write-read snapshots. A write-read snap-
shot at layer i consists of writing the full view (a local state) of a process into its corre-
sponding part of the memory, and immediately after writing, taking a snapshot of the
views from processes at the same layer i.

The initial view of a process consists only of its input value, and therefore during
the first round, each process only writes its input value to the shared memory.

Notice that in this model, each process’ current view contains the history of previ-
ous views, so we need not be concerned with overwriting previous views in the shared

7.4. Partition compatible runs 49

memory.

Formally, we define the view for a given process p at round i in the following way.

• If i = 0, the view consists of a tuple (p, s, v) where p is the process id, s is the initial
local state of p and v is the input value for p.

• If i > 0 then the view consists of a tuple (p, s, v1, . . . , vn) where each vj corresponds
to either the view of process pj at the end of round i− 1 if the write-read execution
for round i happened before or at the sime time as the write-read execution for
process p. Otherwise ⊥ represents that p finished its write-read round i before
process j.

Notice that this definition for the processes views is very useful, since it has a nice
combinatorial structure. More specifically, one can show an isomorphism between the
standard chromatic subdivision of the input complex and the protocol complex for a
general 1-layer immediate snapshot protocol. Since each layer i is only determined by
the previous layers and the scheduling of layer i, it follows by induction that a k + 1
layered protocol complex corresponds to the k + 1-th chromatic subdivision of the input
complex.

v1 v2

(v1,⊥) (v1, v2) (v1, v2) (⊥, v2)

((v1,⊥),⊥) ((v1,⊥), (v1, v2)) ((v1,⊥), (v1, v2)) (⊥, (v1, v2))

FIGURE 7.1: Input complex, 1-layer protocol complex and 2-layer proto-
col complex for two processes.

In the next section we will show that a partitioning argument for the processes is not
suitable for proving the impossibility of set agreement by giving a general protocol that
solves set agreement if all runs allow a partition of the processes.

7.4 Partition compatible runs

Notice that the central idea regarding partition arguments is to exploit limited commu-
nication between sets of processes.

Definition 13. We define a set of runs S as partition compatible if for any run α, there exists a
pair of participating processes p and q, and a round i such that p does not receive information
from q during round i.

50 Chapter 7. Message Passing and BRS Theorem

We define the following 1-layer protocol P for the immediate snapshot model with
a set of processes Π = {p0, . . . , pn}.

Let pi be a process and (m0, . . . , mn) its view.

Notice that since we are considering the iterated immediate snapshot model, then
the protocol is determined only by the number of communication rounds (1 in this case)
and the decision map.

We define µ(pi, m0, . . . , mn) =

{
mi if ⊥ = mj for some j ∈ {1, . . . , n}
m(i+1)mod n+1 otherwise .

No-

tice that since µ always chooses the input value for pi unless all other input values have
been observed, then µ satisfies the validity condition.

Lemma 15. Let S be a set of partition compatible runs for a 1-round immediate snapshot proto-
col, then µ solves n-set agreement in S.

Proof. Let α ∈ S be a partition compatible run for a 1-round immediate snapshot pro-
tocol. Notice that if the set of participating processes of α has cardinality less than n + 1,
then the decision map µ trivially solves n-set agreement.

For the sake of readability, we will assume for the rest of the proof that any increase
or decrease of a process index is considered to be modulo n + 1.

Assume that α has n + 1 participating processes. Let pj be one of the processes that
executed their round in the last step of the protocol. Since α has n + 1 participating pro-
cesses, then pj observed all of the input values. From the definition of µ, then pj decides
the input value for pj+1.

Assume by contradiction that µ does not solve n-set agreement for α. Since pj did
not decide on its input value, and µ does not solve n-set agreement, then pj−1 decides
the input value for pj. Since pj−1 decided the input value for pj, then pj−1 also was
among the processes that executed their round in the last step. It follows from an in-
ductive argument, that all of Π executed their round in their last step. Therefore, α is
an execution where all processes from Π executed concurrently. It follows from the im-
mediate snapshot model specification that all processes hear from each other in α. This
contradicts the fact that α was a partition compatible run. 2

An immediate consequence for this lemma is that a partitioning argument cannot be
used for showing n-set agreement impossibility for 1-round immediate snapshot pro-
tocols. However, in order to show that a partitioning argument cannot be used for a
general shared memory protocol, we need to show this result for any number of layers.

In order to do so, we will define a decision map for any fixed number of layers.

Consider a general k-layered immediate snapshot protocol. Let pi be a process, and
(m0, . . . , mn) its final view. We denote Lj(m0, . . . , mn) as the view for pi at layer j. Alter-
natively, if α is a run of an r-layered protocol and s < r then Ls(α) denotes the s-layered
protocol run induced by α. We say that a view v = (m0, . . . , mn) of a process at a layer s

7.4. Partition compatible runs 51

is incomplete if either ⊥ ∈ v or if there exists j < s and 0 ≤ r ≤ n such that Lj(mr) is an
incomplete view.

µ1 = µ

µk+1(pi, m0, . . . , mn) =

{
µk(pi, Lk(m0, . . . , mn)) if (m0, . . . , mn) is an incomplete view
µk(pi+1, Lk(m0, . . . , mn)) otherwise

Lemma 16. Let S be a set of partition compatible runs for an k-round immediate snapshot
protocol, then the decision map µk solves n-set agreement in S.

Proof. We will proceed by induction over the number of rounds.

Notice that the base of induction is already given by the previous lemma.

Lets assume by induction that µk solves n-set agreement for a general k-layered im-
mediate snapshot protocol.

Now lets consider a general k + 1-layered protocol. Let α be a partition compatible
run for the k + 1 layered protocol. Assume that α has a full participating set Π (other-
wise n-set agreement is trivial). Notice that Lk(α) is either partition compatible, or it is
the run where every process heard from each other during all rounds up to k.

Assume that Lk(α) is partition compatible. Let (pi, m0, . . . , mn) be a process and its
view in the k + 1 layer protocol. If ⊥ ∈ v = (m0, . . . , mn), then v is an incomplete view,
and µk+1(pi, v) = µk(pi, v). If ⊥ /∈ v, since Lk(α) is partition compatible, there exists a
pair of processes ps and pt and a round u ≤ k such that ps does not hear from pt during
round u. Notice that since ⊥ /∈ v, then ms corresponds to the view of process ps until
layer k. From the previous assumptions, it follows that ⊥ ∈ Lu(ms). Therefore ms is
an incomplete view and thus v. It follows that µk+1(pi, v) = µk(pi, v). By induction
hypothesis we have that µk solves n-set agreement, therefore if Lk(α) is partition com-
patible, then µk+1 solves n-set agreement.

Now lets assume that Lk(α) is not partition compatible. Therefore, any view for
any process in α is complete up until layer k, thus, for any pair of process views v, v′

we have that Lk(v) = Lk(v′). Consider a process ps that executed its k + 1 round last.
Since α has a full participating set, then ps has a complete view v′. From the definition,
then µk+1(ps, v′) = µk(ps+1, Lk(v′)). Since α is partition compatible, then there exists a
minimal t such that ps+t has an incomplete view. From the definition, it follows that
µk+1(ps+t−1, v′) = µk(ps+t, Lk(v′)) = µk+1(ps+t, Lk(v′′)) where v′′ is the view from pro-
cess ps+t. It follows from a simple pigeonhole principle that µk+1 solves n-set agreement
in this case.

This completes the induction and the proof for any number of rounds. 2

Theorem 6. Let S be any set of partition compatible runs in the Iterated Immediate Snapshot
model. Then there exists a protocol P that solves set agreement for any run in S.

52 Chapter 7. Message Passing and BRS Theorem

Proof. Let k be the number of rounds executed in S. From the previous lemma it follows
that the generalized k-layered full information protocol with decision map µk solves set
agreement. 2

53

Chapter 8

Conclusions

8.1 Summary

This work was intended to be as self contained as possible, however some basic notions
of topology and mathematics are required. We started by introducing the topoological
framework with examples by modeling several logic puzzles.

We introduced the preliminary concepts and definitions needed to define task solv-
ability, first by defining tasks and the computational models. Then we presented the pre-
liminary definitions regarding combinatorial topology, simplicial complexes and maps.
We also defined the input, output and protocol complexes. This definitions were useful
as a link between combinatorial topology and distributed computing.

Once we established this connection, we showed a result that further explored the
topological link with distributed computing. We gave a statement of the Asynchronous
Computability Theorem (ACT) and the classical Simplicial Approximation Theorem.

These results form the basis of our first result, since we gave a chromatic general-
ization for the Simplicial Approximation Theorem. In order to achieve this goal, we
proposed the new notion of continuous task that allows us to reformulate the ACT in
terms of continuous functions.

We showed that any continuous task is equivalent to a task that is solvable in the
asynchronous shared memory model.

Finally we expressed the topological point of view for partitioning arguments. In
particular, we gave a fully topological formulation of the BRS theorem. This allowed us
to partially understand the need for a topological tool in order to prove k-set agreement
impossibility. With this in mind, we analyzed how a partitioning argument assump-
tion defines a particular topology in the asynchronous shared memory model, and we
showed that set agreement is solvable.

8.2 Future Work

Regarding continuous tasks, it would be interesting to consider other models different
from shared memory that allow us to formulate a continuous task specification.

An open question would also be if continuous tasks can be composed and what
advantages would composing them represent.

It would also be interesting to analyze for which problems are continuous tasks gen-
eral enough, and if there is some model under which a continuous task is not solvable,
but its induced task is solvable.

54 Chapter 8. Conclusions

We consider that some interesting near future work would be to show that general
partitioning assumptions along with some crash resilience property allows us to solve
more agreement tasks, and therefore show that partitioning arguments are not suit-
able for a k-set agreement impossibility proof. We consider this towards showing that
combinatorial topology (or equivalent) tools are necessary for proving k-set agreement
impossibility.

55

Bibliography

[1] Michael J. Fischer and Nancy A. Lynch and M. S. Paterson (1985) Impossibility of
Distributed Consensus with one Faulty Process Journal of the ACM 32(2), 374 – 382.

[2] Maurice Herlihy and Nir Shavit (1993) The asynchronous computability theorem
for t-resilient tasks STOC ’93 Proceedings of the twenty-fifth annual ACM symposium
on Theory of computing, 111–120

[3] M. Herlihy, N. Shavit (1999). The topological structure of asynchronous com-
putability. J. ACM 46(6): 858-923

[4] Martin Biely and Peter Robinson and Ulrich Schmid (2011). Easy Impossibility
Proofs for k-set Agreement in Message Passing Systems. Proceedings of the 30th
Annual ACM Symposium on Principles of Distributed Computing (PODC’11) 227–228.

[5] Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, Eugene W. Stark, and William E.
Weihl(1986). Reaching Approximate Agreement in the Presence of Faults J. ACM .

[6] Borowsky, E. and E. Gafni (1993) Generalized FLP impossibility result for t-resilient
asynchronous computations Proceedings of the 25th ACM Symposium on Theory of
Computing 91–100.

[7] Attiya, H. and S. Rajsbaum (1996). The combinatorial structure of wait-free solv-
able tasks Proceedings of the 10th International Workshop on Distributed Algorithms,
Lecture Notes in Computer Science 1151, Springer-Verlag, Berlin. 322–343.

[8] Yoram Moses and Sergio Rajsbaum (2012). A Layered Analysis of Consensus.
SIAM J. Comput 31(4), 989–1021.

[9] Saks, M.E., & Zaharoglou, F. (1993). Wait-free k-set agreement is impossible: the
topology of public knowledge. SIAM J. Comput. 29(5), 1149–1483.

[10] Maurice Herlihy and Sergio Rajsbaum and Mark R. Tuttle (2000). An Overview of
Synchronous Message-Passing and Topology. Electronic Notes in Theoretical Com-
puter Science 39(2), 1–17.

[11] Hagit Attiya and Armando Castañeda (2013). A non-topological proof for the im-
possibility of k-set agreement Theoretical Computer Science 512, 41-48.

[12] H. Attiya, A. Bar-Noy, D. Dolev (1995) Sharing memory robustly in message pass-
ing systems J. ACM 42 (1) 121–132.

[13] H. Attiya, J. Welch (2004). Distributed Computing: Fundamentals, Simulations,
and Advanced Topics Wiley-Interscience, second ed.

56 BIBLIOGRAPHY

[14] O. Biran, S. Moran, S. Zaks (1990) A combinatorial characterization of the distri-
buted 1-solvable tasks J. Algorithms11 (3) 420–440

[15] E. Borowsky, E. Gafni (1997) A simple algorithmically reasoned characterization
of wait-free computations Proc. 16th ACM Symposium on Principles of Distributed
Computing, PODC’97 , pp. 189–198.

[16] E. Borowsky, E. Gafni, N. Lynch, S. Rajsbaum (2001) The BG distributed simulation
algorithm Distrib. Comput 14 (3) 127–146.

[17] Z. Bouzid, E. Gafni, P. Kuznetsov (2014) Strong equivalence relations for iterated
models Proc. 18th Int’l Conference on Principles of Distributed Systems OPODIS 2014,
in: Lecture Notes in Comput. Sci., vol. 8878, Springer, 2014, pp. 139–154.

[18] A. Castañeda, S. Rajsbaum, M. Raynal (2015) Specifying concurrent problems: be-
yond linearizability and up to tasks 29th Int. Symposium Distributed Computing,
DISC’15, in: Lecture Notes in Comput. Sci., vol. 9363, Springer, 2015, pp. 420–435.

[19] S. Chaudhuri (1993) More choices allow more faults: set consensus problems in
totally asynchronous systems Inform. and Comput. 105 132–158.

[20] E. Gafni, S. Rajsbaum (2010) Distributed programming with tasks 14th Int’l Con-
ference Principles of Distributed Systems, OPODIS’10 Lecture Notes in Comput. Sci.,
vol. 6490, Springer, , pp. 205–218.

[21] M.P. Herlihy (1991) Wait-free synchronization ACM Trans Program. Lang. Syst. 13
(1) 124–149.

[22] M.P. Herlihy, S. Rajsbaum (1997) The decidability of distributed decision tasks Proc.
29th ACM Symposium on Theory of Computing,STOC’97, ACP Press, pp. 589–598.

[23] M.P. Herlihy, S. Rajsbaum (2003) A classification of wait-free loop agreement tasks
Theoret. Comput. Sci. 291 (1) (2003) 55–77.

[24] M.P. Herlihy, S. Rajsbaum (2010) The topology of shared-memory adversaries Proc.
29th ACM Symp. on Principles of Distributed Computing, PODC 2010, ACM Press,
2010, pp. 105–113.

[25] M.P. Herlihy, S. Rajsbaum, M. Raynal (2013) Power and limits of distributed com-
puting shared memory models Theoret. Comput. Sci. 509 3–24.

[26] M.C. Loui, H.H. Abu-Amara (1987) Memory requirements for agreement among
unreliable asynchronous processes Adv. Comput. Res. 4 163–183.

[27] C.R.F. Maunder Algebraic Topology Dover Publications1990, 393 pages.

[28] J.R. Munkres (2000) Elements of Algebraic Topology Pearson, 2nd edition, 2000,
537 pages.

[29] S. Rajsbaum (2010) Iterated shared memory models Proc. 9th Latin American Sym-
posium Theoretical Informatics, LATIN 2010, Comput. Sci., vol. 6034, Springer, pp.
407–416.

BIBLIOGRAPHY 57

[30] M. Raynal (2013) Concurrent Programming: Algorithms, Principles, and Founda-
tions Springer ISBN 978-3-642-32027-9, 515 pages.

[31] M. Raynal, J. Stainer (2012) Increasing the power of the iterated immediate snap-
shot model with failures detectors Proc. 19th Int’l Colloquium on Structural Infor-
mation and Communication Complexity SIROCCO’12, in: Lecture Notes in Comput.
Sci., vol. 7355, Springer, pp. 231–242.

[32] E. Gobault, J.Ledent, S. Rajsbaum (2018) A Simplicial Complex Model for Dy-
namic Epistemic Logic to study Distributed Task Computability. Proc. 9th Int. Symp.
Games, Automata, Logics and Formal Verification (GandALF’18) Electronic Proceedings
in Theoretical Computer Science 277, pp. 73–87.

[33] Maurice Herlihy and Dmitry Kozlov and Sergio Rajsbaum (2013). Distributed
Computing Through Combinatorial Topology. Morgan Kaufmann First Edition, 336
pp.

[34] Dmitry Kozlov (2008). Combinatorial Algebraic Topology. Springer-Verlag Berlin
Heidelberg First Edition, 390 pp.

[35] Kozlov, D.N. (2015). Combinatorial topology of the standard chromatic subdivision
and Weak Symmetry Breaking for 6 processes. Springer, Chapter from Configuration
Spaces, 155-194.

[36] Edwin H. Spanier (1966) Algebraic Topology. Springer-Verlag New York First Edi-
tion, 548 pp.

[37] Jeffrey Seely (2016, April 17). Topological Data Analysis. Retrieved from https:

//jsseely.github.io/notes/TDA/

[38] Lev Gorodinsky (2017, September 18). The Asynchronous Com-
putability Theorem. Retrieved from https://medium.com/@eulerfx/

the-asynchronous-computability-theorem-171e9d7b9423

[39] Bill Casselman (2017, June) The Joy of Barycentric Subdivision. Retrieved from
http://www.ams.org/publicoutreach/feature-column/fc-2017-06

[40] S. Rajsbaum, Perspectives, a little introduction to Distributed Computing via
Topology. (2016).

[41] Chang, K., (2015) “A math problem from Singapore goes viral: When is Cheryl’s
birthday?” The New York Times (15 April 2015). [Chang 2015 available online
(html)]

[42] Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, N. Shavit (1993) Atomic snap-
shots of shared memory J. ACM 40 (4) 873–890.

https://jsseely.github.io/notes/TDA/
https://jsseely.github.io/notes/TDA/
https://medium.com/@eulerfx/the-asynchronous-computability-theorem-171e9d7b9423
https://medium.com/@eulerfx/the-asynchronous-computability-theorem-171e9d7b9423
http://www.ams.org/publicoutreach/feature-column/fc-2017-06

	Portada
	Contents
	Abstract
	Chapter 1. Introduction
	Chapter 2. Puzzles and Simplicial Complexes
	Chapter 3. The Asynchronous Shared Memory Model
	Chapter 4. Combinatorial Topology
	Chapter 5. The ACT and Simplicial Approximation
	Chapter 6. Continuous Tasks
	Chapter 7. Message Passing and BRS Theorem
	Chapter 8. Conclusions
	Bibliography

